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Abstract

This dissertation is a study of two remarkable classes of groups that admit faithful actions
on infinite regular rooted trees and exhibit strong self-similarity features. The groups that
we consider are Grigorchuk—Gupta—Sidki groups (GGS-groups) and generalisations of the
so-called Basilica group. This thesis is written in the form of a cumulative dissertation
consisting of two self-contained parts; each comprises two projects.

The first part contains an investigation of the emerging field of representation zeta func-
tions of groups acting on rooted trees. The representation zeta function of a group G is
the Dirichlet generating function that encodes the number of finite-dimensional irreducible
complex representations of G. Using representation zeta function as a tool, we prove that a
large class of GGS-groups, for instance, the Gupta—Sidki groups, have polynomial represen-
tation growth, and provide a bound for the degree of polynomial growth. Furthermore, we
carry out explicit computations to describe the representation zeta function of the Gupta—
Sidki 3-group. The functional equation which we obtain agrees with the one provided by
Bartholdi based on undocumented computer calculations.

The second part of the thesis comprises two articles on generalisations of the Basilica
group:

(1) With Jan Moritz Petschick: On the Basilica operation, Groups, Geometry, and Dy-
namics, to appear, available at arXiv:2103.05452;
(2) With Anitha Thillaisundaram: Mazimal subgroups of generalised Basilica groups,
available at arXiv:2103.05452.
Both articles are incorporated into the thesis as self-contained chapters. The first article is
supplemented by a detailed proof (for Theorem 6.8) which is not included in the arXiv and
accepted versions.

Inspired by the Basilica group, together with Petschick, we introduce a general construc-
tion, called the Basilica operation, that produces an infinite family of Basilica groups from
a given group of automorphisms of a rooted tree. We investigate which properties of groups
of automorphisms of rooted trees are preserved under the Basilica operation. For groups
that display strong self-similarity features, we develop new techniques for computing their
Hausdorff dimension, which is generally difficult to calculate. Furthermore, we investigate
an analogue of the classical congruence subgroup problem, which is studied in the context
of arithmetic groups. In the second article, we study maximal subgroups of certain Basilica

groups, and prove that they are of finite index in the corresponding Basilica groups.


arXiv:2103.05452
arXiv:2103.05452
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Notation

N/R/C the set of natural/real/complex numbers

Ny the set of whole numbers

Z the set of integers

F, the field of p elements

[4, 7] the interval in Z, i.e., [i,j] ={i,i +1,...,7— 1,5}, fori,j € Z
Mat,,(K) the set of all n x n matrices over a field K

GL,(K) the general linear group of degree n over a field K

zY y lay

[2,y] oty lay

Cm the cyclic group of order m

(S the group generated by a set S

(8HE the normal subgroup generated by a subset S € G in a group G
G’ commutator subgroup of a group G

n(G) n-th term in the lower central series of a group G

|G : H] the index of a subgroup H in a group G

xm the sets of words of length n over an alphabet X

X* the free monoid generated by an alphabet X

Sym(X) the symmetric group on a set X

(01 --- m—1) the cyclic permutation mapping 0 to 1, 1 to 2, ..., m — 1 to 0

T the m-regular infinite rooted tree, for m > 2

AutT the automorphism group of the rooted tree T'

sta(v) the stabiliser of a vertex v € T in a group G < Aut(7)

St (G) the n-th level stabiliser in G

ristg(v) the rigid vertex stabiliser of the vertex v € T in a group G < Aut(7)
Ristg(n) the n-th level rigid stabiliser in G

9lv the section of an element g € G at the vertex ve T



’ v

g
G H

Un

rn(G)
Ry(G)

Ca(s)
a(G)

Irr(G)

x|z

Ia(x)
Bass(-)

the local action of g € G at the vertex v e T

the permutational wreath product of a group G by a group H

the homomorphism ¢ : G — G Sym(X), g — g|°(glo, - - - glm-1),
where g|€ is the local action of g at the root € of T

the induced homomorphism v, : Stg(n) — G x "oxa

word metric

number of n-dimensional irreducible complex representations of a group G
N

2 m(G)

n=1

the representation zeta function of G, for a complex variable s € C

the abscissa of convergence of (;(s)

big O-Notation

the set of irreducible characters of G

the restriction of a character y € Irr(G) to a subgroup H

the induction of a character x € Irr(H) to a super group G

the inertia group of a character x € Irr(H) of a subgroup H in a group G

the Basilica operation, for s € N

vi



Chapter 1

Introduction and general overview

This dissertation contains an investigation of groups acting on infinite regular rooted trees.
The groups acting on rooted trees have initially drawn a great deal of attention because
they exhibit prominent features and solve several long-standing problems in group theory.
Over the last 40 years, the theory of groups acting on rooted trees has been developed
substantially and has become an integral part of group theory, with connections to other
areas of mathematics such as cryptography and dynamics; see [18,54, 55, 76].

The most famous example of a group acting on a rooted tree is arguably the (first) Grig-
orchuk group. It was introduced by Grigorchuk [51] in 1980 as a simple yet elegant example
of a finitely generated infinite torsion group. The Grigorchuk group was originally defined as
the group of Lebesgue measure-preserving transformations of the set [0, 1]\{s | k,m € Z},
where [0, 1] is the unit interval in R. Soon, the group was realised as the group of automor-
phisms of the binary rooted tree. Henceforth, attempts have been made to produce more
examples of groups with similar properties that admit faithful actions on rooted trees. For
instance, Gupta and Sidki [63] came up with a family of finitely generated infinite p-groups,
for each odd prime p.

The Grigorchuk group and the Gupta—Sidki groups are explicit solutions to the General
Burnside Problem that asks about the existence of groups of such a kind, a question posted
by Burnside in 1902. It was partially proved by Burnside, extended by Schur, and further
generalised by Kaplansky that such groups do not exist in the realm of classical matrix
groups; cf. § 9 in [71]. That is, every finitely generated torsion subgroup of GL, (K),
where n € N and K is an arbitrary field, is finite. However, the first examples of finitely
generated infinite torsion groups was provided by Golod [48] in 1964, based on his work
with Shafarevich [49].

The Grigorchuk group also played a significant role in the theory of word growth of



groups. Let G be a finitely generated group and let S be a symmetric finite generating set
of G (i.e., S is closed under taking inverses). For n € Ny, let s, 5)(n) denote the number
of distinct elements of G that can be minimally represented by words in S of length less
than or equal to n. The non-decreasing function s(g, gy : No — N is called a word growth
function of G. We say that a finitely generated group G has polynomial word growth if there
exist constants ¢, d > 0 such that s, g)(n) < cn? for all n e N. A group G has exponential
word growth if there exist constants o > 1 and ¢ > 0 such that s g)(n) = ca” for alln € N.
The word growth function of a group depends on the generating set we choose. However, it
can be checked that the growth type of the growth function does not depend on the choice of
a generating set. It is easy to find examples of groups with polynomial or exponential word
growth. For instance, finitely generated free abelian groups have polynomial word growth,
and on the other hand, finitely generated non-abelian free groups display exponential word
growth. According to the celebrated theorem of Gromov [60], a finitely generated group has
polynomial word growth if and only if it is virtually nilpotent.

The Grigorchuk group is the first group shown to have intermediate word growth (i.e.,
neither polynomial nor exponential) [52]; it thus answered a long-standing question of Mil-
nor. In contrast, the word growth of the Gupta—Sidki groups is still not known to be
intermediate or exponential. Until recently, the constructions of all known examples of
groups of intermediate word growth were inspired by that of Grigorchuk’s. However, in [78],
Nekrashevych constructed an infinite family of simple groups of intermediate word growth,
producing the first examples of such a kind. The groups introduced in [78] are obtained via
homeomorphisms of a Cantor set. !

In the course of time, various generalisations of early constructions to wider families of
groups of automorphisms of rooted trees have been defined and studied. This dissertation
focuses on two major classes of generalisations known as branch groups and automaton
groups (groups defined by automata).

The concept of branch groups was introduced by Grigorchuk in 1997. From a geometrical
point of view, branch groups are groups acting transitively on each level of a rooted tree and
having subnormal subgroups similar to the corresponding structure in the full automorphism
group of the rooted tree; cf. [54]. The initial examples of groups acting on rooted trees, such
as the Grigorchuk group and the Gupta—Sidki groups, are branch groups; cf. [18]. Branch

groups naturally arise in the description of just infinite groups. We recall that a group is just

'More recently, the study of groups of homeomorphisms of a Cantor set has become an active area of
research. They are the main source of examples of totally disconnected locally compact topologically simple

groups. Although they are a very interesting class of groups, we will not discuss them in this thesis.



infinite if it is infinite and all of its proper quotients are finite. Within the profinite category,
one may think of just infinite groups as generalisations of simple groups. Pioneering work
of Wilson [107] provided a basic structure theory for just infinite groups. Based on this
Grigorchuk proved that just infinite groups admit a trichotomy in which branch groups

occur as one of three cases; cf. [54].

Automaton groups are defined by modelling the self-similarity of rooted trees. The first
example of an automaton group was constructed by Aleshin [4]. The Aleshin group is a
two-generated infinite torsion group acting on the binary rooted tree and is commensurable
to the Grigorchuk group (we say that two groups are commensurable if they are isomorphic
up to finite index). The action of an automaton group on a rooted tree can be best described
by a finite-state machine, called an automaton, whose states correspond to automorphisms;
see Section 2.1.2 for an explicit definition. The automaton groups often come with a rich
geometry. For instance, the graphs of the action of some automaton groups on each level of
a rooted tree (Schreier graphs) are of interest; cf. [16,57]. In certain cases, the finite Schreier
graphs converge to some fractal space [32]. The theory of automata and automaton groups
has evolved considerably over the last couple of decades. We refer the interested reader

to [76] for a survey on the topic.

The groups that we study in this dissertation lie in the intersection of automaton groups
and a more general class of groups including all branch groups, called weakly branch groups,
which are obtained by relaxing some of the algebraic properties of branch groups; see
Section 2.3 for more on weakly branch groups. We investigate the properties of two distinct
classes of groups, namely Grigorchuk—Gupta—Sidki groups (abbreviated as GGS-groups) and
generalisations of the so-called Basilica group, to be discussed shortly, which was introduced
by Grigorchuk and Zuk in [58] and [59].

The dissertation is written in the form of a cumulative thesis consisting of two self-
contained parts; each comprises two projects. Part I is about the representations of GGS-
groups, while Part II studies generalisations of the Basilica group. The content of Part 11
is available online on the public depository arXiv in the form of two articles; [92] and [94].
The first article is written in collaboration with Jan Moritz Petschick (fellow PhD student
at Heinrich-Heine-Universtitdt Diisseldorf) that has been accepted to the journal “Groups,
Geometry and Dynamics” for publication. The second article is the first part of a work
in progress with Anitha Thillaisundaram at Lund University and has been submitted for

publication in a mathematical journal.

Part I and Part II are preceded by a comprehensive preliminary section (Chapter 2),



where we develop the language for groups acting on rooted trees. To facilitate the subsequent
discussion, we give a short survey on the Basilica group and the GGS-groups in Chapter 2.
Properties of the Basilica group are presented with historical notes that provide a context
for the discussion in Part II. Here we give a summary of results from both parts without
details. We refer the readers to the respective sections for a formal introduction to the
subjects, where we also analyse our results in a historical and a broader mathematical
framework. The references for Chapter 1, Chapter 2, Part I and Part II are collected at the
end.

Part I is dedicated to the study of the asymptotic distribution of irreducible complex
representations of GGS-groups. For a group G, let r¢(n) denote the number of (equivalence
classes of ) n-dimensional irreducible complex representations. We are interested in groups G
such that rg(n) is finite for all N. We encode the arithmetic sequence r¢(n) in a Dirichlet

generating function, known as the representation zeta function, given by
[oe}
Cols) = ) (@)~ (s€C),
n=1

and try to link its arithmetic and analytic properties to the algebraic properties of the
group G. Part I begins with Chapter 3 that provides a gentle introduction to the theory of
representation zeta functions, followed by Chapter 4, where we review key results from the
representation theory of finite groups. Our main results on representations of GGS-groups
appear in Chapter 5 and Chapter 6.

The GGS-groups are generalisations of the (second) Grigorchuk group and the Gupta—
Sidki p-groups, for odd primes p. To each non-zero vector e € Fﬁfl, one can associate a
GGS-group generated by two automorphisms of the p-regular rooted tree; a formal definition
can be found in Section 2.4.2. If the defining vector e of a GGS-group G is non-constant,
then G is a branch group [37]. Moreover, there exists a subgroup H of finite-index in G
such that H geometrically contains subgroups isomorphic to H x i x H for all n € N. In
particular, if the defining vector e is also non-symmetric (see Definition 2.4.20), by taking
H = G’', the commutator subgroup of G, one gets the described subgroup structure.

In Chapter 5, we prove that, for a branch GGS-group G, the number 7,(G) is finite
for all n. Using the representation zeta function (z(s), we estimate the growth type of
the arithmetic function N — Ry (G) = % rn(G). We prove that Ry (G) is polynomially
bounded in N. The degree of polynomial g;;vvth is given by the abscissa of convergence a(Q)
of (i (s); see Chapter 3 for details. We set C' to be the number of irreducible representations
of the commutator subgroup H = G’ of G that are invariant under conjugation by G. If the

number C is finite, we observe that the numbers r,(G) are bounded above by a function



of n involving the generalised Catalan numbers; see Definition 5.3.5. In this case, using the
generating function for the generalised Catalan numbers, we provide a bound for «(G), and
hence for the degree of representation growth. The key tools are Clifford theory and the

in-built self-similarity of G.

Theorem A. Let G be a GGS-group defined by a non-symmetric defining vector e € Fg_l
and let H = G’ be the commutator subgroup of G. If the number C' of G-invariant (equivalent
classes of ) irreducible representations of H is finite then the abscissa of convergence o(G)

of the representation zeta function ((s) satisfies the inequalities

p-2<al@ < (- D pp - DE - D~ (L)

In particular, G has polynomial representation growth.

We investigate the cases in which the number C'is finite. These computations depend on
our understanding of the subgroup structure of GG, which happens to be determined by the
defining vector e of the GGS-group G. It turns out to be that C' is finite, in fact C' < p, if the
defining vector e satisfies a polynomial equation in its entries. In this situation, replacing C

with p in (1.1), we get that a(G) is bounded above by O(p?).

Theorem B. Let G be a GGS-group defined by a non-symmetric defining vector e =
(€1,...,ep—1) € F5~'. We define

p—3 :
(e3 —2e2+e€1,...,€i42 —2€i41 + €5, ..., ep_1 —2ep2+e€p3)€Fp ", ifp>3,

empty tuple, if p=3.

Assume that the vector €' is either () symmetric, or (xx) non-symmetric and the sum

w(e) = (p—2)(ex—ep1) +(p—4)(e2 —ep2) + - +3(en=s —€pss) + (ep1 — €pi1)

2 2 2 2

is mon-zero modulo p. Then the abscissa of convergence a(G) of the representation zeta

function (g(s) of G satisfies the following inequalities

log 2
logp

p—2<a(G)<(p-1) +2p% —2p + 1.

The definition of (non-)symmetric vectors can be found in Definition 2.4.20. For con-
vention, we take the empty tuple to be symmetric. A large class of GGS-groups satisfies
the conditions (#) or (xx) in the assertion of Theorem A. For instance, if p = 3, then the
vector €” is the empty tuple and it is symmetric by definition. Therefore, every GGS-group

defined by a non-symmetric vector e € F2 satisfies the condition (#). The condition (x#) is



valid for all Gupta—Sidki p-groups, for p = 5. The extent to which our results generalise to
GGS-groups heavily rely on our good understanding of the algebraic structure of the groups,
such as determining the first p terms of the lower central series; see the discussion at the
end of Chapter 5.

Using detailed character theory, in Chapter 6, we explicitly compute a recursive descrip-
tion of the representation zeta function of the Gupta-Sidki 3-group G3 in terms of partial
representation zeta functions of its commutator subgroup. The description of the repre-
sentation zeta function which we obtain agrees with the one provided by Bartholdi in [14]

based on undocumented computer calculations.

Theorem C. Let G3 be the Gupta—Sidki 3-group. The representation zeta function (g4(S)

of Gs satisfies the ‘functional equation’

Cou(s) = 94237+ 3 a(s) +2-37° B(s) + 3" (s) + 33—25 £(s).

where a(s), B(s), T(s) and &(s) are partial representation zeta functions of the commutator

subgroup of G, which are defined in Section 6.5.

We refer the reader to Section 6.5 for an explicit formulation of our description of the
zeta function (g, (s). Currently, our computation is limited to this particular case, because it
is based on the fact that Clifford theory can be effectively carried out only for branch groups
with relatively small branching quotient; see Definition 2.3.2. However, we believe that our
approach can be used to obtain, in future work, similar results for the Fabrykowski-Gupta
group [35], which is the only example of a branch GGS-group acting on the ternary tree that
is non-isomorphic to Gs.

Part II is a collection of two research articles [92] and [94] on generalisations of the
Basilica group, to be discussed below, incorporated as Chapter 8 and Chapter 9 of the
dissertation. We now present selected results from Chapter 8 and Chapter 9. One can
find an in-depth discussion indicating the relevance and scope of our main results in the
introductory sections of Chapter 8 and Chapter 9. In the short technical Chapter 7, one
may find a brief account of the authors’ individual contributions.

The Basilica group B is a two-generated weakly branch, but not branch, group acting on
the binary rooted tree, which was introduced in [58] and [59]. It is the first known example
of an amenable [24] but not sub-exponentially amenable group [59]. Further, it occurs as
the iterated monodromy group of the complex polynomial 22 — 1; see [76, Section 6.12.1].
(For a definition of iterated monodromy group, see Section 2.4.1.2.) Moreover, the Julia

set of 22 — 1, known as the Basilica fractal, which is the set of accumulations points of the



backward iterations of an arbitrary point in the complex plane under z? — 1, apparently
resembles the basilica of San Marcos in Venice, and hence the name. It is shown in [77]
that the Basilica fractal can be reconstructed from the Basilica group B. Additionally, the
Basilica fractal can be approximated by a sequence of finite Schreier graphs obtained by the
action of the Basilica group on each level of the binary rooted tree; cf. [32].

Inspired by the Basilica group B, in [92], we introduced a general construction which
produces a family of Basilica groups Bass(G), s € N, from a given group G of automorphisms
of a rooted tree. There is a natural bijection between the vertices of the binary rooted
tree and the set of all finite words over the alphabet {0,1}. The generators of the Basilica
group B can be best described by a three-state automaton given by Figure 1.1. For alphabets
x, y € {0, 1} and states p, q € {a, b}, we interpret the directed arrow labelled by z : y from
the state p to the state ¢ as follows: upon reading the symbol = the state p gives the output
y and it enters to the state q. Here, id is the short-hand notation for identity state. The
states a and b induce automorphisms of the binary rooted tree.? We point out the similarities
between these two generators and the single automorphism generating the dyadic odometer
Os; see Figure 1.1. The automorphism b can be interpreted as a delayed version of ¢ that
enters the intermediate state a before referring to itself. Modelling this ‘delaying effect’, we
define the Basilica operation Bass(-), s € N; for any group G of automorphisms of a rooted
tree, it yields the s-th Basilica group Bass(G), by adding s — 1 intermediate states to every
element of G. For the dyadic odometer Oz, one has B = Basy(Oz2).

Figure 1.1: Automaton generating the Basilica group and the dyadic odometer

We investigate which properties of a group G of automorphisms of a rooted tree are
preserved under the Basilica operation. It turns out to be that the properties related to the
group action of G on a rooted tree (such as self-similarity, fractalness, being weakly branch,
contraction, etc.) are inherited by the higher Basilica groups Bass(G). In contrast, word

growth type is not preserved under the Basilica operation; see Section 8.3.5.

?In [59], the automaton for the Basilica group is provided with the roles of the alphabets 0 and 1 are
swapped, and the group acts on the binary tree from the right. Both conventions yield isomorphic groups.

To be in consistent with the rest of the thesis and with [92], we employ left actions.



Theorem D. Let G be a group of automorphisms of a reqular rooted tree. Let P be a
property from the list below. Then, if G has P, the s-th Basilica group Bass(G) of G has P
for all s € N.

1. spherically transitive 5. weakly branch
2. self-similar 6. generated by finite-state bounded auto-
3. (strongly) fractal morphisms

4. contracting

In the first part of the article [92], we study the Basilica construction quite generally,
and, for a fixed s € N, we examine the s-th Basilica groups of generalisations of Grigorchuk
groups and Gupta—Sidki groups. It can be easily verified that the set of vertices of level n
of a rooted tree T is invariant under the action of an automorphism of T, for all n € N.
Therefore, the n-th level stabiliser, which is the kernel of the induced action of G on the set
of vertices of level n of T', is the natural object to consider when we study automophisms
of T. For a group G of automorphisms of a rooted tree 7" which displays strong self-
similarity features, we prove that the level stabilisers in Bass(G) can be obtained from the
level stabilisers in G. In Theorem E below, the maps ; are the algebraic analogues of the
added intermediate steps in the definition of the Basilica operation; see Definition 8.2.2.
The subgroup K_; is a normal (possibly trivial) subgroup of G measuring the failure of G
to be s-split; being s-split is a notion introduced in Definition 8.4.1 to make sure that the

Basilica group Bas,(G) closely resembles the original Basilica group B.

Theorem E. Let G be a self-similar and very strongly fractal group of automorphisms of a
reqular rooted tree. Assume that G is weakly reqular branch over Ks_1. Let n € Ng. Write
n=sq+r withqg=0and 0<r <s—1. Then, for all s > 1, the n-th level stabiliser of

Bas,(G) is given by
StBas, (@) (1) = (Bi(Sta (g + 1)), 8;(Sta(9)) | 0 < i <7 < j < )P,

Using the description of level stabilisers in Theorem E, we develop new techniques for
computing the Hausdorff dimension of the Basilica group Bass(G) from that of G. The
Hausdorff dimension of G measures how dense its closure is in an appropriate subgroup of
Aut T, and is generally difficult to calculate; cf. Section 8.4.2. It is generally analogous to the
Hausdorff dimension usually defined over R as a measure of fractalness; see Section 2.4.1.6
for a formal definition.

The second half of the article specialises on generalised Basilica groups Bass(O%,), for

d, m, s € N with m, s > 2, which are Basilica groups obtained from a direct product of d



copies of a generalisation O,, of the dyadic odometer O3. We closely study the structural

d
m

properties of the generalised Basilica groups Bas;(O%) and prove that they resemble the
original Basilica group B, hence justifying the nomenclature; see Theorem 8.1.6. More-
over, we explicitly compute the Hausdorff dimension of Bass(O%,), which turns out to be

independent of the parameter d.

Theorem F. For all d, m, s € N with m, s > 2

m(m*~1 —1)

dlmH(BaSs(Ogn)) = ms —1

Furthermore, we investigate an analogue of the classical Congruence Subgroup Problem,
which originates from the study of arithmetic lattices in semisimple locally compact groups;
see Section 2.4.1.7. Providing an explicit recursive presentation for the generalised Basilica
groups Bass(0%,) allows us to describe the level stabilisers in Basg(0%,) using Theorem E.
This enables us to prove a key structural result stating that these groups have a weaker

version of the Congruence Subgroup Property in the context of tree actions.

Theorem G. For all d, s € N with s > 2, and all primes p, the generalised Basilica group

Bass((’)g) has the p-Congruence Subgroup Property.

The recursive presentation of the generalised Basilica group Bass(O%,) obtained in [92]
is not finite. However, one can obtain a finite recursive presentation for Bas(0%,), which
we stated in [92, Theorem 6.8] without a proof. This proof is included in Chapter 8; see
Theorem 8.6.8.

It is worth to point out that, in [92], we observed that if a group law is satisfied by a
group G but not by Bas,(G), for some s € N, then Bass(G) is a weakly branch group and
it is regular branch over the corresponding verbal subgroup. This enables one to construct
a weakly regular branch group over a prescribed verbal subgroup. Therefore, the class of
Basilica groups promises to give solutions to problems arising in the theory of groups acting
on rooted trees.

In [94], we investigate the maximal subgroups of generalised Basilica groups Bass(O,,)
for m,s = 2. The groups that we examine are s-generated weakly branch, but not branch,
groups. One of the motivations to study the maximal subgroups of (weakly) branch groups
is related to a conjecture of Kaplansky; details can be found in Section 2.4.1.8. We point
out that, it is the first time that maximal subgroups of a weakly branch, but not branch,
group G have been considered for a group G with more than two generators. We prove that

all maximal subgroups of the desired generalised Basilica group are of finite index.



Theorem H. Let m and s be positive integers such that m,s > 2. Then the generalised

Basilica group Bass(O,,) does not admit a mazimal subgroup of infinite index.

Since we are considering generalised Basilica groups for an arbitrary s > 2, the final
stages of our proof differ from previously seen results. One can also look at the generalised
Basilica groups Bass(O2), for d > 1. We need new insights to tackle this problem as these
groups do not follow the usual length decreasing properties. So far, none of the weakly
branch, but not branch, groups, whose maximal subgroups have been studied, admit a
maximal subgroup of infinite index. Therefore, article [94] is the first step towards either
(a) proving that all weakly branch, but not branch, groups have only maximal subgroups
of finite index, or (b) classifying the weakly branch, but not branch, groups with maximal

subgroups of infinite index.
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Chapter 2

Preliminaries

We deliberately dedicate this chapter to establishing the language of groups acting on rooted
trees. Section 2.1 focuses on tree automorphisms, where we describe three different ways
of expressing a tree automorphism, namely in terms of portrait, automaton and wreath
recursion. In Section 2.2, we discuss the notion of self-similarity. Section 2.3 is a review of
branch and weakly branch groups. The final section, Section 2.4, is a survey on GGS-groups
and the Basilica group; they are the core ingredients of our studies in Part I and Part II.
In Section 2.4.1, we give an account of various properties of the Basilica group. During the
process, we recall necessary definitions and provide historical context to different notions
related to groups acting on rooted trees, including L-presentation, Congruence Subgroup
Property and Hausdorff dimension. Finally, in Section 2.4.2, we summarise known results

about GGS-groups and develop new structural results essential for the later discussions.

2.1 Rooted trees and their automorphisms

Let m > 2 be an integer. The m-regular rooted tree T is an infinite tree with a distinguish
vertex, known as the root, of valency m and every other vertex has valency m + 1. We
label the vertices of the rooted tree T by the elements of the free monoid X* generated
by the alphabet X = {0,1,...,m — 1} in the following way: the root is labelled by the
empty word, denoted by €, and the vertices that are at distance n from the root are la-
belled lexicographically from left to right with words of length n. In the sequel, we do not
differentiate between X* and vertices of T'. The vertices of the set X™ are called n-th level
vertices and they constitute the n-th layer of the rooted tree T. An automorphism g of T
is a graph automorphism; g has to preserve the root and to keep the adjacency of vertices.

As a consequence, the levels X™ of T are invariant under the action of g. The set of all

11



automorphisms of T forms a group and is denoted by Aut 7.
Let G be a subgroup of AutT and let v € X™ be a vertex of level n. The vertex

stabiliser stg(v) is the subgroup of G given by
sta(v) = {g€ G| g(v) = v},

and the n-th level stabiliser Stg(n) is

Sta(n) = [ sta(v).

veX™m

The subgroup Stg(n) is precisely the kernel of the induced action of G on X", and hence
it has finite index in G. Furthermore, the intersection of all level stabilisers is trivial,
which makes the group G residually finite. Taking the set of all level stabilisers as an open
neighbourhood system for the identity gives a topology on GG. With respect to this topology,
which is metrisable, the topological group Aut 7T is complete. Indeed, the group AutT is
profinite:

AutT = lim Aut T/ Stausr(n).
neN

Let v be a vertex of the rooted tree T and let T, denote the subtree rooted at v. The
subtree T, can be identified with the original tree by sending every vertex vw € vX* of T,
to the vertex w € X* of T. Let g € Aut(T'). Then g induces an isomorphism between the
subtrees T), and T} (,). Since both of the subtrees T, and Ty, are identical to the original
tree T, we obtain an automorphism g|, : 7' — T, known as the section of g at v, which is

uniquely determined by the equation
glvw) = g(v)gls(w). (2.1)
For all g, g1, go € Aut T and v, vy, vo € X*, it holds that
lorws = Gloy vz (22)
(91 92)lv = 91lgy(0) - 92l0- (2.3)

Now, we shall describe three different ways of expressing automorphisms of rooted trees,

namely in terms of portrait, automaton and wreath recursion.

2.1.1 Portrait of a tree automorphism

For every g € AutT the portrait of g is the labelled tree consisting of the tree T in which
every vertex v is labelled with an element g|” of Sym(X), where g|” is the action of g on
the set of immediate descendants of the vertex v, which is called the local action of g at v.

An automorphism g is uniquely determined by its portrait: for all x1-- -z, € X™,
g(@raaas - xn) = g(x1) g™ (w2) g|™* ™ (23) -+ g["t 7 ().

12



2.1.2 Automata

An automaton (A, X,7) over an alphabet X is given by a set of states A and a transition
map 7 : Ax X — X x A. For pe A and z € X, suppose that 7(p,z) = (y,q), for some
y € X and q € A. The above equality is interpreted as the following: upon reading the input
letter = the state p gives the output y and it enters to the state q. We write y = p(z) and
p = q|,. If the set of states of A is finite then (A, X, 7) is said to be a finite-state automaton.
Similarly, we define the automaton (A, X™,7,), for every n € Ny, in which the input and

output are words of length n and the transition map 7, is given by the equations below.

ple = p, Plev = Dlafvs (2.4)

p(e) =, p(xv) = p(x) pla(v), (2.5)

for z € X and v € X" !, where ¢ denotes the empty word. Therefore, the structure of
(A, X™, 1) is uniquely determined from that of (A, X, 7).

Now, assume that the set X is finite with cardinality m > 2. We may further assume,
without loss of generality, that X = {0,1,...,m — 1}. Let T be the m-regular rooted tree
whose vertices are in bijection with the set X™* of all finite words over X. Consider an
automaton (A, X,7) over the alphabet X. Every state p € A defines a transformation
on X* which is determined by (2.4) and (2.5). Notice that, for any v € X* and k € N, the
first k letters of the word p(v) depends only on the first &k letters of the word v. Therefore,
the transformation defined by p is an endomorphism of the rooted tree X*, which in general
need not be an automorphism.

Now, let (A, X,7) and (B, X,t) be two automata over the alphabet X. Then their
product (A x B, X, 7 -1) is an automaton, whose set of states is the direct product of A
and B. Let x € X, p1 € A and ps € B. For convenience, we denote the elements of the
form (p1,p2) from the set A x B by (p1p2). Then the transition map 7 - ¢ of the automaton

(A x B, X,7-1) is given by the following rules.

(p1p2)(2) = p1(pa(2)),

(P1p2)|z = P1lpy(@)P2la-

Furthermore, we say that an automaton (A, X, ) is invertible if every p € A defines an
invertible transformation of X* (or, equivalently, of X). The inverse of (A, X, 7) is given
by the automaton (A~! X, 771), whose set of states A~! is in one-to-one correspondence

1

with A, and, for every p~! € A=! and = € X, the equality 7 '(p~!,2) = (y,¢~') holds if

and only if 7(p,y) = (z,q), for some y € X and ¢q € A.

13



Definition 2.1.1. Let (A, X, 7) be an invertible automaton. The group generated by the
automaton (A, X, T) is the group (A) generated by all transformations of X* defined by the
set of states A of (A4, X, 7).

To every automaton (A, X, 7T), we can associate a directed graph, known as the Moore
diagram. The vertices of the Moore diagram representing (A, X, 7) are identified with the
set of states A. Two states p, ¢ are connected by a directed edge starting from p if and
only if there exist x, y € X such that 7(p,z) = (y, q), and the edge is labelled by z : y. For
convenience, we do not draw the edges of type 7(p, ) = (z,p). For example, consider Moore
diagram Figure 2.1 of the two-state automaton (A, X, 7), where X = {0,1} and A = {id, ¢}.

The transition map 7 is given by the following rules.

id(0) = 0, id(1) =1, id |p = id, id |; = 1id,

c(0) =1, c(1) =0, clo = ¢, ch =id.
The automaton (A, X, 7) is invertible and its inverse is given by the Moore diagram Fig-
ure 2.1. Observe that the state id induces the identity transformation on X*, while the
action of the element ¢! on X* is equivalent to adding 1 to the dyadic integers from the
left. The group (A) generated by the automaton (A, X, 7) is called the dyadic odometer,

denoted by O-, and is isomorphic to the group of integers. Hence, the group Oy provides an

embedding of the group of integers into the automorphism group of the binary rooted tree.

Figure 2.1: Automaton of generating the dyadic odometer and its inverse automaton.

Without difficulty, one can see that the trivial group, the cyclic group of order two, the
Klein four-group, the infinite dihedral group, and the lamplighter group Z/27 17, where
Z)27.2 7 is the permutational wreath product of Z/27 by 7 (cf. see Section 2.1.3), are also
generated by two-state automata. In fact, these are the only groups up to isomorphism

generated by two-state automata; cf. [57].

2.1.3 Wreath recursion

Let H be a finite group acting on a finite set X from the left and let G be an arbitrary

group. Denote by GX the direct product of | X |-many copies of G. If we fix an indexing
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{20,...,2m_1} of the set X, then every element g € GX can be written as (go, ..., gm-1),
where g; € G for each i € {0,1,...,m — 1}, and H also acts on the set {0,1,...,m —1} from
the left so that h(x;) = ;). The action of H on X induces a right action of H on Gx

given by: for every h € H and (go,...,9m-1) = g€ G

(907"'7gm—1) -h = (gh(O)a"'vgh(mfl))' (26)

Thus we can define the semi-direct product GX x H, where the action of H on G¥X is given
by (2.6). The semi-direct product GX x H is called the permutational wreath product, and
is denoted by G lx H. For any given pair of elements h (go, - .., gm—1) and &' (g, .., 9h_1)

in G 1y H, the multiplication is given by

h/ (g(/Jv s 791/7171) h (907 s 7gm—1) = h/ h (g;z(O) 490, - - - 7gg(m_1) gm—l)‘ (27)

If there is no confusion, then we drop the index X from G (x H.
Let T be the m-regular rooted tree and let AutT be the group of automorphisms of 7T'.
Let g € AutT. We define the following map

Y AutT — Aut T Sym(X), (2.8)

¥(g) = 9l (glo, - - -+ glm—1), (2.9)

where ¢|¢ is the induced action of g on the set X (or equivalently, the local action of g at
the root €), and g|, is the section of g at the vertex z, for € X. Clearly, ¢ is a bijection. It
is easy to verify using (2.7) that v is a homomorphism. Therefore, the group Aut 7" admits

the following decomposition

AutT = Aut T Sym(X), (2.10)

and every element g € AutT can be uniquely written as its image 1(g). The recursive
expression (2.9) is called the wreath recursion of g, which provides a convenient way to write
down an automorphism. For example, set X = {0,1} and o € Sym(X) as the transposition

(0 1). The wreath recursion

¢ = o(cid) (2.11)

defines an automorphism of the binary rooted tree and its action on X™* is same as that of
the automorphism induced by the state ¢ of the automaton generating the dyadic odometer

given by Figure 2.1.
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2.2 Self-similarity

For every v € T and g € Aut T, we recall that T, is the subtree rooted at v and gl, is the
section of ¢g at v defined by the equation (2.1). Let G be a subgroup of Aut7. Unlike
in AutT, the set

G’v :{g|v‘96G}

is not necessarily a subset of G. The group G is said to be self-similar if G|, < G for
every v € T'.

Let T be the m-regular rooted tree and let G < AutT be a self-similar group. Notice
that the restriction of the map ¢ in (2.8) to G

Y : G — G1Sym(X)

embeds G into the wreath product G Sym(X). (By abuse of notation, we use the same
symbol to denote the restriction of ¥ to the group G.) Hence, we can regard G as a subgroup
of G1Sym(X). Set A ={g|, | ge G,veT}and X = {0,1,...,m — 1}. It is easy to see
that A coincides with G. We define an automaton (A, X, 7,,) whose output and the transition
functions are determined by the map . The transformations of X* defined by the states
of the automaton (A4, X, ;) determines the action of G on 7. We say an automorphism
g € Aut T is finite-state if the set {g|, | v € T} is finite. Suppose that G < Aut T is a finitely
generated self-similar group, and every element of G is finite-state. In that case, G can be
generated by a finite-state automaton obtained by taking the disjoint union of automata
defining the generators of G. Conversely, it can be verified that every finite-state automaton
generates a finitely generated self-similar group such that its elements are finite-state.

Let G be self-similar and g € Stg(1). As g stabilises the vertices of level one, the local
action g|¢ of g at the root e is trivial, and hence the element ¢ is uniquely determined by
the sections of g at the vertices of level one. Therefore, the wreath recursion of g is given
by

¥(9) = (glo. - - glm-1),

and the induced homomorphism

Y1 : Stg(l) — G x - x @
is an embedding. Due to self-similarity of GG, the homomorphism ¢/ extends to all n € N in
a natural way such that

mm"

Yy, Stg(n) — G x -+ x G
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is injective for all n € N. If G = AutT then the map ¥, is in fact an isomorphism and
Stauwr(n) = AutT x " x Aut T for every n € N. For convenience, we often identify an
element g € Stg(n) with its image ¥, (g).

For every self-similar group G, taking the section of an element g € stg(v) at a vertex

v € T induces a homomorphism from stg(v) to G given by

oy stg(v) — G, g — gly.

If ¢, is an epimorphism, i.e., ¢, (stg(v)) = G, for all vertices v € T', then the group G is
called fractal. Clearly, Aut T is fractal.

2.3 Branch and weakly branch groups

Let T be the m-regular rooted tree and let G be a subgroup of AutT. Let v € X", for some
n € N. The rigid vertex stabiliser ristg(v) of v is the subgroup of G consisting of elements

which fix every vertex outside the subtree rooted at v, i.e.,
ristg(v) = {g€ G | Vw e T\T, : g(w) = w}.

The group generated by all rigid vertex stabilisers of vertices of level n is called the n-th
rigid level stabiliser, and is denoted by Ristg(n).

Let v € X" and w € X!, where £ > n. It is easy to see that, if v is a prefix of w, i.e,
w = vab, for some @ € X*", then ristg(w) < ristg(v). If otherwise v is not a prefix of
w, then ristg(v) N ristg(w) = 1, and hence the subgroups ristg(v) and ristg(w) commute.
Furthermore, for every g € G, ristg(v)? " = rista(g(v)). If G acts transitively on each level
of the rooted tree T then the rigid vertex stabilisers are conjugate in G. Therefore, for every

n € N, we get the following equality

Ristg(n) = (ristg(v) |ve X™) = H ristg(v).

veX™

Clearly, we have Ristg(n) < Stg(n). Unlike the stabiliser, the rigid stabiliser may have
infinite index in G (may even be trivial; for example in the case of the dyadic odometer O

defined by the automaton in Figure 2.1). If G = AutT and v € T, then the following holds
ristaus 7 (v) = Aut(7T,) = Aut T,

and hence Ristaysr(n) =~ Aut T x ™. x AutT. Since Ristg(n) < Stg(n), when G = Aut T,

we have the equality Ristg(n) = Stg(n).
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Similar to Aut T, if G acts transitively on each level of the rooted tree T then G is said
to be spherically transitive. For a spherically transitive group G, the rigid level stabilisers

Ristg(n) are either trivial for almost all n or infinite for all n.

Definition 2.3.1. Let G < AutT be a spherically transitive group of automorphisms of
the rooted tree T'. The group G is weakly branch if all Ristg(n) are infinite. We say G is a
branch group if additionally the subgroups Ristg(n) have finite index in G.

Notice that not every weakly branch group is branch; for example the Basilica group is

weakly branch, but not branch, group; cf. Corollary 2.4.11.

Definition 2.3.2. Let G < AutT be a spherically transitive group of automorphisms of
the rooted tree T. We say the group G is weakly reqular branch if G is self-similar and
contains a non-trivial subgroup H < G such that H > ¢~ 1(H x x H). The group G is
reqular branch H if such a subgroup H is also of finite index in G. We further say that G
is (weakly) regular branch over the subgroup H. If G is regular branch over H, then the
quotient H /vp~1(H x Thox H) is a finite group, and is called the branching quotient of G.

Every group G that is (weakly) regular branch over a subgroup H is (weakly) branch.
Indeed, the subgroup 1 1(H x - x H) is contained in Ristg(1). One gets by induction
that ¢~ 1(H x ok H) < Ristg(n) for all n € N. Now, if H is of finite index in G
then ¢ ~1(H x - x H) has finite index in Stg(1). Therefore, Ristg(1) has finite index
in Stg(1), and hence in G. Again by induction, one can see that Ristg(n) has finite index
in G for all n € N. In particular, if G is branch then the groups G and G x % G are
commensurable as subgroups of AutT. We recall that two subgroups K7 and K5 of a group
K are commensurable if the intersection K1 n K5 is of finite index in both K7 and K.

Now, we record a fundamental lemma for weakly branch groups, which is crucial for the
discussions later. The statement and the proof of the following lemma can be extracted

from the proof of [54, Theorem 4], where it is proven for branch groups.

Lemma 2.3.3. Let T be the m-regular rooted tree and G < AutT be weakly branch. For

every non-trivial normal subgroup N of G, there exists n € N such that Ristg(n) < N.

Proof. Since N is non-trivial, there exist ¢ € N and v € T such that g(v) # v. Let
x, y € ristg(v). Notice that y9 ' € ristg(g(v)) and it commutes with z. Since N is normal,

N contains

—1 -1

[z, [~ ull = [z, (7 )"yl = [, 9l (0 ) 7']Y = [, 9],
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that is [x,y] € N, implying that ristg(v)’ < N. Since G is spherically transitive, the rigid

vertex stabilisers are conjugate and it follows that Ristg(n)’ < N, where n = |v|. O

If G is branch, as a corollary of Lemma 2.3.3, one gets that every proper quotient of
G is virtually abelian. On the other hand, G itself is not virtually abelian. Indeed, if G
is virtually abelian, it follows from the proof of [56, Lemma 2] that Ristg(n) is abelian for
some n. Since Ristg(n) is non-trivial, there exists g € Ristg(n) such that g(v) # v for
some v € T with |v| > n. This implies that ristg(v) = ristq(v)9 ' = riste(g(v)), and in
particular ristg(v) Nnristg(g(v)) # 1. Thus v = g(v), and we get a contradiction. Therefore,
every branch group is just non-(virtually abelian). We say a group G is just non-P if every
proper quotient of G has the property P but G itself does not have the property P. It
turns out to be that being just non-(virtually abelian) is one of the characteristic properties
of branch groups. Indeed, in [108], Wilson provided a purely group-theoretical character-
isation of branch groups. Moreover, there exists a lattice of subnormal subgroups of G,
called structure graph, on which G acts faithfully as a branch group. Therefore, the al-
gebraic properties of a branch group are independent of its action on a given rooted tree.
The construction of structure graphs is greatly dependent on the fact that all proper quo-
tients of branch groups are virtually abelian. Unfortunately, the definition of structure
graph does not extend to weakly branch groups, since not all weakly branch groups are
just non-(virtually abelian); for example the Basilica group is weakly branch but not just
non-(virtually abelian); cf. Corollary 2.4.11. However, it is known that certain algebraic

properties of weakly branch groups are independent of their weakly branch actions [45].

2.4 Subgroups of automorphisms of rooted trees

The objective of this section is to set-up a framework for the discussion in Part I and Part II
of the dissertation. Let T be the m-regular rooted tree whose set of vertices are in bijection
with the set of all words over the alphabet X = {0,1,...,m — 1}. Let o be an m-cycle in
Sym(X). We define

I' = {g € Aut T | labels in the portrait of g are elements of (o )}.
Then I' a subgroup of AutT and is isomorphic to
I' = 1im Cp, 1"+ 2 Cpe.

neN

If m = p, a prime, then I' is a Sylow pro-p subgroup of Aut7. The groups that we

study in this dissertation are abstract subgroups of I'. Here we give a short survey on the
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Basilica group and GGS-groups. Section 2.4.1 contains a review of the Basilica group. We
collect various results on the Basilica group and alongside we develop the theory of groups
acting on rooted trees. Most of the results from Section 2.4.1 are generalised in Part II. In
Section 2.4.2, we list the main features of GGS-groups. Also, we prove new results that are

essential for the study in Part I.

2.4.1 The Basilica group

In the sequel, we fix m = 2 and X = {0,1}. Let T be the binary rooted tree whose vertices
are labelled by the elements of the free monoid X*. Recall that the Basilica group B is
a 2-generated group of automorphisms of the binary rooted tree and is generated by the
automaton given by Figure 1.1. For simplicity, we use the notation 1 instead of id to denote
the identity element of a group. The standard generators a and b of the group B can be

expressed recursively as follows
a=(b1), and b=o0(a,l), (2.12)

where ¢ is the permutation (01) € Sym(X). In [59], the generators a and b are defined
with the identity element on the left and ¢ on the right. Both conventions yield isomorphic
groups.

-

The structural properties of the Basilica group B were first investigated in [59]. In

Theorem 2.4.1 below, we list the important properties of B that were proved in [59].
Theorem 2.4.1. Let B = {a,b) be the Basilica group. The following assertions hold.
1. B is self-similar and fractal;
2. B is weakly regular branch over the commutator subgroup B';
3. B/B =7 x Z;
4. B is torsion-free;

5. the semi-group generated by the elements a and b is free, implying that B has expo-

nential word growth.

The Basilica group B is very different from the other famous examples of groups acting
on rooted trees, such as the Grigorchuk group and the Gupta—Sidki groups. The properties
of B are of independent interest. In the following, we discuss various notions about B that
are investigated, and use this discussion to provide a historical context for the study of

groups acting on rooted trees.
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2.4.1.1 Amenability

Although the concept of amenability first appeared in a paper of Banach, the notion of
amenable groups was introduced by von Neumann in connection with the Banach—Tarski

paradox [79].

Definition 2.4.2. A discrete group G is amenable if there is a measure p from the power

set of G to the unit interval [0, 1] such that
(i) w is a probability measure, in particular p(G) = 1,

(i) p is finitely additive: for every collection {Aj1, ..., A,} of finitely many disjoint subsets
of G, one has pu(J 4i) = X pu(4),
‘ i=1

=1
(iii) w is left-invariant: for every subset A € G and every element g of G, the equality

1(gA) = u(A) holds.

Let AG be the class of all amenable groups. The class AG contains finite groups and
abelian groups, and it is closed under taking subgroups, quotients, extensions and direct
limits; cf. [79]. Following Day [31], we denote by £G the class of elementary amenable
groups, which is the smallest class of groups containing all finite groups and abelian groups
and is closed under taking subgroups, quotients, extensions and direct limits. From the
above it is clear that £G < AG. The question of whether the class AG coincides with the
class £G remained open for a long time. In 1980, Chou [30] came up with a characterisation
of groups in the class £G. He proved that every group in £G has either polynomial or
exponential word growth. Later, in 1984, Grigorchuk [52] constructed a family of infinite
torsion groups of intermediate word growth that contains the Grigorchuk group. It is known
that groups of intermediate word growth are amenable, and hence Grigorchuk’s family of
groups belong to the class AG but not to the class £G. In fact, the inclusion £G < AG is
proper even if we restrict it to the class of finitely presented groups. Indeed, the Grigorchuk
group can be embedded as an amenable group into a finitely presented group [53], even
though the Grigorchuk group itself is not finitely presented (however, it admits a recursive
presentation as given in [74]). The existence of such an embedding follows from Higman’s
well-known embedding theorem.

The most prominent example of a non-amenable group is the free group of rank 2 [79].
Since the class AG is closed under taking subgroups, this asserts that amenable groups do
not contain non-abelian free subgroups. Let N'F denote the class of groups which do not

contain non-abelian free groups. The problem of the existence of a non-amenable group in
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the class N F is known as the von Neumann problem, although the first written evidence of
the problem is attributed to Day in [31]. The Thompson group F' (introduced by Richard
Thompson in 1965) was considered as a potential candidate for a long time, as it is infinite,
finitely presented group with no non-abelian free subgroups; see [29] for an introductory
survey on Thompson’s groups. The amenability of the group F' is still an open problem. The
first examples of non-amenable groups in the class N'F were constructed by Ol’shanskii [81].
He used the combinatorial characterisation of amenable groups provided by Grigorchuk [50]
to prove the existence of non-amenable groups (both torsion-free [80] and torsion [82]) with
all essential subgroups cyclic. The non-amenable groups of Ol’shanskii’s are not finitely
presented. An example of a finitely presented group in the class N'F but not in the class
AG was constructed in [83].

Notice that examples of amenable but not elementary amenable groups constructed
in [52] and [53] are of intermediate word growth. Let SG denotes the class of sub-exponentially
amenable groups, i.e., the smallest class of groups of sub-exponential word growth (either
polynomial or intermediate) which is closed under taking subgroups, quotients, extensions
and direct limits. It is natural to ask whether the classes AG and SG coincide; cf. [53].
In [59], Grigorchuk and Zuk proved that the Basilica group B is not contained in the class SG
but it belongs to the class N'F. Later, Bartholdi and Virdg proved amenability of B [24],
which makes the Basilica group B the first known example of an amenable but not sub-

exponentially amenable group.

Theorem 2.4.3 ([24, Theorem 1] & [59, Proposition 13]). The Basilica group B is amenable

but not sub-exponentially amenable.

Later, Bartholdi, Kaimanovich and Nekrashevych proved that all groups generated from
bounded finite-state automorphisms are amenable [20], which includes B; see Section 8.3.2

for details.

2.4.1.2 Iterated monodromy groups

The concept of iterated monodromy group was introduced by Nekrashevych [77] and is used
to establish connections between dynamical systems and algebra. Let f: M; — M be an
m-fold covering map of a topological space M by its open subset M. Let t be an arbitrary
point in M and let Xy = {to,...,tn—1} be the set of m preimages of t under f. Every loop ¢
based at t lifts to m paths each starting at t; for some ¢; € X;. Then ¢ induces a permutation
on the set X; by sending an element ¢; to the end point of the lift of ¢ starting at ;. This

induced action is called the monodromy action of the loop ¢ and the monodromy group is
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defined to be the subgroup of Sym(X) consisting of the monodromy actions of elements of
the fundamental group of M at t. Now, let f™ be the n-th iterate of f. Let X™* denote the
disjoint union of the sets f~"(t) of preimages of ¢ under f™. Then the set X* is naturally
identified with the m-regular rooted tree and the fundamental group 71 (M) acts on X* via
automorphisms of the rooted tree. The action does not depend, up to a conjugacy, on the
choice of ¢; see [77, Proposition 3.2]. This action is called the iterated monodromy action,
and it may not be faithful in general. The iterated monodromy group of f is defined to be
the quotient of 71 (M) by the kernel of the iterated monodromy action.

It is shown in [77] that the iterated monodromy group of 2% is Z and that of 22 — 2
is the infinite dihedral group. Furthermore, the Basilica group is identified as the iterated

monodromy group of 22 — 1.

Theorem 2.4.4 ([77, Section 5.2.2]). The iterated monodromy group of the complex poly-

nomial 2> — 1 is the Basilica group B.

Moreover, one can reconstruct the Julia set of f from its iterated monodromy group,

if f is expanding; see [77, Definition 4.5] for the definition of an expanding map.

2.4.1.3 Decision problems

In 1911, Dehn introduced three fundamental algorithmic problems for finitely presented
groups: the word problem, the conjugacy problem, and the isomorphism problem. The word
problem for a group asks for an algorithm which determines whether two given words in
the generators of the group determine the same group element (or equivalently, whether a
given word represents the identity of the group). A group has solvable conjugacy problem
if there is an algorithm that decides whether two given words represent conjugate elements
of the group. Finally, the isomorphism problem is the algorithmic problem of determining
whether two given group presentations present isomorphic groups. It is now known by the
results of Novikov, Boone, Adjan, and Rabin that all these problems are undecidable in the
class of all finitely presented groups. Therefore, there is considerable interest in determining
classes of groups with solvable decision problems. The word problem is solvable for many
important classes of groups, even outside the realm of finitely presented groups.

In [76, Proposition 2.13.8], Nekrashevych proved an efficient algorithm that solves the
word problem for self-similar groups with a suitable ‘length reduction property’. A group
with such a property is said to be contracting. There are several different definitions of

contracting groups in the literature. We adopt the one from [76].
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Definition 2.4.5 ([76, Lemma 2.11.12]). Let G be a subgroup of the automorphism group
of a rooted tree T'. The group G is said to be contracting if there exist constants A < 1 and
C, L € N such that for every g € G and for every vertex v € T of level n > L the following
inequality holds

lglo] < Algl+C, (2.13)

where g, is the section of g at v and |- | is the usual length function with respect to a finite

generating set of G.

Theorem 2.4.6 ([59, Proposition 15]). Let B be the Basilica group. For every g € B and
v e T with |v| = 2, the following inequality holds

2
ghol < 5 lgl +1,

where | - | is the length function with respect to the generating set {a,b} of B. In particular,

the group B is contracting with parameters A = %, C=1and L =1.

Therefore, by [76, Proposition 2.13.8], the word problem is solvable for the Basilica
group. Moreover, it is proved in [58, Theorem 1.1] that the Basilica group has the solvable

conjugacy problem.

2.4.1.4 Endomorphic presentation

Definition 2.4.7 ([11, Definition 1.2]). An L-presentation (or an endomorphic presenta-

tion) is an expression of the form
L= [Q[®|R), (2.14)

where Y is an alphabet, Q, R c Fy are sets of reduced words in the free group Fy on Y
and ® is a set of endomorphisms of Fy. The expression L gives rise to a group G, defined

as

G = Fy/(Q u{(@)(R)™,

where (®)(R) denotes the union of the images of R under every endomorphism in the monoid

(®) generated from ®. An L-presentation is finite if Y, Q, ®, R are finite.

It is proved in [11] that every finitely generated, contracting, regular branch group is
not finitely presentable, however each such group admits an L-presentation. Unfortunately,

this is not applicable to the Basilica group B as it is not branch by Corollary 2.4.11 below.
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Theorem 2.4.8 ([59, Proposition 9]). The Basilica group B admits an L-presentation of
the form (Y | Q | ® | R) with Y = {a,b}, Q = &, R = {[a,a"™""] | £ € Ny} and ® = {¢},
where
a — b
¢ : (2.15)
b —a.
The above presentation is not finite since the set R is infinite. However, one can make

the above L-presentation of B finite by introducing another endomorphism 6 given by

b2
a —aa”,

0 (2.16)
b —b.

Theorem 2.4.9 ([59, Proposition 11]). The Basilica group B admits the endomorphic pre-
sentation (Y | Q | ® | R) with Y = {a,b}, Q = &, R = {[a,a’]} and ® = {¢,0}, where ¢
and 0 are given by (2.15) and (2.16), respectively.

The L-presentation of the Basilica group B is helpful to study the subgroup structure
of B, which we discuss in the following section.
2.4.1.5 Quotients and lower central series

Here we consider some of the interesting quotients of the Basilica group B. We start with
an easy consequence of Theorem 2.4.8, which is first proved in [46] without using the pre-

sentation. (See [39, Proposition 8.3.7] for an alternative prove using the presentation).

Theorem 2.4.10. Let B be the Basilica group and let

1 =z y
HS(Z) = 01 z||z, ¥y %2€ Z
0 01

be the discrete Heisenberg group. Then B/v3(B) is isomorphic to Hs(Z). Furthermore,
B’ [43(B) is isomorphic to the infinite cyclic group.

As a consequence Theorem 2.4.10 and Lemma 2.3.3, we get that B is not branch.

Corollary 2.4.11. The Basilica group B is not just non-(virtually abelian). In particular, B

18 not branch.

The parts (i), (ii) and (iii) of Theorem 2.4.12 below are proved in both [59] and [46], but

(iii) with a mistake. Here we give a proof of (iii). The part (iv) of Theorem 2.4.12 is new,
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while part (v) is proved in [15] using the computer algebra system GAP. From (v), it is easy
to see that v;(B)/vi+1(B) is finite for all ¢ > 3. In fact, in [15], the terms ~;(B)/v;+1(B) are
computed up to isomorphism type for 1 < ¢ < 48 and a conjectural description is given for

all 7 > 48.

Theorem 2.4.12. Let B = {a,b) be the Basilica group on the standard generators. The

following assertions hold.
(i) B = y~Y(B x B') x {[a,b]), and B/~ (B' x B') = Z,
(i) B" =~ (v3(B) x 13(B)),
(iii) v3(B) = B" x {[[a, b], b], ¥~ (([a, b], [b,a]))), and v3(B)/B" = Z x Z,
(iv) ya(B) = B" » {[[[a,b],0], b], ¥ (([a, D], [b,a])?)), and 4(B)/B" = Z x Z,
(v) 3(B)/74(B) = Ci.

Proof of (iii), (iv) & (v). (iii) We use the fact that ~3(B) is normally generated from the
elements [[a,b!],a] and [[a,b"1],b~!]. Observe first that

[a,b67 ] = (071, D)o(a, 1)(b, 1) (a ™, D)o = (571, ).
We have

[la, 67", a] = [(b71,6% ), (b, 1)] = 1,
[[a, 67,671 ] = (671 6% ) Lo (a, 1)(b71, 6% )@t D)o = (007,572 ),

Therefore, y3(B) = {[[a,b~'],b~'])5. Consider the element [[a,b],b?] € v3(B). Using Theo-
rem 2.4.12(ii), we get

[[CL, b]v b2] = [(b_17 b)v ((L, a)] = ([b_la a]v [b’ CL]) = ([CL, b]b_lv [ba CL]) =p" ([a7 b]v [ba CL])

Set z = [[a,b71],671] and y = [[a,b],b?]. We claim that the quotient group ~v3(B)/B" is
generated by the images of the elements = and y. In order to prove the claim, it suffices
to show that the group (B” z,B” y) is normal in B/B”. Notice first that the element B” y is
central in the quotient group Stp(1)/B". We get y“il = ([a, b]bil, [b,a]) =pr y, and

a - -1 a —
v’ =pr ([ba]",[a,b]) =gy~ and y" =g ([b,a],[a,b]") =pr y~

26



Furthermore,

(bba’l,b—Qa’l)(b,l) _ ((b2[b, a—l])b’ b—2a’l) =g (bQ[b, a—l]’ b—2a’1)

( )
L (bba 7b—2a*1>(b*1,1) _ ((bz[b, a—l])b*17b—2a*1) =g <b2[b, a—l]’b—2a*1)

( )

2P = (72 b ) = (b )%, (aa”V)baba ™)
= (b~ b, alb Y aba " [a Y blaba ) =g (57 b7, a], ab%a " a7t b))
=gz 'y
2 = 2 b ) ) = (072 (bb 1Y), ab(bb ) e
= (b_ail[a_l, blo~ Y, ab?[b,a a™t) =pr a7yt
Therefore, the claim follows: v3(B) = B” {(z, y).
Next we prove that v3(B)/B” =~ Z x Z. Observe first that the quotient group ~3(B)/B"
is abelian as [y3(B),v3(B)] < [B',B'] = B”. It remains to show that, the elements B”
and B” y have infinite order and there are no relations between powers of B” x and powers
of B"y. Since y = ([a,b], [b, a]), it immediately follows from Theorem 2.4.10 that B” y has
infinite order. Now, assume to the contrary that B” x has finite order. There exists n € Z
such that " =g» 1. We have

2" =pv (b*[a,b],b2[a,b] )" =gv (b*"[a,b]", b *"[a,b] ") = 1.

In particular, b=2"[a,b]"?" = 1 in B/v3(B). This is a contradiction to Theorem 2.4.10.
Hence B” x has infinite order. Assume again to the contrary that, there exists p, q € Z such

that «P y? =+ 1. We obtain
2Py =pr (b?[a, b],b~[a, b]7*)"([a, b], [b, a])*
=g (b*[a, b]PT?, b= [b, a]?T9) = 1.
Comparing the coordinates gives,
b2p[a, pJPte =5 1 and b_2p[b, a]2p+q =, L

which is again a contradiction to Theorem 2.4.10, unless p = ¢ = 0. Hence, vy3(B)/B" ~ ZxZ.
(iv) Observe first that B” < v4(B). We use the fact that v4(B) is normally generated from
the elements [[[a,b"'],b71],a] and [[[a,b"'],b7!],b~!]. From the computation in the proof

of Theorem 2.4.12(iii) above, we have

[[[a, 01,67 1],a] =51, and [[[a,b7 '], 07 ],67 ] =pr 2 2y 1.
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Hence 14(B) = {[[[a,b7'],b7 1], 67 DB. Set z = [[[a,b71],b7!],b67]. We claim that the
quotient group 74(B)/B” is generated by the images of the elements z and [b~1, y] =p» .
It is enough to prove that the subgroup (B” z,B" y?) is normal in B/B". Recall that the
element B” 3y and hence also B” y? are central in Stz(1)/B”. Again, it follows from the proof

of Theorem 2.4.12(iii) that
W) =v* ()Y =y, and 22— g

Furthermore, we get

=g @y = ey = () Py = 2y

b=t _ 2t bt 1,2

2 = (x7y ) y " = () Py =pr 27y

From the above calculations, it follows that the quotient group ~4(B)/B” is generated by
the elements B” z and B"y?. Clearly, the quotient group v4(B)/B” is abelian. To prove the
result, it suffices to show that the elements B” z and B”y? have infinite order and there are
no relations between powers of B” z and powers of B” 32. It follows from Theorem 2.4.12(iii)

that B” 42 has infinite order. Furthermore,
<B” Z,B” y2> _ <B// x_2y_1,B” y2> < <B// z, B// y> ~ 7 % 27

and hence we get that B” z is also of infinite order. Now assume that there exist k, ¢ € Z

such that zFy%¢ =z 1. We have
fokykarQE _ (x72y71)k 20

Y =g My =1,

and hence we must have k = 0 = [ by Theorem 2.4.12(iii) above. Therefore, ~4(B)/B" =
(zB"y*B"y ~ 7 x L.

(v) The result follows from Theorem 2.4.12(iii) & (iv). Since z =g» 2y~ !

, we get
73(B)/74(B) = {14(B) z) = Ci. O
Results on quotients of the Basilica group B lead to the following theorem.
Theorem 2.4.13. Let B be the Basilica group. Then B is

(i) [59, Proposition 6] just non-(virtually solvable);

(i) [39, Proposition 8.3.6] just non-(virtually nilpotent).
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2.4.1.6 Hausdorff dimension

The notion of Hausdorff dimension was introduced by Hausdorff and developed by Besicov-
itch. Although the Hausdorff dimension was initially defined as the measure of fractalness
of sets over R, it can be defined over any metric space, and hence it becomes an integral
part of fractal geometry; cf. [36]. Pioneered by the work of Abercrombie [1] and of Barnea
and Shalev [9], the concept of Hausdorff dimension opened up a rich and interesting field of
research in the context of profinite groups.

Let G be a countably based profinite group, i.e., G admits a countable descending
chain F

F:G=Go=2G12Gy=---2Gp=>---

0
of open normal subgroups such that (| G, = 1. Such a chain F is called a filtration series
n=0
of G. The set {G,, | n € Ny} forms a basis of the neighbourhoods of the identity in G. By
defining

L={G,z|xeG,ne Ny},

we obtain an open base of G. Furthermore, the filtration series F of G induces a translation-
invariant metric dx on G given by
[G:G,]7" ifalye Gu\Gnit,
df($, y) =
0 ifx=y.
Let Y be a subset of G. Let p € Ryg and let C be a cover of Y. We say that C is a
p-covering of Y if diam(S) < p for all S € C, where the diameter of S is defined with respect

to the metric dx. For each pair d, p € R>o, we define

Hg(Y) = inf { 2 diam(S)° | C is a p-covering of Y such that C < E} (2.17)
SeC
and write
HO(Y) = lim H5(Y). (2.18)
p—0

Since Hf,l Y) > ’Hfm (Y') whenever p; < p2, the above limit exists. It is proved in [36] that,
there exists A(Y') € Rx¢ such that

oo for 6 < A(Y)
HO(Y) = (2.19)
0 ford> A(Y).

The Hausdorff dimension of Y with respect to the filtration series F, denoted by dimy” (Y),
is defined to be the number A(Y").
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Now, let (X,d) be a metric space and let Y < X. For every p > 0 define N,(Y) to
be the minimal number of sets of diameter at most p needed to cover Y. The lower box
dimension of the set Y is defined to be

log N,(Y
dimp(Y) = liminpr().

2.20
p—0 —logp ( )

Let H be a closed subgroup of the profinite group G equipped with the metric dr. By
setting p = [G : G,] 7Y, we obtain N,(H) = [HG,, : G,] = [H : H n G,,], yielding that

dimp(H) = liminf —log[HGn Gl

n—w  log[G : G,] (221)

Based on the work of Abercrombie, Barnea and Shalev prove the following theorem.

Theorem 2.4.14 ([9, Theorem 2.4]). Let G be a profinite group with a filtration series
F ={G, | n =0} and let H be a closed subgroup of G. Then the Hausdorff dimension of
H with respect to the filtration F is given by

. _ .. Jdog[HG, :G,] .. . .log[H:Hn Gy
F — - ol TR TR
dimp” (H) = dimg(H) = hrlln 1Or01f log[G : G hgn 1£f log[G - G

(2.22)

Now, recall from the beginning of Section 2.4 that I' is the subgroup of Aut 7" isomorphic
to lim G, 2 Y.0Cm. The set of level stabilisers {Str(n) | n > 0} of I' naturally forms a
ﬁltrn;tl\ion series F of I'. For any subgroup G < I', we define the Hausdorff dimension of G
as the Hausdorff dimension of the closure of GG in I with respect to the filtration series F;

it is given by

log,, |G/ Sta(n)| log,, |G/ Sta(n)|

dimyg G = dimy” G = lim inf = (m — 1) liminf

n—x - log,, |I'/Str(n))| =00 mt ’
where the last equality follows from log,, |I'/ Str(n)| = log,, [Cm -+ 1 Cp| = ";::11.

The Hausdorff dimensions of various (weakly) branch subgroups of I' have been com-
puted; for instance, see [38,54,99,101]. It is proved in [12] and also in [101] that the
Hausdorff dimension of a self-similar branch group is always a rational number. However,
there are groups acting on rooted trees with irrational Hausdorff dimension. In fact, there
exist topologically finitely generated groups of automorphisms of the binary rooted tree with
arbitrary Hausdorff dimension in the interval [0, 1]; cf. [3]. For explicit examples see [98].

The Hausdorff dimension of the Basilica group B has also been computed.

. . .9
Theorem 2.4.15 ([12, Example 2.4.6]). The Hausdorff dimension of B is 3.
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2.4.1.7 Congruence Subgroup Property

The congruence subgroup problem for groups acting on rooted trees is a generalisation of
the classical congruence subgroup problem defined and studied for arithmetic groups such

as SL,,(Z) for n = 2. The kernel of the canonical epimorphisms
7 : SLyp(Z) — SL,(Z/kZ),

for k € N, are subgroups of finite index in SL,(Z). A subgroup H of SL,(Z) containing
ker(7y) for some k € N is called a congruence subgroup. The classical congruence subgroup
problem asks the following question: is every finite index subgroup of SL,,(Z) a congruence
subgroup? Towards the end of the 19th century, Fricke and Klein discovered finite index
subgroups of SLy(Z) that are not congruence subgroups based on their work on automorphic
functions. Later, Bass—Lazard—Serre [25] and independently Mennicke [75] answered the
question positively for all n > 2; see [102] for a survey on the topic, which treats both cases
n=2andn > 2.

Let G be a subgroup of the group of automorphisms Aut T of a rooted tree T. Recall
that the level stabiliser Stg(n) is the kernel of the induced action of G on the n-th level T
In the context of groups acting on rooted trees, the congruence subgroup problem asks
whether every subgroup of finite index in G contains some level stabiliser in G. We can
reformulate the congruence subgroup problem in terms of profinite completions. By taking
the set {Stg(n) | n € N} as the fundamental system of neighbourhoods of the identity in G,
we get a topology on G, called the congruence topology. Let G be the completion of G
with respect to this topology. Then G is a profinite group and is called the congruence

completion of G. Since () Stg(n) = 1, the group G embeds in G. On the other hand,

neN
as (G is residually finite, G embeds in its profinite completion G, and there is a canonical

epimorphism from G onto G. Then the congruence subgroup problem is equivalent to asking
whether the map from G onto G is injective. If the two completions coincide then we say
G has the Congruence Subgroup Property (abbreviated as CSP).

The congruence subgroup problem (or property) for branch groups has been compre-
hensively studied over the years and it is known that the famous examples of branch groups
have the congruence subgroup property, for instance see [22,37,45]. It is shown that having
CSP is independent of the (weakly) branch action of a (weakly) branch group on a rooted
tree [43]. The first known example of branch group without CSP was constructed in [88].
The congruence subgroup problem for groups acting on rooted trees is systematically stud-

ied in [22], in which the authors described a general method for computing the kernel of
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the map G — G, for a branch group G. Coming back to the Basilica group B, it is easy
to see that B does not have the CSP. Indeed, the quotients of B by the level stabilisers are
finite 2-groups, and on the other hand B/B’ ~ Z x Z (Theorem 2.4.1). However, B has a
weaker version of the CSP introduced by Garrido and Uria-Albizuri in [46]. Let T" be the
p-regular rooted tree, for a prime p, and let I' be a Sylow pro-p subgroup of Aut7. Let
G < T be a weakly branch group and let C be the class of all finite p-groups. Observe that,
for every n € N, G/Stg(n) € C. The group G has the p-CSP if every subgroup N of G with
G/N € C contains some level stabiliser in G. In other words, the G has the p-CSP if the
pro-p completion @p of G is isomorphic to the congruence completion G of G, where CAT’p is
given by

G, = lim G/N.
G/NeC

By taking C to be a pseudo variety of finite groups, in [46], one can find a more general
version of CSP, namely C-CSP. Using a similar argument as in [43], one gets that having
C-CSP is independent of the weakly branch action of the group, see [46]. In the same article,
the authors provided a sufficient condition for weakly branch groups to have the C-CSP. By

taking C as the class of all finite 2-groups, one gets the following result.

Theorem 2.4.16 ([46, Section 4.2]). The Basilica group B has the 2-CSP property.

2.4.1.8 Maximal subgroups

The study of maximal subgroups of branch groups was initiated by Pervova in [86] and [87]
by proving that the Grigorchuk group and torsion GGS-groups do not contain maximal
subgroups of infinite index. One of the early motivations of this investigation is related to a
conjecture of Kaplansky. Let G be a finitely generated group and K be a field of characteris-
tic p > 0. Let J(K[G]) be the Jacobson radical and let A(K[G]) be the augmentation ideal
of the group algebra K[G]. Then A(K[G]) is a maximal right ideal of K[G], and hence it
contains J (K[G]). Then Kaplansky conjectured that J(K[G]) = A(K[G]) if and only if G
is a finite p-group; see [67]. In [84], Passman proved that if J(K|[G]) = A(K[G]) then G
is a p-group, and moreover, every maximal subgroup of G is normal of index p. Therefore,
the class of Burnside groups (finitely generated infinite p-groups) provide potential counter-
examples to Kaplansky’s conjecture. However, it is shown that the Gupta—Sidki 3-group
does not satisfy the equality J(K[G]) = A(K[G]); ctf. [97].

Motivated from Pervova’s result, one can ask the following natural question: do all
finitely generated branch groups behave in the same way? This was answered negatively by

Bondarenko [27] by providing a non-explicit example of a finitely generated branch group
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that admits a maximal subgroup of infinite index. Thenceforth, attempts have been made
to characterise finitely generated branch groups with (or without) maximal subgroups of
infinite index and to see how far one can generalise the results and techniques of Pervova.
It is now known that the torsion elements in the family of generalisations of Grigorchuk and
Gupta—Sidki groups have maximal subgroups only of finite index [5]. On the other hand,
non-torsion siblings of Grigorchuk groups acting on the binary rooted tree have maximal
subgroups of infinite index [41]. One might suspect that the periodicity of the groups plays a
role in the characterisation. However, recent studies by Francoeur and Thillaisundaram [42]
show that all non-torsion GGS-groups have maximal subgroups only of finite index, adding
more complexity to the characterisation.

The study of maximal subgroups of infinite index extends to the class of weakly branch
groups by Francoeur. In [40], he developed new techniques to study the maximal subgroups
of weakly branch, but not branch, groups and proved that the classical Basilica group does

not contain maximal subgroups of infinite index.

Theorem 2.4.17 ([40, Theorem 4.28)). Every mazximal subgroup of the Basilica group B is
of finite index.

2.4.2 GGS-groups

Grigorchuk—Gupta-Sidki groups (abbreviated as GGS-groups) are generalisations of the (sec-
ond) Grigorchuk group and the Gupta—Sidki groups. Let T be the m-regular rooted tree and
let e = (e1,...,em—1) € (Z/mZ)™ ! be a non-zero vector. To each vector e, we associate a
GGS-group G < Aut T as follows: G = {a, t), where a is the m-cycle (1 m m—1 --- 2) which
interchanges cyclically the m subtrees rooted at the first level of T', while ¢ stabilises the first
layer, but acts on the m subtrees rooted at first level recursively as 1(t) = (a®,..., a1 ).
! By setting m = p, an odd prime, and e = (1,—1,0,...,0) € Fg_l, we obtain the Gupta—
Sidki p-group. Likewise, the second Grigorchuk group is obtained by setting m = 4 and
e = (1,0,1) € (Z/4Z)3. See Figure 2.2 for an illustration of the action of the generator
t = (a,a™1,t) of the Gupta-Sidki 3-group on the ternary rooted tree.

Notice that, for m = 2, there is only one non-zero vector e = (1), and the corresponding
GGS-group is an embedding of the infinite dihedral group into the automorphism group of

the binary rooted tree. For m = 3, there exist 3 non-isomorphic GGS-group associated to

'In the literature, the standard generator a is defined by the cycle (12 --- m), and the group G acts on
the set of vertices of T' from the right. Since we use left actions, we replace a with its inverse (1 m m—1 --- 2)

to be in consistent with the rest of the dissertation.
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Figure 2.2: Action of the element t of the Gupta—Sidki 3-group on the ternary rooted tree

the vectors (1,0) (Fabrykowski-Gupta group [35]), (1,1) (Bartholdi-Grigorchuk group [17])
and (1,2) (Gupta-Sidki 3-group [63]). If the defining vector e belongs to Iﬁ‘g_l then every
multiple of e defines the same GGS-group. Therefore, there is only one GGS-group with a
constant defining vector. In [89], Petschick obtained a sufficient and necessary condition for
two GGS-groups acting on the p-regular rooted tree to be isomorphic.

Various properties of GGS-groups acting on p-regular rooted trees have been compre-
hensively studied over the last couple of years; for instance, see [37,38,105]. Here we collect
some key results.

The initial examples of GGS-groups, the second Grigorchuk group and the Gupta—Sidki
p-groups, are finitely generated infinite torsion groups. On the other hand, the Fabrykowski—
Gupta group is not a torsion group; cf. [35]. The condition for a GGS-group acting on the
p-regular rooted tree to be torsion is given by the following theorem.

For all i, j € Z, we use the notation [7, j] to denote the interval in Z.

Theorem 2.4.18 ([105, Theorem 1]). Let e = (e1,...,€ep—1) € FE~ be a non-zero vector

and let G be the GGS-group defined by e. Then G is torsion if and only if
Z ei =0 (mod p).
s [17p71]
This result does not apply to the second Grigorchuk group as it is acting on the 4-regular

rooted tree. Nonetheless, in the same paper [105], Vovkivsky generalised Theorem 2.4.18 to

the subclass of GGS-groups acting on p"-regular rooted trees, for n € N. In [10], Bartholdi
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observed that Vovkivsky’s proof also covers the case of composite numbers.

In the sequel, we fix p to be an odd prime.

Theorem 2.4.19 ([38, Theorem 2.1 & Corollary 2.5]). Let e = (e,...,e, 1) € Fo~ be
a non-zero vector and let G = {a,t) be the GGS-group defined by e. Then the following

assertions hold.

(i) Sta(l) = O =t 4% and G = Sta(1) x {a);

(ii) Sta(2) < G' < Stg(l);
(iii) G/G' = (G a)y x (G't) = Cp x C,. Furthermore, G'/v3(G) = {3(G) [a,]) = Cp;
(iv) Sta(2) < 73(G).

The following definition is due to Petschick [90].

Definition 2.4.20. Let e = (eq,...,ep—1) € F5~! be a non-zero vector. Define
e = (e,....e5 1) =(e2—e1,....,ep_ 1 —€p2) € Fﬁﬂ,
_3 .
o (€5, ep q) = (e5—¢€h..ore, g —e, o) €Fp ", ifp >3,
empty tuple, if p=3.

/ " s . ! /
We say the vectors e, e’ and €” are symmetric if e; = e,—; for all i € [1,p — 1], €] = €pt1—i

for all i € [2,p — 1] and €] = ¢ ,, ; for all i € [3,p — 1], respectively. For convention, we

take the empty tuple to be symmetric.

Assuming that the defining vector e is non-symmetric, we get striking properties of the

corresponding GGS-group.

Theorem 2.4.21. Let e = (eq,...,ep—1) € Fg_l be a non-zero vector and let G be the

GGS-group defined by e. The following assertions hold.

(1) [38, Lemmas 3.2] If the defining vector e is non-constant then G is regular branch over

the subgroup v3(G). Moreover,
$(3(Sta(1))) = 13(G) x -F- x 33(G).

(71) [38, Lemma 3.4 & Theorem 2.14] If the defining vector e is also non-symmetric then G

is regular branch over its commutator subgroup. Moreover,
W(Ste(1)) = G x P x @,
and [G : Stg(1)'] = pPHL.
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(i7i) 38, Lemma 4.2] & [37, Theorem 3.7] If the defining vector e is constant then G is

weakly reqular branch group over K', where K = (ta=1), but G is not a branch group.

Theorem 2.4.22 ([37, Theorem 2.7]). Let e = (e1,...,ep—1) € F2~ be a non-constant
vector and let G be the GGS-group defined by e. Then G has the congruence subgroup

property and is just-infinite. As a consequence, every proper quotient of G is a finite p-group.

In light of Theorem 2.4.22, we now state results concerning quotient groups of GGS-
groups which will be used in Chapter 5. For convenience, we do not distinguish notationally

between the elements of a GGS-group and those of its quotients.

Theorem 2.4.23 ([90, Proposition 3.3]). Let e = (e1,...,ep—1) € Fg_l be a non-constant

vector and let G be the GGS-group defined by e. Then

log,[G: G"] =p+1+e(€)+d(e") —d(e),

where
1 if d is symmetric, 1 if d is constant,
5(d) = and e(d) =
0 otherwise, 0 otherwise,
for de{e €, ¢€'}.
Notation 2.4.24. Let e = (ey,...,ep—1) € Fﬁ_l be a non-symmetric vector and let G be

the GGS-group defined by e. By Theorem 2.4.22(ii), G is regular branch over the com-
mutator subgroup of G. We denote the commutator subgroup G’ of G by H and write
Hy=Hx-" xH= ¥ (St(1)’). Since 1 is a monomorphism, we identify H; with the sub-
group St (1) of G: clearly, Hy < H < G. Write z = [a,t] and z; = ' for the conjugates
of x by powers of a, for i € Z. Notice that x; = x; if and only if i = j (mod p). Further

observe that

P(xo) = (t71a, a%, a5, ... a1, a” 1),
1/J(I‘1) - (aiepilt’ t71a617a6/27 aeé7 ey ae;*1)7
¢(xp_2) = (aeév ey a5;,1 5 aiepilt, tilael y ael2),
zl)(xp,l) = (CLeIQ, aeé’ .. 7ae;;_l , a—epflt’ t—lael)‘

Theorem 2.4.25 below is an easy consequence of Theorem 2.4.21, Theorem 2.4.22 and

Theorem 2.4.23. For convenience, here we give a proof.
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Theorem 2.4.25. Let e = (eq,...,ep—1) € Fg_l be a non-symmetric vector and let G be

the GGS-group defined by e. Let H, Hy and x; be as defined in Notation 2.4.24. Then

(1) H/Hy = (Hyz; | [0,p—2]) = C, XI?T.I

x Cp;
(i) Hi/[H1,G]| = {[H1,Gly) = Cp, where y = vz, 1,...,1);

(iii) [H:H'l=p—1+¢e(€)+d(e"). Furthermore,

H,y if € is non-symmetric,
/ . . . .
H =< [H,,G] ifé is symmetric and € is non-constant,
7 18 symmetric an is constan
L e’ t deée tant,

where L is a subgroup of index p in [Hy,G]. In particular, H/H' ~ Cg_1+a(e,)+6(eﬂ).

Proof. (i) Recall that H; = Stg(1). Set G = G/H;. We use the notation (-) to denote

the images of elements and subgroups of GG under the canonical epimorphism G — G. Then

G = Stg(1) x (@) = Cy, 1 Cp, which can be seen as follows. From Theorem 2.4.19(i) we see

that G splits as a semi-direct product; i.e., G = Stg(1) x {(@). Next we analyse the normal
subgroup St (1). Since, Stg(1) is generated by the elements of the form %', for i € [0, p — 1],

and each of these element has order p, we get that

Sto(1) = (.. 17 ) = 0y x o x G,
Now, since [Stg(1) : G'] = p, we obtain that
1

H/leﬁszxPT- x Cp.

In fact, we can also identify a minimal generating set for H/H; as follows. The quotient
group H is generated by the images of the elements z; = [a,t“i], for i € [0,p — 1]. Now

observe from the first layer section decomposition of x; (Notation 2.4.24) that
Tp_1Tp_2-++To = 1.
Therefore, we conclude that
H/H, = (Hyzli € [0,p—2]).

(ii) Observe first that [H,G] x -*- x [H,G] < [H1,G]. Set yx = (1,.%.,1,2,1,77k71 1) for
k€ [0,p — 1]. Tt is straightforward from Theorem 2.4.19(iii) that the set {yx | k € [0,p — 1]}
generates the quotient group Hy/[H1,G]. But y;, = ygk =[m,,q] Yo- By setting y = v (yo),
again it follows from Theorem 2.4.19(iii) that Hy/[H1, G| = {yo) = C).
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(iii) The result follows from the proof of Theorem 2.4.23. We split the proof into two cases.

Case 1: €” is non-symmetric. In particular, €” is a non-zero vector and hence €’ has to
be non-constant. If otherwise € is constant, then e” is the zero vector in F5~'. Therefore,
by Theorem 2.4.23, we get [H : H'] = pP~' = [H : H;], and hence the result follows
as H' < H;.

Case 2: €” is symmetric. We prove that H' < [Hy, G]. It suffices to show that H/[H;, G]
is abelian. Again we use the fact that the commutator subgroup H of G is normally gen-
erated from the element z = [a,t]. We first claim that the quotient group H/[Hi,G] is
generated from the set {xo,...,zp—2,y}. Even though, it follows immediately from The-
orem 2.4.25(i) and Theorem 2.4.25(ii), here we give a direct proof, in order to record the
following calculations which are useful later. Observe that the set {zq,...,zp_2,y} is in-

variant under conjugation by a modulo [H1, G]. Since [H,G] x Fox [H,G] < [Hi,G], we

get
zh = (t"'a)*", (a%2)7,.. ., (aeéfl)ae”_l, (a=-1t)h)
=[H,,G] (fla61 [a, t]el,aeé, o ,a6;—17a*6p—1t[a’ t]7e1)
=[H1,G] (t71a€1 [a, t]e1fep—1 , a6/27 o ,aeéfl 7 a*ep—lt) = gy,
and
flfti = ((a*Ep—lt)ael’ (t71a61 )(1,‘527 (aeé)aEB’ o (ae;72)a€p—1 : (ae;il)t)
=[H,,G] (a*ep—lt[% t]*el ’ t*lael [a7 t]€27a€l27 o ae;727ae;71 [a? t]eg’*l)

_ / _ /
€2 61+ep71’t 10,61,0,62,... 2

(5,,q) (@~ 't[a,t]

For i € [2,p — 2], we have

/ ’ / ’ e ep_1
e . —ep— - e . 1,..,aP
at = (a%-i+1,. .. a%-1 a” 1ttt a2, L o) (0T e T
e . e —ep_1 —ep—1 el 4—1 eirp—1,e1 eit1 e/ e _.r e .
= (aP=i+1 ... a1 a” P a” P @ t el [t et %t ], a2, L L afriafri L t])
_ . _ei+ei+1+e;—i o e;+1+e;_i
=[H1,G] TiY = Ty .

Finally, we get

’ ’ _ eq ep—1
oy = (a%, ... %1, a% i, ¢ et ) (@ ea D
/ / _ _
= (a%,...,a%1, a1 t[a®='t,a’ 1], t La® [t~ La®, t])
e1—ep—1

=[H1,G] Tp—-1Y
Since y € Hy and [y,t] € [H1,G], it holds that, for all j € Z and i € [0,p — 1], we have

xf =(m,,q) Tiy", for some w € Z. Since, the element [y, a] € [H1,G], we conclude that the

quotient group H/[Hi, (] is generated from the set {zo,...,zp—2,y}.
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Now we prove that H/[Hy,G] is abelian. Notice that, y is a central element of H/[H, G].
It suffices to prove that, for all ¢, j € [0, p — 2], the elements [x;, ;] are trivial in the quotient
group H/[H1,G]. Since [z, z;] = [a%, 2% ] = [,29° '] for all i, j € [0, p — 2], we consider
the element [z, x;]. Now let p = 5. For i € [2,p — 2], the first layer section decomposition
of the element [zg, ;] is given by
[t_lael,ae/ﬁ*(ifl)] if k=0,
[a%, a—cr—11] ifk=1—1,
[z0, %]k = { [a+1, 7 a] if k =1,

[a=¢-1t, a%—] ifk=p—1,

1 otherwise.

\

Therefore,

[0, 2] =(a, . ([ at, a0 [a*, a1 ] [a%+1, ¢~ a | [a 1, a%], 1., 1)

[H1,G] ([t_l’ aegi(iil)][aeig t] [a8;+17t_1][t7 ae/piiL 1..., 1)

ity ([, 76 a, 0% [a, ]~ o, 6] 75,1, 1)

([a, ]P0 1., 1)

" "
=[H,.G] yepf(ifl) TGt

For p = 3 and for ¢ = 1, we have

([t at, a=1], [a®2, ¢ a],1, ..., 1, [a~ % t, a%-1])
ic) ([ a~ v (e [0, e[t a9 1], 1,0, 1)
e ([a ] a, 4] [a, 1] 72 [0, 8] 1,1, 1)

([a,t] P %1% 1,...,1,)

[0, 21]

2(61 —€p71)+6p72 —e2

(H1,G] Y
Now since €” is symmetric, for p > 5, we have e; ;,, = e/, (see Definition 2.4.20), and
2(e1 —ep—1) + (ep—2 —€2) =0
by [90, Lemma 2.4]. For p = 3,
2(e1 —ep—1) + (ep—2 —€2) = 3(e1 —e2) =0 (mod 3).

Therefore, [x,x;] is trivial in the quotient group H/[H;,G], for all i € [1,p — 2], and hence
H/[H1,G] is abelian. From Theorem 2.4.25(i) and Theorem 2.4.25(ii) and we obtain that

H/[Hy,G] = {zo,...,xp2,y}) = Ch.
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In particular H' < [Hy, G].

Assume that €’ is non-constant. Then by Theorem 2.4.23 we obtain [H : H'| = pP =
[H : [Hy,G]], implying that H' = [Hy, G]. If € is constant then [H : H'] = pP™! and hence
[[H1,G]: H'] = p. O

Remark 2.4.26. Let e € Iﬁ‘g_l be a non-constant defining vector and let G be the GGS-
group defined by e. By Theorem 2.4.21, G is regular branch. If e is also non-symmetric

then G is regular branch over its commutator subgroup H = G’ and the branching quotient

H/y~Y(H x 2.

x H) is elementary abelian (Theorem 2.4.25(i)). If the defining vector e is
non-constant and symmetric then G is regular branch over v3(G). However, the branching
quotient v3(GQ) /1 (y3(G) x Fox v3(G)) is not abelian. Indeed, v3(G) is normally generated
from the elements [[a, b],a] and [[a, b], b]. For example, the elements [[a, b], a] and [[a, b], a]*
do not commute modulo v3(G) x --- x v3(G). The fact that the branching quotient being
elementary abelian is vital for the computations in Chapter 5 and Chapter 6. Therefore,

in Chapter 5 and Chapter 6, we consider GGS-groups that are defined by non-symmetric

defining vectors.

Let € = (e1,...,€ep—1) € Fg_l be a non-symmetric vector and let G be the GGS-group
defined by e. In the rest of this section, we assume that the vector e” is also non-symmetric.
Then, by Theorem 2.4.25, H' = G” = H;. For convenience, we record the following struc-

tural diagram.

G

= Cp
Sta(1)

= ()
G'=H

~ bt

Ste(1) =Hy = H x -*- x H

= ()

[H1,G]

Figure 2.3: Structural diagram for the GGS-group defined by a non-symmetric defining

vector e such that e€” is also non-symmetric.

Now we prove two new lemmas that are crucial for the computations in Chapter 5.

Before stating the results, we recall the definition of a circulant matriz. For any vector
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v = (v1,...,vy), the circulant matrix generated by v is the matrix of size n x n whose first
row is v, and every other row is obtained from the previous one by applying a shift of length

one to the right.

Lemma 2.4.27. Let e = (ey,...,ep—1) € F2~' be a non-symmetric vector and let G be the
GGS-group defined by e. Let H, Hy and x; be as defined in Notation 2.4.24. Suppose that €’

is non-symmetric. Define
f : H/H1 X H/H1 — Hl/[Hl,G]

by f(H1g,H1 h) = [H1,G][g,h]. Then f is a skew-symmetric bilinear form. With respect
to the generating set {xo,...,xp—1} of H/Hy, f can be expressed as a p X p circulant matriz
T € Mat,(F,) generated by the vector
(0)61,27 52,83,...,8p=1, —Sp-1,..., =83, =52, _61,2)7 (223)
2 2

_ o _n . p—1
where {19 = 2(e1 —ep—1) + ep—2 — ez and s; = €p(io1) ~ €it1s fori € [2,5%=]. Moreover,
p—1

there exists at least one j € [2,P5~] such that sj # 0, and in particular, f is non-zero.
Proof. Observe first that, since €” is non-symmetric, we have H; = H’ from Theorem 2.4.25.
We identify the quotient group Hy/[H1, G| with the finite filed F,, and the quotient group
H/H; with the vector space of dimension p—1 over F,,. Therefore, the map f is well-defined.
Since f is the commutator map, it is not difficult to see that f is a skew-symmetric bilinear
form.

With respect to the generating set {xo,...,x,—1} of the quotient group H/H;, we shall
express the f as the p x p matrix

T = (i),

where /; ; is defined by the equality f(x;—1,2j-1) = [zi-1,7j-1] =u, ¢ yli. Since the
quotient Hy/[H1,G] is generated by the element y, the entries ¢; ; are well defined. Since f
is a skew-symmetric bilinear form, it is enough to compute [z;,z;] for i < j. Assume that

i,7€[0,p—2] and i < j. We have

[2i, 2] = [2§ 28] =, [20, 28] = [0, 2j-4]-

Therefore, 7 can be determined by the values of ¢, ; for all j € [1,p — 1]. Clearly, ¢, = 0.
It follows from the proof of Theorem 2.4.25 that

" "
b =2(e1 —ep-1) +ep2—e2 briv1 =€y (1) ~ €is1s
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for i € [2,p —2]. Now, for i € [2,p — 2], set s; = eg_(i_l) —e;, 1. Notice that s,_; = —s;.

"

Since €” is non-symmetric, there exists i € [2, p — 2] such that €p—(i—1)

# e}, ;. Consequently,

l1,+1 # 0, and hence f is non-zero. For ¢ = p — 1, we have

—2(e1—ep—1)+tea—ep—2 _ y—f1,2

=Y

i

hence ¢y, = —/;1 2. This completes the proof. O

Observation 2.4.28. Let f be as defined in Lemma 2.4.27 and let T be the p x p circulant
matrix corresponding to f given by the vector in (2.23). Since f is a skew-symmetric bilinear

form, we can find a matrix M € GL,(FF,) such that

I
I
M-T- M = I, )
Ips
2
0 O 0 o0
T - . —1 1
where M?* is the transpose of M, and there exists r € [1, pT] such that I, =
-1 0
for all ¢ < 7, and I; is the 2 x 2 zero matrix for all r < j < %. With the help of the

software MAGMA, we have computed the matrix 7 and M for Gupta—Sidki p-groups for
p € {5,7,11,13}. In this situation, 7 is of rank p — 3 and observed that the (p — 2)-th row

of the matrix M is of the form

k+1D(E+2) (p=2)p-1)

(1,3,6,..., 5 , 5 ,0,0).
Moreover, the element
3 6 (k+1)(k+2) (p=2)(p—1)
$0x1$2$k 2 :Ep—32

is central in the quotient group H/[H1,G]. We generalise this observation in the following
result, which turns out to be one of the main ingredients for the computations in Chap-
ter 5, because on central elements irreducible characters of a group take non-zero values; cf.

Lemma 5.3.10.
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Lemma 2.4.29. Let e = (ey,...,ep—1) € F2~' be a non-symmetric vector and let G be the
GGS-group defined by e. Assume that €' is also non-symmetric. Then the element

3 6 (k+1)(k+2) (r=2)(p—1) (p—1)p p(p+1)
_ 2 2 2 2
2 = ToT)Ty Ty, STy, g T, 5 T, 7

is a non-trivial central in the quotient group H/[Hy,G].

Proof. We first show that z is non-trivial in the quotient group H/[H1,G]. Observe from

the first layer section decomposition of the elements zo,...,z,—1 (Notation 2.4.24) that
z =g, q) (ta"™,ta", ... ta"" " )y",
for some r,71,...,7p—1 € [0,p — 1]. Thus the element z is non-trivial in the quotient group

H/[Hy,G], since (ta™,ta™,... ta"™»')y" ¢ [Hy,G]; cf. Theorem 2.4.25. Now we prove
that the element z is central. From Lemma 2.4.27, the bilinear form f admits the circulant

matrix generated by

v = (O,£1’2,82,83,...,8%, TSpoiye.e, 83, —s2,—12),

— N/} n" . p—1 . I/
where ¢15 = 2(e1 —ep—1) + €p—2 — e and s; = €p(i—1) ~ €i+1 for i € [2,%5=]. Since €” is

non-symmetric, there is some i € [2,p — 2] such that s; is non-zero. Observe that

_n on o /
Si = €p_(i—1) T Ci+1 = €p(i—1) ~ €p—i ~ Eit1 T &

= €p—(i—1) — €p—i — E€p—i T Ep—i—1 — €j41 T € + €& — €1

= ep_(i—1) — €i—1 + 2(€; —ep—i) + €p_i—1 — €it1.

We set ¢; = e,—; — e; for i € [1,p —1]. Therefore, we shall write 19 = —2¢; + c2. For

i€ (2, %], we get s; = ¢;_1 — 2¢; + ¢j41, and

Sp—1 = Cp—3 — 2Cp—1 + Cp+1 = Cp—3 — 3Cp—1.
2 2 2 2 2 2

Now, to see that the element z is central in the quotient group H/[H;, G], it suffices to

see that the element

3 (k+1)(k+2) p(p+1)

N 2

(i, 2] = [24, woxy - - - 2, T, g
_ 3 (k1) (k+2) p(p+1)
=(m,q) [T vol[zi, w1]” - [wi, ] 2 o [, 2pa] 2
_ y5i+1,1y3fz‘+1,2 . _waul,kﬂ . _y%‘&ﬁ»l,p

k+1)(k+2 1
fi+1,1+3&'+1,2+“'+%@Hl,wﬁr'“ﬂ@; )‘ei+1,p

=Y

is trivial in H/[Hy,G] for all i € [0,p — 1], where ¢;1; ; denotes the (i + 1,7)-th entry of

the circulant matrix 7 generated by v. Let r; denote the i-th row of the matrix 7, for
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k+1)(k+2) p(p+1)
5 )

i € [1,p], and let w be the element (1,3,..., ( ). Therefore, it is enough
prove that the coordinate sum of the product of r; and w is zero for all i € [1,p]. We use
the notation (ao,...,ap—1) - (bo,- - ,bp—1) to denote the operation which yields the element
apbg + -+ + ap—1bp—1.

Let i € [1,p]. The coefficient of ¢; in the coordinate sum of the product r; - w is given by

(+1)(+2) (+2)(i+3) (i-1i @(—2)@G-1)
) 5 + 5 2t - 5 —0.

The coefficient of ¢; for j € [2, %] in the coordinate sum of the product r; - w is given by

(z‘—l—j—l)(i—i—j)_2(z’—|—j)(i+j+1)+(7j—|—j+1)(2’—|—j+2)
2 2 2
G R (G ) N Gt ) [ R R At Rl V)
2 2 2

= 0.

Finally, the coefficient of ¢p—1 in the coordinate sum of the product r; - w is given by
2

(i+ 2% +251) L+ P+ ) (= P)i=P57) | L6

2 2 2 2

= 0 mod p.

Therefore r; - w = 0 for all 7 € [1, p] and hence we conclude that the element z is central in

the quotient group H/[H1,G]. O
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Chapter 3

Introduction

Let G be a group and let 7,(G) be the number of (equivalence classes of) n-dimensional
irreducible complex representations of G. The group G is said to be representation rigid
if 7,(G) is finite for all n € N. Clearly, every finite group is representation rigid. Examples
of groups that are not representation rigid are easy to be found. For example, the infinite
cyclic group is not representation rigid as it has infinitely many 1-dimensional complex
representations. In the sequel, we suppose that the group G is infinite and representation
rigid. One of the fundamental problems in asymptotic representation theory is to understand
the growth of the function N — Ry(G) = gj rn(G), where Ry(G) is the number of
irreducible representations of G of dimension Z;lmost N. We say that the group G has
polynomial representation growth (abbreviated as PRG) if Ry (G) is polynomially bounded
in N, ie., if Ry(G) = O(N®) for some o € R>g. To study the representation growth of a
PRG group G, following pioneering work of Grunewald, Segal and Smith [61], one introduces

the Dirichlet generating function
o0
Ca(s) = Y m(@n~* (seC),
n=1

called the representation zeta function of G. From the general theory of Dirichlet generating
functions, it is known that the region of convergence of (;(s) is always a right-half plane
of the plane of complex numbers, possibly empty. The abscissa of convergence, denoted
by a(G), of (g(s) is the infimum of all & € R such that (5(s) converges and defines a
holomorphic function on a right half-plane {s € C | Re(s) > a}. It can be easily verified
that G has PRG if and only if a(G) is finite. In fact, if Ry(G) is unbounded then a(G) is

given by the formula

) log Ry (G)
=1 D BN
o@) = limswp 0N
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Hence, o(G) is minimal with the property that Ry(G) = O(N*@+€) for every € > 0,
whence it gives the polynomial degree of representation growth, and it bounds the right-half
plane of convergence. In favourable circumstances the function (;(s) may extend meromor-
phically to a multi-valued analytic function on a larger domain.

The study of zeta functions of groups originated from the study of subgroup growth. Let
G be a finitely generated group and let a,,(G) denote the number of subgroups of index n
in G. A landmark result in the theory of subgroup growth is the characterisation of groups
of polynomial subgroup growth [72]. In the context of representation growth, the analogous
question of characterisation, in its full generality, is still open. Nevertheless, remarkable
results are obtained in the classes of arithmetic groups, their profinite completions and
related compact Lie groups over non-archimedean local fields.

Arithmetic groups naturally arise as lattices, i.e., as discrete subgroups of finite co-
volume, in locally compact groups, such as SL,(Z) < SL,(R). Let I" be an arithmetic
irreducible lattice in a semisimple locally compact group G of characteristic zero. In [73],
Lubotzky and Martin proved that I' has PRG if and only if I" has the congruence subgroup
property.

In [26, Proposition 2], it is shown that the profinite completion G of a finitely generated
discrete group G is representation rigid if and only if G is FAb, i.e., the abelianisation of
every finite index subgroup of G is finite. Since every representation of a profinite group
factors through a finite quotient, the result follows from an application of Jordan’s classical

theorem about finite subgroups of linear groups in characteristic zero.

Theorem 3.0.1 (Jordan’s theorem). There exists a function j : N — N such that each

finite subgroup of GL,,(C) has an abelian normal subgroup of index at most j(n).

In particular, a finitely generated profinite group G is representation rigid if and only
if it is FAb. Using techniques from geometric representation theory and model theory,
Jaikin-Zapirain [66] established rationality results for representation rigid compact p-adic
Lie groups. Key examples of FAb compact p-adic Lie groups are special linear groups SL,, (O)
and their principal congruence subgroups SL"'(O), where O is a compact discrete valuation
ring of characteristic zero with residue field of characteristic p. The study of representation
growth of compact p-adic Lie groups is interesting in its own right: it uses tools from various
areas of mathematics. One can find interesting results on the representation zeta functions
of these groups, including functional equations and explicit formulas, summarised in a series
of articles, including [6,7], by Avni, Klopsch, Onn and Voll.

In this dissertation we consider another important class of groups; the class of self-similar
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branch groups. The study of representation zeta functions of self-similar branch groups was
initiated by Bartholdi and de la Harpe [19]. Let T' be the m-regular rooted tree and let
G < AutT be a regular branch group over a subgroup H. Recall from Definition 2.3.2
that G is self-similar and it acts transitively on each level of T'. Furthermore, G' contains a
subgroup H of finite index such that H > ¢~ 1(H x Mx H ). If G is representation rigid
(which is the case for many interesting regular branch groups, see Corollary 3.0.3), one may
define and study the representation zeta function (;(s), for s € C. Since H is a subgroup
of finite index in G, as a corollary of [73, Lemma 2.2] one gets that a(G) = a(H). This
allows us to study the representation zeta function of H to understand the representation
growth of G. Set Hy = ¢ 1 (H x Mox H ). Every irreducible representation p of H can be
restricted to a representation of Hi, say p|m,. By Clifford’s theorem, p|m, can be written
as a sum of irreducible representations of Hi. The representations of Hi are in one-to-one
correspondence with products of irreducible representations of H. Moreover, the represen-
tations of H;y induce to representations of H. This process of restriction and induction
of representations serves as an essential tool to get a recursive estimate on the number of
irreducible characters of H, hence that of G as it is a finite extension of H; see Chapter 4
for a review on Clifford theory.

Let H be a finite group acting transitively on a finite set X with cardinality m > 2. Set

W(H,0) = {1}, W(H,1) = H and, for every n € N, set
W(H,n+1)=W(H,n)x H=Hix» W(H,n).
We define the iterated wreath product W (H) of H as the profinite group

W (H) = imW (H, k).

<«

keN

Notice that W(H) =~ W(H) x H. Hence W(H) is regular branch over W(H). If H
is perfect, i.e., [H,H] = H, then it is shown in [19] that W(H) is representation rigid.
Furthermore, the abscissa of convergence of the representation zeta function (y(g(s) of
W (H) is positive and finite, and (y (g (s) satisfies a functional equation involving shifts
Cwrry(es) for e € {1,...,m}. Also, in [19], the authors carried out numerical computation
for H = Alt(5) and H = PGL(3,2), and obtained approximated values of the abscissa of
convergence of the corresponding representation zeta functions.

In [14], Bartholdi generalised the results of [19] to all representation rigid regular branch
groups. Akin to the profinite setting, it is claimed that a finitely generated group G that
is regular branch over a subgroup H is representation rigid if and only if the abelianisation

of H is finite. For a regular branch group G the latter condition is equivalent to the fact
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that G is FAb; see Theorem 5.1.1. It is easy to see that if G is representation rigid then G
is FAb, and in particular, the abelianisation of H is finite. If otherwise, suppose that K is
a subgroup of finite index in G with infinite abelianisation. Then K admits infinitely many
1-dimensional representations, and hence G has infinitely many representations of degree at
most [G : K], violating the fact that G is representation rigid. However, there is a gap in
the proof of the converse statement ([14, Proposition 5.5]), which claims to prove that the
kernel of every irreducible representation contains 1) ~!(H x m x H), for some d € N. This
can be fixed by a result of Abért [2, Corollary 7] that implies that weakly branch groups are
not linear over any field. We say that a group is linear over a field K if it can be embedded

into GL,,(K) for some n. We prove the following result in Chapter 5.

Theorem 3.0.2. Let G < AutT be a reqular branch group over a subgroup H. Assume
that the abelianisation of H 1is finite. Then G 1is just infinite and, in particular, every

finite-dimensional representation of G factors through a finite quotient.

For a finitely generated group G that satisfies the assertion of Theorem 3.0.2, one can
see that G is representation rigid by an application of Jordan’s theorem, as in the proof of
[26, Proposition 2|. For convenience, we record the result as the following corollary and its

proof can be found in Section 5.1.

Corollary 3.0.3. Let G < Aut(T) be a regular branch group over a subgroup H. If G is
representation rigid then the abelianisation of H is finite. The converse holds if G is also

finitely generated.

For any representation rigid group G that is regular branch over a subgroup H, it is
proved in [14] that the abscissa of convergence of ((s) is positive and finite. Indeed, it is
shown that there exist constants A € N and ¢ > 1 (large enough), both depending on G,
such that, for every n € N,

rn(H) < A(n/oo(n))",

where o((n) is the number of divisors of n. By a similar computation as in [19, Proposition
12], one gets a rough upper bound for the abscissa of convergence a(G) of the representation

zeta function of G as
a(G)=a(H) <t+1.

Moreover, it is proved that (g(s) is a linear combination of solutions of a system of
functional equations; cf. [14, Theorem A]. This result applies, in particular, to the Grig-

orchuk group and to the Gupta-Sidki 3-group. The representation zeta functions of these
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groups are studied in Section 2.1 and Section 2.2 of [14]. Using the computer algebra sys-
tem GAP, Bartholdi provided the first few terms of the representation zeta function of the
Grigorchuk group and the Gupta—Sidki 3-group. Furthermore, he produced a recursive func-
tional equation for the representation zeta function of the Gupta-Sidki 3-group. With the
help of computer calculation he reported that the abscissa of convergence of the representa-
tion zeta function of the Grigorchuk group and the Gupta—Sidki 3-group are approximately
3.293330470 and 4.250099133, respectively, without providing any error intervals.

In this dissertation, using the representation zeta function as a tool, we study the rep-
resentation growth of finite-dimensional irreducible complex representations of GGS-groups.
Various properties of the GGS-groups have been investigated: periodicity [105], Hausdorff
dimension [38], branching, congruence subgroup property [37], etc. Surprisingly little is

known about the finite-dimensional representations of these groups.

The boundary representations of GGS-groups have already been investigated in [68].
Let G be a subgroup of the automorphism group AutT of a regular rooted tree T" whose
set of vertices are in bijection with the set of all words over an alphabet X. The action
of G on the rooted tree T induces an action of G on the boundary 0T of T, where 0T
is the set of all infinite paths starting at some fixed vertex of 1" and is homeomorphic to
the Cantor set with respect to the natural topology. The action of G on 0T gives rise
to representations of G on spaces of functions on the boundary. The study of boundary
representation of groups acting on rooted trees attracts reasonable attention over the last
couple of years; for instance see [16,34,68]. In [68], Kionke introduced a new notion of
local 2-transitivity. A spherically transitive action of G on T is called locally 2-transitive,
if for all distinct vertices u, v € X™ the intersection of the stabilisers stg(u) N stg(v) acts
transitively on the set {ux | z € X} x {vz | z € X}. Under the assumption that G is locally
2-transitive, Kionke provided an explicit decomposition of the boundary representations into
irreducible constituents. Furthermore, he established a sufficient and necessary condition
for a GGS-group acting on a p™-regular rooted tree, for an odd prime p and n € N, to be
locally 2-transitive. As a corollary, one gets that if G is a GGS-group acting on the p-regular

rooted tree then G is locally 2-transitive.

Our results on representations of GGS-groups are summarised into two chapters; Chap-
ter 5 and Chapter 6. In Chapter 5, we obtain a bound for the abscissa of convergence of
the representation zeta function of the GGS-groups. Chapter 6 is devoted to an explicit
computation of a recursive formula for the representation zeta function of the Gupta—Sidki

3-group. The resulting functional equation is consistent with the one reported in [14] based
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on computer calculations.

Let G be the GGS-group defined by a non-constant defining vector e € Fgfl. Then by
Theorem 2.4.21, G is regular branch over a subgroup H, and by Theorem 2.4.22; G has
the congruence subgroup property and is just-infinite. Without loss of generality, we take
H = ~3(@), or if the defining vector e is also non-symmetric, we take H = G’. Since G is
just-infinite and the commutator subgroup H' of H is normal in G, the subgroup H' is of
finite index in G. Therefore, the abelianisation of H is finite, and from Corollary 3.0.3 we

get the following result.

Corollary 3.0.4. Let G be a GGS-group defined by a non-constant defining vector e € ngl.

Then G is representation rigid.

In [85], Passman and Temple considered the finite-dimensional representations of the
Gupta-Sidki p-group Gy, for an odd prime p, over an algebraically closed field K. If
char K # p then they obtained a lower bound for the number of irreducible representations
of any finite degree n; cf. [85, Theorem 1.3]. In our setting, i.e., K = C, this translates to
the fact that

a(Gy) =p—2. (3.1)

They also proved that G, admits infinitely many representations if char K = p. Using the
character theory of finite groups, in the unpublished manuscript [69], Klopsch and Réver
obtained partial results that enable us to produce an upper bound for a(G,). In Chapter 5,
we generalise the results from [85] and [69] to GGS-groups. Here we point out that, the results
on GGS-groups heavily rely on our good understanding of the algebraic structure of the
groups, especially their branching quotients, which in turn depend on the defining vectors.
We restrict our attention to the subclass of GGS-groups defined by non-symmetric defining
vectors; cf. Remark 2.4.26. In this situation, by Theorem 2.4.21 and Theorem 2.4.25, the
corresponding GGS-group G is regular branch over the commutator subgroup H = G’ and
the branching quotient H/v~!'(H x Ko H) is elementary abelian. Define C' to be the
number (possibly infinite) of irreducible representations of the commutator subgroup H
of G that are invariant under the action induced by conjugation of G. If the number C is
finite, we prove that the coefficients of (;(s) are bounded above by a function of n involving
the generalised Catalan numbers; see Definition 5.3.5. In this case, using the generating

function for the generalised Catalan numbers, we provide a bound for a(G).

Theorem 3.0.5. Let G be a GGS-group defined by a non-symmetric defining vector and
let H = G’ be the commutator subgroup of G. If the number C of G-invariant irreducible
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representations of H is finite then the abscissa of convergence a(G) of the representation

zeta function (G (s) satisfies the inequality

log 2 log C
p-2<al@) < p-Dp = +pp- D S+ E-DPre-D-1 ()

In particular, G has polynomial representation growth.
We investigate the cases in which the number C is finite. It turns out to be that C is

finite, in fact C < p, if the defining vector e satisfies a polynomial equation in its entries.

In this situation, replacing C' with p in (3.2), we get that a(G) is bounded above by O(p?).

Theorem 3.0.6. Let G be a GGS-group defined by a non-symmetric defining vector e =
(€1,...,ep—1) € F5~'. We define

(e3 —2e2+€1,...,€i42 — 2641 + €iy ..., €p—1 — 26p_2 + €p_3) EFL " if p> 3,
empty tuple, if p=3.

Assume that the vector €' is either () symmetric, or (xx) non-symmetric and the sum

w(e) = (p—=2)(e1 —ep-1) + (P —4)(e2 —ep—2) + -~ +3(eps —epss) + (ep1 —eps1)

2 2 2 2

18 non-zero modulo p. Then

(p— 1)log2

p—2<a(G)<(p +2p? — 2p + 1. (3.3)
log p

For p = 3, there are only two non-isomorphic GGS-groups defined by non-symmetric
vectors, namely the Fabrykowski-Gupta group defined by e = (1,0), and the Gupta—Sidki
3-group defined by e = (1,2). In both cases, the vector €” is the empty tuple, and hence
it is symmetric by definition. If p = 5 and the defining vector €” is non-symmetric, we
shall prove that the sum w(e) has to be non-zero modulo 5; see Lemma 5.3.13. However,
there exist GGS-groups that do not satisfy the condition (xx). For example, fix p = 7.
Consider the defining vector e = (1,1,2,3,0,0). Notice that e and €” are non-symmetric,
but the sum w(e) is zero modulo p. We shall take a closer look at the special case where
w(e) = 0 (mod 7), and give an alternative proof for the conclusion of Theorem 9.1.1; see
Lemma 5.3.16. Therefore, for p € {3,5,7}, we obtain the following theorem in its full

generality.

Theorem 3.0.7. Let p € {3,5,7} and let G be a GGS-group defined by a non-symmetric

defining vector e € ng‘ Then

log 2

p—2<a(G)<(p—1)logp

+2p% —2p + 1.
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Furthermore, Theorem 9.1.1 can be applied to the infinite family of GGS-groups defined
by the defining vectors of type e = (1,2,...,p—1) € Fg_l, since the vector €” is symmetric.
Now, consider the defining vector e = (1,—1,0,...,0) € Fﬁfl of the Gupta—Sidki p-group
for p = 5. Tt is easy to see that the defining vector €” is non-symmetric and the sum w(e)

is non-zero modulo p. Hence, we record the following result.

Corollary 3.0.8. Let G be the Gupta—Sidki p-group. The abscissa of convergence a(G) of

the representation zeta function (g(s) satisfies the inequalities (3.3).

The proofs of the special cases p = 5 and p = 7 suggest that Theorem 9.1.1 can be
generalised to all GGS-groups defined by non-symmetric defining vectors. At the end of
Section 5.3 of Chapter 5, we provide partial results that help to generalise Theorem 9.1.1.
The general approach requires an understanding of the lower central series (or at least terms
up to v,(G)) of the given GGS-group G. So far, the best known result in this direction is
the work of Vieira on the Gupta—Sidki 3-group G3 [104], who proved that the rank of the
quotient group 7;(G3)/7i+1(G3) is bounded by two, for ¢ € {1,...,9}. Using a nilpotent
quotient algorithm, a descriptive bound for v;(G3)/vi+1(G3), for ¢ = 2, is obtained in [15].
With a better insight on lower central series, one would be able to generalise Theorem 9.1.1
to all GGS-groups defined by non-symmetric defining vectors.

If we allow the defining vector e to be symmetric, two possible cases can occur; either
e is symmetric and non-constant or e is constant. In the first case, the corresponding GGS-
group G is regular branch over the subgroup v3(G). In this situation, the branching quotient
is not abelian anymore. In the latter case, the corresponding GGS-group is merely weakly
branch. One might need a different approach to study the representation zeta function

of GGS-groups corresponding to symmetric defining vectors. This motivates us to ask the

following question.

Question 3.0.9. How far can we generalise results obtained on the representation growth
of GGS-groups? How do these results connect to distinctive structural properties of the

groups?

In Chapter 6, we explicitly compute the representation zeta function of the Gupta—
Sidki 3-group G3. The group G is regular branch over the commutator subgroup G4 and
its branching quotient G%/1~1(G% x G% x G%) is isomorphic to C3 x Cs. Because of its
relatively small branching quotient, we can carry out precise computations to get recursive
estimates on the number of irreducible representations of G%. Using these estimates, we first

obtain a recursive formula for the representation zeta function of G%. From that one can
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easily compute the representation zeta function of Gs3. The detailed method of computation
is described in Section 6.2. Our calculations are based on partial results obtained in [69]

which provided the general strategy.

Theorem 3.0.10. Let G3 be the Gupta—Sidki 3-group. The representation zeta func-

tion Cr(s) of the commutator subgroup H = GY% satisfies the functional equation
Cu(s) =3+ als) +28(s) + 7(s) + &(s),

where a(s), B(s), 7(s) and &(s) are partial representation zeta functions of H, which are
defined in Section 6.5. We get

Cou(s) = 9+2-375 3 als) +2-378(s) + 37 7(s) + 33—25 (). (34)

An explicit formulation of (3.4) can be found in Section 6.5. We shall show in Sec-
tion 6.4.2 that the functional equation (3.4) is in agreement with the one provided in [14]
based on undocumented computer assisted calculation. In Appendix 10, we give a MAGMA
code that produces the first 500 terms of the representation zeta function of 3, that coin-
cides with all the first 11 terms provided in [14]. Furthermore, the MAGMA code computes
a conjectural estimate of the abscissa of convergence based on a truncated representation
zeta function of the commutator subgroup G with 500 terms and the value rounded down
to the second decimal is 4.25. However, because of the complex recursive nature of the zeta

function it is not clear how to obtain a precise value for a(G3) from (3.4).

Question 3.0.11. Can we find the precise abscissae of convergence of the representation
zeta functions of the GGS-groups? Are they rational, algebraic or transcendental? How do

they relate to the algebraic properties of the groups?

We emphasise that our computation is limited to Gs3. In general, i.e., if G is a GGS-
group defined by a non-symmetric defining vector, the branching quotient is not C, x C), of
rank 2, but rather C, x --- x C}, of rank p — 1. We need new insights to conduct effective
Clifford theory in this increasingly complex setting. As a next step, one can consider the
Fabrykowski-Gupta group G defined by the vector (1,0). It is regular branch over its
commutator subgroup and its branching quotient is isomorphic to Cs x C3. As pointed out
earlier, Theorem 9.1.1 applies to G, and a(G) € [1,12.261895].

Before proving the main results, in Chapter 4, we review necessary definitions and results
from character theory of finite groups, including Clifford’s Theorem. The results from

Chapter 4 are essential tools to study the representations of GGS-groups, especially in the
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computation of the representation zeta function of the Gupta—Sidki 3-group. Theorem 3.0.2,
Corollary 3.0.3, Theorem 9.1.1 and Theorem 3.0.7 are proved in Chapter 5. While Chapter 6

is entirely dedicated to prove Theorem 3.0.10.
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Chapter 4

Preliminaries from the character

theory of finite groups

Here we set up notations, and recall definitions and results from the character theory of
finite groups that are vital for the discussion in Chapter 5 and Chapter 6; for details see
[65, Chapters 5, 6 and 11]. The results from this chapter will be used several times in the
subsequent chapters.

Let A be an arbitrary finite group. A class function f of A is a function from A to
a field K such that f is constant on the conjugacy classes of A. In this dissertation, we
take K to be the field of complex numbers C. The set of all class functions of A forms a
vector space over C. For any given pair x1, x2 of class functions of A, one can define the

inner-product

(X1: X2) = ,;‘ > xa(9)x2(9),
geA
where XT(g) is the complex conjugate of x2(g). The induction and restriction are two oper-
ations that are defined between the set of class functions of a group and a given subgroup.
Let A be a finite group and B be a subgroup of A. If ¢ is a class function of A then the
restriction of ¢ to B is a class function of B and is denoted by ¢|p. Now, let ¢ be a class
function of B. The induced class function ¥4 of A is given by
1

9(g) = w;ﬁo(wgaf‘l),

where 9°(h) = ¢(h) if h € B, and otherwise, ¥°(h) = 0. For any given pair ¢ and 9, where ¢

is a class function of A and ¥ is a class function of B, it is easy to see that

<19":0|B> = <19Aa90>' (4'1)

The above equality is known as the Frobenius reciprocity.
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Let p: A — GL,(C) be a representation of A. The character x : A — C afforded by p
is the class function given by x(g) = tr(p(g)), for every g € A. Observe that x(1) = n is the
dimension of p, and is called the degree of the character x. The kernel of the character x is
given by the set

ker(x) = {g € A | x(9) = n}.
Note that a character is not necessarily a homomorphism. However, if the degree of x is
one, then it is a homomorphism, and in that case y is said to be linear. A character x
is said to be irreducible if the corresponding representation p is irreducible. The set of all
irreducible characters of a group A, denoted by Irr(A), forms an orthogonal basis for the
set of all class functions of A. Every character x of A can be written as sum of irreducible

characters x1, ..., x¢ € Irr(A4), for some ¢ € N, as following

X =mix1+ -+ meXe,

where m; is the multiplicity of y; in x and is given by the inner-product (y,x;) for all
i€ {l,...,¢}. Here the decomposition of y is unique up to a permutation of its components.
We say that y; is an irreducible constituent of .

Let A and B be two finite groups and let G = A x B. Let ¢ € Irr(A) and 9 € Irr(B).
We use the notation ¢ ®J to denote the product of the characters ¢ and ¥, and is given by:

for every g € A and h € B, we have

(P ®0)(g; 1) = ¢(g9)I(h).

It can be easily verified that ¢ ® ¥ is an irreducible character of G. Moreover, every
irreducible character of G can be written uniquely as a product an element of Irr(A) and

an element of Irr(B).

Theorem 4.0.1 ([65, Theorem 4.21]). Let A and B be two finite groups and let G = A x B.
Then
Irr(G) = {p®9 | p € Irr(A), ¥ € Irr(B)} = Irr(A) x Irr(B).

Remark 4.0.2. Let A and B be two finite groups and let G = A x B. Let ¢1, p2 € Irr(A)
and 1,199 € Irr(B). It follows from Theorem 4.0.1 that p; ® ¥ = 2 ® J2 if and only if

1 = 2 and Y1 = V.

Let A be a finite group and let B be a subgroup of A. Assume further that ¢ € Irr(A)
and ¢ € Irr(B). Then the function ¥4 and ¢|p are again characters of A, resp. B, with
9A4(1) = [A: B]9(1) and ¢|p(1) = ¢(1). It is easy to check that the operations induction

and restriction are transitive.
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Lemma 4.0.3. Let B and C be subgroups of A such that C < B. Let ¢ € Irr(A) and
9 e Irr(C). Then (98)4 =94, and (v|B)|c = ¢|c.

Now, suppose that B is a normal subgroup of A. If ¢ € Irr(B) and g € A, then the map
Y9 : B —> C given by 99(h) = 9(ghg™"), for every h € B, is again an irreducible character
of B. This gives an action of the group A on the set Irr(B) by conjugation. The stabiliser
of ¥ € Irr(B) under the action of A is the subgroup given by

La(9) = {ge A | 99 = v},

and is called the inertia group of ¥ in A. Notice that B < I4(9). The induction and
restriction of characters from or to the normal subgroup B help to relate the characters of

A to the characters of B. One of the fundamental results that guarantees this process is

Clifford’s theorem, introduced by Clifford in 1937.

Theorem 4.0.4 (Clifford’s theorem [65, Theorem 6.4]). Let A be a group (possibly infinite),
let B be a normal subgroup of A, and let p € Irr(A). Let ¥ be an irreducible component of

vl and suppose that ¥ = ¥1,V9, ..., are the distinct conjugates of ¥ in A. Then

ols = (olB, ) ), Ur.
r=1

For a given character 9 € Irr(B), Clifford’s theorem enables us to construct all irreducible
characters ¢ € Irr(A) such that (p|p,J) # 0.

It is worth to point out that the induced character ¥4 of ¥ € Irr(B) from the normal
subgroup B to A is not necessarily irreducible. However, under certain conditions 94

becomes an irreducible character of A.

Theorem 4.0.5 ([65, Theorem 6.11]). Let B be a normal subgroup of A and let 9 € Irr(B)
with C' = I4(¥). Let

A= {pelr(A) | {p|p,9) # 0}, C={nelr(C)|{n|p,9) +# 0}.
Then the following assertions hold.
(i) If n € C then n? is irreducible, and the map n — 7™ is a bijection from C onto A,

(i) If n* = ¢ for n € C, then (|, 9) = (nlp, ).

We say a character ¢ € Irr(A) is an extension of a character 9 € Irr(B) if ¢|p = 9, and
we say that O is extendable. In this case, the character ¥ is A-invariant, i.e., I4(0) = A,
and ¢(1) = 9(1). If the character ¥ is extendable and if we identify the set Irr(A/B) with

a subset of Irr(A) then the induced character ¥4 can be uniquely described as follows.
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Theorem 4.0.6 (Gallagher’s Theorem [65, Corollary 6.17]). Let B be a normal subgroup
of A and ¢ € Irr(A) such that | = ¥ € Irr(B). Then the characters e\ for X € Irr(A/B)
are irreducible, distinct for distinct X\ and are all of the irreducible constituents of V.

Furthermore, each @) occurs in the decomposition of 9 with multiplicity one.

The theorem below is a special case, under which a character is extendable. This theorem
is crucial for the discussion in Chapter 6, where the factor groups considered are mostly

cyclic.

Theorem 4.0.7 ([65, Theorem 11.22]). Let B be a normal subgroup of A and A/B be cyclic
and 9 € Irr(B) be such that I5(9) = A. Then ¥ is extendable to A.

We now record the following two lemmas for the discussion in Chapter 6.

Lemma 4.0.8. Let A be a finite group and let B be a proper normal subgroup of A. Let
v e Irr(B) with [4(9) = A. If 9 extends to an irreducible character ¢ of A then | p # 0.

Proof. Suppose that ¢[4 p = 0. We have,

1= (o) = T 2 00900 = o | D eel + Y ¢(0)e0)
| | geA | | heB geA\B
[
=0
_1 o = 1Bl

where the last equality follows since 1 = (¢,9) = ﬁ > ¥(h)J(h). This is a contradiction,
heB

as B is a proper subgroup of A, completing the proof. O

Lemma 4.0.9. Let B and C be normal subgroups of A such that C' < B. Let ¢ € Irr(B)
and let n € Irr(C) be an irreducible component of p|c. Assume that n = n,...,n, are the

distinct conjugates of n in B. If g € 14(p) thenn9 € {n1,...,n}. The converse is also true,
if Ig(n) = C.

Proof. Thanks to Clifford’s theorem we have,

n
plo = Celem) Y e
r=1

Assume that g € I4(¢). Then by definition ¢ = 9. Therefore p|c = ¢9|c = (¢|c)?, where
the last equality follows because C'is normal in A. This further implies that n9 € {n,...,n,}.

Conversely, assume that n9 € {n1,...,m,}. Then

W9lc = (ele)? = elosmy Dl = elesmy Y. oy = elos
r=1 r=1
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where o € Sym(n) is a permutation that reflects how conjugation by g permute the B-orbit

of n. If we further assume that Ig(n) = C, then n? is irreducible and n? ~ ¢, since

0 # (plc,n) = {p,nP).

Therefore,
1 =<{p,n") = (playm) = (@9cn) = (@7 nP) = {9, o),

which implies 9 = . O
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Chapter 5

Representation growth of

GGS-groups

The objective of this chapter is to obtain a bound for the abscissa of convergence of the
representation zeta function of a GGS-group G defined by a non-symmetric defining vector
eec Fg_l. We begin with Section 5.1, where we prove the rigidity result Theorem 3.0.2 for
finitely generated branch groups. Thanks to Theorem 3.0.2, every finite-dimensional repre-
sentation of G factors through a finite quotient. Moreover, it follows from Theorem 2.4.22
that every proper quotient of G is a finite p-group. Therefore, we shall first obtain bounds
for the number of irreducible representations of finite p-groups. The results are summarised

in Section 5.2. Recall from the statement of Theorem 3.0.5 that C' is defined as
C = Hpeln([G,G]) | Ia(p) = G}|.

If C' is finite, then the bounds on finite p-groups enable us to prove Theorem 3.0.5 in Sec-
tion 5.3 using generalised Catalan numbers (see Definition 5.3.5). We prove Theorem 9.1.1
in several steps. The groups that satisfy condition (#) and condition (x#) of Theorem 9.1.1
will be treated separately. The proof of Theorem 9.1.1 for a GGS-group G that satisfies ()
is given by Corollary 5.3.9, while that of for (#*) is summarised in Corollary 5.3.11. To
conclude the discussion, we give some partial results that might help one to generalise The-
orem 9.1.1 to all GGS-groups defined by non-symmetric defining vectors. Along the line, we

will also prove Theorem 3.0.7.

5.1 Representations of self-similar branch groups

We first record the following theorem, which shows that for a group G that is regular branch
over a subgroup H, being FAD is equivalent to the fact that H/[H, H] is finite.

63



Theorem 5.1.1. Let G be a regular branch group over a subgroup H. Then G is FAb if

and only if the abelianisation of H is finite.

Proof. If G is FADb then, since H is of finite index in G, the abelianisation of H is finite.
To prove the converse, assume that the abelianisation of H is finite. Let K be a subgroup
of finite index in G. Then K has only finitely many conjugates in G. Set L as the core
of K in G given by taking the intersection of all conjugates on K in (. Notice that L
is a normal subgroup of finite index in G. Then the commutator subgroup L’ of L is a
non-trivial normal subgroup of G. If otherwise L’ = 1, then G is virtually abelian, which
is a contradiction to the fact that G is branch; see the discussion at the end of Section 2.3.
Therefore, by Lemma 2.3.3, L' contains the subgroup Ristg(n)’, for some n € N. Since G is
regular branch over H, we get ¥~ (H’ x T H'’) < Ristg(n) < L', and hence L' has finite
index in G. Therefore, K’ has finite index in G, and we conclude that abelianisation of K

is finite. O

Now, we prove Theorem 3.0.2 and Corollary 3.0.3. The results follow immediately using

the fact that weakly branch groups are not linear over any field; see [2, Corollary 7].

Proof of Theorem 3.0.2. Let N be a non-trivial normal subgroup of G. By Lemma 2.3.3,
there exists some d € N such that ¢~ (H’ x ™ x H') is contained in N. Since the abeliani-
sation of H is finite 1 (H’ x ™ H') has finite index in G, and hence, the quotient G/N
is finite. Thus G is just infinite.

Now, let p : G — GL,(C) be an irreducible representation of dimension n. Since G is
not linear, the kernel ker(p) of p is non-trivial normal subgroup of G. Hence ker(p) has
finite index in G, as G is just infinite. Therefore, every representation of G factors through

a finite quotient. O

Proof of Corollary 3.0.3. Let G be regular branch over a subgroup H. Suppose that G
is representation rigid, and assume to the contrary that abelianisation of H is infinite.
Then H admits infinitely many 1-dimensional representations, and hence G has infinitely
many representations of degree at most [G : H], violating the fact that G is representation
rigid.

Now, to prove the converse assume that G is finitely generated and the abelianisation
of H is finite. By Theorem 3.0.2 every finite dimensional representation of G factors through
a finite quotient. The rest of the proof follows as in the proof of [26, Proposition 2| using

Jordan’s theorem; cf. Theorem 3.0.1. O
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5.2 Upper polynomial bound for finite p-groups

Let p be an odd prime. Here we obtain bounds for the number of irreducible representation
of finite p-groups. Since there is a one-to-one correspondence between the equivalence
classes of irreducible representations and irreducible characters of finite groups, it suffices
to consider the set of irreducible characters. For the time being assume that G is a finite

p-group and N is a normal subgroup of G. For ¢ € Irr(N), set
Irr(G,9) = {p € Irr(G) | {p|n, )N # 0}.
For S < Irr(N), we write Irr(G, S) = | Irr(G, 9).
veS
Lemma 5.2.1. Let G be a finite p-group and let N be a normal subgroup of G. Let ¥ €
Irr(N) and put
It (G, 9) = {p e Irr(G, 9) | (1) > 9(1)}.

Then the following assertions hold:
(i) ©(1) = pI(1) for every p € Irr™ (G, V9);
(i) |Irr™(G,9)| < p~l[G : N].

Proof. (i) Since ¢ € Irr™ (G, 99), it holds that ¢(1) > 9¥(1). Since G is a finite p-group and
©(1) divides the order of G and likewise (1) divides the order of N, both ¢(1) and 9(1)
are p-powers. It follows that ¢(1) = pd(1).

(ii) The proof proceeds by induction on [G : N]. If [G : N| = 1, then Irr(G, ¥) = {99}. The
set Irr™ (G, ) is empty and |Trr™ (G, 9)| = 0 < p~![G : N]. Assume that [G : N] = p. We
split the proof into two cases based on the inertia group I(9) of ¥ in G.

Case 1: Ig(¥) = N. Then 9¢ € Irr(G) and Trr(G,9) = {99} = Irr™(G,9). Hence
| et (G,9)| =1 < p~Y[G: N].

Case 22 N < Ig(¥) < G. Consider the quotient group Ig(?)/N, which is a non-
trivial finite p-group, and hence has a non-trivial center. Therefore, there exists a central
element Nz in I(9)/N such that (Nz) = N (x)/N = C,. By setting Z = N (), we get that
N<Z<1g(¥) and Z/N = C,. Then ¢ extends to irreducible characters of Z. Indeed, by
Theorem 4.0.6 and Theorem 4.0.7, 9 admits exactly p distinct extensions, namely 91,. .., 1.
Furthermore, Irr(Z,9) = {¢1,...,9p}. It is easy to see that ALI_)J Irr (G, ;) < Trr™ (G, 9).
On the other hand, if ¢ € Irr* (G, ¥) then the restriction of (,oztzo1 Z is a sum of irreducible

characters and at least one of these lies in Irr(Z, ). Therefore, there exists k € [1, p] such
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that 4 is an irreducible constitute of ¢|z, and since p(1) > 9(1) = 1x(1), we get that

@ € Irr™ (Z,41,). Hence we obtain the following equality:

P

It (G, 9) = U Irr ™ (G, ;).

i=1

If I(¥) = G then Z is a normal subgroup of G, and, by induction, we get
P
Tt (G9)] < 3 [ (G )| < p(p (G + Z]) =[G N,
k=1

Now, suppose that I5(1) is a proper subgroup of G, say H = Iz(?¥). Then 9 does not
extend to G, and hence |Irr* (G, 9)| = |Irr(G, 9)|. Using Theorem 4.0.5, we get

| Irr™ (G, )| = | Tre(H,9)| = [H : N] < p '[G: N],

where the last but one equality follows because ¥ (1) = [H : N]9¥(1). This completes the

proof. O
Q0 Q0

Notation 5.2.2. Let f(s) = Y] ayn° and ¢(s) = >, byn~° be two Dirichlet generating
n=1 n=1

functions, where s is a formal variable, later a complex variable, when convergence on some

right half-plane is guaranteed. We write

f(s) < g(s)

N N
if > a, < > b, for all N € N. Observe that if g(s) converges for some s € R and
e

1 n=1
f(s) < g(s) then f(s) < g(s).
Corollary 5.2.3. Let G be a finite p-group and N be a normal subgroup of G such that
[G: N]=p? Let
A ={9elr(N) | Irr(G,9) = Iir" (G, 9)}.

Then
Do) <p PG N] Y 9(1) (5.1)

pelrr(G,A) YeA
Remark 5.2.4. The right-hand side of the inequality (5.1) is a Dirichlet generating function,

i.e., the corresponding coefficients are non-negative integers. Indeed, in all cases p? divides

[G: N].

Proof of Corollary 5.2.3. We set A; = {9 € A| Ig(¥) <G} and Ay = {¥ e A | Ig(¥) = G}.
Thus A is a disjoint union of A; and Ag. Since the equality I (99) = I (9)9 holds for every
g € G, the sets A; and As are closed under conjugation by G. This partitions Irr(G, A)
into a disjoint union of Irr(G, A1) and Irr(G, Az), because for any ¢ € Irr(G) the irreducible
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constituents of |y are conjugate in G so their inertia groups are also conjugate. We split
the proof into two cases.

Case 1: Suppose that ¢ € A;. Then 1} has at least p distinct conjugates in G. We count
the number of irreducible characters ¢ € Irr(G, A1) such that ¢(1) < p™ for every n > 1.

Using Lemma 5.2.1 we get the following inequality:

oyt Y D 1<p?[G:N] D 1.
@elrr(G,A1) VA1 el (G,9) LS
p(1)<p” I(1)<p™! I(1)<pn?

The above equality holds for all n > 1, from Notation 5.2.2 we obtain that

Doe() = p PG N] Y ()

pelrr(G,A1) ey

Case 2: Suppose that ¥ € Ag. The proof follows by induction on [G : N]. Assume that
[G : N] = p%. As in the proof of Lemma 5.2.1(ii) there exists a normal subgroup Z of G
that contains N and such that Z/N =~ C,. Then, by Theorem 4.0.6 and Theorem 4.0.7, ¥
extends to irreducible characters of Z, namely 1, ...,1,. Notice that Ig(¢;) = Z for all
i € [1,p], since |G : Z| = p and ¥ € Ay < A. Therefore ' € Irr(G) for all i e [1,p].
Moreover, since ¥ is G-invariant, it follows that ¢IG = ... = 1/)}? . This gives a bijection
between the sets {¥) € As | 9(1) < p" '} and {p € Irr(G, A2) | p(1) < p"} for all n e N, and

hence we get the following inequality

Y=t N ) =p 2@ N Y 9

pelrr(G,A2) Yelo YeAo

Now, assume that [G : N] > p?. Choose a normal subgroup Z of G such that Z contains
N and Z/N = C,. Set Q = Irr(Z,A2) = {x € Irr(Z) | x|nv = ¥ € Az}. Observe that for

every n € Np,

Y oi<p > oL
XEQN veAo
x(1)<p” 9(L)<p”
Hence by induction we obtain that
doo1= > 1<p?G:z] > 1<p’[G:N] > 1,
pelrr(G,A2) pelrr(G,Q) X2 YeAs
p(1)<p™ P(1)<p™ x(1)<prt d(1)<pnt

implying that

M) = p @ N Y 9.

pelrr(G,A2) veAa

The result follows from combining the estimates in Case 1 and Case 2. O
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5.3 Upper polynomial bound for GGS-groups

Here we prove Theorem 9.1.1 and Theorem 3.0.7. In the sequel, we fix a non-symmetric
vector e = (eg,...,€ep—1) € Fg_l, and G denotes the GGS-group defined by e. By Theo-
rem 2.4.21, G is a regular branch group over the commutator subgroup H = G’. From here
onwards, we identify the subgroup ¥~ (H x K ox H) of H with the subgroup Hy = H x Xoxd
of G x -+ x G. Recall from Corollary 3.0.4 that G is representation rigid. Due to results
of Lubotzky and Martin [73, Lemma 2.2 & Corollary 2.3], a discrete group has polynomial
representation growth (PRG) if and only if every subgroup of finite index has PRG, which
in particularly applies to subgroups of finite index in G. We begin with Theorem 5.3.2,
which is an immediate corollary of [85, Lemma 1.2]. For convenience, here we state the first
part of [85, Lemma 1.2], which is relevant for our context. In our setting, [85, Lemma 1.2]

can be reformulated as the following.

Lemma 5.3.1 ([85, Lemma 1.2 |). Let G be a finitely generated representation rigid group
and let H be a normal subgroup of index k in G. Suppose that H is isomorphic to the direct
product of q copies of G, for some non-negative integer q = 2. Let Rg(n) denote the number
of irreducible complex representations of G of dimension less that or equal to n € N. Then,

for alln e N,
Rg(kn?) = Ra(n)!/k.

In particular, if Rg(1) = k > 1, then the inequality Rg(n) = kni=2 is satisfied for infinitely
many n and hence

a(G)=q—2.

Theorem 5.3.2. Let G be a GGS-group defined by a non-symmetric defining vector. We

have

a(G)=zp—2. (5.2)

Proof. Let H be a subgroup of finite index in G. It follows directly from [85, Lemma 1.1] or
as a consequence of [73, Lemma 2.2] that a(G) = «(H). Now, take H as the commutator
subgroup of G and Hy = H x -+ x H. From Theorem 2.4.21(ii) and Theorem 2.4.25(i), we
obtain that H contains H; as a subgroup of index pP~! and H/H; is abelian. In particular,
ri(H) = pP~!, where r1(H) is the number of irreducible 1-dimensional complex represen-
tations of H. It follows from [85, Lemma 1.2] that a(H) > p — 2. This completes the

proof. O
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Remark 5.3.3. Let G be a GGS-group defined by a non-symmetric defining vector and
let H be a group that is commensurable to G, i.e., there exist subgroups of finite index

G1 < G and Hy < H such that H; is isomorphic to Gy. Then a(H) = a(G) = p — 2.

Let G be a GGS-group that is regular branch over a subgroup H. We remark that the
proof of [85, Lemma 1.2] uses an inductive argument based on the fact that the number of
linear characters of the subgroup H is greater than or equal to the size of the branching
quotient H /o~ (H x toxH ). Therefore, the proof does not work if the defining vector
is non-constant and symmetric. In that case, the corresponding GGS-group G is regular
branch over v3(G). However, the branching quotient v3(G) /¢~ (y3(G) x Fox ~v3(@)) is not
abelian; cf. Remark 2.4.26. Therefore, the number of linear characters of v3(G) is less than
the index [y3(G) : 1 (v3(G) x -*+ x v3(G))]-

Form here onwards, let G be the GGS-group defined by a non-symmetric defining vector
ec }Fg_l and let H denote its commutator subgroup. To provide an upper bound for a(G),
in light of Remark 5.3.3, it suffices to provide an upper bound for «(H). We consider the

representation zeta function of H,

Ca(s) = Y ra(H)n™* = > »(1)7%, (5.3)
n=1

pelrr(H)

where Irr(H) is the set of all irreducible characters of H as defined in Chapter 4. Since
every proper quotient of G is a finite p-group (Theorem 2.4.22), by applying the results from
Section 5.2 to the group H and its subgroups, here we obtain an upper bound for «(H),
and hence for a(G).

We first prove the following theorem with a restriction on the number, say C, of
G-invariant irreducible characters of H. It turns out to be that, for a GGS-group, which
satisfies either (#) or (xx) of Theorem 9.1.1, this number is less than or equal to p (see Corol-
lary 5.3.9 and Corollary 5.3.11). Moreover, the computations in Chapter 6 show that C' = 3
for the Gupta—Sidki 3-group.

Theorem 5.3.4. Let G be a GGS-group defined by a non-symmetric defining vector e €
Fﬁ_l. Let H = G’ be the commutator subgroup of G and Hy = H x -~ x H < H. If

C=[{pelr(H) | Ia(p) = G} < o,
then the representation zeta function (i (s) of H satisfies the inequality

Cr(s) < CP[H : Hy| +p 27%[H : H{|Cy(s)P. (5.4)
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Proof. Define
A= {9elr(H) | Irr(H,9) = Irr" (H,9)} and AY = Trr(Hp)\A.

Observe that the set A is closed under conjugation by H and it defines a partition of the
set Irr(H, A) as Irr(H) = Trr(H, A) u Trr(H, AY). We split the proof into two cases.

Case 1: Let ¢ € Irr(H,A%) and let ¥ € Irr(H;) be an irreducible constituent of |z, .
Clearly, ¥ € A". By definition of A it holds that Irr™(H,9) < Irr(H,d), implying that
there exists some x € Irr(H, ) such that x(1) = ¢(1). Equivalently, y is an extension of ¢
which further implies that ¢ is H-invariant. Since ¢ € Irr(H;), by Theorem 4.0.1, we write
V=190® - ®Vp_1, for ¥; € Irr(H) and i € [0,p — 1]. Furthermore, from Theorem 2.4.25(i)
we have H/H; = (Hyx; | i € [0,p —2]). Therefore, ¥*¢ = ¢ for all ¢ € [0,p —2]. Since
the defining vector is non-symmetric by a straightforward calculation using the first layer
section decomposition of z; (Notation 2.4.24), we obtain that ¥; is G-invariant for every
i € [0,p—1]. From the assumption, the cardinality of the set of G-invariant irreducible
characters of H is finite and is equal to C. There are at most CP irreducible characters
of Hy of the form ¥ such that ¥ € A’. In particular, the cardinalities of the sets A" and
Irr(H, A%) are finite. If every irreducible character from the set A’ extends to irreducible
characters of H, we get at most CP[H : H;] elements in Irr(H, A®). In general, the number

CP[H : Hy] bounds the cardinality of the set Trr(H, A"), and we get
| Trr(H, A%)| < CP[H : Hy).

Case 2: We count the number of ¢ € Irr(H, A) such that ¢(1) < p”, for n € N. For every
¢ € Irr(H, A) with ¢(1) < p”, recall from Theorem 3.0.2 that ¢ factors through a finite
quotient of H, we obtain that ker(y) has finite index in H. We set L, as the normal core

of ker(y) in G. Then L, is a normal subgroup of finite index in G. Define

KEo=Hn| () L
welrr(H,A)
p(l)<p”
Notice that K, is a non-trivial normal subgroup of finite index in G. Hence, for every n € N,
the quotient group H/K, is a finite p-group (Theorem 2.4.22), and every ¢ € Irr(H, A) of
degree (1) < p™ factors through the quotient group H/K,. If ¢ € Irr(H;) is an irreducible
constituent of ¢ € Irr(H,A) of degree p(1) < p™ then K, < ker(d¥). We identify the

character ¥ with an irreducible character of H;/K,, and the character ¢ with an irreducible

character of H/K,,. Define
Apk, = {0 € Irr(Hy/Ky) | Ier(H /Ky, Ayyr,) = ™ (H/ Ky, Ayie,) }-
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By replacing G with H/K, and N with H;/K, in Corollary 5.2.3, we obtain

Z 1= Z 1<p?[H:H Z 1=p %[H: H] Z 1

pelrr(H,A) pelrr(H/Kn, Ak, ) YeAy /Ky, 196An71
e(l)<p™ e(1)<p™ 9(1)<pn—? J(1)<p
< p?[H : Hy] Z 1,
Yelrr(Hy)
d(1)<p !

where the two inequalities follow because
{9 € Apyrc, |91) <p" 1} = {9 e A[9(1) <p" 1 < {0 € Ier(Hy) | 9(1) < p" 71},
This implies
S e < p U HH] Y (1) = p 2 [H 2 HiC (s)

welrr(H,A) Yelrr(H1)

=p > 7°[H : Hi]¢u(s)?,

where the last equality follows as H; = H x Yo% H.

From Case 1 and Case 2, it follows that

Cu(s) < Y, oM+ D o)< CP[H: Hy]+p *°[H: Hi]¢u(s)P. O
welrr(H,AL) pelrr(H,A)

Now, from the inequality stated in Theorem 5.3.4, we compute an upper bound for the
abscissa of convergence «(H) for the representation zeta function of H using generalised

Catalan numbers.

Definition 5.3.5. For every n € Ny, the n-th Catalan number ca(n) is the number of
ways to parenthesise a string of n + 1 symbols such that each multiplication is binary. For
instance, the expression (¢(¢¢))(¢©) is allowed as it uses only binary multiplications, but
the expression (¢ ¢ ¢)(¢©) is invalid because the expression (¢ ¢ ¢) represents a product of

three symbols. Here we compute the Catalan numbers ca(n) for 0 < n < 3.

n=0 n=1 n=2 n=3
o 0o o(o0) ((00)0)o
(00)o (o(00))o

o((00)o




The Catalan numbers cz(n) were first described by Euler and named after the math-
ematician Catalan. The numbers co(n) occur as solutions to different counting problems.
In [100], one can find 66 different interpretation of the Catalan numbers. Using the descrip-
tion above, we can find a recursive formula for the n-th Catalan number ca(n); cf. [106]. We
set c2(0) = 1. For n > 1, let w denote a string of length n + 1. We can write w = w;j wy such
that wy is a string of length ¢, for some ¢ € [1,n], and w, is a string of length n+1—/¢. Then
there are co(¢ — 1) ways to parenthesise a string of ¢ symbols such that each multiplication
is binary, and ca(n — £) ways to parenthesise a string of n + 1 — ¢ symbols such that each

multiplication is binary. Therefore, we get

ca(n) = > ea(l = Dea(n — ), (n>1). (5.5)
/=1

o0
Let Fy(z) = 3] co(f)z’ be the generating function for the Catalan numbers cz(n). We

follow the convention that ca(—¢) = 0 for all £ € N. Observe that the right-hand side of the
0
equation (5.5) is the n-th coefficient of the product of the series zFp(z) = 3 co(¢ — 1)z’

=0
and the series Fy(x). Since the constant term of the series xFy(x) is zero, we get

Fy(x)—1= i co(n) = i (i co(l — 1)ea(n — E)) i’ =z Fy(z) Fy(x) = x Fy(x)?,

n=1 n=1 \/=1
and hence the generating function Fy(x) satisfies the functional equation
Fy(z) = 1+ x Fy(x)% (5.6)
By solving the above functional equation (5.6), one gets that
1 2n
ea(n) = n+1(n>'

Now let p be an odd prime. For every n € Ny, the n-th generalised Catalan num-

ber cp(n) counts the number of ways to parenthesise a string of n + 1 symbols such that
each multiplication is p-ary. Let Fj,(x) be the generating function for the generalised Catalan
numbers ¢,(n). It is shown in [64] that the generating function F),(z) satisfies the functional
equation

Fp(xz) =14 x Fy(z)P.

As a corollary, one gets that

0 = 51 ()

for all n > 0. Using Stirling’s formula, we can approximate c,(n) as

ik " p _3
cp(n) ~ (W> mn 2, (5.7)

where the sign ~ means that the ratio of the two quantities tends to 1 as n tends to infinity.
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o0 o0
Lemma 5.3.6. Let f(x) = > apz™ and g(x) = >, byx™ be two generating functions with
n=0 n=0

Gn, b € Ng. Let B, M > 1 be constants. Suppose that the generating function g(x) satisfies

the functional equation

g(x) =M + Bz g(x)P. (5.8)
Then
a0
gla) = Y] ep(n) M=V B g,
n=0

where c,(n) is the n-th generalised Catalan number, for n € Ny, defined in Definition 5.3.5.

If the the generating function f(x) satisfies the inequality
f(x) <M + Bz f(x)P, (5.9)
then a, < by, for every n =0, and in particular f(z) < g(x).

Proof. Notice that

i =M+ Bag(x )p—M+B;vZ DU beyeebyy, |2

n=0 | 0<ry,...,rp<n
r1+-+rp=n

We get bg = M and for n > 1

bo=B > byby,
0<ry,yrp<n—1
rit-+rp=n—1
We shall prove by induction that b, is a multiple of M (B MP~1)" for every n > 0. Assume

that b, is a multiple of M (B MP~1)" for every n < N for some N > 0. Consider

bvir=B Y by by,

It is easy to see that each summand in the above expression is a multiple of M (B M p_l)N +1
and so is by 1. Hence we conclude by induction that every b, is a multiple of M (B MP~1)»

for n = 0. Therefore, we can write

g(x) = M 7(y),

for some generating function 7(y) with y = B MP~! z. Now, by substituting g(x) as M 7(y),

the equation (5.8) becomes
T(y) =1+y7(y)?, (5.10)

which is the functional equation for the the generalised Catalan numbers. Therefore,



and hence

© 0
g(x)=Mr(y) =M Z cp(n)y"™ = Z cp(n) Mle=1)+1 gnon
n=0 n=0

Now we prove the second part of the result. Observe from (5.13) that ag < M = by. The
proof proceeds by induction on n. Assume that a, < b, for every n < N for some N = 0.

From (5.8), we get

N+1

N
Mbon=M+B ) > bube |
n=0

n=0 | 0<ri,...,rp<n
ri+Frp=n

hence

rit+rp=n

Similarly, from (5.9), we get

N N
aN+1<M+BZ Z apy - Ay, +Zan<a€713—1),
n=0

n=0 0<T1 0, Tp <DL
(r157p) #(n,0,...,0)
Therefore, from induction hypothesis we have ay;1 < by11, and by induction we conclude
that ay < by for all N > 0. In particular, % an < % b, for all N > 0. This completes
the proof. " " O
Corollary 5.3.7. Let G be a GGS-group defined by a non-symmetric defining vector e € Fg_l
and let H = G’ be the commutator subgroup of G. If the number C' of G-invariant irreducible
characters of H is finite then the abscissa of convergence a(G) of the representation zeta

function (g (s) satisfies the inequalities

lo log C
p—2<alG) < (p—l)@ +p(p—1)10gE Fp-12+(p-1)—1. (5.11)

In particular, G has polynomial representation growth.

Proof. Thanks to Remark 5.3.3, we have a(G) = o(H) > p — 2. Using (5.4), we shall

compute an upper bound for a(H). We define
r=p" M =CP[H : Hi] =pP'C?, and B=p ?[H:H]=p'?3

74



in particular, if p = 3 then B = 1. Observe that (5.4) can be restated as
n(xz) < M + Bxn(x)?,

where n(z) = n(p~®) = (g(s). Now, suppose that &(x) is a generating function which

satisfies the following functional equation
&(x) = M + Bx&(x)P. (5.12)

Then, by Lemma 5.3.6(ii), we get (i (s) < {(p~*). If £&(p™°) converges for some s € C and
if & denotes the abscissa of convergence of £(p~*), then ((s) also converges and a(H) < &,
yielding an upper bound for oo(H). Thus, it is enough to find an upper bound for &. Again

from Lemma 5.3.6, we have
0
&(x) = Z cp(n) MMp=D+1L gnogn
n=0
where ¢p(n) is the n-th generalised Catalan number. Because of (5.7), there exist a constant

ko > 0 and ng € N such that

p¥ n P _3
ep(n) < “0((]9 - 1)p—1) or(p— 18

for all n = ng. Hence there exists a constant x > 0 such that, for all n = 0,
cp(n) < k2MP~Hpn, (5.13)

Now, we compute an upper bound for the abscissa of convergence & of £(p~*) using the

inequality (5.13). Define R~ = % cp(n) M™P=D+1 Bn for N e Ny. Then for all N > 0
we obtain "=
N N
R,v = Z L (n) M+ g — Z cp(n) (pPtCPYn =D+ (pp=3)n
NO n=0

2 n)CPP= AP =p=2)tp1 < CPpp- Z op—1cp(p— l)ppgfpfl)”

(Qp—lcp(p—l)pp —p—l)NH -1 (Qp—1C'10(19—1)pz72—19—1)]\”rl

_ P, p—1 p, p—1
=k CPp” 2r—1Cplp=1)pp*—p-1 _ 1 < wOPPP p—1Cp(p=D)pp*—p-1 _ 1 °
Hence we get
a = limsuplog R, ~/logp™v
N—o
1 Ppp—1
N—oo Ing
L (N + 1) log(2v~LCPP=Npp*=p=1) _log(2r~1CPP—Dpp*—p—1 _ 1)
im sup
N Nlogp
1Og(2pflcp(pfl)ppzfpfl)
- log p
log 2 log C
=(—1) +p(p—1)—=—+p*—p—1,
logp logp
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Therefore, we conclude that

- log 2 log C
a(G):a(H)<04<(p—l)%—i—p(p—l)log@—i—pz—p—l. 0

Now, we prove that for a GGS-group, which satisfies either condition (#) or () of

Theorem 9.1.1, the number C is less than or equal to p.

Lemma 5.3.8. Let G be a GGS-group defined by a non-symmetric defining vector e € Fgfl
and let H = G’ be the commutator subgroup of G. Let p € Irt(H) be such that Ig(p) = G
and let 0 = Y9 ® --- ® Up—1 be an irreducible constituent of ¢|m,, where ¥; € Irr(H) for
all i € [0,p—1]. Then Ig(¥;) = G for all i € [0,p —1]. Moreover, ¥y = --- = 9,_1 and
Ia(¥) = G.

Proof. The restriction ¢|g, is a sum of conjugates of ¥ under H. Since ¢™ = ¢, it holds
that 9% = 9" for some h € H. Notice that ¥ is of the form Jo®- - -®Up—1 for ¥; € Irr(H) and
i€ [0,p — 1] as indicated in the statement of the lemma. As H = H; {xo,...,2zp—2) (Theo-
rem 2.4.25(1)), we can write h = w(xo, ..., xp—2) mod H; for some word w in {zo,...,zp_2}.

Since ¥ is H; invariant, by letting w(zo, ..., zp—2) = (wo, ..., wp—1), we obtain

0a11®19a2® ®19a ®19;2—('l9[)® ®19p l)t:ﬁatzﬂh Q911}069 ®19wp 1.

This further implies that

1 tw, 1aelwo L ae2wf1a€3w2 L..q®— Lw, twp 1aelw0 .

Yo = 1961“’0 = :...:f}o

p—1 - p—2 (514)

Since the product of the components of the first layer decomposition of each x; = [a, t]ai is

trivial modulo H (cf. Notation 2.4.24), we get

-1

gyt er—1qp 2tw la 'wy® =H aﬁt,

oo q P
a®wi a®w, a

where ¢ = éil e;. Since Yo is H-invariant, we get H {(a‘t) < Ig(Jg). Notice that all ¥;
are conjuga‘zz to each other by elements of G. Therefore, I¢(Yy) = -+ = Ig(Yp-1), and
moreover I () € {H (a‘t),G}. We claim that I () = G. Suppose that Ig(ﬁo) # G, and
hence I(0;) # G. Thus Ig(9;) = H {a‘t) for all i € [0,p — 1]. Since H; < G x --- x G and
»(G x -7 x G) = Stg(1) = H{t), we have

In(¥) =~ (Ig(Po) x -+ x Ig(¥p-1)) N H,

and

Iy (9) = 7 (Ia(Wo) x -+ x Ia(9p-1)) N H{t).
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Since ¢ is G-invariant, we must have

[H = T (9)] = [H{E) : Ly (V)]

Since H is a proper subgroup of H{t), this implies that Iy () is a proper subgroup
of Ity (¥9), or in other words

Ig(¥o) x + -+ X Ig(ﬂp_l) N w<H> = Ig(ﬂo) X e X Ig(ﬁp_l) N w(H<t>)

Thus, there exist € € [1,p — 1] and h € H such that
p(ht?) € Ig(Po) x -+ x Ig(Vp—1) N (HL)).

Since e = (e1,...,ep—1) € Iﬁ‘ﬁ_l is non-zero, there exists ¢ € [1,p — 1] such that e; # 0.
This, in particular, implies that G = H{a‘t,a%) < Ig(9p_1), and hence Ig(9;) = G for
all ¢ € [0,p — 1], which is a contradiction. Therefore, we conclude that I (¥;) = G for all
i € [0,p—1]. Furthermore, it follows from (5.14) that ¥y = --- = 9¥,—;. In particular,
Io(¥) = G. O

The following corollary gives a proof for Theorem 9.1.1 when the vector €” is symmetric,

i.e., the condition () is satisfied.

Corollary 5.3.9. Let e € Fﬁfl be a mon-symmetric vector such that €’ is symmetric.
Let G be the GGS-group defined by e and let H = G’ be the commutator subgroup of G. If
o € Irr(H) such that Ig() = G then ¢ is linear. Moreover, C' < p, where C' is defined as
in Theorem 5.5.4, and thus

log 2 9
-2<a@=aH)<(p—1)——+2p" -2 1. 5.15
p a(G) = a(H) < ( )logp+p D+ (5.15)
Proof. Let ¢, ¥ and ¥, ...,Up_1 be as defined in Lemma 5.3.8 above. Then Jg = --- = 9,1

and ¢ are G-invariant. By induction on the dimension of ¢ we may assume, without loss
of generality, that g is linear. Therefore, ¥ = J9® --- ® U1 is a linear character of Hq,
and [Hi,G] < ker(9). Now, since €” is symmetric, thanks to Theorem 2.4.25(iv), we have
H' < [Hy,G]. Thus, ¥ extends to H and hence ¢ is of the form 1§x\, where 9 is an extension
of ¥ and A € Irr(H/H;). As 9, are linear so is ¢. Since ¢ is G-invariant, we get that
[H,G] < ker(p). Therefore, ¢ is an extension of the trivial character of [H, G|, and hence
we conclude that C' < p, as [H : [H,G]| = p. By substituting p for C in (5.11), we get the

desired bounds for the abscissa of convergence a(G). O
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The proof of Theorem 9.1.1 when the alternative condition (%) is satisfied is given
by Corollary 5.3.11. To simplify the proof of Corollary 5.3.11, we record first the follow-
ing lemma. In the remaining part of this chapter, for convenience, we do not distinguish

notationally between the elements of G and G/[H;, G].

Lemma 5.3.10. Let e € Fgfl be a non-symmetric vector such that €’ is non-symmetric.
Let G be the GGS-group defined by e and let H = G’ be the commutator subgroup of G. Let
p € Irr(H) be such that Ig(p) = G. If there exists a central element z in the quotient group
H/[Hy,G] such that 2' # z, then ¢ is linear.

Proof. Let ¢ € Irr(H) be such that I5(¢) = G. Let ¢ € Irr(H;) be an irreducible constituent
of ¢|m,. Notice that ¥ is of the form Yy ®--- ®Y)—1 for ¥; € Irr(H) and i € [0,p — 1]. From
Lemma 5.3.8, we see that g = --- = ¥p—1 and Ig(J9) = G, implying that ¥ is G invariant.
By induction on the dimension of ¢, we may assume, without loss of generality, that 9 is
linear. Therefore, the character 9 is linear and hence the subgroup [H;, G] is contained in
the kernel of ¥. Now, since ¢ is an irreducible constituent of |z, and ¥ is G-invariant, we

have @|g, = €9, for some £ € N, and furthermore
[H1,G] < ker(9) = ker(p|m,) = ker(¢) n Hy < ker(yp).

Hence, we identify the characters ¢ and ¢ with irreducible characters of H/[H;,G] and
H,/[H,,G], respectively.

Now, suppose that there exists a central element z € H/[Hy,G] such that 2t # 2. Tt
follows from the proof of Theorem 2.4.25 that the element z can be expressed as a product

of finitely many elements from the generating set {xo,...,zp—2,y} of H/[H;,G]. Thus

2t =22, t] = 2y”,

for some w € [1,p — 1]. Since, the element z is central in H/[H;,G], we have p(z) # 0.
Moreover, since ¢ is G/[Hy, G]-invariant, we have ¢! (2) = ¢(z). On the other hand,

Therefore,

(5.16)

where the last equality follows because both z and y are central in H/[H;,G]. From (5.16),
we get that p(y¥) = ¢(1), implying that y“ € ker(y). Since y* is a generator of the cyclic
group Hi/[H;,G] = C,, it follows that y € ker(y). In particular, ¥ is the trivial character
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of Hi/[H1,G] and (H/[H1,G]) = Hi/[H1,G] < ker(yp). Hence we conclude that ¢ is

linear. O

Corollary 5.3.11. Let e € Fg_l be a mon-symmetric vector such that €' is also mon-
symmetric. Let G be the GGS-group defined by e and let H be the commutator subgroup of
G. Assume further that the element

w(e)=(p—2)(e1 —ep—1)+ (p—4)(e2 —ep—2) + -+ -+ 3(ep—3 —epi3) + (€p—1 —€ps1)

18 non-zero modulo p. We have

log 2
log p

p—2<a(G)=a(H)<(p-1) +2p? — 2p + 1. (5.17)

Proof. We will prove that there exists a central element 2 in H/[H;,G] such that 2% # 2.
Then we get from Lemma 5.3.10 that every G-invariant irreducible character of H is linear.
By a similar argument as in the proof of Corollary 5.3.9 we get that (5.17) holds.

Now, set

3 (i+1)(i+2) p(p+1)
z:xoxl...xl 2 ...xp_%

By Lemma 2.4.29 the element z is central in H/[Hy,G]. From the conjugation relations in

the proof of Theorem 2.4.25 we get

St — xoyel—ep,1 (x1y6/2+6;_1)3 L (xiye;+1+e;_i)w o ($p71yel_ep”)%
_ Zyel—ep_l+3(e’2+e;71)+--~+w(e§+1+e;_i)+~--+p(pT+1)(el—ep_l).
Let w(e) be the exponent sum of y. Then
+1 —1
w(e) =(1+ p(pQ))(el —ep_1)+ (34 (1)2)1))(e’2 +ep )+t
~p+1 +3)(p+5 +1)(p+3
((p )ép ), ls(p ))(elpfl fe) 4 (p L(p )e,pil
2 2 2
2 2
p°+p+2 p°—p+6
:T(el —ep_1) + T(e’z +ep )+t
2 2
+Ap+T +4p+3
u(dp L+ ehis) IR . AT
4 = = 4 2
Therefore, we can write w(e) as
w(e) =—2(e1 —ep—1) —4(e2 —ep—2) + -+ + 3(6;77—3 - e¥) + (equ - epTH)
=@ —2)(e1—ep1) + (p—4)(e2 —ep—2) +-- +3(eps —epsa) + (ep1 —ep1),

where the equivalence is taken modulo p. By assumption w(e) is non-zero modulo p, and

hence z! # z. This completes the proof. O
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Corollary 5.3.12. Let G be the Gupta—Sidki p-group defined by the defining vector e =
(1,-1,0,...,0) € ]Fg_l and let H be the commutator subgroup of G. Then w(e) is non-zero

modulo p. Furthermore, if ¢ € Irr(H) such that Ig(p) = G then ¢ is linear, and hence the
bounds in (5.17) for a(G) = a(H) hold.

Proof. Observe that €” is non-symmetric and that

w(e) =(p—2)(e1 —ep—1)+ (p—4)(e2 —ep—2) + -+ 3(ep-3 —€pt3) + (ep-1 —€ps1) = 2.

2 2 2 2

Therefore, the result follows immediately from Corollary 5.3.11. 0

Now, we shall present some results and ideas to generalise Theorem 9.1.1 to all GGS-
groups defined by non-symmetric defining vectors. Also, we will prove Theorem 3.0.7. First
we record that, for p = 5, the condition that w(e) not equal to zero modulo p is automatically

satisfied.

Lemma 5.3.13. Let e = (e1,e2,e3,e4) € Fi be a defining vector such that € is non-

symmetric. Then w(e) = 3(e1 — e4) + e2 — e3 is non-zero modulo p.

Proof. Assume to the contrary that w(e) =0 (mod 5). Then ez — e3 = 2(e; —e4) (mod 5).

Consider the vector €’ = (e3 — 2e2 + e1,e4 — 2e3 + e2). We get

eqg —2e3+ ey —(e3—2e3+e1) = (eg—e1) +3(e2 —e3) = (eqg —e1) + 6(e1 — ey)

=0 (mod 5).
This contradicts the fact that €” is non-symmetric. O
As an immediate corollary, we obtain the following result.

Corollary 5.3.14. Let G be a GGS-group defined by a non-symmetric defining vector e € Fs.

Then the following inequalities are satisfied.
3 < a(G) < 42.7227062.

Let e = (e1,...,e, 1) € F5~' be a non-symmetric defining vector such that e” is also
non-symmetric. Let G be the GGS-group defined by e. To obtain an upper bound for a(G),
by Lemma 5.3.9, it suffices to prove the existence of a central element z in H/[H;, G] such
that z! # z. To be able to do so, one needs a better understanding of the lower central series
of G, or at least terms up to 7,(G). We provide an outline of the approach. Let H be the
commutator subgroup of G. We recall from Theorem 2.4.25 that H = H; {(xo,...,zp_2),

where Hy = Stg(1) = H x X% H, and H, = H’, since €” is non-symmetric.
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Lemma 5.3.15. For every odd number ¢ € [2,p], the element

(0 (57)

i i+1 Z

_(652) . (ﬁ 121) (e 2) (G) Hi,

i+2 xz+€ 3 xz+€ 2 € Ve

and, for every even number { € [2,p], the element

-2\ (0-2 -2 £=2 =2
(“0%) (s )x§+22),__ fm(f ;,) %(M )Qew(G)Hl,

€ i+1

where i € [0,p — ¢].

Proof. We set G = G/Hy, and use the notation (-) to denote the images of elements and

subgroups of G under the canonical epimorphism G — G. Recall from the proof of The-

orem 2.4.25(i) that G = Stg(1) x (@) = C, 1 Cp, Sta(l) <t @, e > ~ C? and
H ={Zg,...,Tp_ay = 0571. We identify the quotient group H with the vector space of
dimension p — 1 over F,, and the elements x; with the vectors ¢; = (0,%72,0,1,0,...,0)

in 05_1. The action of the element @ on each ¢; is given by ¢ = ¢;+1, where the subscripts

are taken modulo p. Hence the quotient group v3(G) is generated by the set of vectors

{(-1,1,0,...,0),(0,—1,1,0,...,0),...,(0,...,0,—1,1)},

and the quotient group v4(G) is generated by the set of vectors
{1,-2,1,0,...,0),(0,1,-2,1,0,...,0),...,(0,...,1,—2,1)}.

Now, observe that the coordinates of the above mentioned vectors are the entries of second

and third rows of the Pascal’s triangle with alternating signs. By iterating the above process,

one sees that, for every ¢ € [2, p], the quotient group ~¢(G) is generated by the vector

(57 ()5 () -(22)

and its cyclic shifts if £ is odd, and by the vector

=2\ (-2 {—2 (=2 £—2
0o )’ 1 )\ 2 ) \vu-3)\vu-2/)"
and its cyclic shifts if ¢ is even. O

Now, we recall from Lemma 2.4.29 that the element z is defined as

(i+1)(i+2) p(p+1)

_ 3 2 2
Z_xoxl...évi '.‘xpfl s

where the exponents are taken modulo p. Observe that

() ;=) 0 6D 6 ey,

F=Ty Ty " Tyy Tpo3t E9p-1

We have seen that the element z is central in H/[H;,G], and 2! # z if and only if w(e) is
non-zero modulo p. Now, assume that w(e) = 0 (mod p). In this case, we get 2! = z. We

shall take a closer look at the case p = 7.
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Lemma 5.3.16. Let G be a GGS-group defined by a non-symmetric defining vector e € Fg_l.
Assume that € is non-symmetric and w(e) = 0 (mod p). Then there exists an element

21 € 74(G) Hy such that z; is central in H/[Hy, G|, and 2} # 2.
Proof. Set z1 = xol'l_Q(L‘g. It follows from Lemma 2.4.27 that

i

(i, 21] =61 ¥

where k; is the coordinate sum of the product of the (i + 1)th row of the matrix 7 with the
element (1,—2,1,0,0,0,0). We get

ki =—2012+ sy = —2(2(e1 —eg) + €5 —e2) + €6 —e1 + 2(ez — e5) + €4 — €3
=2(e; —ep) +4(ea —e5) + 6(e3 —eq) =wmod 7 = 0.

ko = —l1o+ 412 =0.

ks = —s9 + 2012 = 0.

ky = —s3+2s9 — (19 =—(e5 —ea +3(es —e4)) + 2(eg — e1 + 2(ea — e5) + e4 — €3)
— (2(e1 —eg) +e5s —ex) = 3(e1 —ep) +6(e2 —e5) +2(e3 —eq) =wmod 7 = 0.

ks =3s3 — sy =3(es —ea + 3(e3 —eq)) — (e —e1 + 2(e2 — e5) + e4 — €3)
=e; —eg+2(e2 —e5) +3(eg —eq) =wmod 7 = 0.

k‘6282*353=0.

Hence, we conclude z; is central in H/[H;,G]. Furthermore,

t __ e1—eg—2(eg—e1+ea—es)+es—ea+ez—eyq 3(e1—eg)+4(ea—es5)+es—ey
21 =[H,G] 1Y ( ) = 21y I+ ) .

We claim that 3(e; —eg) + 4(e2 —e5) + e3 —eq # 0 (mod 7). Assume to the contrary that
3(e1 —eg) +4(ea —e5) + e3 —eq = 0 (mod 7). Since w(e) is also equal to zero modulo 7,
from an easy computation one gets e; — eg = 5(e3 — e5) and ea — e5 = 3(e3 — e4). Now, set

d =e3—eq. Then e; = 5d + eg, ea = 3d + e5 and e3 = d + e4. Therefore,

e = (5d + eg,3d + e5,d + ey, €4, €5, €5)

e = (—2d+e5—eg,—2d+eq —e5,—d,e5 — €4, €6 — €5)

e’ = (eq — 2e5 + eg,e5 — €4, +d, €5 — eq + d, eq — 2e5 + €),

which implies that €” is symmetric, hence a contradiction. Therefore, 2¢ # 2. O

Therefore, Theorem 9.1.1 holds for p = 7 in full generality, and we record the following

result.
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Corollary 5.3.17. Let G be a GGS-group defined by a non-symmetric defining vector e € F?.

Then the following inequalities are satisfied.
5 < a(G) < 87.1372431.

Now, Theorem 3.0.7 follows from Corollary 5.3.17 and Theorem 5.3.17. The proof of

Lemma 5.3.16 suggests that, if we set

_5 _ (p—5b _5 _(p—5 p—5
Y = xg?o )xl (pl )x§p2 ) .. :L'p_(g76) 1‘1()]:35) e '7p73(G) H17

then z; would be a potential candidate for higher primes. Then one could iterate the process,

and make sure that such elements exist for all choices of the defining vector e.
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Chapter 6

Representation zeta function of the

Gupta—Sidki 3-group

In this chapter, we explicitly compute a recursive formula for the representation zeta function
of the Gupta—Sidki 3-group, and hence we give a proof for Theorem 3.0.10. Moreover, we
will show that the formula presented in Section 6.5 is in agreement with the one obtained
in [14, Section 2.2] by means of computer calculations.

For every odd prime p, the Gupta-Sidki p-group G), is a GGS-group defined by the
vector e = (1,—1,0,...,0) € Fg_l. Since the defining vector e is non-symmetric, recall from
Theorem 2.4.21 that G, is regular branch over the commutator subgroup. We emphasise that
the detailed computation presented here is currently limited to the Gupta—Sidki 3-group G
because of its relatively small branching quotient isomorphic to Cs x C'5. However, we begin
with Section 6.1, where we review some structural properties of the Gupta—Sidki p-groups.
These results help us to have a better understanding about the branching quotient. In
Section 6.2, we explain the strategy of computing the representation zeta function of G3. The
crucial computations are carried out in Section 6.3, where we analyse the inertia groups of
the irreducible representations of the subgroup G% and L (G4 x G x GY). The calculations
in Section 6.3 give recursive estimates on the number of irreducible characters of Gf. Using
this, we first compute the representation zeta function of G% in Section 6.4. Finally, the

functional equation summarised in Theorem 3.0.10 is obtained in Section 6.5.
6.1 Gupta—Sidki p-groups
Throughout this section let p denote an odd prime.

Proposition 6.1.1 ([44], Proposition 2.4). Let G), be the Gupta—Sidki p-group and let
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g € Gyp. Then g € Stg, (1) if and only if there exist ig, ... ,ip,—1 € [0,p — 1] and ho, ..., hy_1 €
G, such that

¥(g) = (hoa_i”—1+i0ti1, hya =tttz .,hp_la_ip—2+ip—1ti°). (6.1)

Proof. If g € Gy is of the form (6.1), then it is clear that g € Stg,(1). Let g € Stg,(1). Then

by Theorem 2.4.19(i), g = téotil---t;”__ll mod Stg, (1)’ for some ig,...,ip,—1 € [0,p—1],

where t; = @' for all i € [0,p — 1]. Therefore,

¥(g) = (k:oaiotila_ip—l,kla_i°+i1ti2, .. ,kp_ltioa_ip—2+ip—1)
_ (hoafip_1+’ioti1’ hlafioJriltiQ’ . hp_la*ip_2+ip_1tio),
for some h;, k; € G},, where i € [0,p — 1], completing the proof. O

Proposition 6.1.2 (cf. [44], Lemma 2.5). Let G, be the Gupta-Sidki p-group. The element
YU, ... t) lies in G, Moreover, Sta,(2)/Sta, (1) = (Sta, (1) ¢ 1(t,....t)) = Cp. In
particular, for p =3, v3(Gp) = Sta,(2).

Proof. A straightforward computation using the section decomposition of x; (Notation 2.4.24)

yields that
R (A =y, Lozt - - xii%. (6.2)

Hence ¢~1(t,...,t) € Gy, Now observe that, Stg, (1)’ < Stg,(2). Let g = (go,...,91) €
Sta,(2). In particular, g € Stg,(1) and hence g is of the form (6.1) such that the exponent
sum of a in each co-ordinate is zero. This implies that ig = 71 = --- = i,_1 = 4 for some

i €[0,p— 1] and, since ¥(Stg, (1)) = G}, x B Gy, (Theorem 2.4.19(ii)), we get
¥(g) = (hot',hat' ... hy_1t") = (t,...,t)" mod ¥(Ste, (1)"). (6.3)

Furthermore, (6.3) implies that St (2)/Sta, (1)’ = (Ste, (1) ¥ 1(¢, ..., 1)) = C).

Now, suppose that p = 3. From Theorem 2.4.19 and Theorem 2.4.21, it holds that
[G), : Sta,(1)'] = 3% and hence [G), : Stg,(2)] = 3. From Theorem 2.4.19(iii), we have
Sta, (2) < 73(Gp) and [G), : 13(Gp)] = 3, resulting that v3(G)p) = Stg, (2). O

For convenience of the later computations, we state the following immediate corollary

of the last part of the proof of Proposition 6.1.2.

Corollary 6.1.3. Let G be the Gupta—Sidki 3-group. Let H = G’ be the commutator
subgroup and let and Hy = v Y(H x H x H). Then H = H;{z,ty, where x = [a,t] and

t =97t t,1).
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6.2 Method of computing the representation zeta function

Before presenting the calculations, we give an outline of the strategy. Thereby, we record the
following structural lemma that is vital to the computation of the recursive representation
zeta function of G3, since it illustrates possible subgroups between Gz and ¢~ (G4 x Gy x GY)

from (resp. to) which characters induce (resp. restrict).

Lemma 6.2.1. Let G be the Gupta—Sidki 3-group and let H = G’ be the commutator
subgroup of G. Let Hy denote the subgroup ¢~ '(H x H x H) of G. Then the Hasse diagrams
for the sets of subgroups that are sandwiched between G and H, and that are sandwiched

between H and Hy are given by Figure 6.1.

NN PZANN

H{ay H{t)y H{aty Hlat™') H{t) H{xogty H{xit)y H{xat)

YNy

Figure 6.1: Hasse diagrams

Proof. From Theorem 2.4.19, it follows that G/H = (H ay x (Hty =~ C3 x C5. Similarly,
from Theorem 2.4.25, we get that H/H; = (H; xo) x (Hy z1) = C3 x C3, where

Y(z0) = [a,t] = (t a,a2,at), and (1) = 2% = (at,t La,a™?),
cf. Notation 2.4.24. The subgroups lying between G and H are given by the set
G = {G, H{a), H(ty, Hat), H{at™ ), H},
and the subgroups lying between H and H; are given by the set
H = {H, Hi{xo), Hi{x1), Hi{x021), H1<x0xf1>,H1}.

Now, since ¢ € H (Corollary 6.1.3), observe that

U(zo) = (t ta,a,at) =g, (at,t 1a,a)(t,t,t) = p(z1t),
U(zy) = (at,t™ta,a) =g, (a,at,t™1a)(t,t,t) = P(xat),
U(xox1) =m, (a,at,ta) ™ =p, (80, a,at)(t,t,8) 7" = p((zol) ),
D(woxyt) =m, (8, t,) = D).
Therefore, H = {H, H\{t), Hi{xoty, Hy{x1t), Hi{xoty, H,}, yielding the Figure 6.1. O
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Since G is regular branch over the commutator subgroup H, we identify the subgroup H;
with the subgroup H x H x H. As stated in Theorem 4.0.1, every irreducible character

p € Irr(H7) can be uniquely expressed as
p =19 @91 ® V2,

for some ¥; € Irr(H ), where i € [0, 2]. Recall from Chapter 4 that the notation ¥y ® 91 ® V2

denotes the product of characters g, ¥1, 2, and is given by

Yo ® V1 ® V2(ho, h1, he) = Vo (ho)V1(h1)V2(h2),

for every (ho, h1,h2) € H x H x H. Conversely, for every choice of ¥; € Irr(H ), the product
Jo ® Y2 ® J3 is an element of Irr(H;). Therefore, we identify the following sets

Irr(Hy) = Irr(H) x Irr(H) x Irr(H),

where Irr(H) xIrr(H) xIrr(H ) = {9g®1 @02 | ¥; € Irr(H), i € [0, 2]} as defined in Chapter 4.
For every p € Irr(Hy) (resp. ¢ € Irr(H)), the inertia group Ig(p) in H (resp. Ig(p) in G)
belongs to the set H (resp. G), and hence there are six different possibilities. In Section 6.3,
we do a case-by-case study on the inertia groups. In each case, we obtain a sufficient and
necessary condition for a character to have a given inertia group. We split the process into
two steps.

Step 1: For every S € H, we provide a sufficient and necessary condition for a character
p € Irr(Hy) to satisty I (p) = S, in terms of the inertia group I (¥;) of J; in G.

Now, suppose ¢ € Irr(H) and p is an irreducible constituent of ¢|g, such that Iy (p) =
S € H. The inertia group Ig(¢) of ¢ in G is an element of the set G.

Step 2: Using Step 1 and the results discussed in Chapter 4, we give a sufficient and
necessary condition for Ig(p) = T for every T € G, in terms of the the characters ¥; and
their inertia groups in G.

Using the information from Section 6.3, in Section 6.4, we obtain a recursive procedure
for calculating the representation zeta function of H. From each of the cases in Step 2, we
count the irreducible characters of H that are obtained either by extension or by induction
from a given irreducible character p of H;. In this way, we obtain all irreducible characters

of H. For every T € G, denote by 7'5 the cardinality of the set

rq = [{p e Ie(H) | p(1) = 3%, Ia(y) = T}, (6.4)
and define the partial representation zeta function (7 (H, s) of H associated with T as the
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Dirichlet generating function give by

o¢]

("(H,s)= > ri37%, (6.5)
d=0

for s € C. By taking the sum of ¢7(H, s) over all six T € H we obtain the representation

zeta function of H given by

((H,s)= > ¢"(H,s). (6.6)

TeG

Finally in Section 6.5, again by an application of results from Chapter 4, we compute the
representation zeta function of G as a recursive function in terms of the representation zeta
function of H.

From the computation of partial representation zeta functions of H, we observe that
CG(Hv 5) = 37

(see Lemma 6.4.1). That is there are exactly three irreducible characters of H that are
G-invariant and all of them are linear. Therefore, we get that the cardinality C of G-invariant

irreducible characters of H (defined in Theorem 5.3.4) is equal to three.

6.3 Inertia groups

This section comprises of Step 1 (Section 6.3.1) and Step 2 (Section 6.3.2). Here we carefully
and elaborately develop the theory that enables us to compute the partial representation
zeta functions described in Section 6.2. In the following, we fix G = G3 as the Gupta—Sidki
3-group and H = G’ as the commutator subgroup of G. We identify H; = H x H x H with
the subgroup v~ (H x H x H) of G and the element ¢ = (¢,t,t) with the element ¢~ (¢,,1).

Further, we fix
Y(xg) = (tila, aiQ,at), Y(xy) = (at,tila, a72), P(xg) = (aiQ,at, tila).
We recall from Lemma 6.2.1 the following collection of subgroups:
G = {G, H{a), H(ty, H{at), H{at™ "), H},
and
H = {H, H{t), H{xoty, Hi{x1t), Hi{xat), H1}.
6.3.1 Inertia groups: Step 1

The objective of this section is to obtain fundamental results that provide sufficient and

necessary conditions for a character p = ¥ ® 91 ® Y2 € Irr(Hp) to have Ig(p) = S € H

89



in terms of the inertia groups Ig(9;) € G for i € [0,2]. We set K = H{t) = Stg(1). For
convenience, we identify an element g € K with its image under the projection map .
Also, we adopt the convention that the subscripts of the irreducible characters 1J; are taken

modulo 3.

Lemma 6.3.1. Let 99, 01,92 € Irr(H). The following assertion holds
Ip (90 ® 1 ®02) = ¥~ (Ia(Vo) x Ia(th) x Ig(02)) N H.

Proof. Since 1 is a monomorphism from the first level stabiliser K = St(1) to the direct
product G x G x G, it holds that ¥~ (Ig(9) x Ig(¥1) x Ig(¥2)) < K and

w_l(f(;(ﬁg) X IG(Q%) X Ig(ﬁg)) NH < IH(190 ®191 @192)

To see the reverse inclusion, consider g = (go, g1, 92) € Ig(Yo®VI1®V2) and h = (hg, h1, he) €
H,, where g; € G,h; € H and i € [0,2]. We have

Yo @Y1 ®VI2(h) = (Vo @ V1 @V2)Y(h) = (99 ® 91 ® ¥2)(ghg™ ')
= Yo(gohogy )1 (g1h197 ) V2(gahags t)

= 95 (ho) V7" (h1) V3’ (he) = 95" @ ¥1" @ V57 ().

Thus g; € Ig(¥;) for all i € [0,2]; cf. Remark 4.0.2. Hence g € ¥~ 1(Ig(¥) x Ig(91) x
Ig(¥2)) n H. O

Lemma 6.3.2. Let ¥y, V1,02 € Irr(H). Then Ig(9o®91®092) = H if and only if Io(¥;) = G
for all i € [0,2].

Proof. 1f I(0;) = G for alli € [0, 2] then it follows from Lemma 6.3.1 that I (Jo®@91®02) =
H. To see the converse, assume that I (Jg ® 91 ® J2) = H. We get,

P @ V1 @Yy = (g @ V1 @ V)™ = 0% * @09 @ 9L,
Po @ V1 @Yy = (o @ V1 @ V3)* = 98 @9 ' @92,
Do @01 @0 = (g @01 ®12)"2 = 92 @V @0 2,

implying that Ig(9o) = Ig(¥1) = Ig(¥2) = G; cf. Remark 4.0.2. O

Lemma 6.3.3. Let U9, 01,92 € Irr(H). Then Ig(Yo ® 91 ® ¥2) = Hy{t) if and only if
H{t) < Ig(V;) for all i€ [0,2], and there exists j € [0,2] such that I(V¥;) # G.
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Proof. Suppose that I (99®91®133) = Hi(t). It follows from Lemma 6.3.2 that there exists
J €[0,2] such that I¢(9;) # G. Let h = (ho, h1, he) € Hy and let gt° = (got®, g1t%, g2t°) €
H;{t), where g;,h; € H and i, € [0,2]. We get
9o ® th ®V2(h) = (90 ® V1 ® V2)?" (h) = (Yo ® V1 ® Vo) (g h(gE) )
= 9o(g0t*ho(got") ™)1 (91t R (911°) )2 (gat*ha(gat®) ™)
= 05" (ho)O7'" ()95 (ho) = 05" @ 97" ®@ 05" (h).
Hence H{t) < Ig(¥;) for all i € [0,2].

Now, suppose that H(t) < I¢(v;) for all i € [0,2] and suppose further that there exists
Jj € 10,2] such that Ig(9;) # G. From Lemma 6.3.1, we have

Hi () < Iy(Yo® 91 ®v2) < H,

where the strict inequality follows from Lemma 6.3.2. Therefore, I (99 @191 ®J2) = Hi{t),
cf. Figure 6.1. 0

Lemma 6.3.4. Let ¥g, 91,99 € II"I“(H) and let j € [0, 2]. Then IH(190 RN ® 192) = H1<.f(}jf>
if and only if there exists k € [0,2] such that I(V) # G and the following inclusions hold:

H<a> < Ig(ﬁj), H<at> < I(;(ﬂj+1), H<at*1> < Ig(ﬁj_,_g).

Proof. Observe first from the proof of Lemma 6.2.1 that

zot =p, (a,at,at™?), 1t =g, (at™! a,at), zot =g, (at,at™',a).

We prove the result for the case j = 0. The other cases follow in a similar manner. Suppose
that Iy (99 ® 91 ® ¥2) = Hilwoty. It is immediate from Lemma 6.3.2 that there exists
k € [0,2] such that I(Y) # G. Furthermore,

9o @01 @2 = (Y9 ® V1 ®DI2)"" = 95 @I @95,

and hence H{a) < Ig(Yg), H{at) < Ig(¥1) and H{at™1) < I5(Js).
Now to see the converse, assume that the given statement is true. Then from Lemma 6.3.2
we have

Hy{xot) < Ig (Yo ® 91 ®V2) < H,

whence Iy (99 ® V1 ® ¥2) = Hi{zot), cf. Figure 6.1. O

Lemma 6.3.5. Let 99,91,92 € Irr(H). Then Iy (99 ® 91 ® ¥2) = Hy if and only if there
exists i € [0,2] such that {(t) € I(V;) and the following assertion holds:

—~(3j€[0,2]: Hlay < Ig(¥;) A Hlat)<IgWjy1) ~ Hlat™") < Ia(9)42)).
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Proof. Since for every ¥y ® 1 ® ¥ € Irr(Hp) the inertia group Ig (Yo ® Y1 ® J2) lies in
H, there are only 6 possibilities for I (Y9 ® V1 ® ¥2). Therefore I (Y ® 1 ® o) = H;
if and only Iy (dy ® %1 ® ¥2) ¢ H\{H1}. By combining Lemma 6.3.2, Lemma 6.3.3 and

Lemma 6.3.4 we obtain Lemma 6.3.5. O]

Now, we record two lemmas that are helpful for the discussion of G-invariant irreducible
characters of H in Section 6.3.2. Let ¢ € Irr(H) be such that Ig(¢¥) = G. Thanks to
Corollary 5.3.12, 9 is linear. In the following, we identify ¥ with an irreducible character of

H/[H,G].

Lemma 6.3.6. Let 9 € Irr(H) be such that I(9) = G. Then ¥ extends to irreducible
characters of K. Let © € Irr(K) be an extension of 9. Then ©% = OX for some X\ € Irr(K/H)
and, for each € € [0,2], A\(t°) = 9([a,t])*. (Here we identify the quotient group K/H with
the cyclic group {ty = C3). Furthermore, if ¥ extends towards G then ¥ = 1y, where 1y is

the trivial character of H.

Proof. Since ¥ is G-invariant and |K : H| = 3 is prime, ¥ extends towards K and let © be
an extension. Since © is an extension of 1, © is linear, and hence © is a homomorphism
from K to C*. Then ©(¢) # 0 for all £ € K. We identify © with an irreducible character of
K/[H,G]. Let ¢ = ht* € K, where h € H and ¢ € [0,2]\{0}. Then

O(htf) = O((ht*)* ") = O((ht?)[1t®,a"]) = O(ht*)I([ht*, a" ")), (6.7)

where the last equality follows because © is linear. On the other hand, since ¥ is G-invariant,

0|y = (])® = v. Hence, there exists A € Irr(K/H) such that ©% = ©X. Therefore,
0% (htF) = (ON)(ht?) = O(ht)A(E). (6.8)
By comparing (6.7) and (6.8), and using the fact that [H,G] < ker(d), we get
A(E) = O([ht7,a']) = 9([a. ] = 9% ([a, ht]) = 9([a, htF])
= J([a, t][a, h]") = I([a, 1)V ([a, h]") = O([a, ¢]) = O([a, t])".

To see the last claim, assume that ¥ admits an extension towards . Then 9 is trivial on

[G,G] = H whence ¥ = 1p. O

Lemma 6.3.7. Let ¥ € Irr(H) be such that Ig(9) = G. Then ¥ extends to irreducible
characters of H{at®) for every ¢ € [0,2]. Let © € Irr(H{at’)) be an extension of 9. Then
O! = O\ for some A € Irr(H{at®y/H) and, for each ¢ € [0,2], A((at®)?) = 9([a,t]) ¢, (here
we identify the quotient group H{at®y/H with the cyclic group {at®) = C3).
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Proof. Let © be an extension of 9 towards H{at®). Then O is linear, and we identify © with
an irreducible character of H{at’)/[H,G]. Since © is linear, ©(¢) # 0 for all £ € H{at’).
Let ¢ = h(at®)® € H{at®), where h € H and ¢ € [0,2]\{0}. We get

' (h(at’)®) = ©(h(at’))" ) = O((h(at’))[h(at’)*,t71]) = O(h(at’))9([h(at’)*,t7]),
(6.9)
where the last equality follows because © is linear. Now, since ¥ is invariant under the
action of G, Oty = (©|g)t = ¥. Hence, there exists A € Irr(H{at®)/H) such that ©f = ©).

Therefore,

O (h(at®)?) = OA(h(at®)?) = O(h(at®)*)A((at)®). (6.10)

By comparing (6.9) and (6.10), and using the fact that [H, G] < ker(¢}), we get

A(at*)) = 9([h(at®)*,e7]) = O([t, h(at)T] ) = 0 ([t h(at’)7]) = ([t hlat’)°])
= O([t, (at)[t, B) ) = D([t, (atFDI([t, 1)) = 0([1, (at)F])
= I([t, at’])* = I([t, £°][t, a]) = O([a, t]) . O

6.3.2 Inertia groups: Step 2

Let 9o ®191 ®v9 € Irr(Hy) for some ¢; € Irr(H) and ¢ € [0, 2], and let S € H. In Section 6.3.1
we observed the explicit conditions under which Ig(Yg ® V1 ® ¥2) = S. Let ¢ € Irr(H)
be such that Yo ® 1 ® 92 is an irreducible constituent of ¢|g,. For every T € G, here we
provide sufficient and necessary conditions for ¢ to satisfy the equality I (¢) = T. We split

the calculation into four cases.
(i) Case 1: Iy (Yo ® h ® ¥2) = Hi{t).
(ii) Case 2: Iy (Vo ® V1 ®V2) = Hi{z;t) for j € [0,2].
(iii) Case 3: Iy (Y ® ¥ ® ¥2) = Hj.
(iv) Case 4: Ig(Yo® V1 ®12) = H.

Notice from Lemma 6.3.2 that Case 4 occurs if and only if the characters 9¥; are G-
invariant for all ¢ € [0, 2]. Moreover, by Corollary 5.3.12 the characters ¥; are then linear and
the numbers of such characters are finite. Therefore, there are only finitely many characters
which satisfy Case 4. This enables us to explicitly count the number of characters ¢ € Irr(H)
such that the character Y@ ®v € Irr(Hy ), with inertia group I (9o®@%1®12) = H, occurs
as an irreducible constituent of ¢|g,. Further, we prove that these characters contribute to

the constant terms of the partial representation zeta functions of H.
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6.3.2.1 Case 1: IH(190 ® 191 ® 192) = H1<7E>

We begin by the following observation.

Observation 6.3.8. By Lemma 6.3.3, it follows that K = H{t) < Ig(9;) for all i € [0, 2].
Then each 9; extends to an irreducible character of K for all ¢ € [0,2]. If ©; denotes an
extension of ¥; to K then Og® 601 ®O, is an extension of the character Jo® 1 ® V9 from H;
to K x K x K. Since Hi{t) = ¢y (K x K x K) n H, we identify H;(f) with a subgroup of
K x K x K. Denote by 7 the restriction of Og® 01 ®© to H1{t). Then 7 is an extension of
Yo ® Y1 @9 from Hy to Hi{t) (Theorem 4.0.3). Since H1{t) < H, the character n does not
extend towards H. Denote by ¢ the character of H induced from 7. Then ¢ is irreducible
(Theorem 4.0.5) and by Clifford’s theorem the restriction of ¢ to Hi{t) has the following

form
-1
el =n+n"+1" (6.11)
since H = Hi{z,t) (Corollary 6.1.3) and H/H{t) =~ C5 (cf. Proposition 6.1.2 and Theo-
rem 2.4.19(iii)). Furthermore,

©(1) = [H : Hi(t)] - n(1) = 3+ (Jo ® V1 @2)(1) = 30o(1)01(1)02(1).

Proposition 6.3.9. Let 9; € Irr(H), fori € [0,2], such that Iy (9o @Y1 ®2) = Hi{t). Let
©;,n and ¢ be defined as in Observation 6.3.8 above. Then a € Ig(p) if and only if there

€

exist ¥ € Trr(H) and ¢ € [0,2] such that I(¥) = K and 99 = 9, 91 = 9% and ¥ = 9* .

Proof. From Proposition 6.1.2, observe first that, Hi1{t) = Stg(2) and set K1 = Stg(2).
Thanks to Lemma 4.0.9 and (6.11), we get that a € Ig(p) if and only if n® € {n, 77”,175‘71}.
If n* = n then

(02®00®01)|k, = (O®O1®O2) K, = (O®O1®O2)|K,)* =n"=n
= (01 ® 01 ®092)|k,-

Suppose that n* = n*. Since H(t) = K < I(0;) for all i € [0, 2], we get

(G200 ®01)|Kk, = (O®O; ®O2)K, = (O ®O1 ®O2)|K,)* =n* =n
= (B0 ®61® )|k, = (0 *®OI®O5)|K, = (0 ® 0! ®69)|K,.

Ifn* = nfl, then by a similar argument as above we obtain

(02000®61)|k, = (08 ®0% ' @04 |x,.
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€

By denoting ¥ = ¥y = Og|x, in each of the three cases, we find that ¢; = 9% and 99 = 9
for some ¢ € [0,2]. Since Ig(¥9*") = Ig(¥)* ", by Lemma 6.3.3, for all i € [0,2], we get
that Ig(¥;) = Ig(V¥) = K.

Now we prove the reverse implication. Assume that the given statement is true. Let
© € Irr(K) be an extension of ¥ from H to K. Notice that ©%"" is an extension of 9",
since @ | = (O]g)* = 9*". Set n = (OR O @ 0% “)|k,. Then n an extension of
Yo @Y1 ®Vs. Since Iy (¥ ®1 ®12) = Hi1{t) = K;, we have I (n) = Hi{t). Now consider,

€

1 =((0®60 ®60" )k )" = (000" ®0" )k = (0" ®O®O™)|k,.

If ¢ = 0 then n® = 7, if ¢ = 1 then 7 = #* ' and if ¢ = —1 then n® = n®. Therefore
n% e {n,n" n* '} and the result follows from Lemma 4.0.9. O

Proposition 6.3.10. Let ¥; € Irr(H), for i € [0,2], such that Iy (9 ® ¥ ® ¥2) = H1{l).
Let ©;,n and ¢ be defined as in Observation 6.3.8 above. Let € € {1,—1}. Then at® € Iz(p)
if and only if there exist ¥ € Irr(H) and j € [0,2] such that Ig(¥) = K and ¥; = ¥ and

Vi1 = Djyo =0

Proof. By Lemma 4.0.9 and (6.11), we have at® € Ig(p) if and only if 5" € {n,n%, 5" '}.
Suppose that at® € Ig(p). Since K < I(0;) for all i € [0, 2], we get

(00 ® 01 ®6O2)|k, if n?* =,
(05 ®6F  ®61)|k, =n" =1 (02 ® 0! ®63)|k, if 9 = g,
(0F @61 @05 ik, iy =u.

We consider the case when ¢ = 1. In view of the three possibilities described above, this

implies that there exists 9 € Irr(H) such that
Po=0,01 =09 =09% , or 91 =0,00=102=0" ", or Og=10,90=10 =0 .

Since Ig(ﬁ“ﬂ) = Ig(ﬂ)“il, Lemma 6.3.3 implies that I5(9;) = Ig(¥) = K for all i € [0, 2].
Analogously, we obtain the result for ¢ = —1.

To prove the reverse implication, again we consider the case when ¢ = 1. The case when
e = —1 follows in a same manner. Suppose that there exist ¥ € Irr(H) with Ig(J) = K
and j € [0,2] such that ¥; = ¥ and V41 = Vj42 = 92", Then, ¥ extends to irreducible
characters of K. Let © € Irr(K) be an extension of ¥. For the case j = 0, set n =
(OO0 @0 )|k, where Ky = Hy(?). Since © |z = (0|g)* ' =99 ', the character
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7 is indeed an extension of ¥ ® 99 @092, Then

((@ ® @a_l ® ea_1)|Kl)at _ (@ ® ea_l ® @a_l)at|K1 — (@a_l ® @ ® ea_l)t|K1
(06" ®6" )|k =n.

nat

Similarly, for j = 1, we get n® = 5% and for j = 2, we have 7% = n® '. Therefore, by

Lemma 4.0.9, we obtain that at € Ig(p), where ¢ is the character induced from 7. O

Proposition 6.3.11. Let ¥; € Irr(H), for i € [0,2], such that I (99 ® V1 ® ¥2) = H1{t).
Let ©;,m and ¢ be defined as in Observation 6.3.8 above. Then t € Ig(p) if and only if there
exist ¥ € Irr(H) with Ig(¥) = K and j € [0,2] such that 9; = ¥, and ¥j41 = Vj42 with
Ig(0j41) = G.

Proof. Suppose that t € Ig(¢). Then, by Lemma 4.0.9 and (6.11), n € {n,n‘”,nz_l}, or

xt—1

equivalently, n € {nt",n* ", p® '*'}. By a similar computation as in Proposition 6.3.9 we

get t € Ig(p) if and only if one of the following cases occur:

(0 ®OF @Ok, if n=1"" or,
(O ®O1®O2)[K; =1 (O RO @O |k, if n=n"", or,
(OF®O10605 )k, ifn=1""",
where K1 = Hi{t). It is immediate that there exists j € [0,2] such that Ig(dj11) =
Ig(¥42) = G, and therefore, by Lemma 6.3.3, Ig(¥;) = K. Thanks to Corollary 5.3.12,
it follows that 9,41 and ;12 are linear. We identify the characters ¥;1, 9,42 with irre-
ducible characters of H/[H,G] and the characters ©;41, ©;42 with irreducible characters
of K/[H,G]. In view of Lemma 4.0.8, choose ¢ = (hg, h1,h2)t?, where h; € H, i € [0,2]
and ¢ e [0,2]\{0}, such that (Oy ® ©; ® O3)(¢) # 0. We obtain that if = ' then
I (99) = Ig(¥1) = G and, by Lemma 6.3.6, the following equality holds:

(©0®61®6:)(0) =n(t) =n' (£) = (0 ®O§ ®6O2)(£) = (8 ® O1 ® O2) ()Mo (t) A1 (£°)
= (00 ® 01 ®O2)(0)Vo([a,t]) V1 ([a, t])®

where Ao, \; € Irr(K/H). Therefore, ¥y = ¥;. By following a similar computation, we get
that if n = ® " then ¥; = 95 with Ig(91) = G, and if n = n® '*' then ¥y = ¥, with

I¢(99) = G . The converse follows by reversing the arguments above. O
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6.3.2.2 Case 2: IH(190 ®191 ®192) = H1<xjt> for j € [0,2].

Observation 6.3.12. We fix an element j € [0,2]. It follows from Lemma 6.3.4 that,
H{at'=7y < Ig(¥;) for all i € [0,2]. Set

M; = Hlat™7) x Hlat'7y x H{at*™7).

Let ©; denote an extension of ¥; to H{at'7). Then Oy ® ©; ® Oy is an extension of
the character Jp ® 91 ® V2 from H; to M. Since Hi{m;ty = ¢~ (M;) n H, we identify
H{xz;t) with a subgroup of M;. Let 1 be the restriction of ©9 ® ©1 ® O2 to Hi{x;t). Then
n is an extension of ¥y ® V1 ® ¥ from H; to Hi{(x;t) (Theorem 4.0.3). Notice that the
character n does not extend towards H. Denote by ¢ € Irr(H) the character of H induced
from 7. Observe further that Hi{(z;t) is normal in H. Moreover, H = H{z;t,t) and
H/H{xjty =~ C3 (cf. Corollary 6.1.3). By Clifford’s theorem the restriction of ¢ to H{(z;t)
has the following form

7 —1
SOIH1<J:J'® =n+ 77t + 77t : (612>
Furthermore,
p(1) = [H : Hilz;t)] -n(1) = 3 - (o @1 ®92)(1) = 300(1)91(1)d2(1).
Proposition 6.3.13. Let j € [0,2] and let ¥; € Irr(H), for i € [0,2], such that the inertia

group I (0o @Y1 ®192) of g®@1V1 @02 is Hi{x;ty. Let ¢ be defined as in Observation 6.3.12.

Then none of the elements a,at,at™" belongs to Ig(yp).

Proof. Let € € [0,2]. By Theorem 4.0.3 and (6.12), we obtain
I —1 9 é &
ol = (‘P’H1<@D)‘H1 = (U@)nt@Ut Nm, = Z "96 ®19t1 ®79§’
§€10,2]
where 7 is defined as in Observation 6.3.12. Now assume that at® € Ig(p), i.e., o™ = @,
for some ¢ € [0,2]. This implies
> b @0 @0 = elm = "l = (plm) = Y, v @95 v,
6€0,2] 5€[0,2]
An easy calculation yields that ¢ = 19875 = 9. This implies that I5(¥;) = G for all
i € [0,2], since (Ig(¥;,) u Ig(¥},)) = G for ji # jo, where ji, jo € [0,2], which is a

contradiction to Lemma 6.3.4. O

Proposition 6.3.14. Let j € [0,2] and let ¥; € Irr(H), for i € [0,2], such that the inertia
group Ig(¥o ® V1 ® ¥2) of Yo ® ¥ @ V2 is Hilxjty. Let ©;,m and ¢ be defined as in
Observation 6.3.12. Then t € Ig(p) if and only if one of the following occurs:
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1. I(9;) = H(a) and Ic(9j41) = Io(9j42) = G with V5 = 97}

2. 95 = 1g, hence Ig(V¥;) = G, and moreover

(i) Ig(Vj41) = Hlat) and Ig(V+2) = G, or,
(i) I(Vj41) = G and Ig(V;4+2) = Hlat™1), or,
(iii) Ig(9j11) = Hlaty and Ig(9j12) = Hat™).
Proof. We shall prove the statement for j = 0, the other cases follow in the same way.
Assume that I (Y@M ®@V2) = Hi{zot). By Lemma 4.0.9 and (6.12), the element t € I () if

and only if o' € {n, ', n" '}. Since H(a) < I5(Oy), Hlaty < I(01) and H{at™ ') < I(O,)

(cf. Observation 6.3.12), we get that ¢t € I () if and only if one of the following cases occur:

(©0® O} ® OY)|11ytxory = (OF® O @ OL) 11, ¢wors = (O0 ® O1 ® Oa)! |11yt = '

(B0 ® 01 ® O2)| 1, o1y if n* =7, or,
=1 (8 ® 6% ® 0%)| 11, (woiy if n = 7nt, or,
(0F ®OL ®OL uywn ' =n" .
We split the proof into three cases.

Case 1: Suppose that n¢ = 7. It is then straightforward that Ig (1) = G = Ig(92) and
hence, by Lemma 6.3.4, I(Y9) = H{ay. Thanks to Corollary 5.3.12, the characters 9; and
¥ are linear. We identify the characters 91, 92 with irreducible characters of H/[H, G] and
the characters ©1, O with the irreducible characters of H{aty/[H,G] and H{at~)/[H, G],
respectively. By Lemma 4.0.8, there exists £ = (hoa®, hi(at)?, ha(at~1)) for some h; € H,
i€[0,2] and € € [0,2]\{0} such that (B9 ® 01 ® O2)(¢) = n(¢) # 0. From Lemma 6.3.7, we

obtain

(©0®O1®62)(£) = n(t) =n'(£) = (6) ® O] ® ©)(¢)
= (80 ® 01 ® O2)(O) M1 ((at)*) Aa(at™)?)
= (00 ® 01 ® 02)()V1([a, t]) " Va([a, t]) ™

where \j € Irr(H{at)/H) and \g € Irr(H{at~)/H). Since [a,t] generates H modulo [H, G],
we obtain 1 = 1951.

Case 2: Suppose that 7 = 1'. We have (Og®©1 ®02)| 5, (xop, = (05 @O ®O2)| 1, (xob>s
implying that Ig(J9) = Ig(O0) = G, so that ¥y is linear and extends all the way to G.
Hence we conclude that 99 = 1. Since Iy (Yo ® 1 ® ¥2) = H{xot), the inertia group of ¥

and v can take any of the following values:
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(i) Ig(¥) = H{at) and I(Y¥2) = G, or,
(ii) Ig(¥1) = G and I(9¥2) = Hlat™%), or,
(iii) Ig(v1) = H{at) and Ig(9s) = H{at™!),

and all of the above cases are legitimate by Lemma 6.3.4.

Case 3: Suppose that n' = 77571. We have
(80 ® ©1® O2)| 1y ¢aty = (0 ® OF @ O8) 11, (oo

This implies I (¥;) = I(©;) = G for all i € [0,2]. This is a contradiction to Lemma 6.3.4,
hence this case does not occur.

By reversing the above arguments we get the converse, completing the proof. O

6.3.2.3 Case 3: Ig(ﬁo ®191 ®’l92) = Hl.

Observation 6.3.15. Denote by ¢ the character of H induced from ¥y ® ¥1 ® ¥2. Then

by Theorem 4.0.5, ¢ is irreducible, and hence by Clifford’s theorem
Pl = Y. @01 @9)"7,
i,5€[0,2]

since H = Hi{xz,t) (Corollary 6.1.3). Furthermore,
(1) = [H : Hi] - (0 ® 01 ®2)(1) = 3*9p(1)01(1)02(1).

Also observe from Lemma 4.0.9 that, for each g € G, we have g € Ig(y¢) if and only if
(Yo @91 @ V2)? € {(9 ® V1 ®V2)" | i, 5 € [0,2]}, where

2t = (t7Ya,a,at)i(t,t,t)) =g, (a7, 0t a'tY). (6.13)

Proposition 6.3.16. Let ¥, ¥1, ¥2 € Irr(H) such that I(Yy ® 91 ® ¥2) = Hy. Let ¢ be
defined as in Observation 6.3.15 above. Then none of the elements at, at™' belongs to the

inertia group Ig(p).

Proof. Suppose to the contrary that at € I(¢). By (6.13), there exist ¢, j € [0, 2] such that

ip—iti it ipit]

1003 @0 = (@0 @) =95 @i @og

An easy calculation shows that 99 = 0%, 91 = 94 and ¥y = 92, whence H{t) < Ig(¥;)
for all 4 € [0,2]. This is a contradiction to Lemma 6.3.5. Analogously, one sees that

at™! ¢ Ia(p). O
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Proposition 6.3.17. Let ¥, U1, Y2 € Irr(H) such that Ig(Yo ® 91 ® ¥2) = Hy. Let ¢ be
defined as in Observation 6.53.15 above. Then a € Ig(yp) if and only if there exist ¥ € Irr(H )
and i, j € [0,2] such that I(9) € {H, H(a), H{at), H(at™")} and 99 = 9, 91 = 92t and

192 _ 19(Iit7i+j'

Proof. By Lemma 4.0.9 and (6.13), the element a € I(¢p) if and only if there exist 4, j € [0, 2]
such that

itJ itJ igitg

92 @%@V = (V@1 @) =95t~ @9 @0 (6.14)

Now set ¥ = 9. Then (6.14) holds if and only if ¥; = 9% *7 and 95 = 92" implying

that I(¢;) = Ig(0) for all i € [0, 2]. Therefore, by Lemma 6.3.5, I¢(¥) ¢ {G, H(t)}. There-

fore, by Lemma 6.3.5, I5(¥9) can take any values from the set {H, H{a), H{aty, H(at™1)}.
The following table indicates the possible choices of ¥; and 95 depending on the values

of 7 and j: in each box the first and second entries represent 1¥; and 9, respectively.

J 0 1 2

)
0 ot ot

! 0 ot 9t
ﬁa‘l ﬁa_lt_l Qc}a_lt

1 ﬁat‘l 99 9t
99 ﬁat_l 9t

2 ﬁailt ﬁafltfl ﬁail

Table 6.1: Values of 91 and ¥.

Now, to prove the converse, suppose that ¥ € Irr(H) with Ig(9) € {H, H{a), H{at), H{at~')}.
Set ¥y = ¥, and, for a fixed (i, 7) € [0, 2] x [0, 2], set 1 and Y2 as the first and second entries

from the ith row and jth column of Table 6.1. An easy computation yields that
(0 ® 1 ® )" = (Vo @ 0 @ D)™,
which completes the proof. O

Proposition 6.3.18. Let ¥, V1, ¥2 € Irr(H) such that Ig(Yo ® 91 ® ¥2) = Hy. Let ¢ be
defined as in Observation 6.3.15 above. Then t € I(p) if and only if there exist ¥y, U1, ¥2 €
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Irr(H) and i, j € [0,2] such that 9& "7 = 9o, 997V = 91 and 95 = Oy with the
wnertia groups given by:
1.if (i,5) € {(0,0), (1,0), (2,2)}
(i) IG(ﬂl) = H<a>7 IG(ﬁi-i-l) = H<a>7 IG(ﬁi-i-Q) = H<t>, or,
(it) Ic(0;) = Ha), I(¥i+1) = H{a), I(Vi+2) = G, or,
(iti) Ic(V;) = Ha), Ig(¥i+1) = G, I(Viv2) = H(L), or,
(iv) 1c(V;) = G, Ia(Vir1) = Hla), Ia(Vir2) = HSH).
2. if (i,5) €{(0,2),(1,2), (2, 1)}
(i) Ig(¥;) = Hlaty, Ig(V;i11) = Hlat™ ), Ic(9i12) = H{t), or,
(it) 1g(¥;) = Hat), I(Yi+1) = G, Ig(Vi+2) = H(H), or,

(iii) I(9;) = G, Ig(Vi41) = Hlat™1), Ig(¥s42) = H{t).

3. if (i,5) € {(0,1), (1,1),(2,0)}

(i) Ic(9;) = Hlat™, I6(0i1) = Hlat), Ic(Vis2) € {H, Ha), Hlat), H{at~"y, H{t), G},

(i) Ic(9:) = G, Io(¥is1) = Hlat), Io(Viso) € {H, H{a), H{at), H{)}, or,
(iii) 1a(0;) = Hlat™, I(9is1) = G, Ic(9isa) € {H, H{a), Hlat~", H()}, or,

() 1g(¥;) = G, Ig(Vi+1) = G, Ic(Vit2) = H.

Proof. By Lemma 4.0.9 and (6.13), the element ¢ belongs to I () if and only if there exist
i,7 € [0, 2] such that

ip—itj iyj ipit]

@97 @V, = (9@ @V2)" = 98 @099 @98 (6.15)

The equality (6.15) holds if and only if 92 "7 = ¢y, 92" = 9 and 92"t = .
Observe that the Table 6.2 encodes the information about g, ¢y and 15 based on the values
of i and j.

Now, suppose that (7, j) € {(0,0), (1,0),(2,2)}. Then, observe that H{a) < Ig(¥;), H{a) <
Ig(9i41) and H{t) < I(¥;+2). Therefore, the permitted cases of inertia groups I (%;) such
that Ig(Yo ® V1 ® ¥2) = H; are the following;

(i) Ig(¥:) = H{a), Ic(¥i+1) = H{ay, Ig(Viy+2) = H{t), or,
(i) Ic(¥:) = H{ay, Ig(Vi+1) = H{a), Ic(Vit+2) = G, or,
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| 7 1o 1 2

[
do =098 |Po=0a "t | =0 v

0 01 =90 | 9 = 99 Oy = 9ot
Do =095 | 9y = 0y = ¥,
O =04 | 9o =1y 0o =

1 O =9 | =09¢ " |9 =07t
9y =095 | ¥p = 0% 9y = 95
Oo =98 | Do =08 | ¥o = V8

2 Oy =01 |0 =1} O =0
Op =05 't | D=0 T | Gy =05

Table 6.2: Values of 9J¢, 91, Js.

(ili) Ig(¥:) = H{a), Ic(Vi+1) = G, Ic(Vir2) = H(t), or,
(iV) Ig(’l%) = G, I(;(’l91'+1) = H<a>, Ig(ﬂprz) = H<t>

Observe from Lemma 6.3.5 that all of the above cases are legitimate and that this is the list
of all possible cases. Analogously, from Lemma 6.3.5 we obtain the possible cases of inertia
groups for the case (i,7) € {(0,2),(1,2),(2,1)} and (4,7) € {(0,1),(1,1),(2,0)}.

Now, fix (i,7) € [0,2] x [0,2]. Set ¥y, ¥1 and 2 as given in the ith row and jth column
of Table 6.2. Further, choose the inertia groups of ¥y, 91 and 9 from the corresponding

list. Then it is easy to see that
(Do ®@ 01 @V2)" = (g @1 @ V2)"",

which completes the proof. O

6.3.2.4 Case 4: IH(190 ®’l91 ®’l92) = H.

Observation 6.3.19. By Lemma 6.3.2 it follows that I (¥;) = G for all i € [0,2]. Thanks
to Corollary 5.3.12, the characters 9; are linear for all i € [0,2]. We consider the following

four cases;
(i) The characters ¥; extend to irreducible characters of G for all i € [0, 2].
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(ii) There exist 4, j € [0,2] with ¢ # j such that ¥; and ¥; extend to irreducible characters
of G, while ¥, does not extend for & € [0, 2]\{z, j}.

(iii) There exists exactly one 7 € [0, 2] such that ¥; extends to irreducible characters of G.
(iv) None of the characters v; extend to irreducible characters of G.

Observe that in each of the above cases the characters 9; extend to irreducible characters
of K = H{t). Let ©; € Irr(K) be an extension of 9J;. Observe that ©; is linear and hence
a homomorphism from K to C*. We set K; = H1{ty and n = (09 ® ©1 ® O2)|k,. Then n
is an extension of Yo ® 91 ® VYo to Ki; cf. Observation 6.3.8. In the sequel, we identify the
characters ¥; with irreducible characters of H/[H, G| and ©; with irreducible characters of
K/[H,G].

Proposition 6.3.20. Let ¥y, V1, V9 € Irr(H) be such that I (9 ® 91 ® ¥2) = H. Suppose
that 9; extends to irreducible characters of G for alli € [0,2]. Then the character 9o®91®09
extends to irreducible characters of H. Furthermore, if ¢ € Irr(H) is an extension of

Jo ® V1 ® V2 then Ig(v) = G if and only if |k, = 1k, , otherwise Ig(yp) = K.

Proof. Observe first from Lemma 6.3.6 that ¥; = 1pg for all i € [0,2]. Therefore, the

character

Y@M @V =1gR1g @1y = 1,

and it admits an extension towards H as [H,H] < H; = ker(lp,); cf. Theorem 2.4.25.
Let ¢ € Irr(H) be an extension of 1p,. We identify ¢ with an irreducible character of
H/H,. Since H = Hy{(z,ty (Corollary 6.1.3), the character ¢ is G-invariant if and only if
©I(x) = p(x) and @I(t) = p(t) for g € {a,t}. Observe that t* = ¢, t' =g, t, 2' =g, x and

2 = z[z,a] = ac(t_la,a,at)_l(t_la,a,at)‘f1 =z(a a7t a Y (a, at, t 7 a) =g, ot

It is then immediate that ¢!(z) = ¢(z) and ¢'(f) = (), whence t € I5(p). Also, a € Ig(p)

if and only if

—1

p(z) = ¢"(x) = p(* ) = p(at) = p(x)p(t) = p()p|K (1),

where the last but one equality follows because ¢ is linear. Hence, I(¢) = G if and only if

90|K1 = 1k,. O

Corollary 6.3.21. Let 9, V1, 92 € Irr(H) be such that Iy (Yo®91®392) = H. Suppose that,
for alli € [0,2], the character ¥; extends to irreducible characters of G. Then the character

Yo ® I ® Vo is the trivial character of H1 and it extends to irreducible characters of H. In
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this way, we get 3 linear characters of H that are G-invariant and 6 linear characters that

are K-invariant.

Proposition 6.3.22. Let ¥, V1, P9 € Irr(H) be such that I (9 ® 91 ® ¥2) = H. Suppose
that there exist i,j € [0,2] with i # j such that ¥; and V; extend to irreducible characters
of G and Uy, does not admit an extension towards G for k € [0,2]\{¢,7}. Then the character
Yo ® Y1 ® Yo admits an extension towards Ki. Let n be an extension of 99 ® V1 ® Vs
towards Ky. Then Ig(n) = K and n does not extend to irreducible characters of H. Denote
by ¢ € Irr(H) the character induced from n. Then Ig(p) = K and ¢|g, = 3(¥9 ® V1 ® J2).

Proof. Observe from Lemma 6.3.6 that J; = ¥; = 1. Since Ig(¥y) = G for ¢’ € [0,2], the
characters ¥, extend to irreducible characters of K. Set ©, and n as defined in Observa-
tion 6.3.19. Since ¥; and ¥; extend to irreducible characters of G' and 9, does not admit
an extension towards G, we get Ig(0;) = G = I(0©;) and Ig(Oy) = K. Therefore, from
Lemma 6.3.6, we get that ©f = O\, where 1 # X € Irr(K/H). This implies

7" = (B ®O1®02)|k,)" = (O ®O1®O2)"|k, = (05 ®OT ®O3)|K, # 1.

Therefore I (n) = K; and 1 does not admit an extension towards H. Denote by ¢ € Irr(H)

the character induced from of n. Then
p(1) =1 (1) = [H : K] -n(1) = 3(d ® th ® ¥2)(1) = 30p(1)01(1)02(1) = 3,

where the last equality follows because g, ¥ and 95 are linear by Corollary 5.3.12. We
claim that ¢t € Ig(p). Then a ¢ Iz(p), since ¢ is non-linear; cf. Corollary 5.3.12. This
proves the result. It remains to prove that ¢ € Ig(p). By Lemma 4.0.9, this happens if and
only if nt € {n, n*, 77”"71}. We split the proof into three cases.

Case 1: Let {i,j} = {0,1}. Then I5(©¢) = G = I(©1) and I¢(©2) = K. We get

1= (@61 ®Os)|K,) = (OE® O ®Ob)|k, = (0 ®O1 ®Os)|x, =1.
Case 2: Let {i,7} = {0,2}. Then I¢(©¢) = G = I¢(O2) and I5(0;) = K.

' = (O ®O1 ®Os)|k,) = (OE® O] ®Ob)|k, = (0RO ®Oy)|x,
= (08 ' ®67 ®6¢ Kk = (0®O1®6)|k)"  =7"

Case 3: Let {i,7} = {1,2}. Then I5(01) = G = I5(02) and I5(0) = K.

' = (00 ®O1®Os)|k,)! = (0O ®6L)|xk, = (0§ ® 01 ® 0y)|k,
(O®0T®035)|K, = ((00®0O1®02)|K,)" =1n".
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Finally,
T x’l
ol = (@l o =0l +0" g + 0" |1, = 300 @ V1 ®V2). O

Corollary 6.3.23. Let Vg, V1, U2 € Irr(H) be such that Ig(Yo ® 91 ® ¥2) = H. Suppose
that there exist i,j € [0,2] with i # j such that ¥; and V¥; extend to irreducible characters
of G and ¥y, does not admit an extension towards G for k € [0,2|\{1, j}. Then ¥; =9; = 1g
and Yy is a non-trivial character. In this way, every choice of {i,j} and Oy yields a unique
w € Irr(H) of degree 3, such that {¢|m,, Yo ® V1 ® V2ym, # 0 with Ig(p) = K. In total, we
get 6 irreducible characters of H of the described form.

Proof. For a fixed pair {7,j}, we have ¥, = ¥; = 1g. Furthermore, ¥} is a non-trivial
linear character. If otherwise ¥, is linear, by Lemma 6.3.6, 9 extends towards G. Since
H/[H,G] = C3 (Theorem 2.4.19(iii)), there are two possible choices for ) and each of
these choices is legitimate. Therefore, for a fixed pair {i,j} we get 2 irreducible characters
@ of the described form. Now, since there are three different ways to fix an unordered
pair {i,j}, in total, we obtain 6 irreducible characters of H of the described form. As

ol = 3(J ® Y1 ® ¥2) determines Yy ® U1 ® V2 uniquely, there are no overlaps. O

Lemma 6.3.24. Let ¥, ¥1, Y2 € Irt(H) be such that I (Yo ® Y1 ® ¥2) = H. Suppose that
there ezists exactly one i € [0,2] such that 9; extends to irreducible characters of G. Then
PYo®V1®VJ2 admits an extension towards Ky. Let n € Irr(K1) be an extension of 9o®@171®Vs.
Then n is H invariant if and only if 9; # O for j,7" € [0,2]\{i} with j # j'.

Proof. Since I(¥y) = G for all i/ € [0, 2], the characters ¢; admit extensions to irreducible
characters of K. Set ©; and 7 as defined in Observation 6.3.19. From Lemma 6.3.6, we get
¥; = 1g and Ig(©;) = G. Write [0,2]\{i} = {j,5'}. Then I5(©;) = K = I¢(©j). There-
fore, again from Lemma 6.3.6 it follows that there exist non-trivial \;, Ay € Irr(K/H)\{1}
such that @? = 0;)\; and @?, = O \j. Since Yo®@v1 ®12 and hence ©Og®O1® O3 are linear,
O R®O1®O2(¢) # 0 for all £ € K. Let £ = (hot®, h1t®, hat®) € K1, where hg, h1, ha € H and
e € [0,2]\{0}. We consider the case when j = 1 and j' = 2; the other cases are dealt with

similarly. Then,

(7" =n)(f) = (O ® OT ® O3 — O ® O1 ® O2)(f) = (B9 ® O1A1 ® O242 — O ® O1 ® O2)(()
= (00 ® ©1 ® O2)(£)(A1(17)A2(t7) — 1).
Hence 7 is H invariant if and only if \; Ay = 1. From Lemma 6.3.6, we obtain
AL(9)A2(t%) = V1 ([a, t])*D2([a, t])".

Since 91,99 € Irr(H/[H, G])\{1x}, the equality AjA2 = 1 holds if and only if J; # J5. O
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Proposition 6.3.25. Let ¥y, V1, V9 € Irr(H) be such that I (9 ® 91 ® ¥2) = H. Suppose
that there exists exactly one i € [0,2] such that ¥; extends towards G and 9; # 9; for
J, 77 € [0,2)\{i} with j # j'. Then the character 9o®91®V2 extends to irreducible characters
of H. Let ¢ € Irr(H) be an extension of Y9 ® 91 ® 2. Then Ig(¢p) = H.

Proof. Notice first from Lemma 6.3.6 that ¥; = 1. Set ©; and n as in Observation 6.3.19,
where ' € [0,2]. It follows directly from Lemma 6.3.24 that n is H invariant and 71 extends
to irreducible characters of H. We prove that the set {a,t,at,at™ 1} does not intersect the
inertia group Ig(¢). This implies I () = H; cf. Figure 6.1.

Assume to the contrary that at® € Ig(p) for some € € [0,2]. Since Ig(Vy) = G for all

i’ € [0,2], we have
(B ®O1® )|k, =n=n" =(05 ®OF @O} )|Kk, = (05 ®OF ~ ®61)|x,,

implying that ¥y = 91 = 2, which is a contradiction. Thus at® ¢ I5(p).

It remains to show that t ¢ I(yp). Assume to the contrary that ¢! = ¢. Since ¢ is an
extension of 77, we get

n=¢lr, = @'k = (plx)" =1,

which implies that n* = 7. Therefore, it suffices to show that n¢ # 1. Since Yo ®19¥; ® Y2 and
hence Op®0O1® 0O, are linear, Og®O1®O2(¢) # 0 for all £ € K;. Let £ = (hot®, hqt®, haot®) €
K1, where hg, hi,hy € H and ¢ € [0,2]\{0}. We split the proof into three cases.

Case 1: Let ¢ = 0. Then I5(0p) = G and I5(01) = K = Iz(03). Thanks to

Lemma 6.3.6, we obtain
n'(f) = (B§ @607 ®65)(1) = (Br®OT ®6,)(() = (By® 61 ® O2) (1)1 ([a,t]) <.

Then ' = 7 if and only if 91 ([a, t]) ¢ = 1, which implies ¥; = 1y and 91 extends towards G.
This is a contradiction to the choice of ¥;.

Case 2: Let ¢ = 1. Then I(©1) = G and 1(0¢) = K = I5(02). We get
n'(0) = (B§ @67 ®65)(0) = (8f ® ©1® O2)(£) = (69 ® O1 ® O2)(¢)Vy([a, t])°.

Then 7' = 7 if and only if Jy([a, t])® = 1, which implies 91 = 15 and ¥; extends towards G.
This is a contradiction to the choice of ¥.

Case 3: Let i = 2. Then I5(02) = G and I5(0p) = K = I¢(01). Thus

n'(0) = (O§®65  ®OL)(0) = (056 ®6s)(!)
= (00 ® 01 ® O2)(£)Vo([a, t]) V1 ([a,t])"%,
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which is not equal to 7, since 9o([a,t]) # 91([a,t]).

From above three cases we conclude that ¢ ¢ I;(p). Therefore, I(p) = H. O

Corollary 6.3.26. Let ¥, V1, ¥2 € Irr(H) be such that Ig(Yo ® ¥ ® ¥2) = H. Suppose
that there exists exactly one i € [0,2] such that ¥; extends towards G and 9; # 9; for
7, 57 € 10,2]\{i} with j # j'. Every choice of i € [0,2], and of a distinct pair of non-trivial
G-invariant characters 9,7 yields 32 linear characters of H with inertia group H. In

total, we get 54 linear characters of H with inertia group H in this way.

Proof. For every choice of i € [0,2] and of a pair of distinct non-trivial linear characters
¥;, ¥ as described above, the character Yo ®v1 ®v2 extends to irreducible characters of H.
So we get 32 linear characters of H, since [H : Hy] = 3?; cf. Figure 6.1. Now, notice that
¥; = 1p. Since ¥; # 9, there are exactly two possible choices selecting such a pair. Since i
can be chosen in three different ways, we get a total of 54 linear characters ¢ of H with

inertia group H. As p|m, = Yo ® U1 ® U3 there can be no overlap. O

Proposition 6.3.27. Let Vg, ¥1, Y2 € Irr(H) be such that I (9 ® 91 ® ¥2) = H. Suppose
that there exists exactly one i € [0,2] such that ¥; extends towards G and 9; = 9; for
J, 77 €[0,2]\{i}. Then the character ¥y R ® I extends to irreducible characters of Ky. If
n € Irr(K1) denotes an extension of 99 ® 91 ® V2 then Iy(n) = Ky. Let ¢ be the irreducible
character of H induced from n. Then Ig(p) = K.

Proof. 1t is clear from Lemma 6.3.24, that 7 is not H invariant and n does not admit an

extension towards H. Denote by ¢ € Irr(H) the character induced from 7. Then
p(1) = (1) = [H : K] -n(1) = 3(00 ® 1 ® ¥2)(1) = 30p(1)01(1)02(1) = 3,

where the last equality follows because 9,1 and 5 are linear. We claim that ¢ € Ig(¢p).
Then Ig(p) € {K,G}. Since ¢ is not linear, Ig(¢) # G by Corollary 5.3.12. Therefore,
Ig(p) = K.

Now, we shall prove that ¢t € Ig(p). From Lemma 4.0.9, t € Ig(p) if and only if
nt e {n,n% n* '}. Set Oy as defined in Observation 6.3.19 for all 7/ € [0,2]. Notice that
Ig(©;) = G and ¥; = 1y, and Ig(©;) = K = I(©j;). Observe further that, since
Yo ® Y1 ® V9 is linear, O ® 1 ® O2 is linear, and hence Oy ® ©1 ® Oz(¢) # 0 for all £ € K.
Let ¢ = (hot®, hit®, hot®) € Ki, where hg,h1,he € H and € € [0,2]\{0}. We split the proof

into three cases.
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Case 1: ¢ extends towards G and ¥ = 2. By Lemma 6.3.6, we obtain

n'(0) = (@65  ®OL)(0) = (0 ®6%  ®O2)(!) = (8 ® ©1 ® O2)(0)V1([a,1])
= (09 ® 01 ® O2)(£)V1([a,t])*V2([a,t])* = (B0 ® OF ® O3)(¢) = 1" (£).

Case 2: ¥ extends towards G and g = ¥o:

1'(0) = (03 @05  ®64)(1) = (03 ® 61 ® 02)() = (0 ® O ® O2)(0)V([a, t])°

= (80 ® 01 ® O2)(O)Y([a, 1]) Va([a,1]) * = (O ®©1©0% (1) =1 (0.

Case 3: 9 extends towards G and ¥ = V1:

7'(0) = (03 @05 ®64)(1) = (0®65  ®62)(¢) = (09 ® 01 ® 02)(£)d([a, t])*91([a,])~*
= (0 ®O1®0O2)(¢) =n().

Hence, we conclude that Ig(p) = K. O

Corollary 6.3.28. Let ¥, V1, U2 € Irr(H) be such that Ig(Yo ® 91 ® ¥2) = H. Suppose
that there exists exactly one i € [0,2] such that ¥J; extends towards G and 9; = 9 for
J» 71 € [0,2)\{¢}. In this way, every i € [0,2], and every choice of ¥; = ¥; yields a unique
irreducible character ¢ € Irr(H) such that {p|m,, Yo @1 ®T2) # 0, and ¢ satisfies (1) = 3
and Ig(p) = K. In total, we get 6 irreducible characters ¢ of H of such a form.

Proof. First observe from Proposition 6.3.27 that for any fixed i € [0,2] with ¥; = 1 and
non-trivial G-invariant character ¥j = ¥;, where {j,j'} = [0,2]\{i}, we obtain a unique
character ¢ € Irr(H) of the described form. We identify ¥J; with a non-trivial character of
H/[H,G]. There are two different choices for ¥; and three different choices for i. Hence we
get a total of 6 irreducible characters of H of the described form. As ¢|g, = 3(Yo®vY1 ®V2)

determines ¥y ® 1 ® Y2 uniquely, there are no overlaps. O

Lemma 6.3.29. Let ¥, V1, Y2 € Irt(H) be such that I (Yo ® Y1 ® ¥2) = H. Suppose that
none of the characters ¥; extends towards G fori € [0,2]. The character 9@V Q2 extends
to irreducible characters of Ki. Let n € Irr(K1) be an extension of Yo ® 91 ® V2. Then n is

H-invariant if and only if 99 = 91 = vs.

Proof. Let ©; and 7 be defined as in Observation 6.3.19. Since g ® ¥1 ® ¥2 and hence
O ®O1 ® Oy are linear, Oy ® 01 ® O2(¢) # 0 for all £ € K;. Let £ = (hot®, hit®, hot®) € K7,
where hg, hi,ha € H and ¢ € [0,2]\{0}. From Lemma 6.3.6, we get:

1" (€) = (05 ® O ® 03)(f) = (00 ® ©1 ® O2)(£)do([a, t]) V1 ([a, t])*I2([a, t])".
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Therefore n is H-invariant if and only if
Yo([a, t])*D1([a, t])*I2([a, t])° = 1. (6.16)

Since there are only two possible choices for each ¥; € Irr(H/[H,G])\{1x}, the equality
(6.16) holds if and only if ¥y = ¥ = Js. O

Proposition 6.3.30. Let Vg, ¥1, Y2 € Irr(H) be such that I (9 ® ¥ ® ¥2) = H. Suppose
that none of the characters ¥; extends towards G for i € [0,2]. Assume further that 99 =
Y1 = ¥2. Then the character 9y ® V1 ® Vo extends to irreducible characters of H. Let
p € Irr(H) be an extension of 9o @ 91 ® V2. Then I (p) = Hlat®) if and only if |k, (t) =
Jo([a,t])~¢ fore € [0,2].

Proof. Set ©; and 1 as defined in Observation 6.3.19. It is straightforward from Lemma 6.3.29
that n extends to irreducible characters of H. Let ¢ be an extension of 1. Recall that ¢
is linear, and hence ¢(¢) # 0 for all £ € H. First we prove that ¢ ¢ Ig(¢). Indeed, since
Yo = Y1 = VY9 and [H,G] = K; (Proposition 6.1.2), we get:

P(@) = pa') = plale, t7]) = p@)n(lz.t]) = ¢(2)(O0 ® O1 ® Os)([z,t])
p(2)O0([t " a,a™'])O1([a, a])O2([at,t™']) = ¢(2)O0([t ™", a™])O2([a, t™])

p(@)0o([a, t]) ™ 02([a, 1]) 7 # ().

Now, let € € [0,2]. Note that the character 7 is linear and recall that ¥g = ¥ = 95 €
Irr(H/[H, G])\{1x}, thus we obtain

e (@) = o) = (el t2aY)) = p(@)n((z,t %0 1]) = w(@)n([z, o Dn(le, )
= ¢(2)(09 ® O1 ® O2)(t[t, a], t,t[t !, a]) (B ® O1 ® O2)([t ta,a %], 1, [at,t~¢])
= @(@)n(O)o([t, al)V2([t™", al)do([t ™ a,a™*])Va([at,t~¢])
= o(x)n(t)do([a, 1)~ 02 ([a, 1])Vo([a, t]) ~*02([a, 1])
= p(a)n(B)do([a, 1]) 7> = p(x)n(T)do([a, 1])".

Therefore ¢ is at® invariant if any only if Jo([a,t])™¢ = n(t). O

Corollary 6.3.31. Let ¥, V1, 92 € Irr(H) be such that Iy (Y@ ®V2) = H. Suppose that
none of the ¥; extends towards G for i € [0,2]. Assume further that 99 = 91 = 99 =: 9. In
this way, for a given ¥ and for every € € [0, 2], we get 3 linear characters ¢ of H, extending
Yo ®V1 ®V2, of inertia group Hat®). In total, for every e € [0,2], we get 6 linear characters
of H of inertia group H{at®).
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Proof. Set ¥ := 19y = Y1 = ¥2. Then there are two possible choices for a non-trivial character
9 € Irr(H/[H,G]). Fix a value of 9. Then ¥ ® ¥ ® ¥ extends to irreducible characters of
Ki. Let n € Irr(K7) be an extension of ¥ ® ¥ ® ¥. Then the extensions of ¥ ® ¥ ® 9 to
K are precisely of the form n, n\, nA\~! for some A € Irr(K1/H;)\{1x,}. Every character
of type n\o, 6 € [0,2], extends to irreducible characters of H and gives rise to 3 linear
characters with inertia group H{at®), where the value of ¢ is uniquely determined by the
value of n\°(f). Since there are two possible choices for the value of ¥ and both of the values
are legitimate, for every e € [0, 2], we get 6 linear characters of H of inertia group H<{at®).

There is no overlap, as ¢|g, = Y9 ® V1 ® V2. ]

Proposition 6.3.32. Let ¥y, V1, V9 € Irr(H) be such that I (9 ® 91 ® ¥2) = H. Suppose
that none of the ¥; extends towards G for i € [0,2]. Suppose further that there exist i,j €
[0,2] such that ¥; # 9. The character Yo @191 @ Vs extends to irreducible characters of K;.
Let n € Trr(K7) be an extension of Yo @ 91 ® ¥o. Then n does not extend further to G.
Denote by ¢ € Irr(H) the character induced from n. Then Ig(p) = K.

Proof. 1t follows from Lemma 6.3.29 that n is not H-invariant and hence n does not extend
further. Denote by ¢ € Irr(H) the character induced from 7. Then ¢ is a character of
degree 3. We claim that t € Ig(¢). Then at® ¢ Ig(p) for any € € [0,2]. If otherwise,
suppose that at® € Ig(p), then Ig(p) = G, and this is a contradiction to Corollary 5.3.12,
since ¢ is non-linear. Then Ig(¢) = K.

It remains to show that ¢ € I5(¢). By Lemma 4.0.9, this happens if and only if n' €
{n,n*,n* '}. Now notice that, since ¥, 91,92 € Irr(H/[H,G])\{1x} and 0; # vj for i,j €
[0,2], we must have that ¥y = 0; or ¥ = ¥; for k € [0,2]\{7,7}. Set ©) defined as in
Observation 6.3.19, where i’ € [0,2]. Observe that, since ¥ ®1¥1 ®3 is linear, Oy ® 01 ® O
is linear, and hence Oy ® ©1 ® O2(¢) # 0 for all £ € K. Let £ = (hot®, hit®, hot®) € K,
where hg, hi,ho € H and ¢ € [0,2]\{0}. We split the proof into three cases.

Case 1: ¥g = 91 # 9¥2. Using Lemma 6.3.6, we obtain

7'(0) = (05 ®61  ®65)() = (65 @6 ®6)(0)
= (00 ® 01 ® O2)(O)vo([a,t])*V1([a, t]) ™" = (B ® O1 ® O2)(¢) = n(¢).
Case 2: 99 = ¥9 # 1. Using Lemma 6.3.6, we obtain

n'(0) = (0§ @O ®O:)(£) = (B0 ® O1 ® O2)(0)do([a, )1 ([a, ¢])
= (G0 ® 01 ® 02)(O)do([a, t]) V1 ([a, t]) " 2([a, ]) ™

—1

= (08 ' ®61 ®eg ) =1 (1),
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Case 3: 91 = U9 # 9. Using Lemma 6.3.6, we obtain

n'(0) = (B§ ®O] ®0,)({) = (B9 ® O1 ® Os)(£)do([a, t]) V1 ([a, t])
= (00 ® 01 ® 62)()Vo([a, t])*V1([a, t])*V2([a, ])° = (65 ® OF ® ©3)(¢)

=1°().
Hence Ig(p) = K. O

Corollary 6.3.33. Let ¥, U1, ¥2 € Irt(H) be such that Ig(Yo ® %1 ® ¥2) = H. Suppose
that none of the characters 9; extends towards G for i € [0,2]. Suppose further that there
exist i, € [0,2] such that ¥; # V. In this way, each unordered pair {i,j} < [0,2] yields
an irreducible character ¢ of H such that {p|m,, Yo ® V1 ® ¥J2) # 0 with (1) = 3 and
Ig(p) = K. We get 6 characters of this form.

Proof. Tt follows from Proposition 6.3.32 that for a fixed unordered pair {7, j} < [0, 2], we
get exactly one irreducible character ¢ of degree three with I (p) = K. Now, there are
three different possible ways to select a pair {i,j}. For a given pair {i,j}, there are two
choices for ;. The values of ¥; and 0y, for k € [0,2]\{7, j}, are uniquely determined from
that of ;. Therefore, we get 6 K-invariant characters of degree 3. There are no overlap, as

ol =300 ® V1 ®Y2). O

6.4 Computing the representation zeta function of H

In Section 6.3, we have studied the irreducible characters ¢ € Irr(H) which are obtained
by extension or induction from an irreducible character ¥y ® ¥ ® Y2 € Irr(H;p) with a
prescribed inertia group S € H, and computed the sufficient and necessary conditions to
have Ig(p) = T for a given T € G, where H and G are defined as in the beginning of
Section 6.3.

Here we compute a recursive formula for the representation zeta function of H. Let
€ Irr(H) and let 99 ® 91 ® ¥2 be an irreducible constituent of ¢|g,, where 9; € Irr(H) for
i € [0,2]. Observe that, by Clifford’s theorem, the character ¢|g, is a sum of H-conjugates
of Yo®@11®@V2. Since I (Jo®11®12) € H, and the elements of H are normal in H, the inertia
groups of the irreducible constituents of ¢|g, are the same and equal to Ig(Jp ® 91 ® U2).

We define

. pelr(H) | o(1) = 3% Ig(p) =T, In(o ® 91 ®d2) = S,

where Yy ® U1 ® ¥ is an irreducible constituent of |,
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where d € Ng, S € H and T € G. For a given S € H and T € G, we define the partial

representation zeta function of H as

C§(H,s) =) ak(d)3™*. (6.17)
d=0
From (6.5) we get
CT(Ha S) = Z Cg:(Ha 8)' (618)
SeH

Further summing (7 (H, s) over all T € G gives the representation zeta function of H;

((H,s) = >, ¢"(H,s). (6.19)

Teg
We compute the partial representation zeta functions Cg:(H ,§) in Section 6.4.1. From (6.18)
and (6.19), we obtain a recursive formula for the representation zeta function of H in

Section 6.4.2.

6.4.1 Computing partial representation zeta functions

For a given S € H and T € G, here we compute the partial representation zeta function
C;‘C(H ,8). In alignment with the discussion in Section 6.3.2, we divide the computation into
four steps depending on the value of S. Whenever there is no reason for confusion, we drop
(H,s) from the expression (% (H,s).

We begin with computing (5 (H, s), and it turns out be equal to (¢(H,s). We recall
that C' (defined in Theorem 5.3.4) is the number of G-invariant irreducible characters of H.
Therefore, by Lemma 6.4.1 below, we see that C' = 3.

Lemma 6.4.1. The equalities ((H,s) = (5(H,s) = 3 hold.

Proof. Thanks to Corollary 5.3.12, the G-invariant irreducible characters of H are linear.
Notice that the characters of H obtained from characters of type Case 1, Case 2 and Case 3
in Section 6.3.2 are non-linear. Therefore, the linear characters of H must be coming from
characters of type Case 4. It is evident from the computations in Section 6.3.2.4 that
the only contribution towards the G-invariant irreducible linear characters of H is from

Proposition 6.3.20. Therefore, from (6.18) we obtain that

CO(H,s) = Y C§(H,s) = Cf(H,s) =3. O
SeH
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Case 1: S = H{t) =: K;.

Let Y9 ® 91 ® Yo € Irr(H;) with Iy (Yo ® 91 ® ¥2) = Kj. Let ¢ € Irr(H) be such that

Yo ® ¥1 ® Y2 is an irreducible constituent of |, . From Observation 6.3.8, we have
@(1) = 390(1)91(1)I2(1).

Computing CH<<{>>(H s)

By Proposition 6.3.9, for every ¢ € [0,2] and every 9 € Irr(H) with Ig(9) = H{t), the

—E&

irreducible character Yo ®91 ® 9y = QY QI ~ of Hy yields three irreducible characters
¢ € Irr(H) such that Ig(¢) = H{a) and (1) = 39(1)3. Indeed, there are three ways to
extend Yo ® 1 ® Iy to H 1<£>, and each of such extended character induces to an irreducible
character ¢ of H, resulting three distinct irreducible characters of H. Furthermore, this is
the necessary condition to yield characters ¢ of the desired form. However, the restriction
|, of each ¢ to Hj is of the form
Pl = D 9@ T @0
5€00,2]
Thus three different choices of 9 yields the same ¢. Hence, on average, each choice of

€ [0,2] and ¥ € Irr(H) yields one ¢ € Irr(H). For a fixed ¢ € [0,2], the corresponding

partial representation zeta function of H is given by
375CHO (1, 3s),
and, since there are three choices for ¢, we get

Crid (H,s) = 31O (H, 35). (6.20)

Computing CH%?(H s)

By Proposition 6.3.10, for each i € [0,2] and ¥ € Irr(H) with Ig(¢) = H{t), the character
Po ® 1 ® Vg € Irr(H) defined by 9; = ¢, 941 = U510 = 9! yields three irreducible char-
acters ¢ € Irr(H) of degree (1) = 39(1)3 and inertia group Ig(¢) = H{at). Furthermore,
this is the necessary condition to obtain characters ¢ of the desired form. Similarly, as
above, on average, each choice of i € [0,2] and ¢ € Irr(H) yields one ¢ € Irr(H). For a fixed

€ [0,2], the corresponding partial recursive representation zeta of H function is given by
375¢CHO(H, 35),
and, since there are three different ways to fix an element i € [0, 2], we obtain

Chroon) (H,5) = 31=3CHO (H, 35). (6.21)
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Computing CH @ >(H, s)

By replacing ;11 and ¥;19 with ¥ in the above computation, from Proposition 6.3.10, we

obtain the partial representation zeta function C H @ >(H ,s) of H as

gﬁfjtg (H,s) = 3'5¢CH®D(H,3s). (6.22)

Computing CH <Z>( s)

By Propostion 6.3.11, for each i € [0,2] and ¥ € Irr(H) of inertia group Ig(¥) = H{t), the
character Y9 ® 91 ® J2 of the form ¢; = ¢ and ¥;11 = ¥; 2 with I5(¥;+1) = G yields three
irreducible characters ¢ € Irr(H) such that Ig(p) = H{t). Thanks to Corollary 5.3.12,
the character ¥;+1 = ¥;42 is linear, and hence ¢(1) = 39(1). Again, this is the necessary
condition to obtain characters ¢ of the desired form, and on average each choice of i € [0, 2]
and ¥ € Irr(H) yields one ¢ € Irr(H). We identify the character ¥;+1 = ¥;4+2 with an
irreducible character of H/[H,G]. For a fixed i € [0,2] and for a given choice of 9,11 =

¥i+2 € Irr(H/[H, G]) the corresponding partial representation zeta function is given by
37O, 5).
As there are three choices for ¥; 11 and three choices for i € [0,2], we get

Hoon (H,5) = 3272 (H, 5). (6.23)

Computing Cgl@(H, s)

Notice from Lemma 6.3.3 that Iy (do ® 91 ® ¥2) = Hi(t) if and only if I(¢;) € {H{t), G}
for all i € [0,2] given that there exists j € [0,2] such that Ig(¥;) # G. Also observe

from Lemma 6.4.1 that Cgl @(H ,8) = 0. Thus the partial representation zeta function
Cgl@(H, s) is given by
3 -1
H _a-s H G G\3 Hay _ Hlaty _ ~Hlat™%) . H{t)
Chty gy (Hy5) =3 ((c © 4+ %) = (¢ ))—cHl@—cHl@ —Coes |~ SHich
- S_S(CH<t>(H, )% +9¢HY(H, 5)? + 18¢HV (H, s) — 9¢H (H, 3s)>. (6.24)
Case 2: S = H{z;t) for j € [0,2].

Let 190 X® ’191 ® 192 € Irr(Hl) of inertia group IH(190 X 191 ® 192) = H1<$j7§> for j € [0,2]
Let ¢ € Irr(H) be such that Jp ® ¥1 ® J2 is an irreducible constituent of ¢|g,. From

Observation 6.3.12, we have

p(1) = 399(1)01(1)D2(1).
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We shall compute the partial representation zeta function C;{Il <I®(H ,s), where T € G, for
J
a fixed j € [0,2]. However, since the computation is similar for all j, we obtain the same

recursive zeta function CI:_FIl (25 D(H ,s) for all j.

Computing CZIEEZ@(H’ s) for j € [0,2]

By Proposition 6.3.14, for every j € [0, 2] the character ¥y ® 91 ® J2 € Irr(H;) of the form
1. ¥j € Irr(H) with Ig(0¥;) = H{a) and 942 = 19;}1 with Ig(¥j11) = Ig(¥j42) = G, or,
2. 19]' = 1y with

(i) Ig(¥j41) = H{at) and Ig(V;42) = G, or,
(11) Ig(’ﬂj+1) = (G and Ig(’ﬁj+2) = H<at_1>, or,

(iii) Ig(ﬂj_H) = H<at> and Ig(ﬁj_,_g) = H<at‘1>,

yields three irreducible characters ¢ € Irr(H) of degree ¢(1) = 39;(1)9;41(1)0;42(1) with
Ic(p) = H{t). Moreover, this is a necessary condition for obtaining characters ¢ of the
desired from. Again, ¢|g, is a sum of three distinct constituent and we undo the overcount-
ing: on average, each character 9o ® 91 ® V2 € Irr(Hy ), where Jg, 91 and Y2 are as described

above, yields one ¢ € Irr(H). Hence, using Lemma 6.4.1 we get

Cﬁffijb _ g3 (CH<a> Gy <H<Qt> ¢G4 (G CH<arl> n <H<at> CH<arl>>

_ gl-s <€H<a> n CH(at} i CH(at_1>> I 375CH<at><H<at_1>‘ (6.25)

Computing CI}{I1<:UJ-D(H’ s) for j € [0,2]

From Lemma 6.3.4, we get that Iy(dy ® V1 ® ¥2) = Hi{z;ty if and only if Ig(9;) €
{H{a),G}, Ic(¥j4+1) € {H{at),G} and Ig(¥j42) € {H{at™'),G} given that Ig(9;) # G
for some 7 € [0,2]. Furthermore, from Proposition 6.3.13, the character Jp ® 1 ® 2 with
I (Yo ® 91 ®1V2) = Hi{x;t) does not contribute to the partial representation zeta functions
¢t (H, s) for any e € [0,2]. Also, it follows from Lemma 6.4.1, that <I§1<xj®(H’ s) = 0.
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Therefore,
Cgl@jjt} =38 <<CH<CL> + <G> (CH<at> + <G> (CH<at71> + CG> . (CG)S)
_gl-s (CH@ n CH(at> i CH<at—1>) _3-s CH<at>CH<at—1>
_ g3 (gH<a> ¢Hat) CH<arl> 4 3<H<a> <H<at> 4 3<-H<a> <H<arl> + 3¢t <t CH<arl>
4 9<H<a> n 9CH<at> n 9CH<at_1>> _gl-s <<H<a> I CH(at} i <H<at_1>>
_ 3—8<H<at>CH<at*1>

=3 (CH<a>CH<at>CH<at’1> + 3<H<a><H<at> + 3CH<a>CH<at*1> + 2CH<at>CH<at’1>

o+ 6CT 4 6¢Hat 4 Gt (6.26)

Case 3: S = H,.

Let Yo ® 11 ® 19 € Irr(Hy) be such that Iy (Yo ®91 ®3J2) = Hy. Let ¢ € Irr(H) be such that
Yo ® Y1 ® Y2 is an irreducible constituent of ¢|x,. From Observation 6.3.15, we get that ¢
is the character induced from Y99 ® 91 ® ¥ and

p(1) = 90(1)01(1)d2(1).

Computing Cgf@(H, s)

By Proposition 6.3.17, for each pair (i,j) € [0,2] x [0,2] and for every ¢ € Irr(H) with
Ig(¥) € {H, H{a), H{at), H{at~')}, the character ¥y ® 1 ® UJo of the form given by ¥y = ¥,
91 =97 "7 and 95 = 99" yields an irreducible character ¢ € H of degree ¢(1) = 99(1)3
with inertia group I(p) = H{a). Furthermore, this is the necessary condition to obtain
a character ¢ of the desired form. Also, notice that every conjugate of ¥y ® %1 ® J2 in
H gives rise to the same irreducible character ¢ of H. Hence, for a fixed pair (i,7), the

corresponding partial recursive representation zeta function is given by
37272 (C7(H, 3s) + (1O (H, 35) + (10 (H, 35) + (T (H,35))
Since there are 9 choices for the pairs (i, 7), we have

G (H, ) = 372 (CH (H,3s) + (@ (H,35) + ¢ (H, 35) + ¢ D (H, 35)) . (6.27)

Computing Cgft>(H, s)

By Proposition 6.3.18, for every pair (¢,7) € [0,2] x [0,2] and for characters Jg, ¥1, J2 €
Irr(H) satisfying the equalities

198—1+it7i+j . ﬁ%lﬂ'tj — 9y, and ﬁgiflﬂ‘ﬂ' = 19, (6.28)
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with prescribed inertia group as given in Proposition 6.3.18, the character 99 ® 91 ® v2
yields an irreducible character ¢ € H of degree ¢(1) = 99¢(1)91(1)92(1) and inertia group
Ic(p) = H{t). Furthermore, this is the necessary condition to obtain such .

Set Dy = {(0,0),(1,0),(2,2)}, D; = {(0,2),(1,2),(2,1)} and D2 = {(0,1),(1,1),(2,0)}.
For every k € [0, 2], fix an element (i, j) € Dy. We define C(HZ’E?(H, s) as the partial represen-
tation zeta function Cgft>(H ,s) with the additional condition that the characters 9y, ¥; and
¥ satisfy (6.28). Observe from Table 6.2 that, for every (i,j) € Dy, the inertia groups of the
characters 9,91 and ¥o are symmetric. Therefore, one gets the same function C(Iij? (H,s)

for all (i,j) € Dg. Therefore, the partial representation zeta function ggft>(H ,s) is given by
H H H H
G (H,5) = 3 (¢ (HL ) + (o) (HL ) + (8 (H, ). (6.29)

Now, notice that every conjugate of a character 99 ® 1 ® V2 € Irr(Hy) in H gives rise to
the same irreducible character ¢ of H. Since [H : Hy| = 9, 99 ® 91 ® Y2 has 9 distinct
conjugates. Therefore, we divide the partial representation zeta function by 9 to compensate

for overcounting. Using Lemma 6.4.1 we obtain Cgft>(H ,8) in three steps:

C(H<t)>( H,s) = _ 3-2-2s ( CH<a> CH<t> n (CH<a>) CG I <H<a><G<H<t> 4 CGCH<a>CH<t>>
_ 3-2-2s ( CH<a> CH(t) " 3(<H<a>) i 6CH<a>CH<t>> ’

C(Ig<2t)>( _ 3—2 28( H<at><~H<at 1>CH<t> +<H<at>CGCH<t> _|_<'~GCH<GI 1><H<t>)
_ 3-2-2s <CH<at>CH<at_1><H<t> n 3CH<at>CH<t> n 3CH<at_1>€H<t>>

C(H<t)>( H,s) = 3-2-2s (CH<at 1><H<at>CG i CH(at 1><H<at>CH<a> i CH<at 1><H<at>CH<at>

+ <H<at*1> CH<at> CH<at*1> + <H<at*1> CH(at} <H<t> + CH<at*1> CH(at) CH
4 (Gt cHa) | (G oHlaty Hat) | -G eH Gty H{E) 4 G rHlab) H
+ €H<at—1>CG€H<a> + CH(at_1>€GCH<at_1> + CH(at_1>€GCH<t>
i CH<at—1><GCH n CGCGCH)

— 37225 <3<H<ar1>CH<at> + CH<ar1>CH<at>CH<a> + <H<at*1><<H<at>)2
+ (CH<at_1>)2CH<at> + CH(at_1>€H<at>CH<t> + CH(at_1>CH<at>CH
 3¢Ha cH) | g(cHat))2 4 g-H Gt -HY) | 3-Hat) H

+ 3<H<at_l>cH<a> + 3(<H<at_1>)2 + 3<H<at_1><-H<t> + 3<—H<at_1><-H + 9<H>

Then Cgft>(H, s) is given by (6.29). Summing C(g(g;(H, s), C£<;)>(H s) and Clg<f)>( s), we
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obtain

Cii (H, ) = 371725 ((H)2¢HD 4 (D)2 o 6O HD
+ CH<at>CH<at*1><H<t> + 3CH<at><H<t> + 3CH<at*1>CH<t>
+ BCH<at_1>€H<at> + CH(at_1>CH<at>CH<a> + CH(at_1>(CH<at>)2
+ (CH<at_1>)2CH<at> + CH(at_1>CH<at><H<t> + CH(at_1>CH<at><H
1 3CHt @) g Hat)y2 | 3o Hlat) Ht) | 3 Hlat) - H
I 3<H<at*1>CH<a> n 3(CH<ar1>)2 i 3CH<ar1><H<t> n 3CH<ar1>CH i 9CH).
(6.30)

Computing (gl (H,s)

From Lemma 6.3.5, we get I (Y9 ® 1 ® ¥2) = H; if and only if there exists i € [0, 2] such
that (t) € Iz(9;) and the following assertion holds:

~@jel0,2]: Hay <Ig(d;) a Hlaty<Io(@je1) ~ Hat™") < Io(042)):

Furthermore, since every conjugate of Jg®1¥1 ®vs € Irr(H) gives rise to the same irreducible

character ¢ of H of degree ¢(1) = 999(1)91(1)Y2(1), we have

G (8. 5) = 32725 (3] €T)? = B(CHO 4 CBY (¢ 1 G) (o™ 4 )
TeG
— (O P 3 - Y
TeG\{H}

It follows from Proposition 6.3.16 that, we CH<at>(H s) =0 and (H<at >(H, s) = 0. Also, it
is clear from Lemma 6.4.1 that CHl (H,s) = 0. Therefore,

Gl () = 3727 (3] €12 = 30 + ¢ 1+ ()™ 1+ ()
TeG

— (CH<t> + CG)S + 3(CG)3> CH<a> <H<t>
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Now from the computation of ¢p " (H, s) and (j " (H, s) it follows that
CH, (H, ) = 37272 (M) + 3(CM)2CM 4 3(¢M)2¢ Mt 4 3(¢Hy2c o™

+ 3(CH)2<H<t> + Q(CH)2 + 3<H(<H<a>)2 + 6<H<H<a><H<at> + 6<H<H<a>CH<at*1>
+6 gH CH(a) CH(t) + 18CH CH(a) +3 gH( CH<at>)2 + 3CH CH(at) CH(at_1>
+ 6CHCH<at>CH<t> + QCHCH<at> + 3CH(CH<at_1>)2 + GCHCH<at_1>CH<t>
4 gcH cHG@t™) 3CH (CHWN2 8¢ H (HW 4 (cH@Y3 | g( Hl@)2 Hlat)
+ 3(<H<a>)2<-H<at*1> + 3CH<a>(CH<at>)2 + 6<H<a>CH<at>CH<t> + 3CH<a>(CH<at*1>)2
+ 6gH<a>gH<at*1><—H<t> + 3CH<a>(<-H<t>)2 + (CH<at>)3 + 3(CH<at>)2CH<t>
+ M (WY 4 (DY g DNCH o gl ((Hw))2)

=372 ((T(H, 35) + (1O (H, 35) + (7 (H,35) + (T (H,35)) . (631)

Case 4: S = H.

Let Y90 ® 1 ® V2 € II“I‘(Hl) with Ig(’l% ® % ®192) = H. Let ¢ € II‘I‘(H) be such that
Yo ® ¥1 ® U2 is an irreducible constituent of ¢|g,. From Corollary 6.3.21, Corollary 6.3.23,
Corollary 6.3.26, Corollary 6.3.28, Corollary 6.3.31 and Corollary 6.3.33 we obtain

CS(H,s) = (6.32)

B (|, s) = (6.33)
b (|, 5) = (6.34)
At (H 5) = (6.35)
g§<t>(H,s)= 6+18-375, (6.36)
(ii (H,s) = 54 (6.37)

6.4.2 Computing the representation zeta function of H

Here we compute the representation zeta function ((H,s) of H by combining the partial
recursive representation zeta functions from Section 6.4.1. From (6.18) and (6.19) we have

= Z CT(H,S) = Z Z CE(H,S),

Teg TeG SeH

where G and H are defined as in the beginning of Section 6.3. We obtain ((H,s) in six
steps, where each step corresponds to the computation of (¥(H,s) for T € G. Thanks to

Lemma 6.4.1, we get

)= Y C§(H,s) = CG(H,5) = 3. (6.38)

SeH
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Now, from (6.20), (6.27) and (6.33), we obtain

a Ha H{a H{a Ha
SeH

— 6+ 3175 CHO (1, 35) + 372 (gH (H,3s) + (T (H, 35) + ¢ (1, 35)

+ cHG@ g, 33)). (6.39)
It follows from (6.21) and (6.34) that

CHO(H, ) = 3 () = (Y + G = 630 CHO(H,35). (6.40)
SeH

Summing (6.22) and (6.35) we get

@D (5 ) -y ¢Hcat D (H, ) g<at_l>+gg<<“é =64 3'75¢®(H,3s). (6.41)
SeH

Now observe that (70 (H, s) = ¢H@ ™D (H, s). We set
a(s) = ¢ (H,s), and  B(s) = (HV(H, 5) = (H0(H,5). (6.42)
Further, we define
r(s) = CTO(H,s), and &(s) = ¥ (H,s). (6.43)

For convenience, we write simply write f instead of f(s), for f € {«a,,7,&}. Now, from

(6.23), (6.25), (6.30) and (6.36), we have

H H(E | HG | HGE H H H<t>
S) = 2 CS (H7 8) =Gyt CH1<73 + <H1<xo> + <H1<x17$ + CH1<:):215 + C
SeH

=6+18-375+37° (3r +3a + 68+ %) + 3717 (26° + 98” + af® + 6aB + 3a?)

+3717%¢ (B2 +68+9) + 37177 (28% + 128 + 6a + o) . (6.44)

Finally, it follows from (6.24), (6.26), (6.31) and (6.37) that

= D1 CH(H, 8) = Ci + Cilapy + Sty iaods + Cthiands + Syt + St
SeH

=54 +37% (7% + 972 + 187 — 97(3s)) + 3" 7% (aB? + 6B + 28% + 6 + 128)
43722 (53 + €2 (3a+ 68+ 37 +9)
+¢& (3a® + 1208 + 6ar + 18 + 957 + 1287 + 183 + 37% + 187)
403+ 6028 + 6082 + 12087 + 3a7 + 28° + 682 + 6672)

—37%(€(3s) + a(3s) + 28(3s)). (6.45)
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Now, by adding (6.38), (6.39), (6.40), (6.41), (6.44) and (6.45), we get ((H,s):
C(H,s) =3+ a(s)+28(s) + 7(s) +£&(s), (6.46)
where the following recursions hold:

afs) = 64+ 31757(3s) + 37%a(3s) + 2- 3725(3s) + 372€(3s),

B(s) = 6+ 3'757(3s),

7(s) =6+18-37°+3"7° (3r + 3a + 68 + 5°) + 37172 (28° + 96° + aB® + 628 + 3a?)
+37172¢ (B2 + 68 +9) + 371727 (267 + 128 + 6a + o?),

€(s) =54+ 375 (r° + 97° + 187 — 97(3s)) + 3" (aB® + 628 + 28° + 6a + 1253)
43722 (53 + €2 (3a+ 68+ 37 +9)
+ ¢ (3a” + 1208 + 6ar + 18 + 95 + 1287 + 183 + 37% + 187)
+ 03 + 6028 + 6082 + 12087 + 3072 + 28° + 6827 + 6572>

— 377 (£(3s) + a(3s) + 25(3s)).

6.5 Computing the representation zeta function of G

In this section we compute the representation zeta function (G, s) of G using the recursive
representation zeta function (6.46) of H from Section 6.4.2. We recall that G is the set of

subgroups that lie between G and H, and is given by
g= {Ga H<t>a H<a>7 H<Clt>, H<at_1>7 H},
cf. Figure 6.1. We begin with the following observations.

Lemma 6.5.1. Let ¢ € Irr(H) be such that Ig(p) = G. Then ¢ extends to a linear
character of G if and only if ¢ = 1. Otherwise, ¢ gives rise to an irreducible character

of G of degree 3 which restricts to 3¢ on H.

Proof. Thanks to Corollary 5.3.12, we conclude that ¢ is linear. It is easy to see that, ¢
extends to G if and only if H = [G, G] < ker(p), i.e., ¢ = 1. This proves the first assertion
of the result.

Now, suppose that ¢ # 1. Then ¢ does not admit an extension towards G. In fact, ¢
extends to irreducible characters of an intermediate subgroup L € G\{G, H}. Let ¢ € Irr(L)
be an extension of ¢. Then I (1)) = L and 1 induces to G and gives rise to the irreducible

character /¢ € Trr(G) of degree ¢%(1) = [G : L] (1) = 3. Furthermore, ¢%|y = 3¢. O
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Lemma 6.5.2. Let ¢ € Irr(H) be such that Ig(p) = L, where L € G\{G, H}. Then ¢ gives
rise to three irreducible characters of G, each of degree 3 ¢(1), which restricts to a sum of

three distinct G-conjugates of ¢ on H.

Proof. Clearly ¢ extends in three ways to an irreducible character of L. Let ¢ € Irr(L) be an
extension of ¢. Then Ig(¢)) = L and v induces to the irreducible character 9 € Irr(G) of
degree Y% (1) = [G : L] (1) = 3¢(1). Furthermore, ¥%|5 = o + @1 + @3, where ©1, 2, 3
are the distinct conjugates of ¢ in G. O

Lemma 6.5.3. Let ¢ € Irr(G) with Ig(¢) = H. Then ¢ gives rises to an irreducible
character of degree 9¢(1) of G, and each of which restricts to a sum of nine distinct G-

conjugates of p on H.

Proof. Since Ig(¢) = H, the character ¢ induces to the irreducible character % € Irr(G)

of degree (1) = [G : H] p(1) = 9¢(1). Moreover, oC|y = 31 %, 0
i,j€[0,2]

We recall that from (6.42) and (6.43) the notation

a(s) = <H<a>(Ha 8)7 ,3(8) = CH<at>(H7 3) = <H<at71>(H7 5)7
7(s) = ¢TO(H,s), &(s) = C7(H, ).

By setting ¢ = 3% and rearranging the terms of «a(s), 3(s), 7(s) and £(s), we get

a(s) = 6 + 3q7(3s) + ¢*a(3s) + 2¢*B(3s) + ¢*£(3s), (6.47)
B(s) =6 + 3q7(3s), (6.48)

2 1
7(s) = 6 + 18q + 9q7 + 9qa + 18¢ + 3¢8% + §q2ﬁ3 +3¢°8% + ngaﬂ2 +2¢%af + ¢*a?

+ %q%BQ +2¢%68 + 3¢°¢ + §q2762 +4¢° 78 + 2¢°Ta + %q%ﬂ, (6.49)
£(s) = 54 + q7° + 9¢72 + 18¢7 + 3qaf? + 18qaf + 6¢5% + 18qar + 36¢05 + %ngi" + %q2§2a

+ §q2£25 + %qgﬁ% +¢* + éq%of‘) + §q2£aﬁ + %qQ&W +2¢%¢a + ¢*¢B°

+ quQBT + 2q2§ﬁ + éq2§7'2 + 2q2§T + %q2a3 + %qQOzQﬁ + §q2aﬁ2 + %qQOzBT

1 2 2 2
+ §q2a7'2 + §q263 + §q2B2T + §q2572 —9q7(3s) — q2§(35) — q2oz(33) — 2q2,6’(3s).

(6.50)

Now, writing (1(s) = £(s), C2(s) = 7(s), (3(s) = a(s) and (4(s) = B(s), one can easily
verify that, for ¢ € {1,2,3,4}, the recursive formula for ¢;(s), provided in [14, Section 2.2],
is precisely that of the corresponding f(s), for f € {{, 7, a, 8}. Therefore, in Theorem 6.5.4

below, we summarise a proof for the recursive representation zeta function of G stated in
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[14, Section 2.2], which was obtained by computer assisted calculations not recorded in

detail.

Theorem 6.5.4. The representation zeta function (G, s) is given by the equation

C(Gys) =9+2-37" +37 (T (H,5) + TV (H, ) + (T (H ) + (FO(H,5) )

+37272¢H(H ), (6.51)
and admits the the following form with g = 37°

1 1 2
{(G,s)=9+2q+qo¢+2qﬁ+q7’+6q2+§q373+q372+2q37+§q3aﬁ2+2q3aﬁ+§q3ﬁ2

1 1 2 1 1 1
943 43 L oags L o4 L 402 v s, Logeo L4, 0
+ 2¢°a + qﬁ+81q§ +27q€a+27q§6+27q57+9q§ +27q§a
4 4 2 4 2 4 Log,no, 4 4 2 4 1 4, 9
+ 504 §af + 51 §at + 54 Sa + 94 §8° + T §BT + 57 §8 + 51 &t
2 4 L 43,2 49 2 4 o 4y Ly o9 2 4
—|—9q §T+81qa +27qaﬂ+27q af +27q a67+27q aT +81q5

2 2 1 1 2
b o0 BT o BT Pr(3s) - §a'6(3s) - ja'a(s) - 5a'BB3s),  (652)

3

where a, B, T, & satisfy the recursive relations specified at the end of Section 6.4.

Proof. The first two summands are coming from the G-invariant irreducible characters of H.
We recall from (6.38) that ¢%(H,s) = 3. Tt is immediate from Lemma 6.5.1 that only the
trivial character of H extends to G, yielding 9 linear characters. The remaining two char-
acters yield two irreducible characters, each of degree 3. By Lemma 6.5.2, every character
v € Irr(H) with Ig(p) € G\{G, H}, on average, gives rise to one irreducible character of G
of degree 3¢(1). This gives the terms with coefficient 37° in (6.51). Now, suppose that
¢ € Irr(G) is the character induced from a character ¢ € Irr(H) of inertia group Ig(p) = H.
Since G/H ={a H) x (¢t H) = C3 x C3 (Theorem 2.4.19(iii)), by Clifford’s theorem we get
Clr= > .
i,5€[0,2]
Furthermore, each of the conjugates gp“itj of ¢ in G gives rises to the same irreducible
character . Therefore, we divide the partial zeta function ¢f(H,s) by 9 to compen-
sate for the overcounting. Considering this fact, we get the last summand in (6.51) from
Lemma 6.5.3. Again by writing ¢ = 37%, from (6.47), (6.48), (6.49) and (6.50) we get the
described form (6.52). O
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Part 11

Generalisations of the Basilica

group

125



126



Chapter 7

Overview

This part comprises the following two articles:

1. With Jan Moritz Petschick: On the Basilica operation, Groups Geometry, and Dy-

namics, to appear, [92];

2. With Anitha Thillaisundaram: Mazimal subgroups of generalised Basilica groups,

available at arXiv:2103.05452[math.GR], [94].

As indicated in Chapter 1, the first article introduces the Basilica operation that asso-
ciates to any group G of tree automorphisms a family of Basilica groups, Bass(G), for s € N.
In the second article, we study the maximal subgroups of Basilica groups obtained from
generalisations of the dyadic odometer. We incorporate the articles as Chapter 8 and Chap-
ter 9. Both chapters are self-contained with references collected at the end. The numbering
of the sections and results from the articles [92] and [94] are modified in order to be con-
sistent with the rest of the dissertation. Section or result ‘A’ in [92] (resp. [94]) will be
numbered as 8.A (resp. 9.A). In Chapter 8, we give a proof of [92, Theorem 6.8], which was
not provided in [92] because of its technicality. Here we indicate the individual contribution

of authors to the articles [92] and [94].

Authors’ contribution statement

I declare that the research and the process of writing for the articles [92] and [94] were
shared equally among myself and my collaborators. One may find below a detailed account
of contributions.

The collaboration between myself and Petschick was kicked off by a basic idea of myself to

compute the level stabilisers in certain special cases of the generalised Basilica groups. The
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research for Section 4 of [92] was conducted by developing this idea. The discussions were
mainly carried out in presence by mutual exchange of ideas between myself and Petschick.
We contributed equally to the research and formalisation of Theorem 1.4, Theorem 1.5,
Theorem 1.6, and Theorem 1.7 of [92]. The general cases of Basilica groups were treated
by Petschick, while I focused on the study of generalised Basilica groups. I contributed less
than a half to the investigation of Section 2 and Section 3, especially to the specific write-up
of Theorem 1.1, Theorem 1.2 and Theorem 1.3 and their proofs. The research for Section 6,
Section 7 and Section 8 was mostly carried out by myself, and I have contributed more than
a half to the formalisation of Theorem 1.8, Theorem 1.9 and Theorem 1.10 and their proofs.
Section 5 is an application of results from Section 2, Section 3 and 4 of [92], to which both of
us have equally contributed. Also, the task of writing the introduction was shared equally.

The topic of investigation in [94] was suggested by my collaborator Thillaisundaram.
We communicated via emails and using online platforms. The proof of the main result
Theorem 1.1 of [94] resulted from several joint attempts some of which remained unsuccessful
but gave inspiration for renewed efforts. The given proof is based on an idea of myself, which
was inspired by an observation of Thillaisundaram. We contributed equally to the research

and the process of writing up Theorem 1.1 and its proof.

128



Chapter 8

On the Basilica operation

8.1 Introduction

Groups acting on rooted trees play an important role in various areas of group theory, for
example in the study of groups of intermediate growth, just infinite groups and groups
related to the Burnside problem. Over the years, many groups of automorphisms of rooted
trees have been defined and studied. Often they can be regarded as generalisations of early
constructions to wider families of groups with similar properties.

In this paper, we consider an operation on the subgroups of the automorphism group
AutT of a rooted tree T' with degree m > 2. It is inspired by the Basilica group B, a
group acting on the binary rooted tree, which was introduced by Grigorchuk and Zuk in
[58] and [59]. The Basilica group B is a particularly interesting example in its own right:
it is a self-similar torsion-free weakly branch group, just-(non-soluble) and of exponential
word growth. It was the first group known to be not sub-exponentially amenable [59], but
amenable [20,24]. Furthermore, it is the iterated monodromy group of 22 — 1 [76,93], and
it has the 2-congruence subgroup property [46].

The Basilica group B is usually defined as the group generated by two automorphisms
a = (b,id) and b = (0 1)(a,id),

acting on the binary rooted tree (in [59] the elements are defined with id on the left, which
is merely notational). We point out the similarities between these two generators and the
single automorphism generating the dyadic odometer. The latter provides an embedding of
the infinite cyclic group into the automorphism group Aut T of the binary rooted tree T,
given by

c=(01)(c,id).
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We can regard b as a delayed version of ¢, that takes an intermediate step acting as a, before
returning to itself. Considering the automata defining the generators of both groups (cf.
Figure 8.2), the relationship is even more apparent. We obtain the automaton defining b
from the automaton defining ¢ by replacing every edge that does not point to the state of
the trivial element with an edge pointing to a new state, which in turn points to the old
state upon reading 0 and to the state of the trivial element upon reading any other letter.

See Figure 8.1 for an illustration of this replacement rule.

replaced by

Figure 8.1: Replacement rule for edges.

The same can be done for any automorphism of 7' and any number s of intermediate
states. For any group of automorphisms G, this operation yields a new group of tree
automorphisms defined by the automaton with s intermediate steps, which we call Bas;(G),
the s-th Basilica group of G. A precise, algebraic definition that does not refer to automata
will be given in Definition 8.2.3. Figure 8.2 depicts for example the automaton defining
Basg(O3), while Figure 8.3 depicts the automaton defining the generators of the Gupta—

Sidki 3-group I' and the corresponding automaton obtained by the operation Bass.

Figure 8.2: Automata for the dyadic odometer Oq, the Basilica group B = Basy(0O3), and
Ba88(02).
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Figure 8.3: Automata for the Gupta-Sidki 3-group I' and Basy(I'), where o is a cyclic

permutation.

We prove that many of the desirable properties of the original Basilica group B are a
consequence of the fact that the binary odometer Oy has those properties and that the
properties are preserved under the Basilica operation. We summarise results of this kind

for the general Basilica operation in the following theorem.

Theorem 8.1.1. Let G be a group of automorphisms of a reqular rooted tree. Let P be a
property from the list below. Then, if G has P, the s-th Basilica group Bass(G) of G has P
for all se N,.

1. spherically transitive 5. weakly branch
2. self-similar 6. generated by finite-state bounded auto-
3. (strongly) fractal morphisms

4. contracting

As a consequence we derive conditions for Bass(G) to have solvable word problem and
to be amenable. Furthermore, we provide a condition for Bass(G) to be a weakly regular
branch group given that G satisfies a group law. This enables us to construct a weakly
regular branch group over a prescribed verbal subgroup.

The class of spinal groups, defined in [23], is another important class of groups acting
on T it contains the Grigorchuk group and all GGS-groups, see Definition 8.3.7. It is not
true that the Basilica operation preserves being spinal, however groups obtained from spinal

groups act as spinal groups on another tree d;7", obtained by deleting layers from T'.

Theorem 8.1.2. Let G be a spinal group (resp. a GGS-group) acting on T. Then Bass G
is a spinal (resp. a GGS-group) acting on 6T for all s € N,.

In contrast to Theorem 8.1.1, the exponential word growth of the original Basilica group

B is not a general feature of groups obtained by the Basilica operation. In fact, the situation
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appears to be chaotic, for which we provide some examples, see Proposition 8.3.17 and
Proposition 8.3.18.

Next we turn our attention to a class of groups G whose Basilica groups Bas,(G) more
closely resemble the original Basilica group. For this, we introduce the concept of the
group G being s-split (see Definition 8.4.1). An s-split group decomposes by definition
as a semi-direct product, algebraically modelling the property that the image of a delayed
automorphism can be detected by observing the layers on which it has trivial labels. We
prove that all abelian groups acting locally regular are s-split for all s € N,, and that
conversely, all s-split groups acting spherically transitive are abelian. Furthermore we obtain

the following.

Theorem 8.1.3. Let s > 1 and let G be an s-split self-similar group of automorphisms
of a regular rooted tree acting spherically transitively. If G is torsion-free, then Bass(G) is

torsion-free. Furthermore Bass(G)* =~ G*.

The (s—1)-th splitting kernel Kq_1 is a normal subgroup of G measuring the failure of G
to be s-split. A rigorous definition is found in Definition 8.4.1. If G is weakly regular branch
over K, (allowing K,_; to be trivial, hence including s-split groups), we obtain a strong
structural description of the layer stabilisers of Bass(G). The maps (; are the algebraic

analogues of the various added steps delaying an automorphism, defined in Definition 8.2.2.

Theorem 8.1.4. Let G be a self-similar and very strongly fractal group of automorphisms
of a regular rooted tree. Assume that G is weakly reqular branch over Ks_1. Let n € Ny.

Write n = sq+1r withq>=0 and 0 <r <s—1. Then for all s > 1

StBas, (@) (1) = (Bi(Sta(q + 1)), B;(Sta(q)) | 0 <i <1 < j < s)Bas=(@),

This description allows us to provide an exact relationship between the Hausdorff di-
mension of a group G fulfilling the conditions of Theorem 8.1.4 and its Basilica groups
Bass(G). The precise description makes use of the series of obstructions of G, a tailor-made
technical construction, see Subsection 8.4.2 for details. Observing this series, we prove that
the Hausdorff dimension of Bass(G) is bounded below by the Hausdorff dimension of G for

all s > 1.

Corollary 8.1.5. Let G < Aut T be very strongly fractal, self-similar, weakly reqular branch
over Ks_1, with dimg G < 1. Then for all s > 1

dimH G < dimH Bass(G).
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Here we define the Hausdorff dimension of G < I' as the Hausdorff dimension of its
closure in I', where I' is the subgroup of all automorphisms acting locally by a power of a
fixed m-cycle. This subgroup is isomorphic to

I lim Cpt-" 2 Cp
neN
If m = p, a prime, then T' is a Sylow pro-p subgroup of Aut7T. The notion of Hausdorff
dimension in the profinite setting as above was initially studied by Abercrombie [1] and
subsequently by Barnea and Shalev [9]. It is analogous to the Hausdorff dimension defined
as usual over R.

In the second half of this paper we study the class of generalised Basilica groups Bas,(O%,),
for d, m, s € Ny with m, s > 2, defined by applying Bas; to the free abelian group of rank
d with a self-similar action derived from the m-adic odometer. We remark that the above
generalisation of the original Basilica group B is different from the one given in [21], but it
includes the class of p-Basilica groups, where p is a prime, studied recently in [33]. For every
odd prime p, we obtain the p-Basilica group by setting d = 1,m = p and s = 2 in Bas,(0O%).
Our construction also includes special cases, d = 1 and m = s = p, studied by Hanna Sasse
in her master’s thesis supervised by Benjamin Klopsch. We record the properties of the

generalised Basilica groups in the following theorem.

Theorem 8.1.6. Let d, m, s € N, with m, s > 2. Let B = Bas,(O%)) be the generalised
Basilica group. The following assertions hold:

(i) B acts spherically transitively on the corresponding m-reqular rooted tree,

(ii) B is self-similar and strongly fractal,

(iii) B is contracting, and has solvable word problem,

(iv) The group O is s-split, and B = 7%,

(v) B is torsion-free,

(vi) B is weakly regular branch over its commutator subgroup,

(vii) B has exponential word growth.

Theorem 8.1.6(i) to Theorem 8.1.6(vi) are obtained by direct application of Theo-
rem 8.1.1 and Theorem 8.1.3. The proof of Theorem 8.1.6(vii) is analogous to that of
the original Basilica group B and can easily be generalised from [59, Proposition 4]. Never-
theless, one can prove Theorem 8.1.6 directly by considering the action of the group on the
corresponding rooted tree, see [96].

We explicitly compute the Hausdorff dimension of Bas,(O%), which turns out to be

independent of the rank d of the free abelian group O%:
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Theorem 8.1.7. For all d, m, s € Ny with m, s > 2

. d _ m(msfl — 1)

dimy (Bass(03,)) = T
The above equality agrees with the formula of the Hausdorff dimension of p-Basilica
groups given by [33], and also with the Hausdorff dimension of the original Basilica group

B given in [12].

Theorem 8.1.8. Letd, m, s € N withm, s > 2. The generalised Basilica group Bass(OZ)
admits an L-presentation

L=Y[Q|®[R)
where the data Y, Q, R and ® are specified in Section 8.6.

The concrete L-presentation requires unwieldy notation, whence it is not given here.
It is analogous to the L-presentation of the original Basilica group B [59]. The name L-
presentation stands as a tribute to Igor Lysionok who obtained such a presentation for
the Grigorchuk group in [74]. It is now known that, every finitely generated, contracting,
regular branch group admits a finite L-presentation but it is not finitely presentable (cf.
[11]). Unfortunately, this result is not applicable to generalised Basilica groups as they are
merely weakly branch. Also, the L-presentation of the generalised Basilica group is not finite
as the set of relations is infinite. Nonetheless, akin to [59, Proposition 11], we can introduce
a set of endomorphisms of the free group on the set of generators of the generalised Basilica
group and obtain a finite L-presentation, see Definition 8.6.1, as defined in [11].

Using the concrete L-presentation of a generalised Basilica group, we obtain the following

structural result.

Theorem 8.1.9. Let d, m, s € Ny with m, s = 2 and let B be the generalised Basilica

group Bass(O%). We have:
(i) For s =2, the quotient group v2(B)/v3(B) = 7%,
(i) For s > 2, the quotient group v2(B)/v3(B) = C¥~2 x C, 2.

This implies that the quotients v;(B)/vi+1(B) of consecutive terms of the lower central
series of a generalised Basilica group for s > 2 are finite for all ¢ > 2, whereas a similar
behaviour happens for the original Basilica group B from ¢ > 3, see [15] for details.

For a group G of automorphisms of an m-regular rooted tree, we say that G has the
congruence subgroup property (CSP) if every subgroup of finite index in G contains some

layer stabiliser in G. The congruence subgroup property of branch groups has been studied

134



comprehensively over the years, see [22], [45], [37]. The generalised Basilica group Bass(O%,)
does not have the CSP as its abelianisation is isomorphic to Z%* (Theorem 8.1.6). However,
the quotients of Basg (Ofn) by the layer stabilisers are isomorphic to subgroups of sz-ﬁ-z(}m,
for suitable n € Nyg. If m = p, a prime, then these quotients are, in particular, finite p-
groups. The class of all finite p-groups is a well-behaved class, i.e., it is closed under taking
subgroups, quotients, extensions and direct limits. In light of this, we prove that Bass(Og)
has the p-congruence subgroup property (p-CSP), a weaker version of CSP introduced by
Garrido and Uria-Albizuri in [46]. The group G has the p-CSP if every subgroup of index a
power of p in G contains some layer stabiliser in G. In [46] one finds a sufficient condition
for a weakly branch group to have the p-CSP and it is also proved that the original Basilica
group B has the 2-CSP. This argument is generalised by Fernandez-Alcober, Di Domenico,
Noce and Thillaisundaram to see that the p-Basilica groups have the p-CSP. We further

generalise these results.

Theorem 8.1.10. For all d, s € Ny with s > 2, and all primes p, the generalised Basilica

group Bass((’)g) has the p-congruence subgroup property.

Even though we follow the same strategy as in [46], the arguments differ significantly
because of Theorem 8.1.9. Here we make use of Theorem 8.1.4 to obtain a normal generating
set for the layer stabilisers of the generalised Basilica groups (Theorem 8.5.1). We remark
that the result of Fernandez-Alcober, Di Domenico, Noce and Thillaisundaram on p-Basilica
groups can be generalised to all d > 2 with additional work.

The organisation of the paper is as follows: In Section 8.2, we introduce the basic theory
of groups acting on rooted trees and give the formal definition of the Basilica operation,
together with important examples. The proofs of Theorem 8.1.1 and Theorem 8.1.2 are
given in Section 8.3. Theorem 8.1.3 and related results for s-split groups are contained
in Section 8.4, as well as the proofs of Theorem 8.1.4 and Theorem 8.1.7. Section 8.6
contains the proof of Theorem 8.1.8, while Section 8.7 and Section 8.8 contain the proofs of

Theorem 8.1.9 and Theorem 8.1.10.

8.2 Preliminaries and Main Definitions

For any two integers i, j, let [i, ] denote the interval in Z. From here on, T,, = T denotes
the m-regular rooted tree for an arbitrary but fixed integer m > 1. The vertices of T are
identified with the elements of the free monoid X* on X = [0, m — 1] by labeling the vertices

from left-to-right. We denote the empty word by €. For n € Ny, the n-th layer of T is the
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set X" of vertices represented by words of length n.

Every (graph) automorphism of 7' fixes e and moreover maps the n-th layer to itself for
all n € Ny. The action of the full group of automorphisms Aut 1" on each layer is transitive.
A subgroup of AutT with this property is called spherically transitive. The stabiliser of a
word u under the action of a group G of automorphisms of 7" is denoted by st(u) and the
intersection of all stabilisers of words of length n is called the n-th layer stabiliser, denoted
Stg(n).

Let a € Aut T and let u,v be words. Since layers are invariant under a, the equation
a(uv) = a(u)aly(v)

defines a unique automorphism al,, of T' called the section of a at u. This automorphism can
be thought of as the automorphism induced by a by identifying the subtrees of T" rooted at
the vertices v and a(u) with the tree T'. If G is a group of automorphisms, G|,, will denote
the set of all sections of group elements at u. The restriction of the action of the section al,
to X! = X is called the label of a at u and it will be written as a|“.

The following holds for all words u, v and all automorphisms a, b:
(alu)lv = aluv,
(ab)]u = a’b(u)b’u-

The analogous identities hold for the labels a|", so the action of a on any word zg...%,—1

of length n is given by
a(xg...tn-1) = al(z0)a|ze(T1 ... Tn—1) = al(zo)a|™(z1) ...al" " 2(x,_1).

Hence every automorphism a is completely described by the label map X* — Sym(X),
u — al*, called the portrait of a.

For n € Ny, the isomorphim
Yn 2 St(n) — (AutT)™, g = (glo)zexn,

is called the n-th layer section decomposition. We will shorten the notation of big tuples
arising for example in this way by writing ¢** for a sequence of k identical entries g in a
tuple, implicitly ordering the vertices lexicographically.

We can uniquely describe an automorphism g € Aut T by its label at € and the first layer

section decomposition of (g|¢)~lg, i.e. by

g = g|E (g|x)aceX-
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Let H < Sym(X) be any subgroup of the symmetric group on X. Then denote by I'(H)
the subgroup of Aut T defined as

I'NH)=<{(ae AwtT |YueT,al" € H).

If H is a Sylow-p subgroup of Sym(X), then I'(H) is a Sylow-pro-p subgroup of Aut 7. We
further fix c = (01 ... m — 1) € Sym(X) and write I" for I'({(o)).

A group G < AutT is called self-similar if it is closed under taking sections at every
vertex, i.e. if G|, € G for all v € T. Self-similar groups correspond to certain automata
modelling the behaviour of the section map: there is a state for every element g € GG, and
an arrow g — ¢|, labelled z : g(x) for every x € X (for details see [76]).

We follow [103] in the terminology for the first three of the following self-referential
properties, and add a fourth one: A group G < AutT acting spherically transitively is
called

1. fractal if stg(u)|, = G for all ue T.

2. strongly fractal if Stg(1)|, = G for all z € X.

3. super strongly fractal if St (n)|, = G for all n € Ny and u € X".

4. wvery strongly fractal if Stg(n + 1)|; = Stg(n) for all n e Ny and z € X.

Notice that for every group H acting regularly on X and G < I'(H) the properties (1)

and (2) coincide. The following lemma will be of great use.

Lemma 8.2.1. Let G < AutT be fractal and self-similar, and let x,y € X. For everyge G
there exists an element g € G such that g(z) =y and |, = g. Furthermore, if H < G is any
subgroup of G such that H x {id} x --- x {id} < ¢1(K) for some normal subgroup K < G,
then (HE)™ < 9y (K).

Proof. Since G is fractal, it is spherically transitive and in particular it is transitive on the
first layer of T'. Hence there exists some element h € G mapping x to y. Also because
G is fractal and h|; € G by self-similarity, there is some element k € stg(x) such that
k|, = (h|lz)~'g. Now § = hk fulfills both §(x) = y and §|, = hl.k|. = g.

Assume further that H < G and H x {id} x --- x {id} < ¢1(K) for K < G. Let g € G.
Choose an element g € G such that g(z) = 0 and g|, = g. Then for every h € H

(id*®, h9,id* == =Dy = o ((§) 2o (hyid, . . ., 1d)g) € Y1 ((§) 1K G) = 9 (K). O
From this point on, we fix a positive integer s.
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Definition 8.2.2. There is a set of s interdependent monomorphims 3; : AutT — AutT
defined by

i (9) = (Bi1(9),1d, .. ., id) for i e [1,5—1],

Bo(9) = gl“(Bs_1(gl0), - - - Ba_1(glm—1))-

We adopt the convention that the subscript for these maps is taken modulo s, whence
Bi(9)|e € Bi_1(AutT') for all i € [0,s — 1] and g € AutT. Whenever there is no reason for

confusion, we drop the superscript s.

Definition 8.2.3. Let G < AutT'. The s-th Basilica group of G is defined as

Bass(G) ={Bi(g9) | g€ G,ie€ [0,s — 1] ).

Clearly, for s = 1 the homomorphism 3} is the identity map and Bas;(G) = G. In the
case of a self-similar group G, the s-th Basilica group of G can be equivalently defined as
the self-similar closure of the group (5(G), i.e. the smallest self-similar group containing
B5(G). If G is finitely generated by g1,...,gr, then Bass(G) is generated by (g;) with
i€[0,s—1] and j e [1,7].

The operation Bas; is multiplicative in s, i.e. for s,t € Ny and G < AutT we have

Bas; Bas;(G) = Basg(G). This is a consequence of

B (B5(9)) = Bite;(9),

which is an easy consequence of Definition 8.2.2.
We now describe the monomorphisms g7 for i € [0, s — 1] in terms of their portraits. We
define a map w; : T — T. For every k € Ny and every vertex v € X*, write u = zg ... 251 €

X%, and define
k—2

wi(u) == 0° H (ijS_l) Th—1-

j=0
Writing w;(T') for the subgraph of T' induced by the image of w;, with edges inherited from

paths in T', we again obtain an m-regular rooted tree.

Lemma 8.2.4. Let g€ AutT and i€ [0,s — 1]. Then the portrait of B7(g) is given by

(2

91", if u=wi(v),

id, if u ¢ wi(T).

gi (9" =

In particular Bass(G) < T'(H), if G <T'(H) for some H < Sym(X).
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Proof. First suppose that u = w;(v) for v = zg...z,_1. From Definition 8.2.2 follows

B (g o0akt) = (g ol on) — B (gl )[or ),

and iteration establishes 37(¢)|* = g|". Now, if u = wg...up—1 ¢ w;i(T), there is some
minimal number n #; i such that u, # 0. Thus u = w;(v)0u, ... ux_1 for n =5t < i and

some vertex v, hence

B(g)[* = B3 (gle)] e = B3, (glo) M = id. 0

It is interesting to compare the effect of the Basilica operation with another method of

deriving new self-similar groups from given ones described by Nekrashevych.

Proposition 8.2.5 ([76, Proposition 2.3.9]). Let G < AutT be a group and let d be a

positive integer. There is a set of d injective endomorphisms of AutT given by

m0(9) = gl (Ta—1(9lz))zex,

Ti(9) == (mi-1(9))wex forie[1,d—1].
The group Dy(G) := (m;(G) | i € [0,d — 1]) is isomorphic to the direct product G.

We combine both constructions to define a class of groups very closely resembling the

original Basilica group B.

Definition 8.2.6. Let d, m, s € N, with m > 2. The m-adic odometer O,, is the infinite
cyclic group generated by
a=o(a,id,...,id),

where o is the m-cycle (m —1m —2 ... 10). Write O% for Dyg(O,,), the d-fold direct
product of O,, embedded into Aut T" by the construction described in Proposition 8.2.5. We
call the group Bas,(0Y)) the generalised Basilica group.

Clearly, B = Basy(,) is the original Basilica group introduced by Grigorchuk and Zuk
in [59].

For illustration we depict explicitly the automaton defining the self-similar action of the
dyadic odometer O, the automaton defining the action of Dg(O3) described above and the
automaton defining Basg(O2) in Figure 8.4.

We shall prove in the following (cf. Section 8.6, Section 8.7, Section 8.8) that gener-
alised Basilica groups resemble the original Basilica group in many ways, justifying the

terminology.
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Figure 8.4: The automata defining the generators of Oz, Dg(O2) and Basg(O2).

Proposition 8.2.7. Let Autg, (T) be the group of all finitary automorphisms, i.e. the group
generated by all automorphisms gr,, forve T, T € Sym(X) that have label T at v and trivial

label everywhere else. For any s € N4
Basg(Autgn (7)) = Autgy (7).
On the other hand Bass(Aut T') is not of finite index in AutT for all s > 1.

Proof. Define for every n € Ny a map u, : AutT — Ny by

pin(g) = {ue X™ | glu # id}].

Lemma 8.2.4 shows that g,, = ﬁi(gT7w;1(U)) € Basg(Autg, (7)) for every v € Uf:_& w;i(T).
Conjugation with suitable elements produces all other generators, hence Autg,(7") is con-
tained in Bass(Autg, (7). On the other hand, > .y, Hn(g) < o for any g € Autg,(T),
implying that the same holds for all generators (and hence, all elements) of Bass(Autg, (7).
Thus, Bass(Auta, (7)) = Autay (7).

n

For any g € AutT we have pu,(g) < |X™| = m™. But for all generators f;(g) of
Bass(Aut T') the stronger inequality psn+i(5i(g)) < m™ holds, since §;(g) has trivial la-

bel at all vertices outside of w;(7T"). Let g € AutT and ¢(g) € Q. be the infimum of all
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numbers r such that
. psn(g)
hfzn—?;olp . ~ ~

Then g cannot be in Basg(Aut T"), since the inequality g, (ab) < pn(a)+pn(b) for a,b € Aut T
implies that it cannot be a finite product of the generators of Bass(AutT). By the same
reason, all elements with different ¢(g) are in different cosets. Since ¢(AutT’) = (0,s—1)nQ,

the second statement follows. O

Question 8.2.8. In view of Proposition 8.2.7 and the original Basilica group B it seems
plausible that the operation Basg makes (in some vague sense) big groups smaller and small
groups bigger. Let H < Sym(X) be a transitive subgroup. Set I'a,(H) = Auts,(T) nT'(H).
Replacing Autgy,(T') with T'gy(H) in the proof of Proposition 8.2.7 we obtain the equality
Bass(T'an(H)) = Tan(H).

Is there a group G not of the form Ty (H) such that Bass(G) = G?

8.3 Properties inherited by Basilica groups

We recall our standing assumptions: m and s are positive integers with m # 1, X =
[0,m — 1], and T the m-regular rooted tree. The subscript of the maps ¢ is taken modulo
s, and we will drop the superscript s from now on.

8.3.1 Self-similarity and fractalness

Lemma 8.3.1. Let G < AwtT act spherically transitively on T. Then Bass(G) acts spher-

ically transitively on T'.

Proof. Tt is enough to prove that for any number n = ¢s + r € Ny with r € [0, s — 1] and
g = 0, and y € X there is an element b € Bass(G) such that 5(0"0) = 0"y. Let g € G be
such that g(020) = 0%y and observe that §,(g) stabilises 0". By Lemma 8.2.4 it follows

Br(g)(0™0) = 0"Bo(gloe)(0) = 0"y. 0
Lemma 8.3.2. Let G < AutT be self-similar. Then Bass(G) < AutT is self-similar.

Proof. We check that B;(g)|, is a member of Basg(G) for all v € T. This holds by Defini-
tion 8.2.2 for words v of length 1, and follows from g|;|, = g|zy by induction for words of

any length. O

Lemma 8.3.3. Let G < AutT be self-similar, and fractal (resp. strongly fractal). Then
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(i) The group B = Bass(G) < Aut T is fractal (resp. strongly fractal).

(i) For all b € B there is an element c € stg(0) (resp. ¢ € Stp(1)) such that clp = b and
clg € Bs—1(G) for all x € [1,m — 1].

Proof. Lemma 8.3.1 shows that B acts spherically transitively, and by Lemma 8.3.2 the
group B is self-similar. First suppose that G is fractal. Since the statement (ii) implies the
statement (i), it is enough to prove (ii).

Observe that
H ={gestp(0)| gls € Bs—1(G) for all x € [1,m — 1]}

is a subgroup since h(x) # 0 and (gh)|: = glp@)hlz € Bs—1(G) for all g, h € H,z € [1,m — 1].
Thus it is enough to show that 5;(G) < H|o for all i € [0,s — 1].

It is easy to see that ;(G) < H for i # 0, hence since 5;(G)|o = Bi—1(G) we have
Bi(G) < Hlp for i # s — 1. But also Syp(stg(0)) < H. Note that, since G is fractal, we have
st6(0)]o = G. Hence By 1(G) < Bolsta(0))lo < Hlp.

If G is strongly fractal, we may replace H by its intersection with Stp(1) and stg(0) by

St (1) to obtain a proof for the analogous statement. O

Lemma 8.3.1, Lemma 8.3.3 and Lemma 8.3.2 yield proofs for the statements (1), (2) and
(3) of Theorem 8.1.1.

8.3.2 Amenability

The original Basilica group B was the first example of an amenable, but not subexponentially
amenable group. This had been conjectured already in [59], where non-subexponentially
amenability of B was proven. Amenability was proven by Bartholdi and Virdg in [24].
Later, Bartholdi, Kaimanovich and Nekrashevych proved that all groups generated from
bounded finite-state automorphisms are amenable [20], which includes B. We recall the
relevant definitions and then apply the result of Bartholdi, Kaimanovich and Nekrashevych

to a wider class of groups produced by the Basilica operation.
Definition 8.3.4. An automorphism f € Aut T is called

1. finite-state if the set {f|, | uw € T} is finite, and

2. bounded if the sequence pu,(f) == [{u € X™ | f|, # id}| is bounded.

Proposition 8.3.5. Let G < AutT be generated from finite-state bounded automorphisms.

Then Bass(G) is also generated from finite-state bounded automorphisms.
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Proof. Tt is enough to prove that for every finite-state bounded f € AutT and i € [0, s — 1]
the element f;(f) is again finite-state and bounded. Notice that all sections of f are of the
form B;(f|.) for some u € T, hence there are only finitely many candidates and S;(f) is

finite-state. Moreover, by Definition 8.2.2 p,(8;(f)) = uln;ij(f), bounding pn,(Bi(f)). O
This proves statement (6) of Theorem 8.1.1, and we use [20] to conclude:

Corollary 8.3.6. Let G < AutT be generated by finite-state bounded automorphisms. Then

Bass(G) is amenable.

8.3.3 Spinal Groups

A well-known class of subgroups of Autl’ containing most known branch groups is the
class of spinal groups, containing both the first and the second Grigorchuk group, and all

GGS-groups. We use, with modifications for GGS-groups, the definition given in [18].

Definition 8.3.7 (cf. [18, Definition 2.1]). Let R < Sym(X), let D be a finite group and

let
w = (Wij)ieN, je[1,m—1]
be a family of homomorphisms w; ; : D — Sym(X). Identify R with {r(id,...,id) | r €

R} < Aut T and identify each d € D with the automorphism of T" given by

w wi j(d) ifw=0"1jforieN,,je [1,m — 1],
dl¥ =
id otherwise.

Suppose that the following holds:

1. The group R and all groups {wy ;(D) | j € [1,m — 1]), for n € N4, act transitively on
X.

2. For all n e N

I 38

=n

m—1
ﬂ kerwm =1.
j=1

Then (R, D) < AutT is called the spinal group acting on T with defining triple (R, D,w).
The spinal group with defining triple (R, D,w) is called a GGS-group acting on T if wy, ; =

wg,; for all n,k e Ny and j € [1,m — 1].

We now describe the Basilica groups of spinal groups. For this, we record the following

lemma.
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Lemma 8.3.8. Let i,j € [0,s — 1] with i # j. Denote by st(0) the stabiliser of the infinite
ray 0 := {0° | i € No} in Aut T (a so-called parabolic subgroup). Then [B;(st(0)), 8;(st(0))] =
1.

Proof. We prove that for all gg, g1 € st(0) the images by = B;(go) and by = (j(g1) commute,
using the fact that st(0)|o = st(0). Assume without loss of generality that either j > i > 0

or ¢ = 0. In the first case both by and b; stabilise the i-th layer, we can consider

Wi([bo, b1]) = ([Bolor, biloe], id*™ =Y = ([Bo(go), By—i(g1)], id* ™ =),

and thus reduce to the second case. Suppose now that ¢ = 0. Since the only non-trivial first

layer section of by is at the vertex 0 and by assumption by fixes this vertex,

1([bo, b1]) = ([bolo, brfo], id*™ V).

Since bo|o, b1|o € st(0), we conclude by infinite descent that [bg,b1] fixes all vertices outside

the ray 0, thus acts trivially on the entire tree 7. O

The elements d € D of a spinal group defined by (R, D,w) can be characterised by
the fact that they stabilise the infinite ray (or “spine”) 0 and d|* # id implies that x has
distance precisely 1 from 0. Therefore it is easy to see that a Basilica group B = Bas,(G)
of a spinal group G acting on T cannot act as a spinal group on T, as the elements (37(d)
have non-trivial labels at vertices of distance s from the ray 0. However, the group B acts
as a spinal group on a tree obtained from 7" by deletion of layers.

Motivated from Examples 8.3.10 and 8.3.11 below, we introduce the following notations.

There is an injection ¢4 : (X%)* — X™* given by
(20,0 0,5-1) "+ (Tn—1,0 "+ Tn—1,5-1) > L0,0 " ** Tn—1,5-1,

whose image is the union (J X", The restriction map induces an injection

neNo
vE s Aut (X)) — Aut((X®)%),
and clearly the image ¢*(AutT) is
P(Sym(X) 11 Sym(X)) < Aut((X*)*),

where the permutational wreath product is iterated s times. Recall that I'(H) for a per-
mutation group G denotes the subgroup of AutT with every local action a member of H.

Define for i € [0, s — 1]
7+ Sym(X) — Sym(X) -2 Sym(X)

p = 15(9p00)1
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where g, o: is the automorphism with g|0i = p and g|* = id everywhere else. It is easy to see
that for every transitive permutation group H < Sym(X) the group (7x(H) | k € [0,s — 1])
is isomorphic to the s-fold iterated permutational wreath product H?--- ! H.
Now given a family of homomorphisms (w; j : D — Sym(X))en, jex\{o} We define a new
family @ = (@;; : D* — Sym(X?))jen, jexs\{os} DY
Tj O Wy g O i, if j = 0°x05~~! for some z € [1,m — 1] and i € [0,s — 1],

Wn,j =
d—id,d € D®%, otherwise,

where m; : D% — D denotes the projection to the (i + 1)-th factor.

Proposition 8.3.9. Let G be the spinal group on T with defining triple (R, D,w). Then
¥ (Bass(Q)) is the spinal group on (X*)* with defining triple (R?-- VR, D*, &), by the action
of Bass(G) on the m®-regular tree 6T defined by the deletion of layers.

If furthermore G is a GGS-group on T, 1¥(Bass(G)) is a GGS-group on (X*)*.

Proof. First consider the elements of the form Si(a), for a € R, k € [0,s — 1]. On (X®)*
this element acts as 7x(a). Since R is transitive, the images of R generate R1---1 R, and
the first entry of the defining triple is described.

We deal in a similar way with the sections ;(d|ok,) of a directed element for every
de D,ie[0,s—1],k € Ng,y € X\{0}. To obtain the first section decomposition of the
action of 5;(d|yx) on 65T (which stabilises the first layer) we have to take sections of 5;(d|yx)

at words © = zq...xs_1 of length s in T. Now by Lemma 8.2.4,

Bi(d|0k+l) if x = Os,
Bidlox)|z = { Bi(Wrs1.0,(d) = Tiwps1.0,(d) if & = 07,0571 2y # 0,

id otherwise.

By Lemma 8.3.8 all pairs (;(d1), 8j(d2) with di,d2 € D, 7,5 € [0,s — 1] and ¢ # j commute.
We identify f5;(D) with the (i + 1)-th direct factor of D®. Thus Bass(G) is generated by
RY--- 1R and {(f;i(D) | i€ [0,s — 1]) = D*, where (id, ...,id, d;,id, . ..,id) € D* acts on 6T
by

(id,...,id, d;,id, .. .,id)|grep = Bi(d|or)|es

thus, the elements of D® are defined by the family & of homomorphisms.
It remains to establish the two defining properties of spinal groups. Property (1) holds

by the observation that
(@i (D) [ j€[1,m®—1])
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acts as (1 (w; ;(D)) | j € [1,m — 1],k € [0, s — 1], hence (@; ;(D?) | j € [1,m* — 1]) acts as
the s-fold wreath product of {w; ;(D) | j € [1,m — 1]), in particular, transitively on the first
layer of 8,7

For (2) consider

ker(wpz 0 m;), if j = 020°~*1 for some x € [1,m — 1],i € [0,s — 1]
ker(DnJ =

D3, else,

hence

ﬂ ker co,, ; = ﬂ kerwpj | X --- % ﬂ ker wy, ;

jeX=\{0°} jeX\{0} 7eX\{0}

Therefore we see that since (2) holds for G, (2) holds for Bas,(G).
The statement regarding GGS-groups follows directly from the description of the defining
triple of Bass(G). O

Proposition 8.3.9 yields Theorem 8.1.2.

Example 8.3.10. One of the eponymous examples of a GGS-group is the family of the
Gupta—Sidki p-groups acting on the p-regular tree. In the language of spinal groups they
are defined by the triple

(o), {o), (0 — 0,0 — o lom—id,...,o— id)sen, ),

or in usual notation by the generators a = o(id,...,id),b = (b,a,a”%,id,...,id). We can
describe the generators of the second Basilica group of the Gupta—Sidki 3-group r by
/Bg(a) = G(idv id, 1d) =a Bg(b) = (Bf(b)v B%(a)75%(a_l))a
/8% (CL) = (a7 id, 1d) B%(b) = (Bg(b)a id, ld)

The automaton describing these generators is given explicitly in Figure 8.3. By ordering

X2 reverse lexicographically, the action of the generators on (X?2)*

B2(a) = (00 10 20)(01 11 21)(02 12 22)

B3 (b) = (83(b), 63 (a), 53(a) "1, id, - .. ,id)
B2(a) = (00 01 02)

BL(b) = (1 (b),id,id, B} (a),id,id, B} (a) ", id, id).

Example 8.3.11. The first Grigorchuk group G is the spinal group acting on the binary

tree defined by Ca, C3 and the sequence wj 1 of (the three) monomorphisms Cy — (3, where
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w;,1 = wj1 holds if and only if ¢ =3 j. Writing a for the non-trivial rooted element and b, ¢, d

for the non-trivial directed elements, one has the descriptions
a=(01)(id,id), b= (c,a), c¢=(d,a), d=bc= (b,id).

By Proposition 8.3.9 Basy(G) is a spinal group on the 4-regular tree (X?2)*, generated by

the elements

a =pia) =(02)(13), A =pia) =(01),

B = B2(b) = (K a,id,id), B :=p2(b) = (K,id,A,id),
ko= 02(c) = (6a,idid), K :=p%(c) = (A,id,A,id),
§ =B, A :=BK,

where we identify [0, 3] with X2 by the reverse lexicographic ordering.

8.3.4 Contracting groups

For this subsection we fix a self-similar group G < AutT and some generating set S of G,
which yields a natural generating set | J;cpg s_178i(5) for B := Bass(G).

The group G < Aut T is said to be contracting, if there exists a finite set N’ < G (called
a nucleus of G) such that for all g € G there is an integer k(g) such that g|, € N for all
v €T with |v| > k(g), where | - | denotes the word norm.

In this section we prove that a contracting group G has contracting Basilica groups
B = Bass(G), considering the natural generating set for B. For this we define yet another
length function, the syllable length, denoted by syl(b), of an element b € B as the word
length w.r.t. the infinite generating set Uie[o,sfl] Bi(G), i.e. as

{—1
syl(b) :=min{f e Ny | b = H Bi;(g;), with suitable i; € [0,s — 1], g; € G},
j=0

where H?;é fBi;(g;) is a word representing b in B with respect to the generating set {3;(g) |
i€]0,s —1],g € G}. Consequently, we will call a non-trivial element of the given generating
set a syllable and the corresponding index ¢ its type. Since for every non-trivial element
b € Bi(G) there is some u € X" for some n € Ny such that b|* # id, while there is no
€ T\Upen, X ns+i guch that b|* # id, the type of a syllable is unique. Since all sections of
a syllable are either trivial or a syllable itself, the syllable length of a section of b is at most
syl(b).
We further define for every g € Aut T,
min{n € Ny | g|°"(0) # 0}  if g does not stabilise 0 = {0 | n € Ny},

t(g) =
Q0 otherwise.
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Lemma 8.3.12. Let r € Ny. Define
Dy = {Ba, (h1)Bay (h2)Bas (h3) | h1, ho, hy € G\{1},
ai,az,as € [0,s — 1] pairwise distinct,
t(Bay (h)) = r}.
Then syl(c|y) < 3 for ¢ € D, and all w with |u] > r.

Proof. Let ¢ = B4, (h1)Bay(h2)Bas(h3) € Dy, where a1, a2, as, h1, ha, hs satisfy the conditions
stated above. We use induction on r. First consider the case r = 0. From S, (h2)(0) # 0

we deduce that as = 0. Calculate, for x € [0,m — 1],

Bs—1(h2]|0)Bas—1(h3) if z =0,
cle = { Bay—1(h1)Bs—1(hals)  if x = hy'(0),
Bs—1(ha|z) otherwise.

This shows that c|, and, by recursion, c|, for all u with |u| > 1 have syllable length at
most 2. Now we assume that r > 0. We may reduce to the case that 0 € {a1,ag,ag}. If
0 ¢ {a1,a2,as}, clo € Dy—1 and c|; = id for all x € X,z # 0. Therefore, by induction
syl(¢|zlu) < 3 for x € X and |u| > r — 1, hence syl(z|,) < 3 for all |u| > r.

If a3 = 0, respectively a; = 0, we have

Bar—1(h1)Bag—1(h2)Bs—1(hals) € Dr—y  if 2 = h3*(0),

Bs—1(hslz) otherwise,

Cle =<

Bs—1(h1lo)Bas—1(h2)Baz—1(h3) € Dr—1  if x =0,

\55—1(h1|x) otherwise.

respectively c|, = <

In both cases all but one section have length < 3 and the remaining section is contained in
D,_1, hence by induction syl(c|z,) < 3 for all z € X, |u| > r — 1.

The case az = 0 remains. Now 7 > 0 implies h,'(0) = 0 and we have t(Bs_1(halo)) =

r — 1. Thus
| Bar-1(h1)Bs-1(h2l0)Bas-1(h3) € Dry if z =0,
Cle =
Bs—1(h2lz) otherwise.
Hence we conclude that syl(c|z,) < 3 for all u with |u| = 1 by induction as before. O

Lemma 8.3.13. For every element b € B with syl(b) > s+ 1 there is a number r € Ny such

that for all sections b|,, with |u| >,
syl(bl,,) < syl(b).

148



Proof. Let b € B be an element with syl(b) > s+ 1. If b is minimally represented by a word
w, it suffices to prove that there is a subword of w representing an element which has a
reduction of the syllable length upon taking sections.

Since syl(b) > s + 1 there must be at least one syllable type appearing twice, and there

is a subword of w that can be written in the form

Bi(g1)boBi(G2)b1 or b1Bi(G1)boBi(g2),

where bg, b1 are non-trivial and contain neither two syllables of the same type nor a syllable
of type 7. Passing to the inverse if necessary we restrict to the first case.

Under the assumption of w being minimal it is impossible that both by and (3;(g2) fix
the infinite ray 0, since if they did, they would commute by Lemma 8.3.8, and consequently
it would be possible to reduce the number of syllables.

Thus there are syllables in bpS3;(g2) that do not stabilise the ray 0. Among these we
choose k such that r := (5, (gx)) is minimal.

Apply Lemma 8.3.12 to the subword 8, _, (9x—1)Bj, (9%) Bjrsr (9r+1) of Bi(g1)boBi(g2)b1
consisting only of the syllable (3, (gx) and its direct neighbours, and obtain for all u €
T, |u|l >r

syl(bly) < syl(b). O

Although interesting in its own right we use Lemma 8.3.13 solely to prove the following

proposition.
Proposition 8.3.14. Let G < AutT be contracting. Then B = Bass(G) is contracting.

Proof. Let N(G) be a nucleus of G. Define

¢
1=0

Since N'(G) is a finite set, N'(B) is finite as well. We will prove that it is a nucleus of B. Let
be B. If syl(b) > s + 1, by Lemma 8.3.13 there is a layer, from which onwards all sections
of b have syllable length s 4+ 1 or smaller.

Hence we can assume, that syl(b) < s + 1. Write b = ]—[zléb)_l B, (gi). Since G is
contracting, for every g; there is a number k(g;) such that g;|, € N(G) for all |u| > k(g;).
Set K := max{k(g;) | i € [0,syl(b) — 1]}, and observe that for u with |u| = sK the section
by is a product of at most syl(b) < s + 1 syllables of the form §;(g) with g € N(G). Thus
bly is in N(B) and B is contracting. O
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Proposition 8.3.14 proves statement (4) of Theorem 8.1.1.
As a consequence, the word problem for Basilica groups of self-similar and contracting
groups is solvable, since it is solvable for self-similar and contracting groups [76, Proposition

2.13.8].

Corollary 8.3.15. Let G be self-similar and contracting. Then Basgs(G) has solvable word

problem.

Question 8.3.16. Let G < AutT be contracting. The fact that Bass(G) is contracting
implies the existence of constants A < 1, L,C € Ry such that for every g € G, u € X" with
n > L it holds

|glul < Alg| + C.

In [59] one set of constants is given for the original Basilica group B, namely A = 2 and

3
L=C=1.
Is there a general formula for the above constants valid for all contracting groups and

their Basilica groups, yielding A = % for B?

8.3.5 Word growth

We now provide some examples of the possible growth types of Basilica groups. It is known
that the original Basilica group B has exponential word growth, cf. [59, Proposition 4]. The
same proof as the one given there also shows that Basa(O,,) is of exponential growth for all

m > 2. This, however, is not a general phenomenon.

Proposition 8.3.17. Let a = (0 1)(a,id) be the generator of the dyadic odometer acting
on the binary rooted tree. Then Bass({(id,a))) is a free abelian group of rank s, and is of

polynomial growth in particular.

Proof. The element (id, a) stabilises the ray 0, thus by Lemma 8.3.8 we have
[8:({(id; a))), B;({(id, a)))] = id
for distinct i, j € [0,s — 1]. Also 5;({(id,a))) = Z for all i € [0,s — 1]. O

As another example, we prove that there is a group of intermediate word growth such

that its second Basilica group has exponential word growth.

Proposition 8.3.18. Let G = (@ = (1 2 3),b = (a,1,b)) be the Fabrykowski-Gupta
group [35] acting on the ternary rooted tree, which is of intermediate growth according
to [13]. Then there exists an element f € AutT such that the group Basy(GY) is of ex-

ponential growth.
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Proof. The Fabrykowski-Gupta group is a GGS-group. In contrast to the Gupta—Sidki 3-
group it is not periodic: an example for an element of infinite order is ab, for which the
relation

(ab)® = (ab, ba, ba)

holds. In view of the decomposition it is clear that ab acts spherically transitively on T' and
thus by a result of Gawron, Nekrashevych and Sushchansky [47] it is Aut T-conjugate to the
3-adic odometer group. Let f € AutT be an element such that (ab)! = (1 2 3)((ab)f, 1,1).
Then the subgroup generated by Bo((ab)?) and B ((ab)’) in Bass(GY) is isomorphic to the
generalised Basilica group Basy(O3), which is of exponential growth by following the proof
of [59, Proposition 4] (which is the same result for B) replacing the 2-cycle with a 3-cycle

corresponding to al°. O

The same idea can be used to obtain the following proposition.

Proposition 8.3.19. Let G < AutT be a group containing an element acting spherically
transitively on T. Then there is an Aut T-conjugate GY of G such that Bass(GY) has expo-

nential word growth.

8.3.6 'Weakly Branch Groups

For every vertex v € T the rigid verter stabiliser of v in G is the subgroup of all elements
that fix all vertices outside the subtree rooted at v. For every n € Ny the n-th rigid layer
stabiliser Ristg(n) is the normal subgroup generated by all rigid vertex stabilisers of n-th
layer vertices. A group G < AutT is called a weakly branch group, if G acts spherically
transitively and all rigid layer stabilisers Ristg(n) are non-trivial. If there is a subgroup
H < G such that 91 (Stg (1)) = H x --- x H, the group G is said to be weakly regular branch
over H. Clearly, a group that is weakly regular branch group over a non-trivial subgroup
is a weakly branch group.

From Lemma 8.2.4, it follows that elements of the rigid layer stabilisers of G translate

to elements of rigid layer stabilisers of Bass(G).

Lemma 8.3.20. Let n = gs + r € Ny, with r € [0,s — 1] and ¢ = 0. Let B = Bass(G) for
G < AutT. Then Ristg(n) contains f;(Ristg(q + 1)) and B;(Ristg(q)) for 0 < i < r and

forr <j<s.
We immediately obtain the following proposition.

Proposition 8.3.21. Let G < AutT be a weakly branch group. Then B := Bass(G) is

again weakly branch.
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This proves the statement (5) of Theorem 8.1.1.
The group Bass(G) can be weakly branch even when G is not weakly branch. We recall
that for any group G and an abstract word w on k letters, the set of w-elements and the

verbal subgroup associated to w are
Gy = {w(ho,...,hx_1) | ho, ..., hp—1 € G} and w(G) := (G, respectively.

Proposition 8.3.22. Let G < AutT be a self-similar strongly fractal group and let B :=
Basg(G). Let w be a law in G, i.e. a word w such that w(G) = 1, but let w not be a law in

B. Then B is weakly reqular branch over w(B).

Proof. Let b = w(bo,...,bx—1) # id with b; € B for i € [0,k — 1]. By Lemma 8.3.3 there are
elements ¢; € Stp(1) such that ¢;|o = b; and ¢;|; € Bs—1(G) for all x € X\{0}.

For every x € X, let d, € B be an element such that d;|, = id and d (z) = 0 (cf.
Lemma 8.2.1). Then c?“ stabilises the first layer and has sections c?””|x = b; and cf'r|y =
)dalv € B, 1 (@)=lv for y + .

<ci |dz(y)

Since Cf“ stabilises the first layer, the section maps are homomorphisms and

b, ify==x
da de da d ’
W(Co yoee 7Ck71)‘y = CL’(CO ‘y7 7C]g71’y) =

id else,
because in the second case we are evaluating w in a group isomorphic to G. This shows
that B, x - -+ x B,, is geometrically contained in B,,, and thus the same holds for the verbal

subgroups that are generated by these sets. O

We point out that, if w is a law in B, then B cannot be weakly branch as it satisfies
an identity. Proposition 8.3.22 allows to obtain examples of groups that are weakly branch

over some prescribed verbal subgroup. We provide an easy example:

Example 8.3.23. The group D := {o,b), with ¢ = (0 1) and b = (b,0), acting on the
binary tree is isomorphic to the infinite dihedral group (hence metabelian). It is self-similar

and strongly fractal. Considering

[[81(0), Bo(0)], [Bo(0), Bo(ab)]] = ([Bo(0), Bi(aD)], [Bo(o), (b~ 0)]) # id,

we see that the second Basilica Basa(D) is not metabelian, and thus it is weakly branch

over the second derived subgroup of Basy(D).
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8.4 Split groups, Layer Stabilisers and Hausdorff dimension

The subgroup 5;(G) < Bass(G), for i € [0,s — 1], has the property that its elements have
non-trivial portrait only at vertices at levels n =, i for n € Ny.
We consider an algebraic analogue of this property that will be used to determine the

structure of the stabilisers of Bass(G).

Definition 8.4.1. Let G < AutT and B := Bas;(G). Define:
Si == {(Bj(G) | j # i) < B and N; = (S;)’ < B.

We write ¢; : B — B/Nj for the canonical epimorphism with kernel N;. The quotient B/N;
is isomorphic to the quotient of G by the normal subgroup K; := 8; *(8;(G) n N;). We call
K the i-th splitting kernel of G. The group G is called s-split if its s-th Basilica group B
is a split extension of N; by 5;(G) for all i € [0, s — 1], or equivalently if all splitting kernels

of G are trivial.

Proposition 8.4.2. Let G < AutT be a group that does not stabilise the vertex 0. Then
BGi([G,G]) < N; forie[l,s—1]. In particular, an s-split group (for s > 1) is abelian.
Proof. Let g,h € G, k € G\st(0) and let i € [1,s — 1]. Write v = 5;_1(g9),n = Bi—1(h),7 =
Bi(g),m = Bi(h) and k = By(k). Then

K (ﬁ)771 (H_l)iilﬁ(’%)ﬁ’fﬁ =K ‘n(z)ﬁ‘n(m)ﬁh(i_lﬁ_li) ’«Tﬁ_l ‘n(:ﬁ)i_l |H(x)’%’1ﬁ‘$

= Kl Flu) wle 07 ) aklz A oy kLTl

[v,n] ifz=0,
id otherwise.

—1

Thus £ L(k)7 " (k=17 (k)T = ([v,n],id, . ..,id) = [7,7] is an element of N; A 3;(G). O

We remark that [G, G] < K\ does not necessarily hold. For example, consider a group
G such that [G,G] € Stg(1). Since Ny < Stpag,()(1), the zero-th splitting kernel can not
contain [G, G].

Definition 8.4.3. We call a subgroup H of a group G non-absorbing in G if for all
ho,...,hm—1 € H such that wl_l(ho,...,hm_l) € G, implies wfl(ho,...,hm_l) e H If

G is weakly branch over H, then H is non-absorbing in G.

Proposition 8.4.4. Let G < AutT be self-similar and such that G|¢ acts regularly on X.
Assume that |G, G| is non-absorbing in G. Then fori € [1,s — 1] we have K; = [G,G], and
Ky < |G, G]. In particular, if G is abelian, it is s-split for all s € Ny.
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Proof. The inclusion [G,G] < K; for i € [1,s — 1] is proven in Proposition 8.4.2. Thus we
prove K; < [G,G] for i € [0,s — 1].

Set B := Basy(G) and define N := | J;_;(8;(G) n N;). We employ the decomposition in
syllables, cf. Subsection 8.3.4. For every b € ./\f there is an index i € [0, s — 1] such that b

can be written both as an element of the image of some (; and a word in NN, i.e.

£(b)
b= Bi(g0) = H )Pi(os) (*)

for suitable £(b) € Ny, g; € G and hj € S;. The minimal possible value of ¢(b) is called the
restricted syllable length, and from here onwards we use the symbol ¢ for this invariant. Write

C =) Bi([G, G]) (notice that this a union of subsets with pairwise trivial intersection),

and define
= {be N\C | £(b) < {(c) for all ce N\C},

the set of all non-commutator elements with minimal restricted syllable length.

We shall prove that for every b € M there exists a first level vertex x; € X such that:
1. b|;, € M and
2. bl = id for all x € X\{x;}.
Furthermore we prove that
3. be Stp(l),i.e. M < Stp(l).

Every subset M < AutT with these properties is empty. Indeed, if b € M, there is some
vertex u € T such that b|* # id, since b is not trivial. But by properties (1) and (2)
bl, is either trivial or a member of M, hence by property (3) stabilises the first layer, a
contradiction.

But if M is empty, N is contained in C, hence all splitting kernels are subgroups of
|G, G], finishing the proof.

Assume that there is some b € M. We fix the decomposition and the type given by (),
but write ¢ for £(b) to shorten the notation.

We first observe that ¢ # 1. If £ = 1, we have S3;(g0) = hfi(gl), consequently hy €
Bi(G) n'S;. But hi|* = id for all u with |u| =, i, while §;(G)|* = {id} for u ¢ w;(T) by
Lemma 8.2.4. Thus h; =id = b ¢ M, which is a contradiction.

We split the proof of statements (1) to (3) into two cases: i = 0 and i # 0.
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Case i = 0: Since Ny < Stp(1), statement (3) is fulfilled. We have Splog = Ss—1 and
Solz = {id} for z € X\{0}. Also By(G)|z < Bs—1(G|s) for x € X, hence Ny|, < Ny—1. Thus
all sections b|, are members of Bs_1(G) N Ns_1 € N.

The first layer sections of b are given by

b’ac = /85—1(90|a:> = H (hj|0>ﬁs_l(gj‘z), for x € )(7

JELa
where L, = {j | 1 < j </ and gj(z) = 0}. The sum ) _ |L| equals £. By the minimality
of £, either all sections of b are contained in Ss_1([G,G]), or there is some z; € X such
that £(b|y,) = |Lg,| = ¢. In the first case, since |G, G] is non-absorbing in G, this implies
b € Bo([G,G]), a contradiction. In the second case, L, = & for x # z;, i.e. b|, = id for
x # x;. This proves statement (2). Furthermore, if b|,, ¢ M, it is contained in Ss_;([G, G]).
Since [G, G] is non-absorbing over G, this implies b € 5y(|G, G]). Thus b|,, € M, and state-

ment (1) is true.

Case i # 0: Recall that b|, = 5i(g0)|» = id for = # 0. This is statement (2) with z; = 0.

We consider the first layer sections of b. For x € X and 1 < j < ¢,

(hj‘w),gi—l(gj) if x = 0 and h; € stp(0),

(o hilBi-1(g;)  if =0 and h; ¢ stp(0),
W), = (1)

Bi—1(g; hjle  if hy ¢ stp(0) and = = h;1(0),

hjle otherwise.
N

Since G|¢ acts regularly, stp(0) = Stp(1). We divide the long product in (*) into segments
that stabilise the first layer: Let = € X, and consider the subsequence ( ja(ck))ke[ux] of [1,/4]
consisting of all indices jé ) such that (1_[ e h;)(z) = 0. Clearly >, vty =£.

Set Y =1 and %"V = £ + 1. Then Hj_jm‘l h; € Stp(1) for all k € [1,t,], and one

may write
(k+1) 1

H H 57. (94) (1)

k=0 (k)

We now make another case distinction.

Subcase t, = £ for some x € X\{0}: We will prove that this case can not occur. The
equation t, = ¢ implies hy(x) = 0 and h; € Stp(1) for all j € [1,£—1]. We may assume

ge = id, by passing to a conjugate if necessary. Looking at the second and fourth case of
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(f), we obtain
-1

Bi—1(g0) = blo = | [(hiln,0)) - helo € Niz1.
j=1

Thus S3;—1(go) is an element of N of restricted syllable length at most 1, hence trivial. Con-

sequently go and b are trivial, a contradiction.

Subcase to = £: This implies h; € Stg(1) for all j € [1,/], and statement (3) holds. By the
first case of ()

£(b)
blo = th|0/3ifl(gj) € Ni_1 n Bi—1(G),
j=1

which is of restricted syllable length at most £. As we previously argued in the case i = 0, we
have blp ¢ Si—1(|G, G]) and consequently statement (1) holds, since otherwise b € 3;([G, G])

because [G, G] is non-absorbing over G.

Subcase t, < € for all x € X: We shall prove that this case can not occur. Combining (1)
with (T) for x € X we calculate
tz—1 j(k+1)_1 Bilg;) (b) Bi(g;)
ol =TT (150 0@ ) o) (00 1)) |
k=0 =z J=Jz

and for k € [1,t, — 1]

jg(gk+1)_1 (k+1) 1
[T 0o = Bialga)C T h 0, B )
(k) .(k) z j+1 hq (0 r
J=Ja J=Ja
JOD
1 Bi-1(9 (k+1) )
=f3i—1(9j<k>9j;’“+“ 1 H h| D ) g =17
z .(k) 1 ]+1 i(0)
J=J=z
(k+1)
Consequently, every segment HJ k) 1(hj)ﬁi(gf) of b contributes at most one syllable of
=3¢

N;_1 and a member of §;_1(QG) to bl. We obtain

Bi-1 (91_1 [Ty <9j;k>719j_(i>> ge) if x =0,
Bi—1 ( H',;w:l <gj;k)71gj_(,1>> ) otherwise.

b|x =N;—1

Write b|, = Bi—1(fz)n. with n, € N; and f, equal to the corresponding product in G in
the last equation. Since the subsequences form a partition, every 61-,1(9].(;6)) and its inverse

appear in precisely one section of b, and we have

¢
H bl =n,_, H Bi—1(fz) =s,_,(c.q]) Hﬂi—1(gjgj_1) = 1.
j=1

zeX reX
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(k+1)
Now we look at n,. Since every segment [ ['* ! (hj)ﬁi (95) contributes at most one syllable,
JI=J=z

and h; ¢ Stp(1l) for some j € [1,/], we have £(ng) < t; < {. Also Bi_1(fz)ns = bl = id
for  # 0, hence n, = B;_1(f; ') € N. By minimality, f, € [G,G]. Then also fy =16,G]
[Teex o =[c.c) id, and Bi_1(fy 'g0) = Bi—1(fy )blo = no € N. Again, by minimality,
fotgo € [G,G], thus go € [G,G], a contradiction.

This completes the proof. O

Example 8.4.5. Let Bas,(O%) be a generalised Basilica group (cf. Definition 8.2.6). Since
O% is free abelian and self-similar, and O% |¢ is cyclic of order m, by Proposition 8.4.4, the

group O is s-split.

Question 8.4.6. Motivated by the small gap between Proposition 8.4.4 and Proposi-
tion 8.4.2 we ask:

Is every abelian group G < AutT acting spherically transitive s-split for all s > 17

Corollary 8.4.7. Let G < AutT be a self-similar s-split group. Then the abelianisation
Bas;s(G) is
Bas,(G)* ~ G*.

Proof. Consider the normal subgroup H := {[8;(G), 8;(G)] | i,j € [0,5 — 1],i # j)B2ss(&)
and observe that H < N; for all i € [0, s — 1]. We obtain an epimorphism G* — Bass(G)/H,
mapping the i-th component of G* to 5;(G)(H), for i € [0,s — 1]. This map is also injective.
Let ]_[2-6[0’871] Bi(gi) =n ]_[2-6[0’871] Bi(h;i) for some g;, h; € G. Then for all x € X
Bolgahz ) =n [  Bilgi'hi) e N,
ie[0,5—1]\{z}
and B,(gzh; ') € N,. Since G is s-split, this implies g, = h,. Thus Bass(G)/H =~ G*. But
from Proposition 8.4.2 G is abelian and consequently H = [Bass(G), Bass(G)]. O

Proposition 8.4.8. Let G < AutT be a torsion-free self-similar group such that the quo-
tient G/K with K = By (Bo(G) n No) is again torsion-free. Then Bass(G) is torsion-free.

Proof. Let b € Bass(G) be a torsion element. Since G/K is torsion-free, we obtain b €
ker go = No < Stpas,(e)(1). Thus the first layer sections of b are again torsion elements
of Bass(G), because Basg(G) is self-similar by Lemma 8.3.2. Hence an iteration of the

argument yields b = id. O

Question 8.4.9. On the other end of the spectrum, the group Bass(G) (cf. Example 8.3.11)

is periodic as is G, which can be proven analogous to [18, Theorem 6.1], and the second Basil-
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ica groups of the periodic Gupta-Sidki-p-groups (cf. Example 8.3.10) are periodic by [91].
Motivated by this observation we ask:
Is there a periodic group G < AutT acting spherically transitive such that Bass(G) is

not periodic for some s € N, ¢

Proposition 8.4.8 and Corollary 8.4.7 prove Theorem 8.1.3.

8.4.1 Layer Stabilisers

For an s-split group G < AutT the s-th Basilica decomposes as Bass(G) = N; x 5;(G).
Recall from Definition 8.4.1 that ¢; denotes the map to Bass(G)/N;, identified with the
quotient G/K;, such that ¢;(nfi(g)) = gK; for all ge G,n € N;.

Lemma 8.4.10. Let G < AutT be a strongly fractal group and let B = Basg(G). Let
bo,...,bj—1 € B. Then @bfl(bo, oo ybm—1) is an element of Stp(1) if and only if there is an
element g € Stg(1) such that for all x € X

¢s—1(bx) = g|$Ks—1~

Proof. If there is some element g € St (1) of the required form, clearly

Bo(g) =yt (nm y (Do -+ bin—1)-

Now we claim that ¢ (No) = N. Let

/-1
=[] e Ny,
3=0
with h; € S;_1. Then there are elements ﬁj = (hj,id,...,id) € Sy by the definition of

Ss—1. Furthermore, since G is strongly fractal, there are elements §; € Stg(1) such that

Bo(Gj)lo = Bs—1(gj), yielding
T 760(5)
[T/ = (b,id,....id).
7=0

Since G acts spherically transitively, the claim follows by Lemma 8.2.1. Thus there is an
element in Nyfp(g) < Stp(l) with sections (bg, ..., bm—1).

Let now b = ¢ ' (bo, ..., bm—_1) € Stz(1). Then b decomposes as a product nfo(g) with
n € Ny and g € Sti(1). This implies, for any z € X,

Bs—1(bz) = Ps—1((nBo(9))]z) = Ps-1(Bs-1(9lz)) = glaKs-1. O
Lemma 8.4.11. Let G be fractal and self-similar and let B = Bass(G). Let n € Ny.
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(i) 1 (Bi(Sta(n))B) = (Bi—1(Stg(n))B)™ for all i # 0.

Assuming further that G is very strongly fractal,

(ii) 1([Bo(Sta(n + 1)), Nol®) = ([Bs-1(Sta(n)), No—1]%)™.

Proof. (i) The inclusion 1 (83;(Sta(n))?) < (Bi—1(Ste(n))B)™ is obvious. We prove the
other direction. Let g € Stg(n) and b € B. Since B is fractal by Lemma 8.3.3, there is an

element ¢ € stp(0) such that ¢|p = b. Now

(Bz(g))c = (ﬂi—l(g)v id, ... 7id)c = (Bi—l(g)bv id, ... 7id)7

yielding statement (i), by Lemma 8.2.1.

(ii) The inclusion 91 ([Bo(Stg(n + 1)), Nol®) < ([Bs—1(Stg(n)), Ns_1]8)™ follows di-
rectly from Nol, < Ns—1 and So(Ste(n + 1))z < Bs-1(Ste(n)), where z € X. Thanks to
Lemma 8.2.1, for the other inclusion it is enough to prove that ([8s—1(g), k],id,...,id) is

contained in 91 ([Bo(Sta(n + 1)), No]?) for all g € Stg(n) and ke N,_q. Let
l

k=10 k)% e N,y

=0
Since G is strong fractal there are elements t; € Stg(1) such that ¢;lo = kj. Furthermore,

since G is very strongly fractal there is an element h € Stg(n + 1) such that h|g = g. Then

¢
(). T T(B+1 (k)] € [Bo(Ste(n + 1)), No] ?
7=0
and
l 4
[Bo(h), [ 1By +1 (k)P = [(Bolh)le, [ [((Bsy 41 (ki) L) P )e]
j=0 j=0
[ﬁs—l(g)vk] if z = 0,

[Bs—1(hlz), ngoidﬁs’l(tﬂz)] =1id otherwise.
Proof of Theorem 8.1.4. Let B = Basg(G). For any n € Ny, write n = sq + r with ¢ > 0

and r € [0,s — 1]. We have to prove

Stp(n) = (Bi(Sta(a + 1)), B;(Sta(@) |0 < i <r < j<sP.

For convenience, we will denote the right-hand side of this equation by H,. It is clear that
< Stp(n) for all n € Ny. It remains to establish the other inclusion. For n = 0 the
statement is clearly true, so we proceed by induction and assume that the statement is true

for some fixed n = sq + r with ¢ = 0 and r € [0, s — 1]. Define

J = {Bi(Sta(q + 1)), Bj(Sta(q)), [Bs—1(Sta(q)), Ns—1]P | 0<i<r—1<j < s—1)B,
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and observe that by Lemma 8.4.11 we find J" < 91 (Hy,+1), which yields

(St(n)™ /1 (Hnv1) = (Bs—1(Sta ()1 (Hyt1) /41 (Hiv1)-

Hence for every g € Stg(n + 1), there are elements t, ..., t,—1 € Stg(g) such that

V1(9) =gy (Hnr1) Bs—1(t0), -, Bs—1(tm—1))-

Since ¢s—18s—1(ty) =tz Kg—1 forallz € X, g € Stg(1) and H, 41 < Stp(1), by Lemma 8.4.10
there are elements ko, ..., ky,—1 € Ks—1 and h € Stg(1) such that

¢;1(h|0k07 cee h|m,1]€m,1) = ¢;1(t07 s 7tm71)-

Define h = hwfl(ko, ooy km—1). Now G is weakly regular branch over K,_1, hence ¢f1(K§’11) <
Stx. ,(1), and consequently h € Stg(1). But hl, = t, € Stg(q) for z € X, whence
heSta(g+1) and

(Bs—1(t0), - -, Bs—1(tm—1)) = ¥1(Bo(h)) € ¥1(Bo(Ste(q + 1)) < U1 (Hps1),

implying g € H,41. This completes the proof. O

8.4.2 Hausdorff Dimension

We remind the reader that I' is the subgroup of Aut T consisting of all automorphisms whose

labels are elements of (o), with ¢ being a fixed m-cycle in Sym(X).

Definition 8.4.12. Let G < T'. The Hausdorff dimension of G relative to I' is defined by

N e 108, G/ St(n)
dimpg G = h,?ilol.}f log, [T/Str(m)] — (m 1)11£1£f s .

This relates to the usual definition of Hausdorff dimension over arbitrary spaces by taking
the closure, i.e. using this definition, the group G has the same Hausdorff dimension as its
closure G in T, cf. [9]. We drop the base m in log,, from now on. Denote the quotient

Sta(n)/Stag(n + 1) by Lg(n). The integer series (for n > 0) obtained by
og(n) == log(|Lg(n —1)|™) = log|La(n))|
is called the series of obstructions of G. We set og(0) = —1 for convenience.

The series of obstructions of a group G determines its Hausdorff dimension, precisely how
we will see in Lemma 8.4.13. Nevertheless, one might wonder why it is necessary to define

this seemingly impractial invariant. We will demonstrate in Proposition 8.4.16 that it is (to
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some degree) preserved under G — Bas,(G). Furthermore, many well-studied subgroups of

I" have a well-behaved series of obstructions. For example, it is easy to see that I' itself has

or(n) =log | " Cpp/ U1 Cpu|™ = log | "1 Cr/ 1 C

= mlogm™" —log m™ ! = 0,

for n € Ny, where (" A is the n-times iterated wreath product of A, with the convention
that :°A is the trivial group. On the other hand, since the layer stabiliser of O, are the

k
m

subgroups generated by {(m (a)mkH, e ,7rl_1(a)kar1 ym(a)™ ... ,Wd_l(a)mk>, the quotients

Loa (n) are all cyclic of order m, and
0pa (n) =m — 1.

A Gupta-Sidki p-group G has precisely two terms unequal to 0, a consequence of Stg(n) =
Stg(n — 1)P for n > 3, cf. [38]. Similarly, the series of obstructions of the Grigorchuk group

has only one non-zero term.

Lemma 8.4.13. Let G < T act spherically transitive. Then

dimyg G = 1 — limsup Z(m_l —m~ " o (i),

neoO o
Proof. By definition log|Lg(0)] = 1 and log|Lg(n)| = mlog|Lg(n —1)| — og(n) for n > 1.

An inductive argument yields

n - noktl
log |G/ Sta(n + 1) = log |G/ Sta(n)| — > m" Foa(k) =-)] —————oa(n—k).
k=0 k=0 "
This gives
=) G TR NP .
117ILIi)lololf e log Sten T 1)~ —llnmj;olp E)(m —m~ " Nog(n — i)
=1 — limsup Z(m_i m~ "D oq (i) O
n—oo

Lemma 8.4.14. Let G < T' be self-similar. Then for allmn > 0
oc(n) =log[Stg(n — 1)™ : 1 (Ste(n))] — log[Sta(n)™ : 1 (Sta(n + 1))].

Proof. We have, for n > 0,
Stg(n — 1)m’ _ | Sta(n — 1) /Y1 (Stg(n + 1))]

¥1(Sta(n)) [Le:(n)|
|Lgn - D™ | Stg(n)™
L) |1 (Sta(n + 1)) |
hence
og(n) = log[Stg(n — 1)™ : Y1 (Stg(n))] — log[Sta(n)™ : 1 (Stg(n + 1))]. O
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Lemma 8.4.15. Let G be very strongly fractal, self-similar and weakly reqular branch over

the splitting kernel Ks_1. Then for all £,n € N,

¢1(ﬂ0(stg(f + 1)) N [ﬂo(stg(n + 1)), N()]B)
= (ﬁs—l(StG(g)) a [55—1(StG(n))aNs—l]B)m'

Proof. The left-hand set is clearly contained in the right-hand set. We prove the other inclu-
sion. Let (bo,...,bm_1) € (Bs—1(Stg(€)) N [Bs—1(Stg(n)), Ns_1]%)™. By Lemma 8.4.11(ii)
there exists b € [Bo(Stg(n+1)), No]? < Stp(1) such that 1 (b) = (b, ...,bm_1). It remains
to prove that b € So(Sta(¢ + 1)).

Since the set 85_1(Sta(£)) N [Bs—1(Stg(n)), Ns_1]? is contained in B5_1(Stx, , (1)) and

since GG weakly regular branch over K_1, there is an element g € K1 such that
Ui1(g) = (B11(b0)s -+ B4 (bm-1)) € St ()™

Consequently, ¥1(80(g)) = (bo, .- -, bm—1) = ¥1(b), and b = Sy(g) is a member of 11 (8o (St (£+
1)) n [Bo(Sta(n + 1)), No]?). [

Proposition 8.4.16. Let G < I' be very strongly fractal, self-similar and weakly regular
branch over the splitting kernel Ks_1. Then the series of obstructions for B = Bass(G)

fulfills

0 lfn is 07
og(n) =
og(%)  otherwise.

Proof. Consider first the case n =5 k # 0. By Theorem 8.1.4 the quotient Lg(n) is nor-
mally generated in B by images of elements of [;(Stg(|n/s])). Similarly the images of
Br—1(Sta(|n/s])) are the normal generators of Lp(n—1). Thus Lemma 8.4.11(i) shows that
og(n) =0.

Now consider the case n = ¢s. To shorten the notation, we abbreviate

R, := Bo(Sta(q)) for ¢ € Ng and

Tq = ﬁs—l(StG(Q)) for g € Ny .
Define the normal subgroups

U ={Stg(n+1)U[Ry,No]®y< B and

V= <St3(n) v [Tq_l,NS_l]B> < B.
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Using Theorem 8.1.4, we see that U and V', respectively, are normally generated by the sets

s—1 s—2
Ry v [ (Bi(Sta(9) U [Ry, Nol and Ty u | (Bi(Sta(q))) v [Ty—1, Ns—1].
i1 i=0

Let g € Stg(q + 1) and b e B. We write b = By(gp)np for g, € G and ny € Ny. Then

Bo(9)® = Bo(g?)"™ = Bo(9%)[Bo(g”), np] € Rgs1[Ry+1, No)-

Consequently, we drop the conjugates of R,y in our generating set for U, and write

s—1

U = (Ryp1u | (Bi(Sta(9)?) U [Ry, Nol®).
=1

Similarly, the subgroup V is generated by

s—2
T, v U (Bi(Sta(9))?) v [Ty-1, Ns1]”.
i=0

Using Theorem 8.1.4, it is now easy to see that
Stp(n)/U = Ry/(Rqg n U).
Since 5;(Sta(q)) < Stp(n + 1) for i # 0, we see that the intersection
(Br(Sta(g)) v -+ U Bema(Sta(q) v TP n Ry < Ryt
is contained in R,41. We conclude
R, nU = R, Ry 1[Ry, No|®.

Now

Rq 0 Ryy1[Rq, Nol” = Ry41(Rg 0 [Rg, No]?)
and

[Rg 0 Rqi1[Rq, Nol” : Rgi1] = [Rq 1 [Rg, No]” = Rgs1 0 [Rg, Nol”].
Consequently, the order of Stp(n)/U equals
ILa(q)] - [Rq 0 [quNO]B PRy 0 [Rq’NO]B]il-
A similar computation shows that the order of Stg(n —1)/V is
ILa(a = D] - [Tg-1 0 [Ty-1, Ns-1]" - Ty 0 [Ty-1, No-a] %]
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We now apply Lemma 8.4.15 in the cases { =n=¢q¢—1and £ =n+ 1 = g, i.e. we have

Y1(Rg 0 [quNO]B) = (Ty-1 0 [qul’stl]B)m and

Y1(Rgt1 0 [RanO]B) =(Tyn [quszfl]B)m-

We see that the second factor in the formula for the order of Stg(n)/U is the m-th power
of the corresponding factor for Stp(n — 1)/V, and obtain

[Stp(n— D/VI™ _ |Lolg— D"
[St(m)/ 0] La(@)]

oc(q)

Now we compare V™ and ¢ (U). By Lemma 8.4.11(i) and (ii), ¢1(U) is generated by

L] (((Bi(St(@)P)™) U ([Tyer, Neca] )

We define yet another subgroup
U (Bi(Sta(@)P)™) U ([Ty-1, Ns-1]7)™) <41 (U) < B™.

Evidently W< B™ W < N*

s

1, and W<y (U) < V™. We have

77Z11(U)/VV = ¢1(Rq+1)/(1/11 (Rq+1) N W) and
VW = T (T A W),

The two divisors are equal: Clearly 11 (Rq+1) n W is contained in ;)" nW. Let

(Bs=1(90)s - - - s Bs—1(gm-1)) € TJ" " W < (Tg 0 Ns—1)™

Since Ty N Ns—1 < Bs—1(Ks-1), the elements go, ..., gm—1 are members of K,_1 N Stg(q).
Now since G is weakly regular branch over K1, there is an element k € Ks_1 N Stg(q+ 1)

such that ¢ (k) = (9o, .., 9m—1), and consequently fy(k) € Ry41 fulfills

¢1(,80(k)) = (ﬁs—l(QO)a ce 7/85—1(9771—1)) € w1<Rq+1) N W.

We compute

V™ (U)] = [V/W = o (U) /W]

= [T7" : 1 (Rg+1)]

[(63 1 X X 53—1)(StG(Q)m) : (53—1 X X ﬁs—l)(wl(StG(q + 1)))]
=

St (q)™ = ¢1(Stalg + 1))].
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This implies

[Stp(n —1)" :1(Stp(n))] = [Ste(n — 1) /11 (U) : 1(Stp(n))/¢1(U)]
[Stp(n —1)™: V™][V™ 9 (U)]
[¥1(Stp(n)) : ¢1(U)]

|La(g —1)|™ m .
- @l [Sta(q)™ : ¥1(Sta(q + 1))].

Since op(k) = 0 for k #4 0, by Lemma 8.4.14,

log[Stp(n)™ : ¥1(Stp(n + 1))] =log[Stp(n +s—1)" : Y1 (Ste(n + s)],

hence

op(n) =log[Stp(n — 1) : Y1 (Stp(n))] — log[Ste(n + s — 1) : 1 (Stp(n + s))]

| Ste@™ | 1o |-Stela+ "

=oclg) +log 1 (Sta(q + 1))‘ cla+ 1) —log wl(StG(q+2))’

=o0¢(q) — og(q+1) + oglq+ 1)

=0:(q). -

Proof of Corollary 8.1.5. By Lemma 8.4.13 and Proposition 8.4.16

dimg G =1 — lim sup z:(m_Z —m~ " Nog(i) and

G|

dimp Basg(G) = 1 — lim sup Z}(m_Z - m_(”H))oBaSS(G) (1)

n—0o0 i=1

=1 — limsup Z(m_” —m =GP D) on (4).

|

We prove m~"—m~ (") > mp=si_yp =741 equivalently m*" 141 > ms=0+1 4 (s—1n,
This is a consequence of sn+1—i—(s(n—i)+1) =(s—1)i=>1landsn+1—i—(s—1)n =
n—1i+ 1> 1, with equality precisely when ¢ = 1, s = 2, resp. n = i¢. Therefore at least one
of the differences is greater than 1, and the limit of Y7, (m ™% — m~=("+1))og (i) is strictly

greater than the limit of 37 | (m ™% — m~("*1))og(i). The statement follows. O

Example 8.4.17. Let G < Aut(7},), p a prime, be a GGS-group defined by the triple
(Cp, Cp,w), cf. Definition 8.3.7, where C,, denotes the cyclic group of order p acting regularly
on X. To be a GGS-group means w; = w; for 7,j € Ny, thus we write w for wy. This is a
(p — 1)-tuple of endomorphisms of C,. Every such endomorphism is a power map, hence we

may identify w with an element (eq,...,e,—1) of Iﬁ‘g_l. Assume that
e1+ - +ep_1=p0 (%)
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and that there is some i € [1,p — 1]

€ # €p—;- ()
In [38] the order of the congruence quotients G/ Stg(n) is explicitly calculated in terms of
the rank ¢ of the circulant matrix associated to the vector (0,e1,...,ep—1), i.e. the matrix

with rows being all cyclic permutations of the given vector. Under our assumptions (x) and

(0), for all n e N4

log,(G/Stg(n +1)) = "+ 1,

and log,(G/Ste(1)) = 1. Additionaly, () is equivalent to ¢ < p. By Lemma 8.4.14, for

n> 2,
oc(n) = p-log,(|La(n —1)]) — log,(|La(n)|)
tp” 241 t-pt 141
=p- 10gp pt,pn73+1 — log pt‘pn72+1 =0
and

pt+1 pt-p+1
0c(2) :p-logT —log ST tp—t(p—1) =t and

pit1
oG (1) =p‘10gp—log7 =p—t.
Consequently, dimy G = t(p — 1)/p? (cf. [38] for a more general formula).
We aim to apply Proposition 8.4.16. Condition (¢) is equivalent to G being weakly
regular branch (in fact, regular branch) over [G, G], by [38, Lemma 3.4]. More precisely, we

have
Y1([Sta(1), Sta(D)]) =[G, G]P.

By Proposition 8.4.4 this implies that K;_1 = [G,G]. We now prove that G is very
strongly fractal. It is easy to see that Stg(1)|; = G for all x € X, and by [38, Lemma
3.3] ¥1(Stg(n)) = Stg(n — 1)P for all n > 3. Thus it remains to check if St¢(2)]z = Stg(1)
for all x € X. By the fact that [Stg(1),Stq(1)]ls = [G,G] for all z € X and [Stg(2) :
[Ste(1),Sta(1)]] = pP~! = p (see again [38]), we see that St (2) contains an element g such
that 11 (g) € Stg(1)P\[G, G]P. Hence at least for one x € X

Sta(1) = Ste(2)]. > [G,G].

But since [Stg(1) : [G,G]] = p by [38, Theorem 2.1], this implies Stg(2)[, = Stg(1),
and since G is spherically transitive, this holds for all x € X, and G is very strongly

fractal. We remark that by [103, Proposition 5.1] the condition (*) alone implies that G is
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super strongly fractal, but our argument additionally needs (¢), since otherwise [[G, G]P :
P1([Sta(1),Sta(1)])] = p (cf. [38, Lemma 3.5]).
Now we may apply Proposition 8.4.16 to calculate the Hausdorff dimension of Bass(G):
OBas;(Q) (8> =p—1t and OBas,(G) (28) =t

and opy, () (n) = 0 for all other values n € N, hence

dimy Bas,(G) =1 — limsupZ ( L1 > OBas, () (1)

i n+1

—1 t —t+t
=1 —limsup <p +_p+)
S

RIS ps p2s pn+1
-t t s=L_ 1 t(ps—1
:1_(1? N )prs_l N (pp2s )

ps p25

8.5 The generalised Basilica groups

Let d, m, s € Ny with m, s > 2. In the subsequent sections 8.5, 8.6, 8.7 and 8.8 we study
the generalised Basilica groups, Bas,(O%), where O%, = Dy(Oy,) = {(m;(a) | i € [0,d — 1])
(cf. Proposition 8.2.5 and Definition 8.2.6). For convenience, we use the following notation

for the generators of Bas,(O%): let i € [0,d — 1] and j € [0, s — 1], and

a;; = Bj(mi(a)) = (ai;-1,id,...,id), for j # 0
aio = Po(mila)) =(ai—15-1,---,04i—15-1), fori#0
apo = Po(mo(a)) = o(ag-1,s-1,id,...,id),
where o is the m-cycle (01 ... m —1). For any fixed j, the elements a; ; commute and are

of infinite order.
Now we prove Theorem 8.1.6, which is obtained as corollaries of results from Section 8.3

and Section 8.4.

Proof of Theorem 8.1.6. The statements (i) and (ii) follow directly from Lemma 8.3.1,
Lemma 8.3.2 and Lemma 8.3.3. Proposition 8.3.5 together with Corollary 8.3.6 imply
the statement (ii). The statement (iii) is a consequence of Proposition 8.3.14 and Corol-
lary 8.3.15. Thanks to Proposition 8.4.4, the group Ogl is s-split. Therefore the statements
(iv), (v) and (vi) follow from Corollary 8.4.7, Proposition 8.4.8 and Proposition 8.3.22.
The proof of (vii) can easily be generalised from [59, Proposition 4]. For the special case

Bas,(Op), where p is a prime, see [96]. O

We use Theorem 8.1.4 to provide a normal generating set for the layer stabilisers of the
generalised Basilica groups. This description of layer stabilisers is crucial in proving the

p-congruence subgroup property of the generalised Basilica groups (see Section 8.8).
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Theorem 8.5.1. Let n € Nyg. Write n = sq+r with r € [0,s — 1] and ¢ = dk + 1 = 0 with
1€[0,d—1]. Then the n-th layer stabiliser of B = Bas,(O4

m

) is given by

k+1 k

Stp(n) =<a;; aj |0<is+j<ls+r—1<is+j <ds—1)P.

i1l
7 7]

Proof. Let a be the generator of the m-adic odometer O,,. Set G = Dy(O,,) = Z%. For
every i € [0,d — 1], denote by a; = m;(a) the generators of G. Since powers of the elements
ag, - - - , ag—1 act on vertices of disjoint levels of the m-regular rooted tree T' and they commute

with each other, we have

k+1 k+1 k k
Sta(q) = <ag® ... a2y ,a]" ,...,ag ).

Now observe that for every vertex = € X, i € [0,d] and k € Ny,

Therefore Stg(q)|x = Sta(¢ — 1) and hence G is very strongly fractal. A straightforward

calculation using Theorem 8.1.4 yields the result. O

Using the description of the layer stabilisers of G, we obtain Theorem 8.1.7 as a direct

application of Lemma 8.4.13 and Proposition 8.4.16.

Proof of Theorem 8.1.7. The series of obstructions of G = 0% is constant m — 1 for all
n € N, signifying Hausdorff-dimension 0 (cf. Lemma 8.4.13). We have seen in the proof of
Theorem 8.5.1 that Bass(G) is very strongly fractal. Therefore, by Proposition 8.4.16 one
has opas,(c)(gs) = m — 1 for all g € Ny and op,s, (@) (n) = 0 for all other levels.

According to Lemma 8.4.13 it is

dimp Bas,(G) = 1 — limsup »_ (m ™" — m~ " D)op, (i)

O

— msln/s]
=1—(m—1)limsup (m_slm - [n/sjm_("+1)>

n—00 1—m—3
m—s
—1—-(m-1)——
(m ) 1—m—3
_m®—m
Coms—17
In particular, the Hausdorff dimension is independent of d. O
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8.6 An L-presentation for the generalised Basilica group

Let d, m, s € Ny with m, s > 2. In this section we will provide a concrete L-presentation
for the generalised Basilica group Bas,(O%,), hence proving Theorem 8.1.8. We will later
use this presentation to prove that all generalised Basilica groups Bas S(Og) with p a prime

have the p-congruence subgroup property.

Definition 8.6.1. [11, Definition 1.2] An L-presentation (or an endomorphic presentation)

is an expression of the form

L= |Q|®[R),

where Y is an alphabet, ), R c Fy are sets of reduced words in the free group Fy on Y
and @ is a set of endomorphisms of Fy. The expression L gives rise to a group Gy, defined

as

Gr = Fy/(Q u{@)R)™,

where (®)(R) denotes the union of the images of R under every endomorphism in the monoid

(®) generated from ®. An L-presentation is finite if Y, Q, ®, R are finite.

We now set out to prove Theorem 8.1.8. To do this, we follow the strategy from [59]

which is motivated from [53]: let
Y ={a;;]ie[0,d—1],j€[0,s—1]}. (8.1)

For convenience, we do not distinguish notationally between the generators of Bass(OZ%)
and the free generators for the presentation. Observe that for a fixed j the generators a; ;

and ay ; of Bass(0%,) commute for all i,i’ € [0,d — 1]. Write
Q = {laij,av ;] | 4,9 €[0,d—1], j€[0,s — 1]} < Fy (8.2)

and denote by F' the quotient of Fy by the normal closure of @ in Fy. We identify F' with

a free product of free abelian groups

F= % {aijlie[0,d=1])=2Z%% - x2%.
j€[0,s—1]

The group Bas,(O%

m

) is a quotient of F. Let proj : F — Bass(O%) be the canonical

epimorphism. Now observe that the subgroup
ako  m .
A= <a7j3"0’ Q0,0 | (Za]) € [Oa d— 1] X [07 §— 1]\{(()’ 0)}a ke [O’m - 1]>’ (83)
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is normal of index m in F' and it is the full preimage of Stg,s (0a )(1) under the epimorphism
proj (cf. Theorem 8.5.1). We define a homomorphism ¥ : A — F" modelling the process

of taking sections as follows:

Y(agy) = (adg-1,5-15,0d—1,5-1) =: 2,

\I/(QZ%O) =V(aio) = (aGi-1,5-1,--+,0i-1,5-1) =: 2z for ¢ # 0,
\Ij(azli"o) = (id*k,ai,j—lvid*(m_k_l)) =:x;55 for j#0,
\I/(a;l(jg) = (id*(m*k),ajg-{ll’s*ﬂjd*(kfl))7

where the ranges of i, j and k are as in (8.3). Clearly, ker(¥) < ker(proj). Define

a(v, k) = aggﬁkaa’}o ay T for v = (vo, ..., v4-1) € Z* and k € [0,m — 1], (8.4)
R= {[ai,jvaz‘o’l,(;”k)] | ivi/ € [O’d - 1]7 jv.jl € [175 - 1]5 ke [17m - 1]7 v E Zd}a (85)

where by abuse of notation we interpret a/(v, k) and r € R both as elements of Fy and their
images in F'. We will prove in Proposition 8.6.3 that the kernel of ¥ is normally generated
from the image of R in F', implying that the set R belongs to the set of defining relators of
Bass(04)). By definition of the elements a; j, we may obtain the elements of the set R as
vertex sections. To incorporate these elements to the set of defining relators we introduce

the following endomorphism of Fy defined as

Qi j — A +1 for j #s—1,
P Q5 s—1 — Q;+1,0 for ¢ # d — 1, (86)

Ad—1,5—1 — 400,
where i € [0,d — 1] and j € [0,s — 1].
Theorem 8.6.2. The generalised Basilica group admits the L-presentation
L=Y[Q|®[R)
where Y, Q, R and ® are given by (8.1), (8.2), (8.5) and (8.6).

Observe that for any g € Q and r € Ny, it holds that ®"(g) € (QfY). Considering
the presentation defining F' we may assume that ® is an endomorphism of F' and that R
is a subset of F. To prove Theorem 8.6.2, it is enough to show that ker(¥) = (R and
ker(proj) = [ J,ey, ®"(R). We will obtain the first part from Proposition 8.6.3 and the latter

from Lemma 8.6.5 to Lemma 8.6.7.
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Proposition 8.6.3. Let A be the image of A under U. Let 2V be the product EASRE zzl)‘fll

for every v = (vo,...,v4_1) € Z¢. Then A admits the presentation
(S[R)
where S = {x; i, z; |1€[0,d—1], je[l,s — 1], k€ [0,m — 1]} and
R < (i k> Tit ko) [T ks Uﬁf/qjj/,k/]a i,i' € [0,d —1], j,5" € [1,s — 1], >
[2i, 2i] kK €[0,m — 1] with k # K, v e Z%

As a consequence, we obtain that

ker(¥) = ({[aij, a3 5] [, € [0,d — 1], 44" € [1,s — 1], k€ [L,m — 1], v e ZT})F,

where a(v, k) is given by (8.4).

Proof. Let A = {a;; | i € [0,d—1],j € [0,5s—2])F and Z = (zp,...,24_1) = Z¢ be
subgroups of F' and A respectively. Notice that A is a sub-direct product of m copies of F'
and the elements z; j , and zy j jy commute if k& # k" or if k = k" and j = j'. It follows from

the definition of ¥ that

A -
icl0,d—1],jells—1 ke[om—1] ) <A

mo_
A - < xz’]’k

Hence A = A™Z, yielding A = A™ x Z. Now, since F is a free product of free abelian
groups, the group A is freely generated from the elements of the form

vo vy . Yd—1
A4 1,6—1%0,5—1""Cg_2 51

i?j ’
where v; € Z, i € [0,d — 1] and j € [0,s — 2]. Therefore, the group A™ is generated from

the elements

v

v . avg o avls_ Qg o . L
xf,j,k _ (1d*k,ai7‘;fl’ 190,5—-1""%—2, 1,1d*(m k 1))’
where i € [0,s — 1], j e [1,s — 1], k € [0,m — 1] and

v _ o, JVd-1 __ V0 V1 L ld-1 V0 V1 L. ld-1
2 =2 Zi-1 = (ad—l,s—lao,s—l Qg9 s—11+++203-1 190,51 ad—?,s—l)’

with v; € Z. We obtain a presentation of A™ as

< xf;k [xmk, xi/%k] = [‘Tff;}k’ l‘f,l:j,,k,] = ld, i7i, € [0, d— 1]7 j,j’ S [1, S — 1], >
k,k € [0,m — 1] with k # k, v,o" € Z¢

Hence A, being a semi-direct product, admits the presentation (8 | R), since conjugating

an element x; ;. by 2; does not yield a new relation. Therefore, the kernel of ¥ is normally
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generated from the preimage of the set of defining relators for A. Notice that the preimages
of the elements [z;, zi] and [x; ; , @y j ] arve trivial in A. Hence,

! ! A
aWR) SR e 10, = 1], 4,5 € [1,s — 1],
ker(¥) :< [a;"" a7 [ 1, 4.5 €l ] d
k,k' € [0,m — 1] with k # k', v,0' € Z

Indeed, ker(¥) is normal in F. Given v € Z¢ and k € [0, m — 1], define

v=(|(mvg+k+1)/m|,v1,...,v4-1) €Z? and

k=k+1 (modm)el[0,m—1].
Then
a(v,k)ago = agtgowﬂaqfo rag = alu k)
a(W', K )agp = QSS()MIHGT% e a;‘/i:f’o =a(V, k)
implies

a(vk) o' ka0 a(v,k)ao,0 a(v,k)ao0 a(v,k) a@,K)
lai ;™ ap 1700 = lay Gyt o = la;;7, ay ] € ker ().
a(v,k) oV k)

-1
A similar calculation shows [a; ;" ay ” ]%0.0 € ker(¥). We get

k T) = o a(v,k) .o . . . . d F ]
er(V) [aw,ai,j, 1| 4,4 €el0,d=1], 7,7 €[l,s=1],ke[l,m—1],veZ .

Notation 8.6.4. Let 7,7 € [0,d —1], j,j € [1,s—1], k€ [Il,m —1], v € Z¢ and n e N,.
Define

Qg := ker (), Q= HQ™ ) forn > 1,
Tv,k‘(Za]aZ/)]/) = [ai,jvazc'f,(;')/ )]a Xy = <(I)T(Tv,k(za.7>z,a]/)) | re [Ovn]>F7

where (v, k) is given by (8.4). Denote further by €2 the kernel of the epimorphism proj :
©¢]

F — Bass(0%). We will prove 2, = X,, and Q = | Q,, proving Theorem 8.6.2.
n=0

Lemma 8.6.5. For w e F’ the identity \If(@(w)ag’o) = (id**, w,id*("*=Y) holds for every
ke [0,m —1].

Proof. Observe from the definition of ® that
(F) = {aij,app | (4,7) € [0,d — 1] x [0,s — 1]\{(0,0)}) < A.

Then by direct calculation using the definition of the homomorphism ¥ and ® we get the
desired identity. O
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Lemma 8.6.6. The equality 2, = X,, holds for all n € Ny.

Proof. 1t follows from Proposition 8.6.3 that Q¢ = ker(¥) = Xy. The proof proceeds by
induction on n. Since ®(F) < A, for every r € Ny, we have ®"(A) < A. Hence X,, < A for

all n € Ny. Assume for some n > 1 that €,_1 = X,,_1. We will prove that
\Il<Xn) = rn:—l = \I/(Qn)

Let 4,7’ € [0,d—1], 4,5 € [1,s—1],k € [1,m—1], 7 € [1,n] and v € Z% For every
" (1y1(4,7,4',§")) € X, and for every £ € [0,m — 1], since "~ (7, x(i,5,7,5")) € F', we

obtain from Lemma 8.6.5 that
W((O" (1,(4, 4. 7', §')))%00) = (A, & (1, 1 (4, 4,7, 7)), i 6D,

Since A is a sub-direct product of m copies of F' and X,,_; is normally generated from the
elements of the form ®" (7, (i, 4,7, j')), we obtain that U(X,) = Q" ; = U(Q,).

But since ker(¥lg, ) = ker(¥) n Q,, = Qo = Xy = ker(¥) n X,, = ker(¥|x, ), we get
Q, = X, and the result follows by induction. ]

w
Lemma 8.6.7. We have Q = |J .

n=0

Proof. Write B for BaSS(O%) and recall that proj : F' — B is the canonical epimorphism.
Notice that Stp(1) is a quotient of A and further Qy = ker(¥) < ker(proj) = . Proceeding
by induction on n, we will prove that fj Q, < Q. Assume that Q,_1 < Q for some
n = 1. Let w € Q, and let wy be the ktlt:}? component of ¥(w). Then wy € Q1 for all
k € [0,m — 1]. Then the first layer sections of proj(w) € Stp(1) act trivially on the subtrees
hanging from the vertices of level one of the m-regular rooted tree. Hence proj(w) acts
trivially and proj(w) = id in B. It follows by induction that Q, < Q for all n € Ny. Since
Q1 < Q, for all n € N, , we obtain fj Q, < Q.

Now, to see the converse choose azlzgurbitrary element w € F such that proj(w) = id in
B. Then by Theorem 8.5.1 proj(w) € Stp(1) and hence w € A. Denote by wy the k-th
component of U(w). Then proj(w) = id if and only if proj(wy) = id for all k € [0, m — 1],
implying that wy, € A for all k € [0,m — 1]. Now repeat this process of taking sections by
replacing w with wy. This process is equivalent to the algorithm solving the word problem
for B, cf. [59, Proposition 5]. Thanks to Corollary 8.3.15, the word problem for B is solvable

and hence this process terminates in a finite number of steps. This implies the existence of

an element n € Ny such that w € €2,,, completing the proof. O
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To conclude this section, we point out that akin to [59, Proposition 11}, one can introduce
a set of d endomorphisms, each corresponding to a generator a;o, and obtain a finite L-

presentation for Bas,(OZ%).

Theorem 8.6.8. The group Bass(O%) admits the following L-presentation:

ai;j [aij, ai ] [aw,aff(;,k)],z’,i’ e [0,d —1],
<ie[0,d—1] i, €[0,d—1] | ,00,...,04-1 | J,j e[l,s—l],ke[l,m—1]>
je[0,s—1]| je[0,s—1] ve {0} x {0,1}4!

where a(v, k) and ® are given by (8.4) and (8.6), respectively, and ©; are endomorphisms
of the free group on the set of generators defined as
ai,j>—>awal © for j # 0,4 #0,
Oi 1 4 aij — aija, B0 for j £ 0,4 =0,
ai,0 7 40-

Proof of Theorem 8.6.8 is based on Lemma 8.6.10 below. Before stating the lemma, we

set up necessary notations. We define the following sets

Z=1{O0,...,041}, (8.7)
R = {[aij, j“”“)] |i,i' €[0,d—1], 4,57 €[1l,s — 1], ke [1,m — 1], v e {0} x {0,1}971},
(8.8)

where (v, k) is defined as in (8.4), and prove that the generalised Basilica group is given
by the finite L-presentation
L=Y1Q|PUZE|R). (8.9)

The idea of the proof is the following: the set R can be obtained from the set R by the

suitable application of elements from the free monoid =*. We set up the following notation.
Notation 8.6.9. Let n € Ny. Set 2, = {@éﬂ . ed L | o, a1 € [0,n]}. We define

v, Tv,k(i)j)i,aj/) ’i,’i/E[O,d—l],j,j/E[l,S—l],kiE[].,m—l],
n = )
ve[0,n] x [0,n + 1]4*

where 7, (i, j, 7', j') is defined as in Notation 8.6.4. Further, we denote
Un = ¥, Vi = (€(Y0) [ €€ Zn)"

We shall prove that U,, = V,,, which proves Theorem 8.6.8.

Lemma 8.6.10. The equality U, = V,, holds for all n € Ny.
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Proof. The proof follows by induction on n. For n = 0, the equality is true by definition.
Assume that U, < V, for some n > 1. We assign a lexicographical ordering on the set
[0,n] x [0,n+1]%"Y. Let 4,4 € [0,d—1], 4,5 € [1,s— 1],k € [I,m—1] and £ € Zp4q
be non-trivial. Then & is of the form @g‘) e @fld_’ll for some (g, ...,¢q—1 € [0,n]. Set ¢ =

(g(), e ,gdfl). We have

2,0
&(ai;) = ai M?]( )
where x is product of elements of the form a?](-é 9 such that ¢ is a non-trivial element of

[O,n]d and ¢/ < . Observe that, in the quotient group V,4+1/U, (which is well-defined as

U, <V, < Vj41), the elements of the form a?j(-v’k) and aff(jv, ) commute given that

(|(mvo + k —muly — K')/ml]|, |1 — v, ..., |va—1 — v;_1|) € [0,n] x [0,n + 1]*,

where v, and v] are the «-th coordinate of v and v/, respectively. Let 734(4, 5,4, j") € Yo,
where 8 € {0} x {0,1}4"1. Then &(754(4, 7,7, j')) € Vns1. We get

Cog k 2,0 K +B,k
E(rak(ind ', 3) = &(aig a5 1) = [as; w05, a0 y ag (O,

a(v,0)
Z‘?j

(B+v',k)

where x and y are the product of elements of the form a V7

« .
and a, , respectively,
such that v, v’ are non-trivial elements of [0,n]% and v,v’ < ¢. Then

o 48,k g
f(t&k(l,],ll,],)) =Up [aL]?aZO’{’(]’JFB )] = Tg+ﬂ7k(l,j,ll,]/).

This implies 7, (2, 7,7, j') € Vpq1 for all v € [0,n 4+ 1] x [0,n + 217!, whence Upy1 < Vppr.

A similar computation gives that V,, 11 < U,+1. This completes the proof. O

Proof of Theorem 8.6.8. Tt is immediate from Lemma 8.6.10 that Z*(R) coincides the set

a(v,k)
,L‘,7jl

R+ = {[ai,jaa ] | iai/ € [O7d_ 1]a jaj/ € [LS - 1]7 ke [17m_ 1]7 v e Ng}

Furthermore, we get (RT )Y = (R)fY where Fy is the free group on the set Y. Hence we

conclude that the generalised Basilica group admits the finite L-presentation (8.9). O

8.7 Structural properties of the generalised Basilica groups

Let d, m, s € Ny with m, s = 2. Here we prove some structural properties of the generalised
Basilica groups Basy(O%). These result reflect a significant structural dissimilarity between
Basy(02) and Bas,(O%,) for s > 2. This structural dissimilarity plays a vital role when
we consider the p-congruence subgroup property of the generalised Basilica groups, see
Figure 8.5, which is treated in Section 8.8.

For convenience, we omit the subscript from v, and identify an element g € Stz (1) with

its image under the map 1.
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Proposition 8.7.1. Let B be the generalised Basilica group Bass(O%). Then =1 ((B))™)
is a subgroup of B’ and

B/ 1 (BY™) = < cijk 0 Y(BY™) |ie[0,d—1],je[l,s—1], ke [l,m—1] >
~ Zd(mfl)(sfl)’

where ¢; j 1, = [aij, ag, kol In particular, it holds that ~'((B")™) = B".
Proof. Notice that B' = {[a; ;,ay /] | i,i" € [0,d — 1], j,5" € [0,s — 1])B. For 4,7’ € [0,d — 1]
and j,j' € [1,s — 1], we have [a; j,a;y ;] = id and for j # j’

(a1, a5,37] = ([a5j-1, a7 1], 1d* D)

[ai g, air0] = ([ai-1, ai—1,5-1],1d*"7Y) for i # 0,

[aij,ap0] = (laij—1,ad-1,61],id*™).

Therefore, we obtain

<[a’i,j7ai’7j’] | i7i/ € [07d - 1]7 jaj/ € [078 - 1]> X {ld} XX {ld} < ¢(B/)»
yielding that (B’)™ < ¢(B’) by Lemma 8.2.1.
Now, recall our definition ¢; ;1 = [a;, a’&o] and
C={cijrliel0,d-1],je[l,s—1], ke[l,m—1]).

We claim that B’/¢~((B")™) = C, where C denotes the image of C in the quotient group.
For convenience, we will write the equivalence =y-1(pym) without the subscript. Observe

that, for 4,7 € [0,d — 1], j,7' € [1,s — 1] and k € [1,m — 1],
[ai g, ai ] = id, [aij; ar] = id for i’ # 0, [aij, ao0] = ciju,
and

ld*(k 1) id*(m_k_l)).

Cijk = laig, agol = (a5, s (i1,

Therefore, to prove the claim, it suffices to show that C is normal in B/y~'((B’)™). Let

i,i' €[0,d—1], j,7' € [1,s — 1] and k € [1,m — 1]. An easy calculation yields

+1 atl

! .
c, ’J,’g =Cijk and c”g = ¢; j for i’ # 0.
Furthermore,
ao,0 __ *(k—1 s yx(m—k—2 _ —1 :
Cijk = (id, a” 171d (k=1) , @ij—1,1d ( ) = Cij,1Ci.5,k+1 if k#m—1,
ap,0 __ *(m—2 _ —1 : _
Ciip = (aij—1,a; S1Lid (m=2)y =i ifk=m-—1,
—1 .
—1 c; c ifk#1
Cao,o — (id*(k_l) i 1d>i<(m k—1) a” ) _ i,5,m—1%%,5,k—1 # 1,
B9,k y Gij—1 ) z] 1 - 1
C'Zj,mfl if k= 1,
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implying that B’/1~1((B’)™) = C. Observe that, for a fixed i € [0,d — 1] and j € [1,s — 1],

Zm—l

lle

m
{(af_y,. . oafm ) wp €2, Y wp = 0} = (G | ke [Lm — 1]y < C.
r=1

Since B/B' = 74 (Theorem 8.1.6(iv)), this yields

By~ ((BY™) =C = 11 @ijp | ke l,m—1]) = zdm=DE=D
(4,5)€[0,d—1]x[1,s—1]

O]

Now we prove Theorem 8.1.9. In addition, we provide a generating set for the quotient

group 72(Bas,(0%))/73(Bass(O%)).
Theorem 8.7.2. Let B be the generalised Basilica group Bass(Oﬂln). We have:
(i) For s =2, B'/y3(B) = {[ai0,ai1])v3(B) | i, € [0,d — 1]) = 74

(ii) For s > 2, the quotient group B'/y3(B) = C%=2 x C,,2. Moreover, it is generated

from the set
{[ai7j,a070] ’73(3), [agyl,a%o] ’yS(B) | 1€ [O,d — 1], i, € [1,d — 1], j € [1,8 — 1]}

Proof. (i) We use Theorem 8.6.2 to obtain a presentation for B/v3(B). Take Y, @, ® and
R as given in Theorem 8.6.2 and set ' = Q U v3(Fy ), where Fy is the free group on Y. If

s = 2, the set R becomes

R ={lai1, )™ i, € [0,d 1], ke [1,m — 1], ve Z%)

k
and for every [az’,haioj,(? )] €R,

7k J—
[ai,1,affff N = my) Lair, ] € QO

where a(v, k) is given by (8.4). Since (Q’) is invariant under ®, the presentation { Y | Q' )
defines the group B/v3(B), yielding that

B'/y3(B) = {aip, az 1] | i,i € [0,d —1]) =~ 7% .

11 onsider agaln y y an as glven 1n eorem o.0.2 an = ) ’}’3 Y ) rst
ii) Consid in Y, Q, ® and R as given in Th 8.6.2 and Q' = Q Fy). Fi

observe that the element

7k J—
i a?(; NN =) laig,an )

belongs to (Q'YY if and only if j = j'. Setting
S = {laij,ap y] 1,7 €[0,d —1], j,j € [1,s — 1] with j # j'} < Fy,
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we notice that the group B/v3(B) admits the L-presentation ( Y | @' | ® | S ). Now, define

aij, airols [air 1, air o], ie0,d—1],
T'=1 laij,a00]™,[ai1,a00]™ [ao,1, airp]™, | i',i" € [1,d = 1],
2 .
[ao,1,a00]™ jel2,s—1]

and N = Q" U S UT as subsets of Fy. We claim that ®"(S) < NY for all r € Ny, and
hence the presentation ( Y | N ) defines the group B/y3(B). Therefore, the commutator
subgroup of B/v3(B) is generated from the set

[aij, a00]; [ai 1,a00], | i €[0,d—1], i €[1,d—1],
[ao,1,ai 0], [ao,1, a00] jel2,s—1]

yielding that:
B /y3(B) = €572 « 81 5 0071 % €2 = CB72 % O, 0.
Now, let 4,4’ € [0,d — 1]. Observe first that, for j,j" € [1,s — 2],

O([aij, apy]) = [aij+1, v 541] € S.

To prove the claim, it is enough to consider the elements of the form ‘I)T([ai,pai/, j,])
with either j or 7/, but not both, equal to s — 1. Without loss of generality suppose that
1<j<s—2andj =s—1. Since y3(Fy) < N¥, we work modulo ~3(Fy). We have

[aij+1,airs10]™ i =d—1
D([aij, ap s1]) =
[aij+1,ai41,0) otherwise.
For convenience, the images of ®([a; j, air s—1]) and ®3([a;,j, ar s—1]) are given in the tabular

form, see Table 8.1 and Table 8.2.

Jj#s—2 j=5—2
. 1#d—1 [@it1,0,ai41,1]
i"#Ad—1 [aij12, @ 11,1]
i=d—1 [@0,0, @ir41,1]™
. i#d—1 [@it1,0,00,1]™
i =d—1 [ai j+2,a0,1]™
i1=d—1 [ao,0, OLO,l]m2

Table 8.1: Images of ®*([a;;,ai s—1])-
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j¢{s—3,s—2} j=5—2 J=s5-3

‘ i#Fd—1 [@iv1,1,avv12] | [@it1,0,00412]
i #d—1 [aij+3, ai112]

i=d—1 [ao,1, ai’+172]m [ao,0, ai’+1,2]m

1£d—1 [ai+1,1, 00,2]m [az‘+1,0, ao,Q]m
i'=d—1 [aij+3,a0.2]™

. 2 2

i=d—1 [ao,1, ao2]™ [a0,0, a0,2]™

Table 8.2: Images of ®3([a; ;,air s—1]).

Observe that the element ®" ([a; j,ai s—1]) € NI¥ for r € [1,3]. By iterating the process

we see that ®"([a;;,ay j1]) € NI for all r € Ny and [a; , ay ] €S, O

Lemma 8.7.3. Let B be the generalised Basilica group Bass((’)fn). The following assertions
hold:

(i) For s =2, B" = ¢~} (y3(B)™).
(ii) For s > 2, B" = ¢~ (y3(B)™).
Proof. We first prove that v3(B)™ < ¢ (B”) for all s > 2. From Lemma 8.2.1, since
13(B) = i gy ig.jo s ing ] i1, 02,85 € [0,d — 1], ju, ja2, js € [0,5 — 1])7,
and B is self-similar and fractal (Theorem 8.1.6(ii)), it is enough to prove that the set
{([[ais o iz o], @iy 1, 15 Y) iz iz € [0,d = 1), o jo € [0,s = 11} (%)

is contained in ¢ (B"). Let i1,1i2,i3 € [0,d — 1] and j1, jo, js € [0,s — 1]. We split the proof
into four cases.

Case 1: j; = jo = js = s — 1. Clearly, [[ai; s—1, @iy s—1], @i s—1] = id.

Case 2: j3 # s — 1. In light of Proposition 8.7.1, the elements ([ai, j,, @iy, ], id*™ )

and (aj, j,,a; " Lid*(m=2)y = [@iy,j5+1, a0,0] ! belong to ¢(B’), implying that
3,03

([[aihjp ai27j2]a ais,j3]v id*(m_l)) € w(B”)'

Now, observe from Proposition 8.7.1 that ¢(B”) = (B”)™. Therefore, if there exist
g =1(90s---y9m-1),h = (ho,...,hm—1) € B such that g; =p» h; for all i € [0, m — 1] then

g E’l/}(B”) h
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Case 3: js =s—1,j; # s—1 and js # s — 1. Now, from the Hall-Witt identity (see

[95, p. 123]), we can easily derive that

[y, =1, 21l[z, w], ][l 2], ] =g~ [ly, ], 2°1[[2, y], ][], 2], y*] = id,

for all z,y,z € B. Setting = a;, j,, ¥y = i, j, and z = a;, j,, we get that the element

([[y, 21, 21,1d*™ )~ =y ([[2,9), @[, 2], ], D)

belongs to ¢ (B”), as the right-hand side product belongs to 1(B”) by Case 2.
Case 4: js=s—1=j1,ja#s—1or js=s—1=jg, j1 # s — 1. Notice that

[[aihjl ’ ai278—1]7 ai3,s—1] =pB" [[aims—l’ ail:j1]7 ai3,8—1]_17

thus, it is enough to consider the first case. We claim that, for every j € [0,s— 1],
it holds [[as, j, @iy0], @is,;] =p» id. Then by taking the ja-th projection of the element

[[aihs—lv ai2,j2]7 ai378—1] we obtain,

wjz ([[ail,sflv aiz,jz]» ai3,5*1]) = ([[ail,(s—l—jg)a aiQ,O]v a’ig,(s—l—jg)]? id*(mm_l))
E¢j2 (B”) ld,
implying [[@i, s—1, iy js |, @is,s—1] =p~ id, and hence (*) follows.

If i9 = 0 or j = 0, it is then immediate that [[a;, j, @iy 0], @iy ;] = id. Assume that i # 0

and j # 0. From the presentation of B given in Theorem 8.6.2, we have

_ & _ a(v,k) k .
[lai, j» (v, k)], aig ] = a5 Laf ™ i 5] = a5 ), i)™ (a0 ag, 5] = id,

where a(v, k) is given by (8.4). Now, by setting v = (0*(2=1D 1,0*(m=%2=1) and k = 1, we
get a(v, k) = appai, o and consequently

id = [[aiy,j,0,00iy,0], @i 5] = [[@iy.5, Qir0][@i,5, a0,0]2°; aiy 5]

=pr [[@i j; @iy 0], @is jl[[ @i, > @0,0]"2°, aiy 5] =pr [[ai; 5, @iy 0], aig 5]

Next we prove (i). Assume that s = 2 and notice that it suffices to prove that
B' /1)~ (y3(B)™) is abelian. We use the fact that the commutator subgroup can be de-
scribed by B’ = {[ai, 1,ai,0] | 11,12 € [0,d — 1])P as s = 2.

Looking at the section decomposition of these generators,

[ail’l,ai%o] = ( [ai170,ai2_171],id*(m_l)) for 19 # 0, and

[air,1,a00] = (a;,l()?ail,()yid*(miZ))?
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we immediately see that they commute modulo y3(B)™. Thus, B’ /¢~ (y3(B)™) is abelian.

(ii) The inclusion 1 ~!(y3(B)™) < B” has been already proven above. We prove that
Y~ (y3(B)™) is a proper subgroup of B”, by showing that B’/1~!(y3(B)™) is non-abelian.
Suppose to the contrary B’/¢~!(y3(B)™) is abelian. Then, for every i € [0,d — 1] and
jel2,s—1]

id =y -1(y5(B)m) [[ai,j, a0l [ao0,1,a0,0]] = ([“ijjl—l»aa,é]» [@i,jfl,ao,o],id*(m_m)-

This implies [a; j—1, ao,0] p) id, which is a contradiction to Theorem 8.7.2(ii). O

Srs(

8.8 Congruence properties of the generalised Basilica groups

Here we prove that the generalised Basilica group Bass((’)g) has the p-CSP for d, s € N,
with s > 2 and p a prime. We follow the strategy from [46], where it is proved that the
original Basilica group B = Basy(02) has the 2-congruence subgroup property. However,
on account of Theorem 8.7.2 and Lemma 8.7.3, our reasoning must be different, and we will
use Theorem 8.5.1.

Let G be a subgroup of the automorphism group of the p-regular rooted tree T and let
C be the class of all finite p-groups.

Definition 8.8.1 ([46, Definition 5]). A subgroup G of Aut T has the p-congruence subgroup
property (p-CSP) if every normal subgroup N < GG satisfying G/N € C contains some layer
stabiliser in G. The group G has the p-CSP modulo a normal subgroup M < G if every
normal subgroup N < G satisfying G/N € C and M < N contains some layer stabiliser in

G.

By setting C as the class of all finite p-groups in [46, Lemma 6], we obtain the following

result:

Lemma 8.8.2. Let G be a subgroup of Awt T and N < M < G. If G has the p-CSP modulo
M and M has the p-CSP modulo N then G has the p-CSP modulo N.

Let d, s € N. with s > 2 and let p be a prime. Set B = Bass((’)g). From The-
orem 8.1.6(vi) B is weakly regular branch over its commutator subgroup B’ and from
Lemma 8.7.3

B' > %(B) > B' > ¢ (13(B)").

We will prove that

1. B has the p-CSP modulo ~3(B), and,
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B
Prop. 8.8.3 |
13/
|

Prop. 8.8.4 ~v3(B)M

7N

v3(B) M
Prop. 8.8.7\ /
v3(B) n M
Prop. 8.8.8 ‘

P (3(B)P)
Figure 8.5: The steps of the proof of Theorem 8.1.10, where M := ¢~1((B)P)

2. v3(G) has the p-CSP modulo 91 (y3(B)P).

Then Theorem 8.1.10 follows by a direct application of [46, Theorem 1]. Applying Lemma 8.8.2
to Proposition 8.8.3 and Proposition 8.8.4 we will obtain step (1). Similarly, by apply-
ing Lemma 8.8.2 to Proposition 8.8.7 and Proposition 8.8.8 yields step (2). Now, set
M = ¢p=Y((B')P) and N := ¢p~!(y3(B)P). Considering Proposition 8.7.1, Theorem 8.7.2

and Lemma 8.7.3, we summarise the proof of Theorem 8.1.10 in Figure 8.5.
Proposition 8.8.3. The group B has the p-CSP modulo B’.

Proof. Set bjs+; = a;; for all i € [0,d —1] and j € [0,s — 1]. Define, for r € [0,ds — 1],
A = (by,...,bgs_1)B" and set Ay = B’. We will prove that A, has the p-CSP modulo
A, 11 for all r € [0,ds — 1]. Then the result follows from the Lemma 8.8.2.

Clearly, A,/A;11St4,(n) € C and by Theorem 8.1.6(iv) we have A,/A,11 = {(b;) = Z.
In Z, the subgroups of index a power of p are totally ordered, whence it suffices to prove
that |A, : Ay41Sta,(n)| tends to infinity when n tends to infinity. In fact, we prove that
W Ay Sta, (nds+r+1) for n € Ng. Assume to the contrary that We Ay Sta, (nds +

r+1). In particular, b2 € A,y; Stp(nds + r + 1). Thanks to Theorem 8.5.1, we have

n+1 n+1 n n
Stp(nds +r+1) =< ,...,00 b0, ... ,b5871>B. Thus, there exists xg, ..., Tgs—1 € %
such that
n n+1 n+1 r s
= b
contradicting Theorem 8.1.6(iv). O

Proposition 8.8.4. The group B’ has the p-CSP modulo vs3(B).

Proof. Notice from Theorem 8.7.2(ii) that v3(B) is a subgroup of index a power of p in B’

and hence it suffices to prove that Stp/(n) is contained in y3(B) for some n, equivalently
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|B’/v3(G) St (n)| = |B’/y3(B)|. Observe that,
B'/v3(B) Stp(n) = B’ Stg(n)/v3(B) Stp(n).
Now, in light of Theorem 8.7.2(ii), we choose n € N} such that the set

{laij,a00] [i€[0,d—1], j €[l s —1]} v{lao, aro] | € [1,d = 1]} U {[ao.1, a00]"},

has trivial intersection with Stp(n). One can easily compute from the description of the
stabilisers in Theorem 8.5.1 that n = ds + 2 is the smallest number with this property. We
construct a group H which admits an epimorphism from the group B/~v3(B) Stp(ds + 2)
and see that commutator subgroup H' has the desired size.

Now fix n = ds + 2 and set I' = B/y3(B) Stg(n). Again from Theorem 8.5.1 we have
Stp(n) = <b782,bzl)2,b§, b, )P, where bisy; = a;j as in the proof of Proposition 8.8.3.
By a straightforward calculation using the presentation of B/v3(B), given in the proof of

Theorem 8.7.2(ii), we obtain the following presentation for I':
(SR, (8.10)
where § = {b, | r € [0,ds — 1]} and

B P [be, byl | £t € [2,ds — 1]

< [b1, by], t" € [2,ds — 1], not a multiple of s >,
o, bislws(F) | iell,d—1]

where F' is the free group on the set of generators of I'.

Let R be the ring Z /p?Z. Let UTgs41(R) < GLgsy1(R) be the group of all upper
triangular matrices over R with entries 1 along the diagonal. Denote by E; ;(¢) the element
of UTys+1(R) with the entry ¢ € R at the position (i,5). For ¢ € [1,d(s—1) — 1] and

€ [1,d — 1], define

z; = Ejq5—1(p), Yi = Ea(s—1)+j,ds(P),

Y= Eds—l,ds(l)a z = Eds,ds+1(1)7

and define #H to be the subgroup of UT 4541 (R) generated by the set {x;,y;,y, 2}. By abuse
of notation denote the image of the set of generators of H in the quotient group H/v3(H)

by the same symbols and set H = H/v3(H). By an easy computation, we obtain
D p 2
K3

2 .
Ty =Y; = yp =2 = [$iaxi/] = [yj’yj’] = [yvyj] = [mhyj] = [miaz] = 1d’
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for all 7,7 € [1,d(s—1)—1] and j,j' € [1,d —1]. Now, fix a bijection « from the set
{by | r€[2,ds—1]\{s,2s,...,(d —1)s} to the set {z; | i € [1,d(s — 1) — 1]}. Define a map

o from the set of generators of I' to the set of generators of H by

pbo) =y p(br) =z
o(bjs) =y;forje[l,d—1] (b)) = a(b,), otherwise.

Then ¢ extends to an epimorphism I' — H, since as seen above, ¢(b,) satisfies all the
relations of the given presentation (8.10) of the group I'. Furthermore, observe that the

commutator subgroup of H is generated by the union of the sets
{[zoyllie[ldls—1) 1] }u{ly;z] [jell,d=1]}u{[y 2] }.
Hence,
) > ()] = ] = p 112 =
Indeed |I"| < |B'/v3(B)| = p®, and thus || = p?*, completing the proof. O
We now need two general lemmata.

Lemma 8.8.5. Let H < AutT and L, K < H with L < K and let C be the class of all
finite p-groups. Assume further that H/K € C and H/L is abelian. If H has the p-CSP
modulo L, then K has the p-CSP property modulo L.

Proof. Let K be a normal subgroup of K satisfying L < K and K/K € C. Since H/L is
abelian, K /L is normal in H/L and hence K is normal in H. Also notice that H/K € C.
As H has the p-CSP there exists n € Ny such that Sty(n) < K. In particular Stg(n) =
Stg(n) n K < Sty(n) < K, completing the proof. O

Lemma 8.8.6. Let H < AwtT and L, K < H. If KL has the p-CSP modulo L, then K
has the p-CSP property modulo K n L.

Proof. Choose K < K with K n L < K and K/K € C. Then, KL < KL and KL/KL =~
K/K € C. As KL has the p-CSP property modulo L, it holds that Stz (n) < KL for some
n. Thus, Stx(n) = Stxr(n) " K < KLNnK = K. O

Proposition 8.8.7. The group v3(B) has the p-CSP modulo vy3(B) n M.

Proof. We prove that v3(B)M has the p-CSP modulo M. Then by Lemma 8.8.6 we obtain
the result. It follows from Proposition 8.7.1 and Theorem 8.7.2(ii) that B’/M is abelian
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and that B'/y3(B)M € C, respectively. Thanks to Lemma 8.8.5, it is enough to prove that
B’ has the p-CSP modulo M.

Let i € [0,d—1],j € [1,s —1] and k € [1,p — 1]. Define ¢;s_1)4; = bis+j = aij. Set
t =i(s—1)+j and r = is + j and note that ¢; is a relabeling of the elements b, (defined in
the proof of Proposition 8.8.3) by excluding the elements of the form b;s for i € [0,d — 1].

From Proposition 8.7.1, we have
B'/M ={[aij,afo] |ie[0,d—1],je[l,s—1], ke[l,p—1]).
Set £ = (k—1)(ds —d) + t and ey = [, a@o]. Then,
wler) = ¥([er aol) = ([brrabol) = (01, 1", by, id D),

For £ € [1,(p—1)(ds —d)], set My = {eq,..-,ep-1)(ds—ayyM and My _1ygs—a)+1 = M.
It follows from Theorem 8.1.6(iv) that My/Myi1 = {e;y = Z. We will prove that |M, :
Mgy Stag,(n)] tends to infinity as n tends to infinity. Assume to the contrary that there are
n,n’ € Ny such that for all 7 > n/, elf € Myy1Star, (7). There exist 2oy 1, -, T(p—1)(ds—d) €
Z such that

n Tl s ~ ~
€y iy e(;’ill))(gsiz)) € M Sty () < M Stg(n),

hence

W(e] ety e ) € (B - (St — D).

Consider the k-th coordinate, :cbfil € B'Stp(n — 1), where z is a product of elements
of the form b, such that v' > r — 1. Then x € A,, where A, is defined as in the proof
of Proposition 8.8.3. This implies b’r’il € A, Stp(n) for all 7 = n’ — 1, which contradicts

Proposition 8.8.3. O

Proposition 8.8.8. The group v3(B) n M has the p-CSP modulo N.

Proof. 1t is straightforward from Theorem 8.7.2(ii) that the group M /N is a finite abelian
and M/N € C. By Lemma 8.8.5, it suffices to prove that M has the p-CSP modulo N.

From Proposition 8.8.4, it follows that Stp/(n) < 3(B) for some n. Therefore,

P(Star(n + 1)) < (Stp(n))” <3(B)P,
and hence Sty (n + 1) < ¥~ 1((Stp/(n))P) < N. O
Proof of Theorem 8.1.10. By applying Lemma 8.8.2 to Proposition 8.8.3 and Proposition 8.8.4
we obtain that the group B has the p-CSP modulo 3(B). Further application of Lemma 8.8.2

to Proposition 8.8.7 and Proposition 8.8.8 yields that v3(G) has the p-CSP modulo N. Now,
the result follows by [46, Theorem 1]. O
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Chapter 9

Maximal subgroups of generalised

Basilica Groups

9.1 Introduction

Groups acting on rooted trees have drawn a great deal of attention over the last couple of
decades because they exhibit prominent features and solve several long-standing problems
in group theory. The initial examples studied were Grigorchuk’s groups of intermediate
word growth ([51]; answering Milnor’s question) and Gupta and Sidki’s examples of finitely
generated infinite torsion p-groups ([63]; providing an explicit family of 2-generated coun-
terexamples to the general Burnside problem). Ever since, attempts have been made to
characterise and generalise the groups of automorphisms of rooted trees. Today, the Grig-
orchuk groups and the Gupta—Sidki groups are known as the first examples of groups in
the family of branch groups. Branch groups are groups acting spherically transitively on a
spherically homogeneous rooted tree T' and having subnormal subgroups similar to that of
the full automorphism group Aut T of the tree T', see Section 9.2 for definitions. The groups
studied in this paper belong to a more general class of groups, the weakly branch groups,

obtained by weakening some of the algebraic properties of the branch groups; cf. [18].

The Basilica group is a 2-generated weakly branch, but not branch, group acting on the
binary rooted tree, which was introduced by Grigorchuk and Zuk in [59] and [58]. It is the
first known example of an amenable [24] but not sub-exponentially amenable group [59]. In
contrast to the Grigorchuk and the Gupta—Sidki groups, the Basilica group is torsion-free
and has exponential word growth [59]. Moreover, it is the iterated monodromy group of the

complex polynomial 22 — 1; [76, Section 6.12.1]. The generators of the Basilica group are

187



recursively defined as follows:
a=(1,b) and b= (1,a)0,

where o is the cyclic permutation which swaps the subtrees rooted at the first level of
the binary rooted tree, and (z,y) represents the independent action on the two maximal
subtrees, where z,y € Aut T. Recently, Petschick and Rajeev [92] introduced a construction
which relates the Basilica group and the one-generated dyadic odometer Oy (also known as
the adding machine). Let m, s > 2 be integers and let G be a subgroup of the automorphism

group Aut T of the m-adic tree T. The sth Basilica group of G is given by

Bass(G) ={Bi(9) | g€ G,ie{0,1,...,5s —1}),

where 37 : Aut T — AutT are monomorphisms given by

Bi(g) = (1,.... 1,87 1(9)) forie{l,...,s—1},

Bo(g) = (Bs_1(90), - - - Be—1(gm-1))9",

where g, is the restriction of g to the subtree rooted at a first-level vertex = € {0,...,m—1},
and ¢¢ is the local action of the element g at the root of T' (in [92] the generators ((g),
for i € {1,...,s — 1}, are defined along the left-most spine and the element ¢ is acting
from the left, which is equivalent to the definition above). We obtain the classical Basilica
group by applying the operator Bass to the dyadic odometer as follows: let ¢ = (1,¢)o
be the automorphism of the binary rooted tree generating the dyadic odometer. Then the

generators of the Basilica group are given by
— 732 _ 2
a=pi(c) and b=/p5(c).

This gives a natural generalisation of the Basilica group given by Bass(O,,,) for every pair of
integers m,s > 2. Here O,, is the m-adic odometer, which is an embedding of the infinite

cyclic group into the automorphism group of the m-adic tree T, and is generated by
c= (1,771 1,¢)0

where 0 = (01 -+ m — 1) is the m-cycle that cyclically permutes the m subtrees rooted at
the first level of T'. The generalised Basilica groups Bass(O,,) resemble the classical Basilica
group, as they are weakly branch, but not branch, torsion-free groups of exponential word
growth [92, Theorem 1.6]. They are also weakly regular branch over their derived subgroup.

In this paper, we study the maximal subgroups of the generalised Basilica groups

Bass(O,,). The study of maximal subgroups of branch groups was initiated by Pervova [86],
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where she proved that the torsion Grigorchuk groups do not contain maximal subgroups of
infinite index. Thenceforth, attempts have been made to generalise the results and tech-
niques from [86], for instance see [5], [70], and [40]. Among which, our interest lies in the
work of Francoeur [40] (or see [39, Section 8.4]), who provided a strategy to study the max-
imal subgroups of weakly branch groups. In particular, he proved that the classical Basilica
group does not contain maximal subgroups of infinite index. Following this technique we
prove that the generalised Basilica groups Bas(O,,) do not admit maximal subgroups of

infinite index.

Theorem 9.1.1. Let m and s be positive integers such that m,s = 2. Then the generalised

Basilica group Bass(Oy,) does not admit a mazimal subgroup of infinite index.

Since we are considering generalised Basilica groups Bass(O,,) for an arbitrary s > 2,
the final stages of our proof differ from previously seen results; compare Theorem 9.4.6. This
is also the first time that maximal subgroups of a weakly branch, but not branch, group G
have been considered for a group G with more than 2 generators.

It is interesting to note that there are currently no examples of finitely generated weakly
branch, but not branch, groups with maximal subgroups of infinite index. There are only
examples of finitely generated branch groups with maximal subgroups of infinite index;
see [27] and [41]. It remains to be seen whether being a finitely generated weakly branch
group with maximal subgroups of infinite index implies the group is branch.

Furthermore, in all known examples of finitely generated weakly branch, but not branch,
groups with maximal subgroups only of finite index, these groups have maximal subgroups
that are not normal; compare Remark 9.4 and [33,42]. Therefore it is also natural to ask
if there exists a finitely generated weakly branch, but not branch, group with all maximal

subgroups of finite index and normal.

Organisation. Section 9.2 contains preliminary material on groups acting on the m-adic tree.
In Section 9.3, we record some length reducing properties of generalised Basilica groups, and

in Section 9.4 we prove Theorem 9.1.1.

9.2 Preliminaries

By N we denote the set of positive integers, and by Ny the set of non-negative integers.
Let m € N>y and let T' = T}, be the m-adic tree, that is, a rooted tree where all vertices
have m children. Using the alphabet X = {0,1,...,m — 1}, the vertices u,, of T  are labelled

bijectively by the elements w of the free monoid X* in the following natural way: the root
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of T is labelled by the empty word, and is denoted by ¢, and for each word w € X* and
letter x € X there is an edge connecting u,, to u,,. More generally, we say that wu,, precedes
u) whenever w is a prefix of A.

There is a natural length function on X*, which is defined as follows: the words w of
length |w| = n, representing vertices u,, that are at distance n from the root, are the nth
level vertices and constitute the nth layer of the tree.

We denote by T}, the full rooted subtree of T' that has its root at a vertex u and includes
all vertices succeeding u. For any two vertices u = u, and v = u), the map uy,r — u),,
induced by replacing the prefix w by A, yields an isomorphism between the subtrees T,
and T,.

Now each f € AutT fixes the root, and the orbits of Aut T on the vertices of the tree T
are the layers of the tree T'. The image of a vertex u under f will be denoted by f(u). The
automorphism f induces a faithful action on X* given by f(uw) = uy(,). For w e X* and
x € X we have f(wz) = f(w)z/, for 2/ € X uniquely determined by w and f. This induces

a permutation f“ of X which satisfies

flwz) = f(w)f¥(x), and consequently f(uws) = Uf(w) s (z)-

More generally, for an automorphism f of T', since the layers are invariant under f, for

u,v € X*, the equation
fuv) = f(u) fu(v)

defines a unique automorphism f,, of T" called the section of f at u. This automorphism
can be viewed as the automorphism of T induced by f upon identifying the rooted subtrees
of T at the vertices u and f(u) with the tree 7. As seen here, we often do not differentiate

between X* and vertices of T'.

9.2.1 Subgroups of AutT

Let G be a subgroup of AutT acting spherically transitively, that is, transitively on every
layer of T. The vertex stabiliser stg(u) is the subgroup consisting of elements in G that fix
the vertex u. For n € N, the nth level stabiliser Stg(n) = ﬂ|w\=n sta(uy) is the subgroup
consisting of automorphisms that fix all vertices at level n.

Each g € Stay7(n) can be completely determined in terms of its restrictions g1, . .., gmn

to the subtrees rooted at vertices at level n. There is a natural isomorphism

n

Un: Stawr(n) — H|w|=n AwtT,, = AutT x Tox AutT
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defined by sending g € Staut7(n) to its tuple of sections (gi,. .., gmn). For conciseness, we
will omit the use of ¢, and simply write g = (g1,...,gm) for g € Stautr(1).
Let w e X" be of length n. We further define

Yu t staus () = Aut Ty, = Aut T

to be the map sending f € stau7(uy) to the section fy,.

A group G < AwtT is said to be self-similar if for all f € G and all w € X* the
section f,, belongs to G. We will denote G, to be the subgroup ¢, (st (uw)).

Let G be a subgroup of AutT acting spherically transitively. Here the vertex sta-
bilisers at every level are conjugate under G. We say that the group G is fractal if
Gy = vuw(sta(uy)) = G for every w € X*, after the natural identification of subtrees.

The rigid vertex stabiliser of u in G is the subgroup ristg(u) consisting of all automor-
phisms in G that fix all vertices of T" not succeeding u. The rigid nth level stabiliser is the

direct product of the rigid vertex stabilisers of the vertices at level n:

Ristg(n) = H‘w‘:n ristg(u,) < G.

We recall that a spherically transitive group G is a branch group if Ristg(n) has finite
index in G for every n € N; and G is weakly branch if Ristg(n) is non-trivial for every n € N.
If, in addition, the group G is self-similar and there exists a subgroup 1 # K < G with
K x-" x K € 1(K nStg(1)) and |G : K| < o, then G is said to be regular branch over K.
If in the previous definition the condition |G : K| < oo is omitted, then G is said to be

weakly regular branch over K.

9.2.2 A basic result

Here we record a general result that will be useful in the sequel. For g € Aut T, recall that

g€ denotes the action induced by g at the root of 7'

Lemma 9.2.1. For a self-similar group G < AutT, let z = (z0,...,2m-1)2° € G'. Then

20" %m—1 € G'.
Proof. Tt suffices to prove the result for a basic commutator [g, k], where g,h € G. Write
g = (90y---,9m—-1)g° and h = (hg,...,hm—1)h¢. For notational convenience, let us write
7= (¢g)"! and k = (k)7L and for a € Sym(X) and z € X we write 2% for a(z). As

l9, 7]

= T(go_l, . ,g;Ll_l)n(hgl, . h;ll_l)(gg, cos Im—1)9(ho, - .y hup—1)h"

= (g&_l’ . 79(_7i—1)7')(ha7'1“’ R h(_ni—l)”ﬁ)(goﬂ{’ ... 7g(m,1)ﬂc>(h0ﬂ;g€, ce. ,h(m_l)ﬂgge )Tﬁg€h67
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the result follows. O

9.3 Length reducing properties

For any two integers i, j, let [i,j] denote the set {i,i + 1,...,5 — 1,j}. In the following
sections, we fix m, s € N>o. For convenience, write G = Bass(O,,,) for the remainder of this

paper. Then G is generated by the elements

Bi(e) = (1,m71 1, By_q(c))o,
Bie) = (1,741, Bo(0)),

5:—1(0) = (17 mila 1, BS—Q(C))’

where ¢ = (1,71, 1,¢)o is the generator of the m-adic odometer O,, acting on the m-adic
tree T' and o is the permutation (01 --- m—1) which cyclically permutes the subtrees rooted
at the first level of T. We refer the reader to [92] for a detailed study of these groups.
Denote by f(c) = a;, for every i € [0,s — 1]. We shall adopt the convention that the
subscripts of the a;’s are taken modulo s. Set S = {aj' | i € [0,5 — 1]} and then G = (S).
For each word w € S*, the length |w| is the usual word length of w over the alphabet S. If
g € G then |g| denotes the minimal length of all words in the alphabet S representing g. A
word w € S* is called a geodesic word if |w| = |g|, where g is the image of the word w in G.
Notice that for every g € G, the local action ¢g¢ of g at the root is an element of {¢). Hence,

for conciseness, we denote g¢ by oy.

m—1
Lemma 9.3.1. Let g = (9o, .. .,9m-1)0g € G. Then Y, |gi| <|g|.

Proof. The proof proceeds by induction on the length of g. Clearly, the result is true if
lg| = 0 and |g| = 1. Assume that |g| > 1. Let w € S* be a geodesic word representing g.
The word w can be written as w = zw’ for some x € S and w’ € S* such that w’ is reduced.
Then |w'| < |w| and w’" does not represent g in G. Denote by ¢’ the corresponding element

in G. Then |¢'| < |w'| < |w| = |g|]. We obtain

(90s -1 gm—1)og =g = rg = (xo,. .. ,xm_l)ax(gé, ... ,g;nfl)ag/

/ /
= (J;Ogoazv [ 7Im—1g(m_1)093 )Uxo'g’a

which implies g = g0, for all k € [0,m — 1]. It follows by induction that,
m—1 m—1 m—1 m—1
Dilarl = D) lokgioel < D) lwrl + D) |ghoe| < ol + 19| < |2] + 0| = Jw| = g|. D
k=0 k=0 k=0 k=0
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Lemma 9.3.2. Let g = (go,...,gm-1)0g € G with o, = o' for some i € [1,m — 1] such
that ged (i,m) = 1. Let ag,...,am—1 € G be such that g™ = (oo, ...,am-1). Then |ag| <

m—1
2 lgel < gl for all k € [0,m —1].
£=0

Proof. Observe that

gm = (gogoai g00275 e gog(mfl)i JECIC) gm—lg(mfl)aig(mfl)am e g(m_l)a(mfl)i)-

By setting ax = grgoi -+ g otm—1)i, for each k € [0, m — 1], we obtain

m—1
okl = |gkGpor - Gpotm—i| < D lgel < gl
=0
where the last inequality follows from Lemma 9.3.1. O

Lemma 9.3.3. Let g = (90,.-.,9m—1)0g € G and let x1---x4 € S* be a geodesic word

m—1
representing g. If there exist 1 < r < v’ < { such that x, = ag, v = ag ', then Y, |gx| < |g].
k=0

Proof. By assumption, the word w1 -- -z, contains a subword of the form aqwag 1 where w
is a non-trivial reduced word in the alphabet S. We assume, without loss of generality, that
w is a reduced word in the alphabet S\{aoﬂ}. Let w represent an element h in G. Since
x1---x¢ € S* is a geodesic word, the word w is also geodesic and so |h| = |w|. Notice that

apway, lw| + 2. Realising the word agwag ' in G gives

apwag ' = (1,...,1,0m-1(h), 1).

Also, we have
h=(1,...,1,pm-1(h)).

By Lemma 9.3.1, we get |@p—1(h)| < |h| = |w|. Therefore we conclude that

m—1
D7 gkl < lgl—2 < gl. m
k=0

9.4 Maximal subgroups

Recall that we write G = Bass(O,,). It follows from Proposition 9.4.1 below together with
[40, Proposition 2.21] that the group G admits maximal subgroups of infinite index if and
only if it admits a proper subgroup H < G such that HN = G for every non-trivial normal
subgroup N < G. A subgroup H < G satisfying the above condition is called a prodense
subgroup. As seen below, we prove that G does not admit any proper prodense subgroup,

which proves Theorem 9.1.1.

193



Proposition 9.4.1. The group G is just non-(virtually nilpotent). Hence, mazximal sub-

groups of proper quotients of G are of finite index.

Proof. As G has exponential word growth, it follows from Bass [8] and Guivarc’h [62] that
G is not virtually nilpotent. To see that every proper quotient of G is virtually nilpotent,
by [40, Theorem 4.10], it suffices to prove that G/G” is virtually nilpotent. Set N =
Y (73(G) x - - - x 3(G)). From [92, Lemma 7.3], we have N < G” < St¢(1) < G. Therefore
1)1 induces a homomorphism

~

P11 Sta(1)/N — G/y3(G) x - x G/y3(G).

Since 121 is injective and Jl(Stg(l) /N) is nilpotent (being a subgroup of a nilpotent group),
we obtain that Stg(1)/N is nilpotent. This implies that St (1)/G” is nilpotent as it is a
quotient of Stz(1)/N. As the subgroup St (1) has finite index in G, the group Stg(1)/G”
has finite index in G/G” and hence G/G" is virtually nilpotent. The last part of the result
follows from [39, Corollary 5.1.3]. O

Hereafter, for g, h € G, the equivalence g = h mod G’ will simply be denoted by g = h.

Notice that for every z € G', we have 0, = 1 and G’ < Stg(1).

Lemma 9.4.2. Let g € G be such that g = o> - -af’, where ¢, € {+1}. Let j € Ny be
such that j = €s +r, where £ € Ng and 0 < r < s. If wj(gmj) = (90y---,9mi_1) then
gr =a, --ag’, for all ke [0,m/ —1].

Proof. Since g = a3’ ---af, there exists an element (20,...,2m-1) = 2z € G’ such that
g=a’"7"-alz. We have

(90,1 gm—1) = g7 = (a3 - al’2)™

_ ((zla'--yszl,azs:gl "'CLBICISleO)U)m if eg =1,
((agjlzm—lu 205 -+ 3 Am—3; a;tgl T aglzm_Q)O'_l)m if € = —]_,
which equals
(2122 21057 a5 as-120 5 - 5 Q575 - A5 Q51202122+ Zm1 )
if g = 1, and
(a;}lzm,1a§i*21 A8 Zm9Zm3 20, e G A5 20 Zm3 - Zoagjlszl )

if g = —1.
Therefore g, = azs_‘g c-agtal | forallk € [0,m — 1], since 2 - - - zm—1 € G’ by Lemma 9.2.1.

The result then follows upon repeating the above process. O
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In the following, we denote by Sym(s) the symmetric group on {0,1,...,s — 1}. Recall

also from Subsection 9.2.1 the map ¢, for u e X*.

Lemma 9.4.3. Let g = aZ;S:II)): wagy € G where ™ € Sym(s) and €; € {£1}. Let j € Ny be

mj) _ Es—1)T €gm

such that j = s+, where £ € Ng and 0 <1 <'s. Then ¢(;,_1); (g Ay SRRV RS

Proof. Let i € [0,s — 1] be such that 0 = i". Then

_ &1 EGHDT eo €T | egn
9= Qs_1yx " Oip1ym Yo A1)~ " Qor -

By taking the mth power of the element g we get

g7 = (%, .., %, azf_‘f;:_l .. azgrll)):_lagilazf_‘f)):_l Cal )
where
QT al el el ey e =1,
. =
T T e = L

In particular, we have ¢,,,—1(¢™) = azésjll)): INREE agr_,, and the result follows recursively. [

We recall that H, denotes the subgroup ¢, (stg(u)) for a vertex u € X*. By [92,
Theorem 1.6(ii)], the group G is fractal, so G, = G for all u e X*.

€(s—1)™ €om

Lemma 9.4.4. Let H be a subgroup of G. Assume that Ay 1yr " Ggr € H for some

7 € Sym(s), where €; € {£1}. Then the following assertions hold.

(i) For each n € N and vertez u of level ns, the subgroup H,, contains a cyclic permutation

€(s—1)™ ... o fom
of the word Ag_1yr " Ggr -

(i1) Furthermore, if €, = 1 for some i € [0, s], then for each n € N, there is a vertex u of

E(s—1)™ €T

level ns such that the cyclic permutation of As_1)n " Gor contained in H, ends with

a; on the right.

Proof. (i) Let g = azéfll)): ~ragy € H. Then 0 = i™ for some i € [0,s — 1]. Observe from

the proof Lemma 9.4.3 of that

my _ C(s—-1D7T €+ 1)T € -7 €T
Pm=1(9") = a1 A e 1 010G ym oy Gor 1

and that ¢;(¢g"™) is a cyclic permutation of ¢,,_1(¢g™) for every j € [0, m — 2]. By repeating
the process of taking powers we get that 1s(¢™ ) = (g0, .- -, gms_1) With gms_1 = g and g

is a cyclic permutation of the word azf__ll)): eagy for ke [0,m® —2].
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(ii) In particular, if g = 1, we note from the proof of Lemma 9.4.3 that

my €(i—1)7" €qm E(S_l)ﬂ' €(i+1)7"
Pm—2(9™) = Ai—1ym—1 """ Gr 1% (s_1ym 1" Q(ip1)r 1 Fs—1s

and by Lemma 9.4.3 we see that

my _ CG-1)7 €om E(s—1)T €G+1)T
Plm-2)(m—1)=1(") = 8Taye - A0 A Tye Uiy Go-

More generally, suppose that €; = 1 for j € [0,s] and let £ € [0,s] be such that ™ = j.

s—j—1

Writing v; = (m — 1)J(m —1) and wj = (m —2)(m —1) -+ (m — 1), we recall from

Lemma 9.4.3 that

mJ’) €(s—1)T €(e+1)™ €e—1)™ €gm

Py (97) = Oy Ay 900y B

Then similar to the above we see that

my _ C(-1)7 _€om E(s—)T _€+n)T
SOUJ"U}]‘ (g ) - a’(g_l)‘ir a’OTF a(s_l)ﬂ' (£+1)7r a]7

and as uj := vjw; is a vertex of level s, we have that H,; contains a cyclic permutation of
azésjll)): ---agy that ends with a; on the right.
Now, by using Lemma 9.4.3 repeatedly, one can see that the result holds for level ns

of T, for n > 1. ]

Proposition 9.4.5. Let g € G be such that g = a7 - af, where ¢; € {+1}. Then there

S

exists a vertex u of level ns in T, for some n € Ny, and an element ¢’ € st¢gy(u) such that

ou(d) = azf':ll)): ~ragy for some w € Sym(s).

Proof. The proof proceeds by induction on the length of g. Recall from [92, Theorem 1.6(iv)]
that G/G' = {aoG',...,as—1G"y = Z°. Hence if g is equivalent to a5>7' - - - af’ then |g| > s—1,
since any word containing each of the distinct generators of G has length at least s. Assume

that |g| = s. Then
€(s—1)™ €om

g€ {a(s_l)ﬂ' -+ agy | me Sym(s)}

and the result follows trivially by choosing u as the root vertex. Now, assume that |g| >
s. Since the exponent sum of ag in any word representing ¢ is €y, we can write g =

(90s- -+, gm—1)0 with go, ..., gm-1 € G. We get
(90" Gm—1, 91" Gm—190+ - » Gm—190 " * * Gm—2) if g = 1,
(909m—19m—2 " g1, 91909m—1"""92 -+ > gm—-19m—2---go) if eg = —1.

For every k € [0, m — 1], we set ag, = ¢i(g"™). It follows from Lemma 9.4.2 that

— €s—1 €1 €0
A =0g_9 "0y gy
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for all k € [0, m — 1]. Furthermore || < |g| for all k € [0,m — 1] by Lemma 9.3.2. If there
exists k € [0,m — 1] such that |ag| < |g|, then it follows by induction that there exist a

vertex u of level ns in T, for some n € Ny, and ¢ € st(,,,(u) such that

N s €(s—2)7 €gm
Pulg’) = As—1yr 1 (s—2)r—1 """ Gom—1

for some 7 € Sym(s). Using Lemma 9.4.3, we get that

m571) _ =17 E(s—2)7 €m

P(m—1)s—1 ((9/) = Q(s—1)m G(s—o)= """ Qo >

and hence the result follows.
m—1
Assume that |ag| = |g| for all k € [0,m — 1]. Since |ag| < > |ge|, in particular, we get
=0

m—1
> lgel = lgl.
£=0

Let wy € S* be a geodesic word representing g. Since for each i € [0, s — 1] the element a;’
contributes a;' ; in exactly one component, we can obtain words w, representing gi by
substituting a;’ in w, with @’ ; in the appropriate component. Notice that |gx| < |wg, | for

every k € [0,m — 1]. Moreover, the words w,, are geodesic. Indeed,

m—1 m—1 m—1
Dokl < ) fwg, | < wgl = lgl = ) gl
k=0 k=0 {=0
which forces that |wg, | = |gi|. Now, set
Wy, Wy 1 " W ym—1 if o =1,
Wa, =
Wy Wy, g+ Wyp_ (1) if e = —1.

Clearly wg, represents ay. Therefore |ag| < |wq, |. Furthermore,

m—1 m—1
war | < D7 lwg,l = 7 1gel = lgl = lol-
/=0 =0

Thus |ag| = |wa, | and w,, is a geodesic word.

Now, we claim that in order to prove the result, it suffices to consider the situation in
which for every i € [0,s — 1] there exists a unique k € [0, m — 1] such that w,, contains a
non-trivial power of a;. First we consider the case when ¢ = 0. Assume to the contrary that
there exist distinct k1, ks € [0,m — 1] such that wg, —and wy, —contain non-trivial powers
of ag. We can reduce to the following two cases.

Case 1: Suppose that there exist distinct ki, ks € [0,m — 1] such that wg, and wg,,

contain ag and ay ' respectively. Then for some k € [0,m — 1], the word w,, contains a
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subword of the form aowaal with w e S*. If of* = (Bo,...,Bm-1) then, by Lemma 9.3.2
and Lemma 9.3.3, we obtain that |5y < |« for every £ € [0, m — 1]. Again, the result follows
by induction.

Case 2: Suppose there exist distinct k1, ko € [0,m — 1] such that W, and Wg,, contain
ap. Recall that G/G’ = {agG’, ... ,as_1G")y =~ Z*°. Hence, as the exponent sum of a; in any
word representing g is €;, the exponent sum of ag in w,, is equal to € for all k € [0, m — 1].
This implies that there exists k3 € [0, m — 1] such that wy, —contains a, ! and we are in the
previous case. Analogously, the same argument works if both Wg, and wg,, contain a; L

We reduce to the case such that there exists a unique k£ € [0,m — 1] such that wy,
contains a non-trivial power of ag. By inducting on i € [0, s — 1], assume that there exists a
unique k € [0, m — 1] such that wg, contains a non-trivial power of a;_;. Suppose that there
exist distinct ki, ko € [0,m — 1] such that wg, and wg, ~contain non-trivial powers of a;.
We can find k3 € [0,m — 1] such that wq,, contains a subword of the form aflwan, where
01,0y € Z\{0} and w € S* with exponent sum of ag in w is not equal to 0 mod m. Thanks
to Lemma 9.4.2, we may replace g with ay,. Then we find more than one wy, containing
non-trivial powers of a;_1, contradicting the assumption and hence proving the claim.

Thus, we reduce to the situation in which for every i € [0, s — 1] there exists a unique

k € [0,m — 1] such that w,, contains a non-trivial power of a;. An easy computation yields
l

that w, does not contain a subword of the form ailwa?, for some i € [0,s — 1] where
01,05 € Z\{0} and w € S* with the exponent sum of ag in w is not equal to 0 mod m. Hence,

we conclude that w, must be of the form

€0
wi(agy, ..., a;,)a5 w2 (A, - Giy_y)-
where w; and wy are words in the given elements, and {i1,... %9, tp41,...,05-1} = [1,5 — 1]
such that the intersection {i1, ..., i} " {ir41,...,95—1} is empty. Consider the element cv,;,_1

obtained from the element g above. Then the corresponding w,, has the form

w1 (ail_l, . ,air_l)azo_lwg(airﬂ_l, e ,ai571_1>,

and continuing the above procedure with this word, yields the element azs__ll)): ceagy € Hy

for some u of level ns in T, for some n € Nj. O
Theorem 9.4.6. If H is a prodense subgroup of G then H = G.

Proof. Note that HG' = G as H is a prodense subgroup. Therefore there exists an element
z € G' such that as_1---apz € H. By an application of Proposition 9.4.5, we can find

u € T such that H, contains a(,_j)~ - --agr for some m € Sym(s). We set g = a(s_1)~ - - - aor.
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Thanks to [40, Lemma 3.1], the subgroup H, is again a prodense subgroup of G. Without
loss of generality, we replace H with H,,.

Again, as H is prodense, for some Z € G’ we similarly have a;_1 - - ~a1a615 € H. By
Proposition 9.4.5, there exists a vertex u at level ns, for some n € N such that H, contains

an element hg of the form

€ T
(s—1)70 €070
ho = (s—1)70 ccQgrg

where 79 € Sym(s), with ¢;/0 = —1ifi™ = 0 and ;70 = 1 otherwise. Now, by Lemma 9.4.4(i),
the subgroup H, also contains some cyclic permutation of the element g. By abuse of
notation, we replace g with this cyclic permutation of g. We again replace H with H,,. Now

H contains the elements g and hg. Repeating this argument s — 1 times, we may assume

that H contains the elements g, hg, ..., hs_1, where
R CER N €07
h/] = a/(sil)'r"7 A 07(')3 3
where 7; € Sym(s) with ¢ = —1if (% = j and €7 = 1 otherwise. Appealing to

Lemma 9.4.4(ii), we now choose a vertex v, with v of level ns for some 7 € N, such that
the cyclic permutation of g that is contained in H, ends with ag on the right. We rename
this element g. So we have g € H, and by Lemma 9.4.4(i) we have a cyclic permutation
of each of the elements hg,...,hs—1 in H,. By abuse of notation, we rename these cyclic
permutations hg, ..., hs_1 respectively. As before we replace H with H,. Now H contains
the elements g, hg, ..., hs_1, where g ends with ag on the right.

For each n € Ng, let v, = (m —1)-"- (m — 1) denote the right-most vertex at level n. It
follows from Lemma 9.4.3 that for d € N we have ¢, (gmds) = g and @, (himds) = h; where

i € [0,s — 1]. Furthermore, for any element f € G of the form

for pairwise distinct ¢1,...,¢ € [0,s — 1] with ¢ € [1,s] and ¢; € {£1}, we can consider its
contribution to H,, . Specifically, if f € St (1), we simply consider its image under ¢,,_;. If
f ¢ Stg(1), then we consider p,,—1(f™). We refer to this general process as projecting along
the right-most path. By projecting along the right-most path, we observe that if f € H,,,
for j € N, then f € H,,, ; compare the proof of Lemma 9.4.3. This observation will be used
repeatedly throughout the proof without special mention.

The strategy of the proof is now to consider the contributions from

<g>v <h0>a ) <hsfl>
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to H,,, and to multiply them appropriately to separate the generators ag,...,as—1. More

specifically, if for some n € N, suppose we have non-trivial elements «, 8 € H,,, of the form

frd 61 IR €q e 61 ... 6T

= ail aiq’ 6 - ajl ajr
where €;,0; € {£1} and 2 < ¢,7 < s, with i1,...,i, € [0,s — 1] pairwise distinct, and also
Jiy.-.,Jr € [0,s — 1] pairwise distinct. We consider two situations below, where we assume

always that &, E are non-trivial.
(i) If « = dlag and 8 = Eaglﬁ, then
Ba = Bag " Baag
yields

(pm—l(g) € H’Un+17

and hence

~

beH

Un+s

and aglﬁe H,

n+s*

(ii)) If @« = apx and § = B\aglg, from
af = apdfay B,

we obtain

~

Pm—1 (6) € an+17

and similarly,

~

beH

Un+s

and ﬁao_l e H

Un+s*

In other words, upon replacing H,, with H,, , we have split 5 e H,, . into two non-trivial

n+s n+s

parts. The plan is to repeatedly perform such operations as in (i) and (ii) above to keep
splitting products of generators. Eventually we will end up with ag,...,as—1 € H, for some

u, which gives H, = G and equivalently that H = G, as required.

We begin by first considering the contributions from {(g) and (hg) along the right-most

path of the tree. For convenience, write
—_— . . f— . ... . 71 - DY .
g=a; -G, ,ap and ho = aj, -+ -aj,_,aq aj,,, - aj,,

for some d € [1,s], where {i1,...,is—1} = {J1,-- -, Jd—1,Jd+1s---+Js} = [1, s — 1].

Case 1: Suppose 1 < d < s. Then we are in situation (i) from above, and it follows that
Gj -1 Qjg_1—1 € H,, and a;jlajd+171 -1 € Hy, .
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We will now use (the projections of) these two parts of hg to split g into two non-trivial
parts.
Let j := jg—1. We consider the contribution of aj, ---aj, , to Hy;. In other words, we

project along the right-most path down to level j, which gives
Ajy—j gy n—j00 € Hy,.
Recalling that g = a;, - - a;,_, a0, we have that i, = j for some r € [1,s — 1]. Then setting
BV = o, (0™) = air—j G, — Q0G4 —j Gy —jas—j € Hy)

and

1= aj—j o Gy ,—jao0 € Hoyy,

it follows from situation (i) that

Qipyr—j—1 " Qig_—j—10s—j—1 € Hy,, and - @i —j—1- @i, —j—1as-1 € Hy,,

so we have split g into two non-trivial parts.
We now use the two parts of g to split the parts of hg further. For clarity, let us first

project to vs. Here in H,,, we have the elements

—1
Ajy * " Gjg_5 A5, Gy Ajgyq " Ajss gy + 0 Qg A Wiy 7" Qi1 G0-

The left two elements are the two parts of hg, and the right two are those of g. Without
loss of generality, we replace H with H,,.

Subcase (a): Suppose 1 <1 < s —1. Let k := ¢;. Then either k = j, for ¢ € [1,d — 2]
or k = j, for g € [d + 1, s]. Suppose the former; a similar argument works for the latter. If
g > 1, we let 57! be the kth level projection of aj, -+ - aj, ,a; (as usual along the right-most
path) and « be that of aga, - - - a;,_, aj, which by (ii) gives, upon replacing H with H,_, the

following elements in H:

—1
Ajy = g1y AkQjgyq =" Ajg_o A5, Qo Qg * " Qjgs ApQip " Qg 1 g, Qjpyy " Qi1 Q0.

If ¢ = 1, we have instead the following elements in H:

-1
ARy« Ajy_ 504, Ay Ajgiq =" Ajss Af iy~ + Q.1 Ay, iy * " Qi1 Q0

Hence we let ¢ :=i,4; and let c € [2,d — 2] U [d + 1, 5] be such that j. = ¢. We consider the

(th projection of aga;, ., - - - a;,_,ap multiplied accordingly with that of aj_laj_d; e aj_;a;l
ora;t---a;l

n a1 @0- This is situation (ii).
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Subcase (b): Suppose r = 1. Then we have the following elements in H:

—1
Ajy - Ajg_os Ay Qjgrq " Ajss aj, Qip ** Qg1 A0-

If iy # ji1, let k := j1, and we proceed according to (ii), with « being the kth projection of
araj, - - aj, , and B that of (a;, - -~ a;, ag)~t. If ig = ji, we let instead k := j5 and consider
the kth projection of (a;, - - a;,_,ao) ! multiplied with that of ag'aj,,, -+ aj,_,ax; that is,
situation (i).

Subcase (c): Suppose r = s — 1. Here we have the following elements in H:
Gy e Qg5 Ajs Gjapr " Ajss Giy - Gig_y Oy, ao-

If 41 # j1, we let k := ji, and proceed as in (ii), taking « to be the kth projection of
araj, - -aj, ,a; and B that of (a;, ---a;,_,a0)"t. If iy = j1, we instead let k := jsz1 and
likewise following (ii) we consider the kth level projection of ayaj, ., - - - a;, multiplied with

that of (ail s ais_Qaj)_l.

We aim to continue in this manner, using newly-formed parts of g to split the existing
parts of hg, and then using the newly-formed parts of hg to split the existing parts of g.
Observe also that if a;, for some i € [0, s — 1], is an isolated part of g (that is, a part of g
of length one), then using (i) or (ii), one can further split the parts of hg to isolate a; from
the parts of hg. Indeed, if a; or a; ! occurs as an endpoint of a part of hg, then it is clear.
If a; is an interior point of a part a,, - - AreQilre ) " Qre of hg, then projecting to the ith
level, we have

-1
(aTl—i e a’T‘g—iaOaT‘g+1—i e aT§+Z—i)a0 € H’Ui)

and thus

As—1, Ary—i—1" " Qrg—i—1, Arepq—i—1" " Qrey,—i—1

are elements of H,, ,, giving

Qj, Qpy - a’?“gu a7’€+1 U ar5+z

in H,,, . As usual, we then replace H with H, We proceed similarly in the case when

its
a; 1is an interior point in a part of hg.

Hence we may assume that the set of length one parts of g is equal to the set of length
one parts of hg. Equivalently, the set of parts of g of length at least two involve the same
generators that appear in the parts of hg of length at least two.

If there are no parts of length at least two, then all generators have been isolated, and

we are done, so assume otherwise. Suppose for now that the parts of g of length at least
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two are labelled as follows:
ael*..'*aflj aeg*“.*an) R s ae#*---*afp/7
for some 1 < pu < s, and similarly for hg:

VoL A1 Y2 4L A2 Yooy ... Ay
apr o ccwkagl,  apyEccckagy, Lo, aplweccxagh,

for some 1 < v <'s, with y; = 1if j e [1,s — 1] and 7; = —1 if j = 0 and similarly for ;.
Here * stands for unspecified elements in the alphabet S. Write
gg = {(aelvafl)v sy (aew afu)}

for the set of ordered pairs of the so-called endpoint generators. If ag has not been isolated,
it follows that the corresponding set &, of endpoint generator pairs for hg is of the form

-1

Eny = {(aO 7afh)v (amv an), SR (apuv aqu)}7
subject to reordering the parts of hg. Indeed, else we may separate the parts further using
(i). Without loss of generality, write
gg = {(a617a0)7 (aez’ an), ERE (aeuvafu)}'

Note that if

{p2,...,ovy Ui, ...} #{er,...oeny U {fo,..., fu}s

we may proceed as in (i) or (ii), since then an endpoint from a part of g is an interior point

in a part of hg, or vice versa. Hence y = v and

{p2,...,put v ia, ... qu} = {er,....eny O {fo,..., fu}s

Since {p2,...,p,} has less elements than {ei,...,e,}, it follows that e; € {qi,...,q,} for
some i € [1,u]. Then we proceed as in (ii). Hence, if a¢ is not an isolated part of g
(equivalently of hg), then we can continue splitting the parts of g and hy.

So suppose now that ag has been isolated. As reasoned above, we have

&y = {(ael,afl),...7(aewafu)}
and
Eny = {(apua«h)v'-‘7(apwaqu)}
with
{61a"'7eu}u{f17"'afu} :{plw--,pu}U{QL---,qM}'
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Similarly if
{er, ..., eutniaq, .. qu}# 9,

we proceed as in (ii). So we assume that

{er,...,ent ={p1,...,pu} and {fi,..., fu} ={q1, .., qu}

To proceed, we now consider the element h., defined at the beginning of the proof.
Proceeding as in (i) and (ii), we use the parts of g and hg to split he, into parts, and if
possible, we likewise use the parts of h, to further split the parts of g and hg. We claim
that ae, has been isolated through this process. Indeed, analogously to the considerations

above for when ag was assumed to be an endpoint in &, if we have

Shel = {(akl,agll), (Chy, ary), - - -, (akn,agn)}

and
59 = {(aeuafl)» (a62’ af2)7 cee (aen?afn)}7

where here n > 1, and by abuse of notation we still write e; for the left endpoints and f; for
the right endpoints for the parts of g. Then, as seen before, there is some f; € {k1,...,k;,}
for i € [1,7], and we can proceed as in (i) or (ii). If instead (a.', ar,) € &n,, then we multiply
the e1th projection of ae, * --- = ay, with that of a_' = --- = ay, as in (ii). Lastly, if a! is
an interior point in &, , then we proceed as in (ii). In other words, if ae, is not an isolated
part of g (equivalently of hy and of he, ), then we can always continue splitting.

By abuse of notation, we redefine £, to be the new set of endpoint pairs, after this
further splitting of the parts of g. If £; # @, pick a left endpoint a. for some e € £;. From
working in a similar manner with the element h., we can isolate ae.

Proceeding in this manner, we will end up with all individual generators.

Case 2: Suppose d = 1. Thus we have

. ) N P
g=ai --a;,_jay0 and hg= a5 aj, aj,.

s

Write ¢ := ¢; and let 7 € [2, s] be such that j, =i. As in situation (ii), we consider instead
the ith projection of g multiplied with that of hy 1. We now proceed as in Case 1 with the

argument using the pairs of endpoints &,.

Case 3: Suppose d = s — 1. Here we proceed first using (i), and then following the

argument laid out in Case 1. O
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Akin to [33, Proposition 6.6], one can show that the group G has a non-normal maximal
subgroup of index ¢, for infinitely many primes ¢. Indeed, the group G has a proper
quotient isomorphic to W,,,(Z), where for G a group and m € N>o, we write W,,(G) for the
wreath product of G with a cyclic group of order m. Writing L = w;l(G’ X -+ x G') and
N = L{al*y < G, analogous to [33, Lemma 6.4] we have that G/N =~ W,,(Z*~'), which has
Win(Z) as a quotient group; compare also [92, Theorem 1.6(iv)].
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Chapter 10

Appendix

Here we give a MAGMA code that produce first 500 terms of the representation zeta function
of (G3. Furthermore, the MAGMA code computes a conjectural approximation to the true
abscissa of convergence of the representation zeta function of G3 based on the truncated

representation zeta function of G with 500 terms.

N

clear;

; Q := Rationals();
R<x> := PolynomialRing(Q);
a := R!6; // alpha(s)
b := R!6; // beta(s)
t := R!6; // tau(s)

3 h := R!54; // xi(s)

52 := 3 + a + 2xb + t + h;
N := 500;

3 al

for i in [1..N] do

b1

6 + 3*x*Evaluate(t,x"3);

bl + x"2xEvaluate(a + 2*b + h,x"3);
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18*b + 3*b~2)

3*b~2 + 37 (-1)*a*b~2 + 2*axb + a~2

3)

2%a + 37 (-1)*a"~2));

*t + 3%axb”"2 +18%a*b + 6*b"2+ 18xa + 36%*Db)

3°(-1)*h~2*a + 37 (-1)*2*h~2*b+ 3~ (-1)*h~2*t +

+ 37 (-1)*h*a"2 + 3°(-1)*4*xhxa*b + 3~ (-1) *2*xh*a*xt + 2%h*a + h*xb~2 +

3°(-1)*h*t~2 + 2%h*t + 97 (-1)*a~3 + 37 (-1)*2*xa"~2xb +

+ 37 (-1)*4*a*xb*t + 3~ (-1)*a*xt"2 + 9°(-1)*2*%b~3 + 37 (-1) *2*b"2*t +

tl := 6 + x*(18 + 9%t + 9xa +
+ x72x(37(-1) *2*b~3 +
+ h*x(37(-1)*b"2 + 2xb +
+ t*(37(-1)*2*xb~2 + 4*b +
hl := 54 + x*(t"3 + 9*%t~2 + 18
+ x72 x( 97(-1)*h"3 +
h~2
37(-1) *4*h*bx*t
+ 2xhxb +
37 (-1) *2*a*xb"2
37(-1) *2*b*xt"~2)
- x*9*xEvaluate(t,x~3) -
a := al mod x~(i+1);
b := bl mod x~(i+1);
t := tl1 mod x~(i+1);
h := hl mod x~(i+1);
z := 3 + a + 2xb + t + h;
end for;

C := Coefficients(z);

for i in [1..#C] do

x~2*Evaluate (a+2*b+h,x"3) ;

7 print "Log-Coefficients of zeta:";
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if i mod 50 eq O then

s := 0;

for j in [1..i] do

s := s + C[il;

end for;

print i, Log(3°(i-1),s);

end if;

end for;

// zeta function for the Gupta-Sidki 3-group:

Z := 9 + 2xx + (a + 2%b + t)*x + h*1/9%x"2;

print "Zeta function for the Gupta-Sidki 3-group:";

5 print Coefficients(Z);

In the table below (Table 10.1; see next page), we record the conjectural approximation
to the true abscissa of convergence of the representation zeta function of GG obtained from
the above MAGMA code. Let C[i] be the i-th coefficient of the truncated representation
zeta function Z of the Gupta—Sidki 3-group obtained by the above MAGMA code. We set

logl%N

N
RN = Z C[Z], and anN = T aN—1’
= log 3

for n € N.
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N = No. coefficients an
50 4.28809482644205827618427001965
100 4.26582641695131320837105671922
150 4.25941122492886427875805573915
200 4.25649449175719045440344407196
250 4.25486880412599919804784805893
300 4.25384966803674456734571609285
350 4.25315962972893680483614529402
400 4.25266624100080541234099009957
450 4.25229881277024246216994399538
500 4.25201641764947051253184438879

Table 10.1: Conjectural approximation to the true abscissa of convergence of the represen-

tation zeta function of Gg.
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