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Abstract

An understanding of the extremal behavior of time series is of importance in many

applications. For stationary time series, the extremes typically occur in clusters. The

extremal index θ, representing the reciprocal of the expected cluster size, and the limiting

cluster size distribution π are important measures for analyzing the serial dependence

of the extremes of stationary time series. In this thesis, new estimators for θ and π

based on the blocks method are proposed. In contrast to many competing estimators

from the literature, these estimators only depend on one tuning parameter, i.e., the

block length. The introduced estimators are analyzed theoretically, establishing their

asymptotic normality, and by means of a large-scale simulation study. Thereby, both

disjoint and sliding blocks versions are considered. The sliding blocks estimators are

shown to exhibit a smaller asymptotic variance than the corresponding disjoint blocks

versions. Further, the sliding blocks estimators perform better with regard to their finite-

sample behavior in the context of the simulation study. In specific scenarios, they are

also found to be superior to recent competitors from the literature.

In various situations, time series data also exhibit non-stationary behavior, which

needs to be accounted for in the statistical analysis. As an approach for modeling non-

stationary time series extremes, the proportional tails model introduced by Einmahl, de

Haan and Zhou (2016, Journal of the Royal Statistical Society: Series B (Statistical Me-

thodology), 78(1), 31– 51) is extended to allow for serially dependent observations. Here,

the proportionality is described by the so-called scedasis function c, which can be inter-

preted as the frequency of extremes; the case where this frequency c is not constant is

referred to as heteroscedastic extremes. Central limit theorems for estimators for the sce-

dasis function and for the integrated scedasis function are provided. Moreover, different

test procedures for assessing whether the extremes are heteroscedastic are developed

that are based on a multiplier bootstrap-scheme and on the idea of self-normalization.

These tests are examined theoretically, proving their consistency, and shown to perform

well within a simulation study. Finally, an estimator for the extremal index of the under-

lying stationary time series, which governs the dynamics of the extremes, is proposed;

its consistency is derived and it is investigated empirically.
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1 Introduction

Extreme value theory is concerned with analyzing and modeling rare and extreme events.

Such events may even be more extreme than any that have already been observed, which

statistically means that they lie outside the range of the available data and cannot be

adequately treated with traditional methods. However, the effects of extreme events on

human societies and the environment are often severe, which is why a (statistical) under-

standing of extreme events is important to predict and potentially mitigate these effects.

Extremes can be versatile and comprise heat waves, floods, earthquakes and large losses

in the financial and insurance sector. For instance, a dike should be constructed in a way

that it provides protection against water levels that have never been reached before. Or

in financial applications, the possibility of extreme losses needs to be taken into account

for general risk management. More details and examples in numerous domains of appli-

cation like hydrology, meteorology, geology, finance and insurance are given in Beirlant

et al. (2004) and Coles (2001). In classical extreme value theory, the extremal behavior

of a series of independent and identically distributed random variables is analyzed. The

probabilistic and statistical theory is well developed, see de Haan and Ferreira (2006);

Beirlant et al. (2004) and Resnick (2007) for an overview. However, in many practical

situations the assumption of independent variables is not reasonable and a more realistic

model is given by considering an underlying stationary time series. The accompanying

serial dependence can entail that extremes occur in clusters, rather than isolated as

for independent sequences (Hsing et al., 1988). Indeed, it is often observed that the ex-

tremes of water levels, wind speeds, temperatures or financial times series cluster in time

(Moloney et al., 2019). Such clustering of extremes is important to account for in risk

assessment. For example, several days of heavy rainfall, and not just a single extreme

rainfall, might be the cause of a flood or a landslide. In the case of temperature, a heat

wave emerges which is connected with human health issues, agricultural losses or an

increase in the number of forest fires (Scotto et al., 2011). Standard references to the

literature on extreme value theory for dependent data are Hsing et al. (1988); Leadbetter

(1983); Leadbetter et al. (1983); Leadbetter and Rootzén (1988) and O’Brien (1987).

The statistical analysis of the extremal behavior of a stationary time series typically

consists of assessing the tail of the marginal law and assessing the serial dependence of the

extremes, i.e., their tendency to occur in clusters. Associated statistical methods usually

pursue one of two fundamental principles: the block maxima method and the peak-over-

threshold (POT) method (Bücher and Zhou, 2018). The former approach, dating back
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to Gumbel (1958), consists of partitioning the observations into blocks and extracting

the maximum within each block. In its simplest form, the distribution of the resulting

block maxima is then approximated by the generalized extreme value (GEV) distribu-

tion, motivated by the Fisher-Tippet-Gnedenko Theorem (de Haan and Ferreira, 2006,

Theorem 1.1.3). Important recent references to the literature, considering that the block

maxima are only asymptotically GEV-distributed or may be serially dependent, include

Dombry (2015); Ferreira and de Haan (2015); Dombry and Ferreira (2019); Bücher and

Segers (2014) and Bücher and Segers (2018b). The POT method only considers obser-

vations that exceed a certain high threshold and the distribution of such exceedances

is approximated by the generalized Pareto distribution (Balkema and de Haan, 1974;

Pickands, 1975). The literature on the POT method is well developed, some exemplary

references are de Haan and Ferreira (2006); Davison and Smith (1990); Hsing (1991b);

Drees and Rootzén (2010); Resnick and Stărică (1998) and Drees and Knežević (2020).

Heuristically, the POT approach may seem more efficient than the block maxima me-

thod since it takes all large observations into account, while the latter method may miss

some extremes. However, the theoretical comparisons in Bücher and Zhou (2018) show

that either method can be preferable, depending on the quantity of statistical interest

such that in general neither can be considered superior.

Traditionally, in the block maxima method, the maxima are taken over disjoint blocks

of observations. A relatively new idea, which goes back to Beirlant et al. (2004)(Chapter

10.3.4) and Robert et al. (2009), is to take maxima over sliding blocks. Mathematically,

for random variables X1, . . . , Xn, n ∈ N, the disjoint blocks maxima sample for a block

length b ∈ N consists of

Mdj
1 = max{X1, . . . , Xb}, Mdj

2 = max{Xb+1, . . . , X2b},
. . . , Mdj

k = max{X(k−1)b+1, . . . , Xkb},

where k = bn/bc denotes the number of disjoint blocks, and the sliding blocks maxima

are given by

Msl
1 = max{X1, . . . , Xb}, Msl

2 = max{X2, . . . , Xb+1},
. . . , Msl

n−b+1 = max{Xn−b+1, . . . , Xn}.

It is worthwhile to mention that the maxima sample for sliding blocks is still stationary,

provided this holds true for the underlying time series, but has stronger dependen-

cies than for disjoint blocks, which makes the corresponding theoretical analysis more
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involved (Zou et al., 2021). Since the sample of sliding blocks maxima contains all dis-

joint blocks maxima and tends to lay more weight on the really large observations, it is

plausible that it carries more information than the disjoint blocks sample and can thus be

expected to lead to more accurate inference. In fact, the sliding blocks method has been

shown to result in a smaller asymptotic variance in certain applications, while the bias

is asymptotically the same (Robert et al., 2009; Berghaus and Bücher, 2018; Bücher and

Segers, 2018a; Zou et al., 2021; Bücher and Zanger, 2021). On the other hand, the dis-

joint and sliding blocks variances can also be shown to be equal for estimators of cluster

functionals within the POT framework (Cissokho and Kulik, 2020; Drees and Neblung,

2021). Altogether, the sliding blocks maxima method represents an alternative to the

classical construction of block maxima that leads to an improvement in many situations.

This thesis is concerned with the statistical analysis of the extremal behavior of time

series. New estimators for common measures of the extremal dependence of stationary

time series are examined, which are based on the disjoint and sliding blocks method.

Further, the extremal behavior is analyzed in a model that allows the underlying ob-

servations to be serially dependent and follow different distributions and thus allows for

non-stationarities. A detailed description is given in the following.

A primary measure for capturing the serial dependence between the extremes of a

stationary time series is provided by the extremal index θ ∈ [0, 1]. The extremal index

was introduced in Leadbetter (1983) and is defined as follows. The real-valued stationary

sequence (Xn)n∈N with stationary cumulative distribution function F has an extremal

index θ ∈ [0, 1] if for any τ > 0, there exists a sequence of thresholds un = un(τ) such

that limn→∞ n(1− F (un)) = τ and

lim
n→∞

P
(

max
i=1,...,n

Xi ≤ un
)

= e−θτ . (1.1)

The first condition states that the expected number of exceedances among X1, . . . , Xn

converges to τ , where every observation above the threshold un is called an exceedance.

To illustrate the second condition, let (X̃n)n∈N be an independent sequence with cumula-

tive distribution function F , and for τ > 0 choose un to satisfy limn→∞ n(1−F (un)) = τ

as above. Then, since

lim
n→∞

P
(

max
i=1,...,n

X̃i ≤ un
)

= lim
n→∞

Fn(un) = e−τ ,
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condition (1.1) implies that P(maxi=1,...,nXi ≤ un) ≈ P(maxi=1,...,n X̃i ≤ un)θ for large

n. Thus, the extremal index determines the (shrinking) effect the dependence of the

extremes may have on the distribution of the maximum of the dependent sequence

compared to its independent analogue (Leadbetter, 1983, Theorem 2.4). Obviously, if

(Xn)n∈N is an independent sequence, then θ = 1; however, the case θ = 1 can also be

true for dependent sequences (Beirlant et al., 2004, page 378). From now on θ > 0 is

assumed; the case θ = 0 is of little practical interest and commonly excluded (Leadbetter

et al., 1983, page 72). The extremal index has several interpretations, among which the

arguably most important one is its characterization as the reciprocal of the expected

size of an extremal cluster. More precisely, split the observations into successive disjoint

blocks of length bn, where bn = o(n) and bn → ∞ as n → ∞, and consider a threshold

un as above. The set of all exceedances of the level un within a block is called a cluster.

Then, under suitable conditions

θ−1 = lim
n→∞

E

[ bn∑

i=1

1(Xi > un)
∣∣∣ max
i=1,...,bn

Xi > un

]
(1.2)

such that θ−1 is the limiting mean number of exceedances in blocks with at least one

exceedance (Hsing et al., 1988). Therefore, the extremal index measures how many ex-

tremes occur together on average. Another interpretation by O’Brien (1987) states that

under suitable conditions

θ = lim
n→∞

P
(

max
i=2,...,bn

Xi ≤ un
∣∣X1 > un

)
,

meaning that θ is the limiting probability that an exceedance is followed by a run of

observations below the threshold. Further, the extremal index can be characterized in

terms of the times between exceedances (Beirlant et al., 2004, Chapter 10.3.4).

As a consequence of these interpretations, the estimation of the extremal index can

be an important part of the statistical analysis of the extremal dependence of a sta-

tionary time series. The statistical relevance of estimating θ is further emphasized by

the fact that one risks underestimating the marginal quantiles and overestimating the

return levels in many scenarios if the extremal index is neglected (Beirlant et al., 2004,

page 381). Inference about θ has received a correspondingly large amount of attention

in the literature. Common approaches are the blocks method, the runs method and the

inter-exceedance times method. The first two methods typically depend on a threshold

sequence and a cluster identification scheme (such as a block length), whereas estimators
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based on inter-exceedance times only depend on a threshold sequence. Respective refe-

rences are Hsing (1993); Robert et al. (2009); Ferro and Segers (2003); Süveges (2007);

Süveges and Davison (2010); Smith and Weissman (1994); Weissman and Novak (1998)

and Laurini and Tawn (2003); see also Beirlant et al. (2004)(Chapter 10.3.4) for an over-

view of these methods. In many papers on the estimation of the extremal index, no or

only incomplete asymptotic theory is given (Berghaus and Bücher, 2018, page 2308).

Chapter 2.1 of this thesis focuses on a class of method of moments estimators for the

extremal index based on the blocks method, which shows an improvement over a recent

(disjoint and sliding) blocks estimator proposed in Northrop (2015) and analyzed theore-

tically in Berghaus and Bücher (2018). These new estimators only require a block length

parameter and rely on the construction of approximate samples from the exponential

distribution with parameter θ. To this, the observations are partitioned into blocks and

in each block a transformation of the block maximum is applied that asymptotically fol-

lows the exponential distribution with parameter θ by equation (1.1). This approximate

sample of exponentially distributed observations is used to estimate θ via the method of

moments, whereas in Northrop (2015) and Berghaus and Bücher (2018) the maximum

likelihood estimator of the exponential distribution was used. Thereby, both disjoint and

sliding blocks are considered. The asymptotic normality of the resulting estimators is

established and the asymptotic variances in the sliding blocks case are shown to be smal-

ler than their disjoint blocks counterparts. Further, the asymptotic variance can be seen

to be smaller than the one of the estimator analyzed in Berghaus and Bücher (2018) in

some scenarios. In a simulation study, all methods are compared with several estimators

from the literature regarding their finite-sample properties.

Another important measure for describing the serial dependence of a stationary time

series at extreme levels is the limiting cluster size distribution π. This object is a pro-

bability distribution on the positive integers, where π(j) approximately represents the

probability that extreme observations of a stationary sequence (Xn)n∈N occur in a tem-

poral cluster of size j ∈ N. More formally, for appropriately chosen threshold sequence

un and integer sequence bn with bn = o(n) and bn →∞ as n→∞,

π(j) = lim
n→∞

P
( bn∑

i=1

1(Xi > un) = j
∣∣∣ max
i=1,...,bn

Xi > un

)
, j ∈ N, (1.3)

see Hsing et al. (1988) for conditions under which this limit exists. By this definition, the

distribution π is of natural interest, but beyond that it is further an appealing object to
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study since it shows up as one of two characterizing objects in the limiting distribution of

the point process of exceedances; the other one being the extremal index. More precisely,

the point process of exceedances is defined as Nn(·) =
∑n

i=1 1(i/n ∈ ·, Xi > un) and

is a commonly studied object in extreme value theory in general (Hsing et al., 1988;

Beirlant et al., 2004, Chapter 10.3.1). Here, again the threshold sequence un is chosen

in a way such that the expected number of exceedances remains finite, i.e., it satisfies

limn→∞ n(1 − F (un)) = τ for some τ ∈ (0,∞), where F is the stationary cumulative

distribution function of (Xn)n∈N. This process counts the times, normalized by n, at

which the threshold un is exceeded. In Nn, all the points making up a cluster from a

block of length bn = o(n) converge to a single point such that, in the limit, the points in

Nn represent the cluster positions. It turns out that if the extremal index and the limit

in (1.3) exist and appropriate long range dependence conditions hold, the limiting point

process is a compound Poisson process with intensity θτ and compounding distribution

π (Hsing et al., 1988, Theorem 4.1 and 4.2). In particular, this means that, in the limit,

the clusters occur randomly in the manner of a Poisson process, on average there are

θτ clusters, and their sizes are independent and distributed according to π. Under mild

additional assumptions the extremal index can be seen to satisfy θ−1 =
∑

j∈N jπ(j) as

suggested by equation (1.2) (Hsing et al., 1988; Beirlant et al., 2004, Chapter 10.3.1).

There are only a few papers, which are concerned with estimating the limiting clus-

ter size distribution (Robert, 2009b, page 273). Estimators for π have been studied in

Hsing (1991a); Ferro (2003) and Robert (2009b). While the estimator in Ferro (2003) is

based on the inter-exceedance times method, the estimators in the other two references

are based on the (disjoint) blocks method. These two references also provide asymptotic

theory, while the estimator from Ferro (2003) has been analyzed theoretically in Robert

(2009a). Sliding blocks versions of peak-over-threshold estimators for a general class

of cluster functionals including the limiting cluster size distribution are considered in

Cissokho and Kulik (2020). It should be mentioned that a powerful framework for the

asymptotic analysis of these methods is provided by results in Drees and Rootzén (2010)

on empirical processes for cluster functionals. Further, at this point it is worthwhile to

mention that a recently introduced alternative object for capturing the serial dependence

of extremes is given by the tail process from Basrak and Segers (2009). Both θ and π can

be seen to be functionals of this process (Cissokho and Kulik, 2020; Kulik and Soulier,

2020, Chapter 6.2). Statistical inference on the tail process (for selected functionals) has

been considered in Davis et al. (2018); Drees and Knežević (2020); Drees et al. (2015)

and Neblung (2021).
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In Chapter 2.2, new estimators for π based on a disjoint and sliding blocks declus-

tering scheme are proposed. These estimators are defined recursively and rest on the

construction of approximate samples from the exponential distribution, as for the esti-

mation of the extremal index, and on making use of the concrete form of the limiting

distribution of the point process of exceedances. This approach is similar to the one in

Robert (2009b), but, unlike in that reference, the resulting estimators only depend on

one tuning parameter (i.e., the block length). The asymptotic normality of the estimators

is derived for both disjoint and sliding blocks, under a side result on weak convergence

of an empirical process associated with compounding probabilities and sliding blocks.

The sliding blocks estimator can be seen to outperform the disjoint blocks version theo-

retically and both are shown, in the context of a simulation study, to exhibit good

finite-sample properties compared to the estimators by Hsing (1991a); Ferro (2003) and

Robert (2009b).

The assumption of stationarity of the underlying time series constitutes a realistic

model in many situations. However, time series data may still exhibit non-stationary be-

havior in certain cases coming from numerous fields of application (Dahlhaus, 1997; Dahl-

haus and Giraitis, 1998). In particular, there are suggestions in climatology that extreme

weather events are becoming more frequent as a result of climate change (Klein Tank

and Können, 2003; Zolina et al., 2009). Therefore, to account for non-stationarities and

to investigate temporal trends for such extreme events is important. Chapter 2.3 is con-

cerned with an extension of the proportional tails model introduced in Einmahl et al.

(2016) to the case of dependent data as an approach for modeling non-stationary time

series extremes. In this model, the observations X
(n)
1 , . . . , X

(n)
n exhibit serial dependence

and are drawn from a distribution that changes as time progresses, more precisely, X
(n)
i

is assumed to have a continuous cumulative distribution function Fn,i, i = 1, . . . , n. Fur-

ther, it is assumed that all these distribution functions share a common right endpoint

x∗ and that there is a continuous cumulative distribution function F with the same right

endpoint x∗ which is strictly increasing on its support, and a positive function c on [0, 1]

such that the following proportional tails condition holds:

lim
x↑x∗

1− Fn,i(x)

1− F (x)
= c
(
i
n

)
.

The function c is called the scedasis function and assumed to be a continuous proba-

bility density function. Thereby, the scedasis function can be interpreted as the fre-

quency of extremes, and the case where c is not constant equal to one is referred to
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as heteroscedastic extremes. It is worthwhile to mention that the above limit condition

concerns the comparison of the distribution tails only and makes no assumption on the

remaining parts of the distributions (Einmahl et al., 2016). In the latter reference, the

observations were assumed to be independent. In Chapter 2.3, they may be serially de-

pendent in such a way that, for each n ∈ N, the marginal transformations U
(n)
1 , . . . , U

(n)
n

where U
(n)
i = Fn,i(X

(n)
i ) are an excerpt from a stationary time series (U

(n)
t )t∈Z whose

distribution does not depend on n. The extremal behavior of this series will be governed

by the extremal index and the concept of regular variation (Basrak and Segers, 2009).

Altogether, this setting describes a non-parametric model which allows for serial de-

pendence and different distribution tails and can be used for potential temporal trend

detection of time series extremes.

There are other approaches in the literature that are concerned with non-identically

distributed extremes. Smooth non-stationarity has often been captured by parametric

regression models as in Davison and Smith (1990) and Coles (2001). They considered

models for exceedances where a linear and log-linear trend is imposed on the parame-

ters of the generalized Pareto distribution, respectively; in both, no asymptotic theory is

provided. In Hall and Tajvidi (2000), non-parametric trends in parameters of the genera-

lized Pareto and extreme value distribution are estimated and corresponding asymptotic

results are developed, allowing for serial dependence. Further, parametric trends in a

model similar to Einmahl et al. (2016) are considered in de Haan et al. (2015). Both

provide asymptotic theory in the case of serially independent observations. Mefleh (2018)

also imposed the proportional tails model by Einmahl et al. (2016), assuming that the

scedasis function is of parametric form. Recently, de Haan and Zhou (2021) considered

estimating a continuously changing extreme value index, and Einmahl et al. (2022) provi-

ded a multivariate extension of Einmahl et al. (2016) accounting for spatial dependence.

A brief overview of other approaches is contained in de Haan et al. (2015).

Chapter 2.3 deals with an extension of the proportional tails model by Einmahl et al.

(2016) to allow for serial dependence as described above. The asymptotic behavior of esti-

mators for the scedasis function c and the integrated scedasis function C(s) =
∫ s
0 c(x) dx,

s ∈ [0, 1], that were studied in Einmahl et al. (2016) in the independent case, is analyzed.

Thereby, a pointwise and functional central limit theorem is provided for the estimation

of c and C, respectively. The asymptotic variance and covariance functional turn out

to be different than in the independent case. Moreover, different test procedures on

the presence of heteroscedastic extremes are developed that are based on a multiplier

bootstrap-scheme and on the idea of self-normalization. These tests are examined theore-

tically and shown to perform well in the context of a simulation study, with the bootstrap
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test being slightly more powerful but computationally more intensive. Finally, an esti-

mator for the extremal index of the stationary time series (U
(n)
t )t∈Z is introduced, which

constitutes a modification of the block maxima estimator from Berghaus and Bücher

(2018). Its consistency is derived and it is further analyzed regarding its finite-sample

performance within a simulation study.

This thesis is structured cumulatively and organized as follows. In Chapter 2, the

articles in which the author of this thesis is involved are listed. Here, Chapter 2.1 contains

the first article, which is concerned with the estimation of the extremal index of a

stationary time series. The second article is included in Chapter 2.2 and deals with

estimating the limiting cluster size distribution of a stationary time series. Finally, the

third article is contained in Chapter 2.3 and concerns investigating the extremes of

heteroscedastic time series in the proportional tails model described above. In Chapter

3, a brief outlook on a potential continuation of this work is presented along with some

open research questions. Finally, an author contribution statement is deferred to the

appendix, outlining the individual contributions of the authors to the articles included

in Chapter 2.
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Abstract: The extremal index θ, a number in the interval [0, 1], is known
to be a measure of primal importance for analyzing the extremes of a sta-
tionary time series. New rank-based estimators for θ are proposed which
rely on the construction of approximate samples from the exponential dis-
tribution with parameter θ that is then to be fitted via the method of
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empirically through a large-scale simulation study. In specific scenarios, in
particular for time series models with θ ≈ 1, they are found to be superior
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1. Introduction

The statistical analysis of the extremal behavior of a stationary time series is im-
portant in many fields of application, such as in hydrology, meteorology, finance
or actuarial science [1]. Such an analysis typically consists of two steps: (1) as-
sessing the tail of the marginal law and (2) assessing the serial dependence of
the extremes, that is, the tendency that extreme observations occur in clusters.
The present work is concerned with step (2). The most common and simplest
mathematical object capturing the serial dependence between the extremes is
provided by the extremal index θ ∈ [0, 1]. In a suitable asymptotic framework,
the extremal index can be interpreted as the reciprocal of the expected size of a
cluster of extreme observations. The underlying probabilistic theory was worked
out in [18, 19, 23, 17, 20].

Estimating the extremal index based on a finite stretch of observations from
the time series has been extensively studied in the literature. An early overview
is provided in Section 10.3.4 in [1], where the estimators are classified into
three groups: estimators based on the blocks method, the runs method or the
inter-exceedance time method. Respective references are [16, 31, 13, 32, 27, 22,
12, 11, 5], among many others. The proposed estimators typically depend on
two or, arguably preferable, one parameter to be chosen by the statistician.
The present paper is on a class of method of moments estimators (based on
the blocks method), which improves upon a recent estimator proposed by Paul
Northrop in [22] and analyzed theoretically in [3].

Some notations and assumptions are necessary for the motivation of the new
class of estimators. Throughout the paper, X1, X2, . . . denotes a stationary se-
quence of real-valued random variables with continuous cumulative distribu-
tion function (c.d.f.) F . The sequence is assumed to have an extremal index
θ ∈ (0, 1], i.e., for any τ > 0, there exists a sequence ub = ub(τ), b ∈ N, such
that limb→∞ bF̄ (ub) = τ and

lim
b→∞

P(M1:b ≤ ub) = e−θτ , (1.1)

where F̄ = 1 − F and M1:b = max{X1, . . . , Xb}. Next, define a sequence of
standard uniform random variables by Us = F (Xs) and let

Y1:b = −b log(N1:b), N1:b = F (M1:b) = max{U1, . . . , Ub}. (1.2)

12
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Since bF̄{F←(e−x/b)} = b(1− e−x/b) → x for b → ∞, it follows from (1.1) that,
for any x > 0,

P(Y1:b ≥ x) = P(M1:b ≤ F←(e−x/b)) → e−θx, (1.3)

where F←(z) = inf{y ∈ R : F (y) ≥ z} denotes the generalized inverse of
F evaluated at z ∈ R. In other words, for large block length b, Y1:b approxi-
mately follows an exponential distribution with parameter θ, denoted by Exp(θ)
throughout. This inspired [22] and [3] to estimate θ by the maximum likeli-
hood estimator for the exponential distribution; see Section 2 below for details
on how to arrive at an observable (rank-based) approximate sample from the
Exp(θ)-distribution based on an observed stretch of length n from the time
series (Xs)s∈N.

The idea of transforming observations into a sample of exponentially dis-
tributed observations is actually not new within extreme value statistics: it is
also, among many others, the main motivation for the Pickands estimator in
multivariate extremes [25, 14]. More precisely, if (X,Y ) is a bivariate random
vector from a multivariate extreme value distribution with Pickands function
A = (A(w))w∈[0,1], then ξ(w) = min{− logFX(X)/(1 − w),− logFY (Y )/w} is
exponentially distributed with parameter A(w). Given a sample of size n from
(X,Y ), we may replace FX and FY by their empirical counterparts and arrive
at an approximate sample of size n from the Exp(A(w))-distribution, to be, for
instance, estimated by the maximum likelihood estimator.

The present paper is now motivated by the following observation: while the
maximum likelihood estimator is asymptotically efficient in the ideal situation of
observing an i.i.d. sample from the exponential distribution, it was shown in [14]
for rank-based estimators of the Pickands function that it is in fact more efficient
to consider alternative estimators based on the method of moments, such as
a rank-based version of the CFG-estimator [6]. Given that Northrop’s blocks
estimator is also rank-based, the main motivation of this work is to consider
CFG-type estimators for the extremal index θ. Alongside, we will also investigate
other moment-based estimators, including one that is closely connected to the
madogram estimator in [21]. We will show that, depending on the true value
of θ, the new estimators may either exhibit a smaller or a larger asymptotic
variance than Northrop’s maximum likelihood estimator. In particular, we will
show that the CFG-type estimator’s variance is substantially smaller for θ close
to one, i.e., for time series with little clustering of extremes.

The remaining parts of this paper are organized as follows: in Section 2, we
collect some results about certain useful moments of the exponential distribu-
tion and use those to introduce the new estimators for θ. Regularity assumptions
needed to prove asymptotic results are summarized and discussed in Section 3.
The paper’s main results are then presented in Section 4, alongside with a dis-
cussion of certain aspects of the derived asymptotic variance formulas. Section 5
is about a particular time series model, for which we show that all regularity
conditions imposed in Section 3 are met. The finite-sample performance of the
new estimators is investigated in a Monte-Carlo simulation study in Section 6.
Finally, all proofs are postponed to Section A.

13
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2. Definition of estimators

Recall the definition of Y1:b in (1.2), where b ∈ N. Similarly, let

Z1:b = b(1−N1:b), N1:b = F (M1:b) = max{U1, . . . , Ub},
and note that, as b → ∞ and for any x > 0,

P(Z1:b ≥ x) = P(M1:b ≤ F←(1− x/b)) → e−θx (2.1)

by similar arguments as for Y1:b. The convergence relations in (1.3) and (2.1)
serve as a basis for the method of moments estimators defined below.

Subsequently, let X1, . . . , Xn denote a finite stretch of observations from the
stationary sequence (Xs)s≥1. Within Section 2.1 and 2.2, we start by using (1.3)
and (2.1) to derive some observable, approximate samples from the Exp(θ)-
distribution. In Section 2.3, we collect some moment equations for the expo-
nential distribution, which will then be used to motivate new estimators for the
extremal index in Section 2.4.

2.1. Approximate Exp(θ)-samples based on disjoint blocks maxima

Divide the sample X1, . . . , Xn into kn successive blocks of size bn, and for sim-
plicity assume that n = bnkn (otherwise, the last block of less than bn observa-
tions should be deleted). For i = 1, . . . , kn, let

Mni = max{X(i−1)bn+1, . . . , Xibn}
denote the maximum of the Xs in the ith block of observations and let

Yni = −bn logNni, Zni = bn(1−Nni), Nni = F (Mni).

Due to relations (1.3) and (2.1), if the block size b = bn is sufficiently large, the
(unobservable) random variables Yni and Zni are approximately exponentially
distributed with parameter θ. Observable counterparts are obtained by replacing
F by the (slightly adjusted) empirical c.d.f. F̂n(x) = (n+1)−1

∑n
s=1 1(Xs ≤ x),

giving rise to the definitions

Ŷni = −bn log N̂ni, Ẑni = bn(1− N̂ni), N̂ni = F̂n(Mni).

Both the samples Ydb
n = {Ŷni : i = 1, . . . , kn} and Zdb

n = {Ẑni : i = 1, . . . , kn}
will be used later to define disjoint blocks estimators for θ (note that both sam-
ples are dependent over i due to the use of F̂n, which complicates the asymptotic
analysis).

2.2. Approximate Exp(θ)-samples based on sliding blocks maxima

As in the previous paragraph, let n denote the sample size and bn denote a
block length parameter (the assumption that kn = n/bn ∈ N is not needed, no
discarding is necessary). For t = 1, . . . , n− bn + 1, let

M sb
nt = Mt:t+bn−1 = max{Xt, . . . , Xt+bn−1}

14
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denote the maximum of the Xs in a block of length bn starting at observation t.
Define

Y sb
nt = −bn logN

sb
nt , Zsb

nt = bn(1−N sb
nt ), N sb

nt = F (M sb
nt ),

Ŷ sb
nt = −bn log N̂

sb
nt , Ẑsb

nt = bn(1− N̂ sb
nt ), N̂ sb

nt = F̂n(M
sb
nt ).

By the same heuristics as before, the observable samples Ysb
n = {Ŷ sb

nt : t =
1, . . . , n − bn + 1} and Zsb

n = {Ẑsb
nt : t = 1, . . . , n − bn + 1} are approximate

samples from the exponential distribution and will be used later to define sliding
blocks estimators for θ (both samples are heavily dependent over i due to the
use of F̂n and the use of overlapping blocks).

2.3. Preliminaries on the exponential distribution

Some important moment equations, valid for a random variable ξ, which is
Exp(θ)-distributed, are collected. First,

E[log ξ] = − log θ − γ =: ϕ(C)(θ), (CFG)

where γ = −
∫∞
0

log(x)e−x dx ≈ 0.577 denotes the Euler-Mascheroni-constant.
Equation (CFG) is the basis for motivating the CFG-estimator, see [6, 14] and
the details in Section 1. Next, note that

E[exp(−ξ)] =
θ

1 + θ
=: ϕ(M)(θ), (MAD)

which serves as a basis for the madogram, see [21]. A further choice, includ-
ing (CFG) as a limit, is provided by

E[ξ1/p] = θ−1/pΓ(1 + 1/p) =: ϕ(R),p(θ), (ROOT)

where Γ(x) =
∫∞
0

tx−1e−t dt denotes the Gamma function and where p > 0. The
moment estimator in case of p = 1 will turn out to coincide with Northrop’s
maximum likelihood estimator. Also note that the previous equation is equiva-
lent to

E
[ξ1/p − 1

1/p

]
=

θ−1/pΓ(1 + 1/p)− 1

1/p
=: ϕ̃(R),p(θ), (2.2)

and taking the limits for p → ∞ on both sides (interchanging the limit and the
expectation on the left) exactly yields Equation (CFG).

2.4. Definition of the estimators

Let χm = {ξ1, . . . , ξm} denote a generic sample (not necessarily independent)
from the Exp(θ)-distribution. Replacing the moments in Equations (CFG),

15
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(MAD) and (ROOT) by their empirical counterparts and solving the equation
for θ, we obtain the following three estimators for θ:

θ̂CFG(χm) = e−γ exp
{
− 1

m

m∑

i=1

log(ξi)
}
,

θ̂MAD(χm) =
1
m

∑m
i=1 exp(−ξi)

1− 1
m

∑m
i=1 exp(−ξi)

,

θ̂R,p(χm) = Γ(1 + 1/p)p
( 1

m

m∑

i=1

ξ
1/p
i

)−p

,

where p > 0. It may be verified that limp→∞ θ̂R,p(χm) = θ̂CFG(χm), see also (2.2)
for another relationship between the two estimators. Next, replacing χm by any
of the four samples Ydb

n ,Zdb
n ,Ysb

n or Zsb
n defined in Sections 2.1 and 2.2, we

finally arrive at 12 method of moments estimators for θ. We use the suggestive
notations

θ̂yn

db,CFG = θ̂CFG(Ydb
n ), θ̂znsb,MAD = θ̂MAD(Zsb

n )

to, e.g., denote the disjoint blocks CFG-estimator based on the Ŷni and the
sliding blocks madogram-estimator based on the Ẑni, respectively. Note that
the four estimators of the form θ̂yn

m,R,1, θ̂
zn
m,R,1,m ∈ {db, sb}, are the (pseudo)

maximum likelihood (PML) estimators considered in [3].

3. Mathematical preliminaries

Further mathematical details are necessary before we can state asymptotic re-
sults about the estimators defined in the previous section. The asymptotic frame-
work and the conditions are mostly similar as in Section 2 in [3], but will be
repeated here for the sake of completeness.

The serial dependence of the time series (Xs)s∈N will be controlled via mixing
coefficients. For two sigma-fields F1,F2 on a probability space (Ω,F ,P), let

α(F1,F2) = sup
A∈F1,B∈F2

|P(A ∩B)− P(A)P(B)|.

In time series extremes, one usually imposes assumptions on the decay of the
mixing coefficients between sigma-fields generated by {Xs1(Xs > F←(1−εn)) :
s ≤ 
} and {Xs1(Xs > F←(1−εn)) : s ≥ 
+k}, where εn → 0 is some sequence
reflecting the fact that only the dependence in the tail needs to be restricted
(see, e.g., 29). As in [3], we need a slightly stronger condition, that also controls
the dependence between the smallest of all block maxima. More precisely, for
−∞ ≤ p < q ≤ ∞ and ε ∈ (0, 1], let Bε

p:q denote the sigma algebra generated
by Uε

s := Us1(Us > 1− ε) with s ∈ {p, . . . , q} and define, for 
 ≥ 1,

αε(
) = sup
k∈N

α(Bε
1:k,Bε

k+�:∞).
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In Condition 3.1(iii) below, we will impose a condition on the decay of the mixing
coefficients for small values of ε. Note that the coefficients are bounded by the
standard alpha-mixing coefficients of the sequence Us, which can be retrieved
for ε = 1.

The extremes of a time series may be conveniently described by the point
process of normalized exceedances. The latter is defined, for a Borel set A ⊂
E := (0, 1] and a number x ∈ [0,∞), by

N (x)
n (A) =

n∑

s=1

1(s/n ∈ A,Us > 1− x/n).

Note that N
(x)
n (E) = 0 iff N1:n ≤ 1 − x/n; the probability of that event con-

verging to e−θx under the assumption of the existence of the extremal index θ.

Fix m ≥ 1 and x1 > · · · > xm > 0. For 1 ≤ p < q ≤ n, let F (x1,...,xm)
p:q,n denote

the sigma-algebra generated by the events {Ui > 1 − xj/n} for p ≤ i ≤ q and
1 ≤ j ≤ m. For 1 ≤ 
 ≤ n, define

αn,�(x1, . . . , xm) = sup{|P(A ∩B)− P(A)P(B)| :
A ∈ F (x1,...,xm)

1:s,n , B ∈ F (x1,...,xm)
s+�:n,n , 1 ≤ s ≤ n− 
}.

The condition Δn({un(xj)}1≤j≤m) is said to hold if there exists a sequence
(
n)n with 
n = o(n) such that αn,�n(x1, . . . , xm) = o(1) as n → ∞. A sequence
(qn)n with qn = o(n) is said to be Δn({un(xj)}1≤j≤m)-separating if there exists
a sequence (
n)n with 
n = o(qn) such that nq−1

n αn,�n(x1, . . . , xm) = o(1) as
n → ∞. If Δn({un(xj)}1≤j≤m) is met, then such a sequence always exists,
simply take qn = 
max{nα1/2

n,�n
, (n
n)

1/2}�.
By Theorems 4.1 and 4.2 in [17], if the extremal index exists and the

Δ(un(x))-condition is met (m = 1), then a necessary and sufficient condition
for weak convergence of N (x)

n is convergence of the conditional distribution of
N (x)

n (Bn) with Bn = (0, qn/n] given that there is at least one exceedance of
1− x/n in {1, . . . , qn} to a probability distribution π on N, that is,

lim
n→∞

P(N (x)
n (Bn) = j | N (x)

n (Bn) > 0) = π(j) ∀ j ≥ 1,

where qn is some Δ(un(x))-separating sequence. Moreover, in that case, the
convergence in the last display holds for any Δ(un(x))-separating sequence qn,
and the weak limit of N (x)

n is a compound poisson process CP(θx, π). If the
Δ(un(x))-condition holds for any x > 0, then π does not depend on x (17,
Theorem 5.1).

A multivariate version of the latter results is stated in [24], see also the
summary in [27], page 278, and the thesis [15]. Suppose that the extremal index
exists and that the Δ(un(x1), un(x2))-condition is met for any x1 ≥ x2 ≥ 0,
x1 = 0. Moreover, assume that there exists a family of probability measures
{π(σ)

2 : σ ∈ [0, 1]} on J = {(i, j) : i ≥ j ≥ 0, i ≥ 1}, such that, for all (i, j) ∈ J ,

lim
n→∞

P(N (x1)
n (Bn) = i, N (x2)

n (Bn) = j | N (x1)
n (Bn) > 0) = π

(x2/x1)
2 (i, j),

17
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where qn is some Δ(un(x1), un(x2))-separating sequence. In that case, the two-
level point process N (x1,x2)

n = (N (x1)
n , N (x2)

n ) converges in distribution to a point
process with characterizing Laplace transform explicitly stated in [27] on top of
page 278. Note that

π
(1)
2 (i, j) = π(i)1(i = j), π

(0)
2 (i, j) = π(i)1(j = 0).

Finally, we will need the tail empirical pocess

en(x) =
1√
kn

n∑

s=1

{
1

(
Us > 1− x

bn

)
− x

bn

}
, x ≥ 0, (3.1)

where Us = F (Xs), see, e.g., [10, 29].
The following set of conditions will be imposed to establish asymptotic nor-

mality of the estimators.

Condition 3.1.

(i) The stationary time series (Xs)s∈N has an extremal index θ ∈ (0, 1] and
the above assumptions guaranteeing convergence of the one- and two-level
point process of exceedances are satisfied.

(ii) There exists δ > 0 such that, for any m > 0, there exists a constant C̃m

such that, for all 0 ≤ x1 ≤ x2 ≤ m,n ∈ N,

E
[
|N (x1)

n (E)−N (x2)
n (E)|2+δ

]
≤ C̃m(x2 − x1).

(iii) There exist constants c2 ∈ (0, 1) and C2 > 0 such that

αc2(m) ≤ C2m
−η

for some η ≥ 3(2 + δ)/(δ − μ) > 3, where 0 < μ < min(δ, 1/2) and δ > 0
is from Condition (ii). The block size bn converges to infinity and satisfies

kn = o(b2n), n → ∞.

Further, there exists a sequence 
n → ∞ with 
n = o(b
2/(2+δ)
n ) and

knαc2(
n) = o(1) as n → ∞.
(iv) There exist constants c1 ∈ (0, 1) and C1 > 0 such that, for any y ∈ (0, c1)

and n ∈ N,

Var

{
n∑

s=1

1(Us > 1− y)

}
≤ C1(ny + n2y2).

(v) For any c ∈ (0, 1), one has

lim
n→∞

P
(

min
i=1,...,2kn

N ′
ni ≤ c

)
= 0,

where N ′
ni = max{Us, s ∈ [(i− 1)bn/2 + 1, . . . , ibn/2]} for i = 1, . . . , 2kn.
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(vi) For any x > 0,

lim
m→∞

lim sup
n→∞

P
(
Nm:bn > 1− x

n

∣∣∣U1 ≥ 1− x

n

)
= 0.

Condition 3.2 (Integrability).

(i) With δ > 0 from Condition 3.1(ii), one has

lim sup
n→∞

E
[
| log(Z1:n)|2+δ

]
< ∞.

(ii) Fix p > 0. With δ > 0 from Condition 3.1(ii), one has

lim sup
n→∞

E
[
Z

(2+δ)/p
1:n

]
< ∞.

Condition 3.3 (Bias Condition). Recall ϕ(C), ϕ(M) and ϕ(R),p defined in Equa-
tions (CFG), (MAD) and (ROOT), respectively.

(i) As n → ∞, E[log(Z1:bn)] = ϕ(C)(θ) + o
(
k
−1/2
n

)
.

(ii) As n → ∞, E[exp(−Z1:bn)] = ϕ(M)(θ) + o
(
k
−1/2
n

)
.

(iii) Fix p > 0. As n → ∞, E
[
Z

1/p
1:bn

]
= ϕ(R),p(θ) + o

(
k
−1/2
n

)
.

Condition 3.4 (Technical Condition for the CFG-type estimator).

(i) For some q > 1/2, we have bn = O(kqn) as n → ∞.
(ii) For some τ ∈ (0, 1/2), we have, as n → ∞,

{
en(x)

xτ

}

x∈[0,1]

d−→
{
e(x)

xτ

}

x∈[0,1]

in D([0, 1]),

the càglàd space of functions on [0, 1], where en denotes the tail empirical
process defined in (3.1) and where e is a centered Gaussian process with
continuous sample paths and covariance as given in Lemma B.1.

(iii) For any c > 0, we have, as n → ∞,

max
Zni≥c

∣∣∣∣
en(Zni)

Zni

√
kn

∣∣∣∣ = oP(1).

(iv) For any c > 0, there exists μ = μc ∈ (1/2, 1/{2(1 − τ)}) with τ from (ii)
such that, as n → ∞,

P(Zn1 < ck−μ
n )− P(ξ < ck−μ

n ) = o
(
log(n)−1k−1/2

n

)
, where ξ ∼ Exp(θ).

The items of Condition 3.1 are the same as Condition 2.1(i)-(v) and (2.2) in
[3] and are discussed in great detail in that reference. Condition 3.2 is needed for
uniform integrability of the sequences Z2/p

n1 and log2 Zn1, respectively. It implies

lim
n→∞

Var(Z
1/p
n1 ) = Var(ξ1/p), lim

n→∞
Var(logZn1) = Var(log ξ),
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respectively, where ξ denotes an exponentially distributed random variable with
parameter θ. Condition 3.3 is a bias condition requiring the approximation of
the first moment of f(Zn1) by E[f(ξ)] to be sufficiently accurate, where f(x) ∈
{x1/p, exp(−x), log x}.

Condition 3.4 is a technical condition which is only needed for deriving the
asymptotics of the CFG-estimator. The Condition 3.4(i) requires b to be not
too large. Sufficient conditions for Condition 3.4(ii) in terms of beta mixing
coefficients can be found in [10]. A sufficient condition for Condition 3.4(iii) is for
instance strong mixing with polynomial rate α1(n) = O(n−(1+

√
2)−ε), n → ∞,

for some ε > 0, together with Condition 3.4(i) being met with q < 1/(
√
2−1) ≈

2.41. Indeed, for any x ≥ c and η > 0, one can write

en(x)

x
=

1√
kn

n∑

s=1

{
1
(
Us > 1− x

bn

)
− x

bn

}
1

x
= −b1/2−η

n Un,η

(
1− x

bn

) 1

x1−η
,

where

Un,η(u) =

1√
n

∑n
s=1 {1(Us ≤ u)− u}

(1− u)η
1(0,1)(u).

By Theorem 2.2 in [30], we have supx≥0 |Un,η(1 − x/bn)| = OP(1) for all η ≤
1− 2−1/2 ≈ 0.29. Hence, by Condition 3.4(i),

max
Zni≥c

∣∣∣∣
en(Zni)

Zni

√
kn

∣∣∣∣ = OP
(b1/2−η

n√
kn

)
= OP

(
kq(1/2−η)−1/2
n

)
.

The expression on the right-hand side is oP(1) if we choose η ∈ (1/2−1/{2q}, 1−
2−1/2]; note that the latter interval is non-empty since q < 1/(

√
2− 1). Finally,

Condition 3.4(iv) is another technical condition requiring the approximation of
the law of Zn1 by the exponential distribution to be sufficiently accurate in the
lower tail.

4. Asymptotic results

We present asymptotic results on all estimators defined in Section 2. For sim-
plicity, all results are stated and proved for the Ẑni-versions only. As in Theorem
3.1 in [3], it may be verified that the respective versions based on Ŷni show the
same asymptotic behavior as the Ẑni-versions. Throughout, for z ∈ (0, 1), let

(ξ
(z)
1 , ξ

(z)
2 ) ∼ π

(z)
2 .

Theorem 4.1. Under Condition 3.1, 3.2(i), 3.3(i) and 3.4, we have

√
kn(θ̂

zn
m,CFG − θ)

d−→ N (0, σ2
m,C)

for m ∈ {db, sb} and as n → ∞, where

σ2
db,C = 2θ3

∫ 1

0

θE[ξ
(z)
1 ξ

(z)
2 ]− E[ξ

(z)
1 1(ξ

(z)
2 > 0)]

z(1 + z)
dz +

{
π2/6− 2 log(2)}θ2,

σ2
sb,C = σ2

db,C − {π2/6− 8 log(2) + 4}θ2.
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Theorem 4.2. Under Condition 3.1 and 3.3(ii), we have

√
kn(θ̂

zn
m,MAD − θ)

d−→ N (0, σ2
m,M)

for m ∈ {db, sb} and as n → ∞, where

σ2
db,M = 4θ2(1 + θ)

∫ 1

0

θE[ξ
(z)
1 ξ

(z)
2 ]− E[ξ

(z)
1 1(ξ

(z)
2 > 0)]

(1 + z)3
dz +

θ2(1 + θ)

2(2 + θ)

σ2
sb,M = σ2

db,M − 3θ2 + 4θ − 4(1 + θ)(2 + θ) log{2(1 + θ)/(2 + θ)}
θ(2 + θ)(1 + θ)2

.

Theorem 4.3. Fix p > 0. Under Condition 3.1, 3.2(ii) and 3.3(iii),

√
kn(θ̂

zn
m,R,p − θ)

d−→ N (0, σ2
m,p)

for m ∈ {db, sb} and as n → ∞, where

σ2
db,p =

4pθ3

B(1/p, 1/p)

∫ 1

0

θE[ξ
(z)
1 ξ

(z)
2 ] + E[ξ

(z)
1 1(ξ

(z)
2 = 0)]z

1
p−1

(1 + z)1+
2
p

dz

+
{ 2p3

B(1/p, 1/p)
− p2 − 2p

}
θ2,

σ2
sb,p = σ2

db,p −
[
p2 +

2p3

B(1/p, 1/p)

− 4p

Γ(1/p)2

∫ ∞

0

(1− e−z)z1/p−2Γ(1/p, z) dz

]
θ2,

where B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt denotes the beta function and Γ(x, z) =∫∞

x
tz−1e−t dt is the incomplete gamma function.

It is worthwhile to mention that the imposed conditions in each theorem are
exactly the same for the disjoint and the sliding blocks version. Furthermore,
apart from the different bias conditions, the conditions regarding kn are exactly
the same in Theorem 4.2 and 4.3, and slightly stronger for Theorem 4.1 in that
the additional technical Condition 3.4 is imposed.

The proofs are provided in Section A and bear some similarities with the one
of Theorem 3.2 in [3]. In particular, they rely on the delta method, Wichura’s
theorem and empirical process theory to adequately handle the asymptotic con-
tribution of the rank transformation. The most sophisticated proof is the one of
Theorem 4.1, which is essentially due to the fact that E[log ξ]=

∫∞
0

log(t)θe−θt dt
is an improper integral both at zero and at infinity (see also [14] for similar tech-
nical difficulties with the CFG-estimator for the Pickands dependence function
in multivariate extremes).

It is worth to mention that the difference

AsyVar(
√

knθ̂
zn
db,CFG/θ)−AsyVar(

√
knθ̂

zn
sb,CFG/θ) = (σ2

db,C−σ2
sb,C)/θ

2 ≈ 0.0977
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Fig 1. Graph of the functions θ �→ (σ2
db,M − σ2

sb,M)/θ2 (left) and p �→ (σ2
db,p − σ2

sb,p)/θ
2

(right).

is a universal constant independent of any properties of the observed time se-
ries. The same holds true for the Root-estimator with a constant depending in a
complicated way on the parameter p (the graph of p �→ (σ2

db,p − σ2
sb,p)/θ

2 is de-
picted in Figure 1, with a value of approximately 0.2274 for the PML-estimator).
For the Madogram-estimator, this difference depends on θ (see Figure 1 for the
graph of θ �→ (σ2

db,M − σ2
sb,M)/θ2); it is non-negative and decreasing with value

1/12 ≈ 0.083 for θ → 0 and approximately 0.0079 for θ = 1. In that regard, the
use of sliding blocks over disjoint blocks is least beneficial for the Madogram-
estimator.

Example 4.4. In the case that the time series is serially independent, the cluster
size distributions are given by π(i) = 1(i = 1) and π(z)

2 (i, j) = (1 − z)1(i =
1, j = 0) + z1(i = 1, j = 1), which implies

θ = 1, E[ξ
(z)
1 ξ

(z)
2 ] = z and E[ξ

(z)
1 1(ξ

(z)
2 = 0)] = 1− z.

It can be seen that these formulas hold true whenever θ = 1. Consequently, the
limiting variances in Theorem 4.1 and 4.2 are equal to

σ2
db,C =

π2

6
− 2 log(2) ≈ 0.2586, σ2

sb,C = 6 log(2)− 4 ≈ 0.1588,

σ2
db,M = 1/3, σ2

sb,M ≈ 0.32536.

It is remarkable that the asymptotic variances are substantially smaller than
those of the maximum likelihood estimator, see Example 3.1 in [3], which are
equal to 1/2 and 0.2726 for the disjoint and sliding blocks version, respectively.

The limiting variance in the case of the Root-estimator is given by

σ2
db,p =

2p

B( 1p ,
1
p )

[
p2 + 2−2/pp

]
− p2 − p,

σ2
sb,p = σ2

db,p −
[
p2 +

2p3

B( 1p ,
1
p )

− 4p

Γ( 1p )
2

∫ ∞

0

(1− e−z)z1/p−2Γ( 1p , z) dz

]
.

22



Method of moments estimators for the extremal index 3115

Some values are

σ2
db,1/2 =

15

16
, σ2

db,1 =
1

2
, σ2

db,2 ≈ 0.3662,

σ2
sb,1/2 =

7

16
, σ2

sb,1 ≈ 0.2726, σ2
sb,2 ≈ 0.212909.

It can further be shown that limp→∞ σ2
m,p = σ2

m,C for m ∈ {db, sb}.
Remark 4.5. Instead of working with F̂n in the definition of Ẑni = bn{1 −
F̂n(Mni)}, one may alternatively use the empirical c.d.f. of (Xs)s/∈Ii multiplied

by (n− bn)/(n− bn +1) for Ii = {(i− 1)bn +1, . . . , ibn}, denoted by F̂n,−i, and

define Z̃ni = bn{1 − F̂n,−i(Mni)} and θ̃ = θ̂(Z̃n1, . . . , Z̃nkn). This modification
has been motivated as a bias reduction scheme in [22]. Since

Z̃ni = bn{1− F̂n,−i(Mni)} = bn{1− F̂n(Mni)}
n+ 1

n− bn + 1
= Ẑni

n+ 1

n− bn + 1
,

some simple calculations show that, for instance for the CFG-estimator,

e−γ exp
{
− 1

kn

kn∑

i=1

log(Z̃ni)
}
=

n− bn + 1

n+ 1
θ̂zndb,CFG,

showing that the modification is asymptotically negligible. It is however ben-
eficial in finite-sample situations, whence it has been applied throughout the
finite-sample situations considered in Section 6. Obviously, similar adaptions
can be applied to the sliding blocks version and the other moment based esti-
mators.

5. Example: max-autoregressive process

In this section, we exemplarily discuss the new estimators when applied to a
max-autoregressive process, defined by the recursion

Xs = max {αXs−1, (1− α)Zs} , s ∈ Z,

where α ∈ [0, 1) and where (Zs)s∈Z is an i.i.d. sequence of Fréchet(1)-distributed
random variables. A stationary solution of the above recursion is

Xs = max
j≥0

(1− α)αjZs−j ,

such that the stationary solution is again Fréchet(1)-distributed. Note that a
model with an arbitrary stationary c.d.f. F may be obtained by considering
X̃s = F←{exp(−1/Xs)} and that all subsequent results are also valid for (X̃s)s.

We start by explicitly calculating the asymptotic variances of the estimators
in Section 5.1, and then show in Section 5.2 that all regularity conditions from
Section 3 are met.
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Fig 2. Asymptotic variance of
√
kn(θ̂n/θ − 1) in the ARMAX-model. The estimators in the

right figure rely on disjoint blocks.

5.1. Asymptotic variances for the ARMAX-model

Recall that the ARMAX-model has extremal index θ = 1 − α and that the
corresponding cluster size distribution is geometric, that is, π(j) = αj−1(1 −
α), j ≥ 1, see, e.g., Chapter 10 in [1]. From Example 6.1 in [3], one further has

E[ξ
(z)
1 ξ

(z)
2 ] =

αw+1 + z + zw(1− α)

(1− α)2
,

E[ξ
(z)
1 1(ξ

(z)
2 = 0)] =

1− αw+1

1− α
− z(w + 1),

where w = 
log(z)/ log(α)� and (ξ
(z)
1 , ξ

(z)
2 ) ∼ π

(z)
2 . This allows to calculate the

limiting variances in Theorem 4.1–4.3 explicitly. For the CFG-type estimator,
some tedious but straightforward calculations imply

σ2
db,C

θ2
=

π2

6
+ 2 log(2)(α− 1) and

σ2
sb,C

θ2
= 2 log(2)(3 + α)− 4,

see also Figure 2 for a picture of the graph of these functions. Next, we com-
pare these variances with the disjoint and sliding blocks variances of the PML-
estimator in [3], which are given by σ2

db,1 and σ2
sb,1 and satisfy

σ2
db,1

θ2
=

1

2
(1 + α) and

σ2
sb,1

θ2
=

8 log(2)− 5 + α

2
,

respectively. Thus, σ2
db,C ≤ σ2

db,1 iff α ≤ {1 + 4 log(2)− π2/3}/{4 log(2)− 1} ≈
0.2723 and σ2

sb,C ≤ σ2
sb,1 iff α ≤ {3− 4 log(2)}/{4 log(2)− 1} ≈ 0.128.

Further comparisons can be drawn from Figure 2, where the asymptotic vari-
ances of

√
kn(θ̂n/θ − 1) are additionally illustrated for the Madogram- and the

Root-estimators.
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5.2. Regularity conditions for the ARMAX-model

Recall that Xs is Fréchet(1)-distributed, i.e., the stationary c.d.f. F is given by
F (x) = exp(−1/x), x > 0, with inverse F−1(x) = − log(x)−1.

The assumptions in Condition 3.1 are satisfied as shown in [3], page 2322,
provided bn and kn are chosen to satisfy the conditions in item (iii). Next, by
induction,

P
(

max
s=1,...,b

Xs ≤ x
)
= F (x)1+θ(b−1),

which implies that the c.d.f. of Z1:b = b{1− F (M1:b)} is given by

P(Z1:b ≤ x) =

⎧
⎪⎨
⎪⎩

1, x ≥ b,

1−
(
1− x

b

)1+θ(b−1)
, x ∈ [0, b],

0, b ≤ 0.

(5.1)

A tedious but straightforward calculation then shows that the assumptions in
Condition 3.2 and 3.3 are met, provided kn/b

2
n = o(1), cf. Condition 3.1(iii).

Condition 3.4(i) is a condition on the choice of bn, that is under the control
of the statistician. Conditions 3.4(ii) and 3.4(iii) are consequences of mixing
properties of (Xs)s as argued at the end of Section 3. It remains to show that
Condition 3.4(iv) is satisfied. By (5.1) and with ξ ∼ Exp(θ), we have

P(Zn1 < ck−μ
n )− P(ξ < ck−μ

n ) = exp(−θck−μ
n )−

(
1− ck−μ

n

bn

)1+θ(bn−1)

= o(k−1/2
n (logn)−1), n → ∞,

for any μ > 1/2, where the final estimate follows from Taylor’s theorem and
Condition 3.4(i).

6. Finite-sample results

A Monte-Carlo simulation study was performed to assess the finite-sample per-
formance of the introduced estimators and to compare them with competing
estimators from the literature. The data is simulated from the following four
time series models that were also investigated in [3]:

• The ARMAX-model:

Xs = max{αXs−1, (1− α)Zs}, s ∈ Z,

where α ∈ [0, 1) and where (Zs)s is an i.i.d. sequence of standard Fréchet
random variables. We consider α = 0, 0.25, 0.5, 0.75 resulting in θ =
1, 0.75, 0.5, 0.25.

• The squared ARCH-model:

Xs = (2× 10−5 + λXs−1)Z
2
s , s ∈ Z,
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where λ ∈ (0, 1) and where (Zs)s denotes an i.i.d. sequence of standard
normal random variables. We consider λ = 0.1, 0.5, 0.9, 0.99 for which the
simulated values θ = 0.997, 0.727, 0.460, 0.422 were obtained, respectively;
see Table 3.1 in [8].

• The ARCH-model:

Xs = (2× 10−5 + λX2
s−1)

1/2Zs, s ∈ Z,

where λ ∈ (0, 1) and where (Zs)s denotes an i.i.d. sequence of standard
normal random variables. We consider λ = 0.1, 0.5, 0.7, 0.99 for which the
simulated values θ = 0.999, 0.835, 0.721, 0.571 were obtained, respectively;
see Table 3.2 in [8].

• The Markovian Copula-model ([7]):

Xs = F←(Us), (Us, Us−1) ∼ Cϑ, s ∈ Z.

Here, F← is the left-continuous quantile function of some arbitrary con-
tinuous c.d.f. F , (Us)s is a stationary Markovian time series of order 1
and Cϑ denotes the Survival Clayton Copula with parameter ϑ > 0. We
consider choices ϑ = 0.23, 0.41, 0.68, 1.06, 1.90 such that (approximately)
θ = 0.95, 0.8, 0.6, 0.4, 0.2 [3] and fix F as the standard uniform c.d.f. (the
results are independent of this choice, as the estimators are rank-based).
Algorithm 2 in [26] allows to simulate from this model.

In each case, the sample size is fixed to n = 213 = 8192 and the block size
is chosen from b = bn ∈ {22, . . . , 29}. The performance is assessed based on
N = 3000 simulation runs each.

6.1. Comparison of the introduced estimators

We start by comparing the finite-sample properties of the proposed sliding blocks
estimators θ̂xm,CFG, θ̂

x
m,MAD and θ̂xm,R,p for p ∈ {0.5, 0.75, 1, 2, 4, 8, 16} for x ∈

{zn, yn} and for m ∈{sb, db}.
As the simulation results are, to a large extent, similar among the different

models and estimators, they are only partially reported, with a particular view
on highlighting selected interesting qualitative features. We begin by a detailed
investigation of the variance, the squared bias and the mean squared error (MSE)
as a function of the block size parameter b. In Figure 3, we present results for
the disjoint and sliding blocks version of the CFG- and the PML-estimator in
a representative ARMAX-model with θ = 0.75. Similarly as in [3] and as to be
expected from the asymptotic results, the bias of the disjoint and the sliding
blocks version are almost identical, while the variance is uniformly smaller for the
sliding blocks version (in particular for large values of bn). Since this qualitative
behavior holds uniformly over all models and estimators, we omit the disjoint
blocks estimator from the subsequent discussions and write θ̂xCFG = θ̂xsb,CFG etc.
for simplicity.
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Fig 3. Comparison of variance, squared bias and MSE, multiplied by 103, of the disjoint and
sliding blocks CFG- and PML-estimator in the ARMAX-model.

Next, we compare the different moment estimators. For illustrative purposes,
we begin by restricting the presentation to the zn-versions and the ARCH-
model. The corresponding results are depicted in Figure 4 (for the CFG-, the
Madogram- and three selected Root-estimators). In general, as to be expected
from the underlying theory, the variance curves are increasing in b, while the
squared bias curves are (mostly) decreasing in b, resulting in a typical U-
shape for the MSE curves. The hierarchy of the estimators with regard to
the considered performance measures is similar among the considered values
of θ. In terms of the MSE, up to an intermediate block size, the CFG- and
Madogram-estimator are superior to the other estimators (especially to the
PML-estimator), while for large block sizes the Madogram-estimator has a rel-
atively high MSE, but the CFG-estimator partly remains superior. The Root-
estimators are, as expected, ordered in p and located between the PML- and
CFG-estimator.

Next, a comparison between the zn- and yn-versions of the estimators is
drawn in Figure 5; for illustrative purposes, attention is restricted to six different
models and two estimators. Remarkably, there are many models, especially for
smaller values of θ, in which the MSE-curves of the yn-versions lie uniformly
below the ones of the zn-versions. In the remaining models, neither version can
be said to be strictly preferable. Furthermore, it is remarkable that, for θ close
to one, the MSE-curves of the yn-versions are often no longer U-shaped, but
increasing in the block size instead. The latter behavior may be explained by
the proximity to the i.i.d. case, since in that case, we have

P(Y1:b ≥ y) = P(N1:b ≤ e−y/b) = P(U1 ≤ e−y/b)b = e−y

for all b ∈ N, such that there is real equality in relation (1.3), resulting in a
vanishing bias.

Next, we investigate the dependence of the performance of the Root-estima-
tors on the parameter p; recall that p = 1 yields the PML-estimator, while
‘p = ∞’ yields the CFG-estimator. In Figure 6, the MSE-curves are depicted
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Fig 4. Variance, squared bias and MSE, multiplied by 103, for the estimation of θ within the
ARCH-model for four values of θ.

Fig 5. Comparison of the MSE multiplied by 103 of the zn- and yn-versions of the estimators.
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Fig 6. Mean Squared Error multiplied by 103 of the Root-estimators as a function of the
parameter p for block sizes b ∈ {16, 32, 64, 128, 256} and three different models.

Table 1
Identification of the Root-estimator p with the minimum MSE for the ARCH- and

ARMAX-model and every considered block size b. The p with the minimum MSE over all
blocksizes is presented in the last line.

Model ARCH ARMAX
Theta 0.999 0.835 0.721 0.571 1 0.75 0.5 0.25

b = 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

16 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
32 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞
64 2 2 ∞ ∞ 16 8 1.5 2

128 2 1.5 4 4 8 4 1 1
256 2 4 ∞ 1.25 4 8 1 0.75
512 2 8 ∞ ∞ 4 ∞ 1 0.75

minb ∞ ∞ ∞ ∞ ∞ ∞ 1.5 1

as a function of p for various fixed block sizes and for three selected models. It
can be seen that choices of p < 1 lead to a poor behavior of the corresponding
estimators. At the same time, the results do not allow to identify some ‘optimal’
choice of p ≥ 1 which is valid uniformly over all models. A similar conclusion
can be drawn from Table 1, which presents, for the ARCH- and ARMAX-model
and every block size b, the value of p for which the Root-estimator attains the
minimal MSE (p = ∞ corresponds to the CFG-estimator). One can see that
most values of p are represented, with p = ∞ appearing most often, but that
there is no optimal choice of p universally over all models.

6.2. Comparison with other estimators for the extremal index

In this section, we compare the performance of the introduced new estimators
with the following estimators: the bias-reduced sliding blocks estimator from [28]
(with a data-driven choice of the threshold as outlined in Section 7.1 of that
paper), the integrated version of the blocks estimator from [27], the intervals
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Fig 7. Mean Squared Error multiplied by 103 for the estimation of θ within the ARCH-model
for four values of θ.

estimator from [13] and the ML-estimator from [32]. The parameters σ and φ
for the Robert-estimator (cf. page 276 of 27) are chosen as σ = 0.7 and φ = 1.3.
In the case of the intervals- and Süveges-estimator, the choice of a threshold u is
required, which is here chosen as the 1−1/bn empirical quantile of the observed
data. With regard to our estimators, we present results for the sliding-blocks,
bias-reduced and zn-versions, if not indicated otherwise.

In Figure 7, we depict the MSE as a function of the block size b. For most
models, the MSE-curves of the estimators from the literature are again U-shaped
due to the bias-variance tradeoff already described in Section 6.1. It can further
be seen that no estimator is uniformly best in any model under consideration.
The method-of-moment estimators do however compare quite well to the com-
petitors.

The minimum values of the MSE-curves in Figure 7 are of particular in-
terest. Due to the large amount of estimators and models under consideration
(in total 26 estimators and 17 models) we try to simplify possible comparisons
by the following aggregation, summarized in Table 2. First, in the first four
columns of the table, we calculate for each time series model and each estima-
tor under consideration, the sum (sum over all values of θ considered for the
specific model) of the minimum MSE-values (minimum over b). Second, in the
last four columns of the table, we present the sum of the minimum MSE-values
(minimum over b) over all models, for which the extremal index θ lies in the in-
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Table 2
Sum of minimal Mean Squared Error multiplied by 103 over different models and

θ1 ∈ (0, 0.3], θ2 ∈ (0.3, 0.6], θ3 ∈ (0.6, 0.8] and θ4 ∈ (0.8, 1]. The three smallest values per
column are in boldface.

Estimator armax arch arch2 markov (0, .3] (.3, .6] (.6, .8] (.8, 1]
CFG, Z 4.80 8.54 8.46 11.19 5.84 19.08 5.46 2.61
CFG, Y 2.56 6.98 8.41 12.63 5.08 15.45 3.56 6.49
Madogram, Z 5.17 8.87 7.92 10.77 5.66 18.12 5.68 3.27
Madogram, Y 3.00 7.08 8.62 12.65 5.10 15.72 3.59 6.94
PML, Z 6.18 11.74 7.99 10.89 4.44 18.62 7.37 6.38
PML, Y 1.96 8.40 7.45 10.99 3.73 14.83 4.04 6.21
R, p = 0.5, Z 9.64 17.37 11.57 12.11 4.90 24.18 11.25 10.35
R, p = 0.5, Y 2.33 11.99 8.49 10.94 3.90 18.14 5.66 6.05
R, p = 0.75, Z 7.08 13.33 8.83 10.99 4.44 19.80 8.79 7.20
R, p = 0.75, Y 2.03 9.26 7.63 10.74 3.66 15.53 4.41 6.06
R, p = 1.25, Z 5.77 11.02 7.82 10.80 4.56 18.33 6.61 5.89
R, p = 1.25, Y 1.96 8.06 7.37 11.04 3.74 14.47 3.90 6.32
R, p = 1.5, Z 5.54 10.48 7.86 10.47 4.72 18.38 6.21 5.04
R, p = 1.5, Y 1.98 7.93 7.32 11.10 3.76 14.32 3.84 6.40
R, p = 2, Z 5.22 9.82 8.11 10.22 4.84 18.67 5.76 4.10
R, p = 2, Y 2.03 7.88 7.34 11.16 3.84 14.34 3.72 6.51
R, p = 4, Z 4.84 9.10 8.40 10.14 5.07 18.81 5.39 3.20
R, p = 4, Y 2.20 7.52 7.64 11.58 4.21 14.53 3.67 6.52
R, p = 8, Z 4.76 8.88 8.42 10.48 5.37 18.96 5.36 2.85
R, p = 8, Y 2.35 7.31 7.95 12.02 4.56 14.91 3.68 6.48
R, p = 16, Z 4.76 8.69 8.41 10.78 5.58 18.99 5.39 2.68
R, p = 16, Y 2.45 7.14 8.16 12.32 4.80 15.18 3.61 6.47
Intervals 3.49 12.53 11.72 21.86 3.60 15.55 11.46 18.98
ML Süveges 1.90 22.67 8.70 25.20 14.93 30.46 4.95 8.13
Robert 8.54 12.45 9.97 13.61 6.46 22.42 8.34 7.34
RSF 8.09 11.68 9.77 15.85 7.28 23.52 7.52 7.06

terval (0, 0.3], (0.3, 0.6], (0.6, 0.8] or (0.8, 1], respectively. It can be seen that the
CFG-estimator wins thrice, the Madogram- and PML-estimator wins twice, the
Süveges and the Intervals-estimator wins once, and that the remaining smallest
values are covered by a version of the Root-estimator. Also note that for large
values of θ ∈ (0.8, 1] (last column), the CFG-estimator and the Root-estimator
for p ∈ {8, 16} are the best performing estimators. As a final interesting observa-
tion, note that the y-versions of the moment estimators mostly outperform the
z-version, except for the column corresponding to θ ∈ (0.8, 1] and some entries
in the columns ‘Markov’ and ‘sqARCH’. A more refined analysis showed that
these differences were almost exclusively attributable to the two specific mod-
els ‘Markov(θ = 0.95)’ and ‘sqARCH(θ = 0.997)’, which appear to be rather
difficult to estimate for all estimators under consideration.

7. Conclusion

Estimating the extremal index is a classical problem in extreme value analy-
sis for univariate stationary time series, with many ad-hoc solutions based on
diverse motivations. This paper considers a new approach that is based on cer-
tain rescaled samples of ranks of block maxima and the method of moment
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principle. The underlying samples have also been used by [22] and [3] to define
explicit (pseudo) maximum likelihood estimators for the extremal index. Using
the method of moment principle instead results in a large variety of alternative
estimators. Studying their properties was initially motivated by the fact that a
similar approach in multivariate extremes (the rank-based CFG-estimator for
the Pickands function) was found to yield a more efficient estimator than the
(pseudo) maximum likelihood method [14].

The method of moment principle being a rather universal principle, the
present paper goes far beyond only considering a CFG-type estimator. In fact,
based on natural moment equations for the exponential distribution (see Sec-
tion 2.3), three classes of method of moment estimators were considered, which
may each be based on (1) either disjoint or sliding block maxima, and (2) on cer-
tain y- or z-transformations of the block maxima. The sliding blocks version was
always found to be more efficient than the disjoint blocks version. The y- and
z-version share a similar behavior in terms of their asymptotic variances, but
their bias may differ substantially depending on the underlying data generating
process. The initial conjecture derived from [14] was partially confirmed: for θ
in an explicit neighbourhood of 1, the asymptotic variance of the CFG-type es-
timator is always smaller than the one of the ML-type estimator. A comparison
between the various method of moment estimators is more cumbersome, with
no universal answer, neither theoretically nor in terms of simulated finite sample
results. If one were to come up with a single proposal, then the simulation study
overall suggests to use the sliding blocks y-version of the root-estimator with an
intermediate choice of p, say, p = 1.25.

In comparison with many other estimators for the extremal index, the pro-
posed estimators have the advantage of being based on only one parameter to
be chosen by the statistician, namely the block size b. Moreover, the estima-
tors perform equally well or even better in some typical finite sample situa-
tions.

Finally, this work leaves some interesting questions for future research:
(1) what is the minimal asymptotic variance that can be achieved by estimators
based on the considered rank-based samples? (2) More generally, are there esti-
mators for the extremal index that are semiparametrically efficient? (3) Can the
sliding blocks method be used to derive more efficient estimators for the cluster
size distribution, for instance by generalizing the disjoint blocks versions in [27]?

Appendix A: Proofs of Theorems 4.1–4.3

The proofs of Theorems 4.1–4.3 are actually quite similar in that each proof will
be decomposed into a sequence of similar intermediate lemmas. Occasionally,
those lemmas will be hardest to prove for Theorem 4.1 and easiest to prove for
Theorem 4.2; this is also reflected by the larger number of conditions required
for the proof of Theorem 4.1. The proof of Theorem 4.3 in turn is quite simi-
lar to the one in [3], and of intermediate difficulty. For the above reasons, we
will carry out the proof of Theorem 4.1 in great detail (Section A.1), and skip
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parts of the technical arguments needed for Theorem 4.2 and 4.3 where possible
(Sections A.2 and A.3). Intermediate, but less central results for the proof of
Theorem 4.1 are given in Sections B.1, B.2 and B.3.

All convergences are for n → ∞ if not stated otherwise.

A.1. Proof of Theorem 4.1

The following notations will be used throughout:

Ŝn =
1

kn

kn∑

i=1

log(Ẑni), Sn =
1

kn

kn∑

i=1

log(Zni),

Ŝsb
n =

1

n− bn + 1

n−bn+1∑

i=1

log(Ẑsb
ni), Ssb

n =
1

n− bn + 1

n−bn+1∑

i=1

log(Zsb
ni).

Note that θ̂zndb,CFG = ϕ−1
(C)(Ŝn) and θ̂znsb,CFG = ϕ−1

(C)(Ŝ
sb
n ), where ϕ−1

(C)(x) =

exp{−(x + γ)}. Observing that (ϕ−1
(C))

′{ϕ(C)(θ)} = θ, the two assertions of

the theorem are a consequence of the delta-method and Proposition A.1 and
Proposition A.2, respectively.

Proposition A.1. Under Condition 3.1, 3.2(i), 3.3(i) and 3.4, we have

√
kn{Ŝn − ϕ(C)(θ)} d−→ N (0, σ2

db,C/θ
2) as n → ∞.

Proof. We may decompose

√
kn{Ŝn − ϕ(C)(θ)} = An +Bn + Cn,

where

An =
√
kn{Ŝn−Sn}, Bn =

√
kn{Sn−E(Sn)}, Cn =

√
kn{E(Sn)−ϕ(C)(θ)}.

We have Cn = o(1) by Condition 3.3(i). For the treatment of An, recall the tail
empirical process defined in (3.1). Further, let Ñni = (n+1)/n× N̂ni, and note
that

1− Ñni =
1

n

n∑

s=1

1(Xs > Mni)

=
1

n

n∑

s=1

1
(
Us > 1− Zni

bn

)

=

√
kn
n

1√
kn

n∑

s=1

{
1
(
Us > 1− Zni

bn

)
− Zni

bn

}
+

Zni

bn

=

√
kn
n

en(Zni) +
Zni

bn
. (A.1)
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Finally, let

Ĥkn(x) :=
1

kn

kn∑

i=1

1(Zni ≤ x) (A.2)

denote the empirical c.d.f. of Zn1, . . . , Znkn . By Equation (A.1), we obtain

An =
1√
kn

kn∑

i=1

log(1− N̂ni)− log
(
Znib

−1
n

)

=
1√
kn

kn∑

i=1

log

{
n

n+ 1

(
1

n
+ 1− Ñni

)}
− log

(
Zni

bn

)

=
1√
kn

kn∑

i=1

[
log

{
1

n
+

√
kn
n

en(Zni) +
Zni

bn

}
− log

(
Zni

bn

)
+ log

(
n

n+ 1

)]

=
1√
kn

kn∑

i=1

log

{
1 +

√
knbn
n

· en(Zni)

Zni
+

bn
nZni

}
+
√

kn log
( n

n+ 1

)

=

∫ ∞

0

Wn(x) dĤkn(x) + o(1), (A.3)

where

Wn(x) =
√

kn log

{
1 +

1√
kn

(
en(x)

x
+

1√
knx

)}
.

Heuristically, Ĥkn(x) ≈ 1 − exp(−θx) and Wn(x) ≈ e(x)/x (where e denotes
the limit of the tail empirical process), whence the tentative limit of An should
be

A =

∫ ∞

0

e(x)

x
θe−θx dx.

For a rigorous treatment of An +Bn, let

En =

∫ ∞

0

Wn(x) dĤkn(x), En,m =

∫ m

1/m

Wn(x) dĤkn(x),

E′
m =

∫ m

1/m

e(x)

x
θe−θx dx

and let B be defined as in Lemma B.1 below. As shown above, An = En +
o(1). The proposition is hence a consequence of Wichura’s theorem ([4], Theo-
rem 25.5) and the following items:

(i) For all m ∈ N: En,m +Bn
d−→ E′

m +B as n → ∞.

(ii) E′
m +B

d−→ A+B ∼ N (0, σ2
db,C/θ

2) as m → ∞.
(iii) For all δ > 0: limm→∞ lim supn→∞ P(|En − En,m| > δ) = 0.
The assertion in (i) is proven in Lemma B.4. The assertion in (ii) follows from
the fact that E′

m + B is normally distributed with variance τ2m as specified in
Lemma B.4, and the fact that τ2m → σ2

db,C/θ
2 as m → ∞ by Lemma B.5.

Finally, Lemma B.6 proves (iii).
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Proposition A.2. Under Condition 3.1, 3.2(i), 3.3(i) and 3.4, we have

√
kn{Ŝsb

n − ϕ(C)(θ)} d−→ N (0, σ2
sb,C/θ

2) as n → ∞.

Proof. The proof is very similar to the proof of Proposition A.1. Decompose

√
kn{Ŝsb

n − g(θ)} = Asb
n +Bsb

n + Csb
n ,

where

Asb
n :=

√
kn{Ŝsb

n − Ssb
n }, Bsb

n :=
√
kn{Ssb

n − E[Ssb
n ]},

Csb
n :=

√
kn{E[Ssb

n ]− ϕ(C)(θ)}.

Again, we have Csb
n = o(1) by Condition 3.3(i). A similar calculation as in (A.3)

in the case of the disjoint blocks shows that Asb
n can be written in the following

way

Asb
n =

∫ ∞

0

Wn(x) dĤ
sb
n (x) + o(1),

where

Ĥsb
n (x) =

1

n− bn + 1

n−bn+1∑

t=1

1(Zsb
nt ≤ x)

denotes the empirical c.d.f. of Zsb
n1, . . . , Z

sb
n,n−bn+1. We may now treat Asb

n +

Bsb
n exactly as An + Bn in the proof of Proposition A.1, with En, En,m and

Lemma B.4, B.5 and B.6 replaced by

Esb
n =

∫ ∞

0

Wn(x) dĤ
sb
n (x), Esb

n,m =

∫ m

1/m

Wn(x) dĤ
sb
n (x),

and Lemma B.10, B.11 and B.12, respectively.

A.2. Proof of Theorem 4.2

The following notation will be used throughout:

Ŝn =
1

kn

kn∑

i=1

exp(−Ẑni), Sn =
1

kn

kn∑

i=1

exp(−Zni),

Ŝsb
n =

1

n− bn + 1

n−bn+1∑

i=1

exp(−Ẑsb
ni), Ssb

n =
1

n− bn + 1

n−bn+1∑

i=1

exp(−Zsb
ni).

Note that θ̂zndb,MAD = ϕ−1
(M)(Ŝn) and θ̂znsb,MAD = ϕ−1

(M)(Ŝ
sb
n ), where ϕ(M)(x) =

x/(1 + x). The assertion follows from the delta-method and Proposition A.3
and A.5.
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Proposition A.3. Under Condition 3.1 and 3.3(ii), we have

√
kn{Ŝn − ϕ(M)(θ)} d−→ N (0, σ2

db,M/(1 + θ)4) as n → ∞.

Proof. Write
√
kn{Ŝn − ϕ(M)(θ)} = An +Bn + Cn, where

An =
√
kn{Ŝn − Sn}, Bn =

√
kn{Sn − E[Sn]}, Cn =

√
kn{E[Sn]− ϕ(M)(θ)}.

The term Cn is asymptotically negligible by Condition 3.3(ii). A straightforward
calculation shows that the summand An can be written in terms of the tail
empirical process en as

An =

∫ ∞

0

Wn(x) dĤkn(x), Wn(x) =
√

kne
−x
[
exp(−en(x)k

−1/2
n )− 1

]
,

where Ĥkn is the empirical c.d.f. of Zn1, . . . , Znkn , see (A.2). The asymptotic
normality of An+Bn can now be shown as in the proof of Proposition A.1. The
corresponding key result is given by Lemma A.4; whose proof is similar (but
easier) as for the CFG-estimator (Lemma B.1) and is omitted for the sake of
brevity.

Lemma A.4. (a) For any x1, . . . , xm ∈ [0,∞), as n → ∞,

(en(x1), . . . , en(xm), Bn)
d−→ (e(x1), . . . , e(xm), B) ∼ Nm+1(0,Σm+1),

with

Σm+1 =

⎛
⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) f(x1)
...

. . .
...

...
r(xm, x1) . . . r(xm, xm) f(xm)

f(x1) . . . f(xm) θ
θ+2 − θ2

(θ+1)2

⎞
⎟⎟⎟⎠ ,

where the covariance function r is given as in Lemma B.1 and

f(x) =

∞∑

i=1

i

∫ 1

0

p(x)(i)− p
(x,− log(y))
2 (i, 0)1(x ≥ − log(y)) dy − xϕ(M)(θ).

(b) For any x1, . . . , xm ∈ [0,∞), as n → ∞,

(Wn(x1), . . . ,Wn(xm), Bn)
d−→ (−e−x1e(x1), . . . ,−e−xme(xm), B).

Proposition A.5. Under Condition 3.1 and 3.3(ii), we have

√
kn{Ŝsb

n − ϕ(M)(θ)} d−→ N (0, σ2
sb,M/(1 + θ)4) as n → ∞.

Proof. The proof is similar to the proof of Proposition A.3. We may decompose√
kn{Ŝsb

n − ϕ(M)(θ)} = Asb
n +Bsb

n + Csb
n , where

Asb
n =

√
kn{Ŝsb

n − Ssb
n }, Bsb

n =
√
kn{Ssb

n − E[Ssb
n ]},
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Csb
n =

√
kn{E[Ssb

n ]− ϕ(M)(θ)}.

Again, we have Csb
n = o(1) by Condition 3.3(ii) and

Asb
n =

∫ ∞

0

Wn(x) dĤ
sb
n (x),

where Ĥsb
n denotes the empirical c.d.f. of Zsb

n1, . . . , Z
sb
n,n−bn+1. The sum Asb

n +Bsb
n

can now be treated as in proof of Proposition A.2. The corresponding key result,
Lemma B.7, needs to be replaced by Lemma A.6; whose proof is again omitted
for the sake of brevity.

Lemma A.6. (a) For any x1, . . . , xm ∈ [0,∞), as n → ∞,

(en(x1), . . . , en(xm), Bsb
n )

d−→ (e(x1), . . . , e(xm), Bsb) ∼ Nm+1(0,Σ
sb
m+1),

where all entries of Σsb
m+1 are the same as those of Σm+1 in Lemma A.4 except

for the entry at position (m+ 1,m+ 1), which needs to be replaced by

v(θ) = 2− 4

θ + 1
+ 4

log(θ + 1)− log(θ + 2) + log(2)

θ(θ + 1)
− 2θ2

(θ + 1)2
.

(b) For any x1, . . . , xm ∈ [0,∞), as n → ∞,

(Wn(x1), . . . ,Wn(xm), Bsb
n )

d−→ (−e−x1e(x1), . . . ,−e−xme(xm), Bsb).

A.3. Proof of Theorem 4.3

For fixed p > 0, define

Ŝn =
1

kn

kn∑

i=1

Ẑ
1/p
ni , Sn =

1

kn

kn∑

i=1

Z
1/p
ni ,

Ŝsb
n =

1

n− bn + 1

n−bn+1∑

i=1

Ẑ
1/p
ni , Ssb

n =
1

n− bn + 1

n−bn+1∑

i=1

Z
1/p
ni .

Note that θ̂zndb,R,p = ϕ−1
(R),p(Ŝn) and θ̂znsb,R,p = ϕ−1

(R),p(Ŝ
sb
n ), where ϕ(R),p(x) =

x−1/pΓ(1+1/p). By the delta-method, the assertion follows from Proposition A.7
and A.9.

Proposition A.7. Under Condition 3.1, 3.2(ii) and 3.3(iii), we have

√
kn{Ŝn − ϕ(R),p(θ)} d−→ N (0, σ2

db,pψp(θ)) as n → ∞,

where ψp(θ) = Γ(1 + 1/p)2p−2θ−(2+2/p).
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Proof. Decompose
√
kn{Ŝn − ϕ(R),p(θ)} = An +Bn + Cn, where

An =
√

kn{Ŝn − Sn}, Bn =
√

kn{Sn − E[Sn]},
Cn =

√
kn{E[Sn]− ϕ(R),p(θ)}.

By Condition 3.3(iii), the term Cn converges to zero. A straightforward calcu-
lation shows that the term An can be written as

An =

∫ ∞

0

Wn(x) dĤkn(x), Wn(x) =
√

kn

{[
en(x)√

kn
+ x

]1/p
− x1/p

}
.

The asymptotic normality of An+Bn can be shown as in the proof of Propo-
sition A.1 by an application of Wichura’s theorem. Here, Lemma B.1 needs to be
replaced by Lemma A.8, whose proof is similar but easier and therefore omitted
for the sake of brevity.

Lemma A.8. (a) For any x1, . . . , xm ∈ (0,∞), as n → ∞,

(en(x1), . . . , en(xm), Bn)
d−→ (e(x1), . . . , e(xm), B) ∼ Nm+1(0,Σm+1)

with

Σm+1 =

⎛
⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) fp(x1)
...

. . .
...

...
r(xm, x1) . . . r(xm, xm) fp(xm)
fp(x1) . . . fp(xm) vp(θ)

⎞
⎟⎟⎟⎠ ,

where the covariance function r is defined as in Lemma B.1 and

fp(x) =

∞∑

i=1

i

∫ ∞

0

p
(x,yp)
2 (i, 0)1(x ≥ yp) dy − xϕ(R),p(θ),

vp(θ) = θ
−2
p
{
Γ(1 + 2/p)− Γ(1 + 1/p)2

}
.

(b) For any x1, . . . , xm ∈ (0,∞), as n → ∞,

(Wn(x1), . . . ,Wn(xm), Bn)
d−→
(
e(x1)x

1
p−1

1 p−1, . . . , e(xm)x
1
p−1
m p−1, B

)
.

Proposition A.9. Under Condition 3.1, 3.2(ii) and 3.3(iii), we have

√
kn{Ŝsb

n − ϕ(R),p(θ)} d−→ N (0, σ2
sb,pψp(θ)) as n → ∞,

where ψp(θ) = Γ(1 + 1/p)2p−2θ−(2+2/p).

Proof. The proof is similar to the proof of Proposition A.7. Write
√
kn{Ŝsb

n −
ϕ(R),p(θ)} = Asb

n +Bsb
n + Csb

n , where

Asb
n =

√
kn{Ŝsb

n − Ssb
n }, Bsb

n =
√

kn{Ssb
n − E[Ssb

n ]},
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Csb
n =

√
kn{E[Ssb

n ]− ϕ(R),p(θ)}.

By Condition 3.3(iii), Csb
n = o(1), and a straightforward calculation yields

Asb
n =

∫ ∞

0

Wn(x) dĤ
sb
n (x),

where Ĥsb
n denotes the empirical c.d.f. of Zsb

n1, . . . , Z
sb
n,n−bn+1. The sum Asb

n +

Bsb
n can be treated as in the proof of Proposition A.2, where the main result,

Lemma B.7, needs to be replaced by Lemma A.10, whose proof is omitted for
the sake of brevity.

Lemma A.10. (a) For any x1, . . . , xm ∈ (0,∞), as n → ∞,

(en(x1), . . . , en(xm), Bsb
n )

d−→ (e(x1), . . . , e(xm), Bsb) ∼ Nm+1(0,Σ
sb
m+1),

where all entries of Σsb
m+1 are the same as those of Σm+1 in Lemma A.8 except

for the entry at position (m+ 1,m+ 1), which needs to be replaced by

vsbp (θ) = 4p−2θ−2/p

∫ ∞

0

(1− e−z)z1/p−2Γ(1/p, z) dz − 2θ−2/pΓ(1 + 1/p)2.

(b) For any x1, . . . , xm ∈ (0,∞), as n → ∞,

(Wn(x1), . . . ,Wn(xm), Bsb
n )

d−→
(
e(x1)x

1
p−1

1 p−1, . . . , e(xm)x
1
p−1
m p−1, Bsb

)
.

Appendix B: Auxiliary results for the proof of Theorem 4.1

B.1. Auxiliary lemmas – disjoint blocks

Throughout this section, we assume that Condition 3.1, 3.2(i) and 3.3(i) are
met.

Lemma B.1. For any x1, . . . , xm ∈ [0,∞) and m ∈ N, we have

(en(x1), . . . , en(xm), Bn)
′ d−→ (e(x1), . . . , e(xm), B)′,

where (e(x1), . . . , e(xm), B)′ ∼ Nm+1(0,Σm+1) with

Σm+1 =

⎛
⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) f(x1)
...

. . .
...

...
r(xm, x1) . . . r(xm, xm) f(xm)
f(x1) . . . f(xm) π2/6

⎞
⎟⎟⎟⎠ .

Here, r(0, 0) = 0 and, for x ≥ y ≥ 0 with x = 0,

r(x, y) = θx

∞∑

i=1

i∑

j=0

ijπ
(y/x)
2 (i, j), f(x) = h(x)− xϕ(C)(θ),
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h(x) =

∞∑

i=1

i

[ ∫ ∞

0

1(ey ≤ x)p
(x,ey)
2 (i, 0) dy

−
∫ 0

−∞
p(x)(i)− 1(ey ≤ x)p

(x,ey)
2 (i, 0) dy

]

and where, for i ≥ j ≥ 0, i ≥ 1,

p
(x,y)
2 (i, j) = P

(
N

(x,y)
E = (i, j)

)
, N

(x,y)
E =

η∑

i=1

(
ξ
(y/x)
i1 , ξ

(y/x)
i2

)

with η ∼ Poisson(θx) independent of i.i.d. random vectors
(
ξ
(y/x)
i1 , ξ

(y/x)
i2

)
∼

π
(y/x)
2 , i ∈ N and

p(x)(i) = P(N (x)
E = i), N

(x)
E =

η2∑

i=1

ξi

with η2 ∼ Poisson(θx) independent of i.i.d. random variables ξi ∼ π, i ∈ N.

Lemma B.2. For any m ∈ N, we have

{(Wn(x), Bn)
′}x∈[1/m,m]

d−→
{(

e(x)

x
,B

)′}

x∈[1/m,m]

in D([1/m,m])× R,

where (e,B)′ is a centered Gaussian process with continuous sample paths and
with covariance functional as specified in Lemma B.1.

Lemma B.3. For any m ∈ N, we have

En,m = E′
n,m + oP(1) as n → ∞,

where E′
n,m =

∫m

1/m
Wn(x)θe

−θx dx.

Lemma B.4. For any m ∈ N, we have

En,m +Bn
d−→ E′

m +B ∼ N (0, τ2m) as n → ∞,

where, with r and f defined as in Lemma B.1,

τ2m = θ2
∫ m

1/m

∫ m

1/m

r(x, y)
1

xy
e−θ(x+y) dxdy + 2θ

∫ m

1/m

f(x)
1

x
e−θx dx+

π2

6
.

Lemma B.5. As m → ∞, τ2m → σ2
db,(C)/θ

2, where σ2
db,(C) is specified in The-

orem 4.1.

Lemma B.6. If, in addition to Condition 3.1, 3.2(i) and 3.3(i), Condition 3.4
holds, then, for all δ > 0,

lim
m→∞

lim sup
n→∞

P (|En,m − En| > δ) = 0.
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Proof of Lemma B.1. We proceed similarly as in the proof of Lemma 9.3 in [3].
Weak convergence of the (en(x1), . . . , en(xm))′ is a consequence of Theorem 4.1
in [27]. For the treatment of the joint convergence with Bn, we only consider
the case m = 1 and set x1 = x; the general case can be treated analogously.
For i = 1, . . . , kn, we decompose a block Ii = {(i− 1)bn + 1, . . . , ibn} into a big
block I+i and a small block I−i , where, recalling 
n from Condition 3.1(iii),

I+i = {(i− 1)bn + 1, . . . , ibn − 
n}, I−i = {ibn − 
n + 1, . . . , ibn},

and set

e+n (x) =
1√
kn

kn∑

i=1

∑

s∈I+
i

{
1
(
Us > 1− x

bn

)
− x

bn

}
,

B+
n =

1√
kn

kn∑

i=1

{
log(Z+

ni)− E[log(Z+
ni)]
}
,

where Z+
ni = bn(1−N+

ni), N
+
ni = maxs∈I+

i
Us. Next, according to Lemma 6.6 in

[27],
e−n (x) := en(x)− e+n (x) = oP(1).

It can further be shown by the same arguments as in the proof of Lemma 9.3
in [3] that

B−
n := Bn −B+

n = oP(1).

Finally, for ε ∈ (0, c1 ∧ c2), define A+
n = {mini=1,...,kn N+

ni > 1− ε}, and note
that P(A+

n ) → 1 by Condition 3.1(v). As a consequence of the previous three
statements, it suffices to show that, using the Cramér-Wold device,

{λ1e
+
n (x) + λ2B

+
n }1A+

n

d−→ λ1e(x) + λ2B, (B.1)

for any λ1, λ2 ∈ R.
Now, the left-hand side of (B.1) can be written as

{λ1e
+
n (x) + λ2B

+
n }1A+

n
=

1√
kn

kn∑

i=1

g̃i,n + oP(1),

where g̃i,n = gi,n1(Z
+
ni < εbn) and where

gi,n = λ1

∑
s∈I+

i

{
1
(
Us > 1− x

bn

)
− x

bn

}
+ λ2

{
log(Z+

ni)− E[log(Z+
ni)]
}
.

Note, that g̃i,n only depends on the block I+i and is Bε
(i−1)bn+1:ibn−�n

-measurable.
In particular, the (g̃i,n)i=1,...,kn are each separated by a small block of length 
n.
A standard argument based on characteristic functions and the assumption on
alpha mixing may then be used to show that the weak limit of k−1/2

n

∑kn

i=1 g̃i,n
is the same as if the g̃i,n were independent.
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Next, we show that Ljapunov’s condition ([4], Theorem 27.3) is satisfied. By
Minkowski’s inequality, for any p ∈ (2, 2+δ), we have C∞ = supn∈N E[|g̃1,n|p] <
∞ by Condition 3.1(ii) and 3.2(i). Further, by stationarity and independence,
we get

∑kn

i=1 E[|g̃i,n|p]
Var
(∑kn

i=1 g̃i,n
)p/2 = k1−p/2

n

E[|g̃1,n|p](
E[g̃21,n]

)p/2 ≤ C∞ × k1−p/2
n E[g̃21,n]

−p/2.

Hence, provided limn→∞ E[g̃21,n] exists, the last expression converges to 0 and

hence Ljapunov’s condition is met. As a consequence, k−1/2
n

∑kn

i=1 g̃i,n weakly
converges to a centered normal distribution with variance limn→∞ E[g̃21,n].

Finally, since limn→∞ E[g̃21,n] = limn→∞ E[g21,n], it remains to be shown that

lim
n→∞

E[g21,n] = λ2
1r(x, x) + 2λ1λ2h(x) + λ2

2π
2/6.

Since similar arguments as in the proof of B−
n = oP(1) and e−n = oP(1) allow us

to replace I+1 by I1 and then bn by n, this in turn is a consequence of

lim
n→∞

Var
(
N (x)

n (E)
)
= r(x, x), (B.2)

lim
n→∞

Cov
{
N (x)

n (E), log(Z1:n)
}
= f(x), (B.3)

lim
n→∞

Var{log(Z1:n)} = π2/6. (B.4)

The assertion in (B.2) follows from Theorem 4.1 in [27]. Further, since Z1:n
d−→

ξ ∼ Exp(θ) and since since | log(Z1:n)|2 is uniformly integrable by Condi-
tion 3.2(i), we have

lim
n→∞

Var{log(Z1:n)} = Var{log(ξ)} =
π2

6
,

which is (B.4). Finally, note that E[N (x)
n (E)] = x and E[log(Z1:n)] → ϕ(C)(θ)

by similar arguments as given above. As a consequence, (B.3) follows from
limn→∞ E

[
N (x)

n (E) log(Z1:n)
]
= h(x). The latter in turn can be seen as fol-

lows: first,

E
[
N (x)

n (E) log(Z1:n)
]
=

n∑

i=1

i E
[
1(N (x)

n (E) = i) log(Z1:n)
]
. (B.5)

The expected value on the right-hand side can be written as
∫ ∞

0

P
(
1(N (x)

n (E) = i) log(Z1:n) > y
)
dy

−
∫ 0

−∞
1− P(1(N (x)

n (E) = i) log(Z1:n) > y) dy

=

∫ ∞

0

P(N (x)
n (E) = i, Z1:n > ey) dy
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−
∫ 0

−∞
P(N (x)

n (E) = i)− P(N (x)
n (E) = i, Z1:n > ey) dy.

Now,

P(N (x)
n (E) = i, Z1:n > ey) = P(N (x)

n (E) = i, N (ey)
n (E) = 0)

→
{
p
(x,ey)
2 (i, 0) , x ≥ ey ≥ 0,

0 , ey > x ≥ 0

and P(N (x)
n (E) = i) → p(x)(i), see [24] and [27]. By uniform integrability we

obtain that the expected value on the right-hand side of (B.5) converges to h(x).
The proof is finished.

Proof of Lemma B.2. For fixed x > 0, consider the function

fn : R → R, fn(z) =
√

kn log
{
1 +

1√
kn

( z
x
+

1√
knx

)}
.

For zn → z, one has fn(zn) → e(z)/z. Hence, since (en(x1), . . . , en(xm), Bn)
′

converges in distribution to (e(x1), . . . , e(xm), B)′ for any x1, . . . , xm > 0 and
m ∈ N by Lemma B.1, we can apply the extended continuous mapping theorem
(Theorem 18.11 in 33) to obtain (Wn(x1), . . . ,Wn(xm), Bn)

′ → (e(x1)/x1, . . . ,
e(xm)/xm, B)′ in distribution. This is the fidi-convergence needed to prove
Lemma B.2.

Asymptotic tightness of the tail empirical process en follows from Theorem
4.1 in [27]. Asymptotic tightness of Bn follows from its weak convergence. This
implies asymptotic tightness of the vector (en, Bn), for instance by a simple
adaptation of Lemma 1.4.3 in [34].

Proof of Lemma B.3. LetH(x) = 1−e−θx be the cdf of the Exp(θ)-distribution.
From the proof of Lemma 9.2 in [3], we have, for any m ∈ N,

sup
x∈[1/m,m]

|Ĥkn(x)−H(x)| = oP(1), n → ∞.

Since

En,m − E′
n,m =

∫ m

1/m

Wn(x) d(Ĥkn −H)(x),

the assertion follows from Lemma B.2, Lemma C.8 in [2] and the continuous
mapping theorem.

Proof of Lemma B.4. As a consequence of Lemma B.3, Lemma B.2 and the
continuous mapping theorem, we have

En,m +Bn =

∫ m

1/m

Wn(x) θe
−θx dx+Bn + oP(1)

d−→
∫ m

1/m

e(x)

x
θe−θx dx+B = E′

m +B ∼ N (0, τ2m),
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where the variance τ2m is given by

τ2m = Var
{ ∫ m

1/m

e(x)
1

x
θe−θx dx

}
+ 2Cov

{ ∫ m

1/m

e(x)
1

x
θe−θx dx,B

}

+Var(B)

= θ2
∫ m

1/m

∫ m

1/m

r(x, y)
1

xy
e−θ(x+y) dx dy + 2θ

∫ m

1/m

f(x)
1

x
e−θx dx+

π2

6

as asserted.

Proof of Lemma B.5. By the definition of τ2m in Lemma B.4

lim
m→∞

τ2m = θ2
∫ ∞

0

∫ ∞

0

r(x, y)
1

xy
e−θ(x+y) dxdy + 2θ

∫ ∞

0

f(x)
1

x
e−θx dx+

π2

6
.

(B.6)

For x > y, we have r(x, y) = θxE
[
ξ
(y/x)
1 ξ

(y/x)
2

]
with (ξ

(y/x)
1 , ξ

(y/x)
2 ) ∼ π

(y/x)
2 .

Hence, applying the transformation z = y/x, the first summand on the right-
hand side of (B.6) can be written as

θ2
∫ ∞

0

∫ ∞

0

r(x, y)

xy
e−θ(x+y) dxdy = 2θ3

∫ ∞

0

∫ x

0

E
[
ξ
(y/x)
1 ξ

(y/x)
2

]

y
e−θ(x+y) dy dx

= 2θ3
∫ ∞

0

∫ 1

0

E
[
ξ
(z)
1 ξ

(z)
2

]

z
e−θx(1+z) dz dx

= 2θ2
∫ 1

0

E
[
ξ
(z)
1 ξ

(z)
2

]

z(z + 1)
dz. (B.7)

For the second summand on the right-hand side of (B.6), note that

∞∑

i=1

ip
(x,ey)
2 (i, 0) = E

[
ξ
(ey/x)
1 1(ξ

(ey/x)
2 = 0)

]
θxe−θey , (B.8)

see Formula (A.7) in the proof of Lemma 9.6 in [3] and
∑∞

i=1 ip
(x)(i) = E[N (x)

E ] =
x, see [27]. Therefore, we can rewrite h from Lemma B.1 as follows

h(x) =

∫ ∞

0

1(ey ≤ x) E
[
ξ
(ey/x)
1 1(ξ

(ey/x)
2 = 0)

]
θxe−θey dy

−
∫ 0

−∞
x− 1(ey ≤ x) E

[
ξ
(ey/x)
1 1(ξ

(ey/x)
2 = 0)

]
θxe−θey dy.

= x

∫ ∞

1/x

1(z ≤ 1)E
[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz

− x

∫ 1/x

0

1

z
− 1(z ≤ 1)E

[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz,
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where we have used the transformation z = ey/x. For 0 < x ≤ 1, the first
integral is zero and we obtain

h(x) = −x

∫ 1

0

1

z
− E

[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz − x

∫ 1/x

1

1

z
dz

= −x

∫ 1

0

1

z
− E

[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz + x log(x),

while for x > 1,

h(x) = x

∫ 1

1/x

E
[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz

− x

∫ 1/x

0

1

z
− E

[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
θ
e−θzx

z
dz.

As a consequence, writing g(z) = E
[
ξ
(z)
1 1(ξ

(z)
2 = 0)

]
, we obtain

∫ ∞

0

h(x)
1

x
e−θx dx =

∫ 1

0

log(x)e−θx dx−
∫ 1

0

e−θx

∫ 1

0

1

z
− g(z)θ

e−θzx

z
dz dx

+

∫ ∞

1

e−θx

∫ 1

1/x

g(z)θ
e−θzx

z
dz dx

−
∫ ∞

1

e−θx

∫ 1/x

0

1

z
− g(z)θ

e−θzx

z
dz dx.

Next, some tedious calculations based on Fubini’s theorem allow to rewrite the
sum of the last three double integrals as

s =

∫ 1

0

e−θ/z − 1

θz
+

g(z)

z(1 + z)
dz.

Using the fact that g(z) = 1
θ − E

[
ξ
(z)
1 1(ξ

(z)
2 > 0)

]
, we thus obtain

∫ ∞

0

h(x)
1

x
e−θx dx

=

∫ 1

0

log(z)e−θz +
e−θ/z − 1

θz
+

1

θz(1 + z)
− E

[
ξ
(z)
1 1(ξ

(z)
2 > 0)

]

z(1 + z)
dz

=

∫ 1

0

log(z)e−θz +
e−θ/z

θz
− 1

θ(1 + z)
− E

[
ξ
(z)
1 1(ξ

(z)
2 > 0)

]

z(1 + z)
dz.

Finally, one can show

∫ 1

0

log(z)e−θz +
e−θ/z

θz
dz = −(log θ + γ)/θ = ϕ(C)(θ)/θ,
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such that, assembling terms and recalling f(x) = h(x)− xϕ(C)(θ),

∫ 1

0

f(x)
1

x
e−θx dx =

∫ 1

0

h(x)
1

x
e−θx dx− ϕ(C)(θ)

∫ ∞

0

e−θx dx

= − log(2)/θ −
∫ 1

0

E
[
ξ
(z)
1 1(ξ

(z)
2 > 0)

]

z(1 + z)
dz. (B.9)

The lemma is now an immediate consequence of (B.6), (B.7) and (B.9).

Proof of Lemma B.6. By Lemma B.3, it suffices to show the assertion with En,m

replaced by E′
n,m. Define ẽn(x) := en(x)+k−1/2

n , such that, by Condition 3.4(iii),
we have

max
Zni≥c

∣∣∣∣
ẽn(Zni)

Zni

√
kn

∣∣∣∣ = oP(1)

for any constant c > 0. Fix m ∈ N. By the previous display, for any ε > 0, the
event

Bn = Bn(m, ε) =
{

max
Zni≥m

∣∣∣ ẽn(Zni)

Zni

√
kn

∣∣∣ ≤ ε
}

satisfies P(Bn) → 1. Next,

|En,m − En| ≤
∣∣∣
∫ ∞

0

log
(
1 +

ẽn(x)

x
√
kn

)√
kn 1(0,1/m](x) dĤkn(x)

∣∣∣

+
∣∣∣
∫ ∞

0

log
(
1 +

ẽn(x)

x
√
kn

)√
kn 1[m,∞)(x) dĤkn(x)

∣∣∣

=: |Vn1|+ |Vn2|,

such that

|En,m − En| = |En,m − En|1Bn + oP(1) ≤ |Vn1|+ |Vn2|1Bn + oP(1). (B.10)

We begin by treating the term |Vn2|1Bn . Since log(1 + x) =
∫ 1

0
x/(1 + sx) ds

for any x > −1, we have

Vn21Bn =

∫ ∞

0

ẽn(x)

x

∫ 1

0

1

1 + s ẽn(x)

x
√
kn

ds 1(x ≥ m) dĤkn(x)1Bn

=
1

kn

kn∑

i=1

ẽn(Zni)

Zni
1(Zni ≥ m)

∫ 1

0

1

1 + s ẽn(Zni)

Zni

√
kn

ds1Bn

= k−3/2
n

kn∑

i=1

1(Zni ≥ m)

Zni

∫ 1

0

1

1 + s ẽn(Zni)

Zni

√
kn

ds
{ n∑

t=1

f(Ut, Zni) + 1
}
1Bn ,

where

f(Ut, Zni) = 1(Ut > 1− Zni/bn)− Zni/bn. (B.11)
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For given ε ∈ (0, c1 ∧ c2) with cj as in Condition 3.1, let Cn = Cn(ε) denote the
event {mini=1,...,kn Nni > 1−ε/2} = {maxi=1,...,kn Zni < εbn/2}, which satisfies
P(Cn) → 1 by Condition 3.1(v). Hence, we can write Vn21Bn = V̄n21Cn +oP(1),
where

V̄n2 = k−3/2
n

kn∑

i=1

1

Zni
1(εbn/2 > Zni ≥ m)

∫ 1

0

1

1 + s ẽn(Zni)

Zni

√
kn

ds

×
{ n∑

t=1

f(Ut, Zni) + 1
}
1Bn .

We obtain

|V̄n2| ≤
1

m
k−3/2
n

kn∑

i=1

1(εbn/2 > Zni ≥ m)

∫ 1

0

1∣∣∣1 + s ẽn(Zni)

Zni

√
kn

∣∣∣
ds

×
{∣∣∣

n∑

t=1

f(Ut, Zni)
∣∣∣+ 1

}
1Bn .

On the event Bn the integral over s can be bounded as follows

∫ 1

0

1∣∣∣1 + s ẽn(Zni)

Zni

√
kn

∣∣∣
ds 1Bn ≤

∫ 1

0

1

1− sε
ds 1Bn ≤ 1

1− ε
.

The previous two displays imply that |V̄n2| is bounded by

1

m

1

1− ε
k−3/2
n

kn∑

i=1

1(εbn/2 > Zni ≥ m)
{∣∣∣

n∑

t=1

f(Ut, Zni)
∣∣∣+ 1

}

=
1

m

1

1− ε
k−3/2
n

kn∑

i=1

1(εbn/2 > Zni ≥ m)
∣∣∣

n∑

t=1

f(Ut, Zni)
∣∣∣+OP(k

−1/2
n ).

The upper bound can now be treated exactly as in the proof of Lemma 9.1 in
[3], finally yielding

lim
m→∞

lim sup
n→∞

P(|Vn21Bn | > δ) = 0. (B.12)

It remains to treat |Vn1|. Write

|Vn1| ≤ Tn(0, dk
−1
n ) + Tn(dk

−1
n , dk−μ

n ) + Tn(dk
−μ
n , 1/m)

=: Tn1 + Tn2 + Tn3, (B.13)

where, for some constant d > 0 and μ = μd determined below,

Tn(a, b) =
√

kn

∫ ∞

0

1(x ∈ (a, b])
∣∣∣ log

(
1 +

ẽn(x)

x
√
kn

)∣∣∣ dĤkn(x).
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We start by covering the term Tn1 = Tn(0, dk
−1
n ) and determining the constants

d and μ. Note that for the event Jn = {mini=1,...,kn Zni > dk−1
n } one has

P(Jn) = P
(
kn min

i=1,...,kn

Zni > d
)
= P
(
n
(
1− max

i=1,...,kn

Nni

)
> d
)

= P(Z1:n > d) → e−dθ.

Then,

P(Tn1 > δ) = P(Tn11Jn + Tn11Jc
n
> δ)

≤ P(Tn11Jn > δ/2) + P(Tn11Jc
n
> δ/2)

≤ P(Jc
n) → 1− exp(−dθ).

Hence, for any given ε > 0 we can choose d = d(ε) < − log(1− ε)/θ, such that

lim sup
n→∞

P(Tn1 > δ) ≤ lim sup
n→∞

P(Jc
n) = 1− exp(−dθ) < ε. (B.14)

Now, choose μ = μd ∈ (1/2, 1/{2(1 − τ)}) from Condition 3.4(iv), where
τ ∈ (0, 1/2) is from Condition 3.4(ii). Next, consider Tn3 = Tn(dk

−μ
n , 1/m) and

note that, for x ∈ (dk−μ
n , 1/m], we have

∣∣∣∣
ẽn(x)

x
√
kn

∣∣∣∣ =
∣∣∣∣
ẽn(x)

xτ

∣∣∣∣
1

x1−τ
√
kn

≤ 1

d1−τ

∣∣∣∣
ẽn(x)

xτ

∣∣∣∣ kμ(1−τ)−1/2
n = oP(1)

uniformly in x, by Condition 3.4(ii). As a consequence, the event

Dn =
{∣∣∣ ẽn(x)

x
√
kn

∣∣∣ ≤ 1

2

}

satisfies 1Dc
n
= oP(1), whence, recalling that x/(1 + x) ≤ log(1+ x) ≤ x for any

x > −1, we have

Tn3 =
√

kn

∫

(dk−μ
n ,1/m]

∣∣∣ log
(
1 +

ẽn(x)

x
√
kn

)∣∣∣1Dn dĤkn(x) + oP(1)

≤
∫

(dk−μ
n ,1/m]

max
{∣∣∣ ẽn(x)

x

∣∣∣,
∣∣∣ ẽn(x)

x

∣∣∣
(
1 +

ẽn(x)

x
√
kn

)−1}
1Dn dĤkn(x) + oP(1)

≤ 2

∫

(dk−μ
n ,1/m]

∣∣∣∣
ẽn(x)

xτ

∣∣∣∣
1

x1−τ
1Dn dĤkn(x) + oP(1).

By Lemma B.15, Condition 3.4(ii) and the continuous mapping theorem, the
last expression converges weakly to

T3(m) = 2

∫ 1/m

0

∣∣∣∣
e(x)

xτ

∣∣∣∣
1

x1−τ
dH(x).

As a consequence,

lim
m→∞

lim sup
n→∞

P(Tn3 ≥ δ) ≤ lim
m→∞

P(T3(m) > δ) = 0. (B.15)
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Finally, regarding Tn2, note that, for x ∈ (dk−1
n , dk−μ

n ),

ẽn(x)

x
√
kn

≤ 1

x

( 1

kn
+

1

kn

n∑

i=1

1(Ui > 1− x/bn)
)
≤ n+ 1

d
,

ẽn(x)

x
√
kn

≥ 1

x

( 1

kn
− 1

kn

n∑

i=1

x/bn

)
≥ 1

dk1−μ
n

− 1,

which implies

∣∣∣ log
(
1 +

ẽn(x)

x
√
kn

)∣∣∣

= log
(
1 +

ẽn(x)

x
√
kn

)
1
( ẽn(x)
x
√
kn

> 0
)
− log

(
1 +

ẽn(x)

x
√
kn

)
1
( ẽn(x)
x
√
kn

< 0
)

≤ log
(
(n+ 1)d−1 + 1

)
+ log

(
dk1−μ

n

)

� log(n).

As a consequence, the term Tn2 = Tn(dk
−1
n , dk−μ

n ) can be bounded as follows

Tn2 � log(n)
√
kn

∫

(dk−1
n ,dk−μ

n ]

dĤkn(x) =
log(n)√

kn

kn∑

i=1

1
(
Zni ∈ (dk−1

n , dk−μ
n ]
)
.

Hence, by Condition 3.4(iv),

E [Tn2] � log(n)
√
knP(Zn1 < dk−μ

n )

= log(n)
√
kn{1− exp(−θdk−μ

n )}+ o(1)

= θd log(n) k1/2−μ
n {1 + o(1)}+ o(1)

= O(log(kn)k
1/2−μ
n ) = o(1), (B.16)

where the last line follows from logn = log kn + log bn � (1 + q) log kn by
Condition 3.4(i).

The assertion follows from (B.10), combined with (B.12), (B.13), (B.14),
(B.15) and (B.16).

B.2. Auxiliary lemmas – sliding blocks

Throughout this section, we assume that Condition 3.1, 3.2(i) and 3.3(i) are
met.

Lemma B.7. For any x1, . . . , xm ∈ [0,∞) and m ∈ N, we have

(en(x1), . . . , en(xm), Bsb
n )′

d−→ (e(x1), . . . , e(xm), Bsb)′,
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where (e(x1), . . . , e(xm), Bsb)′ ∼ Nm+1(0,Σ
sb
m+1) with

Σsb
m+1 =

⎛
⎜⎜⎜⎝

r(x1, x1) . . . r(x1, xm) f(x1)
...

. . .
...

...
r(xm, x1) . . . r(xm, xm) f(xm)
f(x1) . . . f(xm) 8 log(2)− 4

⎞
⎟⎟⎟⎠ .

Here, the functions r and f are defined as in Lemma B.1.

Lemma B.8. For any m ∈ N, we have

{
(Wn(x), B

sb
n )′
}
x∈[1/m,m]

d−→
{(

e(x)

x
,Bsb

)′}

x∈[1/m,m]

in D([1/m,m])× R,

where (e,Bsb)′ is a centered Gaussian process with continuous sample paths and
with covariance functional as specified in Lemma B.7.

Lemma B.9. For any m ∈ N, we have

Esb
n,m = E′

n,m + oP(1) as n → ∞,

where E′
n,m =

∫m

1/m
Wn(x)θe

−θx dx is as in Lemma B.3.

Lemma B.10. For any m ∈ N, we have

Esb
n,m +Bsb

n
d−→ E′

m +Bsb ∼ N (0, τ2sb,m) as n → ∞,

where, with r and f defined as in Lemma B.1,

τ2sb,m = θ2
∫ m

1/m

∫ m

1/m

r(x, y)
1

xy
e−θ(x+y) dxdy

+ 2θ

∫ m

1/m

f(x)
1

x
e−θx dx+ 8 log(2)− 4.

Lemma B.11. As m → ∞, τ2sb,m → σ2
sb,(C)/θ

2, where σ2
sb,(C) is specified in

Theorem 4.1.

Lemma B.12. If in addition, Condition 3.4 holds, then, for all δ > 0,

lim
m→∞

lim sup
n→∞

P
(
|Esb

n,m − Esb
n | > δ

)
= 0.

Proof of Lemma B.7. As in the proof of Lemma B.1 we only show joint weak
convergence of (en(x), B

sb
n ) for some fixed x > 0; the general case can be shown

analogously. For given ε ∈ (0, c1 ∧ c2) let A
′
n = {mint=1,...,n−bn+1 N

sb
nt > 1− ε},

such that P(An) → 1 by Condition 3.1(v). By the Cramér-Wold device, it suffices
to prove weak convergence of
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λ1en(x) + λ2B
sb
n =

kn−1∑

j=1

∑

s∈Ij

[ λ1√
kn

{
1
(
Us > 1− x

bn

)
− x

bn

}

+
λ2

√
kn

n− bn + 1

{
log(Zsb

ns)− E[log(Zsb
ns)]
}]

+ oP(1),

for some arbitrary λ1, λ2 ∈ R, where the negligible term stems from omitting a
negligible number of summands.

We are going to apply a big block-small block argument, based on a suitable
‘blocking of blocks’ to take care of the serial dependence introduced through
the use of sliding blocks. For that purpose, let k∗n < kn be an integer sequence
with k∗n → ∞ and k∗n = o(kδ/(2(1+δ))

n ), where δ is from Condition 3.1(ii). For
q∗n = 
kn/(k∗n + 2)� and j = 1, . . . , q∗n, define

J+
j =

j(k∗
n+2)−2⋃

i=(j−1)(k∗
n+2)+1

Ii and J−
j = Ij(k∗

n+2)−1 ∪ Ij(k∗
n+2).

Thus we have q∗n big blocks J+
j of size k∗nbn, which are separated by a small

block J−
j of size 2bn, just as in the construction in the proof of Lemma 10.3 in

[3]. Consequently, we have λ1en(x) + λ2B
sb
n = L+

n + L−
n + oP(1), where

L±
n =

1√
q∗n

q∗n∑

j=1

W±
nj

with

W±
nj =

√
q∗n
kn

∑

s∈J±
j

λ1

{
1
(
Us > 1− x

bn

)
− x

bn

}

+
λ2n

n− bn + 1

1

bn

{
log(Zsb

ns)− E[log(Zsb
ns)]
}

for j = 1, . . . , q∗n. In the following, we show that, on the one hand, L−
n1A′

n
=

oP(1) and that, on the other hand, L+
n1A′

n
converges to the claimed normal

distribution. First, we cover L−
n1A′

n
. As in the proof of Lemma B.1, we have

Zsb
ns = bn

(
1− max

t=s,...,s+bn−1
Ut

)
= bn

(
1− max

t=s,...,s+bn−1
Uε
t

)
=: Zε,sb

ns

on the event A′
n, where Uε

t = Ut1(Ut > 1 − ε). Hence, we can write L−
n1A′

n
=

L̃−
n1A′

n
+ oP(1) = L̃−

n + oP(1) with

L̃−
n =

1√
q∗n

q∗n∑

j=1

W ε−
nj ,

where
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W ε−
nj =

√
q∗n
kn

∑

s∈J−
j

λ1

{
1
(
Uε
s > 1− x

bn

)
− x

bn

}

+
λ2n

n− bn + 1

1

bn

{
log(Zε,sb

ns )− E[log(Zε,sb
ns )]

}
.

We proceed by showing that Var[L̃−
n ] = o(1). By stationarity, one has

Var[L̃−
n ] = Var[W ε−

n1 ] +
2

q∗n

q∗n∑

j=1

(q∗n − j) Cov
(
W ε−

n1 ,W
ε−
n,j+1

)
,

which is bounded by 3Var[W ε−
n1 ] + 2

∑q∗n
j=2 |Cov

(
W ε−

n1 ,W
ε−
n,j+1

)
| in absolute

value. First, we show Var[W ε−
n1 ] = o(1), for which it suffices to show that

||W ε−
n1 ||p = o(1) for some p ∈ (2, 2 + δ). By Minkowski’s inequality, one has

||W ε−
n1 ||p ≤ 2

√
q∗n
kn

[
|λ1| ||N (x)

bn
(E)||p + |λ2| || log(Zε,sb

n1 )− E[log(Zε,sb
n1 )]||p

]

(B.17)

= O(
√

q∗n/kn) = o(1)

by Condition 3.1(ii) and 3.2(i). It remains to treat the sum over the covariances.
Since W ε−

nj is Bε

{(j(k∗
n+2)−2)bn+1}:{j(k∗

n+2)bn}- measurable, we may apply Lemma

3.11 in [9] to obtain

|Cov(W ε−
n1 ,W

ε−
n,j+1)| ≤ 10 ||W ε−

n1 ||2p αc2(jk
∗
nbn)

1−2/p.

By Condition 3.1(iii), the sum
∑q∗n

j=2 αc2(jk
∗
nbn)

1−2/p converges to zero, hence

||W ε−
n1 ||p = o(1) as asserted.
Let us now treat the term L+

n1A′
n
and show weak convergence to the asserted

normal distribution. One can write

L+
n1A′

n
=

1√
q∗n

q∗n∑

j=1

W̃+
nj + oP(1), W̃+

nj = W+
nj1
(
max
t∈J+

j

Zsb
nt < εbn

)
.

A standard argument based on characteristic functions shows that the weak

limit of q∗n
−1/2

∑q∗n
j=1 W̃

+
nj is the same as if the summands were independent. By

arguments as before, we may also pass back to an independent sample W+
nj ,

j = 1, . . . , q∗n. The assertion then follows from Ljapunov’s central limit theorem,
once we have shown the Ljapunov condition.

For that purpose, note that ||W+
nj ||2+δ = O(

√
q∗nkn) = O(

√
k∗n) by similar

arguments as in (B.17) such that E[|W+
nj |2+δ] = O(k∗n

(2+δ)/2). As a consequence,

∑q∗n
j=1 E[|W+

nj |2+δ]

Var
[∑q∗n

j=1 W
+
nj

] 2+δ
2

= q∗n
− δ

2
E[|W+

n1|2+δ]

E[|W+
n1|2]

2+δ
2

= O(k−δ/2
n k∗n

1+δ) = o(1),
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since k∗n = o(k
δ/(2(1+δ))
n ) by construction and provided that the limit of E[|W+

n1|2]
exists. If it does, we can conclude that L+

n
d−→ N (0, limn→∞ E[|W+

n1|2]). and it
suffices to show that

lim
n→∞

E[|W+
n1|2] = λ2

1r(x, x) + 2λ1λ2f(x) + λ2
2{8 log(2)− 4}.

To this, note that W+
n1 = λ1en∗(x) + λ2B

sb
n∗ + oP(1), where en∗ and Bsb

n∗ are de-
fined as en and Bsb

n with n replaced by n∗ = k∗nbn and kn by k∗n; and our general
conditions still hold with this replacement. The result follows from Lemma B.13
and Lemma B.14 and the proof of Theorem 4.1 in [27].

Proof of Lemma B.8. Up to notation, the proof is exactly the same as the one
of Lemma B.2 in the disjoint blocks case.

Proof of Lemma B.9. The result follows immediately from the argument in the
proof of Lemma B.3 and the proof of Lemma 10.2 in [3].

Proof of Lemma B.10. Up to notation, the proof is exactly the same as the one
of Lemma B.4 in the disjoint blocks case.

Proof of Lemma B.11. By the definition of τ2m and τ2sb,m in Lemma B.4 and B.10,
we have

τ2sb,m = τ2m − π2/6 + 8 log(2)− 4.

Hence, by the proof of Lemma B.5 and the definition of σ2
sb,C in Theorem 4.1,

lim
m→∞

τ2sb,m = σ2
db,C/θ

2 − π2/6 + 8 log 2− 4 = σ2
sb,C/θ

2.

Proof of Lemma B.12. The proof is similar to the one of Lemma B.6, which is
why we keep it short. Write |Esb

n,m − Esb
n | ≤ |Vn1|+ |Vn2| with

Vn1 =

∫ ∞

0

log

(
1 +

ẽn(x)

x
√
kn

)√
kn 1(0,1/m](x) dĤ

sb
n (x),

Vn2 =

∫ ∞

0

log

(
1 +

ẽn(x)

x
√
kn

)√
kn 1[m,∞)(x) dĤ

sb
n (x),

where ẽn(x) = en(x) + k
−1/2
n . For some ε > 0 define the event

Bn =
{

max
Zsb

ni≥m

∣∣∣ ẽn(Z
sb
ni)

Zsb
ni

√
kn

∣∣∣ ≤ ε
}
,

such that P(Bn) → 1 by Condition 3.4(iii). As in the proof of Lemma B.6, with
f defined in (B.11), we can write

Vn21Bn = k−3/2
n

kn−1∑

i=1

∑

w∈Ii

1

Zsb
nw

1(Zsb
nw ≥ m)

∫ 1

0

1

1 + s
ẽn(Zsb

nw)

Zsb
nw

√
kn

ds
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× b−1
n

{ kn∑

j=1

∑

t∈Ij

f(Ut, Z
sb
nw) + 1

}
1Bn + oP(1).

By Condition 3.1(v), P(Cn) → 1 where Cn =
{
mini=1,...,n−bn+1 N

sb
ni > 1−ε/2

}
.

Hence, Vn21Bn = V̄n21Bn1Cn + oP(1), where

V̄n2 = k−3/2
n

kn−1∑

i=1

∑

w∈Ii

1

Zsb
nw

1(εbn/2 > Zsb
nw ≥ m)

∫ 1

0

1

1 + s
ẽn(Zsb

nw)

Zsb
nw

√
kn

ds

× b−1
n

{ kn∑

j=1

∑

t∈Ij

f(Ut, Z
sb
nw) + 1

}
,

such that V̄n2 can be bounded as in the proof of Lemma B.6 as follows

|V̄n21Bn | ≤
1

m

1

1− ε
k−3/2
n

kn−1∑

i=1

∑

w∈Ii

1(εbn/2 > Zsb
nw ≥ m)

× b−1
n

∣∣∣
kn∑

j=1

∑

t∈Ij

f(Ut, Z
sb
nw)
∣∣∣+ oP(1).

This expression can be handled as in the proof of Lemma 10.1 in [3], such that

lim
m→∞

lim sup
n→∞

P(|V̄n21Bn1Cn | > δ) = 0.

The remaining term |Vn1| can be treated analogously to the eponymous term in
the proof of Lemma B.6.

Lemma B.13. (a) For x ≥ 0, as n → ∞,

Cov(en(x), B
sb
n ) → 2

∫ 1

0

hsb,x(ξ) dξ − 2xϕ(C)(θ),

where

hsb,x(ξ) =

∞∑

i=1

i

∫ ∞

0

1(y ≤ log(x))

i∑

l=0

p(ξx)(l) p
((1−ξ)x,(1−ξ)ey)
2 (i− l, 0) e−θξey

+ 1(y > log(x)) p(ξx)(i) e−θey dy

−
∞∑

i=1

i

∫ 0

−∞
p(x)(i)− 1(y ≤ log(x))

i∑

l=0

p(ξx)(l) p
((1−ξ)x,(1−ξ)ey)
2 (i− l, 0)

× e−θξey

− 1(y > log(x)) p(ξx)(i) e−θey dy.
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(b) We have

2

∫ 1

0

hsb,x(ξ) dξ = h(x) + xϕ(C)(θ),

where h is defined in Lemma B.1.

Proof. (a) We assume that both Us and Zsb
nt are measurable with respect to

the appropriate Bε
·:· sigma-algebra; the general case can be treated by mul-

tiplying with suitable indicator functions as in the proof of Lemma B.7. Let
Aj =

∑
s∈Ij

1
(
Us > 1− x

bn

)
and Dj =

∑
s∈Ij

log(Zsb
ns). Then

Cov(en(x), B
sb
n ) =

1

n− bn + 1

kn∑

i=1

kn−1∑

j=1

Cov(Ai, Dj)

+
1

n− bn + 1

kn∑

i=1

Cov(Ai, log(Z
sb
n,n−bn+1)).

The second sum is asymptotically negligible, since ||Aj ||2 = ||N (x)

bn
(E)||2 = O(1)

and || log(Zsb
n,n−bn+1)||2 = O(1) by Condition 3.1(ii) and 3.2(i). Next, following

the argument in the proof of Lemma B.1 in [3], we may write

Cov(en(x), B
sb
n ) =

1

bn
Cov(A2, D1 +D2) + o(1)

=
1

bn

2bn∑

t=1

Cov
{∑

s∈I2

1
(
Us > 1− x

bn

)
, log(Zsb

nt)
}
+ o(1)

=

∫ 1

0

fn(ξ) + gn(ξ) dξ − 2xE
[
log(Zsb

n1)
]
+ o(1),

where

fn(ξ) =

bn∑

t=1

E
[∑

s∈I2

1
(
Us > 1− x

bn

)
log(Zsb

nt)
]
1
{
ξ ∈ [ t−1

bn
, t
bn
)
}
,

gn(ξ) =

2bn∑

t=bn+1

E
[∑

s∈I2

1
(
Us > 1− x

bn

)
log(Zsb

nt)
]
1
{
ξ ∈ [ t−bn−1

bn
, t−bn

bn
)
}
.

Note that limn→∞ E[log(Zsb
n1)] = ϕ(C)(θ) by uniform integrability of log(Z1:n),

and that supn∈N ||fn||∞ + ||gn||∞ < ∞ as a consequence of ‖∑s∈I1
1
(
Us >

1− x
bn

)
‖2×‖ log(Zsb

n1)‖2 < ∞ by Condition 3.1(ii) and 3.2(i). Hence, the lemma
is proven if we show that, for any ξ ∈ (0, 1),

lim
n→∞

fn(1− ξ) = lim
n→∞

gn(ξ) = hsb,x(ξ).

Since the proof for fn(1−ξ) is similar, we only treat gn(ξ), which can be written
as

gn(ξ) = E
[∑

s∈I2

1
(
Us > 1− x

bn

)
log(Zsb

n,�(1+ξ)bn�+1)
]
.
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Let us proceed by showing joint weak convergence of
∑

s∈I2
1(Us > 1− x

bn
) and

log(Zsb
n,�(1+ξ)bn�+1). For that purpose, note that

Gn(i, y) :=P
(∑

s∈I2

1
(
Us > 1− x

bn

)
= i, log(Zsb

n,�(1+ξ)bn�+1) ≥ y
)

=P
(∑

s∈I2

1
(
Us > 1− x

bn

)
= i, Zsb

n,�(1+ξ)bn�+1 ≥ ey
)
,

coincides with Fn(i, e
y) in the proof of Lemma B.1 in [3]. Hence, by that proof,

we have

lim
n→∞

Gn(i, y) =

i∑

l=0

p(ξx)(l)p
((1−ξ)x,(1−ξ)ey)
2 (i− l, 0)e−θξey

for y ≤ log x and

lim
n→∞

Gn(i, y) = p(ξx)(i) e−θey

for y > log x. Further, note that

lim
n→∞

P
(
N

(x)
bn

(E) = i
)
= p(x)(i).

As a consequence of the previous three displays, and since weak convergence
and uniform integrability implie convergence of moments, we have

gn(ξ) =

∞∑

i=1

i

∫ ∞

0

P
( 2bn∑

s=bn+1

1
(
Us > 1− x

bn
= i
)
, log(Zsb

n,�(1+ξ)bn�+1) ≥ y
)
dy

− i

∫ 0

−∞
P
( 2bn∑

s=bn+1

1
(
Us > 1− x

bn

)
= i, log(Zsb

n,�(1+ξ)bn�+1) ≤ y
)
dy

=

∞∑

i=1

i

∫ ∞

0

Gn(i, y) dy − i

∫ 0

−∞
P
(
N

(x)
bn

(E) = i
)
−Gn(i, y) dy

→ hsb,x(ξ)

as asserted, which implies part (a) of the lemma.
(b) In the proof of Lemma B.3 in [3] it is shown that, for y ≤ log(x),

S(x, y, ξ) = e−θξey
∞∑

i=1

i

i∑

l=0

p(ξx)(l) p
((1−ξ)x,(1−ξ)ey)
2 (i− l, 0)

= ξxe−θey + E
[
ξ
(ey/x)
11 1(ξ

(ey/x)
12 = 0)

]
θ(1− ξ)xe−θey ,

where (ξ
(y/x)
11 , ξ

(y/x)
12 ) ∼ π

(y/x)
2 . Equation (B.8) then allows to rewrite

S(x, y, ξ) = ξxe−θey + (1− ξ)
∞∑

i=1

ip
(x,ey)
2 (i, 0) ≡ ξxe−θey + (1− ξ)T (x, y).
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As a consequence, further noting that
∑∞

i=1 i p
(ξx)(i) = ξx, we obtain

hsb,x(ξ) =

∫ ∞

0

ξxe−θey + 1(y ≤ log(x))(1− ξ)T (x, y) dy

−
∫ 0

−∞
x− ξxe−θey − 1(y ≤ log(x))(1− ξ)T (x, y) dy.

Then, by Fubinbi’s theorem,

2

∫ 1

0

hsb,x(ξ) dξ =

∫ ∞

0

xe−θey + 1(y ≤ log x)T (x, y) dy

−
∫ 0

−∞
x(1− e−θey ) + x− 1(y ≤ log(x))T (x, y) dy.

The assertion now follows from the fact that

∫ ∞

0

e−θey dy =

∫ ∞

θ

e−z

z
dz = −Ei(−θ)

and

∫ 0

−∞
1− e−θey dy =

∫ θ

0

1− e−z

z
dz = (1− e−z) log(z)

∣∣θ
0
−
∫ θ

0

e−z log(z) dz

= log(θ)− e−θ log(θ)−
{
γ −

∫ ∞

θ

e−z log(z) dz
}

= log(θ)− e−θ log(θ)− γ +
{
− e−z log(z)

∣∣∞
θ

+

∫ ∞

θ

e−z

z
dz
}

= log(θ) + γ − Ei(−θ) = −ϕ(C)(θ)− Ei(−θ)

after assembling terms, where Ei(x) = −
∫∞
−x

e−t/t dt for x > 0 is the exponen-
tial integral.

Lemma B.14. One has

lim
n→∞

Var(Bsb
n ) = 8 log(2)− 4 ≈ 1.545.

Proof. As in the proof of Lemma B.13, we assume that the Zsb
nt are measurable

with respect to the appropriate Bε
·,· sigma-algebra. We may then argue as in

that proof to obtain

Var(Bsb
n ) =

2

bn

bn∑

t=1

E
[
log(Zsb

n1) log(Z
sb
n,1+t)

]
− 2E[log(Zsb

n1)]
2 + o(1)

= 2

∫ 1

0

fn(ξ) dξ − 2E[log(Zsb
n1)]

2 + o(1), (B.18)
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3150 A. Bücher and T. Jennessen

where fn : [0, 1] → R is defined as

fn(ξ) =

bn∑

t=1

E[log(Zsb
n1) log(Z

sb
n,1+t)] 1

(
ξ ∈
[
t−1
bn

, t
bn

))

= E[log(Zsb
n1) log(Z

sb
n,�bnξ�+1)].

By Condition 3.2(i), we have E[log(Zsb
n1)] → ϕ(C)(θ). Further,

sup
n∈N

||fn||∞ ≤ sup
n∈N

E[log(Zsb
n1)

2] < ∞,

whence convergence of the integral over fn in (B.18) may be concluded from
the dominated convergence theorem, once we have shown pointwise convergence
of fn. To this end we show that, for any fixed ξ ∈ (0, 1),

(
log(Zsb

n1), log(Zsb
n,�bnξ�+1)

d−→
(
X(ξ), Y (ξ)

)
(B.19)

for some random vector
(
X(ξ), Y (ξ)

)
. This in turn will imply

lim
n→∞

fn(ξ) = lim
n→∞

E[log(Zsb
n1) log(Zsb

n,�bnξ�+1)] = E[X(ξ)Y (ξ)]

by Condition 3.2(i) and therefore

lim
n→∞

Var(Bsb
n ) = 2

∫ 1

0

E[X(ξ)Y (ξ)] dξ − 2ϕ(C)(θ)
2 = 2

∫ 1

0

Cov(X(ξ), Y (ξ)) dξ.

(B.20)
For the proof of (B.19), define, for x, y ∈ R,

Gn,ξ(x, y) = P
(
log(Zsb

n1) > x, log(Zsb
n,�bnξ�+1) > y

)

= P
(
Zsb
n1 > ex, Zsb

n,�bnξ�+1 > ey
)
,

which converges to

Gξ(x, y) = exp
(
−θ
[
ξ(ex ∧ ey) + (ex ∨ ey)

])

by the proof of Lemma B.2 in [3]. Hence, (B.19), where the random vector
(X(ξ), Y (ξ)) has joint c.d.f.

Fξ(x, y) = P
(
X(ξ) ≤ x, Y (ξ) ≤ y

)

= 1− P
(
X(ξ) > x

)
− P
(
Y (ξ) > y

)
+Gξ(x, y),

= 1− exp(−θex)− exp(−θey) +Gξ(x, y).

We are left with calculating the right-hand side of (B.20). By Lemma B.16,
we have
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V ≡
∫ 1

0

Cov(X(ξ), Y (ξ)) dξ

=

∫ 1

0

∫ ∞

0

∫ ∞

0

Gξ(x, y)− e−θexe−θey dx dy dξ

+

∫ 1

0

∫ 0

−∞

∫ 0

−∞
Fξ(x, y)− (1− e−θex)(1− e−θey ) dx dy dξ

− 2

∫ 1

0

∫ 0

−∞

∫ ∞

0

P(X(ξ) > x, Y (ξ) ≤ y)− e−θex(1− e−θey ) dx dy dξ,

≡ A+B − 2 · C. (B.21)

We start with the first summand A. Recall the exponential integral Ei(x) =
−
∫∞
−x

e−t/tdt for x > 0, and note that
∫∞
y

e−θex dx = −Ei(−θey) for y ∈ R
and

∫ 1

0
e−aξ dξ = (1− e−a)/a for a > 0. Fubini’s theorem allows to rewrite A as

∫ ∞

0

∫ y

0

e−θey
{∫ 1

0

e−θξex dξ − e−θex
}
dx

+

∫ ∞

y

e−θex
{∫ 1

0

e−θξey dξ − e−θey
}
dx dy

=

∫ ∞

0

e−θey
∫ y

0

1− e−θex

θex
− e−θex dx

+

∫ ∞

y

e−θex dx
{1− e−θey

θey
− e−θey

}
dy

=

∫ ∞

0

e−θey
{e−θey − 1

θey
− e−θ − 1

θ

}
+ {−Ei(−θey)}

{1− e−θey

θey
− e−θey

}
dy.

Next, invoke the substitution z = θey to obtain that

A =

∫ ∞

θ

{e−z

z
− 1

z
+

1− e−θ

θ

}e−z

z
− Ei(−z)

{1
z
− e−z

z
− e−z

}1
z
dz. (B.22)

A similar calculation allows to rewrite

B =

∫ 1

0

∫ 0

−∞

∫ 0

−∞
Gξ(x, y)− e−θexe−θey dxdy dξ

=

∫ 0

−∞

∫ y

−∞
e−θey

{∫ 1

0

e−θξex dξ − e−θex
}
dx

+

∫ 0

y

e−θex
{∫ 1

0

e−θξey dξ − e−θey
}
dxdy

=

∫ 0

−∞
e−θey

∫ y

−∞

1− e−θex

θex
− e−θex dx

+

∫ 0

y

e−θex dx
{1− e−θey

θey
− e−θey

}
dy
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=

∫ 0

−∞
e−θey

{e−θey − 1

θey
+ 1
}

+
{
Ei(−θ)− Ei(−θey)

}{1− e−θey

θey
− e−θey

}
dy,

and the substitution z = θey yields

B =

∫ θ

0

{e−z

z
− 1

z
+ 1
}e−z

z
+
{
Ei(−θ)− Ei(−z)

}{1
z
− e−z

z
− e−z

}1
z
dz.

(B.23)

Finally, regarding the term C, we have

C =

∫ 1

0

∫ 0

−∞

∫ ∞

0

e−θexe−θey −Gξ(x, y) dxdy dξ

=

∫ 0

−∞

∫ ∞

0

e−θex
{
e−θey −

∫ 1

0

e−θξey dξ
}
dxdy

= {−Ei(−θ)}
∫ 0

−∞
e−θey − 1− e−θey

θey
dy

= Ei(−θ)

∫ θ

0

{1
z
− e−z

z
− e−z

}1
z
dz. (B.24)

Next, the expressions in (B.22), (B.23) and (B.24) may be plugged-into (B.21).
Using the notations

g(z) =
{1
z
− e−z

z
− e−z

}1
z
, h(z) =

{e−z

z
− 1

z
+ 1
}e−z

z
,

we obtain that

V =

∫ ∞

θ

{1− e−θ

θ
− 1
}e−z

z
+ h(z) + {−Ei(−z)}g(z) dz

+

∫ θ

0

{
Ei(−θ)− Ei(−z)

}
g(z) + h(z)− 2Ei(−θ)g(z) dz

=

∫ ∞

0

h(z) + {−Ei(−z)}g(z) dz + 1− e−θ − θ

θ
{−Ei(−θ)}

− Ei(−θ)

∫ θ

0

g(z) dz

The first integral is independent of θ, and can be seen to be equal to 4 log 2− 2.

Further,
∫ θ

0
g(z) dz = (e−θ − 1 + θ)/θ, whence the last two summands cancel

out. This proves the lemma.

B.3. Further auxiliary lemmas

Lemma B.15. Let A be a continuous function on [0, 1] with limx→0 A(x)/xη =
0 for some η ∈ (0, 1/2). Further, let Hn and H be monotone and non-negative
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functions on [0, 1] with

lim sup
n→∞

∫

[0,1]

1

x1−η
dHn(x) < ∞ and

∫

[0,1]

1

x1−η
dH(x) < ∞.

If limn→∞ supx∈[0,1] |Bn(x)| = 0, where Bn := Hn−H, and if there is a sequence
of measurable functions An such that

lim
n→∞

sup
x∈[0,1]

∣∣∣∣
An(x)−A(x)

xη

∣∣∣∣ = 0,

then we have

lim
n→∞

∫

[0,1]

An(x)

x
dBn(x) = 0.

Proof. For r ∈ N define the piecewise constant function

Ãr(x) :=

r∑

k=1

1( k−1
r , kr ]

(x)
A
(
k/r
)

k/r

as an approximation of A(x)/x. We write
∫
[0,1]

An(x)/x dBn(x) = In1+In2+In3,

where

In1 =

∫

[0,1]

An(x)−A(x)

x
dBn(x), In2 =

∫

[0,1]

A(x)

x
− Ãr(x) dBn(x),

In3 =

∫

[0,1]

Ãr(x) dBn(x).

The first integral is bounded by

∫

[0,1]

∣∣∣An(x)−A(x)

x

∣∣∣ d(Hn +H)(x)

≤ sup
x∈[0,1]

∣∣∣An(x)−A(x)

xη

∣∣∣
∫

[0,1]

1

x1−η
d(Hn +H)(x),

which converges to zero by assumption. Regarding In2, we obtain

|In2| =
∣∣∣
∫

[0,1]

A(x)− Ãr(x)x

xη

1

x1−η
dBn(x)

∣∣∣

≤ sup
x∈[0,1]

∣∣∣A(x)− Ãr(x)x

xη

∣∣∣
∫

[0,1]

1

x1−η
d(Hn +H)(x). (B.25)

By uniform continuity of x �→ A(x)/xη on [0, 1], we have

sup
x∈[0,1]

∣∣∣A(x)− Ãr(x)x

xη

∣∣∣→ 0 for r → ∞.
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Thus, the limes superior (for n → ∞) of the expression on the right-hand side
of (B.25) can be made arbitrarily small by increasing r. Finally, we can bound
|In3| as follows

|In3| ≤
r∑

k=1

|A(k/r)|
k/r

∣∣∣
∫

[0,1]

1( k−1
r , kr

](x) dBn(x)
∣∣∣

=

r∑

k=1

|A(k/r)|
k/r

∣∣∣Bn

(k
r

)
−Bn

(k − 1

r

)∣∣∣

≤ 2r2 sup
x∈[0,1]

|A(x)| sup
x∈[0,1]

|Bn(x)|,

which converges to zero by assumption.

Lemma B.16. Let X and Y be real-valued random variables such that XY is
integrable. Then,

E[XY ] =

∫ ∞

0

∫ ∞

0

P(X > x, Y > y) dxdy +

∫ 0

−∞

∫ 0

−∞
P(X ≤ x, Y ≤ y) dxdy

−
∫ 0

−∞

∫ ∞

0

P(X > x, Y ≤ y) dxdy −
∫ ∞

0

∫ 0

−∞
P(X ≤ x, Y > y) dxdy.

Proof. This is a standard calculation based on Fubini’s theorem.
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3156 A. Bücher and T. Jennessen

the extremal index. Extremes 18 (4), 585–603. MR3418769
[23] O’Brien, G. L. (1987). Extreme values for stationary and Markov sequences.

Ann. Probab. 15 (1), 281–291. MR0877604
[24] Perfekt, R. (1994). Extremal behaviour of stationary Markov chains with

applications. Ann. Appl. Probab. 4 (2), 529–548. MR1272738
[25] Pickands, III, J. (1981). Multivariate extreme value distributions. In Pro-

ceedings of the 43rd session of the International Statistical Institute, Vol. 2
(Buenos Aires, 1981), Volume 49, pp. 859–878, 894–902. With a discussion.
MR0820979

[26] Rémillard, B., N. Papageorgiou, and F. Soustra (2012). Copula-based semi-
parametric models for multivariate time series. J. Multivariate Anal. 110,
30–42. MR2927508

[27] Robert, C. Y. (2009). Inference for the limiting cluster size distribution of
extreme values. Ann. Statist. 37 (1), 271–310. MR2488352

[28] Robert, C. Y., J. Segers, and C. A. T. Ferro (2009). A sliding blocks esti-
mator for the extremal index. Electron. J. Stat. 3, 993–1020. MR2540849

[29] Rootzén, H. (2009). Weak convergence of the tail empirical process for de-
pendent sequences. Stochastic Process. Appl. 119 (2), 468–490. MR2494000

[30] Shao, Q.-M. and H. Yu (1996). Weak convergence for weighted empir-
ical processes of dependent sequences. Ann. Probab. 24 (4), 2098–2127.
MR1415243

[31] Smith, R. L. and I. Weissman (1994). Estimating the extremal index.
J. Roy. Statist. Soc. Ser. B 56 (3), 515–528. MR1278224
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Abstract

The serial dependence of a stationary time series at extreme levels may be captured by the limiting
cluster size distribution. New estimators based on a blocks declustering scheme are proposed and
analyzed both theoretically and by means of a large-scale simulation study. A sliding blocks version
of the estimators is shown to outperform a disjoint blocks version. In contrast to some competitors from
the literature, the estimators only depend on one tuning parameter to be chosen by the statistician.
©2022Elsevier B.V.All rights reserved.

MSC: 62G32; 60G70
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1. Introduction

The serial dependence of a stationary time series (X t )t∈Z at extreme levels may be described
by various, partially interrelated limiting objects. The most traditional approach consists of
studying the point process of exceedances and its weak convergence (see [18], or Section 10.3
in [2]). Two characterizing objects show up in the limit: the extremal index θ ∈ [0, 1] and
the limiting cluster size distribution π , a probability distribution on the positive integers with
π (m) approximately representing the probability that extreme observations occur in a temporal
cluster of size m. Under mild additional assumptions, the extremal index is in fact the reciprocal
of the expectation of the limiting cluster size distribution [21].
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A recently introduced alternative object for assessing the serial dependence is given by the
tail process (Yt )t∈Z (or the spectral process (Θt )t∈Z) that may be associated with a suitably
standardized version of (X t )t∈Z [1]. Heuristically, the law of those processes on RZ provides a
more detailed description of the serial dependence. In fact, relying on results from [19], it can
be shown that the limiting cluster size distribution π may be expressed as a functional of the
tail process under mild additional conditions, see Remark 2.2.

Estimating the above mentioned objects based on a finite stretch of observations has
received a lot of attention in recent years. For instance, estimators for the extremal index have
been studied in [5,13,17,23,28,29], among many others. Estimators for π have been studied
in [12,16,25,26]. To the best of our knowledge, inference on the law of the tail process has
only been studied for selected functionals (note that the above mentioned contributions fall
into this category as well). For instance, Drees et al. [11], Davis et al. [7] and Drees and
Knežević [9] investigate estimators for the c.d.f. of Yt , at a fixed lag t , which are based on
making sophisticated use of the time change formula. Cissokho and Kulik [6] consider sliding
blocks versions of peak-over-threshold estimators for a general class of functionals, including
the extremal index and the limiting cluster size distribution. It is worthwhile to mention that
asymptotic theory for many of the afore-mentioned estimators may be (non-trivially) derived
from high level results in [10] on empirical processes for cluster functionals, see also [20].

The present paper is motivated by the apparently little amount of well-studied estimators for
the limiting cluster size distribution π . Inspired by recent contributions on the estimation of the
extremal index, we study an estimator that is based on a (disjoint or sliding) blocks declustering
method. The sliding blocks estimator is shown to be more efficient than the disjoint blocks
version. Moreover, by extensive Monte Carlo simulations, they are shown to exhibit very good
finite-sample behavior in comparison to the competitors from [12,16,26].

The remaining parts of this paper are organized as follows: mathematical preliminaries,
including precise definitions of the limiting objects described above, are provided in Section 2.
In that section, we also define the new estimators. Regularity conditions needed to derive
asymptotic normality are collected in Section 3, with the respective theoretical results given
in Section 4. Section 5 contains results from a large scale Monte Carlo simulation study. The
main arguments for the proofs are collected in Section 6, with an interesting side result on
weak convergence of an empirical process associated with compound probabilities presented in
Section 7 and proven in Section 8. Finally, all remaining proofs as well as additional simulation
results are collected in a supplementary material.

2. Mathematical preliminaries and definition of estimators

Throughout the paper, (X t )t∈Z denotes a stationary time series with marginal cumulative
distribution function (c.d.f.) F . The sequence is assumed to have an extremal index θ ∈
(0, 1], i.e., we assume that, for any τ > 0, there exists a sequence (un(τ ))n∈N such that
limn→∞ nF̄(un(τ )) = τ and

lim
n→∞

P(M1:n ≤ un(τ )) = e−θτ , (2.1)

where F̄ = 1 − F and M1:n = max{X1, . . . , Xn}. Some thoughts reveal that, if the
extremal index exists, then the convergence in (2.1) holds for any sequence un(τ ) such that
limn→∞ nF̄(un(τ )) = τ (see, e.g., the beginning of Section 5 in [18]) and that we may always
choose un(τ ) = F←(1 − τ/n) (see the proof of Theorem 1.7.13 in [22]). Subsequently, the
latter definition is tacitly employed, where F←(p) = inf{x ∈ R : F(x) ≥ p} denotes the
(left-continuous) generalized inverse of F .
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The point process of exceedances is defined as

N (τ )
n (B) =

n∑
t=1

1(t/n ∈ B, X t > un(τ )),

for any Borel set B ⊂ E := (0, 1] and τ ≥ 0. If the time series is serially independent, then
it is well-known that N (τ )

n converges in distribution to a homogeneous Poisson process on E
with intensity τ . In the serial dependent case, if the extremal index exists and a certain mixing
condition is met, then a necessary and sufficient condition for weak convergence of N (τ )

n is as
follows, see Theorems 4.1 and 4.2 in [18]: there exists a ∆(un(τ ))-separating sequence (qn)n
(see Section 3 for a definition) such that the following limit exists for all m ∈ N≥1:

π (m) = lim
n→∞

πn(m), πn(m) = P(N (τ )
n (Bn) = m | N (τ )

n (Bn) > 0), (2.2)

where Bn = (0, qn/n]. In that case, the convergence in the last display holds for any ∆(un(τ ))-
separating sequence (qn)n and the weak limit of N (τ )

n , say N (τ ), is a compound Poisson process
with intensity θτ and compounding distribution π , notionally N (τ )

∼ CPP(θτ, π). If the
∆(un(τ ))-condition holds for all τ > 0, then π does not depend on τ ([18], Theorem 5.1),
which will be tacitly assumed throughout. Motivated by (2.2), the distribution π is commonly
referred to as the (limiting) cluster size distribution. Remark 2.2 provides a theoretical
connection to the tail process introduced in [1].

Let N (τ )
E denote the distributional limit of N (τ )

n (E). Since the distribution of N (τ ) is
CPP(θτ, π), we have the stochastic representation

N (τ )
E

d
=

η(θτ )∑
i=1

ξi

for independent random variables η(θτ ) ∼ Poisson(θτ ) and ξi ∼ π . As a consequence, we
have

p(τ )(0) = P(N (τ )
E = 0) = e−θτ ,

p(τ )(m) = P(N (τ )
E = m) =

m∑
j=1

e−θτ (θτ ) j

j !
π∗ j (m), m ∈ N≥1,

where π∗ j is the j th convolution of π . As explicitly written down in Equation (1.5) in [26], the
previous equations allow to obtain, for any τ > 0, a recursion expressing π (m) as a function
of θ, p(τ )(1), . . . , p(τ )(m) and π (1), . . . , π (m−1). This recursion then allows for estimation of
π (m) based on estimation of θ, p(τ )(1), . . . , p(τ )(m), which is precisely the approach followed
in [26].

It may be argued that this approach suffers from the fact that the obtained recursion is
depending on τ , which ultimately implies that the final estimator depends on τ as well. Hence,
the statistician has either to make a choice, or to apply a suitable aggregation scheme. Within
the present paper, we propose to instead consider a different recursion based on

p̄(m) =
∫
∞

0
p(τ )(m)θe−θτ dτ = E[p(Z )(m)],

where Z ∼ Exponential(θ). Perhaps surprisingly, and unlike for p(τ )(m) above, the respective
recursion does not even depend on θ , which allows for even simpler estimation. More precisely,
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a simple calculation shows that p̄(0) =
∫
∞

0 θe−2θτ dτ = 1/2 and

p̄(m) =
m∑
j=1

π∗ j (m)
θ

j !

∫
∞

0
(θτ ) je−2θτ dτ =

m∑
j=1

1
2 j+1π

∗ j (m)

for m ∈ N≥1. As a consequence,

p̄(m) =
1
4
π (m)+

m∑
j=2

1
2 j+1

m−1∑
k= j−1

π∗( j−1)(k)π (m − k)

=
1
4
π (m)+

m−1∑
k=1

π(m − k)
k+1∑
j=2

π∗( j−1)(k)
1

2 j+1

=
1
4
π (m)+

1
2

m−1∑
k=1

π (m − k) p̄(k),

which in turn implies

π (m) = 4 p̄(m)− 2
m−1∑
k=1

π (m − k) p̄(k), m ∈ N≥1. (2.3)

Obviously, Eq. (2.3) allows to recursively derive (π(1), . . . , π (m)) from ( p̄(1), . . . , p̄(m)). The
plug-in principle hence allows to estimate the former vector based on suitable estimators for
the latter vector.

For the estimation of ( p̄(1), . . . , p̄(m)), a transformation extensively used in [4,5] comes in
handy: the random variable

Z1:n = n{1− F(M1:n)}

is asymptotically exponentially distributed with parameter θ , for n→∞. Indeed, since vn(τ ) =
F→(1−τ/n) with the right-continuous generalized inverse F→ satisfies limn→∞ F̄(vn(τ )) = τ ,
whence

P(Z1:n ≥ τ ) = P(M1:n ≤ vn(τ ))→ e−θτ (2.4)

for n → ∞ by (2.1). Next, for motivating our estimator it is instructive to consider, for two
independent copies (X t )t∈Z, (X̃ t )t∈Z, the random variable

N (Z̃1:n )
n (E) =

n∑
t=1

1(X t > un(Z̃1:n))
a.s.
=

n∑
t=1

1(X t > M̃1:n),

where Z̃1:n = n{1 − F(M̃1:n)}. Then, conditional on Z̃1:n , the random variable N (Z̃1:n )
n (E)

approximately follows a compound Poisson distribution with intensity θ Z̃1:n and compounding
distribution π , for sufficiently large n. As a consequence,

P
(
N (Z̃1:n )
n (E) = m | Z̃1:n

)
≈ p(Z̃1:n )(m),

which readily implies

P
(
N (Z̃1:n )
n (E) = m

)
≈ E

[
p(Z̃1:n )(m)

]
≈ p̄(m), (2.5)

where the second approximation is due to (2.4). The latter display allows for estimation of
p̄(m) based on the method of moments.
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More precisely, suppose we observe a finite-stretch of observation from the time series,
say X1, . . . , Xn . Divide the observation period into non-overlapping successive blocks of size
b = bn , that is, into blocks Ii = I dbi (db for ‘disjoint blocks’),

I1 = {1, . . . , b}, I2 = {b + 1, . . . , 2b}, . . . , Ik = {(k − 1)b + 1, . . . , kb},

where k = kn = ⌊n/bn⌋. A possible remainder block I ◦k+1 = {kb + 1, . . . , n} of cardinality
|Ik+1| < bn will have a negligible influence on the subsequent estimators and will hence be
discarded. Asymptotically, (bn)n needs to be an intermediate sequence satisfying b = bn →∞
and bn = o(n). Now, by well-known heuristics, cluster functionals (i.e., statistics that depend
only the ‘large observations’ within a specific block I j ) calculated based on disjoint blocks of
observations may be considered asymptotically independent, whence (2.5) suggests to estimate
p̄(m) by

ˆ̄pn(m) = ˆ̄p db
n (m) =

1
kn(kn − 1)

kn∑
i,i ′=1
i ̸=i ′

1

{∑
s∈Ii ′

1
(
Xs > Mdb

ni

)
= m

}
,

where the upper index ‘db’ refers to the fact that the underlying blocks are disjoint and where
Mdb

ni = max{X t : t ∈ Ii }. Following Berghaus and Bücher [4] and Bücher and Jennessen [5], a
possibly more efficient version that is based on sliding/overlapping blocks instead of disjoint
blocks is given by

ˆ̄p sb
n (m) =

1
|Dn|

∑
(i,i ′)∈Dn

1

{∑
s∈I sb

i ′

1
(
Xs > M sb

ni

)
= m

}
,

where I sbi = {i, . . . , i + bn − 1},M sb
ni = max{X t : t ∈ I sbi } and where Dn is the set of all

pairs (i, i ′) ∈ {1, . . . , n − bn + 1}2 such that I sbi ∩ I sbi ′ = ∅. Obviously, since I sbi ∩ I sbi ′ = ∅,
the same heuristics as in the disjoint blocks case applies: the expectation of each summand is
approximately equal to p̄(m).

Based on the recursion (2.3), the final (disjoint and sliding blocks) estimators for π (m),
m ∈ N≥1, are defined, for mb ∈ {db, sb}, by

π̂mb
n (m) = 4 ˆ̄pmb

n (m)− 2
m−1∑
k=1

π̂mb
n (m − k) ˆ̄pmb

n (k). (2.6)

Remark 2.1. The estimators ˆ̄p db
n and ˆ̄p sb

n (m) can be interpreted as U-statistics, which we
exemplarily illustrate for ˆ̄p db

n . Indeed, we may write

ˆ̄p db
n (m) =

(
kn
2

)
−1

kn∑
i,i ′=1
i<i ′

hm
(
(Xs)s∈Ii ′ , (Xs)s∈Ii

)
with hm defined by

hm
(
(Xs)s∈Ii ′ , (Xs)s∈Ii

)
=

1
2

[
1
{∑
s∈Ii ′

1
(
Xs > Mdb

ni

)
= m

}
+ 1

{∑
s∈Ii

1
(
Xs > Mdb

ni ′

)
= m

} ]
.
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Since hm is a symmetric kernel function with

E
[
hm

(
(Xs)s∈I1 , (Xs)s∈I2

)]
= P

(∑
s∈I1

1(Xs > Mdb
n2) = m

)
≈ p̄(m),

the estimator ˆ̄pn(m) can be considered an (approximate) U-statistic for p̄(m). The same
applies for ˆ̄p sb

n (m). The U-statistics representation suggests an alternative approach to proving
our central results based on, e.g., suitable adaptations of the Hoeffding decomposition. The
approach will be investigated in a future research project from a higher level.

Remark 2.2. The limiting cluster size distribution is closely connected to the tail process
introduced in [1], see also the monograph [19]. Since the tail process may only be defined
for heavy tailed stationary time series, a standardization is necessary first. For simplicity, we
assume that F is continuous. In that case, for any t ∈ Z, Z t = 1/{1 − F(X t )} is standard
Pareto-distributed and the event X t > un(τ ) is (almost surely) equivalent to Z t > n/τ . Under
the assumption that (Z t )t∈Z is regularly varying (i.e., all vectors of the form (Zk, . . . , Zℓ) are
multivariate regularly varying), there exists a process (Yt )t∈Z, the tail process of (Z t )t∈Z, such
that, for every s, t ∈ Z with s ≤ t ,

P
(
x−1(Zs, . . . , Z t ) ∈ · | Z0 > x

) w
→ P

(
(Ys, . . . , Yt ) ∈ ·

)
(x →∞),

see Theorem 2.1 in [1]. If we additionally assume that, for the sequence (qn)n from (2.2) and
for all x, y > 0,

lim
m→∞

lim sup
n→∞

P
(

max
m≤|t |≤qn

Z t > nx | Z0 > ny
)
= 0, (2.7)

then π may be expressed through the tail process, see Example 6.2.9 in [19]:

π (m) = lim
n→∞

P
( ∑
1≤t≤qn

1(X t > un(τ )) = m
⏐⏐⏐ max
1≤t≤qn

X t > un(τ )
)

= P
(∑
t≥0

1(Yt > 1) = m
⏐⏐⏐ max
t≤−1

Yt ≤ 1
)
, m ∈ N≥1.

In other words, π (m) is the conditional probability that the ‘number of time points where the
tail process exceeds the value 1’ equals m, conditional on the event that the tail process does
not exceed 1 until t = −1. It is worthwhile to mention that (2.7) is for instance satisfied
for geometrically ergodic Markov chains, short-memory linear or max-stable processes and
m-dependent sequences; see [6], page 7, and [19], page 151.

3. Regularity conditions

This section summarizes technical regularity conditions which are imposed to derive
asymptotic properties for the estimators from the previous section. First of all, the serial
dependence will be controlled via alpha- and beta-mixing coefficients. For two sigma-fields
F1,F2 on a probability space (Ω ,F ,P), let

α(F1,F2) = sup
A∈F1,B∈F2

|P(A ∩ B)− P(A)P(B)|,

β(F1,F2) =
1
2

∑
i∈I

∑
j∈J

sup |P(Ai ∩ B j )− P(Ai )P(B j )|,
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where the last supremum is over all finite partitions (Ai )i∈I ⊂ F1 and (B j ) j∈J ⊂ F2 of Ω .
For −∞ ≤ p < q ≤ ∞ and ε ∈ (0, 1], let Bεp:q denote the sigma algebra generated by
U ε

s := Us1(Us > 1− ε) with s ∈ {p, . . . , q}; here, Us = F(Xs). Finally, for ℓ ≥ 1, let

αε(ℓ) = sup
k∈N

α(Bε1:k,Bεk+ℓ:∞), βε(ℓ) = sup
k∈N

β(Bε1:k,Bεk+ℓ:∞).

Conditions on the decay of the mixing coefficients will be imposed below.
Formally introducing conditions that connect the existence of the cluster size distribution to

weak convergence of the exceedance process requires yet another weaker version of the alpha
mixing coefficient. Fix m ≥ 1 and τ1 > · · · > τm > 0. For 1 ≤ p < q ≤ n, let F (τ1,...,τm )

p:q,n denote
the sigma-algebra generated by the events {Xs > un(τ j )} for s ∈ {p, . . . , q} and j ∈ {1, . . .m}.
For ℓ ∈ {1, . . . , n}, define

αn,ℓ(τ1, . . . , τm) = sup{|P(A ∩ B)− P(A)P(B)| :
A ∈ F (τ1,...,τm )

1:s,n , B ∈ F (τ1,...,τm )
s+ℓ:n,n , 1 ≤ s ≤ n − ℓ}.

The condition ∆n({un(τ j )}1≤ j≤m) is said to hold if there exists a sequence (ℓn)n with ℓn = o(n)
such that αn,ℓn (τ1, . . . , τm) = o(1) as n → ∞. A sequence (qn)n with qn = o(n) is said to
be ∆n({un(τ j )}1≤ j≤m)-separating if there exists a sequence (ℓn)n with ℓn = o(qn) such that
αn,ℓn (τ1, . . . , τm) = o(qn/n) as n → ∞. If ∆n({un(τ j )}1≤ j≤m) is met, then such a sequence
always exists, simply take qn = ⌊max{nα1/2n,ℓn , (nℓn)

1/2
}⌋.

As already stated in Section 2, by Theorems 4.1 and 4.2 in [18], if the extremal index exists
and the ∆(un(τ ))-condition is met (m = 1), then a necessary and sufficient condition for weak
convergence of N (τ )

n is the convergence in (2.2) for some ∆(un(τ ))-separating sequence (qn)n .
Moreover, in that case, the convergence in (2.2) holds for any ∆(un(τ ))-separating sequence
(qn)n , and the weak limit of N (τ )

n , say N (τ ), is a compound Poisson process CPP(θτ, π). If the
∆(un(τ ))-condition holds for any τ > 0, then π does not depend on τ ([18], Theorem 5.1).

A multivariate version of the latter results is stated in [24], see also the summary
in [26], page 278, and the thesis [15]. Suppose that the extremal index exists and that the
∆(un(τ1), un(τ2))-condition is met for any τ1 ≥ τ2 ≥ 0, τ1 ̸= 0. Moreover, assume that there
exists a family of probability measures {π (σ )

2 : σ ∈ [0, 1]} on J = {(i, j) ∈ N2
≥0 : i ≥ j ≥

0, i ≥ 1}, such that, for all (i, j) ∈ J ,

lim
n→∞

P(N (τ1)
n (Bn) = i, N (τ2)

n (Bn) = j | N (τ1)
n (Bn) > 0) = π (τ2/τ1)

2 (i, j),

where Bn = (0, qn/n] and qn is some ∆(un(τ1), un(τ2))-separating sequence. In that case, the
two-level point process N (τ1,τ2)

n = (N (τ1)
n , N (τ2)

n ) converges in distribution to a point process
N (τ1,τ2) = (N (τ1,τ2)

1 , N (τ1,τ2)
2 ) with characterizing Laplace transform explicitly stated in [26] on

top of page 278. It can further be shown that, under the above mixing assumptions and if the
extremal index exists, the existence of the limit in the latter display is even necessary for the
distributional convergence of N (τ1,τ2)

n ; the limit π (τ2/τ1)
2 then necessarily depends on τ1 and τ2

only through τ2/τ1, see Theorem 2.5 and page 535 in [24]. Throughout, let

N (τ1,τ2)
E = (N (τ1,τ2)

E,1 , N (τ1,τ2)
E,2 ) = N (τ1,τ2)(E),

whose marginal distributions are equal to N (τ1)
E and N (τ2)

E and which further allows for the
stochastic representation

N (τ1,τ2)
E

d
=

η(θτ1)∑
i=1

(ξ (τ2/τ1)i,1 , ξ
(τ2/τ1)
i,2 ),
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where η(θτ1) ∼ Poisson(θτ1) is independent of the bivariate i.i.d. sequence (ξ
(τ2/τ1)
i,1 , ξ

(τ2/τ1)
i,2 ) ∼

π
(τ2/τ1)
2 . As a consequence, the distribution of N (τ1,τ2)

E on N2
≥0, say

p(τ1,τ2)2 (i, j) = P(N (τ1,τ2)
E = (i, j)),

is given by p(τ1,τ2)2 (0, 0) = e−θτ1 , p(τ1,τ2)2 (i, j) = 0 for i < j and

p(τ1,τ2)2 (i, j) = e−θτ1
i∑

k=1

(θτ1)k

k!
π
(τ2/τ1),∗k
2 (i, j), i ≥ j ≥ 0, i ≥ 1,

where π (τ2/τ1),∗k
2 is the kth convolution of π (τ2/τ1)

2 .
The assumptions needed to derive asymptotic properties for ˆ̄pmb

n (m) and π̂mb
n (m) are

collected in the following condition.

Condition 3.1.

(i) The stationary time series (Xs)s∈N has an extremal index θ ∈ (0, 1] and the two-level
point process of exceedances N (τ1,τ2)

n converges weakly to N (τ1,τ2).
(ii) There exist constants ε1 ∈ (0, 1), η > 3 and C > 0 such that

αε1 (n) ≤ Cn−η ∀ n ∈ N.

The block size bn converges to infinity and satisfies

kn = o(bηn), n→∞,

(i.e., a slow decrease of the mixing coefficients requires large block sizes). Further, there
exists a sequence ℓn →∞ with ℓn = o(bn) and knαε1 (ℓn) = o(1) as n→∞.

(iii) For some c > 1− ε1 with ε1 from (ii), one has

P(N ′n1 ≤ c) = o(k−1n ),

where N ′n1 = max{Us : s ∈ {1, . . . , ⌊bn/2⌋}} and Us = F(Xs).
(iv) (Bias.) For any j ∈ N≥1, as n→∞,

E
[
ϕn, j (Z1:bn )

]
= p̄( j)+ o

(
k−1/2n

)
,

where ϕn, j (z) = P(N (z)
bn = j) and N (z)

bn =
∑bn

s=1 1(Us > 1− z/bn).

Remark 3.2. Under Condition 3.1(i)–(ii), Condition 3.1(iii) is equivalent to the following
condition: For some c > 1− ε1 with ε1 from 3.1(ii), one has

lim
n→∞

P
(

min
i=1,...,2kn

N ′ni ≤ c
)
= 0, (3.1)

where N ′ni = max{Us : s ∈ [(i − 1)bn/2+ 1, ibn/2] ∩ N} for i ∈ {1, . . . , 2kn} (note that (3.1)
corresponds to Condition 2.1(v) in [4]). This can be seen as follows. First,⏐⏐⏐P(

min
i=2,4,...,2kn

N ′ni > c
)
−

∏
i=2,4,...,2kn

P
(
N ′ni > c

)⏐⏐⏐ ≤ knαε1 (⌊bn/2⌋ + 1) ≤ Cknb−ηn ,

which converges to zero by Condition 3.1(ii). Next, by stationarity,∏
i=2,4,...,2kn

P
(
N ′ni > c

)
= P

(
N ′n1 > c

)kn
=

(
1−

knP
(
N ′n1 ≤ c

)
kn

)kn
,
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which converges to 1 iff Condition 3.1(iii) holds. The previous two displays imply

lim
n→∞

P
(

min
i=2,4,...,2kn

N ′ni > c
)
= 1 ⇐⇒ P(N ′n1 ≤ c) = o(k−1n ).

The same can be shown for the minimum over the odd indices, which shows that (3.1) follows
from Condition 3.1(iii). Along with this equivalence the other implication is trivial since
P(mini=2,4,...,2kn N

′

ni ≤ c) ≤ P(mini=1,...,2kn N
′

ni ≤ c), which also holds for odd indices i .

The conditions are weaker versions of the conditions imposed in [4], which in turn are
mostly based on [26]. In contrast to those papers, no moment condition on the increments of
τ ↦→ N (τ )

n (E) is needed, which may be explained by the fact that the cluster functionals showing
up in the definition of ˆ̄pn(m) are bounded by 1. This also allows for a great simplification of
the α-mixing condition in comparison to the last-named references. For the treatment of the
sliding blocks estimator, we will additionally impose a beta-mixing condition below, which is
used for proving tightness of the scaled estimation error of empirical compound probabilities,
see Section 7.

An exemplary time series model meeting the above conditions is given by the max-
autoregressive process of order 1, ARMAX in short, defined by the recursion

Xs = max{αXs−1, (1− α)Zs}, s ∈ Z,

where α ∈ [0, 1) and (Zs)s is an i.i.d. sequence of standard Fréchet random variables. A
stationary solution is given by Xs = max j≥0(1−α)α j Zs− j such that the stationary distribution
is standard Fréchet as well. The extremal index is θ = 1−α and the cluster size distribution is
geometric, i.e., π ( j) = α j−1(1− α) for j ≥ 1, see Chapter 10 in [2]. Conditions (i)–(iii) were
shown to be satisfied in [4], page 2322. Regarding Condition (iv), extensive simulations have
shown that the bias E[ϕn, j (Z1:bn )] − p̄( j) is of the order b−1n , such that Condition (iv) is met
provided kn = o(b2n).

Further discussions of the conditions in general and details on models defined by stochastic
difference equations fulfilling slight adaptations of conditions (i) and (ii) and (iv) are provided
in [4,26].

4. Main results

In this section we derive asymptotic normality of both the disjoint and sliding blocks esti-
mators from Section 2. A comparison of the asymptotic variances shows that the sliding blocks
version exhibits a smaller asymptotic variance than the disjoint blocks version. Subsequently,
for mb ∈ {db, sb}, let

smb
n, j =

√
kn

{
ˆ̄pmb
n ( j)− p̄( j)

}
, j ∈ N≥1,

vmb
n, j =

√
kn

{
π̂mb
n ( j)− π ( j)

}
, j ∈ N≥1. (4.1)

For simplicity, we will further assume that F is continuous.

Theorem 4.1. Assume that Condition 3.1 is met. Then, for any m ∈ N≥1,

(sdbn,1, . . . , s
db
n,m)

d
−→ (sdb1 , . . . , s

db
m ) ∼ Nm(0,Σ db

m )

as n→∞, where the covariance matrix Σ db
m = (ddb

j, j ′ )1≤ j, j ′≤m is given by

ddb
j, j ′ =

∫
∞

0

∫
∞

0
Cov

(
1(N (τ )

E = j)+ p(Z )( j),
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1(N (τ ′)
E = j ′)+ p(Z )( j ′)

)
dH (τ ) dH (τ ′). (4.2)

Here, H denotes the c.d.f. of the Exp(θ)-distribution, and N (τ )
E ∼ p(τ ) and Z ∼ Exp(θ) are

such that

P(N (τ )
E = j, Z > µ) =

{
p(τ,µ)2 ( j, 0) , τ ≥ µ

e−θµ1( j = 0) , τ < µ
( j ∈ N≥0, µ > 0)

and

P(N (τ )
E = j, N (τ ′)

E = j ′) =

{
p(τ,τ

′)
2 ( j, j ′) , τ ≥ τ ′

p(τ
′,τ )

2 ( j ′, j) , τ < τ ′
( j, j ′ ∈ N≥0).

Theorem 4.2. In addition to Condition 3.1 assume that
√
knβε2 (bn) = o(1) for some ε2 > 0.

Then, for any m ∈ N≥1,

(ssbn,1, . . . , s
sb
n,m)

d
−→ (ssb1 , . . . , s

sb
m ) ∼ Nm(0,Σ sb

m )

as n→∞, where the covariance matrix Σ sb
m = (dsb

j, j ′ )1≤ j, j ′≤m is given by

dsb
j, j ′ = 2

∫ 1

0

{∫
∞

0

∫
∞

0
Cov

(
1(X (τ )

1,ξ = j),1(Y (τ ′)
1,ξ = j ′)

)
dH (τ )dH (τ ′)

+

∫
∞

0
Cov

(
1(X (τ )

3,ξ = j), p(Y3,ξ )( j ′)
)
dH (τ )

+

∫
∞

0
Cov

(
1(X (τ )

3,ξ = j ′), p(Y3,ξ )( j)
)
dH (τ )

+ Cov
(
p(X2,ξ )( j), p(Y2,ξ )( j ′)

)}
dξ, (4.3)

where for 0 ≤ τ ≤ τ ′ and x, y > 0,

P
(
X (τ )
1,ξ = j, Y (τ ′)

1,ξ = j ′
)
=

j∑
l=0

j ′∑
r= j−l

p(ξτ )(l)p(ξτ
′)( j ′ − r )

× p((1−ξ )τ
′,(1−ξ )τ )

2 (r, j − l),

P
(
X2,ξ > x, Y2,ξ > y

)
= exp

(
−θ{(x ∧ y)ξ + (x ∨ y)}

)
,

P
(
X (τ )
3,ξ = j, Y3,ξ > x

)
= e−θξ x

j∑
l=0

p(ξτ )(l)p((1−ξ )τ,(1−ξ )x)2 ( j − l, 0)1(x ≤ τ )

+ e−θx p(τξ )( j)1(x > τ ).

It is worthwhile to mention that X (τ )
1,ξ , Y

(τ )
1,ξ , X

(τ )
3,ξ are equal in distribution to N (τ )

E and that
X2,ξ , Y2,ξ , Y3,ξ are exponentially distributed with parameter θ .

Regarding the estimator π̂mb
n ( j) from (2.6), recall the definition of vmb

n, j in (4.1) and of
(smb

1 , . . . , smb
m ) and Σmb

m in Theorem 4.1 (mb = db) or Theorem 4.2 (mb = sb).

Corollary 4.3. Let mb ∈ {db, sb}. Under the conditions of Theorem 4.1 (mb = db) or
Theorem 4.2 (mb = sb) we have, for any m ∈ N≥1 and as n→∞,

(vmb
n,1, . . . , v

mb
n,m)

d
−→ (vmb

1 , . . . , vmb
m ) ∼ Nm(0,Γmb

m ),
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where vmb
1 = 4smb

1 and

vmb
j = 4smb

j − 2
j−1∑
k=1

π( j − k)smb
k − 2

j−1∑
k=1

p̄( j − k)vmb
k , j ≥ 2.

This recursion allows to write (vmb
1 , . . . , vmb

m )⊤ = Am(smb
1 , . . . , smb

m )⊤ for some matrix Am ∈

Rm×m , such that the covariance matrix Γmb
m may be written as Γmb

m = AmΣ
mb
m A⊤m .

In the next theorem it will be shown that the asymptotic variances of the sliding blocks
estimators are not larger than the asymptotic variances of their disjoint blocks counterparts. As
a consequence, the sliding blocks estimators can be considered at least as efficient and should
usually be preferred in practice.

Theorem 4.4. Under the conditions of Theorem 4.2 we have, for any m ∈ N,

Σ sb
m ≤L Σ db

m and Γ sb
m ≤L Γ db

m ,

where ≤L denotes the Loewner-ordering between symmetric matrices. In particular, Var(ssbj ) ≤
Var(sdbj ) and Var(vsbj ) ≤ Var(vdbj ) for any j ∈ N≥1.

Example 4.5. In the case that the time series is serially independent, a simple calculation
yields π(i) = 1(i = 1) and π (σ )

2 (i, j) = (1 − σ )1(i = 1, j = 0) + σ1(i = 1, j = 1), which
implies

p(τ )(1) = τe−τ , p(τ
′,τ )

2 (1, 0) = (τ ′ − τ )e−τ
′

, p(τ
′,τ )

2 (1, 1) = τe−τ
′

for τ ′ ≥ τ ≥ 0, τ ′ ̸= 0. Lengthy computations show that ddb
1,1 = 5/108, such that σ 2,db

=

Var(vdb1 ) = 20/27 ≈ 0.7407. Likewise, σ 2,sb
= Var(vsb1 ) ≈ 0.3790. The competing blocks

estimator π̂ (τ ),Rob
n from [26] is known to satisfy√

kn
{
π̂ (τ ),Rob
n (1)− π (1)

} d
−→ N (0, µ2(τ )), µ2(τ ) = eτ (τ + (1− τ )2 − e−τ ).

see Corollary 4.2 in that reference or p. 3300 in [25]. It is worth to mention that µ2 is strictly
increasing with σ 2,db < µ2(τ ) iff τ > 0.7573.

Recall that θ = {
∑
∞

j=1 jπ ( j)}−1. As a consequence, following Hsing [16],Robert [26], the
extremal index θ may be estimated by

θ̂mb
n (m) =

{ m∑
j=1

j π̂mb
n ( j)

}−1
, mb ∈ {db, sb}, (4.4)

for sufficiently large m. More precisely, θ̂mb
n (m) should be considered an estimator for the

partial sum approximation θ(m) = {
∑m

j=1 jπ ( j)}−1. The following result is an immediate
consequence of Corollary 4.3, see also Corollary 4.2 in [26].

Corollary 4.6. Under the conditions of Theorem 4.1 (mb = db) or Theorem 4.2 (mb = sb)
we have, for any m ∈ N and as n→∞,√

kn
{
θ̂mb
n (m)− θ (m)

} d
−→ −

{ m∑
j=1

jπ ( j)
}−2 m∑

j=1

jvmb
j ∼ N (0, σ 2

mb(m)),

where σ 2
mb(m) =

{∑m
j=1 jπ ( j)

}−4 (1, . . . ,m)Γmb
m (1, . . . ,m)⊤.
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5. Finite-sample results

A simulation study was carried out to analyze the finite-sample performance of the
introduced estimators and to compare them with estimators from the literature. Results are
presented for the following three time series models which were also considered in [26] (with
a slightly different ARMAX-model).

• ARMAX-model:

Xs = max{αXs−1, (1− α)Zs}, s ∈ Z,

where α ∈ [0, 1) and (Zs)s is an i.i.d. sequence of standard Fréchet random variables.
We consider α = 0.5 resulting in θ = 0.5 and π(1) = 0.5, π (2) = 0.25, π (3) = 0.125,
π (4) = 0.0625 and π (5) = 0.03125 by Perfekt [24].
• Squared ARCH-model:

Xs = (2× 10−5 + λXs−1)Z2
s , s ∈ Z,

where λ ∈ (0, 1) and where (Zs)s denotes an i.i.d. sequence of standard normal random
variables. We consider λ = 0.5, for which the simulated values θ = 0.727 and
π (1) = 0.751, π (2) = 0.168, π (3) = 0.055, π (4) = 0.014 and π (5) = 0.008 were
obtained in [14].
• AR-model:

Xs = r−1Xs−1 + Zs, s ∈ Z,

where (Zs)s is an i.i.d. sequence of random variables that are uniformly distributed on
{0, 1/r, . . . , (r − 1)/r}. We consider r = 4, for which the simulated values θ = 0.75
and π (1) = 0.75, π (2) = 0.1875, π (3) = 0.0469, π (4) = 0.0117 and π (5) = 0.0029
were obtained in [24].

In all scenarios the sample size was fixed to n = 2 000, attention was restricted to π (m)
for m ≤ 5, and the block size b was chosen from the set {6, 8, . . . , 36, 38}. Note that it is not
sensible to use block sizes smaller than m, as the summands making up ˆ̄pn(m) are necessarily
zero in such a case, which eventually results in a large bias. All results are based on N = 500
simulation runs each.

For completeness, and inspired by Northrop [23], a slight modification of the estimators
from Section 2 has been considered as well. For its motivation, note that Xs > Mmb

ni iff
F̂n(Xs) > 1− Ẑmb

ni /bn (a.s.), where Ẑmb
ni = bn{1− F̂n(Mmb

ni )} with the empirical c.d.f. F̂n(x) =
n−1

∑n
i=1 1(X i ≤ x). For large block size bn , we further have Ẑmb

ni ≈ Ŷmb
ni = −bn log F̂n(M

mb
ni ),

which suggests to define

ˆ̄p y,db
n (m) =

1
kn(kn − 1)

kn∑
i,i ′=1
i ̸=i ′

1

{∑
s∈Ii ′

1
(
F̂n(Xs) > 1− Ŷ db

ni /bn
)
= m

}
,

ˆ̄p y,sb
n (m) =

1
|Dn|

∑
(i,i ′)∈Dn

1

{∑
s∈I sb

i ′

1
(
F̂n(Xs) > 1− Ŷ sb

ni /bn
)
= m

}
.

Finally, let π̂ y,mb
n be defined in terms of ˆ̄p y,mb

n as in (2.6). For the ease of a unified notation,
the estimators from Section 2 will subsequently be denoted by ˆ̄p z,mb

n and π̂ z,mb
n .
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Fig. 1. Variance multiplied by 103 for the estimation of π (m) within the squared ARCH-model for m = 1, . . . , 5.

5.1. Comparison of the introduced estimators for π

In this section we compare the finite-sample performance of the four introduced estimators
π̂ z,db
n , π̂ z,sb

n , π̂ y,db
n and π̂ y,sb

n .
We start with a detailed analysis of the variance, bias and mean squared error (MSE) as a

function of the block size parameter b. Results are only reported for the squared ARCH-model;
the corresponding figures for the ARMAX- and AR-model show roughly the same qualitative
behavior and can be found in Appendix D in the supplementary material. The variance is
depicted in Fig. 1, which can be seen to be increasing in the block size for all estimators. It is
further apparent that the Z - and Y -versions behave nearly identical (the curves of the Y -versions
are barely visible for m = 1 as they are covered by the curves of the Z -versions), whereas the
variance of the sliding blocks estimators is considerably smaller than for the disjoint blocks
estimators, uniformly over all block sizes. For the Z -version, this is in accordance with the
theoretical result from Theorem 4.4.

The bias is presented in Fig. 2 and can be seen to be either increasing or decreasing in b.
The largest absolute value of the bias is mostly decreasing in b and attained for small block
sizes, which may be explained by the fact that the approximation to the exponential distribution
in (2.4) becomes better. The bias curves for the sliding blocks estimators are smoother than
for the disjoint blocks versions, which may be explained by the fact that no observations have
to be discarded when b is not a divisor of n. One can further see that the Y -versions exhibit
a substantially smaller absolute bias for small block sizes (except for m = 2); an observation
that has also been made in [5]. However, we observe that neither of our estimators can be said
to be overall superior with regard to the smallest bias.

The mean squared error is outlined in Fig. 3. In many cases, the MSE-curves show a
similar behavior as the variance-curves for large block sizes, since there the variance is
dominating over the squared bias. Likewise, the large squared bias for small block sizes can
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Fig. 2. Bias multiplied by 103 for the estimation of π (m) within the squared ARCH-model for m = 1, . . . , 5.

Fig. 3. Mean squared error multiplied by 103 for the estimation of π (m) within the squared ARCH-model for
m = 1, . . . , 5.

be identified in the MSE-curves as well, eventually resulting in a typical u-shape. Again, the
Y -versions perform better for small block sizes (except for m = 2). Moreover, the sliding
blocks estimators outperform the disjoint blocks estimators with regard to the MSE. Since this
qualitative behavior holds uniformly over all models under consideration, we omit the disjoint
blocks estimators in the subsequent discussion.
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Fig. 4. Mean squared error multiplied by 103 for the estimation of π (m) within the squared ARCH-model for
m = 1, . . . , 5 and the total variation between π̂ and π .

We finally remark on the choice of the block size parameter in practical applications, which
is a difficult problem in general, with no universal (yet optimal) solution. In the specific context
of estimating π ( j) up to j ≤ m, one may apply standard eye-based approaches, like identifying
plateaus in the plot b ↦→ π̂n( j), possibly for each value of j separately, or, for convenience,
just for j = m (see also [4], page 2328).

5.2. Comparison with competing estimators for π

In this section, we compare the performance of our sliding blocks estimators for π (m) with
the following competitors from the literature: the integrated version of the blocks estimator
from [26] with parameters σ = 0.7 and φ = 1.3 (page 276 in that reference), the blocks
estimator from [16] with vn = Xn−⌊n/sn⌋:n , where sn = 2(bn − 3) (see (1.4) in [16] and (1.2)
in [26], where a similar same choice has been made), and the inter-exceedance times estimator
from [12] with N = 3kn (see equation (4.12) in that reference).

In Fig. 4, the MSE is plotted as a function of the blocksize in the squared ARCH-model
(see Appendix D in the supplementary material for other models and the bias- and variance-
curves). In addition, in order to evaluate the overall accuracy of the estimators, Fig. 4 also
presents results on a version of the total variation distance between the cluster size distribution
and its estimator defined by

dTV(5)(π̂ , π) :=
1
2

5∑
m=1

|π̂n(m)− π (m)|.

We can see that the MSE is mostly decreasing for small blocksizes and tends to increase
from an intermediate blocksize onwards, which is due to the common bias–variance-tradeoff.
The MSE-curves of our sliding blocks estimators are very smooth compared to the competing
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Table 1
Minimal mean squared error multiplied by 103 for the AR-model, the maxAR-model and the squared ARCH-model.
The estimator with the row-wise smallest MSE is in boldface.

Model m π (m) Sliding, Z Sliding, Y Robert Hsing Ferro

AR 1 0.750 8.255 6. 746 12.951 20.094 4.007
2 0.188 2.374 1.636 8.732 7.352 3.683
3 0.047 1.679 1.301 1.090 2.864 1.423
4 0.012 0.861 0.497 0.113 0.277 0.236
5 0.003 0.159 0.088 0.008 0.017 0.035

ARMAX 1 0.500 2.642 1.650 6.819 5.318 5.343
2 0.250 0.495 0.434 2.177 1.586 3.460
3 0.125 0.186 0.311 1.763 1.816 2.118
4 0.062 0.252 0.179 1.144 1.011 2.454
5 0.031 0.206 0.086 0.474 0.390 2.350

sqARCH 1 0.751 3.044 1.860 5.631 28.795 7.001
2 0.168 1.436 2.677 4.706 9.043 4.418
3 0.055 0.842 0.503 1.111 3.214 3.439
4 0.014 0.389 0.242 0.145 1.215 1.294
5 0.008 0.251 0.188 0.055 0.150 0.372

estimators and lie uniformly below their MSE-curves in many cases. Generally, the estimator
by Robert and our sliding blocks estimators outperform the estimators by Ferro and Hsing in
almost all scenarios under consideration. With regard to the total variation distance, one can
see that our sliding blocks estimators outperform the competitors almost uniformly over all
blocksizes.

The minimum values of the mean squared error (minimum over b) are of particular interest.
They are presented for all models under consideration in Table 1. The estimator π̂ z,sb

n wins
twice, π̂ y,sb

n wins seven times and Robert’s estimator five times, while the estimators by
Ferro wins once. It is worth to mention that the sliding blocks estimators cover all minimum
values within the ARMAX-model, and Robert’s estimator seems to perform especially well for
estimating π (m) in case that value is very close to zero. The latter may be explained by the
fact that the estimator is forced to be non-negative by definition (which is not the case for our
estimators), which results in a high proportion of zero estimates if π (m) ≈ 0 and hence a small
estimation variance.

Remark 5.1. The performance of the extremal index estimator θ̂mb
n (m) from (4.4) was also

investigated in the above setting. More precisely, attention was restricted to the z-version
of θ̂ sbn (8), which was then compared with other estimators for the extremal index from the
literature: the bias-reduced sliding blocks estimator from [27], the integrated version of the
blocks estimator from [26], the intervals estimator from [13], the ML-estimator from [29],
the pseudo ML-estimator from [4] and the CFG-estimator from [5] (based on sliding blocks).
While our estimator showed a similar qualitative behavior (see Fig. D.19 in the supplementary
material), it was found to be mostly inferior to its competitors, whence we cannot recommend
it for further use.

6. Proofs of the main results

Throughout the paper, we use the notation an ≲ bn if there exists a constant C not depending
on n such that an ≤ Cbn . We start by arguing that we may slightly redefine the estimators,
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which will greatly simplify the notational complexity. For m ∈ N≥0, let

˜̄p db
n (m) =

1
k2n

kn∑
i,i ′=1

1

{ ∑
s∈I db

i ′

1
(
Xs > Mdb

ni

)
= m

}
,

˜̄p sb
n (m) =

1
(n − bn + 1)2

n−bn+1∑
i,i ′=1

1

{∑
s∈I sb

i ′

1
(
Xs > M sb

ni

)
= m

}
.

Since
∑

s∈I dbi
1
(
Xs > Mdb

ni

)
= 1(m = 0) and | ˜̄p db

n | ≤ 1, we have, for m ≥ 1,

˜̄p db
n (m)− ˆ̄p db

n (m) =
(
1−

kn
kn − 1

)
˜̄p db
n (m) = oP(k−1/2n ).

As a consequence, throughout the proof, we may redefine ˆ̄p db
n (m) = ˜̄p db

n (m). A similar
argument holds for the sliding blocks version, whence we subsequently set ˆ̄p sb

n (m) = ˜̄p sb
n (m).

Next, we will introduce some additional notation. For s ∈ Z, let Us = F(Xs). For τ > 0
and m ∈ N≥0, let

p(τ ),dbn (m) =
1
kn

kn∑
i=1

1
(
N (τ ),db
bn ,i = m

)
,

p(τ ),sbn (m) =
1

n − bn + 1

n−bn+1∑
i=1

1
(
N (τ ),sb
bn ,i = m

)
,

where, for mb ∈ {db, sb},

N (τ ),mb
bn ,i =

∑
s∈Imb

i

1
(
Us > 1−

τ

bn

)
.

Denote the rescaled estimation error by

emb
n,m(τ ) =

√
kn

{
p(τ ),mb
n (m)− ϕn,m(τ )

}
, (6.1)

where ϕn,m is defined in Condition 3.1(iv). Note that the disjoint blocks version edbn,m has been
extensively studied in [26]. Next, let Zmb

ni = bn{1− F(Mmb
ni )} and, for x > 0, let

Ĥ db
n (x) =

1
kn

kn∑
i=1

1(Zdb
ni ≤ x), Ĥ sb

n (x) =
1

n − bn + 1

n−bn+1∑
i=1

1(Z sb
ni ≤ x),

denote the empirical c.d.f. of Zdb
n1, . . . , Z

db
nkn and Z sb

n1, . . . , Z
sb
n,n−bn+1, respectively. Finally, recall

H (x) = (1− e−θx )1(x ≥ 0), the c.d.f. of the exponential distribution with parameter θ .

Proof of Theorem 4.1. By continuity of F , we have Us > 1− Zdb
ni /bn iff Xs > Mdb

ni almost
surely, whence we may write, for j ∈ N≥1,

ˆ̄p db
n ( j) a.s.

= k−1n

kn∑
i=1

p
(Zdbni ),db
n ( j).

We may thus decompose

sdbn, j =
√
kn{ ˆ̄p db

n ( j)− p̄( j)} a.s.= An1 + An2 + An3, (6.2)
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where

An1 =
1
√
kn

kn∑
i=1

{∫
∞

0
1
(
N (τ ),db
bn ,i = j

)
− ϕn, j (τ ) dH (τ )

+ ϕn, j (Zdb
ni )− E[ϕn, j (Zdb

n1)]
}
,

An2 =

∫
∞

0
edbn, j (τ ) d(Ĥ

db
n − H )(τ ), An3 =

√
kn

{
E[ϕn, j (Zdb

n1)]− p̄( j)
}
.

We have An3 = o(1) by Condition 3.1(iv) and An2 = oP(1) by Lemma A.1 in the supplementary
material. Hence, setting

W db
n,i ( j) =

∫
∞

0
1
(
N (τ ),db
bn ,i = j

)
− ϕn, j (τ ) dH (τ )

+ϕn, j (Zdb
ni )− E[ϕn, j (Zdb

ni )], (6.3)

we have sdbn, j = k−1/2n
∑kn

i=1 W
db
n,i ( j)+ oP(1). The assertion then follows from

1
√
kn

kn∑
i=1

(
W db

n,i (1), . . . ,W
db
n,i (m)

) d
−→ Nm(0,Σ db

m )

as a consequence of Lemma A.2 in the supplementary material. □

Proof of Theorem 4.2. As in the proof of Theorem 4.1, we have

ˆ̄p sb
n ( j) a.s.

=
1

n − bn + 1

n−bn+1∑
i=1

p
(Z sbni ),sb
n ( j).

Similarly as in (6.2) and by using the bias Condition 3.1(vi), we can thus write

ssbn, j =
√
kn

{
ˆ̄p sb
n ( j)− p̄( j)

}
a.s.
=

√
kn

n − bn + 1

n−bn+1∑
i=1

W sb
n,i ( j)+

∫
∞

0
esbn, j (τ ) d(Ĥ

sb
n − H )(τ )+ o(1),

where W sb
n,i is defined as in (6.3), but with ‘db’ replaced by ‘sb’ everywhere. The assertion then

follows from
∫
∞

0 esbn, j d(Ĥ
sb
n − H ) = oP(1) by Lemma B.1 in the supplementary material and

√
kn

n − bn + 1

n−bn+1∑
i=1

(
W sb

n,i (1), . . . ,W
sb
n,i (m)

) d
−→ Nm(0,Σ sb

m )

by Lemma B.2 in the supplementary material. □

Proof of Corollary 4.3. Throughout, we omit the index mb ∈ {db, sb}. For j ∈ N≥1, set
ϕ j : R2 j−1

→ R, ϕ j (x) = 4x j − 2
∑ j−1

k=1 x2 j−kxk , such that

π̂n( j) = ϕ j ( ˆ̄pn(1), . . . , ˆ̄pn( j), π̂n(1), . . . , π̂n( j − 1)),

π ( j) = ϕ j ( p̄(1), . . . , p̄( j), π(1), . . . , π ( j − 1)).
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By Theorems 4.1 and 4.2, we know that (sn,1, . . . , sn,m)
d
−→ (s1, . . . , sm) ∼ Nm(0,Σm). To

prove the theorem, we use this result and apply induction over m. First,

vn,1 =
√
kn

{
π̂n(1)− π (1)

}
= 4

√
kn

{
ˆ̄pn(1)− p̄(1)

}
= 4sn,1,

such that (sn,1, s2,n, vn,1)
d
−→ (s1, s2, 4s1) = (s1, s2, v1). Second, assume we have

(sn,1, . . . , sn,m, vn,1, . . . , vn,m−1)
d
−→ (s1, . . . , sm, v1, . . . , vm−1)

for m ≥ 2. Then, the delta-method implies

vn,m =
√
kn

{
ϕm( ˆ̄pn(1), . . . , ˆ̄pn(m), π̂n(1), . . . , π̂n(m − 1))−

ϕm( p̄(1), . . . , p̄(m), π(1), . . . , π (m − 1))
}

= ϕ′m( p̄(1), . . . , p̄(m), π(1), . . . , π (m − 1))

· (sn,1, . . . , sn,m, vn,1, . . . , vn,m−1)⊤ + oP(1)

d
−→ 4sm − 2

m−1∑
k=1

π (m − k)sk − 2
m−1∑
k=1

p̄(m − k)vk =: vm,

where ϕ′m denotes the gradient of ϕm . We obtain that

(sn,1, . . . , sn,m, vn,1, . . . , vn,m)
d
−→ (s1, . . . , sm, v1, . . . , vm).

Since every v j is a linear function of (s1, . . . , sm) ∼ Nm(0,Σm), the vector (v1, . . . , vm) follows
an m-dimensional normal distribution as well. □

Proof of Theorem 4.4. We only need to prove Σ sb
m ≤L Σ db

m ; the assertion regarding Γmb
m is

an immediate consequence.
In the following, we assume for simplicity that Us and Z sb

ni are measurable with respect
to the Bε1·:· -sigma fields with ε1 from Condition 3.1(ii); the general case can be treated by
multiplication with suitable indicator functions as in the proofs in the appendices. Now,
Σ sb

m ≤L Σ db
m is equivalent to

Var
( m∑

j=1

a j ssbj
)
≤ Var

( m∑
j=1

a j sdbj
)

(6.4)

for any a = (a1, . . . , am)⊤ ∈ Rm . To prove the latter, we are going to apply Lemma A.10
in [31]. For j ∈ {1, . . . ,m} and i ∈ N≥1, let Sn,i =

∑m
j=1 a jVn,i ( j), where

Vn,i ( j) =
∫
∞

0
1
(∑
s∈Ji

1
(
Us > 1−

τ

bn

)
= j

)
dH (τ )+ ϕn, j

(
bn(1−max

s∈Ji
Us)

)
and where Ji = {i, i + 1, . . . , i + bn − 1}. Note that I dbi = J(i−1)bn+1 for i ∈ {1, . . . , kn} and
that I sbi = Ji for i ∈ {1, . . . , n− bn + 1}. By the proofs of Theorems 4.1 and 4.2 we can write

Var
( m∑

j=1

a j ssbj
)
= lim

n→∞
Var

(√
n
bn

1
n

n∑
i=1

Sn,i
)
,

Var
( m∑

j=1

a j sdbj
)
= lim

n→∞
Var

(√
n
bn

bn
n

⌊n/bn⌋∑
i=1

Sn,(i−1)bn+1
)
.
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For h ∈ N≥0, set γn(h) = Cov(Sn,1, Sn,h+1); note that Sn,1, . . . , Sn,n−bn+1 is stationary. Since
0 ≤ Vn,i ( j) ≤ 2 we obtain

|γn(h)| ≤
m∑

j, j ′=1

|a ja j ′ |
⏐⏐Cov(Vn,1( j), Vn,h+1( j ′))

⏐⏐ ≤ 8
m∑

j, j ′=1

|a ja j ′ |,

such that supn∈N,h∈N≥0 |γn(h)| <∞. Further, by Lemma 3.9 in [8] we have

|γn(h + bn)| ≤ 4
m∑

j, j ′=1

|a ja j ′ | ∥Vn,1( j)∥∞ ∥Vn,h+bn+1( j
′)∥∞ αε1 (1+ h)

≤ C ′ × αε1 (h)

for some constant C ′ depending on a1, . . . , am only. This implies
∞∑
h=1

|γn(h + bn)| ≤ C ′
∞∑
h=1

αε1 (h) <∞

by Condition 3.1(ii). Relation (6.4) then follows from Lemma A.10 in [31]. □

7. On sliding blocks estimators for compound probabilities

Throughout this section, we derive an extension of Theorem 4.1 in [26] from the disjoint
blocks process edbn,m in (6.1) to the sliding blocks version esbn,m . The result is used for proving
Theorem 4.2, but might in fact be of general interest for statistics for time series extremes
based on sliding blocks. For m ∈ N≥0 and τ ≥ 0, let

E sb
n,m(τ ) =

(
esbn,0(τ ), . . . , e

sb
n,m(τ )

)
.

For simplicity, we impose the same mixing conditions as needed for the results in Section 4.
We denote by D([0,∞)) the space of real-valued càdlàg functions on [0,∞), equipped with
the metric d( f, g) =

∑
∞

k=1 2
−k min(supx∈[0,k] | f (x)− g(x)|, 1).

Theorem 7.1. Suppose that Condition 3.1(i)–(ii) is met and that, additionally,
√
knβε2 (bn) =

o(1) for some ε2 > 0. Then, for any m ∈ N≥1,

E sb
n,m

d
−→ E sb

m in D([0,∞))m+1,

where E sb
m (·) =

(
esb0 (·), . . . , e

sb
m (·)

)
is a centered Gaussian process with continuous sample

paths, almost surely, and with covariance functional given by, for 0 ≤ τ ≤ τ ′ and j, j ′ ∈
{0, . . . ,m},

Cov
(
esbj (τ ), e

sb
j ′ (τ
′)
)
= 2

∫ 1

0
Cov

(
1(X (τ )

ξ = j),1(Y (τ ′)
ξ = j ′)

)
dξ

= 2
∫ 1

0
H (τ,τ ′)

j, j ′ (ξ ) dξ − 2p(τ )( j)p(τ
′)( j ′),

where X (τ )
ξ = Y (τ )

ξ = N (τ )
E in distribution with joint probability mass function

H (τ,τ ′)
j, j ′ (ξ ) = P

(
X (τ )
ξ = j, Y (τ ′)

ξ = j ′
)

=

j∑
l=0

j ′∑
r= j−l

p(ξτ )(l)p(ξτ
′)( j ′ − r )p((1−ξ )τ

′,(1−ξ )τ )
2 (r, j − l).
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Proof. The result is a consequence of the next two lemmas. □
It is worthwhile to mention that one may add the classical tail empirical process ēn as an

(m + 2)th-coordinate to E sb
n,m (just as in Theorem 4.2 in [26]). Additional conditions as in that

reference would be necessary then, including a moment bound on the increments of τ ↦→ N (τ )
n

and adapted mixing conditions. Details are omitted for the sake of brevity.
Further, it is interesting to note that in specific cases the asymptotic variance of the sliding

blocks process can be seen to be smaller than that of its disjoint blocks counterpart. For
instance, some tedious but straightforward calculations show that in the i.i.d. model, for τ = 1,

Var(esb1 (τ )) = 2e−2(2e−5) ≈ 0.1182, Var(esb2 (τ )) = e−2(5e−13) ≈ 0.0800,

which are substantially smaller than

Var(edb1 (τ )) = e−1 − e−2 ≈ 0.2325, Var(edb2 (τ )) =
1
2e
−

1
4e2
≈ 0.1501,

where edbj denotes the disjoint blocks limit from Theorem 4.1 in [26].

Lemma 7.2 (Tightness.). Under the conditions of Theorem 7.1, and for any 0 < φ <∞ and
m ∈ N≥0, the process (E sb

n,m)n∈N is asymptotically tight in D([0, φ])m+1.

Lemma 7.3 (Fidis-Convergence.). Suppose that Condition 3.1(i)–(ii) are met. Then, for m ∈
N≥0 and τ1, . . . , τr ≥ 0, r ∈ N≥1, we have(

E sb
n,m(τ1), . . . , E

sb
n,m(τr )

) d
−→

(
E sb
m (τ1), . . . , E sb

m (τr )
)
.

8. Proofs for Section 7

Proof of Lemma 7.2. Since marginal asymptotic tightness implies joint asymptotic tightness,
it is sufficient to show asymptotic tightness of esbn, j for fixed j ∈ N≥0. Subsequently, we omit
the upper index sb.

For sufficiently large n, the summands making up (en, j (τ ))τ∈[0,φ] are only depending on
U ε2

s = Us1(Us > 1 − ε2), whence the beta-mixing coefficients based on the Bε2·:· -sigma fields
become available; in particular, we may use that

√
knβε2 (bn) = o(1).

Let b′n = 2bn and Kn = (n − bn + 1)/(2b′n) = O(n/bn). For simplicity we assume that
Kn is an integer (otherwise, a potential remainder block can be shown to be asymptotically
negligible). For k ∈ {1, . . . ,Kn}, define

Ak = {2(k − 1)b′n + 1, . . . , 2(k − 1)b′n + b′n},
Bk = {(2k − 1)b′n + 1, . . . , (2k − 1)b′n + b′n}

such that |Ak | = |Bk | = b′n and A1 ∪ B1 ∪ · · · ∪ AKn ∪ BKn = {1, . . . , n − bn + 1}. Next, to
simplify the notation, define

N (τ )
i = N (τ ),sb

bn ,i =
∑
s∈I sbi

1
(
Us > 1− τ/bn

)
Write en, j (τ ) = An, j (τ )+ Bn, j (τ ), where

An, j (τ ) =
1
√Kn

Kn∑
k=1

{
Ān, j,k(τ )− E[ Ān, j,k(τ )]

}
,
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with

Ān, j,k(τ ) =
√
knKn

n − bn + 1

∑
i∈Ak

1(N (τ )
i = j),

and where Bn, j is defined analogously, but with Ak replaced by Bk . Since finite sums of
asymptotically tight processes are asymptotically tight, it is sufficient to show tightness of An, j

and Bn, j . We only treat An, j . Note that (Ut : t ∈ I sbi )i∈Ak only depends on

U (k)
n :=

(
U2(k−1)b′n+1, . . . ,U2(k−1)b′n+b′n+bn−1

)
∈ R3bn−1

by the definition of I sbi . Further, write

Ān, j,k(τ ) = h(τ )n, j (U
(k)
n )− h(τ )n, j−1(U

(k)
n ),

where

h(τ )n, j : R
3bn−1→ R, u ↦→

√
knKn

n − bn + 1

2bn∑
i=1

1
(∑
t∈I sbi

1
(
ut > 1− τ/bn

)
≤ j

)
,

As a consequence, we may write An, j (τ ) = Cn, j (τ )− Cn, j−1(τ ), where

Cn, j (τ ) =
1
√Kn

Kn∑
k=1

{
h(τ )n, j (U

(k)
n )− E[h(τ )n, j (U

(k)
n )]

}
for j ≥ 0 and Cn,−1 = 0. It is hence sufficient to show asymptotic tightness of Cn, j for fixed
j ∈ N≥0. By the coupling lemma in [3] (see Lemma C.2 in the supplementary material), we
can inductively construct an array

{
(Ũs)s∈I sbi : i ∈ Ak

}
k=1,...,Kn

such that

(i) ∀ k ∈ {1, . . . ,Kn} :
{
(Ũs)s∈I sbi : i ∈ Ak

} D
=

{
(Us)s∈I sbi : i ∈ Ak

}
,

(ii) ∀ k ∈ {1, . . . ,Kn} :

P
({

(Ũs)s∈I sbi : i ∈ Ak
}
̸=

{
(Us)s∈I sbi : i ∈ Ak

})
≤ βε2 (bn),

(iii)
{
(Ũs)s∈I sbi : i ∈ Ak

}
k=1,...,Kn

is (row-wise) independent. (8.1)

Set

Ñ (τ )
i =

∑
s∈I sbi

1
(
Ũs > 1− τ/bn

)
and let C̃n, j (τ ) be defined as Cn, j (τ ) but with U (k)

n substituted by

Ũ (k)
n :=

(
Ũ2(k−1)b′n+1, . . . , Ũ2(k−1)b′n+b′n+bn−1

)
∈ R3bn−1.

We begin by showing that

sup
τ∈[0,φ]

|Cn, j (τ )− C̃n, j (τ )| = oP(1), (8.2)

for which we write

Cn, j (τ )− C̃n, j (τ ) =
√
kn

n − bn + 1

Kn∑
k=1

∑
i∈Ak

{
1(N (τ )

i ≤ j)− 1(Ñ (τ )
i ≤ j)

}
.
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For fixed k ∈ {1, . . . ,Kn}, we obtain⏐⏐⏐ ∑
i∈Ak

1(N (τ )
i ≤ j)− 1(Ñ (τ )

i ≤ j)
⏐⏐⏐

≤ 2bn × 1
({
N (τ )
i : i ∈ Ak

}
̸=

{
Ñ (τ )
i : i ∈ Ak

})
≤ 2bn × 1

({
(Us)s∈I sbi : i ∈ Ak

}
̸=

{
(Ũs)s∈I sbi : i ∈ Ak

})
.

Hence, by Item (ii) in (8.1), we obtain

E
[
sup
τ∈[0,φ]

|Cn, j (τ )− C̃n, j (τ )|
]
≤

√
knKn

n − bn + 1
4bnβε2 (bn) = 2

√
knβε2 (bn),

which converges to zero by assumption. Markov’s inequality implies (8.2). As a consequence,
it suffices to show that the process (C̃n, j )n∈N is tight.

Note that by the items (i) and (iii) in (8.1), (Ũ (k)
n )k=1,...,Kn is a row-wise i.i.d. triangular

array. Let (F , ρ) = ([0, φ], | · |) and

Znk(τ ) = K−1/2n h(τ )n, j (Ũ
(k)
n ), τ ∈ F , k = 1, . . . ,Kn,

such that

C̃n, j (τ ) =
Kn∑
k=1

Znk(τ )− E[Znk(τ )].

In the following, we apply Theorem 2.11.9 in [30]. First, note that

sup
τ∈F ,u∈R3bn−1

|h(τ )n, j (u)|

= sup
τ∈F ,u∈R3bn−1

⏐⏐⏐ √knKn

n − bn + 1

2bn∑
i=1

1
(∑
t∈I sbi

1
(
ut > 1− τ/bn

)
≤ j

)⏐⏐⏐
≤

√
knKn

n − bn + 1
2bn =

√
n

n − bn + 1
≤ 2

since n− bn + 1 ≥ n/2 for sufficiently large n. Consequently, ∥Znk∥F := supτ∈[0,φ] |Znk(τ )| ≤
2K−1/2n , such that the first condition in Theorem 2.11.9 in [30] is satisfied. Next, let ∥·∥n,2 be the
norm ∥ f ∥n,2 = E[ f (Ũ (1)

n )2]1/2. We prove the subsequent inequality: for any τ, τ ′ ∈ [0, φ + 1],

∥h(τ )n, j − h(τ
′)

n, j ∥n,2 ≤ 2|τ − τ ′|1/2. (8.3)

Indeed, by Jensen’s inequality

∥h(τ )n, j − h(τ
′)

n, j ∥
2
n,2 =

knKn

(n − bn + 1)2
E
[( 2bn∑

i=1

{1(Ñ (τ )
i ≤ j)− 1(Ñ (τ ′)

i ≤ j)}
)2]

≤
knKn(2bn)2

(n − bn + 1)2
E
[
{1(Ñ (τ )

1 ≤ j)− 1(Ñ (τ ′)
1 ≤ j)}2

]
≤ 4 E

[
{1(Ñ (τ )

1 ≤ j)− 1(Ñ (τ ′)
1 ≤ j)}2

]
(8.4)

for sufficiently large n. Without loss of generality, let τ ≤ τ ′. Since z ↦→ 1(Ñ (z)
1 ≤ j) is

monotonically decreasing, one has

{1(Ñ (τ )
1 ≤ j)− 1(Ñ (τ ′)

1 ≤ j)}2 = 1(Ñ (τ )
1 ≤ j)− 1(Ñ (τ ′)

1 ≤ j)
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= 1(Ñ (τ )
1 ≤ j < Ñ (τ ′)

1 )

≤ 1(Ñ (τ ′)
1 − Ñ (τ )

1 ≥ 1).

Hence, by (i) in (8.1), the expression on the right-hand side of (8.4) can be bounded by

4 · P(N (τ ′)
1 − N (τ )

1 ≥ 1) ≤ 4 · E[N (τ ′)
1 − N (τ )

1 ] = 4(τ ′ − τ )

as asserted in (8.3). Therefore, we obtain

sup
|τ−τ ′|<δn

Kn∑
k=1

E
[
(Znk(τ )− Znk(τ ′))2

]
= sup
|τ−τ ′|<δn

∥h(τ )n, j − h(τ
′)

n, j ∥
2
n,2 ≤ 4δn,

which converges to 0 for every δn → 0. It remains to bound the bracketing number N[ ] as
given on page 211 in [30]. First, we construct a cover of F . For ε ∈ (0, 1) and a ∈ N≥1 let
Dε,a = [(a − 1)ε2/4, aε2/4]. Then

[0, φ] ⊂
⋃

a∈{1,2,...,Mε}

Dε,a ⊂ [0, φ + 1], Mε = ⌊4(φ + 1)/ε2⌋.

Now, since τ ↦→ h(τ )n, j is monotonically decreasing, we may choose, for any τ ∈ [0, φ], an
integer a ∈ {1, . . . ,Mε} such that

h(aε
2/4)

n, j ≤ h(τ )n, j ≤ h((a−1)ε
2/4)

n, j .

Therefore, using (8.3), we get that, for any a ∈ {1, . . . ,Mε},
Kn∑
k=1

E
[

sup
τ,τ ′∈Dε,a

|Znk(τ )− Znk(τ ′)|
2
]

≤ K−1n

Kn∑
k=1

E
[
|h(aε

2/4)
n, j (Ũ (k)

n )− h((a−1)ε
2/4)

n, j (Ũ (k)
n )|

2]
=∥h(aε

2/4)
n, j − h((a−1)ε

2/4)
n, j ∥

2
n,2 ≤ ε

2.

Hence, the bracketing number as on page 211 in [30] is obviously bounded by Mε, such that
the last condition in Theorem 2.11.9 in that reference is satisfied, and the proof is finished. □

Proof of Lemma 7.3. By the Cramér–Wold device it suffices to show that

Dn =

r∑
l=1

m∑
j=0

λl, j esbn, j (τl)
d
−→

r∑
l=1

m∑
j=0

λl, j esbj (τl) = D (8.5)

for any λl, j ∈ R. Throughout the proof, let Ii = I dbi and write

Dn =

kn−1∑
j=1

∑
s∈I j

r∑
l=1

m∑
j=0

λl, j

√
kn

n − bn + 1

{
1(N (τl ),sb

bn ,s = j)− ϕn, j (τ )
}
+ oP(1).

Let k∗n < kn be an integer sequence with k∗n →∞ and k∗n = o(k1/4n ). For q∗n = ⌊kn/(k
∗
n+2)⌋ →

∞ and p = 1, . . . , q∗n , define

J+p =
p(k∗n+2)−2⋃

i=(p−1)(k∗n+2)+1

Ii , J−p = Ip(k∗n+2)−1 ∪ Ip(k∗n+2).
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Thus, we have decomposed the observation period into q∗n ‘big blocks’ J+p of size k∗nbn , which
are separated by ‘small blocks’ J−p of size 2bn . We may hence rewrite Dn = V+n +V−n +oP(1),
where

V±n =
1
√
q∗n

q∗n∑
p=1

T±np

and, for p ∈ {1, . . . , q∗n },

T±np =
√
q∗n
kn

∑
s∈J±p

r∑
l=1

m∑
j=0

λl, j
n

n − bn + 1
1
bn

{
1(N (τl ),sb

bn ,s = j)− ϕn, j (τl)
}
.

Let us show that V−n = oP(1). For that purpose, take ε1 ∈ (0, 1) from Condition 3.1.
Observe that, for sufficiently large n, T−np only depends on U ε1

s = Us1(Us > 1 − ε1) with
s ∈ {(p(k∗n + 2)− 2)bn + 1, . . . , p(k∗n + 2)bn + bn − 1}, whence, in particular, the alpha-mixing
coefficients based on the Bε1·:· -sigma fields become available. Now, since E[V−n ] = 0, it is
enough to prove Var(V−n ) = o(1). By stationarity,

Var(V−n ) ≤ 3Var(T−n1)+ 2
q∗n∑
p=2

⏐⏐Cov(T−n1, T−n,p+1)⏐⏐. (8.6)

Observing that |J−1 | = 2bn and n/(n − bn + 1) ≤ 2 for sufficiently large n, we have

|T−n1| ≤ 4
√
q∗n
kn

r∑
l=1

m∑
j=0

|λl, j | = O
(√

q∗n
kn

)
= O

( 1√
k∗n

)
= o(1), (8.7)

which implies Var(T−n1) = o(1) as well. Next, by Lemma 3.9 in [8], Condition 3.1(ii) and since
T−n,p is bounded (and since by construction the observations making up T−n1 and T−n,p+1 are
separated by pk∗nbn observations), we obtain

q∗n∑
p=2

⏐⏐Cov(T−n1, T−n,p+1)⏐⏐ ≤ 4∥T−n1∥∞

q∗n∑
p=2

αε1 (pk
∗

nbn)

≲ o(1)
q∗n∑
p=2

(pk∗nbn)
−η
= o(1),

such that altogether Var(V−n ) = o(1) by (8.6).
It remains to show that V+n converges in distribution to D from (8.5). Note that T+np and T+np′

are based on U ε1
s -observations that are at least bn observations apart for p ̸= p′. This allows to

apply an argument based on characteristic functions to reason that (T+np)p may be considered
independent. Indeed, let (T̃+np)p denote iid random variables with T̃+np =d T+np. Recursively
applying Lemma 3.11 in [8], we have, for any t ∈ R,⏐⏐⏐⏐E[

exp
(

it
√
q∗n

q∗n∑
p=1

T+np

)]
− E

[
exp

(
it
√
q∗n

q∗n∑
p=1

T̃+np

)]⏐⏐⏐⏐
=

⏐⏐⏐⏐E[
exp

(
it
√
q∗n

q∗n∑
p=1

T+np

)]
−

q∗n∏
p=1

E
[
exp

(
it
√
q∗n

T+np

)]⏐⏐⏐⏐ ≲ q∗nαε1 (bn),
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where i denotes the imaginary unit. The upper bound satisfies q∗nαε1 (bn) ≤ knαε1 (bn) ≲
knb
−η
n = o(1) by Condition 3.1(ii), whence, by Lévy’s continuity theorem, the weak limits

of (q∗n )
−1/2 ∑q∗n

p=1 T
+
np and (q∗n )

−1/2 ∑q∗n
p=1 T̃

+
np coincide, provided one of the limits exists. This

implies that (T+np)p=1,...,q∗n may be considered independent, which is assumed from now on.
As in (8.7), we obtain that |T+np| = O(

√
k∗n ), whence∑q∗n

p=1 E
[
|T+np|

3]{∑q∗n
p=1 Var(T

+
np)

}3/2 = O
(
k−1/2n (k∗n )

2)
= o(1),

provided that limn→∞ Var(T+n1) exists. In this case, the Lyapunov condition is satisfied and the
central limit theorem implies that V+n converges in distribution to a centered normal distribution
with variance limn→∞ Var(T+n1). Note that

T+n1 =
r∑

l=1

m∑
j=0

λl, j esbn∗, j (τl)+ Rn,

where Rn → 0 in L2(P), with n∗ = k∗nbn and that our assumptions in Condition 3.1 still hold
if n and kn are substituted by n∗ and k∗n . The limiting variance of the above expression is
calculated in Lemma 8.1 and is seen to be of the required form. □

Lemma 8.1. Suppose that Condition 3.1(i)–(ii) are met. Then, for 0 ≤ τ ≤ τ ′ and j, j ′ ∈ N≥0,
we have

lim
n→∞

Cov(esbn, j (τ ), e
sb
n, j ′ (τ

′)) = 2
∫ 1

0
Cov

(
1(X (τ )

ξ = j),1(Y (τ ′)
ξ = j ′)

)
dξ

= 2
∫ 1

0
H (τ,τ ′)

j, j ′ (ξ ) dξ − 2p(τ )( j)p(τ
′)( j ′),

where X (τ )
ξ = Y (τ )

ξ = N (τ )
E in distribution with joint probability mass function

H (τ,τ ′)
j, j ′ (ξ ) = P

(
X (τ )
ξ = j, Y (τ ′)

ξ = j ′
)

=

j∑
l=0

j ′∑
r= j−l

p(ξτ )(l)p(ξτ
′)( j ′ − r )p((1−ξ )τ

′,(1−ξ )τ )
2 (r, j − l). (8.8)

Proof of Lemma 8.1. Fix 0 ≤ τ ≤ τ ′ and j, j ′ ∈ N≥0. Note that we may replace Us by
U ε1

s = Us1(Us > 1− ε1) for n large enough, where ε = ε1 is from Condition 3.1(ii). Write

rn(τ, τ ′) ≡ Cov(esbn, j (τ ), e
sb
n, j ′ (τ

′))

=
kn

(n − bn + 1)2

n−bn+1∑
s,t=1

Cov(1(N (τ ),sb
bn ,s = j),1(N (τ ′),sb

bn ,t = j ′))

=
kn

(n − bn + 1)2

kn−1∑
i,i ′=1

∑
s∈Ii

∑
t∈Ii ′

Cov(As, Bt )+ o(1),

100

90



A. Bücher and T. Jennessen Stochastic Processes and their Applications 149 (2022) 75–106

where As = 1(N (τ ),sb
bn ,s = j), Bt = 1(N (τ ′),sb

bn ,t = j ′) and Ii = I dbi . By stationarity, we may further
write

rn(τ, τ ′) =
kn(kn − 1)

(n − bn + 1)2
Cov

(∑
s∈I1

As,
∑
t∈I1

Bt

)

+
kn

(n − bn + 1)2

kn−1∑
i=2

(kn − i)
{
Cov

(∑
s∈I1

As,
∑
t∈Ii

Bt

)
+ Cov

(∑
s∈Iq

As,
∑
t∈I1

Bt

)}
+ o(1)

= Tn1 + Tn2 + Tn3 + Tn4 + o(1), (8.9)

where

Tn1 =
kn(kn − 1)

(n − bn + 1)2
Cov

(∑
s∈I1

As,
∑
t∈I1

Bt

)
Tn2 =

kn(kn − 2)
(n − bn + 1)2

{
Cov

(∑
s∈I1

As,
∑
t∈I2

Bt

)
+ Cov

(∑
s∈I2

As,
∑
t∈I1

Bt

)}
Tn3 =

kn(kn − 3)
(n − bn + 1)2

{
Cov

(∑
s∈I1

As,
∑
t∈I3

Bt

)
+ Cov

(∑
s∈I3

As,
∑
t∈I1

Bt

)}

Tn4 =
kn

(n − bn + 1)2

kn−1∑
i=4

(kn − i)
{
Cov

(∑
s∈I1

As,
∑
t∈Ii

Bt

)
+ Cov

(∑
s∈Ii

As,
∑
t∈I1

Bt

)}
.

Next, we show that

Tn3 = o(1), Tn4 = o(1). (8.10)

For that purpose note that
∑

s∈I1
As and

∑
t∈Ii

Bs are at least (i − 3)bn observations apart. By
Lemma 3.9 in [8] we obtain⏐⏐Cov(∑

s∈I1

As,
∑
t∈Ii

Bt

)⏐⏐ ≤ 4 b2nαε1 ((i − 3)bn),

such that

|Tn4| ≤
8 k2nb

2
n

(n − bn + 1)2

kn−1∑
i=4

αε1 ((i − 3)bn) ≲
n2b−ηn

(n − bn + 1)2

kn−4∑
i=1

i−η = o(1)

since η > 1 by Condition 3.1(ii). Regarding Tn3, note that⏐⏐Cov(∑
s∈I1

As,
∑
t∈I3

Bt

)⏐⏐ ≤ 3bn∑
t=2bn+1

⏐⏐Cov( bn∑
s=1

As, Bt

)⏐⏐
≤ 4 bn

3bn∑
t=2bn+1

αε1 (t − 2bn) = 4 bn
bn∑
t=1

αε1 (t)
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by Lemma 3.9 in [8], which implies

|Tn3| ≤ 8
kn(kn − 3)bn
(n − bn + 1)2

bn∑
t=1

αε1 (t) ≲
k2nbn

(n − bn + 1)2

bn∑
t=1

t−η = O(b−1n ).

Hence, (8.10) is shown.
Next, consider Tn1. Since kn(kn − 1)/(n− bn + 1)2 = 1/b2n + o(1) and E[As]→ p(τ )( j) and

E[Bt ]→ p(τ
′)( j ′), we may write

Tn1 =
1
b2n

bn∑
s,t=1

E[AsBt ]− p(τ )( j)p(τ )( j ′)+ o(1),

Next, we have b−2n
∑bn

s,t=1 E[AsBt ] =
∫ 1
0 fn(ξ ) dξ , where, for ξ ∈ (0, 1),

fn(ξ ) =
1
bn

bn∑
s,t=1

E[AsBt ]1
(
ξ ∈

[ t − 1
bn

,
t
bn

))

=
1
bn

bn∑
s=1

E[AsB⌊bnξ⌋+1] =
∫ 1

0
ϕn(ξ, z) dz,

where, for z ∈ (0, 1),

ϕn(ξ, z) =
bn∑
s=1

E[AsB⌊bnξ⌋+1]1
(
z ∈

[ s − 1
bn

,
s
bn

))
(8.11)

= E
[
A⌊bn z⌋+1B⌊bnξ⌋+1

]
= P

(
N (τ ),sb
bn ,⌊bn z⌋+1 = j, N (τ ′).sb

bn ,⌊bnξ⌋+1 = j ′
)

For 0 < z ≤ ξ < 1, we may rewrite

ϕn(ξ, z) =
j∑

l=0

j ′∑
r=0

P
(
N⌊bn z⌋+1:⌊bnξ⌋(τ ) = l, N⌊bnξ⌋+1:⌊bn z⌋+bn (τ ) = j − l,

N⌊bnξ⌋+1:⌊bn z⌋+bn (τ
′) = r, N⌊bn z⌋+bn+1:⌊bnξ⌋+bn (τ

′) = j ′ − r
)
. (8.12)

where, for s, s ′ ∈ N≥1 with s ≤ s ′ and τ ≥ 0,

Ns:s′ (τ ) =
s′∑
t=s

1
(
Ut > 1−

τ

bn

)
.

We will next argue that the first, the intersection of the second and the third and the fourth
of the four events in each summand in (8.12) may be considered independent. Indeed, for any
fixed y > 0 and any integer sequence qn converging to infinity with qn = o(bn), we have

P
(
N1:qn (y) = 0

)
≥ 1− qnP

(
U1 > 1−

y
bn

)
= 1−

yqn
bn
→ 1

As a consequence, we may intersect the events inside the sum in (8.12) with

{N⌊bnξ⌋−qn :⌊bnξ⌋(τ ) = 0, N⌊bn z⌋+bn+1:⌊bn z⌋+bn+1+qn (τ
′) = 0}. (8.13)

at the expense of a O(qn/bn)-term. On the intersected event, we must then have N⌊bn z⌋+1:⌊bnξ⌋−qn
(τ ) = l and N⌊bn z⌋+bn+qn :⌊bnξ⌋+bn (τ ) = j ′ − r . After discarding the events in (8.13) again,
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we are left with an intersection of three events that are based on observations that are at
least qn observations apart. As a consequence, at the expense of an αε1 (qn)-error, they may
be considered independent. Finally, we may sneak in the omitted observations once again at
the expense of an additional O(qn/bn)-term, and we arrive at

ϕn(ξ, z) =
j∑

l=0

j ′∑
r=0

P
(
N⌊bn z⌋+1:⌊bnξ⌋(τ ) = l

)
× P

(
N⌊bnξ⌋+1:⌊bn z⌋+bn (τ ) = j − l, N⌊bnξ⌋+1:⌊bn z⌋+bn (τ

′) = r
)

× P
(
N⌊bn z⌋+bn+1:⌊bnξ⌋+bn (τ

′) = j ′ − r
)

+ O(αε1 (qn))+ O(qn/bn) (8.14)

which converges to

H (ξ − z) = H (τ,τ ′)
j, j ′ (ξ − z)

=

j∑
l=0

j ′∑
r= j−l

p((ξ−z)τ )(l)p((ξ−z)τ
′)( j ′ − r )p((1−ξ+z)τ

′,(1−ξ+z)τ )
2 (r, j − l)

by Condition 3.1(i), where H (τ,τ ′)
j, j ′ is defined in (8.8). Changing the roles of z and ξ , we obtain

ϕn(ξ, z)→ H (ξ − z)1(z ≤ ξ )+ H (z − ξ )1(z > ξ ).

For fixed ξ ∈ (0, 1), supn∈N ∥ϕn(ξ, ·)∥∞ ≤ 1, such that the dominated convergence theorem
implies

fn(ξ ) =
∫ 1

0
ϕn(ξ, z) dz→

∫ ξ

0
H (ξ − z) dz +

∫ 1

ξ

H (z − ξ ) dz.

Moreover, since ∥ fn∥∞ ≤ 1, dominated convergence also implies that

lim
n→∞

Tn1 =
∫ 1

0

∫ ξ

0
H (ξ − z) dz +

∫ 1

ξ

H (z − ξ ) dz dξ − p(τ )( j)p(τ
′)( j ′)

= 2
∫ 1

0

∫ ξ

0
H (ξ − z) dz dξ − p(τ )( j)p(τ

′)( j ′)

= 2
∫ 1

0
(1− ξ )H (ξ ) dξ − p(τ )( j)p(τ

′)( j ′), (8.15)

where the last step is due to Fubini’s theorem.
It remains to treat Tn2 in (8.9), which consists of two summands, say Tn2,1 and Tn2,2. By

similar arguments as for Tn1, the first summand Tn2,1 can be written as

Tn2,1 =
1
b2n

bn∑
s=1

2bn∑
t=bn+1

E[AsBt ]− p(τ )( j)p(τ
′)( j ′)+ o(1)

=

∫ 1

0

∫ 1

0
ψn(ξ, z) dz dξ − p(τ )( j)p(τ

′)( j ′)+ o(1)

where

ψn(ξ, z) = E
[
A⌊bnξ⌋+1B⌊(z+1)bn⌋+1

]
103

93



A. Bücher and T. Jennessen Stochastic Processes and their Applications 149 (2022) 75–106

= P
(
N⌊bnξ⌋+1:⌊bnξ⌋+bn (τ ) = j, N⌊bn (z+1)⌋+1:⌊bn (z+1)⌋+bn (τ

′) = j ′
)
.

If ξ ≤ z, then ⌊bnξ⌋ + bn ≤ ⌊bn(1+ z)⌋ + 1 and we can manipulate the above probability as
in (8.14), such that it equals

ψn(ξ, z) = P
(
N⌊bnξ⌋+1:⌊bnξ⌋+bn (τ ) = j

)
P
(
N⌊bn (z+1)⌋+1:⌊bn (z+1)⌋+bn (τ

′) = j ′
)

+ O(αε1 (qn))+ O(qn/bn),

which converges to p(τ )( j)p(τ
′)( j ′). In the case z ≤ ξ , we again need to separate the sums as

in (8.14) and obtain that ψn(ξ, z) equals

j∑
l=0

j ′∑
r=0

P
(
N⌊bnξ⌋+1:⌊bn (z+1)⌋(τ ) = l

)
× P

(
N⌊bn (z+1)⌋+1:⌊bnξ⌋+bn (τ ) = j − l, N⌊bn (z+1)⌋+1:⌊bnξ⌋+bn (τ

′) = r
)

× P
(
N⌊bnξ⌋+bn+1:⌊bn (z+1)⌋+bn (τ

′) = j ′ − r
)

+ O(αε1 (qn))+ O(qn/bn)

which converges to

H (1− (ξ − z)) = H (τ,τ ′)
j, j ′ (1− (ξ − z))

=

j∑
l=0

j ′∑
r= j−l

p((1−ξ+z)τ )(l)p((1−ξ+z)τ
′)( j ′ − r )p((ξ−z)τ

′,(ξ−z)τ )
2 (r, j − l).

Since ∥ψn∥∞ ≤ 1, dominated convergence implies

lim
n→∞

Tn2,1 =
∫ 1

0

∫ ξ

0
H (1− (ξ − z)) dz +

∫ 1

ξ

p(τ )( j)p(τ
′)( j ′) dz dξ

− p(τ )( j)p(τ
′)( j ′)

=

∫ 1

0
ξH (ξ ) dξ −

1
2
p(τ )( j)p(τ

′)( j ′)

as n→∞. By symmetry, the second summand in Tn2 has the same limit, such that

lim
n→∞

Tn2 = 2
∫ 1

0
ξH (ξ ) dξ − p(τ )( j)p(τ

′)( j ′), (8.16)

where the last equation follows as in (8.15). Altogether, by (8.10), (8.15) and (8.16), we have

lim
n→∞

Cov
(
esbn, j (τ ), e

sb
n, j ′ (τ

′)
)
= 2

∫ 1

0
H (τ,τ ′)

j, j ′ (ξ ) dξ − 2p(τ )( j)p(τ
′)( j ′)

as asserted. □
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Universitätsstr. 1, 40225 Düsseldorf, Germany

Abstract

This supplement contains auxiliary results needed for the proofs in the main
paper (Sections A-C) as well as additional simulation results (Section D).

A. Auxiliary lemmas - Disjoint blocks

Throughout, assume that Condition 3.1 is met. All convergences are for
n→∞ if not stated otherwise.

Lemma A.1. For any j ∈ N≥1,

∫ ∞

0

edbn,j(τ) d(Ĥdb
n −H)(τ) = oP(1).

Proof of Lemma A.1. Throughout the proof, we omit the upper index db at all
instances of Ĥdb

n , edbn,j and Zdb
ni . For any δ > 0 and ` ∈ N≥1, we have

P
(∣∣∣
∫ ∞

0

en,j(τ) d(Ĥn −H)(τ)
∣∣∣ > 3δ

)

≤ P(|An,`| > δ) + P(|Bn,`,1| > δ) + P(|Bn,`,2| > δ),

where

An,` =

∫ `

0

en,j(τ) d(Ĥn −H)(τ) (A.1)
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and

Bn,`,1 =

∫ ∞

`

en,j(τ) dĤn(τ), Bn,`,2 =

∫ ∞

`

en,j(τ) dH(τ). (A.2)

The proof is finished once we have shown that

∀ ` ∈ N≥1 : An,` = oP(1), (A.3)

and that, for v ∈ {1, 2},

lim
`→∞

lim sup
n→∞

P
(
|Bn,`,v| > δ

)
= 0. (A.4)

We start by showing (A.3). Fix ` ∈ N≥1. Let us first show that

sup
τ∈[0,`]

∣∣Ĥn(τ)−H(τ)
∣∣ = oP(1). (A.5)

This result follows from the pointwise convergence (in probability) of Ĥn to
H by a standard Glivenko-Cantelli-type argument. For the pointwise conver-
gence, note that E[Ĥn(τ)] = P(Zn1 ≤ τ), which converges to H(τ) by (2.1),
such that it suffices to show limn→∞Var(Ĥn(τ)) = 0. In the following we prove

lim
n→∞

kn Var(Ĥn(τ)) = e−θτ (1− e−θτ )

for any τ ≥ 0. Set M̃ni = max{Us : s ∈ Ii}. For any τ ≥ 0, we have

kn Var
(
Ĥn(τ)

)
= P(M̃n1 > 1− τ/bn)

(
1− P(M̃n1 > 1− τ/bn)

)
+Rn,

where

Rn =
2

kn

∑

1≤i<j≤kn
Cov

(
1(M̃ni > 1− τ/bn),1(M̃nj > 1− τ/bn)

)
.

By definition of the extremal index, the first term converges to e−θτ (1− e−θτ ),
and it remains to show that Rn = o(1). By stationarity

Rn =
2(kn − 1)

kn
Cov

(
1(M̃n1 > 1− τ/bn),1(M̃n2 > 1− τ/bn)

)

+
2

kn

kn−1∑

s=3

(kn − s) Cov
(
1(M̃n1 > 1− τ/bn),1(M̃ns > 1− τ/bn)

)
,

which in absolute value is bounded by

2 |Cov
(
1(M̃n1 > 1− τ/bn),1(M̃n2 > 1− τ/bn)

)
|

+ 2

kn−1∑

s=3

|Cov
(
1(M̃n1 > 1− τ/bn),1(M̃ns > 1− τ/bn)

)
|. (A.6)
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For the first term note that

Cov
(
1(M̃n1 > 1− τ/bn),1(M̃n2 > 1− τ/bn)

)

= Cov
(
1(M̃n1 < 1− τ/bn),1(M̃n2 < 1− τ/bn)

)

= P(max{Us : s ∈ I1 ∪ I2} < 1− τ/bn)− P(M̃n1 < 1− τ/bn)2

= e−2θτ − e−2θτ + o(1) = o(1)

by definition of the extremal index. Further, by Lemma 3.9 in Dehling & Philipp
(2002) and Condition 3.1(ii) the second term in (A.6) can be bounded by

8

kn−1∑

s=3

αε1((s− 1)bn) ≤ 8C

kn−1∑

s=3

((s− 1)bn)−η . 8Cb−ηn ,

which converges to 0 by Condition 3.1(ii). Altogether, this proves equation
(A.5). Further, by Lemma A.3 we know that

{en,j(τ)}τ∈[0,`] d−→ {ej(τ)}τ∈[0,`]

in D([0, `]), for some centered Gaussian process ej . Then, combining this re-
sult with the convergence in (A.5), we readily obtain (A.3) by Lemma C.8 in
Berghaus & Bücher (2017).

Next, consider (A.4) with v = 1. We have

Bn,`,1 = k−3/2n

kn∑

i,i′=1

{
1
(
N

(Zni)
bn,i′

= j
)
− ϕn,j(Zni)

}
1(Zni ≥ `)

= Tn,`+ Sn,`,1+ Sn,`,2,

where

Tn,` = k−3/2n

kn∑

i=1

∑

i′∈{i−1,i,i+1}

{
1
(
N

(Zni)
bn,i′

= j
)
− ϕn,j(Zni)

}
1(Zni ≥ `),

Sn,`,1 = k−3/2n

kn∑

i=3

i−2∑

i′=1

{
1
(
N

(Zni)
bn,i′

= j
)
− ϕn,j(Zni)

}
1(Zni ≥ `),

Sn,`,2 = k−3/2n

kn−2∑

i=1

kn∑

i′=i+2

{
1
(
N

(Zni)
bn,i′

= j
)
− ϕn,j(Zni)

}
1(Zni ≥ `).

Clearly, |Tn,`| ≤ 3k
−1/2
n = o(1). Next, write ε = ε1 ∈ (0, 1) and c > 1 − ε from

Condition 3.1(iii) as c = 1− κε for some κ ∈ (0, 1), and let

Cn = Cn(ε) =
{

max
i=1,...,kn

Zni < κεbn
}

=
{

min
i=1,...,kn

Nni > 1− κε
}
,
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where Nni = max{Us : s ∈ Idbi }. We obtain P(Cn) → 1 as n → ∞ by Re-
mark 3.2. As a consequence, (A.4) with v = 1 follows once we have shown
that

lim
`→∞

lim sup
n→∞

P
(
|Sn,`,w1Cn | > δ

)
= 0, w ∈ {1, 2}. (A.7)

We only prove this for the term Sn,`,1, as Sn,`,2 can be treated analo-
gously. Define N (τ)

bn,j,ε
as N (τ)

bn,j
and Zεni as Zni, but with Us substituted by

Uεs = Us1(Us > 1 − ε), respectively. Then, Zni < εκbn iff Zεκni < εκbn, and in
that case we have

(1) Zni = Zεκni ,
(2) Us > 1− Zεκni /bn iff Uεs > 1− Zεκni /bn.

As a consequence, Sn,`,11Cn = Sεn,`,11Cn , where

Sεn,`,1 =
1

kn

kn∑

i=3

fn,i−2(Zεκni ) 1
(
εκbn > Zεκni ≥ `

)

and where

fn,i−2(τ) = k−1/2n

i−2∑

i′=1

{
1
(
N

(τ)
bn,i′,ε

= j
)
− ϕn,j(τ)

}
. (A.8)

We may further write fn,i−2(τ) = hn,i−2,j(τ)− hn,i−2,j−1(τ), where

hn,i−2,p(τ) = k−1/2n

i−2∑

i′=1

1
(
N

(τ)
bn,i′,ε

≤ p
)
− P

(
N

(τ)
bn,i′
≤ p
)
, p ∈ N≥0. (A.9)

Next, we apply Bradley’s coupling lemma (see Lemma C.1 in the appendix)
with X = (Uεs )s∈I1∪···∪Ii−2

, Y = Zεκni and q = qn = ||Zεκn1||γ/(
√
knbn) for some

γ > 0. We obtain the existence of a random variable Y ∗ = Z∗εκni , which is
independent of (Uεs )s∈I1∪···∪Ii−2

, has the same distribution as Zεκni and satisfies

P(|Zεκni − Z∗εκni | > q) ≤ 18 (
√
knbn)

γ
2γ+1αε(bn)

2γ
2γ+1 .

Thus, we obtain the bound

E
[
|Sεn,`,1|

]
≤ 1

kn

kn∑

i=3

∑

p∈{j−1,j}
E
[
|hn,i−2,p(Zεκni )|1

(
εbnκ > Zεκni ≥ `

)

× 1
(
|Zεκni − Z∗εκni | < q

)]

+ 36
1

kn

kn∑

i=3

k−1/2n i(
√
knbn)

γ
2γ+1αε(bn)

2γ
2γ+1 , (A.10)

where the second sum is of the order

O
(
k

1
2+

γ
4γ+2

n b
γ(1−2η)
2γ+1

n

)
= O

((
knb
− 2γ(2η−1)

3γ+1
n

) 3γ+1
4γ+2

)
= o(1)
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by Condition 3.1(ii), choosing γ = η/(η − 2) > 0. To bound the first sum, note
that for all x, y ≥ 0 with y − a ≤ x ≤ y + a for some a > 0, we have, for any
p ∈ N≥0,

|hn,i,p(x)| ≤ max
{
|hn,i,p(y + a)|, |hn,i,p((y − a)+)|

}
+ 2a

√
kn (A.11)

where z+ = max(z, 0), which follows from monotonicity arguments. Indeed,
τ ≤ τ ′ implies N (τ)

bn,1
≤ N (τ′)

bn,1
, whence, for y + a ≥ x ≥ y − a ≥ 0,

0 < hn,i,p(x) ≤ hn,i,p(y − a) +
√
knP(N

(y−a)
bn,1

≤ p < N
(y+a)
bn,1

)

≤ hn,i,p(y − a) +
√
knP(N

(y+a)
bn,1

−N (y−a)
bn,1

≥ 1)

≤ hn,i,p(y − a) +
√
kn E[N

(y+a)
bn,1

−N (y−a)
bn,1

]

= hn,i,p(y − a) + 2a
√
kn,

where we have used the facts that N (τ)

bn,1
is integer-valued. A similar inequality

to the bottom implies (A.11). As a consequence of (A.11), we may bound the
first sum on the right-hand side of (A.10) by

1

kn

kn∑

i=3

∑

p∈{j−1,j}
E
[{
|hn,i−2,p(Z∗εκni + qn)|+ |hn,i−2,p((Z∗εκni − qn)+)|

+ 2‖Zεκn1‖γ/bn
}
1
(
εbnκ+ qn > Z∗εκni ≥ `− qn

)]
.

Now, since Zεn1/bn ≤ 1 and qn → 0, we have

lim sup
n→∞

‖Zεκn1‖γ/bn P
(
εbnκ > Z∗εκni ≥ `− qn

)
≤ lim sup

n→∞
P
(
Zεκni ≥ `κ

)

which converges to 0 as `→∞. Hence, for proving (A.7) with w = 1, it remains
to treat, for p ∈ {j − 1, j},

1

kn

kn∑

i=3

E
[{
|hn,i−2,p((Z∗εκni ± qn)+)|1

(
εbnκ+ qn > Z∗εκni ≥ `− qn

)]
. (A.12)

We only consider the case with the plus sign. After conditioning on Z∗εκni we need
to bound E[|hn,i−2,p(x)|] for ` ≤ x ≤ εbn (note that Z∗εκni +qn ≤ εbnκ+2qn ≤ εbn
for large n, since qn converges to zero). Write hn,i−2,p = hevenn,i−2,p + hoddn,i−2,p,
where hevenn,i−2,p and hoddn,i−2,p correspond to the sum over the even and odd blocks
in (A.9), respectively. Fix x ∈ [`, εbn]. Set

Vj =
{
1
(
N

(x)
bn,2j,ε

≤ p
)
− P

(
N

(x)
bn,2j

≤ p
)}
,

such that hevenn,i−2,v(x) = k
−1/2
n

∑bi/2c−1
j=1 Vj . Note that Vj is centered. Re-

cursive application of Bradley’s coupling lemma (see Lemma C.1) with some
γ > 0, V ∗1 = V1 and, in the j-th step, X = (V ∗1 , . . . , V

∗
j ), Y = Vj+1 and

5
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q′ = q′n = 1/
√
kn (note that α(σ(Vj), σ(Vj+1) ≤ αε(bn)) in combination with

Theorem 5.1 in Bradley (2005) lets us construct an i.i.d. sequence (V ∗j )j≥1, such
that V ∗j has the same distribution as Vj and

P(|Vj − V ∗j | ≥ q′n) ≤ 18 k
γ

4γ+2
n αε(bn)

2γ
2γ+1 .

Note that the i.i.d. sequence (V ∗j )j≥1 is centered with |V ∗j | ≤ 1. As a conse-
quence, by Condition 3.1(ii),

E[|hevenn,i−2,v(x)|] ≤ k−1/2n E
[∣∣∑bi/2c−1

j=1 V ∗j
∣∣]+ ik

−1/2
n E

[
|V1 − V ∗1 |

]

≤ (i/kn)1/2 + ik−1/2n

{
q′n + 36 k

γ
4γ+2
n αε(bn)

2γ
2γ+1

}

≤ (i/kn)1/2 + ik−1n + 36C
2γ

2γ+1 k
1
2+

γ
4γ+2

n b
−η 2γ

2γ+1
n . (A.13)

A similar bound can be obtained for the sum over the odd blocks. Assembling
terms, the expression in (A.12) can be bounded by

P
(
Z∗εκn1 ≥ `− qn

) 1

kn

kn∑

i=3

[
(i/kn)1/2 + ik−1n + 36C

2γ
2γ+1 k

1
2+

γ
4γ+2

n b
−η 2γ

2γ+1
n

]

. P
(
Zn1 ≥ `/2

){
1 + k

1
2+

γ
4γ+2

n b
−η 2γ

2γ+1
n

}
,

where

k
1
2+

γ
4γ+2

n b
−η 2γ

2γ+1
n =

(
knb
− 4ηγ

3γ+1
n )

3γ+1
4γ+2 = o(1)

by Condition 3.1(ii), after setting γ = 1. Hence, since limn→∞ P(Zn1 ≥ `/2) =
e−θ`/2 → 0 for ` → ∞, we obtain (A.7) and hence (A.4) with v = 1. Next,
consider (A.4) with v = 2. By Markov’s inequality

P(|Bn,`,2| > δ) ≤ δ−1
∫ ∞

`

E[|en,j(τ)|] dH(τ).

Split the integral on the right-hand side into two integrals over [`, εbn] and
(εbn,∞). For τ ∈ [`, εbn], we have en,j(τ) = fn,kn(τ), with fn,kn from (A.8).
Hence, similar as for the treatment of (A.12), see in particular relation (A.13),
we have E[|fn,kn(τ)|] . 1 + o(1), where the upper bound is uniform in τ . As a
consequence, the integral on the right-hand side of the previous display can be
bounded by

(1 + o(1))

∫ εbn

`

dH(τ) +
√
kn

∫ ∞

εbn

dH(τ),

which converges to zero for n→∞ followed by `→∞. This proves (A.4) with
v = 2.

Lemma A.2. For any m ∈ N≥1,

1√
kn

kn∑

i=1

(
W db
n,i(1), . . . ,W db

n,i(m)
) d−→ (sdb1 , . . . , sdbm ) ∼ Nm(0,Σdb

m ),

6
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where W db
n,i(j) and Σdb

m = (ddbj,j′)1≤j,j′≤m are defined in (6.3) and (4.2), respec-
tively.

Proof of Lemma A.2. Throughout the proof, we omit the upper index db at all
instances of Ĥdb

n , edbn,j and Zdb
ni . Define

Bn,j =
1√
kn

kn∑

i=1

{
ϕn,j(Zni)− E[ϕn,j(Zni)]

}
, j ∈ N≥1.

Decompose each block Ii = Idbi = I+i ∪ I−i , i = 1, . . . , kn, into a big block
I+i = {(i− 1)bn + 1, . . . , ibn − `n} and a small one I−i = {ibn − `n + 1, . . . , ibn},
where `n is from Condition 3.1(ii), and define Z+

ni = bn(1 − N+
ni) with N+

ni =
max{Us : s ∈ I+i }. Set

B+
n,j =

1√
kn

kn∑

i=1

ϕn,j(Z
+
ni)− E[ϕn,j(Z

+
ni)], j ∈ N≥1,

and write

B−n,j = Bn,j −B+
n,j =

1√
kn

kn∑

i=1

Y −ni − E[Y −ni ],

where Y −ni = ϕn,j(Zni)− ϕn,j(Z+
ni).

Let us start by showing that

B−n,j = oP(1), (A.14)

for which we may proceed similar as in the proof of Lemma 9.3 in Berghaus &
Bücher (2018): denote G−n = Gn −G+

n , Z−ni = Zni − Z+
ni.

For ε = 1− c with c from Condition 3.1(iii), let A+
n = {minkni=1N

+
ni > 1− ε}

and note that P(A+
n ) → 1 by Remark 3.2. We can write B−n,j = B−n,j1A+

n
+

oP(1) = B̃−n,j1A+
n

= B̃−n,j + oP(1), where

B̃−n,j =
1√
kn

kn∑

i=1

{Y −ni − E[Y −ni ]}1(N+
ni > 1− ε)

It suffices to show that B̃−n,j = oP(1). For that purpose, note that |Y −ni | ≤ 1,
such that, by stationarity and Minkowski’s inequality,

E
[
|B−n,j − B̃−n,j |2

]
≤ knP(N+

n1 ≤ 1− ε) ≤ knP(N ′n1 ≤ 1− ε),

which converges to zero by Condition 3.1(iii). As a consequence, E[B̃−n,j ] =

E[B̃−n,j −B−n,j ] + E[B−n,j ] = o(1).

Next, we show that Var(B̃−n,j) = o(1). Now N+
ni > 1− ε implies that Z+

ni =

Zε+ni and Zni = Zεni, where the variables with an upper index ε are defined in

terms of the Uεi instead of the Ui. Hence, B̃−n,j = k−1/2
n

∑kn
i=1 S

ε
ni, where

Sεni = {Y ε−ni − E[Y −ni ]}1(Nε+
ni > 1− ε)
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with
Y ε−ni = ϕn,j(Z

ε
ni)− ϕn,j(Zε+ni ).

As a consequence, by stationarity

Var(B̃−n,j) = Var(Sεn1) +
2

kn

kn∑

i=1

(kn − i) Cov(Sεn1, S
ε
n,1+i)

≤ 3 Var(Sεn1) +
2

kn

kn∑

i=2

(kn − i) Cov(Sεn1, S
ε
n,1+i) (A.15)

Let us first show that Var(Sεn1) = o(1) as n → ∞, which would follow, in view
of the boundedness of |ϕn,j | ≤ 1, from |Y ε−n1 | = oP(1) and |Y −n1| = oP(1). To this
end, let Zε−n1 = Zεn1 − Zε+n1 and note that |Zε−n1 | ≤ |Zn1| (by studying the cases
Nε+
ni > 1− ε and Nε+

ni ≤ 1− ε). Therefore, since `n = o(bn),

P(Y ε−n1 6= 0) ≤ P(Zεn1 6= Zε+n1 )

= P(Zε−n1 6= 0),

≤ P(Z−n1 6= 0),

= P
(

max
s∈I1

Us > max
s∈I+1

Us

)

≤ P
(
bn−`n
max
s=1

Us ≤ 1− y/bn
)

+ P
(

`n
max
s=1

Us > 1− y/bn
)

≤ P
(
Z1:bn−`n ≥ y(bn − `n)/bn

)
+ `ny/bn → exp(−θy),

which can be made arbitrary small by increasing y. This implies |Y ε−n1 | = oP(1),
and the same arguments can be used for showing that |Y −n1| = oP(1).

It remains to treat the sum over the covariances on the right-hand side of
(A.15). Note that Sεni is Bε{(i−1)bn+1}:(ibn)-measurable (defined on page 8). By

Lemma 3.9 in Dehling & Philipp (2002),

|Cov(Sεn1, S
ε
n,1+i)| ≤ 4αε1((i− 1)bn)

Now, for i ≥ 2, αε1((i−1)bn) ≤ Cb−ηn (i−1)−η by Condition 3.1(ii). The sum over

the covariances in (A.15) can thus be bounded by a multiple of Cb−ηn
∑kn
i=2(i−

1)−η ≤ Cb−ηn
∑∞
i=2 i

−η = o(1). Overall, we obtain B̃−n,j = oP(1) as required.
Next, let us show that

∫ ∞

0

en,j(τ) dH(τ) =

∫ ∞

0

e+n,j(τ) dH(τ) + oP(1), (A.16)

where
e+n,j(τ) =

√
kn{p(τ),+n (j)− P(N

(τ),+
bn,1

= j)}, j ∈ N≥1,
and where

p(τ),+n (j) =
1

kn

kn∑

i=1

1(N
(τ),+
bn,i

= j), N
(τ),+
bn,i

=
∑

s∈I+i
1(Us > 1− τ/bn).

8
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For that purpose, write, for τ > 0,

en,j(τ)− e+n,j(τ) =
1√
kn

kn∑

i=1

Xn,i(τ)− Yn,i(τ)− E[Xn,i(τ)− Yn,i(τ)],

where

Xn,i(τ) = 1
(
N

(τ)
bn,i

= j,N
(τ),−
bn,i

> 0
)
, Yn,i(τ) = 1

(
N

(τ),+
bn,i

= j,N
(τ),−
bn,i

> 0
)

with N
(τ),−
bn,i

defined as N
(τ),+
bn,i

but with the sum ranging over I−i instead of I+i .
We obtain

E[|en,j(τ)− e+n,j(τ)|2] ≤ 2

kn
Var

( kn∑

i=1

Xn,i(τ)
)

+
2

kn
Var

( kn∑

i=1

Yn,i(τ)
)
.

By stationarity and Lemma 3.11 in Dehling & Philipp (2002) (with t = 2, s =
r = 4) we have

1

kn
Var

( kn∑

i=1

Xn,i(τ)
)

=
1

kn

kn∑

i=1

Var(Xn,i(τ)) +
2

kn

kn∑

i=1

(kn − i) Cov(Xn,1(τ), Xn,i+1(τ))

≤ 20 P(N
(τ),−
bn,1

> 0)1/2
(

3 +

kn∑

i=2

αε1((i− 1)bn)1/2
)

≤ 20
(τ`n
bn

)1/2(
3 + C1/2

∞∑

i=1

i−η/2
)
,

where we used Condition 3.1(ii) in the last step. Since the series in the last
display is finite and the variance over the Yn,i(τ) can be treated analogously, we
obtain, for any τ > 0, E[|en,j(τ)− e+n,j(τ)|2] . (τ`n/bn)1/2 such that

E
[∣∣∣
∫ ∞

0

en,j(τ)− e+n,j(τ) dH(τ)
∣∣∣
2]

. (`n/bn)1/2
∫ ∞

0

τ1/2 dH(τ),

which converges to 0 by Condition 3.1(ii). This readily implies (A.16).
As a consequence of (A.14) and (A.16), we have

k−1/2n

kn∑

i=1

Wn,i(j) =

∫ ∞

0

e+n,j(τ) dH(τ) +B+
n,j + oP(1). (A.17)

Next, define A+
n =

{
mini=1,...,kn N

+
ni > 1 − ε

}
with ε = ε1 from Condition

3.1(ii), such that limn→∞ P(A+
n ) = 1 by Remark 3.2. Hence, by (A.17) and the

Cramér-Wold-device, the lemma is shown once we prove that

m∑

j=1

λj

{∫ ∞

0

e+n,j(τ) dH(τ) +B+
n,j

}
1A+

n

d−→
m∑

j=0

λjsj (A.18)
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for arbitrary λj ∈ R. For that purpose, rewrite the left-hand side of (A.18) as

k
−1/2
n

∑kn
i=1 fi,n1A+

n
, where

fi,n =
m∑

j=0

λj

{∫ ∞

0

1(N
(τ),+
bn,i

= j)− P(N
(τ),+
bn,1

= j) dH(τ)

+ ϕn,j(Z
+
ni)− E[ϕn,j(Z

+
ni)]

}
.

By the definition of A+
n , we have

k−1/2n

kn∑

i=1

fi,n1A+
n

= k−1/2n

kn∑

i=1

f̃i,n + oP(1),

where f̃i,n = fi,n1(Z+
ni < εbn). Observing that f̃i,n is Bε{(i−1)bn+1}:{ibn−`n}-

measurable (and that f̃i,n and f̃j,n are at least `n observations apart for i 6= j)
and recursively applying Lemma 3.11 in Dehling & Philipp (2002), we obtain
that, for any t ∈ R, the characteristic functions satisfy

∣∣∣∣E
[

exp

(
it√
kn

kn∑

i=1

f̃i,n

)]
−

kn∏

i=1

E

[
exp

(
it√
kn
f̃i,n

)]∣∣∣∣ . knαε1(`n).

The upper bound converges to 0 by Condition 3.1(ii). Therefore, {f̃i,n : i =
1, . . . , kn} may be considered independent in the remaining part of this proof
(see also the argumentation in the proof of Lemma 7.3). To obtain asymptotic
normality, we apply Lyapunov’s central limit theorem. First, note that |f̃1,n| ≤
2
∑m
j=1 |λj | <∞. This implies, by stationarity, for any p > 2,

∑kn
i=1 E[|f̃i,n|p]{∑kn

i=1 Var(f̃i,n)
}p/2 = k1−p/2n

E[|f̃1,n|p]
E[|f̃1,n|2]p/2

. k1−p/2n E[f̃21,n]−p/2,

which converges to zero provided that limn→∞ E[f̃21,n] exists. The central limit

theorem then implies that k−1/2
n

∑kn
i=1 f̃i,n converges in distribution to a cen-

tered normal distribution with variance limn→∞ E[f̃21,n], whence it remains to
calculate the latter limit.

For that purpose, note that limn→∞ E[f̃21,n] = limn→∞ E[f21,n]. Set

Cn,j =

∫ ∞

0

1(N
(τ),+
bn,1

= j)− P(N
(τ),+
bn,1

= j) dH(τ),

Dn,j = ϕn,j(Z
+
n1)− E[ϕn,j(Z

+
n1)],

and note that

E[f21,n] =
m∑

j,j′=1

λjλj′ E[(Cn,j +Dn,j)(Cn,j′ +Dn,j′)],
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which we need to show to converge to
∑m
j,j′=1 λjλj′ E[sjsj′ ]. Similar arguments

as in the proof of (A.14) and (A.16) allow us to replace I+1 by I1.
We start by considering the product of the Cn,j-terms. Invoking the domi-

nated convergence theorem and

P(N
(τ)
bn,1

= j,N
(τ ′)
bn,1

= j′)→ P(N
(τ)
E = j,N

(τ ′)
E = j′)

with (N
(τ)
E , N

(τ ′)
E ) as defined in Theorem 4.1 (following from Condition 3.1(i)),

we obtain that

lim
n→∞

E[Cn,jCn,j′ ] =

∫ ∞

0

∫ ∞

0

Cov[1(N
(τ)
E = j),1(N

(τ ′)
E = j′)] dH(τ)dH(τ ′).

Second, we consider the product of the Dn,j-terms. For this purpose, we first
show that ϕn,j(Zn1) converges weakly to p(Z)(j), for Z ∼ Exp(θ), which in turn
is a consequence of weak convergence of Zn1 to Z and the extended continuous
mapping theorem. For the latter, one needs to prove that ϕn,j(xn) → p(x)(j)
for any xn → x, which follows from

|ϕn,j(xn)− ϕn,j(x)| ≤ E
[
|1(N

(xn)
bn,1

= j)− 1(N
(x)
bn,1

= j)|
]

≤ E
[
1(|N (xn)

bn,1
−N (x)

bn,1
| ≥ 1)

]
≤ E

[
|N (xn)

bn,1
−N (x)

bn,1
|
]

= E
[
N

(xn∨x)
bn,1

−N (xn∧x)
bn,1

]
= |xn − x|.

Likewise, ϕn,j(Zn1)ϕj′,n(Zn1) weakly converges to p(Z)(j)p(Z)(j′). Since |ϕn,j | ≤
1, Theorem 2.20 in van der Vaart (1998) implies convergence of the correspond-
ing moments, i.e.,

E[Dn,jDn,j′ ] = Cov
(
ϕn,j(Zn1), ϕn,j′(Zn1)

)
= Cov

(
p(Z)(j), p(Z)(j′)

)
+ o(1).

With regard to the mixed Cn,j- and Dn,j′ -terms, note that, for j ∈ N≥0 and
µ ≥ 0,

P(N
(τ)
bm,1

= j, Zn1 > µ) = P(N
(τ)
bn,1

= j,N
(µ)
bn,1

= 0)

→
{
p
(τ,µ)
2 (j, 0) , τ ≥ µ ≥ 0

e−θµ1(j = 0) , µ > τ ≥ 0,

such that (N
(τ)
bn,1

, Z1:n)
d−→ (N

(τ)
E , Z) with (N

(τ)
E , Z) as specified in Theorem 4.1.

The extended continuous mapping theorem and boundedness, |ϕn,j | ≤ 1, implies

E[Cn,jDn,j′ ] =

∫ ∞

0

Cov
{
1(N

(τ)
bn,1

= j), ϕn,j′(Zn1)
}

dH(τ)

=

∫ ∞

0

Cov
{
1(N

(τ)
E = j), p(Z)(j′)

}
dH(τ) + o(1).

The last three paragraphs imply

lim
n→∞

E[(Cn,j +Dn,j)(Cn,j′ +Dn,j′)] = dj,j′

with dj,j′ = ddbj,j′ from (4.2), which finalizes the proof.
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Lemma A.3. For j ∈ N≥1, we have

en,j
d−→ ej in D([0,∞))

for some centered Gaussian process ej, whose covariance function is given in
Theorem 4.1 in Robert (2009).

Proof. The result follows by suitable adaptations of the proof of Theorem 4.1
in Robert (2009) (see also Theorem 7.1 for a similar result for the sliding blocks
version esbn,j under slightly different mixing conditions). In the following we
explain why Lemma 6.7 in Robert (2009) regarding the finite-dimensional con-
vergence of the above process is applicable under our set of conditions, and give
a detailed proof for the tightness of that process that substitutes his Lemma 6.8.

Note that Robert’s Lemma 6.7 yields the finite-dimensional convergence of
the vector of functions (en,0, . . . , en,m, ēn) in D([σ, `])m+2, with ēn denoting the
tail empirical process, and with arbitrary fixed 0 < σ < `. Extending the re-
sult for the margin en,j to σ = 0 is straightforward. It remains to argue why
the marginal convergence is valid under our weaker conditions; note that our
assumptions are the same as in Robert (2009) except that we do not impose
Conditions (C0.b) and (C2.a) and that we impose a slightly different mixing
condition (see Condition 3.1(ii)) than in (C2.b) and (C2.c) in that reference.
First, a close look at Robert’s proof reveals that Conditions (C0.b) and (C2.a)
are only needed for weak convergence of the last component ēn and not for
weak convergence of the component en,j . The argumentation regarding (C2.b)
and (C2.c) is more involved, and requires referring to specific pages and argu-
ments in Robert’s paper. First of all, the assumption `n = o(r2/r

n ) is used on
page 302 only, where it is used for showing that the small-blocks version of ēn
is asymptotically negligible. The corresponding result for en,j , however, only
requires `n = o(rn), which is exactly `n = o(bn) in our notation as imposed in
Condition 3.1(ii). Next, his condition limn→∞ nr−1n αln = 0 from (C2.c) (used
on page 303 only) is actually stronger than needed, and can be replaced by the
weaker condition limn→∞ nr−1n αrn,ln(τ1, . . . , τr) = 0. The latter however is a
simple consequence of our condition knαε1(`n) = o(1) in Condition 3.1(ii). Note
that η > 3 from Condition 3.1(ii) also suffices for the convergence of the series
appearing on page 302 in the upper bound of I1.

It remains to show tightness of en,j on [0, `] for any ` ∈ N, for which we give
a self-contained proof. Write en,j = ẽn,j − ẽn,j−1 (set ẽn,−1 := 0), where

ẽn,j(τ) =
√
kn

{ 1

kn

kn∑

i=1

1
(
N

(τ)
bn,i
≤ j
)
− P

(
N

(τ)
bn,i
≤ j
)}
.

It suffices to show tightness of ẽn,j . By Theorem 15.5 and Theorem 8.3 in
Billingsley (1968) and the finite-dimensional convergence of en,j it is sufficient
to show that: for any (sufficiently small) ε > 0 and ν > 0 there exist some δ > 0
and n0 ∈ N, such that

P
(

sup
τ2≤τ1≤τ2+δ

|ẽn,j(τ1)− ẽn,j(τ2)| > ε
)
≤ δν,
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for all τ2 ∈ [0, ` − δ] and all n ≥ n0. Fix 0 < ε < 1/4 and ν > 0. Choose
2 < v < p < r <∞ such that, with η from Condition 3.1(ii), η > v/(v − 2) and
η ≥ (p− 1)r/(r− p) and p/2 > 1 + ε (decrease ε is necessary); see (A.20) below
that such choices are possible. Let 0 ≤ τ2 < τ1 ≤ `. By Theorem 4.1 in Shao &
Yu (1996), there exists some constant K <∞, such that

E
[∣∣√kn

(
ẽn,j(τ1)− ẽn,j(τ2)

)∣∣p
]

≤ K
(
kp/2n P

(
N

(τ2)
bn,1
≤ j < N

(τ1)
bn,1

)p/v
+ k1+εn P

(
N

(τ2)
bn,1
≤ j < N

(τ1)
bn,1

)p/r)

≤ K
(
kp/2n (τ1 − τ2)p/v + k1+εn (τ1 − τ2)p/r

)
,

where the last inequality follows as in the proof of Lemma A.2. Recall that p/2 >

1 + ε, and suppose that τ2 < τ1 and n satisfy ε ≤ k
p/2−(1+ε)
n (τ1 − τ2)p/v−p/r.

Then, the above inequality implies

E
[∣∣ẽn,j(τ1)− ẽn,j(τ2)

∣∣p
]
≤ 2K

ε
(τ1 − τ2)p/v.

Now let κ = κn ∈ N and µ = µn > 0 such that µ ≥ (εk
−(p/2−(1+ε))
n )1/(p/v−p/r)

and δ := κµ is independent of n. We obtain, for all τ ∈ [0, `− δ],

E
[∣∣ẽn,j(τ + iµ)− ẽn,j(τ + (i− 1)µ)

∣∣p
]
≤ 2K

ε
µp/v, i ∈ {1, . . . , κ},

and, by Theorem 12.2 in Billingsley (1968),

P
(

max
1≤i≤κ

∣∣ẽn,j(τ + iµ)− ẽn,j(τ)
∣∣ > ε

)
≤ 2KK ′

εp+1
(κµ)p/v = Cδp/v (A.19)

for some constants K ′, C < ∞. Further, note that τ 7→ 1
(
N

(τ)
bn,i
≤ j
)

is mono-
tonically decreasing, which implies, for any δ′ > 0,

sup
τ2≤τ1≤τ2+δ′

∣∣ẽn,j(τ1)− ẽn,j(τ2)
∣∣ ≤

∣∣ẽn,j(τ2 + δ′)− ẽn,j(τ2)
∣∣+
√
knδ
′,

yielding

sup
τ2≤τ1≤τ2+κµ

∣∣ẽn,j(τ1)− ẽn,j(τ2)
∣∣ ≤ 3 max

1≤i≤κ

∣∣ẽn,j(τ2 + iµ)− ẽn,j(τ2)
∣∣+
√
knµ

by a similar reasoning as for the proof of (A.11). Let µ ≤ ε/
√
kn (see below

that this is a valid choice). Then

P
(

sup
τ2≤τ1≤τ2+δ

|ẽn,j(τ1)− ẽn,j(τ2)| > 4ε
)

≤ P
(

max
1≤i≤`

∣∣ẽn,j(τ2 + iµ)− ẽn,j(τ2)
∣∣ > ε

)

≤ Cδp/v < δν
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by inequality (A.19) and choosing δ such that Cδp/v−1 < ν. The proof is finished
once we have shown that our choice of parameters is valid and in accordance
with our Condition 3.1(ii). Above, we required

(
ε

k
p/2−(1+ε)
n

) 1
p/v−p/r

≤ µ ≤ ε√
kn
, η > v/(v − 2),

η ≥ (p− 1)r/(r − p), p/2 > 1 + ε. (A.20)

Some straightforward calculation similar to those on page 305f. in Robert (2009)
yield that all four conditions are satisfied if p = v(1+ε), v = (3+ε)r/(r+1+ε),
ε < ((r − 2) ∧ 1/2)/4 and

η ≥ 3r

r − 2(1 + 2ε)
.

Since η > 3 by assumption, the latter can be guaranteed by increasing r →
∞.

B. Auxiliary lemmas - Sliding blocks

Throughout, we assume that Condition 3.1 is met and that, additionally,√
knβε2(bn) = o(1) for some ε2 > 0. All convergences are for n → ∞ if not

stated otherwise. We will also occasionally omit the upper index sb at Ĥsb
n , e

sb
n,j

and Zsb
ni .

Lemma B.1. For any j ∈ N≥1,

∫ ∞

0

esbn,j(τ) d(Ĥsb
n −H)(τ) = oP(1).

Proof of Lemma B.1. The proof is very similar to the one of Lemma A.1. In
fact, we need to show that (A.3) and (A.4) is met (for v = 1, 2), where An,` and

Bn,`,v are defined as in (A.1) and (A.2), but with Ĥn = Ĥsb
n and en,j = esbn,j .

Invoking Theorem 7.1 instead of Lemma A.3, the proof of (A.3) is the same
as in the proof Lemma A.1. (Note that we still have E[Ĥsb

n ] = H, and similar to
Var(Ĥn) = o(1) in the proof of Lemma A.1), it can be shown that Var(Ĥsb

n ) =
o(1).)

Regarding (A.4) with v = 1, write

Bn,`,1 =

√
kn

(n− bn + 1)2

n−bn+1∑

i,i′=1

{
1
(
N

(Zni)
bn,i′

= j
)
− ϕn,j(Zni)

}
1(Zni ≥ `)

= k−3/2n

kn−1∑

i,i′=1

b−2n
∑

s∈Ii

∑

s′∈Ii′

{
1
(
N

(Zns)
bn,s′

= j
)
− ϕn,j(Zns)

}

× 1(Zns ≥ `) + o(1)

= Vn,`,1 + Vn,`,2 + o(1),
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where Vn,`,w is made up from the same summands as in the line before, with
the only difference that for w = 1 the sum over i′ ranges from 1 to i − 3, and
for w = 2 it goes from i+ 3 to kn − 1 (c.f. the proof of Lemma A.1). Now, for
ε = ε1 from Condition 3.1(ii), write c from Condition 3.1(iii) as c = 1− εκ with
κ ∈ (0, 1), and let Cn = {mini=1,...,n−bn+1Nni > 1− εκ}, such that P(Cn)→ 1
as n→∞ by Remark 3.2. Consequently, (A.4) with v = 1 follows if we show

lim
`→∞

lim sup
n→∞

P
(
|Vn,`,w1Cn | > δ

)
= 0

for w ∈ {1, 2}. In the following, we consider the case w = 1; the case w = 2 can
be treated analogously. By the same reasoning and using the same notation as
on page 38, we can write Vn,`,11Cn = V εn,`,11Cn , where

V εn,`,1 =
1

kn

kn−1∑

i=4

1

bn

∑

s∈Ii
fn,i−3

(
Zεκns

)
1(εκbn ≥ Zεκns ≥ `)

and fn,i−3 is given by

fn,i−3(τ) = k−1/2n

i−3∑

i′=1

1

bn

∑

s′∈Ii′

{
1
(
N

(τ)
bn,s′,ε

= j
)
− ϕn,j(τ)

}
.

Note that, by construction, the observations making up fn,i−3 are separated
by at least one block of size bn from the observations occurring in Zεκns for any
s ∈ I4∪ . . .∪Ikn−1, just as in the disjoint blocks case in the proof of Lemma A.1.
As a matter of fact, following the proof of this lemma from page 38 onwards,
one can show that

lim
`→∞

lim sup
n→∞

P
(
|V εn,`,11Cn | > δ

)
= 0,

overall proving (A.4) with v = 1.
Likewise, as for the process edbn,j in the disjoint blocks setting, we obtain the

bound E[|esbn,j(τ)|] = O(1) uniformly in τ ∈ [`, εbn]. Consequently, by Markov’s
inequality, (A.4) with v = 2 follows from

P(|Bn,`,2| > δ) . δ−1
∫ εbn

`

dH(τ) + δ−1
√
kn

∫ ∞

εbn

dH(τ),

which which converges to zero for n → ∞ followed by ` → ∞. This concludes
the proof.

Lemma B.2. For any m ∈ N≥1,

√
kn

n− bn + 1

n−bn+1∑

i=1

(W sb
n,i(1), . . . ,W sb

n,i(m)
) d−→ (ssb1 , . . . , s

sb
m) ∼ Nm(0,Σsb

m),

where W sb
n,i(j) is defined as in (6.3) but with db replaced by sb, and where

Σsb
m = (dsbj,j′)1≤j,j′≤m is defined in (4.3).
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Proof of Lemma B.2. By the Cramér-Wold device it suffices to show that

m∑

j=1

λj

√
kn

n− bn + 1

n−bn+1∑

i=1

W sb
n,i(j)

d−→
m∑

j=1

λjs
sb
j

for arbitrary λj ∈ R. Write the right-hand side as

kn−1∑

i=1

∑

s∈Ii

m∑

j=1

λj

√
kn

n− bn + 1

{∫ ∞

0

1(N
(τ)
bn,s

= j)− ϕn,j(τ) dH(τ)

+ ϕn,j(Zns)− E
[
ϕn,j(Zns)

}
+ oP(1),

where the small oP(1) term is due to the fact that a negligible number of sum-
mands has been omitted. To take care of the serial dependence of the sliding
blocks, we apply a similar construction as in the proof of Lemma 7.3. Using the
same notation as in that proof, write V ±n = (q∗n)−1/2

∑q∗n
i=1 T

±
ni with

T±ni =

√
q∗n
kn

∑

s∈J±i

m∑

j=1

λj
n

n− bn + 1

1

bn

{∫ ∞

0

1(N
(τ)
bn,s

= j)− ϕn,j(τ) dH(τ)

+ ϕn,j(Zns)− E
[
ϕn,j(Zns)

]}
.

Since

∣∣∣
∫ ∞

0

1(N
(τ)
bn,s

= j)− ϕn,j(τ) dH(τ)
∣∣∣+
∣∣ϕn,j(Zns)− E

[
ϕn,j(Zns)

]∣∣ ≤ 2,

we still obtain the upper bound in (8.7). Note that from relation (8.7) forward
the proof of Lemma 7.3 actually does not depend on the concrete form of the
T±ni but only makes use of the block structure and mixing conditions, which is
why the remaining proof is the same as in Lemma 7.3. In particular, note that

T+
n1 =

m∑

j=1

λj

√
k∗n

n∗ − bn + 1

n∗−bn+1∑

i=1

Wn∗,i(j) +Rn,

where Rn → 0 in L2(P) and n∗ = k∗nbn, and that our assumptions in Condition
3.1 still hold if n and kn are substituted by n∗ and k∗n. The assertion then
follows from Lemma B.3 below.

Lemma B.3. For any j, j′ ∈ N≥1, we have

lim
n→∞

Cov
( √

kn
n− bn + 1

n−bn+1∑

i=1

W sb
n,i(j),

√
kn

n− bn + 1

n−bn+1∑

i=1

W sb
n,i(j

′)
)

= dsbj,j′ ,

where dsbj,j′ is defined in (4.3).
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Proof of Lemma B.3. Assume that all Us are Bεs:s-measurable with ε = ε1 from
Condition 3.1; the general case can be treated by multiplying with suitable
indicator functions as in the previous proofs. Write

Cov
( √

kn
n− bn + 1

n−bn+1∑

i=1

W sb
n,i(j),

√
kn

n− bn + 1

n−bn+1∑

i=1

W sb
n,i(j

′)
)

= Cn1 + Cn2 + Cn3 + Cn4, (B.1)

where

Cn1 = Cov
(∫ ∞

0

en,j(τ) dH(τ),

∫ ∞

0

en,j′(τ) dH(τ)
)

Cn2 =
kn

(n− bn + 1)2

n−bn+1∑

i,i′=1

Cov
(
ϕn,j(Zni), ϕn,j′(Zni′)

)

Cn3 =
kn

(n− bn + 1)2

n−bn+1∑

i,i′=1

Cov
(∫ ∞

0

1(N
(τ)
bn,i

= j) dH(τ), ϕn,j′(Zni′)
)

Cn4 =
kn

(n− bn + 1)2

n−bn+1∑

i,i′=1

Cov
(∫ ∞

0

1(N
(τ)
bn,i

= j′) dH(τ), ϕn,j(Zni′)
)
.

By Lemma 8.1, the first term Cn1 satisfies

lim
n→∞

Cn1 = 2

∫ 1

0

∫ ∞

0

∫ ∞

0

Cov
(
1(X

(τ)
1,ξ = j),

1(Y
(τ ′)
1,ξ = j′)

)
dH(τ)dH(τ ′) (B.2)

As at the beginning of the proof of Lemma 8.1, the second term can be shown
to satisfy Cn2 = Tn1 + Tn2 + o(1), where

Tn1 =
1

b2n

∑

s,t∈I1
Cov

(
ϕn,j(Zns), ϕn,j′(Znt)

)
,

Tn2 =
1

b2n

∑

s∈I1

∑

t∈I2
Cov

(
ϕn,j(Zns), ϕn,j′(Znt)

)

+
1

b2n

∑

s∈I2

∑

t∈I1
Cov

(
ϕn,j(Zns), ϕn,j′(Znt)

)
.

Let us start with Tn1. We know that E[ϕn,j′(Znt)] → p̄(j′) by the proof of
Lemma A.2, which implies

Tn1 =
1

b2n

bn∑

s,t=1

E[ϕn,j(Zns)ϕn,j′(Znt)]− p̄(j)p̄(j′) + o(1).
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As in the proof of Lemma 8.1 we can write

1

b2n

bn∑

s,t=1

E[ϕn,j(Zns)ϕn,j′(Znt)] =

∫ 1

0

∫ 1

0

gn(ξ, z) dzdξ,

where

gn(ξ, z) = E[ϕn,j(Zn,bbnzc+1)ϕn,j′(Zn,bbnξc+1)].

Let z ≤ ξ. Set rn = bbnξc − bbnzc. For x, y > 0 consider

P
(
Zn,bbnzc+1 > x,Zn,bbnξc+1 > y

)

= P
(
N1:bn < 1− x

bn
, Nrn+1:rn+bn < 1− y

bn

)

= P
(
N1:rn < 1− x

bn
, Nrn+1:bn < 1− x∨y

bn
, Nbn+1:rn+bn < 1− y

bn

)

where Ns:t = max(Us, . . . , Ut) for s, t ∈ N≥1 with s ≤ t. Note that P(N1:qn >
1− z/bn) ≤ zqn/bn → 0 for any integer sequence qn = o(bn) that is converging
to infinity. Similar as in the step (8.14) in the proof of Lemma 8.1, this implies
that the expression in the previous display equals

P
(
N1:rn < 1− x

bn

)
P
(
Nrn+1:bn < 1− x∨y

bn

)
P
(
Nbn+1:rn+bn < 1− y

bn

)

+O(αε(qn)) +O((x ∨ y)qn/bn),

which by (2.4) converges to

Hξ−z(x, y) := exp
(
− θ{(x ∧ y)(ξ − z) + (x ∨ y)}

)
.

As a consequence, by the definition of (X2,ξ−z, Y2,ξ−z) in Theorem 4.2,

(Zsb
n,bbnzc+1, Z

sb
n,bbnξc+1)

d−→ (X2,ξ−z, Y2,ξ−z),

As in the proof of Lemma A.2, the extended continuous mapping theorem and
Theorem 2.20 in van der Vaart (1998) imply

lim
n→∞

gn(z, ξ) = E[p(X2,ξ−z)(j)p(Y2,ξ−z)(j′)]

for z ≤ ξ. By symmetry, for z > ξ,

lim
n→∞

gn(z, ξ) = E[p(X2,z−ξ)(j)p(Y2,z−ξ)(j′)]

A simple calculation then shows that

lim
n→∞

∫ 1

0

∫ 1

0

gn(ξ, z) dzdξ = 2

∫ 1

0

(1− ξ) E[p(X2,ξ)(j)p(Y2,ξ)(j′)] dξ,

Altogether, we have that

lim
n→∞

Tn1 = 2

∫ 1

0

(1− ξ) E
[
p(X2,ξ)(j)p(Y2,ξ)(j′)

]
dξ − p̄(j)p̄(j′).
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Analogously, the term Tn2 can be seen to satisfy

lim
n→∞

Tn2 = 2

∫ 1

0

ξ E
[
p(X2,ξ)(j)p(Y2,ξ)(j′)

]
dξ − p̄(j)p̄(j′),

such that

Cn2 = Tn1 + Tn2 + o(1)→ 2

∫ 1

0

E
[
p(X2,ξ)(j)p(Y2,ξ)(j′)

]
dξ − 2p̄(j)p̄(j′)

= 2

∫ 1

0

Cov
(
p(X2,ξ)(j), p(Y2,ξ)(j′)

)
dξ. (B.3)

Next, consider Cn3 in (B.1), which may be written as Cn3 = Sn1+Sn2+o(1),
where

Sn1 =
1

b2n

∑

s,t∈I1
Cov

(∫ ∞

0

1(N
(τ)
bn,s

= j) dH(τ), ϕn,j′(Znt)

)

Sn2 =
1

b2n

{∑

s∈I1

∑

t∈I2
Cov

(∫ ∞

0

1(N
(τ)
bn,s

= j) dH(τ), ϕn,j′(Znt)

)

+
∑

s∈I2

∑

t∈I1
Cov

(∫ ∞

0

1(N
(τ)
bn,s

= j) dH(τ), ϕn,j′(Znt)

)}
.

By similar arguments as before, we obtain

Sn1 =

∫ 1

0

∫ 1

0

∫ ∞

0

E
[
1
(
N

(τ)
bn,bbnzc+1 = j

)
ϕn,j′(Zn,bbnξc+1)

]
dH(τ) dz dξ

− p̄(j)p̄(j′) + o(1).

To analyze the convergence of the product moment in the previous display
we start by showing that

(
N

(τ)
bn,bbnzc+1, Zn,bbnξc+1

) d−→
(
X

(τ)
3,|ξ−z|, Y3,|ξ−z|)

where (X
(τ)
3,ζ , Y3,ζ) is defined in Theorem 4.2. For x > 0, j ∈ N≥0 and 0 ≤ z ≤

ξ ≤ 1, write

P
(
N

(τ)
bn,bbnzc+1 = j, Zn,bbnξc+1 > x

)
= P

(
N

(τ)
bn,bbnzc+1 = j,N

(x)
bn,bbnξc+1 = 0

)

which is exactly of the form of ϕn in (8.11) and hence converges to

H
(x,τ)
0,j (ξ − z)1(x ≤ τ) +H

(τ,x)
j,0 (ξ − z)1(x > τ)

=

j∑

l=0

p(τ(ξ−z))(l)p(x(ξ−z))(0)p
((1−ξ+z)τ,(1−ξ+z)x)
2 (j − l, 0)1(x ≤ τ)

+ p(τ(ξ−z))(j)e−θx1(x > τ)
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= P
(
X

(τ)
3,ξ−z = j, Y3,ξ−z > x

)

by the proof of Lemma 8.1, where the last equation follows from the definition
of (X(τ)

3,ζ , Y3,ζ) in Theorem 4.2. The same arguments as before in combination
with the dominated convergence theorem implies

lim
n→∞

E
[
1
(
N

(τ)
bn,bbnzc+1 = j

)
ϕn,j′(Zn,bbnξc+1)

]

= E
[
1
(
X

(τ)
3,ξ−z = j

)
p(Y3,ξ−z)(j′)

]
.

For the case z > ξ, one obtains the same limiting expression, but with z and ξ
interchanged. As a consequence, by similar arguments as for Cn2,

lim
n→∞

Sn1

=

∫ 1

0

∫ 1

0

∫ ∞

0

E
[
1
(
X

(τ)
3,ξ−z = j

)
p(Y3,ξ−z)(j′)

]
dH(τ) dz dξ − p̄(j)p̄(j′)

= 2

∫ 1

0

∫ ∞

0

(1− ξ) E
[
1
(
X

(τ)
3ξ = j

)
p(Y3ξ)(j′)

]
dH(τ) dξ − p̄(j)p̄(j′).

A similar argumentation for Sn2 finally implies

Cn3 = Sn1 + Sn2 + o(1)

→ 2

∫ 1

0

∫ ∞

0

E
[
1
(
X

(τ)
3ξ = j

)
p(Y3ξ)(j′)

]
dH(τ) dξ − p̄(j)p̄(j′)

= 2

∫ 1

0

∫ ∞

0

Cov
(
1
(
X

(τ)
3,ξ = j

)
, p(Y3,ξ)(j′)

)
dH(τ) dξ, (B.4)

where we have used that X3,ξ ∼ p(τ) and Y3,ξ ∼ Exponential(θ). The assertion
is a consequence of (B.1) and (B.2), (B.3), (B.4), and the fact that Cn4 has the
same limit as Cn3, but with interchanged roles of j and j′.

C. Further auxiliary results

Lemma C.1 (Bradley, 1983). If X and Y are two random variables in some
Borel space S and R, respectively, if U is uniform on [0, 1] and independent of
(X,Y ) and if q > 0 and γ > 0 are such that q ≤ ||Y ||γ = E[|Y |γ ]1/γ , then
there exists a measurable function f such that Y ∗ = f(X,Y, U) has the same
distribution as Y , is independent of X and satisfies

P(|Y − Y ∗| ≥ q) ≤ 18(||Y ||γ/q)γ/(2γ+1)α(σ(X), σ(Y ))2γ/(2γ+1).

Lemma C.2 (Berbee, 1979). If X and Y are two random variables in some
Borel spaces S1 and S2, respectively, then there exists a random variable U
independent of (X,Y ) and a measurable function f such that Y ∗ = f(X,Y, U)
has the same distribution as Y , is independent of X and satisfies P(Y 6= Y ∗) =
β(σ(X), σ(Y )).

20

116



D. Further simulation results

This section contains additional simulation results for the ARCH,- ARMAX-
and AR-model described in Section 5, see Figure D.1-D.14.
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Berghaus, B., & Bücher, A. (2017). Goodness-of-fit tests for multivariate copula-
based time series models. Econometric Theory , 33 , 292–330.
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Figure D.13: Bias multiplied by 103 for the estimation of π(m) within the AR-model for
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STATISTICS FOR HETEROSCEDASTIC TIME SERIES

EXTREMES

AXEL BÜCHER, TOBIAS JENNESSEN

Abstract. Einmahl, de Haan and Zhou (2016, Journal of the Royal Statistical
Society: Series B, 78(1), 31– 51) recently introduced a stochastic model that al-
lows for heteroscedasticity of extremes. The model is extended to the situation
where the observations are serially dependent, which is crucial for many practical
applications. We prove a local limit theorem for a kernel estimator for the scedasis
function, and a functional limit theorem for an estimator for the integrated sceda-
sis function. We further prove consistency of a bootstrap scheme that allows to
test for the null hypothesis that the extremes are homoscedastic. Finally, we pro-
pose an estimator for the extremal index governing the dynamics of the extremes
and prove its consistency. All results are illustrated by Monte Carlo simulations.
An important intermediate result concerns the sequential tail empirical process
under serial dependence.

Key words. Extremal Index; Kernel Estimator; Multiplier Bootstrap; Non-Stationary
Extremes; Regular Varying Time Series.
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2 AXEL BÜCHER, TOBIAS JENNESSEN

1. Introduction

Classical extreme value statistics is concerned with analyzing the extremal behav-
ior of a series of independent and identically distributed (i.i.d.) random variables.
However, in many practical applications, the latter assumption is not justifiable,
since the data typically consist of observations collected on one or more variables
over time. The observations may then both exhibit serial dependence and they may
be drawn from a distribution that changes smoothly (or even abruptly) as time
progresses. The latter is particularly the case in many applications from environ-
mental statistics (e.g., due to climate change), while the former is also omnipresent
in typical applications from finance.

While an abundance of methods has been proposed for tackling the resulting
challenges concerning the bulk of the data (see, e.g., Brockwell and Davis, 1991 for
a classical account on time series analysis; Dahlhaus, 2012 for an overview on locally
stationary processes that allow for nonparametric smooth changes over time; or Aue
and Horváth, 2013 for an overview on results for change point analysis involving
abrupt changes), respective results concerning extreme value analysis are much less
developed, in particular for the situation exhibiting both serial dependence and non-
stationarity.

Theoretical results on extreme value analysis for stationary time series build on
corresponding probabilistic theory summarized in Leadbetter et al. (1983), see also
Chapter 10 in Beirlant et al. (2004) for an overview or Kulik and Soulier (2020)
for a modern account in the heavy tailed case. Respective asymptotic results on
a large class of estimators for the tail index can be found in Drees (2000), with
some substantial extensions on important intermediate results in Drees and Rootzén
(2010). Results regarding the time series dynamics for the heavy tailed case can
be found in Kulik and Soulier (2020) and the references therein. Smooth non-
stationarity has often been approached by parametric regression models, see, e.g.,
Davison and Smith (1990); Coles (2001), where, however, no asymptotic theory is
provided. Nonparametric approaches that were supported by asymptotic results
can be found in Hall and Tajvidi (2000); these authors also explicitly allow for
serial dependence. de Haan et al. (2015) consider a situation in which the smooth
non-stationarity was formulated in a parametric way on the level of the domain of
attraction condition rather than the limit situation. A nonparametric version of that
model was investigated in Einmahl et al. (2016) (see below for details). Under the
assumption of serial independence, these authors also provide asymptotic theory,
which was recently extended in de Haan and Zhou (2021) to trends in the tail index
and in Einmahl et al. (2022) to multivariate, spatial applications. Finally, change
point tests for the tail index and the extremal dependence (i.e., abrupt changes in
the tail behavior) can be found in Kojadinovic and Naveau (2017); Bücher et al.
(2017); Hoga (2017, 2018), with the latter two references explicitly allowing for
serially dependent observations.

The above literature review reveals a crucial gap which motivates the present pa-
per: the models initiated by Einmahl et al. (2016) (subsequently referred to as EdHZ)
have never been investigated under the assumption that the observations are seri-
ally dependent. Throughout the paper, we therefore work under the following model
adapted from EdHZ: for sample size n and at time points i ∈ {1, . . . , n}, we observe
possibly dependent random variables X(n)

1 , . . . , X (n)
n with continuous cumulative dis-

tribution functions (c.d.f.s) Fn,1, . . . , Fn,n, i.e., X(n)

i ∼ Fn,i. We assume that all these
distribution functions share a common right endpoint x∗ = sup{x ∈ R : Fn,i(x) < 1},
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and that there exists some continuous reference c.d.f. F with the same right end-
point x∗ that is strictly increasing on its support and some positive function c on
[0, 1] such that

lim
x↑x∗

1− Fn,i(x)

1− F (x)
= c
( i
n

)
. (1.1)

As in EdHZ, we refer to c as the scedasis function, which we additionally assume to be
a bounded and continuous probability density function. The case where c ≡ 1 corre-
sponds to homogeneous extremes, while the opposite is referred to as heteroscedastic
extremes. The integrated scedasis function shall be denoted by

C(s) :=

∫ s

0
c(x) dx, s ∈ [0, 1].

We allow for serial dependence in the following sense: for each n ∈ N, the unob-
servable sample U (n)

1 , . . . , U (n)
n with U (n)

i = Fn,i(X
(n)

i ) is assumed to be an excerpt

from a strictly stationary time series (U (n)

t )t∈Z whose distribution does not depend
on n. The dynamics of the extremes of the latter series will later be captured by the
concept of regular variation (Basrak and Segers, 2009), see Condition (B1) below for
details, and by the extremal index θ (Leadbetter, 1983), see Condition (B8). Recall
that the reciprocal of the extremal index may be interpreted as the mean cluster
size of subsequent extreme observations.

Our contributions within the above model are as follows: first, we provide a
(pointwise) central limit theorem on the kernel estimator for the scedasis function
that was studied in EdHZ for the independent case. Notably, the serial dependence
will only show up in the asymptotic estimation variance. Second, we study an empir-
ical version of the integrated scedasis function from EdHZ and provide a respective
functional central limit theorem; again, the asymptotic covariance functional will
be different from that in the serially independent case. The latter is a major nui-
sance for testing the null hypothesis of homoscedastic extremes, i.e., H0 : c ≡ 1,
where standard approaches based on functionals of the law of the Brownian bridge
as proposed in EdHZ do not work any more. As a circumvent, we develop a suitable
multiplier bootstrap scheme and show its consistency; for this, we need to extent
results from Drees (2015) and Section 12 in Kulik and Soulier (2020) to the non-
stationary case. The bootstrap scheme is then used to define a classical bootstrap
test as well as a test based on self-normalization, the latter being computationally
much more efficient but slightly less powerful. Finally, we also propose an estimator
for the extremal index θ of the underlying stationary time series that governs the
dynamics of the extremes and show its consistency. For that purpose, we use a suit-
able modification of the block-maxima estimator from Northrop (2015); Berghaus
and Bücher (2018) to the current non-stationary setting. On a theoretical level,
a crucial tool for most of the afore-mentioned asymptotics is a functional central
limit theorem for the sequential tail empirical process (STEP), which may also be
of interest for other statistical problems not tackled in this paper.

The remaining parts of this paper are organized as follows: the assumptions
needed to prove the asymptotic results are summarized and discussed in Section 2,
where we also introduce a location-scale model meeting these assumptions. Section 3
is concerned with the estimation of the scedasis function and the integrated scedasis
function. Section 4 is about testing for the null hypothesis that the extremes are
homoscedastic. The assessment of the serial dependence is dealt with in Section 5,
where we also extend the discussion on the location-scale model. A functional central
limit theorem for the sequential tail empirical process under serial dependence is
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presented in Section 6. The finite-sample behavior of the introduced methods is
investigated in a Monte Carlo simulation study in Section 7. The proofs for Section 6
are given in Section 8, with some auxiliary lemmas collected in Section 9. Finally,
all other proofs are deferred to a supplementary material.

Throughout, all convergences are for n → ∞ if not mentioned otherwise. Weak
convergence is denoted by  . The left-continuous generalized inverse of some in-
creasing function H is denoted by H−1(p) = inf{x ∈ R : H(x) > p}. The sup-norm
of some real-valued function f defined on some domain T is denoted by ‖f‖∞.

2. Mathematical Preliminaries

Let k = kn be an increasing integer sequence satisfying k → ∞ and k = o(n) as
n → ∞; the STEP and our estimators for the scedasis function will be defined in
terms of k, which essentially determines the threshold for declaring an observation
as extreme. Let L ∈ N be some arbitrary but fixed constant (later determining, on
which set the STEP will be defined; most often, we need L = 1 or L = 2). We
impose the following set of assumptions:
(B0) Basic assumptions. The conditions on the model in Section 1 are met.
(B1) Multivariate regular variation. For each n ∈ N, U (n)

1 , . . . , U (n)
n is an

excerpt from a strictly stationary time series (U (n)

t )t∈Z whose marginal sta-
tionary distribution is necessarily standard uniform on (0, 1). The processes
(U (n)

t )t∈Z are all equal in law; denote a generic version by (Ut)t∈Z. The process
Zt = 1/(1 − Ut) (note that Zt is standard Pareto) is stationary and regularly
varying, necessarily with index α = 1 (Basrak and Segers, 2009).

(B2) Regularity of c. The function c is Hölder-continuous of order 1/2, that is,
there exists Kc > 0 such that

|c(s)− c(s′)| ≤ Kc|s− s′|1/2 ∀ s, s′ ∈ [0, 1].

(B3) Blocking sequences and Beta-mixing. There exist integer sequences 1 <
`n < r = rn < n, both converging to infinity as n → ∞ and satisfying
`n = o(r), r = o(

√
k ∨ n

k ), such that the beta-mixing coefficients of (Ut)t∈Z
satisfy β(n) = o(1) and n

r β(`n) = o(1).
(B4) Moment bound on the number of extreme observations. Let c∞ =

c∞(L) = 1 + L‖c‖∞, where ‖ · ‖∞ denotes the sup norm of a real-valued
function. There exists δ > 0 such that

E
[{ r∑

s=1

1(Us > 1− k
nc∞(L))

}2+δ]
= O(r kn).

(B5) Moment bound on extreme increments. There exists a non-decreasing,
continuous function h : [0, c∞(L)] → [0,∞), positive on (0, c∞(L)] and with
h(0) = 0, such that, for all sufficiently large n,

E
[{ r∑

s=1

1(1− k
nx ≥ Us > 1− k

ny)
}2]
≤ r k

n
× h(y − x)

for all 0 ≤ x ≤ y ≤ c∞(L) with c∞(L) from (B4).
(B6) Second order condition. There exists a positive, eventually decreasing func-

tion A with limt→∞A(t) = 0 such that, as x ↑ x∗,

sup
n∈N

max
1≤i≤n

∣∣∣∣
1− Fn,i(x)

1− F (x)
− c
( i
n

)∣∣∣∣ = O
(
A
( 1

1− F (x)

))
.
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Condition (B1) allows to control the serial dependence within the observed time
series via tail processes (Basrak and Segers, 2009). More precisely, by Theorem 2.1
in Basrak and Segers (2009), regular variation of (Zt)t∈Z is equivalent to the fact
that there exists a process (Yt)t∈N0 (the tail process) with Y0 standard Pareto such
that, for every ` ∈ N and as x→∞,

P(x−1(Z0, . . . , Z`) ∈ · | Z0 > x) P((Y0, . . . , Y`) ∈ ·), (2.1)

where, necessarily, Yj ≥ 0 for j ≥ 1. Further, by Theorem 2 and its subsequent
discussion in Segers (2003), Yj is absolutely continuous on (0,∞) and may have an
atom at 0.

Condition (B2) has also been imposed in Einmahl et al. (2016). Since k = o(n),
it implies that

lim
n→∞

sup
s∈[0,1]

√
k

∣∣∣∣
1

n

bnsc∑

i=1

c( in)− C(s)

∣∣∣∣ = 0,

which will imply that there is no asymptotic bias in our main result below. The
condition will however also be needed to prove (8.14) below.

The conditions in (B3), (B4), (B5) are essentially conditions imposed in Exam-
ple 3.8 in Drees and Rootzén (2010) for deriving weak convergence of the standard
non-sequential univariate tail empirical process under stationarity. Condition (B5)
has mostly been shown with h(z) = Kz, for some K > 0, see, e.g., Drees (2000)
for solutions of stochastic recurrence equations. Condition (B6) is a second-order
condition on the speed of convergence in (1.1); it was also used in Einmahl et al.
(2016). It is worth noting that Conditions (B4)-(B5) (and only these) depend on
the constant L ∈ N. The sequence `n in (B3) plays the role of a small-block length
in a big-block-small-block technique, while r − `n is the length of a corresponding
big block.

Example 2.1. Let us consider the following location-scale model, for which the above
conditions can be shown to hold. Let

X
(n)
i = σ

(
i
n

)
Wi + µ

(
i
n

)
, i = 1, . . . , n,

where (Wt)t∈Z is a strictly stationary time series (see below for an explicit example)
with c.d.f. F and where σ : [0, 1]→ (0,∞) and µ : [0, 1]→ R are sufficiently smooth
functions. Then, we obtain

Fn,i(x) = F
(x− µ( in)

σ( in)

)
, x ∈ R,

and U
(n)
i = Fn,i(X

(n)
i ) = F (Wi), i = 1, . . . , n, such that U

(n)
1 , . . . , U

(n)
n is an excerpt

from a strictly stationary time series, with marginal distribution given by the uniform
distribution on [0, 1].

Next, as a special case, consider (Wt)t∈Z to be a max-autoregressive process (AR-
MAX), defined by the recursion

Wt = max{λWt−1, (1− λ)Vt}, t ∈ Z, (2.2)

where λ ∈ [0, 1) and (Vt)t∈Z is an i.i.d. sequence of Fréchet(1)-distributed random
variables. A stationary solution of the above recursion is given by Wt = maxj≥0(1−
λ)λjVt−j , such that the stationary solution is again Fréchet(1)-distributed, i.e.,
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F (x) = exp(−1/x). Then, the scedasis function c can be easily calculated via

lim
x→∞

1− Fn,i(x)

1− F (x)
= lim

x→∞
1− exp

(
− σ( in)/{x− µ( in)}

)

1− exp(−1/x)
= σ

(
i
n

)
,

yielding c = σ. We show that Conditions (B0)-(B6) are met. Condition (B0) and
(B2) are obviously fulfilled, provided the scedasis function c is sufficiently regular.
Condition (B1) can be seen to hold as follows. Since (Wt)t∈Z is a moving maximum
process, its tail process exists by Theorem 13.5.5 in Kulik and Soulier (2020), which
implies that it is regularly varying by Theorem 2.1 in Basrak and Segers (2009).
Then, Zt = 1/(1 − Ut) = 1/{1 − F (Wt)} is regularly varying with index α = 1
according to Lemma 2.1 in Drees et al. (2015). By Berghaus and Bücher (2018), page
2322, (Wt)t∈Z, and hence also (Ut)t∈Z, is geometrically β-mixing, whence Condition
(B3) holds. In that reference it is further shown that their Condition 2.1(ii) holds
for δ = 1, implying that our Condition (B4) also holds for δ = 1 in view of the
fact that, rk = o(n) by Condition (B3). This also yields that E[|∑r

s=1 1(1 − k
nx ≥

Us > 1 − k
ny)|3] . r kn(y − x) for all 0 ≤ x ≤ y ≤ c∞(L), for n large enough (such

that rk/n ≤ 1), which implies (B5). Finally, Condition (B6) can be seen to hold for
A(x) = x−1.

3. Estimation of the (integrated) scedasis function

In this section, we provide weak convergence results for estimators for the scedasis
function c and its integrated version C; see also Einmahl et al. (2016) for related
results in the serial independent case. Throughout, let Xn,1 ≤ . . . ≤ Xn,n denote

the order statistic of X(n)

1 , . . . , X (n)
n .

First, for the estimation of the scedasis function, we apply a kernel density esti-
mator. Let K be a continuous and symmetric function on [−1, 1] with K(x) = 0 for

|x| > 1 and
∫ 1
−1K(x) dx = 1. Let h = hn > 0 denote a bandwidth paramater. Since

we are also concerned with the estimation of c near the boundaries of the interval
[0, 1], we make use of the boundary-corrected kernel Kb of K (see Jones, 1993): for
s ∈ [0, 1], set

c̃n(s) =
1

kh

n∑

i=1

1(X
(n)
i > Xn,n−k) Kb

(s− i/n
h

, s
)
,

where k = kn is from Condition (B3) and where Kb is defined as follows. First, for
p ∈ [0, 1], let

aj(p) =

∫ p

−1
xjK(x) dx, bj(p) =

∫ 1

−p
xjK(x) dx.

For s ≤ h, write s = ph and let

Kb(x, s) =
a2(p)− a1(p)x

a0(p)a2(p)− a2
1(p)

K(x), x ∈ [−1, 1],

and for s ≥ 1− h, write s = 1− ph and let

Kb(x, s) =
b2(p)− b1(p)x

b0(p)b2(p)− b21(p)
K(x), x ∈ [−1, 1],

and for s ∈ (h, 1−h), let Kb(x, s) = K(x) for x ∈ [−1, 1]. Note that Kb is depending
on n, which we have suppressed from the notation.

To obtain asymptotic normality of the introduced estimator we additionally im-
pose the following condition.
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(B7) Bandwidth. The bandwidth sequence h = hn > 0 satisfies h → 0 and

kh→∞. Further, k1/5h→ λ ≥ 0 and r = o(
√
kh) and h ≥ k−1/3.

The first three conditions in (B7) are standard bandwidth conditions that have also
been imposed in Proposition 2 in Einmahl et al. (2016) to establish asymptotic

normality of the scedasis estimator at point s = 1. The condition r = o(
√
kh) is

slightly stronger than r = o(
√
k) from Condition (B3), which is used in Theorem 3.2

below to derive asymptotic normality of the estimator for the integrated scedasis
function, where the rate of convergence is

√
k. Finally, the condition h ≥ k−1/3 is

required for technical reasons in the proof (together with r = o(n/k) from Condition
(B3), it implies kr2 = o(n2h3), which will be used throughout the proofs); note that

it is satisfied for the standard MSE optimal bandwidth choice of the order k−1/5

(Tsybakov, 2009).

Theorem 3.1. Suppose that Conditions (B0)-(B7) hold for L = 2 and let c ∈
C2([0, 1]). Let the function K be Lipschitz-continuous and symmetric on [−1, 1]

with K(x) = 0 for |x| > 1 and
∫ 1
−1K(x) dx = 1. If k satisfies

√
kA( n2k )→ 0, then,

for any s ∈ [0, 1] and as n→∞,
√
kh
{
c̃n(s)− c(s)

}
 N (µs, σ

2
s),

where

µs = λ5/2 c
′′(s)
2

a(s), σ2
s = c(s)η(s)

{
d0(1, 1) + 2

∞∑

h=1

dh(1, 1)
}

and where, recalling the tail process (Yt)t∈N0 associated with (Zt)t∈Z from (2.1),

dh(x, x′) = P
(
Y0 >

1

x
, Yh >

1

x′

)
(3.1)

and a(0) =
∫ 0
−1Kb(x, 0)x2 dx, η(0) =

∫ 0
−1K

2
b (x, 0) dx, a(1) =

∫ 1
0 Kb(x, 1)x2 dx, η(1) =∫ 1

0 K
2
b (x, 1) dx and, for s ∈ (0, 1),

a(s) =

∫ 1

−1
K(x)x2 dx, η(s) =

∫ 1

−1
K2(x) dx.

It is part of the assertion that the series defining σ2
s is convergent. The result may

further be extended to cover the cases s = sn = ph and s = sn = 1 − ph for some
p ∈ (0, 1]; details are omitted for the sake of brevity.

Next, we analyze an estimator for the integrated scedasis function C(s) =
∫ s

0 c(x) dx,
that was also investigated in Einmahl et al. (2016). Define the estimator for C as

Ĉn(s) =
1

k

bnsc∑

i=1

1
(
X

(n)
i > Xn,n−k

)
, s ∈ [0, 1].

Theorem 3.2. Suppose that Conditions (B0)-(B6) hold for L = 1 and that k satis-

fies
√
kA(nk )→ 0. Then, as n→∞,

{√
k
(
Ĉn(s)− C(s)

)}
s∈[0,1]

 
{
S(s, 1)− C(s)S(1, 1)

}
s∈[0,1]

in (`∞([0, 1]), ‖ · ‖∞), where S denotes a tight, centered Gaussian process on [0, 1]2

with covariance given by

c((s, x), (s′, x′)) = C(s ∧ s′)
{
d0(x, x′) +

∞∑

h=1

(
dh(x, x′) + dh(x′, x)

)}
, (3.2)
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where dh is defined in (3.1). It is part of the assertion that the above series is
convergent.

4. Testing for heteroscedastic extremes

In the following we construct tests that allow to detect whether the time series
exhibits heteroscedasticity of extremes. Here, the extremes are homoscedastic (i.e.,
not heteroscedastic) if the scedasis function satisfies c ≡ 1 or if, equivalently, the
integrated scedasis function satisfies C(s) = s for all s ∈ [0, 1]. Thus, we test

H0 : C(s) = s for all s ∈ [0, 1], H1 : C(s) 6= s for some s ∈ [0, 1].

To this purpose, we pursue two approaches, where one is based on a bootstrap-
procedure and the other uses a self-normalization technique. Let Cn(s) =

√
k{Ĉn(s)−

s}, s ∈ [0, 1], such that, by Theorem 3.2, under H0 and as n→∞,
{
Cn(s)

}
s∈[0,1]

 
{
S(s, 1)− sS(1, 1)

}
s∈[0,1]

in (`∞([0, 1]), ‖ · ‖∞). Note that S(·, 1) is a tight, centered Gaussian process on
[0, 1] satisfying Cov(S(s, 1), S(t, 1)) = (s ∧ t)σ2, s, t ∈ [0, 1], where σ2 = d0(1, 1) +
2
∑∞

h=1 dh(1, 1) and dh is defined in Theorem 3.2, which implies that under H0, as
n→∞,

Cn  σB in (`∞([0, 1]), ‖ · ‖∞), (4.1)

where B denotes a Brownian Bridge on [0, 1].
For both approaches take the block length parameter r from Condition (B3)

(which now becomes a hyperparameter of the statistical method; see Drees, 2015
and Kulik and Soulier, 2020 for a similar approach), set m = bn/rc and let

Ij = {(j − 1)r + 1, . . . , jr}, j = 1, . . . ,m,

be the j-th block of size r.
We start with the bootstrap, more precisley, we use a multiplier block bootstrap.

Let B ∈ N denote the number of boostrap repetitions and let (ξ(b)1 , . . . , ξ(b)m )b=1,...,B

be i.i.d. and independent from (X(n)

i )i, with E[ξ(b)j ] = 0,E[(ξ(b)j )2] = 1 and |ξ(b)j | ≤M
for some constant M > 0 for all j = 1, . . . ,m and b = 1, . . . , B (for instance, ξ(b)j is

Rademacher distributed). Set

C(b)
n,ξ(s) = D(b)

n,ξ(s)− Ĉn(s)D(b)
n,ξ(1),

where

D(b)
n,ξ(s) =

1√
k

m∑

j=1

(ξ
(b)
j − ξ̄(b))

∑

i∈Ij
1
(
X

(n)
i > Xn,n−k

)
1( in ≤ s), s ∈ [0, 1],

and ξ̄(b) = m−1
∑m

j=1 ξ
(b)
j . Note that we may write

D(b)
n,ξ(s) =

1√
k

m∑

j=1

ξ
(b)
j

{
Yn,j(s)−

1

m

m∑

`=1

Yn,`(s)
}

with Yn,j(s) =
∑

i∈Ij 1
(
X

(n)
i > Xn,n−k

)
1( in ≤ s), which is akin to the process

considered in Formula (2.3) in Drees (2015).
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Theorem 4.1. Suppose that Conditions (B0)-(B6) hold for L = 1 and that k satis-

fies
√
kA(nk )→ 0. Then, as n→∞,
(
Cn,C

(1)
n,ξ, . . . ,C

(B)
n,ξ

)
 
(
C,C(1), . . . ,C(B)

)
in (`∞([0, 1]), ‖ · ‖∞)B+1,

where C(s) = S(s, 1)− C(s)S(1, 1) and C(1), . . . ,C(B) are independent copies of C.

The previous theorem may alternatively be formulated as a conditional limit the-
orem, see Section 3.6 in van der Vaart and Wellner (1996) or Section 10 in Kosorok
(2008) for details on that mode of convergence when applied to non-measurable sto-
chastic processes. More precisely, by Lemma 3.11 in Bücher and Kojadinovic (2019),
the weak convergence relation in the previous theorem is equivalent to the fact that
suph∈BL1(`∞([0,1])

∣∣E
[
h(C(1)

n,ξ) | Xn,1, . . . , Xn,n

]
− E[h(C)]

∣∣ = oP(1) and that C(1)

n,ξ is

asymptotically measurable, where BL1(`∞([0, 1]) denotes the set of real valued Lip-
schitz functions on `∞([0, 1]) with Lipschitz constant 1 that are bounded by 1. We
prefer to work with the unconditional statement from Theorem 4.1, as it is more
intuitive.

We propose to test for H0 : c ≡ 1 based on the test statistics

Sn,1 = ‖Cn‖∞, Tn,1 =

∫ 1

0
Cn(s)2 ds.

In view of Theorem 4.1, the corresponding bootstrap quantities are given by

S
(b)
n,1 = ‖C(b)

n,ξ‖∞, T
(b)
n,1 =

∫ 1

0
C(b)
n,ξ(s)

2 ds, b = 1, . . . , B.

For α ∈ (0, 1), let q̂n,B,S(1 − α) and q̂n,B,T (1 − α) denote the empirical (1 − α)-

quantile of S(1)

n,1, . . . , S
(B)

n,1 and T (1)

n,1, . . . , T
(B)

n,1 , respectively. The test procedures are
then defined as

ϕn,B,S(α) = 1
(
Sn,1 > q̂n,B,S(1− α)

)
, ϕn,B,T (α) = 1

(
Tn,1 > q̂n,B,T (1− α)

)
.

Corollary 4.2. Suppose that Conditions (B0)-(B6) hold for L = 1 and that k

satisfies
√
kA(nk )→ 0. Let α ∈ (0, 1). Then, if H0 : c ≡ 1 is met,

lim
n,B→∞

P(ϕn,B,S(α) = 1) = α, lim
n,B→∞

P(ϕn,B,T (α) = 1) = α.

Further, if H1 : c 6≡ 1 is met, then, for any B ∈ N,

lim
n→∞

P(ϕn,B,S(α) = 1) = 1, lim
n→∞

P(ϕn,B,T (α) = 1) = 1.

Next, we introduce tests based on the concept of self-normalization. The basic
idea is to consider the quotient of two statistics, such that the unknown variance
factor σ in (4.1) cancels out. To do this, we take two of the bootstrap-quantities
from Theorem 4.1, and define

Sn,2 =
‖Cn‖∞

‖C(1)
n,ξ − C(2)

n,ξ‖∞
, Tn,2 =

∫ 1
0 C2

n(s) ds
∫ 1

0

(
C(1)
n,ξ(s)− C(2)

n,ξ(s)
)2

ds
.

By Theorem 4.1 we know that under H0, as n→∞,

Sn,2  S2 :=
‖B‖∞

‖B(1) − B(2)‖∞
, Tn,2  T2 :=

∫ 1
0 B(s)2 ds

∫ 1
0

(
B(1)(s)− B(2)(s)

)2
ds
,
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where B, B(1) and B(2) are independent Brownian Bridges on [0, 1]. For α ∈ (0, 1),
let qS(1− α) and qT (1− α) be the (1− α)-quantile of S2 and T2, respectively. The
corresponding test procedures are given by

ϕn,S(α) = 1
(
Sn,2 > qS(1− α)

)
, ϕn,T (α) = 1

(
Tn,2 > qT (1− α)

)
.

Corollary 4.3. Suppose that Conditions (B0)-(B6) hold for L = 1 and that k

satisfies
√
kA(nk )→ 0. Let α ∈ (0, 1). Then, if H0 : c ≡ 1 is met,

lim
n→∞

P(ϕn,S(α) = 1) = α, lim
n→∞

P(ϕn,T (α) = 1) = α

Further, if H1 : c 6≡ 1 is met, then

lim
n→∞

PH1(ϕn,S(α) = 1) = 1, lim
n→∞

P(ϕn,T (α) = 1) = 1.

5. Assessing the serial dependence

Within our basic model described in the introduction, the dynamics of the time
series extremes are governed by the stationary time series (Zt)t∈Z from Condition
(B1). There are many interesting statistical problems related to those dynamics
which are worth to be investigated like, e.g., estimating the distribution of the
tail process (see Davis et al., 2018 for stationary observations) or estimation of
general cluster functionals (see Section 10 in Kulik and Soulier, 2020 for stationary
observations). Throughout, we restrict attention to estimating the extremal index θ,
which may be regarded as the most traditional parameter associated with the serial
dependence.

Recall that the extremal index θ ∈ (0, 1] of (Zt)t exists iff the same is true for
(Ut)t (in that case, the indices are equal), and that the latter requires that, for any
τ > 0, there exists a sequence (un(τ))n∈N such that limn→∞ n{1− un(τ)} = τ and

lim
n→∞

P
(

max
1≤i≤n

Ui ≤ un(τ)
)

= e−θτ . (5.1)

One can further show that, if the extremal index exists, then (5.1) holds for any
sequence (un(τ))n with limn→∞ n{1−un(τ)} = τ . Subsequently, we choose un(τ) =
1− τ/n.

For estimating θ, we divide the finite stretch of observations X(n)

1 , . . . , X (n)
n into

non-overlapping successive blocks of size q = qn, i.e., into blocks

I ′j = {(j − 1)q + 1, . . . , jq}, j = 1, . . . , k′,

where k′ = bn/qc. For j = 1, . . . , k′, set

Zn,j = q
{

1−max
i∈I′j

F (X
(n)
i )

}
, Ẑn,j = q

{
1−max

i∈I′j
F̂n(X

(n)
i )

}
, (5.2)

where F̂n(x) = n−1
∑n

i=1 1(X
(n)
i ≤ x) denotes the empirical c.d.f. of X

(n)
1 , . . . , X

(n)
n .

Note that, in view of (1.1), for sufficiently large x ∈ R,

E[1− F̂n(x)] =
1

n

n∑

i=1

{1− Fn,i(x)} = {1− F (x)} 1

n

n∑

i=1

{c(i/n) + o(1)} ≈ 1− F (x)

(ignoring the possible non-uniformity in (1.1) for the moment), whence Ẑn,j can be
regarded as an observable counterpart of Zn,j .

In the following, we will show that Zn,1+bξk′c, ξ ∈ [0, 1), asymptotically follows an
exponential distribution with parameter depending on θ, this result being the basis
for our estimation procedure for θ, see Lemma 5.2. To prove this, we impose the
subsequent conditions.
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(B8) Extremal Index. The stationary time series (Ut)t∈Z from Condition (B1)
is assumed to have an extremal index θ ∈ (0, 1].

(B9) Blocking sequences and mixing. The blocksize q is chosen in such a way
that it satisfies q = o(

√
n) and nβ(q) = o(q) as n→∞.

(B10) Uniform integrability. For some δ1 > 0,

lim sup
n→∞

sup
ξ∈(0,1)

E
[∣∣Zn,1+bξk′c

∣∣2+δ1
]
<∞.

Condition (B10) is imposed to deduce uniform integrability of the Z2
n,1+bξk′c; it

will imply convergence of the corresponding first and second moments.

Remark 5.1. We exemplarily show that the above conditions hold for the location-
scale model from Example 2.1 with (Wt)t∈Z chosen as the max-autoregressive process
defined in (2.2). First, the process (Wt)t∈Z has an extremal index θ given by θ = 1−λ
(Beirlant et al., 2004, Chapter 10), such that (Ut)t∈Z also has extremal index θ and
Condition (B8) holds. Further, by Berghaus and Bücher (2018), page 2322, (Wt)t∈Z,
and hence also (Ut)t∈Z, is geometrically β-mixing, whence Condition (B9) is fulfilled
for appropriate choice of q. Regarding Condition (B10), we have, for j ∈ N,

Zn,j = Z̄n,j
1−maxi∈I′j F (X

(n)
i )

1−maxi∈I′j Fn,i(X
(n)
i )

≤ Z̄n,j
1− exp

(
− (cmin maxi∈I′j Wi + infs∈[0,1] µ(s))−1

)

1− exp
(
− (maxi∈I′j Wi)−1

) , (5.3)

where Z̄n,j = q
{

1 −maxi∈I′j Ui
}

. Note that the distribution of the right-hand side

in the last display is independent of j ∈ N. By induction, P
(

maxi=1,...,bWi ≤ x
)

=

F (x)1+θ(b−1) = exp(−{1 + θ(b − 1)}/x) for x > 0, b ∈ N, such that maxi=1,...,qWi

converges to ∞ in probability. Therefore, any absolute moment of the second factor
of the right-hand side in (5.3) converges. Further, it is shown in Example 6.1 in
Berghaus and Bücher (2017), see the proof of their Condition 2.1(vi) holds, that

lim supn→∞ E
[
Z̄δ
′
n,1

]
< ∞ for any δ′ > 0. Along with inequality (5.3), Hölder’s

inequality implies that Condition (B10) holds.

Lemma 5.2. Fix ξ ∈ [0, 1). Suppose that Conditions (B0)-(B2), (B6) and (B8)-
(B9) hold. Then, Zn,1+bξk′c  Exp(θc(ξ)) as n→∞.

This result motivates estimators based on the method of moments, see Northrop
(2015); Berghaus and Bücher (2018) for the stationary case. Consider the (unob-
servable) random variable

Tn =
1

k′

k′∑

j=1

Zn,j .

Then, for ϕn : [0, 1]→ R, ϕn(ξ) =
∑k′

j=1 E
[
Zn,j

]
1
(
ξ ∈

[ j−1
k′ ,

j
k′
))
, we obtain

E[Tn] =
1

k′

k′∑

j=1

E
[
Zn,j

]
=

∫ 1

0
ϕn(ξ) dξ.

By Condition (B10) and Lemma 5.2, for any fixed ξ ∈ [0, 1), we have ϕn(ξ) =
E
[
Zn,1+bξk′c

]
→ E[Vξ], n → ∞, where Vξ ∼ Exp(θc(ξ)). Since supn∈N ‖ϕn‖∞ < ∞
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by Condition (B10), the dominated convergence theorem implies

E
[
Tn
]

=

∫ 1

0
ϕn(ξ) dξ →

∫ 1

0
E
[
Vξ
]

dξ =
1

θ

∫ 1

0

1

c(ξ)
dξ.

Recall that the function c is positive and continuous on [0, 1]; thus there is a positive
number cmin such that c(s) > cmin for all s ∈ [0, 1]. Therefore, it is advisable to
also truncate c̃n from below, say by considering ĉn = max(c̃n, κ) with some small,
positive constant κ > 0. Subsequently, we assume that 0 < κ < cmin. Now, let us

estimate τ =
∫ 1

0 c(ξ)
−1 dξ by τ̂n =

∫ 1
0 ĉn(ξ)−1 dξ. Since E[Tn] → θ−1τ , a sensible,

observable method of moments estimator for θ is given by

θ̂n = T̂−1
n τ̂n, where T̂n =

1

k′

k′∑

j=1

Ẑn,j .

The subsequent theorem yields concistency of this estimator; its finite-sample prop-
erties are studied in Section 7.

Theorem 5.3. Suppose that Conditions (B0)-(B2) hold. Assume c ∈ C2([0, 1]) and
let the function K in the definition of ĉn be Lipschitz-continuous.

(a) If additionally Conditions (B3)-(B7) hold for L = 2 and if k satisfies
√
kA( n2k )→

0, then τ̂n = τ + oP(1) as n→∞.
(b) If additionally Conditions (B3)-(B6) hold for k = k′ and for all L ∈ N, and

if k′ satisfies
√
k′A( n

Lk′ ) → 0 for all L ∈ N, and if Conditions (B8)-(B10)

hold, then T̂n = θ−1τ + oP(1) as n→∞.

In particular, if all of the above conditions are met, then θ̂n
P−→ θ as n→∞.

6. Weak convergence of the (simple) STEP

Functional weak convergence of the subsequent processes will be essential for
proving the asymptotic results in the previous sections. Precisely, we are interested
in the simple sequential tail empirical process (simple STEP) Sn and the sequential
tail empirical process (STEP) Fn defined as

Sn(s, x) =
√
k

{
1

k

[ns]∑

i=1

1
{
U

(n)
i > 1− k

nc(
i
n)x
}
− xC(s)

}
, (6.1)

Fn(s, x) =
√
k

{
1

k

[ns]∑

i=1

1
{
X

(n)
i > V

( n
kx

)}
− xC(s)

}
, (6.2)

where (s, x) ∈ [0, 1]× [0,∞) and where V = ( 1
1−F )−1.

Proposition 6.1. Suppose that Conditions (B0)–(B3) hold. Fix some constant
L ∈ N and suppose that Conditions (B4) and (B5) hold for L. Then, as n→∞,

Sn  S in (`∞([0, 1]× [0, L]), ‖ · ‖∞),

where S denotes a tight, centered Gaussian process on [0, 1]× [0, L] with covariance
c((s, x), (s′, x′)) as defined in (3.2).

Proposition 6.2. Suppose that Conditions (B0)–(B3) and (B6) hold. Fix some
constant L ∈ N and suppose that Conditions (B4) and (B5) hold for L. If k satisfies
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√
kA( n

Lk )→ 0 as n→∞, then

sup
(s,x)∈[0,1]×[0,L]

|Fn(s, x)− Sn(s, x)| = oP(1).

As a consequence, Fn  S in (`∞([0, 1]× [0, L]), ‖ · ‖∞).

7. Finite-Sample Results

A simulation study is carried out to analyze the finite-sample performance of the
introduced methods. Results are presented for scaled versions of two common time
series models. Define the following functions, later resulting in different scedasis
functions.

(i) c1,β(s) = β + 2(1− β)s,

(ii) c2,β(s) = (β + 4(1− β)s)1(s ∈ [0, 0.5]) + (4− 3β − 4(1− β)s)1(s ∈ (0.5, 1]).

Note that c1,β is a straight line connecting the points (0, β) and (1, 2−β), while c2,β

is a polygonal chain with vertices (0, β) (1/2, 2− β) and (1, β).
We consider the following scale models.
• The ARMAX-model: Let (Wt)t be an ARMAX-process as specified in (2.2).

We consider λ ∈ {0, 0.25}; note that λ = 0 corresponds to the i.i.d. case.
Denote the c.d.f. of Wt by F , which is the c.d.f. of the standard Fréchet-
distribution. For j ∈ {1, 2} and i ∈ {1, . . . , n}, let

X
(n)
i = cj,β( in)Wi.

By Example 2.1, the scedasis function c is equal to cj,β . Further, for j ∈
{1, 2}, consider

X
(n)
i = c̃j,β( in ,Wi)Wi :=

{
1(Wi < p) + cj,β( in) 1(Wi ≥ p)

}
Wi,

where p is the 80%-quantile of F . In this model, the scale transformation
introduced by cj,β only effects the observations exceeding the large threshold
p. One can easily see that the scedasis function c is equal to cj,β .
• The ARCH-model: Let (Wt)t be an ARCH-process, i.e.,

Wt = (2× 10−5 + λW 2
t−1)1/2Vt, t ∈ Z,

where λ ∈ (0, 1) and (Vt)t∈Z is an i.i.d. sequence of N (0, 1)-distributed
random variables. We consider λ = 0.7. By Theorem 1.1 in de Haan et al.
(1989) the c.d.f. F of Wt satisfies 1 − F (x) ∼ dx−κ

′
as x → ∞ for some

constant d > 0, with κ′ (approximately) given by κ′ = κ′(λ) = 1.586; see
Table 3.2 in that reference. For j ∈ {1, 2} and i ∈ {1, . . . , n}, let

X
(n)
i = cj,β( in)1/κ′ Wi.

The scedasis function c is equal to cj,β . Further, similar as for the ARMAX-
model, consider

X
(n)
i = c̃j,β( in ,Wi)Wi :=

{
1(Wi < p) + cj,β( in)1/κ′ 1(Wi ≥ p)

}
Wi

for j ∈ {1, 2}, where p is the 80%-quantile of F . A straightforward calcula-
tion shows that the scedasis function c is equal to cj,β as well.

Note that the ARMAX model with λ = 0 corresponds to the case that the observa-
tions are independent. We call this case simply the independent model.

In the subsequent simulation study, the parameter β of the scedasis functions, is
set to β = 1, 0.75, 0.5, 0.25. In each case, the sample size is fixed to n = 2000 and
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h = 0.03 h = 0.11 h = 0.19 h = 0.27

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0.0
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1.0

1.5
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Figure 1. The scedasis function c2,β with β = 0.5 (black line) and
the estimator c̃n evaluated at four exemplary time series generated
from the ARCH-model.

the performance of the statistical methods is assessed based on N = 1000 simulation
runs each if not mentioned otherwise.

7.1. Estimation of the scedasis function. We start by briefly considering the
behavior of the kernel estimator for the scedasis function. For the sake of brevity,
we restrict the presentation to the ARCH-model with scedasis function c2,β with
β = 0.5; the behavior within the other models was found to be very similar. In
Figure 1, we depict the estimator c̃n for four exemplary time series, where we use
the biweight kernel K

K(x) =
15

16
(1− x2)2, x ∈ [−1, 1], (7.1)

k = 400 and consider bandwidths h ∈ {0.03, 0.11, 0.19, 0.27}. We observe typ-
ical over-fitting (under-smoothing) for small values of h and under-fitting (over-
smoothing) for large values of h. Note in particular that the estimator no longer
captures the peak of c2,β(s) at s = 0.5 for h = 0.27. Visual inspection suggests that
reasonably good choices for the bandwidth lie in the interval [0.1, 0.2]; an observa-
tion that was confirmed in simulations regarding the other models described in the
previous section.

7.2. Testing for heteroscedastic extremes. We next study the performance of
the introduced test procedures. Recall that both the tests based on the multiplier
block bootstrap and the ones relying on the method of self-normalization depend on
a multiplier sequence (ξi)i, for which we choose an i.i.d. Rademacher sequence. The
following results are based on B = 300 bootstrap replicates. We consider block sizes
q ∈ {4, 8} and number of exceedances k ∈ {100, 200}, which corresponds to 5% or
10% of the total observations, respectively. The test level is set to α = 0.05.

Since the Cramér-von-Mises-type test statistics (i.e., ϕn,B,T and ϕn,T ) were found
to be superior to the Kolmogorov-Smirnov-type test statistics (i.e., ϕn,B,S and ϕn,S),
we only present results for the former. Here, we refer to ϕn,B,T simply as the boot-
strap, and to ϕn,T as the self-normalization. All rejection percentages are presented
in Table 1.

We start by discussing the behavior of the tests under H0 : C(s) = s for all
s ∈ [0, 1]; note that β = 1 represents being under H0 for all data generating processes
under consideration. We also present results for the Cramér-von-Mises-type test
from Einmahl et al. (2016), which was designed for the case of independent data
and is here denoted by EdHZ. One can see that our tests hold their level and, as
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Bootstrap with (k, r) = Self-Normalization with (k, r) = EdHZ with k =

Model β (100, 4) (100, 8) (200, 4) (200, 8) (100, 4) (100, 8) (200, 4) (200, 8) 100 200

Panel (A): Scale model c1,β
Indep. 1.0 3.9 2.2 1.8 0.6 4.2 2.3 2.3 1.5 4.7 4.1

0.75 23.3 17.9 34.6 22.5 16.5 12.7 21.8 15.6 26.9 46.2
0.5 78.2 71.5 95.8 91.2 51.2 44.0 70.0 60.7 81.9 98.2

0.25 98.9 98.4 100.0 99.9 84.5 76.5 94.7 89.4 99.0 100.0
ARMAX 1.0 6.6 4.5 4.4 2.7 5.5 4.0 3.4 3.1 14.8 12.1

0.75 21.4 17.3 30.7 20.8 14.6 12.2 18.7 14.3 35.4 50.7

0.5 65.6 59.7 88.3 79.2 42.5 36.7 59.3 48.3 77.4 96.0
0.25 94.7 91.8 99.6 99.4 71.5 66.5 90.6 82.4 97.6 100.0

ARCH 1.0 7.9 5.0 4.4 1.7 5.7 4.5 3.6 3.0 16.1 11.1

0.75 48.0 38.4 51.0 37.1 30.7 24.4 28.8 25.3 61.6 66.2
0.5 94.7 92.0 98.5 96.5 73.6 67.6 81.2 69.9 98.0 99.6

0.25 99.9 99.8 100.0 100.0 94.3 91.2 96.8 93.2 100.0 100.0

Panel (B): Scale model c2,β
Indep. 1.0 3.9 2.2 1.8 0.6 4.2 2.3 2.3 1.5 4.7 4.1

0.75 7.3 4.3 5.6 2.2 6.7 4.6 5.6 3.2 5.8 7.4
0.5 29.4 19.6 52.0 32.3 17.0 11.2 25.6 17.3 20.1 55.3

0.25 78.6 68.6 98.2 92.6 42.1 33.6 57.9 48.4 68.0 98.8

ARMAX 1.0 6.6 4.5 4.4 2.7 5.5 4.0 3.4 3.1 14.8 12.1
0.75 9.6 6.8 9.4 5.7 7.7 6.2 7.4 5.2 17.6 21.9

0.5 27.5 18.3 41.2 26.4 16.3 12.0 20.2 16.2 36.9 64.8

0.25 62.8 53.7 90.6 79.6 32.9 26.3 50.7 40.5 74.3 97.0

ARCH 1.0 7.9 5.0 4.4 1.7 5.7 4.5 3.6 3.0 16.1 11.1

0.75 19.8 13.0 14.2 6.4 13.7 8.1 10.7 5.6 27.6 26.6
0.5 66.5 53.5 73.7 52.7 35.1 25.6 37.9 24.7 73.1 86.6

0.25 96.2 92.7 99.5 97.5 65.1 56.4 69.3 60.0 98.5 99.9

Panel (C): Scale model c̃1,β
Indep. 1.0 3.9 2.2 1.8 0.6 4.2 2.3 2.3 1.5 4.7 4.1

0.75 24.3 18.4 34.8 22.8 15.8 12.5 24.2 14.4 26.9 46.2
0.5 78.2 71.0 96.0 91.4 49.2 46.2 71.0 58.4 81.9 98.2

0.25 99.3 98.6 100.0 100.0 80.1 75.9 94.0 89.1 99.0 100.0

ARMAX 1.0 6.6 4.5 4.4 2.7 5.5 4.0 3.4 3.1 14.8 12.1
0.75 21.9 17.7 30.3 20.6 16.0 12.7 17.9 12.2 35.4 50.7

0.5 65.8 57.9 88.4 80.1 41.6 36.0 61.2 50.1 77.4 96.0

0.25 94.8 91.7 99.6 99.5 71.5 61.2 88.4 83.3 97.6 100.0
ARCH 1.0 7.9 5.0 4.4 1.7 5.7 4.5 3.6 3.0 16.1 11.1

0.75 46.5 37.9 52.0 36.2 31.4 24.4 29.4 21.7 61.6 66.2

0.5 94.6 92.0 98.7 96.4 76.9 66.1 79.7 68.8 98.0 99.6
0.25 99.9 100.0 100.0 100.0 93.9 89.8 97.6 94.2 100.0 100.0

Panel (D): Scale model c̃2,β
Indep. 1.0 3.9 2.2 1.8 0.6 4.2 2.3 2.3 1.5 4.7 4.1

0.75 6.9 4.0 6.4 2.0 5.8 5.2 5.9 3.3 5.8 7.4

0.5 28.8 20.1 51.6 33.0 17.6 10.6 24.9 17.9 20.1 55.3
0.25 78.4 69.0 98.5 92.2 39.3 32.5 58.6 46.2 68.0 98.8

ARMAX 1.0 6.6 4.5 4.4 2.7 5.5 4.0 3.4 3.1 14.8 12.1
0.75 10.5 7.0 10.1 5.3 7.1 6.4 7.1 4.4 17.6 21.9

0.5 25.8 19.1 42.0 25.9 17.3 10.6 23.7 14.1 36.9 64.8

0.25 63.6 53.3 90.8 79.5 33.9 26.2 48.7 40.8 74.3 97.0
ARCH 1.0 7.9 5.0 4.4 1.7 5.7 4.5 3.6 3.0 16.1 11.1

0.75 19.8 12.3 14.8 6.8 13.9 7.2 11.3 6.9 27.6 26.6

0.5 65.7 53.4 73.3 53.8 36.4 26.5 36.8 27.4 73.1 86.6
0.25 96.3 93.1 99.6 97.8 64.5 54.9 70.8 59.7 98.5 99.9

Table 1. Empirical rejection percentage of the test procedures.

expected, that the test from Einmahl et al. (2016) holds its level in the independent
model, but fails to do so in the other dependent models.

Next, we consider the performance under the alternatives. One can see that
the power of the tests increases with decreasing β, which is to be expected since a
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16 AXEL BÜCHER, TOBIAS JENNESSEN

beta = 1 beta = 0.75 beta = 0.5 beta = 0.25
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Figure 2. Mean squared error, multiplied by 103, for the estimation
of θ in the ARCH-model with scedasis function c2,β for θ̂n1 (orange

lines) and θ̂n2 (green lines) with k = 400 (solid lines) and k = 300
(dotted lines).

decrease in β results in a stronger deviation of cj,β from the null hypothesis that
the scedasis function equals one. In general, the power of the bootstrap-test is
uniformly higher than the power of the test based on self-normalization, but both
exhibit high power for β = 0.25. Recall again that the self-normalization test only
requires evaluation of C(b)

n,ξ for b ∈ {1, 2}, while the expression must be evaluated a

large number of times for the bootstrap test (we choose B = 300). With regard to
the choice of k and r the highest power is usually attained for k = 200 and r = 4.

7.3. Estimation of the extremal index. We finally briefly evaluate the perfor-
mance of the estimator for the extremal index. For comparison, we also introduce a
second estimator for θ based on the method of moments, which may also be moti-
vated by Lemma 5.2: under the notation of Section 5, consider the (unobservable)
random variable

Tn2 =
1

k′

k′∑

j=1

Zn,j c
( j
k′
)
.

Note that E
[
Zn,1+bξk′c

]
c
(1+bξk′c

k′
)
→ E[Vξ]c(ξ) = 1

θ , where Vξ ∼ Exp(θc(ξ)), by
continuity of c, Condition (B10) and Lemma 5.2. Then, as in Section 5, it follows
that

E[Tn2] =
1

k′

k′∑

j=1

E
[
Zn,jc

( j
k′
)]
→
∫ 1

0

1

θ
dξ =

1

θ
.

Therefore, another sensible method of moments estimators for θ is given by

θ̂n2 =
{ 1

k′

k′∑

s=1

Ẑn,s ĉn

( s
k′

)}−1
.

We only present results for the ARCH-model; the ARMAX- and independent
model were found to yield very similar results. Note that for λ = 0.7 in the ARCH-
model we have θ = 0.721, see Table 3.2 in de Haan et al. (1989).

In what follows, the block size q is chosen from the set {8, 16, 32, 64, 128, 256} (re-
call that k′ = bn/qc) and the number of exceedances k ∈ {300, 400} are considered.
(Here, slightly larger values of k turned out to work better than in the context of
testing for heteroscedastic extremes above.) Regarding the kernel density estimator,
we set κ = 0.1, set the bandwidth to h = 0.2 and use the biweight kernel from (7.1).
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In Figure 2, the mean squared error (MSE) of θ̂n1 and θ̂n2 is plotted as a function
of the block size q, where the true scedasis function is given by c2,β for different
values of β. One can see that the MSE-curves are mostly U-shaped, and that a
minimum value is reached at an intermediate blocksize of q ∈ {32, 64}. Further, in

most scenarios the alternative estimator θ̂n2 outperforms the estimator θ̂n1, and the
larger number of exceedances k = 400 seems to work better than k = 300 in terms
of minimal MSE-values. The same observations were found for the other scedasis
functions c1,β , c̃1,β and c̃2,β .

8. Proofs

For space considerations, we only present the proofs for the theoretical results
from Section 6, which are central to all other proofs. The remaining proofs for
Sections 3-5 are collected in a supplementary material.

Proof of Proposition 6.1. Recall that c∞(L) = 1 + L‖c‖∞. For i ∈ {1, . . . , n} and
n ∈ N, define

X ′n,i =

(
U

(n)
i − (1− k

nc∞(L))
k
n

)

+

= max

(
U

(n)
i − (1− k

nc∞(L))
k
n

, 0

)
(8.1)

and let vn = Pr(X ′n,i 6= 0) = k
nc∞(L). We may then write

Sn(s, x) =
1√
k

bsnc∑

i=1

{
1(X ′n,i > c∞(L)− c( in)x)− Pr(X ′n,i > c∞(L)− c( in)x)

}

+
√
k

{
1

n

bnsc∑

i=1

c( in)− C(s)

}
x ≡ Sn,1(s, x) + Sn,2(s, x).

As a consequence of (B2), the term Sn,2 converges to zero, uniformly in s and x,
and we are left with investigating Sn,1. We are going to identify that process with
an empirical cluster process, see Drees and Rootzén (2010). In the following we set
L = 1; the proof for arbitrary L ∈ N follows analogously. We also write c∞ = c∞(1).

Recall that 1 < r < n denotes an integer sequence converging to infinity such
that r = o(n) as n → ∞. Let Yn,j denote the jth block of consecutive values of
X ′n,1, . . . , X

′
n,n, i.e.,

Yn,j = (X ′n,i)i∈Ij , Ij = {(j − 1)r + 1, . . . , jr}, j = 1, . . . ,m = bn/rc.

We may then write

Sn,1(s, x) = c1/2
∞

{
1√
nvn

rm∑

i=1

1
{
X ′n,i > c∞ − c( in)x, in ≤ s

}

− E1
{
X ′n,i > c∞ − c( in)x, in ≤ s

}}
+ oP(1)

= c1/2
∞

{
1√
nvn

m∑

j=1

{
f̃j,n,s,x(Yn,j)− E[f̃j,n,s,x(Yn,j)]

}}
+ oP(1)
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where the oP(1) is due to the fact that mr 6= n in general, and where f̃j,n,s,x denotes
the cluster functional (see Drees and Rootzén, 2010, Definition 2.1)

f̃j,n,s,x(y1, . . . , y`) =
∑̀

i=1

1(yi > c∞ − c( (j−1)r+i
n )x, (j−1)r+i

n ≤ s), ` ∈ N.

Hence, we need to show functional weak convergence of {Z̃n(s, x)}(s,x), where

Z̃n(s, x) =
1√
nvn

m∑

j=1

{
f̃j,n,s,x(Yn,j)− E[f̃j,n,s,x((Yn,j)]

}
. (8.2)

Unfortunately, results from Drees and Rootzén (2010) are not directly applicable, as
functions f depending on n (and, even more complicated, on j) are not allowed in

their theory. Before proceeding, note that we may slightly redefine f̃j,n,s,x. Indeed,

let Zn be defined analogously to Z̃n, but in terms of

fj,n,s,x(y1, . . . , y`) = 1(j ≤ bsmc)gj,n,x(y1, . . . , y`) (8.3)

where

gj,n,x(y1, . . . , y`) =
∑̀

i=1

1(yi > c∞ − c( (j−1)r+i
n )x), ` ∈ N.

Now, for all s, x ∈ [0, 1],

|Zn(s, x)− Z̃n(s, x)| ≤ 2
1√
nvn

m∑

j=1

r∑

i=1

|1( jm ≤ s)− 1( (j−1)r+i
n ≤ s)|

≤ 2
r√
nvn

m∑

j=1

1( j−1
m < s ≤ j+1

m ) ≤ 4
r√
nvn

. (8.4)

Recalling vn = k
nc∞, we have r = o(

√
nvn) by (B3). As a consequence, we have

shown that

Sn = c1/2
∞ Zn + oP(1) in `∞([0, 1]× [0, L]), (8.5)

such that it is sufficient to show that the process Zn converges to c−1/2
∞ S.

Consider weak convergence of the fidis of Zn first, and for that purpose let us
first assume that the blocks Yn,1, . . . , Yn,m are independent. The general case will be
reduced to the independent case by the Bernstein blocking technique below. Under
the assumption of independent blocks, we may apply the Cramér-Wold device and
the classical Lindeberg CLT (Billingsley, 1995, Theorem 27.2). We need to show
that

lim
n→∞

cn((s, x), (s′, x′)),= c−1
∞ c((s, x), (s′, x′)), (8.6)

where c is defined in (3.2) and where

cn((s, x), (s′, x′)) =
1

nvn

m∑

j=1

Cov
(
fj,n,s,x(Yn,j), fj,n,s′,x′(Yn,j)

)
, (8.7)

and that the Lindeberg condition is satisfied, that is, for any (s, x) ∈ [0, 1]2 and any
ε > 0,

lim
n→∞

1

nvn

m∑

j=1

E
[
{fj,n,s,x(Yn,j)− E fj,n,s,x(Yn,j)}2
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1(|fj,n,s,x(Yn,j)− E fj,n,s,x(Yn,j)| > ε
√
nvn)

]
= 0.

Observing that |fj,n,s,x| ≤ r, the Lindeberg condition is actually a simple conse-
quence of the assumption r = o(

√
nvn) in (B3), see also Corollary 3.6 in Drees and

Rootzén (2010) for a similar argumentation.
It remains to prove (8.6), and for that purpose, we follow arguments from the

proof of Remark 3.7 and Corollary 4.2 in Drees and Rootzén (2010). First of all,
since |E[fj,n,s,x(Yn,j)]| ≤ rP(Xn,1 6= 0) = rvn for all j = 1, . . . ,m and s, x ∈ [0, 1],
we have that

cn((s, x), (s′, x′)) =
1

nvn

m∑

j=1

E[fj,n,s,x(Yn,j)fj,n,s′,x′(Yn,j)
]

+O(rvn)

=
r

n

m∑

j=1

1(j ≤ b(s ∧ s′)mc)An(j) +O(rvn) (8.8)

where

An(j) =
1

rvn
E
[
gj,n,x(Yn,j)gj,n,x′(Yn,j)

]

and where the remainder is o(1) by (B3).
Let us next calculate An(j). For that purpose, recall the notion of the length of

the core of a cluster y, denoted by L(y), see Definition 2.1 in Drees and Rootzén
(2010). Let K > 0 be a constant and decompose

An(j) =
1

rvn
E
[
gj,n,x(Yn,j)gj,n,x′(Yn,j)1(L(Yn,j) ≤ K)

]

+
1

rvn
E
[
gj,n,x(Yn,j)gj,n,x′(Yn,j)1(L(Yn,j) > K)

]

= Sn,K(j) +Rn,K(j).

By stationarity, we have

Rn,K(j) ≤ 1

rvn

r∑

i,i′=1

P
(
X ′n,i > 0, X ′n,i′ > 0, L(Yn,1) > K

)

≤ 1

rvn
E
[( r∑

i=1

1(X ′n,i > 0)
)2

1(L(Yn,1) > K)
]

≤
{ 1

rvn
E
[( r∑

i=1

1(X ′n,i > 0)
)2+δ]}2/(2+δ){ 1

rvn
P(L(Yn,1) > K)

}δ/(2+δ)
.

Thus, as a consequence of (B4) and Lemma 5.2(vii) in Drees and Rootzén (2010),
which is applicable by (B3), we obtain that

lim
K→∞

lim sup
n→∞

sup{Rn,K(j) : j = 1, . . . ,m} = 0. (8.9)

Further, for any j ∈ {1, . . . ,m},

Sn,K(j) =
1

rvn

∑

i,i′∈Jn,j
P
(
X ′n,i > c∞ − c( in)x,X ′n,i′ > c∞ − c( i

′
n )x′, L(Yn,j) ≤ K

)

=
1

rvn

∑

i,i′∈Jn,j ,
|i−i′|≤K

P
(
X ′n,i > c∞ − c( in)x,X ′n,i′ > c∞ − c( i

′
n )x′, L(Yn,j) ≤ K

)
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=S′n,K(j) +R′n,K(j),

where

S′n,K(j) =
1

rvn

∑

i,i′∈Jn,j ,
|i−i′|≤K

P
(
X ′n,i > c∞ − c( in)x,X ′n,i′ > c∞ − c( i

′
n )x′

)
,

R′n,K(j) =
1

rvn

∑

i,i′∈Jn,j ,
|i−i′|≤K

P
(
X ′n,i > c∞ − c( in)x,X ′n,i′ > c∞ − c( i

′
n )x′, L(Yn,j) > K

)
.

By similar calculations as in (8.9), we have that

lim
K→∞

lim sup
n→∞

sup{R′n,K(j) : j = 1, . . . ,m} = 0. (8.10)

Further, by Lemma 9.1 and uniform continuity of c,

S′n,K(j) =
1

c∞r

∑

i∈Jn,j
c( in)

{
d0(x, x′) +

K∧(r−i)∑

h=1

{dh(x, x′) + dh(x′, x)}
}

+ o(1)

=
c( j−1

m )

c∞
DK(x, x′) + o(1),

where the o(1) is uniform in x, x′ ∈ [0, 1] and j = 1, . . . ,m and where

DK(x, x′) = d0(x, x′) +
K∑

h=1

{dh(x, x′) + dh(x′, x)}.

Assembling terms, we have

An(j) =
c( j−1

m )

c∞
DK(x, x′) +Rn,K(j) +R′n,K(j) + o(1)

where the o(1) is uniform in j = 1, . . . ,m and x, x′ ∈ [0, 1].
As a consequence of the latter display and (8.8), we obtain that

cn((s, x), (s′, x′)) = cn,K((s, x), (s′, x′)) + rn,K((s, x), (s′, x′)) + o(1),

where

cn,K((s, x), (s′, x′)) = c−1
∞
r

n

b(s∧s′)mc∑

j=1

c( j−1
m )DK(x′, x)

rn,K((s, x), (s′, x′)) = c−1
∞
r

n

b(s∧s′)mc∑

j=1

{Rn,K(j) +R′n,K(j)}

By (8.9) and (8.10), we have

lim
K→∞

lim sup
n→∞

rn,K((s, x), (s′, x′)) = 0.

Further,

lim
n→∞

cn,K((s, x), (s′, x′)) =
C(s ∧ s′)

c∞
DK(x, x′).

We may finally apply Lemma 9.2 to conclude that (8.6) is met.
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The next step consists of getting rid of the assumption of independence of blocks.
Recall that 1 < `n < r denotes an integer sequence converging to infinity such that
`n = o(r). We may then write Zn(s, x) = Z+

n (s, x) + Z−n (s, x), where

Z+
n (s, x) =

1√
nvn

bsmc∑

j=1

jr−`n∑

i=(j−1)r+1

1(X ′n,i > c∞ − c( in)x)− Pr(X ′n,i > c∞ − c( in)x)

Z−n (s, x) =
1√
nvn

bsmc∑

j=1

jr∑

i=jr−`n+1

1(X ′n,i > c∞ − c( in)x)− Pr(X ′n,i > c∞ − c( in)x).

Further, for n ∈ N, let Y ∗n,1, . . . , Y
∗
n,m denote an i.i.d. sequence, where Y ∗n,1 is equal

in distribution to Yn,1. Let Z∗n,Z+,∗
n and Z−,∗n be defined analogously to Zn,Z+

n and
Z−n , but in terms of Y ∗n,1, . . . , Y

∗
n,m. We will show that:

(i) For any s, x ∈ [0, 1], we have Z−,∗n (s, x) = oP(1) and Z−n (s, x) = oP(1).
(ii) The fidis of Z+,∗

n converge weakly if and only if the fidis of Z+
n converge

weakly. In that case, the weak limits coincide.
As a consequence, the asymptotic distribution of the fidis of Zn coincides with the
asymptotic distribution of the fidis of Z∗n, and the latter has already been derived
above.

Proof of (i). Let us first show that Z−,∗n (s, x) = oP(1), which follows if we show
that Var(Z−,∗n (s, x)) = o(1). Now, by stationarity,

E
{ r∑

i=1

1(X ′n,i 6= 0)
}2
≥ E

br/`nc∑

j=1

{ j`n∑

i=(j−1)`n+1

1(X ′n,i 6= 0)
}2

=
⌊ r
`n

⌋
E
{ `n∑

i=1

1(X ′n,i 6= 0)
}2
. (8.11)

As a consequence, by independence of blocks, stationarity and (B4),

Var(Z−,∗n (s, x)) ≤ m

nvn
Var

( `n∑

i=1

1(X ′n,i 6= 0)
)

= O(`n/r),

which converges to 0 by the assumption on `n.
Now, consider Z−n (s, x). Split the sum into two sums Z−,evenn (s, x) and Z−,oddn (s, x),

according to whether j is even or odd. It suffices to show that each of these sums
is oP(1). We only consider the sum over the even blocks; the argumentation for the
odd blocks is similar. Now, since the observations making up the even numbered
blocks are separated by r observations, we may follow the argumentation in Eberlein
(1984) to obtain that

dTV(P (Yn,2j)1≤j≤bm/2c , P (Y ∗n,2j)1≤j≤bm/2c) ≤ bm/2cβ(r), (8.12)

where dTV denotes the total variation distance between two probability laws. Since
mβ(`n) = o(1) by (B3), the latter display is o(1). As a consequence, Z−,even

n (s, x) =
Z−,even,∗n (s, x) + oP(1). Finally, Z−,even,∗n (s, x) = oP(1) by the same reasoning as for
Z−,∗n .

Proof of (ii). Note that Z+
n only depends on (Y (r−`n)

n,j )1≤j≤m, where Y (r−`n)

n,j consists
of the first r − `n coordinates of Yn,j . A similar assertion holds for Z+,∗

n , which is
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defined in terms of ((Y ∗n,j)
(r−`n))1≤j≤m. The assertion in (ii) follows from the fact

that

dTV(P (Y
(r−`n)
n,j )1≤j≤m , P ((Y ∗n,j)

(r−`n))1≤j≤m) ≤ mβ(`n)→ 0

by assumption and since the respective shortened blocks are separated by `n obser-
vations.

It remains to show asymptotic tightness. For that purpose, decompose Zn =
Zeven
n +Zodd

n and likewise Z∗n = Zeven,∗
n +Zodd,∗

n into sums over even and odd numbered
blocks. Clearly, asymptotic tightness of {Zn(s, x)}(s,x)∈[0,1]2 follows from asymptotic
tightness of {Zeven

n (s, x))}(s,x)∈[0,1]2 and {Zodd
n (s, x)}(s,x)∈[0,1]2 . We only consider the

even numbered blocks. In view of (8.12), it is further sufficient to show asymptotic
tightness of {Zeven,∗

n (s, x)}(s,x)∈[0,1]2 . To reduce the notational complexity, we in-
stead prove asymptotic tightness of {Z∗n(s, x)}(s,x)∈[0,1]2 . For that purpose, we apply
Theorem 11.16 in Kosorok (2008), with t in that theorem replaced by (s, x), and
with

fn,j(ω; (s, x)) = 1( jm ≤ s)×
1√
nvn

∑

i∈Jn,j
1
(
X
′∗
n,i(ω) > c∞ − c( in)x

)
,

where ω is an element of the underlying probability space on which the X
′∗
n,i are

defined. We need to show that

(1) {fn,j : j = 1, . . . ,m} is almost measurable Suslin (AMS);
(2) the {fn,j} are manageable with envelopes {Fn,j} given through

Fn,j(ω) :=
1√
nvn

∑

i∈Jn,j
1(X

′∗
n,i(ω) 6= 0);

(3) limn→∞ E{Z∗n(s, x)Z∗n(s′, x′)} exists for all (s, x), (s′, x′) ∈ [0, 1]2;
(4) lim supn→∞

∑m
j=1 EF 2

n,j <∞;

(5) limn→∞
∑m

j=1 EF 2
n,j1(Fn,j > ε) = 0 for all ε > 0;

(6) ρ(s, x; s′, x′) = limn→∞ ρn(s, x; s′, x′) exists for every (s, x), (s′, x′) ∈ [0, 1]2,
where

ρn(s, x; s′, x′) :=

{ m∑

j=1

E
∣∣fn,j(·; s, x)− fnj(·; s′, x′)

∣∣2
}1/2

. (8.13)

[In that case, ρ defines a semimetric on [0, 1]2.] Moreover, ρn(sn, xn; s′n, x
′
n)→

0 for all sequences (sn, xn)n∈N, (s′n, x
′
n)n∈N ⊂ [0, 1]2 such that ρ(sn, xn; s′n, x

′
n)→

0.

Proof of (1). By Lemma 11.15 in Kosorok (2008), the triangular array {fn,j} is
AMS provided it is separable, that is, provided that, for every n ∈ N, there exists a
countable subset Sn ⊂ [0, 1]2 such that

P∗
(

sup
(s,x)∈[0,1]

inf
(s′,x′)∈Sn

m∑

j=1

{fn,j(ω; s, x)− fn,j(ω; s′, x′)}2 > 0

)
= 0.

Define Sn := (Q∩ [0, 1])2 for all n ∈ N. Then, for every element ω of the underlying
probability space and for every (s, x) ∈ [0, 1]2, there exists (s′, x′) ∈ Sn such that

m∑

j=1

{fn,j(ω; s, x)− fn,j(ω; s′, x′)}2 = 0.
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Proof of (2). By Theorem 11.17(iv) in Kosorok (2008), it suffices to prove that

the triangular arrays {f̃n,j(ω;x) = 1√
nvn

∑
i∈Jn,j 1

(
X
′∗
n,i(ω) > c∞ − c( in)x

)
: x ∈

[0, 1]}j=1,...,m and {g̃nj(ω; s) = 1(j/m ≤ s) : s ∈ [0, 1]}j=1,...,m are manageable

with respective envelopes {Fn,j(ω)}j=1,...,m and {G̃nj(ω) ≡ 1}j=1,...,m. Following the
discussion on Page 221 in Kosorok (2008), these two assertions are consequences of

the fact that both f̃n,j and g̃n,j are increasing in x and s, respectively.

Proof of (3), (4) and (5). Condition (3) is simply the calculation of c((s, x), (s′, x′))
above. Condition (4) is a consequence of (B4). Moreover, the assumption r =
o(
√
nvn) in (B3) implies (5).

Proof of (6). Let

σ2(x, x′) = d0(x, x′) +
∞∑

h=1

(
dh(x, x′) + dh(x′, x)

)
.

For (s, x), (s′, x′) ∈ [0, 1]2, let x̄ = x if s ≥ s′ and x̄ = x′ else. Then, by similar
arguments that lead to (8.6), we have

ρ2
n(s, x; s′, x′)

=
1

nvn

{ b(s∧s′)mc∑

j=1

E
{
gj,n,x(Yn,j)− gj,n,x′(Yn,j)

}2
+

b(s∨s′)mc∑

j=b(s∧s′)mc+1

E
{
gj,n,x̄(Yn,j)

}2
}

= c−1
∞
{
C(s ∧ s′){σ2(x, x)− 2σ2(x, x′) + σ2(x′, x′)}

+ {C(s ∨ s′)− C(s ∧ s′)}σ2(x̄, x̄)
}

+ o(1)

= ρ2((s, x), (s′, x′)) + o(1),

for any fixed (s, x), (s′, x′) ∈ [0, 1]2. In order to show the convergence along sequences
as claimed in (6), it is sufficient to show that the convergence in the last display is
in fact uniform. Note that the argumentation used for pointwise convergence does
not imply uniform convergence, due to the pointwise nature of the main argument,
Lemma 9.2.

Let tj = (sj , xj , s
′
j , x
′
j) ∈ [0, 1]4, j = 1, 2. Suppose we have shown that

|ρ2
n(t1)− ρ2

n(t2)| . Hn(t1, t2) (8.14)

with

Hn(t1, t2) = h0(|x1 − x2|+ qn) + h0(|x′1 − x′2|+ qn) + |s1 − s2|+ |s′1 − s′2|+ qn,

where qn denotes a sequence converging to zero (independent of t1, t2), where h0

denotes a continuous, non-negative, increasing function on [0, 1] with h0(0) = 0
and where the symbol ‘.’ means that the left-hand side is bounded by a constant
multiple of the right-hand side, the constant being independent of n, t1, t2. By
pointwise convergence of ρ2

n, we then also have

|ρ2(t1)− ρ2(t2)| . H(t1, t2), (8.15)

where

H(t1, t2) = h0(|x1 − x2|) + h0(|x′1 − x′2|) + |s1 − s2|+ |s′1 − s′2|.
Now, let ε > 0 be given. Then, by uniform continuity of h0, there exists δ > 0 such

that Hn(t1, t2) < ε and H(t1, t2) < ε for all ‖t1 − t2‖2 < δ and for all n sufficiently
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large. Choose a finite grid of points t(1), . . . , t(p) such that each point t ∈ [0, 1]4 lies

in the open ball of radius δ with center t(j), for some j = 1, . . . , p. Then,

|ρ2
n(t)− ρ2(t)| ≤ |ρ2

n(t)− ρ2
n(t(j))|+ |ρ2

n(t(j))− ρ2(t(j))|+ |ρ2(t(j))− ρ2(t)|
. 2ε+

p
max
j=1
|ρ2
n(t(j))− ρ2(t(j))|.

The upper bound does not depend on t, and converges to 2ε for n→∞ by pointwise
convergence. Since ε > 0 was arbitrary, we obtain that ρ2

n → ρ2 uniformly.
It remains to show (8.14). Let s∨j = sj ∨ s′j and s∧j = sj ∧ s′j . Up to symmetry,

we need to distinguish three cases:

s∨2 ≤ s∧1 , s∧2 ≤ s∧1 ≤ s∨2 ≤ s∨1 , s∧2 ≤ s∧1 ≤ s∨1 ≤ s∨2 .
For brevity, we only consider the first case, and make the further assumption that
s2 < s′2 < s1 < s′1. Introduce the notation Gj(x) = gn,j,x(Yn,j). We may then write

ρ2
n(t1)− ρ2

n(t2) = an1 + an2 + an3 + an4,

where

an1 = 1
nvn

∑bs2mc
j=1 E

[{
Gj(x1)−Gj(x′1)

}2 −
{
Gj(x2)−Gj(x′2)

}2
]
,

an2 = 1
nvn

∑bs′2mc
bs2mc+1 E

[{
Gj(x1)−Gj(x′1)

}2 −
{
Gj(x̄2)

}2
]
,

an3 = 1
nvn

∑bs1mc
bs′2mc+1

E
[{
Gj(x1)−Gj(x′1)

}2
]
,

an4 = 1
nvn

∑bs′1mc
bs1mc+1 E

[{
Gj(x̄1)}2

]
.

Note that E{Gj(x)
}2 ≤ E{∑i∈Jn,1 1(X ′n,i > 0}2 = O(rvn), uniformly in x and

j = 1, . . . ,m, by Condition (B4). Hence,

|an2| .
bs′2mc − bs2mc

m
≤ s′2 − s2 +m−1 ≤ |s1 − s2|+m−1.

Similarly, |an3| and |an4| are bounded by a constant multiple of |s′1 − s′2|+m−1. It
remains to treat |an1|. The triangular inequality and the Cauchy-Schwarz-inequality
imply that each summand of |an1| can be bounded by

E
[∣∣Gj(x1)−Gj(x′1) +Gj(x2)−Gj(x′2)

∣∣ ·
∣∣Gj(x1)−Gj(x′1)−Gj(x2) +Gj(x

′
2)
∣∣
]

≤
{

E
∣∣Gj(x1)−Gj(x′1) +Gj(x2)−Gj(x′2)

∣∣2
}1/2

×
[{

E
∣∣Gj(x1)−Gj(x2)

∣∣2
}1/2

+
{

E
∣∣Gj(x′1)−Gj(x′2)

∣∣2
}1/2

]

The first factor is of the order O((rvn)1/2) by Condition (B4), uniformly in j =
1, . . . ,m and the x-arguments. Regarding the second factor note that, by Hölder-
continuity of c as assumed in Condition (B2), we have

0 < c( jrn )−Kc(
r
n)1/2 ≤ c( in) ≤ c( jrn ) +Kc(

r
n)1/2 ∀ i ∈ Jn,j ,

for sufficiently large n. Without loss of generality, let x1 ≤ x2. Then, by monotonic-
ity and Condition (B5),

E
∣∣Gj(x1)−Gj(x2)

∣∣2

= E
{ ∑

i∈Jn,j
1(c∞ − c( in)x1 ≥ X ′n,i > c∞ − c( in)x2)

}2
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≤ E
{ ∑

i∈Jn,j
1(c∞ − {c( jrn )−Kc(

r
n)1/2}x1 ≥ X ′n,i > c∞ − {c( jrn ) +Kc(

r
n)1/2}x2

}2

≤ h
(
c( jrn )(x2 − x1) +Kc(

r
n)1/2(x1 + x2)

)
r kn

≤ h
(
c∞(x2 − x1) + 2Kcm

−1/2
)
rvn (8.16)

As a consequence,

|an1| . h1/2(c∞|x1 − x2|+ 2Kcm
−1/2) + h1/2(c∞|x′1 − x′2|+ 2Kcm

−1/2)

which finally proves (8.14) with h0(x) = h1/2(c∞x) and qn = 2Kcm
−1/2/c∞. �

Proof of Proposition 6.2. Let (s, x) ∈ [0, 1] × [0, L]. Set εn(x) = V (n/(kx)) =
F−1(1− kx/n) such that, almost surely,

Fn(s, x) =
√
k

{
1

k

n∑

i=1

1
{
U

(n)
i > Fn,i

(
V
( n
kx

))}
1(i/n ≤ s)− xC(s)

}

=
√
k

{
1

k

n∑

i=1

1
{
U

(n)
i > 1− kx

n

1− Fn,i(εn(x))

1− F (εn(x))

}
1(i/n ≤ s)− xC(s)

}
.

According to Condition (B6), there exist y0 < x∗ and τ > 0 such that, for all
y > y0, n ∈ N, 1 ≤ i ≤ n,

c(i/n)
{

1− τ

cmin
A
( 1

1− F (y)

)}
≤ 1− Fn,i(y)

1− F (y)
≤ c(i/n)

{
1 +

τ

cmin
A
( 1

1− F (y)

)}
.

Since εn(x)→ x∗, this implies, for n large enough,
{
U

(n)
i > 1− c(i/n)(1− δn)

kx

n

}
⊆
{
U

(n)
i > 1− 1− Fn,i(εn(x))

1− F (εn(x))

kx

n

}

⊆
{
U

(n)
i > 1− c(i/n)(1 + δn)

kx

n

}
, (8.17)

where δn = supx∈(0,L]
τ

cmin
A
(
n
kx

)
= τ

cmin
A
(
n
kL

)
. As a consequence, by the definition

of Sn in (6.1), almost surely

Sn(s, x(1− δn))−
√
kδnxC(s) ≤ Fn(s, x) ≤ Sn(s, x(1 + δn)) +

√
kδnxC(s).

Therefore,

sup
(s,x)∈[0,1]×[0,L]

|Fn(s, x)− Sn(s, x)| ≤ 2wδn(Sn) + 2
√
kδn,

where, for δ > 0,

wδ(Sn) = sup
(s,y),(s,z)∈[0,1]2:|y−z|<δ

|Sn(s, y)− Sn(s, z)|. (8.18)

Now, since
√
kδn ≤

√
k τ
cmin

A
(
n
kL

)
= o(1) by Condition (B6), it suffices to show that,

for any ε > 0,

lim sup
n→∞

P(wδn(Sn) > ε) = 0. (8.19)

For arbitrary δ > 0, we have

P(wδn(Sn) > ε) = P(wδn(Sn) > ε, δn < δ) + P(wδn(Sn) > ε, δn ≥ δ)
≤ P(wδ(Sn) > ε) + o(1).

In the following we set L = 1 in order to be able to refer to the proof of Proposi-
tion 6.1 in an easier manner; the general case L ∈ N can again be shown analogously.
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Consider the semimetric ρ on [0, 1]2 defined in the proof of Proposition 6.1, see
(8.13). By Theorem 11.16 in Kosorok (2008), we know that [0, 1]2 is totally bounded
under ρ. Further, by (8.15), ρ((s, y), (s, z)) . h1/2

0 (|y − z|) ≤ h1/2

0 (δ) for all s, y, z ∈
[0, 1] with |y − z| < δ, where h0 is non-decreasing and continuous with h0(0) = 0.
Consequently,

lim
δ↓0

lim sup
n→∞

P(wδ(Sn) > ε)

≤ lim
δ↓0

lim sup
n→∞

P

(
sup

(s,y),(s,z)∈[0,1]2:ρ((s,y),(s,z))<δ

|Sn(s, y)− Sn(s, z)| > ε

)
,

which equals 0 by Theorem 7.19 and Theorem 11.16 in Kosorok (2008), the latter
being applicable because of the proof of Proposition 6.1. �

9. Auxiliary Results

Lemma 9.1. Under the assumptions of Proposition 6.1, for any fixed h ≥ 0, we
have that

sup
x,x′∈[0,L]

sup
i=1,...n

∣∣∣∣
1

vn
P
(
X ′n,i > c∞ − c( in)x,X ′n,i+h > c∞ − c( i+hn )x′

)
− c( in)

c∞
dh(x, x′)

∣∣∣∣

converges to 0 as n→∞, where vn = vn(L) = k
nc∞ with c∞ = c∞(L).

Proof. First note that, as a consequence of (2.1) and the continuous mapping theo-
rem, for any ` ∈ N and with cn = c∞ k

n ,

P
(
(X ′n,1 . . . , X

′
n,`) ∈ dx | X ′n,1 > 0

)

= P
((
c∞{1− (cnZ1)−1}+, . . . , c∞{1− (cnZ`)

−1}+
)
∈ dx

∣∣∣Z1 > c−1
n

)

 P((W1, . . . ,W`) ∈ dx),

where Wj = c∞(1 − 1/Yj−1)+. Note that W1 is standard uniform on (0, c∞) and
that Wj ≥ 0 may have an atom at zero and is absolutely continuous on (0, c∞), for
j ≥ 2. A simple extension of Lemma 2.11 in van der Vaart (1998) implies that

sup
x1,...,x`>0

∣∣P(X ′n,1 > x1 . . . , X
′
n,` > x` | X ′n,1 > 0)−P(W1 > x1, . . . ,W` > x`)

∣∣ = o(1).

Thus, for h ≥ 0 fixed, by uniform continuity of c and r = o(n),

1

vn
P
(
X ′n,i > c∞ − c( in)x,X ′n,i+h > c∞ − c( i+hn )x′

)

= P
(
X ′n,i > c∞ − c( in)x,X ′n,i+h > c∞ − c( i+hn )x′ | X ′n,i > 0

)

= P
(
W1 > c∞ − c( in)x,Wh+1 > c∞ − c( i+hn )x′

)
+ o(1)

= P
(
W1 > c∞ − c( in)x,Wh+1 > c∞ − c( in)x′

)
+ o(1),

where the o(1) is uniform in i = 1, . . . , n and x, x′ ∈ [0, L]. Further, by the spec-
tral decomposition of (Yt)t∈N0 (Theorem 3.1 in Basrak and Segers, 2009), that is
(Yt)t∈N0 = (Y0Θt)t∈N0 for some process (Θt)t∈N0 independent of Y0 and with Θ0 = 1,
we obtain, by a change of variable,

P
(
W1 > c∞ − c( in)x,Wh+1 > c∞ − c( in)x′

)

= P
(
Y0 >

c∞
c( in)x

, Yh >
c∞

c( in)x′

)
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=

∫ ∞

1
P
(
Y0 >

c∞
c( in)x

, Y0Θh >
c∞

c( in)x′
| Y0 = y

)
y−2 dy

=

∫ ∞
c∞

c(i/n)x

P
(

Θh >
c∞

yc( in)x′

)
y−2 dy

=
c( in)

c∞

∫ ∞

1/x
P
(

Θh >
1

zx′

)
z−2 dz

=
c( in)

c∞
P
(
Y0 >

1

x
, Yh >

1

x′

)
=
c( in)

c∞
dh(x, x′),

which implies the assertion. �
Lemma 9.2. Let (an)n∈N, (ck)k∈N and (rn,k)(n,k)∈N2 be sequences satisfying

an = ck + rn,k and lim
k→∞

lim sup
n→∞

|rn,k| = 0.

Then (ck)k∈N and (an)n∈N are converging, and the respective limits are equal.

Proof. Let Rk = lim supn→∞ rn,k. Along a subsequence, we have lim`→∞ rn`,k = Rk.
Hence, a = lim`→∞ an` = ck + Rk exists, and therefore limk→∞ ck = a. Finally,
lim supn→∞ an ≤ ck +Rk → a and lim infn→∞ an ≥ ck −Rk → a as k →∞. �
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Berghaus, B. and A. Bücher (2018). Weak convergence of a pseudo maximum like-
lihood estimator for the extremal index. Ann. Statist. 46 (5), 2307–2335.

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
Billingsley, P. (1995). Probability and measure (Third ed.). Wiley Series in Prob-

ability and Mathematical Statistics. John Wiley & Sons, Inc., New York. A
Wiley-Interscience Publication.

Brockwell, P. J. and R. A. Davis (1991). Time series: theory and methods (Second
ed.). Springer Series in Statistics. Springer-Verlag, New York.

152
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SUPPLEMENTARY MATERIAL ON
“STATISTICS FOR HETEROSCEDASTIC TIME SERIES

EXTREMES”

AXEL BÜCHER AND TOBIAS JENNESSEN

Abstract. This supplementary material contains the remaining proofs for the
main paper. Proofs for Sections 3-5 are presented in Sections A-C, respectively.
Some auxiliary results are collected in Section D.

Appendix A. Proofs for Section 3

Proof of Theorem 3.1. Fix s ∈ [0, 1]. By definition, Kb(·, 0) and Kb(·, 1) do not
depend on n, and the same is true for Kb(·, s) with s ∈ (0, 1) and sufficiently large
n; we then have Kb(·, s) = K. Let

Ψn(x) = k−1
n∑

i=1

1
(
X

(n)
i > V

( n
kx

))

such that Fn(1, x) =
√
k{Ψn(x) − x}. By Proposition 6.2, {Fn(1, x)}x∈[0,1]  

{S(1, x)}x∈[0,1] in (`∞([0, 1]), ‖ · ‖∞). Note that Ψ−1
n (x) = nk−1

{
1− F (Xn,n−bkxc)

}
,

such that
{√

k
(
nk−1(1− F (Xn,n−bkxc))− x

)
+ Fn(1, x)

}
x∈[0,1]

= oP(1)

by the functional delta-method applied to the inverse map (see Theorem 3.9.4 in
van der Vaart and Wellner, 1996). In particular, for yn = nk−1{1− F (Xn,n−k)} we
obtain

√
k(yn − 1) = −Fn(1, 1) + oP(1) −S(1, 1), (A.1)

yielding

P
(
h1/4k1/2|yn − 1| ≤ 1

)
→ 1. (A.2)

Let K+
b (·, s) and K−b (·, s) denote the positive and negative part of Kb(·, s), respec-

tively, and define, for y > 0,

c±n (y, s) =
1

kh

n∑

i=1

1
(
X

(n)
i > V

( n
ky

))
K±b

(s− i/n
h

, s
)
,

such that c̃n(s) = c+
n (yn, s)−c−n (yn, s). Note that c±n (·, s) is monotonically increasing;

therefore on the event {h1/4k1/2|yn − 1| ≤ 1} in (A.2) we have

c+
n (y−, s)− c−n (y+, s) ≤ c+

n (yn, s)− c−n (yn, s) ≤ c+
n (y+, s)− c−n (y−, s).

where y± = 1± (k1/2h1/4)−1.
The proof of the theorem is finished once we have shown

√
kh
{
c+
n (y+, s)− c−n (y−, s)− c(s)

}
 N (µs, σ

2
s), (A.3)

√
kh
{
c+
n (y−, s)− c−n (y+, s)− c(s)

}
 N (µs, σ

2
s). (A.4)
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We restrict ourselves to proving (A.3), the assertion in (A.4) can be treated analo-
gously. Set

d±n (y, s) =
1

kh

n∑

i=1

1
(
U

(n)
i > 1− c(i/n)

ky

n

)
K±b

(s− i/n
h

, s
)

and let us first show that√
kh
{
c+
n (y+, s)− c−n (y−, s)− d+

n (y+, s) + d−n (y−, s)
}

= oP(1). (A.5)

which is a consequence of
√
kh
{
c+
n (y+, s)− d+

n (y+, s)
}

= oP(1),
√
kh
{
c−n (y−, s)− d−n (y−, s)

}
= oP(1).

(A.6)

We only prove the first assertion in (A.6), the second one follows by similar argu-
ments. By the same arguments that lead to (8.17), defining εn = F−1(1− ky+/n),
we have

{
U

(n)
i > 1− c(i/n)(1− wn)

ky+

n

}
⊆
{
U

(n)
i > 1− 1− Fn,i(εn)

1− F (εn)

ky+

n

}

⊆
{
U

(n)
i > 1− c(i/n)(1 + wn)

ky+

n

}
,

where wn = τ
cmin

A
(

1
1−F (εn)

)
= τ

cmin
A
(

n
ky+

)
. Consequently, rewriting

c+
n (y, s) =

1

kh

n∑

i=1

1
(
U

(n)
i > F (εn)

)
=

1

kh

n∑

i=1

1
{
U

(n)
i > 1− 1− Fn,i(εn)

1− F (εn)

ky+

n

}
,

(which is true a.s.), we have

d+
n,−(y+, s) ≤ c+

n (y+, s) ≤ d+
n,+(y+, s), (A.7)

where

d+
n,±(x, s) =

1

kh

n∑

i=1

K+
b

(s− i/n
h

, s
)
1
(
U

(n)
i > 1− c(i/n)(1± wn)

kx

n

)
.

As a consequence of (A.7), the proof of the first assertion in (A.6) is finished once
we show that √

kh
{
d+
n,±(y+, s)− d+

n (y+, s)
}

= oP(1). (A.8)

For that purpose, note that

E
[√
kh|d+

n,±(y+, s)− d+
n (y+, s)|

]

≤ 1√
kh

n∑

i=1

K+
b

(s− i/n
h

, s
)

E

[∣∣∣1
(
U

(n)
i > 1− c(i/n)(1± wn)

ky+

n

)

− 1
(
U

(n)
i > 1− c(i/n)

ky+

n

)∣∣∣
]

≤ 2wny
+
√
kh

1

nh

n∑

i=1

K+
b

(s− i/n
h

, s
)
c(i/n)

=
2τ

cmin
y+
√
khA

( n

ky+

) 1

nh

n∑

i=1

K+
b

(s− i/n
h

, s
)
c(i/n)

=
2τ

cmin
y+
√
khA

( n

ky+

){
c(s)η1(s)− hc′(s)η2(s) +

h2

2
c′′(s)η3(s) + o(h2) +O

( 1

nh

)}
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by Lemma A.1, where ηi is defined as in this lemma with K replaced byK+
b (·, s). The

term in the last line of the above display converges to zero since
√
khA(n/(ky+)) ≤√

kA
(
n/(2k)

)
→ 0 by assumption. This proves (A.8) and hence (A.5) as argued

above.
In the next step, we enforce a block structure, later allowing us to apply mixing

conditions and show asymptotic independence of blocks. Let r from Condition
(B3) denote the length of a block, and for simplicity we assume m = n/r ∈ N
(otherwise, a potential remainder block of less than r observations can be shown to
be asymptotically negligible). Set

e±n (y, s) =
1

kh

m∑

j=1

K±b

(s− j/m
h

, s
)∑

t∈Ij
1
(
U

(n)
t > 1− c( tn)

ky

n

)
.

Subsequently, we show
√
kh
{
d+
n (y+, s)− d−n (y−, s)− e+

n (y+, s) + e−n (y−, s)
}

= oP(1). (A.9)

Write

E
[√
kh
∣∣d+
n (y+, s)− e+

n (y+, s)
∣∣]

≤ 1√
kh

m∑

j=1

∑

t∈Ij
P
(
U

(n)
t > 1− c( tn)

ky+

n

)∣∣∣K+
b

(s− t/n
h

, s
)
−K+

b

(s− j/m
h

, s
)∣∣∣

=

√
k

h

y+

n

m∑

j=1

r−1∑

l=0

c
(jr − l

n

)∣∣∣K+
b

(s− jr−l
n

h
, s
)
−K+

b

(s− jr
n

h
, s
)∣∣∣.

SinceK±b (·, s) does not depend on n for sufficiently large n and is Lipschitz-continuous,
say with constant L′, the above can be bounded by

L′y+

√
k

h

r

n2h

m∑

j=1

r−1∑

l=0

c
(jr − l

n

)
= L′y+ k1/2r

n2h3/2

n∑

j=1

c( jn)

which converges to zero by Condition (B7). Analogously, E
[√
kh
∣∣d−n (y−, s)−e−n (y−, s)

∣∣] =
o(1), implying that (A.9) holds. Together with (A.5), we have shown that
√
kh
{
c+
n (y+, s)− c−n (y−, s)− c(s)

}
=
√
kh
{
e+
n (y+, s)− e−n (y−, s)− c(s)

}
+ oP(1),

whence the assertion in (A.3) is shown once we prove that

Hn =
√
kh
{
e+
n (y+, s)− e−n (y−, s)− c(s)

}
 N (µs, σ

2
s). (A.10)

The assertion in (A.10) in turn is a consequence of

lim
n→∞

E[Hn] = µs, Hn − E[Hn] N (0, σ2
s). (A.11)

We start by proving the assertion regarding E[Hn] in (A.11). For that purpose, write

E
[
e+
n (y+, s)− e−n (y−, s)

]

=
1

kh

m∑

j=1

K+
b

(s− j/m
h

, s
)∑

t∈Ij
P
(
U

(n)
t > 1− c( tn)

ky+

n

)

−K−b
(s− j/m

h
, s
)∑

t∈Ij
P
(
U

(n)
t > 1− c( tn)

ky−

n

)
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=
1

nh

m∑

j=1

∑

t∈Ij
c( tn)

{
K+
b

(s− j/m
h

, s
)
y+ −K−b

(s− j/m
h

, s
)
y−
}

=
1

mh

m∑

j=1

c( jm)
{
K+
b

(s− j/m
h

, s
)
y+ −K−b

(s− j/m
h

, s
)
y−
}

+ o
(
(kh)−1/2

)
,

where the o
(
(kh)−1/2

)
-term is due to c being Lipschitz-continuous and kr2 = o(n2h),

which holds by Condition (B7) and r = o(n/k) from (B3).
Hence, the above calculation and Lemma A.1 imply that

1√
kh

E[Hn] = y+
(
c(s)η+

1 (s)− hc′(s)η+
2 (s) +

h2

2
c′′(s)η+

3 (s) + o(h2) +O( 1
mh)

)

−y−
(
c(s)η−1 (s)− hc′(s)η−2 (s) +

h2

2
c′′(s)η−3 (s) + o(h2) +O( 1

mh)
)

−c(s) + o
(
(kh)−1/2

)
,

where η+
i and η−i are defined as ηi in Lemma A.1 but with K replaced by K+

b (·, s)
and K−b (·, s), respectively (note that the latter two functions do not depend on s or n

as argued at the beginning of this proof). Next, note that |y±−1| = (k1/2h1/4)−1 =

o
(
1/
√
kh
)

and o(h2)+O
(
1/(mh)

)
= o
(
1/
√
kh
)

due to k1/5h→ λ and kr2 = o(n2h),
which follows from Conditions (B7) and (B3). As a consequence,

E[Hn] =
√
kh
(
c(s)

(
η+

1 (s)− η−1 (s)− 1
)
− hc′(s)

(
η+

2 (s)− η−2 (s)
)

+
h2

2
c′′(s)

(
η+

3 (s)− η−3 (s)
))

+ o(1). (A.12)

Note that Kb(·, s) = K+
b (·, s) − K−b (·, s). First, let s ∈ (0, 1). For n large enough

such that h < s < 1− h, we have Kb(x, s) = K(x), x ∈ [−1, 1], and

η+
1 (s)− η−1 (s) =

∫ 1

−1
K(x) dx = 1, η+

2 (s)− η−2 (s) =

∫ 1

−1
K(x)x dx = 0,

η+
3 (s)− η−3 (s) =

∫ 1

−1
K(x)x2 dx = a(s).

Second, for s = 1, the construction of the boundary kernel implies (Jones, 1993)

η+
1 (s)− η−1 (s) =

∫ 1

0
Kb(x, 1) dx = 1, η+

2 (s)− η−2 (s) =

∫ 1

0
Kb(x, 1)x dx = 0,

η+
3 (s)− η−3 (s) =

∫ 1

0
Kb(x, 1)x2 dx = a(1).

And for s = 0, we have

η+
1 (s)− η−1 (s) =

∫ 0

−1
Kb(x, 0) dx = 1, η+

2 (s)− η−2 (s) =

∫ 0

−1
Kb(x, 0)x dx = 0,

η+
3 (s)− η−3 (s) =

∫ 0

−1
Kb(x, 0)x2 dx = a(0).

Altogether, these equalities and equation (A.12) yield limn→∞ E[Hn] = λ5/2

2 c′′(s)a(s) =

µs for any s ∈ [0, 1], as asserted in (A.11), where we again used k1/5h → λ from
(B7).
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Next, consider the assertion on the right-hand side of (A.11). For that purpose,
recall c∞ = c∞(2) = 1 + 2‖c‖∞ and X ′n,i from (8.1) with L = 2. We may then

rewrite e±n as

e±n (y±, s) =
1

kh

m∑

j=1

K±b

(s− j/m
h

, s
)∑

t∈Ij
1
(
X ′n,t > c∞ − c( tn)y±

)
.

We are going to apply a big-block-small-block technique. For that purpose, let

IBj = {(j − 1)r + 1, . . . , jr − `n}, ISj = {jr − `n + 1, . . . , jr},

where the sequence (`n)n is from Condition (B3). Set

e±n,B(y, s) =
1

kh

m∑

j=1

K±b

(s− j/m
h

, s
)∑

t∈IBj

1
(
X ′n,t > c∞ − c( tn)y

)
−P
(
X ′n,t > c∞ − c( tn)y

)
,

e±n,S(y, s) =
1

kh

m∑

j=1

K±b

(s− j/m
h

, s
)∑

t∈ISj

1
(
X ′n,t > c∞ − c( tn)y

)
−P
(
X ′n,t > c∞ − c( tn)y

)
.

As a consequence, we may write

Hn − E[Hn] =
√
kh
{
e+
n,B(y+, s)− e−n,B(y−, s)

}
+
√
kh
{
e+
n,S(y+, s)− e−n,S(y−, s)

}
,

whence the assertion on the right-hand side of (A.11) follows if we prove that

Hn1 :=
√
kh
{
e+
n,S(y+, s)− e−n,S(y−, s)

}
= oP(1), (A.13)

Hn2 :=
√
kh
{
e+
n,B(y+, s)− e−n,B(y−, s)

}
 N (0, σ2

s) (A.14)

We start by proving (A.13), for which it suffices to show that Var
(√
kh
{
e+
n,S(y+, s)−

e−n,S(y−, s)
})

= o(1). For n ∈ N and j ∈ {1, . . . ,m}, let Vn,j = (X ′n,t)t∈ISj , and note

that e±n,S is a function of (Vn,j)j=1,...,m. Further, let (V ∗n,j)j=1,...,m denote an i.i.d.

sequence, where V ∗n,j is equal in distribution to Vn,j . Finally, let e±,∗n,S be defined

as e±n,S , but in terms of (V ∗n,j)j=1,...,m instead of (Vn,j)j=1,...,m . First, we show the

assertion in (A.13) with e±n,S replaced by e±,∗n,S . By independence of blocks, we may
write

Var
(√
kh
{
e+,∗
n,S(y+, s)− e−,∗n,S(y−, s)

})

≤ 1

kh

m∑

j=1

E

[{
K+
b

(s− j/m
h

, s
)∑

t∈ISj

1
(
X ′n,t > c∞ − c( tn)y+

)

−K−b
(s− j/m

h
, s
)∑

t∈ISj

1
(
X ′n,t > c∞ − c( tn)y−

)}2]

≤ 1

kh

m∑

j=1

{
K+
b

(s− j/m
h

, s
)2

E

[{∑

t∈ISj

1
(
X ′n,t > c∞ − c( tn)y+

)}2]

+K−b

(s− j/m
h

, s
)2

E

[{∑

t∈ISj

1
(
X ′n,t > c∞ − c( tn)y−

)}2]}
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≤ 1

kh
E

[{∑

t∈IS1

1(X ′n,t 6= 0)

}2] m∑

j=1

K+
b

(s− j/m
h

, s
)2

+K−b

(s− j/m
h

, s
)2
,

(A.15)

where the last step is due to stationarity. As in (8.11), we have

E

[{∑

t∈IS1

1(X ′n,t 6= 0)

}2]
≤ `n

r
E

[{ r∑

t=1

1(X ′n,t 6= 0)

}2]
= O

(`nk
n

)
,

where the last bound follows from Condition (B4). As a consequence, the expression
in (A.15) can be bounded by

O
(`nm

n

) 1

mh

m∑

j=1

K+
b

(s− j/m
h

, s
)2

+K−b

(s− j/m
h

, s
)2

= O
(`n
r

){∫ s/h

s−1
h

K+
b (x, s)2 +K−b (x, s)2 dx+O

( 1

mh

)}
,

(A.16)

which converges to zero due to `n = o(r) and mh→∞, since kh→∞ and m� k

by r = o(n/k) in Condition (B7) and (B3), respectively. Hence,
√
kh
{
e+,∗
n,S(y+, s)−

e−,∗n,S(y−, s)
}

= oP(1). The same argumentation that was used in the proof of Propo-

sition 6.1 can be used to deduce (A.13).
It remains to prove (A.14). For that purpose, write

Hn2 =
√
kh
{
e+
n,B(y+, s)− e−n,B(y−, s)

}
=

1√
kh

m∑

j=1

fj,n(s),

where, for j ∈ {1, . . . ,m},

fj,n(s) = K+
b

(s− j/m
h

, s
) ∑

t∈IBj

{
1
(
X ′n,t > c∞ − c( tn)y+

)
− P

(
X ′n,t > c∞ − c( tn)y+

)}

−K−b
(s− j/m

h
, s
) ∑

t∈IBj

{
1
(
X ′n,t > c∞ − c( tn)y−

)
− P

(
X ′n,t > c∞ − c( tn)y−

)}
.

Note that fj,n(s) is centered and depends on the block IBj only, such that the obser-

vations making up fj,n(s) and fi,n(s) are separated by at least `n observations for
j 6= i. By the same arguments given in the proof of Proposition 6.1 we can assume
that f1,n(s), . . . , fm,n(s) are independent. As a consequence, we may apply the clas-
sical Lindeberg Central Limit Theorem. The Lindeberg condition is satisfied, if for
any ε > 0,

lim
n→∞

1

kh

m∑

j=1

E
[
fj,n(s)21

(
|fj,n(s)| > ε

√
kh
)]

= 0.

Since |fj,n(s)| . r − `n ≤ r, the Lindeberg condition already follows from the

assumption r = o(
√
kh) in (B7), see Corollary 3.6 in Drees and Rootzén (2010) for

a similar argumentation.
It remains to prove that limn→∞Var(Hn2) = σ2

s . Let

dn,j(y) =
∑

t∈IBj

1
(
X ′n,t > c∞ − c( tn)y

)
,
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such that

Var(Hn2) =
1

kh

m∑

j=1

Var
(
K+
b

(s− j/m
h

, s
)
dn,j(y

+)−K−b
(s− j/m

h
, s
)
dn,j(y

−)
)

=
1

kh

m∑

j=1

E

[{
K+
b

(s− j/m
h

, s
)
dn,j(y

+)−K−b
(s− j/m

h
, s
)
dn,j(y

−)

}2]

− E

[
K+
b

(s− j/m
h

, s
)
dn,j(y

+)−K−b
(s− j/m

h
, s
)
dn,j(y

−)

]2

=: An −Bn.
By stationarity,

|E[dn,j(y
±)]| ≤

∑

t∈IBj

P(X ′n,t 6= 0) = (r − `n)
k

n
c∞(L),

implying

|Bn| ≤
1

kh

m∑

j=1

{
K+
b

(s− j/m
h

, s
)2

E[dn,j(y
+)]2 +K−b

(s− j/m
h

, s
)2

E[dn,j(y
−)]2

}

≤ c∞(L)2 k

m

1

mh

m∑

j=1

K+
b

(s− j/m
h

, s
)2

+K−b

(s− j/m
h

, s
)2
,

which converges to zero by the previous calculation in (A.16) and k/m = o(1) by
Condition (B3). As a consequence,

Var(Hn2) = An + o(1). (A.17)

Next, write An = m−1
∑m

j=1An(j), where

An(j) =
m

kh
E

[{
K+
b

(s− j/m
h

, s
)
dn,j(y

+)−K−b
(s− j/m

h
, s
)
dn,j(y

−)

}2]
.

Recall the definition of the length of the core of a cluster y, denoted by L(y), see
Definition 2.1 in Drees and Rootzén (2010). For some constant K > 0, writing Yn,j =
(X ′n,t)t∈IBj for j ∈ {1, . . . ,m}, we may then decompose An(j) = Sn,K(j) + Rn,K(j),

where

Sn,K(j)

=
m

kh
E

[{
K+
b

(s− j/m
h

, s
)
dn,j(y

+)−K−b
(s− j/m

h
, s
)
dn,j(y

−)

}2

1
(
L(Yn,j) ≤ K

)]
,

Rn,K(j)

=
m

kh
E

[{
K+
b

(s− j/m
h

, s
)
dn,j(y

+)−K−b
(s− j/m

h
, s
)
dn,j(y

−)

}2

1
(
L(Yn,j) > K

)]
.

We have

Rn,K(j) ≤ m

kh
K+
b

(s− j/m
h

, s
)2

E
[
d2
n,j(y

+)1
(
L(Yn,j) > K

)]

+
m

kh
K−b

(s− j/m
h

, s
)2

E
[
d2
n,j(y

−)1
(
L(Yn,j) > K

)]
.
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The two summands summands on the right-hand side can be written as

m

kh
K±b

(s− j/m
h

, s
)2 ∑

q,t∈IBj

P
(
X ′n,t > c∞ − c( tn)y±,

X ′n,q > c∞ − c(q/n)y±, L(Yn,j) > K
)

≤ m

kh
K±b

(s− j/m
h

, s
)2 ∑

q,t∈IBj

P
(
X ′n,t > 0, X ′n,q > 0, L(Yn,j) > K

)

=
m

kh
K±b

(s− j/m
h

, s
)2

E
[{ r∑

t=1

1(X ′n,t > 0)
}2

1
(
L(Yn,1) > K

)]

≤ 1

h
K±b

(s− j/m
h

, s
)2
{
m

k
E
[{ r∑

t=1

1(X ′n,t > 0)
}2+δ]} 2

2+δ{m
k

P
(
L(Yn,1) > K

)} δ
2+δ

by Hölder’s inequality. Consequently, we obtain

1

m

m∑

j=1

Rn,K(j) ≤
{
m

k
E
[{ r∑

t=1

1(X ′n,t > 0)
}2+δ]} 2

2+δ{m
k

P
(
L(Yn,1) > K

)} δ
2+δ

× 1

mh

m∑

j=1

K+
b

(s− j/m
h

, s
)2

+K−b

(s− j/m
h

, s
)2
.

By Condition (B4) and Lemma 5.2 (vii) in Drees and Rootzén (2010), which is
applicable by Condition (B3) (note that their vn is vn = Pr(X ′n,i 6= 0) = k

nc∞(2) in

our notation), we have

lim
K→∞

lim sup
n→∞

1

m

m∑

j=1

Rn,K(j) = 0. (A.18)

Next, consider the term Sn,K(j) with j ∈ {1, . . . ,m}, which may be written as

Sn,K(j)

=
m

kh

{
K+
b

(s− j/m
h

, s
)2

E
[
d2
n,j(y

+)1
(
L(Yn,j) ≤ K

)]

+K−b

(s− j/m
h

, s
)2

E
[
d2
n,j(y

−)dn,j(y
−)1

(
L(Yn,j) ≤ K

)]

− 2K+
b

(s− j/m
h

, s
)
K−b

(s− j/m
h

, s
)

E
[
dn,j(y

+)dn,j(y
−)1

(
L(Yn,j) ≤ K

)]}

=
m

kh

{
K+
b

(s− j/m
h

, s
)2 ∑

q,t∈IBj ,|q−t|≤K
P
(
X ′n,t > c∞ − c( tn)y+,

X ′n,q > c∞ − c( qn)y+, L(Yn,j) ≤ K
)

+K−b

(s− j/m
h

, s
)2 ∑

q,t∈IBj ,|q−t|≤K
P
(
X ′n,t > c∞ − c( tn)y−,

X ′n,q > c∞ − c( qn)y−, L(Yn,j) ≤ K
)
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− 2K+
b

(s− j/m
h

, s
)
K−b

(s− j/m
h

, s
) ∑

q,t∈IBj ,|q−t|≤K
P
(
X ′n,t > c∞ − c( tn)y+,

X ′n,q > c∞ − c( qn)y−, L(Yn,j) ≤ K
)}

.

Let S′n,K(j) be defined exactly as the right-hand side of the previous display, but
with the probability terms replaced by

P
(
X ′n,t > c∞ − c( tn)y,X ′n,q > c∞ − c( qn)y′

)
.

for y, y′ ∈ {y+, y−} (i.e., we omit the additional condition L(Yn,j) ≤ K everywhere).
Further, let R′n,K(j) = S′n,K(j) − Sn,K(j). By the same arguments that were used
for Rn,K above, one can show that

lim
K→∞

lim sup
n→∞

1

m

m∑

j=1

R′n,K(j) = 0. (A.19)

Regarding the remaining terms S′n,K(j) we obtain, by uniform continuity of c and
Lemma 9.1,

S′n,K(j) = S′′n,K(j) +R′′n(j)o(1),

where the o(1) is uniform in j = 1, . . . ,m, where

R′′n(j) =
1

h
K+
b

(s− j
m

h
, s
)2

+
1

h
K−b

(s− j
m

h
, s
)2
− 2

h
K+
b

(s− j
m

h
, s
)
K−b

(s− j
m

h
, s
)

and where

S′′n,K(j) =
1

h
K+
b

(s− j
m

h
, s
)2 1

r

∑

t∈IBj

c( tn)
{
d0(y+, y+) + 2

K∧(jr−`n−t)∑

q=1

dq(y
+, y+)

}

+
1

h
K−b

(s− j
m

h
, s
)2 1

r

∑

t∈IBj

c( tn)
{
d0(y−, y−) + 2

K∧(jr−`n−t)∑

q=1

dq(y
−, y−)

}

− 2

h
K+
b

(s− j
m

h
, s
)
K−b

(s− j
m

h
, s
)

· 1

r

∑

t∈IBj

c( tn)
{
d0(y+, y−) +

K∧(jr−`n−t)∑

q=1

dq(y
+, y−) + dq(y

−, y+)
}
.

By Lemma A.1 (and a straightforward extension of this lemma to the case of a
product of kernels) we have m−1

∑m
j=1R

′′
n(j) = O(1). Moreover,

S′′n,K(j) =
1

h
K+
b

(s− j
m

h
, s
)2
c( jm)DK(y+, y+) +

1

h
K−b

(s− j
m

h
, s
)2
c( jm)DK(y−, y−)

− 2

h
K+
b

(s− j
m

h
, s
)
K−b

(s− j
m

h
, s
)
c( jm)DK(y+, y−) + o(1),

where the o(1) is uniform in j = 1, . . . ,m (and in y+, y− ∈ [0, 2] as arbitrary inputs),
and

DK(x, x′) = d0(x, x′) +
K∑

q=1

dq(x, x
′) + dq(x

′, x).
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Therefore,

1

m

m∑

j=1

S′n,K(j)

=
1

mh

m∑

j=1

c( jm)
{
K+
b

(s− j
m

h
, s
)2
DK(y+, y+) +K−b

(s− j
m

h
, s
)2
DK(y−, y−)

− 2K+
b

(s− j
m

h
, s
)
K−b

(s− j
m

h
, s
)
DK(y+, y−)

}
+ o(1),

which converges to c(s)η(s)DK(1, 1) by a straightforward extension of Lemma A.1 to
the case of a product of kernels. Further, note that DK(y, y′) converges to DK(1, 1)
for y, y′ ∈ {y+, y−}, since dq is continuous in (1, 1) by Theorem 2 and its subsequent
discussion in Segers (2003). Finally, since

An =
1

m

m∑

j=1

An(j) =
1

m

m∑

j=1

S′n,K(j)− 1

m

m∑

j=1

R′n,K(j) +
1

m

m∑

j=1

Rn,K(j)

Lemma 9.2 and (A.18) and (A.19) imply limn→∞Var(Hn2) = limn→∞An = σ2
s ,

where we used (A.17). �

Lemma A.1. Assume c ∈ C2([0, 1]). Let K be a Lipschitz-continuous function on
[−1, 1] with K(x) = 0 for |x| > 1. Further, let h = hn > 0 satisfy h → 0 and
nh→∞ for n→∞. Then, for any s ∈ [0, 1], as n→∞,

1

nh

n∑

i=1

K
(s− i/n

h

)
c(i/n) = c(s)η1(s)− hc′(s)η2(s) +

h2

2
c′′(s)η3(s) + o(h2) +O

( 1

nh

)
,

1

nh

n∑

i=1

K2
(s− i/n

h

)
c(i/n) = c(s)η4(s) +O(h) +O

( 1

nh

)
.

where

η1(s) = 1(s≤h)

∫ s/h

−1

K(x)dx+ 1(h<s<1− h)

∫ 1

−1

K(x)dx+ 1(s≥1− h)

∫ 1

s−1
h

K(x)dx,

η2(s) = 1(s≤h)

∫ s/h

−1

K(x)xdx+ 1(h<s<1− h)

∫ 1

−1

K(x)xdx+ 1(s≥1− h)

∫ 1

s−1
h

K(x)xdx,

η3(s) = 1(s≤h)

∫ s/h

−1

K(x)x2dx+ 1(h<s<1− h)

∫ 1

−1

K(x)x2dx+ 1(s≥1− h)

∫ 1

s−1
h

K(x)x2dx,

η4(s) = 1(s≤h)

∫ s/h

−1

K2(x)dx+ 1(h<s<1− h)

∫ 1

−1

K2(x)dx+ 1(s≥1− h)

∫ 1

s−1
h

K2(x)dx.

Proof. A Riemann sum approximation implies

1

nh

n∑

i=1

K
(s− i/n

h

)
c(i/n) =

∫ s/h

s−1
h

K(x)c(s− hx) dx+O
( 1

nh

)
.

Next, by Taylor’s theorem, there exists some τx ∈ [0, 1] such that

∫ s/h

s−1
h

K(x)c(s− hx) dx
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= c(s)

∫ s/h

s−1
h

K(x) dx− hc′(s)
∫ s/h

s−1
h

K(x)x dx+
h2

2
c′′(s)

∫ s/h

s−1
h

K(x)x2 dx

+
h2

2

∫ s/h

s−1
h

K(x)x2
{
c′′(s− xhτx)− c′′(s)

}
dx.

Since K has compact support and c′′ is continuous, the dominated convergence
theorem implies that the last integral is of the order o(h2). If s < 1 − h, we have
s−1
h < −1, and for s > h, we have s/h > 1. This allows to rewrite the boundaries of

the integral accordingly in view of the fact that K has support [−1, 1].
For the second assertion, write

1

nh

n∑

i=1

K2
(s− i/n

h

)
c(i/n)

=

∫ s/h

s−1
h

K2(x)c(s− hx) dx+O
( 1

nh

)

= c(s)

∫ s/h

s−1
h

K2(x) dx+

∫ s/h

s−1
h

K2(x)
{
c(s− hx)− c(s)

}
dx+O

( 1

nh

)

= c(s)

∫ s/h

s−1
h

K2(x) dx+O(h) +O
( 1

nh

)
,

where the last step is again due to the dominated convergence theorem. �

Proof of Theorem 3.2. As at the beginning of the proof of Theorem 3.1, let yn =
nk−1

{
1− F (Xn,n−k)

}
. The definition of the STEP Fn in (6.2) allows to write

√
k{Ĉn(s)− C(s)} = Fn(s, yn) + C(s)

√
k(yn − 1)

By the proof of Theorem 3.1, see (A.1), we know that
√
k(yn − 1) = −Fn(1, 1) + oP(1).

Suppose we have shown that

sup
s∈[0,1]

|Fn(s, yn)− Fn(s, 1)| = oP(1). (A.20)

Then, by the previous three displays, uniformly in s,
√
k{Ĉn(s)− C(s)} = Fn(s, 1)− C(s)Fn(1, 1) + oP(1), (A.21)

which implies the assertion since {Fn(s, 1)}s∈[0,1]  {S(s, 1)}s∈[0,1] in (`∞([0, 1]), ‖ ·
‖∞) by Proposition 6.2. It remains to prove (A.20). Note that

sup
s∈[0,1]

|Fn(s, yn)− Fn(s, 1)| ≤ sup
(s,y),(s,z)∈[0,1]2:|y−z|<|yn−1|

|Fn(s, y)− Fn(s, z)|,

For any ε > 0 and µ ∈ (0, 1/2), we have P(kµ|yn − 1| < ε)→ 1. Thus, on this event
the above supremum can be bounded by

sup
(s,y),(s,z)∈[0,1]2:|y−z|<δn

|Fn(s, y)− Fn(s, z)|.

where δn := εk−µ ↓ 0. Analogously to showing (8.19) in the proof of Proposition 6.2,
we obtain that the last expression is asymptotically negligible (note that the same
semimetric used in the proof of Proposition 6.2 can be applied here by Theorem
7.19 in Kosorok (2008) and Proposition 6.2 and the proof of tightness in the proof
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of Proposition 6.1, which made Theorem 11.16 in Kosorok (2008) applicable for
Sn). �

Appendix B. Proofs for Section 4

For b ∈ N and (s, x) ∈ [0, 1]2 let

S(b)
n,ξ(s, x) =

1√
k

m∑

j=1

ξ
(b)
j

∑

i∈Ij
1
(
U

(n)
i > 1− kx

n
c
(
i
n

))
1( in ≤ s), (B.1)

F(b)
n,ξ(s, x) =

1√
k

m∑

j=1

ξ
(b)
j

∑

i∈Ij
1
(
X

(n)
i > V

( n
kx

))
1( in ≤ s)

denote bootstrap-versions of the (simple) STEP defined in (6.1) and (6.2).

Proposition B.1. Suppose that Conditions (B0)-(B6) hold for L = 1. Then, for
any B ∈ N and as n→∞,

(
Sn, S

(1)
n,ξ, . . . , S

(B)
n,ξ

)
 
(
S, S(1), . . . , S(B)

)
in

(
`∞([0, 1]2), ‖ · ‖∞

)B+1
,

where S(1), . . . , S(B) are independent copies of S from Proposition 6.1.

Proposition B.2. Suppose that Conditions (B0)-(B6) hold for L = 1. Then, for
any b ∈ N and as n→∞,

sup
(s,x)∈[0,1]2

|F(b)
n,ξ(s, x)− S(b)

n,ξ(s, x)| = oP(1).

As a consequence, by Proposition 6.2 and B.1, for any B ∈ N and as n→∞,
(
Fn,F

(1)
n,ξ, . . . ,F

(B)
n,ξ

)
 
(
S, S(1), . . . , S(B)

)
in

(
`∞([0, 1]2), ‖ · ‖∞

)B+1
,

where S(1), . . . , S(B) are independent copies of S from Proposition 6.1.

Proof of Theorem 4.1. Define

C̃(b)
n,ξ(s) = D̃(b)

n,ξ(s)− Ĉn(s)D̃(b)
n,ξ(1),

where

D̃(b)
n,ξ(s) =

1√
k

m∑

j=1

ξ
(b)
j

∑

i∈Ij
1
(
X

(n)
i > Xn,n−k

)
1( in ≤ s), s ∈ [0, 1].

Recall that yn = nk−1
(
1 − F (Xn,n−k)

)
converges to 1 in probability by (A.1). For

b ∈ N and s ∈ [0, 1], we have

C̃(b)
n,ξ(s) = F(b)

n,ξ(s, yn)− Ĉn(s)F(b)
n,ξ(1, yn)

= F(b)
n,ξ(s, 1)− C(s)F(b)

n,ξ(1, 1)

= S(b)
n,ξ(s, 1)− C(s)S(b)

n,ξ(1, 1)

where the third equality is a consequence of Proposition B.2 and where the second
equality is a consequence of sups∈[0,1] |Ĉn(s)− C(s)| = oP(1) by Theorem 3.2 and

sup
s∈[0,1]

|F(b)
n,ξ(s, yn)− F(b)

n,ξ(s, 1)| = oP(1),
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42 AXEL BÜCHER, TOBIAS JENNESSEN

which can be seen to hold by the same argumentation as in the proof of Theorem

3.2 for showing (A.20), since F(b)
n,ξ  S in

(
`∞([0, 1]2), ‖ · ‖∞

)
by Proposition B.2.

Hence, (A.21) and Proposition 6.2 imply the representation

(√
k
(
Ĉn − C

)
, C̃(1)

n,ξ, . . . , C̃
(B)
n,ξ

)
=
(
Sn(s, 1)− C(s)Sn(1, 1),

S(1)
n,ξ(s, 1)− C(s)S(1)

n,ξ(1, 1), . . . , S(B)
n,ξ (s, 1)− C(s)S(B)

n,ξ (1, 1)
)

+ oP(1).

By Proposition B.1 and the continuous mapping theorem, the previous expression
weakly converges to
(
S(s, 1)− C(s)S(1, 1), S(1)(s, 1)− C(s)S(1)(1, 1), . . . , S(B)(s, 1)− C(s)S(B)(1, 1)

)

=
(
C,C(1), . . . ,C(B)

)

in (`∞([0, 1]), ‖ · ‖∞)B+1. Finally, since

D(b)
n,ξ(s) = D̃(b)

n,ξ(s)−
√
kξ̄(b)Ĉn(s)

and Ĉn(1) = 1, we have C(b)
n,ξ = C̃(b)

n,ξ, which proves the theorem. �

Proof of Corollary 4.2. By Theorem 4.1 and the Continuous Mapping Theorem, we
have that, under H0, as n→∞,

(
Sn,1, S

(1)
n,1, . . . , S

(B)
n,1

)
 
(
‖C‖∞, ‖C(1)‖∞, . . . , ‖C(B)‖∞

)
,

(
Tn,1, T

(1)
n,1 , . . . , T

(B)
n,1

)
 
(∫ 1

0
C(s)2 ds,

∫ 1

0
C(1)(s)2 ds, . . . ,

∫ 1

0
C(B)(s)2 ds

)
.

Note that C = σB in distribution by (4.1), where B is a Brownian Bridge on [0, 1],

which implies that ‖C‖∞ and
∫ 1

0 C(s)2 ds are continuous random variables. Further

note that (ξ(b)1 , . . . , ξ(b)m )b=1,...,B are i.i.d. Overall, Lemma 4.2 in Bücher and Kojadi-
novic (2019) is applicable, which proves the assertion under H0. For the assertion
under H1 let us consider ϕn,B,S ; ϕn,B,T can be treated analogously. Note that under
H1,

k−1/2Sn,1 = sup
s∈[0,1]

|Ĉn(s)− s| P−→ sup
s∈[0,1]

|C(s)− s| > 0

and r−1/2S
(b)
n,1 = r−1/2‖C(b)

n,ξ‖∞ = oP(1), such that S
(b)
n,1 = OP(r1/2) for any b ∈

{1, . . . , B}. The claim follows since r = o(k) by Condition (B3). �

Proof of Corollary 4.3. The proof of the statement regarding the null hypothesis is
an immediate consequence of Theorem 4.1. Under H1, one can easily show that
Sn,2, Tn,2 converge to ∞ in probability, which implies the respective assertion under
H1. �

Proof of Proposition B.1. Fix b ∈ {1, . . . , B}. We only show weak convergence of

(Sn, S
(b)
n,ξ); the joint weak convergence of all B + 1 components can be shown anal-

ogously. In the following, we omit the upper index (b) at all instances. Recall
c∞(L) = 1 + L‖c‖∞ and X ′n,i from (8.1) and vn = Pr(X ′n,i 6= 0) = k

nc∞(L). For

(s, x) ∈ [0, 1]2, write

Sn,ξ(s, x) = c∞(L)1/2Z̃n,ξ(s, x) +Rn,ξ(s, x), (B.2)
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where

Z̃n,ξ(s, x) =
1√
nvn

m∑

j=1

ξj
∑

i∈Ij
1( in ≤ s)

{
1(X ′n,i > c∞(L)− c( in)x)− Pr(X ′n,i > c∞(L)− c( in)x)

}
,

Rn,ξ(s, x) =
x
√
k

n

m∑

j=1

ξj
∑

i∈Ij
1( in ≤ s)c( in).

First, we show that Rn,ξ = oP(1). Due to Condition (B3) one can easily show that

it suffices to prove R̃n,ξ = oP(1), where

R̃n,ξ(s) =
m∑

j=1

fn,j(s), fn,j(s) =

√
k

n
ξj1( jm ≤ s)

∑

i∈Ij
c( in), s ∈ [0, 1].

First, for s ∈ [0, 1], we have E[R̃n,ξ(s)] = 0 and

Var
(
R̃n,ξ(s)

)
=

k

n2

m∑

j=1

{
1( jm ≤ s)

∑

i∈Ij
c( in)

}2
≤ ‖c‖2∞

kr2m

n2
= ‖c‖2∞

kr

n
= o(1)

by Condition (B3), such that R̃n,ξ(s) = oP(1) for any fixed s ∈ [0, 1]. It remains to

show tightness of R̃n,ξ. To this, we will apply Lemma A.1 from Kley et al. (2016)
with ψ(x) = x2, η̄ = 2/m, T = [0, 1] and d(s, t) = |s− t|. Note that the Orlicz-norm
with ψ(x) = x2 coincides with the L2-norm ‖ · ‖2. First, for all |s− t| ≥ η̄/2 = 1/m,
we have

‖R̃n,ξ(s)− R̃n,ξ(t)‖2 ≤ 2‖c‖∞
kr

n
|s− t| ≤ |s− t|

for sufficiently large n by Condition (B3). By Lemma A.1 in Kley et al. (2016), for
any δ > 0, η ≥ η̄, there exists a random variable S′ and a constant K ′ > ∞, such
that

P
(

sup
d(s,t)<δ

|R̃n,ξ(s)− R̃n,ξ(t)| > 2ε
)
≤ P(|S′| > ε) + P

(
sup

d(s,t)≤η̄
|R̃n,ξ(s)− R̃n,ξ(t)| > ε/2

)
,

(B.3)

for all ε > 0, where

P(|S′| > ε) ≤
(8K ′

ε

)2(∫ η

1/m
D(x, d)1/2dx+ (δ + 4/m)D(η, d)

)2
.

Here, D(·, d) denotes the packing number on ([0, 1], d) and satisfies D(x, d) ≤ 4x−1 +
1, x > 0, see van der Vaart and Wellner (1996), page 98. Thus,

lim
δ↓0

lim sup
n→∞

P(|S′| > ε) ≤
(8K ′

ε

)2(∫ η

0
(4x−1 + 1)1/2dx

)2
. (B.4)

Further, we have

|R̃n,ξ(s)− R̃n,ξ(t)| ≤M‖c‖∞
√
k

m

m∑

j=1

|1(j/m ≤ s)− 1(j/m ≤ t)|,

where |1(j/m ≤ s) − 1(j/m ≤ t)| = 1(s ∧ t < j/m ≤ s ∨ t) does not equal zero for
at most two different j ∈ {1, . . . ,m}, if d(s, t) = |s− t| ≤ η̄ = 2/m. Consequently,

P
(

sup
d(s,t)≤η̄

|R̃n,ξ(s)− R̃n,ξ(t)| > ε/2
)
≤ 1

(
2M‖c‖∞

√
k
m > ε/2

)
,
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which converges to zero as n → ∞ since rk = o(n) by Condition (B3). Altogether,
by (B.3) and (B.4), we have shown, for all ε > 0,

lim
δ↓0

lim sup
n→∞

P
(

sup
d(s,t)<δ

|R̃n,ξ(s)− R̃n,ξ(t)| > 2ε
)
≤
(8K ′

ε

)2(∫ η

0
(4x−1 + 1)1/2dx

)2
,

which can be made arbitrarily small by choosing η accordingly. This concludes the
proof of Rn,ξ = oP(1).

By equation (B.2) we obtain Sn,ξ = c∞(L)1/2Z̃n,ξ + oP(1). Since |ξj | ≤ M the

same calculation as in (8.4) in the proof of Proposition 6.1 (for treating Zn and Z̃n)

yields sup(s,x)∈[0,1]2 |Z̃n,ξ(s, x)− Zn,ξ(s, x)| = oP(1) with

Zn,ξ(s, x) =
1√
nvn

m∑

j=1

ξj1( jm ≤ s)
∑

i∈Ij

{
1(X ′n,i > c∞(L)− c( in)x)

− Pr(X ′n,i > c∞(L)− c( in)x)
}

=
1√
nvn

m∑

j=1

ξj
{
fj,n,s,x(Yn,j)− E[fj,n,s,x(Yn,j)]

}
,

where Yn,j = (X ′n,i)i∈Ij , j = 1, . . . ,m, and fj,n,s,x is defined as in (8.3). Further, by

(8.5) we know that Sn = c∞(L)1/2Zn + oP(1), where

Zn(s, x) =
1√
nvn

m∑

j=1

{
fj,n,s,x(Yn,j)− E[fj,n,s,x(Yn,j)]

}
,

as defined after (8.2), the only difference to Zn,ξ being the multipliers ξj . It re-
mains to show weak convergence of (Zn,Zn,ξ). We start with the corresponding
weak convergence of the fidis. Since ξ1, . . . , ξm are independent with |ξj | ≤ M and
independent of Yn,1, . . . , Yn,m the proof is analogous to the one of Proposition 6.1.
Let us just calculate the covariance function for independent blocks Yn,1, . . . , Yn,m.
Note that E[ξj ] = 0 and E[ξ2

j ] = 1. For (s, x), (s′, x′) ∈ [0, 1]2, we obtain

1

nvn

m∑

j=1

Cov
(
fj,n,s,x(Yn,j), ξjfj,n,s′,x′(Yn,j)

)
= 0

and

1

nvn

m∑

j=1

Cov
(
ξjfj,n,s,x(Yn,j), ξjfj,n,s′,x′(Yn,j)

)
=

1

nvn

m∑

j=1

E
[
fj,n,s,x(Yn,j)fj,n,s′,x′(Yn,j)

]
,

which equals cn((s, x), (s′, x′)) defined in (8.7) and converges to c((s, x), (s′, x′)) from
Proposition 6.1 by the corresponding proof.

With regard to the asymptotic tightness, note that by Lemma 1.4.3 in van der
Vaart and Wellner (1996) it suffices to show asymptotic tightness of Zn and Zn,ξ
separately. Asymptotic tightness of Zn has been shown in the proof of Proposition
6.1. Concerning the asymptotic tightness of Znξ, the proof follows analogously.
Here, the conditions (1)-(5) in the proof of Proposition 6.1 can immediately be seen
to hold since |ξj | ≤ M , and condition (6) follows since the function ρn is the same
as before due to E[ξ2

j ] = 1. �
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Proof of Proposition B.2. Let s, x ∈ [0, 1] and b ∈ {1, . . . , B}. Set εn(x) = V (n/(kx)) =
F−1(1− kx/n) such that, almost surely,

F(b)
n,ξ(s, x) =

1√
k

m∑

j=1

ξ
(b)
j

∑

i∈Ij
1
{
U

(n)
i > 1− kx

n

1− Fn,i(εn(x))

1− F (εn(x))

}
1( in ≤ s).

Note that |ξ(b)
j | ≤ M . Then, by relation (8.17) and the definition of S(b)

n,ξ and Sn in

(B.1) and (6.1), respectively, we obtain

|F(b)
n,ξ(s, x)− S(b)

n,ξ(s, x)|

≤ M√
k

m∑

j=1

∑

i∈Ij
1( in ≤ s)

∣∣∣1
(
U

(n)
i > 1− c( in)(1 + δn)

kx

n

)
− 1
(
U

(n)
i > 1− c( in)

kx

n

)∣∣∣

+
∣∣∣1
(
U

(n)
i > 1− c( in)(1− δn)

kx

n

)
− 1
(
U

(n)
i > 1− c( in)

kx

n

)∣∣∣

= M
{
Sn(s, x(1 + δn)) +

√
kC(s)x(1 + δn)− (Sn(s, x) +

√
kC(s)x)

− (Sn(s, x(1− δn)) +
√
kC(s)x(1− δn)) + Sn(s, x) +

√
kC(s)x

}

= M
{
Sn(s, x(1 + δn))− Sn(s, x(1− δn)) + 2C(s)x

√
kδn
}
,

where δn is defined after (8.17). Consequently,

sup
(s,x)∈[0,1]2

|F(b)
n,ξ(s, x)− S(b)

n,ξ(s, x)| ≤Mw2δn(Sn) + 2M
√
kδn,

where wδ(Sn) is defined in (8.18) in the proof of Proposition 6.2. There, it is further

shown that w2δn(Sn) = oP(1) and
√
kδn = o(1) by Condition (B6), which implies

the assertion. �

Appendix C. Proofs for Section 5

Proof of Lemma 5.2. For x > 0 write

P(Zn,1+bξk′c ≥ x) = P
(

max
i∈I′

1+bξk′c
F (X

(n)
i ) ≤ 1− x/q

)

= P
(
X

(n)
i ≤ F−1(1− x/q) for all i ∈ I ′1+bξk′c

)

= P
(
Zi ≤

1

1− Fn,i
(
F−1(1− x/q)

)
for all i ∈ I ′1+bξk′c

)
.

By Corollary D.2 the last term equals

P
(
Zi ≤

q

c(ξ)x
for all i ∈ I ′1+bξk′c

)
+ o(1) = P

(
max

i∈I′
1+bξk′c

Ui ≤ 1− c(ξ)x

q

)
+ o(1),

which converges to exp(−θc(ξ)x) by (5.1). �
Proof of Theorem 5.3. We start with part (a). By Theorem 3.1 we know that
c̃n(x) = c(x) + oP(1) for any x ∈ [0, 1], and the continuous mapping theorem implies
that ĉn(x)−1 = max(c̃n(x), κ)−1 = c(x)−1 + oP(1) for any x ∈ [0, 1]. Since ĉn ≥ κ,
we obtain E

[
|ĉn(x)−1|p

]
≤ κ−p <∞ for any p > 0 and x ∈ [0, 1]. By Example 2.21

in van der Vaart (1998), this implies E
[
ĉn(x)−1

]
→ c(x)−1 for any x ∈ [0, 1], such

that

E[τ̂n] =

∫ 1

0
E
[
ĉn(x)−1

]
dx→

∫ 1

0
c(x)−1 dx = τ
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by the dominated convergence theorem. Next, we show that Var(τ̂n) = o(1). Note
that ĉn(x)−1ĉn(y)−1 = c(x)−1c(y)−1+oP(1) for any x, y ∈ [0, 1] and E

[
|ĉn(x)−1ĉn(y)−1|p

]
≤

κ−2p for any p > 0 and x, y ∈ [0, 1], such that as above E
[
ĉn(x)−1ĉn(y)−1

]
=

c(x)−1c(y)−1 + o(1). Thus, by Fubini’s theorem

Var(τ̂n) =

∫ 1

0

∫ 1

0
E
[
ĉn(x)−1ĉn(y)−1

]
dxdy −

(∫ 1

0
E
[
ĉn(x)−1

]
dx
)2

→
∫ 1

0

∫ 1

0
c(x)−1c(y)−1 dxdy −

(∫ 1

0
c(x)−1 dx

)2
= 0.

The assertion in (a) follows from Markov’s inequality.

We continue with part (b). Write T̂n = Sn1 + Sn2 + Sn3, where

Sn1 =
1

k′

k′∑

j=1

Ẑn,j − Zn,j , Sn2 =
1

k′

k′∑

j=1

Zn,j − E[Zn,j ], Sn3 =
1

k′

k′∑

j=1

E[Zn,j ].

First, we show Sn3 → τ/θ. Write Sn3 =
∫ 1

0 ϕn(ξ) dξ, where

ϕn(ξ) = E[Zn,1+bξk′c]→ (θc(ξ))−1

by Lemma 5.2 and uniform integrability, which follows from (B10). Hence, the

dominated convergence theorem implies that Sn3 →
∫ 1

0 (θc(ξ))−1 dξ = τ/θ; note
supn∈N ‖ϕn‖∞ <∞ by Condition (B10).

In the following, we prove Sn1 = oP(1) and Sn2 = oP(1), and start with Sn2. Split
Sn2 into Seven

n2 and Sodd
n2 , which are defined as Sn2 but with j only ranging over the

even or odd numbers in {1, . . . , k′}, respectively. It suffices to show that Seven
n2 and

Sodd
n2 are asymptotically negligible. We only treat Seven

n2 ; the proof for Sodd
n2 is similar.

For n ∈ N, let (Z∗n,j)j=1,...,k′ denote an independent sequence with Z∗n,j being

equal in distribution to Zn,j for j = 1, . . . , k′. Since the observations making up the
even numbered blocks are separated by at least q observations, we may follow the
argumentation in Eberlein (1984) to obtain

dTV

(
P (Zn,2j)1≤j≤bk′/2c , P (Z∗n,2j)1≤j≤bk′/2c

)
≤ bk′/2cβ(q),

where dTV denotes the total variation distance between two probability laws. Since
k′β(q) = o(1) by (B9), the above expression converges to zero as well, and Seven

n2 =
Seven,∗
n2 + oP(1), where Seven,∗

n2 is defined as Seven
n2 but in terms of (Z∗n,j)j . Finally,

E[Seven,∗
n2 ] = 0 and

Var(Seven,∗
n2 ) =

1

(k′)2

k′∑

j=1,j even

Var(Z∗n,j) ≤
1

(k′)2

k′∑

j=1

Var(Z∗n,j) =
1

k′

∫ 1

0
gn(ξ) dξ,

where gn(ξ) = Var(Zn,1+bξk′c)→ (θc(ξ))−2 by Lemma 5.2 and uniform integrability

from (B10), which implies Var(Seven,∗
n2 ) = o(1) and Seven,∗

n2 = oP(1).
It remains to show Sn1 = oP(1). Note that the STEP Fn from (6.1) with k = k′

satisfies

Fn(1, q(1− F (x))) = q
√
k′
{
F (x)− F̂n(x)

}
,
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which yields Ẑn,j − Zn,j = 1√
k′
Fn(1, Zn,j) for j = 1, . . . , k′ by the definition of Zn,j

and Ẑn,j in (5.2). Therefore,

Sn1 =
1

k′

k′∑

j=1

1√
k′
Fn(1, Zn,j) =

∫ ∞

0
Fn(1, x) dHn(x),

whereHn(x) = (k′)−3/2
∑k′

j=1 1(Zn,j ≤ x). Note that supx∈[0,T ] |Hn(x)| ≤ (k′)−1/2 =

o(1) for any T ∈ N. Under the imposed conditions, Proposition 6.2 is applicable for
k = k′, yielding {Fn(1, x)}x∈[0,T ]  {S(1, x)}x∈[0,T ] in (`∞([0, T ]), ‖ · ‖∞), such that

Sn1(T ) :=

∫ T

0
Fn(1, x) dHn(x) = oP(1), T ∈ N,

by Lemma C.8 in Berghaus and Bücher (2017). By Theorem 4.2 in Billingsley
(1968), the proof of Sn1 = oP(1) is finished once we show that, for any δ > 0,

lim
T→∞

lim sup
n→∞

P
(
|Sn1 − Sn1(T )| > δ

)
= 0.

Set fn(x, z) = 1(x > V (q/z))− z/q, such that Sn1 = 1
(k′)2

∑k′
i=1

∑n
j=1 fn(X

(n)
j , Zn,i).

Write Sn1 − Sn1(T ) = An,T +Bn,T + Cn,T , where

An,T =
1

(k′)2

k′∑

i=1

∑

j∈{i−1,i,i+1}

∑

s∈I′j

fn(X(n)
s , Zn,i)1(Zn,i ≥ T ),

Bn,T =
1

(k′)2

k′−2∑

i=1

k′∑

j=i+2

∑

s∈I′j

fn(X(n)
s , Zn,i)1(Zn,i ≥ T ),

Cn,T =
1

(k′)2

k′∑

i=3

i−2∑

j=1

∑

s∈I′j

fn(X(n)
s , Zn,i)1(Zn,i ≥ T ).

First, |An,T | ≤ 3q/k′ = o(1) by Condition (B9). It remains to show, for any δ > 0,

lim
T→∞

lim sup
n→∞

P (|Bn,T | > δ) = 0, lim
T→∞

lim sup
n→∞

P (|Cn,T | > δ) = 0.

We only consider Cn,T ; Bn,T can be treated similarly. Write

Cn,T =
1

k′

k′∑

i=3

ϕn,i−2(Zn,i)1(Zn,i ≥ T )

with

ϕn,i−2(z) =
1

k′

i−2∑

j=1

∑

s∈I′j

fn(X(n)
s , z).

For fixed i ∈ {3, . . . , k′}, consider the expectation E
[
|ϕn,i−2(Zn,i)|1(Zn,i ≥ T )

]
. By

Berbee’s coupling lemma (Berbee, 1979), we may construct a random variable Z∗n,i
independent of ((X(n)

s )s∈I′j )j=1,...,i−2 and equal in distribution to Zn,i with

P(Z∗n,i 6= Zn,i) = β
(
σ(Zn,i), σ

((
(X(n)

s )s∈I′j
)
j=1,...,i−2

))
≤ β(q).

Hence,

E
[
|ϕn,i−2(Zn,i)|1(Zn,i ≥ T )

]
= E

[
|ϕn,i−2(Z∗n,i)|1(Z∗n,i ≥ T )

]
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+ E
[{
|ϕn,i−2(Zn,i)|1(Zn,i ≥ T )− |ϕn,i−2(Z∗n,i)|1(Z∗n,i ≥ T )

}
1(Zn,i 6= Z∗n,i)

]
.

Since |ϕn,i−2| ≤ q the second summand can be bounded by 2qP(Zn,i 6= Z∗n,i) ≤
2qβ(q) ≤ 2k′β(q) = o(1) by Condition (B9), uniformly in i. Now, consider the first
summand in the above display, for which we first treat E[|ϕn,i−2(z)|] for T ≤ z ≤ q
(note that Z∗n,i ≤ q a.s.). We have

E[|ϕn,i−2(z)|] ≤ 1

k′

i−2∑

j=1

∑

s∈I′j

E
[
|fn(X(n)

s , z)|
]
≤ z +

1

k′

i−2∑

j=1

∑

s∈I′j

P
(
X(n)
s > V (q/z)

)
.

Since P
(
X

(n)
s > V (q/z)

)
= 1 − Fn,s

(
(1 − F )−1(z/q)

)
and by Condition (B6), there

exists some τ > 0 such that, for all s ≤ n and n large enough,

P
(
X(n)
s > V (q/z)

)
<
z

q
c
( s
n

){
1 + τ

cmin
A
(q
z

)}
.

As a consequence, uniformly in i,

E[|ϕn,i−2(z)|] ≤ z + z‖c‖∞
{

1 + τ
cmin

A
(q
z

)}
.

Since A is eventually decreasing, the last expression can be bounded by

z
[
1 + ‖c‖∞

{
1 + τ

cmin
A(1)

}]

for T ≤ z ≤ q. After conditioning on Z∗n,i we thus obtain with the Cauchy-Schwarz-
inequality

E
[
|ϕn,i−2(Z∗n,i)|1(Z∗n,i ≥ T )

]
≤
[
1 + ‖c‖∞

{
1 + τ

cmin
A(1)

}]
E
[
Z∗n,i1(Z∗n,i ≥ T )

]
.

Since Z∗n,i has the same distribution as Zn,i and by the Cauchy Schwartz inequality,
we have thus found the bound

E[|Cn,T |] ≤ o(1) +
1

k′

k′∑

i=1

[
1 + ‖c‖∞

{
1 + τ

cmin
A(1)

}]
E
[
Zn,i1(Zn,i ≥ T )

]

. o(1) +

∫ 1

0
gn(ξ) dξ,

where gn(ξ) = E[Z2
n,1+bξk′c]

1/2P(Zn,1+bξk′c ≥ T )1/2 converges to E[V 2
ξ ]1/2P(Vξ ≥

T )1/2 as n → ∞ for Vξ ∼ Exp(θc(ξ)) by Lemma 5.2 and Condition (B10). Alto-
gether,

lim
T→∞

lim sup
n→∞

≤ lim
T→∞

∫ 1

0
E[V 2

ξ ]1/2P (Vξ ≥ T )1/2 dξ = 0,

which implies (b). �

Appendix D. Auxiliary Results

Lemma D.1. Fix ξ ∈ [0, 1) and x > 0. Under Conditions (B0)-(B2), (B6) and
(B9), An = Bn + oP(1) and Bn = Cn + oP(1) as n→∞, where

An =
∑

i∈I′
1+bξk′c

1
(
Zi >

1

1− Fn,i
(
F−1(1− x/q)

))
,

Bn =
∑

i∈I′
1+bξk′c

1
(
Zi >

q

c(i/n)x

)
, Cn =

∑

i∈I′
1+bξk′c

1
(
Zi >

q

c(ξ)x

)
.
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Proof. For the first part of the lemma, first, note that since c is a positive and
continuous function on [0, 1], there exist v, w > 0 such that v < c(s) < w for all
s ∈ [0, 1]. By Condition (B6) there are real numbers y0 < x∗ and τ > 0 such that
for all y > y0, n ∈ N and 1 ≤ i ≤ n,

c(i/n)
{

1− τ

v
A
( 1

1− F (y)

)}
<

1− Fni(y)

1− F (y)
< c(i/n)

{
1 +

τ

v
A
( 1

1− F (y)

)}
.

Set yn = F−1(1− x/q) and wn = τ
vA
(

1
1−F (yn)

)
= τ

vA
( q
x

)
. Thus, for n large enough

(such that yn > y0) we have for all 1 ≤ i ≤ n,

{
Zi ≥

q

c(i/n)x
(1−wn)−1

}
⊆
{
Zi ≥

q

x

1− F (yn)

1− Fn,i(yn)

}
⊆
{
Zi ≥

q

c(i/n)x
(1 +wn)−1

}
.

Since

An =
∑

i∈I′
1+bξk′c

1

(
Zi >

q

x

1− F (yn)

1− Fn,i(yn)

)
,

this implies B−n ≤ An ≤ B+
n , where

B±n =
∑

i∈I′
1+bξk′c

1
(
Zi >

q

c(i/n)x
(1± wn)−1

)
.

Next, we have

E[|B±n −Bn|] ≤
∑

i∈I′
1+bξk′c

E
[∣∣∣1
(
Zi >

q

c(i/n)x
(1± wn)−1

)
− 1
(
Zi >

q

c(i/n)x

)∣∣∣
]

≤
∑

i∈I′
1+bξk′c

{
P
( q

c(i/n)x
(1± wn)−1 < Zi ≤

q

c(i/n)x

)

+ P
( q

c(i/n)x
< Zi ≤

q

c(i/n)x
(1± wn)−1

)}
.

Let us consider the case with the plus-sign. Note that wn > 0. Recalling that Zi is
Pareto-distributed the above expression reduces to

wn
x

q

∑

i∈I′
1+bξk′c

c(i/n) ≤ wnx‖c‖∞,

which converges to 0 since wn → 0 by Condition (B6). The case with the minus-sign
can be treated analogously. Hence, we have shown B±n −Bn → 0 in L1(P) as n→∞.
The assertion follows from B−n ≤ An ≤ B+

n .
For the second part of the lemma write

E[|Bn − Cn|] ≤
∑

i∈I′
1+bξk′c

E
[∣∣∣1
(
Zi >

q

c(i/n)x

)
− 1
(
Zi >

q

c(ξ)x

)∣∣∣
]

≤
∑

i∈I′
1+bξk′c

{
P
( q

c(i/n)x
< Zi ≤

q

c(ξ)x

)
+ P

( q

c(ξ)x
< Zi ≤

q

c(i/n)x

)}

=
x

q

∑

i∈I′
1+bξk′c

|c(i/n)− c(ξ)|,
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where the last equation is due to the fact that Zi is Pareto-distributed. Further, by
Condition (B2), we have

1

q

∑

i∈I′
1+bξk′c

|c(i/n)− c(ξ)| ≤ Kc

q

∑

i∈I′
1+bξk′c

|i/n− ξ|1/2

=
Kc

q

q∑

j=1

∣∣∣bξk
′cr + j

n
− ξ
∣∣∣
1/2

=
Kc

qn1/2

q∑

j=1

∣∣∣(bξk′c − ξk′)q + j
∣∣∣
1/2
≤
√

2Kc(q)
1/2

n1/2
= o(1)

by Condition (B9). Therefore, Bn − Cn → 0 in L1(P) as n→∞, which implies the
second assertion. �
Corollary D.2. Fix ξ ∈ [0, 1) and x > 0. Under Condition (B0)-(B2), (B6) and
(B9),

P
(
Zi ≤

q

c(i/n)x
for all i ∈ I ′1+bξk′c

)
− P

(
Zi ≤

q

c(ξ)x
for all i ∈ I ′1+bξk′c

)
= o(1),

and

P
(
Zi ≤

1

1− Fn,i
(
F−1(1− x/q)

)
for all i ∈ I ′1+bξk′c

)

− P
(
Zi ≤

q

c(i/n)x
for all i ∈ I ′1+bξk′c

)
= o(1), n→∞.

Proof. Note that

P
(
Zi ≤

1

1− Fn,i
(
F−1(1− x/q)

)
for all i ∈ I ′1+bξk′c

)
= P(An = 0),

P
(
Zi ≤

q

c(i/n)x
for all i ∈ I ′1+bξk′c

)
= P(Bn = 0),

P
(
Zi ≤

q

c(ξ)x
for all i ∈ I ′1+bξk′c

)
= P(Cn = 0).

Therefore,

|P (An = 0)− P (Bn = 0)| = P (An = 0, Bn > 0) + P (An > 0, Bn = 0)

≤ 2P (|An −Bn| > 1/2) = o(1)

by Lemma D.1. And |P (Bn = 0)−P (Cn = 0)| = o(1) can be shown analogously. �
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3 Outlook

In this chapter, a potential continuation of this work and some open research questions

are briefly presented.

First, the disjoint and sliding blocks estimators for the extremal index θ and the

limiting cluster size distribution π in Chapter 2.1 and 2.2 were shown to asymptotical-

ly follow a centered normal distribution. Here, the limiting variance formulas were too

complicated to allow for some simple estimation based on the plug-in principle. How-

ever, for further statistical inference on θ and π, e.g., for the construction of confidence

intervals, estimators for the asymptotic variance formulas are needed. In the case of

the extremal index, one approach would be to estimate the disjoint blocks estimator’s

variance based on an asymptotic expansion of the estimator derived from the proof of

its asymptotic normality, as it was done in Berghaus and Bücher (2018). Since for the

proposed estimators for θ the difference between the disjoint and sliding blocks variance

only depends on θ, such an estimator could then be used for estimation of the sliding

blocks variance as well. However, the proof of consistency of these variance estimators

is quite elaborate in Berghaus and Bücher (2018)(Proposition 4.1), under even stronger

mixing conditions, and, in particular, this approach does not work for the estimation of

the asymptotic variance of the sliding blocks estimator for π since the difference between

the corresponding disjoint and sliding blocks variance is more complicated. A more gen-

eral approach, which could also be used to approximate the limiting distributions of

the estimators for θ and π, consists of bootstrap methods such as the dependent/block

multiplier bootstrap (Drees, 2015; Bücher and Kojadinovic, 2016). Studying bootstrap

procedures to approximate the limiting distributions of statistics based on sliding blocks

maxima seems especially appealing since, in many cases, deducting inference when sli-

ding blocks are involved turns out to be difficult and there is no universal approach yet

(Drees and Neblung, 2021).

Furthermore, the proposed estimators for θ and π depend on a block length parame-

ter, which was seen to have a notable impact on the estimation accuracy in simulation

studies. Here, it would be interesting to analyze estimators that aggregate over multiple

block sizes, in order to achieve more robustness in this parameter and to possibly im-

prove upon the single block length case; such an improvement has been observed in Zou

et al. (2021) in a different context.

Besides, in Chapter 2.1, no estimator for the extremal index could be identified to

be overall superior. It would be interesting to investigate which minimal asymptotic va-

riance can be achieved by estimators relying on the considered rank-based samples, and
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whether there are estimators for the extremal index that are semiparametrically efficient.

In Chapter 2.3, a model was considered where the observations are serially depen-

dent and their marginal tails are proportional to each other, described by the scedasis

function. Estimators for the scedasis function and the integrated scedasis function and

tests for detecting heteroscedasticity in the extremes were considered. Under domain of

attraction conditions, one could further analyze estimators for the extreme value index

or high quantiles at a specific time point, as in Einmahl et al. (2016) in the case of

independent observations. Further, the introduced estimators for the extremal index θ

of the stationary time series (U
(n)
t )t∈Z constitute a modification of the estimator from

Berghaus and Bücher (2018). Here, one could also study method of moments estimators

as in Chapter 2.1. In addition, it would be interesting to investigate estimators for θ that

are not of block maxima type but rely on the runs or inter-exceedance times method

instead. Besides, the proposed estimators for θ and the tests for heteroscedasticity in the

extremes, which are based on a block bootstrap, both rely on the construction of disjoint

blocks. In view of the findings in Chapter 2.1 and 2.2, it would be worth to examine

whether the above methods can be improved upon by using sliding blocks.

This last point raises the more general question of the superiority of the sliding blocks

method over the disjoint blocks method, and why it seems to be more advantageous for

statistics of block maxima type than for ones of peak-over-threshold type (Cissokho and

Kulik, 2020; Drees and Neblung, 2021). Another aspect of future research would be a

weakening of the underlying assumptions needed for the proposed methods to work.

This concerns relaxing the mixing conditions in Chapter 2, especially when beta-mixing

is involved, and a further weakening of the regularity condition imposed on the time series

(U
(n)
t )t∈Z in Chapter 2.3. Since this time series was assumed to be stationary, the serial

dependence of the overlying time series (X
(n)
t )t∈Z is unable to change over time. A step

towards allowing for a more dynamic model that also permits a (smoothly) changing

serial dependence over time would be to incorporate the concept of local stationarity

(Vogt, 2012; Dahlhaus, 2012).
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Bücher, A. and Zanger, L. (2021). On the disjoint and sliding block maxima method for

piecewise stationary time series. arXiv:2110.15576.
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