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Summary 

Phenomenologically, the macromolecular composition of exponentially growing microorganisms 

largely dependents on their exponential growth rate, not on environmental details. For example, 

the cellular RNA content increases almost linearly with growth rate in Escherichia coli. What are 

the mechanisms behind these growth rate dependencies? This cumulative thesis examines if these 

growth rate dependencies can be explained as consequences of the optimal allocation of cellular 

resources. 

Manuscript 1 studies the theoretically optimal expression of components of the E. coli protein 

translation machinery from first principles, and compares the predictions to published 

experimental data. Translation is the most expensive cellular process at high growth rates in 

bacteria, both in terms of the proteome fraction of the translation machinery and in terms of ATP 

usage. It has been suggested that translation components are expressed at optimal efficiency. But 

what does optimal efficiency mean in an evolutionary context? The cytosol density is near 

constant across growth conditions in E. coli. Thus, if more cytosolic dry mass is allocated to one 

cellular process, less is available for other processes. We thus hypothesized that the translation 

machinery has been optimized by natural selection such that its components together amount to 

the smallest possible mass concentration of all its components at the given growth rate. To test 

this hypothesis, I built a detailed mechanistic translation model and fully parametrized the model 

with kinetics constants reported in the literature. The model is constrained only by the 

physicochemical properties of the molecules and has no adjustable parameters. The growth rate-

dependent concentrations of all modeled translational components, including ribosome, tRNAs, 

mRNA, elongation factor Tu, and elongation factor Ts are accurately predicted by minimizing the 

combined cost of the whole translation machinery at the given protein synthesis rate. Further, the 

resulting optimal configurations explain experimental data for the RNA/protein ratio and 

ribosome activity in both normal growth and antibiotics stress conditions. Minimizing alternative 

cost measures, such as carbon content, energy cost, and biosynthesis cost, leads to similar results. 

Thus, the translation machinery works close to optimal efficiency in E. coli. 

Manuscript 2 examines the growth rate-dependent proteome efficiency of metabolic pathways. 

In manuscript 1, we found that the protein translation machinery is expressed for maximal 

efficiency in E. coli. However, other recent studies indicate that the overall proteome is not 

allocated in a way that achieves maximal efficiency. Especially at low growth rates, a substantial 

fraction of the proteome is unneeded for balanced cell growth. More than half of the total 

proteome is allocated to metabolism in E. coli growing on minimal media. Prior to our work, it was 

unclear if proteome allocation to different metabolic pathways is similarly efficient, or if some 

pathways are systematically closer to maximal proteome efficiency than others. In manuscript 2, 

the minimal proteome demand of individual pathways was predicted by minimizing the proteome 

cost with a modified version of flux balance analysis with molecular crowding. By comparing the 

predicted optimal proteome demand of individual pathways with the experimental data, I found 

that proteome efficiency can qualitatively explain the growth rate-dependent expression of 

biosynthesis pathways, glycolysis, and the pentose phosphate pathway, but is unable to explain 

the expression of other pathways. Unexpectedly, by mass, more than half of the metabolic 

pathways show a growth rate dependence opposite of that expected from optimal demand. 

Overall, growth rate-dependent proteome efficiency increases along the carbon flow through the 

metabolic network. While this work provides a bird’s-eye view of proteome efficiency at the 
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pathway level, future work will have to elucidate why proteome allocation evolved this way, and 

how it gives rise to the widely used bacterial growth laws when averaging over sets of pathways. 

Manuscript 3 builds on manuscript 1 by exploring an RNA composition growth law and its partial 

implementation through the genes’ genomic positions in fast-growing bacteria. In contrast to the 

proteome composition, RNA composition is usually assumed to be independent of the growth rate, 

despite experimental evidence to the contrary. By minimizing the combined costs of the ribosome 

and ternary complex, I analytically derived an RNA growth law. This law describes how the optimal 

tRNA/rRNA ratio decreases monotonically with growth rate, consistent with experimental data 

from E. coli and other fast-growing microbes. In most of these species, rRNA genes are located 

closer to origin of replication than tRNA genes. Accordingly, the number of rRNA gene copies 

increases faster than the number of tRNA gene copies with increasing growth rate, a consequence 

of replication-associated gene dosage effects. The tRNA/rRNA gene copy ratio thus decreases with 

increasing growth rate, consistent with the RNA growth law. I conclude that the RNA growth law 

is partially implemented through the relative positions of tRNA and rRNA genes, indicating that 

natural selection on growth rate-dependent resource allocation patterns can influence the 

genome organization of bacteria. 

In sum, the three manuscripts of this thesis quantify the optimality of growth rate-dependent 

allocation of bacterial resources into macromolecules involved in different biochemical pathways, 

linking optimal resource allocation to genome organization.  
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1 Introduction

1.1 Overview of the growth rate-dependent macromolecular composition 
in bacteria

In 1958, a pioneering work by Ole Maaløe’s lab found that the content of DNA, RNA, and  protein 
in dry weight as well as the cell mass itself are growth rate-dependent in Salmonella Typhimurium;
these growth rate dependencies were not influenced by the detailed composition of the growth 
medium or the temperature (Schaechter et al, 1958). From the 1960s to the 1980s, substantial 
efforts were put into the quantification of the growth rate-dependent macromolecular 
composition of microbes (Neidhardt & Magasanik, 1960; Ecker & Schaechter, 1963; Rosset et al, 
1966; Dennis & Bremer, 1974; Ikemura, 1981; Bremer & Dennis, 1996) and the interpretation of 
these growth rate-dependencies in the context of ribosome efficiency (Maaløe & Kjeldgaard, 1966; 
Koch, 1971, 1988; Ehrenberg & Kurland, 1984).

This thesis focuses on the growth rate-dependent macromolecular composition in Escherichia coli. 
Fig. 1.1a shows how the E. coli dry weight fraction allocated to protein and RNA changes with 
growth rate (Bremer & Dennis, 1996). Remarkably, the RNA dry mass fraction is a near-linear 
function of the growth rate.

Fig. 1.1. Growth rate-dependent macromolecular composition of E. coli. (a) The dry mass fractions of 
protein and RNA. Data from (Bremer & Dennis, 1996). (b) Mass fraction of ribosomal protein (R-protein) in 
total protein. Data from (Bremer & Dennis, 1996). (c) Mass ratio between tRNA and rRNA. Data from (Dong 
et al, 1996).

As most of the RNA by mas is ribosomal (rRNA), the RNA and protein content in Fig. 1.1a suggests 
that the fraction of ribosomal protein in total protein changes with growth rate. Indeed, direct 
measurement of ribosomal protein synthesis rates found that the proteome fraction of ribosomal 
proteins is an almost linear function of growth rate (Bremer & Dennis, 1996) (Fig. 1.1b). A linear 
scaling of the ribosomal proteome fraction with growth rate was also found in many other species, 
e.g., Salmonella Typhimurium (Schaechter et al, 1958), K. aerogenes (Neidhardt & Magasanik, 
1960), and S. cerevisiae (Metzl-Raz et al, 2017). Recently, this robust growth rate-dependence of 
the ribosome abundance has been framed as a bacterial “growth law” (Scott et al, 2010; Jun et al, 
2018). 

Similar to the proteome composition, the RNA composition in bacteria is also growth rate-
dependent (Kjeldgaard & Kurland, 1963; Dong et al, 1996). As shown in Fig. 1.1c, the transfer RNA 
(tRNA) to rRNA ratio decreases with growth rate in E. coli (Dong et al, 1996).



Introduction 

4 
 

What causes the growth rate-dependence of the proteome and RNA compositions in bacteria? 

The current thesis aims to answer this question from the view of optimal resource allocation at 

the molecular level, further venturing to find the possible imprint of optimal resource allocation 

on genome organization.  

1.2 Proteome sectors 

 

Fig. 1.2. A diagram of the proteome distributed across three sectors: the condition-independent Q-sector, 

the metabolic P-sector, and the translation R-sector. (a) Proteome sectors on rich nutrients without 

translation limitation. (b) and (c) Proteome sectors under nutrient limited conditions. (d) and (e) Proteome 

sectors under translation-limited conditions enacted through ribosome-targeting antibiotics.  

Recently, the growth rate-dependent proteome composition has been characterized in E. coli by 

Terence Hwa’s lab (Scott et al, 2010; You et al, 2013; Klumpp et al, 2013; Hui et al, 2015). In their 

theoretical description, the proteome is partitioned into several sectors. Fig. 1.2 shows how a 

partitioning into 3 sectors, the simplest version of this theory. The three sectors are the fixed, non-

growth-related Q-sector, the metabolic P-sector, and the translation R-sector. Briefly, proteins of 

the P-sector catalyze nutrients to produce precursors; proteins of the R sector synthesize protein 

from precursors produced by the P-sector; finally, the Q-sector is a fixed fraction of the proteome 

that is independent of growth conditions. During growth in a nutrient-rich medium, the 

partitioning of the proteome looks as shown in Fig. 1.2a. When the quality of the medium is 

reduced, the growth rate decreases and the cell increases its proteome allocation to the P-sector 

to compensate for the decreased nutrient quality (Fig. 1.2b). Because the P-sector increases and 

the Q-sector is constant, the R-sector must decrease under nutrient limitation. Varying nutrient 

quality results in a growth rate-dependent expression of the P-sector and the R-sector (Fig. 1.2c). 

Similar to nutrient-limited conditions, a translation limiting condition (a decrease in the effective 

ribosome activity, e.g., through ribosome-targeting antibiotics) also leads to growth rate 

decreases. To compensate for translation limitation, the cell increases the proteome fraction of 

 

Nutrient  ualit  

 rowth rate

Ribosome ac vit  

 rowth rate
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the R-sector (Fig. 1.2d). As the R-sector increases and Q-sector is constant, the P-sector will 

decrease. Varying the degree of translation inhibition results in a growth rate-dependent 

expression of the R-sector and the P-sector (Fig. 1.2e). At the mechanistic level, the scaling of the 

R-sector is regulated by the alarmone ppGpp (Scott et al, 2010, 2014), while the scaling of the P-

sector is mainly regulated by cAMP-CRP and α-ketoglutarate (You et al, 2013). In models with 

more than three sectors, the scaling of the sectors follows a similar scheme to that shown in Fig. 

1.2 (Hui et al, 2015): Given varying degrees of a specific kind of growth limitation, the 

corresponding sector(s) will be up-regulated to compensate the limitation while other, uninvolved 

sectors will be down-regulated passively (Hui et al, 2015).  

The empirical proteome sector theory is built on observed proteome allocation patterns and does 

not consider proteome efficiency (Hui et al, 2015). Please note that the scaling of R-sector under 

nutrient-limited conditions is an exception, which was found to be originated from maximal 

proteome efficiency (Scott et al, 2010; Klumpp et al, 2013). But why the cell needs these scalings? 

Are the scalings of other sectors also originated from maximal proteome efficiency? 

1.3 Resource allocation on global and local optimum 

What makes the macromolecular composition growth rate-dependent? It was suggested that 

these phenomena originate from global optimal resource allocation that maximizes growth rate 

(Bruggeman et al, 2020).  In global optimal resource allocation, all cellular components are 

expressed at optimal levels, such that the cell can achieve its maximal growth rate on the given 

condition (Bruggeman et al, 2020). Nevertheless, several findings indicate that resource allocation 

is not globally optimized in different E. coli strains. First, a large fraction of the expressed proteome 

is unneeded for cell growth at low growth rates (O’Brien et al, 2016). Second, the growth rate of 

E. coli can increase by ~ 20-30% in a few hundred generations in adaptive laboratory evolution 

experiments on given minimal carbon media, even on glucose, the most frequently used carbon 

source for E. coli cultivation (Ibarra et al, 2002; Anand et al, 2019). Most of the observed changes 

were regulatory in nature, indicating that the changes in growth rate were mainly caused by 

resource re-allocation rather than by changes in protein functions (Anand et al, 2019). Thus, the 

growth rate is not maximized on batch growth conditions, even on glucose.  

Though it is likely that resource allocation is not globally optimized, it is still possible that resource 

allocation into subsystems is optimized. For a subsystem, I define its optimal efficiency as the state 

in which the total cost of all its components is minimized at the given net flux through this 

subsystem. For example, the net flux through the translation machinery is equivalent to the 

protein synthesis rate, while the net flux through the metabolic network corresponds to the 

synthesis rate of precursors included in the biomass function. I describe resource allocation to 

subsystems that is optimal in this sense as “locally optimal” resource allocation. If all subsystems 

are expressed at their local optimum, resource allocation in the whole cell is globally optimized.  

In this thesis, I test if different subsystems of E. coli are expressed at the local optimum, in other 

words, if the subsystem is expressed at the minimal level that can support its output on the given 

medium. 
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1.4 Resource allocation to translation 

Translation is the most expensive cellular process at fast growth in bacteria. In E. coli, up to 50% 

of the dry weight (Bremer & Dennis, 2008) and 2/3 of ATP (Russell & Cook, 1995) are devoted to 

translation at its maximal growth rate. 

1.4.1 Translation in three phases 

Protein translation occurs in three phases: initiation, elongation, and termination (Rodnina, 2018).  

In initiation, free 30S ribosomal subunit and 50S ribosomal subunit assemble on mRNA with the 

assistance of translation initiation factors and initiator tRNA. The initiation factors will dissociate 

from the ribosome-mRNA complex after the ribosome assembly is complete; and the initiator 

tRNA will be discharged after the ribosome moves to the next codon (Goyal et al, 2015). In brief, 

during initiation the ribosome is activated, and simultaneously the first amino acid of the nascent 

peptide is produced. 

In elongation, a ternary complex (TC, the complex of elongation factor Tu (EF-Tu), charged tRNA, 

and GTP) carries an amino acid to the ribosome A-site (Rudorf et al, 2014; Rudorf & Lipowsky, 

2015). Then, the ribosome catalyses the polymerization of the amino acid and releases the EF-Tu 

complex with GDP (EF-Tu·GDP). Next, the ribosome is translocated to the next codon with the help 

of elongation factor G (EF-G). Moreover, the GDP in EF-Tu·GDP will be replaced by GTP with the 

help of elongation factor Ts (EF-Ts), and the newly formed EF-Tu·GTP can bind with a new charged 

tRNA for the next round of elongation (Rodnina, 2018). Polymerization of one amino acid in 

elongation costs 4 ATPs: two ATPs for tRNA charging, one ATP for polymerization of the amino 

acid, and one ATP for ribosome translocation. At any given time during cellular growth, most of 

the ribosomes are in the elongating phase.  

When the elongating ribosome reaches a stop codon, the ribosome releases the polypeptide and 

leaves the mRNA with the assistance of termination factors (Rodnina, 2018). 

1.4.2 Growth rate-dependent expression of translation components 

As shown in section 1.1, the expression of the ribosome increases almost linearly with the growth 

rate. Similar to the ribosome, the expression of other translation components – namely EF-Tu 

(Furano, 1975), EF-Ts (Gordon, 1970; Gordon & Weissbach, 1970), EF-G (Miyajima & Kaziro, 1978), 

and tRNA (Dong et al, 1996) – also increases with the growth rate. The protein synthesis rate 

increases roughly linearly with the growth rate, so more translation components are needed at 

higher growth rates. Puzzlingly, the growth dependence of the relative abundance of elongation 

factors compared to the ribosome differs between factors. The EF-Tu/ribosome ratio decreases 

with increasing growth rate, while the EF-Ts/ribosome ratio stays near constant in all growth 

conditions (Gordon, 1970; Gordon & Weissbach, 1970; Furano, 1975). These behaviors of 

translation factors were found decades ago, but we still do not have a quantitative model to 

explain these phenomena mechanistically. 

1.4.3 What is the objective of translation optimization? 

As translation is the most expensive process in fast growing E. coli cells, it is likely that natural 

selection acted to optimize the efficiency of translation. But what exactly is efficiency in the 

evolutionary context? 
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1.4.3.1 Constant ribosome activity theory 

Since the ribosome is much larger than all other components in translation, it was suggested in 

the 1960s that ribosome activity is maximized in any given condition, ensuring that the cell can 

grow at its maximal growth rate (Maaløe & Kjeldgaard, 1966; Koch, 1971, 1988). Due to its 

simplicity and its ability to explain the expression of the ribosome from moderate to fast growth 

rates (Koch, 1988), this theory was very popular from the 1960s to 1980s (Maaløe & Kjeldgaard, 

1966; Maaløe, 1969, 1979; Ingraham et al, 1983; Koch, 1988). However, experiments found that 

the ribosome activity increases with growth rate (Dennis & Bremer, 1974), as also evidenced by 

the growth rate-dependent expression of elongation factors (Furano, 1975).  

1.4.3.2 Parsimonious usage of protein theory 

Ehrenberg and Kurland proposed the parsimonious usage of translation-associated proteins, 

including ribosomal protein and EF-Tu, at the given protein synthesis rate (Ehrenberg & Kurland, 

1984). In this case, the length of a protein was used as a proxy for its cost. This beautiful theory 

started to treat the translation machinery at the systems level. It considered not only the cost of 

the ribosome, but also the cost of EF-Tu. In this theory, the expression of both EF-Tu and ribosome 

increase with growth rate. Moreover, it also qualitatively predicts that the EF-Tu/ribosome ratio 

decreases with the growth rate. Recently, a theory of parsimonious protein usage together with 

the notion of proteome sectors was used by Klumpp et al. (Klumpp et al, 2013). With a diffusion 

limited rate of TC binding to the ribosome, both the abundance and the activity of ribosomes were 

predicted accurately. However, the abundance of EF-Tu predicted from this theory is much below 

the measured data. This suggests that protein cost alone is still not enough for fully understanding 

translation efficiency. 

1.4.3.3 The hypothesis of parsimonious usage of the cytosol density 

Besides the protein part, RNA is the other important part of translation components. About 2/3 

of the ribosome and 1/3 of the TC by mass consist of RNA. We thus believe that the cost of RNA 

should be considered when discussing translation efficiency. Since protein and RNA have very 

different synthesis processes, how can we combine the costs of RNA and protein in a uniform 

framework? 

Cellular dry mass per cell volume is approximately constant across environments and growth rates 

in E. coli (Nanninga & Woldringh, 1985), as is the total mass concentration in the cytosol 

(Kubitschek et al, 1984). If the cell allocates more of this limited mass concentration budget to one 

particular process, less is available for all other processes. The upper bound for the cytosolic mass 

concentration, beyond which diffusion becomes inefficient, is a fundamental constraint on cellular 

growth (Atkinson, 1969; Beg et al, 2007; Vazquez, 2010), and thus the molecular weight of a 

particular molecule can be an approximation to its cost. In this way, the cost of any given molecule 

can be determined easily. 

We thus hypothesize that natural selection minimizes the total mass concentration of translation 

components utilized to achieve the required protein production rate in E. coli. A corresponding 

optimality principle has been used to understand the relationship between the concentrations of 

enzymes and their substrates (Dourado et al, 2017).  

1.4.3.4 Alternative costs for translation components 

Besides the protein cost and cytosol density cost, other alternative costs are also widely used in 

studying resource allocation: the carbon content, which is the number of carbon atoms of a given 

molecule (Beck et al, 2016); the energy cost or ATP cost, which is the total number of high-energy 
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phosphate bonds required for the synthesis of a given molecule (Akashi & Gojobori, 2002; Lynch 

& Marinov, 2015); and the synthesis cost, which is the total enzyme mass required for the 

synthesis of a given molecule (Noor et al, 2016).  

The biological fitness of cells depends on many factors, and hence any simple assignment of fitness 

costs to molecules can only be approximate. Based on the assumption that natural selection has 

optimized a cost/benefit ratio for translation, with these alternative costs, we can test which cost 

approximates “fitness cost” better. 

1.4.4 Aim of Manuscript 1 

The aim of Manuscript 1 is to explore the organizing principle of the translation-related growth 

rate dependencies from first principles. To do this, I first built a mechanistic translation model at 

the molecular level. The model avoids any empirical growth rate-dependent parameters, such as 

a growth rate-dependent effective ribosome activity. All reactions in the model are explicitly and 

exclusively constrained by kinetic parameters retrieved from published papers. Then, I used the 

model to test if the total cost of the translation machinery is minimized at the given protein 

production rates in different nutritional environments. Specifically, (1) for a given growth 

condition, can the abundance of individual translation components be predicted by minimizing 

the total cost? (2) Across growth conditions, can the growth rate-dependence of the abundance 

of translation components and the ribosome activity be predicted by minimizing the total cost? 

(3) Which cost measure appears to be a better proxy for the likely evolutionary objective? 

1.5 Resource allocation to metabolism 

1.5.1 Open questions in metabolic proteome allocation 

In Manuscript 1, we found that resource allocation to the translation machinery is at a local 

optimum, i.e., the concentrations of translational components are at the minimal required levels 

that can support the given protein synthesis rate. On the other hand, recent work indicates that 

the total proteome is not expressed for maximal efficiency in unevolved E. coli strains: (1) a large 

fraction of the proteome is unneeded at low growth rates in E. coli (O’Brien et al, 2016); and (2) 

growth rate can increase by ~ 20% in a few hundred generations in adaptive laboratory evolution 

experiments on minimal media (Ibarra et al, 2002), associated with reductions in the abundance 

of unused proteins (O’Brien et al, 2016). These findings indicate some heterogeneity across 

pathways in their proteome efficiency. In E. coli, more than half of the total proteome is allocated 

to metabolism on minimal media (Schmidt et al, 2016). Which pathways are expressed for 

maximal efficiency and which pathways are not? To answer these questions, we need both 

proteome data and a genome scale metabolic model for predicting the optimal efficiency of 

pathways. 

1.5.2 Modeling of resource allocation in a genome scale metabolic model  

1.5.2.1 Metabolic modeling with enzyme kinetics 

Genome scale metabolic models usually contain thousands of reactions, metabolites, and gene-

protein-reaction relationships (Fang et al, 2020). Ideally, the resource allocation to metabolism 

would be studied considering full reaction kinetics. However, a large fraction of kinetic parameters 

are still not available for E. coli (Bar-Even et al, 2011; Chang et al, 2021). Recently, MetabOlic 

Modeling with ENzyme kineTics (MOMENT), a modified version of flux balance analysis with 

metabolic crowding, was developed (Adadi et al, 2012). MOMENT does not model the full kinetics 
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of metabolism, instead, it models reaction rate as the product of its enzyme concentration and 

the enzyme turnover number (kcat). Further, the sum of enzyme concentrations is constrained by 

the empirical total concentration of metabolic enz mes (the “C-budget”). With these constraints, 

the optimal concentrations of individual enzymes that maximize growth rate can be predicted in 

a given growth condition (Adadi et al, 2012). 

Instead of maximizing the growth rate (as done by MOMENT), in this thesis, I predict the minimal 

proteome that satisfies the observed growth rate in the given condition. The predicted minimal 

proteome, hence, is the locally optimal proteome (see section 1.3). Due to the linear relationship 

between the C-budget and the growth rate in this modelling scheme (Beg et al, 2007; Adadi et al, 

2012; Desouki, 2016), the optimal proteome in a given condition can be readily determined given 

two pairs of C-budgets and the corresponding growth rates. 

1.5.2.2 Enzyme effective turnover number 

The enzyme turnover numbers kcat used in the original MOMENT are retrieved from BRENDA 

(Adadi et al, 2012; Chang et al, 2021). Because kcats were measured by different research groups 

with different methods, the kcat values are commonly inconsistent (Bar-Even et al, 2011; Chang et 

al, 2021). Further, the kcats were measured in vitro, where the exact conditions might have been 

very different from the in vivo environment (Davidi et al, 2016). Recently, it was found that in vivo 

enzyme effective turnover numbers represent the cellular environment better than the in vitro 

kcats (Davidi et al, 2016; Heckmann et al, 2020). Thus, in vivo enzyme effective turnover numbers 

are used for simulations in this thesis whenever they are available. 

1.5.2.3 Growth rate-dependent biomass composition 

MOMENT maximizes the biomass objective function to simulate cell growth, just as FBA does. The 

biomass composition is constant in such models (Orth et al, 2010). However, it is known that the 

biomass composition changes with growth rate (see also section 1.1). On the one hand, cell size 

increases exponentially with growth rate under nutrient limitations (Si et al, 2017). As a 

consequence, the surface-to-volume ratio (S/V) of the cell can be expressed as a function of the 

growth rate, and thus the mass ratio of cell envelope components to cytosolic components is 

growth rate-dependent. On the other hand, in the cytosol, the RNA/protein ratio is growth rate-

dependent, as more ribosomes are required at faster growth rates (Schaechter et al, 1958; Scott 

et al, 2010). With the growth rate-dependent S/V and RNA/protein ratios, and the original biomass 

composition of the corresponding subsets, the growth rate-dependent composition of biomass 

can be readily re-calculated. 

In MOMENT or FBA, growth rate is the output of simulations. Introducing a growth rate-

dependent biomass composition to MOMENT leads to a non-linear optimization problem. In 

contrast, in the framework of locally optimal resource allocation, both the growth rate and the 

growth rate-dependent biomass composition are given in advance (see section 1.5.2.1). The 

optimization problem can thus still be solved linearly. 

Recently, Metabolism and Expression models (ME-models) (O’Brien et al, 2013) and Resource 

Balance Analysis (RBA) (Goelzer et al, 2015) were developed to study resource allocation into 

metabolism and gene expression machineries. In these models, the activity of gene expression 

machineries, e.g., RNA polymerase and ribosome, are functions of the growth rate (Goelzer et al, 

2015). In the framework of locally optimal resource allocation, the growth rate is given in advance, 

and thus the activity of gene expression machineries is already determined before starting the 

simulation. The optimal abundance of gene expression machineries required for synthesizing the 

proteome allocated to metabolism can be readily calculated from the activities of gene expression 
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machineries and the predicted optimal metabolic enzyme abundances. Because we explicitly 

model the growth-rate dependence of the biomass composition, the optimal expression of gene 

expression machineries does not affect the optimal proteome for metabolism and these more 

complicated models are equals to the MOMENT in this context.  

1.5.3 Aim of Manuscript 2 

The aim of Manuscript 2 is to study the growth rate-dependent proteome efficiency of metabolic 

pathways. Specifically, this manuscript explores if the proteome allocation to different metabolic 

pathways can be explained by optimal proteome efficiency. Moreover, with the concept of locally 

proteome efficiency, it is possible to re-think the optimality of resource allocation and the limiting 

factors for growth rate. 

1.6 RNA composition and gene positions 

1.6.1 Growth rate-dependent RNA composition 

In contrast to the proteome composition, the partitioning of bacterial RNA into messenger (mRNA), 

ribosomal (rRNA), and transfer (tRNA) RNA is often assumed to be growth rate-independent (Scott 

et al, 2010; Klumpp et al, 2013; O’Brien et al, 2013; Bosdriesz et al, 2015; Dai et al, 2016; Bremer 

& Dennis, 2008). However, it was found the tRNA/rRNA expression ratio decreases monotonically 

with growth rate in many microbes, including E. coli (Dong et al, 1996), B. subtilis (Doi & Igarashi, 

1964), Salmonella Typhimurium (Rosset et al, 1966), S. pyogenes (Panos et al, 1965), K. aerogenes 

(Rosset et al, 1966), N. crassa (Alberghina et al, 1975), and S. cerevisiae (Waldron & Lacroute, 

1975). 

Can the growth rate-dependent tRNA/rRNA ratio be explained by optimal resource allocation? 

Indeed, in Manuscript 1, we found that locally optimal resource allocation to the translation 

machinery leads to a tRNA/ribosome ratio that is a decreasing function of growth rate. But the 

method used in Manuscript 1 cannot be extended to other species due to a lack of parameter 

values. However, most ribosomes are actively translating in the elongation state (Dai et al, 2016) 

and most tRNAs are binding with EF-Tu as the substrate for elongating ribosomes. Thus, the 

detailed model in Manuscript 1 can be simplified by considering only the elongation part, which 

can further be simplified into a single Michaelis-Menten type reaction (Klumpp et al, 2013). This 

simplified translation model can be readily solved analytically (Dourado et al, 2017) and can be 

applied across species. 

1.6.2 Gene dosage depends on both growth rate and genomic position 

In fast-growing prokaryotes, the doubling time can be even shorter than the genome replication 

time. For example, the minimal doubling time is about 20 minutes, whereas the DNA replication 

time is about 40 minutes in E. coli (Cooper & Helmstetter, 1968). To coordinate DNA replication 

and cell division, fast-growing prokaryotes must re-initiate chromosome replication before the 

previous replication round is complete. The higher the cellular growth rate is, the more replication 

rounds are needed in the cell. Thus, a gene’s DNA cop  number per cell (termed “gene dosage” 

hereafter) is growth rate-dependent. These phenomena are called replication-associated gene 

dosage effects (Couturier & Rocha, 2006). 

Moreover, because DNA replication always starts at the origin and ends at the terminus of 

replication in prokaryotes, gene dosage also depends on the gene’s relative position on the 

chromosome. When there are multiple replication rounds in the cell, genes near the origin of 
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replication (oriC) have more DNA copies than genes near the terminus of replication. Fast-growing 

E. coli cells can have up to three replication rounds simultaneously (Cooper & Helmstetter, 1968). 

In this case, during the D period of the cell cycle, the dosage of genes near the origin are eight 

times higher than those of genes near the terminus. Therefore, the dosage of a given gene is a 

function of both its relative position on the chromosome and the cell’s growth rate. 

With the DNA replication model developed by Cooper and Helmstetter (Cooper & Helmstetter, 

1968) and later generalized by Bremer and Churchward (Bremer & Churchward, 1977), the 

average dosage of gene i  (𝑋𝑖) in a population can be written as 

𝑋𝑖 = 𝑒
𝜇[𝐶(1−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖)+𝐷]. (1.1) 

Here, μ is the growth rate, C is the time needed for DNA replication, D is the time needed for DNA 

segregation after replication is complete, and positioni is the relative position of gene i on the 

chromosome, calculated as the shortest distance between the gene and oriC on the circular 

chromosome divided by half of the length of the chromosome. 

1.6.3 Relationship between gene position and gene expression 

Since the DNA copy number of a gene directly influence its expression, gene position can impact 

gene expression through replication-associated gene dosage effect. This effect has been observed 

for protein coding genes, rRNA genes, and tRNA genes. First, chromosome rearrangements that 

shift highly expressed protein coding genes from the origin to the terminus of replication reduce 

the expression of the shifted genes (Campo et al, 2004; Louarn et al, 1985; Soler-Bistué et al, 2017). 

Second, rRNA operons near oriC have higher expression levels than operons near the terminus 

(Condon et al, 1992). Finally, tRNA dosage explains tRNA expression better than tRNA copy per 

chromosome (Ardell & Kirsebom, 2005). 

1.6.4 Hypothesis of coordination between gene position and expression demand 

It is widely recognized that highly expressed genes tend to be located near oriC. However, only 

highly expressed transcription- and translation-related genes are located near oriC, whereas other 

highly expressed genes are not (Couturier & Rocha, 2006). Why are other highly expressed genes 

not located near oriC? 

Neither gene dosage nor gene expression are static, they both change with growth conditions. 

With increasing growth rate, the cell needs more transcription- and translation-related genes, as 

evidenced by the growth rate-dependent RNA polymerase and ribosomal proteins in E. coli 

(Bremer & Dennis, 2008). Since transcription- and translation-related genes are located near oriC, 

their dosage will increase faster than the average gene dosage with increasing growth rate. Thus, 

the dosage and expression are coordinated for transcription- and translation-related genes: 

dosage and expression simultaneously increase with growth rate; and, therefore, the genomic 

positions of these genes can help in regulating the growth rate-dependent expression of these 

genes. 

Based on this speculation, I propose the hypothesis that natural selection for optimal proteome 

efficienc  resulted in a gene’s position being coordinated with its expression demand. Fig. 1.3a 

illustrates this hypothesis for two genes, gene A, which is located near oriC, and gene B, which is 

located near the terminus. With increasing growth rate, the relative dosage of gene A (dosage of 

gene A / average dosage of all genes in the genome) increases, whereas the relative dosage of 

gene B decreases (middle column). If the optimal demand of gene A increases with growth rate, 
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its genomic position near oriC can facilitate its optimal expression (right column). The instances 

for gene A are transcription- and translation-related genes, as these genes are expressed to 

increase robustly with growth rate. If the optimal demand of gene B decreases with growth rate, 

its genomic position near the terminus can facilitate its optimal expression (right column). Until 

now, there are no verified instances of such gene Bs. A preliminary analysis shows that the major 

outer membrane lipoprotein (lpp) is very likely to be an instance of gene B: lpp is one of the most 

highly expressed genes in E. coli (Wang et al, 2012), and it is located near the terminus. As a 

structural protein that is anchored to the inner layer of the outer membrane, its optimal demand 

decreases with growth rate (due to the robust relationship between the surface to volume (S/V) 

ratio and the growth rate, see section 1.5.2.3).  

 

Fig. 1.3. Diagram of the coordination between gene position and expression demand. (a) Coordination 

between gene position and expression demand in individual genes. (b) Coordination between relative 

position and required expression ratio. Please note that the curves of gene dosage (middle column) and 

gene expression (right column) only indicate the growth rate-dependent trends and are not representing 

realistic data. 

Importantly, gene dosage depends robustly on growth rate as it obeys equation (1.1); but the 

expression of genes may depend strongly on growth conditions, in particular on the composition 

of the medium. For example, amino acid synthesis enzymes are highly demanded on minimal 

carbon media, but on a medium supplied with amino acids, the expression of amino acid synthesis 

enzymes sharply decreases with increasing growth rate (Schmidt et al, 2016). Since bacteria 

always face changing environments, these condition-dependent metabolic genes are less likely to 

have a biased position on the chromosome. In summary, for a given gene, the more its expression 

depends on the growth rate rather than on other factors, the more likely it is to be located closer 
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to oriC or the terminus. This might explain why other other highly expressed genes are not located 

near oriC. 

The hypothesis of coordination between gene position and expression demand can be applied to 

two genes, quantifying how their relative positions are coordinated with their expression demand 

ratio. With equation (1.1), the dosage ratio of two genes can be written as 

𝑋𝑖

𝑋𝑗
= 𝑒𝜇𝐶(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖). (1.2) 

Here, 𝑋𝑖 and 𝑋𝑗 are the dosages of gene i and gene j, respectively; positioni and positionj are the 

relative positions of gene i and gene j, respectively. As illustrated in Fig 1.3b, if the expression ratio 

of gene C to gene D demanded by optimal cellular efficiency increases with increasing growth rate, 

a closer position of gene A than gene B to oriC can facilitate this growth rate-dependent expression 

ratio.  

Both the species-specific maximal growth rate and the optimal, growth rate-dependent 

expression of a particular gene may influence its optimal position. The effect of gene position on 

the growth rate is less significant in slow-growing species than in fast-growing species, as 

replication-associated gene dosage effects highly depend on the maximal growth rate of a given 

species. As highly expressed genes are under stronger selection pressures than lowly expressed 

genes (Pál et al, 2001), it is also likely that highly expressed also have more biased genomic 

positions than lowly expressed genes. Thus, the coordination between gene position and 

expression demand may be less significant for lowly expressed genes or for genes in slow-growing 

species. 

The hypothesis proposed in this section will be tested on tRNA and rRNA genes in this thesis. 

Future work will test this hypothesis on protein-coding genes. 

1.6.5 Aim of Manuscript 3 

The first aim of Manuscript 3 is to explore a universal growth law for RNA composition that results 

from the optimal translation efficiency hypothesis, which was proposed in Manuscript 1. The 

second aim is to test if the differential position of tRNA and rRNA genes on the chromosome is 

related to their growth rate-dependent expression ratio. Moreover, since replication-associated 

gene dosage effects highly depend on the maximal growth rate of a species, this work also tests if 

the relative positioning of tRNA and rRNA genes is only conserved in fast-growing species. 
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2 Manuscript 1. The protein translation machinery is expressed 

for maximal efficiency in Escherichia coli 

 

 

This manuscript was adapted from the following publication: 

Hu X-P, Dourado H, Schubert P, Lercher MJ. The protein translation machinery is expressed for 

maximal efficiency in Escherichia coli. Nature Communications. 2020;11: 5260.  

https://doi.org/10.1038/s41467-020-18948-x. 

 

Contribution: I developed, implemented, and parameterized the model, performed the analyses, 

and drafted the manuscript. 

 

Abstract  

Protein synthesis is the most expensive process in fast-growing bacteria. Experimentally observed 

growth rate dependencies of the translation machinery form the basis of powerful 

phenomenological growth laws; however, a quantitative theory on the basis of biochemical and 

biophysical constraints is lacking. Here, we show that the growth rate-dependence of the 

concentrations of ribosomes, tRNAs, mRNA, and elongation factors observed in Escherichia coli 

can be predicted accurately from a minimization of cellular costs in a mechanistic model of protein 

translation. The model is constrained only by the physicochemical properties of the molecules and 

has no adjustable parameters. The costs of individual components (made of protein and RNA parts) 

can be approximated through molecular masses, which correlate strongly with alternative cost 

measures such as the molecules’ carbon content or the re uirement of energ  or enzymes for 

their biosynthesis. Analogous cost minimization approaches may facilitate similar quantitative 

insights also for other cellular subsystems.   

https://doi.org/10.1038/s41467-020-18948-x
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Introduction 

Protein translation is central to the self-replication of biological cells. While the workings of its 

individual components are well understood, the translation apparatus is a complex machine with 

many degrees of freedom, where the same rate of protein production could be achieved with very 

different relative abundances of its components. Although a large body of quantitative 

experimental data on these abundances in E. coli across different growth conditions is available, 

it is still unclear according to which organizing principle(s) – if any – they are set by the cell. Given 

that translation is the energetically most expensive process in fast growing E. coli cells, accounting 

for up to 50% of the proteome (Bremer & Dennis, 1996) and 2/3 of cellular ATP consumption 

(Russell & Cook, 1995), it is likely that natural selection acted to optimize the efficiency of 

translation. But what exactl  is “efficienc ” in the evolutionar  context?  

In the late 1950s, it was hypothesized that ribosomes operate at a constant, maximal rate 

(Schaechter et al, 1958; Koch, 1988), consistent with the observed linear dependence of ribosome 

concentration on growth rate (Schaechter et al, 1958; Scott et al, 2010; Neidhardt & Magasanik, 

1960; Maaløe, 1979). This hypothesis was later proven untenable, as the activity of ribosomes was 

observed to increase with growth rate (Forchhammer & Lindahl, 1971). Klumpp et al. (Klumpp et 

al, 2013) suggested that optimal translational efficiency corresponds to the parsimonious usage 

of translation-associated proteins, most notably ribosomal proteins, elongation factor Tu, and 

tRNA synthetases. While these authors were able to fit a coarse-grained phenomenological model 

to the data, their suggested evolutionary objective could also not explain the observed growth 

rate dependencies quantitatively (see Text S2.1 for a discussion of Ref. (Klumpp et al, 2013) and 

of the phenomenological model of bacterial growth it is based on (Scott et al, 2010, 2014)). Thus, 

it is currently unclear to what extent translation has indeed been optimized by natural selection, 

and – if such optimization indeed occurred – whether its action can be expressed in terms of a 

simple objective function.  

In principle, these questions would best be addressed in the context of a whole-cell model of 

balanced growth that combines mechanistic descriptions of metabolism and protein production. 

However, while such models have been described conceptually (Molenaar et al, 2009; Dourado & 

Lercher, 2020), kinetic parameterizations are unavailable for a majority of the relevant enzymatic 

reactions (Nilsson et al, 2017) , preventing a truly mechanistic description that combines 

metabolism and protein translation. Thus, we here focus on protein production alone, taking the 

experimentally observed output of translation (proteome production rate and composition in a 

given growth condition), the corresponding input (charged tRNAs), and the kinetics of individual 

translation reactions as given. We then use this mechanistic description of translation to find the 

combination of the concentrations of mRNA, ribosomes, elongation factors, and tRNA that results 

in minimal cellular costs in the given condition. Thus, our estimate of the optimal efficiency of the 

translation machinery is not based on the maximization of ribosome activity, but on the 

minimization of the combined cost of the complete translation machinery at an observed protein 

production output. 

We base our cost definition on the experimental observation that cellular dry mass per cell volume 

is approximately constant across environments and growth rates in E. coli (Nanninga & Woldringh, 

1985), as is the total mass concentration in the cytosol (Kubitschek et al, 1984). If the cell allocates 

more of this limited mass concentration budget to one particular process, less is available to other 

processes. The upper bound for the cytosolic mass concentration, beyond which diffusion 

becomes inefficient, is a fundamental constraint on cellular growth (Atkinson, 1969; Beg et al, 
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2007; Vazquez, 2010), and we thus use the cytosolic mass concentration of a particular molecule 

type as an approximation to its cost. Theoretical models of cellular growth that account for all 

major biochemical and biophysical constraints indicate that the limit on cellular dry mass indeed 

represents a dominant constraint on bacterial growth rates (Dourado & Lercher, 2020).  

We hypothesize that to maximize the E. coli growth rate in a given environment, natural selection 

minimizes the total mass concentration of translation components utilized to achieve the required 

protein production rate. A corresponding optimality principle has been used to understand the 

relationship between the concentrations of enzymes and their substrates (Dourado et al, 2017).  

We find that a theoretical minimization of the combined cellular costs of the translation machinery 

components indeed leads to accurate predictions for their abundances, the resulting elongation 

rate, and the RNA/protein ratio. In addition to molecular masses, we also examine four alternative 

cost measures for cellular components that have been explored in the literature: (i) their protein 

content (Ehrenberg & Kurland, 1984; Klumpp et al, 2013); (ii) their carbon  content (Beck et al, 

2016); and (iii) the energy (Mahmoudabadi et al, 2017; Weiße et al, 2015) or (iv) the amount of 

catalysts(Scott et al, 2010; Noor et al, 2016) required for their production. We find that these 

alternative cost measures are strongly correlated for the studied components of the translation 

machinery and lead to very similar predictions for their abundances; the only cost measure that 

leads to substantially different predictions is the protein content, which does not assign any cost 

to tRNA and mRNA molecules.  

Results and Discussion 

Cost minimization in a mechanistic model of translation 

To test our hypothesis, we constructed a translation model consisting of 274 biochemical 

reactions, including 119 reactions with non-linear kinetics. Fig. 2.1 shows the modeled reactions 

for a subset of the 61 codons and the 40 species of charged tRNAs; for details see Methods, Table 

S2.1, and Data S2.1. This mechanistic model accounts for the concentrations of mRNA, the 

ribosome, the different charged tRNAs, and the elongation factors Ts (EF-Ts) and Tu (EF-Tu). We 

fully parameterized the model with molecular masses and kinetic constants measured 

experimentally (Tadmor & Tlusty, 2008; Gromadski et al, 2002; Louie & Jurnak, 1985); the only 

exceptions are the translation initiation parameters, which were previously estimated from gene 

expression data (Tadmor & Tlusty, 2008), and the ribosomal Michaelis constant for the ternary 

complexes, which was previously estimated based on the diffusion limit (Klumpp et al, 2013). The 

model is based purely on biochemical and biophysical considerations; it contains no adjustable 

parameters, nor does it include any explicit growth rate dependencies.  

For E. coli growing under different experimental conditions, we used measured growth rates and 

protein concentrations (Schmidt et al, 2016) to determine the required translation rate and the 

proportions of the different amino acids incorporated into the elongating proteins. At this 

required protein production rate, we minimized the combined cost of the translation machinery 

in our model, treating the concentrations of all components as free variables; the values of 

individual reaction fluxes result deterministically from these concentrations according to the 

respective rate laws (Methods). As the modeled kinetic rate laws are non-linear, all optimizations 

were performed numerically. In repeated optimization runs with two different solvers, we never 

found alternative optima, indicating that the optimization problem may be convex. The results 

shown in the main text and figures are based on the assumption that costs are proportional to 

molecular masses; results based on other cost functions are shown in Figs. S2.5 to S2.7. 
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Fig. 2.1 Schematic overview of the translation model. A reduced pathway for elongation with amino acids 

cysteine (aminoacyl-tRNA Cys) and glutamine (aa-tRNA Gln1, Gln2) is represented in Systems Biology 

Graphical Notation. Initiation: free (unbound) ribosome gets converted to active ribosome, modulated by 

mRNA. Termination: active ribosome converts back to free ribosome at a rate fixed by the desired protein 

production rate. Active ribosome state transition: active ribosome instantaneously binds to codons (61 

codons in full model, 4 here) at the fractions set by the specified proteome composition. Ternary complex 

formation: charged tRNAs (40 aa-tRNAs in full model, 3 here), replenished from a pool, combine with EF-

Tu*GTP to form ternary complexes (40 TCs in the full model). Kinetic parameters of these reversible 

processes depend on the aa-tRNA. Elongation: labeled ribosome binds with the cognate TC to elongate the 

protein with the respective amino acid. The ribosome returns to its active state and EF-Tu*GDP is released. 

Other products of this reaction, such as deacylated tRNA, are not modelled. Nucleotide exchange (see right 

panel): EF-Tu*GDP is reactivated to EF-Tu*GTP in a sequence of steps modeled by reversible mass action 

kinetics. GTP and GDP pools are modeled with fixed concentrations. The nucleotide exchange is supported 

by EF-Ts, and the main flux is carried through the complexes formed by EF-Tu with EF-Ts. 

Predicted concentrations agree with observations 

We first compared our predictions to experimental data for exponentially growing E. coli in 

different conditions (Schmidt et al, 2016; Dong et al, 1996; Forchhammer & Lindahl, 1971; 

Valgepea et al, 2013; Skjold et al, 1973).  Fig. 2.2 shows the results for growth in a glucose-limited 

chemostat at growth rate μ = 0.35 h-1; for other conditions, see Fig. S2.1. The mechanistic model 

accurately predicts the absolute concentrations of ribosomes, EF-Tu, EF-Ts, mRNA, and total tRNA 

in each condition. Predictions for individual tRNA concentrations are less accurate but are still 

mostly within a 2-fold error (Fig. 2.2, Fig. S2.1); the discrepancies may be due to the simplifying 

assumption of the same ribosomal Michaelis constant Km for all tRNA species (Klumpp et al, 2013).  

We next tested if this systems-level view on the total cost of translation explains the observed 

growth rate-dependencies of the expression of translation machinery components (Schmidt et al, 

2016; Forchhammer & Lindahl, 1971; Skjold et al, 1973; Dong et al, 1996; Dai et al, 2016), of the 

elongation rate(Dai et al, 2016), and of the RNA/protein ratio (Dai et al, 2016; Scott et al, 2010), 

considering experimental data across 20 diverse conditions (14 minimal media, including 3 stress 

Nucleotide exchange in EF-Tu
1

Ribosome
CAG

Ribosome
CAA

mRNA

Ribosome
active

Ribosome
free

Ternary complex 
formation

Initiation

Active ribosome 
state transition

Elongation

Termination

Ribosome
UGC

Ribosome
UGU

TC-Gln1

Gln1-
tRNA EF-Tu

GTP

TC-Gln2

Gln2-
tRNA EF-Tu

GTP

TC-Cys

Cys-
tRNA EF-Tu

GTP

EF-Tu
GTP

Gln1-
tRNA

Gln2-
tRNA

Cys-
tRNA

EF-Tu
GDP

2

EF-Tu
GTP

EF-Tu
GDP

EF-Tu

EF-Ts

EF-Tu
GTP

EF-Ts

EF-Tu

EF-Ts

EF-Tu
GDP

EF-Ts

GTP GDP

12



Manuscript 1

18

conditions; 4 chemostats; and 2 rich media) (Schmidt et al, 2016). The predicted concentrations 
of ribosomes, EF-Tu, and EF-Ts increase with growth rate in line with experimental observations 
(Fig. 2.3). 

Fig. 2.2 Predicted vs. observed concentrations in a glucose-limited chemostat. Growth rate μ = 0.35 h-1 (for 
other conditions, see Fig. S2.1). The solid line shows the expected identity, whereas the upper and lower 
dashed lines show prediction errors of 2x and 0.5x, respectively. Predictions for ribosome, EF-Tu, EF-Ts, 
mRNA, and total tRNA are highly accurate, with Pearson’s R2 = 0.99 and geometric mean fold-error GMFE = 
1.13, i.e., predictions based purely on a physico-chemical model and the assumption of cost minimization 
are on average 13% off. Predictions for individual tRNA species are somewhat less accurate, GMFE = 1.64.
Experimentally determined concentrations of the ribosome (averaged over all ribosomal proteins), EF-Tu, 
and EF-Ts are from Ref. (Schmidt et al, 2016). mRNA (Valgepea et al, 2013) and tRNA (Dong et al, 1996)
concentrations are interpolated values based on growth rates. 

Fig. 2.3 Growth rate-dependence of predicted (red lines) and observed concentrations. (a) EF-Tu, R2 = 0.79, 
GMFE = 1.27.  (b) EF-Ts, R2 = 0.79, GMFE = 1.25. (c) Total ribosome concentration (arithmetic means across 
ribosomal proteins). (d) Actively elongating ribosomes, estimated from data in panel (c) according to Ref. 
(Dai et al, 2016) (see Methods). Circles indicate normal conditions; triangles indicate stress conditions.
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Predicted absolute abundances of EF-Tu (Fig. 2.3a), EF-Ts (Fig. 2.3b), and mRNA (Fig. S2.2a) 

account quantitatively for the experimental data (Schmidt et al, 2016; Dong et al, 1996; 

Forchhammer & Lindahl, 1971; Skjold et al, 1973; Valgepea et al, 2013), with average deviations 

(geometric mean fold-error) GMFE ≤ 27% for the elongation factors and GMFE = 6% for mRNA. At 

low growth rates, experimentally observed concentrations of EF-Tu (Fig. 2.3a) and tRNA (Fig. 

S2.2b) are higher than predicted. The model only includes charged (aminoacyl-) tRNA 

concentrations, and it is likely that the unknown fraction of uncharged tRNA explains at least part 

of this deviation. Overall, the largest deviations between observed concentrations and predictions 

are seen in the two non-minimal conditions, which also exhibit the fastest growth (µ > 1 h-1). A 

recent analytical study of balanced cellular growth indicates that these deviations may result from 

the influence of an increased growth-related dilution of cofactors and other intermediate 

metabolites, a phenomenon not included in our simulations (Dourado & Lercher, 2020).  

Active and de-activated ribosome fractions 

At low growth rates (µ < 0.3 h-1; Fig. 2.3c), observed ribosome concentrations exceed those 

predicted from cost minimization, a deviation consistent with a substantial reserve of deactivated 

ribosomes at low growth rates (Dai et al, 2016). Such deactivated ribosomes may provide fitness 

benefits in changing environments (Mori et al, 2017; Erickson et al, 2017), but cannot be 

maximally efficient in a constant environment and thus cannot be predicted by our optimization 

strategy. To allow a meaningful comparison between predictions and experiment, we thus 

estimated the experimental concentration of ribosomes actively involved in elongation (Methods). 

Cost minimization predicts these experimental estimates with high accuracy across the full range 

of assayed growth rates; observed values deviate from predictions on average by GMFE = 14% 

(Fig. 2.3d).  

The remaining, non-active ribosome fraction comprises two parts: the deactivated ribosome 

reserve currently unavailable for translation (Dai et al, 2016), and free, potentially active 

ribosomes not currently bound to mRNA (see Text S2.2 for the nomenclature on ribosome states). 

As our model quantifies the abundance of both active and free ribosomes, their subtraction from 

observed total ribosome concentrations provides an estimate of the deactivated ribosome reserve 

as a function of the growth rate (Fig. 2.4). While this reserve accounts for less than 20% of total 

ribosomes at fast to moderate growth, it reaches almost 50% at the lowest growth rate assayed 

in Ref. (Schmidt et al, 2016). 

 

Fig. 2.4 Estimated fraction of deactivated ribosomes. The deactivated fraction reaches almost 50% for the 

lowest growth rate assayed in Ref. (Schmidt et al, 2016) and drops rapidly towards zero at higher growth 

rates.  
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RNA/protein ratio and elongation rate 

A linear correlation between the RNA/protein ratio and growth rate was discovered in the 1950s 

(Schaechter et al, 1958; Neidhardt & Magasanik, 1960; Dennis & Bremer, 1974; Maaløe, 1979) and 

forms the basis of phenomenological bacterial growth laws (Klumpp et al, 2013; Dai et al, 2016; 

Scott et al, 2010). Relating the predicted total RNA (ribosomal RNA + tRNA + mRNA) with measured 

protein concentrations (Schmidt et al, 2016) indeed results in a near-linear relationship, accurately 

matching observed values at high to intermediate growth rates (µ > 0.3 h-1; Fig. 2.5a). At lower 

growth rates, model predictions are slightly too low, likely because of the deactivated ribosome 

reserve (Dai et al, 2016) (Fig. 2.4). At low growth rates (µ = 0.12 h-1), predictions of RNA and 

proteins allocated to an optimally efficient translation machinery (including deactivated 

ribosomes) account for 13% of total dry mass, rising almost linearly to 49% at high growth rates 

(µ = 1.9 h-1; Fig. S2.3).  

 

Fig. 2.5 Growth rate dependences of total RNA/protein ratio and ribosome activity. (a) Predicted total 

RNA concentration (mRNA + tRNA + rRNA) relative to observed total protein concentration at different 

cellular growth rates (red line) compared to experimental observations (Dai et al, 2016; Scott et al, 2010); 

R2 = 0.97, GMFE = 1.12. (b) Predicted (red line) and experimentally determined (Dai et al, 2016) elongation 

rates of actively translating ribosomes (ribosome activities); R2 = 0.93, GMFE = 1.06. At the lowest assayed 

growth rates, non-growth-related translation – which is not included in the model – may become 

comparable to growth-related translation; at these growth rates, the numerical optimization of our model 

did not converge (μ < 0.1 h-1), and thus the red lines are not extended into this region.  

The concentrations of the individual components of the translation machinery determine the 

average translation elongation rate (ribosomal activity), defined as the total cellular translation 

rate divided by the total active ribosome content (Erickson et al, 2017). The predicted elongation 

rates closely match the experimental data (Dai et al, 2016) over a broad range of growth rates (Fig. 

2.5b).  

Cost minimization predicts response to antibiotics 

The expression of E. coli’s translation machiner  reacts strongl  to the exposure to antibiotics that 

inhibit the ribosome, such as chloramphenicol (Dai et al, 2016; Scott et al, 2010; Hui et al, 2015). 

The details of these changes can also be understood from our hypothesis of cost minimization. 

The concentrations of ribosomes and EF-Tu, the RNA/protein ratio, and the elongation rate of 

active ribosomes increase under chloramphenicol stress (Fig. S2.4); these changes partially 

compensate for the reduced fraction of active ribosomes. The concentration of EF-Ts instead 

decreases with increasing chloramphenicol concentration (Fig. S2.4c). EF-Ts contributes to 

translation by converting EF-Tu·GDP to EF-Tu·GTP, which then forms a ternary complex with 
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charged tRNA. Under chloramphenicol stress, fewer ternary complexes are turned over, and 

hence less EF-Ts is needed. 

Alternative cost measures lead to similar results 

The biological fitness of E. coli cells depends on many factors, and hence any simple assignment 

of fitness costs to molecules can only be approximate. The results presented so far are based on 

the assumption that costs are proportional to molecular masses. To test if alternative cost 

measures lead to consistent results, we repeated our calculations using four distinct costs that 

have been employed in the literature. In particular, it has been argued that the cost of protein 

expression lies in the process rather than the product (Stoebel et al, 2008), and we hence also 

explore synthesis costs of RNA and protein. 

Across most conditions, we obtained very similar predictions for the concentrations of translation 

machinery components when our model assigned molecular costs based on the carbon content 

of the molecules (Beck et al, 2016), on the amount of energy (Mahmoudabadi et al, 2017; Weiße 

et al, 2015) spent on their production (ATP cost), or on the total investment into macromolecular 

catalysts (Noor et al, 2016) required for their production (synthesis cost) (Figs. S2.5, S2.6; we 

estimated ATP costs based on Refs. (Akashi & Gojobori, 2002; Lynch & Marinov, 2015), and 

calculated synthesis costs using flux balance analysis with molecular crowding (Adadi et al, 2012; 

Gelius-Dietrich et al, 2013; Desouki, 2016), see Methods). All components whose concentrations 

we predict consist of protein, RNA, or both, and all costs examined are approximately proportional 

to the lengths of RNA and protein molecules. Thus, the relative costs of all components are 

essentially a function of the RNA/protein cost ratio r, i.e., the cost of RNA per nucleotide divided 

by the cost of protein per amino acid. We assume that the cost of RNA per nucleotide is identical 

for tRNA and rRNA; the corresponding cost ratio is broadly similar between molecular masses (r = 

3.0), carbon content (r = 2.0), ATP cost (r = 1.6), and synthesis costs (r = 1.7-2.1) across minimal 

growth conditions (µ < 1 h-1; Fig. S2.7). In contrast, assuming that costs are proportional to only 

the protein content of the molecular assemblies (Ehrenberg & Kurland, 1984; Klumpp et al, 2013) 

results in an RNA/protein cost ratio of zero. Predictions based on protein costs hence overestimate 

mRNA and tRNA concentrations (which cost nothing), resulting in corresponding underestimates 

of EF-Ts and especially EF-Tu concentrations (Figs. S2.5, S2.6).  

We note that in rich medium (µ = 1.9 h-1), the RNA/protein cost ratio for synthesis costs is much 

lower than across minimal media, falling to r = 0.21 for tRNA and rRNA (Fig. S2.7). This results in 

an overprediction of the observed tRNA concentration (Dong et al, 1996; Skjold et al, 1973; 

Forchhammer & Lindahl, 1971) by a factor of almost 2 (Fig. S2.6). Moreover, while the predicted 

tRNA concentration is also almost twice the predicted EF-Tu concentration, experimental 

estimates for tRNA and EF-Tu are very similar (Dong et al, 1996; Skjold et al, 1973; Forchhammer 

& Lindahl, 1971; Schmidt et al, 2016; Furano, 1975). We conclude that if the translation machinery 

has been optimized for efficiency at high growth rates by natural selection, the synthesis cost of 

its components is unlikely to have been central to this optimization. 

Conclusions 

In sum, cost minimization in a mechanistic bottom-up model of optimal translation efficiency, fully 

parameterized with known kinetic constants and molecular masses, accounts quantitatively for 

the concentrations of all molecule species involved without any adjustable parameters. The 

optimal concentrations of different components change differentially with growth rate, explaining 

the observed scaling of E. coli’s translation machinery composition, RNA composition, and 
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elongation rate. At least for the translation machinery part of the cellular economy, whose 

components consist largely of protein and RNA, approximate cost measures appear to be 

sufficient: several alternative cost measures provided predictions very similar to those based on 

molecular masses, emphasizing the generality of our findings.  

We conclude that E. coli’s translation machiner  works close to optimal cost efficiency. 

Accordingly, our findings are consistent with the hypothesis that natural selection has minimized 

a cost function similar to those examined here. Our results further support the idea that 

phenomenological growth laws of proteome composition (Scott et al, 2010; Klumpp et al, 2013; 

Hui et al, 2015; Dai et al, 2016) may have their root in the costs associated with the non-protein 

molecules involved in particular processes, and that their explicit inclusion in systems biology 

models of cellular growth (Klumpp et al, 2013; O’Brien et al, 2013; Goelzer et al, 2015; Tadmor & 

Tlusty, 2008) may eventually allow these models to abandon any reliance on phenomenological 

parameters.  

Methods 

Experimental concentrations of ribosomes, EF-Tu, and EF-Ts 

We used molar concentrations (µM) in the model; thus, all experimental data were converted to 

molar concentrations. We first calculated the total protein density during exponential growth on 

a glucose minimal medium at growth rate μ = 0.58 h-1. In this condition, the total protein mass per 

cell is 280 fg (Supplementary Note 3 in Ref. (Schmidt et al, 2016)), and cell volume is 1.90 fL (the 

cell volume 2.84 fL modified by a factor of 0.67 according to Supplementary Note 3 in Ref. (Schmidt 

et al, 2016)). Accordingly, the protein mass density on glucose is ρp,glc = 147.15 g·L-1.  

We then fitted a second-order polynomial function ϕ(μ) to the fraction of total protein in dry mass 

provided in Ref. (Bremer & Dennis, 1996) across different growth rates µ.  With ϕ(μ), ρp,glc = 147.15 

g·L-1 at μ = 0.58 h-1, and the observed constant dry mass density of E. coli across growth 

conditions(Nanninga & Woldringh, 1985; Kubitschek et al, 1984), we obtained the condition-

specific total protein concentration, ρp, for all other growth conditions based on the respective 

observed growth rates.  

For a given growth rate, μ’, the total protein concentration ρp, μ=μ’ is given by 

𝜌p,𝜇=𝜇′ =
𝜙(𝜇 = 𝜇′) · 𝜌p,glc

𝜙(𝜇 = 0.58)
(2.1) 

With the measured fraction of each protein (fp,i) in the proteome (Schmidt et al, 2016), the molar 

concentration of each protein was then calculated as 

𝑐𝑖 =
𝜌p · 𝑓𝑝,𝑖

MW𝑝,𝑖
    , (2.2) 

where MW𝑝,𝑖  is the molecular weight of protein 𝑖 in g·mole-1. The ribosome concentration was 

calculated as the arithmetic mean of the molar concentrations of all ribosomal proteins. 

Experimental concentration of active ribosome 

 Active ribosomes are defined here as ribosomes engaged in peptide elongation. Dai et al. 

estimated the fraction of active ribosomes, factive, in E. coli at different growth rates (Dai et al, 

2016). We fitted a Michaelis-Menten type equation to their data, resulting in factive = μ / (0.124 + 
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μ).  For each total ribosome concentration cribosome in Ref. (Schmidt et al, 2016), we then estimated 

the corresponding active ribosome concentration as cactive-ribosome = factive·cribosome. 

Experimental concentrations of GTP and GDP 

GTP and GDP concentrations are from Ref. (Bennett et al, 2009). We chose the data for growth on 

glucose for all simulations (See Text S2.3 for details).  

Experimental concentration of mRNA 

mRNA concentration was calculated from the data given in Ref. (Valgepea et al, 2013) as the ratio 

of mRNA copy number per cell and cell volume. To estimate the mRNA concentrations at the 

growth rates shown in Fig. 2.2 and Fig. S2.1, we fitted a second order polynomial to the mRNA 

concentration as a function of growth rate; we then read off the values at the required growth 

rates. mRNA concentrations were assayed only at growth rates between 0.11 h-1 and 0.49 h-1, and 

we did not attempt to extrapolate values beyond this range. 

Experimental concentration of tRNA 

We collected three independent datasets of tRNA concentrations. Dataset1 (Dong et al, 1996) 

contains tRNA concentration for each individual tRNA, whereas both dataset2 (Forchhammer & 

Lindahl, 1971) and dataset3 (Skjold et al, 1973) contain only total tRNA concentrations. In each of 

these experiments, tRNA abundance was measured as the ratio of tRNA to ribosomal RNA (rRNA). 

We scaled these values to absolute tRNA concentrations assuming that the rRNA concentration 

corresponds to the ribosome concentration estimated from the proteomics data (see the 

subsection “Experimental concentrations of ribosomes, EF-Tu, and EF-Ts”). To estimate the tRNA 

concentrations at the growth rates shown in Fig. 2.2 and Fig. S2.1, we used the same fitting 

procedure as for mRNA.  

Concentrations of individual tRNAs and relationship to model 

Our model differentiates tRNAs by their anticodons (see below for details). Thus, 40 tRNAs were 

used to represent all elongator tRNAs. The tRNAs modeled in this work are listed in Table S2.1 

together with their common names used in dataset1 (Dong et al, 1996) and their gene IDs.  

In the experiments by Dong et al. (dataset1) (Dong et al, 1996), tRNAs were classified into 41 

distinct sets based on two-dimensional polyacrylamide gel electrophoresis. We combined two 

tRNA sets corresponding to different tRNA weights if they have the same anticodon (i.e., the pairs 

of Val2A + Val2B, Thr1 + Thr3, and Tyr1 + Tyr2). The experimenters could not distinguish between 

the tRNAs Gly1 and Gly2, as these have very similar molecular weights and isoelectric point; the 

same was true for Ile1 and Ile2. We estimated the individual concentrations of these four tRNAs 

based on the ratios 3:2 between Gly1 and Gly2 and 20:1 between Ile1 and Ile2 observed by 

Ikemura et al. (Ikemura, 1981).  

To estimate the tRNA concentrations at the growth rates shown in Fig. 2.2 and Fig. S2.1, we fitted 

the concentration of each tRNA in dataset1 (measured for growth rates ranging from 0.28 h-1 to 

1.73 h-1) to a second order polynomial of growth rate and extended this function to the required 

range, 0.12 h-1 to 1.9 h-1. 

Combination of tRNAs that are predicted to be non-expressed 

The predicted concentrations of 6 tRNAs are 0 μM; these are highlighted in red in Table S2.2. This 

result is a straightforward consequence of the model structure. The relationship between codons 
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and tRNAs is not one-to-one in E. coli. Consider a given codon (codon1) that has more than one 

cognate tRNA, say, tRNA1 and tRNA2. If tRNA2 is also the cognate tRNA of another codon (codon2), 

the predicted concentration of tRNA1 will be zero: for the same “price” (the same contribution to 

the limited total mass concentration), tRNA2 can service two codons, while tRNA1 can service only 

one.  For example, codon GGG has two cognate tRNAs, gly1 and gly2; gly2 is also the cognate tRNA 

of codon GGA. Thus, both gly1 and gly2 can translate GGG, but gly2 can translate GGA, too, and is 

thus more valuable to the cell if we assume that both tRNAs are processed equally efficiently, as 

done in the model. Therefore, the predicted optimal concentration of gly1 will be zero (note that 

this might not occur in models that consider different ribosomal kcat or Km values for the two 

tRNAs). To compare our predictions to the experimental data (Dong et al, 1996), we combined 

tRNAs with predicted zero concentration with their co-functioning tRNAs in both the predictions 

and the experimental data. The resulting six combined tRNA pairs are: GLy1 + Gly2; Leu1 + Leu3; 

Leu4 + Leu5; Pro1 + Pro3; Ser2 + Ser1; Thr2 + Thr4. In all reported figures, the total number of 

tRNAs shown is thus 34.  

Concentrations of amino acids and total protein 

We first calculated the molecular weight of protein (MWp) at the given condition. The molar 

concentration of protein, cprotein, is given by 

𝑐protein =
𝜌p

MWp
(2.3) 

where ρp is the mass concentration of total protein at the given condition (equation (2.1)). 

The concentration of amino acids encoded by codon-i is given by: 

𝑐𝑐𝑜𝑑𝑜𝑛−𝑖 = 𝑓𝑐𝑜𝑑𝑜𝑛−𝑖 · 𝐿protein · 𝑐protein (2.4) 

where Lprotein is the abundance-weighted average protein length at the given condition; fcodon-i is 

the frequency of codon i in the genome, where each gene is weighted by its relative abundance 

in the proteome. 

Note that for an amino acid AAj encoded by multiple synonymous codons, 𝑐𝑐𝑜𝑑𝑜𝑛−𝑖  is not the total 

concentration of AAj in cellular proteins, but only of the fraction encoded by 𝑐𝑜𝑑𝑜𝑛 − 𝑖; the total 

concentration of AAj is obtained by summing the 𝑐𝑐𝑜𝑑𝑜𝑛−𝑖  values for all synonymous codons for 

AAj. 

For simulations under chloramphenicol stress, cprotein and ccodon-i are not available. We 

approximated their values by the corresponding concentrations for growth on glucose in the 

absence of the antibiotic. 

Mass fraction of translation machinery in total dry weight 

The dry mass fraction of the translation machinery shown in Fig. S2.3 includes ribosome, mRNA, 

charged tRNAs, EF-Tu, and EF-Ts; it does not include GDP, GTP, free tRNA, tRNA-synthetases, and 

elongation factor G (FusA). We converted from protein fractions to mass fractions of total dry 

weight using the relationship between total protein mass and dry mass discussed in the subsection 

“Experimental concentrations of ribosomes, EF-Tu, and EF-Ts”. 

Experimental estimate. The mass fraction of the translation machinery in total dry weight is the 

sum of two parts: (1) protein and (2) RNA.  



Maximal efficiency of translation machinery 

25 
 

(1) We calculated the mass fraction of translational proteins (including ribosomal protein, EF-Tu, 

and EF-Ts) in dry weight from the proteomics data in Ref. (Schmidt et al, 2016).  

(2) We fitted the reported total RNA/protein ratio in Refs. (Scott et al, 2010; Dai et al, 2016) to a 

second order polynomial of growth rate. We then used this fitted function to calculate the 

RNA/protein ratio at the growth rates assayed by Schmidt et al. (Schmidt et al, 2016), and 

multiplied this ratio with the dry mass fraction of protein. 

Theoretical prediction. The predicted dry mass fraction of the translation machinery was the ratio 

of the total mass concentration of the translation machinery (including free ribosome, active 

ribosome, EF-Tu, EF-Ts, charged tRNA, and mRNA) to the total dry mass density. The total dry mass 

density was estimated as ρp,glc / ϕ(0.58 h-1) = 147.15 g·L-1 / 0.631 = 233.30 g·L-1. For the prediction 

including de-activated ribosome concentrations (dashed line in Fig. S2.3), we added estimates of 

de-activated ribosome concentrations according to Fig. 2.4 of the main text. 

Molecular weights 

Molecular weights of ribosome, charged tRNAs (aa-tRNAs), EF-Tu, EF-Ts, and the ternary 

complexes (TC, EF-Tu·GTP·aa-tRNA) were calculated from their sequences. The stoichiometry of 

ribosomal proteins and RNAs in the ribosome was obtained from the EcoCyc database (Keseler et 

al, 2017); the stoichiometry of all components is 1 except for RplL, for which it is 4.  

We used an average mRNA to represent the total mRNA. The molecular weight of an average 

mRNA (MWmRNA) is the sum of two parts: (1) the molecular weight of the coding sequence (CDS) 

of mRNA (MWmRNA-CDS), which was calculated from protein-expression-weighted mRNA length and 

nucleotide composition of E. coli protein-coding sequences in each growth condition (Schmidt et 

al, 2016); (2) the weight of the untranslated region (UTR) of mRNA (MWmRNA-UTR), which was 

calculated from the average nucleotide composition of the genome and the typical length of UTR. 

The length of UTR was assumed to be 85 nt, a typical length of the untranslated region in E. coli 

(Kim et al, 2012). Thus, 

MWmRNA = MWmRNA−CDS + MWmRNA−UTR . (2.5) 

In the simulations of translation under antibiotic stress, the molecular weight of chloramphenicol 

was set to 0. 

Alternative costs of translation machinery components 

The hypothesis underlying our analysis is that the components of the translation machinery are 

expressed to minimize the total cost of translation at a given protein production rate. For the 

calculations underlying the figures of the main text, we assumed that molecular costs are 

proportional to molecular mass concentrations. To test alternative cost measures proposed in the 

literature, we estimated the costs of each translation machinery component in terms of (1) its 

carbon content (Beck et al, 2016) (carbon cost); (2) the total number of high-energy phosphate 

bonds required for its production (ATP cost); (3) the total enzyme mass required for its production 

(synthesis cost) (Noor et al, 2016); and (4) its protein content (Ehrenberg & Kurland, 1984; Klumpp 

et al, 2013) (protein content). Some of these cost measures are condition-dependent. The 

estimated costs are provided in Data S2.2; the RNA/protein cost ratios are compared in Fig. S2.7 

and listed in Table S2.3. All costs were estimated per component (i.e., per molecule or per 

macromolecular complex). Note that all components whose costs are considered in the model 

consist of protein, RNA, or both. 
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Carbon cost as an alternative cost measure 

The carbon cost of a component is its total number of carbon atoms. 

ATP cost as an alternative cost measure 

The ATP cost of a component is the number of high-energy phosphate bonds (denoted ~P) that 

were invested into its production. The ATP costs includes (1) the ATP invested into the synthesis 

of the precursors (nucleoside triphosphates or amino acids) and (2) the ATP cost of polymerization 

during RNA transcription or protein translation.  

The ATP cost of amino acid synthesis. For cells growing on minimal carbon media, the ATP cost of 

amino acid production was obtained from Ref. (Akashi & Gojobori, 2002). Since the ATP costs of a 

given amino acid are very similar across minimal media with different carbon sources (Akashi & 

Gojobori, 2002), we used the ATP costs for amino acid synthesis on glucose for all minimal media 

considered. For E. coli growing on glycerol + amino acids (Schmidt et al, 2016), the ATP production 

cost for amino acids was assumed to be zero. 

The polymerization cost of protein. The polymerization cost of protein is 4 ATP per amino acid: 

two ATP for tRNA charging, 1 ATP for EF-Tu in elongation, and 1 ATP for elongation factor G (EF-

G) in elongation. 

The ATP cost of NTP synthesis. For cells growing on minimal carbon media, the de novo synthesis 

cost of NTP was obtained from Ref. (Lynch & Marinov, 2015). The glycerol + amino acids medium 

used in the proteomics study (Schmidt et al, 2016) also contains adenine and uracil; here, we 

assumed that the synthesis of ATP and GTP starts from adenine and that the synthesis of UTP and 

CTP starts from uracil. PRPP (5-phospho-α-D-ribose 1-diphosphate), whose production consumes 

29 ATP (Akashi & Gojobori, 2002), was considered to be the donor of ribose to the synthesis of 

NTPs. Finally, we estimated the total energy (~P) costs in the glycerol + amino acids medium for 

ATP, UTP, CTP, and GTP as 31, 31, 29, and 32, respectively. We did not attempt to estimate the 

ATP cost of NTP synthesis in the LB condition, as it is not clear to what extent NTPs are taken up 

from the medium. 

The polymerization cost of RNA.  The polymerization cost of RNA is 0 ATP per base, as no high-

energy phosphate bonds beyond those of the polymerized NTPs are required.  

The degradation cost of mRNA. The degradation rates of tRNA and rRNA are much lower than 

their production rates, and hence we did not account for their degradation. In contrast, mRNA is 

degraded much more quickly than tRNA and rRNA, and we thus considered the influence of 

degradation on the mRNA polymerization cost. At steady state, all degraded mRNA (in the form 

of nucleoside mono-phosphates, NMPs) is assumed to be recycled to re-transcribe mRNA. These 

recycled NMPs require two ~P to form NTPs, so the mRNA recycling cost (costNTP-deg) is 2 ~P per 

NTP. At a given mRNA concentration cmRNA-NTP (in units of NTPs built into mRNA), the production 

of mRNA must offset the combination of mRNA degradation and mRNA dilution by cellular growth 

at rate µ. The rate of ATP consumption for this production is thus given by 

𝑣cost−ATP−mRNA = 𝜇 · costNTP · 𝑐mRNA−NTP + 𝑘deg · costNTP−deg · 𝑐mRNA−NTP (2.6) 

where costNTP is the s nthesis cost of NTPs (estimated above, “The ATP cost of NTP synthesis”) 

and kdeg is the mRNA degradation rate constant. kdeg is calculated from mRNA half-life (thalf), kdeg = 

ln(2) / thalf, with thalf = 5 min for all growth conditions (Bernstein et al, 2002). To obtain the ATP 

cost per NTP in mRNA, we must divide this rate by μ· cmRNA-NTP:  
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costNTP−mRNA =
𝑣cost−ATP−mRNA 
𝜇 · 𝑐mRNA−NTP

= costNTP +
𝑘deg

𝜇
· costNTP−deg = costNTP +

2 𝑘deg

𝜇
(2.7) 

Thus, mRNA degradation dominates the ATP cost of mRNA at very low growth rates, but 

becomes insignificant at growth rates higher than the mRNA degradation rate. 

Synthesis cost as an alternative cost measure 

The synthesis cost is the total macromolecular dry mass, which includes transporters, enzymes, 

RNA polymerase, and ribosome, that is needed to synthesize each component of the translation 

machinery. To estimate the synthesis cost of each component, we first estimated the 

macromolecular dry mass that is needed to synthesize one millimole of amino acid (costAA) and 

one millimole of nucleotide (costnucl). Based on these estimates, the synthesis cost of a protein is 

costprotein = Lprotein·costAA , where Lprotein is the protein length in amino acids, and the synthesis cost 

of an RNA molecule is  costRNA = LRNA·costnucl, where LRNA is the length of the RNA molecule in 

nucleotides. 

We calculated costAA and costnucl using ccFBA (Gelius-Dietrich et al, 2013; Desouki, 2016), which is 

an implementation of the MOMENT (Adadi et al, 2012) algorithm for flux balance analysis with 

molecular crowding, featuring an improved treatment of co-functional enzymes. Briefly, ccFBA 

assigns each enzyme a constant catalytic rate (kcat) and molecular weight, and then finds the flux 

distribution that maximizes biomass production while not exceeding a threshold on the total 

enzyme mass. 

Synthesis cost of protein. We first added a protein synthesis reaction to the iML1515 model 

implemented in ccFBA. The stoichiometric coefficient of each amino acid consumed in this 

reaction was set to its proportion in the biomass reaction of the iML1515 model. In E. coli, there 

are approx. 9 TCs per ribosome at high growth rates (Dong et al, 1996; Furano, 1975); we thus 

designated the ribosome plus 9 ternar  complexes (TCs) as the “enz me” of the protein s nthesis 

reaction. We parameterized this “enz me” with kcat = 22 s-1 and molecular weight = 2933.241 kD 

(Bremer & Dennis, 1996). We then set the objective function to the rate of protein production, 

vAA, instead of the biomass production rate vbio.  We simulated different growth conditions by only 

allowing the model to import nutrients available in the respective medium, setting the lower 

bound of the corresponding exchange reactions to -1000 (mmol·gDW
-1·h-1). For cells growing on LB 

medium, the lower bound of all exchange reactions was set to -1000, i.e., all metabolites for which 

there is a transporter in the model can be taken up. We maximized the protein synthesis rate vAA, 

given a limit on the dry mass fraction of macromolecules involved in metabolism (a “budget”) of 

C=0.27. As the lower bound chosen for the exchange rates was very high, the optimizations were 

constrained by C, i.e., the optimal vAA value is the maximal rate of protein production with this 

macromolecular budget. Accordingly, the synthesis cost of amino acids is costAA = 0.27 / vAA, 

expressed as the dry mass fraction required to produce 1 mmol·gDW
-1·h-1 of amino acids. The 

computed protein synthesis costs for all 20 conditions considered are shown in Table S2.4. 

Synthesis cost of stable RNA. To estimate the cost per nucleotide of stable RNA production, costnucl, 

we implemented an analogous algorithm. We first added an RNA synthesis reaction to the 

iML1515 model (Monk et al, 2017) and set this reaction as the objective function. The 

stoichiometry of NTPs consumed in this reaction was set to the corresponding fractions of NTPs 

in the biomass reaction of the iML1515 model. We designated the RNA polymerase (molecular 

weight = 389.11 kD) as the enzyme catalyzing this reaction. For stable RNA (tRNA and rRNA) 

synthesis, the turnover rate of the RNA polymerase (RNA-P) (Bremer & Dennis, 1996) is kRNAP-sRNA 
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= 85 s-1 . We maximized the flux of the RNA synthesis reaction, vsRNA, constrained by the 

macromolecular budget C = 0.27. The synthesis cost of stable RNA per nucleotide was then 

calculated as costnucl-sRNA = 0.27 / vsRNA, expressed as the dry mass fraction required to produce 1 

mmol·gDW
-1·h-1 of NTP in stable RNA. The computed stable RNA synthesis costs for all 20 conditions 

considered are listed in Table S2.4. 

Synthesis cost of mRNA. In E. coli, mRNA transcription is slower than stable RNA transcription. The 

turnover rate of RNA-P for mRNA is kRNAP-mRNA = 66 s-1 (i.e., the fastest rate of mRNA transcription 

has been observed to be about three times the maximal translation rate) (Proshkin et al, 2010). 

As for the calculation of the ATP cost of mRNA, we need to account for mRNA degradation at rate 

kdeg (which is much faster than the degradation of stable RNA). We again assumed that nucleotides 

from degraded mRNA are re-used by RNA-P to synthesize mRNA. As before, we note that at a 

given mRNA concentration cmRNA, the production of mRNA must offset the combination of mRNA 

degradation and mRNA dilution by cellular growth at rate µ. The rate of mRNA production by the 

RNA-P is thus  

𝑣𝑚𝑅𝑁𝐴 = 𝜇 · 𝑐𝑚𝑅𝑁𝐴 + 𝑘𝑑𝑒𝑔 · 𝑐𝑚𝑅𝑁𝐴 (2.8) 

To obtain the concentration of RNA-P necessary to catalyze this rate, we need to divide this 

expression by kRNAP-mRNA:  

𝑐RNAP−mRNA =
𝑣mRNA 
𝜇

= cmRNA (1 + 
𝑘deg

𝜇
) (2.9)  

Thus, the concentration of RNA-P required for mRNA production is larger by a factor 

(1 + 𝑘deg/𝜇 ) when accounting for mRNA degradation than it would be otherwise. To account 

for mRNA degradation, we thus set the effective turnover number of RNA-P to 𝑘eff−mRNA =

𝑘RNAP−mRNA/(1 + 𝑘deg/𝜇 ) . We maximized the flux of the mRNA synthesis reaction, vmRNA, 

constrained by the macromolecular budget C = 0.27. The synthesis cost of mRNA per nucleotide 

was then calculated as costnucl-mRNA = 0.27 / vmRNA, expressed as the dry mass fraction required to 

produce 1 mmol·gDW
-1·h-1 of NTP in mRNA. The computed costs for all 20 conditions considered 

are provided in Table S2.4. 

Protein content as an alternative cost measure 

The protein content was considered as the only relevant cost of the translation machinery in two 

previous models (Ehrenberg & Kurland, 1984; Klumpp et al, 2013). These models accurately 

predicted the ribosomal protein fraction in total protein, whereas they substantially 

underestimated the EF-Tu proteome fraction compared to measurements data (Ehrenberg & 

Kurland, 1984; Klumpp et al, 2013).  

Following these earlier works, we calculated the protein cost of a component as the number of 

amino acid residues it incorporates. Since mRNA and tRNA have zero protein content, this 

definition assigns no costs to their expression, potentially leading to a prediction of infinite 

concentrations. To avoid such pathological predictions, we set the protein content costs of mRNA 

and charged tRNAs to small, arbitrary values in the model (mRNA: 10 amino acid residues; tRNA: 

5 amino acid residues). 

Model overview 

The mechanistic translation model encompasses the processes of translation initiation, elongation, 

termination, nucleotide exchange in EF-Tu, and ternary complex (TC) formation. Fig. 2.1 of the 
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main text illustrates the modeled reaction; for better readability, the figure shows only a subset 

of codon / charged tRNA combinations. In total, the model includes 274 reactions. 

Translation initiation 

During initiation, mRNA converts free ribosomes to active ribosomes: 

 Ribosomefree → Ribosomeactive . (r1) 

Translation initiation consists of multiple elementary reactions (Milón & Rodnina, 2012). However, 

a recent study found that at steady state, the kinetics of initiation effectively follow Michaelis–

Menten kinetics, with mRNA in the enzyme position (with concentration cmRNA) and free (unbound) 

ribosomes in the substrate position (with concentration 𝑐ribo−free) (Borkowski et al, 2016),  

𝑣tl−init = 𝑘cat−mRNA · 𝑐mRNA ·
𝑐ribo−free

𝐾M−ribo + 𝑐ribo−free
, (2.10) 

with kcat–mRNA = 1.33 s-1 and KM-ribo = 8.5 µM  from Ref. (Tadmor & Tlusty, 2008).  

We assume that the turnover number of mRNA for ribosome binding (𝑘cat−mRNA) is growth rate-

independent, and hence that the observed growth rate-dependent activity is due to changes in 

the concentration of free ribosomes available for initiation (Espah Borujeni et al, 2014). Thus, we 

used the maximal reported mRNA activity as an estimate of 𝑘cat−mRNA. 

Ternary complex formation and EF-Tu nucleotide exchange 

Ternary complex formation and nucleotide exchange in EF-Tu are the processes by which the 

translation machinery recycles its substrates, the ternary complexes, for elongation.  

TC formation. The binding of EF-Tu·GTP to charged-tRNA (aa-tRNA) forms the ternary complex 

(ternary complex formation in Fig. 2.1), which is the substrate of translation elongation. 

Nucleotide exchange in EF-Tu. EF-Tu·GDP is released after the formation of a new peptide bond. 

Elongation factor Ts (EF-Ts) binds to EF-Tu·GDP and induces the exchange of GDP for GTP (right 

panel in Fig. 2.1). 

The individual steps of these two processes are modelled with mass action kinetics (Gromadski et 

al, 2002; Louie & Jurnak, 1985). 

In the implementation of the model, we divide each reversible reaction into two irreversible 

reactions. The TC formation reaction is a set of reactions that include the binding of 40 aa-tRNAs 

to Tu·GTP, and its rate constants depend on which amino acid is involved (Louie & Jurnak, 1985) (for 

the parameter values see Data S2.1.) 

Elongation 

Elongation is a very complex process (Rudorf et al, 2014; Vieira et al, 2016). For simplicity, we 

model elongation as a single reaction with an active ribosome as the enzyme and TC as the 

substrate, which was proposed by Klumpp et al. (Klumpp et al, 2013). In this single reaction model, 

TC is discriminated by the anticodon and all TCs are treated with the same activity. Michaelis–

Menten kinetics are used to describe the reaction rate (Klumpp et al, 2013).  There are 40 

anticodons in total for all elongator tRNAs in E. coli; accordingly, our model uses 40 tRNAs to 

represent all tRNAs.  
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At steady state, the total translation rate (per cytosolic volume) of each codon remains constant. 

We do not model the translation of a whole protein. Instead, we decompose protein synthesis 

into the translation of 61 codons (see also “Modeling” below). 

Active ribosome state. We distinguish active ribosomes according to their binding codons (codon 

in ribosome A site). Thus, there are 61 types of active ribosome in the model, distinguished in the 

model by subscripts indicating the codon currently presented by the ribosome:  

 Ribosomeactive → Ribosomecodon-i   ; (r2) 

here, codon-i is one of the 61 codons and Ribosomecodon-i is the active ribosome that binds codon-

i. This reaction is constrained by mass balance, but is considered to be instantaneous. We assume 

that when an active ribosome binds with a specific codon, it onl  translates the codon’s cognate 

tRNA. 

In the model, there are 61 codons and 40 tRNAs, and the relation between tRNA and codon is not 

one-to-one. Based on the number of cognate tRNAs, we partition the 61 codons into 2 classes: 

class 1 codons have one cognate tRNA, whereas class 2 codons have two cognate tRNAs. The lists 

of class 1 and class 2 codons are provided in Table S2.5. 

For class 1 codons (n = 51), the elongation reaction is: 

TCcodon-i  
Ribosomecodon-i
→            EF-Tu∙GDP+tRNAcodon-i+aacodon-i, (r3) 

where TCcodon-i is the cognate TC of codon-i, tRNAcodon-i is the released free tRNA, and aacodon-i 

symbolizes the amino acid that was just appended to the growing peptide. The tRNAcodon-i and 

aacodon-i are included here for completeness, but are not included explicitly in the optimized model, 

as they do not influence the results once appropriate exchange reactions have been added. 

Simultaneously, the Ribosomecodon-i is converted to Ribosomeactive, which is ready to participate in 

the next round of elongation,  

 Ribosomecodon-i → Ribosomeactive. (r4) 

For simplicity, we combine r3 and r4 into the new reaction r5, with Ribosomecodon-i as a substrate 

and Ribosomeactive as a product (the same for r6 and r7), 

TCcodon-i + Ribosomecodon-i
Ribosomecodon-i
→           Ribosomeactive+ EF-Tu∙GDP+tRNAcodon-i+aacodon-i. (r5) 

The translation rate of codon-i is described by Michaelis-Menten kinetics, 

𝑣𝑡𝑙−𝑐𝑜𝑑𝑜𝑛−𝑖 = 𝑐𝑟𝑖𝑏𝑜−𝑐𝑜𝑑𝑜𝑛−𝑖 ∙ 𝑘cat−ribo ∙
𝑐𝑇𝐶−𝑐𝑜𝑑𝑜𝑛−𝑖

𝑐𝑇𝐶−𝑐𝑜𝑑𝑜𝑛−𝑖 +𝐾M−TC
, (2.11) 

where cribo-codon-i is the concentration of ribosomes that present codon-i (Ribosomecodon-i), cTC-codon-i 

is the concentration of cognate TC of codon-i (TCcodon-i), kcat-ribo = 22 s-1 , and KM-TC =  3 μM 

(parameters from Ref. (Klumpp et al, 2013)). 

For class 2 codons (n = 10), the active ribosome can translate two TCs and thus there are two 

reactions: 

TCcodon-i-1 + Ribosomecodon-i
Ribosomecodon-i
→           Ribosomeactive+ EF-Tu∙GDP+tRNAcodon-i-1+aacodon-i (r6) 
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and 

TCcodon-i-2 + Ribosomecodon-i
Ribosomecodon-i
→           Ribosomeactive+ EF-Tu∙GDP+tRNAcodon-i-2+aacodon-i. (r7) 

The translation rate of codon-i is the sum of these two reactions: 

𝑣𝑡𝑙−𝑐𝑜𝑑𝑜𝑛−𝑖 = 𝑣1 + 𝑣2, (2.12) 

with 

𝑣1 = 𝑐𝑟𝑖𝑏𝑜−𝑐𝑜𝑑𝑜𝑛−𝑖 ∙ 𝑘cat−ribo ∙
𝑐𝑇𝐶−𝑐𝑜𝑑𝑜𝑛−𝑖−1

(𝑐𝑇𝐶−𝑐𝑜𝑑𝑜𝑛−𝑖−1 + 𝑐𝑇𝐶−𝑐𝑜𝑑𝑜𝑛−𝑖−2) + 𝐾M−TC
(2.13) 

and 

𝑣2 = 𝑐𝑟𝑖𝑏𝑜−𝑐𝑜𝑑𝑜𝑛−𝑖 ∙ 𝑘cat−ribo ∙
𝑐𝑇𝐶−𝑐𝑜𝑑𝑜𝑛−𝑖−2

(c𝑇𝐶−𝑐𝑜𝑑𝑜𝑛−𝑖−1 + 𝑐𝑇𝐶−𝑐𝑜𝑑𝑜𝑛−𝑖−2) + 𝐾M−TC
. (2.14) 

Termination 

In termination, an active ribosome is converted to a free ribosome: 

 Ribosomeactive → Ribosomefree . (r8) 

The termination rate is equal to the protein synthesis rate at steady state: 

𝑣term = 𝑣protein−syn = µ · 𝑐protein, (2.15) 

where cprotein is the absolute concentration of protein measured experimentally.  

Modeling exchange reactions 

Besides the reactions mentioned above, we also add exchange reactions that allow the influx of 

free ribosome, charged tRNA, mRNA, EF-Tu, EF-Ts, and GTP into the system. We also add exchange 

reactions that allow efflux of GDP out of the system. 

Modeling antibiotic stress 

To model chloramphenicol (cm) stress, we add the exchange reaction for chloramphenicol. All 

forms of ribosome can be inhibited by chloramphenicol: 

 Ribosome+cm ↔ Ribosome ∙ cm, (r9) 

where Ribosome includes both free and active ribosomes. The reaction rate is described by mass 

action kinetics with kon = 0.00057 µM·s-1 (0.034 µM·min-1) and koff = 0.0014 s-1 (0.084 min-1) (Harvey 

& Koch, 1980).  

For simplicity, we make the following assumptions:  

(1) chloramphenicol diffuses freely across cell membranes, such that the intracellular 

concentration of free chloramphenicol is the same as that in the medium; 
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(2) chloramphenicol bound to an active ribosome (ribosome·cm) causes the ribosome·cm 

complex to dissociate quickly from the mRNA, thus not affecting further translation of the 

mRNA. 

We assume that the reaction of ribosome and chloramphenicol binding is at steady state (dynamic 

equilibrium), and thus the active ribosome concentration will be constant. However, not all active 

ribosomes will be able to successfully finish translation, as the active ribosome can be inhibited 

by chloramphenicol during translation. Thus, to estimate the production rate of functional 

proteins, we need to estimate the probability that the active ribosome can finish translation 

without chloramphenicol inhibition.  

To calculate this probability, we use the method proposed in Ref. (Dai et al, 2016). The probability 

of chloramphenicol binding to a ribosome in a given time unit is:  

𝑘hit = 𝑘on𝑐cm, (2.16) 

where kon is the binding constant. The probability that the ribosome is bound n times in the time 

interval t follows the Poisson distribution 

𝑃(𝑛) = 𝑒−𝑘hit𝑡tl
𝑘hit𝑡tl
𝑛!

, (2.17) 

where ttl is the experimental measured translation time of the translated gene. The probability 

that the ribosome can finish translation without inhibition by chloramphenicol is P(0): 

𝑃tl = 𝑒
−𝑘hit𝑡tl . (2.18)  

Here, ttl is the time for LacZ and ttl = 72 s (from Ref. (Dai et al, 2016)). For simplicity, we assume 

that all codon-presenting active ribosomes (61 forms of active ribosome) have the same Ptl, and 

thus the effective concentration of the ribosome presenting codon-i is 

 

𝑐𝑟𝑖𝑏𝑜−𝑒𝑓𝑓−𝑖 = 𝑃tl𝑐𝑟𝑖𝑏𝑜−𝑖 . (2.19) 

Under inhibition by chloramphenicol, this effective ribosome concentration of codon-i  

(cribo-eff-i) replaces the ribosome concentration of (cribo-i) in the model. 

Model optimization 

We assume translation at steady state and use a constraint-based optimization model. The 

constraints are given by the above equations and by the requirement of a given total cellular rate 

of protein synthesis (estimated as the product of growth rate and experimental proteome 

composition at this growth rate). For simplicity, we decomposed protein synthesis into the 

translation of 61 codons, and so the constraint on protein synthesis rate is implemented as 61 

individual equations, each representing the translation rate of one codon. At steady state, the 

codon translation rate equals the dilution rate of amino acids incorporated at protein positions 

encoded by codon-i, i.e., the growth rate μ multiplied by the concentration of amino acids coded 

by codon-i in proteome data:  

𝑣𝑡𝑙−𝑐𝑜𝑑𝑜𝑛−𝑖 = 𝜇 · 𝑐𝑐𝑜𝑑𝑜𝑛−𝑖   ; (2.20) 

note that if multiple codons encode the same amino acids, then the total concentration of that 

amino acid in cellular proteins is the sum over the 𝑐𝑐𝑜𝑑𝑜𝑛−𝑖  values for the individual codons.  
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Given these constraints, we minimize the total mass concentration of the modeled translation 

apparatus, consisting of ribosome, EF-Tu, EF-Ts, mRNA, GTP, GDP, and charged tRNAs (aa⋅tRNA),  

∑ MW𝑚 ∙ 𝑐𝑚
𝑚∈𝐶

   , (2.21) 

where the molecule types together form the set C, MWm is the molecular weight, and cm is the 

concentration of molecule type m. We do not minimize the contributions of GTP and GDP, who 

participate in multiple other cellular processes (Feist et al, 2007) and whose concentrations are 

thus unlikely to be dominated by translation; their concentrations are consequently fixed to 

experimentally observed values in our simulations (see Text S2.3).  

Let R be the set of reactions that together comprise translation. We also consider the dilution of 

the molecules involved in these reactions due to cellular volume growth at rate µ:  

𝐒 · 𝐯(𝐜) − 𝜇 · 𝐜 = 0, (2.22) 

where S is the stoichiometric matrix for the reactions in R, c is a vector of the concentrations cm, 

and 𝐯(𝐜)  is the corresponding vector of reaction rates 𝑣i, with the concentration-dependent 

kinetics described above.  

Thus, we solve the non-linear constrained optimization problem:  

min
𝐜

∑ MW𝑚 ∙ 𝑐𝑚
𝑚∈𝐶

. (2.23) 

 subject to: 

𝐒 · 𝐯(𝐜) − 𝜇 · 𝐜 = 0, 

 𝑣𝑡𝑙−𝑐𝑜𝑑𝑜𝑛−𝑖 = 𝜇 ∙ 𝑐𝑐𝑜𝑑𝑜𝑛−𝑖     for i=1, …, 61 

𝑣term = 𝜇 ∙ 𝑐protein 

We formulated the optimization problem in GAMS and used the BARON global solver 

(Tawarmalani & Sahinidis, 2005) on NEOS Server (Czyzyk et al, 1998) with 8 hours as the time limit 

to solve this problem. Because the problem is non-linear, it is not clear a priori if it is convex, in 

which case only a single optimum would exist. The problem is conceptionally similar to the one 

studied by Noor et al. (Noor et al, 2016) , and thus convexity is conceivable. A first optimum was 

returned by the solver within at most a few minutes for all optimizations performed. However, to 

guard against the existence of overlooked alternative optima, we allowed the search to continue 

for a total of 8 hours in each case. In addition, we repeated all simulation with the global non-

linear solver in Lingo 13 (LINDO Systems, Inc., https://www.lindo.com/index.php/products/lingo-

and-optimization-modeling). No alternative optima were ever found; we thus have no evidence 

of non-convexity. 

To assess the alternative costs, the molecular weight of each component was replaced by the 

corresponding cost measure (see the section “Alternative costs of translation machinery 

components”). The costs for each component are shown in Data S2.2, and the corresponding 

predictions are shown in Data S2.3. 

 

https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
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Code availability 

The optimization problem, including the model and its parameterization, is provided as an SBML 

file (Data S2.4) and as a GAMS input file (Data S2.5, with protein production requirements set to 

those for growth on minimal glucose medium). In addition, the model has been submitted to 

Biomodels (MODEL2006210001; https://www.ebi.ac.uk/biomodels/MODEL2006210001).  

 

Supplementary information 

Supplementary Data and Tables are available online at https://doi.org/10.1038/s41467-020-

18948-x. 

Supplementary Texts 

Text S2.1. The coarse-grained optimization models by Scott et al. and Klumpp et al. 

In Ref. (Scott et al, 2014), Scott et al. use a phenomenological model based on the „bacterial 

growth laws” most prominentl  described in Ref. (Scott et al, 2010). This model considers two 

proteome sectors, a ribosomal sector with proteome fraction ΦR and a metabolic sector with 

proteome fraction ΦP, responsible for the production of the amino acids consumed by the 

ribosomal sector. A constraint relates these two proteome sectors to the maximally available 

proteome fraction for protein synthesis, ΦR
max, which is assumed to be constant: ΦR + ΦP = ΦR

max. 

Thus, the model of Scott et al. has only one free parameter, the proteome fraction allocated to 

the ribosomal sector, ΦR. For a given ΦR, the growth rate (which is defined by the rate of protein 

production) is set b  three phenomenological parameters: the “translational efficienc ” γ 

(translation rate per ribosomal proteome fraction), assumed to be constant; the “nutritional 

efficienc ” ν (amino acid production rate per metabolic proteome fraction), assumed to be 

condition-dependent; and a constant proteome fraction of inactive ribosomes, ΦR
min. Maximizing 

the growth rate under these constraints results in an optimal ribosomal proteome fraction.  

The approach by Scott et al. aims to answer broadly the same question as explored in the present 

work: given that cellular resources are limited, what is the optimal way to allocate them in order 

to allow fast growth? Scott et al. approach this question by maximizing the growth rate while 

assuming constant translational efficienc  γ and fraction of inactive ribosomes ΦR
min. The 

parameters are derived from fits to coarse-grained experimental data. With this approach, Scott 

et al. show that under relatively simple assumptions, an optimal allocation of proteome mass to 

translation and metabolism exists, and the relationship between the ribosomal proteome fraction 

and the growth rate is qualitatively similar to that observed experimentally, i.e., is linear. While in 

subsequent publications of the same group, the model of Scott et al. has been shown to be very 

powerful at explaining growth-related phenomena, it requires parameters fitted to experimental 

data, and the mechanistic basis of its components are unclear. In particular, there is no clear 

explanation for the existence and size of the “offset” of the ribosomal proteome fraction at zero 

growth rate in this model, ΦR
min. 

While our model minimizes the cost of translation rather than maximizing growth rate, our 

approach is mathematically equivalent to a maximization of growth rate under a constraint on the 

total cost and under certain additional assumptions (such as a constant amino acid composition 

of the proteome across growth rates). Both our approach and that of Scott et al. vary some 

condition-dependent parameters (the nutritional efficiency for Scott et al., the proteome mass 

https://www.ebi.ac.uk/biomodels/MODEL2006210001
https://doi.org/10.1038/s41467-020-18948-x
https://doi.org/10.1038/s41467-020-18948-x
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and composition in our manuscript) and then optimize an aspect of cellular resource allocation. 

However, in contrast to Scott et al., we are not interested in the relative global resource allocation 

between translation and biosynthesis based on a schematic, coarse-grained model, but in a 

mechanistic explanation of the quantitative pattern of resource allocation across different 

components of the translation machinery.  

Building on the same phenomenological bacterial growth laws (Scott et al, 2010) as Scott et al. 

(Scott et al, 2014), Klumpp et al. (Klumpp et al, 2013) also analysed the composition of the 

translation machinery. Noting that this machinery includes not only ribosomes, but also other 

highly expressed proteins – most notably elongation factors (Schmidt et al, 2016) and tRNA 

synthetases – Klumpp et al. argued that a full appreciation of the efficiency of protein synthesis 

requires the inclusion of the cost of these translation components. They extended the 

phenomenological, coarse-grained model of Ref. (Scott et al, 2010) into four proteome sectors, 

including a ribosomal (Rb) and a translation-associated (T) sector. Assuming co-regulation of the 

Rb and T sectors and fitting three phenomenological constants to the data, they were able to 

approximate the growth rate dependence of ribosome concentration and elongation speed in E. 

coli (Klumpp et al, 2013). However, the experimentally observed ratio between the protein 

concentrations in the T- and Rb-sectors, ΦT/ΦRb , deviates from the postulated constant ratio (see 

Fig. 2.3D in Ref. (Klumpp et al, 2013)), indicating shortcomings of this phenomenological theory.  

Klumpp et al. also attempted to determine an optimal growth rate dependence of the ratio 

between T- and Rb-sectors, by treating both proteome fractions as independent parameters when 

numerically optimizing the growth rate of their coarse-grained model cell. However, the results 

predicted a ratio ΦT/ΦRb that was substantially smaller than that observed (see Fig. 2.4C in Ref. 

(Klumpp et al, 2013)), indicating that translation in E. coli is either not organized optimally, or that 

the objective optimized by natural selection differs from the proteome allocation examined by 

Klumpp et al.. Comparing the objective functions used by Klumpp et al. and in the present work, 

we note that proteins make up 1/3 of the ribosome, but 2/3 of the ternary complex (by mass). 

Thus, the ternary complex appears much more expensive to the cell when considering protein 

mass than when considering total mass, explaining why optimization of protein allocation results 

in smaller predictions of the ΦT/ΦRb ratio (Klumpp et al, 2013; Ehrenberg & Kurland, 1984). 

Text S2.2. Ribosome states 

The ribosome is the most central component of translation, and the ribosome states in our model 

are slightly different from those used in proteome partitioning models (Scott et al, 2010; Klumpp 

et al, 2013; Dai et al, 2016). In this section, we will discuss the difference and the rationality of 

ribosome states in our model. 

Briefly, our model contains active ribosomes and free ribosomes. Active ribosomes are bound to 

mRNA and actively involved in elongating peptide chains. Free ribosomes are responsible for 

translation initiation; they are available for binding to mRNA and comprise a subset of the inactive 

ribosomes in proteome partitioning models. 

Proteome partitioning models distinguish between active ribosomes and inactive ribosomes. 

Active ribosomes have exactly the same meaning as in our model: they are engaged in elongation. 

At steady-state growth, the protein synthesis rate can be written as: vprotein_syn = µ P = factive · keff · R, 

where µ is the growth rate, P is the total protein concentration (measured in amino acids per 

volume), factive is the fraction of active ribosomes among total ribosomes, keff is the turnover 

number of ribosomes during elongation, and R is the concentration of ribosomes. By measuring µ, 
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keff, and the ratio between R and P (estimated through the RNA/Protein ratio and the fraction of 

rRNA in total RNA), Dai et al. estimated the fraction of active ribosomes as a function of growth 

rate (Dai et al, 2016). In the view of protein partitioning models, the inactive ribosomes comprise 

all ribosomes not actively engaged in elongation. Inactive ribosomes include not only ribosomes 

available for initiation (free ribosomes), but also ribosomes that are unavailable for initiation 

(unused, or deactivated, ribosomes) (Scott et al, 2010; Klumpp et al, 2013; Dai et al, 2016). In this 

work, we modeled both initiation and elongation, and thus both free and active ribosomes (but 

not deactivated ribosomes) are included.  

Our model is carefully built on first principles. All reactions are explicitly and exclusively 

constrained by reaction parameters and steady state growth; we avoid any empirical growth rate-

dependent parameters, such as a growth rate-dependent fraction of active ribosomes or effective 

ribosome activity. In other words, our model contains only reactions for which we know why and 

how they occur. The mechanism leading to a fraction of deactivated ribosomes is not clear. 

Deactivated ribosomes facilitate faster transitions between growth environments that support 

different growth rates (Mori et al, 2017), a phenomenon that cannot be predicted with steady-

state models such as ours. Moreover, the true fraction of deactivated ribosomes has not been 

measured experimentally. Thus, we did not attempt to predict the total concentration of 

ribosomes (including deactivated ribosomes), and only compared our predictions for active 

ribosome concentrations to experimental estimates.  

Text S2.3. Impact of GTP and GDP concentrations on the predictions 

GTP and GDP are involved in many intracellular reactions (Feist et al, 2007), and we thus do not 

expect to predict their concentrations in this translation model. In our model, GTP and GDP are 

involved in nucleotide exchange by elongation factor Tu (Gromadski et al, 2002) (see Methods). 

The concentrations of GTP and GDP may influence the rates of some reactions directly. In this 

section, we assess the impact of the assumed GTP and GDP concentrations on the predictions, 

examining three pairs of concentrations (Bennett et al, 2009) resulting from growth of E. coli K-12 

on different media. Note that GTP and GDP concentrations (Bennett et al, 2009) and proteome 

data were collected for different strains of E. coli K-12 (NCM3722 and BW25113, respectively).  

The GTP/GDP measurements were done for growth on acetate (cGTP = 1250 µM; cGDP = 18 µM), 

glycerol (cGTP = 2690 µM; cGDP = 23 µM), and glucose (cGTP = 4900 µM; cGDP = 680 µM); all three 

conditions also appear in our simulations. We first simulated growth on acetate and on glycerol 

with GTP and GDP concentrations measured for E. coli cells growing on the same media. Next, we 

replaced the GTP and GDP concentrations with the data for glucose and repeated the simulations 

(Fig. S2.8). Despite the large differences in GTP and GDP concentrations, the results obtained are 

very similar. For both acetate and glycerol growth, geometric mean fold-errors (GMFE) are below 

1.03 (Fig. S2.8), i.e., the predicted concentrations of the individual components of the translation 

machinery are on average less than 3% higher or lower in the two sets of predictions. Thus, GTP 

and GDP concentrations appear to have only a minor influence on the predictions. Because 

glucose is the reference condition for the protein expression data (Schmidt et al, 2016), we used 

the concentration of GTP and GDP for growth on glucose for all predictions in this study.  
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Supplementary Figures

Fig. S2.1. The predicted optimal concentrations of the components of the translation machinery agree 
with experimental estimates across 20 growth conditions on different media and in chemostats with a 
minimal glucose medium (sorted by ascending growth rate). The conditions are those under which protein 
concentrations were measured in Ref. (Schmidt et al, 2016). mRNA (Valgepea et al, 2013) and tRNA (Dong 
et al, 1996) were assayed in conditions with growth rates that differ from those of the proteomics 
experiment. To plot mRNA and tRNA data in the same panels, we fitted second order polynomial regression 
models to the available data for mRNA and tRNA concentrations, respectively, and then used the regressions 
to estimate the concentrations at the growth rates shown in the panels. Absolute mRNA concentration
(Valgepea et al, 2013) was only assayed for growth rates between 0.11 h-1 and 0.49 h-1, and we did not 
attempt to extrapolate mRNA concentrations beyond this range. 
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Fig. S2.2. The concentrations of the major non-ribosomal RNA pools predicted from cost minimization are 
consistent with experimental observations. (a) mRNA (Valgepea et al, 2013), R2 = 0.97, GMFE = 1.06. 
(b) Total tRNA data from Dong et al. (Dong et al, 1996) (summed over individual tRNAs), Forchhammer et 
al. (Forchhammer & Lindahl, 1971), and Skjold et al. (Skjold et al, 1973); combined R2 = 0.27, GMFE = 1.30. 
(c) number of tRNAs per ribosome from the same datasets as in (b).

Fig. S2.3. Theoretically optimal resource allocation to the translation machinery as a fraction of total dry 
mass increases almost linearly with growth rate. The solid red line indicates the model predictions, without 
accounting for deactivated ribosomes. The dashed line indicates the predicted optimal mass fraction when 
we additionally include the fraction of deactivated ribosomes, which cannot be predicted by a steady-state 
model but which we estimated from experimental observations (Fig. 2.4 of the main text; see Methods for 
details). Experimental data (points) is the sum over the observed concentrations of translation associated 
proteins (Schmidt et al, 2016) (ribosomal proteins, EF-Tu, EF-Ts) and RNA (Scott et al, 2010; Dai et al, 2016)
(ribosomal RNA, tRNA, mRNA; interpolated to the same growth rates as in the protein measurements, see 
Methods). Note that the mass fraction of the translation machinery does not include GDP, GTP, free tRNA, 
tRNA-synthetases, and elongation factor G (FusA).
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Fig. S2.4. Optimality of the translation machinery under chloramphenicol stress. Model predictions (red 
lines) of relative changes in the concentrations of (a) ribosome, (b) EF-Tu, and (c) EF-Ts under increasing 
chloramphenicol stress are qualitatively consistent with experimental data (Hui et al, 2015) (a, b, c show
the results for growth on glucose). Predicted (d) elongation rates and (e) RNA/protein ratios under 
chloramphenicol stress are also qualitatively consistent with experimental data (Dai et al, 2016). Grey dots 
indicate experimental elongation rates without chloramphenicol stress; the black line marks the 
corresponding (non-stressed) predictions. Different symbols indicate varying chloramphenicol 
concentrations, while colours indicate growth conditions (different nutrients). Dashed lines connect 
experimental elongation rates (open symbols) under chloramphenicol stress on the same nutrient; solid 
lines connect the corresponding elongation rate predictions (filled symbols). Chloramphenicol 
concentrations were varied from 0 mM to 9 mM. In both predictions and experiment, elongation rates 
increase with growing chloramphenicol stress, with faster increases under progressively poorer nutrient 
conditions. The overestimated RNA/protein ratio on rich defined medium (RDM) likely reflects the fact that 
ribosome is inhibited less by chloramphenicol in vivo than theoretical calculations predict (see Fig. N1 in Ref.
(Dai et al, 2016)). The predictions are functions of the growth rate and of chloramphenicol concentration; 
the non-smoothness of the prediction lines likely arise from experimental uncertainties in the corresponding 
values. 
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Fig. S2.5. Different cost definition lead to broadly similar growth rate dependencies. The coloured lines 
show predictions based on minimizing the total mass density (as in the main text), carbon content, protein 
mass, and synthesis cost of the components of the translation machinery, respectively. The panels compare 
the predictions to experimental estimates for (a) active ribosomes (based on proteomics (Schmidt et al, 
2016), black dots, and RNA/protein ratios, red dots); (b) EF-Tu; (c) EF-Ts; (d) mRNA; and (e) total tRNA. As it 
is unclear how to calculate ATP costs in the LB medium (µ = 1.9 h-1), no results for ATP costs are shown for 
this condition. 

To derive the molar concentration of active ribosomes from reported RNA/protein mass ratios for panel (a), 
we used the tRNA/ribosome ratios reported in the experimental papers on tRNA concentrations (Dong et 
al, 1996; Skjold et al, 1973; Forchhammer & Lindahl, 1971) to calculate the rRNA in total RNA (frRNA) (as 
mRNA is a very small fraction of total RNA by mass (~ 2-5%), we ignored its contribution in this calculation). 
With frRNA, the RNA/Protein mass ratio (Scott et al, 2010; Dai et al, 2016), and the mass fraction of protein 
in the ribosome, we calculated the fraction of ribosomal protein in total protein. Then, with equation (2.1) 
and the equation for the active ribosome fraction (factive = μ / (0.124 + μ)) we calculated the active ribosome 
concentration. 
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Fig. S2.6. Comparison of predicted concentrations at minimal mass concentration with alternative cost 
measures. Alternative cost measures based on (a) carbon content, (b) ATP cost of synthesis, and (c) the 
macromolecular investment into the synthesis lead to very similar predictions of the concentrations of the 
translation machinery components as mass concentration costs. A cost measure based on the protein 
content (d) does not assign costs to mRNA and tRNA and can hence not predict their concentrations. Each 
sub-panel corresponds to one growth condition assayed in Ref. (Schmidt et al, 2016). A data point shows 
the predicted concentration for one component based on an alternative cost measure vs. the predicted 
concentration based on the mass concentration cost employed for Figs. 2.2-2.5 in the main text. In the 
bottom right corner of each sub-panel, we provide the square of Pearson’s correlation coefficient on log-
scale, R2, and the geometric mean fold error, GMFE. As it is not clear how to estimate ATP costs in the rich 
medium (LB), we made no predictions for this condition in (b).

c

d
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Fig. S2.7. The cost of RNA per nucleotide, divided by the cost for the synthesis of protein per amino acid, 
plotted against the growth rate µ. (a) ATP cost of synthesis; (b) total required catalyst mass of synthesis 
(synthesis cost). The horizontal red line shows the RNA/protein cost ratio for the mass concentration cost, 
the horizontal grey line the cost ratio based on the carbon content. For ATP and synthesis costs, the 
RNA/protein cost ratios are different between stable RNA (tRNA, rRNA) and mRNA, as for mRNA we
additionally consider degradation. The row of identical rRNA, tRNA cost ratios at low growth rates in (b) is 
for chemostat conditions with a minimal glucose medium.  

Fig. S2.8. Impact of GTP and GDP concentrations on model predictions. (a) Growth on acetate (geometric 
mean fold-error GMFE = 1.028). (b) Growth on glycerol (GMFE = 1.030). Each datapoint represents the 
concentration of one model component (ribosome, EF-Tu, EF-TS, aa-tRNA). x-axes show predictions using 
the GTP and GDP concentrations measured for the corresponding medium; y-axes show predictions when 
instead assuming the GTP and GDP concentrations measured for growth on glucose. GMFE measures the 
mean deviation from the identity line on the log-log plot; GMFE = 1 indicates perfect identity. The very low 
GMFE values indicate that in vivo GTP and GDP concentration has a very small effect on our model.
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Abstract 

Understanding the allocation of the cellular proteome to different cellular processes is central to 

unraveling the organizing principles of bacterial physiology. In previous work, we found that 

proteome allocation to protein translation is maximally efficient, i.e., it represents the minimal 

allocation of dry mass able to sustain the observed protein production rate. However, recent 

studies on bacteria have demonstrated that overall, the proteome is not allocated for maximal 

efficiency, i.e., resource allocation to many proteins exceeds the minimal level required to support 

the observed growth rate. While these findings indicate some heterogeneity across pathways in 

their proteome efficiency, systematic studies at the pathway level are lacking. Here, we 

systematically analyze the proteome efficiency of metabolic pathways, which together account 

for more than half of the E. coli proteome during exponential growth. Comparing the predicted 

and observed proteome allocation to different metabolic pathways across growth conditions, we 

find that the most costly biosynthesis pathways – those for amino acid biosynthesis and cofactor 

biosynthesis – are expressed for near optimal efficiency. Overall, proteome efficiency increases 

along the carbon flow through the metabolic network: proteins involved in pathways of carbon 

uptake and central metabolism tend to be highly over-abundant, while proteins involved in 

anabolic pathways and in protein translation are much closer to the expected minimal abundance 

across conditions. Further, it appears that proteome efficiency alone is not enough to explain the 

utilization of alternative metabolic pathways, such as the switch from respiration to aerobic 

fermentation or from the PEP-gl ox late c cle to the TCA c cle. Our work thus provides a bird’s-

eye view of metabolic pathway efficiency, demonstrating systematic deviations from optimal 

cellular efficiency at the network level.  

  

mailto:martin.lercher@hhu.de


Proteome efficiency of metabolic pathways 

45 
 

Introduction 

Proteins account for more than half of the cell dry mass in E. coli (Bremer & Dennis, 2008) and 

drive most biological processes. How and why proteome is allocated to different cellular processes 

and pathways is a vital question for understanding the principles behind bacterial physiology 

(Basan, 2018). Proteome allocation into different groups of genes is growth rate-dependent  

(Peebo et al, 2015). When partitioning the proteome into specific,  coarse-grained “sectors”, the 

corresponding proteome fractions follow simple, empirical growth laws, increasing or decreasing 

linearly with the growth rate μ (Scott et al, 2010; You et al, 2013; Klumpp et al, 2013; Hui et al, 

2015). For example, the proteome fraction allocated to the ribosome and ribosome-affiliated 

proteins (the R-sector (Klumpp et al, 2013)) scales as a linear function of growth rate under 

nutrient limiting conditions (Scott et al, 2010). 

Why does the proteome composition scale with the growth rate? Protein is the most abundant 

and costly macromolecule in bacterial cells. It has thus been speculated that the proteome 

composition is adjusted to the specific growth condition to maximize the growth rate (Bruggeman 

et al, 2020). If this were true, all protein concentrations would be at the minimal level required to 

sustain the observed cellular growth rate. This simple assumption has been widely used in 

computational models of cellular growth (Adadi et al, 2012; Dourado & Lercher, 2020; Goelzer et 

al, 2015, 2011; O’Brien et al, 2013; Beg et al, 2007; Molenaar et al, 2009). However, even if 

proteome allocation had evolved to be maximally efficient, it is not obvious that this efficiency 

would simply maximize the instantaneous growth rate. Instead, it appears likely that proteome 

allocation has evolved to maximize cellular fitness in unpredictable, dynamic environments with 

varying nutrients and involving periods of famine and stresses (Bruggeman et al, 2020). Indeed, 

recent experimental work indicates that the proteome is not expressed for maximal efficiency in 

unevolved E. coli strains, at least not in the naïve sense of maximizing the instantaneous growth 

rate. First, a large fraction of the expressed proteome is unneeded for the current environment, 

especially at low growth rates (O’Brien et al, 2016). Second, the growth rate can increase by 

approx. 20% in a few hundred generations in adaptive laboratory evolution experiments on 

minimal media (Ibarra et al, 2002), a process associated with reductions in the abundance of 

unused proteins (O’Brien et al, 2016). Finally, the fluxes through some cellular processes, e.g., 

nutrient transport and energy production, are not limited by specific proteins in these pathways 

at low growth rates (Belliveau et al, 2021). Thus, E. coli proteome allocation seems not to be 

globally optimized for maximizing the instantaneous growth rate.  

On the other hand, proteome allocation to at least one cellular pathway – protein translation – is 

optimized for maximal efficiency at the given protein synthesis rate (Hu et al, 2020; Hu & Lercher, 

2021; Lalanne & Li, 2021; Belliveau et al, 2021). This indicates that while the global allocation of 

proteins is not always optimized for maximal growth rate, the proteome allocation to some 

cellular pathways is at a local optimum – i.e., the individual pathway utilizes the minimal protein 

mass required to support the observed pathway output. In E. coli growing on minimal media, more 

than half of the proteome by mass is metabolic enzymes (Schmidt et al, 2016). Computational 

models can predict the optimally efficient proteome allocation to each metabolic pathway (Adadi 

et al, 2012; Goelzer et al, 2015; O’Brien et al, 2013, 2016), and quantitative proteomics data is 

available for E. coli growing on a wide range of minimal media with different carbon sources 

(Schmidt et al, 2016).  

Here, we exploit these resources to compare experimental data in diverse minimal media 

conditions  (Schmidt et al, 2016) to the predicted optimal pathway expression at the observed 
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growth rate. We find that pathways differ systematically in how much excess protein mass is 

allocated to them compared to the local optimum, with decreasing excesses over optimal 

allocation along the carbon flow from nutrient import to protein production. 

Results and Discussion 

Modeling proteome allocation with linear enzyme kinetics and growth rate-dependent 

biomass composition 

To analyze local pathway efficiency, we first predict the local optima of all metabolic enzymes with 

an improved version of FBA with molecular crowding (Beg et al, 2007; Adadi et al, 2012). We 

modelled E. coli metabolism with the constraint-based iML1515 model (Monk et al, 2017). The 

standard model assumes a constant composition of biomass across conditions. As the 

RNA/protein mass ratio (Scott et al, 2010) and the cell surface/volume ratio (Si et al, 2017) can be 

expressed as functions of growth rate under the investigated conditions, we re-formulated the 

biomass function of iML1515 with growth rate-dependent contents of RNA, protein, and cell 

envelope components (murein, lipopolysaccharides, and lipid) (See Methods, Fig. S3.1).  

We performed calculations using MOMENT (MetabOlic Modeling with ENzyme kineTics) (Adadi et 

al, 2012; Desouki, 2016; Heckmann et al, 2018), a version of flux balance analysis (FBA) with 

molecular crowding (Beg et al, 2007). Similar to other constraint-based approaches (O’Brien et al, 

2013; Goelzer et al, 2015), MOMENT estimates the enzyme concentration required to support a 

given flux vi as [Ei]= vi /ki, where ki is the effective turnover number of the enzyme. This effective 

turnover number is assumed to be constant across conditions, a zero-order approximation to the 

true growth rate-dependence (Dourado et al, 2021). Maximal in vivo effective enzyme turnover 

number (kapp,max) represent turnover in the cellular environment better than in vitro estimates of 

enzyme turnover numbers (kcat) (Davidi et al, 2016; Heckmann et al, 2020). We thus  

parameterized the reactions of the iML1515 model with the kapp,max from Ref. (Heckmann et al, 

2020) by replacing the original kcat (Desouki, 2016)  when kapp,max was available. For reactions with 

neither kapp,max nor kcat , the enzyme turnover number predicted by machine learning from 

(Heckmann et al, 2020) is used in the simulation. Most enzymes in the metabolic model have 

measured parameters (kapp,max or kcat): enzymes with kapp,max or kcat account for ~70% of total 

enzyme by mass in the whole metabolic network, and account for ~80% when excluding transport 

reactions (Fig. S3.2).  

With the growth rate-dependent biomass function and updated enzyme turnover numbers, we 

identified the minimal total mass concentration of enzymes and transporters (in units of g/gDW) 

that can support the observed growth rate on the given carbon source (see Methods). Thus, our 

predictions do not reflect globally optimal resource allocation, but quantify the minimal proteome 

allocation into pathways required to sustain the observed growth rate (local optimality). Note that 

the calculation of required concentrations assumes that all enzymes are fully saturated with their 

products; this means that our estimates provide a lower bound of proteome allocation into 

pathways, which is expected to deviate increasingly from the actual demand at lower growth rates 

(Dourado et al, 2021).  

Metabolic pathways differ systematically in their proteome efficiency 

Following earlier work (O’Brien et al, 2016), we first compared the predicted minimal required 

proteome with experimental data across the whole metabolic network on minimal media with 

different sources assayed in Ref. (Schmidt et al, 2016). As E. coli uses different central metabolic 
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reactions on glycolytic and gluconeogenic carbon sources and most of the proteome data in Ref. 

(Schmidt et al, 2016) were measured on glycolytic carbon sources, we focused on the proteome 

efficiency of metabolic pathways on glycolytic carbon sources here (results for gluconeogenic 

carbon sources are shown in Table S3.1). We classify proteins according to their experimental and 

predicted expression. An individual protein is labeled as:  

• “shared” if its presence is predicted under local optimalit  and is confirmed in the 

experiment (these proteins were labeled “utilized” in Ref. (O’Brien et al, 2016)); 

• “measured-only” if it is found in the experiment but predicted to be absent (these 

proteins were labeled “un-utilized” in Ref. (O’Brien et al, 2016));  

• "predicted-only” if its presence is predicted but not confirmed in the experiment. 

The predicted abundances of proteins not found experimentally (predicted-only proteins) account 

for only a very small fraction of the total predicted proteome (<1%) in all studied pathways except 

for nutrient transport and proteins without specified pathwa s in this stud  (“others”) (Fig. S3.3). 

We thus do not show the predicted-only proteins in the following figures. 

Metabolic enzymes account for a decreasing fraction of the proteome with growth rate, with 

observed proteome fractions ranging from 67% to 53% (Fig. S3.4). In agreement with earlier work 

(O’Brien et al, 2016), we found that the total abundance of shared proteins – those required for 

maximally efficient growth – increases with growth rate, but far exceeds the predicted globally 

optimal abundance especially at lower growth rates (Fig. S3.4).  

To explore the local proteome efficiency of pathways, we assigned the metabolic proteins of the 

iML1515 E. coli model to individual pathways according to their functions, further arranged into 

four coarse-grained sets:  

(1) transporters, which shuttle metabolites across the outer or inner membrane (based on the 

iML1515 model annotation).  

(2) Precursors and energy generation pathways (based on the EcoCyc database pathway ontology 

term “generation of precursor metabolites and energy” (Keseler et al, 2017)). This category is 

further divided into six “pathwa s”: gl col sis, pentose phosphate pathway, TCA cycle, glyoxylate 

bypass, energy production (comprising electron transfer chains and ATP biosynthesis), and the 

remainder of central metabolism (comprising all other genes involved in “generation of precursor 

metabolites and energy” that are not in the previously listed pathways).  

(3) Bios nthesis pathwa s (based on the EcoC c database pathwa  ontolog  term “bios nthesis” 

(Keseler et al, 2017)). This category is further divided into 5 sets of pathways: amino acid 

biosynthesis, nucleotide biosynthesis, cofactors biosynthesis, cell wall component biosynthesis 

(comprising lipid, peptidoglycan, and lipopolysaccharide synthesis pathways), and all other 

biosynthesis enzymes.  

(4) Others, all enzymes in the iML1515 model not included in (1)-(3).  

To assess the proteome efficiency of pathways, we consider four aspects, described below. Table 

3.1 shows the pathway proteome efficiency measures on glycolytic carbon sources, which are 

discussed in the following subsections.  

(a) Considering all shared pathway proteins – those that are predicted to be active and found 

experimentally – we calculated the Pearson correlation coefficient r between their combined 

mass concentrations in the locally optimal prediction and in the experimental measurements. For 
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locally optimal proteome allocation and under the assumption of constant enzyme saturation, this 

correlation should approach r=1, independent of enzyme kinetic parameter values.  

(b) The geometric mean fold-error (GMFE) of predicted vs. observed protein concentrations of the 

pathwa ’s shared proteins. The GMFE shows by which factor the observed concentrations deviate 

from predicted values on average. 

(c) The experimentally observed mass fraction of measured-only proteins of the pathway. This is 

the proteome fraction that makes no contribution to growth according to our predictions. 

(d) The s uared Pearson’s correlation coefficient between predicted and measured abundances 

across individual proteins in a given growth condition. While measures (a)- (c) assess optimality at 

the pathway level, this last measure quantifies the relationships between proteins within the 

pathway: a correlation coefficient close to 1 indicates that all proteins are equally close to – or 

equally distant from – the optimal prediction. Note that in contrast to measure (a), the comparison 

across individual proteins relies strongly on the accuracy of the individual turnover numbers. As 

the latter are only known approximately, we expect these estimates to be noisy.  

Table 3.1. Proteome efficiency of pathways. 

Pathway 

Pathway expression (for shared 
proteins) (n = 14)α 

measured-only 
fractionβ (median 

across 14 
conditions) 

individual shared proteins; 
median across 14 conditionsγ 

P  rson’s 
r 

p GMFE r2 p Nδ 

Measures (a)-(d) (a) (a) (b) (c) (d) (d) (d) 

Biosynthesis 0.91 4.8×10-06 1.70 0.26 0.45 4.2×10-31 226 

 Amino acid 0.88 3.7×10-05 1.40 0.30 0.45 1.1×10-10 72 

 Nucleotide 0.82 3.7×10-04 3.32 0.23 0.15 0.05 28 

 Envelope 0.66 0.01 1.88 0.14 0.38 2.3×10-05 40 

 Cofactor 0.91 4.9×10-06 1.24 0.11 0.59 4.1×10-15 72 

 Biosynthesis others 0.78 1.1×10-03 2.91 0.25 0.46 5.4×10-05 29 

Central metabolism 0.16 0.60 2.32 0.31 0.15 3.3×10-03 56 

 Glycolysis 0.79 6.9×10-04 2.21 0.08 0.35 0.05 11 

 Pentose phosphate 
pathway 

0.85 1.3×10-04 1.30 0.39 0.32 0.24 6 

 TCA cycle -0.65 0.01 6.40 0.10 0.38 0.03 12 

 Glyoxylate shunt - - - 1 - - 0 

 Energy generation -0.15 0.61 1.63 0.06 0.11 0.08 28 

 Central metabolism 
others 

0.67 9.4×10-03 1.56 0.55 0.98 0.10 3 

Transporters -0.75 1.9×10-03 3.39 0.997 0.13 0.64 4 

Others 0.06 0.84 1.79 0.91 0.16 0.03 30 

Total 0.85 1.4×10-04 1.79 0.52 0.35 1.7×10-30 309 

α Values reflect the local optimality of complete pathways across conditions. n = 14 indicates the number of glycolytic 

carbon sources analyzed. 
β Mass fraction of measured-only (un-predicted but observed) proteins relative to all proteins in the pathway 
γ These columns reflect the local optimality compared across individual proteins within each pathway at a given growth 

condition; values are medians across the n = 14 glycolytic growth conditions. 
δ Number of proteins in each pathway or pathway set. 
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The most expensive biosynthesis pathways are consistent with optimality 

The biosynthesis pathways utilize precursors and energy generated by central metabolism to 

produce building blocks of macromolecules. The predicted proteome fractions of these pathways 

are almost linear functions of the growth rate (Fig. 3.1), as mostly the same reactions are used for 

biosynthesis across the studied minimal conditions. Overall, we find a strong correlation and good 

quantitative agreement between predicted and observed abundances of shared enzymes (r2=0.83, 

p=4.8x10-6; GMFE=1.70; Table 3.1). 

 

Fig. 3.1. Experimentally observed and predicted proteome fractions of biosynthesis pathways across 

glycolytic carbon sources. See Fig. S3.5a for biosynthetic proteins not covered here. 

The amino acid biosynthesis pathways account for ~15% of the proteome at high growth rates. 

Predicted and observed abundances of shared proteins are strongly correlated (Fig. 3.1a and 

Table 3.1; Pearson’s r2 = 0.77, p = 3.7x10-6; GMFE = 1.40). At lower growth rates, we expect 

decreasing enzyme saturation (Dourado et al, 2021) and thus a progressively stronger 

underestimation of the required proteome by the model; accordingly, Fig. 3.1a appears to be 

consistent with optimal expression of the shared proteins of amino acid biosynthesis pathways. 

Moreover, the prediction of individual shared proteins is also significantly correlated with 

measured data (r2 = 0.45, p = 1.1x10-10). While the cellular investment into amino acid biosynthesis 

pathways is thus consistent with optimal resource allocation when considering only proteins 

predicted to be active, the cell also makes a sizeable investment into measured-only proteins of 

these pathways; measured-only proteins account for 30% of the total proteome allocated to these 

pathways. 

The proteome fraction allocated to nucleotide biosynthesis pathways is less than half of that 

dedicated to amino acid synthesis (Fig. 3.1b). While the predicted and observed abundances of 

shared proteins are strongly correlated (r2 = 0.67, p = 3.7x10-4), their magnitudes differ by more 
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than 3-fold (GMFE = 3.32; Fig. 3.1b and Table 3.1). Moreover, the expression of individual enzymes 

in this pathway cannot be well explained by the predictions (r2 = 0.15, p = 0.05; Table 3.1).  

Cell envelope biosynthesis pathways encompass lipid, peptidoglycan, and lipopolysaccharide (LPS) 

biosynthesis. While predicted and observed expression of shared enzymes in these pathways 

show a statistically significant correlation (r2=0.44, p=0.01; Table 3.1), their growth rate 

dependence differs markedly. The observed proteome allocation is almost constant across growth 

conditions; in contrast, the predicted proteome allocation increases linearly with growth rate (Fig. 

3.1c). It is noteworthy that this disagreement does not stem from an incorrect assumption of 

constant biomass composition across conditions: our model explicitly accounts for the changing 

biomass fractions of cell envelope components (Methods). Proteome allocation into measured-

only proteins of these pathways (14%) is negligible. Theoretically, the predicted optimal proteome 

allocation should provide a lower limit on the required proteome investment; that predictions 

exceeds observed proteome allocation for cell envelope biosynthesis at faster growth indicates 

that one or more enzymes were assigned turnover numbers that are much lower than the true 

values.  

The proteome allocation to cofactor biosynthesis pathways (~10% of the proteome at fast growth) 

is similarly high as that to amino acid biosynthesis. As for the amino acid biosynthesis pathways, 

Fig. 3.1d indicates that the observed proteome fraction of shared proteins may be consistent with 

optimal proteome allocation to cofactor biosynthesis, once we take the decreasing enzyme 

saturation at lower growth rates into account (Dourado et al, 2021) (r2 = 0.83, p = 4.9×10-6; GMFE 

= 1.24; r2 = 0.59, p = 4.1×10-15 for the prediction of individual enzymes; Table 3.1). In contrast to 

the amino acid biosynthesis pathways, proteome investment into measured-only proteins is low, 

accounting for only 11% of the pathway proteome. 

In sum, proteome efficiency varies substantially across biosynthesis pathways. On one hand, 

proteome investment into cofactor and amino acid biosynthesis pathways appears to be 

consistent with optimal efficiency. On the other hand, proteome allocation to nucleotide, 

envelope, and other biosynthesis pathways appears to be sub-optimal. While observed proteome 

investment only increases by roughly two-fold for amino acid, nucleotide, and cofactor 

biosynthesis and shows almost no increase in envelope and other biosynthesis pathways, 

predicted investment increases by almost a factor of 5.5 (which is the fold-change of growth rate 

across the examined conditions). As suggested above, this discrepancy may in part be explained 

by expected changes in enzyme saturation across growth rates (Dourado et al, 2021); however, it 

may also indicate substantial deviations from optimality also for the most expensive biosynthesis 

pathways.  

Central metabolism: precursor metabolite and energy generation pathways appear 

not to be regulated for optimality 

The pathwa s grouped under the term “central metabolism” produce precursor metabolites and 

energy for all other cellular processes. In sum, the enzymes of central metabolism show little 

systematic variation with growth rate, and their abundance is at most weakly correlated with the 

predicted concentrations (r2=0.03, p=0.60; GMFE=2.32).  

Glycolysis is among the central pathways whose enzyme abundances increase markedly with 

growth rate and are strongly correlated with predicted values (Fig. 3.2a; r2 = 0.62, p = 6.9x10-4); 

measured-only proteins account for only a very small fraction of the pathway (8% on average). 

However, protein levels are substantially higher than predicted (GMFE = 2.21). Moreover, the 
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predicted expression of individual proteins is only weakly correlated with measured protein 

expression in glycolysis (r2 = 0.35, p = 0.05). A potential reason for these discrepancies between 

observations and predictions is that most of the reactions in glycolysis are reversible, while the 

simple approximation for enzyme activity used here (kcat) cannot capture the demand of enzymes 

close to thermodynamic equilibrium (Bar-Even et al, 2012). Moreover, many of the enzymes in 

glycolysis are regulated allosterically (Diether et al, 2019), and may hence act at lower activities 

than expected without regulation.  

 

Fig. 3.2. Experimentally observed and predicted proteome fractions of central metabolic pathways. See 

Fig. S3.5b for central metabolic proteins not covered here. 

The pentose phosphate pathway accounts for only ~1% of the proteome. While the measured 

abundance of its shared proteins is close to and strongly correlated with the predictions, (Fig. 3.2b; 

r2 = 0.72, p = 1.3x10-4; GMFE = 1.3), measured-only proteins account for 39% of the pathway 

proteome. Moreover, the correlation of predicted abundances of individual proteins with 

measured protein abundances is not statistically significant (r2 = 0.32, p = 0.24).  

Enzyme expression in the TCA cycle is decidedly non-optimal. The expression of shared enzymes 

decreases with growth rate, while predictions indicate it should increase (Fig. 3.2c; r = -0.65, r2 = 

0.42, p = 0.011). In addition, enzyme abundance is massively higher than predicted across all 

growth rates (GMFE = 6.4). At the same time, measured-only proteins account for only a very small 

fraction of the pathway (10%), and the abundances of individual proteins are also correlated with 

measured data (r2 = 0.38, p = 0.03).  

The proteome fraction allocated to energy generation pathways (electron transport chain and ATP 

synthase) is almost growth rate-independent, while predictions increase with growth rate (Fig. 

3.2d). Similar to the TCA cycle, measured-only proteins make up only a small fraction of the 

pathway (6%). Whereas E. coli fully oxidizes carbon sources to CO2 at low growth rates under 

aerobic conditions (aerobic respiration), at high growth rates it only partially oxidizes some carbon 

sources (in particular glucose and fructose), leading to products such as lactate or acetate (aerobic 

fermentation – overflow metabolism). Along with the metabolic switch from aerobic respiration 
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to aerobic fermentation, the TCA cycle is gradually switched off (Basan et al, 2015). In our 

predictions, aerobic fermentation is more efficient than aerobic respiration for all conditions.  

We were surprised to find that the proteins of the glyoxylate shunt (aceA, aceB, and glcB) are 

highly abundant at low growth rates (~12% of the proteome at μ = 0.12 h-1; Fig. 3.2e). This high 

abundance at low growth rates is not specific to the BW25113 strain – it is mirrored in the MG1655 

strain (Fig. S3.6a) (Valgepea et al, 2013; Peebo et al, 2015). Fluxomics data shows that  across 

many conditions with low growth rates, flux into the glyoxylate shunt is roughly equal to the flux 

into the TCA cycle (Fischer & Sauer, 2003; Nanchen et al, 2006; Gerosa et al, 2015; Haverkorn van 

Rijsewijk et al, 2011; Ishii et al, 2007; Rui et al, 2010) (Fig. S3.6b). In contrast, the model predicts 

the glyoxylate shunt to be inactive except on acetate.  

In sum, proteome allocation to the pathways of central metabolism is not well explained by 

optimal proteome efficiency alone, at least not as far as can be discerned with the type of model 

employed here. This is particularly true for the metabolic switches from aerobic respiration to 

aerobic fermentation and from the glyoxylate shunt to the TCA cycle.  

Transporters and other pathways 

The carbon source is the only nutrient that differs between the minimal media used in the 

proteomics experiments. To make the transporters comparable across conditions, we thus 

excluded inner and outer membrane transporters for all carbon sources used in the studied 

conditions and analyzed only the transporters for other metabolites (Methods). In stark contrast 

to all other pathways, the vast majority of transporters – more than 90% – are measured-only, i.e., 

the experimentally observed proteins are not part of the predicted optimal proteome (Fig. 3.3). 

Thus, transporter expression cannot be predicted from minimal proteome demand. E. coli does 

not possess external nutrient sensors, and requires the uptake of small amounts of chemicals to 

detect their presence. It is hence likely that many measured-only transporters are expressed for 

sensory functions to detect environmental changes, rather than to contribute to optimal growth 

in steady state. Moreover, E. coli possesses alternative transporters with different kinetics for 

some nutrients (for example, E. coli has 7 inner membrane glucose transporters (Fuentes et al, 

2013; Monk et al, 2017)); prediction errors due to inaccurate enzyme turnover numbers are likely 

responsible for at least some fraction of the measured-only proteins, just as they are the likely 

cause of the substantial proteome fraction of predicted-only proteins.  

 

Fig. 3.3. Experimentally observed and predicted proteome fractions of transporters. Note the change in 

scale at the y-axis break. 
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The situation is very similar for those proteins that cannot be assigned to one of the pathways 

described above (other proteins). While the abundance of those proteins predicted to be active 

under optimality is very similar to the expected abundance, a much higher proteome fraction is 

allocated to measured-only proteins (Fig. S3.5c).  

Proteome efficiency increases towards the core of biosynthesis  

Combining the above results for sets of pathways, we find that proteome efficiency gradually 

increases along the flow of nutrients and carbon (Fig. 3.4). It is lowest at the interface to the 

environment: the vast majority of proteome allocation to transport is for proteins not expected 

to contribute to growth (measured-only) (Fig. 3.3). Proteome efficiency in central metabolism 

varies across pathways (Fig. 3.2): proteome allocation to glycolysis and the pentose phosphate 

pathway scales qualitatively as predicted from optimal demand; proteome allocation to energy 

production is independent of optimal demand; and the growth rate-dependent proteome 

allocation to the TCA cycle and glyoxylate shunt are opposite to optimal expectations. Of all 

metabolic sectors, the biosynthesis pathways show the best agreement between experiments and 

optimal predictions across growth rates (Fig. 3.1). Still, the predicted proteome allocation to 

biosynthesis pathways increases by 5.5-fold, identical to the fold change of growth rates (from 

0.12 h-1to 0.66 h-1), while the observed proteome allocation changes by at most ~2 fold (for amino 

acid biosynthesis and cofactor biosynthesis). Finally, most of the proteome not included in one of 

the above metabolic categories are translation-related proteins, which have previously been 

shown to be expressed at maximal efficiency (Hu et al, 2020). Unexpectedly, by mass, about half 

of the metabolic pathways (including TCA cycle, glyoxylate shunt, transporters, and “the others”) 

show a growth rate dependence opposite of that expected from optimal demand. 

 

Fig. 3.4. Growth rate-dependent proteome efficiency is lowest at the interface to the environment and 

increases along the carbon flow.  

The relationship between nutrient/carbon flow and growth rate-dependent proteome efficiency 

can be understood from the topology of the metabolic network. Transporters represent the 

metabolic interface of the cell to the environment. In the absence of external sensors, the 

expression of a transporter for a potential nutrient is a necessary condition for its detection by the 

cell; thus, non-optimal transporters serve an important cellular function unrelated to steady-state 
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growth. Central metabolism acts as a hub that connects all other pathways. When 

carbon/nutrients are transported to the cell, they are either themselves metabolites of central 

metabolism, or they need to be degraded (by catabolism) to such metabolites. For this reason, 

optimal proteome allocation to central metabolism is strongly environment-dependent. For 

example, when the main carbon source changes from pyruvate to glucose, E. coli metabolism 

immediately reverses its flux pattern from gluconeogenesis to glycolysis (Link et al, 2013). Keeping 

a certain fraction of the enz mes of central metabolism and of transporters in “standb ” for 

environmental changes will thus be beneficial in transitions between cellular physiological states. 

Moreover, their optimal expression would require detailed, environment-dependent regulation, 

which may be difficult to achieve without substantial cellular investment into sensing and 

regulation.  

In contrast, optimal resource allocation into translation and the biosynthesis (anabolic) pathways, 

which synthesize building blocks for the cell, is largely independent of nutrients across minimal 

environments, and depends almost exclusively on the growth rate. Their optimal regulation thus 

requires only a sensor for growth rate itself, and can be implemented relatively easily. This fact 

likely explains the observation of bacterial growth laws (Scott et al, 2010), which appear to be 

related to the expression of the regulatory molecule ppGpp (Potrykus et al, 2011). At the same 

time, our observations are consistent with a reserve of unused biosynthesis enzymes at low 

growth rates (Fig. 3.1), which can benefit the cell in fluctuating conditions (Mori et al, 2017; Korem 

Kohanim et al, 2018).  

Utilization of alternative pathways cannot be explained by optimal proteome 

efficiency 

With increasing growth rate, metabolic fluxes may shift between alternative pathways. For 

example, energy production from glucose switches from aerobic respiration to aerobic 

fermentation (overflow metabolism) (Basan et al, 2015). Consistent with previous studies, we 

found that the PEP-glyoxylate cycle (Fischer & Sauer, 2003; Gerosa et al, 2015) gradually switched 

to the TCA cycle with increasing growth rate (Fig. S3.6). 

Neither aerobic respiration nor the glyoxylate shunt are used in the predicted flux distributions. 

In constraint-based models, overflow metabolism emerges when an additional growth-limiting 

constraint becomes active (de Groot et al, 2020). While it is likely that overflow metabolism is 

rooted in a limit on proteome investment into catabolic enzymes (Schuster et al, 2015; Basan et 

al, 2015), this effect cannot be reproduced without empirical adjustments to the model. One way 

of enforcing aerobic fermentation is to impose a decrease in proteome usage and an increase in 

energy production with increasing growth rate (Basan et al, 2015; Zeng & Yang, 2019); an 

alternative is to allocate a constant empirical mass of proteins to energy production (Chen & 

Nielsen, 2019).  

The PEP-glyoxylate cycle, which contains the glyoxylate shunt, represents an alternative route to 

the TCA cycle (Fischer & Sauer, 2003). Compared to the TCA cycle, the PEP-glyoxylate cycle 

produces an additional NADH instead of one NADPH (Fischer & Sauer, 2003). Since NADPH is a 

common cofactor in anabolic pathways in E. coli, it was suggested that the cell should choose the 

pathway which can produce more NADPH (the TCA cycle) at high growth rates (Fischer & Sauer, 

2003). But the interconversion between NADPH and NADH is a very common process in E. coli 

(Sauer et al, 2004), and it is not clear how the small difference in pathway output (1 NADPH vs. 1 

NADH) could explain the massive resource allocation (~ 12% of the proteome) into the glyoxylate 

shunt at low growth rates. A recent study showed that overexpression of glyoxylate shunt 
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enzymes can reduce the lag time when E. coli experiences a transition from a glycolytic carbon 

source to a gluconeogenic carbon source (Basan et al, 2020). However, it is still challenging to 

develop mechanistic models that explain the growth rate-dependent expression of alternative 

pathways and lag times from first principles. 

Resource allocation in E. coli is not optimized for instantaneous growth 

An unsolved mystery is why E. coli grows at radically different rates on carbon sources with very 

similar pathway usages. For example, the observed growth rate on galactose is much lower than 

that on glucose (0.26 h-1 vs. 0.58 h-1) (Schmidt et al, 2016), although the only proteins expected to 

be differentially utilized are transporters and the galactose degradation pathway; all other active 

metabolic pathways are the same. Accordingly, proteome efficiency alone is insufficient to explain 

the growth rate difference: assuming a total protein concentration of 0.2 g/gDW, the predicted 

optimal growth rate is 0.80 h-1 on galactose and 0.87 h-1 on glucose. This observation indicates 

that E. coli’s pathwa  usage is not regulated for maximal growth on galactose. A potential reason 

may be that E. coli might rarely encounter galactose over prolonged time periods in natural 

environments, so that it is more beneficial for the cell to invest already in proteins that may 

accelerate growth in the next environment (Basan et al, 2020).  

What actually limits the total proteome that can be allocated to different cellular processes? 

Historically, protein translation has been assumed to be the rate-limiting factor for bacterial 

growth, as the output of translation matches ribosome abundance very well across growth rates 

(Koch, 1988; Maaløe & Kjeldgaard, 1966). However, as shown above, the near-optimal expression 

of the ribosome and other biosynthesis pathways only means that the pathway is expressed close 

to the locally optimal level at the given pathway output; for example, ribosomal proteins are 

optimally abundant to achieve the observed protein translation rates, but global shifts in resource 

allocation – including higher investment into ribosomes – would facilitate faster growth. 

Moreover, many pathways – in particular transporters and central metabolism – are expressed 

independent of or even contrary to optimal demand. Thus, the tight relationship between 

ribosome content and growth rate (Koch, 1988) only means that the translation machinery is 

optimized for the observed growth rate, but does not mean that the growth rate is fundamentally 

limited b  the cell’s abilit  to make ribosomes. Instead, E. coli appears to limit its growth rate 

actively on poor carbon sources by allocating resources to pathways that do not contribute to 

maximal instantaneous growth. 

Methods 

Growth rate-dependent biomass composition 

The original biomass composition in the iML1515 model is very similar to that of the iAF1260 

model, formulated for a doubling time of 40 min or μ = 1.04 h-1 (Feist et al, 2007). However, 

biomass composition varies across growth rates. The two most significant changes are those of 

the RNA/protein mass ratio and the cell volume, which determines the surface/volume ratio (S/V). 

Both ratios can be expressed as functions of the growth rate; accordingly, we estimated the 

growth rate-dependent biomass fraction of RNA, protein, and cell envelope components 

(including murein, lipopolysaccharides, and lipid) as functions of the growth rate, as described 

below.  
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We first fitted experimental data for the RNA/protein mass ratio (
mRNA

mprotein
) (Scott et al, 2010; Dai 

et al, 2016) and the surface/volume ratio (S/V) (Si et al, 2017) to linear functions of the growth 

rate, resulting in the relationships 

𝑚𝑅𝑁𝐴
𝑚𝑝𝑟𝑜𝑡𝑒𝑖𝑛

(𝜇) = 0.223𝜇 + 0.08   , (3.1) 

𝑆

𝑉
(𝜇) = −0.1895𝜇 + 7.952    . (3.2) 

Assuming that the biomass contribution of cell envelope components (𝑚𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒) is proportional 

to the surface/volume ratio gives 

𝑚𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝜇 = 𝜇1)

𝑚𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝜇 = 𝜇2)
=

𝑆
𝑉
(𝜇 = 𝜇1)

𝑆
𝑉
(𝜇 = 𝜇2)

   . (3.3) 

The growth rate-dependent biomass fraction of cell envelope components (𝑚𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒) can then 

be estimated by equation (3.3) given equation (3.2) and 𝑚𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒  at μ = 1.04 h-1. The relative 

composition of murein, lipopolysaccharides, and lipid was assumed to be constant.  

The biomass fractions of cellular components other than RNA, protein, and cell envelope 

components (mothers) were assumed to be independent of the growth rate. The sum of RNA and 

protein is given by: 

 
𝑚𝑅𝑁𝐴 +𝑚𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 1 −𝑚𝑜𝑡ℎ𝑒𝑟𝑠 −𝑚𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 (3.4) 

Combining equation (3.1) and (3.4), the content of RNA and protein can be calculated for all 

conditions (Fig. S3.1). The relative contributions of individual nucleotides to total RNA and of 

individual amino acids to total protein were assumed to be growth rate-independent.  

Implementation of MOMENT 

To perform flux balance analysis with molecular crowding, we used ccFBA (Desouki, 2016), which 

implements the MOMENT algorithm (Adadi et al, 2012) with an improved treatment of co-

functional enzymes (Heckmann et al, 2018). For enzymes for which maximal in vivo effective 

enzyme turnover numbers (kapp,max) were available from (Heckmann et al, 2020), we used these to 

replace the original in vitro kcat values. 

Instead of maximizing the growth rate at a given nutrient condition, we solved the complementary 

optimization problem that estimates the minimal required proteome (𝐶) able to support the 

observed growth rate on the given carbon source. In the constraint-based type of model employed 

here, there is a linear relationship between proteome investment and predicted growth rate, 𝐶 =

𝑎𝜇 + 𝑏  for two constants a,b. Note that due to a non-zero non-growth-related maintenance 

energy term included in the model, b>0. The constants a and b can be determined by any two 

pairs of proteome budget and growth rate. Here, we set C=0.1 g/gDW (C0.1) and C=0.2 g/gDW (C0.2) 

and calculated the predicted growth rates (denoted as μ0.1 and μ0.2, respectively).   

Given the observed growth rate (μ’), the minimal required proteome at μ’ (C’) can be written as 

𝐶′ = 𝑎𝜇′ + 𝑏. (3.5) 
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For a given protein i, its minimal demand at the observed growth rate μ’ (pi,μ’) in units of g/gDW can 

be expressed as 

𝑝𝑖,𝜇′ =
𝐶′

𝐶0.1
𝑝𝑖,𝜇0.1 (3.6) 

with 𝑝𝑖,𝜇0.1 the minimal demand for protein i at C0.1. 

With the protein content in dry mass at μ’ (𝑚𝑝𝑟𝑜𝑡𝑒𝑖𝑛,𝜇’) estimated in equation (3.4), the proteome 

fraction of protein i at μ’ (𝑚i,𝜇′) can be written as 

𝑚
i,𝜇′ =

𝑝
i,𝜇′

𝑚𝑝𝑟𝑜𝑡𝑒𝑖𝑛,𝜇’
. (3.7) 

Pathway membership 

Proteins were characterized as transporters if the corresponding genes are assigned to transport 

reactions according to the iML1515 annotation (Monk et al, 2017). 

Proteins are labeled as biosynthetic enzymes based on the EcoCyc pathway ontology annotation 

“biosynthesis” (Keseler et al, 2017). Pathways in this category are: (1) Amino acid biosynthesis 

(“Amino Acid Biosynthesis” in EcoCyc), (2) nucleotide biosynthesis (“Nucleoside and Nucleotide 

Biosynthesis”), (3) cofactors (“Cofactor, Carrier, and Vitamin Biosynthesis”), and (4) cell wall 

components (“Cell Structure Biosynthesis and Fatty Acid and Lipid Biosynthesis”), including lipid, 

peptidoglycan, and LPS. All other biosynthetic enzymes are merged into (5) other biosynthetic 

pathways.  

Treatment of enzymes involved in the nucleotide salvage pathway: In the range of studied growth 

rates, the transcription of mRNA accounts for more than half of the total RNA transcription 

(Bremer & Dennis, 2008). The half-life of mRNA is very short (~ 5.5 min) (Bernstein et al, 2002) 

compared to the doubling time, and degraded mRNA will be reused through the nucleotide 

salvage pathway. However, our model only predicts the expression of de novo biosynthesis 

pathways. To make the prediction comparable with the observed data, the nucleotide salvage 

pathway was thus excluded from “nucleotide biosynthesis pathwa ”. 

Enzymes are designated as being involved in precursors and energy generation according to the 

EcoC c pathwa  ontolog  annotation “Generation of Precursor Metabolites and Energy”. 

Pathways in this category are: (1) glycolysis, (2) Pentose Phosphate Pathways, (3) TCA cycle, (4) 

glyoxylate bypass (EcoCyc does not list a pathway for the glyoxylate shunt; the three genes 

classified as gl ox late shunt are aceA, aceB, and glcB), (5) energ  production (“Electron Transfer 

Chains and ATP biosynthesis”), and (6) other enz mes.  

The pathway ontology used for these classifications was downloaded  from EcoCyc (Keseler et al, 

2017) on 13. January 2021. 
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Supplementary information 

Supplementary Figures 

 

Fig. S3.1. Growth rate-dependent biomass composition. (a) Growth rate-dependent  RNA/protein mass 

ratio; data from (Scott et al, 2010; Dai et al, 2016). (b) Growth rate-dependent surface/volume ratio 

(wildtype strain in non-stressed growth conditions); data from (Si et al, 2017). (c) Growth rate-dependent 

biomass composition, re-formulated considering the growth rate-dependent RNA/protein ratio shown in 

panel a and the surface/volume ratio shown in panel b (see Methods). The categor  “Envelope” includes 

murein, lipopolysaccharides, and lipids. The content of protein and cell envelope decrease with increasing 

growth rate, while the RNA content increases sharply with growth rate due to the increased abundance of 

ribosomal RNA and tRNA. 

 

Fig. S3.2. Reactions with measured enzyme turnover numbers (kapp,max and kcat) cover more than 70% of 

proteome allocated to metabolism. Different colors show the proteome fractions of enzymes with in vivo 

enzyme turnover number (kapp,max) and in vitro turnover number (kkcat), respectively.  
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Fig. S3.3. The mass fraction of predicted-only proteins in total predicted proteome for the assessed 

pathways. Except transporters and proteins cannot be assigned to particular pathways (Others), the 

predicted-only proteins accounts less than 1% of the total predicted proteome in the given pathway.  

 

 

Fig. S3.4. Proteome efficiency of the whole metabolic network. With increasing growth rate, predicted and 

experimentally observed shared metabolic proteome fractions increase, while the measured-only metabolic 

proteome fraction decreases. 
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Fig. S3.5. The proteome efficiency of rest proteins. (a) Proteome investment into biosynthetic proteins that 

are not part of the four pathway sets in Fig. 3.1. This set is by definition heterogeneous. While its predicted 

and observed expression of shared enzymes are strongly correlated (r2 = 0.61, p = 1.1x10-3), the 

corresponding values differ on average by almost 3-fold (GMFE = 2.91). However, the expression of 

individual enzymes can be well explained by prediction (r2 = 0.46, p = 5.4×10-5). (b) Proteome investment 

into central metabolism that are not part of the five pathway sets in Fig. 3.2. The prediction increases with 

growth rate whereas the measured data is independent of growth rate. (c) All the other enzymes in iML1515 

model. While the abundance of those proteins predicted to be active under optimality is very similar to the 

expected abundance, a much higher proteome fraction is allocated to measured-only proteins. 

 

Fig. S3.6. Growth rate-dependent abundance and activity of glyoxylate shunt. (a) Proteome allocated to 

glyoxylate shunt decreases with increasing growth rate; data from (Schmidt et al, 2016; Valgepea et al, 2013; 

Peebo et al, 2015).  (b) Flux diverted to glyoxylate shunt from TCA cycle decreases with increasing growth 

rate; data from (Fischer & Sauer, 2003; Nanchen et al, 2006; Gerosa et al, 2015; Haverkorn van Rijsewijk et 

al, 2011; Ishii et al, 2007; Rui et al, 2010). 
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Table S3.1. Proteome efficiency of pathways on both glycolytic and gluconeogenic carbon 

sources. 

Pathway 

Pathway expression (for shared 
proteins) (n = 18)α 

measured-only 
fractionβ 

(median across 
18 conditions) 

individual shared proteins; 
median across 18 conditionsγ  

P  rson’s 
r 

p GMFE r2 p nδ 

Measures (a)-(d) (a) (a) (b) (c) (d) (d) (d) 

Biosynthesis 0.88 1.2×10-06 1.77 0.27 0.44 1.7×10-30 229 

  Amino acid 0.87 2.9×10-06 1.39 0.31 0.45 8.6×10-11 72 

  Nucleotide 0.76 2.6×10-04 3.42 0.23 0.15 0.05 28 

  Envelope 0.62 6.3×10-03 1.81 0.14 0.38 2.3×10-05 40 

  Cofactor 0.91 1.2×10-07 1.23 0.11 0.62 5.5×10-16 70 

  Biosynthesis others 0.35 0.16 3.88 0.26 0.44 8.5×10-05 29 

Central metabolism 0.07ϵ 0.79 2.39 0.31 0.15 3.2×10-03 56 

  Glycolysis 0.86 4.0×10-06 3.44 0.08 0.30 0.08 11 

  
Pentose phosphate 
pathway 

0.43 0.07 1.92 0.38 0.30 0.34 5 

  TCA cycle -0.21ϵ 0.42 5.80 0.10 0.38 0.03 12 

  Glyoxylate shunt - - - 1 - - 0 

  Energy generation -0.06 0.80 1.57 0.05 0.13 0.06 28 

  
Central metabolism 
others 

0.83 2.5×10-05 1.50 0.55 0.99 0.06 3 

Transporters -0.70 1.2×10-03 3.30 0.997 0.10 0.69 4 

Others 0.07 0.78 1.62 0.92 0.14 0.05 30 

Total 0.71 9.6×10-04 1.81 0.52 0.35 3.4×10-30 308 

α Values reflect the local optimality of complete pathways across conditions. n = 18 indicates the number carbon (both 

glycolytic and gluconeogenic) sources analyzed. 
β Mass fraction of measured-only (un-predicted but observed) proteins relative to all proteins in the pathway. 
γ These columns reflect the local optimality compared across individual proteins within each pathway at a given growth 

condition; values are medians across the n = 18 all growth conditions. 
δ Number of proteins in each pathway or pathway set. 
ϵ Data on acetate was excluded for calculating Pearson’s r because it is an outlier. 
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4 Manuscript 3. An optimal growth law for RNA composition and 

its partial implementation through ribosomal and tRNA gene 

locations in bacterial genomes 
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Abstract 

The distribution of cellular resources across bacterial proteins has been quantified through 

phenomenological growth laws. Here, we describe a complementary bacterial growth law for RNA 

composition, emerging from optimal cellular resource allocation into ribosomes and ternary 

complexes. The predicted decline of the tRNA/rRNA ratio with growth rate agrees quantitatively 

with experimental data. Its regulation appears to be implemented in part through chromosomal 

localization, as rRNA genes are typically closer to the origin of replication than tRNA genes and 

thus have increasingly higher gene dosage at faster growth. At the highest growth rates in E. coli, 

the tRNA/rRNA gene dosage ratio based on chromosomal positions is almost identical to the 

observed and theoretically optimal tRNA/rRNA expression ratio, indicating that the chromosomal 

arrangement has evolved to favor maximal transcription of both types of genes at this condition. 

  

https://doi.org/10.1371/journal.pgen.1009939
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Author summary 

Unlike the proteome composition, RNA composition is often assumed to be independent of 

growth rate in bacteria, despite experimental evidence for a growth rate dependence in many 

microbes. In this work, we derived a growth rate-dependent optimal tRNA/rRNA concentration 

ratio by minimizing the combined costs of ribosome and ternary complex at the required protein 

production rate. The predicted optimal tRNA/rRNA expression ratio, which is a monotonically 

decreasing function of growth rate, agrees with experimental data for E. coli and other fast-

growing microbes. This indicates the existing of an RNA composition growth law. Due to the 

presence of partially replicated chromosomes, gene dosage is higher for those genes whose DNA 

is replicated earlier, an effect that becomes stronger at higher growth rates. Because rRNA genes 

are located closer to origin of replication than tRNA genes in fast-growing species, the tRNA/rRNA 

gene dosage ratio scales with growth rate in the same direction as the optimal tRNA/rRNA 

expression ratio. Thus, it appears that the RNA growth law is – at least in part – implemented 

simply through the genomic positions of tRNA and rRNA genes. This finding indicates that growth 

rate-dependent optimal resource allocation can influence the genomic organization in bacteria. 

Introduction 

The systematic change of the coarse-grained composition of bacterial proteomes with growth rate 

(Schaechter et al, 1958; Bremer & Dennis, 2008) can be quantified through phenomenological 

growth laws (Scott et al, 2010; You et al, 2013). The most prominent growth law describes an 

apparently linear increase of the ribosomal protein fraction with growth rate (Schaechter et al, 

1958; Scott et al, 2010). These laws have been successfully applied to the prediction of a range of 

phenotypic observations (Scott et al, 2010; Klumpp et al, 2013; Dai et al, 2016; Erickson et al, 2017; 

Mori et al, 2017). Recently, it has been argued that they arise from an optimal balance between 

the cellular investment into catalytic proteins and their substrates (Dourado et al, 2021).  

In contrast to the proteome composition, the partitioning of bacterial RNA into messenger (mRNA), 

ribosomal (rRNA), and transfer (tRNA) RNA is often assumed to be growth rate-independent (Scott 

et al, 2010; Klumpp et al, 2013; O’Brien et al, 2013; Bosdriesz et al, 2015; Dai et al, 2016; Bremer 

& Dennis, 2008). For example, the assumption of a constant RNA composition has been used to 

estimate an empirical relationship for the macromolecular cellular composition across bacterial 

species (Kempes et al, 2012, 2016). However, experimental evidence from multiple species 

suggests that the tRNA/rRNA expression ratio decreases monotonically with growth rate 

(Kjeldgaard & Kurland, 1963; Doi & Igarashi, 1964; Panos et al, 1965; Rosset et al, 1966; Sykes & 

Young, 1968; Alberghina et al, 1975; Waldron & Lacroute, 1975; Furano, 1975; Dong et al, 1996), 

suggesting the existence of a bacterial growth law for RNA composition.  

The regulatory implementation of bacterial growth laws is generally assumed to arise from a small 

number of major transcriptional regulators such as ppGpp (Potrykus et al, 2011; Zhu & Dai, 2019) 

and cAMP (You et al, 2013; Towbin et al, 2017). However, growth rate-dependent transcriptional 

regulation could also be implemented through chromosomal gene positioning. In many 

prokaryotes, the cellular doubling time can be even shorter than the time required for genome 

replication. To coordinate DNA replication and cell division, fast-growing prokaryotes re-initiate 

DNA replication before the previous round of replication is complete. In this case, genes closer to 

oriC have more DNA copies than genes further away in the genome, a phenomenon described as 

replication-associated gene dosage effects (below, we use “gene dosage” to refer to the growth 

rate-dependent average DNA copy number per cell of a given gene). Prokaryotic genes are non-
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randomly located on multiple levels (Rocha, 2008; Pang & Lercher, 2017; Gao et al, 2017), with 

highly expressed genes biased towards the origin of replication (oriC) (Couturier & Rocha, 2006). 

The latter observation is thought to facilitate high expression levels at fast growth due to 

replication-associated gene dosage effects (Yoshikawa et al, 1964; Cooper & Helmstetter, 1968; 

Bremer & Churchward, 1977). Indeed, chromosome rearrangements that shift highly expressed 

genes from the origin to the terminus of replication reduce fitness (Kothapalli et al, 2005; Campo 

et al, 2004; Hill & Gray, 1988; Louarn et al, 1985; Soler-Bistué et al, 2017). 

rRNA forms the central part of the catalyst of peptide elongation, while tRNA forms the core of 

the substrate; together, they account for the bulk of cellular RNA (Bremer & Dennis, 2008). Their 

cytosolic concentrations at different growth rates in E. coli are well described by an optimality 

assumption (Dourado et al, 2021; Dourado & Lercher, 2020; Hu et al, 2020). Moreover, 

chromosomal gene positions in E. coli are known to affect the expression of both tRNA and rRNA 

genes (Condon et al, 1992; Ardell & Kirsebom, 2005); both types of genes are located closer to 

oriC in fast- compared to slow-growing bacteria,  with rRNA genes positioned closer to oriC than 

tRNA genes in most examined fast-growing bacteria (Couturier & Rocha, 2006). 

Based on these previous observations, we hypothesize (i) that the relative expression of tRNA and 

rRNA can be described by a bacterial growth law that arises from optimal resource allocation and 

(ii) that this growth law is at least partially implemented through the relative chromosomal 

positioning of tRNA and rRNA genes. 

Results and discussion 

An RNA growth law resulting from maximal efficiency of translation 

Cellular dry mass density appears to be approximately constant across conditions (Kubitschek et 

al, 1984; Oldewurtel et al, 2021). Dry mass may thus be considered a limiting resource (Dourado 

et al, 2021; Hu et al, 2020) if the dry mass density is occupied by one particular molecule, less will 

be available for all other molecules. In terms of dry mass allocation, translation is the most 

expensive process in fast-growing bacteria (Bremer & Dennis, 2008; Russell & Cook, 1995). Thus, 

at a given protein synthesis rate, it is likely that natural selection will act to minimize the summed 

dry mass density of all translational components. As evidenced by comparison of diverse data to 

a detailed biochemical model of translation, the allocation of cellular resources across 

components of the E. coli translation system minimizes their total dry mass concentration at a 

given protein production rate (Hu et al, 2020). This result indicates that natural selection indeed 

favored the parsimonious allocation of cellular resources to the translation machinery in E. coli.  

To generalize this optimization hypothesis to other species, we here analyze a coarse-grained 

translation model that only considers peptide elongation, where the active ribosome acts as an 

enzyme that converts ternary complexes (TC), consisting of elongation factor Tu (EF-Tu), GTP, and 

charged tRNA, into an elongating peptide chain following Michaelis-Menten kinetics (Fig. 4.1A) 

(Klumpp et al, 2013; Wong et al, 2018). In exponential, balanced growth at rate μ with cellular 

protein concentration [𝑃], the total rate of protein production is 𝑣 = 𝜇 ⋅ [𝑃]. We derived the 

optimal concentration ratio between TC (with molecular mass 𝑚TC ) and ribosome (R, with 

molecular mass 𝑚R) at this production rate by minimizing their combined mass concentration, 

𝑀total = 𝑚TC[𝑇𝐶] +𝑚R[𝑅] (Methods): 
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 [𝑇𝐶]

[𝑅]
=

𝑎 · 𝑘cat

√𝑎 · µ · [𝑃] · 𝑘on
diff + 𝑘cat

      ; 
(4.1) 

here, 𝑎 =
𝑚R

𝑚TC
= 33.1 is the ratio of molecular weights of ribosome and TC; 𝑘cat is the turnover 

number of the ribosome; and 𝑘on
diff  is the diffusion-limited binding constant of TC to ribosome 

(Klumpp et al, 2013), which can be treated as a constant if the cell density is approximately 

constant across species.  

 

Fig. 4.1. The RNA growth law and its implementation through gene positions. (A) Coarse-grained protein 

translation model, following Michaelis-Menten kinetics with the active ribosome as catalyst and TC as 

substrate. The optimal TC/ribosome expression ratio is derived by minimizing the combined mass 

concentration of ribosome and TC at the given protein synthesis rate v. (B) Different experimental estimates 

of TC/ribosome expression ratios in E. coli (points, colors indicate the data source) are consistent with the 

optimal ratio according to equation (4.1) (red line) (Pearson’s r2 = 0.50; NRMSE = 0.18). The dashed blue line 

indicates the genomic tRNA/rRNA ratio, the solid blue line indicates the tRNA/rRNA gene dosage ratio 

estimated from equation (4.21). (C) A schematic diagram showing the dosage ratio of two genes as a 

function of growth rate. If rRNA genes are located on average closer to oriC than tRNA genes – which is the 

case in E. coli – then the dosage of rRNA genes will increase faster with increasing growth rate than that of 

the tRNA genes; consequently, the tRNA/rRNA gene dosage ratio becomes a decreasing function of growth 

rate (solid blue curve in panel B).  

For a given genome, a and kcat are constants (Klumpp et al, 2013; Dai et al, 2016). Moreover, the 

cellular protein concentration [P] (in terms of amino acid residues) appears to be similar across 
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most species (Milo, 2013) and shows only minor variations across growth rates in those bacteria 

where it has been tested (Erickson et al, 2017; Dauner & Sauer, 2001; Hanegraaf & Muller, 2001). 

Thus, equation (4.1) predicts that in any given species, the TC/ribosome expression ratio is a 

monotonically decreasing function of the growth rate μ. Since most cellular EF-Tu and tRNA are 

present in the form of TCs (Klumpp et al, 2013), hereafter, the TC concentration is assumed to be 

approximately equal to the concentrations of EF-Tu and tRNA.  

To calculate the optimal TC/ribosome expression ratio in E. coli, we use the measured protein 

concentration [P] (Schmidt et al, 2016), set the turnover number kcat to the maximal observed 

translation rate (Bremer & Dennis, 2008), and set 𝑘on
diff  to the diffusion limit of the TC (Klumpp et 

al, 2013) (Methods; see also Ref. (Hu et al, 2020)). Fig. 4.1B compares the optimal predictions (red 

line) to experimental datasets for E. coli that estimated the TC/ribosome expression ratio based 

on ratios of tRNA/rRNA (Dong et al, 1996; Skjold et al, 1973; Forchhammer & Lindahl, 1971), EF-

Tu/rRNA (Furano, 1975), and EF-Tu/ribosomal proteins (Schmidt et al, 2016) (Table S4.1). The 

Pearson correlation between observed and fitted data is r2 = 0.50, P = 5.9×10-7 (root-mean-square 

error normalized by observed mean, NRMSE = 0.18); these measures have to be interpreted 

against the variability between the diverse datasets. Consistent with the predictions, all 

experimental estimates of the TC/ribosome expression ratio are approximately two-fold higher at 

low compared to high growth rates. As the TC and ribosome constitute the two major components 

of cellular RNA (Bremer & Dennis, 2008), we conclude that the optimal TC/ribosome expression 

ratio according to equation (4.1) represents a bacterial growth law for RNA composition: 

 𝑀tRNA
𝑀rRNA

= 𝑟 ⋅
𝑘cat

√𝑎 · µ · [𝑃] · 𝑘on
diff + 𝑘cat

      , 
(4.2) 

where 𝑀tRNA and 𝑀rRNA are the cellular mass of tRNA and rRNA, respectively, and r=0.58 is the 

ratio of the tRNA mass fraction of a TC and the rRNA mass fraction of the bacterial ribosome 

(Methods).  

The proteome degradation rate in E. coli is typically 0.02-0.04 h-1 (Pine, 1970, 1973; Calabrese et 

al, 2021), which is much smaller than the maximal growth rate. Accordingly, including protein 

degradation into the model only affects the predictions at very low growth rates in E. coli (Fig. 

S4.1). In contrast, protein degradation may have a large impact on the RNA growth law for species 

with degradation rates comparable to their maximal growth rates. Further, while our model 

assumes that all tRNA and ribosome are active, there is evidence for a substantial fraction of de-

activated ribosomes and TCs at low growth rates in E. coli  (Hu et al, 2020). This approximation 

may contribute to the discrepancy between our predictions and data at low growth rates. 

In previous work by Klumpp et. al., the optimal TC/ribosome expression ratio was predicted by 

considering protein mass instead of dry mass as the limiting resource (Klumpp et al, 2013); these 

authors identified the proteome fractions allocated to ribosomes and TCs that maximize growth 

rate in a very similar model of protein translation to that used here. This optimal proteome 

allocation results in a substantial lower predicted TC/ribosome expression ratio compared to the 

experimentally observed data (Fig. S4.2). Our hypothesis of parsimonious dry mass allocation, 

which considers RNA and protein masses equally, explains the observed TC/ribosome expression 

ratio much better than optimal proteome allocation alone. 
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The RNA growth law is partially implemented through genomic positions in E. coli 

Above, we have shown the existence of an RNA growth law in E. coli, reflecting a decrease of the 

optimal tRNA/ribosome expression ratio with increasing growth rate. Given that the genomic 

position of rRNA genes is typically closer to oriC than that of tRNA genes in bacteria (Couturier & 

Rocha, 2006), we hypothesize that this growth rate-dependence may – at least in part – be 

implemented through replication-associated gene dosage effects. 

To test our hypothesis, we used the model developed by Bremer and Churchward (Bremer & 

Churchward, 1977) to quantify the dosage ratio of two genes at growth rate μ, 

 𝑋𝑖

𝑋𝑗
= 𝑒𝐶⋅𝜇⋅(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖)    ; (4.3) 

here, for gene i, 𝑋𝑖   is the dosage and positioni is the position; C is the time required to complete 

one round of chromosome replication (see Methods for details, and see Text S4.1 for the effect 

of a growth rate-dependent C period on the dosage ratio for tRNA and rRNA genes). Clearly, the 

dosage ratio of two genes with different chromosomal positions is a monotonous function of μ. 

As shown schematically in Fig. 4.1C, if a rRNA gene is located closer to oriC than a tRNA gene, the 

tRNA/rRNA gene dosage ratio (reflecting chromosomal copy numbers) will be a decreasing 

function of growth rate, just as the optimal tRNA/rRNA expression ratio (reflecting RNA 

production; Fig. 4.1B).  

Consistent with a (partial) implementation of the RNA growth law through genomic positioning, 

the rRNA genes are, on average, located closer to oriC than tRNA genes in E. coli, with genomic 

position 0.20 ± 0.17 (mean ± standard deviation) for rRNA genes and 0.45 ± 0.27 for tRNA genes 

(see Fig. S4.3 for the distributions). The difference in genomic positions between tRNA and rRNA 

genes results in a growth rate-dependent tRNA/rRNA gene dosage ratio (solid blue curve in Fig. 

4.1B) that agrees qualitatively with the optimality predictions from equation (4.2) (to calculate the 

dosage ratio across multiple genes, we used equation (4.21), a generalized version of equation 

(4.3), see Methods). For comparison, Fig. 4.1B also shows the constant tRNA/rRNA genomic ratio, 

i.e., the ratio of gene copy numbers per complete chromosome (dashed blue line).  

As all necessary parameters are available for E. coli, we can make quantitative predictions for the 

tRNA/rRNA expression ratio without adjustable parameters. It is notable that according to Fig. 

4.1B, the tRNA/rRNA gene dosage ratio at high growth rates (1 h−1 ≤ 𝜇 ≤ 2 h−1) is very close to 

the optimal tRNA/rRNA expression ratio, which corresponds to about 9 tRNAs per ribosome (Fig. 

4.1B). This result is consistent with the notion that at the highest growth rates, both tRNA and 

rRNA genes are transcribed at the maximal possible rate, such that their relative expression is 

dominated by gene dosage effects in these conditions. The expression of both tRNA and rRNA 

operons is regulated by the P1 promoter, which is repressed by ppGpp; at near-maximal growth 

rates, ppGpp concentrations are low, and the P1 promoter works near its maximal capacity 

(Gourse et al, 1996). In contrast, at low growth rates, P1 is repressed by ppGpp, and thus gene 

dosage can only partially explain the tRNA/rRNA expression ratio in these conditions. 

The RNA growth law in fast-growing microbes beyond E. coli 

The approximate Michaelis-Menten form of the rate law for peptide elongation, on which the RNA 

composition growth law is based, arises from the structure of the detailed elongation process 

(Wong et al, 2018). As this process is shared by all living cells (Wong et al, 2018), we expect that 

the RNA composition growth law, equation (4.2), also holds for other fast-growing microbes (with 

a=40.3 and r=0.59 in eukaryotes, Methods). To test this hypothesis, we collected all available 
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tRNA/rRNA expression ratios in microbes (Fig. 4.2A and Table S4.2). Note that if protein 

concentration [P] and the cellular dry mass density are indeed approximately constant across 

species (Milo, 2013), then equations (4.1) and (4.2) contain a single species-specific parameter, 

𝑘cat.  

 

Fig. 4.2. The RNA growth law across species. (A) Experimentally observed tRNA/ribosome expression ratios 

in different microbes decrease with growth rate, consistent with the predicted optimal tRNA/ribosome 

expression ratio. For each species except S. elongatus, which is a slow-growing species and shows no 

systematic growth rate dependence, we fitted equation (4.1) to the data by varying the single adjustable 

parameter kcat (solid lines; the numbers in parentheses after the species names quantify the agreement 

between the fitted lines and the data). Note that the y-axis on the right-hand side is based on the tRNA/rRNA 

mass ratio for bacteria. For eukaryotic microbes, the tRNA/rRNA mass ratio should be scaled by a factor of 

0.84 according to equation (4.15). (B) Comparison of fitted kcat and effective ribosome turnover number keff.  

For six out of the seven datasets in Figs. 4.1B and 4.2A, the tRNA/ribosome expression ratio 

decreases with increasing growth rate. The only exception, the cyanobacterium Synechococcus 

elongatus, has a much smaller maximal growth rate (μmax = 0.23 h-1) than the other species, and 

its tRNA/rRNA expression ratio does not show a clear growth rate-dependence (Fig. 4.2A, 

Spearman’s ρ = -0.01, P = 0.98) (Mann & Carr, 1973). It is conceivable that slow-growing species 

do not fully optimize their translation machinery composition, as a near-optimal constant 

TC/ribosome expression ratio may incur a lower fitness cost than the expression of a regulatory 

system for growth rate-dependent optimal expression.  

To verify the implementation of the RNA growth law in the remaining, fast-growing species, we 

used our model to estimate 𝑘cat by fitting the measured tRNA/rRNA expression ratio to equation 

(4.1) (solid lines in Fig. 4.2A). Independently, we also estimated the effective ribosome turnover 

number (keff) through the relationship μ · [P] = keff · [R], using measured values for μ, [P], and [R] 

(Table S4.3; fitting was performed for all species excluding S. elongatus, in which the tRNA/rRNA 

expression ratio is independent of the growth rate and thus a fitting procedure would be 

meaningless). Fig. 4.2B shows a close correspondence between the 𝑘cat  values estimated via 

equation (4.1) and the effective turnover numbers (Pearson’s r2 = 0.62, P = 0.063). Given that the 
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tRNA/rRNA expression ratios used for fitting equation (4.1) were measured with different 

experimental methodologies by different groups, we do not expect a perfect correlation; that our 

model still explains 62% of the variation appears to strongly support our analyses. We thus 

conclude that equation (4.2) describes a universal RNA growth law for fast-growing bacterial 

species.  

Implementation of the RNA growth law through tRNA and rRNA genomic positions 

across bacteria  

Next, we asked if other bacteria also show a differential distribution of tRNA and rRNA genes along 

the chromosome that is consistent with a partial implementation of the RNA growth law through 

replication-associated gene dosage effects. As a strong selection pressure toward optimal 

tRNA/ribosome expression ratios is expected mainly in fast-growing species (Fig. 4.2A), we 

surveyed gene positions in bacteria for which maximal growth rates are available (Vieira-Silva & 

Rocha, 2010). In E. coli, the summed time of DNA replication (C period, ~ 40 min) and cell division 

(D period, ~20 min) (Cooper & Helmstetter, 1968) is approximately 1 h. Given that these times will 

be roughly similar in many other species, we assume that species with substantially larger 

doubling times are unlikely to perform multiple simultaneous rounds of replication, while cells 

with shorter doubling times will likely perform multiple replication rounds simultaneously and 

hence experience stronger replication-associated gene dosage effects. Accordingly, we classified 

bacteria with doubling times ≤ 1 h (i.e., 𝜇max ≥ 0.69 h
−1) as fast-growing species, and bacteria 

with doubling times > 1 h as slow-growing species.  

As shown in Fig. 4.3A and 4.3B (orange points), we found that in fast-growing species, rRNA and 

tRNA genes are generally located in the vicinity of oriC, at relative positions < 0.5 (0.5 is located 

0.25 genome lengths to either side of oriC, halfway between oriC and the terminus of replication; 

for each genome represented in Fig. 4.3, the positions are the arithmetic means across the 

corresponding genes). This observation is consistent with previous analyses (Couturier & Rocha, 

2006; Vieira-Silva & Rocha, 2010). Moreover, we found that both rRNA and tRNA genes tend to 

be located ever closer to oriC with increasing μmax (correlation with μmax for positionrRNA: 

Spearman’s 𝜌 = −0.59, 𝑃 = 9.2 × 10−6,  P-value calculated based on phylogenetically 

independent contrasts (Felsenstein, 1985) to control for phylogenetic non-independence 

between datapoints: 𝑃ic = 0.04; for positiontRNA: 𝜌 = −0.40, 𝑃 = 4.6 × 10−3 , 𝑃ic = 2.1 × 10
−4). 

In slow-growing species, rRNA genes still tend to be close to oriC (Fig. 4.3A, blue points; one 

sample Wilcoxon signed rank test, 𝑃 = 2.8 × 10−10), while tRNA genes are distributed around the 

midpoint between oriC and the terminus (Fig. 4.3B, blue points; one sample Wilcoxon signed rank 

test, P = 0.11).  

As expected from our hypothesis of a partial implementation of the RNA growth law through 

replication-associated gene dosage effects, we found that rRNA genes are closer to oriC than tRNA 

genes in most slow-growing and in all but one fast-growing bacteria (Fig. 4.3C; note that the one 

exception has a small genome of only 1.8 Mb). Accordingly, the tRNA/rRNA expression ratio that 

would be obtained if regulation was exclusively through gene dosage would be a decreasing 

function of growth rate, in qualitative agreement with the optimality predictions from equation 

(4.2). This finding, together with our detailed analysis of individual species (Figs. 4.1B and 4.2), 

supports our hypothesis that natural selection has fine-tuned the positions of tRNA and rRNA 

genes to match the RNA growth law for optimally efficient translation in fast-growing species.  
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Fig. 4.3. The genomic positions of rRNA and tRNA genes implement the RNA growth law in fast-growing 
species. (A) Arithmetic means of the rRNA positions for individual genomes as a function of μmax. The 
horizontal grey line (position 0.5) marks the midpoint between origin and terminus of replication. (B) Same 
for tRNA. (C) Relative positions between tRNA and rRNA genes (positiontRNA - positionrRNA). (D) tRNA/rRNA 
gene dosage ratios. (E) Genomic tRNA/rRNA ratios (per chromosome). Blue points indicate slow growing 
species (with blue linear regression line), orange points indicate fast-growing species (with orange linear 
regression line). 

The maximal growth rate μmax is not the only factor that affects the strength of replication-
associated gene dosage effects. At the same DNA replication rate, smaller genomes need less time 
to replicate than larger genomes. Thus, at the same growth rate, bacteria with smaller genomes 
are expected to have fewer replication forks in the cell, and hence experience weaker gene dosage 
effects. Text S4.2 explores the influence of genome size on the positioning of tRNA and rRNA 
genes; here, we only provide a brief summary. Consistent with the above notions, in fast-growing 
species, we found that the position of rRNA genes is negatively correlated with genome size, i.e., 
there appears to be less selection pressure toward positioning rRNA genes close to oriC in smaller 
genomes. At the same time, the relative genomic position of tRNA and rRNA genes is positively 
correlated with genome size in fast-growing species, again indicating lower selection pressures 
toward specific genomic positions is smaller genomes. However, in a combined statistical model, 
μmax remains the main predictor of tRNA and of rRNA positions in fast-growing species, with only 
marginal contributions from genome size. It is conceivable that the effective population size –
which influences the efficiency of natural selection – also influences the genomic positions of tRNA 
and rRNA genes. However, we found no evidence for such an influence (Fig. S4.4). 

For the multi-species dataset, we have so far only considered the genomic positions. We now turn 
our attention to the resulting tRNA/rRNA gene dosage ratio at the reported maximal growth rate. 
According to equation (4.1), faster growing species need a lower TC/ribosome expression ratio at 
maximal growth. We indeed find statistically highly significant negative correlations between the 
predicted tRNA/ribosome gene dosage ratio (equation (4.21)) and μmax (Fig. 4.3D; slowly growing 
species: 𝜌 = −0.44, 𝑃 = 2.8 × 10−7, 𝑃ic = 6.0 × 10−4 ; fast-growing species: 𝜌 = −0.49, 𝑃 =
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4.3 × 10−4, 𝑃ic = 0.037 ) (see Text S4.3 for the treatment of tRNA genes; these calculations 

assume a constant DNA replication rate krep = 1000 s-1 across species, see Text S4.1 for species-

specific replication rate krep).  

While slowly growing species show a wide range of tRNA/ribosome gene dosage ratios, the ratio 

in fast-growing species shows a much tighter distribution (F-test for equality of variances: 𝑃 <

10−15). In slow-growing species, the effects of replication-associated gene dosage effects are 

weak: the tRNA/ribosome gene dosage ratios are almost identical to the corresponding 

chromosomal copy number ratios (Fig. 4.3E). In fast-growing species, the chromosomal 

tRNA/rRNA gene copy number ratios show a distribution that is similarly tight as that for the 

corresponding gene dosage ratios (F-test for equality of variances: 𝑃 < 10−15 ). As expected, 

species harbor increasingly more tRNAs and ribosomal genes with increasing μmax; consistent with 

the RNA growth law, this effect also leads to a negative correlation between the number of tRNA 

genes and the tRNA/ribosome (gene dosage and genomic) ratios (Fig. S4.5): at higher maximal 

growth rates, bacteria have more tRNA genes, but the number of ribosomal genes increases even 

faster. In contrast to the rRNA and tRNA gene positions (Fig. 4.3A and 4.3B) and the gene dosage 

ratios (Fig. 4.3D), the tRNA/rRNA chromosomal copy number ratios show no strong systematic 

dependence on μmax in fast-growing species (Fig. 4.3E, 𝜌 = −0.24, 𝑃 = 0.10, 𝑃ic = 0.36 ). 

Interestingly, we also find no statistically significant dependence of the relative position 

(positiontRNA - positionrRNA) on μmax in fast-growing species (Fig. 4.3C, 𝜌 = 0.15, 𝑃 = 0.31, 𝑃ic =

0.15).  

All these findings indicate that in fast-growing species, not only the absolute numbers of rRNA and 

tRNA genes, but also the relative numbers of tRNA and rRNA genes (tRNA/rRNA gene dosage ratio 

and tRNA/rRNA genomic ratio) are tightly constrained, consistent with the optimization of the 

translation machinery composition according to the RNA growth law and its implementation 

through replication-associated gene dosage effects. 

Impact of the RNA growth law on cell growth and genome organization 

Above, we describe and explain a systematic dependence of RNA composition on growth rate in 

fast-growing bacteria. Why then does the assumption of a growth rate-independent RNA 

composition work well in theoretical models for the growth of E. coli under various perturbations 

(Scott et al, 2010; O’Brien et al, 2013; Bosdriesz et al, 2015; Dai et al, 2016)? We derived the RNA 

growth law from an assumption of parsimonious dry mass utilization by the protein translation 

machinery, in our simple model represented by TCs and ribosomes. As detailed in Text S4.4, we 

find that at intermediate to high growth rates in E. coli, the optimal combined mass concentration 

of ribosomes and TCs is very similar to the combined mass concentration under the assumption 

of a constant tRNA/rRNA expression ratio, with a 4.4% difference at μ = 0.2 h-1 and much smaller 

differences at higher growth rates (Fig. S4.11). Thus, except at the lowest growth rates, the 

optimal RNA composition will only have a small impact on predictions of cellular growth rates. 

However, even growth rate differences on the order of 1% or less are highly relevant in 

evolutionary terms for natural bacterial populations, explaining why we find systematic evidence 

for the optimal expression of ribosomes and TCs (Figs. 4.1B and 4.2A) and the differential genomic 

positions of rRNA and tRNA genes (Fig. 4.3A-4.3C) across bacterial species.  

Model limitations 

The derivation of the RNA growth law, equation (4.2), is based on a coarse-grained protein 

translation model, where the ribosome acts as a catalyst that consumes TCs according to 
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irreversible Michaelis-Menten kinetics. This coarse-grained model ignores many details of the 

molecular processes contributing to protein  translation, such as the rate parameters for individual 

sub-processes (Milón & Rodnina, 2012; Rudorf et al, 2014) and the occurrence of traffic jams of 

ribosomes co-translating the same mRNA (Tuller et al, 2010). Following earlier work (Klumpp et 

al, 2013), we absorb the effects of these detailed processes on the translation rate into the 

effective ribosomal turnover number, kcat, which we treat as a species-specific constant. The 

agreement between the predictions derived from the coarse-grained model and experimental 

data (in particular Figs. 4.1B and 4.2B) indicate that these simplifications represent an appropriate 

approximation.  

One important parameter not explicitly considered here is temperature. At cold stress, the DNA 

replication rate becomes much slower in E. coli (Atlung & Hansen, 1999). Experimental data shows 

that at low temperatures, the gene dosage ratio is almost constant across growth rates in E. coli 

(Fig. S4.6). In our analyses, we only considered species-specific optimal growth temperatures, 

appropriate for the experimental data underlying Figs. 4.1 and 4.2, and for the maximal growth 

rates considered in Fig. 4.3. It appears not unlikely that the fine-tuned coordination between tRNA 

and ribosome expression breaks down at temperatures far away from optimal growth conditions. 

Moreover, we here consider only the average genomic positions of tRNA and rRNA genes. While 

the optimal scaling of the tRNA/rRNA expression ratio (equation (4.2)) with growth rate is 

independent of codon frequencies, it is still conceivable that selection pressure toward specific 

genomic positions is stronger for tRNA genes whose products decode more abundant codons. 

However, we found no such systematic dependence across genomes (Text S4.3).   

Conclusions 

In sum, the tRNA/ribosome expression ratio appears to be tightly constrained across fast-growing 

bacteria. At fast growth, its regulation is likely dominated by replication-associated gene dosage 

effects, implemented through the relative chromosomal positioning of tRNA and ribosomal RNA 

genes. The objective of this regulation is to not only increase the expression of TCs and ribosomes 

with growth rate, but to also adjust their relative concentrations according to the RNA 

composition growth law quantified by equations (4.1) and (4.2). 

Methods 

Derivation of the optimal TC/ribosome expression ratio 

In recent work, we have shown that the growth rate-dependent composition of the translation 

machinery in E. coli is accurately described by predictions based on detailed reaction kinetics and 

the numerical minimization of the total mass of all participating molecules (Hu et al, 2020). This 

minimization was motivated by the observation that the cellular dry mass density is approximately 

constant across growth conditions (Kubitschek et al, 1984). Accordingly, if part of the dry mass 

density is occupied by one particular molecule type, less will be available for all other molecule 

types. This reasoning assumes that cellular dry mass is a growth-limiting resource; considering 

other growth-limiting resources, such as the minimization of the energy consumed or the enzyme 

mass required for the production of the different molecules led to almost identical results (Hu et 

al, 2020). 

Here, we consider a much simpler representation of the elongation step of protein translation, 

which can be modeled as an enzymatic reaction following Michaelis-Menten kinetics (Klumpp et 
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al, 2013). In this case, the minimization of the combined mass concentration of ribosome and TC 

can be performed analytically, as demonstrated by Dourado et al. (Dourado et al, 2021); following 

this work, we here briefly summarized the derivation of the optimal TC/ribosome expression ratio.  

In the coarse-grained protein translation model (Klumpp et al, 2013), the protein synthesis rate 𝑣 

can be expressed as 

 
𝑣 = 𝑘cat[𝑅]

[𝑇𝐶]

𝐾𝑚 + [𝑇𝐶]
 .  

(4.4) 

Here, kcat is the effective turnover number of the ribosome, and Km is the ribosome’s Michaelis 

constant for TC. The combined cytosol mass density of ribosome and TC is given by 

 𝑐 = [𝑅] ∙ 𝑚R + [𝑇𝐶] ∙ 𝑚TC ,  (4.5) 

where 𝑚R is the molecular weight of the ribosome, and 𝑚TC is the molecular weight of the TC. 

We can express the ribosome concentration [𝑅] as a function of 𝑣 by rearranging equation (4.4),  

 
[𝑅] =

𝑣

𝑘cat
(
𝐾m
[𝑇𝐶]

+ 1) . 
(4.6) 

Substituting equation (4.6) into equation (4.5), we have 

 
𝑐 =

𝑣

𝑘cat
(
𝐾m
[𝑇𝐶]

+ 1) ∙ mR + [𝑇𝐶] ∙ 𝑚𝑇𝐶 . 
(4.7) 

At a given protein production rate 𝑣, 𝑐 is now only a function of the TC concentration. The minimal 

𝑐 can then be obtained by setting the derivative of equation (4.7) with respect to [TC] to zero, 

 𝑑𝑐

𝑑[𝑇𝐶]
= 𝑚𝑇𝐶 −

𝑚𝑅𝐾m𝑣

𝑘cat

1

[𝑇𝐶]2
= 0 .  

(4.8) 

With the ribosome/TC mass ratio 𝑎 = 𝑚𝑅/𝑚𝑇𝐶, the optimal [𝑇𝐶] can be expressed as 

 

[𝑇𝐶] = √
𝑚𝑅𝐾m𝑣

𝑚𝑇𝐶𝑘cat
= √

𝑎𝐾m𝑣

𝑘cat
 .  

(4.9) 

Substituting equation (4.9) into equation (4.6), the optimal ribosome concentration [𝑅] can be 

expressed as 

 
[𝑅] =  

𝑣

𝑘𝑐𝑎𝑡
+√

𝐾m𝑣

𝑎𝑘cat
 .   

(4.10) 

Thus, the TC/ribosome concentration ratio can be written as 

 [𝑇𝐶]

[𝑅]
=

𝑎 · √𝑘cat · 𝐾m

√𝑎 · 𝑣 + √𝑘cat · 𝐾m
   . 

(4.11) 

 

 



Manuscript 3 

74 
 

At steady state, the protein production rate v is equal to rate of protein dilution by volume growth, 

 𝑣 = µ · [𝑃], (4.12) 

with growth rate μ and total cellular protein concentration [P] (in units of amino acids per volume). 

As the binding between the ribosome and the TC is limited by the diffusion of the TC, 𝐾m can be 

approximated through 𝐾m ≈ 𝑘cat/𝑘on
diff , with 𝑘on

diff   the diffusion-limited binding constant of the 

TC to the ribosome (Klumpp et al, 2013). Thus, equation (4.11) can be rewritten as (equation (4.1) 

of the main text) 

 [𝑇𝐶]

[𝑅]
=

𝑎 · 𝑘cat

√𝑎 · µ · [𝑃] · 𝑘on
diff + 𝑘cat

   . 
(4.13) 

In E. coli, the molecular weight of the ribosome is 2307.0 kDa and the molecular weight of a TC is 

69.6 kDa (Hu et al, 2020), thus 𝑎 = 33.1. For a single TC, Km-singleTC = 3 μM (Klumpp et al, 2013); the 

effective number of TC (Klumpp et al, 2013) is 34 (the predicted expressed tRNA in Ref. (Hu et al, 

2020)), and thus Km = 34 · Km-singleTC = 102 μM.  kcat = 22 s-1 is the observed maximal translation rate 

of a ribosome (Klumpp et al, 2013), and 𝑘on
diff  ≈ 𝑘cat/𝐾m =0.216 μM

-1s-1. 

The protein concentration [P] is calculated from E. coli proteome expression data (Schmidt et al, 

2016) and cell volume (Volkmer & Heinemann, 2011) for growth on glucose, 

 
[𝑃] =

∑ 𝑁𝑖𝐿𝑖𝑖

𝑉cell𝑁A
   , 

(4.14) 

where Ni is the copy number per cell and Li the length of protein i (Schmidt et al, 2016), Vcell is the 

cell volume (Volkmer & Heinemann, 2011), and NA is the Avogadro constant. In a more recent 

publication (Radzikowski et al, 2016), the authors of Ref. (Volkmer & Heinemann, 2011) re-

measured the volume of cells by super-resolution microscopy and found that cell volume was 

overestimated in Ref. (Volkmer & Heinemann, 2011) by a factor of 0.67-1 for growth on glucose. 

We thus modified cell volume by a factor of 0.67 relative to the values in Ref. (Volkmer & 

Heinemann, 2011), resulting in [𝑃] = 1.16 × 106 μM. 

By multiplying the left-hand side of equation (4.13) with the molecular weight ratio of tRNA to 

rRNA, we obtain the tRNA and rRNA mass ratio (equation (4.2) of the main text),  

 𝑀tRNA
𝑀rRNA

=
[𝑇𝐶] · 𝑚tRNA
[𝑅] · 𝑚𝑟𝑅𝑁𝐴

= 𝑟 ⋅
𝑘cat

√𝑎 · µ · [𝑃] · 𝑘on
diff + 𝑘cat

     , 
(4.15) 

with 

 𝑟 = 𝑎 ⋅
𝑚tRNA
𝑚𝑟𝑅𝑁𝐴

    . (4.16) 

Here, 𝑚tRNA is the molecular mass of tRNA, 𝑚rRNA is the total mass of RNA in one ribosome, and 

r is the ratio of the tRNA mass fraction of a TC and the rRNA mass fraction of the ribosome. For 

bacteria, we use data from E. coli (𝑚tRNA  = 25.8 𝑘𝐷𝑎  , 𝑚rRNA = 1480 𝑘𝐷𝑎), resulting in 𝑎 =

33.1 and r = 0.58. For eukaryotes, we use data from S. cerevisiae, resulting in a = 40.3 and r = 0.59; 

the molecular weights of the ribosome (3044.4 kDa), rRNA (1750 kDa), TC (75.6 kDa), and tRNA 
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(25.6 kDa) were calculated from the respective sequences according to the Saccharomyces 

Genome Database (Cherry et al, 2012).  

Gene positions 

The chromosomal position of  the center of the origin of replication (oriC) for different genomes 

was obtained from the DoriC database (version 10.0) (Luo & Gao, 2019).  The start and end 

positions of rRNA and tRNA genes were downloaded from the RefSeq database (Release 93, 

downloaded on April 09, 2019); gene locations were defined as the midpoint between gene start 

and end. We defined gene position as the relative distance of a gene to oriC, calculated as the 

shortest distance between the gene and oriC on the circular chromosome, divided by half the 

length of the chromosome. Gene position ranges from 0 to 1.  

Maximal growth rate dataset 

Minimal doubling times  𝜏min  (in hours) were obtained from Ref. (Vieira-Silva & Rocha, 2010) and 

were converted to maximal growth rates as 𝜇max =
ln(2)

𝜏min
 . For the analyses, we only used species 

for which we additionally had genome annotation and oriC location, and which had only one 

chromosome. The final trimmed dataset contains 170 species (Table S4.4).  

For 35 out of the 170 species, more than one oriC has been annotated (Luo & Gao, 2019). However, 

we found that all oriCs are very close on the chromosome in these species: the maximal distance 

between two oriCs is much less than 1% of the chromosome length (the maximal distance 

between two oriCs is 0.0035, equal to 0.18% of the chromosome length). Thus, different oriCs are 

expected to have a negligible effect on gene position and we randomly selected one of the oriCs 

to calculate gene position. 

Phylogenetically independent contrasts 

16S rDNA sequences was aligned with MUSCLE (Edgar, 2004) embedded in MEGA X (Kumar et al, 

2018). A phylogenetic tree was built using maximum likelihood methods with MEGA X with default 

parameters (Kumar et al, 2018). The phylogenetic tree was rooted by the minimal ancestor 

deviation method (Tria et al, 2017). We calculated phylogenetically independent contrasts 

(Felsenstein, 1985) with the pic function in ape package (Paradis & Schliep, 2019) in R (R Core 

Team, 2020). To control for phylogenetic non-independence between data points for different 

species, we then performed statistical tests on these contrasts (Pic values). 

Gene dosage 

We used the Cooper-Helmstetter model (Cooper & Helmstetter, 1968; Bremer & Churchward, 

1977) to calculate gene dosage. The model is briefly summarized below. Let C be the time required 

to replicate the chromosome; let D be the time between the termination of a round of replication 

and the next cell division; let τ be the doubling time. The average dosage of gene i  (𝑋𝑖) per cell is 

then given by: 

 
𝑋𝑖 = 2

𝐶(1−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖)+𝐷

𝜏     , 
(4.17) 

where positioni is the genomic position of gene i. With 
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𝜏 =

ln (2)

𝜇
    , 

(4.18) 

 
𝑋𝑖 = 𝑒

𝜇[𝐶(1−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖)+𝐷] (4.19) 

The gene dosage ratio of two genes (𝑋𝑖/𝑋𝑗) is then (equation (4.3) of the main text) 

 𝑋𝑖

𝑋𝑗
= 𝑒𝜇𝐶(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖). 

(4.20) 

Each genome contains multiple tRNA and rRNA genes. In this case, we use the ratio of the total 

gene dosages,  

 ∑𝑋tRNA

∑𝑋ribosome
=
∑𝑋tRNA
1
𝑛
∑𝑋rRNA

=
∑𝑒𝜇[𝐶(1−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑡𝑅𝑁𝐴)+𝐷]

1
𝑛
∑ 𝑒𝜇[𝐶(1−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟𝑅𝑁𝐴)+𝐷]

=
∑𝑒𝜇𝐶(1−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛tRNA)

1
𝑛
∑𝑒𝜇𝐶(1−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛rRNA)

    , 
(4.21) 

where n is the number of rRNA genes per ribosome. Since one ribosome contains three rRNA 

genes (5S, 16S, and 23S rRNA), n = 3.  

We assumed a constant DNA replication rate of 𝑘rep = 1000 bp s
−1 (Couturier & Rocha, 2006) to 

calculate the C-period as 

 
𝐶 =

𝐿genome

2𝑘rep
   ,  

(4.22) 

with Lgenome the length of the given genome. 

 

 

Supplementary information 

Supplementary Tables are available online at https://doi.org/10.1371/journal.pgen. 

1009939. 
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Supplementary Figures  

 
Fig. S4.1. The effect of protein degradation on the RNA growth law in E. coli. The solid red curve shows the 

RNA composition growth law as given by equation (4.1), which ignores protein degradation, whereas the 

dashed red curve shows the RNA composition growth law with protein degradation included. Protein 

degradation rate typically ranges from 0.02 h-1 to 0.04 h-1 (Pine, 1970, 1973) (see estimation below) and is 

higher at low growth rates than at high growth rates (Pine, 1970, 1973; Calabrese et al, 2021). We here 

assumed a constant protein degradation rate (kdeg = 0.04 h-1); its inclusion is equivalent to moving the 

optimal TC/ribosome ratio 0.04 h-1 to the left.  As the degradation rate is relatively small compared to the 

maximal growth rate of E. coli (Pine, 1970, 1973), protein degradation affects the optimal TC/ribosome ratio 

only at very low growth rates, where the degradation rate becomes comparable to the growth rate.  

Estimation of the protein degradation rate: Publications (Pine, 1970, 1973) report the fraction of degraded 

protein (𝑓deg) after time t. The protein degradation function can be written as 1 − 𝑓deg = 𝑒
−𝑘deg∙𝑡. With this 

equation, kdeg was estimated to range from 0.005 h-1 to 0.04 h-1 according to the data reported in (Pine, 

1973) and to range from 0.025 h-1 to 0.03 h-1 according to the data reported in (Pine, 1970).  To be 

conservative, we here chose kdeg = 0.04 h-1, the largest reported degradation rate. 

 

 
Fig. S4.2. Comparison of the optimal TC/ribosome expression ratio with a previously reported optimal 

TC/ribosome ratio for E. coli (Klumpp et al, 2013). Klumpp et. al predicted the optimal TC/ribosome 

expression ratio by identifying the proteome fractions of ribosome and TC that maximize growth rate in a 

coarse-grained, phenomenological model of cellular growth (Klumpp et al, 2013). This optimal proteome 

allocation pattern results in a predicted TC/ribosome ratio (gray line, extracted from Fig. 4C in (Klumpp et 

al, 2013)) that is substantially lower than the experimentally observed data. Here, we considered the 

optimal resource allocation into cellular dry mass (RNA and protein combined; red curve), motivated by the 

near-constant cellular dry mass density across growth conditions. The optimal dry mass allocation explains 

the experimentally observed TC/ribosome expression ratios much better than the optimal proteome 

allocation considered in Ref. (Klumpp et al, 2013). Protein accounts for roughly 1/3 of the ribosome mass, 

whereas it accounts for roughly 2/3 of the ternary complex mass. If only the protein cost is considered, the 

ternary complex appears much more expensive to the cell, resulting in a lower predicted ternary-

complex/ribosome ratio. 
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Fig. S4.3. Gene positions of rRNA and tRNA genes in E. coli.  rRNA genes are located closer to oriC than 
tRNA genes in E. coli, with genomic position 0.20 ± 0.17 (mean ± standard deviation) for rRNA genes and 
0.45 ± 0.27 for tRNA genes.

Fig. S4.4. Effective population size (Ne) is not correlated with the positions of tRNA and rRNA genes. The 
effective population sizes for 46 out of the 170 species were obtained from Ref. (Bobay & Ochman, 2018). 
As shown in (A-C), we found no statistically significant Spearman rank correlations (P > 0.1) between Ne and 
the different positions considered in our study (position of rRNA genes, tRNA genes, and the relative 
position, positiontRNA – positionrRNA ) when analyzing fast- and slow-growing species (P > 0.1, see colored text 
in A-C). In contrast, we found statistically significant correlations between Ne and genome size (D) and, for 
fast-growing species, between Ne and maximal growth rate μmax (E).
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Fig. S4.5. The numbers of genomically encoded rRNA genes and tRNA genes are positively correlated with 
μmax and negatively correlated with tRNA/ribosome ratios. With increasing maximal growth rate μmax, 
bacterial genomes harbor more rRNA genes (A) and tRNA genes (B). (C-F) show the relationship between 
tRNA/ribosome dosage and genomic ratios and the number of ribosome and tRNA genes in the genome. 
While a negative correlation between the tRNA/ribosome ratios and the number of rRNA genes would 
trivially occur also if the numbers of tRNA and rRNA genes were independent (C and D), a negative 
correlation of the tRNA/ribosome ratios with the number of tRNA genes would not be expected in this case 
(E and F); the latter observation thus provides strong support for our hypothesis that the relative number 
of tRNA and rRNA genes are constrained to optimize translation efficiency.
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Fig. S4.6. The tRNA/rRNA gene dosage ratio is independent of growth rate under temperature stress 

conditions. The orange dots show experimental measurements at 14 °C, 21 °C, 30 °C, and 37 °C in the same 

medium (Atlung & Hansen, 1999). The DNA replication rate became slow at low temperatures, and multiple 

replication rounds were observed even at low growth rates. This effect made the rRNA/tRNA dosage ratio 

almost independent of growth rate. As we could not find experimental data for the tRNA/ribosome 

expression ratio under temperature stress conditions, it is unclear if the tRNA/ribosome expression ratio is 

still optimal under temperature stress conditions.   

Supplementary Texts 

Text S4.1. Assessment of tRNA/rRNA gene dosage ratio calculated by a constant DNA 

replication rate (krep = 1000 s-1)  

In the main text, we used a constant DNA replication rate (krep = 1000 s-1) for all species to calculate 

the C period and the tRNA/rRNA gene dosage ratio (Fig. 4.1B and Fig. 4.3D). This is an 

approximation, as the DNA replication rate (1) is growth rate-dependent in a given species 

(Michelsen et al, 2003; Zheng et al, 2020) and (2) is species-specific and depends on the maximal 

growth rate (μmax) across species. Here, we assess how the assumption of a constant krep = 1000  

s-1 affects the tRNA/rRNA dosage ratio in the results shown in Fig. 4.1B and Fig. 4.3D.  

The effect of a growth rate-dependent C period on the tRNA/rRNA dosage ratio in E. coli 

In E. coli, the C period is almost constant at growth rates above 0.7 h-1 but increases with 

decreasing growth rate below 0.7 h-1 (Fig. S4.7A; data from Refs. (Michelsen et al, 2003; Zheng et 

al, 2020)). However, as shown in Fig. S4.7B, when calculating the tRNA/rRNA dosage ratio using 

the experimentally observed rate-dependent C period, the results are very similar to those 

calculated under the assumption of a constant C period and DNA replication rate (krep = 1000 s-1) 

(calculated by equation (4.21)). Thus, setting krep = 1000 bp s-1 appears to be an acceptable 

approximation for the tRNA/rRNA dosage ratio calculation. 

The effect of a species-specific replication rate on the tRNA/rRNA gene dosage ratio across 

species 

In a literature search, we found estimates of the replication rate or C period for 5 species in our 

dataset, including one slow-growing species and four fast-growing species (Fig. S4.8A and Table 

S4.5).  We fitted a linear model for the dependence of the replication rate on μmax (both on log 

scale; Fig. S4.8A) and used this linear model to estimate the μmax-dependent DNA replication rate 

for all species in our dataset. The tRNA/ribosome gene dosage ratio estimated using a μmax-
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dependent replication rate (Table S4.4) is very similar to the dosage estimated using a constant 
replication rate krep = 1000 s-1 (Fig. S4.8B; R2 = 0.973). Further, the dependence of the 
tRNA/ribosome gene dosage ratio on the maximal growth rate μmax when considering a growth 
rate-dependent replication rate (Fig. S4.8C, Spearman’s rank correlation 𝜌 = −0.47, 𝑃 =

7.0 × 10−4 for fast-growing species; 𝜌 = −0.47, 𝑃 = 5.5 × 10−8 for slow-growing species) is 
very similar to that shown in Fig. 4.3D . Thus, the dependence of the DNA replication rate on μmax

does not appear to affect our conclusions.

Fig. S4.7. The effect of a growth rate-dependent C period on the tRNA/rRNA dosage ratio in E. coli.
(A) Comparison of the C period calculated from constant krep = 1000 bp s-1 (solid blue line) and experimental 
estimates of the C period (orange and blue dots (Michelsen et al, 2003; Zheng et al, 2020)). (B) The growth 
rate-dependent C period has only a minor effect on the predicted tRNA/rRNA dosage ratio. The blue line 
shows the dosage ratios calculated under the assumption of a constant C period. The orange and blue dots 
show dosage ratios calculated using the respective experimental C period values shown in (A). 

Fig. S4.8. The effect of a μmax-dependent DNA replication rate on the tRNA/ribosome gene dosage ratio.
(A) linear regression on log-log scale to predict the DNA replication rate from μmax. (B) Comparison of 
tRNA/rRNA gene dosage ratios calculated using a constant DNA replication rate (x-axis) and using a μmax-
dependent replication rate. (C) Relationship between the tRNA/rRNA gene dosage ratio calculated using a 
μmax-dependent replication rate and μmax.
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Text S4.2. Genome size affects gene position

At the same DNA replication rate, bacteria with smaller genomes need less time to replicate their 
DNA than bacteria with larger genomes; at the same growth rate, they hence have fewer 
simultaneous replication rounds in the cell. For example, Streptococcus pneumoniae (with a 2.1 
Mb genome) does not need multiple replication rounds at its fast growth rate (Slager et al, 2014). 
Thus, replication-associated gene dosage effects will be less important in bacteria with small 
genomes, and the positions of tRNA and rRNA genes might play less important roles in these 
species. 

In fast-growing species, we indeed found a statistically significant negative correlation between 
genome size and rRNA gene positions (Fig. S4.9A; Spearman’s ρ = -0.40, P = 0.005). In contrast, we 
did not find a significant correlation between genome size and tRNA gene positions (Fig. S4.9B; 
Spearman ρ = 0.04, P = 0.80). As expected, a positive correlation was found between genome size 
and the relative position (positiontRNA– positionrRNA) in fast-growing species (Fig. S4.9C; Spearman’s 

ρ = 0.48, P = 5.1×10-4). We found no statistically significant correlations in slow-growing species
(P > 0.1 for Fig. S4.9A-C).

Fig. S4.9. The relationship between genome size and the positions of tRNA and rRNA genes. (A) In fast-
growing species, rRNA genes in larger genome tend to be closer to oriC. (B) tRNA position is not correlated 
with genome size in both slow- and fast-growing species. (C) In fast-growing species, the relative position 
(positiontRNA– positionrRNA) is positively correlated with genome size, indicating that gene dosage plays a 
more important role in establishing the optimal tRNA/ribosome expression ratio in these species.

To control for the effects of genome size in our analysis of the dependence of genomic positions 
on μmax, we analyzed linear regression models of the form 

position ~ log(μmax) + genome_size ,

where position is either positiontRNA, positionrRNA, or the relative position positiontRNA– positionrRNA. 
For fast-growing species, the inclusion of genome size as an additional regressor leads to small 
increases of R2, from 0.32 to 0.36 (P = 0.07 for genome size) for rRNA position, and from 0.13 to 
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0.15 (P = 0.24 for genome size) for tRNA position. Thus, the maximal growth rate remains the main 

predictor of the two positions, with only minor contributions by genome size. 

 

Text S4.3. The positions of tRNA genes are not correlated with the corresponding 

codon frequencies. 

In the main text, we showed that the genomic averages of tRNA gene positions are affected by 

the maximal growth rate of a species (Fig. 4.3B) and constrained by the optimal RNA growth law, 

which posits that tRNA genes are on average farther from oriC than rRNA genes (equation (4.1) 

and Fig. 4.3C). When calculating the tRNA/rRNA gene dosage ratio (Fig. 4.3D), we treated all tRNAs 

equally. However, tRNAs decode codons with different frequencies. While the optimal scaling of 

the tRNA/rRNA expression ratio (equation (4.2)) with growth rate is independent of codon 

frequencies, it is still conceivable that selection pressure toward specific genomic positions is 

stronger for tRNA genes whose products decode more abundant codons. We thus asked if there 

is a systematic dependence of genomic positions on the frequencies of the cognate codons.  

As the anticodons of tRNAs are not annotated in RefSeq for some species (Pruitt et al, 2012), we 

identified the anticodon using tRNAscan-SE 2.0 (Chan et al, 2021) and used the wobble paring rule 

to find the cognate codon(s) of a given tRNA. Then, a tRNA’s cognate codon frequency was 

calculated as the summed frequencies of all its cognate codon(s).  

We tested if there is a correlation between a tRNA’s position and its cognate codon frequency in 

a given species. Please note that the analysis here is different from Fig. 4.3B in the main text. In 

the main text, we tested if the average position of tRNA genes tends to be close to oriC in fast-

growing species. Here, we test if individual tRNAs with higher codon frequencies tend to be 

located closer to oriC in a given genome.  

Statistically significant correlations (P < 0.05) between tRNA genomic position and the cognate 

codon frequency were found in 21 out of 170 species (Fig. S4.10A). 6 out of the 21 species show 

positive correlations, while the remaining 15 species show negative correlations. This means that 

in only 15 species those tRNAs that can decode more codons (by codon frequency) tend to be 

located closer to the origin of replication.  

We also tested for a correlation between tRNA copy number (the number of tRNA genes with the 

same anticodon) and cognate codon frequency. We found that tRNAs with higher copy numbers 

tend to have higher cognate codon frequencies in most fast-growing species (Fig. S4.10B; P < 0.05 

in 45 out of 48 species).  

We thus conclude that in fast-growing species, the copy number of a tRNA gene but not its 

genomic position is strongly affected by its cognate codon frequency; this finding supports our 

equal treatment of tRNAs when calculating tRNA gene dosage. 
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Fig. S4.10. Copy numbers of tRNA genes but not their positions are correlated with codon frequency. Each 

datapoint represents Spearman’s rank correlation coefficient ρ for a single genome. Point color indicates 

statistical significance. (A) Correlation between tRNA position and cognate codon frequency. (B) Correlation 

between tRNA genomic copy number and cognate codon frequency. 

Text S4.4. The effect of assuming a constant TC/ribosome expression ratio instead of 

an optimal ratio 

Several recent modeling studies have assumed that the TC/ribosome expression ratio is constant 

(Klumpp et al, 2013; Bremer & Dennis, 2008; Scott et al, 2010; O’Brien et al, 2013; Bosdriesz et al, 

2015; Dai et al, 2016). In contrast, we found that the optimal TC/ribosome expression ratio is 

growth rate-dependent (equation (4.1)), a relationship consistent with experimental data across 

species (Fig. 4.1B and Fig. 4.2A). In this section, we estimate by how much growth rate predictions 

are expected to change when accounting for this growth rate dependence. To be independent of 

any specific model, we estimated the associated change in the cellular cost for translation, where 

– consistent with the assumptions of our optimality estimate, equation (4.1) – we used the cytosol 

density as a proxy for cost; detailed predictions derived from this cost measure have been found 

to be in good agreement with experimental data for the E. coli translation machinery (Hu et al, 

2020). 

We first calculated the optimal dry mass per volume occupied by ribosomes and TCs as a function 

of growth rate according to our model. Assuming a constant protein concentration across 

conditions in E. coli, we first calculated the molar concentrations of ribosome and TC based on 

equations (4.9) and (4.10), respectively.  

For comparison, we then calculated the concentrations of ribosome and TC under the constant 

assumption with μ·[P] = keff·[R], where μ is the growth rate, ·[P] is the protein concentration, [R] is 

the ribosome concentration, and keff is the effective turnover rate of the ribosome. The constant 

assumption assumes that the rRNA:tRNA mass ratio is 86:14 (Bremer & Dennis, 2008), resulting in 

a constant TC:ribosome molar ratio of 9.6:1. Further, keff = kcat·KM/([TC]+ KM), with kcat (22 s-1) the 

ribosome turnover rate, [TC] = 9.6 [R] the concentration of TC, and KM = 122 μM the Michaelis 

constant (see Methods). The ribosome concentration [R] can then be obtained by solving μ·[P] = 

keff·[R].  

Using the respective molecular weights, we converted both estimates for the ribosome and TC 

concentrations into a combined cytosolic mass density of the core translation components. 

Comparing these combined mass densities, we found that the total dry mass allocated to 
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translation is very similar between the two calculations at high growth rates; substantial 

differences are only found at low growth rates (Fig. S4.11). 

Thus, the assumption of a constant TC/ribosome expression ratio will lead to very similar growth 

rate predictions at moderate to fast growth rates. However, translation is a very expensive process 

for fast-growing cells, and even these small differences will have a substantial effect on evolution 

in natural populations. The efficiency of natural selection in large bacterial populations likely 

explains why the optimal expression of the ribosome and TC (Fig. 4.1B and Fig. 4.2) and the 

differential genomic position of rRNA and tRNA genes (Fig. 4.3) are consistent with experimental 

data across species. 

 

Fig. S4.11. Cost difference (in terms of dry mass density) between the optimal TC/ribosome expression 

ratio and a constant TC/ribosome expression ratio in E. coli as a function of growth rate. 
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5 Outlook 

5.1 Resource allocation out of steady state growth 

In this thesis, the optimal expression of a pathway (or a protein) is approximated by its minimal 

required level at the given growth rate. Manuscript 2 reveals the extent to which metabolic 

pathways differ in their proteome efficiency. Specifically, the expression of transporters, TCA cycle, 

and gl ox late shunt, and “the other” proteins scales contrar  to optimal demand.  

It should be noted that all the proteome data used in this thesis are from unevolved E. coli strains. 

This means these cells are still adapted to fluctuating growth conditions. As parts of the unneeded 

proteome can facilitate fast adaptation to new environments (Mori et al, 2017; Korem Kohanim 

et al, 2018), the “unneeded” (overabundant) proteome at balanced growth conditions may in fact 

be “needed” under fluctuating growth conditions. Many quantitative questions are still open with 

respect to the overabundant proteome. Why does the cell express the specific amount of 

overabundant proteome in any given growth condition? Is there a relationship between the 

amount of overabundant proteome and the frequency or duration with which the cell faced a 

given growth condition in its evolution? Using the theoretically maximal growth rate as a proxy 

for nutrient quality, how much of the overabundant proteome can be explained by nutrient 

quality? Answering these questions can help in understanding the principles of resource allocation 

out of steady state.  

5.2 Towards a comprehensive understanding of the importance of gene 

position 

In section 1.6, I proposed the hypothesis that the positions of genes are coordinated with 

expression demand. In Manuscript 3, this hypothesis was validated on the optimal tRNA/rRNA 

ratio and the relative positions of tRNA and rRNA genes. The hypothesis in section 1.6 only relies 

on the “expression level” demand. Recent studies found that the positions of genes are also 

coordinated with the cell cycle. For example, the locations of two important sporulation network 

genes (spo0F and kinA) on opposite sides of the B. subtilis chromosome results in a transient 

imbalance of their gene dosage during replication, which further allows cells to decide between 

sporulation and vegetative growth in each cell cycle (Narula et al, 2015). Future work may consider 

the cell cycle-dependent demand of genes as a factor for shaping chromosomal gene positions. 

The importance of gene positions is still not well appreciated. At present, the physiological 

consequences of gene positions have only been tested for very few genes (Slager & Veening, 2016).  

For example, rearrangement of ribosomal genes to the terminus of replication reduces growth 

rate (Soler-Bistué et al, 2015, 2017). To have a better understanding of the importance of gene 

positions on cellular processes, further work may study gene positions across species to find how 

many genes have biased positions. Further, the hypothesis proposed in this thesis may help in 

understanding why the genomic positions of genes are conserved. 
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List of symbols, abbreviations, and acronyms 

 

μ Exponential growth rate 

μmax Maximal exponential growth rate 

τmin Minimal doubling time 

aa-tRNA Aminoacyl-tRNA 

C Time of C period; the time required for chromosome replication 

D 
Time of D period; the time between termination of replication and 
cell division 

EF-Ts Translation elongation factor Ts 

EF-Tu Translation elongation factor Tu 

FBA Flux balance analysis 

GMFE Geometric mean fold error 

kcat Enzyme turnover number 

KM Michaelis constant 

MOMENT Metabolic Modeling with enzyme kinetics 

oriC Origin of replication 

TC Ternary complex of EF-Tu, GTP, and aa-tRNA 
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