
Uniform Rationality for Compact p-adic
Analytic Groups

Inaugural-dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Zeynep Kısakürek
aus İstanbul

Düsseldorf, April 2022



aus dem Institut für Mathematik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Berichterstatter:
1. Prof. Dr. Immanuel Halupczok
2. Prof. Dr. Markus Reineke

Tag der mündlichen Prüfung: 30.05.2022

1



Summary

Given a group, it is natural to ask how many irreducible complex representations it
has. We here focus on p-adic analytic groups and, for n ∈ N, encode the number
of isomorphism classes of n-dimensional irreducible complex representation in a
Dirichlet series. To ensure that the numbers of these isomorphism classes are finite
(representation rigidity), we proceed with FAb compact p-adic analytic groups,
which provide the proper condition. Then we call this Dirichlet generating series
representation zeta function, which is a function in s, and a great tool to investigate
the distribution of character degrees. Stasinski and Zordan in [SZ20] proved that
this series is essentially (or virtually, as it is called in the literature) a rational
function in p−s; this can be considered as a strong relation between the number
of irreducible representations of different dimension. The (virtual) rationality of
such representation zeta functions is obtained by the rationality of a reduced zeta
series called partial zeta series.

In this work, we consider these partial zeta series for a family of FAb compact
p-adic analytic groups. We impose the condition that there exists an analytic
formula uniformly defining the family of FAb compact p-adic analytic groups, and
first show how to obtain a uniformly powerful pro-p subgroup of a given p-adic
analytic group in a uniformly definable way for p > 2. Following this, we prove
that the partial zeta series are uniformly rational. The technical term uniform
rationality is a way to control the p-dependence of these rational functions.

Adapting some ideas from [SZ20], we then obtain a family of uniformly
definable equivalence relations on Qm

p as p varies, which allows us to express
partial zeta series as generating functions enumerating the equivalence classes in
this uniformly definable family of equivalence relations. To do so, we describe an
expansion of the analytic language, which is conventionally used for studying
valued fields in model theory. Uniform rationality then follows by a result of
Nguyen, [Ngu19].
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1.2 Chapter Progression

The 2nd chapter (Introduction) provides a humble survey of the historical
progress of results and methodologies around zeta functions. The chapter begins
with the rationality of Igusa’s zeta functions and is followed by Denef’s work
broadening his ideas via model theoretic methods. Throughout this chapter, we
introduce notions such as subgroup growth and representation growth leading to
different zeta functions to highlight the use of model theory while naming some
results that influence our work. We finish the chapter by introducing our main
theorem and describing our framework.

In Chapter 3 (Background), we give an overview of key notions on a broad
spectrum from the main object, p-adic analytic groups, to the model theory of
valued fields. While getting familiar with the nature of mathematical objects of
this work, we also fix our model theoretic setting. Sections 3.3 and 3.4 are worth
explicitly mentioning as they explain vital notions such as uniform definability and
rationality and precisely display our main result. The rest of this text aims to find
equivalence classes mentioned in 3.4.

Chapter 4 (Good Bases) is devoted to du Sautoy’s parametrization of open
subgroups of a uniform pro-p group, namely good bases. It is a key ingredient in
many works concerning p-adic analytic groups, including this one. The chapter
progresses by examining its features and finally obtaining the set of good bases in
a uniformly definable way. Later on, we give an example covering some of the key
notions appearing in previous chapters as well as the good basis.

In the 5th chapter (Projective Representations), we introduce basic
concepts and ideas from the theory of projective representations along with a few
noteworthy results from ordinary representation theory. The last section in this
chapter discloses a concise report on the cohomology of finite groups due to their
relation to projective representations.

In Chapter 6 (Partial Zeta Series), we develop Clifford Theory for projective
representations. It continues by showing how partial zeta series occur in the study
of the representation zeta function of FAb compact p-adic analytic groups. Besides
its motivational purposes, it is helpful to highlight what to bear in mind to apply
our methods to obtain uniform virtual rationality of a family of FAb compact
p-adic analytic groups, which is the most natural direction to take after this work.
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In the 7th chapter (Tools for Constructing Equivalence Classes), we
bring in all the tools to obtain equivalences classes, which we will use to describe
partial zeta series. In the first section, we show how to reduce the problem to the
case of linear characters. The following section discusses the uniform definability
of this reduction while presenting two interludes on the key components of uniform
definability: 1) the group Qp/Zp exploring its relation with Prüfer p-group, 2)
another parametrization based on good bases.

Chapter 8 (Main Theorem) is where we combine all our findings in the
right order. The main goal of this chapter is to show how to interpret the sets we
want to count uniformly and definably in Qp. To this end, we describe a family
of uniformly definable subsets of Qm

p for some m, and specify uniformly definable
equivalence relations on these subsets.

As a word of caution, we want to mention that the word uniform appears in
two different ways in this text; its model theoretic meaning should be understood as
defined by a formula not depending on p. Also, in the theory of p-adic Lie groups,
there is a central notion called uniform pro-p groups which is also fundamental to
this work. A characterization can be given as follows: A pro-p group is uniform if
and only if it is finitely generated, powerful and torsion-free.
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Chapter 2

Introduction

Counting solutions. Let X be a system of polynomial equations in Z[x1, . . . , xn].
For a prime p, consider the set X(Z/pkZ) of solutions of X in Z/pkZ. Define Nk
to be the number of elements of X(Z/pkZ) and associate the following Poincaré
series

PX(T) = ∑
k≥0

Nk · Tk.

Theorem 2.0.1. [Igu00] The series PX(T) is a rational function in T.

To describe Igusa’s framework, we assume X is given by F(x1, . . . , xn) = 0.
Recall the generalized residue map πk : Zp → Z/pkZ, and let Bk be the ball
(centered at 0) of radius p−k; Bk = {(x1, . . . , xn) ∈ Zn

p : |xi| ≤ p−k}. Then

Nk =#({(x1, . . . , xn) ∈ Zn
p : F(πk(x1, . . . , xn)) = 0} mod Bk)

=#({(x1, . . . , xn) ∈ Zn
p : πk(F(x1, . . . , xn)) = 0} mod Bk)

=#({(x1, . . . , xn) ∈ Zn
p : |F(x1, . . . , xn)| ≤ p−k} mod Bk).

Let Xk = {(x1, . . . , xn) : |F(x1, . . . , xn)| ≤ p−k}. Recall there exists a unique Haar
measure µ on Qn

p that is translation invariant, and µ(B0) = µ(Zn
p) = 1. Therefore

µ(Bk) = p−nk. Then∫
B0

|F(x1, . . . , xn)|s dµ = ∑
k≥0

µ({(x1, . . . , xn) ∈ B0 : |F(x1, . . . , xn)| = p−k})p−ks

= ∑
k≥0

p−ks(µ(Xk)− µ(Xk+1))

=1+ (1− ps) ∑
k≥1

Nkpk(−n−s).
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The above function is called Igusa’s zeta function, and denoted by ZF(s). So
one obtains that

ZF(s) = ps + (1− ps)PX(p−n−s).

Integration on semi-algebraic sets. Denef generalized the rationality of Igusa’s
local zeta function in his paper [Den84]. Let φ(x) be an Lring formula, and n ∈ N.
Set Nk,φ and Ñk,φ as follows:

Nk,φ =#{a ∈ (Z/pkZ)m : φ(a) holds in Z/pkZ},
Ñk,φ =#{a mod pk : a ∈ Zp

m, φ(a) holds in Zp}.

He showed that Pk,φ(T) = ∑k Nk,φ · Tk and P̃k,φ(T) = ∑k Ñk,φ · Tk are rational.
Note that if you let φ(x) to be the system of polynomials X given above, then
Igusa’s rationality result follows. The first key component of Denef’s work is
Macintyre’s quantifier elimination.

Theorem 2.0.2. [Mac76] Qp admits elimination of quantifiers in LMac
1.

To highlight the importance of this result, we first need to mention another
important ingredient called p-adic cell decomposition which was used in place
of Hironaka’s resolution of singularities in Igusa’s proof. This method analyzes
definable sets systematically in terms of controlled definable functions, and the
cells admit nice geometric properties. Denef’s proof uses Macintyre’s quantifier
elimination theorem to show the set {a mod pk : a ∈ Zp

m, φ(a) holds in Zp} is
not extremely complex, so that we have a control on its measure. Consequently,
the cardinalities Nk,φ and Ñk,φ can be expressed as measures of definable sets
(e.g. semi-algebraic sets, subanalytic sets) and the rationality of the power series
reduces to showing the rationality of related p-adic integrals - p-adic integration
then evolved to motivic integration. Later on, this method was extended by Denef
and van den Dries to a larger category of definable sets and functions in [DvdD88],
where they prove similar rationality results.

Subgroup growth. One of the notable topics in geometric group theory is
counting the number of subgroups of finite index in a given group. Assume G to
be a finitely generated group; hence it has finitely many subgroups of finite index
of n for any natural number n ≥ 1. Set an(G) to be the number of subgroups of
index n in G. The asymptotic behaviour of the sequence {an}n indicates the
subgroup growth of G. A far-reaching theory of subgroup growth has been
established, and it is thoroughly presented in [Lub95].

1It means that each formula in LMac is equivalent to a formula without quantifiers in Qp. See
Section 3.1 for the language LMac
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As a tool to study subgroup growth, we now introduce how to encode the
counting sequence as a generating function. To this aim, we consider the following
Dirichlet series called the subgroup zeta function of G; s ∈ C

ζ(an(G))(s) := ∑
n≥1

an(G) · n−s = ∑
H≤ fG

(G : H)−s.

This analytic function is a direct analogue of Dedekind zeta function of a
number field encoding the number of ideals of index n in a ring of algebraic integers.
Moreover, if we suppose G = Z, then {an}n = {1}n. Correspondingly, we obtain
nothing but the Riemann zeta function

ζG(s) = ∑
n≥1

1
ns

.

Parametrizing open subgroups. Here we bring in a remarkable example of
counting subgroups - the subgroup growth of compact p-adic analytic groups -
which vividly portraits the use of model theory of valued fields. Recall first
Lazard’s purely algebraic characterization of p-adic analytic groups: a compact
topological group G is a p-adic analytic group if and only if it has an open
uniform pro-p subgroup. 2 du Sautoy, in [dS93], established that ∑k apk(G) · Tk

is rational where G is a compact p-adic analytic group.

In this work, du Sautoy applies the extended rationality result from [DvdD88]
by describing how to interpret group-theoretic statements in the analytic language
of Denef and van den Dries’ work. To this end, he introduces new generating
sets for open subgroups called good bases which are essential to describe analytic
structure of uniform pro-p groups. The notion of good basis plays a crucial role
in many works studying zeta functions in the framework of model theory as well
as this work.

Representation growth. A plausible modification of subgroup growth would
be enumerating the finite dimensional irreducible representations of a given group.
Let G be a group. We now consider, for n ≥ 1, the set of n-dimensional irreducible
complex representations of G up to isomorphism. 3 Let rn(G) denote the number
of isomorphism classes of complex irreducible n-dimensional representations of G.
In a similar way to the subgroup growth, we shall explore the asymptotic behavior
of rn(G) - the representation growth of G. For an introductive survey on this
subject, see [Klo13].

2A pro-p group is uniform if and only if it is finitely generated, torsion-free and powerful.
3If G admits additional structure, it is conventional to proceed respectively, e.g. for a

topological group G, one should take into account only continuous representations.
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For a finite G, it is clear that rn(G) < ∞. In this case, only finitely many
of the terms of {rn(G)}n are non-zero, and they reflect the degrees of irreducible
characters of G. The group G is called representation rigid or rigid for short, if for
each n, rn(G) is finite. In this case, we write another Dirichlet generating series
called the representation zeta function of G; s ∈ C and ζG(s) = ζ(rn(G))(s)

ζG(s) := ∑
n≥1

rn(G) · n−s = ∑
ρ

(dim(ρ))−s,

where ρ varies over the isomorphism classes described above. We can further
modify the above expression if we can establish a bijection between the irreducible
characters of G and the isomorphism classes of irreducible representations of G.
Let Irr(G) be the set of irreducible characters of G. Then we obtain

ζG(s) := ∑
χ∈Irr(G)

χ(1)−s.

Kirillov orbit method. A group G is called FAb, or has the finite
abelianization property, if Hab = H/[H,H] is finite for every subgroup H of finite
index in G. If G is finitely generated profinite, this conditions reads as Hab is
finite for every open subgroup H of G. Recall that the derived series of a finitely
generated profinite group G can be given as a series of closed normal subgroups
{Gi}i such that

G0 = G ⩾ G1 ⩾ . . . ⩾ Gi+1 = [Gi,Gi] ⩾ . . . .

When G is assumed to be a finitely generated pro-p group, the FAbness property
becomes that the factors Gi’s of the derived series of G are all open in G.

Proposition 2.0.3. [ [BLMM02], Proposition 2] If G is finitely generated
profinite, then rn(G) < ∞ for all n if and only if G is FAb.

Let G be a FAb compact p-adic analytic group. Considering a uniform pro-
p subgroup N of G, we can associate a Qp-Lie algebra L(G) = Qp ⊗Zp log(N)
to G. Then G is FAb if and only if [L(G),L(G)] = L(G). In [JZ06], Jaikin-
Zapirain showed the (virtual) rationality of the representation zeta function of a
FAb compact p-adic analytic group for p > 2. His work is based on Kirillov orbit
method, which provides a correspondence between the characters of a uniform pro-
p group and the orbits of the co-adjoint action of G. This allows him to ”linearize”
the problem, and proceed with p-adic integration using the model theoretic work
[DvdD88] , as in [dS93].
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Uniform rationality - semi-algebraic setting. Regarding the rationality of
Poincaré series of equivalence relations, the main issue is that the set of
equivalence classes can not always be expressed bv a definable set. One solution
to that problem is elimination of imaginaries, that can be described as definably
associating a point to every equivalence classes, namely the imaginary elements.
In [HMR18], Hrushovski, Martin and Rideau showed that the theory of the
p-adics Qp admits elimination of imaginaries in the geometric language LG

4,
and it is uniform in p. They also applied it to show the uniform rationality of
representation zeta functions ∑ apn p−ns counting twist isomorphism classes of a
finitely generated nilpotent groupl while they proved the rationality of subgroup
zeta functions (of various kinds) of such a nilpotent group uniformly in p.

The theory does not always eliminate imaginaries, for example, in the
subanalytic language on Qp the topic is not yet fully established. To tackle this
problem regarding generating power series, in the appendix of [HMR18], Cluckers
generalized the rationality results of the main body, for a fixed p, to the analytic
setting by using cell decomposition. More precisely, he codes an imaginary
element by a definable set whose volume can be computed easily instead of
coding it by a point.

In [SZ20], they gave a new proof of the virtual rationality of representation
zeta function of FAb compact p-adic analytic groups by applying Cluckers’
result. They followed Jaikin-Zapirain’s idea to reduce the virtual rationality to
the rationality of what we will call partial zeta series, see the following section.
However, to show that this partial zeta series is rational, they use the theory of
projective representations avoiding Kirillov orbit method thanks to the idea from
[HMR18] of parametrizing Irr(N) by certain pairs (H,χ) where N is an open
normal uniform subgroup of G, H ⩽ N, and χ ∈ Irr(H). They also obtained
analogous results for twist zeta functions5 of compact p-adic analytic groups.

Uniform rationality - subanalytic setting. To generalize the idea of p-adic
integration, Cluckers and Loeser provided a theory of motivic functions in the
language Denef-Pas LDP via uniform cell decomposition theorem, [CL08]. This
motivic integration theory brings us a new machinery to study the p dependence
of the rationality of Poincaré series.

In [Ngu19], Nguyen developed Cluckers’ idea in the Appendix of [HMR18] by
introducing rational motivic constructible functions, and their motivic integrals to
show the p-uniform rationality of Poincaré series associated with definable family
of equivalence relations. This can be seen as a generalization of the rationality

4They add a sort Sn called geometric imaginaries, for each n, for the family of Zp-lattices in
Qn

p
5They count the irreducible complex representations up to one-dimensional twists as in

[HMR18]
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result of Hrushovski-Martin-Rideau to the analytic setting (in an expansion of the
language Denef-Pas LDP) as well as Cluckers’ result since it provides uniformity
in p. This result of Nguyen will become central in this work; we will describe how
below.

Main theorem and framework. In this work, we will study representation zeta
function of FAb compact p-adic analytic groups. As stated in [AKOV13], the key
examples of such groups are the special linear groups SLn(A) and their principal
congruence subgroups SLm

n (A), where A is a compact discrete valuation ring of
characteristic 0 and residue field characteristic p. In particular, one can consider
any open pro-p-subgroup of SLn(Zp). Let G be such a group and let ζG(s) be the
corresponding representation zeta function. We say ζG(s) is virtually rational in
p−s if it is of the following form

k

∑
i=1

n−s
i fi(p−s),

for ni ∈ N, fi(T) ∈ Q(T). For a fixed p, in [JZ06] and [SZ20], the virtual
rationality of ζGp(s) is reduced to the rationality of the following partial zeta series

ζ(Np,Kp,c)(s) = ∑
θ∈Irr cKp (Np)

θ(1)−s,

where Np is an open normal uniform subgroup of Gp and Kp is a subgroup of Gp
containing Np with Sylow pro-p subgroup Pp, and Irr cKp

(Np) is the set of irreducible
characters of Np giving the cohomology class c in H2(Pp/Np,C∗) with stabilizer
Kp, see Corollary 7.1.4 and Section 6.2 for details.

We will show the uniform rationality of partial zeta series of FAb compact
p-adic analytic groups. Broadly speaking, by saying uniformly rational, we mean
having rational functions over Q and sets whose cardinalities forming the
denominators and the numerators are uniformly definable in p (and in
appropriate subgroups Kp and corresponding cohomology classes c). To this end,
we first ensure that the family {Gp}p is uniformly definable in p; we define a
property (�) for a family FAb compact p-adic analytic groups in Section 3.2, and
proceed with the families satisfying the property (�). Our main result is the
following - see Theorem 3.4.3 for the precise formulation:

Main Theorem: The partial zeta functions ζ(Np,Kp,c)(s) are uniformly
rational for families of FAb compact p-adic analytic groups satisfying the
property (�) for sufficiently large p.
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To see the uniform rationality of this partial zeta series, we show that
enumerating characters in Irr cKp

(Np) is corresponding to enumerating the classes
of a uniformly definable family of equivalence relations on a uniformly definable
subset of Qm

p for some m. Following this, we conclude the uniform rationality by
the result of Nguyen given in previous section.

We now detail the process of obtaining such a correspondence. One of the
key ingredients is to obtain that a character triple (Pp,Np, θ) can be replaced by
a character triple (Np,Np ∩ H,χ), where H is an open subgroup of Gp such that
Pp = HNp, and χ is a linear character as we can recover the cohomology class in
H2(Pp/Np,C∗) related with (Pp,Np, θ) by χ, following [SZ20]. Another key idea is
to use the fact that any irreducible character of a finite p-group is induced from a
linear character of a subgroup. We parametrize irreducible characters of Np fixed
by Kp by pairs (H,χ) modulo a uniformly definable equivalence relation;

(H,χ)⇝ IndNp
Np∩H(χ).

Following this, we introduce a function C from the set of pairs (H,χ) to the
cohomology group H2(Pp/Np,C∗), which parametrizes Irr cKp

(Np) by its fibers
modulo the uniformly definable equivalence relation mentioned above.

We conclude this section with a notational remark to avoid any confusion.
In the construction of equivalence classes mentioned above, we will consider a
family of FAb compact p-adic analytic groups {Gp}p and a subfamily of normal
uniform pro-p subgroups {Np}p. In the view of model theory of valued fields, it is
beneficial to state that we work in an analytic expansion of the Denef-Pas language
as suggested in [Ngu19]. We further expand this language with some constant
symbols as this work progresses. For instance, in order to obtain such normal
uniform pro-p subgroups in a uniformly definable way, we add constant symbols
a1 . . . , ak, call ā and achieve uniformity in p and ā. The natural indexing would be
N(p,ā); nevertheless, we omit constants for the sake of notational simplicity.

Once we get a uniformly definable family of normal uniform pro-p subgroups
{Np}p of {Gp}p, we then work with subgroups Kp of Gp containing Np while
dealing with Sylow pro-p subgroups Pp of Kp. In addition, we study the elements
of

H(Pp) = {Hp ≤ Pp : Hp open in Pp, Pp = HpNp}.
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To simplify the notation, we name all these sets as G,N,K, P,H unless we aim
to treat uniform definability. The relations explained above can be summarized
by the following diagram;

G

K

P

HN

p-adic analytic group

Sylow pro-p subgroup of K

normal uniform pro-p
subgroup of G
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Chapter 3

Background

This chapter introduces the required tools from model theory of valued fields and
the theory of analytic pro-p groups and, at the same time, presents our results,
which are core to this work. In the first section, we first deliver a quick summary
of how the analytic language of p-adic numbers evolved, providing descriptions
of noteworthy languages. Then we introduce the language we use here. A recap
about uniform pro-p groups follows it, highlighting their key features. We then
discuss its model theoretic properties while expanding our language to describe
uniform pro-p subgroups of FAb compact p-adic analytic groups in a uniformly
definable way. We conclude this chapter with a section devoted to explaining
uniform rationality; we also fix our framework and present our main theorem.

3.1 The analytic language of p-adic numbers

Recall first that a valued field K is a field with a valuation map v : K → Γ
⋃{∞}

where (Γ;+, 0,<) 1 is an ordered abelian group such that

(i) v(ab) = v(a) + v(b)

(ii) v(a+ b) ⩾ min(v(a), v(b))

(iii) v(a) = ∞ ⇔ a = 0

One can study the model theory of valued fields via different languages. The
most basic language to examine fields Lring

2 can be combined with a divisibility
predicate D : K× K → K defined as follows:

1Note that we will assume that v is surjective; hence the value group is Γ.
2 Lring = {+,−, ·, 0, 1} where − is a unary function symbol.
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(x, y) 7→
{
x | y, if v(x) ≥ v(y) and y 6= 0
0, otherwise

Then the valuation ring OK = {a ∈ K : v(a) ≥ 0} of K, as well as its
unique maximal ideal MK = {a ∈ K : v(a) > 0} are definable in this extended
language. Also, the value group Γ is interpretable in (K;+,−, ·, 0, 1,D) as Γ is
isomorphic to K∗/OK

∗ while the order is determined by D. Moreover the residue
field k = OK/MK and the residue map OK → k are interpretable in this language.

Instead of the divisibility predicate D, we can add unary predicates Pn to
Lring, which is the set of nth powers in K∗. In other words, for each n > 1, Pn is
interpreted by

Pn(x) : ∃y yn = x ∧ x 6= 0.

This extended language is called the Macintyre’s language LMac, and p-adic fields
eliminate quantifiers in LMac, [Mac76].

We now enhance the above languages by an angular component map. On a
given valued field K, one could define the map ac : K∗ −→ k∗ which is a group
homomorphism (hence multiplicative) extended by ac(0) = 0, and agrees with
the residue map on O∗

K. If K = Qp, we define the angular component map by
ac(p) = 1, so that ac(∑i≥n aipi) = an if an 6= 0. Similarly, if K = k((t)), we define
ac by ac(0) = 0 and ac(t) = 1. Note that ac is definable in the valued field Qp as
it is equal to 1 on the (p− 1)th powers.

Another natural approach to study valued fields would be thinking of them as
three sorted structures: a valued field sort VF, a value group sort VG and a residue
field sort RF as the work of Ax and Kochen suggests. This yields to the language
LDP of Denef-Pas. More precisely, LDP is a three sorted language in which we
have two copies of Lring for the valued field sort and the residue field sort and the
language Loag of ordered abelian groups for the value group sort combined with
the valuation map v : VF → VG and the angular component map ac : VF → RF.
So a Denef-Pas language can be given in the following form

(Lring,Lring,Loag, v, ac).

3.1.1 An Analytic Expansion of LDP

Throughout this thesis, we consider an analytic expansion of LDP which enables
us to apply the uniform rationality result given in [Ngu19]. Prior to introducing
the formalism, we provide some background on the notion of a valued field with
an analytic structure via the following example ZJtK .
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Consider the ring of formal power series ZJtK over Z and equip it with the
t-adic topology. Then a(t) 7→ a(p) gives a continuous homomorphism between
ZJtK and the ring of p-adic integers Zp with the kernel (t− p)ZJtK.

Consequently, for each power series ∑ ai · Xi over ZJtK whose coefficients
converging to zero t-adically as | t |→ ∞ defines an n-ary function on Zm

p .
Precisely, we have m commuting indeterminates constituting X = (X1, . . . ,Xm)
with ai ∈ ZJtK such that ai(t) → 0 as i1 + . . . + im → ∞ and the power series
∑ ai · Xi gives rise to a function F : Zm

p → Zp

X = (X1, . . . ,Xm) 7→ ∑
i∈Nm

ai(p)X
i1
1 . . . . .X

im
m .

Note that the above power series are strictly convergent power series over
ZJtK. They form a ring called the ring of restricted power series in X over ZJtK
and it is the t-adic completion of the polynomial ring ZJtK[X].

We provide the following definitions from [Ngu19] axiomatizing the analytic
properties of ZJtK and introducing an expansion of Denef-Pas language accordingly.
Consider a commutative Noetherian unital ring A and fix a proper ideal I of A
such that A is complete for the I-adic topology. (In the above example, we have
A = ZJtK and I = tZJtK) We write Am for the I-adic completion of the polynomial
ring A[x1, . . . , xm] for each m ∈ N and denote the family (Am)m∈N by A.

Definition 3.1.1. [[Ngu19], Definition 1.2.8] For a valued field K, an analytic A-
structure on K is defined as a collection of ring homomorphisms

σm : Am → { f : Om
K → OK}

such that

1. I ⊂ σ−1
0 (MK)

2. σm(xi): the ith coordinate function on Om
K

3. σm extends to σm+1 in the most obvious way as we identify the functions on
Om

K with the functions on Om+1
K independent of the last coordinate

Definition 3.1.2. [[Ngu19], Definition 1.2.9] The A-analytic language LA is
defined as LDP ∪ (Am)m∈N, where elements of Am are function symbols. An
analytic A- structure on K turns K into an LA-structure.

Following [Ngu19], we shall use the language LZJtK = LDP ∪ (Am)m∈N where
A = ZJtK. In this case, we have I = tZJtK and the t-adic completion of the
polynomial rings ZJtK[X1, . . . ,Xm] as Am, for each m.
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From now on, we are concerned about an LZJtK-structure with underlying sets
Qp as the valued field sort, Z as the value group sort and Fp as the residue field
sort. We have all constants, functions and relations of ring language for the valued
field and the residue field, and all constants, functions and relations of ordered
abelian group language for the value group sort. In addition, we interpret v as the
valuation map on Qp and ac : Qp → Fp as ac(x) = xp−v(x) mod p with 0 7→ 0.

To understand the analytic A-structure on Qp, it is enough to see that the
ring of strictly convergent power series over Qp is a homomorphic image of the
ring of strictly convergent power series over ZJtK by extending the homomorphism
φ : ZJtK → Qp, t 7→ p. Accordingly we interpret the analytic structure on Qp via
φ:

• A is interpreted as φ(ZJtK) = Zp (hence I as pZp)

• for each m, Am is interpreted as the p-adic completion of the polynomial ring
Zp[X1, . . . ,Xm] = Zp[X] which is the ring of formal series with coefficients
in Zp, namely ZpJXK.

• Consequently, we interpret, for each element ∑i aiXi of Am, the corresponding
OK-valued function symbols f as the restricted analytic functions f : Zm

p →
Zp given by the corresponding power series

X 7→ ∑
i∈Nm

ai · Xi1
1 . . . . .X

im
m .

We therefore work in the structure (Qp,Z,Fp,LZJtK). In Section 3.3, we
expand the language LZJtK by some constant symbols to the language L′ and we
add another constant symbols in Section 3.4, and call the language L′′ for our
uniformity purposes and notational convenience.

3.2 Uniform pro-p groups

Uniform pro-p groups play a central role in this work; identifying a uniform pro-
p subgroup with Zd

p, for some d, allows us defining du Sautoy’s good basis, see
Chapter 4. This will be crucial to treat open subgroups uniformly definable in p.
To this end, we present here brief yet informative summary of relevant parts of
[DdSMS99], [RZ10], [Wil98].
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3.2.1 An Overview

Recall first that a profinite group is an inverse limit of inverse systems of finite
groups. Considering finite groups as topological groups with the discrete
topology, one can obtain the inverse limit topology on profinite groups; hence
profinite groups can be defined as compact, Hausdorff, totally disconnected,
topological groups.

A topological group G is called topologically generated by a subset X of G if the
subgroup generated by X is dense in G. Accordingly, G is called finitely generated
if X is finite, and we denote the minimal number of elements of a topological
generating by d(G).

For a profinite group G, we recall some basic topological properties below;

• Any open subgroup of G has finite index in G, and contains an open normal
subgroup of G. In addition, open subgroups of G are closed. A closed
subgroup of G is open if and only if it has finite index in G.

• For a subset X ⊆ G, its closure X is given by ⋂
N⊴oG XN.

• For a closed normal subgroup N of G, G/N is profinite, and the quotient
map G → G/N is an open and closed continuous homomorphism.

• Let H be a (normal) closed subgroup of G. Then H is the intersection of all
open (normal) subgroups of G containing H. A subset X ⊆ H (topologically)
generates H if and only if XN/N generates HN/N for all open normal
subgroups N ⊴o G.

• If G is finitely generated, then G has only finitely many open subgroups of
given finite index, and every open subgroup of G is finitely generated,

Let G be a profinite group with a closed subgroup H. Then one can generalize
the index notion by the fact that H is the intersection of the open subgroups of G
containing H. To this end, recall first that the notion of Steinitz number which is
a formal infinite product n = ∏p prime pn(p) where n(p) is a non-negative integer
or infinity. Then the least common multiple of a given family {ni}i∈I is defined as

lcm{ni}i∈I = ∏
p prime

pn(p) where n(p) = sup
i∈I

{ni(p)}.

And the index of H in G denoted by (G : H) is defined to be the least common
multiple of the indices of the open subgroups of G containing H. Consequently,
we obtain Lagrange’s theorem for profinite groups. Let H,K be subgroups of G
such that K ≤ H ≤ G. Then

(G : K) = (G : H)(H : K).
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A p-Sylow subgroup P of G is then defined as a (possibly infinite) subgroup
satisfying that (P : 1) is a p-power, and (G : P) is coprime to p.

For a fixed prime p, a profinite group G is called pro-p group if every open
normal subgroup of G has index equal to some power of p. Then p-Sylow subgroups
are maximal pro-p subgroups of G. Following this, we will call them Sylow pro-p
subgroups of G. The Sylow theorem generalizes to profinite groups via inverse
limits; for a profinite group G and a prime p, i) G has a Sylow pro-p subgroup,
ii) Any two Sylow pro-p subgroups of G are conjugate.

Recall now that the Frattini subgroup Φ(G) of a profinite group G, which is the
intersection of all maximal open subgroups of G. It is a topologically characteristic
subgroup of G, and, as in the case of finite groups, it consists of all non-generators
3.

For a pro-p group G, one can define the lower p-series in G as follows:

Pi+1(G) = Pi(G)p[Pi(G),G],

where P1(G) = G. Note that if G is finitely generated pro-p group, every subgroup
of finite index is open in G, and the lower p-series is well-behaved consisting of
open subgroups.

A pro-p group G is called powerful if p is odd and G/Gp is abelian, or if
p = 2 and G/G4 is abelian. If G is assumed to be powerful finitely generated
pro-p group, then Gp becomes the set of pth powers, and Gp = Φ(G).

A uniform pro-p group N, or uniform group for short, is a pro-p group which
is finitely generated, powerful and we have |Pi(N) : Pi+1(N)| = |N : P2(N)| for
all i. The dimension of a uniform pro-p group N is defined to be the size of
a minimal topological generating set, and denoted by d(N). If {a1, . . . , ad} is a
minimal (topological) generating set of N, we have the following identities for the
above filtration

Pi+1(N) = Pi(N)p = {xpi−1
: x ∈ N} = 〈ap

i−1

1 , . . . , ap
i−1

d 〉.

Note that a subgroup H of N is open if and only if it contains Pm(N) for some m.
Furthermore, the pth power map x 7→ xp induces an isomorphism

Pi(N)/Pi+1(N) → Pi+1(N)/Pi+2(N).

Thus, Pi(N)/Pi+1(N) is an Fp-vector space and we have d = dimFp(N/P2(N))
where d is the cardinality of a minimal topological generating set for N. We will
continue writing Ni = Pi(N) for i ∈ N.

3An element g ∈ G is called non-generator if G = 〈X, g〉 implies G = 〈X〉 for any X ⊆ G
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3.2.2 Zp-coordinates: a multiplicative coordinate systems

In this section, we will define the p-adic exponentiation and obtain a
homeomorphism between Zd

p and a uniform pro-p group of dimension d.

Definition 3.2.1. Suppose G is a pro-p group, g ∈ G and λ ∈ Zp. The p-adic
exponentiation is defined by

gλ = lim
n→∞

gan where lim
n→∞

an = λ, an ∈ Z.

Let {an}n and {bn}n be two sequences from Z such that
limn→∞ an = limn→∞ bn in Zp. Then, for any g ∈ G, the convergent sequences
{gan}n and {gbn}n have the same limit in G; hence the p-adic exponentiation is
well-defined. Moreover, it behaves well so that the above definition gives rise a
natural action of the ring Zp on G and consequently turns G into a (possibly
non-commutative) topological Zp-module.

Proposition 3.2.2. Let G be a pro-p group, g, h ∈ G and λ, µ ∈ Zp,

(i) gλ+µ = gλgµ and gλµ = (gλ)µ.

(ii) If gh = hg, then (gh)λ = gλhλ.

(iii) The map Zp → G, υ 7→ gυ is a continuous homomorphism whose image is
the closure of 〈g〉 in G.

We now introduce the multiplicative coordinate systems of a given uniform
pro-p group. First recall that finitely generated powerful pro-p groups can be
given as the product of some of its pro-cyclic subgroups.

Proposition 3.2.3. [[DdSMS99], Proposition 3.7] Let G = 〈a1, . . . , ad〉 be a
powerful pro-p group, then

G = 〈a1〉 . . . 〈ad〉.

Accordingly, for any x ∈ G = 〈a1〉 . . . 〈ad〉, there are λ1, . . . ,λd such that x =

aλ1
1 . . . aλd

d . Furthermore, if G is uniform pro-p, we can obtain a homeomorphism
between Zd

p and N.

Theorem 3.2.4. [[DdSMS99], Theorem. 4.9] Suppose N is a uniform pro-p group,
and let {a1, . . . , ad} be a minimal topological generating set for N. The following
map is a homeomorphism

Zd
p → N

(λ1, . . . ,λd) 7→ aλ1
1 . . . aλd

d
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As a corollary of Theorem 3.2.4, for each x ∈ N, there are unique λ1, . . . ,λd ∈
Zp such that x = aλ1

1 . . . aλd
d . We call this tuple (λ1, . . . ,λd) Zp-coordinates of x,

and we will denote x = aλ1
1 . . . aλd

d by x(λ) to emphasize this system of coordinates.

Definition 3.2.5. Let G be a pro-p group. We define ω : N → N ∪ {∞} by
ω(g) = n if g ∈ Pn(N) \ Pn+1(N) and put w(1) = ∞.

One can immediately see the following holds ω(gh) ⩾ min{ω(g),ω(h)} and
ω(gh) = ω(g) if ω(g) < ω(h). Moreover, ω is compatible with the usual valuation
v on Zp if G is a uniform pro-p group.

Proposition 3.2.6. Let N be a uniform pro-p group and the set {a1, . . . , ad} be a
topological generating set for N. Then the following holds

(i) For x ∈ N and λ ∈ Zp, ω(xλ) = ω(x) + v(λ).

(ii) [[dS93], Theorem 1.18 (iv)] Setting x = x(λ), we have

ω(x) = min{v(λi) + 1 : i ∈ {1, . . . , d}}.

Proof. (i) We begin with assuming that x 6= 1,λ = 0; otherwise it is trivial. Let
α = v(λ) and n = ω(x); we therefore aim to see that xλ ∈ Nn+α \ Nn+α+1.
As Zp is a Euclidean domain with the p-adic norm, there exist q, r such that

λ = pα.q+ r,

0 ≤ q < p and α < v(r). To see that xλ ≡ xp
α.q mod Nn+α+1, it is enough

to note that xp
α+1 ∈ Nn+α+1 and v(r) > α.

Then the statement reduces to show that xp
αq ∈ Nn+α \ Nn+α+1. It follows

from the fact that the x 7→ xp
α induces an isomorphism between Nn/Nn+1 →

Nn+α/Nn+α+1. Since x ∈ Nn \Nn+1, xp
α ∈ Nn+α \Nn+α+1. Therefore xp

αq ∈
Nn+α \ Nn+α+1 as q ∤ pd where pd is the number of elements of Nn/Nn+1 for
all n ≥ 1; in particular it equals to (Nn+α : Nn+α+1).

(ii) We first obtain that ω(ai) = 1, for all i ∈ {1, . . . , d}. This is a direct
consequence of that N2 (the Frattini subgroup of N) consists of all non-
generators of N; thus ai /∈ N2 for any i.
Consider x = x(λ) = aλ1

1 . . . aλd
d , by the previous argument, we have

ω(aλi
i ) =ω(ai) + v(λi) = 1+ v(λi)

Set m = min{v(λi) + 1 : i ∈ {1, . . . , d}. The rest is straightforward; we will
see x(λ) ∈ Nm \ Nm+1. It is obvious that x(λ) ∈ Nm, since aλi

i ∈ Nm.
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To see the latter, we will examine aλi
i mod Nm+1, say aλi

i ≡ ap
m−1.qi

i . The
minimality of m dictates that there exists an i ∈ {1, . . . , d} such that qi 6=
0. Then ∏d

i=1 a
pm−1.qi
i gives a non-trivial linear combination of ap

m−1

i , which
constitutes a basis for the vector space Nm/Nm+1. In particular, ∏d

i=1 a
pm−1.qi
i

is not trivial in Nm/Nm+1; hence x(λ) /∈ Nm+1.

3.2.3 Associated additive structure

We now define an abelian group structure on a uniform pro-p group N of dimension
d, and report that it is isomorphic to Zd

p.

Lemma 3.2.7. [[DdSMS99], Lemma 4.10] The map N → Pn+1(N), x 7→ xp
n is a

homeomorphism

(i) restricting to a bijection Pk(N) → Pk+n(N),

(ii) inducing a bijection Pk(N)/Pk+m(N) → Pn+k(N)/Pn+k+m(N)

Then one can easily see that every element x ∈ Nn has a unique pnth root
which we will denote by xp

−n . Hence we can define an additive structure on N via
the addition defined by

x+ y = lim
n→∞

(xp
n · ypn)p−n

Note that the sequence (xp
n · ypn)p−n is a Cauchy sequence; hence the above limit

exists.

Proposition 3.2.8. [[dS93], Section 4.3] (N,+) constitutes an abelian group. For
all x, y ∈ N, we have the following;

(i) If xy = yx, then x+ y = xy.

(ii) mx = xm for all integer m.

(iii) If x, y ∈ Nm, then x+ y ≡ xy mod Nm+1.

Remark 3.2.9. The above proposition indicates that inverses with respect to +
are the same as multiplicative inverses and p-adic exponentiation becomes scalar
multiplication. In other words, for x ∈ N and λ ∈ Zp, we have xλ = λx.

Theorem 3.2.10. [[dS93], Proposition 4.16, Theorem 4.17] Let N be a uniform
pro-p group of dimension d, and let {a1, . . . , ad} be a minimal (topological)
generating set for N. Then
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(i) Ni is a subgroup of (N,+), for each i. Moreover, the terms of lower p-series
of (N,+) is exactly the terms of lower p-series of N with respect to the
original multiplication.

(ii) (N,+) is a uniform pro-p group of dimension d with the original topology of
N.

(iii) (N,+) is a free Zp-module on the basis {a1, . . . , ad}, and there is an
isomorphism of Zp-modules ψ : N → Zd

p

λ1a1 + . . .+ λdad 7→ (λ1, . . . ,λd)

3.2.4 Analytic structure on uniform pro-p groups

The p-adic analytic groups are the best known class of pro-p groups. This
section primarily concerns the historic result of Lazard characterizing p-adic
analytic groups in a purely algebraic way. We will also explain how to obtain a
p-adic analytic structure on a given uniform pro-p group.

Recall first that a basis for the topology on Zr
p induced by the p-adic metric,

for a fixed r, is given by the following balls

B(y, p−h) ={z ∈ Zr
p :| zi − yi |⩽ p−h, i ∈ {1, . . . , r}}

={y+ phx : x ∈ Zr
p}

where y ∈ Zr
p and h ∈ N.

Definition 3.2.11. Suppose V is a non-empty subset of Zr
p and let

f = ( f1, . . . , fs) : V ⊆ Zr
p → Zs

p

be a function on Zr
p.

(i) f is analytic at y ∈ V if there exist h ∈ N such that B(y, p−h) ⊆ V and
formal power series Fi(X) in QpJXK satisfying

fi(y+ phx) = Fi(x)

for all x ∈ Zr
p.

(ii) The function f is analytic on V if it is analytic at each y ∈ V.

Lemma 3.2.12. 1. Let f : U ⊆ Zr
p → V ⊆ Zs

p and g : V ⊆ Zs
p → W ⊆ Zt

p
be two analytic functions, where U,V and W and open subsets. Then g ◦ f
is analytic on U.

27



2. Suppose that F(X) = ∑
i∈Nr

ai · Xi1
1 . . . . .X

ir
r converges on an open subset U ⊆

Zr
p. Then there exists k ∈ N such that pk(i1+...+ir)ai ∈ Zp.

Recall the following topological definition

Definition 3.2.13. 1. Let X be a topological space. A chart on X is a triple
(U, φ, n) where U is a non-empty open subset of X and φ : U → Zn

p is a
homeomorphism onto an open subset of Zn

p.

2. Two charts (U, φ, n) and (V,ψ,m) on X are compatible if φ ◦ψ−1 and ψ ◦ φ−1

are analytic functions on ψ(U ∩V) and φ(U ∩V) respectively.

3. An atlas on X is a family {(Ui, φi, ni)} consisting of pairwise compatible
charts satisfying X =

⋃
i∈I

Ui. Note that two atlases A and B on X are

compatible if every chart in A is compatible with every chart in B; and this
defines an equivalence relation on the set of atlases on X.

4. A p-adic analytic manifold structure on a topological space X is an
equivalence class of compatible atlases on X. Accordingly, a function
f : X → Y between two p-adic analytic manifolds is analytic if for every
pair of charts (U, φ, n) on X and (V,ψ,m) on Y, we have the following

(a) f−1(V) is open in X,
(b) ψ ◦ f ◦ φ−1 is analytic on φ(U ∩ f−1(V)).

Remark 3.2.14. An analytic function between two p-adic analytic manifolds is
continuous. Moreover, the product of two p-adic analytic manifolds carries a
p-adic analytic manifold structure.

Definition 3.2.15. A p-adic analytic group G is a topological group which carries
a p-adic analytic manifold structure such that group operation and inversion

G× G → G G → G
(x, y) 7→ x · y x 7→ x−1

are analytic functions.

Definition 3.2.16. [[DdSMS99], Theorem 8.36, Definition 8.37] For a p-adic
analytic group G, there exists a (unique) non-negative integer n which is called
the dimension of G satisfying the following:
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• every chart belonging to an atlas defining the manifold structure on G has
dimension n,

• every open uniform pro-p subgroup of G has finite dimension n

Let N be a uniform pro-p group of dimension d, generated topologically by
{a1, . . . , ad}. Recall the homeomorphism

ϕ : Zd
p → N

(λ1, . . . ,λd) 7→ aλ1
1 . . . aλd

d

defined in Theorem 3.2.4. This homeomorphism gives us a global atlas (N, ϕ, d) on
N; hence we may consider N as a compact p-adic analytic manifold of dimension
d.

Theorem 3.2.17. [[DdSMS99], Theorem 8.32] Let G be a topological group. Then
G has the structure of a p-adic analytic group if and only if G contains an open
subgroup that is a uniform pro-p group.

3.3 Model theory of uniform groups

Now we associate a two-sorted language to a normal pro-p subgroup N of a
compact p-adic analytic group G following [dS93] in order to study the group
theoretic properties.

Definition 3.3.1. The language LN has two sorts, namely the group sort M1 and
M2 with the following

(i) all function symbols of the group language on the sort M1

(ii) a unary function symbol, for each g ∈ G, φg on the sort M1

(iii) a binary relation symbol x | y on the sort M1

(iv) a binary function symbol: xλ : M1 × M2 → M1

We see a normal pro-p subgroup N of a compact p-adic analytic group G as
LN-structure MN by having the domain N for the first sort M1 and Zp for the
second sort M2. Hence we obtain all the functions of the group language in N
with the interpretation of φg as the conjugation by g, for each g ∈ G,

φg : N → N, x 7→ gxg−1.
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To see the interpretation of the binary relation symbol x | y, recall the
function ω given in Definition 3.2.5. Accordingly, we interpret x | y as
ω(x) ≥ ω(y). In addition, the binary function symbol: xλ is interpreted as the
p-adic exponentiation as in Definition 3.2.1.

In case N is a normal uniform pro-p subgroup of a compact p-adic analytic
group G, we can interpret (N,LN) definably in (Qp,Z,Fp,LZJtK) by passing to the
Zp-coordinates. To this aim, fix a minimal topological generating set {a1, . . . , ad}
for N. Recall that, for each x ∈ N, there are unique λ1, . . . ,λd ∈ Zp such that
x = aλ1

1 . . . aλd
d = x(λ). In this way, we obtain constants (the elements of N) as

the tuples in Zp.

Theorem 3.3.2. [[dS93], Theorem 1.18, Lemma 1.19]

1. The function f : Zd
p × Zd

p → Zd
p defined by x(λ)(x(µ))−1 = x( f (λ, µ)) is

analytic.

2. For ϕ ∈ Aut(N), the function Φ : Zd
p → Zd

p defined by ϕ(x(λ)) = x(Φ(λ))
is analytic.

3. The function f : Zd
p × Zp → Zd

p defined by x(λ)µ = x( f (λ, µ)) is analytic.

Recall that Zp-coordinates provide a system of coordinates for N, then by
(1) above, the group operation is LZJtK-definable if we identify N with Zd

p using
Zp-coordinates. The above theorem also shows that conjugation by the elements
of G and the p-adic exponentiation can be given by analytic functions; hence
they are all interpretable in the analytic language. (N,LN) is therefore definably
interpretable in (Qp,Z,Fp,LZJtK).

Interpreting uniform pro-p subgroups of p-adic analytic groups has been
influential not only for zeta functions but also for the classification of full
profinite NIP groups. However, this is not enough for us; we want to be able to
interpret the group structure of N in this structure uniformly in p. This means
that we need to establish a systematic (p-independent) way to obtain a
subfamily {Np}p of uniform pro-p subgroups of a given family of compact p-adic
analytic groups {Gp}p. To this end, we introduce the following criteria on the
family of compact p-adic analytic groups {Gp}p.

Definition 3.3.3. We say that a family of FAb compact p-adic analytic groups
{Gp}p indexed by the primes p > 2 has the property (�) if there exists an LZJtK-
formula ϕ defining the family {Gp}p with its p-adic analytic structure 4 uniformly
in p.

4The formula ϕ defines the sets Gp with the group operation Gp × Gp → Gp and the p-adic
exponentiation Gp × Zp → Gp uniformly in p.
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We now show that if this condition is satisfied, we can recover the subfamily
of uniform pro-p subgroups with their p-adic analytic structure. To this end, we
will add to the language LZJtK new symbols of constants a1, . . . , ak in Lemma 3.3.4,
and call this language L′. Recall first that

ω(x) = min{v(λi) + 1 : i ∈ {1, . . . , d}}

where x = aλ1
1 . . . aλd

d ; we will use this relation to define ω in the following.

Lemma 3.3.4. Suppose that {Gp}p is a family of FAb compact p-adic analytic
groups satisfying the property (�). Then there exists a uniformly definable (with
parameters) family of uniform pro-p subgroups of the family {Gp}p in the structure
(Qp,Z,Fp,L′). In other words, the property (�) ensures that there are L′-formulas
φj,ψj such that,

• φj defines the finitely generated pro-p subgroup Np of Gp;

φj(x) ≡ ∃λ1 . . . λj x = ∏
i
aλi
i .

• ψj(r, x) defines the lower p-series of Np, namely N(p,r);

ψj(r, x) ≡ ω(x) ≥ r.

Then there exists an L′-formula Ψ such that Qp |= Ψ ⇔ ∃d ≤ k Np =

〈a1, . . . , ad〉 is uniform pro-p, and, for each p, there exists an interpretation of the
constant symbols a1, . . . , ak such that Ψ holds.

Proof. We now see how to interpret the above formulas to get the subfamily {Np}p
of uniform pro-p subgroups of {Gp}p. We assume that there exists an LZJtK-
formula (hence L′-formula) ϕ defining the family of p-adic analytic groups {Gp}p
uniform in p. Then the number of variables in ϕ gives an upper bound for the
(topological) dimension of any subgroup of Gp. Call the number of such variables
k.

For the following, when we write Qp, we consider it as an L′-structure with
some interpretation of the constant symbols ai. Let φj be the following

φj(x) ≡ ∃λ1 . . . λj x = ∏
i
aλi
i .

To ensure that one gets unique λ1, . . . ,λj, we put the sentence χj while forming
Ψ.

χj ≡ ∀λ,λ′ : ∏
i
aλi
i = ∏

i
aλ′

i
i → λ = λ′.
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Then φj(Qp) becomes a subgroup of Gp which has dimension ≤ j if and only
if

Qp |= Γ(φj(·)),

where Γ(φj) : (∃x, φj(x)) ∧ ∀x, y
(

φj(x) ∧ φj(y) → φj(xy−1)
)
.

Let r ∈ N>0, and let ψj be the L′-formula choosing the elements of φj(Qp)
whose values are bigger than r under the map ω.

ψj(x, r) ≡ ω(x) ≥ r.

Note that we let r, as a parameter, run over the value group. Since ω is compatible
with the usual valuation v on Zp, this does not lead to any issues with definability.
In a similar fashion ψj(Qp, r) becomes a subgroup of a group Gp if and only if
Qp |= Γ(ψj(·, r)).

Finally we construe γj to be

∀x, y ∈ φj(Qp) ∃z ∈ φj(Qp) [x, y] = z ∧ w(z) ⩾ 2.

Note that the elements satisfying w(z) ⩾ 2 are the pth powers. Following this, let

Ψ ≡
k∨

j=1

((
Γ(φj(·)) ∧ χj ∧ γj ∧

(
∀r : Γ(ψj(·, r)

))
.

Then Qp |= Ψ implies that there is a finitely generated powerful pro-p
subgroup Np = 〈a1, . . . , ad〉 of Gp, for some d ≤ k with the filtration
N(p,r) = {x ∈ Np : ω(x) ⩾ r}. Consequently, for any r, the quotient
N(p,r)/N(p,r+1) is an elementary abelian group; hence a d-dimensional Fp-vector
space. Moreover, for any µ ∈ p+ p2Zp = {µ : v(µ) = 1, ac(µ) = 1}, the map
x 7→ xµ defines an isomorphism between the quotients N(p,r)/N(p,r+1) and
N(p,r+1)/N(p,r+2). Therefore Np turns out to be a uniform pro-p group, and

Qp |= Ψ ⇔ ∃d ≤ k Np = 〈a1, . . . , ad〉 is uniform pro-p.

Remark 3.3.5. In the following chapters, we repeatedly exploit the fact that we
can define the uniform pro-p subgroups in the structure (Qp,Z,Fp,L′) uniformly.
By Lemma 3.3.4, we obtain each uniform pro-p subgroup Np of Gp with its group
structure in our analytic language. In the setting of [dS93], this implies that,
for each p, (Np,LNp) is definably interpretable in (Qp,Z,Fp,L′). The main
contribution here is that the construction in the proof of Lemma 3.3.4 provides
a machinery to study the group theoretic properties of uniform pro-p subgroups
uniformly in the analytic language.
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We conclude this section with a critical note; throughout the rest of this thesis,
uniform definability always means that it is uniformly definable in p, as well as in
a1, . . . , ak and other constant symbols introduced whenever needed.

3.4 Uniform rationality in p

We finalize the background section by a result from [Ngu19] which enables us to
prove rationality of a Poincaré series enumerating uniformly definable families of
equivalence classes. In [Ngu19], a theory T which satisfies certain properties (*)
and (**) in a language L extending LDP is considered. We are only concerned
about the family of local fields {Qp}p∈P, and the theory of Qp in the language
LZJtK expanded by some constant symbols satisfies (*) and (**) as indicated in
Section 1.2.4 of [Ngu19]. Hence, we omit introducing the properties (*) and (**)
which can be found in Section 1.2.3, [Ngu19].

Let φ(x, y, n) be an L-formula with free variables x and y running over Km

and n running over N. Suppose that for each local field K and n ∈ N, φ(x, y, n)
gives an equivalence relation ∼K,n on Km with finitely many, say, aφ,K,n, equivalence
classes. We consider the following Poincaré series, for each local field K,

Pφ,K(T) = ∑
n⩾0

aφ,K,nTn.

Prior to Nguyen’s result on uniform rationality, we will see how Igusa’s
result mentioned at the beginning of the introduction, Chapter 2, appears in this
formalism. Let F(x1, . . . , xm) ∈ Z[x1, . . . , xm], and define ∼p,n on the vanishing
set of F(x1, . . . , xm) (a uniformly definable subset of Qm

p in LDP) as follows:

x ∼p,n y ⇔ vp(x− y) ⩾ n.

Let φ(x, y, n) be the LDP formula defining ∼p,n, and let aφ,p,n be number of
equivalence classes of ∼p,n. Then

Pφ,p(T) = ∑
n⩾0

aφ,p,nTn

= ∑
n⩾0

NnTn

= PX(T)

where X is given by F(x1, . . . , xm) = 0, and Nn is the number of elements of
X(Z/pnZ).
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Theorem 3.4.1. [[Ngu19], Theorem 1.4.1] Let φ and Pφ,K(T) be as above. There
exists a positive integer M such that the power series Pφ,K(T) is rational in T for
each local field K whose residue field has characteristic at least M. Moreover, for
such K, the series Pφ,K(T) only depends on the L-structure induced on the residue
field sort kK.

More precisely, there exist non-negative integers N, k, bj, ei, integers aj and
L-formulas Xi and Y for subsets of some power of the residue field for i = 0, . . . ,N
and j = 0, . . . , k such that

(i) for each j, aj and bj are not both zero, and

(ii) for all local fields K with residue field kK with qK elements and characteristic
at least M, Y(K) is non-empty and

Pφ,K(T) =
∑N

i=0(−1)ei#Xi(K)Ti

#Y(K)∏k
j=1(1− q

aj
KT

bj)
(3.1)

Recall that we work in the language L′ expanding LZJtK with constant symbols
a1, . . . , ak. We now formally define what uniform rationality means in this language.

Definition 3.4.2. Let ā = a1, . . . , ak. For a given Poincaré series Pp,ā(T) =

∑n⩾0 ap,āTn for each Qp and each interpretation of a1, . . . , ak, we call the series
Pp,ā(T) uniformly rational in p if there exists M > 0 such that the power series
Pp,ā(T) are of the form in (3.1), where K consists of Qp such that p > M with the
given interpretation of ā.

Note that there will be more constants later on; we will then implement
Definition 3.4.2 in a similar way. Now we apply Nguyen’s result to the partial zeta
series. Recall that we work with a family of FAb compact p-adic analytic groups
Gp satisfying the property (�). In the previous section, we saw how to obtain a
uniformly definable family of uniform pro-p subgroups Np of Gp. We now consider
subgroups Kp of Gp such that Np ⩽ Kp with fixed Sylow pro-p subgroups Pp of
Kp. Let r = (Pp : Np), u = (Kp : Np) and fix a set of (left) coset representatives
y1, . . . , yr for Np in Pp, namely a left transversal (y1, . . . , yr). We extend it to a
(left) transversal for Np in Kp; set yr+1, . . . , yu ∈ Kp such that (y1, . . . , yu) is a
(left) transversal of Np in Kp, see Section 7.2.2 for a detailed discussion.

Recall that we aim to see the uniform rationality of the following partial zeta
series

ζ(Np,Kp,c)(s) = ∑
θ∈Irr cKp (Np)

θ(1)−s,

34



where Np is an open normal uniform subgroup of Gp and Kp is a subgroup of Gp
containing Np, and Irr cKp

(Np) is a subset of the set of irreducible characters of Np

whose stabilizer (under the conjugation action) is Kp, see Section 6.2.

We will later see in Chapter 8 that, for each c ∈ H2(Pp/Np,C∗), there is a
one-to-one correspondence between the set of characters Irr cKp

(Np) and a set of
equivalence classes of a uniformly definable equivalence relation. To obtain c in a
uniformly definable way, we introduce parameters bij in the proof of Lemma 8.1.1.
We now add to our language L′ new constant symbols y1, . . . , yu for the (left)
transversal of Np in Kp such that y1, . . . , yr is left transversal of Np in Pp and bij
yielding to c ∈ H2(Pp/Np,C∗), and call this new language L′′. From now on, our
work will be in the language L′′.

Following this, in the language L′′, we describe a uniformly definable subset
D c

p,n of Qm
p for some m, and uniformly definable equivalence relations ∼p,n on D c

p,n
such that

ζ(Np,Kp,c)(s) = ∑
n>0

|D c
p,n/∼p,n|p−ns.

This means that there exists a p-independent L′′-formula φ(x, y, n) defining
the equivalence relation ∼p,n and |D c

p,n/∼p,n| is finite. We therefore apply the
above result of Nguyen, and conclude that ζ(Np,Kp,c)(s) is uniformly rational for
large enough p whenever the family {Gp}p of FAb compact p-adic analytic groups
satisfies the property (�). More precisely,

Theorem 3.4.3. There exist L′′-formulas defining subsets Xi and Y of some power
of the residue field such that the following holds: for every sufficiently large p and
every interpretation of the constant symbols ai, yj, bij in the structure Qp, if the
ai’s yield a uniform pro-p subgroup Np of Gp, the yj’s give transversals for Np in
Pp and in Kp respectively, and bij give c ∈ H2(Pp/Np,C∗), then

ζ(Np,Kp,c)(s) =
∑N

i=0(−1)ei#(Xi(Qp))p−si

#(Y(Qp)) ∏k
j=1(1− paj−sbj)

.

Note that, for each r and u, we obtain uniformity for all Kp for which the
index (Pp : Np) is equal to r, and the index (Kp : Np) is u. We want to conclude
this section with a result that can be deduced from various arguments presented in
different places in this text. Our main aim in giving such a statement is to highlight
that one certainly needs to parametrize all the possible Kp and c when intended to
deal with the representation zeta function of FAb compact p-adic analytic groups.
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Theorem 3.4.4. There exists an L′′-sentence Ξ such that Qp (with some
interpretations of the constant symbols ai, yj, bij) satisfies Ξ if and only if the
tuple a1, . . . , ak generates a uniform pro-p subgroup Np of Gp, y1, . . . , yu gives
transversals for Np in Pp and Kp, and bij yield to c ∈ H2(Pp/Np,C∗).

Theorem 3.4.3 and Theorem 3.4.4 originate simultaneously in this work.
The proof of the latter can be recovered from the construction of the equivalence
relations ∼p,n. The argument for the ai’s is already given in Lemma 3.3.4. To
express that the yj’s form transversals for Np in Pp in Kp, one can follow similar
steps to the proof of Lemma 7.2.6. Finally, the assertion that bij’s yield a
cohomology class c ∈ H2(Pp/Np,C∗) is contained in the proof of Lemma 8.1.1
(iv).
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Chapter 4

Good Basis

In this chapter, we introduce du Sautoy’s parametrization of finite index subgroups
of a uniform pro-p group. Throughout, assume that N is a uniform pro-p subgroup
of a p-adic analytic group G, and {a1, . . . , ad} is a minimal (topological) generating
set of N.

We begin with presenting the following construction from [dS93]. Let x =
x(λ) ∈ Nm = Pm(N). Then we know

m ≤ ω(x(λ)) = min{v(λi) + 1 : i ∈ {1, . . . , d}}.

Consequently, v(λi) ≥ m− 1 and p−(m−1)λi ∈ Zp for each i ∈ {1, . . . , d}. Consider
the residue map π : Zp → Fp, and accordingly define πm : Nm → Fd

p;

x(λ) 7→ (π(p−(m−1)λ1), . . . ,π(p−(m−1)λd)).

The map πm gives a homomorphism of groups, to see this, pick two elements x, x′
from Nm such that x = x(λ) and x′ = x(µ), and let ρ be a d-tuple from Zp such
that x(ρ) = x · x′. One can immediately see that

x(λ + µ − ρ) ≡ 1 mod Nm+1

as the quotient Nm/Nm+1 is abelian. This implies that v(λi + µi − ρi) ≥ m, for
each 1 ≤ i ≤ d; in particular πm(x(ρ)) = πm(x(λ + µ)) = πm(x).πm(x′). And
the kernel of this homomorphism is exactly Nm; hence πm is an Fp-vector space
isomorphism between Nm/Nm+1 and Fd

p.
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Definition 4.0.1. Let H ≤ N be an open subgroup. A tuple (h1, . . . , hd) in H is
called a good basis for H if

(i) ω(hi) ≤ ω(hj) if i ≤ j

(ii) {πm(hj) : j ∈ Im}, where Im = {j : ω(hj) = m}, extends the linearly
independent set

{πm(hj p
m−ω(hj)

) : j ∈ I1 ∪ . . . ∪ Im−1}

to a basis for πm(H ∩ Nm).

Note that a good basis for N is an ordered minimal set of topological
generators of N. Also, this constructive definition ensures that a good basis for
an open subgroup H of N always exists. To see this, one can consider a tuple
(h1, . . . , hk) for some k < d fulfilling (i) while assuming that (ii) holds for all
m ≤ l for some l. Then the minimality of some q > l such that
dim(πl(H ∩ Nq)) > dim(πl(H ∩ Nl)) gives us the elements hk+1, . . . , hu in
(H ∩ Gq) \ Gq+1, and the set {πq(hk+1), . . . ,πq(hu)} extends the following
linearly independent set

{πq(hj p
n−ω(hj)

) : j ∈ I1 ∪ . . . ∪ Iq−1}

to a basis for πq(H ∩ Nq).

Lemma 4.0.2. [[dS93], Lemma 2.4] Let H be an open subgroup of N with a good
basis (h1, . . . , hd). Then for each h ∈ H, there exist λ1, . . . ,λd ∈ Zp such that

h = hλ1
1 . . . hλd

d .

Moreover, if h = hλ1
1 . . . hλd

d , then ω(h) = min{ω(hi) + v(λi) : i ∈ {1, . . . , d}}

The recursive construction given in the proof of the above lemma in [dS93]
indicates that such a tuple of λi is unique. And the second assertion shows that ω
and p-adic valuation are compatible with respect to good bases. With the above
result, one can obtain du Sautoy’s characterization of good bases.

Lemma 4.0.3. [[dS93], Lemma 2.5] Let N be a uniform pro-p group and d =
d(N). Then (h1, . . . , hd) is a good basis for some open subgroup of N if and only if

(1) ω(hi) ≤ ω(hj) whenever i ≤ j,

(2) hi 6= 1 for i ∈ {1, . . . , d},
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(3) the set {hλ1
1 . . . hλd

d : λi ∈ Zp} is a subgroup of N,

(4) for all λ1, · · · ,λd ∈ Zp, ω(h(λ)) = min{ω(hi) + v(λi) : i ∈ {1, . . . , d}}

The notion of good bases allows us to give a many-to-one parametrization
of the set of finite index subgroups of N in terms of p-adic analytic coordinates.
Considering this characterization of good basis, one can obtain that the set of all
good bases is definable in (Qp,Z,Fp,LZJtK).

Recall that we are given a uniformly definable family of p-adic analytic groups
{Gp}p in the language LZJtK. In Section 3.3, we showed how to obtain a subfamily
{Np}p of uniform pro-p groups of these p-adic analytic groups in a uniform way
by using L′′-formulas. We rewrite the definition of good basis to highlight that the
set of good bases for an open subgroup of Np, for any p > 2, is uniformly definable.
To this aim, we consider the map x 7→ xµ where µ ∈ {µ : v(µ) = 1, ac(µ) = 1},
instead of the pth power map between the quotients as we did in Section 3.3. We
have

hiµ
n−ω(hi) ≡ hi p

n−ω(hi) mod Pn+1(Np)

in the quotients of the lower p-series of Np, we therefore obtain the same set of
good bases for a given open subgroup of Np if we replace p by µ. So the following
is just a reformulation for the purposes of our work.

Definition 4.0.4. [good basis, revisited] Let Hp ≤ Np be open with Pm(Np) =
Pm ≤ Hp for some m. A tuple (h1, . . . , hd) from Hp is called a good basis for Hp if

(i) ω(hi) ≤ ω(hj) if i ≤ j

(ii) for each n ≤ m, the following set

{hiµ
n−ω(hi)Pn+1 : 1 ≤ i ≤ d,ω(hi) ≤ n}

is a basis for the Fp vector space (Pn ∩ Hp) · Pn+1/Pn+1 for any µ ∈ {µ :
v(µ) = 1, ac(µ) = 1}.

Lemma 4.0.5. The set of good bases is uniformly definable.

Proof. Let Np = Ψ(Qp), and (h1, . . . , hd) ∈ Np. We keep the notation hj =

x(λj) = a
λ1j
1 . . . a

λdj
d , and show that the conditions in Lemma 4.0.3 can be given

uniformly.

(1) Recall that ω(hi) = min{v(λki) + 1 : k ∈ {1, . . . , d}}. Accordingly, ω(hi) ≤
ω(hj) if and only if

min{v(λki) + 1 : k ∈ {1, . . . , d}} ⩽ min{v(λkj) + 1 : k ∈ {1, . . . , d}}.
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This is uniformly definable as v is definable in the language L′′.

(2) It is enough to obtain that hi = 1 if and only if λki = 0 for all k ∈ {1, . . . , d}.

(3) As described in the Section 3.3, one can confirm if the set {hλ1
1 . . . hλd

d : λi ∈
Zp} is a subgroup of Np in a uniformly definable way.

(4) Since Zp-coordinates can be given uniformly in p, this reduces to the uniform
definability of the valuation v, which is clear.

4.1 An Example

We now provide a panorama of concepts introduced in Section 3.2 with a concrete
example aiming to create a better intuition on the notion of good basis. For the
details of the following, see Chapter 5, [DdSMS99].

For a positive integer n and a prime p ≥ 3, we consider the general linear
group Γ = GLn(Zp), which is a compact Hausdorff topological group with respect
to the subspace topology induced from the topology on the space Mn(Zp) of n× n
matrices over Zp. Moreover, a base of the open neighborhoods of the identity
element is given by the principal congruence subgroups of GLn(Zp) defined as
follows:

Γi = GLi
n(Zp) = {g ∈ GLn(Zp) : g ≡ Id mod pi}

= 1+ piMn(Zp)

Consequently, this natural filtration fully determines the topology on
GLn(Zp). Note that for each i ∈ N, Γi can be regarded as the kernel of the
projections GLn(Zp) → GLn(Z/piZ). Therefore, we have

(Γ : Γi) = (pn − 1)(pn − p) . . . (pn − pn−1)

(Γ1 : Γi) = pn
2(i−1)

Following this, we conclude that Γ is a profinite group, and Γ1 is a pro-p
group. Moreover, Γ = GLn(Zp) is a p-adic analytic manifold with the global atlas

{(GLn(Zp), φ ↾GLn(Zp), n
2)},

where φ : Mn(Zp) → Zn2
p is the natural homeomorphism. The group operation

in GLn(Zp) are given by the following analytic functions Zn2
p × Zn2

p → Zp

(g11, . . . , gnn, h11, . . . , hnn) 7→ gi1h1j + . . .+ ginhnj.
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Similarly, the inversion in Γ can be described by analytic functions; consider
the functions Zn2

p → Zp

(g11, . . . , gnn) 7→ hij =
det(g(i, j))
det(g)

,

where g(i, j) is the matrix formed by replacing jth column of g with the
ith column of the identity matrix. Then Cramer’s rule tells that hij’s constitute
the inverse of the matrix g, and Leibniz formula secures that these functions are
analytic.

The Theorem 5.2, [DdSMS99] states that Γ1 = GL1
n(Zp) is a uniform pro-

p group, and the principal congruence subgroups of Γ1 coincide with its lower
p-series,

Pi(Γ1) = Γi = GLi
n(Zp) = 1+ piMn(Zp).

With all being said, we now consider the uniform pro-p group GL1
2(Z3),

G := {A ∈ GL2(Z3) : A ≡ Id mod 3)}.

Then the lower p-series . . . ⊆ G3(n−1) ⊆ . . . ⊆ G3 ⊆ G in G can be given as

follows: Pn(G) = G3(n−1)
= {

[
1+ 3nZ3 3nZ3
3nZ3 1+ 3nZ3

]
}. As (Pi(G) : Pi+1(G)) = (G :

P2(G)) = 34, we have d(G) = 4. Then the following gives a minimal (topological)
topological generating set for G

{g1 =
[
4 0
0 1

]
, g2 =

[
1 3
0 1

]
, g3 =

[
1 0
3 1

]
, g4 =

[
1 0
0 4

]
}.

As an example, consider now the subgroup H = {
[
1+ 3Z3 32Z3
33Z3 1+ 33Z3

]
} of

G. It is obvious that P3(G) ⩽ H. Then a good basis for H can be given as follows:

{h1 =
[
4 0
0 1

]
, h2 =

[
1 9
0 1

]
, h3 =

[
1 0
27 1

]
, h4 =

[
1 0
0 28

]
}.
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The following image illustrates all the above-mentioned groups, relations and
elements; the entire picture stands for the group G. The principal subgroups
decrease to the left, i.e. G3 is everything to the left of the line denoted by G3, etc.
In addition, the rows symbolize the groups generated by each of gi, and the image
shows how much of these subgroups is contained in H and where the elements hi
and their powers live.

w = 3 w = 2 w = 1

H
… G27 G9 G3 G

h1h31h91

h2h32

h3

h4

� g1Z3

� g2Z3

� g3Z3

� g4Z3
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Chapter 5

Projective Representations

The following chapter covers the most of the representation theoretic part of our
work. We heavily use projective characters of profinite groups. To this end, we
provide a brief survey of definitions and results from the theory of projective
representation, which was founded and improved by Schur in [Sch04], [Sch07],
[Sch11], and show how they become handy for us. An interested reader shall find
it beneficial to check the following references; [Kar94], [Isa06] and [Hup98].

From now on, we only consider closed subgroups (denoted by �), continuous
representations and their characters. To this end, we view the general linear groups
over C with the discrete topology. Before going any further, let us have a quick
recall on some basic notions from representation theory whilst fixing notations.

Definition 5.0.1. Let G be a profinite group and, let N be an open normal
subgroup. Note that we can generalize the statements about finite groups to this
setting as we work with continuous representations and finite index subgroups of
G. As a rule of thumb, one can recover the statements about profinite groups
by pulling back the data from the finite quotients to the inverse limit within this
setting.

• Irr(G) is defined to be the set of characters of continuous irreducible complex
representations of G.

• For any subgroup K � G and θ ∈ Irr(K),

Irr(G | θ) = {χ | χ ∈ Irr(G), 〈ResG
K (χ), θ〉 > 0}.

• For any θ ∈ Irr(N), we define the conjugate character gθ : N → C of θ by
h �→ θ(ghg−1). Accordingly, we write the conjugation action of G on Irr(N)
as follows:
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G × Irr(N) → Irr(N)

(g, θ) �→ gθ

Hence the stabilizer of θ under this action is given by

stabG(θ) = {g ∈ G : gθ = θ}.

Note that this stabilizer group is often called the inertia group of θ in G, and
(G : stabG(θ)) is the size of G-orbit of θ.

• For any K � G, we write IrrK(N) = {θ ∈ Irr(N) : stabG(θ) = K} for the
irreducible characters of N whose stabilizer is K.

• We call (K, N, θ) a character triple if θ ∈ Irr(N) and K fixes θ, i.e. K �
stabG(θ). Hence, IrrG(N) can be regarded as the set of character triples
(G, N, θ), see [Isa06], later parts of Chapter 11.

We begin with recalling Clifford’s theorem that helps us to connect
representations of N with representations of G, and build up representations of
G from representations of N. Later on, we extend Clifford’s theory (actually his
viewpoint of reducing the problem) to projective representations and characters,
see Section 6.1.

Theorem 5.0.2. [Clifford] Let θ ∈ Irr(N) and χ ∈ Irr(G | θ). Consider the
G-orbit (under the conjugation action) {θ = θ1, . . . , θm} of θ where m = (G :
stabG(θ)). Then we have the following

(i) ResG
N(Ind

G
N(θ)) = (stabG(θ) : N) ·∑m

i=1 θi

(ii) 〈IndG
N(θ), Ind

G
N(θ)〉 = (stabG(θ) : N). In particular, IndG

N(θ) ∈ Irr(G) if and
only if stabG(θ) = N.

(iii) Call 〈ResG
N(χ), θ〉 = e and note that e > 0. Then ResG

N(χ) = e · ∑m
i=1 θi.

Equivalently, one can say that the irreducible constituents of ResG
N(χ) are all

of the same multiplicity and form the G-orbit of θ.

(iv) θ(1) divides χ(1). Consequently, given a character triple (K, N, θ), we obtain
that χ(1)/θ(1) is an integer for any χ ∈ Irr(K | θ).

Theorem 5.0.3. [[BKZ18], Chp. VII, Theorem 2.2] For any θ ∈ Irr(N), the
following statements hold;

(i) For any ϕ ∈ Irr(stabG(θ) | θ), IndG
stabG(θ)

(ϕ) ∈ Irrθ(G).
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(ii) Let χ ∈ Irr(G | θ) and ϕ ∈ Irr(stabG(θ) | θ) be such that IndG
stabG(θ)

ϕ = χ.
Then

〈ResG
stabG(θ)

(χ), θ〉 = 1.

(iii) There is a bijection Irr(stabG(θ) | θ) → Irr(G | θ) given by
ϕ �→ IndG

stabG(θ)
(ϕ); in particular, | Irr(stabG(θ) | θ)| = | Irr(G | θ)|

Definition 5.0.4. A map α : G × G → C∗ is called a 2-cocycle (or a factor set )
on G if for all g, h, k ∈ G,

α(gh, k)α(g, h) = α(g, hk)α(h, k).

The set of 2-cocycles on G has an abelian group structure under pointwise
multiplication. This group is denoted by Z2(G,C∗). We shall take a closer look
to a special subgroup B2(G,C∗) of Z2(G,C∗) consisting of elements α called 2-
coboundary in the following form;

α(g, h) =
µ(gh)

µ(g)µ(h)
,

where µ : G → C∗ is an arbitrary function which sends 1 to 1. Following this,
we consider the quotient group Z2(G,C∗)/B2(G,C∗) = {[α] : α ∈ Z2(G,C∗)} and
denote this by H2(G,C∗). Note that this special cohomology group H2(G,C∗) is
also called the Schur multiplier of G.

Definition 5.0.5. Let V be an n-dimensional vector space over C where n < ∞.
A continuous function ρ : G → GL(V) is called a projective representation of G
over V if there exists a continuous function α : G × G → C∗ such that

ρ(g)ρ(h) = ρ(gh)α(g, h)

for all g, h ∈ G, and the associated function α is said to be the factor set of ρ.

Note that the factor set α of a projective representation ρ is uniquely
determined by ρ taking non-zero values, and lies in Z2(G,C∗). Moreover, for any
α ∈ Z2(G,C∗), there exists a projective representation of G with factor set α.
Notice that a projective representation with a trivial factor set, i.e. α = 1, is an
ordinary representation. As in the case of ordinary representation theory, we call
the function G → C given by g �→ tr(ρ(g)) the projective character of ρ.
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5.1 Twisted Group Algebra

It is well known that ordinary representations of groups can be seen as modules
over group algebras. One can say more on projective characters by observing a
similar correspondence for projective representations considering the twisted group
algebra instead of the group algebra. To this end, we introduce the notion of
twisted group algebra. Let G be a profinite group with an open normal subgroup
N.

For a fixed 2-cocycle α ∈ Z2(G,C∗), we denote the (α)-twisted group algebra
over C by Cα[G]. This algebra has a basis {ḡ : g ∈ G}, consequently each element
of Cα[G] can be uniquely given as

∑
g∈G

xg.ḡ,

where xg ∈ C. The multiplication in Cα[G] is given by ḡh̄ = ghα(g, h) and
extended via the distributive law.

For a given factor set α of G, consider an arbitrary (ordinary) representation π
of Cα[G]. Set Θ(g) = π(ḡ). Then one can see that Θ is a projective representation
of G with the factor set α by the following;

Θ(g)Θ(h) = π(ḡ)π(h̄) = π(ḡ.h̄) = π(ghα(g, h)) = Θ(gh)α(g, h).

Conversely, if Θ is a projective representation of G with a factor set α, one
can define a representation π of Cα[G] by letting π(ḡ) = Θ(g) and extending by
linearity. The projective characters of G with the factor set α are therefore in a
one-to-one correspondence with the representations of the twisted group algebra
Cα[G].

Two projective representations ρ and σ are called similar if there exists an
invertible matrix P (over C) satisfying ρ(g) = Pσ(g)P−1 for all g ∈ G. Two
projective representations have the same (projective character) if and only if they
are similar. Also, a projective representation Θ is called irreducible if it is not
similar to a projective representation in the form



∗ · · · ∗ · · · ∗
... ∗

... ∗
...

∗ · · · ∗ · · · ∗

0 ... ∗
...

∗ · · · ∗



In other words, a projective representation Θ with factor set α and the
character it affords are called irreducible if Θ corresponds to a simple
Cα[G]-module.
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Let ρ1 and ρ2 be two projective representations of G with factor sets α1, α2
respectively. For g ∈ G, the tensor product ρ1 ⊗ ρ2 of ρ1 and ρ2 is given by

(ρ1 ⊗ ρ2)(g) = ρ1(g)⊗ ρ2(g).

Correspondingly, we have the following relation for any g, h ∈ G,

(ρ1(g)⊗ ρ2(g))(ρ1(h)⊗ ρ2(h)) =(ρ1(g)ρ1(h))⊗ (ρ2(g)ρ2(h))
=(ρ1(gh)α1(g, h))⊗ (ρ2(gh)α2(g, h))
=(ρ1(gh)⊗ (ρ2(gh))α1(g, h)α2(g, h))
=(ρ1 ⊗ ρ2)(gh)α1(g, h)α2(g, h))

ρ1 ⊗ ρ2 is therefore a projective representation of G with factor set α1α2. In terms
of characters, we also get what one expects; let χ1, χ2 be the (projective) characters
of ρ1 and ρ2 respectively, then the character χ = χρ1⊗ρ2 of ρ1 ⊗ ρ2 equals to χ1χ2.

A projective representation ρ of G with factor set α is called equivalent to an
ordinary representation if there exists δ : G → C∗ such that

α(g1, g2) =
δ(g1)δ(g2)
δ(g1 · g2)

,

for all g1, g2 ∈ G.

5.2 Strong extensions

Now we will define another notion relating ordinary representations with projective
ones as in [SZ20] following [Isa06]. We still assume G to be profinite with an open
normal subgroup N.

Definition 5.2.1. Let Θ be an (ordinary) irreducible representation of N fixed
by a subgroup K of G. We say that a projective representation Π of K strongly
extends Θ if for all g ∈ K and n ∈ N, we have

(i) Π(n) = Θ(n),
(ii) Π(ng) = Π(n)Π(g),
(iii) Π(gn) = Π(g)Π(n).

It immediately follows from the definition that a projective representation
Π of G with factor set α satisfying Π(n) = Θ(n) for all n ∈ N gives a strong
extension of Θ if and only if for all g ∈ K and n ∈ N,

α(g, n) = α(n, g) = 1.
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Theorem 5.2.2. For an (ordinary) irreducible representation Θ of N fixed by
K � G, we have the following:

(i) There exists a projective representation Π of K which strongly extends Θ.

(ii) Let α′ be the factor set of Π. There exists a well-defined element α of
Z2(K/N,C∗) given by

α(gN, hN) = α′(g, h).

Proof. We begin with noting an argument that will be repeatedly used in this
work. As N is open in K, it has a finite index in K. Recall also that N is an open
(so closed) subgroup of the profinite group G. N is therefore profinite, and any
continuous complex finite dimensional representation of N factors through a finite
quotient. Consequently, we may consider the case of finite groups.

We write gΘ(n) = Θ(gng−1) for g ∈ K and n ∈ N. Note that Θ and gΘ
are similar representations of K as Θ is fixed by K. To define Π, we consider a
transversal T for N in K. For each t ∈ T, we choose an invertible matrix Pt such
that

PtΘP−1
t = tΘ,

and we fix P1 = Id.

Now we define Π(nt) := Θ(n)Pt as each element of K can be given uniquely
in the form nt for some n ∈ N and t ∈ T. Then, we have the following:

Π(nt)Π(m) = Θ(n)PtΘ(m) = Θ(n)tΘPt

= Θ(ntmt−1)Pt = Π(ntmt−1.t)
= Π(nt.m)

Therefore the properties (i), (ii), (iii) given in Definition 5.2.1 immediately
follow. Henceforth, by combining these properties, we obtain, for all g ∈ K, n ∈ N

Π(g)Θ(n) = Π(gn) = Π(gng−1.g)

= Θ(gng−1)Π(g)
(5.1)

Consequently, Π(g)Θ(n)Π(g)−1 = Θ(gng−1). Similarly, we have

Π(g)Π(h)Θ(n)Π(h)−1Π(g)−1 = Π(g)Θ(hnh−1)Π(g)−1

= Θ(ghnh−1g−1)

By combining these two, we obtain

Π(gh)Θ(n)Π(gh)−1 = Π(g)Π(h)Θ(n)Π(h)−1Π(g)−1
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for all g, h ∈ K, n ∈ N. Then by Schur’s lemma, Π(gh)Π(h)−1Π(g)−1 needs to
be a scalar, so set α′(g, h) = Π(gh)Π(h)−1Π(g)−1. We have

Π(g)Π(h) = Π(gh)α′(g, h)

for some α′ : K × K → C∗. This finishes the first part of the proof. Now we
see that α′ is constant on cosets of N in K; hence we have a well-defined element
α ∈ Z2(K/N,C∗). For arbitrary n,m ∈ N and g, h ∈ K, we have the following

α′(gn, hm)Π(gnhm) = Π(gn)Π(hm) = Π(g)Π(nhm)

= Π(g)Π(h(h−1nh)m) = Π(g)Π(h)Π(hnh−1m)

= α′(g, h)Π(gh)Π(hnh−1m)

= α′(g, h)Π(ghhnh−1m)

As Π(gnhm) is invertible and Π(gnhm) = Π(ghhnh−1m), we get
α′(gn, hm) = α′(g, h). Therefore, α is well defined.

Corollary 5.2.3.

(i) Let Π′ be another projective representation of K strongly extending θ. Then
there exists a function µ : K → C∗, that is constant on cosets of N in K such
that, for all g ∈ K,

Π′(g) = Π(g)µ(g).

(ii) [[SZ20], Theorem 3.4.] There exists a well-defined function mapping the
irreducible characters of N fixed by K � G to the cosets of B2(K/N,C∗) in
Z2(K/N,C∗) ; θ �→ [α]

CK : {θ ∈ Irr(N) : K ≤ stabG(θ)} → H2(K/N,C∗).

Proof. (i) This immediately follows from the proof of Theorem 5.2.2. Since Π′

is another strong extension of θ, we also have

Π′(g)θ(n)Π′(g)−1 = θ(gng−1)

for all n ∈ N, g ∈ K as in Equation 5.1. Then one can see Π′(g)−1Π(g)
commutes with θ(n) for all n by following the steps above. So we conclude
that Π′(g)−1Π(g) is scalar. Hence Π′(g) = Π(g)µ(g) for some µ : K → C∗.
To see it is constant on the cosets, it is enough to state, for all n ∈ N and
g ∈ K,

Π(n)Π(g)µ(g) = Π′(n)Π′(g) = Π′(ng) = Π(ng)µ(ng).
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(ii) We now explain the construction briefly to make it clear that this is a direct
consequence of the Theorem 5.2.2. For an irreducible character θ of N fixed
by K, by Theorem 5.2.2, we can find a projective representation Π with
factor set α′ ∈ Z2(K,C∗). This factor set induces α ∈ Z2(K/N,C∗), and we
map θ to the class of α in H2(K/N,C∗). And the first assertion ensures that
every two strong extensions of θ to K give the same element CK(θ), as their
factor sets are congruent mod B2(K/N,C∗) . So CK is well defined.

5.3 Induced Projective Representations

Let G be a profinite group and let H � G. For any 2-cocycle α ∈ Z2(G,C∗), we
denote the restriction of α to H × H by αH; hence αH ∈ Z2(H,C∗) . Following this,
we see CαH [H] as the sub-algebra of Cα[G] consisting of C-linear combinations of
the elements h̄ for all h ∈ H. Furthermore, we denote the CαH [H]-module by VH
in case V is an Cα[G] module. This fundamental construction is called restriction
and we denote the corresponding projective representation by ResG

H,αH
(V).

If χ is the projective character of G afforded by V, then we denote the
projective character of H afforded by VH by ResG

H,αH
(χ) accordingly. For given

two subgroups K,K′ of G such that H � K′ � K, suppose that a projective
representation Π of K is a strong extension of an irreducible representation Θ of
H. Note that ResK

K′,αK′
(Π) also strongly extends Θ.

As in the case of ordinary representations, we also have a dual notion called
induction. In the following definition, we will provide two descriptions of induced
projective representations.

Definition 5.3.1. With the above setting, suppose that (ρ,W) is a projective
representation of H with factor set αH. Let V ′ be the following vector space;

V ′ = { f : G → W : f (hg) = α(hg, g−1)ρ(h) f (g) for all h ∈ H, g ∈ G}.

Accordingly, let Θ : G → GL(V ′) to be the map given by

(Θ(g)( f ))(g′) = α(g′, g) f (g′g).

Then Θ defines a projective representation of G with the associated factor set α
which will be denoted by IndG

H,α(W).

If one wants to follow a more module theoretic approach, it can be proceeded
by considering W as a CαH [H]-module. Following this, we define an Cα[G]-module
structure on the tensor product Cα[G]⊗CαH [H] W as CαH [H] can be considered as
a subalgebra of Cα[G]. This will be called the induced module and denoted by
WG. Accordingly, the induced projective character IndG

H,α χ is the character of the
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induced projective representation of the tensor product Cα[G]⊗CαH [H] W where χ

is a projective character of H with factor set αH. IndG
H,α(χ) is therefore a projective

character of G, and its factor set is α.

Suppose that α ∈ Z2(G,C∗) and H is a subgroup of G. If χ is the projective
character of H with factor set αH afforded by an CαH [H]-module V, then we define
the g-conjugate gχ of χ by gχ(h) = χ(ghg−1) for any g ∈ G. As in the case of
ordinary representations, gχ is a projective character of gH = gHg−1 with factor
set αH which is afforded by gV.

Now, we introduce important and relevant facts on projective
representations which are straightforward analogues of established results for
ordinary representations.

We begin with recalling the notion of double cosets. Let G be a group having
two subgroups H and K. For each g ∈ G, the double coset KgH is given as

KgH = {kgh : h ∈ H, k ∈ K}.

We will denote the set of double cosets by K\G/H and write ḡ ∈ K\G/H for the
double coset representatives.

Also, recall that the intertwining number i(V,W) of two finitely generated
R-modules V,W where R is a finite dimensional algebra over a field F is defined
as dimF(HomR(V,W)). As in ordinary representation theory, the intertwining
number of C[G]α-modules can be given by the inner product of corresponding
projective characters.

Lemma 5.3.2. [[Kar94], Chp. 1, Lemma 11.6] Let χ and θ be projective characters
of G with factor set α. Suppose that V and W are C[G]α-modules affording χ and
θ respectively. Then we have,

i(V,W) = 〈χ, θ〉G.

Theorem 5.3.3. [Mackey’s Formula, [[Kar94], Chp. 1, Theorem. 8.6] Fix 2-
cocycle α ∈ Z2(G,C∗) and let H and K be two subgroups of G. Suppose that V and
W are finitely generated CαH [H] and CαK [K]-modules respectively. Then we have

i(VG,WG) = ∑
ḡ∈K\G/H

i(gVg H∩K,Wg H∩K).

In terms of characters, the theorem reads: For a projective character χ of H,

ResG
K (Ind

G
H(χ)) = ∑

ḡ∈K\G/H
IndK

g H∩K
gχ.
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Proposition 5.3.4. [[Kar94], Chp. 1, Lemma 8.10 (iii)] Let χ, θ be two projective
characters of G with the same factor set α. Assume that χ is irreducible. Then
the multiplicity of χ as an irreducible constituent of θ is given by 〈χ, θ〉G.

Theorem 5.3.5. [Frobenius Reciprocity, [Kar94], Chp. 1, Proposition 9.18 ]
Let α ∈ Z2(G,C∗) and let H be a subgroup of G. Suppose that χ is a projective
character of H with factor set αH and that θ is an irreducible projective character of
G with factor set α. Then the multiplicity of χ in ResG

H θ is equal to the multiplicity
of θ in IndG

H(χ). In other words,

〈IndG
H(χ), θ〉G = 〈χ, ResG

H θ〉H.

Definition 5.3.6. A projective representation ρ : G → GL(V) of G is called
monomial if there exists a subgroup H ≤ G and a one-dimensional projective
representation Θ of H such that ρ = IndG

H(Θ).

Theorem 5.3.7. [[Kar93], Chp. 3, Theorem 11.2 ] Let G be a supersolvable 1

group. Then every irreducible projective representation of G over C is monomial.

Corollary 5.3.8. Projective representations of pro-p groups are induced from a
one-dimensional projective representation of some open subgroup.

5.4 Cohomology of finite groups

We now provide notable results from the cohomology of finite groups which are
relevant to this work. We shall start with generalizing Definition 5.0.4. To this
aim, we assume G to be a finite group, A to be an abelian group (both written
multiplicatively), and that G acts on A. Recall first that an i-cochain of G with a
coefficient in A is a function f : Gi → A. Note that they form an abelian group
under the multiplication

( f g)(x1, . . . , xi) = f (x1, . . . , xi)g(x1, . . . , xi),

where G0 := {1}. We denote this group by Ci(G, A). For each i, the coboundary
homomorphisms are given as follows:

δi : Ci(G, A) → Ci+1(G, A).

f �→ δi( f )

1A group G is supersolvable if there is a normal series {1} � G1 � . . . � Gn = G such that. for
all i, Gi � G, and every quotient group Gi+1/Gi is cyclic
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for f ∈ Ci(G, A) and (x1, . . . , xi+1) ∈ Ci+1(G, A) such that

δi( f )(x1, . . . , xi+1) =
x1 f (x2, . . . , xi+1) f (x1, . . . , xi)

(−1)i+1
i

∏
j=1

f (x1, . . . , xj−1, xjxj+1, . . . , xi+1)
(−1)j

.

Following this, we define

Zi(G, A) := ker(δi)

Bi(G, A) :=

{
im(δ(i−1)), i � 0
1, otherwise

We call the elements of Zi(G, A) and Bi(G, A) i-cocycles and i-coboundaries
respectively. One can see that Bi(G, A) is a subgroup of Zi(G, A). Following
this, we define the i-th cohomology group Hi(G, A) of G as the quotient group
Zi(G, A)/Bi(G, A). Note that, in Definition 5.0.4, we considered the trivial action
of G on A = C∗ in order to define the second cohomology group Hi(G,C∗).

Proposition 5.4.1. In addition to the above setting, let |G| = m. For any integer
i � 1, we have the following

(i) [[Lan96], Section 2.2] Hi(G, A) is a torsion group. In particular αm = 1 for
all α ∈ Hi(G, A).

(ii) [[Lan96], Section 2.2] Let Hi(G, A)(p) be the p-primary part of Hi(G, A),
that is, the subgroup of Hi(G, A) consisting of all elements whose order is a
power of p. Then

Hi(G, A) =
⊕
p|m

Hi(G, A)(p).

It follows that, any α ∈ Hi(G, A) can be written as α = ∏p|m α(p) where
α(p) is the p-part of α, i.e. α = α(p).α(p′) where α(p) ∈ Hi(G, A)(p) and
α(p′) has order not divisible by p. In particular, if G is a p-group, then
Hi(G, A) = Hi(G, A)(p).

(iii) [[Lan96], Section 2.2, Theorem 2.1] Let P be a Sylow p-subgroup of G. Then
the restriction map resG

P : Hi(G, A) → Hi(P, A) gives an injection

resp : Hi(G, A)(p) → Hi(P, A).
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We finalize this section by going back to the 2-cocycles and 2-coboundaries
on a finite group G, giving a smaller version of Lemma 3.10, [SZ20].

Lemma 5.4.2. Let |G| = m, and let U2 be the following set of 2-cocycles on G

{α ∈ Z2(G,C∗) : αm = 1}.

Then B2(G,C∗) is complemented in Z2(G,C∗) by U2. Consequently, H2(G,C∗) is
finite.

Proof. First of all, we observe that B2(G,C∗) is divisible. Let β ∈ B2(G,C∗). Then
there exists µ : G → C∗ such that

β(g, h) =
µ(gh)

µ(g)µ(h)
.

Let n ∈ N, and for g ∈ G, let γ : G → C∗ be such that γ(g)n = µ(g). Then

β(g, h) =
µ(gh)

µ(g)µ(h)
=

( γ(gh)
γ(g)γ(h)

)n
.

Now we can move to our main claim. It is obvious that B2(G,C∗)U2 ⊆
Z2(G,C∗). To see that Z2(G,C∗)) is contained in B2(G,C∗)U2 , suppose that
α ∈ Z2(G,C∗). By Proposition 5.4.1 (i), we have αm ∈ B2(G,C∗). As we recently
observed, B2(G,C∗) is divisible, so there exists β ∈ B2(G,C∗) such that αm = βm,
and hence αβ−1 ∈ U2. That means, we have α ∈ B2(G,C∗)U2 and this finishes
the proof.

So U2 = {α : G → {a ∈ A : am = 1}}. Since {a ∈ C : am = 1} is finite; U2 is
finite. This yields to the fact that H2(G,C∗) is finite as it embeds in U2.
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Chapter 6

Partial Zeta Series

We do not need this chapter in such detail to prove any of our claims. We
nevertheless present it to keep the completeness, more importantly, to explain
how partial zeta series arise when the representation zeta function of FAb
compact p-adic analytic groups is concerned and to motivate their definition. As
their names suggest, the first section is dedicated to Clifford theory for projective
representations, whilst we treat the reduction steps to the partial zeta series in
the second section.

This reduction idea originated from [JZ06], and it also allows us to work with
the cohomology classes over quotients formed by Sylow pro-p groups, which is
crucial to obtain linear characters while studying character triples. In [SZ20], the
authors give a different proof with additional steps; we present their formulation
as it is the base of this work.

6.1 Clifford Theory

Schur studied projective representations of finite groups thoroughly; however its
connection with Clifford theory was first obtained by Clifford, [Cli37]. In this
section, we introduce some parts of his work, which enable us to find a bijection
between Irr(K|ψ) and Irr(K|υ) for two character triples (K, N,ψ) and (K, N, υ)
where CK(ψ) = CK(υ) in H2(K/N,C∗). The concise exposition below follows
[BKZ18].

Let G be a finite group, ψ ∈ Irr(N) where N � G. Set H = stabG(θ), the
inertia subgroup of ψ in G. If Ψ is an (ordinary) irreducible representation of N
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affording ψ, then for any h ∈ H, x ∈ N,

Ψh(x) = P(h)Ψ(x)P(h)−1 (6.1)

where P(h) ∈ GLdeg(Ψ)(C). Then P is an irreducible projective representation of
H, call its factor set α−1 (for notational convenience). Note that P is uniquely
determined up to a factor µ : N → C∗; therefore the equivalence class of the factor
set α is uniquely determined by ψ. And the restriction to N, ResH

N,α−1
N
(P), can be

given as λ−1Ψ for some λ : N → C∗.

Lemma 6.1.1. [[BKZ18], Chp. VII, Lemma 3.3] In addition to the above setting,
let θ be an irreducible character of H such that 〈ResH

N ,ψ〉 > 0; i.e. θ ∈ Irr(H|ψ).

(i) There exists an (ordinary) irreducible representation ∆ of H affording θ such
that ResH

N(∆) = eΨ where e is the ramification of θ over N, and an (ordinary)
irreducible representation Ψ with the character ψ.

(ii) There exists an irreducible projective representation Ω of H with factor set
α (of degree e) such that

∆ = Ω⊗ P.

(iii) Ω is uniquely determined by ∆, and for all x ∈ N, Ω(x) = λ(x)Id for some
λ : N → C∗.

Remark 6.1.2. One can assume that α(g1, h1) = α(g2, h2) if g1N = g2N, h1N =
h2N, and α(h, n) = α(n, h) = 1 for all gi, hi, h ∈ H and n ∈ N by multiplying P
with µ : N → C∗, if required. For the rest, we proceed with that assumption.

Proposition 6.1.3. [[BKZ18], Chp. VII, Lemma 3.5] Let Iα,λ(H) be the set of
irreducible projective representations Ω of H with factor set α such that
λ−1 ResH

N(Ω) is the identity representation of N for some λ : N → C∗.

(i) If Ω ∈ Iα,λ(H), then for all x ∈ N, h ∈ H, λ(x)Ω(h) = Ω(xh). Moreover,
λ is a linear character of N, and an H-invariant map.

(ii) Let H =
⋃

a∈H/N Nha be such that h1 = 1, hahb = f (a, b)hab for some f :
H/N × H/N → N. For Ω ∈ Iα,λ(H) with deg(Ω) = e, define

Ω : H/N → GLe(C)

a �→ Ω(ha)

Then Ω is an irreducible projective representation (of degree e) of H/N with
the following factor set ᾱ

ᾱ(a, b) = α(ha, hb)λ( f (a, b)).
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Proposition 6.1.4. [[BKZ18], Chp. VII, Lemma 3.6] Let PIrrᾱ(H/N) denote
the set of irreducible projective characters of H/N with factor set ᾱ. Then the
following map is bijective

Iα,λ(H) → PIrrᾱ(H/N)

Ω �→ Ω

Let θ ∈ Irr(H|ψ) and ∆θ be an (ordinary) irreducible representation of H
satisfying condition (i) of Lemma 6.1.1, i.e. ResH

N(∆θ) = eδΨ. Then there exists
a unique projective representation Ωθ such that ∆θ = Ωθ ⊗ P. Let χθ denote the
corresponding character; hence θ = χθ .γ where γ is the character of P.
Accordingly, we denote the character of the representation of Ωθ by χθ. If
x ∈ N, a ∈ H/N and xha ∈ Nha = a, then

λ(x)χθ(a) = χθ(xha).

Theorem 6.1.5. [[BKZ18], Chp. VII, Theorem 3.10] There is a bijection of
Irr(H|ψ) onto PIrrᾱ(H/N) given by θ �→ χθ.

Suppose that G is a profinite group with an open normal subgroup N, and let
(K, N,ψ) be a character triple. Then stabK(ψ) = K, since K ≤ stabG(ψ). Recall
that ψ factors through a finite group, so we assume K to be H in the above setting,
and that N is finite. Then the following corollary follows. Note that we go back to
our original notation for factor sets, i.e. for a given factor set α′ ∈ Z2(K,C∗), we
denote the well-defined element α ∈ Z2(K/N,C∗) given by α(gN, hN) = α′(g, h).
Also α and α−1 in Theorem 6.1.5 will be swapped in the corollary below.

Corollary 6.1.6. For a character triple (K, N,ψ), let ψ′ be a strong extension of
ψ with factor set α′ ∈ Z2(K,C∗) such that CK(ψ) = [α].

(i) [[SZ20], Lemma 3.7.] There is a one-to-one correspondence between
PIrrα−1(K/N) and Irr(K|ψ) given by π′ �→ ψ′π, where π is the pull-back of
π′ along the quotient map K → K/N (with factor set (α′)−1).

(ii) [[SZ20], Lemma 3.8.] Let υ be another irreducible character of N such that
stabG(υ) = K and CK(ψ) = CK(υ) = [α] for some α ∈ Z2(K/N,C∗). Let
ψ′, υ′ be strong extensions of ψ and υ respectively with a common factor set
α′ ∈ Z2(K,C∗). Then the map ψ′π �→ υ′π, for π as in (i), gives a bijection
σ : Irr(K|ψ) → Irr(K|υ) such that

(ψ′π)(1)
ψ(1)

=
(σ(ψ′π))(1)

υ(1)
.
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Proof. (i) We begin with obtaining that P in Equation (6.1) on page 56 is a
strong extension of ψ; in particular, one may assume γ = ψ′. Recall that P
is uniquely determined up to a factor µ : N → C∗; we may therefore require
P(x) = Ψ(x) for x ∈ N. Note also that

π(h, n) = π(n, h) = 1

for all g ∈ K, n ∈ N by the remark following Lemma 6.1.1. Then P strongly
extends Ψ as discussed after the definition of strong extension. Accordingly
the following map gives the identity map on PIrrα−1(K/N);

σ : Irr(K|ψ) bij.−→ PIrrα−1(K/N) −→ Irr(K|ψ)
θ �−→ χθ �−→ γχθ

since θ = χθ · γ, and the claimed bijection follows.

(ii) Consequently, we construct σ as follows:

σ : Irr(K|ψ) bij.−→ PIrrα−1(K/N)
bij.−→ Irr(K|υ)

ψ′π �−→ π′ �−→ υ′π

The rest is to manipulate the degrees of the representations to get the claimed
equality. Recall that (ψ′π)(1) = ψ′(1)π(1) and ψ′(n) = ψ(n) for all n ∈ N
; hence we have (ψ′π)(1)

ψ(1) = π(1). Same applies to υ and υ′, we therefore
obtain (υ′π)(1)

υ(1) = π(1).

6.2 Reduction to Partial Zeta Series

Let G be a finite group, N � G and θ ∈ Irr(N). Suppose stabG(θ) = G, and write
IndG

N(θ) = ∑ eiχi for χi ∈ Irr(G) and ei � 1. Then we have

ResG
N(χi) = eiθ.

We say that θ allows an extension to G if ei = 1 for some i, or equivalently
ResG

N(χi) = θ. In the following, we present a theorem collecting extension results
but first we need to introduce the notion of determinantal order of a character.

Let χ ∈ Irr(G), and let D be an (ordinary) representation of G affording χ.
We define the determinant of the character χ, det(χ) : G → C∗ as follows:

(det(χ))(g) = det(D(g)).
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So det(χ) becomes a linear character of G in Irr(G/[G, G]). Then the
determinantal order o(χ) of χ is defined as the order of the linear character
ord(detχ) in the group of linear characters of G;

o(χ) = ord(detχ).

Theorem 6.2.1. [[Hup98], Theorem 22.3] With the setting introduced at the
beginning of the section, θ allows an extension χ to G if at least one of the
following is satisfied:

(i) Any projective representation of the quotient group G/N is equivalent to an
ordinary representation of G/N.

(ii) G/N is cyclic.

(iii) ((G : N), θ(1)) = 1 and det(θ) allows an extension to G.

(iv) ((G : N), θ(1)o(θ)) = 1.

(v) ((G : N), |N|) = 1.

Let G be a FAb compact p-adic analytic group with its open normal uniform
pro-p subgroup N. For any subgroup K of G containing N, let P be a Sylow
pro-p subgroup of K. Following this, we have N ≤ P. We now introduce a
construction from [SZ20], that adopts the idea of Jaikin-Zapirain, [JZ06] to reduce
the rationality problem. Recall the function CK introduced in Corollary 5.2.3 (ii).
For c ∈ H2(P/N,C∗), now define the set

Irr c
K(N) = {θ ∈ IrrK(N)|CP(θ) = c}.

Observe that the set Irr c
K(N) is independent of the choice of Sylow pro-p subgroup

P as they are all G-conjugate.

Consider a character triple (K, N, θ), by Clifford’s theorem 5.0.2, χ(1)/θ(1)
is an integer for each χ ∈ Irr(K | θ). Thus it makes sense to define the following
(finite) Dirichlet series

f(K,N,θ)(s) = ∑
χ∈Irr(K|θ)

(
χ(1)
θ(1)

)
−s

.

We first observe that we obtain the same series for two character triples (K, N, θ)
and (K, N, υ).

Proposition 6.2.2. [[SZ20], Lemma 4.1.] Let (K, N, θ) and (K, N, υ) be character
triples for a finite index pro-p subgroup N of K. Then CP(θ) = CP(υ) implies
CK(θ) = CK(υ), and f(K,N,θ)(s) = f(K,N,υ)(s).
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Proof. Recall that, for any c ∈ H2(K/N,C∗), we have

c = ∏
q|(K:N)
q prime

c(q),

where c(q) is the q-part of c. Now let Kq be a subgroup of K such that Kq/N
is a Sylow q-subgroup of K/N. Then, by Proposition 5.4.1 - (iii), we have the
following injection

resq : H2(K/N,C∗)(q) → H2(Kq/N,C∗).

We first observe that resq maps CK(θ)(q) to CKq(θ) in H2(Kq/N,C∗). To this aim,
recall the restriction map

resK/N
Kq/N : H2(K/N,C∗) → H2(Kq/N,C∗).

Our claim is that resK/N
Kq/N(CK(θ)) = CKq(θ). Note that ResK

Kq,αKq
(θ′) strongly

extends θ as θ′ is a strong extension of θ with factor set α. Therefore αKq

determines the element resK/N
Kq/N(CK(θ)) in H2(Kq/N,C∗), and the claim follows.

On the other hand, H2(Kq/N,C∗) is a q-group; i.e. the map resK/N
Kq/N is only

non-trivial on H2(K/N,C∗)(q). Consequently, for any c ∈ H2(K/N,C∗),

resK/N
Kq/N(c) = resK/N

Kq/N(c(q)) = resq(c(q)).

In particular, resq(CK(θ)(q)) = resK/N
Kq/N(CK(θ)) = CKq(θ).

Now we apply Theorem 6.2.1 (iii) to see that θ extends to Kq. To this end,
note that θ(1) is a p-power since N is a pro-p group. And one can easily obtain
that o(θ) is also a p-power since θ factors through a finite quotient of order p-
power. Recall that Kq/N is chosen as a Sylow q-subgroup of K/N, so (Kq : N)
must be a q-power. Therefore, when we assume q �= p, p � (Kq : N), consequently
θ extends to Kq. Then θ gets mapped to the class of 1; CKq(θ) = [1]. Then,
combining with resq being injective, we have

resq(CK(θ)(q)) = 1 =⇒ CK(θ)(q) = 1.

Therefore, by writing CK(θ) = CK(θ)(p)CK(θ)(p′) where CK(θ)(p′) = ∏
q �=p

CK(θ)(q) as

given in Proposition 5.4.1 (iii), we obtain CK(θ) = CK(θ)(p). The same argument
applies to υ; hence CK(υ) = CK(υ)(p). So for q = p, we get

resp(CK(θ)(p)) = CP(θ) = CP(υ) = resp(CK(υ)(p)).

Hence we have CK(θ)(p) = CK(υ)(p), and thus CK(θ) = CK(υ).
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For the second part, we combine what we obtained above with Corollary 6.1.6;
there is a bijection σ : Irr(K|θ) → Irr(K|υ) such that χ(1)

θ(1) = σ(χ)(1)
υ(1) . Following

this, we have

f(K,N,θ)(s) = ∑
χ∈Irr(K|θ)

(
χ(1)
θ(1)

)
−s

= ∑
σ(χ)∈Irr(K|υ)

(
σ(χ)(1)

υ(1)
)
−s

= f(K,N,υ)(s).

By the Clifford theorem (5.0.2), for each ρ ∈ Irr(G), there are (G : stabG(θ))
distinct characters θ ∈ Irr(N) such that ρ ∈ Irr(G | θ). Therefore, one obtains
easily that

ζG(s) = ∑
ρ∈Irr(G)

ρ(1)−s = ∑
θ∈Irr(N)

1
(G : stabG(θ))

∑
ρ∈Irr(G|θ)

ρ(1)−s.

As we pointed out in Theorem 5.0.3 (iii), | Irr(G | θ)| = | Irr(stabG(θ) | θ)|
for any θ ∈ Irr(N). So the above equation becomes

ζG(s) = ∑
θ∈Irr(N)

1
(G : stabG(θ))

∑
λ∈Irr(stabG(θ)|θ)

(λ(1) · (G : stabG(θ)))
−s

= ∑
θ∈Irr(N)

(G : stabG(θ))
−s−1 ∑

λ∈Irr(stabG(θ)|θ)
θ(1)−s · (λ(1)

θ(1)
)−s

= ∑
θ∈Irr(N)

(G : stabG(θ))
−s−1θ(1)−s · f(stabG(θ),N,θ)(s)

Now consider the set of subgroups K of G such that N ≤ K ≤ G and
stabG(θ) = K for some θ ∈ Irr(N), and call this set S . Then the last terms of the
equation can be written as

ζG(s) = ∑
K∈S

(G : K)−s−1 ∑
θ∈IrrK(N)

θ(1)−s · f(K,N,θ)(s)

= ∑
K∈S

(G : K)−s−1 ∑
c∈H2(P/N)

f(K,N,θ)(s) ∑
θ∈Irr c

K(N)

θ(1)−s

We will call the part ∑θ∈Irrc
K(N) θ(1)−s partial zeta series and denote by

ζ(N,K,c)(s). As the set S and the group H2(P/N) are finite, the virtual
rationality of ζG(s) follows from the rationality of the partial zeta series
ζ(N,K,c)(s).
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Chapter 7

Tools for constructing
equivalence classes

In the following chapter, we will provide machinery to construct uniformly
definable equivalence classes that give rise to the partial zeta series following
[SZ20]. As in the previous chapter, we follow their proofs for the cited statements
to keep the text self-contained.

The first section discusses how linear characters come into play precisely,
which is essential in terms of definability as we can only proceed by degree one
characters. These types of arguments are also central for other works on the
representation (twist) zeta function employing model theory, such as [HMR18],
[JZ06].

The second section initiates with a discussion about reducing the limit of a
given cohomology class c ∈ H2(P,C∗) and outlines how to describe the fibres of
the map assigning the character triples with linear characters to the elements of
H2(P,C∗). We then present two interludes: one for the group Qp/Zp and the
other one for extending good basis and showing that it is uniformly definable.
We then improve the ideas from [SZ20] on describing such fibers to make their
construction uniform.

7.1 Classes in H2(P,C∗) and Linear Characters

Let G be a profinite group having a finite index normal pro-p subgroup N � G.
For any K � G such that N � K, we will define the set

H(K) = {H ≤ K : H open in K,K = HN}.
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In the following, we consider a Sylow subgroup pro-p P of K. As we have a
normal pro-p subgroup N of G contained in K, N ≤ P immediately follows.

For H ≤ P such that P = HN, one can obtain a one-to-one correspondence
between 2-cocycles of P/N and H/(N ∩ H). To this end, note first that for each
coset gN in P/N, there exists a unique coset h(N ∩ H) in H/(N ∩ H) such that
h(N ∩ H) ⊆ gN.

The isomorphism P/N → H/(N ∩ H) induces an isomorphism between
Z2(H/(N ∩ H),C∗) and Z2(P/N,C∗) by pulling back 2-cocycles;

f̃H : Z2(H/(N ∩ H),C∗) → Z2(P/N,C∗) (7.1)

For α ∈ Z2(H/(N ∩ H),C∗) and g, g′ ∈ P, f̃H is defined by

f̃H(α)(gN, g′N) = α(h(N ∩ H), h′(N ∩ H)),

where h(N ∩ H) ⊆ gN and h′(N ∩ H) ⊆ g′N. Furthermore, for
β ∈ Z2(P/N,C∗) and h, h′ ∈ H, we have

f̃H
−1
(β)(h(N ∩ H), h′(N ∩ H)) = β(hN, h′N).

Therefore, f̃H induces an isomorphism fH between the cohomology groups

fH : H2(H/(N ∩ H),C∗) → H2(P/N,C∗) given by fH([α]) = [ f̃H(α)].

In this section, for a given character triple (K, N, θ), we will obtain a character
triple (H, N ∩ H,χ) with a linear character χ such that

CP(θ) = fH(CH(χ)).

Lemma 7.1.1. [[SZ20], Lemma 5.1.] Let γ be a 2-cocycle in Z2(P,C∗). Suppose
that H ∈ H(P) and that η is a linear projective character of H with the factor set
γH. If one of IndN

N∩H,γN
(ResH

N∩H(η)) and ResP
N(Ind

P
H,γ(η)) is irreducible, then

IndN
N∩H,γN

(ResH
N∩H(η)) = ResP

N(Ind
P
H,γ(η)).
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The groups and corresponding characters given above can be illustrated by
the following:

G

K

P

HN

N ∩ H

η

ResH
N∩H(η)

IndN
N∩H,γN

(ResH
N∩H(η))

G

K

P

HN

N ∩ H

η

IndP
H,γ(η)

ResP
N(Ind

P
H,γ(η))

Proof. We first apply Frobenius Reciprocity to obtain〈
IndN

N∩H,γN
(ResH

N∩H(η)), Res
P
N(Ind

P
H,γ(η))

〉
N
=

〈
ResH

N∩H(η), Res
N
N∩H(Res

P
N︸ ︷︷ ︸

ResP
N∩H

(IndP
H,γ η))

〉
N∩H

.

Also, Mackey’s theorem gives, for any (double coset) representative g of ḡ ∈ (N ∩
H)\P/H

ResP
N∩H(Ind

P
H,γ(η)) = ∑

ḡ∈(N∩H)\P/H
IndN∩H

N∩H∩g H,γN∩H
(Res

g H
N∩H∩g H(

gη)).

Following this, we have

〈
ResH

N∩H(η), Res
P
N∩H(Ind

P
H,γ(η))

〉
N∩H

= ∑
ḡ∈(N∩H)\P/H

〈
ResH

N∩H(η), Ind
N∩H
N∩H∩g H,γN∩H

(Res
g H
N∩H∩g H

g(η))
〉

N∩H

≥
〈
ResH

N∩H(η), Res
H
N∩H(η)

〉
N∩H

= 1

Recall that (P : N) · (N : N ∩ H) = (P : H) · (H : N ∩ H) = (P : H) · (HN : N)
and P = HN, then (P : N) = (N : N ∩ H) follows. This yields to that the degrees
of IndN

N∩H,γN ResH
N∩H η and ResP

N IndP
H,γ η are the same; hence irreducibility of one

of them implies that they are equal.
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Proposition 7.1.2. [[SZ20], Proposition 5.2.]

(1) For any character triple (K, N, θ), there exists an H ∈ H(P) and a character
triple (H, N ∩ H,χ) such that:

(i) χ is of degree one,
(ii) θ = IndN

N∩H χ

(iii) CP(θ) = fH(CH(χ))

(2) Let H ∈ H(P) be such that (H, N ∩ H,χ) is a character triple with a linear
character χ such that, (K, N, IndN

N∩H χ) is a character triple. Then

CP(θ) = fH(CH(χ)).

Proof. Suppose that (K, N, θ) is a character triple. Then, by Corollary 5.2.3 (ii),
one can find a 2-cocycle α ∈ Z2(P/N,C∗) such that [α] = CP(θ). Moreover
there exists an irreducible projective character θ′ of P with factor set α′ strongly
extending θ by Theorem 5.2.2.

By Corollary 5.3.8, we have an open subgroup H of P and a linear projective
character η of H with factor set α′

H such that θ′ = IndP
H,α′(η). Then restricting

the projective representation θ′ to N, we get θ = ResP
N(Ind

P
H,α′(η)). Then

1 =
〈

θ, θ
〉

=
〈
ResP

N(Ind
P
H,α′(η)), Res

P
N(Ind

P
H,α′(η))

〉
= ∑

ḡ∈N\P/H
∑

h̄∈N\P/H

〈
IndN

N∩g H(Res
g H
N∩g H(

gη)), IndN
N∩h H(Res

h H
N∩h H(

hη))
〉

= ∑
ḡ∈P/HN

∑
h̄∈P/HN

〈
IndN

N∩g H(Res
g H
N∩g H(

gη)), IndN
N∩h H(Res

h H
N∩h H(

hη))
〉

≥ ∑
ḡ∈P/HN

〈
IndN

N∩g H(Res
g H
N∩g H(

gη)), IndN
N∩g H(Res

g H
N∩g H(

gη))
〉

≥ (P : HN)

This implies that (P : HN) = 1, i.e. P = HN; hence H ∈ H(P).

As θ = ResP
N(Ind

P
H,α′(η)) is irreducible, by Lemma 7.1.1, we have

θ = IndH
N∩H(Res

H
N∩H(η)). Set χ = ResH

N∩H(η); hence χ is fixed by H. In
addition, we obtain a 2-cocycle αH ∈ Z2(H/(N ∩ H),C∗) defined by

αH(h(N ∩ H), h′(N ∩ H)) = α′
H(h, h

′).
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By (7.1) on page 63, we get fH([αH ]) = [ f̃H(αH)] = [α] = CP(θ). Note that η
strongly extends χ; hence the function CH defined in Corollary 5.2.3 (ii)

CH : {χ ∈ Irr(N ∩ H) : H ≤ stabG(χ)} → H2(H/(N ∩ H),C∗)

maps χ to [αH ]. Thus we have CP(θ) = fH(CH(χ)). This finishes the first part of
the proof.

Choose now a subgroup H ∈ H(P) such that (H, N ∩ H,χ) is a character triple
with a linear character χ and (K, N, IndN

N∩H χ) is a character triple. Let θ =
IndN

N∩H(χ). Considering that (H, N ∩ H,χ) is a character triple, we have β ∈
Z2(H/(N ∩ H),C∗). So there exists a projective character χ′ of H with factor set
β′ strongly extending χ such that β′(g, h) = β(g(N ∩ H), h(N ∩ H)) by Theorem
5.2.2. According to Corollary 5.2.3 (ii), we have [β] = CH(χ). Recall that f̃H(β) ∈
Z2(P/N,C∗). Let γ ∈ Z2(P,C∗) be such that, for any g, g′ ∈ P,

γ(g, g′) = f̃H(β)(gN, g′N).

For any h, h′ ∈ H, we have

γH(h, h′) = γ(h, h′) = f̃H(β)(hN, h′N) = β(h(N ∩ H), h′(N ∩ H)) = β′(h, h′).

Thus γH = β′. Recall now that the projective character χ′ of H strongly extends
χ with factor set β′. Therefore we have the following by Lemma 7.1.1 as θ is
irreducible

θ = IndN
N∩H(χ) = IndN

N∩H,γN
(ResH

N∩H(χ
′))

=ResP
N(Ind

P
H,γ(χ

′))

Hence the projective representation IndP
H,γ(χ

′) of P is an extension of θ. We now
verify that IndP

H,γ(χ
′) strongly extends θ with factor set γ. Recall the discussion

following Definition 5.2.1, that is γ(x, n) = γ(n, x) = 1 for all x ∈ P and n ∈ N.
By definition γ is constant on the cosets of N in P, so we write x = hn′ with
h ∈ H, n′ ∈ N and obtain the following

γ(x, n) = γ(hn′, n) = γ(h, 1) = γH(h, 1) = β′(h, 1).

Moreover we know that β′(h, 1) = 1 as β′ is the factor set of a strong extension of
χ; hence γ(x, n) = 1. In a similar way, one can see that γ(n, x) = 1; we conclude
that IndP

H,γ(χ
′) strongly extends θ. Since IndP

H,γ(χ
′) has factor set γ that is given

by γ(g, g′) = f̃H(β)(gN, g′N), we get

CP(θ) = [ f̃H(β)] = fH([β]) = fH(CH(χ)).
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Remark 7.1.3. Let XK be the set of pairs (H,χ) with H ∈ H(P) where

(i) (H, N ∩ H,χ) is a character triple,
(ii) χ is of degree one,

(iii) IndN
N∩H χ ∈ IrrK(N).

One can define the following function C to assign the pairs (H,χ) to the elements
of H2(P/N,C∗)

C :XK → H2(P/N,C∗)

(H,χ) �→ fH(CH(χ))

Corollary 7.1.4. [[SZ20], Corollary 5.3.] We have a surjective function XK →
IrrK(N) and the following commutative diagram

XK IrrK(N); (H,χ) �→ IndN
N∩H(χ)

H2(P/N,C∗)

C CP

Proof. By definition, each θ ∈ IrrK(N) produces a character triple (K, N, θ). Hence
the first part of Proposition 7.1.2 gives the surjectivity. The commutativity of the
diagram, i.e. for any (H,χ) ∈ Xk, CP(IndN

N∩H(χ)) = fH(CH(χ)) = C(H,χ)
follows from the second part of Proposition 7.1.2.

We finalize this section with a lemma, which will be used to express K = stabG(θ),
for some θ ∈ Irr(N), in a uniformly definable way.

Lemma 7.1.5. [[SZ20], Lemma 6.8.] Let M be a finite index subgroup of N, and
let χ be a linear character of M.

(i) For all g ∈ G, we have

g(IndN
M(χ)) = IndN

g M(gχ).

(ii) Let M′ be also a finite index subgroup of N, and suppose that χ,χ′ are linear
characters of M and M′ respectively, satisfying that IndN

M χ and IndN
M′ χ′ are

irreducible. Then the following holds:

IndN
M(χ) = IndN

M′(χ′) ⇔ ∃g ∈ N : Res
g M
g M∩M′(gχ) = ResM′

g M∩M′(χ′).
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Proof. By Frobenius Reciprocity for ordinary characters, we have〈
IndN

M(χ), IndN
M′(χ′)

〉
N
=

〈
ResN

M′(IndN
M(χ)),χ′

〉
N
.

Now we apply Mackey’s formula for ordinary characters this time

ResN
M′(IndN

M(χ)) = ∑
ḡ∈M′\N/M

IndM′
g M∩M′(Res

g M
g M∩M′(gχ)).

So we have〈
IndN

M(χ), IndN
M′(χ′)

〉
N
= ∑

ḡ∈M′\N/M

〈
IndM′

g M∩M′(Res
g M
g M∩M′(gχ)),χ′

〉
N

= ∑
ḡ∈M′\N/M

〈
(Res

g M
g M∩M′(gχ)), ResM′

g M∩M′ χ′
〉

g M∩M′
.

Note that the last equation follows from Frobenius Reciprocity again. Then, this
vanishes if and only if each of the summands vanishes. This holds if and only if
Res

g M
g M∩M′(gχ) �= ResM′

g M∩M′(χ′) for each g ∈ G as the characters we worked with
are linear.

7.2 Describing the fibres in terms of linear characters

We assume G to be a FAb compact p-adic analytic group with a normal uniform
pro-p subgroup N ≤ G. Let K be a subgroup of G such that N ≤ K with a Sylow
pro-p subgroup P of K. In this section, we aim to describe the set C−1(c) for a
fixed c ∈ H2(P/N,C∗) by the elements of N and linear characters of finite index
subgroups of N.

First we see how to narrow the range for c to H2(P/N,Ω(p)) where Ω(p) is the
group of roots of unity of a power of p. It is followed by two short interludes
explaining the group Qp/Zp and how to give a parametrization of the set H(P).
We conclude the section by providing a criteria for C(H,χ) = c involving the
coboundaries with values in B2(P/N,Ω(p)) with a uniformly definable
parametrization of Z2(P/N,Ω(p)) and B2(P/N,Ω(p)).

Now consider the group Ω � C∗ of all complex roots of unity. It is torsion, and,
for a prime p, its p-primary part is the subgroup of pth roots of unity, call it Ω(p).
Then

Ω =
⊕

p prime
Ω(p).
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We now see how Z2(P/N,Ω(p)) and B2(P/N,Ω(p)) relate to Z2(P/N,C∗) and
B2(P/N,C∗) In order to restrict the range of functions whose image is contained
in C∗ to Ω(p), we begin with the notion of injective group .

Definition 7.2.1. A group D is called injective, if for every diagram

X Y

D

f

g
η

consisting a monomorphism f : X → Y and a homomorphism g : X → D, there
exists a homomorphism η : Y → D such that the diagram commutes; i.e. g = η ◦ f .

Theorem 7.2.2. [[Fuc03], Theorem. 21.1] Divisible groups are injective.

To see how injective groups arise in our setting, recall first that Ω is a divisible
group. It is therefore injective by the previous result. We use the above diagram to
produce a map C∗ → Ω which enables us to define the restriction map mentioned
above. Given the inclusion map Ω → C∗ and the identity map on Ω, we have
π : C∗ → Ω such that the following diagram commutes

Ω C∗

Ω

inc.

id
π

For each prime p, we define π(p) : C∗ → Ω(p) as the composition of π and the
projection Ω → Ω(p). Accordingly, for a function f which has values in C∗, we
define

f(p) := π(p) ◦ f .

As π(p) is a homomorphism, for any f and f ′ which have image in C∗, we have

( f f ′)(p) = f(p) f ′(p).

Proposition 7.2.3. B2(P/N,C∗) ∩ Z2(P/N,Ω(p)) = B2(P/N,Ω(p)), and we
have the following isomorphism

H2(P/N,C∗) � Z2(P/N,Ω(p))/B
2(P/N,Ω(p)).

69



Proof. As the Lemma 5.4.2 indicates, we have

Z2(P/N,C∗) = B2(P/N,C∗).U2,

where U2 = {α ∈ Z2(P/N,C∗) : αr = 1} and r = (P : N) . Therefore each class
in H2(P/N,C∗) has a representative in Z2(P/N,Ω(p)). So B2(P/N,Ω(p)) lies in
the intersection B2(P/N,C∗) ∩ Z2(P/N,Ω(p)).

In addition, for any δ ∈ B2(P/N,C∗) ∩ Z2(P/N,Ω(p)), we have a function µ :
P/N → C∗ such that for all a, b ∈ P/N,

δ(a, b) =
µ(ab)

µ(a)µ(b)
.

On the other hand, as δ ∈ Z2(P/N,Ω(p)), we know δ : P/N → Ω(p). Therefore,
for all a, b ∈ P/N, we have

δ(a, b) = δ(p)(a, b) =
µ(p)(ab)

µ(p)(a)µ(p)(b)
.

Hence δ ∈ B2(P/N,Ω(p)), and B2(P/N,C∗) ∩ Z2(P/N,Ω(p)) = B2(P/N,Ω(p)).

7.2.1 Interlude # 1: The group Qp/Zp.

Any p-adic number x ∈ Qp can be written (uniquely) as a sum of a p-adic
integer and its fractional part that is a rational number 0 ≤ q < 1 whose
denominator a power of p. Accordingly we define the p-adic fractional part {x}p

of x = p−n ∑
i≥0

xi pi as follows:

{x}p =

{
p−n(x0 + x1p + x2p2 + . . .+ xn−1pn−1), if n > 0
0, if n ≤ 0 or x = 0

Then, for any x, we have {x}p = a
pn ∈ [0, 1), i.e. 0 � a < pn. We now define

ψp : Qp → S1 ⊆ C∗

x �→ e2πi{x}p ,

where S1 = {z ∈ C∗ : |z| = 1} is the unit circle. The function ψp is a group
homomorphism as the difference {x}p + {y}p − {x + y}p is an integer. And we
have the following commutative diagram:
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Qp/Zp Q/Z

S1

inc.

ψp
s �→ e 2πis

The image of ψp is exactly the subgroup Ω(p) � Ω of roots of unity of a power of
p - it is also called Prüfer p-group. Therefore

Ω(p) = {z ∈ C∗ : zpn
= 1 for some n ∈ Z+}

= {e2πia/pn
: 0 � a < pn, n ∈ Z+}.

To describe the kernel of ψp, recall that x − {x}p ∈ Zp. It immediately follows
that {x}p = 0 ⇔ x ∈ Zp, in particular ker(ψp) = Zp. Consequently, the groups
Qp/Zp and Ω(p) are isomorphic via the map

ι : Qp/Zp → Ω(p)
a
pn �→ e2πia/pn

.

7.2.2 Interlude # 2: Extending good bases

We inherit the setting given at the beginning of the section; as in good basis,
we again work with a family of FAb compact p-adic analytic groups Gp indexed
by primes p > 2. Correspondingly, we consider normal uniform pro-p subgroups
Np ≤ Gp, and subgroups Kp of Gp such that Np � Kp with fixed Sylow pro-p
subgroups Pp of Kp. We can parametrize H(Pp) by extending the parametrization
formed by good basis, see Definition 4.0.4.

H(Pp) = {Hp ≤ Pp : Hp open in Pp, Pp = NpHp}.

Recall that r = (Pp : Np), and that we fixed a (left) transversal (y1, . . . , yr) for Np
in Pp with y1 = 1. Then for each yi, we have yi.ti ∈ Hp for some ti ∈ Np since
each (left) coset yiNp in Kp contains a unique (left) coset of Np ∩ Hp. Therefore
we can find t1, . . . , tr in Np such that (y1t1, . . . , yrtr) gives a (left) transversal to
the cosets of Np ∩ Hp in Hp. We now see how to use such a tuple to extend the
good basis of Np ∩ Hp to parametrize Hp ∈ H(Pp) by following Definition 2.10,
[dS93] .
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Definition 7.2.4. Let Hp ∈ H(Pp) and (y1, . . . , yr) be a left transversal for Np
in Pp. We call a tuple (h1, . . . , hd, t1, . . . , tr) in Np a basis for Hp if

(i) (h1, . . . , hd) is a good basis for Np ∩ Hp

(ii) (y1t1, . . . , yrtr) is a left transversal for Np ∩ Hp in Hp

Then the relations explained above can be summarized as follows:

Gp

Kp

Pp

HpNp

Np ∩ Hp

(y1, . . . , yr)

(y1t1, . . . , yrtr)(t1, . . . , tr)

(h1, . . . , hd)

Remark 7.2.5. The existence of good basis of Np ∩ Hp ensures the existence of
such basis for Hp ∈ H(Pp) as Pp = NpHp. A basis is not necessarily a topological
generating set for Hp. Nevertheless we have, for a given basis (h1, . . . , hd, t1, . . . , tr)
for Hp,

Hp = 〈h1, . . . , hd, y1t1, . . . , yrtr〉.

Recall that uniform definability should be understood as uniformly definable in p,
and the constant symbols ai, yj, bij.

Lemma 7.2.6. The set of bases is uniformly definable.

Proof. The tuple (h1, . . . , hd, t1, . . . , tr) is a basis for some Hp ∈ H(Pp) if and only
if (h1, . . . , hd) gives a good basis for Np ∩ Hp, and

Hp =
r⋃

i=1

yiti(Np ∩ Hp).

As we know the set of good basis is defined uniformly, it is enough to show that
the latter condition can be expressed by an L′′-formula independent from p. First
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note that it is equivalent to say that

yitih1(yjtjh2)−1 ∈ Hp

for all h1, h2 ∈ Np ∩ Hp and i, j ∈ {1, . . . , r}. To see this, we now define aij, bi ∈ Np
and

γ : {1, . . . , r} × {1, . . . , r} → {1, . . . , r} by yiyj = yγ(i,j)aij

δ :{1, . . . , r} → {1, . . . , r} by y−1
i = yδ(i)bi.

Then the following suffices to finish the proof since we have the conjugation map
on Np uniformly definable in L′′. The expression yitih1(yjtjh2)−1 = yktkh3 for
some h3 ∈ Hp and k ∈ {1, . . . , r} can be given as follows:

∃h3 : y−1
δ(j)(y

−1
i aiδ(j)yitih1h−1

2 t−1
j )yδ(j)bj = tγ(i,δ(j))h3.

7.2.3 Back to describing the fibres of C

We again assume that G is a FAb compact p-adic analytic group with its normal
uniform pro-p subgroup N. We also let K be a subgroup of G such that N ≤ K,
and fix a Sylow pro-p subgroup P of K.

Recall the set XK given in Corollary 7.1.4. Let H ∈ H(P) be such that (H,χ) ∈
XK. Fix t1, . . . , tr ∈ N such that (y1t1, . . . , yrtr) gives a left transversal for N ∩ H
in H. Recall also the maps given in the above proof, for some aij, bi ∈ N,

γ : {1, . . . , r} × {1, . . . , r} → {1, . . . , r} by yiyj = yγ(i,j)aij

δ :{1, . . . , r} → {1, . . . , r} by y−1
i = yδ(i)bi

In addition, we also define the automorphisms of G given by the elements of left
transversal (y1, . . . , yr)

ϕi : G → G by g �→ yigy−1
i .

Lemma 7.2.7. [[SZ20], Lemma 6.5.] For a given α ∈ Z2(P/N,Ω(p)) such that
[α] = c, C(H,χ) = c if and only if

∃δ ∈ B2(P/N,Ω(p)), ∀n, n′ ∈ N ∩ H, ∀i, j ∈ {1, . . . , r} :

χ(t−1
γ(i,j)aij ϕ

−1
j (tin)tjn′)α(yiN, yjN)δ(yiN, yjN) = χ(nn′).
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Proof. As obtained in the previous subsection, we have

C(H,χ) = [α]

if and only if there exists an irreducible projective character χ′ of H with factor
set β′ such that fH([β]) = [α], which strongly extends χ. Notice that β′ lies in
Z2(H,C∗); hence β ∈ Z2(H/(N ∩ H),C∗) as indicated in Theorem 5.2.2.
Therefore C(H,χ) = [α] if and only if there is β ∈ Z2(H/(N ∩ H),C∗) such that
fH([β]) = [α], so one gets

χ′(yitin.yjtjn′)β′(yitin, yjtjn′) = χ′(yitin)χ′(yjtjn′). (7.2)

for all n, n′ ∈ N ∩ H and all i, j ∈ {1, . . . , r}. Recall that any pair of strong
extensions of χ to H give the same element CH(χ) ∈ H2(H/(N ∩ H),C∗). So
assume that χ′ is given by

χ′(yitin) = χ(n)

for each n ∈ N ∩ H and i ∈ {1, . . . , r}. Consequently, the LHS of the Equation
(7.2) becomes

χ′(yitin)χ′(yjtjn′) = χ(n)χ(n′) = χ(n.n′).

Note that χ′ has values in Ω(p); hence we may assume β′ ∈ Z2(H,Ωp). Therefore
β ∈ Z2(P/N,Ω(p)) and the equation (7.2) turns into

χ′(yitinyjtjn′)β(yiti(N ∩ H), yjtj(N ∩ H)) = χ(nn′).

Recall that yiti(N ∩ H) ⊆ yiN. Then fH([β]) = [α] if and only if there is δ ∈
B2(P/N,Ω(p)) satisfying

β(yiti(N ∩ H), yjtj(N ∩ H)) = α(yiN, yjN)δ(yiN, yjN). (7.3)

for all i, j ∈ {1, . . . , r}. We now combine the equations (7.2) and (7.3) to obtain
that C(H,χ) = [α] if and only if there exists δ ∈ B2(P/N,Ω(p)) such that for all
n, n′ ∈ N ∩ H and for all i, j ∈ {1, . . . , r}, we have

χ′(yitinyjtjn′)α(yiN, yjN)δ(yiN, yjN) = χ(nn′).

In order to finalize the proof, the last equality that we need to see is the following:

χ′(yitinyjtjn′) = χ(t−1
γ(i,j)aij ϕ

−1
j (tin)tjn′).

74



Note that yitinyjtjn′ and yγ(i,j)tγ(i,j) are the elements of H; hence
t−1
γ(i,j)aij ϕ

−1
j (tin)tjn′ ∈ N ∩ H. Then we have the following identities

yitinyjtjn′ =yiyjy−1
j tinyjtjn′

=yiyj ϕ
−1
j (tin)tjn′

=yγ(i,j)aij ϕ
−1
j (tin)tjn′

=yγ(i,j)tγ(i,j)t
−1
γ(i,j)aij ϕ

−1
j (tin)tjn′.

(7.4)

As we assumed χ′(yitin) = χ(n) for each n ∈ N ∩ H and i ∈ {1, . . . , r}, we have

χ(t−1
γ(i,j)aij ϕ

−1
j (tin)tjn′) = χ′(yitinyjtjn′).

We conclude this section by definably parametrizing Z2(Pp/Np,Ω(p)) and
B2(Pp/Np,Ω(p)) in a p-independent way. Recall the isomorphism ι of Qp/Zp
onto Ω(p). Let z ∈ Mr(Qp) where Mr(Qp) is the r × r-matrices over Qp,
consequently ι(zij +Zp) ∈ Ω(p). Consider the following map

δ : Pp/Np × Pp/Np → Ω(p)

δ(yiNp, yjNp) �→ ι(zij +Zp)

We now collect the matrices (zij) ∈ Mr(Qp) such that the map δ lie in
Z2(Pp/Np,Ω(p)) and B2(Pp/Np,Ω(p)), call them Zp and Bp respectively.

Lemma 7.2.8. The sets Zp and Bp are uniformly definable subsets of Qr2
p .

Proof. Let (zij) ∈ Mr(Qp) and let δ ∈ Z2(Pp/Np,Ω(p)) be the map Pp/Np ×
Pp/Np → Qp/Zp defined as

δ(yiNp, yjNp) �→ ι(zij +Zp).

Then δ satisfies the identity given below

δ(yiNpyjNp, ykNp)δ(yiNp, yjNp) = δ(yiNp, yjNpykNp)δ(yjNp, ykNp).

To see what it means, recall the map γ given by yiyj = yγ(i,j)aij . Then the above
identity holds if and only if

δ(yγ(i,j)Np, ykNp)δ(yiNp, yjNp) = δ(yiNp, yγ(j,k)Np)δ(yjNp, ykNp).
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Therefore (zij) ∈ Zp if and only if for all i, j, k ∈ {1, . . . , r}, we have

zγ(i,j)k + zij = ziγ(j,k) + zjk mod Zp.

It is obvious that Zp is uniformly definable; hence equivalence modulo Zp is also
uniformly definable. Consequently, the set Zp ⊆ Qr2

p is uniformly definable.

Now we prove that set Bp is also uniformly definable. Recall that
δ ∈ B2(Pp/Np,Ω(p)) if and only if

δ(x1Np, x2Np) = ϕ(x1Np)ϕ(x2Np)ϕ(x1Npx2Np)
−1,

for some function ϕ : Pp/Np → Qp/Zp since Qp/Zp � Ω(p). We now construct a
parametrization for such ϕ exploiting the fact that (y1, . . . , yr) is a left transversal
for Np in Pp.

ϕ : Pp/Np → Qp/Zp

yiNp �→ bi +Zp

Accordingly, δ ∈ B2(Pp/Np,Ω(p)) if and only if there are b1, . . . , br ∈ Qp such that
for all 1 ≤ i, j ≤ r

δ(yiNp, yjNp) = ϕ(yiNp)ϕ(yjNp)ϕ(y1iNpyjNp)
−1.

By using γ again, one can see that this holds if and only if

zij = bi + bj − bγ(i,j) mod Zp.

Hence Bp is uniformly definable.

76



Chapter 8

Towards the Main Theorem

In this chapter, we realize our aim to parametrize Irr c
Kp
(Np) in a uniformly

definable way. To this end, we first present a construction of a subset D c
p of Qm

for some m, from [SZ20], which is a variation of Lemma 8.8, [HMR18]. We then
see that the sets {D c

p}p are uniformly definable. Following this, we establish
uniformly definable equivalence relations on {D c

p}p with classes corresponding to
the elements of Irr c

Kp
(Np), and conclude by applying the uniform rationality

result of Nguyen, given in Section 3.3.

8.1 Uniformly definable parametrization of fibres.

Let Gp be a uniformly definable FAb compact p-adic analytic group in in the
structure (Qp,Z,Fp,LZ�t�). Let Np be a normal uniform subgroup Np ≤ Gp. We
showed that Np is also uniformly definable in p using additional constants a1 . . . , ak.
Let Kp be a subgroup of Gp such that Np ≤ Kp, and fix a Sylow pro-p subgroup Pp
of Kp. In Section 7.1, we use the fact that finite p-groups are monomial to define
the set XKp of tuples (H,χ) with H ∈ H(Pp) and a linear character χ enabling us
to work with linear characters instead of arbitrary ones.

We now see that the parametrization, given in [SZ20], Proposition 6.9., of the
fibres of the following map is actually uniformly definable;

C : XKp −→ H2(Pp/Np,C∗)

(H,χ) �→ fH(CH(χ))
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Lemma 8.1.1. For a fixed c ∈ H2(Pp/Np,C∗), define D c
p to be the set of tuples

(λ, ξ) := (λ, (ξ1, . . . , ξd)) ∈ Md×(d+r)(Zp)×Qd
p such that:

(i) For 1 ≤ j ≤ d + r, the columns (λ1j, . . . ,λdj) of λ give the Zp-coordinates of
a basis (h1, . . . , hd, t1, . . . , tr) for some subgroup H ∈ H(Pp) with respect to
the generating set {a1, . . . , ad} and the (left) transversal y1, . . . , yr,

(ii) The mapping from the set {h1, . . . , hd} to the quotient Qp/Zp; hi �→ ξi +Zp
induces a continuous H-invariant homomorphism

χ : Np ∩ H → Qp/Zp,

(iii) The induced character IndNp
Np∩H(ι ◦ χ) ∈ IrrKp(Np),

(iv) C(H, (ι ◦ χ)) = c.

Then the sets {D c
p}p ⊆ Q

d×(d+r)
p are uniformly definable.

Proof. As we obtained in the Lemma 7.2.6, the first condition is uniformly
definable. To see that condition (ii) can be expressible uniformly in p, we will
follow the steps of the proof of Lemma 8.8, [HMR18]; we see that (i) ⇒ (ii) if
and only if:

(1) there exists (µij) ∈ Md(Zp), and its columns give the Zp-coordinates of a
good basis for some finite index normal subgroup M of Np ∩ H;

(2) there exist ξ ∈ Qp, r1 . . . , rd ∈ Zp, and h ∈ Np ∩ H such that the order of ξ
in Qp/Zp is (Np ∩ H : M), and for every i, j ∈ {1, . . . , d} we get

hj = t−1
i ϕ−1

i (hrj)ti mod M and riξ = ξi mod Zp.

In particular, we have hj = hrj mod M as y1 = 1.

We begin with assuming that the conditions (i) and (ii) hold. Then the continuity
of χ, together with the fact that Qp/Zp is isomorphic to Ω(p), implies that χ
factors through a finite quotient of Np ∩ H. Therefore ker(χ) is of finite index in
Np ∩ H, so we set M in the condition (1) as ker(χ), and choose (µij) ∈ Md(Zp)
such that its columns are the Zp-coordinates of a good basis of M as required in
the condition (1).

To find ξ ∈ Qp, r1 . . . , rd ∈ Zp and h ∈ Np ∩ H in the condition (2), we first note
that (Np ∩ H)/M is cyclic as it is isomorphic to a subgroup of C∗, let

(Np ∩ H)/M = 〈hM〉
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for some h ∈ Np ∩ H. Set ξ = χ(h), then its order is (Np ∩ H : M). Recall that
h1, . . . , hd ∈ Np ∩ H, accordingly set r1, . . . , rd ∈ Z such that

hi M = hri M

for each 1 ≤ i ≤ d; hence ξi = χ(hi) = χ(hri) = riξ mod Zp.

We assumed that (h1, . . . , hd, t1, . . . , tr) is a basis for H, so (y1t1, . . . , yrtr) is a left
transversal for Np ∩ H in H. Since χ is assumed to be an H-invariant map, for
any 1 ≤ j ≤ d,

χ(hrj) = χ(hj) = χ(yitihjt−1
i y−1

i ),

for all 1 ≤ i ≤ d. Therefore hj = t−1
i ϕ−1

i (hrj)ti mod M, and the condition (2)
follows.

To see the other direction, we first assume that (i) holds; (h1, . . . , hd, t1, . . . , tr) is
a basis for H. We also assume that there are (µij) ∈ Md(Zp), h ∈ H, and ξ ∈ Qp
such that (1) and (2) hold. To define a continuous homomorphism χ : Np ∩ H →
Qp/Zp, we first recall that, by Theorem 3.3.2 (3), the map λ �→ hλ between Zp
and Np ∩ H is analytic in the Zp-coordinates of Np, and it is therefore continuous.
M is an open subgroup of Np ∩ H as a finite index subgroup, so one can find a
neighborhood U of 0 such that hλ ∈ M for all λ ∈ U. The fact that Z is dense in
Zp implies that there exists si ∈ (ri + U) ∩Z for all 1 < i < d; hence

hsi M = hri M = hi M.

Therefore, (Np ∩ H)/M is cyclic, and generated by hM. To define χ given (ii),
consider the following map

β : (Np ∩ H)/M → Qp/Zp

hM �→ ξ +Zp

Then β gives an injective homomorphism since the order of ξ +Zp in Qp/Zp is
equal to (Np ∩ H : M) which is the order of hM in (Np ∩ H)/M. Then β induces
a continuous homomorphism

χ : Np ∩ H → Qp/Zp

given by x �→ β(xM) as the quotient map Np ∩ H → (Np ∩ H)/M is continuous.

Now we will see that χ is H-invariant. For any 1 < j < d, then

χ( t−1
1 hrj t1) = β(t−1

1 hrj t1M) = β(hj M) = χ(hj) = rjξ +Zp = ξ j +Zp.

By assumption y1 = 1, so t1 ∈ N ∩ H. Thus, for all 1 < j < d,

χ(hj) = χ(t−1
i (hrj)ti) = rjξ +Zp.
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Similarly, for 1 < i, j < d, one obtains χ(t−1
i ϕ−1

i (hrj)ti) = rjξ +Zp = ξ j +Zp
proving our claim.

To see how to express conditions (1) and (2) uniformly definably, it is enough to
pass to Zp-coordinates. For the condition (1), we add the following formulae

(∃Λ1j, . . . ,Λdj ∈ Zp) hj = a
Λ1j
1 . . . a

Λdj
d

for 1 ≤ j ≤ d, to the formulae defining the set of good bases. Recall that
equivalence modulo Zp is uniformly definable. Working in modulo M is also
uniformly definable, since we have a good basis for M. The remaining ingredient
is the condition on the order of ξ which can be given as follows:(

h(ξ
−1) ∈ M

)
∧
(
∀η ∈ Qp

(
v(η) > v(ξ)

)
⇒ h(η

−1) /∈ M
)
.

We can move to the condition (iii); to see that it is expressible in a uniformly
definable way, we first rewrite Mackey’s irreducibility criterion and then show how
to recover having K as a stabilizer in a uniformly definable way. Note first that
ι ◦ χ : Np ∩ H → Ω(p) ⊆ C∗. To avoid heavy notation, we now identify the group
Qp/Zp with Ω(p) via the isomorphism ι; accordingly we impose χ = ι ◦ χ.

Recall that Mackey’s irreducibility criterion indicates that IndNp
Np∩H(χ) is

irreducible if and only if for each g ∈ Np \ (Np ∩ H),

〈ResH
g(Np∩H)∩(Np∩H)(χ), Res

H
g(Np∩H)∩(Np∩H)(

gχ)〉 = 0.

Therefore IndNp
Np∩H(χ) is irreducible if and only if

∀g ∈ Np :
(
∀h ∈ Np ∩ H, χ(gh) = χ(h) ⇒ g ∈ H

)
.

Writing the formula above in terms of Zp-coordinates in Np and λ, ξ, by the first
two assertion, we see that the irreducibility statement in condition (iii) is uniformly
definable.

As the final step towards obtaining that (iii) is uniformly definable, we see how
to express Kp-stability (under the conjugation action). By Lemma 7.1.5 (i),
stabGp(Ind

Np
Np∩H(χ)) can be given as

{g ∈ G : IndNp
Np∩H(χ) = IndNp

g(Np∩H)
(gχ)}.

Then stabGp(Ind
Np
Np∩H(χ)) = Kp if and only if the following statement holds:

∀g ∈ Gp :
(
IndNp

Np∩H(χ) = IndNp
g(Np∩H)

(χ) ⇔ g ∈ Kp

)
.
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Recall that we extended (y1, . . . , yr) to the (left) transversal (y1, . . . , yu) for Np in
Kp in Section 3.4. By using the transversals yi and that Np is uniformly definable,
we write the following expression uniformly defining Kp:

g ∈ Kp ↔ g ∈ y1Np ∨ . . . ∨ g ∈ yuNp.

Now we proceed by examinining the identity IndNp
Np∩H(χ) = IndNp

g(Np∩H)
(χ). To

this end, in Lemma 7.1.5 (ii), we put the following

M = Np ∩ H, M′ = g(Np ∩ H), χ′ = g(χ).

Then it follows that IndNp
Np∩H(χ) = IndNp

g(NP∩H)
(gχ) if and only if

∃n ∈ Np, ∀h ∈ Np ∩ H :
( nh ∈ g(Np ∩ H) ⇒ χ(h) = gχ(nh)

)
.

By a similar argument, one can write the above formula in terms of Zp-coordinates
in Np and λ, ξ; so we are done.

Now we will show that the condition (iv) is expressible uniformly in p. In Lemma
7.2.7, we already saw when C(H,χ) = c holds. So fix α ∈ Z2(Pp/Np,Ω(p)) such
that [α] = c. Then the condition iv) is equivalent to

∃δ ∈ B2(Pp/Np,Ω(p)) :( ∧
i,j∈{1,...,r}

∀n, n′ ∈ Np ∩ Hp
(
χ(t−1

γ(i,j)aij ϕ
−1
j (tin)tjn′)α(yiNp, yjNp)δ(yiNp, yjNp) = χ(nn′)

))
.

We now parametrize α and δ by elements of Zp as suggested in Lemma 7.2.8.
Therefore ∃δ ∈ B2(Pp/Np,Ω(p)) in the formula above can be replaced by ∃(dij) ∈
Bp and similarly we can put (bij) ∈ Zp in place of α providing the following

α(yiNp, yjNp) = bij +Zp

δ(yiNp, yjNp) = dij +Zp

for all i, j ∈ {1, . . . , r}. Using (i) and (ii) once more, we get the uniform definability
of (iv) in p with parameters bij, since we recover the equalities in the above formula
as equalities modulo Zp involving λ, ξ and of the Zp-coordinates in Np.
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8.2 Construction of a uniformly definable equivalence
relation on D c

p.

We now describe our uniformly definable equivalence relation on D c
p ; the classes

will be in one-to-one correspondence with Irr c
Kp
(Np). To this end, we first define

Ψ : D c
p → C−1(c) by

Ψ
(
(λ, ξ)

)
= (H,χ)

where H ∈ H(P) is given by the basis (h1, . . . , hd, t1, . . . , tr) and χ : Np ∩ H →
Qp/Zp is the homomorphism as in previous lemma. The map Ψ is therefore
surjective. Following this, we can define the following equivalence relation on D c

p .
Let (λ, ξ), (λ′, ξ ′) be such that (H,χ) = Ψ(λ, ξ) and (H′,χ′) = Ψ(λ′, ξ ′). Define
Ep by

(λ, ξ) ∼p (λ′, ξ ′) ⇔ IndNp
Np∩H(χ) = IndNp

Np∩H′(χ
′).

Proposition 8.2.1. The equivalence relations {Ep}p are uniformly definable.

Proof. Let (λ, ξ), (λ′, ξ ′) be such that (H,χ) = Ψ(λ, ξ) and (H′,χ′) = Ψ(λ′, ξ ′).
As obtained in the Lemma 7.1.5,

IndNp
Np∩H(χ) = IndNp

Np∩H(χ
′) ⇔ ∃g ∈ Np : Res

g(Np∩H)
g(Np∩H)∩(Np∩H′)

(gχ) = Res(Np∩H)′

g(Np∩H)∩(Np∩H′)(χ
′).

Accordingly, we obtain

(λ, ξ) ∼ (λ′, ξ ′) ⇔ ∃g ∈ N : ∀h ∈ Np ∩ H (gh ∈ Np ∩ H′ ⇒ χ(h) = χ′(gh)).

By describing the above in terms of Zp-coordinates of N, we have an L′′-formula
independent of p. And by realizing such a formula over the sets {D c

p}p, we can
define the relations {Ep}p uniformly.

We now give a uniform definable enumeration to apply the Nguyen’s result given
in [Ngu19]. First recall that we established a surjective function

XK → IrrKp(Np); (H,χ) �→ IndNp
Np∩H(χ)

in Corollary 7.1.4. Compose this function with Ψ,

D c
p

Ψ−→ C−1(c) ⊆ XKp

surj.−−→ IrrKp(Np)

(λ, ξ) �→ (H,χ) �→ IndNp
Np∩H(χ)

Write c = fH(cH(χ)), then CPp(Ind
Np
Np∩H χ) = fH(CH(χ)) by Proposition 7.1.2 as

(H,χ) ∈ C−1(c). Therefore IndNp
Np∩H χ ∈ Irr c

Kp
(Np) and the following composition
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map is surjective D c
p → C−1(c) → Irr c

Kp
(Np). Moreover, we obtain a bijection

between the set of equivalence classes and Irr c
Kp
(Np) when we quotient D c

p out by
the equivalence relation Ep.

We now focus on producing a new definable family of equivalence relation by
using this bijection in order to work within Nguyen’s framework. For the tuples
(λ, ξ) ∈ D c

p , we write (h1(λ), . . . , hd(λ)) for the corresponding good basis given in
Lemma 8.1.1,(i). Define fp : D c

p → Z by

(λ, ξ) �→
d

∑
i=1

ω(hi(λ))− 1.

Note that, if Ψ
(
(λ, ξ)

)
= (H,χ), then p fp(λ,ξ) equals to the index of Np ∩ H in

Np, which is exactly the degree of IndNp
Np∩H χ. Consequently, if ((λ, ξ), (λ′, ξ ′)) ∈

Ep, fp((λ, ξ)) = fp((λ′, ξ ′)) as the degrees of the associated induced characters
IndNp

Np∩H χ and IndNp
Np∩H′ χ′ are equal.

We now aim to define an equivalence relation on the following set

D c
p,n = {(λ, ξ) ∈ D c

p : fp(λ, ξ) = n}.

Let (λ, ξ), (λ′, ξ ′) ∈ D c
p , then define Ep,n by

(λ, ξ) ∼p,n (λ′, ξ ′) ⇔ IndN
N∩H(χ) = IndNp

Np∩H′(χ
′).

Let Fp : Ep → Z be the function given by ((λ, ξ), (λ′, ξ ′)) �→ fp(λ, ξ). Then we
can write Ep as the fibres of Fp at n, Ep,n = F−1

p (n), for any natural number n;

Ep,n = Ep ∩ (D c
p,n ×D c

p,n).

Then we have a uniformly definable family of equivalence relations {Ep,n}p,n on a
uniformly definable subset D c

p,n ofQd×(d+r)
p . And for all n, there is a bijection of the

set D c
p,n/Ep,n onto the subset of characters of degree pn in Irr c

Kp
(Np). Accordingly,

we have
ζ(Np,Kp,c)(s) =∑

n
|D c

p,n/Ep,n|p−ns.

One can then conclude the main theorem as explained in Section 3.4.
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Chapter 9

What is next?

The most natural next step is to apply this work to obtain uniform (in a sense
given in Section 3.3) virtual rationality of the representation zeta function of FAb
compact p-adic analytic groups. In [SZ20], the virtual rationality is reduced to
the rationality of the partial zeta series as explained in Section 6.2;

ζGp(s) = ∑
Kp∈Sp

(Gp : Kp)
−s−1 ∑

c∈H2(Pp/Np)

f(Kp,Np,θ)(s) ∑
θ∈Irr c

Kp (Np)

θ(1)−s.

With the tools provided in this work, we know how to uniformly definably
parametrize Irr c

Kp
(Np), and obtain uniform rationality by the result of Nguyen,

[Ngu19], presented in Section 3.3. To recover the virtual rationality, one needs to
obtain a uniformly definable parametrization of all the subgroups Kp such that
Np � Kp � Gp, and stabGp(θ) = Kp for some θ ∈ Irr(Np), in other words,
uniformly definable parametrization of Sp and the cohomology classes
c ∈ H(Pp/Np,C∗) such that CPp(θ) = c.

As repeatedly mentioned, this work generalizes some ideas inheriting their
framework from the first part of [SZ20] to a uniform setting. Stasinski and
Zordan also deliver corresponding results for twist zeta functions of compact
p-adic analytic groups in the second part and reduce the problem to partial twist
zeta series with similar but more sophisticated methods this time. Another
natural direction would be applying our findings to partial twist zeta series and
investigating uniform rationality.
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