Heinrich Heine
Universitat
Dusseldorf .

Nature-Inspired Algorithms
for Mobile, Communicating,
and Sensing Robot Swarms

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultat
der Heinrich-Heine-Universitat Diisseldorf

vorgelegt von

Ahmad Reza Cheraghi

geboren in

Teheran /Iran

Diisseldort, May 2022

aus dem Institut fiir Informatik
der Heinrich-Heine-Universitiat Diisseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultit der
Heinrich-Heine-Universitat Diisseldorf

Referent: Jun.-Prof. Dr. Kalman Graffi
Korreferent: Prof. Dr. Martin Mauve
Tag der miindlichen Priifung: 05.07.2022

Abstract

Imagine a world full of robots created to do mundane or dangerous tasks, for example cleaning,
carrying heavy objects, protecting us, or searching for survivors in dangerous places. These
are examples for the future. But, the complexity of developing these robots should not be
underestimated. The hardware and software need to be designed, developed, and tested. Each
robot needs to have artificial intelligence. Additionally, the collaboration and communication
among robots must work seemlessly.

In this dissertation, we deal with robot swarm, based on three problem statements including
11 research questions. Robot swarms are groups of robots that accomplish tasks that are either
impossible to solve by one robot or time-consuming. It is an emerging scientific field.

We design, develop, and evaluate a simulator and seven nature-inspired algorithms for robot
swarms. Before doing so, however, we conducted research on robot swarms and summarized
217 publications. The result is an overview of robot swarms’ past, present, and future. In
addition, a comprehensive review of the current state-of-the-art network simulators has been
prepared. This survey compares 25 simulation tools for peer-to-peer, opportunistic, and mobile
ad-hoc networks.

We built a new simulator for robot swarms called Swarm-Sim based on the gained insights.
Swarm-Sim is easy to understand as it is written in Python. It has an API that is easy to
learn, allowing the implementation of a scenario and solutions for various robot swarm tasks.
It has an advanced GUI, which displays the animation of the simulation either in 2D or 3D,
and allows for changes to the environment ad-hoc. Therefore, Swarm-Sim is a simple to learn
and easy to apply simulator to develop and evaluate robot swarm algorithms.

This dissertation’s central and essential contribution is the nature-inspired robot swarm algo-
rithms. We implemented and evaluated seven algorithms on the Swarm-Sim and categorized
them into three application areas. The first application task is the swarm coating. With swarm
coating, the robot swarm is to enclose an arbitrarily shaped object from all sides. We have
developed two algorithms for this purpose. Swarm communication is the second application
area. We deal with how robots can communicate with each other within the swarm. Both
indirect and the direct communication is considered. Last but not least, we deal with swarm
movement. We present two algorithms for coordinated movement within the swarm and how
to motivate the robot swarm to move in different directions.

As a result, this dissertation provides three modules with ten contribution, presented with
summaries from ten papers. The summaries contain two surveys about robot swarms and
network simulators, one article about the Swarm-Sim simulator, and seven nature-inspired
algorithms for robot swarms. We hope that with this dissertation we have made an important
contribution to the scientific community and to the further development of robot swarms.

Zusammentfassung

Stellen Sie sich eine Welt voller Roboter vor, die Arbeiten verrichten, die wir nicht mégen, z. B.
putzen, schwere Dinge tragen, uns beschiitzen oder an gefihrlichen Orten nach Uberlebenden
suchen. Dies sind Beispiele fiir die Zukunft. Dennoch sollte die Komplexitit der Entwicklung
dieser Roboter nicht unterschétzt werden. Die Hard- und Software muss entworfen, entwickelt
und getestet werden. Jeder Roboter muss iiber eine kiinstliche Intelligenz verfiigen. Auch die
Zusammenarbeit und die Kommunikation untereinander sind wichtige Punkte.

In dieser Dissertation befassen wir uns mit der Kooperation von Robotern, auch als Robot-
erschwarm bezeichnet, anhand von drei Problemstellungen, mit 11 Forschungsfragen. Robot-
erschwiarme sind Gruppen von Robotern, die Aufgaben bewéltigen, die von einem einzelnen
Roboter nicht oder nur mit hohem Zeitaufwand gelost werden kénnen. Hierbei handelt es sich
um ein aufstrebendes Wissenschaftsgebiet.

Wir haben einen Simulator und sieben von der Natur inspirierte Algorithmen fiir Robot-
erschwirme entworfen, entwickelt und getestet. Zuvor haben wir jedoch Recherchen iiber
Roboterschwirme durchgefiihrt und fast 217 Veroffentlichungen gelesen und zusammengefasst.
Das Ergebnis ist ein Uberblick iiber die Vergangenheit, Gegenwart und Zukunft von Roboter-
schwiirmen. Dariiber hinaus wurde eine umfassende Ubersicht iiber den aktuellen Stand der
Technik von Netzwerksimulatoren erstellt. Diese Ubersicht vergleicht 25 Simulationswerkzeuge
fiir Peer-to-Peer-, opportunistische und mobile ad-hoc Netze.

Aus den Erkenntnissen haben wir einen neuen Simulator fiir Roboterschwirme namens Swarm-
Sim entworfen und entwickelt. Swarm-Sim ist leicht zu erlernen, da es in Python geschrieben
ist. Es verfligt iiber eine leicht zu erlernende API, die die Implementierung eines Szenarios
und Loésungen fiir verschiedene Roboterschwarmaufgaben ermoglicht. Es verfiigt iiber eine
fortschrittliche grafische Benutzeroberfliche, die die Animation der Simulation entweder in 2D
oder 3D anzeigt und die Moglichkeit bietet, die Umgebung ad-hoc zu verdndern. Daher ist
Swarm-Sim ein einfach zu erlernender und leicht anzuwendender Simulator zur Entwicklung
und Bewertung von Roboterschwarm-Algorithmen.

Der zentrale und wesentliche Teil dieser Dissertation sind die von der Natur inspirierten
Roboterschwarm-Algorithmen. Wir haben sieben Algorithmen auf dem Swarm-Sim imple-
mentiert und evaluiert und sie in drei Anwendungsbereiche kategorisiert. Die erste Anwen-
dungsaufgabe ist das Schwarm-Coating. Beim Schwarm-Coating soll der Roboterschwarm ein
beliebig geformtes Objekt von allen Seiten umschliefen. Hierfiir haben wir zwei Algorithmen
entwickelt. Die Schwarmkommunikation ist das zweite Anwendungsgebiet. Es geht darum, wie
Roboter innerhalb des Schwarms miteinander kommunizieren kénnen. Dabei werden sowohl der
indirekte als auch der direkte Weg der Kommunikation betrachtet. Zu guter Letzt beschéfti-
gen wir uns mit der Schwarmbewegung beschéftigt. Dafiir stellen wir zwei Algorithmen fiir die
koordinierte Bewegung innerhalb des Schwarms vor und zeigen, wie man den Roboterschwarm
motivieren kann, sich in verschiedene Richtungen zu bewegen.

Daher bietet diese Dissertation drei Module mit zehn Beitrdgen, und alles wird mit zehn
Zusammenfassungen von zehn Arbeiten prisentiert. Die Zusammenfassungen enthalten zwei
Ubersichten iiber Roboterschwirme und Netzwerksimulatoren, einen Artikel iiber den Swarm-
Sim-Simulator und sieben von der Natur inspirierte Algorithmen fiir Roboterschwidrme. Wir
hoffen, dass wir mit dieser Dissertation einen wichtigen Beitrag zur wissenschaftlichen Gemein-
schaft und zur weiteren Entwicklung von Roboterschwirmen geleistet haben.

Acknowledgements

Being humble and grateful and believing and trusting in yourself leads to success. Success is
reaching your goal no matter how arduous; it is staying focused, being patient and passionate,
and believing in your goal.

For more than eight years, I started my PhD journey, and it brought me to my limits. This
PhD journey was not only a challenge for my mind , it was a challenge for my entire being,.
I gained more knowledge than I thought possible. T once thought I was someone who could
manage everything with such ease, but through this journey, I have begun to see things more
seriously and handle obstacles with more precision. And now this journey is coming to an end.
I am now writing my acknowledgment as the last part of my dissertation.

However, this is not the end of my educational journey. I have come to find out that, "I know
that T do not know." The ocean of knowledge is endless. Whatever we know is not enough,
there is still more knowledge we can obtain, and as the Prophet Muhammad PBUH quotes:
"Seek knowledge from the Cradle to the Grave." Now this part of my life is coming to an end,
and my next aim is to keep improving on my existing skills and gain more knowledge. I will
grow steadily and not to stop. I am honored that T have been able to attain my PhD in my
beloved city Duesseldorf, and specially at the Heinrich Heine University.

For that reason, my first gratitude goes to my first supervisor, Dr.-Ing. Kalman Graffi, who
gave me the opportunity, trust, and belief to start this PhD journey. His patience and dedicated
time are priceless. One of the main reasons I continued with my PhD through the long nights
and trying times, was his trust and belief in me. Words cannot express my gratitude, dear
Kalman, because what you did for me cannot be expressed with words. Thank you very much
for your trust and support through this journey.

Next, I want to thank my second supervisor Prof. Dr. Martin Mauve. You are an inspiration,
and your advice is priceless. You gave me the necessary pressure and deadline to publish two
papers in one year. Based on these two factors, I could published more than eight papers in
one year. Where is a will, there is a path. Dear Martin, thank you very much for everything.

The third part of my gratitude belongs to my beloved bachelor and master students, Abdelrah-
man Abdelgalil, Karol Actun, Asma Ben Janete, Jochen Peters, Fabio Schlosser Vila, Sahdia
Shahzad, Gorden Wunderlich, and Julian Zenz. These students supported me in my research.
We worked like a swarm together. We were productive and efficient and the result is that we
could produce nine fantastic papers together.

T am also grateful to the entire team of the Computer Networks department and, in particular,
to the members of the "Technology of social networks" workgroup for a friendly working
environment. My special thanks goes in no particular order, to Dr. Newton Wafula Masinde,
Dr. Tobias Amft, Dr. Andreas Disterhoft, Dr. Andre Ippisch, Dr. Raed Al-Aaridhi, Dr.
Alexander Schneider, Dr. Christian Meter, and Dr. cand. Ahmad Rabay’a. I miss all the
social events and discussions we had. Especially passing the chain of blame to the one who
was late for lunch. Moreover, I want to thank my first office mate, Philipp Hagemeister, my
second office mate, Dr. Salem Sati, and my last and current office mate, Dr. cand. Raphael

Bialon. Further, I want to thank Sabine Freese for all the administration work, she handles
for all of us. And of course your kindness and patience.

Additionally, T would like to thank Dr. Christian Dumpitak and Dr. Debbie Radtke from the
iGRAD office. You are doing a great job by providing scientific and practical seminars for us.
It was an honor for me to be the student representative at the iGRAD, and thank you so much
for that.

Further, I want to thank my parents, Mohammad Ebrahim Cheraghi and Khadijeh Eskandar
Afshari, for their prayers, trust, and belief in me. Then, to my younger brother, Milad Cheraghi.
We both supported each other in our educational process in these eight years. A special thank
you goes out to my grandfather, Mohammad Eskandar Afshari, who has been a role model for
me. More thanks go to my entire family, my aunts, uncles, and cousins. Dear family, you all

are really important to me, and thank you for always being there to support me. I love you
all.

Last but not least, I want to thank myself, frankly speaking. It took more than eight years to
finish this dissertation, but I did not quit, and I managed to publish ten papers, based on my
determination and patience. I had a lot of tough times and was close to giving up many times.
But, I persevered. My aim was to get my PhD, and there was nothing that could stop me. I
always said if someone gives me billions of dollars to quit my PhD, T would deny it. Because
I started this journey, and I will finish it. So, now I finished the writing of my dissertation, I
am close to getting my PhD, the journey is coming to a bittersweet end. Therefore, the last
prop goes to me.

Nevertheless, T hope T did not forget anyone, and if so, I ask for forgiveness.
Again thank you all.

May the 4th be with you!

Contents

1 Introduction 1
1.1 Motivation e 1
1.2 Problem Statement and Research Questions 4
1.3 Modules and Contributions 0 8
1.4 Outline e e e 15

2 The World of Robot Swarms from the Beginning to the Future 17
2.1 Past, Present, and Future of Swarm Robotics 17

2.1.1 Paper Summary L. 17
2.1.2 TImportance and Impact on Dissertation 28
2.1.3 Contribution e 28
2.1.4 Personal Contribution 29

3 Developing a State-Of-The-Art Simulator for Robot Swarms 31

3.1 The State of Simulation Tools for P2P Networks on Mobile Ad-Hoc and Oppor-
tunistic Networks 32
3.1.1 Paper Summary 32
3.1.2 TImportance and Impact on Dissertation 33
3.1.3 Contribution 33
3.1.4 Personal Contribution 0. 34

3.2 Swarm-Sim: A 2D & 3D Simulation Core for Swarm Agents 35
3.2.1 Paper Summaryo 35
3.2.2 Importance and Impact on Dissertation 41
3.2.3 Contributiono 42
3.2.4 Personal Contribution, 42

4 Coating Objects with a Swarm of Robots 43

4.1 A Leader Based Coating Algorithm for Simple and Cave Shaped Objects with
Robot Swarms 43
4.1.1 Paper Summary 43
4.1.2 Importance and Impact on Dissertation 50
4.1.3 Contribution Lo 51
4.1.4 Personal Contribution 51

4.2 General Coating of Arbitrary Objects Using Robot Swarms 52
4.2.1 Paper Summaryo e e e 52
4.2.2 TImportance and Impact on Dissertation 59
4.2.3 Contribution 59
4.2.4 Personal Contribution 60

xi

Contents

5

xii

Challenges and Possibilities of Communication within a Robot Swarm 61
5.1 Opportunistic Network Behavior in a Swarm: Passing Messages to Destination 61
5.1.1 Paper Summary e e 61
5.1.2 Importance and Impact on Dissertation 65
5.1.3 Contribution 66
5.1.4 Personal Contribution oo oo 67
5.2 Prevention of Ant Mills in Pheromone-Based Search Algorithm for Robot Swarms 68
5.2.1 Paper Summaryo e e 68
5.2.2 Importance and Impact on Dissertation 72
5.2.3 Contribution 73
5.2.4 Personal Contribution L oo Lo 74
5.3 Universal 2-Dimensional Arbitrarily Shaped Terrain Marking 75
5.3.1 Paper Summary e e 75
5.3.2 Importance and Impact on Dissertation 79
5.3.3 Contribution 80
5.3.4 Personal Contribution oo oo 80
Dynamic Movements for Robot Swarms 81
6.1 Robot Swarm Flocking on a 2D Triangular Graph 81
6.1.1 Paper Summary 81
6.1.2 Importance and Impact on Dissertation 86
6.1.3 Contribution 87
6.1.4 Personal Contribution 87
6.2 Phototactic Movement of Battery-Powered and Self-Charging Robot Swarms . 88
6.2.1 Paper Summary 88
6.2.2 Importance and Impact on Dissertation 94
6.2.3 Contribution 95
6.2.4 Personal Contribution 0. 95
Conclusion and Future Work 97
7.1 Conclusion L 97
7.2 Future Work L 100
7.3 Closing Words e 102

Chapter 1

Introduction

In the year 2100, the likelihood of robots populating the streets and taking over our daily chores
is very high. Therefore, let us imagine that these robots are integrated into our everyday life.
They clean the streets, pick up our luggage when we arrive at the airport, or drive our cars.
They may act as as soldiers who protect us, artisans who build or renovate our houses, as
robot drones that deliver packages, or as rescue teams that help us in a disaster. In addition,
nanometer-sized robots could be injected into our bodies to check our health, protect us from
viruses, or cure us of diseases. This collaboration of many robots that leads to solving tasks
that would be impossible or inefficient for one robot alone is called a robot swarm, and the
inspiration comes from nature. In this generation or the next, we may soon be confronted with
robot swarms.

In this chapter, we first present the motivation for this dissertation. Next, the problem state-
ments and the research questions necessary for robot swarms are elaborated. Third, we explain
the main modules, and their contributions. Finally, this chapter ends with the outline of this
dissertation.

1.1 Motivation

A swarm is a collection of many units to solve a task that is either impossible or difficult to
solve alone. The world is full of natural wonders, and the source of robot swarms comes from
nature. For example, antibodies that envelop and destroy a virus, ants that spread pheromones
to help other ants find their way to the food source, or fish that band together to fend off
predators. These wonders and their swarm behavior are the sources of inspiration and vision
for a decentralized swarm of robots that work together to complete tasks in a time-efficient
manner.

The human body is a marvel. It has billions of neurons, and blood flows throughout the body,
etc. Most of the organs work independently without the impact of us humans. One of the
miracles is the immune system. When a known virus enters the body, the human immune
system starts to react and sends antibodies to destroy the virus. They look for the virus and
surround it to destroy it. As shown in Fig. 1.1, we can see a Covid-19 virus surrounded
by antibodies. This coating of the virus with antibodies is a miracle. However, how are the
antibodies programmed to coat a virus cell?

Chapter 1 Introduction

N S \ ' J\\f'gf AN
< \\ \\\ S Y
% §§-§ BN

x—

Figure 1.1: Antibodies surrounding a Virus (Source: [1])

Another example is ants searching for food (Fig. 1.2). The ants walk around randomly to find
food. However, when they find food, they use indirect communication for guiding other ants
to the food source. This indirect communication works by using pheromones. Pheromones
are chemical secretions that the ants spread on the way back to its nest. As a result, a
trail is created that leads other ants to the founded food source. Ants that encounter this
pheromone trail will follow it. Thus, with the help of pheromones, the food foraging becomes
more efficient. But how can robot swarms use this indirect communication, and are there other
ways of communication? What are the risks of the different forms of communication?

The last natural wonder we will look at is the fish shoal. In a fish shoal, many hundreds of small
fish come together and swim together in the sea, as shown in Figure 1.3. With having such
as huge formation, the fish can protect themselves from larger predators because the resulting
size seems frightening and robust. However, what is fascinating about a fish shoal is that all
the fish have the same speed, keep their distance from each other, and simultaneously change
their directions. But how do they manage this collective movement without getting in each
other’s way?

There are many more examples of natural miracles. Nevertheless, everything works without
a central control unit. The motivation for this dissertation is to build algorithms that solve
tasks with the help of robot swarms. However, before the dissertation is discussed, here is a
short overview of necessary words and their definitions.

Swarm Robotics and Robot Swarms The robots developed today mainly work independently
rather than as a team. Therefore, it is necessary to develop robots and algorithms to act
together as a team. We refer to this collective team of robots as a robot swarm. However,
most of the literature uses the term swarm robotics definitions for swarm robotics are as
follow:

1.1 Motivation

Author: dotun550flickr.com
License: CC BY-SA 2.0

Title: Ant Trail

Figure 1.2: Ants are following a pheromone trail(Source: [2])

o "Swarm robotics is the study of how to design a large number of relatively simple physically
embodied agents in such a way that local interactions between the agents and between the
agents and the environment result in a desired collective behavior.” [4]

e "Swarm robotics can be defined as the study of how a swarm of relatively simple physically
embodied agents can be constructed to collectively accomplish tasks beyond the capabilities
of a single agent.” [5]

Our definition of swarm robotics serves not only with robots that move but also with robot parts
such as the hand or foot. For example, the hand consists of several fingers, which sometimes
have to act together as a team to grasp something. On the other hand, a robot swarm we define
as a swarm of fully functional robots. Nevertheless, the terms robot swarm and swarm robotics
are used with the same meaning in this dissertation with the following definition: "Robot
swarms or swarm robotics is the collaboration of many programmable (consist for example of
hardware or biological) subjects acting together as a team to accomplish tasks in a time-saving,
practical, and more efficient manner. The swarm size can start as small as two subjects and
increase as long as the efficiency does not suffer.”

Location A location in this dissertation is the point for a two or three-dimensional space. An
object or subject can be positioned on a location. Therefore, we use location to refer to the
point at which an object or subject is positioned. A location has a memory, and therefore its
minimum capability is to store data so subjects can read from and write on it.

Chapter 1 Introduction

Figure 1.3: A fish shoal (Source: [3])

Object, tile, item Anything that cannot carryout actions are defined as an object. An object
can be carried, dropped, or walked on. It has a memory that allows the subject to store and
read data. An object represents stones, staples, soil, etc. They are helpful to build houses,
walls, borders or various geometric formations, etc. We refer to the object sometimes as a tile
or item because the spectrum of meaning is very versatile.

Subject, agent, particle, robot A subject can perform actions i.e. it can move, pick up
or drop items etc. It can be a robot within the swarm, an software agent distributed across
multiple computers, a fluid particle, or programmable DNA. As we can see, there are so many
possibilities a subject can use. Therefore, in this dissertation, we also refer to the subject as an
agent, particle, or robot. There are no definitional differences between them, and all of them
act as a leading entity that can solve tasks together as a robot swarm.

All the necessary terms have been defined. We will later introduce how locations, objects and
subjects are modeled mathematically. Now that we know the primary motivation and the
necessary definitions, it is time to explain the problem statements.

1.2 Problem Statement and Research Questions

There are no problems only challenges. In a challenge you must find a solution to the given
situation. Nevertheless, the challenge here is abstracting the swarms, inspired by nature and
their environment, into a model and building algorithms for them. This section briefly summa-
rizes the challenges we faced in robot swarms research. It includes three problem statements

1.2 Problem Statement and Research Questions

PS2: Modeling and simulating swarms

RQ2.1 RQ2.2 RQ2.3 RQ2.4

PS3: Extraction of task examples from the nature
swarms

RQ3.1 RQ3.2 RQ3.3 RQ3.4 RQ3.5 RQ3.6

Figure 1.4: Problem Statement Overview

(PS), and each of them consists of one or more research questions (RQ) (See Fig. 1.4). The
PS describes the current challenge that needs to be solved, and the RQ consists either of one
question or many based on the context we will answer in this dissertation. The first challenge
is to gain knowledge about robot swarms. Therefore, we start to do comprehensive literature
research. The second challenge is about how to model robot swarms. The question between
using real robots or simulators will be dissected; and the challenge of seeking applications and
tasks inspired by nature and writing algorithms for them will also be discussed. Nevertheless,
let us start with the first problem statement.

PS1: A comprehensive literature research on swarms The world is changing, and digitiza-
tion is taking place. Many predictions from movies and books have already become a reality or
are in the process of becoming one. Nevertheless, we do not know exactly how robot swarms
function. Therefore, the first challenge is to examine books and publications to learn about
robot swarms.

RQ1.1 What do we know about robot swarms’ past, present, and future? This
dissertation deals with the following questions: what do we know about the past of robot
swarms? Who are the pioneers of robot swarms? What did they do? Are there other
types of grouped robots? What is the difference between multiagent systems and robot
swarms? Next, we need to examine the current state of robot swarms. What projects
have been completed and are still ongoing? Do swarm robots exist? What tasks are
they performing? What about simulators for robot swarms? Do they exist, and are they
maintained or up to date? Finally, we come to the future of swarm robotics. Based on
research, what can we predict about the future of robot swarms? What is our vision of
robot swarms?

The theoretical knowledge about robot swarms is one part of this dissertation. However, we
have to convert this knowledge into research. Therefore, the next challenge is to find ways of
feasibility for robot swarms in science.

Chapter 1 Introduction

PS2: Modeling and simulating swarms We see that animals act collaboratively without
any central entity coordinating them from nature. They all act together as a swarm to build a
synergy to solve tasks that are impossible or time-consuming for only one. Our second challenge
is to bring those inspired swarms into the science world, i.e., model them and their environment
mathematically. The following research question is necessary to proceed further.

RQ2.1 Should real or simulated robots be used for this research? We found the answer
to this question very quickly. The main goal of this dissertation is to extract applications
from the natural swarm and develop algorithms for them. Therefore, we need more than
two robots to test robot swarm algorithms. That is, we need to buy robots or simulate
them. However, after googling for real robots that can act as a swarm, we came across
Kilobots [6]. They are small robots that can act as a swarm. However, the price for them
is high. Ten Kilobots cost about 1,700 €. Therefore, buying 100 robots to test robot
swarm algorithms is expensive and updating each robot with a new algorithm would be
time-consuming. Therefore, the answer to this research question is to use a simulator
because it is cost-effective, saves time, and does not incur the overhead of updating each
robot. However, finding a suitable simulator for algorithm evaluation is another challenge
that leads us to our second research question in this part.

RQ2.2 What is the current state of simulators? For the second research question, it is
necessary to know the current state of simulation tools on the market. It is essential to
conduct comprehensive research on simulators for the three types of wireless networks,
i.e., mobile ad-hoc, opportunistic, and peer-to-peer networks. This research question is
necessary to learn more about the current state of simulators. We need to know how many
simulators have been developed for these networks. With what programming language
are they written? How easy are they to learn? Which simulator can handle all three
networks? When was the latest version released? Finally, how popular are they in the
research community? These research questions need to be answered before proceeding to
the following research question.

RQ2.3 How to model mathematically natural phenomenon? The inspiration for robot
swarms comes from natural phenomena, and we want to simulate them and develop
algorithms for them. However, it is necessary to model them in mathematical sets to
use them for algorithms independent of programming languages. These mathematical
models will form an abstraction of the natural swarm. The goal is to use these models to
describe the algorithm for each defined task, and to determine when a task is complete
and prove that the algorithm works correctly. Therefore, the research question in this
part is: How should the natural swarm be modeled mathematically?

RQ2.4 How do we develop a simulator? For this challenge, the research question is:
How can a simulator be designed that is that is easy to learn, and not complicated to
develop, and able to evaluate new algorithms? What features should simulators have
to differentiate themselves from other simulators? With what programming language
should it be written? Finally, should it have a graphical user interface with 2D or 3D
animation and how should the results be interpreted?

These research questions build a fundamental for this dissertation. Because based on answering
those questions, we can proceed further to solve the following upcoming challenges.

1.2 Problem Statement and Research Questions

PS3: Extraction of task examples from the nature swarms Modeling nature into an abstract
mathematical model gives us the input necessary for simulating robot swarms. Nevertheless,
it is vital to define tasks, which brings us to our last challenge: "Extracting tasks from the
nature swarms". The aim here is to extract tasks from nature, then define their aims, necessary
inputs, algorithm, and evaluation. To standardize our proceeding to extract robot swarm tasks
and the procedure to simulate them, we have set the following research questions.

RQ3.1 What inspiring tasks can we extract from nature? Based on the Cambridge
dictionary, a task is defined as: "A piece of work to be done, especially one done regularly,
unwillingly, or with difficulty." Therefore, a task is a piece of work that has to be done.
With this research question we can extract tasks inspired by nature. Research must be
done on natural phenomena to find a suitable task that can be adapted for robot swarms.
A simple example of a task inspired by nature is ants’ food collection (foraging). Ants
leave their nests to find food. When they find a food source, they take it and return to
its nest. Ant foraging is one example of a nature-inspired task. Nevertheless, each task
must define its aim, input, solution, and metrics.

RQ3.2 What is the aim of the task? The main question here is, what is the aim? For
each task, it is necessary to define its aim. For example, with the ant foraging, the task
is to find food and take it to the nest. Therefore, their main aim is to increase food
capacity in the nest. Knowing the task and the aim, it is still important to know what
inputs are necessary and which characteristics they should have.

RQ3.3 What is given for the task? After we find out the task and the aim, it is necessary
to know what is given. What are the required inputs to solve the task with the given
aim? Additionally, what capabilities should they have? Who are the actors and what
are their features and limitations? Moreover, how should the environment for the robot
swarm be set up? For example, the inputs are the ants that can move around, a restricted
area, and a given amount of food sources by the ant foraging. To sum it up, the inputs
must be defined with their capabilities to design and develop a solution, which brings us
to our fourth research question.

RQ3.4 How should the task be solved? After knowing the task and the inputs, the next
required step is designing and implementing the algorithms. An algorithm is a step-
by-step procedure that tells the swarm robots how to solve the task. For designing the
algorithm, either a flow chart or pseudo-code can be used. After designing, it is necessary
to implement it into a programming language to test and validate the algorithm, which
brings us to the following research question.

RQ3.5 How can the algorithm for the task be validated? Any developed algorithm
needs to be validated for its usage, which means that there must be confirmation that it
is fulfilling the task and reaching its aim. Therefore, it is necessary to define the criteria
for the validation. For example, to validate the ant foraging, we test if the amount of
provided food is collected in the nest after a given time. It is crucial to define a timeframe,
otherwise, an unsuccessful algorithm can go on for infinity. The time can be defined based
on a scenario. Therefore, we know that the ant foraging is working correctly. However,
there might be other factors necessary for the validation, but time is also essential.

Chapter 1 Introduction

M2: Swarm Simulator
C2.1: State of Simulators [8] C2.2: Swarm-Sim [9]

M3: Coating

C3.1: Leader [10] C3.2: General [11]

M4: Communication

C4.1: OppNet [12] C4.2: Pheromones [13] C4.3: Marking [14]

M5: Movement

C5.1: Flocking [15] C5.2: Phototaxis [16]

Figure 1.5: Modules Overview

RQ3.6 What are the metrics for the task, and how should they be measured? Now,
we must identify how to measure the algorithm and what metrics will be used. Metrics
can be success rate, overhead, time, messages, etc. However, the success rate is the most
common metric because it is necessary to see if the algorithm is doing the task within a
given time and condition. Therefore, the success rate is the most essential metric. For
example, the ants’ foraging algorithm is successfully validated when all the food is found
and taken to the nest within a given time. To sum up, metrics are vital for validating
and testing the efficiency of an algorithm.

We now know the three problem statements and each of their research questions. Next, we
describe three modules and the contributions of this dissertation.

1.3 Modules and Contributions

Robot swarms are a group of robots doing tasks that are either impossible for one robot or more
efficient when they are done together as a swarm. This dissertation has three modules (M) with
contributions (C) as shown in Fig. 1.5. The contributions are grouped based on the previous
modules. The first contribution is comprehensive literature research about the past, present,
and future of robot swarms that consists of a summary of almost 217 publications. Next, we
build a state-of-the-art simulator named "Swarm-Sim" that is easy to learn. However, before
developing it, we elaborate the state of network simulation tools, and additionally, we model
the nature swarm mathematically. The final contribution is the central part of this dissertation.
We design, develop, and evaluate seven different algorithms for three practical tasks for robot
swarms. The first task is the coating of objects with robot swarms. for robots to surround

1.3 Modules and Contributions

an object of any shape from all sides. The communication between the individual robots
within the swarm is the second task. In this task, the aim is to find different communication
techniques and test them within the swarm. And finally, the last task is to move the swarm in
any direction. Because, the swarm is built out of robots, it is necessary to find possibilities to
keep them together while moving as a swarm.

M1 Literature research about robot swarms It is always important to begin with review-
ing current existing literature. This module extracts all the necessary information from
the robot swarm’s past, present, and future analyze the exact definitions and challenges.
We read and summarize various publications about the past and the present of robot
swarms. Therefore, our first contribution is about the world of swarm robotics from the
beginning to the future. We contribute an extensive literature survey about the pioneers
and future prediction of robot swarms.

C1.1 Past, Present, and Future of Swarm Robotics In chapter 2, we summarize
our published extensive study [7] on the past, present, and future of robot swarms,
which is our first contribution. In this publication, we have summarized about 217
papers. We start with the past of robot swarms and give a brief overview of the
pioneers of robot swarms. We then review the critical approaches and definitions
of swarm robotics. In this part, we describe the types of robot swarms, their char-
acteristics, the advantages and problems they have, and their tasks, domains, and
different applications. Next, the different robotic systems are discussed. We will
describe systems robotics, swarm robotics, multi-robotics, multi-agents, and sensor
networks. We define agents as programmable entities such as robots, computers,
routers, antibodies, viruses, etc. After describing the pioneers and definitions of
robot swarms, we move to the current state.

The current state of robot swarms consists of natural robot swarms and simulators.
We first give an overview of the current state of all real robot projects for robot
swarms. There are only a handful of robot projects, and most of them are not
present, except for Kilobots from Harvard University. The second paper compares
all state-of-the-art swarm simulators. We then give an overview of the future of
robot swarms and what will happen based on our research and opinion. Knowing
the past, present, and future of robot swarms, we decided to build a new simulator,
our second significant scientific contribution.

M2 Developing a State-Of-The-Art Simulator for Robot Swarms The second module
is to build a robot swarm simulator. Our first contribution to this module is a survey
about the different types of simulators for network simulators because all robots in the
swarm form a network. Therefore, we examined the most advanced network simulators
in preliminary. The second contribution is Swarm-Sim. We present this simulator with
its mathematical model of natural swarms abstractly.

C2.1 The State of Simulation Tools In chapter 3.1 we answer the question, what is
the current state of network simulators on the market? There are three types of
networks suitable for robot swarms: mobile ad-hoc, opportunistic, and peer-to-peer
networks.

Chapter 1 Introduction

10

A mobile ad-hoc network (MANET) allows units to connect instantly. The units
are mobile and constantly on the move, and the position of each unit can change,
which poses a challenge for routing protocols. The second network is the oppor-
tunistic network (OppNet). The OppNet is a delay-tolerant network, which means
it can tolerate delays of messages. In typical standard routing protocols, there is
always a time-to-live (TTL) counter so that the message sent does not remain in the
network forever. However, in OppNet, a TTL cannot function optimally because
the connection between the individual units is occasionally established and based
on possibilities. Thus, the connection between sender and receiver is not always
given. To combat this, each unit in OppNet has to accept a delay. Therefore, new
routing protocols that can endure time delays have been created. Last but not least,
there is the peer-to-peer (P2P) network. A P2P is an overlay network built on top
of a network such as the Internet, MANET, or OppNet. The advantage of P2P is
decentralized, meaning that data can be shared within entities without a central
entity such as a server. It has many complex protocols for data sharing, such as
searching and discovery. Therefore, a combination of these three networks is helpful
for robot swarms. For this reason, we decided to investigate the current simulators
for these three networks.

In the investigation, we read many publications. We tested some simulators and
checked their popularity based on the number of citations provided from the In-
ternet. However, none of the simulators could simulate all three networks simul-
taneously. Nevertheless, we concluded that only a few could do so. The result of
this research is presented in our second paper, "The State of Simulation Tools for
P2P Networks on Mobile Ad-Hoc and Opportunistic Networks." [8] published and
summarized in chapter 3.1.

C2.2 Swarm-Sim: A 2D & 3D Simulation Core for Swarm Agents Swarm-Sim

[9] is a simulator developed by us with inspiration from the Paderborn University
[17, 18]. Tt has an API to write a Scenario quickly, project an environment with
all the entities, and a Solution to write algorithms to solve a task. Additionally, it
has a GUI for 2D or 3D animation and changing the Scenario by deleting or adding
Matters and many other features. Swarm-Sim is open-source, and it is entirely
written in Python. From the nature inspired we designed a mathematical model as
follows.

The world consists of passive and active matters. Real-world examples of passive
Matters are stones, bricks, walls, buildings, etc. Generally, a passive Matter is
everything that cannot do any actions on its own. On the other hand, active Matters
are entities such as the human, animals, the cells or antibodies in our body, robots,
computers, or human beings. To wrap it up, whatever is programmable or can do
actions on its own are active Matters and anything that cannot do any activities is
termed passive Matter.

We define each Matterin this world as a unique entity. It is like DNA or fingerprint,
and therefore, it has its unique ID. Therefore, our first mathematical model is a
set of unique natural numbers representing all the Matters. Let M be the set of
elements. Each m € M is an exact positive natural number representing the ID of

1.3 Modules and Contributions

a Matter, which brings its uniqueness like the fingerprint of humans.
M={m|meNy}

Any entity that can do actions we termed here as an Agent. An Agent A is an active
Matter which can do activities such as moving, taking, and dropping. Agents are
elements of Matters. In contrast, passive Matters can be manipulated but do not
initiate actions. They cannot walk or do any activity. However, they can be carried
by Agents or the Agents can walk on them. We term passive Matters as Items.

Let A C M be the set of Agents A and let I C M be the set of Items I. Together
they form a partition of M: AUI = M and AN I = @. However, every Matter
must be located on a ground, where we can identify its position.

A ground where Matters can be located is termed Location. L be a set of natural
numbers which can be mapped with Matters, to localize their position.

L={l|leN}

Each Matter is mapped to a Location. The function is defined as A : M — L and
A(m) = [. For animating the actions of Matters while simulating, it is necessary to
map the Location with coordinates to visualize the position changes of the Matter.
This is not important for the mathematical model, but it is necessary to mention
for the visualization in the Swarm-Sim.

Swarm-Sim provides both a 2D and 3D Euclidean Space grid. Each Location [is a
vector that consists of either of two or three coordinates as follow:

(v,y) €Z for R?
l =
(v,y,2) €Z for R3

The task of the robot swarm algorithm is to change the state of each Matter until
they reach the aim. A state can be a movement, including taking or dropping
objects. Therefore, all the Agents, Items, and Locations must have a state. For
example, on Location, it is possible to read from and write on it, and therefore, its
condition is either written or unwritten. Additionally, a Matter can be positioned
on a Location; the state of Location changes from free to occupied. For Items, the
state can be either dragged or undragged, and for Agents, it can be, for example,
to have taken an Item or to be free. Therefore, Items and Agents have a state, too,
which can be changed due to the given situation and algorithm. Therefore, let ST
be the vector of all the states.

ST = STL X ST[X STA

STy, STy, STy are the set of Locations, Items, and Agents, i.e., written, dragged, or
carrying. As a result, the modeling of the swarm consist of Matters L, I, A € M
and their states ST

We now define a general abstract of the robot swarm mathematical model. However,

we aim to simulate them on the Swarm-Sim. Therefore, we project the above
quantities to a model for the Swarm-Sim.

11

Chapter 1 Introduction

12

Swarm-Sim is a round-based simulator for simulating Matters as the robot swarms
and their environment. Thus, after each round, each Maitter state can change. Let
R be a set of rounds, which 7 is the maximum round, and r € R is a natural number.
As a result:

R={r|reNyr <}

A Matter is positioned on a Location in Swarm-Sim. Matters combined with Loca-
tions is termed world W. Which is a set of the mapping of Location and Matter.
The following model for world W is defined as: W the set of Matters and Locations
at time r € R joined.

Wr=L"uM"
However, since each Matter has its own state st and changes while the simulation
runs, we define a new set termed Swarm-Sim World SW. It is the mapping of the
world with the set ST.

SW = (W, ST)

The Swarm-Sim-World SW consists of W, i.e., all the Locations, mapped with
Agents or Items, and all the states of the Matters ST.

Nevertheless, this dissertation aims to build algorithms for solving swarm tasks ex-
tracted from nature. Each algorithm programmed in Swarm-Sim is termed Solution.
A Solution is a set of instructions for changing the states of each Matters after each
round, i.e., ST". Therefore, Solution SOL is a transition state function that changes
the state of Matters ST" to a new state ST"*! after each round.

SOL(ST™) — ST

It must be mentioned that ST is a subset of ST, i.e., ST" C ST. Nevertheless,
each Solution must have an initial starting point.

An initial starting point in Swarm-Sim is termed Scenario. A Scenario consists of
all the Matters, i.e. Agents or Items positioned on a Location with a state at round
r=0.

SCE = {(W", 8T | ST° € ST,W° € W}

Additionally, the scenario SCE is equal to Swarm-Sim World at round zero SWV.
SCE = SW°

However, a task is successful when it reaches its aim, which means that all the Matter
states must reach a final state. This defined state is labeled Finale State F'ST. The
FST is Matters’ final goal. Therefore, the simulation terminates successfully when
state ST" has reached FST, and the Solution for the given task is valid. However,
when the simulation round time r is equivalent to the maximum round time, 7, the
Solution could not fulfill the task, which is a failure.

Finally, the Swarm-Sim is a finite-state machine consisting of the following tuples:
(SW,SCE,SOL,+,FST)

First, the Swarm-World SW has the Matters and the Locations, and their states
ST. Next, the Scenario SCFE indicates the starting position of all the Matters at

1.3 Modules and Contributions

the beginning of the simulator. Third, all the matters need to perform a task to
reach an aim. To fulfill the mission, a solution SCO (algorithm) is given, which
needs to be done within the maximum round time 7. Otherwise, the mission is
not successful, and the simulator terminates. The simulator completes successfully
when the final state F'ST is reached.

The above mathematical model is a summary of the model from the publication [9];
the outline of this contribution is in chapter 3.2. To summarize, Swarm-Sim is easy
to learn. It has an API that gives the necessary interfaces to build a scenario and its
solutions. Until now, more than 12 theses with algorithms for various use-cases have
been developed on this simulator. Therefore, it brings a considerable contribution
to the science world.

The contribution for M2 is the design and development of Swarm-Sim with comprehensive
research about network simulators and Swarm-Sim’s mathematical models. However, a
simulator needs tasks to simulate it, and for this research, we extracted seven tasks for
three applications, which is our third main contribution.

M3 Coating Objects with Robot Swarms This contribution uses the help of a robot
swarm to coat objects. Imagine there is a cancer cell that needs to be eliminated,
and we have nanobots that can be injected into the body to find the cancer cell.
When the nanobots reach the cancer, they need to surround the cell to take it out
or destroy it from all sides. Therefore, coating algorithms will help to cure diseases
in the future. We contribute two coating algorithms as follows.

C3.1 A Leader Based Coating Algorithm for Simple and Cave Shaped
Objects The leader-based coating aims to coat an object by dragging and
dropping robots by the leader. The leader of the swarm first scans the object to
find out the size and type (i.e., either simple- or cave-shaped). By scanning, the
leader discovers the position for the coating and the number of robots needed to
coat. After the scanning is finished, the leader takes each robot to position them
around the object. The leader-based coating algorithm, however, faced many
challenges coating caved-shaped objects. The summary of this contribution
and the challenges with their solutions can be read in chapter 4.1. The leader-
based coating can only coat caved-shaped and specific objects. It cannot cover
arbitrarily shaped objects. The following contribution can coat any shaped
object.

C3.2 General Coating of Arbitrary Objects Using Robot Swarms The
general coating of an arbitrarily shaped object follows a different strategy than
leader-based coating. This coating algorithm uses the entire swarm instead of
just one leader. When the swarm hits an object, it starts to coat the object.
The strategy of general coating is that each robot makes space for the others to
get closer to the object. These strategies continue until all the robots surround
the object. However, this strategy is complicated because the robots share
information about the accessible locations, leading to redundant information
within the swarm. The solution to this problem and the exact general coating
algorithm description can be read in chapter 4.2.

13

Chapter 1 Introduction

14

M4 Challenges and Possibilities of Communication for Robot Swarms Com-

munication within the swarm is vital to share information. This information can
be data calculated, assumed, or taken from the environment. Therefore, we decided
to research communication types for robot swarms. In this part, we contribute
three types of swarm communication. The first one is opportunistic communica-
tion through opportunistic networking (OppNet). Hence, the robots are near each
other, and a network of robots is built. By OppNet, the swarm shares data only
based on opportunistic connection, which means that only necessary data is sent
when a connection is established. The first contribution for communication is to
make the Swarm-Sim capable for OppNet. We implemented two existing OppNet
routing protocols (Epidemic and ProPHET) and tested them. The second and the
third contribution we dedicate to stigmergy. Stigmergy is an indirect way of com-
munication. Here the communication is through marking locations or pheromones.
This type of communication does not concern the direct communication between
the robots, e.g., through WiFi or Bluetooth. Instead, each robot puts information
for other robots in the environment. Nevertheless, communication within the robots
is a vital task, and therefore, the following three contributions are dedicated to it.

C4.1 Opportunistic Network Behavior in a Swarm: Passing Messages to
Destination The opportunistic network (OppNet) is a delay-tolerant network.
The traditional network, such as the Internet or MANET, needs small latency
for communication, and thus it cannot tolerate delays. Therefore, for OppNet,
new routing protocols need to be used that can take delays. We updated the
Swarm-Sim with two OppNet routing protocols, the Epidemic and ProPHET.
We tested and evaluated them against each other to determine which one is
better and suitable for Swarm-Sim and robot swarms. The result of it is shown
in chapter 5.1.

C4.2 Prevention of Ant Mills in Pheromone-Based Search Algorithm We
present the indirect communication using pheromones in this contribution.
Pheromones are fragrances spread by ants to let other ants know that they
have found food and to give directions. However, the pheromones vaporize af-
ter a time. However, the pheromone communication is faulted; it causes the
ants to die. How this happens, the solution for it and the evaluation of the
pheromone-based communication can be read in chapter 5.2.

C4.3 Universal 2-Dimensional Arbitrarily Shaped Terrain Marking How
do robot swarms know if the terrain is already conquered? In this last contribu-
tion of the communication method for robot swarm, we provide a combination
of direct and indirect communication. The robots are equipped with wireless
communication tools and can additionally mark the location. Here the robots
visit unknown and arbitrarily-shaped terrain. By marking the visited terrain
locations, the robots indirectly communicate which locations have already been
seen. Additionally, they broadcast the position that have been marked. There-
fore, other robots are prevented from re-discovering terrain by receiving infor-
mation or sensing the marked location. Nevertheless, marking the terrain makes
it more efficient, too. Thus, we present two types of marking algorithms and an
algorithm to avoid obstacles in this contribution. In chapter 5.3 the algorithms
and the results are presented.

1.4 Outline

M5 Dynamic Movement for Robot Swarms Moving as a group of robots is chal-
lenging and requires some rules. Therefore, we dedicate this post to the movement
of robots. In this contribution, we first introduce the rules for moving as a swarm.
We use swarm motions like a group of birds in flight, termed flocking. Flocking has
some constraints and limitations that we simulate. The second part is about the
effect of light on swarms. We tested if light could affect the direction of a swarm.

C5.1 Robot Swarm Flocking on a 2D Triangular Graph Flocks are a phe-
nomenon that originates from birds or fish. In a swarm, the animals do not
interfere with each other. They have the same speed and stay close to each
other. We used a three-zone model in this paper and adapted it in Swarm-Sim.
This model has three ordered zones based on the distance to the other robots.
A robot checks based on his vision and senses in which zone its neighbors are.
If the neighbors are in the first zone, they are too close. Therefore, it must slow
down. However, if the robots are in the second zone, the distance is optimal.
But, if the robots are in the last zone, it must speed up because the probability
of getting out of the swarm is high. We tested three-zone models with different
zone and swarm sizes. The summary and the results of the contribution can be
found in chapter ?7.

C5.2 Phototactic Movement of Battery-Powered and Self-Charging Robot
Swarms A phototactic phenomenon allows the swarm to move toward or away
from the light without knowing the emission direction. As soon as a being per-
ceives light, it begins to move. This synergistic movement allows the swarm
almost to guess the direction of emission. In this paper, we adapt the phototac-
tic behavior into the swarm sim. We use two types of robot swarms. The first
type is a battery-powered robot, and the second type is a self-charged robot.
The battery-powered robots start moving as soon as they sense light, while the
self-charging ones need some time to recharge before they start moving. We pit
both types against each other to see which of the two swarm types reaches a
given finish line faster. The summary and result of this paper are presented in
chapter 6.2.

1.4 Outline

In this chapter, the robot swarms were introduced and the problem statements and research
questions were defined. Additionally, we presented the modules and contributions of this dis-
sertation. The following chapters provide summaries of the publications based on the previous
contributions.

Chapter 2 gives a summary and elaborate on the past, present and future of the robot swarm.
It presents the study written and inspired by more than 217 publications. First, we describe
how the robot swarms started in the research and who the pioneers of robot swarms are. Next,
we give an overview of the different types of robot swarms. Additionally, the advantages, issues,
and application fields are discussed. Followed by a summary of the actual state of robot swarm
systems and simulation tools. Lastly, an outcome about the future of robot swarms wraps up
at the end of this chapter.

15

Chapter 1 Introduction

In chapter 3 we guide you to the development phases of a robot swarm simulator called "Swarm-
Sim." We first summarize a survey (chapter 3.1) about all the evaluation tools for P2P networks
on MANET and OppNet to determine if it is necessary to develop a new simulator. In this
survey, we describe all the simulators of those networks and compare them. The second part
of this chapter discusses the reasons for building a new simulator. In chapter 3.2, we introduce
our simulator Swarm-Sim. We outline the features, the use cases, and how to develop quickly
new scenarios and solutions for them. Swarm-Sim is a unique and straightforward simulator
that allows to development and evaluation of robot swarm algorithms.

Chapter 4 elaborates the first part of module nature-inspired swarm algorithm module. We
first handle the leader-based coating for simple and cave-shaped objects in chapter 4.1. We
describe the algorithm, the challenges we faced, and how we solved them. In the second 4.2
we present the general coating algorithm for arbitrarily-shaped objects. In contrast to leader
coating, the general coating algorithm can coat any shaped object and use the whole robot
swarm without leaders.

In chapter 5, the communication of robot swarms are discussed. We consider two types of
communication methods: direct and indirect communication. First, direct communication
involves the robot communicating over waves (e.g., WiFi or Bluetooth). We use the oppor-
tunistic network for direct communication, and chapter 5.1 is dedicated to it. chapter 5.2
describes the indirect communication. Indirect communication considers spreading informa-
tion in the environment so the other robots can read unknowingly. The chapter ends with
the marking algorithm in chapter 5.3. The marking algorithm combines indirect and direct
communication.

Chapter 6 shows the challenges for robot swarm movements. The robots within the swarm
must obey rules to move together without interfering. Therefore, in chapter ?? we present the
rules of how the swarm should move as a flock. The next chapter 6.2 of this chapter is about
how light can affect the robot swarm’s directions. The swarm senses light and should move
away from it without knowing where it comes from.

Finally, we conclude our contributions and give our deductions on the three modules: Litera-
ture Research, Swarm Simulator, and Nature-Inspired Swarm Algorithms and discuss possible
future work in chapter 7.

16

Chapter 2

The World of Robot Swarms from the
Beginning to the Future

What do we know about robot swarms? In this chapter we give precise information on robot
swarms. We take you to the past of the robot swarms and show you the pioneers of robot
swarms and what kind robot swarms exist. From here, we look at the present day. The actual
projects of robot swarms are presented, and we take a look at which simulators are on the
market. A vision of the future and what kind of use cases can be created end this chapter. At
the end, this chapter summarizes the knowledge gained from 217 publications.

2.1 Past, Present, and Future of Swarm Robotics

This section summarizes the contributions and gives a verbatim copy of our paper [7].

Ahmad Reza Cheraghi, Sahdia Shahzad, Kalman Graffi
“Past, Present, and Future of Swarm Robotics”
In: Proceedings of the Springer 2021 Intelligent Systems Conference (IntelliSys). Volume 3.
2021.

2.1.1 Paper Summary

This survey aims to give a broad overview of swarm robotics. The knowledge of more than 217
research publications has been summarized in this survey. We are starting with the past of
swarm robotics, and we name the pioneers in this research field. Further, we answer questions
such as which people came up with the idea and what criteria must be fulfilled for swarm
robotics. Additionally, the properties, advantages, and issues of swarm robotics are considered,
and we look at how swarm robotics are helpful. In the present part of this survey, we present
today’s innovations and simulators for swarm robotics. Ending with the future, we describe
our visions of swarm robotics, what practical innovations might emerge, in which direction it
will go, and what challenges are still open for this exciting and emerging scientific field.

17

Chapter 2.

The History of Swarm Robotics

The word swarm robotics was used for the first time by two different researchers, G. Beni
[19] and Fukuda [20] in 1988. G. Beni first talked about cellular robotics. These robots are
autonomous and act in an n-dimensional cellular space. Additionally, they have no central
entity; they have a common aim to solve a task, but limited communication capabilities.
Fukuda defined these robots as autonomous human cells that accomplish complex tasks.

In 1993 Gregor Dudek et al. [21] gave swarm robotics features, such as topology, communication
range, size, etc. He also mentioned that swarm robotics is a multi-robotic system. Thus, it is
unnecessary to have two definitions.

Later, the focus of swarm robotics was on attaining more information on natural swarm phe-
nomena and realizing them, especially in the areas of foraging, flocking, sorting, stigmergy,
and cooperation [22, 23, 24, 25, 26]. However, G. Beni gave with his publication in 2004 [27] a
broad and precise definition about swarm robotics. He said that the robots are simple, identi-
cal, and self-organized. He defined the size of the swarm to 10? — 10<<23 robots, which means
between 100 and much less than 10023 robots. Further, he gave some qualification points for
swarm robotics, i.e., scalability, robustness, and flexibility. G. Beny had given the most precise
definition for swarm robotics, especially by defining the properties of swarm robotics.

Nevertheless, swarm robotics is the science of discovering how robots can act and communicate
with each other to reach a desired goal. On the other hand, robot swarms are a group of
heterogeneous robots acting together to solve tasks. However, swarm robotics is a scientific

field, and there are plenty of approaches.

Swarm Robotics Approaches There are a lot of scientific field approaches for swarm
robotics, which we elaborate more precisely:

1. Types of swarm robotics.

2. Properties that swarm robotics should have.

3. The advantages and issues in swarm robotics.

4. Tasks and areas of robot swarm.

5. Different application fields that suit swarm robotics.

Swarm Types Through the years, as the scientists were working on imitating natural swarms
to robots, they categorized these swarms into four types.

1. Biological swarms: The author [28] uses the term biological swarm for a natural phe-
nomenon where the animals collaborate. This term is used commonly in swarm robotics.

2. Swarm intelligence: Intelligence means "to have the ability to learn, understand, and

make judgments or have opinions that are based on reason" [29]. Therefore, in a swarm
of robots, their intelligence is understood when the robots collectively learn and gain

18

Chapter 2.

information. Based on that information, they decide or judge as one entity which is
termed swarm intelligence [30].

3. Swarm behaviors: When many robots act together to solve tasks it is termed Swarm
behaviors. Fish swimming as shoal or the birds flying as a flock are example of swarm
behavior; they are either swimming or flying together.

4. Swarm engineering: This term was introduced for the first time by [31]. He defined a
two-way process of how to design swarm robotics. First, a task with various conditions
must be defined for one individual robot to solve. Finally, behaviors must be defined for
a group of robots to fulfill their task, and their condition as a swarm should be assessed.

Swarm Properties As mentioned before, G. Beni [27] created with a precise definition of
swarm robotics and mentioned the properties for swarm robotics systems as follow:

1. Scalable: A swarm robotic system must be able to handle the increase or decrease of
robots within the swarm.

2. Robust: The robots must adapt themselves to changes within the swarm. That means
that if a robot becomes defective, all other robots should not lose their focus to solve the
task.

3. Flexible Here, the robots must adapt themselves to changes that happen to their envi-
ronment. If an obstacle appears, all of them should be able to handle it without losing
their aim.

Further, some additional properties are helpful and commonly used for other multi-agent and
sensor systems. Those properties are:

1. Autonomy: Robots that act on their own without any central unit to control them.

2. Self-organized: Here, the robots should be capable of organizing themselves when changes
are happening.

3. Self-assembly: Automatically organizing themselves, without any external help, into pat-
terns or shapes.

4. Decentralized: Having a centralized unit for swarm robots is difficult when it comes to
scalability, flexibility, and robustness. Because, in all three properties, all the robots must
be acting together to accomplish those properties. As a result, decentralization must be
given between the robots to avoid a single point of failure.

5. Stigmergy: Stigmergy is the indirect communication between the robots. The idea of
Stigmergy comes from the animal world. For example, ants spread pheromones in the
environment so other ants can find their way to a food source. This indirection commu-
nication is helpful for the swarm robotics system.

19

Chapter 2.

Swarm Advantages and Issues There are many advantages with swarm robotics, but nat-
urally, there are some disadvantages as well. Based on [32] the advantages of swarm robotics
are that they are autonomous and can adapt themselves to changes within their environment.
Further, being a swarm makes the robots more powerful compared to being alone. Addition-
ally, swarm robotics systems are flexible. Therefore, they can be used in different fields or
categories. They can solve the problems no matter how big or small the swarm is. A swarm
robotics system is much faster because of parallelism. Tasks are divided into subtasks that
are solved by each robot within the swarm. Lastly, the robots are simply made, therefore,
cost-efficient. Nevertheless, there are some disadvantages as well, which are mentioned in [23].
Swarm robotics systems issues are only interesting for a small portion of applications because
it is decentralized. Due to automation, the robots may act suddenly differently than they are
supposed to do. It is hard to develop them into the actual live application with a 100 percent
success rate. Finally, each robot must have global knowledge in real life application, which is
difficult to realize.

Task areas and Tasks for Swarm Robotic Systems: Task areas and Tasks for Swarm
Robotic Systems: Robots are primarily used in areas, which are dangerous or time-consuming
for humans. Based on literature reviews [33, 34, 35, 36|, there are many swarm robotics
areas. For example, tasks in specific regions, which are areas only made for the specific
type of swarm robotic system, such as collecting trash in parks. Next, tasks in dangerous
zones where the swarm is doing tasks that are dangerous for humankind, such as going into
a burning house to find victims. Another example is tasks in changeable areas. Here are
circumstances that can change (e.g., the weather in a natural disaster). Therefore, the swarm
must be flexible and scalable to adapt itself to changes in this area. Another area for swarm
robotics systems is redundancy areas. In these areas, the robots within the swarm should
adapt themselves to the loss of robots. An example of such an area can be war zones, where
robots are getting killed by enemies. Now that we know the areas for swarm robotic systems,
it is necessary to describe some tasks.

1. Forming shapes and patterns: The task here is to create a specified shape (e.g., stars,
statues, etc.). Many studies regarding these tasks can be read in [37, 38, 39, 40].

2. Aggregation: Aggregation in swarm robotics means grouping different robot swarms to-
gether to solve a task. More can be read in [41, 42, 43].

3. Coordinated movements: This task is inspired by the animals such as fish shoals, where
the fish swim together in a coordinated way. The same task is for swarm robotics. All the
robots should be capable of moving together coordinated in any given direction. Research
regarding coordinated movements are presented in [44, 45].

4. Distribution of robots to cover area: In this task, the robots are separated to monitor
their environment more efficiently. Therefore, it is the opposite of aggregation. The
author in [46] introduces an algorithm for such a task.

5. Searching for specific sources: Searching for sources is an emerged task for swarm
robotics. In this task, the robots can spread to find sources. However, it is necessary to
find sources in less time and let other robots know about the founding. One example of
food searching in a probabilistic way can be read in [47].

20

Chapter 2.

[55, 56, 57| 62. 63
[51, 52, 53, 54] [58, 59, 60, 61] 162, 631
et Agriculture Industrial
stronomy
A Summary of
Medical 1 Swarm Robotics [Household
Application Fields
|76, 77, 78]
64, 65, 66 [79, 80, 80]
64, 65, 66]
Hazardous '
Zones Military
\
[67, 68] [71, 72, 73]
[69, 70] [74, 75]

Figure 2.1: A summary of swarm robotics application fields [7].

6. Scanning an area and Navigation: Scanning an area and sharing the data to another
robot to navigate there easily is another task. An example can be the robots scanning
a fire zone to find humans, and consequently navigating to that area for rescuing. More
can be read in [48, 49]. Transporting objects: Here the robots transport objects that
cannot be transported alone, like ants transporting objects more significant than their
size. In [50] there are examples of transporting objects with a swarm.

We mentioned the task areas and tasks that are suitable for swarm robotics. Next, we present
the application fields of swarm robotics, i.e., real-life cases they can be applied.

Application Fields Swarm robotics is currently used in many application fields. An overview
of the application fields is shown in Fig. 2.1.

1. Agriculture: Working as a famer, such as the monitoring of the field or seeding; swarm
robotics also have the ability of working more efficiently.

2. Industrial: In industry, time is very important. Therefore, using the robot swarm for

distributed industrial works, such as assembling cars, can be time-saving and good for
the industry.

21

Chapter 2.

Multi Agent Systems (MAS)

/\

Multi Robotic Systems Non robotic systems
(MRS) with multiple elements

Swarm Robotic
Systems

> Sensor Networks

Other Multi Robotic
—> Systems

Figure 2.2: Robotic systems topology [81].

3. Military: Most of the militaries are working on robots to replace soldiers to save human
life. There are currently war drones that fly without pilots. Therefore, the military is
another useful application field for swarm robotic systems.

4. Medical: Curing diseases with robots is another application field. Soon, tiny robots will
be able to move into our bodies to cure diseases such as cancer.

5. Astronomy: This application is not widely known. However, swarm robotic systems can
help to analyze the universe, e.g., the black hole.

6. Hazard zones: Replacing humans in places that are dangerous for them is another appli-
cation field for swarm robotic systems. For example, they can go into burning areas to
save humans or animals.

7. Household: The last application field is when many tiny robots are programmed to do
household chores, such as dusting, vacuuming, or washing the windows.

Swarm Robotic Systems and Other Robotic Systems Besides swarm robotic systems
there are many other systems that handle multiple robots. The parent of that system is the
multi-agent system (MAS). A definition of agent is given by [82]. The author says that an agent
is a computation system designed to act automatically in some environment based on some
rules and tasks. The agents are connected over a network to communicate with each other. For
a MAS the communication is vital in this differentiation with the other robotic systems. It has
to be mentioned that an agent can be either software (e.g., software bots) or hardware (e.g.,
robots) An overview of all multiple robot (Agent) systems is shown in Table 2.1. As we can see
in this table, swarm robotic systems differ from other, primarily homogeneous (functionality is
the same among robots), systems. Therefore, they are simple and cost efficient. The number
of robots is much higher, and the system has a decentralized control. All the other points are
similar to the other robotic systems.

Swarm Robotics Classification Because swarm robotics have different task areas, a clas-
sification of them helps developers to design and analyze them more sufficiently. The Swarm

22

Chapter 2.

Robotic Systems

Swarm Robotic

Multi-Robotic

Multi-Agent

Sensor Networks

robotic systems)

robotic systems)

robotic systems)

Systems systems Systems
Number of mem- | Large (as com- | Small (as com- | Small (as com- | Large (as compared
bers pared to other | pared to swarm | pared to swarm | to MAS and MRS)

Design and imple-

Very simple. Sin-

Single robots can

Single robots are

Nodes can be de-

mentation of robots | gle robots are un- | perform signifi- | able to perform | signed simple or
able to do any- | cant parts of a | significant parts | complex
thing significant task of a task
Self-organization Yes Yes Yes Yes
System Control | decentralized Both Both Both
(centralized or
decentralized)
Homogeneity or | Mostly homoge- | Mostly heteroge- | Both Homogeneous
heterogeneity neous neous
Autonomy Yes No No Yes
Environment unstructured (un- | structured and | structured structured (known)
known) unstructured (known)
(known and
unknown)
Movement Yes Yes Mostly not No
Robustness yes (high) Yes Yes Yes
Scalability yes (high) Yes (low) Yes Yes
Flexibility ves (high) Yes (low) Yes Yes
Cost Low Medium Medium High

Table 2.1: Differences

tems [7].

and similarities between swarm robotic systems and other robotic sys-

Robotics Classification has two groups the analysis and design methods. With the analysis
method, the development happens by looking deeply into swarm robotics. That can be done
by microscopic, macroscopic, sensor-based modeling based on swarm intelligence algorithm or
real-robots analysis approaches. On the other hand, the design methods are based on behavior
approaches, virtual and physical design, or automatic approaches. Here is a summary of the
meanings of the above-mentioned terms based on the publications [83, 4, 35], and [84].

1. Microscopic Approaches: In the microscopic approach, the swarm robotic is analyzed
based on each robot and not as a whole system. Thus, each robot is checked deeply

about its functionality and features.

2. Macroscopic Approaches: The macroscopic approach analyzes the swarm robotic system
as a whole system. Therefore, it only checks how the swarm can work together as a group
of robots and not as individuals.

3. Sensor-based Approaches: With the sensory-based approach, analysis is done like the
microscopic approach, individually. However, only collected information from the sensors

or other inputs are considered here.

4. Modelling Swarm Intelligence Algorithms: Swarm intelligence algorithms inspired from
nature can be used to model swarm robotic systems. For example, for modeling and
analyzing, the particle swarm optimization algorithm is mainly used.

23

Chapter 2.

5. Real-Robots Analysis Approaches: Most of the time, simulations or theoretical aspects
are used for modeling and analyzing swarm robotics. However, those approaches are
significantly less familiar with real-world applications. Therefore, the last approach is
the real-robots analysis approach. In this approach, real robots are used for analysis. It
has the advantage of analyzing real-world approaches. However, the drawback is that it
will take more time than using a simulator. Hence, each robot has to be updated when
the code has been changed. As a result, it is time-consuming and not suitable for scaling.

The classification for the design methods is:

1. Behavior based Approaches: With this approach, the robots are kept simple in the be-
ginning and updated or upgraded based on upcoming demands. One way of designing
a swarm robotics system with the behavior-based approach is by using a probabilistic
finite state machine (PFSM). PSFM is often used in swarm robotics because each time
the robots receive different inputs, they go into different states. Hence the input is not
predictable. Therefore, PFSM has probabilistic transition states.

2. Virtual physics-based Design: As the name says, the design here is virtual. A virtual
environment must be set for the virtual entities to simulate the behaviors as a swarm.

3. Automatic Approaches: In this approach, the robots are not programmed manually.
Rules are given to them, but they have to learn by testing everything independently.
These have to do with machine-, deep-, reinforcing-learning in swarm robotics.

The Present State

In this subsection, we present the current projects, simulators, and real applications for swarm
robotics. The current swarm robotics projects are shown in Table 2.2. In those projects, real
robots are used to form a swarm. From these seven projects, the famous ones are the Kilobots
from Harvard University. These are 3.3 cm tall robots that have a sensor to receive code or
updates through infrared lights. Thus, with the help of infrared light, the swarm of Kilobots
is scalable. Nevertheless, the price for a Kilobot is around 130 - 140€, which is expensive.
Therefore, for developing a swarm robotic system, a better solution must be found that is
price efficient, scalable, and development friendly.

Simulators solve the problem of cost-efficiency and fast development for swarm robotics. Cost-
efficiency is handled because the robots are virtual. As a result, it is possible to simulate a
massive number of robots without buying any, making the system scalable and cost-efficient.
Another factor is that the time for testing algorithms on each robot is much faster because the
robots are virtual, and any changes in the algorithm are copied automatically into the virtual
robots. With real robots, this task needs to be done manually, one by one. Each robot must
be plugged into the working station to be updated. In Table 2.3 actual simulators for swarm
robotics are listed. Present real-life applications are grouped based on the swarm robotics
applications introduced previously.

1. Agriculture: In agriculture a real application is the SAGA [55, 56, 57]. In SAGA drones
monitor the agriculture field regarding weeds. It checks which places have or do not have
weeds and spread them based on the demands.

24

Chapter 2.

l Projects Objectives l Basic Properties l References ‘
Swarm-Bot To form simple, reliable, flexi- Robots show robustness, flex- [5, 85, 41, 86,
ble, scalable, self-organized and | ibility and are able to solve 87]
self-assembling micro-robotic complex problems via self orga-
systems nization
Swarmanoid | The main goal is to design In addition to s-bots, Swar- [88, 89, 90,
a heterogeneous distributed manoid consists of hand- and 91, 92]
swarm robotic system that op- eye-bots that can climb objects
erates in 3-dimensional human and fly, respectively
environments
I-SWARM The goal of the -.SWARM A single robot looks and moves | [93, 94]
project is to build the largest like an insect. But it consists
robot swarm that consists of of various modules that enables
up to 1000 mini robots of size it to perform significant tasks.
3*3*3 mm These modules include power,
electronics, locomotion and
communication module
SensorFly To build an aerial mobile sen- The aerial robots are low-cost, [95, 96]
sor network of robots that can autonomous, and are capable
perform monitoring in indoor of 3D sensing, obstacle detec-
emergency situations tion, path identification and
adapting to network disrup-
tions
Marsbee Exploring Mars Consists of a colony of small [97]
flying robotic bees that can
sense their environments via
sensors. There is a charge sta-
tion where the marsbees can
recharge themselves
Kilobot Tt is a low-cost swarm of small Each kilobot has a pro- [98, 99, 100,
robots designed to study col- grammable controller, is capa- 101, 102]
lective swarm behavior ble for locomotion, local com-
munication and can sense its
environment
Kobot A circular shaped, cheap, Has IR-based short-range sen- [103]
small, and expendable rohot. sors, supports wireless and par-
These features make it very allel robot programming and
suitable for various swarm has a battery that can last up
robotic applications to 10 hours.

Table 2.2: An overview of current swarm robotic projects [7].

2. Industrial: The FIBERBOTS [62] are one example of real-life industrial applications.
Here the robots work as a swarm to produce tubular forms. This production is done by
wrapping themselves with a material for the form to make the tubular shape. The main
action of the swarm is that the they robots do not interfere each other while they are
producing. This is done with a decentralized program and without any communication;
it is based on the flocking algorithm [139].

25

Chapter 2.

Simulator | Objective Developers Open | supported Supported | 2D | Status | References
source| languages (01} or
3D

Swarm- A round based simula- | Heinrich Yes Python Linux, Ma- | 2D | Active | |11, 10, 15,

Sim tor developed for mod- | Heine Uni- cOS, and and 14, 16, 13,
eling swarm robotic versity of Windows 3D 12]
systems in a 2D/3D Diisseldorf [9]
environment.

Player offers free software for Brian Gerkey | Yes any language Linux, So- 2D | Last [105, 106,
and stage robots, sensors and |104], Richard laris, BSD update | 107, 108|
actuators research Vaughan, An- and Ma- 2010
drew Howard, cOSX

and Nathan
Koenig

Gazebo offers opportunity to Open Source Yes mostly ROS MacOS, 3D | Active [111, 112]
simulate robot swarms | Robotics (Robot Op- Linux and
accurately and effi- Foundation erating Sys- Windows
ciently in various in- (OSRF) [109] tem)[110] (a binary
door and outdoor envi- package
ronments available

only for
Linux)

Robot High-end simulation Robomatter No ROBOTC Windows 3D | Active | [115]

Virtual environment for stu- Incorporated |114] and Mac

Worlds dents to learn pro- [113]
gramming

Teambots | Offers java classes and | Georgia Yes Java Windows, 2D | Last [117, 118,
APIs to support re- Tech’s Mo- NT, So- update | 119]
search in mobile multi- | bile Robot laris, 2000
agent systems Laboratory SunOS,

[116] MacOS, OS
X, Linux
and TRIX

V-REP A universal simulator Coppelia Yes C, Python, MacOSX, 3D | Active | [121, 122,
with integrated devel- Robotics C++, Java, windows 123, 124]
opment environment, [120] Lua, Matlab, and linux,
where each item can Octave and
be controlled individu- Urbi
ally

ARGoS Aims to simulate Developed Yes ASEBA Linux and 2D | Active | [126, 127]
heterogeneous robot within the scripting lan- MacOSX and
swarms in real-time swarmanoid guage (others 3D

project [89] are under
study) [125]

Webots high-quality profes- Cyberbotics Yes C, C++, Windows, 3D | Active [129, 130,
sional mobile robot Ltd. [128] Java and Linux and 131]
simulator used for edu- from third MacOSX
cational purposes party soft-

ware (via
TCP/IP)

Workspace | An Offline Simula- Watson Au- No Many robotic | Windows 3D | Active | [133]
tion and programming | tomation languages e.g.
platform. Offers sim- Technical So- AB G-Code
ulation solutions for lutions Ltd. and Adept
industrial and educa- [132] V-Plus
tional purposes

OpenHRP | A virtual platform to AIST [134] Yes C, Python, Linux, 3D | Last [135, 136,
investigate humanoid C++, Java Windows update | 137]
robotics 2012

SCRIMMAGHsed for the testing Georgia Insti- | Yes Python, C++ | Linux, Ma- | 3D | Active | [138]
and comparing of mo- tute of Tech- cOS
bile robotic algorithms | nology
and behaviors

Table 2.3: Comparison and differences between several swarm robotic simulators [7].

26

Chapter 2.

3. Medical: For the medical application, there are not any perfectly capable applications,
hence, the robots should be nanosized to cure diseases inside the body. However, the
Max-Planck institute developed programmable millirobots [65, 66], that can swim, walk,
transport, or jump. If in the near future those robots can shrink to nanometer size, they
will be helpful in to curing diseases inside the human body.

4. Hazardous Zones: The snake robot [67] from the Carnegie Mellon University in Pitts-
burgh can save lives by finding survivors moving through narrow spaces after a disaster.
For example, in 2017, this snake robot was used in Mexico after an earthquake to search
for humans among the ruins. It is equipped with sensors and a camera to analyze and
capture the situation. Therefore, it is instrumental in hazard zones.

5. Military: There are a few swarm robotics real-life applications for the military [71, 72,
73]. Using robots instead of human armies have the following advantages. First, having
robots in a real war will save soldiers’ lives. Additionally, robots are more precise and
efficient in targeting aims than humans. Further, they are bullet-proof and resistant
against chemical gases. To sum up, having robots instead of human soldiers has notable
advantages.

6. Household: Vacuuming robots have already become fairly commonplace. However, there
is another real-life application termed "MAB" [76]. In this project, small robots fly as
swarms to collect dirt and dust and disposing them into a trashcan. It is an exciting
project for households.

7. Astronomy: Using swarm robotics systems for astronomy is an emerged real-life applica-
tion field. The eStart [52] is one example for real-life applications. Estate is a swarm of
heterogeneous robot telescopes. They all work together for a common result, while mon-
itoring space. There are many more astronomy swarm robotics fields that are described
in [54].

The presence of swarm robotics shows a lot of exciting projects, simulators, and real-life ap-
plication fields. Nevertheless, the present is the new future, so let us see what the future of
swarm-robotics holds.

The Future of Swarm Robotics

For swarm robotics, there are many visions of innovations for the future, which is presented
here. The first one is nanobots, i.e. very tiny robots in the range of nanometers. They are
nearly the size of a virus, with a diameter between 20-400 nm. These nanobots can be injected
into the body to find diseases undetectable for humans. For example, they may be on a mission
to find a cancer cell. When they see it, they will coat and destroy it. However, the big challenge
here is building robots that are nanosized. Considering, that currently, the size of a transistor
varies between 20-40 nm, building nanobots might be possible soon.

Another example of the futuristic application of swarm robotics is armies of robots. Here the

robots move together as a swarm to defeat enemies. The challenge here is to build these robots
to be capable of walking as a swarm and creating the software to coordinate this movement,

27

Chapter 2.

such as flocking without any centralized unit of control. Instead, using those robots for military
purposes can replace human laborers, e.g., for parcel delivery or transportations.

There are still more challenges and future applications for swarm robotics. Such as using
the snake robots for finding survivors and in medicine, industry, or manufacturing. Another
example is swarm robotics in space [140]. The swarm is in space to conquer and research
everything that is near the earth. The same is possible for inspections in areas here on earth
(drainage channels).

The swarm robotics research area can change to a more innovative place where robots are
produced and programmed to be used for challenges for humankind, either risky, dangerous,
or inefficient. Hence, hardware technologies, such as sensors or CPUs, are becoming cheaper
and smaller. Therefore, swarm robotics is still an emerging field of research that needs to
be turned into real-life innovations. Additionally, for the future of swarm robotics, some
challenges must be kept in mind. These challenges regard software and hardware in swarm
robotics. Both software and hardware should be designed to be flexible, robust, and scalable.
That means that the software should handle scales of robots, environments, and losses within
the swarms. However, there must be enough gadgets in the hardware to address changes in the
environment (e.g., obstacles) or to take away broken robots in a swarm or sensors to recognize
scalability within the swarm. To sum up, we need, in the future, enough gadgets and sensors to
provide input for the software to handle the three significant rules of swarm robotics, scalability,
robustness, flexibility.

In this paper, we introduced the past of swarm robotics, explained how swarm robotics was
inspired by nature, and who the pioneers were in this research field. Then, we talked about
the presence of swarm robotics. We presented the actual projects, simulators, and real-life
applications. Lastly, the future of swarm robotics was imagined; we proposed our vision for
swarm robotics innovations, and considered which software and hardware issues need to be
solved. As a result, swarm robotics is an emerging scientific area that can become more
innovative with new technologies, such as 5G Internet and Artificial Intelligence (AI).

2.1.2 Importance and Impact on Dissertation

This survey covers the first module M1 and the contribution C1.1 for this dissertation, which
is to do a comprehensive literature survey about robot swarms. This survey summarizes 217
publications and provides knowledge of robot swarms. Therefore, we could answer RQ1.1 and
solve the first problem statement i.e. gaining knowledge about robot swarms. This survey is
essential because it gives all the necessary information about robot swarms, and thus, builds
the foundation of knowledge for this dissertation.

2.1.3 Contribution

There are many papers and surveys about swarm robotics, and most of them give an overall
perspective of this topic. Nevertheless, none of them have the focus on presenting swarm
robotics starting from its roots (the past), moving slowly to its branches (present), and finally

28

Chapter 2.

taking up fruits (the future). Therefore, this survey has a comprehensive overview of swarm
robotics’ past, present, and future, which makes an outstanding contribution to the scientific
world.

2.1.4 Personal Contribution

The contribution of Ahmad Reza Cheraghi is the motivation, structure, and methodology of
this study. In addition, he finalized the writing of this paper. Under his supervision, Sahdia
Shahzad researched the literature, prepared the summaries, and wrote the first draft of this
paper. Kalman Graffi was continuously involved in discussing the scientific approach and
provided critical revision of the paper.

29

Chapter 3

Developing a State-Of-The-Art
Simulator for Robot Swarms

The theory of robot swarms has been discussed. It is now necessary to explain the practical
work. This chapter describes how we developed the simulator Swarm-Sim. We first start with
the survey of simulation tools for peer-to-peer, ad-hoc, and opportunistic networks. There has
been plenty of work done on simulators [141, 142, 143, 144]. We examined Twenty-five network
simulators to find out their current state, usability, and fame in the science world. This survey
gives brief information about these network simulators, and it helps us find out if there is any
network simulator, we can use for a swarm simulator. Nevertheless, Swarm-Sim was inspired
by a simulator made by the University of Paderborn [17, 18]. It is written in Python, which is
easy to learn and contains a lot of useful libraries. Their simulator uses a triangular grid with
only two items: tiles and particles. However, we took the idea of the Paderborn simulator and
developed a new simulator. Qur simulator, Swarm-Sim, provides an interface to develop a new
algorithm for robot swarms and add additional capabilities for tiles or particles. Additionally,
the simulator can be configured easily, and it is 2D and 3D. Therefore, we came up with the
idea to write a new simulator based on Python.

31

Chapter 3.

3.1 The State of Simulation Tools for P2P Networks on
Mobile Ad-Hoc and Opportunistic Networks

This section summarizes the contributions and gives a verbatim copy of our paper [8].

Ahmad Reza Cheraghi, Tobias Amft, Salem Sati, Philipp Hagemeister, and Kalman Graffi
“The State of Simulation Tools for P2P Networks on Mobile Ad-Hoc and Opportunistic
Networks”

In: Proceedings of the International Conference on Computer Communication and
Networks(ICCCN). 2016.

3.1.1 Paper Summary

We use simulators to predict occurrences that are difficult to predict in real-life, or are time
and cost-consuming. In the world of data transfer, the Internet is a big player. This network
connects many computers, typically through a client-server architecture. That means that
each computer is the client which connects to a server to receive data. This type of service is
called a centralized network; everything is managed and handled centrally. A disadvantage of a
centralized architecture is that it is vulnerable. If a server is shut down, collecting information
is no longer possible. Therefore, another approach must be found. The most common approach
is the peer-to-peer (P2P) approach, the decentralized way.

P2P is a network built on an existing network, such as the Internet [145, 146, 147, 148, 149].
Here each computer becomes a peer, and they are all connected directly with each other without
using any server. The connection within a P2P network works when each peer knows the IP
addresses and the specified port number of another peer. However, these peers are connected
to other peers through the Internet without using the standard server-client mechanism.

However, access to centralized services from the Internet is at risk because they have vast
connection points such as routers and servers. Additionally, each country has its connection
point (Gateway), which leads to the rest of the world. Therefore, a government can decide
to encapsulate itself from the rest of the world, which has been witnessed many years ago in
Egypt and a few years ago in Iran. Therefore, a new way of the network is vital.

The mobile ad-hoc network (MANET) is one way to overcome the vulnerability of the Internet
[150, 151, 152]. The MANET is built on a mobile device. Mobile devices can be, for example,
our smartphones. When smartphones are connected through Wi-Fi or Bluetooth, they create
a MANET. Other smartphones can connect themselves ad-hoc to the MANET, too. Uniquely
defined routing protocols for MANET manage the data transfer between the smartphones.
This means that each device acts as a router as well. However, there must be a connection
between the sender and the receiver in a MANET. Otherwise, MANET routing protocols drop
the messages after a while. The opportunistic network (OppNet) can overcome this obstacle.
The OppNet belongs to delay-tolerant networks. An OppNet is some MANET. However, it is
slightly different. The routing protocols are defined to tolerate delays without dropping the
messages, and a connection between the sender and receiver must be provided. Messages sent

32

Chapter 3.

within the OppNet are passed between the devices, hoping they will reach their destination
sometime.

The combination of the P2P, MANET, and OppNet makes the network less vulnerable, where
censorship is no longer possible. MANET and OppNet provide an underlay that is created and
handles by devices (peers). Because, with devices, everything is decentralized, there is no given
infrastructure, and everything occurs ad-hoc. Further, P2P is the overlay that manages all the
querying, fetching, sharing, and searching of messaging. As a result, to have a nonvulnerable
communication method, a combination of these three underlays is one solution.

However, it is necessary for simulators to test and evaluate extreme situations within the
networks, such as data flooding or bringing changes in the size of the peers. Therefore, it is

essential to understand which simulators are on the market and can simultaneously support
P2P, MANET, and OppNet.

Therefore, this paper aims to give an overview of the simulator, which can simulate P2P,
MANET, or OppNet. We analyze them based on the number of citations from scholar.google.com
if they are active or inactive, open-source or close, or event or round based. Finally, it was
essential for us to know which could support all three layers. Moreover, the conclusion is that
NS3 and PeerfactSim.Kom is the preferred simulator to help all P2P, MANET, and OppNet.
Because they support mobility, and the most necessary protocols exist or can be developed.

Nevertheless, all the simulators became too complicated because of their outdated programming
and languages which are inefficient for programming today, such as C, C++-, or Java. Therefore,
it is necessary to think about creating a new simulator, which is easy to learn and can write
and prepare algorithms for testing, especially in robot swarms.

3.1.2 Importance and Impact on Dissertation

One basis to gain knowledge is research. This survey is vital for module M2 because it provides
information about the actual state of the simulation tool before starting to develop a new sim-
ulator, which is the contribution C2.1. With this survey we answered RQ2.2 by presenting the
actual state of 25 simulation tools for peer-to-peer, mobile ad-hoc, and opportunistic networks.
It provided the necessary information about those simulators and impacted the decision to
develop a new simulator.

3.1.3 Contribution

Simulators are essential tools to evaluate the new and emerging algorithms before they go to
production. Therefore, it is necessary to know about the actual state of those evaluation tools.
This paper presents an overview of simulators for P2P, MANET, and OppNet. The simulators
are chosen based on three criteria. First, the number of citations on scholar.google.com; this is
analyzed to gain knowledge on how often the simulators are used in research papers. Second,
if the simulators are active, i.e., how long has it been since the latest version has come out
and does it have a vibrant community? Finally, it is important to find out which of these

33

Chapter 3.

simulators are helpful to simulate a combination of these three networks. Therefore, the main
contribution of this paper is the overview and comparison of P2P, MANET, and OppNet and
to find out which simulators are helpful for the combination of these three networks, which has
not yet been explored in science. It is an outstanding contribution to the science world.

3.1.4 Personal Contribution

Ahmad Cheraghi analyzed the existing work on MANET simulators, conducted the paper
submission, and organized the final version of this paper. Tobias Amft, the author of this thesis,
collected and summarized information about existing peer-to-peer simulators. Furthermore, he
organized and shaped the first version of the paper. Salem Sati reviewed OppNet simulators and
summarized them. Philipp Hagemeister motivated the application case of the paper. Kalman
Graffi contributed to this paper’s motivation and methodology and guided the production.

34

3.2 Swarm-Sim: A 2D & 3D Simulation Core for Swarm Agents

3.2 Swarm-Sim: A 2D & 3D Simulation Core for Swarm
Agents

This section summarizes the contributions and gives a verbatim copy of our paper [9].

Ahmad Reza Cheraghi, Karol Actun, Sahdia Shahzad, Kalman Graffi
“Swarm-Sim: A 2D & 3D Simulation Core for Swarm Agents”
In: Proceedings of IEEE IRCE 2020: The 3rd International Conference of Intelligent Robotic
and Control Engineering. 2020.

3.2.1 Paper Summary

Simulator tools help to test and evaluate algorithms. This paper presents the round-based
2D /3D simulator "Swarm-Sim." Swarm-Sim provides an evaluation environment with an in-
terface to quickly build scenarios and solutions for use-cases for robot swarms. As we already
answered the RQ2.1, we know that using real robots as a swarm is expensive and time-costly.
Therefore, we built Swarm-Sim.

Nevertheless, we did advanced research about actual swarm simulators on the market. We
found 11 simulators. However, most of them aim to simulate realistic robots with advanced
and complex graphics. Additionally, most of them bring their main attributes in a continuous
space, which will create minor errors and inconsistencies, perhaps leading to floating-point
rounding errors. As a result, Swarm-Sim uses a quantized and modular space. Its performant
and straightforward visualization makes real-time 3D simulations of large amounts of robots
possible. Moreover, having Python as its primary programming language makes learning easy,
and it is Operating Systems independent.

The idea of Swarm-Sim originally comes from the University of Paderborn [17, 18]. They made
a simulator for simulating particles that split into two like a liquid when they move from one
position to another. This kind of movement the researcher of Paderborn termed the Amoebot.
With this Amoebot model, the possibility of making a swarm is not given. We generally build
a new simulation system that is simple and efficient.

Swarm-Sim is simple because it provides elements, termed matters (Fig. 3.1), with primary
attributes making a simulation of swarms very easy, taking away the complexity and saving
time. These matters are either passive or active. Passives are locations or items, and the active

ones are agents.

Locations (Fig. 3.1a) are used to mark coordination points on the playing ground of Swarm-
Sim to share information. Compared to the other matters, location has only one attribute:
memory to store data. Additionally, it cannot be taken or dropped by agents. A real-world
example can be a written text with chalk on the ground to transfer information.

Another matter in Swarm-Sim are Items (Fig. 3.1b). Items can be taken or dropped by an
agent. Examples of an item can be bricks to make obstacles or a playing ground, such as an

35

Chapter 3.

(a) Location (b) Ttem (c) Agent

Figure 3.1: Visualization models of matters for a triangular grid [9]

island on which agents can move on.

However, the last and essential matter is the agent (Fig. 3.1c). An agent is the active element
in Swarm-Sim and has the most attributes. It can create and delete items and mark locations
to read and write pieces of information. Additionally, it can take and drop items. An essential
feature is that it can move between each location point in Swarm-Sim. It can also read from
and write on matters, including communication with other agents. Finally, it can scan its
environment for other matters. Agents are the most crucial matter in Swarm-Sim because
they are active and represent the swarm’s entities.

Besides the matters, Swarm-Sim provides a playing ground termed grids. Grids consist of
coordinates of the so-called locations or location points. These locations are connected to
neighbor locations and thus builds up the grid. The distance between two location is termed
hop. Matters can be positioned on the locations, and agents can move within the grid by
moving from one location to another adjacent location. In Swarm-Sim, the grids are either
in 2D or 3D, and four basic grids (Fig. 3.2) with different amounts of adjacent neighbors are
provided.

The four basic Swarm-Sim grids are Quadratic, Triangular, Cubic, and Cubic Close-Packaging.
The quadratic coordinate grid is built out of squares, and each location point has four adjacent
points, whereas the triangular Coordinate Grid is formed out of triangles, and each location has
six adjacent locations points. Both grids are for 2D simulations. However, by extending those
by the z-axes, the grids change to 3D. Quadratic becomes the Cubic grid with six neighbors,
and the Triangular Grid changes to the Cubic Close Packaging grid with eight neighbors.

Next, it is crucial to discuss the architecture and interface of Swarm-Sim. The architecture
in Fig. 3.3 shows the overall look of the Swarm-Sim. Tt consists of five modules: the Core,
Configuration File, Evaluation Data, Scenario, Solutions, and Interactive Window.

The Swarm-Sim Core holds all the essential parts of the simulator that should not be touched.
These are the matters, locations, items, and agents. Additionally, it contains the visualization
engine, config-parser, and most essentially, the World-Interface. The World-Interface is vital
because it is used to write solutions and scenarios to simulate swarms in the Swarm-Sim.

The World-Interface provides methods for getting information about the actual state of or for

manipulating the simulation. It provides information, e.g., about the actual round number, the
number of created matters, and their positions. Generally, it is a database that keeps all the

36

Chapter 3.

. L] L]
L] . . L]
(a) Quadratic Coordinate (b) Triangular Coordinate

NV

L] # 5 : v“& AV 7L
s ®77X
' 7 A VA

(¢) Cubic Coordinate (d) Cubic Close-Packing Grid
Figure 3.2: Three-dimensional grids [9]

data regarding the actual simulation status. It also provides methods to add or delete matters
before or during the simulations. Additionally, the World-Interface contains information about
the simulator’s actual state. It tells the actual simulator round. With this information, we can
write a solution to explain in what round something should happen. Next, the World-Interface
allows the termination of the simulation. It is essential to know when a solution reaches a
prosperous state in order to terminate the simulation. Thus, the World-Interface provides an
interface to stop the simulation. Further, the information of the grid is provided by the World-
Interface, too. As discussed, Swarm-Sim provides different grids. Thus, this interface provides
the type of grid and its coordinate system.

However, one main task of the World-Interface is to create scenarios and solutions. The Swarm-
Sim works with two Python files which must be defined first. The first one is the scenario, in
which the initial state of the simulator is defined. Furthermore, the second one is the solution,
in which algorithms for simulating swarms can be written.

Listing 3.1: Example of a simple scenario

def scenario(world):

world.add agent ((0.0,0.0,0.0
world .add item ((2.0)
world . add location (

37

Chapter 3.

Interactive Window

A

Visualize
1

5) o=
- — (@]
© o) © —
59 ® i = c I
S= & §- Swarm-Sim - 23S
DL > < 0O
[e 1 >
8 ' World OC |
_ i Interface ! W,
I 1 I
[|
Draw gt Run
' ’
e Tl
1 . .
1|Scenario Solution |;
1
1

Figure 3.3: Swarm-Sim Architecture [9]

A scenario is the starting face of the simulation. A scenario file is a Python file where we write
our starting state of Swarm-Sim. In this file, we can draw how the matters should be positioned.
We use the World-Interface to position matters in the scenario file. In Algorithm 3.1 we show
a simple example of a scenario. In this scenario, we added an agent, item, and location on
different coordinates, by using the methods add _item(coordinates), add _agent(coordinates),
or add_location(coordinates). The visualized output of the scenario is shown in Fig. 3.4.
Nevertheless, our aim is for agents within the swarm should to do actions to solve problems.

Thus, it is necessary to define solutions.

Listing 3.2: Example of a simple solution

def solution (world):

for agent in world.agents:

items = agent.scan for item in(hop=1)

if len(items) > 0:

agent .take item with(items[0]. get_id())
direction=random.choice (world.grid.get_directions_list ())
agent.move to(direction)

direction=random.choice (world.grid.get directions list())
agent .drop item in(direction)

For simulating a swarm, it is necessary to define a solution. In the solution, we can write
an algorithm to explain what the agents should do and outline their limitations. The World-
Interface provides access to all the matters that we already defined in a scenario. Thus, it
helps us to write an algorithm for swarms in the solution. A simple solution example is shown
in Algorithm 3.2. In this solution, all the agents scan the adjacent locations to find an item. If
the scanning is successful, the agent takes the founded item, moves randomly in any direction,

38

Chapter 3.

simulation | Visualization | Grid | Matter | Help
main controls
simulation not running
[> start Simulation
rounds per second (10) :

reset Simulation

screenshot
quick save as

exportas vector graphics (svg)
scenario

quick save as

Recording

start delete export

new matter

particle / l §
tile b /

® location

change color of new matter

Figure 3.4: Example of a 2D Scenario [9]

and drops it on a randomly chosen adjacent location. As we mentioned earlier, Swarm-Sim is
a round-based simulator, which means that the solution is called repeatedly after each round
until the maximum number of rounds is reached. The maximum round number, the developed
scenario-, and solution-file are set in the config file. Thus, before running Swarm-Sim, it is
necessary to set up the simulator with the help of the config file.

The config file in Swarm-Sim allows one to set up the simulator before running. We can
set different parameters, for example, the maximal round number before the simulation is
terminated; we can decide if it should simulate in 2D or 3D by defining the necessary grid
type, or if the grid should be with or without borders. Most importantly, we can choose which
scenario and solution should be used. To sum up, with the help of the config file, many setup
possibilities are given, making the Swarm-Sim flexible and easily configurable. However, an
advanced simulator should have outputs for showing results to evaluate different solutions.

After each terminated or ended simulation, the Swarm-Sim generates evaluation data. The
evaluation data are three comma-separated value (CSV) files. First, for each round, second for
each agent, and last an aggregation of round and agent files. The round file stores all the global
data of the simulator. For example, the numbers of matters available, the total moves made by
the agents, the take and drops of matters by the agents, and many more. Next is the CSV file
for agents. The agent evaluation data shows the result from the view of an agent. It provides
the actions of each agent. For example, it shows the movement steps or the total number
of drops or takes. The last CSV file is the aggregation one. Here, all the agent and round
CSV file data are aggregated to summarize the whole simulation. The summary includes, e.g.,
the success rate, the average, maximum, and minimum movement steps, and many more. In
summary, the evaluation data is necessary for showing the result as a CSV, to be aware of how
the programmed solution could perform. However, it is necessary to visualize those results,

39

Chapter 3.

2000+

1500

Rounds

1000 ~

500 A

5 10 15 20 25 30
Agent Numbers

Figure 3.5: A Swarm-Sim plot [9]

which is also possible with the Swarm-Sim.

Swarm-Sim also provides the possibility to generate plots such as bar charts or diagrams from
the CSV-Files. These visualized results are generated either in a PNG- or PDF format, used
for presentation or publication. An example of a diagram is shown in Fig 3.5. Here we can
see the rounds on the x-axis and the total number of agents on the y-axis. In this example,
we measured the average time (in rounds) different sizes of self-charged phototactic (moving
whenever sensing light after got charged by the light) robot swarms needed to reach a given
finished line. As we can see, the more robots in the swarm, the longer it takes for the robot
swarm to reach the finish line. Nevertheless, plotting a CSV file helps to visualize what
was happening during the simulation. Looking at the results after the simulation might be
interesting, but what happens while the simulation is running is even more interesting. For
this purpose, Swarm-Sim provides a graphical user interface.

The Swarm-Sim GUI, as shown Fig. 3.6 provides two windows. The right part of the GUI
is to watch the simulation while running. In the beginning, it shows the starting state of
the simulator based on the scenario. When the simulator starts, it shows the states that are
caused by running the solution. The left part of the GUI provides an ad-hoc configuration
of the Swarm-Sim. Here it is possible to change some parameters, add additional or delete
matters, change their colors, and many more. It is even possible to change the visual size of
the grid’s line and points. It also can capture videos or take a screenshot of the simulation
animation. Finally, it is possible to start and pause the simulation and change the speed of
the simulation and animation. These provided options by the Swarm-Sim GUI are beneficial
in changing some configuration parameters while running the simulator.

40

Chapter 3.

Simulation | Visualization ~ Grid | Matter Help
main controls

Simulation not running
[>start simulation

rounds per second (10) :

—
reset Simulation

screenshot

quick save as

export as vector graphics (svg)

scenario

quick save as
Recording

start delete export

new matter

agent

item

e location

change color of new matter

Figure 3.6: Swarm-Sim GUI [9]

Swarm-Sim provides a unique simulation environment with simple, adjusted, and customized
matters. The grids provide the agents with a strict pattern movement because of their fixed
locations and equal distances. Creating scenarios and solutions becomes very simple by having
the World-Interface, particularly for getting information about the current state while the
simulation is running. Additionally, Swarm-Sim generates evaluation data in the form of a CSV
file or plot. Moreover, the GUI of Swarm-Sim allows for visualizing the running simulation
either in 2D or 3D. The config file makes configuring the simulation simple without changing
anything in the code. Lastly, Swarm-Sim is open source and built with Python. Thus, it
enables building a community to make Swarm-Sim much more remarkable and efficient, and
with Python as a programming language, it is uncomplicated to develop and evaluate new
swarm algorithms. The source code of Swarm-Sim can be downloaded from the website http:
//swarm-sim. com.

With Swarm-Sim, we can implement and simulate many use-cases, especially for robot swarms.
However, we implemented, simulated, and evaluated exited use-cases for this dissertation. In
the following chapters, we present them more precisely.

3.2.2 Importance and Impact on Dissertation

The simulator Swarm-Sim builds the foundation of this dissertation and the basis for the fol-
lowing algorithms. This paper is the central part of module M2. It impacts the dissertation
because, with Swarm-Sim, it contributes C2.2, i.e. the basis to develop, test, and evaluate al-
gorithms from which we published seven papers. We have already answered RQ2.1 in chapter
1.2 to use simulated robots. To answer RQ2.3, in this paper, we have modeled the natural
swarm mathematically. Additionally, we present the way of developing a robot swarm simu-
lator, which is the answer to R()2.4. This paper has a significant impact on this dissertation

41

Chapter 3.

because it provides all the information about the simulator Swarm-Sim, which is necessary to
build and simulate nature-inspired algorithms.

3.2.3 Contribution

There are a few swarm simulators on the market. They are written in C, Python, Java, and
many other languages. They are complicated to learn, and only one of them is open-source.
In contrast, our Swarm-Sim is open-source, it is easy to learn because it is written in Python,
and has three matters with minimum required properties. It is expandable because it provides
a framework for adding new matters or grids. Additionally, it is flexible in simulating different
scenarios such as the foraging of ants, flocking of birds, phototactic behavior, and many more.
Therefore, it provides a diverse playground for scientists worldwide to test and evaluate different
robot swarm algorithms. Nevertheless, Swarm-Sim’s core inspiration comes from the work of
Prof. Dr. Christian Scheideler and Dr. Robert Gmyr at the University of Paderborn [17,
18].

Their simulator uses a triangular grid and two kinds of matters: Tiles and Particles. Tiles are
the same as items, and particles are the same as agents. Additionally, their simulation uses the
Amoebot model for their particles. This model uses semi-liquid particles, and therefore they
have an additional state by moving from one location to another. This state allows a particle
to be between two locations before it is in its completed positioned on the next location.
Generally, it means that a particle needs an additional round to move from one location to
another. Additionally, the Paderborn simulator does not have a GUI that allows configuration
and changes in the scenario. Further, it does not support 3D visualization. Our Swarm-Sim
simulator differs from the one developed at the University of Paderborn in that it is flexible,
expandable, and supports a wide range of use cases, scenarios, and swarm algorithms. It does
not use the Amoebot model, therefore, it is faster.

Further, Swarm-Sim provides, in addition to the triangular grid, three more grids in 2D and
3D. It provides versatile capabilities of locations, items, and agents, and the ability to cover all
considered use cases. It has an ideal workflow from easy implementation, configuration, and
evaluation resulting in CSV evaluation results and plots. Finally, it is open-source and free,
thus adding value to the open-source community and science world. As a result, Swarm-Sim
is a detailed simulator for simulating robot swarms, and thus, it is beneficial to the science
community.

3.2.4 Personal Contribution

Inspired by the University of Paderborn, Ahmad Reza Cheraghi designed and developed the
simulator Swarm-Sim. He also drafted and wrote the most significant parts of this work.
Under his supervision, Karol Actun renewed the Swarm-Sim GUI. He added new features, such
as changing the size or colors of matters or taking screenshots of the simulation animation.
Finally, he extended Swarm-Sim to run in 3D. He contributed the introduction and some parts
of the related work for this work. Next, Sahdia Shahzad’s contribution is the comprehensive
comparison of the simulators and some parts of the related work. Finally, Kalman Graffi
supervised the overall development of the Swarm simulator, added several design decisions,
and provided a critical revision of the paper.

42

Chapter 4

Coating Objects with a Swarm of
Robots

Now that we know about the simulator Swarm-Sim and how it works, we come to the robot
swarm algorithms. This chapter presents two algorithms for coating objects with robot swarms.
The first is the leader coating algorithm. In this algorithm, a robot within the swarm becomes
the leader. It first scans the object to know where to coat the robots and how many are
necessary. After that, it takes each robot to cover the object. It is straightforward to coat
simple robots. However, it becomes complicated with cave-shaped objects and as the number
of robots increases within the swarm. In the second section, we show the general coating
algorithm. The general coating algorithm uses the whole robot swarm to coat the object, and
it can coat an object of any shape.

4.1 A Leader Based Coating Algorithm for Simple and
Cave Shaped Objects with Robot Swarms

This section summarizes the contributions and gives a verbatim copy of our paper [10].

Ahmad Reza Cheraghi, Kalman Graffi
“A Leader Based Coating Algorithm for Simple and Cave Shaped Objects with Robot
Swarms”
In: Proceedings of IEEE 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)).
2020.

4.1.1 Paper Summary

This paper proposes an algorithm for object coating with a leader within a swarm of robots.
The leader has, compared to the other robots, more computational power. It can recognize
an object, move towards it, scan its surroundings, and plan how the swarm members’ coating
should be. Additionally, the leader can take and drop robots.

43

Chapter 4.

(a) Cave shaped object (b) Trail entrance- (d.) and subjects-
diameter (ds)

Figure 4.1: A Cave-shaped Object Formation and its Diameter [10].

This paper proposes an algorithm for cave-shaped object coating with one leader within a
swarm of robots. The ability of the swarm is for all robots to move together in any decided
direction. However, the leader has more capability than the others. It can recognize an object,
move towards it, scan its surroundings, and plan how the swarm members’ coating should be.
A cave-shaped object is shown in Fig. 4.1a. The structure of a cave-shaped object is that it
includes an entrance, that leads inside the cave, which must be coated, too. Therefore, the
leader needs to recognize this entrance, go inside, and scan it. An entrance of a cave-shaped
object has the following condition: dy <= d. < 2ds, which means that the entrance diameter
d. must be bigger or equal to the leader’s diameter ds and smaller than twice of the leaders’
diameter i.e. 2d;. This information is necessary for the leader algorithm to recognize an
entrance (Fig. 4.1b). However, coating a cave-shaped object brings some challenges, which
will be elaborated on later, step by step. Before this, we will define what a suitable coating
is and how it can be tested. The leader aims to coat an object with all the robots within the
swarm. The robots must be as close as possible to the object, minimizing their distance from
the object. Therefore, the distance of all the robots within the swarm must be smaller or equal
to all free location distances. A coating algorithm will thrive when the following condition is
fulfilled:

max(DOSo(sl)vsiesr) < min(DOSo(fl)viicrr) (4.1)

The equation has the function max and min, which selects a set’s maximum or minimum
distance. Next, it uses the function DOSp, which calculates the distance of either a robot sl
or a free location fl towards the objects. Thus, the equation checks if the maximum distance
within the swarm SL is smaller or equal to the minimum distance within all free locations
FL. Tf this condition is true, the coating is valid. Depending on the number of robots, we
define three types of coating validations as shown in Fig. 4.2. The red dots are the robots,
and the blue hexagon tiles build the object. The first valid state is "Legal," which means that
the object is not entirely coated because there are not enough robots. The “Ideal” state is the
second one. This time the number of robots is sufficient to cover the whole object. The last
valid state is the “Layered” state. Here, the number of robots exceeds the number of coating
positions. Thus, robots start to coat on those robots that have already coated the object.
Depending on the number of robots, the layered coating can continue to build more layers of
robots. Now that we know when a coating is valid, we must now consider the algorithm.

44

Chapter 4.

(a) Legal (b) Ideal (¢) Layered

Figure 4.2: Valid Coatings [10].

Coating an object is simple when the object is as simple as it is shown in Fig. 4.2. It is a one
tile object and has all it needs to coat it. The leader sees the object, scans all the black location
coordinates, then takes each robot from the swarm and positions it on the scanned location.
It scans that layer and starts the coating again. Whenever a layer is completely coated and
robots are still left for coating, this procedure repeats again and again, until no robots are left.
However, for a cave-shaped object, this coating procedure must be extended. These extensions
occurred while evaluating the leader-based coating. Therefore, we first describe the evaluation
setup and how we extended this algorithm after each evaluation to achieve a 100 percent success
rate. Our evaluation environment is straightforward. We use the simulator Swarm-Sim, and a
scenario: a cave-shaped object with a robot swarm. In the first evaluation, we start with one
leader to see if it can scan the object and coat itself. After that, we increase the swarm by one
robot and restart the simulation. We do this evaluation on up to 114 robots. There is no time
limitation, and the coating algorithm stops when the leader does the coating and coats itself.
The metric that we use in this simulation is the success rate. We want to know that after the
coating is finished, the coating fulfills the criteria of the Equ. 4.1. Therefore, the simulator
checks before termination if the coating is valid based on the Equ. 4.1. With a valid answer,
the evaluation is marked successful.

To describe the coating algorithm, we start to coat a simple object. Later, we test this algorithm
with a cave-shaped object. We define a simple object as an object that has no entrance or
complex structure (something that might lead the robots to go inside). Coating such an object
is simple, too. The flowchart for coating with a leader can be seen in Fig. 4.3. The flow
chart has five stages. In the first stage, the leader moves towards the object. When it reaches
it, it scans the object’s surroundings until it comes to an already observed location, termed
“repeated location.” Then the leader comes to the stage of coating. Here the leader takes and
drops the other robots. After the leader finishes coating the scanned locations, it checks if any
robots are left for coating. If so, it goes to the "scan outside" stage. In this stage, the leader
scans the surroundings of the coated robots and then starts coating again. These two stages,
"Scan outside" and "Coating," are repeated until there are no coating robots left; then the
leader coats itself. After that, the simulator checks if the coating condition is granted, and
then it ends. We tested this simple coating algorithm on a simple object with 100 robots, and
the result was a 100 percent success rate. Now that we know how the algorithm for coating
simple objects works on all simple objects, let us see if it runs on a cave-shaped object.

45

Chapter 4.

Go For Aim

At Aim

v

Scan Outside

@
o

Mo Locations Repeated Location

Coat

No Subjects

Coat
Yourself

pr— J
N o

Figure 4.3: Overview: Simple Leader Based Coating Algorithm [10].

Now we use the same number of robots as before. However, the swarm must coat a cave-shaped
object, as shown in Fig. 4.4a. The result of the evaluation is shown in Fig. 4.6a. As we can
see, the coating was successful at 18 robots. From the 19th robot onwards, the validation
becomes zero. The reason is that the leader does not recognize the cave entrance (Fig. 4.4a).
It is continuously coating the outside of the cave and neglecting the inside. Therefore, the first
challenge is giving the leader the ability to recognize a cave entrance.

Challenge 1: How does a leader detect an entrance of a cave-shaped object? Here, the
coating is done on a trigonometry grid, and we labeled each of the six adjacent directions to
help the leader find an entrance. Therefore, the leader scans the environment and labels all
its adjacent locations based on the previous coming location (pr), trail location (tr), total free
location(tf), free location (fr), and occupied location (oc) as shown in Fig. 4.5a. Additionally,
each of these labels has a predefined unique number. The numbers must be unique and follow
this pr < oc < fr < tr < tf schema, which means they should be much lower than the
others. So, the leader scans its environments, labels them, and then sums them up. It receives
a number and compares it to a list. This list is created by defining the types of environments
as shown in Fig. 4.5. We got four types of environments that have a unique number. Based on
those numbers, the leader knows its environment, can act on them, and recognize an entrance.

46

Chapter 4.

@ 009
" ‘l A @)
(a) No entrance detection (b) Blocking entrance

/ . o". o“."“dr. . .
ceoe@eO@@®e o

so@oe@ess (o Qoo@Pe
008 s OO
(¢) No trail detection (d) No amount control

Figure 4.4: Cave Challenges [10].

Now, the second version of the algorithm is finished. But, this time the simulator hangs without
termination. Even though the leader could detect the entrance and scan the inside of the cave,
the leader could not enter the cave after positioning some robots because the entrance became
blocked due to the previous coating. That is the reason for the simulator’s hanging because
it causes the leader to stay in front of the blocked cave entrance (Fig. 4.4b). As a result, the
next challenge is to define the coating order so the entrance is not blocked while coating.

Challenge 2: How to avoid the blocking of the entrance while coating? How to avoid a
blocked entrance while coating? After the leader scans the object, it starts to coat the object
in the order it stored the locations’ coordinates, i.e., First In First Out (FIFO). However, the
FIFO coating causes the cave entrance to be coated before the inside has been. Consequently,
the leader cannot move further and gets stuck (Fig. 4.4b). It cannot continue the coating.
Nevertheless, this challenge is straightforward to solve by changing the memory access from
FIFO to Last In First Out (LIFO). Therefore, the leader reads the last stored location up to
the first stored one. As a result, the inside of the cave is coated first before the cave entrance.
In evaluating our second version of this algorithm, the simulator is terminated, but the success
rate is not 100 percent. The validation stops after the 44th robot, and the success rate drops
to zero (Fig. 4.4c).

47

Chapter 4.

PR

Ve N/
) AVANE &+

(a) Trail entrance (b) Trail

goe /2
oee

(¢) Dead end (d) Inside or outside Cave

Figure 4.5: Environment and Neighborhood Types [10].

The next challenge is not as easy to explain and solve. As we can see from the result in Fig.
4.6b, the validation goes to zero after the 45th robot. An overview of this condition is shown in
Fig. 4.4c. The middle, red-marked location inside the cave is not coated, even though there are
enough robots. The black robot on the left is the reason that the coating becomes invalid. The
black robot is the 45th robot that makes the algorithm fail. The reason is that the distance of
this robot is three hops, and the distance of the uncoated, red-marked location in the middle
are two hops. As a result, the coating is not valid because the distance of the free location in
the middle is smaller than the distance of the black robot. So, the leader needs to know in
advance to coat the middle of the cave before starting to coat the third layer, which brings us
to the third challenge.

Challenge 3: How to coat the center of the cave? As we know already, the middle of
the cave is not being coated because the leader is scanning and storing only the object’s
surroundings and is not aware of the created new center in the middle of the cave (Fig. 4.4c).
As a result, the middle of the cave is not being scanned and coated, while the coating of the
next layers has been started. To solve this challenge, we define the environment "trail" (Fig.
4.5b) and "trail entrance" (Fig. 4.5a). While scanning, the leader stores these environments
in a separate memory. But before that, how does a leader know that there is a trail and where
it ends? By adding a fourth environment termed "dead-end" (Fig. 4.5¢), it helps the leader
to recognize the end of a trail. While scanning, when the leader hits a "dead-end," it will

48

Chapter 4.

10{ —— — simple 10{ ———m — entrance

Validation
Validation

0 20 40 60 80 100 0 20 40 60 80 100
Subjects Subjects

(a) Simple: Success rate 15.79% (b) Entrance and LIFO: Success rate
42.11%

1.0 —— awareness

Iy
o
2

o
S

Validation
Validation
o
5

o
o
&

o
©
£

0.0 — trail

[20 40 60 80 100 0 10 20 30 40 50 60 70 80
Subjects Subjects

(¢) Trail scanning: Success rate 98.25% (d) Reduction: Success rate 100%

Figure 4.6: Success Rates of the various Algorithm Elements [10].

start, to escape from the trail. While escaping, it starts to store each location of the trail in
a separate memory. When it reaches the trail’s exit (i.e., the entrance of the cave), it starts
the standard scanning procedure, which means storing the location in the normal memory.
After the scanning is finished, the leader starts to coat the trail from the dead-end to the
cave entrance. When this has been done, it coats the surrounding of the object. With this
procedure, the challenge of coating the center has been fulfilled. By testing the third version,
we see in the evaluation that the success rate is now 98.25 percent (Fig. 4.6¢). A tiny crinkle
of invalidation can be seen at the 23rd robot, which brings us to the last and most difficult
challenge.

Challenge 4: How to be aware of the number of robots and their correct position within
the trail? In Fig. 4.4d we see why the validation becomes zero with the 23rd robot. The 23rd
robot is the red robot in the middle of the cave. This robot’s distance from the object is two
hops. However, the blue marked accessible location has a distance of one hop, so the coating
is invalid. The trail coating algorithm from the previous challenge fills up the cave’s center
without worrying that it might be unnecessary because there is an accessible location with a
lower distance than the center. This problem is caused because there are enough robots to
coat the object without coating the center. Because the distance of the centered free location
is higher than the distance of the outside, free location. Therefore, the coating algorithm must
always know the number of uncoated robots to ensure that the trail is coated correctly and

49

Chapter 4.

Figure 4.7: Lion mother transporting her cub (Source: [153])

validated. We have found that the number of scanned trail locations must always be even
to solve this challenge. Additionally, the head and tail, i.e., the last (trail-entrance) and first
(dead-end) scanned location in trail memory, must always have the same distance from the
object. This information is essential to define the trail coating sequence based on the number
of robots. Thus, before the trail coating starts, the leader must compare the number of scanned
trail locations to the remaining number of uncoated robots. If the number of trail locations is
equal to or more than the number of robots, nothing needs to be done. However, if the number
of robots is less than the number of trail locations, some of the scanned trail locations must be
deleted based on the number of robots. However, the order of cutting the trail is essential. The
leader must delete the locations from trail memory based on the sequence: first, the trail entry,
then the head, until the total number of the scanned trail locations is equal to the number of
robots. With this comparison and deletion, the last problem of the leader coating algorithm is
solved, and the result of the evaluation in Fig. 4.6d shows a 100 percent success rate.

With this leader coating algorithm, we show that it is possible to coat cave-shaped and simple
objects. We introduced a step-by-step proof of concept and a successful algorithm. However,
this algorithm does not work for oversized (i.e., more significant than the diameter of two
robots) cave entrances. It also does not work for nested caves (cave in a cave) or multiple
caves that are connected. The aim to coat these objects is a challenge for future work. Some
more challenges are extending the algorithm beyond coating 2D to coat 3D objects and testing
the algorithm with many leaders to increase the efficiency. Nevertheless, coating simple and
cave-shaped objects can be done with this algorithm and with one leader.

4.1.2 Importance and Impact on Dissertation

The paper presents the first contribution C3.1 of module M3. The inspiration came from a
mother animal carrying her baby (Fig. 4.7), which is also the answer to the RQ3.1. To answer
the RQ3.2, the aim of this algorithm is to coat cave-shaped objects. We provide a swarm

50

Chapter 4.

with one leader and a cave-shaped object for coating it for this algorithm. The feature of the
leader is to can scan the object and take and drop other robots, which is the answer to RQ3.3.
The answer to RQ3.4 is that the leader first scans the object, calculates the number of robots
needed, takes each robot one by one, and coats with them the object. To answer the RQ3.5,
the leader-based coating is valid whenever the maximum distance of all the robots is smaller (or
equal) to the minimum distance of all accessible locations. The coating algorithm terminates
when the leader coats all the robots and itself. We use the Swarm Size as the first metric. We
started with two robots and increased it by up to 120 robots each time. The second metric
is the Validation. With these two metrics, we answered RQ3.6. The importance and impact
on the dissertation with this paper is that all the research questions of the problem statement
PS3 are solved.

4.1.3 Contribution

This paper provides a new type of coating. A leader is chosen based on its capability within
the swarm. Its capabilities include scanning its environment, storing location coordinates into
its memory, and taking and dropping robots. Based on our knowledge, there is no leader-based
coating that has already been developed making this a main contribution. Another contribution
is the coating of cave-shaped objects with our algorithm. The coating of a cave-shaped object
has not been of concern in previous works. Most of the coating algorithms only considered
simple objects. In summary, we provided an algorithm that uses a leader for coating, and
therefore, saves effort in the production of highly intense robots, and one that is capable of
coating cave-shaped objects.

4.1.4 Personal Contribution

Ahmad Reza Cheraghi’s contributions to this work are include the scientific approach, problem
definition, and solution for the leader coating. He has fully and independently performed the
solution, design, implementation, and evaluation of the Leader-based coating algorithm. He
also authored and completed the present work. Kalman Graffi was continuously involved in
discussing the scientific approach of the algorithms. In addition, he supervised everything and
critically revised this work.

o1

Chapter 4.

4.2 General Coating of Arbitrary Objects Using Robot
Swarms

This section summarizes the contributions and gives a verbatim copy of our paper [11].

Ahmad Reza Cheraghi, Gorden Wunderlich, Kalman Graffi
“General Coating of Arbitrary Objects Using Robot Swarms”.
In: Proceedings of IEEE 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)).
2020.

4.2.1 Paper Summary

Soon, nanobots might be a healing method in destroying harmful matters within the body.
These bots will be injected into the body, and their mission will be to localize unhealthy cells
to coat and destroy them. This procedure of localizing and coating objects, such as a cancer
cell, by a robot swarm is the aim of this paper. Given are robots with countable characteristics
and an object with an arbitrary shape. The characteristics of the robots are a follow:

1. The robots do not have any sensors for calculating their distances towards the objects.
2. Each robot can communicate with its adjacent neighbors.

3. They have a sensor for scanning their adjacent neighbors to find robots, objects, or free
spaces.

4. There is no central unit, so no external help is provided for the coating.

5. All robots are homogeneous, meaning that they all are equal in their software and hard-
ware.

6. Each robot has a memory for storing information necessary for the coating procedure.

The arbitrary object can be a single tile, a cave, a tunnel, a bottle, or many other things,
as shown in Fig. 4.8. Therefore, the challenge for the robot swarm is to coat any of those
arbitrarily shaped objects with their above-defined characteristics.

However, how can we check that the coating is successful? For a successful coating, the following
condition must be true:

max(OwnDist[ply pep) < min(OwnDist[flly ficrr) (4.2)

This equation states that each robot p within the swarm P must coat the object as tightly
as possible. Generally, the maximum distance of one of the robots within the swarm to the
nearest object must be smaller or equal to the minimum distance from all the free locations fI
within the set of all free locations F'L. If this condition is fulfilled, then the coating is valid.

52

Chapter 4.

Examples of correct coatings are shown in Fig. 4.9. The blue tiles are the objects, and the red
dots are the robot. In all the pictures, the robots are as tight as possible, and the distances
of all free locations (the small black dots) are more significant than the distance of all robots.
On the other hand, invalid coatings are shown in Fig. 4.10. The marked green locations are
free locations, and their distances are lower than the robots.

The aim of this paper is to develop an algorithm for coating any arbitrarily shaped object. In
Fig. 4.11 we show, with a simple example, that the general coating algorithm (GCA) works
with a simple one-tile object. In Fig. 4.11a we see two robots with the initial distance of
infinity and a blue-tile object with a distance set to 0. For defining the distance, both robots
scan their environment first. However, the robot close to the tile gets to know that it has a
robot and an object as neighbors. Therefore, that it has an object as an adjacent neighbor,
its distance changes from infinity to one because it is only one hop away from the object.
The other robot’s distance stays to infinity. Next, the robot with a distance of one sends its
distance to its neighbor robot, as it is shown with the arrow in Fig. 4.11b. Based on this
information, the infinity robot’s distance changes to two because it received the information
from its adjacent neighbor that it has a distance of one. The robot with a distance of one
now recognizes an adjacent free location with a one-hop distance and an adjacent robot with a
two-hop distance. As a result, it moves towards the free location to make space for the second
robot, as is shown with the big black arrow in Fig 4.11c. What happens next is that the second

YAVAVAVAVAVAVN
V%VAVAVAVAVA‘

INININININ N NN
XAXAVAVAVAA)‘ *y"VAY VAXAVAVA

VAVAVAS, LY

AVAVAVAV.u,
AVAVAVAVAVAV . vy v aVAVAVY
AVAVAVAVAVAVAVAV oo 0 b0 Va4 VAVAV

(a) Single Tile (b) Multiple Tiles (c) Small Holes

VAVA™ <V AVAVAN
AVAXAVAVAXAVAVAVAVAVI“VA‘\XAXAV

s+ "AVAVAVAY
VAVAVAVA -atatasVAVAVAVAY.. "+ AVAVAVAVS
VAVAV%‘ Vo "AVAVAVAVAVAVAY o0¥s *AVAVAVAN

VAVAVAVAVA™ AV tVAVAVAN
A\VAVAVAVZ® oAV, “AVAVAVAN
VAVAVAVS™ -<VAVAV. ~AVAVAV/
VAVAV)‘\J AVAVA™ -~VAVAVAN

VAVAVAV, 44>+ VAVAVAV/
AVAVAVAV 20 VasVaatasVAVAVAVA

VAN
DAVAVAVA "= ees i FAVAVY
AVAVAVAVAN s ¥auaa Vna Yaa Vs Vs Va0 0s VAVAV

INININN VAVAVAN
VAVAVAVAVAVAVA)‘x’l‘\VAVAVAVAVA
%V#V#Vl"?"? BB ‘ NAINININ/

(d) Thin Tunnel (e) Small Cave (f) Medium Cave

VAVAVAVAVAVAVAVAVAV“AVAVAVAVAVAVAVAVAY

)VAVAVAVAVAVAVAVAV/ o 74™AVAVAVAVAVAVAVAN

AP ATA A VAVAVAVAN JAVAVAVAVAVAVAVAV/ o £* FAVAVAVAVAVAVAY/
aatastantn "AVAVAVAVA VAVAVAVAVAVAVAV)‘")“VAVAVAVA NN

YAVAVAVAVA aVaa'y
AVAVAVAVA™ of ’AAVAAVA‘:’WAVAV

AVAVAVAY, ~4Vi
ORI BIOLKN OISR SA AVAVAVAVx'4"4"4"4"4"4"£VAVAV
VAVAVAVAS s JAVAVAVAN o AVAVAVAY GORIOOOOOOOAAN NVAVAVAVA ot VAV,
JAVAVAVAVAVAV, “4*4™4%>*. JAVAVAVAVAVAV
AVAVAVAVAVAVAY s 900 Y0000 %00%2s VAVAVAVAVAVAVA

(g) Large Cave (h) Bottle (i) Small Bottle

Figure 4.8: Different arbitrary shapes [11].

93

Chapter 4.

NN NN NN/ VAVAVAVA s s VAVAVAVAY ﬁ%ﬁﬁﬁﬁ.’&ﬁ&&ﬁﬁﬁ

AVAVAVA® 22" YAVAVAVAN AVAVAVAV“"&’O‘«*"&VAVAV A s 0 X
\/ /N VAVAVAVA®:* 3 'Y, AVAVAo9¢ % Jg '2"4VAN

AVAVAVAVA* w2 ®aVAVAVAN WV, X . 5
\VAVAVAVAY2Y2YAVAVAVA

XX RGBSR OO0
AVAVAVAVAVAVaVaSaVaVAVAYAV. '%'%'%"'6‘:"‘.‘:’%’%"'%'%

Figure 4.9: Valid coating examples [11].

robot moves to the free location occupied before by the first robot and obtain a distance of
one because its adjacent neighbor is a tile. The result is shown in Fig. 4.11d. All the robots
have a distance of one now and have coated the tile object.

However, this type of coating is elementary. Coating a cave-shaped object is more complicated.
In Fig. 4.12a we see a red-coated ring of robots around the cave-shaped object, and in the
middle of the cave, there is a green space that is uncoated. However, there is one green robot
outside the coated ring, and this robot’s distance is higher than the free location inside the
cave. So, the challenge for the coating algorithm is to make the robots around the free space
aware of the outside, green robot, thus, to fill up the green free location. But how do those
robots within become aware that there is a robot with a higher distance?

For this awareness, we define the variable p__max, the maximum distance of a robot within the
swarm, and set it in two ways. First, after movement and based on the distance calculation.
Each robot calculates its own p_max based on its adjacent locations. For example, in Fig.
4.11b the p_max for the robot with the distance one is two because it sees either an adjacent
robot or free locations that are not near the object, which, therefore, must have a distance
of two. The second option is that each robot shares its p max with its adjacent robot. It
compares its own p__max value with those received from its adjacent robots, chooses the highest
one, and stores it. With the last procedure, the GCA makes certain that the p_max value is
shared within the swarm. Thus, the robots are permanently storing the highest distance that
is within the swarm. As a result, if one of the robots around the green free location receives
a p_max higher than the distance of this free location, it will move into it to make space
for the others. All other robots will move as well until a space is created for the green robot
outside the ring, as shown in Fig 4.12b. Tt then moves inside it, and the coating is valid (Fig
4.12¢). This maximum particle distance, termed p_max, is necessary. Otherwise, a coating of
a cave-shaped object is impossible.

VAVAVAVAVAVAVAVAVAVAVAVAVAVAV
AVAVAVAVAVA® 2 "4AWAVW4WAVAVAVAVAN

VAVAVAVAVAVA4VAVAVAN VAVAVAVAVA VAVAVAVAVA®c*3%¢<¥4AVAVAVAY
\VAVAVAVAYa®a "AVAVAVAN VAXAVAVAV)'C‘Q’A’AVAXA ‘X"‘"‘%‘:‘x’:‘*‘}'&"‘"

NAVAVA S AVAVAVA - 202l
\VAVAVAV;.0.:/AVAVAVAVA "%'%'%"'6 el AVAVAVAVA‘-‘-‘-‘:‘AVAVAVAV meg ":‘#.uvmvg

Figure 4.10: Invalid coating examples [11].

54

Chapter 4.

(a) No distance) Got distance from (C) Got Distance from) Final position
tile particle and tells it
to move

Figure 4.11: Example of simple GCA [11].

Nevertheless, sharing the p_max value brings another challenge, and this is the count to
infinity problem. As we mentioned before, the p_max value is used to make other robots
move. However, after that, the robots moved and made space for the one with the highest
distance (i.e., p_max). However, after the coating has been done, other robots that did not
move still have the old p_max. These robots distribute the p _max to others within the
swarm.

Consequently, if there is still a free location with a lower distance than the p max, those
robots will move toward this location because they think there is a robot at a greater distance.
As a result, the whole swarm continues to move without termination. This problem is known
as the count to infinity problem. For solving this problem, each robot sends with the p _max
value an additional lifetime value. This lifetime value starts with zero and increases whenever
the robot thinks it is still the highest distance. However, the lifetime changes either when the
robot receives a p_max value higher than its own p_max or when they are equal, but the
received lifetime is higher than its own. Nevertheless, the p _max of a robot is reset when
the lifetime becomes zero or after a robot’s movement occurred. So, the lifetime increased
by the one with the highest p_max. On the other hand, each robot receives the p max,
which decreases the lifetime by one, and shares it with others. The general coating algorithm
ensures that outdated p_max values will not stay eternal within the swarm with this simple

’.'.‘.‘.‘.'.’ o.o. ‘o‘o‘ .o.
co@ec @ oo‘:o@o:oo
....“.‘.“.... VA, ‘ YAV,

(a) A free, empty location and (b) Entering the free location (c) Entering the new space
a robot in an invalid coat- in the cave and making a
ing position. new space.

Figure 4.12: Coating the hole in the Cave [11].

95

Chapter 4.

Table 4.1: Runtime test overview: Table showing the minimum, average, maximum and stan-
dard deviation of the number of rounds taken for each combination of Scenario and
Particle count [11].

Particle Scenario
count Single Tile Multiple Tiles Small Holes

Min | Avg | Max | SD | Min | Avg | Max | SD | Min | Avg | Max | SD
20 335 | 388 | 503 | 30 | 316 | 393 | 461 | 32 | 308 | 382 | 425 | 29
40 371 | 424 | 518 | 38 | 347 | 404 | 533 | 35 | 395 | 545 | 830 | 83
60 446 | 597 | 832 | 89 | 401 | 639 | 923 | 104 | 379 | 456 | 602 | 54
80 479 | 634 | 875 | 88 | 425 | 546 | 755 | 81 | 434 | 618 | 1058 | 126
100 521 | 676 | 926 | 8 | 533 | 795 | 1157 | 143 | 461 | 614 | 833 | 86

Thin Tunnel Small Cave Medium Cave

Min | Avg | Max | SD | Min | Avg | Max | SD | Min | Avg | Max | SD
20 302 | 388 | 485 | 31 | 332 | 418 | 542 | 34 | 296 | 377 | 455 | 33
40 403 | 527 | 740 | 64 | 377 | 446 | 524 | 38 | 466 | 600 | 782 | 80
60 560 | 681 | 836 | 61 | 425 | 512 | 647 | 56 | 1079 | 1260 | 1559 | 97
80 545 | 680 | 1007 | 79 | 461 | 611 | 902 | 8 | 914 | 1031 | 1211 | 73
100 557 | 705 | 983 | 84 | 467 | 616 | 875 | 94 | 1118 | 1415 | 1802 | 139

Large Cave Bottle Small Bottle

Min | Avg | Max | SD | Min | Avg | Max | SD | Min | Avg | Max | SD
20 311 | 388 | 461 | 29 | 323 | 384 | 455 | 30 | 308 | 383 | 455 | 31
40 508 | 720 | 941 | 81 | 457 | 594 | 884 | 77 | 692 | 856 | 1061 | 88
60 464 | 545 | 671 | 46 | 1370 | 1592 | 1850 | 106 | 686 | 782 | 944 | 55
80 626 | 884 | 1267 | 126 | 1136 | 1271 | 1523 | 71 | 896 | 1200 | 1619 | 150
100 674 | 906 | 1205 | 122 | 1231 | 1422 | 1715 | 117 | 1046 | 1276 | 1649 | 135

solution. The information propagation method is needed to share information such as one’s
own distance and the maximum distance (p max) of any robot in the swarm. First, each
robot receives the information from its adjacent neighbors and processes it. Next, the robots
send the processed data to its adjacent neighbors. The robots use this method to communicate
and based on the received information, they either update their distances or start to move.
With this information propagation, GCA ensures that all the information regarding distances
and the p__max within the swarm is updated. However, sometimes the highest distances reach
robots earlier than the lower distances. Thus, the robots receive the wrong distances after each
movement. To solve this problem, GCA lets each robot, after a movement, wait for one round,
so all the other robots can move and update each, self-based on the new position. Afterward,
all the robots start to send messages. Now that we know how the algorithm works, let us have
a look at the evaluation.

For the evaluation, we use Swarm-Sim. We use nine different arbitrary objects as shown in
Fig.4.8. The robot swarm size varies between 20-100 robots, with an increase of 20 robots after
each simulation. The robots are located randomly in the Swarm-Sim world. To make sure
that the moving and choosing of the robots happen randomly each time, we use 20 different
seeds for each setup. In total, we did 900 tests. The maximum round number is 10,000. If
the swarm cannot carry out a valid coating within 10,000 rounds, the simulation is noted as
failed. The result of our evaluation is shown in Table 4.1. As we can see, all the simulations

56

Chapter 4.

Table 4.2: Runtime test overview of the robustness test: Table showing the minimum, average,
maximum and standard deviation of the number of rounds taken for each combina-
tion of Scenario and Particle count [11].

Particle Scenario
count Single Tile Multiple Tiles Small Holes

Min | Avg | Max | SD | Min | Avg | Max | SD | Min | Avg | Max | SD
20 317 | 395 | 493 | 36 | 300 | 387 | 449 | 38 | 300 | 380 | 437 | 34
40 365 | 435 | 545 | 41 | 359 | 395 | 461 | 24 | 407 | 494 | 701 | 56
60 410 | 522 | 746 | 68 | 415 | 530 | 656 | 60 | 386 | 439 | 511 | 32
80 449 | 587 | 833 | 81 | 410 | 513 | 683 | 60 | 437 | 635 | 905 | 95
100 503 | 680 | 890 | 88 | 530 | 681 | 941 | 93 | 448 | 581 | 866 | 85

Thin Tunnel Small Cave Medium Cave

Min | Avg | Max | SD | Min | Avg | Max | SD | Min | Avg | Max | SD
20 287 | 384 | 461 | 34 | 322 | 414 | 499 | 36 | 295 | 374 | 446 | 35
40 398 | 499 | 703 | 63 | 377 | 453 | 560 | 43 | 428 | 551 748 | 76
60 578 | 696 | 836 | 60 | 413 | 539 | 695 | 65 | 1081 | 1295 | 1570 | 119
80 509 | 660 | 857 | 68 | 440 | 621 | 932 | 112 | 929 | 1066 | 1229 | 75
100 599 | 745 | 959 | 89 | 410 | 607 | 827 | 88 | 860 | 1144 | 1490 | 131

Large Cave Bottle Small Bottle

Min | Avg | Max | SD | Min | Avg | Max | SD | Min | Avg | Max | SD
20 310 | 385 | 454 | 28 | 320 | 376 | 446 | 30 | 300 | 381 | 467 | 36
40 508 | 669 | 884 | 87 | 446 | 555 | 745 | 75 | 523 | 761 | 959 | 110
60 443 | 555 | 698 | 57 | 1022 | 1555 | 1880 | 157 | 707 | 806 | 1073 | 68
80 526 | 772 | 1010 | 118 | 1109 | 1312 | 1499 | 89 | 725 | 905 | 1240 | 124
100 728 | 949 | 1400 | 133 | 1010 | 1242 | 1478 | 107 | 1145 | 1351 | 1736 | 132

have an average round below 10,000 rounds. As a result, the success rate of the general coating
algorithm with nine different arbitrary-shaped objects is 100 percent.

Additionally, the general coating algorithm must fulfill the robot swarm criteria based on [27]
| i.e., robustness, flexibility, and scalability. Robustness means that if some of the robots are
missing or lost, the algorithm must still solve its task. A flexible algorithm must adapt itself
to changes in the environment, and a scalable swarm algorithm must deal with increases or
decreases of robots within the swarm.

We want test if the GCA can handle a larger number of robots in the swarm for scalable
testing. We will use the previous setup with 120 to 500 robots and increase the swarm by
adding 20 more robots after each simulation. The result is that the success rate is still 100
percent, which means that the swarm sizes could coat each of the nine objects within 10,000
rounds. Consequently, our coating algorithm is scalable.

Robustness means that the algorithm is capable of adapting itself after the loss of robots in
the swarm. In order to test this, we used the same setup as before. However, instead of having
more robots this time, we deleted robots while the coating simulation was in progress. The
conclusion is that the running time was not affected much and all the tests ended successfully
within 10,000 rounds.

57

Chapter 4.

Success rate
(=]
o ®

o
IS

N

0.99 1.0 1.0 1.0
1.09 0.96
0.84
0.24
0.0-

20 40 60 80 100
Particle count

Figure 4.13: Plot showing the success rate in the Scenario with two tile objects [11].

For a swarm to be flexible the algorithm must be able to handle changes in the environment.
For this reason, we simulated a scenario with two objects beside each other. We put two objects
tiles close to each other, with the intention of evaluating if the swarm can coat both objects
successfully. The result of the evaluation is shown in Fig. 4.13. We see that all the robots are
as tight as possible around both objects and the coating is valid. In conclusion, this general
coating is flexible, too.

We have shown a general coating algorithm that is capable of coating arbitrarily shaped objects.
This general algorithm fulfills the criteria of the robot swarm, i.e., it is flexible, scalable, robust.
Because the robots are limited, equipped with scanning environments and communication, it
is cheaper and easier to produce them. The algorithm does not need any GPS or distance
measurement. Therefore, the production costs of the robots can be reduced.

Nevertheless, this algorithm has some limitations. First, it is only tested on triangular grids
that are limited by their directions. In the future, it would be helpful to adapt the general
algorithm to environments without any grids. Another point is the simulation in 3D. If coating
could be done in reality, it would be interesting to test GCA in 3D. Next, testing the flexibility
should be extended with more objects and with more considerable distances.

Further, in the testing of robustness, we simply deleted the robots. However, in real-life, robots
cannot, disappear when they are broken. They are, instead, disabled and stuck in their position.
Therefore, it is necessary to adapt GCA for when robots are not moving or communicating. In
conclusion, the general coating algorithm is the first step to let swarms coat arbitrarily shaped
objects, and hopefully, this algorithm can be used in the future for nanobots to detect, coat,
and destroy cancer cells.

o8

Chapter 4.

Figure 4.14: Wolves are surrounding their prey (Source: [154])
4.2.2 Importance and Impact on Dissertation

The general coating is the second contribution C3.2 of module M3. Here we provide a coating
algorithm that can coat any arbitrarily shaped object. The inspiration for it comes from
wolves surrounding their prey (Fig. 4.14) and as mentioned earlier in chapter 1.1 by antibodies
attacking viruses (Fig. 1.1), which is the answer to RQ3.1. The answer to RQ3.2 is that this
algorithm aims to coat any object with a swarm of robots. A swarm of robots has been created
that can communicate and move; and that can coat an arbitrarily shaped object, which is the
answer to RQ3.3. The answer to (RQ3.4) is that the algorithm works as follows. When a swarm
robot hits an object, it becomes the distance one. Next, it checks for free locations and moves
toward one if it recognizes a neighbor robot at a higher distance than its own. Additionally, the
robots share their distances and store the maximum received distance. Therefore, if a robot
receives a maximum distance higher than one of its neighbor locations, it will move towards
one of them. Based on these criteria, the robots complete this coating. The coating is validated
when all the robots are positioned, so the maximum distance of all the robots is smaller (or
equal) to the minimum distance of all accessible locations closed, which is the answer to RQ3.5.
To answer the RQ3.6, the metrics include the Rounds, Swarm Sizes, and the Success Rate.

4.2.3 Contribution

This paper aims to develop an algorithm for robot swarms to coat arbitrary-shaped objects.
The main contribution of this paper is that this, proposed, general coating algorithm (GCA)
works for any arbitrary object. Previous related works have only been focused on a simple
object. This means they have no entrances or tails that lead inside the object. These kinds
of complex objects are cave- or bottle-neck-shaped. With GCA, we developed an algorithm

39

Chapter 4.

that can coat any arbitrary-shaped object. To sum up, GCA is a unique algorithm for robots
with a minimum amount of properties, such as communicating and scanning their adjacent
neighbors to let them coat any arbitrary-shape object. Additionally, GCA is a unique algorithm
contribution in accordance with the robot swarm criteria (flexible, robust, scalable).

4.2.4 Personal Contribution

Ahmad Reza Cheraghi’s contributions include the scientific approach, problem definition, and
solution of the general coating algorithm for arbitrarily shaped objects. He designed and devel-
oped this algorithm and structured, authored, and completed this work. Under his supervision,
Gorden Wunderlich implemented and evaluated the general coating algorithm and wrote some
parts of this paper. In addition, the solution was refined in several discussions with Ahmad
Reza Cheraghi and Gorden Wunderlich. Kalman Graffi provided the initial idea and design
of the general coating algorithm. He also supervised the entire project and critically reviewed
this work.

60

Chapter 5

Challenges and Possibilities of
Communication within a Robot Swarm

Communication is key. The same goes for robot swarms. The robot within the swarm needs
to communicate to share information about itself or the environment. However, how can they
communicate without having any overhead? What type of communication should they use?
Should they communicate directly or indirectly? This chapter answers the above questions. We
consider both types of communication. Direct communication uses either Wifi or Bluetooth.
On the other hand, indirect communication works by sharing information through the envi-
ronment. However, indirect and direct communication brings challenges, which is considered
here.

5.1 Opportunistic Network Behavior in a Swarm: Passing
Messages to Destination

This section summarizes the contributions and gives a verbatim copy of our paper [12].

Ahmad Reza Cheraghi, Julian Zenz, Kalman Graffi
“Opportunistic Network Behavior in a Swarm: Passing Messages to Destination”
In: Proceedings of IEEE 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)).
2020.

5.1.1 Paper Summary

Transferring data over the Internet is standard nowadays, and everyone relies on the infra-
structure of the Internet. However, what happens if the Internet is shut down? A shutdown
happened ten years ago in Egypt and more recently in Iran. In Egypt, with the revolution, the
government decided to shut down the Internet from the entire world to stop the demonstra-
tion organized chiefly over social media sites such as Facebook. The same tactic was used by
the Iranian government two years ago. By shutting down the Internet (usually done by shut-
ting down the ISP or major Internet backbones), sharing information through the traditional

61

section 5.

client-server mechanism is impossible. This is why a new network has been proposed termed
opportunistic networks.

Today, almost everyone uses a smartphone, and each one is equipped with Wifi and Bluetooth.
With the help of one of these systems, it is possible to transfer data between smartphones
without using the Internet. Each smartphone can act as a router to transfer messages from
the sender to its receiver, this kind of network is termed an Opportunistic Network (OppNet).
OppNet is still an interesting and exciting research area, and plenty of work has been done on
it [155, 156, 157, 158, 159, 160].

An OppNet is a subcategory of a Tolerant Delay Network (DTN). With DTN, the sender
and receiver tolerate delays within the network. Typically, DTN is used for long-distance
communication, e.g., between a Mars rover and earth. However, with OppNet, the delay
toleration occurs because the link between the sender and receiver is established through other
nodes (such as smartphones) that are mobile and, therefore, do not have a fixed position. It
could be that there is not a connection between the sender and receiver. Additionally, all the
nodes must apply the store, carry, and forward principle to build an OppNet. Consequently,
they must act as a router, and therefore, new routing protocols must be defined to make the
OppNet more efficient. For this paper we chose the Epidemic routing and PRoPHET.

The Epidemic routing is straightforward. As the name says, data is spread like an epidemic
to any node within the communication range. Therefore, it maximizes the chances of data
delivery. On the other hand, however, it increases data overhead and storage. Overhead
means that the network itself must handle the high amount of data transfer, which sometimes
leads to networks failure. Additionally, each node needs to store each received message until
it can be forwarded to another node. Therefore, the demand for high storage is mandatory.

On the other hand, the probability routing protocol, using history of encounters and transitivity
(PRoPHET), not only sends data whenever a node is encountered, but its principal idea is to
reduce the overhead by adding delivery probabilities. PRoPHET shares data depending on
calculated probability. Each node starts with an initialized delivery probability, and it changes
depending on the last time it encounters another node, especially when it is a receiver. For
data forwarding, each node checks (by encountering another node) if the delivery probability of
the other node is higher than its own, and if so, it will forward the message. Thus, PRoPHET
saves overhead and storage. Before the comparison of Epidemic with PRoPHET starts, we
define the metrics.

This paper aims to compare the OppNet routing protocols Epidemic and PRoPHET in Swarm-
Sim to test the compatibility of the OppNet with swarms. For this paper, the particles within

a swarm can move within a given mobility pattern and send messages after a defined time.

In this paper, we simulate a swarm with 200 up to 600 robots and evaluate them with the
following metrics:

In this paper, we simulate a swarm with 200 up to 600 robots and evaluate them with the
following metrics:

1. Delivery Success: the rate of data delivered (without considering duplicates) to the re-
ceiver.

62

section 5.

Table 5.1: Particle parameters used in the experimental setup [12].

Parameter name ‘ Parameter values

Mobility model structure | {random-walk, random-circles}
Mobility model steps [10, 30]

Scan radius {5, 10}

Table 5.2: World and solution parameters used in the experimental setup [12].

Parameter name Parameter values
(max, maz,) (200, 200)

Initial particle placement | random

Particle count {200, 400, 600}
New message interval Every 5th round
Max round 1000

2. Delivery Efficiency: average delivery rate of duplicates that the receiver receives. The
closer this value goes to one, the fewer duplications of data have been delivered to the
receiver, which means that the routing protocol avoids forwarding replications.

3. Overhead: the average number of replicas per generated data. This number is the amount
of forwarded (replicated) data to other particles.

We use the Swarm-Sim with the setup shown in Table 5.1 and 5.2 for the simulation. The
given parameters in the table show which ability each particle has. Each particle is equipped
with two types of mobility models. The first model is a random walk, which means that each
particle chooses its direction randomly and moves in this direction for either 10 or 30 steps.
After finishing, it chooses a random direction, and the procedure repeats. The second mobility
model is the random circle walk. In this mobility model, the particle chooses a direction again
randomly. However, it does not go straight. It makes a clockwise circle move. When it hits its
starting point, it randomly chooses another direction and proceeds with the same routine. The
second parameter, (mobility model steps) in Table 5.1, defines the number of steps a particle
should go. The last parameter is the scan radius, which defines the communication range for
transferring data between the particles. The scan radius is either five or ten hops. Table 5.2
shows the setup of the simulator’s scenario (the playing ground). The world size is 200 times
200 locations. A location is the coordinates point on the Swarm-Sim trigonometry grid, and
the distance between two locations is termed one hop. All the particles are located randomly
in this world. We test each routing protocol with 200 and 400 particles. Every fifth round, a
new message is generated and sent. The maximum round number for termination is 1000.

The results of the simulation are shown in Table 5.3, 5.4,and 5.5. The first columns show the
mobility model, particle number, and communication radius. The second and last columns

stand for the Epidemic and PRoPHET routing algorithm result.

The first comparison of these two routing algorithms is for delivery success (Table 5.3). At

63

section 5.

Table 5.3: Delivery Success for Epidemic and PRoPHET Routing [12].

Parameters Epidemic PRoPHET
{random-walk, 200, 5} 0.150 0.020
{random-walk, 200, 10} | 0.175 0.055
{random-walk, 400, 5} 0.230 0.055
{random-walk, 400, 10} | 0.115 0.130
{random-walk, 600, 5} | 0.385 0.065
{random-walk, 600, 10} | 0.085 0.135
{random-circle, 200, 5} | 0.155 0.020
{random-circle, 200, 10} | 0.165 0.090
{random-circle, 400, 5} | 0.625 0.250
{random-circle, 400, 10} | 0.120 0.055
{random-circle, 600, 5} 0.700 0.140
{random-circle, 600, 10} | 0.275 0.130

Table 5.4: Delivery Efficiency for Epidemic and PRoPHET Routing [12].

Parameters Epidemic PRoPHET
{random-walk, 200, 5} 0.395 1.000
{random-walk, 200, 10} | 0.124 1.000
{random-walk, 400, 5} 0.619 1.000
{random-walk, 400, 10} | 0.319 1.000
{random-walk, 600, 5} 0.526 1.000
{random-walk, 600, 10} | 0.230 0.400
{random-circle, 200, 5} | 0.155 1.000
{random-circle, 200, 10} | 0.686 1.000
{random-circle, 400, 5} 0.351 1.000
{random-circle, 400, 10} | 0.120 0.491
{random-circle, 600, 5} | 0.391 0.867
{random-circle, 600, 10} | 0.037 0.403

first, we see the Epidemic routing does better overall compared to PRoPHET. Only in two
cases, the PRoOPHET success rate is higher, i.e., with the particle amount of 400 and 600
with random-walk and a communication radius of 10. Hence, a smaller communication range
means less interaction. Nevertheless, the reason for this result needs further examination. As
a result, the delivery success rate of Epidemic routing is superior to PRoPHET in the majority
of simulations.

The following Table 5.4 shows the results of the delivery efficiency. Now we see that here
ProPHET surpasses Epidemic. Although Epidemic has higher delivery success, the efficiency
is lower. This means more data is delivered. However, this data is duplicated. Therefore, the
efficiency decreases. ProPHET probabilistic sharing lowers the creation or duplication.

The last comparison is the overhead. The overhead is a metric that says how many duplications
have been generated from the real generated messages. The higher the overhead value, the
worse the routing algorithm because a routing algorithm should reduce overhead. Otherwise,
the receivers go down for receiving massive amounts of data and the network becomes congested

64

section 5.

Table 5.5: Overhead for Epidemic and PRoPHET Routing [12].
Parameters Epidemic PRoPHET
{random-walk, 200, 5} 318.565 112.265
{random-walk, 200, 10} | 1225.945 510.83
{random-walk, 400, 5} 1324.385 479.035
{random-walk, 400, 10} | 4783.535 1955.125
{random-walk, 600, 5} 2979.19 1122.46
{random-walk, 600, 10} | 10341.215 4827.07
{random-circle, 200, 5} 344.58 112.04
{random-circle, 200, 10} | 1302.504 590.295
{random-circle, 400, 5} | 1371.465 495.205
{random-circle, 400, 10} | 6476.815 2299.34
{random-circle, 600, 5} 3026.25 1170.275
{random-circle, 600, 10} | 11448.555 5089.92

with duplicate messages. The result of the overhead is shown in Table 5.5. As expected, the
Epidemic overhead is much worse than PRoPHET regardless of the communication radius,
mobility, and particle amount. It is over two times worse than ProPHETs overhead. Regardless,
we also see that for both routing algorithms, the overhead increases as the communication
radius changes from 5 to 10 hops.

This paper compares two OppNet routing algorithms, i.e., Epidemic and PRoPHET, in a
swarm environment and the new simulator Swarm-Sim. Swarms of particles have been evalu-
ated against each other with different numbers, routing protocols, mobility models, and com-
munication ranges. The results show that the Epidemic routing is superior in delivery ratio.
Based on the cost of low efficiency and high overhead. In contrast, PRoPHET has a lower
delivery ratio but is highly efficient and has a lower overhead.

Future work must be done in comparing these results with the OppNet simulator ONE [161].
Adding more OppNet routing protocols for comparison and more metrics, such as message
delay or memory consumption will be interesting. In general, in this paper, we have proven
that the Swarm-Sim can simulate an OppNet making this simulator ready for implementing
and testing more exciting networks.

5.1.2 Importance and Impact on Dissertation

With this paper, we present for module M4 the contribution C4.1. This paper elaborates on
direct swarm communication using opportunistic networks (OppNet). To answer RQ3.1, the
inspiration comes from our human nature, and that is gossiping. We use gossiping as a kind of
store, carry, and forward transportation of rumors (Fig. 5.1). However, this paper aims first to
adopt two OppNet routing protocols, i.e., Epidemic and ProPHET, on the Swarm Simulator
and compare them to each other, which is the answer to RQ3.2. The answer to R(Q3.3 is that
given are robots with the feature to move and communicate wireless. We answer the question
RQ3.4 as follows. The robots share data whenever they are in their connection range. However,
the data is shared on every connection by the Epidemic routing. The data is flooded within

65

section 5.

Figure 5.1: Businesspeople Gossiping (Source: [162])

the swarm network. However, the ProPHET routing protocol does not flood the network and
chooses forwarding based on the previous encounter with whom it should forward the data.
Each agent calculates delivery probabilities depending on the last encounter. Encountering an
agent increases the delivery probability for the encountered agent and influences other agents’
probabilities. The delivery probability for the receiver of a message an agent carries decreases
over time. The aim is reached when the sent data reaches its destination, and this is the answer
to RQ3.5. The answer to R(Q3.6 is that we use three metrics for the evaluation. Delivery Success
is the rate of messages delivered successfully to the receiver without considering duplications.
The second metric is Delivery Efficiency, which is the average number of duplicates delivered.
The closer this value is to one, the fewer duplicate deliveries. Finally is the Overhead. Overhead
is the average number of generated replicas per unique message.

5.1.3 Contribution

There are a few swarm simulators on the market. However, none of them provide any com-
munication models for a swarm. This paper provides the first swarm simulator that uses a
decentralized communication method called Opportunistic Networks (OppNet). We imple-
mented two routing protocols Epidemic and PRoPHET, and two types of mobility models and
compared both routing algorithms to each other with a swarm size of 200, 400, and 600 parti-
cles. As far as we know, no simulator uses the OppNet or any other communication methods
with different mobility models for a swarm evaluation tool. Therefore, the contribution of this
paper is the possibility to simulate OppNet with the swarm simulator Swarm-Sim.

66

section 5.

5.1.4 Personal Contribution

Ahmad Reza Cheraghi’s contributions to this work include the scientific approach, problem
definition, and solution to using OppNet with Flooding and ProPHET routing protocols for
direct communication between units within the swarm. He also wrote and finalized most parts
of the thesis. Under his supervision, Julian Zenz implemented and evaluated the code. He
also authored the first version of this work. In addition, the solution was refined in several
discussions with Ahmad Reza Cheraghi and Julian Zenz. Kalman Graffi was continuously
involved in discussing the scientific approach and provided a critical revision of this work.

67

Chapter 5.

5.2 Prevention of Ant Mills in Pheromone-Based Search
Algorithm for Robot Swarms

This section summarizes the contributions and gives a verbatim copy of our paper [13].

Ahmad Reza Cheraghi, Jochen Peters, Kalman Graffi
“Prevention of Ant Mills in Pheromone-Based Search Algorithm for Robot Swarms”
In: Proceedings of IEEE IRCE 2020: The 3rd International Conference of Intelligent Robotic
and Control Engineering. 2020.

5.2.1 Paper Summary

Natural phenomena are inspirational sources for computer scientists, and one example is ant
foraging. While ants are searching for food, they walk without a standard pattern. However,
whenever they find a food source, they spread pheromones on their way back to the nest. These
pheromones help other ants find a food source quicker because the pheromone path leads them
to the found food source. However, sometimes this pheromone trail leads the ants to their
death.

When many ants find food sources, they will spread pheromones on their way back to their
nest, which causes many pheromone paths. However, sometimes these different paths overlap
each other. As a result, ant mills are created or the so-called "spiral of death." This ant mill
will cause the ants to run in a circle, and instead of reaching a food source, they will die. The
ants will continuously walk in search of food until they die of starvation.

This paper introduces an algorithm to prevent ant robots from building or getting into ant-
mills. Given are robots, food sources, and a nest. The robots can move randomly and are
equipped with a gland to spray pheromones, hunger level, and age. They can also store the
path while searching for food to find back home. Each food source has a random amount of
nutritional value, which decreases each time an ant robot finds it. The nest is the starting-
and endpoint of each ant. The aim is to develop an ant foraging algorithm with pheromones
that can prevent the creation of ant-mills. The procedure is first to develop a simple foraging
algorithm, and then upgrade it with an ant-mill prevention system.

For the foraging algorithm, some steps need to be defined:
1. The ant leaves its nest and searches, in a randomly chosen direction, for food.
2. When it finds a food source, it takes a portion of it and walks back to its nest.

3. On its way back, it spreads pheromones to indirectly communicate the location of the
food source. Consequently, if any other ant hits this pheromone, it will follow this path
until it reaches a food source.

68

Chapter 5.

potency weight score move

(a) (b) (© (d)
Figure 5.2: Pheromone Scoring [13].

10.0 10.0

spread
(e)

Figure 5.3: Food Scoring [13].

4. If an ant with food reaches its nest, it will leave the food and start the procedure of
searching again either by randomly walking or following the pheromone path.

However, if the ant faces many pheromone paths, as shown in Fig. 5.2, it chooses one of them
based on a scoring algorithm. The scoring works as follows. As we can see in Fig. 5.2a, the
ant is facing two pheromone paths with different potency. The potency of the pheromone
indicates how far a food source is. The ant multiplies the potency with a weight calculated
based on the ant viewing direction and adjacent neighbors. The ant stores each scoring result
and then chooses the one with the highest point, as shown in Fig. 5.2c. It then moves towards
this pheromone trail (Fig. 5.2d). When facing a food source, the scoring algorithm is slightly
different (Fig.5.3) because the weighing of the food sources is constant, already set to 10, to
neglect any pheromone paths. Therefore, the ant neglects all the pheromones, multiplies the
weight value of the food with the nutrition value, and chooses the one with the highest scoring
value. Nevertheless, this simple ant foraging algorithm leads us to the same problem that real
ants face: the ant-mill. For that, we introduce a solution to prevent ants from going into an
ant-mill.

Each ant is equipped with a sensor to scan its neighbor’s position for other ants. The sensor
helps the ant to check how many ants are in its neighborhood. If an ant recognizes more than
two robot ants in its neighborhood, the probability of getting into an ant-mill seems high.
Therefore, it will randomly choose an ant-free direction and follow this direction for five steps.
We termed these steps as an escape. After escaping, the ant will continue its task, i.e., either
foraging or returning to the nest. This procedure prevents the ants from going into a spiral of
death, which we will prove with our evaluation.

69

Chapter 5.

For the evaluation, we use the Swarm-Sim with the following set-up. Thirty ant robots with
a hunger level of 50 rounds. The hunger level is reduced by one after each round, while the
ant is searching for food. If it does not find any food within these 50 rounds, it is reborn
again and starts from the foraging procedure from its nest. Next, sixteen food sources are
positioned randomly, and each has a nutritional value chosen randomly between 1-20 pieces.
The pheromone potency is 100 percent, and it has an evaporation rate of 4 percent, which
means this rate will reduce the pheromone potency after each simulation round.

For comparison, we use three different ant foraging algorithms. The first one, the ant swarm,
walks only randomly (RW) and without spreading pheromones. Second, a pheromone-based
search algorithm (PSA) includes random walking and the usage of pheromones. This means
that the ants spread pheromones after finding a food source. Last, the pheromone-based
search algorithm is an upgrade with the ant-mill prevention (PSAMP) system. We run for 20
simulations with 20 different seeds. We use the different seeds because of the ants’ random
walking, food source position, and nutritional value because each different seed value brings
new random values. The simulation terminates after 1,000 rounds.

For the evaluation, we use the average age and food delivery as metrics. The average age shows
how old all the ants, on average, become within the 1,000 rounds. At the simulation start, the
age is zero, and after each round, it is increased by one. An ant can live a maximum of 1,000
rounds because the simulator terminates after 1,000 rounds. This age can only be reached if
the ants find a food source before they starve.

On the other hand, food delivery shows how much nutrition the ants deliver from the food
source to their nest. The food delivery metric is an indication of the success of the foraging
algorithm. The unit of the food delivery is in percentage. It indicates the amount of food nu-
trition delivered to the nest. The higher the food delivery is, the better the foraging algorithm.
In contrast, a lower food delivery indicates an unsatisfied foraging algorithm.

For the evaluation, each metric is considered with the three, previously defined, foraging al-
gorithms. First, we compare the average age. The results are shown in Fig 5.4. From the
beginning, the average age for all three algorithms rises equally. Suddenly, at the 50th round,
the average age for the entire algorithms falls. The reason is because most of the ants died;
the hunger level has reached zero. Nevertheless, from the 50th round onwards, the changes
in the average age of each foraging algorithm differ from each other. For RW foraging, the
average age increases from the 24th to 60th rounds between the 50th and 100th simulation
round. Afterward, the average age starts to fluctuate till the end of the simulation. However,
this fluctuation is not symmetrical due to the ants random walking.

Looking at the PSA average age line, we see that after the 50th round a rapid increase in the
average age to almost 120 rounds. This increase occurred because the ant robots were using
pheromones, and therefore, other ants found the food source easily. However, after the 200th
round, the average age decreased and became lower than the RW average age. The reason is
that most of the food sources have been found. Thus, the ants have created many pheromone
trails, which have created ant-mills and brought the ants into the spiral of death. From the
350th round to the end, a stable fluctuation of the average age occurs, which shows ant-mill
occurrences; the ants die and reincarnate in a constant ratio, i.e., after 50 rounds.

The latest algorithm in the evaluation is the PSAMP. Here, we can see from the 50th to the

70

Chapter 5.

120

100 |-

60

Average Age

40 |-

0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Time

Figure 5.4: Average age with an evaporation of 4% [13].

200th round that there is an increase in the average age. Afterward, compared to PSA, there
is no sudden decrease. The average age fluctuates between 70 and 90 rounds. However, from
the 680th round onwards, the average age starts to decrease. This decrease is because most of
the food sources have been found, delivered, and therefore finished. In general, the PSAMP
average is higher compared to RW and PSA. Let us move on to the last metric, food delivery.

The result of food delivery is shown in Fig. 5.5. Up to the 50th round, the increase of food
delivery for all three algorithms is equal. The RW food delivery tends from this point onwards
to become slower than the others, but it still increases until the end of the simulation. The
food delivery ratio of PSA increases faster but becomes constant from the 150th round. The
PSA food delivery seems to be stopped, which indicates that the ants are stuck in the spiral of
death. As a result, the RW foraging algorithm is more efficient than the PSA, with no ant-mill
prevention. In contrast, the PSAMP food delivery increases continuously and overtakes all
others. The conclusion is that the PSAMP foraging algorithm avoids the ant-mill, and thus
increasing the efficiency for collecting food and the ants’ average age. However, having only
a foraging algorithm with pheromones, without any ant-mill prevention system, lowers the
efficiency of food delivery and the average age.

Nevertheless, the weakness of PSAMP is that it only avoids ant-mills but cannot detect or
destroy them. Future work could improve the ant robots to detect ant-mills, such as counting
how many times an ant visited the exact location in a given period—or destroying ant-mills by
using different pheromones. Another future work could be to use different movement models
to how they affect the foraging procedure of the ants.

71

Chapter 5.

30 o
s [
20 F RW
15 |-
10
5 | _

O]]]]]]]]]

0 1002003004005006007008009001000

rounds

food [%]

Figure 5.5: Carried food with an evaporation of 4% [13].

5.2.2 Importance and Impact on Dissertation

This paper covers the communication module M4 and contribution C4.2, an algorithm for
indirect communication within robot swarms. The answer to R(Q3.1 is that the inspiration
for this contribution is coming from ants get stuck into the spiral of death (Fig. 5.6) and as
mentioned earlier in chapter 1.1 by ants following a pheromone trail (Fig. 1.2) . This algorithm
aims for ants to collect found food into their nest by preventing them from creating ant-mills,
which is the answer to R(Q)3.2. The answer to R()3.3 is ants, several food sources, and the nest
where the ants start and end the foraging. The ants can move, take and drop food and sense
neighbors. They have a gland to spray pheromones and memorize their visited path, which is
necessary to find the way back home. Additionally, each ant has a pre-defined hunger level,
which reduces when it becomes zero after each round. The answer of RQ3.4 is as follows. First,
the ants come out from their nest and start walking randomly to find food. Next, after they
find a food source, they take a piece and go back to their nest. However, we use pheromones
and an ant-mill prevention system to make the algorithm more efficient. Whenever all the food
sources are collected for the nest, the aim is reached. Therefore, the validation occurs when
the food quantity in the nest equals the food source provided at the beginning, which is the
answer to RQ3.5. The metrics include Food Delivery and Average Age, which is the answer to
RQ3.6. Food Delivery is the amount of food delivered to the nest, and the Average Age tells us
how old the ants became after 1000 rounds. The simulation terminates when the ant delivers
all the food or the round number reaches 1000.

72

Chapter 5.

Nest ‘ Pheromone ‘* Ant

Figure 5.6: Ants got stock into the spiral of death [13]

5.2.3 Contribution

In this paper, we proposed an ant-mill prevention system. This system prevents ants from
creating ant-mills. This system avoids ant-mills by scanning the neighbor ants, and if the ants
recognize more than two ants, they change their direction to escape. They continue the escape
direction for locations and then start the foraging. This paper contributes a unique algorithm
for ant foraging to prevent ant-mills. Previous related works on foraging do not focus on the
ant-mills. For that reason, the contribution of this paper is the solving of the ant-mill problem;
and it proves that this algorithm is more efficient than the standard ant foraging algorithm.
Therefore, this paper is an excellent contribution to the science world.

73

Chapter 5.

5.2.4 Personal Contribution

Ahmad Reza Cheraghi’s contributions to this work include the scientific approach, the first
version of the problem definition, i.e., ants foraging, and participating in the solution for
the ant-mill. Additionally, he finalized this paper. Under his supervision, Jochen Peters
discovered the ant-mill problem and implemented, based on several discussions with Ahmad
Reza Cheraghi, the solution for the ant-mill and evaluated it. Further, he wrote the first draft
of this paper. Kalman Graffi was continuously involved in discussing the scientific approach of
the algorithms and provided a critical revision of the paper.

74

5.3 Universal 2-Dimensional Arbitrarily Shaped Terrain Marking

5.3 Universal 2-Dimensional Arbitrarily Shaped Terrain
Marking

This section summarizes the contributions and gives a verbatim copy of our paper [14].

Ahmad Reza Cheraghi, Abdelrahman Abdelgalil, Kalman Graffi
“Universal 2-Dimensional Terrain Marking for Autonomous Robot Swarms”.
In: Proceedings of IEEE 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)).
2020.

5.3.1 Paper Summary

This paper discusses how to mark arbitrary terrains with robot swarms. We have designed and
implemented two algorithms for solving this problem and evaluated them with the simulator
Swarm-Sim. Given are four undiscovered terrains. Each terrain has a different shape and may
include obstacles. The robots’ aim is to discover and avoid obstacles, and visit each location
point in the whole terrain to mark each one of them without missing any. Marking each
location helps to tell, indirectly, other robots that a location has been visited, and thus it is
not necessary to revisit it. Additionally, the robots can communicate with each other. The
evaluation shows that by increasing the number of robots, the efficiency of marking arbitrary
terrains increases.

For the marking problem, given are four terrains shown in Fig. 5.7. Each terrain has a different
form and a given number of locations. Additionally, they have challenges for the robots to solve.
The first terrain is the control terrain. It is a simple square without any obstacles and with 563
location points. Here, the challenge is for the robots to visit and mark each terrain location
without any obstacles. The square terrain is the second one with 527 locations and obstacles.
For the robots, the challenge here is that they must detect the obstacles and avoid them without
marking them. The next terrain is the constricted terrain. It contains two simple terrains, i.e.,
without any obstacles, connected by a path of the size of one robot. The number of locations
in this terrain is 363. The robots’ aim is not to enter the path without interfering with each
other. The edgy terrain is the last terrain with 363 locations. It is, as the name says, a terrain
with many edges. Here, the robots face many corners, and their challenge is to mark all the
edges. Now we know the terrains. However, it is essential to talk about the capabilities of each
robot.

Before presenting the algorithms, it is necessary to describe the main capabilities of each
robot. The first one is that they must move. The robot must move because it must conquer
and mark the terrain. Therefore, they should have wheels or legs. Second, the robots should
be capable of marking the terrain. The robots need something to mark each location point.
This marking object can be a paint marker, chalk, or even a knife, such as cutting grass.
Third, a communication tool, such as Wifi or Bluetooth. This tool is necessary for the robots
to communicate within a certain radius to exchange the locations of the marked areas, thus
avoiding unnecessary multiple markings.

75

section 5.

Simulator — (i (x Simulator - o x

000000000000 0O00OO0OO0OOOO00OO 00000000000000000000000O0
o [e] o o
o o o coo00000O0 o
o e] o o
o ° o 000
° ° o o [
o] o o o
o o o o o
o o o o o
[e] Lo o o o
o (] o o 000 o]
o o o o o {e]
o o o o o o
o [e] o o o o
o o o o o]
o [e] o [ee] o
o (¢] o o
o o o o
o o (e} (o] o
o o o [oelie] o
o o] o oo o
o o o (<]
o o o o
o o o (o]
o o e] e]
o o o o
0000000000000 0000000000O0 0000000000000 0QO0QOO0QO0O0O0Q0OOQOO0

(a) Control (b) Square
Simulator - o x Simulator @ ONQ
o 0oOo0o00O0
oco0000O0O 0000000 oo o
o o] o o o fo) o o
o [o o o o o o
[o) o
¥, X » Y o o o [¢)
o [¢) o o
[[<)) o
o o o [¢)
o o o o
o oo o
[o) o
o o o o 2 a ol
o o @ » 00000000 o
o o o o
o
o oo o o
o o o a
) X°] o ° °
o o o o o
o o o o [eNoRoNo] o
o o o o o o [
[o) o 0o o
o o o o o ooo © [¢)
) o [o o o [¢) o
o) o o o ocoo0o00 © [°]
o o o (o] o] o o o
o)) o [°) 00 [)
o o o o o o o o
0000000 ©ocoo0000 0000000000000 000000000
(c) Constricted (d) Edgy

Figure 5.7: Terrain Shapes [14].

After defining the robots’ capabilities, we now present the algorithms for marking the four
terrains. We designed and implemented two algorithms for solving the terrain marking problem:
Breadth- and Depth First Marking Algorithm.

Breadth-First-Marking (BFM) is an altered version of the classic Bread-First-Search by adding
the First In First Out (FIFO) algorithm for memory reading. First, the robot scans its neigh-
borhood locations and stores all the unmarked locations. Afterward, it visits, based on the
FIFO principle, all its adjacent scanned locations. When a robot is in an unmarked location,
it will mark it and store its coordinates. Then the robot reads from its memory the following
location coordinates and moves towards it. This procedure continues until all the locations
in the memory have been marked. After visiting and marking all the scanned locations, the
robot receives the coordinates of the first marked location and moves towards it. Then, the
same scanning and marking procedure happens again until the robot reaches a wall or nothing

76

section 5.

Figure 5.8: BFM Figure 5.9: DFM [14].

is left for visiting and marking. A finished BFM marking looks like a circle, as shown in Fig.
5.8.

Depth-First-Marking (DFM) is the second algorithm we propose to mark the terrains. The
inspiration for this algorithm comes from the Depth-First Search. The DFM algorithm uses
a similar mechanism as the BEM. However, in addition, the DFM uses the Last-In-First-Out
(LIFO) principle for memory retrieval instead of FIFO. Thus, LIFO causes that the robot to
move to the last scanned location instead of the first one, like BEFM. Therefore, the robot keeps
moving straight in one direction until it reaches any boundary in the terrain. As a result, the
DFM of the terrain looks like a straight line, as shown in Fig. 5.9. Now that we described the
two algorithms BFM and DFM, we will talk about the obstacle avoidance algorithm.

When a robot faces an obstacle, it stops the marking algorithm and uses the obstacle avoidance
algorithm to move around the obstacle. The obstacle avoidance helps the robot move forward
without changing the way of marking the terrain. While moving around the obstacles, it
still marks unvisited locations until it reaches the other side of the obstacle, then it continues
its typical marking algorithm. Now that we know the marking and the obstacles avoidance
algorithm, it is time for the evaluation.

For the evaluation, we use Swarm-Sim with the following setup. Given are the four terrains,
six robots, and the algorithms BFM, DFM, and mixed. Mixed means that one half of the robot
swarm uses the BFM and the other half, DFM. We compare these three algorithms to each
other to see if the robot swarm can mark the whole terrain and to check how many rounds
they need to accomplish this task.

The metrics for the evaluation are the swarm size and the round numbers. The size of the
swarm starts from one and goes up to six. We compare each swarm size to find out how many

7

section 5.

BFM vs DFM vs Mixed Average Marking Round BFM vs DFM vs Mixed Average Marking Round

T T T T
Average Marking Round BFM —+— Average Marking Round BFM —+—
Average Marking Round DFM —— Average Marking Round DFM ——

600 Average Marking Round Mixed —+— | 600 Average Marking Round Mixed —+—

Rounds
IS
S
3
T
Rounds
IS
S
s
T

1 2 3 4 5 6 1 2 3 4 5 6
Number of Particles Number of Particles
(a) Control - Marking Rounds (b) Square - Marking Rounds
BFM vs DFM vs Mixed Average Marking Round BFM vs DFM vs Mixed Average Marking Round

T T T T
Average Marking Round BFM —— Average Marking Round BFM —+—
400 RO Average Marking Round DFM —— | 350 | Average Marking Round DFM —>—

\ Average Marking Round Mixed —— Average Marking Round Mixed ——

300 B

250 b

Rounds
~N
&
3
T
Rounds

200 N E
200 -

150 | 150 b
100 - 100 - *77 e

s ‘ ‘ ‘ ‘ 50 ‘ ‘ ‘ ‘
1 2 3 4 5 6 1 2 3 4 5 6

Number of Particles Number of Particles
(c) Constricted - Marking Rounds (d) Edgy - Marking Rounds

Figure 5.10: 1 to 6 Particles - BFM vs DFM vs Mixed [14].

rounds they need to mark a terrain. Before a new round starts, each robot does its scanning,
moving, and marking.

We evaluate each terrain with six algorithms, one to six robots, and 20 different seed numbers.
Therefore, we have in total, 1440 simulations. The results are shown in Fig. 5.10 and are
as follows. Regardless of the swarm sizes, a 100 percent success rate is achieved with all the
simulations. Second, all three marking algorithms’ performances are almost similar. Only, the
BFM is slightly faster with a smaller number of robots. However, it becomes equal to the
others as the number of robots increases. The rounds needed by the Mixed are between DFM
and BFM. Nevertheless, all of the algorithms become identical to each other as the size of
the swarm rises. The only downfall is DFM because its marking strategy is slightly slower.
Generally, for all algorithms, the performance increases logarithmically as the count of robots
increases. However, there is a tiny difference between the control and square terrains. While
the number of robots increases, the rounds for marking decrease by approximately 83 percent.
For the constricted and edgy terrains, the rounds need to complete the marking decrease by
about 75 percent.

After analyzing the evaluation data, we can conclude that the solutions are robust, as each robot
is individually capable of marking the complete terrain; they are flexible, as the algorithms
are compatible with all group sizes of the swarm and scalable because of the algorithm’s
autonomous nature. The solution performs well when the robot group size increases. As for
the performance, larger group sizes produced significantly better results. Finally, all three
marking algorithms possibilities perform similarly across all simulation setups for each robot
group size. However, the BFM performs better with fewer robots, but it becomes comparable

78

section 5.

License: Standard License from shutterstock.com

Title: dog peeing in the park

Author: Ching Louis Liu

Figure 5.11: Dog marking his territory (Source: [163])

as the number of robots increases. On the other hand, the DFM performs slower with fewer
robots. The conclusion is that by having only a few robots, the marking should be done in a
circle movement instead of from one direction to another.

For future work, we suggest having real-world scenarios, thus evaluating communication range
and frequency limitations. Second, the data between the robots is shared indiscriminately
in our solution. An improvement can be that the robots use a filter mechanism for sharing
necessary data. This improvement may lead to better task allocation and effort distribution.
Another point is to optimize the obstacle avoidance algorithm. Currently, the robot chooses a
random direction to rotate around the obstacle, which may cause the robot to take a longer
way around. A simple solution to make it an impediment would be to enable the robot to
memorize critical points within a terrain such as choking or bottleneck entrances and use them
as a reference when encountering obstacles.

5.3.2 Importance and Impact on Dissertation

This paper is the third part of the communication module M4 and covers the direct and indirect
communication for robot swarms, which is the contribution C4.3. The inspiration for this
algorithm comes from dogs, which is the answer to RQ3.1. Dogs use indirect communication
by marking their territory by urinating (Fig. 5.11) and direct communication with barking
(Fig. 5.12). The answer to RQ3.2 is that this marking algorithm aims to discover and mark
an undiscovered terrain. The following points are the answer to RQ3.3. Given are a swarm of
robots and a closed, undiscovered terrain. Robots can move, mark, and communicate with each
other. The answer RQ3.4 is that we solve the task with two marking algorithms: Breadth-
or Depth-First-Marking. Whenever all its neighbor locations are marked, the robot stops

79

section 5.

Figure 5.12: Dog barking (Source: [164])

discovering and marking. Therefore, the marking algorithm is validated when the terrain is
completely marked, which is the answer to RQ3.5. The answer to RQ3.6 is that we use the
Swarm Sizes and Rounds as the metrics.

5.3.3 Contribution

The contribution of this paper is to introduce two algorithms for robot swarms to mark ar-
bitrary terrains based on Breadth- and Depth-First-Search algorithms. The robots use direct
communication for sharing a list of marked location coordinates. Additionally, the robots
can communicate directly over Wi-Fi or Bluetooth or indirectly. However, our proposed algo-
rithms let robot swarms communicate indirectly by marking arbitrary terrain: the so-called
stigmergy. Stigmergy is a way of indirect communication that animals use. For example, ants
use pheromones to indirectly communicate the path to a food source. This paper uses stig-
mergy to tell other robots with marked locations that they are unnecessary to get marked.
Therefore, we provide another way of indirect communication. As a result, our marking al-
gorithms are remarkable and unique because we use direct and indirect interaction to mark
arbitrary terrains.

5.3.4 Personal Contribution

Ahmad Reza Cheraghi’s contributions to this work include the scientific approach, problem
definition, and solution for using marking as indirect communication within the swarm. He also
drafted the first version of this work. Under his supervision, Abdelrahman Abdelgalil performed
the implementation and evaluation of the marking algorithm. In addition, he authored and
completed this work, and he refined the solution in several discussions with Ahmad Reza
Cheraghi. Kalman Graffi continuously participated in the discussion of the scientific approach
of the algorithms and provided critical revision of the work.

80

Chapter 6

Dynamic Movements for Robot Swarms

We dedicate the last robot swarm algorithm part to the movement possibilities of robot swarms.
The robot swarm is decentralized; rules need to be declared for the robots to move together as a
swarm. We first provide the three-zone model. This model allows the robots to stay within the
swarm. Next, we present the phototactic movement. The swarm robots move whenever they
sense light. However, they do not know from which direction the light emission is coming.

6.1 Robot Swarm Flocking on a 2D Triangular Graph

Ahmad Reza Cheragh, Asma Ben Janete, Kalman Graffi
“Robot Swarm Flocking on a 2D Triangular Graph”.
In:Proceedings of IEEE 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)).
2020.

6.1.1 Paper Summary

In winter, the birds fly together as a flock from north to south. They stay close together
without interfering with each other. Flocking helps them look out for each other and gain
momentum as they fly. However, it is interesting to know how this flocking behavior works
and how to develop and simulate such a phenomenon. In this paper, we present flocking for
robot swarms in a hexagonal field.

Given is a swarm of robots that are close to each other like a herd with limited ability. They
have no GPS, and therefore, do not know where they are. Communication between the in-
dividual robots is only possible within a specific range. All robots are homogeneous and,
therefore, have no leaders or central units. The robots have sensors with which they can check
their surroundings and calculate their distances from each other. This work aims to simulate
the flocking behavior of robot swarms and solve the flocking problem. The flocking problem
defines a group of agents that move together as a swarm without interfering with each other
or separating, and maintaining a constant velocity. To solve this problem, we use an adapted
three-zone swarm model of Couzin et al. [165].

81

Chapter 6.

Cohesion

Alignement

Seperation

min-distance

Figure 6.1: A particle with its 3 interaction rings [15].

The adapted three-zone flocking rule model is shown in Fig. 6.1 and consists of three zones.
The first is the yellow zone, which is called separation. Neighbor robots that are in this zone
are too close. Therefore, the robot that recognizes that its neighbors are in this zone must wait
to let them out of this zone. The second zone, the alignment zone, is the ideal zone (it is given
a green color). Each robot must make sure that its neighbors are in this zone. The last zone
is the cohesion zone. Here, the robots are on alert, so the zone is colored red. The robot is in
danger of being lost from the swarm; therefore, it must move faster and towards the direction
of the swarm to not get lost from the flock. However, we have defined a set of distances that
make up the three zones for each robot.

The first distance is the "min-distance," which defines the minimum distance between one
robot and another. The "max-distance" defines, on the other hand, the maximum distance
that should be between each robot. The third range is the visibility range, which specifies the
distance for scanning neighborhood robots. The separation zone is defined by the distance
from a robot to "min-distance." The distance between the min-distance and max-distance is
the alignment zone. Finally, the cohesion zone is the distance between the max-distance and
the visual range (VR). The unit for the width is "hops." A hop is the distance between a
location and its adjacent location.

Four situations arise for a robot with these three zones and distances. When the robots are
too close, they are inside the separation ring, and the robot is in an uncomfortable situation

82

Chapter 6.

@ @ © ©
@

(b) Safe situation

@ © © ©

(c) Critical situation (d) A lonely particle

Figure 6.2: Possible situations of a particle in the flock [15].

(Fig. 6.2a). The ideal situation is the safe situation (Fig. 6.2b)- In this situation, most of
the robots are in the alignment zone, regardless of how many are in the cohesion zone. The
critical situation is alarming (Fig. 6.2c). In this situation, all the robots are in the cohesion
zone, which means in an alarm state, so they need to catch the flock. Otherwise, they become
lonely. The lonely situation is the robot’s worse situation (Fig. 6.2d) because no robots are in
one of the rings. Therefore, it is not in the swarm anymore. Based on these three zones, the
robot decides how to behave and move.

The three-zone flocking algorithm works as follows. First, the robot scans its environment
for robots in its field of view and lists the robots it finds along with their distances. Next, it
uses the information gathered to check its current situation, i.e., lonely, uncomfortable, safe,
or critical, and decides what to do next. If it is in a lonely situation, it moves randomly in any
direction. Otherwise, when a robot is uncomfortable, it either stays with no space or checks

83

Chapter 6.

where the minority are and follows them. In a safe situation, the robot balances movement and
velocity. It checks in which direction the majority is and follows them. Finally, in a critical
situation, it will choose to move faster to keep itself in the herd and avoid becoming lonely.
In this case, the robot communicates with its neighbors to determine which direction they are
going. Then it follows the direction where the majority is moving. We developed and simulated
this flocking algorithm.

For simulating the three-zone flocking algorithm, we use the Swarm-Sim simulator with a
triangular graph. Each point on the triangular graph is called a location, and the distance
between adjacent locations is a hop. The swarm has a size of 105 robots. We use different
widths for the separation, alignment, and cohesion rings to determine if these widths result
in the robot staying within the flock for a longer time. Therefore, the evaluation is stopped
whenever one of the robots enters a solitary situation or after 1,000 rounds. Additionally, the
flocking algorithm uses breadth-first search to check if all the robots are in the swarm and
terminates if one is missing.

The metric for the evaluation is success rate. The formula for the success rate is the number
of rounds divided by the maximum round number. The unit is percentages. Thus, it tells how
long, in a percentage, the flock was stable and not separated within the 1,000 rounds.

As we mentioned earlier, the evaluation setup is based on the different widths of the three
zones. The robots start as a flock. Then all of them move and stay in the flock, i.e., within
the three zones. We first start the changes in the width of the separation ring. The same is
done with the alignment and cohesion ring. As a result, we have three experiments to show
how the changes of the widths affects the flocking behavior of the robot swarm.

The first experiment is the impact of the separation ring. The parameters of the first experiment
are shown in Table 6.1. After each simulation, the min-distance is increased by one hop. The
max-distance and virtual range are changed respectively to keep the width of alignment and
cohesion ring constant. We start the simulation with a width of zero jumps and stop it after
the sixth width. Table 6.4 shows the success rate results. For any width between zero and five
jumps, the success rate is 100 percent. However, with a width of six, the success rate decreases
to 98.9 pecent. It is an exciting phenomenon. The large separation ring lets more robots into
it, which causes them to get separated more easily. However, each of them follows the minority
direction but only if there is a space in that direction. Hence, there are now more inside the
separation ring. Those in the alignment or cohesion ring cannot move because a robot in the
separation ring still occupies the space in that direction. Consequently, they must stay and
become lonely, which causes an early termination.

In Table 6.2 the setup of the second experiment is shown. Here the width of the alignment
ring is increased. The min-distance stays constant. Max-distance and VR are increased each
by one and up to six. The result of this experiment is a 100 percent success. As a result, the
alignment ring has no impact on the cohesion flocking. The last experiment is the changing of
the cohesion ring width. Only VR changes and min-distance and max-distance stay constant
as shown in Table 6.3. The result of the success rate is shown in Table 6.3. Here the success
rate starts small and increases with the width change. At a width of zero, the success rate
is 14.9 percent. It shows that when there is no cohesion ring, the flock is separated quickly.
However, with a width of one, the success rate is 42 percent. The success rate becomes 99.7
percent with a width of two. From a width of three onwards, the success rate becomes 100

84

Chapter 6.

Table 6.1: Parameters of 15! experiment [15].

min_ || max Width of the

No | dist. dist. VR | Separation Ring
1 1 3 7 0 (No separation)
2 2 4 8 1

3 3 5 9 2

4 4 6 10 3

5 5 7 11 4

6 6 8 12 5

Table 6.2: Parameters of 2" experiment [15].
min_ || max Width of the
No | dist. dist. VR | Alignment Ring

1 2 2 6 0 (No alignment)
2 2 3 7 1
3 2 4 8 2
4 2 5 9 3
5 2 6 10 4
6 2 7 11 5

Table 6.3: Parameters of 3"¢ experiment [15].

min_ || max Width of the
No | dist. dist. VR | Cohesion Ring
1 2 4 4 0 (No cohesion)
2 2 4 5 1
3 2 4 6 2
4 2 4 7 3
5 2 4 8 4
6 2 4 9 5

percent. To sum up, the success rate is low if there is no cohesion ring, and it increases as the
width increases.

The conclusions of the experiments are, first, that increasing the width of the separation ring
causes the flock to become separated. Second, an increase in the alignment ring width causes
no harm to the flock. Last, a small cohesion ring causes the robots to separate faster. Only
with a width of three and above does the success rate stays at 100 percent.

The simulation of the flocking only occurred in a 2D triangular field. However, the real-world is
not a plain and triangular graph. Thus, it is interesting for future work to adapt this flocking
mode in a 3D world. Another future work could be to upgrade the flocking algorithm for
detecting obstacles or preventing predators from being separated and coming back together.
Nevertheless, we present a three-zone flocking algorithm for robots in a triangular field. We
experimented with different widths in the three-zone and their effects on the flock and concluded
that changes in the width would affect the flocking behavior of a robot swarm.

85

Chapter 6.

Table 6.4: Success rate for different widths of separation ring [15].

Width of 0 1 2 3 4 5
separation ring

Success rate 100 % | 100 % | 100% | 100% | 100% | 98,9%

100 | Rl‘lnnegn‘l:?nte I |

90 - 1

50 + 1

Success Rate

40]
30 1
20 + 1
10

-1 0 1 2 3 4 5 6
Width of Cohesion Ring

Figure 6.3: Success rate with different cohesion ring widths [15].

6.1.2 Importance and Impact on Dissertation

Module M5 is about the movement of robot swarms, and this paper contributes rules for
the robot swarm C5.1. We present the movement of many entities inspirit from birds flying
together as a flock (Fig. 6.4) and as mentioned earlier in chapter 1.1 from fish shoal (Fig. 1.3),
which answers RQ3.1. The. It is fascinating to see how they do not interfere with each other,
stay together, and change direction together. To answer RQ3.2, the aim of this paper is to
define rules that lead robots to be within their swarm while moving. Given are robots limited
in their vision, sensing, and communication ability, which is the answer to RQ3.3. To answer
RQ3.4, we use a three-zone model to reach the aim. This model defines three zones based
on the distance to the robot’s neighbor. The robot keeps its speed, speeds up, or slows down
based on which zone it currently moves. We test flocking with a variation of the zone width
and the robot’s vision to find out which one of the combinations is optimal. To answer R(Q3.5,
flocking is validated when the robots are still within the flock after 100 rounds. The metrics
we use are the Swarm Sizes and the Rounds, which is the answer to RQ3.6.

86

Chapter 6.

Title: Bird Flock
License: Free to use CCO

Author: Pixnio

Figure 6.4: Bird flock (Source: [166])

6.1.3 Contribution

The flocking phenomenon is well known in the science world. Additionally, birds fly together
as a flock from north to south in the winter time without interfering. The contribution of
these papers to the science world is that this flocking algorithm uses an adapted three-zone
model on a triangular field. Secondly, it experiments with how different widths can affect the
flocking behavior. These experiments with a triangular grid and different widths are new and
an excellent contribution to science.

6.1.4 Personal Contribution

Ahmad Reza Cheraghi’s contributions to this work include the scientific approach, problem
definition, and solution of the flocking on a 2D triangular grid. Additionally, he wrote and
finalized this paper. Under his supervision, Asma Ben Janete did the implementation and
evaluation of the flocking algorithm. In addition, the solution was refined in several discussions
with Ahmad Reza Cheraghi and Asma Ben Janete. Kalman Graffi was continuously involved
in discussing the scientific approach of the algorithms and provided a critical revision of the
paper.

87

section 6.

6.2 Phototactic Movement of Battery-Powered and
Self-Charging Robot Swarms

This section summarizes the contributions and gives a verbatim copy of our paper [16].

Ahmad Reza Cheraghi, Fabio Schloesser Vila, Kalman Graffi
“Phototactic Movement of Battery-Powered and Self-Charging Robot Swarms”.
In: Proceedings of IEEE 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)).
2020.

6.2.1 Paper Summary

Phototaxis is a biological mechanism in that light influences organisms’ movement directions,
even though the light emission direction is unknown. One example of such an organism is
the trochophore larvae (zooplankton). They have a unique sensor for detecting light without
seeing. The jellyfish is another example. Their sensors prevent them from predators when they
feel a shadow.

This paper aims to imitate phototactic behavior on two types of robot swarms: battery-powered
and self-charging. Battery-powered robots move when they sense light and self-charging move
after they are charged from the light. The rule for the phototactic imitation is that they are
only allowed to move when they feel light, and those in a shadow position -overshadowed by
ones that felt light- are not allowed to move. Each robot swarm starts in the middle of a
hexagon field with a finish line and light emitters coming from one direction. We aim to pit
the self-charging against the battery-powered robot swarm to see who reaches the finish line
within 5,000 rounds.

An example of our problem statement is shown in Fig. 6.5. The robots are positioned like a
hexagon in a hexagon field. The light is coming from the left side, and the aim is to bring the
robots to pass the finish line (blue circles) on the right, as shown in the second picture of Fig.
6.5.

We have two types of robot swarm. The first type is battery-powered robots, and the second
is self-charging robots. Battery-powered robots move, without waiting whenever they sense
light. The robots that come out from the shadow of the neighboring nodes on their left will
move too; this is different from the self-charging robots. The photovoltaic/solar cells-equipped,
self-charging robots, need to be charged before they can move. Thus, they must stay for some
time before moving whenever they receive light. The battery-powered robots, on the other
hand, immediately move when exposed to light. However, these two robot types have the
following common attributes:

1. All are using the same compression algorithm, i.e., staying constantly connected within
the swarm.

2. They cannot communicate with each other.

88

section 6.

Figure 6.5: Example for a swarm phototaxing simulation [16].

3. Through a binary sensor, the light is felt.

4. They can feel the nearby robots.

5. Before each movement, each robot must check the connectivity within the swarm.
6. A movement occurs whenever they receive light.

7. The direction of the movement is random.

Knowing the attributes and the details of those types of robot swarms, we aim to challenge
them to see who will reach the finish line within 5,000 rounds. The evaluation aims to compare
the battery-powered with the self-charging robot swarm with different swarm sizes. The robot
swarm size varies between two to 30 robots, and for each swarm size, we simulate ten times with
a different seed number. Seed numbers are essential for changing the randomness of direction
within the simulator. The simulation terminates after 5,000 rounds or when the swarm passes
the finish line.

We simulate this competition with the Swarm-Sim. The starting scenario (Fig. 6.6) is a
hexagon field with a finish line (blue marked circles) on the right-hand side with light coming
from the left. The robots are the black dots in the middle of the field. The shape of the
swarm is a hexagon. Thus, we have robots receiving immediate light, as well as robots in a
shadow position (not receiving immediate light) because of the robots near the light. Robots
in a shadow position will not move. They only will move when they are in a light position and
sense light. Nevertheless, it is vital to know how to measure the competition. For measuring
the competition, we use the following metrics. Each metric is the average calculated from the
ten simulations of each swarm size. Additionally, for each metric, we generate the "Standard
Deviation" (SD) to express how far the error for each measured metrics is from its mean.

89

section 6.

Figure 6.6: Test environment

Nevertheless, it is vital to know how to measure the competition. For measuring the com-
petition, we use the following metrics. Each metric is the average calculated from the ten
simulations of each swarm size. Additionally, for each metric, we generate the "Standard Devi-
ation" (SD) to express how far the error for each measured metrics is from its mean. The first
metric is the "Success Rate," which tells us in percentage the average of successful passing of
the swarm over the finish line. This metric varies between 100 percent and 0 percent. When
the swarm crosses the finish line in all ten simulations, the success rate is 100 percent.

We use the metric "Average Rounds"(AR). It tells the rounds it took for the robot swarm to
cross the finish line for ten rounds. However, if the AR is 5,000 rounds, it means that the
swarm never reached the finish line over the entire ten simulations. Everything below 5,000
rounds means that the swarm passed the finish line at least once.

Moreover, the "Average Rounds Per Agent" (ARPA) is identical to AR, with the difference
that it shows us the time for each robot. ARPA helps us understand if the swarm size affects
the time it takes each robot to reach the finish line.

90

section 6.

5000 A
2000
4000 |
1500 4
2 3000 A
2
H
2
1000 4 2000 4
500 1000 4 i ii
o] Mk
T . T T T T
5 10 15 20 25 30

Rounds

5 10 15 20 25 30
Agent Numbers Agent Numbers
(a) Self-charging agents (b) Battery-powered agents

Figure 6.7: Average rounds with standard deviation [16].

1751 1400

150 4 1200 4

125 4 1000 -

Rounds

200

i [[[T]
o4

5 10 15 20 25 30

5 10 15 20 25 30
Agent Numbers Agent Numbers
(a) Self-charging agents (b) Battery-powered agents

Figure 6.8: Average rounds per agent with standard deviation [16].

It is interesting to see how much the time varies between each swarm size. For this purpose,
we use the "Percentage Change Average Rounds" (PCAR) and "Percentage Change Average
Rounds Per Agent" (PCARPA) metrics to identify the percentage change of time between each
different swarm and for each agent. We assume that the greater the swarm size, the more time
changes become identical.

After understanding the metrics, let us observe the simulation results from Figures 6.7, 6.8,
6.9, and 6.10. The bar charts in Fig. 6.7, 6.8 show each swarm size and its type, the AR
and ARPA. The changes, PCAR & PCARPA, between each swarm size and for each type are
shown on the graphs in Fig. 6.9, and 6.10. We elaborate on the time each swarm size and type
needed on average and the changes between each swarm size.

The first bar chart Fig. 6.7a is for the self-charging swarm. The x-axis represents the swarm

size, and the y-axis the time AR. This bar chart shows how much time each swarm size needs
to reach the finish line. In the beginning, with a swarm size of two, the time is much longer

91

section 6.

100 —e— Success rate —e— Success rate
5\% line 5\% line
langes wi anges wi
75 —+ ch th SD 300 4 — ch, th SD

2 2004
25

—25

100 4

Percentage change (\%)
Percentage change (%)

501

—100 +
-75 4

T T T T T T T T T T T T
5 10 15 20 25 30 £l 10 15 20 25 30

Agent Numbers Agent Numbers
(a) Self-charging agents (b) Battery-powered agents

Figure 6.9: Percentage change average rounds with standard deviation [16].

125 4 —— Success rate] —— Success rate
5\% line 5\% line
100 4 —}— Changes with SD 200 —}— Changes with SD
75 4 g 150
£ 50 S 1004
£ = L=~
G S
5 237 5 50
@ @ ~|
5 g
g 0] = J
: S LI
251
504
50
=100
=75 T T T T T T T T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
Agent Numbers Agent Numbers
(a) Self-charging agents (b) Battery-powered agents

Figure 6.10: Percentage change average rounds per agent with standard deviation [16].

than the following ones. Afterward, the time drops by three and four robots, and then it starts
to increase as the swarm size increases. The high AR with a swarm size of two is normal
because, at this size, the robots nearly do not produce shadows for each other, and thus the
two robots continuously move around each other instead of moving forward towards the finish
line. We have a sudden decrease of time by the swarm size of 19 and 21 because the swarm is
moving randomly. Thus, they are seldom receiving better directions based on the bias of the
swarm simulator. But hence looking at the SD shows that it is more than the previous one,
and thus, the time becomes longer as the swarm size increases. In general, the self-charging
robots’ highest time is almost 2,000 rounds. In conclusion, the self-charging swarm is always
successful, as passing the finish line is below 5,000 rounds, and the time increases with the size
of the swarm.

The second bar graph for the battery-powered robot swarm (Fig. 6.7b) looks like the self-

charging robot swarm at first glance since the AR increases with the size of the swarm. However,
comparing the time with the self-charging robots, the battery-powered robot swarm size takes

92

section 6.

at least twice and at most ten times as long as the self-charging. All, except swarm size 26, of
the swarm size could cross the finish line at least once as they are under 5,000 laps. The time
for swarm size 26 is 5,000 rounds, which means that within the ten simulations, none of the 26
robot swarms could cross the finish line.

The result in Fig 6.9, 6.10 presents the changes of time in percentages between each swarm size.
The x-axis is the swarm size, and the y-axis is the percentage change. The red line in the graph
is the success rate. The success- rate for all self-charging swarm sizes is 100 percent. Second,
as the swarm size increases, the PCAR approaches the 5 percent line. As a result, it shows the
more robots added to a swarm, the better they move away from the light. The success rate of
the battery-powered robot swarm decreases as the swarm size increases. However, the PCARs
also tends to be 5 percent and more minor than the success rate, i.e., reaching the finish line
within 5,000 laps, decreases with larger swarm size, thus equalizing the changes among them.

For each robot, the results are shown in Fig. 6.8a, 6.8b. The first bar chart in Fig 6.8a shows
the ARPA. For the self-charging robots, the ARPA increases slightly as the number of robots
increases. However, for the battery-powered robots (Fig. 6.8b), the time rises to a point where
the success rate becomes low. Then ARPA becomes almost stable, as most of the following
swarm sizes are not, able to reach the finish line within 5,000 rounds over the ten simulations.

The PCARPA in Fig. 6.10 for both battery-powered and self-charging swarms decreases as
the number of robots increases. Further, the PCARPA lands far below the 5 percent line.
However, this result for the battery-powered is because of the limitation of 5,000 rounds.

The results we present show that the self-charging swarm is more than twice faster than the
battery-powered swarm for reaching the finish line. The reason is that the robots in the self-
charging swarm do not interfere with each other. While with the battery-powered robots, they
move whenever they sense light, which causes chaos, thus the time for reaching the finish line
increases. With both swarm types, the time increases as the number of robots increases. The
reason is that the complexity within the swarm increases. However, observing the time for
each robot shows that the changes are small between each swarm, especially for larger swarm
sizes.

Some future work can be done as follows. One limitation in this evaluation is the robots’
positions because we arranged the robots as a hexagon. Thus, we can set them differently to
compare how these different positions will affect the time for reaching the finish line. Next, work
can be done to increase the efficiency, i.e., eliminating redundant steps, e.g., memorizing the
previous location. Third, it would be beneficial to upgrade the agents with obstacle avoidance
and see how they act on terrains with obstacles. Last, future work to simulate the algorithm
in a 3D environment would be a logical next step. These are the future works of this paper,
and the conclusion is as follows.

This article concludes that self-charging robot swarms tend to mimic phototactic behavior in
nature. Even though self-charging robots only have a binary light sensor, meaning they do not
know where the light is coming from, they could move away from the light and reach the target
in a time fewer than 5,000 rounds. The results show that as the number of robots increases, the
time increases, but when comparing the swarm sizes, the change in time is almost the same;
Because as the number of robots increases, they interfere with each other less.

93

section 6.

Figure 6.11: Moths seeking for light (Source: [167])

On the other hand, the battery-powered swarms become much slower as the number of robots
increases. The robot swarm reaches the finish line later than the self-charging swarm because
their sudden movement causes the battery-powered robots to interfere with each other. Thus,
this brings chaos, and therefore, the battery-powered robot swarm is slower than the self-
charging one. We can avoid this chaos by giving them a timer to not moving immediately
after receiving light. However, using a timer consumes power, too. To sum up, the phototactic
algorithm is most efficient if the robots are self-charging because they do not cause chaos by
not moving immediately, compared to the battery-powered swarm.

6.2.2 Importance and Impact on Dissertation

With this paper, we present for module M5, the contribution C5.2. This paper elaborates on
the movement of robot swarms based on light influences (Phototaxis). To answer the RQ3.1,
insects such as moths that seek the light in the dark (Fig. 6.11) are the nature-inspiration for
this algorithm. Nevertheless, this paper simulates phototactic behavior on battery-powered
and self-charging robot swarms. The robots do not know from which direction the light is
coming, and the aim is that they should move away from the light and reach the finish line,
which is the answer to RQ3.2. The answer to RQ3.3 is robots with the capability of moving and
sensing light. The robots have an algorithm to check if they are connected within the swarm.
The robot swarm is positioned in an environment with a light bulb that emits light rays and
a finish line. The finish line is located opposite the light bulb. We answer question RQ3.4 as
follows. With the battery-powered swarm, the robots will sense light and immediately move.
With the self-charging robots, they will move after being charged. The answer to RQ3.5 is
when the swarm crosses the finish line, this task algorithm is validated, and the aim is reached.
We test this phototactic algorithm with different swarm sizes and compare them. For the
evaluation, the simulators terminate when the maximum round number, i.e., 5,000 rounds, has

94

section 6.

been reached or when the swarm crosses the finish line. The following metrics are dedicated to
answer RQ3.6. The Success Rate gives the average percentage of successful passing of the finish
line over ten simulations. The metric Average Rounds is the average time of rounds needed for
ten simulations. Next, the Percentage Change Average Rounds (PCAR) shows the difference,
in time, of two different swarm sizes. The Average metric Rounds Per Agent (ARPA) presents
the average round needed for each robot. The last metric is the percentage Change Average
Rounds Per Agent (PCARPA), which shows the changes in time between two robot swarm
sizes.

6.2.3 Contribution

The paper "Phototactic Movement of Battery-Powered and Self-Charging Robot Swarms"
contributes an excellent example of how phototactic movement can work in an environment
with robot swarms by comparing the battery-powered robot swarms with self-charging robot
swarms. There are only a few related works; however, they all use battery-powered robots
compared to our work. In our work, we use both battery-powered robots and self-charging
robots. These robots charge after receiving light. Thus, they need some time until they
move. As a result, the evaluation shows that self-charging robot swarms have a success rate of
100 percent compared to battery-powered robots. Thus, this paper’s contribution is vital for
phototactic behavior among robot swarms because it shows that by taking some time before
moving, the success rate of phototactic robot swarms will be 100 percent.

6.2.4 Personal Contribution

The contributions of Ahmad Reza Cheraghi include the scientific approach, problem defini-
tion, and solution. He also tested and evaluated the phototactic algorithm and authored and
completed this work. Under his supervision, Fabio Schloesser Vila implemented the code and
participated in the writing of this paper. In addition, the solution was refined in several dis-
cussions with Ahmad Reza Cheraghi and Fabio Schloesser Vila. Kalman Graffi was constantly
involved in discussing the scientific approach, the algorithms, and the work.

95

Chapter 7

Conclusion and Future Work

In this chapter, the contents of this dissertation are summarized, followed by a general outlook
on the possible future research work. We then present a few closing words to conclude the
dissertation.

7.1 Conclusion

In this dissertation, three modules for robot swarms are presented. The first module M1 is the
literature survey of robot swarms. Our contribution C1.1 is a survey [7] based on 217 papers.
The aim for module M2 is first to analyze the actual state of simulation tools, and second
the implementation of the simulator Swarm-Sim. The contribution C2.1 gives an overview of
simulators [8] for the mobile ad-hoc, peer-to-peer and opportunistic networks; and the second
contribution C2.2 is about the simulator Swarm-Sim, including its mathematical model. For
the Swarm-Sim, we published one paper [9]. Inspired by nature we extract three modules.
Module M3 is about robot swarm coating objects which gives us two contributions, i.e. C3.1
and C3.2. For this module, we published two papers [10, 11]. Communication within the
swarm is handled in the fourth module M4 and includes three contributions (C4.1, C4.2, and
(C4.3) and publications [12, 13, 14]. Finally, in module M5 we contribute two algorithms (C5.1
and C5.2 for robot swarm movements including two published papers [15, 16].

A brief overview of the past, present, and future of swarm robotics is presented in chapter 2.
Over 217 papers are read through and given a summary of swarm robotics’ past, present, and
future. The pioneers and main definitions of robot swarms are considered. We present various
of applications fields, the actual state of real robot swarms, and simulators. Finally, we give
a vision of the future of robot swarms. Based on this survey, it is clear that the robot swarm
is a research area that is still not fully completed, and some research is needed, especially in
swarm simulators and algorithms.

Once the theory of robot swarms is known, we researched network simulators to determine
the difference in simulators and what essentials are needed to build a new simulator (Chapter
3.1). We discovered that most of the simulators are networks simulators, most of them are not
updated, and many are written in C++, C, or Java. Therefore, we decided to develop a new
simulator. We built the robot swarm simulator Swarm-Sim, and the summary can be read in
chapter 3.2. Swarm-Sim is a simulator that is easy to learn and program. It has only three

97

Chapter 7 Conclusion and Future Work

matters: Locations, objects, and subjects. Locations are the points on which either a subject
or object can be. An object cannot act on its own. Thus, it is passive and can be used as a
ground to walk on; It can be interacted with and picked up. On the other hand, the subject is
the leading actor who can perform actions, such as walking, taking things, or communicating.
In summary, Swarm-Sim allows these three matters; and a few lines of Python code is used
to simulate robot swarms. It is open-source, and thus simple to extend with new grids or
different matters; one can also add more features. With Swarm-Sim, we developed, evaluated,
and tested more than twelve different algorithms for robot swarms. However, we published
seven algorithms for three various application tasks.

We categorized three application fields for the nature-inspired robot swarm algorithms. The
first application field is the coating of objects (Chapter 4). Here the robot swarm needs to
coat a given shaped object. The aim is that all the robots coat an object as tightly as possible.
The coating is successful when the maximum distance from the object of a robot within the
swarm is smaller (or equal) than the minimum distance of all accessible locations. For this
application field, we programmed two coating algorithms. The first coating algorithm is the
leader-based algorithm. This algorithm uses a leader within the swarm. The leader first scans
the object, calculates the number of needed robots, then takes each robot from the swarm to
coat the object. This algorithm faced four challenges in the completion of coating cave-shaped
objects. We show a step-by-step guide on how to solve those challenges. We provided a coating
algorithm that works for both cave-shaped and simple objects. However, this is the limitation
of this algorithm because it cannot coat any arbitrarily shaped object. Therefore, we developed
a second coating algorithm that can do this. The general coating algorithm uses the entire
swarm instead of just one leader. The algorithm starts whenever the swarm hits an object,
and then each robot moves towards that object to coat it. The closest robot to the object
makes space for the robots that are further away. This procedure continues until all the robots
are coated as closely as possible. Therefore, the distance of each robot must be defined. The
uniqueness of this algorithm is that it works without any distance measurement. The robots
calculate their distance. Each robot is initialized with an infinite length. However, if it hits an
object, it is given the distance one. Then it starts to share its distance with its neighbor. With
this simple technique, the robots can calculate their distance. We tested the general coating
algorithm with different swarm sizes and arbitrary object formations. We proved that this
algorithm works with any arbitrarily shaped object and added that it is robust, scalable, and
flexible. The use-cases for robot swarm coating could be, for example, injecting nanobots into
the body to cure diseases such as cancer or destroying viruses. Nevertheless, communication
between the swarm is necessary, too.

The second application task is dedicated to swarm communication (Chapter 5). We introduced
three algorithms for direct, indirect, and combined communication. First, we used direct
communication with the help of opportunistic networks (OppNet). We adapt two OppNet
routing protocols: Epidemic and ProPHET, and compared them to each other. The result
shows that Epidemic routing is superior in delivery ratio. However, this is based on the cost of
low efficiency and high overhead. In contrast, PRoPHET has a lower delivery ratio but is highly
efficient and has a lower overhead. Next, we developed an algorithm for simulating ant foraging
with the protection of avoiding ant mills. Here the ant uses pheromones for communication.
The pheromones tell other ants that a food source has been found and that they should follow
the pheromone path. We analyzed food foraging with and without pheromones. We conclude
that foraging is less efficient with pheromones because a phenomenon termed the ant-mill
occurs. Sometimes pheromones interfere, causing the ants to move in a circle. This circle is

98

7.1 Conclusion

either called an ant-mill or the spiral of death. With this phenomenon, the ants continuously
walk within the circle in search food; when they do not find food, they eventually die of
starvation. However, we developed an ant-mill protection system. Whenever an ant sees that
they are more than two ants in front of it, it runs away from them by changing its direction.
Based on this algorithm, we could prevent the ant mill increasing the ants’ life duration and
make foraging the most efficient. These three types of communication are new for the robot
swarm. The last algorithm combines direct and indirect communication to mark arbitrary
terrains. The swarm aims to mark the landscape efficiently and avoid obstacles. The swarm
uses two marking algorithms: breath-first-marking (BFM) and depth-first-marking (DFM).
This marking algorithms differ in marking the robots using DFM walk in one direction until
they hit an end and then use another path. With the BFM, the robots move in a circle. With
these marking algorithms, the robots indirectly tell other robots which landscape has already
been investigated. Additionally, all the robots are equipped with wireless communication
tools to send data about previously marked locations. They also have obstacle avoidance
algorithms. We used differently shaped terrains with obstacles to test the marking algorithms.
We compared the DFM and BFM to each other. Additionally, we used a combination of these
algorithms. All the marking algorithms perform almost the same. However, the larger the
swarm becomes the more efficient the terrain’s marking gets.

The last part of the nature-inspired swarm algorithm we dedicate to movement (Chapter 6).
The robots within the swarm are decentralized, which means that no central unit is controlling
them. However, the robots are within the swarm. To keep them in, we have to define rules, so
chaos is not established. For the movement, this is important because the swarm must move in
unity, and the robots cannot be separated. Therefore, we defined a three-zone model that takes
care of the robots within the swarm. The distance between neighbors is defined for each robot
and three zones are defined based on these distances. The first zone is when robots are too
close. Therefore, the robot needs to reduce its speed to increase its distance from the others.
The second zone is the optimal zone. Having neighborhood robots in this zone means keeping
velocity. However, if all the neighborhood is in the third zone, it is critical. In this zone, the
robot needs to act fast and gain velocity. Otherwise, the robot will leave the swarm and get
lost. We experimented with different widths in the three-zone and their effects on the flock and
concluded that changes in the width would affect the flocking behavior of a robot swarm. The
last algorithm for the movement module is about phototaxis. Phototaxis is when entities start
to move whenever they sense light. We used it on a battery-powered and self-charging robot
swarm to see if they would go against the light direction without feeling the emission direction.
The experiment aims to stay connected with each other like a swarm and that each robot that
senses light moves. The battery-powered ones will move immediately, and the self-charging
ones after they got charged, i.e., after a few seconds. We compare them to each other to find
out which mimics the phototactic movement most. The aim was that the robot swarm must
go over the finish line within a given time, and the finish line is positioned in the opposite
direction of the light emission. We discovered that the self-charging robot swarm mimics the
phototactic behavior much better because the robot’s movement was not chaotic, which is the
success reason.

With the help of the simulator Swarm-Sim, we found that our algorithms for robot swarms
could solve three application fields entirely and efficiently. Nevertheless, the algorithms were
tested and evaluated in the simulator Swarm-Sim. Therefore, they were not tested on actual
robots in real-life scenarios, which is one of the topics of the next chapter, the Future Work.

99

Chapter 7 Conclusion and Future Work

7.2 Future Work

The simulator scenario had optimal conditions, which means no friction, gravity, weather
changes, etc., were used. Next, the robot swarm was tested independently and without any
swarm competitors. Therefore, the limitation of the nature-inspired algorithms is that they
have not been tested with predictable and well-modeled influencing factors. As a result, one
point for future work for Swarm-Sim is to create an environment with additional circumstances
such as physical forces and rules.

For the leader coating algorithm, the coordinates of the accessible location were given from
the simulator. Thus, the position had no faults. However, in real-life scenarios, sometimes
coordinates are faulty, or positions are wrong, e.g., false GPS signals or the coated robots
might slip or move from their place, thus, causing the leader to not position all the others
correctly. Therefore, it is necessary to add circumstances for such scenarios in future work.
Further, the leader-based coating algorithm is limited to simple and cave-shaped objects. Tt
should be updated to coat multiple caves, cave in caves, or caves with bigger diameters for
future work. Last, it can be improved by using more than one leader. Another future work
point considers the testing of the general coating algorithm. For testing its robustness, we
deleted robots from the swarm. However, a defected robot cannot disappear in a real-life
environment, and therefore, it is still within the swarm. Thus, an additional algorithm that
takes care of the defected robot for future work needs to be developed. To test and evaluate
the coating of multiple object islands is interesting. Further, updating the general coating for
coating in 3D could be an additional upgrade.

For the OppNet communication within the swarm, only the ProPHET and Epidemic Routing
have been tested. There are far more routing protocols for OppNet that can be implemented
and simulated. Especially in real-life scenarios, it is vital to see if all those protocols are feasible
and can do almost the same. Further, comparing the results with other OppNet simulators,
such as ONE simulator, and evaluate memory requirements of delivery probability data struc-
tures of PROPHET. Through the ant communication, we simulated pheromones coming from
the ants when they found food, and we implemented protection against ant mills. However,
this prevention does not help ants escape from an existing ant mill. Thus, the future work is
to implement an ant-mill escaping algorithm, e.g., memorizing visited locations, that allows
the ant to escape from the ant mill and not walk till they die. For the OppNet communication
within the swarm, only the ProPHET and Epidemic Routing have been tested. There are
far more routing protocols for OppNet that can be implemented and simulated. Especially
in real-life scenarios, it is vital to see if all these protocols are feasible and can have similar
results. Further, comparing the results with other OppNet simulators, such as ONE simula-
tor, and evaluating memory requirements of delivery probability data structures of PRoPHET
would be beneficial. Through the ant communication, we simulated ant pheromones when they
found food, and we implemented protection against ant-mills. However, this prevention does
not help ants escape from an existing ant-mill. Thus, future work can explore implementation
of an ant-mill escaping algorithm, e.g., memorizing visited locations, that allows the ant to
escape from the ant-mill. Moreover, a malicious ant secure system can be added. It should
protect from ants that steal food or spread false pheromones. For the marking algorithm,
further research can be done in communication between the robots. The robots can commu-
nicate previously explored terrain through marking (indirect communication) or by sharing
data (direct communication). With direct communication the robots broadcast the marked

100

7.2 Future Work

positions. Therefore, other robots other robots do not rediscover terrain because they have
received the information that it was already discovered. However, it is would be beneficial to
use a filter mechanism or better routing protocols for sharing data to avoid overhead. It could
also be helpful to explore new and more efficient marking or obstacles algorithms for future
work. For the marking algorithm, the communication of telling that terrain has been observed
either through marking (indirect communication) or by sharing data (direct communication).
By the second one, the robots broadcast the position that they have been marked. Therefore,
other robots prevent discovered terrain by receiving information. However, it is good to use
a filter mechanism or better routing protocols for sharing the data to avoid overhead or new
and more efficient marking or obstacles algorithms for future work.

In addition, future work could explore fields other than the hexagon field for flocking. The
flocking behavior of the robot swarm was only tested in a hexagon field. However, the world
does is not hexagonal, it is three-dimensional, and a robot can move in any direction. Therefore,
for flocking, it would be of interest in the future to see if this can also work in a three-
dimensional field. Another future work for the flocking algorithm is to handle obstacles, so
the robots can separate and then form one swarm again. Further, what if the robots are not
homogeneous and different in size and characteristics. Can flocking still work? Other than
flocking, the phototactic movement of the robot swarm is also explored. For this movement,
we only simulate light from one direction. However, how will the swarm behave by having
more lights coming from different directions? Further, is it possible to improve the movement
using local data, such as the previous location? Moreover, another future work can test the
swarm in an environment containing obstacles.

As a result, future work for the algorithm is necessary to adapt to real robots and test within
a swarm. However, robots need to be developed that can act as a swarm. Additionally,
standards need to be defined that make robot swarm development much more attractive to the
science world. The hardware criteria must be standardized, and further, the APIs. Thus, there
are plenty of points that need to be solved for natural robot swarms and developing general
standardized rules for such circumstances for robot swarms. For the simulator Swarm-Sim,
the future work can be to implement add-on scenarios that can affect the simulation, such as
disordered coordination systems that cause discrepancy for the robots. Moreover, the rules of
physics can be developed. Thus, to simulate forces and seed how those can affect the robot
swarm. Further, load balancing can be added to the simulator to make the simulator more
scalable. Thus, to increase the size of the robot swarm, and split them into different groups to
let them run on other threads.

Consequently, there are many possibilities for improving the algorithm and the simulator,
especially for bringing them closer to real-life scenarios. The handling with competitor swarms
was not developed and tested in the algorithm. Tt will be interesting to see, for example how
two different swarms try to coat one object, how ants from different nests collect food, or to
analyze when more than two swarm flocks face each other. There are still plenty of algorithms
that can be developed, such as an algorithm for the swarm to set itself in different forms, such
as a cube or hexagon. Techniques of the P2P world can be used within the robot swarm.
For example, the robot swarms decentralized count the numbers of robots within the swarm
or validate their actions. Therefore, another future work is to use P2P Monitoring [168, 169,
170, 171, 172] algorithms to help robots gain internal information such as the swarm size or
broken robots. Also, if the robots could check their current status and validate it, this would
be an improvement. Additionally, the storing and sharing of data within robot swarms might

101

Chapter 7 Conclusion and Future Work

LONG WAVES OF INNOVATION

The theory of innovation cycles was developed by
economist Joseph Schumpeter who coined the term
'creative destruction’ in 1942. FIFTH

Schumpeter examined the role of innovation in WAVE
relation to long-wave business cycles.

Source: MIT Economics

FOURTH WAVE

Al loT
THIRD WAVE

Robots
& drones

Clean tech

SECOND WAVE

FIRST WAVE

@ Electricity Petrochemicals @ Digital network

@ Wat @ 5t @ Chemicals Electronics Software
ater power eam power
@ Textiles @ Rail @ Internal- @ Aviation @ New media

combustion

@ Iron @ Steel ergine
60 YEARS 55 YEARS 50 YEARS 40 YEARS | 30 YEARS [FAATILE

1785 1845 1900 1950 1990 2020

Source: Edelson Institute

Figure 7.1: Innovation Cycle (Source: [181])

be solved with P2P Storage [173, 174, 175, 176, 177]. It helps to reduce overhead and maintain
that the data is decentralized, stored, and accessible. Moreover, P2P Applications [178, 179,
180] can be used within the robot swarm as a mobility network farm. To sum up, the future
work for robot swarms is to port those algorithms to real robots and test them in a real-life
scenario with different conditions. Next, future research can explore new algorithms and find
ways to improve the current algorithm to become fault tolerated. So, they can handle flaws
and be prepared for obstacles. Thus, artificial intelligence is necessary. The robots should
collect data and use those in the future to look out for mistakes or improve their algorithm to
be more resistant to faults. The near future will tell us if these developed algorithms will be
used for real robots. At least with this dissertation, we have provided a literature survey, a

simulator, and seven algorithms for robot swarms for future research.

7.3 Closing Words

The research into nature-inspired robot swarm algorithms is just beginning a new era. Technol-
ogy in the last decades has been improving continuously, and the sensors have become smaller
and cheaper. From the latest innovation cycle shown in Fig. 7.1 we can see that Artificial

102

7.3 Closing Words

Figure 7.2: Altstadtfest (Old Town Festival) celebrating the opening of the rebuilt old town
with a drone show (Source: [182])

Intelligence (AI), Internet of things (IoT), robots/drones, and cleantech are innovations that
will lead to the next big technology wave. What is missing are robot swarms. However, getting
the robots together as a swarm to become more efficient in solving problems might be a part of
the upcoming innovation cycle wave. After almost 32 years since the first research into using
nature swarm ability in robots, robot swarms are still not mainstream, and we do not see them
in our daily life. Today we have LTE, 5G internet, which allows for the monitoring of gadgets.
5G technology allows more bandwidth with low latency, which will allow for central communi-
cation and, therefore, make the monitoring of the robots, drones, or even robot swarms much
faster and better. AT is now standard, and it will help the robot swarm to become more inno-
vative. Producing hardware has become much cheaper, sensors are getting smaller and more
accurate; more possibilities are given with the IoT. Thus, it is time to develop a robot that can
coordinate with other robots to build a robot swarm. First, it is necessary to define standards
for robots’ hardware. The next step is to create an open-source operating system (OS) with
some common standards and a solid and motivated community. The OS for the robot swarm
will be necessary, and it helps hardware developers to focus only on the hardware without also
focusing on the software. Therefore, standards for developing software and APIs, protocols,
etc., are a necessary.

Based on our current knowledge, there is only one innovation for robot swarm, and it is drones
shows (Fig. 7.2). The drones have a collaboration behavior to form different figures and
change their lighting in real-time. However, robot swarms can be used in other future fields
such as health care or space science. Nevertheless, all those innovations are still dependent
on standards and software. A task force of hardware and software developers needs to be

103

Chapter 7 Conclusion and Future Work

developed. Additionally, an innovation ground needs to be settled for the robot swarms.
Application fields for robot swarms have been presented in chapter 2. However, innovation
must define its benefits and how it can generate revenue. The benefits can include cost- or
work-efficiency, which makes it attractive for the customer. Therefore, much pre-work and
research still must be done to make robot swarms innovative and pleasing to the market.

We provide the simulator Swarm-Sim and all eight algorithms making a tiny drop in the
enormous ocean of the robot swarm science and research field. When we see soon that most
of the algorithms suggested in this thesis have been implemented for natural robot swarms,
we might reflect that this dissertation provided some of the fundamentals bases of the future
robot swarm technology that will become normal, like smartphones or digital networks, in the
future.

We have the year 2022, and the world is facing a massive increase of startups focusing on
building artificial intelligence systems and robot technologies. Tesla presented its robot Opti-
mus [183], which helps us do work that we do not like or assist us in being efficient. Facebook
changes its name to Meta to build up the Metaverse so we can do our work and be social
in a virtual world. The world is changing, and many science fiction predictions are coming
true. So hopefully, soon, our provided algorithms will be used to build robot swarms that
help us become more productive in our daily life, heal us from diseases, or protect us against
enemies.

104

Bibliography

1]

[2]
13]

4]
[5]

[6]

7]
[8]

[9]

[10]

[11]

Christoph Burgstedt. 3D imaging of antibodies attacking viral cells in the bloodstream.

https://www.shutterstock.com/image-illustration/3d-illustration-antibodies-

attacking-virus-cell-1149100028 (Page: 2).

dotun55 via Flickr. ant trail. https://wuw.flickr.com/photos/dotun55/11399922724
(Page: 3).

aquapix. Shoal of colorful fish in the tropical coral reef. URL: \url{https://www .
shutterstock. com/image - photo/shoal - colorful -fish-tropical-coral-reef -
374328919} (Page: 4).

Erol Sahin, Sertan Girgin, Levent Bayindir, and Ali Emre Turgut. “Swarm robotics”.
In: Swarm intelligence. Springer, 2008, pp. 87-100 (Pages: 3, 23).

Erol Sahin, Thomas H Labella, Vito Trianni, J-L. Deneubourg, Philip Rasse, Dario
Floreano, Luca Gambardella, Francesco Mondada, Stefano Nolfi, and Marco Dorigo.
“SWARM-BOT: Pattern formation in a swarm of self-assembling mobile robots”. In:
IEEE International Conference on Systems, Man and Cybernetics. Vol. 4. IEEE. 2002,
6-pp (Pages: 3, 25).

Michael Rubenstein, Christian Ahler, and Radhika Nagpal. “Kilobot: A low cost scal-
able robot system for collective behaviors”. In: 2012 IEEFE International Conference on
Robotics and Automation. 2012, pp. 3293-3298. DoI: 10.1109/ICRA.2012. 6224638
(Page: 6).

Ahmad Reza Cheraghi, Sahdia Shahzad, and Kalman Graffi. Past, Present, and Future
of Swarm Robotics. 2021, pp. 190-233 (Pages: 8, 9, 17, 21, 23, 25, 26, 97).

Ahmad Cheraghi, Tobias Amft, Salem Sati, Philipp Hagemeister, and Kalman Graffi.
“The state of simulation tools for p2p networks on mobile ad-hoc and opportunistic

networks”. In: 2016 25th International Conference on Computer Communication and
Networks (ICCCN). TEEE. 2016, pp. 1-7 (Pages: 8, 10, 32, 97).

Ahmad Reza Cheraghi, Karol Actun, Sahdia Shahzad, and Kalman Graffi. “Swarm-Sim:
A 2D & 3D Simulation Core for Swarm Agents”. In: 3rd Int. Conf. of Intelligent Robotic
and Control Engineering (IRCE 2020). 2020 (Pages: 8, 10, 13, 26, 35-41, 97).

Ahmad Reza Cheraghi and Kalman Graffi. “A Leader Based Coating Algorithm for
Simple and Cave Shaped Objects with Robot Swarms”. In: 2020 5th Asia-Pacific Con-
ference on Intelligent Robot Systems (ACIRS). IEEE. 2020, pp. 43-51 (Pages: 8, 26,
43-49, 97).

Ahmad Reza Cheraghi, Gorden Wunderlich, and Kalman Graffi. “General Coating of
Arbitrary Objects Using Robot Swarms”. In: 2020 5th Asia-Pacific Conference on In-
telligent Robot Systems (ACIRS). IEEE. 2020, pp. 59-67 (Pages: 8, 26, 52-58, 97).

105

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

106

Ahmad Reza Cheraghi, Julian Zenz, and Kalman Graffi. “Opportunistic Network Be-
havior in a Swarm: Passing Messages to Destination”. In: Proceedings of the 5th Asia-
Pacific Conference on Intelligent Robot Systems (ACIRS). IEEE. 2020, pp. 138-144
(Pages: 8, 26, 61, 63-65, 97).

Ahmad Reza Cheraghi, Jochen Peters, and Kalman Graffi. “Prevention of Ant Mills in
Pheromone-Based Search Algorithm for Robot Swarms”. In: Submitted to 3rd Int. Conf.
of Intelligent Robotic and Control Engineering (IRCE’20). 2020 (Pages: 8, 26, 68, 69,
71 73, 97).

Ahmad Reza Cheraghi, Abdelrahman Abdelgalil, and Kalman Graffi. “Universal 2-
Dimensional Terrain Marking for Autonomous Robot Swarms”. In: 2020 5th Asia-Pacific
Conference on Intelligent Robot Systems (ACIRS). IEEE. 2020, pp. 24 32 (Pages: 8, 26,
75-78, 97).

Ahmad Reza Cheraghi, Asma Ben Janete, and Kalman Graffi. “Robot Swarm Flocking
on a 2D Triangular Graph”. In: 2020 5th Asia-Pacific Conference on Intelligent Robot
Systems (ACIRS). IEEE. 2020, pp. 154-162 (Pages: 8, 26, 82, 83, 85, 86, 97).

Ahmad Reza Cheraghi, Fabio Schloesser Vila, and Kalman Graffi. “Phototactic Move-
ment of Battery-Powered and Self-Charging Robot Swarms”. In: 2020 5th Asia-Pacific
Conference on Intelligent Robot Systems (ACIRS). TEEE. 2020, pp. 73-79 (Pages: 8,
26, 88, 89, 91, 92, 97).

Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W Richa, Christian Schei-
deler, and Thim Strothmann. “Amoebot-a new model for programmable matter”. In:
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architec-
tures. 2014, pp. 220-222 (Pages: 10, 31, 35, 42).

Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, and Thim
Strothmann. “Universal shape formation for programmable matter”. In: Proceedings
of the 28th ACM Symposium on Parallelism in Algorithms and Architectures. 2016,
pp. 289 299 (Pages: 10, 31, 35, 42).

G. Beni. “The concept of cellular robotic system”. In: Proceedings IEEE International
Symposium on Intelligent Control 1988. 1988, pp. 57-62. DOI: 10.1109/ISIC.1988.
65405 (Page: 18).

Toshio Fukuda and Seiya Nakagawa. “ Approach to the dynamically reconfigurable robotic
system”. In: Journal of Intelligent and Robotic Systems 1.1 (1988), pp. 55 72 (Page: 18).

G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. “A taxonomy for swarm robots”. In: Pro-
ceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS ’93). Vol. 1. 1993, 441 447 vol.1. poI: 10.1109/IR0S.1993.583135 (Page: 18).

Maja J Mataric. “Designing emergent behaviors: From local interactions to collective
intelligence”. In: Proceedings of the Second International Conference on Simulation of
Adaptive Behavior. 1993, pp. 432 441 (Page: 18).

Maja J Matari¢. “Issues and approaches in the design of collective autonomous agents”.
In: Robotics and autonomous systems 16.2-4 (1995), pp. 321-331 (Pages: 18, 20).

Jean-Louis Deneubourg, Simon Goss, Nigel Franks, Ana Sendova-Franks, Claire De-
train, and Laeticia Chrétien. “The dynamics of collective sorting robot-like ants and
ant-like robots”. In: Proceedings of the first international conference on simulation of
adaptive behavior on From animals to animats. 1991, pp. 356 363 (Page: 18).

Bibliography

[25]

126]
j27]
28]
129]
130]
131]
1321

[33]

[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

Douglas W Gage. Command control for many-robot systems. Technical Report: Naval
Command Control, Ocean Surveillance Center Rdt And E Div San Diego CA, 1992
(Page: 18).

C Ronald Kube and Eric Bonabeau. “Cooperative transport by ants and robots”. In:
Robotics and autonomous systems 30.1-2 (2000), pp. 85-101 (Page: 18).

Gerardo Beni. “From swarm intelligence to swarm robotics”. In: International Workshop
on Swarm Robotics. Springer. 2004, pp. 1-9 (Pages: 18, 19, 57).

Daniel B Kearns. “A field guide to bacterial swarming motility”. In: Nature Reviews
Microbiology 8.9 (2010), p. 634 (Page: 18).

Cambridge University Press 2021. intelligence. 2021. URL: https ://dictionary .
cambridge.org/dictionary/english/intelligence (visited on 11/2021) (Page: 18).

G Beni and J Wang. Swarm Intelligence (Proceedgins Seventh Annual Meeting of the
Robotics Society of Japan). 1989 (Page: 19).

Sanza T Kazadi. “Swarm engineering”. PhD thesis. California Institute of Technology,
2000 (Page: 19).

Jan Carlo Barca and Y Ahmet Sekercioglu. “Swarm robotics reviewed”. In: Robotica
31.3 (2013), pp. 345-359 (Page: 20).

Belkacem Khaldi and Foudil Cherif. “An overview of swarm robotics: Swarm intelligence
applied to multi-robotics”. In: International Journal of Computer Applications 126.2
(2015) (Page: 20).

Y Tan. “Swarm robotics: collective behavior inspired by nature”. In: J Comput Sci Syst
Biol 6 (2013), €106 (Page: 20).

Ying Tan and Zhong-yang Zheng. “Research advance in swarm robotics”. In: Defence
Technology 9.1 (2013), pp. 18 39 (Pages: 20, 23).

Erol Sahin. “Swarm robotics: From sources of inspiration to domains of application”. In:
International workshop on swarm robotics. Springer. 2004, pp. 10-20 (Page: 20).

Vito Trianni, Elio Tuci, Christos Ampatzis, and Marco Dorigo. “Evolutionary swarm
robotics: A theoretical and methodological itinerary from individual neuro-controllers to
collective behaviours”. In: The horizons of evolutionary robotics 153 (2014) (Page: 20).

Paul M Maxim, William M Spears, and Diana F Spears. “Robotic chain formations”.
In: IFAC Proceedings Volumes 42.22 (2009), pp. 19-24 (Page: 20).

Marco Dorigo. “SWARM-BOT: An experiment in swarm robotics”. In: Swarm Intelli-
gence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE. TEEE. 2005, pp. 192-200
(Page: 20).

Marco Dorigo, Elio Tuci, Vito Trianni, Roderich Gro, Shervin Nouyan, Christos Am-
patzis, Thomas Labella, Rehan O’Grady, Michael Bonani, and Francesco Mondada.
“SWARM-BOT: Design and implementation of colonies of self-assembling robots”. In:
Jan. 2006, pp. 103 135 (Page: 20).

Marco Dorigo, Vito Trianni, Erol Sahin, Roderich Grofs, Thomas H Labella, Gianluca
Baldassarre, Stefano Nolfi, Jean-Louis Deneubourg, Francesco Mondada, Dario Flore-
ano, et al. “Evolving self-organizing behaviors for a swarm-bot”. In: Autonomous Robots
17.2-3 (2004), pp. 223-245 (Pages: 20, 25).

107

Bibliography

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

108

Onur Soysal, Erkin Bahceci, and Erol Sahin. “Aggregation in swarm robotic systems:
Evolution and probabilistic control”. In: Turkish Journal of Electrical Engineering €
Computer Sciences 15.2 (2007), pp. 199-225 (Page: 20).

Onur Soysal and Erol Sahin. “Probabilistic aggregation strategies in swarm robotic
systems”. In: Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE.
IEEE. 2005, pp. 325 332 (Page: 20).

Eliseo Ferrante, Ali Emre Turgut, Cristidan Huepe, Alessandro Stranieri, Carlo Pinciroli,
and Marco Dorigo. “Self-organized flocking with a mobile robot swarm: a novel motion
control method”. In: Adaptive Behavior 20.6 (2012), pp. 460-477 (Page: 20).

Adam T Hayes and Parsa Dormiani-Tabatabaei. “Self-organized flocking with agent
failure: Off-line optimization and demonstration with real robots”. In: Robotics and
Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on. Vol. 4.
IEEE. 2002, pp. 3900 3905 (Page: 20).

M. Masér. “A biologically inspired swarm robot coordination algorithm for exploration
and surveillance”. In: 2013 IEEFE 17th International Conference on Intelligent Engineer-
ing Systems (INES). 2013, pp. 271-275. por1: 10.1109/INES.2013.6632825 (Page: 20).

Wenguo Liu and Alan Winfield. “Modeling and Optimization of Adaptive Foraging in
Swarm Robotic Systems”. In: I. J. Robotic Res. 29 (Dec. 2010), pp. 1743-1760. poOT:
10.1177/0278364910375139 (Page: 20).

Shervin Nouyan, Alexandre Campo, and Marco Dorigo. “Path formation in a robot
swarm”. In: Swarm Intelligence 2.1 (2008), pp. 1 23 (Page: 21).

Frederick Ducatelle, Gianni A Di Caro, Carlo Pinciroli, Francesco Mondada, and Luca
Gambardella. “Communication assisted navigation in robotic swarms: self-organization
and cooperation”. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Interna-
tional Conference on. IEEE. 2011, pp. 4981-4988 (Page: 21).

Roderich Grof and Marco Dorigo. “Evolution of solitary and group transport behaviors
for autonomous robots capable of self-assembling”. In: Adaptive Behavior 16.5 (2008),
pp. 285 305 (Page: 21).

Mark Trueblood and Russell Genet. “Microcomputer control of telescopes”. In: Rich-
mond: Willmann-Bell, 1985 (1985) (Page: 21).

Alasdair Allan, Tim Naylor, Tain Steele, Dave Carter, Tim Jenness, Frossie Economou,

and Andy Adamson. “eSTAR: Astronomers, Agents and when Robotic Telescopes aren’t...

In: Astronomical Data Analysis Software and Systems (ADASS) XIII. Vol. 314. 2004,
p. 597 (Pages: 21, 27).

Cindy Mason. “Collaborative Networks of Independent Automatic Telescopes”. In: Op-
tical Astronomy from the Earth and Moon. Vol. 55. 1994, p. 234 (Page: 21).

John EF Baruch. “Robots in astronomy”. In: Vistas in Astronomy 35 (1992), pp. 399
438 (Pages: 21, 27).
Vito Trianni, Joris IJsselmuiden, and Ramon Haken. The Saga Concept: Swarm Robotics

for Agricultural Applications. Technical Report: Technical Report. 2016. Available on-
line: http://laral. istc. cnr. it/saga ..., 2016 (Pages: 21, 24).

Dario Albani, Joris IJsselmuiden, Ramon Haken, and Vito Trianni. “Monitoring and
mapping with robot swarms for agricultural applications”. In: 2017 14th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE.
2017, pp. 1-6 (Pages: 21, 24).

Bibliography

[57] SAGA Swarm Robotics for Aggriculture Applications. http://laral.istc.cnr.it/
saga/ (Pages: 21, 24).

[58] Simon Blackmore. “Precision farming: an introduction”. In: Qutlook on agriculture 23.4
(1994), pp. 275-280 (Page: 21).

[59] Awular howpublished = hitps: //www.avular.com (Page: 21).

[60] Drones.nl. https://www.drones.nl/bedrijven/avular (Page: 21).

[61] Swarm Farm Robotic Agriculture (Page: 21).

[62] Markus Kayser, Levi Cai, Christoph Bader, Sara Falcone, Nassia Inglessis, Barrak Dar-
weesh, Joao Costa, and Neri Oxman. “FIBERBOTS: Design and Digital Fabrication of
Tubular Structures Using Robot Swarms”. In: Robotic Fabrication in Architecture, Art
and Design. Springer. 2018, pp. 285-296 (Pages: 21, 25).

[63] Alibab’s Flyzoo Future Hotel. https://www.alizila.com/introducing-alibabas-
flyzoo-future-hotel/ (Page: 21).

[64] Victor Garcia-Lopez, Fang Chen, Lizanne G Nilewski, Guillaume Duret, Amir Aliyan,
Anatoly B Kolomeisky, Jacob T Robinson, Gufeng Wang, Robert Pal, and James M
Tour. “Molecular machines open cell membranes”. In: Nature 548.7669 (2017), p. 567
(Page: 21).

[65] Millirobot with a talent for versatility of movement. https://www.mpg.de/11895964 /millirobot-
(Pages: 21, 27).

[66] Nature-inspired soft millirobot makes its way through enclosed spaces (Pages: 21, 27).

[67] Biorobotics Laboratory. http : / /biorobotics . ri . cmu. edu/robots/ index . php
(Pages: 21, 27).

[68] Trunk Snake Robot. http://biorobotics.ri.cmu.edu/robots/trunkSnake . php
(Page: 21).

[69] Medical Snake Robot. http://biorobotics.ri. cmu.edu/robots/medSnake . php
(Page: 21).

[70] Fullabot. http://biorobotics.ri.cmu.edu/robots/fullabot.php (Page: 21).

[71] Endeavor Robotics. http://endeavorrobotics.com/products (Pages: 21, 27).

[72] PackBot. https://robots.ieee.org/robots/packbot/ (Pages: 21, 27).

[73] LS3 Legged Squad Support Systems. https://www.bostondynamics.com/1s3 (Pages: 21,
27).

[74] Armin Krishnan. Killer robots: legality and ethicality of autonomous weapons. Rout-
ledge, 2016 (Page: 21).

[75] Stuart Young and Alexander Kott. “A survey of research on control of teams of small
robots in military operations”. In: arXiv preprint arXiv:1606.01288 (2016) (Page: 21).

[76] Flying mini-robot cleaners win Electroluz Design Lab 2013 Contest (Pages: 21, 27).

[77] Abhishek Gupta, Akash Saxena, Prasun Anand, Pooja Sharma, Prince Raj Goyal, and
Ranjeet Singh. “Robo-Cleaner”. In: Imperial Journal of Interdisciplinary Research 2.5
(2016). 1SSN: 2454-1362. URL: http://www.imperialjournals.com/index.php/IJIR/
article/view/457 (Page: 21).

[78] Veerajagadheswar Prabakaran, Mohan Rajesh Elara, Thejus Pathmakumar, and Shun-
suke Nansai. “Floor cleaning robot with reconfigurable mechanism”. In: Automation in
Construction 91 (2018), pp. 155-165 (Page: 21).

109

Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

|88]
[89]

[90]

[91]

92]

110

Abhishek Pandey, Anirudh Kaushik, Amit Kumar Jha, and Girish Kapse. “A Techno-
logical Survey on Autonomous Home Cleaning Robots”. In: International Journal of
Scientific and Research Publications 4.4 (2014), pp. 1-7 (Page: 21).

Paolo Fiorini and Erwin Prassler. “Cleaning and household robots: A technology survey”.
In: Autonomous robots 9.3 (2000), pp. 227-235 (Page: 21).

Andrey Ronzhin, Gerhard Rigoll, and Roman Meshcheryakov. Interactive Collaborative
Robotics: Third International Conference, ICR 2018, Leipzig, Germany, September 18—
22, 2018, Proceedings. Vol. 11097. Springer, 2018 (Page: 22).

Pattie Maes. “Artificial life meets entertainment: lifelike autonomous agents”. In: Com-
munications of the ACM 38.11 (1995), pp. 108-114 (Page: 22).

Levent Bayindir and Erol Sahin. “A review of studies in swarm robotics”. In: Turk-
ish Journal of Electrical Engineering & Computer Sciences 15.2 (2007), pp. 115 147
(Page: 23).

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. “Swarm robotics:
a review from the swarm engineering perspective”. In: Swarm Intelligence 7.1 (2013),
pp. 1-41 (Page: 23).

Francesco Mondada, André Guignard, Michael Bonani, Daniel Bar, Michel Lauria,
and Dario Floreano. “Swarm-bot: From concept to implementation”. In: Proceedings
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2003)(Cat. No. 03CH37453). Vol. 2. IEEE. 2003, pp. 1626-1631 (Page: 25).

Francesco Mondada, Giovanni C Pettinaro, Andre Guignard, Ivo W Kwee, Dario Flo-
reano, Jean-Louis Deneubourg, Stefano Nolfi, Luca Maria Gambardella, and Marco
Dorigo. “SWARM-BOT: A new distributed robotic concept”. In: Autonomous robots
17.2-3 (2004), pp. 193-221 (Page: 25).

Marco Dorigo, Elio Tuci, Roderich Grof, Vito Trianni, Thomas Halva Labella, Shervin
Nouyan, Christos Ampatzis, Jean-Louis Deneubourg, Gianluca Baldassarre, Stefano
Nolfi, et al. “The swarm-bots project”. In: International Workshop on Swarm Robotics.
Springer. 2004, pp. 31 44 (Page: 25).

Marco Dorigo. “Swarm-Bots and Swarmanoid: Two Experiments in Embodied Swarm
Intelligence.” In: Web intelligence. 2009, pp. 2-3 (Page: 25).

Carlo Pinciroli. “The swarmanoid simulator”. In: Bruzelles: UniversitéLibre de Bruxelles
(2007) (Pages: 25, 26).

Frederick Ducatelle, Gianni A Di Caro, Carlo Pinciroli, and Luca M Gambardella. “Self-
organized cooperation between robotic swarms”. In: Swarm Intelligence 5.2 (2011), p. 73
(Page: 25).

Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Stefano
Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani, Manuele Brambilla, Arne
Brutschy, et al. “Swarmanoid: a novel concept for the study of heterogeneous robotic
swarms”. In: IEEE Robotics € Automation Magazine 20.4 (2013), pp. 60 71 (Page: 25).

Antoine Decugniere, Benjamin Poulain, Alexandre Campo, Carlo Pinciroli, Bruno Tar-
tini, Michel Osee, Marco Dorigo, and Mauro Birattari. “The cart-bot and the coop-
erative transport of multiple objects in the swarmanoid project”. In: Technical Report
TR/IRIDIA/2008-014 IRIDIA, Universite Libre de Bruxzelles (2008) (Page: 25).

Bibliography

[93]

[94]

[95]

196]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]
[105]

Heinz Woern, Marc Szymanski, and Joerg Seyfried. “The i-swarm project”. In: RO-
MAN 2006-The 15th IEEFE International Symposium on Robot and Human Interactive
Commaunication. IEEE. 2006, pp. 492-496 (Page: 25).

Jorg Seyfried, Marc Szymanski, Natalie Bender, Ramon Estana, Michael Thiel, and
Heinz Woérn. “The I-SWARM project: Intelligent small world autonomous robots for
micro-manipulation”. In: International Workshop on Swarm Robotics. Springer. 2004,
pp. 70-83 (Page: 25).

Aveek Purohit, Frank Mokaya, and Pei Zhang. “Demo abstract: Collaborative indoor
sensing with the SensorFly aerial sensor network”. In: 2012 ACM/IEEE 11th Interna-
tional Conference on Information Processing in Sensor Networks (IPSN). IEEE. 2012,
pp. 145 146 (Page: 25).

Aveek Purohit, Zheng Sun, Frank Mokaya, and Pei Zhang. “SensorFly: Controlled-
mobile sensing platform for indoor emergency response applications”. In: Information
Processing in Sensor Networks (IPSN), 2011 10th International Conference on. IEEE.
2011, pp. 223-234 (Page: 25).

James E Bluman, Chang-Kwon Kang, D Brian Landrum, Farbod Fahimi, and Bryan
Mesmer. “Marshee-Can a Bee Fly on Mars?” In: 55th AIAA Aerospace Sciences Meeting.
2017, p. 0328 (Page: 25).

Michael Rubenstein, Christian Ahler, and Radhika Nagpal. “Kilobot: A low cost scalable
robot system for collective behaviors”. In: Robotics and Automation (ICRA), 2012 IEEE
International Conference on. ITEEE. 2012, pp. 3293-3298 (Page: 25).

Gabriele Valentini, Anthony Antoun, Marco Trabattoni, Bernidt Wiandt, Yasumasa
Tamura, Etienne Hocquard, Vito Trianni, and Marco Dorigo. “Kilogrid: a novel experi-
mental environment for the kilobot robot”. In: Swarm Intelligence 12.3 (2018), pp. 245—
266 (Page: 25).

Fredrik Jansson, Matthew Hartley, Martin Hinsch, Ivica Slavkov, Noemi Carranza,
Tjelvar SG Olsson, Roland M Dries, Johanna H Gronqvist, Athanasius FM Marée,
James Sharpe, et al. “Kilombo: a Kilobot simulator to enable effective research in swarm
robotics”. In: arXiv preprint arXiv:1511.04285 (2015) (Page: 25).

Yuri K Lopes, André B Leal, Tony J Dodd, and Roderich Grok. “Application of su-
pervisory control theory to swarms of e-puck and kilobot robots”. In: International
Conference on Swarm Intelligence. Springer. 2014, pp. 62 73 (Page: 25).

Michael Rubenstein and Radhika Nagpal. “Kilobot: A Robotic Module for Demonstrat-
ing Behaviors in a Large Scale (\(2"{10}\) Units) Collective”. In: Institute of Electrical
and Electronics Engineers. 2010 (Page: 25).

Ali E Turgut, F Gokce, Hande Celikkanat, I Bayindir, and Erol Sahin. “Kobot: A mo-
bile robot designed specifically for swarm robotics research”. In: Middle East Technical
University, Ankara, Turkey, METU-CENG-TR Tech. Rep 5.2007 (2007) (Page: 25).

Brian Gerkey’s website. https://brian.gerkey.org (Page: 26).

Richard T Vaughan and Brian P Gerkey. “Reusable robot software and the player/stage
project”. In: Software Engineering for Experimental Robotics. Springer, 2007, pp. 267—
289 (Page: 26).

111

Bibliography

[106] Brian P Gerkey, Richard T Vaughan, Kasper Stoy, Andrew Howard, Gaurav S Sukhatme,
and Maja J Mataric. “Most valuable player: A robot device server for distributed con-
trol”. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.
01CH37180). Vol. 3. IEEE. 2001, pp. 1226 1231 (Page: 26).

[107] Brian Gerkey, Richard T Vaughan, and Andrew Howard. “The player/stage project:
Tools for multi-robot and distributed sensor systems”. In: Proceedings of the 11th inter-
national conference on advanced robotics. Vol. 1. 2003, pp. 317 323 (Page: 26).

[108] Richard Vaughan. “Massively multi-robot simulation in stage”. In: Swarm intelligence
2.2-4 (2008), pp. 189 208 (Page: 26).

[109] Open Robotics. https://www.openrobotics.org (Page: 26).
[110] Robot Operating System. http://www.ros.org (Page: 26).

[111] Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar
Von Stryk. “Comprehensive simulation of quadrotor uavs using ros and gazebo”. In:
International conference on simulation, modeling, and programming for autonomous
robots. Springer. 2012, pp. 400411 (Page: 26).

[112] Nathan Koenig and Andrew Howard. “Design and use paradigms for gazebo, an open-
source multi-robot simulator”. In: 2004 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. IEEE. 2004,
pp. 2149-2154 (Page: 26).

[113] Robomatter Incorporated. http://www.robomatter.com (Page: 26).

[114] Robotc. http://www.robotc.net (Page: 26).

[115] Robot Virtual Worlds. http://www.robotvirtualworlds.com (Page: 26).

[116] Georgia Tech’s Mobile Robot Laboratory. https:/ /www.cc.gatech.edu/ai/robot-lab/ (Page: 26).

[117] T Balch. “TeamBots software and documentation”. In: Available through the World- Wide
Web at hitp://www. teambots. org (2001) (Page: 26).

[118] Tucker Balch. “The TeamBots Environment for Multi-Robot Systems Development”.
In: Working notes of Tutorial on Mobile Robot Programming Paradigms, ICRA (2002)
(Page: 26).

[119] Tucker Balch. Behavioral diversity in learning robot teams. Technical Report: Georgia
Institute of Technology, 1998 (Page: 26).

[120] V-REP. http://wuw.coppeliarobotics.com (Page: 26).

[121] Marc Freese, Surya Singh, Fumio Ozaki, and Nobuto Matsuhira. “Virtual robot experi-
mentation platform v-rep: A versatile 3d robot simulator”. In: International Conference
on Simulation, Modeling, and Programming for Autonomous Robots. Springer. 2010,
pp. 51-62 (Page: 26).

[122] Miguel A Olivares-Mendez, Somasundar Kannan, and Holger Voos. “Vision based fuzzy
control autonomous landing with UAVs: From V-REP to real experiments”. In: 2015 23rd
Mediterranean Conference on Control and Automation (MED). IEEE. 2015, pp. 14-21
(Page: 26).

[123] E Peralta, E Fabregas, G Farias, H Vargas, and S Dormido. “Development of a Khepera
IV Library for the V-REP Simulator”. In: IFAC-PapersOnLine 49.6 (2016), pp. 81-86
(Page: 26).

112

Bibliography

[124]

[125]

[126]

[127]

[128]
[129]

[130]

[131]

[132]
[133]
[134]
[135]

[136]

[137]

[138]

[139]

Eric Rohmer, Surya PN Singh, and Marc Freese. “V-REP: A versatile and scalable robot
simulation framework”. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE. 2013, pp. 1321-1326 (Page: 26).

Stéphane Magnenat, Philippe Rétornaz, Michael Bonani, Valentin Longchamp, and
Francesco Mondada. “ASEBA: A modular architecture for event-based control of com-
plex robots”. In: IEEE/ASME transactions on mechatronics 16.2 (2011), pp. 321-329
(Page: 26).

M Allwright, N Bhalla, C Pinciroli, and M Dorigo. ARG0S plug-ins for experiments
in autonomous construction. Technical Report: Technical report TR /IRIDIA /2018-007,
IRIDIA, Université Libre de Bruxelles ..., 2018 (Page: 26).

Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele
Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick Ducatelle, et
al. “ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics”. In:
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.
2011, pp. 5027-5034 (Page: 26).

Webots Open Source Robot Simulator. https://cyberbotics.com (Page: 26).

Olivier Michel. “Webots: Symbiosis between virtual and real mobile robots”. In: Inter-
national Conference on Virtual Worlds. Springer. 1998, pp. 254263 (Page: 26).

Michel Olivier. “Cyberbotics LTD-webotstm: Professional mobile robot simulation”. In:
International Journal of Advanced Robotic Systems 1.1 (2004), pp. 40-43 (Page: 26).

LF Wang, KC Tan, and V Prahlad. “Developing Khepera robot applications in a We-
bots environment”. In: MHS2000. Proceedings of 2000 International Symposium on Mi-
cromechatronics and Human Science (Cat. No. 00TH8530). IEEE. 2000, pp. 71-76
(Page: 26).

Watsolutions. http://wuw.watsolutions.com (Page: 26).
Work space ROBOT SIMULATION. http://www.workspace5.com (Page: 26).
AIST. https://www.aist.go.jp/index _en.html (Page: 26).

Fumio Kanehiro, Hirohisa Hirukawa, and Shuuji Kajita. “OpenHRP: Open architecture
humanoid robotics platform”. In: The International Journal of Robotics Research 23.2
(2004), pp. 155-165 (Page: 26).

Rajat Mittal, Atsushi Konno, and Shunsuke Komizunai. “Implementation of HOAP-
2 humanoid walking motion in openHRP simulation”. In: 2015 International Confer-
ence on Computing Communication Control and Automation. IEEE. 2015, pp. 29-34
(Page: 26).

Hirohisa Hirukawa, Fumio Kanehiro, Kenji Kaneko, Shuuji Kajita, Kiyoshi Fujiwara,
Yoshihiro Kawai, Fumiaki Tomita, Shigeoki Hirai, Kazuo Tanie, Takakatsu Isozumi,

et al. “Humanoid robotics platforms developed in HRP”. In: Robotics and Autonomous
Systems 48.4 (2004), pp. 165-175 (Page: 26).

Kevin DeMarco, Eric Squires, Michael Day, and Charles Pippin. “Simulating collabora-
tive robots in a massive multi-agent game environment (SCRIMMAGE)”. In: Distributed
Autonomous Robotic Systems. Springer, 2019, pp. 283-297 (Page: 26).

Craig W Reynolds. “Flocks, herds and schools: A distributed behavioral model”. In:
ACM SIGGRAPH computer graphics. Vol. 21. 4. ACM. 1987, pp. 25 34 (Page: 25).

113

Bibliography

[140] Darren Quick. Honda sets its sights on an eVTOL, telepresence robot and space tech.
2021. URL: https://HondasetsitssightsonaneVT0L, telepresencerobotandspacetech.
com/technology/honda-future-focus-evtol-telepresence-robot-space/ (Page: 28).

[141] Matthias Feldotto and Kalman Graffi. “Systematic evaluation of peer-to-peer systems
using PeerfactSim. KOM”. In: Concurrency and Computation: Practice and Ezxperience
28.5 (2016), pp. 1655-1677 (Page: 31).

[142] Matthias Feldotto and Kalman Graffi. “Comparative evaluation of peer-to-peer sys-
tems using PeerfactSim. KOM”. In: 2018 International Conference on High Performance
Computing & Simulation (HPCS). IEEE. 2013, pp. 99-106 (Page: 31).

[143] Aleksandra Kovacevic, Sebastian Kaune, Hans Heckel, André Mink, Kalman Graffi,
Oliver Heckmann, and Ralf Steinmetz. “PeerfactSim. KOM-A Simulator for Large-Scale
Peer-to-Peer Networks”. In: Technische Universitat Darmstadt, Germany, Tech. Rep.
Tr-2006-06 (2006) (Page: 31).

[144] Kalman Graffi. “PeerfactSim. KOM: A P2P system simulator—Experiences and lessons
learned”. In: 2011 IEEE International Conference on Peer-to-Peer Computing. IEEE.
2011, pp. 154 155 (Page: 31).

[145] Markus Benter, Mohammad Divband, Sebastian Kniesburges, Andreas Koutsopoulos,
and Kalman Graffi. “Ca-re-chord: A churn resistant self-stabilizing chord overlay net-
work”. In: 2013 Conference on Networked Systems. IEEE. 2013, pp. 27 34 (Page: 32).

[146] Tobias Amft, Barbara Guidi, Kalman Graffi, and Laura Ricci. “FRoDO: Friendly routing
over dunbar-based overlays”. In: 2015 IEEE 40th conference on local computer networks
(LCN). IEEE. 2015, pp. 356 364 (Page: 32).

[147] Tobias Amft and Kalman Graffi. The Benefit of Stacking Multiple Peer-to-Peer Over-
lays. Technical Report: Technical Report: TR-2017-002. Technology of Social Networks
Group, Heinrich Heine University, 2017 (Page: 32).

[148] Tobias Amft and Kalman Graffi. “A Tale of Many Networks: Splitting and Merging of
Chord-like Overlays in Partitioned Networks”. In: Technology of Social Networks Group,
Heinrich Heine University, Diisseldorf, Germany, Tech. Rep. TR-2017-001 (2017) (Page: 32).

[149] Tobias Amft and Kalman Graffi. “Moving peers in distributed, location-based peer-to-
peer overlays”. In: 2017 international conference on computing, networking and commu-
nications (ICNC). IEEE. 2017, pp. 906 911 (Page: 32).

[150] Parag S Mogre, Kalman Graffi, Matthias Hollick, and Ralf Steinmetz. “AntSec, WatchAnt,
and AntRep: Innovative Security Mechanisms for Wireless Mesh Networks”. In: 32nd
IEEE Conference on Local Computer Networks (LCN 2007). IEEE. 2007, pp. 539 547
(Page: 32).

[151] Parag S Mogre, Kalman Graffi, Matthias Hollick, and Ralf Steinmetz. “A security frame-
work for wireless mesh networks”. In: Wireless Communications and Mobile Computing
11.3 (2011), pp. 371-391 (Page: 32).

[152] Kalman Graffi, Parag S Mogre, Matthias Hollick, and Ralf Steinmetz. “Detection of
colluding misbehaving nodes in mobile ad hoc and wireless mesh networks”. In: IEEE
GLOBECOM 2007-IEEFE Global Telecommunications Conference. IEEE. 2007, pp. 5097—
5101 (Page: 32).

[153] Tambako The Jaguar. Lioness carrying her newborn cub. https://www.flickr.com/
photos/tambako/5207804374 (Page: 50).

114

Bibliography

[154]
[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]
[167]

[168]

[169]

12019. Wolves hunting. https://pixabay.com/images/id-80497/ (Page: 59).

Salem Sati, Andre Ippisch, and Kalman Graffi. “Dynamic replication control strategy for
opportunistic networks”. In: 2017 International Conference on Computing, Networking
and Communications (ICNC). IEEE. 2017, pp. 1017-1023 (Page: 62).

Andre Ippisch and Kalman Graffi. “Infrastructure mode based opportunistic networks on
android devices”. In: 2017 IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA). IEEE. 2017, pp. 454 461 (Page: 62).

Salem Sati and Kalman Graffi. “Adapting the beacon interval for opportunistic net-
work communications”. In: 2015 International Conference on Advances in Computing,

Communications and Informatics (ICACCI). IEEE. 2015, pp. 612 (Page: 62).

Salem Sati, Andre Ippisch, and Kalman Graffi. “Replication probability-based routing
scheme for opportunistic networks”. In: 2017 International Conference on Networked
Systems (NetSys). IEEE. 2017, pp. 1-8 (Page: 62).

Andre Ippisch, Salem Sati, and Kalman Graffi. “Device to device communication in
mobile delay tolerant networks”. In: 2017 IEEE/ACM 21st International Symposium
on Distributed Simulation and Real Time Applications (DS-RT). IEEE. 2017, pp. 1 8
(Page: 62).

Andre Ippisch, Salem Sati, and Kalman Graffi. “Optimal replication based on optimal
path hops for opportunistic networks”. In: 2018 IEEE 32nd International Conference on
Advanced Information Networking and Applications (AINA). IEEE. 2018, pp. 251-258
(Page: 62).

Ari Kerénen, Jorg Ott, and Teemu Kérkkéinen. “The ONE simulator for DTN protocol
evaluation”. In: Proceedings of the International Conference on Simulation Tools and

Techniques (SIMUtools). ICST, 2009 (Page: 65).

Andrey Popov. Businesspeople Gossiping Behind Stressed Female Colleague In Of-
fice. URL: \url{https://www.shutterstock.com/image-photo/businesspeople-
gossiping-behind-stressed-female-colleague-420085351} (Page: 66).

Ching Louis Liu. dog peeing in the park. https://www.shutterstock.com/image-
photo/dog-peeing-park-544727569 (Page: 79).

Annette Shaff. border collie barking with a wide open mouth in a studio shot isolated on
a blue background. https://www.shutterstock.com/image-photo/border-collie-
barking-wide-open-mouth- 1357549616 (Page: 80).

Tain D Couzin, Jens Krause, Richard James, Graeme D Ruxton, and Nigel R Franks.
“Collective memory and spatial sorting in animal groups”. In: Journal of theoretical
biology 218.1 (2002), pp. 1-11 (Page: 81).

Pixnio. Birds flock. https://pixnio.com/fauna- animals/birds/bird- flock-
waterfowl-goose-sea-migration-sky-landscape-water-beach (Page: 87).

Moths and insects flying around a light globe. https://wuw.shutterstock.com/image-
photo/moths-insects-flying-around-light-globe-1860081607 (Page: 94).

Vitaliy Rapp and Kalman Graffi. “Continuous gossip-based aggregation through dy-
namic information aging”. In: 2018 22nd International Conference on Computer Com-
munication and Networks (ICCCN). IEEE. 2013, pp. 1-7 (Page: 101).

Andreas Disterhoft and Kalman Graffi. “ Convex Hull Watchdog: Mitigation of Malicious
Nodes in Tree-Based P2P Monitoring Systems”. In: 2016 IEEFE 41st Conference on Local
Computer Networks (LCN). IEEE. 2016, pp. 52-60 (Page: 101).

115

Bibliography

[170] Andreas Disterhoft and Kalman Graffi. “CapSearch: Capacity-Based Search in Highly
Dynamic Peer-to-Peer Networks”. In: 2017 IEEFE 31st International Conference on Ad-
vanced Information Networking and Applications (AINA). IEEE. 2017, pp. 621-630
(Page: 101).

[171] Kalman Graffi and Andreas Disterhoft. “SkyEye: A tree-based peer-to-peer monitoring
approach”. In: Pervasive and Mobile Computing 40 (2017), pp. 593-610 (Page: 101).

[172] Andreas Disterhoft, Phillip Sandkiihler, Andre Ippisch, and Kalman Graffi. “Mr. Tree:
Multiple Realities in Tree-based Monitoring Overlays for Peer-to-Peer Networks”. In:
2018 International Conference on Computing, Networking and Communications (ICNC).
IEEE. 2018, pp. 354 360 (Page: 101).

[173] Philip Wette and Kalman Graffi. “Adding capacity-aware storage indirection to homo-
geneous distributed hash tables”. In: 2013 Conference on Networked Systems. IEEE.
2013, pp. 35 42 (Page: 102).

[174] Ahmad Rabay’a, Eduard Schleicher, and Kalman Graffi. “Fog computing with p2p:
Enhancing fog computing bandwidth for iot scenarios”. In: 2019 International Confer-
ence on Internet of things (iThings) and IEEE green Computing and communications
(GreenCom) and IEEE Cyber, Physical and social computing (CPSCom) and IEEE
smart data (SmartData). TEEE. 2019, pp. 82-89 (Page: 102).

[175] Jens Janiuk, Alexander Mécker, and Kalman Graffi. “Secure distributed data structures
for peer-to-peer-based social networks”. In: 2014 International Conference on Collabo-
ration Technologies and Systems (CTS). TEEE. 2014, pp. 396-405 (Page: 102).

[176] Andrea De Salve, Paolo Mori, Laura Ricci, Raed Al-Aaridhi, and Kalman Graffi. “Privacy-
preserving data allocation in decentralized online social networks”. In: IFIP Inter-
national Conference on Distributed Applications and Interoperable Systems. Springer,
Cham. 2016, pp. 47-60 (Page: 102).

[177] Raed Al-Aaridhi and Kalman Graffi. “Sets, lists and trees: distributed data structures
on distributed hash tables”. In: 2016 IEEE 35th International Performance Computing
and Communications Conference (IPCCC). IEEE. 2016, pp. 1-8 (Page: 102).

[178] Newton Masinde and Kalman Graffi. “Peer-to-peer-based social networks: A compre-
hensive survey”. In: SN Computer Science 1.5 (2020), pp. 1-51 (Page: 102).

[179] Andreas Disterhoft and Kalman Graffi. “Protected chords in the web: secure P2P frame-
work for decentralized online social networks”. In: 2015 IEEE international conference
on peer-to-peer computing (P2P). IEEE. 2015, pp. 1-5 (Page: 102).

[180] Kalman Graffi and Newton Masinde. “LibreSocial: A peer-to-peer framework for on-
line social networks”. In: Concurrency and Computation: Practice and Experience 33.8
(2021), e6150 (Page: 102).

[181] Dorothy Neufeld, Joyce Ma, and VisualCapitalist. The History of Innovation Cycle.
2020. URL: https://www.visualcapitalist.com/the-history-of - innovation-
cycles/ (Page: 102).

[182] Danny Ecker. Altstadtfest (Old Town Festival) celebrating the opening of the rebuilt
old town with a drone show. URL: \url{{https://www.shutterstock.com/image-
photo/frankfurt-germany-sep-29-2018-altstadtfest-1192594309}} (Page: 103).

116

Bibliography

[183] Sam Shead. Elon Musk says production of Tesla’s robot could start next year, but A.L
experts have their doubts. 20022. URL: https://www.cnbc. com/2022/04/08/elon-
musk-says-tesla-is-aiming-to-start-production-on-optimus-next-year.html

(Page: 104).

117

Ahmad Reza Cheraghi
27.11.1981, Tehran/Iran

German

Work Experiences

04.2014 — Present

06.2019 — Present

08.2013 - 12.2020

03.2013 - 10.2013

05.2007 — 06.2012

PhD Student & Research Assistant at University of
Duesseldorf (Heinrich Heine University)
Natural Inspired Algorithms for Robot Swarms

Co-Founder and CEO at HireQu
A platform for remote Software Developer

Owner and Manager of LakeSideFlat
Sales and Marketing, Cost-Controlling,
Booking/Guest-Manager and -Support

Abelanalytics, Berlin

Co-Founder & Prototyp-Developer of a “Wifi-Ping
Capturing System based on Raspberry Pi” for analyzing
Customers Behaviour in Retailstores

SMS-SIEMAG AG, Duesseldorf
International Commissioning Engineer for the Automation
Systems of Steel-Plants (Continues Casters)

Assignment Abroad as a Commissioning Engineer from SMS-Siemag:

01.2012 - 06.2012

04.2010 — 09.2011

11.2009 — 02.2010

09.2009 - 10.2009

01.2009 - 06.2009

09.2008 — 11.2008

03.2008 — 06.2008

09.2007 — 11.2007

TATA-Steel Ltd., Jamshedpur/India
Mobarakeh Steel Co., Mobarakehl/Iran
Bhushan Steel Ltd., Angul/India
Thyssen AG, Bochum/Germany

JSW Steel Ltd., Belary/India

AmurMetal, Komsomolsk na Amur/Russia
Bhushan Steel Ltd., Jharsuguda/India

Severstal Ltd., Columbus-Mississippi/USA

07.2007 — 07.2007 ArcelorMittal, Krakau/Polen

Publications

2021:

In Proceedings of the Springer 2021 Intelligent Systems Conference (IntelliSys). Volume 3.:

- Past, Present, and Future of Swarm Robotics
2020:

In Proceedings of IEEE 5th Asia-Pacific Conference on Intelligent Robot Systems

(ACIRS)).:

- AlLeader Based Coating Algorithm for Simple and Cave Shaped Objects with Robot
Swarms.

- Opportunistic Network Behavior in a Swarm: Passing Messages to Destination
- Robot Swarm Flocking on a 2D Triangular Graph

- General coating of arbitrary objects using robot swarms

- Phototactic movement of battery-powered and self-charging robot swarms

- Universal 2-dimensional terrain marking for autonomous robot swarms

In Proceedings of the 3rd International Conference of Intelligent Robotic
and Control Engineering (IRCE):

- Prevention of Ant Mills in Pheromone-Based Search Algorithm for Robot Swarms

- Swarm-sim: A 2d & 3d simulation core for swarm agents
2016:

In Proceedings of the 2016 25th International Conference on Computer Communication and
Networks (ICCCN):

- The State of Simulation Tools for P2P Networks on Mobile Ad-Hoc and Opportunistic Networks

Academical Background

08.2015 - 08.2017 Duesseldorf Business School
Master of Business Administration

04.2006 — 02.2007 University Dortmund
Doctoral researcher
10.2001 — 10.2005 University of Applied Sciences Niederrhein

Dipl. Ing.(FH) Computer Engineering

Abroad University

09.2003 - 01.2004 Dundalk Institute of Technology, Dundalk/Ireland
Web development, Project management and Data
networking

School Background

03.2001 — 07.2001 College Niederrhein, Krefeld/Germany
Certificate of access to German University

09.1996 — 07.2000 Tehran International School, Tehran/lran
International Diploma

08.1992 — 07.1996 Benzenberg Realschule, Duesseldorf/Germany

08.1988 — 07.1992 Elementary School, Duesseldorf/Germany

Further Education
10.2012 - 02.2013 Heinrich Heine University, Duesseldorf

iOS-Programming & Unified Messaging

Volunteering

03.2016 — Now Chairman of the Board
Diisseldorf Business School Alumni e. V.

05.2015 - 05-2019 Doctoral Representative
i-GRAD, Heinrich Heine University

Skills & Languages

Programing languages: Python, C, C++, Objective C & Assembler
PHP, Javascript, Bash & Perl

Database: Oracle, PostgreSQL & MySQL

APls/Frameworks: OpenGL, React, React Natice, NodeJS

IDEs: MS Visual Studio, Eclipse, PyCharm

Markup Languages: HTML, CSS, JSON & XML

0OS: MS Windows, Linux & Apple OS X

Office-Products: MS Office & Open Office

Networking: CCNA1 &2

Languages: German, English & Farsi

Hobbies & Sports

Hobbies : Cooking, travelling, singing, playing guitar, reading,
researching, and philosophizing

Sports : Dancing (Salsa & Bachata) , ice skating,

rollerblading, jogging, body building, and
meditating

Ahmad Reza Cheraghi, May the 4™ 2022

