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Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Untersuchung des asymptotischen Verhaltens der holo-
morphen analytischen Torsionsformen und ihre dquivariante Version beziiglich hohere Potenzen
eines faserweisen positiven Linienbiindels. Wir beweisen, dass die asymptotische Entwicklung der
holomorphen analytischen Torsionsformen vom Grad 2k aus Termen der Form p*+"~%log p, pF+7¢,
i € Np, und lokale Koeffizienten, wobei n die komplexe Dimension der Fasern ist. Fiir den Fall,
dass das Familienvektorbiindel aus einem Prinzipalbiindel entsteht, stellen wir eine konkret
Formel fiir die ersten Koeffizienten in der Asymptotik des Warmeleitungskerns der Krimmung
des Bismut-Superzusammenhangs dar. Die angegebenen Ergebnisse sind Familienversionen von
Resultaten von Finski. Zusétzlich studieren wir das asymptotische Verhalten der dquivarianten
holomorphen analytischen Torsionsformen und verallgemeinern einen Resultat von Puchol fir

den dquivarianten Fall.






Abstract

The purpose of this thesis is to investigate the asymptotic behavior of the holomorphic analytic
torsion forms and its equivariant version associated with increasing powers p of a given fibrewise
positive line bundle. We prove that the asymptotic expansion of the holomorphic analytic torsion
forms of degree 2k consists of terms of the form p**"~%log p, p*t"%, i € Ny, and local coefficients
where n is the complex dimension of the fibres. For the case that when the familiy of vector
bundles arise from a principle bundle we give concrete formulas for the first coefficients in the
asymptotic of the heat kernel of the curvature of the Bismut superconnection. These results are
family versions of the results of Finski. We also study the asymptotic behavior of the equivariant

holomorphic analytic torsion forms and generalize a result of Puchol for the equivariant case.
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Introduction

The holomorphic analytic torsion was introduced in 1973 by Ray and in Singer in [ | as
an analogue of the real analytic torsion. It is a positive real number associated with the spectrum
of the Kodaira Laplacian of holomorphic vector bundles on a compact complex manifold. In
the works of Bismut-Gillet-Soulé (| 1Ll Al ]) regarding derterminant bun-
dles they showed that it gives rise to a metric with the desired properties. Another application
lies in Arakelov geometry where Gillet-Soulé proved an arithmetic Grothendieck-Riemann-Roch
Theorem in which the holomorphic analytic torsion appers ([ ]). One of the main difficul-
ties was the compatibility with immersions which was provided in [ | using heavy analytical
techniques. In [ | Bismut and Vasserot studied the asymptotic of the holomorphic torsion
associated with increasing powers of a positive line bundle and extended it in | | by replac-
ing the line bundle by the symmetric powers of a Griffiths-positive vector bundle. In context to
Arakelov geometry Gillet-Soulé used the asymptotic expansion for a result on arithmetic am-
pleness ([ ])- The result of | ] has been sharpened by Finski in [['18] where he proved
a formula for the full asymptotic of the holomorphic analytic torsion. In the same paper Finski
also generalized his result for proper orbifold vector bundles over compact effective orbifolds.

In [ | Bismut and Kohler introduced the holomorphic analytic torsion form which is an
extension of the holomorphic analytic torsion to the family setting. The generalization of the
immersion formula for the holomorphic torsion in [ ] to the family case has been done in
[ | which is also referred as Bismut’s immersion theorem. With the provided analytical tool
of the holomorphic analytic torsion form the arithmetic Grothendieck-Riemann-Roch Theorem
for higher degrees was established, see [ ] and | ]

In [P 16] Puchol gave an asymptotic formula for the holomorphic analytic torsion forms which
generalizes the result of Bismut-Vasserot | | for the family setting where the line bundle is
fibrewise positive. In contrast to the proof of | , Theorem 1.5] where probabilistic methods
were used and which is cited in [ ], in [P16] Puchol relies on localisation techniques intro-
duced by Bismut-Lebeau in | | by using finite propagation speed of the wave equation. See
also | , Appendix D].

The holomorphic analytic torsion has an equivariant version in introduced in | |. In| ]
Kohler-Rossler used the equivariant holomorphic analytic torsion in their work on a Lefschetz
type fixed point formula in equivariant Arakelov geometry. Similary there is a generalizaion for

the family case called equivariant holomorphic analytic torsion form introduced in [ ]. For



its applications in Arakelov Geometry see for instance | ]
In this thesis we study the asymptotics of the holomorphic analytic torsions and its equiv-

ariant extension. Let us describe in more detail what new results this study provides.

Our first goal is to sharpen Puchol’s asymptotic formula ([’16, Theorem 0.3]) for the holo-
morphic analytic torsion form in the same fashion as Finksi did in degree zero ([I'15]). Let
M % B be a holomorphic fibre bundle with compact fibre Z. Let w™ be a real (1,1)-form on M
such that (7,w™) defines a Kihler fibration. Let (€, h) respectively (£, h*) be a holomorphic
Hermitian vector respectively line bundle on M. Let Q% denote the curvature of the Hermitian
holomorphic connection of (£, h*). Let TcZ be the complexification of the real tangent bundle
of Z and T'"YZ C TcZ the i-eigenbundle of the complex structure of the fibre. We make the
assumption that iQ% is positive along the fibres, that is, for any 0 # U € T19Z, we have

QX (U, T) > 0.

For p € N we write £P := L®P for the p'" tensor product of £. Let hf®L” be the metric on
£ ® LP induced by h® and h*. We make the assumption that the direct image Rim.(€ ® LP)
is locally free for p large. For w > 0 let ¢, be the linear map which multiplies a section with
degree k in A*TEB by u. Let By, ., be the Bismut superconnection associated to the Kéhler
fibration (7, wM) and the Hermitian vector bundle (€ ® £P, h€¥£"). Let ( - |exp(—B§7u)| - ) be
its heat kernel with respect to the fibrewise volume forms induced by w™. Set Z, = 7~1{b} and
let & be the restriction of £ over Z;. Our first main result is the full asymptotic expansion of
the heat kernel.

Theorem 1. Letb € B, z € Z, and m € Ny. There exist a;,, € I'(Z, A'(TﬁbB)@End(Ao"(T*Zb)@
&) with i € Ny such that for every u > 0 and | € Ny we have as p — oo

l
(2l 5 xp(= By p)l2) = 3 asu(2)p" " + 00" )
=0

for the €™ -norm in the parameter (b,z) € M and uniform in u as u varies in a compact subset
of 10, 00].

Now let T(w™, h€®£") be the associated holomorphic analytic torsion form of | ]. For

a differential form o on B we denote by o¥)

its component of degree k. By the term “local
coefficients” we will mean quantities which can be expressed as an integral of a density defined

locally over Z. Our second result is the following.

Theorem 2. Let k € {0,...,dimc B}. There are differential forms «;, 5; on B which are local
coefficients such that for any | € Ny the component of degree 2k of the analytic torsion forms



has the following asymptotic as p — oo:

l
T(WM, h5®ﬁp)(2k) _ Zpk—l—dimc Z—i(ai logp + BZ)(WC) + 0(p]€+dimc Z—l)
=0

in the topology of €°° convergence on compact subsets of B.

Theorem 2 has been proven in [I'18, Theorem 1.1] when B is a point and in [’16, Theorem 0.3]

for I = 0 where Puchol gave an explicit formula for ag and Sp.

Our next main result is the calculation of the first coefficient a1, in Theorem 1. We restrict
ourself to a situation where the geometry arises from a principal bundle. Let us describe it in
more detail.

Let (Z,w?) be a compact Kéhler manifold with complex dimension n. Let (E, h¥) (respectively
(L,h*)) be holomorphic Hermitian vector (respectively line) bundle on Z. We make the as-
sumption that (L, h") is positive, i.e. for any 0 # U € T*°Z, we have QF(U,U) > 0 where QF
denotes the curvature of the Hermitian holomorphic connection of (L, hY). Let G be a compact
Lie group acting holomorphically on (Z,w?) preserving w? and assume that this action lifts to
(E,h¥) and (L, h*) preserving h” and h*. We also assume that the action of G on (Z,w?) is

Hamiltonian with moment map u. The complexification G¢ acts holomorphically on Z and the

G
action lifts to an action on E and L. Let p: P —>CB be a G¢ principle bundle. Set
M:=Pxqgs 4, E:=Pxg.F and L:=P xgg L.

Letg: @ & B be a G-reduction of P to a G-principle bundle. By this reduction the G-bundle @
is equipped with a cannonical Cartan connection with Cartan curvature ©. Thus M = Q xg Z
is equipped with a connection, that is we have a splitting TM = TH M & TZ and the fibration
m: M — B is a Kéhler fibration in the sense of | ]. The bundles £ and £ become
Hermitian holomorphic bundles over M with Hermitian metric h¢ and A% induced by h¥,
and ©. One can then construct the analytic torsion form T'(w™, h€®£”) to these data. We make
the additional assumption that the Kéahler form equals the representative of the first Chern of
the line bundle
M 1 z 1 ol

=——0F d =——
w 27 an w 27

Let mTZ respectively m¥ and m” denote the moment relative to the Hermitian holomorphic

connection of (Z,w?) respectively (E,h¥) and (L, h"). For m € Ng we will write



wim = (w? )Am. By [P 16, Theorem 0.3] under the described assumptions the differential forms

ag and By on B in Theorem 2 are given by

Zn
ap = nrk(E) / e~ mmm (O and Bo = 0.
2 7 n!
When B is a point in [I'18, Theorem 1.3] Finski gave explicite formulas for a; and g; for which
he had to calculate aj,, ([I'18, Lemma 4.5]). We extend his formula for a; ,, in the family setting

descibed above as our third main result. Let z € Z and (21 ...z2,) be complex coordinates on
Tr,.Z = C". Let QT2 and QF be the curvatues of the Hermitian holomorphic connections V7Z,
VE on (TZ,hT%) and (E, h¥). Let ©7 be the corresponding fundamental vector field of © with

differential form value and let ©° be its metric dual. Put

= (0 e ) ) (e )

A = F Sl WAL LAl =
A _graorzy( 9 0 det _ et (0 O o _ g0 (29
Qb = 0! ( 9o %j), Qdet — odet( P (%j) and dO'- = def . ( 5o %j)

where Q9 is the curvature of the Hermitian holomorphic connection of (det 7407, pdet T2
with A9 7’7 induced by KTM°Z and QA (™' 2) g the curvature of the connection on A® (T*01 7)
induced by V%,

Theorem 3. The coefficient a1, in Theorem 1 is given by

u

2(1 +4e—2wu + e—47ru) _

R

_ 4 TZ —2mu\—2
al,u(z)—[—gﬁ(l—e ) ( gy

157
4 1z E E —2ru\—1(U [ U _o 1 -2
+ quim + uQﬁ - 2Qﬁ(1 —e (5 + 5@ T %(1 —e ’T“))
u u

1
o Arp _ 2mu—-1(% Y —2mu _ —2mu
2021 —e ) (2 + 5¢ 27T(1 e ))

— (% A i, + 20507 A i, Ju

de’- 11 1
_ i o 2muN—1( - —2mu _ —2mu
< 5 (1—e ) (2 + 5¢ 727‘("[1(1 e ))

B L 1 TZ e 2l —ml(©)
+ (m”(©) + m"(0) + 5 Tr[m"“(0)]), = e_QM)ne )

Our last result concerns the equivariant holomorphic analytic torsion form. Let us also here
describe briefly the situation first.
The preliminaries and terminologies are the same as in Theorem 1 and Theorem 2 with additional

equivariant structures: Let G be a compact Lie group acting holomorphically on M such that



this action lifts to an action on £ and £ so that they become G-equivariant bundles over M.
We assume that G acts on B, too, so that M becomes a G-equivariant bundle over B. We
also require that w™, h® and h* are G-invariant. For v € G and p € N one can construct
M’ hé‘@ﬁ’) M, hS@U") if y is

the equivariant analytic torsion form T, (w which coincides with 7T'(w

the neutral element. Let B, = {b € B| 7 -b = b} be the fixed-point sets of v with complex

dimension dimg B,. Then T, (w™, h€®£")

is a differential form on B,. In the same way let
Zy =A{z € Z| vz = z} with complex dimension dimc Z,. The asymptotic behavior of the

equivariant torsion form for p — oo is given by our fourth and last main result:

Theorem 4. Let k € {0,...,dimc B,}. Assume the action of v on L is given by €*?. Then
there are differential forms c.(eP%), B,(eP¥) on B., which are local coefficients such that the
component of degree 2k of the equivariant holomorphic analytic torsion forms has the following

asymptotic as p — 00:

2k)

v . . , ( ,
T, (WM hEEEN) R = plime 2tk (o (672) log p + B, (79)) T+ o(pme )

in the topology of €°° convergence on compact subsets of B..

This thesis is organized as follows. In chapter 0 we state our notations and give necessary
background information on global analysis. In chapter 1 we summerize the construction of the
equivariant analytic torsion form. In chapter 2, respectively 3 and 4, we proof Theorem 1, re-
spectively 2 and 3. Appendix A contains a few additional informations and results concerning
spectral analysis and wave operators. Appendix B gives insight on the Lie algebraic equivariant
torsion and its relationship to the other torsions we have already met. For the reader who are
not familiar with the localization technique using finite propagation speed of the wave equation
we recommand to read Appendix A between chapter 1 and chapter 2. The dependence of the

chapters on each other can be seen in the following figure.

Chapter 0

|

Chapter 1

s
s
s

Appendix A » Chapter 2

7N

Chapter 4  Chapter 3

Appendix B
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Chapter 0

General Notations and Background

on Families of Operators

The purpose of this chapter is to provide an uniform notation and background on families
of operators. We follow strictly [ , chapters 9 and 10]. Furthur treatments regarding
spectrum and the wave equation will be dealt separately in the appendix of this thesis. We will
assume that the reader is familiar with Quillen’s formalism of superbundles, graded products,

supertraces and supercommutator ([()35]). See also | ]

In this thesis, when in a formula a subscript index appears two times and there is no sum
sign, then it will be sum with this index.

The natural numbers and the natural numbers including zero, respectively, will be denoted
by N =1{1,2,...} and Ny = {0, 1,2,... }, respectively.

Let Z be a compact complex manifold with complex dimension dimc Z = n € N. We will
denote by TrZ the real tangent bundle and by T3, Z the holomorphic tangent bundle of Z. The
complexification TR Z @y C of the real tangent bundle will be denoted by T¢Z. Let J'®Z be
the complex structure on TrZ and J7¢Z its complex linear extension to TcZ. Let T19Z and
T9%1Z be the i and —i eigenbundles of J7¢Z. For a complex vector bundle E =8 Z over Z we
will use the following notations for the space of complex differential forms on Z with coefficients
in E:

WAN(Z,E) =T>(Z,\"(TEZ) @ E), A%(Z,E) = P A*(Z,E) (k € Ny),
k>0
A7, E) =T(Z, AP(T*°2) A AT Z) ® E) (p,q € No).

12



CHAPTER 0. GENERAL NOTATIONS AND BACKGROUND ON FAMILIES OF
OPERATORS

If not other stated all sections in a vector bundle in this thesis will be considered as smooth so
that we will simply write I" instead of I'>°. The space of sections with compact support will be
denoted by T'..

Let PZ = ®,>0APP(Z, C) be the vector space of smooth forms on Z which are sums of forms of
type (p,p). Let P%0 be the vector space of the forms o € PZ such that there exist smooth forms
B and v on Z for which a = 98 + 9. For a € P? its class in P?/P?%Y is called Bott-Chern
class of . One has to distinguish the Bott-Chern classes which are secondary classes from the
classes in the Bott-Chern cohomology which are cohomology classes. The Bott-Chern cohomol-
ogy groups HY;Y(Z, C) are defined by HE (2, C) = (4P4(Z, C)Nker d) /§oAP~1471(Z, C). For

more background on this topic see [ , chapter 4.1]

If E, F are vector bundles over Z which have the structures of superalgebras then in the whole
thesis we will denote the Zo-graded tensor product by E® F' instead of the also common notation

EQ®F since the ungraded tensor product will never be used.
IfY eT(Z,TcZ) is a vector field on Z the interior product with Y will be denoted by ¢y .

The filtered algebra of differential operators on a vector bundle E 5 Z will be denoted by
Op(Z,E) C End(I'(Z,E)). By #(Z,E) C Op(Z, E) we will denote the set of smoothing oper-

ators.

Now let Z be equipped with a Riemannian metric ¢"®% and let VTRZLC he the Levi-Civita
connection on (TrZ,g"®%). Let (E,h*) be a Hermitian vector bundle on Z with Hermitian
metric h” and let V¥ be a Hermitian connection on (E, h%). Let dvol sTr# be the Riemannian
volume form of (TrZ, g'rZ ). For [ € Ny the metrics ¢™®Z and h¥ induce a pointwise norm
on (T3 Z)®! ® E and its subbundles denoted by [,z pe. The L?-norm |l 222,y induced by
g™®Z and h¥ is defined for s € T'(Z, (T3 2)® ® E) by

1
Isll2zm) = Ww/usygTszhEdvolgTRz.
V/
For m € Ng and s € I'(Z, E) the €™(Z, E')-norm |-
are defined by

¢m(z,p) and the Sobolev norm ||-||gm (2, k)

m
Isllgm(z,m) == ngg HV(T;{Z)@@E . VESHQTRZJZE(Z) and
1=0~*

13



CHAPTER 0. GENERAL NOTATIONS AND BACKGROUND ON FAMILIES OF
OPERATORS

2 S T4 2)®2\QF E
sl Exm (2., :ZgHV( ROTEE LV SHLQ(Z,E)'
We will often refer ||-||gm(z gy as “the €™-norm induced by ¥ and V7. Occasionally, for the

sake of transparency, we will not write down the function spaces beside the norm when it is clear.

If G and H are two Hilbert spaces we denote by .Z(G, H) the set of bounded linear operators
and Z(G) := Z(G,G). The corresponding operator norm will, if not otherwise stated, be
denoted by ||||cc- We will denote the spectrum of an operator A by Spec(A).

For a normed vector space (V,||-||) and 7 > 0 we denote by BY (0) the subset of vectors with

norm lesser r.

Let pr; respectively pry be the projection of Z x Z onto the first respectively second component.

For two vector bundles F; and E5 on Z set
E1 X Ey :=priEj ® pryFEs.

If P is a smoothing operator acting on I'(Z, E) given by a kernel p € I'(Z x Z, E X E*) with

TRZ)

respect to the Riemannian volume form of (Tr Z, g then we will use Dirac’s notation (- ]P| )

for the kernel instead: For (z,y) € Z x Z and s € I'(Z, F),

(P)(@) = [

[ (alPlsavolme(y) = [ plr)s(u)ivol, s y).

Given two operators P(t) and Q(t) on L?(Z, E) depending on ¢ > 0 their convolution is given
by
t
(P+Q)t) = [ P(t=)Q()ds.

The M-fold product P(t) % --- % P(t) will be denoted by P(t)** and set P(t)*! = P(t). If both
P(t) and Q(t) are smoothing operators with kernels (- |P(t)|-),(-|Q(t)|-) € T(Z x Z, ERK E*)
then (P x Q)(t) is smooth, too, with kernel

(z|(P*Q)(t)|y) = /Ot /Z (x| P(s)|z) - (z|Q(t — S)|y>dVOlgTRZ (2)ds. (0.0.1)

Now let M, B be complex manifolds and M 5 B be a holomorphic fibre bundle with
compact fibre Z. Let n,m and d = n + m be the complex dimension of Z, B and M. Let £ be

14



CHAPTER 0. GENERAL NOTATIONS AND BACKGROUND ON FAMILIES OF
OPERATORS

a complex manifold and € =5 M a holomorphic fibre bundle over M. For b € B set
= Wﬁl{b} and & = g|Zb = ((ﬂg)zb : Fg_l(Zb) — Zb).

Then we call {&}pep a family of vector bundles if the restriction &, is a vector bundle over Z
for each b € B. We will often simply write & instead of {&}pep. To a given family of vector
bundles {& }rcp We can associate an infinite dimensional bundle E over B whose fibre is given
by Ey, = I'(Zy, &). The space of complex differential forms on B with values in E is defined to
be

A*(B,E) :=T'(M, 7" (A*T&B) ® €).

In particular the set of smooth section of E over B is given by I'(B, E) = I'(M, £). Recall that
if £ has the structure of a superalgebra the product in 7*(A*TEB) ® £ is the graded product.

Assume {Zp}pcp is a family of Riemannian manifolds that is the vertical bundle TV M =
ker T'm is equipped with a metric such that its restriction on each fibre Z; defines Riemannian
structures g’®% on each Z;,. The associated Riemannian volume form on the fibre will be de-

noted by dvol 1z, .

By Op(€) respectively £ (€) we will denote the bundle over B whose fibre at b € B is given
by Op(Zy, &) respectively #(Zy,E). One has to distinguish between Op(M,E) the set of
differential operators on £ 55 M and Op(€) the set of families of vertical operators parameterized
by B. Set

A (B,0p(&)) :=T(B,A*TEB® Op(€))  and  A(B,H(E)) := (B, A TEB @ H (€))

which are the spaces of families of vertical respectively smoothing operators with differential
form coefficients. Next we are going to give a short overview on kernels of families of smoothing

operators. Denote by M x, M the fibre-product
M x M :={(x,y) e M x M| n(x) =7(y)}

which is a fibre bundle over B with fibre at b € B equals to Z, x Z,. We will also use the
letter 7 for the submersion 7 : M x; M — B. In particular 7*A*TEB is a vector bundle over
M x M. Let pr; respectively pry be the projection of M x, M onto the first respectively second

component. For two vector bundles £ and & on M set

&1 R & = pri& ® pra&e

15



CHAPTER 0. GENERAL NOTATIONS AND BACKGROUND ON FAMILIES OF
OPERATORS

which is a vector bundle over M x, M. Consider a section
kel (M x M, T A*TEB @ (E Ky £7)).
When restricted to a fibre Z; x Z;, it gives rise to a kernel
ky € T(Zy x Zy, A*TE B ® (& K &) (where A®T¢ ,B is the trivial bundle over Z, x Z )

and with respect to the Riemannian volume form of the fibre it defines an operator K} with kernel
kp. Thus such a section k defines a family of smoothing operators K = {Kp}pep € A% (B, 7 (£))

and the mapping k will also be refered as a kernel.

Suppose K € A*(B, % (£)). When restricted to the diagonal the kernel (z|Kj|z) is a smooth
section of 7*A*TEB @ End(E) over M where M is identified with its embedding in M X, M as
the diagonal. The A®(B, C)-valued supertrace Trs : A*(B, #(£)) — A*(B, C) of the family of
operators K is the differential form on B given by

b | Trgky(z,z)dvol gz, (2) = / Tr, <z|Kb’z>dvolgTsz(z).
Zb Zb

For this differential form we will write [, Trs (2| K |2)dvol 1 z(2) € A*(B, C).
Let D = {Dp}pep € T'(B,0p(€)) be a family of Dirac operators on £. A differential operator

A € Op(M,m*(A*TEB) ® E) is called a superconnection adapted to D if it satifies the following

conditions:

e 1.) the operator is of odd parity,

e 2.) it satisfies the Leibniz’s rule
AlanB)=danB+ (-1 anAB, VaeA¥B),secA(B,E),
e3) A=YUmB AW with AO = D and A®) : A*(B,E) — A*+*(B,E) for k > 1.

The curvature A2 lies in A®*(B,Op(€)) since it supercommutes with A*(B,C) and it has a
decompositon A2 = D24+ A2(+) where the operator AZ() raises the exterior degree in A‘T(*J’bB®
['(My, &). By | , Appendix 1] for ¢ > 0 there exists a unique smooth family of heat kernels
for A2 with corresponding family of smoothing operators denoted by e~*4” € A*(B, .7 (£)) given

16



CHAPTER 0. GENERAL NOTATIONS AND BACKGROUND ON FAMILIES OF
OPERATORS

by

et = PP LN (b, (0.0.2)
k>0

where
In: = / e~ (t—t)D? A 2,(+) o= (tu—ti—1)D? p 2,(+) . A2’(+)€_tlD2dt1 ... dty,
tAg

and tA, = {(t1,...,t;) € R¥| 0 < t; < --- <ty <t} is the rescaled simplex. Note that the sum

in (0.0.2) is a finite sum since A>(*) has positive degree in A*TE ,B. We can also write [y, as
Ik,t — eftD % (AZ,(+)eftD)*k.

For the precise definition of a kernel to be a heat kernel in the family setting we refer | ,
p.304].

For u > 0 let 1/, be the automorphism of A*(B, E) which multiplies 2A*(B, E) by u*. It satisfies
vt =1 Ju and Yy, - Py = Py, (u' > 0). The rescaled superconnection

Ay = Vuy mht gz = VuD + AV 4T 2AD 4

is a superconnection adapted to «'/2D with curvature AZ = uy), I A? 111;/1\/5 and heat kernel

e M = 1/J1/\/E(€_UA2>'

The most important superconnection in our context will be the Bismut superconnection

which we will encounter in the next chapter.
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Chapter 1

The Equivariant Holomorphic

Analytic Torsion Form

In this chapter we give the definiton and construction of the equivariant holomorphic analytic
torsion forms for Kéhler fibrations and state the curvature and anomaly formula. The chapter
is organized as follows. In section 1.1 we recall the definition of Kéhler fibrations following
[ ]. In section 1.2 we describe the Bismut superconnection followed by the Lichnerowicz
formula which we will need several times in the later chapters. In section 1.3 we give the definition

of the equivariant holomorphic analytic torsion form by summerizing the results established in

[Ma00].

1.1 Kahler Fibration

Let M and B be complex manifolds and M = B be a holomorphic fibre bundle with
compact fibre Z. Let n,m and d = n + m be the complex dimensions of Z, B and M. Let TZ
be the vertical holomorphic subbundle of T}, M whose fibre is given by T,Z = (T}, Z()|, and
denote by TrZ the underlying real vector bundle which is equipped with a complex structure
JRZ ¢ T(M,End(TrZ)). Let T'°Z and T%'Z be the i and —i eigenbundle of its complex
linear extension J7¢% to TcZ = TrZ ®gr C. Let w™ € AL (M, R) be a smooth real (1,1)-form
on M. Set

z

W =w .
TR Z2xTR Z

We now give the definition of a Kéhler fibration established in | , Def 1.4, Theorem 1.5]:

Definition 1.1.1. We say that the tuple (m,wM) defines a Kihler fibration if the following
conditions hold:

o a)wM is closed.

18
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e b) the bilinear map
D(M,TrZ) 3> X,Y — g"RZ(X,Y) := w?(JTRZXY)

defines a metric on TrZ.

M) is a Kihler fibration. By this each fibre Z; is equipped with

M

We will now assume that (7,w
a Riemannian metric denoted by ¢’®%> which are Kihler with Kéhler form obtained from w
by restricting on that fibre. Let TH M C T, M be the orthogonal bundle to TZ in T, M with
respect to w™ and Tﬁl M its underlying real vector bundle. We get a decomposition of smooth
bundles

TWM=TEMeTZ, TaM=TEM e Tr”Z

in horizontal and vertical parts. Note that in general T# M is not a holomorphic subbundle of

Ty M. We also have the isomorphism of smooth vector bundles
THM =2 7*T,B,  and  A*(TpM) = 7*A*(TEB) @ A (TR Z).

Set
H . M

w =w
|THMxTHM
R R

and extend w? and w! by zero to TgM @® TrZ so that we have wM = w? 4+ wH.

Let £ — M be a holomorphic vector bundle over M. Then as explained in chapter 0 we can
associate to the family of vector bundles {(A%*(T*Z) ® £)y}1en, k € Ny, an infinite bundle EF
whose fibre is given by Ef = I'(Zy, (A%*(T*Z) @ 5)|Zb). Let E be the bundle over B whose fibre

at b€ B is
dimgc Z

E,= P E;.
k=0

Let hTZ be the Hermitian metric along the fibres obtained from ¢’®% and hT""Z the Hermitian

metric on 71°Z induced by h’Z via the isomorphism (TrZ, J'®?) = T107.

Let h€ be a Hermitian metric on €. Recall that the Riemannian volume form of the fibre
(Zy, g™®%v) was denoted by dvol rgz,. Then we can define a Hermitian product (-,-) on E

associated to hT% and hf as the following:

1 N *
<81,82>b = WTCZ /Z hAO T Z>®S(Sl,82)dVOIQTRZb (111)
b

where 1,55 € T'(B,E) and kA" (T"2)€€ g the Hermitian metric on A%*(T*Z) ® £ induced by
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hTZ and h¢. For an arbitrary Riemannian metric g"R5 on B set

T M TRZ T B

gl =g R 41y

Before we are heading to the definitions of certain connections on the considered bundles we
will introduce some notation regarding local basis. Let {w;}; be an local orthonormal basis of
(TY0Z, hT"°Z) with dual basis {w};. We get a local orthonormal base {e;}; of (TrZ, g™®%) by
setting .
€91 = %(wz —i—@i) and ey := ﬁ
The local dual basis will be denoted by {e‘};. Let {fa}o be a basis of TR B with dual basis
{f*}a. These bases will be identfied with bases of T M and (T M)*. For any (k,0)-tensor A

we will denote by Aq; ..., = A(ea;;- - -, ¢q;,) Where eq; € {€;}; U{fa}a. Latin indices 4,7 ... will

(wi — @1)

be used for vertical variables, greek indices «, (3, ... for horizontals variables. These notations

will be used throughout the upcomming sections.

1.2 The Bismut Superconnection

Let V7% and V¢ be the Hermitian holomorphic connections on (7'Z,hT#) and (&, h¢). Let
VA" (T*2) be the connection on A%*(T*Z) induced by V7% and VA" (T"Z)®€ e the connection
on A%*(T*Z) ® € induced by VA"*(T"2) and V¢,

Definition 1.2.1. For U € T'(B,Tr B) let UY be its horizontal lift to T'(M,TEM). The con-
nection VE on E is defined to be

Vgs = V;}Z.(T*Z)@gs
for s e T(B,E) = T(M,A%*(T*Z) ® &).

This connection can be extended to a connection on I'(M, 7*A*(TB) ® A%*(T*Z) @ ) by the
de Rham operator dg on B and Leibniz rule. This extension will still be denoted by VE.

Let CI(Tr Z, g"®%) be the Clifford algebra of (TR Z, g'®%). Forany X € I'(M,TZ) C T'(M,TcZ)
with decomposition X = X150 + X0l € (M, 707 @ T%'Z) let X5 € T'(M, T Z) be the
metric dual of X0 with respect to h’?,

Xl,Ob — hTZ(Xl’O, )
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Then the bundle A%*(T*Z) ® € becomes a Cl(Tr Z, g"®%)-module with Clifford action induced
by
(X)(a®s)=V2AX"P Ao —ixoia)®s

for o € T'(M,A%*(T*Z)) and s € T'(M, &).

For b € B let 9”7 be the Dolbeault operator acting on E;, and let 7" be its formal adjoint with
respect to the Hermitian product (1.1.1). Put

D% =37 + a7,
Then DZ = {D%}, € Op((A**(T*Z) ® £) is a smooth family of Dirac operators. Since each
fibre Z;, is Kahler v/2D% is a Dirac operator which satisfies
2n
V2D% =3 ¢(e) VAT T AEE,

i=1

Let VIRB:LC he the Levi-Civita connection on (Tr B, g"®?) which lifts to a connection VI M
on TEI{{M. Let VIRZ be the connection on T Z induced by V124, Set VIRM.® .= VIR M g vTrZ
which is a connection on TRM = TE M @ Tr Z. Let T € A*(M, T M) be the torsion of VIRM.®
For U,V € I'(B,Tr B) set

T U, v):=TUH v,

If PTRZ denotes the projection 7*Tr B ® TrZ — TrZ to the vertical part then T is given by
(U, V) = —PTRZ[UM v,

By | , Theorem 1.7] T takes value in TrZ and its complex linear extension is of type
(1,1) that is T € AL (M, TR Z).

Definition 1.2.2. Let ¢(T*) be the section of (A*(T§B) ® End(A%*(T*Z) ® £))~ given by

o(TM)i= 3 T (fu fo)):

1<a,<2m

Let Ny be the number operator defining the Z-grading on A%*(T*Z) ® £ and on E. For
X,Y e I'(B,TrB) set
WXV = WM (X YH),
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Definition 1.2.3. For u > 0 the number operator N, € I'( B, A*(T¢&B) ® End E) is defined by

. HH
1w
N, := Ny + o

As differential forms on the base are identified with horizontal forms in the rest of this thesis

we will not distinguish between w? and wHH,

Definition 1.2.4. For u > 0 the Bismut superconnection B, on E is the superconnection

c(TH)
2v2u

Recall for a > 0 the the automorphism 1, of A*(T3B) was such that if a € A¥(T}B), then

Yo = ala. If we set B = By we see

By = Vu(@” +97%) + VE -

i.e. B, is the rescaled connection of B. We have B = DZ + B + B®) with B® = VE and

B® = —C;Ti\/;). The curvature B? = 1[B, B] has the decomposition B? = D%2 + B%>(+) with

2
B2(H) = (VE - %) + [VE - C(QL\/;), DZ]. Recall that [-, -] is the supercommutator.

Let VIRM.LC he the Levi-Civita connection on (Tg M, g"®M). Define the tensor S on M by

S = VTRM,LC o vTRM,EB

which takes values in the antisymmetric elements of End(TrM). If the mean curvature k :=

—1372" S(e;)e; vanishes it was proven in | , Proposition 1.4] that V® is a Hermitian con-
nection with respect to (1.1.1). As it was shown in | , Theorem 1.14] k always vanishes

on a Kéhler fibration from which in this case VE is Hermitian. This does not have to be true if

wM is not closed (which in this case is called Hermitian fibration). By [ , Theorem 1.9] the

(3,0)-tensor
S('? ) ) = <S()7 '>gTRM

does not depend on choice of the metric chosen on Tg B. For u > 0 define

0,0 * a 1 a
v%@i = Vé\i (T 2)®E + Siyjyac(ej)f + Rsi’a,gf fﬂ (1.2.1)

1
V2u
which is a fibrewise connection on *A*(TxB) @ A»*(T*Z2) ® £.

In the whole thesis we will use the following notation: if C' € T'(M, Tk Z ® End(A%*(T*Z) ® €)
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then

(VT 258 4 0(e)) i= Y (VA5 1 0ey)” - VS D% _ oSV,

Let Q7% and QF denote the curvatures of VT4 and V€. Let sZ be the scalar curvature of Z.

The next Theorem is the Lichnerowicz formula established in | , Theorem 3.6]. See also
[ , eq. (2.13)].

Theorem 1.2.5. For u > 0 the curvature of the Bismut superconnection satisfies the formula

Z
1
B2 = — 2 (Vue)? +ue + “eles)ele;) [Qg t3 TYQTZ} (€, €;)

arB
+ \/gc(ei)fa [QS + %TYQTZ] (eis fa) + f 2f

[0F + %TrQTZ} (fas f5)-

Recall that by (0.0.2) B2 has a heat kernel with corresponding heat operator which was
denoted by e Bi € A° (B, # (A**(T*Z) ® £)). We will frequently make use of the notation

exp(—B2) as well.

1.3 The Equivariant Holomorphic Analytic Torsion Form

Let G be a compact Lie group acting holomorphically on M such that this action lifts to an
action on £ from which £ becomes a G-equivariant bundle over M. Each v € GG induces a fibre
bundle isomorphism 7¢ so that yon® = 7€ 0~€. We assume that G acts on B, too, for which M

becomes a G-equivariant bundle over B. We also require that w™ and h¢ are both G-invariant.

The actions of v on these manifolds and the natural induced action of v on the various tensor

bundles and sections will be all if not other stated simply denoted by .
For v € G let
M, ={zeM|y-z=z}, By:={beB|y-b=0b} and Z,:={z€Z|y 2=z}

be the fixed-point sets of . Then we have a holomorphic fibration 7, : M, — B, with compact
fibre Z,, ([ , p-1550]).

23



CHAPTER 1. THE EQUIVARIANT HOLOMORPHIC ANALYTIC TORSION FORM

Let v € G be given and let Nz_,7 be the normal bundle along Z,. Then v acts on Ny ,7 and

we have a holomorphic orthogonal splitting

ThZ|Z,Y =ThWZ, @ NZW/Z

M hTZ

which is preserved by 7. Since w is also y-invariant and the distinct

i,

is ~y-invariant

eigenvalues 1,e"1 .. e (0 < 6; < 2m) of ~ are locally constant. T},Z, is exactly the
eigenbundle with eigenvalue 1 of . Let NZZH NREE NZq/Z be the eigenbundles correspond-
1(9 i0q

ing to the other elgenvalues Let hT%, hN7y /2 Jh Nz z.. hNZW/ Z be the Hermitian metrics on

IhZy, Nz, 1z, N NY P /Z induced by hTZ Then V|TZ induces the holomorphlc Hermitian

16 10 19
connections V7% VNZW/Z \Y ZW/Z oV ZV/Z Let Q7% QNZ“//Z Q ZW/Z Y] ZW/Z be their

curvatures.

Z/Z7"'

For a (g, q) matrix A put

Td(A) = det (17_‘4> ch(A) = Tr (e?), comax(A) = det A.

The genera associated to Td, ch and cyax are called the Todd genus, the Chern character and

the maximal Chern class or Euler genus.

Definition 1.3.1. Let (F, hF) be an arbitrary Hermitian holomorphic vector bundle over Z with

Hermitian holomorphic connection V¥ and curvature QF. Put

0;

N
27 = 1 () T (o) (g +0)
NV
0% - [0 () () (S 1, )],
_]:1 max =
0;
(11 (1 2,77) = 2[4 ( ;ff" b)ﬁ(jd)‘1(—9;72+wj+b)}” and
]:1 max =

chy (F,hf) = Tr [fy exp (

i )]

These are closed differential forms on Z, and their cohomology class does not depend on the
metric. The cohomology classes will be denoted by Td. (T'Z), Td.(T'Z), (Td Y(TZ) and ch.,(F).
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We make the assumption that the direct image R*m,.E of € by 7 is locally free, i.e. the RFr,&,
0 < k < n are locally free. For each base point b € B, let H*(Z;, &) be the cohomology of the
sheaf of holomorphic sections of £ over the fibre Z,. Then by the assumption the H*(Z, &)
form a Z-graded holomorphic vector bundle H(Z,&|,) on B and R*7m.& = H(Z,€,).
For b € B let K(Zy, &) := ker(D?). By Hodge theory we know that for every b € B

H*(Zy, &) = K(Zy, &) (1.3.1)

The Hermitian product on &, restricts to the right side so that by the isomorphism above hT%
and k¢ induces a G-invariant metric 27%€12) on the holomorphic vector bundle H (Z,¢,) for

which the H*(Z, &|,) are mutually orthogonal.

Definition 1.3.2. Let V(%€12) be the Hermitian holomorphic connection on (H(Z, &,), hH(Z’g‘Z)).

Let PX be the orthogonal projection from Ey to K (Zp, 5|Zb). We define the connection V(%€12)

on K(Z,€&,) by
vEZE,) .= pRYEPK,

We quote the following Proposition which has been proven in | , Theorem 3.2].

Proposition 1.3.3. Under the identification (1.3.1) the connections V' Z€12) and vE(ZE,)

agree.

Definition 1.3.4. Set

ch, (H(Z,&,),h"%42)) = N (~1)* ch, (H*(2,€),), W #F12))  and
k=0

chly (H(Z,6,), k" 42)) = 3 (1" chy (HH(Z,6),), 17 E4).
k=0

Before we come to the next result which involves these classes we introduce some notations
again. Let (ay)u>0 and « be smooth differential forms on B,. We say that as u — oo (resp.
u— 0), ay = a+ O(f(u)), if and only if for any compact set K in B, and any k € Ny there
exists C' > 0 such that for every u > 1 (resp. u < 1) the norm of all derivatives of order lesser
equal k of a,, — v over K is bounded by C'f(u).

Recall that the definition of the vector spaces PP and P50 was given in chapter 0. The spaces
pMy pMy0 pBy PB+.0 are defined in the same manner.
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Let ® € I'(B, End(A®V*" T B)) be the endomorphism defined by
® o (2m0) T 20,

Now we can state the following Theorem established in | , Theorem 2.10].

Theorem 1.3.5. Asu — 0

® Try [yexp(—B2)] = / Td(TZ, h'?) ch, (€, hE) + O(u).
Zy
There are differential forms Cj., € PBv, j > —1, such that for k € Ny as u — 0
®Trg [yNyexp(—By)] = > Cj v’ + O(uFT1). (1.3.2)

Furthermore in PB/PB+0 the first coefficients in the asymptotic expansion are given by

M
Oy, = / %TdV(TZ, hTZ)ch, (E,h%) in PP/ PBO  and (1.3.3)

2y

Cory = /Z (dich-TdW(TZ, hT%) —Td (T2, hTZ) chy(E,hE) in PPv/PB0. (1.3.4)

vy

and

H(Z.E
BTy, [yexp(~B2)] = ch, (H(Z.8,).h754) 1 0(7)
BTy, [N, exp(~B3)] = el (1(Z,8,).17%) +0( 7).
For s € C with Re(s) > 1 by Theorem 1.3.5 one can set

1o
Cya(s) = _F(s)/o uw T P Try (YN, exp(—BZ)] — chif (H(Z, €|Z),hH(Z"S|Z))du.

The function (y,1(s) extends to a holomorphic function of s € C on {|Re(s)| < 3}

For s € C with Re(s) < 3 set

1

Cya(s) = —P(S)/1 w 1P Try [yN, exp(—B2)] — b, (H(Z,£),), k7 ##12)) du.

Then (,2(s) also extends to a holomorphic function on {|Re(s)| < 3}.
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Definition 1.3.6. For s € C with [Re(s)| < § the zeta function (, is defined by

Gy (8) = Gya(8) + Gy,2(8).
Set
T, (W™, h®) = ¢(0)

The function v — T«,(wM,hg) 1s called equivariant holomorphic analytic torsion form. It is a
smooth form on B.. The components in the different degrees of T,Y(wM,h‘g) are referred to as
equivariant holomorphic analytic torsion forms. If v = e is the neutral element we will write
T(wM, k) instead of T.(w™, h®) which is called holomorphic analytic torsion form.

Using (1.3.2), (1.3.3), (1.3.4) we see

_ CO,'y) de
du

1
—/ (@Trs [¥Ny exp(—Bg)] — ch, (H(Z,8|Z),hH(Z’5\z)))7
0 u

M &y _ _ ! _n2 _C—l,w
T (@ 1) =~ | (@ Try [yNy exp(—B2)] -

+ iy +T'(1) (Copy — o, (H(Z,E),), nH4412))).

The equivariant holomorphic analytic torsion form satisfies the following crucial equation known

as the curvature formula:

Theorem 1.3.7. [ , Theorem 2.12] The form T, (w™, h) lies in PBv. Moreover,

90

ST (W hE) = chy (H(Z,8),), h752)) _/Z Td,(TZ, hTZ) ch. (&, k).
vy

Now let (wif, h§) and (wi, h{) be two couple of G-invariant data. By | , §1(f)] there

are Bott-Chern classes

Td,(TZ,hE? h¥%), ch,(E,h§, h§) € PMr )P0

E\EW(H(Z, 5|Z),hOH(Z’g‘Z),h?(Zyg‘Z)) c PB’Y/PB’Y’O7

which are defined uniquely axiomatic by | , Theorem 1.29]. They fulfill

90 .

%TdW(TZ, heZ h1%) = Td(TZ,hi?) — Td(TZ, h %),
58 T E 1€ E E

ﬁchw(c‘f,h ,h) = chy (&, hT) — chy (&, hg) and
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9 & (H(z, &) hy 7 b

211
= Ch’)’ (H(Z7 g\z)v hllq(Z’ng)

(2£,) , H(ZE,)
1

)
H(ZE )
) —chy (H(Z,&,),hy %

).

The equivariant holomorphic analytic torsion form verifies, ([ , Theorem 2.13]), the anomaly
formula
~ H(ZE H(ZE
TW(wiwahf) _T”/(w(]]wvhg) :Ch"/(H(Zag|z)7h0 ( ‘Z)vhl ( lZ))

—/ TH,Y(TZ,th,thZ)chV(S,h‘S)—/ Td (T Z, h¥%)ch, (&, h§, hf).
Zy Z

In particular the class of T, (w™, hf) in PB+/PB+0 only depends on (b4, h).

Remark 1.3.8. At this point we want to point out some of the different conventions in the
cited papers in this thesis. The fibrewise L*-norm (1.1.1) is not always defined with with the
factor 1/(2m)4™ (eg. [ L/ 1). For more background on this factor see [ /. In
the works of Bismut and [P10] the Kihler from w™ differs from ours by a minus sign. In [ ,
(8.1.1)] another convention for the Clifford action has been used. In comparison with [F'18,
(2.8)] where B is a point our definition of D? differs by a factor /2 and thus other appearing
operators differs as well. The reader has to be aware what impact these changes has on the

resulting formulas.
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Chapter 2

The Asymptotic of the Holomorphic

Analytic Torsion Forms

The aim of this chapter is the proof of Theorem 1 and Theorem 2, the full asymptotic of the
holomorphic analytic torsion forms. The techniques we are using here are very close to | ],
[ , chapters 4.1 and 4.2] , [F'18] and [P16]. Let us describe in more detail how this chapter
is organized. After introducing the higher power of a line bundle with the for our purpose de-

sired properties we start in section 2.1 which is divided in subparts a) - d), with the localization

technique of Bismut-Lebeau, ([ ]), using the finite propagation speed of the wave equation.
The threatment of how to use it with the operators in our case has been shown in [P16] and we
merely recall his results in a). In b) - d) we follow closely the ideas of [ | and | ,

Chapters 4.1 and 4.2] where additional adjustments have to be make regarding the structure of
the Bismut superconnection. One of more difficult task we will be confronted is the large time
behavior of its curvature which will get an own section 2.4. In section 2.2, respectively section
2.3, we will proof Theorem 1, respectively Theorem 2. We will catch up the postponed proofs

from section 2.2 in section 2.4.

The objects are the same as in chapter 1. Now let (£,h*) be a holomorphic Hermitian
line bundle on M. We denote the curvature of the Hermitian holomorphic connection V# of
(L, h*) by QF. We make the assumption that iQF is positive along the fibres, that is, for any
0+#UecT"Z, we have

QF(U,T) > 0.

Such holomorphic Hermitian line bundles with this property will be called positive. Let Q%€
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End(T'°Z) be the Hermitian matrix such that for V,W € 7197
QE(V,W) = (VPEV, W), rros.

By our assumption Q%% € End(T™Z) is positive definite. For p € N set £P := £LZ. We will
assume that the direct image R7,(€ ® LP) is locally free for p large. Now all the construction
from chapter 1 will be used here for (£ ® £P, h¢®£") instead of (£, hf) and we consider the case
~v = e. In this case the torsion form is real (| , Theorem 3.9]) and the coefficients Cj. in
(1.3.2) are real forms as well. In the non-equivariant case when - is absent we are dealing with

A*TE B instead of A*TEB. The corresponding spaces and operators will be denoted by

Ep, = T(Z, AN 2) 2 E® LP)),),

9P = Dolbeault operator of E,,

D, = oP + 510,*7

By, ., = corresponding rescaled Bismut superconnection with B, := By, 1,

Gy,p = corresponding zeta function with ¢, := (.

By | , Theorem 1.5.8] the operator DIZJ has a spectral gap property that is there exists a
constant Cz > 0 depending on £ and pg > 0 such that

Spec(D2) C {0}U]2puo — C, o0l (2.0.1)

In particular since by [P16, (2.22)] (or Theorem A.0.3 of Appendix A) we have Spec(B2) =
Spec(DZQ)), the operator Bf) has this property as well which plays a crucial part in the approach
for the asymptotic. Note that the spectral gap does not hold if the line bundle is only semipositive

([Do03]).

2.1 Localization

Let by € B be a given base point and zy € Zp,. Since in this section we will work along
the fibres we will denote all the fibres Z;, simply by Z. In particular g"™®%v0 will be denoted by

g"™”% as well as the corresponding Riemannian volume form.

a) Normal coordinate and localization
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For ¢ > 0 and 29 € Z let BZ(z) and B?R’ZOZ(O) be the open balls in Z and Tr ,,Z with
radius € and center zg and 0 respectively. For ¢ sufficiently small the exponential map epoZO :
BZR’ZOZ(O) — BZ(2)),V ~ expZ V is a diffeomorphism. BZ(z) and B;‘FR’ZOZ(O) will be identi-
fied by this. In particular 0 € TR .,Z will represents 2.

Let inj# be the injectivity radius of Z and let € €]0,inj? /4[. Such an ¢ can be chosen uniformly

for by varying in a compact subset of B. Because we are often going to work on TR .,Z set

Z := TR 2 2-

The notation of the orthonormal basis {e;}; of chapter 1 will also be used for Z; (instead
of {e; ., }i) without pointing out its dependence on zp. We will identify R** with Zy by the

isomorphism
2n
R* > (Vi,...,Van) = > _Viei € Tr 20 Z-

i=1
Let g"R%0 be a Riemannian metric on Zy with

Tr.2 2
TRZ R,zg
Taze . J9 R on By (0)
g = TR,z 7

gZTORZ on Tr . Z \ B,. (0).

Let dvol rgz, denote the associated volume form. Let dvolgTRz be the Riemannian volume
20

form of (Zy, g7®?) and let (V') be the smooth positive function on Zy defined by the equations

x(0) =1 and

dvol rg 7, (V) = k(V)dvol 1g2(V), V€ Zp.

EN)

We identify (50v,h€/), (Lv, hEY and (A% (T*2), WY T DY) with (£.,, %), (Lsy,hE) and
(AOV'(TZ*OZ ),hA * (T2 )) by parallel transport along the geodesic ray [0,1] 5 ¢ — tV with re-
spect to the connections V; and V£. Recall that V; was defined in (1.2.1) with uw = 1. Let 9

and 9% be the corresponding connection forms.

Let p: R — [0, 1] be a smooth even function such that

o) {1 , v <2,

0, [v]>4.
Let dy be the ordinary differentiation operator in direction V on 73,Z. On the trivial bundle

Epzo = A (Tf, B) ® (A%(T°2) © € ® L7);,
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over T},Z define the Hermitian connection
v
VEro0 = d + p(U) (P9~ + 9h).

Let AF»=0 be the Bochner Laplacian associated with VEr20 and ¢g"®%0. Let VI®Z0 be the Levi-
Civita connection on (Zy, g"®%0). Let &;(V) be the parallel transport of e; with respect to V7&%0

along the curve [0,1] 5 ¢ — tV. Set
AY e 1 TZ | (5
| + e@)fo[f + 5 Q™7 (@, fo)

\I;.ff_i_} (&) (~.)[Q€+1TH2TZ
=g+ gcl@)e(e 5
a B 1
+ %[95+ 5 Q"] (fas f5). (2.1.1)
Define the operator

L (VI WVINGL e

My, -—§A o +P(?)‘I’+pﬂ( - )(10(31)0(%)9 (Gi,€5)
a B
+ %Qﬁ(faafﬁ)) € Op(Ep,zo)

(@) f* Qi fa)

1
+ —=c
V2
which is a second order elliptic differential operator acting on I'(Zy,E, .,) and coincides with
V') be the smooth kernel of the

BZQ) over BI'Z(0) by the Lichnerowicz formula. Let (V|e™*r=0
operator M) », with respect to dvol gz, (V'). Set
E.y = A*(Ti B) © (A*(T72) ©€)..

E will be equipped with a connection VE induced by VI®B-LC and VAP (T 2)®E and with metric

hE induced by ¢"®8 and A (T*Z)RE

An unit vector of L., gives an isometry £ = C and therefore

~
EP:ZO - IEZO‘
can.
~

With this trivialization Bg acts on E,, and we will consider M, ., as an operator acting on

I'(Zy,E,,). Because the kernel restricted to the diagonal has its coefficients in End(E, ,,)

End(E,,) the formulas do not depend on the choice of the unit vectors.
, Lemma 2.7] Puchol proved by using the localization technique of Bismut-Lebeau
| or | ]) that Vm €

In |
relying on finite propagation speed of the wave equation (cf.|
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Nop,e>0dC >0,Ne N:Vpe N

< Op" exp ( — 52p> (2.1.2)

[{Gol o (= B2 20) = (0l e (= 5 M) 0)

@m(M,End(E)) 16u
where || - %m(M,End(E)) 18 the €""-norm in the parameters by € B and 2z € Zp, induced by VEndE
and hF"E By this localization result one is able to replace the manifold by Z, and consider

the operator M, ., instead.

b) Rescaling and Taylor expansion of the rescaled operator

We now do a change of the parameter. Set t := - €]0,1]. The idea behind is to work with an

NG
operator depending smoothly on ¢ € [0, 1] so that the Taylor series can be applied at zero from

which we get an asymptotic expansion of the kernel.

Definition 2.1.1. For s € I'(Zy,E;,) and V € Zy set

Sis)(V) :=s(V/t), Vi i= tS_l,l{,l/QVEPvZOK;_l/QSt’
»20 t

1
v0|V = dV + 5950 (Vvv ) and Lt,zo = t2St_ll€1/2Mp,Zo’€71/2St.

Note that in the definition we have used the mentioned identification E, ., = E,,. For simplicity
we will often omit the point zg in the notation and write L, V; etc. Nonetheless one has to keep

the dependence on zp in mind.

Lemma 2.1.2. There ezist polynomials A; j, (resp. Bi,,Cr) in'V € Zy, where r € N,i,j €
{1,...,2n}, with the following properties:

1.) their coefficients are polynomials in Q7% (resp. Q' W, Q%) and their derivatives at zy up to
order v —2 (resp. v — 2,7 —2,1),
2.) A jr is a homogenous polynomial in V' of degree r, the degree in 'V of B;, is < r+1 (resp.
Cr is <1 +2) and has the same parity with r — 1 (resp. ),
3.) if we set
O, := A jrVe;Ve, + Bi Ve, +Cp

and

fefr
2

Lo = —3 Y (Vo) + gelei)ele)0 e ), e [0 e, fo) + -0 (fu 1)

V2
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then the operator L has an expansion of the form

m
L= Lo+ Y O"+0@™).
r=1
Moreover there exists m' € Ng so that for every k € Ny the derivatives up to order k of the
coefficients of the operator O(t™ ) are dominated by C(1+||V||)™ t"+.

Proof. Lemma 2.1.2 has proven in [P 10, Proposition. 2.9] for the case m = 0 including the
formula for Ly. For arbitary m > 0 Lemma 2.1.2 has already been proven in | , Theorem
4.1.7] when B is a point and we will proceed in the same way with the present of additional
horizontal and coupled terms. From the definition of V; we have

Vi

Vieop, = 6720V { Ve, + p(t?) (70 (ei) + 0y () b2 (2V), (2.1.3)

Set g;;(V) := gTRZ0 (e, ej)‘v and let (g% (V));; be the inverse of the matrix (g;;(V));j. Let VT %0

TR Zo

be the Levi-Civita connction associated to g Since in normal coordinates the c(éi)‘v = c(e)

are constant we have

1 ..
Lip, = =567 (V) (Vie,Vie, =1V, g1z, )

2 J
1 o 1 CL - fers
o+ PUVI/E) (W0 + Jele)ele) O (E0se)) + —selen [*OF o fa) + 5= far fo))
(2.1.4)
Classically, see for instance | , Lemma 1.24], with e € {£, 1} we have the expansions
Yo2Ne] ] Va 1 () ® Za
Z (0% )Zo(ej)a Tl Z (6°Q )ZO(V7ej)J' (2.1.5)
lal=r la|=r—1
Because of
(V) = /| det(gi;) (V)] (2.1.6)
Lemma 2.1.2 follows from (2.1.4), (2.1.5) and | , Lemma 1.2.3]. O

c) Parameter depended norms and the calculation of %hioe*“h

By (2.1.3) and (2.1.4) we see that the operator L; can be extended smoothly to all ¢t €]0, 1].

Before we can apply Taylor series at zero to its kernel we have to show that it is smooth at zero.
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This is the goal of this part of the section.

In the sequel to the objects which have coefficients in A® (Tﬁ’bOB) an attached superscripted (0)
will be meant their part of degree zero in A*(Tg ; B).

A*(TLB .
Let h®0 be the metric on E,, induced by hz, (Tr ), hQOO’ , h, and let ||-[|, 5., denote the pointwise

0
norm. For s € I'(Zy, E,,) let

1 2
l|s]lo :== ||8||L2(Z07]E20) = WZ/HS(V)HhJEZO dVOlg;fORZ(V)
0

be the L?-norm on I'(Zy, E,,) induced by h¥20 and the volume form dvol rgz. For m € N and

gz
t > 0 set ’
Isll7o == lIsll5  and
LA (0) © 2
Isllm = > [Vie:, " Vie, sllo- (2.1.7)

1=0i1,....5;=1

In degree zero the elliptic operator Ll(fo) is formal self-adjoint with respect to ||-||,0 while L; itself

does not has to be. Denote by H}" the Sobolev space H™(Zy, E.,) of order m with the norm
||l¢.m and by H; ! the Sobolev space of order —1 with the norm defined by

L <87 S/>t70
t—1:= sup L
serigoy 15[l

Is

For an operater A € Z(HF HT") we denote by ||A|¥™ the operator norm of A associated with

[I8[le. and [|s]l¢m-

By the spectral gap property (2.0.1) of Df, and Spec(Df,) = Spec(Bf,) there exists 1 > 0 such
that for p suffieciently large

Spec(;Bz) Cc {0} U ¥, 0l (2.1.8)

By the definition of L; and since t? = % we can also find ¢y €]0, 1] sufficiently small such that
for all ¢ €]0, to],
Spec(L¢) C {0} U [¥, 00].

Let § + A be the contour in C indicated by figure 2.1. Then the resolvent (A — L;)~! exists for
A € 6 + A. The boundedness will be given in Lemma 2.1.3 in the next page.
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A

Y

g
N

N

Y

Figure 2.1: Contour 6 + A

In [P16, Proposition 2.15 and Proposition 2.17] the countor I' from figure A.1 in the appendix
was considered. But since L; as no eigenvalues in |0, 9 we have the following analogue result
of [P16, Proposition 2.15] for the contour 6 + A which can be proved exactly in the same way
making use of that the statement in degree zero which has already been shown in |
Theorem 4.1.10]:

)

Lemma 2.1.3. There exsit C > 0 and a,b € Ng such that for t €]0,ty] and X\ € 6 + A,

(A= L)~ 190 < c(1 + [AP)° and
(A= L)~ < e+ AP

The next result is the analogue of [’ 16, Proposition 2.17] which follows from Lemma 2.1.3 above
and [’16, Proposition 2.17] exacatly like [I’16, Proposition 2.17] follows from [I’16, Proposition
2.15 and 2.16]

Lemma 2.1.4. For any t €]0,t9], A € § + A and m € Ny the resolvent (A — L;)~* maps H"

into H' L,

(A~ L)~} (HP)  Hp'HL

Moreover for any multiindex o € N2" there exist N € Ng and Ca,m > 0 such that for any
t €]0,t0],A € 0 + A and s € T'(Zp, E,,),

VA = L) sllmrt < Cagn(L+ AN DIV sl

o' <a

We will use the same notation as in | , page 184]. For m € Ny let Q™ be the set of
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operators {Vg?e)il ...Vg)e)ij }j<m. For k,r € N set

J J
Ski=k+5 Y ri=r, ki € N},
=0 =1

Ik,r = {(k,r) = (ki,ri)i

For (k,r) € Iy ,,A € d + A and t €0, tg], set

7]{0 87‘1 Lt aTj Lt

k () 1k 7k
AN ) == (A — Ly) 5 (A—=L¢) "L 5 (A= L),
By induction there exist aX € R such that
—(A=L) "= > aFAF(\1). (2.1.9)

r
at (kvr)elk,'r‘

Lemma 2.1.5. For any m € Ny, k,r € Ng with k > 2(m +r+1) and (k,r) € I}, there exists
C >0 and N € Ng such that for any A € 6 + A, t €]0,ty] and operators Q,Q" € Q™,

QAN Qs]l, o < (L+ADY D7 IV7seo.
|8I<2r

Proof. Lemma 2.1.5 has been proven in | , Theorem 4.1.13] for the case where B is a
point. Unlike its part in degree zero LEO) the operator L; is not self-adjoint with respect to
(-,)t,0- Nonetheless L} has the same structure as L; and the horizontal parts will not disturb
when it comes down to derivations in ¢. Therefore the main arguments in the proof of | ,

Theorem 4.1.13] are still valid here which we will now explain in our setting.

From Lemma 2.1.4 we see that there are N € Ng and Cp,, > 0 such that for any A € § + A
we have ||(A— L) 7Y[P < Com(1+ [A2)N. We deduce from the definition of the Sobolev-norm
(2.1.7) and the set Q™ that if Q € Q™ there is C,, > 0 with

—m|0,0
Q= L)} < Cin(1+ A,
By (2.1.4) (see also [’16, (2.75)]) we see that the structure of L; is of the type

S i (6, VIV VO £ ST bi(1, 1)V 4 et tV) (2.1.10)

2, i

where a; j,b; and ¢ are polynomials in the first variable and have all their derivatives in the

second variable uniformly bounded for V' € Zy and ¢ € [0, 1]. The adjoint connection (vﬁo))* of
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(Vgo)) with respect to (-, )¢ is given by
(Vi) = —(V{) — (s 2dr) (V).

We know that LEO) is self-adjoint with respect to ||||l+0 and since t(k™1Vk)(tV) with all its
derivates in V' are uniformly bounded for V' € Z; and t € [0, 1] the formal adjoint of L; with
respect to ||-||to has the same structure as the operator L; in the sense of (2.1.10) and the
properties mentioned after. With his the arguments of the proofs in [’ 16, Proposition 2,16 and
2.17] can be applied to the formal adjoint L} such that we get an analogue result of Lemma
2.1.4 for the adjoint. Especially there is Cp, > 0 and N € N such that for any A € § + A and
QeQm
JQO =L)< G0+ NP,

Taking the adjoint we get

1A = L)~ Q| < Crn(1 + AV,

We have proven the Lemma for 7 = 0. Now consider r > 0. From the structure of L; in (2.1.10)

. . AT . . . .
the derivative daﬁt is a linear combination of

o .. o2 o o o
ij e g e , g

(07O (55 Vi) (55 Ve )s 5 OEVD), S (iltV)) (55 Ve,

where b(V),b;(V) and their derivatives in V are uniformly bounded for V' € R** (2 Z;). Now

gt?l (b(tV)) (resp. %)Vt,ei) (r1 > 1), are functions of the type b/ (tV)V?,|3| < ry (resp. 71 +1)

and b'(V) and its derivatives in V are bounded smooth functions of V. Applying the same

commutator trick as in the proof of | , Theorem 1.6.10 and Theorem 4.1.12] the operator

QAK(\,1)Q' can be rewritten as a linear combination of operators of the form

QA — L) MR /(AN= L) MRy...Ri(A— L)% and
(A= L)~ L Ry(A - L) Q" Q" (2.1.11)

with Ri...Ry € % = {[fj1Qj1,[[12Qjs>--- [, Qj,» Lt] - .. 1]} where f;, are smooth bounded

(with its derivatives) functions and @, € {Vﬁf’e)i.zl}lzl.m. By [P16, Lemma 2.16.] and Lemma
2.1.4 the norm ||-|?% of each of these operators are bounded by C(1 + |A]2)Y for a N € N.
Lemma 2.1.4 follows. ]

Let (V|e7%t|V’) be the smooth kernel of the operator e 1t with respect to dVOlgTRZ (V).

&)
The existence follows from the existence for its degree zero part as LEO) is self-adjoint and using
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(0.0.2). Denote by pry; : TRZ — M the submersion of the vector bundle TR Z over M. As
in chapter 0 pry, will also denote the submersion from the fibre-product TR Z X,;,, TR Z onto
M. Then (-|e~Lt|-) is a section of pr}(EndE) over TrZ Xpr,, TrZ. Let vPrhy (EndE) pogp
RPTa(EndE) he the connection resp. metric on pri;(End E) induced by VE resp. hE.

. T.,2
Recall the notation that B; ™ (0) was the set of vectors of norm lesser one.

Lemma 2.1.6. Let u > 0 be fized. For any m,m’,r € Nq there exists C > 0 such that for any

t €]0,to] and V,V' € B,*%(0),

8|04|+|0/| or
|04770141’I|)<mHW6t7" <C

(VieT = vi._ S
¢ (TRZXpry; TRZ,pry; (End E))

where |-

20 € Zy, induced by VP EdE) gp g ppry, (EndE)

. ’ .
G (Tp Zx ey, Ta Zoprs, (EndE)) 05 the €™ -norm with respect to the parameters by and

Proof. Lemma 2.1.6 has been proven in [P16, Theorem 2.18] for the case r = 0. In [P16, (2.80)]
it was shown that for any £ € N we have the identity

1)1k — 1)
ervtn = U [ iy b
0+A

2miuk—1

By (2.1.9) and Lemma 2.1.5 we can differentiate under the integral to get for any r € Ny

O _ur,  (“DFNE—1) / —ux 9" —k
—e Ut = YA—(N—=1L dA. 2.1.12

atr € 2miuk—1 S+A c atT( t) ( )
With this Lemma 2.1.6 follows from (2.1.9) and Lemma 2.1.5 for the case m’ = 0. For m’ > 0

the statement follows with the same argument as in degree zero, | , after (4.2.20)]. O

One can be more precise about the dependence of C' on V,V’ in (2.1.6) as is it done in | ,
Theorem 4.2.5] by using the techniques of finite propagation speed. In our case we will not need

such improvements.

Definition 2.1.7. For u > 0 and t €]0,to] put

1
KoL) = /Ae—“(x ~ L) YA,

For later purposes (section 2.4) we will need an asymptotic expansion of K,(L;) and there-
fore a similar estimate as in Lemma 2.1.6 for K, (L;) but this time also the dependence of C
on u without fixing u. Let (V|K,(L)|V') be the smooth kernel of K,(L;) with respect to
dvolngRz (V.

0
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Lemma 2.1.8. For u > 0 and for any m,m’',r € N there are constants C,c > 0 such that for
any t €]0,to] and V,V' € BTZ0 (0),

< Ce .
cm (TRZ X pr ;TR Z,pry,;(End E))

H glal+le’| - gr

8Vaav/o/ %G/}Ku(l’t) |V/>

|af,la’|<m

Proof. The proof is the same as in Lemma 2.1.6. Since for A € A there exists K > 0 with
Re(A) > K we have the exponentiell decay. O

Lemma 2.1.9. For any r > 0, k > 0 there exists C > 0, N € N such that for any t € [0, o]
and A € § + A,

and

oL, oL
I % )

¥

HHSCt S

|| <r4-3

[(Za—to*— X aka0)s| <o+ DY Y [Veslo

(kvr)elk,r ’ |O£‘§47‘+3

Proof. By [P16, (2.58)] for t € [0,1],k > 1

Isllee <C > V*sllo-

|a|<4r+3

Applying Taylor expansion for [106, (2.58)] we get for s, s’ with compact support

otr ot" |t=0

(G = G )5y, < Ctlisla 3 Vsl

|a|<r+3

from which we get the first inequality of Lemma 2.1.9. By passing to the limit we obtain that
[’16, Propositions 2.15-2.17] still hold for ¢ = 0. From [I’16, Proposition 2.15], [’16, Prop.2.17],
the first inequality of Lemma 2.1.9 and from the fact

(A= L)™' = (A= Lo)™ = (A= L)~ (L — Lo)(A — Lo) ™!
we obtain

(A= L)™' — (A= Lo) ™ Y)s ||OO < Ct+[ADY D [Vsloo- (2.1.13)

|a<4r

Only in this we indroduce the notation

L)\,t == Lt.
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Then we have

oL, 0L R
k k —k t t —k; k
A7(A 1) = A7(X,0) ZL ’ "(51% _WH_O)LA,O oLy
i=1 -
J
8T1+1L 1.
_k: — t .. k]
Z: L ( OtTi+1 4= 0> Lo’

Together with the first inequality of Lemma 2.1.9 and (2.1.13) we get the second inequality in
the claim. O

Definition 2.1.10. For r € Ny and k € Ny sufficiently large define the operators

1)1 — 1)
AP i 1)'/ e S gk AR, 0)dN,
6+A

) k1
2mirlu (kyel,
10" _
Jr,u,t = ﬁ%e ule _ JT,ua
Ky = (=D (k- 1)1 / e Z akAF(X,0)d\  and
U T o k—1 r<ir )
2mirly A (h)eTor
1o
raut «— E%Ku(Lt) - Kr,u-
For the case where B is a point these operators were already introduced in | , (4.2.21),(4.2.25)].

By the Schwartz kernel theorem the operators J;.,,; and K., are represented by smooth kernels
(V| Jrut|V') and (V|K,.4|V’) with respect to dvol gz (V).
20

Lemma 2.1.11. Let u > 0 be fized. There exist C,C’" >0, N € Ng such that fort >0, ¢ € N,
V.V € Zy with [V]LIV']< g,

V[T VO < CEP A )Y and - (V[EruaVI)| < CEP (L4 N

Proof. Let J9 . be the vector space of square integrable sections of E., over {V € T, Z| [|[V||<
q+1}. Let |- [g)m be the usual Sobolev norm on I‘(BTZOZ(O),IEZO) induced by A% and the
volume form dvol JIRZ 88 in (2.1.7). Let ||A||,) be the operator norm of A € L(JY, ) with

respect to || [|(g),0- By Lemma 2.1.9, (2.1.12) and the definition of .J,,, there exists C' > 0 and
N € N such that for ¢ > 0 and g > 1,

HJr,u,tH(q) S Ct(l + Q)N and HKr,u,tH(q) S Clt(l + Q)N

Let ¢ : R — [0,1] be a smooth function with compact support, equal 1 near 0, such that
fTZOng(V)dvolgTRz(V) = 1. Take € €]0,1]. By Lemma 2.1.6 there exists C' > 0 such that if
20
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IVILIVII< g, U, U" € Exy,

(V] rual VYU, U~ /Tzozmoz ((V = W[V = WHU, U
L@(K)gp(wl)dvol ez (W)dvol TRZ(W’)‘

e\ ¢ € 929 [

< Ce(L+ MU IT7].
On the other hand from [|Jpul (o) < Ct(1 + ¢)™ we have for |V, [V'[|< ¢

(K)SO(K,)dvol TRZ(W)dvolgzoRz(W’)

€ € o

1
V—WJru VI - WHU, U ) —
’A ZXTZO ’ ) 7t’ > >€4n

< Ct—(l + MU

By taking e = t'/>"+! we get the first inequality. In the same way we obtain the second one for

K, . by using Lemma 2.1.8 ]

As a direct consequence of Lemma 2.1.11 we have the following result.

Proposition 2.1.12. The functions 10,1] > t = (0le=*Lt|0) and ]0,1] > ¢ — (0|K,(L:)|0)
extend smoothly to [0, 1] with values at t =0 given by

10"
rl Ot |,—o

(0]e™"E|0) = (0] J,.,|0)  and :,gﬂ (O[Ku(Lt)|0) = (0] Ky u|0)-
. t=0

Moreover all the derivatives are uniformly bounded on z € Z.

Proposition 2.1.13. For any l,m,m’ € Ny there exsits C,C" > 0 such that if t €]0,to],
Ty 2

V, Ve B;?7(0),
olal+le’| L . k+1
a|7531|)<mH3Vaava ( Vel ZJrut |V’ )H(gm (TrZ X pry, T Z,pr%, (End E)) <Ct and
Plal+la’| r an
a|,sclvlfl|)<mHavaava ( ZK’"“t |V>)H%m (TR ZXprpy TrZ:pry (End E)) e

Proof. By Taylor expansion

l r I+1
LorA, 1t LotA
A(t) —§_0jﬁ SO =5 /0 (= 5)' Sorr (5)ds (2.1.14)

together with the identities of the derivatives in Proposition 2.1.12 and their estimates from
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Lemma 2.1.6 and Lemma 2.1.8 the statements follow. O

d) Volterra series

For explicit calculation of the first coefficients in the asymptotic of the torsion forms as we will
explain in chapter 3 we need to know how the J, , look like. For u > 0 let uA; be the rescaled
simplex

uAj:{(ul,...,Uj)‘OgulSUQS"'<uj<u}

as below of (0.0.2). Recall the operators Ly and O, were defined in Lemma 2.1.2.
Lemma 2.1.14. For r > 0 we have

Jrw= >, (=1) /uA e~ (muloQ, e~ (wimui—bo 0, embody, . du;.

b
j J
E Z ri=r,r;i>1

Furthermore
<0|J2r+1,u |O> =0.

Proof. Since Ly is a generalized Laplacian, Lemma 2.1.14 can be proved exactly as | ,

Theorem 4.17, (4.107), (4.108)] using the Volterra series from [ , chapter 2] and Lemma
2.1.2. U
Lemma 2.1.14 is referred in [I'18, (4.10)] as Duhamel’s formula. In this thesis we will call it

Volterra series (or expansion) of J, , since Lemma 2.1.14 is a direct consequence of it ([ ,
(4.109))).

2.2 Asymptotics of the Kernel
In [’16, Theorem 2.21] it has been shown that there exist by, ; € I'(Z, A®* (T3, B)®End(A%*(T* Z)®

£)) such that for any k,m € Ny there exists C' > 0 such that for any u €]0,1] and p € N

< Cuftl (2.2.1)
%™ (M,End(E))

k
[p ™y exp(= B p)|2) = 3 bps(2)v|
j=—d

where €™ (M,End(E)) denotes the €"-norm in the parameter (b, z) € M.

Recall the Landau symbol O was defined after Definition 1.3.4.
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Theorem 2.2.1. Let m € Ng. There exist a;,, € I'(Z,A*(T3B) @ End(A%*(T*Z) ® &)) with
i € Ng such that for every u > 0 and |l € Ng we have as p — oo

l
(2|1 5 ex0(=Byup)l2) = D aiu(2)p" ™ + 00" )
=0

for the €™ -norm on I'(M,End(E)) in the parameter (b,z) € M and uniform in u as u varies

in a compact subset of |0, 00l.

Proof. Recall that we have set t = ﬁ. For s € I'(Zy,E,,) and V € Z; we have

(efuLtS)(V) _ (St—lﬁl/2e*%Mp,zo R71/2St3)(v)

= &12(tV) / (Ve » Moo |V (S,5) (VK2 (V) dvol 1z (V).
Zo

EN)

Since dvol gz, (V) = H(V)dVO]gTRZ we get for V, V' € Z,
20

(V]e B VY = p=(tV [e” » Mp20 [V 612 (1V) 12 (1V). (2.2.2)

In particular as x(0) = 1 we have
(Ole54]0) = p~(0le” F4o o).

Using this identity, Taylor expansion for ¢ — (0[e7“#*|0) at 0 and substitute ¢ = % there exits
C > 0 such that for zg € Z,

!
P S VAR _r
ool 0) = 3 Ol 2],
Now by Lemma 2.1.14 we have (0|J2r41,,|0) = 0 and thus by (2.1.2) we get the statement with

Qi = wl/ﬁ<0’z}2i,u’0>-

Asin [P16, (2.144)] we define the following operator,

. 1 —uA 2 —1
Kpy = %wl/\/ﬂ/Ae (A — B2/p)ldx.

The well-definedness is given by [’16, (2.175)]. Let (z|K,,|2) be the smooth kernel associated
to the operator K, with respect to dvolgTRzO(z’ ). Our next goal is to have an asymptotic

expansion as in Theorem 2.2.1 for (z|K,,|2’). But first we need some preperations.

45



CHAPTER 2. THE ASYMPTOTIC OF THE HOLOMORPHIC ANALYTIC TORSION
FORMS

The notations are the same as in section 2.1. Let 21,...,zy be points of Z such that {U,, =
BZ(z)} k—1.... is an open covering of Z. For each k we fix an orthonormal basis {e; }; without for
simplicity mentioning its dependence on the point z;. On U, we identify & and A%* (T} Z) with
&, and AO"(T;“k Z) by parallel transport via V* and VA" along the geodesic ray [0,1] 2t — tV.
Define the vector bundle E, over Z by

E, = A*(Tf,B) ® (A*(1"2) © £ © L)

where A® (Tr*{,boB> is a trivial bundle over Z. Let diy be the ordinary differentiation operator in
the direction U on T3, Z. Let ||'H%Im(p) be the Sobolev-norm on H”(Z,E,) with respect to the
partition of unity subordinate to to {U;, }x=1,.. n given by

m
Islfmey =22 > ldey, - de,, (0r5)||72-
k d=01i1,...,iq=1

Lemma 2.2.2. [P16, Lemma 2.1] For any m € Ny there exists C,, > 0 such that for any
pEN, u>0 and s € H"2(Z,E,),

m+1
“SH%{?erz(p) < Chpp™™ ™ Z p74]HBzJSHL2.
7=0
We will now use the same notations as in [’16, p.15-18] (or see Appendix A). Let f: R —

[0,1] be a smooth even function with

L, [t <3
(t) =
0, [t| >«
with the same ¢ as in section 2.1. For a € C and u > 0 set

Fy(a) := \/12? /_J:o V2 exp(—v2 /2) f (Vav)dv and
Gula) i= = [ eV exp(a 2) 1) (i) o

These are even holomorphic functions, thus there exist holomorphic functions F, and G, with
F.(a?) = Fy(a) and G, (a®) = Gy(a). Furthermore one has for v > 0

~ ~ 2

F,(va®) + Gy(va?) = e, (2.2.3)

Let <Z|GU(UB£)|,Z’> and (z|F‘u(UBg)\z’>be the smooth kernel of GU(UBZ) and Fu(ng) with re-
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spect to dvol gz (2').

E, will be equipped with the connection VE» induced by VIRB.LC vAS (T2 )% gL and with
the metric h% induced by ¢TRB, pA"*(T"2)®€ and KL, Let VE™MES and hE»®ES be the induced
connection and metric on E, XE?. In [P16, Proposition 2.2] it was shown that for any m € Ny
and € > 0 there exists C > 0 and N € N such that

2

< Cp" exp ( - 2) (2.2.4)

<165 el 6

©™ (M x » ME,KE%)

where the €™-norm is induced by VE¥E» and pF»ME.

Lemma 2.2.3. For any l,m € Ng there exist Cp, 4, C, > 0 such that for p € N large such

m,lu
that t = % €]0, to]

< Cpgup™ and p"H<V|Ku(Lt)|V>H < Chap

™ (TR Z,pry, (End(Ep))

[(el®pal) m (M, End(E,))

Proof. For a set A let 14 be its indicator function. For a € C and v > 0 set
dv(a) =1 %m[(Re(a)) e .

Moreover put

Then from (2.2.3) we have

(Lo o P ) (00%) + (120 )G

8 ;OO0

D6?) = 1 (Re(a?)) - (F (va?) + G (va?))

2

- 1[%19700[(Re(a2)) e = ¢y(a?).

v
p’

Because Re()) < 22 for A € § we can rewrite the operator K, as

—1
pu = 2m¢1/f/ dA

27‘(‘2w1/\f [@700[(13»8()\))@*”)\()\ _ Cp)—ldA
%waj Bu(N — Cp) A

= @Z)l/\/ﬂ((%( p))-
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Thus it follows

Kpu = %/ﬁ(@t(cp)) = wl/ﬁ(l[%,oo[@,u)(wp) + ¢1/\/ﬂ(1[%,oo[)é ) (uCh). (2.2.5)

u
P

P

Now we have a similar estimate as in (2.2.4) for (1[ 59 oo[éﬂ,u) instead of G'u since the indicator
8’ p_ ~
Gu,)(x)| < |Gu(x)l|, i.e. there exist
p’ P

function has no effect on the exponentiell decay, ](1[
C > 0and N € N such that

%700[

< CpNexp (- ). (2.2.6)

H< . ‘(1[@ W[G%,u)(ucp)’ ' > CmM (M Xz ME,XES) 16u

8

By Lemma 2.2.2 and
sup o™ (Lsg o Fo ) (@u/p)| = sup o™ Fu(a®u/p)| < sup |a"Fu(ay/u/p)
a>0 8 a> /gﬁp a>Vi\/p
< Crpup”! (2.2.7)

. . y 7
(using i"ame™* = a%n

operators of order 2m/, 2m respectively and with compact support in U,,, U »; respectively, then

(%) and integration by parts) we find that if Q1, Q2 are differential

there is a positive constant Ci, ,,,» such that
n —1
HQl(l[%,oo[F%:U) (ucp)Q2SHL2 < Cm,m’p H5HL2'
By the Sobolev inequality we get

-l
< Cm,l,up .

[t P Gl ) wm(zx2) ~

For the derivaties in the directions of the base we have for U € TR B and any ¢,k € N

E,RE*\ 9 - 1 ~ U E,XE:\ 9 N —k
(Vo ) (s oo P ) (uCy) = 5= /(1[5819700[1?2,“)(“) (Ve ) (A= B2 Rdx,
0+A

By [P16, (2.41)] there exist ¢,d > 0 and C' > 0 such that

E,XE;

q _ ’
g ) A= B TEBIM |y < CINp sl 2

I8y (v
from which together with (2.2.7) we get

< Cm,l,up_l- (228)

1052 P ) WG] ) R

From (2.2.5) (2.2.6) and (2.2.8) we conclude the first statement in Lemma 2.2.3. The second
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statement follows in the same way by replacing C, with %Mp as both have the same structure. [

Proposition 2.2.4. Let m € Ny. There exist agfu € I'(Z,A*(T}B) @ End(A**(T*2Z) ® €)),
i € Ny, such that for every u > 0 we have as p — o0

(2[Kpulz) = Zam AN

for the €™ - norm on I'(M,End(E)) in the parameter (b,z) € M and uniform in u as u varies

in a compact subset of |0, 00l

Proof. The proof of Proposition 2.2.4 follows the same arguments as the proof of Theorem
2.2.1 where e_Bf”“/P respectively e !t are replaced by K., respectively K,(L¢). The only
major different is that (2.1.2) has to be substituted by the following: By Lemma 2.2.3 for any
l,m € Ny there exists C,,;,, such that

|2 1Kpalz) = 0 O K LO)]|, < Congia™

Thus we get the statement with

w = U1/ ya(0K2iu0).

Recall that d was the dimension of M.

Proposition 2.2.5. For any k € N there exist a[j]( ) € T(Z,A*(T§ B) @ End(A**(T*2) ® €)),
—d < 7 <k such that as u — 0

k

aiu(z) = Z agj](z)uj + O(uk).

j=—d

Proof. From (0|e~"Lt|0) = p_”<0|e_%Mp’20 0) and (2.2.1) we have that for ¢ € [0,1], there are
bir € T(Z,A*(T3B) ® End(A(T*Z) ® £)),r € Z with r > —d, such that for any k,m € Ny,
up > 0 there is C' > 0 such that for any u €]0, uo|

k
[0 =0y = 37 Bn(z)u’

r=—d

< Cuhtt (2.2.9)
%’m(MX [O,to])
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where the second coordinate of M x [0, to] represents t. Since %\H (0[e7u£t]0) = 0 we have

92+l
thobt’T(Z) = 0. (2210)
Thus the statement follows with
2i
Wy L 0% &
a; (Z) : (2]{7)' at2i|t:0 1, (Z)
O
Set By _q—1 := 0 and for j > —d — 1 set
BpJ‘ = /ZTI'S [vap’j(z) + inpr_:,_l(Z)]dVOlgTRz (Z)
In [P16, Corollary 2.22] as a corollary from (2.2.1) it has been shown that for any k,m € Ny
there exists C' > 0 such that for any u €]0,1] and p € N
k
-n 2 0y J k+1
Hp wl/\/f7 Trs [Nu/PeXp(_Bpﬂ/p)] - jg_l By, ju €™ (B,A*Ty, B) < Cu™
For j > —d set B][-_d_” ;=0 and for 1 > —d — 1 set
B][-i] = /ZTrS [Nvagj](z) + inazUH] (Z)}dVOlgTRZ(Z).
Then by Proposition (2.2.5) we have for any k € Ny as u — 0
k .
/ Trs [Nyaju(2)]dvol jrg 2 (2) = Z Bj[-z]u] + O(uk). (2.2.11)
z .
j=—d—-1

Proposition 2.2.6. As p — oo the following expansion holds for any k € Ny
i
B, ;= Z sz p i+ O(p").
=0
Proof. By the proof of Proposition 2.2.5 we know
k

prnwl/\/ﬁ Tr, [Nu/p(exp_Bg,u/p)} - Z l;tvjuj
j=—d-1

%™ (B,A*T}, B)
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and Hp*"(zwl/\/lg exp(—Bg7u/p)|z> -k bp,j(z)ujH%m(M) < CuFt1 . Thus we have
By, = /Z Try [Nybr () + i By j 11 (2)] dvol gz (2). (2.2.12)
Using a[J]( ) = (211)' 88t"“ e Obm-(z) Proposition 2.2.6 follows with
B}i] = 1 82i, / Trs [Ny j(2) +iwby j41(2)]dvol rgz (). (2.2.13)
(20)! Ot = J 2 ’ ’ g

O]

Proposition 2.2.7. For any k,m € Ny there exists C > 0 such that for any u €]0,1] and
p € N:

p’“H (p*”%/ﬁ Tr, {Nu/p exp(—Biu/p)} - 20: By ju? )

j=—d—1
k—1 0 ;
—1 . H i s
_ gp (/Z Trg [NVQi,u(l') + iw ai+17u(2):|dVOlgTRZ(Z) — jzg_l B; ua) R, < Cu.

Proof. By (2.2.9) and (2.2.10) it follows that for any k € N, ug,tg > 0 there exists C' > 0 such
that for any u €0, ugl, t €]0,tp] and z € Z

t2k< O‘e uLt‘O Z btr

r=—d
k=1 ,2i 92
= 0
_Z - ; ((Ole ~to) — Z b (2 Bl < Cu.
— (2i)! o? = =0 >H%m(M)
By this the claimed inequality follows from (2.1.2), (2.2.2), (2.2.12) and (2.2.13). O

Theorem 2.2.8. For any k,m € Ny, there exists C' > 0 such that for u > 1 and p € N:

pkH(p*”%/\/ﬁTrs [Nu/peXP pu/p} Zp / Trs [Nvai,u(z)

C
< —. 2.2.14
€m(B,ATLB) — /U ( )

+ inaiH,u(z)} dvol rg 7 (2)
Moreover there is C' > 0 such that

H /Z Tr[Nuayu(2)dvol g 7 (2)] (2.2.15)

C
< .
¢m(BATLB) — U
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The proof of Theorem 2.2.8 will be postponed to section 2.4.

2.3 The Full Asymptotic of the Holomorphic Analytic Torsion

Forms

By our assumption there is a pg € N such that the direct image Rim, (€ ® LP) is locally free
for all p > pg and i € {1,...,n}, and vanishes for ¢ > 0. In particular for p > po

HY(Z,(E®LP),)=0 for i>0.

lz

For p > pg set

N “n 1
Cip(s) = _ﬁ(s) /0 us_lwl/\/?I)(Trs [Nu/p exp(—Bg’u/p)])du and
g:g,p(s) = _1}3(_5) /1 usflwl/\/}f,(ID(Trs [Nu/p exp(—Bgvu/p)Ddu.

In the same fashion as in Definition 1.3.6 both CNLP and 5171, has a holomorphic extension near

zero and we define
CP = Clvp + Clzp'
Clearly we have

p_nwl/\/ﬁCp(S) = p_sgp(s)-

From this we see
p’”%/ﬁ;%(o) = —log(p)(y(0) + 5;(0)

On the other hand we have for p > pg

- 1 0 N du
¢y (0) = — /0 PP (1/)1/\/5 Trs [Nysp eXP(_B;u/p)] — z; Bpjju]>;
j=—d—1
< du L B
- /1 p PPy 5 Trs [Nup eXp(_Bf’,’u/p)]; - 2(; — +T'(1) By,
j=—d—1

(p(0) = — ®B, .

To prove Theorem 1 we will need the following result which is a consequence of the Arzela-

Ascoli Theorem.

Lemma 2.3.1 ([P16, Lemma 2.13]). Let Y be a compact manfold and let (F, h'") be a Hermitian
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bundle on' Y with a connection V. Let {sp}n C T(Y,F) be a sequence converging weakly to

some distribution s. If for any k € Ny there is Cy > 0 such that sup,,||sn|xxy,py < Ck then s

18 smooth and s, converges in the €°° topology to s.

For the sake of clarity we restate Theorem 1.

Theorem 2.3.2. Let k € {0,...,dimc B}. There are local coefficients o, f; € I'(B, A*(Tx B))
such that for any | € Ng the component of degree 2k of the analytic torsion forms has the

following asymptotic as p — oo:
T( M hS@LP (2k) _ Zkarn 'L(aZ logp+ /Bz) (2k) (karnfl)
=0

in the topology of €>° convergence on compact subsets of B.

Proof. By (2.2.11) the following form f3;; € I'(B, A*(T{ B)) is well-defined:

Bi1:= cjss_()(_ 11(15) /01 urhp(/ZTrs [Nuai7u(2)dV019TRZ(Z)])du).

Also by Theorem 2.2.8 we can define the differential form ;5 € I'(B, A* (T3 B)) with

Big = da (_ r‘i /loo u8—1q)</Z Tr [Nuam(z)dvolgTRz(z)])du).

ds|.—o (s)
Set
Bi == B + Bi2- (2.3.1)
Then we have
0
ﬁiz—/ /TrS [Nua;u(z Jdvol g 7 (2 Z B u]>
j=—d—-1 u
T o N, dvol OB By
_ /1 ( /Z Try [Nyt u(2)dvo gTRZ<z>])u—j§dj_l.+r<1> i, (2.3.2)

From Lebesgue dominated convergence theorem and Lemma 2.2.7, Theorem 2.2.8, we have for

k € Ny, as p — o0,

b /olpk((p_n%/\/’;ﬁs [N“/p eXp(_Bzau/p)} - 20: Bp,j“j>

j=—d—1
> SINY
_ ; p—z( /Z Tr, [Nvai,u(a:) +inaH.l,u(Z)}dVOlgTRz(z) _j:%: 1 Bl J)> uu
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0

—>/ / TrS Nvam( )+Z.wHai+17u(Z):|dV019TRZ Z B][k uj)>du
j=—d—1
*2) /1 (p “1yp Trs [Nu/p exp(— pu/p} Zp /Trs {Nv%u(x) +inaj+1,u(2)}

du

» .

X dvolgTRz( —>/ /Trs Nvaju( z) +iwajiu(z )]dvol Rz (2 ))

By Proposition 2.2.6 we further have, as p — oo,
«3) p (Bp,j - B][-i]p‘i) — B},
By 1) — 3) we have that for any k € N
lim p*((0) Zﬁzp’ ) =5

from which we get

ng} E:/%pn ) 0 n—k»

Now set
a; == OB, (2.3.3)
Then by Proposition 2.2.6 we have
—(p(0) =B, = Z o;pt + o(p’k).
i=0

Putting all the pieces now together we get

b1y y6p(0) = —p" log(p)Gp(0) + P, (0)

k
= > p" (ailogp+ Bi) + o(p" ).

i=0
Finally the statement now follows from Lemma 2.3.1. O
The terms ag and [y have already been calculated explicitly by [P16] in the more general

case of Hermitian fibrations. Let TH M be the orthogormal complement of T'Z with respect to
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OF and set
oo =qf .
TR IWXTR M
Define ) .
M._ 1 a2 Z._ __*t oL
oY = 2m’Q and ©“: 2m,Q|TRZXTRZ.

Let (0% )l’eM be the orthogonal complement of ©Z with respect to ©. Then ©Z will be
extended to T M = 0% @ (0%)19" by zero. Put ©%n := (©Z)"", By [P16, (2.140)] the forms
ag, Bo and p"(aglogp + By) are given by

nrk(E) Q%4n bt
oy = /Z

e 27
n! ’

QZ ,C QZ[, L,H'
{det ( 5 )}e* “zm dvol Jr7(2) and
k & Q4L QL o'
p"(aologp + Boy) = g ) /Zlog [det (p o )}e +pO” dvol 1g 7 (). (2.3.4)

2.4 Proof of Theorem 2.2.8

The goal of this section is to prove Theorem 2.2.8. The case k = 0 has already been proved
in [P16, Theorem 2.23] and we will make use of results developed there. We consider the same

contour integrals and study the structure of the upcoming operators.

Set

1 2 1 2
Cp = ];Bp = I;(Dp + Rp)

with Ry, := By "), Since By, = YEu

1/\/1%31777/}\/% and ¢1/\/13Nu/p = N,, we have
—n -B? —n —u
p 1/)1/\/177 Tr, [N“/Pe p’u/p} =p " T [Nu¢1/\/qj(e Cp)} (2.4.1)
Furtheremore as in (2.1.8) for p sufficient large

Spec(Cp) C {0} U [0, o0].

For the proof of Theorem 2.2.8 we will assume without loss of generality that in the sequel that
Spec(Cp) C {0} U [¢¥, 00| holds for p € N.
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Recall that the contour § + A was given by figure 1 after (2.1.8) and the operator K, , was given
by K., = ﬁ?/)l/\/a Ja e "M\ — Cp)~tdA. Now define the operator

. 1 —uX -1
Ppu = 27”.1/11/\/5/56 (A —=Cp) HdA.
From (2.4.1) we have

P "1/ 5 Trs [Nyypexp(=B2, )] =P T [Nu(Ppu + Kp )] (2.4.2)

The two operators P, ,, and K, ,, were introduced in [I’16, section 2.5] and studied for the proof
of Theorem 2.2.8 for the case k = 0 by showing the inequality for P, , and K, , seperately and
using (2.4.2). This is what we also going to do for £ > 1 dealing with K, ,, first.

i) The operator K, ,,

Recall from the proof of Theorem 2.2.1 that a]fu € I(Z,A* (T, B) ® End(A** (*TZ) ® &)) was
given by

10
aZKu = ¢1/W<O|K21,u|0> Vi) vas ‘8t1| B (0| Ky (Ly)|0). (2.4.3)

Set
K ::/Trs[Nua]fu(z)]dvolgTRz(z).
z

Then from Theorem 2.2.1 as p — oo we have an asymptotic expansion
Trs [NuKp o] = ZAZ PV R O(p R, (2.4.4)

In [P 16, Proposition 2.28] it has been proven that for any m € Ny, there exist a,C' > 0 such
that for u > 1 and p € N,

< Ce ., (2.4.5)

—-n
P T [NuK ] G (BATEE)

Now we are going to sharpen this result but without the exponential decay within the meaning

of the upcoming Lemma.
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Lemma 2.4.1. For any k,m € Ny, there is C' > 0 such that foru>1 and p € N

P Ty [NuK ] - ZAZup H%m(B,A‘TI*ZB) < fﬂ

Proof. Since the large time behavior of K, is the same as its component in degree zero the

proof of this Lemma is similar to the proof of [I'18, Proposition 2.10].

First case: u > ,/p. Then by (2.4.5) we have the estimates

< COpFe™ < CuFe ™ < Clet (2.4.6)

k(l,,—n
Trs [N, K
p Hp s [ u pvu] ¢™(B,A*T};, B) -

for some constants b,C’ > 0. By Lemma 2.1.8, Proposition 2.1.13 and (2.4.3) there exist
C;, ¢; > 0 such that for any u > 0

Ak Cie ", 2.4.7
H Ullgm(p,AsTs B) — i€ ( )
Thus for j > 0 we find d,C’,C” > 0 such that
pkHA]K pin < CipFiecit < Cuk~2emn < Olem < C—N (2.4.8)
b ©m(B,ASTSB) - - ~Vu

The Lemma now follows from (2.4.6) and (2.4.8) for the case u > |/p.
Second case: u < /p. Here we write t = % again. By Lemma 2.1.8, Proposition 2.1.13 and

Taylor expansion (2.1.14) we have for some C,c > 0
—Cu
P HT&« [N K (Ly)] ZAZ P Hcﬂm(BA.TﬁB) < Ce

By Lemma 2.2.3 (with [ = 0) , p~' < u~2 and v > 1 we find C’ > 0 such that

P Ty [NuKp ] = Ty [NuK (L)) oy py S €O < \%
Thus we find C” > 0 with
P T VK] - ZA@ A P
< PP\l Ty [NGK] — Ty [NGEK (L] |+ 9F | Ty [NGE (L)) ZAl L) < C;;
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which finishes the proof. O

ii) The operator P, ,,

Our goal here is to an analoge result for for P, ,. The methods we are using here are similar to

that of | , Section 9.13] and [I’16, Proposition 2.29]. First we will need some preperations.

Let pg > p be given. The precise value of pg will be specified later. Locally we will consider
LP as a subset of LP0 = LP ® LPO7P by fixing a non vanishing local section of £ . Thus when
working locally we view B, as an operator acting on I'(M, 7*(A*T{ B) ® € ® LP°) by setting
By(s1 ® s2) := Bp(s1) ® so for 51 € I'(M, 7*(A*TEB) ® € ® LP) and sy € T'(M, LPO7P). Because

End(£P0) is the trivial bundle our calculations on kernels will not depend on the choices we made.

Over U,, = BZ(z) by [16, (2.7)] which follows from the Lichnerowicz formula Theorem
1.2.5 the operator Bg has locally the form

B} = D??+ R+ pO1 + pOj + p* O (2.4.9)

where R, O (resp. O}, 03 are operators of order 1 (resp. 0). Set t = %. Using the right hand
side of (2.4.9) and partition of unity subordinate to {U, }x=1... n we extend BE_Q forall0 <t <1
and consider it as an operator acting fibrewise on I'(Z, A*(Tg ;,, B) ® (A**(T*Z)®E ® LPo) where
A (T 1’}"{7%3) is a trivial bundle over Z. We will also write Bf_g for the extended operator. Here
this extension does depend on the choice of the partition of unity and on the non vanishing
local sections of £. The mapping ¢t — t?™; Tr, {Nuﬂ exp (BtQ_Q’U)} is smooth on ]0,1] and by

Theorem 2.2.1 we have the asymptotic expansion
k .
t2nwt Trs []\fut2 eXp (Bt*Z,tQu)} = Z Ai,thZ + O(t2k+2)
i=0

from which see that 271, Tr, [Nth exp (Bt—Q,u):| has a continuous extenstion at ¢ = 0 with
value Ag,. Our first goal is to show that the function is smooth on [0,1]. To archieve this we

need a converse of Taylor’s Theorem and cite a result from | , 2.1] regarding Peano derivates.
Let G and H be Banach spaces. Denote by .Z*(G, H) the Banach space of bounded k-

multilinear maps from G to H, i.e. Z°(G, H) = H and Z*TY(G, H) = Z(G, £*(G, H)). Let
ZF(G, H) be the Banach space of bounded symmetric k-multilinear maps from G to H. Let
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U C G an open convex set, f: U — H, o : U = ZLF(G, H) for k =0,1,...7r. For a € U and
t € U with t — a small enough define p(a,t) € H by

50 =3 P ot pfa).
k=0 ’

The @y, are called kth Peano derivatives of f if ”ﬁ a”)H —+0ast—a.

Theorem 2.4.2. | , 2.1] If each @i , k = 0,1,...7, are continous then f is of class €"
with D*f = ¢y, for k=0,1,...7.

For special cases the condition of continuity can we weakened. If G = [a,b] is an interval and

H = R then only boundedness on G is required ([O54, Theorem 3]).

Lemma 2.4.3. The function t — t*™; Tr, {N 2 exp (B?

tives at 0 given by

e, )} is smooth on [0,1] with deriva-

a?r

Ot2 |,_g
827"4-1 9 9
Wl t /n//l/]t TI‘S |: ut2 €XP (Bt72,t2u)i| =0

2y Trg { wut2 €Xp (Bt 2 42, )} = (2r)!A; and

forr > 0.

Proof. As by, (0| exp (—uLy)|0) = @bl/ﬁ(O!tQ” exp (— ut*M;-2 ,)|0) is smooth in ¢ € [0,1] we

have

~ pr(a)
k!

Y1) a(0]exp (= uly)|0) = (t —a)* +o(|t — a])" ™

k=0
with continuous gy given by the derivatives of 1y, (0] exp (—uLy)|0). With the same constants
as in (2.1.2) we can find 0 < ¢, < 1 small enough such that t**Ct=2N exp (— ) < Clt—al™ !
for all t <t, and a constant C' > 0. Thus we get

16ut2

H@Z)l/ﬁt2n<z|exp(—ut23 )|z >_k > k(' )(t—a)kH

< [ yat™ (el exp (= ut®BYa)[2) =, (0] exp (— uLo) |0) |

Cgm

+ ol o (— uLo) o) - 3= ZHD ¢ g
>

< C/|t _ CL’TJ'_I
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for a constant C” > 0. Since the ¢ are continuous we conclude the Lemma by Theorem 2.4.2. [

Next we will need an analogue result for 2" Trg [N,K;-2..] and 2" Trs [N, P;-2.u]. Put
Trg = Jru — Kpa.

Then we have an asymptotic expansion of Trs [N,P,,] as p — oo,

Trg [NuP,.] ZAmp“ i pnh

with A7, == 1) /g [ Trs [Nu(0[JE 5, |0)]dvol g z (2). In particular
Aiu = AF, + AL
Lemma 2.4.4. The function t — t*" Try [NyK-2 ] is smooth on [0,1] with derivatives at 0

given by

827‘ a2r+1

T |H)tzn Try [NJK-2,] = (2r)1AX,  and W\Ht% Trs [NJKp2,] =0 (2.4.10)

for r > 0. Same holds if K is replaced by P.

Proof. As (0|K,(L¢)|0) is smooth in ¢ € [0,1] (Proposition 2.1.13) the proof is the same as in
Lemma 2.4.3 with one slight different where

< C(lt—al™)

le/\/ﬂt%(z’ exp (— thBf_g) |z) — wl/\/ﬂ<0] exp (— uLy)|0) o

in the proof of Lemma 2.4.3 has to be changed by the following: By Lemma 2.2.3 and continuity
in ¢ we choose 0 < t, < 1 und ! large enough such that

[ K 2 ]2) = vy OIKL L) |, < 08 < Cullt = al™)

for 0 < t < t, and constants C,C; > 0. The other arguments are the same. By (2.4.1) and
Lemma 2.4.3 the statement holds if K is replaced by P. O

By our assumption on ampleness we have locally on U C Z for p; > p

= ker D? (2.4.11)

ker D2 =T"\U, &y ® CIU) cI U &y @ £|U) p1U

P|U

as subspaces of 2% (U, £ ® LP). The kernel of the extension D,—» (¢ €]0,1]) are subspaces of it
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as well. Let P, be the orthogonal projection from 2%*(U, &y ® ﬁfg) onto the kernel of D2. We

have as in | , (4.1.59)] for any k € N the integral representation for the spectral projection,
1

Py= - //\k YA =D2) . (2.4.12)
T

Let Ppl := 1 — P, be the orthogonal projection onto the complement of the kernel. For p; > p
we have
Py Py = PPy, = By,
PyPy =1—=Py— Py, + By P,=1—P, =P,
PPy =1-P,— Py + PP, =1-P, =P,.. (2.4.13)

Lemma 2.4.5. For any k,m € Ny there exists C > 0 such that for u>1 and p € N:

| A

Hp " T [NuPpu] — ZAl“p_ijgmBA‘T* \CfY

Proof. Throughout the proof let p € N be fixed while ¢ €]0, 7[ varies. By Taylor’s formula we

have for some 7 €]0, 1.

pFlp " Trg [NyPp.a, ZAzup

@™ (B,ATy B)
ello Qk 1 1 8 ) )
= " Trg | NP, — —(=— " Trg [Ny P, J
Pt I's [ ully 2,u] JZO 51 (8t3 \t:ot Is [ ull' Q,U])t ¢m(BASTB)
1 an
N 2 | 2n B 2k
=p 2k at2k |t:7_t Trs [Nu]P)t Q,u]t H%W(BJ\CT]*{B)

H 82k

iz, T [VuPrea,))

Gm(B,ATLB)
Thus our goal here will be to show

C
£2n Ty [Nupt‘%])Hcgm(B et = e (2.4.14)
ATLR

62k
| G,

For k = 0 this inequality has been shown in | , Proposition 2.28] and we use the techniques

developed and notations there with additional adaption regarding derivations in t.
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Choose pg large enough such that 7 € [, 1]. Set

\/77
Ci-2 1= t2 Bt 2, C(,) = tQDt 2, and Rt72 = t2Rt72 =Cy-2 — C(O)Q.

-

0(0)2 is just the degree zero part of C,—2 and it is injective on ker(Df,g). By an abuse of

notation we write (Ct(%) ! for the Green operator of Ct(,)2 which vanishes on ker(DZ,) and
equals (Ct(?)g)*l on ker(D?,)*

; , 1.e.

(CO) = P (C%) T P

t
By (2.0.1) we have for p; > p
Spec(Dgl) C {0}U]2p1 10 — Cp,00[C {0}U]2ppo — Cr, 0.

(0)

In particular A — uC,~5 is invertible for A € § since t=2 > p and its inverse is equal to its right
inverse. As ker Dg C ker Df,z (see 2.4.11) we have

(A= uC?) (%Pp) =P, - %uc@gpp =P,

Therefore we deduce

=A—uC) T =P+ (A —uC) Pt (2.4.15)

The function A — (A — 7,LC't((_))2)*1Ppl is a holomorphic on By (0) \ {0} and for A = 0 we get from
2
(2.4.13) and our notation

WC) Pt = PL () T P P PEY L, (we®) T P, = () !

Thus A — (A — uC't(E))Q)_li’t’pL is a holomorphic function on the interior of §. Since C;-2 has no

eigenvalues between the two circles 0 and 0/u we have
Pt_2,u — 1/\/7/ )\ Ct ) d)\

-1
271_/1//(#1/\/7/ - UCt—Q) d)\
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Therefore we deduce the same way as in [P16, (2.188)] using (2.4.15) and

A= uCa) Tt = (Y (_k‘) M) (= uCO) whs) - (uRp2) (A = uC )7

k>0 >0

that the operator P, , is given by

Pi2y =v1,0m Z Z Go—1-% ),Tp,t—Q,l(URt 2)Tp 29 - (uRy-2)T, pt=2,l+1
=0 1<ip<I+1 m Jm/

(2.4.16)
where P, appears ig times among the T}, ;-2 ; and the other terms are given respectively by
(uC}f?)Q)*(Hjl),...,(qug)z)_(Hjl“—io). From [P16, (2.189),(2.190)] the sum (2.4.16) can be
written as e B

1IMR

Pt_2,u — Z HAj7t7p7u
=0 J
with
At € {Ar(uipy ) ) BEY As, As (uipy ) ) BEZ™) Ao A € (P, (uC™) ™04, (uei®)=(049)/2) )

=2 T Rgf) is the decomposition of R;—> with respect to the degree in A*(T B).
By [P°16,(2.195)] it has been shown that for 7,7’ > I and if t = there exist C,C",C" > 0
independent of p such that

where Rt—Z = R( )
1
7

1)l = | BoRi-2Pp|| , < C, 2@l = [PpRAC) ", < €,
| fs0(®)]l o = |BAC) TR < € Hf4,p(t)||oo = I( Ct(O) C(O) lo < €" (2417)

Thus for t = ﬁ each term in the sum (2.4.16) is a product of uniformly bounded terms in
which P, appears since ig > 1. We want to show that (2.4.17) holds for the higher deriva-
tives in ¢,too. To archieve this we are left to show that the smooth functions f;, are bounded

on the compact set [ by constants independet of p. Then their derivations will be it as well.

ol
For any operator A it is equivalent to show that [|As||z2 < C|s||z2 for any section s or for
any section with support in a ball of radius € > 0. Thus we can work locally and make use of
(2.4.11),(2.4.13). As an orthogonal projection P, has norm one, || Pyl = 1. From (2.4.13) and
(2.4.17) we infer

(2.4.13)

1Py 2Py | 1By Pz B2 P By < (| Poll P2 Bz Pra| 1B
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. (2.4.17)
= H_Pt_QRt—QPt—Z HOO S C

With the same method substituting P, by P,—2 we accomplish that the other |/ f;,(t)||s are

bounded by constans independed of p, too. Thus we conclude

%ol =c |G| <c
[eeel <o |Feol <
for some constants C,C’,C",C" > 0. By ([’16, p.38]) P;—2,, is a polynom in \/u, P2, €

Cn {ﬁ} Differentiating in ¢ does not change this fact. Therfore %Pt_2,u is a polynom in ﬁ

with coefficients consist of bounded operators in which P, appears at least once. It follows
- K

o )
%Z) Tr, [NuIPt—Q,u] = Z Ck(p)u k2
k=0

with ¢ (p) € A*(B) satisfying

Hck(p)H%O(B,A'TE*{B) <p"CTrP,=p "C dimker(Dﬁ) =p "Cdim H*(Z,€ ® LP) < C.

From | , Theorem 4.10.4] and the general condition on ampleness we have for ¢ = %

Jim 677 Trg [NyPy2 ] = £ 5 Trs [Ny exp(—(VH#E2E)) = o,

which implies lim,, . %p_" Try [NyP;-2,] = 0. Thus co(p) = 0 from which we have

C

GO(BATLB) — /u'

p~ " Trg [NyPi—2 ]

87‘
I

which shows the statement for the case [ = 0. To show the gerneral case for [ > 0 we can

proceed in the same way as in [16, (2.198)] since differentation in ¢ does not change the fact
that g;i V,Ejnd(]E)IP’t,u is a sum of product of polynomial in ﬁ O

iii) Proof of Theorem 2.2.8

Now we can complete the proof of Theorem 2.2.8. Because of

pindjl/\/ﬁ Trg [Nu/p eXp(—Bg,u/p)] =p "Tr, [Nu(Pp,u + Kp,U)]
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the first statement in Theorem 2.2.8 follows from Lemma 2.4.1 and Lemma 2.4.5. The second

statement follows from A;, = A]Eu + A]f:u, (2.4.7), (2.4.10), Lemma 2.4.4 and (2.4.14). O
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Chapter 3

Computation of the First Coefficient

associated with a Principle Bundle

In this chapter we consider the case where the family of vector bundles and the analytic
torsion forms arise from the geometry of a principle bundle. This setting was studied in [ ]
where a comparison formula between the equivariant torsion form and a Lie algebraic equivari-
ant analytic torsion was established. The main benefit of this special case is the absent of terms
coupling horizontal and vertical variables appearing in the Lichnerowicz formula and operators
which simplifies certain calculations significantly, see for instance the proof of [P16, Theorem
2.24]. In section 3.1 we begin with summarizing the settings from [ , section 2] and | ,
chapters 7.6 and 10.7] which we will work with. In section 3.2 we move on to study the (co-
variant) connections and curvatues in more detail with the goal to translate particular results
from chapter 2 in terms of principle connections and curvatures. After that we make in section
3.3 the assumption w = —ﬁﬁﬁ and look how the the objects then looks like, including «p
and By. Their evaluations on P*C-bundles will also be studied. Finally in section 3.4 we will

compute the coefficient a; 4, i.e. proving Theorem 3.

3.1 Analytic Torsion Forms associated to a Principle Bundle

Let Z be a complex manifold with complex dimension n. Let E 5 Z be a holomorphic
vector bundle on Z. Let G be a compact connected Lie group acting holomorphically on the
left on Z. We assume that this action lifts holomorphically to an action on E so that E =5 Z
becomes a G-equivariant holomorphic vector bundle. The action of G on functions ¢°°(2) is
given by (v- f)(2) = f(7'2). Let hT% and h¥ be G-invariant Hermitian metrics on TZ and E.

We assume that (Z, hT%) is a Kihler manifold with Kéhler form w?.
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For K € g let Kz be the corresponding fundamental vector field on Z satisfying for f € €°°(Z2)

d
(K7-£)(2) = 5 fexp(—tK)2),,.
The assignment K — Kz becomes a Lie algebra homomorphism,
Kz, Ky =|K,K')z, KK €. (3.1.1)

The action of G on I'(Z, E) is given by (v-5)(z) = v¥-s(y~'2) and in the same way K induces a
vector field Kg on E by replacing f with s above. Our definitions differs from [ | where the
minus sign in % f(exp(—tK)z)|,_, is absent so that K — K is a Lie algebra antihomomorphism

([BG00, (2.2)]).

It:O

We assume that for the action of G on Z we have given a smooth moment map p : Z — g*, that

is p satisfies the following: For all v € G and z € Z the mapping is equivariant,

p(yz) =7 - pz),
and for any K € g the vector field Kz is the Hamiltonian vector field generated by (u, K), i.e.
dlp, K) — i ,w? =0

where (-, -) denotes the dual product. In general the moment map does not have to be unique

but there are criterion for it, e.g. the uniqueness is provided if G is semisimple.

Let VT4 and V¥ be the holomorphic Hermitian connections on (7'Z, h'4) and (E, h¥).

Definition 3.1.1. The moment m’%(K) of K € g relative to the connection V172 is given by
mT?(K) = VI?Ky,.

Since K is a Killing vector field and w? is a Kihler form m”4(K) is a skew-adjoint section of
End(TZ). In the same we can define m”(K) := VFKg. Let Q74 and QF be the curvatures of
V7TZ and VF.

Now we are going to define a family of vector bundles. As shown in | , Proposition 4.1]
G has a unique complexification G¢ with the properties that its Lie algebra gc is the complex-
ification of g and that G is a maximal compact subgroup of Gg. The holomorphic action of G
on Z extends to a holomorphic action of G¢ on Z (] , Theorem 4.4]). It has been proven
in | , Theorem 5.1] that for the case if E is a line bundle over Z the action of G on E
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can be canonically extended to an action of Gg. According to [ , p-1314] by proceeding

similar as in the proof of | , Theorem 5.1] this is also true for arbitrary G-equivariant bundle.

Let P9S B bea holomorphic principle bundle with structure group G¢ . As mentioned above

G is a maximal compact subgroup of Gg. Let
Gc = PG

be the Cartan decomposition of G¢. The exponential map exp : gc = g ©ig — G¢ maps ig
bijectively onto P and G¢/G is contractible. By | , Proposition 5.6 and Theorem 5.7] the
Gc-bundle P can be reduced to a G-bundle Q). By | , page 586] (see also [A57, Proposition 5])
the G-bundle @ is equipped with a cannonical Cartan connection form 6 of type (1, 0) associated
to its complex structure. More precisely if J denotes the complex structure of P G§ B then
the distribution @ > v — T,,Q N J(T,Q) defines a connection on @ & B. Moreover the Cartan
curvature © of 0 is a (1,1) form, © € ALY(B, P x¢ g) where G acts on g by the adjoint

representation. Depending on a a basis {X;}1<i<m of g one can write

0= ieixi and © = i@%
=1

i=1

with 1-forms 6% on P and horizontal 2-forms ©% by the identification © € A (B, P x¢ g) =
ALL(P, g)pas (see for instance | , Definition 1.8] for the definition of basic differential forms

or section 3.1 and [ , Proposition 1.9] for the isomorphism)

We can form the associated bundle
M :=P xgs Z

which is a holomorphic fibration M 5 B over B with compact fibre Z. By the reduction M is
also given by @) Xg Z. Since @) is equipped with the Cartan connection 6 the associated bundle

M = Q X¢ Z has an Ehresmann connection, that is we have a splitting
TM=T"Ma&TZ
where TH M is the image of TH P = ker  unter the projection Q x Z —» Q x¢ Z. Also put
E=Pxgo E=QxgFE

so that m¢ : &€ - M with 7¢[(p, e)] :== [(p, 7r(e))] is a holomorphic fibre bundle. For b € B we
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have
My, ={[(p,2)]|7(p) =b,z€ Z} = Z and & = {[(p,e)]|r(p) =bec Z} = E

from which we see that & is a vector bundle over M, with rk(&,) = rk(F). To the family of
vector bundles {(A%*(T*Z) ® )y }en, k € Ng, we associate an infinite dimensional bundle E
over B as described in chapter 1. In this case we can identify E with Q xg A(%*)(Z, E).

Now © € AV (B, P xg g) & AVY(P, g)pas. Since the moment map p is equivariant the product
(1, ©) is well defined and lies in A1(P). Since it is a horizontal form, i.e. ¢x({u,®)) = 0 for

every vertical vector field X on P, it can be viewed as a differential form on B, (i1, ©) € AL1(B).

Definition 3.1.2. Let wM be the 2-form on M given by
WM = w? + 7 (i, ©).

The 2-form w™ is a real closed (1,1) form on M. Furthermore one has that the restriction of w?
to the fibres Z is the Kéhler form along the fibres and the vector bundle 7% M is the orhtogonal
bundle with respect to w. By this we see that (7,w™) is a Kéhler fibration. If w# denotes

the restriction of wM to TH M then we have
wi =7 (1, ©).

The vector bundle £ = Q x¢ E over M is equipped with a Hermitian metric A induced from
h® and the reduction. Let V¢ be the Hermitian holomorphic connection of (£, h¥). We can now
define the same objects as in section 1 for this kind of family of vector bundles and we use the
same notation. As it is shown in | , Theorem 10.38] the connection VE on the infinite
bundle E acting on 2*(B,E) = (A*(Q) ® I'(Z, E)), _, satisfies

VE =dg+ > 0'LF(X;) = dg + L*(0)
i=1

and its curvature is given by

(VEY? =Y oLy, = L§
=1

where LE denotes the Lie derivative on F.

The analytic torsion form depends on the reduction of P to @) but its cohomology class is

independed of it [ , Theorem 2.20]. In the principal bundle setting we will use another
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notation for the holomorphic analytic torsion form to make its dependence on the geometric

quantities more clearer.

T o (w? hP) :=T(WM,nt).

27

Another reasoning for this notation is the because of the relationship between the torsion form
and the Lie algebraic equivariant analytic torsion. For more information on this topic see ap-

pendix B.

3.2 Connections and Operators associated to the Cartan Cur-

vature

In this section we will first start to transfer the results of | , chapter 7.6] to our
situation. Let my : Q X Z — Z denote the projection onto the second component Z. The action

of G on E induces an action on the pullback 73 E and we have

I'(B,E)=T(M,A>*(T*2) @ ) =T(Q x¢ Z,Q xg A>*(Z,E))
=T(Q x Z,A"*(Q x Z, 75 )¢

where T(Q x Z,A%*(Q x Z,75E))¢ denotes the set of G-invariant section of A%*(Q x Z, 73 E)
that is a € T(Q x Z,A%*(Q x Z,75E))% which satisfies v - a = a, i.e.

alpy, 7y 'z) =7 alp,2).

Let
A(Q X Z, 13 E)por == {a € A%(Q x Z,mE)| ixa=0VX € g}

be the space of horizontal differential forms on ) x Z with coefficients in 75 F and
A (Q X Z, 75 E)pas = {a € A*(Q X Z, 15 E)por| v - @ = a Vy € G}

be the space of horizontal G-invariant differential forms i.e. basic differential forms. M is the
quotient of @ x Z by a free action of G so that Q@ x Z — (Q x Z)/G = M is a G-principle

bundle. There is an natural isomorphism (see e.g. [ , Proposition 1.9]

A (M) = A(Q X Z)pas.
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In similar manner there is the identification
A (M, E) = A*(Q x Z, 75 E)pas- (3.2.1)

The connection form 6 determines a projection j¥ from 2A*(Q x Z, 73 E) onto A*(Q x Z, 75 E)nor

given by
n .
jE = H(id —0"x,)
i=1
with vx, = LXioxz = Xio T X7 The Hermitian holomorphic connection V¥ on (E, hE) and

the connection form induces a connection V%" on A*(Q x Z, 15 E)pas given by

V= (55 0 (dg @ 14+ 1® VF) 0 )

|28 (@x Z.n5 B)pag

(see | , Def. 7.36]). By the isomorphism (3.2.1) we get a connection on *(M, ) which
will be still denoted by \v

Lemma 3.2.1. The connection V" is the holomorphic Hermitian connection on &£, that is

VAU v

Proof. The metric h¥ induces a metric on 73E by 75h® and therefore a metric h%F on &£
by the identification I'(M,&) = T(Q X Z, 75 E)pas. Since VF is the holomorphic Hermitian
connection on (E, hZ) we see that V%" is the holomorphic Hermitian connection on (£, h%¥).
Let 2 = [p,m¥(e)] € M = Q xg Z with p € Q and e € E. Let s', s> € I'(Z, E) be G-equivariant
sections in E and s},, s%, the corresponding sections in & with si,(z) = [(p, s'(p))], i = 1,2,
where p € @ x Z with m(p) = . Then we have

h P (siy (), 53 (2)) = he P ([p, edl, [p, e2]) = by (e1, e2)
= Iy (s1(p), 52(p)) = W5 ([, e1], [p, e2)),

that is h%F = hf. By the uniqueness of the Hermitian holomorphic connection we have
VOt = ve. 0

The curvature of VWLE can be written in terms of the Cartan curvature and the curvature QF.

This has been done in | |:

Lemma 3.2.2. / , Lemma 7.37] The curvature of the connection V¢ is given by

0F = QF + 3 o'mf(X;) = QF + mF(0).

i=1

71



CHAPTER 3. COMPUTATION OF THE FIRST COEFFICIENT ASSOCIATED WITH A
PRINCIPLE BUNDLE

Definition 3.2.3. For u > 0 define

Vube = vAo,o(T*Z)®E + M.
o “ 2u
By [ , Proposition 7.18] the following identity holds,
VA ) 1
Bg = _g(vu,@,Ei)Q + u% + %c(ei)c(ej)(QE + 3 Tr QTZ) (e, ffj) n (mE(@) N ! - [mTZ(@)]).

Observe once again the sign difference comming from (3.1.1).

3.3 The Condition w™ = —%Q’C and P'C-bundles

Let (L, h") be a holomorphic Hermitian line bundle on Z. We assume that the action of G
lifts holomorphically to an action on L so shat L becomes a G-equivariant line bundle over Z.
We further assume that k%’ is G-invariant. Denote the curvature of the Hermitian holomorphic
connection V¥ of (L, h*) by QF. We make the assumption that QF is positive that is for any
04U e T"Z we have

QFU,T) > 0.

Let Q%1 € End(T'°Z) be the Hermitian matrix such that for V, W € T%0Z
QHV, W) = (2P V, W), o
By our assumption Q4L e End(7T'°2) is positive definite. For p € N put LP := L®P. Set
L:=PxgsL=QxqgL.
Then we have an isomorphism of equivariant vector bundles over M,
ERLP =P xge (E®LP)=Q xg (E®LP).

To these data we can define the torsion form T e (w?, hF®L?) = T(wM, hE®L”) from section
271
3.2.

Remark 3.3.1. The condition from chapter 2 that the direct image R*m.(E ® LP) is locally
free for p large is equivalent that the dimension of H¥(Z,& ® Efz), 0 < k < n, is locally
constant over B. This condition will not be needed here. Go acts on H*(Z, E ® LP) and G acts
isometrically on (H*(Z, EQLP), WH*(ZESL)) "o (7 €LY ) is given by Pxgo H*(Z, EQLP) =

|z
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Q xg H*(Z,E ® LP) which is automatically a vector bundle over B. By [ , (2.64)] the last

equation in Theorem 1.53.5 reads in this case as, for u — oo,

@ Try [’}/Nu eXp<_Bz,u)} = Trf'(Z,E@’Lp) {VN exp ( - g)} + O(

1
270 ﬁ)

We make the general condition that the Kéhler form equals the representative of the first
Chern of the line bundle, that is

Now we are going to take a look and understand how the various objects look like under the

assumption we made. We have the identities

1 1 1
Z * M L L L
= = _79 = _79 - . .
w? + <u,@> w ; ; + ( im (@))

that is

1 ©
zZ_ _ L _ L
w? = 27m'Q and  (u,®) =im (27r>'

We can choose {w;}; to be an orthonormal basis of T}°Z such that

NZL o
QZ =27 ldel’OZ

and

Z QF (w;,w;) = 2xdime 2. Z QF (wy, Wy )T™ A 15, = 270 Z@j Aig; =27 Ny.
J Lm J

For simplicity we will write N := Ny . The objects at the end of section 2.3 read as
THM =THM, Q57 =mPO), OM=uwM and 67 =0u%

By Lemma 3.2.2 and 2.3.4 the forms «g and Sy are given by

nrk(E)

apg = B

/ e_ﬁmL(e)dVOIQTRZ and Bo = 0. (3.3.1)
Z

Example. Let Z = P!C. Here E be the trivial bundle and we will use only for this example
the letter E for another bundle given in the next page. Put L = O(1) and with the Hermitian
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metric induced by the standard metric on C?. By assumption the Kéhler form wP'C on P'C
is ¢;(VOM), that is the induced metric is the Fubini-Study metric on P*C. Note that every
vector bundle on P"C is isomorphic to sums of O(k), k € Z. Consider the chart

10, 27 [x] — g g[ —P!CcR?

COSUu COsv

(v,u) — | cosusinv

sinu
In this local coordinate we have
g 0 1 cosu 0 i
Plc(%, %) =55 mTPlC(X) —sinu-JTP'C and - QWiM(%) =-3 sinu
Recall the convention that in this thesis we have w? = —ﬁQL whereas for example in | ,

end of chapter 7.1] they have w? = iQl.

Let P — B be a U(2) principal bundle. Put E := P Xy C? . We evaluate the first
coefficients for the P*C-bundle P(E). Since an element Y € u(2) is a skew-Hermitian matrix it
can be decomposite as Y = Ad, (diag(ia, i8)) with v € U(2) and «, 8 € R. The induced vector
field Y p1 of Yo = diag(icv,if) is given by Y pic = (a — 6)%. Thus

—27mip(Yy) = —(a — B)QWiM(%) =—(a— B)% sinu = %\/(TrYU)Q —4det Yy - sinu.

The Cartan curvature © is U(2)-invariant therefore we have

1
mPW(©) = —2mip(Opic) = 5/ (TrO)? — 4det © - sin .

T2

Since QF = p(O) where p : u(2) — End C? is the standard representation we simply write

© = QF. Thus as a cohomology element

{mo(l) (;—ﬂ_@zﬂ = %\/cl(E)2 —4co(F) - sinu.

In the same manner we have

Tr {mTplc((a)} :i\/(Tr ©)2 —4det® - Tr {mTPlC (;})}

:i\/(Tr ©)2 —4det® -sinwu - Tr(JTPlC) = —\/(Tr ©)2 —4det© - sinwu.
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By (3.3.1) ap is given by
ag = 1/ JPLC o ghmE(©).
PlC

We calculate

wPlcefﬁmL(G) _ wPlce% (c1(E)2—4co(E)sinu _ QLCOSU(B% cl(E)2f4cz(E)-sinud,U A du
™

1 cosu X (3y/c1(E)? — dea(E) - sinu)*
= — dv A du.
9 ;;1 i v A du

It follows

2
pic —Lmbe) _ 111 9 _ 1 k/ / ok
[Plcw e 2 2r2 2 k;!(\/cl(E) 402(E)2) dv | sin"(u) cos(u)du
= 0

1 1 1
:k();even + 1! (\/CI(E)Q ~da®))" = £ 2k + 1! (\/Cl(E)Z - 402(E)§)2k
1 /c1(E)? —4co(E)\F
_g 2k + 1!( : 4 2 )
Thus
NCONI. (Cl(E)2 - 402(]3))’C
O T 22k +1)! 4 '

and By = 0, by (3.3.1). We conclude: Let 7 : E — B be a holomorphic vector bundle of rank 2.
For k > 0 the asymptotic of the analytic torsion form of degree 4k for O(p) on the P!C-bundle
P(E) as p — oo is given by

T o (wPIC’hO(p))(4k) _ p2k+1(a(()4k) log p + ﬁ(()%)) + O(p2k+1)

27t
_ 1 2%k+1 9 k ki1
= {mp logp] . (cl(E) — 402(E)) +o(p )

in the topology of ¥*° convergence on compact subsets of B.
Remark. The analytic torsion form for P(FE) was already calculated explicitely by K. Kéhler

(unpublished) using the comparison formula of Bismut-Goette (Apendix B). The calculations in

this example is heavenly inspired by his work and we do not claim originality here.
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3.4 Computation of the Coefficient a,

Let by € B be a given base point and zg € Z3,. Recall that Zy was defined as Zp = TR ,,Z.

We repeat the localization procedure from section 2.1 a) with the Lichnerowicz formula (3.2.2)

to get
v =2 L ayee[0f + Lot e e B(©) + = Te[m'Z(© 41
- §+ZC(€i)C<€j)|: +5 T }(ez‘,ej)‘*'(m ( )+§ r[m”“(0)]) (3.4.1)
and
M, ., :%AEWO + p(HEVH)\I' +pp(H€VH> GC(éz‘)C(éj)QL(ézv &) + mL(@))-

Here AFr=0 is the Bochner Laplacian associated with d+ p( Vi ) (pol +9%) and g"”?0 with the

£

connection form ﬂé of Vie.

In the same way as in | , section 4.1.6], [F'18, section 4.2] we will introduce complex

coordinates (21 ...z,) on C" = R?" = Z; such that V = z — 7 and

0
i = V2—, W =V2—
w \fazi w fazi

where {w;}; was the orthonormal basis of T1°Z. We have

1 _ 0 0 1 _ 0 0
€2i-1 = ﬁ(wz +wW;) = s~ + 5= and ey = ﬁ(wi —w;) = 9% 5

0% 0%;
We will also identify z to >, zi(% and Z to ), Zi% and regarding z and Z as vector fields. Note
that

1 2 _ 12 _
_27 |Z’_’Z’—

0 0
‘aizz :‘8§i

Now define the creation and annihilation operators (see | , (4.1.73)])

1 2
SIVIE.

. + .
bj == —2V07% and b := QVO,%
where Vo, = dy + %Qfo (V,-) with the ordinary differentation operator dy in direction V' on
Zy.

Let (-,-) denote the C-bilinear extension of g74. As usual the superscript (0) attached to an
object means its degree 0 part in A*Tg ;, B and we denote by (>) the parts of degree higher

than zero. Recall that the operators O, are from Lemma 2.1.2. (’)go) and (’)éo) are given in [I'18,
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Theorem 4.2] with (950) =0and

20 Zé@QZ(E’ aazj) ai>b+b+ <QZOZ(Z’ aij) aZ)“’ <QTZ( ’aa 2 ai>bibﬂ'+
1 ;. ) 9 0 z
_§<QZTOZ(Z’8Z>Z’£J'>Z’+Z’ 2% (5 20) ~ +

2 0\ 0 0 o\ 0 0 N O
+§<QZ°Z(Z’ETZJ) 0z;’ 8z]>b+ §<QZTOZ< 8,2])821 8zl>b + 3<QTZ<Z’Z)Z’aizi>b;F

Q17 (5,7) 2,2 Vb, — QE (7,2 )uF + QF (2,2 )b,

3NV 0z; 0z 0%;
o 0 . 0 ;
204 I A g, + 498 (=—, =) A v, .
+ Z0 (821782J)w 2 z+ ZO(@Zivazj)w At i

where Q9¢ is the curvature of the Hermitian holomorphic connection of (det 71027, pdet T2 )
with A9 T"°Z induced by hT°Z. See also | , Theorem 2.2]. Recall from Remark 1.3.8

that the factor 2 appears here from the different convention.

Lemma 3.4.1. The operators O1 and Oy from Lemma 2.1.2 are given by

0O,=0 and
0

_o0_1
Oy = O d@ZzO( v

)b+ + d@Z ZO( a(;)bZ + (mE(@) +ml(e) + %Tr[mTZ(@)])

20

Proof. We will use the same notation as in the proof of Lemma 2.1.2. We have the Taylor

expansions

gij(v) =0+ 5 <QTZ(V ei)V, e]>20 + O(”VH )

and
K(V) = /| det(gi;) (V)| =1+ é(QTZ(W eV ei)z + O([V?).

If ﬂéj is the connection form of V720 with respect to the basis {e;}; then VZ;ZOele = ﬁéj(V)el.

Let Q7% be the curvature of V720, Note that for |[tV| < 2c we have p(t”gﬂ) = 1 and

OT% = OTZ on By 7 (0). Asin | , (4.1.102)] we have
1
Ve5(V) = iglk(aigjk + 0,9k, — Orgij)-
1
= g((QTZ(V, ej)ei,er)z + (T2 (V,ei)ej er)z) + O(IV?).
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By | , (7.109), (7.110)]

A‘(T*(O’l)Z)

1
I = O + 0y + 540%,(V.) + O(V ).

Hence together with (2.1.3) and (2.1.5) we get on BET/P;’ZOZ(O) the identity

2
Ly, = - %(% - %<QTZ(V, eV, €j)z + O(t)R!(tV)
v+ tok ot i s b ST 00am 20 s Pl e + o
x (Ve + 50 + 5(80")x) k+4§2( oy + S (Voes) + O(E)
(Vo208 L@ v+ £ Y 0000, 2+ Lol ey + o)
e T 9a0 T ATk Sz VR Ty la|=2 NS RPN
1 _
— TG (V) (Ve + )% (Z,en) + O(0) )2 (17)
1
+ (80 + Jeleele)2 (e eg) +m*(©))  +0(t"). (34.2)
Since w? = —%QL , 0°QF vanishes. In particular we have O; = 0 and

1 1 1
205 = LAV, e0)V, e)z (Ve + SV ei)) (Ve, + 5 (Voey)
2 1 1
+ (57 (Vieg)ej eizy — Q5 (Vi) = 1dOY -, (Vie) ) (Ve, + 594 (Vier))
1 L L
(e + Jelen)e(e)) (eives) +m*(©))

The equalitiy in the formulas in degree zero has been as mentioned already shown in [I'18, The-

orem 4.2] while the equalitiy in higher degree follows from (3.4.1) we conclude. O

Afer these preperations let us now begin with the calculation of a;,. Recall from the proof
of Theorem 2.2.1 that we have

102 u
a1,y = 1/,m(0]J2,u|0) = 1/’1/\/55@“70@\6 Et]0).
By Lemma 2.1.14 and since 07 = 0 we have

Jou = — /A e~ W= Lo,e=vlo gy = — U0 4 Ogelo,
uldy
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Thus by (0.0.1) a1, is given by
o= _/0 /Z Y1/ya(0le V) - (V]Oze™ 0] 0)dV o,
0

Note that the term wl/\/ﬂ<0]e*“L0 |0) was already computed in [P16, (2.88)].

Lemma 3.4.2. For u > 0 the following identity holds.

2
—uLg _ —21uN—um® (©) 1 o 7THVH id
(Ve 07 =e (1 — e—2mu)n ( 2tanh(27ru)> @ide.
Proof. Set
Ly iyl A L aL faf c
O :=0Q (’Ujk, wl)w N g, + 76(6,’)]0 Qi Q) o8
ﬂ 7
Then by [P16, (2.87)], uLg can be rewritten as
2 .
uly = —= Z (d + {05V, e5)) + ul (z0) - gTr (QZ5).
The formula for the heat kernel of a harmonic oscillator (see | , (E.24)]) yields
<V|e‘“L°|0> - e‘“m;exp ( — LV”Z) ®idg
(1 —e—2mu)n 2 tanh(27u)

By our general condition on the Kéhler form we have

ZQ wk,wl)w /\ka—QWZw Nig,; = 27N,
k,l i

I g, I g o)

Qfa = —2miwM(e;, fa) = 0 and af =

Thus u$2; is given by
uQ = 2nuN + um*(0)

from which the statement follows.

We use the similar notation as in [F'18, (4.11)]. Set
0 90\ 0 0 0o 0
QL= (Ql7 QE=0f (—, =
(SLI < <az 82] ) 8zk azl> v =0 (azi’ azj)’
QA _ QA’(T*O lz)( 0 i) ngt . Qdet(i i) and d@b ._ d@ (
dz; 0z ij 0 \9z’ 0z i 2,70
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With this notation and as we identify z to >_; zi£ and Z to >, Ei% we have in particular

) )
dO% (2] + zibi) = —dOL Zib] + A zb; = —dOy (=, 7)b+ +doy., (2 a)bi. (3.4.3)

0z
The term ag?l)t has been computed in [I'18, Lemma 4.5] and is given by
0 P Coredrws 3 e
afn(z0) = [— 3 Qg (1— ™) 2(5(1+46 e - (1 ))

U U 1
+ ’LLQ + ’LLQE 295(1 _ e—27ru)—1 (7 + *G_QWU _ 7(1 _ e—27ru))

6 i 2 2 21
_ A  —2muy\—1 E E —27u i _ —27u
20:(1—e ) <2 +5e 27r(1 e ))
dot—i B e—2mulN
ot _
We now restate Theorem 3 and give the proof.
Theorem 3.4.3. For u > 0 the following identity holds.
e’ 11 1
_ (0) -mi (@) _ (1 _ ,—2muN—1(~ | - 27w~ (1 _ _—27u
tu(20) = 0} (z0)e e R R R - R l)
+ (mF(©) + mh(©) + L THmtZ(@)), | e (@)
2 20 (1 _ 6727ru)n :

Proof. We have to evaluate — [y [ wl/ﬁ<0|6_vL0|V> A(V|Oge~(=v)L0|0)dV dv. Since e~vLo,
u > 0, is a semigroup and because even forms commute with each other we have with Lemma
3.4.2
—vLg . —(u—v)Lo _ oL . —(u—v)L(O) . —um%(©)
(0le™™[V) - (V]Oqe |0) = (0le™"0 V) - (V|Oqe °10)-e
:<0|e—vL(()0) |V> <V|O (u— v)L0 |0> —um®(©) + <0|€_UL‘()0) |V> . <V|Oé>)€—(u—U)Léo) |O>e—umL(@)‘
The first summand has been handled by [F'18, chapter 4] and we are dealing with the second
summand. By Lemma 3.4.1 and (3.4.3) we have
<V|O(>) —uLéO)‘0>
1 (0)
b —u
—<V|< dO’-(zib + zibi) + (m¥(O) + = Tr[mTZ(@)])ZO)e Lo 0).

2
From the following identites established in [['18, (4.15)],
(0) 2 0
V|be "Fo|0) = ————)7(V]e “ho |0 d
Ve 10) = (m+ s Ja (VI o) an
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2

+ —uL® _ ( .
(Vipre™ o]0y = (= 2 tanh(27u)

Javle o),
we conclude

—uL©® 1 _uL©@
<V|(’)§>)e Lo”|0) = (277 . d@'l|zi|2 + (mP(©) + mh(©) + 5 Tr[mTZ(@)])ZD><V‘e Lo 0)
= (0B |V) - (V]OF e (0 o)

1 (0)
= (5 - dOlzil + (m(©) +m"(©) + 5 Tefm"#(O)]),, )(V]e ™" |0).
Therefore with Lemma 3.4.2 we have

// (0L VY - (VO e~ @=L |0V av du

— i _ —2mu\—1 E E —27ru7i _—27u
- [2(1 e~ 2mu)= (2+2e -(1—e ))

e—27ruN

+u(mP (@) + m*(©) + lTr[mTZ(@)])z ]

2 0 (1 _ 6727ru)n’
Now since
Wy md®; = —d@ﬁ, Wy e O) = emmH(O) and

Y1ya(w(mP(©) + m (@) + S THmT7(@)]), ) = (mF(®) + m(©) +  Trfm™” (®))

20

the claimed formula follows. O

If f is a smooth function on ]0, co[ with asymptotic expansion f(u) = Z;ﬁ fiw! +o(uF) as u — 0
write fU) = fj- Then by (2.2.11) and (2.3.3) the form oy in Theorem 2 is given by

0
ag = ((D/ZTrS [NuaLu(Z)dVOlgTRZ(Z):Idu)[ !

while by (2.3.1) the form f; is given by
b1 = 4 [— 1(/1 +/OO >us_l<l>(/ Trs [Nyar,u(z)dvol TRZ(Z)]>dU:|.
dsls=ol TI'(s)\Jo 1 7z ’ 9

As mentioned in the introduction Finski calculated a; and $; in [I'18, Theorem 1.3] when
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B is a point. Now exponential of terms coupling horizontal forms and vertical Clifford variables
which causes difficulties in calculation of supertraces (see for instance the proof of [’ 16, Theorem
2.24]) are absent here. Thus with the methods of [I'18, section 4] one should be able to compute
the forms 1 and (1 in the principle setting explicitly. In particular the result in the example
regarding P'C-bundles from section 3.3 can be more specified. All these calculations will not

be part of this thesis.
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Chapter 4

The Asymptotic of the Equivariant

Holomorphic Analytic Torsion Forms

In this chapter we compute the asymptotic of the equivariant analytic torsion forms. We
consider the situation as in the beginning of chapter 2 but now with an arbitrary v € G. In
addition the holomorphic Hermitian line bundle (L, hﬁ) is supposed to be an G-equivariant

bundle with G-invariant metric h%.

4.1 Localization near the Fixed-point Manifold

Recall from section 2.1 a) that inj? was the injectivity radius of Z. Let o €]0,inj% /8[. The
precise value of ¢ will be fixed later. Also recall that by finite propagation speed the map
2 — (2| Fy, (uB2)|#') vanishes on the complement of BZ(z) and depends for any z € Z only on
the restriction of the operator Bg to the ball BQZ (z). In particular, if dist? denotes the distance
function on Z, (y~'2|F,(uB,)|z) vanishes if dist? (y~'z,2) > o.

Now we explain the choice of p. For € > 0 let U, be the e-neighbourhood of Z, in Nz_,7.
Here Nz ;7 is identified with the orthogonal bundle of T'Z, in TZ|z  and Z, is identified with
the set of zero sections. There exist €y €]0,injZ/32] such that if € €]0, 16¢g] the map Ny, z 2
(2,V) = expZ(V) is a diffeomorphism of U, on the tubular neighbourhood V; of Z, in Z. In
the sequel we will identify U, and V..

We now assume that ¢ €]0, o] is small enough such that if z € Z, dZ(’y_lz, z) < p, then z € V.
By [P16, Proposition 2.2 and (2.55)] (see also Appendix A) we see that (2.1.2) still holds outside

the diagonal and one has

Z -1 U9 ZiN a1 _u
[(expZ V] exp (= DB exp? V) = (7 V]exp (= S0V
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2
€
< Cp" exp ( - 1%—];) (4.1.1)

so that we can study the kernel (y~!'V]exp ( — %Mp’z)]V> instead of (expZy V|exp ( —
%B§)| exp? ). By this the problem is localized on the ep-neighbourhood V.

Let dvol gz, and dVOlgNZ’Y ,zr De the volume forms on T'Z, and Nz ;7 induced by hTZ . Let
k(z,V) be be the smooth function on U, defined by

dvolyrgz(2,V) = k(2, V)dvol gz, (z)dvolgNZV/Z,R (V).

In particular it satisfies
/i| 2z, = 1.
For u > 0 define as in [’106, (2.63)]

a B
Q, 1= uQF (wg, )T A th + \/gc(ei)fana + %Qgﬁ

For z€ Zyand V € N, 7z /7R set

det(QéV)')
det(1 — exp(—uQév)))
QL /2
(zV)
eyul(z, V) =exp( — a
( <tanh(uQ(EZ7V)/2)
OF /2

<sinh(uQé7V)/2)

and

1
n exp(_Qu,(z,V)

Dy, (z,V):= )

(2, V), (2, V))

S22 V), (2,1))).

D, (z,V) already appeared in [P16, (2.89)]. For sake of convenience put
Ny = dimc ZV‘

Let the action of v on £ given by multiplication with e’?. As usual 4¢ denotes the action of v

on &.

Theorem 4.1.1. Let m € Ng. Then there exists 6 > 0 such that as p — oo, uniformly as u

varies in a compact subset of R~q, the following asymptotic for the €™ (B)-norm holds:

panwl/\/ﬁ Trg [’YNu/p exp ( - Bz,u/p)}
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— k(€) / , / €722, V) Try [1ENuDy (2, V)| dvol gz, (2)v0L v, (V)
2Cdy

VEN, z,/zRr

+ O(p*‘;).

Proof. For the kernel of the curvature of the rescaled superconnection we have

unR2

_R? _u B2 _up2 _
Vi e =y yge P VIRV =y g (€8] = gy e

It follows together with ¢, 5N/, = Ny that
s Tes [WNypexp (= B2,,)| = [ s [yNuwy (v 2 exp (= 2 B2) |2)] dvol a2 (2)
1/yp s |V Nu/p €XP pu/p s [V NVu1 ) m(Y 2 €Xp P z)|dvol rgz(2).
z

By [P’16, Proposition 2.2] there exists C' > 0 such that we have the estimate

P

cpN — .
+Cpexp ( 16u

H(’y_lz| exp ( — %Bﬁ) |z) o

<[ t=lF (= 2 Bp)le)

gm

Because <fy_1z|1*:’( - %B£)|z> vanishes if d%(y7'z,2) > ¢ and (dz(v_lz,z) <o=>zE€ V60> we
deduce for any [ € N

_ ~ u
W1/ Trs [nyu/p exp (— Bg’u/p)} = /Trs [nyuq/;l/ﬁ@ 141:(— 5Bg)]zﬂdvolgmz(z)

+o(p7).

Let {Bye °(z;)}; be an open covering of Vi, and {7;}; a partition of unity subordinate to
{Bve0 (zj)};. By the identification of V, with U, we get an open covering {Bgﬁo((zj,O))}j
of U, and a partition of unity subordinate it, still denoted by 7;. It follows

Z / .. 2) Tr, [»yNuwl vy e P (= %Bﬁ)\zﬂdvolgmz(z)

_Z/UEO( (,,0) Z V)) Trs [VNuwl/f< (Z,V)|F( - %Bg)KZ, V)>}
X Kz, (2, V)dvol g 2, (Z)dVOIgNZW/Z’R(V)
_Z/er(z o (V)T s PN @ VIE (= 20 ) (V)]

X Kz, (2, V)dvol g 2, (Z)dVOlgNZ_Y/ZyR (V).
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Again by [I’16, Proposition 2.2] which is also true for M, .. we have
(= ) o 1 (= ) 5 (20
<[ fexp (= “at,0)13],., + oY esp (122,

Furthermore the following identity holds,
(2, V)™ 7™z, V) = (= V/D)e ™" |z, V! 0)n ™2 (2 V)R 2 (=, V),
Thus for any I € N we get

7/}1/\/5 TrS [/VNu/p eXp ( - Bz,u/p):|

-/ [ T eV e (= 20, )| V)]
zEZ’YVGNz,ZW/Z,R g
IVi<eo
X K(z, V)dvol jrg 7, (Z)dVOI‘qNZ,Y/Z,R (V) +o(p7h
= [ [ el e )|
ZC Ly

VEN. z,/zr
IVII<eo

X k72 (W) kDY 2R (2, V)dvol gz, (Z)dVOIgNZ.Y/Z,R, +o(p7h
_ . dimc Z —1 —ult, »
=ptmes [ [ oy (o e e )

Y
VEN, z,/zr
ItV <eo

X k72 (V)R (2, tV)dvol g 7, (Z)dVOlgNZ’Y/Z}R (V) +o(p™h

where in the last step we used the transformation V' +— ¢V. By [’16, Theorem 2.20] for v > 0

fixed there exsists C' > 0 such that for ¢ > 0 and V,V’' € BlTZOZ(O)

V)

Define the rescaled version of Ly which already appeard in [P16, (2.84)],

H<V‘e—uLt _ e—uLo

‘ < Ot/ Cnt1),

Lo :=wy saLlotd -

Then it follows for the €™-norm on I'(M X, M,E, K E;) that

(V)

(2, V)> = <(Z,771V)‘6*“¢1/\/5Lt,zwﬁ

¢1/ﬁ<(27’flv)‘€7uh‘z
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= (@ V)le |z V) + O VEE). (1)
The operator Lg,, is a harmonic oscillator with, see [’16, (2.87)],
Lo =5 32 (4 5 (@54V,00)" +0(:) = § T ).
Since 7 is an isometry the formula for the heat kernel of a harmonic oscillator (| , E.2.4])
gives
det(Qév))

((2,771V)|e o

1
7V = _Qu z -
(2 )> (2m)" exp( o ’V))det(l — exp(—uQé V)))

y eXp(_ < Q(ﬂz,V)/2 (z,V),(z, V)> n < Q(Lz,V)/2 eUQ§/2(2,7_1V),(Z,V)>) ® ide

tanh(uQ(Ez7v)/2) sinh(uQé’v)/Q)
=eyu(z, V) Dyu(z,V) ®idg. (4.1.3)

By Taylor expansion of (2.1.6) of (z,tV’) and because e ,(z, V') decays exponentially as |V|| —

oo we conclude Theorem 4.1.1. O

4.2 The Asymptotic of the Equivariant Holomorphic Analytic

Torsion Forms

The function D, (z,V') has an asymptotic expansion as u — 0 ([P’16, (2.90)]) and because
eyu(2, V) is analytic in u = 0 we find, for j > —d, d¥l € T(Z, End(A*(T},,B) ® A**(T*2)))

such as u — 0
k

(eyu - Du)(2,V) = > dll(z, V) + O(uF).
j=—d

Set a[_d_l] :=0and for j > —d — 1 set

Bj cipe  i= /zeZ«, / e'P? Tr, [W(Nva[vﬂ(z, V) + ina[Wj‘H] (z, V))}

VEN, z,/z,r

X dvol 15 7, (Z)dVOlgNZW/ZyR (V).
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Then for any &k € Ng as u — 0

/ / €72 (2, V) Try [15 NuDu(2, V)| dvol ez, (2)dvol vy 1 (V)
ZGZ»Y g /%

EN. 7, /ZR

k
- Z Bj7eip<p’,yuj + O(uk+1). (4.2.1)
j=—d—1
Proposition 4.2.1. There exist forms By, € A*(By,C) such that for any k,m € Ny there
exists C > 0 such that for any u €]0,1] and p € N

k

Hp‘”wpl/ﬁ, Tr, [’yNu/p exp (— Bz’u/p)} — Z B, j~yu’
j=—d—1

S Cuk-‘rl.
C™(By,A*TE By)

Moreover as p — oo for any j > —n,,

1
BPJ,’Y = I‘k(g)Bj’eiapp7,y + O(%)

where the convergence is in the in the €°° topology on B..

Proof. The proof of Proposition 4.2.1 follows the same techniques as in [’16, Theorem 2.21,
Corollary 2.22] and | , Theorem 5.5.9] with off-diagonal adjustments. For more transparancy

we recall their results.

As in section 2.1 b) the problem can be localized near zp € Z and we rescale the superconnection
as in Definition 2.1.1 to optrain the operator L; .,. By the finite propagation speed of the wave
operator | , Theorem D.2.1], for ¢ small, (0|F,(uL¢_,|-) only depend on the restriction of

L., on BQTER’ZOZ(O) and is supported in B;‘:R’ZOZ(O). Consider the sphere bundle

S = {(V, C) € TRZ X R| ||VH2 + 2= 1}
over 7. BQTGR’ZOZ(O) will be embeded in S,, by the map
Vi (V1= [[V]]?)

and the operator L; ., will be extended to a geralized Laplacian INJMO on S,, with values in
pri;(EndE). By [P 16, Proposition 2.2, (2.54)] we see that [°16, (2.93)] still holds outside of the

diagonal, i.e. we have

2

SC’pNeXp(— o )

[(v TtV [emubes — emubes v T

%m(Mx[0,1],End(E))
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As the total space of S is compact the heat kernel <7*1V|e*“Ef ]V> has an asymptotic expansion
as u — 0 starting with «~"™ which depends smoothly on the parameters zy and ¢ (] ,

chapter 6]). With (4.1.1) we get the first statement and thus the second statement follows from
(4.1.2), (4.1.3) and (4.2.1). O

Theorem 4.2.2. For any k,m € Ny there is C > 0 such that foru>1 and p € N

Hp_”ww/\/]; Trs [’YNu/p exp(—Bf,,u/p)} H‘ﬁm(B,A‘TéB) < \5%

The proof of Theorem 4.2.2 will be postponed to section 4.3.

For the sake of clarity we restate Theorem 4.

Theorem 4.2.3. Let k € {0,...,dimc B, }. Assume the action of v on L is given by ¢*?. Then
there are differential forms a.(e’P?), B (e’P?) on B, which are local coefficients such that the
component of degree 2k of the equivariant holomorphic analytic torsion forms has the following
asymptotic as p — o0:

2k)

. o\
T, (@, R ) = ot (an (¢9) logp + B (e79)) -+ ofp™ )

in the topology of €°° convergence on compact subsets of B..
Proof. Recall that by our assumption there is a pg € N such that the direct image Rim, (£ ® LP)

is locally free for all p > py and 7 € {1,...,n}, and vanishes for ¢ > 0. In particular, for p > py.
H(Z,(E®LP),) =0 for i>0. For p> py set

~ pfn’v 1 s

Clyp(s) = — ) /0 u I@bl/\/lgq)(TrS [YNu/p exp(—Bi,u/p)])du and
= p—n»y o S—

Gy p(8) 1= _F(s)/1 u” ey p®(Trs [YNy)p exp(—= By, )] ) du.

In the same fashion as in Definition 1.3.6 both le,’y,p and 517%1, have a holomorphic extension

near zero and we define
Gy = G + CLivpe
It satisfies
p_nj@bl/\/ﬁcv,p(s) = p_sg'y,p(s)
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from which we see

p_n”/)l/\/ﬁcap(o) = IOg(p)Ev,p(O) + E'I)/,p(o)‘

On the other hand we have for p > pg

pe 1 0 du
Cyp(0) = _/0 p_nwl)<7’bl/\/l3 Trs [vNuyp exp(— pu/p Z By jnyu ) "
j=—d—-1
> du = Bpjn /
_/1 VCInpl/\fTrs [’yNu/pexp( Bp u/p)] o Z —2L +T"(1)Bp0,45
j=—d—1

E%p(o) = - q)Bp,Oﬁ-

Set

o (%) i / . / € e(2, V) Try [4 NuDu(2, V)| dvol iz, (2)dv0l sz (V).
2& Ly

VEN, z.,/z,r

Let é’eiwﬁ(s) be the Mellin transform of u + 6, ,(e'P#), i.e.
F 1 o ippy,,s—1
Ceire ~(8) i= _T(S)/o Ouy (€P7)u’ " du.

By (4.2.1) we see

du
e’LPW fy / eu’)/ 1p<,0 Z B] eiry 'y )E
j=—d—1
o0 - d L B .
_/ gu,v(ezw)*u - Z —hera +I'(1 ) By eine -
1 N J

From Theorem 4.1.1, Corollary 4.2.1 and Theorem 4.2.2 we get

U1/ /3Gy (0) = 10g(p)p™ DBy ive o, + P TK(E) D ips (0) + 0(p™).

Thus the statement now follows from Lemma 2.3.1 with

a, (eP?) = ®Bycire, and  By(e eP?) = rk(é’)@@ eine (0)-
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4.3 Proof of Theorem 4.2.2

The strategy will be the same as in [I’16, section 2.5] i.e. showing the inequality for P, , and

Ky, seperately and using (2.4.2) with n, instead.

For ¢ > 1 let ||-||; denote the Schatten g-norm given by

1/q

2
|Ally = (T [(A"4)?))
for A € A*(B,0p(A>*(T*Z) ® £ ® LP)). Since 7 is an unitary operator and the Schatten norms
are unitary invariant we have for any operator A that ||yAl|,=[|A| . Moreover as the operators
we are considering commutes with v the arguments showing the boundedness will be the same
as in the non-equivariant case and we will not repeat those arguments if not necessary. The

rather unclear steps will be estimates where p™" are replaced by p~™.

Lemma 4.3.1. Let Ao € R’,. Then there exists qo € No such that for ¢ > qo, for U € TrB
and | € Ny, there exists C' > 0 such that for p € N

—n n l _
p ™ (vg d(E)p) 7()\0 _ Cp) qu <C.
Proof. Set
H, = Dg/p — Ao
By [P16, (2.150)(2.151)] for k£ > 1 high enough
1 o'e]
Tr [yH, %] = —7/ Tr [ye 7]t 1qt, 4.3.1

By Theorem 4.1.1 in degree zero p~ " Tr heDIQ)/ P] and its derivatives are bounded. Thus as in
[P16, (2.152)] for m € N there is C' > 0 such that for ¢ > 1 and p € N,

Tr [’pr_k] <p ™

Tr [~eP3/P
¢m (B'y ’C) r [76 ! ]

Mt < Cetot, (4.3.2)

—Ny
p Ecm (B7 7C)

In the same way as in [’16, (2.153)] we find by using Proposition 4.2.1 in degree 0 that for any
k,m € Ny there exist a,;, € R and C > 0 such that for any ¢ €]0,1] and p € N,

k
Hp_M Trs [7 exp (— ;Dg)} - j:;“ “p,j,vtjucgm(BwC) . (4.33)
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Splitting the integral in 4.3.1 at ¢t = 1 and using (4.3.2) and (4.3.3) we get fo k large enough

<C
%m(B.,C)

Tr [’yH];k]

p"

Thus there exists gy € Ng such that for ¢ > gg there is C' > 0 such that

Ty (Ao —Cp) Y| <p ™| Tr |yH, ¢ <C.
P | v(Ro = Gy) Hlfp oy | ) =
By [’16, (2.160)-(2.161)] the Lemma follows for [ = 0. Since Vgnd(E)p is a G-invariant connection
the case [ > 1 follows with the same arguments as in the proof of [P16, Lemma 2.27]. O

Lemma 4.3.2. For any k,m € Ng there are a,C > 0 such that for u>1 and p € N:

< Ce ™,

o7 T [y NUKy o emarTsn) S

Proof. The proof is the same as in [P16, Proposition 2.28] with using Lemma 4.3.1 instead of
[P16, Lemma 2.27]. O

Lemma 4.3.3. For any k,m € Ng > 0 there is C' > 0 such that for w > 1 and p € N:

C
<

=™ Ty [y NPy | emtpaetsn) S U

Proof. We have

(/\ - uo;,@) (%Pp) =D, Xuc<0>Pp =D,

Thus it follows

1
A= uC) (5B + (A= uC) B ) = Byt By =1

_ 1 _
= y(A —uCO) "t = 7P+ (A = uC) Pt (4.3.4)

The function A — (A — u()']go))*lel is a holomorphic on By (0) \ {0} and for A = 0 we get from
2
(2.4.13) and our notation

(wCOY ' PE = PHuC) T PP (2:4.13) P (uCO) ' B = (uCc®) ",

Thus A — (A — uC'/l(,O))_leL is a holomorphic function on the interior of J. Since C), has no

eigenvalues between the two circles 0 and 0/u we have

1 —uA -1
VPpu = %7/11/@ /5/u ve A= Cp) T dA
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1 _ _
7.1#1/\/5/576 A\ —uCp) A

- 21

Therefore we deduce in the same way as in [P16, (2.188)] using (4.3.4) and

_1\k N N
160 - uCy) ™ = (30 N (- a0 ) - (ultpy (3 - ) )

k>0 1>0

that the operator 7P, , is given by

VPpu=V1/a D . TRy Tps. .. (uRy) Ty (4.3.5)
/ I=0 1<io<I+1 (lo — 1 = 30 Jm)!

where P, appears ig times among the T}, ; and the other terms are given respectively by
(uCIgO))_(Hﬁ), cee (uCISO))*(HjHl*io), Each term in the sum (4.3.5) is a product of uniformly
bounded terms in which P, appears since 75 > 1. Using the Atiyah-Segal-Singer index formula
in [P16, (2.196)] instead and proceeding in the same way the claim follows for m = 0. By
the equivariance of the connections the case m > 1 follows from the same reasoning as in the

non-equivariant case. [

With Lemma 4.3.2 and Lemma 4.3.3 the proof of Theorem 4.2.2 is complete.

4.4 Remarks towards Generalizations and Arakelov Geometry

The holomorphic analytic torsion forms can be defined for a more gerneralized class of
fibration called Hermitian fibration where the 2-form w™ does not need to be closed. For
the precise definition of the Bismut superconnection and torsion form in the non-Kéhler case
see [ | or [P16]. A full asymptotic of the analytic torsion forms for Hermitian fibration
should be obtainable as well with the present in Lemma 2.1.2 of additional terms of the form
(OM M jw)© — % (0% — aZ)inHi. (T.2) coming from the Lichnerowicz formula | , Theorem
3.9.3]. This should not disturb the calculation but rather one has to modify W. Since we have
restricted ourselves in chapter 3 on families of vector bundles arising from a principle bundle

M

where the form w™ is closed we have neglected Hermitian fibrations from the beginning to keep

it transparent.
An interesting but rather difficult generalization is to obtain a full asymptotic of the equiv-

ariant holomorphic analytic torsion forms which generalizes Theorem 2. It is not clear if the

methods in the proof of Theorem 2.2.8 are compatibel with that from Theorem 4.2.2 as for
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example the identification End(LP) = C were used when restricted the kernel to the diagonal.
While an explicit formula for g and Sy has been calculated by [P16] the equivariant case is

more complicated since the Mehler formula for the harmonic oscillator gave

1 det(QF )
~Lo ) (2,V)) = —Q =
b0 ((2,971V), (5,)) @ny ™ “’(z’v))det(l—exp(—“% )
QF, vy /2 Ao /2

(V) (V) + WER2(2 07V, (2, V) @ ide

xXexp| — : : : €
( <tanh(u9éy)/2) smh(uQé’V)/Z)

which complicates the calculation of the derivative of the Mellin transform. Even in the princi-
pal bundle case concrete formulas for o, o, 8y, , a1 and 3,1 are missing here. Nontheless the
asymptotic behavior of the holomorphic torsion alone already found applications in Arakelov
Geometry for which we will now give a short overview. This will be held very briefly as it is not

our main research area.

For the precise definitions of the objects we refer to [S92] and | |. Let f: X — Spec Z
be an arithmetic variety, that is a regular scheme where the map of definition h is flat and
projective over Spec Z . Let X (C) denote its complex points which is a complex manifold. Let
E = (E,h) be a Hermitian vector bundle over X. To the arithmetic variety X one can associate
arithmetic Chow groups CH' (X) and define an arithmetic Chern character ch(E) € CH' (X )Q-
There is a natural isomorphism (Te% : é-I?I(Spec Z) 5 R called the arithmetic degree. The first
arithmetic Chern class ¢;(F) € éﬁl(X ) is the degree one part of ch(E). If V is a a finitely

generated free Z-module with a Hermitian metric on V ® C then
deg(¢1(V)) = — log(covol(V)).

Let L be an Hermitian ample line bundle over X. If n denotes the dimension of X then by [592,
Theorem 2’]

n+1

log #{s € H(X, E® L")|||s|| 2} > rk(E)— i fu(e1(L)") + O(p" log p) (4.4.1)

(n+1)!

where # denotes the cardinality of a set. For its proof Gillet-Soulé used the asymptotic behavior
T(wX(©) pESLPY — O(p™logp) of the holomorphic torsion provided by Bismut-Vasserot. Their
concrete formula for the top term in the asymptotic of the torsion was not needed here, however

its application can be found in | , Theorem 8] a more precise version of (4.4.1).

Let pun = Spec Z[T]/TN -1 — Spec Z be the group scheme of N-th root of unity. We assume

that X is endowed with an group action of py and that this action lifts to an action on E which
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is compatible with the metric. Then E is a uy-equivariant Hermitian vector bundles.

Let X, be the fixed point scheme. Fix a primitive N-th complex root of unity (n. Then it
induces an automorphism v on X (C) with X, (C) = X(C),. The puy-actions induces a Z/N-
grading E| Xy = @®pez/NEk. For an abelian group S let Stos denote the torsion subgroup.

Then by | , Theorem 7.14] the following equalitiy holds:

=D Y - (log(covol(H(Z, E),) — log(#HY(X, E) . tors)))
q=>0 keZ/N
- %Twmh n) — % Td, (T Xc) chy (Ec) Ry (T Xc) + deg(fo(Tdyy (TF)chyuy (E)))
XHN(C)

(see [ , Definition 3.5 and Definition 7.13] for the definitions of R,ch,,,,Td,,).

Now let L be a py-equivariant Hermitian ample line bundle on X. By the degree zero part
of Theorem 4.2.2 we have T, (wX(©) hF) = O(p™ logp). We hope that similar to the non-

equivariant case this provides the necessary analytical part for proving an asymptotic formula

for the quantity — 32 >o(—=1)(Xkez/n ¢k - log iﬁ;%gqééfgf:)o’iz as p tends to infinity.
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Appendix A

Spectrum and Finite Propagation

Speed

In this appendix we continue the treatment on families of operators of chapter 1. We start
with studying the spectrum of the curvature and then move on to the wave equation. For the
latter topic we retrict ourselfs to the Bismut superconnection. But first we will cite two theorems

from | | wheh will be used.

Let (Z, g"®7) be a complete orientable Riemannian manifold with boundary 8Z. Let (E, h*)
be a Hermitian vector bundle on Z with connection VE. Let e, be the inward pointing unit
normal at any boundary point of Z. Then s € I'(Z, E) satisfies the Dirichlet boundary condition
if

s=0 on 0Z.

s € I'(Z, F) satisfies the Neumann boundary condition if
VeEn s=0 on 0Z.

Let H be a positive generalized Laplacian on E with domain Dom(H) = {s € I'(Z,FE) | s =
0 or VeEn s =0 on 0Z}. Its Friedrichs extension will still denoted by H which is positive.

Theorem A.0.1 (| , Theorem D.2.1]). For w(t,x), t € R, z € Z we consider the wave
equation
82
(@ + H)w

with the Dirichlet or Neumann boundary condition. Then for any sg, s1 € I'(Z, E) verifying the

corresponding boundary condition, there exists a unique solution w for the equation with initial
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conditions w(0, z) = so, %w(O,z) = s1. The solution w is given by

sin(tv/H)

w(t,z) = cos(tVH)so + Vi

S1.
It satisfies

supp(w(t,-)) C {z € Z | d(x,y) < t, for some y € supp(so) Usupp(s1)}.

Furtheremore one has the following identity which relate the heat kernel and the wave equation:

g 1 / —s2/2

e = cos(stvH)e ds.

Vam JR ( )

Theorem A.0.2 (] , Theorem A.3.2]). Let K C Z be compact and H a generalized

Laplacian. For any m € Ny there exist C1,Co > 0 such that for any s € H""2(Z, E) with
supp(s) C K we have

I8l Fm+2z.m) < CillHsl3im(2.5) + Calls|72(2.m):

Now assume we are in the situation of chapter 1 with the same notations. The following
theorem has been proven for a special case in | | which plays a keyrole in the proof of
Bismut’s immersion Theorem. The statement is still valid for a wider class of operators without

any changes of the original proof. The idea is to use the formal identity “(a—b)-> o b:;l =1"

and that the sum is finite for nilpotent b. For the sake of completeness we reproduce its proof.

Theorem A.0.3. Assume A>(H) € A*(B, Op(E)) is a operator of order less than or equal to 1.
Then
Spec(A?) = Spec(D?).

Proof. Take A ¢ Spec(D?). Then we have the formal identity
()\ o AQ)fl :Z()\ . D2)71A2,(+) . 'AZ’(+)(A o DZ)fl
1>0

=A=D)'+ (A=D*)TTAZH N - D)7 4 .

Because A%(t) has positive degree in A*TE B it is a nilpotent operator and the sum contains

only a finite number of terms. By Theorem A.0.2 together with the assumption that A% is

99



APPENDIX A. SPECTRUM AND FINITE PROPAGATION SPEED

of order lesser equal 1 we deduce

IA> (N = D) sl g0t (ae Brze) < CillX = D) slliz(arme (ae 1, B)0)
< Collsllmoasae (re5Bye) + Call(A = D) sl b0 (ame (a0 1, BY0)

< Cyllsllmo(ara (re s B)2eE)-

Therefore the operator (A — A?)~! is a bounded operator on the Sobolev space of order 0 and
we conclude A ¢ Spec(A?). By exchanging the roles of D? and A? we find that if A\ ¢ Spec(A?)
then A\ ¢ Spec(D?). The claim follows. O

For a > 0 let f: R — [0,1] be a smooth even function with

L, tI<3
f(t) = ?
0, [t|>a.
For a € C and u > 0 define the functions

Fy(a) := \/127 /;oo eisV2a exp(—s2/2) f(v/us)ds and
Gula) = = [ VB exp(s2/2)(1) (V)i

These are even holomorphic functions, thus there exist holomorphic functions F,, G, with
F.(a?) = Fy(a) and Gy (a?) = Gy(a). For C > 0 let T be the contour indicated in the following
figure:

A

Y

Y

Figure A.1: Contour I'

Since Spec(B?) = Spec(D?) C [0, 00| the resolvent (A — B?)~! exsists for A € I and by [16,
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(2.27)] there is k > 0 such that
I = B ™ s A, (A.0.1)

The restriction of F, and G, lies in the Schwartze space S(R). In particular F,(B?) is well-
defined,
Fu(B?) = / Fu(A)(\ — B2) A,
r
Same goes for G,,(B?) and for v > 0 one has

F,(vB?) + G, (vB?) = e 7", (A.0.2)

Because f is an even function and f(,/us) vanishes for |\/us| > a we can write F,(uB?) as

F,(uB?) \/ﬂ/a/fcos sv2VuB?) exp(—s2/2) f (vus)ds (A.0.3)

Recall for a distribution 7" € D'(Z) on Z its support is defined as supp(T’) = {z € Z| for all
neighborhood U of z there exsists a testfunction ¢ € D(U) with (T, ¢) # 0}. This definition
extends to vector valued distributions. For z € Z let d;) be the Dirac delta distribution. Then
supp(d(zy) = {z}. For b € Blet V € A*(T§,B) ® (A%*(T*Z) ® &), be a given vector. Then
V' - 64y is a vector valued distribution given by for any f € D(Z2)

(V-8 f) = f(2) -V € AN(TEpB) © (A (T72) @ £)...

By the finite propagation speed of the wave equation from Theorem A.0.1 we have

supp(cos(sx/i@)Vé{z}) C B\Z/Es(z),
thus if \/us < a we have

supp(cos(sﬂ\/@)‘/'é{zﬁ C BZ(2). (A.0.4)
By the Schwartz kernel theorem G (vB?) and F,(vB?) are represented by the smooth kernels
(2|Gu(vB?)|2") and (z|F,(vB?)|z') with respect to dvol g z(2'). Thus from (A.0.3) and (A.0.4)
the map

" (2|, (uB?)|?") (A.0.5)

depends only on the restriction of the operator B2 to the ball BZ(z) and if 2’ ¢ BZ(z) then
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(2| F(uB?)|#') vanishes.

Let (£,h*) be a holomorphic Hermitian line bundle on M and for p € N put £P := L®P.
The Bismut superconnection can then be defined for (€ ® £LP, h¢®%") instead of (£, h¢) and will
denoted by B,,. Set

Ep = A* (T B) & (A" (T"2) © € @ L7)

where A®(T; ﬁ7bOB) is a trivial bundle over Z. E, will be equipped with the connection VE»
induced by VIRB.LC A**(T"2)@€ gL and with the metric hy induced by g'®5, pAY (T Z)0E
and h%. Let VE2Er and hE»MEs be the induced connection and metric on E, X E;. Let injZ be
the injectivity radius of Z and let € €0, miz [. In [P16, Proposition 2.2] it was shown that for
any m € N and € > 0 there exist C > 0 and N € N such that

2
G (LB < opN _tp
H< |G5(po)| >H‘K’"(M><7TM,IEP®IE;;)_CP e ( 16u) (4.0.6)

where the €™-norm is induced by VE* > and % F2. By (A.0.2) and (A.0.6) if one wants

to study the behavior of H<z[ exp (— %B§)|z’> as p — oo or u — 0 then exp ( — %B]%) can be
(U2

replaced by F u (EBP)'

We now assume the reader have read section 2.1 a). The operator M, , has the same structure
as Bg thus (A.0.6) holds if Bz is replaced by M, .. Because M), . coincides with Bg over BZ(0)
by the comment after (A.0.5) with & = ¢ we have

"

from which (2.1.2) follows. Furthermore we see that (2.1.2) is valid outside the diagonal as well.

This localization technique can not only be applied to the Bismut superconnection but also
to general superconnections A such that A%(+) is a differential operator of order 1 because the
proof of (A.0.1) and (A.0.6) uses only the structure of B2 (see [P16, (2.7)]) and not how the
operator exactly looks like. Instead of copying the proof in section 2.1 of [16] and replace BZ
by AZ with using | , (2.25),(2.68)] for its local structure we leave the details for the reader.
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Lie Algebraic Equivariant

Holomorphic Analytic Torsion

In this appendix we want to give the reader some insight of an infinitesimal equivariant ana-
lytic torsion defined in | |. It relates the analytic torsion form with the equivariant torsion
when the geometry comes from a principle bundle as in chapter 3. The notation here will be the
same as in chapter 3.1. Be careful from the different sign convention between (1.1.1), (3.1.1) and
[ , (1.16),(2.2)]. The formulas in [ ] are changed due to w? ~ —w? and Kz ~ —Kjz.

Let v € G be given. Let Z(v)c be the centralizer of v in G¢. Let P Z(lgc B be a holomor-

phic principle bundle with structure group Z(7y)c. All the consideration from section 3.1 will
be now applied to Z(vy)c, Z(7),3(7) instead of G¢, G, g and we assume that Z(v) is connected.
In particular © € A4 (B, P x¢ 3(7)) and M is given by Q X3(y) Z-

Let K € g and Ky its corresponding vector field on Z. Let Ké’o € I(Z,T'Z) and K%l €
['(Z,T%1Z) denote the induced vector fields. Set

dig =d+ 27TiLKZ,

Og : =0+ 2L 0 and
Z

O := 0 + 2mi .
OK 0+ WlLKé,o
The K-equivariant curvatures Q%% and Q%7 are defined as
Q172 =0T y orimT?(K) and QL7 := QF 4+ 2nim®P(K).

Note as mentioned that the sign difference in | , (2.25),(2.30)] comes from (3.1.1). As
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in chapter 1 we define for v € G the bundles Ngij /7 and the corresponding connections and

curvatures. The restriction m??(K)
iy .
let mT%(K) and m"71/% be the restriction of mTZ(K)|Z7 to T'Z, and leej/z (1<j<aq).

. o TZ
The corresponding equivariant curvatures 2

|5, Preserves the splitting of T'Z, in its eigenbundles and

16 ;
7, QN7 are then to defined in the same manner

as above.

Definition B.0.4. For K € 3(v) with |K| small enough define

N J
0207 =10 () T () (2 )
]:1 max
N
Td/%K(TZ, W12y = (;96 {Td (—27%27 ) f{l(czi) (_szrzw/z +1i0; + b)} . and
j=
_QJIE{‘Zv

chy k(E,hF) = Tr {’yexp (

i)

These forms Td., x (TZ, hT#) and ch, k(E, hf) are G-invariant forms lying in P%>. The require-

ment on |K| is because Td(x) vanishes for = € 2inZ.

Definition B.0.5. For u > 0 and K € 3(vy) put

ul ) = Tr, (N = i 25D ) exp (- (vaD? - 62(52%))2 - Lk)).

The above definition can be extended to the case where K € gc = g & ig.

Theorem B.0.6 (] , Theorem 2.22]). For K € 3(v) with |K| sufficiently small there exists
0 €]0,1[ and complex numbers C_1(vy, K), Co(v, K) € C such that for u €]0,1]

_ C—1(v,K)

bul, K) = Sy Gy, K) 4+ O,
Moreover
w2
Ci(v, K) = / (=% =il ) Ty i (TZ, h77) ch i (B,BE) - and
A T

Td’
Co(7, K) :/ZTd%K(TZ, W) (dime 2 — (o

T )7 (17, WT%)) chy ke (E, hE).
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For K € 3(v), as u — oo,

Bu(y, K) = Trf.(Z’E) [N’yeK] + O(L)

Ja

Definition B.0.7. For K € 3(v) with |K| sufficiently small and for s € C with 0 < Re(s) <

set

1
2

o (9) = gy [ (B )~ TN K

I(s)

By Theorem B.0.6 the function ¢, i is well defined and extends to a holomorphic function near
s =0.

Definition B.0.8. The Lie algebraic equivariant analytic torsion form T%K(wz, h¥) is defined

as

T,k (w?, b)) := ¢ k(0).

For v = e and with the notation from section 3.1 T¢ i (wZ  hE ) is related with the torsion form
T o (w?,hP) by replacing K with —-2 (see [ , (2.74))),
271

2mi

T. o (w?,h¥) (Definition B.0.8)

" 2m

=T

o (w? hf)  (notation at the end of section 3.1).
271

The following result has been proven in [ , Proposition 2.25] which follows from Theorem
B.0.6.

Proposition B.0.9. For K € 3(v) and |K| small enough

du

g;,K(O)z—/O1 (Bulr, K) = Co(1, K)) =
du

- /ooo(ﬂu(%K) — Tel"ZE [Ny —

. C—l(’Ya K)

+C_1 (7, K) + /(1) (Co(y, K) — Tl ZE) [Nyek)).

Definition B.0.10. For u > 0 let d, be the even form on Z given by

UJZ

dy = exp (

2mu

O Or —w?

2miu 27 ) '

Define the set
K = {Z S Z| Kz(z) = 0}
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which is a complex totally geodesic submanifold of Z.

Definition B.0.11. Let PI%,ZK be the set of Kyz-invariant currents on Z which are sums of

currents of type (p,p) whose wave-front set is included in N;K/ZR.

The current of integration on Z will be denoted by dz. Let hN7k/Z be the Hermitian metric on
Nz, /z induced by w?. Then there are currents dz A p1,...07 A p, ... in PI%,ZK where p; are
(p, p) forms such that as u — 0

57 Ndy = 8z, A w?/2m L s Af:wz 7+ o(u¥) (B.0.1)
= — —pjp1? +o(u”), 0.
A u Zk Cmax,K(NZk/Zv hNZk/Z) u z P o Pji+1
see [ , (3.8)] and the literatures noted there. For an arbitrary smooth from 1 on Z and for
s € C with Re(s) > 1 let F,;l be the function
1 . 1 ! s—1
F,(s) = I‘(s)/o u® {0z A dy,n)du.

By equation (4.2) Fnl esxtends to a meromorphic function which is holomorphic at s = 0. For
s € C with Re(s) < 1 the function

20y . L /+°° s—1
Fy(s) = i) b u®" {0z A dy,n)du

is holomorphic at s = 0.
Definition B.0.12. Let Sk (Z, —w?) be the current on Z given by

d
(Sxc(Z, 7)) i= o (Fy+F)

This current will appear in the comparison formula which relates the equivariant holomorphic
torsion with the torsion form.
Now we recall the construction of the genus I from | , section 4].

Definition B.0.13. For 0,0’ € R with |0'| small enough and x € C with |z| small enough, set
100,60 z) := Z Lins

i (2km+0+0) +x
2km+6#0

Let (N,hN ) be a equivariant Hermitian holomorphic vector bundle on Z with G-invariant Her-

mitian metric AY. Let €, ... e, 0 < 0; < 2m, be the distinct eigenvalues of v on N with
J g Y
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corresponding eigenbundles N%. Let B be a holomorphic skew-adjoint section of End(/N) which
commutes with v and let 6], ... ,i@; with 6; € R be the locally constant eigenvalues of the
action of B on N with corresponding eigenbundles N % . Then there are bundles N%"%; so that
N splits orthogonally as
N = @1<j<q N
1<5'<q

such that on N% ’03, ~ acts by multiplication by €% and B by multiplication with z@é Let

Nejﬁ;' . . 0.6 NGJ"% . o .
h be the induced metric on N5 and V the holomorphic Hermitian connection on
’ 0,0 0,0
N%%5 pN7T9 with curvature QN 777 T (0,6, -) will be identified with the corresponding additive

genus.

Definition B.0.14. Define

o
L p(N, Y 1<ij<q Tr[ (91,92’—27“)}
1<5'<q

Take z € R*, Ky € 3(7) and K = zKj. Put
Z%K = Z,y NZk.

Then for z small enough, Z, k = Z,.x. The operator v acts on Nz, 2\7, « with locally constant
s

distinct eigenvalues €, ... e, We have that —VT? K, acts as a skew-adjoint morphism of

Nz, /z which commutes with v over Z, k.

For z € R" close enough to 0 the characteristic class I, x(Ngz, /z) on Z, f is defined to be

I’Y’K(NZK/Z) = [I’Y:*VTZKZ(NZK/Za hNZK/Z)]'

With the constructed current Sk (Z,, —w?) and the genus I all the data are collected to

state the comparison formula of Bismut—Goette, the main result of | ]

Theorem B.0.15 (] , Theorem 5.1]). Let z € R*, Ky € 3(y) and K = zKy. For |z|
sufficiently small the following identity holds:

T,ox (w?, h7) = T f(w? hF) = /Z Td, k(T Z, W' ?)ch, x (E,hF)Sk(Z,, —w?)
Y

_ /Z Td, o (TZ,hT?) L, (N, 2)cho e (E).
v, K
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Once the equivariant analytic torsion is known Theorem B.0.15 can pave the way for the
calculation of the equivariant torsion form by replacing K with —%. Still one has to respect

that K is only to be taken from 3(7) which is not a minor restriction. Also nonetheless to deal

with the S-current which is a difficult object to compute is not an easy task at all.

For now we have only given the necessary definitions of the current Sk and the genus I. For

more background and properties of these objects see | , chapters 3-5] and | ].

109



Index

I-genus, 108

annihilation operator, 76
anomaly formula, 28

arithmetic Lefschetz fixed point formula, 96

basic differential forms, 70
Bismut S-current, 107

Bismut superconnection, 22

Cartan connection, 68

Cartan curvature, 68

comparison formula of Bismut-Goette, 108
creation operator, 76

curvature formula, 27

equivariant holomorphic analytic torsion form,
27

finite propagation speed, 98
horizontal differential forms, 70
Kahler fibration, 18

Lie algebraic equivariant analytic torsion form,
106

moment, 67

moment map, 67
number operator, 21

zeta function, 27

110



List of Figures

2.1 Contour 6 +A . . e

A1 Contour I' . . . . . o e

111



List of selected Symbols

K
ai,u

uy (eipso)

B T S ~ B~ B =~ B e~ c At =t =t e =t = e = Bt = B = A T S~

49
87
45
84
54
50
38
56
60
58
74
74
45
87
84
84
50
50
53
55
81
42
42
41
42
45
34
13

Q[.(Q X Z, 7T>2kE)bas
vE
Il
T’y(wM’h€®£p)

112

B =~ =~ R e S~ A~~~ ~ Rt Bt At St =t =t =t~ A A T S S~

12
13
36
36
36
38
32
81
71
71
34
34
20
20
20
81
13
17
71
20
88
31
32
22
72
22
33
33



Q2L

QL,H’

B T~ B~ B~ B~ A A - I = - S S B S

31
36
37
52
30
32
55
55
55
37
56
81
32
67
67
67
67
68
68
34
61

113



Bibliography

[A57] MLF. Atiyah: Complex analytic connections in fibre bundles, American Mathematical
Society, Vol. 85, No. 1 (May, 1957), 181-207.

[AB57] M.F. Atiyah, R. Bott: The moment map and equivariant cohomology, Topology 23
(1984), 1-28.

[ABP73] M.F. Atiyah, R. Bott, V.K. Patodi: On the heat equation and the index theorem,
Invent. Math. 19 (1973), 279-330.

[AR67] R. Abraham, J.Robbin: Transversal mappings and flows, W. A. Benjamin, Inc. 1967.

[Bi85] J.-M. Bismut: The infinitesimal Lefschetz formulas: A heat equation proof, J. Funct.
Anal. 62 (1985), 435-457.

[Bi86] J.-M. Bismut: The index theorem for families of Dirac operators : two heat equation
proofs, Invent. Math. 83 (1986), 91-151.

[Bi87] J.-M. Bismut: Demailly’s asymptotic Morse inequalities: a heat equation proof, J. Funct.
Anal. 72, 263-278 (1987).

[Bi94] J.-M. Bismut: Equivariant short exact sequences of vector bundles and their analytic
torsion forms, Comp. Math. 93 (1994), 291-354.

[Bi95] J.-M. Bismut: Equivariant immersions and Quillen metrics, J. Diff. Geom. 41 (1995)
53-157.

[Bi97] J.-M. Bismut: Holomorphic families of immersions and higher analytic torsion forms,
Astérisque, (244):viii+275, 1997.

[Bil3] J.-M. Bismut: Hypoelliptic Laplacian and Bott-Chern cohomology : a theorem of
Riemann-Roch-Grothendieck in complex geometry, volume 305 of Progress in Mathemat-
ics. Birkhéuser/Springer, Cham, 2013.

114



[BGS88a] J.-M. Bismut, H. Gillet, C. Soulé: Analytic torsion and holomorphic determinant
bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys., 115(1):49-78,
1988.

[BGS88b] J.M. Bismut, H. Gillet, C. Soulé: Analytic torsion and holomorphic determinant
bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys., 115(1):79-126,
1988.

[BGS88¢c| J.-M. Bismut, H. Gillet, C. Soulé: Analytic torsion and holomorphic determi-
nant bundles. III. Quillen metrics on holomorphic determinants, Commun. Math. Phys.,
115(2):301-351, 1988.

[BF86] J.-M. Bismut, D.S. Freed: The analysis of elliptic families. II. Dirac operators, eta
invariants and the holonomy theorem, Commun. Math. Phys. 107, 103-163 (1986).

[BGV92] N. Berline, E. Getzler, M. Vergne: Heat kernels and Dirac operators, Springer-Verlag,
Berlin Heidelberg, 2004.

[BGOO] J.-M. Bismut, S. Goette: Holomorphic equivariant analytic torsions, Geom. Funct.
Anal., 10(6):1289-1422, 2000.

[BK92] J.-M. Bismut, K. Kohler: Higher analytic torsion forms for direct images and anomaly
formulas, J. Algebraic Geom., 1(4):647-684, 1992.

[BLI1] J.-M. Bismut, G. Lebeau: Complex immersions and Quillen metrics, Publ. Math. IHES
74 (1991), 1-297.

[BM04] J.-M. Bismut, X. Ma: Holomorphic immersions and equivariant torsion forms, J. Reine
Angew. Math., 575:189-235, 2004.

[BVI0] J.-M. Bismut, E. Vasserot: The asymptotics of the Ray—Singer analytic torsion asso-
ciated with high powers of a positive line bundle, Commun. Math. Phys., 125:355-367,
1989.

[BV90] J.-M. Bismut, E. Vasserot: The asymptotics of the Ray-Singer analytic torsion of the
symmetric powers of a positive vector bundle, Ann. Inst. Fourier, 40(4):p. 835-848, 1990.

[DLMO06] X. Dai, K. Liu, X. Ma: On the asymptotic expansion of Bergman kernel, J. Differential
Geom., 72(1):1-41, 2006.

[Do03] H. Donnelly: Spectral theory for tensor products of Hermitian holomorphic line bundles,
Math. Z. 245 (2003), no. 1, 31-35.

115



[F18] S. Finski: On the full asymptotics of analytic torsion, J. Funct. Anal., 275 (12): 3457 -
3503, 2018.

[G86] E. Getzler: A short proof of the Atiyah-Singer index theorem, Topology 25 (1986), 111-
117.

[GRS08] H. Gillet, D. Rossler, C. Soulé: An arithmetic Riemann-Roch theorem in higher de-
grees, Ann. Inst. Fourier, 58(6):2169-2189, 2008.

[GS82] V. Guillemin, S., Sternberg: Geometric quantization and multiplicities of group repre-
sentations, Invent. Math. 67 (1982), 515-538.

[GS90] H. Gillet, C. Soulé: Characteristic classes for algebraic vector bundles with Hermitian
metric, I. Ann. Math. 131, 163-203 (1990).

[GS92] H. Gillet, C. Soulé: An arithmetic Riemann-Roch theorem, Invent. Math.,
110(3):473-543, 1992.

[K693] K. Kohler: Equivariant analytic torsion on P®C, Math.Ann., 297:553-565, 1993.

[K695] K. Kohler: Holomorphic torsion on Hermitian symmetric spaces, J. reine angew. Math.
460 (1995), 93-116.

[K605] K. Kohler: A Hirzebruch proportionality principle in Arakelov geometry, Birkhduser PM
239 (2005).

[KR1] K. Kohler, D. Rossler: A fixed point formula of Lefschetz type in Arakelov geometry I:
statement and proof, Invent. Math., 145(2):333-396, 2001.

[KR2] K. Kohler, D. Réssler: A fixed point formula of Lefschetz type in Arakelov geometry II:
a residue formula, Ann. Inst. Fourier 52 (2002), 81-103.

[KN63] S. Kobayashi, N. Katsumi: Foundations of differential geometry Volume I, John Wiley
& Sons, New York, 1963.

[Ma00] X. Ma: Submersions and equivariant Quillen metrics, Ann. Inst. Fourier (Grenoble) 50
(2000), no. 5, 1539-1588.

[MMO06] X. Ma, G. Marinescu: The first coefficients of the asymptotic expansion of the Bergman
kernel of the Spinc Dirac operator, Internat. J. Math., 17(6):737-759, 2006.

[MMO07] X. Ma, G. Marinescu: Holomorphic Morse inequalities and Bergman kernels, volume
254 of Progress in Mathematics. Birkhauser Verlag, Basel, 2007.

116



[MMO8] X. Ma, G. Marinescu: Generalized Bergman kernels on symplectic manifolds, Adv.
Math., 217(4):1756-1815, 2008.

[O54] H. W. Oliver: The exact Peano derivative, Transactions of the American Mathematical
Society Vol. 76, No. 3 (May, 1954), pp. 444-456.

[P16] M. Puchol: The asymptotics of the holomorphic torsion forms, full version on arXiv:
1511.04694 .C. R. Acad.Sci. Paris, 354(3):301-306, 2016.

[Q85] D. Quillen: Superconnections and the Chern character, Topology 24 (1985), 89-95.

[R70] D. B. Ray: Reidemeister torsion and the Laplacian on lens spaces, Adv. in Math 4 (1970),
109-126.

[RS73] D.B. Ray, .M. Singer: Analytic torsion for complex manifolds, Ann. of Math. 98 (1973),
154-177.

[Si59] I.M. Singer: The geometric interpretation of a special connection, Pacific J. Math. 9
(1959), 585-590.

[S92] C. Soulé: Lectures on Arakelov geometry, volume 33 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1992. With the collaboration of D.

Abramovich, J.-F. Burnol and J. Kramer.

[T96] M. E. Taylor: Partial differential equations. I, volume 115 of Applied Mathematical Sci-
ences. Springer-Verlag, New York, 1996. Basic theory.

117



Erklarung

Ich versichere an Eides Statt, dass die Dissertation von mir selbstédndig und ohne unzuléssige
fremde Hilfe unter Beachtung der , Grundsétze zur Sicherung guter wissenschaftlicher Praxis an

der Heinrich-Heine-Universitiat Disseldorf“erstellt worden ist.
Die Dissertation wurde bisher noch an keiner anderen Fakultit vorgelegt.

Ich habe bisher noch keine Promotionsversuche unternommen.

Diisseldorf, den

(Pascal Tefimer)



	Introduction
	General Notations and Background on Families of Operators
	The Equivariant Holomorphic Analytic Torsion Form
	Kähler Fibration
	The Bismut Superconnection
	The Equivariant Holomorphic Analytic Torsion Form

	The Asymptotic of the Holomorphic Analytic Torsion Forms 
	Localization
	Asymptotics of the Kernel
	The Full Asymptotic of the Holomorphic Analytic Torsion Forms
	Proof of Theorem 2.2.8

	Computation of the First Coefficient associated with a Principle Bundle
	Analytic Torsion Forms associated to a Principle Bundle
	Connections and Operators associated to the Cartan Curvature
	The Condition M=-12iL and P1C-bundles
	Computation of the Coefficient a1,u

	The Asymptotic of the Equivariant Holomorphic Analytic Torsion Forms
	Localization near the Fixed-point Manifold
	The Asymptotic of the Equivariant Holomorphic Analytic Torsion Forms
	Proof of Theorem ??
	Remarks towards Generalizations and Arakelov Geometry

	Spectrum and Finite Propagation Speed
	Lie Algebraic Equivariant Holomorphic Analytic Torsion
	Subject Index
	List of Figures
	List of selected Symbols
	Bibliography

