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Abstract
In this work we study uncertainty across four different areas of theoretical computer
science. For three of the four areas, we analyze the hardness of new and existing
problems with tools from computational complexity theory. For the fourth area, we
inspect its fundamental axioms, identify discrepancies, and suggest improvements.
The four areas we address are judgment aggregation, preference aggregation by
voting, fair division of divisible goods, and stability of graphs.

Judgment aggregation studies the aggregation of individual judges’ judgments over
a given agenda via some aggregation rule into a collective outcome. In our work we
study a generalized family of sequential judgment aggregation rules. A sequential
judgment aggregation rule aggregates a set of judgments into a collective outcome by
following a specified order over the elements of the agenda. With this family of rules
defined, we determine the computational complexity of several uncertainty-related
decision problems for these rules. Among the studied problems are the classical
winner problem as well as problems addressing manipulability.

In preference aggregation by voting, we are given a set of candidates and a set of vot-
ers expressing their preference orders over the candidates. Using a predefined voting
rule, we determine one or multiple winners for such an election by aggregating the
voters’ preferences. In our work, we introduce a novel variant of the possible winner
problem, the possible winner with uncertain weights problem. In this problem one
is given a set of candidates, a distinguished candidate, and a set of votes over the
candidates with uncertain weights. One is asked whether there is a weight allocation
to the votes such that the distinguished candidate wins the weighted election. We
define a framework to study the computational complexity of the problem and three
further variants for integer and rational weights as well as several voting rules.

The area of fair division of divisible goods is also called cake-cutting. Its general
setting consists of an arbitrarily divisible good and a set of players with preferences
over the good, willing to split the good among themselves. Giving the area its
name, a cake is used as a metaphor for the good and an interactive cake-cutting
procedure portions the cake among the players. In our work, we study basic axioms
of cake-cutting: What pieces of cake should be considered as valid pieces, such that
every player can evaluate them. We survey current cake-cutting literature, identify
discrepancies, and make suggestions supported by the means of measure theory.

Stability of graphs belongs to the area of graph theory. Given a graph and a graph
parameter, a graph is called stable with respect to this parameter if removing any
single edge of the graph does not alter the parameter’s value. Similar concepts are
defined for vertices and adding edges and vertices. We build on already defined
decision problems in this field and study the complexity of these stability related
problems for special graph classes. In total, we cover the graph classes of trees,
forests, bipartite graphs, and co-graphs as well as four well-known graph parameters.
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1 Introduction

1 Introduction

In this work, we try to decide the uncertain. This statement left alone is, of course,
much too bold and beyond our scope, such that it needs to be put into some per-
spective: Computer science is an extremely broad and diversified field with a vast
amount of different subareas, all addressed by current research. Each of these sub-
areas contains open problems with unanswered questions that wait to be settled.
Approaching the initial statement from this perspective, in this work we concen-
trate on the wider subarea of theoretical computer science and present several new
results, proving unknown facts, and so helping to decide the uncertain. However,
this explanation alone probably does not vindicate the title of our work. Instead,
despite proving new results and pushing the frontier of knowledge in the area of
theoretical computer science an imperceptible inch forward, all of the results that
we address in the ensuing chapters are somehow internally related to uncertainty. In
our work we address four different subareas of computer science, namely judgment
aggregation, preference aggregation by voting, fair division of divisible goods, also
known as cake-cutting, and graph theory. In every of these four subareas, except for
cake-cutting, we analyze problems with the tools of computational complexity the-
ory in order to determine how hard it is to compute solutions to these problems. For
cake-cutting, we follow a different approach and instead study the very foundations
of the field, explicitly formulating new suggestions for some of the basic axioms in
the area.

Before outlining the four different subareas that we cover in our work, we want to
describe the aforementioned tools from computational complexity theory which we
make use of. Computational complexity theory itself can be considered as one of
the very fundamental subareas in theoretical computer science research [119]. This
field is mainly occupied with determining for given problems how hard they are to
solve [126]. To do so, standardized, formal methods and tools to study the hardness
of problems have been introduced. Giving the field its name, the hardness of a
problem is also known as the problem’s computational complexity. A problem’s
computational complexity can be measured along different dimensions such as time
and space. In other words, the means of computational complexity enable us to
formulate statements about what amount of time or space is required to solve a
given problem. Furthermore, this unit of complexity is unified in such a way that
we can compare the complexities of different problems, allowing us to say whether a
given problem is more, less, or equally as complex as some other problem. Based on
the time or space required to solve a given problem, we can categorize problems into
different complexity classes, each containing problems of similar complexity along a
given dimension [134].

Previously, we mentioned the areas of judgment aggregation and preference aggrega-
tion by voting. Both areas belong to the field of computational social choice (COM-
SOC). COMSOC is, compared to other areas such as complexity theory, a relatively
young subject of theoretical computer science research and has its origins in the
field of social choice theory [32]. While social choice theory addresses problems like
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1 Introduction

aggregating multiple individual preferences or judgments into collective outcomes,
COMSOC approaches these questions from a computer science perspective [3, 127].
In doing so, COMSOC extends the typical social choice theoretic questions by a
computational aspect and, for example, studies runtimes of preference aggregation
mechanisms, their manipulability by untruthfully voting agents or external bribers,
as well as the invention of new aggregation procedures satisfying certain complexity
and axiomatic requirements. Over the past years, COMSOC has become a central
sub field of artificial intelligence and multiagent-systems [88]. Research results have
diverse applications in economical contexts, politics, technologies, and basically all
situations where collective decision-making is required.

The first subarea of COMSOC that we study in our work is the area of judgment
aggregation. Judgment aggregation addresses scenarios where several judges with
individual judgments over a set of possibly logically interconnected boolean formulas
want to aggregate these judgments into a collective outcome, representing the overall
preferences of the group as well as possible [53]. We define a family of judgment
aggregation rules that can be used by judges to aggregate their individual judgments
into a collective outcome. Having formulated this family of rules, we study the
rules’ properties and confirm that the rules are consistent, i.e., they never return
an inconsistent or contradictory outcome as aggregated judgment. Furthermore, we
determine the complexity of executing such a judgment aggregation rule for a given
set of judgments and show that the defined family of rules is rather resistant against
manipulation attempts. Finally, we relate the family of judgment aggregation rules
to other, already existing rules from the literature, enabling the transfer of our
established complexities to further rules.

The second subarea of COMSOC which we study is the area of preference aggre-
gation by voting. This area addresses elections similar to ones one might know
from politics. The general scenario consists of a set of candidates as well as a set
of voters providing preference orders, also called votes, over the candidates. Given
a voting rule, one then determines one or multiple winners of the election [22]. A
very famous problem in the area of preference aggregation by voting is the possible
winner problem [98]. In this problem one is given a set of candidates, a distinguished
candidate, as well as a set of partial preferences over the candidates, i.e., preference
orders in which not all candidates occur, and is asked whether there is an extension
of the partial votes to total ones such that the distinguished candidate is a winner
of the election. In our work, we introduce a novel variant of the possible winner
problem, namely the possible winner with uncertain weights problem. This vari-
ant addresses weighted elections, i.e., elections where the voters’ preferences have
weights. Thereby, all votes are total preferences over the candidates but some of
the preferences’ weights are unknown. The question posed is whether there exists
a weight allocation to the votes without weights such that the distinguished can-
didate is a winner of the election. Having introduced this problem, we introduce
three further variants of the problem as well as a framework to study all variants for
nonnegative integer and rational weights. With the framework at hand, we resolve
all variants’ computational complexities for several well-known voting rules.

2



1 Introduction

Having covered these two areas of COMSOC, we turn to a field of theoretical com-
puter science closely related to COMSOC, namely fair division of divisible goods,
also called cake-cutting [109]. The basic setting of this area consists of a set of play-
ers that want to share a heterogeneous, arbitrarily divisible good among each other.
Usually, this good is metaphorically illustrated by a cake, as a cake is arbitrarily
divisible and can be heterogeneous, e.g., when some parts possess vanilla flavors and
others do not. Every player has some secret valuation function for the cake and all
players follow a cake-cutting protocol to share the cake among each other. In this
work we address the very foundations of cake-cutting and its axioms. In particular,
we discuss what pieces of cake should be allowed to be cut during the execution of a
cake-cutting protocol and the implications of our suggestions on valuation functions
and the practical feasibility of cake-cutting protocols.

Finally, our work turns to the area of graph theory and studies the stability of
graphs. Graph theory itself is one of the oldest areas of research in computer science
and dates back to the work by Euler [61] in 1741. Given a graph and a graph
parameter, we call the graph stable with respect to this parameter if the value of
the parameter for the graph does not change by removing any single edge of the
graph. Besides this concept of edge-stability, there are also the concepts of vertex-
stability, edge-unfrozenness, and vertex-unfrozenness, where the last two notions
relate to adding to, instead of deleting from, a graph. Building on previous results
by Frei, Hemaspaandra, and Rothe [67], we study the stability of graphs for special
graph classes. Doing so, we introduce algorithms for these classes that enable to
efficiently determine whether a given graph belonging to one of the studied classes
is stable or not. In our work we cover four of the most known graph parameters,
the independence set number, the clique number, the vertex cover number, and the
chromatic number as well as four graph classes, trees, forests, bipartite graphs, and
co-graphs.

Overall, this work is structured into seven chapters including this introduction. The
second chapter provides exhaustive background information on all research areas of
computer science that we address in our work. We provide introductions to com-
putational complexity, graph theory, judgment aggregation, preference aggregation
by voting, as well as cake-cutting. For each of these areas we explain all technical
notions and notations required throughout our work, illustrate these with small ex-
amples, and present recent as well as historically relevant literature. In Chapter 3,
we present our results related to judgment aggregation. Chapter 4 addresses our
work on preference aggregation by voting, Chapter 5 introduces our work on cake-
cutting, and Chapter 6 describes our results regarding the stability of graphs. We
end this work with a conclusion, giving a brief summary as well as an outlook on
possible future work.
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2 Background

2 Background

In this chapter of our work we introduce all areas of research that are either used as
preliminaries or are affected by our results as established in later chapters. Besides
providing overviews of these fields, we present central ideas, notions, and concepts
required to be able to understand all results and to follow corresponding proofs. In
the first section we introduce the research area of computational complexity theory.
As the title of our work already indicates, this area forms a fundamental basis
for our research and its tools are used across almost all our results. The second
section addresses the wide field of graph theory. Besides a thorough introduction
to the concepts of graph theory, as well as some advanced concepts therein, we
build on the previous section and present a select number of notions by combining
computational complexity theory with graph theory. The third section thematizes
the research areas of computational social choice and fair division. Research in
computational social choice is strongly diversified and contains a large range of
different subfields. Besides a short, general overview of the area of computational
social choice, we provide two parts covering the fields of judgment aggregation and
of preference aggregation by voting. The third and last part addresses the area of
cake-cutting, a subfield of fair division.

2.1 Computational Complexity Theory

In this section we provide an overview of the field of computational complexity
theory. For a more in-depth introduction, we recommend the books by Arora and
Barak [2], Papadimitriou [119], and Rothe [126], all providing an exhaustive overview
of the field of computational complexity theory. As implied by our introduction in
Chapter 1, our work mainly focuses on determining how hard it is to find solutions to
certain problems and to classify the problems accordingly. Thereby, the colloquial
formulation “how hard” needs to be specified in order to obtain a standardized,
comparable measure for the complexity of problems. To do so, we make use of
the research area of computational complexity theory. This area of research, whose
origin is usually linked to the work by Hartmanis and Stearns [84] in 1965, provides
mathematically formulated, precise means to classify the computational complexity
of problems. The most fundamental building block within this area is the Turing
machine, introduced by Turing [136] in 1936, used as an abstract model to simulate
computations in a formalized way. In order to make the computational complexity
of problems comparable, one must agree on a dimension along which one wants
to compare complexity. The two most commonly used dimensions are time, i.e.,
the number of computation steps required, and space, i.e., the amount of storage
required during a computation. In this work, we restrict ourselves to comparing
problems solely with respect to computation time as a measure of complexity.

Based on this computation model of a Turing machine and one of the two dimensions
to compare along, we are almost set to determine the computational complexity of
problems. However, we also need to specify how problems, whose computational
complexity shall be determined, should be defined. In the research area of computa-
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2 Background

tional complexity there are several different types of problems that can be analyzed,
e.g., decision problems, optimization problems, search problems, and within our work,
we study decision problems. A decision problem is defined by two parts, a specifi-
cation for the input, i.e., how a concrete problem instance looks like, and a yes-no
question that shall be decided for the given problem instance. Subsequently, we
provide an example of a well-known and well-studied decision problem. Garey and
Johnson [71] count this problem as one of the six problems belonging to the “basic
core” of decision problems used in computational complexity theory.1

Vertex Cover (VC)

Given: A graph G = (V,E) and an integer k ∈ N.
Question: Is there a vertex cover of size k or less for G?

If for a given instance the answer to the problem is yes, we call the instance a
yes-instance. Otherwise, if the question is answered with no, we call the instance
a no-instance. To measure the complexity of such a decision problem, we need
to formulate a program that can be executed by a Turing machine and is able to
solve every instance of this problem. Formulating such programs is a technically
involved task. Fortunately, assuming the Church-Turing thesis [69], which states
that every practically executable algorithm can be computed by a Turing machine,
it is sufficient to describe an algorithm solving the problem in a more high-level and
abstract language. Consequently, the task transforms from formulating a Turing
machine to formulating an algorithm that is able to answer every instance of the
given decision problem.2 Then, the question is how many computation steps are
required to solve a given instance of this problem. Of course, an absolute answer,
for example ten computation steps, does not make sense, as usually the number of
computation steps an algorithm requires to solve an input instance depends on the
size of the instance. When we address the size of an instance we refer to the space
required to encode the instance as an input to the algorithm. Hence, we determine
the time an algorithm requires to solve a decision problem as a function of the input
instance’s size. For example, given a decision problem and an algorithm solving
it, if the size of an instance is denoted by n and we know the algorithm requires
at most three times the size of an instance plus a fixed number of 42 computation
steps, we can specify the number of computation steps required by the algorithm
to solve an instance of the problem as 3n + 42. Of course, there could also be
an algorithm that requires only 3n + 10 steps to solve the same problem. These,
usually implementation dependent, differences can be neglected from an asymptotic
perspective with regards to a growing instance size, such that we specify the number
of computation steps required in “big omicron” (or more common “big O”) notation,
see the letter by Knuth [97]. Following this approach, both previously mentioned
runtimes can be interpreted as equal since they both belong to O(n).

1The meanings of the terms “graph” and “vertex cover” are introduced in the next section.
2From here on, we use the terms Turing machine and algorithm interchangeably since, assuming

the Church-Turing thesis, every feasible algorithm can be transformed into a Turing machine.
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2 Background

One further important aspect of computational complexity theory is that there are
two different types of Turing machines, deterministic and nondeterministic ones. A
deterministic Turing machine executes one computation step after the other, mak-
ing a decision what step to execute next based on the available choices at every
step. Imagining all possible computation paths of a computation as a large tree,
a deterministic Turing machine follows a single path through the tree. Once the
computation has ended, the machine either returns yes or no as an answer to the
initial input instance. Of course, a deterministic machine could enter an infinite
loop, never returning any result. However, in this case we cannot specify any run-
time complexity, such that we assume that these computations always terminate.
Contrarily, a nondeterministic Turing machine can follow multiple computation
paths at the same time, basically exploring the whole computation tree in parallel.
Thereby, a nondeterministic computation tree is allowed to contain infinite paths,
such that not all computation paths of a nondeterministic computation tree must
end. Therefore, a nondeterministic Turing machine does not decide for a given input
instance whether it is a yes- or no-instance, but only accepts yes-instances. To do
so, a nondeterministic Turing machine returns yes as soon as it has found at least
one computation path in the computation tree that results in a positive answer.
Figure 1 illustrates this difference between deterministic and nondeterministic ap-
proaches in a graphical way for a simple computation tree. At this point we want
to highlight that although nondeterministic Turing machines sound more preferable
than deterministic ones since they can check multiple possibilities at once, so far
no nondeterministic computer exists in the real world. Hence, in the real world
every nondeterministic Turing machine must be simulated by a classical (determin-
istic) computer by sequentially processing all possible computation paths, losing
the powerful advantage. Nevertheless, from a theoretical point of view, nondeter-
ministic Turing machines are a fundamentally important concept of computational
complexity theory.

r r

Figure 1: The computation path (filled, black) of a deterministic Turing machine
(left) compared with the approach of a nondeterministic Turing machine (right).
Both computations begin in the root r of the tree and every vertex represents a
computation step. Potential computation paths through the tree are connected via
edges.

The worst-case runtimes of algorithms are specified with respect to the size n of
the input instance. For a deterministic algorithm it is defined as the maximum
number of computation steps the algorithm requires to solve any instance of size n.
Contrarily, for a nondeterministic algorithm it is defined as the maximum length of
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a shortest, accepting computation path in the computation tree for any instance of
size n.

Having provided a general overview of the fundamental aspects of computational
complexity theory, next we define several important computational complexity classes
that we require throughout our remaining work. A complexity class is a set that
contains decision problems of equal complexity. One of the most prominent com-
plexity classes is the class of problems that can be solved in deterministic polynomial
time. We denote this class by P and a problem Ψ belongs to P, i.e., Ψ ∈ P, if there
is a deterministic algorithm that can solve all instances of Ψ in time polynomial
in the input instance’s size. We stick to the generally accepted terminologies and
use the words “efficient” and “tractable” whenever some problem or function can
be computed deterministically in time polynomial in the size of its input. Further-
more, there is also a class for problems that can be accepted in nondeterministic
polynomial time. We denote this class by NP and a problem Γ belongs to NP, i.e.,
Γ ∈ NP, if there is a nondeterministic algorithm accepting all yes-instances of Γ in
polynomial time with respect to the input size. Lastly, there is the complexity class
of coNP which contains the complements of the problems that belong to NP. In
other words, if I is an instance of Γ, then I belongs to the complement of Γ if and
only if I /∈ Γ holds. Since every deterministic polynomial-time algorithm can also
be interpreted as a nondeterministic polynomial-time algorithm, P ⊆ NP follows
immediately. However, the opposite inclusion, i.e., NP ⊆ P, is one of the most
important, unresolved questions in computer science [43].

Before we can continue presenting further complexity classes required in our work,
we need to introduce one additional concept from computational complexity theory,
namely the concept of oracles. A Turing machine that is equipped with an oracle
has access to some mechanism, whose inner workings are unknown, that is able
to give yes or no answers to instances of a given decision problem within a single
computation step. Such an oracle is a powerful addition for a Turing machine as the
oracle can be used during the machine’s computation to query an answer to some
sub-instance within a single computation step that could help decide the initial
instance. This concept of oracles can also be extended to complexity classes. For
example, decision problems that can be solved in polynomial time by a deterministic
Turing machine with access to an NP oracle, belong to the complexity class PNP.

The subsequent complexity classes belong to the polynomial-time hierarchy PH
introduced by Stockmeyer [133] in 1977. Thereby, the polynomial-time hierarchy
is a hierarchy of complexity classes with increasing complexity that is recursively
defined. The ground level of the hierarchy is defined as Σp

0 = Πp
0 = ∆p

0 = P and
the first level of the hierarchy consists of the complexity classes Σp

1 = NP and
its complement Πp

1 = coNP. The i-th level of the polynomial-time hierarchy for
i ≥ 2, i ∈ N, consists of Σp

i = NPΣp
i−1 , Πp

i = coΣp
i , and ∆p

i = PΣp
i−1 . Having all

individual levels introduced, the complete polynomial-time hierarchy PH is defined
as PH =

⋃
i∈N Σ

p
i . In later chapters we use the second level of the polynomial-time

hierarchy, composed of Σp
2 = NPNP, Πp

2 = coNPNP, as well as ∆p
2 = PNP.
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2 Background

Besides these classes, we also require the class Θp
2 = PNP[log], introduced by Pa-

padimitriou and Zachos [121] in 1983. Θp
2 contains problems that can be solved by a

deterministic polynomial-time Turing machine with access to some NP oracle which
is queried at most logarithmically many times in the size of the input.

Having defined thus many complexity classes, natural questions arise about the
relations of these classes among each other, say, which classes are contained in other
classes, etc. This area of research is a wide subfield of complexity theory called
structural complexity theory [34, 36, 105]. A lot of work has been done in this field,
for example, it is a well-known result (see, e.g., [126]) that for every i ∈ N, we have

Σp
i ∪ Πp

i ⊆ ∆p
i+1 ⊆ Σp

i+1 ∩ Πp
i+1.

Besides such rather straightforward results there are also famous, way more involved
results, such as the Karp-Lipton theorem, see Karp and Lipton [92], which states
that if NP is a subset of P/poly, then the polynomial-time hierarchy PH collapses
to its second level.3

In order to prove that some problem Ψ is a member of some complexity class C, we
must formulate an algorithm running within the specified computation time limits
of C, answering all instances of Ψ correctly. If we are able to provide such a correctly
working algorithm, it follows that Ψ ∈ C holds and doing so, we basically provide an
upper bound for the computational complexity of the problem, as we know for sure
that Ψ can be solved within the means of C. However, it might be that there exists
a more efficient algorithm to solve Ψ within the means of a complexity class of lower
computational complexity. For two decision problems Ψ and Γ, we can also try to
translate instances of one problem into instances of the other problem. Therefore,
we define a total function f computable in time polynomial in its input that takes
instances of Ψ as input and returns instances of Γ as output. Such a function f
is called a polynomial-time many-one reduction from Ψ to Γ, if an instance I is
a yes-instance for Ψ if and only if f(I) is a yes-instance for Γ. In case such a
function f exists for two problems Ψ and Γ, we also write Ψ ≤p

m Γ and say that Ψ
is polynomial-time many-one reducible to Γ. Doing so, we show that Γ is at least as
computational complex as Ψ, as otherwise, we could translate instances of Ψ into
instances of the simpler problem Γ and then solve these simpler instances. With the
equivalence property of the reduction we could then deduce whether the original Ψ
instance is a yes-instance. A problem Ψ is defined to be C-hard, if for all Σ ∈ C it
holds that Σ ≤p

m Ψ. Proving that a problem Ψ is hard for some complexity class C
is a way of showing a lower bound for the problem’s complexity. That is because
we show that Ψ is at least as hard as every other problem in C. Finally, a problem
is defined to be C-complete if it belongs to the complexity class C and is C-hard.
A common approach to prove that a decision problem Γ is C-hard consists of a
polynomial-time many-one reduction from a C-hard problem to Γ. This approach
exploits the fact that ≤p

m is a transitive relation, see [126].
3The complexity class P/poly contains all problems that can be decided via a family of

polynomial-sized boolean circuits. For an introduction to boolean circuits and a formal defini-
tion of this complexity class we refer to the work by Arora and Barak [2].
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One of the most known and thoroughly studied decision problems is Satisfiability,
which is defined as follows [71].

Satisfiability (SAT)

Given: A set of boolean variablesX and a boolean formula α overX in conjunctive
normal form.

Question: Is there a boolean assignment for the variables in X such that α evaluates
to true?

The subsequent example provides a Satisfiability instance and explains whether
this instance is a yes- or no-instance.

Example 2.1. Let (X,α) with X = {x1, x2, x3} and

α = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3)
be a Satisfiability instance. Setting x1 = x2 = x3 = false we found an assign-
ment for the boolean variables in X such that α evaluates to true. Consequently,
(X,α) is a yes-instance for Satisfiability.

Besides being one of the most natural decision problems in computational complexity
theory, this problem is also the first problem for which NP-completeness was proven.
This result is due to Cook [42], who proved NP-completeness in 1971, and Levin
[108], who proved NP-completeness independently in 1973. Since then, this result is
known as the “Cook-Levin theorem” or simply as “Cook’s theorem”. Many more NP-
completeness results have been proven up to today for an ever increasing number of
decision problems. The book by Garey and Johnson [71] provides a noteworthy list
of further, fundamental decision problems and their corresponding NP-completeness
proofs.

Besides complete problems for the complexity class NP, there are uncountably many
more complete problems for all sorts of complexity classes. For example, Schaefer
and Umans [129, 130] provide a list of problems that are known to be complete for
individual levels of the polynomial-time hierarchy. Listing these classes together with
their complete problems is significantly beyond the scope of our work. Nonetheless,
we want to introduce two further problems of which we make use in Chapter 3 of
our work. The first problem is called Odd Max Satisfiability and was defined
by Krentel [100].

Odd Max Satisfiability (OMS)

Given: A set X = {x1, . . . , xn} of boolean variables and a boolean formula α
over X.

Question: Is α satisfiable and xn = 1 in α’s lexicographically maximum satisfying
assignment x1 . . . xn ∈ {0, 1}n?

It was also Krentel who proved ∆p
2-completeness for Odd Max Satisfiability in

the same work in 1988. In a later chapter of our work we provide a polynomial-
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time many-one reduction from OMS to a certain problem in order to show ∆p
2-

hardness for the latter problem. The second problem we introduce explicitly is
called Succinct Set Cover and is defined as follows.

Succinct Set Cover (SSC)

Given: A collection S = {φ1, . . . , φm} of 3-DNF formulas on n variables and an
integer k.

Question: Is there a subset S′ ⊆ S of size at most k for which
∨

φ∈S′ φ ≡ true?

This problem was defined and proven to be Σp
2-hard by Umans [137] in 1999. Sim-

ilarly to the previous problem, we use this problem to prove Σp
2-completeness for a

newly defined problem.

The last technique related to the field of computational complexity theory that
we introduce in this section is the technique of linear programming. Initially, this
technique originates from the area of mathematics and is used to calculate optimal
solutions to linear optimization problems. Transferring this approach to computa-
tional complexity, we subsequently formulate a feasibility version of this technique
as decision problem [71].

Linear Programming (LP)

Given: An integer matrix A ∈ Nm×n, integer vectors d ∈ Nm and c ∈ Nn, and an
integer B ∈ N.

Question: Is there a rational vector x ∈ Qn such that A · x ≤ d holds line-wise and
cT · x ≥ B is true?

Hačijan [82] proved that this version of Linear Programming, as defined above,
can be solved in P. Contrarily, if one demands the vector x to consist of integers
instead of rational numbers, i.e., x ∈ Zn, one obtains the Integer Linear Pro-
gramming problem, which is known to be NP-complete, see the work by Karp
[91].4 A lot of different problems from various areas can be encoded as linear pro-
grams. For example, Fitzsimmons and Hemaspaandra [65] use the approach to
encode election-related problems as linear programs. In a later chapter of our work
we follow this approach as well when encoding certain decision problem instances
as linear program instances.

With the definition of this technique we end our introduction to the field of compu-
tational complexity theory. We covered all concepts required for later parts of our
work while not diving too much into narrow details. Besides the books mentioned
at the beginning of this section, we also recommend the works by Tovey [134] and
Hemaspaandra and Ogihara [89] for further primers towards this research area.

4Actually, Karp proved NP-completeness for the 0-1-Integer Programming problem, a spe-
cial case of the general variant.
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2.2 Graph Theory

Having introduced all required concepts of computational complexity, this section is
devoted to the research area of graph theory. First, we define the general concepts
of graphs as well as important, related terms and notations. Afterwards, we define
several different types of graph parameters and classes of graphs. Last, we discuss
the concepts of stability and unfrozenness, introduce related definitions, and define
corresponding decision problems.

In graph theory it is commonly accepted that Euler [61] with his work on the Königs-
berg Bridge Problem in 1741 “became the father of graph theory” as Harary [83] for-
mulates it. The Königsberg Bridge Problem relates to the city of Königsberg, which
was build on two sides of a river with two islands in the middle of the river. The city
was connected across the river via seven bridges and the Königsberg Bridge Problem
asked whether it is possible to walk once around the complete city while using every
bridge exactly one time. In the previously mentioned work, Euler proved that it is
impossible to find a route through the city visiting every bridge exactly once. To
do so, Euler generalized the map of Königsberg in a graph and solved the problem
for the resulting graph, see Figure 2 for an illustration. Since the formal concept of

a b c

d

Figure 2: An illustration of the Königsberg Bridge Problem as a graph. Every
vertex a, b, c, d abstracts some part of the city Königsberg and every edge between
two vertices describes a bridge across the river. Vertices a and c represent parts of
the mainland while vertices b and d represent islands.

a graph had not yet been established at this time, Euler’s work laid the foundation
for what we call graph theory today. The research area of graph theory is extremely
diversified and tightly interconnects with various research areas of other disciplines.
In the more recent research history of graph theory, the book by Harary [83] is one
of the essential works providing a proper introduction to graph theory. Besides this
work, we also refer the reader to the more modern works on graph theory by West
[142] and Bollobás [27] for an exhaustive introduction.

Following the general definition, a graph, denoted by G = (V,E), consists of a set
of vertices V and a set of edges E ⊆ {{u, v} | u, v ∈ V } between those vertices.
In our work, we only work with finite graphs, i.e., we always implicitly assume that
|V | < ∞ is true. However, there is also the subject of infinite graph theory [47].
The subsequent example formalizes the graph depicted in Figure 2.

11
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Example 2.2. The graph G = (V,E) used to abstract the city of Königsberg with
its two islands and seven bridges possesses the four vertices V = {a, b, c, d} and the
seven edges E = {{a, b}, {a, b}, {b, c}, {b, c}, {a, d}, {b, d}, {c, d}}.

With this example it becomes clear that both notations of a graph, i.e., illustrated as
in Figure 2 and formally via sets as in the previous example, are equally expressive.
Depending on the use case, one of both notations might be more advantageous and
throughout our work we use both notations as it suits best.

Furthermore, a graph that allows multiple edges between two vertices is called a
multigraph and a graph that only allows at most one edge between to vertices is
called a simple graph. Given a graph G, we sometimes denote its set of vertices by
V (G) and its set of edges by E(G). A graph, be it a multigraph or a simple graph,
can be undirected or directed. So far, we have only defined undirected graphs. A
directed graph G = (V,E), also abbreviated as digraph, consists of a set of vertices
V , and a set of directed edges E ⊆ V × V between its vertices. A directed edge,
sometimes also called an arc, from vertex u towards vertex v is denoted by (u, v).
In our remaining work we restrict ourselves to undirected, simple graphs and hence,
whenever we write graph, we refer to an undirected, simple graph.

As mentioned earlier and as we see in later parts of this work, the subject of graph
theory is closely related to many other fields of research within and beyond computer
science. Thus, it comes at no surprise that there exists a large variety of further
concepts building on graphs. Subsequently, we introduce some of these concepts
that we require in ensuing chapters of our work. Given a graph G, we call

1. a subset of vertices V ′ ⊆ V (G), such that for every two vertices u, v ∈ V ′ it
holds that {u, v} ̸∈ E(G), an independent set,

2. a subset of vertices V ′′ ⊆ V (G), such that for every two vertices u, v ∈ V ′′ it
holds that {u, v} ∈ E(G), a clique,

3. a subset of vertices V ′′′ ⊆ V (G), such that for every edge {u, v} ∈ E(G) it
holds that u ∈ V ′′′ or v ∈ V ′′′, a vertex cover for G, and

4. a function c : V (G) → N, assigning every vertex of G a nonnegative integer
such that for every edge {u, v} ∈ E(G) it holds that c(u) ̸= c(v), a legal
coloring of G.5

The subsequent example applies the previously introduced concepts to the graph
from Figure 2.

Example 2.3. For the multigraph G used to abstract the city of Königsberg, the
vertices I = {a, c} form an independent set, the vertices C = {a, b, d} build a
clique and the vertices V ′ = {b, d} provide a vertex cover. Assigning the colors

5The term coloring is also used with respect to applications related to coloring maps, for exam-
ple, see the work by Appel and Haken [1] for more in-depth background.
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c(a) = c(c) = 1, c(b) = 2, and c(d) = 3, we obtain a legal coloring c of G with three
colors.

Based on these special subsets of vertices, next we introduce the notion of a graph
parameter. To introduce the concept of a graph parameter, let us denote the set of all
undirected, simple graphs by G. Then, a graph parameter is a function ψ : G → N
that assigns every simple graph G ∈ G a nonnegative integer in N. Of course,
the concept of a graph parameter can also be extended to multigraphs as well as
digraphs [78]. Subsequently, we introduce four of the most known and well-studied
graph parameters which we use in Chapter 6. Given an undirected, simple graph
G ∈ G,

1. the independent set number α(G) describes the size of a largest independent
set in G,

2. the clique number ω(G) describes the size of a largest clique in G,

3. the vertex cover number β(G) describes the size of a smallest vertex cover for
G, and

4. the chromatic number χ(G) describes the minimum number of colors, such
that a legal coloring for G using this number of colors exists.

The subsequent example provides values for all four previously established graph
parameters and a modified version of the graph from Figure 2.

Example 2.4. Since we defined graph parameters only for simple graphs and not
for multigraphs, let us denote by G′ the graph one obtains when removing one of the
two edges between a and b as well as b and c. The resulting graph G′ is no longer
a multigraph but a simple graph. Despite these modifications, all sets mentioned
in Example 2.3 still possess their special meanings. Furthermore, all the sets we
listed in the previous example are optimal in the sense that they are maximal for
a possible independent set and a clique and respectively minimal for a vertex cover
and some coloring. Hence, the subsequent values

α(G′) = 2, ω(G′) = 3, β(G′) = 2, and χ(G′) = 3

for all four graph parameters follow immediately.

Besides determining values of specific graph parameters for given graphs, there has
also been a variety of research on the relations of graph parameters [76, 138, 144].
One of the well-known relationships for two graph parameters stems from the theo-
rem by Gallai [68], also known as “Gallai’s theorem”, which we apply in later parts
of our work, too.

Theorem 2.5 (Gallai’s theorem). Let G ∈ G be a graph. Then it holds that
|V (G)| = α(G) + β(G) is true.
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Furthermore, graph parameters are also used to characterize graph classes [79, 77,
26]. Thereby, a graph class C ⊆ G is a subset of G consisting of graphs that satisfy
a certain property. Subsequently, we introduce graph classes which we require in
later parts of our work. To begin, let us define the class of trees, denoted by T .
A graph G ∈ G is a tree, i.e., G ∈ T , if G is connected and does not possess
cycles of length greater than or equal to three. Thereby, a graph is connected if,
starting at an arbitrary vertex and following the graph’s edges, all other vertices
in the graph can be reached. A graph G possesses a cycle of length n, if there
exists a sequence of n adjacent6 edges in G that starts and ends at the same vertex
without visiting any vertex in between multiple times. Having defined the class
of trees, we can immediately introduce the next class, namely forests, denoted by
F . A graph G ∈ G is defined to be a forest, i.e., G ∈ F , if G can be written as
the union of several trees. Hence, while a tree needs to be a connected graph, i.e.,
there is always a path between any two vertices of a tree, a forest can consist of
several disconnected trees. Next, we introduce the class of bipartite graphs B. A
graph G is defined to be a bipartite graph, if its vertices can be partitioned into two
disjunct sets V1, V2 ⊆ V (G), such that every edge e ∈ E(G) is incident7 to exactly
one vertex from V1 and one vertex from V2. While the previous graph classes are
widely known and, for example, also introduced in the works by Harary [83] and
West [142], the class of co-graphs, which we introduce ensuingly, is less known.
The first graph theoretic definition of co-graphs was given by Lerchs [106, 107] in
1971 and 1972, although, according to Corneil, Lerchs, and Burlingham [45], co-
graphs already emerged independently under different names earlier in several areas
of mathematics. The subsequent definition is a slightly modified version of the one
given by Corneil, Lerchs, and Burlingham [45]. To define co-graphs, we require
the definitions of two operations on graphs. First, for two vertex-disjoint graphs
G,H ∈ G, we define by ∪ : G × G → G the disjoint union of two graphs as

G ∪H 7→ (V (G) ∪ V (H), E(G) ∪ E(H)).

In plain terms, we unite the vertex sets of both graphs as well as the edge sets of
both graph as previously done when uniting trees to a forest. Second, we define by
+: G × G → G the join of two vertex-disjoint graphs as

G+H 7→ (V (G) ∪ V (H), E(G) ∪ E(H) ∪ {{u, v} | u ∈ V (G), v ∈ V (H)}).

In other words, the join of two graphs unites their vertex as well as edge sets and
adds edges between all vertices of the first graph and all vertices of the second graph.
With these two definitions at hand we can now define the class of co-graphs, denoted
by C, recursively as follows. Graph G = ({v}, ∅) is a co-graph and if G1 and G2 are
two co-graphs, then G1 ∪G2 and G1 +G2 are co-graphs, too.

Having all these different graph classes introduced, the next example provides ex-
emplary graphs for all these classes and highlights some of their relations.

6Two edges are said to be adjacent if they share a common vertex and two vertices are said to
be adjacent if they share a common edge.

7An edge e and a vertex v are incident if v ∈ e holds.
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Figure 3: Exemplary graphs for the graph classes of trees, forests, bipartite graphs,
and co-graphs.

Example 2.6. The graph G1 in Figure 3a belongs to the class of trees. It is easy
to see that G1 is connected and contains no cycle of length greater than or equal
to three, such that G1 ∈ T holds. Graph G2 in Figure 3b contains no cycle of
length greater than or equal to three but is not connected, such that G2 ∈ F is a
forest but not a tree. Solely based on the definitions of these two graph classes it
immediately follows that every tree is a forest but not every forest is a tree, hence
T ⊆ F holds. Graph G3 in Figure 3c is a bipartite graph. We can partition its
vertices V (G3) = {a, b, c, d} into V1 = {a, c} and V2 = {b, d}. Then, all edges are
between a vertex from V1 and a vertex from V2 such that G3 ∈ B follows. Every tree
is a bipartite graph since we can assign the vertices of a tree in alternating sequence
to V1 and V2, such that T ⊆ B follows. Additionally, since a forest consists of several
trees and as a bipartite graph must not be connected, it also follows that F ⊆ B
holds. Lastly, graph G4 from Figure 3d is a co-graph. To see this, we must build
G4 via the previously defined operations out of smaller graphs. We know that the
graph consisting of a single vertex without any edges is a co-graph. Let us denote
this graph simply by its vertex v. Then, we obtain G4 by G4 = a + b + c + d, i.e.,
we execute the join operation three times in sequence, each time joining the graph
obtained from the previous operation with a new graph consisting of a single vertex.

At this point we finish our general introduction of graph theory and narrow down the
focus towards the concept of stability of graphs. The original idea for the concept of
stability of graphs was introduced by Dirac [51] in 1952. Since then, a substantial
amount of research has been done in this area [13, 75, 90]. Subsequently, we present
the general, underlying idea of stability of graphs, following the notations by Frei,
Hemaspaandra, and Rothe [67]. Let ξ be a graph parameter and G ∈ G a simple
graph. G is called ξ-stable if the removal of any single edge from G does not alter
the value of ξ(G). Contrarily, if there is an edge e ∈ E(G) such that ξ(G) ̸= ξ(G−e)
holds, G is said to be ξ-critical.8 This concept can also be extended to vertices. A
graph G ∈ G is said to be ξ-vertex-stable if the removal of any single vertex from
G does not alter the value of ξ(G). Analogously, if there is a vertex v ∈ V (G),
such that ξ(G) ̸= ξ(G − v) holds, G is called ξ-vertex-critical. So far, both terms,

8For a graphG and an edge e ∈ E(G) (a vertex v ∈ V (G)) we denote byG−e (respectively,G−v)
the graph one obtains by removing e (respectively, v) from G.
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ξ-stability and ξ-vertex-stability, are related to removing an edge or a vertex from
a graph. Besides this approach, there is also the concept of unfrozenness where
one does not remove but add new edges or vertices together with incident edges
to a graph. The corresponding terminology is ξ-unfrozen and ξ-vertex-unfrozen
if a graph parameter’s value does not change for a given graph and ξ-frozen and
ξ-vertex-frozen in case the value changes.

Having defined these terms, one can as well define corresponding decision problems
and approach this field of research from a computational complexity theoretic per-
spective. For example, Frei, Hemaspaandra, and Rothe [67] formulated the decision
problem of ξ-Stability as follows.

ξ-Stability

Given: A graph G ∈ G.
Question: Is G ξ-stable?

The decision problems for the remaining definitions, i.e., vertex-stability, unfrozen-
ness, and vertex-unfrozenness are defined analogously. Up to the work by Frei,
Hemaspaandra, and Rothe [67], the computational complexity study of stability of
graphs was not very fruitful. It was only their work which initiated a “systematic
study of stability of graphs in terms of their computational complexity”, as the au-
thors phrased it. Within their work, the authors established several Θp

2-completeness
results for various of the earlier defined decision problems. We require these decision
problems in Chapter 6 of our work, when we develop efficient algorithms to solve
the same decision problems for special graph classes.

2.3 Computational Social Choice and Fair Division

In this section we introduce three different fields of research that we address by our
results in the ensuing chapters. The first two fields of judgment aggregation and
preference aggregation by voting stem from the area of COMSOC. The last field,
cake-cutting, belongs to the area of fair division. Both areas, COMSOC and fair
division, are closely related [127].

COMSOC has its origins in the research area of social choice theory, see, e.g., [32] for
an exhaustive historical overview. Social choice theory addresses the aggregation of
preferences or judgments of several individuals into collective outcomes. The book
by Arrow [3] and the handbook by Arrow, Sen, and Suzumura [4] provide thorough
introductions. COMSOC builds on this research and connects it to the field of
computer science. For example, COMSOC addresses the practical feasibility of
designed voting rules. Bartholdi III, Tovey, and Trick [12] were the first to study
how hard, in terms of computational complexity, it is to determine the winner of an
election for a given voting rule: While it is favorable to design a voting rule that
satisfies every participating agent’s preferences, this voting rule does not provide any
value if its outcome cannot be calculated in reasonable time as its computational
complexity is simply too high. Since then, COMSOC has evolved into a central
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area of research with respect to multiagent systems and artificial intelligence [60].
It reaches across several sub fields such as preference aggregation by voting [22],
control, manipulation, and bribery of (single-peaked) elections [86], and judgment
aggregation [17].

While the area of COMSOC addresses questions with regards to preference ag-
gregating rules, their properties, and their computational complexity, fair division
addresses similar questions with regards to algorithms for the fair division of goods
among agents [5]. Though familiar, the perspective shifts with respect to fair divi-
sion of goods. In COMSOC, agents are interested in the general collective outcome
that holds for everyone. Contrarily, in fair division, agents are only interested in
the share of the good(s) allocated to them [103]. Thereby, fair division can be com-
partmentalized into two different settings, the fair division of arbitrarily divisible
goods, named cake-cutting, and the fair division of indivisible goods, sometimes
called multiagent resource allocation [38, 118]. In both settings, we are given a
group of agents with preferences over a good or multiple goods that shall be shared
among the agents. The only difference is that for cake-cutting the single good, usu-
ally metaphorically represented by a cake, can be cut into arbitrary pieces, while for
fair division of indivisible goods we have a set of goods that cannot be divided into
smaller parts [109, 103].

2.3.1 Judgment Aggregation

In this section we introduce the research area of judgment aggregation. The basic
setting of judgment aggregation addresses the aggregation of multiple, individual
judgments by a certain, predefined rule into one aggregated, collective outcome.
Applications of judgment aggregation can be found across a wide variety of differ-
ent subjects such as jurisdiction, politics, philosophy, economics, and computer sci-
ence [53, 17, 37, 70]. For example, multiple judges in a court judging over a case need
to aggregate their individual judgments into one collective judgment, autonomous
vehicles need to make aggregated decisions how to behave when encountering each
other on the street, or several communicating sensors in a network must agree on
the detection of external influences.

To provide a formal introduction to judgment aggregation, we follow the notations
and definitions by Endriss [53]. When aggregating judgments, we call the partici-
pating group of agents judges and denote them by {1, . . . , r} for r ∈ N. The judges
provide individual judgments over an agenda Φ which consists of boolean formulas.
The agenda Φ is assumed to be finite, closed under complements (for every φ ∈ Φ, we
demand ¬φ ∈ Φ), nontrivial (there are φ, ϕ ∈ Φ such that {φ, ϕ}, {φ,¬ϕ}, {¬φ, ϕ},
and {¬φ,¬ϕ} are all satisfiable), and it does not contain tautologies or contradic-
tions. In some cases the agenda is partitioned into two disjoint subsets Φ+ and Φ−,
where for every φ ∈ Φ+ it must hold that ¬φ ∈ Φ−. An individual judgment is
denoted by J ⊆ Φ and we say that J is

1. complete, if for all φ ∈ Φ either φ ∈ J or ¬φ ∈ J holds,
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2. complement-free, if for every φ ∈ Φ it holds that not both formulas φ and ¬φ
are in J at the same time, and

3. consistent, if there is a boolean assignment that satisfies all formulas in J at
once.

The set of all complete and consistent judgments over Φ is denoted by J (Φ) and
the list of all participating judges’ individual judgments P1, . . . , Pr over Φ is called
the judges’ profile, denoted by P = (P1, . . . , Pr) ∈ J (Φ)r. Finally, a judgment
aggregation rule is a function R : J (Φ)r → 2Φ that maps a profile P of r individual
judgments to an aggregated outcome. Thereby, we say that R is

1. anonymous, if R(P ) is independent of the order of the individual judgments
in P ,

2. neutral, if it approaches every element of the agenda the same way, i.e., if
two elements φ1, φ2 are approved by the same set of judgments either both
elements or none belong to R(P ), and

3. independent, if adding an element φ1 to the aggregated outcome only depends
on the individual judgments for this element.

Having defined all the basic notions and terms, we want to emphasize that besides
this introduced formal model of judgment aggregation, there are further formal
models actively used in the area of judgment aggregation, e.g., binary aggregation
[73, 54]. To become more familiar with the introduced model, let us take a look at
the subsequent example.

Example 2.7. Assume we have the agenda Φ = {a, b, c,¬a,¬b,¬c} and three judges
{1, 2, 3} with profile P as described in Table 1. If the judges agree to apply the ma-
jority rule Maj, i.e., to add only elements from the agenda to the collective outcome
that are supported by a majority of the judgments, they obtain as aggregated out-
come a, b,¬c.

P a b c

P1 true true true
P2 true false false
P3 false true false

Maj true true false

Table 1: Individual judgments and aggregated outcome for three judges applying
the majority rule Maj. true indicates that an element from the agenda is part of an
individual judgment or the collective outcome and false shows that the element’s
negation is part of it.
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Following the previous example, let us assume that outer circumstances enforce the
logical requirement a ∧ b ⇔ c to always hold. Such a requirement is also known in
judgment aggregation as external doctrine and could be used to report dependencies
one needs to pay respect to when modeling a scenario within judgment aggregation.
Doing so, we can see that all three individual judgments satisfy the external doctrine
while the aggregated outcome does not. This observation, initially introduced in
1986 by Kornhauser and Sager [99] in the context of jurisdiction and known as
doctrinal paradox, describes the case of a majority based judgment aggregation
of three individual, consistent judgments into an inconsistent collective outcome.
Pettit [122] generalized the implications of the doctrinal paradox as the discursive
dilemma and explained that such paradoxical results can always occur when a group
of individuals wants to aggregate their individual judgments over a set of related
boolean elements.

With this example and the observations thereafter, an important question regarding
the used judgment aggregation rule arises. It could be the case that the majority
rule is not an optimal choice and there are more sophisticated rules preventing para-
doxical situations like the previous one. Many different judgment aggregation rules
have been invented and studied in the literature. For example, Dietrich and List
[49] formalized the concept of so-called quota rules. A quota rule adds an element
from the agenda to the collective outcome if the element reaches a predefined quota
of acceptance among the individual judgments. The most known quota rule is prob-
ably the majority rule, which applies the same quota of 1/2 to all elements of the
agenda. A different family of aggregation rules are distance-based aggregation rules.
For these rules, the aggregated outcome is determined by choosing a complete and
consistent judgment as outcome that reduces the distance towards the profile of indi-
vidual judgments. For example, the distance could be calculated as some Hamming
distance, yielding the generalized Kemeny rule [53, 93]. Furthermore, there is the
concept of premise-based aggregation rules. For a premise-based aggregation rule
one splits the agenda into premises and conclusions, applies some given rule to the
premises of the agenda and afterwards, deduces the membership for the conclusions
based on the aggregated premises [53]. List [110] introduced the idea of sequential
judgment aggregation rules. A sequential judgment aggregation rule iterates in a
predefined order over the agenda and applies some underlying judgment aggrega-
tion rule as base rule. In each round, for the next element of the agenda to be
considered the decision is made whether to add it or its negation to the collective
outcome. Thereby, one is either able to deduce from the already added elements of
previous rounds whether the current one or its negation shall be added or, other-
wise, applies the underlying rule to the individual judgments to decide if the element
shall be added. An example for such a sequential judgment aggregation rule is the
sequential majority rule, applying the majority rule as underlying base rule.

In 2002, List and Pettit [112] proved that not only the majority rule is prone to the
discursive dilemma, but every judgment aggregation rule that satisfies a certain set
of axioms, in particular, every judgment aggregation rule that satisfies the axioms
of anonymity, neutrality, and independence [53]. Besides these three properties of

19



2 Background

anonymity, neutrality, and independence, further properties for judgment aggrega-
tion rules, such as monotonicity, complement-freeness, completeness, consistency,
nondictatorship, and systematicity, were defined [17]. Additionally, there are also
properties for agendas, such as the median property which is satisfied by an agenda
if every of its inconsistent subsets itself possesses an inconsistent subset containing
at most two elements [114]. Based on all these properties for judgment aggregation
rules and agendas, there are many works that have studied (im)possibility results
with respect to these properties. In other words, which combinations of properties
can be satisfied by an individual aggregation rule and which combinations are im-
possible [113, 53, 48, 115]. Beyond these (im)possibility results, it is also possible to
formulate characterizations of judgment aggregation rules based on the properties
they satisfy [49].

Next to these directions of research addressing the invention of new, advanced judg-
ment aggregation rules and proving (im)possibility results, there is also a branch of
computational complexity analysis in judgment aggregation. This research direction
was initiated by Endriss, Grandi, and Porello [55] in 2012. In their work, the authors
formulated two types of decision problems related to judgment aggregation. Let R
denote some judgment aggregation rule. The first problem the authors defined is
the so-called R-Winner problem.

R-Winner

Given: An agenda Φ, a profile of individual judgments P ∈ J (Φ)r, and an element
φ ∈ Φ.

Question: Does φ ∈ R(P ) hold?

The winner problem is used to determine how hard it is to calculate the collective
outcome of a given profile under some judgment aggregation rule. Obviously, a
judgment aggregation rule that, for example, always returns a consistent outcome
but which cannot be calculated efficiently is of limited value in most practical con-
texts. Many works studying the computational complexity of the winner problem
for various judgment aggregation rules have been published [104, 54, 56, 81, 57].

The second problem that was introduced is the R-hd-Manipulation problem.
Initially, the ideas of manipulation and strategy-proofness were introduced to judg-
ment aggregation by List [111] and Dietrich and List [50] in 2006 and 2007. Endriss,
Grandi, and Porello [55] then approached these concepts from a computational com-
plexity perspective and introduced a first manipulation decision problem related to
hamming distances. The subsequent formulation of the manipulation problem is
due to Baumeister, Erdélyi, Erdélyi, and Rothe [16].
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R-Manipulation

Given: An agenda Φ, a profile of individual judgments P ∈ J (Φ)r, and some
subset M ⊆ Pr ∈ P preferred by the manipulating judge r.

Question: Is there some judgment P ′
r ∈ J (Φ) that the manipulator can submit to P

instead of his true preferences Pr such that M ⊆ R(P ) holds?

In the same work, the authors proved NP-completeness for this version of the manip-
ulation decision problem for several quota-based rules and introduced the concept of
bribery to judgment aggregation. In contrast to manipulation, where an individual
judge states false preferences in order to manipulate the collective outcome towards
his preferences, bribery addresses the question whether a limited number of judges
can be bribed by some external briber to change their submitted judgments, so that
the collective outcome shifts towards the briber’s preferences.

R-Bribery

Given: An agenda Φ, a profile P ∈ J (Φ)r, a consistent subset B ⊆ J ′ ∈ J (Φ)
preferred by the briber, and a positive integer k ∈ N.

Question: Is it possible to change at most k individual judgments from P such that
for the modified profile P ′ it holds that B ⊆ R(P ′)?

For this problem, Baumeister, Erdélyi, Erdélyi, and Rothe [16] were able to prove
various NP-completeness results related to premise-based aggregation rules. This
branch of research within judgment aggregation tries to classify decision problems
like the previously introduced ones in terms of computational complexity for differ-
ent judgment aggregation rules. One part addresses the question how hard it is to
determine the aggregated outcome for a given profile under some specified judgment
aggregation rule. This is mostly done by determining the computational complexity
of the winner problem for different judgment aggregation rules. For a practicably
usable judgment aggregation rule one desires the winner problem to possess a low
computational complexity, such that the aggregation of individual judgments into
a collective outcome can be executed efficiently. Another objective is to determine
whether certain judgment aggregation rules are protected against manipulation and
bribery attempts via high computational complexity barriers. To prove or disprove
such protection, one studies the computational complexity of manipulation- and
bribery-related problems. Hence, for these problems one hopes for high computa-
tional complexities such that manipulation of the collective outcome by an individual
judge as well as by a briber bribing several judges is computationally infeasible.

In Chapter 3 of our work we study the computational complexity of the winner
problem as well as of manipulation-related decision problems for sequential judgment
aggregation rules with a special focus on quota rules as underlying rules.

2.3.2 Preference Aggregation by Voting

In this section we introduce the field of preference aggregation by voting with a focus
on the computational complexity perspective. Our basic notations and definitions
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follow the work by Baumeister and Rothe [22]. The general setting is as follows:
Given a set of several candidates, a group of voters express their preferences over
these candidates. A voting rule is applied to aggregate the votes over the candidates
and determine one or multiple winners as an outcome of the election. More formally,
an election (C, V ) consists of a finite set of candidates C and a finite list of votes V
over the candidates in C.9 A vote v ∈ V represents a strict, linear order over the
candidates in C and is used to express the preferences over the candidates in C by
a voter participating in the election. To denote a vote v, we use > as a relation over
the candidates in C. For example, when we have the candidates C = {a, b, c, d} and
a voter prefers candidate b over a, a over d, and d over c, we denote the vote v by

b > a > d > c.

Given a set of candidates C, we assume the relation > to be

1. connected, i.e., for every two candidates a, b ∈ C either a > b or b > a must
hold,

2. transitive, i.e., for every three candidates a, b, c ∈ C it holds that if a > b and
b > c is true, then a > c must hold, and

3. asymmetric, i.e., for every two candidates a, b ∈ C it holds that if a > b is
true, b > a cannot hold.

A vote v ∈ V in which all candidates from C occur at some position in the preference
order is called a total preference or total vote over C. Contrarily, a vote that is
missing some candidates from C in its preference order is called a partial preference
or partial vote over C.

Given an election (C, V ) we want to determine the winners of the election by some
voting rule E . A voting rule E takes as input an election (C, V ) and outputs a subset
E(C, V ) ⊆ C of the candidates as winners of the election. A candidate c ∈ E(C, V )
that is the only winner of an election (C, V ), i.e., when E(C, V ) = {c} holds, is
called a unique winner. A candidate c′ that is a winner of an election together with
other candidates is called a nonunique winner, i.e., when {c′} ⊊ E(C, V ).

There are two different ways how to represent an election. An election in normal
representation is specified as previously described. Alternatively, an election can
also be specified in succinct representation. In this case, we write the list of votes V
in a different way. Instead of adding identical votes multiple times to V , identical
votes are only added once to V together with a number indicating the multiplicity
of this vote. These distinct forms of representation do not have any direct impact
on the election or its outcome but differ in size, i.e., the space one requires to write
down an election in these representations is different. These changes in size can
affect complexity bounds of potential algorithms, see the work by Fitzsimmons and
Hemaspaandra [65] for a thorough study of the implications.

9It is important to emphasize that while C is a set of candidates, V is a list (or multiset) of
votes over C as multiple voters with identical preferences can participate in an election.
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Having defined the foundations of elections, candidates, and votes, next, let us
turn to several voting rules. To begin, we define the concept of a scoring protocol.
A scoring protocol possesses a scoring vector α that describes how many points
a candidate obtains for her position in a vote. Given an election (C, V ) with n
candidates, a scoring vector

α = (α1, . . . , αn)

consists out of n nonnegative integers αi with αi ≥ αi+1 for 1 ≤ i ≤ n. A candidate
c ∈ C obtains αi points for every vote v ∈ V where she takes the i-th position
and c’s overall score in the election corresponds to the sum of her points over all
votes. Finally, all candidates with the highest score win the election. There a several
scoring protocols with specific names that we study in our work:

1. k-approval : The k-approval scoring protocol possesses the following scoring
vector

α = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0),

where the first k entries are ones and the remaining n− k entries for n candi-
dates are zeros. 1-approval is also known as plurality.

2. k-veto: The k-veto scoring protocol possesses the following scoring vector

α = (1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
k

),

where the first n − k entries are ones and the last k entries are zeros for n
candidates. 1-veto is also known as veto.

3. Borda Count : The Borda Count scoring protocol possesses the following scor-
ing vector

α = (n− 1, n− 2, . . . , 1, 0)

for n candidates and is often only referred to as the Borda rule.

The Borda voting rule was initially introduced by Borda [28] in 1781 and is still
subject to research, see, e.g., the recent survey by Rothe [125] or the work by
Neveling and Rothe [116]. In parallel, scoring protocols in general are in focus
of research, too [85, 87]. Besides these scoring protocols we also study the following
voting rules:

1. Copelandα: The Copelandα rule is defined for every rational number α ∈
[0, 1]. Given a set of candidates C, we run a pairwise contest for every pair
of candidates c, d ∈ C and count how many times c appears in front of d and
how many times d appears in front of c in all votes from V . The candidate
which occurs more often in front of the other one is the winner of the pairwise
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contest. The contest winning candidate obtains one point, the losing candidate
obtains zero points. In case of a tie, both candidates obtain α points. The
candidate with the highest score summed over all pairwise contests wins the
election.10

2. Ranked pairs : In this voting rule we step-by-step create an order over all
candidates. To do so, for every two candidates c, d ∈ C we calculate the
difference between the number of votes where c appears in front of d and d
appears in front of c. Then, among the pairs not yet considered, we choose the
pair c, d with the highest difference and fix the order according to the difference,
e.g., c > d, if this does not contradict with parts of the order established in
previous steps. We continue with this approach until all pairs of candidates
have been considered and we obtain a complete order over all candidates from
C. In case of ties, we use some predefined tie-breaking mechanism. The
candidate at the top of the resulting order wins the election.

3. Plurality with runoff : This voting rule possesses two rounds. In the first
round the two candidates with the highest plurality scores proceed. For the
second round, the so-called runoff, all candidates from the first round that did
not proceed exit the election and we reduce all votes to the two remaining
candidates. Then, the remaining candidate with the highest plurality score
wins. In both rounds a predefined tie-breaking mechanism is used, if required.

4. Veto with runoff : Veto with runoff works analogously to plurality with runoff
except that in both rounds veto instead of plurality scores are used.

5. Simplified Bucklin voting : For Bucklin voting we assume total preferences
over C and in a first step calculate the Bucklin score of every candidate in C.
Thereby, a candidate c’s Bucklin score is the smallest number b, such that more
than half of the votes in V rank c among the top b positions. The candidates
with the smallest Bucklin score win the election.

6. Simplified fallback voting : For fallback voting we allow partial preferences.
Furthermore, every Bucklin winner is also a fallback winner, but if there is no
Bucklin winner, we proceed as follows: Denote by ℓ the length of a longest
partial preference over the candidates in C. Every candidate with the highest
number of votes ranking her among the top ℓ positions is a fallback winner.

In this work, we only study simplified versions of Bucklin and fallback voting. In
the original version of Bucklin voting for a candidate to win, she must, among all
candidates with smallest Bucklin score b, also obtain the largest number of votes
ranking here among the top b positions, see the works by Erdélyi, Fellows, Rothe,
and Schend [59, 58] for a thorough analysis of original Bucklin voting. For the
original version of fallback voting, see the work by Brams and Sanver [29].

10The Copelandα rule was introduced by Copeland [44] in 1951. However, much earlier there
had already been a voting rule similar to the Copelandα rule for α = 1, today referred to as Llull’s
system [22].
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With all these voting rules at hand, let us illustrate some of the just introduced
rules by the subsequent example. We are given an election (C, V ) and determine
the election’s winners for various voting rules.

Example 2.8. Let (C, V ) be an election with candidates C = {a, b, c, d, e} and 16
votes stated as follows

5: a > b > d > c > e,

2: b > c > a > e > d,

3: d > b > e > c > a,

2: a > e > b > d > c,

4: c > e > d > b > a.

The number ahead of the colon states the number of voters participating in the
election voting with the vote behind the colon. Using the plurality rule, we can see
that a has a plurality score of 7, b has a plurality score of 2, c has a plurality score
of 4, d has a plurality score of 3, and e has a plurality score of 0, such that a is the
unique winner of the election. Contrarily, applying the plurality with runoff rule, in
the first round the candidates a and c proceed into the runoff, which is then won
by c, as c achieves a score of 9 during the second round while a only achieves a
score of 7. If we use the Copelandα rule with α = 0.5, we obtain the subsequent
scores for the pairwise contests, such that b wins the election. Thereby, every row of

a b c d e
∑

a - 0 0 1 1 2
b 1 - 1 1 1 4
c 1 0 - 0 1 2
d 0 0 1 - 0.5 1.5
e 0 0 0 0.5 - 0.5

the previous table shows how many points the candidate obtains from the pairwise
contest against the candidates in the columns.

The previous example emphasizes nicely that for the same candidates and votes
one obtains different winners when applying different voting rules. This observation
brings us to another fundamental question, namely, which voting rule is the “correct”
one. Or, formulated differently, which of the above shown winners is the “true”
winner given these votes. Of course, there is no single right answer here, as it
always depends on the respective application as well as the perspective one takes.
One could as well define a voting rule that represents a dictatorship and argue
for this rule. To resolve this dilemma, several properties that voting rules can
satisfy have been invented and defined. Among the most known properties are
the Condorcet criterion and the majority criterion [22]. Thereby, an election’s
candidate is a Condorcet winner if she wins every pair-wise comparison by majority
against all other candidates. Then, a voting rule satisfies the Condorcet criterion if
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it guarantees to let the Condorcet winner, if one exists, win the election. A voting
rule satisfies the majority criterion if it guarantees to make a candidate who is on
top of more than half of all votes a winner of the election. With such properties at
hand one can choose an appropriate voting rule based on the properties one wants
to be satisfied. Since the later chapters of this work focus rather on computational
complexity related topics with respect to elections than on topics related to the just
introduced properties, we refer to the work by Baumeister and Rothe [22] for a more
in-depth introduction to further properties as well as related (im)possibility results.

So far, we have only talked about elections where every voter has an equal impact
on the election. Such elections, where every vote possesses the same unit-weight,
are called unweighted elections. Besides these unweighted elections, there is also
the concept of a weighted election. For a weighted election, every vote obtains an
individual weight, indicating how much influence the corresponding voter has on the
election. Formally, we can denote a weighted election by a triple (C, V, w) that on
top of the candidates C and the votes V specifies a weight function w : V → N which
assigns every vote v ∈ V a nonnegative integer weight [40]. Note that every weighted
election can be translated into an unweighted one by adding for every vote v ∈ V a
total of w(v) unit-weight copies to the unweighted election. However, one should be
aware that this translation can increase the size of the resulting, unweighted election
drastically compared to the size of the weighted election, which in turn might affect
computational complexities.

With the basic notations and notions defined, we now turn towards a computational
complexity perspective on voting, as indicated at the beginning of this section.
Similar to judgment aggregation, for a voting rule to be of practical use, its resulting
winner(s) should be efficiently calculable for a given election. Bartholdi III, Tovey,
and Trick [12] were the first to formulate the corresponding winner determination
problem for a given voting rule E .

E-Winner

Given: A set of candidates C, a list of votes V over the candidates in C, and a
distinguished candidate c ∈ C.

Question: Is c a winner of the E-election (C, V )?

For example, it is easy to see that for all scoring protocols as well as Copelandα

election winners can be determined efficiently. A more thorough overview of compu-
tational complexity bounds for the winner determination problem can be found in
the work by Baumeister and Rothe [22]. However, computational complexity is not
only used in voting to classify the winner determination problem for different voting
rules. Gibbard [72] and Satterthwaite [128] showed the famous Gibbard-Satterthwaite
theorem which, simply spoken, proved that every reasonable, preference-based vot-
ing rule is prone to manipulation by strategic voters [41]. Manipulation by strategic
voters describes the situation when a voter is able to submit untrue preferences
in order to manipulate an election’s outcome towards his advantage. It was only
Bartholdi III, Tovey, and Trick [11] who introduced the idea to use high compu-
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tational complexities as a protection against manipulation: Even if we know from
the Gibbard-Satterthwaite theorem that all of our voting rules are manipulable, we
could still consider some of these rules as safe if we were to show that computing
untrue preferences in order to manipulate an election’s outcome is computationally
infeasible [64]. Beyond manipulation, the idea of using computational complexity
as a barrier was transferred to further areas such as electoral control [10] as well as
bribery [63]. A notable amount of research has been and is still being done with
respect to these subjects [25, 46, 58].

Nevertheless, in later chapters of our work we do neither focus on axiomatic foun-
dations and properties of voting rules nor on manipulation, control, or bribery.
Instead, we study another direction of computational complexity analysis in voting,
namely possible and necessary winner determination. Given a real world election,
pre-election polls, election forecasts, or similar estimates are frequently available for
the election itself. Based on these incomplete data points, it is an interesting task
of relevance to determine whether a distinguished candidate participating in the
election can still win or will certainly loose. Konczak and Lang [98] were the first to
introduce these ideas formally as decision problems to study. The question whether,
given partial preferences and a set of candidates, a distinguished candidate can still
win the election was formalized as the subsequent decision problem.

E-Possible Winner

Given: A set of candidates C, a set of partial votes V over C, and a distinguished
candidate c ∈ C.

Question: Is there an extension of the partial votes in V to total votes V ′ over C,
such that c is a winner of the E-election (C, V ′)?

Additionally, the authors introduced the necessary winner problem which asks if,
given partial preferences and a set of candidates, a distinguished candidate wins the
election for every possible completion of the preferences.

E-Necessary Winner

Given: A set of candidates C, a set of partial votes V over C, and a distinguished
candidate c ∈ C.

Question: Is c a winner of every possible E-election (C, V ′) one can obtain by com-
pleting the partial votes from V to total votes V ′?

While Konczak and Lang studied the complexity of their introduced decision prob-
lems for some voting rules, many more works have been published with respect
to these problems, further voting rules, and extended scenarios [8, 143, 6]. For
example, Betzler and Dorn [24] and Baumeister and Rothe [23] proved that the
possible winner problem can be efficiently solved for the plurality and veto rule and
is NP-complete for all other scoring protocols. Besides these results for the original
possible and necessary winner problems, further variants of these problems have
been introduced and studied. Chevaleyre, Lang, Maudet, and Monnot [39] intro-
duced the Possible-Winner-New-Alternatives problem where the uncertainty
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stems from new candidates which can be added to the election instead of from
partial preferences. Baumeister, Roos, and Rothe [20] introduced the Possible-
Winner-under-Uncertain-Voting-System problem where uncertainty stems
from the unknown voting system instead of from partial preferences. Further vari-
ants of the possible winner problem were introduced in [18]. In Chapter 4 of our
work we introduce a new variant of the possible winner problem as well, namely
the Possible-Winner-with-Uncertain-Weights problem. In this problem we
consider weighted elections with total preferences but unknown weights and pose
the question whether there exists a weight allocation for the votes such that a dis-
tinguished candidate wins the election.

2.3.3 Cake-Cutting

The research area of cake-cutting is located at the intersection of computer science,
economics, and mathematics. This field addresses the fair division of heterogeneous,
arbitrarily divisible goods among several agents. Usually, a cake, giving the area its
name, is used as a metaphor for the good to be divided. However, possible real world
applications of cake-cutting range from dividing properties in case of inheritance over
sharing restricted computation time on high performance computation clusters to
allocating limited natural resources such as water among countries [109]. Besides
the cake, the general cake-cutting scenario consists of a set of players among which
the cake shall be shared and each player possesses individual preferences over the
cake. The first work published in the area of cake-cutting was by Steinhaus [132] in
1948. Since then, a lot of research has been done within this field, a multitude of
works have been published, and several books providing a thorough introduction to
cake-cutting have been written [30, 124, 109].

Formally introducing the model of cake-cutting afterwards, we follow the notations
and definitions by Lindner and Rothe [109]. The cake is represented by the unit
interval X = [0, 1] and this interval can be divided into arbitrary subintervals, rep-
resenting individual pieces of the cake.11 Besides the cake, we denote the players
among which the cake shall be divided by p1, . . . , pn for n players and by P the
set of all possible pieces of cake that could be allocated. Furthermore, every player
pi possesses an individual valuation function vi : P → [0, 1] used to describe her
preferences over the cake. By default, we assume that every player only knows its
own valuation function, i.e., the valuation functions are kept secret among the play-
ers. Additionally, every valuation function vi must satisfy the subsequent properties,
namely

1. normalization, i.e., vi(X) = 1 and vi(∅) = 0,

2. positivity, i.e., for every subset A ⊆ X with A ̸= ∅ we require vi(A) > 0,

3. additivity, i.e., for every two disjoint subsets A,B ⊆ X we require that it holds
11Of course, one could also use different intervals to represent the cake, e.g., X ′ = [2, 4], but all

these different possibilities can be normalized back to the unit interval.
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that vi(A ∪B) = vi(A) + vi(B), and

4. divisibility, i.e., for every subset A ⊆ X and every α ∈ [0, 1] there is a subset
B ⊆ A with vi(B) = αvi(A).

As stated already at the beginning, the cake represents a heterogeneous good, i.e.,
a player might evaluate two pieces of the cake of same size differently. Hence, the
players’ evaluations do not only depend on the size of the pieces of cake but also on
which part of the cake they receive. We define an allocation of cake X among the
players as a partition X1, . . . , Xn of X with X =

⋃n
i=1Xi as well as Xi ∩ Xj = ∅

for 1 ≤ i < j ≤ n. Thereby, the portion Xi is what player pi receives and it
is not required that Xi is a continuous piece, Xi could as well consist of several
pieces. Finally, a cake-cutting protocol describes an interactive procedure how to
share a cake X among the participating players. While the protocol is not aware of
the players’ valuation functions, it can, however, ask the players to evaluate given
pieces of cake.

Having introduced all the formal definitions, let us take a look at the subsequent
example that illustrates a common way how to notate valuation functions as well as
a well-known cake-cutting protocol to share a cake among two players.

Example 2.9 (Cut & choose protocol). Assume that two players p1 and p2 want to
share a cake X = [0, 1]. Figure 4 depicts both players’ valuation functions v1 and v2
in the commonly used box-based notation. Thereby, the interval [0, 1] representing

1 2 3 4 5

(a) v1

1 2 3 4 5

(b) v2

Figure 4: Box-based valuation functions v1, v2 for two players that are sharing a
cake X = [0, 1]. The vertical, dashed line at 5/10 represents a cut of the cake into
two pieces [0, 5/10] and [5/10, 1].

the cake is split into five equal pieces of length 1/5. The number of boxes per piece
indicates a player’s valuation of this piece. For example, player p1 evaluates piece
A = [2/5, 3/5] by v1(A) = 2/12 and p2 evaluates the same piece by v2(A) = 3/12.
To allocate the cake among the two players, they decide to apply the cut & choose
protocol. This protocol asks the first player to cut the cake into two pieces X1, X2

which he evaluates equally, i.e., such that v1(X1) = v1(X2) holds. Afterwards,
player p2 can choose a piece and p1 obtains the remaining piece. Following the
protocol, p1 cuts the cake at position 5/10, see the dashed line in Figure 4, creating
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the pieces X1 = [0, 5/10] and X2 = [5/10, 1]. p2 then evaluates the first piece by
v2(X1) = 11/24 and the second piece by v2(X2) = 13/24, such that she chooses X2

and p1 obtains X1 with value v1(X1) = 1/2.

The previous example introduced the box-based notation of valuation functions.
This notation is a colloquial way to represent valuation functions of players. For
many valuation functions this notation is sufficient. However, as we discuss in
Chapter 5 of our work, this notation has its limits. In case a valuation function
cannot be expressed in box-based notation, one must fall back to a more formal way
of describing the function.

Furthermore, in the aforementioned example player p1 was the one to cut the cake
while p2 was allowed to choose a piece of cake first. As the enumeration of players
is arbitrary, it could as well have been the case that p2 cuts the cake into two pieces
and p1 can choose a piece first. One can easily check that this swapped order would
have resulted in two different pieces of cake being cut. Several questions follow
this observation. What is a “good” allocation of a given cake to a specified set
of players and how can we measure how good an existing allocation is. A lot of
research has been done in the field of cake-cutting with regards to these questions
and several different properties to provide answers have been suggested [123, 139,
9]. The first, most basic properties that have been defined with regards to fairness
are proportionality, super-proportionality, and exactness. Given n players p1, . . . , pn
with valuation functions v1, . . . , vn and an allocation X1, . . . , Xn of a cake X, we say
that a player pi’s portion is

1. proportional, if vi(Xi) ≥ 1/n,

2. super-proportional, if vi(Xi) > 1/n, and

3. exact, if vi(Xi) = 1/n.

The complete allocation is then said to be proportional, super-proportional, or ex-
act, if every player’s respective portion of the allocation is proportional, super-
proportional, or exact. At this point we want to emphasize once more that the
players’ valuations are not only about the size of the respective piece they obtain
but also about which part of the cake they receive. This is an important remark,
as otherwise, a super-proportional allocation could not exist at all. So far, all the
introduced properties are limited to a single player’s valuation, e.g., a portion is
proportional, if the receiving player evaluates the piece to be worth at least 1/n
of the complete cake’s value, ignoring absolutely what pieces the other players get.
Consequently, there are also properties that consider all players’ shares. Given again
n players with valuation functions v1, . . . , vn and an allocation X1, . . . , Xn of a cake
X, player pi’s portion Xi is

1. envy-free, if for every 1 ≤ j ≤ n it holds that vi(Xi) ≥ vi(Xj),

2. super-envy-free, if for every 1 ≤ j ≤ n, j ̸= i, it holds that vi(Xj) < 1/n, and
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3. equitable if for every 1 ≤ j ≤ n it holds that vi(Xi) = vi(Xj).

As before, these three properties can be extended to complete allocations. The
previously introduced properties all address the evaluation of an allocation from an
individual player’s point of view. The first characteristics only addressed the player’s
own piece and the later ones took also the other players’ pieces into consideration.
However, one can also approach the evaluation of an allocation from a holistic view.
To do so, one of the most known approaches is the approach of pareto optimality,
sometimes also called pareto efficiency [109]. Given n players with valuation func-
tions v1, . . . , vn, an allocation X1, . . . , Xn of a cake X is called pareto-optimal (or
pareto-efficient) if there is no other allocation Z1, . . . , Zn of the same cake X, such
that

1. for all players p1, . . . , pn it holds that vi(Zi) ≥ vi(Xi) and

2. there is at least one player pi, 1 ≤ i ≤ n, such that vi(Zi) > vi(Xi).

In other words, an allocation is pareto-optimal if there is no other allocation of the
same cake such that no player is worse off than with the original allocation and at
least one player values his alternative portion strictly better than the original one.
Until now, all introduced properties have only been defined for single portions or
complete allocations. However, these terms can also be extended to cake-cutting
protocols. Thereby, a protocol satisfies a given property if it guarantees to always
generate allocations with that property as long as all participating players follow
the protocol in the designated way.

In Example 2.9 we informally introduced the cut & choose protocol. Let us now
define a more formal way of specifying a cake-cutting protocol. A cake-cutting
protocol consists of rules and strategies. Rules are instructions the players need to
follow in order to execute the protocol and an observer can always validate that
all rules were followed by the players. Contrarily, strategies are suggestions by
the protocol to the players in order to ensure that the players obtain as good as
possible portions of the cake, but whether a player follows a protocol’s strategies or
not cannot be validated by an observer who is not aware of the players’ valuation
functions. Referring back to the cut & choose protocol, the set of rules consists of
three rules:

1. The first player must make exactly one cut to split the cake into two pieces.

2. The second player must choose one of these two pieces.

3. The first player obtains the remaining piece.

The strategies of the cut & choose protocol are as follows:

1. The first player should cut the cake in such a way into two pieces that he
evaluates both pieces equally.
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2. The second player should choose the piece of the cake that she prefers more.

While rules can be validated in a straightforward way, it is impossible to validate
that all players stick to the strategies as their valuation functions are secret. With
this background it is now clear what was meant by “designated” at the end of the
previous paragraph, namely that all players follow the rules and the strategies of
the protocol.

This distinction of rules and strategies raises another question: Can players obtain a
better portion by deviating from a protocol’s strategies? This question and related
aspects address the topic of manipulability in cake-cutting. Since our chapter related
to cake-cutting does not address the topic of manipulability, we do not introduce
any further terms and notions related to this subject but instead refer to the work
by Lindner and Rothe [109] for a more in-depth discussion.

Having introduced the general foundations as well as the desired properties for allo-
cations of cakes, we can turn to the question how such allocations can be obtained.
Many different cake-cutting protocols that more or less satisfy the previously de-
fined properties have been introduced [30, 62, 101, 7]. But, despite knowing that
a specific protocol guaranteeing to always produce an allocation with a certain set
of properties exists, it is also important to know how long the protocol takes in
order to end with such an allocation. So far, most of the notions and definitions we
presented could also be studied from a purely mathematical or economical point of
view. But with the just addressed aspects of protocol runtimes, the connection to
computational complexity becomes more evident. Robertson and Webb [124] intro-
duced a model to formalize cake-cutting protocols and based on this formalization
runtimes for cake-cutting protocols can be specified. Robertson and Webb defined
two types of actions that a protocol can ask from the players. The first type is the
evaluation request, asking a player to provide the protocol with her valuation for a
given piece of cake. The second type is the cut request, asking a player to specify
a point on the cake such that cutting at this point results in a piece evaluated by
the player with a specified value or to state that such a point does not exist for the
asked player. Based on these request types, cake-cutting protocols can be separated
into two classes. The first class contains finite cake-cutting protocols. Thereby, a
cake-cutting protocol is finite if it guarantees to return an allocation after a finite
number of requests. The second class contains continuous protocols and a protocol
is defined as continuous if it requires the players to continuously answer requests.
Continuous protocols are sometimes also called moving-knife protocols as one can
imagine these protocols by one or multiple knifes moving across the cake awaiting
the players to say “Stop” once a specified valuation criterion is satisfied, resulting
in a knife cutting at this position of the cake [31, 52]. This procedure requires the
players to constantly evaluate the pieces marked by the knifes’ current positions.

In Chapter 5 of our work we study some axiomatic aspects related to the foundations
of cake-cutting. Earlier in this section we introduced the set P , consisting of all
possible pieces of cake that a player must be able to evaluate. Intentionally, we did
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not provide a formal definition for this set as several different approaches how to
define this set exist in the cake-cutting literature. In the referred chapter we discuss
these different approaches, their shortcomings, as well as what we suggest as an
optimal definition of this set. Based on our suggestions we then analyze its impacts
on other concepts from cake-cutting such as box-based valuation functions.
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3 Complexity of Sequential Rules in Judgment
Aggregation

3.1 Summary

In this work, we studied the family of sequential judgment aggregation rules from
a computational complexity point of view. The initial motivation for this work was
to determine the exact computational complexity of the Sequential Majority
Winner problem which is defined as follows.

Sequential Majority Winner (SM-Winner)

Given: An agenda Φ, a profile P ∈ J (Φ)r, an order π over Φ+, and a for-
mula φ ∈ Φ.

Question: Is φ ∈ SM(P, π) true?

Having studied this problem, we realized that we were able to formulate a more
generic version of this decision problem by parameterizing it by its underlying judg-
ment aggregation ruleK, yielding the SK-Winner problem. For this general version
of the decision problem we proved ∆p

2-membership if its underlying judgment ag-
gregation rule K can be computed tractably. Furthermore, we formally defined the
family of sequential quota-based judgment aggregation rules, denoted by SFq for
some quota rule Fq. Thereby, the underlying quota rules used in our work represent
a special case of the general quota rules introduced by Dietrich and List [49]. Build-
ing on the ∆p

2-membership, we proved by a polynomial-time many-one reduction
from Odd Max Satisfiability that the SFq-Winner problem is ∆p

2-complete.

Having resolved the computational complexity of the winner problem, we introduced
a novel, tractable counting technique that generalizes the counting technique used
by Cook [42] to show that Satisfiability is NP-complete. This extended counting
technique is required in the second half of our work, in which we studied possibilities
of manipulative design via the processing order for sequential judgment aggregation
rules. Among others, we introduced the SK-Winner-Design problem which is
defined as follows

SK-Winner-Design (SKD)

Given: An agenda Φ, a profile P ∈ J (Φ)r, and a set of formulas J ⊆ Φ.
Question: Is there an order π = (φ1, . . . , φm) over Φ+ such that J ⊆ SK(P, π)?

and proved that this problem is coNP-complete for sequential quota-based judg-
ment aggregation rules and complete and consistent judgments J . Our further
computational complexity results in the second half range from P-membership up
to completeness in the second level of the polynomial-time hierarchy.

Finally, we explored links between the studied and other, known judgment aggrega-
tion rules, e.g., the maximal subagenda rule, see Lang and Slavkovik [104]. These

34



3 Complexity of Sequential Rules in Judgment Aggregation

connections enabled us to transfer some of our computational complexity results,
uncovering previously unknown relationships between those rules, and in some cases
yielded even stricter complexities for these rules.

3.2 Publication

D. Baumeister, L. Boes, and R. Weishaupt. “Complexity of Sequential Rules in
Judgment Aggregation”. In: Proceedings of the 20th International Conference on
Autonomous Agents and Multiagent Systems. 2021, pp. 187–195

A further version of this work has been submitted to and accepted at the 8th Inter-
national Workshop on Computational Social Choice in 2021:

D. Baumeister, L. Boes, and R. Weishaupt. “Complexity of Sequential Rules in
Judgment Aggregation”. In: The 8th International Workshop on Computational
Social Choice (COMSOC-21). Ed. by B. Zwicker and R. Meir. Available online at
https://comsoc2021.net.technion.ac.il/accepted-papers/. Haifa, Israel:
Technion-Israel Institute of Technology, 2021
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joint work with Linus Boes.
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ABSTRACT
The task in judgment aggregation is to find a collective judgment
set based on the views of individual judges about a given set of
propositional formulas. One way of guaranteeing consistent out-
comes is the use of sequential rules. In each round, the decision on
a single formula is made either because the outcome is entailed by
the already obtained judgment set, or, if this is not the case, by some
underlying rule, e.g. the majority rule. Such rules are especially use-
ful for cases, where the agenda is not fixed in advance, and formulas
are added one by one. This paper investigates the computational
complexity of winner determination under a family of sequential
rules, and the manipulative influence of the processing order on
the final outcome.
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1 INTRODUCTION
Judgment Aggregation (JA) is the task of aggregating individual
judgments over logical formulas into a collective judgment set. The
doctrinal paradox by Kornhauser and Sager [13] shows that if the
majority rule is used, the outcome may be inconsistent, even if
all underlying individual judgment sets are consistent. Since then
research related to JA has been undertaken in different disciplines.
The book chapter by Endriss [6] provides an overview of recent
research on JA in computational social choice, where for example
computer science methods are used to analyze problems originating
from social choice. The investigation of JA from a computational
complexity point of view has been initiated by Endriss et al. [10].
They focused on the winner problem, manipulation, and safety
of the agenda problems. Subsequently, e.g. Baumeister et al. [1],
Endriss and de Haan [8], and de Haan and Slavkovik [4] studied
the complexity of different JA problems.

An important task is to generate consistent collective outcomes,
that can, for example, be obtained through the use of sequential
rules, see List [17]. A sequential rule works in rounds and uses
some underlying JA rule, for example the majority rule as proposed
by Dietrich and List [5] (see also Peleg and Zamir [21]). In each
round the decision on one specific formula is made by checking

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

whether either the formulas already contained in the collective
outcome logically entail an assignment for the formula at hand,
or otherwise, the outcome of the underlying rule for this formula
will be taken. This is reasonable, since sequential procedures occur
naturally by incremental decision-making. Since many real-world
decisions (e.g. contract agreements) are binding, while reversing
may be either favorable but expensive or impracticable, reasoning
happens gradually. List [17] discusses similar use cases of such
path-dependent procedures in detail. We focus on sequential rules
that rely on underlying quota rules, where a formula is included in
the collective outcome if a certain fraction of the judges approves it.
This includes the two extreme cases where a single approval is suf-
ficient or where an approval of all judges is needed or the common
case of a majority of 2/3. Such a majority is needed for Senate votes
on a presidential Impeachment, for the College of Cardinals in the
papal conclave, or in some cases for constitutional amendments.
Political referenda are examples of more diverse quotas.

Since JA may also be used in security applications, as mentioned
by Jamroga and Slavkovik [12], it is particularly important to have
consistent collective judgment sets that are efficiently computable.
The complexity of winner determination for different JA rules has
been studied by Endriss et al. [10] for the premise-based procedure
and the distance-based procedure and by de Haan and Slavkovik [4]
for scoring and distance-based rules. Along with many other rules,
both, Endriss and de Haan [8] and Lang and Slavkovik [16], studied
winner determination for the ranked agenda rule1 and the maxcard
subagenda rule2, which are closely related to some of our results. In
this paper we investigate the computational complexity of several
problems related to winner determination for sequential JA rules
that use a specific quota rule as the underlying rule. Furthermore,
we study the problem of manipulative design, i.e., the question
whether there is an order in which the formulas should be processed
that yields some desired outcome. Additionally, we study majority-
preservation for sequential JA rules, see Lang and Slavkovik [16].
The idea for sequential rules is to maintain a maximal agreement
with the outcome of the majority rule (or any other underlying rule),
when applied sequentially. In this context we identify a correlation
between majority-preservation of sequential rules and distance
based methods (in particular the maxcard subagenda rule). Our
results range from membership in P to completeness in the second
level of the polynomial hierarchy.

Compared to previous work on the ranked agenda rule (se-
quential majority rule, where the processing order is based on
the majority support), see Endriss and de Haan [8] and Lang and

1Also known in JA as Tideman’s ranked pairs (see Endriss and de Haan [8]) and in
similar variations as support-based procedure (see Porello and Endriss [22]) or leximax
rule (see Lang et al. [15]).
2Also known in JA as Slater rule (see Endriss and de Haan [8]), max-num rule (see
Endriss [7]) or endpoint rule (for the hamming distance as metric, see Miller et al. [18]).
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Slavkovik [16], our results generalize and supplement respective
complexity results, since lower bounds hold for any quota and even
for a constant number of judges, implying para-NP-hardness. Addi-
tionally, we established matching upper bounds for all sequential
rules that rely on a complete and complement-free rule.

2 PRELIMINARIES
The technical framework mainly follows the definitions in En-
driss [6]. In JA we talk about a group [r ] of r ∈ N judges, where
[r ] denotes the set {1, . . . , r }. The judges judge over an agenda
Φ, which consists of boolean formulas in standard propositional
logic. In order to avoid double negations let ∼φ denote the com-
plement of φ, i.e., ∼φ = ¬φ if φ is not negated, and ∼φ = ψ if
φ = ¬ψ . Thereby, we assume Φ to be finite, nonempty and closed
under complement, i.e., for every φ ∈ Φ it holds that ∼φ ∈ Φ. Fur-
thermore, we assume Φ to be nontrivial, i.e., there exist at least
two formulas {φ,ψ } ⊆ Φ, such that {φ,ψ }, {∼φ,ψ }, {φ,∼ψ } and
{∼φ,∼ψ } are consistent, and we foreclose tautologies and contra-
dictions from Φ. We split the agenda Φ into two disjoint subsets
Φ+ and Φ−, where for all φ ∈ Φ+ it holds that ∼φ ∈ Φ−. Having the
agenda introduced, we define an individual judgment J ⊆ Φ as
a subset of Φ. We say that J is complete, if it holds for all φ ∈ Φ
that φ ∈ J or ∼φ ∈ J is true. We say that J is complement-free,
if it holds for all φ ∈ Φ that |{φ,∼φ} ∩ J | ≤ 1. Lastly, we define
J to be consistent, if there exists a boolean assignment for the
formulas in J , such that all formulas are satisfied at the same time.
We denote the set of all complete and consistent judgments over
Φ by J(Φ). For the set of judges [r ] we denote their profile of
individual judgments over Φ as P = (P1, . . . , Pr ) ∈ J(Φ)r . We
define a (resolute) judgment aggregation rule for an agenda Φ
and r judges, as a function R : J(Φ)r → 2Φ, mapping a profile
P ∈ J(Φ)r of individual judgments to a subset R(P) of Φ. We
say that R is complete/complement-free/consistent, if for ev-
ery profile P ∈ J(Φ)r it holds that R(P) is complete/complement-
free/consistent. Furthermore, we say that R is anonymous if it is
independent of the order of judges, i.e., R(P) = R(Pπ (1), . . . , Pπ (r ))
for all P ∈ J(Φ)r permutation π : [r ] → [r ]. Now, we define a fam-
ily of JA rules. Within the subsequent definition we define a special
case of the quota rules as defined by Dietrich and List [5].

Definition 2.1 (Quota Rules). Let Φ = Φ+∪Φ−,Φ+∩Φ− = ∅ be an
agenda, P ∈ J(Φ)r a profile of individual judgments and q ∈ [0, 1].
We define a quota rule with quota q as a JA rule Fq satisfying

(1) ∀φ ∈ Φ+ : φ ∈ Fq (P) ⇔ |{i ∈ [r ] | φ ∈ Pi }| ≥ ⌈q(r + 1)⌉ and
(2) ∀φ ∈ Φ− : φ ∈ Fq (P) ⇔ |{i ∈ [r ] | φ ∈ Pi }| ≥ ⌊(1−q)(r+1)⌋.
Since ⌈q(r + 1)⌉ + ⌊(1 −q)(r + 1)⌋ = r + 1 holds for all 0 ≤ q ≤ 1,

it follows by the results from Dietrich and List [5] that all quota
rules as previously defined are complete and complement-free. F
denotes the set of all quota rules.

For an odd number of judges the majority rule equals the quota
rule with quota q = 1/2. The difference for an even number of
judges is that in case of a tie for some formula φ the quota rule exe-
cutes some tie-breaking mechanism by choosing the corresponding
formula from Φ−, whereas the majority rule neglects completeness
and does neither include this formula nor its negation.

We study sequential judgment aggregation rules in this pa-
per. The basic idea is to ensure consistency by checking in each

round whether the formulas contained in the collective outcome al-
ready fix the value for the formula at hand. This is formally denoted
by the entailment relation, where a |= b means that the value for b
is determined by a. To begin, we define the subsequently studied
sequential JA rules in a general way.

Definition 2.2 (Sequential K-Judgment Aggregation Rule). Let K
be a complete and complement-free JA rule. Furthermore, let Φ
be an agenda, P ∈ J(Φ)r a profile and π = (φ1, . . . ,φm ) an order
over Φ+. In order to obtain the aggregated judgment SK(P, π ) of
the sequential K-judgment aggregation rule, we proceed as
follows for 1 ≤ i ≤ m:

(1) If either (φ∗1 ∧ . . . ∧ φ∗i−1) |= φi or (φ∗1 ∧ . . . ∧ φ∗i−1) |= ∼φi
holds, where φ∗j ∈ {φ j ,∼φ j } is the formula added in the
j-th iteration to SK(P, π ), we add φi or ∼φi respectively to
SK(P, π ),

(2) otherwise, we add {φi ,∼φi } ∩ K(P) to SK(P, π ).
Afterm iterations we obtain the final aggregated judgment SK(P, π ).

As an example consider an agenda Φ with Φ+ = {a,b,a ∧ b}
and three judges with J1 = {¬a,b,¬(a ∧b)}, J2 = {a,¬b,¬(a ∧b)},
and J3 = {a,b,a ∧ b}. The majority rule returns the inconsistent
judgment set {a,b,¬(a∧b)}. Now, consider the sequential majority
rule with order π = (a,a∧b,b). In the first two steps a and ¬(a∧b)
are added to the outcome by majority, then the decision for b is
entailed by the formulas already considered and ¬b is included.

Observe that by our definition (i) any output SK(P, π ) is com-
plete and consistent with respect to the agenda Φ and (ii) if K is
anonymous then SK is anonymous, too. Combining (i) and (ii) with
List’s impossibility result [17], we obtain for underlying anonymous
rules K that the resulting judgment of a sequential JA rule SK de-
pends on the processing order over Φ+. Therefore, all previously
defined (anonymous) sequential JA rules are path-dependent.

Whenever we address a sequential JA rule with respect to some
JA rule K , we assume K to be complement-free and complete.
Subsequently, we introduce one more notation to exactly express
partially aggregated judgments in order to simplify notation.

Definition 2.3 (Partially Aggregated Judgment). Let Φ be an agen-
da, P ∈ J(Φ)r a profile for r judges, π an order over Φ+ and ψ ∈
Φ. We define the partially aggregated judgment SKψ (P, π ) ⊂
SK(P, π ) as the subset of the final aggregated judgment, for which
the order π was processed until, but excludingψ or ∼ψ respectively.

Observe that for everyψ ∈ Φ eitherψ itself or ∼ψ appears in π ,
ensuring that the previous definition is well-defined. In the follow-
ing, we will focus on sequential JA rules based on quota rules. For
the remaining parts of the paper, we assume that the reader is famil-
iar with the basics of computational complexity such as the classes
P, NP, the polynomial hierarchy as well as polynomial-time many-
one reductions ≤p

m . SAT denotes the satisfiability problem and
SAT its complement. For further reading, we refer to the textbook
by Papadimitriou [20].

3 THE WINNER PROBLEM
The use of JA rules in artificial intelligence technologies raises im-
portant computational questions. As the number of judges and/or
the number of formulas in the agenda may be high, it is impor-
tant to design fast algorithms to determine the collective outcome.
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The computational study of the winner problem for JA was initi-
ated by Endriss et al [10]. They showed that it is polynomial-time
solvable for quota rules and the premise-based procedure, while it
is Θp2 -complete for the distance-based procedure. Endriss and de
Haan [8] showed that the winner problem is Θp2 -complete for some
JA rules related to known voting rules (e.g. the maxcard rule), ∆P2 -
complete for the ranked agenda rule with a fixed tie-breaking and
Σ
p
2 -complete without a fixed tie-breaking. Lang and Slavkovik [16]

defined a slightly different problem for winner determination and
obtained completeness results in Θ

p
2 (e.g. for the maxcard rule)

and Πp2 (e.g. for the ranked agenda rule without tie-breaking) for
majority-preserving rules. We will emphasize relationships to the
former results at relevant passages. The formal definition of the
winner problem for a sequential JA rule SK is as follows.

SK-Winner (SKW)
Instance: An agenda Φ, a profile P ∈ J(Φ)r , an order π over

Φ+, and a formula φ ∈ Φ.
Question: Is φ ∈ SK(P, π ) true?

In the following, we analyze the computational complexity of
this problem. We start with its upper bound.

Theorem 3.1. SK-Winner is in ∆p2 if K is efficiently computable.

Proof. Let I = (Φ, P, π ,φ) be a SKW instance and denote the
order by π = (φ1, . . . ,φm ). Without loss of generality we may
assume φ = φ j for one j ∈ {1, . . . ,m}, because if φ = ∼φk for some
k ∈ {1, . . . ,m}, we simply solve the instance I ′ = (Φ, P, π ,∼φ) and
invert its result.

First, we compute K(P) = {φ ′1, . . . ,φ ′m } in polynomial time.
Now, forφ1 we will use the result of K based on P to decide whether
to add φ1 or ∼φ1 to SK(P, π ). Furthermore, denote by φ∗1, . . . ,φ

∗
i−1

the elements added to SKφi (P, π ) in the first i − 1 iterations. Note,
that we add any φ ′i approved by K , if and only if we cannot deduce
∼φ ′i from the partially aggregated judgment. Consequently, in the
i-th iteration, we ask whether (φ∗1 ∧ . . .∧φ∗i−1) |= ∼φ ′i holds, which
is equivalent to asking whether there is no satisfying assignment for
(φ∗1 ∧ . . .∧φ∗i−1)∧φ ′i , which can be verified in coNP. Consequently,
asking an NP-oracle whether this formula is satisfiable implies that
∼φ ′i is not entailed by previously added formulas. In this case, we
may add φ ′i ∈ K(P) directly to SK(P, π ), since it is irrelevant for
our purpose whether φ ′i is deduced or added by application of K .
Therefore, we require one NP-query per iteration, except for i = 1.
In the worst case, we have j =m and must pose m − 1 consecutive
NP-queries over m iterations during our computation. Note that
m−1 is in O(|I|) and thus, we can solve I in ∆p2 . Thereby, it follows
that SKW∈ ∆p2 holds. □

In the construction above all queries rely on previous iterations
and therefore, cannot be parallelized. Hence, Θp2 membership does
not follow, which is in line with the general assumption of ΘP

2 ⊂
∆
p
2 . Now, having shown an upper bound for the computational

complexity of the general winner problem, we like to introduce
a lower bound for the computational complexity of the winner
problem with respect to quota rules from F . In order to do so, we
first introduce the ∆p2 -complete problem Odd Max Satisfiability,
as defined by Krentel [14] (see also Große et al. [11]).

Odd Max Satisfiability (OMS)
Instance: A set X = {x1, . . . , xn } of boolean variables and a

boolean formula α(x1, . . . , xn ).
Question: Is α satisfiable and xn = 1 in α ’s lexicographically

maximum satisfying assignment x1 . . . xn ∈ {0, 1}n?

Theorem 3.2. Let Fq ∈ F . Then, SFq -Winner is ∆p2 -complete.

Proof. From the previous theorem we know that SFqW ∈ ∆p2
holds, since Fq is efficiently computable, complement-free and com-
plete. Therefore, it is sufficient to show OMS ≤p

m SFq -Winner.
Let I = (X ,α) be an OMS instance with X = {x1, . . . , xn }.

We construct in time polynomial in |I | a SFqW instance I ′ =
(Φ, P, π ,φ) as follows. Thereby, we separate the construction into
two cases depending on the value of Fq ’s quota q. Due to space
constraints, we only present the proof for q ≤ 1/3, the remaining
case can be shown by a similar approach.

Assumeq ≤ 1/3. We defineΦ+ = {β1, β2,α ′,α ′∧x1, . . . ,α ′∧xn },
where β1, β2, and γ are new variables, and α ′ = (α ∧γ )∨¬β1 ∨¬β2.
Furthermore, we define the order π over Φ+ as π = (β1, β2,α ′,
α ′ ∧ x1, . . . ,α ′ ∧ xn ) and the judges’ profile P as follows.

P β1 β2 α ′ α ′ ∧ x1 . . . α ′ ∧ xn

P1 0 1 1 1 . . . 1
P2 1 0 1 1 . . . 1

We add a formulaψ ∈ Φ+ to the aggregated judgment Fq (P) if
and only if |{i ∈ [r ] | ψ ∈ Pi }| ≥ ⌈q(r + 1)⌉ holds. For r = 2 and
q ≤ 1/3 we have ⌈q(r + 1)⌉ ≤ 1, so that Fq (P) = Φ+ holds.

We set φ = α ′ ∧ xn . Furthermore, no consistency condition is
violated since α ′ can be satisfied for every individual judgment via
β1, β2, even when α is unsatisfiable. In order to prevent α ′ from
turning into a tautology when α is one, we added γ .

Now, we prove that I ∈ OMS ⇔ I ′ ∈ SFq -Winner holds. For
the direction from left to right assume that I is a yes-instance.
After the first two iterations of the SFq -rule we have SFα ′

q (P, π ) =
{β1, β2}. By assumption, there exists a satisfying assignment for
α and trivially also for ¬γ . Therefore, in the third round we can
neither entail ¬α ′ ∈ SFq (P, π ) nor α ′ ∈ SFq (P, π ). Thus, we add
α ′ by applying the Fq -rule. Consequently, after the third iteration
we have SFα

′∧x1
q (P, π ) = {β1, β2,α ′}. From this fact it follows that

SFα
′∧x1

q (P, π ) |= α ∧ γ |= α,γ holds, which is in accordance with
our assumption that α is satisfiable. Now, we would like to decide
whether to add α ′∧x1 or ¬(α ′∧x1) to SFq (P, π ). Given the current
aggregated judgment and knowing that γ ≡ true, it holds that
α ′∧x1 = [(α∧γ )∨¬β1∨¬β2]∧x1 ≡ α∧x1. Furthermore, knowing
from α ∧ γ ≡ α ′ ∈ SFq (P, π ) that α should be true, we distinguish
three cases for α ∧x1: (i) If x1 = 1 is the only option for a satisfying
assignment of α , we can deduce α ′ ∧ x1 ∈ SFq (P, π ). (ii) If x1 = 0
is the only option for a satisfying assignment of α , we can deduce
¬(α ′ ∧ x1) ∈ SFq (P, π ). (iii) If there are satisfying assignments
for α with both, x1 = 1 and x1 = 0, we must apply the Fq -rule
and obtain α ′ ∧ x1 ∈ SFq (P, π ). Note that the last option always
favors the bigger satisfying assignment, i.e., preferring x1 = 1 over
x1 = 0. We can apply the previous argument for j ∈ {1, . . . ,n}
and deduce for all formulas α ′ ∧ x j whether to add them or their
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corresponding negation ¬(α ′ ∧ x j ) to SFq (P, π ). Doing so yields a
maximum satisfying assignment for α , represented by [xi = 1] ⇔
[α ′∧xi ∈ SFq (P, π )]. By assumption, we know that xn = 1 holds for
a maximum satisfying assignment of α . Thus, α ′ ∧ xn ∈ SFq (P, π )
holds after the last iteration and therefore, I ′ ∈ SFq -Winner is
true.

For the direction from right to left assume now that I is a no-
instance. We study two separate cases.

Case 1:α is satisfiable but for its maximum satisfying assignment
xn = 0 holds. In the third iteration we add α ′ to SFq (P, π ). As
already argued in the first part of the proof, for 1 ≤ j ≤ n we add
α ′ ∧ x j to SFq (P, π ) if and only if x j = 1 holds in α ’s maximum
satisfying assignment. By assumption, we know that xn = 0 is true
in α ’s maximum satisfying assignment. Therefore, we end up with
α ′∧xn < SFq (P, π ) and can conclude that I ′ < SFq -Winner holds.

Case 2: α is not satisfiable. After the first two iterations of the
SFq -rule we have SFα ′

q (P, π ) = {β1, β2}. By assumption, in the third
iteration it holds that

α ′ = (α ∧ γ ) ∨ ¬β1 ∨ ¬β2 ≡ (false ∧ γ ) ∨ ¬β1 ∨ ¬β2 ≡ false.

Consequently, we deduce that ¬α ′ must hold and thus add ¬α ′ to
SFq (P, π ). Obviously, this leads to the fact that we add ¬(α ′ ∧ x j )
to SFq (P, π ) for 1 ≤ j ≤ n. Therefore, we have α ′ ∧ xn < SFq (P, π )
and hence, I ′ < SFq -Winner.

Finally, we have I ∈ OMS if and only if I ′ ∈ SFq -Winner and
obtain OMS ≤p

m SFq -Winner. □

Endriss and de Haan [8] showed that the winner problem for the
ranked agenda rule (with fixed tie-breaking) is ∆p2 -hard. However,
the corresponding proof requires a linear number of judges. We note
that slightly modifying our previous proof by adding a third judge,
supporting both, β1 and β2, but no other formula, allows us to reuse
the same proof (i.e., the given order π ) for the ranked agenda rule.
This yields an even stricter result for the ranked agenda’s winner
problem’s complexity, namely para-∆p2 -hardness with respect to
the number of judges.

Corollary 3.3. The winner problem for the ranked agenda rule
with fixed tie-breaking is para-∆p2 -hard when parameterized by the
number of judges.

Note that our lower bound proofs in Section 5 may be adapted in a
similar way (by adding a third judge only approving corresponding
βj ) to also handle the ranked agenda rule.

4 COUNTING TECHNIQUE
Within this section, we introduce a polynomial-time computable
technique used to construct a boolean formulaψB

k . The formula is
able to count the number of satisfied boolean variables for a given
boolean assignment T of a set of boolean variables B in the sense
that a truth assignment evaluates the formula to true if and only if
at most k ∈ N of the variables in B for T are true.

In some sense our technique generalizes the already known
technique used by Cook in his famous theorem to prove that SAT is
NP-complete, cf. [2]. Cook’s technique describes an approach how
to formulate a boolean formula for a set of boolean variables which
is true if and only if exactly one of the boolean variables is true.

Lemma 4.1. Let B = {x1, . . . , xn } be a set of boolean variables and
k ≤ n. We can construct a formulaψB

k from a set of boolean variables
B′ with |B′ | = nk in time polynomial in n, such thatψB

k evaluates to
true if and only if at most k of the n boolean variables in B are set to
true.

Proof. In a first step, we create k copies {x1
i , . . . , x

k
i } for every

boolean variable xi in B. Then, we define a boolean formula Xi for
every 1 ≤ i ≤ n as follows Xi =

[∨
j ∈[k ]

(
x
j
i ∧

∧
ℓ∈[k]\{j } ¬xℓi

)]
∨[∧

j ∈[k ] ¬x ji
]
. Consequently, Xi is satisfied if and only if at most

one of the k copies of xi is satisfied. Note that every Xi can be
constructed in time in O(n2) since |Xi | = k(k + 1) ≤ n(n + 1) holds.

In a second step, we construct k boolean formulas Yj for 1 ≤ j ≤
k as follows Yj =

[∨
i ∈[n]

(
x
j
i ∧

∧
ℓ∈[n]\{i } ¬x jℓ

)]
∨
[∧

i ∈[n] ¬x ji
]
.

Thereby, Yj is satisfied if and only if at most one of the n variables
in the j-th set of copies {x j1, . . . , x

j
n } is satisfied. Note that we can

also construct Yj in time in O(n2) since |Yj | = n(n + 1) holds.
In a third step, we define two more boolean formulas, namely

Y =
∧k
j=1 Yj and X =

∧n
i=1 Xi . Consequently, Y is satisfied if and

only if for every j, 1 ≤ j ≤ k , at most one variable in the set
{x j1, . . . , x

j
n } is satisfied. Analogously, X is satisfied if and only if at

most one of the copies for every xi , 1 ≤ i ≤ n, is satisfied. Finally,
settingψB

k = Y ∧ X obviously completes the construction.
It remains to show the correctness of the construction. To do

so, first we explain how to derive a boolean assignment T ′ for
B′ = {x1

1, . . . , x
k
1 , . . . , x

1
n, . . . , x

k
n } out of a boolean assignment T

for B = {x1, . . . , xn }. Therefore, denote by ρ(B,T ) = {x ∈ B |
T (x) = true} the set of variables set to true byT . We constructT ′
as follows. Write ρ(B,T ) = {xi1 , . . . , xim } form ≤ n. For 1 ≤ j ≤ m,
we set x (j mod k )+1

i j
to true and all other variables in B′ to false.

The formal proof of correctness is omitted due to space con-
straints. □

We will use this technique as follows. Let B = {x1, . . . , xn } be
a set of boolean variables, k ∈ N and α(B) some boolean formula
over B. At some point, we must know whether a given assignment
T satisfies α(B), while no more than k of the boolean variables in
B should be set to true. In order to decide this fact efficiently, we
first globally replace each variable xi ∈ B that appears in α by∨
j ∈[k ] x

j
i and denote the result as αk . Then, we construct a new

boolean formula α ′
k = αk ∧ψB

k and check whether α ′
k is true for

the corresponding assignment T ′. If this is the case, we know that
α(T (B)) is true, while no more than k of the n variables in B are
true for T . In order to keep our notation as simple as possible, we
write α ′ = α ∧ψB

k .

5 PROBLEMS OF MANIPULATIVE DESIGN
While the usage of sequential rules guarantees consistency, at the
same time the gradual aggregation approach leads to problems
of manipulative design for anonymous underlying rules. Follow-
ing the impossibility result by List [17], sequential quota rules are
path-dependent, i.e., the aggregated judgment is determined by
the processing order of formulas and might be altered at will if
said order is chosen accordingly. Realizing the amount of power
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a manipulator in control over the processing order has, we study
how hard it is to compute whether at least one (respectively ev-
ery) order guarantees a partial judgment to be included into the
aggregated one. Although List already proposed said approach
as Manipulation by Agenda Setting, we deviate in studying two
variants. In particular, we study the SK-Winner-Design and the
SK-Winner-Robustness problem and will show that it is more
inefficient for sequential quota rules to solve proposed problems of
manipulative design than the corresponding winner problem. The
formal definition of the Winner-Design problem is as follows for
a given sequential JA rule SK .

SK-Winner-Design (SKD)
Instance: An agenda Φ, a profile P ∈ J(Φ)r , and a set of formu-

las J ⊆ Φ.
Question: Is there an order π = (φ1, . . . ,φm ) over Φ+ such that

J ⊆ SK(P, π )?
Analogously we formulate the almost complementary decision

problem SK-Winner-Robustness (SKR). The input remains un-
changed but the question is whether J ⊆ SK(P, π ) holds for every
processing order π over Φ+. In order to determine the computa-
tional complexity of SKD and SKR, we require some notation.

Definition 5.1. Let K be a complete and complement-free JA rule,
Φ an agenda, and P ∈ J(Φ)r a profile for r judges. Furthermore,
slightly abusing notation, let π = (φ1, . . . ,φm ) be an order over
K(P) and denote by SK(P, π ) the corresponding aggregated judg-
ment. LetKπ = K(P)∩SK(P, π ) denote the set of formulas in the ag-
gregated judgment also supported by K , and Dπ = SK(P, π )\K(P)
those not supported by K . For Kπ = {k1, . . . ,kp } and Dπ =
{d1, . . . ,dm−p } let (Kπ ,Dπ ) = (k1, . . . ,kp ,d1, . . . ,dm−p ) denote
an order, where all formulas in Kπ are permuted arbitrarily at the
first p places.

This enables us to formulate the following lemma.

Lemma 5.2. Let K be a complete and complement-free JA rule, Φ
an agenda and P ∈ J(Φ)r a profile for r judges. Then, for every order
of the form π ′ = (Kπ ,Dπ ) it holds that SK(P, π ′) = SK(P, π ).

The intuition is, that we can rearrange every order π in such a
way that all formulas supported by K are at the beginning of π and
all remaining formulas follow afterwards. Hence, instead of looking
for a specific order it is sufficient to search for a consistent subset
K ⊆ K(P), such that K |= ∧

φ ∈J φ holds. Doing so enables us to
solve a SK-Winner-Design instance by setting π = (K, J , . . .).

Note that for q = 1/2, the problems SFq -Winner-Design and
SFq -Winner-Robustness are closely related to the winner deter-
mination problem for the ranked agenda rule without fixed tie-
breaking as studied by Endriss and de Haan [8] and Lang and
Slavkovik [16]. Both investigate hardness for similar decision prob-
lems, where the processing order is additionally required to be in
accordance with the number of supporting judges (i.e., for any order
π = (φ1, . . . ,φm ) over F1/2(P) it holds that |{i ∈ [r ] | φ j ∈ Pi }| ≥
|{i ∈ [r ] | φ j+1 ∈ Pi }|). We continue to study the complexity for
two widely separated cases, namely manipulative design for com-
plete judgment sets (Section 5.1) and for single formulas (Section
5.2). An overview of our results is given in Table 1.

5.1 Manipulative Design for Judgment Sets
First, let us investigate the introduced problems of manipulative
design for a given judgment which is complete and consistent.
Note that we do not consider inconsistent judgments, since those
are neither desirable nor a possible output. The ensuing theorem
derives an upper bound of coNP for a broad class of sequential JA
rules.

Theorem 5.3. For every polynomial-time computable JA rule K
that is complete and complement-free, it holds that SKD ∈ coNP
if the desired subset of formulas equals a complete and consistent
judgment J ∈ J(Φ).

Proof. We precompute K = J ∩ K(P) and D = J \ K(P) in
polynomial time. Since J ∈ J(Φ),K andD are consistent. Following
Lemma 5.2 it is sufficient to verify whether each formula in D can
be derived from K , since we then may construct an order of the
form π ′ = (K,D). Hence, we have to check whether

(∧
φ ∈K φ

)
|=(∧

ψ ∈D ψ
)
. This is equivalent to checking whether there is no

assignment satisfying
(∧

φ ∈K φ
)
∧¬

(∧
ψ ∈D ψ

)
and hence in coNP.

□

For the class of quota rules the following theorem establishes
the matching lower bound and proves coNP-hardness.

Theorem 5.4. For every quota rule Fq ∈ F and every given com-
plete and consistent judgment J ∈ J(Φ) it is coNP-complete to solve
the corresponding SFqD problem.

Proof. Recall that we assume every quota rule Fq to be complete
and complement-free for every quota q. To show coNP-hardness,
we reduce a SAT instance I = (α) to a SFqD instance I ′ = (Φ, P, J ).
We define Φq = {(α ∧ γ ) ∨ ¬β1 ∨ ¬β2, β1, β2}, where γ , β1, and β2
are new literals, and choose Φ+ = Φq for q ≤ 1/3 and Φ− = Φq
otherwise. We consider a profile consisting of two judges with
Pi = {(α ∧ γ ) ∨ ¬β1 ∨ ¬β2, βi ,¬β3−i } for i ∈ [2]. Note that by
construction it holds that Fq (P) = Φq . Lastly, we set J = P1 and
show that equivalence holds. For the direction from left to right
assume I is a yes-instance and thus, α is unsatisfiable. Choosing
the order π = ((α ∧ γ ) ∨ ¬β1 ∨ ¬β2, β1, β2) over Φq results in
SFq (P, π ) = J . For the direction from right to left assume I is a no-
instance and thus, α is satisfiable. Then, Fq (P) is already consistent
and SFq (P, π ) = Fq (P) , J holds for every order π . Together with
Theorem 5.3 we obtain coNP-completeness. □

Turning to the robustness problem, we require that the desired
judgment set J is contained in the collective outcome for every pos-
sible order. This is only possible if each of the formulas is contained
in the collective judgment set of the underlying formula.

Theorem 5.5. For every agenda Φ, profile P ∈ J(Φ)r and com-
plete and consistent judgment J ∈ J(Φ), the corresponding SKR-
instance (Φ, P, J ) is satisfiable if and only if K(P) = J for a complete
and complement-free procedure K .

Note that for efficiently computable underlying rules and partic-
ularly for sequential quota rules SFq the corresponding problem is
decidable in P.
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Table 1: Summary of complexity results for different problems regarding sequential JA rules SFq .

Winner Winner-Design Winner-Robustness Supported-Judgment
J ∈ J(Φ) φ ∈ Φ J ∈ J(Φ) φ ∈ Φ

∆
p
2 -c., Thm. 3.1, 3.2 coNP-c., Thm. 5.3, 5.4 Σ

p
2 -c., Thm. 5.7, 5.9 in P, Thm. 5.5 Π

p
2 -c., Lem. 5.6 NP-c., Thm. 5.12, 5.13

5.2 Manipulative Design for Single Formulas
Before investigating the complexity of SKD and SKR separately,
we want to point out that they are tied closely together, when
testing whether a single formula is in the aggregated judgment.

Lemma 5.6. For every complete and complement-free procedure K ,
every agenda Φ, every profile P ∈ J(Φ)r and every formula φ ∈ Φ,
it holds that (Φ, P, {φ}) ∈ SKR ⇔ (Φ, P, {∼φ}) ∈ SKD.

Above lemma follows from complement-freeness and complete-
ness and has also been shown by Lang and Slavkovik [16]. In the
following, we will only show complexity results for SKD, while
results for SKR follow directly. We continue to establish upper
bounds.

Theorem 5.7. For every polynomial-time computable, complete
and complement-free JA rule K and a judgment J = {φ} ⊂ Φ

containing a single formula, it holds that SK-Winner-Design ∈ Σp2 .

Proof. In order to solve an instance I = (Φ, P, {φ}) of the de-
cision problem SK-Winner-Design, we must determine whether
there exists an order π such that φ ∈ SK(P, π ) holds. Exploiting our
previous observations, we know from Lemma 5.2 that it is sufficient
to identify a consistent subset K ⊆ K(P) with K |= φ.

Thus, we first calculate K(P) in polynomial time and can nonde-
terministically guess a subset K = {φ1, . . . ,φk } ⊆ K(P). Next, we
verify whether K is consistent by asking our NP-oracle whether
there exists a satisfying assignment for φ1 ∧ . . . ∧ φk . In a last
step, we must determine whether K |= φ holds. Thereby, we have
(φ1∧ . . .∧φk ) |= φ. To determine whether this formula is satisfiable
can again be solved in coNP. Consequently, we can pose a second
NP-query to find out whetherK entails φ, resulting in φ ∈ SK(P, π )
for π = (K,φ, . . .). Overall, we require a polynomial amount of non-
deterministic computation steps as well as two NP-oracle queries
to calculate an answer for I and thus, SK-Winner-Design ∈ Σp2
holds. □

Combining the former theorem with Lemma 5.6, we derive the
following corollary.

Corollary 5.8. For every complete and complement-free JA rule
K computable in polynomial time and a judgment J = {φ} ⊂ Φ, it
holds that SK-Winner-Robustness ∈ Πp2 .

In order to identify lower bounds for sequential quota rules, let
us first define the decision problem Succinct Set Cover (SSC),
which was proven to be Σp2 -complete by Umans [23]. The instance
consists of a collection of 3-DNF formulas S = {φ1, . . . ,φn } over
m variables and k ∈ N. The question is whether there is a subset
N ′ ⊆ [n] with |N ′ | ≤ k and

∨
i ∈N ′ φi ≡ true?

Theorem 5.9. For every quota rule Fq ∈ F and a judgment J =
{φ} ⊂ Φ consisting of a single formula, it holds that the problem
SFq -Winner-Design is Σp2 -complete.

Proof. Due to Theorem 5.7 it is enough to show Σ
p
2 -hardness.

We reduce Succinct Set Cover to SFq -Winner-Design. Let I =
({φ1, . . . ,φn },k) be a SSC instance. To construct I ′ = (Φ, P, {φ}),
we first introduce some auxiliary variables. Let B = {x1, . . . , xn }
be a set of boolean literals, ψB

k defined as described in Section 4
and φ ′i = (φi ∧ xi ) for 1 ≤ i ≤ n. For our construction we set
φ = ψB

k ∧
[(∨

i ∈[n] φ ′i
)
∨ γ

]
∧β1∧β2 and Φq = B∪{β1, β2}∪{ψB

k ∨
¬β1 ∨¬β2,∼φ} with new literals βj and γ . Note that by including γ ,
the agenda cannot contain any contradictions or tautologies. More
precisely, bothψB

k ,φ and their negations are satisfiable, even if every
φi is a contradiction. The judges’ profile consists of two judgments
Pi = Φq \ {βi } ∪ {¬βi } for i ∈ {1, 2} and the individual judgments’
consistency is not violated, since ∼φ is always satisfiable by any
¬βj . Finally, we set Φ+ = Φq for q ≤ 1/3 and Φ− = Φq otherwise.
By construction it holds that Fq (P) = Φq and, slightly abusing
notation, we consider any order π over Φq instead of Φ+. Clearly,
this construction can be done in polynomial time. Subsequently,
we prove I ∈ SSC ⇔ I ′ ∈ SFqD.

(⇒) Assume I is a yes-instance. Consequently, there exists a set
N ′ = {i1, . . . , im } ⊆ [n]withm ≤ k such that

∨
i ∈N ′ φi ≡ true. As

order we choose π = (β1, β2,ψB
k ∨¬β1 ∨¬β2, xi1 , . . . , xim ,∼φ, . . .),

where the order of the elements after ∼φ is irrelevant. Applying
the SFq -rule, we may add each formula in the first m + 3 iterations
by using the quota rule Fq , since ψB

k and m ≤ k variables from
B are satisfiable simultaneously, even if both βj are set to true.
Now, we show that φ = ψB

k ∧
[(∨

i ∈[n] φ ′i
)
∨ γ

]
∧ β1 ∧ β2 may be

deduced from the initial assumption by showing that each formula
in {ψB

k ,
∨
i ∈[n] φ ′i , β1, β2} can be deduced separately. First, note that

each βj trivially entails itself and β1∧β2∧
(
ψB
k ∨ ¬β1 ∨ ¬β2

)
|= ψB

k
holds. For the remaining formula it holds that∧

i ∈N ′
xi ⇒

∨
i ∈[n]

φ ′i

⇔
∨
i ∈N ′

¬xi ∨
∨
i ∈[n]

(φi ∧ xi )

⇔
∨
i ∈N ′

((¬xi ∧ φi ) ∨ (¬xi ∧ ∼φi )) ∨
∨
i ∈[n]

(φi ∧ xi )

⇔
∨
i ∈N ′

φi ∨
∨
i ∈N ′

(¬xi ∧ ∼φi ) ∨
∨

i ∈[n]\N ′
(φi ∧ xi ), (1)

where the left disjunction in (1) already is a tautology by assumption.
Consequently, it holds that SF∼φq (P, π ) ⇒ φ. Hence, we conclude
φ ∈ SFq (P, π ), resulting in I ′ ∈ SFqD.
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(⇐) Assume I is a no-instance. Consequently, there does not
exist any N ′ ⊆ [n] with |N ′ | ≤ k , such that

∨
i ∈N ′ φi ≡ true holds.

By contradiction, we assume I ′ to still be a yes-instance. Then,
there exists an order π over Φq such that

φ = ψB
k ∧


©«
∨
i ∈[n]

φ ′i
ª®¬
∨ γ


∧ β1 ∧ β2 ∈ SFq (P, π )

holds. We deduce that β1, β2 ∈ SFq (P, π ) and ψB
k ∨ ¬β1 ∨ ¬β2 ∈

SFq (P, π ) hold as well due to consistency. Hence, at most k of the
variables xi , 1 ≤ i ≤ n, are satisfied. Let us denote the satisfied
variables by M = {xi1 , . . . , xik′ } and the unsatisfied variables by
B\M = {xik′+1 , . . . , xin }. Furthermore, we can imply the following
out of φ ∈ SFq (P, π ):

true ≡

∨
i ∈[n]

φ ′i


∨ γ ≡


∨
i ∈[n]

(φi ∧ xi )

∨ γ

≡
[∨
i ∈M

(φi ∧ xi )
]
∨


∨
i ∈[n]\M

(φi ∧ xi )

∨ γ

≡
[∨
i ∈M

(φi ∧ true)
]
∨


∨
i ∈[n]\M

(φi ∧ false)

∨ γ

≡
[∨
i ∈M

φi

]
∨ false ∨ γ ≡

[∨
i ∈M

φi

]
∨ γ .

Yet, we know that φ must have been entailed by previously added
formulas because φ < Fq (P). Hence, we conclude that for the given
order π it holds that SF∼φq (P, π ) |= (∨i ∈M φi )∨γ , although neither
γ nor any φi shares any literals with formulas from SF

∼φ
q (P, π ).

Overall, (∨i ∈M φi ) ∨ γ can only be entailed if the disjunction con-
tains a tautology. Since γ is a literal, this implies that

∨
i ∈M φi ≡

true with |M | ≤ k would be a solution to I, which is a contradic-
tion to our assumption. Therefore, such an order π cannot exist
and I ′ must be a no-instance, too. □

Again, we derive a corollary for SFqR from the previous theorem
and Lemma 5.6.

Corollary 5.10. For every quota rule Fq ∈ F and a judgment
J = {φ} ⊂ Φ, it holds that SFq -Winner-Robustness is Πp2 -complete.

Endriss and de Haan [8] investigate the complexity of existential
winner-determination for the ranked agenda rule without a fixed tie-
breaking which is shown to be Σp2 -hard. Similarly to corollary 3.3,
we may improve this result, as our proof of Theorem 5.9 can easily
be adapted (by adding a third judge only approving βj ) to also hold
for the ranked agenda rule without fixed tie-breaking.

Corollary 5.11. The winner problem for the ranked agenda rule
without fixed tie-breaking is para-Σp2 -hard when parameterized by
the number of judges.

5.3 Supported Judgment
We conclude this section by formulating a problem, which formally
relates to problems of manipulative design, although it is clearly
motivated contrarily. In terms of acceptance, it is desirable for an

aggregated judgment to be reasonable for the participating judges.
Hence, for sequential JA rules it should be preferable to choose
an order such that at least k formulas supported by a rule K are
included in the aggregated judgment.

SK-Supported-Judgment (SKSJ)
Instance: An agenda Φ with |Φ+ | =m, a profile P ∈ J(Φ)r for

r judges and an integer k ≤ m.
Question: Is there an order π = (φ1, . . . ,φm ) over Φ+ such that

|K(P) ∩ SK(P, π )| ≥ k holds?
We start by establishing a general upper bound.

Theorem 5.12. For every efficiently computable JA rule K it holds
that SK-Supported-Judgment is in NP.

The omitted proof relies on Lemma 5.2. For the class of sequential
quota rules we provide a matching lower bound by adapting the
proof of Theorem 5.4.

Theorem 5.13. For every quota rule Fq ∈ F it holds that SFq -
Supported-Judgment is NP-complete.

Lastly, we highlight the significance of Lemma 5.2 for building a
connection between our sequential rules and distance based rules.
While it is not directly obvious, for q = 1/2, SFqSJ is related to the
maxcard subagenda rule as studied by Lang and Slavkovik [16]. In
general, SKSJ coincides with asking whether there exists a complete
and consistent judgment J ∈ J(Φ), such that h(K(P), J ) ≤ m − k
(where h(K(P), J ) denotes the hamming distance between K(P)
and J ). If there exists such an order π , for the resulting outcome
SK(P, π ) it clearly holds thath(K(P), SK(P, π )) ≤ m−k . Vice versa,
if there exists a judgment J ∈ J(Φ)withh(K(P), J ) ≤ m−k , we con-
struct a valid order π following Lemma 5.2 by arbitrarily positioning
the supported formulas at the beginning. These observations may
be an interesting tool for further research on computational com-
plexity for counting problems.

6 SEQUENTIAL RULES AND THE MAXIMUM
SUBAGENDA RULE

In this section we describe how we can link the sequential JA rules
that we’ve studied to other well-known majority preserving JA
rules. Particularly, we highlight the case with the majority rule
as underlying rule to our sequential procedure. Hereby, we show
that the maximum subagenda rule3 (MSA), as defined by Lang and
Slavkovik [16], exactly outputs the set of aggregated judgments
which can also be derived by the sequential majority rule with
suitable processing orders applied. This connection enables us to
transfer some of our complexity results to related non-sequential
procedures. In order to make the most out of this connection, we
slightly generalize the MSA rule defined in [16] as described after-
wards.

Definition 6.1 (Generalized Maximum Subagenda Rule). For an
agenda Φ and a set S ⊆ Φ we define max(S, ⊆) ⊂ 2S as the set
consisting of inclusion maximal subsets of S with respect to con-
sistency. More formally, for S ′ ⊆ S it holds that S ′ ∈ max(S, ⊆)
if and only if S ′ is consistent and there exists no consistent set
3Also known in JA as maximal Condorcet rule (see Lang et al. [15]), while the outcome
is also denoted as Condorcet admissible set (see Nehring et al. [19]).
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S ′′ ⊆ S with S ′ ⊂ S ′′. For any complete and resolute JA rule K , we
define the (irresolute) generalized maximum subagenda rule
MSAK : J(Φ)r → 2J(Φ) as follows. Let P ∈ J(Φ)r be a profile of
judgments and J ∈ J(Φ) a judgment, then J ∈ MSAK (P) holds if
and only if there exists a set S ∈max(K(P), ⊆) with S ⊆ J .

The MSA rule is irresolute, i.e., it returns a set of judgments as re-
sult, and equals the definition presented by Lang and Slavkovik [16]
for K = F1/2. Having the MSA rule defined, we make the subse-
quent observation, establishing a connection between the MSA rule
and our earlier studied sequential quota JA rules.

Theorem 6.2. Let P ∈ J(Φ)r be a profile and J ∈ J(Φ) a com-
plete and consistent judgment. Then, J ∈ MSAK (P) holds if and only
if there exists an order π over Φ+ with SK(P, π ) = J .

Proof. We begin with the direction from left to right. By defini-
tion, MSAK (P) contains every complete and consistent judgment
J , such that there doesn’t exist a consistent set K ⊆ K(P) satisfying
J∩K(P) ⊂ K . Note that this especially holds for |K | = |J∩K(P)|+1,
i.e., J ∩ K(P) cannot be extended by a single formula from K(P).
Due to consistency of J there is a satisfying truth assignment for
J ∩ K(P). Yet, no such truth assignment satisfies any formula in
K(P) \ J and must thus satisfy its complement. Hence, it holds that
J ∩ K(P) must entail J \ K(P). Now, following a similar argumen-
tation as in Lemma 5.2, for π = (J ∩ K(P), J \ K(P)) we obtain
SK(P, π ) = J and therefore, the right side holds, too.

For the direction from right to left assume that there is an out-
come J = SK(P, π ) with J < MSAK (P). Note that J is consistent
by definition and hence, its intersection with K(P) is consistent,
too. By assumption, J ∩K(P) cannot be inclusion maximal in K(P)
with respect to consistency as otherwise J ∈ MSAK (P) would fol-
low. Therefore, let K ∈ max(K(P), ⊆), such that J ∩ K(P) ⊂ K ⊆
K(P) holds. Now, we construct an order π ′ where J ∩ K(P) is at
the beginning of π ′, immediately followed by K \ J ∩ K(P), and
all remaining formulas afterwards. With Lemma 5.2 it holds that
J = SK(P, π ′) is true. Yet, K ⊆ SK(P, π ′) holds as well since K is a
consistent subset of K(P) processed at the beginning of π ′. Hence
we conclude that K ⊆ J must hold, which is a contradiction to
J ∩ K(P) ⊂ K ⊆ K(P). □

The previous theorem can be applied to transfer complexity
results for our decision problems in Section 5. For complete and
resolute JA rules K , asking whether there exists an order π , such
that some condition on the output SK(P, π ) is satisfied, coincides
with asking whether there is a judgment J ∈ MSAK (P) satisfying
the same condition. In particular, for Fq = 1/2 and a single formula
φ the problem SFq -Winner-Design coincides with the existential
MSA-Winner problem, while SFq -Winner-Robustness coincides
with the universal variant.4

This observation has multiple consequences. First of all, Lang
and Slavkovik [16] showed the universal MSA-Winner problem
is Πp2 -complete, which aligns with our result from Corollary 5.10.
However, the referenced result by Lang and Slavkovik requires a
linear number of judges while two judges are sufficient for our

4Slightly abusing notation, we consider existential (∃J ∈ MSAK (P ) : {φ } ⊆ J ) and
universal variants of MSAK -Winner (∀J ∈ MSAK (P ) : {φ } ⊆ J ) for irresolute
rules.

proof. Consequently, our proof allows a stricter result than the one
by Lang and Slavkovik. On the other hand our results also hold
if we do not restrict MSA to the majority rule as underlying JA
rule. In particular, upper bounds hold for every complete, efficiently
computable, resolute rule, while hardness results hold for every of
our quota rules.

The following corollaries follow from Theorems 5.7, 5.9 and 6.2,
and only refer to existential problems, which imply related Πp2 re-
sults for the universal variants, by additionally following Lemma 5.6.

Corollary 6.3. For any complete, efficiently computable, resolute
JA rule K it holds that MSAK -Winner is in Σp2 .

Corollary 6.4. For every quota rule Fq ∈ F and even a constant
number of judges it holds that MSAFq -Winner is Σp2 -complete.

We explicitly highlight that the previous corollary holds for
q = 1/2, and thereby enhances previous results on MSA.

7 CONCLUSION
We introduced the complexity theoretic study of problems related
to sequential JA rules with a special focus on quota rules as the
underlying rule. Our results are summarized in Table 1. We obtained
completeness for a number of different complexity classes which
show that the problems differ substantially even though they are
very related. The study of sequential rules is very important since
they model real-world decision making. To ensure consistency with
the already decided formulas, it is important to solve the winner
problem. On the other hand, we studied the manipulative power a
designer of such a procedure possesses. The increase in complexity
for the case where a single formula is the desired set indicates that
the problem is actually harder than winner determination itself. As
a task for future research other problems related to sequential JA
rules have to be studied. Our study was mostly limited to the class of
quota rules as underlying procedures and this should obviously be
extended to more diverse underlying rules. De Haan [3] follows an
approach to identify new ways of representing agendas via specific
boolean formulas, such that the complexity of various problems
related to JA becomes tractable, when the agenda is represented in a
more limited way. Furthermore, he formulated the determination of
the complexity of the winner problem for until yet unconsidered JA
rules, which he hasn’t studied, as future work. In a second step, the
author suggests that one can use the tractable languages identified
in his paper to study whether the complexity of the problems for
the newly investigated JA rules can be decreased. Within our paper
we have done the first part and determined the complexity of the
winner problem for complete and consistent sequential JA rules.
As future work we like to study how the tractable languages as
defined by de Haan [3] affect our complexity results and possibly
could even enable lower bounds. These results, when enabling
tractability, might have enormous impact on the practical usage of
the sequential JA rules we studied, since they are used in various
scenarios and situations, as described earlier.
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4 The Possible Winner with Uncertain Weights Problem

4 The Possible Winner with Uncertain Weights
Problem

4.1 Summary

In this work we introduced a novel variant of the possible winner problem that
we call the possible winner with uncertain weights problem. The original possible
winner problem, first studied by Konczak and Lang [98], is a central problem of
interest within and beyond the research area of preference aggregation by voting [102,
131]. Based on this thoroughly studied problem, we introduced a novel concept
where an election’s uncertainty no longer stems from partial preferences but from
unknown weights for some of the votes. To formulate this new approach, we extended
the original problem’s elections from unweighted to weighted votes, i.e., assigning
weights to the votes. Having done this, we formulated the possible winner with
uncertain weights problem as follows for some voting rule E as well as F ∈ {N,Q+}.

E-Possible-Winner-with-Uncertain-Weights-F (E-PWUW-F)

Given: A list of candidates C, a list of unit-weight votes V1 over C, a list of votes
V0 over C with unspecified weights, and a designated candidate c ∈ C.

Question: Are there weights wi ∈ F, 1 ≤ i ≤ |V0|, for the votes in V0, such that c is
a winner of the weighted E election (C, V1 ∪ V0)?

Based on this generic problem variant we introduced three further sub-variants,
namely

1. E-PWUW-rw-F: extending the initial variant by ranges Ri = [ℓi, ri] ⊆ F for
all votes vi ∈ V0 from which weights for the votes must be chosen,

2. E-PWUW-bw-F: extending the initial variant by some upper bound B ∈ F
limiting the sum of all weights distributed to votes in V0, and

3. E-PWUW-bw-rw-F: combining the two previous variants into one aggre-
gated one with both requirements, ranges Ri and an upper bound B.

Besides introducing these problem variants and discussing their relationships to
other election-related decision problems, such as the constructive control problem
E-Constructive-Control-by-Adding-Voters (CCAV), we studied the com-
putational complexity of the introduced variants for nonnegative integer weights,
i.e., when F = N, and nonnegative rational weights, i.e., when F = Q+. Thereby, we
establish exact computational complexity bounds for all the variants and several elec-
tion rules such as k-approval, k-veto, plurality with runoff, veto with runoff, Borda,
simplified Bucklin and fallback voting, Copelandα, as well as ranked pairs. Our es-
tablished computational bounds range from P-membership up to NP-completeness.
For some results more preliminary work was required, and hence, among other aux-
iliary propositions, we also proved that for both voting rules, plurality with runoff
and veto with runoff, the problem CCAV in succinct representation belongs to P.
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Abstract

The original possible winner problem consists of an unweighted election with partial
preferences and a distinguished candidate c and asks whether the preferences can be
extended to total ones such that c wins the given election. We introduce a novel variant
of this problem: possible winner with uncertain weights. In this variant, for a given
weighted election, not some of the preferences but some of the preferences’ weights
are uncertain. We introduce a general framework to study this problem for nonnegative
integer and rational weights as well as for four different variations of the problem
itself: with and without given upper bounds on the total weight and with and without
given ranges to choose weights from. We study the complexity of these problems for
important voting systems such as scoring protocols, (simplified) Bucklin and fallback
voting, plurality with runoff and veto with runoff, Copelandα , ranked pairs, and Borda.

Keywords: computational social choice, possible winner, voting rule, uncertainty,
computational complexity

1. Introduction

Over the previous decades, computational social choice—with its many applica-
tions to collective decision making—has evolved into a central subarea of artificial
intelligence and, in particular, multiagent systems. Looking into the textbook edited by
Brandt et al. [17], one of the most intensively studied problems in computational social
choice alongside manipulation, control, and bribery (see the surveys by Faliszewski et
al. [31, 33]) is the possible winner problem that Konczak and Lang [45] were the first to
study. Generalizing the (unweighted) coalitional manipulation problem [21] and being
a special case of swap bribery [26], in this problem we are given an election with only
partial instead of total preferences over the candidates, a distinguished candidate c, and
we ask whether one can extend the partial preferences to total ones to make c a win-
ner. This problem and variations thereof as well as its companion, the necessary winner

⋆A preliminary version of this work appeared in the proceedings of the 20th European Conference on
Artificial Intelligence (ECAI 2012) [6] and of the 23rd International Symposium on Fundamentals of Com-
putation Theory (FCT 2021) [52].
∗Corresponding author
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problem [45, 58] and its variations, have been studied by many authors for many voting
rules—see, e.g., the recent survey by Lang [47] and the references cited therein.

The idea underlying the possible and necessary winner problems (to determine the
winners in the presence of incomplete preferences for some or for all extensions to total
preferences) is so fundamental that it has been applied successfully to many other ar-
eas, including judgment aggregation [7, 10], fair division [8, 46], hedonic games [44],
and abstract argumentation [9, 11, 53, 57]. Betzler and Dorn [14] and Baumeister and
Rothe [3] established a dichotomy result for the possible winner problem, Betzler et
al. [13, 15] investigated the parameterized complexity of this problem, and Bachrach,
Betzler, and Faliszewski [1] investigated a probabilistic variant thereof. Chevaleyre
et al. [19] introduced the possible winner with respect to the addition of new alterna-
tives problem, which is related to, yet different from the problem of control by adding
candidates1 [2, 42] and is also similar, yet not identical to the cloning problem in elec-
tions [27]. Their variant was further studied, e.g., by Xia, Lang, and Monnot [59] (see
their joint journal version [20]) and by Baumeister, Roos, and Rothe [4]. The latter
paper was the first to consider a weighted variant of the possible winner problem, and
it also introduced and studied this problem under voting rule uncertainty, an approach
that was followed up by Elkind and Erdélyi [25], who applied it to coalitional manipu-
lation [21], and by Baumeister and Hogrebe [12]. Baumeister et al. [5] studied variants
of the possible winner problem with truncated ballots. While most work on the possible
winner problem is concerned with an unweighted variant of the problem, Baumeister
et al. [4] were the first to consider its weighted variant.

We present a general framework to study the weighted possible winner problem,
and we focus on elections where not some of the voters’ preferences, but some of their
weights are uncertain. The problems we study in our framework come with nonnegative
integer or rational weights, with or without given upper bounds on the total weight
to be assigned, and with or without given ranges to choose the weights from. An
interesting point with this focus is that while the original possible winner problem
generalizes the coalitional manipulation problem [21], certain variants of the possible
winner with uncertain weights problem that we study generalize constructive control
by adding or deleting voters [2, 42]. We study the resulting problem variants in terms of
their computational complexity for various central and natural voting systems: scoring
protocols, (simplified) Bucklin and fallback voting, plurality with runoff and veto with
runoff, Copelandα , ranked pairs, and Borda.

Based on the ever-increasing exchange of—almost real-time—data in our modern
society, the possible winner with uncertain weights model can be applied to all kinds
of elections today better than ever. For almost every election taking place, some pre-
election polls are done and the results are published. These results can be translated by
suitable probability-based methods into ranges for likely weights, upper bounds on the
total weight, etc., so that the results presented here provide powerful means to improve
election forecasts in efficient ways.

The following situation provides an additional, motivational example why it is in-
teresting to study the possible winner with uncertain weights problem. Imagine a com-

1The terms candidate and alternative are used synonymously.
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pany that is going to decide on its future strategy by voting at the annual general assem-
bly of stockholders. Among the parties involved, everybody’s preferences are common
knowledge. However, who will succeed with its preferred alternative for the future
company strategy depends on the stockholders’ weights, i.e., on how many stocks they
each own, and there is uncertainty about these weights. Is it possible to assign weights
to the parties involved (e.g., by buying new stocks) such that a given alternative wins?

Our work is structured as follows. Section 2 formally introduces all required pre-
liminaries, i.e., notation, notions, as well as the voting systems that we will study in
the subsequent sections. In Section 3, we introduce the possible winner with uncertain
weights problem and all four variants that we study. Furthermore, we establish general
results with respect to these problems, highlight and discuss links to other related deci-
sion problems, and formulate preprocessing steps that simplify our ensuing proofs. In
Section 4, we study the possible winner with uncertain weights problem for nonnega-
tive rational weights (i.e., weights in Q+). Section 5 covers our results for the possible
winner with uncertain weights problem for nonnegative integer weights (i.e., weights
in N) and is separated into several subsections, each covering all results for specific
voting systems introduced in the preliminaries. In particular, Section 5.3 covers our
results for plurality with runoff (and also proves that constructive control by adding
voters in succinct representation belongs to P) while Section 5.4 proves an analogous
result for veto with runoff. Finally, we summarize our findings in Section 6, provide
an overview of our results in Table 7 for rational weights and in Table 8 for integer
weights, and discuss possible future work.

2. Preliminaries

An election is a pair (C,V ) consisting of a finite set C of candidates and a finite
list V of votes representing the voters’ preferences over the candidates in C and oc-
casionally denoted by v1, . . . ,vn when there are n = |V | votes. We assume that each
vote is a (strict) linear preference order. For example, if there are four candidates in
C = {a,b,c,d} and a voter prefers b to c, c to d, and d to a, we write this vote as
b> c> d > a. If such an order is not total (e.g., when a voter only specifies a> c> d
as her preference over these four candidates), we say it is a partial order. For winner
determination in weighted elections, a vote v of weight w is considered as if there were
w unweighted (i.e., unit-weight) votes v. When possible, we represent elections suc-
cinctly, i.e., identical votes are not listed one by one but just once along with a number
in binary representation giving the multiplicity of this vote.

For a given election (C,V ), the weighted majority graph (WMG) is defined as a
directed graph whose vertices are the candidates, and we have an edge (c,d) of weight
N(c,d) between any two vertices c and d, where N(c,d) is the number of voters prefer-
ring c to d minus the number of voters preferring d to c. Note that in the WMG of any
election, all weights on the edges have the same parity (and whether it is odd or even
depends on the parity of the number of voters), and N(c,d) =−N(d,c) (which is why
it is enough to give only one of these two edges explicitly—the edge with nonnegative
weight; in case of a tie N(c,d) = N(d,c) = 0 for an even number of voters, this edge is
undirected).

3



A voting rule determines the winner(s) of a given election. An important class
of voting rules are the scoring protocols: For m candidates, a scoring vector α⃗ =
(α1,α2, . . . ,αm) of integers with α1 ≥ α2 ≥ ·· · ≥ αm specifies the points the candi-
dates receive from each voter based on their position in it, i.e., a candidate in the i-th
position of a vote receives αi points from it, and the score of candidate c∈C in election
(C,V ), denoted by scoreV (c), is the sum of the points c receives from the votes in V .
Formally, denoting the position of candidate c in vote v j by ρ j(c), c receives αρ j(c)

points from v j, and the total score of c can be written as scoreV (c) = ∑n
j=1 αρ j(c) for

n votes. All candidates with largest score are denoted as the α⃗ winners. Furthermore,
we say that a scoring protocol E is a binary scoring protocol if all entries of its scoring
vector are from {0,1}. Specifically, we consider the prominent scoring protocols (for
m candidates) that are based on the following scoring vectors:

k-approval: (1, . . . ,1,0, . . . ,0), where the first k ≤ m entries are ones (1-approval is
also known as plurality);

k-veto: (1, . . . ,1,0, . . . ,0), where the last k≤m entries are zeros (1-veto is also known
as veto); and

Borda: (m−1,m−2, . . . ,0).

For example, k-veto and k-approval are binary scoring protocols for all k ∈ N and
any number m ≥ k of candidates, whereas Borda is a binary scoring protocol only for
m≤ 2 candidates.

In addition to scoring protocols, we consider the following voting rules:

Copelandα (for each rational number α , 0≤ α ≤ 1):2 For any two candidates c
and c′, we run a pairwise contest between them, by seeing how many voters
prefer c to c′, and how many prefer c′ to c; the winner of the pairwise contest
is the one preferred more often. Each candidate receives one point for each win
in a pairwise contest, α points for each tie, and zero points for each loss. This
is the Copelandα score of the candidate and a Copelandα winner maximizes the
Copelandα score.

Ranked pairs: This rule first creates an entire ranking of all the candidates. In each
step, we consider a pair of candidates, c and c′, that we have not yet considered
previously; specifically, we choose among the remaining pairs one with the high-
est N(c,c′) value (in case of ties, we use some tie-breaking mechanism) and then
fix the order c > c′, unless this contradicts previous orders already fixed (i.e.,
unless this order violates transitivity). We continue until we have considered all
pairs of candidates (and so we have a full ranking). The candidate at the top of
the ranking wins, for the chosen tie-breaking mechanism.

Plurality with runoff proceeds in two stages. In the first stage, all candidates except
the two candidates with the highest and the second-highest plurality score are

2The original Copeland system [22] is defined for the specific value of α = 1/2; the generalization to other
α values is due to Faliszewski et al. [32].
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eliminated. In the second stage (the runoff), among the two remaining candidates
and with votes restricted to these, the candidate with the highest plurality score
wins. In both stages, we use some predefined tie-breaking rule to determine the
two candidates that proceed to the runoff and the overall winner in case there are
ties.

Veto with runoff works just like plurality with runoff, except it uses veto scores
in both stages to determine who proceeds to the runoff and who is the overall
winner.

Bucklin (BV) and fallback voting (FV), both simplified: In a Bucklin election, the
voters’ preferences are linear orders and the level ℓ score of a candidate c is the
number of voters ranking c among their top ℓ positions. The Bucklin score of a
candidate c is the smallest number t such that more than half of the voters rank
c somewhere in their top t positions. A Bucklin winner minimizes the Bucklin
score.3 In (simplified) fallback elections, on the other hand, nontotal preference
orders are allowed. Every Bucklin winner is also a fallback winner, but if no
Bucklin winner exists (which may happen due to the voters’ partial orders) and
ℓ is the length of a longest preference order among the votes, all candidates with
the greatest level ℓ score are the fallback winners. Throughout this paper we will
refer to “simplified Bucklin” and “simplified fallback” simply as Bucklin and
fallback voting.

We consider the nonunique-winner model, which means that it is enough for the
distinguished candidate to be one among possibly several candidates that win the elec-
tion.

In our proofs, we make use of the following notation. Let S ⊆C be a set of candi-
dates. When

−→
S appears in a vote, the candidates from S are ranked in any fixed (e.g.,

the lexicographical) order; when
←−
S appears in a vote, the candidates from S are ranked

in the reverse order; when S appears in a vote (without an arrow on top), the order in
which the candidates from S are ranked here does not matter for our argument; and
when · · · appears in a vote, the order in which the remaining candidates occur does not
matter. For example, if C = {a,b,c,d}, S = {b,c}, and we use a lexicographical order,
then

−→
S > d > a means b > c > d > a;

←−
S > d > a means c > b > d > a; and both

S > d > a and · · ·> d > a indicate any one of b > c > d > a and c > b > d > a. Fur-
ther, when we consider a scoring protocol or plurality with runoff or veto with runoff
for an election (C,V ) and two candidates c,d ∈C, we use

diff (C,V )(c,d) = scoreV (c)− scoreV (d)

to denote the difference of the scores of c and d in (C,V ). By diff ({c,d},V )(c,d) we
denote the difference of the scores of c and d in the head-to-head contest which is
({c,d},V ) with the votes in V being tacitly reduced to only c and d.

3We consider only this simplified version of Bucklin voting. In the full version (see, e.g., [28, 29]),
among all candidates with smallest Bucklin score, say t, for c to win it is also required that c’s level t score
is largest.
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Some of our proofs will use McGarvey’s trick [50] (applied to WMGs), which con-
structs a list of votes whose WMG is the same as some targeted weighted directed
graph. This is helpful to present our proofs, as we only need to specify the WMG
instead of the whole list of votes, and then by using McGarvey’s trick for WMGs, an
appropriate vote list can be constructed in polynomial time. More specifically, Mc-
Garvey showed that for every unweighted majority graph, there is a particular list of
preferences that results in this majority graph. Extending this to WMGs, the trick works
as follows. For any pair of candidates, (c,d), if we add two votes, c> d > c3 > · · ·> cm
and cm > cm−1 > · · · > c3 > c > d, to a vote list, then in the WMG, the weight on the
edge (c,d) is increased by 2 and the weight on the edge (d,c) is decreased by 2, while
the weights on all other edges remain unchanged.

We assume the reader to be familiar with the basic concepts of computational com-
plexity, such as the complexity classes P and NP and the notions of NP-hardness and
NP-completeness, based on polynomial-time many-one reductions, denoted by A≤p

m B.
For more background on complexity theory, we refer to the textbooks by Garey and
Johnson [38], Papadimitriou [54], and Rothe [55]. In our proofs, we also provide
polynomial-time many-one reductions to the NP-complete problem EXACT-COVER-
BY-3-SETS, see [38], which is defined as follows:

EXACT-COVER-BY-3-SETS (X3C)

Given: Given a set B = {b1, . . . ,b3q} and a collection S = {S1, . . . ,Sn} with |Si|= 3
and Si ⊆B for 1≤ i≤ n.

Question: Is there a subset S ′ ⊆S such that every element of B occurs in exactly one
member of S ′?

3. The Possible Winner With Uncertain Weights Problem

With all required preliminaries defined in the previous section, in this section we
formally introduce the possible winner with uncertain weights problem as well as three
further variants of the problem that we study. Furthermore, we will discuss our deci-
sions as to why we specify our problem variants the way we do, and we will provide
connections to familiar problems. Besides that, we also formulate and prove some
useful general results.

For a given voting system E and for F ∈ {Q+,N}, we define the general possible
winner with uncertain weights problem as follows:

E -POSSIBLE-WINNER-WITH-UNCERTAIN-WEIGHTS-F (E -PWUW-F)

Given: A list of candidates C, a list of unit-weight votes V1 over C, a list of votes V0
over C with unspecified weights, and a distinguished candidate c ∈C.

Question: Are there weights wi ∈ F, 1≤ i≤ |V0|, for the votes in V0 such that c is a winner
of the weighted E election (C,V1∪V0)?

We distinguish between allowing nonnegative rational weights, i.e., weights in Q+,
and nonnegative integer weights, i.e., weights in N. In particular, we allow weight-zero
votes in V0. Note that for inputs with V0 = /0 (which is not excluded in the problem def-
inition), we obtain the ordinary unweighted (i.e., unit-weight) winner problem for E .
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Allowing weight zero for votes in V0 in some sense corresponds to control by deleting
voters [2, 42]. The reason why we distinguish between votes with uncertain weights
and unit-weight votes in our problem instances is that we want to capture these prob-
lems in their full generality, just as votes with total preferences are allowed to occur in
the instances of the original possible winner problem. The requirement of normalizing
the weights in V1 to unit-weight, on the other hand, is a restriction that is chosen on
purpose and will help simplify some of the upcoming proofs. Instances that do not
satisfy this requirement can simply be transformed to ones that do. To do so, we can
duplicate votes from V1 of weight greater than 1 according to their weight and add these
duplicates as well as the original vote back to V1, each with weight 1. Alternatively, if
the resulting instance is no longer polynomial in the size of the original instance, we
can interpret it as an instance in succinct representation and see the weights of the votes
in V1 as their multiplicities.

Besides the general E -PWUW-F problem, we also consider the following three
variants with additional restrictions:

1. E -PWUW-RW-F: In this variant, an E -PWUW-F instance and regions (i.e.,
intervals) Ri ⊆ F, 1 ≤ i ≤ |V0|, are given, and the question is the same as in
E -PWUW-F, except that each weight wi must be chosen from Ri in addition.

2. E -PWUW-BW-F: In this variant, an E -PWUW-F instance and a positive bound
B ∈ F is given, and the question is the same as in E -PWUW-F, except that
∑|V0|

i=1 wi ≤ B must hold in addition. In other words, the total weight that can be
assigned to votes from V0 is bounded by B.

3. E -PWUW-BW-RW-F: In this variant, an E -PWUW-BW-F instance and re-
gions Ri ⊆ F, 1 ≤ i ≤ |V0|, are given, and the question is the same as in E -
PWUW-BW-F, except that each weight wi must be chosen from its region Ri in
addition.

As already mentioned in the preliminaries, we focus on the nonunique-winner
model, so the question always is whether c can be made a winner by assigning ap-
propriate weights. However, by minor proof adjustments, most of our results can be
shown to also hold in the unique-winner model where one asks whether c can be made
the only winner.

Let us now provide some general results that are useful for our further results. First
of all, we provide some trivial reductions between the problem variants that we just
have introduced.

Theorem 3.1. For any voting rule E and F ∈ {Q+,N}, we have

E -PWUW-RW-F≤p
m E -PWUW-BW-RW-F and

E -PWUW-BW-F≤p
m E -PWUW-BW-RW-F.

Proof. For the first reduction, let I = (C,V1,V0,c,R) be an E -PWUW-RW-F instance
with R = {[li,ri] ⊆ F | vi ∈ V0}. To construct an equivalent E -PWUW-BW-RW-F in-
stance I′, we copy the instance I and, additionally, set B = ∑|V0|

i=1 ri. Obviously, I′

is a YES-instance of E -PWUW-BW-RW-F if and only if I is a YES-instance of E -
PWUW-RW-F.
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For the second reduction, let I = (C,V1,V0,c,B) be an E -PWUW-BW-F instance
with B ∈ F. To construct an equivalent E -PWUW-BW-RW-F instance I′, we copy
the instance I and, additionally, define R′ = {[0,B] ⊆ F | vi ∈ V0}. Obviously, I′

is a YES-instance of E -PWUW-BW-RW-F if and only if I is a YES-instance of E -
PWUW-BW-F. ❑

Related to our variants of the E -PWUW-F problem is the problem of construc-
tive control by adding voters, E -CCAV for short, as defined by Bartholdi, Tovey, and
Trick [2]:

E -CONSTRUCTIVE-CONTROL-BY-ADDING-VOTERS (E -CCAV)

Given: A list of candidates C, a list of registered votes V over C, a list of as yet un-
registered votes V ′ over C, a distinguished candidate c ∈C, and a nonnegative
integer k ∈ N.

Question: Is there a subset W ⊆V ′ of votes from V ′ with |W | ≤ k such that c is a winner
of the modified E election (C,V ∪W )?

There is a simple, direct polynomial-time many-one reduction from CCAV to
PWUW-BW-RW-N, as the next proposition shows.

Proposition 3.2. E -CCAV ≤p
m E -PWUW-BW-RW-N.

Proof. Let I = (C,V,V ′,c,k) be an E -CCAV instance. Construct an equivalent E -
PWUW-BW-RW-N instance I′ = (C′,V1,V0,c′,B,R) by setting C′ = C, V1 = V , V0 =
V ′, B = k, R = {{0,1} | vi ∈ V ′}, and c′ = c. Obviously, I′ is a YES-instance of E -
PWUW-BW-RW-N if and only if I is a YES-instance of E -CCAV. ❑

Note that this reduction can easily be adjusted to also hold when we assume the
E -CCAV instance to be in succinct representation. In this case, we just need to alter
the weights’ regions such that they reflect the votes’ frequencies in the CCAV instance.
For example, if v ∈V ′ has a frequency of 5, we would add v to V0 and set its region to
[0,5] instead of {0,1}. Furthermore, when using succinct representation for E -CCAV
instances, we can also provide a polynomial-time many-one reduction in the oppo-
site direction. To emphasize the difference between these two problems notationally,
we write E -CCAVsucc when referring to the problem whose instances are in succinct
representation.

Proposition 3.3. E -PWUW-BW-RW-N≤p
m E -CCAVsucc.

Proof. Let I = (C,V1,V0,c,B,R) be an E -PWUW-BW-RW-N instance. We construct
an E -CCAVsucc instance I′ = (C′,V,V ′,c′,k) in succinct representation as follows.
First, we set C′ = C, V = V1, and c′ = c. Second, for every vote vi ∈ V0 with weight-
restricting region Ri = [li,ri], we add li copies of vi to V and ri− li copies of vi to V ′.
Since the values ri and li do not need to be polynomial in the size of I, we indeed re-
quire succinct representation for I′ here, to keep the size of I′ polynomial in the size
of I. Finally, we define k = B−∑|V0|

i=1 li. This completes the construction of I′ and,
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obviously, I′ is a YES-instance of E -CCAVsucc if and only if I is a YES-instance of
E -PWUW-BW-RW-N. ❑

Since there are reductions in both directions, complexity results immediately carry
over from E -CCAVsucc to E -PWUW-BW-RW-N when we assume succinct represen-
tation. This will be useful later on, and we will refer to this fact when stating the corre-
sponding results derived from it. However, note that the NP-hardness results on CCAV
for Bucklin and Fallback voting by Erdélyi et al. [28, 29] concern the full, not the sim-
plified versions of these voting rules, so their results do not carry over to our problems.
Although with this two-sided reduction we already obtain quite some complexity re-
sults, we still cover these cases again in our later proofs in the next sections, as our
proofs handle several variants of the PWUW problems at the same time. Furthermore,
as we have reductions in both directions, all our results for E -PWUW-BW-RW-N in
the next sections also carry over to E -CCAVsucc in succinct representation. However,
we do not highlight this fact in all further sections but state this here only once, so that
readers interested in E -CCAVsucc in succinct representation are aware of this and can
use these results accordingly.

Fitzsimmons and Hemaspaandra [35] have comprehensively studied election prob-
lems in succinct representation, so-called high-multiplicity election problems. Since
such compactly represented instances may be exponentially smaller than in standard
representation, polynomial-time algorithms for election problems in standard represen-
tation can become exponential-time when instances are represented succinctly. How-
ever, Fitzsimmons and Hemaspaandra [35] were able to either adapt these algorithms
accordingly or to design new algorithms showing that all these problems in fact remain
solvable in polynomial time: They could not detect a single natural case where such a
problem would not remain in P when switching to high-multiplicity representation. On
the other hand, for winner determination in Kemeny elections, which in standard repre-
sentation is known to be PNP[log]-complete [41], Fitzsimmons and Hemaspaandra [35]
show that the complexity raises to PNP-completeness for high-multiplicity represen-
tation. They also explore the relationship between high-multiplicity scheduling and
manipulating high-multiplicity elections.

Lastly, we provide some general results for scoring protocols. To begin, we
show for all binary scoring protocols E —recall, a scoring protocol is binary if all its
scoring vector’s entries are from {0,1}—that the problems E -PWUW-RW-N and E -
PWUW-N can be solved in P.

Theorem 3.4. For any binary scoring protocol E , the problems E -PWUW-RW-N and
E -PWUW-N are in P.

Proof. We first prove that E -PWUW-RW-N is in P, and afterwards we will provide a
simple reduction from E -PWUW-N to E -PWUW-RW-N such that the second result
follows immediately.

Let I = (C,V1,V0,c,R) be an E -PWUW-RW-N instance. Denote by V ′ ⊆ V0 all
votes from V0 which assign a score of 1 to c and, furthermore, denote by C′ = {d ∈
C | scoreV1(d) > scoreV1(c)} all candidates in C obtaining a higher score than c in V1.
To check whether I is a YES-instance of E -PWUW-RW-N, we proceed as follows. For
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every candidate d ∈C′, we check whether there exist votes in V ′ allocating 0 points to
d such that the sum of the corresponding interval’s upper limits is at least scoreV1(d)−
scoreV1(c). If that is the case, we assign to every such vote vi its maximum possible
weight ri for Ri = [li,ri]. In that case we know that

scoreV0(c)− scoreV0(d)≥ scoreV1(d)− scoreV1(c)

⇔ scoreV1(c)+ scoreV0(c)≥ scoreV1(d)+ scoreV0(d),

so c is a winner of the election and, hence, I indeed is a YES-instance of E -
PWUW-RW-N. Obviously, if this condition is not satisfied for some candidate
d ∈C \{c}, it follows that I is a NO-instance of E -PWUW-RW-N, as c cannot beat d.
Consequently, we can solve E -PWUW-RW-N in polynomial time by this approach.

Now, let I = (C,V1,V0,c) be an E -PWUW-N instance. We construct an equivalent
E -PWUW-RW-N instance I′ = (C,V1,V0,c,R) by setting R = {[0, |V1|] | v ∈ V0}. As-
sume I to be a YES-instance of E -PWUW-N. Hence, there exist weights wi ∈ N for
the votes vi ∈ V0 such that c is a winner of the weighted election (C,V1 ∪V0). How-
ever, for all d ∈C, it must hold that |scoreV1(d)− scoreV1(c)| ≤ |V1|, so we can assume
0 ≤ wi ≤ |V1| for all weights wi. Hence, we can use the same weights for I′ and,
therefore, I′ is a YES-instance of E -PWUW-RW-N as well. On the other hand, if I′

is a YES-instance of E -PWUW-RW-N, it is straightforward that I is a YES-instance of
E -PWUW-N as well. Therefore, we obtain E -PWUW-N ≤p

m E -PWUW-RW-N, and
consequently, E -PWUW-N is in P, too. ❑

We will use Theorem 3.4 in later sections when we study binary scoring protocols in
more depth, to argue that the corresponding PWUW-RW-N and PWUW-N problems
belong to P. We now present a lemma that for a given E -PWUW-N instance I and
some scoring protocol E allows us to make a statement about which weights for which
votes in V0 are greater than 0.

Lemma 3.5. Let (C,V1,V0,c) be an instance of E -PWUW-N for some scoring pro-
tocol E . If there exist weights wi ∈ N for vi ∈ V0, 1 ≤ i ≤ |V0|, such that c wins the
weighted E election (C,V1 ∪V0), then there exists an alternative weight assignment,
where c still wins the election, with weights w′i ∈ N for the votes in V0 such that w′i > 0
holds if and only if vi assigns a positive score to c.

Proof. Let (C,V1∪V0) be an election as described in the lemma and let c be a winner
under some weight assignment wi ∈ N for vi ∈ V0, 1 ≤ i ≤ |V0|. Now, as c is a winner
of the election, every candidate d ∈C satisfies

scoreV1(c)+ scoreV0(c)≥ scoreV1(d)+ scoreV0(d). (1)

Let ṽ ∈V0 be a vote assigning score 0 to c with weight w̃ ∈N greater than 0. Changing
w̃ to 0 does not decrease the score of c but only that of other candidates in C\{c}, so (1)
still holds for all candidates. Repeating this step for every vote from V0 with positive
weight and score 0 for c yields an alternative weight assignment for the votes in V0
where c still wins, but only votes assigning c a positive score have positive weight. ❑
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4. Results for Nonnegative Rational Weights

In this section we study our four variants of the possible winner with uncertain
weights problem for nonnegative rational weights, i.e., we study the four variants of
E -PWUW-Q+. We will make use of the following results.

Chamberlin and Cohen [18] observed that various voting rules can be represented
by systems of linear inequalities, see also the work of Faliszewski et al. [32, 34] that
uses integer linear programming to obtain fixed-parameter tractability results for cer-
tain voting problems. We make use of this result to formulate linear programs (LP)
for some of the voting rules we cover in our work. Doing so enables us to solve the
PWUW problem variants with rational weights for these voting rules efficiently, as
long as the size of the systems describing the voting rules is polynomially bounded. To
solve the resulting systems of linear inequalities efficiently, we exploit the fact that for
rational instead of integer values the LINEAR PROGRAMMING problem can be solved
in polynomial time [40].

However, the question is to which voting rules can we apply this technique. The
crucial requirement a voting rule needs to satisfy is that the scoring function used for
winner determination can be described by linear inequalities and that this description
is in a certain sense independent of the votes’ weights. By “independent of the votes’
weights” we mean that the points a candidate gains from a vote are determined es-
sentially in the same way in both a weighted and an unweighted electorate, but in
the former we have a weighted sum of these points that gives the candidate’s score,
whereas in the latter we have a plain sum. The following example tries to illustrate this
requirement.

Example 4.1. Let C = {a,b,c} be a set of candidates and the list of votes specified as
V = (v1,v2,v3,v4) with

v1 = a> c> b, v2 = c> b> a, v3 = b> a> c, v4 = c> a> b.

If this is an unweighted 2-approval election, the score of candidate a is

scoreV (a) =
4

∑
i=1

scorevi(a) = 1+0+1+1 = 3.

When we add weights w1 = 1, w2 = 3, w3 = 4, and w4 = 2 to obtain a weighted election,
we can calculate the score of candidate a as

scoreV (a) =
4

∑
i=1

wi · scorevi(a) = 1 ·1+3 ·0+4 ·1+2 ·1 = 7.

Now, the score of a corresponds to a weighted sum of the points obtained by the un-
weighted votes.

If this would have been a Copeland1/2 election, however, the score of candidate a in
an unweighted election can be computed as follows. For every candidate x ∈C \ {a}
and for every vote, we check whether a appears before x. If a appears before x, this
vote brings a point of 1; otherwise, a point of −1. Adding up the points over all votes
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Table 1: Score of candidate a . . .

(a) . . . in an unweighted Copeland1/2 election.

v1 v2 v3 v4 ∑ score

b 1 −1 −1 1 0 1/2

c 1 −1 1 −1 0 1/2

1

(b) . . . in a weighted Copeland1/2 election.

v1 v2 v3 v4 ∑ score

b 1 −3 −4 2 −4 0
c 1 −3 4 −2 0 1/2

1/2

tells us if a wins the pairwise comparison against x. If so, a obtains a score of 1, in
a tie both candidates obtain a score of 1/2, and if a loses, a obtains a score of 0 and x
of 1. The sum over these scores defines scoreV (a), see Table 1a.

In a weighted election, we calculate a’s score similarly, but the votes yield points
according to their weights, see Table 1b. It turns out that we have scoreV (a) = 1 in the
unweighted election and scoreV (a) = 1/2 in the weighted election. It thus is clear that
here the score of the weighted election does not correspond to a weighted sum of the
scores of the unweighted election.

Scoring functions satisfying this condition are said to be weight-independent. This
requirement is fulfilled by, e.g., the scoring functions of all scoring rules, Bucklin, and
fallback voting. Copeland’s scoring function, on the other hand, does not satisfy it, as
we have seen in Example 4.1. In a Copeland election, every candidate gets one point
for each other candidate she beats in a pairwise contest. Who of the two candidates
wins a pairwise contest and thus gains a Copeland point depends directly on the votes’
weights. Thus, the Copeland score in a weighted election is not a weighted sum of the
Copeland scores in the corresponding unweighted election in the above sense.

In what follows, we consider elections where the vote list consists of the two sub-
lists V0 and V1. We have to assign weights x1, . . . ,x|V0| to the votes in V0. We don’t
exclude the case where weight zero can be assigned, but we will seek to find solutions
where all weights are strictly positive. For a candidate c ∈C, let ρ0

i (c) denote the po-
sition of c in the preference of the i-th vote in V0, 1≤ i≤ |V0|, and let ρ1

j (c) denote the
position of c in the preference of the j-th vote in V1, 1≤ j ≤ |V1|. Theorem 4.2 estab-
lishes our general result that all four problem variants of PWUW-Q+ can be solved
efficiently for voting rules with weight-independent scoring functions.

Theorem 4.2. Let E be a voting rule with a weight-independent scoring function that
can be described by a system of polynomially many linear inequalities. Then E -
PWUW-Q+, E -PWUW-BW-Q+, E -PWUW-RW-Q+, and E -PWUW-BW-RW-Q+

belong to P.

Proof. Let I = (C,V1,V0,c,B,R) be an E -PWUW-BW-RW-Q+ instance. Since E is
weight-independent, there is a system of polynomially many linear inequalities A such
that, when satisfied, c wins the E election (C,V1 ∪V0). We denote by x1, . . . ,x|V0| the
variables of A that assign weights to the votes in V0. To emphasize that A uses the
variables x1, . . . ,x|V0|, we write A(x1, . . . ,x|V0|) in the LP below. We define the vector
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of variables of our LP as x⃗ = (x1, . . . ,x|V0|,χ) ∈ (Q+)|V0|+1. The following LP can be
used to solve I:

max χ,
A(x1, . . . ,x|V0|), (2)

xi−χ ≥ 0, for 1≤ i≤ |V0|, (3)
χ ≥ 0, (4)

|V0|
∑
i=1

xi ≤ B, (5)

xi ≤ ri, for 1≤ i≤ |V0|, (6)
−xi ≤−ℓi, for 1≤ i≤ |V0|. (7)

Constraint (2) lists the linear inequalities that have to be fulfilled in A for the dis-
tinguished candidate c to win under E . By maximizing χ via the objective function
we try to find solutions where the weights are positive; this is accomplished by con-
straints (3) and (4). Constraint (5) implements our given upper bound B for the total
weight to be assigned to votes in V0 and constraints (6) and (7) implement our given
ranges Ri = [ℓi,ri]⊆ N for each weight.

When we omit constraint (5), the LP solves E -PWUW-RW-Q+ instances. Omit-
ting instead constraints (6) and (7) the LP solves E -PWUW-BW-Q+ instances, and
omitting constraints (5), (6), and (7) the LP solves E -PWUW-Q+ instances.

As already mentioned earlier, a solution in Q+ for an LP with polynomi-
ally bounded many linear inequalities can be found in polynomial time, see Hači-
jan [40]. ❑

With this general theorem, we know that when we can represent a voting rule E
via polynomially many linear inequalities, it follows that for this voting rule all four
PWUW-Q+ variants can be solved in polynomial time. In the following corollaries
we present the specific systems of linear inequalities describing general scoring rules,
the voting systems Bucklin and fallback, and plurality with runoff. Combining these
systems with Theorem 4.2 then yields that the corresponding problems can be solved
efficiently in P.

Corollary 4.3. For each scoring protocol E with scoring vector α⃗ , the problems E -
PWUW-Q+, E -PWUW-BW-Q+, E -PWUW-RW-Q+, and E -PWUW-BW-RW-Q+

belong to P.

Proof. Let (C,V1 ∪V0) be an election with m = |C| candidates and c ∈ C as the
distinguished candidate. Recall that ρ0

i (c) denotes c’s position in the preference of
vote vi ∈V0, that αρ0

i (c)
denotes the number of points c gets for this position according

to the scoring vector α⃗ , and that in our setting all votes in V1 have weight one, although
this could be generalized in a straightforward way if required. Then the distinguished
candidate c is a winner of the election if and only if for all candidates c′ ∈C \{c}, we

13



have

|V0|
∑
j=1

x j ·
(

αρ0
j (c)
−αρ0

j (c
′)

)
≥ diff (C,V1)

(c′,c),

where x j, 1 ≤ j ≤ |V0|, is the weight that will be assigned to vote v j ∈ V0. Conse-
quently, every scoring protocol E with scoring vector α⃗ can be described by a system
of m− 1 linear inequalities for m candidates, and hence satisfies the requirements of
Theorem 4.2. We now provide the complete system of linear inequalities required
to solve a corresponding E -PWUW-BW-RW-Q+ instance. As in the proof of Theo-
rem 4.2, we have the vector of variables x⃗ = (x1,x2, . . . ,x|V0|,χ) ∈ (Q+)|V0|+1. The LP
for scoring vector α⃗ is of the following form:

max χ,
|V0|
∑
j=1

x j ·
(

αρ0
j (c
′)−αρ0

j (c)

)
≤ diff (C,V1)

(c,c′), ∀c′ ∈C \{c}, (8)

x j−χ ≥ 0, for 1≤ j ≤ |V0|, (9)
χ ≥ 0, (10)

|V0|
∑
j=1

x j ≤ B, (11)

x j ≤ r j, for 1≤ j ≤ |V0|, (12)
−x j ≤−ℓ j, for 1≤ j ≤ |V0|. (13)

Again, constraints (11) to (13) are needed only for the restricted variants. This LP
can be solved in polynomial time, since we have at most (m− 1)|V0|+ 3|V0|+ 2 =
(m+2)|V0|+2 constraints. ❑

Note that adding χ to the left-hand side of (8) provides a way to transform our
approach to the unique-winner model such that, when χ is positive, one has a weight
assignment making the distinguished candidate c a unique winner for the given elec-
tion.

Being level-based voting rules, for Bucklin and fallback voting we have to slightly
expand the presented approach. Intuitively, it is clear that we first try to make the dis-
tinguished candidate a level 1 winner. If this attempt fails, we try the second level, and
so on. For Bucklin voting, the representation by linear inequalities is due to Dorn and
Schlotter [24], and we adapt it here to the simplified versions of Bucklin and fallback
voting. For the latter, we add appropriate constraints if the approval stage is reached.
Note that the proof of Corollary 4.4 cannot simply be adjusted to work in the unique-
winner case.

Corollary 4.4. Let E be either Bucklin or fallback voting. The problems E -
PWUW-Q+, E -PWUW-BW-Q+, E -PWUW-RW-Q+, and E -PWUW-BW-RW-Q+

are all in P.
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Proof. We begin by first showing the result for Bucklin voting. Afterwards, we adjust
the proof for fallback voting. As already said ahead of the proof, the linear inequalities
for Bucklin voting are due to Dorn and Schlotter [24]. We use their approach, adjusted
to our notations. Let I = (C,V1,V0,c,B,R) be a PWUW-BW-RW-Q+ instance. For
every possible Bucklin score ℓ, 1 ≤ ℓ ≤ m = |C|, we try to solve the following LP
over Q+:

max χ,
⌈
|V1|+∑|V0|

i=1 xi

2

⌉
−1−

(|V1|
∑
i=1

1[ρ1
i (c
′)≤ℓ−1] +

|V0|
∑
i=1

xi ·1[ρ0
i (c
′)≤ℓ−1]

)
≥ 0, ∀c′ ∈C \{c},

(14)
(|V1|

∑
i=1

1[ρ1
i (c)≤ℓ]

+
|V0|
∑
i=1

xi ·1[ρ0
i (c)≤ℓ]

)
−
⌈
|V1|+∑|V0|

i=1 xi

2

⌉
≥ 0, (15)

xi−χ ≥ 0, for 1≤ i≤ |V0|,
(16)

χ ≥ 0, (17)
|V0|
∑
i=1

xi ≤ B, (18)

xi ≤ ri, for 1≤ i≤ |V0|,
(19)

−xi ≤−ℓi, for 1≤ i≤ |V0|.
(20)

In the ℓ-th LP, we look for weights x1, . . . ,x|V0| ∈ Q+ such that c has a Bucklin score
of ℓ, constraint (15), while no other candidate c′ ∈C \{c} has a Bucklin score smaller
than ℓ, constraint (14). Similar to the previous proofs, constraint (18) ensures that the
sum of the weights allocated satisfies the upper bound B and constraints (19) and (20)
ensure that all weights are chosen from their corresponding ranges. If for one value
1 ≤ ℓ ≤ m we obtain a feasible solution for the corresponding LP, we know that I is a
YES-instance. Since we search for solutions in Q+, it follows by the same arguments
as for the previous proofs that these LPs can be solved in polynomial time. Therefore,
PWUW-BW-RW-Q+ belongs to P for Bucklin voting. Again, removing the corre-
sponding constraints, we see that PWUW-BW-Q+, PWUW-RW-Q+, and PWUW-Q+

belong to P, too.
For fallback voting, we adjust the previously introduced LP as follows. Note that

nontotal votes are allowed for fallback voting; let ℓm denote the length of a longest vote
present in the given instance I. We try to solve the same LP as for Bucklin voting,
but this time only for the values ℓ, 1 ≤ ℓ ≤ ℓm. Doing so, we try to find weights
x1, . . . ,x|V0| ∈Q+ for the votes in V0 such that c wins the election through her Bucklin
score. If none of the LPs is feasible, we can replace constraint (15) by the following
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constraint

|V0|
∑
i=1

xi ·
(
1[ρ0

i (c)≤ℓm]
−1[ρ0

i (c
′)≤ℓm]

)
≤
|V1|
∑
i=1

1[ρ1
i (c
′)≤ℓm]−1[ρ1

i (c
′)≤ℓm],∀c

′ ∈C \{c}.

(21)

Executing the modified LP with ℓ = ℓm, we try to make c a fallback winner, i.e., c’s
level ℓm score shall be at least as high as the level ℓm score of all other candidates,
while we ensure by constraint (14) that no candidate c′ ∈C \{c} is accidentally made
a Bucklin winner for some Bucklin score ℓ < ℓm. Consequently, it follows by the
previous arguments that PWUW-BW-RW-Q+ as well as the other four variants can be
solved in polynomial time for fallback voting. ❑

Finally, we provide our results for plurality with runoff and veto with runoff, taking
an approach similar to the previous one: For each candidate d different from c, we use
a set of linear inequalities to figure out whether there exists a set of weights such that
(1) c and d enter the runoff (i.e., the plurality or veto scores of c and d are at least as
high as the scores of all other candidates), and (2) c beats d in their pairwise contest.

Corollary 4.5. For both plurality with runoff and veto with runoff, the problems
PWUW-Q+, PWUW-BW-Q+, PWUW-RW-Q+, and PWUW-BW-RW-Q+ are all
in P.

Proof. Let (C,V1 ∪V0) be an election and c ∈ C the distinguished candidate. Let PR
be a shorthand for plurality with runoff and VR a shorthand for veto with runoff. We
prove the results for both rules, PR and VR, at the same time as the only difference
between both rules is the scoring vector α⃗ used to calculate scores.

A candidate z ∈C enters the runoff if for all y ∈C \{z}, it holds that

|V0|
∑
i=1

xi · (αρ0
i (z)
−αρ0

i (y)
)≥ diff (C,V1)

(z,y),

in other words, z enters the runoff if she has a score at least as high as that of all other
candidates y ∈C \{z}. Assuming that z and y enter the runoff, z wins the runoff if

|V0|
∑
i=1

xi · (ακ0
i (z)
−ακ0

i (y)
)≥ diff ({z,y},V1)

(z,y),

where κ0
i (c)∈ {1,2} describes the position of candidate c in vote vi ∈V0 when reduced

to the two candidates in the runoff. Consequently, the following LP checks whether
there are nonnegative weights x1, . . . ,x|V0| ∈ Q+ for the votes in V0 such that c and d
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enter the runoff and c wins the runoff:

max χ,
|V0|
∑
i=1

xi · (αρ0
i (c)
−αρ0

i (z)
)≥ diff (C,V1)

(c,z), ∀z ∈C \{c,d}, (22)

|V0|
∑
i=1

xi · (αρ0
i (d)
−αρ0

i (z)
)≥ diff (C,V1)

(d,z), ∀z ∈C \{c,d}, (23)

|V0|
∑
i=1

xi · (ακ0
i (c)
−ακ0

i (d)
)≥ diff ({c,d},V1)

(c,d), (24)

xi−χ ≥ 0, for 1≤ i≤ |V0|, (25)
χ ≥ 0, (26)

|V0|
∑
i=1

xi ≤ B, (27)

xi ≤ ri, for 1≤ i≤ |V0|, (28)
−xi ≤−ℓi, for 1≤ i≤ |V0|. (29)

This LP has at most 2(|C| − 2)+ 3|V0|+ 3 inequalities; hence, its size is polynomial
in the size of the election. Consequently, we can execute this LP efficiently for every
candidate d ∈ C \ {c} to check whether there exists a candidate that can make it into
the runoff together with c such that c wins against this candidate in the runoff. If such
a candidate exists, we have a YES- and otherwise a NO-instance of our problem. Ob-
viously, with this approach we can efficiently solve PR- and VR-PWUW-BW-RW-Q+

instances. Omitting constraint (27), we can solve PWUW-RW-Q+ instances. Omitting
constraints (28) and (29), we can solve PWUW-BW-Q+ instances. When we omit all
three constraints, we solve PWUW-Q+ instances. Thus all four problem variants can
be solved efficiently for both voting rules and, hence, belong to P. ❑

Note that the proof of Corollary 4.5 does not work in the unique-winner model. Ob-
viously, we can extend this proof to any scoring-vector-based voting rule with runoff.
However, since besides plurality and veto there are no other commonly used voting
rules with runoff, we did not generalize Corollary 4.5 and kept it specific to these two
rules.

With this proof we conclude our section related to results for nonnegative rational
weights. To summarize, we have proven a general theorem yielding tractability re-
sults for all four variants of E -PWUW-Q+ for voting rules E whose scoring functions
satisfy weight independence. Afterwards, we have applied this theorem to four cen-
tral voting rules, showing sixteen P membership results in total. Table 7 in Section 6
provides an overview of all our results related to nonnegative rational weights.

5. Results for Nonnegative Integer Weights

Having presented all our results for the possible winner with uncertain weights
problem for nonnegative rational weights in the previous section, in this section we turn
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to nonnegative integer weights. Each of the next subsections will present our results
for another voting rule. Chronologically, we present our results for k-approval, k-veto,
plurality with runoff, veto with runoff, Copelandα , ranked pairs, Bucklin voting, fall-
back voting, and Borda. For each of these voting rules, we provide computational
complexity results for all four variants of the PWUW-N problem.

Before we begin to study specific voting rules, we prove Lemma 5.1 as an auxiliary
means, which holds for all scoring protocols E and provides a way of preprocessing
our PWUW-BW-RW-N problem instances.

Lemma 5.1. Let I = (C,V1,V0,c,B,R) be an E -PWUW-BW-RW-N instance for a
scoring protocol E . Then there exists an instance I′ = (C,V ′1,V0,c,B′,R′) with
l′i = 0 for all R′i = [l′i ,r

′
i] ∈ R′ such that I ∈ E -PWUW-BW-RW-N if and only if

I′ ∈ E -PWUW-BW-RW-N.

Proof. Let I = (C,V1,V0,c,B,R) be an E -PWUW-BW-RW-N instance. We construct
the desired instance I′ = (C,V ′1,V0,c,B′,R′) as follows. For every Ri = [li,ri] ∈ R, we
define R′i = [0,r′i] with r′i = ri− li and add it to R′. Further, we add li copies of the
corresponding vote vi ∈V0 with weight 1 to V ′1 and define B′ = B−∑|V0|

i=1 li.
Now, assume that I is a YES-instance of E -PWUW-BW-RW-N. Then there exist

weights wi ∈ N for 1 ≤ i ≤ |V0| such that wi ∈ Ri and ∑|V0|
i=1 wi ≤ B and c wins the

weighted election (C,V1∪V0). For 1≤ i≤ |V0|, we define the weights w′i = wi− li ≥ 0.
Consequently, we have

w′i = wi− li ∈ Ri− li = [li− li,ri− li] = [0,r′i] = R′i

as well as

|V0|
∑
i=1

w′i =
|V0|
∑
i=1

(wi− li) =
|V0|
∑
i=1

wi−
|V0|
∑
i=1

li ≤ B−
|V0|
∑
i=1

li = B′.

Let vi be a vote from V0 with weight wi. Then this vote is added with a weight of wi to
the election in I. Now, with the altered weights in I′, the vote is added with a weight
of w′i = wi− li to the election in I′. However, as previously described, we added li
copies of vi with weight 1 to V ′1. In total, vi together with its copies in V ′1 thus obtains
a weight of w′i + li = wi. Hence, the votes’ overall weight has not changed from I
to I′ and, thus, c wins the weighted election (C,V ′1 ∪V0) and I′ is a YES-instance of
E -PWUW-BW-RW-N as well.

Conversely, let us assume that I′ is a YES-instance of E -PWUW-BW-RW-N. Then
there exist weights w′i ∈ N for 1 ≤ i ≤ |V0| such that c wins the weighted election
(C,V ′1 ∪V0). For every weight w′i, we define the weight wi = w′i + li. Afterwards, we
have

wi = w′i + li ∈ R′i + li = [0+ li,r′i + li] = [li,ri] = Ri

as well as

|V0|
∑
i=1

wi =
|V0|
∑
i=1

(w′i + li) =
|V0|
∑
i=1

w′i +
|V0|
∑
i=1

li ≤ B′+
|V0|
∑
i=1

li = B.
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Following the same argument as before, the candidates’ overall scores do not change
and, therefore, candidate c wins the weighted election (C,V1 ∪V0), so that I is a YES-
instance of E -PWUW-BW-RW-N, too. ❑

We now provide an argument that we will use in some upcoming proofs related to
PWUW-BW-RW-N so as to argue why certain assumptions can be made.

Remark 5.2. Let E be a binary scoring protocol and I = (C,V1,V0,c,B,R) an instance
for E -PWUW-BW-RW-N. Furthermore, let us denote by V ′0 ⊆ V0 the subset of votes
from V0 that assign a positive score to c, and let Ri = [li,ri] ∈ R denote the region of
vi ∈V ′0. Now, if it holds that

|V ′0|

∑
i=1

ri ≤ B,

it immediately follows that I is a trivial instance. Following the argument in the proof of
Lemma 3.5, it only makes sense to allocate a positive weight to votes in V ′0 if one wants
c to win the weighted election (C,V1 ∪V0). However, if the sum of the upper limits of
these votes is smaller than B, we can assign all these votes their maximal weights and
all other votes in V0 \V ′0 a weight of 0. Either c wins this election, i.e., I would be a
YES-instance of E -PWUW-BW-RW-N, or loses it, i.e., I would be a NO-instance of E -
PWUW-BW-RW-N. Consequently, to exclude trivial instances, we can always assume
that the sum of the upper limits of the votes in V ′0 is greater than B.

Additionally, excluding trivial instances, if we know that instance I is a YES-

instance, we can also assume that ∑
|V ′0|
i=1 wi = B holds, as ∑

|V ′0|
i=1 ri ≥ B is true, so that

we can always increase some of the weights wi until the sum of these weights equals B
without altering the outcome of the election, as we only increase the weights of votes
adding positive scores to c.

5.1. k-Approval

We start by studying the voting rule k-approval. Recall that k-approval is a scoring
protocol with scoring vector

α⃗ = (1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0),

where α⃗ has as many entries as there are candidates in an election, with the first k
entries being a 1 and the remaining entries being a 0. Obviously, k-approval is also
a binary scoring protocol, as defined in Section 2, so Theorem 3.4 applies. Table 2
provides an overview of how the results on k-approval are structured.

From Theorem 3.4 we immediately obtain Corollary 5.3, which already settles the
complexity of k-approval-PWUW-N and k-approval-PWUW-RW-N for all k ≥ 1.

Corollary 5.3. For every k ≥ 1, the problems k-approval-PWUW-N and k-approval-
PWUW-RW-N belong to P.
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Table 2: Overview of results proving P membership for our four PWUW variants of k-approval.

k-approval-PWUW k = 1 k = 2 k = 3 k ≥ 4

-N Cor. 5.3 Cor. 5.3 Cor. 5.3 Cor. 5.3
-RW-N Cor. 5.3 Cor. 5.3 Cor. 5.3 Cor. 5.3
-BW-N Prop. 5.4 Prop. 5.5 Cor. 5.7 Thm. 5.8
-BW-RW-N Prop. 5.4 Prop. 5.5 Thm. 5.6 Thm. 5.8

It remains to study the complexity of k-approval-PWUW-BW-N and k-approval-
PWUW-BW-RW-N; we will first consider small values of k and then proceed to larger
values of k. Starting with k = 1, the next proposition provides results for the two
remaining cases of 1-approval, also known as plurality, not resolved by the previous
corollary, namely plurality-PWUW-BW-N and plurality-PWUW-BW-RW-N.

Proposition 5.4. 1-approval-PWUW-BW-N and 1-approval-PWUW-BW-RW-N be-
long to P.

Proof. First, we prove the result for 1-approval-PWUW-BW-N and at the end of
this proof we extend it to also hold for 1-approval-PWUW-BW-RW-N. Let I =
(C,V1,V0,c,B) be a 1-approval-PWUW-BW-N instance. To determine if there are
weights for the votes in V0 such that c can win the weighted election, we proceed as
follows. For every candidate d ∈C\{c}, we calculate the difference of scores between
d and c in V1, i.e.,

diff (C,V1)
(d,c) = scoreV1(d)− scoreV1(c).

We denote by
ρ = max

d∈C\{c}
diff (C,V1)

(d,c)

a greatest difference between the scores of some candidate d in C\{c} and c. If ρ ≤ 0, c
is already among the winners of the unweighted election and we obtain a YES-instance
of 1-approval-PWUW-BW-N by setting the weights of all votes in V0 to 0. Otherwise
(i.e., if ρ > 0), we need to validate whether there is at least one vote v ∈ V0 with c on
its first position as well as whether ρ ≤ B. If both conditions are satisfied, I is a YES-
instance of 1-approval-PWUW-BW-N, as we can simply assign a weight of ρ to v, so
that c is among the winners of the weighted election (C,V1∪V0). That is so because c
gains a score of ρ from this weight assignment, while all other candidates’ scores stay
constant. Otherwise (i.e., if there is no vote v ∈V0 with c on its first position or ρ > B
is true), I is a NO-instance of 1-approval-PWUW-BW-N: If there is no vote v∈V0 with
c on top, it is impossible to increase c’s score via votes from V0; if ρ > B, then c cannot
win the weighted election as there is at least one candidate who has a point advantage
over c from V1 greater than B. But as we can increase c’s score via votes from V0 at
most by B, c can never reach a high enough score to be among the weighted election’s
winners. All the previously described calculations can be executed in time polynomial
in |I|, so it follows that 1-approval-PWUW-BW-N is in P.

Now, we extend the proof to also work for 1-approval-PWUW-BW-RW-N. Let
I = (C,V1,V0,c,B,R) be a 1-approval-PWUW-BW-RW-N instance; by Lemma 5.1, we
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may assume that for every Ri = [li,ri] ∈ R, we have li = 0. We proceed very similarly
to the previous approach. First, we calculate ρ = maxd∈C\{c} diff (C,V1)

(d,c). Again,
if ρ ≤ 0, we know that I is a YES-instance of 1-approval-PWUW-BW-RW-N, and if
ρ > B, we know that I is a NO-instance of 1-approval-PWUW-BW-RW-N. Finally, in
the case of 0 < ρ ≤ B we argue as follows for I to be a YES-instance of 1-approval-
PWUW-BW-RW-N. Let V ′0 ⊆V0 denote the subset of votes from V0 with c on their first
position. From Corollary 5.3 we know that 1-approval-PWUW-RW-N belongs to P.

Therefore, following the argument of Remark 5.2, we can assume that ∑
|V ′0|
i=1 ri ≥ B.

Thus, similarly as for 1-approval-PWUW-BW-N, we assign a total weight of ρ to
votes from V ′0, so c gains an additional score of ρ in the weighted election (C,V1∪V0)
and hence, is among the winners. Again, all calculations can be executed in time
polynomial in |I|, so it follows that 1-approval-PWUW-BW-RW-N is in P. ❑

Note that Bartholdi, Tovey, and Trick [2] proved that plurality-CCAVsucc belongs
to P. Consequently, using Proposition 3.3, we obtain an alternative proof that plurality-
PWUW-BW-RW-N belongs to P. Using Theorem 3.1 we then can argue that plurality-
PWUW-BW-N belongs to P, too.

With the complexity for all four problem variants of 1-approval-PWUW resolved,
in Proposition 5.5 below we study the complexity of the two open cases for 2-approval-
PWUW, namely 2-approval-PWUW-BW-N and 2-approval-PWUW-BW-RW-N. To
this end, we will use the following decision problem:

MAXIMUMFLOW (MAXFLOW)

Given: A directed graph G = (V,E), two distinguished vertices s, t ∈V , an edge capac-
ity function κ : E→ N, and some integer k ∈ N.

Question: Is there a flow from s to t through G of volume at least k?

The algorithm by Fulkerson and Dantzig [36] provides an efficient approach to
solving MAXFLOW instances, i.e., MAXFLOW ∈ P is a well-known result. Having re-
called this decision problem as well as its P membership, we can now state our results.

Proposition 5.5. 2-approval-PWUW-BW-N as well as 2-approval-
PWUW-BW-RW-N belong to P.

Proof. First, we prove the result for 2-approval-PWUW-BW-RW-N. Then we will
explain how to derive the result for 2-approval-PWUW-BW-N from the former one.

To prove that 2-approval-PWUW-BW-RW-N belongs to P, we reduce this problem
to MAXFLOW. Let I = (C,V1,V0,c,B,R) be a 2-approval-PWUW-BW-RW-N instance.
We denote by V ′0 ⊆ V0 the subset of votes from V0 which rank c among the top two
positions. For each vi ∈V ′0, we denote by di the candidate distinct from c that is among
the top two positions of vi together with c. With Lemma 3.5 we know that in order to
check whether c can win a weighted election, it is sufficient to only consider weight
allocations assigning positive weight to votes in V ′0. By Lemma 5.1, we can assume
that for all Ri ∈ R it holds that Ri = [0,ri] and, lastly, with Remark 5.2 we can assume

that ∑
|V ′0|
i=1 ri ≥ B holds. Having recalled all these assumptions, we are ready to construct
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Figure 1: Illustration of a flow network created to show 2-approval-PWUW-BW-RW-N ≤p
m MAXFLOW for

n votes in V ′0 and m+1 candidates in C; the edges in the network are labeled with their capacities.

a MAXFLOW instance I′ = (G,s, t,κ,k) as follows. For the directed graph G = (V,E),
we define the set of vertices as

V = {s,s′, t}∪V ′0∪ (C \{c}),

where s ∈V is the source and t ∈V the target of the flow. Next, we add the following
edges with their corresponding capacities via κ to E:

1. (s,s′) with capacity B;
2. for every vi ∈V ′0 with Ri = [0,ri], we add (s′,vi) with capacity ri;
3. for every vi ∈V ′0, we add (vi,di) with capacity ri; and
4. for every candidate d ∈ C \ {c}, we add an edge (d, t) with capacity ρd = B+

diff (C,V1)
(c,d).

Setting k = B completes the construction of I′ in time polynomial in |I|. Figure 1
illustrates how such a constructed network G might look like. We now show that I is
a YES-instance of 2-approval-PWUW-BW-RW-N if and only if I′ is a YES-instance of
MAXFLOW.

Assume that I is a YES-instance of 2-approval-PWUW-BW-RW-N. Then there exist
weights wi ∈ N for all votes in V0 such that c wins the weighted election (C,V1 ∪V0).
With Lemma 3.5 we can assume a weight of 0 for all votes in V0 \V ′0, and because

of Remark 5.2 we can furthermore assume that ∑
|V ′0|
i=1 wi = B. To prove that I′ is a

YES-instance of MAXFLOW, we need to give a flow through G of volume at least B.
Obviously, as κ((s,s′)) = B, we can assign a flow of volume B to (s,s′). Next, for
every vi ∈ V ′0, we assign a flow of volume wi to (s′,vi). That is possible because wi ≤
ri = κ((s′,vi)). Furthermore, since we earlier assumed that the sum of all weights wi
equals B, the inflow of volume B to s′ equals its outflow to all nodes in V ′0 via the edges
(s′,vi). Next, every vertex vi (recall that vi is a vote in V ′0) has exactly one outgoing
edge to a neighbor, namely di, the candidate which together with c is among the top two
positions of vi. By construction, these edges (vi,di) have a capacity of κ((vi,di)) = ri,
so every node vi can pass its total inflow volume wi ≤ ri on to di via its single outgoing
edge. Now, every node d ∈ C \ {c} has a nonnegative inflow via the votes in V ′0 and
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their weights wi. Obviously, the inflow volume of a node d ∈C\{c} corresponds to the
score candidate d obtains from the weighted votes in V0, i.e., scoreV0(d). Every node
d ∈C\{c} has exactly one outgoing edge (d, t) with capacity ρd . Hence, to satisfy this
capacity limit, it must hold that

scoreV0(d)≤ ρd = B+diff (C,V1)
(c,d)

⇔ scoreV0(d)≤ B+ scoreV1(c)− scoreV1(d)

⇔ scoreV1(d)+ scoreV0(d)≤ scoreV1(c)+B

⇔ scoreV1(d)+ scoreV0(d)≤ scoreV1(c)+ scoreV0(c). (30)

However, as we have assumed that I is a YES-instance of 2-approval-
PWUW-BW-RW-N, Equation (30) must be true for every candidate d ∈ C \ {c}, as
c is a winner of the weighted election (C,V1 ∪V0). Consequently, t has an inflow that
corresponds to the sum of all weights wi for vi ∈V ′0, which is equal to B, and we have
found a flow through G of volume k = B, so I′ is a YES-instance of MAXFLOW.

Conversely, assume that I′ is a YES-instance of MAXFLOW. Then there exists a
flow of volume ω ≥ k = B through G. Since s is the source of the flow, the flow of
volume ω must start in s. By the capacity of s’s only outgoing edge (s,s′), namely
κ((s,s′)) = B, it directly follows that ω = B must hold. Now, for every node vi ∈ V ′0,
we interpret its inflow volume ωi, coming from s′ and satisfying ωi ≤ ri = κ((s′,vi)),

as the weight wi of vote vi in the weighted election (C,V1 ∪V0). Since B = ∑
|V ′0|
i=1 ωi

must hold to ensure that the inflow volume of s′ equals its outflow volume, we know
from interpreting the flows ωi as weights wi of the votes in V ′0 that candidate c obtains
a score of scoreV0(c) = B from the votes in V ′0. As the flow of volume B through G is
valid, it follows for every node d ∈C \{c} that its outflow, which then corresponds to
scoreV0(d) in the weighted election, satisfies the capacity limit, i.e., scoreV0(d) ≤ ρd .
By the same argument as for Equation (30) it follows that c wins the weighted election
(C,V1∪V0). Furthermore, we set the weights of all votes in V0 \V ′0 to 0. Consequently,
all region requirements from R are satisfied and B is the upper bound on the total sum
of weights, so I is a YES-instance of 2-approval-PWUW-BW-RW-N.

Hence, 2-approval-PWUW-BW-RW-N≤p
m MAXFLOW. Since MAXFLOW is in P,

2-approval-PWUW-BW-RW-N is in P as well. Now, it directly follows from Theo-
rem 3.1 that 2-approval-PWUW-BW-N belongs to P, too. ❑

Summing up our results so far, we now know that all four problem variants (i.e.,
PWUW-N, PWUW-BW-N, PWUW-RW-N, and PWUW-BW-RW-N) can be solved in
polynomial time for k-approval with k ∈ {1,2}. We also know that the two problem
variants k-approval-PWUW-N and k-approval-PWUW-RW-N are in P for all k ≥ 1.

Next, we turn to the question of how hard it is to solve the other two problem
variants, PWUW-BW-N and PWUW-BW-RW-N, for 3-approval. We will show in
Theorem 5.6 and Corollary 5.7 that they are in P, too. To this end, we will provide
a reduction from PWUW-BW-RW-N to the problem GENERALIZED-WEIGHTED-B-
EDGE-MATCHING (GWBEM), which belongs to P and is defined as follows:4

4Formally, Gabow [37] and Grötschel et al. [39, p. 259] define a maximization variant of GWBEM and
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GENERALIZED-WEIGHTED-B-EDGE-MATCHING (GWBEM)

Given: An undirected multigraph G = (N,E) without loops, capacity-bounding func-
tions aℓ,au : E → N and bℓ,bu : N → N, a weight function w : E → N, and a
target integer r ∈ N.

Question: Does there exist a function x : E → N with ∑e∈E w(e)x(e) ≥ r such that for
every edge e ∈ E it holds that aℓ(e)≤ x(e)≤ au(e) and for every node z ∈ N it
holds that bℓ(z)≤ ∑e∈δ (z) x(e)≤ bu(z), where δ (z) is the set of edges incident
to node z?

Before stating and proving that 3-approval-PWUW-BW-RW-N belongs to P, re-
call the following two auxiliary lemmas, which we will use in the proof of Theo-
rem 5.6. First, Lemma 5.1 enables us to assume for every scoring protocol E that,
without loss of generality, all intervals Ri = [li,ri] ∈ R fulfill li = 0 for every instance
I = (C,V1,V0,c,B,R) of E -PWUW-BW-RW-N. Furthermore, by Lemma 3.5 we may
assume that, without loss of generality, for any 3-approval-PWUW-BW-RW-N instance
I = (C,V1,V0,c,B,R) where c wins, only votes in V0 with c among the top three candi-
dates have positive weight. With these assumptions in mind, we are now ready to prove
that 3-approval-PWUW-BW-RW-N is efficiently solvable.

Theorem 5.6. 3-approval-PWUW-BW-RW-N is in P.

Proof. We show that 3-approval-PWUW-BW-RW-N ≤p
m GWBEM. Let I =

(C,V1,V0,c,B,R) be a 3-approval-PWUW-BW-RW-N instance. By Lemma 5.1, we
assume for all vi ∈V0 that Ri = [0,ri] holds. We can also assume ∑|V0|

i=1 ri ≥ B, since the
sum over the ri provides an upper bound for the overall weight distributed among the
votes in V0.5 We construct a GWBEM instance I′ = (G,aℓ,au,bℓ,bu,w,r) with multi-
graph G = (C′,E) whose set of nodes C′ =C \{c} consists of all candidates except c.
Furthermore, denote the subset of votes from V0 where candidate c is among the top
three positions by

V ′0 = {x1 > x2 > x3 > · · · ∈V0 | c ∈ {x1,x2,x3}}

and define the set of edges in G by

E = {{x1,x2,x3}\{c} | x1 > x2 > x3 > · · · ∈V ′0}.

That is, for every vote from V0 with c among the top three positions, we add an edge
between the vote’s remaining two candidates in the top three positions. This can result
in a multigraph, of course, but is in line with the problem definition. We set the target
integer r = B and, for every edge e ∈ E linked to vi ∈ V0, we define the edge capacity
bounds by aℓ(e) = 0 and au(e) = ri and the weight function by w(e) = 1 for the cor-
responding interval Ri = [0,ri]. For every c′ ∈C′, we define the node capacity bounds

show its polynomial-time solvability, which immediately implies that GWBEM is in P. The same problem
was first used by Lin [49] in the context of voting and later on also, for example, by Erdélyi et al. [30].

5This assumption does make sense indeed: Otherwise, the parameter B would be meaningless and our
instance becomes a PWUW-RW-N instance which, as shown in Corollary 5.3, is efficiently solvable.
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by

bℓ(c′) = 0 and bu(c′) = scoreV1(c)+B− scoreV1(c
′).

We can assume for every candidate c′ ∈ C′ (which is, recall, a node in G) that
bu(c′)≥ 0 holds, as otherwise I would be a trivial NO-instance. That is the case, since
bu(c′)< 0 implies scoreV1(c

′)−scoreV1(c)>B, which makes it impossible for c to beat
c′ with votes from V0 having a total weight of at most B. Obviously, the construction
of I′ can be realized in time polynomial in |I|.

We prove that I ∈ 3-approval-PWUW-BW-RW-N if and only if I′ ∈ GWBEM.
From left to right, assume that I is a YES-instance of 3-approval-

PWUW-BW-RW-N. Consequently, there exist weights wi ∈N for vi ∈V0, 1≤ i≤ |V0|,
with wi ∈ Ri = [0,ri] such that c wins the weighted election (C,V1∪V0). Without loss
of generality, we can assume that ∑|V0|

i=1 wi = B, as argued in Remark 5.2. Furthermore,
by Lemma 3.5 we can assume that for every vote vi ∈V0, we have wi > 0 if and only if
there is an edge ei ∈ E in the graph G of our instance I′, i.e., if c is among the top three
candidates in vi. We set x(ei) = wi and obtain

∑
ei∈E

w(ei)x(ei) = ∑
ei∈E

x(ei) = ∑
ei∈E

wi = B = r.

Additionally, 0≤ wi ≤ ri is true for all i, 1≤ i≤ |V0|, and, therefore, we have

0 = aℓ(ei)≤ x(ei) = wi ≤ au(ei) = ri

for every edge ei ∈ E. Since c is a winner of the weighted election (C,V1 ∪V0), the
score of c over V1 and V0 is at least as high as the score of every other candidate d ∈C′.
Because the sum of the weights over V0 equals B, according to Lemma 3.5 we know
that the score of c is equal to scoreV1(c)+B. Thus, for every candidate d ∈C′, it must
hold that

scoreV1(d)+ scoreV0(d)≤ scoreV1(c)+ scoreV0(c)

⇔ scoreV1(d)+ scoreV0(d)≤ scoreV1(c)+B

⇔ ∑
e∈δ (d)

x(e)≤ bu(d),

where scoreV0(d) = ∑e∈δ (d) x(e), as all edges incident to d correspond to the votes with
positive weight in which d occurs among the top three positions. Hence, we have

0 = bℓ(d)≤ ∑
e∈δ (d)

x(e)≤ bu(d),

so I′ ∈ GWBEM.
From right to left, assume that I′ ∈ GWBEM. Then there exists a function x : E→

N such that

(i) ∑e∈E x(e)≥ r = B;
(ii) for every edge e ∈ E, it holds that aℓ(e)≤ x(e)≤ au(e); and
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(iii) for every node c′ ∈C′, it holds that bℓ(c′)≤ ∑e∈δ (c′) x(e)≤ bu(c′).

For every edge ei ∈ E, we set wi = x(ei) for the corresponding vote vi ∈V ′0. The weight
of all remaining votes in V0 \V ′0 is set to 0. Consequently, for every vote, 0≤ wi ≤ ri is
satisfied. For every candidate c′ ∈C′, it holds with (iii) that

∑
ei∈δ (c′)

x(ei)≤ bu(c′)

⇔ ∑
ei∈δ (c′)

x(ei)≤ scoreV1(c)+B− scoreV1(c
′)

⇔ ∑
ei∈δ (c′)

wi ≤ scoreV1(c)+B− scoreV1(c
′).

The last inequality is equivalent to

scoreV1(c
′)+ scoreV0(c

′)≤ scoreV1(c)+B. (31)

Consequently, c is a winner of the weighted election (C,V1 ∪V0), since from (i) it
follows that scoreV1(c)+B≤ scoreV1(c)+ scoreV0(c). Now, define

ρ = ∑
e∈E

x(e)−B≥ 0.

For every candidate c′ ∈C′ with (31), it holds that

scoreV1(c)+ scoreV0(c)− (scoreV1(c
′)+ scoreV0(c

′))

≥ scoreV1(c)+ scoreV0(c)− (scoreV1(c)+B)

= scoreV0(c)−B

= ∑
e∈E

x(e)−B = ρ.

Hence, every candidate in C′ has at least ρ points less than candidate c. Consequently,
we can remove a total weight of ρ from those edges in G with x(e) > 0 (which is
possible because bℓ(e) = 0 for all edges e ∈ E), so we have ∑e∈E x(e) = B afterwards.
Then c is still a winner of the weighted election (C,V1∪V0), and we obtain ∑vi∈V0

wi =
B and thus I ∈ 3-approval-PWUW-BW-RW-N. ❑

From Theorems 3.1 and 5.6 we immediately obtain the following corollary.

Corollary 5.7. 3-approval-PWUW-BW-N is in P.

Alternatively, as pointed out by Zack Fitzsimmons and Edith Hemaspaandra in a
personal communication, the result that PWUW-BW-RW-N is in P for 3-approval also
follows immediately from Propositions 3.2 and 3.3 and the results by Fitzsimmons and
Hemaspaandra [35]. They also note that since the dichotomy for the problem CCAV
shown by Hemaspaandra, Hemaspaandra, and Schnoor [43] is exactly the same as for
its succinct variant CCAVsucc [35], it follows that the same dichotomy holds for all
problems X such that CCAV ≤p

m X ≤p
m CCAVsucc. Hence, this immediately gives the
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same dichotomy for PWUW-BW-RW-N (both its general and its succinct variant), for
example.

Having pinpointed the complexity of our four problem variants for k-approval with
k ≤ 3, the following result now answers all remaining cases for k-approval with k ≥ 4.
Unlike for all previously considered problems, we now provide hardness results.

Theorem 5.8. For each k ≥ 4, k-approval-PWUW-BW-RW-N and k-approval-
PWUW-BW-N are NP-complete.

Proof. It is easy to see that both problems belong to NP: We can simply guess a weight
allocation for the votes in V0 satisfying all requirements (i.e., only a bound B or a bound
B as well as some regions R) and then, for each solution guessed, we check efficiently
whether the distinguished candidate is a winner of the weighted election (C,V1∪V0).

To prove NP-hardness, we first give a proof for 4-approval-PWUW-BW-N by a
polynomial-time many-one reduction from EXACT-COVER-BY-3-SETS and we then
explain how to extend this proof to all values k ≥ 4.

Let (B,S ) be an X3C instance with B = {b1, . . . ,b3q} and S = {S1, . . . ,Sn}. We
construct a k-approval-PWUW-BW-N instance I = (C,V1,V0,c,B) with

• candidates C = {c,b1, . . . ,b3q,b1
1, . . . ,b

1
3q,b

2
1, . . . ,b

2
3q,b

3
1, . . . ,b

3
3q};

• V1 having q−1 votes of the form b j > b1
j > b2

j > b3
j > · · · for each j, 1≤ j≤ 3q;

• V0 consisting of n votes of the form c>
−→
Si > · · · , 1≤ i≤ n;

• distinguished c candidate; and

• B = q being the bound on the total weight of the votes in V0.

Recall that the votes in V1 all have fixed weight one, and the weights of the votes in V0
are from N.

We show that S has an exact cover for B if and only if there are weights for the
votes in V0 satisfying the bound B such that c wins the weighted election (C,V1∪V0).

From left to right, assume that there is an exact cover S ′ ⊆S for B. By setting
the weights of the votes c>

−→
Si > · · · to one for those q subsets Si contained in S ′, and

to zero for all other votes in V0, c is a winner of the election, as c and all b j, 1≤ j≤ 3q,
receive exactly q points, whereas b1

j , b2
j , and b3

j , 1≤ j ≤ 3q, receive q−1 points each.
Conversely, from right to left, assume that c can be made a winner of the election by

choosing the weights of the votes in V0 appropriately. Note that the bound on the total
weight for the votes in V0 is B = q. Every bi gets q−1 points from the votes in V1, and
c gets points only from the votes in V0. Since there are always some b j getting points
if a vote from V0 has weight one, there are at least three b j having q points if a vote
from V0 has weight one. Hence c must get q points from the votes in V0 by setting the
weight of q votes to one. Furthermore, every b j can occur only once in the votes having
weight one in V0, as otherwise c would not win. It follows that the Si corresponding to
the votes of weight one in V0 must form an exact cover for B.

Hence, 4-approval-PWUW-BW-N is NP-complete. Applying Theorem 3.1,
4-approval-PWUW-BW-RW-N is NP-complete, too.
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To extend the proof from k = 4 to all k > 4, we can add dummy candidates to fill
the additional positions in the votes also receiving points. ❑

To summarize, we have shown that for k ≤ 3 all four possible winner with un-
certain weights variants can be solved in polynomial time. Furthermore, for k ≥ 4,
the variants PWUW-N and PWUW-RW-N belong to P as well, whereas the variants
PWUW-BW-N and PWUW-BW-RW-N are NP-complete.

5.2. k-Veto

In this section, we focus on the voting rule k-veto. Recall that k-veto is a scoring
protocol with scoring vector

α⃗ = (1, . . . ,1,0, . . . ,0︸ ︷︷ ︸
k

),

i.e., the last k entries contain a 0, whereas all other entries contain a 1. Obviously, k-veto
is a binary scoring protocol for every k ∈N, so Corollary 5.9 follows immediately from
Theorem 3.4.

Corollary 5.9. For k ∈ N, k-veto-PWUW-RW-N and k-veto-PWUW-N belong to P.

We now turn to the other two problem variants, starting with providing results for
k = 1: veto-PWUW-BW-RW-N and veto-PWUW-BW-N.

Theorem 5.10. The problems veto-PWUW-BW-RW-N and veto-PWUW-BW-N are
in P.

Proof. First, we show that veto-PWUW-BW-RW-N is in P. Let I = (C,V1,V0,c,B,R)
be a modified veto-PWUW-BW-RW-N instance with li = 0 for all Ri = [li,ri], accord-
ing to Lemma 5.1. We write C = {c1, . . . ,cm−1}∪ {c} for the candidates. For every
candidate ci, 1≤ i≤ m−1, we determine

diff (C,V1)
(ci,c) = scoreV1(ci)− scoreV1(c).

That is, diff (C,V1)
(ci,c) describes how many more points ci receives in V1 than c does.

In order for c to be a winner of the weighted election (C,V1 ∪V0), c must obtain at
least as many points as every other candidate in C. If we weigh a vote v j from V0 with
weight w j ∈ N, the relative difference of points does not change among all candidates
but only with respect to the candidate being in the last position of v j. We denote by

ψ = {ci ∈C | diff (C,V1)
(ci,c)> 0}

the set of all candidates obtaining more points in V1 than c. To make c a winner of
the election by setting the weights of the votes in V0 appropriately, for every candidate
ci ∈ ψ , we must identify votes v j ∈ V0 with ci in the last position such that the sum
of the upper bounds of the corresponding intervals R j = [0,r j] is greater than or equal
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to diff (C,V1)
(ci,c). If such votes do not exist in V0, it follows immediately that I is a

NO-instance. Furthermore, it must hold that

∑
ci∈ψ

diff (C,V1)
(ci,c)≤ B

is true, since otherwise I is a NO-instance as well, as we cannot give more than B points
to c via the votes from V0.

If both assumptions are satisfied, we solve the instance as follows. For every ci ∈
ψ , we distribute a total weight of diff (C,V1)

(ci,c) to votes from V0 with ci in the last
position. Doing so, all candidates in C \ {ci} obtain diff (C,V1)

(ci,c) points from these
votes while ci receives 0 points. Hence, c obtains as many points as ci from the votes
in V1∪V0. We repeat this step for every ci ∈ ψ . Afterwards, for all ci,1≤ i≤ m−1, it
holds that

scoreV1(c)+ scoreV0(c)− (scoreV1(ci)+ scoreV0(ci))

= −diff (C,V1)
(ci,c)+ scoreV0(c)− scoreV0(ci)

= −diff (C,V1)
(ci,c)+diff (C,V1)

(ci,c)

= 0,

so c is a winner of the weighted election (C,V1 ∪V0) and, consequently, I is a YES-
instance.

To see that veto-PWUW-BW-N is in P, too, simply use the reduction from Theo-
rem 3.1 to reduce veto-PWUW-BW-N to veto-PWUW-BW-RW-N. ❑

In order to prove that PWUW-BW-N and PWUW-BW-RW-N belong to P for 2-veto
as well, we introduce another variant of the previously presented polynomial-time solv-
able GWBEM problem. According to Gabow [37] and Grötschel et al. [39, p. 259],
the following variant of this problem is in P, too:6

GENERALIZED-B-EDGE-COVER (GBEC)

Given: An undirected multigraph G = (N,E) without loops, capacity-bounding func-
tions aℓ,au : E→ N and bℓ,bu : N→ N, and a target integer r ∈ N.

Question: Is there a function x : E→N with ∑e∈E x(e)≤ r such that for every edge e ∈ E
it holds that aℓ(e)≤ x(e)≤ au(e) and for every node z ∈ N it holds that bℓ(z)≤
∑e∈δ (z) x(e)≤ bu(z), where δ (z) is the set of edges incident to node z?

The difference to the earlier introduced GWBEM problem is that this time the
weights assigned to the edges of G are not weighted and we want the sum to be at most
r instead of at least r. Especially the last difference seems to be a bit subtle but is
crucial for the upcoming proof of Theorem 5.11, as this time we work with a veto rule
and, thus, construct the corresponding graph in such a way that positively weighted
edges in the graph cause candidates to not obtain points.

6Again, Gabow [37] and Grötschel et al. [39, p. 259] formalize this problem variant as a minimization
problem. Since this problem is polynomial-time solvable, the decision problem variant that we will use is in
P as well.
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Theorem 5.11. 2-veto-PWUW-BW-RW-N and 2-veto-PWUW-BW-N belong to P.

Proof. In order to prove that 2-veto-PWUW-BW-RW-N is in P, we reduce this problem
to GBEC. Let I = (C,V1,V0,c,B,R) be a modified 2-veto-PWUW-BW-RW-N instance
with Ri = [0,ri] for 1 ≤ i ≤ |V0|, according to Lemma 5.1. We construct a GBEC
instance I′ = (G,aℓ,au,bℓ,bu,r) similar to the GWBEM instance in the proof of The-
orem 5.6. We define the multigraph G = (C \{c},E), where in order to specify E we
first define the set

V ′0 = {· · ·> x1 > x2 ∈V0 | {x1,x2}∩{c}= /0}
consisting of all votes from V0 with c not being ranked in one of the last two positions.
Then we define the edge set of G as

E = {{x1,x2} | · · ·> x1 > x2 ∈V ′0}.
Doing so, every edge in the graph corresponds to some vote in V0, i.e., when we write
ei, we implicitly refer to the corresponding vote vi from V0 (re-indexing the indices as
needed). For every edge ei ∈ E, we define aℓ(ei) = 0 and au(ei) = ri for Ri = [0,ri].
For every node d ∈C \{c}, we define

bℓ(d) = max{0,scoreV1(d)− scoreV1(c)}
and bu(d) = B. Lastly, we define r = B. This completes the construction of I′, which
can be realized in time polynomial in |I|.

To show that I ∈ 2-veto-PWUW-BW-RW-N holds if and only if I′ ∈ GBEC holds
follows a similar approach as the one for Theorem 5.6.

From left to right, assume I ∈ 2-veto-PWUW-BW-RW-N. Then there exist weights
wi ∈ N for 1 ≤ i ≤ |V0| such that c wins the weighted election (C,V1 ∪V0) while wi ∈
Ri = [0,ri] and ∑|V0|

i=1 wi ≤ B hold. Now, for every edge ei ∈ E, we set x(ei) = wi.
Consequently, aℓ(ei) = 0 ≤ x(ei) = wi ≤ au(ei) = ri is satisfied for all edges ei ∈ E.
Furthermore, we obtain

∑
ei∈E

x(ei) = ∑
ei∈E

wi = ∑
vi∈V ′0

wi ≤ B = r.

Since c is a winner of the weighted election (C,V1∪V0), for all d ∈C\{c} it holds that

scoreV1(c)+ scoreV0(c)≥ scoreV1(d)+ scoreV0(d).

Hence, c must have gained at least max{0,scoreV1(d)− scoreV1(c)} more points than
d from the weighted votes in V0. The only possibility to not obtain a point from a
positively weighted vote in V0 is to be in one of the last two positions. Consequently,
d must have been in one of the two last positions for at least max{0,scoreV1(d)−
scoreV1(c)} positively weighted votes in V0 and thus, it holds that

bℓ(d) = max{0,scoreV1(d)− scoreV1(c)} ≤ ∑
ei∈δ (d)

x(ei) = ∑
ei∈δ (d)

wi ≤ B = bu(d).

Hence, all requirements are satisfied and I′ ∈ GBEC is true.
From right to left, suppose I′ ∈ GBEC. Then there exists a function x : E→N such

that
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(i) ∑e∈E x(e)≤ r is satisfied,
(ii) for all e ∈ E, it holds that aℓ(e)≤ x(e)≤ au(e), and

(iii) for all d ∈C \{c}, it holds that bℓ(d)≤ ∑e∈δ (d) x(e)≤ bu(d).

For every edge ei ∈ E, we set the weight of the corresponding vote vi ∈V0 to wi = x(ei).
For all remaining votes in V0, we set the weight to 0. Consequently, we satisfy wi ∈
Ri = [0,ri] for every vote vi ∈V0, since

aℓ(ei) = 0≤ x(ei) = wi ≤ au(ei) = ri

holds according to (ii). Furthermore, according to (iii), every candidate d ∈ C \ {c}
satisfies

bℓ(d) = max{0,scoreV1(d)− scoreV1(c)}
≤ ∑

e∈δ (d)
x(e)≤ bu(d) = B. (32)

The overall sum of points allocated to c by the positively weighted votes from V0 cor-
responds to scoreV0(c) = ∑e∈E x(e), as c never occurs in one of the last two positions
for the positively weighted votes in V0. The overall sum of points allocated to every
other candidate d ∈C \{c} by the votes in V0 corresponds to

scoreV0(d) = ∑
e∈E

x(e)− ∑
e∈δ (d)

x(e).

Hence, we obtain

∑
e∈δ (d)

x(e) = ∑
e∈E

x(e)− scoreV0(d) = scoreV0(c)− scoreV0(d).

Together with (32) this yields

max{0,scoreV1(d)− scoreV1(c)} ≤ scoreV0(c)− scoreV0(d),

which implies

scoreV1(d)− scoreV1(c)≤ scoreV0(c)− scoreV0(d),

which in turn is equivalent to

scoreV1(d)+ scoreV0(d)≤ scoreV1(c)+ scoreV0(c),

so c is a winner of the weighted election (C,V1∪V0).
Finally, from (i) we know that

∑
ei∈E

x(ei) = ∑
ei∈E

wi = ∑
vi∈V0

wi ≤ r = B.

Consequently, I ∈ 2-veto-PWUW-BW-RW-N is true and it follows that 2-veto-
PWUW-BW-RW-N is in P.

With the reduction from Theorem 3.1 it immediately follows that PWUW-BW-N
is in P, too. ❑

The only cases left are k-veto-PWUW-BW-RW-N and k-veto-PWUW-BW-N for
k ≥ 3. For these problems, we establish hardness results.
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Theorem 5.12. For each k≥ 3, k-veto-PWUW-BW-N and k-veto-PWUW-BW-RW-N
are NP-complete.

Proof. Membership in NP is obvious for both problems: We can simply guess a weight
allocation for the votes in V0 and then, for each solution guessed, we check whether this
allocation satisfies all requirements and makes c a winner of the weighted election.

In order to prove NP-hardness, we first give a reduction from X3C to 3-veto-
PWUW-BW-N. Afterwards, we will explain how to obtain NP-hardness for 3-veto-
PWUW-BW-RW-N and how to extend these proofs to all values k ≥ 3.

Let I = (B,S ) with B = {b1, . . . ,b3q} and S = {S1, . . . ,Sn} be a given X3C in-
stance. We construct a 3-veto-PWUW-BW-N instance I′ = (C,V1,V0,c,B) as follows.
Define C = {c,d1,d2,d3}∪B, where d1, d2, and d3 are dummy candidates required to
construct the votes in V1, and set B = q. Define V1 to consist of one vote of the form

u1 =
−→
B > d1 > d2 > d3 > c

and two votes of the form

u j =
−→
B > c> d1 > d2 > d3, j ∈ {2,3}.

Doing so, the candidates obtain the following scores from the votes in V1:

bi ∈B c d1 d2 d3

scoreV1(·) 3 2 1 0 0

Next, define V0 to consist of votes of the form

vi =
−−−→
B \Si > d1 > d2 > d3 > c>

−→
Si

for 1≤ i≤ m. Obviously, this construction of I′ is possible in time polynomial in |I|.
Note that no matter how many votes from V0 we weigh positively, c and all three

dummy candidates—d1, d2, and d3—always obtain the same number of points. Thus c
always beats all three dummy candidates in the weighted election (C,V1∪V0).

We now show that I ∈ X3C holds if and only if I′ ∈ 3-veto-PWUW-BW-RW-N
holds.

From left to right, assume that I ∈ X3C. That is, there exists an exact cover S ′ ⊆
S with |S ′| = q such that

⋃
Si∈S ′ Si = B. For every Si ∈S ′, we set the weight of

the corresponding vote vi ∈V0 to wi = 1 and for all remaining votes in V0 to 0. Hence,
∑|V0|

i=1 wi = q = B is satisfied.
Since S ′ is an exact cover, it holds that every bi ∈B appears exactly once behind

c in the positively weighted votes from V0, so c gains one point in the corresponding
vote, whereas bi obtains 0 points. Consequently, the candidates’ scores for the weighted
election are as follows:

bi ∈B c d1 d2 d3

score(C,V1∪V0)(·) q+2 q+2 q+1 q q
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Thus c is a winner of the weighted election (C,V1∪V0), so I′ ∈ 3-veto-PWUW-BW-N.
From right to left, assume that I′ ∈ 3-veto-PWUW-BW-N. Then there exist weights

wi for 1 ≤ i ≤ |V0| such that c is a winner of the weighted election (C,V1∪V0). Since
B = q, the sum of the weights for the votes in V0 cannot be larger than q. Accordingly,
we study the following two cases.

Case 1: ∑|V0|
i=1 wi < q. If the total sum of all weights over V0 is less than q, not all

candidates in B can appear behind c in the positively weighted votes from V0.
However, appearing behind c in the positively weighted votes in V0 is the only
chance for c to win against a candidate from B. Consequently, there must exist
at least one candidate bi ∈B who beats c. This contradicts the assumption that
c is a winner of the weighted election (C,V1∪V0), making this case impossible.

Case 2: ∑|V0|
i=1 wi = q. If there is a weight wi > 1 for a vote from V0, the same argument

as in Case 1 holds for the remaining 3(q− 1) candidates and remaining weight
of at most q− 2. Hence, for all weights it must hold that wi ≤ 1. Then every
candidate from B can occur behind c in the positively weighted votes from V0 at
least once. There cannot be a candidate occurring more than once behind c, since
then another candidate could not occur at all behind c. This would contradict our
assumption of c winning the weighted election in the same way as in the first
case. Therefore, every candidate from B must occur exactly once behind c in
the positively weighted votes from V0. Selecting these positively weighted votes
from V0 yields an exact cover, so I is a YES-instance.

This concludes the reduction and the NP-hardness proof for 3-veto-PWUW-BW-N.
By using k > 3 instead of three dummy candidates in this reduction, we obtain that
k-veto-PWUW-BW-N is NP-hard for k > 3 as well. Finally, applying Theorem 3.1 it
follows that for k≥ 3 k-veto-PWUW-BW-RW-N is NP-hard, and hence, NP-complete,
too. ❑

Note, that by the reduction CCAV ≤p
m PWUW-BW-RW-N from Proposition 3.2

combined with the results by Lin [49], who has shown that k-veto-CCAV is NP-hard
for k ≥ 3, we obtain an alternative proof to the previous one to show that k-veto-
PWUW-BW-RW-N is NP-complete. With this observation we conclude our study of
the scoring protocol k-veto, as we have settled the complexity for all four problem
variants of the possible winner with uncertain weights problem for all k ≥ 1.

5.3. Plurality with Runoff
For plurality with runoff, we have seen in Section 4 that all four variants of the pos-

sible winner with uncertain weights problem are in P when the weights have nonnega-
tive rational values. For nonnegative integer weights, we now solve all open questions
regarding the computational complexity of these problems.

In Proposition 3.3, we have shown that PWUW-BW-RW-N≤p
m CCAVsucc for every

voting rule. Recall that the succinct representation in a CCAVsucc instance means that
identical votes are not listed one by one but just once along with a binary number
giving the multiplicity of this vote. Together with the facts from Theorem 3.1 that
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PWUW-BW-N≤p
m PWUW-BW-RW-N and PWUW-RW-N≤p

m PWUW-BW-RW-N, it
follows that if CCAVsucc for plurality with runoff is in P, each of PWUW-BW-RW-N,
PWUW-BW-N, and PWUW-RW-N is in P for plurality with runoff as well. Erdélyi
et al. [30] showed that CCAV (in standard representation) is in P for plurality with
runoff. Alas, their approach cannot be easily adapted for succinct representation as
their algorithm iterates over all possible values ℓ′≤ ℓ and ℓ is not polynomially bounded
in succinct representation. Instead, after some preprocessing steps we will solve the
problem with an integer linear program (ILP) in the following theorem, similarly to
how Fitzsimmons and Hemaspaandra [35] have handled election problems in succinct
representation. Regarding tie-breaking, we assume that whenever a tie occurs, we can
freely choose how it is broken.

Theorem 5.13. Plurality-with-runoff-CCAVsucc is in P.

Proof. Let I = (C,c,V,W, ℓ) be a plurality-with-runoff-CCAVsucc instance. To deter-
mine whether I is a YES- or a NO-instance, we proceed as follows. We execute the
algorithm to be described below for every candidate d ∈C \{c}, checking whether we
can choose at most ℓ votes from W such that d and c enter the runoff and c wins it. Note
that the algorithm for any single candidate d runs in polynomial time, so we can execute
it for all candidates in C \ {c} in sequence while staying in time polynomial in |I|. If
our algorithm is successful for some candidate d ̸= c, we know that I is a YES-instance;
if it fails for every candidate d ∈C \{c}, we know that I is a NO-instance.

Let us begin to describe the algorithm for a single candidate d ∈ C \ {c}. The
following steps try to gradually build a set of votes V ′ with V ⊆V ′ and 0≤ |W ∩V ′| ≤ ℓ,
so that c and d reach the runoff which, in turn, is won by c. After every step we have
three options: (1) we have reached our goal, i.e., c wins the runoff, (2) our goal is not
reachable with the current candidate d, i.e., we terminate the algorithm at this point
and proceed with the next candidate, or (3) it is not yet determined whether c can win
and we continue with the next step.

In a first step, we select ℓ1
c = maxa∈C\{c,d} scoreV (a)− scoreV (c) votes with c on

top from W and add them to our new set of overall votes V ′. Analogously, we select
ℓ1

d = maxa∈C\{c,d} scoreV (a)− scoreV (d) votes with d on top from W and add these to
V ′. If ℓ1

c < 0 (respectively, ℓ1
d < 0) we know that c (respectively, d) already reaches the

runoff so we add no votes with c (respectively, with d) on top from W . Doing so, we
ensure that c and d have a score as least as high as all other candidates in C in the first
round. Of course, if there are not sufficiently many votes in W available, we skip d at
this point. Assuming some tie-breaking in favor of c and d, it follows that c and d enter
the runoff. Then we calculate diff ({c,d},V ′)(d,c), i.e., the score difference of d and c in
the runoff. If diff ({c,d},V ′)(d,c) ≤ 0, it follows that c wins the runoff and we’re done,
i.e., I is a YES-instance. Otherwise, if diff ({c,d},V ′)(d,c)> 0, it follows that c does not
yet win the runoff. Consequently, with the next steps we add additional votes to V ′ in
such a way that c obtains enough points in the runoff to beat d if that is possible.

In a second step, we therefore add all votes with c on top in W \V ′ to V ′. Surely,
this is the best way to influence the score difference of c and d in the runoff in favor of
c. Doing so, note that afterwards there are no further votes with c on top left in W , so
ξ c

max = scoreV ′(c) is the final score of c in the first round from this point on. Again, we
check if diff ({c,d},V ′)(d,c)≤ 0 and proceed to the next step if this is not the case.
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In a third step, let κ = min{ξ c
max,scoreV ′(d)} and denote by wc>d

a , for every a ∈
C \ {c,d}, the number of votes in W with a on top and c in front of d. For every
a ∈C \{c,d}, we can add min{wc>d

a ,κ− scoreV ′(a)} votes with a on top and c before
d from W to V ′. Doing so, we add points for c in the runoff, while ensuring that c and
d still enter the runoff. That is the case because we add only as many votes from W
with a on top to V ′ that afterwards a’s score is at most κ , which is less than or equal
to the scores of c and d in the first round. Again, we check whether c wins the runoff
against d. If that is the case, we have a YES-instance. Otherwise, we continue with step
four.

Step four is a preparing step ahead of the final—the fifth—step. Note that if κ =
ξ c

max would hold, adding further votes from W \V ′ to V ′ that have some a ∈C \{c,d}
on top and c before d would mean that either c or d does not join the runoff and we can
restart the process with the next candidate. Thus we can assume that κ = scoreV ′(d)<
ξ c

max. Now, we know that for all candidates a ∈C \{c,d} it holds that scoreV ′(a) = κ
or there are no more votes left in W \V ′ with a on top and c in front of d. For every
a ∈ C \ {c,d}, let ŵc>d

a be the number of votes left in W \V ′ with a on top and c in
front of d and let ŵd be the number of votes left in W \V ′ with d on top. Denote by

C′ = {a ∈C \{c,d} | ŵc>d
a > 0}

the set of candidates other than c or d for which we can still add further votes to V ′

that have a candidate from C′ on top and rank c in front of d. Note that all candidates
a ∈ C \ {c,d} with a /∈ C′ are irrelevant from this point on, as they are beaten or tied
by c and d and we have no reason to add votes that increase their score because those
votes (if there exist any) rank d in front of c. Of course, the previous steps can be done
only as long as the total sum of all added votes is smaller than ℓ. If we would reach ℓ at
some point, we immediately terminate the addition of votes and check whether c wins
the election.

Thus, entering the final step, we denote by ℓ′ > 0 the number of votes left to be
added. Furthermore, sort C′ = {a1, . . . ,am} ascendingly regarding ŵc>d

ai
, 1 ≤ i ≤ m.

We now design an ILP that can be used to determine whether c can win against d in
the runoff while adding no more than ℓ′ further votes from W \V ′ to V ′. The ILP
uses the two variables, ℓd and ℓother, representing the number of votes added with d or,
respectively, with a /∈ {c,d} on top and c before d from W \V ′ to V ′, and consists of
the following five constraints:

• Obviously, we cannot add more votes from W \V ′ to V ′ with d on top than there
are left, i.e., we demand

ℓd ≤ ŵd . (33)

• Next, we want to ensure that c and d enter the runoff. As discussed earlier, we
already added all votes with c on top to V ′. Hence, the following constraint
ensures that d has a score at most as high as the score of c, which, combined
with the last constraint, enforces all candidates a /∈ {c,d} to have a score at most
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as high as c as well:7

ℓd ≤ ξ c
max− scoreV ′(d). (34)

• The next constraint ensures that the number of votes with a candidate different
from c and d on top and c before d added to V ′ is high enough to ensure that c
beats d in the runoff. This works because every vote with a /∈ {c,d} on top and c
before d added to V ′ increases c’s runoff score by one and keeps d’s runoff score
constant,

diff ({c,d},V ′)(d,c)+ ℓd ≤ ℓother. (35)

• Of course, we can only add as many votes to V ′ in total as we are allowed by
the original instance. Hence, the next constraint ensures that we stay within this
bound,

ℓother + ℓd ≤ ℓ′. (36)

• Finally, the number of votes with a /∈{c,d} on top and c before d is not arbitrarily
large. Thus, for every candidate a ∈C′, we can add at most ŵc>d

a votes to V ′. At
the same time, we must ensure that d enters the runoff. Hence, the number of
votes with a on top added is also limited by the number of votes added with d on
top,

ℓother ≤
m

∑
i=1

min{ŵc>d
ai

, ℓd}. (37)

This constraint enforces d to enter the runoff together with c. The idea is that if
ℓother is smaller than or equal to the sum of these minima, we can assign to every
candidate in C′ some number of appropriate votes from W \V ′ according to her
corresponding minimum. With this allocation we ensure that we do not allocate
more votes than there exist for a given candidate a /∈ {c,d} and at the same time
we ensure that the score of a in the first round is at most as high as d’s score.
Since d’s score is at most as high as c’s score, it follows that c and d enter the
runoff.

It is easy to see that the above constraints are satisfied if and only if it is possible to
add at most ℓ′ unregistered votes from W \V ′ to V ′ such that c wins the runoff against
d.

This ILP has a constant number of variables, so it can be solved by the means
presented in the work of Lenstra [48]. However, to do so, we must explain how one
handles the last constraint regarding the minima. We loosely follow the ideas due to
Fitzsimmons and Hemaspaandra [35]. As noted earlier, the candidates in C′ are sorted
ascendingly with respect to ŵc>d

ai
, 1 ≤ i ≤ m. Thus, instead of solving one ILP, we

7It is important for this constraint that if we run the ILP, we know that ξ c
max > scoreV ′ (d).
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(6)

ℓother

ξ c
max (34)

ℓd

κ

ŵd

cd
C′C \C′

ŵc>d
ai

(33)

Figure 2: Sketch depicting the ILP constructed after the fourth step. The value of ℓd is here illustrated
as a potential value and the numbers in brackets refer to the corresponding constraints. The hatched area
corresponds to ℓother for the given ℓd .

in fact solve |C′| ILPs. For the first ILP, we assume for all candidates ai ∈ C′ that
ℓd = min{ŵc>d

ai
, ℓd}. For each i with 1≤ i≤ |C′|, in the i-th ILP we assume that for all

i′ < i, it holds that ŵc>d
ai′

= min{ŵc>d
ai′

, ℓd}, and for all i′′ with i≤ i′′ ≤ |C′|, it holds that
ℓd = min{ŵc>d

ai′′
, ℓd}. Doing so, we replace the sum over the minima appropriately for

each ILP. In addition, for the i-th ILP, 1≤ i≤ |C′|, we add a sixth constraint:

ŵc>d
ai−1
≤ ℓd ≤ ŵc>d

ai
, (38)

assuming ŵc>d
a0

= 0. This prevents the corresponding ILP from choosing a value for
ℓd that does not correspond to the chosen min-values of constraint (37). This approach
is illustrated in Figure 2. Afterwards, we solve all these constructed ILPs and check
for the feasible ones. If we obtain at least one feasible ILP, it follows that c can win
against d in the runoff, so I is a YES-instance. Otherwise, if all ILPs are infeasible, it
follows that c cannot win against d and we go to the next candidate; if c fails against
all candidates d ∈C \{c}, I is a NO-instance.

Finally, we discuss how we handle lists of votes in succinct representation in the
algorithm above. Of course, V ′ is then also given in succinct representation, and when-
ever we have said to “add votes” from one list in succinct representation to V ′, we
mean that for every vote type of the votes to add we increase its binary number in V ′

by the value to add, thus adding votes in bulk instead of one by one. Similarly, when
performing difference operations A \B of lists of votes in succinct representation, we
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decrease a vote types’ number in A by the vote types’ number in B, keeping it at least
zero. ❑

Let us briefly discuss the underlying idea that helped us to design and execute this
proof. Once the fourth step of the proof is done, and we prepare everything for the ILP
to be solved, we named the idea for the upcoming part as the buoy principle. Basically,
we imagined the ILP to take place in an empty box of height ξ c

max that is slowly filled
with water. Furthermore, we thought of ℓd as a buoy leashed by a chain of length ŵd
to the ground of the box. The water level then described the current value of ℓother,
taking the buoy ℓd with upwards. The amount of water is not infinite but corresponds
to the maximum value ℓother could take. Slowly filling the box with water, we increase
ℓother in order to improve c’s runoff score. However, as ℓd rises with the water level, we
ensure that d enters the runoff together with c and no other candidate kicks d out of the
runoff. At some point either there is no more water left to be added to the box, i.e., we
added as many votes as possible to V ′ with c before d, the box is completely filled, i.e.,
adding more votes to V ′ would prevent c from joining the runoff, or the buoy cannot
raise anymore and would drown, i.e., adding more votes to V ′ would prevent d from
joining the runoff. At this point, we know that we cannot find a better constellation of
votes to be added to V ′ in favor of c to potentially win the runoff and all that is left to
do is to check whether c in this resulting setting indeed wins the runoff. We think that
this idea of the buoy principle might be useful in other settings that try to solve similar
problems as well. Using the metaphor of a buoy in a box slowly filling with water helps
to imagine the most important—even though, of course, not every—constraint of such
an ILP and helps to write down all formal conditions of the ILP.

Combining the initial argument at the beginning of this section with Theorem 5.13,
we immediately obtain the following corollary.

Corollary 5.14. For plurality with runoff, PWUW-BW-RW-N, PWUW-RW-N, and
PWUW-BW-N are in P.

Now, having this corollary and the previous proof, the only question left open for
plurality with runoff regards the computational complexity of PWUW-N. We answer
this question with the next theorem.

Theorem 5.15. For plurality with runoff, PWUW-N is in P.

Proof. For plurality with runoff, a given instance I = (C,V1,V0,c) of PWUW-N can
be solved in polynomial time as follows. If there is a vote in V0 with c on top, we have
a YES-instance, as we can simply assign this vote a large enough weight (e.g., |V1|)
and all other votes a weight of zero, so that c wins the runoff. Otherwise, we define
a PWUW-RW-N instance I′ = (C,V1,V0,c,R) (for plurality with runoff), with each
region Ri ∈ R ranging from zero to |V0||V1|. We can solve this instance in polynomial
time, see Corollary 5.14, and then exploit the fact that I is a YES-instance of PWUW-N
if and only if I′ is a YES-instance of PWUW-RW-N. To see this, we show that we can
never assign a weight greater than |V0||V1| to a vote in V0 if c wins. Assume for a
contradiction that a vote v ∈V0 was given a weight greater than |V0||V1| and c won the
runoff. Let d be the candidate on top of v. We know that none of the votes in V0 has
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c on top; otherwise, we would already be done. So c has a score of at most |V1| in the
first round. As c reaches the runoff and the score of d is greater than c’s score, all other
candidates C \ {c,d} have at most the same score as c. Thus the weight of each other
vote in V0 \{v} that does not have d on top is at most |V1| (i.e., the upper bound on c’s
score). Then the score c gains in the runoff from the eliminated candidates is at most
(|V0| − 1)|V1| which sums up to an upper bound of |V0||V1| of c’s score in the runoff.
But d’s score is greater than |V0||V1|, since the vote v with weight greater than |V0||V1|
has d on top, so c loses the runoff, which is a contradiction. Note that there might be
other votes in V0 that have d on top, but their weight is irrelevant for our argument,
as d already wins the first round and the runoff even without additional points from
them. ❑

5.4. Veto with Runoff

Turning now to veto with runoff, we investigate our four PWUW variants for
nonnegative integer weights. Again, as for plurality with runoff, we assume that
if any ties occur, we can freely choose how to break these. Furthermore, we also
make use of Proposition 3.3, which said that PWUW-BW-RW-N, PWUW-BW-N, and
PWUW-RW-N reduce to CCAVsucc (i.e., for instances in succinct representation) for
any voting rule. For veto with runoff, CCAV in standard representation was shown
to belong to P by Erdélyi et al. [30], but we run into the same issue as for plurality
with runoff when we try to adapt their proof to obtain a reduction for instances in suc-
cinct representation. Therefore, we begin by proving that CCAVsucc can be solved in
polynomial time for veto with runoff, too.

Theorem 5.16. For veto with runoff, CCAVsucc is in P.

Proof. Let I = (C,c,V,W, ℓ) be a CCAV instance in succinct representation. We pro-
ceed as follows to determine whether I is a YES- or a NO-instance.

The procedure we describe afterwards runs in time polynomial in |I|, so we can
execute it for all candidates d ∈C \{c} in sequence. Furthermore, we emphasize that
there is no situation where it would make sense to add votes from W that veto c. Let
V ′ denote the final list of votes with V ⊆ V ′ and 0 ≤ |W ∩V ′| ≤ ℓ constructed in the
following steps.

We proceed as follows to ensure that c and d enter the runoff. Let κ =
min{scoreV (c),scoreV (d)}. For every candidate a ∈ C \ {c,d} with scoreV (a) > κ ,
we must add scoreV (a)− κ votes from W to V ′ that veto a. If there are not enough
such votes in W or we cannot add them due to the limit ℓ, either c or d cannot reach the
runoff. In this case, we can skip d and proceed with the next candidate from C \ {c}.
Otherwise (i.e., if there are enough such votes in W that we can add), check whether
diff ({c,d},V ′)(c,d)≥ 0 is true for the current V ′. In this case, c beats or ties with d in the
runoff, and it follows that I is a YES-instance. If this is not the case, we must add more
votes to V ′ that rank c in front of d. We can only add at most

min
a∈C\{c,d}

diff (C,V ′)(d,a)
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votes vetoing d from W \V ′ to V ′. Adding more votes would cause d to not enter the
runoff. If this is not enough to make up the deficit in the runoff, i.e., if

diff ({c,d},V ′)(c,d)< 0

is still true for the current V ′, we must add |diff ({c,d},V ′)(c,d)| votes from W \V ′ to V ′

which veto some candidate other than c and d and rank c before d. At this point, it does
not matter which votes we add since those votes only hurt the vetoed candidate in the
first round, which is neither c nor d. If there are not enough votes of this type in W \V ′,
we cannot make c win against d in the runoff. Hence, we must proceed with the next
candidate. Otherwise, c wins the runoff and, thus, it follows that I is a YES-instance. If,
at any point, we have reached the limit ℓ of added votes, we stop the process and check
if we have successfully made c a winner or skip to the next candidate. If we iterated
over all candidates without finding a candidate against which c wins the runoff, I is
a NO-instance. For a discussion on how lists of votes in succinct representation are
handled see the end of the proof of Theorem 5.13. ❑

We immediately have the following corollary.

Corollary 5.17. For veto with runoff, the problems PWUW-RW-N, PWUW-BW-N,
and PWUW-BW-RW-N are in P.

The only open case for veto with runoff is PWUW-N, which we consider now.

Theorem 5.18. For veto with runoff, PWUW-N is in P.

Proof. Let I = (C,V1,V0,c) be a PWUW-N instance for veto with runoff. We assume
(just as Erdélyi et al. [30] do) that ties are always broken in favor of c. For d ∈C, denote
by D⋆

d = {r ∈C | scoreV1(r)⋆ scoreV1(d)} ⊆C the set of candidates from C satisfying
the relation determined by ⋆ (e.g., >) with d regarding the scores in V1. We distinguish
the following three cases:

Case 1: Assume that there are at least two candidates d1,d2 ∈ D>
c without votes veto-

ing them in V0. In this case, we cannot allocate weights to the votes in V0 such
that c has a veto score at least as high as one of the two candidates. Hence, c will
never enter the runoff, so I is a NO-instance.

Case 2: Assume that there is only one candidate d1 ∈ D>
c without votes vetoing her

in V0. In this case, we can allocate weights to the votes in V0 such that c enters
the runoff together with d1. In order to achieve this, for every candidate d2 ∈
D>

c \{d1}, allocate weight scoreV1(d2)−scoreV1(c) to a vote that vetoes d2 in V0.
Afterwards, c has a score at least as high as every other candidate in D>

c \ {d1}
and, thus, reaches the runoff. Now, if c beats or ties d1 in the runoff, we are done
and I is a YES-instance. Otherwise, we might still be able to make c win the
runoff by adjusting the weight allocation as follows. We check whether there is
a vote v′ ∈V0 which ranks c higher than d1.

If that is not the case, I is a NO-instance as c can never beat d1 in the runoff.
Otherwise, we assign additional weight to v′ such that c wins the runoff and,
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thus, I is a YES-instance. Note that we do this check before we finally assign
the weights, and then assign additional weight at least as high as the sum of the
weights of the votes in V1 and V0 with d1 in front of c to v′, so that c wins the
runoff.

Case 3: All candidates in D>
c are vetoed by some votes in V0. Hence, we can allocate

weights to these votes in V0 such that c beats all candidates in D>
c . Furthermore,

there may be several candidates who can reach the runoff together with c, de-
pending on how weights are allocated. Let e ∈C \ {c} be some candidate with
the highest score in V1 who is not vetoed by any vote in V0; in case all candidates
are vetoed by some vote in V0, we set e to be a candidate with the lowest score
in V1. It is clear that a candidate reaching the runoff can only have at most as
many vetoes as e. Then D≥e \ {c} is the set of candidates that can potentially
join c in the runoff (we achieve this by assigning additional weight to votes in
V0 vetoing candidates that score higher than the candidate that we want in the
second stage in V1). We now iterate over all candidates d1 ∈ D≥e \{c} and check
whether we can allocate weights such that c wins the runoff against d1:

1. If there is a vote in V0 which does not veto d1 and ranks c in front of d1, we
have a YES-instance as we can assign additional weight to this vote (e.g.,
|V1|(|V0|+ 1)) such that c wins the runoff against d1. It is important that
this vote does not veto d1, as otherwise, it might happen that d1 does not
enter the runoff at all because of the additional weight.

2. If there is no vote in V0 vetoing d1 and ranking c in front of d1, we check if c
can win or tie the runoff against d1 by assigning as little weight as possible
in order to make them both reach the runoff (i.e., for each candidate with
less vetoes in V1 than d1 we assign weight to a vote in V0 vetoing her until
she has the same number of vetoes). If this is possible, we have a YES-
instance, and otherwise we skip to the next candidate of the iteration.

3. If there are votes in V0 vetoing d1 but no votes in V0 not vetoing d1 and
ranking c in front of d1, we assign, similarly to the previous case, as little
weight as possible in order to make them both reach the runoff and then
allocate as much additional weight as possible to votes in V0 vetoing d1
while ensuring that d1 still reaches the runoff. Then we check if c defeats
or ties d1 in the runoff. If this is the case, we have a YES-instance, and
otherwise we skip to the next candidate in the iteration.

If c cannot win against any candidate of D≥e \ {c} in the runoff, we have a NO-
instance.

Obviously, all steps can be done in polynomial time, which shows that the problem
belongs to P. ❑

To conclude, we have answered all open questions for veto with runoff.

5.5. Copelandα , Ranked Pairs, Bucklin, and Fallback
We now study not only a single voting system but instead several voting sys-

tems: the family of Copelandα elections for each rational number α ∈ [0,1], ranked
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pairs, Bucklin, and fallback elections. We will prove NP-completeness of all corre-
sponding variants of the possible winner with uncertain weights problem, starting with
Copelandα .

Theorem 5.19. For each rational number α ∈ [0,1], all four variants of Copelandα -
PWUW-N are NP-complete.

Proof. As for the previous NP-completeness proofs, NP membership is easy to see.
We first prove NP-hardness for Copelandα -PWUW-N and afterwards explain how

to extend the proof to the remaining variants PWUW-BW-N, PWUW-RW-N, and
PWUW-BW-RW-N for Copelandα .

Now, to prove that Copelandα -PWUW-N is NP-hard, we provide a polynomial-
time many-one reduction from X3C. Let I = (B,S ) with B = {b1, . . . ,b3q} and
S = {S1, . . . ,Sn} be an X3C instance. We construct a Copelandα -PWUW-N instance
I′ = (C,V1,V0,c) as follows. First, define the set of candidates as C = B ∪{c,d,e},
where c is the distinguished candidate. Next, for every i, 1 ≤ i ≤ n, we add a vote of
the form

vi = d > e>
−→
Si > c> · · ·

to V0. Finally, to define the votes in V1, we construct the following WMG G = (C,E).
(Note that the vertices of G are the candidates of the election.) To define the weighted
edge set E to contain

• the edges (c,d), (d,e), and (e,c), each with weight q+1, and

• for every i, 1≤ i≤ 3q,

– the edges (d,bi) and (e,bi), both with weight q+1, and

– the edge (bi,c), with weight q−3.

All other edges not mentioned explicitly are defined to have weight at most 1. The
resulting weighted majority graph is illustrated in Figure 3 and we can derive the cor-
responding votes for V1 by McGarvey’s trick as explained in Section 2.

c d

e

bi

q+1

q+1q+1

q+1

q+1

q−3

Figure 3: Weighted majority graph G = (C,E) used to provide a polynomial-time many-one reduction from
X3C to Copelandα -PWUW-N. We only depict a single vertex bi representing all vertices from B.
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This completes the construction of I′, which obviously can be done in time poly-
nomial in |I|. Before we now prove that I ∈ X3C if and only if I′ ∈ Copelandα -
PWUW-N, let us make some observations with respect to I′. First of all, note that
in the pairwise comparison, no matter what weights we allocate to the votes in V0,

• d always beats e,

• e always beats c, and

• d and e always beat all bi, 1≤ i≤ 3q.

For example, that d always beats e is because d appears q+1 times more often ahead
of e in the votes in V1 than the other way around and all votes in V0 have d ahead of
e; analogous arguments hold for the other two observations. Furthermore, paying only
attention to the votes in V1, c wins against d as c appears q+1 times more often ahead
of d than d ahead of c. Also, every bi, 1 ≤ i ≤ 3q, wins against c, as every bi appears
q−3 times more often ahead of c than c ahead of bi.

Table 3: Copelandα scores of the candidates in (C,V1) from instance I′.

c d e bi ∑
c – 1 0 0 1
d 0 – 1 1 3q+1
e 1 0 – 3q 3q+1
bi 1 0 0 ≤ 1 ≤ 3q

Table 3 summarizes the resulting Copelandα scores of the candidates in the election
(C,V1) from instance I′. From the previous observations we can conclude that e, no
matter what weights we allocate to the votes in V0, always has a Copelandα score of
3q+ 1. Furthermore, d always has a Copelandα score of at least 3q+ 1 and at most
3q+2 (it is 3q+2 if d also beats c), and all bi, 1≤ i≤ 3q, have a Copelandα score of
at most 3q (it is 3q− 1 if c beats the respective bi). Finally, c can have a Copelandα

score of at most 3q+1, namely if c beats d and all bi, 1≤ i≤ 3q.
Now, let us show that I ∈ X3C if and only if I′ ∈ Copelandα -PWUW-N.
From left to right, assume that I is a YES-instance X3C. Then there exists an exact

set cover S ′ ⊆S of size |S ′| = q. For every Si ∈S ′, we allocate weight wi = 1 to
vi ∈ V0. Consequently, in total, we allocate a weight of q to the votes in V0. Thus c
still beats d in the weighted election (C,V1 ∪V0), as c had a point advantage of q+ 1
from V1 which now has shrunk to 1. Furthermore, since S ′ is an exact cover of B,
every bi appears exactly once ahead of c and q− 1 times behind c in the votes from
V0 with weight 1. Consequently, the point advantage of every bi over c flipped from
q−3 to q−3+1− (q−1) = −1, i.e., c now wins against all bi, 1 ≤ i ≤ 3q. Thus, e,
d, and c obtain a Copelandα score of 3q+1 while every bi obtains a Copelandα score
of at most 3q− 1, so c is a winner of (C,V1 ∪V0) and therefore, I′ a YES-instance of
Copelandα -PWUW-N.

Conversely, from right to left, assume that I′ is a YES-instance of Copelandα -
PWUW-N. In that case, we have a weight allocation to the votes in V0 such that c
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wins the weighted election (C,V1∪V0). From our previous observations we know that
c can only win the election if c beats d and all bi, 1 ≤ i ≤ 3q. Thus, the sum of all
weights allocated to votes in V0 must be at most q, as otherwise c no longer beats d.
If the sum of all weights is less than q, there is at least one candidate bi, that appears
once ahead of c in the positively weighted votes from V0 but at most q−2 times behind
c, so c does not win against bi, causing c to not be a winner of the weighted election.
Therefore, the only possibility is that the overall weight allocated to the votes in V0
equals q, and every candidate from B appears exactly once ahead of c, yielding an
exact set cover via the positively weighted votes in V0, so I is a YES-instance of X3C.
It follows that Copelandα -PWUW-N is NP-complete.

To see that Copelandα -PWUW-BW-N is NP-complete, we can add a bound of
B = q to I′. For Copelandα -PWUW-RW-N, we define the range of every vote in V0 as
{0,1}, and we combine both restrictions for Copelandα -PWUW-BW-RW-N. ❑

Faliszewski et al. [32] proved that Copelandα -CCAV is NP-complete for all ratio-
nals α , 0 ≤ α ≤ 1. Combining this result with Proposition 3.2 offers an alternative
proof for the NP-completeness of Copelandα -PWUW-BW-RW-N just proven. Note,
however, that Theorem 5.19 establishes NP-completeness for more problems than just
Copelandα -PWUW-BW-RW-N.

Having settled the complexity of all four problem variants for the voting rule
Copelandα , we now turn to ranked pairs to show the same results.

Theorem 5.20. All four problem variants of ranked-pairs-PWUW-N are NP-
complete.

Proof. NP membership is again easy to see for all four variants.
We first prove NP-hardness for ranked-pairs-PWUW-N and then explain how to

extend it to the remaining three variants. To show NP-hardness for ranked-pairs-
PWUW-N, we provide a polynomial-time many-one reduction from X3C. Let I =
(B,S ) with B = {b1, . . . ,b3q} and S = {S1, . . . ,Sn} be some given X3C instance.
We construct the ranked-pairs-PWUW-N instance I′ = (C,V1,V0,c) as follows. First,
define the set of candidates as C =B∪{c,d,e}, where c is the distinguished candidate.
Next, the set V0 of votes without assigned weights consists of

vi = e>
−→
Si > c> d > · · ·

for 1≤ i≤ n. Finally, the votes in V1 are derived from the following WMG G = (C,E)
via McGarvey’s trick, where again the vertices of G are the candidates of the election.
We specify the the following weighted edges in E:

• (c,d) and (e,c) with weight 2q+1,

• (d,e) with weight 4q+1, and

• for every i, 1≤ i≤ 3q,

– the edges (d,bi) and (e,bi), both with weight 2q+1, and

– the edge (bi,c) with weight 4q−1.
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All other edges not explicitly mentioned are defined to have a weight of at most 1.
The resulting graph G looks similarly to the WMG in Figure 3, except with different
weights assigned to the edges. This finishes the construction of I′ in time polynomial
in |I|. Table 4 shows the pairwise score differences for the votes in V1.

Table 4: Pairwise score differences for candidates in C based on the votes in V1 from instance I′.

c d e bi

c – 2q+1 −(2q+1) −(4q−1)
d −(2q+1) – 4q+1 2q+1
e 2q+1 −(4q+1) – 2q+1
bi 4q−1 −(2q+1) −(2q+1) ≤ 1

Next, we prove that I is a YES-instance of X3C if and only if I′ is a YES-instance
of ranked-pairs-PWUW-N.

From left to right, assume that I is a YES-instance of X3C. Then there exists an
exact set cover S ′ ⊆S with |S ′| = q. For every Si ∈S ′, we set the weight of vote
vi ∈ V0 to 1, and for all other votes in V0 to 0. Consequently, every bi, 1 ≤ i ≤ 3q,
appears exactly once ahead of c and d and q−1 times behind c and d. Table 5 shows
the resulting score differences. From this table we can see that there is a tie between
all candidates such that, assuming a tie-breaking mechanism in favor of c, c is a winner
of the weighted election (C,V1 ∪V0) and hence, I′ is a YES-instance of ranked-pairs-
PWUW-N.

Table 5: Pairwise score differences for candidates in C based on the votes in V1 ∪V0 from instance I′.

c d e bi

c – 3q+1 −(3q+1) −(3q+1)
d −(3q+1) – 3q+1 3q−1
e 3q+1 −(3q+1) – 3q+1
bi 3q+1 −(3q−1) −(3q+1) ≤ q+1

From right to left, assume that I′ is a YES-instance of ranked-pairs-PWUW-N.
Consequently, we have a weight allocation to the votes in V0 such that c wins the
weighted election (C,V1∪V0). We distinguish the following three cases:

Case 1: ∑vi∈V0
wi > q. In this case, it follows from the way how the votes in V0

are constructed that (e,c),(c,d), and (e,bi), 1 ≤ i ≤ 3q, have a weight of at
least 3q+ 2 while (d,e) has a weight of at most 3q. Thus, no matter what the
weights of (c,bi),(d,bi), and (bi,b j) are, the preference relations e > c, e > bi,
and c > d are always fixed first, enforcing e > d due to transitivity, before (d,e)
is considered. It follows that e is preferred to each of c, d, and bi; hence, c
cannot be a winner of the weighted election (C,V1 ∪V0), a contradiction to our
initial assumption, so this case is impossible.
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Case 2: ∑vi∈V0
wi < q. If the sum of all weights of voters in V0, denoted by τ =

∑vi∈V0
wi, satisfies τ < q, then we have a weight of 4q+1−τ for (d,e), a weight

of 2q+1+ τ for (e,c), and a weight of 2q+1+ τ for (c,d). Additionally, there
must be at least one b∗i who appears at least once in front of c and d and only τ−1
times behind c and d, so we have a weight of 4q−1+1− (τ−1) = 4q+1− τ
for (b∗i ,c). With τ < q we obtain that

4q+1− τ > 2q+1+ τ.

Therefore, the final order contains b∗i > c> d > e, so c cannot win the weighted
election (C,V1∪V0), again a contradiction to our initial assumption making this
case impossible.

Case 3: ∑vi∈V0
wi = q. From the previous two cases we know that this third case is

the only possible case. With the sum of the weights allocated to the votes in V0
being equal to q, it follows that the three edges (c,d), (d,e), and (e,c) each have
a weight of 3q+1. If every candidate in C \{c,d,e} = B appears exactly once
ahead of c and d and q−1 times behind c and d, it follows that (bi,c) has a weight
of 3q+1 and (d,bi) has a weight of 3q−1, so there is a tie among c, d, bi, and
e (which means that c wins the weighted election (C,V1∪V0) with a tie break in
favor of c). If, however, there is at least one candidate bi appearing at least twice
in front of c and d and hence at most q−2 times behind c and d, it follows that
the edge (bi,c) would have a weight of 4q−1+2−(q−2) = 3q+3> 3q+1, so
bi would win the election, contradicting our assumption that c wins the weighted
election. It follows that every candidate bi appears exactly once in front of c
and d and q− 1 times behind these two candidates. Therefore, the positively
weighted votes from V0, each with weight 1, form an exact set cover for B of
size q.

Thus ranked-pairs-PWUW-N is NP-complete. To extend this proof to
ranked-pairs-PWUW-BW-N, we add a bound B = q to I′. For ranked-pairs-
PWUW-RW-N, we add regions {0,1} for all votes in V0 to I′, and we combine both
restrictions for ranked-pairs-PWUW-BW-RW-N. ❑

Next, we consider Bucklin voting.

Theorem 5.21. All four problem variants of Bucklin-PWUW-N studied here are NP-
complete.

Proof. As for the previous NP-completeness results, NP membership is easy to see.
To prove NP-hardness, we first show that Bucklin-PWUW-N is NP-hard and af-

terwards extend the proof to the remaining variants.
The NP-hardness result for Bucklin-PWUW-N follows by a polynomial-time

many-one reduction from X3C. Let I = (B,S ) with B = {b1, . . . ,b3q} and S =
{S1, . . . ,Sn} be some given X3C instance. We construct a Bucklin-PWUW-N instance
I′ = (C,V1,V0,c) as follows. First, define the set of candidates as C = B∪{c,d}∪D∪
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D′ with D = {d1, . . . ,d3q} and D′ = {d′1, . . . ,d′3q} as auxiliary candidates and c as the
distinguished candidate. Next, for every Si ∈S , we add a vote of the form

vi = d >
−→
Si > c>

−→
D >

−→
D′ >B \Si

to V0. Lastly, we add q−1 copies of the vote v =
−→
B > c >

−→
D′ >

−→
D > d and one vote

of the form
−→
D′ > c >

−→
B > d >

−→
D to V1. This completes the construction of I′ in time

polynomial in |I|.
Now, we prove that I is a YES-instance of X3C if and only if I′ is a YES-instance

of Bucklin-PWUW-N.
From left to right, assume that I is a YES-instance of X3C. Then there exists an

exact set cover S ′ ⊆S of size |S ′|= q for B. For every Si ∈S ′, we set the weight
of the corresponding vote vi ∈ V0 to 1, and to 0 for all remaining votes in V0. Doing
so, we obtain a total sum of 2q for the votes in V1∪V0. Table 6 lists the corresponding
Bucklin scores of all candidates in C.

Table 6: Bucklin scores for the candidates in C if I is a YES-instance of X3C.

c d bi di d′i
3q+1 6q+2 ≥ 3q+2 ≥ 6q+2 ≥ 3q+6

One can see that c has the smallest Bucklin score and, hence, wins the weighted
election (C,V1∪V0), so I′ is a YES-instance of Bucklin-PWUW-N.

From right to left, assume that I′ is a YES-instance of Bucklin-PWUW-N. In this
case, we have some weights wi ∈ N for the votes vi ∈V0 such that c wins the weighted
election (C,V1 ∪V0). If the sum of the weights of the votes in V0 is greater than q
(i.e., if ∑vi∈V0

wi > q), d obviously has a Bucklin score of 1, whereas c has a Bucklin
score greater than 1, so d wins the weighted election, a contradiction to our initial
assumption that c wins. If the sum of weights of the votes in V0 is less than q (i.e., if
∑vi∈V0

wi < q), then there is at least one bi ∈B that appears at least once at the top
of one of the positively weighted votes from V0 and q− 1 times in the votes from V1,
so this candidate has a Bucklin score of at most 3q, whereas c has a Bucklin score of
at least 3q+1, again a contradiction to our initial assumption that c wins the election.
Consequently, ∑vi∈V0

wi = q must hold. Now, if there is one bi that appears at the top of
more than one positively weighted vote from V0, this candidate bi has a Bucklin score
of at most 3q while c has a Bucklin score of 3q+1, which would again contradict our
assumption that c wins the election. Hence, every candidate bi from B must appear
exactly once at the top of one positively weighted vote from V0, so these votes form an
exact set cover for B of size q, yielding that I is a YES-instance of X3C.

This shows that Bucklin-PWUW-N is NP-complete. To see that Bucklin-
PWUW-BW-N is NP-complete, we can add a bound of B = q to the instance I′. To see
that Bucklin-PWUW-RW-N is NP-complete, we can add regions {0,1} for all votes in
V0 to I′, and to see that Bucklin-PWUW-BW-RW-N is NP-complete, we combine both
of the previous requirements for I′. ❑

47



Bucklin voting can be seen as the special case of fallback voting where all votes
consist of complete linear orders over the candidates. Hence, the NP-hardness results
for Bucklin voting can immediately be transferred to fallback voting. NP membership
for fallback follows by the same arguments as for the previous voting rules. We thus
have the following corollary.

Corollary 5.22. All four problem variants of fallback-PWUW-N are NP-complete.

5.6. Borda

Finally, we turn to the voting rule due to Borda [16], which perhaps is the most
famous scoring protocol and has been intensively studied in social choice theory and in
computational social choice (see the survey by Rothe [56] and the discussion of related
work by Neveling and Rothe [51]). As for k-veto, k ≥ 3, we establish hardness results
for Borda, but now even for all four of our problem variants.

Theorem 5.23. For Borda, all four problem variants of PWUW-N are NP-complete.

Proof. Membership in NP is obvious for all problem variants but Borda-PWUW-N.
For Borda-PWUW-N, it is not trivial to show that a solution that can be used as a wit-
ness is polynomial in the input size. But in this case we can construct in polynomial
time an integer linear program that solves the problem similarly to the linear programs
that we constructed in Section 4 for the variants with rational weights. Then NP mem-
bership of Borda-PWUW-N follows from the reduction from Borda-PWUW-N to the
NP-complete problem INTEGER-PROGRAMMING-FEASIBILITY.8

Regarding the four NP-hardness results, we will prove NP-hardness for Borda-
PWUW-N and then describe how the reduction can be extended to obtain NP-
hardness for the remaining cases. So, in order to prove that Borda-PWUW-N is NP-
hard, we again reduce from X3C. Let I = (B,S ) be a given X3C instance with
B = {b1, . . . ,b3q} and S = {S1, . . . ,Sn}. We construct a Borda-PWUW-N instance
I′ = (C,V1,V0,c) as follows. Define C = {c,d,d′}∪B∪X with X being a set of 9q2

buffer candidates. For each bi ∈B and x j ∈ X , we add the two votes

−−−−−−−→
C \{bi,x j}> bi > x j and bi > x j >

←−−−−−−−
C \{bi,x j}

and q times two votes of the form

−−−−−−→
C \{d,d′}> d′ > d and d′ > d >

←−−−−−−
C \{d,d′}

to V1. Doing so, we construct the following point distances between c and each of the
other candidates in the election (C,V1):

1. diff (C,V1)
(c,d) = q,

2. diff (C,V1)
(c,d′) =−q,

8We note in passing that with this technique we can show NP membership of E -PWUW-N for every
scoring protocol E .
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3. diff (C,V1)
(c,bi) =−|X | for every bi ∈B, and

4. diff (C,V1)
(c,x j) = 3q for every x j ∈ X .

For each i, 1≤ i≤ n, we add a vote of the form

vi = d > c>B \Si > X > Si > d′

to V0. Obviously, this construction of I′ is possible in time polynomial in |I|.
Note that c does not win in (C,V1), and no matter how many votes from V0 we

weigh positively, we know that

• c beats d′, as c gains at least q+1 points more than d′ from each vote in V0; and

• c beats every buffer candidate x j ∈ X , as c is in front of each of them in all votes
of V0 and already beats them in (C,V1).

Thus we only need to worry about the point balances between c and d and between c
and each candidate in B.

It remains to prove that I ∈ X3C if and only if I′ ∈ Borda-PWUW-N.
From left to right, assume that I ∈ X3C. Hence, there is an exact cover S ′ ⊆S

with |S ′| = q such that
⋃

Si∈S ′ Si = B. For every Si ∈S ′, we set the weight of the
corresponding vote vi ∈ V0 to wi = 1 and for all remaining votes in V0 to 0. Since we
have assigned a total weight of q to the votes in V0 and c is directly behind d in all those
votes, c now ties with d. The votes with weight 1 correspond to an exact cover, so for
each bi ∈B with bi ∈ S j such that S j ∈S ′, c gains at least |X | points on bi from the
vote v j and is in front of bi in all other votes from V0. Thus c beats or ties all candidates
of B. Therefore, c is a winner of the weighted election (C,V1∪V0), which means that
I′ ∈ Borda-PWUW-N.

From right to left, assume that I ̸∈ X3C. Then, for every S ′ ⊆S with |S ′| ≤ q,
there exists at least one bi ∈B such that bi /∈

⋃
S j∈S ′ S j. First, note that we cannot

assign a total weight of more than q to the votes in V0 since, for every vote of positive
weight, c loses at least one point on d, as c is directly behind d in all votes of V0 and
has a point buffer of only q from the votes in V1. Now, assume a total weight of at most
q has been assigned to the votes in V0 and let S ′ ⊆S be such that for each S j ∈S ′

the corresponding vote v j has weight one or more. Obviously, |S ′| ≤ q. Then S ′

cannot be a cover of B, i.e., there is some bi ∈B that is not covered by S ′ (formally,
bi /∈

⋃
S j∈S ′ S j). Therefore, for each v j such that S j ∈S ′ and bi ∈B \S j, c only gains

at most q−3 points more than bi from v j, which sums up to at most q(q−3) = q2−3q
points that c gains more than bi from the votes in V0. This is not enough, however, to
make up for the negative point balance of −|X | = −9q2 to bi from the votes in V1, so
c is beaten by bi and cannot win if only a total weight of at most q can be assigned to
votes in V0. It follows that I′ ̸∈ Borda-PWUW-N.

This concludes the reduction and the proof of NP-hardness for Borda-PWUW-N.
To show NP-hardness for Borda-PWUW-RW-N and Borda-PWUW-BW-N, we

augment the above constructed instance I′ with a budget of q to obtain the instance
IBW = (C,V1,V0,q,c) or with a set of regions R = {R1, . . . ,R|V0|} with Ri = {0,1} for
all vi ∈V0, to obtain IRW = (C,V1,V0,R,c). In the proof of correctness above, we never
allocate a total weight of more than q and all allocated weights are either 0 or 1. This
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Table 7: Overview of complexity results for nonnegative rational weights from Q+.

Plurality Veto with Scoring Bucklin,
with runoff runoff Rules Fallback

N P P P P
BW-RW-Q+ P P P P
BW-Q+ P P P P
RW-Q+ P P P P

Table 8: Overview of complexity results for nonnegative integer weights. “NP-c.” stands for NP-complete
and “k-AV” stands for k-approval.

k-AV, k-AV, k-veto, k-veto, Plurality/Veto Borda Bucklin, Copeland,
k ≤ 3 k ≥ 4 k ≤ 2 k ≥ 3 with runoff Fallback Ranked Pairs

N P P P P P NP-c. NP-c. NP-c.
BW-RW-N P NP-c. P NP-c. P NP-c. NP-c. NP-c.
BW-N P NP-c. P NP-c. P NP-c. NP-c. NP-c.
RW-N P P P P P NP-c. NP-c. NP-c.

directly yields I ∈ X3C⇔ IBW ∈ Borda-PWUW-BW-N and I ∈ X3C⇔ IRW ∈ Borda-
PWUW-RW-N. NP-hardness of Borda-PWUW-BW-RW-N is inherited from Borda-
PWUW-BW-N or Borda-PWUW-RW-N. ❑

With this result we finish our study of the possible winner with uncertain weights
problem for nonnegative integer weights.

6. Conclusion

We introduced the possible winner with uncertain weights problem in which not the
preferences but the weights of the votes are uncertain, and we studied this problem and
its variants in a general framework. We showed that some of these problem variants
are easy and some are hard to solve for nine of the most important voting systems.
We studied them for nonnegative rational weights and for nonnegative integer weights.
Table 7 provides an overview of the former results and Table 8 an overview of the latter
results.

Interestingly, while the original possible winner problem (in which there is uncer-
tainty about the voters’ preferences) generalizes the coalitional manipulation problem
and is a special case of swap bribery [26], the possible winner with uncertain weights
problem generalizes the problem of constructive control by adding or deleting voters,
as pointed out in Section 3. In the course of our research, we have also further com-
pleted the landscape of results with respect to CCAV in succinct representation by
showing that this problem can be solved in polynomial time for both plurality with
runoff and veto with runoff.

As to open problems, like for the possible winner problem studied by Betzler and
Dorn [14] and Baumeister and Rothe [3], it is desirable to have a dichotomy result
with respect to all scoring protocols for our problem variants with nonnegative integer
weights.
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Another interesting task for future research is to study the necessary winner with
uncertain weights problem. For this problem our goal is to check whether the distin-
guished candidate c is a winner for every allowed allocation of weights. In some sense,
this can also be seen as the destructive variant of the possible winner with uncertain
weights problem where the question is whether c’s victory can be prevented by some
weight assignment. Additionally, it would be interesting to study an even more general
variant: the weighted possible winner problem with uncertainty about both the voters’
preferences and their weights.

Finally, one could also define other variants of E -PWUW-BW-RW-F and E -
PWUW-RW-F, e.g., by allowing sets of intervals for each weight.
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5 Cutting a Cake Is Not Always a “Piece of
Cake”: A Closer Look at the Foundations
of Cake-Cutting Through the Lens of
Measure Theory

5.1 Summary

In this work we studied the axiomatic foundations of cake-cutting. In particular, we
were interested in an optimal definition of P ⊆ P(X), the set of all admissible pieces
of cake containing all pieces of cake that could potentially be allocated during the
execution of a cake-cutting protocol. First, we surveyed the existing cake-cutting
literature and found that across the literature several different approaches exist with
respect to defining the set of all admissible pieces of cake. The approaches we found
range from defining P as the set containing all finite unions of subintervals from X
up to P equaling to the power set of X, i.e., P(X). Based on the generally accepted
requirements for the set of all admissible pieces of cake in the cake-cutting literature,
we determined that the set of all admissible pieces of cake must form an algebra
over the cake X itself. Since the set of all admissible pieces of cake is the domain
of every valuation function, we were able to combine our previous finding with the
generally accepted expectations for valuation functions and formalized requirements
that every agent’s valuation function must satisfy. Doing so, we deduced that every
valuation function must be a finite content on the set of all admissible pieces of cake.

Equipped with these two new formal definitions for the set of all admissible pieces
of cake and valuation functions, we investigated what would be the most preferred
choice for the set of all admissible pieces of cake among the choices used in the
existing literature. The overall goal was to find a definition for P that is as large
as possible in order to allow as many as possible different pieces of cake to be cut
during the execution of a protocol and prevent unnecessary limitations. Giving a
mathematically advanced example based on Vitali sets, we showed that the common
concept of box-based valuation functions is not powerful enough to satisfy the power
set over X as choice for the set of all admissible pieces of cake. Furthermore, we
constructed a finite content over P(X), based on Banach limits, that would satisfy
all requirements of a valuation function and discussed its shortcomings, e.g., its
reliance on the validity of the axiom of choice. Both observations, the example and
the constructed valuation function, explained why P(X) is not a well suited choice
for the set of all admissible pieces of cake.

We advanced the problem from a measure-theoretic point of view and argued why
the Borel σ-algebra over X, denoted by B(X), is our recommended choice for the
set of all admissible pieces of cake. Not only is the Borel σ-algebra a well-studied
and thoroughly understood notion from measure theory, but if one decides to use
the Borel σ-algebra over X as the set of all admissible pieces of cake, this allows
to continue using box-based valuation functions. Thereby, the latter was followed
by our argumentation that every box-based valuation function can be uniquely ex-
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tended to a measure on B(X) with the help of Carathéodory’s extension theorem.
Furthermore, by the means of measure theory we also argued why any larger subset
of P(X) than B(X) as a choice for P could introduce unintended and questionable
side effects to cake-cutting.

5.2 Publication

P. Kern, D. Neugebauer, J. Rothe, R. Schilling, D. Stoyan, and R. Weishaupt.
“Cutting a Cake Is Not Always a “Piece of Cake”: A Closer Look at the Foundations
of Cake-Cutting Through the Lens of Measure Theory”. In: Social Choice and
Welfare (Submitted)

Preliminary versions of this work were submitted to and accepted at the 8th Inter-
national Workshop on Computational Social Choice in 2021 as well as on arXiv :
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Closer Look at the Cake-Cutting Foundations through the Lens of Measure Theory”.
In: The 8th International Workshop on Computational Social Choice (COMSOC-
21). Ed. by B. Zwicker and R. Meir. Available online at https://comsoc2021.
net.technion.ac.il/accepted-papers/. Haifa, Israel: Technion-Israel Institute
of Technology, 2021

P. Kern, D. Neugebauer, J. Rothe, R. Schilling, D. Stoyan, and R. Weishaupt.
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Daniel Neugebauer, Jörg Rothe, René Schilling, and Dietrich Stoyan. Most of the
results formulated within this work are a result of close collaboration between all
co-authors. However, the initial, technical contributions for Example 1.2, the iden-
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of section 2.1, the formulation of the requirements for valuation functions thereafter,
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Abstract
Cake-cutting is a playful name for the fair division of a heteroge-
neous, divisible good among agents, a well-studied problem at the
intersection of mathematics, economics, and artificial intelligence. The
cake-cutting literature is rich and edifying. However, different model
assumptions are made in its many papers, in particular regarding the
set of allowed pieces of cake that are to be distributed among the
agents and regarding the agents’ valuation functions by which they
measure these pieces. We survey the commonly used definitions in
the cake-cutting literature, highlight their strengths and weaknesses,
and make some recommendations on what definitions could be most
reasonably used when looking through the lens of measure theory.
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2 Foundations of Cake-Cutting via Measure Theory

1 Introduction
Since the groundbreaking work of Steinhaus (1948), cake-cutting is a metaphor
for the so-called fair division problem for a divisible, heterogeneous good, which
addresses the problem to split a contested quantity (a “cake”) in a fair way
among several parties A,B,C, . . . ; each party may have its own idea about
the value of the different parts of the cake. A traditional way of fair division
between two parties A and B would be to let A divide the cake into two pieces
(depending on their own valuation) while B has the right to choose one of the
pieces, the so-called cut & choose protocol. There are other possibilities for
two parties as well as extensions to more than two parties (see, e.g., Procaccia,
2016; Lindner and Rothe, 2015, for an overview). Yet, while the basic rules of
the game are pretty clear, the assumptions on the actual cutting process are
often treated in a gentlemanlike manner. If the whole cake is represented by
an interval, say [0, 1], many authors think of the pieces as “intervals,” without
specifying whether the intervals are open (a, b) ⊂ [0, 1], half-open (a, b], [a, b) ⊂
[0, 1], or closed [a, b] ⊆ [0, 1], and how to treat the – possibly twice counted –
end points, i.e., [0, 1/2) ∪ [1/2, 1] vs. [0, 1/2] ∪ [1/2, 1]; this is, of course, not an
issue if a one-point set like {1/2} has zero value for all parties. However, this
simple example shows that a formal mathematical approach to cake-cutting
needs to address questions like:

• Are (open, closed, half-open) intervals the only possible pieces of cake?
• Do we allow for finitely many or infinitely many cuts (a “cut” being the split

of any subset of [0, 1] at a single point)?
• Which properties should a valuation function (by which an agent individ-

ually evaluates the pieces of cake) have, and how does it interact with the
family of admissible pieces of cake?

For some cases, there is an obvious answer: If we use only finitely many cuts,
finite unions of intervals of the form ⟨a, b⟩ – where the angular braces indicate
either open or closed ends – is all we can get; and if, in addition, any single
point a ∈ [0, 1] has zero value, we do not have to care about the open or
closed ends anymore. We will see in Section 2.1 below that this rather implicit
assumption brings us in a much more potent framework that can effectively
deal with a countably infinite number of cuts.

As soon as we allow for countably infinitely many cuts, things change
dramatically, as the following example shows.

Example 1 (Cantor dust; Cantor’s ternary set) Start with the complete cake as a
single piece, i.e., A0 = [0, 1]. Now, cut out the middle third of A0 to obtain the
intermediate piece A1 = A0 \ (1/3, 2/3) = [0, 1/3] ∪ [2/3, 1] comprising two closed
intervals. Next, cut out the middle third of both remaining pieces in A1 to obtain a
union of four closed intervals A2 = [0, 1/9]∪[2/9, 1/3]∪[2/3, 7/9]∪[8/9, 1], see Figure 1. If
this procedure is repeated on and on, we will remove countably many open intervals,
and the remainder set is C1/3 =

⋂∞
i=1Ai. The set C1/3 is the Cantor (ternary) set

(see, e.g., Schilling and Kühn, 2021, § 2.5), and one can show that this is a closed set,
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0 1/9 2/9 1/3 2/3 7/9 8/9 1
A4

A3

A2

A1

A0

Fig. 1 Step-wise pieces to be cut for a Cantor-like piece of cake.

which has more than countably many points, does not contain any interval, and is
dense in itself, i.e., each of its points is a limit point of a sequence inside C1/3. In the
usual measuring scale, the original cake had length 1, and the recursively removed
pieces have total length

1

3
+

(
1

9
+

1

9

)
+

(
1

27
+

1

27
+

1

27
+

1

27

)
+ · · · =

∑

i∈N

2i−1

3i
= 1,

so that C1/3 has zero “length,” but it still contains more than countably many points.
The same construction principle, removing at each stage 2i−1 identical open

middle intervals, each having length pi for some p, 0 < p ≤ 1/3, leads to the Cantor
set Cp, which is, again, closed, uncountable, and does not contain any interval. If,
say, p = 1/4, the removed intervals have total length 1/2 and the remaining Cantor
dust has “length” 1− 1/2 = 1/2. This is not quite expected.

While it is intuitive that the removed intervals should have a certain length, it
feels unnatural to speak of the “length” of a dust-like set as Cp. In fact, we are dealing
here with (one-dimensional) Lebesgue measure, which is the mathematically formal
extension of the familiar notion of “length.”

An alternative, slightly more formal way of illustrating the Cantor dust is
given in the appendix as Example 18.

This example shows that, as soon as we allow for countably many cuts,
there can appear sets which may not be written as a countable union of inter-
vals; moreover, although these sets consist of limit points only, they may have
strictly positive length.

An important feature of this example is the fact that we extend the family
of intervals to a family of subsets which contains (i) finite unions, (ii) countable
intersections, and (iii) complements of its members, leading to fairly compli-
cated subsets as, e.g., Cp. Moreover, when calculating the length of all removed
intervals, we tacitly assumed

• the (finite) additivity of length: The length of two disjoint sets is the sum
of their lengths;
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• the countable or σ-additivity which plays the role of a continuity property:
The length of a countable union is the limit of the length of the union of
the first N sets as N →∞.

As it will turn out, these are two far-reaching assumptions on the interplay
of the valuation function (here: length) with its domain; we will see how this
relates to the desirable property that we can cut off pieces of arbitrary length ℓ,
0 ≤ ℓ ≤ 1, from the cake [0, 1] (allowing for any valuation values of the cut-off
pieces).

Commonly, in cake-cutting theory (see, e.g., Brams and Taylor, 1996;
Procaccia, 2016; Lindner and Rothe, 2015) a (piece-wise constant) valuation
function v : P → [0, 1], where P is some family of subsets of the cake, is repre-
sented as shown in Figure 2: The cake [0, 1] is split horizontally into multiple
pieces and the number of vertically stacked boxes per piece describes the piece’s
valuation from some agent’s perspective. For example, the valuation function
v in Figure 2 evaluates the piece X ′ = [0, 2/6] with v(X ′) = 3/17. Having this

1 2 3 4 5 6
Fig. 2 Common representation for a valuation function in cake-cutting.

example in mind, one is tempted to assume that P can always be taken as the
power set P = P([0, 1]) = {A | A ⊆ [0, 1]}.

The following classical example from measure theory shows that there can-
not exist a valuation function that assigns to intervals ⟨a, b⟩ ⊆ [0, 1] their
natural length b− a, and which is additive, σ-additive (in the sense explained
above), and able to assign a value to every set A ⊆ [0, 1]. Things are different
if we do not require σ-additivity (see the discussion in Schilling and Kühn,
2021, § 7.31).

Example 2 (Vitali, 1905; see also, e.g., Schilling and Kühn, 2021) Let [0, 1] be the
standard cake, and assume that the valuation function v is σ-additive (see Definition 2
on page 8), assigning to any interval its natural length. This means, in particular, that
v is invariant under translations and evaluates the complete cake with v([0, 1]) = 1.
Let us define the relation ∗ as follows: We say that two real numbers x, y ∈ R
satisfy the relation ∗ if, and only if, x − y ∈ Q, i.e., their difference is rational.
The relation ∗ is an equivalence relation and the corresponding equivalence classes
[x] = {y ∈ R | x ∗ y} ⊆ R lead to a disjoint partitioning of R. By the axiom of
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choice, there is a set V ⊂ [0, 1] which contains exactly one representative of every
equivalence class [x]. A set like V is called a Vitali set. Clearly, V ∈ P([0, 1]) and
the sets q+V = {q+x mod 1 | x ∈ V }, q ∈ Q, are a disjoint partition of [0, 1]; thus⋃

q∈Q(q + V ) = [0, 1]. By assumption, v is σ-additive and assigns to each q + V the
same value (translation invariance). Hence, we end up with the contradiction

1 = v([0, 1]) = v


⋃

q∈Q
(q + V )


 =

∑

q∈Q
v(q + V ) =

{
0 if v(V ) = 0,

∞ if v(V ) > 0.

Thus v cannot have the power set of the cake [0, 1] as its domain if we assume that v
is σ-additive. We will see below that certain commonly used divisibility assumptions
are equivalent to the σ-additivity of the valuation.

Example 3 (Cantor function) Let us return to Example 1 and interpret the points in
the set C1/3 as valuable assets which need to be priced. We may assume that the total
value of the cake C1/3 is 1. We want to construct a “cumulative valuation function V ”
which has the property that for 0 ≤ a ≤ b ≤ 1 the difference V (b) − V (a) is the
value of the points contained in C1/3 ∩ (a, b]. Clearly, x 7→ V (x) is a (not necessarily
strictly) increasing function with V (0) = 0 and V (1) = 1.

If we agree that the assets should be “homogeneously” priced, then we are auto-
matically led to the following scheme: As the total value of C1/3 is one, the value of
C1/3∩ [0, 1/2] and C1/3∩ [1/2, 1] should be the same, i.e., 1/2. Since C1/3∩(1/3, 2/3) = ∅,
we see that both the left third and the right third of C1/3 has the value 1/2. This
means that V (x) = 1/2 on the whole middle third (1/3, 2/3).

Now we can repeat this argument in the two remaining sets C1/3 ∩ [0, 1/3] and
C1/3 ∩ [2/3, 1]. Since these pieces are scaled-down versions of the original set C1/3, we
can repeat our argument to the three thirds of the scaled sets and so we see that
the cumulative valuation function V (x) takes the values 1/4 and 3/4 on the intervals
(1/9, 2/9) and (7/9, 8/9), respectively.

Iterating this procedure ad infinitum, the remaining values of V at interfaces of
the intervals are uniquely determined by monotonicity and we end up with the so-
called Cantor function or devil’s staircase, which is monotone, increasing, continuous,
and it is flat (i.e., constant) on all middle-thirds removed in the construction process
of C1/3 in Example 1; a precise mathematical description can be achieved, e.g., using
the alternative representation of the Cantor set in Example 18 of Appendix A, but
at this point the pictures in Figure 3 tell it all: The Cantor function is the typical
function where the fundamental theorem of integral and differential calculus fails:
V (x) is constant on all intervals contained in [0, 1] \ C1/3. Since V is increasing, we
can set V ′(x) := lim suph→0

1
h (V (x + h) − V (x)), and this is the usual derivative

whenever it exists. In particular, V ′(x) = 0 on [0, 1] \ C1/3. On the other hand, we
have ∫ x

0
V ′(t) dt =

∫

C1/3∩[0,x)
V ′(t) dt = 0 ̸= V (x)− V (0) for any x ∈ (0, 1].

This happens because the “length” of C1/3 is zero, i.e., we integrate over “too small a
set” (no matter how big the integrand may be, it could even take the value +∞!) so
as to pick up any strictly positive value.

The above examples highlight some of the problems when evaluating sets.
A Cantor-like piece can only be evaluated if the valuation function is not too
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Cake

V (x)

Fig. 3 Step-by-step construction of the Cantor function: In each step, we subdivide the
top right and bottom left squares into nine smaller squares. We keep only the three squares
along the diagonal, and discard (gray out) the off-diagonal squares. The middle square is
halved by a horizontal line (here V is constant). Repeat.

simplistic. On the other hand, a Vitali set cannot be evaluated at all if we
request too many properties of a valuation function, i.e., the domain P([0, 1])
consisting of all possible pieces of cake is, in general, too large.

Across the research field of cake-cutting (see, e.g., the textbooks by Brams
and Taylor, 1996; Robertson and Webb, 1998, and the book chapters
by Procaccia, 2016; Lindner and Rothe, 2015), there exist several different
assumptions on the underlying model. Our goal is to review thoroughly and
comprehensively all the different models that are currently applied in the lit-
erature. Furthermore, we study the relationships between these models and
formulate some related results. It turns out that some of these models are
problematic and should not be used as they are formulated. We highlight
these models’ problems and provide specific examples showing why they are
problematic. Our overall goal is to determine a model, which is as simple as
possible, yet powerful enough to cope with these problems and still compatible
with many of the currently used models.

Frequently, authors proposing cake-cutting protocols abstain from making
formal assumptions or from formalizing their model in detail. For example,
Brams et al. (1997, p. 553) write:

“Many feel that the informality adds to the subject’s simplicity and charm, and we
would concur. But charm and simplicity are not the only factors determining the
direction in which mathematics moves or should move. Our analysis in this paper
raises several issues that may only admit a resolution via some negative results.
While such results may not require complete formalization of what is permissible,
they do appear to require partial versions. We will refer to such partial limitations
as theses.”

It would thus be desirable to have some common consensus on which models
are useful for any given purpose, and which are not. If we allow only a fixed
number of cuts, splitting the cake [0, 1] into a finite number of pieces of the
type ⟨a, b⟩ ⊆ [0, 1], a naive approach is always possible: The valuation should
be additive and its domain contains unions of finitely many intervals. If, on the
other hand, there are potentially infinitely many cuts – e.g., if the players play
a game resulting in an a priori not fixed number of rounds (such as the finite
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unbounded envy-free cake-cutting protocol of Brams and Taylor (1995a)) –
the limiting case cannot any longer be treated by a finitely additive valuation
and a domain containing only finite unions, see Example 1.

We propose to use ideas from measure theory, which provides the right
toolbox to tackle the issues described above. We will see that, at least for
the cake [0, 1], even the naive approach plus the requirement that we can
split every piece ⟨a, b⟩ by a single cut into any proportion (in fact, a slightly
weaker requirement will do, cf. Definition 2 (D)), automatically leads to the
measure-theoretic point of view. That is to say that in many natural situations
the naive standpoint is “practically safe” since its obvious shortcomings are
automatically “fixed by (measure) theory,” if one uses the correct formulation.

2 The Rules of the Game
Throughout this paper, [0, 1] denotes a standard cake, and the power set
P([0, 1]) = {S | S ⊆ [0, 1]} are all possible pieces of cake from a set-theoretic
point of view. We define P ⊆ P([0, 1]) as the set of all admissible pieces
of [0, 1], i.e., those pieces which (a) can be allocated to some players via a cake-
cutting protocol, and (b) can be evaluated by the players using their valuation
functions. Sometimes it is necessary to consider an “abstract” cake X, with
its possible and admissible pieces P(X) and P ⊆ P(X). Some results for the
standard cake [0, 1] remain true for abstract cakes. For example, an abstract
cake X might be contained in the n-dimensional unit cube: X ⊆ [0, 1]n.

2.1 Dividing a Cake with Finitely Many Cuts
We start by formulating requirements for P regarding the admissible pieces of
cake. The discussion in this section applies both to the standard cake [0, 1] and
the abstract cake X. Obviously, we want to be able to allocate the complete
cake X as well as an empty piece ∅ to a player and therefore, X ∈ P and
∅ ∈ P must hold. If A ⊆ X is already allocated to some player, i.e., A ∈ P,
then we want to be able to give the remainder of the cake to another player; so
for all A ∈ P, we demand that the complement of A, denoted by A = X \ A,
is in P. Furthermore, we want to be able to cut and combine pieces of cake;
so for all A,B ∈ P, we require A ∪ B ∈ P. Note that A ∩ B = A ∪B and
A \ B = A ∩ B, so our previously formulated requirements also allow us to
allocate the intersection of a finite number of pieces of cake and to evaluate
the difference of two pieces of cake.

Definition 1 Let X be a(n abstract) cake. A family A ⊆ P(X) is called an algebra
over X if ∅ ∈ A and for all A,B ∈ A it holds that A and A ∪B ∈ A.

It is worth noting that only by the formulation of intuitive requirements
with respect to the set of all admissible pieces of cake, we ended up with a
well-studied, structured concept from measure theory: an algebra.
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Example 4 If X = [0, 1], then P(X) and {∅, X} are algebras – in fact these are the
largest possible and the smallest possible algebras over [0, 1]. Another useful algebra
is the family I([0, 1]) of all unions of finitely many intervals in [0, 1] – and it is easy
to check that I([0, 1]) is the smallest algebra containing all closed (or all open or all
half-open) intervals from [0, 1]. While it is obvious that {∅, [0, 1]} is useless for our
purpose, as then only two possible pieces can be allocated, the complete cake and
an empty piece, we might – at the other extreme – also take P([0, 1]) as the set for
the admissible pieces of [0, 1]. However, when choosing P, we must also ensure that
meaningful valuation functions can exist for this set, and Example 2 shows that for
a rather natural valuation function – geometric length – P([0, 1]) is too big.

Let us list the common requirements for the players’ valuation functions.
A valuation function v shall assign to any admissible piece of cake A ∈ P
some nonnegative real number, i.e., v : P → [0,∞]. In order to normalize the
players’ valuations and keep them comparable, we demand that v(∅) = 0 and
v(X) = 1 hold. Hence, we can further limit the valuation function’s range to
[0, 1], i.e., we have v : P → [0, 1]. The next definition lists further requirements
for a valuation function.

Definition 2 Let X be a(n abstract) cake and A the algebra of admissible pieces. A
valuation function is a function v : A → [0, 1], which is normalized, i.e., v(∅) = 0
and v(X) = 1. Moreover, v is called

(M) monotone if for A,B ∈ A with A ⊆ B, one has v(A) ≤ v(B);
(A) additive or finitely additive if for all A,B ∈ A such that A∩B = ∅, one

has v(A ∪B) = v(A) + v(B);
(Σ) σ-additive or countably additive if for any sequence (An)n∈N of pieces

in A such that Ai ∩Aj = ∅ (i ̸= j) and
⋃

i∈NAi ∈ A, one has v(
⋃

i∈NAi) =∑
i∈N v(Ai);

(D) divisible if for every A ∈ A and for every real number α, 0 ≤ α ≤ 1, there
exists some Aα ∈ A with Aα ⊆ A such that v(Aα) = αv(A).

Clearly, (Σ) implies (A) – take A1 = A, A2 = B, and Ai = ∅ for i ≥ 3 – and
(A) is equivalent to the so-called strong additivity, defined as v(A ∪ B) =
v(A) + v(B)− v(A ∩B): Just observe that A ∪B = [A \ (A ∩B)] ∪ [B \ (A ∩
B)] ∪ [A ∩ B], i.e., A ∩ B ̸= ∅ counts towards both v(A) and v(B) but only
once in v(A∪B), hence the correction −v(A∩B). Finally, (strong) additivity
implies monotonicity.

The assumption thatA is an algebra makes sure that we can indeed perform
all of the above manipulations with sets without ever leaving A. Note, however,
that (Σ) and (D) impose further assumptions on the structure of A.

Remark 5 Let X be a(n abstract) cake and A ⊆ P(X) an algebra over X. Any
additive valuation is a finitely additive measure with total mass v(X) = 1 (see,
e.g., Schilling, 2017, Chapter 4).
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Requirement (D) not only demands more from A but also from v. Specif-
ically, (D) entails that any N ∈ A which does not contain a nonempty and
strictly smaller piece of cake – this is an atom, i.e., an indivisible piece of
cake – must have zero valuation.

Definition 3 Let A be an algebra over a(n abstract) cake X and v be a finitely
additive valuation. A set A ∈ A is an atom if v(A) > 0 and every B ⊆ A, B ∈ A,
satisfies v(B) = αv(A) with α = 0 or α = 1.

Clearly, a valuation v which enjoys property (D) cannot have atoms.

2.2 Dividing the Standard Cake
Let us briefly discuss the consequences of the notions introduced in the previous
section if X is the standard cake [0, 1]. If, in addition, A contains all intervals
of type ⟨a, b⟩, then all singletons {a} = [a, b] \ (a, b] are in A, and they are
the only possible atoms. In this case, (D) entails that v does not charge single
points: v({a}) = 0 for all a ∈ [0, 1]. This is the proof of the following lemma.

Lemma 6 Let [0, 1] be the standard cake and A an algebra of admissible sets. Every
additive valuation function v : A → [0, 1] that satisfies (D) is atom-free. In particular,
if A ⊃ I([0, 1]) contains all intervals, then v({a}) = 0 for all a ∈ [0, 1].

Quite often, we require valuation functions to satisfy continuity, a
property that is crucial for so-called moving-knife cake-cutting protocols to
work.

Definition 4 Let v : A → [0, 1] be a finitely additive valuation function on the
algebra A = I([0, 1]) of finite unions of intervals from [0, 1].

1. The function x 7→ Fv(x) := v([0, x]), x ∈ [0, 1], is the distribution
function of the valuation v.

2. The valuation v is said to be continuous if x 7→ Fv(x) is continuous.

Since v is additive, Fv : [0, 1]→ [0, 1] is positive, monotonically increasing,
and bounded by Fv(1) = 1. Note that a continuous valuation function on
I([0, 1]) cannot have atoms, as

v({x}) = v([0, x] \ [0, x)) = F (x)− F (x−) = 0, where F (x−) = lim
y↑x

F (y).

The continuity of v can also be cast in the following way: For all a and b
with 0 ≤ a < b ≤ 1 satisfying v([0, a]) = α and v([0, b]) = β, and for every
γ ∈ [α, β], there exists some c ∈ [a, b] such that v([0, c]) = γ. This explains
the close connection between continuity and divisibility of v. In fact, assuming
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divisibility (D) of v, it can be shown that the distribution function is necessarily
continuous. The following proof of this statement is inspired by Schilling and
Stoyan (2016, Example 3.4).

Lemma 7 Let v be an additive valuation for the standard cake [0, 1], where I([0, 1])
denotes the family of admissible pieces. If v is divisible, then the distribution function
F = Fv is a continuous function with F (0) = 0.

Proof We have seen in Lemma 6 that a divisible additive valuation v has no atoms,
so F (0) = v({0}) = 0. Since F is monotone and bounded, the one-sided limits
F (t−) := lims↑t F (s) and F (u+) := lims↓u F (s) exist for all t ∈ (0, 1] and u ∈ [0, 1).

Assume that F is not continuous. Then there exists some t0 ∈ [0, 1] such that
F (t0−) < F (t0) or F (t0+) > F (t0). If F (t0) − F (t0−) = ε > 0, then there exists
some t1 < t0 such that F (t0) − F (t1) ≤ 3

2ε. Set I := (t1, t0] and observe that
v(I) = F (t0)− F (t1) ∈

[
ε, 32ε

]
. Pick an arbitrary J ∈ I([0, 1]) which is contained in

I. Since J is a finite union of intervals, J differs from its closure J̄ by at most finitely
many points; as v({x}) = 0 for any x ∈ [0, 1], we have v(J) = v(J̄).

We distinguish two cases: If t0 ∈ J̄ is not an isolated point, then v(J) = v(J̄) ≥ ε.
If t0 ̸∈ J̄ or if t0 ∈ J̄ is an isolated point, then we have due to v({t0}) = 0 that

v(J) = v(J̄) ≤ F (t0−)− F (t1) =
(
F (t0)− F (t1)

)
−
(
F (t0)− F (t0−)

)

= v(I)− ε ≤ 1
2ε.

Hence, it is not possible to select a piece of cake J ∈ I([0, 1]) with J ⊆ I and
v(J) = 3

4ε ∈
[
1
2 · v(I), 34 · v(I)

]
, which contradicts divisibility.

If F (t0+)− F (t0) = ε > 0, a similar argument applies. □

Conversely, if the distribution function Fv of a finitely additive valuation
v defined on I(X) is continuous with Fv(0) = 0, then it is easy to see that v
is divisible. Hence we get:

Corollary 8 A finitely additive valuation v on I([0, 1]) is divisible if, and only if, its
distribution function Fv is continuous with Fv(0) = 0. This is also equivalent to v
being atom-free.

Corollary 8 establishes a one-to-one correspondence between divisible val-
uations and monotonically increasing, continuous functions on [0, 1] which are
0 at the origin and 1 at x = 1. This shows that x 7→ x is a valuation (it assigns
every interval ⟨a, b⟩ its natural length b−a) but also the Cantor function V (x)
from Example 3 can be viewed as a valuation function.

We will see in the next section that every finitely additive, divisible val-
uation can be extended to become and identified with a unique σ-additive
measure that is defined on the Borel σ-algebra B(X); this is the smallest fam-
ily of sets that contains all intervals and that is stable under complements and
countable unions of its members. This enables us to evaluate sets in B(X) that
are not finite unions of intervals, such as the Cantor set in Example 1.
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2.3 Measure Theory: The Art of Dividing a Cake by
Countably Many Cuts

Up to now we have only allowed finitely many cuts when dividing the cake. But
we may easily come into the situation where the number of cuts is not limited;
not all protocols in the cake-cutting literature are finite. Thus we are led to
consider unions of countably many pieces and the valuation of such countable
unions, see also property (Σ) in Definition 2. To deal with such situations,
measure theory provides the right tools.

We will now introduce some basics from measure theory, which we need in
the subsequent discussion of the cake-cutting literature. Our standard refer-
ences for measure theory are the monographs by Schilling (2017) and Schilling
and Kühn (2021), where also further background information can be found.

Definition 5 LetX be a(n abstract) cake. A subset A ⊆ P(X) is called a σ-algebra
over X if A is an algebra over X and, for all sequences (An)n∈N with An ∈ A, the
countable union

⋃
n∈NAn is in A, too.

Let us return to the standard cake [0, 1]. Every algebra in [0, 1] containing
finitely many sets is automatically a σ-algebra. On the other hand, P([0, 1])
is both an algebra and a σ-algebra, whereas the family I([0, 1]) is an algebra,
but not a σ-algebra: For instance, the Cantor dust Cp (cf. Example 1) is not in
I([0, 1]). Recall that we defined I([0, 1]) to be the smallest algebra containing
all (finite unions of) intervals in [0, 1]; thus it is natural to consider the smallest
σ-algebra containing all (finite unions of) intervals in [0, 1].

To see that this is well-defined, we need a bit more notation. Recall that
⟨a, b⟩ stands for any (open, closed, or half-open) interval of [0, 1]. We denote by

Q([0, 1]) = {⟨a, b⟩ | a, b ∈ [0, 1]} .

the family of all intervals within [0, 1].
Moreover, if P ⊆ P([0, 1]) is any family, then σ(P) denotes the smallest σ-

algebra containing P. This can be a fairly complicated object and its existence
is not really obvious. To get an idea as to why σ(P) makes sense, we note that
P ⊆ P([0, 1]), that P([0, 1]) is a σ-algebra, and that the intersection of any
number of σ-algebras is still a σ-algebra.

The next lemma is a standard result from measure theory.

Lemma 9 Let P denote any of the four families of open intervals, closed intervals,
left-open intervals, or right-open intervals within [0, 1]. It holds that

σ(P) = σ(Q([0, 1])).

The fact that σ(Q([0, 1])) coincides with the σ-algebra generated by all
closed intervals in [0, 1] can be used to generalize Lemma 9 to abstract cakes,
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which carry a topology, hence a family of open and of closed sets. The thus
generated “topological” σ-algebra plays a special role and has a special name.

Definition 6 We denote by B([0, 1]) the smallest σ-algebra on [0, 1] containing all
closed intervals from [0, 1] and call it the Borel or topological σ-algebra over [0, 1].

The following definition is also well-known. We state it only for the standard
cake, but it is clear how to extend it to abstract cakes.

Definition 7 Let [0, 1] be a cake and A a σ-algebra on [0, 1]. A (positive) measure
µ on [0, 1] is a map µ : A → [0,∞] satisfying that µ(∅) = 0 and µ is σ-additive.

It is useful to see a measure µ as a function defined on the sets. If the set-
function is additive, then σ-additivity is, in fact, a continuity requirement on
µ, as it allows to interchange the limiting process in the infinite union

⋃
i∈NAi

of pairwise disjoint sets with a limiting process in the sum. To wit:

µ

(⋃

n∈N
An

)
= lim

N→∞
µ

(
N⋃

n=1

An

)
= lim

N→∞

N∑

n=1

µ (An) =
∑

n∈N
µ (An) ;

since all terms are positive, there is no convergence issue. Equivalently, we can
state σ-additivity as B1 ⊂ B2 ⊂ B3 ⊂ · · · ↑ B =

⋃
n∈NBn, then µ(Bn) ↑ µ(B)

(for any measure µ) or as C1 ⊃ C2 ⊃ C3 ⊃ · · · ↓ C =
⋂

n∈N Cn, then µ(Cn) ↓
µ(C) (for finite measures µ).

Sometimes (and a bit provocatively) it is claimed that there are essentially
only two measures on [0, 1] (or on R or Rn): Lebesgue measure A 7→ λ(A)
and Dirac measure A 7→ δx(A), where x ∈ [0, 1] is a fixed point. Let us
briefly discuss these two extremes and explain as to why the claim is incorrect
but still sensible.

Dirac Measure.
Let a ∈ [0, 1] be a fixed point and set A 7→ δa(A) = 1 or = 0 according to a ∈ A
or a /∈ A, respectively. This definition works for any A ⊆ [0, 1], and it is easy
to see that this set-function is indeed a measure (in the sense of Definition 7
on the σ-algebra A = P([0, 1]) – or any smaller σ-algebra over [0, 1].

Dirac’s measure is the derivative of the physicists’ “Delta function”: Indeed,
the integral

∫
f(x) δa(dx) can be shown to yield f(a), which makes δa(x) :=

d
dxδa (the derivative is understood in a distributional sense) a “function” such
that “δa(x) = 0 if x ̸= a, δa(a) =∞, and

∫
δa(x) = 1” – the trouble being that

δa(x) cannot be defined pointwise for each x ∈ X. This is best understood if
we look at the distribution function: This is the Heaviside function δa([0, x]) =
1[a,1](x) on X, which is zero on [0, a), one on [a, 1] with a jump of size 1, and
exploding differential quotient at x = a.
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We call {a} the support of δa since, by definition, δa charges only sets
such that {a} ⊆ A. If we compare Dirac measure with Lebesgue’s measure,
the problem is that the support of δa is a degenerate interval {a} = [a, a] of
length zero, see below.

Lebesgue Measure.
The idea behind Lebesgue measure is to have a set-function A 7→ λ(A) in
[0, 1] (or in R or Rn) with all properties of the familiar volume from geometry;
in particular, we want a volume that is additive and invariant under shifts
and rotations. Thus it is natural to define for a simple set Q like an interval
Q = (a, b] ⊂ [0, 1] (or an n-dimensional “cube” Q =

n
×
i=1

(ai, bi])

λ(Q) = b− a
(

respectively, λ(Q) =

n∏

i=1

(bi − ai) = length× width× height× · · ·
)
.

Invariance under shifts together with the σ-additivity (Σ) allow us to exhaust
(“triangulate”) more complicated shapes like a circle with countably many dis-
joint sets (Qn)n∈N such that with A =

⋃
n∈NQn, we have λ(A) =

∑
n∈N λ(Qn).

The restriction to countable unions is natural, as we exhaust a given shape by
nontrivial sets Qn, having nonempty interior: Each of them contains a rational
point q ∈ Qn; hence, there are at most countably many nonoverlapping Qn.

There are immediate questions with this approach: Which types of sets
can be “measured”? Is the procedure unique? Is the process of measuring more
complicated sets constructive? At this point we encounter a problem: General
sets A ⊆ Rn are way too complicated to get a well-defined and unique extension
of λ from the rectangles to P(Rn). In dimension n = 1 and for the standard
cake [0, 1], the Cantor sets Cp from Example 1 were already challenging, but
the Vitali set from Example 2 shows that the cocktail of shift invariance and
σ-additivity becomes toxic.

The way out is the notion of measurable sets and Carathéodory’s extension
theorem (stated as Theorem 10 further down). This works as follows: In view
of the σ-additivity property of λ, it makes sense to consider the σ-algebra A ⊆
P(Rn) which contains the intervals (respectively, cubes). Thus we naturally
arrive at the notion of the Borel σ-algebra as the canonical domain of Lebesgue
measure. Unfortunately, there are so many Borel sets that we cannot build
them constructively from rectangles – we would need transfinite induction for
this – and this is one of the reasons why cutting a cake is not always a piece
of cake.

The question of whether every set A ⊆ Rn has a unique geometric volume
(in the above sense) is dimension-dependent. If n = 1 or n = 2, we can extend
the notion of length and area to all sets, but not in a unique way. In dimension
3 and higher, we’ll end up with contradictory statements (such as the Banach–
Tarski paradox ; see, e.g., Wagon, 1985) if we try to have a finitely additive
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geometric volume for all sets. This conundrum can be resolved by looking at
the Borel sets or the Lebesgue sets – these are the Borel sets enriched by all
subsets of Borel sets with Lebesgue measure zero.

General Measures.
Let us return to the assertion that λ and δa are “essentially the only measures”
on Rn. To keep things simple, we discuss here only the standard cake [0, 1].

Lebesgue’s decomposition theorem shows that all σ-additive measures µ
on [0, 1] with the Borel σ-algebra B([0, 1]) are of the form µ = µac + µsc + µd

where “ac,” “sc,” and “d” stand for absolutely continuous, singular continuous,
and discontinuous. This is best explained by looking at the distribution func-
tion F (x) = Fµ(x). Since x 7→ F (x) is increasing, it is either continuous or
discontinuous (with at most countably many discontinuities), accounting for
the parts (µac, µsc) and µd, respectively. At the points where F is continuous,
we have again two possibilities: F is either differentiable (F ′(x) = f(x)) or it
isn’t, yielding “ac” vs. “sc.” From Lebesgue’s differentiation theorem it is known
that the points with “sc” or “d” must have Lebesgue measure zero. Thus, we
finally arrive at the decomposition

µ(dx) = f(x) dx+ µsc(dx) +
∑

i

(F (xi)− F (xi−)) δxi
(dx), (1)

where x1, x2, . . . are the at most countably many discontinuities (jump points)
of F and f(x) = d

dxF (x).
Here are four typical examples for valuations corresponding to these cases.

• Purely ac: F ac(x) := x is absolutely continuous since d
dxF

ac(x) = 1 exists
and F ac(x) =

∫ x

0
1 dt. This F ac corresponds to Lebesgue measure. In general,

an absolutely continuous F ac(x) is always of the form F ac(x) − F ac(0) =∫ x

0
f(t) dt and f(t) = d

dtF
ac(t).

• Purely sc: The Cantor function F sc(x) := V (x) from Example 3 is contin-
uous, but it is not absolutely continuous. V ′(x) exists (in a classical sense)
only in the points [0, 1] \ C1/3 and V (x) ̸=

∫ x

0
V ′(t) dt. The corresponding

valuation is nevertheless of the form v((a, b]) = V (b) − V (a), but it cannot
be represented in the form

∫ b

a
f(t) dt for any function f .

• Purely d: Any increasing step-function with jumps of size ∆i > 0, i =
1, 2, . . . , at the points xi ∈ [0, 1] corresponds to the discontinuous case:
We have atoms exactly at the points xi where F d(x) is discontinuous (i.e.,
jumps). The general form of such functions is F d(x) =

∑∞
i=1 ∆i1[xi,1](x)

where
∑∞

i=1 ∆i = 1.
• Mixed ac+cs+d: Let pac, psc, pd ∈ [0, 1] be such that pac+ psc+ pd = 1 and

let F ac, F sc, F d be as in the previous examples. Then the convex combination
F (x) = pacF

ac(x) + pscF
sc(x) + pdF

d(x) corresponds to a valuation which
combines all three types of (dis-)continuity properties.
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Let us close this section with the central result on the extension of valu-
ations defined on an algebra A to measures on the σ-algebra σ(A) generated
by A. We state it only for the standard cake; the formulation for more abstract
cakes is obvious.

Theorem 10 (Carathéodory’s extension theorem) Let v be a valuation on [0, 1] and
denote by A the algebra of admissible pieces of cake. If v is additive and σ-additive
relative to A, i.e., v satisfies (Σ), then there is a unique extension of v, defined on
σ(A), which is a σ-additive measure on σ(A).

2.4 Abstract Cakes
Let us briefly discuss more general cakes X than [0, 1]. In this section, X ̸= ∅
will be a general set, A an algebra of admissible pieces, and σ(A) the σ-algebra
generated by A. The definition and the properties of a valuation v : A → [0, 1]
(cf. Definition 2) still work in this general setting, but since X is abstract, there
may not be (an equivalent of) a distribution function; this means that the
connection between divisibility and σ-additivity, cf. Lemma 7 and Corollary 8,
might fail in an abstract setting.

We begin with a new definition of (D) for finitely additive valuations on
abstract cakes.

Definition 8 A finitely additive valuation v on an abstract cake X and an algebra
of admissible pieces A has the property (DD) if for every A ∈ A and α ∈ (0, 1), there
is an increasing sequence of sets B1

α ⊂ B2
α ⊂ B3

α ⊂ · · · , Bn
α ∈ A, such that Bn

α ⊂ A
and supn∈N v(B

n
α) = αv(A).

Property (DD) essentially says that for every value αv(A) ∈ [0, 1] we can
find an admissible piece of cake Bn

α ⊂ A whose valuation v(Bn
α) is close

to αv(A). The limiting piece
⋃

nB
n
α, which should produce the value αv(A)

exactly, may not be admissible if we are restricted to finitely many cuts.
If v is a σ-additive valuation and A a σ-algebra, then Bα :=

⋃
n∈NB

n
α is

again in A, and, because of σ-additivity, we see that v(Bα) = supn∈N v(B
n
α).

Thus the properties (D) and (DD) are indeed equivalent for σ-additive valua-
tions (or, in view of Corollary 8, for finitely additive valuations on the standard
cake [0, 1] and A ⊃ I([0, 1])).

We will also need the opposite of the property (DD); to this end, recall
Definition 3 of an atom. If A and B are atoms, then we have either v(A∩B) = 0
or v(A ∩ B) = v(A) = v(B) > 0; in the latter case, if v(A ∩ B) > 0, we call
the atoms equivalent. If A and B are nonequivalent, then A and B \A are still
nonequivalent and disjoint. Iterating this procedure, we can always assume
that countably many nonequivalent atoms (An)n∈N are disjoint: Just replace
the atoms by A1, A2 \A1, . . . , An+1 \

⋃n
i=1Ai, . . . .

Since v(X) = 1, a finitely additive valuation v can have at most n nonequiv-
alent atoms such that v(A) ≥ 1

n , and so there are at most countably many
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atoms. Comparing Definition 8 which defines property (DD) with Definition 3
of an atom, it is clear that (DD) implies that v has no atoms. We will see in
Theorem 11 that the converse implication holds as well.

Definition 9 Let v be a finitely additive valuation on the algebra A over a(n
abstract) cake X. The valuation v is sliceable if for any ε > 0, there are finitely
many disjoint sets Bi ∈ A, i = 1, . . . , n, n = n(ε), such that 0 < v(Bi) ≤ ε and
X = B1 ∪ · · · ∪Bn.

A set B ∈ A is v-sliceable if the set-function A 7→ v(A ∩B) is sliceable.

We will now see that a sliceable finitely additive valuation enjoys prop-
erty (DD), and vice versa, i.e., sliceability, atom-freeness, and property (DD)
are pairwise equivalent for finitely additive valuations.

Theorem 11 Let v be a finitely additive valuation on an algebra A over a(n abstract)
cake X. The conditions (DD), “v is sliceable,” and “v has no atoms” are pairwise
equivalent.

Proof We start by showing that atom-freeness implies sliceability. Fix ε > 0.
Step 1: Let Y ⊆ X be any subset, and assume that there is some B ⊆ Y , B ∈ A,

such that v(B) > 0. Define

FY := FY
ε := {F ∈ A | F ⊆ Y, 0 < v(F ) ≤ ε}.

We claim that for the special choice Y = B ∈ A the family FB is not empty.
Since B is not an atom, there is some F ⊆ B, F ∈ A, with 0 < v(F ) < v(B).
If v(F ) ≤ ε, then F ∈ FB , and we are done.
If v(F ) > ε, we assume, to the contrary that there is no subset F ′ ⊆ F , F ′ ∈ A,

with 0 < v(F ′) ≤ ε. Since F cannot be an atom, there is a subset F ′ ⊆ F with
ε < v(F ′) < v(F ) and v(F \ F ′) > ε. Iterating this with F ⇝ F \ F ′ furnishes a
sequence of disjoint sets F1 = F ′, F2, F3, . . . with v(Fi) > ε for all i ∈ N. This is
impossible since v(F ) < ∞. So we can find some F ′ ⊆ F ⊆ B with 0 < v(F ′) ≤ ε,
i.e., FB is not empty.

Step 2: Define a(n obviously monotone) set-function c(Y ) := supC∈FY v(C) for
any Y ⊆ X; as usual, sup ∅ = 0. Since FX is not empty, we can pick some B1 ∈ FX

such that 1
2c(X) < v(B1) ≤ ε.

If v(X \B1) ≤ ε, we set B2 := X \B1; otherwise, we can pick some B2 ∈ FX\B1

such that 1
2c(X \B1) < v(B2) ≤ ε.

In general, if v(X \ (B1 ∪ · · · ∪ Bn)) ≤ ε, we set Bn+1 = X \ (B1 ∪ · · · ∪ Bn);
otherwise, we pick

Bn+1 ∈ FX\(B1∪···∪Bn) such that
1

2
c(X \ (B1 ∪ · · · ∪Bn)) ≤ v(Bn+1) ≤ ε. (2)

We are done if this procedure stops after finitely many steps; otherwise, we get
a sequence of disjoint sets B1, B2, . . . satisfying (2). Define B∞ := X \⋃nBn. This
set need not be in A, but we still have, because of (2),

c(B∞) ≤ c(X \ (B1 ∪ · · · ∪Bm)) ≤ 2v(Bn+1) −−−−→
n→∞ 0
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since the series
∑

n∈N
v(Bn) = sup

N

N∑

n=1

v(Bn) = sup
N
v

(
N⋃

n=1

Bn

)
≤ v(X)

converges. In particular, limn→∞ v(X \⋃n
i=1Bi) = 0.

Using again the convergence of the series
∑

n v(Bn), we find some N = N(ε)

such that
∑

n>N v(Bn) ≤ ε, hence B1, B2, . . . , BN and X \⋃N
n=1Bn are the desired

small pieces of X. This completes the proof that v is sliceable.

We now show that sliceability implies condition (DD). Let B ∈ A with v(B) > 0.
Since the “relative” finitely additive valuation vB(A) := v(A ∩ B)/v(B) inherits the
nonatomic property from v, it is clearly enough to show that for every α ∈ (0, 1),
there is an increasing sequence

B1
α ⊂ B2

α ⊂ B3
α ⊂ · · · , Bn

α ∈ A : sup
n∈N

v(Bn
α) = α,

which is the property (DD) relative to the full cake X only.
Since v is sliceable, there are mutually disjoint sets Cn

1 , . . . , C
n
N ∈ A, where

N = N(n), X =
⋃N

i=1 C
n
i , and v(Cn

i ) <
1
n .

Let k = ⌊1/α⌋+ 1. Set Bk := Ck
1 ∪ · · · ∪ Ck

M(k), where M(k) ∈ {1, . . . , N(k)} is
the unique number such that

M(k)∑

i=1

v(Ck
i ) ≤ α <

M(k)+1∑

i=1

v(Ck
i ) ≤

M(k)∑

i=1

v(Ck
i ) +

1

k
.

By construction, α ≥ v(Bk) =
∑M(k)

i=1 v(Ck
i ) > α− 1

k . Thus, we can iterate this
procedure, considering X \Bk and constructing a set Dk+1 ⊆ X \Bk that satisfies

(α− v(Bk)) ≥ v(Dk+1) > (α− v(Bk))−
1

k + 1
.

For Bk+1 := Bk ∪Dk+1, we get α ≥ v(Bk+1) > α− 1
k+1 .

The sequence Bk+i, i ∈ N, satisfies v(Bk+i) ↑ α, i.e., Bn
α = Bk+n is the sequence

of sets we need to have property (DD).
As mentioned earlier, (DD) implies atom-freeness, which completes this proof.

□

Since for a σ-additive valuation on a σ-algebra A, properties (D) and (DD)
are equivalent, we immediately get:

Corollary 12 Let v be a σ-additive valuation on a σ-algebra A over an abstract
cake X. The conditions (D), (DD), “v is sliceable,” and “v has no atoms” are pairwise
equivalent.

IfA1, A2, . . . is an enumeration of the nonequivalent atoms of the σ-additive
valuation v, then A∞ := X \⋃n∈NAn ∈ A, and we can restate Corollary 12
in the form of a decomposition theorem.

Corollary 13 Let v be a σ-additive valuation on a σ-algebra A over a(n abstract)
cake X. Then X can be written as a disjoint union of a v-sliceable set A∞ and at
most countably many atoms A1, A2, . . . .
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3 Which Pieces Should Be Admissible?
In the cake-cutting literature, a great variety of different definitions have been
used for the set P of admissible pieces of cake. We first collect the most com-
monly used definitions for P, along with the corresponding references and
discuss them in detail. Then we show several relations among these definitions
and discuss what this implies for a most reasonable choice of P.

Typical choices for the set P containing all admissible pieces of a standard
cake [0, 1] are

1. all finite unions of intervals from [0, 1], i.e., the family I([0, 1]) defined earlier
on page 8;

2. all countable unions of intervals from [0, 1], i.e., I([0, 1])N ={⋃
i∈N Ii | Ii ∈ I([0, 1])

}
;

3. the Borel σ-algebra over [0, 1], i.e., B([0, 1]);
4. the set of all Lebesgue-measurable sets over [0, 1], i.e., L([0, 1]);1 or
5. the power set P([0, 1]) of [0, 1].

Assuming P = I([0, 1]) is common among papers that consider only finite
cake-cutting protocols. Such protocols can make only a finite number of cuts,
thus producing a finite set of contiguous pieces, i.e., intervals, to be evalu-
ated by the players. Authors that make this assumption and use P = I([0, 1])
include Woeginger and Sgall (2007), Stromquist (2008), Lindner and Rothe
(2009), Procaccia (2009), Walsh (2011), Cohler et al. (2011), Bei et al. (2012),
Cechlárová and Pillárová (2012b), Brams et al. (2012), Cechlárová et al. (2013),
Chen et al. (2013), Brânzei and Miltersen (2013), Aziz and Mackenzie (2016b,a,
2020), Edmonds and Pruhs (2006), and Aziz and Mackenzie (2016a).

As a special case, valuation functions may even be restricted to single
intervals, which is done by Cechlárová and Pillárová (2012a) and Aumann
and Dombb (2010). Even though the restriction to finite unions of intervals is
sensible from a practical perspective, it may artificially constrain results that
could hold also in a more general setting.

Brânzei et al. (2013) extend P to contain countably infinite unions of
intervals, i.e., I([0, 1])N.

Authors assuming P = B([0, 1]) include Stromquist and Woodall (1985),
Deng et al. (2009), and Segal-Halevi et al. (2017).

Works using P = L([0, 1]) include those by Reijnierse and Potters (1998),
Arzi et al. (2011), and Robertson and Webb (1997). Additionally, several
authors do not explicitly make the assumption P = L([0, 1]), but they define
valuation functions based on (Lebesgue-)measurable sets only, most promi-
nently, a valuation function is often defined as the integral of a given probability
density function on [0, 1]. This or a similar assumption is made by Brams et al.

1Recall that a set B̃ is Lebesgue-measurable if, and only if, there is a Borel-measurable set B
such that the symmetric difference B̃ △ B := (B \ B) ∪ (B \ B̃) ⊆ N is contained in a Borel-
measurable set N with Lebesgue measure λ(N) = 0. We will see in Theorem 14 that there are
indeed Lebesgue-measurable sets that are not Borel-measurable.
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(2003, 2006, 2008, 2013), Robertson and Webb (1998), Webb (1997), Aumann
et al. (2013), Brânzei et al. (2016), and Caragiannis et al. (2011).

Papers that assume P = P([0, 1]) include those by Maccheroni and Mari-
nacci (2003), Sgall and Woeginger (2007), Saberi and Wang (2009), Manabe
and Okamoto (2010), and Aumann et al. (2014).

Finally, several works, including those by Dubins and Spanier (1961), Bar-
banel (1996a,b), Zeng (2000), and Brams and Taylor (1995b), define the set
of admissible pieces of cake to be some (σ-)algebra (not necessarily Borel)
over [0, 1].

Note that each of the sets I([0, 1]), B([0, 1]), L([0, 1]), and P([0, 1]) is an
algebra over [0, 1], and all, except I([0, 1]), are also σ-algebras over [0, 1].
However, I([0, 1])N is not an algebra, as the proof of the following theorem
shows.

Having introduced all the different approaches currently used in the liter-
ature, we will now prove the strict inclusions among these sets stated in the
following theorem.

Theorem 14 I([0, 1])
(a)
⊊ I([0, 1])N

(b)
⊊ B([0, 1])

(c)
⊊ L([0, 1])

(d)
⊊ P([0, 1]).

Proof We start with proving (a): I([0, 1]) ⊊ I([0, 1])N. Obviously, I([0, 1]) ⊆
I([0, 1])N is true, as every finite union of intervals is a countable union of intervals.
To see that the two sets are not equal, look at I =

⋃
i∈N∪{0}[3 · 2−i−2, 2−i]. It is

clear that I ∈ I([0, 1])N is true, as I is a countable union of intervals. However, it
holds that I = [3/4, 1] ∪ [3/8, 1/2] ∪ · · · , i.e., I cannot be written as a finite union
of intervals, as all these subintervals are pairwise disjoint. Hence, I /∈ I([0, 1]), so
I([0, 1]) ⊊ I([0, 1])N, and we have shown (a).

In Lemma 9 and Definition 6, we have seen that B([0, 1]) = σ(Q([0, 1])) where
Q([0, 1]) is the family of all intervals within [0, 1]. Since a σ-algebra is stable under
(finite and countable) unions, we get I([0, 1]) ⊆ σ(Q([0, 1])) = B([0, 1]). Using again
the stability of a σ-algebra under countable unions, we arrive at I([0, 1])N ⊆ B([0, 1]).

Since, however, Q ∩ [0, 1] ∈ B([0, 1]) is true, as Q ∩ [0, 1] can be written as
a countable union of intervals that each contain one element, it must hold that
Q ∩ [0, 1] ∈ B([0, 1]) by the definition of a σ-algebra. However, the irrational num-
bers Q ∩ [0, 1] in [0, 1] cannot be written as a countable union of intervals, since every
interval containing more than one element immediately contains a rational number.
Therefore, I([0, 1])N is not an algebra and I([0, 1])N ̸= B([0, 1]) holds, proving (b).

The inclusion B([0, 1]) ⊆ L([0, 1]) holds by definition, as all Borel sets are
Lebesgue-measurable. However, there are Lebesgue-measurable sets that are not
Borel-measurable: Observe that the cardinality of L([0, 1]) is the cardinality of
P([0, 1]) (which is 2c > c), whereas there are only continuum-many (i.e., c, the car-
dinality of [0, 1]) Borel sets (see Schilling, 2017, Appendix G, Corollary G.7). This
proves (c). An alternative direct construction can be based on the Cantor func-
tion, also known as the devil’s staircase (see Schilling and Kühn, 2021, p. 153,
Example 7.20).
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Finally, the power set P([0, 1]) trivially contains all other families of sets
considered earlier. Nevertheless, there are sets in P([0, 1]) that are not Lebesgue-
measurable, for example the Vitali set that we introduced in Example 2, so L([0, 1]) ̸=
P([0, 1]), and we have (d). □

4 Discussion
Taking P = I([0, 1]) as domain for a valuation v and a protocol involving a
finite number of cuts is always possible. If we are open-ended or even infinite,
the naive choice P = I([0, 1])N is problematic, as I([0, 1])N is not an algebra
and thus does not even satisfy the minimum requirements for P as described
in the first paragraph of Section 2.1.

From a theoretical point of view, however, the choice P = I([0, 1]) may
be unnecessarily restrictive, especially in light of the fact that we also want to
use infinite cake-cutting protocols. Therefore, a larger set P may be desirable,
perhaps even larger than I([0, 1])N, which (as we have seen) has disqualified
itself.

We start our discussion by explicating why P = P([0, 1]) is a bad choice
and we then provide arguments for a better option, namely the Borel σ-algebra
P = B([0, 1]).

4.1 Taming P([0, 1]) with Exotic Contents via Banach
Limits

If one boldly desires to define valuation functions on the set P([0, 1]) of all
subsets of the cake, it remains to be shown that this indeed is possible. We
have seen that the commonly used valuation functions represented via boxes,
as depicted in Figure 2, are not capable of evaluating every piece of cake in
P([0, 1]). Hence, in this section we aim to define a valuation function capable
of evaluating every possible piece of cake in P([0, 1]).

Let us begin with a negative result.

4.1.1 A Negative Result

Using axiomatic set theory one can show that there cannot be a valuation v
of the standard cake [0, 1] which

• is defined on all of P([0, 1]),
• is σ-additive, and
• is divisible, hence satisfies v({x}) = 0 for any x ∈ [0, 1].

This is the consequence of a result by Ulam, and it requires that the continuum
hypothesis holds true, see the books by Oxtoby (1980, p. 26, Proposition 5.7)
or Schilling and Kühn (2021, pp. 132–3, Example 6.15).

This means that we should look for finitely additive valuations if we want
to admit all pieces of cake. Let us formally define a valuation function µ on
P([0, 1]) satisfying the requirements (M), (A), and (D) from Definition 2. To
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do so, in a first step, we must choose an arbitrary sequence (xi)i∈N of pairwise
distinct elements from [0, 1]. For every A ⊆ [0, 1], we define a mapping fA : N→
[0, 1] with

n 7→ fA(n) =
|A ∩ {x1, . . . , xn}|

n
,

where |B| denotes the cardinality of any set B. That is, fA(n) describes the
relative frequency of the first n elements of (xi)i∈N being in A. For some sets
A the limit limn→∞ fA(n) does exist, but it may not exist for other sets A.
We can, however, use the Banach limits, that we will now introduce.

4.1.2 Banach Limits

We will need a nonconstructive way to extend linear maps. The key result
is the standard Hahn–Banach theorem, which is well-known from functional
analysis (see, e.g., Rudin, 1991, Theorem 3.2), so we need to go on a quick
excursion into functional analysis.

Theorem 15 Assume that (Y, ∥·∥) is a normed vector space and L :M → R a linear
functional, which is defined on a linear subspace M ⊆ Y satisfying |Lx| ≤ κ∥x∥ for
all x ∈ M with a universal constant κ = κL ∈ (0,∞). Then there is an extension
L̂ : Y → R such that L̂ is again linear and satisfies |L̂x| ≤ κ∥x∥ for all x ∈ Y with
the same constant κ = κL as before.

With a little more effort, but essentially the same proof, we can replace the
norm ∥x∥ (respectively, κ∥x∥) by a general sublinear map p : Y → R. Sublinear
means that p(αx) = αp(x) and p(x+y) ≤ p(x)+p(y) for all x, y ∈ Y and α ≥ 0.
In this case, the extension of Lx ≤ p(x) satisfies −p(−x) ≤ L̂x ≤ p(x). Note
that p is only positively homogeneous, i.e., it may happen that −p(−x) ̸= p(x).

The proof is nonconstructive and, at least for nonseparable spaces Y , relies
on the axiom of choice.

We will use the Hahn–Banach theorem for the space of bounded sequences
ℓ∞([0,∞)) = {x = (xn)n∈N ⊂ [0,∞) | ∥x∥∞ < ∞}, where ∥x∥∞ = supn∈N xn
is the uniform norm. Note that (ℓ∞([0,∞)), ∥ · ∥∞) is a nonseparable space.

A prime example of a bounded linear functional is the limit: Consider those
x = (xn)n∈N ∈ ℓ∞([0,∞)) where L(x) := limn→∞ xn = x exists in the usual
sense. It is common to write c([0,∞)) = {x ∈ ℓ∞([0,∞)) | limn→∞ xn exists}.
Clearly, limn→∞ xn = lim supn→∞ xn ≤ supn∈N xn, so that L is a bounded
linear functional on M = c([0,∞)) ⊂ Y = ℓ∞([0,∞)), and we can extend it
to all of Y as the Banach limit, i.e.,

LIM
n→∞

xn :=

{
limn→∞ xn if x ∈ c([0,∞)),

L̂(x) if x ∈ ℓ∞([0,∞)) \ c([0,∞)).
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Using the addition to the Hahn–Banach theorem with p(x) := lim supn→∞ xn
and the observation that limn→∞ xn exists if, and only if, lim infn→∞ xn =
lim supn→∞ xn ∈ [0,∞), we can choose the extension L̂ in such a way that

lim inf
n→∞

xn ≤ LIM
n→∞

xn ≤ lim sup
n→∞

xn.

The construction of Banach limits is a typical application of the Hahn–
Banach extension theorem, hence the axiom of choice. The appearance of these
two concepts in this context is not an accident. The seminal paper of Banach
(1923) (see also Banach, 1932, Chapter II.§1) proves what we now call the
“Hahn–Banach extension theorem for linear functionals” in order to solve the
problème de la mésure by Lebesgue (1904, Chapter VII.ii) which asks for the
existence of an additive, or σ-additive, translation invariant measure on P(Rn).
The answer depends on the dimension: In dimension n ≥ 3, it is always nega-
tive (because of the Banach–Tarski paradox), whereas in dimensions 1 and 2
it is negative if the measure is to be σ-additive (because of Vitali-type con-
structions, cf. Example 2). More on this can be found in the books by Wagon
(1985, Chapter 10) and Schilling and Kühn (2021, Example 7.31).

There is a deep connection between the underlying group structure of
the space Rn and Lebesgue’s measure problem (this was discovered by von
Neumann, 1929). Following M. M. Day, a group G which allows for finitely
additive, (left-)translation invariant measures on all of P(G) is nowadays called
amenable – a pun combining the actual meaning of the word (“nice, comfort-
able”) with its pronunciation which reminds of “mean value” or measure. The
axiom of choice, which is needed for Hahn–Banach, can also be used to con-
struct extensions of measures defined on a sub-algebra A0 of an algebra A. It
is known that this extendability, essentially, is equivalent to the Hahn–Banach
theorem (cf. Wagon, 1985, Theorem 10.11 and Corollary 13.6) describing its
axiomatic strength.

4.1.3 From Banach Limits to Valuation Functions

Having defined and discussed Banach limits, we will now use them to construct
a valuation function

µ : P([0, 1])→ [0, 1], A 7→ LIM
n→∞

fA(n).

It is clear that µ(A) is additive since both the limit and the Banach limit are
additive, so property (A) from Definition 2 is satisfied. In the following lemma
we show that µ satisfies property (D). At first glance, this seems to contradict
Corollary 8. But divisibility (D) involves the domain of the valuation, and
the proof of the lemma shows that we have almost no control on the set
Aα ⊆ A which achieves divisibility. That means, the following phenomenon is
symptomatic for having a “too big domain.”
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Lemma 16 For every A ∈ P([0, 1]) with µ(A) > 0 and every real number α ∈ [0, 1],
there exists a subset Aα ⊆ A in P([0, 1]) such that µ(Aα) = αµ(A).

Proof If µ(A) > 0 then A must contain an infinite number of points of the underly-
ing sequence, say A ∩ {x1, x2, . . . } = {xi(1), xi(2), . . . } for some increasing sequence
(i(k))k∈N of integers. By assumption, A ∩ {x1, x2, . . . , xn} = {xi(1), . . . , xi(m) |
i(m) ≤ n}, and so µ(A) = LIMn→∞ 1

n |{xi(1), . . . , xi(m) | i(m) ≤ n}|. We have to
construct a set B ∈ P(A) such that LIMn→∞ fB(n) = αµ(A) for fixed α ∈ [0, 1].

The key observation in this proof is the fact that for any nonnegative rational
number k/n with k < n, we have

k

n+ 1
<
k

n
<
k + 1

n+ 1
,

i.e., the quantity fB(n) = 1
n |B ∩ {xi(1), . . . , xi(m) | i(m) ≤ n}| decreases if we jack

up n → n + 1 and the numerator does not increase, i.e., if i(m + 1) > n + 1 or if
xi(m+1) = xn+1 ̸∈ B, and it increases if we jack up n→ n+1 and xi(m+1) = xn+1 ∈
B.

Fix α ∈ [0, 1] and observe that we can assume that 0 < α < 1: If α = 0, we take
B = ∅, and for α = 1, we use B = {xi(m) | m ∈ N}. For α ∈ (0, 1), we use a recursive
approach.

Since µ(A) = LIMn→∞ 1
n |{xi(1), . . . , xi(m) | i(m) ≤ n}| and 0 < α < 1 we

must have 1
n(1)

|{xi(1), . . . , xi(m) | i(m) ≤ n(1)}| ≥ αµ(A) for some n(1) ∈ N. Define
Bn(1) = {xi(1), . . . , xi(m) | i(m) ≤ n(1)}, and assume that we have already found a
set Bn such that fBn

(n) ≥ αµ(A). Because of the observation at the beginning of
the proof, the numbers

ℓn+1 := min {k > n | fBn
(k) ≤ αµ(A)} and

un+1 := min
{
k > ℓn+1 | fAk

(k) ≥ αµ(A) for Ak = Bn ∪ {xi(ℓn+1+1), . . . , xi(k)}
}

are well-defined and satisfy ℓn < un < ℓn+1 < un+1 and ℓn+1 → ∞. Setting

Bn+1 = Bn ∪ {xi(ℓn+1+1), . . . , xi(un+1)}
finishes the recursion, and we can define B =

⋃
n≥n(1)Bn.

By construction, |fB(n) − αµ(A)| ≤ ℓ−1
n+1 holds for n > n(1), completing this

proof. □

We now provide a counterexample that shows that µ is not σ-additive. To
do so, we define A0 = [0, 1] \ {xi | i ∈ N} and Ai = {xi} for i ∈ N. Obviously,
for all j ∈ N ∪ {0}, it holds that µ(Aj) = 0, while at the same time we have

µ


 ⋃

j∈N∪{0}
Aj


 = µ([0, 1]) = 1,

which means that µ is not σ-additive.
The valuation function µ defined above may seem to be attractive for cake-

cutting. We can interpret the sequence (xi)i∈N as countably many points which
are used to evaluate arbitrary pieces of the cake. However, there are multiple
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drawbacks. First of all, the existence of a Banach limit is only guaranteed if one
is willing to accept the validity of the axiom of choice, as already mentioned
in Section 4.1.2. Furthermore, until now no explicit nontrivial example of a
Banach limit is known. Hence, we cannot calculate µ(A) for A ∈ P([0, 1]) if
the ordinary limit of fA(n) does not exist, as we do not know what the Banach
limit looks like.

Thus, although µ is theoretically capable of evaluating all pieces of cake in
P = P([0, 1]), it is actually not useful for our purposes. Besides the previously
listed mathematical problems, there are also practical problems related to cake-
cutting itself. If we would use µ as a valid valuation function in cake-cutting,
all players would be obliged to precisely define a countable sequence (xi)i∈N
of pairwise distinct elements in [0, 1] and some Banach limit they are using for
their valuation functions. When we think of common approaches and results
in the cake-cutting literature, this approach seems impractical and not feasible
to use.

Hence, finding practically usable valuation functions defined on P([0, 1])
seems to remain an open problem. Nonetheless, this section showed that defin-
ing more complex valuation functions (compared to the valuation functions
represented via boxes) does not solve our initial problem on P([0, 1]). There-
fore, in the next section we discuss an alternative solution, namely, reducing
P in size from P([0, 1]) to a smaller subfamily contained in P([0, 1]).

4.2 Borel σ-Algebra
We recommend to use P = B([0, 1]) as the most useful family of all admissible
pieces of cake. As shown in Theorem 14, the Borel σ-algebra B([0, 1]) (strictly)
contains I([0, 1]) as well as I([0, 1])N, but is strictly smaller than L([0, 1]) and
P([0, 1]).

In general, the Borel σ-algebra can become quite large and complicated if
the base set is not countable, as is the case for [0, 1] ⊂ R. In particular, one
needs transfinite induction to “construct” all Borel sets. This means that, in
general, we cannot construct a valuation µ on B([0, 1]) by explicitly assigning
a value µ(A) to every element A ∈ B([0, 1]) nor give a recursive algorithm to
construct µ(A), as the σ-algebra is simply too large. Instead, one can describe
the valuation on a suitable generator of the σ-algebra and use Carathéodory’s
extension theorem, stated previously as Theorem 10.

Let us show here that the box-based valuation functions are σ-additive val-
uations on I([0, 1]) and that I([0, 1]) is an algebra. In this case, we can use
Carathéodory’s extension theorem to extend the valuation functions to mea-
sures on σ(I([0, 1])) = B([0, 1]). Since the valuation functions are σ-finite, it
follows that this extension is unique. Hence, by providing a box-based valua-
tion function, we obtain a unique measure on B([0, 1]). Thus P = B([0, 1]) is
a good solution to our problem.

Let us formalize the box-based valuation functions. A box-based valuation
function µ partitions the complete cake [0, 1] into a finite number of pairwise
disjoint subintervals, where each subinterval is allocated a finite number of
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boxes of equal height. We denote the set of all subintervals which µ uses by

Iµ = {I1 = [a1, b1), . . . , In−1 = [an−1, bn−1), In = [an, bn]},

where
⋃n

i=1 Ii = [0, 1] and we have Ii ∩ Ij = ∅ for all i and j, 1 ≤ i < j ≤ n.
Furthermore, denote by ψi ∈ N, for 1 ≤ i ≤ n, the number of boxes allocated
to an interval Ii by µ and denote by ψµ =

∑n
i=1 ψi the total number of boxes.

This gives the following weight function

p(x) :=
1

ψµ

n∑

i=1

ψi

λ(Ii)
1Ii(x) =

1

ψµ

n∑

i=1

ψi

bi − ai
1Ii(x).

Note that p(x) is a Borel-measurable function, which is a probability density,
i.e.,

∫ 1

0
p(x) dx = 1. Since µ is a Lebesgue measure with a weight, we cannot

define it on all of P([0, 1]), but we may extend it easily onto B([0, 1]) using
integration: Define µ : B([0, 1])→ [0, 1] as

B 7→ µ(B) :=

∫

B

p(x) dx.

In particular, if B ∈ I([0, 1]) is a finite union of intervals in [0, 1], we see that

B ∩ Ii =
n(B,i)⋃

j=1

⟨cij , dij⟩, i = 1, 2, . . . n

for suitable n(B, i) ∈ N, and

µ(B) =
1

ψµ

n∑

i=1


 ψi

bi − ai

n(B,i)∑

j=1

(dij − cij)


 .

Example 17 Referring back to the box-based valuation function ν from Figure 2 on
page 4, we obtain

Iν = {I1 = [0, 1/6), I2 = [1/6, 2/6), . . . , I6 = [5/6, 1]}.
Also, we have ψ1 = 2, ψ2 = 1, ψ3 = 5, ψ4 = 2, ψ5 = 4, ψ6 = 3, and ψν = 17. For

B = [0, 2/6], we obtain

ν(B) =
1

ψν

6∑

i=1


 ψi

bi − ai

n(B,i)∑

j=1

(dij − cij)




=
1

17

(
2
1/6

· (1/6 − 0) +
1
1/6

· (2/6 − 1/6) +
5
1/6

· 0 + 2
1/6

· 0 + 4
1/6

· 0 + 3
1/6

· 0
)

=
3

17
.
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Summing up, B([0, 1]) is recommended as a very good choice for P, since
this choice enables us to use box-based valuation functions and their extensions
as measures. It also enables us to use any Borel-measurable probability den-
sity – not only piecewise continuous densities – to define a divisible valuation
function on B([0, 1]) which is an absolutely continuous probability measure
with respect to Lebesgue measure. In this case, a further extension to L([0, 1])
is also possible, but the enrichment by subsets of Borel null sets (which are
evaluated zero) has no additional benefit.

5 Conclusion and Some Further Technical
Remarks

Among the questions we have tried to answer are:

1. Which subsets of [0, 1] should be considered as pieces of cake? Only finite
unions of intervals or more general sets?

2. If valuation functions are considered as set-functions as studied in measure
theory, should they be σ-additive or only finitely additive?

A related interesting question is:

3. Which continuity property should be used for a valuation?
For the standard cake [0, 1], the natural choices are either divisibility

(D) or absolute continuity with respect to Lebesgue measure, see p. 14.
Obviously, absolute continuity implies continuity. There is a partial converse
to this assertion: The notions of continuity and divisibility coincide (cf.
Corollary 8) and the distribution function Fv(x) of a continuous valuation
can be represented as a sum of the form Fv(x) =

∫ x

0
f(t) dt+vsc([0, x]); this

means that it has an absolutely continuous part and a continuous-singular
part, see the discussion in the paragraph on “General Measures” following
Definition 7. For an abstract cake, one should replace divisibility (D) by the
notion of sliceability, which is equivalent to condition (DD) by Theorem 11,
see Section 2.4 and Schilling and Stoyan (2016).

While one can define the Dirac and counting measures for all sets in P(X),
there is no way to define a geometrically sensible (and σ-additive [in dimensions
one and two] or finitely additive [in all higher dimensions]) notion of “volume”
for all sets – if we accept the validity of the axiom of choice. One can even
show that the axiom of choice is equivalent to the existence of non-measurable
sets (cf. Ciesielski, 1989, p. 55).

Our findings result in concrete recommendations for cake-cutters. For
a finitely additive valuation v on the standard cake [0, 1] (or indeed any
one-dimensional cake) equipped with the algebra I([0, 1]) generated by the
intervals, divisibility (D) is equivalent to atom-freeness or the continuity of the
distribution function Fv(x) = v([0, x]), cf. Corollary 8. For an abstract cake
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and a finitely additive valuation v, divisibility (D) should be replaced by slice-
ability (DD), which is equivalent to v being atom-free; if v is even σ-additive,
conditions (D) and (DD) coincide, see Theorem 11 and Corollary 12.

All of this breaks down, however, if we consider finitely additive valuations
on too big domains, say P = P(X): Even for the standard cake there are
divisible, finitely additive but not σ-additive valuations, see Lemma 16.

We have also discussed in detail the measure-theoretic notions and results
that are relevant for the foundations of cake-cutting, for both the standard
cake and abstract cakes, including the notions of σ-additivity, the Borel σ-
algebra, and Carathéodory’s extension theorem (Theorem 10). We emphasized
the importance of the Hahn–Banach theorem and the underlying axiom of
choice if one needs to evaluate arbitrary pieces of cake which are not Borel or
Lebesgue sets.

Banach, who can be seen as one of the founding fathers of the field of
cake-cutting,2 might perhaps have appreciated the close connection between
his work in measure theory and in cake-cutting. For future work, we suggest
to study which implications our findings may have on existing or on yet-to-be-
designed cake-cutting algorithms.

To conclude, we have surveyed the existing rich literature on cake-cutting
algorithms and have identified the most commonly used choices of sets con-
sisting of what is allowed as pieces of cake. After showing that these five most
commonly used sets are distinct from each other, we have discussed them in
comparison. In particular, we have argued that P(X) is too general to define
a (practically or theoretically) useful valuation function on it. And finally, we
have reasoned why we recommend the Borel σ-algebra B(X) as a very good
choice and how to construct, using Carathéodory’s extension theorem, a mea-
sure on B(X) that cake-cutters can use to handle their box-based and even
more general valuation functions.

For a pragmatic approach to cake-cutting on the standard cake [0, 1], the
following five points are important:

1. If one is interested in a fixed number of players and a fixed number of cuts,
any additive valuation v defined on the algebra of intervals I([0, 1]) will do.

2. If the players take rounds and if the protocol is open-ended or infinite,3
the finite additivity of the valuation v needs to be strengthened to σ-
additivity, and the domain of the valuation should contain the Borel
σ-algebra B([0, 1]) – this is the smallest σ-algebra containing I([0, 1]).

2Indeed, Steinhaus (1948) presents the so-called last-diminisher procedure that is due to his
students Banach and Knaster and guarantees a proportional division of the cake among any
number of players.

3For example, prior to the celebrated finite bounded envy-free cake-cutting protocol due to
Aziz and Mackenzie (2016a, 2020), the cake-cutting protocol of Brams and Taylor (1995a) was the
best protocol known to guarantee envy-freeness for any number of players. They argue that the
allocation must become envy-free at some (unknown) finite stage, which is why their protocol is
considered to be a finite unbounded envy-free procedure only. And yet, being open-ended, it is in
some sense even an infinite procedure that describes an infinite process. Similarly, it is reasonable
to conjecture that some moving-knife procedures can be converted to discrete procedures that
require infinitely many cuts.
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3. If the valuation v on I([0, 1]) is divisible, measure theory guarantees that
one is automatically in the situation described in item 2, i.e., the proper
domain of (the extension of) v is the Borel σ-algebra B([0, 1]).

4. If one wants to extend the domain of the valuation v beyond B([0, 1]),
things become difficult: On the one hand, it is quite tricky to “construct”
sensible valuations – unless we are happy with “rather simple” valuations
like countable sums of point masses v =

∑
i∈N piδxi

,
∑

i∈N pi = 1, (xi)i∈N ⊆
[0, 1], but these are obviously not divisible – and, on the other hand, they
are not well-behaved, touching the very basis of axiomatic set theory.

5. The tools provided by measure theory are powerful enough to handle even
abstract cakes.
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Appendix A An Alternative Example
Illustrating the Cantor Dust

Example 18 (Cantor dust; Cantor’s ternary set) Write the elements x ∈ [0, 1] of the
cake [0, 1] as ternary numbers, i.e., in the form

x =
∑

n∈N

xn
3n

≃ 0.x1x2x3 . . . , where xn ∈ {0, 1, 2},

and consider the set C1/3 comprising all x whose ternary expansion contains the digits
“0” or “2” only. To enforce uniqueness, identify expressions of the form 0.∗∗∗1000 . . .
with 0. ∗∗∗ 0222 . . .. The set C1/3 is not countable since there is a bijection between
C1/3 and [0, 1]: Take any x = 0.x1x2x3 . . . ∈ C1/3 and read x̂ := 0.x1

2
x2
2

x3
2 . . . as

dyadic expansion of an arbitrary element x̂ ∈ [0, 1].
The set C1/3 is the so-called Cantor set from Example 1. Think of its elements

as “cream” pieces within the cake [0, 1], and imagine two players, taking turns in
picking pieces of cake; for some reason (that their cardiologist elaborated on in detail)
they have to avoid the cream altogether. For this, they are allowed to make two cuts,
taking out an interval from the cake.4

The optimal strategy is to take, in each round, the largest (necessarily open)
interval between two cream pieces. From the triadic expansion, we see that, at
each stage of the game, the maximum distance between two cream pieces is
0. ∗∗∗2

n

000 . . . − 0. ∗∗∗0
n

222 . . . = 0. 0001
n

000 . . . ≃ 3−n, and this situation appears

exactly 2n−1 times, since we have 2n−1 choices for the leading n− 1 digits denoted
by the wildcard “∗∗∗” – to wit, the pieces taken out are always the middle thirds of
the largest remaining interval of cake:

A0 = [0, 1]
(∗)−−−−→ A1 = A0 \ (1/3, 2/3) = [0, 1/3] ∪ [2/3, 1]

4This is, of course, a non-standard cake-cutting protocol.
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(∗∗)−−−−→ A2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

At the step marked (∗) Player 1 takes the first middle third, at the (double) step
marked (∗∗) Player 2 and then Player 1 take the middle thirds of the remaining
intervals, etc.

If this procedure is repeated on and on, we remove countably many intervals from
[0, 1] and end up with the Cantor (ternary) set C1/3 =

⋂
n∈NAn from Example 1,

see Figure 1.
We can use the triadic expansion also to assign a unique code to the removed

piece: It1t2...tn2 denotes the newly removed piece of cake at stage n + 1 and the
t1, . . . , tn ∈ {0, 2} mark the right-end point of the interval using the triadic expansion:
sup It1t2...tn2 =

∑n
1 ti3

−i + 2 · 3−n−1. This allows us to come up with a formula for
the Cantor function from Example 3:

on all of It1t2...tn2 the function V has the value
n∑

i=1

ti
2
2−i + 3−n−1. (A1)

We refer to (Schilling and Kühn, 2021, Sec. 2.5, 2.6) for a full discussion of this.
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6 Stability of Special Graph Classes

6.1 Summary

In this work we studied the computational complexity of decision problems related
to stability of graphs. Besides some results by Papadimitriou and Wolfe [120], Cai
and Meyer [35], and Burjons, Frei, Hemaspaandra, Komm, and Wehner [33], com-
putational complexity related questions regarding the stability of graphs have not
been studied intensively. In our work we built on the work by Frei, Hemaspaandra,
and Rothe [67, 66], who initiated the computational complexity-theoretic investiga-
tion of this topic in 2020. Given some graph parameter ξ, the authors introduced,
among others, the subsequent decision problems which we also studied in our work:

1. ξ-Stability: Given a graph G, the question is whether G is ξ-stable.

2. ξ-VertexStability: Given a graph G, the question is whether G is ξ-vertex-
stable.

3. ξ-Unfrozenness: Given a graph G, the question is whether G is ξ-unfrozen.

Although the concept of stability of graphs has a wide range of real world ap-
plications, almost all results in the aforementioned work by Frei, Hemaspaandra,
and Rothe indicate that the corresponding decision problems are by no means
tractably solvable. In particular, the authors proved that most of the problems
are Θp

2-complete for the most common graph parameters.

Within our work we tried to close the gap between the desired, efficient real world
usage of the concepts of stability of graphs and its high computational complexity
boundaries. To do so, we studied the computational complexity of these problems
from a more limited point of view. Instead of determining the computational com-
plexity of the previously listed decision problems when allowing every possible graph
as input instance, we investigated the computational complexity of these problems
when restricting the set of graphs allowed as input to a single, special graph class.
Particularly, we studied the complexity of these decision problems limited to trees,
forests, bipartite graphs, and co-graphs as allowed input graph classes. Furthermore,
we covered the same graph parameters as Frei, Hemaspaandra, and Rothe, namely
the independence number α, the vertex cover number β, the clique number ω, and
the chromatic number χ.

With this approach we were able to formulate tractable algorithms for all previously
mentioned graph parameters and every listed special graph class. We showed that
these stability-related decision problems can be solved efficiently for a wide variety
of graphs stemming from the investigated, special graph classes and enabled the
usage of the concept of stability of graphs in real world applications that are solely
based on graphs from one of these classes.
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Abstract. Frei et al. [6] showed that the problem to decide whether
a graph is stable with respect to some graph parameter under adding
or removing either edges or vertices is ΘP

2 -complete. They studied the
common graph parameters α (independence number), β (vertex cover
number), ω (clique number), and χ (chromatic number) for certain vari-
ants of the stability problem. We follow their approach and provide a
large number of polynomial-time algorithms solving these problems for
special graph classes, namely for trees, forests, bipartite graphs, and co-
graphs.

Keywords: Computational Complexity · Graph Theory · Stability · Ro-
bustness · Colorability · Vertex Cover · Independent Set

1 Introduction

Frei et al. [6] comprehensively studied the problem of how stable certain cen-
tral graph parameters are when a given graph is slightly modified, i.e., under
operations such as adding or deleting either edges or vertices. Given a graph
parameter ξ (like, e.g., the independence number or the chromatic number),
they formally introduced the problems ξ-Stability, ξ-VertexStability, ξ-
Unfrozenness, and ξ-VertexUnfrozenness and showed that they are, typi-
cally, ΘP

2 -complete, that is, they are complete for the complexity class known as
“parallel access to NP,” which was introduced by Papadimitriou and Zachos [18]
and intensely studied by, e.g., Wagner [21, 22], Hemaspaandra et al. [8, 10], and
Rothe et al. [20]; see the survey by Hemaspaandra et al. [9].ΘP

2 is contained in the
second level of the polynomial hierarchy and contains the problems that can be
solved in polynomial time by an algorithm that accesses its NP oracle in parallel
(i.e., it first computes all its queries and then asks them all at once and accepts
its input depending on the answer vector). Alternatively, ΘP

2 = PNP[O(logn)] can
be viewed as the class of problems solvable in polynomial time via adaptively
accessing its NP oracle (i.e., computing the next query depending on the answer
to the previous query) logarithmically often (in the input size).

Furthermore, Frei et al. [6] proved that some more specific versions of these
problems, namely k-χ-Stability and k-χ-VertexStability, are NP-complete

? Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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for k = 3 and DP-complete for k ≥ 4, respectively, where DP was introduced by
Papadimitriou and Yannakakis [17] as the class of problems that can be written
as the difference of NP problems.

Overall, the results of Frei et al. [6] indicate that these problems are rather
intractable and there exist no efficient algorithms solving them exactly. Consid-
ering the vast number of real-world applications for these problems mentioned by
Frei et al. [6]—e.g., the design of infrastructure, coloring algorithms for biological
networks [15, 13] or for complex information, social, and economic networks [12],
etc.—these results are rather disappointing and unsatisfying.

This obstacle motivates us to study whether there are scenarios that allow for
efficient solutions to these problems which in general are intractable. Our work
is based on the assumption that most of the real-world applications of stability
of graph parameters do not use arbitrarily complex graphs but may often be
restricted to certain special graph classes. Consequently, our studies show that—
despite the completeness results by Frei et al. [6]—there are tractable solutions
to these problems when one limits the scope of the problem to a special graph
class. We study four different classes of special graphs: trees (T ), forests (F),
bipartite graphs (B), and co-graphs (C). For each such class, we study twelve
different problems:

– stability, vertex-stability, and unfrozenness
– for the four graph parameters α, β, ω, and χ.

In total, we thus obtain the 48 P membership results shown in Table 1,
which gives the theorem, proposition, or corollary corresponding to each such P
result. These results can be useful for real-world applications when knowledge
about the stability, vertex-stability, or unfrozenness of a graph with respect to
a certain graph parameter is required and graphs with such a special structure
may typically occur in this application.

2 Preliminaries

We follow the notation of Frei et al. [6] and briefly collect the relevant notions
here (referring to their paper [6] for further discussion). Let G be the set of
all undirected, simple graphs without loops. For G ∈ G, we denote by V (G)
its vertex set and by E(G) its edge set; by G its complementary graph with
V (G) = V (G) and E(G) = {{v, w} | v, w ∈ V (G)∧ v 6= w∧{v, w} /∈ E(G)}. For
v ∈ V (G), e ∈ E(G), and e′ ∈ E(G), let G− v, G− e, and G+ e′, respectively,
denote the graphs that result from G by deleting v, deleting e, and adding e′.

A graph parameter is a map ξ : G → N. We focus on the prominent graph
parameters α (the size of a maximum independent set), β (the size of a minimum
vertex cover), χ (the chromatic number, i.e., the minimum number of colors
needed to color the vertices of a graph so that no two adjacent vertices have the
same color), and ω (the size of a maximum clique).

For a graph parameter ξ, an edge e ∈ E(G) is said to be ξ-stable if ξ(G) =
ξ(G− e), i.e., ξ(G) remains unchanged after e is deleted from G. Otherwise (i.e.,
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Table 1. Overview of P results established for the four special graph classes studied in
this paper. E stands for the edge-related problem and V for the vertex-related problem.

T F B C

α
Stability

E Cor. 3 Thm. 7 Cor. 4 Cor. 10
V Cor. 3 Thm. 7 Cor. 4 Thm. 17

Unfrozenness Cor. 7 Cor. 7 Cor. 6 Cor. 12

β
Stability

E Cor. 3 Thm. 7 Cor. 4 Cor. 11
V Cor. 3 Thm. 7 Cor. 4 Cor. 8

Unfrozenness Cor. 7 Cor. 7 Thm. 12 Cor. 12

ω
Stability

E Cor. 3 Thm. 7 Cor. 4 Thm. 19
V Cor. 3 Thm. 7 Cor. 4 Cor. 9

Unfrozenness Prop. 1 Thm. 8 Cor. 5 Cor. 13

χ
Stability

E Cor. 3 Thm. 7 Cor. 4 Thm. 18
V Cor. 3 Thm. 7 Cor. 4 Thm. 16

Unfrozenness Prop. 1 Thm. 8 Thm. 11 Thm. 20

if ξ(G) is changed by deleting e), e is said to be ξ-critical. Stability and criticality
are defined analogously for a vertex v ∈ V (G) instead of an edge e ∈ E(G).

A graph is said to be ξ-stable if all its edges are ξ-stable. A graph whose
vertices (instead of edges) are all ξ-stable is said to be ξ-vertex-stable, and ξ-
criticality and ξ-vertex-criticality are defined analogously. Obviously, each edge
and each vertex is either stable or critical, yet a graph might be neither.

Traditionally, the analogous terms for stability or vertex-stability when an
edge or a vertex is added rather than deleted are unfrozenness and vertex-
unfrozenness: They too indicate that a graph parameter does not change by
this operation. And if, however, a graph parameter changes when an edge or
vertex is added (not deleted), the notions analogous to criticality and vertex-
criticality are simply termed frozenness and vertex-frozenness. Again, each edge
and each vertex is either unfrozen or frozen, but a graph might be neither.

For a graph parameter ξ, define ξ-Stability to be the set of ξ-stable graphs;
and analogously so for the sets ξ-VertexStability, ξ-VertexCriticality, ξ-
Unfrozenness, ξ-Frozenness, and ξ-VertexUnfrozenness. These are the
decision problems studied by Frei et al. [6] for general graphs in terms of their
computational complexity. We will study them restricted to the graph classes
mentioned in the introduction, formally defined in the subsections of Section 4.

A graph class J ⊆ G is closed for (induced) subgraphs if for every G ∈ J it
holds that all (induced) subgraphs H of G satisfy H ∈ J .

The notation of perfect graphs was originally introduced by Berge [2] in 1963:
A graph G ∈ G is called perfect if for all induced subgraphs H of G, we have
χ(H) = ω(H). Note that G is also an induced subgraph of itself.

Let P be the class of problems solvable in (deterministic) polynomial time.
For more background on computational complexity (e.g., regarding the complex-
ity classes NP, DP, and ΘP

2 mentioned in the introduction; note that P ⊆ NP ⊆
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DP ⊆ ΘP
2 by definition), we refer to the textbooks by Papadimitriou [16] and

Rothe [19].
For the sake of self-containment, we here state Gallai’s theorem [7], which is

used to obtain several of our results.

Theorem 1 (Gallai’s theorem). For every graph G ∈ G, it holds that

|V (G)| = α(G) + β(G).

3 General Stability and Unfrozenness Results

In this section, we provide general results that hold for specific graph classes
satisfying special requirements. These results can be used to easily determine for
a given graph class whether some stability or unfrozenness results are tractable.

Theorem 2. Let J ⊆ G be a graph class closed for induced subgraphs, and ξ a
tractable graph parameter for J . Then ξ-VertexStability ∈ P for all G ∈ J .

Proof. Let G ∈ J and compute ξ(G). For all v ∈ V (G), we have G − v ∈
J , since J is closed for induced subgraphs. Hence, for all v ∈ V (G), we can
compute ξ(G − v) efficiently and compare it to ξ(G). If there is no vertex such
that the values differ, G is ξ-vertex-stable. This approach is computable in time
polynomial in |G|, so that ξ-VertexStability ∈ P for all G ∈ J . q

Since every graph class that is closed for subgraphs is also closed for induced
subgraphs, Corollary 1 is a simple consequence of the previous theorem.

Corollary 1. Let J ⊆ G be a graph class closed under subgraphs and ξ a
tractable graph parameter for J . Then ξ-VertexStability ∈ P for all G ∈ J .

The first theorem made a statement related to vertex-stability about graph
classes closed for induced subgraphs. Theorem 3 is related to stability. Due to
space limitations, some proofs of our results (such as the one of Theorem 3) will
be tacitly omitted; they can be found in the technical report [23].

Theorem 3. Let J ⊆ G be a graph class closed under subgraphs and ξ a
tractable graph parameter for J . Then ξ-Stability ∈ P for all G ∈ J .

Some of the special graph classes we study in the next section are perfect,
which is why we now provide some results for perfect graph classes.

Theorem 4. Let G ∈ G be a perfect graph. Then it holds that G is ω-vertex-
stable if and only if G is χ-vertex-stable.

Based on this result, the next corollary follows immediately.

Corollary 2. Let J ⊆ G be a class of perfect graphs. Then, for all graphs in J ,
we have χ-VertexStability = ω-VertexStability.
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While the above results are related to the concepts of stability and vertex-
stability, the subsequent two results address the topic of unfrozenness.

Theorem 5. Let J ⊆ G be a graph class closed under complements and sub-
graphs. If α or β is tractable for J , then ω-Unfrozenness ∈ P for all G ∈ J .

Note that this theorem exploits a relation between α- and β-Stability and
ω-Unfrozenness shown in [6, Proposition 5]. The next theorem follows by a
similar approach, but exploits a relation between ω-Stability and α- and β-
Unfrozenness.

Theorem 6. Let J ⊆ G be a graph class closed under complements and sub-
graphs. If ω is tractable for J , then α- and β-Unfrozenness ∈ P for all G ∈ J .

4 Tractability Results for Special Graph Classes

Ahead of our results for the individual graph classes, we provide two observations
which we will use multiple times in upcoming proofs (presented here or in the
technical report [23]).1

Observation 1. χ-VertexStability ⊆ χ-Stability.

Observation 2. Let G ∈ G be a graph. If an edge {u, v} ∈ E(G) is β-critical,
then u and v are β-critical, too.

With these two observations we can now inspect several graph classes. In the
following subsections we study the problems ξ-Stability, ξ-VertexStability,
and ξ-Unfrozenness with ξ ∈ {α, β, ω, χ}, restricted to special graph classes.
Frei et al. [6] showed that for ξ ∈ {α, ω, χ} we have ξ-VertexUnfrozenness =
∅ as well as β-VertexUnfrozenness = {(∅, ∅)}, where (∅, ∅) is the null graph,
i.e., the graph without vertices or edges (which we will not further consider in
this paper). This is why we do not study problems related to vertex-unfrozenness,
as all related questions are already answered.

We start with investigating trees and forests.

4.1 Trees and Forests

We say G ∈ G is a tree (i.e., G ∈ T ) if G has no isolated vertices and no cycles
of length greater than or equal to 3. Furthermore, G is a forest (i.e., G ∈ F) if
there exist trees G1, . . . , Gn ∈ T such that G = G1 ∪ · · · ∪ Gn. For every tree
G ∈ T , it holds that |E(G)| = |V (G)| − 1 (see, e.g., Bollobás [3]). So, we have
ω(G) = χ(G) = 2 if |V (G)| > 1, and ω(G) = χ(G) = 1 if |V (G)| = 1.

Also, there exists a tractable algorithm to determine α(G) for trees (for
example, as T ⊆ B, we can simply use the algorithm for bipartite graphs from
Observation 4). Thus we can compute β for trees using Gallai’s theorem [7]

1 Note that the second observation is in line with Observation 2 of Frei et al. [6].
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(stated as Theorem 1), and all four graph parameters α, β, ω, and χ are tractable
for trees.

Now, let G ∈ F with G = G1 ∪ · · · ∪ Gn and Gi ∈ T , 1 ≤ i ≤ n, be
a forest. It is easy to check that α(G) =

∑n
i=1 α(Gi), β(G) =

∑n
i=1 β(Gi),

ω(G) = max1≤i≤n ω(Gi), and χ(G) = max1≤i≤n χ(Gi). Furthermore, it is known
that the class of forests F is closed under subgraphs and induced subgraphs.
From these observations we have the following results.

Theorem 7. Let ξ ∈ {α, β, ω, χ} be a graph parameter. Then the problems ξ-
Stability and ξ-VertexStability are in P for all forests.

With T ⊆ F the next corollary follows immediately.

Corollary 3. For all G ∈ T and ξ ∈ {α, β, ω, χ}, the problems ξ-Stability
and ξ-VertexStability belong to P.

We now focus on the unfrozenness problems. All trees and forests with fewer
than three vertices are trivial to handle (see the technical report [23] for details).
It remains to study trees and forests with at least three vertices.

Proposition 1. Every tree G ∈ T with |V (G)| ≥ 3 is neither ω- nor χ-unfrozen.

Based on this result we can deduce whether forests are ω- or χ-unfrozen. As
forests without edges are empty graphs, we study forests with at least one edge.

Let Pi denote the path with i vertices.

Theorem 8. If F ∈ F contains P2 but no P3 as induced subgraphs, F is ω- and
χ-unfrozen. If F contains P3 as an induced subgraph, F is not ω- nor χ-unfrozen.

α- and β-Unfrozenness are covered in Corollary 7 of the next subsection.

4.2 Bipartite Graphs

G = (V1 ∪ V2, E) is a bipartite graph if V1 ∩ V2 = ∅ and E ⊆ {{u, v} | u ∈
V1 ∧ v ∈ V2}. Denote the set of all bipartite graphs by B. We begin with two
simple observations.

Observation 3. Let G ∈ B be a bipartite graph. Then χ(G) = ω(G) = 1 if
E(G) = ∅, and χ(G) = ω(G) = 2 if E(G) 6= ∅.

Consequently, we can efficiently calculate χ and ω for all bipartite graphs.
The proof of the next observation (see [23]) provides a tractable method to
calculate α and β for bipartite graphs by making use of the approaches due to
Hopcroft and Karp [11] and Kőnig [14].

Observation 4. We can calculate α(G) and β(G) efficiently for G ∈ B.

Hence, we can efficiently calculate ξ(G) for every G ∈ B and ξ ∈ {α, β, ω, χ}.
Furthermore, as the class of bipartite graphs is closed under subgraphs and
induced subgraphs, the following corollary follows from Theorem 2.
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Corollary 4. For every ξ ∈ {α, β, ω, χ}, the problems ξ-Stability and ξ-
VertexStability are in P for all bipartite graphs.

Next, we discuss approaches for how to decide whether a bipartite graph
is stable. If a bipartite graph G has no edges, it is trivial to handle [23]. For
bipartite graphs with one edge, we have the following simple result.

Proposition 2. Let G be a bipartite graph with |E(G)| = 1. Then G is neither
ξ-stable nor ξ-vertex-stable for ξ ∈ {α, β, ω, χ}.

We now provide results for bipartite graphs with more than one edge.

Proposition 3. Every bipartite graph G with |E(G)| ≥ 2 is χ-stable.

Proof. Let e ∈ E(G) be an arbitrary edge of G. Since E(G− e) 6= ∅, it holds
that χ(G− e) = 2 = χ(G) and, thus, G is χ-stable. q

Furthermore, we can characterize χ-vertex-stability.

Theorem 9. Let G be a bipartite graph with |E(G)| ≥ 2. G is χ-vertex-stable if
and only if for all v ∈ V (G) it holds that deg(v) < |E(G)|.
Proof. Assume G to be χ-vertex-stable. Furthermore, as we assume that
|E(G)| ≥ 2, it holds that χ(G) = 2. Then there cannot exist a vertex v ∈ V (G)
with deg(v) = |E(G)|, as such a vertex would be χ-critical, since χ(G − v) = 1
because of E(G− v) = ∅. For the opposite direction, assume that for all vertices
v ∈ V (G) we have deg(v) < |E(G)|. Hence, no matter what vertex v ∈ V (G) we
remove from G, it always holds that E(G−v) 6= ∅, so χ(G−v) = 2 = χ(G) and,
thus, G is χ-vertex-stable. q

The proof of the following proposition is similar to that of Proposition 3.

Proposition 4. Every bipartite graph G with |E(G)| ≥ 2 is ω-stable.

Proof. For all e ∈ E(G) we have ω(G−e) = 2 = ω(G) as E(G−e) 6= ∅ holds,
such that G is ω-stable. q

Lastly, we can also characterize ω-vertex-stability.

Theorem 10. Let G be a bipartite graph with |E(G)| ≥ 2. G is ω-vertex-stable
if and only if for all v ∈ V (G) it holds that deg(v) < |E(G)|.
Proof. Assume that G is ω-vertex-stable. Consequently, for all v ∈ V (G) it
holds that ω(G− v) = 2 = ω(G). If there is one v ∈ V (G) with deg(v) = |E(G)|,
we have ω(G−v) = 1 as E(G−v) = ∅, a contradiction to G’s ω-vertex-stability.
Contrarily, assume that for all v ∈ V (G) it holds that deg(v) < |E(G)|. Then, for
all v ∈ V (G), it follows that E(G− v) 6= ∅. Consequently, ω(G) = 2 = ω(G− v)
and, hence, G is ω-vertex-stable. q

Besides these (vertex-)stability characterizations for bipartite graphs, we now
address unfrozenness for them.
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Theorem 11. Let G be a bipartite graph. G is χ-unfrozen if and only if G
possesses no P3 as an induced subgraph.

Proof. We prove both directions separately. First, assume G is χ-unfrozen but
contains P3 as an induced subgraph. Write V (P3) = {v1, v2, v3} and E(P3) =
{{v1, v2}, {v2, v3}} for the corresponding vertices and edges. Then e = {v1, v3} ∈
E(G). However, adding e toG we obtain χ(G) = 2 < 3 = χ(G+e), as P3+e forms
a 3-clique in G, a contradiction to the assumption that G is χ-unfrozen. Next,
assume that G possesses no P3 as an induced subgraph but is not χ-unfrozen.
Hence, there must exist e = {u, v} ∈ E(G) such that χ(G+ e) = 3 > 2 = χ(G).
Denote the two disjoint vertex sets of G by V1 ∪ V2 = V (G). Obviously, u ∈ V1
and v ∈ V2 cannot be true, since then χ(G + e) = 2 would hold. Therefore,
without loss of generality, we assume u, v ∈ V1. Adding e to G must create a
cycle of odd length in G, as cycles of even length as well as paths can be colored
with two colors. Consequently, G+ e possesses Cn with n = 2k + 1 ≥ 3, k ∈ N,
as a subgraph. This implies that G must possess P3 as an induced subgraph,
again a contradiction. q

Slightly modifying (the direction from right to left in) the previous proof
yields Corollary 5. This time, adding e to G must create a 3-clique in G.

Corollary 5. G ∈ B is ω-unfrozen if and only if G possesses no P3 as an
induced subgraph.

Both results show that ω- and χ-Unfrozenness belong to P for bipartite
graphs. For the proof of Theorem 12 (see [23]), which establishes the same result
for β-Unfrozenness, we need the following lemma.

Lemma 1. Let G be a bipartite graph and u ∈ V (G). If β(G− u) = β(G)− 1,
then there exists some vertex cover V ′ ⊆ V (G) with u ∈ V ′ and |V ′| = β(G).

Theorem 12. For every G ∈ B, the problem β-Unfrozenness belongs to P.

The proof of Theorem 12 allows for every nonedge of a bipartite graph to
decide if it is β-unfrozen, so β-Frozenness is in P for bipartite graphs. By
Gallai’s theorem [7], α-Unfrozenness is in P for bipartite graphs as well.

Corollary 6. For all G ∈ B, α-Unfrozenness and β-Frozenness are in P.

Finally, the next corollary follows by T ⊆ F ⊆ B.

Corollary 7. The problems α- and β-Unfrozenness as well as the problem
β-Frozenness belong to P for all trees and forests.

4.3 Co-Graphs

First of all, we recursively define co-graphs, following a slightly adjusted defini-
tion by Corneil et al. [4].
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+

∪ ∪

v1 v3 v2 v4

Fig. 1. Co-tree for C4.

Definition 1 (co-graph). The graph G = ({v}, ∅) is a co-graph. If G1 and G2

are co-graphs, then G1 ∪G2 and G1 +G2 are co-graphs, too.

We denote the set of all co-graphs by C and use the operators ∪ and + as is
common (see, e.g., [6]). We will use the following result by Corneil et al. [4].

Theorem 13. Co-graphs are (i) closed under complements and (ii) closed under
induced subgraphs, but (iii) not closed under subgraphs in general. Furthermore,
G ∈ G is a co-graph if and only if G possesses no P4 as an induced subgraph.

Property (iii) is not proven in their work [4]. However, C4 ∈ C is an easy
example since C4 is a co-graph (see Example 1 below), and removing one edge
yields P4. Since every co-graph can be constructed by ∪ and +, we can identify
a co-graph by its co-expression.

Example 1 (co-expression). The co-expression X = (v1∪v3)+(v2∪v4) describes
the graph C4 = ({v1, v2, v3, v4}, {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}}).

Obviously, we can build a binary tree for every co-graph via its co-expression.
The tree’s leaves correspond to the graph’s vertices and the inner nodes of the
tree correspond to the expression’s operations. For example, the tree in Figure 1
corresponds to the co-expression from Example 1 and, thus, describes a C4.
Such a tree is called a co-tree. To formulate our results regarding stability and
unfrozenness of co-graphs, we need the following result of Corneil et al. [5].

Theorem 14. For every graph G ∈ G, we can decide in O(|V (G)| + |E(G)|)
time whether G is a co-graph and, if so, provide a corresponding co-tree.

Combining the previous results with the next one by Corneil et al. [4], we
can efficiently determine a co-graph’s chromatic number.

Theorem 15. Let G ∈ G be a co-graph and T the corresponding co-tree. For a
node w from T , denote by G[w] the graph induced by the subtree of T with root w.
To every leave v of T we add as a label χ(G[v]) = 1. For every inner node w of
T we add, depending on the inner node’s type, the following label: (1) If w is a
∪-node with children v1 and v2, χ(G[w]) = max{χ(G[v1]), χ(G[v2])}, and (2) if
w is a +-node with children v1 and v2, χ(G[w]) = χ(G[v1]) + χ(G[v2]). If r is
the root node of T , then it holds that χ(G[r]) = χ(G).
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A result similar to the previous one for α was given by Corneil et al. [4].

Remark 1. We label all leaves of T with α(G[v]) = 1. Each inner node w of T
with children v1 and v2 is labeled by α(G[w]) = max{α(G[v1]), α(G[v2])} if w
contains the +-operation, and by α(G[w]) = α(G[v1]) + α(G[v2]) if w contains
the ∪-operation. For the root r of T , it then holds that α(G[r]) = α(G).

By the previous remark we can efficiently calculate α for co-graphs. Based
on these results, we can state the following theorems.

Theorem 16. For every G ∈ C, the problem χ-VertexStability is in P.

With a similar proof as for the previous theorem, we obtain the next result.

Theorem 17. For every G ∈ C, the problem α-VertexStability is in P.

We can use the same proof as for Theorem 17 to obtain the next corollary.
However, this time we additionally use Gallai’s theorem [7] to calculate β out of
α for G and all induced subgraphs with one vertex removed.

Corollary 8. For every co-graph, the problem β-VertexStability is in P.

Now, the subsequent corollary follows with Proposition 5(5) by Frei et al. [6]
because α-VertexStability = {G | G ∈ ω-VertexStability} is true and
co-graphs are closed under complements.

Corollary 9. For all G ∈ C, the problem ω-VertexStability is in P.

Next, let us study the edge-related stability problems for co-graphs. To obtain
our results, we need the following two auxiliary propositions.

Proposition 5. Let G ∈ C with |V (G)| > 1 and let u ∈ V (G) be χ-critical
for G. There exist two co-graphs G1, G2 such that G = G1∪G2 or G = G1 +G2.
Assuming, without loss of generality, that u ∈ V (G1), u is χ-critical for G1.

Proposition 6. Let G ∈ C and e = {u, v} ∈ E(G). If u and v are χ-critical
for G, then e is χ-critical for G as well.

Proof. Let G ∈ C be a co-graph and e = {u, v} ∈ E(G) an edge with two
χ-critical vertices u, v ∈ V (G). First, we study the case that G = G1+G2 as well
as u ∈ V (G1) and v ∈ V (G2) holds. Afterwards, we explain how to generalize
the proof.

From the previous Proposition 5 we know that u must be χ-critical for G1 and
v χ-critical for G2. According to Observation 4 from [6] there exists an optimal
coloring c1 : V (G1) → N for G1, such that for all ũ ∈ V (G1) \ {u} it holds that
c1(ũ) 6= c1(u). In other words, there is a coloring c1 for G1, such that u is the
only vertex in G1 of its color. A similar, optimal coloring c2 must exist for G2

with respect to v. For the combined graph with e removed, i.e., G− e, according
to Observation 1 from [6], it must hold that χ(G − e) ∈ {χ(G) − 1, χ(G)}.
Consequently, we can reuse c1 and c2 from G1 and G2, assuming distinct colors
sets for c1 and c2, to obtain a legal coloring of G with χ(G) colors. However,
we can color u in the same color c2(v), as v is colored, and thus obtain a legal
coloring for G− e with χ(G)− 1 colors. This is possible because
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1. u is the only vertex in G1 colored in c1(u) by definition of c1,
2. no vertex ũ ∈ V (G1)\{u} is colored with c2(v), as c1(V (G1))∩c2(V (G2)) = ∅

holds, and
3. v is the only vertex in G2 with this color, by definition of c2, and there is no

edge between u and v.

Consequently, after removing e from G, we can color G − e with one color less
than before, such that χ(G− e) = χ(G)− 1 holds and e is χ-critical.

Initially, we assumed that G = G1 + G2 with u ∈ V (G1) and v ∈ V (G2)
holds. If G = G1 ∪ G2, there cannot exist any edge between vertices from G1

and G2. Hence, the only cases left are G = G1 +G2 or G = G1 ∪G2 with both
vertices in G1 or G2. Without loss of generality, let us assume that both vertices
are in G1. Following Proposition 5, we know that both vertices are χ-critical for
G1, as they are χ-critical for G. When we can show that e is χ-critical for G1, it
immediately follows that e is also χ-critical for G. That is because if G = G1+G2

and e is χ-critical for G1, we have χ(G1 − e) = χ(G1)− 1, such that

χ(G− e) = χ(G1 − e) + χ(G2) = χ(G1)− 1 + χ(G2) = χ(G)− 1

holds. If G = G1 ∪ G2, there is one more argument to add. We know that u
and v are χ-critical for G and G1. Consequently, χ(G1) > χ(G2) must hold, as
otherwise, u or v cannot be χ-critical for G, since χ(G) = max{χ(G1), χ(G2)}
is true. But then, it is enough to show that e is χ-critical for G1, since reducing
χ(G1) by one via removing e also causes a reduction of χ(G) by one and hence,
e is χ-critical for G, too.

At some point, we must arrive in the case that one vertex is in G1 and the
other vertex is in G2 and G = G1 +G2 holds, since the +-operation is the only
possibility to add edges between vertices in co-graphs. q

Having these results, we are now able to provide our stability-related results.

Theorem 18. For all co-graphs, the problem χ-Stability is in P.

Proof. Let G ∈ C be a co-graph. We can compute χ(G) efficiently and, accord-
ing to Observation 1 in [6], for every edge e ∈ E(G) and every vertex v ∈ V (G) it
holds that χ(G−e), χ(G−v) ∈ {χ(G)−1, χ(G)}. Thus, for every edge e ∈ E(G),
we proceed as follows to efficiently determine whether e is χ-critical or -stable
for G: Denote e = {u, v} for u, v ∈ V (G). Then it follows that G− u and G− v
are induced subgraphs of G− e and G− e is a subgraph of G. According to the
earlier referenced Observation 1, it must hold that

χ(G− v), χ(G− u)︸ ︷︷ ︸
∈{χ(G)−1,χ(G)}

≤ χ(G− e) ≤ χ(G).

Hence, if χ(G−v) = χ(G) or χ(G−u) = χ(G), which we can compute efficiently,
it immediately follows that χ(G−e) = χ(G). In other words, if u or v is χ-stable,
we know that e must be χ-stable, too.2 If u and v are χ-critical, it follows by

2 This is in line with Observation 3 from [6].
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Proposition 6 that e is χ-critical. Since we can determine for every node in V (G)
efficiently, whether it is χ-stable, we can also efficiently determine for every edge
in E(G) whether it is χ-stable. Consequently, we can decide in polynomial time
whether G is χ-stable. Thus χ-Stability ∈ P for co-graphs follows. q

Next, we want to study the problem of ω-Stability for co-graphs. To do so,
we need the following lemmas.

Lemma 2. Let G ∈ C be a co-graph. We can compute all cliques of size ω(G)
for G in time polynomial in |G|.
Lemma 3. Let G ∈ G be a graph and v ∈ V (G) and e ∈ E(G). Then it holds
that ω(G− v) and ω(G− e) are in {ω(G)− 1, ω(G)}.

Having these results, we can show the next theorem.

Theorem 19. The problem ω-Stability is in P for co-graphs.

Proof. Let G ∈ C be a co-graph. By Theorem 15 we can compute ω efficiently
for G and all induced subgraphs. In order to decide whether G is ω-stable, we
proceed as follows for every edge e = {u, v} ∈ E(G):

Case 1: G = G1 ∪ G2 for two co-graphs G1, G2, and either u, v ∈ V (G1)
or u, v ∈ V (G2) holds, since there are no edges between G1 and G2. Assume
without loss of generality that u, v ∈ V (G1). As ω(G) = max{ω(G1), ω(G2)},
we efficiently check whether ω(G2) ≥ ω(G1) holds. In this case, we know that
e cannot be critical to G, because even if e would be ω-critical to G1, using
Lemma 3, we still have ω(G − e) = max{ω(G1 − e), ω(G2)} = max{ω(G1) −
1, ω(G2)} = ω(G2). Otherwise, if ω(G1) > ω(G2) holds, we study whether e is
ω-critical for G1 by recursively selecting the appropriate case, this time with G1

as G. This is sufficient because if e is ω-critical for G1, it is also ω-critical for G.
Case 2: G = G1 + G2 and u, v ∈ V (G1) or u, v ∈ V (G2). In this case, it is

sufficient to check whether e is ω-critical for the partial graph, i.e., G1 or G2,
containing u and v. That is because ω(G) = ω(G1) + ω(G2) holds and so, if e is
ω-critical for one of the two partial graphs, e is also critical for G. Once again,
we check this by recursively applying the appropriate case for the corresponding
partial graph.

Case 3: G = G1 +G2 and u, v are in different partial graphs. Assume that
u ∈ V (G1) and v ∈ V (G2) holds. Now, in order for e to be ω-critical, there must
exist only one clique V ′ ⊆ V (G1) with ω(G1) = |V ′| as well as u ∈ V ′ and only
one clique V ′′ ⊆ V (G2) with ω(G2) = |V ′′| and v ∈ V ′′. We can check both
conditions efficiently using Lemma 2. If this is the case, then all other cliques in
G1 are strictly smaller than V ′ and all other cliques in G2 are strictly smaller
than V ′′. Hence, the only clique of size ω(G) in G is V ′ ∪ V ′′, containing u and
v. Removing e = {u, v} from G causes ω(G) to be reduced by one since there
is only one clique of size ω(G) in G, and afterwards, it is missing the edge e in
G− e. Therefore, only in this case e is ω-critical.

The number of recursive calls is limited by dlog(|V (G)|)e, since every in-
ner node of G’s co-expression combines at least two nodes. Every case can be
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computed efficiently, such that we can determine for a co-graph G in time in
O(|E(G)| · log(|V (G)|) · |V (G)|c) for some c ∈ N whether G is ω-stable. Conse-
quently, ω-Stability is in P for all co-graphs. q

As we now know that we can efficiently determine whether a given co-graph G
is ω-stable, we can exploit the fact that co-graphs are closed under complements
to obtain the following corollary.

Corollary 10. The problem α-Stability is in P for co-graphs.

The next corollary follows from Gallai’s theorem [7] and [6, Proposition 5].

Corollary 11. The problem β-Stability is in P for co-graphs.

At this point, we finish the study of stability problems for co-graphs, as all
open questions are answered, and turn to the problems related to unfrozenness.
The next two corollaries exploit the fact that co-graphs are closed under com-
plements and follow a similar argumentation.

Corollary 12. The problems β-Unfrozenness and α-Unfrozenness are in
P for co-graphs.

Corollary 13. The problem ω-Unfrozenness is in P for co-graphs.

Finally, we answer the last remaining open question related to unfrozenness
and co-graphs.

Theorem 20. The problem χ-Unfrozenness is in P for co-graphs.

Proof. Let G ∈ G be a co-graph and e = {u, v} ∈ E(G) a nonedge of G. Since
G has at least two vertices, u and v, either G = G1 + G2 or G = G1 ∪ G2 for
two co-graphs G1, G2 holds. We handle both cases separately:

1. If G = G1+G2 is true, then e must belong either to E(G1) or to E(G2), since
{{u, v} | u ∈ V (G1), v ∈ V (G2)} ⊆ E(G), such that E(G) = E(G1)∪E(G2).
Without loss of generality assume that e ∈ E(G1) holds. If e is χ-unfrozen
for G1, i.e., χ(G1 + e) = χ(G1), then e is χ-unfrozen for G, since χ(G+ e) =
χ(G1 + e) + χ(G2) = χ(G1) + χ(G2) = χ(G) follows. Contrarily, if e is χ-
frozen for G1, i.e., χ(G1 + e) = χ(G1) + 1, then e is χ-frozen for G as well,
as χ(G + e) = χ(G1 + e) + χ(G2) = χ(G1) + 1 + χ(G2) = χ(G) + 1 holds.
Hence, it is enough to determine whether e is χ-unfrozen or -frozen for G1

and we can follow the argumentation of this proof recursively for G1.
2. If G = G1 ∪G2 is true, e can belong to E(G1), E(G2), or E(G) \ (E(G1) ∪
E(G2)). We split this into two sub-cases:
(a) If e ∈ E(G1) or e ∈ E(G2), we proceed as follows. Without loss of

generality assume e ∈ E(G1). Since χ(G) = max{χ(G1), χ(G2)} holds,
an increase of χ(G1) affects χ(G) only if χ(G1) ≥ χ(G2). Otherwise, e is
χ-unfrozen for G (but not necessarily for G1). If χ(G1) ≥ χ(G2), then it
holds that if e is χ-unfrozen for G1, it follows that e is χ-unfrozen for G,
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since χ(G+ e) = max{χ(G1 + e), χ(G2)} = χ(G1 + e) = χ(G1) = χ(G)
is true. Similarly, if e is χ-frozen for G1, it follows that e is χ-frozen for
G, since χ(G+ e) = max{χ(G1 + e), χ(G2)} = χ(G1 + e) = χ(G1) + 1 =
χ(G)+1. Consequently, it is enough to determine whether e is χ-unfrozen
or -frozen for G1 and we can follow the argumentation of this proof
recursively for G1.

(b) If e ∈ E(G) \ (E(G1) ∪E(G2)), then u ∈ V (G1) and v ∈ V (G2) follows.
Now, if χ(G1) = χ(G2) = 1 is true, it follows that e is χ-frozen for G,
since χ(G+e) = 1+1 = 2 > 1 = max{χ(G1), χ(G2)} = χ(G). Contrarily,
if χ(G1) > 1 or χ(G2) > 1, it follows that e is χ-unfrozen for G since G1

and G2 share no edge but e. Because of that we can arrange the colors
for V (G1) and V (G2) in such a way that both vertices incident to e have
different colors, resulting in χ(G+ e) = χ(G).

Following these cases, we can efficiently determine for every nonedge e ∈ E(G)
whether it is χ-frozen or -unfrozen for G, resulting in χ-Unfrozenness ∈ P for
all co-graphs. q

5 Conclusion

We have provided 48 tractability results regarding the stability, vertex-stability,
and unfrozenness problems when restricted to special graph classes. In particu-
lar, we studied these three problems for four important graph classes and four
central graph parameters. Doing so, our work provides some baseline for further,
more expanding work along this line of research. For future work, we propose
to study further special graph classes that are not covered here. Besides the
study of stability for other graph classes, one can also study the concept of cost
of stability :3 Given a graph, the question is how costly it is to stabilize it. In
other words, what is the smallest number of vertices or edges to be added to or
removed from the graph such that the resulting graph is stable or unfrozen with
respect to some graph parameter. Relatedly, it would make sense to combine
these two approaches and study the cost of stability for special graph classes.
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7 Conclusion

With this last chapter of our work we provide a brief overview of the results we
gathered as well as an outlook for potential future work. At a glance, we studied
uncertainty-related problems across four different areas of theoretical computer sci-
ence, namely judgment aggregation, preference aggregation by voting, fair division
of divisible goods, and stability of graphs.

In the area of judgment aggregation, we studied the family of sequential judgment
aggregation rules. Having defined this family, we initiated the computational com-
plexity study of these rules. Thereby, we proved that the winner problem belongs to
∆p

2 for every efficiently computable, underlying base rule and is ∆p
2-complete when

using a quota rule as underlying base rule. Beyond these results, we studied the topic
of manipulability via the processing order for these rules. To do so, we introduced
the SK-Winner-Design problem, the SK-Winner-Robustness problem, as well
as the SK-Supported-Judgment problem. Our computational complexity results
for these problems range from P-membership up to completeness in the second level
of the polynomial-time hierarchy. Some of the previous results required a novel
counting technique that we introduced and which extends the original technique by
Cook [42]. Finally, we linked the studied sequential judgment aggregation rules to
other, known judgment aggregation rules, such as the maximal subagenda rule [104].
In doing so, we were able to transfer some of our computational complexity related
proofs and provide even stricter results for these known rules. Unfortunately, the
previously mentioned complexities for the winner problem are very high, aggravat-
ing practical application of the studied rules for large instances. Hence, we suggest
to follow the path by de Haan [80] and search for more tractable representations
of judgment aggregation that allow for more efficient solutions to problems like the
winner problem. Besides this approach, we want to intensify research on further un-
derlying rules for sequential judgment aggregation rules. Covering a larger variety
of these underlying rules improves the general understanding of the family of se-
quential judgment aggregation rules and might allow for more tractable approaches
in the future.

With regards to preference aggregation by voting, we introduced a new decision
problem E-Possible-Winner-with-Uncertain-Weights-F. Our problem rep-
resents a variant of the classical possible winner problem but addresses weighted
elections with unspecified weights instead of unweighted elections with partial pref-
erence orders that need to be completed. Besides the initial problem, we defined
three further variants thereof. The first variant contains an additional set of regions
from which weights for the unweighted votes must be chosen. The second variant
contains an additional upper bound that limits the overall sum of all weight to be
distributed among the unweighted votes. The last variant combines the two pre-
vious variants and contains both restrictions at once. We introduced a framework
to study the computational complexity of these problems for nonnegative integer
as well as rational weights. With this framework at hand, we studied several es-
tablished voting rules such as k-approval and k-veto for all k ∈ N, plurality with

154
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runoff, veto with runoff, Borda, simplified Bucklin and fallback voting, Copelandα,
as well as ranked pairs. Making use of the technique of linear programming, we could
prove P-membership for all rules and rational weights. Contrarily, our results range
from P-membership up to NP-completeness for integer weights. To establish our
results for plurality and veto with runoff, we proved two auxiliary results, namely
that the constructive control by adding voters problem in succinct representation
can be solved efficiently for both rules, i.e., it belongs to P. So far, we only covered
k-approval, k-veto, and a generalization which we termed binary scoring protocol
in terms of scoring protocols and nonnegative integer weights. For future work it
would be desirable to establish a dichotomy result for all scoring protocols as it
has been done for the original possible winner problem by Betzler and Dorn [24]
and Baumeister and Rothe [23]. Beyond that, we aim to extend our study to the
necessary winner with uncertain weights problem. This problem’s definition would
follow from the necessary winner problem in the same way as our extension follows
from the related possible winner problem.

In the area of cake-cutting, we deviated from our previous approach of computational
complexity studies and studied some of the very fundamental axioms of the field. In
particular, we were interested in the set of all admissible pieces of cake that contains
all pieces of cake which every player must be able to evaluate. We surveyed old and
recent cake-cutting literature and collected several different definitions for this set.
We discussed containment relations of the different approaches and provided counter
examples why some of these approaches are not feasible. Thereby, our counter
examples are mathematically involved and make use of abstract concepts like Banach
limits and Vitali sets. Finally, we identified the set of all admissible pieces of cake
with a well-known structure from measure theory, an algebra. Furthermore, based
on this finding, we could identify the players’ valuation functions as finite contents on
such an algebra. Having these two fundamental concepts from cake-cutting identified
with such thoroughly studied notions from measure theory, we argued about the
optimal approach for the set of all admissible pieces of cake. We suggested to use
the Borel σ-algebra over cake X as set of all admissible pieces of cake. Based
on this suggestion we showed that box-based valuation functions can be uniquely
extended to measures on the Borel σ-algebra, allowing for a smooth transition from
the previously identified, different approaches to our suggestion. In terms of future
work we see two main branches to follow. First, it is interesting to think about
implications of our results to cake-cutting algorithms that are used in practice.
Possibly, one could identify positive consequences from the new definition for the set
of all admissible pieces of cake that allow for more efficient runtimes. Second, we are
interested in studying whether there are any impossibility or possibility results that
are affected by our definition for the set of all admissible pieces of cake. Moreover, it
could also be the case that the more profound axiomatic foundations we introduced
enable new possibility or impossibility results.

Lastly, we turned the focus of our work to the area of stability of graphs. Building
on the work by Frei, Hemaspaandra, and Rothe [67], we introduced a new approach
by studying the stability of graphs when restricted to special graph classes. Thereby,
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7 Conclusion

we studied four different graph classes, namely trees, forests, bipartite graphs, and
co-graphs for the same four graph parameters as in the previously mentioned work.
For all four graph classes and all four graph parameters we could define tractable
algorithms that allow to determine efficiently for a given graph from one of these
graph classes whether it is stable or not, vertex-stable or not, and unfrozen or not.
Especially, since the stability of graphs has a wide area of applications, these results
are motivating for future work. We would be interested in studying further graph
classes as the four graph classes studied so far cover only a small portion of all
simple graphs. Overall, we would try to aim for a dichotomy result explaining
why the general stability-related decision problems are intractable compared to the
restricted variants studied in our work. Additionally, we suggest to introduce another
concept on top of stability of graphs, namely cost of stability. Cost of stability would
describe the smallest number of edges or vertices to be added or removed from a
given graph (the cost) in order to obtain a stabilized graph. This concept might
help to enable even more applications of stability of graphs.
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