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Zusammenfassung

Bereits im frühen 20. Jahrhundert untersuchte Ernst Witt symmetrische und antisymme-
trische Bilinearformen auf Vektorräumen, deren Klassifizierung schließlich zur Definition
der Wittgruppe über einem Körper führte. Erst wesentlich später definierte Balmer deri-
vierte Wittgruppen von Schemata, welche nun auch in verschiedenen Graden und Twists
auftreten. Dies motiviert die totale Wittgruppe eines Schemas,

Wtot(X) =
⊕

i∈Z/4

⊕
L∈Pic(X)/2

Wi(X, L), (1)

in welcher die für Körper bereits bekannte Wittgruppe im Grad Null und trivialem Twist
auftritt, d.h. W(X) = W0(X, OX) für X = Spec(k). Seitdem wurden viele Methoden für
die Berechnung der Wittgruppen entwickelt, wie zum Beispiel die lange exakte Lokali-
sierungssequenz von Balmer ([Bal00]).

Maximale isotrope Grassmannbündel parametrisieren die bezüglich einer gegebenen
symmetrischen oder antisymmetrischen Bilinearform isotropen Unterbündel maximalen
Rangs eines fixierten Vektorbündels und die Berechnung deren Wittgruppen ist das Ziel
dieser Arbeit. Den Fall gewöhnlicher Grassmannschen haben Balmer und Calmès bereits
behandelt ([BC12a]), indem sie die Randabbildung der Lokalisierungssequenz untersucht
haben. Es stellte sich heraus, dass die totale Wittgruppe mithilfe gerader Young-Diagramme
beschrieben werden kann und, dass sogar die Grade und Twists an den Diagrammen
direkt abgelesen werden können.

Auch wenn diese Methode auf keinen der beiden zu untersuchenden Fälle uneinge-
schränkt übertragen werden kann, beweisen wir ein analoges Resultat über die totale
Wittgruppe, diesmal mithilfe gerader und fast gerader versetzter Young-Diagramme. Aller-
dings fällt die Aussage im antisymmetrischen Fall etwas schwächer aus, da hier keine
explizite Basis angegeben werden kann.

Das Vorgehen von Balmer-Calmès kann auch direkt auf Quadriken angewandt wer-
den. Daher führt diese Arbeit zur vollständigen Beschreibung der Wittgruppen von Klas-
sen homogener Varietäten gewöhnlichen Lie-Typs, welche als minuscule und cominuscule
bezeichnet werden. Es ist wahrscheinlich, dass auch für die beiden exzeptionellen (co-)
minuscule Varietäten, nämlich die Cayley-Ebene sowie die Freudenthal-Varietät, eine Be-
schreibung der Wittgruppen durch spezielle Young-Diagramme möglich ist, was zum
jetzigen Zeitpunkt jedoch unklar ist.





Abstract

Named after Ernst Witt, Witt groups were first introduced for fields in the earlier 20th
century to classify symmetric and or antisymmetric bilinear forms over them. Much
later, Balmer introduced derived Witt groups of schemes ([Bal99]), including shifted and
twisted Witt groups. This yields the notion of the total Witt group of a scheme X,

Wtot(X) =
⊕

i∈Z/4

⊕
L∈Pic(X)/2

Wi(X, L), (2)

which includes the well-known Witt group W(X) = W0(X, OX) for a field X = Spec(k).
Since then, many strong tools for the computation of Witt groups have been developed,
such as the long exact localization sequence by Balmer [Bal00].

The goal of this work is to compute the Witt groups of maximal isotropic Grassmann
bundles, that is, schemes parametrizing subbundles of maximal rank of a fixed vector
bundle which are isotropic with respect to a given symmetric or antisymmetric bilinear
form. The case of non-isotropic Grassmannians has been accomplished by Balmer and
Calmès ([BC12a]) by investigating the boundary map in the localization long exact se-
quence of Witt groups. It turns out that the total Witt group (2) is indexed by even Young
diagrams and the twists and shifts can easily be read off the tableaux.

Although the ordinary approach cannot be applied entirely to neither of the isotropic
cases, we manage to describe the total Witt group in these cases by using even and almost
even shifted Young diagrams. At this point we remark that the result for the antisymmetric
case is weaker in the sense that no explicit basis has been computed.

It is known that the same procedure can be applied to quadrics. Hence, this thesis will
lead to a complete description of the Witt groups of minuscule and cominuscule homoge-
neous varieties of ordinary Lie types. We believe, that similar results can be obtained for
the Cayley plane and the Freudenthal variety, the only exceptional minuscule varieties,
but this remains open.
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Introduction

Witt groups of fields have been known for almost one hundred years and introduced

by Ernst Witt. Over a field, any non-degenerate symmetric bilinear form is uniquely

determined by a symmetric, diagonalizible matrix and two forms are isometric if and

only if their matrices A, A′ are congruent, i.e. we have A′ = MT AM for some invertible

matrix M. The collection of isometry classes forms a monoid via orthogonal sums and

its Grothendieck-construction is called the Grothendieck-Witt group of the ground field and

denoted by GW(−). For example, over the field R, any bilinear form can be represented

by diag(±1) and over C, or in general over any quadratically closed field, any form is

represented by the unit matrix diag(1). Hence, the only further parameter is the rank

and we obtain GW(R) = Z ⊕ Z and GW(C) = Z. A two-dimensional quadratic vector

space is called a hyperbolic plane, denoted by H, if its form diagonalizes to diag(1, −1).

Finally, the Witt group, denoted by W(−), is the quotient of the Grothendieck-Witt group

by hyperbolic spaces, i.e. orthogonal sums of copies of hyperbolic planes. For instance

W(R) = Z and W(C) = Z/2Z.

For a general scheme the category Vect(−) of vector bundles is an example of a tri-

angulated category, when equipped with a duality corresponding to a line bundle and a

double dual identification. For those, Balmer ([Bal00], [Bal01]) developed a non-oriented

cohomology theory of triangular Witt groups and we can define the Witt group of a scheme

as the Witt group of the induced triangulated category. Varying over all possible dualities

and double dual identifications gives us a variety of different Witt groups, the i-th shifted

Witt groups twisted by a line bundle L ∈ Pic(X), denoted by Wi(X, L). It turns out that

these groups are 4-periodic in the shifts i and square-periodic in the twists L, so the term

Wtot(X) :=
⊕

[i]∈Z/4

⊕
[L]∈Pic(X)/2

Wi(X, L) (3)

covers all groups and is called the total Witt group of X. For X = Spec(k) we have

W0(X, OX) = W(k) as introduced above. The big advantage of the new setting is that the

classical Witt group occurs in a cohomology theory which comes with a variety of tools,



allowing further computations. For example, Nenashev ([Nen09]) and Walter ([Wal03])

simultaneously gave a complete description of the Witt groups of projective bundles over

schemes. If P(E) is a projective space of dimension r over k, where char(k) �= 2, we have

Pic(P(E))/2 = Z/2Z with O(1) the only non-trivial class.

Theorem ([Nen09], [Wal03]). For i ∈ Z/4 and l ∈ Z/2 the i-th shifted Witt group of P(E)

twisted by O(l) is given by

Wi(P(E), O(l)) ∼=
⊕

λ∈{0,r}
t(λ)≡l(2)

Wi−λ(k). (4)

where the twist is given by t(λ) := λ(r+1)
r .

Another very important tool throughout this thesis is localization ([Bal00]). If Z ↪→ X

is a regular closed embedding of a subscheme and the open complement is denoted by

U := X \ Z, there is a long exact sequence of Witt groups

· · · → Wi−1(U, L|U) ∂−→ Wi
Z(X, L) ι∗−→ Wi(X, L) v∗

−→ Wi(U, L|U) ∂−→ . . . (5)

which is 12-periodic by 4-periodicity of the shifts. Note that the boundary map in general

does not vanish. But if that is the case, this long exact sequence breaks down into split

short exact sequences, which allows us to compute the Witt groups of the scheme of

interest in terms of Witt groups that are smaller in some sense. But this is not satisfactory,

since in general this map does not vanish and in this case it is not clear how to describe it.

However in a special setting, Balmer and Calmès ([BC09]) were able to explicitly des-

cribe the boundary map in terms of pull-backs and pushfowards along projective bundles

and blow-ups.

Hypothesis (Balmer-Calmès hypothesis, [BC09, 1.2]). Given a regular closed embedding ι :

Z ↪→ X of sufficiently nice schemes with open complement v : U ↪→ X, assume that U is an affine

bundle over a scheme Y admiting a morphism starting from the blow-up BLZ(X) of X along Z

such that the diagram
Z X U

E BlZ(X) Y

ι v

α

α̃

(6)

commutes.

Under these assumptions the boundary map ∂ : Wi(U, L|U) → Wi+1
Z (X, L) in the

localization sequence either vanishes or is a sequence of push-forwards and pull-backs

along maps in (6).
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Fix a ground field k with char(k) �= 2 and denote by Gr(d, n) the ordinary Grassman-

nian, i.e. the scheme parametrizing d-dimensional subspaces of kn. For integers d, e > 0

the embedding Z := Gr(d, d + e − 1) ⊂ Gr(d, d + e) =: X satisfies all assumptions above.

By homotopy invariance and dévissage the boundary map in the corresponding long ex-

act sequence is a map

∂ : Wi(Gr(d − 1, d + e − 1), (α∗)−1L|U) → Wi−d(Gr(d, d + e − 1), ωι ⊗L|Z). (7)

Recall that, for any Young diagram with d rows and e columns, there is a (not necessa-

rily smooth) Schubert cell inside Gr(d, n) and we can construct a family of elements inside

the total Witt group of the Grassmannian by pushing forward the unit form along suitable

resolutions of these Schubert varieties. Note that push-forwards of Witt groups, in par-

ticular starting from W0(−, O), do not necessarily exist, since in general a push-forward

along a map f : X → Y is of the form

f∗ : Wi(X, ω f ⊗ f ∗L) → Wi−dim f (Y, L)

and there is no reason for the existence of a line bundle L satisfying ω f ⊗ f ∗L ≡ OX

modulo squares. After all it turns out that for even Yong diagrams, that is, Young dia-

grams with inner segments of even length, all required push-forwards exist and the con-

structed elements are compatible with the boundary map in a certain sense. Further,

Pic(Gr(d, d + e))/2 = Z/2 where O(1) is the only non-trivial twist and we get the follo-

wing description of the total Witt group:

Theorem (Witt groups of Grassmannians, [BC12a, 7.1]). There is an isomorphism⊕
Λ even s.t.
t(Λ)≡l(2)

Wi−|Λ|(k) ∼−→ Wi(Gr(d, d + e), O(l)) (8)

where for a Young diagram Λ we denote by |Λ| its weight and by t(Λ) its twist, i.e. the half

perimeter.

Note that this theorem is proved more general for Grassmann bundles over a base

scheme which requires more assumptions on the underlying vector bundle.

The purpose of this thesis is to investigate the total Witt group of maximal isotropic

Grassmannians IG(n), i.e. subschemes of Gr(n, 2n) of subspaces which are isotropic with

respect to a given symmetric or antisymmetric bilinear form. If the form is symmetric, we

write OG(n) and it turns out that the embedding OG(n − 1) ↪→ OG(n) satisfies the hy-

pothesis above. In the antisymmeric setting we write LG(n) = IG(n), but the hypothesis

does no hold anymore and more work needs to be done.
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Hypothesis (3.2.1, 3.2.7). Let ι : Z ↪→ X be a regular closed embedding of sufficiently nice

schemes with open complement v : U ↪→ X. Assume that U is an affine bundle over a scheme

Y admitting an incoming morphism from the double blow-up BlZ̃′(BlZ(X)) where Z′ ⊂ E ⊂
BlZ(X) is a regular embedding and the diagram

Z X U

Z′ E BlZ(X)

E′ BlZ′ (BlZ(X)) Y

ι v

α

α̃

(9)

commutes.

As a consequence, we again get a description of the boundary map in the localization

sequence (section 2.3 for the symmetric and Theorem 3.3.1 for the antisymmetric case).

A shifted Young diagram for OG(n + 1) or LG(n) is a Young diagram for Gr(n, 2n),

i.e. with n rows and n columns where the lengths of the rows are strictly decreasing.

We can right align these diagrams and recover shifted Young-diagrams, which are known

to index the Chow group of OG(n + 1) resp. LG(n) the same way as for the ordinary

Grassmannian. In addition to the well-known even diagrams, we will also need almost-

even diagrams, in which all, except for the last inner segments, are of even length and the

last segment is of odd length.

FIGURE 1. From left to right: An even Young diagram, an even shifted Young

diagram and an almost even shifted Young diagram. The weight of any

diagram is the area of the shaded part and denoted by |Λ| and (in most

cases) the twist t(Λ) is the length of the boundary Λ along the thick

part except that for the symmetric case this number has to be doubled

(and hence is always even).
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Grassmannian Gr(d, n) = An−1/Pd:
αd

Odd quadric Q2n−1 = Bn/P1:
α1

Lagrangian Grassmannian LG(n, 2n) = Cn/Pn:
αn

Even quadric Q2n = Dn/P1:
α1

Max. orth. Grassmannian OG(n) = Dn/Pn ∼= Dn/Pn−1:
αn

αn−1

FIGURE 2. Over C the cominuscule varieties are precisely the irreducible

compact hermitian symmetric spaces

The main result is the following condensed version of Theorems 4.2.1 and 4.3.2:

Theorem. There is an isomorphism⊕
Λ s.t.

t(Λ)≡l(2)

Wi−|Λ|(k) ∼−→ Wi(IG(n), O(l)), (10)

where the direct sums runs over even shifted diagrams in the symmetric case and over almost even

shifted diagrams in the antisymmetric case.

Finally, it is worth mentioning that, together with the projective bundle theorem, the

work of Balmer and Calmès on Grassmannians and numerous computations on quadrics

such as by Xie ([Xie19]), this work completes the computation of Witt groups of cominus-

cule varieties, see Figure 2 for a list of these spaces. The only minuscule but not cominus-

cule varieties are Bn/Pn ∼= Dn/Pn and Cn/P1
∼= A2n/P1, both of which are isomorphic to

some cominuscule variety; hence we get these varieties for free.

Theorem. Assume the homogeneous space X = G/P is minuscule and cominuscule and of

ordinary Lie type. Then the total Witt group of X is indexed by even Young diagrams of shape

ΛG/P, where the shape is as in [BS16], see also Figure 4.8.

From [IM05, 4.1] we can construct a similar blow-up setup as for the Lagrangian Grass-

mannian, which leads to the following conjecture:

Conjecture. The preceeding theorem also holds in exceptional types, that is, for the Cayley plane

and the Freudenthal variety.
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Chapter 1

Preliminaries

1.1 Isotropic vector bundles

For a smooth connected scheme X containing 1
2 an isotropic vector bundle V over X is

a vector bundle equipped with a symmetric or antisymmetric non-degenerate bilinear

form ω on V ×V with values in a line bundle L over X. If ω is symmetric, (V , ω) is called

orthogonal, whereas if ω is antisymmetric the pair is called symplectic. This form induces

an isomorphism φ : V −→ Hom(V , L) = V∨ ⊗ L. In particular, if V has rank n,

(det V)⊗2 ∼= L⊗n. (1.1)

Definition 1.1.1 (Subbundles, [BC12a, 1.1]). A subbundle W ⊂ V is an OX-submodule

of V s.t. W and V/W are vector bundles.

For a subbundle W ⊂ V of an isotropic vector bundle denote by W⊥ ⊂ V the orthog-

onal complement of W defined by the short exact sequence

0 → W⊥ → V → Hom(W , L) → 0, (1.2)

where the epimorphism is defined by ω|W . Then W is called isotropic, if W ⊂ W⊥, i.e.

if the restriction of ω to W vanishes. Clearly rk(W) ≤ n and we say that W is maximal

isotropic, if rk(W) = n. Maximal isotropic subbundles do not necessarily exist; however

in case such a bundle W exists, the extension in 1.2 reads

0 −→ W −→ V −→ Hom(W , L) −→ 0. (1.3)

In this case we can reduce equation (1.1) to det V = L⊗n.
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1.2. WITT GROUPS

Denote by Vect(X) the category of vector bundles over X. Then for any V ∈ Vect(X)

the dual is the vector bundle V∗ := Hom(V , OX) and there is a natural isomorphism ωV :

V ∼= V∗∗ which is compatible with the duality in the sense that there is a commutative

diagram

V∗∗∗ V∗

V∗

ω∗
V

ωV∗

Definition 1.1.2 (Symmetric bundles and isometries). (i) A symmetric bundle is an or-

thogonal vector bundle (V , ω) with values in OX such that the isomorphism φ :

V → V∗ induced by ω is compatible with the chosen double-dual identification in

the sense that the square

V V∗

V∗∗ V∗

φ

ω ∼

φ∗

commutes. An isometry of symmetric bundles is an isomorphism ψ : V1 → V2 which

respects the duality in the sense that the following diagram commutes:

V1 V2

V∗
1 V∗

2

ψ

φ1 φ2

ψ∗

(ii) Let MW(X, ∗, ω) be the set of isometry classes of symmetric bundles over X. There

is a monoidal structure on this set by taking orthogonal sums in the obvious way.

1.2 Witt groups

1.2.1 Witt groups of exact categories

In the previous section we constructed the monoid MW of isometry classes of sym-

metric bundles. Now the Witt group of Vect(X) will essentially be this monoid, where we

mod out those bundles admitting maximal lagrangians, i.e. subbundles of half the rank

on which the symmetry vanishes. In the following we discuss this in more detail; see also

[Bal05].
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CHAPTER 1. PRELIMINARIES

Definition 1.2.1 (Metabolic bundles). (i) A sublagrangian of the symmetric bundle (V , φ)

is an isotropic subbundle ι : W ↪→ V . That is, it is a subbundle which satisfies

φ|W = 0, i.e. W ⊂ W⊥, where

W⊥ = ker(V φ−→ V∗ ι∗−→ W∗)

denotes the orthogonal complement of W in V . Moreover, W is called lagrangian if

W is maximal, i.e. if W = W⊥. Note that in this case rk(V) = 2rk(W). Finally,

(V , φ) is called metabolic, if it contains a lagrangian.

(ii) Let NW(X, ∗, ω) be the subset of MW(X, ∗, ω) consisting of the isometry classes of

metabolic bundles.

In this setting Knebusch ([Kne77]) defined the Witt group as follows:

W(X) := W(X, ∗, ω) :=
MW(X, ∗, ω)

NW(X, ∗, ω)
.

Example 1.2.2. For any vector bundle V , the hyperbolic space H(V) given by V ⊕ V∗ with

the symmetry isomorphism

(
0 1

ω 0

)
: V ⊕ V∗ → V ⊕ V∗ ∼= V∗ ⊕ V∗∗

is clearly metabolic; the converse is not necessarily true.

Example 1.2.3. If X = Spec(R) with 1
2 ∈ R× the converse in (i) is true so in particular we

recover W(Spec(k), ∗, ω) = W(k), where W(k) is the classical Witt group of equivalence

classes of non-degenerate symmetric bilinear forms.

Example 1.2.4. Let X = Spec(k) where k is a quadratically closed field. Then a symmet-

ric bundle is given by the data of a symmetric invertible matrix. Two such symmetric

bundles are isometric if and only if the corresponding matrices are congruent, i.e. if one

obtains one from another by conjugation. Recall from linear algebra that any symmet-

ric invertible matrix is diagonalizable with non-zero eigenvalues. Moreover, since in k×

every element is a square, we conclude that any symmetric bundle is isometric to the

symmetric bundle associated with the unit matrix 1n, i.e. MW(X, ∗, ω) = Z. By (i), any

symmetric bundle is equivalent to some symmetric bundle of rank at most one in the

Witt group. In other words, H(1n) ∼= 12n implies NW = 2MW, so we conclude that

W(Spec(k)) = Z/2Z.

9



1.2. WITT GROUPS

Remark 1.2.5 (Shifts and twists). Changing the duality or the double-dual identification

on Vect(X), we obtain shifted and twisted Witt groups as follows:

• Any line bundle L on X gives us a duality V∗L = Hom(V , L) which in turn defines

the twisted Witt group

W(X, L) := W(X, ∗L, ωL).

Note that this twisted Witt group depends only on the class of L in Pic(X)/2. In-

deed, if L′ = L ⊗ M⊗2 an isomorphism V ∼= V∗L′ = V∗ ⊗ L′ induces an isomor-

phism V ⊗ M∗ ∼= V∗ ⊗ L′ ⊗ M∗ = V∗ ⊗ L ⊗ M = (V ⊗ M∗)∗L and vice versa.

Hence the Witt groups for both dualities are isomorphic.

• If ω satisfies the compatibility condition above then so does −ω, and we can con-

sider the Witt group

W2(X) := W(X, ∗, −ω),

which this time describes anti-symmetric bundles. The meaning of the shift will be-

come clear later, when we develop all possible shifts Wi(X).

More generally, for an arbitrary category other than Vect(X), a duality consists of a

contravariant functor ∗ and an equivalence ω : id ∼= ∗ ◦ ∗ such that (ωA)
∗ ◦ (ωA∗) =

idA∗ for any object A. The triple (C, ∗, ω) is then called a category with duality. We will

also assume additivity, i.e. that direct sums are compatible with the duality such that

(A ⊕ B)∗ = A∗ ⊕ B∗. Then we can define the monoid MW(C, ∗, ω) as above. For an ad-

equate definition of NW(C, ∗, ω) we need more structure on our category; otherwise the

considerations in the discussion above cannot be adopted. A subbundle M is a metabolic

subspace of (V , φ), if it fits into a short exact sequence 0 → M → V → M∗ → 0. This

leads to the notion of exact categories. Roughly speaking an additive category is exact, if it

is equipped with a class E of short exact sequences (the admissible short exact sequences)

subject to some compatibility conditions (see for instance [Qui73]). Finally an exact cate-

gory with duality is an addtive exact category equipped with a duality such that the dual

of an admissible short exact sequence is again admissible. In this more general setting

one is now able to define NW(C, ∗, ω) and hence

W(C, ∗, ω) :=
MW(C, ∗, ω)

NW(C, ∗, ω)
. (1.4)

As mentioned above taking C = Vect(X) one recovers Knebusch’s classical Witt group.

10
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1.2.2 Triangular Witt groups: Derived Witt groups of schemes

So far we have introduced several Witt groups in a geometric setting, but they still lack

a cohomological flavour. Ideally, we would like to have a cohomology theory for Witt

groups, in which the Witt groups defined above appear in certain degrees. Having this,

one is provided many well-known tools for computations of Witt groups as we know

them, for instance, from algebraic geometry or the theory of Chow groups. Precisely

such a cohomology theory was constructed by Balmer in [Bal00] and [Bal01]: For the

derived Witt groups, starting with an exact category with duality, we consider the derived

category of chain complexes which is not exact, but it is still triangulated. Adapting the

notion of metabolic spaces, one can define Witt groups of triangulated categories and

these will be exactly the objects we want to have.

Let (K, ∗, ω) be an additive category with duality. Recall that in an exact category with

duality we have a collection of short exact sequences such that all dual sequences are also

short exact. In a triangulated category we instead have a collection of sequences

A u−→ B v−→ C w−→ T(A), (1.5)

the distinguished or exact triangles, where T is some fixed endofunctor, called the transla-

tion functor. There is an obvious notion of morphisms between triangles and there are

certain conditions (T1)-(T4) (see e.g. [Ver77]) which essentially are adapted versions of

the conditions on exact categories that the triangles need to satisfy. We say that (K, ∗, ω)

is a triangulated category with δ-duality for δ = ±1 if T(A∗) = T−1(A)∗, the functor T

commutes with the double-dual isomorphism ω, and the "δ-dual" triangle

C∗ v∗
−→ B∗ u∗

−→ A∗ δ·T(w∗)−−−−→ T(C∗) (1.6)

of any distinguished triangle as in (1.5) is again distinguished. In this context, we can de-

fine the monoid MW(K, ∗, ω) of symmetric spaces exactly as before. However, since the

definition of metabolics involved short exact sequences, a triangular version of metabolic

spaces needs to be established (see [Bal01, §2]). At the end the triangular Witt group is

again defined as

W(K, ∗, ω) :=
MW(K, ∗, ω)

NW(K, ∗, ω)
. (1.7)

This leads us to the notion of shifted Witt groups:

11
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Remark 1.2.6 (Shifted Witt groups). Let (K, ∗, ω) be a triangulated category with δ-exact

duality. Then the n-shifted duality on K is defined as

Tn(K, ∗, ω) :=
(
K, Tn ◦ ∗, (−1)

n(n+1)
2 · δn · ω

)

and it is again a triangulated category, but this time δn := (−1)n · δ-exact (see [Bal00], in

particular, for the cone consruction in §1). We then define the shifted Witt groups as

Wn(K, ∗, ω) := W(Tn(K, ∗, ω)). (1.8)

Now given a scheme (as usual over Z[ 1
2 ]) or more generally an exact category with

duality (E , ∗, ω), we want to construct a triangulated category such that the triangular

Witt groups coincide with the usual Witt groups. This can be done by considering chain

complexes with the right notion of morphisms.

Definition 1.2.7. Let (E , ∗, ω) be an exact category with duality and denote by K(E) the

category of chain complexes over E with morphisms up to chain homotopies. Let further

Kb(E) be the subcategory of bounded chain complexes. Then the duality on E induces a

(canonical) duality on Kb(E) by

(
· · · → C1

d1−→ C0
d0−→ C−1

d−1−−→ . . .
)∗

=

(
· · · → C∗

−1
d∗

0−→ C∗
0

d∗
1−→ C∗

1
d∗

2−→ . . .
)

,

turning Kb(E) into a triangulated category with duality, so technically we can compute

the Witt group of this category (the shifts again given by moving all terms by one to the

left and triangles are defined using the mapping cone construction (cf. [Bal01, §2])). Now

one could define the triangular Witt groups of E by W(E) := W(Kb(E)), but since the

functor E → Kb(E), which sends an object C to the complex · · · → 0 → C → 0 → . . . ,

concentrated in degree zero, does not send short exact sequences to distinguished trian-

gles in general (but only to triangles which are quasi-isomorphic to a distinguished one),

we cannot expect to end up with a nice generalization of the usual Witt groups. Instead,

we need to turn quasi-isomorphisms into isomorphisms by passing to the derived category

Db(E) by localizing the morphisms at the class of quasi-isomorphisms. The triangulated

structure survives this localization and we can finally define the derived Witt group

Wder(E , ∗, ω) := W(Db(E), ∗, ω) (1.9)

as the triangulated Wtt group of the derived category Db(E) with induced duality; this is

discussed in much more detail in [Bal01] to which we refer the reader.

12
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Theorem 1.2.8 (Usual=derived, [Bal01, 4.3]). Assume that 1
2 ∈ E . Then the canonical functor

E → Db(E) induces a group isomorphism

Wusual(E , ∗, ω) −→ Wder(E , ∗, ω).

In particular, for a scheme X over Z[ 1
2 ], the Witt group

W(X) := W0(X, OX) := Wusual(Vect(X), Hom(−, OX), ω)

with the canonical double-dual identification ω satisfies

W(X) ∼= Wder(Db(Vect(X)), Hom(−, OX), ω).

As in Remark 1.2.6, we can define shifted Witt groups by considering shifted dualities.

In Db(E) the shift is given by moving the terms in a complex to the left, so the n-th shifted

duality is given by

(
· · · → C1

d1−→ C0
d0−→ C−1 → . . .

)∗n

=

(
· · · → C∗

−1+n
d∗
−1+n−−−→ C∗

n
d∗

n−→ C∗
1+n → . . .

)
.

The double-dual identification ω on E induces one on Db(E) and we define (see 1.2.6)

Wn
der(E , ∗, ω) := W

(
Db(E), ∗n, (−1)

n(n+1)
2 ωn

)
. (1.10)

Definition 1.2.9. For a scheme X over Z[ 1
2 ] and a line bundle L ∈ Pic(X) we define the

n-th shifted Witt group of X twisted by L by

Wn(X, L) := W
(

Db(Vect(X)), (Hom(−, L))n , (−1)
n(n+1)

2 ωn

)
,

where we denote by (Hom(−, L))n the n-th shifted duality induced on the derived cate-

gory by the duality Hom(−, L) on Vect(X).

Remark 1.2.10 (Two periodicities). The Witt groups are four-periodic in the shifts. From

Tn(K, ∗, ω) = Tn+2(K, ∗, −ω) one deduces Wn+4(X, L) ∼= Wn(X, L) for any n ∈ Z and

L ∈ Pic(X). For simplicity, we denote the four different Witt groups by W0, W1, W2 and

W3. There is a second periodicity, the square periodicity on the twists: As already seen in

remark 1.2.5, the Witt group shifted by a line bundle L only depends on the class of the

line bundle in Pic(X)/2. However, the computation of Wn(X, L) involves the choice of a

representative of such a class which leads to the theory of alignments and lax-similtude.

This will be discussed in sections 1.2.9, 1.2.10.
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1.2.3 Coherent Witt groups

With a scheme one can associate triangulated categories other than the derived one

and hence construct other Witt groups. Consider the category Mc(X) of coherent mod-

ules over X and the associated derived category Db(Mc(X)). Again we have dualities

on Db(M(X)), which however are not necessarily induced by line bundles. We have the

more abstract notion of a dualizing complex which is an object K ∈ Db(M(X)) such that the

right derived functor RHom(−, K) induces an equivalence Db(Mc(X))op ∼= Db(Mc(X)).

We then define

Wcoh(X, K) := W(Db(Mc(X)), RHom(−, K), ω)

where ω is a canonical double-dual identification (see e.g. [Gil03]). There is again a notion

of twists and shifts as for derived Witt groups. We collect some properties of coherent Witt

groups and dualizing complexes:

Remark 1.2.11. • Two dualizing complexes differ only by a shifted line bundle, i.e.

given dualizing complexes K, K′ there is a line bundle L ∈ Pic(X) and n ∈ Z s.t.

K ∼= K′ ⊗ L[n] in the derived category, i.e. the two complexes are quasi-isomorphic

([Nee10, 3.9]). Here, a shifted line bundle is the complex concentrated in degree n.

• If X is Gorenstein, OX itself, concentrated in degree zero, is a dualizing complex

and hence dualizing complexes are simply shifted line bundles. In this case the

canonical functor Db(Vect(X)) → Db(Mc(X)) (think of Vect(X) ⊂ Mc(X) to be

the locally free sheaves) induces homomorphisms Wn
der(X) → Wn

coh(X).

• This homomorphism is an isomorphism for smooth schemes ([Gil02, 2.13]).

• From now on we write W(−) for derived and W̃(−) for coherent Witt groups.

1.2.4 Pull-backs, push-forwards, base change

Let f : X → Y be a morphism of separated and noetherian schemes. Then the functor

f ∗ admits a left derived functor L f ∗ on Db(Vect(X)) which, under certain conditions

([CH11]) and in particular, when X and Y are regular, restricts to a functor L f ∗ : Mc(Y) →
Mc(X) with the notation from above. If moreover for a dualizing complex KY on Y the

complex L f ∗(KY) is again dualizing, then this functor induces a map

f ∗ : W̃n(Y, K) → W̃n(X, L f ∗(K)) (1.11)

on coherent Witt groups, called the pull-back. If X, Y are regular, we can replace dualizing

complexes by (shifted) line bundles and coherent by derived Witt groups and the pull-

14
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back map reads

f ∗ : Wn(Y, L) → Wn(X, f ∗L). (1.12)

Similarly, f admits a right derived functor R f∗ on the derived category of quasi-coherent

OX-modules which, under certain conditions, restricts to a functor R f∗ : Db(M(X)) →
Db(M(Y)). Then R f∗ admits a right adjoint functor f !. If additionally for a dualizing

complex KY on Y the complex f !KX is dualizing, then this functor induces a map

f∗ : W̃n(X, f !KY) → W̃n(Y, KY) (1.13)

on coherent Witt groups, called the push-forward. If f is equidimensional, we define

ω f := f !OY[d] where d is the relative dimension. If f is proper and a locally complete

intersection (e.g. smooth), ω f is a line bundle and called the relative canonical line bun-

dle. Denote by ⊗L the left derived functor on the derived category of the tensor product.

Then, if Y is Gorenstein, we can rewrite the push-forward map as

f∗ : W̃n+d(X, ω f ⊗L L f ∗KY) → W̃n(Y, KY)

and as

f∗ : Wn+d(X, ω f ⊗ f ∗L) → Wn(Y, L), (1.14)

if both X, Y are smooth. In the following cases we are able to describe the relative canon-

ical line bundle:

• If f : X → Y is smooth and proper, the relative canonical bundle is given by ω f =

det T∗
X/Y, where T∗

X/Y denotes the dual of the relative tangent bundle. In particular,

if E is a vector bundle of rank r + 1 over X (see section 1.2.13), then we have for the

associated projective bundle p : P(E) → X that

ωp = OP(E)(−1)⊗r+1 ⊗ p∗(det E). (1.15)

Similarly, if π : GrX(d, V) → X is the Grassmann bundle parametrizing rank d

subbundles of a vector bundle V over X of rank d + e, we have ([BC09, A.9(i)] and

[BC12a, 1.5])

ωπ = OGrX(d,V)(−1)⊗(d+e) ⊗ π∗(det V)⊗(−d). (1.16)

• If ι : Z ↪→ X is a regular closed immersion, the relative canonical bundle is ωι =

det NZ/X, the determinant of the normal bundle ([BC09, A.9(ii)]). In particular, if

ι : D ↪→ X is the inclusion of a Cartier divisor, ωι = O(E)|E = OE(−1).
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Pull-backs and push-forwards are compatible in the following sense:

Theorem 1.2.12 (Base-change, [CH11, Thm. 5.5]). Let

W Y

X Z

f

g g

f

be a pull-back diagram of Noetherian, separated schemes such that push-forwards along horizontal

and pull-backs along vertical maps exist. Let KZ be a dualizing complex on Z. Then there is map

ε : Lg∗ f !KZ → f
!
Lg∗KZ of dualizing complexes on W. Moreover, if the square is flat (i.e. f is

flat), then ε is an isomorphism and the induced square on Witt groups commutes, i.e. we have

g∗ ◦ f∗ = f ∗ ◦ ε ◦ g∗.

1.2.5 Witt groups with support

Let Z ⊂ X be a closed subscheme. An element in Db(Vect(X)) is a complex and we

say it has support in Z, if the stalks of all its homology modules vanish outside of Z. Then

the full subcategory Db
Z(Vect(X), ∗, ω) of those complexes is triangulated with duality

and double-dual identification inherited from Db(Vect(X)) = Db(P(X)). Its Witt groups

are called the Witt groups with support in Z and denoted by Wn
Z(X, L) := Wn

der,Z(X, L). In

the extreme case, we of course have Wn
X(X, L) = Wn(X, L) and there is a natural map

e : Wn
Z(X, L) → Wn(X, L), referred to as the extension of support. In the same manner we

can define the coherent Witt groups with support. We still have an isomorphism between

the usual and derived Witt groups: The canonical functor in Remark 1.2.11 restricts to a

homomorphism on the supported derived categories and induces an isomorphism in the

regular case.

Given a closed embedding ι : Z ↪→ X, it is natural to ask whether the Witt groups

with support may be written in terms of the Witt groups of Z. The canonical functor of

triangulated categories Db(P(Z)) → Db(P(X)) (with the induced duality) clearly factors

through the supported category Db
Z(P(X)). If Z and X are smooth, the push-forward

induces a dévissage isomorphism

ι∗ : Wn(Z, ι!L) = Wn−d(Z, ωι ⊗L|Z) ∼−→ Wn
Z(X, L). (1.17)

A good reference for more details on supported Witt groups is [Gil03].
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1.2.6 Localization

One of the benefits of the theory of derived and coherent Witt groups compared to the

classical Witt groups is the repertoire of cohomological tools. One of the most important

properties for us will be localization, which we describe in the following.

The key observation is that from a short exact sequence of triangulated categories we

are able to construct a 12-periodic exact sequence as follows ([Bal00]): Given a triangu-

lated category with duality K with 1
2 ∈ K and a system S of morphisms in K, which is

closed under duality, we can localize K by S to obtain another triangulated category with

duality S−1K together with a map W(K) → W(S−1K). Denoting by J(S) the kernel cate-

gory of this map, one shows that this gives rise to a short exact sequence of triangulated

categories

0 → J(S) → K → S−1K → 0.

This in turn will induce a long exact sequence

· · · → Wn(J(S)) → Wn(K) → Wn(S−1K)
∂−→ Wn+1(J(S)) → Wn+1(K) → . . . , (1.18)

where, of course, the construction of the connecting homomorphism ∂ is the interesting part.

Let us now apply this to our derived and coherent Witt groups. Let X be a Noetherian

and separated scheme, let v : U ↪→ X be an open subscheme such that the inclusion

of the closed complement of codimension d is a regular closed embedding ι : Z ↪→ X.

Let K = Db(Vect(X)). If X is smooth, Db(Vect(U)) is the localization of K by some

multiplactive system S (see e.g. [Bal99, §5]). Hence, by dévissage (1.17), the localization

long exact sequence in the regular case takes the form

· · · → Wn−1(U, L|U) ∂−→ Wn−d(Z, ωι ⊗L|Z) ι∗−→ Wn(X, L) v∗
−→ Wn(U, L|U) ∂−→ . . . , (1.19)

where we denote by L|U the restriction v∗L of the line bundle L to U and similarly for

L|Z. If the schemes are not smooth, starting with K = Db(Mc(X)), the sequence becomes

· · · → W̃n−1(U, K|U) ∂−→ W̃n
Z(X, K) e−→ W̃n(X, K) v∗

−→ W̃n(U, K|U) ∂−→ . . . (1.20)

for any dualizing complex K on X, where we denote by e the extension of support map, and

again by K|U the restricted dualizing complex on U. Note that we still have a map

ι∗ : W̃n(Z, ι!K) → W̃n
Z(X, K),

but it is not necessarily an isomorphism.
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1.2.7 Projective bundles

For a vector bundle E of rank r + 1 over a scheme X we consider the corresponding

projective bundle p : P(E) → X of rank r. For any oriented cohomology theory H one has

H∗(P(E)) ∼= H∗(X)⊕(r+1)

simply by definition (e.g. [LM01]). Most of the classical theories are known to be oriented,

such as K-theory and Chow theory. However, in the 80s, Arason showed W0(Pn
k ) =

W(k), proving that (at least the untwisted and unshifted) Witt groups cannot form an

oriented cohomology theory. Only about twenty years later, Walter ([Wal03]) and Nena-

shev ([Nen09]) independently computed the Witt groups for arbitrary shifts and twists,

i.e. the groups Wn(P(E), L) for any n ∈ Z/4 and line bundle L ∈ Pic(P(E))/2; recently

Rohrbach generalized these results to Grothendieck-Witt spectra ([Roh20]). Note that the

Picard group has one generator OP(E)(1) over the base, so line bundles over P(E) are of

the form

L = OP(E)(1)
⊗m ⊗ p∗M = OP(E)(m)⊗ p∗M (1.21)

for some M ∈ Pic(X) and m ∈ Z. The projective bundle formula for Witt groups reads

as follows:

Theorem 1.2.13 (Projective bundle formula). Depending on m and n in the notation above

we have:

(i) If r is even, then the pull-back along p induces an isomorphism

Wn(P(E), p∗M)
p∗

←− Wn(X, M) (1.22)

and the push-forward along p induces an isomorphism

Wn(P(E), OP(E)(1)⊗ p∗M)
p∗−→ Wn−r(X, M⊗ det E∗) (1.23)

where in the second isomorphism we suppressed the periodicity isomorphism associated with

ωp ⊗ p∗(M⊗ det E∗) ∼= OP(E)(−r − 1)⊗ p∗(det E)⊗ p∗(M⊗ det E∗).

(ii) If r is odd, the twisted Witt groups vanish:

Wn(P(E), OP(E)(1)⊗ p∗M) = 0. (1.24)

(iii) If r is odd and the twist is trivial, the pull-back and push-forward fit into a (not necessarily
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split) long exact sequence

· · · → Wn(X, M)
p∗
−→ Wn(P(E), p∗M)

p∗−→ Wn−r(X, M⊗ det E∗) θ−→ . . . (1.25)

(where again in p∗ is suppressed a periodicity isomorphism). If E admits a subbundle of

even rank over X, the sequence splits, so in this case

Wn(P(E), p∗M) ∼= Wn(X, M)⊕ Wn−r(X, M⊗ det E∗). (1.26)

1.2.8 The Balmer-Calmès setup

Given a regular closed embedding ι : Z ↪→ X of smooth schemes with open comple-

ment v : U ↪→ X, we can consider the corresponding localization long exact sequence

(1.19)

· · · → Wn−1(U, L|U) ∂−→ Wn−d(Z, ωι ⊗L|Z) → Wn(X, L) → Wn(U, L|U) ∂−→ . . . .

The computation of the Witt groups of X becomes a lot easier, when the connecting homo-

morphism vanishes; in this case, the long exact sequence splits into short exact sequences.

If the Witt groups of the "smaller" schemes Z and U are known, then we can obtain a com-

plete description of the Witt groups of X. Balmer and Calmès have developed a setup in

which we can describe this map as a composition of push-forwards and pull-backs along

certain involved maps.

Setup 1.2.14 (Balmer-Calmès setup, [BC09, 1.1]). Given a regular closed embedding of

schemes ι : Z ↪→ X with open complement v : U ↪→ X, let π : BlZ(X) → X be the

blow-up of X along Z and denote by ι̃ : E ↪→ BlZ(X) the inclusion of the exceptional

divisor which is the pojective bundle π′ : E = P(NZ/X) → Z over Z. Hence we have a

commutative diagram
Z X U

E BlZ(X)

ι v

ṽ
π′

ι̃

π (1.27)

If the open complement U is an affine bundle over some scheme and the bundle map

factors through the blow-up of X along Z, then for an oriented and homotopy invariant

cohomology theory this is already sufficient to show that the connecting homomorphism

splits. This is not necessarily the case for Witt groups, but a first good step.
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Hypothesis 1.2.15 (Balmer-Calmès hypothesis, [BC09, 1.2]). In Setup 1.2.14 assume that

there is a scheme Y and map α̃ : BlZ(X) → Y such that α := α̃|U = α̃ ◦ ṽ : U → Y is an

affine bundle, i.e. the diagram

Z X U

E BlZ(X) Y

ι v

α
ṽ

π′

ι̃

π

α̃

(1.28)

commutes.

Under this hypothesis, for an oriented and homotopy invariant cohomology theory,

the composition π∗ ◦ α̃∗ ◦ (α∗)−1 is a splitting of v∗ in the localization sequence. However,

for Witt groups this hypothesis does not guarantee the vanishing of the boundary map

since the push-forward π∗ does not always exist. Nevertheless, we still can describe the

map in all cases which we briefly discuss in the following.

For the Picard group of the blow-up we have Pic(BlZ(X)) = Pic(X)⊕ ZO(E) where

O(E) denotes the class of the exceptional divisor E in the Picard group. Given a line

bundle L ∈ Pic(X) over X, the hypothesis above gives us another line bundle

L′ := (α̃∗ ◦ (α∗)−1 ◦ v∗)(L) ∈ Pic(BlZ(X)) = Pic(X)⊕ ZO(E).

Define λ(L) ∈ Z such that

L′ = π∗(L)⊗O(E)⊗λ(L).

From (1.14) we see that a push-forward along some map f starting at a Witt group with

a certain twist only exists if the twist lies in the image of f !. In our situation, it turns out

that fixing the twist L′ we can either push-forward along π or along π′ after restricting to

the exceptional divisor. This is determined by the parity of λ(L) which in the end decides

whether the localization long exact sequence splits or not:

Theorem 1.2.16 (Connecting homomorphism, [BC09, 2.3, 2.6]). (i) If λ(L) �≡ d mod 2

we can push-forward along π and the connecting homomorphism vanishes, i.e. the localiza-

tion sequence splits.

(ii) If λ(L) ≡ d mod 2 we can push-forward along π′ and the connecting homomorphism is

given by

∂ = ι∗ ◦ π′
∗ ◦ (α̃ ◦ ι̃)∗ ◦ (α∗)−1 : Wn(U, L|U) → Wn−d+1(Z, ωι ⊗L|Z).
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Example 1.2.17. If X = Gr(d, V) is the Grassmannian parametrizing d-dimensional sub-

spaces of a given (d + e)-dimensional vector space V, V1 ⊂ V a subspace of codimension

one and Z = Gr(d, V1), then we can choose Y = Gr(d − 1, V1) and this setup satisfies

1.2.15 above with Z ⊂ X of codimension d. One checks that one has projective bundles π′

of rank d − 1 and α̃ ◦ ι̃ of rank e − 1. If d and e are odd, by the projective bundle formula

all factors of ∂ for λ(L) ≡ 0 mod 2 are isomorphisms, so Wn(X, L) = 0 for this twist L.

Since d is odd, this twist is just L = OGr(d,V)(1) =: O(1), so we conclude that the twisted

Witt groups vanish:

Wn(Gr(d, V), O(1)) = 0.

Remark: For L = O (d and e still odd), the connecting homomorphism vanishes. Hence,

since ωι = O(−1), we have a splitting

Wn(Gr(d, V), O) ∼= Wn(Gr(d − 1, V1), O)⊕ Wn−d(Gr(d, V1), O(1)).

Even if we have not computed the groups on the right hand side, these are the Witt groups

of smaller Grassmannians, so one can obtain a complete description using an inductive

approach. This has been carried out for orthogonal Grassmannians in [HMX21].

1.2.9 Lax-similtude

In the next two sections we define the total Witt group and enlighten the notion of a

total basis of the total Witt group. This is all discussed in detail in [BC12b] to which we

refer. Let

Wtot(X) :=
⊕

i∈Z/4Z,
[L]∈Pic(X)/2

Wi(X, L) (1.29)

be the total Witt group of X. We already pointed out in Remark 1.2.10 that this total Witt

group is not defined canonically, since the choice of a representative in a class of a line

bundle is required. This is the main disruption and we need to make sure that in the end

this choice does not affect us in what we do.

The main idea of solving this issue is to identify in a Witt group those elements which

are mapped onto each other by a possible isomorphism between the Witt group, which

itself is induced by a square periodicty isomorphism

φ : L⊗M⊗2 ∼−→ L′ (1.30)

of line bundles over X of the same class in Pic(X). Such an isomorphism is called an
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alignment and denoted by A : L� L′; it induces an isomorphism

Wn(X, L) periodicity−−−−−−→ Wn(X, L⊗M2)
induced−−−−→ Wn(X, L′) (1.31)

on Witt groups (this remains true for supported Witt groups), denoted by A�. In this

context, two elements w ∈ Wn(X, L′) and w′ ∈ W(X, L′) are called lax-similar, written

w � w′, if A�(w) = w′ for some alignment A : L � L′ and this defines an equivalence

relation. There is also a relative version: If the scheme X is defined over a base S, an S-

alignment L � L′ is again an isomorphism as in (1.30), but this time in the relative Picard

group PixS(X)/2 = (Pic(X)/Pic(S)) /2. In this case it follows that there is a well-defined

Wtot(S)-module structure on Wtot(X) which we call the lax-structure.

Recall from section 1.2.4 that, given a proper map f : X → Y of relative dimension d

of smooth schemes and L ∈ Pic(Y), we have induced maps

f ∗ : Wn(Y, L) → Wn(X, f ∗L), f∗ : Wn(X, ω f ⊗ f ∗L) → Wn−d(Y, L),

the pull-back and push-forward. It is immediate that these maps behave well with align-

ments. So in the target of the f ∗ we can allow instead of the twist f ∗L any twist L′

aligned to f ∗L and similarly, in the domain of f∗ we allow any line bundle L′ aligned to

ω f ⊗ f ∗L. This gives us the notion of the lax-pull-back and lax-push-forward

( f ∗)lax : Wn(Y, L) → Wn(X, L′), ( f∗)lax : Wn(X, L′) → Wn−d(Y, L) (1.32)

and these maps behave well under composition. Moreover, alignment isomorphisms are

combatible with localization.

So what are these alignments and lax-similitude good for? The answer is: As long as

we do only care for Witt classes up to lax-similtude, we do not have to care about the exact

twists, but only about the twists up to alignments. This really allows to simply choose

representatives of classes in Pic(X)/2 in (1.29). Similarly, the domain of a lax-pull-back

and the target of a lax-push-forward only matter up to alignment.

1.2.10 Total bases

Given Witt classes, each of them in a certain shift and twist, in order to make use of the

notion of a basis, we need to know what a linear combination is. Having this, a family of

Witt classes forms a basis if, as usual, the family is "linear independent" and "generating".

In this section we make this more precise and state a useful method how to inductively

obtain such bases from the localization sequence. This will cover [BC12b, §5- §7].
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Let SS be the category of smooth, noetherian schemes over the base S subject to the

conditions (I)-(III) in [BC12b, 4.1]. Roughly these assumptions make sure that given a

map X → Y, the pull-backs of two line bundles cannot be aligned over X without being

so over Y. As pointed out in the previous section, there is a Wtot(S)-module structure on

Wtot(S). A linear combination of Witt classes wi ∈ Wni(X, Li) is an expression

λ1 · w1 + . . . + λk · wk (1.33)

with suitable elements λi ∈ Wtot(S) and a suitable scalar multiplication ·. Both can be

extracted from the module structure which can be made explicit in shifts and twists. The

requirement on the coefficients λi then is that all the products λi · wi should all land in

some common Wk(X, L), see [BC12b, 5.2 and 6.2].

Definition 1.2.18 (Total bases, [BC12b, 6.3-6.6]). In the setting above, the family of Witt

classes {w1, . . . , wk} is called:

(i) totally independent over S, if the equality λ1 · w1 + . . . + λk · wk = 0 induces λi = 0 for

all i;

(ii) totally generating Wtot(X) over S, if any element in the total Witt group can be written

as in (1.33);

(iii) a total basis of Wtot(X) over S, if it is both totally independent over S and totally

generating.

Consider now the localization long exact sequence

· · · → Wn−1(U, L|U) ∂−→ Wn
Z(X, L) e−→ Wn(X, L) v∗

−→ Wn(U, L|U) ∂−→ . . .

where the scheme of interest X is defined over the smooth, separated, noetherian scheme

S over Z[ 1
2 ]. Assume, that

v∗ : PicS(X)/2 → PicS(U)/2 (1.34)

is injective. Note that this is true in many, but not in all cases. Then we can construct a

total basis of Wtot(X) out of total bases of the total Witt group of the "smaller" scheme

U and the supported Witt group Wtot
Z (X), which by dévissage (1.17) itself can also be

identified with the total Witt group of the "smaller" Z in the following way (we call U and

Z smaller as in the case of Grassmannians these subschemes are again Grassmannians of

lower dimensions).
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vi
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k
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e

w′
i

0

wj

v∗
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∂

∂

Wtot
Z (X) Wtot(X) Wtot(U)

FIGURE 1.1. Illustration of Theorem 1.2.19, see [BC12b, Fig. 1]. Essentially it

says that the localization sequence is still exact, if we replace equalities

by lax-similitudes.

Theorem 1.2.19 ([BC12b, 7.1]). With notation above let I , J and K be index sets and

v′
k, vi ∈ Wtot

Z (X), w′
i, wj ∈ Wtot(X), u′

j, uk ∈ Wtot(U)

be Witt classes of the respective total Witt groups for all i ∈ I , j ∈ J and k ∈ K. Further, assume

that

e(vi)� w′
i, v∗(wj)� u′

j, ∂(uk)� v′
k

for all i, j, k. Then

e(v′
k) = 0, v∗(w′

j) = 0, ∂(u′
k) = 0.

Moreover, if any two of the sets {v′
k, vi}, {w′

i, wj} or {u′
j, uk} form a total basis of Wtot

Z (X),

Wtot(X) or Wtot(U), then so does the third.

Remark 1.2.20. The injectivity assumption in (1.34) often fails., e.g. in the case of Gras-

mannians ([BC12a]). In this case, one needs to consider a subset P ⊂ PicS(X)/2 such that

the restriction of v∗ is injective. One then ends up with a totally generating set and total

basis only for the P-part of the total Witt group, i.e. for those Witt groups whose twists are

in P. This is not as much as an obstruction as one might think: Such a subset can always

be found and one may "glue" together bases of different parts together as explained in

[BC12b, 6.10] and as it was necessary for the ordinary Grassmannian. However in our

applications (1.34) is always satisfied, so we do not include this discussion here.
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Using dévissage, we can "transmit" total bases of the supported total Witt group Wtot
Z (X)

to total bases of Wtot(Z). Similarly, due to homotopy invariance, affine bundles come with

a similar property.

Lemma 1.2.21 ([BC12b, 6.16]). (i) Let ι : Z ↪→ X be a closed immersion of schemes in SS of

constant codimension d s.t. ι∗ : PicS(X)/2 → PicS(Z)/2 is injective. Then a family {vi}
of Witt classes in Wtot(Z) is a total basis if and only if the family {ι∗(vi)} is a total basis of

Wtot
Z (X).

(ii) Let α : U → Y be an affine bundle. Then a family {vi} of Witt classes in Wtot(Y) is a total

basis if and only if the family {α∗(vi)} is a total basis of Wtot(U).

1.3 Functors of points

In this section we discuss the language of functors of points which we will use later on

for intuitive descriptions of the considered schemes. See [Kar01] for more details.

For a scheme X, the functor of points is the functor

F : Aff → Set, F (Spec(A)) = Mor(Spec(A), X).

If X is defined over a commutative unitary ring R, we define F (Spec(A)) as above for

any R-algebra A. If X is defined over a scheme S, we define F (Spec(A)) as above for

any affine scheme Spec(A) → S over S. If on the other hand, for a functor Aff → Set

(resp. a R-functor R-Alg → Set) there is a scheme X (resp. a scheme over R) such that F
is isomorphic to the functor of points of X, we call F representable. The functor F is called

local if it is a sheaf in the Zariski-toplology on Aff (resp. the right category). There is a

Yoneda-like equivalence between these objects: Any representable R-functor determines

a unique scheme X over R, the geometric realization of F .

Definition 1.3.1 (Subfunctors). Let F , G be functors as above.

(i) G is called a subfunctor of F , if G(A) ⊂ F (A) for all suitable A (i.e. Spec(A) affine,

A an R-algebra or Spec(A) affine over S) and

G( f : A → B) = F ( f )|G(A).

(ii) If G ⊂ F is a subfunctor and f : F′ → F is a morphism, the inverse image of G w.r.t

the morphism f is the subfunctor G′ ⊂ F′ defined by G′(A) = f (A)−1(G(A)).
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Assume now that G ⊂ F is a subfunctor and let F′ = Spec(R), i.e. F (A) = Mor(R, A).

Then we also define the following:

(iii) The subfunctor G ⊂ F is called open, if for any A and any morphism of schemes

f : Spec(R) → F there is an ideal I ⊂ R such that

G′(A) =
{

φ ∈ F′(A) = Mor(R, A) | φ(I) · A = A
}

.

If F is representable, so is G by a unique open subscheme.

(iv) The subfunctor G ⊂ F is called closed, if for any A and any morphism of schemes

f : Spec(R) → F there is an ideal I ⊂ R such that

G′(A) =
{

φ ∈ F′(A) = Mor(R, A) | φ(I) = 0
}

.

If F is representable, so is G by a unique closed subscheme.

Remark 1.3.2 (Criteria for coverings and representability). Let F be a functor and let

{Gi}i∈I be a family of subfunctors of F . Then we say that the family {Gi} covers F , if

for any field A the subsets Gi(A) cover F (A), i.e. if F (A) =
⋃ Gi(A) as a set. Moreover

we have the following:

Representability. A functor F is representable if and only if it is local and covered by

finitely many open subfunctors.

Coverings. If F is representable, a family {Gi} of subfunctors of F such that each Gi

is open or closed covers F , if and only the scheme associated with F is covered by

the corresponding subschemes.

Example 1.3.3 (Affine line). Fix a field k and consider the functor A1 given by

A1(Spec(A)) = HomAff(Spec(A), Spec(k[t])) = Homk−alg(k[t], A)

for any k-algebra A, where as a set A1(Spec(A)) = A. Then the functor Gm given by

Gm(A) = Hom(Spec(k[t, t−1], A)

is called the multiplicative group of the affine line A1. It is a subfunctor of A1, since as sets

we have Gm(A) = A× ⊂ A for any k-algebra A. Of course in general A× ∪ {0} � A,

but at least for fields we have A1(K) = Gm(K) ∪ {0} which gives us the well-known

decomposition A1 = Gm ∪ {0}.
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1.4 Grassmann and flag bundles

Example 1.4.1 (Grassmann bundles). Fix a vector bundle V of rank d + e over a smooth

scheme X over Z. Then the functor

F : AffX −→ Set,

F ( f : Spec(R) → X) =

{
P ⊂ f ∗V

∣∣∣∣∣ P, f ∗V/P are direct

summands of rank d and e

}

is called the Grassmann functor and is denoted by GrX(d, V). This functor is repre-

sentable: For its localness see [Kar01, proof of 9.2]. We can obtain an open cover as fol-

lows: Fix an epimorphism p : V → U for some U over X which for any f : Spec(R) → X

induces a map pR : f ∗V → f ∗U . Define a subfunctor GU ⊂ GrX(d, V) by

GU ( f : Spec(R) → X) = {P ∈ GrX(d, V)(R) | pR|P : P → f ∗U is an isomorphism} .

One checks that GU is open and that finitely many of them cover GrX(d, V). Hence, we

conclude that GrX(d, V) is representable by a scheme which we also denote by GrX(d, V).
In the following we interpret the setup of [BC12a, §5]. Fix a subbundle V1 ⊂ V of rank

d+ e − 1. Recall the strong definition of "non-subbundles" ([BC12a, 5.2]): For a subbundle

P ⊂ V we write P
.
�⊂ V1 if

(i) P �⊂ V1 and

(ii) P ∩V1 is a subbundle of P (in the sense of Definition 1.1.1). This is equivalent to say-

ing that the induced map P/(P ∩ V1) = (P + V1)/V1 → V/V1 is an isomorphism.

Now consider the functors Z := ZX(d, V) and U := UX(d, V) given by

ZX(d, V)( f : Spec(R) → X) =
{

P ∈ GrX(d, V)(R) | P ⊂ f ∗V1
}

,

UX(d, V)( f : Spec(R) → X) =
{

P ∈ GrX(d, V)(R) | P
.
�⊂ f ∗V1

}
.

Then Z is closed and U is open. Indeed, for the epimorphism p : V → V/V1 =: U given

by p(P) = (P + V1)/V1 we see that UX(d, V) = GU as above which was proved to be

open. Now for the same epimorphism consider the functor

GrX(d, V)(0)(R) = {P ∈ GrX(d, V)(R) | pR(P) = 0} .

Then one easily verifies Z = GrX(d, V)(0) and by [Kar01, 9.7] this functor is closed.
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We now claim that the Grassmann bundle as a scheme is covered by the subschemes

(again denoted by UX(d, V) and ZX(d, V)) defined by these two functors. This is true by

the remark above: Since GrX(d, V) is representable, Z is closed and U is open, we only

need to show that the functors Z and U cover GrX(d, V), i.e. that for any field R we have

GrX(d, V)(R) = Z(R) ∪ U(R). But this follows from the fact that
.
�⊂ and ⊂ are equivalent

over a field, so the conditions for Z and U in this case are complementary. Note that in

general

ZX(d, V)(R) ∪ UX(d, V)(R) � GrX(d, V)(R).

In the following we introduce some preliminaries about isotropic Grassmann bundles.

For details of the following discussion we refer to [FP98], [PR97] and [Eis06].

For this we are going to use the language of functors of points. Let (V , ω) be an

isotropic vector bundle of rank 2n. Denote by GrX(V) the scheme representing the func-

tor of points (which is also denoted by GrX(V)) whose set GrX(V)(R) consists of all direct

summands of f ∗(V) for f : Spec(R) −→ X (i.e. OX-submodules W of f ∗(V) s.t. W and

f ∗(V)/W are vector bundles). Then GrX(d, V) is the closed subscheme of GrX(V) repre-

senting the closed subfunctor (denoted by GrX(d, V)) for which GrX(d, V)(R) consists of

the submodules in GrX(V)(R) of constant rank d. We now define the functor IGX(V , ω)

by

IGX(V , ω)(R) := {W ∈ GrX(V)(R) | W is isotropic}

which by [Kar01, 13.1] defines a closed subscheme IGX(V , ω) of GrX(V). Analogously

from [Kar01, 13.6, 13.7] we find the scheme IGX(n, (V , ω)).

• If (V , ω) is orthogonal, we will denote this scheme by OGX(n, V).

• If (V , ω) is symplectic, we will denote it by LGX(n, V).

Proposition 1.4.2 ([EPW01, 1.1]). Let (V , ω) be an orthogonal vector bundle over a connected

scheme X and W , W′ ∈ OGX(n, V). Then dimk(x)[W(x) ∩W′(x)] is constant modulo 2.

From now on we require the existence of a maximal isotropic subbundle En of (V , ω).

In particular, the scheme parametrizing maximal isotropic subbundles of V consists of

two connected components which are denoted by OG+
X(n, (V , ω), En) (which is the one

containing En) and OG−
X(n, (V , ω), En) (the other one). They are given by

OG+
X(n, (V , ω), En) =

{
W ∈ OGX(n, V) | dimk(x)[W(x) ∩ En(x)] ≡ n mod 2

}
,

OG−
X(n, (V , ω), En) =

{
W ∈ OGX(n, V) | dimk(x)[W(x) ∩ En(x)] ≡ n − 1 mod 2

}
.
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If there is no ambiguity we will simply write OGX(n, V) := OG+
X(n, (V , ω), En) and

OG−
X(n, V) := OG−

X(n, (V , ω), En).

The scheme IGX(n, V) comes with a structural morphism π : IGX(n, V) −→ X and the

tautological orthogonal subbundle S ⊂ π∗V of rank n, where the latter is the restriction of

the tautological subbundle SGr of the ordinary Grassmannian GrX(n, V).
Recall that we have inclusions IGX(n, V)

j
↪→ GrX(n, V) i

↪→ P (∧nV). Then it is well-

known that Pic(GrX(n, V)) ∼= Pic(X) ⊕ Z[det SGr] and det(S∨
Gr) = i∗OP(∧nV)(1). This

remains valid in the symplectic setting but is not true anymore in the orthogonal one.

Instead this pull-back admits a square root and we have the following:

Theorem 1.4.3. (i) If (V , ω) is orthogonal, the pull-back (i ◦ j)∗OP(∧nV)(1) = det(S∨) has

a unique ample square root denoted by O(1).

(ii) If (V , ω) is symplectic, denote the pull-back (i ◦ j)∗OP(∧nV)(1) = det(S∨) by O(1).

In both cases the scheme IGX(n, V) is smooth over X with Picard group

Pic(X)⊕ Z ∼= Pic(IGX(n, V)), (M, n) �→ π∗(M)⊗O(1)⊗n.

Moreover, writing O(m) = O(1)⊗m, the class of the relative canonical bundle ωIGX(n,V)/X in

the Picard group is given by

ωOGX(n,V)/X = O(−2n + 2)⊗L− n(n−1)
2 , (1.35)

ωLGX(n,V)/X = O(−n − 1)⊗L− n(n+1)
2 . (1.36)

Proof. See [EPW00, §1] and [Pra91, 6.1(i)] for the assertions on the Picard groups. The

relative canonical bundle is given by

ωIGX(n,V)/X := det [TIGX(n, V)]∨ , (1.37)

the determinant of the cotangent bundle. Recall that for the Grassmannian the tangent

bundle is given by

TGrX(n, V) = Hom(S , Q) = S∨ ⊗Q, (1.38)

where S and Q, respectively, denote the tautological and the universal quotient bundle,

respectively, which appear in the short exact sequence

0 → S → π∗V → Q → 0. (1.39)

The bilinear form on V induces an isomorphism φ : V → V∨ ⊗ L, which clearly remains

an isomorphism when pulled back along the structure morphism of the Grassmannian.
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Denote this pullback again by φ. Dualizing (1.39) and tensoring with L we obtain

0 S π∗V Q 0

0 Q∨ ⊗L (π∗V)∨ ⊗ L S∨ ⊗ L 0.

φ (1.40)

By definition the form φ vanishes on S , which gives us vertical maps

0 S π∗V Q 0

0 Q∨ ⊗L (π∗V)∨ ⊗ L S∨ ⊗ L 0,

ψ φ ψ′ (1.41)

which are almost dual to each other in the sense that ψ∨ = ψ′ ⊗ L∨ and ψ′∨ = ψ ⊗ L∨.

Comparing the ranks of Q and S∨ ⊗ L and using [Wei13, Ex. 1.3] we see that ψ′ is an

isomorphism, yielding an isomorphism Q ∼= S∨ ⊗ L. Then

TGrX(n, V)|IGX(n,V) = Hom(S , Q) = Hom(S , S∨ ⊗ L) ∼= T2(S∨)⊗L,

where we use the same notation for the bundles over GrX(n, V) restricted to IGX(n, V).
Now clearly TIGX(n, V) ⊂ TGrX(n, V)|OGX(n,V). For some φ : S −→ Q to be in TIGX(n, V)
means to satisfy some isotropy conditions. If ω is symmetric we obtain

TOGX(n, V) = ∧2(S∨)⊗L (1.42)

(e.g. [HCC20, proof of Lemma 3.2]). Recall that for bundles M, N of ranks m, n we have

det[M⊗N ] = [det M]⊗n ⊗ [det N ]⊗m, (1.43)

det ∧k(M) = [det M]⊗(m−1
k−1 ), (1.44)

det Sk(M) = [det M]⊗(m+k−1
m ). (1.45)

(see [Tor52], [Mar73, §2]). Dualizing (1.42) and taking the top exterior power gives us

the desired result, where Δ = O(−2) as before. In particular, the class of ωOGX(n,V)/X

in PicX(OGX(n, V)) is O(−2n + 2), which is consistent with the case X = Spec(k), cf.

[HCC20, proof of Lemma 3.2]. If ω is antisymmetric, similar calculations show

TLGX(n, V) = S2(S∨)⊗L, (1.46)

proving (ii). �

30



CHAPTER 1. PRELIMINARIES

Example 1.4.4 (Maximal orthogonal Grassmannians). (i) If X = Spec(k) and V is a

k-vector space of dimension 2, we have OGX(1, V) = {pt}. Indeed, if ω is the

symmetric form defined by the matrix

(
0 1

1 0

)
,

the lines generated by (1, 0)� and (0, 1)� are the unique elements of OGX(1, V) and

OG−
X(1, V). More generally, OGX(1, V) = X, if the vector bundle V of rank two

admits a maximal isotropic subbundle. Thus, any submaximal isotropic subbundle

Wn−1 ⊂ V defines 2 unique maximal isotropic subbundles W ∈ OGX(n, V) and

W− ∈ OGX(n, V) containing Wn−1, one in each component.

(ii) If V is of rank 4 then OG−
X(2, V) ∼= P(E2). Indeed, for any 1-dimensional subspace

W ⊂ E2 there is a unique maximal isotropic subspace in OG−
X(2, V) by the previous

discussion.

(iii) If X = Spec(k) for a field k, then the maximal orthogonal Grassmannian is the

homogeneous space Dn/Pn, where Pn denotes a maximal parabolic subgroup asso-

ciated with one of the two right-end simple roots. In this setting, maximal isotropic

subspaces always exist. More generally, such a subbundle always exists if the vector

bundle V is free; in this case it even admits a full flag (this will be discussed later in

more detail).

(iv) If X = Spec(R) for a local ring R, then Pic(X) = 0, so Pic(OGX(n, V)) ∼= Z has a

single generator and no line bundles coming from the base scheme.

(v) Let X be an elliptic curve over a field k, i.e. a smooth, projective algebraic curve of

genus 1 with one point at infinity denoted by 0. Let P ∈ X be a point of order 2

with respect to the group law, i.e. P + P = 2P = 0. If X is the solution set of an

equation y2 = f (x), then such a point is specified by the condition y = 0. Consider

the line bundle L := OX(P) associated with the divisor D = P. Then there is an

isomorphism φ : L⊗L ∼−→ OX. Now define a vector bundle on X by V := OX ⊕L.

By [Har77, Exercise IV.2.7] the line bundle L defines an OX-algebra structure on V
by

(o, l) · (p, m) = (op + φ(l ⊗ m), om + pl)

and an unramified cover π : Y → X of degree 2, where Y := Spec(V) (see [Har77,

Exercise II.5.17]). By Hurwitz’s Theorem, Y is again an elliptic curve and hence,
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in particular, connected as a scheme. On the other hand, the algebra structure on V
and the projection to OX define a symmetric form V ⊗V → OX and we can consider

the orthogonal Grassmann bundle Y′ := OGX(1, V) which comes with a projection

π′ : Y′ → X. This map is finite and hence affine in the sense of [Har77, Exercise

II.5.17(d)] which gives us Y′ ∼= Spec(π′
∗OY′) ∼= Spec(V) and hence Y ∼= Y′, where

the isomorphism π′
∗OY′ ∼= V follows from [Har77, Exercise IV.2.7(c)]. In particular,

in this case the maximal orthogonal Grassmannian does not admit two connected

components as remarked above due to the lack of a maximal isotropic subbundle of

V .

Example 1.4.5 (Lagrangian Grassmannians). If V is a vector space equipped with an an-

tisymmetric form ω, it is clear that any line L = 〈l〉 is isotropic with respect to ω, since

ω(v, v) = 0 for all v ∈ V and, in particular, for the generator l ∈ V of the line. Hence we

conclude L ⊂ L⊥. This directly applies to vector bundles and we obtain identifications

LGX(1, V) = GrX(1, V) ∼= P(V) for any vector bundle V of rank 2. Of course, our formula

for the relative canonical bundle yields the same result as the one from [BC12a]

ωLGX(1,V)/X) = O(−2)⊗L−1 = O(−2)⊗ [det V ]−1 = ωGrX(1,V)/X

and the one for projective bundles in (1.15).

Remark 1.4.6 (Non-maximal isotropic Grassmannians). Clearly there are Grassmanni-

ans parametrizing isotropic subbundles of any rank up to n of a given isotropic vector

bundle of rank 2n. We denote by π : IGX(k, V) → X the scheme over X parametrizing

subbundles of rank k and we write

(i) OGX(k, V) if (V , ω) is orthogonal and

(ii) SGX(k, V) if (V , ω) is symplectic.

Note that both schemes are connected when k ≤ n − 1. The scheme IGX(k, V) again

comes equipped with a tautological subbundle Sk ⊂ π∗V of rank k and we have

PicX(SGX(k, V)) ∼= Pic(X)⊕ Z[det Sk].

The tangent bundle is given by

TIGX(k, V) ∼=

⎧⎨
⎩
(
S∨ ⊗ (S⊥/S)

)
⊕
(
Λ2S∨ ⊗ L

)
, if ω is symmetric,(

S∨ ⊗ (S⊥/S)
)
⊕
(
S2S∨ ⊗ L

)
, if ω is antisymmetric,
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which yields

ωIGX(k,V)/X =

⎧⎪⎨
⎪⎩

O(−2n + k + 1)⊗L−
(

k(k−1)
2 +k(n−k)

)
, if ω is symmetric, k ≤ n − 1,

O(−2n + k − 1)⊗L−
(

k(k+1)
2 +k(n−k)

)
, if ω is antisymmetric

with O(1) := det(S∨). To reveal the formula for k = n in the orthogonal case, we need to

take the generator twice since in this case det Sn has a square root in the Picard group as

discussed above.

Definition 1.4.7 (Isotropic flag bundles). Let (V , ω) be an isotropic vector bundle, k ≥ 1

and d, e two k-tuples of non-negative integers satisfying

0 < d1 < . . . < dk ≤ n, 0 < d1 + e1 ≤ . . . ≤ dk + ek ≤ n.

Then let IFlX(d, e, E•) be the scheme over X which parametrizes flags of subbundles (al-

ways as in Definition 1.1.1) Pd1 ⊂ Pd2 ⊂ . . . ⊂ Pdk
⊂ Pn over X s.t. rk(Pdi) = di,

Pdi ⊂ Edi+ei and moreover Pn ⊂ V is maximal isotropic. If ω is symmetric, we require

dk ≤ n − 1 and Pn to be in the same component as En.

(i) If ω is symmetric, this scheme will be denoted by OFlX(d, e, E•), the orthogonal flag

bundle.

(ii) If ω is antisymmetric, we write SFlX(d, e, E•) for the symplectic flag bundle.

There is an obvious projection fd,e : IFlX(d, e, E•) −→ IGX(n, V) sending a flag to its

highest rank subbundle. If there is no confusion, we omit E• in the notation and simply

write OFlX(d, e). In the orthogonal case, we can analogously define the opposite bundle

f −d,e : OFl−X(d, e, ) −→ OG−
X(n, V). If moreover dk = n − 1 there are projections to the other

components

gd,e : OFlX(d, e) −→ OG−
X(n, V), g−

d,e : OFl−X(d, e) −→ OGX(n, V)

by sending a flag to the unique maximal isotropic subbundle other than Pn containing

Pn−1, as explained in Example 1.4.4(i).

As usual, the isotropic flag bundle comes equipped with several tautological subbun-

dles Sdi , Sn ⊂ π∗V of ranks di and n. Just as in the case for the ordinary Grassmannians

([BC12a, lemma 1.11]), we can describe the orthogonal flag bundle as a tower of ordinary

flag bundles followed by an orthogonal Grassmannian:
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Lemma 1.4.8. For any k-tuples d, e as above let Y := FlX(d, e, E•) be as in [BC12a]. Then

IFlX(d, e) = IGY

(
n − dk, (S⊥

dk
/Sdk

, ω), Sn/Sdk

)
. In other words the isotropic flag bundle is a

tower

IFlX(d, e, E•) −→ FlX(d, e, E•) −→ X

of an isotropic Grassmann bundle over an ordinary flag bundle.

This lemma (including its proof) is entirely analogous to [BC12a, Lemma 1.11] and

allows us to compute the Picard group. According to the notation in [BC12a] let us write

Δn := OOGX(n,V)(−1) for the dual of the generator of Pic(OGX(n, V)) which satisfies

det Sn =

⎧⎨
⎩ Δ⊗2

n , if ω is symmetric,

Δn, if ω is antisymmetric.

In FlX(d, e) we write Δdi for the class of the determinant bundle Sdi .

Proposition 1.4.9. With the notation above we have:

(i) The scheme OFlX(d, e) is smooth over X of relative dimension

dim OFlX(d, e) =

[
k

∑
i=1

(di − di−1)ei

]
+

(n − dk)(n − 1 − dk)

2

and Picard group

Pic(OFlX(d, e)) ∼= Pic(X)⊕

⎡
⎣ k⊕

i=1, ei �=0

ZΔdi

⎤
⎦⊕ Z

√
Δn.

Further the classes of the relative canonical bundles of the maps π : OFLX(d, e) −→ X and

fd,e : OFlX(d, e) −→ OGX(n, V) are given by

[ωπ] = Ll−(λ) ·
k

∏
i=1

[det Edi+ei ]
di−1−di ·

k

∏
i=1

Δdi−di−1+ei−ei+1
di

· Δn−dk−1
n

and [
ω fd,e

]
= Ll′−(λ) ·

k

∏
i=1

[det Edi+ei ]
di−1−di ·

k

∏
i=1

Δdi−di−1+ei−ei+1
di

· Δ−dk
n ,

where Δdi = det(Edi+ei) if ei = 0 and

l−(λ) = − (n − dk)(n − dk − 1)
2

, l′−(λ) =
dk(2n − dk − 1)

2
.
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(ii) The scheme SFlX(d, e) is smooth of relative dimension

dim SFlX(d, e) =

[
k

∑
i=1

(di − di−1)ei

]
+

(n − dk)(n − dk + 1)
2

and Picard group

Pic(SFlX(d, e)) ∼= Pic(X)⊕

⎡
⎣ k⊕

i=1, ei �=0

ZΔdi

⎤
⎦⊕ ZΔn.

Further the classes of the relative canonical bundles of the maps π : SFLX(d, e) → X and

fd,e : SFlX(d, e) → OGX(n, V) are given by

[ωπ] = Ll+(λ) ·
k

∏
i=1

[Edi+ei ]
di−1−di ·

k−1

∏
i=1

Δdi−di−1+ei−ei+1
di

· Δdk−dk−1+ek−ek+1−1
dk

· Δn−dk+1
n

and

[
ω fd,e

]
= Ll′+(λ) ·

k

∏
i=1

[det Edi+ei ]
di−1−di ·

k−1

∏
i=1

Δdi−di−1+ei−ei+1
di

· Δdk−dk−1+ek−ek+1−1
dk

· Δ−dk
n ,

where Δi = det(Edi+ei) if ei = 0 and

l+(λ) = − (n − dk)(n − dk + 1)
2

, l′+(λ) =
dk(2n − dk + 1)

2
.

Proof. Use Lemma 1.4.8, [BC12a, 1.13] and the description of the canonical bundle ωIG

above. Note that S⊥
dk

/Sdk
is of rank 2(n − dk) and equipped with the induced form and

the tautological bundle on IGFlX(d,e)(S⊥
dk

/Sdk
) is identified with Sn/p∗Sdk

for the structure

map p : IGFlX(d,e)(S⊥
dk

/Sdk
) → FlX(d, e).

Example 1.4.10. For k = 0 we have OFlX(∅) = OGX(n, V). For k = 1 and e1 = 0 we

may identify Φ : OFlX(d, 0) ∼= OGX(n − d, E⊥
d /Ed) via (Ed ⊂ Pn) �→ Pn/Ed. Under this

isomorphism, the relative canonical bundle becomes

ωOFlX(d,0) = L− (n−d)(n−d−1)
2 · [det Ed]

−(n−1−d) · Δn−1−d
n

= Φ∗
(
L− (n−d)(n−d−1)

2 · Δn−d−1
n−d

)

= Φ∗(ωOGX(n−d,E⊥
d /Ed)

).

35



1.5. SCHUBERT CALCULUS

1.5 Schubert calculus

Schubert varieties appear as special subvarieties of Grassmannians which can be de-

scribed by incidence relations with a given fixed flag of the underlying vector space. Their

classes turn out to be very useful. For example, they form an additive basis of the Chow

ring and, as we will see later, a suitable choice of them forms an additive basis of the

total Witt group. In this section we summarize well-known facts about Schubert vari-

eties by giving the definition and establishing geometric visualizations in terms of Young

diagrams and quivers.

1.5.1 Homogeneous spaces

In this subsection we give a very brief introduction to our objects of interest, namely

homogeneous spaces of the form X = G/P. For more details and proofs see [Hum72]

and [Hum75].

An algebraic group is a variety (i.e. a regular reduced scheme of finite type over an

algebraically closed field k) together with a group structure. The general linear group

G = GLn(k) is an algebraic group in the obvious way and any algebraic group which

is isomorphic to a subgroup of GLn(k) is called linear. Since G is a group, there is an

identity element and the tangent space to it is called the Lie algebra of G and denoted by g.

Under certain conditions there is a one-to-one correspondance between algebraic groups

and Lie algebras, so one rather investigates Lie algebras which admit the structure of a

vector space. Usually, one is mainly interested in semisimple Lie algebras, i.e. those not

admitting any non-zero abelian ideals. These can be classified as follows:

• type An. Let V be a vector space of dimension n + 1. Then the group defined by

SL(V) = SLn+1(k) = { f ∈ End(V) | det f = 1} is the special linear group. Its Lie

algebra is the special linear algebra

g = sl(V) = sln+1(k) = { f ∈ End(V) | trace( f ) = 0}.

• type Cn. Let V be a vector space of dimension 2n equipped with a nondegenerate,

antisymmetric, bilinear form ω represented by the matrix

J =

(
0 In

−In 0

)
∈ k2n×2n.

Then Sp(V) = { f ∈ SL(V) | f � J f = J} is the symplectic group. Its Lie algebra is the
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symplectic algebra

sp(V) = sp2n(k) = { f ∈ End(V) | ω( f (v), w) = −ω(v, f (w)) for all v, w ∈ V}.

• type Dn. As in type Cn, but ω is symmetric and none of the In in J admits a sign

(denote this matrix again by J). Then SO(V) = { f ∈ SL(V) | f � J f = J} is the even

special orthogonal group. Its Lie algebra is the even special orthogonal algebra

so(V) = so2n(k) = { f ∈ End(V) | ω( f (v), w) = −ω(v, f (w)) for all v, w ∈ V}.

• type Bn: As in type Dn with the matrix

J =

⎛
⎜⎜⎝

1 0 0

0 0 In

0 In 0

⎞
⎟⎟⎠ .

• exceptional types E6, E7, E8, F4, and G2 which for our purposes are irrelevant.

The classification relies on the classification of root data: A compact, connected, abelian

Lie subgroup T ⊂ G is called torus and it is called maximal, if it is maximal among all

such tori. If T is a maximal torus, it is well-known that

X∗(T) := Hom(T, Gm) ∼= Zrk(T)

is a lattice. Then a root datum is a quadruple (X∗(T), Φ, X∗(T)∨, Φ∨) where the elements

of Φ ⊂ X∗(T) are called roots, X∗(T)∨ is the dual lattice and Φ∨ ⊂ X∗(T)∨ is the set

of coroots, subject to some angle, length and pairing conditions (e.g. [Spr09, §7]). In

particular, Φ and Φ∨ form root systems inside 〈Φ〉 ⊗ R and 〈Φ∨〉 ⊗ R, respectively, in the

usual sense and these root systems may be classified by Dynkin diagrams.

In the case of Lie algebras, roughly speaking, we can find a simultaneously diagonaz-

ible subset of g which gives us a decomposition

g =
⊕

α∈Φ∪{0}
gα,

where the sum runs over a root system associated with g and this root system is uniquely

determined by the Lie algebra structure of g. A subset Δ ⊂ Φ is called a basis of the

root system (and its elements simple roots) if any other root can be written as a linear

combination with entirely positive or negative integer coefficients.
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Arranging the data of the root system in a graph, we obtain the notion of a Dynkin

diagram, as explained in Figure 1.2.

Definition 1.5.1 (Borel and parabolic subgroups). Let G be a linear algebraic group.

(i) A maximal closed, connected, solvable subgroup B ⊂ G is called Borel subgroup.

(ii) A subgroup B ⊂ P ⊂ G is called parabolic subgroup. In this case the quotient G/P

is a projective algebraic variety. If P is maximal, we call G/P a Grassmannian. If P is

minimal (i.e. a Borel subgroup) we call G/P a flag variety. In the other cases, we call

G/P a partial flag variety.

(iii) For any Borel subgroup B and any subset I ⊂ Δ of simple roots there is a unique

standard parabolic subgroup B ⊂ PI := BWPI B ⊂ G where WPI = {sα | α ∈ I}. For

I = ∅ we obtain the Borel subgroup, for I = Δ the whole group G and if I = Δ \ {αi}
for some i we call Pi the maximal standard parabolic subgroup associated with the simple

root αi. Note that any parabolic subgroup is isomorphic to some standard parabolic

subgroup.

α1 α2 α3 αn−1 αn

type An (n ≥ 1)

α1 α2 α3 αn−1 αn

type Bn (n ≥ 2)

α1 α2 α3 αn−1 αn

type Cn (n ≥ 3)

α1 α2 α3 αn−2
αn

αn−1

type Dn (n ≥ 4)

FIGURE 1.2. The Dynkin diagrams of the classical Lie algebras. Each vertice

represents a simple root and two vertices are connected by an edge if

the associated simple roots are not orthogonal. Otherwise there are one,

two or three edges depending on the angle (120, 135 or 150 degree).

Moreover, if two roots do not have the same length, we draw an arrow

on the edge pointing from the longer to the shorter root.
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Example 1.5.2 (Grassmannians as homogeneous spaces). (i) Let V be a vector space

of dimension d + e. Then a Borel subgroup is given by the subgroup of upper tri-

angular (d + e)× (d + e)-matrices and the standard parabolic subgroup associated

with a simple root αd of Ad+e−1 is the subgroup of upper triangular block matrices

of sizes d and e. Then the homogeneous space Ad+e−1/Pd is precisely the Grassman-

nian Gr(d, V) = {P ⊂ V | dim P = d}.

(ii) Let similarly V be a vector space of dimension 2n and ω an antisymmetric form

ω on V. Then for 1 ≤ k ≤ n the homogeneous space Cn/Pk is the symplectic

Grassmannian LG(k, V) = {P ⊂ V | dim P = k, P is isotropic w.r.t. ω}.

(iii) If in (ii) ω is symmetric, the homogeneous space Dn/Pk for 1 ≤ k ≤ n − 2 is the or-

thogonal Grassmannian OG(k, V) of k-dimensional isotropic subspaces of V. Note

that for k ∈ {n − 1, n} the homogeneous spaces Dn/Pn−1 and Dn/Pn are isomorphic

to each other and describe the two connected components of the maximal orthogo-

nal Grassmannian OG(n, V).

1.5.2 Schubert varieties

Fix a Borel and parabolic subgroup B ⊂ P ⊂ G of G and consider the homogeneous

space X = G/P. Let Φ be the associated root system with simple roots Δ = {α1, . . . , αn}
generating the Euclidean vector space (E, 〈−, −〉). The Weyl group of Φ is the finite sub-

group of Sym(E) generated by the simple reflections

sαi : E → E, sαi(v) = v − 2
〈v, αi〉
〈αi, αi〉

αi

for every simple root αi ∈ Δ.

Definition 1.5.3. The Weyl group of X is defined as the Weyl group of the underlying root

system Φ and denoted by W. Hence, each element w ∈ W can be written as a product

w = sαi1
· · · sαik

; the length of w is the minimal number of required simple reflections and

denoted by l(w).

Theorem 1.5.4. With the notation above, we have:

(i) For w ∈ W the double coset BwB ⊂ G is called Bruhat cell.

(ii) Bruhat-decomposition: We have G = �w∈W BwB.

(iii) If PI is a standard parabolic subgroup, then the image of the Bruhat cell along the projection

G → G/PI is called Schubert cell and denoted by Xo(w). It is isomorphic to the affine
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space A
l(w)
k . If WPI denotes the Weyl group of the root system of PI as above, then

G/PI = �
w̄∈W/WPI

Xo(w) = �
w̄∈W/WPI

BwPI/PI ,

i.e. G/PI is the union of its Schubert cells.

(iv) The closure of a Schubert cell is called Schubert variety and denoted by X(w). It is a closed

irreducible subvariety of dimension l(w).

Before discussing more intuitive descriptions of Schubert varieties in the upcoming

sections, we state a well-known theorem to emphasize the importance of them:

Theorem 1.5.5. Recall that the Chow ring A(G/P) of G/P is the graded ring of cycles, i.e.

subvarieties modulo rational equivalence (e.g. [Eis06, Ch.1]) where Ai(G/P) contains the cycles

of codimension i. Then the classes of the Schubert varieties form an additive basis of A(G/P).

1.5.3 Shifted, even and almost even Young diagrams

In this subsection we investigate Schubert varieties in the homogeneous spaces dis-

cussed in Example 1.5.2.

Let d, e, n ≥ 1 be integers. Then a (d × e)-frame is a rectangle of height d and width

e. A shifted n-frame consists of those boxes in an (n × n)-frame which are on or above the

diagonal pointing from north-west to south-east:

FIGURE 1.3. A (5 × 4)-frame and a shifted 5-frame.

Given a decreasing sequence of integers λ = (λ1, . . . , λs) and a (shifted) frame let us

fill the leftmost λi boxes in the i-th row (assume that the frame is large enough). We call

the resulting picture the (shifted) Young-diagram associated with λ and denote it by Λ(λ).

The boundary of Λ(λ) is given by all the boundary segments of Λ(λ) which lie on the

right vertical or the lower horizontal segment of the frame. A segment in the boundary is

called an inner segment if it does not lie on the boundary of the underlying (shifted) frame.

The inner segments form the inner boundary. We call λ a
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FIGURE 1.4. The sequences (3, 3, 2) and (3, 3, 2, 1, 1) are 5-partitions of 4 (up-

per left and upper middle). The sequence (5, 3) is a shifted partition of

5 (upper right). We drew the inner segments with thick lines. The inner

segments together with the dashed thick lines form the boundary of the

partition. We also marked the corners of the partitions by circles. In the

second line we drew the special full and empty partitions together with

their corners.

(i) d-partition of e, if s ≤ d and e ≥ λ1 ≥ . . . ≥ λs ≥ 0. In other words the horizontal

inner segments of Λ(λ) point from east to west when following the boundary from

the north-east to the south-west corner. Denote by Pd,e the set of d-partitions of e.

(ii) strict shifted partition of n, if s ≤ n and n ≥ λ1 > . . . > λs > 0. In other words,

the horizontal inner segments of Λ(λ) point from east to west when following the

boundary from the north-east corner to the south-west. Denote by Sn the set of

strict partitions of n.

For later computations it is convenient to characterize partitions as in [BC12a] by dif-

ferent parameters. A corner of a (shifted) partition is a point where the boundary of Λ(λ)

bends from vertical to horizontal. We have the following special cases:

(i) If λs = 0 the south-west corner of the non-shifted frame also is a corner by default

(see Figure 1.4).

(ii) If λ is full (i.e. λs = e in the unshifted case and λs = 1 in the shifted case), the

south-east corner of the frame is a corner (see Figure 1.4).

(iii) In particular, in the unshifted case there are no partitions without any corners where

as the empty shifted partition is the only shifted partition without any corners.
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Let c1, . . . , ck be the corners of λ where we start enumerating in the north-east. Then we

define the k-tuples d and e as follows:

• di is the distance of ci to the upper horizontal segment of the frame.

• ei is the distance of ci to the right vertical segment of the frame.

Example 1.5.6. The tuples for the partitions illustrated in Figure 1.4 are given by

(d, e) = ((2, 3, 5), (1, 2, 4)),

(d, e) = ((2, 3, 5), (1, 2, 3)),

(d, e) = ((1, 2), (0, 1)).

Convention 1.5.7. Sometimes we will need to extend the tuples by the entries d0 = 0 = e0

for easier notation. We also let dk+1 = dk if dk ≡ n + 1(2) and dk+1 = dk + 1 otherwise

and finally ek+1 = n − dk. We denote by d∗ and e∗ the extended (k + 1)-tuples

d∗ = (di)1≤i≤k+1,

e∗ = (ei)1≤i≤k+1.

Proposition 1.5.8. Let k ≥ 1.

(i) There is a bijection

{
strict d-partitions of e

with k corners

}
1:1←→

⎧⎪⎪⎨
⎪⎪⎩

k-tuples d, e with

d = dk > dk−1 > · · · > d1 > 0 and

e ≥ ek > ek−1 > . . . > e1 ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ .

(ii) There is a bijection

{
strict shifted partitions of n

with k corners

}
1:1←→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k-tuples d, e with

n ≥ dk > dk−1 > · · · > d1 > 0,

n > ek > ek−1 > . . . > e1 ≥ 0 and

dk + ek ≤ n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

By abuse of notation we associate the 1-tuples d = (0) and e = (n) with the empty partition.

Proof. We show (ii). First let λ be a non-zero shifted partition of n. Let ẽ be given by

ẽi = n + 1 − i − λi, (1 ≤ i ≤ s), where ẽs+1 = ∞. Then

e = (ẽi)1≤i≤s,
ẽi+1>ẽi

, d = (i)1≤i≤s,
ẽi+1>ẽi
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are k-tuples for k = s − card({i | λi+1 = λi − 1}). Note that k is exactly the number of

corners: In the i-th row there is no corner if and only if λi+1 = λi − 1 and there is a corner

if λi+1 < λi − 1. The conditions for d, e are automatically satisfied. On the other hand, if

we are given k-tuples d, e subject to these conditions, we define

λi =

⎧⎨
⎩ n + 1 − dj − ej, if i = dj for some 1 ≤ j ≤ k,

λdj + (dj − i), if j is minimal with i ≤ dj.

One checks that this defines a decreasing sequence n ≥ λ1 > . . . > λdk
> 0 and the two

constructions are inverse to each other.

So associated with a partition λ we always have some k-tuples d, e. A special class of

(shifted) Young diagrams are the even and almost even (shifted) Young diagrams:

Definition 1.5.9 (Even and almost even (shifted) partitions and Young diagrams).

Let λ be a (shifted) partition. Then we call λ even if all inner segments of the correspond-

ing Young diagram Λ(λ) are of even length. We call λ almost even if all inner segments

except of the last one (i.e. the most south-west) are of even length and the last inner seg-

ment is of odd length, see Figure 1.5 for an illustration. Denote by Ed,e the subset of Pd,e

of even d-partitions of e and by En and Fn the subsets of Sn containing even and almost

even shifted partitions of n.

We can write this in terms of the k-tuples d and e. For unshifted partitions this is

[BC12a, 2.7]. If λ is shifted, we call λ even if

(E1) di+1 − di is even for all 1 ≤ i ≤ k − 2,

(E2) ei+1 − ei is even for all 1 ≤ i ≤ k − 1,

(E3) d1 is even if e1 > 0,

(E4) dk − dk−1 is even and

(E5) n − dk − ek =: ek+1 − ek is even if ek < n − dk.

Further λ is almost even if (E1)-(E3) hold and instead of (E4) and (E5) we have

(O4) If ek = n − dk then ek+1 − ek = 0, in particular even, and dk − dk−1 is odd.

(O5) If ek < n − dk then ek+1 − ek is odd and dk − dk−1 is even.

A shifted partition is both even and almost even if and only if it is empty or full.
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FIGURE 1.5. From left to right: An even Young diagram, an even shifted

Young diagram and an almost even shifted Young diagram.

Example 1.5.10. The empty and full (shifted) partition is always even and almost even

since it does not have inner segments and hence any condition on inner segments is sat-

isfied.

The following lemma will be needed later. It states that even and almost even dia-

grams of a special shape do not occur in all sizes:

Lemma 1.5.11. Let λ be a shifted partition of n with associated k-tuples d, e. Assume that d1 is

odd.

(i) If λ is even, then n is odd.

(ii) If λ is almost even, then n is even.

Proof. All equivalences are modulo 2. We have dk−1 ≡ d1 and ek ≡ e1 ≡ 0 by (E1)-(E3).

(i) Let λ first be even, in which case dk ≡ dk−1 ≡ 1. If ek < n − dk, by (E5) we have

1 ≡ n − dk − ek ≡ n. Otherwise ek = n − dk which implies n ≡ ek + dk ≡ 1, so in any

case n is odd.

(ii) Assume now that λ is almost even. Suppose first that ek < n − dk, i.e. dk − dk−1

is even and n − dk − ek is odd by (O5). Then as above dk ≡ 1 and we get that

n ≡ 1 + dk + ek ≡ 0. If on the other hand ek = n − dk we have that

dk = dk − dk−1 + (dk−1 − dk−2) + . . . + d1 ≡ 0

and we conclude that n = dk + ek is even.

Notation 1.5.12. In the following, in order to avoid confusions, we will write λ for parti-

tions in Sn and λ′, λ′′ for partitions in Sn−1.
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Definition 1.5.13. (i) Let λ′ ∈ Sn−1. We define the induced partition ι(λ′) ∈ Sn by

ι(λ′) = (n, λ′
1, . . . , λ′

s).

(ii) Let λ ∈ Sn such that λ1 ≤ n − 1. We define the induced partition v(λ) ∈ Sn−1 by

v(λ) = (λ1, . . . , λs) = λ.

(iii) Let λ′′ ∈ Sn−1 such that λ′′
1 = n − 1. We define the induced partition ∂(λ′′) ∈ Sn−1

by ∂(λ′′) = (λ′′
2 , . . . , λ′′

s ).

Proposition 1.5.14. Let n ≥ 3. Then we have the following:

(i) The map ι induces bijections
{

λ′ ∈ Fn−1 almost even with

e′1 < n − 1 even or e′1 = n − 1 odd

}
←→

{
λ ∈ Fn almost even with e1 = 0

}
,

{
λ′ ∈ En−1 even with e′1 even

}
←→

{
λ ∈ En even with e1 = 0

}
,

λ′ ι�→ (n, λ′
1, . . . , λ′

s),

(λ2, . . . , λs) ← � λ.

(ii) The map v induces a bijection:

{
λ ∈ Fn almost even with e1 > 0

}
←→

{
λ′′ ∈ Fn−1 almost even with

d′′
1 < n − 1 even or d′′

1 = n − 1 odd

}
,

{
λ ∈ En even with e1 > 0

}
←→

{
λ′′ ∈ En−1 even with d′′

1 even
}

,

λ
v�→ (λ1, . . . , λs),

(λ′′
1 , . . . , λ′′

s ) ← � λ.′′

(iii) The map ∂ induces a bijection:
{

λ′′ ∈ Fn−1 almost even with

d′′
1 < n − 1 odd or d′′

1 = n − 1 even

}
←→

{
λ′ ∈ Fn−1 almost even with

e′1 < n − 1 odd or e′1 = n − 1 even

}
,

{
λ′′ ∈ En−1 even with d′′

1 odd
}

←→
{

λ′ ∈ En−1 even with e′1 odd
}

,

λ′′ ∂�→ (λ′′
2 , . . . , λ′′

s ),

(n − 1, λ′
1, . . . , λ′

s) ← � λ′.

Proof. Check that the maps ι, v and ∂ preserve even and almost even shifted partitions

and that the assignments are well-defined. �
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ev.> 0 if a.ev.

ι v

> 0

odd

> 0
if a.ev.

∂

FIGURE 1.6. Illustration of the introduced maps in the even and almost even

(a.ev.) case. The map ι adds a row on top of an (almost) even partition if

the resulting partition is (almost) even, v forgets the rightmost column

if it’s empty and ∂ adds an empty column on the right and drops the

first row of an (almost) even patition if the resulting partition is (almost)

even. Note that we were inconsistent with the sizes since never all three

cases occur for fixed n, see Lemma 1.5.11.

ι

odd

even

∂

FIGURE 1.7. The maps ι and ∂ for the two special cases in the almost even

case, i.e. when e′1 = n − 1 is odd and d′′
1 = n − 1 is even.
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Definition 1.5.15. Define the maps ιe, ve and ∂e by

ιe(λ
′) =

⎧⎨
⎩ ι(λ′), if e′1 is even,

0, otherwise,

ve(λ) =

⎧⎨
⎩ v(λ), if e1 > 0,

0, otherwise,

∂e(λ
′′) =

⎧⎨
⎩ ∂(λ′′), if d′′

1 is odd ,

0, otherwise.

Similarly, we define ιo, vo and ∂o. If it is clear from the context whether it is about even or

almost even shifted partitions, by abuse of notation we just write ι, v and ∂. See Figures

1.6 and 1.7 for illustrations.

1.5.4 Young diagrams parametrize Schubert varieties

It is well-known that Schubert varieties of the ordinary Grassmannian are indexed

by Young diagrams (i.e. partitions) and Schubert varieties of maximal orthogonal and

Lagrangian Grassmannians are indexed by shifted partitions. Let V be a vector space of

dimension d + e over some field k. Fix a complete flag of V, i.e. a filtration

0 = E0 ⊂ E1 ⊂ . . . En−1 ⊂ En = V

of subspaces Ei of dimension dim(Ei) = i. Recall that the ordinary Grassmannian Gr(d, V)

is the homogeneous space X = Ad+e−1/Pd and inside this variety for each element

w ∈ W = W(Ad+e+1)/WPd there is a Schubert cell Xo(w) whose closure is the Schu-

bert variety X(w). Then there is a bijection W ∼= Pd,e (cf. section 1.5.5) and the Schubert

variety associated with a d-partition λ of e is given by

X(λ) = {W ∈ Gr(d, V) | dim(W ∩ Edi+ei) ≥ di for 1 ≤ i ≤ k}. (1.47)

A similar description exists for the isotropic setting. Let (V, ω) be a vector space of di-

mension 2n equipped with a non-degenerate bilinear form and fix a complete flag

0 = E0 ⊂ E1 ⊂ . . . ⊂ En−1 ⊂ En

of isotropic subspaces Ei of dimension dim(Ei) = i of V. If ω is symmetric, the Schubert

varieties in OG(n, V) are indexed by W(Dn/Pn) ∼= Sn−1 (cf. section 1.5.5) and the Schu-

bert variety associated with a shifted partition λ is described as follows: If s ≡ n(2) we
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have

X(λ) = {W ∈ OG(n, V) | dim(W ∩ Edi+ei) ≥ di for 1 ≤ i ≤ k} (1.48)

and otherwise

X(λ) =

{
W ∈ OG(n, V) dim(W ∩ Edi+ei) ≥ di for 1 ≤ i ≤ k − 1

dim(W ∩ Edk+ek+1) ≥ dk + 1

}
. (1.49)

If ω is antisymmetric, the Schubert varieties in LG(n, V) are indexed by W(Cn/Pn) ∼= Sn

(cf. section 1.5.5) and the Schubert variety associated with a shifted partition λ is given

by

X(λ) = {W ∈ LG(n, V) | dim(W ∩ Edi+ei) ≥ di for 1 ≤ i ≤ k}. (1.50)

For ordinary Grassmannians the equivalence of the two different notions has been

shown in [LB15, Ch. 5]. A subgroup of G = SLd+e(k) of type Ad+e−1 is Borel if it is

conjugate to the subgroup Td+e(k) of upper triangular matrices and a maximal parabolic

subgroup is a closed subgroup of G containing a Borel subgroup, i.e. conjugate to a subset

of the form

Pd =

{(
Ad×d B

0 Ce×e

)}
.

Without loss let B = Td+e(k) with respect to the basis associated with the fixed flag E•.

Recall that Gr(d, V) = G/Pd. Now the Schubert variety as defined in (1.47) is stable

under the action of the Borel subgroup: By definition the flag is invariant under B, so

dim(W ∩ Edi+ei) ≥ di implies

dim(b · W ∩ Edi+ei) = dim(b · (W ∩ Edi+ei)) = dim(W ∩ Edi+ei) ≥ di,

i.e. b · W ∈ X(λ). By considering the Plücker embedding Gr(d, V) ↪→ P
(d+e

d )−1
k one finally

concludes that the two notions coincide.

This procedure can immediately be adapted to isotropic Grassmannians by consider-

ing G = Sp(V) (and G = SO(V), respectively) and an isotropic flag

0 = E0 ⊂ E1 ⊂ . . . ⊂ En−1 ⊂ En = E⊥
n ⊂ En+1 = E⊥

n−1 ⊂ . . . ⊂ E2n−1 = E⊥
1 ⊂ E2n = V

corresponding to a Borel subgroup, i.e. a conjugate of the upper triangular special or-

thogonal (and symplectic, respectively) group. Throughout, for Schubert varieties we

will always use the descriptions (1.47)-(1.50).
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1.5.5 Quivers of minuscule and cominuscule varieties

There is another method to visualize Schubert varieties of Grassmannians, which not

only allows us to read directly the intersection conditions as in (1.47)-(1.50), but also en-

ables us to determine the Weyl group element (a representative in the quotient W/WP,

respectively) associated with this Schubert variety. This is done by quivers. These have

been intensively studied by Perrin (e.g. [Per07]) for minuscule and cominuscule varieties.

In this section we first remark that our objects of interest are minuscule or cominuscule

before discussing basic facts about quivers and giving some examples.

Let G be a semisimple linear algebraic group (for example SLd+e(k), SOn(k), Spn(k))

and B ⊂ P ⊂ G a Borel and parabolic subgroup. Assume that P = Pαi is standard and

maximal, i.e. associated with a single simple root αi ∈ Δ in the root system Φ. Recall that

a root is called positive if all its coefficients, when written as a sum of simple roots, are

positive. The dual root system Φ∨ is the set of coroots α∨ of roots α in Φ where

α∨ :=
2

〈α, α〉α

(here 〈−, −〉 denotes the form on the Euclidean space E associated with the root system

Φ. In this setting the form is induced by the so-called Killing form). It is immediate that

Φ∨ itself is a root system. The highest root is the unique (positive) root γ ∈ Φ such that

γ − α is positive for any root α ∈ Φ.

Definition 1.5.16 (Minuscule and cominuscule varieties). For α ∈ Φ and a simple root

β ∈ Δ denote by α(β) the coefficient of β when α is expressed as a sum of simple roots.

(i) The root β ∈ Δ is called cominuscule if |α(β)| ≤ 1 for all α ∈ Φ. This is equivalent to

γ(β) = 1 where γ denotes the highest root.

(ii) The root β is called minuscule if β∨ is cominuscule in the dual root system Φ∨.

(iii) The homogeneous space X = G/Pβ is (co-)minuscule if β is (co-)minuscule.

At the end of this thesis, in section 4.5, we give an overview of all minuscule and

cominuscule varieties in ordinary and exceptional types. In particular any minuscule

variety is cominuscule, possibly for a different Lie type. Hence, it suffices to focus on

the cominuscule varieties and we will see that the description of the Witt groups of all

of them will be covered by the works of Balmer and Calmès on ordinary Grassmannians

([BC12a]), Nenashev and Walter on quadrics ([Nen09], [Wal03]) and the present work

on maximal isotropic Grassmannians. In the following, we illustrate how to view these

spaces as cominuscule varieties.
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Remark 1.5.17 (e.g. [Spr66]). (i) The Grassmannian Gr(d, V) = SLd+e(k)/Pd is minus-

cule and cominuscule for any 1 ≤ d ≤ d + e − 1: The roots are given by vectors in

kd+e of length
√

2 with integer entries summing up to zero, i.e. by ei − ej for some

i �= j. A choice of simple roots is given by αi = ei − ei+1 for 1 ≤ i ≤ d + e − 1. The

highest root is given by γ = α1 + . . . + αd+e−1, so all simple roots are cominuscule.

Since all the roots have the same length, Φ∨ ∼= Φ and all simple roots are minuscule

as well.

(ii) Similarly, the orthogonal Grassmannian OG(n, V) = SOn(k)/Pn is minuscule and

cominuscule: The roots are given by integer vectors in kn of length
√

2, i.e. by

r = ±ei ± ej for some i �= j. A choice of simple roots is given by αi = ei − ei+1 for

1 ≤ i ≤ n − 1 and αn = en−1 + en in kn. The highest root is given by

γ = α1 + 2α2 + . . . + 2αn−2 + αn−1 + αn,

i.e. α1, αn−1 and αn are cominuscule. Again α∨
i = αi, so these roots are also minus-

cule.

(iii) The Lagrangian Grassmannian LG(n, V) = Spn(k)/Pn is cominuscule but not mi-

nuscule: The roots are given by the roots in type D (i.e. integer vectors of length√
2) and all doubled integer vectors of length 1. A choice of simple roots is given by

αi = ei − ei+1 for 1 ≤ i ≤ n − 1 and αn = 2en. The highest root is given by

γ = 2α1 + . . . + 2αn−1 + αn,

so αn is the only cominuscule root. Now α∨
i = αn+1−i, so α1 is the only minuscule

root.

Note: Even if the chosen description of the (simple) roots is not unique, the numbers

〈αi, αj〉 are. Arranged in a matrix, they completely determine the root system. The matrix

is also referred to as the Cartan-matrix of the root system Φ or of the Lie algebra sld+e(k).

Let now X(λ) ⊂ G/P be a Schubert variety associated with a Weyl group element

w ∈ W/WP whose shortest representative in W (in the sense of Definition 1.5.3) is denoted

by w. We use minusculeness and cominusculeness as follows:

Theorem 1.5.18 ([Ste97]). If X is (co-)minuscule, w ∈ W as above has a unique reduced presen-

tation (modulo commuting relations of the form sαsβ = sβsα whenever α ⊥ β) w = sβ1 · · · sβr

with simple roots βi ∈ Δ.
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n

FIGURE 1.8. Coloration in type A (left, write m := d + e), C (middle) and

D (right). The entries are beginning with a 1 in the north-east box,

constant along north-west to south-east diagonals and increasing by

one each step. In type D, the entries on the last diagonal are alternating,

beginning with n in the south-east.

This allows us to assign to a Schubert variety a unique reduced expression of the

shortest representative w ∈ W of the corresponding w ∈ W/WP. To such an expression

w = sβ1 · · · sβr we assign the following quiver Qw := Qλ.

• For each reflection sβi there is a node i.

• Two nodes i < j are linked by an arrow, pointing from i to j if the corresponding

simple roots are not orthogonal and βk �= βi for all i < k ≤ j.

• The quiver comes equipped with a coloration of its nodes β : {1, . . . , r} −→ Δ given

by β(i) = βi. In other words, every node is associated with a particular simple root.

Let us first describe the quivers of Grassmannians, i.e. the case where the Schubert

variety is the whole Grassmannian. We therefore chose a shortest representative of the

longest element in the Weyl group which is given by

w0 =
d+e−1

∏
k=1

(
k

∏
i=1

sαd+e−k+i

)
for Gr(d, V), (1.51)

w0 =
n

∏
k=1

(
k

∏
i=1

sαn−k+i

k−1

∏
i=1

sαn−i

)
for LG(n, V), (1.52)

w0 =
n−1

∏
i=1

(
n

∏
j=n−i, j �=n−ni

sαj

)
for OG(n, V), (1.53)

where ni ∈ {0, 1} is a representative of n + i(2) (e.g. [BKOP14, §2]). See Figure 1.10 for

the ordinary and Figure 1.11 for the maximal isotropic Grassmannians.
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Definition 1.5.19 (Subquivers). (i) A subquiver Q′ of a quiver Q consists of a subset of

the nodes and arrows of Q such that from each node i

• no arrow is starting if the node is the last node i = r,

• one arrow is starting if for any j > i in the subquiver we have β j �= βi,

• and two arrows are starting otherwise.

(ii) Subquivers bijectively correspond to the quivers of Schubert varieties. Hence we

write Q′ = Qλ = Qw for the quiver associated with a (shifted) partition λ or some

w ∈ W/WP.

(iii) A peak of the subquiver Q′ is a node i with no incoming arrow.

(iv) A non-virtual hole of q is a node i with exactly two incoming arrows and such that

β j �= βi for any j < i in Q′.

(v) A virtual hole of the subquiver Q′ is a node i of Q \ Q′ such that sβi does not commute

with w.

(vi) We can view the quiver of a Schubert variety as the complement of the correspond-

ing (shifted) Young diagram. Figure 1.8.

Theorem 1.5.20 ([Per07], [Per09]). Let X = G/P be minuscule or cominuscule and X(λ) ⊂ X

a Schubert variety.

(i) The dimension of a Schubert variety is the number of nodes in the subquiver.

(ii) If X is minuscule, X(λ) is Gorenstein if and only if all peaks have the same height.

(iii) If X is cominuscule but not minuscule, X(λ) is Gorenstein if and only if all peaks colored

with a short root have the same height, the peak colored with a long root (if it exists) has

height one more and the least occuring height is even.

(iv) A Schubert variety is locally factorial if and only if it has a unique peak.

(v) If X is (co-)minuscule, X(λ) is smooth if and only if it has a unique peak whose color is

(co-)minuscule.

Example 1.5.21. Consider the Schubert variety X(λ) ⊂ OG(8) given by the reduced ex-

pression

w = sα5sα6sα8sα4sα5sα6sα7sα1sα2sα3sα4sα5sα6sα8 .
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q1

q2

p0 p1

FIGURE 1.9. The quiver and the shifted Young diagram for the Schubert

variety X(λ) ⊂ OG(8) in Example 1.5.21. It is given by the 2-tuples

d = (2, 4), e = (1, 3) and is of type II, i.e. we have two peaks labeled by

p0, p1 and k = 2 holes labeled by q1, q2.

The corresponding quiver and the shifted partition of X(w) are illustrated in Figure 1.9.

We can describe the Schubert variety by

X(λ) =

{
W ∈ OG(8)

dim(W ∩ E3) ≥ 2,

dim(W ∩ E7) ≥ 4

}
.

It is a non-smooth and non-Gorenstein subvariety of OG(8) of dimension 14.
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α1 αd αd+e−1

β

FIGURE 1.10. The quiver of the ordinary Grassmannian Gr(d, V).
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α1 α4 αn−4 αn−1 αn

β

αn−1

α1 α4 αn−5 αn−2 αn

αn−1

β

FIGURE 1.11. The quiver of the Lagrangian Grassmannian LG(n, V) (left)

and the orthogonal Grassmannian OG(n, V) (right). By abuse of nota-

tion we will use this slightly different illustration (for odd n the upper-

most node will belong to αn−1 instead) for OG. The nodes with circles

correspond to αn−1 and are usually omitted. Note that we also omitted

the arrows of large slope since they will not be relevant to us.
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Chapter 2

Witt groups of maximal orthogonal

Grassmannian bundles

Let (V , ω) be an orthogonal vector bundle of rank 2n over a smooth, noetherian scheme

X over Z[ 1
2 ] where ω admits values in the line bundle L ∈ Pic(X). From now on we

require the existence of an isotropic flag E• : 0 = E0 ⊂ E1 ⊂ . . . ⊂ En ⊂ V of (V , ω)

which extends to a complete flag of V by setting En+i = E⊥
n−i for 1 ≤ i ≤ n. We denote

by OGX(n, V) the connected component of the maximal orthogonal Grassmann bundle

containing En and by OG−
X(n, V) the opposite one. The flag E• induces a complete flag E′

•
for E⊥

1 /E1 via E′
i := Ei+1/E1 for 0 ≤ i ≤ n − 1 with dim E′

i = i and this flag is isotropic

since E• is.

2.1 Resolutions of degeneracy loci

Recall that a (not necessarily strict) shifted partition of n − 1 is an s-tuple λ of decreasing

non-negative integers n − 1 � λ1 > λ2 > . . . > λs ≥ 0 for some s ≥ 0. We may arrange λ

in the shifted (n − 1)-frame, see Figure 2.1.

If s ≡ n mod 2 there is an associated Schubert cell

YX(λ)
o = {W ∈ OGX(n, V) | rk(W ∩ En−λi) = i}

and a degeneracy locus or Schubert subscheme

YX(λ) = {W ∈ OGX(n, V) | rk(W ∩ En−λi) ≥ i}

inside OGX(n, V) and all degeneracy loci can be described this way (we change the pre-
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λ = (7, 4, 3, 0)

λ1 →
λ2 →

λ3 →
λ4 →

d1

d2

e1

e2

FIGURE 2.1. A shifted partition with 4 = s ≡ 8 = n mod 2, hence defin-

ing a Schubert subscheme inside OGX(8, V). On the other hand, the

truncated partition λ′ = (7, 4, 3) gives us a Schubert subscheme in the

opposite component.

viously introduced notation due to our fixed base scheme X). Note that the assumption

on s guarantees that W lies in the right connected component, which is determined by

the parity of rk(W ∩ En). In Figure 2.1, the essential intersection conditions are given by

rk(W ∩ E1) ≥ 1, rk(W ∩ E5) ≥ 3.

For W to be in OGX(n, V) we hence need rk[W ∩ E8] ≥ 4: The intersection is of rank at

least 3 and if it was of rank exactly 3 the subbundle W would be contained in OG−.

A shifted partition λ is called strict, if λs ≥ 1. If s ≡ n mod 2, it defines a Schubert

subscheme for OG whereas the partition (λ, 0) defines one for OG−. Analoguously, if

s ≡ n+ 1 mod 2, the partition λ defines a Schubert subscheme for OG− and (λ, 0) one for

OG. It follows, that Schubert subschemes of OGX(n, V) (as well as those of OG−
X(n, V))

are indexed by Sn−1, the set of strict shifted partitions of n − 1. From now on, if not

mentioned otherwise, all shifted partitions are strict and occasionally we will call them

simply partitions, if no ambiguity can occur.

Example 2.1.1. Let λ ∈ En−1 and λ′, λ′′ ∈ En−2 be strict partitions. Recall the maps ι, v

and ∂ from Definition 1.5.13.

(i) If YX(λ
′) ⊂ OGX(n − 1, E⊥

1 /E1), then YX(ι(λ
′)) ⊂ OGX(n, V).

(ii) If YX(λ) ⊂ OGX(n, V), then YX(v(λ)) ⊂ OG−
X(n − 1, E⊥

1 /E1).

(iii) If YX(λ
′′) ⊂ OG−

X(n − 1, E⊥
1 /E1), then YX(∂(λ

′′)) ⊂ OGX(n − 1, E⊥
1 /E1).
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dk ≡ n
dk + ek < n − 1

dk ≡ n + 1
dk + ek < n − 1

dk ≡ n
dk + ek = n − 1

dk ≡ n + 1
dk + ek = n − 1

FIGURE 2.2. The dashed lines separate the white part of each partition into

rectangles (Grassmannians) and triangles (smaller orthogonal Grass-

mannians). Roughly speaking, these correspond to the ordinary and

orthogonal Grassmannians in the flag bundle since the full Young dia-

grams of these Grassmannians are exactly of this shape. The numbers

l(λ) and t(λ) introduced in Definition 2.2.5 can be visualized as the

area of the complement of the hatched triangle inside the frame and

twice the height of this complement, respectively.

By Proposition 1.5.8 there is a bijection between Sn−1 and pairs of tuples (d, e) satisfy-

ing {(
0 < d1 < d2 < . . . < dk ≤ n − 1

0 ≤ e1 < e2 < . . . < ek < n − 1

)
, k ≥ 0, ek + dk ≤ n − 1

}

together with the pair ((0), (n − 1)). Recall from Convention 1.5.7 that, whenever needed,

we extend the tuples with entries d0, e0, dk+1 and ek+1 and denote by d∗ and e∗ the ex-

tended (k + 1)-tuples d∗ = (di)1≤i≤k+1 and e∗ = (ei)1≤i≤k+1.

Let now λ be a strict partition with k-tuples d, e. If dk ≡ n mod 2, we define

OFlX(λ, E•) := OFlX(d, e, E•) =

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk
⊂ Pn, rk(Pdi) = di

∩ ∩ ∈

Ed1+e1 ⊂ . . . ⊂Edk+ek
OG

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where we write OG := OGX(n, V). If dk ≡ n + 1 mod 2, we define

OFlX(λ, E•) := OFlX(d∗, e∗, E•) =

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk+1
⊂ Pn, rk(Pdi) = di

∩ ∩ ∈

Ed1+e1 ⊂ . . . ⊂Edk+1+ek+1
OG

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

Denote by fλ the projection onto OGX(n, V) which maps all members of the flag to the

highest rank bundle and observe that it maps birationally onto the Schubert cell YX(λ)
o.

See Figure 2.2 for an illustration of the resolutions.
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Notation 2.1.2. As already seen, any strict partition λ ∈ Sn−1 also defines a degeneracy

locus inside OG−
X(n, V) and we denote by f −λ : OFl−X(λ, E•) → OG−

X(n, V) the corre-

sponding projection. Here OFl−X(λ, E•) is defined as above with the parity assumptions

on dk reversed, i.e. as in (2.1), if dk ≡ n + 1 and as in (2.2), if dk ≡ n mod 2.

2.2 Construction of the basis

The aim ist to assign Witt classes in the total Witt group of OGX(n, V) associated with

certain shifted partitions λ ∈ Sn−1. The map fλ : OFlX(λ) −→ OGX(n, V) constructed in

the previous section is birational whose image is the Schubert subscheme associated with

λ and we know how to compute the relative canonical bundle of this map. Recall that by

[CH11] we have push-forwards

( fλ)∗ : Wi
(

OFlX(λ), ω fλ
⊗ f ∗λ(M)

)
−→ Wi−dim fλ (OGX(n, V), M)

for any line bundle M ∈ Pic(OGX(n, V)), where dim fλ denotes the constant relative

dimension of fλ. We want to push forward the unit form 1 ∈ W0(OFlX(λ)) along fλ, for

which by section 2.4.3 we need an alignment ω fλ
⊗ f ∗λ(M) � OOFlX(λ). Following the

discussion in section 1.2.9, this implies the relation

ω fλ
⊗ f ∗λ(M) ≡ OOFlX(λ) (2.3)

in Pic(OFlX(λ))/2. This, of course, cannot be true for all shifted partitions. If, for exam-

ple, n is odd, choosing the non-even partition λ with 1-tuples d = (d1) = (n − 2) and

e = (e1) = (1), we have

fλ : OFlX(d, e) =

⎧⎪⎪⎨
⎪⎪⎩

Pn−2 ⊂Pn ∈ OGX(n, V)
∩

En−1

⎫⎪⎪⎬
⎪⎪⎭ −→ OGX(n, V)

and by Proposition 1.4.9, the class of the relative canonical bundle in Pic(OFlX(d, e))/2 is

given by

ω fλ
= [det En−1]

−(n−2) · L
n(n−1)

2 −1 · Δn−2
n−2 · Δ−(n−2)

n

≡ [det En−1] · L
n+1

2 · Δn−2 · Δn mod 2

which cannot be "cancelled" by a pull-back.
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In this section, we not only show that even shifted partitions are a good choice in

the sense that (2.3) holds for some line bundle M, but in Lemma 2.2.3 we also prove

that even partitions are exactly those partitions s.t. (2.3) is satisfied for both the partition

itself and its dual, subject to some parity assumption on the heights of the peaks. Note

that the authors of [BC12a] have remarked that in type A more choices than even Young

diagrams allow us to push forward the unit form, but it remains unclear in loc. cit., why

the remaining ones should not be considered. To prove this, we will need quivers and

some related results introduced in section 1.5.5.

Lemma 2.2.1. Let λ ∈ Sn−1 be a strict shifted partition. Then the following are equivalent:

(i) The numbers di − di−1 + ei − ei+1 are even for all 2 ≤ i ≤ k − 1 (and also for i = 1, if

n − 1 > e1 > 0 and for i = k if ek < n − 1 − dk).

(ii) All peaks of the quiver Qλ have the same height modulo 2.

(iii) There is a line bundle M ∈ Pic(OGX(n, V)) satisfying (2.3), i.e. we can push-forward the

unit form along fλ.

This is, in particular, true for even shifted partitions.

Proof. If dk ≡ n mod 2 we have by Proposition 1.4.9

[
ω fλ

]
= L

dk(2n−1−dk)
2 ·

k

∏
i=1

[det Edi+ei ]
di−1−di ·

k

∏
i=1

Δdi−di−1+ei−ei+1
di

· Δ−dk
n

and there is an additional factor

[det En]
−1 · Ln−dk−1 · Δ2

dk+1
· Δ−1

n ,

if dk ≡ n + 1 mod 2. Then the equivalence (i) ⇔ (iii) follows by requiring all the terms

which do not lie in the image of the pull-back, i.e. for Δi for 1 ≤ i ≤ k (resp. 1 ≤ i ≤ k+ 1),

to have even exponents - this is precisely stated in (i). The peaks of Qλ are given by

peaks(Qλ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{p1, . . . , pk−1}, for λ of type I,

{p0, . . . , pk−1}, for λ of type II,

{p1, . . . , pk}, for λ of type III,

{p0, . . . , pk}, for λ of type IV

(2.4)

with h(pi) = n − 2 − di + ei+1. Since h(pi)− h(pi−1) = di−1 − di + ei+1 − ei for 1 ≤ i ≤ k

we see (i) ⇔ (ii). �
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type I

e1 = 0,
ek = n − 1 − dk

q1
p1

q2

e1 > 0,
ek = n − 1 − dk

type II

p0
p1

q2

q1

type III

e1 = 0,
ek < n − 1 − dk

q1
p1

q2

p2

q2

e1 > 0,
ek < n − 1 − dk

type IV

p0
q1 q2

p2
p1

q2

FIGURE 2.3. The 4 different types of strict partitions. If p := |peaks(Q)|, we

have p = k − 1, in type I, p = k + 1 in type IV and p = k in types II, III.

Shifted partitions are a special case of straight shapes which exist for all (co-)minuscule

varieties. These shapes index Schubert varieties, i.e. they are in bijection with represen-

tatives w of W/WP. If w0 denotes the longest element of W and wP the longest element

of WP, the element wλ∨ = w0wλwP is the Poincaré dual of wλ and its partition is called the

dual partition of λ, denoted by λ∨. For the maximal orthogonal Grassmannian, this duality

is obtained by reflection on shifted Young diagrams. See [BS16, §2] for more details.

Definition 2.2.2 (Dual partitions). Consider the classification of shifted partitions into 4

types as in Figure 2.3. Let λ ∈ Sn−1 be a partition with k-tuples d and e. With the usual

convention d0 = 0 and ek+1 = n − 1 − dk the dual λ∨ of λ is given by the tuples

(d, e)∨ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ei+1, di)1≤i≤k−1 for λ of type I,

(ei+1, di)0≤i≤k−1, for λ of type II,

(ei+1, di)1≤i≤k, for λ of type III,

(ei+1, di)0≤i≤k, for λ of type IV.

Lemma 2.2.3. Let λ ∈ Sn−1 with k-tuples d and e. Then the following are equivalent:

(i) λ is even.

(ii) λ∨ is even.

(iii) The push-forwards of the unit form along both fλ and fλ∨ exist and for any p ∈ peaks(Qλ)

and p′ ∈ peaks(Qλ∨) we have h(p) ≡ h(p′) mod 2.
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Proof. Clearly (i) ⇔ (ii). Assume now that λ is of type IV, i.e. that λ∨ is of type I. If λ

is even, then all the terms di − di−1 + ei − ei+1 for 1 ≤ i ≤ k are even, so by Lemma

2.2.1 there is a push-forward along fλ starting from W0(−, O). By the same lemma we

can push-forward the unit form along fλ∨ if and only if ei+1 − ei + di − di+1 is even for

1 ≤ i ≤ k − 1, which is also true and proves (ii) ⇒ (iii). Now assume (iii), i.e. that

(a) di − di−1 + ei − ei+1 is even for 1 ≤ i ≤ k,

(b) ei − ei−1 + di−1 − di is even for 2 ≤ i ≤ k,

(c) (n − 2 − di + ei+1)− (n − 2 − ej + dj) is even for 0 ≤ i ≤ k and 1 ≤ j ≤ k − 1.

We need to show (E1)-(E5) for λ. Adding equations (a) and (b) suitably, we see

d1 ≡ d2 − d1 ≡ . . . ≡ dk−1 − dk−2 ≡ dk − dk−1 mod 2

and similarly

e2 − e1 ≡ e3 − e2 ≡ . . . ≡ ek − ek−1 ≡ ek+1 − ek mod 2.

By (a) for i = 1 we even see that all these difference are the same and putting i = 1 and

j = 2 in (c) shows that these differences are all even. The arguments for the other types

are the same, so we do not include them. �

Remark 2.2.4. One can show, that the previous lemma is also valid in type A, where in

(iii) the statement needs to be replaced by h(p)− h(p′) ≡ d + e mod 2.

Definition 2.2.5. For an even strict shifted partition λ ∈ Λn we define the twist

T(λ) := L−l(λ) · [det En]
−(dk+1−dk) · O(1)t(λ) ∈ Pic(OFlX(λ))/2, (2.5)

where the numbers t(λ) and l(λ) are defined as

t(λ) := 2dk+1 ∈ Z, (2.6)

l(λ) :=
dk+1(2n − 1 − dk+1)

2
∈ Z. (2.7)

Note that, in particular, the class of T(λ) in PicX(−)/2 is trivial, since the interesting

twist t(λ) is always even. The number l(λ) can be visualized as the dimension of the

complement of the orthogonal part in the resolution, i.e. the complement of the hatched

area in Figure 2.2 and t(λ) is twice the vertical length of this complement.

63



2.3. THE BLOW-UP SETTING

Theorem 2.2.6. We have
[
ω fλ

]
· f ∗λ(T(λ)) ≡ 1 in Pic(OFlX(λ))/2 for any λ ∈ En−1.

Proof. Consider the case dk ≡ n mod 2; the other case follows similarly. All, except for

the first and the last exponent, in

[
ωOFlX(λ)/OGX(n,V)

]
= L

dk(2n−1−dk)
2 ·

k

∏
i=1

[det Edi+ei ]
di−1−di ·

k

∏
i=1

Δdi−di−1+ei−ei+1
di

· Δ−dk
n

are even by [BC12a, 4.8]. Note that Δdk
n =

√
Δn

2dk =
√

Δn
t(λ is always a square. �

Definition 2.2.7. For λ ∈ En−1 let Lλ be a line bundle on OGX(n, V) of class T(λ) in

Pic(OGX(n, V))/2. By Theorem 2.2.6 we can choose a line bundle Mλ ∈ Pic(OFlX(λ))

and an isomorphism ψλ : M⊗2
λ −→ f ∗λ(Lλ)⊗ ω fλ

, i.e. an alignment O � f ∗λ(Lλ)⊗ ω fλ

which itself induces a lax-push-forward along fλ. We define

φn(λ) ∈ W |λ| (OGX(n, V), Lλ

)
(2.8)

to be the image of the unit form 1 ∈ W0 (OFlX(λ), O) under this lax-push-forward. The

elements φ−
n (λ) ∈ W |λ|(OG−

X(n, V), L−
λ ) are defined accordingly.

2.3 The blow-up setting

We will now apply the methods discussed in section 1.2.8 to the maximal orthogonal

Grassmannian. Throughout, we are going to use the language of functors of points ex-

plained in section 1.3, i.e. we will describe all schemes on points. Let (V , ω) be an orthog-

onal vector bundle over a smooth connected scheme X of rank 2n. As usual, we require

the existence of a complete isotropic flag E• of V. Then En is a maximal isotropic subbun-

dle of V and we denote by OG(n) := OGX(n, V) the connected component of maximal

isotropic subbundles of V containing En. Consider the closed subscheme Z ⊂ OG(n)

given by

Z = {Pn ∈ OG(n) | E1 ⊂ Pn ⊂ E⊥
1 } ∼= OGX(n − 1, E⊥

1 /E1) =: OG(n − 1)

and denote by U the open complement U = OG(n) \ Z. Again we are going to use the

language of functor of points as described in [Kar01]. Note that, in general, we only have

OG(n)(R) � U(R) ∪ Z(R) (equality holds for fields, as in this case the second condition

in Notation 2.3.1 is redundant). But since U (resp. Z) are open (resp. closed) subfunctors

of OG we have that the associated open (resp. closed) subschemes cover OG.
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Notation 2.3.1. [cf. [BC12a, 5.2]] For an isotropic subbundle W ⊂ V write W
.
�⊂ E⊥

1 if

W �⊂ E⊥
1 (i.e. is not a subbundle) and moreover W ∩ E⊥

1 is a subbundle of W which

is equivalent to the natural map W/(W ∩ E⊥
1 ) −→ V/E⊥

1 being an isomorphism. This

additional condition is automatically satisfied over fields, but not in general.

Definition 2.3.2. Consider the strict shifted partition λ = (n − 1) and the corresponding

smooth degeneracy locus inside OG−
X(n, V), denoted by Y. Denote by SY the restriction of

the tautological bundle over OG−(n) to Y. Note, that Y ∼= OG−
X(n − 1, E⊥

1 /E1) and under

this isomorphism, the tautological bundle is identified with SY/E1. Finally, consider the

scheme

GrY(n − 1, SY). (2.9)

It is smooth and given on points by {Pn−1 ⊂ P−
n ⊂ E⊥

1 }.

Now consider the diagram

Z OGX(n) U

OGX(n − 2, E⊥
1 /E1) GrY(n − 1, SY) OG−(n − 1, E⊥

1 /E1) =: Y

ι v

ṽ
απ̃

ι̃

π̄

α̃

(2.10)

Let us fix the following notation:

• We write Pn := P+
n and P−

n in order to express whether a maximal isotropic subbun-

dle is contained in OG(n) or OG−(n) (and similar in other dimensions).

• The scheme OGX(n − 2, E⊥
1 /E1) parametrizes isotropic subbundles of rank n − 2 of

E⊥
1 /E1. Any such Pn−2 defines a unique bundle E1 ⊂ Pn−1 of rank n − 1 and this

bundle is contained in exactly two maximal isotropic subbundles of V , one in each

component, which are denoted by Pe
n−1 ∈ OG(n) and Po

n−1 ∈ OG−(n).

Then diagram (2.10) is given on points by

{E1 ⊂ Pn ⊂ E⊥
1 } {Pn ⊂ V} {Pn

.
�⊂ E⊥

1 }

{
E1 ⊂ Pn−1 ⊂ E⊥

1
} {

Pn−1 ⊂ P−
n ⊂ E⊥

1
}

{E1 ⊂ P−
n ⊂ E⊥

1 }

ι v

ṽ
απ̃

ι̃

π̄

α̃

(2.11)

and the involved maps are as follows:
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(i) The maps ι, v and α̃ are the obvious ones.

(ii) The map π̃ maps Pn−1 to Pe
n−1.

(iii) The inclusion ι̃ maps Pn−1 to Pn−1 ⊂ Po
n−1.

(iv) We let π̄(Pn−1 ⊂ P−
n ) = Pe

n−1 (note that P−
n = Po

n−1).

(v) Further ṽ(Pn) = (Pn ∩ E⊥
1 ⊂ (Pn ∩ E⊥

1 ) + E1).

(vi) Finally α := α̃ ◦ ṽ.

Theorem 2.3.3. The left hand square is a blow-up diagram, i.e. π̄ : GrY(n − 1, S) −→ OG(n)

is isomorphic to the blow-up π : BlZ(OG(n)) −→ OG(n) of OG(n) along Z and the exceptional

divisor i : E ↪→ BlZ(OG(n)) identifies with ι̃ : OGX(n − 2, E⊥
1 /E1)) ↪→ GrY(n − 1, SY).

Proof. We have

codim(Z ↪→ OG(n)) = dim OG(n)− dim Z =
n(n − 1)

2
− (n − 1)(n − 2)

2
= n − 1.

If Pn �⊂ E⊥
1 we let Pn−1 = Pn ∩ E⊥

1 and P−
n = Pn−1 + E1 and this is unique, so π̄ is an

isomorphism over the open complement U. Further, the map π̄|π̄−1(Z) : π̄−1(Z) −→ Z is

a projective bundle of rank n − 2 since the left hand square is cartesian. Indeed it clearly

is cartesian on points which is sufficient by the arguments in [Kar01, p.25]. Moreover, the

map α̃ is a Pn−1-bundle.

Clearly, GrY(n − 1, SY) is smooth. The preimage π−1(Z) ⊂ GrY(n − 1, SY) has codi-

mension 1, i.e. is a Cartier divisor, which gives a commutative diagram

GrY(n − 1, SY) BlZ(OG(n))

OG(n)

φ

π̄ π

where φ is birational over U, since π and p are. Over Z, φ restricts to a surjective map

Pn−2 −→ Pn−2, which necessarily needs to be an isomorphism, making φ bijective. Since

the blow-up is normal, φ is an isomorphism. �

Definition 2.3.4. Denote by BX(n, E•) := GrY(n − 1, SY) the blow-up of OGX(n, V) along

Z and by EX(n, E•) := OGX(n − 2, E⊥
1 /E1)) the exceptional divisor.
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Remark 2.3.5. On points the exceptional divisor can also be described as

{(Pn−1, P−
n−1) ∈ OGX(n − 1, E⊥

1 /E1)× OG−
X(n − 1, E⊥

1 /E1) | rk(Pn−1 ∩ P−
n−1) = n − 2}

via the isomorphism Pn−1 �→ (Pe
n−1/E1, Po

n−1/E1). Similarly, the blow up can alterna-

tively be described by

{(Pn, P−
n ) ∈ OGX(n, V)× OG−

X(n, V) | rk(Pn ∩ P−
n ) = n − 1, P−

n ⊂ E⊥
1 } (2.12)

via (Pn−1 ⊂ P−
n ) �→ (Pe

n−1, P−
n ).

Theorem 2.3.6. The map α : U −→ Y is an affine bundle. In particular the diagram above

satisfies [BC09, Hypothesis 1.2].

Proof. Given Pn
.
�⊂ E⊥

1 we have α(Pn) = ((Pn ∩ E⊥
1 ) + E1). This defines (as in [BC12a])

an An−1-bundle. Indeed, we can imitate the arguments in loc. cit. as follows. Using

isotropicness of all involved bundles one verifies that the blow-up and the exceptional

divisor are given by

BX(n, E•) = GrY(n − 1, SY) ∼= PY(V/SY) (2.13)

EX(n, E•) = GrY(n − 2, SY/E1) ∼= PY(E⊥
1 /SY) (2.14)

and under the isomorphism

U ∼= BX(n, E•) \ EX(n, E•) ∼= PY(V/SY) \ PY(E⊥
1 /SY)

α corresponds to the structure moprhism to Y. Hence, α is an An−1-bundle. �

Lemma 2.3.7. Let n ≥ 2 and λ ∈ En−1 such that λ1 < n − 1, i.e. the last column is empty and

thus v is well-defined on λ. Then the base-changes to U of fλ and f −v(λ) coincide, in the sense that

in the diagram

OGX(n, V) U OG−
X(n − 1, E⊥

1 /E1)

OFlX(λ, E•) Ũ OFl−X(v(λ), E′
•)

v α

fλ

v′ α′

f f −v(λ) (2.15)

both squares are cartesian.
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Proof. First assume that dk ≡ n mod 2 and λ comes with k-tuples d and e. Associated

with v(λ) we have the k-tuples d and e − 1, where (e − 1)i = ei − 1. In Example 2.1.1 we

already saw that this partition v(λ) defines a Schubert variety in the opposite component

OG−
X(n − 1, E⊥

1 /E1). Also note that by assumption ei ≥ 1 for all i. The left hand square

from (2.15) is given on points by

{Pn ⊂ V} {Pn
.
�⊂ E⊥

1 }

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk
⊂ Pn

∩ ∩
Ed1+e1 ⊂ . . . ⊂ Edk+ek

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk
⊂ Pn

∩ ∩ � ∩·
Ed1+e1 ⊂ . . . ⊂ Edk+ek

E⊥
1

⎫⎪⎪⎬
⎪⎪⎭ =: Ũ

v

fλ′ f

v′

and clearly is cartesian. Let us compute the pullback on the left hand side and compare it

with Ũ. We have

{Pn
.
�⊂ E⊥

1 } {P−
n−1 ⊂ E⊥

1 /E1}

Ũ′ :=

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk
⊂ P−

n−1, Pn

∩ ∩ � ∩·
E′

d1+e1−1 ⊂ . . . ⊂ E′
dk+ek−1 E⊥

1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk
⊂ P−

n−1

∩ ∩
E′

d1+e1−1 ⊂ . . . ⊂ E′
dk+ek−1

⎫⎪⎪⎬
⎪⎪⎭

α

f ′

α′

f −v(λ)

and it remains to show that Ũ ∼= Ũ′. Note that Pdi ⊂ Edi+ei ⊂ E⊥
1 for all i ≤ i ≤ k and

E1
.
�⊂ Pdi for none of the subbundles in Ũ since this would contradict the condition on Pn.

Hence,

Φ : Ũ −→ Ũ′

((Pdi), Pn) �→ (((Pdi + E1)/E1), ((Pn ∩ E⊥
1 ) + E1)/E1, Pn),

(((Pdi + E1) ∩ Pn), Pn) ← � ((Pdi), P−
n−1, Pn)

is the desired isomorphism where, by abuse of notation, for a subbundle P ⊂ E⊥
1 /E1 we

again denote by P its preimage under the projection E⊥
1 → E⊥

1 /E1. If dk ≡ n + 1 mod 2,

apply the proof to the extended tuples d∗, e∗. �
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Lemma 2.3.8. Let n ≥ 3 and λ′′ ∈ Sn−2 even such that d′′
1 is odd, i.e. ∂ is well-defined on λ′′.

Then there is a commutative diagram

OGX(n − 1, E⊥
1 /E1) EX(n, E•) OG−

X(n − 1, E⊥
1 /E1)

OFlX(∂(λ
′′), E′

•) Ẽ OFl−X(λ
′′, E′

•)

F

π̃ α̃ι̃

f∂(λ′′)

α̃′

f̃ f −
λ′′

q
p

(2.16)

where the right hand square is cartesian and the lax push-forwards along both p and q preserve

the unit form up to lax-similitude.

Proof. This lemma will be essential in the proof of the Main Theorem. The statement is

similar to [BC12a, 5.8], but unlike in the preceeding lemma, we can not imitate the proof,

since ∂ acts differently on shifted Young diagrams than on unshifted Young diagrams.

First, observe that we only need to deal with the first kind of resolution in Figure 2.2.

Any strict partition of n − 2 with odd d1 automatically satisfies that dk is odd and n − 1

is even by Lemma 1.5.11. Hence the corresponding Schubert cell lies in OG−(n − 1). Let

now d and e be the k-tuples associated with λ′′. On points, the right hand square of (2.16)

becomes
{

Pn−1, P−
n−1 ⊂ E⊥

1 /E1,

rk(Pn−1 ∩ P−
n−1) = n − 2

} {
P−

n−1 ⊂ E⊥
1 /E1

}

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝
⎛
⎜⎜⎝

Pd1 ⊂ . . . ⊂ Pdk ⊂ P−
n−1

∩ ∩
E′

d1+e1
⊂ . . . ⊂ E′

dk+ek

⎞
⎟⎟⎠ , Pn−1

⎞
⎟⎟⎠ ,

rk(Pn−1 ∩ P−
n−1) = n − 2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk ⊂ P−
n−1

∩ ∩
E′

d1+e1
⊂ . . . ⊂ E′

dk+ek

⎫⎪⎪⎬
⎪⎪⎭

α̃ι̃

f̃

α̃′

fλ′′

where all the maps are the obvious ones. Here we used the characterization of the excep-

tional fiber as given in Remark 2.3.5. Let us first explain Figure 2.4, which illustrates the

strategy of the proof. The upper left and right pictures O and O′ describe the resolutions

of the Schubert schemes corresponding to ∂(λ′′) and λ′′, where we simplified the quivers

for the reader’s convenience. The aim is to construct a common resolution of O and the
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pull-back Ẽ of O′ along α̃ι̃ and this resolution should be a composition of maps, each of

which preserves the unit form when pushed forward along. Note that in type A, there is

a direct map Ẽ → O ([BC12a, 5.8]) but this is not true anymore in the orthogonal case.

Write Ẽ = GrOFl−X (λ
′′)(n − 2, S−

n−1) where S−
n−1 denotes the top tautological bundle

on OFl−X(λ
′′). Consider the locus Zk := GrOFlX(λ)(n − 2 − dk, S−

n−1/Sdk
) ⊂ Ẽ, which on

points is given by

Zk =

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk
⊂ Pn−2

∩ ∩ ∩
E′

d1+e1
⊂ . . . ⊂ E′

dk+ek
P−

n−1

⎫⎪⎪⎬
⎪⎪⎭ =

{
(Pd1 , . . . , Pdk

, P−
n−1, Pn−1) ∈ Ẽ | Pdk

⊂ Pn−1
}

.

Let qk : Fk := BlZk(Ẽ) −→ Ẽ be the blow-up of Ẽ along Zk. On points Fk is given by

Fk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qdk−1 ⊂ Pn−1

∩
Pd1 ⊂ . . . ⊂ Pdk

⊂ P−
n−1 rk(Pn−1 ∩ P−

n−1) = n − 2

∩ ∩
E′

d1+e1
⊂ . . . ⊂ E′

dk+ek

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

To see this, observe that qk|Fk\Zk
is an isomorphism, since outside the center the preimage

Qdk−1 = Pdk
∩ Pn − 1 is uniquely determined. Over the center qk is a Pdk−1 bundle and

we have codim(Zk ↪→ Ẽ) = dk. In particular, qk identifies with a blow-up along a center

of odd codimension dk. Let Zk−1 be the closed subscheme of Fk defined by the tower

Zk−1 = GrF1
k
(n − 1 − dk, S−

n−1/T ′
dk−1)

−→ F1
k := GrOFl−X (λ

′′)(dk − dk−1 − 1, Sdk
/Sdk−1

)

−→ OFl−X(λ
′′),

where in the first line we used Tdk−dk−1−1 = Sdk
/Sdk−1

and wrote T ′
dk−1 for the pull-back

of Tdk−dk−1−1 under

{
W ∈ GrOFl−X (λ

′′)(dk − 1, Sdk
)

∣∣∣∣ Sdk−1
⊂ W

}
∼−→ GrOFl−X (λ

′′)(dk − dk−1 − 1, Sdk
/Sdk−1

)

(on points, this precisely means that Pdk−1
⊂ Qdk−1). Let

qk−1 : Fk−1 := BlZk−1(Fk) −→ Fk
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OG(n − 1) E OG−(n − 1)

Pd1−1

Pd2−1

Pdk−1

Pn−1

O

Ed1

Pd2

Pdk

Pn−1

P−
n−1

Ẽ

Ed1

Pd2

Pdk

P−
n−1

O′

Ed1Vd1−1
Wd2Vd2−1

Vdk−1

Vn−1

G2

Ed1

Pd2

Qdk−1
Pdk

P−
n−1

Pn−1

Fk

...
...

Ed1Vd1−1
Wd2Vd2−1

Vdk−1
Wdk

Vn−1

Gk

Ed1

Pd2Qd2−1

Qdk−1
Pdk

Pn−1

P−
n−1

F2

Ed1Vd1−1
Wd2Vd2−1

Vdk−1
Wdk

Vn−1

V−
n−1

Gk+1

Ed1Qd1−1
Pd2Qd2−1

Qdk−1
Pdk

Pn−1

P−
n−1

F1

π̃ α̃ι̃

f∂(λ′′)

α̃′

f̃ fλ′′

p2 qk

p3 qk−1

pk q2

pk+1

d1≥3

d1=1

q1

FIGURE 2.4. Sketch of proof. Write O := OFlX(∂(λ
′′)) and O′ = OFlX(λ

′′).

From the common refined resolution we have two towers of blow-ups,

where the centers of the blow-ups qi have odd codimension di and of

the blow-ups pi have odd codimension ei + 1.
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be the blow-up of Fk along Zk−1. As before we see that, on points, Fk−1 is given by

Fk−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Qdk−1−1 ⊂ Qdk−1 ⊂ Pn−1

∩ ∩
Pd1 ⊂ . . . ⊂ Pdk−1

⊂ Pdk
⊂ P−

n−1 rk(Pn−1 ∩ P−
n−1) = n − 2

‖ ∩ ∩
E′

d1
⊂ . . . ⊂ E′

dk−1+ek−1
⊂ E′

dk+ek

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

and codim(Zk−1 ↪→ Fk) = dk−1.

It is immediate, that codim(Zi−1 ↪→ Fi) = di. Finally let

F :=

⎧⎨
⎩ F1, if d1 ≥ 3,

F2, if d1 = 1.

and q : F −→ Ẽ be the composition of all the qi. Since q is the composition of several

blow-ups, all of which are along centers of odd codimension, the lax push-forward along

q preserves the unit form by [BC12a, 3.15 (b)].

Let us now switch to the other side. The tuples of ∂(λ′′) are given by d − 1 and e + 1,

where both are truncated from their first entry in the case d1 = 1. The Schubert cell and

its resolution are given by

YX(∂(λ
′′), E′

•) =

{
Vn−1 ∈ OG(n − 1), s.t.

dim(Vn−1 ∩ E′
di+ei

) ≥ di − 1

}
,

OFlX(∂(λ
′′), E′

•) =

⎧⎪⎪⎨
⎪⎪⎩

Vd1−1 ⊂ . . . ⊂ Vdk−1 ⊂ Vn−1

∩ ∩
E′

d1
⊂ . . . ⊂ E′

dk+ek

⎫⎪⎪⎬
⎪⎪⎭

and over OFlX(∂(λ
′′), E′

•) there are tautological subbundles Sd1−1, . . . , Sdk−1, Sn−1 (where

Sd1−1 does not appear in the case d1 = 1). Now while in the type A setting in [BC12a] we

would be able to construct a morphism Ẽ −→ OFlX(∂(λ
′′), E′

•) this is not possible in this

setting. Instead we will have a map p : F −→ OFlX(∂(λ
′′), E′

•).

We will now describe a similar construction as seen before, this time over OFlX(∂(λ
′′))

in order to write p as consecutive blow-ups. Note that after change of letters F is given
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on points by

Gk+1 := F =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vd1−1 ⊂ . . . ⊂ Vdk−1−1 ⊂ Vdk−1 ⊂ Vn−1

∩ ∩ ∩
Wd1 ⊂ . . . ⊂ Wdk−1

⊂ Wdk
⊂ V−

n−1 rk(Vn−1 ∩ V−
n−1) = n − 2

‖ ∩ ∩
E′

d1
⊂ . . . ⊂ E′

dk−1+ek−1
⊂ E′

dk+ek

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(if d1 = 1 we need to omit Vd1−1 and we obtain Gk = F). Forgetting all the Wdi and V−
n−1

gives us a map to OFlX(∂(λ
′′)). We now show that each step is a blow-up along a suitably

chosen center of odd codimension.

• Dropping V−
n−1 identifies with the blow-up along the locus {Wdk

⊂ Vn−1}. This is

the same setup as in the beginning of the section (this time over a different base),

namely the inclusion OG(n − 1 − dk) ⊂ OG(n − dk) which is of odd codimension

n − dk − 1 = ek+1 + 1. Denote this blow-up by pk+1 : Gk+1 −→ Gk.

• Similarly with no new arguments one shows that pi+1 : Gi+1 −→ Gi which drops

Wdi+1
(for 1 ≤ i ≤ k − 1) identifies with the blow-up of Gi along the closed locus

{Wdi ⊂ Vdi+1−1} which is of odd codimension ei + 1.

Hence the lemma is proven. �

2.4 Main Theorem

Theorem 2.4.1 (Main Theorem). Let n ≥ 1 and V be an orthogonal vector bundle of rank 2n.

Assume that V admits a complete isotropic flag E•. Then the elements {φn(λ)}λ∈Sn−1 defined in

Definition 2.2.7 form a total basis of the Witt groups of OGX(n, V) and the generators have degree

|λ| and trivial twist.

We will prove this theorem, by induction on n, in the same way as in [BC12a] using

the long exact localization sequence

. . . −→ Wi
Z(OG(n), L) e−→ Wi(OG(n), L) v∗

−→ Wi(U, L|U) ∂−→ Wi+1
Z (OG(n), L) −→ . . . ,

(2.17)

with Z, U and v as introduced in section 2.3, the extension of support map e from section

1.2.5 and Theorem 1.2.19. First, consider some low-dimensional cases.
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Example 2.4.2. For n ∈ N let V be an orthogonal vector bundle of rank 2n admitting a

complete isotropic flag.

(i) For n = 1 we have OGX(1, V2) = X and {1X} is a total basis of the Witt group over

X.

(ii) For n = 2 we have OGX(2, V4) ∼= P(E−
2 ) as in Example 1.4.4(ii) and the constructed

basis (of order two) coincides with the one in [BC12a].

Hence, we are left to prove the induction step, assuming the induction hypothesis is

true. A key observation is that all the maps in (2.17), in particular the boundary map, are

compatible with the constructed basis, in the sense that the basis elements are mapped to

each other (up to lax-similitude).

Proposition 2.4.3 (Analogon of [BC12a, 6.8]). (i) Let n ≥ 3 and λ′ ∈ En−2 with k-tuples

d and e such that e1 is even. Then

ι∗(φn−1(λ
′))� φn(ι(λ

′)). (2.18)

(ii) Let n ≥ 3 and λ ∈ En−1 with k-tuples d and e such that e1 > 0. Then

v∗(φn(λ))� α∗(φ−
n−1(v(λ))). (2.19)

(iii) Let n ≥ 3 and λ′′ ∈ En−2 with k-tuples d and e such that d1 is odd. Then

∂(α∗(φ−
n−1(λ

′′)))� (ιZ)∗(φn−1(∂(λ
′′))). (2.20)

Proof. (i) There is an obvious bijection of isotropic subbundles Pm ⊂ E′
p = Ep+1/E1 of

E⊥
1 /E1 and isotropic subbundles E1 ⊂ Pm+1 ⊂ Ep+1 of V . Hence there is a diagram

OG(n − 1) = {Pn−1 ⊂ E⊥
1 /E1} {Pn ⊂ V} = OG(n)

⎧⎪⎪⎨
⎪⎪⎩

Pd1 ⊂ . . . ⊂ Pdk
⊂ Pn−1

∩ ∩ ∩
E′

d1+e1
⊂ . . . ⊂ E′

dk+ek
E⊥

1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

Pd1+1 ⊂ . . . ⊂ Pdk+1 ⊂ Pn

∩ ∩
Ed1+e1+1 ⊂ . . . ⊂ Edk+ek+1

⎫⎪⎪⎬
⎪⎪⎭

ι

fλ′ fι(λ′)

and base-change (Theorem 1.2.12) yields (i).

(ii) This follows directly from Lemma 2.3.7.
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(iii) This time use Lemma 2.3.8. Note that by Lemma 1.5.11 for such a partition n − 1 ≡ 0

mod 2, i.e. [BC09, 1.4(B)] applies here the same way as in [BC12a, 6.8 (c)]. Explicitely

we have

∂(α∗(φ−
n−1(λ

′′))) = ∂(α∗( f −
λ′′)∗(1))

1.4
= ((ιZ)∗ ◦ π̃∗ ◦ ι̃∗ ◦ α̃∗ ◦ ( f −

λ′′)∗)(1)

(bc)
= ((ιZ)∗ ◦ π̃∗ ◦ f̃∗)(1)
(1)
= ((ιZ)∗ ◦ π̃∗ ◦ f̃∗ ◦ q∗)(1)
(c)
= ((ιZ)∗ ◦ ( f∂(λ′′))∗ ◦ p∗)(1)

(2)� ((ιZ)∗ ◦ ( f∂(λ′′))∗)(1)

= (ιZ)∗(φn−1(∂(λ
′′)))

where the unit form 1 is in the right Witt groups respectively. Here (bc) follows by

base-change, (c) by commutativity of the diagram in Lemma 2.3.8 and (1) resp. (2)

by the push-forward properties of the two maps constructed in the proof of Lemma

2.3.8. �

Lemma 2.4.4. Let n ≥ 3 and consider the commutative triangle

Wi
Z(OGX(n, V), L) Wi(OGX(n, V), L)

Wi+1−n(Z, ωι ⊗L|Z)

e

(ιZ)∗

∼
ι∗

(2.21)

Then the elements

(ιZ)∗(φn−1(λ
′)), λ′ ∈ En−2

form a total basis of Wtot
Z (OGX(n, V)).

Proof. By induction, the φn−1(λ
′) for even shifted partitions λ′ ∈ En−2 form a total basis

of W(Z). Since n ≥ 3, the map ι∗ : Pic(OGX(n, V))/2 −→ Pic(Z)/2 is an isomorphism,

so we can apply Lemma 1.2.21 to obtain the claim. �

proof of Main Theorem. Let again n ≥ 3. From codim(Z ↪→ OGX(n, V)) ≥ 2 we see that

v∗ : Pic(OGX(n, V))/2 −→ Pic(U)/2

is injective. By induction and the preceeding lemma, we have that the φn−1(λ
′) form a

basis for W(Z) and by homotopy invariance, the elements α∗(φ−
n−1(λ

′′)) form a basis for
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W(U) (where λ′, λ′′ run over En−2). Now apply Theorem 1.2.19 to the following index

sets

I =
{

λ′ ∈ En−2 even with e′1 even
}

ι−→
{

λ ∈ En−1 even with e1 = 0
}

J =
{

λ ∈ En−1 even with e1 > 0
}

v−→
{

λ′′ ∈ En−2 even with d′′
1 even

}
K =

{
λ′′ ∈ En−2 even with d′′

1 odd
}

∂−→
{

λ′ ∈ En−2 even with e′1 odd
}

and the Witt classes

Wtot
Z (OGX(n, V)) �

⎧⎨
⎩ vλ′ = (ιZ)∗(φn−1(λ

′)),

v′
λ′′ = (ιZ)∗(φn−1(∂(λ

′′)))� ∂(α∗(φn−1(λ
′′))),

Wtot(OGX(n, V)) �

⎧⎨
⎩ wλ = φn(λ),

w′
λ′ = φn(ι(λ

′))� ι∗(φn−1(λ
′)),

Wtot(U) �

⎧⎨
⎩ uλ′′ = α∗(φ−

n−1(λ
′′)),

u′
λ = α∗(φ−

n−1(v(λ)))� v∗(φn(λ))

for λ′ ∈ I , λ ∈ J and λ′′ ∈ K (see Propositions 1.5.14 and 2.4.3). Then we see that

I ∪ ∂(K) resp. v(J )∪K parametrize a basis of the Witt groups W(Z) resp. W(U). Hence,

a basis of W(OGX(n, V) is parametrized by
{

λ ∈ En−1 even
}
= J ∪ ι(I) which finishes

the proof. �
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Chapter 3

Witt groups of Lagrangian Grassmann

bundles

In this chapter we compute the Witt groups of Lagrangian Grassmann bundles, i.e. maxi-

mal isotropic Grassmann bundles with respect to a non-degenerate antisymmetric bilinear

form. This scheme seems very similar to the orthogonal analogon discussed in the pre-

vious chapter, so one might think that calculations go through with minor changes. Un-

fortunately, this turns out to be false - already the localization sequence is much harder

to understand due to the connecting homomorphism which cannot be directly computed

using the methods of section 1.2.8. Instead, a second blow-up in this setup is necessary

and this allows us again to describe the boundary map as composition of pull-backs and

push-forwards along the involved maps. Fortunately, even though the computation re-

quires some work, the map turns out to behave well, as is it is an isomorphism whenever

it does not vanish.

In the first three sections of the chapter we establish the new setup and compute the

boundary map in all the cases we need. A recursive description of the Witt groups is given

at the end of section 3.3. In the remaining section we try to imitate the procedure from the

last chapter by constructing some explicit elements via lax push-forwards from suitable

resolutions of Schubert cells, this time using almost even shifted partitions. Due to the more

delicate structure of the boundary map, a compatible resolution in the sense that we may

apply Theorem 1.2.19 is harder to construct. Unfortunately, it is still unclear to the author

how these elements could be compatible, although it is believed to be true.
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3.1 The extended blow-up setting

In this section we discuss a decomposition of the Lagrangian Grassmann bundle as it

was done in type A ([BC12a]) and D (chapter 2).

Let (V , ω) be a symplectic vector bundle of rank 2n over a smooth connected scheme X

containing 1
2 where ω admits values in the line bundle L ∈ Pic(X). Denote by Sn ⊂ p∗V

the tautological subbundle over p : LGX(n, V) −→ X. Fix an isotropic flag E• of V and

consider the closed subscheme

Z = {W ∈ LGX(n, V) |E1 ⊂ W ⊂ E⊥
1 } ∼= LGX(n − 1, E⊥

1 /E1).

Note that as in types A and D such a flag does not necessarily exist. Denote by U :=

LGX(n, V) \ Z the open complement of Z.

Definition 3.1.1 (Odd symplectic Grassmannians). The symplectic form ω on V restricts

to an odd symplectic form on the codimension one subbundle E⊥
1 = E2n−1, i.e. ω restricts

to a antisymmetric bilinear form with one-dimensional kernel E1. For 1 ≤ k ≤ n, we

define the scheme SGX(k, E⊥
1 ) parametrizing isotropic subbundles of rank k of E⊥

1 . Note

that SGX(k, E⊥
1 ) comes equipped with a tautological bundle Sk and may be viewed as

a smooth Schubert variety inside LGX(k, V). For more details on odd symplectic Grass-

mannians we refer to [Pec13].

Now let B = SGX(n − 1, E⊥
1 ) and define X̃ := LGB(1, S⊥

n−1/Sn−1) (cf. Example 1.4.5).

In particular X̃ is a projective bundle of rank 1 over B. Further, let E := GrZ(n − 1, Sn).

We can establish a setup as in Setup 1.2.14 given by

Z LGX(n) U

E X̃ LGX(n − 1, E⊥
1 /E1) =: Y

ι v

ṽ
απ′

ι̃

π (3.1)

which on points is given by

{E1 ⊂ Pn ⊂ E⊥
1 } {Pn ⊂ V} {Pn

.
�⊂ E⊥

1 }

{
Pn−1 ⊂ Pn ⊂ E⊥

1
} {

Pn−1 ⊂ Pn | Pn−1 ⊂ E⊥
1
}

{E1 ⊂ P′
n ⊂ E⊥

1 }

ι v

ṽ
απ′

ι̃

π (3.2)
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Here all maps, except for ṽ and α, are the obvious ones and we have

ṽ(Pn) = (Pn ∩ E⊥
1 ⊂ Pn),

α(Pn) = (Pn ∩ E⊥
1 ) + E1.

Remark 3.1.2. (i) The left square in the diagram above is a blow-up square, where ι is

a regular closed embedding of codimension n; this is shown as in the orthogonal

case. Write BX(n, E•) := X̃ and EX(n, E•) := E.

(ii) The map α is an An-bundle and does not canonically extend to a morphism defined

on X̃.

Recall that the Lagrangian Grassmannian is described as a homogeneous space by the

quotient Cn/Pn, where Pn denotes the maximal parabolic subgroup associated with the

right end root. The decomposition LGX(n, V) = Z
.∪ U corresponds to the decomposition

of Cn/Pn into the two orbits for the action of the maximal parabolic subgroup P1 corre-

sponding to α1 (see [Pec14]). Now the extension of α to the blow-up fails as the induced

action on X̃ admits three orbits, with a closed and smooth "invisible" orbit Z′ ⊂ E, which

on points is given by

Z′ = {E1 ⊂ Pn−1 ⊂ Pn}. (3.3)

The fact that α does not extend to the blow-up makes the computation of the boundary

map in the long exact localization sequence of the embedding ι harder. We will need an-

other blow-up to obtain an auxillary morphism. An intuitive attempt to fix this problem

above is to blow up X̃ along Z′, where ι′ := ι̃ ◦ ĩ : Z′ ↪→ X̃ is an embedding of codimension

2. This yields the extended diagram

Z LGX(n) U

Z′ E X̃ U′

E′ ˜̃X Y

ι

u

v

ṽ

α

˜̃v

ĩ

ι′

π′

ι̃

π

v′

ṽ′π̃′

ι̃′

π̃

α̃

(3.4)

with U′ = X̃ \ Z and the exceptional divisors E, E′ of the blow-ups. On points the diagram

is given as follows where the new maps are the obvious ones:
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{Pn ⊂ E⊥
1 } {Pn ⊂ V} {Pn

.
�⊂ E⊥

1 }

⎧⎪⎪⎨
⎪⎪⎩

Pn−1 ⊂ Pn

∪
E1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

Pn−1 ⊂ Pn

∩
E⊥

1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

Pn−1 ⊂ Pn

∩
E⊥

1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

E1
.
�⊂ Pn−1 ⊂ Pn

∩
E⊥

1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

E1 ⊂ Pn−1 ⊂ Pn

∩
P′

n

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

Pn−1 ⊂ Pn

∩
P′

n ⊂ E⊥
1

⎫⎪⎪⎬
⎪⎪⎭ {P′

n ⊂ E⊥
1 }

ι

u

v

ṽ

˜̃v
α

ĩ

π′

ι̃

π

ṽ′

v′

π̃′

ι̃′

π̃

α̃

(3.5)

Remark 3.1.3. Recall the non-maximal Lagrangian Grassmannian of Definition 1.4.6. Then

SGX(n − 2, E⊥
1 /E1) = {E1 ⊂ Pn−1 ⊂ E⊥

1 } {Pn−1 ⊂ E⊥
1 } = SGX(n − 1, E⊥

1 )

Z′ = {E1 ⊂ Pn−1 ⊂ Pn} {Pn−1 ⊂ Pn ⊂ E⊥
1 } = E.

i

p̃

ĩ

p (3.6)

is a blow-up square and allows computations on Picard groups and canonical bundles for

the odd symplectic Grassmannians using the methods in [BC12a, Appendix].

For a line bundle L ∈ Pic(LGX(n, V)) we consider the long exact localization sequence

. . . −→ Wi
Z(LG(n), L) e−→ Wi(LG(n), L) v∗

−→ Wi(U, L) ∂−→ Wi+1
Z (LG(n), L) −→ . . .

where we write LG(n) := LGX(n, V) and we have a dévissage isomorphism

Wi−n(Z, L|Z ⊗ ωι)
∼−→ Wi

Z(LGX(n, V), L).

The twist is given by ωι = [L/E1]
nΔ−1

n where Δn = det Sn = O(−1) as usual. Hence, by

homotopy invariance and writing LG(n − 1) := LGX(n − 1, E⊥
1 /E1), we end up with two

essential sequences

. . . −→ Wi−n(LG(n − 1), O) −→ Wi(LG(n), O(1)) v∗
−→ Wi(LG(n − 1), O(1)) ∂−→ (3.7)
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and

. . . −→ Wi−n(LG(n − 1), O(1)) −→ Wi(LG(n), O)
v∗
−→ Wi(LG(n − 1), O)

∂−→ . . . (3.8)

modulo PicX(LGX(n, V))/2 where PicX(LGX(n, V)) = Pic(LGX(n, V))/Pic(X). We will

now discuss these boundary maps in a more general setting.

3.2 The connecting homomorphism revisited

In this section we establish an anologuous description of the boundary map for a more

general setting as in [BC09]. For completeness we state the results for general schemes

although all schemes in the application will be smooth.

Setup 3.2.1. Let ι : Z ↪→ X a regular closed embedding of separated, noetherian, con-

nected schemes over Z[ 1
2 ] of codimension c. Denote by U the open complement of

Z in X. Let π : BlZ(X) −→ X be the blow-up of X along Z. Assume further that

ι̃ ◦ ĩ =: ι′ : Z′ ↪→ BlZ(X) is a regular closed embedding of codimension c′ and let

π̃ : BlZ′(BlZ(X)) −→ BlZ(X) be the blow-up of BlZ(X) along Z′. Denote by E, E′ the

corresponding exceptional divisors. Then we have a diagram

Z X U

Z′ E BlZ(X) U′

E′ BlZ′ (BlZ(X))

ι v

wṽ

˜̃v
ĩ ι̃

π′ π

v′

ṽ′π̃′

ι̃′

π̃

(3.9)

In the following we shall write X̃ := BlZ(X) and ˜̃X := BlZ′ (BlZ(X)). Let us fix a

dualizing complex KX on X and denote by KU the restricted dualizing complex on U

(in particular this complex is dualizing). If not mentioned otherwise, ∂ will denote the

connecting homomorphism in the long exact sequence

. . . −→ W̃i
Z(X, KX) −→ W̃i(X, KX) −→ W̃i(U, KU)

∂−−→ W̃i+1
Z (X, KX) → . . .

as usual.
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Lemma 3.2.2 ([BC09, 3.4]). In Setup 3.2.1 we have

Pic(X̃) ∼= Pic(X)⊕ ZO(E), Pic( ˜̃X) ∼= Pic(X)⊕ ZO(E)⊕ ZO(E′).

Moreover, if KX is a dualizing complex on X, dualizing complexes on X̃ rsp. ˜̃X are of the form

K̃ = π!(KX ⊗L)⊗O(E)⊗m,
˜̃K = π̃!π!(KX ⊗L)⊗ π̃∗O(E)⊗m ⊗O(E′)⊗m′

with integers m, m′ ∈ Z and L ∈ Pic(X).

Notation 3.2.3. By the preceeding lemma, a dualizing complex K on X induces several

dualizing complexes on the schemes involved in Setup 3.2.1. More precisely

KU := Lv∗K,

K̃ := π!K,

K̃U := Lṽ∗K̃,

K̃U′ := Lv′∗K̃,
˜̃K := π̃!π!K,

˜̃KU′ := Lṽ′∗ ˜̃K.

Note that by the blow-up property we have K̃U = KU, since π restrict to an isomorphism

over U. Similarly, ˜̃KU′ = K̃U′ .

Lemma 3.2.4. Let U2 ⊂ U1 ⊂ X be open subsets of X, KX a dualizing complex on X and denote

by Zi := X \ Ui the closed complements. Then the localization long exact sequences induce a

commutative ladder diagram

· · · W̃i
Z1
(X, KX) W̃i(X, KX) W̃i(U1, KU1) W̃i+1

Z1
(X, KX) · · ·

· · · W̃i
Z2
(X, KX) W̃i(X, KX) W̃i(U2, KU2) W̃i+1

Z2
(X, KX) · · ·

(3.10)

with support extensions and restrictions as vertical maps.

Proof. Use [Gil02, 2.9]. By [Bal99, 5.23] we know that the derived category Db(Coh(Ui))

is the localization of Db(Coh(X)) with respect to those morphisms in Db(Coh(X)) which

restrict to isomorphisms on Db(Coh(Ui)); write Db(Coh(Ui)) = S−1
i Db(Coh(X)). The

82



CHAPTER 3. WITT GROUPS OF LAGRANGIAN GRASSMANN BUNDLES

respective kernel categories are given by ISi = Db
Zi
(Coh(X)) and the long exact sequences

corresponding to the exact sequences

0 −→ Db
Zi
(Coh(X)) −→ Db(Coh(X)) −→ Db(Coh(Ui)) −→ 0

yield the horizontal maps of (3.10). Now clearly the identity functor on Db(Coh(X)) is

duality preserving and satisfies id(S1) ⊂ S2, hence it induces duality preserving functors

Db(Coh(U1)) −→ Db(Coh(U2)), Db
Z1
(Coh(X)) −→ Db

Z2
(Coh(X))

which by [Gil02, 2.7] themselves induce functors

W̃i(U1, KU1) −→ W̃i(U2, KU2), W̃i
Z1
(X, KX) −→ W̃i

Z2
(X, KX),

given by restriction and extension of support. Finally, [Gil02, 2.9] shows commutativity

of (3.10). �

Proposition 3.2.5. In Setup 3.2.1 assume that X admits a dualizing complex K. Denote the

occuring extensions of support by e, e′, ε. Then we have a commutative diagram

· · · → W̃i
Z(X, K) W̃i(X, K) W̃i(U, KU) W̃i+1

Z (X, K) → · · ·

· · · → W̃i
E(X̃, K̃) W̃i(X̃, K̃) W̃i(U, KU) W̃i+1

E (X̃, K̃) → · · ·

· · · → W̃i
Z′(X̃, K̃) W̃i(X̃, K̃) W̃i(U′, K̃U′) W̃i+1

Z′ (X̃, K̃) → · · ·

· · · → W̃i
E′(

˜̃X, ˜̃K) W̃i( ˜̃X, ˜̃K) W̃i(U′, K̃U′) W̃i+1
E′ ( ˜̃X, ˜̃K) → · · ·

e v∗ ∂

˜̃v∗

π∗

e′

π∗

ṽ∗ ∂′

π∗

ε

e′′ v′∗

w∗

∂′′

ε

π̃∗

e′′

π̃∗

ṽ′∗ ∂′′

π̃∗

Proof. The horizontal lines form long exact localization sequences. The middle horizon-

tal ladder commutes by the preceeding lemma, the middle vertical ladder commutes

by base change (Theorem 1.2.12) and functoriality of pushforwards of Witt groups (e.g.

[CH11, 5.2]. The squares in the corners commute by commutativity of push-forwards

with connecting maps and extension of support respectively ([BC09, proof of 3.3] and

[Nen07, 4.2] respectively). �
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A key tool, similar to the Main Lemma in [BC09] will be essential in the proof of the

main theorem of the section:

Lemma 3.2.6. In Setup 3.2.1 assume that X admits a dualizing complex KX and let

Dm,m′ := π̃!π!KX ⊗O(E′)⊗m′ ⊗ π̃∗O(E)⊗m (3.11)

for m, m′ ∈ {0, 1}. Consider the composition

W̃i( ˜̃X, Dm,m′)
˜̃v∗

−−→ W̃i(U, KU)
∂−−→ W̃i+1

Z (X, KX). (3.12)

Then we have the following:

(1) If m = 0 = m′ then ∂ ◦ ˜̃v∗ = 0.

(2) If m = 0 and m′ = 1 then ∂ ◦ ˜̃v∗ coincides with

W̃i+1
Z (X, KX)

W̃i( ˜̃X, ˜̃K ⊗O(E′)) W̃i+1
E (X̃, K̃)

W̃i
(

E′, Lι̃′∗( ˜̃K ⊗O(E′))
)

W̃i+1
Z′ (X̃, K̃)

W̃i+1(E′, ι̃′! ˜̃K) ∼=
W̃i+1(E′, π̃′!ι′!K̃)

W̃i+1(Z′, ι′!π!KX) ∼=
W̃i+1(Z′, ĩ! ι̃!π!KX)

ι̃′∗

π∗

∼

e

π̃′∗

ι′∗

(3) If m = 1 and m′ = 0 then ∂ ◦ ˜̃v∗ coincides with

W̃i( ˜̃X, ˜̃K ⊗ π̃∗O(E))

W̃i(X̃, π!KX ⊗O(E)) W̃i+1
Z (X, KX)

W̃i(E, Lι∗(π!KX ⊗O(E))) W̃i+1(E, π′!ι!KX) W̃i+1(Z, ι!KX)

π̃∗

ι̃∗

∼
π′∗

(ι)∗
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Proof. (1) This follows from Proposition 3.2.5 and the fact that the composition of con-

secutive morphisms in the localization long exact sequence vanishes.

(2) Consider the diagram

W̃i(U, KU) W̃i+1
Z (X, KX)

W̃i( ˜̃X, ˜̃K ⊗O(E′)) W̃i(U, KU) W̃i+1
E (X̃, K̃)

W̃i(U′, K̃U′) W̃i+1
Z′ (X̃, K̃)

W̃i(E′, Lι̃′∗( ˜̃K ⊗O(E′))) W̃i+1(E′, π̃′!ι′!K̃) W̃i+1(Z′, ι′!K̃)

∂

˜̃v∗

ṽ′∗

ι̃′∗

∂′

π∗

w∗

∂′′

ε

∼ π̃′∗

ι′∗

The upper part commutes by Proposition 3.2.5. The lower diagram commutes by

[BC09, 3.5(B)].

(3) This directly follows from [BC09, 3.5 (B)] and ˜̃v∗ = ṽ∗ ◦ π̃∗. �

Now similarly to [BC09, Hypothesis 1.2], we will ask U to be an affine bundle over

a scheme Y, coming with an auxiliary morphism from the blow-up. The difference this

time will be that we may not necessarily have such a morphism coming directly from

BlZ(X), but only from the double blow-up:

Hypothesis 3.2.7. In Setup 3.2.1 let α̃ : BlZ̃′(BlZ(X)) −→ Y be a morphism such that the

composition α := α̃ ◦ ˜̃v : U −→ Y is an A∗-bundle.

Theorem 3.2.8 (Connecting homomorphism). In Setup 3.2.1 assume that X admits a dual-

izing complex KX. Moreover, assume Hypothesis 3.2.7 and the following:

(i) There is a dualizing complex KY on Y satisfying Lα∗KY = KU.

(ii) The bundle α induces an isomorphism W̃i(Y, KY)
∼−→ W̃i(U, KU).

(iii) The morphism α̃ is of finite Tor dimension and Lα̃∗(KY) is a dualizing complex on ˜̃X.

(iv) The sequences Z → Pic( ˜̃X)
ṽ′∗
−→ Pic(U′) and Z → Pic(X̃)

ṽ∗
−→ Pic(U), where the first

maps send 1 to O(E′) and O(E) respectively, are exact.
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Then Lα̃∗(KY) ∼= π̃!π!KX ⊗ π̃∗O(E)⊗m ⊗ O(E′)⊗m′
for some m, m′ ∈ Z and the following

holds:

(1) If m and m′ can be chosen even, the composition π∗π̃∗α̃∗(α∗)−1 is a section of v∗, so ∂ = 0.

(2) If m can be chosen even and m′ can be chosen odd, the boundary homomorphism ∂ :

W̃i(U, KU) → W̃i+1
Z (X, KX) is given by the composition

∂ = π∗e(ι′)∗π̃′
∗ ι̃′∗α̃∗(α∗)−1

where e : W̃i
Z′(X̃) → W̃i

E(X̃) denotes the extension of support (for any twist).

(3) If m can be chosen odd and m′ can be chosen even, the boundary homomorphism ∂ :

W̃i(U, KU) → W̃i+1
Z (X, KX) is given by the composition

∂ = ι∗π′
∗ ι̃∗π̃∗α̃∗(α∗)−1.

Proof. By (iii) we have two dualizing complexes Lα̃∗KY and ˜̃K on ˜̃X and by Remark

1.2.11(i) they differ by a shifted line bundle on ˜̃X, i.e. we have

Lα̃∗KY = ˜̃K ⊗K[n]

for some K ∈ Pic( ˜̃X), n ∈ Z. Consider the restrictions to U. We have

KU ⊗ ˜̃v∗K[n] = ˜̃v∗(π̃!π!KX ⊗K[n]) = ˜̃v∗Lα̃∗KY = KU,

i.e. K|U is trivial and n = 0. By (iv) and Pic(U′) ∼= Pic(X̃) we get

K = π̃∗O(E)m ⊗O(E′)m′

for some m, m′ ∈ Z. Then (1)-(3) follow by base-change and Lemma 3.2.6. �

3.3 The connecting homomorphism for LG(2m + 1)

As before we denote by p : LGX(n, V) → X the projection to the base scheme where

the underlying antisymmetric form admits values in the line bundle L ∈ Pic(X). By

abuse of notation, we will denote by p any other projection to X as well. Denote from

now on by Setup 3.2.1 the diagram (3.4). In this section, we prove the following (see

Corollaries 3.3.9, 3.3.10).
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Theorem 3.3.1. Let n be odd and K ∈ Pic(LGX(n, V)) be a line bundle. Then there is a line

bundle K ∈ Pic(X) and an integer p ∈ Z, such that K = p∗M ⊗ O(p) and we have the

following:

(i) If p is odd, then the connecting homomorphism

∂ : Wi(U, K|U) −→ Wi−n(Z, p∗M⊗L⊗ E−1
1 ) ∼= Wi−n(Z, K|Z ⊗ ωι) (3.13)

is an isomorphism.

(ii) If p is even, then the connecting homomorphism

∂ : Wi(U, K|U) −→ Wi−n(Z, p∗M⊗L⊗ E−1
1 ⊗O(1)) ∼= Wi−n(Z, K|Z ⊗ ωι) (3.14)

vanishes.

Theorem 3.3.2. Let n be even and K ∈ Pic(LGX(n, V)) as above. Then the connecting homo-

morphism

∂ : Wi(U, K|U) −→ Wi−n(Z, K|Z ⊗ ωι) (3.15)

vanishes.

Before passing to the proof, we want to point out the difference to the orthogonal case.

Remark 3.3.3. Despite the more complicated description of the boundary map due to

the extended blow-up setup in the symplectic case, the above theorem states that the

map vanishes or is an isomorphism. This only applies partly in the case for maximal

orthogonal Grassmannians as has been shown in the joint article [HMX21].

• If n is even, again the connecting homomorphism vanishes.

• The difference arises for odd n. In the Lagrangian case, the boundary map either

vanishes or is an isomorphism, depending on the twist (cf. theorem above). Recall

that there are no twists for the orthogonal Grassmannians due to the fact, that the

tautological determinant bundle is a square in the Picard group. Instead, we divide

the origin of ∂ as in the localization sequence and determine the restriction of ∂ on

these parts. More precisely, since n − 1 is even, the localization sequence for the

embedding OG(n − 2) ↪→ OG(n − 1) splits and we have a decomposition

Wi(OG(n − 1)) ∼= Wi(OG(n − 2))⊕ Wi−(n−2)(OG−(n − 2)).

Then the main fact used in [HMX21] is that ∂ is an isomorphism when restricted to

the first summand and vanishes when restricted to the second summand.
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In order to compute ∂ we need to calculate the relevant canonical bundles. We first

examine the first blow-up square. Recall that the embedding ι : Z ↪→ LGX(n, V) is of

codimension c = n and that we have Pic(LGX(n, V)) ∼= Pic(X)⊕ ZO(1), where as usual

Δn = O(−1) for the dual generator. Similarly Pic(Z) ∼= Pic(X)⊕ Z[ΔnE−1
1 ]; in particular

Pic(Z) ∼= Pic(LGX(n, V)) for n ≥ 2. By Proposition 1.4.9 ωι = LnE−n
1 Δ−1

n ∈ Pic(Z).

Lemma 3.3.4. We have Pic(X̃) ∼= Pic(LGX(n, V))⊕ ZΔn−1 and in the first blow-up, the class

of E in Pic(X̃) is given by O(E) = LE−1
1 Δ−1

n Δn−1. In particular,

ωπ′ = Δn
n−1Δ−n+1

n , (3.16)

ωπ =
[
LE−1

1

]n−1
Δ−n+1

n Δn−1
n−1. (3.17)

Proof. By assumption π̃ is a projective bundle of rank n − 1 and hence in particular a

Grassmann bundle. Then (3.16) follows from (1.15). In the setting of Remark 3.1.3, we

have

ω p̃ = L−1Δ2
nΔ−2

n−1 = O(Z′)|⊗2
Z′ ⊗ p̃∗ω∨

i , (3.18)

ωĩ = E−1
1 Δ−1

n−1Δ1
n = O(Z′)|Z′ . (3.19)

where the first equality in (3.18) again follows from (1.15) and the second one from [BC09,

A.11(ii)]. In (3.19) the first equality follows from ωĩ = ωZ′ ·
(
ĩ∗ωE

)−1 and [BC12a, 1.14]

where the second one again comes from [BC12a, A.11(i)]. This gives us p̃∗ω∨
i = L−1E2

1

and hence ωi = LE−2
1 . Using this and Remark 1.4.6, we compute

ωSGX(n−1,E⊥
1 ) = L− n(n−1)

2 E−n+1
1 Δn+1

n−1.

Further

ωX̃ = L−
(

n(n−1)
2 +1

)
E−n+1

1 Δn−1
n−1Δ2

n.

since X̃ is a P1-bundle over SGX(n − 1, E⊥
1 ). Subtracting ωLGX(n,V) proves the lemma. �

Now do the same computations one level higher. We have Pic( ˜̃X) ∼= Pic(X̃)⊕ZO(E′).

Denote by Δ′
n the determinant of the "new" tautological bundle over the double blow-up

˜̃X. Then using the same methods we obtain the following:

Lemma 3.3.5. In the second blow-up the class of E′ in Pic( ˜̃X) is given by O(E′) = E−1
1 Δ′

nΔ−1
n−1.

In particular,

ωπ̃′ = L−1Δ′2
n Δ−2

n−1, (3.20)

ωπ̃ = E−1
1 Δ′

nΔ−1
n−1. (3.21)

88



CHAPTER 3. WITT GROUPS OF LAGRANGIAN GRASSMANN BUNDLES

Proposition 3.3.6. Let K ∈ Pic(LGX(n, V)) be a line bundle. Choose a line bundle K ∈ Pic(X)

and an integer p ∈ Z, such that K = p∗M⊗O(p). Then in Setup 3.2.1 we have the following:

(i) If n is even and p is odd, then Theorem 3.2.8 (1) applies.

(ii) If n is odd and p is even, then Theorem 3.2.8 (2) applies.

(iii) If n is odd and p is odd, then Theorem 3.2.8 (3) applies.

Proof. We have α̃∗(α∗)−1(K|U) = p∗M ⊗ L−pE2p
1 ⊗ Δ′−p

n . Indeed, by Notation 2.3.1, we

have that v∗(Δn)α∗(Δ′
n)

−1 = LE−2
1 , where the sequence 0 → E⊥

1 → V → E∨
1 ⊗ L → 0

yields V/E⊥
1

∼= LE−1
1 . Using O(p) = Δ−p

n ∈ Pic(LGX(n, V)) and by [BC09, A.8] we get

π̃!π!(K) = π̃!(ωπ ⊗ π∗K) = ωπ̃ ⊗ π̃∗(ωπ)⊗ π̃∗π∗(K)

= p∗M⊗Ln−1E−n
1 ⊗ Δn−2

n−1Δ−n+1−p
n Δ′

n.

Then comparing the terms on both sides we have

α̃∗(α∗)−1(K|U) = π̃!π!(K)⊗ π̃∗O(E)⊗n−1+p ⊗O(E′)−⊗p+1

which shows (i)-(iii) by comparing parities of the exponents. �

Remark 3.3.7. If both n and p are even, no statement can be made so far. Nevertheless

we will prove that also in the latter case the boundary map vanishes.

We now have established an explicit description of the boundary map in the two cases

we will need to complete the computations of the Witt groups. In the second part of

this section we use these formulas to prove Theorem 3.3.1. One of the main tools will

be the description of the Witt groups of projective bundles due to Walter and Nenashev

([Wal03], [Nen09]), Theorem 1.2.13.

From here, let n be odd. First, let p be odd, in which case by Proposition 3.3.6(iii)

∂ = ι∗π′
∗ ι̃∗π̃∗α̃∗(α∗)−1. (3.22)

Note that

(i) α∗ is an isomorphism since α is an A∗-bundle,

(ii) π′
∗ is an isomorphism by Theorem 1.2.13, since π′ is a projective bundle of even rank

n − 1,

(iii) ι∗ is an isomorphism into the supported Witt groups by dévissage, see (1.17).
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Hence, it suffices to investigate the map ∂′ = ι̃∗π̃∗α̃∗. In the diagram

E = {Pn−1 ⊂ Pn ⊂ E⊥
1 }

{Pn−1 ⊂ Pn | Pn−1 ⊂ E⊥
1 } = X̃ SGX(n − 1, E⊥

1 ) = {Pn−1 ⊂ E⊥
1 }

{E⊥
1 ⊃ P′

n ⊃ Pn−1 ⊂ Pn} = ˜̃X Ẽ = {Pn−1 ⊂ P′
n ⊂ E⊥

1 }

Y = {P′
n ⊂ E⊥

1 }

ι̃
p

p′

α̃

π̃

α̃1

q

α̃2

the upper and lower triangles are commutative and the square is cartesian. By base-

change and commutativity of pull-backs we see ∂′ = p∗q∗α̃∗
2. Since α̃2 is a projective

bundle of even rank n − 1, the first pull-back α̃∗
2 is an isomorphism and it again suffices

to investigate the map ∂′′ = p∗q∗.

Let us write down the maps induced on the Witt groups. Write K = p∗M⊗O(p) as

above for some odd p and M ∈ Pic(X). Then we have

Wi+1
Z (LGX(n, V), K)

Wi(U, K|U) Wi+1−n(Z, M⊗LE−1
1 )

Wi(Ẽ, α̃∗
2(α

∗)−1K|U) Wi(E, ωπ′ ⊗ π′∗(ω∨
ι ⊗K|Z))

Wi(Ẽ, M⊗LE−2
1 ⊗ Δ′

n) Wi(E, p∗M⊗LE−1
1 ⊗ Δn−1)

Wi(S, M⊗LE−1
1 ⊗ Δn−1)

∂

∼

ι∗
∼

∂′′

∼

q∗ p∗

where S := SGX(n − 1, E⊥
1 ) and we used ωq = E−1

1 Δ−1
n−1Δ′

n, which follows by Remark

3.1.3 and [BC09, A.11 (iii)]. Let S′ := SGX(n − 2, E⊥
1 /E1) and consider the following
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diagram

E = {Pn−1 ⊂ Pn ⊂ E⊥
1 }

{E1 ⊂ Pn−1 ⊂ Pn} = Z′ V′ := {E1
.
�⊂ Pn−1 ⊂ Pn ⊂ E⊥

1 }

{E1 ⊂ Pn−1 ⊂ E⊥
1 } = S′ S = {Pn−1 ⊂ E⊥

1 } V := S \ S′ = {E1
.
�⊂ Pn−1 ⊂ E⊥

1 }

{E1 ⊂ Pn−1 ⊂ P′
n} = Z′′ V′′ := {E1

.
�⊂ Pn−1 ⊂ P′

n ⊂ E⊥
1 }

Ẽ = {Pn−1 ⊂ P′
n ⊂ E⊥

1 }

p

P1

ĩ w′
∼

P1

ĩ′ w′′

∼

q

Note that over the open complements we indeed have isomorphisms, since over V the

bundles Pn = P′
n are uniquely determined by Pn−1 + E1 (which also induces the relation

Δn = Δn−1E1 = Δ′
n in the Picard groups). Consequently, the composition ∂′′ = p∗q∗ is an

isomorphism when restricted to U′, U′′. However, the restrictions of ∂′′ to Z′, Z′′ vanish

by [HMX21, A.2]. Luckily, this is no obstruction due to the following lemma:

Lemma 3.3.8. If n is odd, the inclusion w′′ induces an isomorphism

w′′∗ : Wi(Ẽ, p∗M′ ⊗ Δ′
n) −→ Wi(U′′, p∗M′ ⊗ Δ′

n) = Wi(U′′, p∗M⊗LE−1
1 ⊗ Δn−1)

where we write M′ := M⊗LE−2
1 . The same holds for w′.

Proof. Consider the localization sequence for the decomposition Z′′ ⊂ Ẽ ⊃ U′′:

. . . → Wi
Z′′(Ẽ, p∗M′ ⊗ Δ′

n)
ĩ′∗−→ Wi(Ẽ, p∗M′ ⊗ Δ′

n)
v′′∗
−→ Wi(U′′, p∗M′ ⊗ Δ′

n|U′′) → . . .

The inclusion ĩ′ is of codimension one and we have ωĩ′ = E−1
1 Δ−1

n−1Δ′
n which gives us

Wi−1(Z′′, p∗M⊗LE−1
1 ⊗ Δ−1

n−1)
∼−→ Wi

Z′′(Ẽ, p∗M′ ⊗ Δ′
n) (3.23)

by dévissage (by square periodicity we cancelled the terms E−2
1 Δ′2

n ). Now Z′′ is a pro-

jective bundle over Y of odd rank n − 2 with Δn−1 = O(1), i.e the twist is nontrivial.

Hence, by Theorem 1.2.13(ii), the twisted Witt group in (3.23) vanishes and v′′∗ is an iso-

morphism, as desired. �

Corollary 3.3.9. The connecting homomorphism in Theorem 3.3.1(i) is an isomorphism.

91



3.3. THE CONNECTING HOMOMORPHISM FOR LG(2M + 1)

We now turn to the case where p is even (and n is still odd); w.l.o.g. let p = 0, i.e.

K = p∗M. Here, by Theorem 3.3.6(ii), the connecting homomorphism is given by

∂ = π∗e(ι′)∗π̃′
∗ ι̃′∗α̃∗(α∗)−1.

From the commutative square

{P′
n ⊃ Pn−1 ⊂ Pn | E1 ⊂ Pn−1} = E′ ˜̃X

{E1 ⊂ Pn−1 ⊂ P′
n} = Z′′ Y = {E1 ⊂ P′

n}

ι̃′

P1q′ α̃

Pn−2

q

we have ∂ = π∗e(ι̃′)∗π̃′
∗p∗q∗(α∗)−1. We will now focus on the map ∂′ = π̃′

∗p∗ in

Wi(U, K|U) Wi(Z′′, L/E2
1 ⊗ p∗M)

Wi
Z(LGX(n, V), K) Wi(Z′, L/E2

1 ⊗ p∗M)

∂

q∗(α∗)−1

∂′

π∗e(ι̃′)∗

and show that it is the zero map. Since p′ : Z′′ −→ S′ = SGX(n− 2, E⊥
1 /E1) is a P1-bundle

we have an isomorphism

Wi(Z′′, p∗M′) ∼= Wi(S′, p∗M′)⊕ Wi−1(S′, p∗M′ ⊗ L−1)

induced by p′∗ and p′
∗ ◦ per where we write M′ = L/E2

1 ⊗M as above. Denote by Ψ the

splitting of p′
∗ ◦per as in [Wal03]. Then the restriction of ∂′ to both its components is equal

to the pull-back followed by the push-forward along a projective bundle of odd rank and

hence vanishes by [Wal03, 1.4] (see also [HMX21, A.2]). To see this, consider the diagram

S′ Z′ S′

Z′ E′ Z′′

S‘ Z′′ S′

p p

p

p

q q

π̃′

q′

p′

p′

p′ p′

in which the upper right and lower left squares are cartesian and the remaining ones

commute. By Theorem 1.2.13 the composition p′
∗p∗ vanishes, i.e. ∂′p′∗ = 0. The same

argument applies when we restrict ∂′ to the other component via Ψ. This proves:
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Corollary 3.3.10. The connecting homomorphism in Theorem 3.3.1(ii) vanishes.

proof of Corollary 3.3.2. For odd twists this follows from Proposition 3.3.6(i). For even

twists, ∂ lands in the twisted Witt group Wi−n(LG(n − 1), O(1)) which vanishes, since

the boundary map for n − 1 odd and non-trivial twist is an isomorphism. �

The results of this section already allow us to describe the Witt groups of symplectic

Grassmannians for all twists. To shorten notation we will write LG(n) := LGX(n, V) and

similar in other dimensions.

Remark 3.3.11. We have LG(1) ∼= P(V). In particular, for a line bundle K = p∗M⊗O(p)

on LG(1) by Theorem 1.2.13(iii) and the identity det V = L we have

Wi(LG(1), K) =

⎧⎨
⎩ 0, if p is odd,

Wi(X, M)⊕ Wi−1(X, M⊗L−1), if p is even.

This is a special case of the following recursive description of the Witt groups:

Theorem 3.3.12. We have the following description of twisted Witt groups (modulo Pic(X))

Wi(LG(n), K) K = O K = O(1)

n even Wi(LG(n − 1), O) Wi−n(LG(n − 1), O)

n odd Wi(LG(n − 2, O)⊕ Wi+1−2n(LG(n − 2), O) 0

Proof. Apply Theorem 3.3.1 applied to the long exact sequences (3.7) and (3.8). Since ∂ is

an isomorphism for odd n, the twisted Witt groups for LG(n) with n odd vanish. Hence

the localization sequence gives us isomorphisms

v∗ : Wi(LG(n), p∗M)
∼−→ Wi(U, p∗M|U) ∼= Wi(LG(n − 1), L/E2

1 ⊗ p∗M|U)
∼= Wi(LG(n − 1), p∗M)

with the last isomorphism stemming from periodicity and

ι∗ : Wi−n(LG(n − 1), p∗M) ∼= Wi−n(LG(n − 1), [L/E1]
n ⊗ p∗M)

∼= Wi
Z(LG(n), p∗M⊗O(1))

∼−→ Wi(LG(n), p∗M⊗O(1))
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for n even. If on the other hand n is odd, we only need to compute the untwisted Witt

groups. Since ∂ vanishes in the associated localization sequence, the resulting split short

exact sequences gives us

Wi(LG(n), p∗M) ∼= Wi
Z(LG(n), p∗M)⊕ Wi(U, p∗M|U)

∼= Wi−n (LG(n − 1), [L/E1]
n ⊗ p∗M⊗O(1))

⊕ Wi (LG(n − 1), p∗M)

∼= Wi−2n+1(LG(n − 2), L2n−1 ⊗ [det E2]
−(n−1) ⊗ p∗M)

⊕ Wi(LG(n − 2), p∗M)

∼= Wi−2n+1(LG(n − 2), L⊗ p∗M)⊕ Wi(LG(n − 2), p∗M)

where we used the results for the even case above, periodicity isomorphisms to cancel

even exponents and

ωLG(n−2)/LG(n−1) = Ln−1 ⊗ [det E2]
−(n−1) ⊗ En

1 ⊗O(−1),

due to Example 1.4.10. �

3.4 Construction of a basis - an approach

In this section, we will construct an explicit basis for the Witt groups in terms of almost

even diagrams of which the twists and shifts of the associated generators can easily be

extracted, exactly as in [BC12a] and chapter 2.

The aim is to assign a Witt class in the total Witt group to every almost even partition λ.

In order to do so in the usual way, we need to construct a map fλ : ỸX(λ) −→ LGX(n, V)
mapping birationally into the Schubert subscheme associated with λ, i.e. a resolution.

Recall that by [CH11] we then have push-forwards

( fλ)∗ : Wi
(

ỸX(λ), ω fλ
⊗ f ∗λ(M)

)
−→ Wi−dim fλ (LGX(n, V), M)

for any line bundle M ∈ Pic(LGX(n, V)), where dim fλ denotes the constant relative

dimension of fλ. In the case of ordinary and orthogonal Grassmannians the resolution

was ỸX(λ) = FlX(λ) resp. ỸX(λ) = OFlX(λ) and defined the basis element associated

with the even Young diagram resp. even shifted partition λ as the lax push-forward of

1 ∈ W0(ỸX(λ), O) along ( fλ)∗. This cannot work in the same generality in the Lagrangian

case, as the following example shows.
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Example 3.4.1. Let n ≥ 3 be odd and λ = (1) which is always almost even with tuples

d = d = 1 and e = e = n − 1. Then taking ỸX(λ) = IFlX(d, e) = {En ⊃ P1 ⊂ Pn} gives us

ω fλ
= [det En]

−1 · Ll(λ) · Δ−1
n

and pushing forward the unit form produces a class in the twisted Witt group

W1 (LGX(n, V), [det En] · L · O(1)) .

But this group vanishes by Theorem 3.3.12, so this push-forward cannot be part of a total

basis. We also mention that a similar version of Lemma 2.3.8 which we finally need in

order to apply Theorem 1.2.19 fails in the Lagrangian case with this choice of resolutions.

This is due to almost evenness, which causes blow-ups along centers of even codimension

and these make it hard to trace push-forwards.

Hence, one might like to replace the pair (ỸX(λ), fλ) with a different resolution. Ac-

tually, there is a priori no reason to take a resolution at all - any push-forward, e.g. along

projective bundles, could produce a Witt class. However, intuitive calculations (see chap-

ter 4) concerning twists and shifts and comparisons to results by Zibrowius ([Zib11]) over

Spec(C) make us believe, that maps of relative dimension 0 should lead to the desired re-

sult. Moreover, push-forwards of unit forms along projective bundles are zero if they

exist at all ([CH11, 7.3]), so at least those cannot be interesting.

Assume that fλ : ỸX(λ) → YX(λ) ⊂ LGX(n − 1, V) is a resolution of the Schubert

cell associated with some almost even shifted partition λ ∈ Fn−1. The aim is to have the

following: If ∂(λ) exists (that is, if d1 < n − 1 is odd or d1 = n − 1 is even), in the square

W |λ|+1−n (Z, O|Z) W |λ| (U, O(1)|U)

W0
(

ỸX(∂(λ), O
)

W0(ỸX (λ), O)

∂

f∂(λ) fλ

∂̃

there should be an induced map ∂̃ on the resolutions and the unit form should be pre-

served, up to lax-similitude, when pushed forward along ∂̃. In the ordinary and orthog-

onal setting, this has been done by showing that ∂̃ is a sequence of push-forwards along

blow-ups along centers of odd codimension and pull-backs (i.e. restrictions). Here, this

turns out to be much harder, especially due to the second blow-up which is of codimen-

sion 2. Nevertheless, we have that ∂ is an isomorphism and if ∂̃ is an isomorphism as

well, which there is no obvious reason for, this would lead to the desired result.
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Consider the following example, where all Schubert varieties are smooth, i.e. no reso-

lution is necessary.

Example 3.4.2 (a very smooth case). Let λ ∈ Fn−1 be almost even such that ∂(λ) exists

and both YX(λ) and YX(∂(λ)) are smooth. One easily checks that in this case n is odd and

λ is given by the tuples d = (1) and e = (0). Then the associated Schubert subscheme is

a smaller Lagrangian Grassmannian

YX(λ) = LGX(n − 2, E⊥
2 /E2) ⊂ LGX(n − 1, E⊥

1 /E1). (3.24)

Moreover, ∂(λ) = 0, i.e.

YX(∂(λ)) = LGX(n − 1, E⊥
1 /E1) = Z. (3.25)

Let ỸX = YX for booth Schubert schemes and denote by fλ and f∂(λ) the embeddings into

Z and Y, respectively. Abbreviating M := Ln−1 · En
1 · [det E2]

−(n−1) ∈ Pic(X), such that

ωλ = M· Δ−1
n , gives us a diagram

Wn−1(U, L−n · E−n+2
1 · [det E2]

n−1 · Δn) W0(Z, E−2n+2
1 · [det E2]

n−1)

Wn−1(Y, M−1 · Δn) W0(Z, O)

W0(YX(λ), O) W0(YX(∂(λ)), O)

∂

α∗ ∼

fλ f∂(λ)

v∗

(3.26)

where the upper left vertical map is the isomorphism on Witt groups induced by the

affine bundle α : U → Y and the upper right vertical map is a periodicity isomorphism.

The map v∗ is the restriction map in the localization sequence

. . . → Wi(LG(n − 1), O)
v∗
−→ Wi(LG(n − 2), O) → Wi+2−n(LG(n − 2), ωι) → . . .

for the inclusion ι : LG(n − 2) ⊂ LG(n − 1). Since n − 2 is odd, all the twisted Witt groups

for LG(n − 2) vanish and we see, that v∗ is an isomorphism. In particular, it preserves the

unit form (up to lax similitude). If we denote by φn−1(λ) the lax push-forward of the unit

form along fλ, as a direct consequence we have

∂(α∗(φn−1(λ)))� (ιZ)∗(φn−1(∂(λ))).

In other words, the crucial combatibility condition here is satisfied.
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FIGURE 3.1. Standard resolutions for ordinary and maximal orthogonal

Grassmannians.

FIGURE 3.2

We now introduce a pseudo resolution of Schubert cells, which produces Witt classes

of the right twists and shifts via lax push-forwards. As a motivation, consider the stan-

dard resolutions of Schubert varieties of ordinary and orthogonal Grassmannians corre-

sponding to even partitions which we illustrated in Figure 3.1.

In order to be able to push forward the unit form along the resolution, the relative

canonical bundle needs to be a square modulo pull-backs. Translated into the language

of Young diagrams this means, more or less, that the heights of the rectangles (except for

the lowest rectangle for the ordinary and the lowest triangle for the orthogonal Grass-

mannian) need to be even. The standard resolution does indeed respect this condition

for even partitions for obvious reasons but it fails in the case of almost even partitions. A

solution to this problem could be a pseudo-resolution, such as drawn in Figure 3.2. When-

ever dk + ek < n this is just the standard resolution, in particular smooth, but for the cases

dk + ek = n (to which in particular Example 3.4.1 belongs) it is slightly different and not

smooth in general, but at least Gorenstein. This theory is discussed in detail in [Per07]

for minuscule varieties and can easily be adapted to cominuscule varieties, such as the

Lagrangian Grassmannian, which has been done by Perrin in an unpublished preprint.

In the following, we summarize its basics. For this, recall that there is an equivalence

between quivers and Young diagrams.
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Let V be a symplectic vector space of dimension 2n and denote by LG(n) = Cn/Pn

as usual the Lagrangian Grassmannian of maximal isotropic subspaces of V. For each

shifted partition λ ∈ Sn there is a Schubert variety Y(λ) ⊂ LG(n). Recall that Y(λ) =

Y(w) for the shortest element w ∈ W (which is unique upto commuting relations) of some

class w ∈ W/WPn . The element w has a reduced expression of length n(n+1)
2 − |λ| with

simple reflections as factors and we can associate a quiver Qλ = Qw. In [Per07] the author

describes towers

Ỹ(λ) → Ŷ(λ) → Y(λ) → LG(n)

of birational maps of varieties, where Ỹ(λ) is the Bott-Samelson resolution of Y(λ) and

Ŷ(λ) is some "intermediate" or "pseudo" resolution which can be constructed for any

partition of the quivers into subquivers. In this sense, the Bott-Samelson resolution is

constructed as the finest possible partition of Qλ into subquivers consisting of one vertex

each. However, in many cases Ỹ(λ) is too fine and one is interested in corser resolutions.

The partition we aim for is drawn in Figure 3.2 (recall that the quiver is given by the white

complement together with the coloring by roots) and we denote it again by Ŷ(λ). We also

mention that many properties such as smoothness and Gorensteinness of the resulting

resolution can be directly read off the quiver and its subquivers as in Theorem 1.5.20.

We now want to compute the canonical divisor of Ŷ(λ). Assume that Y(λ) has di-

mension n(n+1)
2 − |λ| = r, i.e. the quiver Qλ has r vertices. Then we can choose special

divisors Z1, . . . , Zr in Ỹ(λ) such that their classes in the Chow ring, denoted by ξ1, . . . , ξr,

form a basis of A∗(Ỹ(λ)). Generators of the divisor class group of Ŷ(λ) now are obtained

pushing forward the generators ξi to Ŷ(λ) whenever i is a peak of a subquiver. Finally

the canonical divisor of Ŷ(λ) is obtained by pushing forward the canonical divisor of the

Bott-Samelson resolution. We can parametrize all peaks in terms of our k-tuples d, e. A

calculation shows the following:

Theorem 3.4.3. Let λ ∈ Fn. Denote by p0, . . . , pk be the peaks of the partition of the associated

quiver as above where p0 only exists if e1 > 0 and pk only exists if d1 ≤ n − 2. As usual, we

number them from left to right in the quiver, i.e. in a way that pk is the unique peak associated with

the long simple root αn. Denote by Dpc , . . . , Dpl the push-forwards of the associated generators of

the Chow ring of the Bott-Samelson resolution.Then these divisors form a basis of the divisor class

group of Ŷ(λ) and the canonical divisor is given by

−KŶ(λ) = (n + 2)Dp0

if d1 = n − 1 and by
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−KŶ(λ) =
k−1

∑
i=c

(h(pi) + 2) Dpi +

(
h(pk) + 3

2

)
Dpk (3.27)

=
k−1

∑
i=c

(n + 1 − di + ei+1)Dpi +

(
n + 2 − 2dk+1 + dk + ek+1

2

)
Dpk . (3.28)

otherwise. Denote by D ∈ Pic(LG(n)) the generator of the Picard group such that the canon-

ical divisor of LG(n) is given by −KLG(n) = (n + 1)D. Then its pull-back to Ŷ(λ) along the

projection π̂ : Ŷ(λ) → LG(n) is given by

π̂∗(D) =

(
k−1

∑
i=c

2Dpi

)
+ Dpk (3.29)

and hence the relative canonical divisor is given by

− KŶ(λ)/LG(n) =

⎧⎨
⎩ −nDp0 , if d1 = n − 1,

∑k−1
i=c (−n − 3 − di + ei+1)Dpi + (−dk+1)Dpk , otherwise,

where we used n − dk = ek+1.

proof sketch. This has been proved in [Per07, 4.15] for minuscule varieties. Without giving

a complete proof we highlight the differences in the cominuscule case. Recall that in type

C we have short and long roots. Then in [Per07, Proposition 2.16] we need to adjust the

formula which gives

Lr = ξr +
r−1

∑
k=1

2ξk (3.30)

and, writing |·| for the length of a root, [Per02, Corollary 2.18] becomes

r

∑
j=k+1,β j=βr

〈γ∨
k , γj〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if βk �= βr and |βk| ≥ |βr|,
2, if βk �= βr and |βk| < |βr|,

0, if βk = βr.

(3.31)

Finally, it follows that [Per07, Lemma 4.16] modifies to

r

∑
k=i

〈α∨
i , αk〉 =

⎧⎨
⎩

h(i)+3
2 , if β(i) = αn is long,

h(i) + 2, if β(i) ∈ {α1, . . . , αn−1} is short.
(3.32)

Then (3.27) follows by pushing forward the canonical divisor of the Bott-Samelson res-

olution into Ŷ(λ). To obtain (3.28) one writes the heights of the peaks in terms of the

k-tuples as in the proof of Lemma 2.2.1 for the orthogonal case. �
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3.4. CONSTRUCTION OF A BASIS - AN APPROACH

Lemma 3.4.4. Let λ ∈ Fn be almost even. Then the following holds for the coefficients above:

(i) If d1 = n − 1, then −n is even.

(ii) For all c ≤ i ≤ k − 1 we have that −n − 3 − di + ei+1 is even.

(iii) If e1 > 0, then −dk+1 is even.

(iv) If e1 = 0, then −dk+1 − d1 is even.

Proof. (i) is clear, (iii) follows from Definition 1.5.9 and (iv) holds since dk+1 − dk−1 is even

by definition. It remains to show (ii). Assume k ≥ 2, otherwise nothing is to show. Then

n − 1 − dk−1 + ek ≡ −n − 3 − di + ei+1 ≡ n − 1 − d1 + e2 mod 2

for all 1 ≤ i ≤ k − 1. If d1 is odd, then e1 = 0 and by Lemma 1.5.11 n is even, which shows

(i). Let now d1 be even. If dk is odd (i.e. the odd inner segment is vertical), then n− dk = ek

is odd and hence (i). If, on the other hand dk is even, then ek+1 − ek = n − dk − ek is odd

and again we conclude (ii).

Theorem 3.4.5. Let λ ∈ Fn be almost even and let T(λ) = O(t(λ)) ∈ Pic(LG(n))/2 where

t(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if e1 > 0,

[d1], if e1 = 0 and d1 < n,

[n + 1], if d1 = n.

Then O(KŶ(λ)/LG(n)) · π̂∗ (T(λ)) ∼= O and there is a lax push-forward

fλ : W0(Ŷ(λ), O) → W |λ|(LG(n), O(t(λ))).

Define φn(λ) to be the image of the unit form under this push-forward.

Remark 3.4.6. In order to show that the obtained elements φn(λ) form a total basis of the

total Witt group of LG(n), one needs to apply Theorem 1.2.19 as it has been done for the

ordinary and orthogonal Grassmannians. The crucial part here is to prove compatibility

with the boundary map ∂′ : Wi(U, O(1)|U) → Wi+1−n(Z, O), i.e. to show that

∂(φn−1(λ))� φn−1(∂(λ)).

For the accomplished cases, the main tools where [BC12a, 5.8] and Lemma 2.3.8 of which

the author could not provide an analogon.
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Chapter 4

Conclusions and examples

In this chapter, we state the results from chapters 2 and 3 in a more classical way by

writing the Witt groups as modules over W0(X, OX). This is done in section 4.2 for the

orthogonal and in 4.3 for the symplectic case. In section 4.4, we explicitely compute the

ranks of these modules by showing, that these numbers coincide with the ranks of certain

exterior algebras. Finally, in the last section we give a summary of the thesis. For easier

notation let us write IG(n) := IGX(n, V) whenever no confusion can occur. Also, if not

mentioned otherwise, all partitions are shifted and strict. Moreover, we simultaneously

use the notions of shifted partitions and shifted Young diagrams and denote by Sn,En

and Fn the set of strict shifted, even strict shifted and almost even strict shifted partitions

of n or shifted Young diagrams in the shifted n × n frame.

4.1 Combinatorics on shifted Young diagrams

Lemma 4.1.1. (i) There are 2n−1 partitions in Sn−1 (for n ≥ 2).

(ii) There are 2n′
even partitions in En−1 where n′ = �n

2  (for n ≥ 2).

(iii) There are 2n′+1 almost even partitions in Fn (for n ≥ 1).

Proof. (i) By induction. For n = 2 there are two partitions. Now suppose that there

are 2n−1 partitions in En−1. We want to extend them by a column on the right as

follows: For 0 ≤ x ≤ n − 1, denote by Sn−1(x) the number of partitions in Sn−1

satisfying d1 = x. By induction hypothesis we have

Sn−1(x) =

⎧⎨
⎩ 2n−2−x, for 0 ≤ x ≤ n − 1,

1, for x = n − 1.
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4.1. COMBINATORICS ON SHIFTED YOUNG DIAGRAMS

FIGURE 4.1. On the left a partition λ in S7 with d1 = 2 where we cut off the

first d1 rows and then the rightmost column. Partitions in the resulting

hatched frame (which is S4) give rise to all partitions in S7 satisfying

d1 = 2. Now λ induces d1 + 1 = 3 partitions in S8 by filling up the last

column with at most 2 boxes for which there are three possibilities.

Indeed, for a partition to satisfy d1 ≥ x means that the first x rows are fixed and the

variable part is a partition in Sn−1−x in the lower part. Moreover, d1 �> x implies,

that the rightmost column of this smaller partition is empty (otherwise d1 > x) and

hence we end up with a partition in Sn−2−x, see Figure 4.1. For a partition λ ∈ Sn−1

with d1 = x there are x + 1 partitions in Sn via specifying the number of boxes in

the last column from 0 to x. Clearly all partitions in Sn can be obtained with this

construction and they are distinct. Hence, there are

1 +
n−1

∑
x=0

Sn(x)(x + 1) = 1 + n +
n−2

∑
i=0

2n−2−i(1 + i)

= 1 + n + 2n−1 ·
(

n−1

∑
i=0

i ·
(

1
2

)i
)

= 2n

partitions in Sn where we used

n−1

∑
k=0

kzk =

(
z

d
dz

) n−1

∑
k=0

zk =

(
z

d
dz

)(
zn − 1
z − 1

)
=

nzn(z − 1)− z(zn − 1)
(z − 1)2 .

(ii) First, let n be odd. Then the partitions in En−1 are in bijection with (not necessarily

even) partitions in S n−1
2

and by (i) we obtain the claim. Let now n be even. The

partitions with odd d1 bijectively correspond to even partitions in En−2 via (ι)−1,

i.e. via cutting off the first row and the number of those partitions is 2(n−1)′ by (i).

Similarly the partitions with d1 even (and in which case necessarily e1 ≥ 1 is odd,

since e1 ≡ ek+1 = n − 1 − dk ≡ 1 mod 2) bijectively correspond to even partitions in

En−2 via v of which there are also 2(n−1)′ by (i). We conclude that there are precisely

2(n−1)′ · 2 = 2(n−1)′+1 = 2
n
2 = 2n′

even partitions in En−1.
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CHAPTER 4. CONCLUSIONS AND EXAMPLES

FIGURE 4.2. In the middle we drew an even shifted partition in E7 which

gives rise to exactly two almost even shifted partitions in F8.

(iii) This follows from (ii) and the fact that each even partition in En−1 induces two

unique distinct almost even partitions in Fn as illustrated in Figure 4.2 and all ele-

ments in Fn can be obtained this way. �

The following two remarks are essential for linking the recursive results on Witt groups

with (almost) even partitions:

Remark 4.1.2. Let n be odd and λ ∈ Sn−1 be even with k-tuples d, e. Then d1 is even by

1.5.11 and e1 is even since e1 + d1 ≡ ek + dk ≡ n − 1 is even. Hence, adding a full row

on top and an empty column on the right are allowed operations in the sense that the

resulting partition is still even and we have the following:

(i) λ induces two even partitions in En via ι and v−1, i.e. by either adding a full row on

top or an empty column on the right and all partitions in En are obtained this way.

(ii) λ induces two even partitions in En+1 via ι2 and (v−1)2, i.e. by either adding two

full rows on top or two empty columns on the right and all partitions in En+1 are

obtained this way.

Remark 4.1.3. Let n be odd and λ ∈ Fn be almost even with k-tuples d, e. Then if d1 �= n

then d1 is even and moreover e1 is even if k ≥ 2. Hence, adding empty coumns on the

right and full rows on top are allowed operations in the sense that the resulting partition

is still almost even. Then we have the following:

(i) λ induces two almost even partitions in Fn+1 via ι and v−1, i.e. by either adding a

full row on top or an empty column on the right and all partitions in Fn+1 arise this

way.

(ii) λ induces two almost even partitions in Fn+2 via ι2 and (v−1)2, i.e. by either adding

two full rows on top or two empty columns on the right and all partitions in Fn+2

arise this way.
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4.2. REFORMULATION FOR THE MAXIMAL ORTHOGONAL CASE

4.2 Reformulation for the maximal orthogonal case

Recall that a line bundle on OG(n) is of the form K = π∗M ⊗ O(1)⊗l for some line

bundle M ∈ Pic(X) and l ∈ Z, where O(1) denotes the ample square root of det S∨. For

an even strict partition λ ∈ En−1 we have φn(λ) ∈ W |λ|(OG(n), Lλ) for some line bundle

Lλ ∈ Pic(OG(n)) with Lλ ≡ T(λ) in Pic(OG(n))/2.

Theorem 4.2.1. Let X be a smooth scheme over Z[ 1
2 ] and (V , ω) be an orthogonal vector bundle

of rank 2n over X where ω admits values in a line bundle L ∈ Pic(X). Let further M be another

line bundle over X and l ∈ Z an integer. For all even strict partitions λ ∈ En−1 choose a line

bundle Nλ together with an isomorphism

N⊗2
λ ⊗ π∗(M⊗Ll(λ) ⊗ [det En]

dk+1−dk)⊗Lλ
∼= π∗M.

Then there is an isomorphism of W0(X, OX)-modules

⊕
λ∈En−1,
t(λ)=[l]2

Wi−|λ|(X, M⊗Ll(λ) ⊗ [det En]
dk+1−dk)

∼→ Wi(OGX(n, V), π∗M⊗O(l)) (4.1)

sending (xλ) to ∑ xλ · φn(λ). In particular, since t(λ) is even, for l odd we have

Wi(OGX(n, V), π∗M⊗O(l)) = 0. (4.2)

whereas for l even

Wi(OGX(n, V), π∗M⊗O(l)) ∼=
⊕

λ∈En−1

Wi−|λ|(X, M⊗Ll(λ) ⊗ [det En]
dk+1−dk) (4.3)

Proof. This is [BC12b, 6.9] applied to the computed basis. The result for the twisted Witt

groups follows by the fact that all occuring twists are even. �

Hence, whenever we talk about orthogonal Grassmannians, we will restrict from now

on to the untwisted Witt groups and write Wi(OG(n)) := Wi(OG(n), O), since the twisted

groups vanish.

Remark 4.2.2. Calmès-Fasel ([CF12]) have already developed an easy criterion for the

vanishing of twisted Witt groups via Dynkin diagrams, but it does not apply to the maxi-

mal orthogonal Grassmannian. However, Zibrowius generalized this ([Zib14]) via mark-

ing schemes and from this it indeed follows that the twisted Witt groups vanish.
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CHAPTER 4. CONCLUSIONS AND EXAMPLES

FIGURE 4.3. The eight even strict partitions in 6 × 6-frame, parametrizing a

total basis for W(OG(7)).

Example 4.2.3. For OG(7) we have eight strict partitions, see Figure 4.3. We can read the

degrees of the basis elements from the weight of the corresponding partition. Here the

degrees are 1, 2, 2, 3 in the first line and 2, 3, 3, 0 in the second line. Further all twists are

trivial. Note that in the first line, chopping off the first two full rows yields a total basis

of W(OG(5)). The same occurs when chopping off the two rightmost empty columns in

the second line. This is precisely a visualization of Remark 4.1.2(ii).

Using the combinatorics of section 4.1 we can describe the orthogonal Witt groups

recursively:

Corollary 4.2.4. (i) For n even we have

Wi(OG(n)) ∼= Wi−(n−1)(OG(n − 1))⊕ Wi(OG(n − 1))

where the isomorphism is induced by v and ι.

(ii) For n odd we have

Wi(OG(n)) ∼= Wi−(2n−3)(OG(n − 2))⊕ Wi(OG(n − 2))

where the isomorphism is induced by v2 and ι2.

Proof. This follows from Theorem 4.2.1 and Remark 4.1.2. �
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4.3. REFORMULATION FOR THE LAGRANGIAN CASE

4.3 Reformulation for the Lagrangian case

For the Lagrangian Grassmannian, we have a similar result as in the preceeding sec-

tion. Let us introduce the following "artificial" definition of twists of almost even parti-

tions. Artificial here means that this time the definition of the twist does not come from

the behaviour of the push-forward from the corresponding resolution into the Grassman-

nian (although we believe that one could obtain it by the old means as well). At this point

we observe that this newly introduced twist coincides with the one computed in Theorem

3.4.5.

Definition 4.3.1. For an almost even shifted partition λ ∈ Fn let t(λ) ∈ Z/2 be defined

as

t(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if e1 > 0,

[d1]2, if e1 = 0 and d1 < n,

[n + 1]2, if d1 = n.

(4.4)

Moreover define l(λ) ∈ Z/2 as

l(λ) :=

⎧⎨
⎩ l′+(λ) =

dk(2n−dk+1)
2 , if dk + ek < n,

l′+(λ, 0) = (dk+1)(2n−(dk+1)+1)
2 , if dk + ek = n.

(4.5)

Theorem 4.3.2. Let X be a smooth scheme over Z[ 1
2 ] and (V , ω) a symplectic vector bundle of

rank 2n over X, where ω admits values in a line bundle L ∈ Pic(X). Let M a line bundle over

X and l ∈ Z an integer. Then there is an isomorphism of W0(X, OX)-modules

⊕
λ∈Fn s.t.
t(λ)=[l]2

Wi−|λ|(X, M⊗L−l(λ))
∼−→ Wi (LGX(n, V), π∗M⊗O(l)) . (4.6)

Superficially this theorem looks just like the one above for the orthogonal Grassman-

nians, but it is weaker in the sense that we did not actually produce basis elements. In

other words the isomorphism does not come from a map of the form (xλ) �→ ∑ xλ · φn(λ)

but rather from the isomorphisms computed in section 3.3.

Corollary 4.3.3. If n is odd, Wi(LG(n), O(2l + 1)) = 0 for all i ∈ Z and l ∈ Z.

Proof. This has already been shown earlier, but now we can conclude this combinatorially

from the definition of the twist t(λ), Lemma 1.5.11 and Theorem 4.3.2 in terms of almost

even Young diagrams. Over C, this again follows from [Zib14]. �
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CHAPTER 4. CONCLUSIONS AND EXAMPLES

proof of Theorem 4.3.2. First, let n be odd. For n = 1 we have the well known isomor-

phisms

Wi(LG(1), p∗M) ∼= Wi(X, M)⊕ Wi−1(X, M⊗L−1)

Wi(LG(1), p∗M⊗O(1)) ∼= 0

from Theorem 1.2.13. In the untwisted Witt group, the first summand is represented by

the almost even shifted partition λ1 = (0) with l(λ1) = 0 and twist t(λ1) = 0 whereas the

second one is represented by λ2 = (1) with l(λ2) = 1 and twist t(λ2) = 0. Now suppose,

that (4.6) holds for some odd n − 1 ≥ 3. By Theorem 3.3.12 we have (modulo Pic(X))

Wi(LG(n), p∗M⊗O(1)) ∼= 0 and

Wi(LG(n), p∗M) ∼= Wi−2n+1(LG(n − 2), L⊗ p∗M)⊕ Wi(LG(n − 2), p∗M).

We now want to link these results with almost even shifted partitions by using the com-

binatorics of the previous section. Note that we did not make use of them for the orthog-

onal case, since in that case we knew more, namely the basis. Now assume that the Witt

groups of LG(n − 2) are indexed by almost even shifted partitions in the described sense.

By Remark 4.1.3, any such partition λ ∈ Fn−2 determines exactly two almost even shifted

partitions λ1, λ2 in Fn by either adding two empty columns on the right or by adding two

full rows on the top (here we need n odd which implies d1 < n even or d1 = n). We need

to show that the twists and shifts of these newly produced partitions are the right ones.

• The first procedure does not change the weight |λ| whereas the second one increases

it by 2n − 1.

• We have t(λ1) = t(λ2) = [0].

• Let d, e be the k-tuples associated with λ and di, ei the ones for λi for i = 1, 2. Then

d1
k = dk + 2 and d2

k = dk and a direct calculations shows

l(λ1) �≡ l(λ), l(λ2) ≡ l(λ).

In other words, the second procedure requires another factor L.

Putting these observations together we have

Wi(LG(n), p∗M) ∼= Wi−2n+1(LG(n − 2), L⊗ p∗M)⊕ Wi(LG(n − 2), p∗M)

∼=
⊕

λ∈Fn−2

Wi−2n+1−|λ|(X, M⊗L−l(λ)+1) ⊕
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4.4. ENUMERATIVE RESULTS

⊕
λ∈Fn−2

Wi−|λ|(X, M⊗L−l(λ))

∼=
⊕

λ∈Fn

Wi−|λ|(X, M⊗L−l(λ))

which proves the theorem for odd n. Let now n be even. Then again by Theorem 3.3.12,

we have

Wi(LG(n), p∗M) ∼= Wi(LG(n − 1), p∗M),

Wi(LG(n), p∗M⊗O(1)) ∼= Wi−n(LG(n − 1), p∗M).

Now the proof works as in the odd case. Note that by Remark 4.1.3 any almost even

partition λ ∈ Fn−1 again gives rise to exactly two partitions λ1, λ2 ∈ Fn via adding an

empty column and a full row and all partitions in Fn arise this way. One easily checks

that the first procedure neither changes the twist nor the weight whereas the second one

flips the twists and increases the weight by n. Moreover l(λ1) ≡ l(λ) ≡ l(λ2). Hence

Wi(LG(n), p∗M) ∼= Wi(LG(n − 1), p∗M)

∼=
⊕

λ∈Fn−1

Wi−|λ|(X, M⊗L−l(λ))

∼=
⊕

λ∈Fn

Wi−|λ|(X, M⊗L−l(λ))

and similar for the twisted Witt group. �

4.4 Enumerative results

In this section, we write IG(n) = IGX(n, V) and we consider twists in PicX(IG(n))/2.

Hence, we are left with only two distinct twists O and O(1). Since no twists occur for OG,

we write Wi(OG(n)) := Wi(OG(n), O). By orthogonal and symplectic Witt groups we mean

the Witt groups of maximal orthogonal and Lagrangian Grassmannians, respectively.

Notation 4.4.1. Write

rOG(n, i) := rk(Wi(OG(n))) (4.7)

for the ranks of the orthogonal Witt groups, considered as a Wtot(X)-modules.

Notation 4.4.2. For an integer n ∈ Z and for 0 ≤ i ≤ 3 define the number as in [Zib11]

ρ(n, i) := ∑
m≡i mod 4

(
n
m

)
. (4.8)
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FIGURE 4.4. An even shifted partition for OG(7) consisting of two triangles

and two squares. The corresponding basis element is in W2(OG(7)).

Theorem 4.4.3. Let n ≥ 2 and n′ := �n
2  . Then

rOG(n, i) =

⎧⎨
⎩ ρ(n′, 1 − i), if n ≡ 2 mod 4,

ρ(n′, −i), otherwise.
(4.9)

Proof. First, let n ≥ 3 be odd. The even partitions are composed by two different types

of blocks, namely triangles (containing three boxes, thus reducing the degree of the Witt

class by one) and 2× 2-blocks (not changing the degree), see Figure 4.4. Now fix 0 ≤ i ≤ 3.

For the rank of Wi(OG(n)) we need to count for each m ∈ N the number of even shifted

partitions with 4m − i triangles. But these correspond to even Young diagrams in the

rectangle on the right of the triangles which is of size ((n − 1)− 2(4m − i))× 2(4m − i),

see Figure 4.5. By the well-known fact

#{even Young diagrams in d × e-frame} =

(
d′ + e′

e′

)
, d′ =

⌊
d
2

⌋
, e′ =

⌊
e
2

⌋

we conclude

rOG(n, i) = ∑
m∈N

(� (n−1)−2(4m−i)+2(4m−i)
2  

4m − i

)
= ∑

m∈N

(
n′

4m − i

)
= ρ(n′, −i).

Let now n be even. We have OG(2) = P1 and the statement is clear. Let n ≥ 4. Recall

from Remark 4.1.2 that for each even partition in En−2 (for OG(n − 1)) there are exactly

two even partitions for OG(n) - one with an empty column added to the right and one

with a full first row added on top. Adding an empty column does not change the shift

whereas adding a full row increases it by n − 1. We conclude

rOG(n, i) = rOG(n − 1, i) + rOG(n − 1, i − (n − 1))

= ρ
(
(n − 1)′, −i

)
+ ρ
(
(n − 1)′, −i + (n − 1)

)
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4.4. ENUMERATIVE RESULTS

FIGURE 4.5. For OG(11), the number of even shifted partitions with three

triangles (yielding the rank of W1(OG(11))) is given by the number of

even young diagrams in the hatched rectangle of size 6 × 4, i.e. the

number of all possible Young diagrams in 3 × 2-frame, which is given

by (3+2
2 ) = 10.

=
n′−1

∑
m=0,

m≡−i mod 4

(
n′ − 1

m

)
+

n′−1

∑
m=0,

m≡−i+(n−1) mod 4

(
(n − 1)′

m

)

=
n′−1

∑
m=0,

m≡−i mod 4

(
n′ − 1

m

)
+

n′−1

∑
m=0,

m≡−i+(n−1) mod 4

(
n′ − 1

m

)
. (4.10)

• Assume n ≡ 2 mod 4, i.e n′ ≡ 1. Then (4.10) becomes

rOG(n, i) =
n′−1

∑
m=0,

m≡−i mod 4

(
n′ − 1

m

)
+

n′−1

∑
m=0,

m≡−i+1 mod 4

(
n′ − 1

m

)

=
n′−1

∑
m=0,

m≡−i mod 4

(
n′ − 1

m

)
+

n′−2

∑
m=−1,

m≡−i mod 4

(
n′ − 1
m + 1

)

=
n′−1

∑
m=−1,

m≡−i mod 4

(
n′ − 1

m

)
+

n′−1

∑
m=−1,

m≡−i mod 4

(
n′ − 1
m + 1

)

=
n′−1

∑
m=−1,

m≡−i mod 4

(
n′

m + 1

)

=
n′

∑
m=0,

m≡−i+1 mod 4

(
n′

m

)

= rOG(n + 1, i − 1)

= ρ
(
n′, 1 − i

)
.
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FIGURE 4.6. An almost even shifted partition for LG(9) consisting of two

triangles, a 4 × 1 rectangle, four 2 × 2 blocks and the optional box.

• Analogously for n ≡ 0 mod 4 we obtain

rOG(n, i) =
n′−1

∑
m=0,

m≡−i mod 4

(
n′ − 1

m

)
+

n′−1

∑
m=0,

m≡−i−1 mod 4

(
n′ − 1

m

)

=
n′−1

∑
m=0,

m≡−i mod 4

(
n′ − 1

m

)
+

n′

∑
m=1,

m≡−i mod 4

(
n′ − 1
m − 1

)

=
n′

∑
m=0,

m≡−i mod 4

(
n′

m

)

= ρ(n′, −i),

finishing the proof. �

Notation 4.4.4. Write

rLG(n, i, 0) := rk(Wi(LG(n)), rLG(n, i, 1) := rk(Wi(LG(n), O(1)).

for the ranks of the symplectic Witt groups.

Theorem 4.4.5. Let n ≥ 1 and write (n + 1)′ = �n+1
2  . Then

rLG(n, i, t)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if n is odd and t = 1,

ρ((n + 1)′, i − n), if n is even and t = 1,

ρ((n + 1)′, i), otherwise.

Proof. First, let n be odd. The vanishing of the twisted Witt groups has already been

shown in Theorem 3.3.12. However, we want to give an alternative proof by means of
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4.4. ENUMERATIVE RESULTS

FIGURE 4.7. For LG(11) almost even partitions contributing to W3 either

have 3 triangles without the optional box or 2 triangles with the op-

tional box. The only freedom is the hatched rectangle where we need

to fit even Young diagrams of size 6 × 4 on the left and 4 × 6 on the

right. Hence W3(LG(11)) has rank (5
2) + (5

3) = 20 over W(X).

shifted partitions. We first show, that all almost even shifted partitions have trivial twist.

Recall that the twist is given by

t(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if e1 > 0,

[d1], if e1 = 0 and d1 < n,

[n + 1], if d1 = n.

By Lemma 1.5.11 the middle case does not occur, if n is odd and since [n + 1] is even, all

twists are trivial.

Recall from Lemma 4.1.1(iii), see also Figure 4.2, that almost even partitions in Fn arise

from even shifted partitions in En−1 by adding a diagonal in one of the two possible ways,

i.e. for each λ ∈ En−1 with k-tuples d, e there are two distinct extensions λ1, λ2 in Fn. Let

us count almost even partitions contributing to Wi(LG(n), O). Just as in Figure 4.5, we

can break down the structure of an almost even partition into the following ingredients:

• t triangles on the diagonal, each of them decreasing the shift by one,

• A (2t)× 1-rectangle next to the last triangle, increasing the shift by 2t,

• An "optional" 1 × 1 box which the only variable when extending from En−1 to Fn as

above, increasing the shift by one and

• 2 × 2 boxes, not changing the shift,

see Figure 4.6. Hence, in order for an almost even partition λ ∈ Fn to have shift i, we need

to have the following:
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(i) If i ≡ 0 mod 2, we need 4m − i triangles for some m ≥ 1 (not filling the optional

box) or 4m − i − 1 triangles for some m ≥ 1 (filling the optional box).

(ii) If i ≡ 1 mod 2 we need 4m + i triangles for some m ≥ 0 (not filling the optional

box) or 4m + i − 1 triangles for some m ≥ 0 (filling the optional box).

Fixing the number t of triangles, counting the possible partitions works as in the orthog-

onal case, see also Figure 4.7 for an example. In both cases we are counting even Young

diagrams in (2t)× (n − 1 − 2t) frame, of which there are

( n−1
2

n−1
2 − t

)
=

(n−1
2
t

)
=

(
n′

t

)
.

(i) If i ≡ 0 mod 2,

rLG(n, i) = ∑
m∈N

(
n′

4m − i

)
+ ∑

m∈N

(
n′

4m − i − 1

)

= ∑
k≡−i mod 4

(
n′

k

)
+ ∑

k≡−(i+1) mod 4

(
n′

k

)

= ∑
k≡−i mod 4

(
n′

k

)
+ ∑

k≡−i mod 4

(
n′

k − 1

)

= ∑
k≡−i mod 4

(
n′ + 1

k

)

= ∑
k≡i mod 4

(
n′ + 1

k

)

= ρ(n′ + 1, i)

where we used k ≡ i mod 4 if and only if k ≡ −i mod 4, if i is even.

(ii) If i ≡ 1 mod 2, similarly

rLG(n, i) = ∑
m∈N

(
n′

4m + i

)
+ ∑

m∈N

(
n′

4m + i − 1

)

= ∑
k≡i mod 4

(
n′

k

)
+ ∑

k≡i−1 mod 4

(
n′

k

)

= ∑
k≡i mod 4

(
n′ + 1

k

)

= ρ(n′ + 1, i).

Since n is odd, we have n′ + 1 = (n + 1)′ which finishes the first part of the proof.
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Let now n be even. This works similar as the even part in Theorem 4.4.3. If λ ∈ Fn is

such that e1 > 0, it arises from some λ′ ∈ En−1 by adding an empty column on the right

which has the same shift and the resulting partition has trivial twist, so we have

rLG(n, i, 0) = rLG(n − 1, i, 0) = ρ((n − 1 + 1)′, i) = ρ(n′, i).

If on the other hand λ is such that e1 = 0, then d1 is odd and it arises from some λ′′ ∈ En−1

by adding a full row on the top. The resulting partition then has nontrivial twist. Indeed

if d1 was even and e1 = 0, cancelling the uppermost row would give rise to an almost

even shifted partition in Fn−1 with d1 odd, which contradicts Lemma 1.5.11. Since adding

the row on top increases the shift by n, we need to start with shift i − n, so

rLG(n, i, 1) = rLG(n − 1, i − n, 0) = ρ(n′, i − n)

which finishes the proof. �

For a complete and explicit result it remains to compute the numbers ρ(n′, i). For this

we recall graded exterior algebras:

Remark 4.4.6 (Exterior algebras). Denote by W := Λ(g1, . . . , gn) the Z-graded exterior

algebra over Z/2 with n generators of degree one. Then clearly the i-graded part of

W has rank (n
i ). If we endow W with a Z/4-grading instead, then the rank becomes

precisely ρ(n, i) and these numbers have been analyzed by Hemmert in [Hem18]. In the

appendix, the author computes the ranks of Z4-graded exterior algebras over Z2 with

generators in degrees 1 and 3, which are linked to the Witt rings of complex flag varieties.

In the maximal case it turns out that only generators of degree one occur. With the usual

notation n′ = �n
2  and n′′ = �n′

2  we obtain the following table for the numbers ρ(n′, i):

n′ \ i 0 1 2 3

0 a − (−1)
n′′
2 −1 · b a a + (−1)

n′′
2 −1 · b a

1 a − (−1)
n′′
2 −1 · b a − (−1)

n′′
2 −1 · b a + (−1)

n′′
2 −1 · b a + (−1)

n′′
2 −1 · b

2 a a + (−1)
n′′−1

2 · b a a − (−1)
n′′−1

2 · b

3 a − (−1)
n′′−1

2 · b a + (−1)
n′′−1

2 · b a + (−1)
n′′−1

2 · b a − (−1)
n′′−1

2 · b

TABLE 4.1 A table for ρ(n′, i) with n′, i ∈ {0, 1, 2, 3} mod 4 where a = 2n′−2

and b = 2n′′−1. This is a quarter of the table in [Hem18] since with the

notation in loc. cit. f = 0 and g = n′.
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Remark 4.4.7 (Ranks of the Witt groups of maximal orthogonal Grassmannians). Com-

bining Table 4.1 with Theorem 4.4.3 we can state the ranks of the Witt groups of OG:

r(n, i) i = 0 i = 1 i = 2 i = 3

n = 2 1 1 0 0

n = 3 1 0 0 1

n = 4 1 0 1 2

n = 5 1 0 1 2

n = 6 3 1 1 3

n = 7 1 1 3 3

n = 8 2 4 6 4

n = 9 2 4 6 4

n = 10 6 6 10 10

n = 11 6 10 10 6

n = 12 20 16 12 16

n = 13 16 20 16 12

n = 14 28 36 36 28

n = 15 36 36 28 28

Remark 4.4.8 (Ranks of the Witt groups of Lagrangian Grassmannians). Combining Ta-

ble 4.1 with Theorem 4.4.5 we can state the ranks of the Witt groups of LG:

r(n, i, 0) i = 0 i = 1 i = 2 i = 3

n = 1 1 1 0 0

n = 2 1 1 0 0

n = 3 1 2 1 0

n = 4 1 2 1 0

n = 5 1 3 3 1

n = 6 1 3 3 1

n = 7 2 4 6 4

n = 8 2 4 6 4

n = 9 6 6 10 10

n = 10 6 6 10 10

n = 11 16 12 16 20

n = 12 16 12 16 20

r(n, i, 1) i = 0 i = 1 i = 2 i = 3

n = 1 0 0 0 0

n = 2 0 0 1 1

n = 3 0 0 0 0

n = 4 1 2 1 0

n = 5 0 0 0 0

n = 6 3 1 1 3

n = 7 0 0 0 0

n = 8 2 4 6 4

n = 9 0 0 0 0

n = 10 10 10 6 6

n = 11 0 0 0 0

n = 12 16 12 16 20
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4.5 Summary and perspectives

Recall from section 1.5.5 that with cominuscule and minuscule varieties G/Pmax we

can associate a quiver or, equivalently, a "Young diagram" (not necessarily rectangular or

shifted) due to the existence of a unique reduced expression of the longest element in the

Weyl group. Let us give a complete list of all (co-)minscule varieties in Figure 4.8 as it can

be found in [BS16, tables 1, 2], including the exceptional cases.

Witt groups of quadrics have already been computed, see e.g. [Xie19]. They can also

be computed by constructing an explicit basis as for the Grassmannians. The even dimen-

sional quadrics are minuscule and for them an easy calculation shows that even diagrams

(that is, all the inner segments have even length) parametrize the total Witt groups of

which there are four, regardless the dimension. The odd-dimensional quadrics, are not

minuscule and again we might need diagrams other than the even ones. However, Setup

1.2.14 applies and since the localization long exact sequence splits one should be able to

construct the basis, also consisting of four elements; this has not been done in detail. Fi-

nally, there is a well-known isomorphism OG(n, 2n + 1) ∼= OG(n + 1, 2n + 2) and hence

all ordinary types of minuscule and cominscule varieties are covered.

The two exceptional types are both minuscule and cominuscule, so a good guess for

the basis is again to take all the even diagrams which leads to the conjecture

Wtot(OP2) ∼= W(X)⊕6, Wtot(G(O3, O3)) ∼= W(X)⊕8.

The shift of a generator should as usual be the weight of the corresponding diagram

and these numbers match the results for X = Spec(C) by Zibrowius in [Zib11, IV.3g].

However, the exceptional types are harder to handle since we cannot describe them by

certain subspaces of a vector space as in the ordinary types. By the methods of [IM05]

one can make sense of the notion of a full flag in the Cayley plane and we also believe

that a similar double-blow-up setup as for the Lagrangian Grassmannian applies for the

Cayley plane due to Lemma 4.1 in loc.cit. Thus, alhough we theoretically could com-

pute the boundary map, it is currently unclear to the author how to construct a basis

via push-forwards into Schubert cells. No efforts have been made so far concerning the

Freudenthal variety.
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ordinary
Grassmannian

Gr(d, n) = An−1/Pd
1 ≤ d ≤ n − 1

αd
d

n − d

odd quadric
Q2n−1 = Bn/P1

α1

2n − 1

odd orthogonal
Grassmannian

OG(n, 2n + 1) = Bn/Pn αn n

Projective space
P2n−1 = Cn/P1

α1

2n − 1

Lagrangian
Grassmannian

LG(n, 2n) = Cn/Pn αn n

even quadric (n even)
Q2n = Dn/P1 α1

n

even quadric (n odd)
Q2n = Dn/P1

α1 n
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maximal orthogonal
Grassmannian

OG(n) = Dn/Pn ∼= Dn/Pn−1
αn

αn−1

n − 1

Cayley plane
OP2 = E6/P1

∼= E6/P6
α1 α6

Freudenthal variety
G(O3, O6) = E7/P7

α7

FIGURE 4.8. An overview over cominuscule and minuscule varieties in all

types, including the Dynkin diagrams with associated simple roots and

the Young diagrams. We marked minuscule roots by •, cominuscule

roots by � and by � those roots which are both minuscule and comi-

nuscule. Schubert varieties in these spaces are as always given by par-

titions (that is, for any filled box the box on the left and above are filled

and for any filled right end box on its south east is not filled) in the

corresponding Young diagrams.
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