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Abstract

Deep Learning has drawn extensive research interests due to its wide application

ranging from autonomous driving to medical diagnosis. One of the most important

successes in artificial intelligence is learning generalizable representations from a de-

cent amount of labeled data in an end-to-end fashion. Nevertheless, it is not always

feasible to collect a large number of annotated data. Therefore, self-supervised learn-

ing has recently drawn increasing attention due to its tremendous performance in

various domains, e.g., audio and visual domains. Self-supervised learning is a form

of unsupervised learning which learns high-level representations from raw observa-

tions without any human supervision which can be broadly used in downstream

tasks such as anomaly detection.

Out-of-distribution (OOD) or anomaly detection, i.e., the problem of deciding

whether a given test sample is drawn from the same distribution as the training set,

is crucial for a reliable learning. Anomaly detection aims at identifying patterns in

data that are significantly different to what is expected. Many real-world applica-

tions require highly accurate anomaly detection for unassailable deployment, such

as in medical diagnosis. There have been many attempts at learning a representa-

tion befitting anomaly detection. Inspired by the recent success of self-supervised

learning, we aim to make use of its power of representation learning for OOD detec-

tion in natural images as well as medical datasets. OOD detection is an important

step to improving safety.

In this work, we propose a framework for anomaly detection that does not require

any label information. Our framework can be widely applied to OOD detection

tasks, including visual and time series data. A main contribution of this work is

that our proposed method outperforms supervised and unsupervised methods on

challenging OOD detection tasks in the visual domain.

We hope that the provided insights in this work shed light on the challenging prob-

lem of anomaly detection and allow for improving decision-making especially in

health domain.
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Zusammenfassung

Deep Learning hat aufgrund seiner breiten Anwendung, die vom autonomen Fahren

bis zur medizinischen Diagnose reicht, großes Forschungsinteresse auf sich gezo-

gen. Das Erlernen verallgemeinerbarer Repräsentationen aus einer angemessenen

Menge markierter Daten ist einer der wichtigsten Erfolge in der künstlichen In-

telligenz. Dennoch ist es nicht immer möglich, eine große Anzahl kommentierter

Daten zu sammeln. Daher hat das selbstüberwachte Lernen in letzter Zeit aufgrund

seiner enormen Leistungen in verschiedenen Bereichen, z.B. im Audio und im vi-

suellen Bereich, immer mehr Aufmerksamkeit auf sich gezogen. Selbstüberwachtes

Lernen ist eine Form des unüberwachten Lernens, bei dem aus Rohbeobachtungen

ohne menschliche Aufsicht Repräsentationen auf hoher Ebene gelernt werden, die in

nachgelagerten Aufgaben wie der Erkennung von Anomalien breit eingesetzt werden

können.

Out-of-distribution (OOD) oder Anomalie-Erkennung, d.h., das Problem der Entsc-

heidung, ob eine gegebene Testprobe aus der gleichen Verteilung wie die Trainings-

menge stammt, ist entscheidend für ein zuverlässiges Lernen. Die Anomalieerken-

nung zielt darauf ab, Muster in Daten zu identifizieren, die sich signifikant von

dem unterscheiden, was erwartet wird. Viele reale Anwendungen erfordern eine

hochpräzise Anomalieerkennung für einen unanfechtbaren Einsatz, wie z.B. in der

medizinischen Diagnose. Es gibt viele Versuche, eine geeignete Repräsentation für

die Anomalieerkennung zu erlernen. Inspiriert durch den jüngsten Erfolg des selbst-

überwachten Lernens wollen wir die Leistungsfähigkeit des Repräsentationslernens

für die OOD-Erkennung in natürlichen Bildern sowie in medizinischen Datensätzen

nutzen. Die Erkennung von OODs ist ein wichtiger Schritt zur Verbesserung der

Sicherheit. In dieser Arbeit schlagen wir einen Rahmen für die Erkennung von

Anomalien vor, der keine Etikettinformationen benötigt. Unser Framework kann in

großem Umfang auf OOD-Erkennungsaufgaben angewendet werden, einschließlich

visueller und Zeitreihendaten. Ein Hauptbeitrag dieser Arbeit ist, dass die von uns

vorgeschlagene Methode besser ist als überwachte und unüberwachte Methoden bei

anspruchsvollen OOD-Erkennungsaufgaben im visuellen Bereich.

Wir hoffen, dass die in dieser Arbeit gewonnenen Erkenntnisse Licht auf das schwier-

ige Problem der Anomalieerkennung werfen und eine bessere Entscheidungsfindung

insbesondere im Gesundheitsbereich ermöglichen.
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Chapter 1

Introduction

In this chapter, we review some basic concepts playing fundamental role in this

thesis.

Humans have been trying to understand their own intelligence and explain it by a

few principles instead of heuristics and build intelligent machines [12]. This has pro-

vided inspiration for Artificial Intelligence research. Artificial Intelligence

(AI) is any technique which enables computers to mimic human behaviour and fo-

cuses on building algorithms to process information. Russell et al. [13], in book

Artificial Intelligence, A Modern Approach, mention conceivable goals to achieve in

AI which are building systems that think like humans, act like humans, think ratio-

nally, and act rationally. AI aims at distilling human knowledge and understanding

into a suitable form for building machines [14]. Machine Learning (ML) is a sub-

field of AI where focuses on teaching algorithms to process information to inform

future decisions without being explicitly programmed to do a task. Traditional ML

algorithms typically define a set of features from data. These features are important

but hand-engineered and brittle in practice which highlights the weakness of the ML

algorithms. For more complex tasks, it is infeasible to know what features should be

extracted. For example, if our goal is to detect a face in a given image, we can begin

with recognising different parts of face such as nose and ears and after detecting

these parts we can say there might be a face in the image. Now the question is

how to recognise them? This is where the problem becomes complicated. Most of

the ML algorithms have a shallow understanding of the data and are tremendously

dependent on representations they are fed as input [15]. Making machine learning

algorithms less dependent on feature engineering would be advantageous. This is

where deep neural networks (DNNs) make a difference.

Deep Learning (DL) is a subfield of ML which can automatically extract useful

pieces of information needed to solve the task at hand. In fact, DNNs derive complex

patterns from raw data by composing low level features hierarchically to detect

higher level features. For example, in the face detection task we need to take a bunch
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Chapter 1. Introduction

of images of faces. DL algorithms attempt to develop hierarchical representations of

first detecting low level features such as lines and edges then using these low level

features to detect mid-level features like eyes, nose and ears. Finally, composing

these features leads to detecting higher level features like facial structure. There has

been a gap between learning algorithms and human abilities [12], to bridge the gap

towards human-level intelligence, learning generalizable and reliable representations

would be desirable. Representation learning works by learning a more compact

and generalizable representation of the input data, making it easier to find patterns

and also giving a better understanding of the data. The learnt representations not

only solve the defined task, but because of their generalization properties [15], they

can be re-purposed to solve a downstream task of interest. Representation learning

methods can be mainly supervised , unsupervised , or self-supervised . In the

following section we introduce each of them.

1.1 Learning Strategies

Supervised Learning is a training strategy that relies on labeled data. A model

learns a mapping from inputs to outputs. Training highly effective supervised deep

learning models usually requires to expose the model to a decent amount of labeled

training data. Data annotation is usually time consuming and expensive. On the

other hand, data distributions constantly shift which needs more and new data

while collecting a large amount of unlabeled data is not difficult. Even with a large

number of labeled examples supervised learning has still blind spots in terms of

learning useful and rich representations [16].

Unsupervised Learning is a learning approach that allows learning from unla-

beled data. Unlike supervised learning that a model is given a set of input and

output data, in unsupervised learning only the input data are available and the

model must extract patterns from the data. However, unsupervised learning has

limited power compared with supervised learning which has access to label infor-

mation.

Self-supervised Learning is a form of unsupervised learning where raw data

(not human) provide the supervision. The self-supervised learning approach aims

at learning semantically meaningful features from unlabeled data. Self-supervised

tasks, also called pretext tasks, help in learning representations which are beneficial

to other downstream tasks such as classification and segmentation. Improving rep-

resentations require learning features that are not specialized for solving a specific

task but rather capturing rich statistics for different downstream tasks. For most of

pretext tasks, a part of the data is withheld and the model has to predict it.

A self-supervised task can be realized by predicting a subset of information using

the rest, e.g., for a time series sequence the task could be predicting the future

from the past [17] or learning the semantic similarities between different patches

2



Chapter 1. Introduction

of an image [18]. Self-supervised learning has drawn extensive research interests in

different domains from language to image and audio [3, 17, 19]. Some believe that

self-supervised learning is more close to achieving human-level intelligence and is

more human-like in its reasoning1. Since the representation has to be learnt from

the data itself without any additional input, the information-theoretic principles

have been formulated. One could be maximizing similarity between different levels

of representations measured by Mutual Information (MI) [20] which is a measure

of dependency. MI captures non-linear dependency between variables and can be

considered as a measure of true dependence [21].

Figure 1.1: An illustration to distinguish the supervised, unsupervised and
self-supervised learning frameworks. Taken from [1].

In practice, MI is difficult to compute. The intrinsic difficulty of the MI estima-

tion stems from the fact that the MI is a nonlinear function of a joint probability

measure and typically the space of probability measures can be infinitely large [22].

Exact computation is tractable only for discrete variables and a limited family of

probability distributions. Estimating MI is challenging but many techniques have

been proposed to address this problem. Recent works [17,18,23,24] have combined

variational bounds with deep learning to enable tractable estimation of MI.

Most of the prior works aim at improving representations by proposing novel pretext

tasks [4, 5, 7]. Self-supervised learning [4, 25] has shown outstanding success in rep-

resentation learning which can be used in downstream tasks such as classification,

object detection, and anomaly detection.

1.2 Anomaly Detection

Anomaly detection or Out-of-Distribution (OOD) detection is the problem

of deciding whether a given test sample is drawn from the same distribution as the

1https://venturebeat.com/2020/05/02/yann-lecun-and-yoshua-bengio-self-supervised-
learning-is-the-key-to-human-level-intelligence/
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Chapter 1. Introduction

training data or it belongs to an alternative distribution. This problem can be for-

mulated as a binary classification problem that classifies examples as in-distribution

or OOD, given a sufficiently large sample from the in-distribution. An alternative

approach is to learn a density model from the training data and compute likelihood

of OOD examples [26,27]. However, in practice, this approach frequently has failed

for high-dimensional data [28], where it has been shown that deep generative mod-

els can assign higher likelihood to OOD examples than to in-distribution examples.

A major challenge in OOD detection is the case where the features of outlier ex-

amples are statistically close to the features of in-distribution examples, which is

often the case for natural images. Recently numerous self-supervised tasks have been

proposed that enable richer feature learning [3,19] more suited for OOD detection.

Particularly, contrastive learning [29] has shown state-of-the-art results on visual

representation learning [3, 19]. Contrastive self-supervised learning is an approach

to learn useful representations by solving a pretext task which pulls semantically

similar examples closer while pushing away from others. Most of the recent state-of-

the-art anomaly detection methods have utilized self-supervised contrastive training

[30,31].

1.2.1 Anomaly Detection in Medical Health Screening

Recently, deep learning has benefited medical diagnosis [32–34]. Diagnosing if a

sample includes any abnormality can help medical experts with a reliable early

treatment and can improve decision making. In health screening, typically the prob-

lem of anomaly detection is addressed by training a binary classifier on healthy and

unhealthy samples which requires experts to analyse a large amount of data where

the dataset is highly imbalanced with the large majority of cases comprising normal

samples and a small minority consisting of abnormal samples. In this regard, many

studies have been conducted to deal with imbalanced learning [35]. An alternative

to fully supervised imbalanced learning is few-shot anomaly detection [36] using an

imbalanced training set, containing a large number of normal and a few abnormal

samples which is inspired by how humans can generalize from only a handful of

examples. Existing unsupervised methods are usually formulated as one-class clas-

sifiers (OCC) [37, 38]. Prevailing state-of-the-art OCC methods [37] train a neural

network to minimize the volume of a hypersphere that encloses the representations

of the in-distribution training data in the representation space. Test images are

classified as in-distribution if they fall inside the hypersphere and classified as OOD

if they fall outside. Nonetheless, Chen et al. [38] have shown that the OOC models

often overfit the training data, especially when the training set is small or contami-

nated with anomalies. Recently the self-supervised learning has permeated the field

of medical image analysis. Due to their efficiency, self-supervised pretext tasks such

as predicting geometric transformations [39] or contrastive learning [34] have been

designed for OOD detection.
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Chapter 1. Introduction

1.3 Thesis Outline

This thesis is principally devoted to experimental investigations concerning the

issue of self-supervised representation learning particularly for anomaly detection

in different visual and time series domains. This thesis is structured as follows.

In chapter 2, we recapitulate the basics of Information Theory, which provides the

basis for the machine learning applications in the subsequent chapters. Notations

and derivations are inspired by the book Elements of information theory written

by Cover and Thomas [40].

In chapter 3, we concisely introduce some basic concepts in Machine Learning.

Chapter 4 is devoted to an extensive discussion on self-supervised pretext tasks and

contrastive learning. In this chapter, we investigate behaviour of the contrastive

loss.

In chapter 5, we study the application of self-supervised representation learning

in medical time series. We exploit self-supervised representation learning to detect

atrial fibrillation which is the most common arrhythmia having a major impact on

mortality.

Chapter 6 addresses pneumonia detection in chest X-ray image. We combine a

self-supervised contrastive method with a Mahalanobis distance score function to

develop an abnormality detection method that uses only healthy images during

training.

The next chapter, chapter 7, shows how we can make use of self-supervised con-

trastive learning combined with cosine similarity as a score function to detect serious

clinical complications in patients receiving oncological treatment for their hemato-

logic malignancies.

In chapter 8, we present a self-supervised method which leverages self-distillation

and negative samples for the task of abnormality detection. We show that self-

distillation of the in-distribution training data together with contrasting against

negative examples derived from shifting transformations can improve OOD detec-

tion performance in the visual domain in both natural and medical images.

In chapter 9, we discuss the objectives and achievements in the thesis and proposals

for future developments are addressed.
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Chapter 2

Basic Information Measures

In this chapter, we introduce basic information measures and theoretical concepts

necessary for subsequent chapters. We denote random variables using uppercase

letters, e.g. X, and their realizations by the corresponding lowercase letters, e.g. x.

For simplicity, we denote probability mass function of a discrete random variable by

p(x) instead of pX(x). We also denote probability density function of a continuous

random variable by f(x) rather than fX(x).

2.1 Entropy

The entropy is a measure of uncertainty of a random variable or the average amount

of information carried by a random variable.

Let X be a discrete random variable with probability mass function p(x). The

entropy of X, denoted by H(X) or H(p), is defined as

H(X) = −
∑︂

x

p(x) log p(x) (2.1)

the common values being used for the base of the logarithm are 2 and Euler’s

number e. The units of entropy are named bits and nats correspondingly. For a

discrete random variable X, the entropy is the average number of bits needed to

describe the random variable.

Definition . Let f(x) be probability density function of a continuous random vari-

able X. The differential entropy of X, denoted by h(X) or h(f), is defined as

h(X) = −
∫︂
f(x) log f(x)dx (2.2)

since a probability density function can take arbitrarily large values, the differential

6



Chapter 2. Basic Information Measures

entropy can take negative values so the differential entropy can not be a measure

of information that the random variable X is carrying. In general, a continuous

random variable can carry an infinite amount of information.

Definition . The conditional entropy is the uncertainty of a random variable, X,

given another random variable Y . The conditional entropy H(X|Y ) is defined as

H(X|Y ) = −
∑︂

(x,y)

p(x, y) log p(x|y) (2.3)

2.1.1 Properties of Entropy

In the following, we mention the most important properties of entropy.

1. For any discrete random variable X, H(X) ≥ 0, because the maximum value

a probability mass function can take is 1 while the differential entropy can take

negative values.

2. Conditioning always reduces the entropy

H(X) ≥ H(X|Y ) (2.4)

we prove this property later using the non-negativity of mutual information.

3. Chain rule. The joint entropy can be decomposed as follows

H(X, Y ) = H(Y ) +H(X|Y ) (2.5)

= H(X) +H(Y |X) (2.6)

Proof.

H(X, Y ) = −
∑︂

x

∑︂

y

p(x, y) log p(x, y)

= −
∑︂

x

∑︂

y

p(x, y) log p(y)p(x|y)

= −
∑︂

x

∑︂

y

p(x, y) log p(y)−
∑︂

x

∑︂

y

p(x, y) log p(x|y)

= −
∑︂

y

p(y) log p(y)−
∑︂

x

∑︂

y

p(x, y) log p(x|y)

= H(Y ) +H(X|Y )

similarly we can show that the entropy of n random variables is the sum of con-

ditional entropies. let X1, X2, ..., Xn be n random variables with joint probability

7
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mass function p(X1, X2, ..., Xn)

H(X1, X2, ..., Xn) =
n∑︂

i=1

H(Xi|Xi−1, ..., X1) (2.7)

4. Let X be a random variable and g(X) be a deterministic function of X

H(X) ≥ H(g(X)) (2.8)

Proof. Expanding H(X, g(X)) in two different ways

H(X, g(X)) = H(X) +H(g(X)|X)

= H(g(X)) +H(X|g(X))

H(g(X)|X) = 0 because by knowing X there is no uncertainty left about g(X).

H(X) = H(g(X)) if and only if g is invertible. If we have an unique mapping from

X to g(X), both reduce the same amount of uncertainty about each other.

2.2 Relative Entropy

The relative entropy or Kullback-Leibler (KL) divergence [41] is a quantitty that

measures distance or dissimilarity between two distributions.

The Relative entropy for discrete probability distributions p and q defined as

Dkl(p||q) =
∑︂

x

p(x) log
p(x)

q(x)
(2.9)

= H(p, q)−H(p) (2.10)

for probability density functions the summation is replaced by an integral

Dkl(f ||g) =

∫︂
f(x) log

f(x)

g(x)
dx (2.11)

in the above definition, we set 0 log 0
0

= 0, 0 log 0
q

= 0 and p log p
0

=∞ .

2.2.1 Properties of Relative Entropy

In the following, we review some properties of relative entropy.

1. The KL divergence is not symmetric.Dkl(p||q) is not necessarily equal toDkl(q||p).
2. For any p and q, Dkl(p||q) ≥ 0.

To prove this property, we need to introduce Jensen’s Inequality. If φ is a convex

8
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function on its domain and X is a random variable

E[φ(X)] ≥ φ
[︁
E(X)

]︁
(2.12)

the proof can be found in [40].

Proof. Let p and q be two discrete probability distributions on the same probability

space

Dkl(p||q) =
∑︂

x

p(x) log
p(x)

q(x)

= −
∑︂

x

p(x) log
q(x)

p(x)

= −Ep(x)

[︃
log

q(X)

p(X)

]︃

using Jensen’s Inequality and this fact that − log x is a convex function

Dkl(p||q) ≥ − logEp(x)

[︃
q(X)

p(X)

]︃

= − log
∑︂

x

p(x)
q(x)

p(x)

= − log 1

= 0

Dkl(p||q) = 0 if and only if p ≡ q.

2.2.2 Variatonal Inference

Variatonal inference is a deterministic method vastly used for approximate inference

[42]. Variatonal is a general term used for problems that the inference is reduced to

an optimization problem.

Suppose the goal is to find an approximate to a distribution p where the approximate

distribution makes inference simpler. Let Q be a family of tractable distributions

where q ∈ Q is an approximate to the true distribution p. Suppose q has some

free parameters which are optimized to make q as similar as possible to the true

distribution p. A good choice for cost function is the KL divergence to be minimized.

Forward KL divergence, also known as an M-projection or moment projection

[43] is defined as

Dkl(p||q) =
∑︂

x

p(x) log
p(x)

q(x)

= −Ep(x) [log q]−H [p] (2.13)

9
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Figure 2.1: Illustrating forward vs reverse KL divergence on a bimodal distribution
Taken from [2]. The blue curves are the contours of the true distribution p. The

red curves are the contours of the unimodal approximate distribution q. (a)
Minimizing forward KL divergence (b-c) Minimizing reverse KL divergence

note that inference on p is required which is assumed to be intractable. The forward

KL divergence is stated to be zero avoiding [43] for q because if p > 0 we must

ensure q > 0 otherwise Dkl(p||q) is infinite.

An alternative is reverse KL divergence, also known as an I-projection or infor-

mation projection [43]

Dkl(q||p) =
∑︂

x

q(x) log
q(x)

p(x)

= −Eq(x)[log p]−H[q] (2.14)

the family of distributions Q is chosen such that the expectation w.r.t q is tractable.

The reverse KL divergence is stated to be zero forcing [43] for q because if p = 0

we must ensure q = 0 otherwise Dkl(q||p) is infinite for q > 0.

The difference between these two methods is illustrated in Figure 2.1 taken from

[2]. Suppose the true distribution p is a bimodal Gaussian distribution and q is

constrained to be a unimodal Gaussian distribution. Minimizing the forward KL

divergence yields an approximate distribution q that tends to cover both modes

of p and its mode is in a low density region while by minimizing the reverse KL

divergence q gets trapped in one of the modes.

2.3 Mutual Information

The mutual information (MI) between two random variables X and Y is defined

as the relative entropy between the joint distribution and the product of their

marginals

I(X;Y ) = DKL(p(x, y)||p(x)p(y)) (2.15)

10
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if X and Y are two discrete random variables with joint probability mass function

p(x, y)

I(X;Y ) =
∑︂

(x,y)

p(x, y) log
p(x, y)

p(x)p(y)
(2.16)

if X and Y are two continuous random variables with joint probability density

function f(x, y)

I(X;Y ) =

∫︂
f(x, y) log

f(x, y)

f(x)f(y)
dxdy (2.17)

I(X;Y ) can be equivalently expressed as

I(X;Y ) ≡ H(X)−H(X | Y ) (2.18)

≡ H(Y )−H(Y | X) (2.19)

≡ H(X) +H(Y )−H(X, Y ) (2.20)

The mutual information, I(X;Y ), can be interpreted as the amount of informa-

tion one random variable carries about another random variable or the amount of

uncertainty reduction about a random variable after observing the other one.

2.3.1 Properties of Mutual Information

In the following we investigate the most significant properties of MI.

1. For any two random variables X and Y: I(X;Y ) ≥ 0. Equality holds if and only

if X and Y are independent.

Proof. I(X;Y ) = Dkl(p(x, y)||p(x)p(y)) ≥ 0. This non negativity results inH(X) ≥
H(X | Y ).

2. The mutual information is symmetric that can be inferred from its definition.

I(X;Y ) = I(Y ;X) (2.21)

therefore X knows as much about Y as Y knows about X.

3. Chain rule.

I(X, Y ;Z) = I(X;Z) + I(Y ;Z|X) (2.22)

11
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Proof. Expanding the mutual information and using the chain rule for the entropy

I(X, Y ;Z) = H(X, Y )−H(X, Y |Z)

= H(X) +H(Y |X)−H(X|Z)−H(Y |X,Z)

= H(X)−H(X|Z) +H(Y |X)−H(Y |X,Z)

= I(X;Z) + I(Y ;Z|X) (2.23)

Similarly for a set of random variables X1, X2, ..., Xn;Y

I(X1, X2, ..., Xn;Y ) =
n∑︂

i=1

I(Xi, Y |X1, X2, .., Xi−1) (2.24)

4. The mutual information is invariant under reparametrization. If f and g are

invertible and deterministic functions and X ′ = f(X) and Y ′ = g(Y ), then

I(X;Y ) = I(X ′;Y ′)

since f is an invertible function, random variables X, X ′ and (X, X ′) are equivalent

in terms of entropy and provide the same amount of information about random

variable Y
I(X,X ′;Y, Y ′) = H(X,X ′)−H(X,X ′|Y, Y ′)

= H(X ′)−H(X ′|Y ′)

= I(X ′;Y ′)

5. Conditioning can either increase or decrease the mutual information. To prove

this property we first need to define Markov chain.

Definition . Let X, Y and Z form a Markov chain, X → Y → Z, the joint

probability mass function can be written as

p(x, y, z) = p(x)p(y|x)p(z|y)

markovity implies conditional independence

p(x, z|y) =
p(x, y, z)

p(y)

=
p(x)p(y|x)p(z|y)

p(y)

=
p(y, x)p(z|y)

p(y)
= p(x|y)p(z|y)

to prove non-monotonicity property of mutual information, we consider two follow-

ing cases [40]

• If X, Y and Z form a Markov chain, X → Y → Z, then I(X;Y |Z) ≤ I(X;Y ).

12
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Proof. The mutual information I(X;Y, Z) can be expanded in two different

ways by the chain rule as follows

I(X;Y, Z) = I(X;Z) + I(X;Y |Z)

= I(X;Y ) + I(X;Z|Y )

by markovity I(X;Z|Y ) = 0 and from non-negativity property of the mutual

information I(X;Z) ≥ 0, then

I(X;Y |Z) ≤ I(X;Y )

• IfX, Y and Z don’t form a Markov chain, it could be possible that I(X;Y |Z) ≥
I(X;Y ). let X and Z be two independent random variables, i.e., I(X;Z) = 0,

then

I(X;Y |Z) ≥ I(X;Y )

2.3.2 Data Processing Inequality

The data processing inequality demonstrates that ”no clever manipulation of the

data can improve the inferences that can be made from the data” [40] or in the

other word ”there is no processing of Y , deterministic or random, can increase the

information that Y contains about X” [40].

Data Processing Inequality . If X, Y and Z form a Markov chain, X → Y → Z,

then I(X;Y ) ≥ I(X;Z).

Proof. Taking two different expansions of I(X;Y, Z) by the chain rule

I(X;Y, Z) = I(X;Z) + I(X;Y |Z)

= I(X;Y ) + I(X;Z|Y )

by markovity I(X;Z|Y ) = 0 and I(X;Y |Z) ≥ 0

I(X;Y ) ≥ I(X;Z) (2.25)

equality holds if and only if I(X;Y |Z) = 0.

2.3.3 Information Bottleneck Principle

In [44], the relevant information in a signal x is defined as the information that

x provides about another signal y. One example can be the information that im-

ages provide about their labels. Understanding the signal x requires more than just

predicting y, it also requires specifying which features of x are involved in the pre-

diction. Tishby et al. [44] formulated this problem as finding a short code for X

that captures the maximum information about Y . The information that X provides
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about Y is squeezed through a ”bottleneck” formed by a compact representation.

Let the compressed representation of X be given by random variable T . The infor-

mation bottleneck proposed by Tishby et al. [44] expresses the trade-off between

the mutual information measures I(X;T ) and I(T ;Y ). There is a trade-off between

compressing the representation, i.e., minimizing I(X;T ), and preserving meaningful

information, i.e., maximizing I(T ;Y ).

2.3.4 Sufficient Statistics

Suppose {fθ(x)} is a family of probability mass functions parameterized by θ and X

is a sample drawn from a probability distribution fθ(x) in this family. Any function

of X, T (X), is called a statistic and for any statistic T (X)

θ → X → T (X) (2.26)

by the data processing inequality, I(θ;X) ≥ I(θ;T (X)).

Definition . T (X) is called a sufficient statistic relative to the family {fθ(x)} if

the conditional probability distribution of X, given the statistic T (X), does not

depend on the underlying parameter θ which induces the following Markov chain

θ → T (X)→ X (2.27)

sufficient statistic T (X) knows as much information about θ as X knows, so

I(θ;X) = I(θ;T (X)) (2.28)
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Chapter 3

Machine Learning Basics

The goal of this chapter is to provide a brief introduction to the most important

concepts in machine learning (ML).

3.1 Neural Networks

3.1.1 Perceptron

A perceptron is the simplest neural network (NN) possible [45], Figure 3.1. We

can design the simplest discriminator by a Perceptron. A discriminator takes an

input vector xn and assigns it to one of K classes. Suppose we observe N data

pairs {(xn, yn)}Nn=1. Let us assume that the data points xn ∈ Rd, and labels yn ∈
{−1,+1}. The perceptron maintains a weight vector w ∈ Rd. For each feature

xni in the feature vector xn there is a corresponding weight wi. The Perceptron

corresponds to a linear two-class classifier which assigns data point xn to class 1 if

ŷn > 0 otherwise to class −1.

ŷn = w0 +
d∑︂

i=1

xni wi = w0 + xT
nw (3.1)

where w0 is bias. If it is desirable to output a number representing a probability

we can apply a non-linear activation function such as sigmoid function, σ(.), that

takes any real value and transforms it to a value between 0 and 1. The classifier

can correctly classify all samples, if they are linearly separable.
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y...

w0
1

xn1
w1

xnd
wd

ŷn = f(w0 +
∑︁d

i=1 x
n
i wi)

Figure 3.1: Illustration of a perceptron. The activation function is denoted by f .
[xn1 , . . . , x

n
d ]T represents feature vector xn. w0 is called bias and represents an

external input.

3.1.2 Multilayer Perceptron

A Multilayer Perceptron (MLP) consists of at least three layers, an input layer, an

output layer, and a layer between the input and output layers referred to as “hid-

den” layer [46]. MLPs are fully connected layers, each node in a layer is connected

to every node in the following layer with a corresponding weight. Neural networks

imitate the structure of the brain, see Figure 3.2. When a NN contains multiple

hidden layers it is considered as a “deep” NN (DNN).

In practice, data are highly non-linear. To introduce non-linearity to NNs, we can

take non-linear activation functions such as sigmoid function, rectified linear unit

(ReLU) or hyperbolic tangent (tanh). Linear activation functions build linear deci-

sion boundaries no matter how large the NN is. Except for the nodes in the input

layer, each node is followed by a nonlinear activation function. Introducing non-

linearity to the NNs enables approximating arbitrarily complex functions.

x1

x2

...

xd

...

. . .

. . .

. . .

...

y1

y2

...

yc

input layer
1st hidden layer Lth hidden layer

output layer

Figure 3.2: Multilayer perceptron with L hidden layers. Input and output layers
have d and c nodes, respectively. The lth hidden layer contains n(l) hidden nodes.
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3.2 Machine Learning Algorithms

Most machine learning algorithms fall into one of supervised and unsupervised

categories. Classification and regression are two examples of supervised learning. In

a classification task, aim is to predict a discrete class label and regression is a task

of predicting a continuous quantity.

Consider a classification task with K classes, model is presented with a set of

observations, X = {x1, · · ·,xN}, along with corresponding target values Y = {y1, · ·
·, yN} where xn is a d dimensional feature vector, xn ∈ Rd, and yn is a K-way

categorical random variable. Suppose we aim to predict the class label y given the

input vector x. Let pdata(y|x) be the conditional probability distribution over classes

and p(y|x,θ) be an estimation of pdata(y|x) parameterized by a neural network. At

the output layer of the network, outputs are mapped to a distribution over classes

through a softmax function

p(yn = k|xn,θ) =
eh

k
θ(xn)

∑︁K
k=1 e

hk
θ(xn)

(3.2)

where hkθ is called logit associated with class k. In order to determine parameters θ,

we maximize the conditional likelihood of the training data. Given a dataset of N

independent, identically distributed (iid) samples, we assume there is no dependency

between them, the conditional likelihood function can be constructed as

p(Y|X ,θ) =
N∏︂

n=1

p(yn|xn,θ) (3.3)

to avoid numerical problems such as underflow arising from multiplying small prob-

abilities we maximize the conditional likelihood in log space

θML = arg max
θ

log
N∏︂

n=1

p(yn|xn,θ)

= arg max
θ

1

N

N∑︂

n=1

log p(yn|xn,θ) (3.4)

equivalently

θNLL = − arg min
θ

1

N

N∑︂

n=1

log p(yn|xn,θ) (3.5)

Negative log likelihood (NLL), Eq. 3.5, is equivalent to cross entropy loss. For a

binary classification task, Eq. 3.5 is a binary cross entropy loss and is a categorical

cross entropy for multi-class problems.
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In unsupervised learning, model is presented with a set of observations, X , attempt-

ing to learn underlying structure of the data. Clustering and density estimation are

examples of unsupervised learning. Clustering is a task of grouping samples such

that semantically similar ones fall into the same cluster. In the density estimation

problem, we try to define a model to estimate the distribution which the samples

were drawn from. One way is maximising the likelihood of training data which for

N iid samples is defined as p(X|θ) =
∏︁N

n=1 p(xn|θ).

3.3 Generalization

A NN should fully learn the training data and be able to perform well on unseen

data. If a model has enough capacity, e.g., more parameters than training sam-

ples, it is able to “memorize” each training sample. The model overfits the training

data which yields poor generalization to unseen test data [47]. To alleviate overfit-

ting, different regularization methods have been introduced. Regularization is ”any

modification we can make to the learning algorithm that is intended to reduce the

generalization error but not its training error” [47].

A common way to combat overfitting is to add l1-norm or l2-norm regularization

as a penalty term to loss function which forces parameters to have smaller norms

[48]. An alternative form of regularization is early stopping for over-parameterized

models, such as large deep networks [49], when model’s performance gets worse on

a validation set.

Another way for preventing overfitting is to increase the size of training set by

using data augmentation. To keep semantics intact, data augmentation methods

need expertise to design augmentations which requires domain adaption. For im-

ages, common augmentations include translation, rotation, and sharpening [50].

For a text classification task, the augmentation method can be back-translation

[51] which refers to translating a sentence into another language then translating it

back which can help train a robust model.

3.4 Convolutional NNs vs. Transformers

Convolutional neural networks (CNNs) have revolutionized computer vision field

[52]. CNNs extract visual features and are particularly designed for images that can

be computationally expensive which make needs for computationally efficient ar-

chitectures to achieve state-of-the-art results. Recently, Vision Transformers (ViTs)

[53] have emerged as a powerful tool in computer vision, however, CNNs remain

dominant. ViTs have been developed based on Transformers [54] originally designed

for text-based tasks. An image is divided into multiple patches and then is unrolled

into a sequence of patches to be fed to the transformer. ViTs outperform or per-

form on par with CNNs on many image classification datasets, if trained on large
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datasets [53]. ViTs lack some of the inherent spatial inductive biases of CNNs, such

as translation equivariance and locality, so they do not generalize well when trained

on insufficient amounts of data. Dosovitskiy et al. [53] have shown that ViTs result

in excellent performance when pre-trained on adequate amounts of data and can

be fine-tuned for tasks with smaller datasets. Unlike CNNs, ViTs are capable of

capturing long-range correlations [55], which is crucial for learning high-level se-

mantics.

Zhou et al. [55] have explored the transferability of the learnt representations of

CNNs and ViTs on various datasets and showed that ViTs provide more transfer-

able and generalizable representations than CNNs. ViTs are more prone to overfiting

which needs strong data augmentation or regularization [56,57] to tackle overfitting.
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Chapter 4

Self-Supervised Representation

Learning

Self-supervised Learning is a form of unsupervised learning where raw data (not

human) provide the supervision. The self-supervised learning is an approach con-

cerned with learning semantically meaningful features from unlabeled data. The

self-supervised tasks help in learning representations which are beneficial to other

downstream tasks. Improving representations require learning features that are not

specialized for solving a specific task but rather capturing rich statistics for dif-

ferent downstream tasks. The self-supervised pretext tasks also require labels (or

pseudo-labels) for optimization which are derived from the data alone. For most

of pretext tasks, a part of the data is withheld and the model has to predict it.

Recent works have focused on designing novel pretext tasks, such as context pre-

diction [5], jigsaw puzzle [8], colorization [9, 58], rotation [4]. Many methods have

been proposed for self-supervised representation learning on images, each exploring

a different pretext task. In the most common pretext tasks, some transformations

applied to inputs while the semantics stay unchanged. In this chapter, we draw on

existing self-supervised pretext tasks.

4.1 How to define pretext tasks?

In SimCLR [3], geometric transformations and color transformations were applied

to images to learn representations. Geometric transformations such as random crop-

ping, scaling, horizontal flipping and vertical flipping don’t change the pixel infor-

mation. Color transformations such as blurring, color distortion and converting to

gray-scale can be applied to images such that model learns representations invari-

ant to the color changes. The pretext task is defined as maximizing the agreement

between different augmentations of the same image, see Figure 4.1.
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In [4], a model is trained to recognize the discrete geometric transformation applied

to an image. An image is first rotated by 0, 90, 180, and 270 degrees then the

model is trained on a 4-way image classification task to recognize the rotation was

applied to the image, see Figure 4.2. They argue that in order for a model to be

able to identify the rotation applied to an image the model needs to understand the

concepts of the objects in the image such as their location in the image, their type,

and their pose.

Figure 4.1: A simple framework for visual representation learning. Each image is
augmented twice. Two separate data augmentation operators sampled from the

same family of augmentations applied to the image to obtain two correlated views.
Taken from [3].

Doersch et al. [5] formulated the pretext task as predicting the relative position

between two random patches from one image, see Figure 4.3. When designing a

pretext task, one must ensure that the task forces the network to extract the desired

information such as high level semantics, without taking “trivial” shortcuts. To

prevent the model from catching only low level trivial information like textures

continuing between patches they introduced some additional noise such as including

a gap between patches.

In [7], a model is trained to discriminate between a set of surrogate classes. Each

surrogate class is formed by applying a variety of transformations to a randomly

sampled image patch. The resulting distorted patches are considered to belong to

the same surrogate class, see Figure 4.4.

Noroozi et al. [8] trained a convolutional neural network (CNN) to solve jigsaw

puzzles as a pretext task and then learnt representations are repurposed to solve

object classification and detection, see Figure 4.5.

In [9], the pretext task is defined as training a model to color a grayscale input

image. The model maps the grayscale image to a distribution over quantized color
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Figure 4.2: Illustration of the self-supervised task by applying geometric
transformations to the input image. The model learns to predict which rotation

was applied. Taken from [4].

Figure 4.3: Illustration of the self-supervised task by predicting relative position
between randomly sampling a patch (blue) and one of eight possible neighbors

(red). Taken from [5].

value outputs. It has been shown that colorization can be a powerful pretext task

for self-supervised feature learning, see Figure 4.6.
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Figure 4.4: Transformations applied to one of the patches extracted from the STL
dataset [6]. The original patch is in the top left-hand corner. Taken from [7].

Figure 4.5: Illustration of self-supervised learning by solving jigsaw puzzle. The
tiles marked with green lines are extracted from the image and a puzzle obtained

by shuffling the tiles. Taken from [8].

Figure 4.6: Input grayscale photos and output colorizations. Taken from [9].

4.2 Contrastive Learning

Recently, self-supervised methods based on Contrastive Learning [59] have been

appealing to researchers due to their outstanding performance.

Contrastive Learning is a method that learns to map similar samples, referred to

as positive pairs, to nearby points in a lower dimensional space and simultaneously

pushes dissimilar samples apart, referred to as negative pairs. Contrastive learning

aims at ”learning by comparison” [60]. Let xpos and xneg be a positive and a negative

sample for an anchor sample x, contrastive methods aim to learn an encoder f such
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(a) Alignment (b) Uniformity

Figure 4.7: (a) Similar examples are mapped to nearby latent features. (b)
Uniformity of features distribution on a unit hypersphere. Figures inspired by

[10]. CIFAR10 [11] images are used for this demonstration.

that

s(f(x), f(xpos)) > s(f(x), f(xneg)) (4.1)

where s is a score function.

Recently the most competitive methods for self-supervised representation learning

have been contrastive. Among them, the state-of-the-art contrastive methods [17,

19,61–63] learn representations by pulling together different augmented views of the

same image and spreading augmented views of different images apart, see Figure

4.7.

The most commonly used self-supervised contrastive loss is Normalized Temperature-

scaled Cross-entropy (NT-Xent) introduced in [17] defined as

Lself =
∑︂

i

Li
self = − 1

N

N∑︂

i=1

log
es(f(xi),g(x

′
i))/τ

1
N

∑︁N
j=1 e

s(f(xi),g(x′
j))/τ

(4.2)

where 0 < τ < 1 is a scalar temperature and the summation is over N inde-

pendent samples {(xi,x
′
i)}Ni=1 drawn from the joint distribution ppos(x,x

′) while

(xi,x
′
j)|i ̸=j drawn from pneg(x,x

′) = ppos(x)ppos(x
′), where ppos(x) is the marginal

of ppos(x,x
′). Intuitively, this loss is the log loss of a N -way softmax-based classifier

that tries to classify x′
i as a positive sample for xi. Function f(.) is a feature ex-

tractor which maps the images from the input space to a lower dimensional space.

The networks g and f can be identical [3, 64], partially shared [17, 18], or different

[62]. It can be proved that minimizing NT-Xent loss maximizes a lower bound on
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the MI, I(X;X ′) [24].

An optimal critic for Eq. 4.2 is s∗(f(x), g(x′)) = log p(g(x′)|f(x)) [24]. Com-

mon choices for critic function s are bilinear critics s(f(x), g(x′)) = f(x)TW g(x′)

[17, 62, 65], separable critics s(f(x), g(x′)) = ϕ1(f(x))Tϕ2(g(x′)) [66], and concate-

nated critics s(f(x), g(x′)) = ϕ([f(x), g(x′)]) [18], here ϕ1, ϕ2, and ϕ are typically

shallow multilayer perceptrons (MLPs).

Tschannen et al. [67] empirically demonstrated that simple critics resulting in loose

bounds on the MI can lead to better representations than high-capacity critics.

They provide empirical evidence that the success of the contrastive methods is only

loosely connected to the MI, instead, it should be more attributed to encoder ar-

chitecture and the negative sampling strategy [68].

The most commonly used critic function is the cosine similarity which is used to

measure the similarity between the features. The cosine similarity is a measure

independent of magnitude and can be seen as the l2 normalized inner product of

two vectors. In [69], the necessity of normalization when using feature vectors dot

product in a cross entropy loss has been argued and analysed.

4.2.1 Key Properties of Contrastive Loss

In [10], two key properties of contrastive loss Alignment and Uniformity have

been analyzed, see Figure 4.7. Contrastive loss encourages the positive features to

be aligned and the embeddings to match a uniform distribution on a unit hyper-

sphere. Alignment favours encoders to map similar samples to nearby latent features

and uniformity of (normalized) features distribution preserves maximal information

leading separable features. Wang et al. [70] found that the contrastive loss meets a

uniformity-tolerance dilemma caused by the inherent defect of self-supervised

contrastive loss which pushes all different samples ignoring their semantic relations.

The contrastive loss doesn’t have any constraint on the distribution of negative

samples as the objective learns instance discriminative embedding. They showed

that an extreme pursuit to the uniformity makes the contrastive loss not tolerant to

semantically similar samples which might be destructive for the structure of features

useful for the downstream tasks.

Uniformity-tolerance Dilemma . Wang et al. [70] found that the contrastive loss

is a hardness-aware loss function. They showed that the contrastive loss potentially

focuses on optimizing the negative samples which are penalized according to their

hardness controlled by the temperature τ . For small temperatures, the contrastive

loss tends to penalize hardest negative samples while they are likely to share the

similar semantic content with the anchor sample. As a result, the contrastive loss

separates the positive samples close to the anchor sample making the local distribu-

tion sparse and the embedding distribution more uniform. For large temperatures,

they showed that model tends to be more tolerant to the semantically consistent

samples causing embeddings locally clustered and globally separated. On the one

25



Chapter 4. Self-Supervised Representation Learning

hand, increasing the uniformity of embeddings distribution is achieved by decreas-

ing the temperature, on the other hand making the embedding space tolerant to

the similar samples is obtained by increasing the temperature. They argued that a

good choice of temperature τ can compromise the two properties.

Another property of contrastive loss is its intrinsic ability to perform hard

positive and negative mining investigated in [71]. Khosla et al. [71] have ana-

lytically shown that the gradient of contrastive loss encourages learning from hard

positives and hard negatives. The contrastive loss induces a gradient structure such

that gradients with respect to unnormalized representations lead to intrinsic hard

positive and negative mining during training and thus there is no need for com-

plicated hard mining algorithms for good performance [72], as hard positives and

negatives boost the learning [73, 74]. They demonstrated this property for super-

vised version of contrastive loss that self-supervised contrastive loss can be a special

case.

Another property of the contrastive loss is its concentration on predictable features

rather than noise. In the following, we will show unlike maximum likelihood the

contrastive loss doesn’t incorporate noise.

Let D = {(xn, yn)}Nn=1 be a set of N independent, identically distributed (iid)

training samples drawn from pdata(x, y). Let x be a d dimensional feature vector,

xn ∈ Rd, and y be a K-way categorical random variable. Suppose we are interested

in predicting label y given the feature vector x. Let pmodel(y|x,θ) parameterized by a

neural network be an estimate of the conditional probability distribution pdata(y|x).

In order to find parameters θ, we maximize the conditional likelihood of the training

data

θ∗ = arg max
θ

1

N

N∑︂

n=1

log pmodel(yn|xn,θ)

for a large data set, as N →∞

θ∗ = − arg min
θ

E(x,y)∼pdata

[︁
log pmodel(y|x,θ)

]︁
(4.3)

if a sample x is correctly classified by the model, − log pmodel(y|x) = 0 which implies

that a correct prediction has a low contribution to the loss while a random prediction

has a high contribution, − log pmodel(y|x) = logK for a balanced dataset. As shown,

the loss is determined by what can not be predicted, in other words the maximum

likelihood estimation ignores the information can be predicted.

Let us take the contrastive loss to do the prediction task. Eq. 4.4, is a categorical

cross entropy loss of classifying the sample x correctly

θ∗ = − arg min
θ

N∑︂

n=1

log
Q(xn, yn)∑︁K

i=1 pdata(yi)Q(xn, yi)
(4.4)
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as N →∞

θ∗ = − arg min
θ

E(x,y)∼pdata

[︃
log

Q(x, y)

Ey′∼pdata(y′)Q(x, y′)

]︃
(4.5)

for a balanced dataset pdata(y) = 1
K

. For a correctly classified sample x, Q(x, y)

takes high values and the contribution of {Q(x, y′)}|y′ ̸=y can be ignored to the

summation in the denominator. Contribution of a correctly classified sample is

logK while for a random prediction we have Q(x, y) ≃ Q(x, y′) and it implies a

low contribution to the contrastive loss, i.e., log Q

K. 1
K
Q

= log 1 = 0. It simply means

that the contrastive loss is less impacted by what can not be predicted such as noise.

4.2.2 Different Contrastive Loss Mechanisms

Contrastive learning benefits from large batch sizes as larger batch sizes provide

more negative samples, accelerating convergence [3]. In SimCLR [3], negative sam-

ples are taken from a large mini-batch and the mini-batch size is limited by the GPU

memory size. A mechanism to maintain negative samples is using a memory bank

proposed in [75]. Features for all instances in the dataset are stored in the mem-

ory bank and the representation of each sample is updated by a momentum. The

momentum update is on the representation of each sample, not the encoder. Moco

[19] instead maintain negative samples in a queue. The encoded representations of

the current mini-batch are enqueued while the oldest are dequeued which keeps the

queue as consistent as possible. Moco is more memory-efficient, can be trained on

large-scale data, and dissociate the batch size from the number of negative samples.
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Self-Supervised Representation

Learning in Medical Time Series

Atrial Fibrillation (AF) is the most common arrhythmia and has a major impact

on morbidity and mortality; however, detection of asymptomatic AF is challenging.

We aim to evaluate the sensitivity and specificity of non-invasive AF detection by

a medical wearable. We apply different algorithms to five-minute periods of inter-

beat intervals (IBI) for the AF detection. A DNN is trained unsupervised to extract

relevant features for AF detection. The training objective is given by maximising

the MI between IBI values that are separated by a randomly chosen time point

within the five-minute period. Unsupervised feature extraction followed by an un-

supervised classification results in higher sensitivity and specificity compared with

normalised root mean square of the successive difference (nRMSSD) an established

metric for the AF detection.

5.1 Method

To extract relevant features for AF detection we use Contrastive Predictive Coding

(CPC) [17], an unsupervised objective, which learns predictable representations.

CPC is a general technique that only requires observations to be ordered along,

e.g., temporal or spatial dimensions and we can apply it to a variety of different

modalities including audio, natural language, and images [65].

An encoder and an autoregressive model are jointly trained to learn generalizable

representations of high dimensional data by predicting the representations of future

observations from those of past ones [17]. For simplicity, we adopt the same notation

as [17]. Let xt be an input sequence. An encoder, genc, parameterized by a neural

network nonlinearly maps the input sequence xt into a latent space, zt = genc(xt).

Afterwards, an autoregressive model, gar, sums up all the information in the la-
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tent space for z<=t and generates a context latent representation, ct = gar(z<=t).

The kth future feature vector, zt+k, is predicted by weighted linear combination of

context feature vectors, i.e., ẑt+k = W kct, with a different prediction matrix W k

for each step k. The quality of the prediction is assessed by mutual information

between zt+k and ct which is modeled by a density ratio proposed in [17] as follows

fk(xt+k, ct) ∝
p(xt+k|ct)
p(xt+k)

(5.1)

the density ratio f can be unnormalized and any positive real score can be used to

model f . Same as [17] we choose a log-bilinear model

fk(xt+k, ct) = ez
T
t+kW kct (5.2)

Both the encoder and autoregressive models are jointly trained to optimize the

InfoNCE loss proposed in [17], Eq. 5.3, inspired by Noise-Contrastive Estimation

(NCE) [76] loss

LNCE = −EX
[︂

log
fk(xt+k, ct)∑︁
xj∈X fk(xj, ct)

]︂
(5.3)

where X = {x1,x2, ...,xN} is a set of N iid random samples containing one positive

sample drawn from p(xt+k|ct) and N − 1 negative samples drawn from p(xt+k).

Rather than sampling negative samples explicitly, given a positive sample we take

the rest samples within a mini-batch as negative samples. Intuitively, this loss is the

log loss of a N -way softmax-based classifier that tries to classify xt+k as a positive

sample for ct. It can be shown that the optimal value for fk(xt+k, ct) is proportional

to p(xi|ct)
p(xi)

[17]. Let N samples in X be iid and xi be a positive example for ct so

{xl}l ̸=i are independent from ct, i.e., p(xl|ct) = p(xl) for l ̸= i

p(x1, ...,xN |ct) =
p(x1, ...,xN , ct)∑︁

x1,...,xN
p(x1, ...,xN , ct)

(5.4)

=
p(xi|ct)

∏︁
l ̸=i p(xl)∑︁N

j=1 p(xj|ct)
∏︁

l ̸=j p(xl)
(5.5)

=
p(xi|ct)p(xi)

p(xi)

∏︁
l ̸=i p(xl)

∑︁N
j=1 p(xj|ct)p(xj)

p(xj)

∏︁
l ̸=j p(xl)

(5.6)

=

p(xi|ct)
p(xi)

∏︁
l p(xl)

∑︁N
j=1

p(xj |ct)
p(xj)

∏︁
l p(xl)

(5.7)

=

p(xi|ct)
p(xi)∑︁N

j=1
p(xj |ct)
p(xj)

(5.8)
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In the following, we demystify the proof in [17] that minimizing Eq. 5.3 maximizes

a lower bound on the MI between zt+k and ct. In Apendix A.1, we provide an

alternative proof.

From the data processing inequality, I(zt+k; ct) ≥ I(xt+k; ct) induced by the Markov

chain, xt+k ← zt+k ← ct. Maximizing I(xt+k; ct) maximizes a lower bound on

I(zt+k; ct). Substituting f(xt+k, ct) with its optimal value in Eq. 5.3 and splitting

X to the positive sample and negative samples, Xneg,

Lopt
NCE = −EX

[︂
log

p(xt+k|ct)
p(xt+k)

p(xt+k|ct)
p(xt+k)

+
∑︁

xj∈Xneg

p(xj |ct)
p(xj)

]︂
(5.9)

=EX log
[︂
1 +

p(xt+k)

p(xt+k|ct)
(N − 1)

1

(N − 1)

∑︂

xj∈Xneg

p(xj|ct)
p(xj)

]︂
(5.10)

since xj is a negative example, it is ideally independent of context ct, i.e., p(xj|ct) =

p(xj), so
∑︁

xj∈Xneg

p(xj |ct)
p(xj)

= N − 1

Lopt
NCE ≈ EX log

[︂
1 +

p(xt+k)

p(xt+k|ct)
(N − 1)

]︂
(5.11)

= EX log
[︂
1− p(xt+k)

p(xt+k|ct)
+

p(xt+k)

p(xt+k|ct)
N
]︂

(5.12)

sample xt+k was drawn from the conditional distribution p(xt+k|ct) rather than the

marginal distribution p(xt+k), so 1− p(xt+k)

p(xt+k|ct) is positive

Lopt
NCE ≥ EX log

[︂ p(xt+k)

p(xt+k|ct)
N
]︂

(5.13)

= EX log
[︂ p(xt+k)

p(xt+k|ct)
]︂

+ logN (5.14)

=
∑︂

xt+k

∑︂

ct

p(xt+k, ct) log
[︂ p(xt+k)

p(xt+k|ct)
]︂

+ logN (5.15)

substituting p(xt+k|ct) by p(xt+k,ct)

p(ct)

Lopt
NCE ≥

∑︂

xt+k

∑︂

ct

p(xt+k, ct) log
[︂ p(xt+k)

p(xt+k,ct)

p(ct)

]︂
+ logN (5.16)

=
∑︂

xt+k

∑︂

ct

p(xt+k, ct) log
[︂p(xt+k)p(ct)

p(xt+k, ct)

]︂
+ logN (5.17)

= −
∑︂

xt+k

∑︂

ct

p(xt+k, ct) log
[︂ p(xt+k, ct)

p(xt+k)p(ct)

]︂
+ logN (5.18)
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I(xt+k, ct) ≥ logN − Lopt
NCE (5.19)

5.2 Data Preparation

We split recordings of IBI values into five-minute periods, which are manually clas-

sified into AF and non-AF. Then, we extract periods that have at least 80% reliable

IBI values (quality scores of IBI values ≤ 13, with 1 indicating best quality and 16

worst quality). IBI values are encoded together with the respective quality indices

provided by the wearable device into a multi-dimensional vector room, where IBI

values with different quality scores are orthogonal to each other. As the dataset

contains more non-AF than AF periods, the latter is oversampled to achieve a more

balanced dataset. We take all five-minute periods that contain at least 200 IBI

values.

5.3 Training Details

Experiments were carried out using a strided convolutional neural network. We use

two convolutional layers with strides [1,1], filter sizes [3,3] and 64 hidden units with

ReLU activations. We take recurrent neural network, gated recurrent unit (GRU)

[77], for the autoregressive model with a 32 dimensional hidden state. We train

on sampled windows of length 200. We use AMSGrad optimiser [78] with initial

learning rate of 10−3 and weight decay of 10−4. We train at batch size 64 for 100

epochs.

To understand the representations extracted by CPC we train a classifier, a fully

connected network with two hidden layers, on top of these features. We extract

the outputs of the autoregressive model (32 dimensional) as input and train the

classifier to predict the labels from the manual classification.

5.4 Evaluation

To evaluate the results, we use Area Under the Receiver Operating Characteris-

tics (AUROC) which has the advantage to be scale-invariant, measures how well

predictions are ranked rather than their absolute values and classification-threshold-

invariant, it measures how well AF samples are separated from non-AF samples.

Because of class imbalance between AF and non-AF in test set we also report values

for sensitivity and specificity.

AUROC. AUROC curve shows the trade-off between true positive rate (TPR) and

false positive rate (FPR) across different decision thresholds.
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Sensitivity (also known as recall, hit rate, or true positive rate). It is the

probability that a positive example is correctly identified.

Specificity (also known as selectivity or true negative rate). It is the prob-

ability that a negative example is correctly identified.

Figure 5.1: Average accuracy of predicting positive samples in the contrastive loss

5.5 Effect of Number of Predicted Latent Steps

To investigate the effect of the number of predicted latent steps, k, in the future, we

train the model to predict latents for different timesteps. In Figure 5.1, we report the

average number of times that the model correctly classifies ‘future’ representations

among a set of unrelated ‘negative’ representations. As expected, the prediction

task becomes harder when the target is further away. If the target is easy to predict

from the context (e.g., when predicting a single step in the future and the target

overlaps with the context) the performance of the model degrades, discouraging the

model to further improve the representations. Figure 5.2 shows necessity of learning

a good set of representations in order to discriminate two classes AF and non-AF.

Figure 5.2: Evaluating 1-NN classifier performance for the different predicted
latent steps in the future.
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Figure 5.3: AUROC for the classification task on the CPC features and on the
raw data under varied sizes of label fractions

5.6 Self-Supervised models are more data-efficient

To investigate the CPC representations enable generalization from few labels, we

train two classifiers on the CPC features extracted by the autoregressive model and

on the raw data for different fractions of labeled training data. We investigated

using 1%, 2%, 5%, 10%, 20%, 50%, and 100% of the dataset. Figure 5.3 shows

how the performance varies for different available label fractions. We observe that

self-supervised model can significantly help with label efficiency and generalization

for the classification task. The results suggest that fine-tuning with a few labeled

examples yields significantly higher gain compared with the supervised baseline.
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a Medical Wearable during Inpatient Condi-

tions

Jacobsen M, Dembek TA, Ziakos AP, Gholamipoor R, Kobbe G, Kollmann M,

Blum C, Müller-Wieland D, Napp A, Heinemann L, Deubner N, Marx N, Isenmann

S, Seyfarth M. Reliable Detection of Atrial Fibrillation with a Medical Wearable

during Inpatient Conditions. Sensors, 2020.

Status: Published.

Contributions: The author contributed with designing and implementation of

deep neural network, training, evaluation, and visualization. The author contributed

with writing parts related to DNN-based algorithm under the supervision of Prof.

Dr. Markus Kollmann.

34



sensors

Article

Reliable Detection of Atrial Fibrillation with a
Medical Wearable during Inpatient Conditions

Malte Jacobsen 1,2,* , Till A. Dembek 3 , Athanasios-Panagiotis Ziakos 1,4 ,
Rahil Gholamipoor 5, Guido Kobbe 6, Markus Kollmann 7, Christopher Blum 7,
Dirk Müller-Wieland 2, Andreas Napp 2, Lutz Heinemann 8, Nikolas Deubner 1,4 ,
Nikolaus Marx 2, Stefan Isenmann 1,9 and Melchior Seyfarth 1,4

1 Faculty of Health, University Witten/Herdecke, 58448 Witten, Germany;
athanasios-panagiotis.ziakos@helios-gesundheit.de (A.-P.Z.); nikolas.deubner@helios-gesundheit.de (N.D.);
stefan.isenmann@st-josef-moers.de (S.I.); melchior.seyfarth@helios-gesundheit.de (M.S.)

2 Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University,
52074 Aachen, Germany; dirmueller@ukaachen.de (D.M.-W.); anapp@ukaachen.de (A.N.);
nmarx@ukaachen.de (N.M.)

3 Department of Neurology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
till.dembek@uk-koeln.de

4 Department of Cardiology, Helios University Hospital of Wuppertal, 42117 Wuppertal, Germany
5 Department of Computer Science, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;

rahil.gholamipoorfard@hhu.de
6 Department of Hematology, Oncology, and Clinical Immunology, University Hospital Düsseldorf, Medical

Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; kobbe@med.uni-duesseldorf.de
7 Department of Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;

markus.kollmann@hhu.de (M.K.); christopher.blum@hhu.de (C.B.)
8 Science-Consulting in Diabetes, 41462 Neuss, Germany; l.heinemann@science-co.com
9 Department of Neurology, St. Josef Hospital, 47441 Moers, Germany
* Correspondence: mjacobsen@ukaachen.de; Tel.: +49-173-560-6980

Received: 31 August 2020; Accepted: 24 September 2020; Published: 26 September 2020
����������
�������

Abstract: Atrial fibrillation (AF) is the most common arrhythmia and has a major impact on morbidity
and mortality; however, detection of asymptomatic AF is challenging. This study aims to evaluate the
sensitivity and specificity of non-invasive AF detection by a medical wearable. In this observational
trial, patients with AF admitted to a hospital carried the wearable and an ECG Holter (control) in
parallel over a period of 24 h, while not in a physically restricted condition. The wearable with
a tight-fit upper armband employs a photoplethysmography technology to determine pulse rates
and inter-beat intervals. Different algorithms (including a deep neural network) were applied
to five-minute periods photoplethysmography datasets for the detection of AF. A total of 2306 h
of parallel recording time could be obtained in 102 patients; 1781 h (77.2%) were automatically
interpretable by an algorithm. Sensitivity to detect AF was 95.2% and specificity 92.5% (area under
the receiver operating characteristics curve (AUC) 0.97). Usage of deep neural network improved the
sensitivity of AF detection by 0.8% (96.0%) and specificity by 6.5% (99.0%) (AUC 0.98). Detection of
AF by means of a wearable is feasible in hospitalized but physically active patients. Employing a
deep neural network enables reliable and continuous monitoring of AF.

Keywords: clinical trial; wearable sensors; atrial fibrillation; photoplethysmography; deep neural
network

Sensors 2020, 20, 5517; doi:10.3390/s20195517 www.mdpi.com/journal/sensors
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1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia with rising incidence and prevalence [1,2];
the current prevalence is estimated to be between 2% to 4% [3]. AF is more common in males and
shows an increasing prevalence with age [4]. There are a number of modifiable known risk factors for
AF, including obesity, hypertension, diabetes mellitus, and smoking, as possible contributors to the
development and progression of AF [5].

AF is associated with a broad spectrum of clinical events, including ischemic stroke. The proportion
of time in AF associated with a significant risk for complications is unknown, thus requiring further
evaluation [6]. Due to the paroxysmal and often asymptomatic occurrence of AF, ECG Holter monitoring
is frequently employed to detect episodes of silent AF [7]. However, ECG Holter monitoring has
limitations: Carrying an ECG Holter limits patients in their daily activities and restricts monitoring to
relatively short periods of time. Additionally, ECG Holters are prone to movement artifacts, and thus,
not reliable during phases of physical activity [8].

Wearables that are used as medical devices (defined as having a regulatory approval like a
Conformité Européenne (CE) mark for Europe) offer an affordable non-invasive screening option
for AF [9–13]. Photoplethysmography (PPG) is frequently employed in such wearables [14]. It is
an optical method to measure volume changes in the tissue. PPG is used to calculate clinically
relevant parameters, e.g., heart rate, inter-beat intervals (IBI—the interval between two pulse waves in
milliseconds) [15]. Intervals between heartbeats are a parameter often used for the detection of AF.
PPG derived IBI show a high correlation to the ECG derived heart rate intervals (gold-standard) [16].
Technologies employed in wearables and evaluated for the detection of AF are most often based on
single-lead ECG or PPG and can be separated into active and passive approaches: Active monitoring
requires that the patient initialized a recording, e.g., individuals have to place their fingers on the
electrodes of a smartphone like device. In contrast, wearables with a passive monitoring approach do
not require patient intervention. With this approach, measurements are performed continuously or
semi-continuously (e.g., every 5 min). In a previous clinical trial with an active approach, wearable
detection of AF was possible with a sensitivity of 91.5% and specificity of 99.6% [13]. In clinical
trials with a passive approach, equivalent results were shown in patients where physical activity
was restricted while recording. However, there was a risk of missing asymptomatic episodes of AF.
When such wearables are used for ECG recordings, usage of adhesives or bandages is needed, and there
are limitations regarding diagnostic adherence [9]. In the Huawei Heart Study, more than one-third of
individuals with suspected AF were primarily detected with a periodical passive PPG approach [12].
However, a recent trial using a passive approach showed that there is a gap in detecting AF under
controlled and uncontrolled conditions, most likely due to periods of physical activity with an increase
in heart rate and movement artifacts [17]. Some wearables under evaluation had varying sampling
rates, with considerable risk of missing AF [10].

A novel upper arm medical wearable (Everion®, Biovotion AG, Switzerland) employs a passive
PPG approach, allowing reliable long-term, high-resolution data recording. This device records of
patients’ physical activities during recording and provides information about the proportion of the
automatically interpretable time.

The aim of this study was to evaluate the performance of a medical wearable by means of
employing a PPG technology for AF detection in patients with paroxysmal or persistent AF study
during inpatient conditions.

2. Materials and Methods

This study was an open-label, single-arm, inpatient, single-center trial. The clinical investigation
plan was approved by the Ethical Committee of the University Witten/Herdecke, Germany, and was
registered in the German clinical trials register (DRKS00014821).

Patients were recruited consecutively at the Department of Cardiology, University Hospital
Wuppertal between September and December 2018 (Figure 1).
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Figure 1. Flow-chart of patient disposition for algorithm development and group classification for
the trial.

The primary outcome of this trial was the evaluation of sensitivity and specificity of non-invasive
AF detection by a medical wearable at rest and during moderate physical activity. The secondary
outcome was the determination of the proportion of recording time interpretable by algorithms.

All patients gave written informed consent prior to enrolment in this trial. Admitted patients with
documented AF (e.g., prior to electrical cardioversion) or known paroxysmal AF were screened
for eligibility for trial participation. Inclusion criteria were patients admitted for AF by their
treating cardiologist and emergency room show ups with age ≥ 18 years and an indication for
ECG Holter monitoring. Exclusion criteria were any cardiac implants or conditions which might
impair measurements (e.g., upper arm tattoos, skin diseases).

Patients had no restrictions on their physical activity. At the end of the monitoring period,
a safety assessment was performed. Patients answered a short questionnaire at the study end to
evaluate wearable usage (discomfort, pain, sense of safety, design, willingness to perform inpatient,
and outpatient monitoring).

In line with the standard of care in the hospital, patients carried a three-lead ECG Holter (Lifecard
CF, Spacelabs Healthcare GmbH, Germany) for detection of AF over 24 h. ECG Holter data were
reviewed for atrial arrhythmias by two cardiologists independently using a standard of care software
tool (Sentinel 10, Spacelabs Healthcare, Snoqualmie, WA, USA). In the case of differing diagnoses, a third
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cardiologist was consulted. Heart rhythm was classified into either sinus rhythm, AF, or atrial flutter,
and this classification served as the gold standard for further analysis (Figure 2). ECG datasets were
discarded if more than 50% of recorded data was not interpretable as defined by our independent raters.
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In parallel, a commercially available medical wearable (Everion, Biovotion AG, Switzerland) was
worn by the patients. The wearable was attached to the preferred upper arm of the patients by the
investigator. The time base of the wearable was synchronized to the ECG Holter. The wearable is a CE
marked medium-risk device (class IIa), according to the Directive 93/42/EEC (firmware used was for
clinical investigation only). It has different sensors for non-invasive monitoring of vital signs (e.g., PPG,
accelerometry, gyroscope), memory storage of 16 MB Flash and a battery life of up to 32 h. Parameters,
such as heart rate, IBI, the morphology of the pulse wave, and a physical activity index (based on the
accelerometry data), are calculated using proprietary algorithms of the manufacturer implemented
in the firmware. PPG-Signals were acquired with a sampling rate of 51.2 Hz. IBI were calculated
permanently and stored approximately every 40 s. The device also provides recording quality indices
for each data point. Data stored in the wearable were downloaded via a Bluetooth connection.

Two different approaches for detecting AF from the downloaded data were investigated: First,
an established metric for AF detection, the normalized root mean square of successive differences
(nRMSSD) of the IBIs, to differentiate between sinus rhythm and AF was used [11]. Second, a deep
neural network (DNN) to detect episodes of AF was applied. Data with an insufficient quality based
on the point-in-time accuracy estimate in the pre-processed data were excluded. Sufficient quality was
defined when such an estimate for the IBI values could be calculated.

nRMSSD classification: Data was split into successive five-minute periods, and nRMSSD was
calculated for all of these. For determining the optimal nRMSSD threshold, the dataset was split into a
‘training cohort’ consisting of the first 80% of the recruited patients and a ‘testing cohort’ consisting
of the remaining 20%. Receiver operating characteristics (ROC) were calculated for five-minute
periods in the ‘training cohort’, and the threshold with the highest Youden’s J statistic was determined.
This threshold was then applied to calculate the sensitivity and specificity of nRMSSD based AF
detection in the ‘testing cohort’. Algorithms presented were not trained to differentiate between AF
and atrial flutter, only to discriminate AF.

Deep neural network classification: As data source, the same five-minute periods of IBI values
were used as for the nRMSSD-model described above. As the dataset contained significantly more
non-AF periods than AF periods, oversampling was performed by replicating the randomly selected
samples to achieve a balanced dataset. The IBI values were encoded together with their associated
quality scores into a multi-dimensional vector space, where IBI values with different quality scores are
taken orthogonal to each other. A DNN was trained unsupervised on the dataset to extract the relevant
features for AF detection. The training objective was given by maximizing the mutual information
between IBI values that were separated by a randomly chosen time point within the five-minute
period. The algorithmic details for computing of mutual information can be found in the appendix
(see Appendix B) [18]. The unsupervised classification was carried out by one-nearest neighbor
classification (Figure 3). Additionally, a second DNN (classifier) was trained on the extracted features
from unsupervised learning using annotated data. The evaluation of the DNNs were carried out by
randomly splitting the pre-processed data into the train (80%)/validation (10%)/test datasets (10%).
Subsequently, sensitivity and specificity were calculated using ten-fold cross-validation. For testing,
the unbalanced original data was used.
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Figure 3. First two principle components of the latent space from the unsupervised Deep Learning
approach for five-minute periods. Results of one-nearest neighbor classification for individual periods
are shown that would be interpreted as AF (orange) or non-AF (blue).

A prerequisite for reliable detection of AF over time in clinical practice is sufficient data quality
and that the recording time is maximal, e.g., a given patient might carry a wearable for 24 h; however,
the proportion of recording time automatically interpretable by algorithms (=interpretable time) may
be decisively less. [19,20] From the data obtained, the percentage of ‘good quality data’ was assessed by
aggregating the time periods during which data were available that enabled an automatic IBI analysis.
Others have used a cut-off value of 90% analyzable data for each five-minute period in resting patients;
however, in order to apply a pragmatic approach in potentially active patients value of 80% was used
for this trial. A threshold of ≥ 80% of the interpretable time was considered to be sufficient for clinical
monitoring. Logistic regression analysis was used to evaluate which factors have an impact on the
analyzable time. To evaluate the success of wearable data recording, the total recording time, as well
as total interpretable time (time with accepted quality indices), were calculated.

Due to the known effect of patients’ physical activity on the detection of AF, an activity index over
time was calculated for each patient. Based on the activity classification provided by the wearable,
any classification besides ‘resting’ was considered as physical activity (e.g., walking flat). From the
activity data provided by the wearable subsequent five-minute periods were labeled as ‘active’ or
‘resting’. The activity index is expressed as a percentage of each hour of recording. It was analyzed if
detection of AF was possible with the wearable used during periods with and without physical activity.

For accuracy testing of heart rate estimation by the wearable in patients with different underlying
heart rhythms, in each patient, one hour of ECG recording with a low rate of artifacts was selected
manually (see Appendix B). Accuracy evaluation was performed as described elsewhere [21]. For data
analysis, a standard software tool was used (MATLAB R2018b; MathWorks, Natick, MA, USA).
Statistical Analysis

The confidence interval was set to 95% for all statistical analyses. Non-parametric categorical
distributed variables were tested with a 2-tailed Fishers exact test or Chi-Square test. Continuous
variables were tested with the Mann-Whitney test. For analyses of variables that have an impact
on interpretable time, logistic regression was performed. For the primary outcome of AF detection
Receiver Operating Characteristics (ROC) analysis for nRMSSD was performed, and the area under
the curve (AUC) of the ROC-analysis was calculated.
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3. Results

Five of the 107 patients enrolled were excluded, due to missing data or poor ECG Holter data
quality. The 102 patients analyzed (age 71.0 ± 11.9 years; 52% male) had a mean CHA2DS2-VASc-Scores
of 2.7. Demographical data, comorbidities, and concomitant medication of these patients are given in
Table 1.

Table 1. Demographics, comorbidities, concomitant medication, and CHA2DS2-VASc Score of
patients enrolled.

Patient Characteristics No. (%)

Sex
Male 53 (52.0)

Female 49 (48.0)

Age [years] 71.0 ± 11.9

Height [cm] 176.6 ± 10.8

Weight [kg] 86.1 ± 20.0

BMI [kg/m2] 28.8 ± 5.4

Arm circumference [cm] 29.6 ± 3.7

Comorbidities

Arterial hypertension 82 (80.4)

Diabetes mellitus 20 (19.6)

Stroke/ Myocardial infarction 21 (20.6)

Reduced left ventricular ejection fraction 32 (31.4)

Peripheral vascular disease 2 (1.9)

CHA2DS2-VASc-Scores
0 8 (7.8)
1 15 (14.7)
2 17 (16.7)
3 30 (29.4)
4 23 (22.5)
5 9 (8.8)

>5 0 (0.0)
Mean 2.7 ± 1.4

Concomitant medication

Anticoagulants 90 (88.2)

Antiplatelet 14 (13.7)

Beta-blocker 82 (80.4)

Calcium channel blocker 23 (22.5)

Renin-angiotensin system inhibitors 68 (66.7)

Other antihypertensive drugs 52 (51.0)

Other antiarrhythmic drugs 16 (15.7)

Glycosides 9 (8.8)

Heart rhythm by ECG Holter reads

Sinus rhythm 43 (42.2)
Atrial fibrillation 48 (47.0)

Atrial flutter 11 (10.8)
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By means of ECG Holter recording the patients were diagnosed (Cohens kappa 0.87) as having:
Only sinus rhythm (n = 43, 42.2%), AF (n = 48, 47.0%), or atrial flutter episodes (n = 11, 10.8%).
Patients with sinus rhythm were younger compared to those with AF (p = 0.026). There were no
significant differences between patients with different heart rhythms with respect to comorbidities and
concomitant medication.

The mean data recording time was 23.0 ± 3.3 h, comprising 2306 h of total recording time. In 62
out of the 102 patients (60.8%), the interpretable time was ≥80%; for the algorithms applied 1781 h
(77.2%; average of 17.7 h) were evaluable (Tables 2 and 3); however, the time varied considerably
among patients (SD 23.2%).

Table 2. Mean interpretable time, sensitivity, specificity, positive predictive value, negative predictive
value, and AUC of ROC-analysis for detection of AF by using PPG analysis overall and during moderate
physical activity and the average sensitivity/ specificity with SD estimated with 1-nearest neighbor
classification and a deep neural network trained on five-minute periods on different training and
validation test splits.

Method Sensitivity [%] Specificity [%] PPV
[%]

NPV
[%] AUC

nRMSSD
-periods in physical activity

95.2
92.9

92.5
85.5

70.1
63.1

97.8
97.7

0.97
-

1-nearest neighbor classification
-periods in physical activity

96.0 ± 0.4
96.8 ± 0.6

99.0 ± 0.2
96.9 ± 0.5

94.7 ± 0.6
94.3 ± 0.4

99.3 ± 0.0
99.3 ± 0.1

0.98 ± 0.2
-

DNN
(classifier trained on annotated data)

-periods in physical activity

97.0 ± 0.3
97.0 ± 0.3

95.0 ± 0.4
95.8 ± 0.4

81.0 ± 1.3
83.8 ± 1.2

99.3 ± 0.1
99.3 ± 0.1

0.99 ± 0.2
-

nRMSSD = normalized root mean square of the successive difference, DNN = deep neural network, PPV = positive
predictive value, NPV = negative predictive value, AUC = area under the receiver operating characteristics curve,
ROC = receiver operating characteristic.

Table 3. Differences in demographics, medical characteristics, concomitant medication, and measurement
conditions (below the bold line) of patients with interpretable time < 80% and ≥80%. (Significant
differences are marked in bold, Continuous variables are given as mean ± SD).

Characteristics
Interpretable Time < 80% Interpretable Time ≥ 80%

p Value
No. (%)

Count 40 (39.2) 62 (60.8)

Sex
Male
Female

18 (45.0)
22 (55.0)

35 (56.5)
27 (43.5)

0.312

Age [years] 74.3 ± 9.8 68.9 ± 12.8 0.023

Height [cm] 168.6 ± 10.2 175.1 ± 10.6 0.003

Weight [kg] 86.8 ± 23.5 85.7 ± 17.6 0.619

Arterial hypertension 35 (87.5) 47 (75.8) 0.203

Diabetes mellitus 9 (22.5) 11 (17.7) 0.614

Stroke/myocardial
infarction 10 (25.0) 11 (17.7) 0.454

Reduced left ventricular
ejection fraction 17 (42.5) 15 (24.2) 0.080

Peripheral vascular
disease 1 (2.5) 1 (1.6) nA



Sensors 2020, 20, 5517 9 of 15

Table 3. Cont.

Characteristics
Interpretable Time < 80% Interpretable Time ≥ 80%

p Value
No. (%)

CHA2DS2-VASc-Scores
0
1
2
3
4
5

2 (5.0)
2 (5.0)
6 (15.0)
13 (32.5)
12 (30.0)
5 (12.5)

6 (9.7)
13 (21.0)
11 (17.7)
17 (27.4)
11 (17.7)
4 (6.5)

0.172

Anticoagulants 36 (90.0) 54 (87.1) 0.760

Antiplatelet 4 (10.0) 10 (16.1) 0.557

Beta-blocker 37 (92.5) 45 (72.6) 0.020

Calcium channel blocker 13 (32.5) 10 (16.1) 0.088

Renin-angiotensin
system inhibitors 32 (80.0) 36 (58.1) 0.031

Heart rhythm
Sinus rhythm

Atrial fibrillation
Atrial flutter

14 (35.0)
23 (57.5)
3 (7.5)

29 (46.8)
25 (40.3)
8 (12.9)

0.225

Arm circumference [cm] 29.9 ± 2.9 29.9 ± 4.7 0.559

Activity index (median) 14.7% 14.9% 0.204

1 nRMSSD-based algorithm

Detection of AF in the algorithm testing dataset was possible with a sensitivity of 95.2% and
a specificity of 92.5% (Table 2) based on nRMSSD algorithm. Data obtained with the ECG Holter
contained 5156 five-minute periods of AF. For 4469 of these episodes, simultaneous wearable data
of sufficient quality was available. Of these 4,469 periods (algorithm training and algorithm testing),
4141 were correctly classified (true positive) as AF. In total, 1905 periods were classified false-positive,
328 periods were false-negative. Of the 1905 false-positive periods, 88 (4.6%) had a positive activity
index. During 3,464 five-minute time periods with physical activity, AF was present in 755 (21.8%)
periods. Of these, 701 periods were correctly classified as AF with a minor decrease in sensitivity
(92.9%) and specificity (85.5%).

2 DNN-based algorithm

Further improvement in the detection of AF was achieved by means of the DNN (Table 2). On 10
different training /validation splits, the best model achieved a sensitivity of 96.9% and specificity of
95.4% (AUC 0.99). With ten-fold cross-validation of the models applied to the test set resulted in an
average sensitivity of 96.9 ± 0.3% and a specificity of 95.0 ± 0.4% (AUC 0.99 ± 0.1). Applying a fully
unsupervised approach to the complete datasets resulted in a sensitivity of 96.7% and a specificity
of 98.6% (AUC 0.98). With the same cross-validation methods applied to the test set on average,
a sensitivity of 96.0 ± 0.4% and a specificity of 99.0 ± 0.2% (AUC 0.98 ± 0.2) was achieved. In the
five-minute periods with a positive physical activity index, sensitivity (96.8 ± 0.6), and specificity
(96.9 ± 0.5; AUC 98.9 ± 0.1) of AF detection remained unchanged with the DNN.

3 Further analysis

Patients with an interpretable time ≥ 80% were allocated to one group, and differences in
comorbidities, concomitant medication, arm circumference, and activity index were compared to
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those with an interpretable time < 80% (Table 3). Descriptive characteristics between the two groups
differed as follows: Patients with an interpretable time < 80% were older (p = 0.023) and used more
antihypertensive agents (beta-blockers, p = 0.020; renin-angiotensin system inhibitors, p = 0.031).
Logistic regression analysis showed that age (p = 0.039, OR 0.95, CI 0.904–0.997) had a negative impact
on interpretable time. In contrast, height had a positive impact (p = 0.002, 1.10, 1.034–1.162).

Measurement conditions in both groups with respect to heart rhythm, side of recording,
arm circumference, and activity index were comparable (Table 3). The physical activity level of
all patients during 24 h was 16.1% based on a positive activity index in five-minute periods.

The activity index showed peaks after breakfast and in the afternoon (Figure 4).
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24 h.

Carrying the wearable did not induce any discomfort or pain in 97.5% of the patients. More than
70% of the patients could envisage using such a wearable for home monitoring. No serious adverse
effects were observed during the trial; however, one device-related adverse effect was observed; a skin
irritation after wearing the device was fully reversible after six days.

4. Discussion

Our study suggests that reliable detection of AF in high-risk patients for AF is possible with the
medical wearable used, also during time periods with physical activity. The deep neural network
approach showed an even better ability of AF detection than the established nRMSSD algorithm.
The DNN approach enables a reliable computer-based analysis, and thereby, the option of a real-time
AF detection. Using a passive measurement approach, a high interpretable time proportion (77.2%)
was achieved.

The high-risk population studied was comparable with respect to age and cohort distribution
in terms of heart rhythm to the population of the multicenter trial of Brasier et al. [13]; however,
the population in their trial had a higher mean CHA2DS2-VASc-Scores reflecting a higher prevalence
of comorbidities.

Detection of AF with nRMSSD in five-minute periods showed higher sensitivity, but lower
specificity than in other studies conducted with an active measurement approach; however, our results
were obtained in a not physically restricted population [11,13]. Detection of AF within periods of
physical activity represents a challenge for wearables (also with ECG Holter monitoring). In some trials,
there was a gap in the detection of AF during physical active vs. restricted physical conditions [17].
In other trials, like the Apple Heart study, no measurements were performed while participants were
physically active [10]. In our trial, the overall physical activity index (as provided by the wearable)
observed probably does not reflect real-world physical activity, since only inpatients were enrolled.
Nevertheless, also in periods with a positive activity index, detection of AF was feasible with good
reliability. However, it is a limitation that the activity index used was not assessed with a standardized
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reference method in parallel. There is a difference between the number of available five-minute periods
in AF in ECG Holter and wearable data., i.e., due to the interpretable time of wearable data.

The deep learning setup applied-consisting of unsupervised feature extraction followed by
unsupervised classification-showed higher sensitivity and specificity in detecting AF. These results were
comparable to Tison et al. [17]; additionally, they were achieved with unlabeled data. Large amounts
of unlabeled data were accurately classified with no cumbersome annotation of data performed.
Furthermore, no data-pre-processing steps were needed, such as rescaling mean and variance of
IBI values, and noise is mostly discarded in the encoding IBI values with respective quality indices.
DNNs are preferably trained on raw-data, as they can extract information from data that human
observers would miss; however, even with the use of pre-processed data, such approaches improve
detection of AF. The wearable utilized in this study employed proprietary algorithms and only provided
pre-processed data. This might impact the information content originally contained in the raw data.
Especially in a medical context, it should be mandatory to perform context-related accuracy testing
when using pre-processed data (see Appendix A). Testing the pre-processed data revealed a comparable
correlation for ECG and PPG derived heart rate estimation [21]. For practical application of such
medical wearables, utilization of pre-processed data may represent the more frequent use case.

In this trial, the recording time was identical to the monitoring time (=time device was used
by patients), driven by the fact that the wearable was attached and dismantled by the investigator.
However, this might be different in daily practice, as patients might, e.g., wear the device while the
battery is empty. It is of interest to note that in other studies, no clear time definitions and data are
provided, e.g., in the Apple Heart and Huawei Heart study [10,12]. An analysis of variables that have
an impact on interpretable time in this trial is at least partly in accordance with published data [22].
The impact of age and height on the interpretable time shown by the logistic regression was modest.

The European Society of Cardiology guidelines on the management of AF recommends screening
for silent AF with ECG-based devices in selected patient populations [4]. New technologies, such as
smar watches (ECG and PPG based), are not yet recommended in the guidelines as no formal
evaluation of these devices has been performed yet. Passive monitoring approaches with wrist-worn
smartwatches (as those used in the Apple Heart and Huawei Heart studies) showed an acceptable
diagnostic performance in a non-risk population. However, the performance of such devices is
not sufficient for screening for silent AF, due to their low interpretable time with respect to a 24 h
measurement. It is known that recording of ECG Holter is hampered by noisy measurements and/or
artifacts induced by physical activity, thus potentially leading to under-diagnosis of AF episodes. In a
recent analysis, an elimination rate of 30% (i.e., not interpretable ECG recording time) of data was
observed [23]. A disadvantage of conventional adhesive ECG-patches used until now is the limited
adherence of patients, due to discomfort, visibility, and skin reactions.

The wearable used in this trial was chosen because of a tight upper arm fit in order to reduce
artifacts induced by probe-tissue movement, e.g., due to physical activity [15]. In this respect, it is
worth mentioning that the activity index had no significant impact on interpretable time. Moreover,
ambient light emitted by external sources interference is minimized by a sensor location most often
covered by clothing. The medical wearable could be connected to secure web-based services, and thus,
provide immediate feedback. The respective results of the questionnaire used in this trial showed that
the patients appreciated the non-invasive wearable; however, it was used for one day only. It remains
to be studied if patients are willing to wear such a medical wearable for long-term monitoring (=high
adherence rate) as it is not a ‘lifestyle-device’. Nevertheless, patients might favor the comfort of such a
wearable in contrast to other options.

Till today it is still under discussion which duration of AF burden is associated with an increased
risk for clinical complications, such as ischemic stroke [6]. Considering the commercially available
wearables and the studied device, data acquisition is based on a block-wise approach (i.e., five-minute
time periods). It is not clear which time resolution (=number of data points per time unit) is needed in
order to be able to detect all AF episodes with sufficient diagnostic accuracy.
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In summary, medical wearables with such specifications offer the option of permanent surveillance,
i.e., live monitoring of the patients by health care professionals. The workload of specialized clinics
may be reduced if live remote patient monitoring was enabled by modern wearables. This could be a
contributively brick for structured disease management applications [24].

This trial evaluated only hospitalized patients at high risk for AF in a proof of concept approach.
Sensitivity and specificity have to be further evaluated in a population at a lower risk for AF. For this
study, we evaluated a population with a high risk of AF. Importantly, patients at ‘moderate’-risk of
AF might represent the most relevant population, in whom longer monitoring times are required to
detect AF episodes. Compliance and adherence were only tested in patients carrying the wearable for
24 h. It remains to be studied how good the acceptance of the wearable is over longer time periods.
Such studies would also help to see how limits of the current version of this wearable can be handled.
If these and other exogenous factors can be overcome, this would achieve a high interpretable time to
maximize high-resolution data. A limitation of our study was that we had to rely on data acquisition
and raw data analysis that was implemented in the wearable and on proprietary quality indices. It is
acknowledged that the signal quality index is critical for AF detection, as noisy sinus rhythm might be
mis-detected as AF. A preliminary accuracy testing was performed (see Appendix B).

5. Conclusions

In conclusion, detection of AF with a medical wearable attached to the upper arm is a feasible and
reliable approach, also during physical activity for remote monitoring purposes. The results presented
encourage the performance of long-term clinical trials with a focus on everyday conditions. Assuming
a positive outcome of such studies, monitoring of patients with AF might move away from Holter
ECG towards medical wearables.
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Appendix A

Table A1. Accuracy of heart rate measurements of the upper-arm wearable (PPG based) compared to
ECG Holter recording. AF, atrial fibrillation.

Cohort Rho r2 % ±10-Beat

All 0.89 0.66 0.88

Sinus rhythm 0.94 0.85 0.97

AF 0.80 0.51 0.80

A-flutter 0.83 0.64 0.88
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Table A1. Accuracy of heart rate measurements of the upper-arm wearable (PPG based) compared to 
ECG Holter recording. AF, atrial fibrillation. 

Cohort Rho r2 % ± 10-Beat 
All 0.89 0.66 0.88 

Sinus rhythm 0.94 0.85 0.97 
AF 0.80 0.51 0.80 

A-flutter  0.83 0.64 0.88 
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Figure A1. (a–c) The accuracy of heart rate estimation by the medical wearable compared to ECG was
calculated by using the Spearmen correlation (left figure). Additionally, a Bland–Altman graph was
plotted with 95% LoA (Limits of Agreement) (right figure). Automated ECG processing was performed
using an open-source algorithm (Sedghamiz H. Complete Pan Tompkins Implementation ECG QRS
detector. In: MATLAB Central File Exchange 2019.).

Appendix B. Deep Neural Network

Data preparation: We split recordings of inter-beat intervals (IBI) values into five-minute periods,
which are manually classified into AF, A-flutter, and non-AF. We extract periods that have at least 80%
reliable IBI values (quality score of IBI values ≤ 13, with 1 indicating best quality and 16 worst quality)
and split them into a training set and validation set. We encode the IBI values together with their
quality score into a 16 dimensional vector, e.g.,

→
zt = [0, . . . , IBI-value, . . . , 0,], where IBI values with

different quality score are orthogonal to each other. As the dataset contains more non-AF examples
than AF examples, we simply oversample the AF class to make the dataset balanced. For the analysis,
we took all five-minute periods that contain at least 200 IBI values and could be uniquely assigned to
the non-AF or AF class.



Sensors 2020, 20, 5517 14 of 15

Neural Network Model: We trained deep neural networks to maximize the mutual information
I
(→
ct ;
→
zt
)

between the first t IBI values and the subsequent k IBI values within a five-minute periods,
with t a randomly chosen time point. Computation of the mutual information is realized by first
encoding the sequence of IBI vectors

(→
z1, . . . ,

→
zt
)

by recurrent neural network to encode the information

into a vector
→
ct and make use of the InfoNCE objective [18] to estimate the mutual information between

→
ct and

→
zt+k for k ∈ {1, 2, 3, 4}. As a result,

→
ct contains all information that can be used to predict the next

4 IBI values. Using mutual information as objective for unsupervised learning has the advantage that
no data-pre-processing steps are needed, such as rescaling mean and variance of IBI values, and that
noise is mostly discarded in the encoding of

→
ct . To classify the training set into AF and non-AF we train

a fully connected network with two hidden layers that takes
→
ct at the end of the period as input and

predicts the labels from the manual classification. This deep learning setup (consisting of unsupervised
feature extraction followed by a classifier on the relevant features) is especially valuable for cases
where large amounts of unlabeled data can be recorded easily, and accurate classification is expensive
or time-consuming.
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Chapter 6

Anomaly Detection in Chest

X-ray Images

X-ray images have been widely used for medical diagnoses of cardiothoracic and pul-

monary abnormalities due to its noninvasiveness. Advancement in computer-aided

diagnostic technologies, such as deep supervised methods, can help radiologists with

a reliable early treatment and reduce diagnosis time. Nevertheless, these methods

are prone to the small number of labeled samples and are limited to a specific ab-

normality.

We combine a self-supervised contrastive learning framework for X-ray anomaly

detection trained only with the normal (i.e., healthy) images to make our method

future-ready for yet unknown anomalies. The self-supervised representations are

highly effective for the task of anomaly detection in our framework. We define

an anomaly detection score based on Mahalanobis distance applicable for detect-

ing anomalies. We found that our approach outperforms all previous unsupervised

methods on a pneumonia detection challenge dataset. This work may allow for

improving radiology work-flow and clinical decision-making.
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PNEUMONIA DETECTION WITH SEMANTIC SIMILARITY SCORES
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X-ray images have been widely used for medical diag-
noses of cardiothoracic and pulmonary abnormalities due
to their noninvasiveness. Advancement in computer-aided
diagnostic technologies, such as deep supervised methods,
can help radiologists with a reliable early treatment and re-
duce diagnosis time. Nevertheless, these methods are prone
to the small number of labeled samples and are limited to
a specific abnormality. In this paper, we combined a self-
supervised contrastive method with a Mahalanobis distance
score to develop an abnormality detection method that uses
only healthy images during the training procedure. We were
able to outperform previous unsupervised methods for the
task of Pneumonia detection. We show that representation
learned by the self-supervised method improves the super-
vised tasks for Pneumonia detection.

1. INTRODUCTION

Chest X-ray has been used for medical screening in order for
the detection of cardiothoracic and pulmonary abnormalities,
which are one of the causes of mortality worldwide. Radiolo-
gists widely use chest X-ray images to diagnose lung-related
diseases such as pneumonia. A computer-aided diagnostic
approach would be very helpful to allow radiologists to de-
tect potential abnormalities in chest X-ray images for early
care and treatment. Recently supervised deep learning ap-
proaches have achieved promising results in abnormality
detection for these images. Hendrycks et al. [1] proposed the
maximum value of posterior distribution from the classifier
as a baseline method to detect anomalies and Liang et al. [2]
improved performance using temperature scaling and input
pre-processing. However, these approaches [3] require large,
annotated datasets for training which is not always feasible.
Additionally, it is in general challenging to acquire enough
supervised data for rare pathologies. To address these prob-
lems, many approaches have exploited unsupervised or semi-
supervised frameworks to use unlabeled data for extracting
generalizable features in medical images [4, 5]. Among unsu-
pervised approaches, reconstruction-based methods assume
that anomalies cannot be represented and reconstructed accu-

*Equal contribution

rately by a model trained only on normal data. However, in
practice, these models can also reconstruct abnormal samples
fairly well and thus fail to detect them [5, 6]. To overcome
this problem, Mao et al. [7] trained an autoencoder model to
not only reconstruct the corresponding normal version of any
input but also estimate the uncertainty of reconstruction at
each pixel to enhance the performance of anomaly detection.
In [8], an autoencoder is trained while a constraint is addi-
tionally imposed on the lower-dimensional representation of
the data in which features of the same X-ray images under
random data augmentations are invariant, while the features
of different images are scattered.
Recently the effectiveness of self-supervised contrastive
learning has been proven in different domains, e.g. the visual
domain [9, 10], which enables learning of robust represen-
tations through unlabeled data. Azizi et al. [11] investigated
the effect of self-supervised pre-training on the classifica-
tion downstream task on the CheXpert dataset [12]. Zhang et
al. [13] improved on supervised-based pneumonia detection
using a contrastive-based pre-training and leveraging image
description as an extra modality. In this paper, we utilize a
self-supervised contrastive method to construct an anomaly
detection score based on Mahalanobis distance for anomaly
detection. To the best of our knowledge, we achieved state-
of-the-art results for anomaly detection among all methods
that can be applied to unlabeled data.

2. METHOD

2.1. Contrastive Learning

Given unlabeled training data, self-supervised contrastive
representation learning aims to train a feature extractor, gθ,
to discriminate similar samples from dissimilar ones. Using
image transformations that keep the semantics, each image is
augmented twice, referred to as positives. The function gθ is
optimized to pull semantically similar samples together while
pushing away from other images, referred to as negatives. As-
suming that (xi, xj) is a positive pair for the ith image from
a batch of N images, τ is a scalar temperature parameter and
sim(u, v) = uT v

‖u‖‖v‖ denotes the dot product between l2 nor-
malized u and v (i.e. cosine similarity). Contrastive learning



minimizes the following loss for a positive pair of examples
(i, j), referred to as Normalized Temperature-scaled Cross-
entropy (NT-Xent):

Li,j = − log
exp(sim(zi, zj)/τ)

∑2N
k=1 1k 6=i exp(sim(zi, zk)/τ)

(1)

where 1k 6=i is an indicator function evaluating to 1 iff k 6= i.
zi denotes the output feature of the contrastive layer. Intu-
itively, this loss is the log loss of a (2N)-way softmax-based
classifier that tries to classify xj as a positive sample for xi.
One can define the contrastive feature z(x) directly from the
encoder gθ, i.e., z(x) = gθ(x) [10], or apply an additional
projection layer fφ, i.e., z(x) = fφ(gθ(x)) [9]. The con-
trastive loss (Eq.1) can be minimized by different mecha-
nisms that differ in how the negative samples are maintained.
Chen et al. [9] take negatives from the same batch but it re-
quires a large batch size to provide a large set of negative
pairs. Alternatively, Eq.1 can be minimized with sufficient
number of negative pairs without using large batch sizes by
maintaining negatives in a queue [10]. The encoded repre-
sentations of the current mini-batch are enqueued while the
oldest are dequeued. Unlike [9] in which only one encoder
is used, following [10] we use two encoders, a query en-
coder and a slowly progressing key encoder, implemented as
a momentum-based moving average of the query encoder.

Fig. 1. The query encoder is updated end-to-end by back-
propagation while the key encoder maintains a queue and
is updated with momentum-based moving average. We got
our best results when the model is pre-trained on ImageNet
dataset.

2.2. Score Function for Anomaly Detection

Mahalanobis distance-based confidence score We use Ma-
halanobis distance on feature space h(x) of the trained con-
trastive encoder as a score function for anomaly detection.

Mahalanobis distance achieved promising results for super-
vised anomaly detection. Lee et al. [14] show that with a well-
trained softmax classifier, applying Mahalanobis distance on
feature space using the class means and the feature covari-
ance matrix can reach the state of the art results on supervised
anomaly detection. To measure the Mahalanobis distance for
a given test sample x first, we apply K-means clustering with
K = 1 on the feature space h(x) of training data. This clus-
tering helps to reduce computation time as we only compare
the distance with the cluster mean. The anomaly score s(x)
for a test sample x is given by the Mahalanobis distance

s(x) := (h(x)− µm)TΣ−1m (h(x)− µm) (2)

where µm and Σm are the mean and covariance of the feature
vectors from the training data. The reason to use the Maha-
lanobis distance is to remove the dominance of larger eigen-
values in euclidean distance metric as shown in [15] eigenval-
ues have an approximately inverse correlation with anomaly
detection performance.

3. EXPERIMENTAL SETUP

3.1. Dataset

RSNA 1. The Radiological Society of North America (RSNA)
Pneumonia Detection Challenge dataset [16] is a publicly
available dataset of frontal view chest radiographs. Each im-
age was labeled as ”Normal”, ”No Opacity/Not Normal”
or ”Opacity”. The Opacity group consists of images with
opacities suspicious for pneumonia, and images labeled ”No
Opacity/Not Normal” may have lung opacity but no opacity
suspicious for pneumonia. The RSNA dataset is a subset of
the National Institutes of Health (NIH) Chest X-Ray dataset
[17]. It contains 26, 684 X-rays with 8, 851 normal, 11, 821
no lung opacity/not normal and 6, 012 lung opacity.

3.2. Self-supervised Contrastive Training

Experiments were carried out using ResNet50 neural network
architecture. Following [9], two fully connected layers are
used to map the output of ResNet to a 128-dimensional em-
bedding space where the contrastive loss is applied. We per-
form training on RSNA with initialization from ImageNet
self-supervised pre-trained weights. We train at batch size 128
for 100 epochs using SGD optimiser. The temperature τ in
Eq.(1) is set as 0.07. At training time, we apply the follow-
ing augmentations: (1) a 224 × 224-pixel crop is taken from
a randomly resized image (2) random rotation by an angle
sampled from the uniform distribution U(−20, 20) (3) ran-
dom horizontal flip with probability 0.5 (4) brightness and
contrast adjustments.

1https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data



3.3. Evaluation Methodology

We evaluate the results using Area Under the Receiver Oper-
ating Characteristic curve (AUROC), which has the advantage
to be scale-invariant ”it measures how well predictions are
ranked, rather than their absolute values” and classification-
threshold-invariant ”it measures how well anomaly samples
are separated from the normal samples”.

4. EXPERIMENTAL RESULTS

4.1. Self-Supervised Anomaly Detection

For Mahalanobis distance, the highest performance achieved
from the last layer, the output after the average pooling
layer, before the MLP head [15]. On RSNA dataset, to de-
tect anomalies, we consider three different cases: ”Normal”
vs. ”Opacity”; ”Normal” vs. ”No Opacity/Not Normal” and
”Normal” vs. all ”Opacity and No Opacity”. In Table 1,
we compare our method with both supervised methods and
unsupervised methods trained on only healthy images. We
averaged AUROC values over 5 different train/test splits.

Table 1. OOD detection performance (AUROC).

Methods Opacity No Opacity All
Methods making use of label information

Automated Abnormality Classification [18] 0.980 - 0.949
Pneumonai Detection using Radiomic Features[19] 0.923 - -

ConVIRT [13] - - 0.908
Unsupervised methods trained on normal samples

UAE[7] 0.89 0.78 0.83
Deep Anomaly Detection[20] 0.838 0.704 0.752

Generative Adversarial one-class classifier[5] 0.802 - 0.841
Ours 0.940 0.828 0.866

Fig. 2. Distributions over the anomaly detection score trained
only on Normal samples and applied to the test sets of Normal
as in-distribution, ”Opacity” and ”No Opacity/Not Normal”
as out-distributions.

4.2. Pre-training and Label Efficiency of Multilabel Clas-
sification

In addition to the self-supervised anomaly detection task,
we evaluate the learned representation by its performance in

KNN accuracy and the impact it has on multilable classifica-
tion downstream task. For the pre-training task, we use the
same data split statistics as in [18] including 21, 152 training
samples (14, 159 abnormal and 6, 993 normal samples). We
use the same optimization config as for the anomaly detection
task. The self-supervised pre-trained model achieved 1-NN
accuracy of 79.01%. For the classification task, we replace
the projection head of the contrastive encoder with a clas-
sification head, projecting the data into a one-dimensional
scalar value and fine-tune the whole model with binary cross-
entropy loss and same optimization config as in [18]. To
see the effect of self-supervised pre-training, we start with a
small fraction of training data and compare model AUROC
performance on test data for different case studies. Figure 3
shows that self-supervised pre-training can significantly help
with label efficiency and causes a considerable performance
improvement when we have a small fraction of labeled sam-
ples for the downstream task. We achieve an AUROC score
of 94.4% when fine-tuning with all labeled training data and
an AUROC score of 82.97% when using only 100 labeled
samples which are selected randomly from training data.

Fig. 3. Self-supervised pre-training increases the downstream
classification task performance with small fraction of training
samples. RSNA-Con and Imagenet-Con are fine-tunings of
models with different model initialisation in self-supervised
pre-training as follows: randomly initialised and initialised
with Imagenet. Imagenet-Classifier stands for fine-tuning an
already trained imagenet classifier and Random Initialisastion
is performing classification with random weight initialisation.

5. ABLATION STUDIES

5.1. Data Augmentation Details

In our setting, to train the self-supervised contrastive encoder,
we utilize random crop (resize to 224×224), random rotation
(image rotation by angle θ from range (−20, 20)), random
horizontal flip, brightness and contrast adjustments as the data
augmentations. Brightness and contrast adjustments are com-
posed by color jittering. The details of these augmentations
are provided in Table 2.



Table 2. Data augmentation used for contrastive training

Transformation PyTorch snippet
Cropping transforms.RandomResizedCrop(224, scale=(0.08, 1.0))
Rotation transforms.RandomRotation(20)

Horizontal Flip transforms.RandomHorizontalFlip(p = 0.5)
Color Jitter transforms.ColorJitter(0.4, 0.4, 0, 0)

Normalization transforms.Normalize()

Fig. 4. Examples of augmented images from RSNA dataset

5.2. Ablation on Batch Size

Training with small batches. Table 3 confirms that large
batches are not necessary for a good performance in our
anomaly detection problem. We scale the learning rate lin-
early with the batch size [21]. We averaged AUROC values
for ”Normal” vs. ”Opacity” over 5 different train/test splits
for each batch size.

Table 3. Effect of batch size
Batch size AUROC

256 0.926
128 0.940
64 0.916

5.3. Ablation on Data Augmentation

Because of the less diverse nature of X-ray images, in our ex-
periments, we used strong data augmentations in order to pre-
vent over-fitting and improve anomaly detection performance.
In Table 4, we change the strength of each augmentation in-
dividually while keeping the rest unchanged. We averaged
AUROC values for ”Normal” vs. ”Opacity” over 5 different
train/test splits.

Table 4. Effect of data augmentation

Transformation AUROC
transforms.RandomResizedCrop(224, scale=(0.4, 1.0)) 0.934

transforms.RandomRotation(10) 0.928
transforms.ColorJitter(0.25, 0.25, 0, 0) 0.926

5.4. Fine-tuning Implementation Details

To do the fine-tuning, we use the same data augmentation as
used in [18]. Table 5 shows the augmentation details together

with related PyTorch code. We use a batch size of 128 for all
experiments where the training samples are more than 1000
images and 64 where we have 100 and 500 training sam-
ples. Other optimisation hyper-parameters are the same for
all experiments. Table 6 summarises the optimisation hyper-
parameters used for fine-tuning.

Table 5. Data augmentation used for fine-tuning
Transformation PyTorch snippet

Resize transforms.Resize(256)
Cropping transforms.CenterCrop(224)

Horizontal Flip transforms.RandomHorizontalFlip(p = 0.5)
Color Jitter transforms.ColorJitter(0.3, 0.3, 0, 0)

Random Affine transforms.RandomAffine(15, translate=(0.1, 0.1), scale=(0.9, 1.1))
Normalization transforms.Normalize()

Table 6. Hyper-parameters for fine-tuning training

Hyper-parameter Default value
Number of epochs 50

Learning rate 10−2

Weight decay 10−4

Optimizer SGD
Momentum of SGD 0.9

6. CONCLUSION

In this work, we proposed a self-supervised contrastive learn-
ing framework for X-ray anomaly detection trained only with
the normal images to make our method future-ready for yet
unknown anomalies. The self-supervised representations are
highly effective for the task of anomaly detection in our
framework. We define an anomaly detection score based on
Mahalanobis distance applicable for detecting anomalies.
We find that our approach outperforms all previous unsuper-
vised methods on the RSNA pneumonia detection challenge
dataset. This work may allow for improving radiology work-
flow and clinical decision-making.
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Chapter 7

Serious Clinical Complication

Detection using Contrastive

Learning

Today’s conventional monitoring techniques of patients during intensive treatment

protocols for aggressive hematologic malignancies are cumbersome and often fail to

detect life threatening complications early. Continuous monitoring of vital signs by

means of medical wearables will potentially lead to an earlier diagnosis and better

treatment. The major challenge is to extract clinically relevant information from a

large amount of data provided by wearables. Oncologic treatment for patients with

hematologic malignancies is associated with a high incidence of (post-)treatment

complications, such as infections resulting in severe morbidity and mortality. In

fact, nearly every patient on such treatment protocols experiences at least one

serious clinical complication (SCC) requiring treatment. Early diagnosis of SCC is

not only of high clinical relevance for the safety and well-being of the patients as it

enables a more rapid treatment of SCC, but it would also potentially help reduce

the number of hospitalisations. In this work, we aim to evaluate whether wearable-

based monitoring enables detection of SCC with sufficient reliability. To do so, we

take an anomaly or OOD detection method to identify whether defined episodes

of vital signs are ”regular” (= absence of SCC) or not in order to detect clinical

complications.
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7.1 Method

7.1.1 Learning Statistical Relevant Features

The problem of how to extract generalizing features from data – typically all what is

semantically meaningful – is often difficult in practice and strongly depends on the

particular machine learning task for what these features are needed. Generalizing

features refer to those that are found in the training data but also in any example

that comes from same distribution as the training data. For example, in case of

object classification as computer vision task, the generalizing features are typically

defined as those that are invariant under image transformations that keep the se-

mantics of the shown object, such as horizontal flip, cropping, and slight changes in

colouring. For the time series data used in this work, we define generalizing features

as the information shared between two time series samples, x and x′, where each of

the two samples (positive pair) consists of a randomly selected time interval of 1000

seconds (period) within the same hour. To extract these features, we map each time

series sample, x, to a d dimensional feature vector h, with the help of a deep con-

volutional neural network, h = fθ(x), as a feature extractor. The network fθ(x) is

trained by a Self-Supervised Contrastive Learning objective, which approximately

maximises the mutual information for all sampled positive pairs across all recorded

hours.

7.1.2 Self-Supervised Contrastive Learning

To learn generalizable representations, self-supervised contrastive learning is used by

ensuring that in the representation space embeddings of similar inputs are pulled

closer while simultaneously embeddings from dissimilar inputs are pushed apart.

The feature extractor, fθ, is trained to extract the necessary information to discrim-

inate similar samples, referred to as positive pairs, from dissimilar ones, referred to

as negative pairs. Negative examples are not sampled explicitly; instead, given a

positive pair, other examples within a mini-batch are treated as negative examples.

The encoder, fθ, maps the inputs to feature vectors in a d dimensional feature space

where contrastive loss is applied, hi = fθ(xi).

Let hi = fθ(xi) and hj = fθ(xj) be feature vectors of xi and xj and (xi,xj) form a

positive pair and sim(u,v) := uT v
∥u∥∥v∥ denote cosine similarity between feature vec-

tors. In self-supervised contrastive representation learning, a contrastive loss can be

defined as

Li,j = − log
exp(sim(hi,hj)/τ)∑︁
k ̸=i exp(sim(hi,hk)/τ)

(7.1)

where 0 < τ < 1 is a scalar temperature parameter. The dataset of vital signs

and activity data is represented as {Xn}Nn=1, with Xn ∈ RD×T , where N is the

number of hours across all patients, D is the input dimension and T is the number

of consecutive time points within one hour. We take T = 3000, which is less than the
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expected T = 3600 seconds for an hour, as we frequently observed interruptions and

therefore shorted T to keep most of the consecutive time series data. Let x represent

a window of time series of length w. To generate a positive pair, we randomly sample

two windows x and x′ of length 1000 time points with a time gap (500− 1000 time

points) from the same hour Xn. Before passing the intervals through the encoder,

fθ, each input feature value is encoded with the respective quality index provided

by the wearable device into a multi-dimensional vector space, where values with

different quality scores are orthogonal to each other.

7.1.3 Score Function for SCC Detection

From the set of representations for the training examples, Dtrain = {hm}Mm=1, with

M = KN , a score function can be defined to evaluate whether a given sample

is SCC or not. For a given test sample, htest = fθ(xtest), the cosine similarity is

calculated to the nearest training sample in Dtrain as a score for detecting SCC

samples. The cosine similarity based SCC score is then defined as

SCC(xtest) :=
1

K

K∑︂

k=1

[︃
1− max

hm∈Dtrain

sim(hm,h
k
test)

]︃
(7.2)

We take K = 6 and hk
test is randomly sampled from the same hour. The test sample,

xtest, is classified as SCC if the SCC score is above a threshold.

7.2 Training Details

The neural network f is a one-dimensional ResNet [79]. The input features were

stored with sample rate of 1 Hz by the wearable device. The temperature, τ , in

Eq. 7.1 was set as 0.07. Adam optimiser with initial learning rate of 10−3 and

weight decay of 10−4 was used. The model was trained at batch size 128 for 500

epochs. For a set of B randomly chosen samples, the corresponding batch used for

training consists of 2B pairs, 1 positive pair and 2B − 2 negative pairs per sample.

The encoder, fθ, maps inputs to a 128 dimensional embedding. The outputs of this

network are normalized to lie on a unit hypersphere, which enables using an inner

product to measure the cosine similarity.
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7.3 Detection and Prediction of Serious Clinical

Complications with Wearable Based Remote

Monitoring and Self-Supervised Contrastive

Learning during Intensive Treatment for Hema-

tologic Malignancies
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Abstract 
BACKGROUND: Serious clinical complications (SCC; CTCAE grade ≥3) occur frequently in 

patients treated for haematological malignancies. Early diagnosis and treatment of SCCs are 

essential and improve outcomes. This study assessed an AI-model-derived SCC-Score to 

detect and predict SCCs from time series data recorded continuously by a medical wearable. 

METHODS: In this single-arm, single-centre observational cohort study, vital signs and 

physical activity were recorded by a wearable for a total of 30,182 hours in 79 patients (54 

Inpatient Cohort (IC) / 25 Outpatient Cohort (OC)) receiving therapy for haematological 

malignancies. Hours with normal physical functioning without evidence of SCCs (‘regular’) 

were presented to a deep neural network to train a self-supervised contrastive learning model 

to extract features from the time series that are typical in regular periods. The model calculated 

a so-called SCC-Score based on dissimilarity to regular features (higher values indicate higher 

risk for a SCC). Detection and prediction performance of the SCC-Score compared to the 

clinical documentation of SCCs was evaluated by employing the area under the receiver 

operating characteristic curve (AUROC). 

FINDINGS: Hundred-twenty-four clinically documented SCCs occurred in the IC and 16 in the 

OC. Detection of SCC by the AI model was achieved in the IC with a sensitivity 84·8% and 

specificity 66·6%, providing an AUROC of 0·80 (95%CI 0·78-0·83) (OC: 93·2%/46·9% (0·75 

(0·68-0·81)). Up to 2 days prior to the clinical diagnosis, prediction of infectious SCC by the 

SCC-Score was possible (AUROC 0·86 at -24 hours and 0·81 at -48 hours). 

INTERPRETATION: This study shows a reliable detection and prediction of SCCs in patients 

receiving therapy for haematological malignancies using an AI model. This encourages further 

exploration of remote patient monitoring by a wearable to enable pre-emptive complication 

management. 

 

FUNDING: This study was funded by the Leukämie Lymphom Liga e.V. 
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Research in context 
Evidence before this study 
PubMed, EMBASE and MEDLINE were searched for randomised and non-randomised clinical 

trials, observational studies published before 03.01.2022 with no language restrictions. MeSH 

and free terms related to the disease terms (‘malignancy’/’oncology’/’cancer’/’tumor’) and 

(‘wearable’/’wearable sensor’/’biosensor’/’actigraphy’/’accelerometry’/’smart watch’) were 

included, or variations of these terms thereof. Articles were screened by title and abstract to 

identify relevant studies. Reference lists of eligible articles were also searched for additional 

studies. 

There is limited evidence for applying medical wearables to detect complications in patients 

with malignancies. Thirty-six studies demonstrated that wearable-based assessment of 

physical activity levels is correlated to relevant clinical outcomes, such as symptom burden 

and hospitalisations. To date, linking vital signs recorded by a wearable for detection of 

complications is missing. Currently, detection and management of complications in patients 

receiving treatment for haematological malignancies in the outpatient setting rely on their self-

assessment and specialist evaluation at high-frequency clinical visits. In the inpatient setting, 

detecting complications relies on clinical examinations and diagnostics, such as daily 

laboratory sampling. For Health Care Professionals (HCP), clinical scores such as the 

Multinational Association for Supportive Care in Cancer Score allow for a priori risk 

stratification for complications during oncological therapies. However, no systematic tools are 

available to facilitate on-treatment surveillance in these patients, and the frequency with which 

treatment-related complications occur is largely determined by the patient's condition and the 

selected treatment approach. 

For patients, the occurrence of potentially life-threatening complications represents a high 

psychosocial and psychological burden. Hence, early detection of treatment-associated 

complications in patients with haematological malignancies is challenging for patients and 

HCP. 

Therefore, the development and application of AI-enhanced wearable-based remote patient 

monitoring (RPM) could improve detection and management of clinical deterioration. 

Added value of this study 
This study suggests that wearable-based RPM in combination with AI analytics enables 

personalized detection and prediction of serious clinical complications in patients with 

haematological malignancies during treatment. The applied pragmatic trial design provides a 

large data set of different vital signs and physical activity in this patient population, parallel to 

extensive clinical documentation of complications. To our knowledge, this is the first trial 

evaluating a wearable-based monitoring approach to detect clinical complications in patients 

with haematological malignancies. 



 5 

Implications of all the available evidence 

In summary, our results indicate that patients and HCPs with haematological malignancies can 

benefit from RPM with a medical wearable in combination with a suitable analytics model that 

can identify subtle and early symptoms. Usage of such a non-obtrusive approach in clinical 

practice might also allow to optimise complication management, i.e. reduce the workload of 

specialised health care professionals while also improving patient care. To realise the full 

potential of wearable-based RPM, the ability for real-time detection of complications needs to 

be shown in an adequately designed prospective study.  
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Background 
Treatment of patients with haematological malignancies is associated with a high incidence of 

clinical complications, such as infections, cardiac events and immunologic dysregulations.1,2 

These potentially life-threatening complications require early recognition and therapeutic 

intervention, as it is known that delayed intervention is associated with increased morbidity 

and mortality.3,4 Recent diversification of oncological treatment options, including e.g. CAR-T 

cell therapy, increase therapeutic options but add to the spectrum of complications, such as 

‘cytokine release syndrome’. Today’s management of complications depends on the setting of 

oncological treatment: Under hospital conditions (= inpatients), the management of 

complications relies on intermittent recordings of vital signs, daily clinical examinations, and 

laboratory tests by health care professionals (HCP). An increasing number of oncological 

treatments are applied in the outpatient setting.5 There, complication detection relies primarily 

on patient self-assessment.6 Early on detection of (subtle) symptoms indicating complications 

is challenging and is often delayed. To avoid ‘late show ups’, outpatients are routinely admitted 

to their treatment centre without evidence of complications, which burdens both patients and 

HCP.7 Therefore, there is a need for innovative concepts for early and reliable detection of 

treatment-associated complications.8 

Remote patient monitoring (RPM) with medical wearables represents a novel option for non-

invasive and continuous real-time monitoring of vital signs and physical activity.9,10 11 Medical 

wearables provide longitudinal and high-resolution health data that expand monitoring 

options.12,13 Ideally, the large data sets recorded by wearables should be combined among 

patients to increase the statistical power of the prediction algorithm that is used to evaluate the 

patient specific vital signs in real-time. The challenge is to resolve the seemingly contradicting 

situation of employing a single prediction algorithm that at same time can make different 

predictions for similar vital signs, if these vital signs originate from different patients. Such 

personalized predictions under a single prediction model can be realised for a very large 

number of patients by making use of recently developed concepts of self-supervised deep 

learning. 

Aim of this study was to evaluate if a wearable-based RPM approach in combination with AI 

analytics is able to detect and predict complications with sufficient reliability in in- and 

outpatients during their oncological treatment for haematological malignancies. 
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Methods 
Study design and setting 
This was an open-label, single-arm, single-centre, investigator-initiated cohort study covering 

patients with a haematological malignancy receiving an oncological treatment (chemotherapy 

alone or in combination with radiotherapy and/or haematopoietic stem cell transplantation) 

(figure supplementary 1). Details of the study have been described elsewhere.14 In brief, the 

study was conducted at the Department of Haematology, Oncology and Clinical Immunology 

of the University Hospital Düsseldorf, Germany. The study was approved by the Ethics 

Committee of the Medical Faculty of the Heinrich Heine University Düsseldorf and was 

registered in the German clinical trials register (DRKS00014782). 

Participants 
Inclusion criteria were patients’ age ≥18 years and an indication for a treatment protocol with 

expected haematotoxicity according to Common Terminology Criteria for Adverse Events 

(CTCAE) grade 4 alone or in combination with stem cell transplantation. Exclusion criteria were 

medical or mental conditions impairing the ability to continuously wear the wearable (e.g. 

dementia, upper arm tattoos, skin diseases) and active implants, which might impair 

recordings. 

All patients provided written informed consent. During visits, the following data were obtained 

for each individual (e.g. medical history, comorbidities, symptoms, physiological parameters, 

laboratory values, results of physical examination). A convenience sample of 79 patients was 

recruited for an intensive treatment protocol: 54 patients were treated in hospital [inpatient 

cohort (IC)] and 25 patients for an outpatient-based treatment [outpatient cohort (OC)] (table 

supplementary 1-2). 

Patients and clinical staff were blinded for wearable data (analysed retrospectively). Prior to 

study participation, patients were informed that they would not derive immediate individual 

benefit from study participation. 

Wearable 
The commercially available wearable (Everion, Biovotion AG, Switzerland) employed is a CE 

marked medium-risk device (class IIa) according to the Directive 93/42/EEC (firmware used 

was for clinical investigation only). Different sensors implemented in this wearable are used 

for non-invasive monitoring of vital signs and physical activity (e.g. photoplethysmography, 

temperature probe, accelerometer). Longitudinally recorded parameters, such as heart rate, 

temperature, respiratory rate and physical activity, and if applicable, respective quality indices 

were calculated with proprietary methods implemented in the firmware (table supplementary 

3). Raw signals were acquired with a frequency of >30 Hz, calculated parameters were stored 

with a rate of 1 Hz (= 3,600 data points/hour). The battery of the wearable had to be recharged 

daily for 90 min. 
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Two wearables for alternate use were assigned to each patient at the baseline visit prior to 

starting treatment to enable continuous wearable-based monitoring of vital signs and physical 

activity in these patients. Frequency of subsequent study visits (app. every 90 hours for device 

swap) was determined by the limited data storage capacity of the wearable. 

Identification of Serious Clinical Complications based on clinical documentation 
Non-haematological SCCs were defined by meeting the criteria of CTCAE (v4.03) grade ≥3.15 

Clinical documentation (visit entries, laboratory results, diagnostic results) was independently 

and retrospectively reviewed by two investigators (PR, MJ) for the occurrence of SCC. For 

each clinically documented SCC, a starting time point was noted. Infectious SCCs with no 

focus of origin were classified as ‘Infections and infestations – other’. Recovery from a SCC 

was defined as absence of documented clinical symptoms, absence of pathological laboratory 

and diagnostic results. With respect to varying time courses of different types of SCCs, e.g. a 

hypertensive crisis with a rapid onset vs. an infection, which develops over several hours/days. 

Input data for AI model 
Time series input data recorded by the wearable in patients of the total cohort, the IC and OC 

were presented separately to the AI model. No predefined quality constraints were used, as 

the trained AI model is able to extract features of informational value. Data sets were split into 

hours according to their timestamps, and only hours with ≥3,000 data points were included to 

ensure enough input data and discriminative information within each hour. The investigators 

annotated the hours (figure 1) as ‘regular’ if no SCC was recorded in the clinical 

documentation. Hours with documented SCC were annotated as ‘non-regular’, with a special 

annotation for infectious SCCs for subgroup analyses. 

Since changes in vital signs and physical activity may already occur before SCC criteria are 

fulfilled, e.g. a hospital visit or lab results, a time buffer was introduced, i.e. recordings in the 

48 hours prior to the timestamp of SCC onset and 24 hours post-recovery from a SCC were 

annotated as ‘non-regular’. 

AI model 
For this study, a self-supervised contrastive learning approach was used, a subset of 

unsupervised learning in AI technology that learns to extract generalising features from 

complex data.16 Generalizing features are features that are specific to the distribution of 

patients where the training set has been derived from and as a consequence are useful for 

any test example drawn from the same distribution. Details of the AI model development and 

training are given in the supplementary material. The features were extracted using a deep 

neural network that was trained on a dataset generated by randomly collecting 90% of the 

‘regular’ hours for each patient.17 Remaining 10% of the ‘regular’ hours were used to establish 

a null-distribution for statistical testing. These ‘regular’ and ‘non-regular’ hours (together: ‘test 

set’) were used for evaluating the sensitivity of the approach to detect SCCs. Aftertesting. 



 9 

Following training the AI model, it is able to identify deviations from the ‘regular’ hours data set 

and therefore detect SCCs. 

AI model output 
The generalizing features for an hour of vital signs and physical activity are represented as 

high dimensional vector of unit length, for which a cosine similarity score can be calculated 

between them by taking the scalar product. For each hour of vital signs and physical activity 

in the test set, the highest similarity to a ‘regular’ hour in the training set was identified. A 

patient specific evaluation can be realized by narrowing down the best-match search to the 

training hours of one patient. Based on this best-match of similarity scores, we introduce the 

‘SCC-Score’, which is defined as one minus the highest cosine similarity to the training set 

(figure 1 and Methods supplementary). SCC-Scores ranged from zero to one. A higher SCC-

Score indicates a larger deviation from what is be expected to be a ‘regular’ hour. SCC-Scores 

for the 10% of ‘regular’ hours (which were not shown to the AI model during training) are used 

to establish the null-distribution under the null hypothesis that an hour is ‘regular’. Therefore, 

the null hypothesis would be rejected for any hour with a SSC-Score above a pre-specified 

significance level, with the result that the assessed hour is classifed as ‘non-regular’. The 

significance level has to be pre-specified to meet clinical requirements and can be understood 

as a ‘decision boundary’. It can be obtained from calculating the corresponding quantile of the 

null distribution. The SCC-Scores of the test set were evaluated per hour but also per day to 

address inter-hourly variability. 

Outcomes and statistical analysis 
Primary outcomes were the detection and prediction of clinically documented SCCs by the 

SCC-Score. Subgroup analysis evaluated infectious SCCs. For statistical analysis, differences 

between means of hours annotated as ‘regular’ and ‘non-regular’ obtained from SCCIC-Score, 

SCCOC-Score and SCCTotal-Score were tested for significance using a two-sided t-test, 

adjustment for multiple comparisons was performed by using Bonferroni correction. To 

address overfitting, ten-fold cross-validation was performed. Statistical significance was tested 

by an ANOVA between the cross-validation splits of ‘regular’ and ‘non-regular’ (figure 

supplementary 3). Receiver Operating Characteristics analysis (Area under the curve of the 

ROC-analysis (AUROC)) was computed to assess primary outcomes. The cut-point that 

optimises the detection of true-positive results (sensitivity) and false-positive results (1-

specificity) is reported by the Youden index. For clinical requirements (not missing a SCC), 

specificity was reported at a sensitivity of approximately 95%. 

To assess SCC-Score prediction capabilities for infectious SCC (table 1), the performance of 

the score in the 120 hours prior to and after the time stamp of diagnosis (t = 0 hour) were 

analysed. For AUROC-analysis, 95% confidence intervals (CI) are reported.18 A p-value <0·05 
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was considered significant. For data and statistical analysis, an open-source software tool was 

used (Python, version 3.6.5). 

  



 11 

Findings 
A total of 140 SCCs were extracted from the clinical documentation of 79 patients in the two 

cohorts (table 1; data of two patients without ‘regular’ hours and early study withdrawal were 

excluded from further analysis): Cumulative incidence of SCCs in the IC was 90·7% and of 

those in the OC was 48·0%. More than one SCC occurred in 30 patients in IC and 3 patients 

in OC. Most SCCs occurred within the first 15 days after starting treatment (IC 82·2%, OC 

93·8%, figure supplementary 4). Infectious SCCs accounted for 65·0% of the total SCCs and 

were the most frequent SCCs in both cohorts (IC 63·7%, OC 75·0%). 

Wearable data were recorded for 24,100 hours in the 54 patients in the IC (figure 

supplementary 2), the median recording time per patient was 457·4 (IQR 324·3-538·5) hours. 

The 25 patients in the OC had 7,215 hours total recording time, with a median participation 

time of 315·5 (227·4-340·8) hours per patient. Hours meeting data constraint (>3,000 data 

points) were 23,227 hours (96·4%) in the IC and 6,955 hours (96·3%) in the OC. 

SCC-Scores were significantly higher in ‘non-regular’ hours and days, indicating a higher risk 

for SCC prevalence in comparison to sets of ‘regular’ hours (table 2). This observation was 

stable with ten-fold cross-validation (figure supplementary 3). The mean SCC-Score levels 

differed between patients in the IC and OC, i.e. the average scores for ‘regular’ days were 

0·197±0·052 and 0·176±0·045 for IC and OC, respectively. For the infectious SCC-Score, the 

absolute difference was even more pronounced (0·169±0·047 in IC and 0·122±0·035 in OC). 

The SCC-Scores for different types of SCCs differ (table 1; last column), with scores from 

0·114 for immune system disorders (n=1) to 0·290 for paroxysmal atrial tachycardia (n=3). For 

the most common SCCs (‘Infections and infestations – other’), the mean score was 0·249 (n=66). 

Training of the AI model with different numbers of data sets increased the AUROC (figure 

supplementary 5). 

AI model application to the test data set of ‘regular’ hours and ‘non-regular’ hours of 

accumulated 12,128 hours for SCCIC, 2,227 hours for SCCOC, and SCCTotal revealed a 

significant mean difference in the SCC-Scores (table 2 and figure 2). 

At the Youden index, sensitivity for detecting ‘non-regular’ hours was 69·0% for IC and 57·0% 

for OC. Specificity for those hours for IC and OC was 63·5% and 69·4%, respectively. With 

SCC-Scores applied to ‘hours for testing’, an AUROC for IC of 0·72 and for OC 0·68 was 

observed (figure 2). Calculating a mean daily score showed increased sensitivity (IC 84·8% 

and OC 93·2%). Specificity in IC was stable at 64·9%, while in OC, specificity decreased to 

46·9%. Assessment of hourly SCC-Score for the infectious SCCs showed equivalent 

performance in terms of sensitivity, specificity and AUROC. The highest AUROC (IC 0·83, OC 

0·82) was observed with detecting days containing infectious SCCs. Reporting specificity at a 

sensitivity of approximately 95·0% showed lower specificity (IC 23·9% and OC 19·4%) with 
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hourly SCC-Scores. When reporting specificity at approximately 95·0% sensitivity on daily 

SCC-Scores, a moderate decline in specificity was observed (IC 51·7% and OC 41·6%). 

To evaluate the SCC-Score's prediction capabilities, the clinical diagnosis of infectious SCC 

was set as 0 hour. The SCC-Scores calculated by the AI model for the hours before and after 

each SCC showed an increase in Score starting up to 48 hours prior to diagnosis (figure 3a 

and table supplementary 4). An equivalent course was observed in IC and OC; however, the 

overall SCC-Score level differed between the two cohorts. The decline in SCC-Score is 

reflected by an increase in AUROC over the same time periods with both cohorts and a 

subsequent less steep slope in the 120 hours post diagnosis (figure 3b). The observed change 

in AUROC in the two days prior to clinical SCC diagnosis may allow prediction of infectious 

SCCs.   
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Interpretation 
Results 
Wearable-based RPM combined with an AI model enables calculation of a SCC-Score that 

allows detection and prediction of SCCs in patients receiving intensive treatment for 

haematological malignancies up to 48 hours before clinically documented SCCs were 

diagnosed. This study can be regarded as a ‘proof of principle’ for wearable-based RPM during 

oncological treatment where patients are at high risk for life-threatening complications. 

As to be expected, the different SCCs observed in this study were heterogeneous in type and 

severity. As the course over time of the SCC is diverse, the induced changes in vital signs and 

physical activity vary to a different degree. For example, an infection may develop over the 

course of hours and days, whereas a hypertensive crisis or cardiac arrhythmias can both occur 

and resolve itself from one moment to the other. The SCC-Scores represent this diversity, i.e. 

allergic skin rash scored lower than infections and arrhythmia. 

The overall levels of the SCC-Scores observed for ‘regular’ hours and ‘non-regular’ hours in 

the two cohorts (IC vs OC) were different; however, relative recording times in both cohorts 

were comparable.14 Yet, the cause for this difference is not clear; it might reflect the higher 

physical activity levels of patients in the OC or the different oncological treatment conditions. 

However, the degree of change in the SCC-Score induced by SCCs is similar in IC and OC. 

This results in a comparable AUROC analysis outcome (table 2), pronouncing the robustness 

of our method. Further improvement in performance was achieved by applying daily SCC-

Score instead of hourly. Given the different levels in SCC-Scores between the cohorts 

implicates the necessity to record data in a precise clinical context.19 For clinical application, 

an automated SCC detection based on daily SCC-Scores would be a convenient RPM tool for 

the HCP. 

In the subgroup analysis for infectious SCC, the SCC-Score showed an increase prior to the 

clinical diagnosis of the SCC (at t=0 hour) in both cohorts, with a steeper slope prior to the 

diagnosis than the decrease in the hours post-diagnosis (figure 3). This increase could be 

driven by the uninhibited evolvement of an infection, whereas the decline is probably 

associated with the therapeutic intervention initiated. This phenomenon allows for the 

speculation that treatment success of a SCC or failure may also be tracked by RPM. 

Methods 
In line with the aim to assess changes in the recorded vital signs and physical activity induced 

by SCCs, ‘regular’ and ‘non-regular’ hours during treatment were compared. Therefore, in 

contrast to other studies, pre-treatment recordings were omitted, as it can be proposed that 

vital signs and physical activity differ relevantly between pre-treatment and during treatment, 

even in the absence of SCC.20 
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Training of the AI model with ‘Big Data’ improves its performance to a given extent, i.e., with 

the used amount of data sets, the slope of the performance improvement in AUROC decreases 

(figure supplementary 5). 

A relevant advantage of the self-supervised contrastive learning AI model is that it is able to 

extract informational value from large and noisy data sets with artefacts and data gaps. 

Furthermore, the presented self-supervised approach is data-efficient, as small quantities of 

recordings of a given patient in a diverse data set are sufficient to calculate a SCC-Score. 

Usually, individual detection of SCCs, based on a risk score for a given patient, requires a 

large quantity of data from this specific patient to first train an individual AI model. For real-

world adaption the trained AI model can be implemented on a smartphone, as the 

computationally demanding training of the AI model can be done remotely. 

Patients’ individual responses in vital signs and physical activity to SCC of any kind are 

unknown. Instead of rigid thresholds for a single parameter, the totality of provided vital sign 

and physical activity measures was used to calculate a similarity score. Applying this SCC-

Score to unseen ‘regular’ and ‘non-regular’ hours, mean values differed significantly between 

both groups. 

From a clinical point of view, it is desirable to minimise the risk of missing SCCs. Therefore, 

the decision boundary was set corresponding to a sensitivity of 95%. Of note, this choice is 

somewhat arbitrary and needs to be discussed according to clinical context.20 Depending on 

the situation under consideration and prior knowledge (e.g. given by a pre-test probability), 

clinicians can individually choose the decision boundary such that a certain balance of 

sensitivity and specificity is achieved. This decision boundary, which is directly related to the 

significance level of the statistical test, may also be adapted during real-world application when 

more information becomes available.21 In general, the SCC-Score calculated represents a 

single value that can be translated into actionable clinical information. 

Generalisability 
In the future, automated SCC detection by a wearable-based RPM in clinical oncology offers 

the option of permanent patient surveillance and may thereby improve complication 

management. Ideally, recorded data would be analysed in real-time to provide actionable 

information for early and effective treatment. This may improve clinical pathways, e.g. 

implementation of demand-driven visits, which could reduce physicians` and nurses` workload 

in specialised clinics.22 Furthermore, a decrease in the frequency of blood sampling during 

treatment of patients for their haematological malignancy is possible as recent research 

indicated a good correlation of wearable recorded vital signs with laboratory measurement 

results.23 This approach may reduce treatment and disease burden by enabling optimal timing 

of interventions to counter SCC. 

Limitations 
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The sample size evaluated in this exploratory study is limited; however, to our knowledge, this 

is the largest trial employing RPM in patients treated for haematological malignancies.10 

Comparability between IC and OC may be limited due to the unequal number of patients in 

both cohorts. However, no major performance differences were observed. 

Limitations of the wearable used in this study are described elsewhere.14 In terms of suboptimal 

data availability concerning the participation time of patients in the study, one can foresee that 

more convenient wearables with longer-lasting battery life will lead to higher practicability of 

the approach. 

Grading of SCC with CTCAE grade ≥3 may influence vital signs and physical activity differently. 

Using this grading threshold for SCC omits lower grade complications, which, however, may 

already be of therapeutic relevance and affect patient’s wellbeing. Nevertheless, detecting 

severe SCCs as a primary medical need was chosen because CTC grade ≥3 definitely requires 

medical intervention. Not all SCCs may affect vital signs and physical activity to the degree 

that they are likely to be detected by a wearable-based RPM approach; infection-induced 

SCCs might lead to a stronger ’signal’ than some other SCCs and may therefore be an ideal 

target for RPM. However, it is unclear which sets of parameters are required for optimal SCC 

detection. This question must be addressed in subsequent evaluations. 

Annotation of data recorded by the wearable during ‘regular’ hours was based on clinical SCC 

documentation, and there is a probability that SCCs weren’t documented properly. 

Consecutively, the AI model would be trained on incorrectly annotated input data. Adding a 

time buffer to any clinical documentation of SCC time to avoid inadequate training of the AI 

model was a pragmatic approach; however, it is not obvious what the optimal buffer duration 

is given the heterogeneity of SCCs. 

Conclusion 
In summary, this study provides proof of principle that SCCs in a vulnerable patient population 

of patients receiving treatment for haematological malignancies can be detected and predicted 

with an innovative approach, based on continuously recorded wearable data combined with a 

self-supervised AI model. Prospective confirmatory studies are needed to document the 

clinical benefit of this approach in clinical practice.
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Table 1 

Serious clinical complications (SCC) based on adverse events classification (Common Terminology Criteria for Adverse Events v4.0 (2009)) sorted in order of 
frequency of occurrence in Inpatient cohort (IC), Outpatient cohort (OC), and Total. Exemplary SCCTotal-Score (last column) for the respective SCC. 

No. Adverse event Criteria for Grade 3 in Common Terminology 
Criteria for Adverse Events 

SCC [n] SCCTotal 
-Score IC OC Total 

1 Infections and infestations - other* Severe or medically significant but not immediately life threatening; hospitalization or 
prolongation of existing hospitalization indicated; disabling; limiting self-care ADL 55 11 66 0·249 

2 Lung infection* IV started 10 1 11 0·260 
3 Hypertension Stage 2 hypertension […]; medical intervention indicated; […] 10 1 11 0·254 
4 Mucositis oral* Severe pain; interfering with oral intake 11 0 11 0·225 
5 Nausea Inadequate oral caloric or fluid intake, TPN 9 0 9 0·207 
6 Pulmonary oedema diuretics indicated 3 0 3 0·239 
7 Sinus tachycardia Urgent medical intervention indicated 3 0 3 0·258 
8 Allergic reaction Prolonged […] and/or brief interruption of infusion 3 0 3 0·272 
9 Pain Severe pain; limiting self-care ADL 3 0 3 0·200 
10 Paroxysmal atrial tachycardia IV medication indicated 1 2 3 0·290 
11 Hypotension Medical intervention or hospitalization indicated 2 0 2 0·253 
12 Dyspnoea Shortness of breath at rest; limiting self-care ADL 2 0 2 0·234 
13 Diarrhoea Increase of >=7 stools per day over baseline 2 0 2 0·254 
14 Syncope Fainting; orthostatic collapse 2 0 2 0·209 
15 Periorbital oedema Diuretics indicated 1 0 1 0·206 
16 Oral pain Severe pain; limiting self-care ADL 1 0 1 0·244 
17 Colitis* Severe abdominal pain […]; medical intervention indicated; peritoneal signs 1 0 1 0·207 
18 Hypokalaemia <3·0 - 2·5 mmol/L; hospitalization indicated 1 0 1 0·214 
19 Immune system disorders - Other Severe or medically significant but not immediately life-threatening; hospitalisation […] 1 0 1 0·114 
20 Cholecystitis* Severe symptoms; radiologic, endoscopic or elective operative intervention indicated 1 0 1 0·155 
21 Catheter related infection* IV antibiotic, antifungal, antiviral, radiologic or operative intervention indicated; 1 0 1 0·202 
22 Hepatobiliary disorders - Other Severe or medically significant but not immediately life- threatening; hospitalization […]  1 0 1 0·241 
23 GGT increased >5·0-20·0 x ULN 0 1 1 0·226 

ADL: Activities of Daily Living; IV: Intravenous; TPN: Total Parenteral Nutrition; BP: Blood Pressure; GGT: Gamma-Glutamyl transferase; ULN: Upper Limit of Normal;*Grouped 
as ‘infectious SCC’; […] left out for visualisation 
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Table 2 

SCC-Scores of ‘hours for testing’ containing ‘regular’ hours and ‘non-regular’ hours are reported. These hours were previously unseen by the AI 
model. Differences in mean SCC-Scores in the respective cohorts (SCCIC, SCCOC, SCCTotal) between ‘regular’ hours and ‘non-regular’ hours/days 
and respective p-values (two-sided t-test) are reported. To account for multiple testing, Bonferroni correction was applied and the significance level 
set to 0.05/12=0.0042. Performance indicators (at Youden Index) of the SCC-Score were calculated for detection of SCCs, and infectious SCCs in 
patients in the IC, OC, and Total separated for hours/days. In addition, specificity is reported at a sensitivity of approximately 95% to ensure a high 
ratio of SCC detection. AUROC of the SCC-Scores are given in the last column (with 95% confidence interval).  

Interval Type Model 
‘regular’ 
hours / 
days 
[n] 

‘non-
regular’ 
hours / 
days 
[n] 

SCC-Score 
‘regular’ hours 

[mean±SD] 

SCC-Score 
‘non-regular’ 

hours 
[mean±SD] 

P-Value 
Sensitivity / 
Specificity 

[%] 

~95% Sensitivity / 
Specificity 

[%] 
AUROC 
(95% CI) 

Hourly 

SCC 

IC 1,234 10,729 0·196±0·060 0·246±0·061 <0·0001 69·0 / 63·5 95·0 / 23·9 0·72 (0·71- 0·74) 

OC 526 1,701 0·176±0·056 0·223±0·073 <0·0001 57·0 / 69·4 95·2 / 19·4 0·68 (0·66- 0·71) 

Total 1,760 12,430 0·190±0·066 0·245±0·069 <0·0001 60·3 / 71·0 95·0 / 24·4 0·72 (0·71- 0·73) 

infectious 
SCC 

IC 1,474 8,251 0·171±0·056 0·222±0·060 <0·0001 67·1 / 67·4 95·0 / 23·0 0·74 (0·73- 0·75) 

OC 541 1,553 0·123±0·042 0·162±0·059 <0·0001 63·2 / 70·6 95·1 / 19·2 0·71 (0·68- 0·73) 

Total 2,015 9,804 0·155±0·050 0·199±0·055 <0·0001 72·9 / 60·4 95·0 / 25·4 0·73 (0·72- 0·74) 

Daily 

SCC 

IC 578 604 0·197±0·052 0·245±0·036 <0·0001 84·8 / 66·6 95·0 / 51·7 0·80 (0·78- 0·83) 

OC 245 88 0·176±0·045 0·221±0·044 <0·0001 93·2 / 46·9 95·5 / 41·6 0·75 (0·68- 0·81) 

Total 823 692 0·191±0·057 0·244±0·043 <0·0001 83·1 / 64·0 95·1 / 46·3 0·78 (0·76- 0·81) 

infectious 
SCC 

IC 682 470 0·169±0·047 0·222±0·037 <0·0001 85·2 / 67·3 95·1 / 50·9 0·83 (0·80- 0·85) 

OC 245 80 0·122±0·035 0·161±0·033 <0·0001 92·5 / 58·8 95·0 / 51·8 0·82 (0·76- 0·88) 

Total 927 550 0·154±0·042 0·200±0·034 <0·0001 85·1 / 69·2 95·3 / 51·1 0·83 (0·80- 0·85) 
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Figure 1 
Development of an AI model for calculation of a SCC-Score (serious clinical complication). (A) 
Time series of vital signs and physical activity recorded by a medical wearable. (B) Clinical 
documentation, such as patient charts or laboratory results, that were reviewed for identifying 
SCC events. (C) According to the clinical documentation, the hours without evidence of SCCs 
were annotated as ‘regular’ hours, the remaining hours were regarded as ‘non-regular’. (D) 
‘Regular’ hours for each individual patient were randomly split into two datasets: 90% for 
training and 10% for testing and generating a null-distriubtion. For cross-validation, the splitting 
was repeated ten times. For training the AI model, the ‘regular’ hours were presented to a deep 
neural network as part of a self-supervised contrastive learning objective. A SCC-Score based 
on the similarity between a test hour and the closest ‘regular’ hour from the training set was 
calculated. (E) A null-distribution of SCC-Scores from ‘regular’ hours not used in training was 
established. (F) For a given hour a statistical test under the null-distribution was applied to 
detect SCCs, with significance level selected on clinical requirements.  
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Figure 2 
Area under the receiver operating characteristic curves (AUROC) for the SCC-Score for the 
three cohorts (SCCIC (blue line), SCCOC (green line) and SCCTotal (red line)) separately for SCC 
Hourly and Daily. The same analysis was performed for infectious SCC. The dots mark the 
cut-point that optimises the detection of true positive results and false-positive results (Youden 
index). 
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Figure 3 
Time dependence of the SCC-Score for infectious SCC. (a.) Score values prior and post 
diagnosis at time point t=0 hour for the patients in the Inpatient cohort, Outpatient cohort, and 
Total cohort. Bars indicate standard deviation Score values. (b.) Prediction performance 
(AUROC) of hours containing infectious SCCs based on SCC-Score. Bars indicate 95% 
confidence intervals of AUROC values.  
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Supplementary Material 

Table supplementary 1 

Patient characteristics, malignancies, comorbidities, and concomitant medication of the patients in the Inpatient 
and Outpatient cohort. 

Patient characteristics 
Inpatient cohort 

(n=54) 
No. (%) 

Outpatient cohort 
(n=25) 
No. (%) 

Total 
No. (%) 

Male 
Female 

30 (55·6) 
24 (44·4) 

14 (56·0) 
11 (44·0) 

44 (55·7) 
35 (44·3) 

Age [years] (median (IQR) 56 (49-62) 54 (50-62) 55 (50-62) 

BMI [kg/m²] 25·0 (21·7-28·5) 24·9 (23·3-27·1) 25·0 (22·1-28·0) 

Haematological malignancy 
Acute leukaemia 

(ALL, AML) 21 (38·9) 12 (48·0) 33 (41·8) 

MDS, MPN (PMF, CML) 20 (40·7) 0 (0·0) 21 (26·6) 
Other (CLL, HL, NHL, 
Myeloma, Germ cell) 13 (20·4) 13 (52·0) 25 (31·6) 

Comorbidities 

Arterial hypertension 13 (24·1) 14 (56·0) 27 (34·2) 
Diabetes mellitus  

(Type 1 and 2) 2 (3·7) 0 (0·0) 2 (2·5) 

Macrovascular event  
(e.g. Stroke) 1 (1·9) 1 (4·0) 2 (2·5) 

Heart failure with 
reduced ejection fraction 0 (0·0) 0 (0·0) 0 (0·0) 

Arrhythmias 2 (3·7) 2 (8·0) 4 (5·0) 

Concomitant medication 

Antiplatelet drugs 3 (5·6) 7 (28·0) 10 (12·7) 

Beta blocker 5 (9·3) 5 (20·0) 10 (12·7) 

Calcium channel blocker 5 (9·3) 11 (44·0) 16 (20·0) 
Renin-angiotensin system 

inhibitors 9 (16·7) 7 (28·0) 16 (20·0) 

Other antihypertensives 4 (7·4) 0 (0·0) 4 (5·0) 
BMI: Body Mass Index, ALL: Acute lymphocytic leukaemia, AML: Acute myeloid leukaemia, MDS: 
Myelodysplastic syndrome, MPN: Myeloproliferative neoplasms, PMF: primary myelofibrosis, CML: Chronic 
myeloid leukaemia, CLL: Chronic lymphocytic leukaemia, HL: Hodgkin lymphoma, NHL: Non-Hodgkin 
lymphoma 
  



 24 

Table supplementary 2 

Treatment regimen for Inpatient (a.) and Outpatient cohort (b.). 

a. Inpatient cohort         No. (%) 

 

Allogenic stem cell transplantation 48 (88·9) 
Autologous stem cell transplantation 6 (11·1) 
Conditioning protocol 
Alkylator based  
(Treosulfan, Busulfan, Melphalan) 29 (53·7) 

FLAMSA-based 17 (31·5) 
TBI-based 7 (13·0) 
Other 1 (1·9) 
Intensity of conditioning regimens 
Reduced intensity regiments  30 (55·6) 
Myeloablative conditioning 24 (44·4) 
GvHD prophylaxis 
Antithymocyte globulin (ATG) 33 (61·1) 

b. Outpatient cohort         No. (%) 

 

High-/Intermediate-dose Cytarabine  
with or without Mitoxantron 14 (56·0) 

High-dose Cyclophosphamid 9 (36·0) 
Others (e.g. Ifosfamide, Carboplatin, 
Etoposide) 2 (8·0) 
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Table supplementary 3 

Vital signs and physical activity parameters provided by the medical wearable according to the instruction for use. 

RMSSD – root mean square of successive differences between normal heartbeats 

 

Parameter Unit Quality Index 

Heart rate 30 – 240 beats per minute X 

Oxygen saturation 65 – 100% X 

Perfusion index 0 – 255 (arbitrary)  

Activity classification Categorical X 

Activity 0 – 255 (arbitrary)  

Steps 0 – 65,535 per day  

Blood pressure wave 0 – 5·1 (arbitrary)  

Heart rate variability 0 – 255 ms (RMSSD) X 

Respiration rate 6 – 30 per minute X 

Energy expenditure 0 – 65,535 kcal per day X 

Temperature 0 – 60°C  

Inter-beat interval 1 – 4,095 ms X 

Electrodermal activity 0 – 21·8 kOhm  
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Table supplementary 4 

Hours assessed by the respective model to estimate risk for infectious SCCs in periods -72, -48 and -24 hours before a diagnosis was documented (0 hour) in patients in the IC, OC 
and for both cohorts. Mean and standard deviation with respective models were calculated. Differences between regular and non-regular hours were tested using a two-sided t-test 
test. To account for multiple testing, Bonferroni correction was applied and the significance level set to 0.05/9=0.0056. Significant p-values are marked with *. Sensitivity and 
Specificity at the Youden index are reported. 

Hours prior 
to SCC-

diagnosis 
Model ‘regular’ hours 

[n] 

‘non-regular’ 
hours 

[n] 

SCC-Score 
‘regular’ hours 

[mean±SD] 

SCC-Score 
‘non-regular’ 

hours 
[mean±SD] 

P-Value 
Sensitivity / 
Specificity 

[%] 

AUROC 
(95% CI) 

-24 

IC 682 60 0·169±0·047 0·228±0·034 <0·0001* 86·7 / 76·4 0·86 (0·80- 0·92) 

OC 245 12 0·122±0·035 0·163±0·033 0·002* 83·3 / 74·7 0·84 (0·70- 0·98) 

Total 927 72 0·154±0·042 0·204±0·031 <0·0001* 86·1 / 77·1 0·86 (0·81- 0·91) 

-48 

IC 679 57 0·169±0·047 0·220±0·033 <0·0001* 82·5 / 72·9 0·82 (0·75- 0·89) 

OC 245 10 0·122±0·035 0·154±0·028 0·005* 80·0 / 74·7 0·79 (0·62- 0·96) 

Total 924 67 0·154±0·042 0·195±0·030 <0·0001* 88·1 / 64·4 0·81 (0·74- 0·87) 

-72 

IC 648 41 0·169±0·047 0·181±0·045 0·095 61·0 / 51·7 0·56 (0·47- 0·66) 

OC 237 9 0·122±0·034 0·134±0·044 0·373 55·6 / 75·5 0·62 (0·43- 0·82) 

Total 885 50 0·153±0·041 0·175±0·051 0·011 72·0 / 48·5 0·62 (0·53- 0·70) 
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Figure supplementary 1 

Study design: Procedures applied to enable continuous wearable-based remote monitoring of vital signs and 
physical activity· Data were recorded in inpatients and outpatients allocated to two different cohorts. Patients 
attended the baseline visit prior to starting oncological treatment. At this visit, two wearables (#1 and #2) were 
assigned to each patient. At Visit 2, wearable #1 was swapped to #2 and data of #1 were downloaded. Frequency 
of subsequent visits (including swapping wearables) was determined by the limited data storage capacity of the 
wearable (no web application for data download was used due to regulatory requirements) to every 3rd day. The 
investigators retrospectively identified serious clinical complications from the clinical documentation.  
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Figure supplementary 2 

Acquisition of input data in the Inpatients cohort (IC) and Outpatient cohort (OC). For all patients only, hours 
were included if they had ≥3,000 data points per hour (of maximal 3,600). Data annotation refers to the separation 
of hours without serious clinical complications (SCC) (= ‘regular’ hours) and ‘non-regular’ hours. Data of two 
patients without recording hours annotated as ‘regular’ hours were excluded. Allocation of data for training data 
set and test dataset: For training, the ‘regular’ hours dataset was randomly divided into two datasets (90% training 
data set, 10% test data set). This split was equivalently applied for the datasets of each individual patient. 
 

 
  

24,100
(= 1,004 days)

7,215
(= 301 days)

Data
excluded

Input data excluded
Hours with <3,000 data points:
• IC 873 hours  
• OC 260 hours 

Training
data set

Data
annotation

Inpatient cohort (IC)
[n= 52]

Outpatient cohort (OC)
[n= 25]

23,227 hours 6,955 hours 

Test
data set

90% 
(11,099)

'regular' hours

90%
(4,728)

'regular' hours 

10% (1,234) 'regular' hours 
and 

10,894 ‘non-regular' hours

10% (526) 'regular' hours
and 

1,701 ‘non-regular' hours

Recording
hours

12,333 'regular' hours
and 

10,894 ‘non-regular' hours 

5,254 'regular' hours 
and 

1,701 ‘non-regular' hours 
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Figure supplementary 3 

Distribution of SCC-Scores calculated by the AI model for ‘regular’ hours (green) and ‘non-regular’ hours (red) 
for (a.) Inpatient cohort (SCCIC), (b.) Outpatient cohort (SCCOC), and (c.) Total (SCCTotal) for ten different data 
splits (cross-validation). The dot indicates the mean value of each data set. The bars indicate standard deviation. 
Statistical significance was tested by an ANOVA between ‘regular’ and ‘non-regular’ hours and is indicated by 
asterisks (***p<0·001) 
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Figure supplementary 4 

Occurrence of serious clinical complications in days after initiation of oncological treatment in the Inpatient cohort 
(blue bars) and Outpatient cohort (green bars). 
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Figure supplementary 5 

SCC-Score performance calculated by AUROC in relation to the number of hours used for training. For infectious 
SCCs hourly scores (red line) and daily score (blue line). 

 



Chapter 8

Anomaly Detection by Negative

Sampling

Detecting whether an example belongs to a given in-distribution or is Out-Of-

Distribution (OOD) requires identifying features specific to the in-distribution. In

the absence of labels, these features can be learned by self-supervised techniques un-

der the generic assumption that the most abstract features are those which are sta-

tistically most over-represented in comparison to other distributions from the same

domain. We show that self-distillation of the in-distribution training set together

with contrasting against negative examples derived from shifting transformation

of auxiliary data strongly improves OOD detection. We find that this improve-

ment depends on how the negative samples are generated. In particular, we observe

that by leveraging negative samples, which keep the statistics of low-level features

while changing the high-level semantics, higher average detection performance is ob-

tained. Furthermore, good negative sampling strategies can be identified from the

sensitivity of the OOD detection score. In our proposed model, a decision boundary

is formed during training unlike other contrastive methods such as CSI [30] which

requires multiplying feature vectors by their norm during the evaluation phase to

improve the discrimination of in-distribution and OOD samples. The efficiency of

our approach is demonstrated across a diverse range of OOD detection problems,

setting new benchmarks for unsupervised OOD detection in the visual domain in

both natural and medical images.
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Abstract. Detecting whether examples belong to a given in-distribution or
are out-of-distribution (OOD) requires identifying features that are specific to
the in-distribution. In the absence of labels, these features can be learned by
self-supervised representation learning techniques under the generic assump-
tion that the most abstract features are those which are statistically most
over-represented in comparison to other distributions from the same domain.
This work shows that self-distillation of the in-distribution training set to-
gether with contrasting against negative examples derived from shifting trans-
formation of auxiliary data strongly improves OOD detection. We find that
this improvement depends on how the negative samples are generated, with
the general observation that negative samples that keep the statistics of lower
level features but change the global semantics result in higher detection ac-
curacy on average. For the first time, we introduce a sensitivity score using
which we can optimise negative sampling in a systematic way in an unsuper-
vised setting. We demonstrate the efficiency of our approach across a diverse
range of OOD detection problems, setting new benchmarks for unsupervised
OOD detection in the visual domain.

Keywords: Anomaly Detection · Self-Supervised Learning · Self-Distillation
· Negative Sampling.

1 Introduction

OOD detection or anomaly detection is the problem of deciding whether a given test
sample is drawn from the same in-distribution as a given training set or belongs to an
alternative distribution. Many real-world applications require highly accurate OOD
detection for secure deployment, such as in medical diagnosis. Despite the advances
in deep learning, neural network estimators can generate systematic errors for test
examples that are far from the training set [25]. For example, it has been shown
that Deep Neural Networks (DNNs) with ReLU activation functions can make false
predictions for OOD samples with arbitrarily high confidence [12].

A major challenge in OOD detection is the case where the features of outlier
examples are statistically close to the features of in-distribution examples, which is
frequently the case for natural images. In particular, it has been shown that deep
density estimators like Variational Autoencoders (VAEs) [16], PixelCNNs [33], and
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Fig. 1. An overview of the proposed contrastive self-distillation framework, consisting of
student and teacher networks, gs and gt, that map two random transformations of the same
image, x+

s ∼ T (x) and x+
t ∼ T (x) to the same class. Negative views, x−, arise from first

applying a shifting transformation R, such as random rotation, followed by T to either an
in-distribution image x or an auxiliary image xaux.

normalising flow models [28] can on average assign higher likelihood to OOD exam-
ples than to examples from the in-distribution [22]. This surprising finding can be
partially attributed to an inductive bias from upweighting local pixel correlations as
a consequence of using convolutional neural networks.

A challenging scenario of anomaly detection is near OOD detection [35], where
the OOD distribution samples are statistically very similar to the in-distribution. A
particular challenging OOD detection task is given by CIFAR10 [18] as in-distribution
and CIFAR100 [18] as OOD, where the larger number of classes in CIFAR100 makes
it harder to identify features that are specific to the in-distribution. For the cases
where the in and out distributions are not closely related, we refer to as far OOD.

State-Of-The-Art (SOTA) performance has been obtained for the CIFAR10/CIFAR
100 near OOD detection task, using pretrained classification models on ImageNet-21K
[8]. However, as CIFAR100 and CIFAR10 share many of their classes with ImageNet
but the classes among themselves are mutually exclusive, the pretrained model ef-
fectively solves the OOD detection problem for this special case. The advantage of
using pretrained models as OOD detectors drops if there is no class overlap with the
OOD test set, such as for SVHN [8]. To overcome these limitations, a plethora of
self-supervised pretext tasks have been proposed that provide a richer learning signal
that enables abstract feature learning [4, 2, 11]. These advancements in self-supervised
learning have shown remarkable results on unsupervised anomaly detection [31, 30,
35] by solely relying on the in-distribution data.

More recently, it has been suggested to include dataset-specific augmentations
that shift the in-distribution – so-called negative samples. The core idea behind using
shifting transformations is to concentrate the learned representation in feature space.
This can result in a more conservative decision boundary for the in-distribution [14].
However, in-distribution shifting requires dataset-specific prior knowledge [21]. There-
fore, a bad choice of augmentations may result in rejecting the in-distribution test
samples, which reduces the OOD detection performance.
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In this paper, we propose an improved version of the DINO [3] framework together
with a sensitivity score for the problem of OOD detection. The main contributions of
this work are summarized as follows:

– We propose a self-supervised self-distillation method that leverages unlabelled
data for OOD detection which aims at drawing a tight, not necessary simply
connected, decision boundary between the in-distribution data and an auxiliary
negative distribution.

– We introduce an auxiliary loss that encourages unlabeled negative samples to be
uniformly assigned to the existing in-distribution soft-classes.

– To the best of our knowledge, for the first time we introduce a sensitivity score
defined by the AUROC value between the in-distribution training set and the in-
distribution test set. Using sensitivity score, we can intuitively compare the effect
of different negative auxiliary sets and to find optimal values by grid search for
training hyperparameters without the access to OOD validation set.

– Finally, we show that the proposed framework does not only improve OOD detec-
tion performance but also improves representation learning for the in-distribution,
as measured by the K-Nearest Neighbour (K-NN) accuracy.

2 Related Works

Supervised OOD detection methods. In-distribution classification accuracy is
highly correlated with OOD performance [8]. This has motivated supervised OOD
detection approaches to learn representations from classification networks [13, 19].
This can be achieved by directly training a classifier on the in-distribution or by
pre-training on a larger dataset .

Fine-tuning pretrained transformers [34] has shown promising OOD scores. In
computer vision, Koner et al. [17] leveraged the contextualization capabilities of pre-
trained Vision Transformer (ViT) [7] by exploiting the global image context. Such
models heavily rely on the classes of the pretrained dataset, which often include
classes from both the in and out distribution. Although, supervised pretraining can
form a good boundary for OOD detection, it has two limitations, firstly the pretraining
dataset should share labels with both in and out distributions, and secondly impeded
OOD performance is observed when the distributions have overlapping classes.

Mohseni et al. [21] recently presented a 2-step method that initially learns how
to weight the in-distribution transformations based on a supervised objective. Then,
the selected shifting transformations are applied in a self-supervised setup for OOD
detection. Human-level supervision is still required to learn the best shifting trans-
formations for each training dataset. In Geometric [15], Hendrycks et al. defined a
self-supervised task to predict geometric transformations to improve the robustness
and uncertainty of deep learning models. They further improve their self-supervised
technique with supervision through outlier exposure.
Unsupervised OOD detection methods. Existing label-free OOD detection ap-
proaches can be separated in density-based [27, 23], reconstruction-based [26, 38], and
self-supervised learning [9, 15] methods. Density-based methods aim to fit a probabil-
ity distribution (e.g. Gaussian) to the training data and then use it for OOD detection.
Reconstruction-based methods assume the network would generalize less for unseen
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OOD samples. Meanwhile, recent studies [22] revealed that probabilistic generative
models can fail to distinguish between training data and OOD inputs.

Self-supervised methods have recently shown that adopting pretext tasks results
in learning general data representations [1] for OOD detection. Choi et al. [5] used
blurred data as adversarial examples to discriminate the training data from their
blurred versions. In CSI [31], Tack et al. leverage shifting data transformations in
contrastive learning for OOD detection, combined with an auxiliary task that pre-
dicts which shifting transformation was applied to a given input. In SSD [30], the
authors further improved contrastive self-supervised training by developing a cluster-
conditioned OOD detection method in the feature space.
Outlier Exposure (OE). OE leverages auxiliary data that are utterly disjoint from
the ODD data [14]. Furthermore, OE assumes that the provided auxiliary samples are
always OOD. To guarantee this, one needs human supervision to remove the overlap
between auxiliary and in-distribution. OE has been successfully applied to training
classifiers, by enforcing the auxiliary samples to be equally distributed among the in-
distribution classes. In contrast to [14], we attempt to teach the network better rep-
resentations for OOD detection by incorporating auxiliary data into a self-distillation
soft-labeling framework.

Finally, since the proposed method does not require labels, there is no information
whether the in-distribution data are meaningfully similar to the auxiliary ones. In
this aspect, this work is different from OE, as it only requires the in-distribution
to be sufficiently statistically underrepresented. To ensure the latter an additional
transformation is applied on the auxiliary data (e.g. rotation).

3 Proposed Method

3.1 The vanilla DINO framework

The DINO framework uses two identical networks gs = g(x|θs) and gt = g(x|θt) called
student and teacher, which differ by their sets of parameters θs and θt, respectively.
For each transformed input image x, both networks produce K-dimensional output
vectors, where K is the number of soft-classes. Both outputs enter a temperature-
scaled softmax functions pt = softmax(gt, τt) and ps = softmax(gs, τs) defined by:

pi(x) =
exp

(
gi(x)/τ

)
∑K

k=1 exp (g
k(x)/τ)

, (1)

where pi(x) is the probability of x falling in soft-class i and τs, τt are the student and
teacher temperatures. In contrast to knowledge distillation methods, the teacher is
built from previous training iterations of the student network. To do so, the gradients
are back-propagated only through the student network and the teacher parameters
are updated with the Exponential Moving Average (EMA) of the student parameters

θt ← mθt + (1−m)θs, (2)

where 0 ≤ m ≤ 1 is a momentum parameter. For τt < τs, the training objective
is given by the cross entropy loss for two non-identical transformations x′′, x′ of an
image x drawn from the in-distribution training set Din

train
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Table 1. AUROC scores for OOD detection without label supervision.

Ours

Din
train Dout

test Geometric∗[15] SSD[30] CSI[31] MTL†[21] Rot.ImgN Combined

C
IF

A
R

1
0

CIFAR100 91.91 90.63 89.20 93.24 92.51 94.20
SVHN 97.96 99.62 99.80 99.92 99.69 99.92

ImageNet30 − 90.20 87.92 − 94.16 93.40
TinyImageNet 92.06 92.25 92.44 92.99 96.28 95.02

LSUN 93.57 96.51 91.60 95.03 98.08 97.52
STL10 − 70.28 64.25 − 77.29 74.34

Places365 92.57 95.21 90.18 93.72 97.14 96.01
Texture 96.25 97.61 98.96 − 99.16 98.69

C
IF

A
R

1
0
0

CIFAR10 74.73 69.60 58.87 79.25 69.96 67.63
SVHN 83.62 94.90 96.44 87.11 96.00 97.17

ImageNet30 − 75.53 71.82 − 84.82 75.36
TinyImagenet 77.56 79.52 79.28 80.66 81.41 79.75

LSUN 71.86 79.50 61.83 74.32 85.03 74.55
STL10 − 72.76 64.26 − 79.96 71.70

Places365 74.57 79.60 65.48 77.87 81.67 72.79
Texture 82.39 82.90 87.47 − 80.65 77.33

∗ Requires labels for the supervised training loss. Results reported from [21].
† Requires labels to select the optimal transformations.

Lpos = −
∑

x′′∈G

∑

x′∈V
x′ ̸=x′′

pt(x
′′) log(ps(x

′)). (3)

Additionally, DINO uses the multi-crop strategy [2], wherein M global views G =
{xg

1, ..., x
g
M} and N local views, L = {xl

1, · · ·, xl
N}, are generated based on a set of

transformations T , e.g. crop and resize, horizontal flip, Gaussian blur, and color jitter.
Global views are crops that occupy a larger region of the image (e.g. ≥ 40%) while
local views cover small parts of the image (e.g. ≤ 40%). All V = G∪L views are passed
through the student network, while the teacher has only access to the global views
such that local-to-global correspondences are enforced. The trained teacher network
is used for evaluation.

3.2 Negative samples

The learning objective (Eq. 3) assigns two transformed views of an image to the same
soft-class. The applied transformations T are chosen to be sufficiently strong and
diverse, such that the generated images generalise well over the training set but keep
the semantics of the image they were derived from. The transformations are designed
to learn higher-level features such as labels that represent semantic information and
avoid learning lower-level features, such as edges or the color statistics over pixels [4].
The quality of the learned representation can be quantified by evaluating the K-NN
accuracy for an in-distribution test set Din

test, using as higher-level feature vector an
activity map of the network near the last layer. For OOD detection, the feature vector
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representation should be enriched by in-distribution-specific features and depleted by
features that frequently appear in other distributions from the same domain. This can
be achieved by designing a negative distribution Dneg that keeps most of the low-level
features of the in-distribution but changes the high-level semantics.

For example, a negative distribution for natural images can be realised by addi-
tionally rotating in-distribution images or images from a related auxiliary distribution
by r ∼ R = U({90◦, 180◦, 270◦}), where U is the uniform distribution. It has been
shown that using rotation as an additional positive transformation degrades the per-
formance in the contrastive learning setup, where the objective is to maximize the
mutual information between positive examples [4]. Motivated by this, authors in [31]
report a performance gain for OOD detection by using rotation to generate negative
examples.

3.3 Auxiliary objective

In addition to the self-distillation objective Eq. 3 we define an auxiliary task to en-
courage the student to have a uniform softmax response for negative examples. This
task can be realised by a similar objective as Eq. 3 but with changed temperature
τt → ∞ and transformations T applied to examples x from the negative set Dneg,
defined as:

Lneg = − 1

K

∑

x′∈V

log ps(x
′). (4)

The total loss of our proposed method is defined by a linear combination of the two
objectives

Ltotal = Lpos + λLneg, (5)

where λ > 0 is a balancing hyperparameter.

3.4 Sensitivity Score

Intuitively the sensitivity score is the degree of rejection of in-distribution examples
which gives us a measure about the sensitivity of the OOD score to examples that
have very similar features statistics to Din

train. To calculate the sensitivity score we
randomly extract B samples from Din

train without replacement as Dsens
train and denote

the remaining train samples as Dref
train. We define the sensitivity score as the AUROC

value between Dsens
train and Din

test, where Dref
train is used as new train data during the

evaluation.

4 Experiments

The proposed method is based on the vanilla DINO [3] implementation3. Unless oth-
erwise specified, we use ViT-Small (ViT-S) with a patch size of 16. We use N = 8
local views for both positives and negatives, but two global positive views and one
global negative view. Global views are resized to 256 × 256 while local views to
128 × 128. The temperatures are set to τt = 0.01 and τs = 0.1. In each epoch, we

3 https://github.com/facebookresearch/dino



Self-Supervised Anomaly Detection by Self-Distillation and Negative Sampling 7

linearly decrease τt starting from 0.055 for CIFAR10 and from 0.050 for CIFAR100 to
0.01 during training. Sensitivity score is used to find optimal λ = 1. we set K = 4096
for all experiments. We use the Adamw optimizer [20] with an effective batch size of
256. The learning rate lr follows the linear scaling rule of lr=lrbase × batchsize /256,
where lrbase = 0.004. All models are trained for 500 epochs. Experiments were con-
ducted using 4 NVIDIA-A100 GPUs with 40GB of memory. The image augmentation
pipeline T is based on [10, 3]. Finally, weight decay and learning rate are scaled with
a cosine scheduler.

Table 2. AUROC scores for OOD Detection with CIFAR10 as Din
train and different Dneg.

ImgN denotes ImageNet samples.

Negative
Sampling:

None Auxiliary In-Dist

Dout
test

DINO
λ = 0

ImgN Rot.
ImgN

Rot.
360

ImgN

DTI Perm-
16

ImgN

Perm-
4

ImgN

Rot.
DTI

Pix.
Perm.

Rot.
In-

Dist.
CIFAR100 90.29 90.46 92.51 88.62 93.77 88.32 89.57 93.77 87.67 93.96

SVHN 99.38 99.50 99.69 99.42 99.86 99.59 99.13 99.86 99.62 99.92
ImageNet30 88.81 89.96 94.16 88.95 93.39 89.17 84.71 96.04 87.46 91.69

TinyImageNet 91.07 94.14 96.28 91.60 94.53 89.72 91.27 95.64 89.39 94.27
LSUN 92.20 93.41 98.08 93.24 98.56 94.58 89.32 99.12 93.33 94.93
STL10 66.50 77.65 77.29 72.41 72.01 69.22 68.81 81.49 68.55 69.11

Places365 91.28 93.12 97.14 92.58 97.03 92.77 87.63 98.12 91.89 93.53
Texture 96.21 95.01 99.16 93.93 97.55 93.38 89.86 95.11 93.08 98.29

Average 89.47 91.66 94.29 90.09 93.34 89.59 87.54 94.89 88.87 91.96

4.1 Datasets and negative sample variants

We evaluate our method on CIFAR10 and CIFAR100 as in-distribution data. For
auxiliary datasets, we use ImageNet [29] and Debiased 300K Tiny Images (DTI) [14].
The latter is a subset with 300K images from [32], where images belong to CIFAR10,
CIFAR100, Places365 [37], and LSUN [36] classes are removed. To avoid shortcut
learning (due to different image resolutions), we resize the auxiliary data to the size
of the in-distribution data before applying any augmentation. For OOD detection, we
consider common benchmark datasets, such as SVHN [24], Places365, Texture [6] and
STL10. The following cases are considered for generating negative samples:

– DINO: no negatives are included (λ = 0).
– ImgN: samples from ImageNet.
– DTI: samples from Debiased Tiny Images.
– Rot.: samples are randomly rotated by r ∼ R = U({90◦, 180◦, 270◦}).
– Rot.360: samples are rotated by an angle randomly sampled from range (0◦, 360◦).
– Perm-N : randomly permutes each part of the evenly partitioned image in N

patches.
– Pix. Perm: randomly shuffles all the pixels in the image.
– Rot. In-Dist: a random rotation r ∼ R is applied to the in-distribution data.
– Combined: sample from both Rot. In-Dist and Rot. ImageNet are used.
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4.2 Evaluation protocol for OOD detection

The DINO network structure g(x) used in this work consists of a ViT-S as backbone,
which maps the input x to a d-dimensional feature vector f ∈ Rd, and two fully
connected layers as head, which converts the features vector f to a K-dimensional
output vector that enters the softmax layer. We define an anomaly detection score, S,
for the OOD test data Dout

test by computing the cosine similarity between the feature
vector for a test image ftest and all features vectors fm of the in-distribution training
set. Instead of taking the maximum cosine similarity as a OOD score, we opt for a
temperature weighted non-linear score,

S(x) = − 1

M

M∑

m=1

exp

(
1

τ
· fT

testfm
∥ftest∥∥fm∥

)
, (6)

with τ =0.04 which is found by maximizing the sensitivity score. The value τ =
0.04 is the average over optimal values for different datasets that typically lie in the
range [0.02, 0.08]. The score is used to evaluate OOD performance by reporting the
Area Under the Receiver Operating characteristic Curve (AUROC) between a given
OOD test set and the in-distribution test set.

4.3 Experimental results

In Table 1, quantitative results are reported for CIFAR10 and CIFAR100 as in-distri-
bution. We report results with Rot. ImgN as well as combining them with in-distribution
rotated samples (Combined). When using CIFAR10 as Din

train, the proposed method
shows superior performance in 6 out of 8 (75%) OOD datasets compared to current
SOTA self-supervised methods. Surprisingly, we surpass hybrid methods, where self-
supervised training is combined with human-labelled images. By further leveraging
in-distribution negatives, we are able to surpass all other methods by 3.57% and 0.96%
against self-supervised and supervised methods, respectively. Our results are roughly
consistent for CIFAR100 as Din

train. We report superior performance in 6 out of 8
(75%) OOD datasets. Far OOD datasets have a substantial benefit, such as LSUN
where we report a 5.53% gain against the best self-supervised method. Our results
on near OOD, CIFAR10, are on par with self-supervised methods [31], while lacking
behind supervised methods.

In Table 2, we investigate several ways to generate negative samples, as detailed
in Section 4.1. It can be observed that by rotating both ImageNet and DTI with
R, both distributions demonstrate an average performance gain of 2.63% and 1.55%
respectively compared to no additional transformation.

It is worth noting that we abstain from reporting the performance of DTI in
Table 1, since labels were used to form this subset of 300K images. Finally, we report
an inferior (or on par) average AUROC score when employing Pix. Perm, Perm-4, and
Perm-16 against the vanilla DINO method using ImageNet as the auxiliary dataset.

5 Discussion

Do negative samples lead to more condensed in-distribution representa-
tions? To understand the impact of the introduced negative sampling methods, we
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Fig. 2. We define a soft-class as “occupied” if the probability assigned to that soft-class
is greater than the average probability of all K soft-classes. Colors indicate multiple Dneg

and are shared within the two plots. The teacher network gt is used to generate pt from
Din

test. Training is performed on CIFAR10. Left: Din
test occupy less soft-classes with negative

sampling compared to the DINO baseline. Right: relationship of occupied soft-classes with
respect to AUROC score in CIFAR100.

investigate how many of the K = 4096 soft-classes are “occupied” by the Din
test after

training on CIFAR10. A soft-class is considered occupied if the probability assigned
to the intended soft-class computed from test data is greater than the average soft-
class probability. As depicted in Fig. 2 (left), negative sampling reduces the occupied
classes compared to the DINO baseline. This observation is independent of how Dneg

is created. More specifically, Rot. ImageNet, Rot. DTI, and Rot. In-Dist use roughly
the same number of soft-classes and achieve SOTA AUROC scores on CIFAR100. By
combining the aforementioned qualitative evaluations with Table 2, we claim that by
contrasting Din

train against Dneg a more condensed representation can be learnt.

Is OOD detection related to in-distribution classification? To answer this
question, we investigate if there is a relationship between the OOD detection perfor-
mance and the K-NN accuracy, determined from human-generated labels. To do so,
we use CIFAR10 as Din

train and CIFAR100 and Texture as Dout
test, as representative

cases of near OOD and far OOD, respectively. We find that the OOD AUROC score
is positively correlated with K-NN accuracy for both near and far OOD detection
(Fig. 3, top row).

Is the performance gain from use of transformers or auxiliary loss func-
tion? The performance gain stems from a more compact representation of high-level
features for the in-distribution. This can be seen from the high K-NN values, that
can be partially attributed to the DINO self-distillation framework (CIFAR10 K-NN
accuracy of 93.2% for vanilla DINO vs 87.1% for CSI) and in part due to the nega-
tive loss (4.82% AUROC improvement with Rot.ImgN compared to vanilla DINO on
CIFAR10). We highlight that K-NN correlates positively with OOD AUROC values
(Fig. 3, top row).

Can an arbitrary auxiliary dataset be detrimental? Auxiliary negative datasets
can be detrimental if they are semantically too close to the in-distribution, which



10 Rafiee et al.

Fig. 3. We evaluate different models trained on CIFAR10 for two OOD datasets, CIFAR100
(left column) and Texture (right column). In each plot, points indicate different negative sam-
pling strategies (colors are shared). Top row: correlation between OOD detection AUROC
and K-NN accuracy on Din

test. Bottom row: correlation between OOD detection AUROC
and AUROC score of Din

train vs. Din
test. We observe models with higher sensitivity to detect

Din
test as outliers have higher OOD detection performance.

explains why non-rotated ImgN gives worse AUROC than Rot. ImgN for CIFAR10,
despite the former being closer to the in-distribution. However, this effect can be
detected by our sensitivity score, which is higher for Rot. ImgN (Fig. 3, bottom row).
How to choose good negative examples? We use the sensitivity score to select
Dneg (dataset + augmentation). Sensitivity values significantly higher than 0.5 indi-
cate that negative examples are close enough to induce a difference between Din

train

and Din
test, but far enough to avoid a significant overlap of Din

train with Dneg (see
sensitivities of ImgN vs. Rot. ImgN, Fig. 3, bottom row).

6 Conclusion

In this work, we presented a new general method for self-supervised OOD detec-
tion. We demonstrated how self-distillation can be extended to account for positive
and negative examples by introducing an auxiliary objective. The proposed objec-
tive introduces a form of contrastive learning, which pushes negative samples to be
uniformly distributed among the existing in-distribution soft-classes. Additionally,
we introduced a sensitivity analysis technique with which we can compare negative
datasets and find the optimal values for the negative loss weight and the evaluation
temperature without accessing the OOD validation set. The proposed method out-
performs current SOTA for self-supervised OOD detection methods in the majority
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of OOD benchmark datasets for both CIFAR10 and CIFAR100 as Din
train. We hope

that the provided insights of our analysis will shed light on how to choose negative
samples in more challenging vision domains.
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Abstract. Recent progress in computer-aided technologies has consid-
erable impact on helping experts with a reliable and fast diagnosis of
abnormal samples. In particular, self-supervised and self-distillation tech-
niques have advanced automated out-of-distribution (OOD) detection in
the image domain. Further improvements for OOD detection have been
observed by including negative samples derived from shifting transfor-
mations of real images. In this work, we study different ways of creating
negative samples for medical images and how effective they are when
leveraging them in a self-supervised self-distillation framework. We in-
vestigate the impact of various types of negative examples by applying
different shifting transformations on samples when they are derived from
in-distribution training data, from an auxiliary dataset, or a combina-
tion of both. For the case of the auxiliary dataset, we compare the OOD
detection performance when auxiliary samples are extracted from an in-
domain or an out-domain. Our approach uses only data belonging to
healthy people during the training procedure and does not require any
additional information from labels. We demonstrate the efficiency of our
technique by comparing abnormality detection performance on diverse
medical datasets, setting new benchmarks for pneumonia, polyp, and
glaucoma detection from X-ray, colonoscopy, and ophthalmology images.

Keywords: Abnormality detection · Self-supervised learning · Medical
imaging.

1 Introduction

In recent years, computer-aided diagnosis in medical image screening has gained
increased attention. In particular, detecting whether a sample includes some
abnormality can help medical experts with faster and more reliable decision
making. Diagnosis problems can be frequently assigned to the problem of out-
of-distribution (OOD) detection in machine learning and statistical inference.
OOD detection or anomaly detection refers to the problem of detecting if a test

* Equal contribution
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Fig. 1: Overview of the proposed self-supervised framework, comprising student
network (right) and teacher network (left). Student and teacher map two ran-
domly augmented views of the same image to the same class. xg and xl are global
and local views of image x where xg ∼ T (x) and xl ∼ T (x). Negative sample,
xneg, is generated by applying first a shifting transformation, such as random
rotation, followed by T to either an in-dist image x or an auxiliary image xaux.

sample has the same distribution as training data or is drawn from a different dis-
tribution. Diverse techniques developed for computer vision problems have been
successfully applied to abnormality detection in the medical field. In [25, 29] deep
supervised methods are used to classify X-ray and colonoscopy images. Despite
the promising results, these approaches rely on annotated samples for abnormali-
ties that are not available or only available to very limited number. Typically, the
number of healthy samples outnumbers abnormal ones, which results in a chal-
lenging unbalanced classification problem. To overcome these problems, many
studies have investigated the use of unsupervised or semi-supervised methods [7,
26, 19]. These methods aim at detecting abnormalities by learning the distribu-
tion of healthy/normal data. A well-studied category of unsupervised methods
named Variational Autoencoders (VAEs) [13] uses reconstruction error. The as-
sumption is that abnormal samples can not be reconstructed equally accurately
as training data (lower likelihood) where the model only uses normal images dur-
ing the training. However, it has been shown that in practice, these models can
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be prone to reconstruct the abnormal samples fairly well, which lowers the detec-
tion performance [25, 2]. Furthermore, it is shown that these density estimation
based methods can assign a higher likelihood to OOD samples compared to in-
distribution (in-dist) test data [18]. Recently the effectiveness of self-supervised
learning has received considerable attention in different domains, such as the
visual domain [5], which enables learning robust representations from unlabeled
data. Due to their efficiency, self-supervised pretext tasks such as predicting ge-
ometric transformations [10] or contrastive learning [27, 30, 9, 22, 24] have been
designed for OOD detection in both natural and medical images. In [24] negative
samples, drawn from shifting transformation of train data, are incorporated into
a contrastive method to further tighten the decision boundary around normal
samples resulting in an improved OOD detection score. This approach is also
supported by Ref. [11] where supervised and density estimator models are ex-
posed to some auxiliary datasets and negative samples. In [20] a self-distillation
approach similar to DINO [4] is used with negative samples in order to compen-
sate for limitations of contrastive based methods. Despite the numerous studies
of leveraging negative samples in natural images, we believe it has remained
untapped in the field of medical image processing. In this work, we study differ-
ent ways of creating negative examples by applying shifting transformations on
in-dist train data, samples from an auxiliary dataset or a combination of both.
We show how these different negative samples can affect the performance of ab-
normality detection when leveraging them into a self-distillation self-supervised
method. With the general assumption that effective transformations are the ones
that change the high-level semantic while keeping the low-level statistics, we can
achieve state-of-the-art (SOTA) results on abnormality detection for three dif-
ferent medical datasets including detecting pneumonia, polyp, and glaucoma
from chest X-ray, colonoscopy, and from ophthalmology images with only ac-
cess to normal samples. Additionally, we compare two evaluation metrics, cosine
similarity and Mahalanobis distance, for OOD detection.

2 Method

In this section, we describe our proposed approach, Fig. 1. Similar to [4], our
framework use teacher and student networks that have the same architecture,
Vision Transformer [8] (ViT), and use distillation during training. Student and
teacher are parametrized by two identical networks gs = g(x|θs) and gt = g(x|θt)
which have different set of parameters. For an augmented input image x, both
student and teacher output K-dimensional vectors including soft-classes. The
probability of x falling in soft-class k is computed using temperature-scaled
softmax function defined as

pks(x) =
exp

(
gks (x)/τs

)
∑K

i=1 exp (g
i
s(x)/τs)

, (1)

where τs > 0 is student temperature. The same formula, Eq. 1, holds for teacher
with temperature τt. The student parameters are updated by back-propagating
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the gradients through the student network while the teacher parameters are
updated with the Exponential Moving Average (EMA) of the student parameters

θt ← mθt + (1−m)θs, (2)

where 0 ≤ m ≤ 1 is a momentum parameter. For τt < τs, the training objective
is given by the cross entropy (CE) loss for two non-identical transformations
x′′, x′ of an image x drawn from the training set, Dtrain

L = −
∑

x′′∈G

∑

x′∈G∪L
x′ ̸=x′′

pt(x
′′) log ps(x

′). (3)

We additionally use the multi-crop strategy [3], wherein M global views G =
{xg

1, ..., x
g
M} and N local views, L = {xl

1, · · ·, xl
N}, are generated based on a set of

transformations T . Global views usually cover a larger region of the original im-
age while local views cover smaller as they are results of a stronger cropping. All
global and local views are passed through the student network, while the teacher
has only access to the global views encouraging local-to-global correspondence.
The CE loss, Eq. 3, is minimized such that two transformed views of an input
image are assigned to the same soft-class. The applied transformations T are
chosen to be strong and diverse enough such that the generated images gener-
alise well over the training data. The transformations are designed in order to
learn higher-level features, semantic information, and avoid learning lower-level
features.

2.1 Auxiliary objective for OOD detection

For OOD detection, the representations should be enriched by in-dist specific
features and deprived of features that frequently appear in other distributions
from the same domain. This can be achieved by designing a negative distribution
Dneg that keeps most of the low-level features of the in-dist data but changes
the high-level semantics.
In addition to the self-distillation objective, Eq. 3, we define an auxiliary task to
encourage the student to have a uniform softmax response for negative examples.
This can be done by a similar objective as Eq. 3 when temperature τt →∞

Lneg = − 1

K

∑

xneg∈Dneg

log ps(xneg). (4)

The total loss of our proposed method is defined by a linear combination of the
two objectives

Ltotal = L+ λLneg, (5)

where λ > 0 is a balancing hyperparameter.
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2.2 Negative samples

A negative distribution Dneg can be realised by additionally applying shifting
transformations to samples from Dtrain or from an auxiliary set augmented by
T . We consider the following shifting transformations to shape Dneg.

– NoNeg: no negative samples are included (λ = 0).
– Rot: samples are randomly rotated by r ∼ U({90◦, 180◦, 270◦}).
– Rot-360: rotation by an angle randomly sampled from range (0◦, 360◦).
– Perm-n: random permutation of image patches where the image is sliced in

n square patches.
– Pixel-Shuffle: randomly shuffles all pixels in the image.

2.3 Evaluation protocol for OOD detection

Different studies have shown the advantage of using Mahalanobis distance and
cosine similarity as two metrics for OOD detection [24, 22, 9]. We compare the
effectiveness of these two metrics for different medical datasets in section 4.
To calculate scores, we drop the fully connected head and use normalised ViT
backbone output as feature vector f for calculating evaluation scores. For each
given test sample x, we calculate Mahalanobis distance based anomaly score,
Smd(x), as

Smd(x) := (ftest − µm)TΣ−1
m (ftest − µm) (6)

where µm and Σm are the mean and covariance of the all feature vectors fm
from the training data, Dtrain. We calculate the cosine similarity based anomaly
score Scs(x) for test sample x

Scs(x) := −max
m

exp

(
fT
testfm

∥ftest∥∥fm∥

)
(7)

Detection is assessed with Area Under the Receiver Operating Characteristic
curve (AUROC).

3 Experimental Setup

3.1 Dataset

We assess our model performance on three different health screening medical
imaging benchmarks, chest X-ray images, colonoscopy images and fundus im-
ages for glaucoma detection.
RSNA. The Radiological Society of North America (RSNA) Pneumonia Detec-
tion Challenge dataset [23] is a publicly available dataset of frontal view chest
radiographs. Each image was labeled as “Normal”, “No Opacity/Not Normal” or
“Opacity”. The Opacity group consists of images with opacities suspicious for
pneumonia, and images labeled “No Opacity/Not Normal” may have lung opac-
ity but no opacity suspicious for pneumonia. The RSNA dataset contains 26, 684
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X-rays with 8, 851 normal, 11, 821 no lung opacity/not normal and 6, 012 lung
opacity.
Hyper-Kvasir. The Hyper-Kvasir dataset is the largest public gastrointestinal
dataset [1]. The data were collected during real examinations and partially la-
beled by experienced endoscopists. The dataset contains 110, 079 images from
patients, with 10, 662 labelled images. Following [27] we take 2, 100 images from
“cecum”, “ileum” and “bbps-2–3” cases as normal and 1000 abnormal images from
“polyp” as abnormal. We take 1, 600 images for training set and 500 images for
test set.
LAG. The LAG dataset is a large scale image dataset for glaucoma detec-
tion [14], containing 4, 854 images with 1, 711 positive glaucoma (abnormal) and
3, 143 negative glaucoma (normal) scans. For consistent comparison, following
[27], we take 2, 343 normal images for training and 800 normal images and 1, 711
abnormal images for testing.

Table 1: AUROC of OOD detection method trained on RSNA dataset
Method Dood : Opacity Dood : No Opacity

Unsupervised methods trained on normal samples
UAE [16] 0.89 0.78

Deep AD [17] 0.838 0.704
[9] 0.940 0.828

Score Smd Scs Smd Scs

Ours 0.941 0.764 0.841 0.714

3.2 Auxiliary Dataset

For auxiliary dataset, we compare use of samples from ImageNet or from a in-
domain one if any available. For RSNA dataset of X-ray images we use CheXpert
[12] and for Hyper-Kvasir dataset of colonoscopy images all unlabled Hyper-
Kvasir images are taken as in-domain. For LAG dataset, we only use ImageNet
due to unavailability of any in-domain dataset. We highlight that we do not use
any label information to shape negative samples.

3.3 Training

Our proposed method has the same structure as DINO implementation. we use
ViT-Small (ViT-S) backbone for all different training data. A patch size of 16 and
N=8 local views for both positives and negatives, but two global positive views
and one global negative view are used. All global views are resized to 256× 256
while local views to 96× 96. The temperatures for teacher and student network
are set to τt = 0.01 and τs = 0.1. During training, τt is linearly decreased from
0.04 to 0.01 in each epoch. λ and K are set to 1 and 4096 respectively for all
our experiments. We use the Adamw optimizer [15] with an effective batch size
of 256. For the base learning rate lrbase, we use 0.001 for Hyper-Kvasir and LAG
datasets and 0.002 for RSNA. For each dataset, we trained the model for 700
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epochs. We conducted our experiments using 4 NVIDIA-A100 GPUs with 40 GB
of memory. The image augmentation pipeline T is based on DINO except that
for Hyper-Kvasir dataset we rotate all positive views with same randomly chosen
angle to avoid information leak from position of existing green boxes in images.
Finally, weight decay and learning rate are scaled with a cosine scheduler.

Table 2: AUROC results on Hyper-Kvasir and LAG datasets
Method Dtrain : Hyper-Kvasir, Dood : Polyp Dtrain : LAG, Dood : Glaucoma

Unsupervised methods trained on normal samples
CAVGA-Ru [28] 0.928 0.819

IGD [6] 0.937 0.857
CCD [27] 0.972 0.874

Score Smd Scs Smd Scs

Ours 0.996 0.994 0.849 0.879

4 Experimental Results

We compare the proposed method with unsupervised methods trained on only
healthy images. We report our results for both Smd and Scs scores. In Table 1, on
RSNA dataset, our method outperforms the contrastive self-supervised SOTA
method [9] when taking Smd as the anomaly score. In Table 2, we inspect the
anomaly detection performance on the Hyper-Kvasir dataset for polyp detection
and on the LAG dataset for glaucoma detection. Our method can surpass the
recently proposed self-supervised anomaly detection method, CCD [27] on both
polyp and glaucoma detection where we take Smd and Scs respectively.
In Table 3, the impact of different shifting transformations, as explained in sec-
tion 2.2 is explored. We found out that transformations such as Rot have better
performance than excluding negative samples or using non-effective transforma-
tions such as Pixel-Shuffle. This result supports our general assumption about a
good negative transformation that changes high-level semantics and keeps low-
level statistics. Note that for Hyper-Kvasir, positive views are rotated by the
same angle randomly selected from U({90◦, 180◦, 270◦}) thus, we skip applying
Rot-360 as a shifting transformation. In Fig. 2 [Left], we examine the effect of
creating negative samples by applying shifting transformation on samples from
each in-dist training, auxiliary dataset, or a combination of both. For RSNA
and LAG dataset, as it is shown, the AUROC score increases where a combi-
nation of both is used, while for Hyper-Kvasir, we see no difference. Moreover,
the use of only auxiliary datasets shows slightly better performance for RSNA
compared to only taking in-dist negative samples on the other hand for LAG
in-dist negative samples have higher score. The reason can be that for RSNA
the in-domain auxiliary datasets are from a broader distribution compared to
in-dist train data with a higher chance of resembling OOD samples but for LAG
even though the ImageNet dataset has a broader distribution, in-dist negatives
are harder negative samples which can be more advantageous [21]. The evalu-
ation on taking in-domain or out-domain auxiliary datasets is shown in Fig. 2
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Fig. 2: Left. AUROC results based on Smd for different negative sets where
generated from in-dist train data, an auxiliary dataset or a combination of both.
Right. AUROC results across different auxiliary datasets where we take images
from an in-domain medical dataset or out-domain.

[Right]. For RSNA X-ray images, OOD detection performance is improved by a
large margin when negative samples are from an in-domain auxiliary set. How-
ever, for Hyper-Kvasir, the out-domain auxiliary has approximately the same
performance as the in-domain.

Table 3: The impact of different shifting transformations on AUROC results.
Reported scores are for Smd (Scs).

Shifting transformations
In-dist Dataset NoNeg Rot Rot-360 Perm-4 Perm-16 Pixel-Shuffle

RSNA 0.925(0.888) 0.941(0.764) 0.933(0.766) 0.924(0.634) 0.908(0.887) 0.925(0.733)
LAG 0.799(0.862) 0.849(0.879) 0.831(0.866) 0.807(0.873) 0.814(0.881) 0.797(0.860)

Hyper-Kvasir 0.974(0.875) 0.989(0.915) − 0.996(0.994) 0.985(0.960) 0.994(0.985)

5 Conclusion

In this study, we present a self-supervised method which leverages self-distillation
and negative samples for the task of abnormality detection without accessing
label information. We study different ways of creating negative samples by ap-
plying shifting transformations on in-dist training data, an auxiliary dataset, or
a combination of both. Additionally, we compare the impact of having auxiliary
samples from domain-related distribution or from a different domain such as
ImageNet. Moreover, we compare the abnormality detection performance using
two different evaluation metrics including cosine similarity and Mahalanobis dis-
tance. A major motivation behind this work is that we take only normal samples
during training which makes our method suitable for yet unknown abnormalities.
In anomaly detection, our method outperforms SOTA methods on the RSNA,
Hyper-Kavsir and LAG datasets.
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Chapter 9

Conclusion and Future Work

In this dissertation, we have mainly focused on the problem of Out-of-Distribution

(OOD) detection using self-supervised representation learning in different domains.

OOD detection is the problem of deciding whether a given test sample is drawn

from the same in-distribution as a given training set or belongs to an alternative

distribution. Many real-world applications require highly accurate OOD detection

for secure deployment. Recently many studies have been conducted for OOD de-

tection. Despite the promising results, these approaches usually rely on annotated

abnormal samples that are either not available or only a limited number are avail-

able. OOD detection requires identifying features specific to the in-distribution. In

the absence of labels, these features can be learned by self-supervised techniques

under the generic assumption that the most abstract features are those which are

statistically most over-represented in comparison to other distributions from the

same domain. The main contribution of this work is our proposed framework for

anomaly detection which outperforms supervised and unsupervised methods on

challenging OOD detection tasks. The proposed method does not require any label

information and can be widely applied to OOD detection tasks, including visual

and time series data.

More precisely, in chapter 5, we addressed the Atrial Fibrillation (AF) detection

problem which is the most common arrhythmia; however, detection of asymp-

tomatic AF is a challenging task. We aim to evaluate the sensitivity and specificity

of non-invasive AF detection by a medical wearable. We applied different algo-

rithms to five-minute periods of inter-beat intervals (IBI) for the AF detection. A

Deep Neural Network (DNN) is trained unsupervised to extract relevant features for

AF detection. The training objective is given by maximising the Mutual Informa-

tion (MI) between IBI values that are separated by a randomly chosen time point

within the five-minute period. Unsupervised feature extraction followed by an un-

supervised classification results in higher sensitivity and specificity compared with
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normalised root mean square of the successive difference (nRMSSD) an established

metric for the AF detection.

In chapter 6, we proposed a self-supervised contrastive learning framework for

anomaly detection in chest X-ray images. X-ray images have been widely used

for medical diagnoses. The anomaly detector is trained only on the normal (i.e.,

healthy) images to make our method future-ready for yet unknown anomalies.

Given unlabeled training data, a feature extractor is trained using the self-supervised

contrastive loss to pull together different augmented views of the same image and

push augmented views of different images away. The learnt self-supervised represen-

tations are highly effective for the task of pneumonia detection in our framework.

We defined an anomaly detection score based on Mahalanobis distance applica-

ble for detecting anomalies. We found that our approach outperforms all previous

unsupervised methods on a pneumonia detection challenge dataset. Future work

concerns deeper analysis of taken data augmentations and different evaluation met-

rics suitable for anomaly detection in X-ray images.

Chapter 7 shows how we can make use of self-supervised contrastive learning com-

bined with cosine similarity as a score function to detect serious clinical complica-

tions (SCC) in patients receiving oncological treatment for their hematologic ma-

lignancies. In fact, nearly every patient on such treatment protocols experiences at

least one SCC requiring treatment. Early diagnosis of SCC is not only of high clini-

cal relevance for the safety and well-being of the patients as it enables a more rapid

treatment of SCC, but it would also potentially help reduce the number of hospital-

isations. Continuous monitoring of vital signs by means of medical wearables will

potentially lead to an earlier diagnosis and better treatment. We aim to evaluate

whether wearable-based monitoring enables detection of SCC with sufficient reli-

ability. To do so, we take an OOD detection method to identify whether defined

episodes of vital signs are ”regular” (= absence of SCC) or not in order to detect

clinical complications. To learn statistical relevant features for SCC detection, self-

supervised contrastive learning is used by ensuring that in the representation space

embeddings of similar inputs are pulled closer while simultaneously embeddings

from dissimilar inputs are pushed apart. In the case of object classification as com-

puter vision task, the generalizing features are typically defined as those that are

invariant under image transformations that keep the semantics of the shown object,

such as horizontal flip, cropping, and slight changes in colouring. For the time series

data used in this work, we define generalizing features as the information shared

between two time series samples. Alternative ways of defining generalizing features

could be more explored in future work. We show that wearable-based remote patient

monitoring combined with a DNN model enables calculation of a SCC Score that

allows for detection and prediction of SCCs in patients receiving intensive treatment

for haematological malignancies.
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In chapter 8, we showed that self-distillation of the in-distribution training set

together with contrasting against negative examples derived from shifting trans-

formation of auxiliary data strongly improves OOD detection. We found that this

improvement depends on how the negative samples are generated. In particular, we

observed that by leveraging negative samples, which keep the statistics of low-level

features while changing the high-level semantics, higher average detection perfor-

mance is obtained. The novelty of our work is the use of sensitivity scores to find

optimized negative sampling strategies and hyperparameters in absence of any OOD

validation set. Our approach aims to draw a tight, not necessary simply connected,

decision boundary between the in-distribution and an auxiliary negative distribu-

tion. In our proposed model, a decision boundary is formed during training unlike

other contrastive methods which require some modifications during the evaluation

phase to improve the discrimination of in-distribution and OOD samples. The ef-

ficiency of our approach is demonstrated across a diverse range of OOD detection

problems, setting new benchmarks for unsupervised OOD detection in the visual

domain in both natural and medical images. Despite different experiments to create

the negative examples, many different adaptations and tests have been left for the

future.

We also leveraged self-distillation and negative samples for anomaly detection in

medical images. We conducted different experiments to demonstrate the selection

of negative sample strategy and the evaluation metrics on several disease diagnosis

tasks. A systematic way to find the best evaluation metric could be more explored

for the future. The results show that our proposed framework outperforms state-of-

the-art unsupervised methods.

119



Chapter 10

Publications

2020

1. Jacobsen M, Dembek TA, Ziakos AP, Gholamipoor R, Kobbe G, Kollmann M,

Blum C, Müller-Wieland D, Napp A, Heinemann L, Deubner N, Marx N, Isenmann

S, Seyfarth M. Reliable Detection of Atrial Fibrillation with a Medical Wearable

during Inpatient Conditions. Sensors, 2020.

Contributions: The author contributed with designing and implementation of

deep neural network, training, evaluation, and visualization. The author contributed

with writing parts related to DNN-based algorithm under the supervision of Prof.

Dr. Markus Kollmann. Status: Published.

2022

2. Malte Jacobsen, Pauline Rottmann, Till A. Dembek, Anna L. Gerke, Rahil Gho-

lamipoor, Christopher Blum, Niels-Ulrik Hartmann, Marlo Verket, Jennifer Kaivers,
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Appendix A

Appendix of Chapter 5

A.1 Alternative Derivation of INCE

Here we present a simpler derivation of INCE than [17]. Let us take a general form

of contrastive loss as follows

LNCE = −E(x,x′)∼p(x,x′)

[︃
log

Q(x, x′)

Exneg∼p(xneg) [Q(x, xneg)]

]︃
(A.1)

where p(x, x′) is the joint probability and p(x) is the marginal of p(x, x′). LNCE

is lower bounded by the negative of the mutual information INCE(X;X ′). We first

prove that the minimum loss can be achieved for Q∗(x, x′) = p(x,x′)
p(x)p(x′) .

By using variational calculus [2], let Q(x, x′) = Q∗(x, x′)+αη(x, x′), where Q∗(x, x′)

is the optimal function Q(x, x′), α is a scalar value, and η(x, x′) is any arbitrary

function that depends on x and x′. By definition, LNCE has a minimum in α = 0.

Thus, if LNCE[Q] is differentiable, its derivative with respect to α vanishes in α = 0.

Substituting Q in Eq. A.1

LNCE = −
∫︂

x

∫︂

x′
p(x, x′)

[︃
log

Q∗(x, x′) + αη(x, x′)∫︁
p(xneg) [Q∗(x, xneg) + αη(x, xneg)] dxneg

]︃
dx′dx

∂LNCE

∂α
|α=0 = −

∫︂

x

∫︂

x′
p(x, x′)

[︄
η(x, x′)

Q∗(x, x′)
−

∫︁
xneg

p(xneg)η(x, xneg)dxneg∫︁
xneg

p(xneg)Q∗(x, xneg)dxneg

]︄
dx′dx

= −
∫︂

x

∫︂

x′

∫︂

xneg

p(x, x′)

[︃
η(x, x′)

Q∗(x, x′)
− p(xneg)η(x, xneg)∫︁

p(xneg)Q∗(x, xneg)dxneg

]︃
dxnegdx

′dx

= −
∫︂

x

∫︂

x′

∫︂

xneg

p(x, x′)η(x, xneg)

[︃
δ(x′ − xneg)
Q∗(x, x′)

− p(xneg)∫︁
p(xneg)Q∗(x, xneg)dxneg

]︃
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where δ(x) is the Dirac delta function, and is defined as follows

ψ(0) =

∫︂ ∞

−∞
δ(x)ψ(x)dx

where ψ is a smooth function and has as many derivatives as required [80]. The

delta function, δ(x), is constrained to satisfy

∫︂ ∞

−∞
δ(x)dx = 1

then ∂LNCE

∂α
|α=0 vanishes for all functions η. Because η is arbitrary, this can occur

only if

∂LNCE

∂α
|α=0 = 0⇐⇒

∫︂

x′
p(x, x′)

[︃
δ(x′ − xneg)
Q∗(x, x′)

− p(xneg)∫︁
p(xneg)Q∗(x, xneg)dxneg

]︃
= 0

p(x, xneg)

p(x)p(xneg)
=

Q∗(x, xneg)∫︁
p(xneg)Q∗(x, xneg)dxneg

(A.2)

where Q∗(x, x′) = p(x,x′)
p(x)p(x′) . By substituting Q∗ in Eq. A.1, we have

LNCE = −
∫︂

x

∫︂

x′
p(x, x′) log

p(x, x′)

p(x)p(x′)
dx′dx = −I(X;X ′) (A.3)
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