Rydberg spectroscopy in a gas of
ultracold Ytterbium atoms

Inaugural-Dissertation

zur
Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultat

der Heinrich-Heine-Universitat Dusseldorf

vorgelegt von
Christian Halter

aus Hanau

Dusseldorf, Oktober 2021



Aus dem Institut fir Experimentalphysik
der Heinrich-Heine-Universitat Diisseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultat der
Heinrich-Heine-Universitat Dusseldorf

Referent: Prof. Dr. Axel Gorlitz
Koreferent: Prof. Dr. Thomas Heinzel

Tag der mundlichen Prifung: 21.03.2022



Abstract

Rydberg atoms [1] with their fascinating properties have become of great interest in quantum
optics. Particularly ultra cold Rydberg atoms with their strong interaction are a promising
tool for quantum simulations and information processing [2].

In recent years, Rydberg atoms with two valence electrons have further expanded the
already diverse range of applications [3][4][5][6]. Here I present a study of ultra cold
ytterbium Rydberg atoms. Another promising atom species, which could expand the range
of applications even further.

In the scope of this thesis I present a simple and robust spectroscopy, the MOT depletion
spectroscopy. With this technique it was possible to excite and identify several Rydberg
states of Yb which had not been measured before and confirm already identified states [7].
With the MOT depletion method it is also possible to determine the polarizabilities of 1.5,
and ' P; Rydberg series. The measured polarizabilities were compared with numerically
determined values, using a semi-classical model [8]. Both, the measurements and the
numerical values are consistent with each other.

To gain further knowledge about the Yb Rydberg states we also implemented the electric
field ionization spectroscopy. This spectroscopy allows to study the ionization behavior of
the Yb Rydberg states of the 1Sy and ' Dy series. The exploration of the ionisation process
revealed a diabatic and adiabatic passages of the bound Rydberg states through the Stark
manifold before they ionize.

The electric field ionization method gives also the opportunity to measure the black-body
reduced lifetimes of the Yb Rydberg states. These lifetimes are important information
as they provide a time frame for further experiments. The measured black-body reduced

lifetimes of the 1Sy and ' Dy series are presented and discussed in this thesis.
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1.

Introduction

The study of Rydberg atoms with their astonishing properties, has established itself in
many areas of physics. This includes e.g. molecular physics, plasma physics, quantum
information and many more. Most of the studies on Rydberg atoms have to date used
alkali atoms. The goal of this thesis is to expand the already wide field of Rydberg physics
by exploring the special features of Rydberg atoms with two valence electrons, which have
recently attracted significant attention. More precisely, this thesis is concerned with the

spectroscopy of laser-cooled ytterbium Rydberg atoms.

The two valence electron atom species like ytterbium (Yb), which has an electronic
structure that is similar to alkaline earth metal, open the opportunity to perform
fundamentally different experiments in the field of cold Rydberg physics. The presence of
two valence electrons gives a variety of opportunities. For example the access to singlet and
triplet states, which exhibits a wide range of attractive or repulsive interactions [9]. It also
provides with its weak intercombination lines an advantageous opportunity for laser cooling
to very low temperatures and for Rydberg specific applications like Rydberg dressing [10].
Another possibility is to trap Rydberg atoms and ground state atoms simultaneously [11].
These kind of traps have the potential to serve as a model system for a superconducting
metal-like state [12]. The second electron gives also the opportunity to address the Rydberg
atom optically due to the optical active core, which allows for optical imaging of the ultra

cold Rydberg gas [9].

For all of these applications a detail of knowledge of the structure of the Rydberg atom
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is mandatory. The goal of this thesis is to set the foundation for future experiments by
studying fundamental properties of Yb Rydberg states. The structure of the energy levels
is investigated spectroscopically and the response of the states to external electric field
is studied. These studies allow for the determination of the polarizability and ionization
thresholds of Yb Rydberg states. Another property, which is investigated in this thesis, is
the lifetime of Rydberg states. All these properties of Yb Rydberg states are measured and

discussed in the context of this thesis.

In this introductory chapter I will first give a short overview over current developments
in the field of ultracold Rydberg physics. Subsequently, I will explain the specific features

of Yb that makes it a good candidate for the mentioned study of new phenomena.

1.1. Rydberg physics

In recent years, Rydberg states, atomic states of high principal quantum number n, have
become of great interest in the field of quantum optics. Their properties like the polarizability,
the lifetime or just their size are exaggerated compared to low-lying states. The reason for
this drastic increase is the scaling of the properties with the principal quantum number n.

Some of the scaling laws can be seen in table 1.1.

Table 1.1.: Scaling laws of Rydberg states. Reproduced from [1]

Binding energy n
Energy between adjacent n states
Orbital radius
Dipole moment
Polarizability
Radiative lifetime
Dipole-Dipole interaction

S 333 S
W N NN

S
-
=

One of the most interesting properties of Rydberg atoms is the interaction strength

between Rydberg atoms. As can be seen in table 1.1 the dipole-dipole interaction of

1

Rydberg atoms scales with n''. This drastic scaling leads to new binding mechanism

between Rydberg atoms in highly excited states [13]. Another effect that arises from the
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dipole-dipole interaction is the so called ”dipole blockade”, which will be briefly explained
below. With this effect it is possible to switch off interactions, which can be used to
implement controlled-NOT (CNOT) gates in a quantum computing environment with
neutral atoms [14]. The dipole blockade opens also the possibility for the formation of

complex many-body systems, which will be introduced below.

The interaction between Rydberg atoms and ground state atoms can also lead to the
formation of exotic molecules [15]. One example for such a molecule is the excitation
of a single Rydberg atom in a Bose-Einstein condensate (BEC) of strontium [3]. In the
condensate the long range interactions of the Rydberg atom leads to binding mechanism
between hundreds of ground state atoms and a single Rydberg atom. This ultra long range
Rydberg molecule gives the opportunity to study collective phenomena in degenerated gas,

like the formation of polarons [5].

Besides the interaction between Rydberg atoms, the properties of a Rydberg atom alone
offers interesting opportunities to study fundamental quantum physics. One example
is a circular Rydberg state. These Rydberg states have a huge principal quantum
n = 300 — 600 as well with a giant orbital momentum (m; ~ [ ~ n). The electron
wavefunction of these states is orbiting the ionic core in a Bohr-like way and this enables

the test of fundamental quantum decoherence [16].

Exploiting these interaction mechanism and unique properties leads also to several
other interesting phenomenona, which will not be discussed in detail in this thesis. Some
of these interesting phenomenona are a single photon source at room temperature [17]

or the formation of anti-hydrogen via an electron cascade caused through Rydberg states [18].

Dipole blockade

As described in [19] the strong dipole-dipole interaction between Rydberg atoms causes a
shift in the energy levels of surrounding atoms. If the shift is larger than the laser line

width of the laser used to excite the Rydberg state, other excitations in the vicinity of
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the Rydberg atom are suppressed, which is illustrated in figure 1.1. The blockade of the
excitation of the surrounding ground state atoms, if one atom is excited to a Rydberg state,
plus the Rydberg atom itself can also be interpreted as shared excitation. This mesoscopic

state is often called ”superatom”[20].

Excitation volume

b)
,
|7, 7) ® o LN
o !/ D ‘.
1 ® 0!
|
|g,7‘) .\ Y +
| \ ° /
: ® ;\ ® ’//
| R
I > b~ ! -
Rb R Py o o0

Figure 1.1.: Schematic view of the dipole blockade. a) Energy level scheme of an atom in
the vicinity of a Rydberg atom. The energy level of the ground state |g) is not effected by
the Rydberg atom. Due to the large dipole interaction the Rydberg state |r) is shifted to
a higher energy as the distance decreases. The excitation becomes inaccessible below the
blockade radius Ry,. b) Example of a single Rydberg excitation due to the dipole blockade.
There is only one excitation because the excitation volume is smaller than the blockade
volume and the atom cloud.

The shift of the energy levels can also be used to achieve the exact opposite mechanism,
an anti-blockade. In this case the excitation laser is detuned in such a way, that the shift
of the energy levels caused by the dipole-dipole interaction of a Rydberg atom with the
ground state atom compensates the detuning of the excitation laser. This anti-blockade
effect causes an avalanche of excitations which results in a formation of an ultra cold

neutral plasma [21].

As already mentioned the dipole blockade can be used to implement a CNOT gate, which
has been demonstrated by [22]. In that work a CNOT gate is realized by coupling two indi-
vidually addressed neutral atoms via the dipole mechanism [23] with a CNOT fidelity of 0.73.
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Many-body systems

In recent studies of superatom states, it was found that the correlation between many
superatom states are preserved over large distances [24]. These many-body systems have
very complex excitation dynamics and therefore the initial conditions have to be controlled
precisely. However in the work of [25] and [26] it was still possible to show a collective
behavior of superatom states for traps of different shapes. In [25] it was possible to generate
a collective entangled state of a superatom over an entire ring shaped optical trap. In [26]

a crystallization effect of superatoms was found in an optical lattice.

In general, the many-body Rydberg systems have many similarities with solid-state
systems and therefore can be seen as a great toolbox to study for example quantum
phase transitions. These transitions are relevant for the study of the mechanisms behind

high-temperature superconductors [27] and heavy-fermion materials [28].

1.2. Ytterbium

In the following the special aspects and prospects using Yb in ultracold Rydberg
experiments are discussed. The general properties of Yb are highlighted as well as the

unique possibilities Yb offers within the framework of Rydberg physics.

Yb is a lanthanoide, a rare earth element. It has the atomic number 70 and its
isotopes with their abundance are shown in table 1.2. The ground state has the
electron configuration 4f146s2. The energy term of the five stable bosonic isotopes
168y p 170y p 172y p,174Y'h and YD is 1Sy. The two stable fermionic isotopes "'Yb
and '"Yb have nuclear spin of I171 = 1/2 and I;73 = 5/2. Therefore their ground
state has a hyperfine structure. The bosonic ground state is a single state with no
substructure. Therefore there is no hyperfine splitting and magnetic structure. This offers

a simple system for doppler-cooling and the realization of a magneto-optical trap (MOT) [29].

Yb is a rare earth metal and has two valence electrons. Its electronic structure resembles
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Table 1.2.: Abundance of the Yb isotopes [30] and the inter isotope scattering length taken
from [31].

Isotope ‘ Abundance ‘ Scattering length [nm]

168y'p 0.13% 13.33(18)
10y 3.05% 3.38(11)
17y} 14.3% -0.15(19)
172y 21.9% -31.7(34)
13yh 16.1% 10.55(11)
1ryp 31.8% 5.55(8)
176yp 12.7% -1.28(23)
6s6p 'P,
6s7p °P,

— 2

1

0

398.9 nm

652 'S,

Figure 1.2.: Reduced schematic energy level of Yb. The ”blue” 398.9 nm singlet-singlet
transition is dipole allowed and can be used for cooling and trapping of hot Yb atoms. The
singlet-triplet transition (”green” 555.8 nm and “yellow” 578.9nm) are actually forbidden,
but due to higher order magnetic multipole effects [29] and the mass of Yb the are weakly
allowed. They can be for example used to cool the Yb atoms in the K regime, which
causes a condensation into a Bose-Einstein condensate [32]. The ”yellow” transition can
also be used for precise fundamental frequency metrology [33].

that of alkaline earth atoms. The two valence electrons offer unique methods for the study
of Rydberg physics or metrology [33].

Due to the two valence electrons, Yb has singlet and triplet electronic spin states, as
can be seen in figure 1.2. According to the electric dipole transition rules the transition

between those states are ”forbidden”, but due to higher order magnetic multipole effects
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[29] and the large mass of Yb they are weakly allowed. This results in narrow linewidths,
which can be used for cooling the Yb atoms optically to temperatures in the uK regime,
for example to produce Bose-Einstein condensates [32] subsequently or for fundamental
frequency metrology.

There are two possibilities to use Yb as an atomic clock standard. The first one is to trap
the neutral Yb atoms in an optical lattice and use the 'Sy —3 Py, with a natural linewidth
of a few 10mHz, as the clock transition. The fermionic isotopes of Yb with their non zero
nuclear spin are used for this kind of clock, because the non zero nuclear spin provides a
constant non zero magnetic field, which defines the inter-combination line in a very precise
way. A comparison between to systems exhibits an atomic clock instability of 1.6 x 10718
after 7 hours of averaging [33].

Another method is to use Yb". Here the ions are trapped in a radio-frequency Paul trap.
Due to the remaining valence electron the ions can be laser cooled, for example on the
28, /2 -2 P /2 transition. There are several possible clock transitions in Yb+, one of these
is the electric octupole (E3) 25 jo(F = 0) =2 F;)5(F = 3). Using this transition the most
advanced ion clock was build, with a relative measurement uncertainty of 1.1 x 10~® and
a systematic uncertainty of 3.2 x 10718,

Another advantage of Yb is the variety of different scattering properties due to the large
number of stable isotopes. As can be seen in table 1.2 the inter isotope scattering length
varies from attractive to repulsive. This allows to realize quantum degenerate gases with
very different properties [34]. This gives the opportunity to study many-body Rydberg

systems with very different properties, as described in section 1.1.

Rydberg dressing

In general the Rydberg dressing method can be used for introducing a novel interaction
between ground state atoms [10][35]. The interaction between the ground state atoms is
introduced by coupling the ground state over an intermediate state to a Rydberg state.
The ground state atoms now interact with each other over the admixed Rydberg state.
These interactions can lead to interesting phenomena like the formation of exotic spin and

magnetic states [36][37], super solids [38], and three-dimensional solitons [39].
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The property, which arises from the two valence electrons opens a variety of novel
possibilities in the study of Rydberg physics. One of these possibilities results from the
singlet and triplet states (see figure 1.2). As mentioned before, the transition between these
states is only very weakly allowed, resulting in very narrow transitions. In the method
of Rydberg dressing, these single-triplet transitions have an advantage over one electron
atoms.

As described in [40] the advantage of alkaline earth atoms like Yb against alkali atoms lies
in the reduction of decoherence from light scattering by coupling to triplet Rydberg state
via the long-lived triplet intermediate state. This dressing scheme over the weak coupled
intermediate state also enables Autler-Towns spectroscopy of strongly-driven Rydberg
systems, where the Rydberg population is small. In alkali atoms this spectroscopy is much
more challenging, because typically the laser coupling between the intermediate state

and the ground is much stronger than between the Rydberg state and the intermediate state.

Ultracold Rydberg molecules

Another possible application of Yb is the study of ultra-long-range Rydberg molecules.
These molecules are formed by the scattering of the excited Rydberg electron with a
neighboring ground state atom. This novel binding mechanism can form giant molecules
with the size of the Rydberg atom and with a permanent dipole moment, even in the
case of a homo-nuclear molecule [41]. The so-called ”trilobite” molecule states, which are
formed with anisotropic nP and nD Rydberg states, possess very large dipole moments,
up to the Kilo-Debye range [42]. However a detailed analysis of the Rydberg molecules
is challenging because of the ground state hyperfine and spin-orbit interactions of the
Rydberg electron. Theses interactions lead to a mixing of singlet and triplet electronic
symmetries, which complicates the analysis of the molecules. Both of these interactions are
absent in case of bosonic alkaline-earth atoms, which makes them an attractive system to

study Rydberg molecules.
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State selective autoionisation

The two valence electrons support also doubled excited states. In those states both
electrons are excited, where one of them is in a Rydberg state. For low | states, the overlap
between the Rydberg wavefunction and the excited second electron is significant, which
leads to autoionizing of the Rydberg atom. This phenomenon can be used to ionize state
selectively the Rydberg atoms [19]. It also enables a spatial resolution of the Rydberg
atoms by controlling very precisely the ionisation volume. This diagnostic is not possible
with the common selective field ionisation method, unless a complex highly-magnifying

charged particle optics is used. [43].

Ultra cold neutral plasma

Collisions and Pennig ionisation in a cold gas of Rydberg atoms can rapidly transform the
gas into an ultra cold neutral plasma [44]. In the case of alkali atoms, the study of the
dynamics and the evolution of such exotic states of matter is limited to the detection of
charged particles with no spatial resolution.

However, the second valence electron of an alkaline earth atom like Yb enables the possibility
to image the ultra cold plasma in situ. The single ionized Yb™ for example is still optically
active, due to the remaining electron transition 25, /2 =2 P /2 with a wavelength of 369.5 nm.
This feature of two electron atoms has already been used to study ion dynamics in ultra

cold neutral plasma of Strontium [4] [45].






2.

Basic experimental and theoretical concepts

In the first part, this chapter summarizes the basic principle of cooling and trapping
of neutral atoms. It explains how a Zeeman slower decelerates a thermal atomic beam
(section 2.1.1) of Yb atoms. It also describes how a magneto-optical trap (MOT) cools and
traps the slowed Yb atoms (section 2.1.2 and 2.1.3). The explanations and formula in the
corresponding sections are taken from [46].

In the second part, this chapter gives a short introduction into the basic concepts of Rydberg
physics. It explains the quantum defect theory, which can be used to describe the energy
levels of Rydberg states. It will further introduce the multi channel quantum defect theory,
which is an essential tool to describe two-electron Rydberg atoms like Yb. This chapter will
also describe how Rydberg states are affected by an external electric field. In this context,
it also describes how the interaction of Rydberg atoms with each other affects the energy

level of the Rydberg states.

2.1. Cooling and trapping of atoms

The cooling and trapping of neutral atoms with lasers is based on the scattering process
between a photon and a neutral atom. Each scattering of a photon transfers momentum to
the atom. The force resulting from this process depends on the momentum of the photon

hk and the scattering rate I':

F = hk, (2.1)
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where k is the wave-vector of the light field. While the wavenumber |k| = 27/A depends on
the wavelength of the photon, which scatters from the atom. The scattering rate I' is given

by [46]

g So
214 So+(20/~)*’

(2.2)

where v is the linewidth of the atomic transition and ¢ is the detuning of laserlight to the
transition wavelength. The saturation parameter Sy is defined as Sy = I/Iq¢. While I is
the intensity of the light field and I.; the saturation intensity of the atomic transition,
which is given by [46]

mhe

sat = 333 (2.3)

where 7 is the lifetime of the excited state and therefore Sy is specific for a given atom
species and transition. The scattering rate I' is maximal if the detuning § = 0. Since the
atom is in motion it experiences a Doppler shift of the laser light field, which changes due
to the deceleration, caused by the scattering process. The Zeeman effect can be used to
compensate this variation of the detuning, which is the basic principle of the Zeeman slower

(see section 2.1.1).

2.1.1. Zeeman slower

slower laser magnetic coil atomic beam
o-polarized

3
4

7 I

Figure 2.1.: Working principle of a Zeeman slower. The atomic beam and the slower
laser beam are conterpropagating. The magnetic field B generated by the slower coil
compensates the Doppler shift. Adapted from [47].

The MOT is loaded from an Yb atom beam (see section 2.1.3). This beam is generated
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in an oven, the Yb atom therefore has a high thermal velocity. Before the atoms can be
trapped in a MOT, they have to be slowed down. One method to slow the atoms down is
the Zeeman slower, which also cools the atom beam. The structure of the slower consists of
the atomic beam, a laser beam and a magnetic field. The atom beam and the laser beam
are counter-propagating. The magnetic field is aligned along the direction of propagation
of both beams (see figure 2.1). The detuning to the atomic transition Jy is given by [46]

p'B
h )

§=00—Fk-0— (2.4)

where k is the wavevector of the light field and ¢ the velocity of the atoms. B is the

magnetic field and ' the effective magnetic moment, which is given by [46],

p= (geme — ggmg) pwB- (2.5)

Here ge, g and m. 4 are the Landé g-factors and magnetic quantum number of the ground
and excited state.

The velocity of the atoms is changing during the scattering process. This changes the
effective detuning of the laser beam as can be seen in equation 2.4. The basic concept of
the Zeeman slower is to compensate the change in the detuning with a spatially varying
magnetic field. To derive the needed magnetic field geometry we first look at the maximal
deceleration a,,q;. For high intensity of the light field I >> I, and zero detuning the

maximal deceleration is given by,

F, hk
‘ama:z:| = :’;Laz = %E (26)

The position dependent velocity of the atom is therefore given by,

v(2) = \/v3 — s|amaz|z- (2.7)

with the z-axis chosen as the propagation direction of the atom beam and vy is the maximal
velocity of an atom that can be slowed down by the Zeeman slower. With § = 0 the required

magnetic field can be derived from 2.4,

B(z) = Z (50 + ky/v3 — s|amaz|z> (2.8)
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The equation 2.8 describes an increasing magnetic field along the propagation of the atom
beam. The detuning of the laser beam has to be § = —kvgy to be in resonance with the
atomic transition. The laser is therefore red detuned to the atomic transition, which is
advantageous compared to the opposite geometry, where magnetic field decreases along
the propagation of the atom beam. With the increasing geometry the slower beam is not

resonant with the cold and slowed atoms when they reach the MOT position.

2.1.2. Optical molasses

An optical molasses is used to cool atoms in three dimensions, it is formed by six pairwise
counterpropagating laser beams. These beams exert a force on the atoms, which is

proportional to the velocity of the atoms. For one dimension the force is given by [46],

Fy = +hii L 50

24 + Sy + (2(5711@@)2

(2.9)

The total force in one dimension that is exerted on the atom, is given by the sum of both

laser beams,
Foyy = Fo+F_ =—-§7, (2.10)

where [ acts as a damping constant, if the laser beams are red detuned (6 < 0). This force

damps the atomic motion, with

8hk?5S
B = S (2.11)

7 (14 80+ (2)7)

Since the force of the optical molasses is not position dependent, it can only be used to cool

the atoms, not to trap them. A position dependency can be introduced with a magnetic
field, which combined with a optical molasses, forms a magneto-optical trap (MOT) (see
section 2.1.3). With the optical molasses the atom can be cooled to the Doppler cooling
limit, which is given by [46],

firy
Tp = —. 2.12
D= okg (2.12)
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The limit arises from the momentum transfer caused by the absorption and emission of
photons. The limit depends on the atom species and the transition used for the molasses.

The Doppler limit is typically in the order of 100 uK.

2.1.3. Magneto-optical trap

The MOT is formed by adding a quadrupole magnetic field to the laser field. This field
introduces a spatial dependent force to the atoms. The atoms can therefore be trapped
in the center of the magnetic field. The principle of the Yb MOT is illustrated in figure
2.2. For the sake of simplicity, the following descriptions of the principle is only explained
for one dimension. The ”"blue” Yb MOT, which is used in the experiment, uses the
652 1S5(J = 0) — 6s6p ' P;(J = 1) transition, for cooling and trapping the atoms. A
spatially varying magnetic field B(z) = Byz splits the upper 6s6p ! Py state into its three
Zeeman sub-components, with the quantum numbers mjy = —1,0, 1. Since the laser beams
are circularly polarized and red detuned to the atomic transition (dashed line in figure 2.2)
they are only in resonance with the atomic transition, on one side of the MOT. This means
that more light is scattered from the o_ polarized beam on the z > 0 side of the MOT than
from the o polarized beam and vice versa. This distinction in direction causes the atoms
to experience a force that drives them towards the center of the magnetic field. The total

force, which acts on the atoms, is given by [46]

F;MOT _ 8hk255017 ,u,B() 8hk2(550?7
7(1—1—5’04—(275)2)2 h 7(1—1—5’04—(275)2)2

Sine the force depends on the position and velocity of the atoms, it forms a trap which

= —Bi— ki (2.13)

cools and traps neutral atoms. With this kind of trap it is possible to capture atoms with a
maximal velocity v, = \/W, where 7. is the radius of the trap. The capture volume
depends on the size of the atom beam, the intensity and the magnetic field gradient. The
trapping radius is a critical parameter for the release-recapture method [48], which is also

used in this Thesis (see section 3.4.3).
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A E/h my

+ O,

1SO J:O 0

Ny

Figure 2.2.: Basic principal of a magneto-optical trap for Yb in one dimension. The two
counterpropagating laser beams are red detuned to the 65> *Sy(J = 0) — 6s6p 1Py (J = 1)
transition (dashed line) and o4 /o_ polarised. The magnetic field B(z) = Byz splits the
6s6p L P1(J = 1) into its Zeeman substructure. The figure is adapted from [47].

2.2. Energy levels of Rydberg atoms

For the analysis of the Rydberg state spectroscopy, which is a key result of this thesis, it is
useful to determine the quantum defect of each state. The following sections will give a
brief introduction into the quantum defect theory (QDT) and multi channel quantum defect
theory (MQDT). The explanations and formulas in the context of the QDT are summarized
from [1]. The references [49], [50] and [7] are the background for the description of the
MQDT.

2.2.1. Quantum defect theory

To describe the energy levels of a Rydberg atom we start at the most simple case, namely
the hydrogen atom. There, the energy levels are given by the Rydberg series [1]. For
hydrogen-like Rydberg atoms the energy levels are given by [1]:

Eml = Eion—— (214)

*
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where Ej,, is the Ionisation energy of the specific atom, R, = hcR, with the Rydberg
constant Ro, = 1.0973731568160(21) x 107 1/m and n; is the effective quantum number.
The difference between hydrogen and other elements is the effective quantum number n;.
So the question is: How does n; differ from hydrogen? To determine this difference we have
to look at the wave function of the Rydberg atoms. For this purpose, we start to solve the

time dependent Schrédinger equation [1]in atomic units for hydrogen
A? 1
<— - ) v = EU, (2.15)

where FE is the energy of the electron, r is the distance between electron and proton. Since
the atom has a spherical symmetry we can use spherical coordinates. If we assume that the

wave function is separable in a radial and a spherical component like,
v = Y(0,9) R(r), (2.16)

the solution for the spherical part is,

(l—m)l2l +1

m imeo
(T m)ir P" (cos©) e, (2.17)

Yim (©,9)

where P/ (x) is the unnormalized Legendre polynomial. The radial problem is given by

0?’R  20R 2 I(l+1)
+ o=t 264+ - — —5—

—_— 4+ - = 0. 2.1
or2 ror r r R 0 (2.18)

and according to [1] the problem can be converted to the standard form of the coulomb
problem by introducing p(r). With the substitution R(r) = p(r)/r the equation can be
simplified to:

9?p 2 U(l+1)
— 2 - — = 0. 2.19
Or? Tt r 72 p ( )

Here ¢ is the energy of the state relative to the ionisation threshold. The potential,
we have to consider, has two components. The 1/r term is the Coulomb potential
and [(I 4+ 1)/2r? is the centrifugal potential of the electron. This differential equation

gives the familiar term for the allowed energies 2.14. A detailed derivation can be found in [1].

To extend this model to a single valence electron atoms with spherical ionic cores, we
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have to modify the potential. The difference between a hydrogen atom and alkali atom is
the core of the atom, which includes the nucleus and all electrons in closed shells. The core
of a non-hydrogen atom has a finite sized ionic core with radius ry,+ ~ 128 pm, which is
several magnitudes larger than the hydrogen core rg = 0.84 fm. From a large distance the
ionic core can be treated as point-like and singly charged for the valence electron, because
the inner electrons shield the nucleus. However at smaller distance, the valance electron
penetrates the electron cloud an thus the charge of the nucleus is not shielded completely.
This leads to significant modification of the inner part of the potential.

This new potential Vg is deeper than the Coulomb potential, because of the lesser shielding.

A
| R .
| ‘7
| /
| M | ///
l 2r ' /7
1 | /,
0 | ' >r I a 7 >r
| L
of 1 & ¥
ol of | /
TR ol //
1 I /!
| | )1
| ;!
[} / /
I\ / /
N/
i
g = = hydrogen

— — non hydrogen|

Figure 2.3.: Schematic sketch of the atomic potential for hydrogen (black) and non
hydrogen (red) atoms, with angular momentum [. a) The black solid lines are the
centrifugal (upper) and the Coulomb (lower) potential. The black dashed line is the
resulting potential for a hydrogen atom. The lower red dashed line is the modified
Coulomb potential for non hydrogen atoms. The upper red dashed line is the resulting
potential for non hydrogen atom. ry is taken as the size of the ionic core. b) Zoomed
view of the potential. The black solid line shows the energy level and wave function of an
electron in the potential of a hydrogen atom. The red solid line represents the non-hydrogen

case. The energy level is shifted downwards and has a phase shift A compared to the
hydrogen case.

If we assume that the core is spherical symmetric, the effective potential Vg is still separable.

Therefore the angular wave function (equation 2.17) is unchanged.

Figure 2.3 shows in a schematic way how the Coulomb potential alters in case of a finite
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sized ionic core. Above rg, the size of the ionic core, the potential is approximated by to
the Coulumb potential. For r < rg the potential is deeper, which leads to an increase in
the kinetic energy of the electron and a decrease of the wavelength of the radial oscillation
relative to hydrogen. In the case of r > ry the difference between an alkali and hydrogen
is a phase shift A in the wave function. The magnitude of the radial phase shift is given
by the difference in momentum of an electron with an energy E integrated from r = 0 to
ro, in a non hydrogen atom potential and in a hydrogen atom potential. Therefore the

magnitude of the radial phase shift for an s electron relative to hydrogen is given by [1],

A = /OT0 [[E ~ Vaon—n (r)* = <E + 71“)1/2] (2.20)

Considering this shift, it is possible to solve the Schrédigner equation for the alkali atoms

in the region r > ¢ and get the following expression for the energy levels [1]

R

By = Bigp— ——
n,l ion (n _ 5l’n)2

)

, (2.21)

where §;,, is the so-called quantum defect, which depends on the principle quantum number
n and the orbital angular momentum quantum number [. Concerning the binding energy,

the complete difference to a hydrogen atom can be expressed by this defect.

Rydberg-Ritz formula

The quantum defect d,,; varies slowly within a specific nl series. To describe this variation it
is common to use the Rydberg-Ritz formula ([7],[51] and [52]), which is a Taylor expansion

of the quantum defect. The formula reads:

() n d2(1)

Ong = do(l) + n—060(1)2  n—dp(l)4

)

TR (2.22)

where dg(l) is the quantum defect at the ionization limit and the other terms are defined by
the energy dependency of the quantum defect. With large n the quantum defect reaches

the limit do(/) (ionisation limit) and becomes independent of n.
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2.2.2. Multichannel quantum defect theory

In case of Yb, which has two valence electrons, the assumption that the core is spherical
symmetric is not necessarily valid. The presence of a second electron induces perturbations
in the energy levels of the Rydberg electron. One possibility to model this problem is to
use the multi channel quantum theory (MQDT)[49]. The MQDT describes the interaction
of a single active electron with the core through an effective core-dependent potential. The
following description of the MQDT is summarized from the reference [50]. In the context of
the MQDT the different channels are associated to different configurations of the active
electron and the core. The wave function of the total system is a linear combination of the
wave functions of each channel. An extensive MQDT study of Yb can be found in [7]. In

the following the main ingredients of the MQDT are briefly summarized.

To model the interaction of the core with the perturbations we start with the ra-
dial Schrodinger equation 2.19. For each channel the active electron has to satisfy the

equation. So we can write down the radial Schrédinger equation for each channel as:

82/31' 2M ll(ll + 1)

T

Here i is the index for the channel and ¢; the energy of the electron in that specific channel.
It is customary to use the wavenumber as the unit for the energy of the states and it is

common to express the energy relative to the ground state not to the ionisation limit. Thus
€ = (E — Iz') hC, (2.24)

where c is the speed of light and h is Planck’s constant. I; is the ionisation energy of the
channel 7. Since equation 2.23 is a second order equation, the solution can be expressed
by a linear superposition of two independent solutions f (I;,¢€;,7) and g (l;,€;,7). These
solutions are commonly termed as the regular and irregular Coulomb functions [53]. In [54]
it is described how to calculate these functions numerically by using standard algorithms.

We thus rewrite an approach for the solution for 2.23 as,

pi = [l e€,7r)cos0; + g (l;,e,r)sinb;, r >> ap. (2.25)
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The superposition of the Coulomb functions is weighted by an angle ;. This angle can be

expressed by the effective quantum number

*
0, = mn,;

(2.26)
with

where ¢; is the n and 1 dependent quantum defect, described in section 2.2.1.
Considering the different channel wave functions, the eigenfunctions of the atomic Hamilto-
nian become a superposition of these wave functions where the eigenfunction ¥ of a specific

state has the form,
U = AZ Ai pi Xi- (2.28)

In comparison to equation 2.16, x; describes not just the angular and spin dependence of
the active electron, it also describes the radial, angular and spin dependence of all other
electrons. The symbol A indicates, that the sum over all channels i is antisymmetrized.
The coeflicients A; are the n and 1 dependent weight coefficient, that define the mixture of
the channel functions in the eigenstate W.

In principle it is possible to diagonalize these short range interactions and get a set
of N linearly independent uncoupled wave functions ¢, (o« = 1,...,N). By a unitary
transformation one can relate these wave functions to the channel wave functions p; x;.

Considering this for large r

Py = (AZ Uiaf (Liy€i,1) Xi) cos (T i)

— (.AZ Uiag (i, €,1) Xi) sin (7 pe,) (2.29)

where U;,, are the coefficients of the unitary matrix and pu, is called eigenquantum defects

[55]. This defect depends linearly on the energy level, so it can be described by

oo = g+ €fty (2-30)
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with

. = (2.31)

Now it is possible to express the wave function ¥ in the basis set of the equation 2.28 and

2.29,
.AZ Al Pi Xi — Z Ba wa. (232)

Solving the coefficients of the equations f (I;,€;,r) and g (1;, €;, ) separately and considering

the limit r — oo in equation 2.32, gives the following relation:
Aje ™ = " Ujq By €™ (2.33)
(03
B = Y U e 1)
i

The fact that the wavefunctions v, and p; are real requires that the coefficients of A; and

B, are real. This leads to a set of equations,

> Ui Aisin[r(nf +pa)] = 0 o = 1,.,N, (2.35)
Therefore
det | Uio Aisin[m (n + pa)]| = 0. (2.36)

This equation is a constraint for the effective principle quantum number n}, by a given
unitary matrix U;,, and an eigenquantum defect p,. Considering also the boundary condition,
that ¥ — 0 as r — oo leads to the familiar equation,

R

%2
n;

E = I-

with i+ = 1,...N, (2.37)

where I; is the ionisation limit of channel i and R is the finite mass corrected Rydberg

constant. For Yb the corrected Rydberg constant is given by,

~ myp
Rypy=Ro —— . 2.38
o * myp + me ( )
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Here R is the Rydberg constant, my; the Yb atom mass and m. the electron mass.
With the unitary matrix U;, and the eigenquantum defect po, we have a full set of
parameters, which characterizes a series of Rydberg states. These parameters can be
calculated ab initio [56] or can be derived by fitting to experimental data [7], [50].

It is common to describe the a channels in a LS coupling scheme, where the eigenchannels
@ are introduced with a pure LS coupling ngplpjg nljJ with a analytically known unitary

matrix U;5z. The unitary matrix U, can be factorized as a product of rotation matrices
Uia = Uia Vda 5 (239)

where the rotation matrix Vs, can be written in terms of 2 x 2 rotation matrices Rag (faa)
with the rotation angle 6,5. The angles are defined by the coupling of the different channels.
The eigenquantum defect p,, of each channel and their rotation 6,5 are the free parameters,
which characterize the weight of the channel to the unitary matrix. Due to the non
commutative product of rotation matrices product, the order of the rotation is also a

parameter for the transformation matrix.

Bound state energies

The principle aim of the MQDT is to predict energy levels of bound states. For this purpose
the free parameters u, and 6,4 are fitted to experimental data of a Rydberg series. The
energies F of a series are given by equation 2.37. The eigenquantum defect used to calculate
the energies has to satisfy the equation 2.36. To find these energies one has to select two
channels ¢ and k, which are expected to dominate the series. The next step is to guess
the effective principle quantum number nj, by using the experimental data and equation
2.37. With n;‘ and the equation 2.37 it is possible to derive the corresponding values n;, by

introducing the function

(v}

—1/2
Fi(n}) = ll’;}]ﬁr 1)21 : (2.40)

ni = Fn)) with i#j (2.41)
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it is possible to determine the corresponding principle quantum numbers n;, apart from
ny. With these quantum numbers and equation 2.36, we define an implicit function, which
determines the value of n, for a given unitary matrix U;,. To find the principle quantum
numbers where both equations 2.36 and 2.37 are fulfilled it is convenient to define a function

Gy ([Uia] 5n%) such that 2.36 is fulfilled when,
ng = Gi([Uidl;nj) (2.42)

with the condition defined in equation 2.41. To obtain the values of n; of the corresponding
bound states energies, we seek for the roots of the function

=) = G (Uiin]) ~ Fi(n)) (2.43)

The resulting energy levels given by equation 2.37, are the energy bound states defined by
the MQDT model.

2.3. Rydberg atoms and electric fields

Due to their properties Rydberg atoms are very sensitive to external electric fields. In
this section, the Stark effect is described. There the response of the Rydberg states to
electric fields is described by its polarizability. In this context the state dependence of
the polarizability is discussed in the second-order perturbation theory. Furthermore the
pair-state interaction between two Rydberg atoms is briefly introduced to estimate possible

interactions in our experiments.

2.3.1. Stark effect

The stark effect describes the interaction of an atom or molecule with an external electric
field. In general one has to distinguish between a DC Stark effect for static external electric
fields and an AC Stark effect for oscillating external electric fields (typically light fields). In
the following we investigate the behavior of the Rydberg atoms in a static electric field, so

we look closer at the DC stark effect.

The interaction between an atom or molecule and a static external electric field is given
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by,
AE = —F-d., (2.44)

where F' is the electric field and d.; is the electric dipole moment of the atom or molecule .
If the states of the atom are degenerate with respect to their orbital momentum I, like in
hydrogen, they are hybrid orbitals. These orbitals have a permanent dipole moment d.;.
This leads to a linear shift of the state energies with the electric field (see figure 2.4 a)).
Due to the specific form of these orbitals some of these states shift to lower energies (red

shift), others shift to higher energies (blue shift).

blue
red ——-\

' '
F F

Figure 2.4.: a) linear stark shift of hydrogen state b) quadratic shift of non hydrogen
atom in an external electric field.

In non-hydrogen atoms like Yb the states are non-degenerate with respect to the orbital
momentum [, so these states have no intrinsic dipole moment. In this case the dipole is

induced by the external electric field,

1
del = 504()'}7 (2.45)

Here «q is the polarizability of the state. Therefore the Stark shift of the energy of the

state is quadratic (see figure 2.4 b)) and is given by,

1
AE = —§MyF2 (2.46)
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A quantum mechanical description using the electric dipole approximation offers insight
to the state dependence of the polarizability. Within this approximation, the interaction
Hamiltonian H' = —d - F, with d as the dipole operator, describes the perturbation caused
by the electric field. Where the dipole operator is given by d = e x r. In second order
perturbation theory, we obtain for the Stark shift [57]

1 <wnlm‘d|¢n/l/m’> ("pn’l’m’ ‘d’wnlmb 2
AE = ———— -F 2.47

3(2J + 1) ;/ E, — Ep ( )
n'l'm
Here 91, is the wavefunction of the electron, with the total angular momentum J and the
energy level E,,;. With this expression and eq. 2.46, it is possible to identify the following

expression for the polarizability,

. 2
. 2 )<7/}n’l’m’ |d|wnlm>
ao(n,l,j) = m Z Eyi — Epy (2.48)

n'l'm’

We now assume, that for the scaling behavior of the polarizability the main contribution
comes from a single state. This state must be dipole allowed and is the closest in energy
(i.e. ' =14 1). Because the matrix element (¢//|d|tpm) is proportional to length, it

has the same scaling as the expectation value for the orbital radius,
(ry ~ n?. (2.49)

The scaling behavior of the energy difference can be calculated as,

. . 1 1
nh_{lolo Eniv1— En 7}1_{{)10 m2 m
1 2ne+é€ _3

o« lim —- 5
n—00 2 n2(n —¢)

=en " (2.50)

Where € represents the energy difference between the | and [ + 1 states. These two
scalings (equation 2.49 and 2.50) combined lead to an asymptotic behavior for the scalar

polarizability,
7
ag ~ n'. (2.51)

This scaling with the principal quantum number makes Rydberg atoms with high principal
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quantum number very sensitive to external electric fields, which allows for a wide range of
possible application, i.e. radio-frequency electric field sensors [58] or the dipole blockade
mechanism, which is an essential ingredient for using Rydberg atoms as gbits in quantum

information [14].

2.4. Pair-state interaction

atom 2

Figure 2.5.: Coordinate system for the pair-state interaction. The polar angle 6 = 0...w
and the azimuthal angle ¢ = 0...2m defines the relative orientation to the z-axis, which is
specified by the laser driving the Rydberg excitation.

Rydberg atoms interact over a long range, because of their extremely large dipole
moments. This kind of interaction behavior can be used for controlled quantum information
processing [2] and for studying effects like for e.g. the superradiance [59]. For this thesis it
is important to know at which inter-atomic distance the Rydberg-Rydberg interactions are
so strong that they disturb the Rydberg excitation itself (Rydberg blockade). This section

gives an estimation at which inter-atomic distance the pair-interaction has to be considered.

To estimate the interaction between two Rydberg atoms we first choose the coordinate
system like shown in figure 2.5. The inter-atomic distance is given by R and the relative
orientation to the z-axis is given a the polar angle § = 0...m and the azimuthal angle

¢ = 0...2w. The orientation of the z-axis (quantisation axis) is specified by the polarisation
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of the laser that drives the Rydberg excitation. The coordinates r1 and 1o are relative to
the respective nuclei.

The pair-wise interaction between two Rydberg atoms can be expressed in multipole form

as [60],
N Vi (r1,72)
VIR = R1L12+L2+1 ’ (2.52)
Li,Lo=1

with L1+ Ly = 2 for dipole-dipole interactions, L1+ Lo = 3 for dipole-quadrupole interactions

and Ly + Ly = 4 for quadrupole-quadrupole interactions. Vi, r,(r1,72) is given by

_ (—1)"24n
Viy,(r1,m2) = NS (2.53)

Li+ Lo Li+ Lo Lo

X Z it
m Li+m Lo+m
X Yr1,m(71) Y12, —m(f2),

n
where is the binomial coefficient and Y7, ,,, () spherical harmonics. The energy level of
k

the pair state can be calculated by diagonalising the matrix elements (j1m;1|Vi,,L,|72mj2).
If the quantisation axis is aligned along the internuclear axis R the matrix elements
(71mj1|VL,, L, |j2mj2) are easily evaluated. If the orientation of the quantisation axis differs
from the internuclear axis, the orientation can be described by the polar angle # and the
azimuthal angle ¢ (see figure 2.5). For the calculation of the coupling, the atom states
|7,m;) have to be rotated with WignerD matrices wp(6, ¢).

The description of the pair interaction with the multipole approach is only valid if the
wavefunctions of both atoms do not overlap. This is the case if the distance is larger than

the Le Roy radius [61],
Rup =2 (i)' + (r)'?). (2.54)

The Ley Radius for nS states is approximately 0.1 um for n =~ 20 and reaches 1 ym for
n ~ 60.

Consider now a pair of two atoms in the Rydberg pair-state |r,r), which are dipole coupled
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to the states |r’) and |r”'). The energy difference between the dipole coupled states is given

by
A = E. .+ FE.nw—2E,. (2.55)

Here E, is the energy of the initial state and FE,. ,~» are the energies of the dipole coupled

states. The Hamiltonian in the pair-state basis {|rr), |r'r”)} is therefore given by

" = . (2.56)

For large distance (V(R) << A) it is possible to calculate the interaction between two
Rydberg atoms with the perturbation theory. The nature of the interaction, attractive or
repulsive, is determined by the sign of A. The interaction is proportional to the dispersion
coefficient Cg oc n'l.

For a small inter-atomic distance (V(R) >> A) the pair-state with the smallest absolute
energy difference |A| has the biggest contribution to the atom-atom interaction. For real
systems it is necessary to consider the effects of all near resonant pair-states. To calculate
the interaction it is necessary to diagonalise the pair state interaction Hamiltonian to
consider all states in the vicinity of the pair state. In figure 2.6 the resulting energy levels
of the pair state of two rubidium atoms in the 805, state are shown. For the calculations
all pair states in the range of n = 80 £ 5 and [ = 0...4 were taken into account. The
calculation shows that a significant shift of the energy level starts at inter-atomic distance
of approximately 5 um. Above this distance there are no interactions which could lead to
e.g. a dipole blockade [20].

Rubidium was chosen for the calculation because it has only one valence electron and
the energy levels of this system are well known. The calculation of the pair-interaction
energy in rubidium are therefore reliable. Due to the similar hydrogen like structure of all
Rydberg atoms, the result in rubidium can be used to estimate the order of magnitude of
the inter-atomic distance at which the interaction between Yb Rydberg atoms becomes

important.
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Figure 2.6.: Simulated pair interaction between two 805/, Rydberg states in Rubidium.
The relative energy shift is determined by diagonalizing the pair-state interaction Hamilto-
nian. For the pair-state Hamiltonian all pair states in the range of n =80+5 and [l =0..4
are taken into account. The simulation and figure is done with [62].



Experimental apparatus

This chapter describes the experimental apparatus that was used for the experiments
performed within this thesis. The apparatus is based on a setup, initially developed in the
thesis of Bastian Schepers [63]. The core of the apparatus consists of a vacuum chamber
with attached coils and electrodes for the required magnetic and electric fields (see section
3.1). A detailed discussion of the electric field, that is generated by the electrode setup can
be found in section 3.2. Subsequently, section 3.3 describes basic measurement techniques
like the data acquisition system and the ion detection system. In section 3.4 the properties
of the cold Yb gas captured in the MOT are described. Section 3.5 describes the laser
systems of the apparatus, which serve two purposes. The first one is cooling and trapping

of Yb atoms and the second one is the excitation into Rydberg states.

3.1. Overview

The experiments that are presented in this thesis are all performed in an ultra-high vacuum
chamber, with a pressure of approximately 10~ mbar. In the course of this thesis significant
additions were made to the apparatus. The setup of the experiment can be separated into
two stages. In the first stage we performed a spectroscopic study with the MOT depletion
spectroscopy (see chapter 4) and the measurement of the polarizability of the states (see
chapter 5), using a simple electrode configuration. In the second stage we installed a multi
channel plate (MCP) and a sophisticated electrode setup for the ionisation measurement
technique (see chapter 6). The difference between those two stages only concerns the

experimental chamber. The remaining part of the apparatus had the same setup in both
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slower

electrode

spectroscopy

side view

MOT coils

comp. coils

Figure 3.1.: Overview of the Yb Rydberg apparatus. In the top view the cap of the
experiment camber is cut off. All grey components show cross sections. For the sake of
simplicity ion pumps, titan sublimation pumps and other standard vacuum devices are
not shown in this sketch.

stages and is described below. The overall setup is shown in figure 3.1. This overview shows
the second stage (current status) of the apparatus. The main chamber with nine windows
gives access to the six MOT beams, the slower beam, the Rydberg laser beam and a CCD
Camera for imaging of the atoms.

The experimental chamber is connected to a Zeeman slower. The setup and functionality
of the Zeeman slower is described in detail in chapter 2.1.1. Also attached to the vacuum
chamber is a small spectroscopy chamber which is used for frequency stabilization of the
MOT laser system (see section 3.5.1 for details).

The magnetic field that is needed for the magneto-optical trap is generated by two magnetic
field coils in an anti-Helmholtz configuration. Both coils are mounted outside of the chamber

(see figure 3.1). The big coil (diameter: 15.2cm) is attached on the top of the experimental
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chamber. The small coil (diameter: 3.4 cm) is mounted inside a recessed flange, so that the
distance between this coil and the MOT is as small as possible and a large magnetic field
gradient can be realized. For the compensation of residual magnetic fields at the position
of the atoms, two additional coils are attached to the chamber (see figure 3.1).

In the following the interior of the experimental chamber is described which has been
changed during the two stages of the experiment. The difference in the setup is illustrated

in figure 3.2.

stage one stage two

top window electrode

electrodes |

_____________

Figure 3.2.: Sketch of the experimental chamber in the two stages of the experiment. In
the first stage, on the left side, the electrode for electric field control is mounted on the
top window of the chamber. There are no components inside the chamber. On the right is
the second stage of the experiment. An extension flange is added to the chamber to make
room for the MCP. A wire mesh is installed between the MCP and the Rydberg atoms.
The electrodes for the electric field control are mounted on a 2D resonator. The optical
access for the resonator is provided by four windows on the top of the chamber. A fifth
window in the center gives access to the vertical MOT beam.

First stage

In stage one, the experimental chamber had no electrode inside the vacuum chamber. As
an electrode a cooper plate with a diameter of 150 mm and a center hole of 25 mm for
optical access was used. The plate was mounted on the top window of the chamber and the
distance between the atoms and the electrode was approximately 75 mm. There was no

other electrode or device installed in the apparatus.
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Second stage

In the second (current) stage, several changes have been done to the setup of the experimental
chamber. With the addition of a two dimensional resonator [64] (see figure 3.3), it is now
possible to trap the atoms conservatively in a two dimensional optical lattice. The optical
lattice will be used in future experiments to trap the atoms.

The electrodes for the electric field compensation and the high voltage pulse generation, are
attached to the resonator. A detailed description of the electrode setup and a simulation of
the electric field inside the vacuum chamber is given in section 3.2.

The MCP for Rydberg ion detection is located inside the extension flange (see figure 3.8).
In order to shield the Rydberg atoms from the electric field of the MCP, an electrically
conductive mesh is mounted between the MCP and the location of the MOT, where the

Rydberg atoms are produced.

3.2. Electric fields

Due to the large polarizability of Rydberg states, which scales with n” (see chapter 1.1),
they are very sensitive to electric fields. The Stark effect splits and shifts the energy levels
(see section 2.3.1 for more details). It is also possible to ionize the Rydberg atoms with a
sufficiently large electric field (more details in chapter 6). For investigation of the Stark
effect as well as for a well-controlled field ionisation it is important to precisely control
the electric field in our experiment. The section 3.2.1 describes the basics of the finite
integration technique, which is used to simulate the electric field. In section 3.2.2 the
setup of the electrodes and the resulting electric field is described. It also explains how the
high voltage pulse pattern for the ionisation of the Rydberg atoms is generated (see 3.2.5
section). Section 3.2.4 presents a detailed study about the geometry of the electric field,

that it generated by the electrode setup.

3.2.1. Simulation of the electric field

A simulation of the electric field in the vacuum apparatus is shown in chapter 3.2.3. The

electric field is numerically simulated with a software!, that uses the finite integration

LCST Studio Suite



3.2. Electric fields 35

MOT beam
slower beam

2D lattice
rydberg laser
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Figure 3.3.: Sketch of the intra-vaccum resonator setup. Two perpendicular confocal
resonators form a two-dimensional optical lattice. Both resonators have a length of
approximately 50 mm and a beam waist of 50 ym. The laser beams are coupled into the
resonator via a mirror, mounted behind the resonator mirrors. These deflection mirrors
are aligned in such a way that laser beams ,coming from above, enter the resonator. The
resonator is designed to provide optical access to the MOT beams, the Rydberg laser, the
slower beam and the camera. The electrodes for electric field control are also attached to
the resonator setup.

technique (FIT) to solve the Maxwell equations. One input for the simulation is a three
dimensional model of all components of the experiment (electrode setup, MCP and vacuum
chamber), including the material properties. For each of these components an electric
potential value is defined. With this information the FI-method can calculate the three
dimensional electric field. In the following the FI-method is described in detail. The
following description of the method is a summary of reference [65].

The FI-method divides the complete system into mesh cells. Thereby the mesh is not limited
to a Cartesian coordinate system of a specifically shaped mesh. Actually the simulations

performed in this thesis are made with a hexahedral mesh in a Cartesian coordinate system.
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Figure 3.4.: Sketch of the cell V; ;.1 in cell complex G. The edges of the surface A are
associated with the electric grid voltage e and the corresponding surface is associated with

the magnetic facet flux b. The figure is reproduced from [65].

For the sake of simplicity the following explanation is based on a brick shaped mesh in
Cartesian coordinate system. Therefore, the cell complex for Cartesian coordinates is given

by,
G = {Vijr € R®|Vijp = [wi,2is1] X [Yj, Yj1) X [2k 2641 5 (3.1)
i=1,l =1, j =1, d =1, k=1,.,K — 1},

where the nodes (z;, y;, z;) are enumerated with the parameters ¢, j and k along the -, y-

and z-axis. The total number of mesh point is therefore given by
N, = 1-J-K. (3.2)

For the simulation of the the electric field we start with Faraday’s law in integral form. The

law applied to a single cell in the grid G is given by
Lo B d ~ . .
E(7,t)-d§=— —B(F,t)-dAV A e R, (3.3)
0A A Ot

where E (7,t) is the electric- and B (7, ¢) magnetic-field. A represents a facet of the cell.

For a facet oriented along the z-axis the law can be rewritten as

~
~

ex (1,5, k) +ey (i +1,5,k) —ex (i, + 1,k) —ey (i,5, k) = — 7 b (t,5,k) . (34)
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where the scalar value
(®it1.d52K)
2 (k) = / B ds (3.5)
(4,35 ,2k)

is the electric voltage along one edge of the facet A,(i, 7, k) as shown in figure 3.4. The

magnetic flux through the cell facet A, (i, j, k) is represented by the scalar value

~
—~ —

b, (i,j, k) = /A(“k)B-dA’. (3.6)
2%,

The discrete form of Faraday law eq.3.4 is valid for each single facet and can be extended

to larger facet areas by:
A = {JAG.4k) (3.7)

with the relation

S fuin-. o

By ordering the electric voltages e(i, j, k) and the magnetic face flux B(z, J, k) lexicographi-
cally over the complete cell system G the grid voltages and magnetic field fluxes can be

written in the form of two column vectors

€= (€xm | ey | az,n)Z:l,...,Np € R (3.92)
b = (bz,n ‘ by,n ‘ bz,n)Z:L'WNP S RgNP. (39b)
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With the definitions 3.9a and 3.9b and the relation 3.8, equation 3.4 can be written in the

matrix form,

€ny
......... o
d | =2
1.ve 1o 1.0 -1 T by (3.10)
......... o :
—_——
C:= ﬁ
€n,
pe
e

The matrix C has only the coefficients C;; € {—1,0,1} and contains the topological
information on the incidence relation of the cell edges within G and their orientation. C
represents the discrete curl-operator on the grid G.

The next differential operator that has to be discretized is the divergence operator S.
This operator can be derived from the Maxwell’s equation describing the non-existence of

magnetic charges (Gauss’s law of for magnetism)
/ B(Ft)-dA=0 VVeR> (3.11)
ov

Considering this equation for a cell V; ; ». as shown in figure 3.5 yields the following equation:

—~
~

—by (i, 4, k) + by (i + 1,5, k) — by (i, 5, k) + by (i, + 1, k) (3.12)

—~
—~

—b, (i, 5, k) + b, (i,5,k+1) =0.
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Figure 3.5.: Sketch of the magnetic flux trough the facets of a cell of the cell complex
G. The sketch shows the flow in and out of the volume. Due the the non-existence of
magnetic charges the net flow is zero.The figure is reproduced from [65].

Expanding equation 3.12 to the complete cell complex G yields the following matrix form

of the Maxwell equation

3

) ) 3®)) >)) B

11 -1 1 -1 1--- =0. (3.13)
ms
b,
S:=
X
b

Just as the curl-operator C the discrete divergence (source) operator S € RNpX3Np
depends on the grid topology.
For the discretization of the two remaining Maxwell equations a second cell complex G has
to be introduced. The second grid is defined by taking the center of the cells of the primary
grid G as the grid-points of the grid G, as shown in figure 3.6. This definition ensures a
one-to-one relationship between the cells edges of G and the cell surfaces of G and vice

versa. If we integrate the magnetic field intensities H along the edges Ly, of the so defined
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Grid G

Grid G

_____ -

Figure 3.6.: Relationship between the two cell complexes G and G. The vertices of G are
the foci of cells of complex cell system G. There is a one-to-one relationship between the
cells edges of G and the cell surfaces of G and vice versa. The figure is reproduced from
[65].

dual grid we get the magneto motive force

hy= | H-ds, (3.14)
Ly

where the physical unit of the force is Ampére. The electric currents I and the dielectric
fluxes D on the surfaces of G are defined in analogy to the grid voltages and the magnetic
facet fluxes on G.

The integral of the charge density in a cell of the dual grid G can be described as a point
charge on the grid point of the primary grid G, which is placed in the center of a cell of G
with the volume V.

The Ampére’s law in the integral form is given by

ﬁ(F,t)-d§:—// <65(F,t)+f(F,t)) ‘dA  VAeR? (3.15)
oA A\Ot

where J is the current density through a surface of the cell of the grid G. The discretization
of Ampere’s law follows in complete analogy to the discretization of the Faraday’s law. To

obtain the displacement current %ﬁ (t) and the conductive current J through the cell facet,

the magnetic grid voltages of the considered cell are summed up.
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The Gauss’ law in integral form
/ B -dA=q VYV eR?, (3.16)
oV

can also be discretized for the dual grid G. The discretization of Gauss’ law leads to the
topological grid operator S for the dual discrete divergence and the discretization of the
Ampére’s law results in the operator C’, which is the dual discrete curl operator. The
complete set of discrete matrix equation for the grid pair {G, G} is called Maxwell-Grid-

Equations (MGE) and is given by:

Ce= —%B, (3.17a)

Se=0, (3.17b)

ch--2343 (3.17¢)
dt

Sd- q. (3.17d)

Here d is the dielectric flux vector and 3 conductive current vector of the cell complex pair
{G,G}, in analogy to the definition 3.9a and 3.9b. In the context of the FI-method it is
convenient to use electric grid voltages, which are associated with the cell edges. These
grid voltages can be expressed as a difference of two nodal potential values ®(3, j, k), which

are associated with intersecting grid mesh point of the grid G. This difference is given by
-+ 1,5, k) + P4, 4, k) =ex(i,4,k) (3.18)
Following the same collecting scheme as in derivation of the MGE yields the relation,
CRery (3.19)
where G is the discrete gradient matrix
G--5". (3.20)

The same method can be used to introduce a magnetic scalar nodal potential vector W.

There the magnetic potentials are associated with the vertices of the dual grid G. Following
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the derivation yields the following relationship:
h=-GU=-8"vy, (3.21)

Until now the discretization of the Maxwell equations has lead to a set of equations which
holds only the information about the integral state variables, which are either associated
with vertices (potentials), edges (voltages) surfaces (fluxes) or the cell volume (charges).
The approximation enters this method, when the two cell complexes are related to each
other over the constitutive material equations. Under the condition that the two cell
complexes G and G are orthogonal and have a one-to-one relationship between their facets

and edges, the discrete material matrix relations are,

d=M.3+p, (3.22a)
j=M,8, (3.22b)
h=M,b+m. (3.22¢)

Where M., is the permittivity matrix, My is the matrix of conductivities and M, is the
matrix of reluctivities. The vectors 5 and m arise from the permanent electric and magnetic
polarisations.

In figure 3.7 an example of the coupling of the grid G and G over the constitutive material
equations is shown. There the electric field voltage €,, is related to the facet flux ]m
Since the four MGE 3.17a-3.17d are an exact representation of the Maxwell equation, the
error in the Fl-method appears in the discrete constitutive material equations 3.17a-3.17c.
There are several averaging methods and cell filling techniques to handle the error of this

2 we use to simulate the electric field

method (see reference [65]). The solver of the software
has therefore a refinement step of the mesh in the solving process to reduce the error of the

simulation under a pre-chosen limit.
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Figure 3.7.: The coupling between the grid G and the dual grid G is done via the
constitutive material equations. Here the electric grid voltage €,,, allocated on the edge
L., € G, is couple to the facet flux 5m on the dual cell facet A,, € G. The coupling
relation reads as j,, = Rmém, where j,, = 3m /] i dA and the averaged electric field
intensity e, = €.,/ [ P dA. The permittivity of the cell V &, is derived by averaging
the four cell permittivities k1,...,k4. The figure is reproduced from [65].
side view top view

electrodes

slower beam ————— Rydberg beam

Z
]
Figure 3.8.: Close up of the experiment chamber. The electrodes are colored in green. The
magnetic coils are red. The chamber itself is connected to ground. The upper electrode is

a four segmented ring. The lower electrode is a plate with 10 mm hole in the center for
optical access. The mesh above the electrodes has also a hole for the same reason.
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3.2.2. Electrode setup

A close up of the experimental chamber with all components is shown in figure 3.8. The
electrodes for the electric field compensation and for the ionisation pulse consist of a
segmented ring electrode and a plate. The ring is divided into four segments and has a
diameter of 37 mm, as can be seen in figure 3.9. The horizontal field produced by segment
1 and 3 points towards the MCP (see figure 3.10)(see figure 3.10). The axis of segment two
and four is orientated orthogonally to this axis. The plate below the ring has a 10 mm hole
in its center passing through of the vertical MOT beams. The distance between the plate
and the ring is 7.5 mm. The electrodes are attached to the resonator in a way that the
atoms are located in the common center of the resonator and the electrode setup. A mesh
above the electrodes shields the atoms against the electric field from the MCP, as can be
seen in figure 3.10. The mesh has a center hole for the optical access of the vertical MOT
beam. The MCP is mounted inside the extension flange at the top of the experimental
chamber. Because of the vertical MOT beam the MCP has to be mounted off axis. The
MCP is tilted such that the effective surface is facing the MOT.

a)

3 mm

7.5 mm

Figure 3.9.: a) Picture of the electrode setup including the intra-vacuum resonator, the
wiring of the electrodes and the mesh. b) Sketch of the electrode setup including the
spatial dimensions.

2CST Studio Suite
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3.2.3. Compensation field

Patch charges on dielectric surfaces inside the experimental chamber cause a stray electric
background field, that has to be compensated by the electrodes inside the chamber. A
typical compensation field in our experiment is shown in figure 3.10.

To determine this field we use the turning point of a Stark map of highly excited Rydberg
states (n > 70). A detailed description of measurement technique can be found in section
4.1. To simplify the optimization of the field compensation we reduce the amount of free
parameters in our setup by combining the six potentials Uy,U2,U3,Us,Upiate and Uppesh,
according to the formulas below. First we choose the coordinate system, as shown in figure

3.10. Then we relate the potentials of the electrodes to four parameters P,,P,,P, and

Figure 3.10.: Contour plot of a typical compensation field inside the experimental chamber.
This field was determined by finding the turning point of a Stark map of highly excited
Rydberg states (n > 70). The corresponding voltage applied to the electrodes can be
found in table 3.1. The simulation also includes the MCP, which is held at 2500kV. The
mesh shields the lower part of the experimental chamber from the electric field of the
MCP, as can be seen in the side view a). For a better view of the stary field, the maximum
value of the used color coding scheme is chosen to 1500 V/m. The compensation field has
to be stronger in the y-axis, which is defined by electrodes two and four, as can be seen in
the top view b).



46

3 Experimental apparatus

P, tfset, which are controlled in the experiment:

U, =

Uy =

Us =

Uy =

Uplate =

P P,
)

P, P,
A- (Poffset - +?
P.

I\

P
A‘<P0ffset+§+z>

P, P
A- (Poffset+ 2y+ 2Z>

5)
).

A- <Poffset -

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

The parameter A just scales the amplitude of the electric field and can therefore be

used to scale the compensation field without changing its orientation. It is initially set to

one for the compensation field. The other parameters are not completely independent of

each other. Therefore we have to proceed iteratively in the search for the compensation

field. Experimentally we first set P,,P, and P, to zero and find the optimal value for

P.. Then we proceed with the optimization of the field in the x- and y-axis. Before we

repeat the process, we find the optimal value for P, s, which changes the symmetry in

P.. After several iterations the algorithm converges and we get the following values for the

parameters,

Table 3.1.: Parameters for the resulting voltages for the compensation field and the absolute
value of the compensation field |E| at the nominal MOT position (after mesh compensation).
The electric field is determined with the simulation described in section 3.2.1.

parameter value | potential voltage [V]

P, -0.5 Uy 13.02
P, 5.5 Us 10.38
P, 17.1 Us 12.58
Py set 6.0 Uy 15.22
A 088 | U, 2.2
Unesh -5.00

|E(A =1)| =432.98V/m and |E(A = 0.88)| = 390 V/m

The voltage Uesh is adjusted according to the intensity of the ion signal, subsequently
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compensated with the electrodes by adjusting the amplitude factor A, which changes its
value from initially 1 to 0.88. With the parameters shown in table 3.1 the electrodes
generate an electric field that compensates the electric stray field at the MOT position. At
the same time, these parameters allow for maximum ion signal after electric field ionization.
To be able to measure the ions at all, they must be generated with a high voltage pulse.

This pulse, the acceleration and deflection of the ions are described in section 3.2.5.

3.2.4. Spatial variation of the compensation and ionisation field
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Figure 3.11.: Analysis of the homogeneity and relative change of the compensation field
generated by the electrodes. a) Homogeneity of the compensation field along the y and z
axis. b) Variation of the change of the electric field AE (see equation 3.30) along the y
and z axis. For the determination of the change, the electric field is varied by 10%.

The analysis of the Homogeneity yields that the electric field changes by approximately
10% on the horizontal axis in the region of 2mm around the MOT position. On vertical
axis the electric field changes up to 15% in the 2mm uncertainty region of the MOT
position. The variation of the change of the electric field is less than 0.5% on both axis.

Besides the absolute value of the electric field the spatial variation of the compensation
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(figure 3.11) and ionisation field (figure 3.13) has a big impact on the excitation and
ionisation of the Rydberg atoms, as well as for the determination of the polarizability of
the Rydberg atoms.

The homogeneity H for the horizontal axis y and the vertical axis z is given by

E
H, = <Ei_1> -100% (3.28)
H, = @iq)-mo%, (3.29)

is important for the excitation of the Rydberg atoms. E. is the absolute value of the electric
field at the nominal position of the MOT center. The horizontal homogeneity H, (shown
in figure 3.11a blue line) has the largest impact on the excitation of the states, because
the excitation laser is focussed onto the MOT position and slices through the MOT only
horizontally on approximately the bisector of the y and x axis. For the discussion of the
horizontal homogeneity the electric field along the y-axis is used, because the in-homogeneity
on this axis is the largest as can be seen in figure 3.11. The simulation of the compensation
field yields a horizontal homogeneity of 10% in a region of 2mm around the center of the
setup. The graph in figure 3.11 is a line-out from the simulation of the compensation field,
shown in figure 3.10.

For the determination of the polarizability of a Rydberg state (see chapter 5) it is important
to quantify the uniformity of the change of the electric field while the electrode voltages are

changed. Therefore we define a uniformity parameter

Erighi  Ehigh,c
AE; = ( gt 9’)-100%. 3.30
‘ Elow,’i Elow,c ( )

where Ej;qp and Ej,,, are the absolute values of the electric field along the y- or z-axis for
two sets of electrode voltages differing by 10% in amplitude. Figure 3.11 b) shows variation
of the compensation field AE along the horizontal y- and z-axis. These two simulations
yield a maximal change of the variation of the compensation field of less than 0.5% along
the z-axis and and less than 0.2% along the y axis in a region of 2mm around the center
position. This analysis shows that the exact position has no big influence on the scaling of
electric field with the amplitude of the applied voltage. In contrast to the homogeneity H,

which is up to one order of magnitude more sensitive to the position than the electric field
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change AFE. Therefore the homogeneity of the electric field will dominate the error of the
polarizability of the Rydberg states. The homogeneity changes by +15% in the probable
stay volume of the MOT (£2mm).

Another factor that has to be considered by the determination of the polarizability and the
ionisation threshold is the uncertainty of the distance between the segmented electrode ring
and the electrode plate. Simulations with a variation of the distance by +500 um show a
change of £1.5% of the absolute value of the electric field at the nominal MOT position.
The uncertainty of the MOT position and the uncertainty of the distance between the
electrodes therefore results in an uncertainty of 16.5% of the absolute value of the electric
field. Due to quadratic scaling of the polarizability with the electric field (see chapter 5)
this uncertainty causes an relative error of 36% in the determination of the polarizability of

the Rydberg states.

3.2.5. lonisation pulse

One way to detect the Rydberg atoms is via field ionisation [1] of the atoms with a sufficiently
large electric field. In our setup, this field is generated by a high voltage pulse applied to
the plate electrode. The time profile of this pulse (see figure 3.12) has to be well defined and
as short as possible. In our experiment, pulses are generated using self-built high voltage
switches. These switches can produce a minimal pulse length of 180 ns and the amplitude
in our experiment can be varied between 30V to 450 V. For the detection of the ions three

steps are important.
1. Tonisation of the Rydberg atoms.
2. Acceleration towards the MCP.
3. Deflection of the ions towards the active surface of the MCP.

These three steps aren’t independent of each other, but for the measurement of the
Rydberg atoms they have to be separated as far as possible. For the well-defined ionisation
of Rydberg states, one needs to know the electric field, that is generated by the high voltage
pulse. For this purpose, the electric field is simulated with the program described in section

3.2.3. For the conversion between the applied voltage and the electric field, the electric field
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in our setup is simulated with 30V and with 450 V applied to the plate. The electric field
at the MOT position in both cases is:

0.9202 0.9310
_ 1% _ 1%
E3p = |-19.361| | — Ey50 = | —19.400| | — (3.31)
m m
966.10 18468.5

Where the x and y components of the ionization pulse originate from the compensation field.
Due to technical reasons, the voltages at the upper four ring segments are not switched

during the ionization pulse. Linear interpolation leads to the electric field calibration

0.9202 0.00002
= 1
E(U) =|-19.361| + [-0.00095 [m} (U-30V) , (3.32)
966.10 41.6723
or
|E| = 966.29 + 41.67 [1/m] - (U —30V) . (3.33)

In order to separate the ionisation and the acceleration of the ions, it is possible to apply
two different high voltage pulses to the plate electrode (see figure 3.12). Both pulses can be
independently adjusted in pulse length and amplitude. Because of restriction due to the
logic circuit of the high voltage switch, there is a minimal delay of 330 ns between both
pulses.

To obtain the strongest possible ion signal, the ions have to be deflected, so that their
trajectory hits the effective surface of the MCP. This deflection is realized by a third pulse
applied to the first segment of the electrode (see figure 3.10), which is at the opposite
side of the MCP. This pulse deflects the ions towards the MCP. To ensure that the
detection is as independent as possible of the ionization process, the following conditions
are used when designing the time sequence of the pulses. As a first condition the ionisation
pulse has to be as short as possible, so that the resulting (unwanted) acceleration due
to this pulse, is as small as possible. Second, the accelerating pulse should not generate
secondary ionisation and thus shall to have an amplitude below the electric-field ionization

threshold. The third condition requires a deflection pulse that has to be as high as
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possible, so that the initial momentum of the ions after ionisation has a minimal impact
on their trajectories. Another effect that has to be considered is the ionisation caused
by the deflection pulse. By only applying the deflection pulse to the Rydberg atoms
we experimentally verified that ions created by the deflection pulse are not detected by

the MCP which is why the effect can be ignored. In a typical ionisation sequence, the
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Figure 3.12.: Time profile of the high voltage pulses and the light pulse for the excitation of
the Rydberg atoms (blue). The shown amplitude of the light pulse is just for demonstration
and is not correlated to the voltage axis. The delay t; between ionisation pulse (yellow)
and acceleration pulse (red) is 330ns. The overlap to between the acceleration pulse an
the deflection pulse (purple) is 570ns. The ionisation pulse can be adjusted in amplitude.
The ionisation pulse and the acceleration pulse are applied to the plate electrode. The
deflection pulse is applied to segment one , see figure 3.10.

resulting time sequence is shown in figure 3.12. The duration of the ionisation pulse is
180ns and is followed by a 4 us long acceleration pulse. The absolute value of the electric
field of the acceleration pulse is 21.4V/cm (U, = 50 V) and the delay between the pulses is
t1 = 330 ns. The acceleration pulse is overlapping with the deflection pulse. The deflection
pulse starts to = 570 ns before the acceleration pulse ends. The deflection pulse has an
absolute value of the electric field of 320.3V/cm (U; = 750 V) and a duration of 1 us. For
the determination of the ionisation threshold (see chapter 6), the absolute value of the
ionisation field is important. In contrast to the excitation of the Rydberg atoms, where
the laser sets the excitation volume along the horizontal axis, we also have to consider

the homogeneity H along the z-axis. The homogeneity of the ionisation field is shown
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Figure 3.13.: Analysis of the homogeneity of the ionisation field generated by the electrodes.
The voltage at the ring segments Us,...,Uy can be taken from the table 3.1. The plate
electrode is set to the maximal ionisation voltage of 4560 V. The homogeneity of the field
changes by 10% on the horizontal y-axis in the 2 mm surrounding of the MOT position.
The electric field reduces by 40% on z-axis within a distance 2mm from the predicted
MOT position.

in figure 3.13. The blue line shows the homogeneity H along the horizontal axis and
the orange line along the z-axis. In the 2mm surrounding of the MOT position, the
homogeneity of the ionisation field changes on the horizontal axis by 10% and on the
z-axis up to 40%, with increasing distance to the plate electrode (see figure 3.10). This
analysis yields that the position along the z-axis has the biggest influence on the abso-

lute value of the electric field and will therefore dominate the error of the ionisation threshold.

3.3. Measurement techniques

For a detailed study of the Yb Rydberg atoms we have to measure several quantities. For

the depletion spectroscopy for example we have to measure the population of the cold
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atoms inside the trap. To calculate this quantity we measure the fluorescence light from
the MOT. Section 3.3.1 contains a brief description of the imaging system for spectroscopy.
A detailed discussion of the depletion spectroscopy measurement can be found in chapter 4.
To directly detect the Rydberg atoms we measure the Yb ions with a MCP. The ions
are created by a high voltage pulse, which ionizes the Rydberg atoms (see chapter 6 and
3.2.5). The functionality of a MCP and the detection respectively the counting of the ions
is described in section 3.3.2.

To record all the data we use a software network of several client programs, which send
their data to a central data server. This server combines the data and stores them in a
data base. The data acquisition network and the control program, that executes the time

sequence is described in section 3.3.3.

3.3.1. Fluorescence measurement

_______

1 mm
>

CCD camera

Figure 3.14.: a) Fluorescence imaging System. The distance between the MOT and the
telescope is dope = 21.4cm. The aperture of the telescope is a = 25.4mm. b) Fluorescence
image of the MO'T with an exposure time of 300 us, in false colors.

The fluorescence of the MOT is measured by a CCD camera. With the images, that
the CCD camera® takes from the MOT (see figure 3.14 b)) several quantities of the MOT
can be determined. It is possible to calculate the population, the size, the density and the

position of the trap (see section 3.4). The fluorescence measurement is also fundamental

3Company: ABS GmbH Jena; Typ: UK1117-M
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for the MOT depletion method (see section 4.1), which we use for the spectroscopy study
of the Rydberg states.

The setup for the imaging system is shown in figure 3.14 a). The camera is attended to
an optical sealed 2:1 telescope. The distance from the telescope to the MOT position is
dopt = 21.4cm and the aperture of the telescope is a = 25.4 mm. The technical data of the
CCD are:

e pixel size: 8.3 x 8.3 um
e chip size: 640 x 480
e delay between trigger and the start of the exposure: 3200 us

e minimal exposure time: 50 us

The camera is triggered directly with a TTL signal from the National Instrument card,
which controls the entire experiment (detail view 3.17). A LabView program is recording the
images of the CCD camera and stores them in a data base. Python and Matlab programs
are used to evaluate these images in order to determine the quantities, such as the atom
number, size, density and position of the MOT. The LabView program also records the
pixel-sum of the MOT image, which is used for the MOT depletion spectroscopy (see section
4.1).

3.3.2. lon detection

For the direct detection of the Rydberg atoms we use the electric field ionisation method.
Thereby the Rydberg atoms are ionized with a fast electric field pulse (see reference [1]).
The ions created in this way are then guided to a MCP, with the help of additional electric
fields (see section 3.2.5).

The setup of the MCP inside the vacuum chamber is shown in figure 3.8. The distance
between the MOT and the MCP is =~ 10cm. The MCP has two stages and is shown in
detail in figure 3.15 b). The channel diameter is 12 um and the input electrode has an
effective diameter of 20 mm. The input electrode is held on a potential of —2.5kV and the
anode is at ground potential. A detailed electronic circuit including the signal processing
unit can be found in figure A.1 in the appendix. The cold Yb atoms are shielded from the
high MCP potential, by a self-built wire mesh, made of steel. The mesh has a distance of
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Figure 3.15.: a) Typical ion signal from the MCP and the corresponding TTL conversion
from the signal processing unit. b) Wiring diagram of the MCP including the amplifier.

5cm from the atoms and the potential of the mesh can be adjusted to optimize the ion
collection efficiency.

The MCP is directly connected to an instrumentation amplifier, that amplifies the signal by
a factor of 2 (a typical ion signal at the output of the instrumentation amplifier is shown in
figure 3.15 a)). After the initial amplification, the signal is processed by a discriminator,
with an ECL (emitter-coupled logic) output level. The discriminator is followed by a fast
frequency divider and a 12 bit counter integrated circuit (IC). The output of this circuit is
converted to the TTL level and detected by an arduino. With this setup it is possible to
count individual events with 13 ns resolution, limited by the 12 bit counter.

With the arduino it is also possible to implement a gate for the measurement, to filter out
false events. These false events are for example created by spurious signals due to the high
voltage pulses, which are applied to the electrodes (see section 3.2). The typical gate for the
ion measurements in this thesis, starts 5 us after the high voltage pulse and lasts for 50 us.
This delay of the gate is sufficient for separating false from true events because the time of
flight from the ions to the MCP is larger than 5 us. The arduino counts the events detected
by the MCP and the high voltage pulses and transfers the information via USB to a data
grabber program, that itself transmits the information to a server. A detailed description
of the data acquisition and computer control is given in section 3.3.3. The limitation of

this counting method is set by the number of events that can be counted in one cycle as
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Figure 3.16.: Jon counts per experiment cycle. The Rydberg beam pulse has a duration
of 500ns and it is focused onto the MOT with a beam waist of 110 ym. The maximal
count of 11 ions per cycle is limited by the time resolution of the counter unit and the
simultaneity of the ion events.

is shown in figure 3.16. There, the ion count per experiment cycle as a function of to the
power of the Rydberg laser is shown. It exhibits a saturation behavior with a maximal
count number of around 11 counts. The saturation is caused by the time resolution of the
counting unit and simultaneity of the ion events, if large numbers of Rydberg atoms are
produced at higher laser power. Since the saturation behavior falsifies the actual counting
rate, the power of the Rydberg beam must be adjusted for each measurement such that no

saturation occurs.

3.3.3. Control and Acquisition

The experiment has a high level of automation. It is controlled by a GUI-based control
system called ”Cicero Word Generator” [66], that makes use of a client-server separation.

With the client we design the time sequence of our experiment. For an example of a control
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Figure 3.17.: Sketch of the data acquisition and control network of the apparatus. Grey
boxes are devices. Blue boxes are computer programs . Multi color boxes are devices with
a program interface.

sequence see figure 3.18. The server programs two multi function I/O cards®. These two
cards have in total 32 analogue and 32 digital output channels to control the experiment.

The I/O cards have a maximum time resolution of 50 ns, which is more than sufficient
for the standard control of the experiment. However, for the fast dynamics of the Rydberg

atoms we need a sub-unit, that controls the time critical components, such as the high

*Company: National Instrument (NI); Typ: PCI-6229, PCI 6723



58 3 Experimental apparatus

" 5 . 1 5 6 e MW7 8
7analogis) overidden. iy oy destroy MOT_[[load MOT __ [[sloweroff |[tum on iydberg |[MOT-rydber  [[waif | [pic of MOT=nydl]
e [ e || pused || Goabed || Dusee [ Booted || Eaod || oowed || Eraied |

L Hide? [ wvistle | visbe || wvsble || viste || vibe ][ vtk || veble || vsble |
BRI TS 1500012 0,100 05500/ puke dutl - | 01000 0.5000/2

Store us. W ms v 5 w s v s v ms 5 v s w

Analog Group:  scanstart 5 _ V Dlpro scan = i - = - - _
GPIB Grovp: G ~ | B B | | - i
RS232 Group: - TIMER - | - | ——

Update Auto

rydscan

green MOT
frequency

L.
2 big coil cument

3 small coil
cument

e
———————m

I ) I

Figure 3.18.: Typical time sequence of the experiment, programmed in Cicero [66]. The
columns represent the time steps of a control sequence. Each time step has a fixed length
and can be enabled or disabled separately. For each time step the output of the digital
channels (lower rows) and of the analog channels (upper rows) can be separately adjusted.
In the sequence shown the MOT is first loaded and then radiated by the Rydberg laser.
After the Rydberg laser pulse an electric field pulse is generated by the electrodes. After
128 repetitions of laser light and electric field pulse a picture of the MOT is taken.

voltage pulse switch or the AOM for the Rydberg light pulse. This sub-unit consists of
two commercial pulse generators® with a channel to channel time jitter of 50 ps and a time
resolution of 5 ps.

A detailed scheme of the control and data acquisition network is shown in figure 3.17. In
this network several devices transmit their data via clients to a central data server, which
combines the data and stores them in a data bank. Both the client and the sever are
python based and use the socket module for communication. The acquisition devices are the
self-built Michelson-Morley wavemeter [67], the self-built arduino based counter electronic

(see section 3.3.2) and the CCD camera.

SCompany: Stanford research systems; Typ: DG535



3.4. Ytterbium MOT 59

3.4. Ytterbium MOT

The cold Yb gas, in which the Rydberg atoms are created is produced in a MOT. This
MOT is loaded from an atomic beam, that is slowed by a Zeeman slower. The Zeeman
slower has an increasing magnetic field geometry to compensate the Doppler shift during
the slowing process. In the MOT, three pairs of counter propagating laser beams, which
intercept inside the experimental chamber, produce a frictional force in all three spatial
dimensions. Together with a quadrupole magnetic field and the circular polarisation, the
laser lights forms the magneto optical trap. A brief introduction into the principle of laser
cooling and trapping of neutral atoms can be found in section 2.1 and in the reference [46].
The setup used to generate the Yb MOT in the experiment was build by Bastian Schepers

in the context of his master thesis [63].

6snd D,
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Figure 3.19.: Energy level structure of Yb. The transition 6s2 1Sy — 6s6p ' P, with a
wavelength of 398.9nm, is used for the cooling transition of the MOT and also as an
intermediate state for the Rydberg excitation into S-,P- and D- states. The excitation
into the 6snp ' P, series is dipole forbidden, but due to state mixing in an external electric
field it is possible to excite these states from the 6s6p ' P; sate. The minimal wavelength
for the Rydberg excitation is 394.1 nm corresponding to the ionisation threshold.

Yb is a rare earth element and has 7 stable isotope, 2 are fermions and 5 are bosons.



60 3 Experimental apparatus

All measurements in this thesis are done with '™Yb, the most common isotope with an
abundance of 31.8%.

Due to the lack of a nuclear spin and thus a hyperfine splitting in the ground state of the
bosonic iostopes, the relevant energy level structure (see 3.19) is quite simple. The cycling
transition at 399 nm from 6s% 1Sy — 656p L P; is used for the Zeeman slower and the MOT.
The laser system that provides the required wavelengths is described in section 3.5.1.

The MOT operates on the same transition as Zeeman slower (6s% 1Sy — 6s6p 'P;), with
an adjustable red detuning between 10 and 30 MHz. The Zeeman slower has a red detuning
of 500 MHz. The horizontal width of the MOT beams is 5mm and the vertical width is
3mm. The Zeeman slower laser beam is focused on the aperture of the oven. The oven,
which produces the atomic beam, is heated to a temperature of 420°C. To measure the
size and atom number of the cold cloud, we record the fluorescence of the atoms with a

CCD camera (see also section 3.3.1).

3.4.1. Size and atom number of the MOT

With the fluorescence measurement of the 6s6p 'P; — 6s% 1.5, transition, it is possible to
measure the size of the MOT and the number of atoms in the ' P; state. To determine the
size of the trap the magnification of m = 0.5 of the imaging system has to be considered.

Assuming a two dimensional Gaussian distribution of the atom cloud,

2 2

X z
fop(x,2) = Asp-exp (—20% - 202) , (3.34)

a fit to the fluorescence image yields a typical MOT size of o, . = 1000 um. Here A is
the maximal pixel value of a MOT image. For determination of the atom number inside
the trap, we now assume equal sizes of the cloud in the x and y direction (0, = 0y). The

distribution of the atom cloud can then be described as

22 y? 52
= Asp- —_— - - —]. 3.35
f3p(z,y,2) 3D - €Xp ( 202~ 207 203) (3.35)
Where Asp is related to Asp via the integral
[e%¢} 1‘2 Z2
fanez) = [ fnlw)dy = Asp VB -0y e (<o - ) L (330)
— 0o N — (o 2Uz

Aap
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The digital CCD signal N4, that is proportional to the number of atoms inside the MOT

is given by,
Neam = (271')3/2 : A3D *O0g " Oy -0z (337)

For the conversion of the camera signal to a real atom number, several quantities have to
be considered. Only a small fraction of the scattered light is entering the image system.

This is described by the solid angle factor aqng, which is given by,

a
a,mg = W (338)

opt

Where a is the aperture of the image system and d,,; is the distance between the MOT
and the image system. Also the absorption of all optical components reduces the amount
of photons reaching the CCD chip. This reduction is expressed by the absorption factor
aaps- The CCD chip counts the photons and creates a digital signal where the value is
proportional to the photon number via the camera specific quantum efficiency accp. This
leads to the following expression for the amount of emitted photons from the atom cloud

Npn
Neam = acep - Qaps - Qang * Nph = Qtot * Nph (339)

The maximum number of photons scattered by the atom cloud during the exposure time

texp s given by,
Npp = N - - tegp (3.40)

Where v is the natural line width of the MOT transition and N the number of excited

atoms inside the MOT. From this follows for the atom number the following expression:

N = —Neam (3.41)
7 - Qtot - tea:p

Considering all those parameters the analysis of fluorescence data yields a typical atom
number of N ~ 1 x 107 in the 'P; state. The atom number in the cloud depends on a
variety of different parameters. This includes the detuning of the MOT beams, the magnetic

field gradient, the size and power of the MOT beams, the temperature of the Yb oven and
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the pressure inside the vacuum chamber. All theses parameters have to be optimized for on

an optimal performance of the MOT.

3.4.2. Lifetime
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Figure 3.20.: Lifetime of the MOT. The exponential fit yields a a lifetime of T = 677+17 ms

By switching off the slower beam a ”lifetime” of the MOT can be measured. Thereby
the fluorescence of the atom cloud is measured as a function of time, after the slower and
thus the MOT loading was switched off. As can be seen in figure 3.20 the fluorescence
decays exponentially with a typical lifetime of the MOT is 7 = 677 & 17 ms. The lifetime is
limited because the cooling transition 6s6p ' P, — 6s% 1Sy is not radiatively closed. Some
off the excited atoms decay into meta-stable states and are therefore lost from the MOT.
The atoms decay into the meta-stable triplet states 31’32,0, via the 6s6p ' P, — 5d6s 2D271
transition [68][69]. The decay to the meta-stable states depends on the excitation level of

the MOT, which can be controlled by the trap-beam power [70]. Another limiting factor
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for the lifetime of the MOT could be the collision of cold atom cloud with hot background
gas. But the measured lifetime lies well below the expected background-gas limited lifetime

of several 10 seconds [71].

3.4.3. Temperature

One way to measure the MOT temperature is the release-recapture method [48]. In this
method the cold atom cloud is released from the trap by switching of the MOT beams.
Subsequently the MOT beams are turned off again after a time interval At and the atoms
are recaptured. The fraction of atoms fr, which are recaptured is directly correlated to the
temperature of the atom cloud. If the cloud is allowed to expand homogeneously with a
Gaussian velocity distribution the fraction of atoms fr after a release time At is given by
48],

1 'Uc/'Ut 2 2
fr = 7r3/2/0 e dru du (3.42)

Where the thermal velocity v, = \/m and the critical velocity v, = R./At. The
critical velocity is defined by the radius R., which marks the recapture volume of the MOT.
The integration of equation 3.42 yields the following relation between the fraction of atoms,
the recapture time At and the temperature 7' [48]:

2R, R%m
fR = — exp

R
¢ +EBrf | ————
V21kpT /mAt 2kBTAt2) (At\ /QkBT/m>

A typical example for a fit of equation 3.43 to the measured recaptured fraction of

(3.43)

the atoms is shown in figure 3.21. The radius of the recapture volume is estimated with
R, = 1.5 mm. The recapture volume is influenced by the size of the MOT beams and the
magnetic field gradient and is therefore the quantity with greatest uncertainty. A small
change of the recapture radius R, causes a shift in the order of the error of the determined
temperature. At a MOT beam power of 15mW and a MOT detuning of 15 MHz the fit
yields a MOT temperature of 3.8 + 1.1 mK. This temperature is hotter than the Doppler
cooling limit of 0.69 mK. Even at very low MOT beam intensities, measurements showed,
that this limit can’t be reached because of other heating mechanisms, caused possibly by

standing wave effects [72].
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Figure 3.21.: Release-recapture measurement for the determination of atom cloud tem-
perature. The fit of equation 3.43 with a fixed recapture radius of R. = 1.5 mm, yields a
temperature of T = 3.8 + 1.1 mK.

3.4.4. Density of the MOT and Rydberg-Rydberg interaction

Another important property of the MOT is the atom density. It defines the distance
between the atoms and therefore the interaction between them. The density is derived

from the size of the MOT and the number of atoms inside the trap.

N

(3.44)

Pmax =

Assuming a Gaussian distribution, the above-mentioned atomic number and MOT size
result in an atom peak density of pimez ~ 9 x 10 cm™3. Therefore the mean interatomic
distance is Ryin &~ 10pm. As shown in section 2.4 the pair interaction between two Rydberg
atoms for such an interatomic distance leads to no significant shift of the energy levels of the
Rydberg states. The density of the MOT is therefore not high enough to observe interactions
between the Rydberg atoms, like the dipole blockade [73]. However, a MOT based on the
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inter-combination transition 'Sy —3 P; would have up to two orders of magnitude higher
density [69], which is dense enough to observe Rydberg-Rydberg interactions between the
Yb atoms. Therefore, we will implement such a ”green” MOT laser at 556 nm for future

experiments.

3.5. Laser systems

In this section, the setup of the two laser systems of the apparatus is described. The first
laser system provides the laser light for the MOT beams and the slower beam. Both operate
on the 6s% 1Sy — 6s6p 1 P transition with a wavelength of A/ s = 399nm. The second
laser system generates laser light for the excitation into the Rydberg states via the 6s6p ' P
MOT state. The wavelength for the transition from the 6s6p ! P; state to the Rydberg
states is approximately Ar = 394 nm, depending on the specific Rydberg state. The energy

level scheme with excitation path into the Rydberg states is shown in figure 3.19.

3.5.1. MOT laser system

The laser system for the blue MOT and the slower consists of two laser diodes in master-slave
configuration and is shown in figure 3.22.

The master laser %, with a small frequency bandwidth of a few 100 kHz, is stabilized to a Yb
spectroscopy. For this purpose the laser light is frequency modulated with an acousto-optical
modulator (AOM) (see figure 3.22 AOM 1). To minimize the intensity modulation of the
spectroscopy signal through spatial modulation of laser light caused by the AOM, the
laser passes the AOM in a double-pass configuration. The error signal, for the frequency
stabilization, is generated by the demodulation of the spectroscopy signal using a lock-in
technique.

The light from the master diode is used for the Zeeman slower (2mW) and for injection
of the slave diode”. AOM 2 is used for a first frequency shift of the laser light from the
master diode before it gets injected into the slave diode.

The laser light from the slave diode (20 mW) passes through AOM 3, which is used for

power adjustment, frequency control and fast switching of the MOT light.

SCompany: Nichia; Typ: NDHV310ACAEI; Wavelength: 399 nm; Output 10 mW
"Company: Nichia; Typ: NDV4313E; Wavelength: 400 nm; Output 50 mW
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Figure 3.22.: Sketch of the laser system for the operation of the MOT. The light of the
master laser is split in three path. One path is for the frequency stabilisation, which is
done using a spectroscopic method. The other path is used for the Zeeman slower and the
last one injects a slave diode. The laser light of the Slave diode is used for the MOT.

3.5.2. Rydberg excitation Laser

The excitation of the Yb atoms into Rydberg states is done via the intermediate 6s6p ! P
state, which is also the excited state of the MOT and the Zeeman slower. The energy
pathway of the excitation, is shown in figure 3.19. The first photon for the transition into
the intermediate state is provided by the MOT beams. For the second transition from the
intermediate state to Rydberg states we need a photon with an energy, that corresponds to
a wavelength of approximately 394 nm and higher, depending on the specific state.

To obtain these wavelengths with a suitable amount of power of a few milliwatts, we use
the laser system shown in figure 3.23. In this system a commercial grating-stabilized diode

laser® is amplified to 500 mW output power, by a taperd amplifier?. After the amplification,

8Company: Toptica; Typ: DLPro; Wavelength: 780 nm
9Company: m2k-laser GmbH; Typ: m2k-TA-0780-2000
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the laser light is frequency doubled in a home-build resonant Bow-Tie cavity [74], with a
lithium triborate crystal (LBO). The cavity length is locked using a Hénsch-Couillaud [75]
locking-scheme. The maximum output power of the frequency doubling cavity is 20 mW at
394 nm.

Before the laser light for the Rydberg excitation is guided to the experimental chamber via
an optical fiber, it passes an AOM. Both the AOM and optical fibre reduces the output
power of the laser system by factor of 2, which finally corresponds to a maximum output
power of 5mW at the experiment chamber. The fast switching of the AOM enables light
pulses with a minimum duration of 10 — 100 ns. for a defined excitation of the Rydberg

states, the light is then focused onto the MOT with a beam waist of 100 ym.

DI pro

N
u

.
—— “/Qf & T

SHG cavity

Figure 3.23.: Sketch of the laser system, used for the excitation into the Rydberg states.
The laserlight of the commercial laser (Toptica DI pro) is amplified by tapered amplifier
(m2k-TA-0780-2000) to a maximal output power of 1 W. The output of the tapered
amplifier is frequency doubled in a cavity using a LBO crystal. The resulting wavelength
is close to the ionisation threshold of 394.1 nm and has an output power of up to 20 mW.






4.

Spectroscopy of Rydberg S- and P-states

The level structure of a specific atom species is the basis for the investigation of Rydberg
physics. Here we present a straight forward method for measuring the energy levels of
several Rydberg series in a cold gas of ytterbium. The basic theory of Rydberg energy levels
was already summarised in chapter 2.2, where the quantum defect and the multi channel
quantum defect theory were introduced. In this chapter the results from the spectroscopy

measurements are compared with previous studies of the ytterbium Rydberg states [7, 76].

4.1. Experimental procedure

a) 6sns 'S, 6snp 'P, b) g + 10 MHz

>394.1 nm

loading . _production
> Ll

398.9 nm

682 lSn
MOT off t ty

Figure 4.1.: a) Excitation pathway to the Rydberg states over the intermediate state
6s6p 1 Py, which is also used for the MOT. b) Time sequence for the step scan technique.
At time t; a picture of the MO'T is taken followed by the radiation of the Rydberg laser.
At time to another picture is taken to determine the remaining atoms inside the MOT.
During the radiation the frequency wg of the Rydberg laser is changed by 10 MHz.
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Rydberg atoms are produced using a two photon excitation hvgyq = hvaor + hryd.iaser,
as illustrated in figure 4.1 a). The first transition 6s> 'Sy — 6s6p 'P; is already
provided by the light Ayjor = 389.9nm from the MOT itself. The second step in
the excitation is provided by the laser system described in chapter 3.5.2. The laser
has a minimal wavelength of 394.1nm and a maximal power of 5mW inside the
experiment chamber. The laser is focussed into the MOT region with a focus radius
of 110 ym. In this study the Rydberg atoms are detected indirect by measuring
the remaining atoms in the MOT. This method is called depletion spectroscopy and

was performed with the setup from the first stage of the experiment described in chapter 3.1.

The sequence that we use for the depletion Spectroscopy of the Rydberg states is
illustrated in figure 4.1 b).

1. To wipe out any remaining atoms from the trap the MOT light is turned off for
100 ms.

2. The MOT is turned on and loaded for 3.5s, to get a reproducible number of atoms

(loading interval).
3. The slower is turned off, the MOT starts to deplete.
4. The fluorescence of the MOT is measured to get the number of atoms inside the trap.

5. The Rydberg laser is turned on, introducing an additional loss of atoms inside the

MOT (production interval).

6. After 1s radiation time of the Rydberg laser the fluorescence of the trap is measured
again. During the radiation time, the frequency wpg of the Rydberg laser is changed

linearly by a small frequency interval of 10 MHz.

Every fifth cycle is used as a calibration shot. In this shot the Rydberg laser is not
turned on and the frequency of the laser is not changed. With this calibration it is possible
to cancel out the long-time fluctuations of the fluorescence and it is possible to normalize
our measurement to the loss, which is caused by turning off the slower light. Typical raw

data is shown in figure 4.2.
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Figure 4.2.: Raw and processed data from the 80 1S, state. The data is taken with the
first setup of the experiment with 3V applied to the electrode. The Upper graph shows the
raw data. Blue dots are the fluorescence taken at time t1. The orange dots are measured at
time to. The red dots are the calibration shots, where the frequency shift and the Rydberg
laser are turned off. The lower graph shows the processed data of the scan, according to
equation 4.1.

The relative intensity nryq, that is caused by the Rydberg excitation is given by:

IRyd
NRyd = 7 4.1
Y Invor - Teal (1)

where Iy is the fluorescence of the trap after production interval (at time ¢o in the cycle).
Inror is the fluorescence after the loading interval (at time t1) and r.q; is the normalization
factor derived from the calibration shots. For the normalization a polynomial function of
the 3rd order is fitted to the relative intensity of the calibration shots. The relative intensity

of one calibration shot is given by,

I
Tecalibration = L2 . (42)
Iy,

Where I, is the fluorescence after the production interval without a Rydberg laser and
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I3, is the fluorescence of the MOT after the loading interval. The calibration factor r.q; is
determined by a fit to the relative intensity of the calibration shots 7cqiipration and their

time stamp during the complete scan. Therefore the calibration factor is given by,

7ncal@cycle) = c1 - teycle +C2- tZycle +ecs- tz)ycle- (43)

Where cq1,c2 and c3 are the fit parameters and the time ¢, is the time of the cycle during
a complete scan. With this fit it is possible to interpolate the loss, caused by turning off the
slower, for every shot in the run. It is also possible to determine the long time fluctuations
of the atom number inside the MOT, which is caused by a shift of the MOT laser frequency.

Both factors are canceled out of the data by the normalization.

To determine the binding energies of the Rydberg states we measure the wavelength
AR of the Rydberg excitation laser with a self-built Michelson-Morley wavemeter over the
complete run. With a linear fit function it is possible to determine the wavelength of every
cycle of the corresponding run. The estimated absolute frequency error of this method
is 150 MHz ([77]). With this step scan technique it is possible to scan over a Rydberg
transition. But to determine the binding energy of a Rydberg state precisely we measure a

complete Stark map of the state.

A standard method to measure the energy level and the polarizability of a Rydberg state
precisely is measure the dependency of the binding energy on an external electric field
and determine its value for vanishing of the total electric field. Therefore the strength of
the background electric field is varied and the transition is shifted by the Stark effect, see
section 2.3.1. A graph which shows the binding (or excitation) energy as a function of
electric field is thus often referred to a Stark map. The energy of the Rydberg state shifts

quadratic with the electric field according to,

1
AE = Zag- F2, (4.4)

where F is the amount of the electric field and «g is the polarizability of the state. By

fitting a quadratic function

E = Ey+E, -F+E, F? (4.5)
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Figure 4.3.: Stark map of the 6s73s 1Sy state. The shift of the transition is shown as a
function of voltage applied to the top window electrode of the first stage of the experiment.
There is no electric field conversion because of an insufficient control of the absolute value
of the electric field simulation of the first setup. Blue dots are scans of the transition,
made with the step scan technique. The black dashed lines are plotted to guide the eye.

The red solid line is a quadratic fit to the center position of the Gaussian fits. From

the wavenumber corresponding to the excitation energy a value of 50420.496 cm™! is

subtracted to show the Stark shift more directly.

to the energy of the transitions, the Stark map is generated (see figure 4.3) . The vertex
Ey is thereby the unperturbed energy level of the state and the polarizability is given by
ag = —2 - Fy. The advantages of this method are, that it determines the energy level and
the polarizability of the Rydberg state at the same time. Because the electric field mixes
the Rydberg states, it is also possible to measure the actually forbidden transitions such as
the 6s6p 1P, — 6snp ' P; transition. By varying the electric field, the method also ensures
that an electric background field is cancelled out by the measurement. In figure 4.3 the
energy level of the Rydberg transition is shown in units of wavenumber, which is a common
way to express the energy level of states. Another way to express the energy is in the unit

of frequency, which is mostly used to show the spacing of the Rydberg states. The relation
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between the frequency v, wavenumber i and energy E of the state is given by,

_r (4.6)

_ 1
#eo= X he

where h is the Planck constant and c is the speed of light.

4.2. Spectroscopic study of ytterbium Rydberg states
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Figure 4.4.: A complete scan from 88 'Sy to 89 'Sy. The identification was done by
comparing the data to [7],[76]. Because of a non zero electric background field the scan
shows not only the transition to the S and D Rydberg states but also the actually forbidden
transition p state. The frequency of the Rydberg transitions is shown as a difference to
the frequency of the 88 'Sy transition.

By using the MOT depletion method, as described in section 4.1, we have made an
extensive study of highly excited Rydberg states (n > 50) of ytterbium. A typical scan over
one principal quantum number is shown in figure 4.4. The identification of the Rydberg
states is done by comparing the data to previous studies of ytterbium Rydberg states

([7],[76]). The scan was done with a non-zero electric field applied to the Rydberg atoms,
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leading to a mixing between the Rydberg states. Therefore it was possible to measure
the forbidden transition 6s6p 'P; — 6snp 'P;. The non-zero electric field causes also a
splitting of the P and D-states and a stark shift of all Rydberg states. This behavior is

described in detail in section 2.3.1.
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Figure 4.5.: Stark map of the 'Sy and ' P, Rydberg with n = 73 and n = 83. The orange
and red solid lines are fits of the equation 4.5 to the transition peaks as a function of the
electric field. The orange lines are the fits to m; = 0 states and the red lines are fitted
m; = 1 states. Near the total electric field zero the transition to ' P; state is suppressed.

For the spectroscopic study of the Rydberg states we first scan over a specific energy
region, where we predict a Rydberg state (using formula 2.22). After we have found the
state, we measure a stark map to determine the zero-field binding energy of the state.
Figure 4.5 shows a selection of Stark maps, more precisely the 1.5y and ' P; state with the
principal quantum numbers n = 73 and n = 83. The external electric field is changed by
changing the potential of the plate electrode on the top window (setup shown in section
3.1). Because we use a stark map to determine the binding energies, it is also possible

to measure the binding energies of the ' P series. As shown in figure 4.5, in the vicinity
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of the inversion point of the parabola, i.e. with very small or zero total electric field, no
excitation of the ' P; state is possible. This is, as already mentioned, because this transition
is prohibited for vanishing external field. But by fitting the parabola to the transition lines
with higher total electric field it is still possible to determine the zero-field binding energy
of the P states. With this procedure we identify various Rydberg states which are listed in
table 4.1. We also determined the relative polarizability of the 1Sy and ! Py series, which

are discussed in detail in section 5.2. In figure 4.6 the energy of the 1Sy and ! Py series are

Table 4.1.: Experimental energies Ee,;, of the 6sns'Sy and the 6sns' P Rydberg series of
174yp in the range of n = 70 to 90. The absolute frequency errors for both series are
Airg, = 64MHz and A:p = 50 MHz.

n LS Eecxp [em™1] 1P Eeyp [cm™1]

70 50417.6765 50417.9147
71 50418.4198 50418.6607
72 50419.1425 50419.3723
73 50419.8349 50420.0510
74 50420.4973 50420.7051
75 50421.1363 50421.3282
76 50421.7370 50421.9279
77 50422.3259 50422.5053
78 50422.8811 50423.0583
79 00423.4223 50423.5880
80 50423.9353 50424.0945
81 00424.4317 50424.5854
82 50424.9074 50425.0527
83 00425.3645 50425.5098
84 50425.8045 50425.9446
85 00426.2281 50426.3638
86 50426.6382 50426.7651
87 50427.0312 50427.1601
88 50427.4132 50427.5321
89 00427.7808 50427.8976
90 50428.1368 50428.2440

plotted as a function of the principal quantum number n. In the graph one can see that the
energy of the states follow equation 2.21. The quantum defect used in this equation is taken
from the Rydberg-Ritz fit from the reference [7] (1Sy series) and from [76] (1 P; series).

A more detailed comparison can be done by determining the quantum defect 4,,; from our
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Figure 4.6.: Energy level of the 1Sy and ' P, series versus the principal quantum number
n. The sold lines are determined with the equation 2.21 and the the Rydberg-Ritz fits
from [7] (*Sy series) and from [76] (* P, series).

spectroscopic study. By Using the equation 2.21 and the ionisation limit of Yb with the
reduced Rydberg constant (both taken from [7]), it is possible to calculate the quantum
defect of each state. In figure 4.7 the resulting quantum defects of the 1Sy and ' P; series,
are compared with the Rydberg-Ritz fit, taken from [7] and [76]. With the exception of the
6s70s 1Sy state, our quantum defects are in good agreement with values determined in the
references. The deviation is maybe attributed to a defective calibration of the wavemeter,
which leads to an error in the absolute frequency of the measured state.

A closer comparison of the data with [7] and [76], is shown in figure 4.8. The blue bars are
deviations between the measured binding energies and the Rydberg-Ritz fits. The orange
bars represent the difference to actually measured energies from the references [7] and
[76]. Both comparisons show a similar deviation from our data. Therefore it is a valid
assumption to use the Rydberg-Ritz fits for the complete comparison of all binding energies

we have measured with the references [7] and [76].
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Figure 4.7.: Quantum defect of the 1Sy (blue) and ' Py (red) series over n = 70 to n = 90.
Dashed lines are Rydberg-Ritz fits taken from [7] and [76].

The difference in frequency pua between the reference and our data is within the error of
our self-built wavemeter, which has an absolute frequency error of 150 MHz ([77]). The
mean differences in frequency Aig = 64 MHz and A1p = 50 MHz in both Rydberg series,

are even smaller than the absolute error of the wavemeter (which is maybe overestimated).

Therefore within the accuracy of our wavemeter, we can confirm the binding energies
of the 1Sy and ' P, series published in [7] and [76]. We could also expand the range of
measured energy levels in both series over several principal quantum numbers. In the 1S
series from n = 80 to n = 90 and in the ' P} series from n = 77 also to n = 90. With these
measurements, we show that the simple approach of depletion spectroscopy combined with

a simple electrode setup is sufficient for a decent spectroscopyic study of Rydberg states.
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Figure 4.8.: Difference between the binding energies (expressed in units of frequency)
as determined in our measurements and in [7, 76]. Orange bars are the differences to
individual published measurements, while blue bars are the differences to the Rydberg-Rits
fits to the experimental data of [7, 76]. A:g, and A1 p, are the mean deviations between
our study and the Rydberg-Ritz fits in [7, 76].






5.

Polarizability of S and P Rydberg states

Here we present our measurements of the electronic polarizability of Rydberg S- and
P-states of Ytterbium and compare them with the numerical calculations. The (electric)
polarizability describes the response of an atom in a specific quantum state to an external
electric field. A brief introduction into the polarizability of Rydberg states can be found in
section 2.3.1. We first take a closer look at the single active electron approximation, with
which the polarizability can be calculated ab initio. There we introduce two methods with
which the dipole matrix can be determined. Finally, the ab initio calculations are compared

with the measured data and discussed.

5.1. Single active electron approximation

For an explicit calculation of the dipole matrix-element between states (see equation 5.2)
we need the electron wavefunctions in the atomic potential. While for hydrogen there are
analytic solutions, multi-shell atoms need a numerical approach. There are well-established
methods for alkali atoms with one single valence electron [78]. In case of a divalent atom,
like ytterbium, we have two valence electrons and therefore we have to modify the model.
Here we assume that the problem can be modeled as a single valence electron in a modified
potential, as already assumed in the reference [76] for strontium. The following derivation

for the behavior of Rydberg state in an external electric fields is taken from [78].

First we start with a radial dipole operator which is given by,
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Where 7 is the radial position operator.Using the second-order perturbation theory the

scalar polarizability is given by,

A 2
cufmteg) = 2t 3 [msmllontmi] 52)

Wl n'l’'j’ — Enlj

Because this method is limited to small electric fields (see section 2.3.1) one has to use
another approach to describe full behavior of Rydberg state in an external electric field.
The direct diagonalisation of the Hamilton operator H instead gives accurate solutions to

all orders. The Hamilton operator of an atom in an external electric field is given by,
H = Ho+Him- I (5.3)

Where Hg is the unperturbed Hamiltonian and H;,; gives the coupling between states by

the dipole matrix,
Hie = €eap- R, (5.4)
where R is the radial dipole matrix. The radial dipole matrix elements are given by,
Ruriswrys = ’<¢n'l'j'm'\f’¢nljm>|2 where n'l'j'm/ # nijm (5.5)

Where 1,5, is the wavefunction of the target state and 1, is a wavefunction from
the set of basis states, which dipole couples to the observed state.

There are multiple approaches to calculate the off-diagonal elements R,,1.5/1/s of the
dipole matrix, which are relevant here. One of them is the calculation of the overlap integral
between radial wave functions of the corresponding states (see section 5.1.1). Another
approach is a direct calculation of the elements with a semi-classical approach (see section
5.1.2). Both of them are described below and are compared in the case of ytterbium in
section 5.1.3.

In both cases it is important, that the set of basis states is large enough to achieve
convergence. For larger n the basis has to be bigger, because of the reduction of the energy

spacing between the states.
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5.1.1. Coulomb functions

The following method to calculate the off-diagonal elements R,1 s,/ 1/ 75 of the dipole
matrix are taken from [78]. One way to calculate the dipole matrix elements is to calculate
the radial overlap integral between the states defined in a given basis set. The overlap

integral is given by,
T0
Rurism'Liys: = / Rurg(r)r Ry ye(r) r? dr (5.6)
T

where R, is the radial wave function and with S = S’ = 0 or 1. In the case of a

non-hydrogen atom the non relativistic QDT gives a solution for this wave function. As
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Figure 5.1.: Three electron wavefunctions of Yb with three different principal quantum
numbers, n = 15 n = 40 n = 70, where the orbital momentum [ and the total angular
momentum j are zero. The wavefunctions were calculated using the Coulomb function
approach 5.7 with the quantum defect of Yb which are calculated for the three different
principal quantum numbers with the Rydberg-Ritz fit (see table A.1 for the fit parameters).

already discussed in section 2.2.1, the basic idea of the QDT is to consider only large
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distances r from the nucleus, where the nucleus is screened by the inner electrons. There
the problem is reduced to the hydrogen case, with the exception of effective principal
quantum number n*, which is defined by the quantum defect 6, ;. With this reduction
to the hydrogen case the problem can be solved analytically using Coulomb functions W

[79][80]. The solutions for the wave function are then given by:

Ry —
La(r) aw/ )X + I+ ) — 1)
2r
X Wn*,l+1/2 (n*a()) . (57)

This approximate wave function has the correct behavior regarding the binding energy and
the form of the wavefunction for large r, which are important criteria for the calculation of
the dipole matrix elements. The information, for which atom the wavefunction is calculated
is imprinted in the effective principal quantum number n*. As can be seen in section 2.2.1,
effective principal quantum number is defined by the quantum defect, which is unique for
every atom species. In figure 5.1 three radial wavefunctions are shown, which are determined
using the Coulomb function approach. The electron is in the s state with 5 = 0 and the

principal quantum number varies from n = 15 to n = 70.

5.1.2. Semi-classical approach

Instead of calculating the transition dipole matrix using the approximate solution for the
radial wave functions, another approach is to directly determine the dipole matrix elements
with a semi-classical ansatz [8]. In this ansatz the exact solutions of the dipole matrix
elements from the hydrogenic cases are extrapolated to the nonhydrogenic case for large n,
by using the radial integral method described in [81][82]. The dipole element R between
|n, L, J,S) and |n/, L', J', S’) is then given by:

1/2 oo

3, I \? )
Ravsspwrrs = 5 ny? [1 - (*) 1 > P gp(AnY) (5.8)
p=0

*
nC
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with S = S = 0 or 1, n* is the effective principal quantum number and I, n},~, Al and

An* are defined as

L+L +1
I, = ,
2
nt = vVn¥n*
All,
Y= )
nC
Al = I/~ 1,
An* = n*—n*

Moreover the first four terms of the MacLaurin series [8] are:

B0 (An%) = o [Taw—1 (~A0") = Tawe 1 (=50
DAY = = (Taweot (=80°) + Taes1 (00
¢ () = go ()~ T

g3 (An") = A2n* g0 (An™) + g1 (An™)

Where Tap«—1 (—An*) are the Anger function:

T) = + /O " 40 cos [0 — zsin (6)] . (5.9)

™

As can be seen from equation 5.8 the information about the atom species is only given by

the effective principal quantum n*, as with the Coulomb function approach.

5.1.3. Comparison of the models

To compare both models we calculate with each approach a Stark map of a specific Rydberg
state. The python package Alkali.ne Rydberg Calculator (ARC) [62] has proven to be a
powerful tool for calculating various properties of alkali Rydberg atoms like the polarizability,
the lifetime of states or even the interaction of Rydberg atoms. In a recent update of the
package a divalent atom class [83] with Ytterbium was implemented. This update uses the

semi classical approach to determine the Stark map of a Rydberg state. For a comparison
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of both approaches we added a new function to the divalent atom class, which uses the
Coulomb wavefunctions (section 5.1.1) to determine the dipole matrix elements.

For the simulation of the Stark map the already implemented Rydberg-Ritz parameters
for the singlet S-,P- and D-Rydberg series are further completed and updated with the
spectroscopic data from [76]. The used parameters for the simulations are shown in the
table 5.1. A more complete set of the Rydberg-Ritz parameters with the triplet states are
shown in the appendix in table A.1.

In both approaches the diagonalisation of the Hamilton operator as a function of an

Table 5.1.: The Rydberg-Ritz parameters for the 6sns'Sy and 6sns' Dy series, are taken
from [7]. The remaining parameters are taken from fits to spectroscopy data, published in
[76]

Series 50 (51 52 (53 (54 (55

6snstSy  4.278337 -5.625 91.65 -156050 -49725000  1.1021e+10

6sns'Py  3.95601286 -30.8616930 60222.3884 -76358128.9 3.6197e+10 -
6sns'Dy  2.713094 -1.8646 -2145.5 3940500 -3103600000  1.069e+12
6sns'F3  1.28169811 -16.8480354 806.185504 - - -

0.00 .

| — I e T s S
— =~ fitted model function
—0.01

« calculated energy level
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Figure 5.2.: Stark map of the 80'S, state. The calculation of the dipole matrix is done
with the semi classical approach. The model function AE = 1/2aqF? is fitted to the data
to determine the polarizability of the state. The graph was created with the ARC package
[62] including the divalent atom extension [83].
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external electric field gives a Stark map of a specific state like it is depicted in figure 5.2,

where the effect of the electric field to the energy of the 80'Sy of ytterbium is shown. For

X
—
_Ol
w

—0.80

—0.85

—0.90

—0.95

—1.00

ECoulomb - Esemi [GHZ]

—1.05

—1.10

electric field, F' [V/m]

Figure 5.3.: Difference between the semi classical and the Coulomb function approach.
The energy difference Ecigumb — FEsemi is derived from the Stark maps of the 70 Sy state,
which are independently calculated with both approaches. The Stark maps were created
with the ARC package [62] including the divalent atom extension [83].

a comparison of both methods a Stark map of the 70 1Sy state is calculated with both
approaches. The energy difference Eoioump — Fsemi of those two Stark maps is shown in
figure 5.3. As can be seen the difference between both approaches is approximately 1 Mhz at
zero external electric field, where the energy level from the semi classical approach is slightly
higher. With increasing electric field the difference between both approaches decreases.
The polarizability of the 70 1Sy state from the semi classical approach is smaller than the
polarizability which results from the Coulomb function approach. This deviation causes
the reduction of the energy difference between both approaches with increasing external
electric field. To determine the difference between polarizabilities of both approaches, the

model function AE = 1/2a¢F? is fitted to the state energy to both approaches. Both
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models, the Coulomb wavefunction approach and the semi classical approach, yield the
same polarizability within a 2% error. This coincides with the investigations made in [78].
There these two methods were also compared with each other in the context of alkali atoms.
Since the computational effort of the semi classical approach is many times lower and the
systematic experimental error caused by the uncertainty of the electric field is 25% (see
section 5.2), the semi classical method is used to analyze the experimental measurements,

made in this thesis.

5.2. Experimental determination of ytterbium polarizabilities

The data shown in this section were measured during the two different setups (stage 1 and
stage 2) as described in section 3.1. Because of the not well-controlled electrode setup of
the first stage, it was not possible to accurately simulate an electric field as a function of
the applied voltage. Therefore, only relative values of the scalar polarizability ag(n,, j)
of the Rydberg states could be determined from the Stark maps, which were measured
with the MOT depletion method (see figure 4.5). All polarizabilities are normalized to the
polarizability of the 6s70s! Sy state.

In the second stage it was possible to simulate the electric field precisely, as shown in section
3.2. Knowing the electric field it is possible to measure precise Stark maps of the Rydberg
states from which the scalar polarizability can be determined.

In the second stage of the experiment setup, the detection of the Rydberg atoms changed
from the indirect MOT depletion method (see section 4.1) to the direct field ionisation
method. With this method the Rydberg atoms are first ionized by an external electric field
pulse and then detected by a MCP. A detailed description of the ionisation process can be
found in chapter 6.

The experimental procedure for determining the Stark map of a particular Rydberg state
is shown in figure 5.4. The first step is to set the external electric field to a specific value
by defining the amplitude parameter A of the electric compensation field (see section 3.2.3).
Then the Rydberg laser is scanned over specific frequency band to determine the energy
binding of the Rydberg state. The frequency of the Rydberg laser is thereby changed in
steps. For each frequency step the Rydberg transition is probed 100 times. In each probing
the ytterbium atoms are radiated by a 500 ns Rydberg laser light pulse. Then an external
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repeat 100 x

f+ Af until scan is complete

vary electric field

Figure 5.4.: Experimental sequence to determine the Stark map of a Rydberg state
using the field ionization method. The amplitude of the compensation field is varied by
approximately +£10%. The frequency of the Rydberg laser is scanned over the Rydberg
transition to compensate frequency drifts of the Rydberg laser. To minimize counting the
error the measurement is repeated 100 times per Rydberg laser frequency and ionisation
field.

electric field is applied to ionize the Rydberg atoms. Subsequently, a different electric
field pulse directs the ions toward the MCP (see section 3.2.5). After the Rydberg laser
is completely scanned over the Rydberg transition, the measurement is repeated with a
different amplitude parameter A, thus with a different value of the external electrical field.

Several Stark maps measured using the field ionization method are shown in figure 5.5.
From these maps the polarizability of observed Rydberg states can be determined, as with
the MOT depletion method (section 4.1). The polarizability for both stages is shown in
table 5.2 and 5.3(measured in the second stage of the apparatus).

As can be seen in figure 5.6 the polarizability matches within the error with the ab initio
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Figure 5.5.: Stark map of the 80' Sy state. The calculation of the dipole matrix is done
with the semi classical approach. The model function AE = 1/2aoF? is fitted to the data
to determine the polarizability of the state. The graph was created with the ARC package
[62] including the divalent atom extension [83].

calculations, which are based on the semi classical approach (see section 5.1.2). Therefore
it is demonstrated that this approach is suitable to calculate scalar polarizabilities of
Ytterbium Rydberg states.
The error of the measured polarizability arises from the position uncertainty of the MOT
and the inter-electrode distance. Here, the MOT position has the greatest influence on the
error. A deviation of £2mm in the MOT position causes a change of the absolute value
of the compensation field of approximately 15% (see figure 3.11). The uncertainty of the
electrode distance increases the change by 1.5% to 16.5% (see section 3.2.4)).
Since the polarizability scales quadratic with the electric field, the position uncertainty
causes an relative error of 36% in determination of the polarizability of the Rydberg states.
With polarizabilities of the ytterbium Rydberg states measured in the second stage of the
apparatus it is also possible to re-scale the relative polarizabilities that are measured in the

first stage of the experiment. To determine the re-scaling factor s we have to minimize the
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Table 5.2.: Scalar polarizability aq of the 6sns'Sy and the 6sns' P, Rydberg series of 174Yb,
measured in the first stage of the experiment, normalized to the polarizability of the
65705 Sy state.

150 1P1
n | ap(n,0,0) | ag(n,1,1) ap(n,1,1)
m; = 0 mj; = 1
70 1.00 0.85 0.38
71 0.88 1.00 0.37
72 1.02 1.00 0.43
73 1.18 1.59 0.56
74 1.37 1.20 0.54
75 1.80 1.27 0.42
76 1.77 1.59 0.56
7 1.55 1.60 0.65
78 1.53 1.78 0.63
79 2.09 2.10 0.72
80 2.83 2.19 0.76
81 2.45 2.65 0.79
82 2.64 3.05 1.01
83 2.84 3.13 1.03
84 3.54 3.22 1.02
85 3.17 3.69 1.45
86 3.70 3.78 1.51
87 3.91 4.41 1.45
88 4.92 4.41 1.57
89 4.69 4.67 1.56
90 5.60 3.80 1.07
function,
F(s) = O laogma(nl,4) — s aois (n,1,5)] . (5.10)

n
Where aq1st(n,l,j) are the relative polarizabilities measured in the first stage and
ap2nd(n,1,j) are the absolute polarizabilities measured in the second stage. The sum

is over all states measured in both stages of the experiment. The minimization of the

Function F yields a re-scaling factor of

s = 3258.2MHzcm?/V?. (5.11)
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Table 5.3.: Scalar polarizability g of the 6sns'Sy Rydberg series of 174Y b, measured in the
second stage of the experiment.

ISO
n | ao(n,0,0) [ MHz cm?/v?]
40 211
50 452
60 1579
70 5674
75 6404
80 10424
85 15368
90 24688

The result of the re-scaling of the relative polarizabilities of the S-Rydberg series is shown
in figure 5.7. It can be seen that the measured polarizabilities from the first stage have
the same scaling behavior with the principal quantum number n as the polarizabilities
measured in the second stage. It is also shown, that the measured polarizabilities are
smaller than the ab initio calculation which is most likely caused by underestimating the

electric field in the experiment.

To determine how much weaker the electric field would have to be for the measured
polarizabilities to match the numerical ones, an additional scaling factor can be determined.
As before, this minimizes the sum 5.10. This time, however, the relative polarizabilities are
compared with the numerical determined polarizabilities. The minimization yields a new

re-scaling factor of
Spew = 4599.0MHz cm?/V?2. (5.12)

Comparing s with s,e,, and taking into account that the polarizability scales quadratically
with the electric field, an increase of the electric field of about 18% is necessary for the
measured values to agree with the numerically determined values. As shown in chapter 3.2.4,
this deviation can be explained by the error of the position of the MOT to the electrodes.

Therefore it is shown, that with the MOT depletion method and a precise knowledge of the
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Figure 5.6.: Scalar polarizability aq in dependency to the principal quantum n. The solid
blue line is ab initio calculated polarizability with the semi-classical approach (described
in section 5.1.2). The calculations are done with [62] and [83]. Blue points are the
polarizability o, measured during the second stage of the experiment. The error from the
measurement is estimated from the position uncertainty of the MOT and the uncertainty
in the inter-electrode distance (see section 3.2.4).

electric field it is possible to measure accurately the polarizabilities of ytterbium Rydberg
states.

As in section 4.1 described, it was also possible to measure Stark maps of the 1P, series,
although the transition is actually forbidden. This is possible because the external electric
field mixes the Rydberg states, which cancels the parity selection rules. In figure 5.8
the polarizabilities of the S and P states, measured in the first stage of experiment are
shown. The measurements of the first stage are scaled to the measurements of the second
stage as before, by applying the re-sclaing factor spe, = 4599.0 MHz cm?/V? to all relative
polarizabilities. The measurement shows an agreement between the polarizabilities of the S
states and the polarizabilities of the mjy = 0 P states. The ab intio calculations confirms
this agreement.

A comparison of the measured polarizabilities of the m; = 0 and m; = 1 ! P states in the
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Figure 5.7.: Re-scaling of the relative polarizabilities of the 'Sy series from the first stage.
The re-scaling is done by finding the minimum of the function 5.10. The resulting re-sclaing
factor s = 3258.2 MHz cm? /V2. The re-scaled polarizabilities are in good agreement with
the ab initio calculation,based on the semi classical approach (see section 5.1.2)

interval from n = 70 to n = 90 yields a mean ratio of 7eqsured = 2.8240.34. The analysis of
the ab intio numerical calculated polarizabilities yields a mean ratio of rgpinitio = 2.3610.04.
The ratios ryeasured and Tapinitio agree almost within the error. However, the deviation is
so minimal that, for example, a larger series of measurements could well lead to a matching

of the ratios.
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Figure 5.8.: Scalar polarizability oq of the 6sns'Sy and the 6sns' P, Rydberg series
of 1"4Yb, from n = 70 to n = 90. Solid lines are ab initio calculations, done with
[62] and [83]. Orange is the polarizability of the 6sns'Sy series. Green (m; = 1)
and red (mj; = 0) represents the 6sns' Py series. All data are scaled with the factor
Snew = 4599.0 MHz Cmg/V2, as described in section 5.2.
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FElectric field ionisation is a standard tool to detect Rydberg atoms. In principal it can be
100% efficient and all Rydberg atoms can be detected. Using this method it is possible to
measure properties of the Rydberg states like for example the lifetime (see chapter 7). To
explain the complex phenomenon of the ionisation process of a Rydberg state, we start with
the most basic model of a hydrogen atom. After field ionisation of hydrogen is introduced,
the difference between hydrogen and other atoms is discussed. In the last part of this
chapter the measurement of the ionisation threshold of the 1Sy and ' D, Rydberg series is

presented.

6.1. Electric field ionisation of atomic hydrogen

To explain the ionisation behavior of Rydberg atoms we start with the hydrogen atom. In
this chapter we will follow reference [1]. The first order energies Er of an electron in a
hydrogen atom potential with an external electric field F' applied along the z axis are given

by,

Ry 3

Egr + §F6aon (n1 — ng) . (61)

n2

Here the energy is given with respect to the ionisation limit. The quantum numbers n; and
ngy are the so-called parabolic quantum numbers. They are useful to describe the electron
wavefunction, because the external electric field deforms the spherical symmetric potential
such that the orientation of the electron wave function relative to the electric field becomes

crucial. The orientation is quantized by the parabolic quantum numbers. For the parabolic
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quantum number the relationship
n+n+m+1 = n (6.2)

applies. Thus it follows for a given n and m, that there are n — |m/| Stark levels, as can be
seen in figure 6.1. The energy levels that are shifted towards the ionisation limit are called
blue states and the ones that are shifted away from the limit are called red states. Spatially,
the wave functions of the blue states are shifted towards the +z axis side and the red states
towards the -z axis side. The electric field where the extreme m = 0 red and blue stark

levels of states with principal quantum number n and n+1 cross, is approximately given by

167eg R?
F = " 6.3
3e3  nd (6.3)

This crossing field is connected to the Inglis-Teller limit where levels of adjacent n become
unresolvable [84]. This limit is used in astrophysics to determine the electron density of

stars [85].

The electric field where the Rydberg atoms ionize can be estimated using the Coulomb-

Stark potential. The potential is given by:

Vir,z) = — =+ F-z. (6.4)

Where F' is the applied electric field along the z axis, e is elementary charge, ¢y the

dielectric constant and r the radial distance to the hydrogen core.

The electric field deforms the atomic potential so that the highly excited Rydberg states
are no longer bound to the nucleus, which is illustrated in figure 6.2. The atom ionizes
when the energy level of the Rydberg state is above the saddle point of the Coulomb-Stark-
potential. To investigate the saddle point further, we express r in terms z. Using cylinder

coordinates where, 2 = p? + 2z2. Therefore equation 6.4 can be written as,

e 1
Vip,z) = “Ime (2t +F -z (6.5)

The saddle point of the atomic potential can be determined using the derivative of the
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Figure 6.1.: Hydrogen Stark manifold for m = 0. The energy levels (grey lines) splitted
into the parabolic state according to equation 6.1. The Inglis-Teller limit (blue line)
indicates the electric field, where the states starts to cross each other [84].

potential along the z-direction according to

oVip,z) e z

0z Amey (p? +22)3/2

+F=0 (6.6)

For the ionisation process the position of the saddle point along the electric field is important.

Therefore it can be assumed that p = 0 and equation 6.6 simplifies to

+ 1
S o
0 (:i: Z) 0
The solution of this equation yields the position of the saddle point:
1
0 = ——— (6.8)

VAreg/e- F
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Figure 6.2.: Schematic drawing of the hydrogen potential. The red dashed line indicates
the deformation of the potential due to an external electric field. Fy is saddelpoint of the
atom potential and specifies which Rydberg states ionize.

and the potential at the saddle point

Voo = — c “y\/4megfe- F. (6.9)

2meg

Using the relationship between energy and electric potential Ey = e - Vp, the classical

ionisation field is given by,

TE
Fy = 730 - E?. (6.10)

Ignoring the Stark shift and setting the binding energy of the saddle point Ey equal to the
energy Fr(n) of a specific Rydberg state, the electric field required to ionize the specific

Rydberg state is given by,

2
_mo Ry
FO — 673 * ﬁ . (6.11)

where R, is the Rydberg constant in units of energy R, = Rohc. If we include the linear
Stark effect, the binding energy of an electron changes with the electric field Fy. For the

reddest (energetically lowest) state in a Stark manifold of a specific Rydberg state with
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m = 0, the approximation nqy — no — m =~ —n simplifies the equation 6.1 to

R 3
ER(n):—n—g—iFo-e-ao-nQ, (6.12)

where ag is the Bohr radius. Thus the threshold field for the ionisation of a hydrogen

Rydberg atom is given by,

: R, 3 2

e3 n2 2
2 3
o 7T‘€D Ry 5 e 9 2 4 92 2
- o3 (TZ4+87T60F0+46 n aO'FO (613)

This equation yields the following two solutions for the ionization limit of a Rydberg atom,

2
P o= Wﬁo‘&‘80i64‘

e (6.14)

The two solutions arise from the Stark shift of the Rydberg state. The lower limit
describes the case when the deformation of the atomic potential is strong enough to ionize
the atom. The upper limit describes the case when the Stark shift of the state is larger
than the suppression of the atom potential, caused by the applied electric field. This
behavior is illustrated in figure 6.3, where the two limits define the region (yellow) where
the suppression of the atomic potential is larger than the Stark shift of the states and the
atom ionizes. The upper limit only arises if the external electric field pulse duration is in
the order of the Rydberg period, which is in the time scale of pico seconds. This regime can
be achieved with single cycles laser pulses [86]. In this regime there are various ionisation
mechanisms like the impulsive-kick ionisation [87] or the displacement-ionisation mechanism
[88]. These mechanisms can change the scaling behavior of the ionisation with the principal

quantum number (but they are not relevant here).

6.2. Nonhydrogen Rydberg atoms

The characteristic of a non-hydrogen atom in an electric field can be inferred from the
behavior of the hydrogen atom as discussed in the previous chapter, but there are significant
differences due to the finite sized ionic core. Due to the scattering of the electron with the

core, the wave function is no longer separable in parabolic coordinates, n; is no longer a
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Figure 6.3.: Contour plot of the energy difference between the Energy of the saddelpoint
Ey and the energy of stark shifted state Er, with dependency to the external electric
field and the principal quantum number n. The two black lines are the solution for the
ionisation limits from equation 6.14. For the solid line the deformation is bigger than the
shift of the states, which results in the ionisation of the atom. The dashed lines represents
the case when star shit becomes bigger than the deformation which should suppress the
ionisation.

good quantum number. This implies that in non-hydrogen atoms the blue and red states of
adjacent n are coupled via the core. On the one hand, this causes avoided crossings and on

the other hand it leads to an autoionisation of blue states below the classical ionisation limit.

To investigate the behavior of the states it is convenient to look at the Hamiltonian of
the system. As already described in section 5.1 the Hamiltonian for a single active electron

is given by

H = Ho+ Hint  F, (6.15)

where the diagonal elements of Hg are the zero electric field energy levels, which are shifted

by the state dependent quantum defect compared to the hydrogen atom. In the off-diagonal
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elements of H;,: the overlap between the wavefunctions of the observed state and the
neighboring n and [ states is included. The eigenvalues of H correspond to the energy levels
of an atom in an external electric field F. By diagonlizing the Hamiltonian for a set of
external electric fields F', it is possible to generate a Stark map of Yb of specific state, as
can be seen in figure 6.4, where a Stark map of the 80 Sy is shown.

At an electric field value of 0.5 V/cm the 8015 state is not crossing with the Stark manifold
of an adjacent state, but the states are bending away from each other. This behavior is
called avoided crossing. The avoided crossing between adjacent [ states stands in contrast
to the behavior of hydrogen Rydberg states, where there is first no difference in the shift of
different [ states with the same principal quantum number n and second a crossing of the
energy levels of Stark manifolds with different principal quantum number n (see figure 6.1)
is observed. In conclusion the crossing behavior of non hydrogen differs from hydrogen as

follows.

e The energy levels of Rydberg states in non hydrogen atoms avoid crossing.

e The crossing in non-hydrogen atoms happens between energy levels with the same

principal quantum number n but with different orbital quantum [

e The avoided crossing happens at lower electric fields, compared to the crossing of the

energy levels of hydrogen atoms.

According to [1] the energy gap of the avoided crossing AF is proportional to,

0

AE o (6.16)

6.2.1. Pulsed field lonisation

For the ionisation process of a Rydberg state the time profile of the electric field is crucial.
Due to the avoided crossings of the states in the presence of the electric field, there are two
pathways through a Stark manifold. Either the passage of the crossings is diabaticaly, which
means that the electron transfers from one state to the adjacent state, or the electron stays
in the original state, which is an adiabatic passage. In figure 6.5 the difference between
these two types of passage is illustrated.

To distinguish between an adiabatic or a diabatic passage the energy gap of the crossing
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Figure 6.4.: Calculated Stark map of the Yb 801 Sy state. The Stark map is generated by
diagonalizing the Hamiltonian 6.15. The calculation and figure is done with the python
library ”ARC” [62]. The Stark map, shows the avoided crossing with stark manifold of
an adjacent state at 0.5V /cm. The color map shows the state mixing due to the avoided
crossing.
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Figure 6.5.: Dibatic and adiabatic passage of a avoided crossing in a Stark manifold. In
a diabatic passage a) the electron transfers to the adjacent state. This passage becomes
more likely when energy gap of the crossing is small and the slew rate of the electric field
is fast. b) During an adiabtaic passage the electron remains in the original state, which is
deflected by the adjacent one.

and the slew rate of the electric field is important. The energy gap is influenced by the
coupling of the states and is therefore is a property of the atom. If the coupling between

the states is strong the resulting energy gap is big and an adiabatic passage becomes more
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likely. As already described in the section before, the gap also scales with d;/n*, so with
increasing n and [ the passage of the avoided crossing becomes more likely diabatical.

However the slew rate S of the electric field is given by the experiment and thus can be
influenced. If the electric field traverses the crossing in a short time period the crossing
becomes more likely adiabatic. The relationship between slew rate and the energy gap is

described by the critical slew rate S,,which is given by [1],

Aw?

dF dF

where % and % are the Stark shifts of the two crossing states. The energy gap expressed

in frequency is,
Aw = —. (6.18)

In conclusion if S << S, the passage is adiabatic and if S >> S, the passage is diabatic.
According to the assumptions and approximations made in [1], equation 6.17 implies an
adiabatic passage even for a rise time of ~ 1 us and n = 100.

One method to investigate if the ionisation process is diabatic or adiabatic is to measure the
ionisation threshold of Rydberg series. As can be seen in figure 6.6 the adiabatic passage
of a red state through the Stark manifold results in a lower ionisation threshold (point A)
compared to the pure diabatic passage (point B). This is caused by the suppression of the
Stark shift of the state due to the avoided crossing. So a smaller ionisation threshold of a
Rydberg series compared to the classical ionisation limit, indicates an adiabatic passage

during the ionisation process.

6.3. Measuring the field ionisation threshold of ytterbium

Rydberg atoms

Here we describe our experimental efforts to determine the ionisation threshold of various
ytterbium Rydberg states. The field ionisation threshold is measured by using the experiment
pattern, shown in figure 6.7. A detailed schematic of the high voltage pulse pattern is shown
in figure 3.12. For the determination of the threshold, the Rydberg laser is scanned over

the Rydberg state. More precisely, for each electric field value the Rydberg laser is scanned
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Figure 6.6.: Sketch of the ionisation passage of a Rydberg state. The dashed lines are the
state energies of blue and red states. They represent a pure diabatic passage of the state.
The solid lines represent a maximally adibatic passage. The shift of the Rydberg state is
suppressed at the point where the avoided crossing of the states first appear. The red line
represents the ionisation threshold. At point A the adiabtic passage is ionizing, where at
point B the diabatic passage reaches the ionisation threshold.

over the Rydberg state and the ion count per 100 iterations of the high voltage pattern is
measured. The amplitude of the ionisation pulse is changed from 13V /cm to 192V /cm
for each state. The maximum ion count for each electric field is determined, which results
in an ionisation threshold measurement, where some results for the 'Sy and ' Dy Rydberg
series are shown in figure 6.8. For comparison, the ionisation rate for each n is normalized
to the ionisation rate at maximal electric field. As can be seen in figure 6.8 the number
of detected ions increases smoothly over a range of ~ 10 V/cm. Therefore the ionisation
threshold can not be determined unambiguously. The ionisation threshold of each state is
assigned to the electric field, where 50% of the maximal ionisation signal is reached. The

decrease of the ionisation signal after reaching the ionisation threshold is universal for all
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repeat 100 x

f+ Af until scan is complete

change ionisation field

Figure 6.7.: Experimental sequence of the ionisation threshold measurement. The ampli-
tude of the ionisation field is limited by the apparatus from 13V /cm to 192V /em. The
frequency of the Rydberg laser is scanned over the Rydberg transition to compensate
frequency drifts of the Rydberg laser. To minimize the error, the measurement is repeated
100 times per Rydberg laser frequency and ionisation field.

states. This implies, that the decrease of the ionisation signal is caused by an effect, which
acts after the ionisation and is therefore attributed the acceleration of the ytterbium ions
caused by the ionisation pulse itself. This initial acceleration is not directed to the MCP
and has to be therefore compensated by subsequently high pulses (see section 3.2.5). The
influence of the first acceleration to the trajectories, increases with increasing electric field
of the ionisation pulse. This leads to a decrease of the ion signal, which is universal for
all Rydberg states. This effect has to be considered by the determination of electric field
ionisation threshold, especially for the low n states where the ionisation field is high and so

the effect of the first acceleration.
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Figure 6.8.: Ionisation signals of 1Sy and ' Dy Rydberg series versus the ionisation field.
Each graph is normalized to ionisation rate with the maximal ionisation field. The scaling
factor from chapter 3.2.5 was used to determine the electric field. The ionisation limit is
computed from the data by determining the field where the ion reaches 50% of its maximal
value.

The ionisation threshold for 1Sy and ' Dy Rydberg series is shown in figure 6.9. The error
is estimated by considering the uncertainty of the electric field of the ionisation pulse (see
section 3.2.3) and the uncertainty of the threshold measurement itself (see above). The
shown classical ionisation limit corresponds to lower limit from equation 6.14. As already
described in section 6.2.1 the slew rate of the electric field is important for the ionisation
process. The ionisation pulses for these measurements have a rise time of a few nano
seconds, which leads to a maximal slew rate of the electric field of 2 x 109 V/cms. Since,
to our knowledge, there are no pulsed ionization measurements with Yb, we can only use
other elements to classify the slew rate. According to [89] S, P and D Rydberg states of
sodium ionize adiabatic for this slew rate. Since the measured ionisation threshold of the s
and d states are below the classical ionisation limit, the ionisation passage for both series

are not purely diabatic. A purely diabatic passage would result in a ionisation limit which
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Figure 6.9.: Ionisation threshold of the 'Sy and ' Dy Rydberg series in the range of n = 45
to n = 70. The error are taken from the electric field uncertainty derived in section 3.2.3.
The ionisation limit is taken from equation 6.14.

agrees with the ionisation limit of the hydrogen atom.

Since the passage also depends on the energy gap AFE between the two crossing states, the
characteristic of the passage can change from adiabatic to diabatic in the overall ionisation
process. The whole ionisation process therefore consists of adiabatic and diabatic passages.
This is also reflected by the increase of the ionisation limit for the s states above n = 65.
This change of the ionisation behavior indicates that the proportion of the diabatic passages
increases compared to adiabatic passages, which results from the scaling of the energy
gap AFE o §;/n*. In general the ionisation of Rydberg atoms is a complex process, which
depends on the slew rate of the electric field and the behavior of the stark manifold. With

our measurements, only qualitative conclusions can be drawn about the ionization process.
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Lifetime of ytterbium Rydberg states

The radiative lifetime of a Rydberg state in an ultra cold gas is dominated by two mechanisms,
the spontaneous decay and the coupling to the black body radiation [1]. The spontaneous
decay rate I'g = 1/79 is intrinsic to the energy structure of the Rydberg atom and its general
behavior is described in section 7.1. The impact of the black body radiation on the lifetime
depends on the temperature of the environment, in which the Rydberg atoms are prepared.
The black body radiation induced decay rate is discussed in section 7.2. The sum of theses

two effects gives the total effective decay rate
Lepp(T) =To+Tppr(T), (7.1)

which is the quantity that is accessible in a typical experiment. In section 7.3 a measurement
of the effective lifetime for ytterbium Rydberg states is presented and compared with

theoretical predictions.

7.1. Natural lifetime of Rydberg states

The bare lifetime of a Rydberg state at a hypothetical temperature of 0 K is determined by

the Einstein Coefficient A [1]. The coefficient A + defines the spontaneous decay from

nl—n'l

the state nl to a lower lying state n'l" and is given by,

4e2w3
n

n// lmam
L ! R? (7.2)

Anl%n/ll = 3hed 20 +1 nl—n'l' *
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Figure 7.1.: Lifetime scaling of |n, P,j = 3/2) and [n,{ =n —1,j = n — 0.5) states in
Rubidium. The lifetimes are calculated with the python packages ARC [62].

Where R, .,/ is the dipole matrix element between the the nl and n'l’ state. The total
decay rate of Rydberg state is given by,

Lo = > Ay (7.3)
n'l’

Where the sum is over all dipole coupled states with an energy E ,» < Ey. Since the overlap
between neighbouring states is much larger than between the excited state and the ground
state (e.g. for Cs (605 j2|er|60P3/5) = 4114 eag compared to (65 2|er|60Ps/2) = 0.003 eag
[62]), one could assume that the decay into energetically close states dominates the decay

rate of a Rydberg state. However, due to the prefactor of wf’l "y decay into the lowest level

l,n
dominates the decay of a Rydberg state. More precisely this is generally the decay to the
lowest lying state with [ — 1, with the exception of S Rydberg states where the dominant
transition is to the lowest P state.

For large n the largest possible transition frequency difference approaches a constant.
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Therefore the decay rate for high n scales only with the radial matrix elements between the
Rydberg state and the ground state (see equation 7.2). In other words, it only depends on
the spatial overlap between the Rydberg wavefunction and the wavefunction of the lowest
state. Considering (n'l'|r|nl) & n*? and the normalization of the Rydberg wavefunction,
the corresponding radial matrix element exhibits a n*~3 scaling. Therefore the lifetime of

low 1 Rydberg states scales with,
*3
Tnl X N (74)

For high 1 states this assumption does not apply, because the only allowed transition from
the | = n — 1 state is into the n’ = n — 1, [’ = n — 2 state. This means that the highest
frequency transition is not constant and contributes to the decay rate with a scaling of
1/n*3 [1]. Together with the scaling of the size between the states (n'l'|r|nl) oc n*2, this

results in a scaling of

Toi=n—1 o 0. (7.5)
In figure 7.1 the lifetime of P and circular states of rubidium Rydberg atoms is shown. We
have chosen rubidium as an example to demonstrate the scaling of the lifetime instead of
ytterbium, because Rb is commonly used in Rydberg physics and therefore well understood.
Ytterbium with its two valence electrons is a more complex system and as can be seen
in section 7.3 the methods used to calculated the lifetime of the alkali Rydberg states
cannot be transferred one-to-one to ytterbium Rydberg states. The lifetime of every state
was calculated using equation 7.3 and the python package ARC [62]. As can be seen, the
lifetime of P states follows the scaling for low-1 states 7.4 while the lifetime of the high-1
circular states follows the scaling of equation 7.5. The natural lifetime of the circular states
is also at least one order of magnitude higher than the lifetime of the P states. However,
the natural lifetime of the Rydberg states is difficult to measure experimentally because
the black body radiation of the environment strongly influences the lifetime. This will be

discussed in more detail in the section 7.2.
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Figure 7.2.: Photon occupation  of a 300 K thermal radiation spectrum. Red dashed
lines indicate two different transition regions for a Rydberg state. The transition between
neighboring Rydberg states at v = 3 x 10" Hz and the transition into a ground state at
v =3 x 10 Hz.

7.2. Black-body radiation

As already mentioned, due to the thermal environment in which the Rydberg atoms are
prepared the black-body radiation plays an important role for the experimental lifetime of
the Rydberg states. The black-body radiation causes stimulated transitions to neighboring
Rydberg states. To calculate the effect of theses transitions in the GHz to THz range on
the lifetime of the states, it is convenient to look at the photon occupation numbers 7 of
the thermal spectrum, which give the number of photons per mode of the radiation field.

The following equation applies to the occupation number [1],

_ 1
"= exp (hv/kT) — 1 (76)

Here T is the temperature of the black body (i.e. experimental chamber). In figure 7.2 the

dependence of the occupation number 7 on the frequency v is shown. It shows that for a
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temperature of 300 K the photon number in the Rydberg transition region (v ~ 3 x 10! Hz)
is approximately six orders of magnitude larger than for transitions to the ground state
(v~ 3 x 1014 Hz).

Therefore black-body stimulated transitions into neighboring Rydberg states become signif-
icant compared to stimulated transitions into the ground state. The stimulated transition

rate due to the black-body radiation may be calculated using (taken from [90]),

A 141
r — nl—n'l . .
BBR ’Zl’ exp (hv/kT) — 1 (7.7)

Figure 7.3 illustrates the effect of the black-body radiation on possible decay channels
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Figure 7.3.: Transition rates for Rb from 5051/, to n Py 33/ state. Blue bars are the
transition rates at 0K. The orange bars are the black-body transition rates for 300 K.
Spontaneous decay is dominated by decay into the lowest energy states, where as the black
body radiation drives mostly transitions into neighboring Rydberg states. The figure is
created with and inspired by [62].

from the 505, state of rubidium into low lying states. The blue bars show the natural

transitions rate from the 505, to n P/ 3/2, as described in section 7.1. The orange
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bars show the black-body induced transition rate for 5057 /5 to n P53/ at 300K. The
black-body driven decay of the 505 o state is dominated by decay into the neighboring
Rydberg states, as discussed. It should be noted, that the black body radiation can drive
transition to higher principal quantum numbers, which is not possible via a spontaneous
decay.

In conclusion, the lifetime of a Rydberg state is determined by the spontaneous decay and

the black-body radiation driven transition into neighboring and can be written as,

1 1 1
= — 4 . (7.8)
Teff T0 TBBR

Figure 7.4 demonstrates the effect of the black body radiation on the lifetime of the n P/,
states in Rubidium. The logarithmic plot shows significant reduction of the lifetime with
increasing effective quantum number. Thus, for the lifetime of Rydberg states with a high
principal quantum the black body radiation becomes the limiting factor.

The behavior of the lifetime of Rydberg states in Ytterbium differs from alkali metal
atoms, like Rubidium. The second valence electron changes the scattering between the
wavefunction of Rydberg electron and the core potential. To model this system one would
have to consider has to consider the MQDT (see chapter 2.2.2). The different channels
which are introduced in the model influence the calculated lifetime of the Rydberg states.
A detailed description for the implementation of MQDT into the ab initio calculation of
the lifetime in Strontium (which is a two-electron atom) can be found in [91]. For the

implementation it is crucial to fit the model to experimental data of several Rydberg series.

7.3. Lifetime of Ytterbium Rydberg states

In the following we present a preliminary measurement of the lifetime of the 1.5y and 1D,
series in Yb. To measure the lifetime of the Rydberg states in Yb we use the MCP and the
electrode setup described in section 3.1. The time pattern of the light and the high voltage
pulses is described in figure 7.5. To measure the lifetime, a delay is introduced between the
excitation light pulse and the ionisation pulse. The voltage of the ionization pulse is chosen

such that the electric field is large enough to ionize the observed state (see chapter 6). To
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Figure 7.4.: Difference in effective lifetime of the n P, /5 state in Rubidium for T'= 0K
and T = 300 K. The black-body radiation reduces the lifetime with increasing principal
quantum number. At T = 300K the lifetime no longer follows the n*3 scaling. The figure
is done with [62].

reduce the statistical error from counting, the pulse pattern is repeated one hundred times
and the ion count is averaged over all cycles. To compensate fluctuations of the Rydberg
laser frequency we scan the Rydberg laser over the Rydberg transition for every chosen
time delay between the light pulse and the high voltage pulses.

As can be seen in figure 7.6 we observe an exponential decay of the ion count as a function
of the delay between the light pulse and the ionisation pulse. An exponential decay fit
yields a lifetime of the ion signal. However, the measured lifetime is not the pure radiative
lifetime of the examined state. As described in section 7.2, the black-body radiation due to
the room-temperature environment induces a decay of the examined state into neighboring
Rydberg states and since we cannot ionize state selectively with the electric field pulse, we
measure with this method the lifetime of all states, which are populated by black-body
radiation.

For every measurement it is also necessary to compensate the electric stray field, because
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Figure 7.5.: Time profile of the high voltage pulses and the light pulse for the lifetime
measurement of the Rydberg atoms. For the lifetime measurement a variable time delay is
introduced between the light pulse for Rydberg excitation and the electric field pulse for
ionisation. The technical caused delay t1 between ionisation pulse (yellow) and acceleration
pulse (red) is 330ns. The overlap to between the acceleration pulse an the deflection pulse
(purple) is 570 ns. The ionisation pulse is set to an amplitude, which is sufficient for the
ionisation of examined state. The ionisation pulse and the acceleration pulse are applied
to the plate electrode. The deflection pulse is applied to segment one, see figure 3.10.

otherwise it causes a mixing of the Rydberg states, which has a big influence on the
measured lifetime. In figure 7.7, the measured lifetime of the 'Sy and D, series in the
range from n = 40 to n = 80 is shown. The error for every measurement is taken from the
exponential fit to the decay of the ion signal as a function of the delay of the ionisation
pulse. For comparison, the calculated natural lifetime of the 2.5 /2 series in rubidium is also
shown in the figure. We compare the measured lifetime to the natural lifetime of Rubidium
not to the black-body reduced lifetime because with field ionisation method we measure
the lifetime of all states, which are populated by the black-body radiation. Therefore, we
measure a combined natural lifetime of these states rather than the lifetime of the examined
state. As can be seen, the measured lifetime of the two ytterbium series are well below the
natural lifetime of the 25, /2 series in Rubidium. This reduction of the lifetime compared
to an atom with one valence electron could be caused by the larger extension of the core

potential, due to the second valence electron. Furthermore there is an indication that the
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Figure 7.6.: Measurement of the lifetime of the 50! Dy state. Orange line is an exponential
decay fit to the data. The ion count is averaged over one hundred repetition cycles.

lifetime in the ' Dy series saturates for large n. As described before, this saturation is due
to the relevance of the black-body induced decay for large n. Since the number of states,
that are dipole coupled to the ' Dy series is bigger than to 1Sy series, the effect of the black
body radiation to the lifetime is stronger in ' Dy series, which could explain the observation.
With a further development of this measuring method, which makes it possible to ionize
state-specifically, one could measure the specific radiative lifetime of a Rydberg state. This
further development could be, for example, another laser that excites the second valence
electron and thus causes auto-ionization (see reference [19]). Using these lifetimes, one
could then test an MQDT model of ytterbium, like the model developed in the references
[7, 76].
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initio calculation of the natural lifetime of the 25, /2 series. The calculation is done with
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Discussion and outlook

In this thesis we have described the setup of a new apparatus to explore Rydberg states
in an ultra cold ytterbium gas. The apparatus can produce up to 1 x 107 ytterbium
atoms in a magneto optical trap and simultaneous cool the ensemble to a temperature of
~ 3.8 £ 1.1 mK. We developed various techniques and methods unique for Ytterbium. A
simple and robust spectroscopy was build to frequency stabilize the cooling lasers for the
MOT. The setup also offers the possibility for a two-color spectroscopy, which can be used

to simultaneously stabilize an additional laser system on the 'Sy — 3P; transition.

We have implemented a MOT depletion spectroscopy to study a wide range of Rydberg
states of Ytterbium. Unique for this method is its simplicity and robustness. Compared
to the standard detection methods of Rydberg atoms this method has no need of an ion
detector or a complex electrode setup, which create large electric fields. With the MOT
depletion technique it was possible to excite and identify several Rydberg states which had
not been measured before and confirm already identified states from a previous study of a

French group in Paris [7].

As an application of the MOT depletion method the polarizabilities of 'Sy and 1P,
Rydberg series have been determined. With the results of this study a semi-classical
approach for calculating the dipole matrix elements of Yb Rydberg states was tested. We

found that the approach is consistent with the measurements.

With the setup of the second stage of the experimental study it was possible to
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implement field-ionization as an additional technique for the detection of Rydberg
atoms. The ionisation threshold for the field ionisation of the 'Sy and 'Dy Yb
Rydberg series was determined. By comparing the threshold with the classical ioni-
sation limit it was possible to explore the ionisation process of the 'Sy and 'Ds Yb

Rydberg series, which consist of diabatic and adiabatic passages through the Stark manifold.

The electric field ionisation method also allowed to measure the lifetime of several
Rydberg series, by introducing a delay between the Rydberg excitation and the field
ionisation. With this method it was possible to measure the black-body reduced lifetimes
of several Rydberg states in the 1Sy and ' Dy series. The comparison to the alkali metal
Rubidium shows that the lifetime of both series lies below the lifetime of the 25, /2 series
in Rubidium which could be caused by the influence of the second valence electron. The
lifetime of ' Dy shows a saturation in the high n region (n > 50) which could be attributed

to a larger loss caused by the black-body radiation of the environment as compared to 'Sp .

One goal of the research project is the observation of long-range interactions between Yb
Rydberg atoms, such as the dipole blockade or the generation of ultra cold plasma [21].
The first experimental studies described in this thesis, however were all performed at low
density (10° cm~3). Therefore interactions between Rydberg atoms, the regime where the
inter-atomic distance plays a role, has not been accessed yet. The next step is to cool the
Ytterbium atoms further in a second magneto-optical trap, using the narrow 'Sy — 3P,
transition, which allows for an increase of the density by two orders of magnitude. The
density of the atom cloud can further be increased by transferring the Yb atoms into an
optical dipole trap, like e.g. the two dimensional optical lattice, which can be realized using
the already implemented intra-vacuum resonator. In this trap the mean distance of the
atom ensemble is so small, that interactions become important. It will be even possible to
condensate the bosonic isotopes of ytterbium into a BEC. With these prerequisites our
experimental apparatus forms an ideal starting-point for exploring the dynamics of Yb

Rydberg many-body system.

A possible study that can be pursued is the spatial measurement of the Rydberg
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excitation. So far only a few imaging techniques are available to detect Rydberg atoms
spatially. One possibility is to spatially image the Rydberg atoms indirect with a field ion
microscope, which was demonstrated by Schwarzkopf et al. [43]. A more direct imaging
technique was shown by Bloch et al. [92], where the Rydberg atoms are detected optically
with high-resolution fluorescence imaging. The fluorescence is induced by de-exciting the
Rydberg atoms to a short-lifetime intermediate state. Another state-of-the-art imaging
technique is the interaction enhanced absorption imaging which was used by [93] to image
Rydberg P states in Rubidium. A unique property of the divalent Yb atom, namely
optically induced autoionisation, is ideally suited for spatially resolved detection. As shown
by [19] Rydberg states in a divalent atom autoionize when the second valence electron is
excited. Using a tightly focussed laser beam, the excitation of the second electron may
ionize Yb Rydberg atoms. Combined with an optical dipole trap this could be used to
spatially resolve the Rydberg excitation and its time evolution without the need of an ion

microscope or a complex coupling scheme.

Another interesting option for Yb Rydberg atoms is to use the optically active core to
trap and cool the atoms even after the Rydberg excitation. This approach could be used
to capture circular Rydberg states. They can be captured and cooled because they are
impervious to autoionization, which has already been shown for strontium [6]. With their
ultra long coherence time these states are particularly appealing for emerging quantum
technologies [94] and ytterbium like strontium with its divalent nature is an ideal candidate

for creating circular Rydberg states.

A possible future application for ytterbium Rydberg excitation arises from another
experiment of our research group, which deals with mixtures of Rb and Yb atoms. Combining
this experiment with Rydberg excitation could lead to a fascinating new class of ultra
cold giant molecules with an exotic potential structure [95]. This new molecules class
is extremely sensitive to external electric fields. Only small electric fields are needed to
influence the electronic structure significantly [96]. Therefore, such molecules could be used

as a probe for tiny electric fields.
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Appendix

1. Rydberg-Ritz fit parameters

The Rydberg-Ritz parameters are used for the theoretical determined energy levels of the

6sns' Sy and 6sns' P; Rydberg series in the chapter 4. They are also used for the theoretical

determination of the polarizability of the 6sns'Sy and 6sns' P, Rydberg series in chapter 5.

Table A.1.: The Rydberg-Ritz parameters for the 6sns'Sy, 6sns' Dy and 6sns® Dy are taken
from [7]. The remaining parameters are taken from fits to spectroscopy data, published in

[76]

Series (50 51 52 53 (54 55
6snstSy  4.278337 -9.625 91.65 -156050 -49725000  1.1021e+10
6sns'Py 3.95601286 -30.8616930 60222.3884 -76358128.9  3.6197e+10 -
6sns3P;  4.81175803 -315.289309 57586.9587 -2.4924e+09  2.3725e+12 -
6sns>Py  3.92562725 -8.33773066 602.823896 - - -
6snsiDy  2.713094 -1.8646 -2145.5 3940500 -3103600000  1.069e+12
6sns>Dy  2.748679 -0.5200 -1186.01 1564600 -981340000  2426e+11
6snslF3  1.28169811 -16.8480354  806.185504 - - -
6sns3F3  1.06342553 -6.66067129 -1190.80245 - - -
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2. Spectroscopic data

Table A.2.: Measured energy levels of the 6sns'Sy Rydberg series of 17Yb in the range
of n = 70 to 90. Eg;p are the measured energy values for the Rydberg states. E,..r
Energy levels with full circle are determined with the corresponding
The comparison between the measurement
and the Reference leads to an absolute frequency error of 64 Mhz. « is the ratio of the

is taken from [7].
Rydberg-Ritz parameters from table A.1.

experimental polarizability and the polarizability of the 65705 Sy state.

Assignment  Ecgy (cmfl) E, ey (cmil) Eewp — Eref (MHz) « Q. Defect
65708150 50417.6932 50417.6654 1.00 4.24106
68715150 50418.4198 50418.4212 -43 0.88 4.27900
6572519 50419.1425 50419.1438 =37 1.02  4.27886
657355 50419.8349 50419.8350 -4.0 1.18  4.27734
6574515, 50420.4973 50420.4966 17 1.37  4.27629
6575515 50421.1363 50421.1305 173 1.80  4.26793
6576515 50421.7370 50421.7379 -30 1.77  4.27898
6s77s%S 50422.3259 50422.3208 155 1.55  4.26821
68785150 50422.8811 50422.8797 40 1.53  4.27483
6579515, 50423.4223 50423.4164 173 2.09 4.26636
65805 Sy 50423.9353 50423.9322 94 2,83  4.27116
68818150 50424.4317  50424.4278 @ 116 2.45 4.26941
6582518, 50424.9074  50424.9045 e 89 2.64  4.27107
6583519, 50425.3645 50425.3630 @ 44 2.84  4.27421
6584518, 50425.8045 50425.8045 @ 2 3.54 4.27734
6585519 50426.2281  50426.2299 e -46 3.17  4.28115
658655y 50426.6382  50426.6392 e -30 3.70  4.27997
658751 50427.0312 50427.0341 @ -85 3.92  4.28483
6588515y 50427.4132 50427.4148 @ -51 4.92  4.28208
68895150 50427.7808  50427.7822 @ -44 4.69  4.28164
65905 Sy 50428.1368  50428.1368 @ 1 5.60  4.27756
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Table A.3.: Measured energies of the 6sns! P; Rydberg series of 174Yb in the range of n = 70
to 90. E..p are the measured energy values for the Rydberg states. E,.r is taken from
[76]. Energy levels with full circle are determined with the corresponding Rydberg-Ritz
parameters from table A.1. The comparison between the measurement and the Reference
leads to an absolute frequency error of 50 Mhz. «ai(m; = 0) and ap(m; = 1) are the
polarizabilities to the polarizability of the 6s70s' Sy state.

Assignment  E) (cm_l) E,cq (cm_l) Eerp — Erey (MHz) oy Q. Defect
65705 P; 50417.9147  50417.9154 -21 0.85 0.38 3.9522
6s71s' Py 50418.6607 50418.6602 17 1.00 0.37 3.9506
6s72s' P 50419.3723 50419.3723 5 1.00 0.43 3.9512
6s73s' P, 50420.0510 50420.0537 =77 1.59 0.56 3.9554
6s74s' Py 50420.7051 50420.7061 -29 1.20 0.54 3.9531
687581P1 50421.3282 50421.3312 -88 1.27 0.42 3.9565
65765 Py 50421.9279 50421.9305 -73 1.59 0.56 3.9560
6s77s' Py 50422.5053 50422.5051 -5 1.60 0.65 3.9516
6s78s1 Py 50423.0583  50423.0568 @ 47 1.78 0.63 3.9491
6s79s' P, 50423.5880  50423.5865 e 43 2.10 0.72 3.9493
6s80s! P, 50424.0945 50424.0955 e -32 2.19 0.76 3.9543
6s81s' Py 50424.5854  50424.5849 e 17 2.65 0.79 3.9510
65825 P, 50425.0527  50425.0555 @ -83 3.05 1.01 3.9583
6s83s! P 50425.5098  50425.5084 e 43 3.13 1.03 3.9491
6s84s' P, 50425.9446  50425.9444 e 5 3.22 1.02 3.9520
65855 P; 50426.3638  50426.3644 e -16 3.69 1.45 3.9539
6s86s' P; 50426.7651  50426.7691 e -118 3.78 1.51 3.9625
6s87s' Py 50427.1601 50427.1593 @ 24 4.41 1.45 3.9506
6s88s! P; 50427.5321  50427.5356 @ -104 441 1.57 3.9622
6s89s! P 50427.8976  50427.8988 @ -36 4.67 1.56 3.9562
6s90s' P; 50428.2440  50428.2493 e -160 3.80 1.07  3.9683
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