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unpublished notes on representations of Gupta–Sidki 3-group, which provided a general

strategy for the computations presented in this thesis.

I am thankful to Dony, Iker, Margherita, Martina and Moritz for proofreading parts of

this thesis. A big thanks to Djurre, Iker, Margherita, Martina, Moritz, Saba, Zeynep and

all my colleagues for their support and constant motivation and for making me feel at home

while being far away from home. I will always cherish their friendships.

My sincere thanks to Heinrich-Heine-Universität Düsseldorf for the financial support and

working environment. I acknowledge the financial support from the Deutsche Forschungs-

gemeinschaft (DFG, German Research Foundation) — 380258175. The research for this

thesis was partially conducted in the framework of the DFG-funded research training group

“GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and Topology”.

My appreciation goes to the Junior Scientist and International Researcher Center (JUNO)

at HHU for helping me with all bureaucratic work for my stay in Germany.

I am incredibly grateful to Ebi, Aarathy, Hari, Anju, Ashish, Dony, Amal, Megha,

Musthu, Vidhya, Sri, Sentil, Muneer, Sony, Manu, Sethu, Aswathy and my other beloved

friends. They kept me going through challenging times. I cannot thank them enough for

their love and encouragement.

Finally, I express my profound gratitude to my parents, Malu, Kunjunni, Appunni, and

other family members, for their unwavering support throughout my years of study. This

accomplishment would not have been possible without them.





Abstract

This dissertation is a study of two remarkable classes of groups that admit faithful actions

on infinite regular rooted trees and exhibit strong self-similarity features. The groups that

we consider are Grigorchuk–Gupta–Sidki groups (GGS-groups) and generalisations of the

so-called Basilica group. This thesis is written in the form of a cumulative dissertation

consisting of two self-contained parts; each comprises two projects.

The first part contains an investigation of the emerging field of representation zeta func-

tions of groups acting on rooted trees. The representation zeta function of a group G is

the Dirichlet generating function that encodes the number of finite-dimensional irreducible

complex representations of G. Using representation zeta function as a tool, we prove that a

large class of GGS-groups, for instance, the Gupta–Sidki groups, have polynomial represen-

tation growth, and provide a bound for the degree of polynomial growth. Furthermore, we

carry out explicit computations to describe the representation zeta function of the Gupta–

Sidki 3-group. The functional equation which we obtain agrees with the one provided by

Bartholdi based on undocumented computer calculations.

The second part of the thesis comprises two articles on generalisations of the Basilica

group:

(1) With Jan Moritz Petschick: On the Basilica operation, Groups, Geometry, and Dy-

namics, to appear, available at arXiv:2103.05452;

(2) With Anitha Thillaisundaram: Maximal subgroups of generalised Basilica groups,

available at arXiv:2103.05452.

Both articles are incorporated into the thesis as self-contained chapters. The first article is

supplemented by a detailed proof (for Theorem 6.8) which is not included in the arXiv and

accepted versions.

Inspired by the Basilica group, together with Petschick, we introduce a general construc-

tion, called the Basilica operation, that produces an infinite family of Basilica groups from

a given group of automorphisms of a rooted tree. We investigate which properties of groups

of automorphisms of rooted trees are preserved under the Basilica operation. For groups

that display strong self-similarity features, we develop new techniques for computing their

Hausdorff dimension, which is generally difficult to calculate. Furthermore, we investigate

an analogue of the classical congruence subgroup problem, which is studied in the context

of arithmetic groups. In the second article, we study maximal subgroups of certain Basilica

groups, and prove that they are of finite index in the corresponding Basilica groups.

arXiv:2103.05452
arXiv:2103.05452
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Notation

N{R{C the set of natural/real/complex numbers

N0 the set of whole numbers

Z the set of integers

Fp the field of p elements

ri, js the interval in Z, i.e., ri, js “ ti, i` 1, . . . , j ´ 1, ju, for i, j P Z

MatnpKq the set of all nˆ n matrices over a field K

GLnpKq the general linear group of degree n over a field K

xy y´1xy

rx, ys x´1y´1xy

Cm the cyclic group of order m

xSy the group generated by a set S

xSyG the normal subgroup generated by a subset S Ď G in a group G

G1 commutator subgroup of a group G

γnpGq n-th term in the lower central series of a group G

rG : Hs the index of a subgroup H in a group G

Xn the sets of words of length n over an alphabet X

X˚ the free monoid generated by an alphabet X

SympXq the symmetric group on a set X

p0 1 ¨ ¨ ¨ m´ 1q the cyclic permutation mapping 0 to 1, 1 to 2, ..., m´ 1 to 0

T the m-regular infinite rooted tree, for m ě 2

AutT the automorphism group of the rooted tree T

stGpvq the stabiliser of a vertex v P T in a group G ď AutpT q

StnpGq the n-th level stabiliser in G

ristGpvq the rigid vertex stabiliser of the vertex v P T in a group G ď AutpT q

RistGpnq the n-th level rigid stabiliser in G

g|v the section of an element g P G at the vertex v P T

v



g|v the local action of g P G at the vertex v P T

G ≀H the permutational wreath product of a group G by a group H

ψ the homomorphism ψ : G ÝÑ G ≀ SympXq, g ÞÑ g|ϵpg|0, . . . , g|m´1q,

where g|ϵ is the local action of g at the root ϵ of T

ψn the induced homomorphism ψn : StGpnq ÝÑ Gˆ
mn

¨ ¨ ¨ ˆG

| ¨ | word metric

rnpGq number of n-dimensional irreducible complex representations of a group G

RN pGq
N
ř

n“1
rnpGq

ζGpsq the representation zeta function of G, for a complex variable s P C

αpGq the abscissa of convergence of ζGpsq

O big O-Notation

IrrpGq the set of irreducible characters of G

χ|H the restriction of a character χ P IrrpGq to a subgroup H

χG the induction of a character χ P IrrpHq to a super group G

IGpχq the inertia group of a character χ P IrrpHq of a subgroup H in a group G

Bassp¨q the Basilica operation, for s P N

vi



Chapter 1

Introduction and general overview

This dissertation contains an investigation of groups acting on infinite regular rooted trees.

The groups acting on rooted trees have initially drawn a great deal of attention because

they exhibit prominent features and solve several long-standing problems in group theory.

Over the last 40 years, the theory of groups acting on rooted trees has been developed

substantially and has become an integral part of group theory, with connections to other

areas of mathematics such as cryptography and dynamics; see [18,54,55,76].

The most famous example of a group acting on a rooted tree is arguably the (first) Grig-

orchuk group. It was introduced by Grigorchuk [51] in 1980 as a simple yet elegant example

of a finitely generated infinite torsion group. The Grigorchuk group was originally defined as

the group of Lebesgue measure-preserving transformations of the set r0, 1szt k
2m | k,m P Zu,

where r0, 1s is the unit interval in R. Soon, the group was realised as the group of automor-

phisms of the binary rooted tree. Henceforth, attempts have been made to produce more

examples of groups with similar properties that admit faithful actions on rooted trees. For

instance, Gupta and Sidki [63] came up with a family of finitely generated infinite p-groups,

for each odd prime p.

The Grigorchuk group and the Gupta–Sidki groups are explicit solutions to the General

Burnside Problem that asks about the existence of groups of such a kind, a question posted

by Burnside in 1902. It was partially proved by Burnside, extended by Schur, and further

generalised by Kaplansky that such groups do not exist in the realm of classical matrix

groups; cf. § 9 in [71]. That is, every finitely generated torsion subgroup of GLnpKq,

where n P N and K is an arbitrary field, is finite. However, the first examples of finitely

generated infinite torsion groups was provided by Golod [48] in 1964, based on his work

with Shafarevich [49].

The Grigorchuk group also played a significant role in the theory of word growth of

1



groups. Let G be a finitely generated group and let S be a symmetric finite generating set

of G (i.e., S is closed under taking inverses). For n P N0, let spG,Sqpnq denote the number

of distinct elements of G that can be minimally represented by words in S of length less

than or equal to n. The non-decreasing function spG,Sq : N0 ÝÑ N is called a word growth

function of G. We say that a finitely generated group G has polynomial word growth if there

exist constants c, d ą 0 such that spG,Sqpnq ď c nd for all n P N. A group G has exponential

word growth if there exist constants α ą 1 and c ą 0 such that spG,Sqpnq ě c αn for all n P N.

The word growth function of a group depends on the generating set we choose. However, it

can be checked that the growth type of the growth function does not depend on the choice of

a generating set. It is easy to find examples of groups with polynomial or exponential word

growth. For instance, finitely generated free abelian groups have polynomial word growth,

and on the other hand, finitely generated non-abelian free groups display exponential word

growth. According to the celebrated theorem of Gromov [60], a finitely generated group has

polynomial word growth if and only if it is virtually nilpotent.

The Grigorchuk group is the first group shown to have intermediate word growth (i.e.,

neither polynomial nor exponential) [52]; it thus answered a long-standing question of Mil-

nor. In contrast, the word growth of the Gupta–Sidki groups is still not known to be

intermediate or exponential. Until recently, the constructions of all known examples of

groups of intermediate word growth were inspired by that of Grigorchuk’s. However, in [78],

Nekrashevych constructed an infinite family of simple groups of intermediate word growth,

producing the first examples of such a kind. The groups introduced in [78] are obtained via

homeomorphisms of a Cantor set. 1

In the course of time, various generalisations of early constructions to wider families of

groups of automorphisms of rooted trees have been defined and studied. This dissertation

focuses on two major classes of generalisations known as branch groups and automaton

groups (groups defined by automata).

The concept of branch groups was introduced by Grigorchuk in 1997. From a geometrical

point of view, branch groups are groups acting transitively on each level of a rooted tree and

having subnormal subgroups similar to the corresponding structure in the full automorphism

group of the rooted tree; cf. [54]. The initial examples of groups acting on rooted trees, such

as the Grigorchuk group and the Gupta–Sidki groups, are branch groups; cf. [18]. Branch

groups naturally arise in the description of just infinite groups. We recall that a group is just

1More recently, the study of groups of homeomorphisms of a Cantor set has become an active area of

research. They are the main source of examples of totally disconnected locally compact topologically simple

groups. Although they are a very interesting class of groups, we will not discuss them in this thesis.
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infinite if it is infinite and all of its proper quotients are finite. Within the profinite category,

one may think of just infinite groups as generalisations of simple groups. Pioneering work

of Wilson [107] provided a basic structure theory for just infinite groups. Based on this

Grigorchuk proved that just infinite groups admit a trichotomy in which branch groups

occur as one of three cases; cf. [54].

Automaton groups are defined by modelling the self-similarity of rooted trees. The first

example of an automaton group was constructed by Aleshin [4]. The Aleshin group is a

two-generated infinite torsion group acting on the binary rooted tree and is commensurable

to the Grigorchuk group (we say that two groups are commensurable if they are isomorphic

up to finite index). The action of an automaton group on a rooted tree can be best described

by a finite-state machine, called an automaton, whose states correspond to automorphisms;

see Section 2.1.2 for an explicit definition. The automaton groups often come with a rich

geometry. For instance, the graphs of the action of some automaton groups on each level of

a rooted tree (Schreier graphs) are of interest; cf. [16,57]. In certain cases, the finite Schreier

graphs converge to some fractal space [32]. The theory of automata and automaton groups

has evolved considerably over the last couple of decades. We refer the interested reader

to [76] for a survey on the topic.

The groups that we study in this dissertation lie in the intersection of automaton groups

and a more general class of groups including all branch groups, called weakly branch groups,

which are obtained by relaxing some of the algebraic properties of branch groups; see

Section 2.3 for more on weakly branch groups. We investigate the properties of two distinct

classes of groups, namely Grigorchuk–Gupta–Sidki groups (abbreviated as GGS-groups) and

generalisations of the so-called Basilica group, to be discussed shortly, which was introduced

by Grigorchuk and Żuk in [58] and [59].

The dissertation is written in the form of a cumulative thesis consisting of two self-

contained parts; each comprises two projects. Part I is about the representations of GGS-

groups, while Part II studies generalisations of the Basilica group. The content of Part II

is available online on the public depository arXiv in the form of two articles; [92] and [94].

The first article is written in collaboration with Jan Moritz Petschick (fellow PhD student

at Heinrich-Heine-Universtität Düsseldorf) that has been accepted to the journal “Groups,

Geometry and Dynamics” for publication. The second article is the first part of a work

in progress with Anitha Thillaisundaram at Lund University and has been submitted for

publication in a mathematical journal.

Part I and Part II are preceded by a comprehensive preliminary section (Chapter 2),

3



where we develop the language for groups acting on rooted trees. To facilitate the subsequent

discussion, we give a short survey on the Basilica group and the GGS-groups in Chapter 2.

Properties of the Basilica group are presented with historical notes that provide a context

for the discussion in Part II. Here we give a summary of results from both parts without

details. We refer the readers to the respective sections for a formal introduction to the

subjects, where we also analyse our results in a historical and a broader mathematical

framework. The references for Chapter 1, Chapter 2, Part I and Part II are collected at the

end.

Part I is dedicated to the study of the asymptotic distribution of irreducible complex

representations of GGS-groups. For a group G, let rGpnq denote the number of (equivalence

classes of) n-dimensional irreducible complex representations. We are interested in groups G

such that rGpnq is finite for all N. We encode the arithmetic sequence rGpnq in a Dirichlet

generating function, known as the representation zeta function, given by

ζGpsq “
8
ÿ

n“1

rnpGqn
´s ps P Cq,

and try to link its arithmetic and analytic properties to the algebraic properties of the

group G. Part I begins with Chapter 3 that provides a gentle introduction to the theory of

representation zeta functions, followed by Chapter 4, where we review key results from the

representation theory of finite groups. Our main results on representations of GGS-groups

appear in Chapter 5 and Chapter 6.

The GGS-groups are generalisations of the (second) Grigorchuk group and the Gupta–

Sidki p-groups, for odd primes p. To each non-zero vector e P Fp´1
p , one can associate a

GGS-group generated by two automorphisms of the p-regular rooted tree; a formal definition

can be found in Section 2.4.2. If the defining vector e of a GGS-group G is non-constant,

then G is a branch group [37]. Moreover, there exists a subgroup H of finite-index in G

such that H geometrically contains subgroups isomorphic to H ˆ
pn

¨ ¨ ¨ ˆH for all n P N. In

particular, if the defining vector e is also non-symmetric (see Definition 2.4.20), by taking

H “ G1, the commutator subgroup of G, one gets the described subgroup structure.

In Chapter 5, we prove that, for a branch GGS-group G, the number rnpGq is finite

for all n. Using the representation zeta function ζGpsq, we estimate the growth type of

the arithmetic function N ÞÑ RN pGq “
N
ř

n“1
rnpGq. We prove that RN pGq is polynomially

bounded inN . The degree of polynomial growth is given by the abscissa of convergence αpGq

of ζGpsq; see Chapter 3 for details. We set C to be the number of irreducible representations

of the commutator subgroup H “ G1 of G that are invariant under conjugation by G. If the

number C is finite, we observe that the numbers rnpGq are bounded above by a function

4



of n involving the generalised Catalan numbers ; see Definition 5.3.5. In this case, using the

generating function for the generalised Catalan numbers, we provide a bound for αpGq, and

hence for the degree of representation growth. The key tools are Clifford theory and the

in-built self-similarity of G.

Theorem A. Let G be a GGS-group defined by a non-symmetric defining vector e P Fp´1
p

and let H “ G1 be the commutator subgroup of G. If the number C of G-invariant (equivalent

classes of) irreducible representations of H is finite then the abscissa of convergence αpGq

of the representation zeta function ζGpsq satisfies the inequalities

p´ 2 ď αpGq ď pp´ 1q
log 2

log p
` ppp´ 1q

logC

log p
` pp´ 1q2 ` pp´ 1q ´ 1. (1.1)

In particular, G has polynomial representation growth.

We investigate the cases in which the number C is finite. These computations depend on

our understanding of the subgroup structure of G, which happens to be determined by the

defining vector e of the GGS-group G. It turns out to be that C is finite, in fact C ď p, if the

defining vector e satisfies a polynomial equation in its entries. In this situation, replacing C

with p in (1.1), we get that αpGq is bounded above by Opp2q.

Theorem B. Let G be a GGS-group defined by a non-symmetric defining vector e “

pe1, . . . , ep´1q P Fp´1
p . We define

e2 “

$

’

&

’

%

pe3 ´ 2e2 ` e1, . . . , ei`2 ´ 2ei`1 ` ei, . . . , ep´1 ´ 2ep´2 ` ep´3q P Fp´3
p , if p ą 3,

empty tuple, if p “ 3.

Assume that the vector e2 is either p˚q symmetric, or p˚˚q non-symmetric and the sum

ωpeq “ pp´ 2qpe1 ´ ep´1q ` pp´ 4qpe2 ´ ep´2q ` ¨ ¨ ¨ ` 3pe p´3
2
´ e p`3

2
q ` pe p´1

2
´ e p`1

2
q

is non-zero modulo p. Then the abscissa of convergence αpGq of the representation zeta

function ζGpsq of G satisfies the following inequalities

p´ 2 ď αpGq ď pp´ 1q
log 2

log p
` 2p2 ´ 2p` 1.

The definition of (non-)symmetric vectors can be found in Definition 2.4.20. For con-

vention, we take the empty tuple to be symmetric. A large class of GGS-groups satisfies

the conditions p˚q or p˚˚q in the assertion of Theorem A. For instance, if p “ 3, then the

vector e2 is the empty tuple and it is symmetric by definition. Therefore, every GGS-group

defined by a non-symmetric vector e P F2
3 satisfies the condition p˚q. The condition p˚˚q is

5



valid for all Gupta–Sidki p-groups, for p ě 5. The extent to which our results generalise to

GGS-groups heavily rely on our good understanding of the algebraic structure of the groups,

such as determining the first p terms of the lower central series; see the discussion at the

end of Chapter 5.

Using detailed character theory, in Chapter 6, we explicitly compute a recursive descrip-

tion of the representation zeta function of the Gupta-Sidki 3-group G3 in terms of partial

representation zeta functions of its commutator subgroup. The description of the repre-

sentation zeta function which we obtain agrees with the one provided by Bartholdi in [14]

based on undocumented computer calculations.

Theorem C. Let G3 be the Gupta–Sidki 3-group. The representation zeta function ζG3psq

of G3 satisfies the ‘functional equation’

ζG3psq “ 9` 2 ¨ 3´s ` 3´s αpsq ` 2 ¨ 3´s βpsq ` 3´s τpsq `
1

9
3´2s ξpsq,

where αpsq, βpsq, τpsq and ξpsq are partial representation zeta functions of the commutator

subgroup of G3, which are defined in Section 6.5.

We refer the reader to Section 6.5 for an explicit formulation of our description of the

zeta function ζG3psq. Currently, our computation is limited to this particular case, because it

is based on the fact that Clifford theory can be effectively carried out only for branch groups

with relatively small branching quotient ; see Definition 2.3.2. However, we believe that our

approach can be used to obtain, in future work, similar results for the Fabrykowski–Gupta

group [35], which is the only example of a branch GGS-group acting on the ternary tree that

is non-isomorphic to G3.

Part II is a collection of two research articles [92] and [94] on generalisations of the

Basilica group, to be discussed below, incorporated as Chapter 8 and Chapter 9 of the

dissertation. We now present selected results from Chapter 8 and Chapter 9. One can

find an in-depth discussion indicating the relevance and scope of our main results in the

introductory sections of Chapter 8 and Chapter 9. In the short technical Chapter 7, one

may find a brief account of the authors’ individual contributions.

The Basilica group B is a two-generated weakly branch, but not branch, group acting on

the binary rooted tree, which was introduced in [58] and [59]. It is the first known example

of an amenable [24] but not sub-exponentially amenable group [59]. Further, it occurs as

the iterated monodromy group of the complex polynomial z2 ´ 1; see [76, Section 6.12.1].

(For a definition of iterated monodromy group, see Section 2.4.1.2.) Moreover, the Julia

set of z2 ´ 1, known as the Basilica fractal, which is the set of accumulations points of the
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backward iterations of an arbitrary point in the complex plane under z2 ´ 1, apparently

resembles the basilica of San Marcos in Venice, and hence the name. It is shown in [77]

that the Basilica fractal can be reconstructed from the Basilica group B. Additionally, the

Basilica fractal can be approximated by a sequence of finite Schreier graphs obtained by the

action of the Basilica group on each level of the binary rooted tree; cf. [32].

Inspired by the Basilica group B, in [92], we introduced a general construction which

produces a family of Basilica groups BasspGq, s P N, from a given group G of automorphisms

of a rooted tree. There is a natural bijection between the vertices of the binary rooted

tree and the set of all finite words over the alphabet t0, 1u. The generators of the Basilica

group B can be best described by a three-state automaton given by Figure 1.1. For alphabets

x, y P t0, 1u and states p, q P ta, bu, we interpret the directed arrow labelled by x : y from

the state p to the state q as follows: upon reading the symbol x the state p gives the output

y and it enters to the state q. Here, id is the short-hand notation for identity state. The

states a and b induce automorphisms of the binary rooted tree.2 We point out the similarities

between these two generators and the single automorphism generating the dyadic odometer

O2; see Figure 1.1. The automorphism b can be interpreted as a delayed version of c that

enters the intermediate state a before referring to itself. Modelling this ‘delaying effect’, we

define the Basilica operation Bassp¨q, s P N; for any group G of automorphisms of a rooted

tree, it yields the s-th Basilica group BasspGq, by adding s´ 1 intermediate states to every

element of G. For the dyadic odometer O2, one has B “ Bas2pO2q.

id ba

0:1

0:0

1:01:1
id c0:1

1:0

Figure 1.1: Automaton generating the Basilica group and the dyadic odometer

We investigate which properties of a group G of automorphisms of a rooted tree are

preserved under the Basilica operation. It turns out to be that the properties related to the

group action of G on a rooted tree (such as self-similarity, fractalness, being weakly branch,

contraction, etc.) are inherited by the higher Basilica groups BasspGq. In contrast, word

growth type is not preserved under the Basilica operation; see Section 8.3.5.

2In [59], the automaton for the Basilica group is provided with the roles of the alphabets 0 and 1 are

swapped, and the group acts on the binary tree from the right. Both conventions yield isomorphic groups.

To be in consistent with the rest of the thesis and with [92], we employ left actions.
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Theorem D. Let G be a group of automorphisms of a regular rooted tree. Let P be a

property from the list below. Then, if G has P , the s-th Basilica group BasspGq of G has P

for all s P N.

1. spherically transitive

2. self-similar

3. (strongly) fractal

4. contracting

5. weakly branch

6. generated by finite-state bounded auto-

morphisms

In the first part of the article [92], we study the Basilica construction quite generally,

and, for a fixed s P N, we examine the s-th Basilica groups of generalisations of Grigorchuk

groups and Gupta–Sidki groups. It can be easily verified that the set of vertices of level n

of a rooted tree T is invariant under the action of an automorphism of T , for all n P N.

Therefore, the n-th level stabiliser, which is the kernel of the induced action of G on the set

of vertices of level n of T , is the natural object to consider when we study automophisms

of T . For a group G of automorphisms of a rooted tree T which displays strong self-

similarity features, we prove that the level stabilisers in BasspGq can be obtained from the

level stabilisers in G. In Theorem E below, the maps βi are the algebraic analogues of the

added intermediate steps in the definition of the Basilica operation; see Definition 8.2.2.

The subgroup Ks´1 is a normal (possibly trivial) subgroup of G measuring the failure of G

to be s-split; being s-split is a notion introduced in Definition 8.4.1 to make sure that the

Basilica group BasspGq closely resembles the original Basilica group B.

Theorem E. Let G be a self-similar and very strongly fractal group of automorphisms of a

regular rooted tree. Assume that G is weakly regular branch over Ks´1. Let n P N0. Write

n “ sq ` r with q ě 0 and 0 ď r ď s ´ 1. Then, for all s ą 1, the n-th level stabiliser of

BasspGq is given by

StBasspGqpnq “ xβipStGpq ` 1qq, βjpStGpqqq | 0 ď i ă r ď j ă syBasspGq.

Using the description of level stabilisers in Theorem E, we develop new techniques for

computing the Hausdorff dimension of the Basilica group BasspGq from that of G. The

Hausdorff dimension of G measures how dense its closure is in an appropriate subgroup of

AutT , and is generally difficult to calculate; cf. Section 8.4.2. It is generally analogous to the

Hausdorff dimension usually defined over R as a measure of fractalness; see Section 2.4.1.6

for a formal definition.

The second half of the article specialises on generalised Basilica groups BasspOd
mq, for

d, m, s P N with m, s ě 2, which are Basilica groups obtained from a direct product of d
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copies of a generalisation Om of the dyadic odometer O2. We closely study the structural

properties of the generalised Basilica groups BasspOd
mq and prove that they resemble the

original Basilica group B, hence justifying the nomenclature; see Theorem 8.1.6. More-

over, we explicitly compute the Hausdorff dimension of BasspOd
mq, which turns out to be

independent of the parameter d.

Theorem F. For all d, m, s P N with m, s ě 2

dimHpBasspOd
mqq “

mpms´1 ´ 1q

ms ´ 1
.

Furthermore, we investigate an analogue of the classical Congruence Subgroup Problem,

which originates from the study of arithmetic lattices in semisimple locally compact groups;

see Section 2.4.1.7. Providing an explicit recursive presentation for the generalised Basilica

groups BasspOd
mq allows us to describe the level stabilisers in BasspOd

mq using Theorem E.

This enables us to prove a key structural result stating that these groups have a weaker

version of the Congruence Subgroup Property in the context of tree actions.

Theorem G. For all d, s P N with s ą 2, and all primes p, the generalised Basilica group

BasspOd
pq has the p-Congruence Subgroup Property.

The recursive presentation of the generalised Basilica group BasspOd
mq obtained in [92]

is not finite. However, one can obtain a finite recursive presentation for BasspOd
mq, which

we stated in [92, Theorem 6.8] without a proof. This proof is included in Chapter 8; see

Theorem 8.6.8.

It is worth to point out that, in [92], we observed that if a group law is satisfied by a

group G but not by BasspGq, for some s P N, then BasspGq is a weakly branch group and

it is regular branch over the corresponding verbal subgroup. This enables one to construct

a weakly regular branch group over a prescribed verbal subgroup. Therefore, the class of

Basilica groups promises to give solutions to problems arising in the theory of groups acting

on rooted trees.

In [94], we investigate the maximal subgroups of generalised Basilica groups BasspOmq

for m, s ě 2. The groups that we examine are s-generated weakly branch, but not branch,

groups. One of the motivations to study the maximal subgroups of (weakly) branch groups

is related to a conjecture of Kaplansky; details can be found in Section 2.4.1.8. We point

out that, it is the first time that maximal subgroups of a weakly branch, but not branch,

group G have been considered for a group G with more than two generators. We prove that

all maximal subgroups of the desired generalised Basilica group are of finite index.
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Theorem H. Let m and s be positive integers such that m, s ě 2. Then the generalised

Basilica group BasspOmq does not admit a maximal subgroup of infinite index.

Since we are considering generalised Basilica groups for an arbitrary s ě 2, the final

stages of our proof differ from previously seen results. One can also look at the generalised

Basilica groups BasspOd
mq, for d ą 1. We need new insights to tackle this problem as these

groups do not follow the usual length decreasing properties. So far, none of the weakly

branch, but not branch, groups, whose maximal subgroups have been studied, admit a

maximal subgroup of infinite index. Therefore, article [94] is the first step towards either

(a) proving that all weakly branch, but not branch, groups have only maximal subgroups

of finite index, or (b) classifying the weakly branch, but not branch, groups with maximal

subgroups of infinite index.
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Chapter 2

Preliminaries

We deliberately dedicate this chapter to establishing the language of groups acting on rooted

trees. Section 2.1 focuses on tree automorphisms, where we describe three different ways

of expressing a tree automorphism, namely in terms of portrait, automaton and wreath

recursion. In Section 2.2, we discuss the notion of self-similarity. Section 2.3 is a review of

branch and weakly branch groups. The final section, Section 2.4, is a survey on GGS-groups

and the Basilica group; they are the core ingredients of our studies in Part I and Part II.

In Section 2.4.1, we give an account of various properties of the Basilica group. During the

process, we recall necessary definitions and provide historical context to different notions

related to groups acting on rooted trees, including L-presentation, Congruence Subgroup

Property and Hausdorff dimension. Finally, in Section 2.4.2, we summarise known results

about GGS-groups and develop new structural results essential for the later discussions.

2.1 Rooted trees and their automorphisms

Let m ě 2 be an integer. The m-regular rooted tree T is an infinite tree with a distinguish

vertex, known as the root, of valency m and every other vertex has valency m ` 1. We

label the vertices of the rooted tree T by the elements of the free monoid X˚ generated

by the alphabet X “ t0, 1, . . . ,m ´ 1u in the following way: the root is labelled by the

empty word, denoted by ϵ, and the vertices that are at distance n from the root are la-

belled lexicographically from left to right with words of length n. In the sequel, we do not

differentiate between X˚ and vertices of T . The vertices of the set Xn are called n-th level

vertices and they constitute the n-th layer of the rooted tree T . An automorphism g of T

is a graph automorphism; g has to preserve the root and to keep the adjacency of vertices.

As a consequence, the levels Xn of T are invariant under the action of g. The set of all
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automorphisms of T forms a group and is denoted by Aut T .

Let G be a subgroup of AutT and let v P Xn be a vertex of level n. The vertex

stabiliser stGpvq is the subgroup of G given by

stGpvq “ tg P G | gpvq “ vu,

and the n-th level stabiliser StGpnq is

StGpnq “
č

vPXn

stGpvq.

The subgroup StGpnq is precisely the kernel of the induced action of G on Xn, and hence

it has finite index in G. Furthermore, the intersection of all level stabilisers is trivial,

which makes the group G residually finite. Taking the set of all level stabilisers as an open

neighbourhood system for the identity gives a topology on G. With respect to this topology,

which is metrisable, the topological group Aut T is complete. Indeed, the group Aut T is

profinite:

AutT – lim
ÐÝ
nPN

AutT { StAutT pnq.

Let v be a vertex of the rooted tree T and let Tv denote the subtree rooted at v. The

subtree Tv can be identified with the original tree by sending every vertex vw P vX˚ of Tv

to the vertex w P X˚ of T . Let g P AutpT q. Then g induces an isomorphism between the

subtrees Tv and Tgpvq. Since both of the subtrees Tv and Tgpvq are identical to the original

tree T , we obtain an automorphism g|v : T Ñ T , known as the section of g at v, which is

uniquely determined by the equation

gpvwq “ gpvqg|vpwq. (2.1)

For all g, g1, g2 P AutT and v, v1, v2 P X
˚, it holds that

g|v1v2 “ g|v1 |v2 , (2.2)

pg1 ¨ g2q|v “ g1|g2pvq ¨ g2|v. (2.3)

Now, we shall describe three different ways of expressing automorphisms of rooted trees,

namely in terms of portrait, automaton and wreath recursion.

2.1.1 Portrait of a tree automorphism

For every g P AutT the portrait of g is the labelled tree consisting of the tree T in which

every vertex v is labelled with an element g|v of SympXq, where g|v is the action of g on

the set of immediate descendants of the vertex v, which is called the local action of g at v.

An automorphism g is uniquely determined by its portrait: for all x1 ¨ ¨ ¨xn P X
n,

gpx1 x2 x3 ¨ ¨ ¨xnq “ gpx1q g|
x1px2q g|

x1 x2px3q ¨ ¨ ¨ g|
x1 ¨¨¨xn´1pxnq.
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2.1.2 Automata

An automaton pA,X, τq over an alphabet X is given by a set of states A and a transition

map τ : A ˆ X Ñ X ˆ A. For p P A and x P X, suppose that τpp, xq “ py, qq, for some

y P X and q P A. The above equality is interpreted as the following: upon reading the input

letter x the state p gives the output y and it enters to the state q. We write y “ ppxq and

p “ q|x. If the set of states of A is finite then pA,X, τq is said to be a finite-state automaton.

Similarly, we define the automaton pA,Xn, τnq, for every n P N0, in which the input and

output are words of length n and the transition map τn is given by the equations below.

p|ϵ “ p, p|x v “ p|x|v, (2.4)

ppϵq “ ϵ, ppx vq “ ppxq p|xpvq, (2.5)

for x P X and v P Xn´1, where ϵ denotes the empty word. Therefore, the structure of

pA,Xn, τnq is uniquely determined from that of pA,X, τq.

Now, assume that the set X is finite with cardinality m ě 2. We may further assume,

without loss of generality, that X “ t0, 1, . . . ,m ´ 1u. Let T be the m-regular rooted tree

whose vertices are in bijection with the set X˚ of all finite words over X. Consider an

automaton pA,X, τq over the alphabet X. Every state p P A defines a transformation

on X˚ which is determined by (2.4) and (2.5). Notice that, for any v P X˚ and k P N, the

first k letters of the word ppvq depends only on the first k letters of the word v. Therefore,

the transformation defined by p is an endomorphism of the rooted tree X˚, which in general

need not be an automorphism.

Now, let pA,X, τq and pB,X, ιq be two automata over the alphabet X. Then their

product pA ˆ B,X, τ ¨ ιq is an automaton, whose set of states is the direct product of A

and B. Let x P X, p1 P A and p2 P B. For convenience, we denote the elements of the

form pp1, p2q from the set AˆB by pp1p2q. Then the transition map τ ¨ ι of the automaton

pAˆB,X, τ ¨ ιq is given by the following rules.

pp1p2qpxq “ p1pp2pxqq,

pp1p2q|x “ p1|p2pxqp2|x.

Furthermore, we say that an automaton pA,X, τq is invertible if every p P A defines an

invertible transformation of X˚ (or, equivalently, of X). The inverse of pA,X, τq is given

by the automaton pA´1, X, τ´1q, whose set of states A´1 is in one-to-one correspondence

with A, and, for every p´1 P A´1 and x P X, the equality τ´1pp´1, xq “ py, q´1q holds if

and only if τpp, yq “ px, qq, for some y P X and q P A.
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Definition 2.1.1. Let pA,X, τq be an invertible automaton. The group generated by the

automaton pA,X, τq is the group xAy generated by all transformations of X˚ defined by the

set of states A of pA,X, τq.

To every automaton pA,X, τq, we can associate a directed graph, known as the Moore

diagram. The vertices of the Moore diagram representing pA,X, τq are identified with the

set of states A. Two states p, q are connected by a directed edge starting from p if and

only if there exist x, y P X such that τpp, xq “ py, qq, and the edge is labelled by x : y. For

convenience, we do not draw the edges of type τpp, xq “ px, pq. For example, consider Moore

diagram Figure 2.1 of the two-state automaton pA,X, τq, where X “ t0, 1u and A “ tid, cu.

The transition map τ is given by the following rules.

idp0q “ 0, idp1q “ 1, id |0 “ id, id |1 “ id,

cp0q “ 1, cp1q “ 0, c|0 “ c, c|1 “ id .

The automaton pA,X, τq is invertible and its inverse is given by the Moore diagram Fig-

ure 2.1. Observe that the state id induces the identity transformation on X˚, while the

action of the element c´1 on X˚ is equivalent to adding 1 to the dyadic integers from the

left. The group xAy generated by the automaton pA,X, τq is called the dyadic odometer,

denoted by O2, and is isomorphic to the group of integers. Hence, the group O2 provides an

embedding of the group of integers into the automorphism group of the binary rooted tree.

id c0:1
1:0

id´1 c´11:0
0:1

Figure 2.1: Automaton of generating the dyadic odometer and its inverse automaton.

Without difficulty, one can see that the trivial group, the cyclic group of order two, the

Klein four-group, the infinite dihedral group, and the lamplighter group Z{2Z ≀ Z, where

Z{2Z ≀ Z is the permutational wreath product of Z{2Z by Z (cf. see Section 2.1.3), are also

generated by two-state automata. In fact, these are the only groups up to isomorphism

generated by two-state automata; cf. [57].

2.1.3 Wreath recursion

Let H be a finite group acting on a finite set X from the left and let G be an arbitrary

group. Denote by GX the direct product of |X|-many copies of G. If we fix an indexing
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tx0, . . . , xm´1u of the set X, then every element g P GX can be written as pg0, . . . , gm´1q,

where gi P G for each i P t0, 1, . . . ,m´ 1u, and H also acts on the set t0, 1, . . . ,m´ 1u from

the left so that hpxiq “ xhpiq. The action of H on X induces a right action of H on GX

given by: for every h P H and pg0, . . . , gm´1q “ g P G

pg0, . . . , gm´1q ¨ h “ pghp0q, . . . , ghpm´1qq. (2.6)

Thus we can define the semi-direct product GX ¸H, where the action of H on GX is given

by (2.6). The semi-direct product GX ¸H is called the permutational wreath product, and

is denoted by G ≀X H. For any given pair of elements h pg0, . . . , gm´1q and h
1 pg10, . . . , g

1
m´1q

in G ≀X H, the multiplication is given by

h1 pg10, . . . , g
1
m´1qh pg0, . . . , gm´1q “ h1 h pg1hp0q g0, . . . , g

1
hpm´1q gm´1q. (2.7)

If there is no confusion, then we drop the index X from G ≀X H.

Let T be the m-regular rooted tree and let Aut T be the group of automorphisms of T .

Let g P AutT . We define the following map

ψ : AutT ÝÑ AutT ≀ SympXq, (2.8)

by

ψpgq “ g|ϵ pg|0, . . . , g|m´1q, (2.9)

where g|ϵ is the induced action of g on the set X (or equivalently, the local action of g at

the root ϵ), and g|x is the section of g at the vertex x, for x P X. Clearly, ψ is a bijection. It

is easy to verify using (2.7) that ψ is a homomorphism. Therefore, the group Aut T admits

the following decomposition

AutT – AutT ≀ SympXq, (2.10)

and every element g P AutT can be uniquely written as its image ψpgq. The recursive

expression (2.9) is called the wreath recursion of g, which provides a convenient way to write

down an automorphism. For example, set X “ t0, 1u and σ P SympXq as the transposition

p0 1q. The wreath recursion

c “ σpc, idq (2.11)

defines an automorphism of the binary rooted tree and its action on X˚ is same as that of

the automorphism induced by the state c of the automaton generating the dyadic odometer

given by Figure 2.1.
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2.2 Self-similarity

For every v P T and g P AutT , we recall that Tv is the subtree rooted at v and g|v is the

section of g at v defined by the equation (2.1). Let G be a subgroup of AutT . Unlike

in AutT , the set

G|v “ tg|v | g P Gu

is not necessarily a subset of G. The group G is said to be self-similar if G|v Ď G for

every v P T .

Let T be the m-regular rooted tree and let G ď AutT be a self-similar group. Notice

that the restriction of the map ψ in (2.8) to G

ψ : G ÝÑ G ≀ SympXq

embeds G into the wreath product G ≀ SympXq. (By abuse of notation, we use the same

symbol to denote the restriction of ψ to the group G.) Hence, we can regard G as a subgroup

of G ≀ SympXq. Set A “ tg|v | g P G, v P T u and X “ t0, 1, . . . ,m ´ 1u. It is easy to see

that A coincides with G. We define an automaton pA,X, τψq whose output and the transition

functions are determined by the map ψ. The transformations of X˚ defined by the states

of the automaton pA,X, τψq determines the action of G on T . We say an automorphism

g P AutT is finite-state if the set tg|v | v P T u is finite. Suppose that G ď AutT is a finitely

generated self-similar group, and every element of G is finite-state. In that case, G can be

generated by a finite-state automaton obtained by taking the disjoint union of automata

defining the generators of G. Conversely, it can be verified that every finite-state automaton

generates a finitely generated self-similar group such that its elements are finite-state.

Let G be self-similar and g P StGp1q. As g stabilises the vertices of level one, the local

action g|ϵ of g at the root ϵ is trivial, and hence the element g is uniquely determined by

the sections of g at the vertices of level one. Therefore, the wreath recursion of g is given

by

ψpgq “ pg|0, . . . , g|m´1q,

and the induced homomorphism

ψ1 : StGp1q ÝÑ Gˆ
m
¨ ¨ ¨ ˆG

is an embedding. Due to self-similarity of G, the homomorphism ψ1 extends to all n P N in

a natural way such that

ψn : StGpnq ÝÑ Gˆ
mn

¨ ¨ ¨ ˆG
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is injective for all n P N. If G “ AutT then the map ψn is in fact an isomorphism and

StAutT pnq – AutT ˆ
mn

¨ ¨ ¨ ˆ AutT for every n P N. For convenience, we often identify an

element g P StGpnq with its image ψnpgq.

For every self-similar group G, taking the section of an element g P stGpvq at a vertex

v P T induces a homomorphism from stGpvq to G given by

φv : stGpvq ÝÑ G, g ÞÑ g|v.

If φv is an epimorphism, i.e., φvpstGpvqq “ G, for all vertices v P T , then the group G is

called fractal. Clearly, AutT is fractal.

2.3 Branch and weakly branch groups

Let T be the m-regular rooted tree and let G be a subgroup of AutT . Let v P Xn, for some

n P N. The rigid vertex stabiliser ristGpvq of v is the subgroup of G consisting of elements

which fix every vertex outside the subtree rooted at v, i.e.,

ristGpvq “ tg P G | @w P T zTv : gpwq “ wu.

The group generated by all rigid vertex stabilisers of vertices of level n is called the n-th

rigid level stabiliser, and is denoted by RistGpnq.

Let v P Xn and w P Xℓ, where ℓ ě n. It is easy to see that, if v is a prefix of w, i.e,

w “ v w̃, for some w̃ P Xℓ´n, then ristGpwq ď ristGpvq. If otherwise v is not a prefix of

w, then ristGpvq X ristGpwq “ 1, and hence the subgroups ristGpvq and ristGpwq commute.

Furthermore, for every g P G, ristGpvq
g´1

“ ristGpgpvqq. If G acts transitively on each level

of the rooted tree T then the rigid vertex stabilisers are conjugate in G. Therefore, for every

n P N, we get the following equality

RistGpnq “ xristGpvq | v P X
ny “

ź

vPXn

ristGpvq.

Clearly, we have RistGpnq ď StGpnq. Unlike the stabiliser, the rigid stabiliser may have

infinite index in G (may even be trivial; for example in the case of the dyadic odometer O2

defined by the automaton in Figure 2.1). If G “ AutT and v P T , then the following holds

ristAutT pvq – AutpTvq – AutT,

and hence RistAutT pnq – AutT ˆ
mn

¨ ¨ ¨ ˆAutT . Since RistGpnq ď StGpnq, when G “ AutT ,

we have the equality RistGpnq “ StGpnq.
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Similar to AutT , if G acts transitively on each level of the rooted tree T then G is said

to be spherically transitive. For a spherically transitive group G, the rigid level stabilisers

RistGpnq are either trivial for almost all n or infinite for all n.

Definition 2.3.1. Let G ď AutT be a spherically transitive group of automorphisms of

the rooted tree T . The group G is weakly branch if all RistGpnq are infinite. We say G is a

branch group if additionally the subgroups RistGpnq have finite index in G.

Notice that not every weakly branch group is branch; for example the Basilica group is

weakly branch, but not branch, group; cf. Corollary 2.4.11.

Definition 2.3.2. Let G ď AutT be a spherically transitive group of automorphisms of

the rooted tree T . We say the group G is weakly regular branch if G is self-similar and

contains a non-trivial subgroup H ď G such that H ě ψ´1pH ˆ
m
¨ ¨ ¨ ˆHq. The group G is

regular branch H if such a subgroup H is also of finite index in G. We further say that G

is (weakly) regular branch over the subgroup H. If G is regular branch over H, then the

quotient H{ψ´1pH ˆ
m
¨ ¨ ¨ ˆHq is a finite group, and is called the branching quotient of G.

Every group G that is (weakly) regular branch over a subgroup H is (weakly) branch.

Indeed, the subgroup ψ´1pH ˆ
m
¨ ¨ ¨ ˆ Hq is contained in RistGp1q. One gets by induction

that ψ´1pH ˆ
mn

¨ ¨ ¨ ˆ Hq ď RistGpnq for all n P N. Now, if H is of finite index in G

then ψ´1pH ˆ
m
¨ ¨ ¨ ˆ Hq has finite index in StGp1q. Therefore, RistGp1q has finite index

in StGp1q, and hence in G. Again by induction, one can see that RistGpnq has finite index

in G for all n P N. In particular, if G is branch then the groups G and G ˆ
m
¨ ¨ ¨ ˆ G are

commensurable as subgroups of Aut T . We recall that two subgroups K1 and K2 of a group

K are commensurable if the intersection K1 XK2 is of finite index in both K1 and K2.

Now, we record a fundamental lemma for weakly branch groups, which is crucial for the

discussions later. The statement and the proof of the following lemma can be extracted

from the proof of [54, Theorem 4], where it is proven for branch groups.

Lemma 2.3.3. Let T be the m-regular rooted tree and G ď AutT be weakly branch. For

every non-trivial normal subgroup N of G, there exists n P N such that RistGpnq
1 ď N .

Proof. Since N is non-trivial, there exist g P N and v P T such that gpvq ‰ v. Let

x, y P ristGpvq. Notice that yg
´1
P ristGpgpvqq and it commutes with x. Since N is normal,

N contains

rx, rg´1, yss “ rx, pyg
´1
q´1ys “ rx, ysrx, pyg

´1
q´1sy “ rx, ys,
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that is rx, ys P N , implying that ristGpvq
1 ď N . Since G is spherically transitive, the rigid

vertex stabilisers are conjugate and it follows that RistGpnq
1 ď N , where n “ |v|.

If G is branch, as a corollary of Lemma 2.3.3, one gets that every proper quotient of

G is virtually abelian. On the other hand, G itself is not virtually abelian. Indeed, if G

is virtually abelian, it follows from the proof of [56, Lemma 2] that RistGpnq is abelian for

some n. Since RistGpnq is non-trivial, there exists g P RistGpnq such that gpvq ‰ v for

some v P T with |v| ą n. This implies that ristGpvq “ ristGpvq
g´1

“ ristGpgpvqq, and in

particular ristGpvqX ristGpgpvqq ‰ 1. Thus v “ gpvq, and we get a contradiction. Therefore,

every branch group is just non-(virtually abelian). We say a group G is just non-P if every

proper quotient of G has the property P but G itself does not have the property P . It

turns out to be that being just non-(virtually abelian) is one of the characteristic properties

of branch groups. Indeed, in [108], Wilson provided a purely group-theoretical character-

isation of branch groups. Moreover, there exists a lattice of subnormal subgroups of G,

called structure graph, on which G acts faithfully as a branch group. Therefore, the al-

gebraic properties of a branch group are independent of its action on a given rooted tree.

The construction of structure graphs is greatly dependent on the fact that all proper quo-

tients of branch groups are virtually abelian. Unfortunately, the definition of structure

graph does not extend to weakly branch groups, since not all weakly branch groups are

just non-(virtually abelian); for example the Basilica group is weakly branch but not just

non-(virtually abelian); cf. Corollary 2.4.11. However, it is known that certain algebraic

properties of weakly branch groups are independent of their weakly branch actions [45].

2.4 Subgroups of automorphisms of rooted trees

The objective of this section is to set-up a framework for the discussion in Part I and Part II

of the dissertation. Let T be the m-regular rooted tree whose set of vertices are in bijection

with the set of all words over the alphabet X “ t0, 1, . . . ,m ´ 1u. Let σ be an m-cycle in

SympXq. We define

Γ “ tg P AutT | labels in the portrait of g are elements of xσyu.

Then Γ a subgroup of AutT and is isomorphic to

Γ – lim
ÐÝ
nPN

Cm ≀ n
¨ ¨ ¨ ≀ Cm.

If m “ p, a prime, then Γ is a Sylow pro-p subgroup of AutT . The groups that we

study in this dissertation are abstract subgroups of Γ. Here we give a short survey on the
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Basilica group and GGS-groups. Section 2.4.1 contains a review of the Basilica group. We

collect various results on the Basilica group and alongside we develop the theory of groups

acting on rooted trees. Most of the results from Section 2.4.1 are generalised in Part II. In

Section 2.4.2, we list the main features of GGS-groups. Also, we prove new results that are

essential for the study in Part I.

2.4.1 The Basilica group

In the sequel, we fix m “ 2 and X “ t0, 1u. Let T be the binary rooted tree whose vertices

are labelled by the elements of the free monoid X˚. Recall that the Basilica group B is

a 2-generated group of automorphisms of the binary rooted tree and is generated by the

automaton given by Figure 1.1. For simplicity, we use the notation 1 instead of id to denote

the identity element of a group. The standard generators a and b of the group B can be

expressed recursively as follows

a “ pb, 1q, and b “ σpa, 1q, (2.12)

where σ is the permutation p0 1q P SympXq. In [59], the generators a and b are defined

with the identity element on the left and σ on the right. Both conventions yield isomorphic

groups.

The structural properties of the Basilica group B were first investigated in [59]. In

Theorem 2.4.1 below, we list the important properties of B that were proved in [59].

Theorem 2.4.1. Let B “ xa, by be the Basilica group. The following assertions hold.

1. B is self-similar and fractal;

2. B is weakly regular branch over the commutator subgroup B1;

3. B{B1 – Zˆ Z;

4. B is torsion-free;

5. the semi-group generated by the elements a and b is free, implying that B has expo-

nential word growth.

The Basilica group B is very different from the other famous examples of groups acting

on rooted trees, such as the Grigorchuk group and the Gupta–Sidki groups. The properties

of B are of independent interest. In the following, we discuss various notions about B that

are investigated, and use this discussion to provide a historical context for the study of

groups acting on rooted trees.
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2.4.1.1 Amenability

Although the concept of amenability first appeared in a paper of Banach, the notion of

amenable groups was introduced by von Neumann in connection with the Banach–Tarski

paradox [79].

Definition 2.4.2. A discrete group G is amenable if there is a measure µ from the power

set of G to the unit interval r0, 1s such that

(i) µ is a probability measure, in particular µpGq “ 1,

(ii) µ is finitely additive: for every collection tA1, . . . , Anu of finitely many disjoint subsets

of G, one has µp
n
Ť

i“1
Aiq “

n
ř

i“1
µpAiq,

(iii) µ is left-invariant: for every subset A Ď G and every element g of G, the equality

µpgAq “ µpAq holds.

Let AG be the class of all amenable groups. The class AG contains finite groups and

abelian groups, and it is closed under taking subgroups, quotients, extensions and direct

limits; cf. [79]. Following Day [31], we denote by EG the class of elementary amenable

groups, which is the smallest class of groups containing all finite groups and abelian groups

and is closed under taking subgroups, quotients, extensions and direct limits. From the

above it is clear that EG Ď AG. The question of whether the class AG coincides with the

class EG remained open for a long time. In 1980, Chou [30] came up with a characterisation

of groups in the class EG. He proved that every group in EG has either polynomial or

exponential word growth. Later, in 1984, Grigorchuk [52] constructed a family of infinite

torsion groups of intermediate word growth that contains the Grigorchuk group. It is known

that groups of intermediate word growth are amenable, and hence Grigorchuk’s family of

groups belong to the class AG but not to the class EG. In fact, the inclusion EG Ă AG is

proper even if we restrict it to the class of finitely presented groups. Indeed, the Grigorchuk

group can be embedded as an amenable group into a finitely presented group [53], even

though the Grigorchuk group itself is not finitely presented (however, it admits a recursive

presentation as given in [74]). The existence of such an embedding follows from Higman’s

well-known embedding theorem.

The most prominent example of a non-amenable group is the free group of rank 2 [79].

Since the class AG is closed under taking subgroups, this asserts that amenable groups do

not contain non-abelian free subgroups. Let NF denote the class of groups which do not

contain non-abelian free groups. The problem of the existence of a non-amenable group in
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the class NF is known as the von Neumann problem, although the first written evidence of

the problem is attributed to Day in [31]. The Thompson group F (introduced by Richard

Thompson in 1965) was considered as a potential candidate for a long time, as it is infinite,

finitely presented group with no non-abelian free subgroups; see [29] for an introductory

survey on Thompson’s groups. The amenability of the group F is still an open problem. The

first examples of non-amenable groups in the class NF were constructed by Ol’shanskii [81].

He used the combinatorial characterisation of amenable groups provided by Grigorchuk [50]

to prove the existence of non-amenable groups (both torsion-free [80] and torsion [82]) with

all essential subgroups cyclic. The non-amenable groups of Ol’shanskii’s are not finitely

presented. An example of a finitely presented group in the class NF but not in the class

AG was constructed in [83].

Notice that examples of amenable but not elementary amenable groups constructed

in [52] and [53] are of intermediate word growth. Let SG denotes the class of sub-exponentially

amenable groups, i.e., the smallest class of groups of sub-exponential word growth (either

polynomial or intermediate) which is closed under taking subgroups, quotients, extensions

and direct limits. It is natural to ask whether the classes AG and SG coincide; cf. [53].

In [59], Grigorchuk and Żuk proved that the Basilica group B is not contained in the class SG

but it belongs to the class NF . Later, Bartholdi and Virág proved amenability of B [24],

which makes the Basilica group B the first known example of an amenable but not sub-

exponentially amenable group.

Theorem 2.4.3 ([24, Theorem 1] & [59, Proposition 13]). The Basilica group B is amenable

but not sub-exponentially amenable.

Later, Bartholdi, Kaimanovich and Nekrashevych proved that all groups generated from

bounded finite-state automorphisms are amenable [20], which includes B; see Section 8.3.2

for details.

2.4.1.2 Iterated monodromy groups

The concept of iterated monodromy group was introduced by Nekrashevych [77] and is used

to establish connections between dynamical systems and algebra. Let f : M1 ÝÑM be an

m-fold covering map of a topological space M by its open subset M1. Let t be an arbitrary

point in M and let X1 “ tt0, . . . , tm´1u be the set of m preimages of t under f . Every loop ι

based at t lifts to m paths each starting at ti for some ti P X1. Then ι induces a permutation

on the set X1 by sending an element ti to the end point of the lift of ι starting at ti. This

induced action is called the monodromy action of the loop ι and the monodromy group is
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defined to be the subgroup of SympX1q consisting of the monodromy actions of elements of

the fundamental group of M at t. Now, let fn be the n-th iterate of f . Let X˚ denote the

disjoint union of the sets f´nptq of preimages of t under fn. Then the set X˚ is naturally

identified with the m-regular rooted tree and the fundamental group π1pMq acts on X˚ via

automorphisms of the rooted tree. The action does not depend, up to a conjugacy, on the

choice of t; see [77, Proposition 3.2]. This action is called the iterated monodromy action,

and it may not be faithful in general. The iterated monodromy group of f is defined to be

the quotient of π1pMq by the kernel of the iterated monodromy action.

It is shown in [77] that the iterated monodromy group of z2 is Z and that of z2 ´ 2

is the infinite dihedral group. Furthermore, the Basilica group is identified as the iterated

monodromy group of z2 ´ 1.

Theorem 2.4.4 ([77, Section 5.2.2]). The iterated monodromy group of the complex poly-

nomial z2 ´ 1 is the Basilica group B.

Moreover, one can reconstruct the Julia set of f from its iterated monodromy group,

if f is expanding; see [77, Definition 4.5] for the definition of an expanding map.

2.4.1.3 Decision problems

In 1911, Dehn introduced three fundamental algorithmic problems for finitely presented

groups: the word problem, the conjugacy problem, and the isomorphism problem. The word

problem for a group asks for an algorithm which determines whether two given words in

the generators of the group determine the same group element (or equivalently, whether a

given word represents the identity of the group). A group has solvable conjugacy problem

if there is an algorithm that decides whether two given words represent conjugate elements

of the group. Finally, the isomorphism problem is the algorithmic problem of determining

whether two given group presentations present isomorphic groups. It is now known by the

results of Novikov, Boone, Adjan, and Rabin that all these problems are undecidable in the

class of all finitely presented groups. Therefore, there is considerable interest in determining

classes of groups with solvable decision problems. The word problem is solvable for many

important classes of groups, even outside the realm of finitely presented groups.

In [76, Proposition 2.13.8], Nekrashevych proved an efficient algorithm that solves the

word problem for self-similar groups with a suitable ‘length reduction property’. A group

with such a property is said to be contracting. There are several different definitions of

contracting groups in the literature. We adopt the one from [76].
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Definition 2.4.5 ([76, Lemma 2.11.12]). Let G be a subgroup of the automorphism group

of a rooted tree T . The group G is said to be contracting if there exist constants λ ă 1 and

C, L P N such that for every g P G and for every vertex v P T of level n ą L the following

inequality holds

|g|v| ă λ |g| ` C, (2.13)

where g|v is the section of g at v and | ¨ | is the usual length function with respect to a finite

generating set of G.

Theorem 2.4.6 ([59, Proposition 15]). Let B be the Basilica group. For every g P B and

v P T with |v| ě 2, the following inequality holds

|g|v| ă
2

3
|g| ` 1,

where | ¨ | is the length function with respect to the generating set ta, bu of B. In particular,

the group B is contracting with parameters λ “ 2
3 , C “ 1 and L “ 1.

Therefore, by [76, Proposition 2.13.8], the word problem is solvable for the Basilica

group. Moreover, it is proved in [58, Theorem 1.1] that the Basilica group has the solvable

conjugacy problem.

2.4.1.4 Endomorphic presentation

Definition 2.4.7 ([11, Definition 1.2]). An L-presentation (or an endomorphic presenta-

tion) is an expression of the form

L “ xY | Q | Φ | Ry, (2.14)

where Y is an alphabet, Q,R Ă FY are sets of reduced words in the free group FY on Y

and Φ is a set of endomorphisms of FY . The expression L gives rise to a group GL defined

as

GL “ FY {xQY xΦypRqy
FY ,

where xΦypRq denotes the union of the images of R under every endomorphism in the monoid

xΦy generated from Φ. An L-presentation is finite if Y,Q,Φ, R are finite.

It is proved in [11] that every finitely generated, contracting, regular branch group is

not finitely presentable, however each such group admits an L-presentation. Unfortunately,

this is not applicable to the Basilica group B as it is not branch by Corollary 2.4.11 below.
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Theorem 2.4.8 ([59, Proposition 9]). The Basilica group B admits an L-presentation of

the form xY | Q | Φ | Ry with Y “ ta, bu, Q “ H, R “ tra, ab
2ℓ`1

s | ℓ P N0u and Φ “ tϕu,

where

ϕ :

$

’

&

’

%

a ÞÑ b2,

b ÞÑ a.

(2.15)

The above presentation is not finite since the set R is infinite. However, one can make

the above L-presentation of B finite by introducing another endomorphism θ given by

θ :

$

’

&

’

%

a ÞÑ a ab
2
,

b ÞÑ b.

(2.16)

Theorem 2.4.9 ([59, Proposition 11]). The Basilica group B admits the endomorphic pre-

sentation xY | Q | Φ | Ry with Y “ ta, bu, Q “ H, R “ tra, absu and Φ “ tϕ, θu, where ϕ

and θ are given by (2.15) and (2.16), respectively.

The L-presentation of the Basilica group B is helpful to study the subgroup structure

of B, which we discuss in the following section.

2.4.1.5 Quotients and lower central series

Here we consider some of the interesting quotients of the Basilica group B. We start with

an easy consequence of Theorem 2.4.8, which is first proved in [46] without using the pre-

sentation. (See [39, Proposition 8.3.7] for an alternative prove using the presentation).

Theorem 2.4.10. Let B be the Basilica group and let

H3pZq “

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

1 x y

0 1 z

0 0 1

˛

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x, y, z P Z

,

/

/

/

.

/

/

/

-

be the discrete Heisenberg group. Then B{γ3pBq is isomorphic to H3pZq. Furthermore,

B1{γ3pBq is isomorphic to the infinite cyclic group.

As a consequence Theorem 2.4.10 and Lemma 2.3.3, we get that B is not branch.

Corollary 2.4.11. The Basilica group B is not just non-(virtually abelian). In particular, B

is not branch.

The parts (i), (ii) and (iii) of Theorem 2.4.12 below are proved in both [59] and [46], but

(iii) with a mistake. Here we give a proof of (iii). The part (iv) of Theorem 2.4.12 is new,
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while part (v) is proved in [15] using the computer algebra system GAP. From (v), it is easy

to see that γipBq{γi`1pBq is finite for all i ě 3. In fact, in [15], the terms γipBq{γi`1pBq are

computed up to isomorphism type for 1 ď i ď 48 and a conjectural description is given for

all i ą 48.

Theorem 2.4.12. Let B “ xa, by be the Basilica group on the standard generators. The

following assertions hold.

(i) B1 “ ψ´1pB1 ˆ B1q ¸ xra, bsy, and B1{ψ´1pB1 ˆ B1q – Z,

(ii) B2 “ ψ´1pγ3pBq ˆ γ3pBqq,

(iii) γ3pBq “ B2 ¸ xrra, bs, bs, ψ´1ppra, bs, rb, asqqy, and γ3pBq{B2 – Zˆ Z,

(iv) γ4pBq “ B2 ¸ xrrra, bs, bs, bs, ψ´1ppra, bs, rb, asq2qy, and γ4pBq{B2 – Zˆ Z,

(v) γ3pBq{γ4pBq – C4.

Proof of piiiq, pivq& pvq. piiiq We use the fact that γ3pBq is normally generated from the

elements rra, b´1s, as and rra, b´1s, b´1s. Observe first that

ra, b´1s “ pb´1, 1qσpa, 1qpb, 1qpa´1, 1qσ “ pb´1, ba
´1
q.

We have

rra, b´1s, as “ rpb´1, ba
´1
q, pb, 1qs “ 1,

rra, b´1s, b´1s “ pb´1, ba
´1
q´1σpa, 1qpb´1, ba

´1
qpa´1, 1qσ “ pbba

´1
, b´2a´1

q.

Therefore, γ3pBq “ xrra, b´1s, b´1syB. Consider the element rra, bs, b2s P γ3pBq. Using Theo-

rem 2.4.12(ii), we get

rra, bs, b2s “ rpb´1, bq, pa, aqs “ prb´1, as, rb, asq “ pra, bsb
´1
, rb, asq ”B2 pra, bs, rb, asq.

Set x “ rra, b´1s, b´1s and y “ rra, bs, b2s. We claim that the quotient group γ3pBq{B2 is

generated by the images of the elements x and y. In order to prove the claim, it suffices

to show that the group xB2 x,B2 yy is normal in B{B2. Notice first that the element B2 y is

central in the quotient group StBp1q{B2. We get ya
˘1
“ pra, bsb

˘1
, rb, asq ”B2 y, and

yb ”B2 prb, asa, ra, bsq ”B2 y´1 and yb
´1
”B2 prb, as, ra, bsaq ”B2 y´1.
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Furthermore,

xa “ pbba
´1
, b´2a´1

qpb,1q “ ppb2rb, a´1sqb, b´2a´1
q ”B2 pb2rb, a´1s, b´2a´1

q

“ pbba
´1
, b´2a´1

q “ x,

xa
´1
“ pbba

´1
, b´2a´1

qpb
´1,1q “ ppb2rb, a´1sqb

´1
, b´2a´1

q ”B2 pb2rb, a´1s, b´2a´1
q

“ pbba
´1
, b´2a´1

q “ x,

xb “ ppb´2a´1
qa, bba

´1
q “ ppb´a

´1
qab´1, paa´1qbaba´1q

“ pb´a
´1
rb´a

´1
, asb´1, aba´1ra´1, bsaba´1q ”B2 pb´a

´1
b´1rb´1, as, ab2a´1ra´1, bsq

”B2 x´1y

xb
´1
“ pb´2a´1

, pbba
´1
qa

´1
q “ pb´2a´1

pbb´1q, abpbb´1qba
´1
a´1q

“ pb´a
´1
ra´1, bsb´1, ab2rb, a´1sa´1q ”B2 x´1y´1.

Therefore, the claim follows: γ3pBq “ B2 xx, yy.

Next we prove that γ3pBq{B2 – Zˆ Z. Observe first that the quotient group γ3pBq{B2

is abelian as rγ3pBq, γ3pBqs ď rB1,B1s “ B2. It remains to show that, the elements B2 x

and B2 y have infinite order and there are no relations between powers of B2 x and powers

of B2 y. Since y “ pra, bs, rb, asq, it immediately follows from Theorem 2.4.10 that B2 y has

infinite order. Now, assume to the contrary that B2 x has finite order. There exists n P Z

such that xn ”B2 1. We have

xn ”B2 pb2ra, bs, b´2ra, bs´2qn ”B2 pb2nra, bsn, b´2nra, bs´2nq “ 1.

In particular, b´2nra, bs´2n “ 1 in B{γ3pBq. This is a contradiction to Theorem 2.4.10.

Hence B2 x has infinite order. Assume again to the contrary that, there exists p, q P Z such

that xp yq ”B2 1. We obtain

xp yq ”B2 pb2ra, bs, b´2ra, bs´2qppra, bs, rb, asqq

”B2 pb2pra, bsp`q, b´2prb, as2p`qq “ 1.

Comparing the coordinates gives,

b2pra, bsp`q ”γ3pBq 1 and b´2prb, as2p`q ”γ3pBq 1,

which is again a contradiction to Theorem 2.4.10, unless p “ q “ 0. Hence, γ3pBq{B2 – ZˆZ.

pivq Observe first that B2 ď γ4pBq. We use the fact that γ4pBq is normally generated from

the elements rrra, b´1s, b´1s, as and rrra, b´1s, b´1s, b´1s. From the computation in the proof

of Theorem 2.4.12(iii) above, we have

rrra, b´1s, b´1s, as ”B2 1, and rrra, b´1s, b´1s, b´1s ”B2 x´2y´1.
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Hence γ4pBq “ xrrra, b´1s, b´1s, b´1syB. Set z “ rrra, b´1s, b´1s, b´1s. We claim that the

quotient group γ4pBq{B2 is generated by the images of the elements z and rb´1, ys ”B2 y2.

It is enough to prove that the subgroup xB2 z,B2 y2y is normal in B{B2. Recall that the

element B2 y and hence also B2 y2 are central in StBp1q{B2. Again, it follows from the proof

of Theorem 2.4.12(iii) that

py2qa
˘1
“ y2, py2qb

˘1
”B2 y´2, and za

˘1
“ z.

Furthermore, we get

zb ”B2 px´2y´1qb “ x´2by´b ”B2 px´1yq´2y “ z´1y´2,

zb
´1
”B2 px´2y´1qb

´1
“ x´2b´1

y´b
´1
”B2 px´1y´1q´2y ”B2 z´1y2.

From the above calculations, it follows that the quotient group γ4pBq{B2 is generated by

the elements B2 z and B2y2. Clearly, the quotient group γ4pBq{B2 is abelian. To prove the

result, it suffices to show that the elements B2 z and B2y2 have infinite order and there are

no relations between powers of B2 z and powers of B2 y2. It follows from Theorem 2.4.12(iii)

that B2 y2 has infinite order. Furthermore,

xB2 z,B2 y2y “ xB2 x´2y´1,B2 y2y ď xB2 x,B2 yy – Zˆ Z,

and hence we get that B2 z is also of infinite order. Now assume that there exist k, ℓ P Z

such that zky2ℓ ”B2 1. We have

x´2ky´k`2ℓ “ px´2y´1qky2ℓ ”B2 zky2ℓ “ 1,

and hence we must have k “ 0 “ l by Theorem 2.4.12(iii) above. Therefore, γ4pBq{B2 “

xz B2, y2 B2y – Zˆ Z.

pvq The result follows from Theorem 2.4.12(iii) & (iv). Since z ”B2 x´2y´1, we get

γ3pBq{γ4pBq “ xγ4pBqxy – C4.

Results on quotients of the Basilica group B lead to the following theorem.

Theorem 2.4.13. Let B be the Basilica group. Then B is

(i) [59, Proposition 6] just non-(virtually solvable);

(ii) [39, Proposition 8.3.6] just non-(virtually nilpotent).
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2.4.1.6 Hausdorff dimension

The notion of Hausdorff dimension was introduced by Hausdorff and developed by Besicov-

itch. Although the Hausdorff dimension was initially defined as the measure of fractalness

of sets over R, it can be defined over any metric space, and hence it becomes an integral

part of fractal geometry; cf. [36]. Pioneered by the work of Abercrombie [1] and of Barnea

and Shalev [9], the concept of Hausdorff dimension opened up a rich and interesting field of

research in the context of profinite groups.

Let G be a countably based profinite group, i.e., G admits a countable descending

chain F

F : G “ G0 ě G1 ě G2 ě ¨ ¨ ¨ ě Gn ě ¨ ¨ ¨

of open normal subgroups such that
8
Ş

n“0
Gn “ 1. Such a chain F is called a filtration series

of G. The set tGn | n P N0u forms a basis of the neighbourhoods of the identity in G. By

defining

L “ tGn x | x P G,n P N0u,

we obtain an open base of G. Furthermore, the filtration series F of G induces a translation-

invariant metric dF on G given by

dF px, yq “

$

’

&

’

%

rG : Gns
´1 if x´1y P GnzGn`1,

0 if x “ y.

Let Y be a subset of G. Let ρ P Rě0 and let C be a cover of Y . We say that C is a

ρ-covering of Y if diampSq ď ρ for all S P C, where the diameter of S is defined with respect

to the metric dF . For each pair δ, ρ P Rě0, we define

Hδ
ρpY q “ inf

#

ÿ

SPC
diampSqδ | C is a ρ-covering of Y such that C Ď L

+

(2.17)

and write

HδpY q “ lim
ρÑ0

Hδ
ρpY q. (2.18)

Since Hδ
ρ1pY q ě Hδ

ρ2pY q whenever ρ1 ď ρ2, the above limit exists. It is proved in [36] that,

there exists ∆pY q P Rě0 such that

HδpY q “

$

’

&

’

%

8 for δ ă ∆pY q

0 for δ ą ∆pY q.

(2.19)

The Hausdorff dimension of Y with respect to the filtration series F , denoted by dimH
F pY q,

is defined to be the number ∆pY q.
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Now, let pX, dq be a metric space and let Y Ď X. For every ρ ą 0 define NρpY q to

be the minimal number of sets of diameter at most ρ needed to cover Y . The lower box

dimension of the set Y is defined to be

dimBpY q “ lim inf
ρÑ0

logNρpY q

´ log ρ
. (2.20)

Let H be a closed subgroup of the profinite group G equipped with the metric dF . By

setting ρ “ rG : Gns
´1, we obtain NρpHq “ rHGn : Gns “ rH : H XGns, yielding that

dimBpHq “ lim inf
nÑ8

logrHGn : Gns

logrG : Gns
. (2.21)

Based on the work of Abercrombie, Barnea and Shalev prove the following theorem.

Theorem 2.4.14 ([9, Theorem 2.4]). Let G be a profinite group with a filtration series

F “ tGn | n ě 0u and let H be a closed subgroup of G. Then the Hausdorff dimension of

H with respect to the filtration F is given by

dimH
F pHq “ dimBpHq “ lim inf

nÑ8

logrHGn : Gns

logrG : Gns
“ lim inf

nÑ8

logrH : H XGns

logrG : Gns
. (2.22)

Now, recall from the beginning of Section 2.4 that Γ is the subgroup of Aut T isomorphic

to lim
ÐÝ
nPN

Cm ≀ n
¨ ¨ ¨ ≀ Cm. The set of level stabilisers tStΓpnq | n ě 0u of Γ naturally forms a

filtration series F of Γ. For any subgroup G ď Γ, we define the Hausdorff dimension of G

as the Hausdorff dimension of the closure of G in Γ with respect to the filtration series F ;

it is given by

dimHG “ dimH
F G “ lim inf

nÑ8

logm |G{ StGpnq|

logm |Γ{ StΓpnq|
“ pm´ 1q lim inf

nÑ8

logm |G{ StGpnq|

mn
,

where the last equality follows from logm |Γ{ StΓpnq| “ logm |Cm ≀ n
¨ ¨ ¨ ≀ Cm| “ mn´1

m´1 .

The Hausdorff dimensions of various (weakly) branch subgroups of Γ have been com-

puted; for instance, see [38, 54, 99, 101]. It is proved in [12] and also in [101] that the

Hausdorff dimension of a self-similar branch group is always a rational number. However,

there are groups acting on rooted trees with irrational Hausdorff dimension. In fact, there

exist topologically finitely generated groups of automorphisms of the binary rooted tree with

arbitrary Hausdorff dimension in the interval r0, 1s; cf. [3]. For explicit examples see [98].

The Hausdorff dimension of the Basilica group B has also been computed.

Theorem 2.4.15 ([12, Example 2.4.6]). The Hausdorff dimension of B is 2
3 .
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2.4.1.7 Congruence Subgroup Property

The congruence subgroup problem for groups acting on rooted trees is a generalisation of

the classical congruence subgroup problem defined and studied for arithmetic groups such

as SLnpZq for n ě 2. The kernel of the canonical epimorphisms

πk : SLnpZq Ñ SLnpZ{kZq,

for k P N, are subgroups of finite index in SLnpZq. A subgroup H of SLnpZq containing

kerpπkq for some k P N is called a congruence subgroup. The classical congruence subgroup

problem asks the following question: is every finite index subgroup of SLnpZq a congruence

subgroup? Towards the end of the 19th century, Fricke and Klein discovered finite index

subgroups of SL2pZq that are not congruence subgroups based on their work on automorphic

functions. Later, Bass–Lazard–Serre [25] and independently Mennicke [75] answered the

question positively for all n ą 2; see [102] for a survey on the topic, which treats both cases

n “ 2 and n ą 2.

Let G be a subgroup of the group of automorphisms Aut T of a rooted tree T . Recall

that the level stabiliser StGpnq is the kernel of the induced action of G on the n-th level T .

In the context of groups acting on rooted trees, the congruence subgroup problem asks

whether every subgroup of finite index in G contains some level stabiliser in G. We can

reformulate the congruence subgroup problem in terms of profinite completions. By taking

the set tStGpnq | n P Nu as the fundamental system of neighbourhoods of the identity in G,

we get a topology on G, called the congruence topology. Let G be the completion of G

with respect to this topology. Then G is a profinite group and is called the congruence

completion of G. Since
Ş

nPN
StGpnq “ 1, the group G embeds in G. On the other hand,

as G is residually finite, G embeds in its profinite completion pG, and there is a canonical

epimorphism from pG onto G. Then the congruence subgroup problem is equivalent to asking

whether the map from pG onto G is injective. If the two completions coincide then we say

G has the Congruence Subgroup Property (abbreviated as CSP).

The congruence subgroup problem (or property) for branch groups has been compre-

hensively studied over the years and it is known that the famous examples of branch groups

have the congruence subgroup property, for instance see [22,37,45]. It is shown that having

CSP is independent of the (weakly) branch action of a (weakly) branch group on a rooted

tree [43]. The first known example of branch group without CSP was constructed in [88].

The congruence subgroup problem for groups acting on rooted trees is systematically stud-

ied in [22], in which the authors described a general method for computing the kernel of
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the map pG ÝÑ G, for a branch group G. Coming back to the Basilica group B, it is easy

to see that B does not have the CSP. Indeed, the quotients of B by the level stabilisers are

finite 2-groups, and on the other hand B{B1 – Z ˆ Z (Theorem 2.4.1). However, B has a

weaker version of the CSP introduced by Garrido and Uria-Albizuri in [46]. Let T be the

p-regular rooted tree, for a prime p, and let Γ be a Sylow pro-p subgroup of AutT . Let

G ď Γ be a weakly branch group and let C be the class of all finite p-groups. Observe that,

for every n P N, G{ StGpnq P C. The group G has the p-CSP if every subgroup N of G with

G{N P C contains some level stabiliser in G. In other words, the G has the p-CSP if the

pro-p completion pGp of G is isomorphic to the congruence completion G of G, where pGp is

given by

pGp “ lim
ÐÝ

G{N P C
G{N.

By taking C to be a pseudo variety of finite groups, in [46], one can find a more general

version of CSP, namely C-CSP. Using a similar argument as in [43], one gets that having

C-CSP is independent of the weakly branch action of the group, see [46]. In the same article,

the authors provided a sufficient condition for weakly branch groups to have the C-CSP. By

taking C as the class of all finite 2-groups, one gets the following result.

Theorem 2.4.16 ([46, Section 4.2]). The Basilica group B has the 2-CSP property.

2.4.1.8 Maximal subgroups

The study of maximal subgroups of branch groups was initiated by Pervova in [86] and [87]

by proving that the Grigorchuk group and torsion GGS-groups do not contain maximal

subgroups of infinite index. One of the early motivations of this investigation is related to a

conjecture of Kaplansky. Let G be a finitely generated group and K be a field of characteris-

tic p ą 0. Let J pKrGsq be the Jacobson radical and let ApKrGsq be the augmentation ideal

of the group algebra KrGs. Then ApKrGsq is a maximal right ideal of KrGs, and hence it

contains J pKrGsq. Then Kaplansky conjectured that J pKrGsq “ ApKrGsq if and only if G

is a finite p-group; see [67]. In [84], Passman proved that if J pKrGsq “ ApKrGsq then G

is a p-group, and moreover, every maximal subgroup of G is normal of index p. Therefore,

the class of Burnside groups (finitely generated infinite p-groups) provide potential counter-

examples to Kaplansky’s conjecture. However, it is shown that the Gupta–Sidki 3-group

does not satisfy the equality J pKrGsq “ ApKrGsq; cf. [97].

Motivated from Pervova’s result, one can ask the following natural question: do all

finitely generated branch groups behave in the same way? This was answered negatively by

Bondarenko [27] by providing a non-explicit example of a finitely generated branch group
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that admits a maximal subgroup of infinite index. Thenceforth, attempts have been made

to characterise finitely generated branch groups with (or without) maximal subgroups of

infinite index and to see how far one can generalise the results and techniques of Pervova.

It is now known that the torsion elements in the family of generalisations of Grigorchuk and

Gupta–Sidki groups have maximal subgroups only of finite index [5]. On the other hand,

non-torsion siblings of Grigorchuk groups acting on the binary rooted tree have maximal

subgroups of infinite index [41]. One might suspect that the periodicity of the groups plays a

role in the characterisation. However, recent studies by Francoeur and Thillaisundaram [42]

show that all non-torsion GGS-groups have maximal subgroups only of finite index, adding

more complexity to the characterisation.

The study of maximal subgroups of infinite index extends to the class of weakly branch

groups by Francoeur. In [40], he developed new techniques to study the maximal subgroups

of weakly branch, but not branch, groups and proved that the classical Basilica group does

not contain maximal subgroups of infinite index.

Theorem 2.4.17 ([40, Theorem 4.28]). Every maximal subgroup of the Basilica group B is

of finite index.

2.4.2 GGS-groups

Grigorchuk–Gupta–Sidki groups (abbreviated as GGS-groups) are generalisations of the (sec-

ond) Grigorchuk group and the Gupta–Sidki groups. Let T be them-regular rooted tree and

let e “ pe1, . . . , em´1q P pZ{mZqm´1 be a non-zero vector. To each vector e, we associate a

GGS-group G ď AutT as follows: G “ xa, ty, where a is them-cycle p1 m m´1 ¨ ¨ ¨ 2q which

interchanges cyclically the m subtrees rooted at the first level of T , while t stabilises the first

layer, but acts on the m subtrees rooted at first level recursively as ψptq “ pae1 , . . . , aem´1 , tq.

1 By setting m “ p, an odd prime, and e “ p1,´1, 0, . . . , 0q P Fp´1
p , we obtain the Gupta–

Sidki p-group. Likewise, the second Grigorchuk group is obtained by setting m “ 4 and

e “ p1, 0, 1q P pZ{4Zq3. See Figure 2.2 for an illustration of the action of the generator

t “ pa, a´1, tq of the Gupta–Sidki 3-group on the ternary rooted tree.

Notice that, for m “ 2, there is only one non-zero vector e “ p1q, and the corresponding

GGS-group is an embedding of the infinite dihedral group into the automorphism group of

the binary rooted tree. For m “ 3, there exist 3 non-isomorphic GGS-group associated to

1In the literature, the standard generator a is defined by the cycle p1 2 ¨ ¨ ¨ mq, and the group G acts on

the set of vertices of T from the right. Since we use left actions, we replace a with its inverse p1 m m´1 ¨ ¨ ¨ 2q

to be in consistent with the rest of the dissertation.
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t

a a´1 t

a a´1 t

a a´1 t

Figure 2.2: Action of the element t of the Gupta–Sidki 3-group on the ternary rooted tree

the vectors p1, 0q (Fabrykowski–Gupta group [35]), p1, 1q (Bartholdi–Grigorchuk group [17])

and p1, 2q (Gupta-Sidki 3-group [63]). If the defining vector e belongs to Fp´1
p then every

multiple of e defines the same GGS-group. Therefore, there is only one GGS-group with a

constant defining vector. In [89], Petschick obtained a sufficient and necessary condition for

two GGS-groups acting on the p-regular rooted tree to be isomorphic.

Various properties of GGS-groups acting on p-regular rooted trees have been compre-

hensively studied over the last couple of years; for instance, see [37,38,105]. Here we collect

some key results.

The initial examples of GGS-groups, the second Grigorchuk group and the Gupta–Sidki

p-groups, are finitely generated infinite torsion groups. On the other hand, the Fabrykowski–

Gupta group is not a torsion group; cf. [35]. The condition for a GGS-group acting on the

p-regular rooted tree to be torsion is given by the following theorem.

For all i, j P Z, we use the notation ri, js to denote the interval in Z.

Theorem 2.4.18 ([105, Theorem 1]). Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-zero vector

and let G be the GGS-group defined by e. Then G is torsion if and only if

ÿ

i P r1,p´1s

ei ” 0 pmod pq.

This result does not apply to the second Grigorchuk group as it is acting on the 4-regular

rooted tree. Nonetheless, in the same paper [105], Vovkivsky generalised Theorem 2.4.18 to

the subclass of GGS-groups acting on pn-regular rooted trees, for n P N. In [10], Bartholdi
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observed that Vovkivsky’s proof also covers the case of composite numbers.

In the sequel, we fix p to be an odd prime.

Theorem 2.4.19 ([38, Theorem 2.1 & Corollary 2.5]). Let e “ pe1, . . . , ep´1q P Fp´1
p be

a non-zero vector and let G “ xa, ty be the GGS-group defined by e. Then the following

assertions hold.

(i) StGp1q “ xty
G “ xt, ta, . . . , ta

p´1
y and G “ StGp1q ¸ xay;

(ii) StGp2q ď G1 ď StGp1q;

(iii) G{G1 “ xG1 ay ˆ xG1 ty – Cp ˆ Cp. Furthermore, G1{γ3pGq “ xγ3pGq ra, tsy – Cp;

(iv) StGp2q ď γ3pGq.

The following definition is due to Petschick [90].

Definition 2.4.20. Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-zero vector. Define

e1 “ pe12, . . . , e
1
p´1q “ pe2 ´ e1, . . . , ep´1 ´ ep´2q P Fp´2

p ,

e2 “

$

’

&

’

%

pe23, . . . , e
2
p´1q “ pe

1
3 ´ e

1
2, . . . , e

1
p´1 ´ e

1
p´2q P F

p´3
p , if p ą 3,

empty tuple, if p “ 3.

We say the vectors e, e1 and e2 are symmetric if ei “ ep´i for all i P r1, p´ 1s, e1i “ e1p`1´i

for all i P r2, p´ 1s and e2i “ e2p`2´i for all i P r3, p´ 1s, respectively. For convention, we

take the empty tuple to be symmetric.

Assuming that the defining vector e is non-symmetric, we get striking properties of the

corresponding GGS-group.

Theorem 2.4.21. Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-zero vector and let G be the

GGS-group defined by e. The following assertions hold.

(i) [38, Lemmas 3.2] If the defining vector e is non-constant then G is regular branch over

the subgroup γ3pGq. Moreover,

ψpγ3pStGp1qqq “ γ3pGq ˆ
p
¨ ¨ ¨ ˆ γ3pGq.

(ii) [38, Lemma 3.4 & Theorem 2.14] If the defining vector e is also non-symmetric then G

is regular branch over its commutator subgroup. Moreover,

ψpStGp1q
1q “ G1 ˆ

p
¨ ¨ ¨ ˆG1,

and rG : StGp1q
1s “ pp`1.
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(iii) [38, Lemma 4.2] & [37, Theorem 3.7] If the defining vector e is constant then G is

weakly regular branch group over K 1, where K “ xta´1y, but G is not a branch group.

Theorem 2.4.22 ([37, Theorem 2.7]). Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-constant

vector and let G be the GGS-group defined by e. Then G has the congruence subgroup

property and is just-infinite. As a consequence, every proper quotient of G is a finite p-group.

In light of Theorem 2.4.22, we now state results concerning quotient groups of GGS-

groups which will be used in Chapter 5. For convenience, we do not distinguish notationally

between the elements of a GGS-group and those of its quotients.

Theorem 2.4.23 ([90, Proposition 3.3]). Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-constant

vector and let G be the GGS-group defined by e. Then

logprG : G2s “ p` 1` εpe1q ` δpe2q ´ δpeq,

where

δpdq “

$

’

&

’

%

1 if d is symmetric,

0 otherwise,

and εpdq “

$

’

&

’

%

1 if d is constant,

0 otherwise,

for d P te, e1, e2u.

Notation 2.4.24. Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-symmetric vector and let G be

the GGS-group defined by e. By Theorem 2.4.22(ii), G is regular branch over the com-

mutator subgroup of G. We denote the commutator subgroup G1 of G by H and write

H1 “ H ˆ
p
¨ ¨ ¨ ˆH “ ψpStGp1q

1q. Since ψ is a monomorphism, we identify H1 with the sub-

group StGp1q
1 of G: clearly, H1 Ĳ H Ĳ G. Write x “ ra, ts and xi “ xa

i
for the conjugates

of x by powers of a, for i P Z. Notice that xi “ xj if and only if i ” j pmod pq. Further

observe that

ψpx0q “ pt
´1ae1 , ae

1
2 , ae

1
3 , . . . , ae

1
p´1 , a´ep´1tq,

ψpx1q “ pa
´ep´1t, t´1ae1 , ae

1
2 , ae

1
3 , . . . , ae

1
p´1q,

...

ψpxp´2q “ pa
e13 , . . . , ae

1
p´1 , a´ep´1t, t´1ae1 , ae

1
2q,

ψpxp´1q “ pa
e12 , ae

1
3 , . . . , ae

1
p´1 , a´ep´1t, t´1ae1q.

Theorem 2.4.25 below is an easy consequence of Theorem 2.4.21, Theorem 2.4.22 and

Theorem 2.4.23. For convenience, here we give a proof.

36



Theorem 2.4.25. Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-symmetric vector and let G be

the GGS-group defined by e. Let H,H1 and xi be as defined in Notation 2.4.24. Then

(i) H{H1 “ xH1 xi | r0, p´ 2sy – Cp ˆ
p´1
¨ ¨ ¨ ˆ Cp;

(ii) H1{rH1, Gs “ xrH1, Gs yy – Cp, where y “ ψ´1px, 1, . . . , 1q;

(iii) rH : H 1s “ p´ 1` εpe1q ` δpe2q. Furthermore,

H 1 “

$

’

’

’

’

’

&

’

’

’

’

’

%

H1 if e2 is non-symmetric,

rH1, Gs if e2 is symmetric and e1 is non-constant,

L if e2 is symmetric and e1 is constant,

where L is a subgroup of index p in rH1, Gs. In particular, H{H 1 – C
p´1`εpe1q`δpe2q
p .

Proof. (i) Recall that H1 “ StGp1q
1. Set G “ G{H1. We use the notation p¨q to denote

the images of elements and subgroups of G under the canonical epimorphism GÑ G. Then

G “ StGp1q ¸ xay – Cp ≀ Cp, which can be seen as follows. From Theorem 2.4.19(i) we see

that G splits as a semi-direct product; i.e., G “ StGp1q ¸ xay. Next we analyse the normal

subgroup StGp1q. Since, StGp1q is generated by the elements of the form ta
i
, for i P r0, p´ 1s,

and each of these element has order p, we get that

StGp1q “
A

t, ta, . . . , tap´1
E

– Cp ˆ
p
¨ ¨ ¨ ˆ Cp.

Now, since rStGp1q : G
1s “ p, we obtain that

H{H1 “ H – Cp ˆ
p´1
¨ ¨ ¨ ˆ Cp.

In fact, we can also identify a minimal generating set for H{H1 as follows. The quotient

group H is generated by the images of the elements xi “ ra, ta
i
s, for i P r0, p´ 1s. Now

observe from the first layer section decomposition of xi (Notation 2.4.24) that

xp´1xp´2 ¨ ¨ ¨x0 “ 1.

Therefore, we conclude that

H{H1 “ xH1 xi|i P r0, p´ 2sy .

(ii) Observe first that rH,Gs ˆ
p
¨ ¨ ¨ ˆ rH,Gs ď rH1, Gs. Set yk “ p1, k. . ., 1, x, 1, p´k´1. . . , 1q for

k P r0, p´ 1s. It is straightforward from Theorem 2.4.19(iii) that the set tyk | k P r0, p´ 1su

generates the quotient group H1{rH1, Gs. But yk “ ya
k

0 ”rH1,Gs y0. By setting y “ ψ´1py0q,

again it follows from Theorem 2.4.19(iii) that H1{rH1, Gs “ xy0y – Cp.
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(iii) The result follows from the proof of Theorem 2.4.23. We split the proof into two cases.

Case 1: e2 is non-symmetric. In particular, e2 is a non-zero vector and hence e1 has to

be non-constant. If otherwise e1 is constant, then e2 is the zero vector in Fp´1
p . Therefore,

by Theorem 2.4.23, we get rH : H 1s “ pp´1 “ rH : H1s, and hence the result follows

as H 1 ď H1.

Case 2: e2 is symmetric. We prove that H 1 ď rH1, Gs. It suffices to show that H{rH1, Gs

is abelian. Again we use the fact that the commutator subgroup H of G is normally gen-

erated from the element x “ ra, ts. We first claim that the quotient group H{rH1, Gs is

generated from the set tx0, . . . , xp´2, yu. Even though, it follows immediately from The-

orem 2.4.25(i) and Theorem 2.4.25(ii), here we give a direct proof, in order to record the

following calculations which are useful later. Observe that the set tx0, . . . , xp´2, yu is in-

variant under conjugation by a modulo rH1, Gs. Since rH,Gs ˆ
p
¨ ¨ ¨ ˆ rH,Gs ď rH1, Gs, we

get

xt0 “ ppt
´1ae1qa

e1
, pae

1
2qa

e2
, . . . , pae

1
p´1qa

ep´1
, pa´ep´1tqtq

”rH1,Gs pt
´1ae1ra, tse1 , ae

1
2 , . . . , ae

1
p´1 , a´ep´1tra, ts´ep´1q

”rH1,Gs pt
´1ae1ra, tse1´ep´1 , ae

1
2 , . . . , ae

1
p´1 , a´ep´1tq “ x0 y

e1´ep´1 ,

and

xt1 “ ppa
´ep´1tqa

e1
, pt´1ae1qa

e2
, pae

1
2qa

e3
, . . . , pae

1
p´2qa

ep´1
, pae

1
p´1qtq

”rH1,Gs pa
´ep´1tra, ts´e1 , t´1ae1ra, tse2 , ae

1
2 , . . . , ae

1
p´2 , ae

1
p´1ra, tse

1
p´1q

”rH1,Gs pa
´ep´1tra, tse2´e1`e

1
p´1 , t´1ae1 , ae

1
2 , . . . , ae

1
p´2 , ae

1
p´1q “ x0 y

e12`e
1
p´1 .

For i P r2, p´ 2s, we have

xti “ pa
e1p´i`1 , . . . , ae

1
p´1 , a´ep´1t, t´1ae1 , ae

1
2 , . . . , ae

1
p´iqpa

e1 ,...,aep´1 ,tq

“ pae
1
p´i`1 , . . . , ae

1
p´1 , a´ep´1tra´ep´1t, aeis, t´1ae1rt´1ae1 , aei`1s, ae

1
2 , . . . , ae

1
p´irae

1
p´i , tsq

”rH1,Gs xiy
´ei`ei`1`e

1
p´i “ xiy

e1i`1`e
1
p´i .

Finally, we get

xtp´1 “ pa
e12 , . . . , ae

1
p´1 , aep´1t, t´1ae1qpa

e1 ,...,aep´1 ,tq

“ pae
1
2 , . . . , ae

1
p´1 , aep´1traep´1t, aep´1s, t´1ae1rt´1ae1 , tsq

”rH1,Gs xp´1y
e1´ep´1 .

Since y P H1 and ry, ts P rH1, Gs, it holds that, for all j P Z and i P r0, p´ 1s, we have

xt
j

i ”rH1,Gs xi y
ω, for some ω P Z. Since, the element ry, as P rH1, Gs, we conclude that the

quotient group H{rH1, Gs is generated from the set tx0, . . . , xp´2, yu.
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Now we prove thatH{rH1, Gs is abelian. Notice that, y is a central element ofH{rH1, Gs.

It suffices to prove that, for all i, j P r0, p´ 2s, the elements rxi, xjs are trivial in the quotient

group H{rH1, Gs. Since rxi, xjs “ rx
ai , xaj s “ rx, xa

j´i
sa

i
for all i, j P r0, p´ 2s, we consider

the element rx, xis. Now let p ě 5. For i P r2, p´ 2s, the first layer section decomposition

of the element rx0, xis is given by

rx0, xis|k “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

rt´1ae1 , a
e1
p´pi´1qs if k “ 0,

raei
1

, a´ep´1ts if k “ i´ 1,

rae
1
i`1 , t´1ae1s if k “ i,

ra´ep´1t, ae
1
p´is if k “ p´ 1,

1 otherwise.

Therefore,

rx0, xis ”rH1,Gs prt
´1ae1 , a

e1
p´pi´1qsraei

1

, a´ep´1tsrae
1
i`1 , t´1ae1sra´ep´1t, ae

1
p´is, 1 . . . , 1q

”rH1,Gs prt
´1, a

e1
p´pi´1qsraei

1

, tsrae
1
i`1 , t´1srt, ae

1
p´is, 1 . . . , 1q

”rH1,Gs pra, ts
e1
p´pi´1qra, tsei

1

ra, ts´e
1
i`1ra, ts´e

1
p´i , 1 . . . , 1q

“ pra, ts
e2
p´pi´1q

´e2i`1 , 1 . . . , 1q

”rH1,Gs y
e2
p´pi´1q

´e2i`1 .

For p ě 3 and for i “ 1, we have

rx0, x1s “ prt
´1ae1 , a´ep´1ts, rae

1
2 , t´1ae1s, 1, . . . , 1, ra´ep´1t, ae

1
p´1sq

”rH1,Gs prt
´1, a´ep´1srae1 , tsrae

1
2 , t´1srt, ae

1
p´1s, 1, . . . , 1, q

”rH1,Gs pra, ts
´ep´1ra, tse1ra, ts´e

1
2ra, ts´e

1
p´1 , 1, . . . , 1, q

“ pra, tse1´ep´1´e1p´1´e
1
2 , 1, . . . , 1, q

”rH1,Gs y
2pe1´ep´1q`ep´2´e2 .

Now since e2 is symmetric, for p ě 5, we have e2p´i`1 “ e2i`1 (see Definition 2.4.20), and

2pe1 ´ ep´1q ` pep´2 ´ e2q “ 0

by [90, Lemma 2.4]. For p “ 3,

2pe1 ´ ep´1q ` pep´2 ´ e2q “ 3pe1 ´ e2q ” 0 pmod 3q.

Therefore, rx, xis is trivial in the quotient group H{rH1, Gs, for all i P r1, p´ 2s, and hence

H{rH1, Gs is abelian. From Theorem 2.4.25(i) and Theorem 2.4.25(ii) and we obtain that

H{rH1, Gs “ xtx0, . . . , xp´2, yuy – Cpp .
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In particular H 1 ď rH1, Gs.

Assume that e1 is non-constant. Then by Theorem 2.4.23 we obtain rH : H 1s “ pp “

rH : rH1, Gss, implying that H 1 “ rH1, Gs. If e
1 is constant then rH : H 1s “ pp`1 and hence

rrH1, Gs : H
1s “ p.

Remark 2.4.26. Let e P Fp´1
p be a non-constant defining vector and let G be the GGS-

group defined by e. By Theorem 2.4.21, G is regular branch. If e is also non-symmetric

then G is regular branch over its commutator subgroup H “ G1 and the branching quotient

H{ψ´1pH ˆ
p
¨ ¨ ¨ ˆHq is elementary abelian (Theorem 2.4.25(i)). If the defining vector e is

non-constant and symmetric then G is regular branch over γ3pGq. However, the branching

quotient γ3pGq{ψ
´1pγ3pGqˆ

p
¨ ¨ ¨ˆγ3pGqq is not abelian. Indeed, γ3pGq is normally generated

from the elements rra, bs, as and rra, bs, bs. For example, the elements rra, bs, as and rra, bs, asa

do not commute modulo γ3pGq ˆ ¨ ¨ ¨ ˆ γ3pGq. The fact that the branching quotient being

elementary abelian is vital for the computations in Chapter 5 and Chapter 6. Therefore,

in Chapter 5 and Chapter 6, we consider GGS-groups that are defined by non-symmetric

defining vectors.

Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-symmetric vector and let G be the GGS-group

defined by e. In the rest of this section, we assume that the vector e2 is also non-symmetric.

Then, by Theorem 2.4.25, H 1 “ G2 “ H1. For convenience, we record the following struc-

tural diagram.

G

StGp1q

G1 “ H

StGp1q
1 “ H1 “ H ˆ

p
¨ ¨ ¨ ˆH

rH1, Gs

– Cp

– Cp

– Cp´1
p

– Cp

Figure 2.3: Structural diagram for the GGS-group defined by a non-symmetric defining

vector e such that e2 is also non-symmetric.

Now we prove two new lemmas that are crucial for the computations in Chapter 5.

Before stating the results, we recall the definition of a circulant matrix. For any vector
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v “ pv1, . . . , vnq, the circulant matrix generated by v is the matrix of size nˆ n whose first

row is v, and every other row is obtained from the previous one by applying a shift of length

one to the right.

Lemma 2.4.27. Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-symmetric vector and let G be the

GGS-group defined by e. Let H,H1 and xi be as defined in Notation 2.4.24. Suppose that e2

is non-symmetric. Define

f : H{H1 ˆH{H1 Ñ H1{rH1, Gs

by fpH1 g,H1 hq “ rH1, Gs rg, hs. Then f is a skew-symmetric bilinear form. With respect

to the generating set tx0, . . . , xp´1u of H{H1, f can be expressed as a pˆ p circulant matrix

T P MatppFpq generated by the vector

p0, ℓ1,2, s2, s3, . . . , s p´1
2
,´s p´1

2
, . . . ,´s3,´s2,´ℓ1,2q, (2.23)

where ℓ1,2 “ 2pe1 ´ ep´1q ` ep´2 ´ e2 and si “ e2p´pi´1q ´ e2i`1, for i P r2,
p´1
2 s. Moreover,

there exists at least one j P r2, p´1
2 s such that sj ‰ 0, and in particular, f is non-zero.

Proof. Observe first that, since e2 is non-symmetric, we have H1 “ H 1 from Theorem 2.4.25.

We identify the quotient group H1{rH1, Gs with the finite filed Fp and the quotient group

H{H1 with the vector space of dimension p´1 over Fp. Therefore, the map f is well-defined.

Since f is the commutator map, it is not difficult to see that f is a skew-symmetric bilinear

form.

With respect to the generating set tx0, . . . , xp´1u of the quotient group H{H1, we shall

express the f as the pˆ p matrix

T “ pℓi,jq,

where ℓi,j is defined by the equality fpxi´1, xj´1q “ rxi´1, xj´1s ”rH1,Gs y
ℓi,j . Since the

quotient H1{rH1, Gs is generated by the element y, the entries ℓi,j are well defined. Since f

is a skew-symmetric bilinear form, it is enough to compute rxi, xjs for i ă j. Assume that

i, j P r0, p´ 2s and i ă j. We have

rxi, xjs “ rx
ai

0 , x
aj

0 s ”rH1,Gs rx0, x
aj´i

0 s “ rx0, xj´is.

Therefore, T can be determined by the values of ℓ1,j for all j P r1, p´ 1s. Clearly, ℓ1,1 “ 0.

It follows from the proof of Theorem 2.4.25 that

ℓ1,2 “ 2pe1 ´ ep´1q ` ep´2 ´ e2 ℓ1,i`1 “ e2p´pi´1q ´ e
2
i`1,
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for i P r2, p´ 2s. Now, for i P r2, p´ 2s, set si “ e2p´pi´1q ´ e2i`1. Notice that sp´i “ ´si.

Since e2 is non-symmetric, there exists i P r2, p´ 2s such that e2p´pi´1q ‰ e2i`1. Consequently,

ℓ1,i`1 ‰ 0, and hence f is non-zero. For i “ p´ 1, we have

rx0, xp´1s “ prt
´1ae1 , ae

1
2s, 1, . . . , 1, rae

1
p´1 , a´ep´1ts, ra´ep´1t, t´1ae1sq

“ prt´1, ae
1
2srae

1
p´1 , tsra´ep´1 , t´1srt, ae1s, 1, . . . , 1, q

“ pra, tse
1
2ra, tse

1
p´1ra, tsep´1ra, ts´e1 , 1, . . . , 1, q

“ pra, ts´e1`ep´1`e1p´1´e
1
2 , 1, . . . , 1, q

“ y´2pe1´ep´1q`e2´ep´2 “ y´ℓ1,2 ,

hence ℓ1,p “ ´ℓ1,2. This completes the proof.

Observation 2.4.28. Let f be as defined in Lemma 2.4.27 and let T be the pˆp circulant

matrix corresponding to f given by the vector in (2.23). Since f is a skew-symmetric bilinear

form, we can find a matrix M P GLppFpq such that

M ¨ T ¨MT “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

I1

I2
. . .

Ir
. . .

I p´1
2

0 0 . . . . . . . . . 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where MT is the transpose of M , and there exists r P r1, p´1
2 s such that Ii “

¨

˝

0 1

´1 0

˛

‚

for all i ď r, and Ij is the 2 ˆ 2 zero matrix for all r ă j ď p´1
2 . With the help of the

software MAGMA, we have computed the matrix T and M for Gupta–Sidki p-groups for

p P t5, 7, 11, 13u. In this situation, T is of rank p´ 3 and observed that the pp´ 2q-th row

of the matrix M is of the form

p1, 3, 6, . . . ,
pk ` 1qpk ` 2q

2
,
pp´ 2qpp´ 1q

2
, 0, 0q.

Moreover, the element

x0x
3
1x

6
2 ¨ ¨ ¨x

pk`1qpk`2q
2

k ¨ ¨ ¨x
pp´2qpp´1q

2
p´3

is central in the quotient group H{rH1, Gs. We generalise this observation in the following

result, which turns out to be one of the main ingredients for the computations in Chap-

ter 5, because on central elements irreducible characters of a group take non-zero values; cf.

Lemma 5.3.10.
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Lemma 2.4.29. Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-symmetric vector and let G be the

GGS-group defined by e. Assume that e2 is also non-symmetric. Then the element

z “ x0x
3
1x

6
2 ¨ ¨ ¨x

pk`1qpk`2q
2

k ¨ ¨ ¨x
pp´2qpp´1q

2
p´3 x

pp´1qp
2

p´2 x
ppp`1q

2
p´1 ,

is a non-trivial central in the quotient group H{rH1, Gs.

Proof. We first show that z is non-trivial in the quotient group H{rH1, Gs. Observe from

the first layer section decomposition of the elements x0, . . . , xp´1 (Notation 2.4.24) that

z ”rH1,Gs pta
r1 , tar2 , . . . , tarp´1qyr,

for some r, r1, . . . , rp´1 P r0, p´ 1s. Thus the element z is non-trivial in the quotient group

H{rH1, Gs, since ptar1 , tar2 , . . . , tarp´1qyr R rH1, Gs; cf. Theorem 2.4.25. Now we prove

that the element z is central. From Lemma 2.4.27, the bilinear form f admits the circulant

matrix generated by

v “ p0, ℓ1,2, s2, s3, . . . , s p´1
2
,´s p´1

2
, . . . ,´s3,´s2,´ℓ1,2q,

where ℓ1,2 “ 2pe1 ´ ep´1q ` ep´2 ´ e2 and si “ e2p´pi´1q ´ e2i`1 for i P r2, p´1
2 s. Since e2 is

non-symmetric, there is some i P r2, p´ 2s such that si is non-zero. Observe that

si “ e2p´pi´1q ´ e
2
i`1 “ e1p´pi´1q ´ e

1
p´i ´ e

1
i`1 ` e

1
i

“ ep´pi´1q ´ ep´i ´ ep´i ` ep´i´1 ´ ei`1 ` ei ` ei ´ ei´1

“ ep´pi´1q ´ ei´1 ` 2pei ´ ep´iq ` ep´i´1 ´ ei`1.

We set ci “ ep´i ´ ei for i P r1, p´ 1s. Therefore, we shall write ℓ1,2 “ ´2c1 ` c2. For

i P r2, p´3
2 s, we get si “ ci´1 ´ 2ci ` ci`1, and

s p´1
2
“ c p´3

2
´ 2c p´1

2
` c p`1

2
“ c p´3

2
´ 3c p´1

2
.

Now, to see that the element z is central in the quotient group H{rH1, Gs, it suffices to

see that the element

rxi, zs “ rxi, x0x
3
1 ¨ ¨ ¨x

pk`1qpk`2q
2

k ¨ ¨ ¨x
ppp`1q

2
p´1 s

”rH1,Gs rxi, x0srxi, x1s
3 ¨ ¨ ¨ rxi, xks

pk`1qpk`2q
2 ¨ ¨ ¨ rxi, xp´1s

ppp`1q
2

“ yℓi`1,1y3ℓi`1,2 ¨ ¨ ¨ y
pk`1qpk`2q

2
ℓi`1,k`1 ¨ ¨ ¨ y

ppp`1q
2

ℓi`1,p

“ yℓi`1,1`3ℓi`1,2`¨¨¨`
pk`1qpk`2q

2
ℓi`1,k`1`¨¨¨`

ppp`1q
2

ℓi`1,p

is trivial in H{rH1, Gs for all i P r0, p´ 1s, where ℓi`1,j denotes the pi ` 1, jq-th entry of

the circulant matrix T generated by v. Let ri denote the i-th row of the matrix T , for
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i P r1, ps, and let w be the element p1, 3, . . . , pk`1qpk`2q
2 , . . . , ppp`1q

2 q. Therefore, it is enough

prove that the coordinate sum of the product of ri and w is zero for all i P r1, ps. We use

the notation pa0, . . . , ap´1q ¨ pb0, ¨ ¨ ¨ , bp´1q to denote the operation which yields the element

a0b0 ` ¨ ¨ ¨ ` ap´1bp´1.

Let i P r1, ps. The coefficient of c1 in the coordinate sum of the product ri ¨w is given by

´2
pi` 1qpi` 2q

2
`
pi` 2qpi` 3q

2
` 2

pi´ 1qi

2
´
pi´ 2qpi´ 1q

2
“ 0.

The coefficient of cj for j P r2,
p´3
2 s in the coordinate sum of the product ri ¨ w is given by

pi` j ´ 1qpi` jq

2
´ 2

pi` jqpi` j ` 1q

2
`
pi` j ` 1qpi` j ` 2q

2

´
pi´ j ` 1qpi´ j ` 2q

2
` 2

pi´ jqpi´ j ` 1q

2
´
pi´ j ´ 1qpi´ jq

2
“ 0.

Finally, the coefficient of c p´1
2

in the coordinate sum of the product ri ¨ w is given by

pi` p´3
2 qpi`

p´1
2 q

2
´ 3

pi` p´1
2 qpi`

p`1
2 q

2
´
pi´ p´3

2 qpi´
p´5
2 q

2
` 3

pi´ p´1
2 qpi´

p´3
2 q

2

” 0 mod p.

Therefore ri ¨ w “ 0 for all i P r1, ps and hence we conclude that the element z is central in

the quotient group H{rH1, Gs.
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Part I

Representations of GGS-groups
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Chapter 3

Introduction

Let G be a group and let rnpGq be the number of (equivalence classes of) n-dimensional

irreducible complex representations of G. The group G is said to be representation rigid

if rnpGq is finite for all n P N. Clearly, every finite group is representation rigid. Examples

of groups that are not representation rigid are easy to be found. For example, the infinite

cyclic group is not representation rigid as it has infinitely many 1-dimensional complex

representations. In the sequel, we suppose that the group G is infinite and representation

rigid. One of the fundamental problems in asymptotic representation theory is to understand

the growth of the function N ÞÑ RN pGq “
N
ř

n“1
rnpGq, where RN pGq is the number of

irreducible representations of G of dimension at most N . We say that the group G has

polynomial representation growth (abbreviated as PRG) if RN pGq is polynomially bounded

in N , i.e., if RN pGq “ OpNαq for some α P Rě0. To study the representation growth of a

PRG group G, following pioneering work of Grunewald, Segal and Smith [61], one introduces

the Dirichlet generating function

ζGpsq “
8
ÿ

n“1

rnpGqn
´s ps P Cq,

called the representation zeta function of G. From the general theory of Dirichlet generating

functions, it is known that the region of convergence of ζGpsq is always a right-half plane

of the plane of complex numbers, possibly empty. The abscissa of convergence, denoted

by αpGq, of ζGpsq is the infimum of all α P R such that ζGpsq converges and defines a

holomorphic function on a right half-plane ts P C | Repsq ą αu. It can be easily verified

that G has PRG if and only if αpGq is finite. In fact, if RN pGq is unbounded then αpGq is

given by the formula

αpGq “ lim sup
NÑ8

logRN pGq

logN
.
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Hence, αpGq is minimal with the property that RN pGq “ OpNαpGq`ϵq for every ϵ ą 0,

whence it gives the polynomial degree of representation growth, and it bounds the right-half

plane of convergence. In favourable circumstances the function ζGpsq may extend meromor-

phically to a multi-valued analytic function on a larger domain.

The study of zeta functions of groups originated from the study of subgroup growth. Let

G be a finitely generated group and let anpGq denote the number of subgroups of index n

in G. A landmark result in the theory of subgroup growth is the characterisation of groups

of polynomial subgroup growth [72]. In the context of representation growth, the analogous

question of characterisation, in its full generality, is still open. Nevertheless, remarkable

results are obtained in the classes of arithmetic groups, their profinite completions and

related compact Lie groups over non-archimedean local fields.

Arithmetic groups naturally arise as lattices, i.e., as discrete subgroups of finite co-

volume, in locally compact groups, such as SLnpZq Ď SLnpRq. Let Γ be an arithmetic

irreducible lattice in a semisimple locally compact group G of characteristic zero. In [73],

Lubotzky and Martin proved that Γ has PRG if and only if Γ has the congruence subgroup

property.

In [26, Proposition 2], it is shown that the profinite completion pG of a finitely generated

discrete group G is representation rigid if and only if G is FAb, i.e., the abelianisation of

every finite index subgroup of G is finite. Since every representation of a profinite group

factors through a finite quotient, the result follows from an application of Jordan’s classical

theorem about finite subgroups of linear groups in characteristic zero.

Theorem 3.0.1 (Jordan’s theorem). There exists a function j : N Ñ N such that each

finite subgroup of GLnpCq has an abelian normal subgroup of index at most jpnq.

In particular, a finitely generated profinite group G is representation rigid if and only

if it is FAb. Using techniques from geometric representation theory and model theory,

Jaikin-Zapirain [66] established rationality results for representation rigid compact p-adic

Lie groups. Key examples of FAb compact p-adic Lie groups are special linear groups SLnpOq

and their principal congruence subgroups SLmn pOq, where O is a compact discrete valuation

ring of characteristic zero with residue field of characteristic p. The study of representation

growth of compact p-adic Lie groups is interesting in its own right: it uses tools from various

areas of mathematics. One can find interesting results on the representation zeta functions

of these groups, including functional equations and explicit formulas, summarised in a series

of articles, including [6, 7], by Avni, Klopsch, Onn and Voll.

In this dissertation we consider another important class of groups; the class of self-similar
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branch groups. The study of representation zeta functions of self-similar branch groups was

initiated by Bartholdi and de la Harpe [19]. Let T be the m-regular rooted tree and let

G ď AutT be a regular branch group over a subgroup H. Recall from Definition 2.3.2

that G is self-similar and it acts transitively on each level of T . Furthermore, G contains a

subgroup H of finite index such that H ě ψ´1pH ˆ
m
¨ ¨ ¨ ˆ Hq. If G is representation rigid

(which is the case for many interesting regular branch groups, see Corollary 3.0.3), one may

define and study the representation zeta function ζGpsq, for s P C. Since H is a subgroup

of finite index in G, as a corollary of [73, Lemma 2.2] one gets that αpGq “ αpHq. This

allows us to study the representation zeta function of H to understand the representation

growth of G. Set H1 “ ψ´1pH ˆ
m
¨ ¨ ¨ ˆHq. Every irreducible representation ρ of H can be

restricted to a representation of H1, say ρ|H1 . By Clifford’s theorem, ρ|H1 can be written

as a sum of irreducible representations of H1. The representations of H1 are in one-to-one

correspondence with products of irreducible representations of H. Moreover, the represen-

tations of H1 induce to representations of H. This process of restriction and induction

of representations serves as an essential tool to get a recursive estimate on the number of

irreducible characters of H, hence that of G as it is a finite extension of H; see Chapter 4

for a review on Clifford theory.

Let H be a finite group acting transitively on a finite set X with cardinality m ě 2. Set

W pH, 0q “ t1u, W pH, 1q “ H and, for every n P N, set

W pH,n` 1q “W pH,nq ≀X H – H ≀Xn W pH,nq.

We define the iterated wreath product W pHq of H as the profinite group

W pHq “ lim
ÐÝ
kPN

W pH, kq.

Notice that W pHq – W pHq ≀X H. Hence W pHq is regular branch over W pHq. If H

is perfect, i.e., rH,Hs “ H, then it is shown in [19] that W pHq is representation rigid.

Furthermore, the abscissa of convergence of the representation zeta function ζW pHqpsq of

W pHq is positive and finite, and ζW pHqpsq satisfies a functional equation involving shifts

ζW pHqpesq for e P t1, . . . ,mu. Also, in [19], the authors carried out numerical computation

for H “ Altp5q and H “ PGLp3, 2q, and obtained approximated values of the abscissa of

convergence of the corresponding representation zeta functions.

In [14], Bartholdi generalised the results of [19] to all representation rigid regular branch

groups. Akin to the profinite setting, it is claimed that a finitely generated group G that

is regular branch over a subgroup H is representation rigid if and only if the abelianisation

of H is finite. For a regular branch group G the latter condition is equivalent to the fact
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that G is FAb; see Theorem 5.1.1. It is easy to see that if G is representation rigid then G

is FAb, and in particular, the abelianisation of H is finite. If otherwise, suppose that K is

a subgroup of finite index in G with infinite abelianisation. Then K admits infinitely many

1-dimensional representations, and hence G has infinitely many representations of degree at

most rG : Ks, violating the fact that G is representation rigid. However, there is a gap in

the proof of the converse statement ([14, Proposition 5.5]), which claims to prove that the

kernel of every irreducible representation contains ψ´1pH ˆ
md

¨ ¨ ¨ ˆHq, for some d P N. This

can be fixed by a result of Abért [2, Corollary 7] that implies that weakly branch groups are

not linear over any field. We say that a group is linear over a field K if it can be embedded

into GLnpKq for some n. We prove the following result in Chapter 5.

Theorem 3.0.2. Let G ď AutT be a regular branch group over a subgroup H. Assume

that the abelianisation of H is finite. Then G is just infinite and, in particular, every

finite-dimensional representation of G factors through a finite quotient.

For a finitely generated group G that satisfies the assertion of Theorem 3.0.2, one can

see that G is representation rigid by an application of Jordan’s theorem, as in the proof of

[26, Proposition 2]. For convenience, we record the result as the following corollary and its

proof can be found in Section 5.1.

Corollary 3.0.3. Let G ď AutpT q be a regular branch group over a subgroup H. If G is

representation rigid then the abelianisation of H is finite. The converse holds if G is also

finitely generated.

For any representation rigid group G that is regular branch over a subgroup H, it is

proved in [14] that the abscissa of convergence of ζGpsq is positive and finite. Indeed, it is

shown that there exist constants A P N and t ą 1 (large enough), both depending on G,

such that, for every n P N,

rnpHq ď Apn{σ0pnqq
t,

where σ0pnq is the number of divisors of n. By a similar computation as in [19, Proposition

12], one gets a rough upper bound for the abscissa of convergence αpGq of the representation

zeta function of G as

αpGq “ αpHq ď t` 1.

Moreover, it is proved that ζGpsq is a linear combination of solutions of a system of

functional equations; cf. [14, Theorem A]. This result applies, in particular, to the Grig-

orchuk group and to the Gupta-Sidki 3-group. The representation zeta functions of these

50



groups are studied in Section 2.1 and Section 2.2 of [14]. Using the computer algebra sys-

tem GAP, Bartholdi provided the first few terms of the representation zeta function of the

Grigorchuk group and the Gupta–Sidki 3-group. Furthermore, he produced a recursive func-

tional equation for the representation zeta function of the Gupta-Sidki 3-group. With the

help of computer calculation he reported that the abscissa of convergence of the representa-

tion zeta function of the Grigorchuk group and the Gupta–Sidki 3-group are approximately

3.293330470 and 4.250099133, respectively, without providing any error intervals.

In this dissertation, using the representation zeta function as a tool, we study the rep-

resentation growth of finite-dimensional irreducible complex representations of GGS-groups.

Various properties of the GGS-groups have been investigated: periodicity [105], Hausdorff

dimension [38], branching, congruence subgroup property [37], etc. Surprisingly little is

known about the finite-dimensional representations of these groups.

The boundary representations of GGS-groups have already been investigated in [68].

Let G be a subgroup of the automorphism group Aut T of a regular rooted tree T whose

set of vertices are in bijection with the set of all words over an alphabet X. The action

of G on the rooted tree T induces an action of G on the boundary BT of T , where BT

is the set of all infinite paths starting at some fixed vertex of T and is homeomorphic to

the Cantor set with respect to the natural topology. The action of G on BT gives rise

to representations of G on spaces of functions on the boundary. The study of boundary

representation of groups acting on rooted trees attracts reasonable attention over the last

couple of years; for instance see [16, 34, 68]. In [68], Kionke introduced a new notion of

local 2-transitivity. A spherically transitive action of G on T is called locally 2-transitive,

if for all distinct vertices u, v P Xn the intersection of the stabilisers stGpuq X stGpvq acts

transitively on the set tux | x P Xu ˆ tvx | x P Xu. Under the assumption that G is locally

2-transitive, Kionke provided an explicit decomposition of the boundary representations into

irreducible constituents. Furthermore, he established a sufficient and necessary condition

for a GGS-group acting on a pn-regular rooted tree, for an odd prime p and n P N, to be

locally 2-transitive. As a corollary, one gets that if G is a GGS-group acting on the p-regular

rooted tree then G is locally 2-transitive.

Our results on representations of GGS-groups are summarised into two chapters; Chap-

ter 5 and Chapter 6. In Chapter 5, we obtain a bound for the abscissa of convergence of

the representation zeta function of the GGS-groups. Chapter 6 is devoted to an explicit

computation of a recursive formula for the representation zeta function of the Gupta–Sidki

3-group. The resulting functional equation is consistent with the one reported in [14] based
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on computer calculations.

Let G be the GGS-group defined by a non-constant defining vector e P Fp´1
p . Then by

Theorem 2.4.21, G is regular branch over a subgroup H, and by Theorem 2.4.22, G has

the congruence subgroup property and is just-infinite. Without loss of generality, we take

H “ γ3pGq, or if the defining vector e is also non-symmetric, we take H “ G1. Since G is

just-infinite and the commutator subgroup H 1 of H is normal in G, the subgroup H 1 is of

finite index in G. Therefore, the abelianisation of H is finite, and from Corollary 3.0.3 we

get the following result.

Corollary 3.0.4. Let G be a GGS-group defined by a non-constant defining vector e P Fp´1
p .

Then G is representation rigid.

In [85], Passman and Temple considered the finite-dimensional representations of the

Gupta–Sidki p-group Gp, for an odd prime p, over an algebraically closed field K. If

charK ‰ p then they obtained a lower bound for the number of irreducible representations

of any finite degree n; cf. [85, Theorem 1.3]. In our setting, i.e., K “ C, this translates to

the fact that

αpGpq ě p´ 2. (3.1)

They also proved that Gp admits infinitely many representations if charK “ p. Using the

character theory of finite groups, in the unpublished manuscript [69], Klopsch and Röver

obtained partial results that enable us to produce an upper bound for αpGpq. In Chapter 5,

we generalise the results from [85] and [69] to GGS-groups. Here we point out that, the results

on GGS-groups heavily rely on our good understanding of the algebraic structure of the

groups, especially their branching quotients, which in turn depend on the defining vectors.

We restrict our attention to the subclass of GGS-groups defined by non-symmetric defining

vectors; cf. Remark 2.4.26. In this situation, by Theorem 2.4.21 and Theorem 2.4.25, the

corresponding GGS-group G is regular branch over the commutator subgroup H “ G1 and

the branching quotient H{ψ´1pH ˆ
p
¨ ¨ ¨ ˆ Hq is elementary abelian. Define C to be the

number (possibly infinite) of irreducible representations of the commutator subgroup H

of G that are invariant under the action induced by conjugation of G. If the number C is

finite, we prove that the coefficients of ζGpsq are bounded above by a function of n involving

the generalised Catalan numbers ; see Definition 5.3.5. In this case, using the generating

function for the generalised Catalan numbers, we provide a bound for αpGq.

Theorem 3.0.5. Let G be a GGS-group defined by a non-symmetric defining vector and

let H “ G1 be the commutator subgroup of G. If the number C of G-invariant irreducible
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representations of H is finite then the abscissa of convergence αpGq of the representation

zeta function ζGpsq satisfies the inequality

p´ 2 ď αpGq ď pp´ 1q
log 2

log p
` ppp´ 1q

logC

log p
` pp´ 1q2 ` pp´ 1q ´ 1. (3.2)

In particular, G has polynomial representation growth.

We investigate the cases in which the number C is finite. It turns out to be that C is

finite, in fact C ď p, if the defining vector e satisfies a polynomial equation in its entries.

In this situation, replacing C with p in (3.2), we get that αpGq is bounded above by Opp2q.

Theorem 3.0.6. Let G be a GGS-group defined by a non-symmetric defining vector e “

pe1, . . . , ep´1q P Fp´1
p . We define

e2 “

$

’

&

’

%

pe3 ´ 2e2 ` e1, . . . , ei`2 ´ 2ei`1 ` ei, . . . , ep´1 ´ 2ep´2 ` ep´3q P Fp´3
p , if p ą 3,

empty tuple, if p “ 3.

Assume that the vector e2 is either p˚q symmetric, or p˚˚q non-symmetric and the sum

ωpeq “ pp´ 2qpe1 ´ ep´1q ` pp´ 4qpe2 ´ ep´2q ` ¨ ¨ ¨ ` 3pe p´3
2
´ e p`3

2
q ` pe p´1

2
´ e p`1

2
q

is non-zero modulo p. Then

p´ 2 ď αpGq ď pp´ 1q
log 2

log p
` 2p2 ´ 2p` 1. (3.3)

For p “ 3, there are only two non-isomorphic GGS-groups defined by non-symmetric

vectors, namely the Fabrykowski–Gupta group defined by e “ p1, 0q, and the Gupta–Sidki

3-group defined by e “ p1, 2q. In both cases, the vector e2 is the empty tuple, and hence

it is symmetric by definition. If p “ 5 and the defining vector e2 is non-symmetric, we

shall prove that the sum ωpeq has to be non-zero modulo 5; see Lemma 5.3.13. However,

there exist GGS-groups that do not satisfy the condition p˚˚q. For example, fix p “ 7.

Consider the defining vector e “ p1, 1, 2, 3, 0, 0q. Notice that e and e2 are non-symmetric,

but the sum ωpeq is zero modulo p. We shall take a closer look at the special case where

ωpeq ” 0 pmod 7q, and give an alternative proof for the conclusion of Theorem 9.1.1; see

Lemma 5.3.16. Therefore, for p P t3, 5, 7u, we obtain the following theorem in its full

generality.

Theorem 3.0.7. Let p P t3, 5, 7u and let G be a GGS-group defined by a non-symmetric

defining vector e P Fp´1
p . Then

p´ 2 ď αpGq ď pp´ 1q
log 2

log p
` 2p2 ´ 2p` 1.
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Furthermore, Theorem 9.1.1 can be applied to the infinite family of GGS-groups defined

by the defining vectors of type e “ p1, 2, . . . , p´ 1q P Fp´1
p , since the vector e2 is symmetric.

Now, consider the defining vector e “ p1,´1, 0, . . . , 0q P Fp´1
p of the Gupta–Sidki p-group

for p ě 5. It is easy to see that the defining vector e2 is non-symmetric and the sum ωpeq

is non-zero modulo p. Hence, we record the following result.

Corollary 3.0.8. Let G be the Gupta–Sidki p-group. The abscissa of convergence αpGq of

the representation zeta function ζGpsq satisfies the inequalities (3.3).

The proofs of the special cases p “ 5 and p “ 7 suggest that Theorem 9.1.1 can be

generalised to all GGS-groups defined by non-symmetric defining vectors. At the end of

Section 5.3 of Chapter 5, we provide partial results that help to generalise Theorem 9.1.1.

The general approach requires an understanding of the lower central series (or at least terms

up to γppGq) of the given GGS-group G. So far, the best known result in this direction is

the work of Vieira on the Gupta–Sidki 3-group G3 [104], who proved that the rank of the

quotient group γipG3q{γi`1pG3q is bounded by two, for i P t1, . . . , 9u. Using a nilpotent

quotient algorithm, a descriptive bound for γipG3q{γi`1pG3q, for i ě 2, is obtained in [15].

With a better insight on lower central series, one would be able to generalise Theorem 9.1.1

to all GGS-groups defined by non-symmetric defining vectors.

If we allow the defining vector e to be symmetric, two possible cases can occur; either

e is symmetric and non-constant or e is constant. In the first case, the corresponding GGS-

group G is regular branch over the subgroup γ3pGq. In this situation, the branching quotient

is not abelian anymore. In the latter case, the corresponding GGS-group is merely weakly

branch. One might need a different approach to study the representation zeta function

of GGS-groups corresponding to symmetric defining vectors. This motivates us to ask the

following question.

Question 3.0.9. How far can we generalise results obtained on the representation growth

of GGS-groups? How do these results connect to distinctive structural properties of the

groups?

In Chapter 6, we explicitly compute the representation zeta function of the Gupta–

Sidki 3-group G3. The group G3 is regular branch over the commutator subgroup G1
3 and

its branching quotient G1
3{ψ

´1pG1
3 ˆ G1

3 ˆ G1
3q is isomorphic to C3 ˆ C3. Because of its

relatively small branching quotient, we can carry out precise computations to get recursive

estimates on the number of irreducible representations of G1
3. Using these estimates, we first

obtain a recursive formula for the representation zeta function of G1
3. From that one can
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easily compute the representation zeta function of G3. The detailed method of computation

is described in Section 6.2. Our calculations are based on partial results obtained in [69]

which provided the general strategy.

Theorem 3.0.10. Let G3 be the Gupta–Sidki 3-group. The representation zeta func-

tion ζHpsq of the commutator subgroup H “ G1
3 satisfies the functional equation

ζHpsq “ 3` αpsq ` 2βpsq ` τpsq ` ξpsq,

where αpsq, βpsq, τpsq and ξpsq are partial representation zeta functions of H, which are

defined in Section 6.5. We get

ζG3psq “ 9` 2 ¨ 3´s ` 3´s αpsq ` 2 ¨ 3´sβpsq ` 3´s τpsq `
1

9
3´2s ξpsq. (3.4)

An explicit formulation of (3.4) can be found in Section 6.5. We shall show in Sec-

tion 6.4.2 that the functional equation (3.4) is in agreement with the one provided in [14]

based on undocumented computer assisted calculation. In Appendix 10, we give a MAGMA

code that produces the first 500 terms of the representation zeta function of G3, that coin-

cides with all the first 11 terms provided in [14]. Furthermore, the MAGMA code computes

a conjectural estimate of the abscissa of convergence based on a truncated representation

zeta function of the commutator subgroup G1
3 with 500 terms and the value rounded down

to the second decimal is 4.25. However, because of the complex recursive nature of the zeta

function it is not clear how to obtain a precise value for αpG3q from (3.4).

Question 3.0.11. Can we find the precise abscissae of convergence of the representation

zeta functions of the GGS-groups? Are they rational, algebraic or transcendental? How do

they relate to the algebraic properties of the groups?

We emphasise that our computation is limited to G3. In general, i.e., if G is a GGS-

group defined by a non-symmetric defining vector, the branching quotient is not CpˆCp of

rank 2, but rather Cp ˆ ¨ ¨ ¨ ˆ Cp of rank p ´ 1. We need new insights to conduct effective

Clifford theory in this increasingly complex setting. As a next step, one can consider the

Fabrykowski–Gupta group G defined by the vector p1, 0q. It is regular branch over its

commutator subgroup and its branching quotient is isomorphic to C3 ˆC3. As pointed out

earlier, Theorem 9.1.1 applies to G, and αpGq P r1, 12.261895s.

Before proving the main results, in Chapter 4, we review necessary definitions and results

from character theory of finite groups, including Clifford’s Theorem. The results from

Chapter 4 are essential tools to study the representations of GGS-groups, especially in the
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computation of the representation zeta function of the Gupta–Sidki 3-group. Theorem 3.0.2,

Corollary 3.0.3, Theorem 9.1.1 and Theorem 3.0.7 are proved in Chapter 5. While Chapter 6

is entirely dedicated to prove Theorem 3.0.10.
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Chapter 4

Preliminaries from the character

theory of finite groups

Here we set up notations, and recall definitions and results from the character theory of

finite groups that are vital for the discussion in Chapter 5 and Chapter 6; for details see

[65, Chapters 5, 6 and 11]. The results from this chapter will be used several times in the

subsequent chapters.

Let A be an arbitrary finite group. A class function f of A is a function from A to

a field K such that f is constant on the conjugacy classes of A. In this dissertation, we

take K to be the field of complex numbers C. The set of all class functions of A forms a

vector space over C. For any given pair χ1, χ2 of class functions of A, one can define the

inner-product

xχ1, χ2y “
1

|A|

ÿ

gPA

χ1pgqχ2pgq,

where χ2pgq is the complex conjugate of χ2pgq. The induction and restriction are two oper-

ations that are defined between the set of class functions of a group and a given subgroup.

Let A be a finite group and B be a subgroup of A. If φ is a class function of A then the

restriction of φ to B is a class function of B and is denoted by φ|B. Now, let ϑ be a class

function of B. The induced class function ϑA of A is given by

ϑApgq “
1

|B|

ÿ

xPA

ϑ˝pxgx´1q,

where ϑ˝phq “ ϑphq if h P B, and otherwise, ϑ˝phq “ 0. For any given pair φ and ϑ, where φ

is a class function of A and ϑ is a class function of B, it is easy to see that

xϑ, φ|By “ xϑ
A, φy. (4.1)

The above equality is known as the Frobenius reciprocity.
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Let ρ : A ÝÑ GLnpCq be a representation of A. The character χ : A ÝÑ C afforded by ρ

is the class function given by χpgq “ trpρpgqq, for every g P A. Observe that χp1q “ n is the

dimension of ρ, and is called the degree of the character χ. The kernel of the character χ is

given by the set

kerpχq “ tg P A | χpgq “ nu.

Note that a character is not necessarily a homomorphism. However, if the degree of χ is

one, then it is a homomorphism, and in that case χ is said to be linear. A character χ

is said to be irreducible if the corresponding representation ρ is irreducible. The set of all

irreducible characters of a group A, denoted by IrrpAq, forms an orthogonal basis for the

set of all class functions of A. Every character χ of A can be written as sum of irreducible

characters χ1, . . . , χℓ P IrrpAq, for some ℓ P N, as following

χ “ m1χ1 ` ¨ ¨ ¨ `mℓχℓ,

where mi is the multiplicity of χi in χ and is given by the inner-product xχ, χiy for all

i P t1, . . . , ℓu. Here the decomposition of χ is unique up to a permutation of its components.

We say that χi is an irreducible constituent of χ.

Let A and B be two finite groups and let G “ A ˆ B. Let φ P IrrpAq and ϑ P IrrpBq.

We use the notation φbϑ to denote the product of the characters φ and ϑ, and is given by:

for every g P A and h P B, we have

pφb ϑqpg, hq “ φpgqϑphq.

It can be easily verified that φ b ϑ is an irreducible character of G. Moreover, every

irreducible character of G can be written uniquely as a product an element of IrrpAq and

an element of IrrpBq.

Theorem 4.0.1 ([65, Theorem 4.21]). Let A and B be two finite groups and let G “ AˆB.

Then

IrrpGq “ tφb ϑ | φ P IrrpAq, ϑ P IrrpBqu “ IrrpAq ˆ IrrpBq.

Remark 4.0.2. Let A and B be two finite groups and let G “ AˆB. Let φ1, φ2 P IrrpAq

and ϑ1, ϑ2 P IrrpBq. It follows from Theorem 4.0.1 that φ1 b ϑ1 “ φ2 b ϑ2 if and only if

φ1 “ φ2 and ϑ1 “ ϑ2.

Let A be a finite group and let B be a subgroup of A. Assume further that φ P IrrpAq

and ϑ P IrrpBq. Then the function ϑA and φ|B are again characters of A, resp. B, with

ϑAp1q “ rA : Bsϑp1q and φ|Bp1q “ φp1q. It is easy to check that the operations induction

and restriction are transitive.
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Lemma 4.0.3. Let B and C be subgroups of A such that C ď B. Let φ P IrrpAq and

ϑ P IrrpCq. Then pϑBqA “ ϑA, and pφ|Bq|C “ φ|C .

Now, suppose that B is a normal subgroup of A. If ϑ P IrrpBq and g P A, then the map

ϑg : B ÝÑ C given by ϑgphq “ ϑpghg´1q, for every h P B, is again an irreducible character

of B. This gives an action of the group A on the set IrrpBq by conjugation. The stabiliser

of ϑ P IrrpBq under the action of A is the subgroup given by

IApϑq “ tg P A | ϑ
g “ ϑu,

and is called the inertia group of ϑ in A. Notice that B ď IApϑq. The induction and

restriction of characters from or to the normal subgroup B help to relate the characters of

A to the characters of B. One of the fundamental results that guarantees this process is

Clifford’s theorem, introduced by Clifford in 1937.

Theorem 4.0.4 (Clifford’s theorem [65, Theorem 6.4]). Let A be a group (possibly infinite),

let B be a normal subgroup of A, and let φ P IrrpAq. Let ϑ be an irreducible component of

φ|B and suppose that ϑ “ ϑ1, ϑ2, . . . , ϑn are the distinct conjugates of ϑ in A. Then

φ|B “ xφ|B, ϑy
n
ÿ

r“1

ϑr.

For a given character ϑ P IrrpBq, Clifford’s theorem enables us to construct all irreducible

characters φ P IrrpAq such that xφ|B, ϑy ‰ 0.

It is worth to point out that the induced character ϑA of ϑ P IrrpBq from the normal

subgroup B to A is not necessarily irreducible. However, under certain conditions ϑA

becomes an irreducible character of A.

Theorem 4.0.5 ([65, Theorem 6.11]). Let B be a normal subgroup of A and let ϑ P IrrpBq

with C “ IApϑq. Let

A “ tφ P IrrpAq | xφ|B, ϑy ‰ 0u, C “ tη P IrrpCq | xη|B, ϑy ‰ 0u.

Then the following assertions hold.

(i) If η P C then ηA is irreducible, and the map η ÞÑ ηA is a bijection from C onto A,

(ii) If ηA “ φ for η P C, then xφ|B, ϑy “ xη|B, ϑy.

We say a character φ P IrrpAq is an extension of a character ϑ P IrrpBq if φ|B “ ϑ, and

we say that ϑ is extendable. In this case, the character ϑ is A-invariant, i.e., IApϑq “ A,

and φp1q “ ϑp1q. If the character ϑ is extendable and if we identify the set IrrpA{Bq with

a subset of IrrpAq then the induced character ϑA can be uniquely described as follows.
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Theorem 4.0.6 (Gallagher’s Theorem [65, Corollary 6.17]). Let B be a normal subgroup

of A and φ P IrrpAq such that φ|B “ ϑ P IrrpBq. Then the characters φλ for λ P IrrpA{Bq

are irreducible, distinct for distinct λ and are all of the irreducible constituents of ϑA.

Furthermore, each φλ occurs in the decomposition of ϑA with multiplicity one.

The theorem below is a special case, under which a character is extendable. This theorem

is crucial for the discussion in Chapter 6, where the factor groups considered are mostly

cyclic.

Theorem 4.0.7 ([65, Theorem 11.22]). Let B be a normal subgroup of A and A{B be cyclic

and ϑ P IrrpBq be such that IApϑq “ A. Then ϑ is extendable to A.

We now record the following two lemmas for the discussion in Chapter 6.

Lemma 4.0.8. Let A be a finite group and let B be a proper normal subgroup of A. Let

ϑ P IrrpBq with IApϑq “ A. If ϑ extends to an irreducible character φ of A then φ|AzB ‰ 0.

Proof. Suppose that φ|AzB “ 0. We have,

1 “ xφ,φy “
1

|A|

ÿ

gPA

φpgqφpgq “
1

|A|

¨

˚

˚

˚

˚

˝

ÿ

hPB

φphqφphq `
ÿ

gPAzB

φpgqφpgq

loooooooomoooooooon

“0

˛

‹

‹

‹

‹

‚

“
1

|A|

ÿ

hPB

ϑphqϑphq “
|B|

|A|
,

where the last equality follows since 1 “ xϑ, ϑy “ 1
|B|

ř

hPB

ϑphqϑphq. This is a contradiction,

as B is a proper subgroup of A, completing the proof.

Lemma 4.0.9. Let B and C be normal subgroups of A such that C ď B. Let φ P IrrpBq

and let η P IrrpCq be an irreducible component of φ|C . Assume that η “ η1, . . . , ηn are the

distinct conjugates of η in B. If g P IApφq then η
g P tη1, . . . , ηnu. The converse is also true,

if IBpηq “ C.

Proof. Thanks to Clifford’s theorem we have,

φ|C “ xφ|C , ηy
n
ÿ

r“1

ηr.

Assume that g P IApφq. Then by definition φ “ φg. Therefore φ|C “ φg|C “ pφ|Cq
g, where

the last equality follows because C is normal in A. This further implies that ηg P tη1, . . . , ηnu.

Conversely, assume that ηg P tη1, . . . , ηnu. Then

φg|C “ pφ|Cq
g “ xφ|C , ηy

n
ÿ

r“1

ηgr “ xφ|C , ηy
n
ÿ

r“1

ησprq “ φ|C ,
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where σ P Sympnq is a permutation that reflects how conjugation by g permute the B-orbit

of η. If we further assume that IBpηq “ C, then ηB is irreducible and ηB » φ, since

0 ‰ xφ|C , ηy “ xφ, η
By.

Therefore,

1 “ xφ, ηBy “ xφ|C , ηy “ xφ
g|C , ηy “ xφ

g, ηBy “ xφg, φy,

which implies φg “ φ.
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Chapter 5

Representation growth of

GGS-groups

The objective of this chapter is to obtain a bound for the abscissa of convergence of the

representation zeta function of a GGS-group G defined by a non-symmetric defining vector

e P Fp´1
p . We begin with Section 5.1, where we prove the rigidity result Theorem 3.0.2 for

finitely generated branch groups. Thanks to Theorem 3.0.2, every finite-dimensional repre-

sentation of G factors through a finite quotient. Moreover, it follows from Theorem 2.4.22

that every proper quotient of G is a finite p-group. Therefore, we shall first obtain bounds

for the number of irreducible representations of finite p-groups. The results are summarised

in Section 5.2. Recall from the statement of Theorem 3.0.5 that C is defined as

C “ |tφ P IrrprG,Gsq | IGpφq “ Gu| .

If C is finite, then the bounds on finite p-groups enable us to prove Theorem 3.0.5 in Sec-

tion 5.3 using generalised Catalan numbers (see Definition 5.3.5). We prove Theorem 9.1.1

in several steps. The groups that satisfy condition p˚q and condition p˚˚q of Theorem 9.1.1

will be treated separately. The proof of Theorem 9.1.1 for a GGS-group G that satisfies p˚q

is given by Corollary 5.3.9, while that of for p˚˚q is summarised in Corollary 5.3.11. To

conclude the discussion, we give some partial results that might help one to generalise The-

orem 9.1.1 to all GGS-groups defined by non-symmetric defining vectors. Along the line, we

will also prove Theorem 3.0.7.

5.1 Representations of self-similar branch groups

We first record the following theorem, which shows that for a group G that is regular branch

over a subgroup H, being FAb is equivalent to the fact that H{rH,Hs is finite.
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Theorem 5.1.1. Let G be a regular branch group over a subgroup H. Then G is FAb if

and only if the abelianisation of H is finite.

Proof. If G is FAb then, since H is of finite index in G, the abelianisation of H is finite.

To prove the converse, assume that the abelianisation of H is finite. Let K be a subgroup

of finite index in G. Then K has only finitely many conjugates in G. Set L as the core

of K in G given by taking the intersection of all conjugates on K in G. Notice that L

is a normal subgroup of finite index in G. Then the commutator subgroup L1 of L is a

non-trivial normal subgroup of G. If otherwise L1 “ 1, then G is virtually abelian, which

is a contradiction to the fact that G is branch; see the discussion at the end of Section 2.3.

Therefore, by Lemma 2.3.3, L1 contains the subgroup RistGpnq
1, for some n P N. Since G is

regular branch over H, we get ψ´1pH 1ˆ
mn

¨ ¨ ¨ ˆH 1q ď RistGpnq
1 ď L1, and hence L1 has finite

index in G. Therefore, K 1 has finite index in G, and we conclude that abelianisation of K

is finite.

Now, we prove Theorem 3.0.2 and Corollary 3.0.3. The results follow immediately using

the fact that weakly branch groups are not linear over any field; see [2, Corollary 7].

Proof of Theorem 3.0.2. Let N be a non-trivial normal subgroup of G. By Lemma 2.3.3,

there exists some d P N such that ψ´1pH 1ˆ
md

¨ ¨ ¨ ˆH 1q is contained in N . Since the abeliani-

sation of H is finite ψ´1pH 1 ˆ
md

¨ ¨ ¨ ˆH 1q has finite index in G, and hence, the quotient G{N

is finite. Thus G is just infinite.

Now, let ρ : G Ñ GLnpCq be an irreducible representation of dimension n. Since G is

not linear, the kernel kerpρq of ρ is non-trivial normal subgroup of G. Hence kerpρq has

finite index in G, as G is just infinite. Therefore, every representation of G factors through

a finite quotient.

Proof of Corollary 3.0.3. Let G be regular branch over a subgroup H. Suppose that G

is representation rigid, and assume to the contrary that abelianisation of H is infinite.

Then H admits infinitely many 1-dimensional representations, and hence G has infinitely

many representations of degree at most rG : Hs, violating the fact that G is representation

rigid.

Now, to prove the converse assume that G is finitely generated and the abelianisation

of H is finite. By Theorem 3.0.2 every finite dimensional representation of G factors through

a finite quotient. The rest of the proof follows as in the proof of [26, Proposition 2] using

Jordan’s theorem; cf. Theorem 3.0.1.
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5.2 Upper polynomial bound for finite p-groups

Let p be an odd prime. Here we obtain bounds for the number of irreducible representation

of finite p-groups. Since there is a one-to-one correspondence between the equivalence

classes of irreducible representations and irreducible characters of finite groups, it suffices

to consider the set of irreducible characters. For the time being assume that G is a finite

p-group and N is a normal subgroup of G. For ϑ P IrrpNq, set

IrrpG,ϑq “ tφ P IrrpGq | xφ|N , ϑyN ‰ 0u.

For S Ď IrrpNq, we write IrrpG,Sq “
Ť

ϑPS

IrrpG,ϑq.

Lemma 5.2.1. Let G be a finite p-group and let N be a normal subgroup of G. Let ϑ P

IrrpNq and put

Irr`pG,ϑq “ tφ P IrrpG,ϑq | φp1q ą ϑp1qu.

Then the following assertions hold:

(i) φp1q ě p ϑp1q for every φ P Irr`pG,ϑq;

(ii) | Irr`pG,ϑq| ď p´1rG : N s.

Proof. (i) Since φ P Irr`pG,ϑq, it holds that φp1q ą ϑp1q. Since G is a finite p-group and

φp1q divides the order of G and likewise ϑp1q divides the order of N , both φp1q and ϑp1q

are p-powers. It follows that φp1q ě p ϑp1q.

(ii) The proof proceeds by induction on rG : N s. If rG : N s “ 1, then IrrpG,ϑq “ tϑu. The

set Irr`pG,ϑq is empty and | Irr`pG,ϑq| “ 0 ă p´1rG : N s. Assume that rG : N s ě p. We

split the proof into two cases based on the inertia group IGpϑq of ϑ in G.

Case 1: IGpϑq “ N . Then ϑG P IrrpGq and IrrpG,ϑq “ tϑGu “ Irr`pG,ϑq. Hence

| Irr`pG,ϑq| “ 1 ď p´1rG : N s.

Case 2: N ă IGpϑq ď G. Consider the quotient group IGpϑq{N , which is a non-

trivial finite p-group, and hence has a non-trivial center. Therefore, there exists a central

elementNx in IGpϑq{N such that xNxy – N xxy{N – Cp. By setting Z “ N xxy, we get that

N Ĳ Z Ĳ IGpϑq and Z{N – Cp. Then ϑ extends to irreducible characters of Z. Indeed, by

Theorem 4.0.6 and Theorem 4.0.7, ϑ admits exactly p distinct extensions, namely ψ1, . . . , ψp.

Furthermore, IrrpZ, ϑq “ tψ1, . . . , ψpu. It is easy to see that
p
Ť

i“1
Irr`pG,ψiq Ď Irr`pG,ϑq.

On the other hand, if φ P Irr`pG,ϑq then the restriction of φ to Z is a sum of irreducible

characters and at least one of these lies in IrrpZ, ϑq. Therefore, there exists k P r1, ps such
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that ψk is an irreducible constitute of φ|Z , and since φp1q ą ϑp1q “ ψkp1q, we get that

φ P Irr`pZ,ψkq. Hence we obtain the following equality:

Irr`pG,ϑq “

p
ď

i“1

Irr`pG,ψiq.

If IGpϑq “ G then Z is a normal subgroup of G, and, by induction, we get

| Irr`pG,ϑq| ď

p
ÿ

k“1

| Irr`pG,ψiq| ď ppp´1rG : Zsq “ p´1rG : N s.

Now, suppose that IGpϑq is a proper subgroup of G, say H “ IGpϑq. Then ϑ does not

extend to G, and hence | Irr`pG,ϑq| “ | IrrpG,ϑq|. Using Theorem 4.0.5, we get

| Irr`pG,ϑq| “ | IrrpH,ϑq| “ rH : N s ď p´1rG : N s,

where the last but one equality follows because ϑHp1q “ rH : N sϑp1q. This completes the

proof.

Notation 5.2.2. Let fpsq “
8
ř

n“1
ann

´s and gpsq “
8
ř

n“1
bnn

´s be two Dirichlet generating

functions, where s is a formal variable, later a complex variable, when convergence on some

right half-plane is guaranteed. We write

fpsq ĺ gpsq

if
N
ř

n“1
an ď

N
ř

n“1
bn for all N P N. Observe that if gpsq converges for some s P R and

fpsq ĺ gpsq then fpsq ď gpsq.

Corollary 5.2.3. Let G be a finite p-group and N be a normal subgroup of G such that

rG : N s ě p2. Let

Λ “ tϑ P IrrpNq | IrrpG,ϑq “ Irr`pG,ϑqu.

Then
ÿ

φPIrrpG,Λq

φp1q´s ĺ p´2´srG : N s
ÿ

ϑPΛ

ϑp1q´s. (5.1)

Remark 5.2.4. The right-hand side of the inequality (5.1) is a Dirichlet generating function,

i.e., the corresponding coefficients are non-negative integers. Indeed, in all cases p2 divides

rG : N s.

Proof of Corollary 5.2.3. We set Λ1 “ tϑ P Λ | IGpϑq ă Gu and Λ2 “ tϑ P Λ | IGpϑq “ Gu.

Thus Λ is a disjoint union of Λ1 and Λ2. Since the equality IGpϑ
gq “ IGpϑq

g holds for every

g P G, the sets Λ1 and Λ2 are closed under conjugation by G. This partitions IrrpG,Λq

into a disjoint union of IrrpG,Λ1q and IrrpG,Λ2q, because for any φ P IrrpGq the irreducible
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constituents of φ|N are conjugate in G so their inertia groups are also conjugate. We split

the proof into two cases.

Case 1: Suppose that ϑ P Λ1. Then ϑ has at least p distinct conjugates in G. We count

the number of irreducible characters φ P IrrpG,Λ1q such that φp1q ď pn for every n ě 1.

Using Lemma 5.2.1 we get the following inequality:

ÿ

φPIrrpG,Λ1q

φp1qďpn

1 ď p´1
ÿ

ϑPΛ1

ϑp1qďpn´1

ÿ

φPIrr`pG,ϑq

1 ď p´2rG : N s
ÿ

ϑPΛ1

ϑp1qďpn´1

1.

The above equality holds for all n ě 1, from Notation 5.2.2 we obtain that

ÿ

φPIrrpG,Λ1q

φp1q´s ĺ p´2´srG : N s
ÿ

ϑPΛ1

ϑp1q´s.

Case 2: Suppose that ϑ P Λ2. The proof follows by induction on rG : N s. Assume that

rG : N s “ p2. As in the proof of Lemma 5.2.1(ii) there exists a normal subgroup Z of G

that contains N and such that Z{N – Cp. Then, by Theorem 4.0.6 and Theorem 4.0.7, ϑ

extends to irreducible characters of Z, namely ψ1, . . . , ψp. Notice that IGpψiq “ Z for all

i P r1, ps, since |G : Z| “ p and ϑ P Λ2 ď Λ. Therefore ψGi P IrrpGq for all i P r1, ps.

Moreover, since ϑ is G-invariant, it follows that ψG1 “ ¨ ¨ ¨ “ ψGp . This gives a bijection

between the sets tϑ P Λ2 | ϑp1q ď pn´1u and tφ P IrrpG,Λ2q | φp1q ď pnu for all n P N, and

hence we get the following inequality

ÿ

φPIrrpG,Λ2q

φp1q´s ĺ p´s
ÿ

ϑPΛ2

ϑp1q´s “ p´2´srG : N s
ÿ

ϑPΛ2

ϑp1q´s.

Now, assume that rG : N s ą p2. Choose a normal subgroup Z of G such that Z contains

N and Z{N – Cp. Set Ω “ IrrpZ,Λ2q “ tχ P IrrpZq | χ|N “ ϑ P Λ2u. Observe that for

every n P N0,
ÿ

χPΩ
χp1qďpn

1 ď p
ÿ

ϑPΛ2
ϑp1qďpn

1.

Hence by induction we obtain that

ÿ

φPIrrpG,Λ2q

φp1qďpn

1 “
ÿ

φPIrrpG,Ωq

φp1qďpn

1 ď p´2rG : Zs
ÿ

χPΩ
χp1qďpn´1

1 ď p´2rG : N s
ÿ

ϑPΛ2

ϑp1qďpn´1

1,

implying that

ÿ

φPIrrpG,Λ2q

φp1q´s ĺ p´2´srG : N s
ÿ

ϑPΛ2

ϑp1q´s.

The result follows from combining the estimates in Case 1 and Case 2.
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5.3 Upper polynomial bound for GGS-groups

Here we prove Theorem 9.1.1 and Theorem 3.0.7. In the sequel, we fix a non-symmetric

vector e “ pe0, . . . , ep´1q P Fp´1
p , and G denotes the GGS-group defined by e. By Theo-

rem 2.4.21, G is a regular branch group over the commutator subgroup H “ G1. From here

onwards, we identify the subgroup ψ´1pHˆ
p
¨ ¨ ¨ˆHq ofH with the subgroupH1 “ Hˆ

p
¨ ¨ ¨ˆH

of G ˆ
p
¨ ¨ ¨ ˆ G. Recall from Corollary 3.0.4 that G is representation rigid. Due to results

of Lubotzky and Martin [73, Lemma 2.2 & Corollary 2.3], a discrete group has polynomial

representation growth (PRG) if and only if every subgroup of finite index has PRG, which

in particularly applies to subgroups of finite index in G. We begin with Theorem 5.3.2,

which is an immediate corollary of [85, Lemma 1.2]. For convenience, here we state the first

part of [85, Lemma 1.2], which is relevant for our context. In our setting, [85, Lemma 1.2]

can be reformulated as the following.

Lemma 5.3.1 ([85, Lemma 1.2 ]). Let G be a finitely generated representation rigid group

and let H be a normal subgroup of index k in G. Suppose that H is isomorphic to the direct

product of q copies of G, for some non-negative integer q ě 2. Let RGpnq denote the number

of irreducible complex representations of G of dimension less that or equal to n P N. Then,

for all n P N,

RGpkn
qq ě RGpnq

q{k.

In particular, if RGp1q ě k ą 1, then the inequality RGpnq ě knq´2 is satisfied for infinitely

many n and hence

αpGq ě q ´ 2.

Theorem 5.3.2. Let G be a GGS-group defined by a non-symmetric defining vector. We

have

αpGq ě p´ 2. (5.2)

Proof. Let H be a subgroup of finite index in G. It follows directly from [85, Lemma 1.1] or

as a consequence of [73, Lemma 2.2] that αpGq “ αpHq. Now, take H as the commutator

subgroup of G and H1 “ H ˆ
p
¨ ¨ ¨ ˆH. From Theorem 2.4.21(ii) and Theorem 2.4.25(i), we

obtain that H contains H1 as a subgroup of index pp´1 and H{H1 is abelian. In particular,

r1pHq ě pp´1, where r1pHq is the number of irreducible 1-dimensional complex represen-

tations of H. It follows from [85, Lemma 1.2] that αpHq ě p ´ 2. This completes the

proof.
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Remark 5.3.3. Let G be a GGS-group defined by a non-symmetric defining vector and

let H be a group that is commensurable to G, i.e., there exist subgroups of finite index

G1 ď G and H1 ď H such that H1 is isomorphic to G1. Then αpHq “ αpGq ě p´ 2.

Let G be a GGS-group that is regular branch over a subgroup H. We remark that the

proof of [85, Lemma 1.2] uses an inductive argument based on the fact that the number of

linear characters of the subgroup H is greater than or equal to the size of the branching

quotient H{ψ´1pH ˆ
p
¨ ¨ ¨ ˆ Hq. Therefore, the proof does not work if the defining vector

is non-constant and symmetric. In that case, the corresponding GGS-group G is regular

branch over γ3pGq. However, the branching quotient γ3pGq{ψ
´1pγ3pGqˆ

p
¨ ¨ ¨ ˆ γ3pGqq is not

abelian; cf. Remark 2.4.26. Therefore, the number of linear characters of γ3pGq is less than

the index rγ3pGq : ψ
´1pγ3pGq ˆ

p
¨ ¨ ¨ ˆ γ3pGqqs.

Form here onwards, let G be the GGS-group defined by a non-symmetric defining vector

e P Fp´1
p and let H denote its commutator subgroup. To provide an upper bound for αpGq,

in light of Remark 5.3.3, it suffices to provide an upper bound for αpHq. We consider the

representation zeta function of H,

ζHpsq “
8
ÿ

n“1

rnpHqn
´s “

ÿ

φ P IrrpHq

φp1q´s, (5.3)

where IrrpHq is the set of all irreducible characters of H as defined in Chapter 4. Since

every proper quotient of G is a finite p-group (Theorem 2.4.22), by applying the results from

Section 5.2 to the group H and its subgroups, here we obtain an upper bound for αpHq,

and hence for αpGq.

We first prove the following theorem with a restriction on the number, say C, of

G-invariant irreducible characters of H. It turns out to be that, for a GGS-group, which

satisfies either p˚q or p˚˚q of Theorem 9.1.1, this number is less than or equal to p (see Corol-

lary 5.3.9 and Corollary 5.3.11). Moreover, the computations in Chapter 6 show that C “ 3

for the Gupta–Sidki 3-group.

Theorem 5.3.4. Let G be a GGS-group defined by a non-symmetric defining vector e P

Fp´1
p . Let H “ G1 be the commutator subgroup of G and H1 “ H ˆ

p
¨ ¨ ¨ ˆH ď H. If

C “ |tφ P IrrpHq | IGpφq “ Gu| ă 8,

then the representation zeta function ζHpsq of H satisfies the inequality

ζHpsq ĺ CprH : H1s ` p
´2´srH : H1sζHpsq

p. (5.4)

69



Proof. Define

Λ “ tϑ P IrrpH1q | IrrpH,ϑq “ Irr`pH,ϑqu and ΛA “ IrrpH1qzΛ.

Observe that the set Λ is closed under conjugation by H and it defines a partition of the

set IrrpH,Λq as IrrpHq “ IrrpH,Λq \ IrrpH,ΛAq. We split the proof into two cases.

Case 1: Let φ P IrrpH,ΛAq and let ϑ P IrrpH1q be an irreducible constituent of φ|H1 .

Clearly, ϑ P ΛA. By definition of Λ it holds that Irr`pH,ϑq Ĺ IrrpH,ϑq, implying that

there exists some χ P IrrpH,ϑq such that χp1q “ ϑp1q. Equivalently, χ is an extension of ϑ

which further implies that ϑ is H-invariant. Since ϑ P IrrpH1q, by Theorem 4.0.1, we write

ϑ “ ϑ0b ¨ ¨ ¨ bϑp´1, for ϑi P IrrpHq and i P r0, p´ 1s. Furthermore, from Theorem 2.4.25(i)

we have H{H1 “ xH1 xi | i P r0, p´ 2sy. Therefore, ϑxi “ ϑ for all i P r0, p´ 2s. Since

the defining vector is non-symmetric by a straightforward calculation using the first layer

section decomposition of xi (Notation 2.4.24), we obtain that ϑi is G-invariant for every

i P r0, p´ 1s. From the assumption, the cardinality of the set of G-invariant irreducible

characters of H is finite and is equal to C. There are at most Cp irreducible characters

of H1 of the form ϑ such that ϑ P ΛA. In particular, the cardinalities of the sets ΛA and

IrrpH,ΛAq are finite. If every irreducible character from the set ΛA extends to irreducible

characters of H, we get at most CprH : H1s elements in IrrpH,ΛAq. In general, the number

CprH : H1s bounds the cardinality of the set IrrpH,ΛAq, and we get

| IrrpH,ΛAq| ď CprH : H1s.

Case 2: We count the number of φ P IrrpH,Λq such that φp1q ď pn, for n P N. For every

φ P IrrpH,Λq with φp1q ď pn, recall from Theorem 3.0.2 that φ factors through a finite

quotient of H, we obtain that kerpφq has finite index in H. We set Lφ as the normal core

of kerpφq in G. Then Lφ is a normal subgroup of finite index in G. Define

Kn “ H1 X

¨

˚

˚

˝

č

φPIrrpH,Λq
φp1qďpn

Lφ

˛

‹

‹

‚

.

Notice that Kn is a non-trivial normal subgroup of finite index in G. Hence, for every n P N,

the quotient group H{Kn is a finite p-group (Theorem 2.4.22), and every φ P IrrpH,Λq of

degree φp1q ď pn factors through the quotient group H{Kn. If ϑ P IrrpH1q is an irreducible

constituent of φ P IrrpH,Λq of degree φp1q ď pn then Kn ď kerpϑq. We identify the

character ϑ with an irreducible character of H1{Kn and the character φ with an irreducible

character of H{Kn. Define

ΛH{Kn
“ tϑ P IrrpH1{Knq | IrrpH{Kn,ΛH{Kn

q “ Irr`pH{Kn,ΛH{Kn
qu.
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By replacing G with H{Kn and N with H1{Kn in Corollary 5.2.3, we obtain

ÿ

φPIrrpH,Λq
φp1qďpn

1 “
ÿ

φPIrrpH{Kn,ΛH{Kn q

φp1qďpn

1 ď p´2rH : H1s
ÿ

ϑPΛH{Kn

ϑp1qďpn´1

1 “ p´2rH : H1s
ÿ

ϑPΛ
ϑp1qďpn´1

1

ď p´2rH : H1s
ÿ

ϑPIrrpH1q

ϑp1qďpn´1

1,

where the two inequalities follow because

|tϑ P ΛH{Kn
| ϑp1q ď pn´1u| “ |tϑ P Λ | ϑp1q ď pn´1u| ď |tϑ P IrrpH1q | ϑp1q ď pn´1u|.

This implies

ÿ

φPIrrpH,Λq

φp1q´s ĺ p´2´srH : H1s
ÿ

ϑPIrrpH1q

ϑp1q´s “ p´2´srH : H1sζH1psq

“ p´2´srH : H1sζHpsq
p,

where the last equality follows as H1 “ H ˆ
p
¨ ¨ ¨ ˆH.

From Case 1 and Case 2, it follows that

ζHpsq ĺ
ÿ

φPIrrpH,ΛAq

φp1q´s `
ÿ

φPIrrpH,Λq

φp1q´s ĺ CprH : H1s ` p
´2´srH : H1sζHpsq

p.

Now, from the inequality stated in Theorem 5.3.4, we compute an upper bound for the

abscissa of convergence αpHq for the representation zeta function of H using generalised

Catalan numbers.

Definition 5.3.5. For every n P N0, the n-th Catalan number c2pnq is the number of

ways to parenthesise a string of n` 1 symbols such that each multiplication is binary. For

instance, the expression p˛p˛ ˛qqp˛ ˛q is allowed as it uses only binary multiplications, but

the expression p˛ ˛ ˛qp˛ ˛q is invalid because the expression p˛ ˛ ˛q represents a product of

three symbols. Here we compute the Catalan numbers c2pnq for 0 ď n ď 3.

n “ 0 n “ 1 n “ 2 n “ 3

˛ ˛ ˛ ˛p˛ ˛q pp˛ ˛q˛q˛

p˛ ˛q˛ p˛p˛ ˛qq˛

˛pp˛ ˛q˛q

˛p˛p˛ ˛qq

p˛ ˛qp˛ ˛q

c2p0q “ 1 c2p1q “ 1 c2p2q “ 2 c2p3q “ 5
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The Catalan numbers c2pnq were first described by Euler and named after the math-

ematician Catalan. The numbers c2pnq occur as solutions to different counting problems.

In [100], one can find 66 different interpretation of the Catalan numbers. Using the descrip-

tion above, we can find a recursive formula for the n-th Catalan number c2pnq; cf. [106]. We

set c2p0q “ 1. For n ě 1, let ω denote a string of length n` 1. We can write ω “ ω1 ω2 such

that ω1 is a string of length ℓ, for some ℓ P r1, ns, and ω2 is a string of length n`1´ℓ. Then

there are c2pℓ´ 1q ways to parenthesise a string of ℓ symbols such that each multiplication

is binary, and c2pn ´ ℓq ways to parenthesise a string of n ` 1 ´ ℓ symbols such that each

multiplication is binary. Therefore, we get

c2pnq “
n
ÿ

ℓ“1

c2pℓ´ 1qc2pn´ ℓq, pn ě 1q. (5.5)

Let F2pxq “
8
ř

ℓ“0

c2pℓqx
ℓ be the generating function for the Catalan numbers c2pnq. We

follow the convention that c2p´ℓq “ 0 for all ℓ P N. Observe that the right-hand side of the

equation (5.5) is the n-th coefficient of the product of the series xF2pxq “
8
ř

ℓ“0

c2pℓ ´ 1qxℓ

and the series F2pxq. Since the constant term of the series xF2pxq is zero, we get

F2pxq ´ 1 “
8
ÿ

n“1

c2pnq “
8
ÿ

n“1

˜

n
ÿ

ℓ“1

c2pℓ´ 1qc2pn´ ℓq

¸

xℓ “ xF2pxqF2pxq “ xF2pxq
2,

and hence the generating function F2pxq satisfies the functional equation

F2pxq “ 1` xF2pxq
2. (5.6)

By solving the above functional equation (5.6), one gets that

c2pnq “
1

n` 1

ˆ

2n

n

˙

.

Now let p be an odd prime. For every n P N0, the n-th generalised Catalan num-

ber cppnq counts the number of ways to parenthesise a string of n ` 1 symbols such that

each multiplication is p-ary. Let Fppxq be the generating function for the generalised Catalan

numbers cppnq. It is shown in [64] that the generating function Fppxq satisfies the functional

equation

Fppxq “ 1` xFppxq
p.

As a corollary, one gets that

cppnq “
1

pp´ 1qn` 1

ˆ

pn

n

˙

for all n ě 0. Using Stirling’s formula, we can approximate cppnq as

cppnq «
´ pp

pp´ 1qp´1

¯n
c

p

2πpp´ 1q3
n´

3
2 , (5.7)

where the sign « means that the ratio of the two quantities tends to 1 as n tends to infinity.
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Lemma 5.3.6. Let fpxq “
8
ř

n“0
anx

n and gpxq “
8
ř

n“0
bnx

n be two generating functions with

an, bn P N0. Let B, M ě 1 be constants. Suppose that the generating function gpxq satisfies

the functional equation

gpxq “M `B xgpxqp. (5.8)

Then

gpxq “
8
ÿ

n“0

cppnqM
npp´1q`1Bn xn,

where cppnq is the n-th generalised Catalan number, for n P N0, defined in Definition 5.3.5.

If the the generating function fpxq satisfies the inequality

fpxq ĺ M `B xfpxqp, (5.9)

then an ď bn for every n ě 0, and in particular fpxq ĺ gpxq.

Proof. Notice that

8
ÿ

n“0

bnx
n “ gpxq “M `B xgpxqp “M `B x

8
ÿ

n“0

¨

˚

˚

˝

ÿ

0ďr1,...,rpďn
r1`¨¨¨`rp“n

br1 ¨ ¨ ¨ brp

˛

‹

‹

‚

xn.

We get b0 “M and for n ě 1

bn “ B
ÿ

0ďr1,...,rpďn´1
r1`¨¨¨`rp“n´1

br1 ¨ ¨ ¨ brp .

We shall prove by induction that bn is a multiple of M pBMp´1qn for every n ě 0. Assume

that bn is a multiple of M pBMp´1qn for every n ď N for some N ě 0. Consider

bN`1 “ B
ÿ

0ďr1,...,rpďN
r1`¨¨¨`rp“N

br1 ¨ ¨ ¨ brp .

It is easy to see that each summand in the above expression is a multiple of M pBMp´1qN`1

and so is bN`1. Hence we conclude by induction that every bn is a multiple of M pBMp´1qn

for n ě 0. Therefore, we can write

gpxq “M τpyq,

for some generating function τpyq with y “ BMp´1 x. Now, by substituting gpxq asM τpyq,

the equation (5.8) becomes

τpyq “ 1` y τpyqp, (5.10)

which is the functional equation for the the generalised Catalan numbers. Therefore,

τpyq “
8
ÿ

n“0

cppnq y
n,
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and hence

gpxq “M τpyq “M
8
ÿ

n“0

cppnq y
n “

8
ÿ

n“0

cppnqM
npp´1q`1Bn xn.

Now we prove the second part of the result. Observe from (5.13) that a0 ďM “ b0. The

proof proceeds by induction on n. Assume that an ď bn for every n ď N for some N ě 0.

From (5.8), we get

N`1
ÿ

n“0

bn “M `B
N
ÿ

n“0

¨

˚

˚

˝

ÿ

0ďr1,...,rpďn
r1`¨¨¨`rp“n

br1 ¨ ¨ ¨ brp

˛

‹

‹

‚

,

hence

bN`1 “M `B
N
ÿ

n“0

¨

˚

˚

˚

˚

˚

˝

ÿ

0ďr1,...,rpďn
r1`¨¨¨`rp“n

pr1,...,rpq‰pn,0,...,0q

br1 ¨ ¨ ¨ brp

˛

‹

‹

‹

‹

‹

‚

`

N
ÿ

n“0

bn

´

bp´1
0 B ´ 1

¯

,

Similarly, from (5.9), we get

aN`1 ďM `B
N
ÿ

n“0

¨

˚

˚

˚

˚

˚

˝

ÿ

0ďr1,...,rpďn
r1`¨¨¨`rp“n

pr1,...,rpq‰pn,0,...,0q

ar1 ¨ ¨ ¨ arp

˛

‹

‹

‹

‹

‹

‚

`

N
ÿ

n“0

an

´

ap´1
0 B ´ 1

¯

,

Therefore, from induction hypothesis we have aN`1 ď bN`1, and by induction we conclude

that aN ď bN for all N ě 0. In particular,
N
ř

n“0
an ď

N
ř

n“0
bn for all N ě 0. This completes

the proof.

Corollary 5.3.7. Let G be a GGS-group defined by a non-symmetric defining vector e P Fp´1
p

and let H “ G1 be the commutator subgroup of G. If the number C of G-invariant irreducible

characters of H is finite then the abscissa of convergence αpGq of the representation zeta

function ζGpsq satisfies the inequalities

p´ 2 ď αpGq ď pp´ 1q
log 2

log p
` ppp´ 1q

logC

log p
` pp´ 1q2 ` pp´ 1q ´ 1. (5.11)

In particular, G has polynomial representation growth.

Proof. Thanks to Remark 5.3.3, we have αpGq “ αpHq ě p ´ 2. Using (5.4), we shall

compute an upper bound for αpHq. We define

x “ p´s, M “ CprH : H1s “ pp´1Cp, and B “ p´2rH : H1s “ pp´3,
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in particular, if p “ 3 then B “ 1. Observe that (5.4) can be restated as

ηpxq ĺ M `B xηpxqp,

where ηpxq “ ηpp´sq “ ζHpsq. Now, suppose that ξpxq is a generating function which

satisfies the following functional equation

ξpxq “M `B x ξpxqp. (5.12)

Then, by Lemma 5.3.6(ii), we get ζHpsq ĺ ξpp´sq. If ξpp´sq converges for some s P C and

if rα denotes the abscissa of convergence of ξpp´sq, then ζHpsq also converges and αpHq ď rα,

yielding an upper bound for αpHq. Thus, it is enough to find an upper bound for rα. Again

from Lemma 5.3.6, we have

ξpxq “
8
ÿ

n“0

cppnqM
npp´1q`1Bn xn,

where cppnq is the n-th generalised Catalan number. Because of (5.7), there exist a constant

κ0 ą 0 and n0 P N such that

cppnq ď κ0

´ pp

pp´ 1qp´1

¯n
c

p

2πpp´ 1q3
n´

3
2 ,

for all n ě n0. Hence there exists a constant κ ą 0 such that, for all n ě 0,

cppnq ď κ 2npp´1qpn. (5.13)

Now, we compute an upper bound for the abscissa of convergence rα of ξpp´sq using the

inequality (5.13). Define RpN “
N
ř

n“0
cppnqM

npp´1q`1Bn for N P N0. Then for all N ě 0,

we obtain

RpN “
N
ÿ

n“0

cppnqM
npp´1q`1Bn “

N
ÿ

n“0

cppnq pp
p´1Cpqnpp´1q`1 ppp´3qn

“

N
ÿ

n“0

cppnqC
nppp´1q`ppnpp

2´p´2q`p´1 ď κCppp´1
N
ÿ

n“0

`

2p´1Cppp´1qpp
2´p´1

˘n

“ κCppp´1

`

2p´1Cppp´1qpp
2´p´1

˘N`1
´ 1

2p´1Cppp´1qpp2´p´1 ´ 1
ď κCppp´1

`

2p´1Cppp´1qpp
2´p´1

˘N`1

2p´1Cppp´1qpp2´p´1 ´ 1
.

Hence we get

rα “ lim sup
NÑ8

logRpN { log p
N

ď lim sup
NÑ8

logpκCppp´1q

log pN

` lim sup
NÑ8

pN ` 1q logp2p´1Cppp´1qpp
2´p´1

˘

´ logp2p´1Cppp´1qpp
2´p´1 ´ 1q

N log p

“
logp2p´1Cppp´1qpp

2´p´1
˘

log p

“ pp´ 1q
log 2

log p
` ppp´ 1q

logC

log p
` p2 ´ p´ 1.
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Therefore, we conclude that

αpGq “ αpHq ď rα ď pp´ 1q
log 2

log p
` ppp´ 1q

logC

log p
` p2 ´ p´ 1.

Now, we prove that for a GGS-group, which satisfies either condition p˚q or p˚˚q of

Theorem 9.1.1, the number C is less than or equal to p.

Lemma 5.3.8. Let G be a GGS-group defined by a non-symmetric defining vector e P Fp´1
p

and let H “ G1 be the commutator subgroup of G. Let φ P IrrpHq be such that IGpφq “ G

and let ϑ “ ϑ0 b ¨ ¨ ¨ b ϑp´1 be an irreducible constituent of φ|H1, where ϑi P IrrpHq for

all i P r0, p´ 1s. Then IGpϑiq “ G for all i P r0, p´ 1s. Moreover, ϑ0 “ ¨ ¨ ¨ “ ϑp´1 and

IGpϑq “ G.

Proof. The restriction φ|H1 is a sum of conjugates of ϑ under H. Since φat “ φ, it holds

that ϑat “ ϑh for some h P H. Notice that ϑ is of the form ϑ0b¨ ¨ ¨bϑp´1 for ϑi P IrrpHq and

i P r0, p´ 1s as indicated in the statement of the lemma. As H “ H1 xx0, . . . , xp´2y (Theo-

rem 2.4.25(i)), we can write h “ wpx0, . . . , xp´2q mod H1 for some word w in tx0, . . . , xp´2u.

Since ϑ is H1 invariant, by letting wpx0, . . . , xp´2q “ pw0, . . . , wp´1q, we obtain

ϑa
e1

p´1 b ϑ
ae2
0 b ¨ ¨ ¨ b ϑa

ep´1

p´3 b ϑtp´2 “ pϑ0 b ¨ ¨ ¨ b ϑp´1q
at “ ϑat “ ϑh “ ϑw0

0 b ¨ ¨ ¨ b ϑ
wp´1

p´1 .

This further implies that

ϑ0 “ ϑ
ae1w´1

0
p´1 “ ϑ

tw´1
p´1a

e1w´1
0

p´2 “ ¨ ¨ ¨ “ ϑ
ae2w´1

1 ae3w´1
2 ¨¨¨aep´1w´1

p´2tw
´1
p´1a

e1w´1
0

0 . (5.14)

Since the product of the components of the first layer decomposition of each xi “ ra, ts
ai is

trivial modulo H (cf. Notation 2.4.24), we get

ae2w´1
1 ae3w´1

2 ¨ ¨ ¨ aep´1w´1
p´2tw

´1
p´1a

e1w´1
0 ”H aℓt,

where ℓ “
p´1
ř

i“1
ei. Since ϑ0 is H-invariant, we get H xaℓty ď IGpϑ0q. Notice that all ϑi

are conjugate to each other by elements of G. Therefore, IGpϑ0q “ ¨ ¨ ¨ “ IGpϑp´1q, and

moreover IGpϑ0q P tH xa
ℓty, Gu. We claim that IGpϑ0q “ G. Suppose that IGpϑ0q ‰ G, and

hence IGpϑiq ‰ G. Thus IGpϑiq “ H xaℓty for all i P r0, p´ 1s. Since H1 Ĳ Gˆ
p
¨ ¨ ¨ ˆG and

ψ´1pGˆ
p
¨ ¨ ¨ ˆGq “ StGp1q “ Hxty, we have

IHpϑq “ ψ´1pIGpϑ0q ˆ ¨ ¨ ¨ ˆ IGpϑp´1qq XH,

and

IHxtypϑq “ ψ´1pIGpϑ0q ˆ ¨ ¨ ¨ ˆ IGpϑp´1qq XHxty.
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Since φ is G-invariant, we must have

rH : IHpϑqs “ rHxty : IHxtypϑqs.

Since H is a proper subgroup of Hxty, this implies that IHpϑq is a proper subgroup

of IHxtypϑq, or in other words

IGpϑ0q ˆ ¨ ¨ ¨ ˆ IGpϑp´1q X ψpHq ť IGpϑ0q ˆ ¨ ¨ ¨ ˆ IGpϑp´1q X ψpHxtyq.

Thus, there exist ε P r1, p´ 1s and h P H such that

ψphtεq P IGpϑ0q ˆ ¨ ¨ ¨ ˆ IGpϑp´1q X ψpHxtyq.

Since e “ pe1, . . . , ep´1q P Fp´1
p is non-zero, there exists i P r1, p´ 1s such that ei ‰ 0.

This, in particular, implies that G “ Hxaℓt, aeiy ď IGpϑp´1q, and hence IGpϑiq “ G for

all i P r0, p´ 1s, which is a contradiction. Therefore, we conclude that IGpϑiq “ G for all

i P r0, p´ 1s. Furthermore, it follows from (5.14) that ϑ0 “ ¨ ¨ ¨ “ ϑp´1. In particular,

IGpϑq “ G.

The following corollary gives a proof for Theorem 9.1.1 when the vector e2 is symmetric,

i.e., the condition p˚q is satisfied.

Corollary 5.3.9. Let e P Fp´1
p be a non-symmetric vector such that e2 is symmetric.

Let G be the GGS-group defined by e and let H “ G1 be the commutator subgroup of G. If

φ P IrrpHq such that IGpφq “ G then φ is linear. Moreover, C ď p, where C is defined as

in Theorem 5.3.4, and thus

p´ 2 ď αpGq “ αpHq ď pp´ 1q
log 2

log p
` 2p2 ´ 2p` 1. (5.15)

Proof. Let φ, ϑ and ϑ0, . . . , ϑp´1 be as defined in Lemma 5.3.8 above. Then ϑ0 “ ¨ ¨ ¨ “ ϑp´1

and ϑ are G-invariant. By induction on the dimension of φ we may assume, without loss

of generality, that ϑ0 is linear. Therefore, ϑ “ ϑ0 b ¨ ¨ ¨ b ϑp´1 is a linear character of H1,

and rH1, Gs ď kerpϑq. Now, since e2 is symmetric, thanks to Theorem 2.4.25(iv), we have

H 1 ď rH1, Gs. Thus, ϑ extends to H and hence φ is of the form pϑλ, where pϑ is an extension

of ϑ and λ P IrrpH{H1q. As pϑ, λ are linear so is φ. Since φ is G-invariant, we get that

rH,Gs ď kerpφq. Therefore, φ is an extension of the trivial character of rH,Gs, and hence

we conclude that C ď p, as rH : rH,Gss “ p. By substituting p for C in (5.11), we get the

desired bounds for the abscissa of convergence αpGq.
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The proof of Theorem 9.1.1 when the alternative condition p˚˚q is satisfied is given

by Corollary 5.3.11. To simplify the proof of Corollary 5.3.11, we record first the follow-

ing lemma. In the remaining part of this chapter, for convenience, we do not distinguish

notationally between the elements of G and G{rH1, Gs.

Lemma 5.3.10. Let e P Fp´1
p be a non-symmetric vector such that e2 is non-symmetric.

Let G be the GGS-group defined by e and let H “ G1 be the commutator subgroup of G. Let

φ P IrrpHq be such that IGpφq “ G. If there exists a central element z in the quotient group

H{rH1, Gs such that zt ‰ z, then φ is linear.

Proof. Let φ P IrrpHq be such that IGpφq “ G. Let ϑ P IrrpH1q be an irreducible constituent

of φ|H1 . Notice that ϑ is of the form ϑ0b ¨ ¨ ¨ bϑp´1 for ϑi P IrrpHq and i P r0, p´ 1s. From

Lemma 5.3.8, we see that ϑ0 “ ¨ ¨ ¨ “ ϑp´1 and IGpϑ0q “ G, implying that ϑ is G invariant.

By induction on the dimension of φ, we may assume, without loss of generality, that ϑ0 is

linear. Therefore, the character ϑ is linear and hence the subgroup rH1, Gs is contained in

the kernel of ϑ. Now, since ϑ is an irreducible constituent of φ|H1 and ϑ is G-invariant, we

have φ|H1 “ ℓ ϑ, for some ℓ P N, and furthermore

rH1, Gs ď kerpϑq “ kerpφ|H1q “ kerpφq XH1 ď kerpφq.

Hence, we identify the characters φ and ϑ with irreducible characters of H{rH1, Gs and

H1{rH1, Gs, respectively.

Now, suppose that there exists a central element z P H{rH1, Gs such that zt ‰ z. It

follows from the proof of Theorem 2.4.25 that the element z can be expressed as a product

of finitely many elements from the generating set tx0, . . . , xp´2, yu of H{rH1, Gs. Thus

zt “ zrz, ts “ z yω,

for some ω P r1, p´ 1s. Since, the element z is central in H{rH1, Gs, we have φpzq ‰ 0.

Moreover, since φ is G{rH1, Gs-invariant, we have φt
´1
pzq “ φpzq. On the other hand,

φt
´1
pzq “ φpztq “ φpz yωq.

Therefore,

φpzq “ φt
´1
pzq “ φpz yωq “ φpzq

φpyωq

φp1q
, (5.16)

where the last equality follows because both z and y are central in H{rH1, Gs. From (5.16),

we get that φpyωq “ φp1q, implying that yω P kerpφq. Since yω is a generator of the cyclic

group H1{rH1, Gs – Cp, it follows that y P kerpφq. In particular, ϑ is the trivial character
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of H1{rH1, Gs and pH{rH1, Gsq
1 “ H1{rH1, Gs ď kerpφq. Hence we conclude that φ is

linear.

Corollary 5.3.11. Let e P Fp´1
p be a non-symmetric vector such that e2 is also non-

symmetric. Let G be the GGS-group defined by e and let H be the commutator subgroup of

G. Assume further that the element

ωpeq “ pp´ 2qpe1 ´ ep´1q ` pp´ 4qpe2 ´ ep´2q ` ¨ ¨ ¨ ` 3pe p´3
2
´ e p`3

2
q ` pe p´1

2
´ e p`1

2
q

is non-zero modulo p. We have

p´ 2 ď αpGq “ αpHq ď pp´ 1q
log 2

log p
` 2p2 ´ 2p` 1. (5.17)

Proof. We will prove that there exists a central element z in H{rH1, Gs such that zt ‰ z.

Then we get from Lemma 5.3.10 that every G-invariant irreducible character of H is linear.

By a similar argument as in the proof of Corollary 5.3.9 we get that (5.17) holds.

Now, set

z “ x0x
3
1 ¨ ¨ ¨x

pi`1qpi`2q
2

i ¨ ¨ ¨x
ppp`1q

2
p´1 .

By Lemma 2.4.29 the element z is central in H{rH1, Gs. From the conjugation relations in

the proof of Theorem 2.4.25 we get

zt “ x0y
e1´ep´1px1y

e12`e
1
p´1q3 ¨ ¨ ¨ pxiy

e1i`1`e
1
p´iq

pi`1qpi`2q
2 ¨ ¨ ¨ pxp´1y

e1´ep´1q
ppp`1q

2

“ zye1´ep´1`3pe12`e
1
p´1q`¨¨¨`

pi`1qpi`2q
2

pe1i`1`e
1
p´iq`¨¨¨`

ppp`1q
2

pe1´ep´1q.

Let ωpeq be the exponent sum of y. Then

ωpeq “p1`
ppp` 1q

2
qpe1 ´ ep´1q ` p3`

pp´ 1qp

2
qpe12 ` e

1
p´1q ` ¨ ¨ ¨ `

p
pp´ 1qpp` 1q

8
`
pp` 3qpp` 5q

8
qpe1p´1

2

` e1p`3
2

q `
pp` 1qpp` 3q

4
e1p`1

2

“
p2 ` p` 2

2
pe1 ´ ep´1q `

p2 ´ p` 6

2
pe12 ` e

1
p´1q ` ¨ ¨ ¨ `

p2 ` 4p` 7

4
pe1p´1

2

` e1p`3
2

q `
p2 ` 4p` 3

4
e1p`1

2

.

Therefore, we can write ωpeq as

ωpeq “ ´ 2pe1 ´ ep´1q ´ 4pe2 ´ ep´2q ` ¨ ¨ ¨ ` 3pe p´3
2
´ e p`3

2
q ` pe p´1

2
´ e p`1

2
q

” pp´ 2qpe1 ´ ep´1q ` pp´ 4qpe2 ´ ep´2q ` ¨ ¨ ¨ ` 3pe p´3
2
´ e p`3

2
q ` pe p´1

2
´ e p`1

2
q,

where the equivalence is taken modulo p. By assumption ωpeq is non-zero modulo p, and

hence zt ‰ z. This completes the proof.
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Corollary 5.3.12. Let G be the Gupta–Sidki p-group defined by the defining vector e “

p1,´1, 0, . . . , 0q P Fp´1
p and let H be the commutator subgroup of G. Then ωpeq is non-zero

modulo p. Furthermore, if φ P IrrpHq such that IGpφq “ G then φ is linear, and hence the

bounds in (5.17) for αpGq “ αpHq hold.

Proof. Observe that e2 is non-symmetric and that

ωpeq “ pp´ 2qpe1 ´ ep´1q ` pp´ 4qpe2 ´ ep´2q ` ¨ ¨ ¨ ` 3pe p´3
2
´ e p`3

2
q ` pe p´1

2
´ e p`1

2
q “ 2.

Therefore, the result follows immediately from Corollary 5.3.11.

Now, we shall present some results and ideas to generalise Theorem 9.1.1 to all GGS-

groups defined by non-symmetric defining vectors. Also, we will prove Theorem 3.0.7. First

we record that, for p “ 5, the condition that ωpeq not equal to zero modulo p is automatically

satisfied.

Lemma 5.3.13. Let e “ pe1, e2, e3, e4q P F4
5 be a defining vector such that e2 is non-

symmetric. Then ωpeq “ 3pe1 ´ e4q ` e2 ´ e3 is non-zero modulo p.

Proof. Assume to the contrary that ωpeq ” 0 pmod 5q. Then e2 ´ e3 ” 2pe1 ´ e4q pmod 5q.

Consider the vector e2 “ pe3 ´ 2e2 ` e1, e4 ´ 2e3 ` e2q. We get

e4 ´ 2e3 ` e2 ´ pe3 ´ 2e2 ` e1q “ pe4 ´ e1q ` 3pe2 ´ e3q ” pe4 ´ e1q ` 6pe1 ´ e4q

” 0 pmod 5q.

This contradicts the fact that e2 is non-symmetric.

As an immediate corollary, we obtain the following result.

Corollary 5.3.14. Let G be a GGS-group defined by a non-symmetric defining vector e P F4
5.

Then the following inequalities are satisfied.

3 ď αpGq ď 42.7227062.

Let e “ pe1, . . . , ep´1q P Fp´1
p be a non-symmetric defining vector such that e2 is also

non-symmetric. Let G be the GGS-group defined by e. To obtain an upper bound for αpGq,

by Lemma 5.3.9, it suffices to prove the existence of a central element z in H{rH1, Gs such

that zt ‰ z. To be able to do so, one needs a better understanding of the lower central series

of G, or at least terms up to γppGq. We provide an outline of the approach. Let H be the

commutator subgroup of G. We recall from Theorem 2.4.25 that H “ H1 xx0, . . . , xp´2y,

where H1 “ StGp1q
1 “ H ˆ

p
¨ ¨ ¨ ˆH, and H1 “ H 1, since e2 is non-symmetric.
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Lemma 5.3.15. For every odd number ℓ P r2, ps, the element

x
´pℓ´2

0 q
i x

pℓ´2
1 q

i`1 x
´pℓ´2

2 q
i`2 ¨ ¨ ¨ x

´pℓ´2
ℓ´3q

i`ℓ´3 x
pℓ´2
ℓ´2q
i`ℓ´2 P γℓpGqH1,

and, for every even number ℓ P r2, ps, the element

x
pℓ´2

0 q
i x

´pℓ´2
1 q

i`1 x
pℓ´2

2 q
i`2 ¨ ¨ ¨ x

´pℓ´2
ℓ´3q

i`ℓ´3 x
pℓ´2
ℓ´2q
i`ℓ´2 P γℓpGqH1,

where i P r0, p´ ℓs.

Proof. We set G “ G{H1, and use the notation p¨q to denote the images of elements and

subgroups of G under the canonical epimorphism G Ñ G. Recall from the proof of The-

orem 2.4.25(i) that G “ StGp1q ¸ xay – Cp ≀ Cp, StGp1q “
A

t, ta, . . . , tap´1
E

– Cpp and

H “ xx0, . . . , xp´2y – Cp´1
p . We identify the quotient group H with the vector space of

dimension p ´ 1 over Fp, and the elements xi with the vectors ci “ p0, i´2. . ., 0, 1, 0, . . . , 0q

in Cp´1
p . The action of the element a on each ci is given by cai “ ci`1, where the subscripts

are taken modulo p. Hence the quotient group γ3pGq is generated by the set of vectors

tp´1, 1, 0, . . . , 0q, p0,´1, 1, 0, . . . , 0q, . . . , p0, . . . , 0,´1, 1qu,

and the quotient group γ4pGq is generated by the set of vectors

tp1,´2, 1, 0, . . . , 0q, p0, 1,´2, 1, 0, . . . , 0q, . . . , p0, . . . , 1,´2, 1qu.

Now, observe that the coordinates of the above mentioned vectors are the entries of second

and third rows of the Pascal’s triangle with alternating signs. By iterating the above process,

one sees that, for every ℓ P r2, ps, the quotient group γℓpGq is generated by the vector
ˆ

´

ˆ

ℓ´ 2

0

˙

,

ˆ

ℓ´ 2

1

˙

,´

ˆ

ℓ´ 2

2

˙

, ¨ ¨ ¨ ,

ˆ

ℓ´ 2

ℓ´ 3

˙

,´

ˆ

ℓ´ 2

ℓ´ 2

˙˙

,

and its cyclic shifts if ℓ is odd, and by the vector
ˆˆ

ℓ´ 2

0

˙

,´

ˆ

ℓ´ 2

1

˙

,

ˆ

ℓ´ 2

2

˙

, ¨ ¨ ¨ ,´

ˆ

ℓ´ 2

ℓ´ 3

˙

,

ˆ

ℓ´ 2

ℓ´ 2

˙˙

,

and its cyclic shifts if ℓ is even.

Now, we recall from Lemma 2.4.29 that the element z is defined as

z “ x0x
3
1 ¨ ¨ ¨x

pi`1qpi`2q
2

i ¨ ¨ ¨x
ppp`1q

2
p´1 ,

where the exponents are taken modulo p. Observe that

z “ x
pp´3

0 q
0 x

´pp´3
1 q

1 x
pp´3

2 q
2 ¨ ¨ ¨ x

´pp´3
p´4q

p´4 x
pp´3
p´3q
p´3 P γp´1pGqH1.

We have seen that the element z is central in H{rH1, Gs, and z
t ‰ z if and only if ωpeq is

non-zero modulo p. Now, assume that ωpeq ” 0 pmod pq. In this case, we get zt “ z. We

shall take a closer look at the case p “ 7.
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Lemma 5.3.16. Let G be a GGS-group defined by a non-symmetric defining vector e P Fp´1
p .

Assume that e2 is non-symmetric and ωpeq ” 0 pmod pq. Then there exists an element

z1 P γ4pGqH1 such that z1 is central in H{rH1, Gs, and z
t
1 ‰ z1.

Proof. Set z1 “ x0x
´2
1 x2. It follows from Lemma 2.4.27 that

rxi, z1s ”rH1,Gs y
ki ,

where ki is the coordinate sum of the product of the pi` 1qth row of the matrix T with the

element p1,´2, 1, 0, 0, 0, 0q. We get

k1 “ ´2ℓ1,2 ` s2 “ ´2p2pe1 ´ e6q ` e5 ´ e2q ` e6 ´ e1 ` 2pe2 ´ e5q ` e4 ´ e3

“ 2pe1 ´ e6q ` 4pe2 ´ e5q ` 6pe3 ´ e4q ” ω mod 7 “ 0.

k2 “ ´ℓ1,2 ` ℓ1,2 “ 0.

k3 “ ´s2 ` 2ℓ1,2 “ 0.

k4 “ ´s3 ` 2s2 ´ ℓ1,2 “ ´pe5 ´ e2 ` 3pe3 ´ e4qq ` 2pe6 ´ e1 ` 2pe2 ´ e5q ` e4 ´ e3q

´ p2pe1 ´ e6q ` e5 ´ e2q “ 3pe1 ´ e6q ` 6pe2 ´ e5q ` 2pe3 ´ e4q ” ω mod 7 “ 0.

k5 “ 3s3 ´ s2 “ 3pe5 ´ e2 ` 3pe3 ´ e4qq ´ pe6 ´ e1 ` 2pe2 ´ e5q ` e4 ´ e3q

“ e1 ´ e6 ` 2pe2 ´ e5q ` 3pe3 ´ e4q ” ω mod 7 “ 0.

k6 “ s2 ´ 3s3 “ 0.

Hence, we conclude z1 is central in H{rH1, Gs. Furthermore,

zt1 ”rH1,Gs z1y
e1´e6´2pe6´e1`e2´e5q`e5´e2`e3´e4 “ z1y

3pe1´e6q`4pe2´e5q`e3´e4 .

We claim that 3pe1 ´ e6q ` 4pe2 ´ e5q ` e3 ´ e4 ‰ 0 pmod 7q. Assume to the contrary that

3pe1 ´ e6q ` 4pe2 ´ e5q ` e3 ´ e4 “ 0 pmod 7q. Since ωpeq is also equal to zero modulo 7,

from an easy computation one gets e1 ´ e6 “ 5pe3 ´ e5q and e2 ´ e5 “ 3pe3 ´ e4q. Now, set

d “ e3 ´ e4. Then e1 “ 5d` e6, e2 “ 3d` e5 and e3 “ d` e4. Therefore,

e “ p5d` e6, 3d` e5, d` e4, e4, e5, e6q

e1 “ p´2d` e5 ´ e6,´2d` e4 ´ e5,´d, e5 ´ e4, e6 ´ e5q

e2 “ pe4 ´ 2e5 ` e6, e5 ´ e4,`d, e5 ´ e4 ` d, e4 ´ 2e5 ` e6q,

which implies that e2 is symmetric, hence a contradiction. Therefore, zt1 ‰ z1.

Therefore, Theorem 9.1.1 holds for p “ 7 in full generality, and we record the following

result.
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Corollary 5.3.17. Let G be a GGS-group defined by a non-symmetric defining vector e P F6
7.

Then the following inequalities are satisfied.

5 ď αpGq ď 87.1372431.

Now, Theorem 3.0.7 follows from Corollary 5.3.17 and Theorem 5.3.17. The proof of

Lemma 5.3.16 suggests that, if we set

z1 “ x
pp´5

0 q
0 x

´pp´5
1 q

1 x
pp´5

2 q
2 ¨ ¨ ¨ x

´pp´5
p´6q

p´6 x
pp´5
p´5q
p´5 P γp´3pGqH1,

then z1 would be a potential candidate for higher primes. Then one could iterate the process,

and make sure that such elements exist for all choices of the defining vector e.
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Chapter 6

Representation zeta function of the

Gupta–Sidki 3-group

In this chapter, we explicitly compute a recursive formula for the representation zeta function

of the Gupta–Sidki 3-group, and hence we give a proof for Theorem 3.0.10. Moreover, we

will show that the formula presented in Section 6.5 is in agreement with the one obtained

in [14, Section 2.2] by means of computer calculations.

For every odd prime p, the Gupta–Sidki p-group Gp is a GGS-group defined by the

vector e “ p1,´1, 0, . . . , 0q P Fp´1
p . Since the defining vector e is non-symmetric, recall from

Theorem 2.4.21 thatGp is regular branch over the commutator subgroup. We emphasise that

the detailed computation presented here is currently limited to the Gupta–Sidki 3-group G3

because of its relatively small branching quotient isomorphic to C3ˆC3. However, we begin

with Section 6.1, where we review some structural properties of the Gupta–Sidki p-groups.

These results help us to have a better understanding about the branching quotient. In

Section 6.2, we explain the strategy of computing the representation zeta function of G3. The

crucial computations are carried out in Section 6.3, where we analyse the inertia groups of

the irreducible representations of the subgroup G1
3 and ψ

´1pG1
3ˆG

1
3ˆG

1
3q. The calculations

in Section 6.3 give recursive estimates on the number of irreducible characters of G1
3. Using

this, we first compute the representation zeta function of G1
3 in Section 6.4. Finally, the

functional equation summarised in Theorem 3.0.10 is obtained in Section 6.5.

6.1 Gupta–Sidki p-groups

Throughout this section let p denote an odd prime.

Proposition 6.1.1 ([44], Proposition 2.4). Let Gp be the Gupta–Sidki p-group and let
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g P Gp. Then g P StGpp1q if and only if there exist i0, . . . , ip´1 P r0, p´ 1s and h0, . . . , hp´1 P

G1
p such that

ψpgq “ ph0a
´ip´1`i0ti1 , h1a

´i0`i1ti2 , . . . , hp´1a
´ip´2`ip´1ti0q. (6.1)

Proof. If g P Gp is of the form (6.1), then it is clear that g P StGpp1q. Let g P StGpp1q. Then

by Theorem 2.4.19(i), g ” ti00 t
i1
1 ¨ ¨ ¨ t

ip´1

p´1 mod StGpp1q
1 for some i0, . . . , ip´1 P r0, p´ 1s,

where ti “ ta
i
for all i P r0, p´ 1s. Therefore,

ψpgq “ pk0a
i0ti1a´ip´1 , k1a

´i0`i1ti2 , . . . , kp´1t
i0a´ip´2`ip´1q

“ ph0a
´ip´1`i0ti1 , h1a

´i0`i1ti2 , . . . , hp´1a
´ip´2`ip´1ti0q,

for some hi, ki P G
1
p, where i P r0, p´ 1s, completing the proof.

Proposition 6.1.2 (cf. [44], Lemma 2.5). Let Gp be the Gupta–Sidki p-group. The element

ψ´1pt, . . . , tq lies in G1
p. Moreover, StGpp2q{ StGpp1q

1 “ xStGpp1q
1 ψ´1pt, . . . , tqy – Cp. In

particular, for p “ 3, γ3pGpq “ StGpp2q.

Proof. A straightforward computation using the section decomposition of xi (Notation 2.4.24)

yields that

ψ´1pt, . . . , tq ”G1
p
x0x

2
1 ¨ ¨ ¨x

p´1
p´2. (6.2)

Hence ψ´1pt, . . . , tq P G1
p. Now observe that, StGpp1q

1 ď StGpp2q. Let g “ pg0, . . . , g1q P

StGpp2q. In particular, g P StGpp1q and hence g is of the form (6.1) such that the exponent

sum of a in each co-ordinate is zero. This implies that i0 “ i1 “ ¨ ¨ ¨ “ ip´1 “ i for some

i P r0, p´ 1s and, since ψpStGpp1q
1q “ G1

p ˆ
p
¨ ¨ ¨ ˆG1

p (Theorem 2.4.19(ii)), we get

ψpgq “ ph0t
i, h1t

i . . . , hp´1t
iq ” pt, . . . , tqi mod ψpStGpp1q

1q. (6.3)

Furthermore, (6.3) implies that StGpp2q{ StGpp1q
1 “ xStGpp1q

1 ψ´1pt, . . . , tqy – Cp.

Now, suppose that p “ 3. From Theorem 2.4.19 and Theorem 2.4.21, it holds that

rG1
p : StGpp1q

1s “ 32 and hence rG1
p : StGpp2qs “ 3. From Theorem 2.4.19(iii), we have

StGpp2q ď γ3pGpq and rG
1
p : γ3pGpqs “ 3, resulting that γ3pGpq “ StGpp2q.

For convenience of the later computations, we state the following immediate corollary

of the last part of the proof of Proposition 6.1.2.

Corollary 6.1.3. Let G be the Gupta–Sidki 3-group. Let H “ G1 be the commutator

subgroup and let and H1 “ ψ´1pH ˆ H ˆ Hq. Then H “ H1 xx, t̄y, where x “ ra, ts and

t̄ “ ψ´1pt, t, tq.
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6.2 Method of computing the representation zeta function

Before presenting the calculations, we give an outline of the strategy. Thereby, we record the

following structural lemma that is vital to the computation of the recursive representation

zeta function ofG3, since it illustrates possible subgroups between G3 and ψ
´1pG1

3 ˆG
1
3 ˆG

1
3q

from (resp. to) which characters induce (resp. restrict).

Lemma 6.2.1. Let G be the Gupta–Sidki 3-group and let H “ G1 be the commutator

subgroup of G. Let H1 denote the subgroup ψ´1pHˆHˆHq of G. Then the Hasse diagrams

for the sets of subgroups that are sandwiched between G and H, and that are sandwiched

between H and H1 are given by Figure 6.1.

G

Hxay Hxty Hxaty Hxat´1y

H

H

Hxt̄y Hxx0t̄y Hxx1t̄y Hxx2t̄y

H1

Figure 6.1: Hasse diagrams

Proof. From Theorem 2.4.19, it follows that G{H “ xH ay ˆ xH ty – C3 ˆ C3. Similarly,

from Theorem 2.4.25, we get that H{H1 “ xH1 x0y ˆ xH1 x1y – C3 ˆ C3, where

ψpx0q “ ra, ts “ pt
´1a, a´2, atq, and ψpx1q “ xa “ pat, t´1a, a´2q,

cf. Notation 2.4.24. The subgroups lying between G and H are given by the set

G “ tG,Hxay, Hxty, Hxaty, Hxat´1y, Hu,

and the subgroups lying between H and H1 are given by the set

H “ tH,H1xx0y, H1xx1y, H1xx0x1y, H1xx0x
´1
1 y, H1u.

Now, since t̄ P H (Corollary 6.1.3), observe that

ψpx0q “ pt
´1a, a, atq ”H1 pat, t

´1a, aqpt, t, tq “ ψpx1t̄q,

ψpx1q “ pat, t
´1a, aq ”H1 pa, at, t

´1aqpt, t, tq “ ψpx2t̄q,

ψpx0x1q ”H1 pa, at, t
´1aq´1 ”H1 ppt

´1a, a, atqpt, t, tqq´1 “ ψppx0t̄q
´1q,

ψpx0x
´1
1 q ”H1 pt, t, tq “ ψpt̄q.

Therefore, H “ tH,H1xt̄y, H1xx0t̄y, H1xx1t̄y, H1xx2t̄y, H1u, yielding the Figure 6.1.
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Since G is regular branch over the commutator subgroup H, we identify the subgroup H1

with the subgroup H ˆ H ˆ H. As stated in Theorem 4.0.1, every irreducible character

ρ P IrrpH1q can be uniquely expressed as

ρ “ ϑ0 b ϑ1 b ϑ2,

for some ϑi P IrrpHq, where i P r0, 2s. Recall from Chapter 4 that the notation ϑ0bϑ1bϑ2

denotes the product of characters ϑ0, ϑ1, ϑ2, and is given by

ϑ0 b ϑ1 b ϑ2ph0, h1, h2q “ ϑ0ph0qϑ1ph1qϑ2ph2q,

for every ph0, h1, h2q P H ˆH ˆH. Conversely, for every choice of ϑi P IrrpHq, the product

ϑ0 b ϑ2 b ϑ3 is an element of IrrpH1q. Therefore, we identify the following sets

IrrpH1q “ IrrpHq ˆ IrrpHq ˆ IrrpHq,

where IrrpHqˆIrrpHqˆIrrpHq “ tϑ0bϑ1bϑ2 | ϑi P IrrpHq, i P r0, 2su as defined in Chapter 4.

For every ρ P IrrpH1q (resp. φ P IrrpHq), the inertia group IHpρq in H (resp. IGpφq in G)

belongs to the set H (resp. G), and hence there are six different possibilities. In Section 6.3,

we do a case-by-case study on the inertia groups. In each case, we obtain a sufficient and

necessary condition for a character to have a given inertia group. We split the process into

two steps.

Step 1: For every S P H, we provide a sufficient and necessary condition for a character

ρ P IrrpH1q to satisfy IHpρq “ S, in terms of the inertia group IGpϑiq of ϑi in G.

Now, suppose φ P IrrpHq and ρ is an irreducible constituent of φ|H1 such that IHpρq “

S P H. The inertia group IGpφq of φ in G is an element of the set G.

Step 2: Using Step 1 and the results discussed in Chapter 4, we give a sufficient and

necessary condition for IGpφq “ T for every T P G, in terms of the the characters ϑi and

their inertia groups in G.

Using the information from Section 6.3, in Section 6.4, we obtain a recursive procedure

for calculating the representation zeta function of H. From each of the cases in Step 2, we

count the irreducible characters of H that are obtained either by extension or by induction

from a given irreducible character ρ of H1. In this way, we obtain all irreducible characters

of H. For every T P G, denote by rTd the cardinality of the set

rTd “ |tφ P IrrpHq | φp1q “ 3d, IGpφq “ T u|, (6.4)

and define the partial representation zeta function ζT pH, sq of H associated with T as the
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Dirichlet generating function give by

ζT pH, sq “
8
ÿ

d“0

rTd 3´ds, (6.5)

for s P C. By taking the sum of ζT pH, sq over all six T P H we obtain the representation

zeta function of H given by

ζpH, sq “
ÿ

TPG
ζT pH, sq. (6.6)

Finally in Section 6.5, again by an application of results from Chapter 4, we compute the

representation zeta function of G as a recursive function in terms of the representation zeta

function of H.

From the computation of partial representation zeta functions of H, we observe that

ζGpH, sq “ 3,

(see Lemma 6.4.1). That is there are exactly three irreducible characters of H that are

G-invariant and all of them are linear. Therefore, we get that the cardinality C ofG-invariant

irreducible characters of H (defined in Theorem 5.3.4) is equal to three.

6.3 Inertia groups

This section comprises of Step 1 (Section 6.3.1) and Step 2 (Section 6.3.2). Here we carefully

and elaborately develop the theory that enables us to compute the partial representation

zeta functions described in Section 6.2. In the following, we fix G “ G3 as the Gupta–Sidki

3-group and H “ G1 as the commutator subgroup of G. We identify H1 “ H ˆH ˆH with

the subgroup ψ´1pHˆHˆHq of G and the element t̄ “ pt, t, tq with the element ψ´1pt, t, tq.

Further, we fix

ψpx0q “ pt
´1a, a´2, atq, ψpx1q “ pat, t

´1a, a´2q, ψpx2q “ pa
´2, at, t´1aq.

We recall from Lemma 6.2.1 the following collection of subgroups:

G “ tG,Hxay, Hxty, Hxaty, Hxat´1y, Hu,

and

H “ tH,H1xt̄y, H1xx0t̄y, H1xx1t̄y, H1xx2t̄y, H1u.

6.3.1 Inertia groups: Step 1

The objective of this section is to obtain fundamental results that provide sufficient and

necessary conditions for a character ρ “ ϑ0 b ϑ1 b ϑ2 P IrrpH1q to have IGpρq “ S P H
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in terms of the inertia groups IGpϑiq P G for i P r0, 2s. We set K “ Hxty “ StGp1q. For

convenience, we identify an element g P K with its image under the projection map ψ.

Also, we adopt the convention that the subscripts of the irreducible characters ϑi are taken

modulo 3.

Lemma 6.3.1. Let ϑ0, ϑ1, ϑ2 P IrrpHq. The following assertion holds

IHpϑ0 b ϑ1 b ϑ2q “ ψ´1pIGpϑ0q ˆ IGpϑ1q ˆ IGpϑ2qq XH.

Proof. Since ψ is a monomorphism from the first level stabiliser K “ StGp1q to the direct

product GˆGˆG, it holds that ψ´1pIGpϑ0q ˆ IGpϑ1q ˆ IGpϑ2qq ď K and

ψ´1pIGpϑ0q ˆ IGpϑ1q ˆ IGpϑ2qq XH ď IHpϑ0 b ϑ1 b ϑ2q.

To see the reverse inclusion, consider g “ pg0, g1, g2q P IHpϑ0bϑ1bϑ2q and h “ ph0, h1, h2q P

H1, where gi P G, hi P H and i P r0, 2s. We have

ϑ0 b ϑ1 b ϑ2phq “ pϑ0 b ϑ1 b ϑ2q
gphq “ pϑ0 b ϑ1 b ϑ2qpghg

´1q

“ ϑ0pg0h0g
´1
0 qϑ1pg1h1g

´1
1 qϑ2pg2h2g

´1
2 q

“ ϑg00 ph0qϑ
g1
1 ph1qϑ

g2
2 ph2q “ ϑg00 b ϑ

g1
1 b ϑ

g2
2 phq.

Thus gi P IGpϑiq for all i P r0, 2s; cf. Remark 4.0.2. Hence g P ψ´1pIGpϑ0q ˆ IGpϑ1q ˆ

IGpϑ2qq XH.

Lemma 6.3.2. Let ϑ0, ϑ1, ϑ2 P IrrpHq. Then IHpϑ0bϑ1bϑ2q “ H if and only if IGpϑiq “ G

for all i P r0, 2s.

Proof. If IGpϑiq “ G for all i P r0, 2s then it follows from Lemma 6.3.1 that IHpϑ0bϑ1bϑ2q “

H. To see the converse, assume that IHpϑ0 b ϑ1 b ϑ2q “ H. We get,

ϑ0 b ϑ1 b ϑ2 “ pϑ0 b ϑ1 b ϑ2q
x0 “ ϑt

´1a
0 b ϑa1 b ϑ

at
2 ,

ϑ0 b ϑ1 b ϑ2 “ pϑ0 b ϑ1 b ϑ2q
x1 “ ϑat0 b ϑ

t´1a
1 b ϑa2,

ϑ0 b ϑ1 b ϑ2 “ pϑ0 b ϑ1 b ϑ2q
x2 “ ϑa0 b ϑ

at
1 b ϑ

t´1a
2 ,

implying that IGpϑ0q “ IGpϑ1q “ IGpϑ2q “ G; cf. Remark 4.0.2.

Lemma 6.3.3. Let ϑ0, ϑ1, ϑ2 P IrrpHq. Then IHpϑ0 b ϑ1 b ϑ2q “ H1xt̄y if and only if

Hxty ď IGpϑiq for all i P r0, 2s, and there exists j P r0, 2s such that IGpϑjq ‰ G.
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Proof. Suppose that IHpϑ0bϑ1bϑ2q “ H1xt̄y. It follows from Lemma 6.3.2 that there exists

j P r0, 2s such that IGpϑjq ‰ G. Let h “ ph0, h1, h2q P H1 and let gt̄ε “ pg0t
ε, g1t

ε, g2t
εq P

H1xt̄y, where gi, hi P H and i, ε P r0, 2s. We get

ϑ0 b ϑ1 b ϑ2phq “ pϑ0 b ϑ1 b ϑ2q
gt̄εphq “ pϑ0 b ϑ1 b ϑ2qpgt̄

εhpgt̄εq´1q

“ ϑ0pg0t
εh0pg0t

εq´1qϑ1pg1t
εh1pg1t

εq´1qϑ2pg2t
εh2pg2t

εq´1q

“ ϑg0t
ε

0 ph0qϑ
g1tε

1 ph1qϑ
g2tε

2 ph2q “ ϑg0t
ε

0 b ϑg1t
ε

1 b ϑg2t
ε

2 phq.

Hence Hxty ď IGpϑiq for all i P r0, 2s.

Now, suppose that Hxty ď IGpϑiq for all i P r0, 2s and suppose further that there exists

j P r0, 2s such that IGpϑjq ‰ G. From Lemma 6.3.1, we have

H1xt̄y ď IHpϑ0 b ϑ1 b ϑ2q ă H,

where the strict inequality follows from Lemma 6.3.2. Therefore, IHpϑ0bϑ1bϑ2q “ H1xt̄y,

cf. Figure 6.1.

Lemma 6.3.4. Let ϑ0, ϑ1, ϑ2 P IrrpHq and let j P r0, 2s. Then IHpϑ0 b ϑ1 b ϑ2q “ H1xxj t̄y

if and only if there exists k P r0, 2s such that IGpϑkq ‰ G and the following inclusions hold:

Hxay ď IGpϑjq, Hxaty ď IGpϑj`1q, Hxat´1y ď IGpϑj`2q.

Proof. Observe first from the proof of Lemma 6.2.1 that

x0t̄ ”H1 pa, at, at
´1q, x1t̄ ”H1 pat

´1, a, atq, x2t̄ ”H1 pat, at
´1, aq.

We prove the result for the case j “ 0. The other cases follow in a similar manner. Suppose

that IHpϑ0 b ϑ1 b ϑ2q “ H1xx0t̄y. It is immediate from Lemma 6.3.2 that there exists

k P r0, 2s such that IGpϑkq ‰ G. Furthermore,

ϑ0 b ϑ1 b ϑ2 “ pϑ0 b ϑ1 b ϑ2q
x0 t̄ “ ϑa0 b ϑ

at
1 b ϑ

at´1

2 ,

and hence Hxay ď IGpϑ0q, Hxaty ď IGpϑ1q and Hxat
´1y ď IGpϑ2q.

Now to see the converse, assume that the given statement is true. Then from Lemma 6.3.2

we have

H1xx0t̄y ď IHpϑ0 b ϑ1 b ϑ2q ă H,

whence IHpϑ0 b ϑ1 b ϑ2q “ H1xx0t̄y, cf. Figure 6.1.

Lemma 6.3.5. Let ϑ0, ϑ1, ϑ2 P IrrpHq. Then IHpϑ0 b ϑ1 b ϑ2q “ H1 if and only if there

exists i P r0, 2s such that xty ę IGpϑiq and the following assertion holds:

␣pDj P r0, 2s : Hxay ď IGpϑjq ^ Hxaty ď IGpϑj`1q ^ Hxat´1y ď IGpϑj`2qq.
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Proof. Since for every ϑ0 b ϑ1 b ϑ2 P IrrpH1q the inertia group IHpϑ0 b ϑ1 b ϑ2q lies in

H, there are only 6 possibilities for IHpϑ0 b ϑ1 b ϑ2q. Therefore IHpϑ0 b ϑ1 b ϑ2q “ H1

if and only IHpϑ0 b ϑ1 b ϑ2q R HztH1u. By combining Lemma 6.3.2, Lemma 6.3.3 and

Lemma 6.3.4 we obtain Lemma 6.3.5.

Now, we record two lemmas that are helpful for the discussion of G-invariant irreducible

characters of H in Section 6.3.2. Let ϑ P IrrpHq be such that IGpϑq “ G. Thanks to

Corollary 5.3.12, ϑ is linear. In the following, we identify ϑ with an irreducible character of

H{rH,Gs.

Lemma 6.3.6. Let ϑ P IrrpHq be such that IGpϑq “ G. Then ϑ extends to irreducible

characters of K. Let Θ P IrrpKq be an extension of ϑ. Then Θa “ Θλ for some λ P IrrpK{Hq

and, for each ε P r0, 2s, λptεq “ ϑpra, tsqε. (Here we identify the quotient group K{H with

the cyclic group xty – C3). Furthermore, if ϑ extends towards G then ϑ “ 1H , where 1H is

the trivial character of H.

Proof. Since ϑ is G-invariant and |K : H| “ 3 is prime, ϑ extends towards K and let Θ be

an extension. Since Θ is an extension of ϑ, Θ is linear, and hence Θ is a homomorphism

from K to Cˆ. Then Θpℓq ‰ 0 for all ℓ P K. We identify Θ with an irreducible character of

K{rH,Gs. Let ℓ “ htε P K, where h P H and ε P r0, 2szt0u. Then

Θaphtεq “ Θpphtεqa
´1
q “ Θpphtεqrhtε, a´1sq “ Θphtεqϑprhtε, a´1sq, (6.7)

where the last equality follows because Θ is linear. On the other hand, since ϑ is G-invariant,

Θa|H “ pΘ|Hq
a “ ϑ. Hence, there exists λ P IrrpK{Hq such that Θa “ Θλ. Therefore,

Θaphtεq “ pΘλqphtεq “ Θphtεqλptεq. (6.8)

By comparing (6.7) and (6.8), and using the fact that rH,Gs ď kerpϑq, we get

λptεq “ ϑprhtε, a´1sq “ ϑpra, htεsa
´1
q “ ϑapra, htϵsq “ ϑpra, htεsq

“ ϑpra, tεsra, hst
ε
q “ ϑpra, tεsqϑpra, hst

ε
q “ ϑpra, tεsq “ ϑpra, tsqε.

To see the last claim, assume that ϑ admits an extension towards G. Then ϑ is trivial on

rG,Gs “ H whence ϑ “ 1H .

Lemma 6.3.7. Let ϑ P IrrpHq be such that IGpϑq “ G. Then ϑ extends to irreducible

characters of Hxatδy for every δ P r0, 2s. Let Θ P IrrpHxatδyq be an extension of ϑ. Then

Θt “ Θλ for some λ P IrrpHxatδy{Hq and, for each ε P r0, 2s, λppatδqεq “ ϑpra, tsq´ε, (here

we identify the quotient group Hxatδy{H with the cyclic group xatδy – C3).
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Proof. Let Θ be an extension of ϑ towards Hxatδy. Then Θ is linear, and we identify Θ with

an irreducible character of Hxatδy{rH,Gs. Since Θ is linear, Θpℓq ‰ 0 for all ℓ P Hxatδy.

Let ℓ “ hpatδqε P Hxatδy, where h P H and ε P r0, 2szt0u. We get

Θtphpatδqεq “ Θphpatδqεqt
´1
q “ Θpphpatδqεqrhpatδqε, t´1sq “ Θphpatδqεqϑprhpatδqε, t´1sq,

(6.9)

where the last equality follows because Θ is linear. Now, since ϑ is invariant under the

action of G, Θt|H “ pΘ|Hq
t “ ϑ. Hence, there exists λ P IrrpHxatδy{Hq such that Θt “ Θλ.

Therefore,

Θtphpatδqεq “ Θλphpatδqεq “ Θphpatδqεqλppatδqεq. (6.10)

By comparing (6.9) and (6.10), and using the fact that rH,Gs ď kerpϑq, we get

λppatδqεq “ ϑprhpatδqε, t´1sq “ ϑprt, hpatδqεst
´1
q “ ϑtprt, hpatδqεsq “ ϑprt, hpatδqεsq

“ ϑprt, patδqεsrt, hspat
δqεq “ ϑprt, patδqεsqϑprt, hspat

δqεq “ ϑprt, patδqεsq

“ ϑprt, atδsqε “ ϑprt, tδsrt, asqε “ ϑpra, tsq´ε.

6.3.2 Inertia groups: Step 2

Let ϑ0bϑ1bϑ2 P IrrpH1q for some ϑi P IrrpHq and i P r0, 2s, and let S P H. In Section 6.3.1

we observed the explicit conditions under which IGpϑ0 b ϑ1 b ϑ2q “ S. Let φ P IrrpHq

be such that ϑ0 b ϑ1 b ϑ2 is an irreducible constituent of φ|H1 . For every T P G, here we

provide sufficient and necessary conditions for φ to satisfy the equality IGpφq “ T . We split

the calculation into four cases.

(i) Case 1: IHpϑ0 b ϑ1 b ϑ2q “ H1xt̄y.

(ii) Case 2: IHpϑ0 b ϑ1 b ϑ2q “ H1xxj t̄y for j P r0, 2s.

(iii) Case 3: IHpϑ0 b ϑ1 b ϑ2q “ H1.

(iv) Case 4: IHpϑ0 b ϑ1 b ϑ2q “ H.

Notice from Lemma 6.3.2 that Case 4 occurs if and only if the characters ϑi are G-

invariant for all i P r0, 2s. Moreover, by Corollary 5.3.12 the characters ϑi are then linear and

the numbers of such characters are finite. Therefore, there are only finitely many characters

which satisfy Case 4. This enables us to explicitly count the number of characters φ P IrrpHq

such that the character ϑ0bϑ1bϑ2 P IrrpH1q, with inertia group IHpϑ0bϑ1bϑ2q “ H, occurs

as an irreducible constituent of φ|H1 . Further, we prove that these characters contribute to

the constant terms of the partial representation zeta functions of H.
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6.3.2.1 Case 1: IHpϑ0 b ϑ1 b ϑ2q “ H1xt̄y.

We begin by the following observation.

Observation 6.3.8. By Lemma 6.3.3, it follows that K “ Hxty ď IGpϑiq for all i P r0, 2s.

Then each ϑi extends to an irreducible character of K for all i P r0, 2s. If Θi denotes an

extension of ϑi to K then Θ0bΘ1bΘ2 is an extension of the character ϑ0bϑ1bϑ2 from H1

to K ˆK ˆK. Since H1xt̄y “ ψ´1pK ˆK ˆKq XH, we identify H1xt̄y with a subgroup of

KˆKˆK. Denote by η the restriction of Θ0bΘ1bΘ2 to H1xt̄y. Then η is an extension of

ϑ0bϑ1bϑ2 from H1 to H1xt̄y (Theorem 4.0.3). Since H1xt̄y ă H, the character η does not

extend towards H. Denote by φ the character of H induced from η. Then φ is irreducible

(Theorem 4.0.5) and by Clifford’s theorem the restriction of φ to H1xt̄y has the following

form

φ|H1xt̄y “ η ` ηx ` ηx
´1
, (6.11)

since H “ H1xx, t̄y (Corollary 6.1.3) and H{H1xt̄y – C3 (cf. Proposition 6.1.2 and Theo-

rem 2.4.19(iii)). Furthermore,

φp1q “ rH : H1xt̄ys ¨ ηp1q “ 3 ¨ pϑ0 b ϑ1 b ϑ2qp1q “ 3ϑ0p1qϑ1p1qϑ2p1q.

Proposition 6.3.9. Let ϑi P IrrpHq, for i P r0, 2s, such that IHpϑ0bϑ1bϑ2q “ H1xt̄y. Let

Θi, η and φ be defined as in Observation 6.3.8 above. Then a P IGpφq if and only if there

exist ϑ P IrrpHq and ε P r0, 2s such that IGpϑq “ K and ϑ0 “ ϑ, ϑ1 “ ϑa
ε
and ϑ2 “ ϑa

´ε
.

Proof. From Proposition 6.1.2, observe first that, H1xt̄y “ StGp2q and set K1 “ StGp2q.

Thanks to Lemma 4.0.9 and (6.11), we get that a P IGpφq if and only if ηa P tη, ηx, ηx
´1
u.

If ηa “ η then

pΘ2 bΘ0 bΘ1q|K1 “ pΘ0 bΘ1 bΘ2q
a|K1 “ ppΘ0 bΘ1 bΘ2q|K1q

a “ ηa “ η

“ pΘ0 bΘ1 bΘ2q|K1 .

Suppose that ηa “ ηx. Since Hxty “ K ď IGpΘiq for all i P r0, 2s, we get

pΘ2 bΘ0 bΘ1q|K1 “ pΘ0 bΘ1 bΘ2q
a|K1 “ ppΘ0 bΘ1 bΘ2q|K1q

a “ ηa “ ηx

“ pΘ0 bΘ1 bΘ2q
x|K1 “ pΘ

t´1a
0 bΘa

1 bΘat
2 q|K1 “ pΘ

a
0 bΘa

1 bΘa
2q|K1 .

If ηa “ ηx
´1
, then by a similar argument as above we obtain

pΘ2 bΘ0 bΘ1q|K1 “ pΘ
a´1

0 bΘa´1

1 bΘa´1

2 q|K1 .
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By denoting ϑ “ ϑ0 “ Θ0|H , in each of the three cases, we find that ϑ1 “ ϑa
ε
and ϑ2 “ ϑa

´ε

for some ε P r0, 2s. Since IGpϑ
a˘1
q “ IGpϑq

a˘1
, by Lemma 6.3.3, for all i P r0, 2s, we get

that IGpϑiq “ IGpϑq “ K.

Now we prove the reverse implication. Assume that the given statement is true. Let

Θ P IrrpKq be an extension of ϑ from H to K. Notice that Θa˘1
is an extension of ϑa

˘1
,

since Θa˘1
|H “ pΘ|Hq

a˘1
“ ϑa

˘1
. Set η “ pΘ b Θaε b Θa´ε

q|K1 . Then η an extension of

ϑ0bϑ1bϑ2. Since IHpϑ0bϑ1bϑ2q “ H1xt̄y “ K1, we have IHpηq “ H1xt̄y. Now consider,

ηa “ ppΘbΘaε bΘa´ε
q|K1q

a “ pΘbΘaε bΘa´ε
qa|K1 “ pΘ

a´ε
bΘbΘaεq|K1 .

If ε “ 0 then ηa “ η, if ε “ 1 then ηa “ ηx
´1

and if ε “ ´1 then ηa “ ηx. Therefore

ηa P tη, ηx, ηx
´1
u and the result follows from Lemma 4.0.9.

Proposition 6.3.10. Let ϑi P IrrpHq, for i P r0, 2s, such that IHpϑ0 b ϑ1 b ϑ2q “ H1xt̄y.

Let Θi, η and φ be defined as in Observation 6.3.8 above. Let ε P t1,´1u. Then atε P IGpφq

if and only if there exist ϑ P IrrpHq and j P r0, 2s such that IGpϑq “ K and ϑj “ ϑ and

ϑj`1 “ ϑj`2 “ ϑa
´ε
.

Proof. By Lemma 4.0.9 and (6.11), we have atε P IGpφq if and only if ηat
ε
P tη, ηx, ηx

´1
u.

Suppose that atε P IGpφq. Since K ď IGpΘiq for all i P r0, 2s, we get

pΘaε

2 bΘa´ε

0 bΘ1q|K1 “ ηat
ε
“

$

’

’

’

’

’

&

’

’

’

’

’

%

pΘ0 bΘ1 bΘ2q|K1 if ηat
ε
“ η,

pΘa
0 bΘa

1 bΘa
2q|K1 if ηat

ε
“ ηx,

pΘa´1

0 bΘa´1

1 bΘa´1

2 q|K1 , if ηat
ε
“ ηx

´1
.

We consider the case when ε “ 1. In view of the three possibilities described above, this

implies that there exists ϑ P IrrpHq such that

ϑ0 “ ϑ, ϑ1 “ ϑ2 “ ϑa
´1
, or ϑ1 “ ϑ, ϑ0 “ ϑ2 “ ϑa

´1
, or ϑ2 “ ϑ, ϑ0 “ ϑ1 “ ϑa

´1
.

Since IGpϑ
a˘1
q “ IGpϑq

a˘1
, Lemma 6.3.3 implies that IGpϑiq “ IGpϑq “ K for all i P r0, 2s.

Analogously, we obtain the result for ε “ ´1.

To prove the reverse implication, again we consider the case when ε “ 1. The case when

ε “ ´1 follows in a same manner. Suppose that there exist ϑ P IrrpHq with IGpϑq “ K

and j P r0, 2s such that ϑj “ ϑ and ϑj`1 “ ϑj`2 “ ϑa
´1
. Then, ϑ extends to irreducible

characters of K. Let Θ P IrrpKq be an extension of ϑ. For the case j “ 0, set η “

pΘbΘa´1
bΘa´1

q|K1 , where K1 “ H1xt̄y. Since Θa´1
|H “ pΘ|Hq

a´1
“ ϑa

´1
, the character
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η is indeed an extension of ϑb ϑa
´1
b ϑa

´1
. Then

ηat “ ppΘbΘa´1
bΘa´1

q|K1q
at “ pΘbΘa´1

bΘa´1
qat|K1 “ pΘ

a´1
bΘbΘa´1

qt|K1

“ pΘbΘa´1
bΘa´1

q|K1 “ η.

Similarly, for j “ 1, we get ηat “ ηx and for j “ 2, we have ηat “ ηx
´1
. Therefore, by

Lemma 4.0.9, we obtain that at P IGpφq, where φ is the character induced from η.

Proposition 6.3.11. Let ϑi P IrrpHq, for i P r0, 2s, such that IHpϑ0 b ϑ1 b ϑ2q “ H1xt̄y.

Let Θi, η and φ be defined as in Observation 6.3.8 above. Then t P IGpφq if and only if there

exist ϑ P IrrpHq with IGpϑq “ K and j P r0, 2s such that ϑj “ ϑ, and ϑj`1 “ ϑj`2 with

IGpϑj`1q “ G.

Proof. Suppose that t P IGpφq. Then, by Lemma 4.0.9 and (6.11), ηt P tη, ηx, ηx
´1
u, or

equivalently, η P tηt
´1
, ηxt

´1
, ηx

´1t´1
u. By a similar computation as in Proposition 6.3.9 we

get t P IGpφq if and only if one of the following cases occur:

pΘ0 bΘ1 bΘ2q|K1 “

$

’

’

’

’

’

&

’

’

’

’

’

%

pΘa´1

0 bΘa
1 bΘ2q|K1 if η “ ηt

´1
, or,

pΘ0 bΘa´1

1 bΘa
2q|K1 if η “ ηxt

´1
, or,

pΘa
0 bΘ1 bΘa´1

2 q|K1 if η “ ηx
´1t´1

,

where K1 “ H1xt̄y. It is immediate that there exists j P r0, 2s such that IGpϑj`1q “

IGpϑj`2q “ G, and therefore, by Lemma 6.3.3, IGpϑjq “ K. Thanks to Corollary 5.3.12,

it follows that ϑj`1 and ϑj`2 are linear. We identify the characters ϑj`1, ϑj`2 with irre-

ducible characters of H{rH,Gs and the characters Θj`1, Θj`2 with irreducible characters

of K{rH,Gs. In view of Lemma 4.0.8, choose ℓ “ ph0, h1, h2qt̄
ε, where hi P H, i P r0, 2s

and ε P r0, 2szt0u, such that pΘ0 b Θ1 b Θ2qpℓq ‰ 0. We obtain that if η “ ηt
´1

then

IGpϑ0q “ IGpϑ1q “ G and, by Lemma 6.3.6, the following equality holds:

pΘ0 bΘ1 bΘ2qpℓq “ ηpℓq “ ηt
´1
pℓq “ pΘa´1

0 bΘa
1 bΘ2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqλ0pt

εqλ1pt
εq

“ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
´εϑ1pra, tsq

ε

where λ0, λ1 P IrrpK{Hq. Therefore, ϑ0 “ ϑ1. By following a similar computation, we get

that if η “ ηxt
´1

then ϑ1 “ ϑ2 with IGpϑ1q “ G, and if η “ ηx
´1t´1

then ϑ0 “ ϑ2 with

IGpϑ0q “ G . The converse follows by reversing the arguments above.
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6.3.2.2 Case 2: IHpϑ0 b ϑ1 b ϑ2q “ H1xxj t̄y for j P r0, 2s.

Observation 6.3.12. We fix an element j P r0, 2s. It follows from Lemma 6.3.4 that,

Hxati´jy ď IGpϑiq for all i P r0, 2s. Set

Mj “ Hxat´jy ˆHxat1´jy ˆHxat2´jy.

Let Θi denote an extension of ϑi to Hxati´jy. Then Θ0 b Θ1 b Θ2 is an extension of

the character ϑ0 b ϑ1 b ϑ2 from H1 to Mj . Since H1xxj t̄y “ ψ´1pMjq X H, we identify

H1xxj t̄y with a subgroup of Mj . Let η be the restriction of Θ0bΘ1bΘ2 to H1xxj t̄y. Then

η is an extension of ϑ0 b ϑ1 b ϑ2 from H1 to H1xxj t̄y (Theorem 4.0.3). Notice that the

character η does not extend towards H. Denote by φ P IrrpHq the character of H induced

from η. Observe further that H1xxj t̄y is normal in H. Moreover, H “ H1xxj t̄, t̄y and

H{H1xxj t̄y – C3 (cf. Corollary 6.1.3). By Clifford’s theorem the restriction of φ to H1xxj t̄y

has the following form

φ|H1xxj t̄y “ η ` ηt̄ ` ηt̄
´1
. (6.12)

Furthermore,

φp1q “ rH : H1xxj t̄ys ¨ ηp1q “ 3 ¨ pϑ0 b ϑ1 b ϑ2qp1q “ 3ϑ0p1qϑ1p1qϑ2p1q.

Proposition 6.3.13. Let j P r0, 2s and let ϑi P IrrpHq, for i P r0, 2s, such that the inertia

group IHpϑ0bϑ1bϑ2q of ϑ0bϑ1bϑ2 is H1xxj t̄y. Let φ be defined as in Observation 6.3.12.

Then none of the elements a, at, at´1 belongs to IGpφq.

Proof. Let ε P r0, 2s. By Theorem 4.0.3 and (6.12), we obtain

φ|H1 “ pφ|H1xxj t̄yq|H1 “ pη ‘ η
t̄ ‘ ηt̄

´1
q|H1 “

ÿ

δ P r0,2s

ϑt
δ

0 b ϑ
tδ

1 b ϑ
tδ

2 ,

where η is defined as in Observation 6.3.12. Now assume that atε P IGpφq, i.e., φ
atε “ φ,

for some ε P r0, 2s. This implies

ÿ

δ P r0,2s

ϑt
δ

0 b ϑ
tδ

1 b ϑ
tδ

2 “ φ|H1 “ φat
ε
|H1 “ pφ|H1q

atε “
ÿ

δ P r0,2s

ϑa
εtδ

2 b ϑa
´εtδ

0 b ϑt
ε`δ

1 .

An easy calculation yields that ϑ1 “ ϑa
´ε

0 “ ϑ2. This implies that IGpϑiq “ G for all

i P r0, 2s, since xIGpϑj1q Y IGpϑj2qy “ G for j1 ‰ j2, where j1, j2 P r0, 2s, which is a

contradiction to Lemma 6.3.4.

Proposition 6.3.14. Let j P r0, 2s and let ϑi P IrrpHq, for i P r0, 2s, such that the inertia

group IHpϑ0 b ϑ1 b ϑ2q of ϑ0 b ϑ1 b ϑ2 is H1xxj t̄y. Let Θi, η and φ be defined as in

Observation 6.3.12. Then t P IGpφq if and only if one of the following occurs:
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1. IGpϑjq “ Hxay and IGpϑj`1q “ IGpϑj`2q “ G with ϑj`2 “ ϑ´1
j`1;

2. ϑj “ 1H , hence IGpϑjq “ G, and moreover

(i) IGpϑj`1q “ Hxaty and IGpϑj`2q “ G, or,

(ii) IGpϑj`1q “ G and IGpϑj`2q “ Hxat´1y, or,

(iii) IGpϑj`1q “ Hxaty and IGpϑj`2q “ Hxat´1y.

Proof. We shall prove the statement for j “ 0, the other cases follow in the same way.

Assume that IGpϑ0bϑ1bϑ2q “ H1xx0t̄y. By Lemma 4.0.9 and (6.12), the element t P IGpφq if

and only if ηt P tη, ηt̄, ηt̄
´1
u. Since Hxay ď IGpΘ0q, Hxaty ď IGpΘ1q and Hxat

´1y ď IGpΘ2q

(cf. Observation 6.3.12), we get that t P IGpφq if and only if one of the following cases occur:

pΘ0 bΘt
1 bΘt

2q|H1xx0 t̄y “ pΘ
a
0 bΘa´1

1 bΘt
2q|H1xx0 t̄y “ pΘ0 bΘ1 bΘ2q

t|H1xx0 t̄y “ ηt

“

$

’

’

’

’

’

&

’

’

’

’

’

%

pΘ0 bΘ1 bΘ2q|H1xx0 t̄y if ηt “ η, or,

pΘt
0 bΘt

1 bΘt
2q|H1xx0 t̄y if ηt “ ηt̄, or,

pΘt´1

0 bΘt´1

1 bΘt´1

2 q|H1xx0 t̄y if ηt “ ηt̄
´1
.

We split the proof into three cases.

Case 1: Suppose that ηt “ η. It is then straightforward that IGpϑ1q “ G “ IGpϑ2q and

hence, by Lemma 6.3.4, IGpϑ0q “ Hxay. Thanks to Corollary 5.3.12, the characters ϑ1 and

ϑ2 are linear. We identify the characters ϑ1, ϑ2 with irreducible characters of H{rH,Gs and

the characters Θ1, Θ2 with the irreducible characters of Hxaty{rH,Gs and Hxat´1y{rH,Gs,

respectively. By Lemma 4.0.8, there exists ℓ “ ph0a
ε, h1patq

ε, h2pat
´1qεq for some hi P H,

i P r0, 2s and ε P r0, 2szt0u such that pΘ0 bΘ1 bΘ2qpℓq “ ηpℓq ‰ 0. From Lemma 6.3.7, we

obtain

pΘ0 bΘ1 bΘ2qpℓq “ ηpℓq “ ηtpℓq “ pΘ0 bΘt
1 bΘt

2qpℓq

“ pΘ0 bΘ1 bΘ2qpℓqλ1ppatq
εqλ2pat

´1qεq

“ pΘ0 bΘ1 bΘ2qpℓqϑ1pra, tsq
´εϑ2pra, tsq

´ε

where λ1 P IrrpHxaty{Hq and λ2 P IrrpHxat
´1y{Hq. Since ra, ts generates H modulo rH,Gs,

we obtain ϑ1 “ ϑ´1
2 .

Case 2: Suppose that ηt “ ηt̄. We have pΘ0bΘ1bΘ2q|H1xx0 t̄y “ pΘ
t
0bΘ1bΘ2q|H1xx0 t̄y,

implying that IGpϑ0q “ IGpΘ0q “ G, so that ϑ0 is linear and extends all the way to G.

Hence we conclude that ϑ0 “ 1H . Since IHpϑ0b ϑ1b ϑ2q “ Hxx0t̄y, the inertia group of ϑ1

and ϑ2 can take any of the following values:
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(i) IGpϑ1q “ Hxaty and IGpϑ2q “ G, or,

(ii) IGpϑ1q “ G and IGpϑ2q “ Hxat´1y, or,

(iii) IGpϑ1q “ Hxaty and IGpϑ2q “ Hxat´1y,

and all of the above cases are legitimate by Lemma 6.3.4.

Case 3: Suppose that ηt “ ηt̄
´1
. We have

pΘ0 bΘ1 bΘ2q|H1xx0 t̄y “ pΘ
t´1

0 bΘt
1 bΘt

2q|H1xx0 t̄y.

This implies IGpϑiq “ IGpΘiq “ G for all i P r0, 2s. This is a contradiction to Lemma 6.3.4,

hence this case does not occur.

By reversing the above arguments we get the converse, completing the proof.

6.3.2.3 Case 3: IGpϑ0 b ϑ1 b ϑ2q “ H1.

Observation 6.3.15. Denote by φ the character of H induced from ϑ0 b ϑ1 b ϑ2. Then

by Theorem 4.0.5, φ is irreducible, and hence by Clifford’s theorem

φ|H1 “
ÿ

i,jPr0,2s

pϑ0 b ϑ1 b ϑ2q
xi t̄j ,

since H “ H1xx, t̄y (Corollary 6.1.3). Furthermore,

φp1q “ rH : H1s ¨ pϑ0 b ϑ1 b ϑ2qp1q “ 32ϑ0p1qϑ1p1qϑ2p1q.

Also observe from Lemma 4.0.9 that, for each g P G, we have g P IGpφq if and only if

pϑ0 b ϑ1 b ϑ2q
g P tpϑ0 b ϑ1 b ϑ2q

xi t̄j | i, j P r0, 2su, where

xit̄j “ pt´1a, a, atqipt, t, tqj ”H1 pa
it´i`j , aitj , aiti`jq. (6.13)

Proposition 6.3.16. Let ϑ0, ϑ1, ϑ2 P IrrpHq such that IGpϑ0 b ϑ1 b ϑ2q “ H1. Let φ be

defined as in Observation 6.3.15 above. Then none of the elements at, at´1 belongs to the

inertia group IGpφq.

Proof. Suppose to the contrary that at P IGpφq. By (6.13), there exist i, j P r0, 2s such that

ϑa2 b ϑ
a´1

0 b ϑt1 “ pϑ0 b ϑ1 b ϑ2q
at “ ϑa

it´i`j

0 b ϑa
itj

1 b ϑa
iti`j

2 .

An easy calculation shows that ϑ0 “ ϑt0, ϑ1 “ ϑa
´1´i

0 and ϑ2 “ ϑa
´1`i

0 , whenceHxty ď IGpϑiq

for all i P r0, 2s. This is a contradiction to Lemma 6.3.5. Analogously, one sees that

at´1 R IGpφq.
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Proposition 6.3.17. Let ϑ0, ϑ1, ϑ2 P IrrpHq such that IGpϑ0 b ϑ1 b ϑ2q “ H1. Let φ be

defined as in Observation 6.3.15 above. Then a P IGpφq if and only if there exist ϑ P IrrpHq

and i, j P r0, 2s such that IGpϑq P tH,Hxay, Hxaty, Hxat
´1yu and ϑ0 “ ϑ, ϑ1 “ ϑa

´it´j
and

ϑ2 “ ϑa
it´i`j

.

Proof. By Lemma 4.0.9 and (6.13), the element a P IGpφq if and only if there exist i, j P r0, 2s

such that

ϑ2 b ϑ0 b ϑ1 “ pϑ0 b ϑ1 b ϑ2q
a “ ϑa

it´i`j

0 b ϑa
itj

1 b ϑa
iti`j

2 . (6.14)

Now set ϑ “ ϑ0. Then (6.14) holds if and only if ϑ1 “ ϑa
´it´j

and ϑ2 “ ϑa
it´i`j

, implying

that IGpϑiq “ IGpϑq for all i P r0, 2s. Therefore, by Lemma 6.3.5, IGpϑq R tG,Hxtyu. There-

fore, by Lemma 6.3.5, IGpϑq can take any values from the set tH,Hxay, Hxaty, Hxat´1yu.

The following table indicates the possible choices of ϑ1 and ϑ2 depending on the values

of i and j: in each box the first and second entries represent ϑ1 and ϑ2, respectively.

i

j
0 1 2

0
ϑ ϑt

´1
ϑt

ϑ ϑt ϑt
´1

1
ϑa

´1
ϑa

´1t´1
ϑa

´1t

ϑat
´1

ϑa ϑat

2
ϑa ϑat

´1
ϑat

ϑa
´1t ϑa

´1t´1
ϑa

´1

Table 6.1: Values of ϑ1 and ϑ2.

Now, to prove the converse, suppose that ϑ P IrrpHq with IGpϑq P tH,Hxay, Hxaty, Hxat
´1yu.

Set ϑ0 “ ϑ, and, for a fixed pi, jq P r0, 2sˆr0, 2s, set ϑ1 and ϑ2 as the first and second entries

from the ith row and jth column of Table 6.1. An easy computation yields that

pϑ0 b ϑ1 b ϑ2q
a “ pϑ0 b ϑ1 b ϑ2q

xi t̄j ,

which completes the proof.

Proposition 6.3.18. Let ϑ0, ϑ1, ϑ2 P IrrpHq such that IGpϑ0 b ϑ1 b ϑ2q “ H1. Let φ be

defined as in Observation 6.3.15 above. Then t P IGpφq if and only if there exist ϑ0, ϑ1, ϑ2 P
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IrrpHq and i, j P r0, 2s such that ϑa
´1`it´i`j

0 “ ϑ0, ϑ
a1`itj
1 “ ϑ1 and ϑa

it´1`i`j

2 “ ϑ2 with the

inertia groups given by:

1. if pi, jq P tp0, 0q, p1, 0q, p2, 2qu

(i) IGpϑiq “ Hxay, IGpϑi`1q “ Hxay, IGpϑi`2q “ Hxty, or,

(ii) IGpϑiq “ Hxay, IGpϑi`1q “ Hxay, IGpϑi`2q “ G, or,

(iii) IGpϑiq “ Hxay, IGpϑi`1q “ G, IGpϑi`2q “ Hxty, or,

(iv) IGpϑiq “ G, IGpϑi`1q “ Hxay, IGpϑi`2q “ Hxty.

2. if pi, jq P tp0, 2q, p1, 2q, p2, 1qu

(i) IGpϑiq “ Hxaty, IGpϑi`1q “ Hxat´1y, IGpϑi`2q “ Hxty, or,

(ii) IGpϑiq “ Hxaty, IGpϑi`1q “ G, IGpϑi`2q “ Hxty, or,

(iii) IGpϑiq “ G, IGpϑi`1q “ Hxat´1y, IGpϑi`2q “ Hxty.

3. if pi, jq P tp0, 1q, p1, 1q, p2, 0qu

(i) IGpϑiq “ Hxat´1y, IGpϑi`1q “ Hxaty, IGpϑi`2q P tH,Hxay, Hxaty, Hxat
´1y, Hxty, Gu,

or,

(ii) IGpϑiq “ G, IGpϑi`1q “ Hxaty, IGpϑi`2q P tH,Hxay, Hxaty, Hxtyu, or,

(iii) IGpϑiq “ Hxat´1y, IGpϑi`1q “ G, IGpϑi`2q P tH,Hxay, Hxat
´1y, Hxtyu, or,

(iv) IGpϑiq “ G, IGpϑi`1q “ G, IGpϑi`2q “ H.

Proof. By Lemma 4.0.9 and (6.13), the element t belongs to IGpφq if and only if there exist

i, j P r0, 2s such that

ϑa0 b ϑ
a´1

1 b ϑt2 “ pϑ0 b ϑ1 b ϑ2q
t “ ϑa

it´i`j

0 b ϑa
itj

1 b ϑa
iti`j

2 . (6.15)

The equality (6.15) holds if and only if ϑa
´1`it´i`j

0 “ ϑ0, ϑ
a1`itj
1 “ ϑ1 and ϑa

it´1`i`j

2 “ ϑ2.

Observe that the Table 6.2 encodes the information about ϑ0, ϑ1 and ϑ2 based on the values

of i and j.

Now, suppose that pi, jq P tp0, 0q, p1, 0q, p2, 2qu. Then, observe thatHxay ď IGpϑiq, Hxay ď

IGpϑi`1q and Hxty ď IGpϑi`2q. Therefore, the permitted cases of inertia groups IGpϑiq such

that IGpϑ0 b ϑ1 b ϑ2q “ H1 are the following;

(i) IGpϑiq “ Hxay, IGpϑi`1q “ Hxay, IGpϑi`2q “ Hxty, or,

(ii) IGpϑiq “ Hxay, IGpϑi`1q “ Hxay, IGpϑi`2q “ G, or,
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i

j
0 1 2

0

ϑ0 “ ϑa
´1

0 ϑ0 “ ϑa
´1t

0 ϑ0 “ ϑa
´1t´1

0

ϑ1 “ ϑa1 ϑ1 “ ϑat1 ϑ1 “ ϑat
´1

1

ϑ2 “ ϑt
´1

2 ϑ2 “ ϑ2 ϑ2 “ ϑt2

1

ϑ0 “ ϑt
´1

0 ϑ0 “ ϑ0 ϑ0 “ ϑt0

ϑ1 “ ϑa
´1

1 ϑ1 “ ϑa
´1t

1 ϑ1 “ ϑa
´1t´1

1

ϑ2 “ ϑa2 ϑ2 “ ϑat2 ϑ2 “ ϑat
´1

2

2

ϑ0 “ ϑat0 ϑ0 “ ϑat
´1

0 ϑ0 “ ϑa0

ϑ1 “ ϑ1 ϑ1 “ ϑt1 ϑ1 “ ϑt
´1

1

ϑ2 “ ϑa
´1t

2 ϑ2 “ ϑa
´1t´1

2 ϑ2 “ ϑa
´1

2

Table 6.2: Values of ϑ0, ϑ1, ϑ2.

(iii) IGpϑiq “ Hxay, IGpϑi`1q “ G, IGpϑi`2q “ Hxty, or,

(iv) IGpϑiq “ G, IGpϑi`1q “ Hxay, IGpϑi`2q “ Hxty.

Observe from Lemma 6.3.5 that all of the above cases are legitimate and that this is the list

of all possible cases. Analogously, from Lemma 6.3.5 we obtain the possible cases of inertia

groups for the case pi, jq P tp0, 2q, p1, 2q, p2, 1qu and pi, jq P tp0, 1q, p1, 1q, p2, 0qu.

Now, fix pi, jq P r0, 2s ˆ r0, 2s. Set ϑ0, ϑ1 and ϑ2 as given in the ith row and jth column

of Table 6.2. Further, choose the inertia groups of ϑ0, ϑ1 and ϑ2 from the corresponding

list. Then it is easy to see that

pϑ0 b ϑ1 b ϑ2q
t “ pϑ0 b ϑ1 b ϑ2q

xi t̄j ,

which completes the proof.

6.3.2.4 Case 4: IHpϑ0 b ϑ1 b ϑ2q “ H.

Observation 6.3.19. By Lemma 6.3.2 it follows that IGpϑiq “ G for all i P r0, 2s. Thanks

to Corollary 5.3.12, the characters ϑi are linear for all i P r0, 2s. We consider the following

four cases;

(i) The characters ϑi extend to irreducible characters of G for all i P r0, 2s.
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(ii) There exist i, j P r0, 2s with i ‰ j such that ϑi and ϑj extend to irreducible characters

of G, while ϑk does not extend for k P r0, 2szti, ju.

(iii) There exists exactly one i P r0, 2s such that ϑi extends to irreducible characters of G.

(iv) None of the characters ϑi extend to irreducible characters of G.

Observe that in each of the above cases the characters ϑi extend to irreducible characters

of K “ Hxty. Let Θi P IrrpKq be an extension of ϑi. Observe that Θi is linear and hence

a homomorphism from K to Cˆ. We set K1 “ H1xt̄y and η “ pΘ0 bΘ1 bΘ2q|K1 . Then η

is an extension of ϑ0 b ϑ1 b ϑ2 to K1; cf. Observation 6.3.8. In the sequel, we identify the

characters ϑi with irreducible characters of H{rH,Gs and Θi with irreducible characters of

K{rH,Gs.

Proposition 6.3.20. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that ϑi extends to irreducible characters of G for all i P r0, 2s. Then the character ϑ0bϑ1bϑ2

extends to irreducible characters of H. Furthermore, if φ P IrrpHq is an extension of

ϑ0 b ϑ1 b ϑ2 then IGpφq “ G if and only if φ|K1 “ 1K1, otherwise IGpφq “ K.

Proof. Observe first from Lemma 6.3.6 that ϑi “ 1H for all i P r0, 2s. Therefore, the

character

ϑ0 b ϑ1 b ϑ2 “ 1H b 1H b 1H “ 1H1 ,

and it admits an extension towards H as rH,Hs ď H1 “ kerp1H1q; cf. Theorem 2.4.25.

Let φ P IrrpHq be an extension of 1H1 . We identify φ with an irreducible character of

H{H1. Since H “ H1xx, t̄y (Corollary 6.1.3), the character φ is G-invariant if and only if

φgpxq “ φpxq and φgpt̄q “ φpt̄q for g P ta, tu. Observe that t̄a “ t̄, t̄t ”H1 t̄, x
t ”H1 x and

xa
´1
“ xrx, a´1s “ xpt´1a, a, atq´1pt´1a, a, atqa

´1
“ xpa´1t, a´1, t´1a´1qpa, at, t´1aq ”H1 xt̄.

It is then immediate that φtpxq “ φpxq and φtpt̄q “ φpt̄q, whence t P IGpφq. Also, a P IGpφq

if and only if

φpxq “ φapxq “ φpxa
´1
q “ φpxt̄q “ φpxqφpt̄q “ φpxqφ|K1pt̄q,

where the last but one equality follows because φ is linear. Hence, IGpφq “ G if and only if

φ|K1 “ 1K1 .

Corollary 6.3.21. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0bϑ1bϑ2q “ H. Suppose that,

for all i P r0, 2s, the character ϑi extends to irreducible characters of G. Then the character

ϑ0 b ϑ1 b ϑ2 is the trivial character of H1 and it extends to irreducible characters of H. In
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this way, we get 3 linear characters of H that are G-invariant and 6 linear characters that

are K-invariant.

Proposition 6.3.22. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that there exist i, j P r0, 2s with i ‰ j such that ϑi and ϑj extend to irreducible characters

of G and ϑk does not admit an extension towards G for k P r0, 2szti, ju. Then the character

ϑ0 b ϑ1 b ϑ2 admits an extension towards K1. Let η be an extension of ϑ0 b ϑ1 b ϑ2

towards K1. Then IHpηq “ K1 and η does not extend to irreducible characters of H. Denote

by φ P IrrpHq the character induced from η. Then IGpφq “ K and φ|H1 “ 3pϑ0 b ϑ1 b ϑ2q.

Proof. Observe from Lemma 6.3.6 that ϑi “ ϑj “ 1H . Since IGpϑi1q “ G for i1 P r0, 2s, the

characters ϑi1 extend to irreducible characters of K. Set Θi1 and η as defined in Observa-

tion 6.3.19. Since ϑi and ϑj extend to irreducible characters of G and ϑk does not admit

an extension towards G, we get IGpΘiq “ G “ IGpΘjq and IGpΘkq “ K. Therefore, from

Lemma 6.3.6, we get that Θa
k “ Θkλ, where 1 ‰ λ P IrrpK{Hq. This implies

ηx “ ppΘ0 bΘ1 bΘ2q|K1q
x “ pΘ0 bΘ1 bΘ2q

x|K1 “ pΘ
a
0 bΘa

1 bΘa
2q|K1 ‰ η.

Therefore IHpηq “ K1 and η does not admit an extension towards H. Denote by φ P IrrpHq

the character induced from of η. Then

φp1q “ ηHp1q “ rH : K1s ¨ ηp1q “ 3pϑ0 b ϑ1 b ϑ2qp1q “ 3ϑ0p1qϑ1p1qϑ2p1q “ 3,

where the last equality follows because ϑ0, ϑ1 and ϑ2 are linear by Corollary 5.3.12. We

claim that t P IGpφq. Then a R IGpφq, since φ is non-linear; cf. Corollary 5.3.12. This

proves the result. It remains to prove that t P IGpφq. By Lemma 4.0.9, this happens if and

only if ηt P tη, ηx, ηx
´1
u. We split the proof into three cases.

Case 1: Let ti, ju “ t0, 1u. Then IGpΘ0q “ G “ IGpΘ1q and IGpΘ2q “ K. We get

ηt “ ppΘ0 bΘ1 bΘ2q|K1q
t “ pΘa

0 bΘa´1

1 bΘt
2q|K1 “ pΘ0 bΘ1 bΘ2q|K1 “ η.

Case 2: Let ti, ju “ t0, 2u. Then IGpΘ0q “ G “ IGpΘ2q and IGpΘ1q “ K.

ηt “ ppΘ0 bΘ1 bΘ2q|K1q
t “ pΘa

0 bΘa´1

1 bΘt
2q|K1 “ pΘ0 bΘa´1

1 bΘ2q|K1

“ pΘa´1

0 bΘa´1

1 bΘa´1

2 q|K1 “ ppΘ0 bΘ1 bΘ2q|K1q
x´1

“ ηx
´1
.

Case 3: Let ti, ju “ t1, 2u. Then IGpΘ1q “ G “ IGpΘ2q and IGpΘ0q “ K.

ηt “ ppΘ0 bΘ1 bΘ2q|K1q
t “ pΘa

0 bΘa´1

1 bΘt
2q|K1 “ pΘ

a
0 bΘ1 bΘ2q|K1

“ pΘa
0 bΘa

1 bΘa
2q|K1 “ ppΘ0 bΘ1 bΘ2q|K1q

x “ ηx.
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Finally,

φ|H1 “ pφ|K1q|H1 “ η|H1 ` η
x|H1 ` η

x´1
|H1 “ 3pϑ0 b ϑ1 b ϑ2q.

Corollary 6.3.23. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that there exist i, j P r0, 2s with i ‰ j such that ϑi and ϑj extend to irreducible characters

of G and ϑk does not admit an extension towards G for k P r0, 2szti, ju. Then ϑi “ ϑj “ 1H

and ϑk is a non-trivial character. In this way, every choice of ti, ju and ϑk yields a unique

φ P IrrpHq of degree 3, such that xφ|H1 , ϑ0 b ϑ1 b ϑ2yH1 ‰ 0 with IGpφq “ K. In total, we

get 6 irreducible characters of H of the described form.

Proof. For a fixed pair ti, ju, we have ϑi “ ϑj “ 1H . Furthermore, ϑk is a non-trivial

linear character. If otherwise ϑk is linear, by Lemma 6.3.6, ϑk extends towards G. Since

H{rH,Gs – C3 (Theorem 2.4.19(iii)), there are two possible choices for ϑk and each of

these choices is legitimate. Therefore, for a fixed pair ti, ju we get 2 irreducible characters

φ of the described form. Now, since there are three different ways to fix an unordered

pair ti, ju, in total, we obtain 6 irreducible characters of H of the described form. As

φ|H1 “ 3pϑ0 b ϑ1 b ϑ2q determines ϑ0 b ϑ1 b ϑ2 uniquely, there are no overlaps.

Lemma 6.3.24. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose that

there exists exactly one i P r0, 2s such that ϑi extends to irreducible characters of G. Then

ϑ0bϑ1bϑ2 admits an extension towards K1. Let η P IrrpK1q be an extension of ϑ0bϑ1bϑ2.

Then η is H invariant if and only if ϑj ‰ ϑj1 for j, j
1 P r0, 2sztiu with j ‰ j1.

Proof. Since IGpϑi1q “ G for all i1 P r0, 2s, the characters ϑi1 admit extensions to irreducible

characters of K. Set Θi1 and η as defined in Observation 6.3.19. From Lemma 6.3.6, we get

ϑi “ 1H and IGpΘiq “ G. Write r0, 2sztiu “ tj, j1u. Then IGpΘjq “ K “ IGpΘj1q. There-

fore, again from Lemma 6.3.6 it follows that there exist non-trivial λj , λj1 P IrrpK{Hqzt1u

such that Θa
j “ Θjλj and Θa

j1 “ Θj1λj1 . Since ϑ0bϑ1bϑ2 and hence Θ0bΘ1bΘ2 are linear,

Θ0bΘ1bΘ2pℓq ‰ 0 for all ℓ P K1. Let ℓ “ ph0t
ε, h1t

ε, h2t
εq P K1, where h0, h1, h2 P H and

ε P r0, 2szt0u. We consider the case when j “ 1 and j1 “ 2; the other cases are dealt with

similarly. Then,

pηx ´ ηqpℓq “ pΘa
0 bΘa

1 bΘa
2 ´Θ0 bΘ1 bΘ2qpℓq “ pΘ0 bΘ1λ1 bΘ2λ2 ´Θ0 bΘ1 bΘ2qpℓq

“ pΘ0 bΘ1 bΘ2qpℓqpλ1pt
εqλ2pt

εq ´ 1q.

Hence η is H invariant if and only if λ1λ2 “ 1. From Lemma 6.3.6, we obtain

λ1pt
εqλ2pt

εq “ ϑ1pra, tsq
εϑ2pra, tsq

ε.

Since ϑ1, ϑ2 P IrrpH{rH,Gsqzt1Hu, the equality λ1λ2 “ 1 holds if and only if ϑ1 ‰ ϑ2.
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Proposition 6.3.25. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that there exists exactly one i P r0, 2s such that ϑi extends towards G and ϑj ‰ ϑj1 for

j, j1 P r0, 2sztiu with j ‰ j1. Then the character ϑ0bϑ1bϑ2 extends to irreducible characters

of H. Let φ P IrrpHq be an extension of ϑ0 b ϑ1 b ϑ2. Then IGpφq “ H.

Proof. Notice first from Lemma 6.3.6 that ϑi “ 1H . Set Θi1 and η as in Observation 6.3.19,

where i1 P r0, 2s. It follows directly from Lemma 6.3.24 that η is H invariant and η extends

to irreducible characters of H. We prove that the set ta, t, at, at´1u does not intersect the

inertia group IGpφq. This implies IGpφq “ H; cf. Figure 6.1.

Assume to the contrary that atε P IGpφq for some ε P r0, 2s. Since IGpϑi1q “ G for all

i1 P r0, 2s, we have

pΘ0 bΘ1 bΘ2q|K1 “ η “ ηat
ε
“ pΘaε

2 bΘa´ε

0 bΘtε

1 q|K1 “ pΘ
aε

2 bΘa´ε

0 bΘ1q|K1 ,

implying that ϑ0 “ ϑ1 “ ϑ2, which is a contradiction. Thus atε R IGpφq.

It remains to show that t R IGpφq. Assume to the contrary that φt “ φ. Since φ is an

extension of η, we get

η “ φ|K1 “ φt|K1 “ pφ|K1q
t “ ηt,

which implies that ηt “ η. Therefore, it suffices to show that ηt ‰ η. Since ϑ0bϑ1bϑ2 and

hence Θ0bΘ1bΘ2 are linear, Θ0bΘ1bΘ2pℓq ‰ 0 for all ℓ P K1. Let ℓ “ ph0t
ε, h1t

ε, h2t
εq P

K1, where h0, h1, h2 P H and ε P r0, 2szt0u. We split the proof into three cases.

Case 1: Let i “ 0. Then IGpΘ0q “ G and IGpΘ1q “ K “ IGpΘ2q. Thanks to

Lemma 6.3.6, we obtain

ηtpℓq “ pΘa
0 bΘa´1

1 bΘt
2qpℓq “ pΘ0 bΘa´1

1 bΘ2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqϑ1pra, tsq
´ε.

Then ηt “ η if and only if ϑ1pra, tsq
´ε “ 1, which implies ϑ1 “ 1H and ϑ1 extends towards G.

This is a contradiction to the choice of ϑ1.

Case 2: Let i “ 1. Then IGpΘ1q “ G and IGpΘ0q “ K “ IGpΘ2q. We get

ηtpℓq “ pΘa
0 bΘa´1

1 bΘt
2qpℓq “ pΘ

a
0 bΘ1 bΘ2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq

ε.

Then ηt “ η if and only if ϑ0pra, tsq
ε “ 1, which implies ϑ1 “ 1H and ϑ1 extends towards G.

This is a contradiction to the choice of ϑ0.

Case 3: Let i “ 2. Then IGpΘ2q “ G and IGpΘ0q “ K “ IGpΘ1q. Thus

ηtpℓq “ pΘa
0 bΘa´1

1 bΘt
2qpℓq “ pΘ

a
0 bΘa´1

1 bΘ2qpℓq

“ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
εϑ1pra, tsq

´ε,
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which is not equal to η, since ϑ0pra, tsq ‰ ϑ1pra, tsq.

From above three cases we conclude that t R IGpφq. Therefore, IGpφq “ H.

Corollary 6.3.26. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that there exists exactly one i P r0, 2s such that ϑi extends towards G and ϑj ‰ ϑj1 for

j, j1 P r0, 2sztiu with j ‰ j1. Every choice of i P r0, 2s, and of a distinct pair of non-trivial

G-invariant characters ϑj , ϑj1 yields 32 linear characters of H with inertia group H. In

total, we get 54 linear characters of H with inertia group H in this way.

Proof. For every choice of i P r0, 2s and of a pair of distinct non-trivial linear characters

ϑj , ϑj1 as described above, the character ϑ0bϑ1bϑ2 extends to irreducible characters of H.

So we get 32 linear characters of H, since rH : H1s “ 32; cf. Figure 6.1. Now, notice that

ϑi “ 1H . Since ϑj ‰ ϑj1 , there are exactly two possible choices selecting such a pair. Since i

can be chosen in three different ways, we get a total of 54 linear characters φ of H with

inertia group H. As φ|H1 “ ϑ0 b ϑ1 b ϑ2 there can be no overlap.

Proposition 6.3.27. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that there exists exactly one i P r0, 2s such that ϑi extends towards G and ϑj “ ϑj1 for

j, j1 P r0, 2sztiu. Then the character ϑ0bϑ1bϑ2 extends to irreducible characters of K1. If

η P IrrpK1q denotes an extension of ϑ0 b ϑ1 b ϑ2 then IHpηq “ K1. Let φ be the irreducible

character of H induced from η. Then IGpφq “ K.

Proof. It is clear from Lemma 6.3.24, that η is not H invariant and η does not admit an

extension towards H. Denote by φ P IrrpHq the character induced from η. Then

φp1q “ ηHp1q “ rH : K1s ¨ ηp1q “ 3pϑ0 b ϑ1 b ϑ2qp1q “ 3ϑ0p1qϑ1p1qϑ2p1q “ 3,

where the last equality follows because ϑ0, ϑ1 and ϑ2 are linear. We claim that t P IGpφq.

Then IGpφq P tK,Gu. Since φ is not linear, IGpφq ‰ G by Corollary 5.3.12. Therefore,

IGpφq “ K.

Now, we shall prove that t P IGpφq. From Lemma 4.0.9, t P IGpφq if and only if

ηt P tη, ηx, ηx
´1
u. Set Θi1 as defined in Observation 6.3.19 for all i1 P r0, 2s. Notice that

IGpΘiq “ G and ϑi “ 1H , and IGpΘjq “ K “ IGpΘj1q. Observe further that, since

ϑ0bϑ1bϑ2 is linear, Θ0bΘ1bΘ2 is linear, and hence Θ0bΘ1bΘ2pℓq ‰ 0 for all ℓ P K1.

Let ℓ “ ph0t
ε, h1t

ε, h2t
εq P K1, where h0, h1, h2 P H and ε P r0, 2szt0u. We split the proof

into three cases.
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Case 1: ϑ0 extends towards G and ϑ1 “ ϑ2. By Lemma 6.3.6, we obtain

ηtpℓq “ pΘa
0 bΘa´1

1 bΘt
2qpℓq “ pΘ0 bΘa´1

1 bΘ2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqϑ1pra, tsq
´ε

“ pΘ0 bΘ1 bΘ2qpℓqϑ1pra, tsq
εϑ2pra, tsq

ε “ pΘ0 bΘa
1 bΘa

2qpℓq “ ηxpℓq.

Case 2: ϑ1 extends towards G and ϑ0 “ ϑ2:

ηtpℓq “ pΘa
0 bΘa´1

1 bΘt
2qpℓq “ pΘ

a
0 bΘ1 bΘ2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq

ε

“ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
´εϑ2pra, tsq

´ε “ pΘa´1

0 bΘ1 bΘa´1

2 qpℓq “ ηx
´1
pℓq.

Case 3: ϑ2 extends towards G and ϑ0 “ ϑ1:

ηtpℓq “ pΘa
0 bΘa´1

1 bΘt
2qpℓq “ pΘ

a
0 bΘa´1

1 bΘ2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
εϑ1pra, tsq

´ε

“ pΘ0 bΘ1 bΘ2qpℓq “ ηpℓq.

Hence, we conclude that IGpφq “ K.

Corollary 6.3.28. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that there exists exactly one i P r0, 2s such that ϑi extends towards G and ϑj “ ϑj1 for

j, j1 P r0, 2sztiu. In this way, every i P r0, 2s, and every choice of ϑj “ ϑj1 yields a unique

irreducible character φ P IrrpHq such that xφ|H1 , ϑ0bϑ1bϑ2y ‰ 0, and φ satisfies φp1q “ 3

and IGpφq “ K. In total, we get 6 irreducible characters φ of H of such a form.

Proof. First observe from Proposition 6.3.27 that for any fixed i P r0, 2s with ϑi “ 1H and

non-trivial G-invariant character ϑj1 “ ϑj , where tj, j
1u “ r0, 2sztiu, we obtain a unique

character φ P IrrpHq of the described form. We identify ϑj with a non-trivial character of

H{rH,Gs. There are two different choices for ϑj and three different choices for i. Hence we

get a total of 6 irreducible characters of H of the described form. As φ|H1 “ 3pϑ0bϑ1bϑ2q

determines ϑ0 b ϑ1 b ϑ2 uniquely, there are no overlaps.

Lemma 6.3.29. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose that

none of the characters ϑi extends towards G for i P r0, 2s. The character ϑ0bϑ1bϑ2 extends

to irreducible characters of K1. Let η P IrrpK1q be an extension of ϑ0 b ϑ1 b ϑ2. Then η is

H-invariant if and only if ϑ0 “ ϑ1 “ ϑ2.

Proof. Let Θi and η be defined as in Observation 6.3.19. Since ϑ0 b ϑ1 b ϑ2 and hence

Θ0bΘ1bΘ2 are linear, Θ0bΘ1bΘ2pℓq ‰ 0 for all ℓ P K1. Let ℓ “ ph0t
ε, h1t

ε, h2t
εq P K1,

where h0, h1, h2 P H and ε P r0, 2szt0u. From Lemma 6.3.6, we get:

ηxpℓq “ pΘa
0 bΘa

1 bΘa
2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq

εϑ1pra, tsq
εϑ2pra, tsq

ε.
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Therefore η is H-invariant if and only if

ϑ0pra, tsq
εϑ1pra, tsq

εϑ2pra, tsq
ε “ 1. (6.16)

Since there are only two possible choices for each ϑi P IrrpH{rH,Gsqzt1Hu, the equality

(6.16) holds if and only if ϑ0 “ ϑ1 “ ϑ2.

Proposition 6.3.30. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that none of the characters ϑi extends towards G for i P r0, 2s. Assume further that ϑ0 “

ϑ1 “ ϑ2. Then the character ϑ0 b ϑ1 b ϑ2 extends to irreducible characters of H. Let

φ P IrrpHq be an extension of ϑ0 b ϑ1 b ϑ2. Then IGpφq “ Hxatεy if and only if φ|K1pt̄q “

ϑ0pra, tsq
´ε for ε P r0, 2s.

Proof. Set Θi and η as defined in Observation 6.3.19. It is straightforward from Lemma 6.3.29

that η extends to irreducible characters of H. Let φ be an extension of η. Recall that φ

is linear, and hence φpℓq ‰ 0 for all ℓ P H. First we prove that t R IGpφq. Indeed, since

ϑ0 “ ϑ1 “ ϑ2 and rH,Gs “ K1 (Proposition 6.1.2), we get:

φtpxq “ φpxt
´1
q “ φpxrx, t´1sq “ φpxqηprx, t´1sq “ φpxqpΘ0 bΘ1 bΘ2qprx, t

´1sq

“ φpxqΘ0prt
´1a, a´1sqΘ1pra, asqΘ2prat, t

´1sq “ φpxqΘ0prt
´1, a´1sqΘ2pra, t

´1sq

“ φpxqϑ0pra, tsq
´1ϑ2pra, tsq

´1 ‰ φpxq.

Now, let ε P r0, 2s. Note that the character η is linear and recall that ϑ0 “ ϑ1 “ ϑ2 P

IrrpH{rH,Gsqzt1Hu, thus we obtain

φat
ε
pxq “ φpxt

´εa´1
q “ φpxrx, t´εa´1sq “ φpxqηprx, t´εa´1sq “ φpxqηprx, a´1sqηprx, t´εsq

“ φpxqpΘ0 bΘ1 bΘ2qptrt, as, t, trt
´1, asqpΘ0 bΘ1 bΘ2qprt

´1a, a´εs, 1, rat, t´εsq

“ φpxqηpt̄qϑ0prt, asqϑ2prt
´1, asqϑ0prt

´1a, a´εsqϑ2prat, t
´εsq

“ φpxqηpt̄qϑ0pra, tsq
´1ϑ2pra, tsqϑ0pra, tsq

´εϑ2pra, tsq
´ε

“ φpxqηpt̄qϑ0pra, tsq
´2ε “ φpxqηpt̄qϑ0pra, tsq

ε.

Therefore φ is atε invariant if any only if ϑ0pra, tsq
´ε “ ηpt̄q.

Corollary 6.3.31. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0bϑ1bϑ2q “ H. Suppose that

none of the ϑi extends towards G for i P r0, 2s. Assume further that ϑ0 “ ϑ1 “ ϑ2 “: ϑ. In

this way, for a given ϑ and for every ε P r0, 2s, we get 3 linear characters φ of H, extending

ϑ0bϑ1bϑ2, of inertia group Hxatεy. In total, for every ε P r0, 2s, we get 6 linear characters

of H of inertia group Hxatϵy.
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Proof. Set ϑ :“ ϑ0 “ ϑ1 “ ϑ2. Then there are two possible choices for a non-trivial character

ϑ P IrrpH{rH,Gsq. Fix a value of ϑ. Then ϑ b ϑ b ϑ extends to irreducible characters of

K1. Let η P IrrpK1q be an extension of ϑ b ϑ b ϑ. Then the extensions of ϑ b ϑ b ϑ to

K1 are precisely of the form η, ηλ, ηλ´1 for some λ P IrrpK1{H1qzt1K1u. Every character

of type ηλδ, δ P r0, 2s, extends to irreducible characters of H and gives rise to 3 linear

characters with inertia group Hxatεy, where the value of ε is uniquely determined by the

value of ηλδpt̄q. Since there are two possible choices for the value of ϑ and both of the values

are legitimate, for every ε P r0, 2s, we get 6 linear characters of H of inertia group Hxatεy.

There is no overlap, as φ|H1 “ ϑ0 b ϑ1 b ϑ2.

Proposition 6.3.32. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that none of the ϑi extends towards G for i P r0, 2s. Suppose further that there exist i, j P

r0, 2s such that ϑi ‰ ϑj. The character ϑ0bϑ1bϑ2 extends to irreducible characters of K1.

Let η P IrrpK1q be an extension of ϑ0 b ϑ1 b ϑ2. Then η does not extend further to G.

Denote by φ P IrrpHq the character induced from η. Then IGpφq “ K.

Proof. It follows from Lemma 6.3.29 that η is not H-invariant and hence η does not extend

further. Denote by φ P IrrpHq the character induced from η. Then φ is a character of

degree 3. We claim that t P IGpφq. Then atε R IGpφq for any ε P r0, 2s. If otherwise,

suppose that atε P IGpφq, then IGpφq “ G, and this is a contradiction to Corollary 5.3.12,

since φ is non-linear. Then IGpφq “ K.

It remains to show that t P IGpφq. By Lemma 4.0.9, this happens if and only if ηt P

tη, ηx, ηx
´1
u. Now notice that, since ϑ0, ϑ1, ϑ2 P IrrpH{rH,Gsqzt1Hu and ϑi ‰ ϑj for i, j P

r0, 2s, we must have that ϑk “ ϑi or ϑk “ ϑj for k P r0, 2szti, ju. Set Θ1
i defined as in

Observation 6.3.19, where i1 P r0, 2s. Observe that, since ϑ0bϑ1bϑ2 is linear, Θ0bΘ1bΘ2

is linear, and hence Θ0 b Θ1 b Θ2pℓq ‰ 0 for all ℓ P K1. Let ℓ “ ph0t
ε, h1t

ε, h2t
εq P K1,

where h0, h1, h2 P H and ε P r0, 2szt0u. We split the proof into three cases.

Case 1: ϑ0 “ ϑ1 ‰ ϑ2. Using Lemma 6.3.6, we obtain

ηtpℓq “ pΘa
0 bΘa´1

1 bΘt
2qpℓq “ pΘ

a
0 bΘa´1

1 bΘ2qpℓq

“ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
εϑ1pra, tsq

´ε “ pΘ0 bΘ1 bΘ2qpℓq “ ηpℓq.

Case 2: ϑ0 “ ϑ2 ‰ ϑ1. Using Lemma 6.3.6, we obtain

ηtpℓq “ pΘa
0 bΘa´1

1 bΘ2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
εϑ1pra, tsq

´ε

“ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
´εϑ1pra, tsq

´εϑ2pra, tsq
´ε

“ pΘa´1

0 bΘa´1

1 bΘa´1

2 qpℓq “ ηx
´1
pℓq.
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Case 3: ϑ1 “ ϑ2 ‰ ϑ0. Using Lemma 6.3.6, we obtain

ηtpℓq “ pΘa
0 bΘa´1

1 bΘ2qpℓq “ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
εϑ1pra, tsq

´ε

“ pΘ0 bΘ1 bΘ2qpℓqϑ0pra, tsq
εϑ1pra, tsq

εϑ2pra, tsq
ε “ pΘa

0 bΘa
1 bΘa

2qpℓq

“ ηxpℓq.

Hence IGpφq “ K.

Corollary 6.3.33. Let ϑ0, ϑ1, ϑ2 P IrrpHq be such that IHpϑ0 b ϑ1 b ϑ2q “ H. Suppose

that none of the characters ϑi extends towards G for i P r0, 2s. Suppose further that there

exist i, j P r0, 2s such that ϑi ‰ ϑj. In this way, each unordered pair ti, ju Ď r0, 2s yields

an irreducible character φ of H such that xφ|H1 , ϑ0 b ϑ1 b ϑ2y ‰ 0 with φp1q “ 3 and

IGpφq “ K. We get 6 characters of this form.

Proof. It follows from Proposition 6.3.32 that for a fixed unordered pair ti, ju Ď r0, 2s, we

get exactly one irreducible character φ of degree three with IGpφq “ K. Now, there are

three different possible ways to select a pair ti, ju. For a given pair ti, ju, there are two

choices for ϑi. The values of ϑj and ϑk, for k P r0, 2szti, ju, are uniquely determined from

that of ϑi. Therefore, we get 6 K-invariant characters of degree 3. There are no overlap, as

φ|H1 “ 3pϑ0 b ϑ1 b ϑ2q.

6.4 Computing the representation zeta function of H

In Section 6.3, we have studied the irreducible characters φ P IrrpHq which are obtained

by extension or induction from an irreducible character ϑ0 b ϑ1 b ϑ2 P IrrpH1q with a

prescribed inertia group S P H, and computed the sufficient and necessary conditions to

have IGpφq “ T for a given T P G, where H and G are defined as in the beginning of

Section 6.3.

Here we compute a recursive formula for the representation zeta function of H. Let

φ P IrrpHq and let ϑ0 b ϑ1 b ϑ2 be an irreducible constituent of φ|H1 , where ϑi P IrrpHq for

i P r0, 2s. Observe that, by Clifford’s theorem, the character φ|H1 is a sum of H-conjugates

of ϑ0bϑ1bϑ2. Since IHpϑ0bϑ1bϑ2q P H, and the elements ofH are normal inH, the inertia

groups of the irreducible constituents of φ|H1 are the same and equal to IHpϑ0 b ϑ1 b ϑ2q.

We define

aTS pdq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

$

&

%

φ P IrrpHq φp1q “ 3d, IGpφq “ T, IHpϑ0 b ϑ1 b ϑ2q “ S,

where ϑ0 b ϑ1 b ϑ2 is an irreducible constituent of φ|H1

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,
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where d P N0, S P H and T P G. For a given S P H and T P G, we define the partial

representation zeta function of H as

ζTS pH, sq “
8
ÿ

d“0

aTS pdq3
´ds. (6.17)

From (6.5) we get

ζT pH, sq “
ÿ

SPH
ζTS pH, sq. (6.18)

Further summing ζT pH, sq over all T P G gives the representation zeta function of H;

ζpH, sq “
ÿ

TPG
ζT pH, sq. (6.19)

We compute the partial representation zeta functions ζTS pH, sq in Section 6.4.1. From (6.18)

and (6.19), we obtain a recursive formula for the representation zeta function of H in

Section 6.4.2.

6.4.1 Computing partial representation zeta functions

For a given S P H and T P G, here we compute the partial representation zeta function

ζTS pH, sq. In alignment with the discussion in Section 6.3.2, we divide the computation into

four steps depending on the value of S. Whenever there is no reason for confusion, we drop

pH, sq from the expression ζTS pH, sq.

We begin with computing ζGHpH, sq, and it turns out be equal to ζGpH, sq. We recall

that C (defined in Theorem 5.3.4) is the number of G-invariant irreducible characters of H.

Therefore, by Lemma 6.4.1 below, we see that C “ 3.

Lemma 6.4.1. The equalities ζGpH, sq “ ζGHpH, sq “ 3 hold.

Proof. Thanks to Corollary 5.3.12, the G-invariant irreducible characters of H are linear.

Notice that the characters of H obtained from characters of type Case 1, Case 2 and Case 3

in Section 6.3.2 are non-linear. Therefore, the linear characters of H must be coming from

characters of type Case 4. It is evident from the computations in Section 6.3.2.4 that

the only contribution towards the G-invariant irreducible linear characters of H is from

Proposition 6.3.20. Therefore, from (6.18) we obtain that

ζGpH, sq “
ÿ

SPH
ζGS pH, sq “ ζGHpH, sq “ 3.
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Case 1: S “ H1xt̄y “: K1.

Let ϑ0 b ϑ1 b ϑ2 P IrrpH1q with IHpϑ0 b ϑ1 b ϑ2q “ K1. Let φ P IrrpHq be such that

ϑ0 b ϑ1 b ϑ2 is an irreducible constituent of φ|H1 . From Observation 6.3.8, we have

φp1q “ 3ϑ0p1qϑ1p1qϑ2p1q.

Computing ζ
Hxay
H1xt̄y

pH, sq

By Proposition 6.3.9, for every ε P r0, 2s and every ϑ P IrrpHq with IGpϑq “ Hxty, the

irreducible character ϑ0bϑ1bϑ2 “ ϑbϑa
ε
bϑa

´ε
of H1 yields three irreducible characters

φ P IrrpHq such that IGpφq “ Hxay and φp1q “ 3ϑp1q3. Indeed, there are three ways to

extend ϑ0bϑ1bϑ2 to H1xt̄y, and each of such extended character induces to an irreducible

character φ of H, resulting three distinct irreducible characters of H. Furthermore, this is

the necessary condition to yield characters φ of the desired form. However, the restriction

φ|H1 of each φ to H1 is of the form

φ|H1 “
ÿ

δ P r0,2s

ϑa
δ
b ϑa

δ`ε
b ϑa

δ´ε
.

Thus three different choices of ϑ yields the same φ. Hence, on average, each choice of

ε P r0, 2s and ϑ P IrrpHq yields one φ P IrrpHq. For a fixed ε P r0, 2s, the corresponding

partial representation zeta function of H is given by

3´sζHxtypH, 3sq,

and, since there are three choices for ε, we get

ζ
Hxay
H1xt̄y

pH, sq “ 31´sζHxtypH, 3sq. (6.20)

Computing ζ
Hxaty
H1xt̄y

pH, sq

By Proposition 6.3.10, for each i P r0, 2s and ϑ P IrrpHq with IGpϑq “ Hxty, the character

ϑ0 b ϑ1 b ϑ2 P IrrpHq defined by ϑi “ ϑ, ϑi`1 “ ϑi`2 “ ϑa
´1

yields three irreducible char-

acters φ P IrrpHq of degree φp1q “ 3ϑp1q3 and inertia group IGpφq “ Hxaty. Furthermore,

this is the necessary condition to obtain characters φ of the desired form. Similarly, as

above, on average, each choice of i P r0, 2s and ϑ P IrrpHq yields one φ P IrrpHq. For a fixed

i P r0, 2s, the corresponding partial recursive representation zeta of H function is given by

3´sζHxtypH, 3sq,

and, since there are three different ways to fix an element i P r0, 2s, we obtain

ζ
Hxaty
H1xt̄y

pH, sq “ 31´sζHxtypH, 3sq. (6.21)
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Computing ζ
Hxat´1y

H1xt̄y
pH, sq

By replacing ϑi`1 and ϑi`2 with ϑa in the above computation, from Proposition 6.3.10, we

obtain the partial representation zeta function ζ
Hxat´1y

H1xt̄y
pH, sq of H as

ζ
Hxat´1y

H1xt̄y
pH, sq “ 31´sζHxtypH, 3sq. (6.22)

Computing ζ
Hxty
H1xt̄y

pH, sq

By Propostion 6.3.11, for each i P r0, 2s and ϑ P IrrpHq of inertia group IGpϑq “ Hxty, the

character ϑ0 b ϑ1 b ϑ2 of the form ϑi “ ϑ and ϑi`1 “ ϑi`2 with IGpϑi`1q “ G yields three

irreducible characters φ P IrrpHq such that IGpφq “ Hxty. Thanks to Corollary 5.3.12,

the character ϑi`1 “ ϑi`2 is linear, and hence φp1q “ 3ϑp1q. Again, this is the necessary

condition to obtain characters φ of the desired form, and on average each choice of i P r0, 2s

and ϑ P IrrpHq yields one φ P IrrpHq. We identify the character ϑi`1 “ ϑi`2 with an

irreducible character of H{rH,Gs. For a fixed i P r0, 2s and for a given choice of ϑi`1 “

ϑi`2 P IrrpH{rH,Gsq the corresponding partial representation zeta function is given by

3´sζHxtypH, sq.

As there are three choices for ϑi`1 and three choices for i P r0, 2s, we get

ζ
Hxty
H1xt̄y

pH, sq “ 32´sζHxtypH, sq. (6.23)

Computing ζHH1xt̄y
pH, sq

Notice from Lemma 6.3.3 that IHpϑ0 b ϑ1 b ϑ2q “ H1xt̄y if and only if IGpϑiq P tHxty, Gu

for all i P r0, 2s given that there exists j P r0, 2s such that IGpϑjq ‰ G. Also observe

from Lemma 6.4.1 that ζGH1xt̄y
pH, sq “ 0. Thus the partial representation zeta function

ζHH1xt̄y
pH, sq is given by

ζHH1xt̄y
pH, sq “ 3´s

ˆ

´

ζHxty ` ζG
¯3
´ pζGq3

˙

´ ζ
Hxay
H1xt̄y

´ ζ
Hxaty
H1xt̄y

´ ζ
Hxat´1y

H1xt̄y
´ ζ

Hxty
H1xt̄y

“ 3´s
´

ζHxtypH, sq3 ` 9ζHxtypH, sq2 ` 18ζHxtypH, sq ´ 9ζHxtypH, 3sq
¯

. (6.24)

Case 2: S “ H1xxj t̄y for j P r0, 2s.

Let ϑ0 b ϑ1 b ϑ2 P IrrpH1q of inertia group IHpϑ0 b ϑ1 b ϑ2q “ H1xxj t̄y for j P r0, 2s.

Let φ P IrrpHq be such that ϑ0 b ϑ1 b ϑ2 is an irreducible constituent of φ|H1 . From

Observation 6.3.12, we have

φp1q “ 3ϑ0p1qϑ1p1qϑ2p1q.
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We shall compute the partial representation zeta function ζTH1xxj t̄y
pH, sq, where T P G, for

a fixed j P r0, 2s. However, since the computation is similar for all j, we obtain the same

recursive zeta function ζTH1xxj t̄y
pH, sq for all j.

Computing ζ
Hxty
H1xxj t̄y

pH, sq for j P r0, 2s

By Proposition 6.3.14, for every j P r0, 2s the character ϑ0 b ϑ1 b ϑ2 P IrrpH1q of the form

1. ϑj P IrrpHq with IGpϑjq “ Hxay and ϑj`2 “ ϑ´1
j`1 with IGpϑj`1q “ IGpϑj`2q “ G, or,

2. ϑj “ 1H with

(i) IGpϑj`1q “ Hxaty and IGpϑj`2q “ G, or,

(ii) IGpϑj`1q “ G and IGpϑj`2q “ Hxat´1y, or,

(iii) IGpϑj`1q “ Hxaty and IGpϑj`2q “ Hxat´1y,

yields three irreducible characters φ P IrrpHq of degree φp1q “ 3ϑjp1qϑj`1p1qϑj`2p1q with

IGpφq “ Hxty. Moreover, this is a necessary condition for obtaining characters φ of the

desired from. Again, φ|H1 is a sum of three distinct constituent and we undo the overcount-

ing: on average, each character ϑ0bϑ1bϑ2 P IrrpH1q, where ϑ0, ϑ1 and ϑ2 are as described

above, yields one φ P IrrpHq. Hence, using Lemma 6.4.1 we get

ζ
Hxty
H1xxj t̄y

“ 3´s
´

ζHxayζG ` ζHxatyζG ` ζGζHxat´1y ` ζHxatyζHxat´1y
¯

“ 31´s
´

ζHxay ` ζHxaty ` ζHxat´1y
¯

` 3´sζHxatyζHxat´1y. (6.25)

Computing ζHH1xxj t̄y
pH, sq for j P r0, 2s

From Lemma 6.3.4, we get that IHpϑ0 b ϑ1 b ϑ2q “ H1xxj t̄y if and only if IGpϑjq P

tHxay, Gu, IGpϑj`1q P tHxaty, Gu and IGpϑj`2q P tHxat
´1y, Gu given that IGpϑiq ‰ G

for some i P r0, 2s. Furthermore, from Proposition 6.3.13, the character ϑ0 b ϑ1 b ϑ2 with

IHpϑ0bϑ1bϑ2q “ H1xxj t̄y does not contribute to the partial representation zeta functions

ζHxatεypH, sq for any ε P r0, 2s. Also, it follows from Lemma 6.4.1, that ζGH1xxj t̄y
pH, sq “ 0.
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Therefore,

ζHH1xxj t̄y
“ 3´s

´´

ζHxay ` ζG
¯´

ζHxaty ` ζG
¯´

ζHxat´1y ` ζG
¯

´ pζGq3
¯

´ 31´s
´

ζHxay ` ζHxaty ` ζHxat´1y
¯

´ 3´sζHxatyζHxat´1y

“ 3´s
´

ζHxayζHxatyζHxat´1y ` 3ζHxayζHxaty ` 3ζHxayζHxat´1y ` 3ζHxatyζHxat´1y

` 9ζHxay ` 9ζHxaty ` 9ζHxat´1y
¯

´ 31´s
´

ζHxay ` ζHxaty ` ζHxat´1y
¯

´ 3´sζHxatyζHxat´1y

“ 3´s
´

ζHxayζHxatyζHxat´1y ` 3ζHxayζHxaty ` 3ζHxayζHxat´1y ` 2ζHxatyζHxat´1y

` 6ζHxay ` 6ζHxaty ` 6ζHxat´1y
¯

. (6.26)

Case 3: S “ H1.

Let ϑ0bϑ1bϑ2 P IrrpH1q be such that IHpϑ0bϑ1bϑ2q “ H1. Let φ P IrrpHq be such that

ϑ0 b ϑ1 b ϑ2 is an irreducible constituent of φ|H1 . From Observation 6.3.15, we get that φ

is the character induced from ϑ0 b ϑ1 b ϑ2 and

φp1q “ 9ϑ0p1qϑ1p1qϑ2p1q.

Computing ζ
Hxay
H1

pH, sq

By Proposition 6.3.17, for each pair pi, jq P r0, 2s ˆ r0, 2s and for every ϑ P IrrpHq with

IGpϑq P tH,Hxay, Hxaty, Hxat
´1yu, the character ϑ0bϑ1bϑ2 of the form given by ϑ0 “ ϑ,

ϑ1 “ ϑa
´it´j

and ϑ2 “ ϑa
it´i`j

yields an irreducible character φ P H of degree φp1q “ 9ϑp1q3

with inertia group IGpφq “ Hxay. Furthermore, this is the necessary condition to obtain

a character φ of the desired form. Also, notice that every conjugate of ϑ0 b ϑ1 b ϑ2 in

H gives rise to the same irreducible character φ of H. Hence, for a fixed pair pi, jq, the

corresponding partial recursive representation zeta function is given by

3´2´2s
´

ζHpH, 3sq ` ζHxaypH, 3sq ` ζHxatypH, 3sq ` ζHxat´1ypH, 3sq
¯

.

Since there are 9 choices for the pairs pi, jq, we have

ζ
Hxay
H1

pH, sq “ 3´2s
´

ζHpH, 3sq ` ζHxaypH, 3sq ` ζHxatypH, 3sq ` ζHxat´1ypH, 3sq
¯

. (6.27)

Computing ζ
Hxty
H1

pH, sq

By Proposition 6.3.18, for every pair pi, jq P r0, 2s ˆ r0, 2s and for characters ϑ0, ϑ1, ϑ2 P

IrrpHq satisfying the equalities

ϑa
´1`it´i`j

0 “ ϑ0, ϑa
1`itj

1 “ ϑ1, and ϑa
it´1`i`j

2 “ ϑ2, (6.28)
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with prescribed inertia group as given in Proposition 6.3.18, the character ϑ0 b ϑ1 b ϑ2

yields an irreducible character φ P H of degree φp1q “ 9ϑ0p1qϑ1p1qϑ2p1q and inertia group

IGpφq “ Hxty. Furthermore, this is the necessary condition to obtain such φ.

Set D0 “ tp0, 0q, p1, 0q, p2, 2qu, D1 “ tp0, 2q, p1, 2q, p2, 1qu and D2 “ tp0, 1q, p1, 1q, p2, 0qu.

For every k P r0, 2s, fix an element pi, jq P Dk. We define ζ
Hxty
pi,jq pH, sq as the partial represen-

tation zeta function ζ
Hxty
H1

pH, sq with the additional condition that the characters ϑ0, ϑ1 and

ϑ2 satisfy (6.28). Observe from Table 6.2 that, for every pi, jq P Dk, the inertia groups of the

characters ϑ0, ϑ1 and ϑ2 are symmetric. Therefore, one gets the same function ζ
Hxty
pi,jq pH, sq

for all pi, jq P Dk. Therefore, the partial representation zeta function ζ
Hxty
H1

pH, sq is given by

ζ
Hxty
H1

pH, sq “ 3
´

ζ
Hxty
p0,0q pH, sq ` ζ

Hxty
p0,2q pH, sq ` ζ

Hxty
p0,1q pH, sq

¯

. (6.29)

Now, notice that every conjugate of a character ϑ0 b ϑ1 b ϑ2 P IrrpH1q in H gives rise to

the same irreducible character φ of H. Since rH : H1s “ 9, ϑ0 b ϑ1 b ϑ2 has 9 distinct

conjugates. Therefore, we divide the partial representation zeta function by 9 to compensate

for overcounting. Using Lemma 6.4.1 we obtain ζ
Hxty
H1

pH, sq in three steps:

ζ
Hxty
p0,0q pH, sq “ 3´2´2s

´

pζHxayq2ζHxty ` pζHxayq2ζG ` ζHxayζGζHxty ` ζGζHxayζHxty
¯

“ 3´2´2s
´

pζHxayq2ζHxty ` 3pζHxayq2 ` 6ζHxayζHxty
¯

,

ζ
Hxty
p0,2q pH, sq “ 3´2´2s

´

ζHxatyζHxat´1yζHxty ` ζHxatyζGζHxty ` ζGζHxat´1yζHxty
¯

“ 3´2´2s
´

ζHxatyζHxat´1yζHxty ` 3ζHxatyζHxty ` 3ζHxat´1yζHxty
¯

,

ζ
Hxty
p0,1q pH, sq “ 3´2´2s

´

ζHxat´1yζHxatyζG ` ζHxat´1yζHxatyζHxay ` ζHxat´1yζHxatyζHxaty

` ζHxat´1yζHxatyζHxat´1y ` ζHxat´1yζHxatyζHxty ` ζHxat´1yζHxatyζH

` ζGζHxatyζHxay ` ζGζHxatyζHxaty ` ζGζHxatyζHxty ` ζGζHxatyζH

` ζHxat´1yζGζHxay ` ζHxat´1yζGζHxat´1y ` ζHxat´1yζGζHxty

` ζHxat´1yζGζH ` ζGζGζH
¯

“ 3´2´2s
´

3ζHxat´1yζHxaty ` ζHxat´1yζHxatyζHxay ` ζHxat´1ypζHxatyq2

` pζHxat´1yq2ζHxaty ` ζHxat´1yζHxatyζHxty ` ζHxat´1yζHxatyζH

` 3ζHxatyζHxay ` 3pζHxatyq2 ` 3ζHxatyζHxty ` 3ζHxatyζH

` 3ζHxat´1yζHxay ` 3pζHxat´1yq2 ` 3ζHxat´1yζHxty ` 3ζHxat´1yζH ` 9ζH
¯

.

Then ζ
Hxty
H1

pH, sq is given by (6.29). Summing ζ
Hxty
p0,0q pH, sq, ζ

Hxty
p0,2q pH, sq and ζ

Hxty
p0,1q pH, sq, we
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obtain

ζ
Hxty
H1

pH, sq “ 3´1´2s
´

pζHxayq2ζHxty ` 3pζHxayq2 ` 6ζHxayζHxty

` ζHxatyζHxat´1yζHxty ` 3ζHxatyζHxty ` 3ζHxat´1yζHxty

` 3ζHxat´1yζHxaty ` ζHxat´1yζHxatyζHxay ` ζHxat´1ypζHxatyq2

` pζHxat´1yq2ζHxaty ` ζHxat´1yζHxatyζHxty ` ζHxat´1yζHxatyζH

` 3ζHxatyζHxay ` 3pζHxatyq2 ` 3ζHxatyζHxty ` 3ζHxatyζH

` 3ζHxat´1yζHxay ` 3pζHxat´1yq2 ` 3ζHxat´1yζHxty ` 3ζHxat´1yζH ` 9ζH
¯

.

(6.30)

Computing ζHH1
pH, sq

From Lemma 6.3.5, we get IHpϑ0 b ϑ1 b ϑ2q “ H1 if and only if there exists i P r0, 2s such

that xty ę IGpϑiq and the following assertion holds:

␣pDj P r0, 2s : Hxay ď IGpϑjq ^ Hxaty ď IGpϑj`1q ^ Hxat´1y ď IGpϑj`2qq.

Furthermore, since every conjugate of ϑ0bϑ1bϑ2 P IrrpHq gives rise to the same irreducible

character φ of H of degree φp1q “ 9ϑ0p1qϑ1p1qϑ2p1q, we have

ζHH1
pH, sq “ 3´2´2s

´

p
ÿ

TPG
ζT q3 ´ 3pζHxay ` ζGqpζHxaty ` ζGqpζHxat´1y ` ζGq

´ pζHxty ` ζGq3 ` 3pζGq3
¯

´
ÿ

T PGztHu

ζTH1
.

It follows from Proposition 6.3.16 that, we ζ
Hxaty
H1

pH, sq “ 0 and ζ
Hxat´1y

H1
pH, sq “ 0. Also, it

is clear from Lemma 6.4.1 that ζGH1
pH, sq “ 0. Therefore,

ζHH1
pH, sq “ 3´2´2s

´

p
ÿ

TPG
ζT q3 ´ 3pζHxay ` ζGqpζHxaty ` ζGqpζHxat´1y ` ζGq

´ pζHxty ` ζGq3 ` 3pζGq3
¯

´ ζ
Hxay
H1

´ ζ
Hxty
H1

.
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Now from the computation of ζ
Hxay
H1

pH, sq and ζ
Hxty
H1

pH, sq it follows that

ζHH1
pH, sq “ 3´2´2s

´

pζHq3 ` 3pζHq2ζHxay ` 3pζHq2ζHxaty ` 3pζHq2ζHxat´1y

` 3pζHq2ζHxty ` 9pζHq2 ` 3ζHpζHxayq2 ` 6ζHζHxayζHxaty ` 6ζHζHxayζHxat´1y

` 6ζHζHxayζHxty ` 18ζHζHxay ` 3ζHpζHxatyq2 ` 3ζHζHxatyζHxat´1y

` 6ζHζHxatyζHxty ` 9ζHζHxaty ` 3ζHpζHxat´1yq2 ` 6ζHζHxat´1yζHxty

` 9ζHζHxat´1y ` 3ζHpζHxtyq2 ` 18ζHζHxty ` pζHxayq3 ` 3pζHxayq2ζHxaty

` 3pζHxayq2ζHxat´1y ` 3ζHxaypζHxatyq2 ` 6ζHxayζHxatyζHxty ` 3ζHxaypζHxat´1yq2

` 6ζHxayζHxat´1yζHxty ` 3ζHxaypζHxtyq2 ` pζHxatyq3 ` 3pζHxatyq2ζHxty

` 3ζHxatypζHxtyq2 ` pζHxat´1yq3 ` 3pζHxat´1yq2ζHxty ` 3ζHxat´1ypζHxtyqq2
¯

´ 3´2s
´

ζHpH, 3sq ` ζHxaypH, 3sq ` ζHxatypH, 3sq ` ζHxat´1ypH, 3sq
¯

. (6.31)

Case 4: S “ H.

Let ϑ0 b ϑ1 b ϑ2 P IrrpH1q with IGpϑ0 b ϑ1 b ϑ2q “ H. Let φ P IrrpHq be such that

ϑ0 b ϑ1 b ϑ2 is an irreducible constituent of φ|H1 . From Corollary 6.3.21, Corollary 6.3.23,

Corollary 6.3.26, Corollary 6.3.28, Corollary 6.3.31 and Corollary 6.3.33 we obtain

ζGHpH, sq “ 3, (6.32)

ζ
Hxay
H pH, sq “ 6, (6.33)

ζ
Hxaty
H pH, sq “ 6, (6.34)

ζ
Hxat´1y

H pH, sq “ 6, (6.35)

ζ
Hxty
H pH, sq “ 6` 18 ¨ 3´s, (6.36)

ζHH pH, sq “ 54. (6.37)

6.4.2 Computing the representation zeta function of H

Here we compute the representation zeta function ζpH, sq of H by combining the partial

recursive representation zeta functions from Section 6.4.1. From (6.18) and (6.19) we have

ζpH, sq “
ÿ

TPG
ζT pH, sq “

ÿ

TPG

ÿ

SPH
ζTS pH, sq,

where G and H are defined as in the beginning of Section 6.3. We obtain ζpH, sq in six

steps, where each step corresponds to the computation of ζT pH, sq for T P G. Thanks to

Lemma 6.4.1, we get

ζGpH, sq “
ÿ

SPH
ζGS pH, sq “ ζGHpH, sq “ 3. (6.38)
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Now, from (6.20), (6.27) and (6.33), we obtain

ζHxaypH, sq “
ÿ

SPH
ζ
Hxay
S pH, sq “ ζ

Hxay
H ` ζ

Hxay
H1xt̄y

` ζ
Hxay
H1

“ 6` 31´sζHxtypH, 3sq ` 3´2s
´

ζHpH, 3sq ` ζHxaypH, 3sq ` ζHxatypH, 3sq

` ζHxat´1ypH, 3sq
¯

. (6.39)

It follows from (6.21) and (6.34) that

ζHxatypH, sq “
ÿ

SPH
ζ
Hxaty
S pH, sq “ ζ

Hxaty
H ` ζ

Hxaty
H1xt̄y

“ 6` 31´sζHxtypH, 3sq. (6.40)

Summing (6.22) and (6.35) we get

ζHxat´1ypH, sq “
ÿ

SPH
ζ
Hxat´1y

S pH, sq “ ζ
Hxat´1y

H ` ζ
Hxat´1y

H1xt̄y
“ 6` 31´sζHxtypH, 3sq. (6.41)

Now observe that ζHxatypH, sq “ ζHxat´1ypH, sq. We set

αpsq “ ζHxaypH, sq, and βpsq “ ζHxatypH, sq “ ζHxat´1ypH, sq. (6.42)

Further, we define

τpsq “ ζHxtypH, sq, and ξpsq “ ζHpH, sq. (6.43)

For convenience, we write simply write f instead of fpsq, for f P tα, β, τ, ξu. Now, from

(6.23), (6.25), (6.30) and (6.36), we have

τpsq “
ÿ

SPH
ζ
Hxty
S pH, sq “ ζ

Hxty
H ` ζ

Hxty
H1xt̄y

` ζ
Hxty
H1xx0 t̄y

` ζ
Hxty
H1xx1 t̄y

` ζ
Hxty
H1xx2 t̄y

` ζ
Hxty
H1

“ 6` 18 ¨ 3´s ` 31´s
`

3τ ` 3α` 6β ` β2
˘

` 3´1´2s
`

2β3 ` 9β2 ` αβ2 ` 6αβ ` 3α2
˘

` 3´1´2sξ
`

β2 ` 6β ` 9
˘

` 3´1´2sτ
`

2β2 ` 12β ` 6α` α2
˘

. (6.44)

Finally, it follows from (6.24), (6.26), (6.31) and (6.37) that

ξpsq “
ÿ

SPH
ζHS pH, sq “ ζHH ` ζ

H
H1xt̄y

` ζHH1xx0 t̄y
` ζHH1xx1 t̄y

` ζHH1xx2 t̄y
` ζHH1

“ 54` 3´s
`

τ3 ` 9τ2 ` 18τ ´ 9τp3sq
˘

` 31´s
`

αβ2 ` 6αβ ` 2β2 ` 6α` 12β
˘

` 3´2´2s
´

ξ3 ` ξ2 p3α` 6β ` 3τ ` 9q

` ξ
`

3α2 ` 12αβ ` 6ατ ` 18α` 9β2 ` 12βτ ` 18β ` 3τ2 ` 18τ
˘

` α3 ` 6α2β ` 6αβ2 ` 12αβτ ` 3ατ2 ` 2β3 ` 6β2τ ` 6βτ2
¯

´ 3´2s
`

ξp3sq ` αp3sq ` 2βp3sq
˘

. (6.45)
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Now, by adding (6.38), (6.39), (6.40), (6.41), (6.44) and (6.45), we get ζpH, sq:

ζpH, sq “ 3` αpsq ` 2βpsq ` τpsq ` ξpsq, (6.46)

where the following recursions hold:

αpsq “ 6` 31´sτp3sq ` 3´2sαp3sq ` 2 ¨ 3´2sβp3sq ` 3´2sξp3sq,

βpsq “ 6` 31´sτp3sq,

τpsq “ 6` 18 ¨ 3´s ` 31´s
`

3τ ` 3α` 6β ` β2
˘

` 3´1´2s
`

2β3 ` 9β2 ` αβ2 ` 6αβ ` 3α2
˘

` 3´1´2sξ
`

β2 ` 6β ` 9
˘

` 3´1´2sτ
`

2β2 ` 12β ` 6α` α2
˘

,

ξpsq “ 54` 3´s
`

τ3 ` 9τ2 ` 18τ ´ 9τp3sq
˘

` 31´s
`

αβ2 ` 6αβ ` 2β2 ` 6α` 12β
˘

` 3´2´2s
´

ξ3 ` ξ2 p3α` 6β ` 3τ ` 9q

` ξ
`

3α2 ` 12αβ ` 6ατ ` 18α` 9β2 ` 12βτ ` 18β ` 3τ2 ` 18τ
˘

` α3 ` 6α2β ` 6αβ2 ` 12αβτ ` 3ατ2 ` 2β3 ` 6β2τ ` 6βτ2
¯

´ 3´2s
`

ξp3sq ` αp3sq ` 2βp3sq
˘

.

6.5 Computing the representation zeta function of G

In this section we compute the representation zeta function ζpG, sq of G using the recursive

representation zeta function (6.46) of H from Section 6.4.2. We recall that G is the set of

subgroups that lie between G and H, and is given by

G “ tG,Hxty, Hxay, Hxaty, Hxat´1y, Hu;

cf. Figure 6.1. We begin with the following observations.

Lemma 6.5.1. Let φ P IrrpHq be such that IGpφq “ G. Then φ extends to a linear

character of G if and only if φ “ 1H . Otherwise, φ gives rise to an irreducible character

of G of degree 3 which restricts to 3φ on H.

Proof. Thanks to Corollary 5.3.12, we conclude that φ is linear. It is easy to see that, φ

extends to G if and only if H “ rG,Gs ď kerpφq, i.e., φ “ 1H . This proves the first assertion

of the result.

Now, suppose that φ ‰ 1H . Then φ does not admit an extension towards G. In fact, φ

extends to irreducible characters of an intermediate subgroup L P GztG,Hu. Let ψ P IrrpLq

be an extension of φ. Then IGpψq “ L and ψ induces to G and gives rise to the irreducible

character ψG P IrrpGq of degree ψGp1q “ rG : Lsψp1q “ 3. Furthermore, ψG|H “ 3φ.
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Lemma 6.5.2. Let φ P IrrpHq be such that IGpφq “ L, where L P GztG,Hu. Then φ gives

rise to three irreducible characters of G, each of degree 3φp1q, which restricts to a sum of

three distinct G-conjugates of φ on H.

Proof. Clearly φ extends in three ways to an irreducible character of L. Let ψ P IrrpLq be an

extension of φ. Then IGpψq “ L and ψ induces to the irreducible character ψG P IrrpGq of

degree ψGp1q “ rG : Lsψp1q “ 3φp1q. Furthermore, ψG|H “ φ0`φ1`φ3, where φ1, φ2, φ3

are the distinct conjugates of φ in G.

Lemma 6.5.3. Let φ P IrrpGq with IGpφq “ H. Then φ gives rises to an irreducible

character of degree 9φp1q of G, and each of which restricts to a sum of nine distinct G-

conjugates of φ on H.

Proof. Since IGpφq “ H, the character φ induces to the irreducible character φG P IrrpGq

of degree φGp1q “ rG : Hsφp1q “ 9φp1q. Moreover, φG|H “
ř

i,jPr0,2s

φa
itj .

We recall that from (6.42) and (6.43) the notation

αpsq “ ζHxaypH, sq, βpsq “ ζHxatypH, sq “ ζHxat´1ypH, sq,

τpsq “ ζHxtypH, sq, ξpsq “ ζHpH, sq.

By setting q “ 3´s and rearranging the terms of αpsq, βpsq, τpsq and ξpsq, we get

αpsq “ 6` 3qτp3sq ` q2αp3sq ` 2q2βp3sq ` q2ξp3sq, (6.47)

βpsq “ 6` 3qτp3sq, (6.48)

τpsq “ 6` 18q ` 9qτ ` 9qα` 18qβ ` 3qβ2 `
2

3
q2β3 ` 3q2β2 `

1

3
q2αβ2 ` 2q2αβ ` q2α2

`
1

3
q2ξβ2 ` 2q2ξβ ` 3q2ξ `

2

3
q2τβ2 ` 4q2τβ ` 2q2τα`

1

3
q2τα2, (6.49)

ξpsq “ 54` qτ3 ` 9qτ2 ` 18qτ ` 3qαβ2 ` 18qαβ ` 6qβ2 ` 18qα` 36qβ `
1

9
q2ξ3 `

1

3
q2ξ2α

`
2

3
q2ξ2β `

1

3
q2ξ2τ ` q2ξ2 `

1

3
q2ξα2 `

4

3
q2ξαβ `

2

3
q2ξατ ` 2q2ξα` q2ξβ2

`
4

3
q2ξβτ ` 2q2ξβ `

1

3
q2ξτ2 ` 2q2ξτ `

1

9
q2α3 `

2

3
q2α2β `

2

3
q2αβ2 `

4

3
q2αβτ

`
1

3
q2ατ2 `

2

9
q2β3 `

2

3
q2β2τ `

2

3
q2βτ2 ´ 9qτp3sq ´ q2ξp3sq ´ q2αp3sq ´ 2q2βp3sq.

(6.50)

Now, writing ζ1psq “ ξpsq, ζ2psq “ τpsq, ζ3psq “ αpsq and ζ4psq “ βpsq, one can easily

verify that, for i P t1, 2, 3, 4u, the recursive formula for ζipsq, provided in [14, Section 2.2],

is precisely that of the corresponding fpsq, for f P tξ, τ, α, βu. Therefore, in Theorem 6.5.4

below, we summarise a proof for the recursive representation zeta function of G stated in
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[14, Section 2.2], which was obtained by computer assisted calculations not recorded in

detail.

Theorem 6.5.4. The representation zeta function ζpG, sq is given by the equation

ζpG, sq “ 9` 2 ¨ 3´s ` 3´s
´

ζHxaypH, sq ` ζHxatypH, sq ` ζHxat´1ypH, sq ` ζHxtypH, sq
¯

` 3´2´2sζHpH, sq, (6.51)

and admits the the following form with q “ 3´s

ζpG, sq “ 9` 2q ` qα` 2qβ ` qτ ` 6q2 `
1

9
q3τ3 ` q3τ2 ` 2q3τ `

1

3
q3αβ2 ` 2q3αβ `

2

3
q3β2

` 2q3α` 4q3β `
1

81
q4ξ3 `

1

27
q4ξ2α`

2

27
q4ξ2β `

1

27
q4ξ2τ `

1

9
q4ξ2 `

1

27
q4ξα2

`
4

27
q4ξαβ `

2

27
q4ξατ `

2

9
q4ξα`

1

9
q4ξβ2 `

4

27
q4ξβτ `

2

9
q4ξβ `

1

27
q4ξτ2

`
2

9
q4ξτ `

1

81
q4α3 `

2

27
q4α2β `

2

27
q4αβ2 `

4

27
q4αβτ `

1

27
q4ατ2 `

2

81
q4β3

`
2

27
q4β2τ `

2

27
q4βτ2 ´ q3τp3sq ´

1

9
q4ξp3sq ´

1

9
q4αp3sq ´

2

9
q4βp3sq, (6.52)

where α, β, τ, ξ satisfy the recursive relations specified at the end of Section 6.4.

Proof. The first two summands are coming from the G-invariant irreducible characters of H.

We recall from (6.38) that ζGpH, sq “ 3. It is immediate from Lemma 6.5.1 that only the

trivial character of H extends to G, yielding 9 linear characters. The remaining two char-

acters yield two irreducible characters, each of degree 3. By Lemma 6.5.2, every character

φ P IrrpHq with IGpφq P GztG,Hu, on average, gives rise to one irreducible character of G

of degree 3φp1q. This gives the terms with coefficient 3´s in (6.51). Now, suppose that

φG P IrrpGq is the character induced from a character φ P IrrpHq of inertia group IGpφq “ H.

Since G{H “ xaHy ˆ xtHy – C3 ˆ C3 (Theorem 2.4.19(iii)), by Clifford’s theorem we get

φG|H “
ÿ

i,jPr0,2s

φa
itj .

Furthermore, each of the conjugates φa
itj of φ in G gives rises to the same irreducible

character φG. Therefore, we divide the partial zeta function ζHpH, sq by 9 to compen-

sate for the overcounting. Considering this fact, we get the last summand in (6.51) from

Lemma 6.5.3. Again by writing q “ 3´s, from (6.47), (6.48), (6.49) and (6.50) we get the

described form (6.52).

123



124



Part II

Generalisations of the Basilica

group
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Chapter 7

Overview

This part comprises the following two articles:

1. With Jan Moritz Petschick: On the Basilica operation, Groups Geometry, and Dy-

namics, to appear, [92];

2. With Anitha Thillaisundaram: Maximal subgroups of generalised Basilica groups,

available at arXiv:2103.05452[math.GR], [94].

As indicated in Chapter 1, the first article introduces the Basilica operation that asso-

ciates to any group G of tree automorphisms a family of Basilica groups, BasspGq, for s P N.

In the second article, we study the maximal subgroups of Basilica groups obtained from

generalisations of the dyadic odometer. We incorporate the articles as Chapter 8 and Chap-

ter 9. Both chapters are self-contained with references collected at the end. The numbering

of the sections and results from the articles [92] and [94] are modified in order to be con-

sistent with the rest of the dissertation. Section or result ‘A’ in [92] (resp. [94]) will be

numbered as 8.A (resp. 9.A). In Chapter 8, we give a proof of [92, Theorem 6.8], which was

not provided in [92] because of its technicality. Here we indicate the individual contribution

of authors to the articles [92] and [94].

Authors’ contribution statement

I declare that the research and the process of writing for the articles [92] and [94] were

shared equally among myself and my collaborators. One may find below a detailed account

of contributions.

The collaboration between myself and Petschick was kicked off by a basic idea of myself to

compute the level stabilisers in certain special cases of the generalised Basilica groups. The
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research for Section 4 of [92] was conducted by developing this idea. The discussions were

mainly carried out in presence by mutual exchange of ideas between myself and Petschick.

We contributed equally to the research and formalisation of Theorem 1.4, Theorem 1.5,

Theorem 1.6, and Theorem 1.7 of [92]. The general cases of Basilica groups were treated

by Petschick, while I focused on the study of generalised Basilica groups. I contributed less

than a half to the investigation of Section 2 and Section 3, especially to the specific write-up

of Theorem 1.1, Theorem 1.2 and Theorem 1.3 and their proofs. The research for Section 6,

Section 7 and Section 8 was mostly carried out by myself, and I have contributed more than

a half to the formalisation of Theorem 1.8, Theorem 1.9 and Theorem 1.10 and their proofs.

Section 5 is an application of results from Section 2, Section 3 and 4 of [92], to which both of

us have equally contributed. Also, the task of writing the introduction was shared equally.

The topic of investigation in [94] was suggested by my collaborator Thillaisundaram.

We communicated via emails and using online platforms. The proof of the main result

Theorem 1.1 of [94] resulted from several joint attempts some of which remained unsuccessful

but gave inspiration for renewed efforts. The given proof is based on an idea of myself, which

was inspired by an observation of Thillaisundaram. We contributed equally to the research

and the process of writing up Theorem 1.1 and its proof.
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Chapter 8

On the Basilica operation

8.1 Introduction

Groups acting on rooted trees play an important role in various areas of group theory, for

example in the study of groups of intermediate growth, just infinite groups and groups

related to the Burnside problem. Over the years, many groups of automorphisms of rooted

trees have been defined and studied. Often they can be regarded as generalisations of early

constructions to wider families of groups with similar properties.

In this paper, we consider an operation on the subgroups of the automorphism group

AutT of a rooted tree T with degree m ě 2. It is inspired by the Basilica group B, a

group acting on the binary rooted tree, which was introduced by Grigorchuk and Żuk in

[58] and [59]. The Basilica group B is a particularly interesting example in its own right:

it is a self-similar torsion-free weakly branch group, just-(non-soluble) and of exponential

word growth. It was the first group known to be not sub-exponentially amenable [59], but

amenable [20, 24]. Furthermore, it is the iterated monodromy group of z2 ´ 1 [76, 93], and

it has the 2-congruence subgroup property [46].

The Basilica group B is usually defined as the group generated by two automorphisms

a “ pb, idq and b “ p0 1qpa, idq,

acting on the binary rooted tree (in [59] the elements are defined with id on the left, which

is merely notational). We point out the similarities between these two generators and the

single automorphism generating the dyadic odometer. The latter provides an embedding of

the infinite cyclic group into the automorphism group Aut T of the binary rooted tree T ,

given by

c “ p0 1qpc, idq.
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We can regard b as a delayed version of c, that takes an intermediate step acting as a, before

returning to itself. Considering the automata defining the generators of both groups (cf.

Figure 8.2), the relationship is even more apparent. We obtain the automaton defining b

from the automaton defining c by replacing every edge that does not point to the state of

the trivial element with an edge pointing to a new state, which in turn points to the old

state upon reading 0 and to the state of the trivial element upon reading any other letter.

See Figure 8.1 for an illustration of this replacement rule.

id

x : y

replaced by

id

x : y 0 : 0

x:x,
x‰0

Figure 8.1: Replacement rule for edges.

The same can be done for any automorphism of T and any number s of intermediate

states. For any group of automorphisms G, this operation yields a new group of tree

automorphisms defined by the automaton with s intermediate steps, which we call BasspGq,

the s-th Basilica group of G. A precise, algebraic definition that does not refer to automata

will be given in Definition 8.2.3. Figure 8.2 depicts for example the automaton defining

Bas8pO2q, while Figure 8.3 depicts the automaton defining the generators of the Gupta–

Sidki 3-group :Γ and the corresponding automaton obtained by the operation Bas2.

id c0 : 1
1 : 0

id ba

0 : 1

0 : 0

1 : 01 : 1
id

1 : 0

1 : 11 : 1

1 : 1

1 : 1

1 : 1 1 : 1

1 : 1

0 : 1

0 : 00 : 0

0 : 0

0 : 0

0 : 0 0 : 0

0 : 0

Figure 8.2: Automata for the dyadic odometer O2, the Basilica group B “ Bas2pO2q, and

Bas8pO2q.
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id

x : σ2pxq

x : σpxq

2 : 2

1 : 1

0 : 0 id

2 : 2

1 : 1

0 : 0

0 : 0
x‰0,

x:x

x‰0,
x:xx : σ2pxq

x‰0,
x:x

x : σpxq

0 : 0

0 : 0

Figure 8.3: Automata for the Gupta–Sidki 3-group :Γ and Bas2p:Γq, where σ is a cyclic

permutation.

We prove that many of the desirable properties of the original Basilica group B are a

consequence of the fact that the binary odometer O2 has those properties and that the

properties are preserved under the Basilica operation. We summarise results of this kind

for the general Basilica operation in the following theorem.

Theorem 8.1.1. Let G be a group of automorphisms of a regular rooted tree. Let P be a

property from the list below. Then, if G has P , the s-th Basilica group BasspGq of G has P

for all s P N`.

1. spherically transitive

2. self-similar

3. (strongly) fractal

4. contracting

5. weakly branch

6. generated by finite-state bounded auto-

morphisms

As a consequence we derive conditions for BasspGq to have solvable word problem and

to be amenable. Furthermore, we provide a condition for BasspGq to be a weakly regular

branch group given that G satisfies a group law. This enables us to construct a weakly

regular branch group over a prescribed verbal subgroup.

The class of spinal groups, defined in [23], is another important class of groups acting

on T ; it contains the Grigorchuk group and all GGS-groups, see Definition 8.3.7. It is not

true that the Basilica operation preserves being spinal, however groups obtained from spinal

groups act as spinal groups on another tree δsT , obtained by deleting layers from T .

Theorem 8.1.2. Let G be a spinal group (resp. a GGS-group) acting on T . Then BassG

is a spinal (resp. a GGS-group) acting on δsT for all s P N`.

In contrast to Theorem 8.1.1, the exponential word growth of the original Basilica group

B is not a general feature of groups obtained by the Basilica operation. In fact, the situation
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appears to be chaotic, for which we provide some examples, see Proposition 8.3.17 and

Proposition 8.3.18.

Next we turn our attention to a class of groups G whose Basilica groups BasspGq more

closely resemble the original Basilica group. For this, we introduce the concept of the

group G being s-split (see Definition 8.4.1). An s-split group decomposes by definition

as a semi-direct product, algebraically modelling the property that the image of a delayed

automorphism can be detected by observing the layers on which it has trivial labels. We

prove that all abelian groups acting locally regular are s-split for all s P N`, and that

conversely, all s-split groups acting spherically transitive are abelian. Furthermore we obtain

the following.

Theorem 8.1.3. Let s ą 1 and let G be an s-split self-similar group of automorphisms

of a regular rooted tree acting spherically transitively. If G is torsion-free, then BasspGq is

torsion-free. Furthermore BasspGq
ab – Gs.

The ps´1q-th splitting kernel Ks´1 is a normal subgroup of G measuring the failure of G

to be s-split. A rigorous definition is found in Definition 8.4.1. If G is weakly regular branch

over Ks´1 (allowing Ks´1 to be trivial, hence including s-split groups), we obtain a strong

structural description of the layer stabilisers of BasspGq. The maps βi are the algebraic

analogues of the various added steps delaying an automorphism, defined in Definition 8.2.2.

Theorem 8.1.4. Let G be a self-similar and very strongly fractal group of automorphisms

of a regular rooted tree. Assume that G is weakly regular branch over Ks´1. Let n P N0.

Write n “ sq ` r with q ě 0 and 0 ď r ď s´ 1. Then for all s ą 1

StBasspGqpnq “ xβipStGpq ` 1qq, βjpStGpqqq | 0 ď i ă r ď j ă syBasspGq.

This description allows us to provide an exact relationship between the Hausdorff di-

mension of a group G fulfilling the conditions of Theorem 8.1.4 and its Basilica groups

BasspGq. The precise description makes use of the series of obstructions of G, a tailor-made

technical construction, see Subsection 8.4.2 for details. Observing this series, we prove that

the Hausdorff dimension of BasspGq is bounded below by the Hausdorff dimension of G for

all s ą 1.

Corollary 8.1.5. Let G ď AutT be very strongly fractal, self-similar, weakly regular branch

over Ks´1, with dimHG ă 1. Then for all s ą 1

dimHG ă dimH BasspGq.
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Here we define the Hausdorff dimension of G ď Γ as the Hausdorff dimension of its

closure in Γ, where Γ is the subgroup of all automorphisms acting locally by a power of a

fixed m-cycle. This subgroup is isomorphic to

Γ – lim
ÐÝ
nPN`

Cm ≀ n
¨ ¨ ¨ ≀ Cm.

If m “ p, a prime, then Γ is a Sylow pro-p subgroup of AutT . The notion of Hausdorff

dimension in the profinite setting as above was initially studied by Abercrombie [1] and

subsequently by Barnea and Shalev [9]. It is analogous to the Hausdorff dimension defined

as usual over R.

In the second half of this paper we study the class of generalised Basilica groups BasspOd
mq,

for d, m, s P N` with m, s ě 2, defined by applying Bass to the free abelian group of rank

d with a self-similar action derived from the m-adic odometer. We remark that the above

generalisation of the original Basilica group B is different from the one given in [21], but it

includes the class of p-Basilica groups, where p is a prime, studied recently in [33]. For every

odd prime p, we obtain the p-Basilica group by setting d “ 1,m “ p and s “ 2 in BasspOd
mq.

Our construction also includes special cases, d “ 1 and m “ s “ p, studied by Hanna Sasse

in her master’s thesis supervised by Benjamin Klopsch. We record the properties of the

generalised Basilica groups in the following theorem.

Theorem 8.1.6. Let d, m, s P N` with m, s ě 2. Let B “ BasspOd
mq be the generalised

Basilica group. The following assertions hold:

(i) B acts spherically transitively on the corresponding m-regular rooted tree,

(ii) B is self-similar and strongly fractal,

(iii) B is contracting, and has solvable word problem,

(iv) The group Od
m is s-split, and Bab – Zds,

(v) B is torsion-free,

(vi) B is weakly regular branch over its commutator subgroup,

(vii) B has exponential word growth.

Theorem 8.1.6(i) to Theorem 8.1.6(vi) are obtained by direct application of Theo-

rem 8.1.1 and Theorem 8.1.3. The proof of Theorem 8.1.6(vii) is analogous to that of

the original Basilica group B and can easily be generalised from [59, Proposition 4]. Never-

theless, one can prove Theorem 8.1.6 directly by considering the action of the group on the

corresponding rooted tree, see [96].

We explicitly compute the Hausdorff dimension of BasspOd
mq, which turns out to be

independent of the rank d of the free abelian group Od
m:
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Theorem 8.1.7. For all d, m, s P N` with m, s ě 2

dimHpBasspOd
mqq “

mpms´1 ´ 1q

ms ´ 1
.

The above equality agrees with the formula of the Hausdorff dimension of p-Basilica

groups given by [33], and also with the Hausdorff dimension of the original Basilica group

B given in [12].

Theorem 8.1.8. Let d, m, s P N` with m, s ě 2. The generalised Basilica group BasspOd
mq

admits an L-presentation

L “ xY | Q | Φ | Ry

where the data Y, Q, R and Φ are specified in Section 8.6.

The concrete L-presentation requires unwieldy notation, whence it is not given here.

It is analogous to the L-presentation of the original Basilica group B [59]. The name L-

presentation stands as a tribute to Igor Lysionok who obtained such a presentation for

the Grigorchuk group in [74]. It is now known that, every finitely generated, contracting,

regular branch group admits a finite L-presentation but it is not finitely presentable (cf.

[11]). Unfortunately, this result is not applicable to generalised Basilica groups as they are

merely weakly branch. Also, the L-presentation of the generalised Basilica group is not finite

as the set of relations is infinite. Nonetheless, akin to [59, Proposition 11], we can introduce

a set of endomorphisms of the free group on the set of generators of the generalised Basilica

group and obtain a finite L-presentation, see Definition 8.6.1, as defined in [11].

Using the concrete L-presentation of a generalised Basilica group, we obtain the following

structural result.

Theorem 8.1.9. Let d, m, s P N` with m, s ě 2 and let B be the generalised Basilica

group BasspOd
mq. We have:

(i) For s “ 2, the quotient group γ2pBq{γ3pBq – Zd2,

(ii) For s ą 2, the quotient group γ2pBq{γ3pBq – Cds´2
m ˆ Cm2.

This implies that the quotients γipBq{γi`1pBq of consecutive terms of the lower central

series of a generalised Basilica group for s ą 2 are finite for all i ě 2, whereas a similar

behaviour happens for the original Basilica group B from i ě 3, see [15] for details.

For a group G of automorphisms of an m-regular rooted tree, we say that G has the

congruence subgroup property (CSP) if every subgroup of finite index in G contains some

layer stabiliser in G. The congruence subgroup property of branch groups has been studied

134



comprehensively over the years, see [22], [45], [37]. The generalised Basilica group BasspOd
mq

does not have the CSP as its abelianisation is isomorphic to Zds (Theorem 8.1.6). However,

the quotients of BasspOd
mq by the layer stabilisers are isomorphic to subgroups of Cm ≀ n¨ ¨ ¨≀Cm,

for suitable n P N0. If m “ p, a prime, then these quotients are, in particular, finite p-

groups. The class of all finite p-groups is a well-behaved class, i.e., it is closed under taking

subgroups, quotients, extensions and direct limits. In light of this, we prove that BasspOd
pq

has the p-congruence subgroup property (p-CSP), a weaker version of CSP introduced by

Garrido and Uria-Albizuri in [46]. The group G has the p-CSP if every subgroup of index a

power of p in G contains some layer stabiliser in G. In [46] one finds a sufficient condition

for a weakly branch group to have the p-CSP and it is also proved that the original Basilica

group B has the 2-CSP. This argument is generalised by Fernandez-Alcober, Di Domenico,

Noce and Thillaisundaram to see that the p-Basilica groups have the p-CSP. We further

generalise these results.

Theorem 8.1.10. For all d, s P N` with s ą 2, and all primes p, the generalised Basilica

group BasspOd
pq has the p-congruence subgroup property.

Even though we follow the same strategy as in [46], the arguments differ significantly

because of Theorem 8.1.9. Here we make use of Theorem 8.1.4 to obtain a normal generating

set for the layer stabilisers of the generalised Basilica groups (Theorem 8.5.1). We remark

that the result of Fernandez-Alcober, Di Domenico, Noce and Thillaisundaram on p-Basilica

groups can be generalised to all d ě 2 with additional work.

The organisation of the paper is as follows: In Section 8.2, we introduce the basic theory

of groups acting on rooted trees and give the formal definition of the Basilica operation,

together with important examples. The proofs of Theorem 8.1.1 and Theorem 8.1.2 are

given in Section 8.3. Theorem 8.1.3 and related results for s-split groups are contained

in Section 8.4, as well as the proofs of Theorem 8.1.4 and Theorem 8.1.7. Section 8.6

contains the proof of Theorem 8.1.8, while Section 8.7 and Section 8.8 contain the proofs of

Theorem 8.1.9 and Theorem 8.1.10.

8.2 Preliminaries and Main Definitions

For any two integers i, j, let ri, js denote the interval in Z. From here on, Tm “ T denotes

the m-regular rooted tree for an arbitrary but fixed integer m ą 1. The vertices of T are

identified with the elements of the free monoid X˚ on X “ r0,m´ 1s by labeling the vertices

from left-to-right. We denote the empty word by ϵ. For n P N0, the n-th layer of T is the
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set Xn of vertices represented by words of length n.

Every (graph) automorphism of T fixes ϵ and moreover maps the n-th layer to itself for

all n P N0. The action of the full group of automorphisms Aut T on each layer is transitive.

A subgroup of AutT with this property is called spherically transitive. The stabiliser of a

word u under the action of a group G of automorphisms of T is denoted by stGpuq and the

intersection of all stabilisers of words of length n is called the n-th layer stabiliser, denoted

StGpnq.

Let a P AutT and let u, v be words. Since layers are invariant under a, the equation

apuvq “ apuqa|upvq

defines a unique automorphism a|u of T called the section of a at u. This automorphism can

be thought of as the automorphism induced by a by identifying the subtrees of T rooted at

the vertices u and apuq with the tree T . If G is a group of automorphisms, G|u will denote

the set of all sections of group elements at u. The restriction of the action of the section a|u

to X1 “ X is called the label of a at u and it will be written as a|u.

The following holds for all words u, v and all automorphisms a, b:

pa|uq|v “ a|uv,

pabq|u “ a|bpuqb|u.

The analogous identities hold for the labels a|u, so the action of a on any word x0 . . . xn´1

of length n is given by

apx0 . . . xn´1q “ a|ϵpx0qa|x0px1 . . . xn´1q “ a|ϵpx0qa|
x0px1q . . . a|

x0...xn´2pxn´1q.

Hence every automorphism a is completely described by the label map X˚ Ñ SympXq,

u ÞÑ a|u, called the portrait of a.

For n P N0, the isomorphim

ψn : Stpnq Ñ pAutT qm
n
, g ÞÑ pg|xqxPXn ,

is called the n-th layer section decomposition. We will shorten the notation of big tuples

arising for example in this way by writing g˚k for a sequence of k identical entries g in a

tuple, implicitly ordering the vertices lexicographically.

We can uniquely describe an automorphism g P AutT by its label at ϵ and the first layer

section decomposition of pg|ϵq´1g, i.e. by

g “ g|ϵ pg|xqxPX .
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Let H ď SympXq be any subgroup of the symmetric group on X. Then denote by ΓpHq

the subgroup of AutT defined as

ΓpHq “ xa P AutT | @u P T, a|u P Hy.

If H is a Sylow-p subgroup of SympXq, then ΓpHq is a Sylow-pro-p subgroup of AutT . We

further fix σ “ p0 1 . . . m´ 1q P SympXq and write Γ for Γpxσyq.

A group G ď AutT is called self-similar if it is closed under taking sections at every

vertex, i.e. if G|v Ď G for all v P T . Self-similar groups correspond to certain automata

modelling the behaviour of the section map: there is a state for every element g P G, and

an arrow g Ñ g|x labelled x : gpxq for every x P X (for details see [76]).

We follow [103] in the terminology for the first three of the following self-referential

properties, and add a fourth one: A group G ď AutT acting spherically transitively is

called

1. fractal if stGpuq|u “ G for all u P T .

2. strongly fractal if StGp1q|x “ G for all x P X.

3. super strongly fractal if StGpnq|u “ G for all n P N0 and u P Xn.

4. very strongly fractal if StGpn` 1q|x “ StGpnq for all n P N0 and x P X.

Notice that for every group H acting regularly on X and G ď ΓpHq the properties p1q

and p2q coincide. The following lemma will be of great use.

Lemma 8.2.1. Let G ď AutT be fractal and self-similar, and let x, y P X. For every g P G

there exists an element g̃ P G such that g̃pxq “ y and g̃|x “ g. Furthermore, if H ď G is any

subgroup of G such that H ˆ tidu ˆ ¨ ¨ ¨ ˆ tidu ď ψ1pKq for some normal subgroup K Ĳ G,

then pHGqm ď ψ1pKq.

Proof. Since G is fractal, it is spherically transitive and in particular it is transitive on the

first layer of T . Hence there exists some element h P G mapping x to y. Also because

G is fractal and h|x P G by self-similarity, there is some element k P stGpxq such that

k|x “ ph|xq
´1g. Now g̃ “ hk fulfills both g̃pxq “ y and g̃|x “ h|xk|x “ g.

Assume further that H ď G and H ˆ tidu ˆ ¨ ¨ ¨ ˆ tidu ď ψ1pKq for K Ĳ G. Let g P G.

Choose an element g̃ P G such that g̃pxq “ 0 and g̃|x “ g. Then for every h P H

pid˚x, hg, id˚pm´x´1qq “ ψ1ppg̃q
´1ψ´1

1 ph, id, . . . , idqg̃q P ψ1ppg̃q
´1Kg̃q “ ψ1pKq.

From this point on, we fix a positive integer s.

137



Definition 8.2.2. There is a set of s interdependent monomorphims βsi : AutT Ñ AutT

defined by

βsi pgq “ pβ
s
i´1pgq, id, . . . , idq for i P r1, s´ 1s,

βs0pgq “ g|ϵpβss´1pg|0q, . . . , β
s
s´1pg|m´1qq.

We adopt the convention that the subscript for these maps is taken modulo s, whence

βsi pgq|x P β
s
i´1pAutT q for all i P r0, s´ 1s and g P AutT . Whenever there is no reason for

confusion, we drop the superscript s.

Definition 8.2.3. Let G ď AutT . The s-th Basilica group of G is defined as

BasspGq “ xβ
s
i pgq | g P G, i P r0, s´ 1s y.

Clearly, for s “ 1 the homomorphism β10 is the identity map and Bas1pGq “ G. In the

case of a self-similar group G, the s-th Basilica group of G can be equivalently defined as

the self-similar closure of the group βs0pGq, i.e. the smallest self-similar group containing

βs0pGq. If G is finitely generated by g1, . . . , gr, then BasspGq is generated by βsi pgjq with

i P r0, s´ 1s and j P r1, rs.

The operation Bass is multiplicative in s, i.e. for s, t P N` and G ď AutT we have

Bass BastpGq “ BasstpGq. This is a consequence of

βsi pβ
t
jpgqq “ βsti`sjpgq,

which is an easy consequence of Definition 8.2.2.

We now describe the monomorphisms βsi for i P r0, s´ 1s in terms of their portraits. We

define a map ωi : T Ñ T . For every k P N0 and every vertex u P Xk, write u “ x0 . . . xk´1 P

Xk, and define

ωipuq ..“ 0i
k´2
ź

j“0

`

xj0
s´1

˘

xk´1.

Writing ωipT q for the subgraph of T induced by the image of ωi, with edges inherited from

paths in T , we again obtain an m-regular rooted tree.

Lemma 8.2.4. Let g P AutT and i P r0, s´ 1s. Then the portrait of βsi pgq is given by

βsi pgq|
u “

$

’

&

’

%

g|v, if u “ ωipvq,

id, if u R ωipT q.

In particular BasspGq ď ΓpHq, if G ď ΓpHq for some H ď SympXq.
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Proof. First suppose that u “ ωipvq for v “ x0 . . . xk´1. From Definition 8.2.2 follows

βsi pgq|
ωipx0...xk´1q “ βs0pgq|

ω0px0...xk´1q “ βss´1pg|x0q|
ωs´1px1...xk´1q,

and iteration establishes βsi pgq|
u “ g|v. Now, if u “ u0 . . . uk´1 R ωipT q, there is some

minimal number n ıs i such that un ‰ 0. Thus u “ ωipvq0
tun . . . uk´1 for n ”s t ă i and

some vertex v, hence

βsi pgq|
u “ βsi pg|vq|

0tun...uk “ βsi´tpg|vq|
un...uk “ id .

It is interesting to compare the effect of the Basilica operation with another method of

deriving new self-similar groups from given ones described by Nekrashevych.

Proposition 8.2.5 ([76, Proposition 2.3.9]). Let G ď AutT be a group and let d be a

positive integer. There is a set of d injective endomorphisms of AutT given by

π0pgq ..“ g|ϵ pπd´1pg|xqqxPX ,

πipgq ..“ pπi´1pgqqxPX for i P r1, d´ 1s.

The group DdpGq ..“ xπipGq | i P r0, d´ 1sy is isomorphic to the direct product Gd.

We combine both constructions to define a class of groups very closely resembling the

original Basilica group B.

Definition 8.2.6. Let d, m, s P N` with m ě 2. The m-adic odometer Om is the infinite

cyclic group generated by

a “ σpa, id, . . . , idq,

where σ is the m-cycle pm ´ 1 m ´ 2 . . . 1 0q. Write Od
m for DdpOmq, the d-fold direct

product of Om embedded into AutT by the construction described in Proposition 8.2.5. We

call the group BasspOd
mq the generalised Basilica group.

Clearly, B “ Bas2pO2q is the original Basilica group introduced by Grigorchuk and Żuk

in [59].

For illustration we depict explicitly the automaton defining the self-similar action of the

dyadic odometer O2, the automaton defining the action of D8pO2q described above and the

automaton defining Bas8pO2q in Figure 8.4.

We shall prove in the following (cf. Section 8.6, Section 8.7, Section 8.8) that gener-

alised Basilica groups resemble the original Basilica group in many ways, justifying the

terminology.
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id a
1 : 0

0 : 1

id β0paq

β7paq

β6paq

β5paq

β4paq

β3paq

β2paq

β1paq

1 : 0

1 : 11 : 1

1 : 1

1 : 1

1 : 1 1 : 1

1 : 1

0 : 1

0 : 00 : 0

0 : 0

0 : 0

0 : 0 0 : 0

0 : 0

id π0paq

π7paq

π6paq

π5paq

π4paq

π3paq

π2paq

π1paq

1 : 0

1 : 11 : 1

1 : 1

1 : 1

1 : 1 1 : 1

1 : 1

0 : 1

0 : 00 : 0

0 : 0

0 : 0

0 : 0 0 : 0

0 : 0

Figure 8.4: The automata defining the generators of O2, D8pO2q and Bas8pO2q.

Proposition 8.2.7. Let AutfinpT q be the group of all finitary automorphisms, i.e. the group

generated by all automorphisms gτ,v for v P T , τ P SympXq that have label τ at v and trivial

label everywhere else. For any s P N`

BasspAutfinpT qq “ AutfinpT q.

On the other hand BasspAutT q is not of finite index in AutT for all s ą 1.

Proof. Define for every n P N0 a map µn : AutT Ñ N0 by

µnpgq “ |tu P X
n | g|u ‰ idu|.

Lemma 8.2.4 shows that gτ,v “ βipgτ,ω´1
i pvqq P BasspAutfinpT qq for every v P

Ťs´1
i“0 ωipT q.

Conjugation with suitable elements produces all other generators, hence AutfinpT q is con-

tained in BasspAutfinpT qq. On the other hand,
ř

nPN0
µnpgq ă 8 for any g P AutfinpT q,

implying that the same holds for all generators (and hence, all elements) of BasspAutfinpT qq.

Thus, BasspAutfinpT qq “ AutfinpT q.

For any g P AutT we have µnpgq ď |Xn| “ mn. But for all generators βipgq of

BasspAutT q the stronger inequality µsn`ipβipgqq ď mn holds, since βipgq has trivial la-

bel at all vertices outside of ωipT q. Let g P AutT and qpgq P Q` be the infimum of all
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numbers r such that

lim sup
nÑ8

µsnpgq

mp1`rqn
“ 8.

Then g cannot be in BasspAutT q, since the inequality µnpabq ď µnpaq`µnpbq for a, b P AutT

implies that it cannot be a finite product of the generators of BasspAutT q. By the same

reason, all elements with different qpgq are in different cosets. Since qpAutT q “ p0, s´1qXQ,

the second statement follows.

Question 8.2.8. In view of Proposition 8.2.7 and the original Basilica group B it seems

plausible that the operation Bass makes (in some vague sense) big groups smaller and small

groups bigger. Let H ď SympXq be a transitive subgroup. Set ΓfinpHq “ AutfinpT qXΓpHq.

Replacing AutfinpT q with ΓfinpHq in the proof of Proposition 8.2.7 we obtain the equality

BasspΓfinpHqq “ ΓfinpHq.

Is there a group G not of the form ΓfinpHq such that BasspGq “ G?

8.3 Properties inherited by Basilica groups

We recall our standing assumptions: m and s are positive integers with m ‰ 1, X “

r0,m´ 1s, and T the m-regular rooted tree. The subscript of the maps βsi is taken modulo

s, and we will drop the superscript s from now on.

8.3.1 Self-similarity and fractalness

Lemma 8.3.1. Let G ď AutT act spherically transitively on T . Then BasspGq acts spher-

ically transitively on T .

Proof. It is enough to prove that for any number n “ qs ` r P N` with r P r0, s´ 1s and

q ě 0, and y P X there is an element b P BasspGq such that bp0n0q “ 0ny. Let g P G be

such that gp0q0q “ 0qy and observe that βrpgq stabilises 0
n. By Lemma 8.2.4 it follows

βrpgqp0
n0q “ 0nβ0pg|0qqp0q “ 0ny.

Lemma 8.3.2. Let G ď AutT be self-similar. Then BasspGq ď AutT is self-similar.

Proof. We check that βipgq|v is a member of BasspGq for all v P T . This holds by Defini-

tion 8.2.2 for words v of length 1, and follows from g|x|y “ g|xy by induction for words of

any length.

Lemma 8.3.3. Let G ď AutT be self-similar, and fractal (resp. strongly fractal). Then
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(i) The group B “ BasspGq ď AutT is fractal (resp. strongly fractal).

(ii) For all b P B there is an element c P stBp0q (resp. c P StBp1q) such that c|0 “ b and

c|x P βs´1pGq for all x P r1,m´ 1s.

Proof. Lemma 8.3.1 shows that B acts spherically transitively, and by Lemma 8.3.2 the

group B is self-similar. First suppose that G is fractal. Since the statement (ii) implies the

statement (i), it is enough to prove (ii).

Observe that

H “ tg P stBp0q | g|x P βs´1pGq for all x P r1,m´ 1su

is a subgroup since hpxq ‰ 0 and pghq|x “ g|hpxqh|x P βs´1pGq for all g, h P H,x P r1,m´ 1s.

Thus it is enough to show that βipGq ď H|0 for all i P r0, s´ 1s.

It is easy to see that βipGq ď H for i ‰ 0, hence since βipGq|0 “ βi´1pGq we have

βipGq ď H|0 for i ‰ s´ 1. But also β0pstGp0qq ď H. Note that, since G is fractal, we have

stGp0q|0 “ G. Hence βs´1pGq ď β0pstGp0qq|0 ď H|0.

If G is strongly fractal, we may replace H by its intersection with StBp1q and stGp0q by

StGp1q to obtain a proof for the analogous statement.

Lemma 8.3.1, Lemma 8.3.3 and Lemma 8.3.2 yield proofs for the statements p1q, p2q and

p3q of Theorem 8.1.1.

8.3.2 Amenability

The original Basilica group B was the first example of an amenable, but not subexponentially

amenable group. This had been conjectured already in [59], where non-subexponentially

amenability of B was proven. Amenability was proven by Bartholdi and Virág in [24].

Later, Bartholdi, Kaimanovich and Nekrashevych proved that all groups generated from

bounded finite-state automorphisms are amenable [20], which includes B. We recall the

relevant definitions and then apply the result of Bartholdi, Kaimanovich and Nekrashevych

to a wider class of groups produced by the Basilica operation.

Definition 8.3.4. An automorphism f P AutT is called

1. finite-state if the set tf |u | u P T u is finite, and

2. bounded if the sequence µnpfq ..“ |tu P Xn | f |u ‰ idu| is bounded.

Proposition 8.3.5. Let G ď AutT be generated from finite-state bounded automorphisms.

Then BasspGq is also generated from finite-state bounded automorphisms.
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Proof. It is enough to prove that for every finite-state bounded f P AutT and i P r0, s´ 1s

the element βipfq is again finite-state and bounded. Notice that all sections of f are of the

form βjpf |uq for some u P T , hence there are only finitely many candidates and βipfq is

finite-state. Moreover, by Definition 8.2.2 µnpβipfqq “ µ
tn´i

s
u
pfq, bounding µnpβipfqq.

This proves statement p6q of Theorem 8.1.1, and we use [20] to conclude:

Corollary 8.3.6. Let G ď AutT be generated by finite-state bounded automorphisms. Then

BasspGq is amenable.

8.3.3 Spinal Groups

A well-known class of subgroups of Aut T containing most known branch groups is the

class of spinal groups, containing both the first and the second Grigorchuk group, and all

GGS-groups. We use, with modifications for GGS-groups, the definition given in [18].

Definition 8.3.7 (cf. [18, Definition 2.1]). Let R ď SympXq, let D be a finite group and

let

ω “ pωi,jqiPN`,jPr1,m´1s

be a family of homomorphisms ωi,j : D Ñ SympXq. Identify R with trpid, . . . , idq | r P

Ru ď AutT and identify each d P D with the automorphism of T given by

d|w ..“

$

’

&

’

%

ωi,jpdq if w “ 0i´1j for i P N`, j P r1,m´ 1s,

id otherwise.

Suppose that the following holds:

1. The group R and all groups xωn,jpDq | j P r1,m´ 1sy, for n P N`, act transitively on

X.

2. For all n P N`,
8
č

i“n

m´1
č

j“1

kerωi,j “ 1.

Then xR,Dy ď AutT is called the spinal group acting on T with defining triple pR,D, ωq.

The spinal group with defining triple pR,D, ωq is called a GGS-group acting on T if ωn,j “

ωk,j for all n, k P N` and j P r1,m´ 1s.

We now describe the Basilica groups of spinal groups. For this, we record the following

lemma.
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Lemma 8.3.8. Let i, j P r0, s´ 1s with i ‰ j. Denote by stp0q the stabiliser of the infinite

ray 0 ..“ t0i | i P N0u in AutT (a so-called parabolic subgroup). Then rβipstp0qq, βjpstp0qqs “

1.

Proof. We prove that for all g0, g1 P stp0q the images b0 “ βipg0q and b1 “ βjpg1q commute,

using the fact that stp0q|0 “ stp0q. Assume without loss of generality that either j ą i ą 0

or i “ 0. In the first case both b0 and b1 stabilise the i-th layer, we can consider

ψiprb0, b1sq “ prb0|0i , b1|0is, id
˚pmi´1qq “ prβ0pg0q, βj´ipg1qs, id

˚pmi´1qq,

and thus reduce to the second case. Suppose now that i “ 0. Since the only non-trivial first

layer section of b1 is at the vertex 0 and by assumption b0 fixes this vertex,

ψ1prb0, b1sq “ prb0|0, b1|0s, id
˚pm´1qq.

Since b0|0, b1|0 P stp0q, we conclude by infinite descent that rb0, b1s fixes all vertices outside

the ray 0, thus acts trivially on the entire tree T .

The elements d P D of a spinal group defined by pR,D, ωq can be characterised by

the fact that they stabilise the infinite ray (or “spine”) 0 and d|x ‰ id implies that x has

distance precisely 1 from 0. Therefore it is easy to see that a Basilica group B “ BasspGq

of a spinal group G acting on T cannot act as a spinal group on T , as the elements βsi pdq

have non-trivial labels at vertices of distance s from the ray 0. However, the group B acts

as a spinal group on a tree obtained from T by deletion of layers.

Motivated from Examples 8.3.10 and 8.3.11 below, we introduce the following notations.

There is an injection ιs : pX
sq˚ Ñ X˚ given by

px0,0 ¨ ¨ ¨x0,s´1q ¨ ¨ ¨ pxn´1,0 ¨ ¨ ¨xn´1,s´1q ÞÑ x0,0 ¨ ¨ ¨xn´1,s´1,

whose image is the union
Ť

nPN0
Xsn. The restriction map induces an injection

ι˚s : AutpX˚q Ñ AutppXsq˚q,

and clearly the image ι˚s pAutT q is

ΓpSympXq ≀ ¨ ¨ ¨ ≀ SympXqq ď AutppXsq˚q,

where the permutational wreath product is iterated s times. Recall that ΓpHq for a per-

mutation group G denotes the subgroup of Aut T with every local action a member of H.

Define for i P r0, s´ 1s

τi : SympXq Ñ SympXq ≀ ¨ ¨ ¨ ≀ SympXq

ρ ÞÑ ι˚s pgρ,0iq|
ϵ,
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where gρ,0i is the automorphism with g|0
i
“ ρ and g|x “ id everywhere else. It is easy to see

that for every transitive permutation group H ď SympXq the group xτkpHq | k P r0, s´ 1sy

is isomorphic to the s-fold iterated permutational wreath product H ≀ ¨ ¨ ¨ ≀H.

Now given a family of homomorphisms pωi,j : D Ñ SympXqqiPN`,jPXzt0u we define a new

family ω̃ “ pω̃i,j : D
s Ñ SympXsqqiPN`,jPXszt0su by

ω̃n,j “

$

’

&

’

%

τi ˝ ωn,x ˝ πi, if j “ 0ix0s´i´1 for some x P r1,m´ 1s and i P r0, s´ 1s,

d ÞÑ id, d P Ds, otherwise,

where πi : D
s Ñ D denotes the projection to the pi` 1q-th factor.

Proposition 8.3.9. Let G be the spinal group on T with defining triple pR,D, ωq. Then

ι˚s pBasspGqq is the spinal group on pXsq˚ with defining triple pR ≀ ¨ ¨ ¨ ≀R,Ds, ω̃q, by the action

of BasspGq on the ms-regular tree δsT defined by the deletion of layers.

If furthermore G is a GGS-group on T , ι˚s pBasspGqq is a GGS-group on pXsq˚.

Proof. First consider the elements of the form βkpaq, for a P R, k P r0, s´ 1s. On pXsq˚

this element acts as τkpaq. Since R is transitive, the images of R generate R ≀ ¨ ¨ ¨ ≀ R, and

the first entry of the defining triple is described.

We deal in a similar way with the sections βipd|0kyq of a directed element for every

d P D, i P r0, s´ 1s, k P N0, y P Xzt0u. To obtain the first section decomposition of the

action of βipd|0kq on δsT (which stabilises the first layer) we have to take sections of βipd|0kq

at words x “ x0 . . . xs´1 of length s in T . Now by Lemma 8.2.4,

βipd|0kq|x “

$

’

’

’

’

’

&

’

’

’

’

’

%

βipd|0k`1q if x “ 0s,

βipωk`1,xipdqq “ τiωk`1,xipdq if x “ 0ixi0
s´i´1, xi ‰ 0,

id otherwise.

By Lemma 8.3.8 all pairs βipd1q, βjpd2q with d1, d2 P D, i, j P r0, s´ 1s and i ‰ j commute.

We identify βipDq with the pi ` 1q-th direct factor of Ds. Thus BasspGq is generated by

R ≀ ¨ ¨ ¨ ≀R and xβipDq | i P r0, s´ 1sy – Ds, where pid, . . . , id, di, id, . . . , idq P D
s acts on δsT

by

pid, . . . , id, di, id, . . . , idq|0ksx “ βipd|0kq|x,

thus, the elements of Ds are defined by the family ω̃ of homomorphisms.

It remains to establish the two defining properties of spinal groups. Property (1) holds

by the observation that

xω̃i,jpD
sq | j P r1,ms ´ 1sy
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acts as xτkpωi,jpDqq | j P r1,m´ 1s, k P r0, s´ 1sy, hence xω̃i,jpD
sq | j P r1,ms ´ 1sy acts as

the s-fold wreath product of xωi,jpDq | j P r1,m´ 1sy, in particular, transitively on the first

layer of δsT .

For (2) consider

ker ω̃n,j “

$

’

&

’

%

kerpωn,x ˝ πiq, if j “ 0ix0s´i´1, for some x P r1,m´ 1s, i P r0, s´ 1s

Ds, else,

hence
č

jPXszt0su

ker ω̃n,j “

¨

˝

č

jPXzt0u

kerωn,j

˛

‚ˆ ¨ ¨ ¨ ˆ

¨

˝

č

jPXzt0u

kerωn,j

˛

‚.

Therefore we see that since (2) holds for G, (2) holds for BasspGq.

The statement regarding GGS-groups follows directly from the description of the defining

triple of BasspGq.

Proposition 8.3.9 yields Theorem 8.1.2.

Example 8.3.10. One of the eponymous examples of a GGS-group is the family of the

Gupta–Sidki p-groups acting on the p-regular tree. In the language of spinal groups they

are defined by the triple

pxσy, xσy, pσ ÞÑ σ, σ ÞÑ σ´1, σ ÞÑ id, . . . , σ ÞÑ idqiPN`
q,

or in usual notation by the generators a “ σpid, . . . , idq, b “ pb, a, a´1, id, . . . , idq. We can

describe the generators of the second Basilica group of the Gupta–Sidki 3-group :Γ by

β20paq “ σpid, id, idq “ a β20pbq “ pβ
2
1pbq, β

2
1paq, β

2
1pa

´1qq,

β21paq “ pa, id, idq β21pbq “ pβ
2
0pbq, id, idq.

The automaton describing these generators is given explicitly in Figure 8.3. By ordering

X2 reverse lexicographically, the action of the generators on pX2q˚ is

β20paq “ p00 10 20qp01 11 21qp02 12 22q

β20pbq “ pβ
2
0pbq, β

2
0paq, β

2
0paq

´1, id, . . . , idq

β21paq “ p00 01 02q

β21pbq “ pβ
2
1pbq, id, id, β

2
1paq, id, id, β

2
1paq

´1, id, idq.

Example 8.3.11. The first Grigorchuk group G is the spinal group acting on the binary

tree defined by C2,C
2
2 and the sequence ωi,1 of (the three) monomorphisms C2 Ñ C2

2, where
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ωi,1 “ ωj,1 holds if and only if i ”3 j. Writing a for the non-trivial rooted element and b, c, d

for the non-trivial directed elements, one has the descriptions

a “ p0 1qpid, idq, b “ pc, aq, c “ pd, aq, d “ bc “ pb, idq.

By Proposition 8.3.9 Bas2pGq is a spinal group on the 4-regular tree pX2q˚, generated by

the elements

α ..“ β20paq “ p0 2qp1 3q, A ..“ β21paq “ p0 1q,

β ..“ β20pbq “ pκ, α, id, idq, B ..“ β21pbq “ pK, id,A, idq,

κ ..“ β20pcq “ pδ, α, id, idq, K ..“ β21pcq “ p∆, id,A, idq,

δ ..“ βκ, ∆ ..“ BK,

where we identify r0, 3s with X2 by the reverse lexicographic ordering.

8.3.4 Contracting groups

For this subsection we fix a self-similar group G ď AutT and some generating set S of G,

which yields a natural generating set
Ť

iPr0,s´1s βipSq for B
..“ BasspGq.

The group G ď AutT is said to be contracting, if there exists a finite set N Ă G (called

a nucleus of G) such that for all g P G there is an integer kpgq such that g|v P N for all

v P T with |v| ą kpgq, where | ¨ | denotes the word norm.

In this section we prove that a contracting group G has contracting Basilica groups

B “ BasspGq, considering the natural generating set for B. For this we define yet another

length function, the syllable length, denoted by sylpbq, of an element b P B as the word

length w.r.t. the infinite generating set
Ť

iPr0,s´1s βipGq, i.e. as

sylpbq ..“ mintℓ P N0 | b “
ℓ´1
ź

j“0

βij pgjq, with suitable ij P r0, s´ 1s, gj P Gu,

where
śℓ´1
j“0 βij pgjq is a word representing b in B with respect to the generating set tβipgq |

i P r0, s´ 1s, g P Gu. Consequently, we will call a non-trivial element of the given generating

set a syllable and the corresponding index i its type. Since for every non-trivial element

b P βipGq there is some u P Xns`i for some n P N0 such that b|u ‰ id, while there is no

u P T z
Ť

nPN0
Xns`i such that b|u ‰ id, the type of a syllable is unique. Since all sections of

a syllable are either trivial or a syllable itself, the syllable length of a section of b is at most

sylpbq.

We further define for every g P AutT ,

rpgq ..“

$

’

&

’

%

mintn P N0 | g|
0np0q ‰ 0u if g does not stabilise 0 “ t0n | n P N0u,

8 otherwise.
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Lemma 8.3.12. Let r P N0. Define

Dr
..“ tβa1ph1qβa2ph2qβa3ph3q | h1, h2, h3 P Gzt1u,

a1, a2, a3 P r0, s´ 1s pairwise distinct,

rpβa2ph2qq “ ru.

Then sylpc|uq ă 3 for c P Dr and all u with |u| ą r.

Proof. Let c “ βa1ph1qβa2ph2qβa3ph3q P Dr, where a1, a2, a3, h1, h2, h3 satisfy the conditions

stated above. We use induction on r. First consider the case r “ 0. From βa2ph2qp0q ‰ 0

we deduce that a2 “ 0. Calculate, for x P r0,m´ 1s,

c|x “

$

’

’

’

’

’

&

’

’

’

’

’

%

βs´1ph2|0qβa3´1ph3q if x “ 0,

βa1´1ph1qβs´1ph2|xq if x “ h´1
2 p0q,

βs´1ph2|xq otherwise.

This shows that c|x and, by recursion, c|u for all u with |u| ě 1 have syllable length at

most 2. Now we assume that r ą 0. We may reduce to the case that 0 P ta1, a2, a3u. If

0 R ta1, a2, a3u, c|0 P Dr´1 and c|x “ id for all x P X,x ‰ 0. Therefore, by induction

sylpc|x|uq ă 3 for x P X and |u| ą r ´ 1, hence sylpx|uq ă 3 for all |u| ą r.

If a3 “ 0, respectively a1 “ 0, we have

c|x “

$

’

&

’

%

βa1´1ph1qβa2´1ph2qβs´1ph3|xq P Dr´1 if x “ h´1
3 p0q,

βs´1ph3|xq otherwise,

respectively c|x “

$

’

&

’

%

βs´1ph1|0qβa2´1ph2qβa3´1ph3q P Dr´1 if x “ 0,

βs´1ph1|xq otherwise.

In both cases all but one section have length ă 3 and the remaining section is contained in

Dr´1, hence by induction sylpc|xuq ă 3 for all x P X, |u| ą r ´ 1.

The case a2 “ 0 remains. Now r ą 0 implies h´1
2 p0q “ 0 and we have rpβs´1ph2|0qq “

r ´ 1. Thus

c|x “

$

’

&

’

%

βa1´1ph1qβs´1ph2|0qβa3´1ph3q P Dr´1 if x “ 0,

βs´1ph2|xq otherwise.

Hence we conclude that sylpc|xuq ă 3 for all u with |u| ě 1 by induction as before.

Lemma 8.3.13. For every element b P B with sylpbq ą s` 1 there is a number r P N0 such

that for all sections b|u with |u| ą r,

sylpb|uq ă sylpbq.
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Proof. Let b P B be an element with sylpbq ą s` 1. If b is minimally represented by a word

w, it suffices to prove that there is a subword of w representing an element which has a

reduction of the syllable length upon taking sections.

Since sylpbq ą s` 1 there must be at least one syllable type appearing twice, and there

is a subword of w that can be written in the form

βipg̃1qb0βipg̃2qb1 or b1βipg̃1qb0βipg̃2q,

where b0, b1 are non-trivial and contain neither two syllables of the same type nor a syllable

of type i. Passing to the inverse if necessary we restrict to the first case.

Under the assumption of w being minimal it is impossible that both b0 and βipg̃2q fix

the infinite ray 0, since if they did, they would commute by Lemma 8.3.8, and consequently

it would be possible to reduce the number of syllables.

Thus there are syllables in b0βipg̃2q that do not stabilise the ray 0. Among these we

choose k such that r ..“ rpβjkpgkqq is minimal.

Apply Lemma 8.3.12 to the subword βjk´1
pgk´1qβjkpgkqβjk`1

pgk`1q of βipg̃1qb0βipg̃2qb1

consisting only of the syllable βjkpgkq and its direct neighbours, and obtain for all u P

T, |u| ą r

sylpb|uq ă sylpbq.

Although interesting in its own right we use Lemma 8.3.13 solely to prove the following

proposition.

Proposition 8.3.14. Let G ď AutT be contracting. Then B “ BasspGq is contracting.

Proof. Let N pGq be a nucleus of G. Define

N pBq ..“

#

ℓ
ź

i“0

βjipgiq | ℓ ď s` 1, ji P r0, s´ 1s, gi P N pGq

+

.

Since N pGq is a finite set, N pBq is finite as well. We will prove that it is a nucleus of B. Let

b P B. If sylpbq ą s` 1, by Lemma 8.3.13 there is a layer, from which onwards all sections

of b have syllable length s` 1 or smaller.

Hence we can assume, that sylpbq ď s ` 1. Write b “
śsylpbq´1
i“0 βjipgiq. Since G is

contracting, for every gi there is a number kpgiq such that gi|u P N pGq for all |u| ě kpgiq.

Set K ..“ maxtkpgiq | i P r0, sylpbq ´ 1su, and observe that for u with |u| ě sK the section

b|u is a product of at most sylpbq ď s ` 1 syllables of the form βipgq with g P N pGq. Thus

b|u is in N pBq and B is contracting.

149



Proposition 8.3.14 proves statement p4q of Theorem 8.1.1.

As a consequence, the word problem for Basilica groups of self-similar and contracting

groups is solvable, since it is solvable for self-similar and contracting groups [76, Proposition

2.13.8].

Corollary 8.3.15. Let G be self-similar and contracting. Then BasspGq has solvable word

problem.

Question 8.3.16. Let G ď AutT be contracting. The fact that BasspGq is contracting

implies the existence of constants λ ă 1, L, C P R` such that for every g P G, u P Xn with

n ą L it holds

|g|u| ă λ|g| ` C.

In [59] one set of constants is given for the original Basilica group B, namely λ “ 2
3 and

L “ C “ 1.

Is there a general formula for the above constants valid for all contracting groups and

their Basilica groups, yielding λ “ 2
3 for B?

8.3.5 Word growth

We now provide some examples of the possible growth types of Basilica groups. It is known

that the original Basilica group B has exponential word growth, cf. [59, Proposition 4]. The

same proof as the one given there also shows that Bas2pOmq is of exponential growth for all

m ě 2. This, however, is not a general phenomenon.

Proposition 8.3.17. Let a “ p0 1qpa, idq be the generator of the dyadic odometer acting

on the binary rooted tree. Then Basspxpid, aqyq is a free abelian group of rank s, and is of

polynomial growth in particular.

Proof. The element pid, aq stabilises the ray 0, thus by Lemma 8.3.8 we have

rβipxpid, aqyq, βjpxpid, aqyqs “ id

for distinct i, j P r0, s´ 1s. Also βipxpid, aqyq – Z for all i P r0, s´ 1s.

As another example, we prove that there is a group of intermediate word growth such

that its second Basilica group has exponential word growth.

Proposition 8.3.18. Let G “ xa “ p1 2 3q, b “ pa, 1, bqy be the Fabrykowski–Gupta

group [35] acting on the ternary rooted tree, which is of intermediate growth according

to [13]. Then there exists an element f P AutT such that the group Bas2pG
f q is of ex-

ponential growth.
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Proof. The Fabrykowski-Gupta group is a GGS-group. In contrast to the Gupta–Sidki 3-

group it is not periodic: an example for an element of infinite order is ab, for which the

relation

pabq3 “ pab, ba, baq

holds. In view of the decomposition it is clear that ab acts spherically transitively on T and

thus by a result of Gawron, Nekrashevych and Sushchansky [47] it is Aut T -conjugate to the

3-adic odometer group. Let f P AutT be an element such that pabqf “ p1 2 3qppabqf , 1, 1q.

Then the subgroup generated by β0ppabq
f q and β1ppabq

f q in Bas2pG
f q is isomorphic to the

generalised Basilica group Bas2pO3q, which is of exponential growth by following the proof

of [59, Proposition 4] (which is the same result for B) replacing the 2-cycle with a 3-cycle

corresponding to a|ϵ.

The same idea can be used to obtain the following proposition.

Proposition 8.3.19. Let G ď AutT be a group containing an element acting spherically

transitively on T . Then there is an AutT -conjugate Gf of G such that BasspG
f q has expo-

nential word growth.

8.3.6 Weakly Branch Groups

For every vertex v P T the rigid vertex stabiliser of v in G is the subgroup of all elements

that fix all vertices outside the subtree rooted at v. For every n P N0 the n-th rigid layer

stabiliser RistGpnq is the normal subgroup generated by all rigid vertex stabilisers of n-th

layer vertices. A group G ď AutT is called a weakly branch group, if G acts spherically

transitively and all rigid layer stabilisers RistGpnq are non-trivial. If there is a subgroup

H ď G such that ψ1pStHp1qq ě Hˆ¨ ¨ ¨ˆH, the group G is said to be weakly regular branch

over H. Clearly, a group that is weakly regular branch group over a non-trivial subgroup

is a weakly branch group.

From Lemma 8.2.4, it follows that elements of the rigid layer stabilisers of G translate

to elements of rigid layer stabilisers of BasspGq.

Lemma 8.3.20. Let n “ qs ` r P N0, with r P r0, s´ 1s and q ě 0. Let B “ BasspGq for

G ď AutT . Then RistBpnq contains βipRistGpq ` 1qq and βjpRistGpqqq for 0 ď i ă r and

for r ď j ă s.

We immediately obtain the following proposition.

Proposition 8.3.21. Let G ď AutT be a weakly branch group. Then B ..“ BasspGq is

again weakly branch.
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This proves the statement p5q of Theorem 8.1.1.

The group BasspGq can be weakly branch even when G is not weakly branch. We recall

that for any group G and an abstract word ω on k letters, the set of ω-elements and the

verbal subgroup associated to ω are

Gω ..“ tωph0, . . . , hk´1q | h0, . . . , hk´1 P Gu and ωpGq ..“ xGωy respectively.

Proposition 8.3.22. Let G ď AutT be a self-similar strongly fractal group and let B ..“

BasspGq. Let ω be a law in G, i.e. a word ω such that ωpGq “ 1, but let ω not be a law in

B. Then B is weakly regular branch over ωpBq.

Proof. Let b “ ωpb0, . . . , bk´1q ‰ id with bi P B for i P r0, k ´ 1s. By Lemma 8.3.3 there are

elements ci P StBp1q such that ci|0 “ bi and ci|x P βs´1pGq for all x P Xzt0u.

For every x P X, let dx P B be an element such that dx|x “ id and dxpxq “ 0 (cf.

Lemma 8.2.1). Then cdxi stabilises the first layer and has sections cdxi |x “ bi and cdxi |y “

pci|dxpyqq
dx|y P βs´1pGq

dx|y for y ‰ x.

Since cdxi stabilises the first layer, the section maps are homomorphisms and

ωpcdx0 , . . . , c
dx
k´1q|y “ ωpcdx0 |y, . . . , c

dx
k´1|yq “

$

’

&

’

%

b, if y “ x

id else,

because in the second case we are evaluating ω in a group isomorphic to G. This shows

that Bωˆ¨ ¨ ¨ˆBω is geometrically contained in Bω, and thus the same holds for the verbal

subgroups that are generated by these sets.

We point out that, if ω is a law in B, then B cannot be weakly branch as it satisfies

an identity. Proposition 8.3.22 allows to obtain examples of groups that are weakly branch

over some prescribed verbal subgroup. We provide an easy example:

Example 8.3.23. The group D ..“ xσ, by, with σ “ p0 1q and b “ pb, σq, acting on the

binary tree is isomorphic to the infinite dihedral group (hence metabelian). It is self-similar

and strongly fractal. Considering

rrβ1pσq, β0pσqs, rβ0pσq, β0pσbqss “ prβ0pσq, β1pσbqs, rβ0pσq, β1pb
´1σqsq ‰ id,

we see that the second Basilica Bas2pDq is not metabelian, and thus it is weakly branch

over the second derived subgroup of Bas2pDq.

152



8.4 Split groups, Layer Stabilisers and Hausdorff dimension

The subgroup βipGq ď BasspGq, for i P r0, s´ 1s, has the property that its elements have

non-trivial portrait only at vertices at levels n ”s i for n P N0.

We consider an algebraic analogue of this property that will be used to determine the

structure of the stabilisers of BasspGq.

Definition 8.4.1. Let G ď AutT and B ..“ BasspGq. Define:

Si ..“ xβjpGq | j ‰ iy ď B and Ni
..“ pSiq

B Ĳ B.

We write ϕi : B Ñ B{Ni for the canonical epimorphism with kernel Ni. The quotient B{Ni

is isomorphic to the quotient of G by the normal subgroup Ki
..“ β´1

i pβipGq XNiq. We call

Ki the i-th splitting kernel of G. The group G is called s-split if its s-th Basilica group B

is a split extension of Ni by βipGq for all i P r0, s´ 1s, or equivalently if all splitting kernels

of G are trivial.

Proposition 8.4.2. Let G ď AutT be a group that does not stabilise the vertex 0. Then

βiprG,Gsq ď Ni for i P r1, s´ 1s. In particular, an s-split group (for s ą 1) is abelian.

Proof. Let g, h P G, k P Gz stp0q and let i P r1, s´ 1s. Write γ “ βi´1pgq, η “ βi´1phq, γ “

βipgq, η “ βiphq and κ “ β0pkq. Then

κ´1pκqγ
´1
pκ´1qγ

´1ηpκqη|x “ κ´1|κpxqγ|κpxqκ|xpγ
´1η´1γq|xκ

´1|κpxqγ
´1|κpxqκ|xη|x

“ κ|´1
x γ|κpxqκ|xpγ

´1η´1γq|xκ|
´1
x γ|´1

κpxqκ|xη|x

“

$

’

&

’

%

rγ, ηs if x “ 0,

id otherwise.

Thus κ´1pκqγ
´1
pκ´1qγ

´1ηpκqη “ prγ, ηs, id, . . . , idq “ rγ, ηs is an element of Ni X βipGq.

We remark that rG,Gs ď K0 does not necessarily hold. For example, consider a group

G such that rG,Gs ę StGp1q. Since N0 ď StBasspGqp1q, the zero-th splitting kernel can not

contain rG,Gs.

Definition 8.4.3. We call a subgroup H of a group G non-absorbing in G if for all

h0, . . . , hm´1 P H such that ψ´1
1 ph0, . . . , hm´1q P G, implies ψ´1

1 ph0, . . . , hm´1q P H. If

G is weakly branch over H, then H is non-absorbing in G.

Proposition 8.4.4. Let G ď AutT be self-similar and such that G|ϵ acts regularly on X.

Assume that rG,Gs is non-absorbing in G. Then for i P r1, s´ 1s we have Ki “ rG,Gs, and

K0 ď rG,Gs. In particular, if G is abelian, it is s-split for all s P N`.
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Proof. The inclusion rG,Gs ď Ki for i P r1, s´ 1s is proven in Proposition 8.4.2. Thus we

prove Ki ď rG,Gs for i P r0, s´ 1s.

Set B ..“ BasspGq and define N ..“
Ťs´1
i“0 pβipGq XNiq. We employ the decomposition in

syllables, cf. Subsection 8.3.4. For every b P N there is an index i P r0, s´ 1s such that b

can be written both as an element of the image of some βi and a word in Ni, i.e.

b “ βipg0q “

ℓpbq
ź

j“1

phjq
βipgjq (˚)

for suitable ℓpbq P N0, gj P G and hj P Si. The minimal possible value of ℓpbq is called the

restricted syllable length, and from here onwards we use the symbol ℓ for this invariant. Write

C “
Ťs´1
i“0 βiprG,Gsq (notice that this a union of subsets with pairwise trivial intersection),

and define

M ..“ tb P N zC | ℓpbq ď ℓpcq for all c P N zCu,

the set of all non-commutator elements with minimal restricted syllable length.

We shall prove that for every b PM there exists a first level vertex xi P X such that:

1. b|xi PM and

2. b|x “ id for all x P Xztxiu.

Furthermore we prove that

3. b P StBp1q, i.e. M ď StBp1q.

Every subset M Ď AutT with these properties is empty. Indeed, if b P M, there is some

vertex u P T such that b|u ‰ id, since b is not trivial. But by properties p1q and p2q

b|u is either trivial or a member of M, hence by property p3q stabilises the first layer, a

contradiction.

But if M is empty, N is contained in C, hence all splitting kernels are subgroups of

rG,Gs, finishing the proof.

Assume that there is some b PM. We fix the decomposition and the type given by (˚),

but write ℓ for ℓpbq to shorten the notation.

We first observe that ℓ ‰ 1. If ℓ “ 1, we have βipg0q “ h
βipg1q
1 , consequently h1 P

βipGq X Si. But h1|
u “ id for all u with |u| ”s i, while βipGq|

u “ tidu for u R ωipT q by

Lemma 8.2.4. Thus h1 “ id “ b RM, which is a contradiction.

We split the proof of statements p1q to p3q into two cases: i “ 0 and i ‰ 0.
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Case i “ 0: Since N0 ď StBp1q, statement p3q is fulfilled. We have S0|0 “ Ss´1 and

S0|x “ tidu for x P Xzt0u. Also β0pGq|x ď βs´1pG|xq for x P X, hence N0|x ď Ns´1. Thus

all sections b|x are members of βs´1pGq XNs´1 Ď N .

The first layer sections of b are given by

b|x “ βs´1pg0|xq “
ź

jPLx

phj |0q
βs´1pgj |xq, for x P X,

where Lx “ tj | 1 ď j ď ℓ and gjpxq “ 0u. The sum
ř

xPX |Lx| equals ℓ. By the minimality

of ℓ, either all sections of b are contained in βs´1prG,Gsq, or there is some xi P X such

that ℓpb|xiq “ |Lxi | “ ℓ. In the first case, since rG,Gs is non-absorbing in G, this implies

b P β0prG,Gsq, a contradiction. In the second case, Lx “ H for x ‰ xi, i.e. b|x “ id for

x ‰ xi. This proves statement (2). Furthermore, if b|xi RM, it is contained in βs´1prG,Gsq.

Since rG,Gs is non-absorbing over G, this implies b P β0prG,Gsq. Thus b|xi PM, and state-

ment (1) is true.

Case i ‰ 0: Recall that b|x “ βipg0q|x “ id for x ‰ 0. This is statement p2q with xi “ 0.

We consider the first layer sections of b. For x P X and 1 ď j ď ℓ,

h
βipgjq
j |x “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

phj |xq
βi´1pgjq if x “ 0 and hj P stBp0q,

hj |xβi´1pgjq if x “ 0 and hj R stBp0q,

βi´1pg
´1
j qhj |x if hj R stBp0q and x “ h´1

j p0q,

hj |x otherwise.

(:)

Since G|ϵ acts regularly, stBp0q “ StBp1q. We divide the long product in (˚) into segments

that stabilise the first layer: Let x P X, and consider the subsequence pj
pkq
x qkPr1,txs of r1, ℓs

consisting of all indices j
pkq
x such that p

śℓ

j“j
pkq
x
hjqpxq “ 0. Clearly

ř

xPX tx “ ℓ.

Set j
p0q
x “ 1 and j

ptx`1q
x “ ℓ ` 1. Then

śj
pk`1q
x ´1

j“j
pkq
x

hj P StBp1q for all k P r1, txs, and one

may write

b “
tx
ź

k“0

j
pk`1q
x ´1
ź

j“j
pkq
x

phjq
βipgjq. (;)

We now make another case distinction.

Subcase tx “ ℓ for some x P Xzt0u: We will prove that this case can not occur. The

equation tx “ ℓ implies hℓpxq “ 0 and hj P StBp1q for all j P r1, ℓ´ 1s. We may assume

gℓ “ id, by passing to a conjugate if necessary. Looking at the second and fourth case of
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(:), we obtain

βi´1pg0q “ b|0 “
ℓ´1
ź

j“1

phj |hℓp0qq ¨ hℓ|0 P Ni´1.

Thus βi´1pg0q is an element of N of restricted syllable length at most 1, hence trivial. Con-

sequently g0 and b are trivial, a contradiction.

Subcase t0 “ ℓ: This implies hj P StBp1q for all j P r1, ℓs, and statement (3) holds. By the

first case of (:)

b|0 “

ℓpbq
ź

j“1

hj |0
βi´1pgjq P Ni´1 X βi´1pGq,

which is of restricted syllable length at most ℓ. As we previously argued in the case i “ 0, we

have b|0 R βi´1prG,Gsq and consequently statement (1) holds, since otherwise b P βiprG,Gsq

because rG,Gs is non-absorbing over G.

Subcase tx ă ℓ for all x P X: We shall prove that this case can not occur. Combining (;)

with (:) for x P X we calculate

b|x “
tx´1
ź

k“0

ˆˆ

Πj
pk`1q
x ´1

j“j
pkq
x

phjq
βipgjq

˙

|0

˙

´

Π
ℓpbq

j“j
ptxq
x

phjq
βipgjq

¯

|x

and for k P r1, tx ´ 1s

j
pk`1q
x ´1
ź

j“j
pkq
x

phjq
βipgjq|0 “ βi´1pg

´1

j
pkq
x

qp

j
pk`1q
x ´1
ź

j“j
pkq
x

hj |
śj

pk`1q
x ´1

i“j`1 hip0q
qβi´1pgjpk`1q

x ´1
q

“ βi´1pg
´1

j
pkq
x

g
j
pk`1q
x ´1

qp

j
pk`1q
x ´1
ź

j“j
pkq
x

hj |
śj

pk`1q
x ´1

i“j`1 hip0q
q
βi´1pg

j
pk`1q
x ´1

q
.

Consequently, every segment
śj

pk`1q
x ´1

j“j
pkq
x

phjq
βipgjq of b contributes at most one syllable of

Ni´1 and a member of βi´1pGq to b|x. We obtain

b|x ”Ni´1

$

’

&

’

%

βi´1

´

g´1
1

śtx
k“1

´

g
j
pkq
x ´1

g´1

j
pkq
x

¯

gℓ

¯

if x “ 0,

βi´1

´

śtx
k“1

´

g
j
pkq
x ´1

g´1

j
pkq
x

¯ ¯

otherwise.

Write b|x “ βi´1pfxqnx with nx P Ni and fx equal to the corresponding product in G in

the last equation. Since the subsequences form a partition, every βi´1pgjpkqx
q and its inverse

appear in precisely one section of b, and we have

ź

xPX

b|x ”Ni´1

ź

xPX

βi´1pfxq ”βi´1prG,Gsq

ℓ
ź

j“1

βi´1pgjg
´1
j q “ 1.
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Now we look at nx. Since every segment
śj

pk`1q
x ´1

j“j
pkq
x

phjq
βipgjq contributes at most one syllable,

and hj R StBp1q for some j P r1, ℓs, we have ℓpnxq ď tx ă ℓ. Also βi´1pfxqnx “ b|x “ id

for x ‰ 0, hence nx “ βi´1pf
´1
x q P N . By minimality, fx P rG,Gs. Then also f0 ”rG,Gs

ś

xPX fx ”rG,Gs id, and βi´1pf
´1
0 g0q “ βi´1pf

´1
0 qb|0 “ n0 P N . Again, by minimality,

f´1
0 g0 P rG,Gs, thus g0 P rG,Gs, a contradiction.

This completes the proof.

Example 8.4.5. Let BasspOd
mq be a generalised Basilica group (cf. Definition 8.2.6). Since

Od
m is free abelian and self-similar, and Od

m|
ϵ is cyclic of order m, by Proposition 8.4.4, the

group Od
m is s-split.

Question 8.4.6. Motivated by the small gap between Proposition 8.4.4 and Proposi-

tion 8.4.2 we ask:

Is every abelian group G ď AutT acting spherically transitive s-split for all s ą 1?

Corollary 8.4.7. Let G ď AutT be a self-similar s-split group. Then the abelianisation

BasspGq is

BasspGq
ab – Gs.

Proof. Consider the normal subgroup H ..“ xrβipGq, βjpGqs | i, j P r0, s´ 1s, i ‰ jyBasspGq

and observe that H ď Ni for all i P r0, s´ 1s. We obtain an epimorphism Gs Ñ BasspGq{H,

mapping the i-th component of Gs to βipGqpHq, for i P r0, s´ 1s. This map is also injective.

Let
ś

iPr0,s´1s βipgiq ”H
ś

iPr0,s´1s βiphiq for some gi, hi P G. Then for all x P X

βxpgxh
´1
x q ”H

ź

iPr0,s´1sztxu

βipg
´1
i hiq P Nx

and βxpgxh
´1
x q P Nx. Since G is s-split, this implies gx “ hx. Thus BasspGq{H – Gs. But

from Proposition 8.4.2 G is abelian and consequently H “ rBasspGq,BasspGqs.

Proposition 8.4.8. Let G ď AutT be a torsion-free self-similar group such that the quo-

tient G{K with K “ β´1
0 pβ0pGq XN0q is again torsion-free. Then BasspGq is torsion-free.

Proof. Let b P BasspGq be a torsion element. Since G{K is torsion-free, we obtain b P

kerϕ0 “ N0 ď StBasspGqp1q. Thus the first layer sections of b are again torsion elements

of BasspGq, because BasspGq is self-similar by Lemma 8.3.2. Hence an iteration of the

argument yields b “ id.

Question 8.4.9. On the other end of the spectrum, the group Bas2pGq (cf. Example 8.3.11)

is periodic as is G, which can be proven analogous to [18, Theorem 6.1], and the second Basil-
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ica groups of the periodic Gupta-Sidki-p-groups (cf. Example 8.3.10) are periodic by [91].

Motivated by this observation we ask:

Is there a periodic group G ď AutT acting spherically transitive such that BasspGq is

not periodic for some s P N`?

Proposition 8.4.8 and Corollary 8.4.7 prove Theorem 8.1.3.

8.4.1 Layer Stabilisers

For an s-split group G ď AutT the s-th Basilica decomposes as BasspGq “ Ni ¸ βipGq.

Recall from Definition 8.4.1 that ϕi denotes the map to BasspGq{Ni, identified with the

quotient G{Ki, such that ϕipnβipgqq “ gKi for all g P G,n P Ni.

Lemma 8.4.10. Let G ď AutT be a strongly fractal group and let B “ BasspGq. Let

b0, . . . , bm´1 P B. Then ψ´1
1 pb0, . . . , bm´1q is an element of StBp1q if and only if there is an

element g P StGp1q such that for all x P X

ϕs´1pbxq “ g|xKs´1.

Proof. If there is some element g P StGp1q of the required form, clearly

β0pgq ”ψ´1
1 pNm

s´1q
pb0, . . . , bm´1q.

Now we claim that ψ1pN0q ě Nm
s´1. Let

b “
ℓ´1
ź

j“0

h
βs´1pgjq
j P Ns´1,

with hj P Ss´1. Then there are elements ĥj “ phj , id, . . . , idq P S0 by the definition of

Ss´1. Furthermore, since G is strongly fractal, there are elements ĝj P StGp1q such that

β0pĝjq|0 “ βs´1pgjq, yielding

ℓ´1
ź

j“0

ĥ
β0pĝjq
j “ pb, id, . . . , idq.

Since G acts spherically transitively, the claim follows by Lemma 8.2.1. Thus there is an

element in N0β0pgq ď StBp1q with sections pb0, . . . , bm´1q.

Let now b “ ψ´1
1 pb0, . . . , bm´1q P StBp1q. Then b decomposes as a product nβ0pgq with

n P N0 and g P StGp1q. This implies, for any x P X,

ϕs´1pbxq “ ϕs´1ppnβ0pgqq|xq “ ϕs´1pβs´1pg|xqq “ g|xKs´1.

Lemma 8.4.11. Let G be fractal and self-similar and let B “ BasspGq. Let n P N0.
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(i) ψ1pβipStGpnqq
Bq “ pβi´1pStGpnqq

Bqm for all i ‰ 0.

Assuming further that G is very strongly fractal,

(ii) ψ1prβ0pStGpn` 1qq, N0s
Bq “ prβs´1pStGpnqq, Ns´1s

Bqm.

Proof. (i) The inclusion ψ1pβipStGpnqq
Bq ď pβi´1pStGpnqq

Bqm is obvious. We prove the

other direction. Let g P StGpnq and b P B. Since B is fractal by Lemma 8.3.3, there is an

element c P stBp0q such that c|0 “ b. Now

pβipgqq
c “ pβi´1pgq, id, . . . , idq

c “ pβi´1pgq
b, id, . . . , idq,

yielding statement (i), by Lemma 8.2.1.

(ii) The inclusion ψ1prβ0pStGpn ` 1qq, N0s
Bq ď prβs´1pStGpnqq, Ns´1s

Bqm follows di-

rectly from N0|x ď Ns´1 and β0pStGpn ` 1qq|x ď βs´1pStGpnqq, where x P X. Thanks to

Lemma 8.2.1, for the other inclusion it is enough to prove that prβs´1pgq, ks, id, . . . , idq is

contained in ψ1prβ0pStGpn` 1qq, N0s
Bq for all g P StGpnq and k P Ns´1. Let

k “
ℓ
ź

j“0

pβij pkjqq
βs´1pk1jq P Ns´1.

Since G is strong fractal there are elements tj P StGp1q such that tj |0 “ k1j . Furthermore,

since G is very strongly fractal there is an element h P StGpn` 1q such that h|0 “ g. Then

rβ0phq,
ℓ
ź

j“0

pβij`1pkjqq
β0ptjqs P rβ0pStGpn` 1qq, N0s

B

and

rβ0phq,
ℓ
ź

j“0

pβij`1pkjqq
β0ptjqs|x “ rpβ0phqq|x,

ℓ
ź

j“0

ppβij`1pkjqq|xq
pβ0ptjqq|xs

“

$

’

&

’

%

rβs´1pgq, ks if x “ 0,

rβs´1ph|xq,
śℓ
j“0 id

βs´1ptj |xqs “ id otherwise.

Proof of Theorem 8.1.4. Let B “ BasspGq. For any n P N0, write n “ sq ` r with q ě 0

and r P r0, s´ 1s. We have to prove

StBpnq “ xβipStGpq ` 1qq, βjpStGpqqq | 0 ď i ă r ď j ă syB.

For convenience, we will denote the right-hand side of this equation by Hn. It is clear that

Hn ď StBpnq for all n P N0. It remains to establish the other inclusion. For n “ 0 the

statement is clearly true, so we proceed by induction and assume that the statement is true

for some fixed n “ sq ` r with q ě 0 and r P r0, s´ 1s. Define

J ..“ xβipStGpq ` 1qq, βjpStGpqqq, rβs´1pStGpqqq, Ns´1s
B | 0 ď i ď r ´ 1 ă j ă s´ 1yB,
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and observe that by Lemma 8.4.11 we find Jm ď ψ1pHn`1q, which yields

pStBpnqq
m{ψ1pHn`1q “ pβs´1pStGpqqqq

mψ1pHn`1q{ψ1pHn`1q.

Hence for every g P StBpn` 1q, there are elements t0, . . . , tm´1 P StGpqq such that

ψ1pgq ”ψ1pHn`1q pβs´1pt0q, . . . , βs´1ptm´1qq.

Since ϕs´1βs´1ptxq “ txKS´1 for all x P X, g P StBp1q andHn`1 ď StBp1q, by Lemma 8.4.10

there are elements k0, . . . , km´1 P Ks´1 and h P StGp1q such that

ψ´1
1 ph|0k0, . . . , h|m´1km´1q “ ψ´1

1 pt0, . . . , tm´1q.

Define rh “ hψ´1
1 pk0, . . . , km´1q. NowG is weakly regular branch overKs´1, hence ψ

´1
1 pKm

s´1q ď

StKs´1p1q, and consequently rh P StGp1q. But rh|x “ tx P StGpqq for x P X, whence

rh P StGpq ` 1q and

pβs´1pt0q, . . . , βs´1ptm´1qq “ ψ1pβ0prhqq P ψ1pβ0pStGpq ` 1qqq ď ψ1pHn`1q,

implying g P Hn`1. This completes the proof.

8.4.2 Hausdorff Dimension

We remind the reader that Γ is the subgroup of Aut T consisting of all automorphisms whose

labels are elements of xσy, with σ being a fixed m-cycle in SympXq.

Definition 8.4.12. Let G ď Γ. The Hausdorff dimension of G relative to Γ is defined by

dimHG ..“ lim inf
nÑ8

logm |G{ StGpnq|

logm |Γ{ StΓpnq|
“ pm´ 1q lim inf

nÑ8

logm |G{ StGpnq|

mn
.

This relates to the usual definition of Hausdorff dimension over arbitrary spaces by taking

the closure, i.e. using this definition, the group G has the same Hausdorff dimension as its

closure G in Γ, cf. [9]. We drop the base m in logm from now on. Denote the quotient

StGpnq{ StGpn` 1q by LGpnq. The integer series (for n ą 0) obtained by

oGpnq ..“ logp|LGpn´ 1q|mq ´ log |LGpnq|

is called the series of obstructions of G. We set oGp0q “ ´1 for convenience.

The series of obstructions of a group G determines its Hausdorff dimension, precisely how

we will see in Lemma 8.4.13. Nevertheless, one might wonder why it is necessary to define

this seemingly impractial invariant. We will demonstrate in Proposition 8.4.16 that it is (to
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some degree) preserved under G ÞÑ BasspGq. Furthermore, many well-studied subgroups of

Γ have a well-behaved series of obstructions. For example, it is easy to see that Γ itself has

oΓpnq “ log | ≀n Cm{ ≀n´1 Cm|
m ´ log | ≀n`1 Cm{ ≀n Cm|

“ m logmmn
´ logmmn`1

“ 0,

for n P N`, where ≀nA is the n-times iterated wreath product of A, with the convention

that ≀0A is the trivial group. On the other hand, since the layer stabiliser of Od
m are the

subgroups generated by xπ0paq
mk`1

, . . . , πl´1paq
mk`1

, πlpaq
mk
, . . . , πd´1paq

mk
y, the quotients

LOd
m
pnq are all cyclic of order m, and

oOd
m
pnq “ m´ 1.

A Gupta–Sidki p-group G has precisely two terms unequal to 0, a consequence of StGpnq “

StGpn´ 1qp for n ě 3, cf. [38]. Similarly, the series of obstructions of the Grigorchuk group

has only one non-zero term.

Lemma 8.4.13. Let G ď Γ act spherically transitive. Then

dimHG “ 1´ lim sup
nÑ8

n
ÿ

i“1

pm´i ´m´pn`1qqoGpiq.

Proof. By definition log |LGp0q| “ 1 and log |LGpnq| “ m log |LGpn´ 1q| ´ oGpnq for n ě 1.

An inductive argument yields

log |G{ StGpn` 1q| “ log |G{ StGpnq| ´
n
ÿ

k“0

mn´koGpkq “ ´

n
ÿ

k“0

mk`1 ´ 1

m´ 1
oGpn´ kq.

This gives

lim inf
nÑ8

pm´ 1q

mn`1
log

ˇ

ˇ

ˇ

ˇ

G

StGpn` 1q

ˇ

ˇ

ˇ

ˇ

“ ´ lim sup
nÑ8

n
ÿ

i“0

pmi´n ´m´pn`1qqoGpn´ iq

“ 1´ lim sup
nÑ8

n
ÿ

i“1

pm´i ´m´pn`1qqoGpiq.

Lemma 8.4.14. Let G ď Γ be self-similar. Then for all n ą 0

oGpnq “ logrStGpn´ 1qm : ψ1pStGpnqqs ´ logrStGpnq
m : ψ1pStGpn` 1qqs.

Proof. We have, for n ą 0,
ˇ

ˇ

ˇ

ˇ

StGpn´ 1qm

ψ1pStGpnqq

ˇ

ˇ

ˇ

ˇ

“
| StGpn´ 1qm{ψ1pStGpn` 1qq|

|LGpnq|

“
|LGpn´ 1q|m

|LGpnq|

ˇ

ˇ

ˇ

ˇ

StGpnq
m

ψ1pStGpn` 1qq

ˇ

ˇ

ˇ

ˇ

,

hence

oGpnq “ logrStGpn´ 1qm : ψ1pStGpnqqs ´ logrStGpnq
m : ψ1pStGpn` 1qqs.
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Lemma 8.4.15. Let G be very strongly fractal, self-similar and weakly regular branch over

the splitting kernel Ks´1. Then for all ℓ, n P N`

ψ1pβ0pStGpℓ` 1qq X rβ0pStGpn` 1qq, N0s
Bq

“ pβs´1pStGpℓqq X rβs´1pStGpnqq, Ns´1s
Bqm.

Proof. The left-hand set is clearly contained in the right-hand set. We prove the other inclu-

sion. Let pb0, . . . , bm´1q P pβs´1pStGpℓqq X rβs´1pStGpnqq, Ns´1s
Bqm. By Lemma 8.4.11(ii)

there exists b P rβ0pStGpn`1qq, N0s
B ď StBp1q such that ψ1pbq “ pb0, . . . , bm´1q. It remains

to prove that b P β0pStGpℓ` 1qq.

Since the set βs´1pStGpℓqq X rβs´1pStGpnqq, Ns´1s
B is contained in βs´1pStKs´1p1qq and

since G weakly regular branch over Ks´1, there is an element g P Ks´1 such that

ψ1pgq “ pβ
´1
s´1pb0q, . . . , β

´1
s´1pbm´1qq P StGpℓq

m.

Consequently, ψ1pβ0pgqq “ pb0, . . . , bm´1q “ ψ1pbq, and b “ β0pgq is a member of ψ1pβ0pStGpℓ`

1qq X rβ0pStGpn` 1qq, N0s
Bq.

Proposition 8.4.16. Let G ď Γ be very strongly fractal, self-similar and weakly regular

branch over the splitting kernel Ks´1. Then the series of obstructions for B “ BasspGq

fulfills

oBpnq “

$

’

&

’

%

0 if n ıs 0,

oGp
n
s q otherwise.

Proof. Consider first the case n ”s k ‰ 0. By Theorem 8.1.4 the quotient LBpnq is nor-

mally generated in B by images of elements of βkpStGptn{suqq. Similarly the images of

βk´1pStGptn{suqq are the normal generators of LBpn´1q. Thus Lemma 8.4.11(i) shows that

oBpnq “ 0.

Now consider the case n “ qs. To shorten the notation, we abbreviate

Rq ..“ β0pStGpqqq for q P N0 and

Tq ..“ βs´1pStGpqqq for q P N0 .

Define the normal subgroups

U “ xStBpn` 1q Y rRq, N0s
By Ĳ B and

V “ xStBpnq Y rTq´1, Ns´1s
By Ĳ B.
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Using Theorem 8.1.4, we see that U and V , respectively, are normally generated by the sets

Rq`1 Y

s´1
ď

i“1

pβipStGpqqqq Y rRq, N0s and Tq Y
s´2
ď

i“0

pβipStGpqqqq Y rTq´1, Ns´1s.

Let g P StGpq ` 1q and b P B. We write b “ β0pgbqnb for gb P G and nb P N0. Then

β0pgq
b “ β0pg

gbqnb “ β0pg
gbqrβ0pg

gbq, nbs P Rq`1rRq`1, N0s.

Consequently, we drop the conjugates of Rq`1 in our generating set for U , and write

U “ xRq`1 Y

s´1
ď

i“1

`

βipStGpqqq
B
˘

Y rRq, N0s
By.

Similarly, the subgroup V is generated by

Tq Y
s´2
ď

i“0

`

βipStGpqqq
B
˘

Y rTq´1, Ns´1s
B.

Using Theorem 8.1.4, it is now easy to see that

StBpnq{U – Rq{pRq X Uq.

Since βipStGpqqq ď StBpn` 1q for i ‰ 0, we see that the intersection

xβ1pStGpqqq Y ¨ ¨ ¨ Y βs´2pStGpqqq Y Tqy
B XRq ď Rq`1

is contained in Rq`1. We conclude

Rq X U “ Rq XRq`1rRq, N0s
B.

Now

Rq XRq`1rRq, N0s
B “ Rq`1pRq X rRq, N0s

Bq

and

rRq XRq`1rRq, N0s
B : Rq`1s “ rRq X rRq, N0s

B : Rq`1 X rRq, N0s
Bs.

Consequently, the order of StBpnq{U equals

|LGpqq| ¨ rRq X rRq, N0s
B : Rq`1 X rRq, N0s

Bs´1.

A similar computation shows that the order of StBpn´ 1q{V is

|LGpq ´ 1q| ¨ rTq´1 X rTq´1, Ns´1s
B : Tq X rTq´1, Ns´1s

Bs´1.
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We now apply Lemma 8.4.15 in the cases ℓ “ n “ q ´ 1 and ℓ “ n` 1 “ q, i.e. we have

ψ1pRq X rRq, N0s
Bq “ pTq´1 X rTq´1, Ns´1s

Bqm and

ψ1pRq`1 X rRq, N0s
Bq “ pTq X rTq´1, Ns´1s

Bqm.

We see that the second factor in the formula for the order of StBpnq{U is the m-th power

of the corresponding factor for StBpn´ 1q{V , and obtain

| StBpn´ 1q{V |m

| StBpnq{U |
“
|LGpq ´ 1q|m

|LGpqq|
“ moGpqq.

Now we compare V m and ψ1pUq. By Lemma 8.4.11(i) and (ii), ψ1pUq is generated by

ψ1pRq`1q Y

s´2
ď

i“0

`

ppβipStGpqqqq
Bqm

˘

Y prTq´1, Ns´1s
Bqm.

We define yet another subgroup

W “ x

s´2
ď

i“0

`

ppβipStGpqqqq
Bqm

˘

Y prTq´1, Ns´1s
Bqmy ď ψ1pUq ď Bm.

Evidently W Ĳ Bm, W ď Nm
s´1, and W Ĳ ψ1pUq ď V m. We have

ψ1pUq{W – ψ1pRq`1q{pψ1pRq`1q XW q and

V m{W – Tmq {pT
m
q XW q.

The two divisors are equal: Clearly ψ1pRq`1q XW is contained in Tmq XW . Let

pβs´1pg0q, . . . , βs´1pgm´1qq P T
m
q XW ď pTq XNs´1q

m.

Since Tq X Ns´1 ď βs´1pKs´1q, the elements g0, . . . , gm´1 are members of Ks´1 X StGpqq.

Now since G is weakly regular branch over Ks´1, there is an element k P Ks´1X StGpq` 1q

such that ψ1pkq “ pg0, . . . , gm´1q, and consequently β0pkq P Rq`1 fulfills

ψ1pβ0pkqq “ pβs´1pg0q, . . . , βs´1pgm´1qq P ψ1pRq`1q XW.

We compute

rV m : ψ1pUqs “ rV
m{W : ψ1pUq{W s

“ rTmq : ψ1pRq`1qs

“ rpβs´1 ˆ ¨ ¨ ¨ ˆ βs´1qpStGpqq
mq : pβs´1 ˆ ¨ ¨ ¨ ˆ βs´1qpψ1pStGpq ` 1qqqs

“ rStGpqq
m : ψ1pStGpq ` 1qqs.
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This implies

rStBpn´ 1qm : ψ1pStBpnqqs “ rStBpn´ 1qm{ψ1pUq : ψ1pStBpnqq{ψ1pUqs

“
rStBpn´ 1qm : V msrV m : ψ1pUqs

rψ1pStBpnqq : ψ1pUqs

“
|LGpq ´ 1q|m

|LGpqq|
¨ rStGpqq

m : ψ1pStGpq ` 1qqs.

Since oBpkq “ 0 for k ıs 0, by Lemma 8.4.14,

logrStBpnq
m : ψ1pStBpn` 1qqs “ logrStBpn` s´ 1qm : ψ1pStBpn` sqs,

hence

oBpnq “ logrStBpn´ 1qm : ψ1pStBpnqqs ´ logrStBpn` s´ 1qm : ψ1pStBpn` sqqs

“oGpqq ` log

ˇ

ˇ

ˇ

ˇ

StGpqq
m

ψ1pStGpq ` 1qq

ˇ

ˇ

ˇ

ˇ

´ oGpq ` 1q ´ log

ˇ

ˇ

ˇ

ˇ

StGpq ` 1qm

ψ1pStGpq ` 2qq

ˇ

ˇ

ˇ

ˇ

“oGpqq ´ oGpq ` 1q ` oGpq ` 1q

“oGpqq.

Proof of Corollary 8.1.5. By Lemma 8.4.13 and Proposition 8.4.16

dimHG “ 1´ lim sup
nÑ8

n
ÿ

i“1

pm´i ´m´pn`1qqoGpiq and

dimH BasspGq “ 1´ lim sup
nÑ8

n
ÿ

i“1

pm´i ´m´pn`1qqoBasspGqpiq

“ 1´ lim sup
nÑ8

n
ÿ

i“1

pm´si ´m´psn`1qqoGpiq.

We provem´i´m´pn`1q ą m´si´m´psn`1q, equivalentlymsn`1´i`1 ą mspn´iq`1`mps´1qn.

This is a consequence of sn` 1´ i´pspn´ iq` 1q “ ps´ 1qi ě 1 and sn` 1´ i´ps´ 1qn “

n´ i` 1 ě 1, with equality precisely when i “ 1, s “ 2, resp. n “ i. Therefore at least one

of the differences is greater than 1, and the limit of
řn
i“1pm

´si ´m´psn`1qqoGpiq is strictly

greater than the limit of
řn
i“1pm

´i ´m´pn`1qqoGpiq. The statement follows.

Example 8.4.17. Let G ď AutpTpq, p a prime, be a GGS-group defined by the triple

pCp,Cp, ωq, cf. Definition 8.3.7, where Cp denotes the cyclic group of order p acting regularly

on X. To be a GGS-group means ωi “ ωj for i, j P N0, thus we write ω for ω1. This is a

pp´ 1q-tuple of endomorphisms of Cp. Every such endomorphism is a power map, hence we

may identify ω with an element pe1, . . . , ep´1q of Fp´1
p . Assume that

e1 ` ¨ ¨ ¨ ` ep´1 ”p 0 (‹)
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and that there is some i P r1, p´ 1s

ei ‰ ep´i. (˛)

In [38] the order of the congruence quotients G{ StGpnq is explicitly calculated in terms of

the rank t of the circulant matrix associated to the vector p0, e1, . . . , ep´1q, i.e. the matrix

with rows being all cyclic permutations of the given vector. Under our assumptions (‹) and

(˛), for all n P N`

logppG{ StGpn` 1qq “ tpn´1 ` 1,

and logppG{ StGp1qq “ 1. Additionaly, (‹) is equivalent to t ă p. By Lemma 8.4.14, for

n ą 2,

oGpnq “ p ¨ logpp|LGpn´ 1q|q ´ logpp|LGpnq|q

“ p ¨ logp
pt¨p

n´2`1

pt¨pn´3`1
´ log

pt¨p
n´1`1

pt¨pn´2`1
“ 0

and

oGp2q “ p ¨ log
pt`1

p
´ log

pt¨p`1

pt`1
“ tp´ tpp´ 1q “ t and

oGp1q “ p ¨ log p´ log
pt`1

p
“ p´ t.

Consequently, dimHG “ tpp´ 1q{p2 (cf. [38] for a more general formula).

We aim to apply Proposition 8.4.16. Condition (˛) is equivalent to G being weakly

regular branch (in fact, regular branch) over rG,Gs, by [38, Lemma 3.4]. More precisely, we

have

ψ1prStGp1q, StGp1qsq “ rG,Gs
p.

By Proposition 8.4.4 this implies that Ks´1 “ rG,Gs. We now prove that G is very

strongly fractal. It is easy to see that StGp1q|x “ G for all x P X, and by [38, Lemma

3.3] ψ1pStGpnqq “ StGpn´ 1qp for all n ě 3. Thus it remains to check if StGp2q|x “ StGp1q

for all x P X. By the fact that rStGp1q, StGp1qs|x “ rG,Gs for all x P X and rStGp2q :

rStGp1q, StGp1qss “ pp´t ě p (see again [38]), we see that StGp2q contains an element g such

that ψ1pgq P StGp1q
pzrG,Gsp. Hence at least for one x P X

StGp1q ě StGp2q|x ą rG,Gs.

But since rStGp1q : rG,Gss “ p by [38, Theorem 2.1], this implies StGp2q|x “ StGp1q,

and since G is spherically transitive, this holds for all x P X, and G is very strongly

fractal. We remark that by [103, Proposition 5.1] the condition (‹) alone implies that G is
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super strongly fractal, but our argument additionally needs (˛), since otherwise rrG,Gsp :

ψ1prStGp1q, StGp1qsqs “ p (cf. [38, Lemma 3.5]).

Now we may apply Proposition 8.4.16 to calculate the Hausdorff dimension of BasspGq:

oBasspGqpsq “ p´ t and oBasspGqp2sq “ t

and oBasspGqpnq “ 0 for all other values n P N`, hence

dimH BasspGq “ 1´ lim sup
nÑ8

n
ÿ

i“1

ˆ

1

pi
´

1

pn`1

˙

oBasspGqpiq

“ 1´ lim sup
nÑ8

ˆ

p´ t

ps
`

t

p2s
´
p´ t` t

pn`1

˙

“ 1´

ˆ

p´ t

ps
`

t

p2s

˙

“
ps´1 ´ 1

ps´1
`
tpps ´ 1q

p2s
.

8.5 The generalised Basilica groups

Let d, m, s P N` with m, s ě 2. In the subsequent sections 8.5, 8.6, 8.7 and 8.8 we study

the generalised Basilica groups, BasspOd
mq, where Od

m “ DdpOmq “ xπipaq | i P r0, d´ 1sy

(cf. Proposition 8.2.5 and Definition 8.2.6). For convenience, we use the following notation

for the generators of BasspOd
mq: let i P r0, d´ 1s and j P r0, s´ 1s, and

ai,j ..“ βjpπipaqq “ pai,j´1, id, . . . , idq, for j ‰ 0

ai,0 ..“ β0pπipaqq “ pai´1,s´1, . . . , ai´1,s´1q, for i ‰ 0

a0,0 ..“ β0pπ0paqq “ σpad´1,s´1, id, . . . , idq,

where σ is the m-cycle p0 1 . . . m´ 1q. For any fixed j, the elements ai,j commute and are

of infinite order.

Now we prove Theorem 8.1.6, which is obtained as corollaries of results from Section 8.3

and Section 8.4.

Proof of Theorem 8.1.6. The statements (i) and (ii) follow directly from Lemma 8.3.1,

Lemma 8.3.2 and Lemma 8.3.3. Proposition 8.3.5 together with Corollary 8.3.6 imply

the statement (ii). The statement (iii) is a consequence of Proposition 8.3.14 and Corol-

lary 8.3.15. Thanks to Proposition 8.4.4, the group Od
m is s-split. Therefore the statements

(iv), (v) and (vi) follow from Corollary 8.4.7, Proposition 8.4.8 and Proposition 8.3.22.

The proof of (vii) can easily be generalised from [59, Proposition 4]. For the special case

BasppOpq, where p is a prime, see [96].

We use Theorem 8.1.4 to provide a normal generating set for the layer stabilisers of the

generalised Basilica groups. This description of layer stabilisers is crucial in proving the

p-congruence subgroup property of the generalised Basilica groups (see Section 8.8).
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Theorem 8.5.1. Let n P N0. Write n “ sq ` r with r P r0, s´ 1s and q “ dk ` l ě 0 with

l P r0, d´ 1s. Then the n-th layer stabiliser of B “ BasspOd
mq is given by

StBpnq “ xa
mk`1

i,j , am
k

i1,j1 | 0 ď is` j ď ls` r ´ 1 ă i1s` j1 ď ds´ 1yB.

Proof. Let a be the generator of the m-adic odometer Om. Set G “ DdpOmq – Zd. For

every i P r0, d´ 1s, denote by ai “ πipaq the generators of G. Since powers of the elements

a0, . . . , ad´1 act on vertices of disjoint levels of them-regular rooted tree T and they commute

with each other, we have

StGpqq “ xa
mk`1

0 , . . . , am
k`1

l´1 , am
k

l , . . . , am
k

d´1y.

Now observe that for every vertex x P X, i P r0, ds and k P N0,

am
k

i |x “ am
k

i´1

am
k

0 |x “ am
k´1

d´1 .

Therefore StGpqq|x “ StGpq ´ 1q and hence G is very strongly fractal. A straightforward

calculation using Theorem 8.1.4 yields the result.

Using the description of the layer stabilisers of G, we obtain Theorem 8.1.7 as a direct

application of Lemma 8.4.13 and Proposition 8.4.16.

Proof of Theorem 8.1.7. The series of obstructions of G “ Od
m is constant m ´ 1 for all

n P N`, signifying Hausdorff-dimension 0 (cf. Lemma 8.4.13). We have seen in the proof of

Theorem 8.5.1 that BasspGq is very strongly fractal. Therefore, by Proposition 8.4.16 one

has oBasspGqpqsq “ m´ 1 for all q P N` and oBasspGqpnq “ 0 for all other levels.

According to Lemma 8.4.13 it is

dimH BasspGq “ 1´ lim sup
nÑ8

n
ÿ

i“1

pm´i ´m´pn`1qqoBasspGqpiq

“ 1´ pm´ 1q lim sup
nÑ8

˜

m´s 1´m
´stn{su

1´m´s
´ tn{sum´pn`1q

¸

“ 1´ pm´ 1q
m´s

1´m´s

“
ms ´m

ms ´ 1
.

In particular, the Hausdorff dimension is independent of d.
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8.6 An L-presentation for the generalised Basilica group

Let d, m, s P N` with m, s ě 2. In this section we will provide a concrete L-presentation

for the generalised Basilica group BasspOd
mq, hence proving Theorem 8.1.8. We will later

use this presentation to prove that all generalised Basilica groups BasspOd
pq with p a prime

have the p-congruence subgroup property.

Definition 8.6.1. [11, Definition 1.2] An L-presentation (or an endomorphic presentation)

is an expression of the form

L “ xY | Q | Φ | Ry,

where Y is an alphabet, Q,R Ă FY are sets of reduced words in the free group FY on Y

and Φ is a set of endomorphisms of FY . The expression L gives rise to a group GL defined

as

GL “ FY {xQY xΦypRqy
FY ,

where xΦypRq denotes the union of the images of R under every endomorphism in the monoid

xΦy generated from Φ. An L-presentation is finite if Y,Q,Φ, R are finite.

We now set out to prove Theorem 8.1.8. To do this, we follow the strategy from [59]

which is motivated from [53]: let

Y “ tai,j | i P r0, d´ 1s, j P r0, s´ 1su. (8.1)

For convenience, we do not distinguish notationally between the generators of BasspOd
mq

and the free generators for the presentation. Observe that for a fixed j the generators ai,j

and ai1,j of BasspOd
mq commute for all i, i1 P r0, d´ 1s. Write

Q “ trai,j , ai1,js | i, i
1 P r0, d´ 1s, j P r0, s´ 1su Ď FY (8.2)

and denote by F the quotient of FY by the normal closure of Q in FY . We identify F with

a free product of free abelian groups

F “ ˚
jPr0,s´1s

xai,j | i P r0, d´ 1sy – Zd ˚ ¨ ¨ ¨ ˚ Zd .

The group BasspOd
mq is a quotient of F . Let proj : F Ñ BasspOd

mq be the canonical

epimorphism. Now observe that the subgroup

∆ “ xa
ak0,0
i,j , a

m
0,0 | pi, jq P r0, d´ 1s ˆ r0, s´ 1sztp0, 0qu, k P r0,m´ 1sy, (8.3)
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is normal of index m in F and it is the full preimage of StBasspOd
mqp1q under the epimorphism

proj (cf. Theorem 8.5.1). We define a homomorphism Ψ : ∆ Ñ Fm modelling the process

of taking sections as follows:

Ψpam0,0q “ pad´1,s´1, . . . , ad´1,s´1q “.. z0,

Ψpa
ak0,0
i,0 q “ Ψpai,0q “ pai´1,s´1, . . . , ai´1,s´1q “.. zi for i ‰ 0,

Ψpa
ak0,0
i,j q “ pid˚k, ai,j´1, id

˚pm´k´1qq “.. xi,j,k for j ‰ 0,

Ψpa
a´k
0,0

i,j q “ pid˚pm´kq, a
a´1
d´1,s´1

i,j´1 , id˚pk´1qq,

where the ranges of i, j and k are as in (8.3). Clearly, kerpΨq ď kerpprojq. Define

αpv, kq “ a
mv0`k

0,0 av11,0 ¨ ¨ ¨ a
vd´1

d´1,0 for v “ pv0, . . . , vd´1q P Zd and k P r0,m´ 1s, (8.4)

R “ trai,j , a
αpv,kq
i1,j1 s | i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s, v P Zdu, (8.5)

where by abuse of notation we interpret αpv, kq and r P R both as elements of FY and their

images in F . We will prove in Proposition 8.6.3 that the kernel of Ψ is normally generated

from the image of R in F , implying that the set R belongs to the set of defining relators of

BasspOd
mq. By definition of the elements ai,j , we may obtain the elements of the set R as

vertex sections. To incorporate these elements to the set of defining relators we introduce

the following endomorphism of FY defined as

Φ :

$

’

’

’

’

’

&

’

’

’

’

’

%

ai,j ÞÑ ai,j`1 for j ‰ s´ 1,

ai,s´1 ÞÑ ai`1,0 for i ‰ d´ 1,

ad´1,s´1 ÞÑ am0,0,

(8.6)

where i P r0, d´ 1s and j P r0, s´ 1s.

Theorem 8.6.2. The generalised Basilica group admits the L-presentation

L “ xY | Q | Φ | Ry

where Y, Q, R and Φ are given by (8.1), (8.2), (8.5) and (8.6).

Observe that for any g P Q and r P N0, it holds that Φrpgq P xQFY y. Considering

the presentation defining F we may assume that Φ is an endomorphism of F and that R

is a subset of F . To prove Theorem 8.6.2, it is enough to show that kerpΨq “ xRF y and

kerpprojq “
Ť

rPN0
ΦrpRq. We will obtain the first part from Proposition 8.6.3 and the latter

from Lemma 8.6.5 to Lemma 8.6.7.
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Proposition 8.6.3. Let ∆̃ be the image of ∆ under Ψ. Let zv be the product zv00 ¨ ¨ ¨ z
vd´1

d´1

for every v “ pv0, . . . , vd´1q P Zd. Then ∆̃ admits the presentation

x S | R y

where S “ txi,j,k, zi | i P r0, d´ 1s, j P r1, s´ 1s, k P r0,m´ 1su and

R “

C

rxi,j,k, xi1,j,ks, rxi,j,k, x
zv

i1,j1,k1s, i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s,

rzi, zi1s k, k1 P r0,m´ 1s with k ‰ k1, v P Zd

G

.

As a consequence, we obtain that

kerpΨq “ xtrai,j , a
αpv,kq
i1,j1 s | i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s, v P ZduyF ,

where αpv, kq is given by (8.4).

Proof. Let A “ xai,j | i P r0, d´ 1s, j P r0, s´ 2syF and Z “ xz0, . . . , zd´1y – Zd be

subgroups of F and ∆̃ respectively. Notice that ∆̃ is a sub-direct product of m copies of F

and the elements xi,j,k and xi1,j1,k1 commute if k ‰ k1 or if k “ k1 and j “ j1. It follows from

the definition of Ψ that

Am “
A

xi,j,k i P r0, d´ 1s, j P r1, s´ 1s, k P r0,m´ 1s
E∆̃

ď ∆̃.

Hence ∆̃ “ AmZ, yielding ∆̃ “ Am ¸ Z. Now, since F is a free product of free abelian

groups, the group A is freely generated from the elements of the form

a
a
v0
d´1,s´1a

v1
0,s´1¨¨¨a

vd´1
d´2,s´1

i,j ,

where vi P Z, i P r0, d´ 1s and j P r0, s´ 2s. Therefore, the group Am is generated from

the elements

xz
v

i,j,k “ pid
˚k, a

a
v0
d´1,s´1a

v1
0,s´1¨¨¨a

vd´1
d´2,s´1

i,j´1 , id˚pm´k´1qq,

where i P r0, s´ 1s, j P r1, s´ 1s, k P r0,m´ 1s and

zv “ zv00 ¨ ¨ ¨ z
vd´1

d´1 “ pa
v0
d´1,s´1a

v1
0,s´1 ¨ ¨ ¨ a

vd´1

d´2,s´1, . . . , a
v0
d´1,s´1a

v1
0,s´1 ¨ ¨ ¨ a

vd´1

d´2,s´1q,

with vi P Z. We obtain a presentation of Am as

C

xz
v

i,j,k rxi,j,k, xi1,j,ks “ rx
zv

i,j,k, x
zv

1

i1,j1,k1s “ id, i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s,

k, k1 P r0,m´ 1s with k ‰ k1, v, v1 P Zd

G

.

Hence ∆̃, being a semi-direct product, admits the presentation xS | Ry, since conjugating

an element xi,j,k by zi does not yield a new relation. Therefore, the kernel of Ψ is normally
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generated from the preimage of the set of defining relators for ∆̃. Notice that the preimages

of the elements rzi, zi1s and rxi,j,k, xi1,j,ks are trivial in ∆. Hence,

kerpΨq “

C

ra
αpv,kq
i,j , a

αpv1,k1q
i1,j1 s i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s,

k, k1 P r0,m´ 1s with k ‰ k1, v, v1 P Zd

G

∆

.

Indeed, kerpΨq is normal in F . Given v P Zd and k P r0,m´ 1s, define

v “ ptpmv0 ` k ` 1q{mu, v1, . . . , vd´1q P Zd and

k “ k ` 1 pmod mq P r0,m´ 1s.

Then

αpv, kqa0,0 “ a
mv0`k`1

0,0 av11,0 ¨ ¨ ¨ a
vd´1

d´1,0 “ αpv, kq

αpv1, k1qa0,0 “ a
mv10`k1`1

0,0 a
v11
1,0 ¨ ¨ ¨ a

v1d´1

d´1,0 “ αpv1, k1q

implies

ra
αpv,kq
i,j , a

αpv1,k1q
i1,j1 sa0,0 “ ra

αpv,kqa0,0
i,j , a

αpv1,k1qa0,0
i1,j1 s “ ra

αpv,kq
i,j , a

αpv1,k1q
i1,j1 s P kerpΨq.

A similar calculation shows ra
αpv,kq
i,j , a

αpv1,k1q
i1,j1 s

a´1
0,0 P kerpΨq. We get

kerpΨq “
A

rai,j , a
αpv,kq
i1,j1 s i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s, v P Zd

EF
.

Notation 8.6.4. Let i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s, v P Zd and n P N0.

Define

Ω0
..“ kerpΨq, Ωn ..“ Ψ´1pΩmn´1q for n ě 1,

τv,kpi, j, i
1, j1q ..“ rai,j , a

αpv,kq
i1,j1 s, Xn

..“ xΦrpτv,kpi, j, i
1, j1qq | r P r0, nsyF ,

where αpv, kq is given by (8.4). Denote further by Ω the kernel of the epimorphism proj :

F Ñ BasspOd
mq. We will prove Ωn “ Xn and Ω “

8
Ť

n“0
Ωn, proving Theorem 8.6.2.

Lemma 8.6.5. For w P F 1 the identity ΨpΦpwqa
k
0,0q “ pid˚k, w, id˚pm´k´1qq holds for every

k P r0,m´ 1s.

Proof. Observe from the definition of Φ that

ΦpF q “ xai,j , a
m
0,0 | pi, jq P r0, d´ 1s ˆ r0, s´ 1sztp0, 0quy ď ∆.

Then by direct calculation using the definition of the homomorphism Ψ and Φ we get the

desired identity.
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Lemma 8.6.6. The equality Ωn “ Xn holds for all n P N0.

Proof. It follows from Proposition 8.6.3 that Ω0 “ kerpΨq “ X0. The proof proceeds by

induction on n. Since ΦpF q ď ∆, for every r P N0, we have Φrp∆q ď ∆. Hence Xn ď ∆ for

all n P N0. Assume for some n ě 1 that Ωn´1 “ Xn´1. We will prove that

ΨpXnq “ Ωmn´1 “ ΨpΩnq.

Let i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s, r P r1, ns and v P Zd. For every

Φrpτv,kpi, j, i
1, j1qq P Xn and for every ℓ P r0,m´ 1s, since Φr´1pτv,kpi, j, i

1, j1qq P F 1, we

obtain from Lemma 8.6.5 that

ΨppΦrpτv,kpi, j, i
1, j1qqqa

ℓ
0,0q “ pid˚ℓ,Φr´1pτv,kpi, j, i

1, j1qq, id˚pm´ℓ´1qq.

Since ∆̃ is a sub-direct product of m copies of F and Xn´1 is normally generated from the

elements of the form Φr´1pτv,kpi, j, i
1, j1qq, we obtain that ΨpXnq “ Ωmn´1 “ ΨpΩnq.

But since kerpΨ|Ωnq “ kerpΨq X Ωn “ Ω0 “ X0 “ kerpΨq X Xn “ kerpΨ|Xnq, we get

Ωn “ Xn, and the result follows by induction.

Lemma 8.6.7. We have Ω “
8
Ť

n“0
Ωn.

Proof. Write B for BasspOd
mq and recall that proj : F Ñ B is the canonical epimorphism.

Notice that StBp1q is a quotient of ∆ and further Ω0 “ kerpΨq ď kerpprojq “ Ω. Proceeding

by induction on n, we will prove that
8
Ť

n“0
Ωn ď Ω. Assume that Ωn´1 ď Ω for some

n ě 1. Let w P Ωn and let wk be the k-th component of Ψpwq. Then wk P Ωn´1 for all

k P r0,m´ 1s. Then the first layer sections of projpwq P StBp1q act trivially on the subtrees

hanging from the vertices of level one of the m-regular rooted tree. Hence projpwq acts

trivially and projpwq “ id in B. It follows by induction that Ωn ď Ω for all n P N0. Since

Ωn´1 ď Ωn for all n P N`, we obtain
8
Ť

n“0
Ωn ď Ω.

Now, to see the converse choose an arbitrary element w P F such that projpwq “ id in

B. Then by Theorem 8.5.1 projpwq P StBp1q and hence w P ∆. Denote by wk the k-th

component of Ψpwq. Then projpwq “ id if and only if projpwkq “ id for all k P r0,m´ 1s,

implying that wk P ∆ for all k P r0,m´ 1s. Now repeat this process of taking sections by

replacing w with wk. This process is equivalent to the algorithm solving the word problem

for B, cf. [59, Proposition 5]. Thanks to Corollary 8.3.15, the word problem for B is solvable

and hence this process terminates in a finite number of steps. This implies the existence of

an element n P N0 such that w P Ωn, completing the proof.
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To conclude this section, we point out that akin to [59, Proposition 11], one can introduce

a set of d endomorphisms, each corresponding to a generator ai,0, and obtain a finite L-

presentation for BasspOd
mq.

Theorem 8.6.8. The group BasspOd
mq admits the following L-presentation:

C ai,j rai,j , ai1,js rai,j , a
αpv,kq
i1,j1 s, i, i1 P r0, d´ 1s,

i P r0, d´ 1s i, i1 P r0, d´ 1s Φ,Θ0, . . . ,Θd´1 j, j1 P r1, s´ 1s, k P r1,m´ 1s

j P r0, s´ 1s j P r0, s´ 1s v P t0u ˆ t0, 1ud´1

G

where αpv, kq and Φ are given by (8.4) and (8.6), respectively, and Θi1 are endomorphisms

of the free group on the set of generators defined as

Θi1 :

$

’

’

’

’

’

&

’

’

’

’

’

%

ai,j ÞÑ ai,ja
ai1,0
i,j for j ‰ 0, i1 ‰ 0,

ai,j ÞÑ ai,ja
am0,0
i,j for j ‰ 0, i1 “ 0,

ai,0 ÞÑ ai,0.

Proof of Theorem 8.6.8 is based on Lemma 8.6.10 below. Before stating the lemma, we

set up necessary notations. We define the following sets

Ξ “ tΘ0, . . . ,Θd´1u, (8.7)

R “ trai,j , a
αpv,kq
i1,j1 s | i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s, v P t0u ˆ t0, 1ud´1u,

(8.8)

where αpv, kq is defined as in (8.4), and prove that the generalised Basilica group is given

by the finite L-presentation

L “ xY | Q | ΦY Ξ | Ry. (8.9)

The idea of the proof is the following: the set R can be obtained from the set R by the

suitable application of elements from the free monoid Ξ˚. We set up the following notation.

Notation 8.6.9. Let n P N0. Set Ξn “ tΘ
ℓ0
0 ¨ ¨ ¨Θ

ℓd´1

d´1 | ℓ0, . . . , ℓd´1 P r0, nsu. We define

Yn “

$

&

%

τv,kpi, j, i
1, j1q i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s,

v P r0, ns ˆ r0, n` 1sd´1

,

.

-

,

where τv,kpi, j, i
1, j1q is defined as in Notation 8.6.4. Further, we denote

Un “ xYny
F , Vn “ xξpY0q | ξ P Ξny

F .

We shall prove that Un “ Vn, which proves Theorem 8.6.8.

Lemma 8.6.10. The equality Un “ Vn holds for all n P N0.
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Proof. The proof follows by induction on n. For n “ 0, the equality is true by definition.

Assume that Un ď Vn for some n ě 1. We assign a lexicographical ordering on the set

r0, ns ˆ r0, n` 1sd´1. Let i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s and ξ P Ξn`1

be non-trivial. Then ξ is of the form Θℓ0
0 ¨ ¨ ¨Θ

ℓd´1

d´1 for some ℓ0, . . . , ℓd´1 P r0, ns. Set ℓ “

pℓ0, . . . , ℓd´1q. We have

ξpai,jq “ ai,j x a
αpℓ,0q
i,j ,

where x is product of elements of the form a
αpℓ1,0q
i,j such that ℓ1 is a non-trivial element of

r0, nsd and ℓ1 ă ℓ. Observe that, in the quotient group Vn`1{Un (which is well-defined as

Un ď Vn ď Vn`1), the elements of the form a
αpv,kq
i,j and a

αpv1,k1q
i1,j1 commute given that

p|tpmv0 ` k ´mv
1
0 ´ k

1q{mu|, |v1 ´ v
1
1|, . . . , |vd´1 ´ v

1
d´1|q P r0, ns ˆ r0, n` 1sd´1,

where vι and v1ι are the ι-th coordinate of v and v1, respectively. Let τβ,kpi, j, i
1, j1q P Y0,

where β P t0u ˆ t0, 1ud´1. Then ξpτβ,kpi, j, i
1, j1qq P Vn`1. We get

ξpτβ,kpi, j, i
1, j1qq “ ξprai,j , a

αpβ,kq
i1,j1 sq “ rai,j x a

αpℓ,0q
i,j , a

αpβ,kq
i1,j1 y a

αpℓ`β,kq
i1,j1 s,

where x and y are the product of elements of the form a
αpv,0q
i,j and a

αpβ`v1,kq
i1,j1 , respectively,

such that v, v1 are non-trivial elements of r0, nsd and v, v1 ă ℓ. Then

ξpτβ,kpi, j, i
1, j1qq ”Un rai,j , a

αpℓ`β,kq
i1,j1 s “ τℓ`β,kpi, j, i

1, j1q.

This implies τv,kpi, j, i
1, j1q P Vn`1 for all v P r0, n` 1sˆ r0, n` 2sd´1, whence Un`1 ď Vn`1.

A similar computation gives that Vn`1 ď Un`1. This completes the proof.

Proof of Theorem 8.6.8. It is immediate from Lemma 8.6.10 that Ξ˚pRq coincides the set

R` “ trai,j , a
αpv,kq
i1,j1 s | i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s, k P r1,m´ 1s, v P Nd0u.

Furthermore, we get xR`yFY “ xRyFY , where FY is the free group on the set Y . Hence we

conclude that the generalised Basilica group admits the finite L-presentation (8.9).

8.7 Structural properties of the generalised Basilica groups

Let d, m, s P N` with m, s ě 2. Here we prove some structural properties of the generalised

Basilica groups Bas2pOd
mq. These result reflect a significant structural dissimilarity between

Bas2pOd
mq and BasspOd

mq for s ą 2. This structural dissimilarity plays a vital role when

we consider the p-congruence subgroup property of the generalised Basilica groups, see

Figure 8.5, which is treated in Section 8.8.

For convenience, we omit the subscript from ψ1 and identify an element g P StBp1q with

its image under the map ψ1.
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Proposition 8.7.1. Let B be the generalised Basilica group BasspOd
mq. Then ψ´1ppB1qmq

is a subgroup of B1 and

B1{ψ´1ppB1qmq “

A

ci,j,k ψ
´1ppB1qmq i P r0, d´ 1s, j P r1, s´ 1s, k P r1,m´ 1s

E

– Zdpm´1qps´1q,

where ci,j,k “ rai,j , a
k
0,0s. In particular, it holds that ψ´1ppB1qmq ě B2.

Proof. Notice that B1 “ xrai,j , ai1,j1s | i, i
1 P r0, d´ 1s, j, j1 P r0, s´ 1syB. For i, i1 P r0, d´ 1s

and j, j1 P r1, s´ 1s, we have rai,j , ai1,js “ id and for j ‰ j1

rai,j , ai1,j1s “ prai,j´1, ai1,j1´1s, id
˚pm´1qq

rai,j , ai1,0s “ prai,j´1, ai1´1,s´1s, id
˚pm´1qq for i1 ‰ 0,

rai,j , a
m
0,0s “ prai,j´1, ad´1,s´1s, id

˚pm´1qq.

Therefore, we obtain

xrai,j , ai1,j1s | i, i
1 P r0, d´ 1s, j, j1 P r0, s´ 1sy ˆ tidu ˆ ¨ ¨ ¨ ˆ tidu ď ψpB1q,

yielding that pB1qm ď ψpB1q by Lemma 8.2.1.

Now, recall our definition ci,j,k “ rai,j , a
k
0,0s and

C “ xci,j,k | i P r0, d´ 1s, j P r1, s´ 1s, k P r1,m´ 1sy.

We claim that B1{ψ´1ppB1qmq “ C, where C denotes the image of C in the quotient group.

For convenience, we will write the equivalence ”ψ´1ppB1qmq without the subscript. Observe

that, for i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s and k P r1,m´ 1s,

rai,j , ai1,j1s ” id, rai,j , ai1,0s ” id for i1 ‰ 0, rai,j , a0,0s “ ci,j,1,

and

ci,j,k “ rai,j , a
k
0,0s ” pa

´1
i,j´1, id

˚pk´1q, ai,j´1, id
˚pm´k´1qq.

Therefore, to prove the claim, it suffices to show that C is normal in B{ψ´1ppB1qmq. Let

i, i1 P r0, d´ 1s, j, j1 P r1, s´ 1s and k P r1,m´ 1s. An easy calculation yields

c
a˘1
i1,j1

i,j,k ” ci,j,k and c
a˘1
i1,0

i,j,k ” ci,j,k for i1 ‰ 0.

Furthermore,

c
a0,0
i,j,k ” pid, a´1

i,j´1, id
˚pk´1q, ai,j´1, id

˚pm´k´2qq ” c´1
i,j,1ci,j,k`1 if k ‰ m´ 1,

c
a0,0
i,j,k ” pai,j´1, a

´1
i,j´1, id

˚pm´2qq ” c´1
i,j,1 if k “ m´ 1,

c
a´1
0,0

i,j,k ” pid˚pk´1q, ai,j´1, id
˚pm´k´1q, a´1

i,j´1q ”

$

’

&

’

%

c´1
i,j,m´1ci,j,k´1 if k ‰ 1,

c´1
i,j,m´1 if k “ 1,
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implying that B1{ψ´1ppB1qmq “ C. Observe that, for a fixed i P r0, d´ 1s and j P r1, s´ 1s,

Zm´1 – tpax1i,j´1, . . . , a
xm
i,j´1q | xr P Z,

m
ÿ

r“1

xr “ 0u “ xci,j,k | k P r1,m´ 1sy ď C.

Since B{B1 – Zds (Theorem 8.1.6(iv)), this yields

B1{ψ´1ppB1qmq “ C “
ź

pi,jqPr0,d´1sˆr1,s´1s

xci,j,k | k P r1,m´ 1sy – Zdpm´1qps´1q .

Now we prove Theorem 8.1.9. In addition, we provide a generating set for the quotient

group γ2pBasspOd
mqq{γ3pBasspOd

mqq.

Theorem 8.7.2. Let B be the generalised Basilica group BasspOd
mq. We have:

(i) For s “ 2, B1{γ3pBq “ xrai,0, ai1,1s γ3pBq | i, i
1 P r0, d´ 1sy – Zd2 .

(ii) For s ą 2, the quotient group B1{γ3pBq – Cds´2
m ˆ Cm2. Moreover, it is generated

from the set

trai,j , a0,0s γ3pBq, ra0,1, ai1,0s γ3pBq | i P r0, d´ 1s, i1 P r1, d´ 1s, j P r1, s´ 1su.

Proof. (i) We use Theorem 8.6.2 to obtain a presentation for B{γ3pBq. Take Y, Q, Φ and

R as given in Theorem 8.6.2 and set Q1 “ QY γ3pFY q, where FY is the free group on Y . If

s “ 2, the set R becomes

R “ trai,1, a
αpv,kq
i1,1 s | i, i1 P r0, d´ 1s, k P r1,m´ 1s, v P Zdu

and for every rai,1, a
αpv,kq
i1,1 s P R,

rai,1, a
αpv,kq
i1,1 s ”γ3pFY q rai,1, ai1,1s P xQ

1yFY ,

where αpv, kq is given by (8.4). Since xQ1y is invariant under Φ, the presentation x Y | Q1 y

defines the group B{γ3pBq, yielding that

B1{γ3pBq “ xrai,0, ai1,1s | i, i
1 P r0, d´ 1sy – Zd

2
.

(ii) Consider again Y, Q, Φ and R as given in Theorem 8.6.2 and Q1 “ Q Y γ3pFY q. First

observe that the element

rai,j , a
αpv,kq
i1,j1 s ”γ3pFY q rai,j , ai1,j1s

belongs to xQ1yFY if and only if j “ j1. Setting

S “ trai,j , ai1,j1s | i, i
1 P r0, d´ 1s, j, j1 P r1, s´ 1s with j ‰ j1u Ď FY ,
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we notice that the group B{γ3pBq admits the L-presentation x Y | Q1 | Φ | S y. Now, define

T “

$

’

’

’

&

’

’

’

%

rai,j , ai1,0s, rai2,1, ai1,0s, i P r0, d´ 1s,

rai,j , a0,0s
m , rai1,1, a0,0s

m, ra0,1, ai1,0s
m, i1, i2 P r1, d´ 1s,

ra0,1, a0,0s
m2

j P r2, s´ 1s

,

/

/

/

.

/

/

/

-

and N “ Q1 Y S Y T as subsets of FY . We claim that ΦrpSq Ď NFY for all r P N0, and

hence the presentation x Y | N y defines the group B{γ3pBq. Therefore, the commutator

subgroup of B{γ3pBq is generated from the set

$

&

%

rai,j , a0,0s, rai1,1, a0,0s, i P r0, d´ 1s, i1 P r1, d´ 1s,
“

a0,1, ai1,0
‰

, ra0,1, a0,0s j P r2, s´ 1s

,

.

-

,

yielding that:

B1{γ3pBq – Cdps´2q
m ˆ Cd´1

m ˆ Cd´1
m ˆ Cm2 “ Cds´2

m ˆ Cm2 .

Now, let i, i1 P r0, d´ 1s. Observe first that, for j, j1 P r1, s´ 2s,

Φprai,j , ai1,j1sq “ rai,j`1, ai1,j1`1s P S.

To prove the claim, it is enough to consider the elements of the form Φrprai,j , ai1,j1sq

with either j or j1, but not both, equal to s ´ 1. Without loss of generality suppose that

1 ď j ď s´ 2 and j1 “ s´ 1. Since γ3pFY q ď NFY , we work modulo γ3pFY q. We have

Φprai,j , ai1,s´1sq ”

$

’

&

’

%

rai,j`1, ai1`1,0s
m if i1 “ d´ 1

rai,j`1, ai1`1,0s otherwise.

For convenience, the images of Φ2prai,j , ai1,s´1sq and Φ3prai,j , ai1,s´1sq are given in the tabular

form, see Table 8.1 and Table 8.2.

j ‰ s´ 2 j “ s´ 2

i1 ‰ d´ 1
i ‰ d´ 1

rai,j`2, ai1`1,1s

rai`1,0, ai1`1,1s

i “ d´ 1 ra0,0, ai1`1,1s
m

i1 “ d´ 1
i ‰ d´ 1

rai,j`2, a0,1s
m

rai`1,0, a0,1s
m

i “ d´ 1 ra0,0, a0,1s
m2

Table 8.1: Images of Φ2prai,j , ai1,s´1sq.
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j R ts´ 3, s´ 2u j “ s´ 2 j “ s´ 3

i1 ‰ d´ 1
i ‰ d´ 1

rai,j`3, ai1`1,2s

rai`1,1, ai1`1,2s rai`1,0, ai1`1,2s

i “ d´ 1 ra0,1, ai1`1,2s
m ra0,0, ai1`1,2s

m

i1 “ d´ 1
i ‰ d´ 1

rai,j`3, a0,2s
m

rai`1,1, a0,2s
m rai`1,0, a0,2s

m

i “ d´ 1 ra0,1, a0,2s
m2

ra0,0, a0,2s
m2

Table 8.2: Images of Φ3prai,j , ai1,s´1sq.

Observe that the element Φrprai,j , ai1,s´1sq P N
FY for r P r1, 3s. By iterating the process

we see that Φrprai,j , ai1,j1sq P N
FY , for all r P N0 and rai,j , ai1,j1s P S.

Lemma 8.7.3. Let B be the generalised Basilica group BasspOd
mq. The following assertions

hold:

(i) For s “ 2, B2 “ ψ´1pγ3pBq
mq.

(ii) For s ą 2, B2 ŋ ψ´1pγ3pBq
mq.

Proof. We first prove that γ3pBq
m ď ψpB2q for all s ě 2. From Lemma 8.2.1, since

γ3pBq “ xrrai1,j1 , ai2,j2s, ai3,j3s | i1, i2, i3 P r0, d´ 1s, j1, j2, j3 P r0, s´ 1syB,

and B is self-similar and fractal (Theorem 8.1.6(ii)), it is enough to prove that the set

tprrai1,j1 , ai2,j2s, ai3,j3s, id
˚pm´1qq | i1, i2, i3 P r0, d´ 1s, j1, j2, j3 P r0, s´ 1su (˚)

is contained in ψpB2q. Let i1, i2, i3 P r0, d´ 1s and j1, j2, j3 P r0, s´ 1s. We split the proof

into four cases.

Case 1: j1 “ j2 “ j3 “ s´ 1. Clearly, rrai1,s´1, ai2,s´1s, ai3,s´1s “ id .

Case 2: j3 ‰ s ´ 1. In light of Proposition 8.7.1, the elements prai1,j1 , ai2,j2s, id
˚pm´1qq

and pai3,j3 , a
´1
i3,j3

, id˚pm´2qq “ rai3,j3`1, a0,0s
´1 belong to ψpB1q, implying that

prrai1,j1 , ai2,j2s, ai3,j3s, id
˚pm´1qq P ψpB2q.

Now, observe from Proposition 8.7.1 that ψpB2q ě pB2qm. Therefore, if there exist

g “ pg0, . . . , gm´1q, h “ ph0, . . . , hm´1q P B such that gi ”B2 hi for all i P r0,m´ 1s then

g ”ψpB2q h.
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Case 3: j3 “ s ´ 1, j1 ‰ s ´ 1 and j2 ‰ s ´ 1. Now, from the Hall–Witt identity (see

[95, p. 123]), we can easily derive that

rry, xs, zsrrz, ys, xsrrx, zs, ys ”B2 rry, xs, zysrrz, ys, xzsrrx, zs, yxs “ id,

for all x, y, z P B. Setting x “ ai1,j1 , y “ ai2,j2 and z “ ai3,j3 , we get that the element

prry, xs, zs, id˚pm´1qq´1 ”ψpB2q prrz, ys, xsrrx, zs, ys, id
˚pm´1qq

belongs to ψpB2q, as the right-hand side product belongs to ψpB2q by Case 2.

Case 4: j3 “ s´ 1 “ j1, j2 ‰ s´ 1 or j3 “ s´ 1 “ j2, j1 ‰ s´ 1. Notice that

rrai1,j1 , ai2,s´1s, ai3,s´1s ”B2 rrai2,s´1, ai1,j1s, ai3,s´1s
´1,

thus, it is enough to consider the first case. We claim that, for every j P r0, s´ 1s,

it holds rrai1,j , ai2,0s, ai3,js ”B2 id. Then by taking the j2-th projection of the element

rrai1,s´1, ai2,j2s, ai3,s´1s we obtain,

ψj2prrai1,s´1, ai2,j2s, ai3,s´1sq “ prrai1,ps´1´j2q, ai2,0s, ai3,ps´1´j2qs, id
˚pmj2´1qq

”ψj2
pB2q id,

implying rrai1,s´1, ai2,j2s, ai3,s´1s ”B2 id, and hence p˚q follows.

If i2 “ 0 or j “ 0, it is then immediate that rrai1,j , ai2,0s, ai3,js “ id. Assume that i2 ‰ 0

and j ‰ 0. From the presentation of B given in Theorem 8.6.2, we have

rrai1,j , αpv, kqs, ai3,js “ ra
´1
i1,j
a
αpv,kq
i1,j

, ai3,js “ ra
´1
i1,j
, ai3,js

a
αpv,kq
i1,j ra

αpv,kq
i1,j

, ai3,js “ id,

where αpv, kq is given by (8.4). Now, by setting v “ p0˚pi2´1q, 1, 0˚pm´i2´1qq and k “ 1, we

get αpv, kq “ a0,0ai2,0 and consequently

id “ rrai1,j , a0,0ai2,0s, ai3,js “ rrai1,j , ai2,0srai1,j , a0,0s
ai2,0 , ai3,js

”B2 rrai1,j , ai2,0s, ai3,jsrrai1,j , a0,0s
ai2,0 , ai3,js ”B2 rrai1,j , ai2,0s, ai3,js.

Next we prove (i). Assume that s “ 2 and notice that it suffices to prove that

B1{ψ´1pγ3pBq
mq is abelian. We use the fact that the commutator subgroup can be de-

scribed by B1 “ xrai1,1, ai2,0s | i1, i2 P r0, d´ 1syB as s “ 2.

Looking at the section decomposition of these generators,

rai1,1, ai2,0s “ p rai1,0, ai2´1,1s, id
˚pm´1qq for i2 ‰ 0, and

rai1,1, a0,0s “ pa
´1
i1,0
, ai1,0, id

˚pm´2qq,
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we immediately see that they commute modulo γ3pBq
m. Thus, B1{ψ´1pγ3pBq

mq is abelian.

(ii) The inclusion ψ´1pγ3pBq
mq ď B2 has been already proven above. We prove that

ψ´1pγ3pBq
mq is a proper subgroup of B2, by showing that B1{ψ´1pγ3pBq

mq is non-abelian.

Suppose to the contrary B1{ψ´1pγ3pBq
mq is abelian. Then, for every i P r0, d´ 1s and

j P r2, s´ 1s

id ”ψ´1pγ3pBqmq rrai,j , a0,0s, ra0,1, a0,0ss “ pra
´1
i,j´1, a

´1
0,0s, rai,j´1, a0,0s, id

˚pm´2qq.

This implies rai,j´1, a0,0s ”γ3pBq id, which is a contradiction to Theorem 8.7.2(ii).

8.8 Congruence properties of the generalised Basilica groups

Here we prove that the generalised Basilica group BasspOd
pq has the p-CSP for d, s P N`

with s ą 2 and p a prime. We follow the strategy from [46], where it is proved that the

original Basilica group B “ Bas2pO2q has the 2-congruence subgroup property. However,

on account of Theorem 8.7.2 and Lemma 8.7.3, our reasoning must be different, and we will

use Theorem 8.5.1.

Let G be a subgroup of the automorphism group of the p-regular rooted tree T and let

C be the class of all finite p-groups.

Definition 8.8.1 ([46, Definition 5]). A subgroupG of AutT has the p-congruence subgroup

property (p-CSP) if every normal subgroup N Ĳ G satisfying G{N P C contains some layer

stabiliser in G. The group G has the p-CSP modulo a normal subgroup M Ĳ G if every

normal subgroup N Ĳ G satisfying G{N P C and M ď N contains some layer stabiliser in

G.

By setting C as the class of all finite p-groups in [46, Lemma 6], we obtain the following

result:

Lemma 8.8.2. Let G be a subgroup of AutT and N ĲM Ĳ G. If G has the p-CSP modulo

M and M has the p-CSP modulo N then G has the p-CSP modulo N .

Let d, s P N` with s ą 2 and let p be a prime. Set B “ BasspOd
pq. From The-

orem 8.1.6(vi) B is weakly regular branch over its commutator subgroup B1 and from

Lemma 8.7.3

B1 ě γ3pBq ě B2 ą ψ´1pγ3pBq
pq.

We will prove that

1. B has the p-CSP modulo γ3pBq, and,
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B

B1

γ3pBqM

γ3pBq M

γ3pBq XM

ψ´1pγ3pBq
pq

Prop. 8.8.3

Prop. 8.8.4

Prop. 8.8.8

Prop. 8.8.7

Figure 8.5: The steps of the proof of Theorem 8.1.10, where M :“ ψ´1ppB1qpq

2. γ3pGq has the p-CSP modulo ψ´1pγ3pBq
pq.

Then Theorem 8.1.10 follows by a direct application of [46, Theorem 1]. Applying Lemma 8.8.2

to Proposition 8.8.3 and Proposition 8.8.4 we will obtain step (1). Similarly, by apply-

ing Lemma 8.8.2 to Proposition 8.8.7 and Proposition 8.8.8 yields step (2). Now, set

M ..“ ψ´1ppB1qpq and N ..“ ψ´1pγ3pBq
pq. Considering Proposition 8.7.1, Theorem 8.7.2

and Lemma 8.7.3, we summarise the proof of Theorem 8.1.10 in Figure 8.5.

Proposition 8.8.3. The group B has the p-CSP modulo B1.

Proof. Set bis`j “ ai,j for all i P r0, d´ 1s and j P r0, s´ 1s. Define, for r P r0, ds´ 1s,

Ar “ xbr, . . . , bds´1yB
1 and set Ads “ B1. We will prove that Ar has the p-CSP modulo

Ar`1 for all r P r0, ds´ 1s. Then the result follows from the Lemma 8.8.2.

Clearly, Ar{Ar`1 StArpnq P C and by Theorem 8.1.6(iv) we have Ar{Ar`1 “ xbry – Z.

In Z, the subgroups of index a power of p are totally ordered, whence it suffices to prove

that |Ar : Ar`1 StArpnq| tends to infinity when n tends to infinity. In fact, we prove that

bp
n

r R Ar`1 StArpnds` r`1q for n P N0. Assume to the contrary that bp
n

r P Ar`1 StArpnds`

r ` 1q. In particular, bp
n

r P Ar`1 StBpnds ` r ` 1q. Thanks to Theorem 8.5.1, we have

StBpnds` r ` 1q “ xbp
n`1

0 , . . . , bp
n`1

r , bp
n

r`1, . . . , b
pn

ds´1y
B. Thus, there exists x0, . . . , xds´1 P Z

such that

bp
n

r ”B1 bx0p
n`1

0 ¨ ¨ ¨ bxrp
n`1

r b
xr`1

r`1 ¨ ¨ ¨ b
xds´1

ds´1 ,

contradicting Theorem 8.1.6(iv).

Proposition 8.8.4. The group B1 has the p-CSP modulo γ3pBq.

Proof. Notice from Theorem 8.7.2(ii) that γ3pBq is a subgroup of index a power of p in B1

and hence it suffices to prove that StB1pnq is contained in γ3pBq for some n, equivalently
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|B1{γ3pGq StB1pnq| “ |B1{γ3pBq|. Observe that,

B1{γ3pBq StB1pnq – B1 StBpnq{γ3pBq StBpnq.

Now, in light of Theorem 8.7.2(ii), we choose n P N` such that the set

trai,j , a0,0s | i P r0, d´ 1s, j P r1, s´ 1su Y tra0,1, ai1,0s | i
1 P r1, d´ 1su Y tra0,1, a0,0s

pu,

has trivial intersection with StBpnq. One can easily compute from the description of the

stabilisers in Theorem 8.5.1 that n “ ds` 2 is the smallest number with this property. We

construct a group H which admits an epimorphism from the group B{γ3pBq StBpds ` 2q

and see that commutator subgroup H 1 has the desired size.

Now fix n “ ds ` 2 and set Γ “ B{γ3pBq StBpnq. Again from Theorem 8.5.1 we have

StBpnq “ xb
p2

0 , b
p2

1 , b
p
2, . . . , b

p
ds´1y

B, where bis`j “ ai,j as in the proof of Proposition 8.8.3.

By a straightforward calculation using the presentation of B{γ3pBq, given in the proof of

Theorem 8.7.2(ii), we obtain the following presentation for Γ:

x S | R y, (8.10)

where S “ tbr | r P r0, ds´ 1su and

R “

C bp
2

0 , b
p2

1 , b
p
t , rbt, bt1s, t, t1 P r2, ds´ 1s

rb1, bt2s, t2 P r2, ds´ 1s, not a multiple of s

rb0, biss, γ3pF q i P r1, d´ 1s

G

,

where F is the free group on the set of generators of Γ.

Let R be the ring Z {p2 Z. Let UTds`1pRq ď GLds`1pRq be the group of all upper

triangular matrices over R with entries 1 along the diagonal. Denote by Ei,jpℓq the element

of UTds`1pRq with the entry ℓ P R at the position pi, jq. For i P r1, dps´ 1q ´ 1s and

j P r1, d´ 1s, define

xi “ Ei,ds´1ppq, yj “ Edps´1q`j,dsppq,

y “ Eds´1,dsp1q, z “ Eds,ds`1p1q,

and define H to be the subgroup of UTds`1pRq generated by the set txi, yj , y, zu. By abuse

of notation denote the image of the set of generators of H in the quotient group H{γ3pHq

by the same symbols and set H “ H{γ3pHq. By an easy computation, we obtain

xpi “ ypj “ yp
2
“ zp

2
“ rxi, xi1s “ ryj , yj1s “ ry, yjs “ rxi, yjs “ rxi, zs “ id,
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for all i, i1 P r1, dps´ 1q ´ 1s and j, j1 P r1, d´ 1s. Now, fix a bijection α from the set

tbr | r P r2, ds´ 1szts, 2s, . . . , pd ´ 1qsu to the set txi | i P r1, dps´ 1q ´ 1su. Define a map

φ from the set of generators of Γ to the set of generators of H by

φpb0q “ y φpb1q “ z

φpbjsq “ yj for j P r1, d´ 1s φpbrq “ αpbrq, otherwise.

Then φ extends to an epimorphism Γ Ñ H, since as seen above, φpbrq satisfies all the

relations of the given presentation (8.10) of the group Γ. Furthermore, observe that the

commutator subgroup of H is generated by the union of the sets

t rxi, ys | i P r1, dps´ 1q ´ 1s u Y t ryj , zs | j P r1, d´ 1s u Y t ry, zs u.

Hence,

|Γ1| ě |φpΓ1q| “ |H 1| “ pdps´1q´1pd´1p2 “ pds.

Indeed |Γ1| ď |B1{γ3pBq| “ pds, and thus |Γ1| “ pds, completing the proof.

We now need two general lemmata.

Lemma 8.8.5. Let H ď AutT and L,K Ĳ H with L ď K and let C be the class of all

finite p-groups. Assume further that H{K P C and H{L is abelian. If H has the p-CSP

modulo L, then K has the p-CSP property modulo L.

Proof. Let K̃ be a normal subgroup of K satisfying L ď K̃ and K{K̃ P C. Since H{L is

abelian, K̃{L is normal in H{L and hence K̃ is normal in H. Also notice that H{K̃ P C.

As H has the p-CSP there exists n P N0 such that StHpnq ď K̃. In particular StKpnq “

StHpnq XK ď StHpnq ď K̃, completing the proof.

Lemma 8.8.6. Let H ď AutT and L,K Ĳ H. If KL has the p-CSP modulo L, then K

has the p-CSP property modulo K X L.

Proof. Choose K̃ Ĳ K with K X L ď K̃ and K{K̃ P C. Then, K̃L Ĳ KL and KL{K̃L –

K{K̃ P C. As KL has the p-CSP property modulo L, it holds that StKLpnq ď K̃L for some

n. Thus, StKpnq “ StKLpnq XK ď K̃LXK “ K̃.

Proposition 8.8.7. The group γ3pBq has the p-CSP modulo γ3pBq XM .

Proof. We prove that γ3pBqM has the p-CSP modulo M . Then by Lemma 8.8.6 we obtain

the result. It follows from Proposition 8.7.1 and Theorem 8.7.2(ii) that B1{M is abelian
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and that B1{γ3pBqM P C, respectively. Thanks to Lemma 8.8.5, it is enough to prove that

B1 has the p-CSP modulo M .

Let i P r0, d´ 1s, j P r1, s´ 1s and k P r1, p´ 1s. Define cips´1q`j
..“ bis`j ..“ ai,j . Set

t “ ips´ 1q ` j and r “ is` j and note that ct is a relabeling of the elements br (defined in

the proof of Proposition 8.8.3) by excluding the elements of the form bis for i P r0, d´ 1s.

From Proposition 8.7.1, we have

B1{M “ x rai,j , a
k
0,0s | i P r0, d´ 1s, j P r1, s´ 1s, k P r1, p´ 1s y.

Set ℓ “ pk ´ 1qpds´ dq ` t and eℓ “ rct, a
k
0,0s. Then,

ψpeℓq “ ψprct, a
k
0,0sq “ ψprbr, a

k
0,0sq “ pb

´1
r´1, id

˚pk´1q, br´1, id
˚pp´k´1qq.

For ℓ P r1, pp´ 1qpds´ dqs, set Mℓ “ xeℓ, . . . , epp´1qpds´dqyM and Mpp´1qpds´dq`1 “ M .

It follows from Theorem 8.1.6(iv) that Mℓ{Mℓ`1 “ xeℓy – Z. We will prove that |Mℓ :

Mℓ`1 StMℓ
pnq| tends to infinity as n tends to infinity. Assume to the contrary that there are

n, n1 P N` such that for all ñ ě n1, ep
n

ℓ PMℓ`1 StMℓ
pñq. There exist xℓ`1, . . . , xpp´1qpds´dq P

Z such that

ep
n

ℓ e
x1
ℓ`1 ¨ ¨ ¨ e

xpp´1qpds´dq

pp´1qpds´dq PM StMℓ
pñq ďM StBpñq,

hence

ψpep
n

ℓ e
x1
ℓ`1 ¨ ¨ ¨ e

xpp´1qpds´dq

pp´1qpds´dqq P pB
1qp ¨ pStBpñ´ 1qqp.

Consider the k-th coordinate, xbp
n

r´1 P B1 StBpñ ´ 1q, where x is a product of elements

of the form br1 such that r1 ą r ´ 1. Then x P Ar, where Ar is defined as in the proof

of Proposition 8.8.3. This implies bp
n

r´1 P Ar StBpñq for all ñ ě n1 ´ 1, which contradicts

Proposition 8.8.3.

Proposition 8.8.8. The group γ3pBq XM has the p-CSP modulo N .

Proof. It is straightforward from Theorem 8.7.2(ii) that the group M{N is a finite abelian

and M{N P C. By Lemma 8.8.5, it suffices to prove that M has the p-CSP modulo N .

From Proposition 8.8.4, it follows that StB1pnq ď γ3pBq for some n. Therefore,

ψpStM pn` 1qq ď pStB1pnqqp ď γ3pBq
p,

and hence StM pn` 1q ď ψ´1ppStB1pnqqpq ď N.

Proof of Theorem 8.1.10. By applying Lemma 8.8.2 to Proposition 8.8.3 and Proposition 8.8.4

we obtain that the group B has the p-CSP modulo γ3pBq. Further application of Lemma 8.8.2

to Proposition 8.8.7 and Proposition 8.8.8 yields that γ3pGq has the p-CSP modulo N . Now,

the result follows by [46, Theorem 1].
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Chapter 9

Maximal subgroups of generalised

Basilica Groups

9.1 Introduction

Groups acting on rooted trees have drawn a great deal of attention over the last couple of

decades because they exhibit prominent features and solve several long-standing problems

in group theory. The initial examples studied were Grigorchuk’s groups of intermediate

word growth ([51]; answering Milnor’s question) and Gupta and Sidki’s examples of finitely

generated infinite torsion p-groups ([63]; providing an explicit family of 2-generated coun-

terexamples to the general Burnside problem). Ever since, attempts have been made to

characterise and generalise the groups of automorphisms of rooted trees. Today, the Grig-

orchuk groups and the Gupta–Sidki groups are known as the first examples of groups in

the family of branch groups. Branch groups are groups acting spherically transitively on a

spherically homogeneous rooted tree T and having subnormal subgroups similar to that of

the full automorphism group Aut T of the tree T , see Section 9.2 for definitions. The groups

studied in this paper belong to a more general class of groups, the weakly branch groups,

obtained by weakening some of the algebraic properties of the branch groups; cf. [18].

The Basilica group is a 2-generated weakly branch, but not branch, group acting on the

binary rooted tree, which was introduced by Grigorchuk and Żuk in [59] and [58]. It is the

first known example of an amenable [24] but not sub-exponentially amenable group [59]. In

contrast to the Grigorchuk and the Gupta–Sidki groups, the Basilica group is torsion-free

and has exponential word growth [59]. Moreover, it is the iterated monodromy group of the

complex polynomial z2 ´ 1; [76, Section 6.12.1]. The generators of the Basilica group are
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recursively defined as follows:

a “ p1, bq and b “ p1, aqσ,

where σ is the cyclic permutation which swaps the subtrees rooted at the first level of

the binary rooted tree, and px, yq represents the independent action on the two maximal

subtrees, where x, y P AutT . Recently, Petschick and Rajeev [92] introduced a construction

which relates the Basilica group and the one-generated dyadic odometer O2 (also known as

the adding machine). Let m, s ě 2 be integers and let G be a subgroup of the automorphism

group AutT of the m-adic tree T . The sth Basilica group of G is given by

BasspGq “ xβ
s
i pgq | g P G, i P t0, 1, . . . , s´ 1u y,

where βsi : AutT Ñ AutT are monomorphisms given by

βsi pgq “ p1, . . . , 1, β
s
i´1pgqq for i P t1, . . . , s´ 1u,

βs0pgq “ pβ
s
s´1pg0q, . . . , β

s
s´1pgm´1qqg

ϵ,

where gx is the restriction of g to the subtree rooted at a first-level vertex x P t0, . . . ,m´1u,

and gϵ is the local action of the element g at the root of T (in [92] the generators βsi pgq,

for i P t1, . . . , s ´ 1u, are defined along the left-most spine and the element gϵ is acting

from the left, which is equivalent to the definition above). We obtain the classical Basilica

group by applying the operator Bas2 to the dyadic odometer as follows: let c “ p1, cqσ

be the automorphism of the binary rooted tree generating the dyadic odometer. Then the

generators of the Basilica group are given by

a “ β21pcq and b “ β20pcq.

This gives a natural generalisation of the Basilica group given by BasspOmq for every pair of

integers m, s ě 2. Here Om is the m-adic odometer, which is an embedding of the infinite

cyclic group into the automorphism group of the m-adic tree T , and is generated by

c “ p1,m´1. . . , 1, cqσ

where σ “ p0 1 ¨ ¨ ¨ m´ 1q is the m-cycle that cyclically permutes the m subtrees rooted at

the first level of T . The generalised Basilica groups BasspOmq resemble the classical Basilica

group, as they are weakly branch, but not branch, torsion-free groups of exponential word

growth [92, Theorem 1.6]. They are also weakly regular branch over their derived subgroup.

In this paper, we study the maximal subgroups of the generalised Basilica groups

BasspOmq. The study of maximal subgroups of branch groups was initiated by Pervova [86],
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where she proved that the torsion Grigorchuk groups do not contain maximal subgroups of

infinite index. Thenceforth, attempts have been made to generalise the results and tech-

niques from [86], for instance see [5], [70], and [40]. Among which, our interest lies in the

work of Francoeur [40] (or see [39, Section 8.4]), who provided a strategy to study the max-

imal subgroups of weakly branch groups. In particular, he proved that the classical Basilica

group does not contain maximal subgroups of infinite index. Following this technique we

prove that the generalised Basilica groups BasspOmq do not admit maximal subgroups of

infinite index.

Theorem 9.1.1. Let m and s be positive integers such that m, s ě 2. Then the generalised

Basilica group BasspOmq does not admit a maximal subgroup of infinite index.

Since we are considering generalised Basilica groups BasspOmq for an arbitrary s ě 2,

the final stages of our proof differ from previously seen results; compare Theorem 9.4.6. This

is also the first time that maximal subgroups of a weakly branch, but not branch, group G

have been considered for a group G with more than 2 generators.

It is interesting to note that there are currently no examples of finitely generated weakly

branch, but not branch, groups with maximal subgroups of infinite index. There are only

examples of finitely generated branch groups with maximal subgroups of infinite index;

see [27] and [41]. It remains to be seen whether being a finitely generated weakly branch

group with maximal subgroups of infinite index implies the group is branch.

Furthermore, in all known examples of finitely generated weakly branch, but not branch,

groups with maximal subgroups only of finite index, these groups have maximal subgroups

that are not normal; compare Remark 9.4 and [33, 42]. Therefore it is also natural to ask

if there exists a finitely generated weakly branch, but not branch, group with all maximal

subgroups of finite index and normal.

Organisation. Section 9.2 contains preliminary material on groups acting on the m-adic tree.

In Section 9.3, we record some length reducing properties of generalised Basilica groups, and

in Section 9.4 we prove Theorem 9.1.1.

9.2 Preliminaries

By N we denote the set of positive integers, and by N0 the set of non-negative integers.

Let m P Ně2 and let T “ Tm be the m-adic tree, that is, a rooted tree where all vertices

have m children. Using the alphabet X “ t0, 1, . . . ,m´1u, the vertices uω of T are labelled

bijectively by the elements ω of the free monoid X˚ in the following natural way: the root
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of T is labelled by the empty word, and is denoted by ϵ, and for each word ω P X˚ and

letter x P X there is an edge connecting uω to uωx. More generally, we say that uω precedes

uλ whenever ω is a prefix of λ.

There is a natural length function on X˚, which is defined as follows: the words ω of

length |ω| “ n, representing vertices uω that are at distance n from the root, are the nth

level vertices and constitute the nth layer of the tree.

We denote by Tu the full rooted subtree of T that has its root at a vertex u and includes

all vertices succeeding u. For any two vertices u “ uω and v “ uλ, the map uωτ ÞÑ uλτ ,

induced by replacing the prefix ω by λ, yields an isomorphism between the subtrees Tu

and Tv.

Now each f P AutT fixes the root, and the orbits of Aut T on the vertices of the tree T

are the layers of the tree T . The image of a vertex u under f will be denoted by fpuq. The

automorphism f induces a faithful action on X˚ given by fpuωq “ ufpωq. For ω P X˚ and

x P X we have fpωxq “ fpωqx1, for x1 P X uniquely determined by ω and f . This induces

a permutation fω of X which satisfies

fpωxq “ fpωqfωpxq, and consequently fpuωxq “ ufpωqfωpxq.

More generally, for an automorphism f of T , since the layers are invariant under f , for

u, v P X˚, the equation

fpuvq “ fpuqfupvq

defines a unique automorphism fu of T called the section of f at u. This automorphism

can be viewed as the automorphism of T induced by f upon identifying the rooted subtrees

of T at the vertices u and fpuq with the tree T . As seen here, we often do not differentiate

between X˚ and vertices of T .

9.2.1 Subgroups of AutT

Let G be a subgroup of AutT acting spherically transitively, that is, transitively on every

layer of T . The vertex stabiliser stGpuq is the subgroup consisting of elements in G that fix

the vertex u. For n P N, the nth level stabiliser StGpnq “
Ş

|ω|“n stGpuωq is the subgroup

consisting of automorphisms that fix all vertices at level n.

Each g P StAutT pnq can be completely determined in terms of its restrictions g1, . . . , gmn

to the subtrees rooted at vertices at level n. There is a natural isomorphism

ψn : StAutT pnq Ñ
ź

|ω|“n
AutTuω – AutT ˆ

mn

¨ ¨ ¨ ˆAutT
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defined by sending g P StAutT pnq to its tuple of sections pg1, . . . , gmnq. For conciseness, we

will omit the use of ψ1, and simply write g “ pg1, . . . , gmq for g P StAutT p1q.

Let ω P Xn be of length n. We further define

φω : stAutT puωq Ñ AutTuω – AutT

to be the map sending f P stAutT puωq to the section fuω .

A group G ď AutT is said to be self-similar if for all f P G and all ω P X˚ the

section fuω belongs to G. We will denote Gω to be the subgroup φωpstGpuωqq.

Let G be a subgroup of AutT acting spherically transitively. Here the vertex sta-

bilisers at every level are conjugate under G. We say that the group G is fractal if

Gω “ φωpstGpuωqq “ G for every ω P X˚, after the natural identification of subtrees.

The rigid vertex stabiliser of u in G is the subgroup ristGpuq consisting of all automor-

phisms in G that fix all vertices of T not succeeding u. The rigid nth level stabiliser is the

direct product of the rigid vertex stabilisers of the vertices at level n:

RistGpnq “
ź

|ω|“n
ristGpuωq Ĳ G.

We recall that a spherically transitive group G is a branch group if RistGpnq has finite

index in G for every n P N; and G is weakly branch if RistGpnq is non-trivial for every n P N.

If, in addition, the group G is self-similar and there exists a subgroup 1 ‰ K ď G with

Kˆ
m
¨ ¨ ¨ˆK Ď ψ1pKXStGp1qq and |G : K| ă 8, then G is said to be regular branch over K.

If in the previous definition the condition |G : K| ă 8 is omitted, then G is said to be

weakly regular branch over K.

9.2.2 A basic result

Here we record a general result that will be useful in the sequel. For g P AutT , recall that

gϵ denotes the action induced by g at the root of T .

Lemma 9.2.1. For a self-similar group G ď AutT , let z “ pz0, . . . , zm´1qz
ϵ P G1. Then

z0 ¨ ¨ ¨ zm´1 P G
1.

Proof. It suffices to prove the result for a basic commutator rg, hs, where g, h P G. Write

g “ pg0, . . . , gm´1qg
ϵ and h “ ph0, . . . , hm´1qh

ϵ. For notational convenience, let us write

τ “ pgϵq´1 and κ “ phϵq´1, and for α P SympXq and x P X we write xα for αpxq. As

rg, hs

“ τpg´1
0 , . . . , g´1

m´1qκph
´1
0 , . . . , h´1

m´1qpg0, . . . , gm´1qg
ϵph0, . . . , hm´1qh

ϵ

“ pg´1
0τ , . . . , g

´1
pm´1qτ qph

´1
0τκ , . . . , h

´1
pm´1qτκqpg0τκ , . . . , gpm´1qτκqph0τκgϵ , . . . , hpm´1qτκg

ϵ qτκgϵhϵ,
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the result follows.

9.3 Length reducing properties

For any two integers i, j, let ri, js denote the set ti, i ` 1, . . . , j ´ 1, ju. In the following

sections, we fix m, s P Ně2. For convenience, write G “ BasspOmq for the remainder of this

paper. Then G is generated by the elements

βs0pcq “ p1,
m´1. . . , 1, βs´1pcqqσ,

βs1pcq “ p1,
m´1. . . , 1, β0pcqq,

...

βss´1pcq “ p1,
m´1. . . , 1, βs´2pcqq,

where c “ p1,m´1. . . , 1, cqσ is the generator of the m-adic odometer Om acting on the m-adic

tree T and σ is the permutation p0 1 ¨ ¨ ¨ m´1q which cyclically permutes the subtrees rooted

at the first level of T . We refer the reader to [92] for a detailed study of these groups.

Denote by βsi pcq “ ai, for every i P r0, s´ 1s. We shall adopt the convention that the

subscripts of the ai’s are taken modulo s. Set S “ ta˘1
i | i P r0, s´ 1su and then G “ xSy.

For each word w P S˚, the length |w| is the usual word length of w over the alphabet S. If

g P G then |g| denotes the minimal length of all words in the alphabet S representing g. A

word w P S˚ is called a geodesic word if |w| “ |g|, where g is the image of the word w in G.

Notice that for every g P G, the local action gϵ of g at the root is an element of xσy. Hence,

for conciseness, we denote gϵ by σg.

Lemma 9.3.1. Let g “ pg0, . . . , gm´1qσg P G. Then
m´1
ř

k“0

|gk| ď |g|.

Proof. The proof proceeds by induction on the length of g. Clearly, the result is true if

|g| “ 0 and |g| “ 1. Assume that |g| ą 1. Let w P S˚ be a geodesic word representing g.

The word w can be written as w “ xw1 for some x P S and w1 P S˚ such that w1 is reduced.

Then |w1| ă |w| and w1 does not represent g in G. Denote by g1 the corresponding element

in G. Then |g1| ď |w1| ă |w| “ |g|. We obtain

pg0, . . . , gm´1qσg “ g “ xg1 “ px0, . . . , xm´1qσxpg
1
0, . . . , g

1
m´1qσg1

“ px0g
1
0σx , . . . , xm´1g

1
pm´1qσx qσxσg1 ,

which implies gk “ xkg
1
kσx for all k P r0,m´ 1s. It follows by induction that,

m´1
ÿ

k“0

|gk| “
m´1
ÿ

k“0

|xkg
1
kσx | ď

m´1
ÿ

k“0

|xk| `
m´1
ÿ

k“0

|g1kσx | ď |x| ` |g
1| ď |x| ` |w1| “ |w| “ |g|.
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Lemma 9.3.2. Let g “ pg0, . . . , gm´1qσg P G with σg “ σi for some i P r1,m´ 1s such

that gcd pi,mq “ 1. Let α0, . . . , αm´1 P G be such that gm “ pα0, . . . , αm´1q. Then |αk| ď
m´1
ř

ℓ“0

|gℓ| ď |g| for all k P r0,m´ 1s.

Proof. Observe that

gm “
`

g0g0σig0σ2i ¨ ¨ ¨ g
0σ

pm´1qi , . . . , gm´1gpm´1qσig
pm´1qσ2i ¨ ¨ ¨ g

pm´1qσ
pm´1qi

˘

.

By setting αk “ gkgkσi ¨ ¨ ¨ g
kσ

pm´1qi , for each k P r0,m´ 1s, we obtain

|αk| “ |gkgkσi ¨ ¨ ¨ g
kσ

pm´1qi | ď

m´1
ÿ

ℓ“0

|gℓ| ď |g|,

where the last inequality follows from Lemma 9.3.1.

Lemma 9.3.3. Let g “ pg0, . . . , gm´1qσg P G and let x1 ¨ ¨ ¨xℓ P S
˚ be a geodesic word

representing g. If there exist 1 ď r ă r1 ď ℓ such that xr “ a0, xr1 “ a´1
0 , then

m´1
ř

k“0

|gk| ă |g|.

Proof. By assumption, the word x1 ¨ ¨ ¨xℓ contains a subword of the form a0wa
´1
0 , where w

is a non-trivial reduced word in the alphabet S. We assume, without loss of generality, that

w is a reduced word in the alphabet Szta˘1
0 u. Let w represent an element h in G. Since

x1 ¨ ¨ ¨xℓ P S
˚ is a geodesic word, the word w is also geodesic and so |h| “ |w|. Notice that

|a0wa
´1
0 | “ |w| ` 2. Realising the word a0wa

´1
0 in G gives

a0wa
´1
0 “ p1, . . . , 1, φm´1phq, 1q.

Also, we have

h “ p1, . . . , 1, φm´1phqq.

By Lemma 9.3.1, we get |φm´1phq| ď |h| “ |w|. Therefore we conclude that

m´1
ÿ

k“0

|gk| ď |g| ´ 2 ă |g|.

9.4 Maximal subgroups

Recall that we write G “ BasspOmq. It follows from Proposition 9.4.1 below together with

[40, Proposition 2.21] that the group G admits maximal subgroups of infinite index if and

only if it admits a proper subgroup H ă G such that HN “ G for every non-trivial normal

subgroup N Ĳ G. A subgroup H ď G satisfying the above condition is called a prodense

subgroup. As seen below, we prove that G does not admit any proper prodense subgroup,

which proves Theorem 9.1.1.
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Proposition 9.4.1. The group G is just non-(virtually nilpotent). Hence, maximal sub-

groups of proper quotients of G are of finite index.

Proof. As G has exponential word growth, it follows from Bass [8] and Guivarc’h [62] that

G is not virtually nilpotent. To see that every proper quotient of G is virtually nilpotent,

by [40, Theorem 4.10], it suffices to prove that G{G2 is virtually nilpotent. Set N “

ψ´1
1 pγ3pGqˆ¨ ¨ ¨ˆγ3pGqq. From [92, Lemma 7.3], we have N ď G2 ă StGp1q ă G. Therefore

ψ1 induces a homomorphism

rψ1 : StGp1q{N Ñ G{γ3pGq ˆ
m
¨ ¨ ¨ ˆG{γ3pGq.

Since rψ1 is injective and rψ1pStGp1q{Nq is nilpotent (being a subgroup of a nilpotent group),

we obtain that StGp1q{N is nilpotent. This implies that StGp1q{G
2 is nilpotent as it is a

quotient of StGp1q{N . As the subgroup StGp1q has finite index in G, the group StGp1q{G
2

has finite index in G{G2 and hence G{G2 is virtually nilpotent. The last part of the result

follows from [39, Corollary 5.1.3].

Hereafter, for g, h P G, the equivalence g ” h mod G1 will simply be denoted by g ” h.

Notice that for every z P G1, we have σz “ 1 and G1 ď StGp1q.

Lemma 9.4.2. Let g P G be such that g ” a
ϵs´1

s´1 ¨ ¨ ¨ a
ϵ0
0 , where ϵi P t˘1u. Let j P N0 be

such that j “ ℓs ` r, where ℓ P N0 and 0 ď r ă s. If ψjpg
mj
q “ pg0, . . . , gmj´1q then

gk ” a
ϵs´1

s´1´r ¨ ¨ ¨ a
ϵ0
0´r for all k P r0,mj ´ 1s.

Proof. Since g ” a
ϵs´1

s´1 ¨ ¨ ¨ a
ϵ0
0 , there exists an element pz0, . . . , zm´1q “ z P G1 such that

g “ a
ϵs´1

s´1 ¨ ¨ ¨ a
ϵ0
0 z. We have

pg0, . . . , gm´1q “ gm “ pa
ϵs´1

s´1 ¨ ¨ ¨ a
ϵ0
0 zq

m

“

$

’

&

’

%

ppz1, . . . , zm´1, a
ϵs´1

s´2 ¨ ¨ ¨ a
ϵ1
0 as´1z0qσq

m if ϵ0 “ 1,

ppa´1
s´1zm´1, z0, . . . , zm´3, a

ϵs´1

s´2 ¨ ¨ ¨ a
ϵ1
0 zm´2qσ

´1qm if ϵ0 “ ´1,

which equals

p z1z2 ¨ ¨ ¨ zm´1a
ϵs´1

s´2 ¨ ¨ ¨ a
ϵ1
0 as´1z0 , . . . , a

ϵs´1

s´2 ¨ ¨ ¨ a
ϵ1
0 as´1z0z1z2 ¨ ¨ ¨ zm´1 q

if ϵ0 “ 1, and

p a´1
s´1zm´1a

ϵs´1

s´2 ¨ ¨ ¨ a
ϵ1
0 zm´2zm´3 ¨ ¨ ¨ z0 , . . . , a

ϵs´1

s´2 ¨ ¨ ¨ a
ϵ1
0 zm´2zm´3 ¨ ¨ ¨ z0a

´1
s´1zm´1 q

if ϵ0 “ ´1.

Therefore gk ” a
ϵs´1

s´2 ¨ ¨ ¨ a
ϵ1
0 a

ϵ0
s´1 for all k P r0,m´ 1s, since z0 ¨ ¨ ¨ zm´1 P G

1 by Lemma 9.2.1.

The result then follows upon repeating the above process.
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In the following, we denote by Sympsq the symmetric group on t0, 1, . . . , s ´ 1u. Recall

also from Subsection 9.2.1 the map φu for u P X˚.

Lemma 9.4.3. Let g “ a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π P G where π P Sympsq and ϵi P t˘1u. Let j P N0 be

such that j “ ℓs` r, where ℓ P N0 and 0 ď r ă s. Then φpm´1qj pg
mj
q “ a

ϵps´1qπ

ps´1qπ´r ¨ ¨ ¨ a
ϵ0π
0π´r.

Proof. Let i P r0, s´ 1s be such that 0 “ iπ. Then

g “ a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵpi`1qπ

pi`1qπ a
ϵ0
0 a

ϵpi´1qπ

pi´1qπ ¨ ¨ ¨ a
ϵ0π
0π .

By taking the mth power of the element g we get

gm “ p˚, . . . , ˚, a
ϵps´1qπ

ps´1qπ´1 ¨ ¨ ¨ a
ϵpi`1qπ

pi`1qπ´1a
ϵ0
s´1a

ϵpi´1qπ

pi´1qπ´1 ¨ ¨ ¨ a
ϵ0π
0π´1q

where

˚ “

$

’

’

’

’

’

&

’

’

’

’

’

%

a
ϵpi´1qπ

pi´1qπ´1 ¨ ¨ ¨ a
ϵ0π
0π´1a

ϵps´1qπ

ps´1qπ´1 ¨ ¨ ¨ a
ϵpi`1qπ

pi`1qπ´1as´1 if ϵ0 “ 1,

a´1
s´1a

ϵpi´1qπ

pi´1qπ´1 ¨ ¨ ¨ a
ϵ0π
0π´1a

ϵps´1qπ

ps´1qπ´1 ¨ ¨ ¨ a
ϵpi`1qπ

pi`1qπ´1 if ϵ0 “ ´1.

In particular, we have φm´1pg
mq “ a

ϵps´1qπ

ps´1qπ´1 ¨ ¨ ¨ a
ϵ0π
0π´1, and the result follows recursively.

We recall that Hu denotes the subgroup φupstHpuqq for a vertex u P X˚. By [92,

Theorem 1.6(ii)], the group G is fractal, so Gu “ G for all u P X˚.

Lemma 9.4.4. Let H be a subgroup of G. Assume that a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π P H for some

π P Sympsq, where ϵi P t˘1u. Then the following assertions hold.

(i) For each n P N and vertex u of level ns, the subgroup Hu contains a cyclic permutation

of the word a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π .

(ii) Furthermore, if ϵi “ 1 for some i P r0, ss, then for each n P N, there is a vertex u of

level ns such that the cyclic permutation of a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π contained in Hu ends with

ai on the right.

Proof. (i) Let g “ a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π P H. Then 0 “ iπ for some i P r0, s´ 1s. Observe from

the proof Lemma 9.4.3 of that

φm´1pg
mq “ a

ϵps´1qπ

ps´1qπ´1 ¨ ¨ ¨ a
ϵpi`1qπ

pi`1qπ´1a
ϵ0
s´1a

ϵpi´1qπ

pi´1qπ´1 ¨ ¨ ¨ a
ϵ0π
0π´1

and that φjpg
mq is a cyclic permutation of φm´1pg

mq for every j P r0,m´ 2s. By repeating

the process of taking powers we get that ψspg
ms
q “ pg0, . . . , gms´1q with gms´1 “ g and gk

is a cyclic permutation of the word a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π for k P r0,ms ´ 2s.
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(ii) In particular, if ϵ0 “ 1, we note from the proof of Lemma 9.4.3 that

φm´2pg
mq “ a

ϵpi´1qπ

pi´1qπ´1 ¨ ¨ ¨ a
ϵ0π
0π´1a

ϵps´1qπ

ps´1qπ´1 ¨ ¨ ¨ a
ϵpi`1qπ

pi`1qπ´1as´1,

and by Lemma 9.4.3 we see that

φpm´2qpm´1qs´1pgmq “ a
ϵpi´1qπ

pi´1qπ ¨ ¨ ¨ a
ϵ0π
0π a

ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵpi`1qπ

pi`1qπ a0.

More generally, suppose that ϵj “ 1 for j P r0, ss and let ℓ P r0, ss be such that ℓπ “ j.

Writing vj “ pm ´ 1q
j
¨ ¨ ¨pm ´ 1q and wj “ pm ´ 2qpm ´ 1q

s´j´1
¨ ¨ ¨ pm ´ 1q, we recall from

Lemma 9.4.3 that

φvj pg
mj
q “ a

ϵps´1qπ

ps´1qπ´j ¨ ¨ ¨ a
ϵpℓ`1qπ

pℓ`1qπ´ja0a
ϵpℓ´1qπ

pℓ´1qπ´j ¨ ¨ ¨ a
ϵ0π
0π´j .

Then similar to the above we see that

φvjwj pg
mq “ a

ϵpℓ´1qπ

pℓ´1qπ ¨ ¨ ¨ a
ϵ0π
0π a

ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵpℓ`1qπ

pℓ`1qπ aj ,

and as uj :“ vjwj is a vertex of level s, we have that Huj contains a cyclic permutation of

a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π that ends with aj on the right.

Now, by using Lemma 9.4.3 repeatedly, one can see that the result holds for level ns

of T , for n ą 1.

Proposition 9.4.5. Let g P G be such that g ” a
ϵs´1

s´1 ¨ ¨ ¨ a
ϵ0
0 , where ϵi P t˘1u. Then there

exists a vertex u of level ns in T , for some n P N0, and an element g1 P stxgypuq such that

φupg
1q “ a

ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π for some π P Sympsq.

Proof. The proof proceeds by induction on the length of g. Recall from [92, Theorem 1.6(iv)]

that G{G1 “ xa0G
1, . . . , as´1G

1y – Zs. Hence if g is equivalent to a
ϵs´1

s´1 ¨ ¨ ¨ a
ϵ0
0 then |g| ą s´1,

since any word containing each of the distinct generators of G has length at least s. Assume

that |g| “ s. Then

g P ta
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π | π P Sympsqu

and the result follows trivially by choosing u as the root vertex. Now, assume that |g| ą

s. Since the exponent sum of a0 in any word representing g is ϵ0, we can write g “

pg0, . . . , gm´1qσ
ϵ0 with g0, . . . , gm´1 P G. We get

gm “

$

’

&

’

%

pg0 ¨ ¨ ¨ gm´1, g1 ¨ ¨ ¨ gm´1g0 , . . . , gm´1g0 ¨ ¨ ¨ gm´2q if ϵ0 “ 1,

pg0gm´1gm´2 ¨ ¨ ¨ g1, g1g0gm´1 ¨ ¨ ¨ g2 , . . . , gm´1gm´2 ¨ ¨ ¨ g0q if ϵ0 “ ´1.

For every k P r0,m´ 1s, we set αk “ φkpg
mq. It follows from Lemma 9.4.2 that

αk ” a
ϵs´1

s´2 ¨ ¨ ¨ a
ϵ1
0 a

ϵ0
s´1
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for all k P r0,m´ 1s. Furthermore |αk| ď |g| for all k P r0,m´ 1s by Lemma 9.3.2. If there

exists k P r0,m´ 1s such that |αk| ă |g|, then it follows by induction that there exist a

vertex u of level ns in T , for some n P N0, and g
1 P stxαky

puq such that

φupg
1q “ a

ϵps´1qπ

ps´1qπ´1a
ϵps´2qπ

ps´2qπ´1 ¨ ¨ ¨ a
ϵ0π
0π´1

for some π P Sympsq. Using Lemma 9.4.3, we get that

φpm´1qs´1ppg1qm
s´1
q “ a

ϵps´1qπ

ps´1qπ a
ϵps´2qπ

ps´2qπ ¨ ¨ ¨ a
ϵ0π
0π ,

and hence the result follows.

Assume that |αk| “ |g| for all k P r0,m´ 1s. Since |αk| ď
m´1
ř

ℓ“0

|gℓ|, in particular, we get

m´1
ÿ

ℓ“0

|gℓ| “ |g|.

Let wg P S
˚ be a geodesic word representing g. Since for each i P r0, s´ 1s the element aϵii

contributes aϵii´1 in exactly one component, we can obtain words wgk representing gk by

substituting aϵii in wg with aϵii´1 in the appropriate component. Notice that |gk| ď |wgk | for

every k P r0,m´ 1s. Moreover, the words wgk are geodesic. Indeed,

m´1
ÿ

k“0

|gk| ď
m´1
ÿ

k“0

|wgk | ď |wg| “ |g| “
m´1
ÿ

ℓ“0

|gℓ|,

which forces that |wgk | “ |gk|. Now, set

wαk
“

$

’

&

’

%

wgkwgk`1
¨ ¨ ¨wgk`m´1

if ϵ0 “ 1,

wgkwgk´1
¨ ¨ ¨wgk´pm´1q

if ϵ0 “ ´1.

Clearly wαk
represents αk. Therefore |αk| ď |wαk

|. Furthermore,

|wαk
| ď

m´1
ÿ

ℓ“0

|wgℓ | “
m´1
ÿ

ℓ“0

|gℓ| “ |g| “ |αk|.

Thus |αk| “ |wαk
| and wαk

is a geodesic word.

Now, we claim that in order to prove the result, it suffices to consider the situation in

which for every i P r0, s´ 1s there exists a unique k P r0,m´ 1s such that wgk contains a

non-trivial power of ai. First we consider the case when i “ 0. Assume to the contrary that

there exist distinct k1, k2 P r0,m´ 1s such that wgk1 and wgk2 contain non-trivial powers

of a0. We can reduce to the following two cases.

Case 1: Suppose that there exist distinct k1, k2 P r0,m´ 1s such that wgk1 and wgk2

contain a0 and a´1
0 respectively. Then for some k P r0,m´ 1s, the word wαk

contains a
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subword of the form a0wa
´1
0 with w P S˚. If αmk “ pβ0, . . . , βm´1q then, by Lemma 9.3.2

and Lemma 9.3.3, we obtain that |βℓ| ă |α| for every ℓ P r0,m´ 1s. Again, the result follows

by induction.

Case 2: Suppose there exist distinct k1, k2 P r0,m´ 1s such that wgk1 and wgk2 contain

a0. Recall that G{G1 “ xa0G
1, . . . , as´1G

1y – Zs. Hence, as the exponent sum of a1 in any

word representing g is ϵ1, the exponent sum of a0 in wαk
is equal to ϵ1 for all k P r0,m´ 1s.

This implies that there exists k3 P r0,m´ 1s such that wgk3 contains a´1
0 , and we are in the

previous case. Analogously, the same argument works if both wgk1 and wgk2 contain a´1
0 .

We reduce to the case such that there exists a unique k P r0,m´ 1s such that wgk

contains a non-trivial power of a0. By inducting on i P r0, s´ 1s, assume that there exists a

unique k P r0,m´ 1s such that wgk contains a non-trivial power of ai´1. Suppose that there

exist distinct k1, k2 P r0,m´ 1s such that wgk1 and wgk2 contain non-trivial powers of ai.

We can find k3 P r0,m´ 1s such that wαk3
contains a subword of the form aℓ1i wa

ℓ2
i , where

ℓ1, ℓ2 P Zzt0u and w P S˚ with exponent sum of a0 in w is not equal to 0 mod m. Thanks

to Lemma 9.4.2, we may replace g with αk3 . Then we find more than one wgk containing

non-trivial powers of ai´1, contradicting the assumption and hence proving the claim.

Thus, we reduce to the situation in which for every i P r0, s´ 1s there exists a unique

k P r0,m´ 1s such that wgk contains a non-trivial power of ai. An easy computation yields

that wg does not contain a subword of the form aℓ1i wa
ℓ2
i , for some i P r0, s´ 1s where

ℓ1, ℓ2 P Zzt0u and w P S˚ with the exponent sum of a0 in w is not equal to 0 mod m. Hence,

we conclude that wg must be of the form

w1pai1 , . . . , airqa
ϵ0
0 w2pair`1 , . . . , ais´1q.

where w1 and w2 are words in the given elements, and ti1, . . . , ir, ir`1, . . . , is´1u “ r1, s´ 1s

such that the intersection ti1, . . . , iruXtir`1, . . . , is´1u is empty. Consider the element αm´1

obtained from the element g above. Then the corresponding wαk
has the form

w1pai1´1, . . . , air´1qa
ϵ0
s´1w2pair`1´1, . . . , ais´1´1q,

and continuing the above procedure with this word, yields the element a
ϵps´1qπ

ps´1qπ ¨ ¨ ¨ a
ϵ0π
0π P Hu

for some u of level ns in T , for some n P N0.

Theorem 9.4.6. If H is a prodense subgroup of G then H “ G.

Proof. Note that HG1 “ G as H is a prodense subgroup. Therefore there exists an element

z P G1 such that as´1 ¨ ¨ ¨ a0z P H. By an application of Proposition 9.4.5, we can find

u P T such that Hu contains aps´1qπ ¨ ¨ ¨ a0π for some π P Sympsq. We set g “ aps´1qπ ¨ ¨ ¨ a0π .
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Thanks to [40, Lemma 3.1], the subgroup Hu is again a prodense subgroup of G. Without

loss of generality, we replace H with Hu.

Again, as H is prodense, for some rz P G1 we similarly have as´1 ¨ ¨ ¨ a1a
´1
0 rz P H. By

Proposition 9.4.5, there exists a vertex u at level ns, for some n P N such that Hu contains

an element h0 of the form

h0 “ a
ϵps´1qτ0

ps´1qτ0 ¨ ¨ ¨ a
ϵ0τ0
0τ0 ,

where τ0 P Sympsq, with ϵiτ0 “ ´1 if i
τ0 “ 0 and ϵiτ0 “ 1 otherwise. Now, by Lemma 9.4.4(i),

the subgroup Hu also contains some cyclic permutation of the element g. By abuse of

notation, we replace g with this cyclic permutation of g. We again replace H with Hu. Now

H contains the elements g and h0. Repeating this argument s ´ 1 times, we may assume

that H contains the elements g, h0, . . . , hs´1, where

hj “ a
ϵ
ps´1q

τj

ps´1qτj
¨ ¨ ¨ a

ϵ
0
τj

0τj
,

where τj P Sympsq with ϵiτj “ ´1 if iτj “ j and ϵiτj “ 1 otherwise. Appealing to

Lemma 9.4.4(ii), we now choose a vertex v, with v of level rns for some rn P N, such that

the cyclic permutation of g that is contained in Hv ends with a0 on the right. We rename

this element g. So we have g P Hv and by Lemma 9.4.4(i) we have a cyclic permutation

of each of the elements h0, . . . , hs´1 in Hv. By abuse of notation, we rename these cyclic

permutations h0, . . . , hs´1 respectively. As before we replace H with Hv. Now H contains

the elements g, h0, . . . , hs´1, where g ends with a0 on the right.

For each n P N0, let vn “ pm´ 1q
n
¨ ¨ ¨ pm´ 1q denote the right-most vertex at level n. It

follows from Lemma 9.4.3 that for d P N we have φvdspg
mds
q “ g and φvdsph

mds

i q “ hi where

i P r0, s´ 1s. Furthermore, for any element f P G of the form

f “ aϵ1ι1 ¨ ¨ ¨ a
ϵt
ιt ,

for pairwise distinct ι1, . . . , ιt P r0, s ´ 1s with t P r1, ss and ϵi P t˘1u, we can consider its

contribution to Hvn . Specifically, if f P StGp1q, we simply consider its image under φm´1. If

f R StGp1q, then we consider φm´1pf
mq. We refer to this general process as projecting along

the right-most path. By projecting along the right-most path, we observe that if f P Hvj ,

for j P N, then f P Hvj`s ; compare the proof of Lemma 9.4.3. This observation will be used

repeatedly throughout the proof without special mention.

The strategy of the proof is now to consider the contributions from

xgy , xh0y , . . . , xhs´1y
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to Hvn , and to multiply them appropriately to separate the generators a0, . . . , as´1. More

specifically, if for some n P N, suppose we have non-trivial elements α, β P Hvn of the form

α “ aϵ1i1 ¨ ¨ ¨ a
ϵq
iq
, β “ aδ1j1 ¨ ¨ ¨ a

δr
jr

where ϵi, δj P t˘1u and 2 ď q, r ď s, with i1, . . . , iq P r0, s ´ 1s pairwise distinct, and also

j1, . . . , jr P r0, s´ 1s pairwise distinct. We consider two situations below, where we assume

always that rα, rβ are non-trivial.

(i) If α “ rαa0 and β “ rβa´1
0

pβ, then

βα “ rβa´1
0

pβrαa0

yields

φm´1prβq P Hvn`1 ,

and hence

rβ P Hvn`s and a´1
0

pβ P Hvn`s .

(ii) If α “ a0rα and β “ pβa´1
0

rβ, from

αβ “ a0rαpβa
´1
0

rβ,

we obtain

φm´1prβq P Hvn`1 ,

and similarly,

rβ P Hvn`s and pβa´1
0 P Hvn`s .

In other words, upon replacing Hvn with Hvn`s we have split β P Hvn`s into two non-trivial

parts. The plan is to repeatedly perform such operations as in (i) and (ii) above to keep

splitting products of generators. Eventually we will end up with a0, . . . , as´1 P Hu for some

u, which gives Hu “ G and equivalently that H “ G, as required.

We begin by first considering the contributions from xgy and xh0y along the right-most

path of the tree. For convenience, write

g “ ai1 ¨ ¨ ¨ ais´1a0 and h0 “ aj1 ¨ ¨ ¨ ajd´1
a´1
0 ajd`1

¨ ¨ ¨ ajs ,

for some d P r1, ss, where ti1, . . . , is´1u “ tj1, . . . , jd´1, jd`1, . . . , jsu “ r1, s´ 1s.

Case 1: Suppose 1 ă d ă s. Then we are in situation (i) from above, and it follows that

aj1´1 ¨ ¨ ¨ ajd´1´1 P Hv1 and a´1
s´1ajd`1´1 ¨ ¨ ¨ ajs´1 P Hv1 .
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We will now use (the projections of) these two parts of h0 to split g into two non-trivial

parts.

Let j :“ jd´1. We consider the contribution of aj1 ¨ ¨ ¨ ajd´1
to Hvj . In other words, we

project along the right-most path down to level j, which gives

aj1´j ¨ ¨ ¨ ajd´2´ja0 P Hvj .

Recalling that g “ ai1 ¨ ¨ ¨ ais´1a0, we have that ir “ j for some r P r1, s´ 1s. Then setting

β´1 :“ φvj pg
mj
q “ ai1´j ¨ ¨ ¨ air´1´ja0air`1´j ¨ ¨ ¨ ais´1´jas´j P Hvj

and

α :“ aj1´j ¨ ¨ ¨ ajd´2´ja0 P Hvj ,

it follows from situation (i) that

air`1´j´1 ¨ ¨ ¨ ais´1´j´1as´j´1 P Hvj`1 and ai1´j´1 ¨ ¨ ¨ air´1´j´1as´1 P Hvj`1 ,

so we have split g into two non-trivial parts.

We now use the two parts of g to split the parts of h0 further. For clarity, let us first

project to vs. Here in Hvs we have the elements

aj1 ¨ ¨ ¨ ajd´2
aj , a´1

0 ajd`1
¨ ¨ ¨ ajs , ai1 ¨ ¨ ¨ air´1aj , air`1 ¨ ¨ ¨ ais´1a0.

The left two elements are the two parts of h0, and the right two are those of g. Without

loss of generality, we replace H with Hvs .

Subcase (a): Suppose 1 ă r ă s ´ 1. Let k :“ i1. Then either k “ jq for q P r1, d ´ 2s

or k “ jq for q P rd` 1, ss. Suppose the former; a similar argument works for the latter. If

q ą 1, we let β´1 be the kth level projection of aj1 ¨ ¨ ¨ ajd´2
aj (as usual along the right-most

path) and α be that of akai2 ¨ ¨ ¨ air´1aj , which by (ii) gives, upon replacing H with Hvs , the

following elements in H:

aj1 ¨ ¨ ¨ ajq´1 , akajq`1 ¨ ¨ ¨ ajd´2
aj , a´1

0 ajd`1
¨ ¨ ¨ ajs , akai2 ¨ ¨ ¨ air´1aj , air`1 ¨ ¨ ¨ ais´1a0.

If q “ 1, we have instead the following elements in H:

akaj2 ¨ ¨ ¨ ajd´2
aj , a´1

0 ajd`1
¨ ¨ ¨ ajs , akai2 ¨ ¨ ¨ air´1aj , air`1 ¨ ¨ ¨ ais´1a0

Hence we let ℓ :“ ir`1 and let c P r2, d´ 2s Y rd` 1, ss be such that jc “ ℓ. We consider the

ℓth projection of aℓair`2 ¨ ¨ ¨ ais´1a0 multiplied accordingly with that of a´1
j a´1

jd´2
¨ ¨ ¨ a´1

j2
a´1
k

or a´1
js
¨ ¨ ¨ a´1

jd`1
a0. This is situation (ii).
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Subcase (b): Suppose r “ 1. Then we have the following elements in H:

aj1 ¨ ¨ ¨ ajd´2
, a´1

0 ajd`1
¨ ¨ ¨ ajs , aj , ai2 ¨ ¨ ¨ ais´1a0.

If i2 ‰ j1, let k :“ j1, and we proceed according to (ii), with α being the kth projection of

akaj2 ¨ ¨ ¨ ajd´2
and β that of pai2 ¨ ¨ ¨ ais´1a0q

´1. If i2 “ j1, we let instead k :“ js and consider

the kth projection of pai2 ¨ ¨ ¨ ais´1a0q
´1 multiplied with that of a´1

0 ajd`1
¨ ¨ ¨ ajs´1ak; that is,

situation (i).

Subcase (c): Suppose r “ s´ 1. Here we have the following elements in H:

aj1 ¨ ¨ ¨ ajd´2
aj , ajd`1

¨ ¨ ¨ ajs , ai1 ¨ ¨ ¨ ais´2aj , a0.

If i1 ‰ j1, we let k :“ j1, and proceed as in (ii), taking α to be the kth projection of

akaj2 ¨ ¨ ¨ ajd´2
aj and β that of pai1 ¨ ¨ ¨ ais´1a0q

´1. If i1 “ j1, we instead let k :“ jd`1 and

likewise following (ii) we consider the kth level projection of akajd`2
¨ ¨ ¨ ajs multiplied with

that of
`

ai1 ¨ ¨ ¨ ais´2aj
˘´1

.

We aim to continue in this manner, using newly-formed parts of g to split the existing

parts of h0, and then using the newly-formed parts of h0 to split the existing parts of g.

Observe also that if ai, for some i P r0, s ´ 1s, is an isolated part of g (that is, a part of g

of length one), then using (i) or (ii), one can further split the parts of h0 to isolate ai from

the parts of h0. Indeed, if ai or a
´1
i occurs as an endpoint of a part of h0, then it is clear.

If ai is an interior point of a part ar1 ¨ ¨ ¨ arξaiarξ`1
¨ ¨ ¨ arξ`z

of h0, then projecting to the ith

level, we have
`

ar1´i ¨ ¨ ¨ arξ´ia0arξ`1´i ¨ ¨ ¨ arξ`z´i

˘

a´1
0 P Hvi ,

and thus

as´1, ar1´i´1 ¨ ¨ ¨ arξ´i´1, arξ`1´i´1 ¨ ¨ ¨ arξ`z´i´1

are elements of Hvi`1 , giving

ai, ar1 ¨ ¨ ¨ arξ , arξ`1
¨ ¨ ¨ arξ`z

in Hvi`s . As usual, we then replace H with Hvi`s . We proceed similarly in the case when

a´1
i is an interior point in a part of h0.

Hence we may assume that the set of length one parts of g is equal to the set of length

one parts of h0. Equivalently, the set of parts of g of length at least two involve the same

generators that appear in the parts of h0 of length at least two.

If there are no parts of length at least two, then all generators have been isolated, and

we are done, so assume otherwise. Suppose for now that the parts of g of length at least
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two are labelled as follows:

ae1 ˚ ¨ ¨ ¨ ˚ af1 , ae2 ˚ ¨ ¨ ¨ ˚ af2 , . . . , aeµ ˚ ¨ ¨ ¨ ˚ afµ ,

for some 1 ď µ ă s, and similarly for h0:

aγ1p1 ˚ ¨ ¨ ¨ ˚ a
λ1
q1 , aγ2p2 ˚ ¨ ¨ ¨ ˚ a

λ2
q2 , . . . , aγνpν ˚ ¨ ¨ ¨ ˚ a

λν
qν ,

for some 1 ď ν ă s, with γj “ 1 if j P r1, s ´ 1s and γj “ ´1 if j “ 0 and similarly for λj .

Here ˚ stands for unspecified elements in the alphabet S. Write

Eg “ tpae1 , af1q, . . . , paeµ , afµqu

for the set of ordered pairs of the so-called endpoint generators. If a0 has not been isolated,

it follows that the corresponding set Eh0 of endpoint generator pairs for h0 is of the form

Eh0 “ tpa´1
0 , aq1q, pap2 , aq2q, . . . , papν , aqν qu,

subject to reordering the parts of h0. Indeed, else we may separate the parts further using

(i). Without loss of generality, write

Eg “ tpae1 , a0q, pae2 , af2q, . . . , paeµ , afµqu.

Note that if

tp2, . . . , pνu Y tq1, . . . , qνu ‰ te1, . . . , eµu Y tf2, . . . , fµu,

we may proceed as in (i) or (ii), since then an endpoint from a part of g is an interior point

in a part of h0, or vice versa. Hence µ “ ν and

tp2, . . . , pµu Y tq1, . . . , qµu “ te1, . . . , eµu Y tf2, . . . , fµu,

Since tp2, . . . , pµu has less elements than te1, . . . , eµu, it follows that ei P tq1, . . . , qµu for

some i P r1, µs. Then we proceed as in (ii). Hence, if a0 is not an isolated part of g

(equivalently of h0), then we can continue splitting the parts of g and h0.

So suppose now that a0 has been isolated. As reasoned above, we have

Eg “ tpae1 , af1q, . . . , paeµ , afµqu

and

Eh0 “ tpap1 , aq1q, . . . , papµ , aqµqu

with

te1, . . . , eµu Y tf1, . . . , fµu “ tp1, . . . , pµu Y tq1, . . . , qµu.
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Similarly if

te1, . . . , eµuXtq1, . . . , qµu‰ ∅,

we proceed as in (ii). So we assume that

te1, . . . , eµu “ tp1, . . . , pµu and tf1, . . . , fµu “ tq1, . . . , qµu.

To proceed, we now consider the element he1 defined at the beginning of the proof.

Proceeding as in (i) and (ii), we use the parts of g and h0 to split he1 into parts, and if

possible, we likewise use the parts of he1 to further split the parts of g and h0. We claim

that ae1 has been isolated through this process. Indeed, analogously to the considerations

above for when a0 was assumed to be an endpoint in Eg, if we have

Ehe1 “ tpak1 , a
´1
e1 q, pak2 , aℓ2q, . . . , pakη , aℓηqu

and

Eg “ tpae1 , af1q, pae2 , af2q, . . . , paeη , afηqu,

where here η ě µ, and by abuse of notation we still write ei for the left endpoints and fi for

the right endpoints for the parts of g. Then, as seen before, there is some fi P tk1, . . . , kηu

for i P r1, ηs, and we can proceed as in (i) or (ii). If instead pa´1
e1 , aℓ1q P Ehe1 then we multiply

the e1th projection of ae1 ˚ ¨ ¨ ¨ ˚ af1 with that of a´1
e1 ˚ ¨ ¨ ¨ ˚ aℓ1 as in (ii). Lastly, if a´1

e1 is

an interior point in Ehe1 , then we proceed as in (ii). In other words, if ae1 is not an isolated

part of g (equivalently of h0 and of he1), then we can always continue splitting.

By abuse of notation, we redefine Eg to be the new set of endpoint pairs, after this

further splitting of the parts of g. If Eg ‰ ∅, pick a left endpoint ae for some e P Eg. From

working in a similar manner with the element he, we can isolate ae.

Proceeding in this manner, we will end up with all individual generators.

Case 2: Suppose d “ 1. Thus we have

g “ ai1 ¨ ¨ ¨ ais´1a0 and h0 “ a´1
0 aj2 ¨ ¨ ¨ ajs .

Write i :“ i1 and let r P r2, ss be such that jr “ i. As in situation (ii), we consider instead

the ith projection of g multiplied with that of h´1
0 . We now proceed as in Case 1 with the

argument using the pairs of endpoints Eg.

Case 3: Suppose d “ s ´ 1. Here we proceed first using (i), and then following the

argument laid out in Case 1.
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Akin to [33, Proposition 6.6], one can show that the group G has a non-normal maximal

subgroup of index q, for infinitely many primes q. Indeed, the group G has a proper

quotient isomorphic to WmpZq, where for G a group and m P Ně2, we write WmpGq for the

wreath product of G with a cyclic group of order m. Writing L “ ψ´1
1 pG1 ˆ ¨ ¨ ¨ ˆ G1q and

N “ Lxam0 y Ĳ G, analogous to [33, Lemma 6.4] we have that G{N –WmpZs´1q, which has

WmpZq as a quotient group; compare also [92, Theorem 1.6(iv)].
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Chapter 10

Appendix

Here we give a MAGMA code that produce first 500 terms of the representation zeta function

of G3. Furthermore, the MAGMA code computes a conjectural approximation to the true

abscissa of convergence of the representation zeta function of G3 based on the truncated

representation zeta function of G1
3 with 500 terms.

1 clear;

2

3 Q := Rationals ();

4

5 R<x> := PolynomialRing(Q);

6

7 a := R!6; // alpha(s)

8

9 b := R!6; // beta(s)

10

11 t := R!6; // tau(s)

12

13 h := R!54; // xi(s)

14

15 z := 3 + a + 2*b + t + h;

16

17 N := 500;

18

19 for i in [1..N] do

20

21 b1 := 6 + 3*x*Evaluate(t,x^3);

22

23 a1 := b1 + x^2* Evaluate(a + 2*b + h,x^3);

24
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25 t1 := 6 + x*(18 + 9*t + 9*a + 18*b + 3*b^2)

26

27 + x^2*(3^( -1) *2*b^3 + 3*b^2 + 3^(-1)*a*b^2 + 2*a*b + a^2

28

29 + h*(3^( -1)*b^2 + 2*b + 3)

30

31 + t*(3^( -1) *2*b^2 + 4*b + 2*a + 3^(-1)*a^2));

32

33 h1 := 54 + x*(t^3 + 9*t^2 + 18*t + 3*a*b^2 +18*a*b + 6*b^2+ 18*a + 36*b)

34

35 + x^2 *( 9^(-1)*h^3 + 3^(-1)*h^2*a + 3^(-1)*2*h^2*b+ 3^(-1)*h^2*t +

h^2

36

37 + 3^(-1)*h*a^2 + 3^(-1)*4*h*a*b + 3^(-1)*2*h*a*t + 2*h*a + h*b^2 +

3^(-1)*4*h*b*t

38

39 + 2*h*b + 3^(-1)*h*t^2 + 2*h*t + 9^(-1)*a^3 + 3^(-1)*2*a^2*b +

3^(-1)*2*a*b^2

40

41 + 3^(-1)*4*a*b*t + 3^(-1)*a*t^2 + 9^(-1)*2*b^3 + 3^(-1)*2*b^2*t +

3^(-1)*2*b*t^2)

42

43 - x*9* Evaluate(t,x^3) - x^2* Evaluate(a+2*b+h,x^3);

44

45 a := a1 mod x^(i+1);

46

47 b := b1 mod x^(i+1);

48

49 t := t1 mod x^(i+1);

50

51 h := h1 mod x^(i+1);

52

53 z := 3 + a + 2*b + t + h;

54

55 end for;

56

57 print "Log -Coefficients of zeta :";

58

59 C := Coefficients(z);

60

61 for i in [1..#C] do

62
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63 if i mod 50 eq 0 then

64

65 s := 0;

66

67 for j in [1..i] do

68

69 s := s + C[i];

70

71 end for;

72

73 print i, Log (3^(i-1),s);

74

75 end if;

76

77 end for;

78

79 // zeta function for the Gupta -Sidki 3-group:

80

81 Z := 9 + 2*x + (a + 2*b + t)*x + h*1/9*x^2;

82

83 print "Zeta function for the Gupta -Sidki 3-group :";

84

85 print Coefficients(Z);

In the table below (Table 10.1; see next page), we record the conjectural approximation

to the true abscissa of convergence of the representation zeta function of G3 obtained from

the above MAGMA code. Let Cris be the i-th coefficient of the truncated representation

zeta function Z of the Gupta–Sidki 3-group obtained by the above MAGMA code. We set

RN “
N
ÿ

i“1

Cris, and αN “
logRN
log 3N´1

,

for n P N.
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N “ No. coefficients αN

50 4.28809482644205827618427001965

100 4.26582641695131320837105671922

150 4.25941122492886427875805573915

200 4.25649449175719045440344407196

250 4.25486880412599919804784805893

300 4.25384966803674456734571609285

350 4.25315962972893680483614529402

400 4.25266624100080541234099009957

450 4.25229881277024246216994399538

500 4.25201641764947051253184438879

Table 10.1: Conjectural approximation to the true abscissa of convergence of the represen-

tation zeta function of G3.
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[2] Miklós Abért, Representing graphs by the non-commuting relation, Publ. Math. Debrecen 69 (2006),

no. 3, 261–269. MR2273978
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[15] Laurent Bartholdi, Bettina Eick, and René Hartung, A nilpotent quotient algorithm for certain infinitely

presented groups and its applications, Internat. J. Algebra Comput. 18 (2008), no. 8, 1321–1344, DOI

10.1142/S0218196708004871. MR2483125

[16] Laurent Bartholdi and Rostislav I. Grigorchuk, On the spectrum of Hecke type operators related to

some fractal groups, Tr. Mat. Inst. Steklova 231 (2000), no. Din. Sist., Avtom. i Beskon. Gruppy,

5–45; English transl., Proc. Steklov Inst. Math. 4(231) (2000), 1–41. MR1841750

[17] , On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math. J. 28 (2002),

no. 1, 47–90. MR1899368

[18] Laurent Bartholdi, Rostislav I. Grigorchuk, and Zoran Šuniḱ, Branch groups, Handbook of alge-

bra, Vol. 3, Handb. Algebr., vol. 3, Elsevier/North-Holland, Amsterdam, 2003, pp. 989–1112, DOI

10.1016/S1570-7954(03)80078-5. MR2035113

[19] Laurent Bartholdi and Pierre de la Harpe, Representation zeta functions of wreath products with finite

groups, Groups Geom. Dyn. 4 (2010), no. 2, 209–249, DOI 10.4171/GGD/81. MR2595090

[20] Laurent Bartholdi, Vadim A. Kaimanovich, and Volodymyr V. Nekrashevych, On amenability of

automata groups, Duke Math. J. 154 (2010), no. 3, 575–598, DOI 10.1215/00127094-2010-046.

MR2730578

[21] Laurent Bartholdi and Volodymyr V. Nekrashevych, Iterated monodromy groups of quadratic polyno-

mials. I, Groups Geom. Dyn. 2 (2008), no. 3, 309–336, DOI 10.4171/GGD/42. MR2415302

[22] Laurent Bartholdi, Olivier Siegenthaler, and Pavel Zalesskii, The congruence subgroup problem for

branch groups, Israel J. Math. 187 (2012), 419–450, DOI 10.1007/s11856-011-0086-5. MR2891709
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raciné, PhD thesis, Université Paris Diderot - Paris 7, 2008 (English).

[29] J. W. Cannon, W. J. Floyd, and W. R. Parry, Introductory notes on Richard Thompson’s groups,

Enseign. Math. (2) 42 (1996), no. 3-4, 215–256. MR1426438

[30] Ching Chou, Elementary amenable groups, Illinois J. Math. 24 (1980), no. 3, 396–407. MR573475

[31] Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR92128

[32] Daniele D’Angeli, Alfredo Donno, Michel Matter, and Tatiana Nagnibeda, Schreier graphs of the Basil-

ica group, J. Mod. Dyn. 4 (2010), no. 1, 167–205, DOI 10.3934/jmd.2010.4.167. MR2643891

212



[33] Elena Di Domenico, Gustavo A. Fernández-Alcober, Marialaura Noce, and Anitha Thillaisundaram,

p-Basilica groups (2021), available at arXiv:2105.12443[math.GR].

[34] Artem Dudko and Rostislav I. Grigorchuk, On irreducibility and disjointness of Koopman and quasi-

regular representations of weakly branch groups, Modern theory of dynamical systems, Contemp. Math.,

vol. 692, Amer. Math. Soc., Providence, RI, 2017, pp. 51–66, DOI 10.1090/conm/692. MR3666066

[35] Jacek Fabrykowski and Narain Gupta, On groups with sub-exponential growth functions, J. Indian

Math. Soc. (N.S.) 49 (1985), no. 3-4, 249–256 (1987). MR942349

[36] Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foun-

dations and applications. MR1102677

[37] Gustavo A. Fernández-Alcober, Alejandra Garrido, and Jone Uria-Albizuri, On the congruence

subgroup property for GGS-groups, Proc. Amer. Math. Soc. 145 (2017), no. 8, 3311–3322, DOI

10.1090/proc/13499. MR3652785

[38] Gustavo A. Fernández-Alcober and Amaia Zugadi-Reizabal, GGS-groups: order of congruence quotients

and Hausdorff dimension, Trans. Amer. Math. Soc. 366 (2014), no. 4, 1993–2017, DOI 10.1090/S0002-

9947-2013-05908-9. MR3152720

[39] Dominik Francoeur, On maximal subgroups and other aspects of branch groups, PhD thesis, University

of Geneva, 2019.

[40] , On maximal subgroups of infinite index in branch and weakly branch groups, J. Algebra 560

(2020), 818–851, DOI 10.1016/j.jalgebra.2020.06.005. MR4114190

[41] Dominik Francoeur and Alejandra Garrido, Maximal subgroups of groups of intermediate growth, Adv.

Math. 340 (2018), 1067–1107, DOI 10.1016/j.aim.2018.10.026. MR3886188

[42] Dominik Francoeur and Anitha Thillaisundaram, Maximal subgroups of non-torsion Grigorchuk-Gupta-

Sidki groups, Canad. Math. Bull., to appear, available at arXiv:2005.02346[math.GR].

[43] Alejandra Garrido, Aspects of branch groups, PhD thesis, University of Oxford, 2015.

[44] , Abstract commensurability and the Gupta-Sidki group, Groups Geom. Dyn. 10 (2016), no. 2,

523–543, DOI 10.4171/GGD/355. MR3513107

[45] , On the congruence subgroup problem for branch groups, Israel J. Math. 216 (2016), no. 1,

1–13, DOI 10.1007/s11856-016-1402-x. MR3556961

[46] Alejandra Garrido and Jone Uria-Albizuri, Pro-C congruence properties for groups of rooted tree

automorphisms, Arch. Math. (Basel) 112 (2019), no. 2, 123–137, DOI 10.1007/s00013-018-1278-6.

MR3908831

[47] Piotr W. Gawron, Volodymyr V. Nekrashevych, and Vitaly I. Sushchansky, Conjugation in

tree automorphism groups, Internat. J. Algebra Comput. 11 (2001), no. 5, 529–547, DOI

10.1142/S021819670100070X. MR1869230

[48] E. S. Golod, On nil-algebras and finitely approximable p-groups, Izv. Akad. Nauk SSSR Ser. Mat. 28

(1964), 273–276 (Russian). MR0161878
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