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“Die grundlegende Theorie [der Quantenkryptographie] ist [. . . ] schon

geklärt. Die Theoriefragen beziehen sich heute hauptsächlich auf die

Fragen der Sicherheit, es geht dabei beispielsweise um grundsätzliche

Sicherheitsbeweise der Systeme. Was interessanterweise bei unseren

Methoden etwas ist, das wir nicht benötigen.

Es gibt verschiedene Möglichkeiten, physisch diese Quantenverbindun-

gen, die dann die Schlüssel austauschen, zur Verschlüsselung zu real-

isieren. Wir machen das auf eine Art, bei der die Sicherheit offenkundig

ist, dazu brauchen wir nicht einmal einen Beweis.”

O. Univ.-Prof. Dr. phil. Anton Zeilinger, e&i, Heft 5 2007





Abstract

In view of experimental realization of quantum key distribution schemes, the study of

their efficiency becomes as important as the proof of their security. The latter is the

subject of most of the theoretical work about quantum key distribution, and many

important results such as the proof of unconditional security have been obtained. The

efficiency and also the robustness of quantum key distribution protocols against noise

can be measured by figures of merit such as the secret key rate (the fraction of input

signals that make it into the key) and the threshold quantum bit error rate (the maximal

error rate such that one can still create a secret key). It is important to determine

these quantities because they tell us whether a certain quantum key distribution scheme

can be used at all in a given situation and if so, how many secret key bits it can

generate in a given time. However, these figures of merit are usually derived under

the “infinite key limit” assumption, that is, one assumes that an infinite number of

quantum states are send and that all sub-protocols of the scheme (in particular privacy

amplification) are carried out on these infinitely large blocks. Such an assumption

usually eases the analysis, but also leads to (potentially) too optimistic values for the

quantities in question.

In this thesis, we are explicitly avoiding the infinite key limit for the analysis of

the privacy amplification step, which plays the most important role in a quantum key

distribution scheme. We still assume that an optimal error correction code is applied

and we do not take into account any statistical errors that might occur in the param-

eter estimation step. In [1], Renner and coworkers derived an explicit formula for the

obtainable key rate in terms of Renyi entropies of the quantum states describing Alice’s,

Bob’s, and Eve’s systems. This results serves as a starting point for our analysis, and

we derive an algorithm that efficiently computes the obtainable key rate for any finite

number of input signals, without making any approximations.

As an application, we investigate the so-called “Tomographic Protocol” [2, 3], which

is based on the Six-State Protocol [4, 5] and where Alice and Bob can obtain the ad-

ditional information which quantum state they share after the distribution step of the
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protocol. We calculate the obtainable secret key rate under the assumption that the

eavesdropper only conducts collective attacks and give a detailed analysis of the depen-

dence of the key rate on various parameters: The number of input signals (the block

size), the error rate in the sifted key (the QBER), and the security parameter. Further-

more, we study the influence of multi-photon events which naturally occur in a realistic

implementation.



Zusammenfassung

Im Zuge der experimentellen Realisierung von Protokollen zur quantenmechanischen

Schlüsselverteilung wird die Analyse ihrer Effizienz genauso wichtig wie der Beweis ihrer

Sicherheit. Letzteres ist das Thema der meisten theoretischen Arbeiten auf diesem

Gebiet, welche wichtige Ergebnisse lieferten, wie etwa der Beweis der unbedingten

Abhörsicherheit. Die Effizienz und die Robustheit eines Protokolls lassen sich durch

Gütekriterien wie die Schlüsselrate (der Bruchteil der gesendeten Signale, die den Schlüs-

sel bilden) oder die Schwellen-Quantenfehlerrate (die maximale tolerierbare Fehlerrate,

bei der die Schlüsselerzeugung noch möglich ist) definieren. Diese Größen müssen bes-

timmt werden, um für ein gegebenes Szenario festzustellen, ob ein gewisses Protokoll

überhaupt anwendbar ist und wenn ja, wieviele Bits sicherer Schlüssel generiert werden

können. Im Allgemeinen jedoch können diese Gütekriterien nur unter der Annahme

berechnet werden, dass alle Zwischenschritte des Protokolls — insbesondere der pri-

vacy amplification-Schritt — mit unendlich vielen Signalen arbeiten. Diese Annahme

erleichtert die Analyse zwar, allerdings werden dadurch möglicherweise zu optimitische

Werte für die Gütekriterien errechnet.

Aus diesem Grund vermeiden wir in dieser Arbeit die Annahme der unendlich

vielen Signale für den privacy amplification-Schritt, welcher der wichtigste in einem

Schlüsselverteilungsprotokoll ist. Jedoch nehmen wir weiterhin an, dass nur optimale

Fehlerkorrekturcodes verwendet werden und wir berücksichtigen auch keine statistischen

Fehler, die im Parameter-Abschätzungsschritt auftreten können. In [1] haben Renner

et al. eine explizite Formel für die erreichbare Schlüsselrate bzgl. Renyi-Entropien der

Quanten-Zustände, die Alices, Bobs und Eves Quanten-System beschreiben, ermittelt.

Dieses Ergebnis ist der Ausgangspunkt für unsere Analyse, in der wir einen Algorith-

mus entwickeln, welcher die erreichbare Schlüsselrate für jegliche Anzahl von Signalen

effizient berechnet, ohne auf Näherungen zurückzugreifen.

Als eine Anwendung betrachten wir das sogenannte “Tomographische Protokoll” [2,

3], welches auf dem Six-State-Protokoll [4, 5] basiert, und in welchem Alice und Bob

zusätzlich bestimmen können, welchen Quantenzustand sie sich nach dem Verteilungss-



chritt des Protokolls teilen. Wir berechnen die erreichbare Schlüsselrate unter der An-

nahme, dass Eve nur kollektive Attacken durchführt und analysieren detailliert, auf

welche Weise die Schlüsselrate von folgenden Parametern abhängt: Die Anzahl der Ein-

gangssignale (die Blocklänge), die Fehlerrate im “gesiebten” Schlüssel (die QBER) und

der Sicherheitsparameter. Außerdem untersuchen wir den Einfluß von Mehr-Photonen-

Signalen, welche in jeder realistischen Anwendung auftreten.
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Chapter 1

Introduction

Quantum key distribution has taken the step from a theoretician’s mind to experimental

implementation, becoming a commercial product [6, 7]. During the last basic models

which barely described the real world, culminating in the proof of universal composabil-

ity and security under the most general circumstances. Besides these conceptual proofs

it is necessary to investigate the performance of protocols. What rate of secret key bits

can be generated by a specific setup? The answer to this question certainly depends

on the type of equipment that is used in the actual implementation. A performance

measure which only depends on the underlying protocol is given by the number of secret

key bits per quantum signal sent. The main subject of this thesis is to compute such

a figure of merit (the secret key rate) for a restricted class of quantum key distribution

protocols.

1.1 Secret Communication

The ability to secretly communicate has always been of great importance in many aspects

of our life: Already in 500 B.C., the Spartans invented a cryptographic device called

scytale [8]. This is a wooden rod around which one wraps a strap of leather or parchment.

Afterwards, the message which is to be encrypted (also called plain text) is written onto

the strap such that each letter appears on a new twist. Then the strap is unwrapped, now

showing only incoherent letters, and is transported to the receiver who owns a scytale

of the same diameter to decode the message. The scytale implements an encryption

method known as shift cipher, in which every letter of the plain text gets shifted by a

fixed amount. Another example is the Caesar cipher [9], invented by the Roman emperor

in 50 B.C., in which letters of the plain text alphabet are replaced by certain other letters.

Such a simple scrambling of the plain text renders a message unreadable, at least at first
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1.1. Secret Communication

glance, but 2000 years ago this was apparently enough to scare off adversaries. Ever

since then, cryptography (the science of code making) and cryptoanalysis (the science of

code breaking) are two fields constantly feeding each other: Whenever some encryption

scheme gets broken, cryptographers are forced to invent a new code, being even harder

to break. This in turn encourages code breakers to search for flaws in this new scheme.

Eventually, this mutual outperforming has led to the situation we are facing today: The

search for an encryption method which is inherently secure, thus impossible to break.

RSA

One of the most successful cryptosystems used today is the RSA system, named after

its inventors Rivest, Shamir, and Adleman [10]. It is an asymmetric cryptosystem,

employing two keys, a private and a public one. The public key (as the name suggests)

is announced to everybody who might be willing to communicate secretly with the holder

of the private key, which is kept secret. Mathematically, the scheme is based on so-called

(trap door) one-way functions [11], which are easy to compute (using the public key), but

hard to invert, unless one possesses some kind of “trap door” information, the private

key. In this way it is guaranteed that, only having access to the public key, everybody

can encrypt messages, but lacking the private key, one cannot decrypt them. However,

the fact that one-way functions are “hard” to invert is merely a matter of observation

rather than a mathematical statement. Being hard to calculate in this sense means that

there has not yet been found any algorithm solving the task in polynomial time. By a

reasonable choice of the size of some input parameters (the key length), one can ensure

that using any known algorithm, computing the plain text from the cipher text while

only knowing the public key becomes unfeasible, as the time needed for these algorithms

to finish can be made arbitrarily large.

Still, there are two problems threatening the applicability of RSA: First, it might

happen that an algorithm is found, which can invert one-way functions in a polynomial

time. Although such a discovery seems unlikely, is has not yet been ruled out by a

rigorous mathematical proof. Second, and possibly more severe, as computer power is

increasing exponentially all times [12], brute force methods becoming more and more

feasible. For instance, older implementation of RSA, using a built-in key length which

appeared to providing enough security a decade ago can potentially be broken these

days.1 Also with the advent of the quantum computer, which might be superior to

1In 1977, it was supposed to take about 40 · 1015 years (one million times the age of the universe)

to break a 425-bit key. In 1994, 1600 computers “only” needed eight months, and nowadays, a single

desktop PC could to the same job. It is recommended today to use at least 2048-bit keys [13].
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Chapter 1. Introduction

classical algorithms, it is not clear how long it takes until inverting one-way functions

becomes feasible.

Unconditional Security

To provide secure communication which is not suffering the flaw of potentially becoming

insecure at a certain time in the future, a new type of cryptographic application is

needed. We call a scheme unconditionally secure if its security can be mathematically

proven and if it is not based on any assumptions about the adversary’s abilities, such as

being limited in computer power, memory, or time. Fortunately, such a scheme exists:2

The Vernam cipher [14] is used to encrypt messages given in binary notation using a

key consisting of random bits which is as long as the message and shared between the

parties which wish to communicate. Encryption is performed by calculating bitwise

addition modulo two of the plain text and the key, and decryption by adding the cipher

text to the key. It has been shown by Shannon [15] that such a cryptographic scheme

is unconditionally secure if the key is completely random and only used once (and is

of course unknown to the adversary), thus the name “one-time pad”. The proof of its

security is quite intuitive, since the result mi ⊕ ki of the addition of a plain text bit mi

to a key bit ki is completely random if the key bit is completely random. Therefore, the

cipher text bit mi ⊕ ki does not contain any information about the plain text mi, and

consequently the scheme is perfectly secure.

The catch of the one-time pad is the following: Since the key is a random bit string

of the same length as the message, which needs to be generated from scratch for each

message to be sent, one faces the problem of distributing large amounts of data. More-

over, the problem of keeping this key secret remains. In former times, code books where

employed, where pages with used codes were torn out. For state-of-the-art applications,

we need to find a reliable and efficient key distribution scheme.

1.2 Quantum Key Distribution

Quantum Key Distribution (QKD) aims exactly at providing such a distribution scheme

for random keys. To do so, a QKD protocol makes use of a quantum channel connecting

the honest parties, traditionally called Alice and Bob. Through this channel, they can

send quantum systems as they see fit. In a real implementation, this quantum channel

will usually be an optical fiber guiding photons, but our analysis will not assume any

2Actually, exactly one such scheme has been found yet.
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1.2. Quantum Key Distribution

Eve

Classical channel

Quantum channel

Alice Bob

Figure 1.1: The protagonists in the description of a quantum key distribution protocol.

The honest parties (Alice and Bob) are connected by an insecure quantum channel

which is under the adversary’s (Eve’s) control. They also have access to a public but

authenticated classical channel. Eve can listen to all communication via this channel,

but she can neither alter messages sent by Alice and Bob nor create new messages with

spurious sender.

special type of channel or quantum system.3 However, we assume that the quantum

channel is fully controlled by the adversary, personified by Eve. This means that in

particular Alice and Bob assume that Eve replaces whatever quantum channel originally

connected them by anything she wishes. Additionally to the quantum channel, Alice and

Bob can use an authenticated public classical channel (see also Fig. 1.2). The adversary

can listen to all communication performed via this channel, but she cannot insert new

messages pretending to be Alice and Bob. Such an authenticated channel can be created

by exploiting a short pre-shared key held by the honest parties [16].

BB84

The prime example of how a random key can be distributed by using an insecure quan-

tum channel and an authenticated classical channel is provided by the so-called BB84

protocol, named after its inventors Bennett and Brassard, who proposed it in 1984 [17].

In the BB84 protocol (like in most other schemes), Alice chooses some (random) data

and creates according quantum states which are sent to Bob, who performs a measure-

ment on them, yielding again classical data. More concretely, Alice creates a random

bit x ∈ {0, 1}, chooses at random the basis + or ×, and prepares a quantum state

3An exception is the analysis of multi-photon events in attenuated laser pulses, which is a common

implementation of QKD. This topic is treated in Ch. 6.
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Chapter 1. Introduction

|x+〉 = |x〉 in case of the +-basis or |x×〉 = (|0〉 + (−1)x|1〉)/
√

2 in case of the ×-basis.

Thus one out of four possible states is sent through the quantum channel. Bob on his

side also chooses one of the two bases + and × at random and performs a measurement

on the arriving quantum state with respect to that basis. His measurement outcome is

some random number y ∈ {0, 1}, possibly (hopefully) correlated with the bit x Alice

chose. This procedure is repeated many times, creating a string of bits on Alice’s and

Bob’s side. Assuming a perfect channel (in particular, no eavesdropping), Bob will get

the quantum states sent by Alice undisturbed and we observe that a measurement in an

incompatible basis results in a random bit y, uncorrelated with x. On the other hand,

when Bob measures in the same basis as Alice chose, the outcome y will be equal to x.

In the next step, Alice and Bob announce the bases they used for preparing/measuring

each quantum state via the public channel. They determine the non-matching events

and discard all corresponding bits. If there was no eavesdropping or other noise, they

are now left with an identical, random bit string.

A simple strategy to break this protocol seems to be to simply copy the quantum

states while they are traveling from Alice to Bob. In a classical world, there is nothing

that the honest parties could do about that. In a quantum world however, things look

different (and more promising for the security of key distribution).

The No-Cloning Theorem

It can be viewed as the fundamental concept, rendering quantum key distribution pos-

sible, that non-orthogonal quantum states cannot be copied (or cloned) perfectly. This

is the statement of the No-Cloning Theorem [18], which can be proven in a simple

way: Suppose there exists some unitary operation4 U with U |ψ1〉|0〉 = |ψ1〉|ψ1〉 and

U |ψ2〉|0〉 = |ψ2〉|ψ2〉, where |ψ1,2〉 are two states which are to be cloned and |0〉 is some

arbitrary input state. By taking the scalar products of the left- and right-hand sides of

these equations, it follows that 〈ψ1|ψ2〉 = |〈ψ1|ψ2〉|2, which implies that |ψ1〉 and |ψ2〉
are either identical (the trivial case) or orthogonal. For the BB84 protocol this implies

that the adversary cannot perfectly copy the states sent from Alice to Bob, since they

are taken from a set containing non-orthogonal states.

A more general strategy for Eve would be to perform a similar unitary operation

on the input states |ψi〉 and some probe state |0〉, U |ψi〉|0〉 = |ψ′
i〉|φi〉 and then try

to distinguish the output probe states |φ〉. By the same argument as above, one can

show that 〈ψ′
1|ψ′

2〉〈φ1|φ2〉 is constant, which means that whenever one wants to have

the output states |φi〉 to be more orthogonal, the input states |ψi〉 are getting more

4A unitary operation is the most general way to describe the evolution of a pure quantum state.

15



1.2. Quantum Key Distribution

identical. This means that more distinguishable states probe states come at the cost of

more disturbance of the input states. In this way the eavesdropper runs into the danger

of being detected by Alice and Bob, who can monitor the error rate in their data.

The Role of Entanglement

In 1991, Ekert proposed a QKD protocol not based on sending classical information

encoded into certain quantum systems, but rather on entanglement [19]. The idea of this

protocol is to exploit the correlations one obtains when performing local measurements

on entangled quantum states. In the original work, Alice and Bob aim at distributing

the singlet state |ψ−〉 = (|01〉 − |10〉)/
√

2 and then measuring a spin component along

a direction chosen at random from a set of three possible directions. The distribution

and measurements are repeated many times, and afterwards Alice and Bob reveal the

measurement directions they chose. Those are selected such that there exists a common

direction for Alice and Bob, yielding an (anti)correlated string of measurement outcomes

and moreover, using the expectation value for the other directions, one can evaluate some

CHSH inequality [20] (see also [21]). In this way, Alice and Bob can verify whether the

quantum state upon which they performed their measurement was entangled. Ideally,

they would find that they shared the state |ψ−〉, which ensures that the key they draw

from the measurement outcomes is perfectly secure, since the state |ψ−〉 is pure and

cannot be correlated with anything else.

Entanglement theory provides some powerful tools for the understanding of such

“entanglement-based” protocols: Most notably, one can show that whenever Alice and

Bob share a separable state, no secret key can created [22]. If the quantum systems are

qubits, entanglement is even a sufficient condition, which means that entanglement is

equivalent to the possibility of secret key extraction [23]. Surprisingly, it is not enough

to only share the entanglement, Alice and Bob even need to be able to verify it from

their measurement data, if they aim at creating the key using these measurements [24].

In general, the quantum system Alice and Bob distribute between them is some mixed,

partly entangled state due to imperfect fibers and/or eavesdropping. Entanglement

distillation [25] (see also [26] and references therein) can be used to turn a number of

these non-maximally entangled state into fewer pure ones from which the key can be

drawn by measurements. It has been shown [27, 28] that the distillation can equivalently

be performed by a proper encoding and decoding of the quantum states using CSS

codes [29, 30]. In this way, one can show that the BB84 and the Ekert protocol are

actually equivalent.

An important consequence of this equivalence is that many QKD protocols can be
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Chapter 1. Introduction

reformulated “entanglement-based”, which enables us to utilize entanglement theory to

quantify many features of the protocol, most notably its security.

Classical Post-processing

As far as we presented quantum key distribution by now, it aims at generating classical,

correlated data by measuring a non-local quantum state. Except for the idealized case

if which Alice and Bob are connected by a noiseless fiber and in particular, they are

not eavesdropped, the classical data is perfectly correlated and unknown to any other

party. In reality, the keys will never be perfect, and additional routines need to be ex-

pended. Altogether, these routines are called “classical post-processing”, indicating that

this is a collection of classical algorithms which are performed on classical data. After

a “parameter estimation” step, in which the number of errors in the key is appraised,

errors correction is performed, which leaves Alice and Bob with perfectly correlated

data. Still, it cannot be safely used as a key, since the eavesdropper might have some

information about it by attacking the quantum states which Alice and Bob measured.

This knowledge can be made arbitrarily small by a procedure called “privacy amplifica-

tion” [31, 32, 33], in which a certain function is applied to the data, outputting a shorter

but more private key. Privacy amplification is of great importance, because it can be

applied in any scenario in which the honest parties only share an error-free raw key.

1.3 Efficiency of Quantum Key Distribution

During the last decade, many experiments implementing a quantum key distribution

protocol using photons were performed (for an overview of these experiments, refer to [34,

13] and references therein). The optical setup has already been miniaturized to fit into

handy boxes, which are commercially sold [7, 6]. They implement the BB84 protocol,

using photons as carriers for the quantum information. Photons are particularly suited

because they can be easily and cheaply prepared using by lasers and optical elements,

they travel through already available optical fibers (e.g. telecom fibers) or free space

and they can be easily detected by common photo detectors. Still, this implementation

suffers a limitation: The detection rate, i.e. the fraction of signals sent by Alice that get

detected by Bob, is quite low, usually of the order 10−3. There a two reasons for this:

First, the signals suffer attenuation due to absorbance in the channel5 or unintentional

reflections in optical elements. Second, Bob’s detector are not perfect, i.e., only a fraction

5Single-mode fibers at 1300 nm and 1550 nm have a loss rate of 0.35 dB/km and 0.2 dB/km, respec-

tively. Note that 0.2 dB/km already results in 99% loss after 100 km.
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1.4. Summary of the Main Results

of the arriving photons will get detected.6 Also the repetition rate, which is the number

of signals Alice’s source can prepare and send to Bob per time slot, cannot be made

arbitrarily large because of the down-time of Bob’s detectors. This is the duration after

a detection event in which due to technical limitations, no signal can be detected.

We have already mentioned that if the key generated by the QKD protocol is to be

used in a one-time pad, it has to be as long as the message. This means that the user of

a QKD device will typically be interested in large keys to be able to encrypt his or her

message, which results in the demand for an efficient quantum key distribution scheme

in the following sense: Given a number n′ of quantum states that are sent through

the quantum channel, what length ℓ (or rate ℓ/n′) of the secret key can we expect the

protocol to output? The answer to this question is the central result of this work.

1.4 Summary of the Main Results

This work focuses on the efficiency of the privacy amplification step, which is a building

block of any quantum key distribution protocol in order to reduce the eavesdropper’s

knowledge about the key. More concretely, we are investigating privacy amplification by

two-universal hashing [35, 36], in which Alice and Bob pick a certain random function

and apply it to the classical data X and Y which they hold, respectively. The output

of the hash function is in general much shorter than the input, but one can show that

the privacy can be increased by any arbitrary amount [37]. The most important input

to our work is a result derived by Renner and König in [37]: It provides the maximal

possible length ℓ of the output (the secret key), fulfilling a certain security requirement

quantified by a parameter ε, in terms of entropies Sε
2, S

ε
0, and Hε

0 of the global quantum

system describing the classical and quantum data held by all parties ρXE :

ℓ = Sε
2(ρXE) − Sε

0(ρE) −Hε
0(X|Y) + 2 log(ε). (1.1)

This result is remarkable because it tells us how “much” privacy amplification one has

to invest (i.e., how much one has to shrink the input data) in order to obtain a secret

key of desired security ε. An important parameter is the size of the input data, which

is usually given by a string of bits of length n (which we will call “block size”). This

allows us to quantify the efficiency of the parameter estimation step by the secret rate

r = ℓ/n, which is also a function of the desired security (measured by ε). The block size

appears implicitly in the above formula as the dimension of the density matrices ρXE

and ρE and of the probability distribution PX|Y.

6Typical InGaAs/InP detectors used for 1300 nm photons have a detection efficiency of 15%. For

1550 nm, it is about 5-10%.
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Privacy Amplification with a Finite Number of Signals

We are motivated by the fact that as of today, the rate r of the privacy amplification

step has only be calculated for the limiting case of n→ ∞ and ε→ 0, i.e., infinity block

size and perfect security [1] (see also [38]). This is because of the complicated form

of the formula for the key length ℓ, in particular since it is a function of the so-called

“smooth Renyi entropies” Sε
α, defined as

Sε
α(ρ) :=

1

1 − α
inf

σ∈Bε(ρ)
log trσα, (1.2)

where the infimum is taken over all density matrices σ (taken from arbitrarily large

Hilbert spaces) which have a distance of at most ε to ρ. We we reformulate this definition

to involve only an optimization over a finite set of numbers and eventually provide a

simple and efficient algorithm that calculates smooth Renyi entropies of arbitrary density

matrices in a time proportional to n. As a corollary, we are able to calculate the length of

the secret key generated by privacy amplification for any given block size n and security

parameter ε.

Obtainable Secret Key Rates

As an application, we investigate a special variant of the Six-State Protocol [4, 5] which

we call “Tomographic Protocol” [2, 3], as its main peculiarity is that Alice and Bob

can find out in the parameter estimation step which quantum state they shared. This

is possible because the measurements performed in the entanglement-based version of

the protocol allow for state tomography [39]. Since the knowledge of the quantum state

describing Alice’s, Bob’s, and Eve’s systems is all what is needed for the calculation

of the key length ℓ, we can calculate it for this special kind of protocol. Alternatively,

one can argue that our result is also applicable for all usual QKD protocols under the

restriction that the eavesdropper only performs a certain symmetric attacks because in

the tomographic protocol, Alice and Bob verify this symmetry and abort the protocol

if it is broken.

We will show that the obtainable secret key rate for the Tomographic Protocol

strongly depends on the block size n for n . 104. At n ≈ 104, the rate reaches about

83% of the asymptotic value for n→ ∞ and approaches this value as n increases. From

this result one can read off what reasonable block sizes one should choose in the privacy

amplification protocol in order to obtain a desired efficiency of the protocol. Moreover,

we investigate the dependence of the key rate on the security of the key, measured by the

parameter ε. It has the intuitive interpretation that the key is perfectly secure except
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with probability ε. There is currently no general understanding what is a reasonable

range for this parameter. Our results show that, remarkably, up to ε ≈ 10−28, one can

still generate a secret key for a block size of n = 105 and a common error rate. We also

show that for increasing block size, the key rate becomes less dependent on the security

parameter.

Our analysis of the Tomographic Protocol is also valid for arbitrary dimensions d

which determine the alphabet size Alice and Bob use for the raw key and also the

dimension of the quantum system which are employed. Without taking into account

the fraction of the raw key that gets discarded in the sifting step, it turns out that

larger dimensions are always favorable, in the sense that they yield the largest key rates.

Considering also that for a d-dimensional variant, roughly a number of n′ = (d + 1)n

signals need to be sent in order to obtain a block size of n, we find that the “efficient key

rate” ℓ/n′ still increases for increasing dimension if the error rate in the sifted key is high.

For low error rates however, we find the reverse result, namely that low dimensions yield

optimal effective key rates. Interestingly, for each error rate there exists a particular

dimension for which the effective key rate becomes maximal.

Multi-photon Events

Every implementation of a QKD protocol that is based on photons as a carrier of quan-

tum information has to deal with multi-photon events which means that two or more

photons with the same information encoded are sent through the channel. This enables

the eavesdropper to split off one photon, store it, and measure it in the correct basis

after Alice and Bob announced these in the sifting step (the so-called photon number-

splitting attack). Fortunately, such an attack can be countered by privacy amplification,

and we show that the obtainable key rate decreases in order to remove the additional

knowledge Eve obtains due to the multi-photon events. It turns out that for a fraction η

of single-photon pulses among all non-empty pulses, the key rate is ηr, with r denoting

the key rate for the ideal case, i.e. η = 1. Similarly, we find that when Alice and Bob

estimate an error rate Q from their measurement data, one needs to consider the larger

value Q/η for the calculation of the key rate. Finally, we show how one can achieve a

better estimate by including decoy pulses [40, 41] into the scheme.

1.5 Outline of This Work

This work aims at both providing concise introduction into the theory of quantum

key distribution and presenting a novel and important result in the direction of re-
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alistic implementations of these concepts. We are motivated by the fact that there

exist some ambiguities and misconceptions, in particular about the equivalence between

entanglement-based and prepare-and-measure schemes (cf. Sec. 3.2.3) and about the

role of purifications (cf. Sec. 4.4). The first part of this thesis (Ch. 3) will deal with

these issues while developing the theory of QKD. The main emphasis however lies in the

analysis of privacy amplification by two-universal hashing (cf. Ch. 5). Our motivation

comes from the lacking analysis of quantum key distribution with a finite number of

signals, which plays an important role in experimental realizations. An application of

this analysis is provided by the Tomographic Protocol (cf. Ch. 6).

After this introductory chapter, in Ch. 2 we introduce some basic information-

theoretic and quantum mechanical concepts and notation. In Ch. 3, we present the

general structure of quantum key distribution protocols. We will not focus on any

particular protocol, but leave the introduction completely general: The protocol is di-

vided into two parts, a quantum part (Sec. 3.2) and classical part (Sec. 3.3). In the

quantum part, we explain how quantum states are distributed among Alice and Bob

which yield the raw key upon measurement. Two different classes of protocols, classified

based on how the quantum states are distributed, are presented in this section: Prepare-

and-measure schemes in Sec. 3.2.1, and entanglement-based schemes in Sec. 3.2.2. In

Sec. 3.2.3 we show that these two types are actually equivalent, in the sense that each

protocol can be formulated in the other way. An implication of this result on the anal-

ysis of eavesdropping attacks is presented in Sec. 3.2.4. The classical part of the QKD

protocol is again split up, treating the different sub-protocols that are carried out in

this step: Measurements (Sec. 3.3.1), parameter estimation (Sec. 3.3.2), pre-processing

(Sec. 3.3.3), and information reconciliation (Sec. 3.3.4).

In Ch. 4, we introduce the notion of security against the background of quantum key

distribution. We start by reviewing the definition of security in an information-theoretic

sense (Sec. 4.1) and introduce the concept of ε-security in Sec. 4.2. This finally enables

us to present possible strategies of the eavesdropper in Sec. 4.3. In Sec. 4.4, we take a

little excursion and study the possibility of creating purifications by physical processes.

This topic is related to QKD, since purifications naturally appear when we describe

eavesdropping attacks.

In Ch. 5, we derive the central result of this work. It treats the privacy amplification

protocol, which is the final step in the classical part of any quantum key distribution

protocol. The first section (Sec. 5.1) in this chapter provides an introduction, focusing

in particular on classical privacy amplification. Sec. 5.2 reviews the main technical

results derived in [37, 1], which are taken as a starting point of our own analysis. We
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show that in order to derive the achievable key rate of QKD protocol, one needs to

calculate so-called smooth Renyi entropies, which involves finding the extremum of a

certain function over the space of density matrices. Sec. 5.3 is devoted to the analysis of

these entropies and contains most of the technical results of this thesis. After presenting

the definition and general properties in Sec. 5.3.1, we focus on three particular Renyi

entropies that appear in the formula for the achievable key rate. In Sec. 5.3.2, we

derive some important simplifications which ease the analysis significantly, allowing us

to construct simple algorithms to compute the entropies for arbitrary density matrices in

Sec. 5.3.3. Finally, in Sec. 5.3.4 we derive a special additivity property for the particular

Renyi entropies.

We introduce a special quantum key distribution protocol, the “Tomographic Pro-

tocol” in Ch. 6 and apply our analysis of the privacy amplification procedure to this

special case. The basic idea of the protocol is presented in Sec. 6.1 and we show how

it fits into the framework developed in Ch. 3. Of particular importance is Sec. 6.2 in

which we compute the obtainable key length for the Tomographic Protocol as a function

of the parameters that Alice and Bob choose and which they measure in the parameter

estimation step. We make use of the results found in Ch. 5. The dependence of the

key rate on the various parameters (in particular the block size n and the security pa-

rameter ε) is shown in Sec. 6.3, for the idealized case of a single-photon realization of

the protocol. This restriction is dropped in Sec. 6.4, where we take into account that

inevitably multiple copies of the signal states are generated in any experiment.

We conclude in Ch. 7. In the appendix, we comment on the numerical methods

employed to obtain the results of the preceding chapters.
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Chapter 2

Preliminaries

This chapter is devoted to the introduction of the concepts and notation that is used

throughout this thesis. In the forthcoming chapters, we will employ elements from

both classical probability theory (such as probability distributions and entropies) and

quantum information theory (such as density matrices and entanglement). These two

fields are not completely separated from each other, rather, many concepts that were

introduced in one area were carried over to other, mainly in the direction from the

classical to the quantum world. The organization of this chapter is as follows: In

Sec. 2.1, we will introduce the concepts and basic notation from classical probability

theory that are important for the understanding of this thesis. Very specific definitions,

that only appear in a certain section and which are of no importance for the global scope

will be introduced in their respective section. Sec. 2.2 presents the notation and some

special concepts from quantum information theory. Whenever possible, we will point

out direct connections between classical and quantum concepts.

2.1 Classical World

In this section, we present some basic concepts of classical probability theory. We will

often use the concept of a random variable. (Very) formally, it is defined as follows:

Definition 2.1.1. Let (Ω, P ) be a discrete probability space, i.e., Ω is some finite or

countably infinity set, and P is a probability distribution on Ω, that is, some map P :

Ω → [0, 1] with
∑

ω∈Ω P (ω) = 1. A random variable X with range X is a function

X : Ω → X .

We will always use the convention that a capital letter X denotes the random vari-

able, a calligraphic letter X denote its range, that is, X takes values x = X(ω) ∈ X . The
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probability P (ω) of this event ω will equivalently be denoted by Prob[X = x] ≡ PX(x).

Random variables that take vectors as values, e.g. X = {0, 1}n, will be denoted by bold

letters X. The cardinality of a random variable, i.e., the size of its range, is given by |X |.
For two random variables X and Y , we denote the combined probability of X taking the

value x and Y taking the value y by PXY (x, y), whereas we denote the corresponding

conditional probability by PX|Y (x, y).

Next, we introduce a measure of the similarity of two probability distributions:

Definition 2.1.2. Let P and Q be two probability distributions over the same range X .

Then the variational distance between P and Q is given by

‖P −Q‖ =
1

2

∑

x∈X

|P (x) −Q(x)|. (2.1)

This definition can easily be generalized to the case where P and Q are defined

over different ranges by setting P (x) = 0 for all x which are not in the range of P , and

similarly forQ. The variational distance is a metric on the set of probability distributions

with range X . As such, it fulfills the triangle inequality and ‖P − Q‖ = 0 if and only

if P and Q are identical. The distance ‖P − Q‖ of two probability distributions can

be interpreted as the probability that two random variables X and X ′, described by a

joint probability distribution PXX′ with P = PX and Q = PX′ , take different values:

‖P −Q‖ = Prob[X 6= X ′].

We are often interested in quantifying the information that one random variable X

contains about another one Y . This is done by the mutual information I(X : Y ) =

H(X) −H(X|Y ), where H(X) is the usual Shannon entropy, H(X) = −∑x∈X PX(x)

log PX(x), and H(X|Y ) = H(X,Y ) − H(Y ) is the conditional Shannon entropy, with

H(X,Y ) = −∑x,y PXY (x, y) log PXY (x, y). The base of the logarithm is arbitrary;

usually, one takes it to be two, which means that the entropy is measured in bits. Note

that the mutual information is a symmetric quantity, i.e. I(X : Y ) = I(Y : X).

2.2 Quantum World

Quantum mechanical systems are described by positive semidefinite operators ρ with

trace one. In the following, we use “positive operator” as a synonym for “positive

semidefinite operator”. We also adopt the usual habit and call ρ a state even if it is

not pure. The set of all positive operators acting on a Hilbert space H will be denoted

by P(H), and the set of all such operators having trace one by B(H) = {σ ∈ P(H) :
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tr σ = 1}. For quantum states, we can also introduce a distance measure, similarly to

the classical case of Def. 2.1.2:

Definition 2.2.1. Let ρ, σ ∈ B(H) be two density operators. Then the trace distance

between ρ and σ is given by

‖ρ− σ‖ =
1

2
tr |ρ− σ|, (2.2)

where |A| =
√
AA†.

Like the variational distance, the trace distance defines a metric on B(H). Mea-

surements on quantum states ρ ∈ B(H) are defined by positive operator valued mea-

surements (POVMs) [42], which are a set M = {Mi} ⊂ P(H) of positive operators

summing up to the identity,
∑

iMi = 1H. As the measurement outcome i is obtained

with probability tr(ρMi), we can construct a probability distribution P ρ
M describing

the statistics of all possible measurement outcomes with P ρ
M(i) = tr(ρMi). One can

show that the variational distance is a lower bound on the trace distance of two quan-

tum states when the same POVM M is applied, ‖ρ − σ‖ ≥ ‖P ρ
M − P σ

M‖. Equality is

obtained for “classical states” ρX , which are the quantum states representing a classi-

cal random variable X with range X and associated probability distribution PX , i.e.

ρX =
∑

x∈X PX(x)|x〉〈x| ∈ B(H), where H is some |X |-dimensional Hilbert space with

basis {|x〉}x∈X . For those classical states, we have ‖ρX − ρX′‖ = ‖PX − PX′‖.
We will often encounter the situation where classical data, described by some random

variable X, is correlated with a quantum system. The quantum state describing the

combined system is called “cq-state” (“classical-quantum-state”):

Definition 2.2.2. Let X be a random variable with range X and probability distribution

PX , and let ρx
E ∈ B(HE) be a quantum state that depends on the value x of X. Then

the joint state of the system is given by the so-called cq-state

ρXE =
∑

x∈X

PX(x)|x〉〈x| ⊗ ρx
E, (2.3)

with ρXE ∈ B(H ⊗ HE), and H is some |X |-dimensional Hilbert space with basis

{|x〉}x∈X .

This definition is straightforwardly generalized to, say, ccq-states, where a quantum

state ρxx′

E is correlated with two random variables X and X ′. We will also encounter cq-

states ρXE where the classical part is described by a random variable X taking vectors

as values, and the quantum part ρxE may depend on all values x. States of this form

naturally appear in the analysis of the security of QKD, where classical data (the key)

is correlated with a quantum system held by the eavesdropper.
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The evolution of a quantum system is most generally described by a completely

positive (CP) map Λ : P (H) → P (H). Such a map has the property that any extension

to larger Hilbert spaces maps positive matrices to positive matrices, i.e. [idH′⊗Λ](ρ) ≥ 0,

for any H′ and ρ ∈ P(H′ ⊗H). For all deterministic processes, this map is additionally

trace-preserving, tr Λ(ρ) = tr ρ. Any CP map can be written in the so-called Kraus

decomposition [43] or alternatively, and more convenient for our analysis, in the following

way [44]: Λ(ρ) = trA(Uρ ⊗ |0〉〈0|BU †). That is, some auxiliary system B in some

(without loss of generality) pure state |0〉 is appended to ρ, then some unitary operation

U is performed on the combined system, and the part A (which may be different from

B) is traced out.
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Chapter 3

Quantum Key Distribution

Protocols

3.1 Composition of a QKD Protocol

The goal of all quantum key distribution protocols is to provide the honest parties,

Alice and Bob with random, correlated, and private classical data, the key. To achieve

this, they have a quantum channel at their disposal, which is however to be assumed

completely under the control of the adversary, Eve. This means that whatever quantum

state Alice or Bob send through the channel, the output can be completely arbitrary, the

only restriction is consistency with quantum mechanics.1 In addition to the quantum

channel, the honest parties can make use of a public, classical channel, which is assumed

to be authentic, that is, everybody (in particular Eve) can listen to all communication

over the channel, but she cannot alter or forge messages.2

In the most general sense, the secret key is generated from classically created ran-

dom data (e.g. coin-flipping) and/or outcomes of measurements of quantum states.

Every QKD protocol can be divided into two parts: A quantum part, in which quantum

mechanical systems are distributed between Alice and Bob and upon which some mea-

surements are carried out, and a classical part, in which the classical data generated in

the first part is transformed into a secret key by means of so-called “post-processing”.3

Post-processing is a collection of purely classical algorithms such as error correction and

1In Ch. 4.3, we give a detailed classification of possible eavesdropping attacks and the resulting

structure of the quantum states.
2One can show that authenticity can be created from some short secret key that Alice and Bob share

beforehand [16].
3We will only consider one-way classical post-processing, which will be described in detail below.

27



3.1. Composition of a QKD Protocol

Quantum part

Privacy amplification

quantum states
Distribution of

Parameter estimation

Pre−processing

Error correction
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Figure 3.1: Composition of a quantum key distribution protocol.

privacy amplification [31]. The composition is visualized in Fig. 3.1.

The quantum part of the QKD protocol will be treated in Sec. 3.2. We will see that

one has to discriminate two different ways of how the quantum states are distributed

between Alice and Bob and how the honest parties obtain the classical data. One class

of protocols, presented in detail in Sec. 3.2.1, is called “prepare-and-measure” schemes.

Common members of this class are the BB84 [17], the Six-State [4, 5], and the B92

Protocol [45]. All these protocols have in common that Alice at first picks some random

data (usually a bit, for instance by tossing a coin), prepares some corresponding quantum

state and sends it to Bob. Bob on his side performs a measurement on the quantum

state that he receives. In general, this state is different from what Alice sent, because

of noise in the quantum channel and/or Eve’s tampering with the signal. Nonetheless,

Bob’s measurement outcome will in general be to some extent correlated with Alice’s

data. The main twist of the prepare-and-measure protocols is that for each bit value

that Alice chooses, she picks one state from a set of possible quantum states. This

redundancy guarantees that the information encoded in the quantum state (the data

Alice that chose) cannot be easily retrieved, as this would require the quantum states to

be distinguishable, a property which is ruled out by a proper choice of the set of possible

states.

The second class of protocols into which we can divide the distribution part is called

“entanglement-based schemes”. These protocols, which are presented in Sec. 3.2.2 are

based on the idea of distributing a maximally entangled quantum state between Alice

and Bob. This state might for instance be the Bell state |φ+〉 = (|00〉 + |11〉)/
√

2,

for which Alice and Bob obtain perfectly correlated outcomes when measuring their
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respective particles in the x or z-basis (the eigenbasis of the Pauli operators σx and σz,

respectively). Moreover, the outcomes will be completely random and since the state

|φ+〉 is pure, it cannot be correlated with anything else, implying the privacy of the key.

At first glance, the prepare-and-measure and entanglement-based scheme look very

different, mostly because for the former class, no entanglement is present during the

whole distribution step, although it is an essential ingredient for the latter class. In

Sec. 3.2.3 however we will show that these two schemes are equivalent under the assump-

tion that only single copies of the quantum states are sent in the prepare-and-measure

version. A detailed analysis of the case where we cannot rely on this equivalence is

deferred to Sec. 6.4; until then, we always use the idealized single-copy assumption.

After Bob (and also Alice for an entanglement-based protocol) measured his quantum

state and both parties are left with classical data, the classical part of the QKD protocol

commences (see Sec. 3.3). It consists of a so-called “parameter estimation” phase (see

Sec 3.3.2), in which Alice and Bob try to deduce some features of the quantum state

the Bob received (or both shared, for the entanglement-based version), and thus also

about the eavesdropping attack. In this step they might also decide to cancel the

protocol completely, if it turns out that their data contains too many errors, possibly

due to a strong interaction of the eavesdropper. At this point, the classical data may

also be processed in order to possibly enhance the robustness of the protocol. This

“pre-processing” step, covered in Sec. 3.3.3 is only listed here for completeness but

will be ignored in this work. The next step in the post-processing is the “information

reconciliation” step described in Sec. 3.3.4. The goal of this step is to make Alice and

Bob’s data equal. It usually consists of a sifting step, in which Alice and Bob discard

all events in which Bob used an incompatible measurement basis (for the details about

encodings and measurements, see Sec. 3.2) and/or an error correction step in which

all remaining errors are corrected to leave Alice and Bob with equal data. The last

step of the classical part, and most importantly for our analysis, is called “privacy

amplification” (see Sec. 3.3.5 and Ch. 5). The aim of this step is to remove all residual

knowledge which the eavesdropper might have about the key. This is done by applying

a so-called hash function to some large block of the key, outputting a shorter key which

can be made more private by a proper choice of the function.

In the remaining chapter, we devote a subsection to each step of the QKD protocol.
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3.2 Quantum Part/Distribution of Quantum States

In this section we present a general description of the distribution step of a QKD proto-

col. The next two subsections treat the prepare-and-measure variant (see Sec. 3.2.1) and

the entanglement-based variant (see Sec. 3.2.2) separately. Their equivalence is proven

in the third subsection, Sec. 3.2.3.

Although most QKD implementations only encode bits into quantum states, we will

generalize our analysis to arbitrary alphabets of size d. Note that in the end, after

the classical post-processing (cf. Sec. 3.3), we will always end up with a key that only

consists of bits. Let {|φj
x〉}, with x = 0, 1, . . . , d − 1 and j = 1, 2, . . . , r be a family

a pure states such that for each j, the |φj
x〉 are linearly independent. Furthermore, let

Mj = {M j
x,M

j
? } denote some set of POVMs such that Mj unambiguously discriminates

the |φj
x〉, i.e. 〈φj

x|M j
y |φj

x〉 ∼ δxy for all j. Again for completeness, we include the

possibility of inconclusive outcomes, represented by M j
? , in the case where the |φj

x〉 are

not mutually orthogonal. However, the inconclusive outcomes will not play any special

role in our analysis. We say that the index j labels the encoding of the dit x and

the states {|φj
x〉} are called signal states. Finally, let PJ and PK be some probability

distributions on the set of encodings {1, 2, . . . , r}. The probability distribution PJ will

be used by Alice to choose an encoding for each signal, and likewise PK will be used by

Bob to choose a POVM Mk. For the sake of completeness, define a third probability

distribution PX on {0, 1, . . . , d − 1} for the choice of the dit x that is to be encoded.

Although in our analysis we will only consider uniform distributions, i.e. PX(x) = 1/d

for all x, for the sake of generality and in order to unify the notation, we allow also for

arbitrary probability distributions PX .

The idea behind the introduction of additional redundancy by having r different

encodings (that is, dr different quantum states are used to encode only one dit) is that

it becomes more difficult to identify a certain state taken from a set of different states

as the size of the set increases. However, if the encoding j is known, Mj is constructed

such that this task is feasible.4

3.2.1 Prepare-and-measure Schemes

Most QKD protocols fall into this category, for instance the BB84 [17], Six-State [4],

and the B92 [45] Protocol. They all have in common that Alice encodes some classical

4In a real experiment, even the implementation of a measurement that discriminates only two (non-

orthogonal) states might not be highly efficient [46]. However, in our analysis we will ignore such

practical problems.
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information (e.g., a bit) into a set of quantum states that are sent to Bob. Bob on his

part will measure the quantum system and obtains some classical measurement result.

We will now discuss the details of this procedure.

Alice chooses n numbers xi ∈ {0, 1, . . . , d − 1} and n numbers ji ∈ {1, 2, . . . , r}
according to PX and PJ , respectively, prepares the state |φj1

x1
〉 ⊗ · · · ⊗ |φjn

xn
〉, and

sends it to Bob.

Since Alice keeps her choice of all dits and encodings in mind, the combined state

describing her classical data and the prepared quantum system is given by

ρn
JAB =





d−1∑

x=0

r∑

j=1

PJ(j)PX (x)|j〉〈j| ⊗ |x〉〈x| ⊗ |φj
x〉〈φj

x|





⊗n

(3.1)

Consider for a moment that Alice and Bob are connected by a noiseless channel (i.e.,

there is no eavesdropper), thus Bob receives
[
∑d−1

x=0

∑r
j=1 PJ(j)PX (x)|φj

x〉〈φj
x|
]⊗n

undis-

turbed. In order to “decode” the x’s, he chooses n numbers ki ∈ {1, 2, . . . , r} according

to PK and performs the POVM Mk1 ⊗ · · · ⊗ Mkn on this state obtaining the result

y ∈ {0, 1, . . . , d − 1, ?}×n. That is, for each signal arriving, he picks a encoding ki ac-

cording to the probability distribution PK and performs a measurement, given by Mki

on the quantum state. He adds the outcome yi to a list which forms his “raw key”.

Again, there might be inconclusive measurement outcomes depending on the specific

protocol.5

To fill this sketch of a protocol with life, let us consider a common version of the BB84

protocol: In the BB84 protocol, we have r = 2 different encodings for a bit (d = 2),

namely the eigenstates of the σz and σx Pauli operators, i.e. |φ1
0〉 = |0〉, |φ1

1〉 = |1〉,
|φ2

0〉 = (|0〉 + |1〉)/
√

2, and |φ2
1〉 = (|0〉 − |1〉)/

√
2. Since for each encoding, the two

different “codewords” are orthogonal, the two POVMs employed by Bob are given by

Mj = {|φj
0〉〈φ

j
0|, |φ

j
1〉〈φ

j
1|}, j = 1, 2, without inconclusive outcomes. The bits 0 and 1

will be encoded with equal probability, therefore we choose PX to be a flat distribution.

On the other hand, it turns out that it is preferable that Alice almost always uses the

same encoding to increase the efficiency of the protocol [47]. Bob on his side takes PK

to be flat again, that is, he randomly chooses M1 or M2 for his measurement.

5Note that we do not take into account any inconclusive outcomes which originate from experimental

imperfections such as dark counts, stray light, detector dead time, or losses.
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3.2. Quantum Part/Distribution of Quantum States

3.2.2 Entanglement-based Schemes

In contrast to the class of protocols described in the previous section, entanglement-

based protocols aim at distributing a maximally entangled state between Alice and Bob.

The correlation inherent in this state and its detachment from the environment enable

Alice and Bob to create a common secret key. This is achieved in the following way:

Suppose Alice and Bob share the maximally entangled state |φ+〉 = (|00〉 + |11〉)/
√

2

and measure their respective system in the computational basis. They will both obtain

either the bit 0 or 1 with probability 1/2. Moreover, since |φ+〉 is pure, it can easily

be shown that no other (classical or quantum) system can contain any information

about this bit [28, 27]. This leaves one with the problem of how to distribute the

state |φ+〉, since it has to be prepared locally and therefore it has to pass through the

quantum channel which potentially can be attacked by the eavesdropper. The original

idea [19, 27] was to let Alice prepare n copies of |φ+〉, send the second half to Bob,

resulting in a state ρ⊗n of n non-maximally entangled states ρ. Instead of performing

classical privacy amplification on their data, Alice and Bob now run an entanglement

distillation protocol [25, 48, 49] on all these copies and obtain a number m < n of

maximally entangled states. Unfortunately, such a protocol is hard to implement because

it requires quantum memory. However, it has been shown [28] that the entanglement

distillation can equivalently be performed using certain quantum error-correcting codes

(CSS codes [29, 30]). We do not need to go into the details here, since we only consider

classical privacy amplification.

The distribution of quantum states using an entanglement-based protocols works as

follows:

Alice chooses n numbers ji ∈ {1, 2, . . . , r} according to PJ , prepares the state
∑d−1

x=0

√

PX(x)|x〉|φj1
x 〉 ⊗ · · · ⊗∑d−1

x=0

√

PX(x)|x〉|φjn

x 〉, and sends the second half

(the |φji

x 〉 part for all i) to Bob.

The only difference to the prepare-and-measure scheme is that each signal is in a coherent

superposition of |x〉|φj
x〉 for all x. The encoding j of each signal is chosen classically,

thus the combined state describing Alice’s data and the quantum systems sent to Bob

is given by

ρJAB =





r∑

j=1

PJ(j)|j〉〈j| ⊗
(

d−1∑

x=0

√

PX(x)|x〉|φj
x〉
)(

d−1∑

x=0

√

PX(x)〈x|〈φj
x|
)



⊗n

(3.2)

The “encoding” is performed by Alice measuring each of her quantum states in the

computational basis {|x〉}, resulting in a measurement outcome xi with probability
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PX(xi). The decoding step works in the same way as for the prepare-and-measure

version: Bob chooses n numbers ki ∈ {1, 2, . . . , r} according to PK and performs the

POVM Mk1 ⊗ · · · ⊗Mkn on this state. He obtains the result y ∈ {0, 1, . . . , d− 1, ?}×n,

which again might contain inconclusive measurement outcomes.

3.2.3 Equivalence of Entanglement-based and Prepare-and-measure

Schemes

It is easy to see that the schemes presented in previous two subsections are equivalent,

that is, they provide Alice and Bob with the same correlations and are indistinguishable.

We see that any prepare-and-measure scheme can be recast entanglement-based by

introducing a purifying system in the state (3.1). We say that a quantum state ρ ∈ B(H)

is purified [50, 51] by a state σ ∈ B(Haux) (or by a system Haux) if there exists a pure

state |Ψ〉 ∈ H⊗Haux such that ρ and σ are both marginal states of this pure state, i.e.

ρ = trHaux
|Ψ〉〈Ψ| and σ = trH |Ψ〉〈Ψ| (see also Sec. 4.4). Here, we choose the system R

such that it purifies the mixture
∑d−1

x=0 PX(x)|x〉〈x| ⊗ |φj
x〉〈φj

x| and is neither controlled

by Alice and Bob nor by Eve:

ρJABR =





r∑

j=1

PJ (j)|j〉〈j| ⊗
(

d−1∑

x=0

√

PX(x)|x〉|φj
x〉|x〉R

)(
d−1∑

x=0

√

PX(x)〈x|〈φj
x|〈x|R

)



⊗n

(3.3)

This state is equal to the state (3.2) from Alice’s, Bob’s, and Eve’s point of view, thus the

prepare-and-measure scheme is contained in the class of entanglement-based schemes.

Conversely, consider the state (3.2) describing an entanglement-based scheme. If

Alice measures the system A in the {|x〉}-basis without revealing the result, we arrive

at the state (3.1). This shows that any entanglement-based scheme is also contained in

the class of prepare-and-measure schemes, which proofs their equivalence.

In certain cases however one would like to go further and describe a protocol as

being entirely based on distributing entangled states. To this end, define the so-called

encoding operators

Aj =

d−1∑

x=0

|φj
x〉〈x|. (3.4)

For simplicity, let us assume that the |φj
x〉 are mutually orthogonal for each encoding j,

implying that the Aj are unitary.

Using these operators, we see that the signal states can be prepared by the action
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3.2. Quantum Part/Distribution of Quantum States

of Aj :
d−1∑

x=0

√

PX(x)|x〉|φj
x〉 = 1⊗Aj

d−1∑

x=0

√

PX(x)|x〉|x〉 =: 1⊗Aj |φ̃+〉, (3.5)

where we have defined |φ̃+〉 =
∑d−1

x=0

√

PX(x)|x〉|x〉, which, for PX(x) = 1/d is equal to

the maximally entangled state in d dimensions. In this way, the preparation (encoding)

can be absorbed into the operator Aj. Suppose that we can find some operators Ãj such

that 1 ⊗ Aj |φ̃+〉 = Ãj ⊗ 1|φ̃+〉 holds. This means that Alice can perform a modified

encoding operation Ãj on her half of the state |φ̃+〉 instead of applying Aj to Bob’s part.

In particular, the distributed state is now simply |φ̃+〉, independent of the encoding

and thus it is the same for each protocol. It is easy to see that we can always [1]

choose Ãj := AjT if Aj does not map the states |x〉 from Cd into a higher-dimensional

Hilbert space. The important case where this happens is when Alice sends (probably

unintentionally) more than one copy of the signal states, that is Aj =
∑d−1

x=0 |φ
j
x〉

⊗n〈x|
for some n > 1. The analysis of these multi-photon events is more involved and will be

discussed for the example of the “Tomographic Protocol” in Sec. 6.4. Until then, we

will stick to case where n = 1 and where the encoding maps states from Cd to Cd′ with

d′ ≤ d.

3.2.4 Eavesdropping

An important consequence of this modified encoding approach in which for any protocol

only one particular state |φ̃+〉 =
∑d−1

x=0

√

PX(x)|x〉|x〉 has to be distributed is the simple

analysis of the eavesdropping attack: We will see in Ch. 4 that Eve’s attack can be fully

described by a unitary operation that she applies on the quantum state sent from Alice

to Bob and a “probe system” that she attaches to it. This means that the total state

shared between Alice, Bob, and Eve right after her attack is given by

|Ψ〉ABE = 1A ⊗ UBE |φ̃+〉AB|0〉E , (3.6)

where UBE is the unitary operation the eavesdropper applies on the system B and her

probe system E, which is in some arbitrary initial state |0〉. Eve keeps a subsystem

of BE and forwards the remaining part to Bob. Without loss of generality, we can

assume that she keeps her original probe E and sends B on to Bob, because the unitary

operation UBE can in particular contain a swapping operation of arbitrary subspaces.

This means that Bob will receive the state ρB = trAE(UBE |φ̃+〉〈φ̃+| ⊗ |0〉〈0|EU
†
BE),

whereas the knowledge of the eavesdropper about the key at this point is also fully

characterized by the quantum state held by her, which is

ρE = trAB(UBE |φ̃+〉〈φ̃+| ⊗ |0〉〈0|EU
†
BE). (3.7)
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This state is independent of the particular encoding and thus, independent of the specific

protocol.

To conclude this section, we have shown that the entanglement-based and prepare-

and-measure type of the preparation of the quantum system are equivalent, in the sense

that the total states (3.1) describing the distributed quantum states together with any

classical data the honest parties hold are the same from Alice’s, Bob’s, and Eve’s point

of view. Additionally, for a restricted set of encodings, where the signals states live

in a Hilbert space of dimension not greater than d, where d is defined by the state

|φ̃+〉 =
∑d−1

x=0

√

PX(x)|x〉|x〉, the quantum state held by the adversary is independent

of the encoding, as shown by (3.7). In particular, this holds for the BB84, B92, and

Ekert protocol. This is important because one step of the security analysis, classifying

the state held by the adversary, is therefore common for all such protocols (cf. Sec.4.3).

3.3 Classical Part

In this part of the key distribution the classical strings which Alice and Bob obtain

upon measuring the quantum state distributed in the quantum part, will be made equal

and secure. The states given in Eq. (3.1) (for the prepare-and-measure scheme) and

Eq. (3.2) (for the entanglement-based scheme) describe the situation before the signal

states reach Bob. Since they pass through a quantum channel about which Alice and

Bob have only partial knowledge (they might know some of its basic properties such as

attenuation in the absence of an eavesdropper), the state shared by Alice and Bob after

the transmission might be of a complicated structure. In general, it is only possible

for Alice and Bob to obtain some partial knowledge about this state, because there

are many states that are compatible with a given measurement statistics. In Ch. 6 we

present a special protocol in which Alice and Bob can in principle exactly infer which

quantum state they shared prior to the measurement. In this section, we present the

classical part of the protocol by only assuming that Alice and Bob share some n-partite

state ρn
AB .

3.3.1 Measurement

We already indicated in Sec. 3.2.1 and 3.2.2 how Bob decodes the dit string chosen

by Alice: For the ith signal, he chooses an encoding ki according to the probability

distribution PK , applies the POVM Mki and obtains the outcome yi ∈ {0, 1, . . . , d−1, ?},
where “?” denotes an inconclusive answer.

Denote by x = (x1, x2, . . . , xn) the dit string Alice has chosen in the preparation step
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(or which she has measured in an entanglement-based scheme). Since each xi was chosen

according to the probability distribution PX , we can introduce a random variable X with

range of all n dit-strings {0, 1, . . . , d−1}×n and an associated probability distribution PX

with PX(x) = PX(x1) · · ·PX(xn). Likewise, let y with yi ∈ {0, 1, . . . , d−1, ?} denote the

n outcomes of Bob’s application of Mk. Finally, we can introduce random variables Y,

J, and K for Bob’s measurement outcomes and Alice’s and Bob’s choice of the encoding,

respectively.

3.3.2 Parameter Estimation

All data Alice and Bob gathered is described by the random variables X, Y, J, and K.

By comparing (part of) this data, Alice and Bob can try to infer some characteristics of

the eavesdropping attack. In particular, they have to be able to conclude whether it is

at least possible to create a secret key from those classical data. An important quantity

that can be estimated in this step is the quantum bit error rate (QBER), which is the

fraction of signals i for which Alice and Bob chose the same encoding, i.e. ji = ki, but

where Bob got a measurement outcome different from what Alice prepared, i.e. xi 6= yi.

The calculation of secret key rates (cf. Sec. 6.2) also yields results that are dependent

on the parameters Alice and Bob estimate in this step.

3.3.3 Pre-processing

It might be advantageous for Alice and Bob not to generate a secret key directly from

X and Y, but to have Alice calculate two new random variables U and V obtained by

some conditional probability distributions PU|X and PV|U. Alice keeps U and sends V

to Bob. (Bob will calculate a guess for U using V, the error correction information, and

his data Y, see below.) In our analysis, we will neglect this step, thus choosing U ≡ X

and V to be trivial (uniform). Nevertheless, it turned out that the performance of a

protocol can actually be improved by choosing U to be a “noisy” version of X. On the

other hand, the variable V does not seem to play any role [1].

3.3.4 Information Reconciliation

Up to this point, the classical strings x and y Alice and Bob hold are not identical,

because in general, they originate from measuring some quantum state which is disturbed

due to Eve’s interaction. In the information reconciliation step, the strings are made

equal. To achieve this, Alice sends error correction information — quantified by another

random variable W — to Bob, who uses Y, V, W to calculate a guess for U. (In our
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case, U ≡ X, since we neglect the pre-processing.) We assume that after this step, Alice

and Bob hold the same random variable U, at least with probability 1−ε. Usually, in this

step W contains at least the information about J, that is, which encodings Alice used

for each signal. A simple so-called “sifting” method for Bob is then to simply discard all

signals for which he used a different encoding. There exist also more sophisticated sifting

strategies, for instance in the SARG protocol [52], in which more signals get discarded,

but Eve also has less knowledge about the remaining ones. In addition to the sifting,

also all other errors that were introduced by Eve or the noisy channel are corrected.

Since we neglect the pre-processing step, we will from now on denote the dit string

shared by Alice and Bob (from which the key will be created) by X and the error

correction information sent by Alice by W, which is also known by Eve, because it is

sent over the public channel. It has been shown in [53] that the minimal amount of

information W which allows Bob to guess X with probability of at least 1− ε, knowing

only Y and W , is given by Hε
0(X|Y ). This quantity, called conditional smooth Renyi

entropy, will be discussed in detail in Sec. 5.3 (see also Sec. 5.2).

3.3.5 Privacy Amplification.

Although at this point Alice and Bob share a common dit string x, it is not very

reasonable to directly use it as a secret key, since the eavesdropper might have too much

information about it. In the privacy amplification step, Alice and Bob shrink the length

of the key x and at the same time reduce the information that Eve might have about

it, thereby generating a secret key. Since privacy amplification is an important step

which will be the starting point of the analysis of of secret key rates, we review this

sub-protocol in more detail in Sec. 5.2. We also review the security analysis of privacy

amplification and present an expression for an achievable secret key length, as found

in [1].
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Chapter 4

Security of Quantum Key

Distribution

In this section, we present methods that enable us to quantify the secrecy of a key

created with a QKD protocol described in the previous chapter. The main peculiarity

is that we want to quantify the knowledge that an adversary holding a quantum system

might have about a classical key. For a better understanding of this issue, we start with

a brief review of a classical security definition in Sec. 4.1 and show that generalizing the

classical definition for the quantum case does not yield a satisfactory security definition.

In the main section of this chapter, Sec. 4.2, we will see how this issue can be settled by

a completely different approach, involving the distance of quantum states.

4.1 Security in the Classical World

Before focusing on the problem of how to define the security of a QKD protocol, we

take one step back and consider the classical case. Suppose Alice and Bob run some

(classical) key distribution protocol such that, at the end, they hold two strings SA

and SB, respectively. We now ask ourselves what qualifies SA and SB as secret key?

Certainly, the answer to that question depends on “how secure” we want the key to be.

Usually, we are interested in a security definition which is not based on any assumptions

such as limited computing power or memory, or restricting the possible actions of the

eavesdropper. Rather, we are looking for a statement that qualifies a key as information-

theoretically secure: [54]

Definition 4.1.1. Let SA, SB, and Z be random variables and ε ≥ 0. Then (SA, SB) is

an ε-secure key pair with respect to Z if there exists some random variable S with range
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S such that

Prob[SA = SB = S] ≥ 1 − ε (4.1)

H(S) = log |S| (4.2)

I(S : Z) ≤ ε. (4.3)

This definition has the following intuitive interpretation: The strings SA and SB

are secure with respect to an adversary having access to the information contained in1

Z, if they are almost (except with probability ε) equal to a uniform string S about

which the eavesdropper has almost no information. Uniformity is quantified by the

Shannon information H(S), and the knowledge of the eavesdropper about Z is given

by the mutual information I(S : Z). It is important to allow for small deviations from

the case of a perfectly secure key (ε = 0), since perfect security is impossible to obtain

with a probabilistic protocol running on a finite time scale. Def. 4.1.1 already provides

us with the strongest security definition appropriate for any classical application, thus

it seems reasonable to take it as a starting point for our quantum version.

Let us now think about how we can translate our consideration from the last sub-

section to the quantum world: Clearly, at the end of any (quantum) protocol, Alice and

Bob are left with classical data, the key. However, we have to consider the case that the

adversary conducts an attack that provides her with a quantum system which contains

some information about the key (we will see in the next section how she can do this).

In this case, a natural generalization of Eq. (4.3) would be to bound Eve’s accessible

information, which is the maximal amount of information she can obtain about the key

when choosing the optimal measurement on her quantum state. However, it has been

shown that such an approach is problematic, due to an undesirable feature of the ac-

cessible information: Although the adversary’s accessible information about the key S

is negligibly small, it might happen that S is completely insecure in certain applica-

tions [55]. This shows that the security definition Def. 4.1.1 and also its generalization

is not appropriate in the quantum case. In the next section, we introduce a security

definition which accurately describes secret keys generated with QKD protocols.

4.2 Security in the Quantum World

As we have already mentioned, in quantum key distribution we need to deal with the

case in which the adversary potentially holds a quantum system correlated with the

1For instance, Z might describe all public communication the adversary learns.
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classical data to which the privacy amplification is to be applied. Moreover, we need

to keep in mind that a QKD protocol is a probabilistic procedure that needs to be

described at least partly by classical probability theory. For instance, we have to be

able to include in the right way cases where the eavesdropper is extraordinarily lucky

when it comes to making decisions such as the choice of measurement bases. In every

protocol it might happen that Eve by accident chooses all the time the right basis in an

intercept-resend attack, but obviously only with exceedingly small probability. A second

major issue which one has to deal with when looking for reasonable security definitions

for QKD is universal composability : Certainly, the key generated by a QKD scheme

will be used in some other cryptographic application (e.g. a one-time pad); quite rarely,

Alice and Bob will be satisfied with shared randomness. Therefore, we need to consider

a QKD protocol composed with another cryptographic primitive. In this section, we will

introduce a security definition that takes this into account.

In order to describe such universal composability, we need a formalism introduced

in [56], the so-called “cq-states” defined in Def. 2.2.2: Consider a protocol together with

an arbitrary eavesdropping strategy that can output keys from some set X . For instance,

if the protocol consists of n rounds each creating a single bit, X might be the set of all

n-bit strings. Suppose a key x ∈ X is generated with probability px, and in this case

the eavesdropper holds a quantum system ρx
E. Introducing a classical random variable

X with range X and probability distribution PX(x) := px, the state

ρXE =
∑

x∈X

PX(x)|x〉〈x| ⊗ ρx
E, (4.4)

describes all possible outcomes of the QKD protocol, together with the corresponding

states of the adversary. Using this formalism, we can introduce the following definition

of a secret key [37, 55, 57, 58]:

Definition 4.2.1. Let ρSASBE ∈ B(HS ⊗ HS ⊗ HE) be a ccq-state for some random

variables SA and SB with range S and let ε ≥ 0. We say that (SA, SB) is an ε-secure

key pair, if

‖ρSASBE − ρuniform ⊗ ρE‖ ≤ ε, (4.5)

where ρuniform =
∑

s∈S |s〉〈s| ⊗ |s〉〈s|/|S| is the state describing an identical, uniformly

distributed key pair, and ρE = trSA,SB
(ρSASBE).

The interpretation of the state ρSASBE is that Alice and Bob hold (not necessarily

identical) bit strings described by the random variables SA and SB, respectively, and

Eve holds a quantum system ρE that might be correlated with them. The ideal case, in

which Alice’s and Bob’s strings are identical and uniformly distributed, together with
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Eve being completely uncorrelated with them, is given by ρuniform ⊗ ρE . A distance of ε

of the state ρSASBE to this ideal scenario means that the key pair (SA, SB) behaves as

an ideal key, except with probability ε.

4.3 Classification of Eavesdropping Strategies

In this section, we will give a classification of eavesdropping strategies based on the

complexity of the eavesdropper’s interaction with the quantum states and measure-

ment. Formally, the set of all possible eavesdropping strategies can be divided into

three classes, “individual”, “collective”, and “coherent” attacks. Individual attacks are

the simplest ones, corresponding to an eavesdropper with little power. Coherent attacks

are potentially the most powerful, assuming an eavesdropper with unlimited technolog-

ical power and resources, only being limited by the laws of nature. More concretely,

these classes of strategies are defined by how Eve interacts with the quantum signals

that are sent from Alice to Bob and how she processes the information she gathers in

this way. The most general way to describe how information about a quantum system

ρA is extracted is the following: Attach an ancilla system in a predefined state |0〉〈0|E to

ρA and perform a unitary operation U on the composite system ρA ⊗ |0〉〈0|E. Then do

a measurement on the ancilla system ρE := trA(U †ρA ⊗ |0〉〈0|EU). The measurement is

given by a POVM M = {Mj} which yields outcome j with probability tr(Mjρ), when

measuring a state ρ. We denote the classical probability distribution which is obtained

in this way by P ρ
M, i.e. P ρ

M(j) = tr(Mjρ).

Consider the case where Alice sends n quantum systems ρ1
A, . . . , ρ

n
A to Bob. An indi-

vidual attack is an attack where Eve attaches an ancilla system |0〉〈0|E to each state ρi
A,

applies the same unitary operation U and measures her part of all the composite systems

individually using a POVM M1 for each system. Collective attacks are more general

concerning the measurement, as they allow the eavesdropper to measure all ancilla sys-

tems collectively, using a POVM Mn acting on all of her probes simultaneously. The

most general attack is the coherent attack, in which it is assumed that Eve attaches one

“large” ancilla system to the total state ρ1
A⊗· · ·⊗ρn

A and then performs a global unitary

transformation Un and measurement. More formally, the probability distribution that

the eavesdropper obtains for each class of attacks is given by:

Individual: P
ρ1

E

M1 · · ·P
ρn

E

M1 , ρi
E = trA(U †ρi

A ⊗ |0〉〈0|EU), (4.6)

Collective: P
ρ1

E
⊗···⊗ρn

E

Mn , ρi
E = trA(U †ρi

A ⊗ |0〉〈0|EU), (4.7)

Coherent: P ρE

Mn , ρE = trA(U †
n(ρ1

A ⊗ · · · ⊗ ρn
A) ⊗ |0〉〈0|EUn), (4.8)
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Note that in this classification we always included a final measurement on the eavesdrop-

per’s system. This assumption has to some extent only a historical legitimation, since

before the introduction of universal composability, the mutual information was used to

quantify the eavesdropper’s knowledge about the key. Thus, one had to classify how the

adversary extract classical information out of her quantum state, which naturally leads

to the distinction we have presented so far.

In the previous section we have seen that if we demand universal composable security,

we have to consider the case where the adversary keeps a quantum system beyond the

end of the QKD protocol. Since the distinction between individual and collective attacks

is only on the level of measurements, for our security analysis which does not consider

measurements on the adversary’s system, these attacks are actually equivalent. The

only two possibilities we can now discriminate is whether Eve’s attaches a probe to each

signal individually (the collective attack) or globally to all signals (the coherent attack).

4.4 The Role of Purifications

This section covers a simple mathematical concept in quantum information theory, pu-

rifications. Note that there exists two different notions of the word “purification”: One

of them describes the process of performing a global operation on several identical copies

of input states, such that the purity of some of them is increased. One example of this

process in entanglement distillation. When we are talking about a purification of some

state ρ ∈ B(H), we mean a pure state |Ψ〉 ∈ H⊗Haux from a higher-dimensional Hilbert

space such that traux |Ψ〉〈Ψ| = ρ. In subsection 4.4.1, we explain how this concept can

be used to find the quantum state describing the system of Alice, Bob, and Eve. Sub-

section 4.4.2 deals with physical processes that create purifications. This section partly

goes beyond the concepts of QKD, but we believe that the results are interesting on

their own.

4.4.1 Purifications in QKD

In chapter 5 dealing with privacy amplification, it is shown that it is important for the

analysis of the protocol to know the overall distributed state ρABE describing Alice’s,

Bob’s and Eve’s system after the eavesdropping attack, but before the measurements.

We have already derived in Sec. 3.2.3 that this state is given by

|Ψ〉ABE = UBE(1⊗Aj |φ̃+〉)|0〉E , (4.9)
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where the encoding operators Aj account for the signal states used in the protocol and

|φ̃+〉 =
∑d−1

x=0

√

PX(x)|x〉|x〉. Eq. (4.9) is valid for all three classes of eavesdropping

strategies presented in the previous section, but for simplicity, we investigate it for

collective attacks. Also recall that for the idealized scenario in which in fact single

copies of the signal states |φj
x〉 are prepared, the preparation can be performed by the

action of some modified encoding operators Ãj acting on Alice’s system,

|Ψ〉ABE = Ãj ⊗ UBE |φ̃+〉|0〉E, (4.10)

thus the attack of the eavesdropper is performed on (one half of) the state |φ̃+〉, in-

dependently of the actual encoding. However, Eq. (4.10) is not of great help, because

it still contains an arbitrary (unknown) unitary operation UBE . Fortunately, one can

easily characterize Eve’s state simply in terms of the state shared between Alice and

Bob after the distribution, ρAB. This is because if Eve applies a unitary operation on

the pure state |φ̃+〉 sent by Alice, UBE |φ̃+〉|0〉E = |Ψ〉ABE , the overall state |Ψ〉ABE will

remain pure and fulfills trE |Ψ〉〈Ψ|E = ρAB , i.e., Eve holds the purifying system of ρAB .

This approach is particularly suited for the analysis of the tomographic protocol

(cf. Ch. 6) as in this protocol it is (at least in principle) possible for Alice and Bob

to determine the state ρAB they share after the distribution. As we will see, for the

calculation of the achievable key rate it is necessary to know the quantum state Eve

holds, which then can be easily calculated by assuming that Eve holds the purifying

system of ρAB.

4.4.2 On the (Im)possibility of Physical Purification

The question that arises in this context is: “How realistic is the assumption that Eve

can create a purification of a given quantum system?” Being realistic means that there

should exist a physical process, mapping the input state to its purification. We started

investigating this topic in view of its application to QKD, as it is presented in the pre-

vious section. Specifically, we ask whether it is possible to purify a number of unknown

quantum states by a single physical operation. However, it turned out that in QKD,

this question can be answered by “no”.

For any state ρ ∈ B(H), from the spectral decomposition ρ =
∑

i pi|λi〉〈λi|, with

pi ≥ 0 and
∑

i pi = 1, a purification is given by |Ψ〉 =
∑

i

√
pi|λi〉|χi〉, where the |χi〉 are

mutually orthogonal states in an auxiliary Hilbert space Haux. Such a state is unique

up to unitary operation on Haux [51]. Since we are interested in physical processes, we

look for completely positive and trace preserving maps Λ (which we will call “purifier”)

fulfilling tr Λ(ρ)2 = 1 (purity) and traux Λ(ρ) = ρ (“faithfullness”).
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The first question that we may ask is: “Does some physical map Λ exist that maps

any input state onto its purification?” The answer to this question is given by the

following [59]

Theorem 4.4.1. (i) Every purifier that fulfills the purity condition for all input states

is a constant map.

(ii) Every purifier that fulfills the faithfullness condition for all input states does not

increase the purity of any state.

Proof. We proof (i) by contradiction. Suppose there exists some purifier Λ such that

Λ(ρ)2 = Λ(ρ) for all ρ ∈ B(H) with at least Λ(ρ1) 6= Λ(ρ2) for some ρ1, ρ2 ∈ B(H). But

then for the state ρ3 = (ρ1+ρ2)/2, by linearity of Λ, requiring Λ(ρ3) = (Λ(ρ1)+Λ(ρ2))/2

to be pure also implies that Λ(ρ1) = Λ(ρ2).

To show (ii), note that since for pure states |φ〉, traux Λ(|φ〉〈φ|) = |φ〉〈φ|, we have that

Λ(|φ〉〈φ|) = |φ〉〈φ|⊗σφ, for some σφ ∈ B(Haux). Considering the spectral decomposition

of an arbitrary state ρ, ρ =
∑

i pi|λi〉〈λi|, due to linearity we find for the purity of the

output: tr Λ(ρ)2 = tr(
∑

i piΛ(|λi〉〈λi|))2 = tr(
∑

i pi|λi〉〈λi| ⊗ σλi
)2 =

∑

i p
2
i trσ2

λi
≤

∑

i p
2
i = tr ρ2, i.e., the purity of ρ is not increased.

This theorem shows that it is impossible to find a physical map that creates the

purification of its input state whenever the input state is arbitrary (or unknown). More-

over, it tells us that only one of the two properties (purity and faithfullness) is already

sufficient to rule out the existence. Clearly, the assumptions that Λ purifies all possible

input states poses some great restrictions.

The next task therefore is to find sets M ⊂ B(H) of states that can be purified. We

call a set M of states essentially pure if for all states ρi ∈ M, there exist some states

σB and σaux, some unitary operation U (independent of ρi), and a pure state |φi〉 ∈ HA

such that ρi ⊗ σaux = U |φi〉〈φi| ⊗ σBU
†. Note that the splitting between the Hilbert

spaces is different for the left and right hand side: H⊗Haux ≃ HA⊗HB. It is easy to see

that essentially pure states can be purified: First note that any completely positive map

can be characterized by appending a pure state, performing a global unitary operation

and tracing out part of the combined system. Consider a completely positive map Λ

generating pure states and suppose there exists some map Λ−1 such that Λ−1(Λ(ρ)) = ρ.

If we write Λ−1(ρ) = traux Uρ ⊗ |ψ〉〈ψ|U †, then Λ̃(ρ) := UΛ(ρ) ⊗ |ψ〉〈ψ|U † still yields

a pure state, because adding a pure state and performing unitary operations does not

change the purity. Moreover, the map Λ̃ is a purifier, since traux Λ̃(ρ) = ρ. This means

that whenever we can find a reversible process Λ−1 for a map Λ that outputs pure states,

we can construct a purifier. Applying this result to essentially pure states, we see that
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we have a map Λ(ρi) = trB Uρi ⊗ σauxU
† that maps each state ρi ∈ M to a pure state

|φi〉. Additionally, there exists a reverse map Λ−1(|φi〉〈φi|) = traux U
†|φi〉〈φi| ⊗ σBU

which implies that there exists a purifier for the set M.

Not so obvious, essentially pure state are the only states that can be collectively

purified by a single physical operation. This is formalized by the following [59]

Theorem 4.4.2. Let M ⊂ B(H). Then the following statements are equivalent:

(i) M is a set of essentially pure states.

(ii) A purifier for M exists.

(iii) There exists a completely positive and trace preserving map Λ such that tr Λ(ρ)2 =

1 for all ρ ∈ M and ‖ρ− ρ′‖ = ‖Λ(ρ) − Λ(ρ′)‖ for all ρ, ρ′ ∈ M.

Proof. For the proof, see [59].

Although this theorem classifies all states that can be purified completely, it is in

general not easy to check whether a set of states is essentially pure.

Let us close our excursion about physical purification with the remark that, al-

though the impetus for the study of this topic was the description of eavesdropping

attacks in QKD, the concept presented in this section is not directly applicable: For

the entanglement-based scheme (cf. Sec. 3.2.2), Eve seeks to create a purification of

the state ρAB that gets distributed between Alice and Bob. Since Alice sends half of

the state |φ̃+〉AB =
∑d−1

x=0

√

PX(x)|x〉|x〉, Eve can only act on this half of the state:

|φ̃+〉 → 1A ⊗ UBE |φ̃+〉AB |0〉E =: |Ψ〉ABE . Thus obviously, after her attack, the overall

state |Ψ〉ABE is pure and she holds the purifying system ρE = trAB |Ψ〉〈Ψ|ABE of the dis-

tributed state ρAB = trE |Ψ〉〈Ψ|ABE . On the other hand, for the prepare-and-measure

scheme (cf. Sec. 3.2.1), Alice sends one of the r signals states |φx
j 〉 to Bob. But here, Eve

is not interested in obtaining a purification of each single state. Rather, she would like to

have the purifying system of the state describing all possible signals, Eq. (3.1). But we

already have shown in Sec. 3.2.3 that this state is equivalent to the entanglement-based

version, therefore we know that Eve can actually obtain the purifying system.
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Privacy Amplification

This chapter deals with the privacy amplification (PA) protocol Alice and Bob apply

after the information reconciliation step (cf. Sec. 3.3.4). We start in Sec. 5.1 by ex-

plaining the basic ideas of privacy amplification from a purely classical point of view.

Although in QKD, PA remains a classical protocol, i.e. it is some algorithm which is

applied to classical data. Problems arise when we need to consider the case where the

adversary holds a quantum system which might be correlated with this data. In Sec. 5.2,

we will deal with this issue. The main result which we present in this section was derived

in [37, 1]; it is an expression for the maximally achievable key length one can obtained

by privacy amplification, as a function of entropies of the quantum states the adversary

holds. These entropies are discussed in detail in Sec. 5.3, because they play a crucial role

in the calculation of the key length. This section will be a cornerstone for the analysis

of the “Tomographic Protocol” in Ch. 6.

5.1 Introduction

The aim of privacy amplification is to turn a string of (e.g.) bits held by the honest par-

ties and about which the adversary might have some knowledge into a secret one. This is

in general done by applying a certain function which shrinks the length of the string, but

on the other hand outputs a key about which Eve has less information. In this section,

we present a classical scenario as an example of how this can be achieved. We denote

the string that Alice and Bob hold by random variables X and Y, respectively, with

range X = Y = {0, 1}n. Eve’s knowledge is quantified by a random variable Z with the

same range, and their correlation is given by a tripartite probability distribution PXYZ.

For simplicity, we assume that the data is generated by independent and identically per-

formed experiments, that is, the probability distribution PXYZ factorizes with respect
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X Y Z PXY Z

0 0 0 1/6

0 0 1 1/6

0 1 0 1/6

1 0 1 1/6

1 1 0 1/6

1 1 1 1/6

Figure 5.1: Example for correlations between three random variables X, Y , and Z. As a

side note, these correlations can be obtained when measuring a certain bound-entangled

state given in [60], in the computational basis.

to the n realizations, PXYz(x,y, z) = PXY Z(x1, y1, z1) · · ·PXY Z(xn, yn, zn). This means

that we only need to consider the probability distribution PXY Z of a single bit, which, as

an example, is given in Fig. 5.1. Alice and Bob now apply a simple privacy amplification

protocol devised in [31]: They agree on a block length L and divide their n-bit strings

x and y into blocks of length L. For each block i, Alice randomly choses a “key bit” ai

and adds it modulo 2 to each bit in the block: Ai := (x1 ⊕ ai, x2 ⊕ ai, . . . , xL ⊕ ai). All

the blocks Ai are then announced over the public channel.

Bob, learning Ai, adds his own bits modulo 2, i.e. he computes for each block

Bi = (x1 ⊕ ai ⊕ y1, x2 ⊕ ai ⊕ y2, . . . , xL ⊕ ai ⊕ yL) and accepts the ith block if all bit

values in Bi are the same, xj ⊕ yj ⊕ ai := bi, for all 1 ≤ j ≤ L. If Bob accepts the block

i, which happens when his bits yj are either all correlated or all anti-correlated with

Alice’s bits xj , both add ai and bj, respectively, to the list of newly created key bits.

The probability that Alice’s and Bob’s key bit coincide, given that Bob accepts a block,

is given by

Prob[ai = bi|Bob accepts block i] =

(
2
3

)L

(
2
3

)L
+
(

1
3

)L
, (5.1)

which tends to 1 for large L.

Eve’s best strategy is to do the same as Bob does, i.e., to subtract her own block from

Alice’s block Ai in order to compute her guess ei for the bit ai. To calculate Eve’s rate

of success, we look again at the probability distribution PXY Z given in Fig. 5.1: Given

Bob accepts block, the corresponding random variables X,Y,Z must be distributed

either according to line 3 and 4 or according to line 1, 2, 5, and 6, without any mixtures

between those groups. In the first case, Eve will always guess Alice’s bit value correctly,

whereas in the second case, she will succeed only with probability 1/2, since her variable
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is completely uncorrelated from Alice’s in that situation. Thus,

Prob[ai = ei|Bob accepts block i] =

(
1
3

)L
+
(

2
3

)L 1
2

(
2
3

)L
+
(

1
3

)L
, (5.2)

which tends to 1/2 for large L. This means that in the limit of large block length, Alice

and Bob can generate a new pair of strings (ai, bi), which are almost perfectly correlated,

yet completely unknown to Eve.

This simple privacy amplification scheme may no be very efficient, since possibly

very large block lengths L are needed to remove Eve’s correlations with the key. We will

focus on another method, the so-called two-universal hashing. Roughly speaking, Alice

randomly chooses a function f from a certain set of functions (see Def. 5.1.1 below) and

computes f(x). Then she announces f via the public channel to Bob, who on his side

computes f(y). The key pair is then given by (f(x), f(y)), which can be shown to be

more private than the original data (x,y) before. We will formalize this for the relevant

quantum mechanical case in Sec. 5.2.

Definition 5.1.1. A family of two-universal functions is a set F of functions F : X → Y
together with a probability distribution PF , such that

Prob[f(x) = f(x′)] ≤ 1

|Y| , ∀x 6= x′ ∈ X , (5.3)

where f ∈ F is randomly chosen according to PF .

We are interested in hash functions, i.e., functions where the cardinality of the image

is (much) smaller than that of the domain. In particular, we will consider functions

mapping their input to a bit string, that is, F : X → {0, 1}ℓ, with ℓ ≤ |X |. In the

following, we will call ℓ the key length.

5.2 Privacy Amplification in the Quantum World

The main peculiarity with which we need to deal is the fact that the eavesdropper holds

a quantum system which is correlated with Alice’s and Bob’s data. This implies that we

cannot argue in the way we did in the previous section, and we have also explained in

Sec. 4.1 that it is not enough to consider arbitrary measurements for Eve. It is important

that we consider that the adversary holds a quantum system throughout the protocol.

In this section, we review a result showing that privacy amplification by two-universal

hashing can generate unconditionally secure keys. At first, we focus on the case where

Alice’s and Bob’s data are already identical. Afterwards, we will loosen this assumption

by including the error correction step into the analysis.
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Assume that Alice and Bob apply the privacy amplification protocol at a step in

which Alice’s and Bob’s classical data is already identical. Therefore, we only need

to consider a single random variable X which is correlated with a quantum system E

under Eve’s control, as described by a cq-state ρXE . Alice chooses a hash function f

from the set F according to PF (which may be taken to be uniform), computes f(x),

and communicates f to Bob. After this step, they hold a classical bit string f(x), where

x is chosen according to PX and f according to PF . Since the choice of f is broadcasted

over the classical channel, we have to add this information to Eve’s pool of knowledge.

We denote the quantum state describing this situation together with the system E that

was correlated with x by ρF (X)EF . Formally, it is given by

ρF (X)EF =
∑

f∈F

PF (f)ρf(X)E ⊗ |f〉〈f |, (5.4)

where ρf(X)E is the joint state where a particular function f is applied to X:

ρf(X)E =
∑

x∈X

|f(x)〉〈f(x)| ⊗ ρx
E (5.5)

Note that in (5.4), both the system E and F are under Eve’s control.

The following theorem bounds the distance of a secret key generated by two-universal

hashing from an ideal key:

Theorem 5.2.1. Let ρXE ∈ B(HX ⊗ HE) be a cq-state for some random variable X

with range X and let {F : X → {0, 1}ℓ̃} be a family of two-universal hash functions.

Furthermore, denote by ρF (X)EF the state after the two-universal hashing. Then

‖ρF (X)EF − ρU ⊗ ρEF‖ ≤ 1

2
2−

1

2
(S2(ρXE)−S0(ρE)−ℓ̃), (5.6)

where ρU = 1/2ℓ̃
∑

x∈{0,1}ℓ̃ |x〉〈x| is a uniform key and ρEF = trF (X) ρF (X)EF and ρE =

trX ρXE.

Proof. For the proof, see [37, 58].

The quantities S2 and S0, occurring in (5.6) (and Sε′
2 and Sε′

0 that appear below

in (5.7)) are called (smooth) Renyi entropies. We devote Sec. 5.3 to their detailed

analysis. It turns out that the bound in (5.6) can be generalized and potentially improved

by exploiting the triangle inequality of the trace distance. The simple calculation can

be found in [58], yielding

‖ρF (X)EF − ρU ⊗ ρEF‖ ≤ 1

2
2−

1

2
(Sε

′

2 (ρXE)−Sε
′

0 (ρE)−ℓ̃) + 2ε′, (5.7)
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for any ε′ ≥ 0.

When studying QKD protocols, one is usually interested in the achievable key length

for a given scenario. Moreover, one might require that the generated key fulfills some

security requirements, for instance, it is ε-secure for some predefined ε. Thus, one would

like to have the left-hand side of (5.7) to be upper bounded by ε, i.e.

1

2
2−

1

2
(Sε

′

2 (ρXE)−Sε
′

0 (ρE)−ℓ̃) + 2ε′
!
≤ ε. (5.8)

This relation holds if the secret key length ℓ̃ is bounded by

ℓ̃ ≤ Sε′
2 (ρXE) − Sε′

0 (ρE) + 2 log(2ε− 4ε′). (5.9)

In this equation, we have one free parameter 0 ≤ ε′ < ε/2, with ε fixed by the security

requirement. In [37], ε′ was put to ε/4, for no apparent reason. To keep our notation

consistent with [1], we start with a slightly modified version of (5.9), which was used

in [1], however no proof was given:

ℓ̃ ≤ Sε′
2 (ρXE) − Sε′

0 (ρE) + 2 log(ε). (5.10)

with ε′ = (ε/8)2 (again for no apparent reason).

Relation (5.10) has the following interpretation: If Alice and Bob managed to dis-

tribute some random string X about which the adversary has some knowledge (in the

form of a correlated quantum state), such that the total system is described by the state

ρXE , then, performing a PA protocol based on two-universal hashing, it is impossible

to turn X into ε-secret of length ℓ̃ larger than the right hand side of Eq. (5.10). Note

that this result is independent of how Alice and Bob actually obtained X, in particular,

which distribution protocol they chose (cf. Sec. 3.2). Another very important feature of

relation (5.10) is that the bound on the key length ℓ̃ is tight, i.e. for an optimal choice

of the PA protocol, equality can be achieved [61]. Since the proof of this statement is

even constructive [61], we will from now on assume that Alice and Bob use an optimal

PA protocol, thus, we will take

ℓ̃ = Sε′

2 (ρXE) − Sε′

0 (ρE) + 2 log(ε), (5.11)

where ℓ̃ is the maximally achievable key length, as a starting point for our further

analysis (cf. also [1]).

Note that up to now, we have assumed that Alice and Bob both already hold the

same string X. However to achieve this, they have to correct their original strings X and

Y (cf. Sec. 3.3.4). This involves sending some error correction information W over the
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public channel, which means that some information is leaking to Eve. One can show [1]

that, using an optimal error correction protocol1, the length of W is given by Hε′
0 (X|Y).

Here, Hε′
0 is another smooth Renyi entropy, which is defined below in Sec. 5.3. This

amount has to be subtracted from (5.11), leading to [1]

ℓ = Sε′

2 (ρXE) − Sε′

0 (ρE) −Hε
0(X|Y) + 2 log(ε). (5.12)

Finally, we have obtained an expression for the obtainable secret key length ℓ for the

case where Alice and Bob start with some classical data X and Y, respectively, and

where the correlation between the data X and the eavesdropper is described by the

quantum state ρXE .

5.3 Smooth Renyi Entropies

In this section, we derive technical results concerning smooth Renyi entropies. Part

of these result can be found in [62]. We start with the general definition and show in

Sec. 5.3.2 how it can be reformulated in way that allows us to explicitly calculate the

entropies for arbitrary input states. The main focus will lie on the analysis of Sε
2, S

ε
0,

and Hε
0 , which are the entropies occurring in the formula for the key length, Eq. (5.12).

For these cases, we derive in Sec. 5.3.3 a solution which can be calculated by a simple

algorithm. This allows us to calculate the obtainable key rate for the “Tomographic

Protocol” (cf. Ch. 6). Finally, in Sec. 5.3.4, we derive some additivity properties of the

Renyi entropies Sε
2 and Sε

0, which play an important role in the analysis of multi-photon

events in Sec. 6.4.

5.3.1 General Properties

Before we give the definition of the smooth Renyi entropies, we have to introduce some

notation: Recall that we denote by P(Cd) the set of positive operators acting on Cd and

by B(Cd) := {σ ∈ P(Cd) : trσ = 1} the set of all density matrices acting on Cd. For

ρd ∈ B(Cd), define ed′(ρd) := ρd⊕diag (0, . . . , 0)
︸ ︷︷ ︸

d′−d

to be an embedding of ρd into a Hilbert

space of dimension d′. Finally, let Bε(ρd) := {σd′ ∈ B(Cd′) : d′ ≥ d, ‖σd′ − ed′(ρd)‖ ≤ ε}
be the set of density operators of dimension greater than or equal to d which are ε-close

to ρd. In this chapter, we will often index a density matrix with the dimension of the

Hilbert space on which it is acting.

1Note that realistic error correction protocols need more overhead. Their analysis however is much

more involved and a topic of current research on its own.
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The quantum version of smooth Renyi entropies is defined in the following way [1, 37]

Definition 5.3.1. Let ρd ∈ B(Cd), α ∈ [0,∞], and ε ∈ [0,∞). The ε-smooth Renyi

entropy of order α of ρd is defined as

Sε
α(ρd) :=

1

1 − α
inf

σ
d′
∈Bε(ρd)

log trσα
d′ . (5.13)

For the definition of the classical conditional smooth Renyi entropy, we use the nota-

tion that for some random variable X with range X and associated probability distribu-

tion PX , we denote by Bε(PX) := {QX : QX(x) ≤ PX(x)∀x ∈ X ,∑x∈X QX(x) ≥ 1− ε}
the set of probability distributions QX which are ε-close to PX .

Definition 5.3.2. Let X and Y be two random variables with range X and Y, respec-

tively, and let PXY be some joint probability distribution. Furthermore, let α ∈ [0,∞],

and ε ∈ [0,∞). The conditional ε-smooth Renyi entropy of order α of X given Y is

defined as

Hε
α(X|Y ) :=

1

1 − α
inf

QXY ∈Bε(PXY )
max
y∈Y

log
∑

x∈X

QX|Y =y(x)
α. (5.14)

We are in particular interested in the entropies occurring in Eq. (5.12), that is, Sε
2,

Sε
0, and Hε

0 . For these cases, the two definitions from above reduce to the following

form:

Sε
2(ρd) = − inf

σ
d′
∈Bε(ρd)

log trσ2
d′ (5.15)

Sε
0(ρd) = inf

σ
d′
∈Bε(ρd)

log rankσd′ (5.16)

Hε
0(X|Y ) = min

A:Prob[A]≥1−ε

(

max
y∈Y

log |{x ∈ X : PXA|Y =y(x) > 0}|
)

, (5.17)

where the minimum in (5.17) ranges over all events A occurring with probability of at

least 1 − ε.

The explicit calculation of these entropies will be done in Sec. 5.3.3. However,

for the case of the quantum Renyi entropies Sε
2 and Sε

0, we will first translate the

minimization over the set Bε(ρd) to a minimization over real vectors, which eases the

analysis significantly. The derivation of this transformation is the subject of the following

section.

5.3.2 Simplifications for Sε
2 and Sε

0

The main result of this section is that since the Renyi entropies only depend on the

eigenvalues of the states taken from the set Bε(ρd), the minimization can equivalently
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be performed over the set of spectra that can be found in Bε(ρd). This statement is

proven below in Lemma 5.3.1.

Recall the definition of the set of operators which are ε-close to a given one, Bε(ρd) :=

{σd′ ∈ B(Cd′) : d′ ≥ d, ‖σd′ − ed′(ρd)‖ ≤ ε}. Now define Dε(ρd) := {σd′ ∈ Bε(ρd) :

[σd′ , ed′(ρd)] = 0} to be the set of all such operators which additionally commute with

ρd. Finally, let λ(ρd) be the ordered spectrum of ρd, i.e. λ(ρd) = (λ1, . . . , λd) ∈ Rd in

ascending order and denote by ‖λ−λ′‖ = 1/2
∑

i |λi − λ′i| the distance of the vectors λ

and λ′.

Lemma 5.3.1. The two sets Λε
B(ρd) = {λ(σd′) : σd′ ∈ Bε(ρd)}, and Λε

D(ρd) = {λ(σd′) :

σd′ ∈ Dε(ρd)}, defined as the sets of spectra that correspond to the sets of density matrices

Bε(ρd) and Dε(ρd), respectively, are identical.

Proof. Since Dε(ρd) ⊂ Bε(ρd), it follows directly that Λε
D(ρd) ⊂ Λε

B(ρd). To show the

other inclusion, let µ ∈ Λε
B(ρd). This means that there exists some σd′ ∈ Bε(ρd) such

that µ = λ(σd′) and ‖σd′ − ed′(ρd)‖ ≤ ε. From the spectral decomposition ed′(ρd) =
∑d′

i=1 νi|i〉〈i| define σ̃d′ :=
∑d′

i=1 µi|i〉〈i|, i.e. [σ̃d′ , ed′(ρd)] = 0. We then have that

‖σ̃d′ − ed′(ρd)‖ = ‖λ(σ̃d′) − λ(ed′(ρd))‖ (5.18)

= ‖λ(σd′) − λ(ed′(ρd))‖ (5.19)

≤ ‖σd′ − ed′(ρd)‖ (5.20)

≤ ε, (5.21)

which implies that σ̃d′ ∈ Dε(ρd), and since µ = λ(σ̃d′), it follows that µ ∈ Λε
D(ρd).

We will now reformulate the definition of Dε(ρd). Since for all σd′ ∈ Dε(ρd), we

have that [σd′ , ed′(ρd)] = 0, it follows that σd′ = σd ⊕ σd′−d with σd, σd′−d ∈ P(Cd) and

trσd, tr σd′−d ≤ 1. Thus,

‖σd′ − ed′(ρd)‖ = ‖σd − ρd‖ + ‖σd′−d‖ (5.22)

= ‖σd − ρd‖ +
1

2
trσd′−d (5.23)

= ‖σd − ρd‖ +
1

2
(1 − trσd). (5.24)

We can therefore write

Dε(ρd) = {σd ⊕ σd′−d ∈ B(Cd′) : (5.25)

trσd, trσd′−d ≤ 1, [σd, ρd] = 0, ‖σd − ρd‖ ≤ ε− 1

2
(1 − trσd)}. (5.26)
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Turning to the smooth Renyi entropies Sε
α(ρd), since they only depend on the eigenvalues

of ρd, we can use the above lemma to replace the infimum over the set Bε(ρd) by the

infimum over Dε(ρd):

Sε
α(ρd) :=

1

1 − α
inf

σ
d′
∈Bε(ρd)

log trσα
d′ (5.27)

=
1

1 − α
inf

σ
d′
∈Dε(ρd)

log trσα
d′ (5.28)

=
1

1 − α
inf

σd⊕σ
d′−d

∈Dε(ρd)
log tr(σd ⊕ σd′−d)

α (5.29)

=
1

1 − α
inf

σd⊕σ
d′−d

∈Dε(ρd)
log(trσα

d + trσα
d′−d) (5.30)

=
1

1 − α
inf

σd∈D̄ε(ρd),d′≥d
log

[

trσα
d + (d′ − d)

(
1 − trσd

d′ − d

)α]

(5.31)

=
1

1 − α
inf

σd∈D̄ε(ρd),d′≥d
log

[

trσα
d +

1

(d′ − d)α−1
(1 − trσd)

α

]

(5.32)

=
1

1 − α
inf

σd∈D̄ε(ρd)
log tr σα

d , α 6= 1 (5.33)

The crucial step in this derivation is from (5.30) to (5.31): Note that σd′−d is only

restricted by trσd′−d = 1− trσd, otherwise, it is completely arbitrary (it only has to be

positive). Thus the infimum over trσα
d′−d can be evaluated separately, and it is obtained

for a uniform distribution of the eigenvalues, i.e. each eigenvalue is trσd′−d/(d
′ − d) =

(1− tr σd)/(d
′ − d). The only freedom one still has is to choose the dimension d′ and σd,

which is now taken from the set

D̄ε(ρd) := {σd ∈ P(Cd) : trσd ≤ 1, [σd, ρd] = 0, ‖σd − ρd‖ ≤ ε− 1

2
(1 − trσd)}, (5.34)

which is loosely speaking the “remaining” part of the set Dε(ρd) when forgetting about

σd′−d. Concerning the step from (5.32) to (5.33), note that the second term in the

logarithm is always non-negative, so for α > 1 the infimum is obtained for d′ → ∞,

whereas for α < 1 it is obtained for d′ = d, which leads to (5.33) in both cases. In

particular, for α < 1, the final infimum has to be taken over all σd ∈ D̄ε(ρd) with

tr σd = 1. Since for α < 1, the minimization is performed over the set D̄ε(ρd) containing

states with arbitrary trace, we can split up the infimum by fixing the trace to be t and

finally minimizing over t, which leads to

Sε
α(ρd) =







1
1−α inf

σd∈D̄
ε
1
(ρd)

log trσα
d for α < 1

1
1−α inf

1−ε≤t≤1
inf

σd∈D̄
ε
t
(ρd)

log trσα
d for α > 1

, (5.35)
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where we have defined the set D̄ε
t (ρd) to be the set D̄ε(ρd) where all density matrices

have trace t:

D̄ε
t (ρd) := {σd ∈ P(Cd) : trσd = t, [σd, ρd] = 0, ‖σd − ρd‖ ≤ ε− 1

2
(1 − t)} (5.36)

The range of the parameter t is obtained by using the following lower bound on the

trace distance of the operators σd and ρd which occurs in (5.36):

ε− 1

2
(1 − t) ≥ ‖σd − ρd‖ (5.37)

=
1

2
tr |σd − ρd| (5.38)

≥ 1

2
| tr(σd − ρd)| (5.39)

=
1

2
(1 − t) (5.40)

⇔ t ≥ 1 − ε, (5.41)

where we have used that σd and ρd commute.

The calculations can finally be further simplified by observing that the function

which is to be minimized, log trσα
d , only depends on the eigenvalues of σd. Since the

infimum in (5.33) only ranges over all σd taken from a set D̄ε(ρ) of operators which

commute with the input state ρ, we can entirely focus on the eigenvalues of ρ (this is

the essence of Lem. 5.3.1). Therefore, we can write

Sε
α(ρd) =







1
1−α inf

µ∈Λε

D̄1
(ρd)

log
d∑

i=1
µα

i for α < 1

1
1−α inf

1−ε≤t≤1
inf

µ∈Λε

D̄t
(ρd)

log
d∑

i=1
µα

i for α > 1

(5.42)

where

Λε
D̄t

(ρd) = {µ ∈ Rd :

d∑

i=1

µi = t, ‖µ − λ(ρd)‖ ≤ ε− 1

2
(1 − t)}. (5.43)

To conclude, we have transformed the minimization over a subset of a Hilbert space

to a minimization over a set of real vectors subjected to simple constraints. In the next

subsection, we will evaluate Eq. (5.42) for two special cases (namely α = 0 and α = 2)

which play an important role in the privacy amplification step (cf. Sec. 5.2).

5.3.3 Explicit Calculation of Sε
2, Sε

0, and Hε
0

The aim of this section is to construct an algorithm that computes the Renyi entropies

Sε
2 and Sε

0. Due to the minimization involved, it is not possible to present a closed

expression, since Sε
α(ρ) strongly depends on the explicit distribution of the eigenvalues

of ρ. However, we found a strategy that allows us compute these entropies efficiently.
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Calculation of Sε
0(ρ)

For the case of α = 0, from Eq. (5.42) we find that the smooth Renyi entropy takes a

very simple form:

Sε
0(ρ) = inf

µ∈Λε

D̄1
(ρ)

log

d∑

i=1

µ0
i (5.44)

= inf
µ∈Λε

D̄1
(ρ)

log |{µi > 0}|, (5.45)

where the set Λε
D1

(ρ) is defined in (5.43). Note that for α < 1, there is no optimization

over t, rather, we only need to consider the case t = 1. Calculating Sε
0(ρ) is thus

equivalent to finding the solution x of the following optimization problem:

|{xi > 0}| → min (5.46)
n∑

i=1

xi = 1 (5.47)

n∑

i=1

|xi − yi| ≤ 2ε, (5.48)

where the vector y corresponds to the vector of eigenvalues of ρd (which is given). The

solution to this optimization problem is very simple: Find the largest number k such

that the sum of the smallest k values yi is smaller or equal to ε. We define the solution

x by starting from y (which certainly satisfies (5.47) and (5.48)) and modify it in the

following way: Put the smallest k values yi to zero and rise the largest yi by ε such that

both (5.47) and (5.48) are still satisfied. The solution x obtained in this way fulfills

|{xi > 0}| = |{yi > 0}| − k.

To be more specific, let ρ ∈ B(Cd) some density matrix having eigenvalues λi with

degeneracy ni, for 1 ≤ i ≤ m, i.e.
∑m

i=1 niλi = 1 and
∑m

i=1 ni = d. We assume that the

λi are given in ascending order. Define

s−(r) :=
r∑

i=1

niλi, (5.49)

for 0 ≤ r ≤ m, which is the sum of r smallest different eigenvalues. (For r = 0, the sum

is taken to be zero.) Moreover, let

b− := max{r : s−(r) ≤ ε} (5.50)

be the largest number r such that the sum of the r smallest different eigenvalues is

smaller than ε. Then the number k we are looking for is thus given by

k =

b−∑

i=1

ni +

⌊
ε− s−(b−)

λb−+1

⌋

, (5.51)
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where ⌊x⌋ denotes the largest integer smaller than or equal to x. Finally, we have found

that

Sε
0(ρ) = log(d− k). (5.52)

Calculation of Hε
0(X|Y )

The calculation of this classical Renyi entropy is similar to the calculation of Sε
0(ρ)

performed in the previous section. First note that we can rewrite its definition,

Hε
0(X|Y ) = min

A:Prob[A]≥1−ε
max
y∈Y

log |PAy|, (5.53)

introducing the set PAy := {x ∈ X : PXA|Y =y(x) > 0}. In the analysis of the Tomo-

graphic Protocol (see Sec. 6.1) we will encounter the case where the set PAy is actually

independent of y. This means that we can drop the minimization over y and simply

consider the set PAy0
, for some arbitrarily chosen y0. Thus the only restriction on the

size of the PAy0
is given by A. The minimization over all such events occurring with

probability of at least 1 − ε can be solved in the following way: It is easy to see that

all such events are necessarily of the form [X = x1] ∨ [X = x2] ∨ · · · ∨ [X = xk] with
∑k

i=1 PX(xi) ≥ 1−ε. Since we are searching for the smallest set PAy0
, we are interested

in those events which are most restrictive, i.e. which have k as small as possible. This

means we need to find the smallest number k such that the sum of k largest probabil-

ities occurring in PX|Y =y0
is greater than or equal to 1 − ε. We then have found that

Hε
0(X|Y ) = log k.

To explicitly calculate k, consider some probability distribution PX|Y =y0
having m

entries pi with multiplicity ni, for 1 ≤ i ≤ m, i.e.
∑m

i=1 nipi = 1. We again assume that

the pi are given in ascending order. In analogy to the calculation of Sε
0(ρ), define

s+(r) :=

r∑

i=1

nm−i+1pm−i+1, (5.54)

which is the sum of r largest different probabilities. Also define

b+ := min{r : s+(r) ≥ 1 − ε} (5.55)

to be the smallest number r such that sum of the largest r probabilities is greater than

or equal to 1 − ε. The number k is then given by

k =

b+∑

i=1

nm−i+1 +

⌊
s+(b+) − (1 − ε)

pm−b+

⌋

, (5.56)
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which finally leads to

Hε
0(X|Y ) = log k. (5.57)

Note that this result only holds if the number of non-zero entries in PX|Y =y does not

depend on y. (However, this is the only case we are interested in.) If this is not the

case, one would first need to find the corresponding y which maximizes the number of

non-zero entries, which corresponds to evaluating the maximum in (5.53).

Calculation of Sε
2(ρ)

The calculation of Sε
2(ρ) is more involved, mainly because we have an additional pa-

rameter t which corresponds to the trace of the density matrices over which we have to

minimize (in contrast to the entropies Sε
0 and Hε

0). From Eq. (5.42), we find that

Sε
2(ρ) = − inf

1−ε≤t≤1
inf

µ∈Λε

D̄t
(ρ)

log
d∑

i=1

µ2
i , (5.58)

where the set Λε
D̄t

(ρ) is defined by (5.43). We defer the minimization over t until the

very end. Therefore, for a fixed t, we are facing an optimization problem of the following

form:

(o1)
n∑

i=1

x2
i → min (5.59)

(c1)

n∑

i=1

xi = t (5.60)

(c2)

n∑

i=1

|xi − yi| ≤ 2ε− (1 − t) (5.61)

Here, the yi are the eigenvalues of ρd (which are given).

We will construct the solution of this optimization problem successively by a series

of small steps. First note that we can demand that the components in the vector y are

given in ascending order, i.e. yi ≤ yj for all i ≤ j. It is then easy to see that any solution

x can be ordered in the same way:

Lemma 5.3.2. Let x be a solution of (o1,c1,c2). Suppose there exist two indices k ≤ l

such that yk ≤ yl and xk ≥ xl. Then x̃ = (x1, . . . , xl, . . . , xk, . . . , xn), i.e., the original

solution with xk and xl interchanged, is also a solution of (o1,c1,c2).

Proof. Obviously, we have that
∑n

i=1 x̃
2
i =

∑n
i=1 x

2
i and

∑n
i=1 x̃i =

∑n
i=1 xi, that is, x̃

fulfills (o1) and (c1). It remains to show that also (c2) holds, which can be done by

verifying |xk − yk| + |xl − yl| ≥ |xl − yk| + |xk − yl| using the triangle inequality and

considering all (six) possible relations between xk, xl, yk, and yl separately.
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By successive application of Lemma 5.3.2 we see that any non-monotonically increas-

ing solution x can be turned into a monotonically increasing one x̃. The next lemma

reveals something about the structure of the solution.

Lemma 5.3.3. Let x be a solution of (o1,c1,c2), where the xi are in ascending order.

Then we can transform x in the following two ways without changing its optimality:

1. (a) Let J ⊂ [1, n] be the set2 of indices such that xj ≤ yj for all j ∈ J . Let jmin

be the smallest index in J such that xjmin
< yjmin

and jmax the largest index

in J . Define

x̃jmin
:= min(yjmin

, (xjmin
+ xjmax

)/2) (5.62)

x̃jmax
:= max(xjmax

− xjmin
+ yjmax

, (xjmin
+ xjmax

)/2), (5.63)

and x̃j = xj for all j 6= jmin, jmax.

(b) Permute the {x̃j}j∈J such that they are again in ascending order.

2. (a) Let K ⊂ [1, n] be the set of indices such that xk ≥ yk for all k ∈ K. Let

kmin be the smallest index in K and kmax be the largest index in K such that

xkmax
> ykmax

. Define

x̃kmax
:= max(ykmax

, (xkmin
+ xkmax

)/2) (5.64)

x̃kmin
:= min(xkmin

+ xkmax
− ykmax

, (xkmin
+ xkmax

)/2), (5.65)

and x̃k = xk for all k 6= kmin, kmax.

(b) Permute the {x̃k}k∈K such that they are again in ascending order.

Proof. We proof the assertion only for the first transformation, the proof for the second

one is completely analogous. Due to Lemma 5.3.2, step (b) preserves the optimality of

the solution. It remains to consider step (a), i.e., we have to show that x̃ is a solution

of (o1,c1,c2). By construction, we have that x̃jmin
− xjmin

= −x̃jmax
+ xjmax

=: δ, which

implies that x̃ fulfills (c1) and (c2). To show (o1), we directly calculate
∑

j∈J

x̃2
j =

∑

j 6=jmin,jmax

x2
j + (xjmin

+ δ)2 + (xjmax
− δ)2 (5.66)

=
∑

j∈J

x2
j + 2δ2 + 2δ(xjmin

− xjmax
︸ ︷︷ ︸

=−2δ

) (5.67)

≤
∑

j∈J

x2
j . (5.68)

2It is easy to see that the set J is always non-empty unless ε = 0 and t = 1.
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xjmax

xkmax

x̃jmax

x̃jmin

xjmin

xkmin

kmin jmin kmax jmax

(xjmin
+ xjmax

)/2

Figure 5.2: (Color online.) Visualization of the notation given in Lemma 5.3.3. For

better clarity, we have plotted the yi as a continuous function. All xj with j ∈ J

are depicted as crosses, whereas the xk with k ∈ K are depicted as circles. We have

indicated one step of transformation 1 (a), where we have xjmin
→ x̃jmin

= yjmin
and

xjmax
→ x̃jmax

= xjmax
− xjmin

+ yjmax
, that is, the minimum in Eq. (5.62) and the

maximum in Eq. (5.63) are attained for the first argument.

To illustrate the meaning of the above lemma, we give the following geometric in-

terpretation: Transformation 1 rises the smallest xi while simultaneously lowering the

largest one. Their final value is either their arithmetic mean if this is smaller than yi.

If it is larger, then xi will only be raised up to yi, and the largest x will only be lowered

by the same smaller amount (see also Fig. 5.2).

We can iteratively apply Lemma 5.3.3 to any given solution x of (o1,c1,c2) until

both transformations do not change the solution anymore. At this point, x will be of

the following form: There might exist some is with xi = yi, for all j, j′ such that xj < yj

and xj′ < yj′ we have that xj = xj′ =: xmax, and for all k, k′ such that xk > yk and

xk′ > yk′ we have that xk = xk′ =: xmin. This means that all xi are either equal to yi or

take one out of two constant values, depending on whether xi < yi or xi > yi (see also

Fig. 5.3). It remains to find these constants and the set of indices for which xi < yi and

xi > yi, which will be done in the remaining part of this section:

Lemma 5.3.4. Let x be a solution of (o1,c1,c2). Then x satisfies (c2) tightly.

Proof. Suppose x is a solution of (o1,c1,c2) with
∑n

i=1 |xi − yi| =: δ < 2ε − (1 − t).
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xmin

xmax

kmin kmax jmin jmax

Figure 5.3: (Color online.) Visualization of a solution of (o1,c1,c2) after iteratively

applying Lemma 5.3.3 until the transformations no longer change the result. At this

point, the solution {xi} (depicted as crosses and circles) is of the following form: For

kmin ≤ k ≤ kmax, we have x̃k = xmin, for jmin ≤ j ≤ jmax, we have x̃j = xmax, and

x̃i = yi otherwise. Again we have plotted the yi as a continuous function for better

clarity.

Define J+(x) = {i ∈ [1, n] : xi ≥ x} and J−(x) = {i ∈ [1, n] : xi ≤ x}, and furthermore

s+(x) =
∑

j∈J+(x)

(xi − x), (5.69)

s−(x) =
∑

j∈J−(x)

(x− xi) (5.70)

Find xmax and xmin such that3 s+(xmax) = δ/2 = s−(xmin). We can then construct a

new solution x̃ in the following way: Define x̃j := xmin for j ∈ J−(xmin), x̃j := xmax

for j ∈ J+(xmax), and x̃i = xi otherwise. It is easy to see that x̃ satisfies (c1) and it is

constructed such that
∑n

i=1 |x̃i − yi| = ε, i.e., it satisfies (c2) tightly. The proof that x̃

fulfills condition (o1) follows the same lines as in Lemma 5.3.3.

Define xi =: yi +∆xi and suppose there exists some m, 1 ≤ m ≤ n such that xi ≥ yi

for 1 ≤ i ≤ m− 1, xi ≤ yi for m ≤ i ≤ n, and xi = yi otherwise. Since x with xi ≥ yi

for all i is certainly not a solution of (o1,c1,c2)4 , such an m clearly exists; at least we

3It is easy to see that both xmax and xmin are well-defined since s+(x) and s−(x) are continuous

functions.
4Except for the degenerate case with ε = 0 and t = 1.
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can have m = 1 which means that xi ≤ yi for all i. We can now rewrite (c2) and (c1),

using Lemma 5.3.4 to turn the inequality in (c2) into an equality:

2ε− (1 − t) =

m−1∑

i=1

∆xi −
n∑

i=m

∆xi (5.71)

t =
n∑

i=1

xi = 1 +
n∑

i=1

∆xi (5.72)

Inserting (5.72) into (5.71) yields the following two constraints:

m−1∑

i=1

∆xi = ε− (1 − t) (5.73)

−
n∑

i=m

∆xi = ε (5.74)

Using these two equations, we can compute xmin and xmax by cutting the largest and

smallest values of the given vector y until (5.73) and (5.74) are saturated.

We are left with evaluating the final minimum over t, which has the range 1 − ε ≤
t ≤ 1. From Eqs. (5.73) and (5.74), which are equivalent to the original constraints

(c1,c2), we see directly that the optimal choice to minimize (o1) is to choose (1 − t) as

large as possible, i.e., t = 1 − ε.

Let us recapitulate the results so far: We have shown that the solution x of the

optimization problem (o1,c1,c2) given by Eqs. (5.59), (5.60), and (5.61) is of the following

form: There exists some index imax ∈ [1, n] with xi = xmax < yi for all i ≥ imax and

xi = yi for all i < imax. The value xmax can be found by exploiting Eq. (5.74): One

cuts as many of the largest values yi as possible down to xmax until the sum of these

changes equals ε. We are left with finding a way to calculate the value xmax. To this

end let ρ ∈ B(Cd) some density matrix having eigenvalues λi with degeneracy ni, for

1 ≤ i ≤ m. We assume that the λi are given in ascending order. Define

s+(r) :=

r∑

i=1

nm−i+1(λm−i+1 − λm−r), (5.75)

for 0 ≤ r ≤ m−1, to be the sum of the differences of the largest r eigenvalues. Moreover,

let

b+ := max{r : s+(r) ≤ ε}, (5.76)

which implies that

xmax = λm−b+ − ε− s+(b+)
∑b+

i=0 nm−i

. (5.77)
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Figure 5.4: Visualization of the definition of s+(r) given in Eq. (5.75), xmax, given by

Eq. (5.77), and the eigenvalues λi and their multiplicity ni. In this example, we have

b− = 1 and b+ = 3.

For better clarity, see also Fig. 5.4. The entropy is then finally given by

Sε
2(ρ) = − log





b+−1∑

i=1

niλ
2
i +

m∑

i=b+

nix
2
max



 . (5.78)

5.3.4 Additivity

In this section, we calculate the quantum Renyi entropies Sε
0 and Sε

2 for density matrices

which are of a special form. We will encounter this type of density matrices when we

are dealing with multi-photon events in Sec. 6.4. The aim of this section is to provide

a simple expression resembling an additivity property for the Renyi entropies of these

states. They are of the form

σ = ρ⊗ (1r/r ⊕ diag (0, . . . , 0)
︸ ︷︷ ︸

s

)⊗m, (5.79)

where ρ ∈ B(Cd) and 1r/r ∈ B(Cr). Denote by λi and ni, i = 1, 2, . . . , n the eigenvalues

of ρ and their multiplicity, respectively, where the eigenvalues are in ascending order such

that λ1 = 0 and λi > 0 for i > 1. Then the eigenvalues of σ are given by λ̄i = r−mλi for

64



Chapter 5. Privacy Amplification

all i, and the multiplicities are given by n̄1 = rmn1 + d[(r + s)m − rm)] and n̄i = rmni

for i > 1.

Approximate additivity of Sε
0

Recall that, due to Eq. (5.52) and the proceeding discussion, Sε
0(ρ) = log(dim ρ − k),

where k =
∑b−

i=1 ni + ⌊(ε − s−(b−))/λb−+1⌋ with b− = max{r : s−(r) ≤ ε} and s−(r) =
∑r

i=1 niλi. Likewise, denote by k̄, b̄−, and s̄(r) all those quantities referring to σ given

by (5.79). We see that

s̄−(r) =

r∑

i=1

n̄iλ̄i =

r∑

i=2

niλi + (rmn0 + d[(r + s)m − rm]) · 0 = s−(r), (5.80)

and therefore also b̄− = b−. However, the expression for k̄ is more complicated due

to the Gauss brackets involved. We introduce the quantity δ which amounts for the

rounding:

k =
b−∑

i=1

ni−1 +

⌊
ε− s−(b−)

λb−+1

⌋

=
b−∑

i=1

ni−1 +
ε− s−(b−)

λb−+1
− δ (5.81)

and similar for k̄ with δ̄:

k̄ =

b−∑

i=1

n̄i−1 +

⌊
ε− s−(b−)

λ̄b−+1

⌋

=

b−∑

i=1

n̄i−1 +
ε− s−(b−)

λ̄b−+1

− δ̄ (5.82)

Now we can express k̄ in terms of k:

k̄ =

b−∑

i=1

n̄i−i +

⌊
ε− s−(b−)

λ̄b−+1

⌋

(5.83)

=

r∑

i=2

rmni−1 + rmn0 + d[(r + s)m − rm] +

⌊
ε− s−(b−)

λ̄b−+1

⌋

(5.84)

=
r∑

i=2

rmni−1 + rmn0 + d[(r + s)m − rm] +
ε− s−(b−)

r−mλb−+1
− δ̄ (5.85)

= rmk + rmδ − δ + d[(r + s)m − rm]. (5.86)

Since dimσ = (r + s)m dim ρ = d(r + s)m, we finally obtain for the entropy:

Sε
0(σ) = log

(
d(r + s)m − rmk − d[(r + s)m − rm] − rmδ − δ̄

)
(5.87)

= log rm + log
(
d− k − δ + r−mδ̄

)
(5.88)

= log rm + log

(

(d− k)

[

1 +
r−mδ̄ − δ

d− k

])

(5.89)

= log rm + Sε
0(ρ) + log

(

1 +
r−mδ̄ − δ

d− k

)

, (5.90)
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where the last term on the right hand side is only exponentially small in m:

log

(

1 +
r−mδ̄ − δ

d− k

)

≤ r−mδ̄ − δ

d− k
(5.91)

≤ 1

rm(d− k)
(5.92)

≤ r−m for ε < 1, (5.93)

where we have used that δ̄ < 1 and δ < 1. To conclude, for two density matrices σ and

ρ related by (5.79), we have found that

Sε
0(σ) ≈ Sε

0(ρ) + log rm, (5.94)

where the approximation is up to r−m.

Exact additivity of Sε
2

The general solution for Sε
2 is given by Eq. (5.78): Sε

2(ρ) = − log(
∑b+−1

i=1 niλ
2
i +
∑d

i=b+ ni

x2
max), with xmax = λd−b+−(ε−s+(b+))/

∑b+

i=0 nd−i, where s+(r) :=
∑r

i=1 nd−i+1(λd−i+1

−λd−r) and b+ := max{r : s+(r) ≤ ε}. Denote by x̄max, s̄
+(r), and b̄+ all these

quantities referring to σ. We now calculate

s̄+(r) =

r∑

i=1

n̄d−i+1(λ̄d−i+1 − λ̄d−r) (5.95)

=
r∑

i=1

rmnd−i+1(r
−mλd−i+1 − r−mλd−r) (5.96)

= s+(r) (5.97)

which also directly implies that b̄+ = b+ and x̄max = r−mxmax. Finally, we find for the

entropy:

Sε
2(σ) = − log





b̄+−1∑

i=1

n̄iλ̄
2
i +

d∑

i=b̄+

n̄ix̄
2
max



 (5.98)

= − log



r−m
b+−1∑

i=1

niλ
2
i + r−m

d∑

i=b+

nix
2
max



 (5.99)

= Sε
2(ρ) + log rm, (5.100)

which is very similar to the result obtained for Sε
0, Eq. (5.94).

To conclude this section, we have shown that for density matrices of the special

form (5.79), the smooth Renyi entropies Sε
0 and Sε

2 behave (for the former case at least

approximately) additive.
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Chapter 6

Finite Key Analysis for the

Tomographic Protocol

In this chapter we present the main results of this thesis: An application of the analysis

of privacy amplification to a specific quantum key distribution protocol, the so-called

“Tomographic Protocol”. Part of the results presented here can be found in [62]. The

emphasis lies on analyzing the success of two-universal hashing for finite block sizes n.

We will not deal with any finite-size effects that may emerge from statistical issues such

as estimating an error rate in the parameter estimation step.1 Additionally we assume

that the adversary performs a collective eavesdropping attack (cf. Ch 4.3).2 Our goal

is to calculate the maximally achievable key rate of this protocol, that is the fraction

of signals (after the sifting step) that make it into the final key. This number is of

interest because of two reasons: First, it can be viewed as a measure of the efficiency

of the privacy amplification step, and second Alice and Bob can use this information to

determine how “much” privacy amplification they need to apply, because the key rate

is equal to the factor by which the raw key needs to be shrunken in order to have the

desired security.

Besides the dependence on the block size n, we present a detailed analysis of the

dependence of the key rate on a number of different parameters: We show that for a

security parameter ε (which is the probability that the key is insecure) of to 10−28, one

can still create a secret key. Moreover, we will see that the dependence on ε becomes

less pronounced as the block size n increases, which means that one can create keys with

1We will also assume that optimal error correction protocols are employed.
2Is has been shown in [63] that the analysis of collective attacks is sufficient, since the most general

attacks, coherent attacks, are not more powerful, at least in the limiting case of n → ∞. Note however

that we are explicitly avoiding this approximation.
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higher security by increasing the block size. We are also able to compare variants of

the Tomographic Protocol using different alphabet sizes (and quantum systems of cor-

responding dimension) and show for instance that for higher error rates, low dimensions

are always favorable.

The first part of our analysis will deal with the ideal case in which Alice sends a

single copy of each signal state to Bob, as she would do if she possessed a single-photon

source. We will first derive all results for this scenario and then show in the second part

how one can include also the case where Alice sends (accidentally) more than one copy

of each state into the analysis. This is the situation one naturally encounters in most

experimental implementations.

This chapter is organized as follows: The specifics of the Tomographic Protocol are

presented in Sec. 6.1 and in Sec. 6.2 we derive the maximally achievable key rates for this

protocol, using the results from Ch. 5, at first for the idealized case where in the quantum

part of the protocol only single copies of the signal states are prepared (Sec. 6.3). This

assumption will be loosened in Sec. 6.4, where we generalize the analysis to incorporate

multi-photon events.

6.1 Description of the Protocol

The Tomographic Protocol was originally introduced in [2] (see also [3]). It is based on

the Six-State Protocol [4] and generalizations thereof to higher dimensions. The main

twist of the Tomographic Protocol is its special strategy to do parameter estimation:

Since the measurements involved in the six state protocol form a tomographically com-

plete POVM, it is (at least in principle) possible to reconstruct the density matrix of

the measured state. Alice and Bob then use this knowledge to rigorously abort the

protocol if they learn that the quantum state they shared is not compatible with some

channel model (the depolarizing channel) they are expecting. In this way, they force

the adversary to launch an attack that provides Alice and Bob with the same quantum

state as they would obtain if they were only connected by a depolarizing channel, i.e.

Eve has to perform a symmetric attack.

Such a symmetric attack has the advantage that the analysis of the privacy amplifi-

cation step becomes simple, since the density matrices involved have only a few different

eigenvalues (due to the high symmetry).

In more detail, the protocol works as follows: Alice and Bob use an alphabet of size

d and consequently d-dimensional quantum systems for the encoding of the information.

Some of the results we derive only hold for the case of qubits, i.e. d = 2, but when not
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Chapter 6. Finite Key Analysis for the Tomographic Protocol

mentioned explicitly, any dimension is valid. We assume that the privacy amplification

protocol outputs a string of bits, a binary key. As already mentioned, Alice chooses the

encodings (cf. Sec. 3.2) such that they form a set of mutually unbiased bases [64, 42],

that is, we have d + 1 different encodings (or “bases”) for the signal states: For each

dit value x ∈ 0, 1, . . . , d− 1 and encoding j = 1, 2, . . . , d+ 1, we denote the signal state

by |φx
j 〉. They have the following properties: 〈φx

j |φ
y
j 〉 = δxy (for each encoding, they

form a basis) and 〈φx
i |φ

y
j 〉 = 1/

√
d for i 6= j (the basis vectors from different bases are

“mutually unbiased”). It was shown in [65, 66] that such a set of bases exists at least

for the case of prime dimensions. The measurement performed by Bob (cf. Sec. 3.3.1)

is given by the POVM Mk = {|φ0
k〉〈φ0

k|, |φ1
k〉〈φ1

k|, . . . , |φd−1
k 〉〈φd−1

k |} for some randomly

chosen k = 1, 2, . . . , d+1. This measurement is said to be tomographically complete [39],

which means that from the measurement statistics obtained P ρ
Mk , it is possible to infer

the measured state ρ. We assume that Alice chooses each dit x with equal probability

1/d, and likewise, Alice and Bob choose each encoding and measurement, respectively,

with equal probability 1/(d + 1).

We are now turning to the entanglement-based version (cf. Sec. 3.2.2 and 3.2.3)

of this protocol in which Alice prepares a maximally entangled state in d dimensions,

|φ+
d 〉 =

∑d−1
x=0 |xx〉/

√
d and sends the second half of it to Bob. Due to Eve’s interaction,

it gets disturbed, and we denote the quantum state they share at this point by ρAB.

So far we have described the entanglement-based version as Alice applying the modified

encoding operators

AjT =

d−1∑

x=0

|x〉〈φj
x| (6.1)

to her part of the state ρAB followed by a measurement in the computational basis {|x〉}
by Alice. Since the signal state |φj

x〉 form a basis for each j, the application of AjT

corresponds to a basis rotation of system A. Instead of performing the rotation and

measuring in the computational basis, Alice can equivalently directly measure in the

{|φj
x〉}-basis. This means that now Alice and Bob both perform the same tomographi-

cally complete measurement on their respective subsystems. We denote the outcome of

this measurement by random variables X and Y , respectively. By classical communi-

cation, Alice and Bob can now check on which state ρAB they actually performed their

measurements.

When we are talking about state tomography, we are usually working in a scenario

where the same measurements are applied to identical copies of quantum states. In

particular, the number of copies involved can be very large [67], which is an important

issue for the performance of a QKD protocol. However, we will take the idea that
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Alice and Bob have the possibility to reconstruct their shared quantum state as nothing

more than an impetus for an assumption of the eavesdropping attack, namely that it

is symmetric. We will not actually assume that Alice and Bob could do an efficient

state tomography on the state ρAB , rather, Eve is restricted to an attack that leads to

a specific form for ρAB which Alice and Bob could in principle check to probe for an

eavesdropper.

At this point, we have to introduce the multi signal picture. So far we have considered

measurements on the states ρAB corresponding to one signal sent from Alice to Bob,

and one dit X and Y of data. Consider now the case where Alice sends n′ signals to

Bob and that the eavesdropper launches a collective attack (cf. Sec. 4.3), that is, for

each half of |φ+
d 〉 Alice sends to Bob, Eve performs the same unitary transformation.

Moreover, we are assuming that Eve holds a purifying system ρE of each state ρAB

shared by Alice and Bob after her attack (cf. Sec. 4.4.1), i.e. there exists some pure

state |Ψ〉ABE with ρE = trAB |Ψ〉〈Ψ| and ρAB = trE |Ψ〉〈Ψ| for each signal. This implies

that if Alice sends n′ times half of the state |φ+
d 〉 to Bob, they will share the state ρ⊗n′

AB

in the end, where Eve holds the purifying system of each state in the tensor product.

Because of the tensor structure of the quantum state ρ⊗n′

AB , for most of the analysis it

is sufficient to consider the single states ρAB . Whenever we are referring to a quantum

state depending on a string of dits described by a random variable X, we will use the

notation ρXE to avoid confusion.

In the parameter estimation step (cf. Sec. 3.3.2), Alice and Bob use part of the data

they obtained by the tomographic measurements to verify that the quantum state ρAB

they shared prior to their measurement is of the form

ρdep
AB(β0, β1) := (β0 − β1)|φ+

d 〉〈φ+
d | +

β1

d
1⊗ 1, (6.2)

where we have adopted the notation of [2]. If it is not of this form, they abort the

protocol. The state ρdep
AB(β0, β1) is the result of |φ+

d 〉 passing through a depolarizing

channel [67]. The two parameters are not independent, but fulfill the normalization

condition β0 + (d − 1)β1 = 1. When measuring ρdep
AB(β0, β1) in the same basis, the

probability of Alice and Bob obtaining the same outcome is β0, whereas the probability

of obtaining two particular different outcomes is β1. After Alice and Bob have verified

that they shared the state (6.2), they discard all instances where they chose a different

encoding for their measurement or where they got an inconclusive measurement outcome.

They will be left with classical data X and Y, respectively, which are dit strings of

length n < n′. The error rate in this sifted key (for d = 2 this is the QBER) is given

by 1 − β0 = (d− 1)β1 (strictly speaking, only in the limit of n → ∞). We assume that
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0 ≤ β1 < 1/d < β0 ≤ 1, since β0 = β1 = 1/d corresponds to case of no correlations in

the state ρAB.

We skip the pre-processing step (cf. Sec. 3.3.3) and turn directly to information

reconciliation and privacy amplification protocols, which will be described in more detail

in the next section.

6.2 Privacy Amplification for Finite Block Size

In this section, we analyze the success of the privacy amplification protocol described

in Sec. 5.2, using the notion of ε-security (cf. Sec. 4.2). There are two free parameters

that can be chosen at will by Alice and Bob, namely the block size n on which the PA

protocol works and the security parameter ε that provides a measure of how secure the

final key will be.

At this point of the QKD protocol, Alice and Bob hold classical data described

by random variables X and Y, respectively, with range X = Y = {0, 1, . . . , d − 1}n.

Their correlation can be easily obtained from Eq. (6.2) and it is given by the probability

distribution

PXY(x,y) =

n∏

i=1

β1 + δxiyi
(β0 − β1). (6.3)

Since X and Y originate from measuring a tensor product state ρdep
AB(β0, β1)

⊗n
, this

probability distribution also factors: PXY(x,y) = PXY (x1, y1) · · ·PXY (xn, yn), with

PXY (x, y) = β1 + δxy(β0 − β1). (6.4)

As already mentioned in Sec. 3.3.4 and 5.2, we assume that Alice and Bob employ an op-

timal error correction protocol which needs to communicate a string of length Hε
0(X|Y)

(in the limit of n→ ∞) over the public channel. After the error correction, Bob will be

able to guess the string X from his data Y and the error correction information with

probability of at least 1 − ε.

In order to obtain the information the eavesdropper has about the key, we need to

consider the purification of the state (6.2), which was shown in [3] to be

|Ψ〉ABE =

√

β0

d

d−1∑

x=0

|xx〉AB |Exx〉E +

√

β1

d

∑

x 6=y

|xy〉AB|Exy〉E , (6.5)

where Eve’s states |Exy〉 are orthogonal to all other states for x 6= y and 〈Exx|Eyy〉 =

1 − β1/β0 for x 6= y. From the purification (6.5), we can easily obtain the state

ρxy
E = AB〈xy|Ψ〉ABE (6.6)
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held by the eavesdropper, when Alice and Bob obtain the measurement result x and y,

respectively.

Finally, consider all possible measurement outcomes x and y for a single signal, which

occur with probability PXY (x, y). The ccq-state describing these outcomes together with

the adversary’s quantum state ρxy
E is given by

ρXY E =
∑

x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρxy
E . (6.7)

Since after the error correction, Bob has corrected his dit y to Alice’s dit x, we are only

interested in Eve’s correlation with the final key dit x. Therefore, we need to consider

the state ρXE = trY ρXY E , which is given by

ρXE =
∑

x,y

PXY (x, y)|x〉〈x| ⊗ ρxy
E . (6.8)

Considering all n signals, because of the tensor product structure of the shared state,

the final cq-state ρXE describing Eve’s correlation with the whole n-dit key is also of a

simple tensor structure:

ρXE =

[
∑

x,y

PXY (x, y)|x〉〈x| ⊗ ρxy
E

]⊗n

(6.9)

We can now employ the formula for the secret key length which was derived in Sec. 5.2:

ℓ = Sε′
2 (ρXE) − Sε′

0 (ρE) −Hε
0(X|Y) + 2 log(ε). (6.10)

where ε′ = (ε/8)2 and ε is the security parameter that quantifies how secure the final

key will be (cf. Sec. 4.2). The secret key rate is given by ℓ/n, where n is the length

of the string X on which the PA protocol is working. Note that this length is much

shorter than the initial number of signals sent from Alice to Bob, which was denoted

by n′, since during the parameter estimation and sifting step, a large number of signals

need to be discarded. For instance, even if no parameter estimation would be carried

out, n would only be of the order of n′/(d + 1), since the protocol uses d + 1 different

encodings. But since we are only interested in the PA step, we take n to quantify the

input resources, whereas ℓ quantifies the length of the output.

In Sec. 5.3.3, we have derived an explicit formula for the Renyi entropies occurring in

Eq. (6.10) in terms of eigenvalues and probabilities of ρXE , ρE = trX ρXE, and PX|Y=y0

for y0 ∈ {0, 1, . . . , d − 1}n chosen arbitrarily. The eigenvalues of ρXE and ρE can be
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easily obtained using Eqs. (6.9) and (6.6), yielding

ρXE : λ0 = 0, n0 = d3n − d2n (6.11)

λi+1 = 1
dnβi

0β
n−i
1 , ni+1 = dn

(
n

i

)

(d− 1)n−i (6.12)

ρE : λi =
(

β0 − β1 + β1

d

)i (
β1

d

)n−i
, ni =

(
n

i

)

(d− 1)n−i, (6.13)

for 0 ≤ i ≤ n. The probabilities occurring in the conditioned distribution PX|Y=y0
can

be calculated from Eq. (6.3), and they are given by

PX|Y=y0
: pi = βi

0β
n−i
1 , ni =

(
n

i

)

(d− 1)n−i, (6.14)

for 0 ≤ i ≤ n. The results obtained by calculating the right hand side of Eq. (6.10) are

given in the next section.

6.3 Results for Single-Copy Signal States

Let us recall the main features of the special protocol we are investigating, the security

assumptions we made, and which parameters we have to consider: The results presented

in this section are only valid for collective eavesdropping attacks and a specific QKD

protocol using d-dimensional quantum systems, in which the honest parties have verified

in the parameter estimation step that prior to their measurements, they share n′ copies

of the state (6.2). This state has one free parameter, the error rate in the sifted key

1 − β0. (For qubits, 1 − β0 equals the QBER Q.) The PA protocol is carried out on n

out of n′ signals; the rest gets discarded. The number n can be adjusted by Alice and

Bob by simply choosing a different number of input signals n′, and we will call n the

block size in the PA protocol. Another free parameter besides d and n is the security

parameter ε, which Alice and Bob can choose at will to have the PA protocol output a

more secure or less secure key, according to the security definition 4.2.1. Moreover, the

results presented in this section only hold for the idealized case in which Alice sends only

a single copy of each signal state to Bob, which corresponds to the case of employing a

single-photon source (the generalization to multi-photon events will be the topic of the

next section).

We will compare our results with those found in [1], where the authors calculated the

right hand side of Eq. (6.10) for the case of infinite block sizes n, i.e. r∞ = limn→∞ ℓ/n.

These results also hold for the more general case of coherent eavesdropping attacks. In

the first part of this section, we restrict ourselves to the qubit case, because it is relevant
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Figure 6.1: (Color online.) Achievable key rate r versus block length n for a QBER

of Q = 0.02 and three different (arbitrarily chosen) values of the security parameter

ε = 0.1, 0.01, 10−10 (from top to bottom). The dashed line at r∞ = 0.758059 is the

asymptotic result for n → ∞, obtained in [1]. The dimension of the quantum systems

sent is taken to be d = 2.

for photon implementations. Different dimensions d of the quantum systems are covered

in the second part of this section.

Dependence on n, Q, and ε

Fig. 6.1 shows a plot of the achievable key rate r := ℓ/n for the qubit case (d = 2)

and a quantum bit error rate (QBER Q = 1 − β0) of Q = 0.02 (a value that is also

found in current experimental realizations). The security parameter ε, which measured

the optimality of the key (cf. Def. 4.2.1) is chosen somewhat arbitrarily between 0.5

and 0.01 to illustrate the effect of this parameter on the key rate. A detailed discussion

on the parameter ε can be found below. The achievable key rate apparently converges

towards the asymptotic value r∞ very slowly, that is, on a logarithmic scale in n, r still

only grows sub-logarithmic, as one can see from a fitting. For very small block sizes (e.g.

of the order of 102 to 103), we find a considerable derivation from the asymptotic value.

However, for a moderate block size of the order of 104, we already obtain over 84% of

r∞, even for ε = 0.01. The quantitative dependence of the key rate on the security

parameter is two-fold: First, for a smaller ε (i.e. higher security) the obtainable key

rate gets smaller, as one would suspect. Second, the larger the block size, the smaller
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Figure 6.2: (Color online.) The three entropies constituting the achievable key length

ℓ (dotted line), Sε′
2 , Sε′

0 , and Hε′
0 (from top to bottom), depicted by solid lines. The

QBER is chosen to be Q = 0.02 and ε = 0.5, with ε′ = (ε/8)2.

is the dependence on ε. This observation can be made from Fig. 6.1 by realizing that

the curves for different ε approach each other. Such a result was also found analytically

in [1] for the limit n→ ∞.

A prominent feature of the results presented in Fig. 6.1 are the “oscillations” of

the achievable key rate, the amplitude of which decreases as n increases. Analytically,

the oscillations arise from the structure of ℓ given in Eq. (5.12), being the difference

of the three monotonic functions Sε′
2 , Sε′

0 , and Hε′
0 where the last two are smoothened

versions (see Fig. 6.2) of a non-continuous function. In the limit n → ∞, the non-

continuities disappear, leading to a monotonic key rate. Up to now, we can give no

physical explanation for the non-monotonicity, besides the fact that our formula is just an

achievable key rate and we disregarded the classical pre-processing step in our analysis,

thus the key rate might also increase in some cases.

An important figure of merit for a QKD protocol is its threshold QBER (or tolerable

error rate), which is the largest quantum bit error rate for which is the key rate is

still non-zero. For the Six-State Protocol without pre-processing, it was found that a

non-vanishing key rate is obtained whenever Q ≤ 0.126 [68]. Using degenerate codes,

which can be interpreted as some form of pre-processing [1], this bound can be slightly

improved to Q ≤ 0.127 [68]. For the “noisy” pre-processing, i.e. where Alice chooses

U to be a noisy version of X (cf. Sec. 3.3.3), the bound can be further improved to
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Figure 6.3: (Color online.) Key rate r versus QBER Q, for d = 2 and different block sizes

n and security parameters ε: n = 20, 000, ε = 10−1; n = 20, 000, ε = 10−2, n = 20, 000,

ε = 10−10, and n = 10, 000, ε = 10−10 (solid lines from top to bottom). The dotted line

is the asymptotic result r∞ found by [1].

Q ≤ 0.141 [1]. In order to display the effect of finite block sizes n on the threshold

QBER, in Fig. 6.3 we plot the achievable key rate r as a function of the QBER Q, for

different security parameters ε.

Up to this point, we have not specified a reasonable range for the security parameter.

Recall that a key being ε-secure means that it is perfectly secure except with probability

ε. Suppose that the tomographic protocol is implemented in a QKD solution, i.e., a pair

of black boxes, connected by a fiber, supplying the user with secret keys. The user

might be interested in the long term application in which the apparatus generates secret

keys of an accumulated length of N bits, for instance, N = 1012. These keys are of

length n, which implies that N/n keys are to be generated. Among all the N/n keys, we

might require the probability of any of these keys being corrupted to be “very small”,

i.e. Nε/n ≪ 1. This means that for block sizes of the order of n = 105, we need to

consider security parameters that fulfill ε ≪ 10−7. Since as of today, apparently no

rigorous theory exists about what range of ε has to be considered, we investigate a large

range of ε and the limit of ε→ 0:

For ε = 0, all smooth Renyi entropies appearing in Eq. (5.12) reduce to the conven-

tional Renyi entropies which are additive, i.e. S0
α(ρ⊗n) = nS0

α(ρ) and similar for Hε
0 .

We can therefore calculate all entropies and thus also the secret key length ℓ analytically
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Figure 6.4: (Color online.) Plot of the entropies constituting the secret key length. The

solid lines correspond to (from top to bottom): Sε′
2 (ρXE), Sε′

0 (ρE), and Hε
0(X|Y), for

n = 104, d = 2, and a QBER of Q = 0.05. The dotted line (plotted versus the right

y-axis) corresponds to the secret key rate r.

in this case. In Fig. 6.4, we present the Renyi entropies and the secret key length for

ε ≥ 10−100 for a block size of n = 104 and a QBER of Q = 0.05. For these values, we

analytically find S0
2(ρXE) = 1.14401n, S0

0(ρE) = 2n, and H0
0 (X|Y) = n, which shows in

comparison with Fig. 6.4 that all entropies except S2 approach their asymptotic value for

ε = 0 rather slowly. (For ε = 10−100 and n = 104, we find that S10−100

2 (ρXE) = 114401,

S10−100

0 (ρE) = 9130.37, and H10−100

0 (X|Y) = 5527.24.)

Dependence on d

So far, we have only presented explicit results for the case where Alice and Bob use

two-dimensional quantum systems in the distribution step. The Tomographic Protocol

however is applicable for quantum systems of any (prime) dimension and our deriva-

tion of the results so far was completely general, without any assumptions about the

dimensionality. The implementation of a QKD protocol using three-dimensional quan-

tum states has already been demonstrated in [69]. As future implementations may even

use higher-dimensional systems, it is worth to investigate the dependency of the pri-

vacy amplification protocol on the dimensionality, because it might reveal whether some

dimension is preferable in terms of efficiency.

In order to make it possible to compare the results for different dimensions, we use
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Figure 6.5: (Color online.) Key rate ℓ/n, measured in dits, for different dimensions of

the quantum systems (from top to bottom: d = 5, 4, 3, 2) therefore also the alphabet

size of the key, plotted versus the error rate per dit in the sifted key 1 − β0. The block

size is n = 10000, and the security parameter is ε = 10−10.

three approaches: First, we only look at the privacy amplification step, that is, we

calculate the achievable key length ℓ measured in dits, for an n dit-string as input. The

parameter 1 − β0 quantifies the fraction of erroneous dits in the sifted key (for d = 2,

this is called “quantum bit error rate” (QBER) Q), thus it is well-suited for comparison

of different dimensions. The result is depicted in Fig. 6.5, revealing that the privacy

amplification step indeed becomes more efficient for higher-dimensional quantum states.

Due to the complexity of the explicit formula (5.11) for the key length, we cannot tell

whether this result comes form two-universal hashing being potentially more efficient

for larger dimension, or the adversary being more restricted in her action and knowledge

about Alice’s and Bob’s data.

This results does not take into account that also the other parts of the QKD protocol

depend on the dimension d: Most importantly, since Alice and Bob use d + 1 different

encodings in the Tomographic Protocol, the length of the sifted key n is on average a

factor 1/(d+1) shorter than the number n′ of signals sent. Thus, for higher-dimensional

quantum systems, a larger fraction of the raw key gets discarded during the sifting (at

least it is used for the tomography). To accommodate for this fact, in the second

approach, we take n′ = (d + 1)n rather than n to quantify the number of input signals

to the privacy amplification step and call the quantity ℓ/n′ “effective key rate”. From
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Figure 6.6: (Color online.) Effective key rate ℓ/n′, measured in dits, for different di-

mensions of the quantum systems (left side from top to bottom: d = 2, 3, 4, 5), plotted

versus the error rate per dit in the sifted key, 1−β0. The block size is again n = 10000,

with n′ = (d+ 1)n, and the security parameter ε = 10−10.

Fig. 6.6 we see that due to the great overhead needed for higher dimensions, large

dimensions do no longer provide the largest key rate for all error rates, as it was the

case when we did not take into account the loss in the sifting step. Rather, for low

error rates, we find the reverse result, that is, lower dimensions give the largest effective

key rates. An interesting observation that can be made from Fig. 6.6 is that for each

error rate, there exists an optimal dimension d for which the effective key rate becomes

maximal. This is remarkable because of the great number of signals that get discarded for

large dimensions, however the effective key rate is still larger than for small dimensions.

Since in this approach only the key rate gets scaled, we also observe that the threshold

error rate, i.e., the error for which the key rate vanishes, remains unchanged.

The third approach additionally takes into account that the creation of higher-

dimensional quantum system uses more resources, quantified by the dimension of all

quantum system combined. Let us clarify this by an example: Suppose that Alice

would like to send an amount of ten bits of information to Bob. If we do not care about

potential experimental problems which one might encounter, she could achieve this by

either sending five qubits, or equally well two five-dimensional quantum states. Here,

the sum of the dimensions of all quantum systems would be ten. We will now ask the

question: Given a certain amount ñ of quantum information to be sent in the distri-
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Figure 6.7: (Color online.) Effective key rate ℓ/ñ, measured in bits, for different di-

mensions of the quantum systems (left side from top to bottom: d = 2, 3, 4, 5), plotted

versus the error rate per dit in the sifted key, 1 − β0. We have fixed ñ = 105, which is

the total dimension of all quantum systems sent, ñ = dn′ = d(d+ 1)n, and the security

parameter is taken to be ε = 10−10.

bution phase of the protocol, what dimension d of the quantum systems is preferable?

In a way, we are looking for the optimal factorization of ñ into d times n′. We are

also taking in account the total number n′ of systems that need to be sent such that

after the sifting, n signals contribute to the secret key. This means that we are fixing

ñ = dn′ = d(d + 1)n and investigate the dependence of the achievable key rate ℓ/ñ as

a function of d, for a fixed ñ. Since in this way the key rate is related to the quantity

ñ that already incorporates the dimension d, we have to measure it in bits. Although

this protocol takes the total dimension of all quantum systems sent into account, from

Fig. 6.7 we see that qualitatively, we find the same behaviour as for the case where

we only took the sifting into account: For smaller error rates, lower dimensions yield

larger effective key rates, whereas for larger error rates it is the opposite. In all results

presented here, we have chosen the block size n = 10000 and the security parameter

ε = 10−10 arbitrarily (but still reasonable in view of a realistic implementation). It

turns out however that a change of these parameters does not change the qualitative

behaviour of the key rate.

To conclude the analysis of the influence of the dimension d (thus, the alphabet

size that Alice and Bob use), we have shown that in the tomographic protocol, privacy
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amplification is more efficient if greater dimensions are used. We cannot tell whether this

is a consequence of two-universal hashing itself or because of the special restrictions the

eavesdropper encounters due to the tomography. If we take into account that actually

(d + 1)n signals need to be sent in the protocol because of the sifting and define the

key rate with respect to this number, it turns out that for lower error rates, lower

dimensions become favorable, whereas for higher error rates, higher dimensions yield

larger key rates. Moreover, for each error rate there exists a certain dimension which

yields the optimal key rate. Lastly, defining the error rate with respect to the total

dimension d(d+ 1)n of all signals sent (the “resources” needed to establish the key), we

also find that smaller dimensions are favorable for lower error rates and larger dimensions

for larger error rates.

6.4 Inclusion of Multi-Photon Events

In this chapter, we turn towards experimental realizations of QKD protocols and the

security problems that naturally arise in this context. Since most of the experiments

performed so far only employ two-dimensional quantum systems, we restrict our anal-

ysis to the qubit case (d = 2). A common experimental implementation is to use the

polarization degree of freedom of photons as a qubit. Our discussion of the Tomographic

Protocol so far was idealized in the sense that we assumed that Alice sends one of the

signal states {|φj
x〉} to Bob. This corresponds to the case where Alice prepares exactly

one photon in the corresponding polarization state and sends it to Bob, which is an

unrealistic assumptions because single photon sources do not exist. In reality, Alice uses

an attenuated laser beam with very low intensity such that the average photon number

in each pulse is very low. The light pulse emitted by a laser is a coherent state

|α〉 = e−|α|2/2
∞∑

m=0

αm

√
m!

|m〉, (6.15)

which is parameterized by some complex number α. Here, |m〉 is a Fock state. If the

phase argα of this coherent state is randomized, we obtain the following state:

ρ =

∫
d argα

2π
|α〉〈α| =

∞∑

m=0

P (m)|m〉〈m|, (6.16)

which is a mixture of all Fock states wighted with a Poissonian distribution,

P (m) = e−|α|2 |α|2m

m!
. (6.17)
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The average photon number of such a pulse is given by m̄ = |α|2. Common QKD

implementations (using these so-called “weak coherent pulses”) employ attenuated lasers

where the average photon number of each pulse is of the order of 0.1. From Eq. (6.17),

we can compute that such pulses are mostly empty, P (0) ≈ 0.905, contain one photon

with probability P (1) ≈ 0.09 and more than one photon with probability
∑∞

m=2 P (m) ≈
0.005.

Using such a weak coherent pulse-implementation, it follows that Alice does not send

the signal states |φj
x〉 to Bob, but rather an unknown number of copies, i.e. |φj

x〉〈φj
x|

⊗m

where the number of copies is distributed according to the Poissonian statistic (6.17).

In this situation, the following eavesdropping attack (called “photon number splitting”

(PNS) attack), which cannot be covered by our analysis so far, becomes imminent: Con-

sider that Alice and Bob are connected by a lossy fiber and that Bob’s photo detectors

cannot resolve the photon number (i.e. they can only tell “there was no photon” or

“there were some photons”), which is an assumption that holds in any real-world imple-

mentation. For each pulse sent from Alice to Bob, Eve measures its photon number via

a non-demolition measurement3 [70]. If it is more than one, she splits off one photon,

stores it, and sends the remaining photons to Bob through a lossless fiber. If the pulse

contains no photons, she forwards the vacuum pulse to Bob. If the photon number

is one, she either completely blocks the pulse or performs some single-state attack as

described in Sec. 4.3. She chooses one of these possibilities and the disturbance caused

by the single-state attack in a way that the photon statistics that Bob expects to receive

(he assumes a lossy channel having some yield γ, or attenuation 1 − γ) are maintained.

It is easy to see that such a PNS attack always exists if the yield γ is smaller than the

probability of emitting a multi-photon pulse [40]. In this attack, it is impossible for

Alice and Bob to detect the eavesdropper, because their estimation of the channel yield

is what they expect from a lossy fiber, but Eve has a copy of each signal state of the

multi-photon events. If the QKD protocol employs a simple information reconciliation

step, in which after the distribution, Alice and Bob talk about the encodings used, Eve

can measure all her copies in the corresponding basis and obtains the same classical

data as Alice for signals that were encoded into a multi-photon pulse.

However, under these circumstances, the QKD protocol is not completely insecure.

As long as Alice and Bob can find a proper description of the total system, i.e. the ccq-

state ρXE given by Eq. (6.9), the obtainable secret key length (6.10) can be calculated

also for the weak coherent pulse implementation. The result will certainly be a smaller

key length ℓ than which is obtained for the single-photon case, which tells Alice and

3Using such an operation Eve introduces no errors and thus cannot be detected.
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Bob that they need to do “more” privacy amplification, thus sacrificing more raw key.

In the next section, we show how we can find the ccq-state for a weak coherent pulse

implementation of the Tomographic Protocol, under the assumptions of a collective

eavesdropping attack (which is assumed throughout this chapter).

6.4.1 Concept

For the single-photon case, recall that we can express the preparation of the signal

states {|φj
x〉} in the entanglement-based picture (cf. Sec. 3.2.2), which implies that for

an encoding j chosen by Alice, she prepares

|ψj〉AB =

1∑

x=0

√

PX(x)|x〉A|φj
x〉B . (6.18)

It is sufficient to consider some fixed encoding j, because we assume that Alice chooses

them with equal probability and all signals in which Bob chooses a different one are

discarded in the sifting step. In the previous section we have seen that in a weak

coherent pulse implementation, Alice does not prepare the signal states |φj
x〉, but rather

a classical mixture of |φj
x〉〈φj

x|
⊗m

where m is distributed according to a Poissonian

distribution4 P (m). We can incorporate this in Eq. (6.18) by introducing an auxiliary

system R, which is neither controlled by Alice and Bob nor by Eve and which holds the

photon number m, thus purifying the mixture
∑∞

m=0 P (m)|φj
x〉〈φj

x|
⊗m

:

|ψj〉ABR =
∞∑

m=0

1∑

x=0

√

P (m)
√

PX(x)|x〉A|φj
x〉

⊗m
B |m〉R. (6.19)

As we have seen in Sec. 4.3, the eavesdropper’s attack is fully described by the attach-

ment of a probe system |0〉E to the signal states underway to Bob and some unitary

operation UBE acting on these two systems, which implies that the state after Eve’s

attack is given by

|ψj〉ABER =

∞∑

m=0

1∑

x=0

√

P (m)
√

PX(x)|x〉AUBE |φj
x〉

⊗m
B |0〉E |m〉R. (6.20)

Since it is possible for Eve to find out the number of photons m in each signal without

introducing any noise, she can actually choose a different unitary operation U
(m)
BE de-

pending on the photon number. In particular, for m > 1, she can apply a swap operation

4The Poissonian distribution is a special case that occurs for the weak coherent pulse implementation.

Our analysis is valid for arbitrary probability distributions P (m).
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which supplies her with one of the signal states, and some operation U
(1)
BE for the pulses

containing exactly one photon, as already mentioned in the previous chapter.

Note that this eavesdropping attack is no longer a strictly collective attack, because

we allow the eavesdropper to apply a different unitary operation U
(m)
BE to each signal

state depending on its photon number. However, this strategy is the most simple gener-

alization of a collective attack to the multi-photon case, since U
(m)
BE only depends on the

photon number m, and we do not allow Eve to choose an arbitrary unitary operation

for each signal. All signals containing the same photon number will be attacked in the

same way.

Consider the case where Alice employs a source that emits single-photon pulses with

a probability of psingle and multi-photon pulses with a probability of pmulti. During the

sifting, Alice and Bob will discard all empty pulses, which makes it reasonable to define

η = psingle/(psingle + pmulti) to be the rate of single-photon pulses among all non-empty

pulses. Finally, we can define the number of single-photon pulses to be ns = ⌊ηn⌋, and

the number of multi-photon pulses to be nm = ⌊(1 − η)n⌋, where n is total number of

signals after the sifting.5

Let us now investigate the state ρn
ABE describing all n signals that survive the sifting

step. If we introduce the operators U
(m)
BE in Eq. (6.20) and project the system R onto a

certain photon number m for each of the n signals, we can separate the total n-signal

state between m = 1 and m > 1:

ρn
ABE =

[(
1∑

x=0

√

PX(x)|x〉AU
(1)
BE |φj

x〉B |0〉E

)

(h.c.)

]⊗ns

⊗
[

∞∑

m=2

P (m)

(
1∑

x=0

√

PX(x)|x〉AU
(m)
BE |φj

x〉
⊗m
B |0〉E

)

(h.c.)

]⊗nm

(6.21)

=: |Ψsingle〉〈Ψsingle|⊗ns

ABE ⊗ ρmulti
ABE

⊗nm
, (6.22)

where we have defined |Ψsingle〉⊗ns

ABE and ρnm

ABE for the single and multi-photon part,

respectively. Note that Eqs. (6.21) and (6.22) have to be read modulo permutation of

the n subsystems, because the order of the pulses is in general different. Also recall that

we can fix some encoding j, because we are only looking at the signals which survive

the sifting step, and for all those signals Alice and Bob have chosen the same encoding

j.

For the multi-photon part ρ⊗nm

ABE , we have already argued that Eve can split one

signal off |φj
x〉〈φj

x|
⊗m

B to store it until she learns its encoding j. Then she can measure

5We ignore possible rounding errors and assume that ns + nm = n.
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it and obtains the same bit as Bob. Since we assumed that Eve replaces the lossy fiber

between her and Bob by a noiseless one, it is sufficient to forward only one of the photons

in the pulse to Bob, even if there were more than two. Using this strategy, the state

ρnm

ABE is actually also pure and of the form

|Ψmulti〉⊗nm

ABEE′ =

[
1∑

x=0

√

PX(x)|x〉AU
(1)′

BE |φj
x〉B |0〉E|φj

x〉E′

]⊗nm

, (6.23)

where Eve is still free to choose some unitary operation U
(1)′

BE on her auxiliary system E

and the remaining photon that she will send on to Bob, and we have introduced a second

system E′ under Eve’s control which stores the copy of the signal state. Comparing

the multi-photon |Ψmulti〉⊗nm

ABEE′ and single-photon part |Ψsingle〉⊗ns

ABE , we observe that

they are essentially identical, the only difference being that for the multi-photon case,

Eve has the additional advantage that she holds the system |φj
x〉E′. Moreover, the state

|Ψsingle〉ABE describes exactly the situation discussed in the previous section, which only

dealt with the idealized single-photon case. We therefore make the same assumption as

before, namely that Eve can obtain the purifying system of the state ρAB distributed

between Alice and Bob, now for both the single and multi-photon part. In this way we

can adopt our previous analysis for the state describing all n signals (after the sifting),

|Ψn〉ABE = |Ψsingle〉⊗ns

ABE ⊗ |Ψmulti〉⊗nm

ABE , (6.24)

where we only have to keep in mind that Eve also holds a copy of the signal state for

each of the multi-photon pulses.

For each (non-empty) signal arriving at Alice and Bob, they measure a tomographi-

cally complete POVM, which makes it in principle possible to check for the “effectively”

distributed single signal state

ρeff
AB = trE(η|Ψsingle〉〈Ψsingle|ABE + (1 − η)|Ψmulti〉〈Ψmulti|ABE) (6.25)

to be of a certain form. Since otherwise Alice and Bob will abort the protocol, we

assume that Eve prepares the states |Ψsingle〉ABE and |Ψmulti〉ABE such that

ρeff
AB = ρdep

AB(β0, β1) := (β0 − β1)|φ+〉〈φ+| + β1

2
1, (6.26)

that is, the effectively distributed state is a depolarized version of the maximally entan-

gled state |φ+〉 :=
∑1

x=0 |xx〉/
√

2, in the same way as in the previous section.

The measurements Alice and Bob perform are carried out on the effectively dis-

tributed state (6.25) which is the same as for the idealized single-photon case in the
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previous section. Thus their correlation, described by PXY, given by Eq. (6.3), remains

unchanged. To find the correlation between Eve and Alice’s data X, we need to con-

struct the cq-state corresponding to Eq. (6.9) which we found in the previous section

for the case of single-photon events.

In order to calculate the obtainable key length in a scenario including multi-photon

events, we need to know the structure of the global state (6.24). But Alice and Bob

can only find on which “effective” state (6.25) they performed their measurements. The

global state can thus be any state that is compatible with Eq. (6.25) and Eq. (6.26).

In the next two subsections, we present two different approaches for the determination

of |Ψn〉ABE . In Sec. 6.4.2, we are making the apparent assumption that the single-

photon part trE |Ψsingle〉ABE and the multi-photon part trE |Ψmulti〉ABE are themselves

depolarized states (6.26). Thus also their convex combination via the parameter η in

Eq. (6.25) is a depolarized state. Using this ansatz as a “first guess”, we are able

to calculate the secret key rate for this scenario. However, this approach is not the

most general one, because there are many other states |Ψsingle〉ABE and |Ψmulti〉ABE

which have the desired feature that they lead to the depolarized state in the convex

combination (6.25). One of these possibilities could be favorable for Eve, i.e. it could

lead to a lower obtainable key rate for Alice and Bob. Therefore, in Sec. 6.4.3, we

extend our considerations from Sec. 6.4.2 to a more general case. It will turn out that

it is indeed not sufficient to consider the single- and multi-photon part to be the same

depolarized state — there exists a more general strategy for Eve that leads to a lower

key rate.

6.4.2 Symmetric Splitting

Fixing the form of the effectively distributed state (6.25) to be (6.26) leaves a lot of

freedom in the structure of the states |Ψsingle〉ABE and |Ψmulti〉ABE ; only their mixture

has to be a depolarized maximally entangled state.

In this section, we restrict our attention to the case where both these states are

purifications of the “same” depolarized state, i.e.,

trE |Ψsingle〉〈Ψsingle|ABE = ρdep
AB(βs

0, β
s
1), (6.27)

trE |Ψmulti〉〈Ψmulti|ABE = ρdep
AB(βm

0 , β
m
1 ), (6.28)

only for different parameters βs
0,1 and βm

0,1. This assumption is an obvious choice which

fulfills Eq. (6.25), which implies the parameters β0 and β1 measured by Alice and Bob
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in the parameter estimation step are given by

β0 = ηβs
0 + (1 − η)βm

0 , (6.29)

β1 = ηβs
1 + (1 − η)βm

1 . (6.30)

Recall that the parameters β0 and β1 are not independent, rather, they are related by

β0 + β1 = 1.

By Eqs. (6.27) and (6.28), the total state for both the single and the multi-photon

part is the same as for the analysis of the idealized single-photon case in Sec. 6.2. For

this case, we have already derived the cq-state describing Eve’s correlation with Alice’s

data X, and it is given by (cf. also Eq. (6.9))

ρXE =

[
∑

x,y

PXY (x, y)|x〉〈x| ⊗ ρxy
E

]⊗ns

, (6.31)

with PXY (x, y) = β1 + δxy(β0 − β1) and where

ρxy
E = AB〈xy|Ψsingle〉ABE . (6.32)

If we assume that Alice and Bob employ a simple sifting strategy in which they

announce the encoding used for each pulse, Eve will know all key bits that are generated

from the multi-photon part, because she then can measure the stored signals in the

correct basis. This means that the cq-state for the multi-photon part is of the simple

form [1/2
∑1

x=0 |x〉〈x| ⊗ |x〉〈x|E ]⊗nm . It follows that for all n signals, the cq-state is

given by

σXE = ρXE ⊗
[

1

2

1∑

x=0

|x〉〈x| ⊗ |x〉〈x|E

]⊗nm

, (6.33)

again modulo permutation of the n subsystems (cf. discussion in Sec. 6.4.1).

What is now the maximally obtainable secret key length that can be extracted from

X and Y in the realistic scenario described by Eq. (6.33)? One might expect that the

only contribution to the secret key comes from the single-photon part,

ℓ(σXE)
?
= ℓ(ρXE). (6.34)

In order to answer this question, we need to evaluate ℓ(σXE), i.e. Eq. (6.10). Note that

σXE = ρXE ⊗ (1r/r ⊕ diag(0, . . . , 0
︸ ︷︷ ︸

s

))m, with r = 2, s = 22 − 2, and m = nm. We have

calculated the Renyi entropies appearing in Eq. (6.10) for density matrices of this form

in Sec. 5.3.4, and we already noticed that the correlations between X and Y remain
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6.4. Inclusion of Multi-Photon Events

unchanged when we are taking multi-photon events into account. Thus we immediately

obtain

ℓ(σXE) ≈ ℓ(ρXE), (6.35)

where the approximation is up to an additive constant of the order of 2−nm . This re-

sult tells us that all nm multi-photon signals do not contribute to the key length at

all, only the single-photon part is important. Due to Eq. (6.27), this part is described

by |Ψsingle〉ABE , the purification of ρdep
AB(βs

0, β
s
1), which is the depolarized state given by

Eq. (6.26). The amount of secret key that can be extracted from this state depends on

the parameter βs
0 (or βs

1 = 1 − βs
0). But Alice and Bob cannot measure this parameter

directly, only the convex combination β0 given by Eq. (6.29). They can therefore only

infer a lower bound on the secret key length by making the most pessimistic assump-

tion on βs
0 compatible with their measurement, which is βm

0 = 1, meaning that most

of the correlations they measured come from the multi-photon part (which does not

contribute). This leads to the lowest possible value for βs
0:

βs,min
0 =

1

η
(β0 − (1 − η)) , (6.36)

or, in terms of quantum bit error rates,

Qmin =
1

η
Q, (6.37)

where Q = 1− β0 is the QBER Alice and Bob obtain in the parameter estimation step.

From these considerations we also see that if β0 ≤ 1−η ⇔ Q = 1−β0 ≥ η, all correlations

can be contributed to the multi-photon part, i.e. βs
0 = 0 and ℓ = 0. This is a well-known

result [40, 41, 71], meaning that if the error rate in the sifted key is larger than the

probability of creating a single-photon pulse, no secret key can be generated. Another

simple upper bound on the tolerable QBER is obtained by the following consideration:

Remember that the secret key is drawn entirely from the single-photon part (6.27),

which we assumed to be the depolarized state (6.26). If this state is separable, no secret

key can be distilled from it [22, 23]. The condition on the parameters for which this

happens is β0 ≤ 2/3, i.e. Q ≥ 1/3.

As a recap, if Alice and Bob run the Tomographic Protocol in a weak coherent pulse

implementation with a fraction η of single-photon pulses among all n pulses after the

sifting and QBER Q, they can expect to generate a secret key of the same length as if

they ran the protocol using a single photon implementation with only ns = ηn signals

and a larger QBER of Q/η. This result is visualized in Fig. 6.8. Note that if Alice

and Bob would employ decoy pulses [40, 41], they might be able to learn more about
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Figure 6.8: (Color online.) Secret key rate r versus the QBER of the single-photon part,

Qs = 1−βs
0 for a weak-coherent pulse implementation of the Tomographic Protocol with

a fraction η = 0.279 of single-photon events among all non-empty pulses (solid lines).

This corresponds to an average photon number of 0.425 (chosen for comparison with

Fig. 6.9). The dotted line corresponds to the single-photon implementation. We have

chosen n = 20, 000 and ε = 10−10.

the parameters βs
0 and βm

0 (which ultimately describe the total system) than just their

convex combination β0 = ηβs
0 + (1− η)βm

0 . This would allow them to estimate a tighter

bound on the secret key rate. We address this issue in Sec. 6.4.4.

6.4.3 Asymmetric Splitting

In this section, we generalize the considerations of the previous section to more general

cases where the states in Eq. (6.25) are not necessarily depolarized maximally entangled

states. As we have already seen, only the single-photon part is important for generating

the secret key, as Eve has full information about the multi-photon pulses. Thus, we will

concentrate on |Ψsingle〉ABE and choose |Ψmulti〉ABE such that (6.26) holds, for predefined

values β0 (Alice and Bob measure it) and η (determined by the experimental setup).

Our goal will be to show that the asymmetric splitting is advantageous for Eve,

in the sense that there exists a larger range (than for the symmetric splitting) of the

parameter β0, detectable for Alice and Bob, for which no key agreement is possible.
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6.4. Inclusion of Multi-Photon Events

We consider the following general6 ansatz for |Ψsingle〉ABE :

|Ψsingle〉ABE =
√
α1|φ+〉|1〉 +

√
α2|φ−〉|2〉 +

√
α3|ψ+〉|3〉 +

√
α4|ψ−〉|4〉, (6.38)

with
∑4

i=1 αi = 1. The marginal state shared by Alice and Bob is thus ρsingle
AB =

α1|φ+〉〈φ+|+ · · ·+α4|ψ−〉〈ψ−|, which is separable (i.e., no secret key can be extracted)

if and only if αi ≤ 1/2 for all i.7 Condition (6.25), evaluated for the marginal states

implies that

ρmulti
AB =

1

1 − η
(ρdep

AB(β0, β1) − ηρsingle
AB ), (6.39)

where we again have assumed that the effectively shared state is the depolarized state

(6.26). Inserting the explicit form of ρsingle
AB and ρdep

AB(β0, β1) into (6.39) yields

ρmulti
AB =

1

1 − η

[(
3β0 − 1

2
− ηα1

)

|φ+〉〈φ+| +
(

1 − β0

2
− ηα2

)

|φ−〉〈φ−| (6.40)

+

(
1 − β0

2
− ηα3

)

|ψ+〉〈ψ+| +
(

1 − β0

2
− ηα4

)

|ψ−〉〈ψ−|
]

. (6.41)

The only assumption we make on ρmulti
AB is its positivity, which yields the following

bounds on the parameters αi:

α1 ≤ 3β0 − 1

2η
(6.42)

αi ≤ 1 − β0

2η
for i = 2, 3, 4 (6.43)

A simple bound for the threshold QBER is given by the value of Q for which ρsingle
AB

becomes separable. (However, separability is only a sufficient conditions, i.e., there

exist entangled states which also lead to a vanishing key rate.) Thus we look for the

range of β0 which allows αi ≤ 1/2 for all i. The only αi that could possibly be larger than

1/2 is α1, since αi < 1/6 for i = 2, 3, 4 is equivalent to α1 = 1−α2−α3−α4 > 1/2. From

Eq. (6.43), we see that this happens if (1−β0)/(2η) > 1/6, i.e. 1−β0 > η/3. In terms of

the QBER Q, this reads Q ≥ η/3, which needs to be contrasted to the bound Q ≥ 1/3

for the symmetric splitting found in the previous section. This means that for the more

general splitting of the effectively distributed state (6.25) considered in this section, we

can derive a lower tolerable QBER than for the symmetric splitting. This tells us that

the symmetric splitting assumption is not well-suited for a security analysis, because

there exists a strategy for Eve (the asymmetric splitting) which provides Alice and Bob

6This is the most general ansatz because we have shown in Sec. 5.3.2 that the Renyi entropies S2
α(ρ)

only depend on the eigenvalues of ρ.
7This can be easily verified by consulting the PPT criterion [72].
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with a possibly lower key rate for the same QBER. Thus we need to consider the case

where the eavesdropper chooses this attack, which is favorable from her perspective.

To conclude, we have found that for an asymmetric splitting and a measured QBER

of Q ≥ η/3, there exists a separable state ρsingle
AB that produces the depolarized state

in the effective mixture (6.25), i.e., no secret key agreement is possible. For the sym-

metric splitting, the corresponding bound reads Q ≥ 1/3, which is too optimistic. This

indicates that the symmetric splitting approach is potentially yields a too optimistic

key rate, since we have shown that it at least yields a too optimistic threshold QBER.

Unfortunately, we cannot calculate the they rate for the asymmetric splitting approach,

as the corresponding density matrices contain too many different eigenvalues, resulting

in an increasing running time of our algorithms. Therefore, we have to leave this issue

unsolved.

6.4.4 Decoy States

The problem that Alice and Bob face whenever they have to deal with multi-photon

pulses is that Eve’s options are greatly increased. We have seen this in the previous

section where the eavesdropper was able to devise a strategy that depends on the photon

number of each pulse. Unfortunately for Alice and Bob, using the standard protocol,

they cannot get enough information about this new strategy to tightly bound the newly

arising parameters, and thus they have to make the most pessimistic assumptions (cf.

Eq. 6.36).

The decoy state protocol aims at solving this problem: By employing a second

photon source with a different photon number statistic, Alice and Bob can measure

more characteristics of their data and can potentially infer the value of all parameters

in the protocol.

Suppose that Alice holds two photon sources which we label a and b. Originally [40,

41], the idea was that pulses from one source (the “signal” source) are used in a stan-

dard (i.e., BB84 or 6-state) protocol to generate the secret key. “Decoy” pulses are

interspersed in between them to probe the eavesdropping strategy. It turned out that

both sources can play an equal role in the key generation, making the naming mislead-

ing. The two sources need to have exactly the same characteristic such as frequency

distribution and polarization, but it is crucial that they have a different photon num-

ber distribution. For simplicity, we assume that they are both Poissonian, but with a

different mean photon number. We denote by ηa,b the fraction of single photon pulses

among all non-empty pulses emitted by source a and b, respectively, and 1 − ηa,b is the

fraction of multi-photon pulses.
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6.4. Inclusion of Multi-Photon Events

We consider the case where Alice decides for each pulse whether to choose source a

or b, and that Eve cannot distinguish these pulses. However, she can choose her attack

according to the photon number of the pulse. The distributed state is therefore of the

form

ρn
AB = ρdep

AB(βs
0, β

s
1)

⊗na
s ⊗ ρdep

AB(βm
0 , β

m
1 )⊗na

m ⊗ ρdep
AB(βs

0, β
s
1)

⊗nb
s ⊗ ρdep

AB(βm
0 , β

m
1 )⊗nb

m , (6.44)

where na,b
s = ηa,bna,b are the number of single photon pulses originating from source a

and b, respectively, and na,b
m = (1 − ηa,b)na,b are the corresponding number of multi-

photon pulses. The total number of pulses in source a and b are denoted by na,b, with

na + nb = n. As Alice and Bob can (only) differentiate between pulses from the two

different sources, they measure two effectively distributed states:

ρa
AB =

na
s

na
ρdep

AB(βs
0, β

s
1) +

na
m

na
ρdep

AB(βm
0 , β

m
1 ) = ρdep

AB(βa
0 , β

a
1 ), (6.45)

ρb
AB =

nb
s

na
ρdep

AB(βs
0, β

s
1) +

nb
m

nb
ρdep

AB(βm
0 , β

m
1 ) = ρdep

AB(βb
0, β

b
1), (6.46)

with

βa,b
0 =

na,b
s

na,b
βs

0 +
na,b

m

na,b
βm

0 = ηa,bβs
0 + (1 − ηa,b)βm

0 , (6.47)

βa,b
1 =

na,b
s

na,b
βs

1 +
na,b

m

na,b
βm

1 = ηa,bβs
1 + (1 − ηa,b)βm

1 . (6.48)

Here, βa,b
0,1 are the measurable quantities for Alice and Bob, and the ηa,b are known

because Alice knows the characteristics of her sources. The quantity βs
0, i.e., the cor-

relations present in the single-photon pulses, determine the extractable key length, and

need to be determined by Alice and Bob. Since Eqs. (6.47) and (6.48) form a linear

system of equations, Alice and Bob can compute βs
0 from their data. This is in contrast

to the scenario depicted in the previous section, where Alice and Bob were not able to

determine the value of these variables exactly, but needed a pessimistic assumption.

As we have shown in Sec. 6.4.2, only the single-photon pulses contribute to the

secret key rate. Thus, by introducing the appropriate cq-states for the different terms

in Eq. (6.44), which are given by Eq. (6.33), we find again that only the single-photon

part, i.e. only ns signals, contribute to the secret key rate. The important parameter

determining the extractable key length is the correlation βs
0 in the single-photon part,

which is given by

βs
0 =

1

ηa,b
(βa,b

0 − (1 − ηa,b)βm
0 ) (6.49)

=
(1 − ηa)βb

0 − (1 − ηb)βa
0

ηa − ηb
, (6.50)
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which follows from Eqs. (6.47) and (6.48). Here, βs
0 and βm

0 characterize the eavesdrop-

ping strategy, i.e., they are chosen by Eve, and Alice and Bob need to determine them.

As discussed above, the employment of two different photon sources provides them with

a method to achieve this, in contrast to the original protocol discussed in Section 6.4.1.

In the latter case, Eq. (6.49) has to be replaced by Eq. (6.36), where βm
0 was pessimisti-

cally assumed to be 1. Eq. (6.50) can also be re-expressed in terms of quantum bit error

rates, yielding

Qs =
(1 − ηb)Qa − (1 − ηa)Qb

ηa − ηb
, (6.51)

where Qs is the QBER in the single-photon part and Qa,b are the measured QBERs for

source a and b, respectively.

To conclude, we have seen that using decoy state, Alice and Bob do not need to

make a pessimistic assumption of the parameter Qs which determines the error rate

in the single-photon signals and thus the obtainable secret key rate. Still, only the

single-photon part contributes, and the fraction of single-photon pulses is given by η =

αηa + (1 − α)ηb, where α determines the fraction of signals originating from source a,

which Alice can tune at will. In Fig. 6.9, we compare the obtainable key rates for a

single-photon implementation with a realistic weak coherent pulse scheme and with the

decoy state method presented in this section. We see that the decoy state method is

more robust than the method without decoy states, as the key rate remains non-zero for

a larger range of the error rate. Only for very low error rates, the decoy state method

becomes unfavorable, as multi-photon pulses are added without the need for estimating

Qs, which is almost equal to Q for Q→ 0.
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Figure 6.9: (Color online.) Secret key rate r versus the QBER of the single-photon part,

Qs = 1 − βs
0 for a single-photon implementation (dashed line), a weak-coherent pulse

implementation with a fraction η = 0.279 of single-photon events (blue), and a decoy

state implementation (red). For the decoy states, we have used the same parameters as

in [73], that is, ηa = 0.279, ηb = 0.166, and a fraction of α = 3/4 of signals from source

a. We have chosen n = 20, 000 and ε = 10−10.
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Chapter 7

Conclusion

In this thesis, we have developed a novel method to calculate secret key rates for quantum

key distribution protocols. It consists of algorithms that allow for the explicit calculation

of smooth Renyi entropies, which determine the key rate r by virtue of an expression

found by [1] (see Eq. (5.12)). Our notion of secret key rate is defined with respect to

the privacy amplification step, i.e., it is the ratio of the output (the number of secret

key bits ℓ) and the input (the number of raw key bits n, the block size) of the privacy

amplification step. In particular, our results are valid for any finite value of n (however,

for numerical limitations, we are restricted to values of n . 7 · 104).

As an example application of our algorithms, we investigated the Tomographic Pro-

tocol, a variant of the well-known Six-state Protocol. In its analysis, we made two

assumptions: First, Alice and Bob can verify in the parameter estimation step that the

quantum state they share after the distribution is of a certain form ρdep
AB (see Eq. 6.2).

The idea behind this assumption is that Alice and Bob would expect to share this

state in the absence of an eavesdropper if they are connected by a depolarizing channel,

which is a reasonable error model for a realistic channel. The maximally entangled state

|φ+〉 Alice distributes evolves into ρdep
AB under the action of this channel. “Verification”

means that we assume that Alice and Bob always share this state, because any instance

in which they find a different state will be treated as an indication for an eavesdropping

attack and the protocol will be aborted. Alternatively, we can interpret the Tomo-

graphic Protocol as the standard Six-state Protocol with an additional restriction on

the eavesdropping attack, namely that it is symmetric, i.e. the noise that it introduces

is white noise, in the same way as for the depolarizing channel. The second assumption

is that the eavesdropper only conducts collective attacks, that is, each signal is attacked

in the same way. There are indications that assuming collective attacks is not really a

restriction, because Alice and Bob can enforce such a high symmetry by only adding a
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small extra step to the protocol [1, 38, 63].

We are able to calculate the secret key rate for the Tomographic Protocol as a

function of various parameters: The block size n, the quantum bit error rate (QBER)

Q (which is the only free parameter describing the quantum states distributed between

Alice and Bob), the dimension of the quantum systems d, and the security parameter ε.

For a realistic implementation, it is important to assume a finite block size n (the number

of signals that are inputed to the privacy amplification step) and a non-vanishing security

parameter (which is the probability that the final key is insecure). We have found that

the key rate heavily depends on both n and ε: It converges to the asymptotic value r∞

for n → ∞ found in [1], reaching approximately 86% of it at n = 7 · 104 for low error

rates (Q = 0.02) and a security parameter of ε = 10−3. We believe that typical privacy

amplification protocols work with block sizes of the order of 105, therefore our results

suggest that the finiteness of n does not lead to a dramatic decrease of the secret key rate

in a realistic setting. Potentially more severe is the influence of the security parameter

on the key rate for a finite block size, as it was shown that r becomes independent of it

only in the limit n → ∞ [1]. Indeed our results show that the key rate decreases with

decreasing ε. Still, for a realistic error rate of Q = 0.05 and a block size of n = 104, we

have found that the key rate remains non-zero even for very small security parameters

up to ε > 10−28. This is an important result that shows that unconditionally secure

keys can also be created in a realistic scenario. Note that up to now, there is no general

understanding of what are reasonable values to choose for ε.

We extended our analysis of the tomographic protocol to include also multi-photon

events. These are signals send from Alice containing more than one copy of a signal

states, enabling the so-called photon number splitting (PNS) attack. Such events in-

evitably occur in any realistic application relying on weak coherent pulses. Making the

most pessimistic assumptions that the eavesdropper has complete knowledge about all

key bits originating form multi-photon pulses, we have shown that the key rate will

decrease only by a factor of η (the fraction of single photon events) with respect to

an idealized single-photon implementation. However, the estimation of the QBER Q

becomes more involved. Our results suggest that the “real” QBER, which is used for

the calculation of the key rate, is at least a factor of 1/η larger than the QBER which

is estimated from Alice’s and Bob’s data.

Our results show that secret key generation by privacy amplification remains feasi-

ble when taking into account realistic assumptions, namely: The privacy amplification

protocol works with finite blocks of classical data, and the quality of the key is measured

by some security parameter which can be set to a desired value.
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Appendix A

Numerical methods

In this chapter, we present the numerical methods that were employed to derive the

results presented in Ch. 6. The main task in that section was to find the achievable

key rate for a specific QKD protocol, which involved calculating smooth Renyi entropies

of the quantum states describing Alice’s and Eve’s systems (and of the probability

distribution describing Alice’s and Bob’s correlations). In Sec. 5.3.3, we derived a simple

expression for the Renyi entropies Sε
2(ρ), S

ε
0(ρ), and Hε

0(X|Y ) in terms of the eigenvalues

and probabilities occurring in ρ and PX|Y , respectively. Since the numerical evaluation

of these expressions are very similar for all entropies, we focus on Sε
0(ρ) to present the

details. For ρ ∈ B(Cd), recall that

Sε
0(ρ) = log(d− k), (A.1)

where

k =

b−∑

i=1

ni−1 +

⌊
ε− s−(b−)

λb−

⌋

, (A.2)

b− = max{r : s−(r) ≤ ε} (A.3)

s−(r) =

r∑

i=1

ni−1λi−1. (A.4)

Here, λi and ni with 1 ≤ i ≤ m are the eigenvalues and multiplicities of ρ, respectively,

and 0 ≤ r, b− ≤ m + 1. The specific form of the eigenvalues in given in Eq. (6.13).

The main complication lies in the calculation of b−, for which we cannot give a closed

expression, because we cannot solve (A.4) for r. Therefore, we need to devise an al-

gorithm that checks for all r whether s−(r) ≤ ε and returns the largest one of these.

Unfortunately, it is unfeasible to start from r = 0, increasing r by one in each step and
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test if s−(r) ≤ ε, because this requires (in the worst case scenario) m + 1 operations.

For the QKD protocol we investigated in Ch. 6, the density matrix ρ is an n-fold tensor

product (cf. Eq. (6.9)), i.e. m is usually of the order of 2n (unless it is pure), where n is

the block size of the privacy amplification protocol, which can easily be of the order of

105 (cf. Sec. 6.2). Thus, this simple approach for finding r needs a number of operations

that scales exponentially in n.

A more desirable approach is to employ a more sophisticated search algorithm to find

b−. This is possible because the elements of the search space, the s+(r), are ordered.

In this work, we implemented a binary search algorithm [74] that cuts the interval

containing the solution in half in each step. Such an algorithm has a running time of

log(m+1), if the search space contains m+1 elements, which is in our case of the order

of log 2n = n. In this way, the running time stays polynomial in the block size of the

PA protocol.

The calculations were performed on standard desktop PCs, equipped with Pentium

4 processors running at 3.2 GHz and 1GB memory. The algorithms were written in

C++, using Ginac’s arbitrary precision library, cln [75]. This is necessary because we

are dealing with very small numbers due to the large size of input density matrices:

The smallest eigenvalue is typically of the order of 2−n (cf. Sec. 6.2). Note that all

calculations performed do not contain any approximations and are exact up to possible

rounding errors. For most of the calculations, it is sufficient to use a precision of 20

significant digits; we verified however for all calculations that a variation of the precision

does not lead to change in the result (the key length, which is of the order of n) of more

than 10−5.

A typical calculation of the secret key length for, say, a block size of n = 20, 000 and

security parameter ε = 10−10 lasts about 10 min. Since the runtime of the algorithms is

only linear in n, there is in principle no limitation for block sizes n to be calculated, as

long as one is investing more computer power and memory. With our limited resources,

we were able to calculate key rates for block sizes up to n = 70, 000, which lasts a couple

of hours, but already uses up all memory. Moving to vector processors or clusters, this

limit could certainly be pushed further, but we do not expect any new insights from

calculating secret key rates for block sizes beyond 105.
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[13] M. Dǔsek, N. Lütkenhaus, and M. Hendrych, Progress in Optics 49, 381 (2006).

[14] G. S. Vernam, Journal of IEEE 55, 109 (1926).

[15] C. Shannon, Bell System Technical Journal 28, 656 (1949).

[16] P. Gemmell and N. Naor, Advances in Cryptology–CRYPTO ’93 773, 355 (1993).

99



Bibliography

[17] C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Confer-

ence on Computers, Systems, and Signal Processing, Bangalora, India (IEEE, New

York, 1985), pp. 175–179.

[18] W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

[19] A. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[20] J. Clauser, M. Horne, A. Shimony, and R. Holt, Phys. Rev. Lett. 23, 880 (1969).

[21] J. S. Bell, Physics 1, 195 (1964).
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