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Abstract

In many clinical studies not the original variables but combinations of these variables
are explanatory for the outcome of interest. Finding those combined features using
statistical ensemble methods does not only improve prediction but also helps to get a
better understanding of the underlying data generating processes. Two different types
of clinical data are considered in two different parts of this thesis, i.e., genotype data
relating binarized genetic variations to a time-to-event in Part I and neuroimaging
data consisting of structural brain scans in Part II.

In Part I, the combined features are complex interactions of binarized genetic
variations, as they are often the actual explanatory features for predicting, e.g., the
time to recurrence of a disease. survivalFS is an existing ensemble method searching
for such interactions and ranking them according to a predictive partial log-likelihood
based importance measure. To improve the ranking of the identified interactions,
further importance measures are proposed which are based on two other popular
goodness-of-fit measures as well as on a newly introduced adaptation of Harrel’s
concordance index, referred to as DPO-based C-index. Moreover, noise-adjusted
importance measures are introduced correcting for noise-variables falsely reducing the
estimated importance of explanatory interactions. Part II builds upon the crucial and
widely accepted concept that the human brain is organized into spatially contiguous,
specialized brain regions, which are inter-connected by large-scale networks. Such
spatially contiguous brain regions, i.e., the combined features, are identified using
existing spatial hierarchical agglomerative clustering methods as well as the newly
proposed SPARTACUS (SPAtial hieRarchical agglomeraTive vAriable ClUStering)
method for clustering variables. Subsampling based clustering stability and clustering
quality approaches are employed to identify interesting numbers of brain regions and
higher-quality brain regions are searched for using ensemble clustering methods.

The performance of the ensemble methods to find combined features is evaluated
and compared with popular competing methods, i.e., an importance measure for
bivariate variable interactions from random survival forests and spatial spectral clus-
tering, in application to simulated and real data. These applications show that the
ensemble methods are able to stably identify combined features and to outperform
the competing methods.

iii



Acknowledgements

By handing in this thesis, a long period of study and research at the Heinrich-Heine
University Düsseldorf comes to an end, and I would like to express my gratitude for
this formative period of my life.

I would like to thank Holger Schwender for the supervision of this thesis. He gave
me the freedom and the trust I needed for my work, while at the same time always
being available for questions and with helpful advice. His constant support over the
years and his feedback helped me develop both scientifically and personally. Without
you, this thesis would not have been possible for me. Thanks a lot to Simon Eickhoff,
who was a great support regarding the second part of this thesis, e.g., by providing
the data and many ideas for the analysis of these data. Thanks also to Katja Ickstadt
for her support with the first part of my thesis and for being the second reviewer.

Computational infrastructure and support were provided by the Centre for Infor-
mation and Media Technology at Heinrich-Heine University Düsseldorf. Thank you
very much for this support without which the extensive analyses of the second part of
this thesis would not have been feasible. Thanks to Hannah Bürger for her help with
the simulation study of the first part. I would also like to thank our working group
and the employees of the mathematical institute (especially Eva, Philipp and An-
dreas) for the content-related discussions and also for the many private conversations
as friends.

A special thanks goes to my family for their unqualified support in all these
years. Thanks a lot also to my girlfriend Lea and our loyal companion Simba (alias
Moppie, Turbo, Schokobrownie and many more). Our loving relationship gave me
a lot of inner strength and calmness, thereby, being a great support in writing this
thesis. Moreover, I would like to thank my friends (with special thanks to Daniel,
Max, Niklas and Torben), my mentors (with special thanks to Axel and Uwe) and
my companions (with special thanks to Helge and Alex) for accompanying me in
all these years and for the many treasured moments we experienced together. The
insights and joy I gained from our encounters are invaluable to me. I wish you all
the best.

iv



Contents

List of Abbreviations x

1 Introduction 1

I Identification of explanatory interactions of binary vari-
ables for a time-to-event using survivalFS 10

2 Theoretical framework 11

2.1 Single nucleotide polymorphisms . . . . . . . . . . . . . . . . . . . . . 12

2.2 Cox regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Some properties of the Weibull distribution . . . . . . . . . . . . . . . 16

2.4 Random survival forests and its importance measures . . . . . . . . . 18

2.4.1 Random survival forests . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Variable importance measure VIMP . . . . . . . . . . . . . . . 19

2.4.3 Pairwise interaction importance measure IMDMS . . . . . . . 20

2.5 Logic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 logicFS and its importance measures . . . . . . . . . . . . . . . . . . 24

2.7 survivalFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.1 The survivalFS algorithm . . . . . . . . . . . . . . . . . . . . 26

2.7.2 Importance measure based on partial likelihood . . . . . . . . 28

2.8 Goodness-of-fit measures . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8.1 (Integrated) Brier score . . . . . . . . . . . . . . . . . . . . . . 29

2.8.2 Harrell’s C-index . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



3 Methodology 32

3.1 Modification of Harrel’s C-index . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Issues with Harrel’s C-index . . . . . . . . . . . . . . . . . . . 33

3.1.2 DPO-based C-index . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Importance measures of survivalFS for interactions . . . . . . . . . . 38

3.2.1 Importance measures based on the integrated Brier score . . . 39

3.2.2 Importance measures based on Harrell’s concordance index . . 41

3.2.3 Importance measures based on the DPO-based C-index . . . . 42

3.3 Noise-adjustment of importance measures for interactions . . . . . . . 43

3.4 Importance measures of survivalFS for sets of variables . . . . . . . . 45

3.5 Ensemble prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Results 47

4.1 Simulation based comparison of Harrell’s C-index and DPO-based C-
index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Simulation based analysis of survivalFS . . . . . . . . . . . . . . . . . 51

4.2.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Four different simulation settings . . . . . . . . . . . . . . . . 53

4.2.3 Analysis of importance measures for SNP interactions . . . . . 55

4.2.4 Analysis of noise-adjusted importance measures . . . . . . . . 58

4.2.5 Analysis of importance measures for single SNPs . . . . . . . . 63

4.2.6 Comparison with random survival forests . . . . . . . . . . . . 67

4.2.7 Performance analysis of ensemble predictions . . . . . . . . . . 72

4.3 Application to a urinary bladder cancer study . . . . . . . . . . . . . 73

vi



II Structural MRI based parcellation of the human brain
using spatial hierarchical clustering algorithms 78

5 Theoretical framework 79

5.1 Clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Partitional clustering algorithms . . . . . . . . . . . . . . . . . 80

5.1.2 Hierarchical clustering algorithms . . . . . . . . . . . . . . . . 82

5.1.3 Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Variable clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Clustering of variables around latent components . . . . . . . 89

5.2.2 Other variable clustering methods . . . . . . . . . . . . . . . . 93

5.3 Contiguity constrained clustering . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Spatial hierarchical agglomerative clustering . . . . . . . . . . 94

5.3.2 Spatial spectral clustering . . . . . . . . . . . . . . . . . . . . 96

5.3.3 Spatial partitional clustering . . . . . . . . . . . . . . . . . . . 97

5.4 Ensemble clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.1 Cluster ensemble generation methods . . . . . . . . . . . . . . 98

5.4.2 Consensus functions . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Clustering validation methods . . . . . . . . . . . . . . . . . . . . . . 104

5.5.1 External methods . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5.2 Internal methods . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Estimating the true number of clusters . . . . . . . . . . . . . . . . . 117

5.6.1 Clustering stability . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6.2 Clustering quality . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7 Introduction to neuroimaging . . . . . . . . . . . . . . . . . . . . . . 119

vii



5.8 Brain parcellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8.1 Anatomical atlases . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8.2 Algorithmic parcellation approaches . . . . . . . . . . . . . . . 124

6 Methodology 127

6.1 Structural MRI data set . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 SPARTACUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Spatial hierarchical agglomerative clustering of structural MRI data . 131

6.4 Spatial spectral clustering of structural MRI data . . . . . . . . . . . 132

6.5 Spatial hierarchical ensemble clustering . . . . . . . . . . . . . . . . 133

6.5.1 Linkage based ensemble clustering . . . . . . . . . . . . . . . . 134

6.5.2 Hellinger based ensemble clustering . . . . . . . . . . . . . . . 135

6.6 Internal validation measures for structural MRI data . . . . . . . . . 138

6.6.1 Correlation based simplified silhouette coefficient . . . . . . . 138

6.6.2 Spatial adaptation of (simplified) silhouette coefficient . . . . 139

6.7 Finding interesting numbers of brain regions . . . . . . . . . . . . . . 140

6.7.1 Subsampling based clustering stability . . . . . . . . . . . . . 140

6.7.2 Subsampling based clustering quality . . . . . . . . . . . . . . 142

6.7.3 Ensemble based clustering quality . . . . . . . . . . . . . . . . 143

7 Results 145

7.1 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Application to 1000BRAINS data set . . . . . . . . . . . . . . . . . . 159

7.2.1 1000BRAINS data set . . . . . . . . . . . . . . . . . . . . . . 160

viii



7.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2.3 Method comparison with geometric and spectral clustering . . 167

7.2.4 Convergence analysis with existing brain atlases . . . . . . . . 168

8 Discussion 176

9 Conclusion 185

Contribution to manuscripts 186

A Additional results to simulation study of survivalFS 209

A.1 Additional results to analysis of importance measures for interactions 209

A.2 Additional results to analysis of noise-adjusted importance measures . 214

A.3 Additional results to analysis of importance measures for single SNPs 224

A.4 Additional results to comparison with random survival forests . . . . 235

A.5 Additional results to survivalFS based prediction models . . . . . . . 240

B Additional results to structural MRI simulation study 241

B.1 Additional results to performance comparison of spatial clustering . . 241

B.2 Additional results to performance of spatial ensemble clustering . . . 246

B.3 Additional results to performance of methods to find interesting num-
bers of brain regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

C Additional results to 1000BRAINS analysis 256

C.1 Clustering stability and clustering quality to find interesting numbers
of brain regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

C.2 Non-standardized SHAC parcellations . . . . . . . . . . . . . . . . . . 257

C.3 Final ensemble parcellations . . . . . . . . . . . . . . . . . . . . . . . 259

C.4 Spectral and geometric parcellations . . . . . . . . . . . . . . . . . . 263

Eidesstattliche Versicherung 265

ix



List of Abbreviations

A Adenine
ANMI Adjusted Normalized Mutual Information
ARI Adjusted Rand Index
BS Brier Score
C Cytosine
CHF Cumulative Hazard Function
C-index Concordance index
CSF CerebroSpinal Fluid
DNA DeoxyriboNucleic Acid
DNF Disjunctive Normal Form
DPO Distance between Predicted Outcomes
EC Ensemble Clustering
fMRI functional Magnetic Resonance Imaging
FWHM Full-Width at Half-Maximum
G Guanine
HAC Hierarchical Agglomerative Clustering
HR Hazard Ratio
IBS Integrated Brier Score
IMDMS Interaction Minimum Depth of Maximal Subtree
logicFS logic Feature Selection
MAF Minor Allele Frequency
MDMS Minimum Depth of Maximal Subtree statistic
MNI Montreal Neurological Institute
MRI Magnetic Resonance Imaging
NH Normalized entropy
NMI Normalized Mutual Information
survivalFS survival Feature Selection
OOB Out-Of-Bag
PCA Principal Component Analysis
PE Prediction Error
PO Predicted Outcome
RBF Radial Basis Function
RF Radio Frequency
RSF Random Survival Forests
SC Silhouette Coefficient
SEC Spatial Ensemble Clustering
SHAC Spatial Hierarchical Agglomerative Clustering
SNP Single Nucleotide Polymorphism
SPARTACUS SPatial hieRarchical agglomeraTive vAriable ClUStering

x



SSC Simplified Silhouette Coefficient
SSE Sum of Squared Errors
SSPEC Spatial SPEctral Clustering
T Thymine
UBC Urinary Bladder Cancer
VBM Voxel Based Morphometry
VIM Importance Measure for interactions
VIMP Variable IMPortance measure of random survival forests
VIMSet Importance Measure for Sets of variables

xi



Chapter 1

Introduction

The objective of many clinical studies is to investigate the relationship between a large
number of (highly correlated) variables and an outcome of interest. E.g., genome-
wide association studies associate a large number of genetic variants, or neuroimaging
studies relate imaging modalities recorded at a large number of voxels, with, e.g.,
a disease (Frisoni et al., 2010; Wu et al., 2014). While, typically, most of these
individual variables have either no effect or just a weak effect, a combination between
multiple variables may be explanatory for the outcome of interest. Therefore, a
particular interest in these studies is to employ data reduction techniques to identify
a (much) smaller number of features based on combinations of the original variables,
where these features improve the prediction in a statistical analysis. Moreover, these
features can help to get a better understanding of the underlying data generating
processes.

Having this objective in mind, this thesis is divided into two parts, where each
part considers a different type of clinical data, i.e., the first part considers a genotype
data set relating genetic variations to the recurrence-free time of urinary bladder
cancer and the second part considers a neuroimaging data set consisting of struc-
tural brain scans of older subjects. In both parts, statistical algorithms are employed
in order to find, with respect to some evaluation criterion, good combined features
based on the original variables. The combined features are, in the first part, complex
interactions between binarized genetic variations and, in the second part, spatially
contiguous brain regions, where the information of all variables, i.e., voxels, belong-
ing to the same region is summarized, e.g., by their mean or their first principal
component. Moreover, in order to stabilize the search for such combined features,
ensemble methods are employed in both parts. Ensemble methods combine multiple
models, often called base learners, into one ensemble model, where the base learners
are, e.g., fitted based on subsamples of the original data set. In the following, a
separate introduction is given for each of the two parts.

In the first part, the relationship between single nucleotide polymorphisms (SNPs),
i.e., genetic variations which occur at a specific base pair position in the human
genome in more than one percent of the population, and a time-to-event is investi-
gated. E.g., after surgical removal of urinary bladder cancer, between 30% and 80%
of the tumors recur (Van Rhijn et al., 2014), and the time from the surgical removal to
the recurrence of the tumor is a time-to-event. Moreover, in addition to the genetic
factors, it is also of interest to analyze the influence of clinical and environmental
factors such as gender or smoking status on the time-to-event.

The influence of single SNPs and other binary or binarized risk factors on the time-
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to-event of a disease is usually small. However, it is assumed that high-degree SNP-
SNP interactions and/or SNP-environment interactions are disease related, which is
why many studies focus on the identification of such interactions (Garte, 2001; Lee
et al., 2012; Schwender et al., 2011b).

A regression approach which, in case-control studies, uncovers influential interac-
tions between SNPs or, more general, binary variables, is logic regression (Ruczin-
ski et al., 2003, 2004; Schwender and Ruczinski, 2010). Logic regression employs
a stochastic search algorithm embedded in a regression framework to detect those
Boolean combinations of the binary input variables that best predict the outcome of
interest. The tree visualization of the Boolean combinations allows for an easy inter-
pretation of the identified interactions. Logic regression can handle different types of
response variables, including a time-to-event (Ruczinski et al., 2004).

Several other methodologies are introduced in the literature that can be applied
to time-to-event data, such as the classical Cox regression model (Cox, 1972, 1975),
tree-based approaches, e.g., bagging survival trees (Hothorn et al., 2004) and random
survival forests (Ishwaran et al., 2008; Su et al., 2008), or adaptations of machine
learning methods, e.g., support vector machines (Van Belle et al., 2011) or artificial
neural networks (Chi et al., 2007).

In order to identify those variables from the data set which are associated with
the time-to-event, variable importance measures are typically provided by tree-based
approaches. E.g., to improve variable selection, two variable importance measures,
one based on the hazard function (Ishwaran et al., 2008) and one based on the min-
imal depth of a maximal subtree (Ishwaran et al., 2010) are developed for random
survival forests. Both measures are multivariate measures, i.e., they consider the
multivariate structure of the data. Random survival forests further provide adap-
tations of the variable importance measures in order to quantify the importance of
pairwise interactions (Dazard et al., 2018; Ishwaran, 2007). However, none of these
importance measures is able to quantify the importance of high-degree interactions
between three or more variables.

Only a few methods are introduced in the literature that identify interactions
associated with an event time. One group of such methods are based on the multi-
factor dimensionality reduction (MDR) method (Ritchie et al., 2001), which detects
gene-gene interactions in case-control studies by reducing the multi-dimensional geno-
types into a binary attribute. E.g., Surv-MDR introduced by Gui et al. (2011) is an
extension of MDR, where the binary attribute is determined using a log-rank test,
Cox-MDR introduced by Lee et al. (2012) is an extension of the generalized multi-
factor-dimensionality reduction (GMDR) method (Lou et al., 2007), where the binary
attribute is determined using martingale residuals from a Cox model, or KM-MDR
introduced by Park et al. (2020) is an extension of the quantitative multifactor-
dimensionality reduction (QMDR) method (Gui et al., 2013), where the binary at-
tribute is determined using the Kaplan-Meier median survival time and a log-rank
test. duVerle et al. (2013) introduce a modified version of the L1-regularization path
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algorithm proposed by Park and Hastie (2007) that uses combinatorial interactions
as covariates to identify SNP interactions and that produces an ordered list of can-
didate interactions with a potential effect on the time-to-event. However, as most of
these methods are based on exhaustive searches, they require to consider all possible
SNP interactions.

Several modifications of logic regression have been introduced (see Schwender and
Ruczinski (2010) for an overview), one of which is logicFS (logic Feature Selection)
(Schwender and Ickstadt, 2008). logicFS is an ensemble method that stabilizes the
search for interesting SNP interactions for the prediction of a binary outcome, e.g.,
a disease status, by applying logic regression to multiple bootstrap samples of the
original case-control data. Moreover, importance measures are defined based on the
output from logisFS which rank interactions or single SNPs based on their relevance
for the prediction.

Another modification of logicFS for the analysis of time-to-event data is sur-
vivalFS (survival Feature Selection) introduced by Tietz (2016). In survivalFS, logic
regression is applied to subsamples (Buehlmann and Yu, 2002) of the original time-
to-event data set and not to bootstrap samples, as, in contrast to subsampling, boot-
strapping produces data sets with many tied event times, which should be avoided.
In order to rank interactions identified by survivalFS according to their relevance for
the prediction of the event time, Tietz (2016) also introduces an importance measure
for interactions, which is based on the predictive partial log-likelihood.

In order to improve the ranking of identified interactions, further survivalFS
based importance measures for interactions are introduced in this thesis. These
measures can be categorized into one of two different types of importance measures,
i.e., original-type and ensemble-type importance measures. The general idea behind
all importance measures is to define a score function, which is then used to evaluate
the performance of the full prediction model and the performance of the prediction
model from which the interaction, of which the importance should be determined,
is removed. If the interaction is important for the prediction, the score should de-
teriorate after the removal of this interaction, i.e., there should be a positive score
difference. In order to quantify the importance of the interaction, original-type impor-
tance measures average the score differences obtained from the logic regression models
fitted on the different subsamples. In contrast, ensemble-type importance measures
calculate one ensemble prediction model from the full logic regression models and
one ensemble prediction model from the logic regression models after the removal of
the interaction and calculate the score difference between these two models.

Three different goodness-of-fit measures are considered in this thesis as score
functions. While two of these measures are routinely used to evaluate time-to-event
models, namely the integrated Brier score (Graf et al., 1999) and Harrell’s concor-
dance index (Harrel’s C-index) (Harrell et al., 1982), the third measure, referred to
as DPO-based C-index, is a newly introduced adaptation of Harrell’s C-index consid-
ering the magnitude of the distances between predicted outcomes (DPO) as well as
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of the distances between observed event times. Thus, in total, six additional impor-
tance measures for interactions are proposed and evaluated in this thesis, resulting
from each combination of two types of importance measures and three goodness-of-fit
measures. The goal is to compare all these importance measures and to find those
which perform best under different data scenarios.

One issue frequently observed with logic regression is that interactions are iden-
tified which consist of the actual interaction being associated with the outcome of
interest and one or rarely more additional variables which only slightly increase the
score in the subsample (Schwender et al., 2011a). Since the importance measures of
survivalFS, but also, e.g., those of logicFS, consider these interactions as autonomous
interactions, the estimated importance of the actual interaction is decreased, as some
effect is attributed to these extended-interactions instead. In order to solve this
issue, an analogous noise-adjustment as proposed by Schwender et al. (2011a) for
case-parent trio data is introduced for all seven importance measures of survivalFS.

Furthermore, measures for quantifying the importance of all variables or sets of
variables considered in the application of survivalFS are devised in this thesis. These
measures take the multivariate structure of the data into account and are, in contrast
to popular univariate procedures for testing individual variables such as the partial
likelihood ratio test (Klein and Moeschberger, 1997), able to identify variables that
have no main effect but show an effect in interaction with other variables.

It is shown that by combining predictions from multiple models in one ensem-
ble prediction model, the accuracy of the individual models assembling the ensemble
can be improved (Breiman, 1996). Therefore, the output from survivalFS is further
employed to make ensemble predictions for the cumulative hazard function and sur-
vival function of new observations by averaging the predictions from the different
subsamples.

Note that the ensemble-type importance measures for interactions and sets of vari-
ables of survivalFS as well as the ensemble prediction models are already published
by Tietz et al. (2019). In addition, the three original-type importance measures as
well as the noise-adjustment of all importance measures for interactions are newly
introduced in this thesis.

The first part of this thesis is organized as follows. The theoretical framework
presented in Chapter 2 includes a description of the methods underlying survivalFS,
i.e., the Cox regression model, logic regression and logicFS, of survivalFS as proposed
by Tietz (2016), of popular goodness-of-fit measures used to define new importance
measures, i.e., the integrated Brier score and Harrell’s C-index, and of random sur-
vival forests, which is considered as comparison method of survivalFS. In Chapter
3, the newly proposed adaptation of Harrel’s C-index, i.e., the DPO-based C-index,
the six additional importance measures for interactions and sets of variables, the
noise-adjustment of the importance measures for interactions as well as the ensemble
prediction method are introduced. In Chapter 4, first, a simple simulation study is
conducted to compare the behavior between the DPO-based C-index and Harrell’s
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C-index, if applied to time-to-event models considering a grouping variable as pre-
dictor. Subsequently, the performance of the different (noise-adjusted) importance
measures of survivalFS is evaluated and compared in another simulation study. The
same simulation study is used, on the one hand, to compare the performance of
the importance measures for interactions or single variables of survivalFS with the
performance of an importance measure for pairs of variables or of an importance
measure for individual variables of random survival forests, respectively, and, on the
other hand, to compare the performance of the prediction models based on survivalFS
with the performance of the prediction models based on random survival forests. Fi-
nally, survivalFS is applied to genetic data from an urinary bladder cancer (UBC)
study, which investigates the influence of several pre-selected susceptibility SNPs and
further environmental and clinical variables on the recurrence-free time of UBC. The
results of the simulation studies and of the real-data application are discussed in
Chapter 8.

Note that most of the theory and of the results presented in the first part of this
thesis are already published in the research article by Tietz et al. (2019).

In the second part of this thesis, the goal is to subdivide the human brain into
structurally homogeneous and spatially contiguous parcels based on structural brain
images of older subjects. The human brain is clearly the most complex organ of
the human body. In order to get a better understanding on how the brain works,
a crucial and widely accepted concept is that the brain is organized into spatially
contiguous, specialized brain regions (cortical areas and subcortical nuclei), which
are inter-connected by large-scale networks (Eickhoff et al., 2018a). These brain
regions should be of large within homogeneity and between heterogeneity with re-
spect to different neurobiological modalities, where the boundaries should be consis-
tent among different modalities (Eickhoff et al., 2018a). While the first modalities
are histological-based, e.g., investigating cyto- and myeloarchitecture in postmortem
brains, the development of high-quality magnetic resonance imaging (MRI) tech-
niques gives rise to a variety of modalities measured in vivo, e.g., functional special-
ization, functional/structural connectivity or grey matter volume.

An accurate parcellation into neurobiologically meaningful regions does not only
help to get a better understanding of the topology and function of the brain. It
can also be used to communicate neurobiological results, e.g., task-based activation
patterns, or to perform data reduction in a statistical or machine learning analysis
(Eickhoff et al., 2018a; Glasser et al., 2016). However, the human brain is a highly
complex structure that evidently exhibits deviating patterns among different neurobi-
ological modalities. This makes the creation of a brain atlas challenging and it is still
unclear, whether a universal brain atlas exists at all (Eickhoff et al., 2018b). Even
though there probably will not be a final brain atlas in the nearby future, the concept
of a brain atlas is one of the most important concepts in the field of neuroimaging
for describing and analyzing brain organization (Eickhoff et al., 2018a).

Many different brain atlases have been proposed in the literature, which mainly
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differ from each other by the modalities that they are derived from and by the
parcellation approach. Anatomical atlases based on brain macrostructure are, e.g.,
the Talairach and Tournoux atlas (Talairach and Tournoux, 1988), the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) or the Destrieux
atlas (Destrieux et al., 2010; Fischl et al., 2004), resting-state functional MRI (fMRI)
based atlases are generated, e.g., by Craddock et al. (2012), Shen et al. (2013) or
Schaefer et al. (2018), and a multimodal atlas is, e.g., introduced by Glasser et al.
(2016). Only a few atlases have been derived based on structural MRI data, i.e., grey
matter volume data from T1-weighted MRI scans. E.g., Varikuti et al. (2018) derive
atlases with different numbers of brain regions from two structural MRI data sets.

Parcellation approaches can be classified into manual, partly automated and fully
automated approaches (Glasser et al., 2016). While the former two involve manual
labelling by expert neuroanatomists, e.g., the cortical areas of the Desikan-Killany at-
las (Desikan et al., 2006) are manually identified or the areas of a multimodal atlas by
Glasser et al. (2016) are delineated using an objective semi-automated neuroanatom-
ical approach, the latter rely exclusively on computer algorithms and can be further
divided into local boundary mapping and global clustering approaches (Eickhoff et al.,
2018b). Local boundary mapping is, e.g., applied by (Gordon et al., 2016) (resting-
state fMRI). Schaefer et al. (2018) employ a gradient-weighted Markov Random Field
(gwMRF) method (resting-state fMRI), which is a hybrid method integrating both
boundary mapping and clustering. Examples of clustering algorithms applied to MRI
data are contiguity constrained spectral clustering (Craddock et al., 2012) (resting-
state fMRI), a combination of region growing and spatially constrained hierarchical
Ward clustering (Blumensath et al., 2013) (resting-state fMRI), a combination of
principal component analysis (PCA) for feature reduction and K-means clustering
(Thirion et al., 2014) (task-based fMRI) or orthonormal projective non-negative ma-
trix factorization (OPNMF) based clustering (Sotiras et al., 2015; Varikuti et al.,
2018) (structural MRI).

Clustering based parcellation approaches are extensively evaluated, e.g., by Thirion
et al. (2014) based on task-based fMRI data and by Arslan et al. (2018) based on
resting-state fMRI data. While the analyses by Thirion et al. (2014) reveal that spa-
tially constrained hierarchical Ward clustering (Carvalho et al., 2009; Ward Jr, 1963)
outperforms the other methods under consideration with respect to reproducibility
and accuracy, the experiments by Arslan et al. (2018) could not identify a favored
clustering method with respect to the considered evaluation measures. However,
Arslan et al. (2018) characterize the performance of spatially constrained hierarchi-
cal clustering to reside in-between the performance of K-means (low reproducibility
and high accuracy) (Lloyd, 1982; MacQueen, 1967) and spatially constrained spec-
tral clustering (high reproducibility and low accuracy) (Ng and Han, 2002; Shi and
Malik, 2000; Yuan et al., 2015), i.e., it generates spatially contiguous parcels, entail-
ing an improved reproducibility of the resulting parcellations, while simultaneously
achieving a fairly high accuracy.
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Because of the good performance of spatially constrained hierarchical agglomera-
tive clustering (SHAC) algorithms based on functional MRI data, their performance
with respect to clustering quality and stability in application to another modality,
namely T1-weighted structural MRI data, is extensively investigated in this thesis.
The performance is not only compared among different SHAC methods but also be-
tween the SHAC methods and spatially constrained spectral clustering. Note that
to my knowledge SHAC methods have not yet been applied to structural MRI data
to obtain whole brain parcellations. The results of this investigation may provide an
additional view on human brain organization and improve the understanding of the
mechanisms of the human brain.

In general, SHAC algorithms build a hierarchy of clusters, starting with each voxel
in a separate cluster and merging in each iteration the two most similar clusters,
where the distance between clusters is determined by the agglomeration method. On
the one hand, three popular agglomeration methods are considered for comparison,
i.e., correlation and Euclidean distance based average linkage as well as Euclidean
distance based Ward’s minimal variance method (Carvalho et al., 2009). On the other
hand, since the objects to be clustered are voxels, i.e., variables, and not subjects,
a spatially constrained variable clustering procedure, referred to as SPARTACUS
(SPAtial hieRarchical agglomeraTive vAriable ClUStering) method, is additionally
proposed, introducing contiguity constraints into a hierarchical variable clustering
method by Vigneau and Qannari (2003).

SHAC algorithms have numerous advantages for the analysis of structural MRI
data with a couple hundred thousand voxels. Spatial contiguity constraints are eas-
ily included, which speed up the calculation and dramatically reduce memory con-
sumption. The resulting parcellation is guaranteed to consist of spatial contiguous
brain regions. Moreover, since the SHAC framework allows many different choices
of agglomeration methods, SHAC algorithms can identify a variety of underlying
structures in the data.

In order to improve clustering quality, ensemble clustering methods (Monti et al.,
2003; Strehl and Ghosh, 2002) are employed. Ensemble clustering methods combine
multiple parcellations in a cluster ensemble and use a consensus function to obtain
a final ensemble parcellation. E.g., Bellec et al. (2010) propose an ensemble cluster-
ing procedure called bootstrap analysis of stable clusters (BASC) for resting-state
fMRI data. In this thesis, the cluster ensemble is generated by applying one SHAC
algorithm to subsamples of the input data set. As consensus function a pairwise
similarity based approach is chosen, applying a SHAC algorithm using single or aver-
age linkage as agglomeration method to the co-association matrix inferred from the
cluster ensemble.

However, the calculation of the co-association matrix is computational expen-
sive and memory consuming, as the number of voxels in an MRI data set is very
large. Therefore, another agglomeration method is introduced to the SHAC frame-
work which avoids calculating all pairwise voxel distances. Instead, the spatially
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constrained distance between clusters is calculated by the mean Hellinger distance
between their discrete probability vectors.

A critical challenge for any parcellation procedure is to select the number of
brain regions. Since the human brain is organized into multiple levels, the correct
number of brain regions might not exist. Instead, it is more likely that different
numbers of brain regions indicate different levels of brain organization (Eickhoff et al.,
2018b). Multiple subsampling based procedures, i.e., subsampling based clustering
stability, subsampling based clustering quality and ensemble based clustering quality,
are employed in this thesis to search for interesting numbers of brain regions and a
goal is to compare the performance of these procedures.

Subsampling based clustering stability (Von Luxburg, 2010) builds upon the idea
that biological truth should be reflected by parcellations that are stable across dif-
ferent subsamples (Eickhoff et al., 2018b). Therefore, external validation measures,
e.g., the adjusted Rand index (Hubert and Arabie, 1985) or normalized mutual in-
formation (Strehl and Ghosh, 2002), are employed to quantify the mean pairwise
convergence of multiple parcellations with the same numbers of brain regions gener-
ated based on different subsamples of the input data. Interesting numbers of brain
regions correspond to parcellations achieving high mean external scores.

Subsampling based clustering quality identifies those numbers of clusters for which
the corresponding parcellations achieve a high mean quality across subsamples. Clus-
tering quality is quantified using internal validation measures (Arbelaitz et al., 2013),
rewarding parcellations with a large within cluster similarity and between cluster dis-
similarity with higher scores. Besides employing well established internal validation
measures, i.e., the silhouette coefficient (Rousseeuw, 1987) and its simplified vari-
ant (Vendramin et al., 2010), spatial adaptations of the silhouette coefficient and of
its simplified variant are proposed, which consider between cluster dissimilarity only
among neighboring clusters. These spatial adaptations reduce not only the compu-
tational complexity of the silhouette coefficient. Without these adaptations, e.g.,
cross-hemispheric communications (Davis and Cabeza, 2015), i.e., correlated brain
regions on different hemispheres, would falsely have a negative impact on the internal
evaluation of parcellations with spatially contiguous regions. Moreover, a correlation
based variation of the simplified silhouette coefficient is proposed as well.

Ensemble based clustering quality evaluates the quality of ensemble parcellations
with different numbers of clusters using a newly proposed ensemble variation of the
silhouette coefficient. Again, those numbers of clusters are considered, for which the
corresponding ensemble parcellations achieve a high quality.

All these procedures require to calculate multiple parcellations for each of multiple
numbers of brain regions. This makes these procedures computationally expensive.
However, a huge advantage of SHAC methods is that the hierarchy needs to be
calculated just once for each data set. By iteratively splitting up the hierarchy
in a top-down approach, parcellations with any numbers of brain regions can be
computed in very short time. This makes SHAC algorithms very appealing for the
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task of finding interesting numbers of brain regions compared to other method such
as K-means or spectral clustering, which need to be rerun for each number of brain
regions. Moreover, parallelized computing is possible with all these procedures.

The second part of this thesis is structured as follows. The theoretical frame-
work presented in Chapter 5 includes a description of the relevant existing cluster-
ing methods, i.e., (contiguity constrained) hierarchical clustering ((S)HAC), variable
clustering providing the foundation of the newly proposed SPARTACUS method,
(contiguity constrained) spectral clustering ((S)SPEC), which is considered as com-
parison method to the SHAC methods, and ensemble clustering procedures. More-
over, relevant internal and external clustering validation measures, procedures to
find interesting numbers of clusters and (clustering based) brain parcellation meth-
ods employed in neuroscience are reviewed in this chapter. In Chapter 6, the SHAC
methods, the SPARTACUS method, the SSPEC methods and the spatial ensemble
clustering procedures including the newly proposed Hellinger method are presented
specifically for the analysis of structural MRI data. The spatial adaptations of both
the silhouette coefficient and the simplified silhouette coefficient as well as the corre-
lation based variation of the simplified silhouette coefficient are also defined in this
chapter. Moreover, algorithmic descriptions of the procedures employed to find in-
teresting numbers of brain regions are given. In Chapter 7, the clustering methods
and the procedures to find interesting numbers of brain regions are, on the one hand,
evaluated (with respect to quality and stability) in a simulation study, and, on the
other hand, applied to the 1000BRAINS data set including structural brain scans of
older subjects. As further quality feature, the convergence of the final brain parcel-
lations with existing anatomical atlases as well as alternative atlases generated by
(semi-)algorithmic approaches based on MRI data is analyzed. Finally, the results of
these analyses are discussed in Chapter 8.
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Part I

Identification of explanatory
interactions of binary variables for
a time-to-event using survivalFS
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Chapter 2

Theoretical framework

In this chapter the concepts underlying survivalFS as well as the theoretical founda-
tions which are needed in order to construct the importance measures of survivalFS
in Chapter 3 are discussed. Note that most of the information presented in this
chapter can be found in Tietz (2016) and Tietz et al. (2019).

The development of survivalFS and its importance measures is based on the mo-
tivation to find high-degree interactions between SNPs that are associated with, e.g.,
a disease related time-to-event. Consequently, the performance of survivalFS is eval-
uated in Chapter 4 in application to a simulation study and a urinary bladder cancer
study, where the predictors in both studies are SNPs. Thus, the genetic background
of SNPs is shortly presented in Section 2.1.

Time-to-event analysis refers to a set of statistical approaches that analyze the
expected time period until an event of interest occurs. The time variable is often
referred to as survival time, as in many studies the interesting event is death, e.g.,
due to a specific disease. Moreover, the event is often referred to as failure, since
in most studies the event is some negative individual experience, e.g., death, disease
incidence or recurrence of a tumor (Kleinbaum and Klein, 2010). Nonetheless, the
event can also be positive, e.g., the recovery from a disease.

A peculiarity of time-to-event data is that the time variable can be censored. In
essence, censoring occurs if there is missing information about the exact time at which
the event of interest occurs. This happens, e.g., if the study ends before the observa-
tion experiences the interesting event or if the observation is lost to follow-up during
the study period (Kleinbaum and Klein, 2010). By making assumptions about the
censoring mechanism, the incomplete information about the event time provided by
the censored observations can be considered together with the complete information
provided by the uncensored observations, e.g., in a likelihood-based approach such as
the Cox regression model. The Cox regression model relates one or more predictor
variables with the time-to-event by maximizing a partial likelihood function (Cox,
1972, 1975). A short summary of the theory of Cox regression models is presented
in Section 2.2.

A popular distribution for the simulation of event times is the Weibull distribu-
tion (Pham, 2006). For the simulation study in Section 4.1 a procedure is required
that calculates the shape and scale parameters of the Weibull distribution for given
expected value and variance. Such a procedure is presented in Section 2.3.

An extension of the ensemble tree method Random Forests (Breiman, 2001) for
time-to-event data is random survival forests (RSF) (Ishwaran et al., 2008). RSF
also provides importance measures to uncover influential single variables and bivari-
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ate interactions. Since RSF is employed as comparison method to survivalFS, it is
summarized in Section 2.4.

Especially in genetic studies considering many binarized SNPs as predictors, not
the individual variables, but interactions between these predictors are explanatory for
the time-to-event. Logic regression (Ruczinski et al., 2003) is a regression method-
ology that employs the negative maximized partial likelihood as score function in
a stochastic search algorithm to identify such explanatory SNP interactions. The
fundamental concepts of logic regression are presented in Section 2.5.

A modification of logic regression stabilizing the search for interesting SNP inter-
actions associated with a time-to-event using a subsampling approach is survivalFS
introduced by Tietz (2016). Tietz (2016) also proposes an importance measure for
interactions, which is based on the negative maximized partial log-likelihood. sur-
vivalFS and its importance measure are presented in Section 2.7. Note that sur-
vivalFS and its importance measure are also published in the research article by
Tietz et al. (2019).

Since survivalFS is an adaptation of logicFS introduced by Schwender and Ick-
stadt (2008) for case-control data, logicFS is first summarized in Section 2.6. In
contrast to survivalFS, logicFS uses a bootstrapping approach to identify potentially
interesting interactions. logicFS also provides importance measures to rank the iden-
tified interactions according to their relevance for the prediction.

Two popular goodness-of-fit measures for evaluating time-to-event models are the
(integrated) Brier score (Graf et al., 1999) and Harrell’s concordance index (Harrell
et al., 1982). Since these measures are employed to define new importance measures
for survivalFS, they are described in Section 2.8.

2.1 Single nucleotide polymorphisms

The human body consists of zillions of cells. The human genome, which contains
the entire genetic information of a human, is included in the nucleus of almost each
of these cells (Schwender et al., 2006). The genome consists of 46 chromosomes
which occur in pairs. One chromosome of each pair is inherited by the mother and
the other by the father. Each chromosome consists of two intertwined strands of
deoxyribonucleic acid (DNA) (Schwender et al., 2006). The individual elements of
each strand of DNA are nucleotides. Nucleotides are composed of a phosphate group,
a deoxyribose sugar and a nitrogen base, where the latter can take one out of four
expressions, i.e., adenine (A), thymine (T), cytosine (C) and guanine (G) (Schwender
et al., 2006). More precisely, the side strands of the DNA consist of the phosphate
group and deoxyribose sugar, the composite components between two DNA strands
are nitrogen bases. Via hydrogen bounds, A is always connected to T and C is always
connected to G. Thus, to know one strand of the DNA is sufficient to know the whole
DNA.
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While 99.9% of the DNA sequences are identical between any two humans, the
remaining 0.1% make up for approximately 3 million differences. Some of these
differences have an influence on the human phenotype, i.e., human characteristics
such as talent, appearance or disease disposition (Chichon et al., 2002). In the field
of biomedicine, individual disease dispositions caused by genetic variations are of
particular interest.

There exist different types of genetic variation (Chichon et al., 2002; Schwender
et al., 2006), among which single nucleotide polymorphisms (SNPs) are the most
frequent type, accounting for approximately 90 percent of genetic variability (Chichon
et al., 2002). If at a specific location in the DNA, called locus, a base pair variation
occurs in more than 1% of the cases in a population, this locus is referred to as SNP
(Schwender et al., 2006). Each of the possible forms a SNP can take is referred to
as an allele. Typically, a SNP is biallelic (Kassam et al., 2005), i.e., the SNP can
take one of two possible forms. The allele of a biallelic SNP that occurs less often in
a population is called minor allele (Schwender et al., 2006). For example, assuming
that at a specific locus most people from a population have A as nitrogen base but
some (more than 1%) have G instead. Then this locus is a biallelic SNP, where G is
the minor allele.

Since the human genome is diploid, i.e., chromosomes always occur in pairs, each
SNP is explained by two alleles. The combination of two alleles, one from each
chromosome, is referred to as genotype. Thus, each biallelic SNP can take one of
three possible genotype forms, i.e., the homozygous reference genotype, where both
alleles are the more frequent alleles, the heterozygous variant genotype, where exactly
one of the two alleles is the minor allele and the homozygous variant genotype, where
both alleles are minor alleles (Schwender et al., 2006). If the occurrence of just one
minor allele is sufficient to change the phenotype, the SNP has a dominant effect. If
the presence of two minor alleles is necessary to change the phenotype, the SNP has
a recessive effect (Schwender et al., 2006).

2.2 Cox regression model

The content of this section is mainly based on Klein and Moeschberger (1997) and is
also presented in Tietz (2016). For a more detailed description including mathemat-
ical derivations please refer to these sources.

Let the non-negative random variables T denote the time to a certain interesting
event and let fptq or F ptq, t ¥ 0, be the density or the distribution function of T ,
respectively. The distribution of T can also be characterized via the survival function
or the hazard function/hazard rate of T . The survival function of T is defined as

Sptq � P pT ¡ tq � 1� F ptq

and describes the probability that the observation has not experienced the interesting
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event at time t. The hazard function/hazard rate is given by

hptq � lim
∆Ñ0

P rt ¤ T   t�∆ | T ¥ ts
∆

and describes the immediate risk of experiencing the interesting event at time t,
given that the interesting event has not been experienced until this time t (Klein and
Moeschberger, 1997).

One of the most popular regression models for time-to-event data is the Cox
regression model (Cox, 1972, 1975). This model relates a vector X � pX1, . . . , XpqT
of predictors to the hazard rate of T . More precisely, considering a sample x of X,
the Cox regression model is given by

hpt |X � x;βq � h0ptq exppxTβq, t ¥ 0,

where h0ptq ¥ 0 is an arbitrary baseline hazard rate and β � pβ1, . . . , βpq is a param-
eter vector. The Cox model is called a semi-parametric model, since a parametric
form is only assumed for the predictors, but not for the baseline hazard rate.

The ratio of the hazard rates of two observations with samples x1,x2 of X, i.e.,
their hazard ratio, is given by

HRpt | x1,x2;βq � h0ptq exppxT1 βq
h0ptq exppxT2 βq

� exp
�px1 � x2qTβ

�
, @ t ¥ 0,

which is independent of t, i.e., a constant. Therefore, the hazard rates of the two
observations are proportional, which is why the Cox regression model is often referred
to as proportional hazards model.

In particular, assume, e.g., that the first entry X1 of X is a binary predictor
coding for a treatment effect pX1 � 1q and a placebo effect pX1 � 0q. The hazard
ratio between an observation with sample x1 belonging to the treatment group px11 �
1q and an observation with sample x2 belonging to the placebo group px21 � 0q,
assuming that all other predictors have identical values, is given by

HRpt | x1,x2;βq � exppβ1q, @ t ¥ 0.

Hence, exppβ1q is the relative risk of experiencing the event between the treatment
and the placebo group.

A special characteristic of time-to-event analysis is that the available information
about the event time of observations can be incomplete, i.e., censoring can occur.
While several categories of censoring exist, such as right-, left- or interval-censoring,
only right-censoring is considered in this thesis. Right-censoring occurs, if an obser-
vation enters the study at a certain time t0, but the recording of the interesting event
time is prevented by a competing event which occurs prior to the interesting event.
E.g., if a study is terminated before the observation has experienced the interesting
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event, the interesting event time of this observation is unobserved and only its cen-
soring time, i.e., the time from its entry into the study until the end of the study, is
recorded. Or, if the observation leaves the study before the interesting event occurs,
e.g., due to a different cause of death or due to lack of interest, only its censoring
time is known (Klein and Moeschberger, 1997; Kleinbaum and Klein, 2010).

Let the non-negative random variable C denote the (right-)censoring time and
assume that C is independent of T and X. The observed time or the censoring status
is described by the random variable Y � minpT,Cq or ∆ � IpT ¤ Cq, respectively.
Thus, time-to-event data with n observations is given by pyi, δi,xiq, i � 1, . . . , n. The
r � °n

i�1 δi observed times with δi � 1 are in the following referred to as event times.

The parameters β1, . . . , βp of the Cox regression model are estimated using a
maximum likelihood approach. It can be shown (see Tietz (2016)) that the likelihood
function of the Cox regression model for right-censored time-to-event data is given
by

Lpβq �
n¹
i�1

"�
h0pyiq exppxTi βq

�δi�
S0pyiqexppxTi βq

�*
,

where S0ptq :� exp
�
� ³t

0
h0psq ds

	
is the baseline survival function.

However, since h0 and thus S0 are unspecified, it is impossible to maximize L.
Instead, the fully determined partial likelihood introduced by Cox (1972, 1975) can be
used like a normal likelihood to make inferences about β. Assuming no ties between
the event times, i.e., all event times are different from each other, let tp1q   . . .   tprq
denote the r ordered event times and let xpjq be the sample predictor vector of the
observation with event time tpjq, j � 1, . . . , r. Further, let Rptq be the risk set at time
t which includes all observations i with yi ¥ t. The partial likelihood is then given
by

LP pβq �
r¹
j�1

exppxTpjqβq°
ξPRptpjqq

exppxTξ βq
�

n¹
i�1

�
exppxTi βq°

ξPRpyiq
exppxTξ βq

�δi
.

Note that the numerator includes only information of the observation experiencing
the interesting event, whereas the denominator considers the information of all ob-
servations that are still at risk of experiencing the interesting event.

If there are ties between the event times, an alternative partial likelihood must
be employed instead of LP . Let, again, tp1q   . . .   tprq denote the r unique event
times and let Dj be the set of observations experiencing the interesting event at time
tpjq, j � 1, . . . , r. Further, let dj � |Dj| be the number of observations experiencing
the interesting event at time tpjq and let sj �

°
`PDj

x`. E.g., the partial likelihood

using the Breslow-approximation for tied event times (Breslow, 1974) is given by

LBpβq �
r¹
j�1

exppsTj βq�°
ξPRptpjqq

exppxTξ βq
�dj � n¹

i�1

��� exppsTi βq�°
ξPRpyiq

exppxTξ βq
�di

���
δi

.
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The Breslow-approximation works only well, if the number of ties is small. Note that
LBpβq � LP pβq, if the data set includes no ties.

The estimate β̂ of β is obtained by numerically maximizing LP pβq or LBpβq,
respectively, e.g., by using the Newton-Raphson algorithm (Ypma, 1995).

In order to investigate which βk, k � 1, . . . , p, has an effect on the event time, a
partial likelihood ratio test can be used to test H0 : βk � 0 against H1 : βk � 0. The
test statistic G is given by

G � �2

�
log

�
LP

�
β̂p�kq

		
� log

�
LP

�
β̂
		�

,

where LP
�
β̂
	

is the maximized partial likelihood of the full model including all pre-

dictors X1, . . . , Xp and LP
�
β̂p�kq

	
is the maximized partial likelihood of the reduced

model without Xk. Under H0 and for large n (the number r of event times must
be large compared to the number p of predictors), G is asymptotically chi-square
distributed with one degree of freedom (Klein and Moeschberger, 1997).

2.3 Some properties of the Weibull distribution

A popular distribution used in the context of time-to-event analysis is the Weibull
distribution (Pham, 2006). While the parameters of a normally distributed random
variable are identical to the expected value and the variance of this random variable,
the parameters of a Weibull distributed random variable are not. However, for the
sake of interpretability, it might be of interest, e.g., in a simulation study, to simulate
from a Weibull random variable with a specific expected value and a specific variance.
Thus, in this section a procedure is explained which calculates the shape and scale
parameters of a Weibull distribution for given expected value and variance. This
procedure is employed in a simulation study in Section 4.1.

Let T � Weibpα, λq, where α ¡ 0 and λ ¡ 0 are the shape and scale parameter,
respectively. The distribution function of T is given by (Pham, 2006, pp.63-78)

Fα,λptq � 1� exp

�
�
�
t

λ


α

, t ¥ 0,

and the cumulative hazard function is calculated as

Hα,λptq � � log
�
1� Fα,λptq

� � �
t

λ


α

. (2.1)

Moreover, the expected value and the variance of T are given by

ErT s � λΓ

�
1� 1

α



(2.2)
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and

VarpT q � λ2

�
Γ

�
1� 2

α



�
�

Γ

�
1� 1

α



2
�
, (2.3)

where

Γpxq �
» 8

0

sx�1 expp�sq ds, x ¡ 0,

is the Gamma function (Sebah and Gourdon, 2002).

In order to obtain those parameters α and λ which result in a given expected
value ErY s � µ and a given variance VarpY q � σ2, equation (2.2) is converted to λ,
i.e.,

λ � µ

Γ

�
1� 1

α


 (2.4)

and inserted into equation (2.3), resulting in

gpαq :�
Γ

�
1� 2

α



�

Γ

�
1� 1

α



2 �
σ2

µ2
� 1 � 0. (2.5)

The first derivative of Γpxq is given by

B
BxΓpxq � ψpxqΓpxq,

where ψpxq is the digamma function (Sebah and Gourdon, 2002) which, as the gamma
function, is implemented in R. Thus, the first derivative of gpαq is given by

g1pαq �

B
Bα

�
Γ

�
1� 2

α



�
Γ

�
1� 1

α



2

� Γ

�
1� 2

α


 B
Bα

��
Γ

�
1� 1

α



2
�

�
Γ

�
1� 1

α



4

�

��2

α2



ψ

�
1� 2

α



Γ

�
1� 2

α



�
�

2

α2



Γ

�
1� 2

α



ψ

�
1� 1

α



�

Γ

�
1� 1

α



2 .

Using gpαq and g1pαq, the solution α̃ of equation (2.5) is obtained using the Newton-
Raphson procedure (Ypma, 1995) and the solution for λ, i.e., λ̃, is obtained by
inserting α̃ into (2.4).
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2.4 Random survival forests and its importance

measures

The ensemble tree method random survival forests for time-to-event data is described
in Section 2.4.1. Its importance measures VIMP for individual variables and IMDMS
for pairwise interactions are summarized in Section 2.4.2 and Section 2.4.3, respec-
tively.

2.4.1 Random survival forests

An ensemble tree method for the analysis of time-to-event data is random survival
forests (RSF) (Ishwaran and Kogalur, 2007; Ishwaran et al., 2008). RSF is an ex-
tension of Breiman’s Random Forests (Breiman, 2001). Randomization is achieved
by drawing bootstrap samples from the original data and by splitting on randomly
selected subsets of the original predictors. The only three input parameters that
need to be set are the number B of trees to be grown in the forest, the size s of
the subsets of randomly selected predictors considered for splitting and the splitting
rule. Given right-censored time-to-event data pyi, δi,xiq, i � 1, . . . , n, with n obser-
vations, the first step of the RSF algorithm is to draw B bootstrap samples from the
original data. An average bootstrap sample excludes 36.8% of the original observa-
tions (Alpaydin, 2014), and these observations are referred to as out-of-bag (OOB)
observations. Based on each bootstrap sample a survival tree is grown, where node
splitting is achieved based on s randomly selected candidate predictors using the
splitting rule. Each tree is grown to full size under the constraint that each terminal
node includes at least r0 unique event times.

Based on these B survival trees, an ensemble estimate for the cumulative hazard
function (CHF) is calculated for each observation. Let Gb be the number of terminal
nodes for the b-th survival tree, b � 1, . . . , B, and let g, g � 1, . . . , Gb, be a terminal
node. Further, let Dinbagg

b denote the b-th bootstrap sample and let Dinbagg
bg be the

set of observations in Dinbagg
b dropping down to terminal node g, where �Y

g
Dinbagg
bg �

Dinbagg
b . The rbg unique event times of observations in Dinbagg

bg are denoted by tbpjq,g, j �
1, . . . , rbg. The CHF for node g is estimated by the Nelson-Aalen estimator

Ĥb
gpyq �

¸
j: tb

pjq,g
¤y

dbpjq,g∣∣∣Rb
pjq,g

∣∣∣ ,
where dbpjq,g and Rb

pjq,g denote the number of observations experiencing the event at

time tbpjq,g and the number of observations at risk at time tbpjq,g, respectively.

In order to get an estimate for the CHF of observation i with predictor vector xi
based on the b-th survival tree, i is dropped down the tree landing in node g. The
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CHF Ĥb
gpyq of g is employed as estimate for the CHF of i, i.e.

Ĥbpy | xiq � Ĥb
gpyq, if xi P g. (2.6)

Ĥbpy | xiq is the CHF estimate for i based on one tree. In order to obtain an
CHF estimate for i based on all trees, the average over all B CHF estimates could be
taken. However, the CHF estimate for i should ideally be obtained independent of i.
Therefore, define Iib � 1, if i R Dinbagg

b , and Iib � 0, otherwise. The OOB ensemble
CHF for observation i is then given by

ĤOOB
e py | xiq �

°B
b�1 IibĤ

bpy | xiq°B
b�1 Iib

. (2.7)

Thus, the OOB ensemble CHF for observation i is the average over all CHF estimates
Ĥbpy | xiq in which i is OOB.

The OOB ensemble CHF is only calculated for observations belonging to the
training data used to generate the survival trees. New observations x�i , i � 1, . . . , n�,
belonging to an independent test data set are naturally OOB in all iterations. For
these observations the ensemble CHF

Ĥe py | x�i q �
1

B

B̧

b�1

Ĥbpy | x�i q.

is calculated instead.

To evaluate the goodness-of-fit of the OOB ensemble CHF predictions, Harrell’s C-
index (Harrell et al., 1982) is employed. Therefore, a risk score ηi must be determined
for each observation i, i � 1, . . . , n. Ishwaran et al. (2008) choose the predicted
outcome POi of observation i as its risk score which is defined as

POi �
ŗ

j�1

ĤOOB
e

�
tpjq | xi

�
,

where tp1q   tp2q   . . .   tprq are the r unique event times in the data set. A
larger POi value means an overall higher risk of experiencing the interesting event.
Accordingly, observation i is said to have a worse predicted outcome than observation
`, ` � 1, . . . , n, ` � i, if POi ¡ PO`. Harrell’s C-index Ĉ (see Section 2.8) is then

calculated based on pyi, δi,POiq, i � 1, . . . , n, and the prediction error xPE � 1� Ĉ is

determined. Since ĤOOB
e is based on OOB data, Ĉ and xPE are also OOB estimates.

2.4.2 Variable importance measure VIMP

Some of the predictors in the data set might be very important for the prediction,
while others are not. In order to distinguish important from unimportant predictors,
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the variable importance measure VIMP can be employed assigning an estimated
importance value to each predictor from the data set (Ishwaran, 2007; Ishwaran
et al., 2008). In order to quantify the importance of predictor Xk, k � 1, . . . , p, the
same B survival trees from the RSF output with the same Nelson-Aalen estimates for
the terminal nodes are considered. Each observation i is dropped down all trees from
those iterations in which it is OOB. However, if i reaches a split based on Xk, it is
randomly assigned to one of the two daughter nodes instead of making the splitting
decision based on its realization of Xk. Again, the CHF estimate for observation i
based on the b-th survival tree (randomized for Xk) is the Nelson-Aalen estimate Ĥb

g

of the terminal node g this observation lands in, i.e.

Ĥb,p�kqpy|xiq � Ĥb
gpyq, if xi P g.

The OOB ensemble CHF for observation i based on randomized Xk assignments is
given by

ĤOOB,p�kq
e py | xiq �

°B
b�1 IibĤ

b,p�kqpy | xiq°B
b�1 Iib

and Harrell’s C-index is employed to determine the OOB prediction error xPE
p�kq

.
The VIMP for Xk is then

VIMPpXkq � xPE
p�kq � xPE,

where xPE is the prediction error of the original ensemble without any randomized
assignment.

2.4.3 Pairwise interaction importance measure IMDMS

Predictors based on which a split is performed close to the root of the survival tree
tend to exhibit a larger effect on the time-to-event than predictors splitting farther
down the tree (Ishwaran et al., 2010). This property of survival trees can be used to
derive importance measures for single predictors and pairwise interactions of predic-
tors, where these importance measures are based on fundamental tree concepts and
do not rely on the selection of a goodness-of-fit measure. Moreover, in contrast to the
randomization based VIMP, exact distributions can be derived for these measures.

Core concepts are the notion of a (maximal) k-subtree (Ishwaran, 2007) and of a
minimal depth of a maximal subtree (Ishwaran et al., 2010). A subtree of the b-th
survival tree T b, b � 1, . . . , B, from the forest is called a k-subtree T b

k , if the root
node of T b

k is split based on Xk, k � 1, . . . , p. If T b
k is not the subtree of a larger

k-subtree, T b
k is called a maximal k-subtree. Note that multiple maximal k-subtrees

can exist emerging on different branches of T b. The depth of T b
k is defined as the

number of splits by which the root of T b
k can be reached starting at the root of T b.

The minimal depth Db
k of Xk is the minimum of the depths of all maximal k-subtrees.
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E.g., Db
k � 1, if the root of T b is split based on another predictor than Xk and at

least one of the children nodes of the root node is split based on Xk. If no node of T b

splits on Xk, D
b
k is set to the height DpT bq of T b, i.e., the number of splits starting

at the root of T b to reach the farthest terminal node. The forest-averaged minimal
depth of predictor Xk is given by

Dk � 1

B

B̧

b�1

Db
k.

The smaller Dk, the larger the effect of Xk on the time-to-event. I.e., Dk provides
a ranking of the predictiveness of the predictors. Moreover, interesting predictors
can be filtered by determining a threshold value based on the null distribution of
Dk (Ishwaran et al., 2010). Dazard et al. (2018) refer to Dk as minimum depth of
maximal subtree statistic MDMSpXkq of Xk.

Based on the work from Ishwaran et al. (2010), Dazard et al. (2018) employ the
concept of a minimal depth of a maximal subtree to construct an importance measure
for pairwise interactions between Xk and X`, ` � 1, . . . , p, ` � k. Considering a
maximal k-subtree of T b, the depth of X` relative to this maximal k-subtree is defined
as the minimum number of splits by which a split based on X` can be reached starting
at the root of T b

k . This depth is normalized with respect to the height DpT b
k q of T b

k .
Since T b can possibly have multiple maximal k-subtrees, the minimal normalized
depth Db

`k of X` relative to Xk is the minimum over the normalized depths of X`

relative to all maximal k-subtrees. If X` does not split under Xk, D
b
`k is set to one.

The forest-averaged minimal normalized depth of X` relative to Xk is

MDMSpX`, Xkq � 1

B

B̧

b�1

Db
`k.

Since in general MDMSpX`, Xkq � MDMSpXk, X`q, the Interaction Minimal Depth
Maximal Subtree (IMDMS) measure quantifying the importance of the interaction
between Xk and X` for the time-to-event prediction is given as

IMDMSpXk, X`q � min
 
MDMSpXk, X`q,MDMSpX`, Xkq

(
.

Small IMDMS values indicate a possible pairwise interaction. Dazard et al. (2018)
further derive decision rules to infer interaction significance.

2.5 Logic regression

While in many regression problems the original variables are considered as predictors
for the response, interactions, if considered at all, are usually kept simple. However, in
many data scenarios the response is influenced by a more complex interaction between
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multiple original variables. This occurs especially, if the original variables are binary.
A regression methodology that adaptively searches for complex interactions of binary
variables that are associated with the response is logic regression (Ruczinski et al.,
2003). Logic regression allows a variety of responses, such as a binary response or an
event time. Starting with an original set X1, . . . , Xp of logic variables (e.g., binary
factors or binary dummy variables coding for a level of a categorical factor), these
logic variables are combined to form better predictors for the response by employing
the logic operators ^ (AND), _ (OR) and c (complement operator). The combination
of logic variables and logic operators is referred to as logic expression, where logic
expressions such as L � Xc

3 ^
�
X1 _ X2

�
are also binary. Any logic expression can

be generated by iteratively combining two logic variables, a logic variable and a logic
expression or two logic expressions with the help of logic operators. Logic regression
adaptively grows such logic expressions Lm, m � 1, . . . , q, and uses them as predictors
in a generalized linear model

gpEpY qq � β0 �
q̧

m�1

βmLm,

where Y is the response and g is a link function.

The aim is to find the best set tL1, . . . , Lqu of logic expressions, i.e., the set
that minimizes the score function of the generalized linear model. Depending on the
type of the response, a different score function is defined in logic regression. The
score function indicates how well the model predicts the response. E.g., if a logistic
regression model is considered in logic regression, the binomial deviance is used as
score. Several other regression approaches are also implemented in logic regression.
E.g., if the response is a time to a certain event, a Cox proportional hazard model
(Cox, 1972, 1975) can be used, where the score is the negative maximized partial
likelihood (Ruczinski et al., 2004). Without loss of generalization, the lower the
score the better the logic model.

Any logic expression can be represented by a logic tree. E.g., the logic tree
corresponding to the logic expression L � Xc

3 ^
�
X1 _ X2

�
is the left-most tree in

Figure 2.1. Each knot of a logic tree is either occupied by a logic operator or by a
logic variable. If a knot is occupied by a logic operator, it always has two sub-knots.
These sub-knots are called each others siblings. A knot that is occupied by a logic
variable has no sub-knots and is called a leaf (Ruczinski et al., 2003).

In the search for the best set of logic expressions, different moves allow the tran-
sition from one set of logic expressions to another. These moves are defined via the
tree representation of a logic expression. Figure 2.1 shows the four moves that can be
applied to a logic tree to change its structure. E.g., any leaf can be split by replacing
this leaf with a logic operator, where one of the two sub-knots of this operator is
occupied by the replaced leaf and the other subknot is equipped with another leaf,
i.e., logic variable, from the data set. Note that “Delete Leaf” or “Prune Branch” is
the counter move to “Split Leaf” or “Grow Branch”, respectively. Besides these four
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Figure 2.1: The move set used in logic regression as introduced by Ruczinski et al.
(2003). Besides the four moves “Split Leaf”, “Delete Leaf”, “Prune Branch”, and
“Grow Branch” that change the size of a logic tree, a variable or an operator can be
exchanged by the moves “Alternate Leaf” or “Alternate Operator”. Source: Tietz
et al. (2019).

moves, two additional moves that do not change the structure of the logic tree are
to alternate a logic operator or a logic variable. Any logic tree can be reached from
another logic tree by a finite number of moves (Ruczinski et al., 2004). If multiple
trees are allowed, the logic tree on which a move is performed must be selected first.
A new tree is generated by the move “Grow Tree”, i.e., by choosing a single logic
variable as leaf. Its counter move is “Delete Tree”, i.e., to delete a tree with just one
leaf.

The representation of logic expressions is not unique in the sense that multiple
logic expressions can look completely different but produce the same results for any set
of logic variables. E.g., any logic expression can be represented in a disjunctive normal
form (DNF), i.e., an OR-combination of AND-combinations. E.g., the disjunctive
normal form of the logic expression L � Xc

3 �
�
X1 �X2

�
is given by

L � �Xc
3 �X1� � �Xc

3 �X2� .

All AND-combinations of a DNF that are not redundant are referred to as prime
implicants (Schwender and Ickstadt, 2008). E.g., if a DNF includes X1 � X2 � X3

and X1 � X2, then X1 � X2 � X3 is redundant and, therefore, no prime implicant,
whereas X1 �X2 is a prime implicant. An algorithm that determines the DNF of a
logic expression is presented by Schwender (2007).
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Search algorithms are employed to find the best logic regression model, i.e., the
set of logic expressions that minimizes the score. Two search algorithms that are
implemented in logic regression are a greedy algorithm and a simulated annealing
algorithm, i.e., a stochastic search algorithm.

The greedy algorithm finds, as first original state, the logic variable that, employed
as single predictor, minimizes the score function. In each iteration of the greedy
algorithm, the scores of all neighbors of the original state, i.e., of all logic expressions
that can be reached by a single move from the original state, are determined. A
neighbor is selected as the new state, if its score is both better than the score of the
original state and better than the score of all considered neighbor states. If no such
state exists, the algorithm terminates, otherwise the new state becomes the original
state in the next iteration. The greedy algorithm is not guaranteed to find the best
possible solution. E.g., it can get stuck in a local minimum if a better solution could
be reached in at least two moves but not in one move.

In contrast, simulated annealing is able to leave local minima at the cost of a
larger computational complexity. A single logic variable is randomly chosen as initial
tree L0

m in simulated annealing and the score of the logic model using L0
m as only

predictor is determined. In iteration κ, a new logic tree L�m is generated by randomly
selecting one of the permissible moves and performing it on a randomly selected tree
Lκ�1
m from the logic regression model in iteration κ � 1. If the new model, i.e., the

model including L�m, has a better score than the old model, i.e., the model including
Lκ�1
m , the new model is accepted. Otherwise, an acceptance probability is determined

for the new model which is based on the score difference between the old and the
new model as well as on the so called temperature at iteration κ. The temperature
makes sure that for any pair of scores the acceptance probability decreases as the
annealing scheme progresses. The new model is accepted with this probability. If the
new model is accepted, set Lκm � L�m. Otherwise, set Lκm � Lκ�1

m .

Both algorithms allow to specify a maximum number of leaves and a maximum
number of logic trees by which the model complexity can be controlled (see Section
2.7 for further information on how to choose these parameters). If, in any of the two
algorithms, the original state reaches the maximum number of leaves, only moves are
allowed that do not increase the size of the logic tree, i.e., the moves “Split Leaf”,
“Grow Branch” and “Grow Tree” are prohibited. The move “Grow Tree” is further
prohibited, if the maximum number of trees is reached.

2.6 logicFS and its importance measures

An issue with logic regression is that small deviations in the data can lead to very dif-
ferent logic expressions. Therefore, Schwender and Ickstadt (2008) propose a method
called logicFS (logic Feature Selection) which stabilizes the search for such logic ex-
pressions by employing logic regression with a binary response as base learner in a
bagging framework (Breiman, 1996). Even though, logicFS is originally proposed to
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find interesting SNP interactions, it can be likewise employed to find interactions of
other binary predictors. In logicFS, logic regression is applied to each of B boot-
strap samples from the original case-control data set. Each of the resulting logic
expressions from the B logic models is transformed into a DNF consisting of prime
implicants. The prime implicants can be interpreted as the interactions comprising
a logic expression and are easily obtained from the DNF.

Some of the A interactions identified by logisFS might have a large influence on the
response, whereas others only slightly improve the score of the logic models or are even
obstructive for a good prediction. It is, therefore, necessary to quantify the influence
each of the identified interactions has on the case-control status (Schwender and
Ickstadt, 2008). A first impression of the importance of an interaction can be obtained
by looking at the proportion of logic models that contain this interaction. The more
frequently an interaction is contained in the logic models, the more important it
presumably is.

However, an adequate importance measure should also consider how much an
interaction improves the prediction. This improvement should be evaluated on new
observations, i.e., observations that have not been used to train the logic model. As
the B logic models in logicFS are trained on bootstrap samples, the importance of the
interactions can be quantified on the corresponding out-of-bag (OOB) observations,
i.e., the observations from the original data set that are not part of the respective
bootstrap sample (Schwender and Ickstadt, 2008). Therefore, each of the B logic
regression models is used to predict the case-control status of the respective OOB ob-
servations and the numbers Nb, b � 1, . . . , B, of correctly classified OOB observations
are determined. The importance of each interaction Pa, a � 1, . . . , A, is determined
by removing Pa from all logic models that contain Pa. E.g., if P1 � pXc

3 ^X1q, where
L � P1 _ P2 � pXc

3 ^X1q _ pXc
3 ^X2q is the only predictor in a logic model, P1 is

removed from the logic model by using P2 as predictor instead of L. The reduced
models, i.e., the models from which Pa is removed, are refitted and applied to the
respective OOB observations to obtain the new numbers N

p�aq
b of correctly classified

OOB observations, where N
p�aq
b � Nb, if Pa is not included in the b-th logic model.

The importance of Pa is then given by

VIMpPaq � 1

B

¸
b:PaPΓb

�
Nb �N

p�aq
b

	
,

where Γb, b � 1, . . . , B, is the set of all interactions included in the b-th logic model.

In logicFS, besides VIM, another importance measure is considered in the single-
tree case. However, due to the reasons given by Schwender et al. (2011b), only
importance measures similar to VIM are considered in this thesis.

The logicFS output can further be used to estimate the importance of a single
logic variable Xk, k � 1, . . . , p, or a set Xd of logic variables, d � 1, . . . , D, that, e.g.,
code for the different levels of a categorical variable (Schwender et al., 2011b). Since
a set of logic variables can also include just a single logic variable, the estimation of
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the importance of a single logic variable is a special case of the estimation of a set
of logic variables. Therefore, in the following only the calculation of the importance
of a set of logic variables is described. Again, for each of the B logic regression
models, the number Nb, b � 1, . . . , B, of correctly classified OOB observations is
calculated. In order to determine the importance of a set Xd of logic variables, all logic
variables belonging to Xd are removed from the logic models and the numbers N

p�dq
b of

correctly classified OOB observations are recalculated based on these reduced models.
Technically, the removal is done by the move “Delete Leaf” or “Prune Branch”, if
the sibling of the logic variable to be removed is a logic variable or a logic operator,
respectively. As for VIM, the importance of Xd is computed as

VIMSetpXdq � 1

B

B̧

b�1

�
Nb �N

p�dq
b

	
.

2.7 survivalFS

While logicFS is proposed as ensemble method for case-control studies, its concept
is adapted to other types of responses. E.g., Schwender et al. (2011a) propose tri-
oFS, which is an extension of logicFS for case-parent trio data. An adaptation of
logicFS for time-to-event data, called survivalFS (survival Feature Selection), is in-
troduced by Tietz (2016). In Section 2.7.1, the survivalFS algorithm is described
in more detail and in Section 2.7.2 the importance measure for interactions based
on the predictive partial log-likelihood as introduced by Tietz (2016) is presented.
Therefore, let pyi, δi,xiq, i � 1, . . . , n, be a (right-censored) time-to-event data set for
n observations, where all predictors are binary, i.e., xi P t0, 1up.

2.7.1 The survivalFS algorithm

Like logicFS, survivalFS is an ensemble learner that stabilizes the search for logic
expressions with an effect on an event time. Instead of bootstrap sampling, survivalFS
generates B data sets from the original data set via subsampling (Buehlmann and Yu,
2002), i.e., 63.2% of the observations from the original data set are randomly drawn
without replacement (Binder and Schumacher, 2008). This specific percentage of
observations are drawn, since the percentage of unique observations included in the
average bootstrap sample is 63.2% (Alpaydin, 2014). Note that this bootstrap-like
subsampling approach achieves a good performance in the simulations conducted
by Binder and Schumacher (2008). The main reason for performing subsampling
instead of bootstrap sampling is that, in contrast to bootstrap sampling, where ties
are artificially generated by drawing some observations multiple times, subsampling
does not generate additional ties besides those already included in the original data. A
data set with a small number of ties is desired, since, e.g., the Breslow-approximation
only works well for a small number of ties (Klein and Moeschberger, 1997). Moreover,
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Algorithm 1 survivalFS

1. For b � 1, . . . , B,

a) draw a subsample of size r0.632 �ns from the n observations of the original
data set,

b) fit a logic Cox proportional hazard model with q trees and a maximum
total number nleaf of logic variables on this subsample and obtain a vector

Lb �
�
L1b, . . . , Lqb

�
of q logic expressions with corresponding vector β̂b of

parameter estimates.

c) convert each logic expression Lmb, m � 1, . . . , q, into a disjunctive normal
form.

2. Employ an importance measure to quantify the importance of each identified
interaction, i.e., of each prime implicant contained in at least one of the dis-
junctive normal forms.

subsampling shows approximately the same accuracy as bootstrap sampling, while it
is of lower computational complexity (Buehlmann and Yu, 2002).

A logic regression model considering a Cox proportional hazard regression (Ruczin-
ski et al., 2004) is fitted to each of these B subsamples and the resulting logic ex-
pressions are converted into a DNF. The prime implicants contained in the DNFs
are potetially interesting interactions and their importance for the prediction of the
event time is quantified using importance measures. survivalFS is described in more
detail in Algorithm 1 (see also Tietz et al. (2019)).

Note that by allowing more than one logic tree in Algorithm 1, this algorithm is
an extension to the survivalFS algorithm introduced by Tietz (2016) in which only
one logic tree is considered. The maximum number q of logic trees and the maximum
number nleaf of leaves are parameters to control the complexity of a logic regression
model. Choosing nleaf too small or too large might cause the true interaction effect
not to be found or the model to overfit, respectively. Similarly, if, e.g., multiple
interactions have an additive effect on the event time, some of these interactions might
not be found with just one logic tree, i.e., if q is chosen too small, as, ideally, each
explanatory interaction is depicted by a different logic tree. Otherwise, the model
is likely to overfit, if q is selected too large. While optimal logic regression models
usually allow between one and three logic trees (Ruczinski et al., 2003), experiences
with survivalFS suggest that models allowing one or two logic trees with a maximum
number of eight or even six leaves are complex enough.

27



2.7.2 Importance measure based on partial likelihood

Since the partial log-likelihood is a measure for the goodness-of-fit of a (logic) Cox
proportional hazard model, it is employed by Tietz (2016) to derive an importance
measure for interactions. In a first step, the goodness-of-fit is determined for each
of the B logic models fitted by survivalFS. As each logic model is generated on a
subsample of the original data, model evaluation can be performed based on the
respective model-independent OOB observations. Let DOOB

b be the set of OOB ob-
servations in the b-th iteration, b � 1, . . . , B, and let ROOB

b ptq be the risk set at time
t for these OOB observations. The predictive partial log-likelihood using the Breslow
approximation for tied event times (Breslow, 1974; Klein and Moeschberger, 1997)
of the b-th logic model with vector Lb of logic expressions and estimated parameter
vector β̂b is given by

`Ppred

�
β̂b

	
� log

��� ¹
i:iPDOOB

b

�� exp
�
β̂Tb sib

	
°
ξPROOB

b pyiq
exp

�
β̂Tb Lbpxξq

	
�δi

��,
where Lbpxiq is the realization of Lb for the i-th observation and sib �

°
iPDi

Lbpxiq,
where Di denotes the set of observations in DOOB

b experiencing the event at time yi.

The influence of an interaction Pa, a � 1, . . . , A, identified by survivalFS is de-
termined by removing Pa from all logic expressions Lmb, m � 1, . . . , q, b � 1, . . . , B,
(in DNF) that contain Pa. For each iteration b � 1, . . . , B, a Cox regression model is
fitted based on the respective inbagg observations, i.e., the observations belonging to
the b-th subsample, where the reduced logic expressions L

p�aq
1b , . . . , L

p�aq
qb are employed

as predictors resulting in an estimated parameter vector β̂
p�aq
b . The predictive partial

log-likelihood using the Breslow-approximation for tied event times `Ppred

�
β̂
p�aq
b

	
of

the reduced model is calculated and the statistic

Gb � �2

�
`Ppred

�
β̂
p�aq
b

	
� `Ppred

�
β̂b

	

is determined which is analog to the test statistic G (see Section 2.2) of the partial
likelihood ratio test. The partial log-likelihood based importance of Pa is then given
by

VIMCoxpPaq � 1

B

B̧

b�1

Gb � � 2

B

¸
b:PaPΓb

�
`Ppred

�
β̂
p�aq
b

	
� `Ppred

�
β̂b

	

,

where Γb, b � 1, . . . , B, is the set of interactions found in the b-th iteration of sur-
vivalFS.
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2.8 Goodness-of-fit measures

In order to evaluate the predictive performance of time-to-event models, such as Cox
regression models, goodness-of-fit measures, often referred to as model validation
measures, are employed. Goodness-of-fit measures can be classified into different
categories. E.g., overall measures are based on the distance between observed and
predicted responses, or discrimination measures quantify the model’s ability to distin-
guish observations with a high risk of experiencing the interesting event from those
with a low risk (Rahman et al., 2017). Overall goodness-of-fit measures are, e.g.,
reviewed by Hielscher et al. (2010), Choodari-Oskooei et al. (2012a) or Choodari-
Oskooei et al. (2012b) and discrimination measures are, e.g., reviewed by Pencina
et al. (2012) or Schmid and Potapov (2012), while a review including both cate-
gories is presented by Rahman et al. (2017). In this work one overall goodness-of-fit
measure, namely the (integrated) Brier score (Graf et al., 1999), and one discrimina-
tion measure, namely Harrell’s concordance index (Harrell’s C-index) (Harrell et al.,
1982, 1984; Ishwaran et al., 2008), are employed. Let, as in Section 2.2, pyi, δi,xiq,
i � 1, . . . , n be a right-censored time-to-event test set with n observations and corre-
sponding risk scores ηi :� ηpxiq, where η : Rp Ñ R is a prediction function.

2.8.1 (Integrated) Brier score

The idea behind the Brier score (BS) is to calculate the mean square error between
the predicted probability of being event-free and the observed event status at a given
time y. Formally, the Brier score is given by

BSpyq � EX
�
E
�pZ � Ŝpy|xqq2|X � x��,

where Ŝpy|xq P r0, 1s is the estimated survival function at time y of observation with
predictor vector x and Z � IpY ¡ yq is the event status at time y. BSpyq takes values
in r0, 1s, where smaller values indicate a better prediction. In the case that there is
no available information which can be used for prediction, the best estimation of the
survival function would be Ŝpy|xq � 0.5, yielding

BSpyq � E
�pZ � 0.5q2� � E

�
Z2 � Z � 0.25

� � E
�
Z2

�� E
�
Z
�� 0.25

Z2�Z� 0.25.

Hence, BSpyq � 0.25 means that the prediction is not better than random guessing.

BS evaluates the goodness-of-fit of an estimated survival function at a given time
y. In order to obtain an overall measure for the goodness-of-fit of an estimated
survival function for all y, BS can be averaged over time, e.g., by integrating over the
time period r0, y�s, y� ¡ 0. The integrated Brier score (IBS) is then given by

IBSpy�q � 1

y�

» y�

y�0

BSpyq dy.
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Assuming no censoring in the time-to-event test set, i.e., δi � 1 for all i � 1, . . . , n,
the Brier score can be estimated by

xBSpyq � 1

n

ņ

i�1

�
zi � Ŝpy|xiq

�2
,

where zi � Ipyi ¡ yq.xBS can be adjusted for right-censoring. The observations can then be divided
into three different categories, i.e., (i) yi ¤ y and δi � 1, (ii) yi ¡ y and (iii) yi ¤ y
and δi � 0. Observations from the first category experience the interesting event
before time y, i.e., their event status is zi � 0 and their contribution to the Brier

score is
�
0 � Ŝpy|xiq

�2
. Observations belonging to the second category experience

the event after y and, thus, have an event status of zi � 1, i.e., their contribution to

the Brier score is
�
1� Ŝpy|xiq

�2
. Observations from the third category are censored

before y which entails that their event status is unknown at y, i.e., these observations
can not contribute to the Brier score. In order to account for the loss of information
caused by censoring, the observations from the three categories are weighted differ-
ently. Therefore, let Ĝpyq be the Kaplan-Meier estimate for the censoring distribution
Gpyq � P pC ¡ yq, i.e., the Kaplan-Meier estimate based on pyi, 1�δiq, which is given
by

Ĝpyq �
¹

j:cpjq¤y

�
1� d�pjq��R�

pjq

��
�
,

where cp1q, . . . , cpn�rq are the n�r ordered censoring times and d�pjq or
��R�

pjq

�� denote the
number of censorings or the number of observations at risk at time cpjq, respectively.

The observations from the first, second or third category are weighted by 1{Ĝpyiq,
1{Ĝpyq or 0, respectively. Hence, the empirical Brier score under (right-)censoring is
given by

xBS
Cpyq � 1

n

ņ

i�1

��
0� Ŝpy|xiq

�2
Ipyi ¤ y, δi � 1q

Ĝpyiq
�

�
1� Ŝpy|xiq

�2
Ipyi ¡ yq

Ĝpyq

�
. (2.8)

If there is no censoring, xBS
C

is equal to xBS.

Due to the reweighting scheme, xBS
C

does not depend on the censoring distribu-
tion asymptotically. Another advantage of the Brier score is its flexibility, i.e., it
can be applied to a wide range of time-to-event models (Choodari-Oskooei et al.,
2012b). Moreover, the Brier score generates meaningful results even under gross
model misspecification (Graf et al., 1999).

Based on xBS
Cpyq, the empirical integrated Brier score under (right-)censoring is

given as yIBS
Cpy�q � 1

y�

» y�

y�0

xBS
Cpyq dy, y� ¡ 0. (2.9)
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2.8.2 Harrell’s C-index

The intuition behind Harrell’s C-index (Harrell et al., 1982, 1984) is that shorter
event times should go along with higher risk scores. Formally, Harrell’s C-index is
defined as (Rahman et al., 2017)

CH � P
�
ηpXiq ¡ ηpX`q|Yi   Y`

�
.

The prediction error is given by PE � 1 � CH . PE takes values in r0, 1s, where
smaller values indicate a better prediction and PE � 0.5 means that the prediction
is not better than random guessing.

For the estimation of CH based on the right-censored time-to-event test set, all
npn�1q{2 possible pairs pi, `q, i, ` � 1, . . . , n, i � `, between different observations are
formed. Without loss of generality, it is assumed that yi ¤ y`. All pairs are omitted
for which yi   y` and δi � 0 or for which yi � y` and δi � δ` � 0. The remaining
pairs are the permissible pairs. Without loss of generality, it is assumed for each pair
with yi � y` and δi � δ` that δi � 1 and δ` � 0. Harrell’s C-index is then estimated
as

Ĉ �
¸

pi,`qPP

1

npm

�
�

Ipyi   y`q
�
Ipηi ¡ η`q � 1

2
Ipηi � η`q

	
(2.10)

� Ipyi � y`qIpδi � δ` � 1q
�
Ipηi � η`q � 1

2
Ipηi � η`q

	
� Ipyi � y`qIpδi � 1, δ` � 0q

�
Ipηi ¡ η`q � 1

2
Ipηi ¤ η`q

	�
,

where P or npm is the set or the number of permissible pairs, respectively.

Harrell’s C-index is widely applicable and easy to interpret (Harrell et al., 1996).
However, since pairs of observations, for which the shorter observed time is censored,
are omitted, Harrell’s C-index (undesirably) depends on the censoring mechanism
(Pencina et al., 2012). Moreover, Harrell’s C-index weights each concordant pair
identically which makes it not sensitive to detect small performance differences be-
tween two models (Harrell et al., 1996). E.g., the two observations with pηi, yiq equal
to p0.01, 10q and p0.9, 1q are considered as concordant as the two observations with
p0.05, 10q and p0.8, 1q.
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Chapter 3

Methodology

Additional to the importance measure for interactions based on the partial log-
likelihood introduced by Tietz (2016) (see Section 2.7), further importance measures
for interactions and sets of variables based on the output from survivalFS are pro-
posed in this chapter (see also Tietz et al. (2019)).

In general, two different types of importance measures can be distinguished, i.e.,
original-type and ensemble-type importance measures. The idea behind all impor-
tance measures is to employ a goodness-of-fit measure to determine a score for the
full prediction model and a score for the reduced prediction model, i.e., the model
from which the information of a predictor, e.g., a variable or an interaction, is ex-
cluded, e.g., by removal or randomization. A predictor which is of relevance for the
prediction should have an influence on the score of the prediction model and the score
difference between the respective reduced model and the full model should be large.
Original-type importance measures calculate this score difference for each logic re-
gression model fitted by survivalFS and, afterwards, the importance of the respective
predictor is estimated by the mean over these score differences. E.g., the importance
measures of logicFS and survivalFS described in Section 2.6 and Section 2.7, respec-
tively, are original-type importance measures. In contrast, ensemble-type importance
measures generate one ensemble prediction model based on the reduced models and
one ensemble prediction model based on the full models. The importance of the
predictor is then the difference between the score of the reduced ensemble prediction
model and the score of the full ensemble prediction model. E.g., the variable impor-
tance measure VIMP of random survival forests (see Section 2.4) is an ensemble-type
importance measure.

The newly proposed importance measures of survivalFS are, on the one hand,
based on two of the most popular goodness-of-fit measures for time-to-event data,
i.e., the integrated Brier score (Graf et al., 1999) and Harrell’s C-index (Harrell et al.,
1982) (see Section 2.8). However, Harrell’s C-index is known to have problems de-
tecting small differences in discrimination ability between two models (Harrell et al.,
1996). This can be an issue for the respective importance measures of survivalFS, as
they rely exactly on this ability of a goodness-of-fit measure. To solve this issue, the
DPO-based concordance index (DPO-based C-index) is introduced in Section 3.1,
which is an adaptation of Harrell’s C-index weighting concordant pairs not equally
but individually with respect to their so called DPO distance. The DPO distance of
a pair of observations considers the distance between predicted outcomes (DPO) as
well as the distance between observed event times.

Thus, six additional survivalFS based importance measures for interactions re-
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sult from each combination of two types of importance measures, i.e., original- and
ensemble-type importance measures, and three goodness-of-fit measures, i.e., inte-
grated Brier score, Harrell’s C-index and DPO-based C-index. These measures are
presented in Section 3.2.

An issue with the importance measures of survivalFS is that they usually under-
estimate the importance of influential interactions. This is because the influential
interactions loose estimated importance to interactions which include the influential
interaction and one or rarely more than one additional noise variable. To avoid this
issue, noise-adjusted importance measures are introduced in Section 3.3.

In Section 3.4, the importance measures of survivalFS for interactions are adapted
to quantify the relevance of all variables or sets of variables considered in the appli-
cation of survivalFS.

Note that the primary purpose of importance measures is to identify interesting
interactions or sets of variables by ranking them. The top-ranked interactions or sets
of variables can be further analyzed, e.g., as predictors in a Cox regression model.
In this case, the model should not only include the top-ranked interactions, but also
their sub-interactions and main effects.

Finally, in Section 3.5, it is described how the output from survivalFS can be
further employed to make ensemble predictions of the cumulative hazard function or
the survival function for new observations.

3.1 Modification of Harrel’s C-index

The issue pointed out by Harrell et al. (1996) that Harrell’s C-index is not sensitive for
detecting small differences in discrimination ability between two models, since each
concordant pair is weighted identically, is analyzed in more detail in Section 3.1.1.
To solve this issue, a modification of Harrell’s C-index considering the magnitude of
the distances between predicted outcomes as well as the magnitude of the distances
between observed event times is proposed in Section 3.1.2 (see also Tietz et al. (2019)).

3.1.1 Issues with Harrel’s C-index

In the following, the behavior of Harrel’s C-index is investigated, if it is employed
to evaluate prediction models that perfectly discriminate between observations from
different groups.

Considering a population that consists of q ¥ 2 groups, where each group has
a different risk of experiencing the interesting event. Under the assumption of no
censoring, let nk be the number of observations belonging to group Gk, k � 1, . . . , q,
and let n � °q

k�1 nk. Defining ak � nk{n, i.e.,
°q
k�1 ak � 1, ak ¡ 0, the number of
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permissible pairs in the calculation of Harrell’s C-index is

npm �
� q°
k�1

nk

2



�

q̧

k�1

�
nk
2



�

q�1̧

k�1

q̧

`�k�1

nkn`

�
q̧

k�1

�
akn

2



� n2

q�1̧

k�1

q̧

`�k�1

aka`. (3.1)

While the left expression in (3.1) describes the number of permissible pairs within
group G1, . . . ,Gq�1 and Gq, the right expression is the number of permissible pairs
between these groups. Assuming a prediction model that perfectly discriminates
observations from different groups, then all pairs of observations from different groups
are concordant. Further assume that 50% of the pairs with observations from the
same group are concordant, i.e., within the groups the prediction model is as good
as random guessing. The number of concordant pairs is then given by

nConc � 1

2

�
q̧

k�1

�
akn

2


�
� n2

q�1̧

k�1

q̧

`�k�1

aka`.

Hence, Harrell’s C-index is calculated as

Cpa1, . . . , aqq � nConc
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k�1
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� 1

2

n� 1
.

Obviously, especially for large n, Cpa1, . . . , aqq does not depend on n. However, it is
highly influenced by the balancing of the group sizes represented by a1, . . . , aq. Con-
sidering C as function of a1, . . . , aq, the method of Lagrange multipliers is employed
to find the maximum of Cpa1, . . . , aqq under the constraint a1 � . . . � aq � 1. Thus,
the Lagrangian function

Lpa1, . . . , aq, λq :� Cpa1, . . . , aqq � λ

�
q̧

k�1

ak � 1

�
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Figure 3.1: Harrell’s C-index Cn a1, . . . , aq for a prediction model that perfectly
discriminates observations from q groups, where n 1000 is the number of obser-
vations and ak 0 with a1 . . . aq 1 indicates the proportion of observations
belonging to the k-th group, is displayed for q 2 (left) and q 3 (right).

is considered and calculating its partial derivatives leads to the system of equations

L a1, . . . , aq, λ

aj

n

n 1
aj 2

q

k 1
k j

ak λ
!
0, j 1, . . . , q,

L a1, . . . , aq, λ

λ

q

k 1

ak 1
!
0.

Solving this system results in âj 1 q for all j 1, . . . , q and λ̂
1

q
2

n

n 1
.

The bordered Hessian, i.e., the Hessian of L a1, . . . , aq, λ , is given by
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and it can be shown that sign
�

det
�
Hpâ1, . . . , âq, λ̂q

�	 � p�1qq. Hence, the balanced

design pa1, . . . , aqq � p1{q, . . . , 1{qq is a (global) maximum of Cpa1, . . . , aqq, where

Cp1{q, . . . , 1{qq �
n

�
1� 1

2q



n� 1

� 1� 1

2q
. (3.2)

Moreover, in the extreme unbalanced case of ak Ñ 1 for one k � 1, . . . , q and a` Ñ 0
for all ` � 1, . . . , q, ` � k, it follows that Cpa1, . . . , aqq Ñ 0.5. Cpa1, . . . , aqq is
displayed for q � 2 and q � 3 in Figure 3.1.

Three issues of Harrell’s C-index can be deduced from this analysis. Firstly,
Harrell’s C-index is highly influenced by the group sizes. The more unbalanced the
groups are, the smaller Harrell’s C-index is in the case of perfect discrimination. In
the case that most observations belong to one group, Harrell’s C-index tends to 0.5,
i.e., it indicates that the prediction is not better than random guessing. This may be
an issue in genetic studies, where the predictors are genetic variables or interactions
coded as factors with usually two or three levels, where only a relatively small number
of observations may show the risk variant.

Secondly, the maximum value Harrel’s C-index can take (under the assumption of
random guessing within the groups) is dependent on the number of groups. E.g., for
two or four groups, i.e., q � 2 or q � 4, the maximum value of Harrel’s C-index is 0.75
or 0.875, respectively. Thus, a prediction model perfectly discriminating, e.g., two
groups will have a smaller C-value than a prediction model perfectly discriminating,
e.g., four groups.

Thirdly, since Harrell’s C-index is a measure of discrimination, it neither considers
the magnitude of the distances between predicted outcomes nor of the distances
between observed survival times of the observations. This can be an issue when
quantifying the importance of interactions with survivalFS. E.g., assume that an
interaction is explanatory for the time-to-event and the logic models include this
interaction, such that perfect discrimination is achieved between the two groups. If
this interaction is removed from the full models, the resulting reduced models may
still include some effect of this interaction, as there are, e.g., still other interactions in
the model that compose of this interaction and further noise variables. Thus, also the
reduced models may achieve perfect discrimination between the groups, even though
their performance is smaller compared to the full models. In this case, the importance
of this interaction would falsely be zero according to an importance measure based
on Harrel’s C-index. Note that all three issues do also occur in the case of imperfect
discrimination between the groups, even though they might be not as dramatic.

3.1.2 DPO-based C-index

In order to solve the three issues identified above, a modification of Harrell’s C-
index is proposed taking the distances between predicted outcomes as well as the
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distances between observed survival times into account. Considering the vector PO �
pPO1, . . . ,POnqT of predicted outcomes and the vector y � py1, . . . , ynqT of observed
survival times. The (normalized) distance between predicted outcomes considering
time differences (DPO) is then defined by

DPOpi, `q �
�d

1

‖ PO ‖2‖ y ‖2

|POi � PO`| |yi � y`|

�
IpPOi � PO`qIpyi � y`q

�
�

1

‖ PO ‖2

|POi � PO`|


IpPOi � PO`qIpyi � y`q

�
�

1

‖ y ‖2

|yi � y`|


IpPOi � PO`qIpyi � y`q,

where ‖ � ‖2 is the Euclidean norm.

While Harrell’s C-index weights each concordant pair equally (see (2.10)), the
DPO-based concordance index weights each concordant pair individually with respect
to its specific DPO score, i.e.,

ĈDPO �
¸

pi,`qPP

DPOpi, `q
Concmax

�
�

Ipyi   y`q
�
Ipηi ¡ η`q � 1

2
Ipηi � η`q

	
� Ipyi � y`qIpδi � 1, δ` � 0q

�
Ipηi ¡ η`q � 1

2
Ipηi ¤ η`q

	
� Ipyi � y`qIpδi � δ` � 1q

�
Ipηi � η`q � 1

2
Ipηi � η`q

	�
,

where P is the set of permissible pairs and Concmax �
°

pi,`qPP
DPOpi, `q is the maximum

possible concordance. The OOB prediction error for the DPO-based concordance
score is then calculated as xPEDPO � 1 � ĈDPO P r0, 1s, where xPEDPO � 0.5 means

that the prediction is not better than random guessing and xPEDPO � 0 means perfect
accuracy.

The main idea behind this measure is that it is most important to correctly predict
permissible pairs of observations for which the distance between observed survival
times is large, where, ideally, the distance between predicted outcomes for these
pairs is also large. Otherwise, it is not as important to correctly predict permissible
pairs of observations for which the distance between observed survival times is small,
where, nonetheless, the distance between predicted outcomes for these pairs should
also be small. Therefore, in contrast to Harrell’s C-Index, in which each correct
prediction is rewarded the same, ĈDPO strongly rewards the correct prediction of
permissible pairs for which the difference between observed survival times as well as
the difference between predicted outcomes is large. Permissible pairs for which the
two differences are small contribute only little to ĈDPO.
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E.g., returning to the example from above investigating the scenario of perfect
discrimination between two groups, in which Harrell’s C-index at best achieves a
score of 0.75. In contrast, assuming that the distances between predicted outcomes
as well as the distances between observed survival times are large between the groups
and small within the groups, ĈDPO will be (much) larger than Harrell’s C-index since
it strongly rewards correct between group predictions and weakly penalizes wrong
within group predictions. Moreover, if the influential interaction is removed from the
prediction model and, as a consequence, the risk scores of observations belonging to
G2 decrease (but are still larger than those from observations belonging to G1), ĈDPO

will decrease as well, since the distances between predicted outcomes of observations
from different groups decrease.

In order to assure that the observed survival times and the predicted outcomes
are on the same scale, both vectors y and PO are normalized.

If the survival times of a permissible pair are tied, the magnitude of the distance
between predicted outcomes should still be considered in ĈDPO. Thus, in this case,
the distance between predicted outcomes is multiplied by itself. This way, e.g., if
both tied survival times are uncensored, ĈDPO penalizes a large distance between the
corresponding predicted outcomes.

Conversely, for permissible pairs with identical predicted outcomes, the magnitude
of the distance between the observed survival times is considered by multiplying it
by itself. Therefore, e.g., if a prediction model includes just one binary predictor,
not only permissible pairs belonging to different groups, but also permissible pairs
belonging to the same group contribute to ĈDPO. Moreover, a large within group
variance of the event times will more negatively influence ĈDPO than a small within
group variance, even in the case of perfect between group discrimination.

Finally, the square root of this measure is taken in order to correct for its quadratic
characteristic and to make it more robust against outliers.

Note that, in the case of tied event times or identical predicted outcomes, the
definition of the DPO distance slightly differs from that introduced in Tietz et al.
(2019). This modification has, on the one hand, no influence on the results of the
simulation study conducted by Tietz et al. (2019), as no ties or identical predicted
outcomes occur in this study, and, on the other hand, has a negligible influence on
the real data application, where some observed event times are tied.

3.2 Importance measures of survivalFS for inter-

actions

Original-type and ensemble-type importance measures for interactions based on the
integrated Brier score, Harrell’s C-index or the DPO-based C-index are presented in
Section 3.2.1, Section 3.2.2 or Section 3.2.3, respectively. Note that the ensemble-type
importance measures are already introduced in Tietz et al. (2019), where they are
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referred to as VIMBrier, VIMConc and VIMDPO. In contrast, in this thesis they are re-
ferred to as VIMEBrier, VIMEConc and VIMEDPO, respectively, whereas the newly pro-
posed original-type importance measures are named VIMBrier, VIMConc and VIMDPO

instead.

3.2.1 Importance measures based on the integrated Brier
score

In order to define the two importance measures based on the integrated Brier score
(see Section 2.8), analogously to the calculation of (2.6), an estimate of the sur-
vival function based on the b-th logic model from survivalFS is determined for each
observation i, i � 1, . . . , n.

Since logic expressions are binary, the q logic expressions constructed in the b-th
logic model uniquely assign observation i into one of G � 2q possible groups. More
precisely, based on the b-th set of logic expressions Lb �

�
L1b, . . . , Lqb

� P t0, 1uq with
G � ��t0, 1uq�� � 2q, observation i with predictor vector xi is, e.g., assigned to group

g � 1�
q̧

m�1

Lmbpxiq2m�1, (3.3)

where Lmbpxiq is the realization of Lmb for observation i and g P t1, . . . , Gu. If, e.g.,
q � 2, observation i is assigned to group 1, 2, 3 or 4, if Lbpxiq �

�
L1bpxiq, L2bpxiq

�
is

equal to p0, 0q, p1, 0q, p0, 1q or p1, 1q, respectively.

Let tbp1q,g   tbp2q,g   . . .   tbprbq,g denote the rb unique event times of the inbagg
observations in iteration b, b � 1, . . . , B, belonging to group g, g � 1, . . . , G. The
estimate of the survival function for group g is given by the Kaplan-Meier estimator
(Kaplan and Meier, 1958)

Ŝbgpyq �
¹

j: tb
pjq,g

¤y

��1� dbpjq,g∣∣∣Rb
pjq,g

∣∣∣
�,

where dbpjq,g and
∣∣∣Rb

pjq,g

∣∣∣ denote the number of events and the number of observations at

risk at time tbpjq,g, respectively (Ishwaran et al., 2008). G such estimates exist for each
iteration b and the b-th survival function estimate for observation i is, analogously
to (2.6), given by

Ŝbpy | xiq � Ŝbgpyq, if xi P g. (3.4)

Original-type importance measure VIMBrier

The original-type importance measure is obtained, firstly, by evaluating the accuracy
of Ŝbpy | xiq on the respective OOB observations using the empirical integrated Brier
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score under (right-)censoring (2.9). Therefore, let, as already defined in Section 2.7.2,
DOOB
b be the set of OOB observations in iteration b. The empirical Brier score under

right-censoring is calculated by

xBS
C,bpyq � 1��DOOB

b

�� ¸
iPDOOB

b

��
0� Ŝbpy|xiq

�2
Ipyi ¤ y, δi � 1q

ĜOOBpyiq
�

�
�
1� Ŝbpy|xiq

�2
Ipyi ¡ yq

ĜOOBpyq

�
,

where ĜOOB is the OOB based Kaplan-Meier estimate for the censoring distribution,
i.e., the Kaplan-Meier estimate based on pyi, 1 � δiq, i P DOOB

b . The b-th empirical
integrated Brier score under (right-)censoring over the observed OOB time period
r0, ybmaxs with ybmax � max

iPDOOB
b

pyiq is given as

yIBS
b

:� yIBS
C,bpybmaxq �

1

ybmax

» ybmax

0

xBS
C,bpyqdy. (3.5)

The importance of interaction Pa, a � 1, . . . , A, is quantified by removing Pa from
all logic expressions that include Pa. For each b, (3.4) is recalculated based on the
respective reduced logic expressions and the goodness-of-fit of this recalculation is

evaluated on the respective OOB observations by (3.5), denoted by yIBS
b,p�aq

. The
original-type IBS based importance of Pa is then given by

VIMBrierpPaq � 1

B

B̧

b�1

�yIBS
b,p�aq � yIBS

b
	
.

Ensemble-type importance measure VIMEBrier

In order to obtain the ensemble-type importance measure based on the integrated
Brier score, the OOB ensemble survival function is, analogously to the OOB ensemble
CHF (2.7), determined using (3.4) by

Ŝe py | xiq �
°B
b�1 Ii,bŜ

bpy | xiq°B
b�1 Ii,b

,

where Ii,b � Ipi P DOOB
b q. Thus, the OOB ensemble survival function for observation

i is the average over all survival function estimates (3.4) in which this observation is
OOB (Ishwaran et al., 2008).

To evaluate the accuracy of Ŝe py | xiq, the integrated Brier score over the observed
time period r0, ymaxs with ymax � max

i�1,...,n
pyiq is calculated as

yIBS :� yIBS
Cpymaxq � 1

ymax

» ymax

0

xBS
Cpyqdy,
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where xBS
Cpyq is calculated by (2.8) using Ŝe py | xiq as survival function estimate.

To quantify the importance of interaction Pa, this interaction is removed from all
logic models of survivalFS, the OOB ensemble survival function is recalculated based

on the reduced models and the integrated Brier score yIBS
p�aq

is determined based
on the recalculated OOB ensemble survival function. The ensemble-type IBS-based
importance VIMEBrier for Pa is then given by

VIMEBrier pPaq � yIBS
p�aq � yIBS. (3.6)

3.2.2 Importance measures based on Harrell’s concordance
index

The importance measures based on Harrell’s concordance index are constructed anal-
ogously to those based on the integrated Brier score (see Section 3.2.1). Moreover,
their construction follows the construction of the variable importance measure VIMP
in random survival forests (Ishwaran and Kogalur, 2007; Ishwaran et al., 2008) that
is based on prediction error calculations using Harrell’s concordance index (Harrell
et al., 1982) (see Section 2.4).

As a first step, the CHF estimate Ĥbpy|xiq for observation i based on the b-th
logic model is calculated analogously to (2.6), where the group assignment (3.3) of
observations based on sets of logic trees is employed.

Original-type importance measure VIMConc

In order to obtain the original-type importance measure based on Harrell’s C-index,
for each of the B logic models, the OOB prediction error is calculated using Ĥbpy|xiq.
Denoting the rOOB

b unique event times of the OOB observations in iteration b by
tbp1q   tbp2q   . . .   tb

prOOB
b q

, the predicted outcome of observation i P DOOB
b based on

the b-th logic model is

POb
i �

rOOB
b̧

j�1

Ĥb
�
tbpjq | xi

�
. (3.7)

The larger POb
i , the larger the risk of experiencing the interesting event for observa-

tion i. Thus, observation i is said to have a worse predicted outcome (according to the
b-th logic model) than observation ` P DOOB

b , ` � i, if POb
i ¡ POb

`. Harrell’s C-index
Ĉb is calculated based on pyi, δi,POb

iq, i P DOOB
b , using (2.10) and the OOB prediction

error which takes values in r0, 1s is given by xPE
b � 1 � Ĉb. Smaller values of this

prediction error indicate a better prediction, where xPE
b � 0 means perfect accuracy

and xPE
b � 0.5 means that the prediction is not better than random guessing.

The original-type importance measure based on Harrell’s C-index can be defined
analogously to the other original-type importance measures. Thus, for interaction Pa
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the OOB prediction error xPE
b,p�aq

is calculated based on the reduced models without
Pa and the original-type importance of Pa based on Harrell’s C-Index is defined as

VIMConc pPaq � 1

B

B̧

b�1

�xPE
b,p�aq � xPE

b
	
.

Ensemble-type importance measure VIMEConc

For the construction of the ensemble-type importance measure, Ĥbpy|xiq is employed
to determine an OOB ensemble CHF

Ĥe py | xiq �
°B
b�1 IibĤ

bpy | xiq°B
b�1 Iib

for each observation i, i � 1, . . . , n, where Ii,b � Ipi P DOOB
b q. Let tp1q   tp2q   . . .  

tprq denote the r unique event times in the data set. The predicted outcome POi of
observation i, i � 1, . . . , n, is defined as

POi �
ŗ

j�1

Ĥe

�
tpjq | xi

�
.

The predicted outcomes are considered as risk scores and their predictive performance
is assessed by calculating Harrell’s C-index (2.10) based on pyi, δi,POiq, i � 1, . . . , n,

denoted by Ĉ. The OOB prediction error xPE is then given by xPE � 1� Ĉ.

Analogously to the calculation of (3.6), the importance of an interaction Pa,
a � 1, . . . , A, is quantified by removing it from all logic regression models fitted in

survivalFS and recalculating the OOB prediction error xPE
p�aq

based on the reduced
models. The ensemble-type importance of Pa based on Harrell’s C-Index is then given
by

VIMEConc pPaq � xPE
p�aq � xPE.

3.2.3 Importance measures based on the DPO-based C-index

The original-type or ensemble-type importance measure based on the DPO-based
C-index is defined analogously to VIMConc or VIMEConc, respectively, with the only
difference that the DPO-based C-index is used instead of Harrell’s C-index in order
to calculate the prediction error of the full and reduced models.

Original-type importance measure VIMDPO

Let Ĉb
DPO be the DPO-based C-score calculated based on pyi, δi,POb

iq, i P DOOB
b ,

where POb
i is determined by (3.7), and let xPE

b

DPO � 1 � Ĉb
DPO be the DPO-based
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OOB prediction error of the b-th full model. The original-type importance measure
VIMDPO based on the distances between predicted outcomes for a SNP interaction
Pa, a � 1, . . . , A, is then given by

VIMDPO pPaq � 1

b

B̧

b�1

�xPE
b,p�aq

DPO � xPE
b

DPO

	
, (3.8)

where xPE
b,p�aq

DPO � 1 � Ĉ
b,p�aq
DPO is the DPO-based OOB prediction error of the b-th

reduced model without Pa.

Ensemble-type importance measure VIMEDPO

The ensemble-type importance measure VIMEDPO for a SNP interaction Pa, a �
1, . . . , A, is given by

VIMEDPO pPaq � xPE
p�aq

DPO � xPEDPO,

where xPE
p�aq

DPO or xPEDPO is the OOB prediction error based on the DPO-based C-
index determined on the reduced logic regression models excluding Pa or on the full
logic regression models, respectively.

3.3 Noise-adjustment of importance measures for

interactions

An issue with the importance measures of survivalFS for interactions is overfitting. In
general, when employing importance measures based on survivalFS or similar meth-
ods such as logicFS, overfitting is not a problem, since the importance is evaluated on
OOB observations which are not part of the subsample used to fit the logic models
(Schwender et al., 2011a). However, due to overfitting, influential interactions are
often equipped by an additional noise variable which is found (almost) at random or
just slightly improves the score in the subsample. Since the present importance mea-
sures consider such noise equipped interactions as autonomous interactions, some of
the effect of the influential interaction is credited to its corresponding noise equipped
interactions instead and the importance of the influential interaction is underesti-
mated.

To avoid this issue the importance measures of survivalFS and of logicFS are
adjusted for noise variables. Note that importance measures adjusted for noise are
already introduced by Schwender et al. (2011a) for case-parent trio data and the same
concept is transferred to survivalFS. Therefore, let

Γ �
B¤
b�1

Γb
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be the set of interactions found in any of the B logic regression models, where Γb
is the set of interactions identified in the b-th logic regression model. Let Pa P Γ.
Pa is a sub-interaction of another interaction P 1

a P Γ, if Pa is included in but not
identical to P 1

a, i.e., if Pa � P 1
a. The other way around, P 1

a is an extended-interaction
of Pa. E.g., if P1, P2 P Γ, where P1 � X1 ^X2 and P2 � X1 ^X2 ^Xc

3, then P1 is a
sub-interaction of P2 and P2 is an extended-interaction of P1. Obviously, if Pa � P 1

a

and P 1
a � P 2

a , it follows that Pa � P 2
a .

Noise-adjustment is described first for the original-type and second for the ensemble-
type measures of survivalFS. The idea of noise-adjustment is to replace extended-
interactions by their corresponding sub-interactions and calculate the improvement
due to the sub-interaction, had it been part of the logic model instead of the extended-
interaction (Schwender et al., 2011a). More precisely, in order to calculate the im-
portance of Pa P Γ, not only Pa, but also its corresponding extended-interactions
are removed from all logic models. The scores of the reduced models are determined
on the OOB observations, where, exemplarily, the DPO-based concordance scores
Ĉ

1,p�aq
DPO, Adj, . . . , Ĉ

B,p�aq
DPO, Adj (see Section 4.1) are chosen. Afterwards, Pa is added to each

reduced logic model that originally included Pa or an extended-interaction of Pa and
the DPO-based concordance scores Ĉ

1,p�aq
DPO, Adj, . . . , Ĉ

B,p�aq
DPO, Adj of the (new) full models

are calculated, again on the OOB observations. The noise-adjusted improvement of
the b-th model due to Pa is given by

ImpbAdj pPaq � Ĉ
b,p�aq
DPO, Adj � Ĉ

b,p�aq
DPO, Adj.

The noise-adjusted original-type importance VIMDPO
Adj of Pa, a � 1, . . . , A, is given by

VIMDPO
Adj pPaq � 1

B

B̧

b�1

ImpbAdj pPaq �
1

B

¸
bPNa

ImpbAdj pPaq ,

where Na � t1, . . . , Bu is the index set of logic regression models containing Pa or
an extended-interaction of Pa. Note that the improvement ImpbAdj can, alternatively,
be determined using Harrell’s C-index, the integrated Brier score or the partial log-
likelihood as score.

In order to determine the noise-adjusted ensemble-type importance of Pa, Pa
and all its extended-interactions are removed from all B logic models generated in
survivalFS. The predicted outcome for each observation is calculated from the re-
spective OOB ensemble CHF determined based on the reduced logic models and the

DPO-based prediction error xPE
p�aq

DPO, Adj is determined. The (new) full logic models
are obtained by adding Pa to each logic model which originally included Pa or an

extended-interaction of Pa and xPE
p�aq

DPO, Adj is the OOB DPO-based prediction error
calculated based on the full logic models. The noise-adjusted ensemble-type impor-
tance VIMEDPO

Adj of Pa is calculated as

VIMEDPO
Adj pPaq � xPE

p�aq

DPO, Adj � xPE
p�aq

DPO, Adj.
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Again, Harrell’s concordance index or the integrated Brier score can be employed
to obtain the noise-adjusted ensemble-type importance VIMEConc

Adj or VIMEBrier
Adj , re-

spectively. Note that with respect to any importance measure the noise-adjusted im-
portance of Pa is identical to its unadjusted importance, if no extended-interactions
of Pa exist in Γ.

3.4 Importance measures of survivalFS for sets of

variables

In order to determine the importance of a single logic variable Xk, k � 1, . . . , p, or
a set Xd of logic variables, d � 1, . . . , D, that, e.g., code for the different levels of
a categorical variable (Schwender et al., 2011b), the presented importance measures
for interactions are modified. Therefore, instead of removing an interaction from
all logic models, the reduced models are obtained by removing Xk or all variables
belonging to Xd, respectively, from all logic regression models fitted in survivalFS.
The removal is done by performing the move ”delete Leaf” or ”Prune Branch” (see
Figure 2.1 and Schwender et al. (2011b)), depending on whether the sibling of the
logic variable to be removed is a logic variable or a logic operator, respectively. I.e.,
the logic expressions do not need to be transformed into disjunctive normal forms.
Analogously to the calculation of the importance of an interaction for the prediction
of the event time, the importance of Xk or the set Xd of variables is determined by
considering the distances between the performance scores of the reduced models and
the respective full models.

If, e.g., the DPO-based C-index is considered in the estimation of the importance
of Xd, d � 1, . . . , D, the original-type importance measure (3.8) becomes

VIMDPO
Set pXdq � 1

b

B̧

b�1

�xPE
b,p�Xdq
DPO � xPE

b

DPO

	
,

where xPE
b,p�Xdq
DPO is the value of the DPO-based prediction error determined on the

b-th logic regression model after all variables in Xd have been removed from it.

Note that the importance measures for single logic variables or sets of logic vari-
ables are multivariate measures, i.e., they that take the multivariate structure of the
data into account. If, e.g., the event time is influenced by an interaction, these mea-
sures attribute a part of the interaction effect to the importance of the variables as-
sembling this interaction. Therefore, these measures are able to detect variables that
have no main effect, but show an effect in interaction with other variables (Schwender
et al., 2011b).
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3.5 Ensemble prediction

The survivalFS output can further be used to make ensemble predictions of the
CHF or the survival function for new observations. Let i be a new observation with
predictor vector xi. Based on the b-th logic regression model, the CHF estimate
Ĥbpy|xiq or the survival function estimate Ŝbpy|xiq for i is obtained analogously to
(2.6) or (3.4), respectively. The ensemble prediction of the CHF or the survival
function of observation i is then given by

Ĥpy|xiq � 1

B

B̧

b�1

Ĥbpy|xiq or Ŝpy|xiq � 1

B

B̧

b�1

Ŝbpy|xiq.
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Chapter 4

Results

In this chapter, survivalFS is applied to time-to-event data and the performance of
its importance measures is evaluated and compared based on the different data sets.
Most of the results shown in this chapter are already presented in Tietz et al. (2019).

In order to clarify the advantages of the DPO-based C-index compared to Harrell’s
C-index, if the time-to-event prediction model to be evaluated considers a single
binary predictor, a simple simulation study is conducted in Section 4.1.

The performance of survivalFS and its importance measures for interactions and
sets of variables is evaluated and compared in a simulation study presented in Section
4.2, in which biallelic SNPs are considered as predictors. The simulation study con-
sists of four simulation settings SimA-D. In SimA or SimB, a two-way or three-way
interaction is explanatory for the time-to-event, respectively. SimC or SimD consider
the same explanatory interaction as SimA or SimB, respectively, but further include
a confounding variable also having an effect on the time-to-event. This way it is
investigated whether the confounding variable reduces the ability of the importance
measures of survivalFS to identify the influential interaction. Each simulation setting
is further subdivided into different simulation scenarios. While the scenarios of all
settings differ from each other by the strength of the simulated effect, the scenarios
of SimA further differ from each other by the sample size.

The same simulation study is, on the one hand, used to compare the performance
between the importance measures for interactions or single variables of survivalFS
and the importance measure IMDMS for bivariate interactions (Dazard et al., 2018)
or VIMP for individual variables (Ishwaran et al., 2008) of random survival forests,
respectively, and, on the other hand, to compare the prediction performance of sur-
vivalFS with that of random survival forests.

Finally, in Section 4.3, survivalFS is applied to data from a genetic association
study investigating the influence of multiple susceptibility SNPs as well as of clinical
and environmental factors on the recurrence-free time of urinary bladder cancer.

4.1 Simulation based comparison of Harrell’s C-

index and DPO-based C-index

In order to compare some properties between Harrell’s C-index and the DPO-based
C-index, if the prediction model being evaluated is based on a single binary predictor,
a simple simulation study is conducted.
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The simulation study is set up as follows. Let T be a random variable representing
an event time and let X P t1, 2u be a binary predictor representing one of two possible
groups, i.e., the reference group G1 and the risk group G2. The distribution of T
depends on the group, i.e., T |X � 1 � Weibpα1, λ1q and T |X � 2 � Weibpα2, λ2q.
Further let µg � ErT |X � gs, g � 1, 2, be the expected value of T in group Gg and
let σ2 � VarpT |X � 1q � VarpT |X � 2q be the variance of T which is the same for
both groups. Furthermore, assuming no censoring, the observed time Y is identical
to the event time, i.e., Y � T .

In a first setting of the simulation study, the C-scores due to Harrell’s C-index
and the DPO-based C-index are compared for varying differences between the ex-
pected values of G1 and G2, i.e., for varying values of µ1 � µ2, and for different
variances. Therefore, for each combination of µ1 � 8, µ2 P t2.0, 2.5, . . . , 8.0u and
σ2 P t0.4, 1.2, 2.0u, event times t1, . . . , t500, t501, . . . , t1000 for n � 1000 observations
are independently sampled, where n1 � 500 or n2 � 500 observations are sampled for
T |X � 1 or T |X � 2, respectively. Technically, this is done by calculating the param-
eters pαg, λgq that correspond to a Weibull distribution with expected value µg and
variance σ2 by the procedure described in Section 2.3. Note that no ties are generated
as the event times are sampled from the continuous Weibull distribution. Further
note that µ1�µ2 P t0.0, 0.5, . . . , 6.0u. For each of these data sets pti, xiq, i � 1, . . . , n,
with xi � Ipi ¡ 500q � 1, a subsampling procedure is employed to obtain B � 25
subsample data sets of size 0.632 � n. Denoting the rOOB

b � 368 (unique) event times
of the OOB observations in iteration b, b � 1, . . . , B, by tbp1q   tbp2q   . . .   tb

prOOB
b q

and the set of OOB observations in iteration b by DOOB
b , the predicted outcome of

observation i P DOOB
b is given by

POb
i �

rOOB
b̧

j�1

�
Hα1,λ1

�
tbpjq

�
Ipxi � 1q �Hα2,λ2

�
tbpjq

�
Ipxi � 2q

	
, (4.1)

where Hα1,λ1

�
tbpjq

�
is the CHF of the Weibpα1, λ1q distribution at time tbpjq. The

behavior of Harrell’s C-index and the DPO-based C-index should be compared, on
the one hand, if many predicted outcomes are identical, and, on the other hand, if
all predicted outcomes are different. Since POb

i only takes two possible values, the
former is achieved by determining Harrell’s C-index Ĉb and the DPO-based C-index
Ĉb

DPO for each b � 1, . . . , B based on pti,POb
iq, i P DOOB

b , and the mean over the
resulting B � 25 C-scores is taken, i.e.,

Ĉ � 1

B

B̧

b�1

Ĉb or ĈDPO � 1

B

B̧

b�1

Ĉb
DPO.

The latter is achieved by calculating for each observation i, i � 1, . . . , n, the OOB
ensemble predicted outcome

POi �
°B
b�1 IibPOb

i°B
b�1 Iib

,
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Figure 4.1: Harrell’s C-index and the DPO-based C-index are employed to evaluate
the prediction models from the simulation study considering a single binary group
variable as predictor. In the first row, the C-scores are compared for varying difference
between the expected values μ1�μ2 of the two groups and for different within group
variances σ2, while fixating the group size a1 � 0.5. In the second row, the C-scores
are compared for different group sizes, while fixating μ1 � μ2 � 4 and σ2 � 0.2,
where also the theoretical values C�a1, 1 � a1� of Harrell’s C-index under perfect
discrimination are displayed in the same plots.

where Iib � I�i � DOOB
b �, and determining Harrell’s C-index ĈE and the DPO-based

C-index ĈE
DPO based on �ti,POi�, i � 1, . . . , n. The whole procedure is repeated

N � 10 times and the mean over the respective C-scores is displayed in the first row
of Figure 4.1.

Three conclusions can be drawn from these plots. Firstly, no matter if many
of the predicted outcomes are identical or all predicted outcomes are different, the
DPO-based C-index produces similar results in both cases. The same is true for
Harrell’s C-index. Secondly, the DPO-based C-index takes values in the full �0, 1�
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range. For large µ1 � µ2 and small σ2, the DPO-based C-scores converge to 1,
whereas, as theoretically shown in (3.2), Harrell’s C-scores converge to 0.75. As
expected, all C-scores increase as µ1�µ2 increases and as σ2 decreases. Thirdly, in the
case of perfect discrimination, the DPO-based C-index still depicts the performance
difference caused by the different variances. For large µ1 � µ2, there is a small
but clear difference between the DPO-based C-scores for different values of σ2. In
contrast, Harrell’s C-scores become nearly identical for different values of σ2 once
perfect discrimination is obtained.

In a second setting of the simulation study, the behavior of Harrell’s C-index
and the DPO-based C-index is compared under perfect discrimination for different
group sizes. Therefore, let ag � ng{n, g � 1, 2, be the proportion of observations
belonging to group Gg and let µ1 � 8, µ2 � 4, σ2 � 0.2 as well as n � 1000. For
each a1 P t0.05, 0.1, . . . , 0.5u, n1 � na1 or n2 � na2 � np1 � a1q event times are
independently sampled for T |X � 1 or T |X � 2, respectively, resulting in 1000 event
times t1, . . . , t1000. To each of these data sets pti, xiq, i � 1, . . . , n, with xi � Ipi ¡
n1q � 1 the same subsampling procedure with the same parameters as in the first
setting is applied, resulting in four C-scores Ĉ, ĈE, ĈDPO and ĈE

DPO for each data set.
Again, this procedure is repeated N � 10 times and the mean over the respective
C-scores is displayed in the second row of Figure 4.1. Moreover, the theoretical values
Cpa1, 1� a1q (see Section 3.1.1) of Harrell’s C-index under perfect discrimination are
displayed in the same plots for comparison.

These plots reveal that, if all predicted outcomes are different or if many predicted
outcomes are identical, the DPO-based C-index is not influenced or only slightly
influenced by the group proportions under perfect discrimination, respectively. The
ĈE

DPO-scores are constantly close to 1 for all proportions and the CDPO-scores are
larger than 0.9 for all a1 ¥ 0.1. This contrasts with Harrell’s C-index which is highly
influenced by the group proportions.

Another observation is that the estimated C-scores ĈE du to Harrel are smaller
than the theoretical values Cpa1, 1 � a1q. This phenomenon is caused by the simu-
lation design, since an observation i with a small event time yi relative to the other
observations from its group will more likely have a small predicted outcome relative
to the predicted outcomes of the observations from its group. This is because its
predicted outcome POb

i in iteration b is estimated by (4.1), where one of the 368
summands is given by the cumulative hazard function evaluated at time yi. Since the
cumulative hazard function is a strictly increasing function, this one summand will
be small in each OOB iteration and, thus, also POi will more likely be small relative
to another observation from its group with a larger event time. Since Harrell’s C-
index penalizes, if small event times are accompanied by small predicted outcomes,
the estimated C-scores du to Harrel are smaller than theoretically expected.
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4.2 Simulation based analysis of survivalFS

In this section, the results of the application of survivalFS to a simulation study are
presented, in which the predictors are biallelic SNPs. The simulation procedure, by
which each simulation scenario from each simulation setting is set up, is described in
Section 4.2.1 and four different simulation settings SimA-D are introduced in Section
4.2.2. The results of the application of survivalFS and its importance measures to the
four simulation settings are presented in the remaining sections. More precisely, the
performance of importance measures for interactions, of noise-adjusted importance
measures and of importance measures for sets of variables are summarized in Section
4.2.3, Section 4.2.4 and Section 4.2.5, respectively. Moreover, the results of the
comparison between the importance measures of survivalFS for interactions or sets
of variables and the importance measure IMDMS for bivariate interactions (Dazard
et al., 2018) or VIMP for individual variables (Ishwaran et al., 2008) of random
survival forests, respectively, are shown in Section 4.2.6. Finally, the performance
of survivalFS based prediction models is compared with the performance of random
survival forests based prediction models in Section 4.2.7.

Note that most of the results presented in this Section are already published in the
Supplementary Material to the main manuscript of Tietz et al. (2019). New are the
results of the original-type importance measures for interactions and sets of variables
as well as the results of the noise-adjusted importance measures.

4.2.1 Simulation setup

This simulation setup is found with nearly identical formulations in the Supplemen-
tary Material of Tietz et al. (2019).

Each simulation scenario from each of the four simulation settings is set up using
the following procedure. In each simulation scenario H � 100 data sets with 25 SNPs
are generated. The number of observations n in each data set can vary among the
scenarios, where the possible choices are n � 550, 1000, or 1500. The n genotypes of
the SNPs S1, . . . , S25 are randomly drawn from a Bin p2,MAFkq distribution, where
the minor allele frequencies MAFk, k � 1, . . . , 25, of SNPs with a simulated effect on
the time-to-event are chosen by hand, whereas the other minor allele frequencies are
randomly drawn from a uniform distribution.

To apply logic regression to biallelic SNPs, each SNP Sk, k � 1, . . . , 25, needs to
be coded by two logic variables, as biallelic SNPs can show three different genotypes.
Specifying the forms a SNP can take by the number of minor alleles, i.e., the number
of the less frequent base alternative on the two paired chromosomes, this SNP Sk P
t0, 1, 2u, k � 1, . . . , 25, is converted into one variable Sk,1 � I pSk ¥ 1q coding for a
dominant effect of Sk and one variable Sk,2 � I pSk � 2q coding for a recessive effect.
Hence, Sk,1 and Sk,2 can be regarded as a set of variables belonging to Sk.

The goal of the simulation setup is to include an effect of an interaction L on
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Figure 4.2: Kaplan-Meier estimate for the UBC data set and the survival function
of the Weibull distribution with shape parameter αsurv � 0.807 and scale parameter
λsurv � 3.346. Source: Tietz et al. (2019).

the time-to-event in each data set. Therefore, the event times ti, i � 1, . . . , n, are
randomly drawn from a Weibull distribution with fixed shape parameter αsurv and

varying scale parameter λ̃surv�li� � λsurv

�
αsurv
�
exp�βli�

��1

, where li is the i-th real-

ization of L intended to have an influence on the event time (Bender et al., 2005).
The parameter β determines the effect, represented by the hazard ratio exp�β�, that
L has on the time-to-event. The hazard ratio exp�β� is besides the number of obser-
vations n the second parameter that can vary among the simulation scenarios, where
the possible choices are exp�β� � �1.4, 1.6, 1.8, 2.0, 2.5�.

In order to simulate the event times as realistically as possible, the times to
recurrence observed in the urinary bladder cancer (UBC) study presented in Section
4.3 are used to determine the parameters αsurv and λsurv. For the specification of
these parameters,

arg min
αsurv,λsurv

�

���� 1�n
i�1 δ

�
i

�
�i:δ�i �1�

�
S�t�i � � Ŝ�t�i �

�2
(4.2)

is determined, where S�t�i � is the theoretical survival function of a Weibull distribution
with shape parameter αsurv and scale parameter λsurv and Ŝ�t�i � is the Kaplan-Meier
estimate for the UBC data determined at the event times t�i of the individuals from
the UBC study.

Solving (4.2) leads to an optimal value of the shape parameter of αsurv � 0.807
and an optimal value of the scale parameter of λsurv � 3.346. The resulting Weibull
distribution and the Kaplan-Meier estimate for the UBC data are shown in Figure
4.2.

Censoring times ci, i � 1, . . . , n, are also randomly drawn from a Weibull distri-
bution using the values of the parameters αcens and λcens that are the solutions to a
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minimization problem analogous to (4.2), but in which the inverse censoring variable
δcens�

i � Ipδ�i � 0q is considered. This results in αcens � 1.012 and λcens � 5.573. The
observed event times and the censoring variable for the i-th observation, i � 1, . . . , n,
are thus given by yi � minpti, ciq and δi � Ipti ¤ ciq.

4.2.2 Four different simulation settings

In this section, each of the four simulation settings is described. The description
of these settings is already presented in the Supplementary Material of Tietz et al.
(2019).

First setting considering one explanatory two-way interaction

The aim of the first simulation setting SimA is to examine the performance of sur-
vivalFS for different sample sizes and different hazard ratios. Therefore, data sets
with three different numbers of observations n � 550, 1000 and 1500 are generated,
where the minor allele frequencies of SNPs S1 and S2 are set to MAF1 � 0.35 and
MAF2 � 0.45, respectively. The MAFs of the remaining 23 SNPs are randomly drawn
from a uniform distribution on the interval r0.15, 0.50s. The two-way interaction

L � S1,1 ^ Sc2,1

is chosen as explanatory interaction, where four different hazard ratios exppβq P
t1.4, 1.6, 1.8, 2.0u are considered representing the effect of L on the time-to-event. In
total, twelve different scenarios are employed which result from each combination of
three different numbers of observations and four different hazard ratios.

From this simulation setup it follows, that the expected numbers of events for the
twelve different scenarios ordered by the hazard ratios are given by t345, 356, 359, 361u
for the scenarios with n � 550, t628, 648, 653, 656u for the scenarios with n � 1000
and t942, 972, 979, 984u for the scenarios with n � 1500. Furthermore, because of
the specific choice of the MAFs for S1 and S2, the conditional probability of having
the genetic risk factor given that Sc2,1 � 1 is higher than the probability of having
the genetic risk factor if S1,1 � 1. Therefore, S2 should be more easily identified as
important variable by any importance measure than S1.

survivalFS is applied to all data sets from the twelve different simulation scenarios,
where for each of the B � 100 subsamples a logic Cox proportional hazards model
with one logic tree and a maximum number of six logic variables is constructed.

Second setting considering one explanatory three-way interaction

To further investigate the performance of survivalFS and the seven importance mea-
sures when a three-way interaction has an influence on the time-to-event, geno-
type data is simulated in a second setting SimB, in which L� � S1,1 ^ S2,1 ^ Sc3,2
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is the explanatory variable for the time-to-event. Four different simulation sce-
narios are considered which differ from each other solely by the simulated effect
HR � t1.6, 1.8, 2.0, 2.5u, where as only number of observations n � 1500 is chosen.
The minor allele frequencies for SNPs S1, S2, and S3 are chosen to be MAF1 � 0.35,
MAF2 � 0.15, and MAF3 � 0.40, respectively. The MAFs of the remaining 22 SNPs
are randomly drawn from a uniform distribution on the interval r0.05, 0.50s. Follow-
ing this, the expected numbers of events for the four different simulation scenarios
ordered by the hazard ratios are t965, 970, 974, 983u. Again, survivalFS is applied to
each of the simulated data sets, where B � 100 subsamples of the data are drawn
and in each application of logic regression one logic tree with a maximum of eight
leaves is considered.

Remember that S1, S2, S3 P t0, 1, 2u. Since S1, S2 and S3 are independent from
each other, the conditional probability of having the genetic risk factor given that
S1,1 � 1 is calculated as

P pL� � 1|S1,1 � 1q � P ptL� � 1u X tS1,1 � 1uq
P ptS1,1 � 1uq

� P ptS1,1 � 1u X tS2,1 � 1u X tSc3,2 � 1uq
P ptS1,1 � 1uq

� P pS2,1 � 1qP pSc3,2 � 1q � P pS2 ¥ 1qP pS3 ¤ 1q
� p1� P pS2 � 0qqp1� P pS3 � 2qq
� p1� 0.852qp1� 0.42q � 0.2331.

Analogously, it follows that

P pL� � 1|S2,1 � 1q � 0.4851 and P pL� � 1|Sc3,2 � 1q � 0.1602.

Hence, due to the specific choice of the MAFs, S2 should be most frequently identified
as important variable by any importance measure followed by S1, where S3 should
be the least frequently identified SNP among the three.

Again, survivalFS is applied to all data sets from the four scenarios considering
B � 100 subsamples, allowing one logic tree and a maximum number of eight leaves.

Third setting considering one explanatory two-way interaction plus a con-
founding variable

In simulation setting SimA and in simulation setting SimB genotype data with exactly
one explanatory SNP interaction is simulated. It is further of interest to investigate
how stable the importance measures of survivalFS identify an explanatory interac-
tion, if an additional variable not associated with the interaction has an effect. Thus,
in simulation setting SimC, the same four simulation scenarios with n � 1500 obser-
vations and simulated effect HR P t1.4, 1.6, 1.8, 2.0u for L � S1,1^Sc2,1 are considered
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as in SimA, but, additionally, S3,2 is included as confounding variable with an effect
of HR3 � 1.8 in all data sets, where the minor allele frequency of SNP S3 is chosen to
be MAF3 � 0.4. Technically this is done by drawing the event times ti, i � 1, . . . , n,
randomly from a Weibull distribution with fixed shape parameter asurv and varying
scale parameter

b̃survp`i, siq � bsurv

�
asurv

b
exp

�
logpHRq`i � logpHR3qsi

�
�1

,

where `i and si are the i-th realization of the two-way interaction

L � S1,1 ^ Sc2,1

and the variable S3,2, respectively.

survivalFS is applied twice to all data sets from simulation setting SimC. In the
first or second applications one or two logic trees are allowed, respectively, where
in both applications a maximum number of eight logic variables is chosen when
constructing the Cox proportional hazards models based on B � 100 subsamples.

Fourth setting considering one explanatory three-way interaction plus a
confounding variable

The influence of an additional explanatory variable on the performance of the impor-
tance measures of survivalFS is further investigated. Therefore, in simulation setting
SimD the same simulation scenarios as in SimB are considered, but, additionally,
S4,2 is simulated as confounding variable for the time-to-event. Again, an effect of
HR4 � 1.8 for S4,2 is chosen and the minor allele frequency of SNP S4 is set to
MAF4 � 0.4.

survivalFS is applied twice to all data sets from SimD, where B � 100 subsamples
with a maximum number of eight logic variables are created in both applications, but
in the first or second application one or two logic trees are allowed, respectively.

4.2.3 Analysis of importance measures for SNP interactions

To investigate the performance of the seven (unadjusted) importance measures for
interactions, these measures are applied to the survivalFS outputs from simulation
settings SimA and SimB. Note that the results of this application are already pre-
sented in the Supplementary Material to Tietz et al. (2019).

As discussed in Section 3.3, when searching for interactions with methods such
as logic regression, then frequently interactions are identified that are composed of
the explanatory interaction L (from SimA and SimC) and one or more noise SNPs
that only randomly improve the predictive power. In the application of survivalFS
to the simulated data, e.g., interactions such as L�,1 � S1,1 ^ SC2,1 ^ SC4,2 � L ^ SC4,2
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are quite often detected. Therefore, let L� be the set of interactions composed of L
and possible one or more noise SNPs and let L�,max be the interaction in L� with
the largest importance based on the respective importance measure. Analog, L�� and
L��,max are defined for the explanatory interaction L� from SimB and SimD.

The rankings of L�,max (in SimA) due to all seven importance measures are dis-
played in Figure 4.3. The remaining results are shown in Section A.1 of the Appendix,
i.e., the rankings of L (Figure A.2), the rankings of L� and L��,max (Figure A.1), the
importance scores of L and L�,max (Figures A.3 and A.4) as well as the importance
scores of L� and L��,max (Figure A.5).

These figures reveal that, not very surprisingly, it requires a large sample size and
a hazard ratio of at least 1.8 for the importance measures to be able to always identify
an interaction containing L (in SimA) as the most important one. In contrast, L��,max

(in SimB) can be stably identified as most important interaction only for hazard ratios
of HR ¥ 2.0. This is mainly because for hazard ratios between 1.6 and 2.0 survivalFS
identifies interactions that consist of only two of the three influential SNPs.

Apart from that, the results of SimA and SimB closely resemble each other.
The performance of all importance measures, except for VIMEConc, increases with
increasing hazard ratio and sample size. Original-type measures perform equally well
as the ensemble-type measures in identifying L�,max (or L��,max). However, original-
type measures outperform the ensemble-type measures in identifying L (or L�).

Among the original-type importance measures VIMDPO and VIMConc perform
best, where both measures show almost identical results with respect to ranking.
Their rankings of L (or  L�) are highest in all scenarios and their rankings of L�,max

(or L��,max) are slightly surpassed only by those of VIMEDPO. VIMBrier and VIMCox

achieve not only lower rankings than VIMDPO and VIMConc, but also than the
ensemble-type measures for smaller hazard ratios or sample sizes. However, the mean
as well as the variance of the importance values of L (or L�) and L�,max (or L��,max)
due to all original-type importance measures increase not only with increasing hazard
ratio. They also increase with increasing sample size. While the former is a desired
behavior, the latter is not, since it shows that the original-type importance measures
are dependent on the sample size.

Among the ensemble-type measures VIMEDPO shows the best performance, fol-
lowed by VIMEBrier. VIMEDPO achieves, together with VIMDPO, the highest rankings
for L�,max (or L��,max) and its rankings for L (or L�) are higher than those of the

other two ensemble-type importance measures. VIMEConc has by far the worst per-
formance. For increasing hazard ratio, VIMEConc of L (or L�) decreases and becomes
even negative, where VIMEConc of L�,max (or L��,max) stays close to zero for all hazard
ratios. Accordingly, also its rankings of L (or L�) and L�,max (or L��,max) decrease

with increasing hazard ratio. Therefore, VIMEConc is no adequate importance mea-
sure for interactions. As expected, the values of VIMEDPO and VIMEBrier increase with
increasing hazard ratios. However, in contrast to the original-type importance mea-
sures, the average importance remains nearly identical for increasing sample sizes and
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Figure 4.3: survivalFS is applied to the simulation scenarios from simulation set-
ting SimA, where all scenarios consist of 100 data sets but differ from each other
by the number of observations (n � 550, 1000, 1500) and by the simulated effect
(HR � �1.4, 1.6, 1.8, 2.0�) of L � S1,1 � Sc

2,1 on the time-to-event. Each subplot dis-
plays the proportion of survivalFS models, in which L�,max is ranked among the top
1, 2, . . . , 10 most important SNP interactions by the respective importance measure.
Original-type or ensemble-type importance measures are colored reddish or bluish,
respectively. Source: Tietz et al. (2019).
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only the variance of the estimated importance decreases. Hence, the ensemble-type
importance measures are less dependent on the sample size than the original-type
importance measures.

4.2.4 Analysis of noise-adjusted importance measures

The influence of noise-adjustment on the performance of the importance measures
for SNP interactions is investigated first based on the simulation settings from SimA
and SimB including only an interaction effect as well as second based on the simu-
lation settings from SimC and SimD including an interaction effect and additionally
a confounding variable. Note that these are new results that are not presented by
Tietz et al. (2019).

Influence of noise-adjustment on performance of importance measures

Next it is investigated to what extend noise-adjustment yields to an improved per-
formance of the importance measures for interactions. Therefore, the seven noise-
adjusted importance measures are applied to the survivalFS outputs from the two
simulation settings SimA and SimB.

The ranking results of L in the four scenarios from SimA with n � 1500 observa-
tions are shown in the first row of Figure 4.4. In the second row of this figure these
ranking results are compared with the corresponding ranking results obtained without
noise-adjustment (see last row of Figure A.2). More precisely, the difference between
the ranking proportion of L based on any noise-adjusted importance measure and its
corresponding unadjusted importance measure are shown in Figure 4.4, where pos-
itive differences indicate a performance improvement due to noise-adjustment. The
remaining results are shown in Section A.2 of the Appendix, i.e., the ranking results
of L or L� in the eight scenarios of SimA with n � 550, 1000 or the four scenarios
of SimB (Figure A.6 or first row of Figure A.8, respectively), their comparison with
the respective ranking results without noise-adjustment (Figure A.7 or second row of
Figure A.8, respectively) as well as the corresponding importance scores of L or L�

(Figures A.9 and A.10 or Figure A.11, respectively).

These figures reveal that noise-adjustment improves the performance of the im-
portance measures. L or L� are clearly more often ranked under the top ten by all
noise-adjusted importance measures than by the unadjusted measures in all simu-
lation scenarios. While L is identified stably among the first most important inter-
actions by the noise-adjusted measures for hazard ratios HR ¥ 1.8, L� can only be
stably identified as most important interaction for HR � 2.5. Moreover, it can be
observed that the ranking proportions of L are more similar among the seven noise-
adjusted measures than they are among the unadjusted measures. The overall best
performance is achieved by VIMDPO

Adj and VIMConc
Adj , followed by VIMEDPO

Adj . Interest-

ingly, the performance of VIMEConc is dramatically improved by adjusting it for noise
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Figure 4.4: survivalFS is applied to the simulation scenarios with n � 1500 ob-
servations from SimA. The subplots in the first row display the proportion of sur-
vivalFS models, in which L � S1,1 � Sc

2,1 is ranked among the top 1, 2, . . . , 10 most
important SNP interactions by the respective noise-adjusted importance measure.
The difference between each noise-adjusted proportion and its corresponding unad-
justed proportion is displayed in the second row, where positive differences indicate a
performance improvement due to noise-adjustment. Original-type or ensemble-type
importance measures are colored reddish or bluish, respectively.

in SimA, making it competitive to the other noise-adjusted measures, even though it
still shows the worst performance for large hazard ratios and sample sizes. However,
even though noise-adjustment yields also to an improvement of VIMEConc in SimB,
VIMEConc

Adj is not competitive to the other noise-adjusted measures. Its ranking of
L� is clearly lower and its importance values for L� decrease with increasing haz-
ard ratios. Moreover, the importance values of L or L� are significantly increased
by noise-adjustment for all importance measures. As intended, all noise-adjusted
importance scores of L or L� increase with increasing hazard ratios. However, the
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Table 4.1: Top five interactions identified by the importance measure VIMEDPO
Adj in

the application of survivalFS to a data set from SimA with n � 1500 observations and
intended effect of HR � 1.8 for L � S1,1 ^ Sc2,1. Displayed are, for each interaction,

the VIMEDPO
Adj scores and the proportions of logic models that contain this interaction

or an extended-interaction of this interaction.

Rank Interaction Proportion VIMEDPO
Adj

1 Sc2,1 0.82 0.1291
2 S1,1 0.87 0.0992
3 S1,1 ^ Sc2,1 0.80 0.0951
4 S1,1 ^ Sc2,1 ^ Sc13,1 0.60 0.0335
5 S1,1 ^ Sc2,1 ^ Sc9,2 ^ Sc13,1 0.20 0.0088

noise-adjusted importance scores of L also increase with increasing sample sizes.
Hence, the noise-adjusted importance measures seem to be highly dependent on the
sample size.

When looking, e.g., at Figure 4.4 it is observed that the explanatory interaction
is rarely ranked first or second by the noise-adjusted ensemble-type measures. This
can be explained by the phenomenon presented in Table 4.1. The first two ranks are
typically occupied by Sc2,1 and S1,1, i.e., those variables putting together the explana-
tory two-way interaction L. I.e., in contrast to the unadjusted importance measures,
based on which the first ranks are typically occupied by extended-interactions of L,
noise-adjusted ensemble-type measures identify sub-interactions of L as most impor-
tant. However, noise-adjusted original-type measures seem to be far less influenced
by this phenomenon.

Influence of confounding variable on performance of noise-adjusted im-
portance measures

In order to investigate how well the seven noise-adjusted importance measures of
survivalFS identify the explanatory interactions L and L� if an additional variable has
an effect on the time-to-event, these measures are further applied to the survivalFS
outputs (allowing one or two logic trees) from SimC and SimD.

The proportions of survivalFS models with two trees, in which L (in SimC) is
ranked among the top 1, 2, . . . , 10 most important SNP interactions by the respec-
tive noise-adjusted importance measure, are displayed in the first row of Figure 4.5.
In order to directly investigate to what extend the noise-adjusted importance mea-
sures are influenced by the confounding variable in ranking L as one of the top SNP
interactions, these ranking proportions are compared with their corresponding rank-
ing proportions obtained in simulation setting SimA. More precisely, the differences
∆C-ApVIMSCORE

Adj q between the ranking proportions of L (allowing two logic trees)
obtained from SimC (see first row of Figure 4.5) and the corresponding ranking pro-
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portions of L obtained from SimA (see first row of Figure 4.4) are shown in the
second row of Figure 4.5. Note that VIMSCORE

Adj is a dummy variable referring to
the respective noise-adjusted importance measure. Moreover, Figure 4.6 compares
the noise-adjusted importance scores of L due to VIMDPO

Adj and VIMEDPO
Adj obtained

in SimA (allowing one logic tree) with those obtained in SimC (allowing one or two
logic trees).

The remaining results are presented in Section A.2 of the Appendix, i.e., the
ranking proportions of L with one logic tree in SimC (first row of Figure A.12), the
ranking proportions of L� with one and two logic trees in SimD (Figure A.13), the
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Figure 4.5: survivalFS allowing two logic trees is applied to the simulation scenarios
from simulation setting SimC. The subplots in the first row display the proportions
of survivalFS models in which L is ranked among the top 1, 2, . . . , 10 most important
SNP interactions by the respective noise-adjusted importance measure. The subplots
in the second row display the proportion difference ΔC�A�VIMSCORE

Adj � between SimC
and SimA. Values smaller than zero indicate a ranking deterioration due to an ad-
ditional explanatory variable. Original-type or ensemble-type importance measures
are colored reddish or bluish, respectively.
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ranking differences ΔC-A�VIM
SCORE
Adj � of L with one logic tree (second row of Figure

A.12), the ranking differences ΔD-B�VIM
SCORE
Adj � of L� with one and two logic trees

(Figure A.14) as well as the importance scores comparison of L� due to VIMDPO
Adj and

VIMEDPO
Adj between SimB and SimD (Figure A.15).

These figures reveal that the importance rankings as well as the importance scores
of both L and L� due to any noise-adjusted importance measure are decreased by
the presence of the confounding variable, where this decrease is more dramatic when
allowing one logic tree instead of two logic trees. Interestingly, this decrease is the
smaller the larger the effect of L or L� is. If the effect of the two-way interaction L is
equal to or larger than the effect of the confounding variable and if two logic trees are
allowed, L is equally ranked under the top four regardless of whether the explanatory
variable is present or not. However, the effect of the three-way interaction L� must
be larger than the effect of the confounding variable, i.e., HR � 2.5, such that this
variable has no relevant influence on the top ten ranking of L�.

When allowing just one logic tree, the original-type noise-adjusted importance
measures are particularly negatively influenced by the confounding variable. Accord-
ingly, the ensemble-type importance measures outperform the original-type impor-
tance measures when allowing only one logic tree. When allowing two logic trees, the
rankings are very similar among the original-type and the ensemble-type importance
measures, except for small hazard ratios, where the ensemble-type importance mea-
sures perform better. The overall best ranking performance is achieved by VIMEBrier

Adj ,

followed by VIMEDPO
Adj . In general, when allowing two logic trees, the two-way inter-

action is stably found for HR � 1.8, whereas even a hazard ratio of HR � 2.0 is not
enough to stably identify L�.
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Figure 4.6: Boxplots without outliers comparing the importance values of
L � S1,1 � Sc

2,1 due to VIMDPO
Adj and VIMEDPO

Adj obtained in simulation scenarios with
n � 1500 observations of SimA with one logic tree and in SimC with one or two logic
trees.
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4.2.5 Analysis of importance measures for single SNPs

The performance of the importance measures for sets of variables is investigated first
based on the simulation settings from SimA and SimB and second based on the
simulation settings from SimC and SimD. Note that most of the results are already
described in the Supplementary Material to Tietz et al. (2019).

Performance of importance measures for single SNPs if only the interac-
tion is explanatory

The performance of the seven importance measures for single SNPs is evaluated based
on the simulation scenarios from SimA and SimB. For this, the binary variables Sk,1
and Sk,2 are considered as a set belonging to SNP Sk, k � 1, . . . , 25. Note, that
the importance measures for single SNPs are designed to take the multivariate data
structure into account. They, therefore, attribute a part of the interaction effect to
the importance of the variables forming the interaction.

The ranking proportions of the three SNPs S1, S2 and S3 forming the three-way
interaction L� � S1,1 ^ S2,1 ^ Sc3,2 in SimB are shown in Figure 4.7. The remaining
results are presented in Section A.3 of the Appendix, i.e., the ranking proportions of
S1 and S2 forming the two-way interaction L � S1,1^Sc2,1 in SimA (Figure A.16 and
Figure A.17, respectively), the importance scores of S1 and S2 in SimA (Figures A.18
and A.19) as well as the importance scores of S1, S2 and S3 in SimB (Figure A.20).

From these results it can be observed that VIMDPO
Set and VIMConc

Set , followed by
VIMEDPO

Set , show the overall best performance. They rank the explanatory SNPs more
often as the most important SNPs than the other importance measures for individual
SNPs, where their importance scores for these SNPs increase with increasing hazard
ratio. While VIMEDPO

Set performs equally well as VIMDPO
Set and VIMConc

Set in SimA, it is
outperformed by these measures in SimB in identifying the explanatory SNP S3 (see
Figure 4.7). The importance of the explanatory SNPs quantified by VIMEBrier

Set also
increases with increasing hazard ratio, but the ranking for smaller hazard ratios and
sample sizes is slightly less accurate compared with VIMEDPO

Set (and, therefore, also
compared with VIMDPO

Set and VIMConc
Set ).

VIMEConc
Set is no adequate importance measures for single SNPs. Its performance

worsens with increasing sample size and hazard ratio. E.g., its rankings of S1, S2

and S3 in SimB for HR � 2.5 are by far the lowest among all importance measures
and the corresponding importance scores, especially those of S1 and S3, are mainly
negative. VIMBrier

Set and VIMCox
Set perform only well in the scenarios with both large

hazard ratios and large sample sizes. In all other scenarios they rank the explanatory
SNPs mainly between 11 and 25 with negative importance scores. They, therefore,
do not seem to be adequate importance measures for single SNPs, at least not for
small effects or sample sizes.

As expected, all importance measures correctly identify S2 as more important
than S1 in all simulation scenarios of SimA and SimB and correctly identify S1 to be
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more important than S3 in SimB. In SimA, S1 and S2 are stably ranked under the
most important SNPs for HR � 1.8, if n � 1000, or for HR � 1.6, if n � 1500. In
SimB, a hazard ratio of HR � 1.8 is sufficient for the adequate importance measures
to stably rank S1 and S2 under the most important SNPs, while a hazard ratio of at
least HR � 2.0 is necessary in order to do the same for S3.
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Figure 4.7: survivalFS is applied to the simulation scenarios from SimB. The sub-
plots in the first, second or third row display the proportion of survivalFS models, in
which S1, S2 or S3, respectively, is ranked among the top 1, 2, . . . , 10 most important
SNPs by the respective importance measure for individual SNPs, where S1, S2 and
S3 are included in the explanatory interaction L�

� S1,1 � S2,1 � Sc
3,2. Original-type

or ensemble-type importance measures are colored reddish or bluish, respectively.
Source: Tietz et al. (2019).
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While, except for VIMEConc
Set , the values of all importance measures for single SNPs

increase with increasing sample size in SimA, this increase is larger for original-type
measures than for ensemble-type measures, making the ensemble-type measures less
dependent on the sample size. Simultaneously, the variance of all importance values
decreases with increasing sample size.

In general, e.g., comparing Figure A.18 and Figure A.19 with Figure A.3 and Fig-
ure A.4, the estimated importance of the explanatory SNPs based on all importance
measures for single SNPs is comparable to, albeit a little smaller than, the importance
of the explanatory SNP interaction (L or L�) quantified by the corresponding noise-
adjusted importance measures for SNP interactions. Consequently, the estimated
importance based on all importance measures is (much) higher for single SNPs than
for SNP interactions, if no noise-adjustment is performed.

Influence of confounding variable on performance of importance measures
for single SNPs

The simulations from SimC and SimD are further employed to analyze how the sta-
bility and the performance of the importance measures for single SNPs are influenced
by an additional explanatory variable, again, based on the survivalFS models with
one and two logic trees. Since it is observed from the results above that VIMEConc

Set ,
VIMBrier

Set and VIMCox
Set are no adequate importance measures for single SNPs, these

measures are not further considered in this analysis.

The ranking results based on the survivalFS models allowing one logic tree in
SimD, i.e., the ranking proportions of the three SNPs S1, S2 and S3 being included
in the three-way interaction L� as well as of the confounding variable S4, are displayed
in Figure 4.8. The remaining results are presented in Section A.3 of the Appendix.
More precisely, the ranking results based on the survivalFS models allowing one or
two logic trees in SimC are shown in Figure A.21 or Figure A.22, respectively. The
differences ∆C�ApVIMSCORE

Set q between these results with one or two trees and the
respective results from SimA (see last row of Figure A.16 and last row of Figure
A.17) are presented in Figure A.23. The ranking results based on the survivalFS
models allowing two logic trees in SimD are displayed in Figure A.24. Finally, the
importance scores of the explanatory SNPs obtained based on the survivalFS models
with one or two trees in SimC and SimD are compared with the corresponding scores
from SimA and SimB in Figure A.25 and Figure A.26, respectively.

These figures reveal that the estimated importance values of all explanatory SNPs
assembling L or  L� due to all importance measures are decreased by the presence of
a confounding variable in all scenarios. The rankings of all explanatory SNPs based
on all importance measures are lowered by a confounding variable in all scenarios,
except for those scenarios, where the simulated effect is large.

When allowing two logic trees in logic regression instead of one logic tree, the
importance scores of the explanatory SNPs due to all importance measures drop
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Figure 4.8: Based on the simulation scenarios from SimD, the proportions of sur-
vivalFS models with one logic tree in which S1, S2, S3 or S4 is ranked among the
top 1, 2, . . . , 10 most important SNPs by the respective importance measure are dis-
played. Source: Tietz et al. (2019).

significantly. While also the rankings of these explanatory SNPs are dramatically
lowered for all ensemble-type importance measures, they are not for the original-type
measures. Nonetheless, based on this finding it is advisable to allow just one logic
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tree when estimating the importance of single SNPs.

The best performance is achieved by VIMEDPO
Set and VIMEBrier

Set , if one logic tree
is allowed in the logic models. They, on average, generate the highest rankings of
the explanatory SNPs in all scenarios and the importance increases with increasing
hazard ratio. For HR � 2, S1 and S2 are stably ranked under the top three by
VIMEDPO

Set and VIMEBrier
Set in all scenarios of SimC and SimD. As expected, S2 is mainly

ranked second, S1 is mainly ranked third and S3 in SimD is mainly ranked fourth,
because the main effect of the confounding SNP (S3 in SimC and S4 in SimD) is
still greater than the partial interaction effect attributed to S1 or S2. Both measures
stably rank the confounding SNP first for smaller interaction effects and among the
top four for larger interaction effects. Hereby, the importance score of the confounding
SNP based on VIMEDPO

Set slightly decreases when the hazard ratio increases, whereas
it remains constant with increasing variance based on VIMEBrier

Set .

4.2.6 Comparison with random survival forests

The performance of VIMEDPO
Adj and VIMEDPO

Set is compared with the performance of
the importance measure Interaction Minimal Depth Maximal Subtree (IMDMS) for
bivariate variable interactions (Dazard et al., 2018) and the variable importance mea-
sure VIMP for single variables (Ishwaran et al., 2008) from random survival forests,
respectively. A small value of IMDMS indicates a possible paired interaction, whereas
a large VIMP value identifies a potentially explanatory variable. For this, random
survival forests are applied to the simulation scenarios from SimA with n � 1500 ob-
servations as well as to all scenarios from SimB-SimD. For the calculation of VIMP
for single variables 1000 trees are grown in random survival forests, and for the
computationally more expensive calculation of IMDMS only 500 trees are gener-
ated, where ten replications of the cross-validation procedure are chosen. Hereby,
the SNPs Sk P t0, 1, 2u themselves and not the logic variables are considered as ex-
planatory variables. Since IMDMS is designed to detect only paired interactions but
not complex interactions between more than two variables, IMDMS is applied to the
scenarios of SimA and SimC (considering an explanatory two-way interaction) but
not to the scenarios of SimB and SimD (considering an explanatory three-way inter-
action). Note that most of the results are already described in the Supplementary
Material to Tietz et al. (2019).

Comparison with IMDMS

Based on the simulation scenarios from SimA and SimC, the performance of VIMEDPO
Adj

allowing one and two logic trees, respectively, is compared with the performance of the
importance measure IMDMS for bivariate variable interactions from random survival
forests. The ranking results of this comparison are displayed in Figure 4.9 and Figure
4.10, respectively. The corresponding importance scores can be found in Section A.4
of the Appendix in Figure A.27 and Figure A.28, respectively.
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These figures show, as desired, that in both settings the IMDMS values of the
two-way interaction S1 : S2 decrease and that S1 : S2 is more stably found under
the most important interactions as the hazard ratios increase. Nonetheless, in the
scenarios of SimA, VIMEDPO

Adj is able to outperform IMDMS in identifying L as most
important interaction, especially for HR � 1.8. E.g., for HR � 1.6, IMDMS identifies
S1 : S2 only 65 times under the top three and 78 times under the top ten, whereas
VIMEDPO

Adj ranks L 85 times under the top three and 93 times under the top ten.
Only for HR � 2.0 both measures rank the interaction first stably. Even more, if a
confounding variable is included in the data as in the scenarios of SimC, IMDMS is by
far outperformed by VIMEDPO

Adj in detecting the interaction effect. Moreover, IMDMS
is (mostly) not able to find the interaction effect at all, even for larger hazard ratios.
E.g., for HR � 1.8, IMDMS ranks S1 : S2 only 24 times under the top five, whereas
VIMEDPO

Adj identifies L 96 times under the five most important interactions.

However, this result is not very surprising, since Wright et al. (2016) conclude from
their extensive simulation studies that the importance measures of random forests
are not really able to detect gene-gene interactions. IMDMS is computationally
expensive and only designed to detect paired interactions. Hence, it is not able
to identify complex interactions between more than two variables. Moreover, the
pairwise interactions need to be specified in IMDMS or otherwise the importance
of all possible pairs is determined, whereas in survivalFS the interactions are found
automatically.
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Figure 4.9: The accuracy of VIMEDPO
Adj and the importance measure IMDMS from

random survival forests are evaluated on the simulation scenarios from SimA with
n � 1500 observations. Each subplot displays the proportion of survivalFS and
random survival forests models in which the explanatory interaction L � S1,1 � Sc

2,1

and the paired interaction S1 : S2, respectively, are ranked among the top 1, 2, . . . , 10
most important interactions by the respective importance measure. Source: Tietz
et al. (2019).
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Figure 4.10: survivalFS allowing two logic trees and random survival forests
are applied to the simulation scenarios from SimC with simulated effect
HR � �1.4, 1.6, 1.8, 2.0� of L � S1,1 � Sc

2,1, where, additionally, S3,2 is explanatory
for the time-to-event. Each subplot displays the proportion of survivalFS or ran-
dom survival forests models, based on which L or the paired interaction S1 : S2 is
ranked among the top 1, 2, . . . , 10 most important interactions based on VIMEDPO

Adj or
IMDMS, respectively. Source: Tietz et al. (2019).

Comparison with VIMP

The performance of VIMEDPO
Set allowing one logic tree is compared with the perfor-

mance of the variable importance measure VIMP from random survival forests based
on the simulation scenarios from all four simulation settings SimA-SimD.

Figure 4.11 and Figure 4.12 display the ranking results of this comparison from
SimB and SimD. The remaining results are shown in Section A.4 of the Appendix, i.e.,
the ranking results from SimA and SimC (Figure A.29 and Figure A.30, respectively)
as well as the corresponding importance scores from SimA-D (Figures A.31-A.34,
respectively).

The results from SimA and SimB reveal that VIMEDPO
Set achieves a much better

performance than VIMP, if the interaction effect is the only explanatory effect on
the time-to-event. While, as expected, both measures stably identify S2 as most
important SNP in both settings, the rankings of the other explanatory SNPs are
considerably higher when considering VIMEDPO

Set . E.g., for a hazard ratio of HR � 2.0
in SimB, both measures rank SNP S2 always under the top three, but S1 or S3 is
ranked 98 or 71 times under the top three by VIMEDPO

Set , whereas VIMP ranks S1

or S3 only 85 or 17 times under the top three, respectively. As also observed for
VIMEDPO

Set , the VIMP values of the explanatory SNPs increase with increasing hazard
ratios.

However, the results from SimC and SimD show that VIMP is less negatively
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influenced by a confounding variable than VIMEDPO
Set . In both settings VIMP more

stably identifies S2 as important SNP than VIMEDPO
Set , where the ranking of S1 is

nearly identical between the two measures. Nonetheless, VIMEDPO
Set still shows a

better performance than VIMP in detecting the third explanatory SNP S3 in SimD.
VIMP hardly identifies S3 as important SNP in SimD, even for HR � 2.5, whereas
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Figure 4.11: The accuracy of VIMEDPO
Set for sets of variables or of the variable impor-

tance measure VIMP from random survival forests are evaluated on the simulation
scenarios from SimB. The subplots in the first, second or third row display the pro-
portion of survivalFS or random survival forests models, in which SNP S1, S2 or S3,
respectively, is ranked among the top 1, 2, . . . , 10 most important single SNPs by the
respective importance measure. Source: Tietz et al. (2019).
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VIMEDPO
Set much more frequently ranks S3 among the most important SNPs and stably

identifies S3 under the top five for HR � 2.5. Moreover, in contrast to VIMEDPO
Set , the

importance scores of the confounding variable by VIMP remain constant for varying
effect of the explanatory interaction in both settings. Thus, VIMP is in general less
influenced than VIMEDPO

Set in its quantification of the importance of an explanatory
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Figure 4.12: The accuracy of VIMEDPO
Set from survivalFS or of VIMP from random

survival forests is evaluated on the simulation scenarios from SimD. Each subplot
displays the proportion of survivalFS or random survival forests models, in which
SNP S1, S2, S3 or S4 is ranked among the top 1, 2, . . . , 10 most important single
SNPs by the respective importance measure. Source: Tietz et al. (2019).
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feature, i.e., a variable or an interaction, if further explanatory features are present
in the data.

4.2.7 Performance analysis of ensemble predictions

The performance of ensemble predictions based on survivalFS should be evaluated.
Therefore, two survivalFS prediction models are fitted on each data set from the four
simulation scenarios from SimA with n � 1500 observations and from the four sim-
ulation scenarios from SimB, one predicting the cumulative hazard function (CHF)
and the other the survival function of individuals. In order to compare the accu-
racy of survivalFS predictions with another prediction method, i.e., random survival
forests, in a next step, prediction models for this method are developed based on the
same data sets. Again, prediction models are fitted for the CHF as well as for the
survival function.

B � 100 iterations, a maximum number of six leaves in SimA and of eight leaves
in SimB as well as one tree are chosen when fitting the prediction models based on
survivalFS and 1000 trees are grown to develop prediction models based on random
survival forests. The performance of the prediction models should be evaluated on
new data. Therefore, for each data set 500 new observations are simulated, where the
event and censoring time as well as the genotypes of each observation are simulated
exactly as for the observations from the respective simulation scenario. The prediction
models are then employed to predict the CHF and survival function of each new
observation. Finally, the accuracy of the CHF predictions is assessed by the DPO-
based C-index as well as the prediction error based on Harrell’s C-index, while the
performance of the survival function predictions is estimated by the integrated Brier
score. Note that the following results are already described in the Supplementary
Material to Tietz et al. (2019) with very similar formulations.

The results which are displayed in Figure 4.13 (SimA) and Figure A.35 of the Ap-
pendix (SimB) reveal that the accuracy of the prediction models based on survivalFS
is higher compared to the accuracy of the prediction models based on random survival
forests. The integrated Brier scores of the survivalFS prediction models are substan-
tially lower with smaller variances compared to random survival forests. Also, the
prediction errors (PEs) based on the DPO-based C-index of survivalFS predictions
are noticeably lower and the PEs based on Harrell’s C-index are on average lower for
all hazard ratios.

Moreover, the PE based on the DPO-based C-index most precisely specifies the
prediction accuracy of the prediction models. In contrast to the integrated Brier
score, its values decrease with increasing hazard ratios. Thus, the DPO-based C-
index can distinguish between prediction models based on data scenarios with a high
or low (simulated) effect. Harrel’s C-index shows a similar behavior to the DPO-based
C-index, but, compared to the DPO scores, the estimated prediction accuracies based
on Harrel’s C-index differ far less among the scenarios.
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Figure 4.13: Prediction models based on survivalFS and random survival forests are
built on each data set from the four simulation scenarios from SimA with n � 1500
observations, where each scenario includes 100 data sets, but the intended effect
HR � �1.4, 1.6, 1.8, 2.0� of L � S1,1 � Sc

2,1 varies among the scenarios. These models
are employed to predict the CHF and survival function for 500 new observations.
The accuracy of the CHF predictions is assessed by the PE based on the DPO-based
C-index as well as by the PE based on Harrell’s C-index, while the accuracy of the
survival function predictions is estimated by the integrated Brier score. Displayed
are boxplots without outliers of these performance scores. Source: Tietz et al. (2019).

4.3 Application to a urinary bladder cancer study

Most of the results from this section are already published by Tietz et al. (2019).

A genetic association study concerned with urinary bladder cancer (UBC) has
been carried out by the Leibniz Research Centre for Working Environment and Hu-
man Factors (IfADo) in Dortmund, Germany. 31% of all UBC cases are explained by
genetic risk factors (Lichtenstein et al., 2000) and the recurrence probability of UBC
lies between 30% and 80% (Van Rhijn et al., 2014). Therefore, one aim of this study is
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analyze to what extent genetic factors influence the time to recurrence of the tumor.
For 598 UBC patients the genotypes of 14 UBC susceptibility polymorphisms, i.e.,
SNPs that have shown an influence on the UBC risk in previous genome-wide asso-
ciation studies (Grotenhuis et al., 2014), are collected. The deletion variant GSTM1
(Glutathione S-Transferase M1) is also considered as single binary variable, since it
is one of the most relevant known genetic factors for an increased UBC risk (Selinski,
2014). Further clinical variables that are considered are age, gender, and smoking
status of the patients as well as the invasiveness and grading of the tumor at the time
of initial diagnosis. Hereby, the invasiveness is described by a binary variable with
the two categories NMIBC (non-muscle invasive bladder cancer) and MIBC (muscle
invasive bladder cancer), and the grading is divided into three categories, i.e., G1
(well differentiated), G2 (moderately differentiated) and G3+G4 (poorly differenti-
ated or undifferentiated). 55 patients without a follow-up (longer than one month)
are removed from the study prior to the analysis with survivalFS. For more details
on this study, see, e.g., Selinski et al. (2016).

In a first analysis, the pure influence of genetic risk factors on the time to re-
currence of UCB is investigated without accounting for clinical variables. Therefore,
survivalFS is applied to the genotype data (including GSTM1) of the remaining 543
UBC patients by generating B � 100 logic regression models considering two logic
trees and a maximum number of eight logic variables. In total, 285 potentially inter-
esting SNP interactions could be identified by this application. VIMEDPO

Adj , VIMConc
Adj

Table 4.2: The five most important interactions according to VIMEDPO
Adj identified by

survivalFS in the analysis of the urinary bladder cancer data and their importance
due to VIMConc

Adj and VIMEBrier
Adj . Their ranks according to the respective importance

measure are specified by the numbers in the brackets. Also, the proportions of the
B � 100 logic regression models containing the interactions or extended-interactions
of the interactions are shown. For a concise presentation of the interactions, the names
of the SNPs are coded, where S10 codes for the SNP with rs number rs1058396, S5

for rs1014971, S11 for rs17674580, and S4 for rs710521.

VIMEDPO
Adj VIMConc

Adj VIMEBrier
Adj Prop. Interaction

p�10�2q p�10�2q p�10�4q
6.36 (1) 1.58 (1) 4.10 (1) 0.73 Sc10,1

4.52 (2) 1.34 (2) 1.75 (3) 0.45 GSTM1^ Sc10,1

1.36 (3) 0.32 (4) 1.34 (4) 0.49 Sc5,1

0.59 (4) 0.11 (8) -0.24 (201) 0.11 GSTM1^ S4,1 ^ Sc10,1

0.57 (5) 0.07 (21) -1.41 (268) 0.27 S11,1
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and VIMEBrier
Adj , which turned out to be among the best performing importance mea-

sures in the simulation study, are employed to quantify the importance of each of
these SNP interactions.

The five most important SNP interactions according to VIMEDPO
Adj as well as their

importance values due to all three measures and the proportion of logic regression
models that contain these interactions or extended-interactions of these interactions
are displayed in Table 4.2. From this table it can be observed that the two-way
interaction GSTM1^Sc10,1 is the only interesting interaction with a potential influence
on the recurrence-free time, where S10,1 codes for a dominant effect of the SNP with
rs number rs1058396. This interaction exhibits the second largest importance due
to VIMEDPO

Adj and VIMConc
Adj as well as the third largest importance due to VIMEBrier

Adj .
Also, since Sc10,1 exhibits the largest importance according to all three importance
measures, it can be supposed that Sc10,1 has a main effect on the recurrence-free time
which is increased in interaction with GSTM1.

In order to further investigate the strength of the effect of GSTM1 ^ Sc10,1, a
Cox proportional regression model is fitted which includes this interaction and its
interacting variables, i.e., GSTM1 and Sc10,1, as explanatory variables. As result, an

estimated hazard ratio of yHR � 1.98 with a p-value of 0.0043 is obtained for GSTM1^
Sc10,1, while GSTM1 and Sc10,1 exhibit an estimated hazard ratio of yHR � 0.98 andyHR � 1.98 with a p-value of 0.3882 and 0.9206, respectively. Hence, GSTM1^ Sc10,1

has a significant interaction effect.

Furthermore, in the application of an univariate likelihood ratio test (Klein and
Moeschberger, 1997) to each binary variable from the data set an effect of Sc10,1

(yHR: 1.36, unadjusted p-value: 0.012), but no main effect for GSTM1 (yHR: 1.05,
unadjusted p-value: 0.638) could be found. Thus, with this univariate testing the
effect that GSTM1 has in interaction with S10 on the recurrence-free time would not

Table 4.3: The four most important SNPs according to VIMEDPO
Set identified by

survivalFS in the analysis of the urinary bladder cancer data and their importance
for VIMConc

Set and VIMEBrier
Set . Their ranks according to the respective importance

measure are specified by the numbers in the brackets.

VIMEDPO
Set VIMConc

Set VIMEBrier
Set Variable

p�10�2q p�10�2q p�10�4q
2.30 (1) 0.48 (1) -0.67 (6) rs1058396

1.24 (2) 0.06 (3) 0.91 (3) GSTM1

0.45 (3) -0.04 (9) 1.06 (2) rs1014971

0.25 (4) 0.04 (4) -1.71 (9) rs17674580
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have been detected.

However, the importance measures of survivalFS for individual SNPs are able to
detect such interaction effects. Table 4.3 reveals that VIMEDPO

Set identifies rs1058396
and GSTM1 as the two most important genetic variations which supports that
GSTM1 ^ Sc10,1 has the largest effect on the recurrence-free time. Table 4.3 fur-

ther shows that VIMConc
Set achieves similar results to VIMEDPO

Set , i.e., it also identifies
rs2736098 as most important genetic variation, but ranks GSTM1 only third with a
small importance value. However, the results of VIMEBrier

Set strongly differ from the re-
sults of VIMEDPO

Set and VIMConc
Set , where VIMEBrier

Set even assigns a negative importance
to rs2736098.

In a second analysis, potentially interesting gene-environment interactions should
be identified. Therefore, the binary clinical variables gender, smoking status, and
invasiveness of the tumor are considered additionally to the genetic variables in a
survivalFS analysis. Again, B � 100 logic regression models are fitted with a max-
imum number of two logic trees and eight logic variables. The importance measure
VIMEDPO

Adj is employed to assess the importance of the 238 identified interactions and

the importance of the single variables is assessed by VIMEDPO
Set .

In this analysis, GSTM1^Sc10,1 is only identified as sixth most important interac-
tion (see Table 4.4). Even another two-way interaction, i.e., Sc2,2 ^ S11,1, is found to
be slightly more important, where S2,2 codes for a recessive effect of the SNP with rs
number rs2736098 and S11,1 codes for a dominant effect of the SNP with rs number

Table 4.4: The six most important interactions according to VIMEDPO
Adj identified

by survivalFS in the analysis of the urinary bladder cancer data including clinical
variables. Also, the proportions of the B � 100 logic regression models containing
the interactions or extended-interactions of the interactions are shown. For a concise
presentation of the interactions, the names of the SNPs are coded, where S10 codes
for the SNP with rs number rs1058396, S2 for rs2736098 and S11 for rs17674580.
Right: The five most important single variables according to VIMEDPO

Set identified
by survivalFS in the analysis of the urinary bladder cancer data including clinical
variables.

VIMEDPO
Adj Prop. Interaction

p�10�2q
5.21 0.97 invasivenessc

1.87 0.77 smokingc

1.03 0.23 S11,1

0.99 0.33 Sc10,1

0.96 0.08 Sc2,2 ^ S11,1

0.89 0.12 GSTM1^ Sc10,1
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Table 4.5: The five most important single variables according to VIMEDPO
Set identified

by survivalFS in the analysis of the urinary bladder cancer data including clinical
variables.

VIMEDPO
Set Variable

p�10�2q
1.92 invasiveness
1.04 rs1058396
0.84 smoking
0.33 rs17674580
0.30 GSTM1

rs17674580. Besides these two interactions, no further interesting interactions are
found. However, the clinical variables invasiveness of the tumor and smoking status
are ranked first and second by VIMEDPO

Adj , where the importance of the invasiveness is
much larger than that of any other interaction. These findings are supported when
investigating the importance of the single variables (see Table 4.5).

In order to further investigate the influence of the newly identified two-way in-
teraction Sc2,2 ^ S11,1, this interaction and its interacting variables are considered
as explanatory variables for the recurrence-free time in a Cox proportional regres-
sion model. This results in an estimated hazard ratio of yHR � 1.58 with a p-value
of 0.0571 for Sc2,2 ^ S11,1, while the interacting variables have no significant effect.
Hence, Sc2,2 ^ S11,1 seems to have a small interaction effect, even though the effect is
not significant at the significance level α � 0.05.

Finally, the genetic factors and clinical variables are considered together in the
prognosis of UBC recurrence. For this purpose, additionally to GSTM1^Sc10,1, Sc2,2^
S11,1 and their interacting variables, the variables age, gender, and smoking status
as well as the invasiveness and grading of the tumor are employed as explanatory
variables in a Cox proportional regression model. This analysis reveals that two
variables have a significant influence on the recurrence-free time of UBC, namely the
invasiveness of the tumor with an estimated hazard ratio of yHR � 0.56 and a p-value
of 0.0057 and GSTM1 ^ Sc10,1 with an estimated hazard ratio of yHR � 1.85 and a

p-value of 0.0133. Moreover, an estimated hazard ratio of yHR � 1.60 and a p-value
of 0.0558 is detected for Sc2,2 ^ S11,1. Hence, even when adjusting for potentially
relevant clinical variables, GSTM1^Sc10,1 still has a significant interaction effect and
Sc2,2 ^ S11,1 still seems to have a small interaction effect.

77



Part II

Structural MRI based parcellation
of the human brain using spatial
hierarchical clustering algorithms
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Chapter 5

Theoretical framework

In the second part of this thesis, the main goal is to apply spatial hierarchical ag-
glomerative clustering (SHAC) (Carvalho et al., 2009) and spatial ensemble clustering
(SEC) to structural MRI data to parcellate the human brain into spatially contiguous
brain regions. Moreover, the performance of these SHAC and SEC methods should be
compared with another popular clustering method that has already been applied to
MRI data, namely spatial spectral clustering (SSPEC) (Craddock et al., 2012; Yuan
et al., 2015). For this, the theoretical foundations are presented in this chapter.

A general overview of some of the most popular clustering methods for numerical
data is given in Section 5.1. This review focuses mainly on hierarchical agglomer-
ative clustering methods as well as on spectral clustering, since spatial adaptations
of these methods are employed in this thesis for brain parcellation. However, since
spectral clustering is based on the popular K-means algorithm (Lloyd, 1982; Mac-
Queen, 1967), K-means and some of its variants are included in the review as well.
Note that K-means is not employed for brain parcellation in this thesis, since it does
not generate spatially connected brain regions. Even though spatial adaptations of
K-means exist (see Section 5.3), these adaptations are computationally much more
expensive than K-means and are, therefore, not considered in this thesis. Further
note that this review is limited to clustering methods that generate hard data par-
titions, that is, partitions that assign exactly one label to each data point. For a
review of soft/fuzzy clustering methods see, e.g., Gosain and Dahiya (2016).

Usually, clustering methods are intended to cluster data points. However, some
clustering methods are especially developed for the task of clustering variables. Since
the goal in this thesis is to cluster voxels, i.e., the values on a regular grid in 3D
space, and these voxels are the variables in the data set, variable clustering methods
are summarized in Section 5.2. The spatial information provided by the 3D coordi-
nates of the voxels should be considered to find clusters of spatially contiguous voxels.
Therefore, Section 5.3 reviews contiguity constrained clustering algorithms, including
SHAC and SSPEC algorithms. The robustness, stability and quality of the cluster-
ing results can be improved by employing ensemble clustering methods which are
reviewed in Section 5.4. Since clustering is an unsupervised learning technique, i.e.,
the true clustering structure and the true number of clusters (if existent) is unknown,
an important aspect is the evaluation of clustering performance and the identification
of interesting numbers of clusters. Techniques for evaluating clustering performance
and for identifying interesting numbers of clusters are presented in Section 5.5 and
Section 5.6, respectively.

In Section 5.7, a very basic introduction to the anatomy of the human brain
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and neuroimaging techniques is given. A large number of human brain parcellations
derived from different modalities exist in the literature. Section 5.8 gives an overview
of existing brain parcellations and how some of them are generated using clustering
methods.

Let, for this entire chapter, X P RN�V be a data matrix with numerical entries,
where N is the number of data points and V is the number of variables. Further
let x�i , i � 1, . . . , N, be the i-th row of X, i.e., the i-th data point, and let xj, j �
1, . . . , V, be the j-th column of X, i.e., the j-th variable. Note that in all sections of
this chapter, except for Section 5.2 and Section 5.8, the objects to be clustered are
data points and not variables. However, all methods presented in these sections can
also be employed to cluster variables, simply by clustering the transpose of X.

5.1 Clustering algorithms

Data clustering is an important discipline in the field of data mining and machine
learning. It is applied to a vast number of problem domains, such as image par-
cellation (Thirion et al., 2014), genetics (Oyelade et al., 2016) or textual analysis
(Allahyari et al., 2017). Data clustering aims to group entities, e.g., data points or
variables, such that entities belonging to the same group (cluster) are more similar
(in a sense) to each other than to those belonging to another cluster.

A variety of different clustering algorithms are introduced in the literature and
which algorithm to choose depends highly on the underlying data domain. The goal
of this section is to give a compressed overview of some of the most popular clustering
methods introduced in the literature, where the focus lies on those clustering methods
which are relevant for the structural MRI based parcellation performed in Chapter
7. Note that most information presented in this section is obtained from Aggarwal
and Reddy (2014). For an extensive review on data clustering refer to, e.g., Aggarwal
and Reddy (2014).

The two most popular clustering methods are partitional and hierarchical clus-
tering methods which are discussed in Section 5.1.1 and Section 5.1.2, respectively.
These methods are applied heavily in many different fields, mainly because they are
simple and easy to implement relative to other clustering methods (Aggarwal and
Reddy, 2014). Spectral clustering methods are another popular family of cluster-
ing methods. Since these methods make no assumption about the shape of clusters,
they can be applied to a variety of more complex data scenarios. Spectral clustering
methods are described in Section 5.1.3.

5.1.1 Partitional clustering algorithms

Partitional clustering methods aim to find clusters of similar data points inherent in
the data by optimizing an objective function. The algorithms must be provided with
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a set of initial seeds which are improved iteratively. The number of initial seeds is to
be specified by the user.

The by far most popular (partitional) clustering method used in scientific and
industrial applications, mainly due to its simplicity and efficiency, is the K-means
algorithm (Berkhin, 2006; Lloyd, 1982; MacQueen, 1967). K-means is an algorithm
that aims to solve an optimization problem, where the objective function to be opti-
mized is the sum of squared errors (SSE). The SSE of a partition CK � pC1, . . . , CKq
is given by

SSE �
Ķ

k�1

¸
x�i PCk

‖ x�i � c�k ‖2
2, (5.1)

where ‖ � ‖2
2 is the squared Euclidean distance and c�k is the centroid of Ck, i.e.,

c�k �
1

|Ck|
¸
x�i PCk

x�i .

In other words, the aim in the K-means formulation is to select K centroids, such
that the overall squared Euclidean distance between each data point and its closest
centroid, i.e., the SSE, is minimized. The reason why the mean over all data points
from a cluster is chosen as centroid of that cluster is that this mean is the best choice
for minimizing the SSE (Aggarwal and Reddy, 2014).

Since the minimization of the SSE is known to be NP-hard, e.g., the K-means
algorithm proposed by Lloyd (1982) is employed to search for the optimal solution.
In the beginning of the algorithm, K initial centroids are chosen according to some
initialization method. Then, the following two steps are repeated iteratively, until a
convergence criterion is met: (i) K clusters are formed by assigning each data point
to its nearest centroid according to some distance function. (ii) The centroids of each
cluster are recalculated by taking the mean over all data points belonging to that
cluster.

The K-means algorithm is a greedy algorithm and is guaranteed to converge to
a local minimum but not necessary to the global minimum. See Bottou and Bengio
(1995) or Selim and Ismail (1984) for a detailed analysis of the mathematical con-
vergence of the algorithm. Therefore, K-means is typically run multiple times with
different initializations and the partition is chosen that minimizes the SSE. Generally,
the algorithm stops if the centroids do not change anymore. However, some relaxed
stopping conditions used in practice are, e.g., that the algorithm terminates, if less
than 1% of the data points change clusters or if a predefined maximum number of it-
erations is reached (default in Python is 300 iterations) (Aggarwal and Reddy, 2014).
The computational complexity in each iteration is OpNKq, i.e., the algorithm is fast
(Ghosh and Dubey, 2013). K-means only finds spherical clusters. A disadvantage of
the algorithm is that the number of clusters must be specified by the user and is not
automatically determined.
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The performance of the K-means algorithm is mainly influenced by two factors,
i.e., the choice of the initial centroids and the estimation of the number of clusters K.
A simple and widely used initialization method suggested by MacQueen (1967) is to
randomly and uniformly select K data points as initial centroids. However, in many
examples the partitions generated by K-means using this initialization technique
are arbitrarily bad (Arthur and Vassilvitskii, 2006). Therefore, other initialization
methods are introduced in the literature that improve the accuracy of K-means such
as K-means++ (Arthur and Vassilvitskii, 2006) or K-means‖ (Bahmani et al., 2012)
for large data sets, i.e., data sets with a large number of data points.

Due to its simplicity, the K-means framework can be easily modified. The mini-
batch K-means algorithm introduced by Sculley (2010) reduces the computational
time of K-means but comes at the cost of a quality loss for larger numbers of clusters
(Béjar Alonso, 2013). Bisecting K-means is a divisive hierarchical clustering method
(see Section 5.1.2) that uses K-means to iteratively split a parent cluster into two
child clusters (Karypis et al., 2000). One major drawback of K-means is that it can
only be used to identify linearly separable clusters. A modification of K-means which
is able to identify non-linear separable clusters is Kernel K-means (Dhillon et al.,
2004). Kernel K-means uses a nonlinear kernel function in order to map the input
data onto a high-dimensional kernel space. Afterwards, K-means linearly separates
the mapped data. However, the computational complexity is higher compared to
K-means. Note that the spectral clustering method (see Section 5.1.3) can be seen
as a variation of Kernel K-means (Dhillon et al., 2004).

One prominent variant of K-means is the K-medoids method (Aggarwal and
Reddy, 2014). Instead of using the mean over all data points from one cluster as
centroid of that cluster, in K-medoids the clusters are represented by an actual
data point, called medoid. This makes K-medoids more robust against outliers than
K-means. The most popular realization of K-medoids is the partitioning around
medoids (PAM) algorithm (Kaufman and Rousseeuw, 1990). The running time of
PAM is OpKpN �Kq2q and, therefore, higher compared to K-means which makes it
is not suitable for large data sets (Ng and Han, 2002). Hence, two modifications of
PAM for large data sets are Clustering LARge Applications (CLARA) (Kaufman and
Rousseeuw, 1990), which employs a subsampling approach, and CLARANS (Cluster-
ing Large Applications based on Randomized Sampling) (Ng and Han, 2002), which
uses a randomized search to reduce computational time.

5.1.2 Hierarchical clustering algorithms

Unlike most clustering algorithms, hierarchical clustering algorithms do not deal with
one specific number of clusters in one run but instead build a hierarchy of clusters,
where for each possible number of clusters K � 1, . . . , N the respective partition is
part of the output. Hierarchical clustering algorithms can be further sub-categorized
into hierarchical agglomerative clustering (HAC) and hierarchical divisive clustering
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methods. HAC algorithms start by considering each data point as singleton cluster
and then build a bottom-up hierarchy by merging iteratively two clusters until all data
points belong to one cluster. In contrast, hierarchical divisive clustering methods start
with all data points in one cluster and then build a top-down hierarchy by iteratively
splitting up a cluster into two sub-clusters. In the following, HAC algorithms are
discussed first and, afterwards, a short overview of hierarchical divisive clustering
algorithms is given.

Hierarchical agglomerative clustering

HAC algorithms (Jain et al., 1999; Murtagh, 1983) differ from each other by the choice
of a distance metric and an agglomeration method. The distance metric determines
the distance between data points, where the most popular choice for the distance
between two data points x�i and x�` , i, ` � 1, . . . , N, is the Euclidean distance

dEuclpx�i ,x�` q �
gffe V̧

j�1

�
x�i,j � x�`,j

�2
.

Other possible choices are, e.g., the statistical distance or the Minkowski metric
(Rencher and Christensen, 2012).

The agglomeration method determines the distance between clusters. Popular
agglomeration methods are the single linkage method, the complete linkage method
or the average linkage method (Rencher and Christensen, 2012). According to the
single linkage method, also referred to as nearest neighbor method, the distance
between two clusters Ck and Cm, k,m � 1, . . . , K, is the distance between the most
similar two data points (one data point from each cluster), i.e.,

DSL pCk, Cmq � min
x�i PCk,x

�
` PCm

dpx�i ,x�` q,

where d is a distance metric between data points, e.g., d � dEucl. The complete
linkage method calculates the distance between Ck and Cm as the distance between
the most dissimilar two data points (one data point from each cluster), i.e.,

DCL pCk, Cmq � max
x�i PCk,x

�
` PCm

dpx�i ,x�` q,

and according to the average linkage method, the distance between Ck and Cm is the
average over all pairwise distances between the data points from the two clusters,
i.e.,

DAL pCk, Cmq � 1

|Ck||Cm|
¸
x�i PCk

¸
x�` PCm

dpx�i ,x�` q

where |Ck| or |Cm| is the number of data points belonging to Ck or Cm, respectively.
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Another popular agglomeration method is Ward’s minimum variance method
(Ward Jr, 1963), where the distance between two clusters is the increase in total
within cluster variance, i.e., the SSE (see (5.1)), when merging two clusters (Rencher
and Christensen, 2012). Since the squared Euclidean distance between the cluster
centers c�k and c�m of clusters Ck and Cm, respectively, is proportional to the increase
in total within cluster variance, the distance between the two clusters is

DWard pCk, Cmq � dEucl pc�k, c�mq2�
1

|Ck| �
1

|Cm|

 ,

where c�k � 1
|Ck|

°
x�i PCk

x�i . Note that it is recommended to only use the Euclidean

distance dEucl with Ward’s minimal variance method (Rencher and Christensen,
2012).

In the beginning of any HAC algorithm each data point forms its own cluster,
and a N � N dissimilarity matrix is calculated using the distance metric. In each
iteration the two closest clusters are merged, and the agglomeration method is used
to update the dissimilarity matrix, i.e., to calculate the distance of the newly formed
cluster to the other clusters. This procedure is repeated until all data points are
in the same cluster. By successively splitting up the last aggregation, a partition
with any number of clusters can be obtained from the merging hierarchy (Aggarwal
and Reddy, 2014). A more detailed description of a HAC algorithm is presented in
Algorithm 2.

HAC algorithms have several advantages. They are easy to understand and easy to
use. Moreover, depending on the application, the user has the choice between different
distance metrics and agglomeration methods, making HAC algorithms applicable to a
variety of data scenarios. Besides choosing the distance metric and the agglomeration
method, no further parameters must be specified by the user (Embrechts et al., 2013).
A great advantage of HAC algorithms is that the hierarchy can be cut at any level
and, hence, a partition with any number of clusters can be obtained in no time once
the hierarchy is formed.

However, this advantage of HAC algorithms is at the same time their main dis-
advantage. If at one level of a bottom-up hierarchy two data points or two clusters
of data points are joined together, they can not be separated at a higher level. Thus,
HAC algorithms can never repair bad decisions that were done at an earlier step
of the algorithm (Kaufman and Rousseeuw, 1990). Besides this main disadvantage,
there are some other drawbacks. E.g., partitions of the same data set can be very
different depending on the choice of the distance metric or the agglomeration method
(Embrechts et al., 2013). Also, HAC algorithms do not scale well to large data sets.
For the dissimilarity matrix NpN � 1q{2 pairwise distances must be calculated. For
large N this is not only time consuming but also memory consuming, which is the real
bottleneck on large data sets (Embrechts et al., 2013). Generally, the computational
complexity of a naive implementation of a HAC algorithm is OpN3q. By optimizing
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Algorithm 2 Hierarchical agglomerative clustering

1. Start with N clusters, where each data point forms its own cluster.

2. Determine the distance matrix D P RN�N
¥0 with all pairwise cluster distances

according to the respective distance metric.

3. Merge the two clusters Ck and Cm that have the smallest distance.

4. Update the distance matrixD by removing the rows and columns corresponding
to clusters Ck and Cm and adding one row and column corresponding to the
merged cluster Ck YCm, where the entries of the newly added row and column
are the distances (according to the agglomeration method) of the merged cluster
to all the remaining clusters.

5. Repeat steps 3. and 4. until all data points are merged into a single cluster.

6. Successively split up the last aggregation, until the desired number K of clusters
is reached.

the implementation, the computational complexity can be reduced to OpN2 logpNqq.
For the single linkage method even a computational complexity of OpN2q can be
achieved (Jeon et al., 2017).

Therefore, Embrechts et al. (2013) introduce a hybrid hierarchical clustering al-
gorithm for large data sets. In order to reduce computational time and to decrease
memory consumption, they seed hierarchical clustering with initial clusters generated
by a faster clustering algorithm such as K-means.

Among others, Senbabaoğlu et al. (2014) found that HAC with average linkage
is unreliable, since it frequently assigns outlier data points into small or singleton
clusters. The single linkage method has a chaining tendency, i.e., to form elongated
clusters. In many applications it is observed that the complete linkage method pro-
duces better hierarchies than the single linkage method, where both methods are
sensitive to outliers (Jain et al., 1999). Ward’s minimum variance method tends to
form clusters of equal size and is less sensitive to outliers than the linkage methods
(Rencher and Christensen, 2012).

Hierarchical divisive clustering

Hierarchical divisive clustering, commonly known as top-down approach, is described,
e.g., in Kaufman and Rousseeuw (1990) under the name DIANA (DIvisive ANAly-
sis). Divisive clustering starts with one maximal cluster including all N data points.
Afterwards, clusters are iteratively split up until each cluster consists of only one data
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point. The performance of the algorithm is influenced by the choice of the cluster
to be split (e.g., the cluster with the largest square error), by the splitting criterion
(e.g., the SSE), by the splitting method (e.g., K-means) and by how to handle noise
data points. Divisive clustering algorithms are computationally more efficient than
HAC algorithms, if the hierarchy is not generated all the way down to the single
data points. E.g., the divisive hierarchical clustering algorithm bisecting K-means
(Karypis et al., 2000), which uses K-means as splitting method and which stops after
K � 1 iterations, i.e., if K clusters are generated, has a computational complexity of
OpNKq. However, divisive clustering algorithms suffer from the same main drawback
as HAC algorithms, i.e., if at one level of a top-down hierarchy two data points or
two clusters of data points are split up, they can not be reunited at a lower level
(Kaufman and Rousseeuw, 1990).

5.1.3 Spectral clustering

Spectral clustering algorithms (Ng and Han, 2002; Shi and Malik, 2000) are one
of the most popular modern clustering algorithms, mainly because they are easy
to implement, can find clusters of arbitrary nonlinear shapes and often outperform
popular clustering algorithms such as K-means. Moreover, (spatial) constraints can
be easily incorporated (see Section 5.3). Spectral clustering algorithms consist of
three steps (see, e.g., Aggarwal and Reddy (2014) or Von Luxburg (2007)).

In the first step, an undirected similarity graph G � prV ,Eq is constructed based
on all the data points, where each vertex vi, i � 1, . . . , N, in the graph represents a
data point x�i and E describes the edges between vertices. Typically, a symmetric
adjacency matrix (also called affinity matrix) W � pwi`qi,`�1,...,N is employed to
describe G, where wi` is the similarity between x�i and x�` with wi` � 0, if vi and
v` are not connected. There exist different ways to construct the adjacency matrix,
e.g., by calculating the ε-neighborhood graph, where only data points are connected,
whose pairwise distance is below ε, the K-nearest neighbor graph, where x�i and x�`
are only connected, if x�` is among the K-nearest neighbors of x�i or vice versa, or
the fully connected graph, where two data points are connected, if their pairwise
similarity is positive (Von Luxburg, 2007). A popular similarity measure is given by
the radial basis function (RBF), i.e.

wi` � exp

�
�‖ x�i � x�` ‖2

2

2σ2



,

where the scaling parameter σ2 ¡ 0 determines how strongly the similarity of data
points decreases with increasing squared Euclidean distance.

In the second step, the graph Laplacian matrix is calculated based on the adja-
cency matrix. Therefore, let

rai � Ņ

`�1

wi`
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be the degree of a vertex vi and the diagonal matrix

A � diagtra1, . . . ,raNu
is called the degree matrix. There exist different definitions of the graph Laplacian
matrix in the literature. The unnormalized graph Laplacian matrix is defined as

L � A�W .

Some of the most important properties of L for spectral clustering are (Mohar, 1997;
Mohar et al., 1991; Von Luxburg, 2007) that L is symmetric and positive semidefi-
nite, i.e., all N eigenvalues of L are non-negative and real-valued, and the smallest
eigenvalue of L is 0. Moreover, if G consists of M connected components C1, . . . , CM ,
the number of 0-valued eigenvalues of L is also M . In this case, the corresponding
eigenvectors are given by the indicator vectors 1C1 , . . . ,1CM , where 1Cm P t0, 1uN
with the i-th entry equal to 1, if and only if vi P Cm. Moreover, two normalized
graph Laplacian matrices are introduced in the literature (Chung and Graham, 1997;
Von Luxburg, 2007), i.e.,

Lsym � A� 1
2LA� 1

2 � I �A� 1
2WA� 1

2 ,

Lrm � A�1L � I �A�1W .

Both these matrices are positive semidefinite, but only Lsym is symmetric. Moreover,
if λ is an eigenvalue of Lsym with eigenvector u, λ is also an eigenvalue of Lrm with
eigenvector w � A� 1

2u. Again, if C1, . . . , CM are the M connected components of G,
the multiplicity of the eigenvalue 0 of Lsym and Lrm is also M . The corresponding
eigenvectors are given by the indicator vectors 1Cm ,m � 1, . . . ,M, for Lrm and
by A

1
2 1Cm for Lsym. After the respective graph Laplacian matrix, i.e., L,Lsym or

Lrm, has been calculated, the K eigenvectors are determined that correspond to the
K smallest eigenvalues of the graph Laplacian matrix, also called the K smallest
eigenvectors. These K eigenvectors are then combined into a matrix F P RN�K . If
the eigenvectors are calculate based on Lsym, the rows of F are normalized to norm
1.

In the third step, a clustering method, e.g., K-means, is employed to partition the
rows of F into K clusters C1, . . . , CK . Finally, data point x�i is assigned to cluster
Ck, k � 1, . . . , K, if and only if the i-th row of F is assigned to cluster Ck.

In order to get a better understanding of the intuition behind spectral clustering,
spectral clustering is considered as an approximation to a graph partitioning problem.
Let C1, . . . , CK be K disjunct subsets of the vertices of G. The Cut value is defined
as

CutpC1, . . . , CKq � 1

2

Ķ

k�1

¸
viPCk,v`PC

c
k

wi`,
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where Cc
k � tv` P rV |v` R Cku and the minimum Cut (MinCut) problem is given by

arg min
C1,...,CK

CutpC1, . . . , CKq, C1 �Y . . . �Y CK � rV .
MinCut can be efficiently solved by existing algorithms (Shi and Malik, 2000). How-
ever, very often many subsets of the MinCut solution consists of just a small number
of vertices or even just one vertex. Hence, two common normalizations of the cut value
that entail more balanced MinCut solutions are the RatioCut (Hagen and Kahng,
1992) and the normalized Cut (NCut) (Shi and Malik, 2000), i.e.

RatioCutpC1, . . . , CKq � 1

2

Ķ

k�1

1

|Ck|
¸

viPCk,v`PC
c
k

wi`,

NCutpC1, . . . , CKq � 1

2

Ķ

k�1

1

volpCkq
¸

viPCk,v`PC
c
k

wi`,

where |Ck| is the number of vertices of Ck and volpCkq �
°
viPCk

rai is the sum over the

edge-weights of Ck. For a partition pC1, . . . , CKq of rV , the N �K indicator matrix
H � phikqi�1,...,N,k�1,...,K is defined by

hik � 1
La|Ck| � Ipvi P Ckq,

where HTH � I. It can be shown (Von Luxburg, 2007) that the minimization
problem

arg min
C1,...,CK

RatioCutpC1, . . . , CKq, C1 �Y . . . �Y CK � rV
is equivalent to the minimization problem

arg min
HPRN�K

trpHTLHq, HTH � I, H as defined above.

Discarding the discreteness condition of H yields the relaxed minimization problem

arg min
HPRN�K

trpHTLHq, HTH � I.

It can be further shown (Lütkepohl, 1996) that the solution to this minimization
problem is the matrix with the smallest K eigenvectors of L as columns. Again,
K-means can be applied to the rows of this matrix to obtain a discrete solution.
Hence, the unnormalized spectral clustering algorithm based on L solves the (relaxed)
RatioCut minimization problem. Similarly, it can be shown (Shi and Malik, 2000;
Von Luxburg, 2007) that the normalized spectral clustering algorithm based on Lrm

solves the (relaxed) NCut minimization problem.

The idea behind spectral clustering can also be explained based on random walks
on G (Meila and Shi, 2001; Von Luxburg, 2007). Von Luxburg (2007) recommends
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to perform spectral clustering based on the normalized Laplacian matrix Lrm. It can
be shown that spectral clustering can be considered as a special case of the weighted
kernel K-means formulation (Dhillon et al., 2004).

Determining the adjacency matrix of a fully connected graph based on N data
points with V dimensions is of OpN2V q and calculating the eigenvalues of the Lapla-
cian matrix is of OpN3q (Aggarwal and Reddy, 2014). Moreover, the respective
matrices need to be stored in memory. Hence, spectral clustering is both time con-
suming and memory consuming, especially for large data sets. Note that setting
up the K-nearest neighbor graph or the ε-neighborhood graph is still of OpN2V q.
However, the calculation of the eigenvectors is faster due to the sparsity of the result-
ing adjacency matrix. Von Luxburg (2007) recommends to consider the K-nearest
neighbor graph as the first choice for setting up the adjacency matrix, because it
generates a sparse adjacency matrix, it is easy to use and it is less sensitive to the
wrong specification of parameters compared to the other graphs.

If an approximation of the adjacency matrix of a nearest neighbor graph is suf-
ficient for the user, there exist some approximate nearest neighbor search strategies,
such as randomized KD-trees (Muja and Lowe, 2009; Silpa-Anan and Hartley, 2008)
or locality-sensitive hashing (LSH) (Datar et al., 2004), that speed up the computa-
tional time. For the calculation of the eigen-decomposition of the Laplacian matrix,
extreme eigensolvers, such as ARPACK (Lanczos algorithm) (Lehoucq et al., 1998) or
LOBPCG (Knyazev, 2001), are employed, which determine several extreme (smallest
or largest) eigenvalues with corresponding eigenvectors, and which can, therefore,
efficiently find the K smallest eigenvectors of the Laplacian matrix.

5.2 Variable clustering

In the task of 3D image clustering, the entities to be clustered are voxels, i.e., fea-
tures/variables. While, on the one hand, any of the clustering methods described in
the previous section can be employed for this task (by simply clustering the transpose
of the data matrix), on the other hand, also methods that are especially developed
to cluster variables can be used. Vigneau and Qannari (2003) introduce a method
called clustering of variables around latent components. Since a sub-method of this
method is the foundation of the newly proposed SPARTACUS method (see Section
6.2), this method is described in more detail in Section 5.2.1. A short summary of
other variable clustering methods is presented in Section 5.2.2.

5.2.1 Clustering of variables around latent components

The basic idea of the clustering of variables around latent components method by
Vigneau and Qannari (2003) is to assign variables that are highly correlated with each
other to the same cluster. Each cluster is represented by a latent component which
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summarizes the information of all variables from that cluster. Vigneau and Qannari
(2003) distinguish two scenarios. In the first scenario, the sign of correlation is ignored
and also highly negatively correlated variables are clustered together. In this case,
the latent component of a cluster is the first standardized principal component of
the data matrix whose columns correspond to the variables from this cluster. In
the second scenario, the sign of correlation is considered such that highly negative
correlated variables are not clustered together. In this case, the latent component of a
cluster is the normalized mean over all variables from this cluster. In both scenarios,
the goal is to maximize a global criterion which reflects the overall correlation of
variables with their corresponding latent component.

This maximization is performed iteratively combining a hierarchical clustering
approach and a K-means like clustering approach. In the first step, hierarchical
clustering is performed in order to obtain a partition withK clusters. In each iteration
of the hierarchical clustering those two clusters are merged which, when being merged,
cause the smallest decrease in the global criterion. In the first scenario, this decrease
in the global criterion is equal to the sum of the first eigenvalues of the covariance
matrices of the two clusters involved in the merging minus the first eigenvalue of
the covariance matrix of the merged cluster. In the second scenario, this decrease
in the global criterion is equal to the sum of the standard deviations of the two
clusters involved in the merging weighted with their cluster size minus the standard
deviation of the merged cluster weighted with its size. In the second step, a K-means
like procedure is performed using the result from the hierarchical clustering step for
initialization. Starting from an initial partition, the latent component is calculated
for each of the K clusters and each variable is assigned to the latent component with
which the squared covariance or covariance is largest in the first or second scenario,
respectively. This procedure is repeated until convergence. Implementation of these
methods are available in the R package ClustVarLV (Vigneau et al., 2015).

In the following, the hierarchical clustering approach of the first scenario is de-
scribed in more detail, as this approach is the foundation of the newly proposed
SPARTACUS method (see Section 6.2).

As already mentioned above, the goal of the hierarchical clustering approach of the
first scenario is to determine K clusters and K corresponding latent components, such
that a criterion is maximized which reflects the linear relation between the variables
in each cluster and the latent component associated with this cluster. Therefore,
the columns xj, j � 1, . . . , V, of the data matrix X are centered, and preferably,
but not necessarily, standardized. Then, for a fixed number K, the goal is to find
the partition CK � tC1, . . . , CKu of the variables into K clusters with corresponding
latent components c1, . . . , cK which maximizes

T � pN � 1q
Ķ

k�1

¸
xjPCk

yCov pxj, ckq2 ,

under the constraint cTk ck � 1 (Vigneau and Qannari, 2003). yCov pxj, ckq is the

90



empirical covariance between vectors xj and ck.

Next, the latent component ck of cluster Ck is investigated in more detail. Let
Xk P RN�|Ck| be the matrix which columns consist of the variables xj P Ck, i.e.,
Xk is the data matrix of cluster Ck. As mentioned above, the latent component of
cluster Ck is defined as the first normalized principal component of Xk. This first
normalized principal component is calculated as follows.

Let x
pkq
i be the i-th row of Xk, i � 1, . . . , N . Further let

xpkq � 1

N

Ņ

i�1

x
pkq
i P R|Ck|

be the vector including for each variable in Ck the mean value over all subjects. As-
sume that x

pkq
1 , . . . ,x

pkq
N is a sample of independent |Ck|-dimensional random vectors

from a |Ck|-dimensional distribution with mean vector µk and covariance matrix Σk.
An estimate for Σk is the empirical covariance matrix

Sk � 1

N � 1

Ņ

i�1

�
x
pkq
i � xpkq

	�
x
pkq
i � xpkq

	T
. (5.2)

However, since it is assumed that the columns of X are centered and, therefore, the
columns of Xk are also centered, it follows that xpkq � 0|Ck| and (5.2) simplifies to

Sk � 1

N � 1
XT

kXk.

Let λCk1 be the first eigenvalue of Sk and eCk1 be the corresponding first eigenvector.
The first normalized principal component of cluster Ck is then given by

ck � Xke
Ck
1

‖Xke
Ck
1 ‖2

,

where ‖ � ‖2 is the Euclidean norm. Note that ck is not only normalized, i.e., cTk ck � 1,
but, since the columns of Xk are centered, also centered.

Since Xk is centered, ck is also equal to the first normalized eigenvector of
1

N � 1
XkX

T
k (Vigneau and Qannari, 2003). To see this consider again eCk1 , i.e., the

first eigenvector of 1
N�1

XT
kXk with corresponding eigenvalue λCk1 . Then equation

1

N � 1
XT

kXke
Ck
1 � λCk1 e

Ck
1

holds. Multiplying this equation by Xk and dividing by ‖Xke
Ck
1 ‖2 results in

1

N � 1
pXkX

T
k q

Xke
Ck
1

‖Xke
Ck
1 ‖2

� λCk1

Xke
Ck
1

‖Xke
Ck
1 ‖2
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ðñ 1

N � 1
pXkX

T
k qck � λCk1 ck.

Therefore, ck is a normalized eigenvector of 1
N�1

XkX
T
k , where λCk1 is the correspond-

ing eigenvalue of ck, which is also the corresponding eigenvalue of eCk1 . Analogously, it
can be shown that all the non-zero eigenvalues of 1

N�1
XT

kXk are identical to the non-

zero eigenvalues of 1
N�1

XkX
T
k . Hence, ck is not only the first normalized principal

component of Xk, but also the first normalized eigenvector of 1
N�1

XkX
T
k .

Returning to criterion T , it can be rewritten as

T � pN � 1q
Ķ

k�1

¸
xjPCk

�
1

N � 1
pxj � xjqT pck � ckq


2

xj�ck�0� 1

N � 1

Ķ

k�1

¸
xjPCk

cTkxjx
T
j ck

� 1

N � 1

Ķ

k�1

cTkXkX
T
k ck,

where xj and ck are the mean values of xj and ck, respectively. Since ck is the first
eigenvector of 1

N�1
XkX

T
k with corresponding eigenvalue λCk1 , equation

1

N � 1
XkX

T
k ck � λCk1 ck

holds. The maximization criterion can then further be rewritten as

T �
Ķ

k�1

cTk λ
Ck
1 ck �

Ķ

k�1

λCk1 .

Hence, the maximization criterion T is equal to the sum of the first eigenvalues of
the matrices 1

N�1
XkX

T
k , k � 1, ..., K (Vigneau and Qannari, 2003). In the following,

λCk1 and ck are referred to as the first eigenvalue and the latent component of cluster
Ck, respectively.

Based on this result, a distance measure for clusters is constructed, which can
be used for cluster agglomeration in the HAC algorithm (Algorithm 2). For this,
note that at the beginning of any HAC algorithm each variable is its own cluster.
Following, the first eigenvalue of cluster C

p0q
k , k � 1, . . . , V, is the first eigenvalue of

1

N � 1
XT

kXk � 1

N � 1
xTkxk

xk�0� yVarpxkq,

i.e., λ
C
p0q
k

1 � yVarpxkq and T is equal to

T0 �
V̧

k�1

λ
C
p0q
k

1 �
V̧

k�1

yVarpxkq.
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At iteration κ, κ � 1, ..., V, the aggregation of two clusters C
pκ�1q
k and C

pκ�1q
m , k � m,

k,m P t1, . . . , V � κ� 1u, results in a variation in T of

Tκ�1 � Tκ � λ
C
pκ�1q
k

1 � λC
pκ�1q
m

1 � λ
C
pκ�1q
k YC

pκ�1q
m

1 .

Furthermore, Vigneau and Qannari (2003) show that

λ
C
pκ�1q
k

1 � λC
pκ�1q
m

1 � λ
C
pκ�1q
k YC

pκ�1q
m

1 ¥ 0.

Hence, any cluster aggregation causes the criterion T to decrease. The idea is to
merge, at each iteration, the two clusters, that cause the smallest decrease in T .
Consequently, the distance between two clusters Ck and Cm is

Dlacomp pCk, Cmq � λCk1 � λCm1 � λCkYCm1 (5.3)

and Dlacomp can be used as agglomeration method in Algorithm 2, where it has to be
taken into account that the objects to be clustered are variables, whereas Algorithm
2 is formulated to cluster data points.

5.2.2 Other variable clustering methods

An extension of the clustering of variables around latent components method to clus-
ter categorical variables is presented by Saracco et al. (2010). Chavent et al. (2012)
introduce an R package called ClustOfVar that basically implements the same al-
gorithms as those described above from Vigneau and Qannari (2003) but also al-
lows qualitative variables and a mix between qualitative and quantitative variables.
Dhillon et al. (2003) propose diametrical clustering, i.e., a very similar approach to the
K-means like clustering approach from the first scenario from Vigneau and Qannari
(2003), to cluster genes. Bühlmann et al. (2013) introduce a hierarchical clustering
algorithm, where in each iteration the two clusters with the highest canonical cor-
relation are merged. Bühlmann et al. (2013) show theoretically that this procedure
finds an optimal solution and is statistically consistent.

Another popular method for clustering variables is PROC VARCLUS from the
SAS software (Sas., 1999). PROC VARCLUS is a hierarchical divisive clustering
method starting with all variables in a single cluster. In each iteration, a cluster is
selected to be split up. One selection criterion is to choose the cluster with the largest
second eigenvalue. For the selected cluster the first two principal components are cal-
culated and each variable from that cluster is assigned to the principal component
with which it has the highest squared correlation. Then, the latent components (first
principal component or mean) of the newly formed clusters are calculated and every
variable is reassigned to the latent component (now considering also the latent com-
ponents of the not selected clusters) with which it has the highest squared correlation.
This procedure is repeated until the desired number of clusters is reached.
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5.3 Contiguity constrained clustering

In some data scenarios it can be necessary to impose constraints on the set of per-
mitted clustering solutions. Having in mind that the overall goal is to cluster voxels
and that these voxels are organized in a regular grid structure, clustering algorithms
should be used that consider this spatial information. Therefore, spatially constrained
adaptations of hierarchical, spectral and partitional clustering methods are presented
in Section 5.3.1, Section 5.3.2 and Section 5.3.3, respectively. These methods use the
spatial information in addition to the information that is considered by the uncon-
strained approaches. Other contiguity constrained clustering methods are, e.g., the
SKATER method (Assunção et al., 2006), which is a spatially constrained minimum
spanning tree based clustering algorithm for regionalization, or the Automatic Zoning
Procedure (AZP) proposed by Openshaw (1977), which is an iteratively relocation
algorithm with contiguity constraints.

In general, spatially constrained clustering algorithms are applied in several fields,
such as earth science, image processing, social science or genetics (Chavent et al.,
2018). Due to the constraint, the number of possible clustering solutions is reduced.
Hence, the clustering solutions based on the constrained clustering methods may be
less optimal compared to the clustering solutions based on the unconstrained coun-
terparts. Furthermore, the constrained clustering solutions are typically less variable
than their unconstrained counterparts. Also, the constrained clustering solutions are
likely to be easier to interpret (Legendre and Legendre, 2012). The most common
group of spatial constraints requires the data points within a cluster to be strictly
spatially contiguous. Hence, clustering algorithms with this contiguity constraint find
clusters of similar data points, where all data points within that cluster are spatially
connected.

Typically, the contiguity relationship is expressed in a binary matrix

S� � ps�i`qi,`�1,...,N P t0, 1uN�N , (5.4)

where s�i` � 1, if the i-th data point x�i and the `-th data point x�` are spatially
contiguous, and s�i` � 0, otherwise. Data points which are spatially contiguous are
also referred to as neighbors.

5.3.1 Spatial hierarchical agglomerative clustering

The idea of contiguity constrained hierarchical (agglomerative) clustering (Carvalho
et al., 2009), in the following referred to as spatial hierarchical agglomerative cluster-
ing (SHAC), is to merge in each agglomeration step only clusters which are neighbors
(Legendre and Legendre, 2012; Murtagh, 1985a). Two clusters Ck and Cm are con-
sidered as neighbors, if at least one data point in Ck has a neighbor in Cm, i.e.,
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if

ς�km :� I

�� ¸
x�i PCk

¸
x�` PCm

s�i` ¡ 0

�� 1.

Therefore, in each step of the SHAC algorithm, not only the distance matrix, but
also the neighboring information has to be updated. Hereby, the neighbor list of the
merged cluster is the union of the neighbor lists of the two clusters involved in the
merging (Carvalho et al., 2009).

Since the SHAC algorithm is a modification of the traditional HAC algorithm,
any of the known clustering agglomeration methods from the literature can be used to
update the distance matrix. E.g., the contiguity constrained single linkage distance
between clusters Ck and Cm is given by

Dspatial
SL pCk, Cmq �

$&% min
x�i PCk,x

�
` PCm

dpx�i ,x�` q, if ς�km � 1,

8, otherwise,

where, typically, d is the Euclidean distance metric. Note that the difference between
DSL and Dspatial

SL is that Dspatial
SL artificially sets the distance of all pairs of clusters that

are not adjacent to infinity. The SHAC algorithm is described in detail in Algorithm
3.

A phenomenon that can occur with SHAC methods is that the aggregation dis-
tance does not necessarily increase as the algorithm progresses, i.e., reversals may oc-
cur. This happens if two similar clusters are at an earlier step not spatially connected
and then, as the algorithm progresses and these clusters grow, become spatially con-
nected at a later step of the algorithm. Once these clusters are spatially connected,
they will be merged by the algorithm, where the distance is lower than the distance of
the previously merged clusters. Ferligoj and Batagelj (1982) theoretically show that
reversals do not occur for the constrained versions of the HAC algorithms of Lance
and Williams (1967), if and only if at each step of the algorithm some additional con-
ditions hold. Among the commonly used agglomeration methods, only the complete
linkage method is guaranteed to produce no reversals for all data scenarios (Ferligoj
and Batagelj, 1982; Murtagh, 1985a). The possibility of inversions is an issue, since
it is difficult to interpret the results (Murtagh, 1985b).

The SHAC algorithm is investigated by multiple researchers. E.g., Carvalho et al.
(2009) propose to employ a SHAC algorithm to form clusters of Brazilian municipali-
ties based on a set of social-economic characteristics. They consider the Ward’s mini-
mum variance, centroid, median, single linkage, complete linkage, average linkage and
average linkage weighted agglomeration method. Adjacency constrained hierarchical
clustering of Single Nucleotide Polymorphisms (SNPs), where linkage disequilibrium
(LD) is used as similarity measure, is performed by Dehman et al. (2015) in order to
find LD-blocks of SNPs. Thirion et al. (2014) apply Ward’s minimum variance based
SHAC to task-based fMRI data.
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Algorithm 3 Spatial hierarchical agglomerative clustering

1. Start with N clusters, where each data point forms its own cluster.

2. Determine the sparse distance matrix D�
spatial P RN�N

¥0 with all pairwise clus-
ter distances according to the respective strictly spatially constrained distance
measure, e.g., Dspatial

SL . Hereby, ”sparse” means that most of the distances are
infinity.

3. Merge the two clusters Ck and Cm that have the smallest distance.

4. Update the distance matrix D�
spatial by removing the rows and columns corre-

sponding to clusters Ck and Cm and adding one row and column corresponding
to the merged cluster Ck Y Cm, where the entries of the newly added row and
column are the strictly spatially constrained distances of the merged cluster to
all the remaining clusters.

5. Repeat steps 3. and 4. until all data points are merged into a single cluster, or
until there are no further adjacent clusters. The latter occurs, if not all data
points in the data set belong to one contiguous region.

6. Successively split up the last aggregation, until the desired number K of clusters
is reached.

Note, that a classical HAC algorithm is memory-consuming, i.e., a distance matrix
of size NpN�1q{2 has to be calculated and kept in memory. Especially for large data
sets with N ¡ 105, most computers do not have sufficiently enough RAM. However,
the distance matrix of SHAC methods is typically sparse and remains sparse as the
algorithm progresses. Hence, even for large data sets, these algorithms have a low
memory consumption.

5.3.2 Spatial spectral clustering

Multiple approaches exist that introduce spatial constraints into spectral cluster-
ing, such as the spectral constraint modeling (SCM) algorithm proposed by Shi et al.
(2010) or the CSP algorithm introduced by Wang and Davidson (2010). Here, the bi-
narized spatially constrained spectral clustering (BSSC) method introduced by Yuan
et al. (2015) is described in more detail. The goal of this methods is to find homoge-
neous and spatially contiguous regions in a geographical landscape.

Therefore, a spatially constrained graph is considered with S� (see (5.4)) as binary
adjacency matrix. Yuan et al. (2015) argue that the constraint which is imposed by
S� on a later defined spectral clustering algorithm might be too strict for balancing
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the trade-off between homogeneity and spatial contiguity. Hence, they introduce a
truncated exponential kernel

Struncprq � I �
ŗ

ρ�1

pS�qρ
ρ!

,

where I is the identity matrix and each entry pi, `q of pS�qρ indicates the number
of different paths of length ρ from data point x�i to data point x�` , i, ` � 1, . . . , N .
r determines the neighborhood size of a variable. Binarizing Struncprq leads to the
binarized truncated exponential kernel

Sbinprq � I
�
Struncprq ¡ 0

�
.

Further let W P RN�N be the symmetric adjacency matrix of a fully connected
graph as defined in Section 5.1.3 for spectral clustering. The spatially constrained
adjacency matrix based on Sbinprq is then defined as the Hadamard product

W binprq �W � Sbinprq.
Afterwards, spectral clustering is performed based on W binprq, yielding the BSSC
method. The performance analysis conducted by Yuan et al. (2015) reveals that the
BSSC method outperforms three baseline methods.

5.3.3 Spatial partitional clustering

Some extensions of K-means are proposed in the literature that consider spatial
information for clustering. E.g., Soor et al. (2018) describe an extension that proceeds
similarly to the K-means algorithm, but generates spatially connected clusters. In
the beginning, the algorithm selects randomly K data points as initial seeds, where
each seed represents an initial cluster C

p0q
1 , . . . , C

p0q
K . In each step of the algorithm

one data point is added to one of the clusters. Let N
�
C
pκq
k

�
be the list of unallocated

data points which are neighbors of cluster C
pκq
k after κ steps. The distance of any

data point in N pCpκq
k q to C

pκq
k is the distance of that data point to the seed of C

pκq
k .

Then, the data point in
K¤
k�1

N pCpκq
k q

with the smallest distance is added to its respective cluster and the neighboring list of
that cluster is updated. This procedure is repeated until all data points are assigned.
Afterwards, the seeds are recalculated. The new seed of the k-th cluster is the data
point from that cluster with the minimum average distance to its cluster members.
The whole process is repeated until convergence. Note that this method takes much
more computational time than K-means, since the allocation of data points is done
sequentially and not, as with K-means, simultaneously.
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Lu et al. (2003) apply a similar region growing method to fMRI data. Heller et al.
(2006) control the false-discovery-rate (FDR) on contiguous clusters of an fMRI data
set generated by a (simple) region growing technique. Mignotte (2011) performs a
spatially-constraint K-means segmentation of de-textured color images. Luo (2001)
proposes a penalized K-means method, where the objective function is penalized if
the data points within a cluster are not spatially contiguous. Luo et al. (2003) use a
hierarchical spatial constrained K-means method for color image segmentation.

5.4 Ensemble clustering

Ensemble clustering (EC) methods aim to combine multiple clustering results for the
same clustering task in order to obtain an improved result with respect to robustness,
stability and accuracy. The problem of ensemble clustering can be formulated as
follows. Let P � tCp1q

Kp1q, . . . ,C
pBq
KpBqu be a cluster ensemble, i.e., a set of B base

partitions C
pbq
Kpbq P t1, . . . , KpbquN , b � 1, . . . , B, with Kpbq clusters of the data points

that are calculated based on the data matrixX. The number of clusters can either be
different or identical among the base partitions. The challenge of ensemble clustering
is to combine the base partitions into a new ensemble partition CE

K � tCE
1 , . . . , C

E
Ku

with K clusters, where the accuracy of the ensemble partition should be superior
to the accuracy of the base partitions (Boongoen and Iam-On, 2018). Every EC
method includes two steps, i.e., (i) generating a cluster ensemble and (ii) employing
a consensus function that calculates a new ensemble partition based on a cluster
ensemble (Yang et al., 2014). Before considering consensus functions in Section 5.4.2,
different generation methods for cluster ensembles are covered in Section 5.4.1.

5.4.1 Cluster ensemble generation methods

On the one hand, it is commonly accepted that there should be some diversity
amongst the base partitions in order to obtain an ensemble partition of higher qual-
ity (Boongoen and Iam-On, 2018; Yang et al., 2014). On the other hand, the base
partitions should be of good quality. Several approaches have been introduced to
generate cluster ensembles consisting of diverse base partitions based on a given data
set. For cluster ensembles it is further distinguished between homogeneous cluster
ensembles and heterogeneous cluster ensembles.

Homogeneous cluster ensembles consist of base partitions that are generated by
the same clustering algorithm but, e.g., with different sets of parameters, different
sets of data points or different sets of features. E.g., very often the K-means algo-
rithm is employed as base partitioning method, where diversity of the base partitions
is typically obtained by randomly initializing the cluster centers and/or randomly
choosing the number of clusters (see, amongst many others, Fred and Jain (2002),
Topchy et al. (2004a), Greene et al. (2004), Fred and Jain (2005), Wu et al. (2018)).
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Greene et al. (2004) further employ the non-deterministic K-medoids method with
random initialization to generate the base partitions. Another group of base clus-
tering methods are weak clustering methods. Weak clustering methods are highly
unstable, i.e., different runs of the same algorithm to the same data set may lead
to completely different partitions. However, they are computationally inexpensive
and, therefore, can best be applied to high-dimensional and/or large data sets. The
accumulation of multiple weak partitions should, eventually, result in an ensemble
partition of high quality. Topchy et al. (2003) propose two different weak clustering
methods, i.e., (i) cutting the data set by random hyperplanes, where data points that
are separated by a hyperplane are assigned to different clusters, as well as (ii) pro-
jecting the data to a lower-dimensional (even 1-dimensional) random subspace, and,
afterwards, clustering the lower-dimensional data with K-means. Fern and Brodley
(2003) propose to use random projection of the input data to a lower-dimensional
data set, followed by the EM algorithm to cluster the lower-dimensional data. Avo-
gadri and Valentini (2009) also apply random projection to high-dimensional gene
expression data and, afterwards, employ a fuzzy K-means algorithm to obtain base
partitions based on the projected low-dimensional data sets. Greene et al. (2004) use
a fast ”weak clustering” technique, where K centroids are randomly chosen and the
remaining data points are assigned to their nearest centroid. In contrast to K-means
or K-medoids no further optimization is performed. Note that since hierarchical
clustering techniques are deterministic, multiple applications of such methods to the
same data set do not generate diverse base partitions.

Another technique to obtain diverse base clusterings is to (randomly) draw subsets
of the original features, i.e., to perform random subspacing (Ho, 1998). Yu et al.
(2007) randomly draw between 75% and 85% of the original features. Afterward,
they apply correlation clustering and K-means to the random subspaces. Johnson
and Kargupta (2000) present the Collective Hierarchical Clustering (CHC) algorithm,
in which the single linkage method is applied to data sets with heterogeneous features.
Hereby, the subsets of the original features are not generated randomly, but are
directly selected by the authors. Also see Yang et al. (2014), Strehl and Ghosh
(2002) or Greene et al. (2004) for further applications of random subspacing.

It is also possible to (randomly) draw subsets of the original data points, i.e., to
employ a resampling scheme. Dudoit and Fridlyand (2003) obtain perturbed data
sets by using bootstrapping (Breiman, 1996), i.e., sampling N times from the original
data points with replacement. The PAM algorithm (Kaufman and Rousseeuw, 1990)
is then applied to obtain the base partitions. A combination of bootstrapping and
K-means to generate the cluster ensemble is used by Leisch (1999). Also see Fischer
and Buhmann (2003) or Greene et al. (2004) for further bootstap applications in
the context of ensemble clustering. However, the bootstrap samples necessarily con-
sist of duplicated data points, which artificially distort the actual data compactness
(Boongoen and Iam-On, 2018). Another resampling scheme which overcomes that
shortcoming is subsampling, i.e., generating a subset of the original data points by
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sampling without replacement. In Monti et al. (2003) the subsample data sets consist
of 80% of the original data points. The base partitions are then calculated by the
hierarchical clustering algorithm with average linkage and the self organizing map
(SOM) algorithm.

Note that in all of the bootstrap or subsample data sets, some of the data points
are missing. This can be an issue for some consensus functions, which use the cluster
ensemble to calculate an ensemble partition. Fern and Brodley (2004) randomly
subsample the data points with a sampling rate of 70% and apply the spectral graph
partitioning algorithm SPEC or the multilevel graph partitioning algorithm Metis to
the subsample. To overcome the missing data points issue, each absent data point
is, afterwards, assigned to its closest cluster, i.e., the cluster whose cluster center has
the shortest Euclidean distance to the absent data point. Yang et al. (2014) also
subsample 70% of the original data points and assign missing data points to their
closest cluster, but they use K-means as base clustering method. The missing data
points issue is further discussed in Section 5.4.2.

Further note that in all previously mentioned cluster ensemble generation meth-
ods the calculation of the different base partitions can be carried out simultaneously,
i.e., these methods allow parallel computing. In contrast, Topchy et al. (2004b) pro-
pose an adaptive scheme for the generation of a cluster ensemble. This method is
inspired by supervised boosting algorithms (Breiman, 1998). The base partitions
are generated sequentially based on bootstrap data sets. However, in each sampling
iteration the sampling probability of each data point dynamically depends on its
clustering consistency based on the previous assignments. Unstable data points, i.e.,
data points that are frequently assigned to different clusters, have a higher sampling
probability. To estimate the clustering consistency, the label correspondence problem
(as explained in Section 5.4.2) is solved by re-labeling the base partitions using the
Hungarian algorithm. The K-means algorithm is applied to the adaptive bootstrap
data sets to generate the base partitions. Minaei-Bidgoli et al. (2014) employ empir-
ical studies to compare the performance of the adaptive method with a non-adaptive
cluster ensemble method. In all their experiments the adaptive method outperforms
the non-adaptive method, but in many scenarios the improvement is marginally.

In heterogeneous ensembles, diversity is induced in the cluster ensemble by em-
ploying different clustering algorithms. Depending on the underling data set, differ-
ent clustering methods have different benefits and drawbacks. Base partitions that
are generated by different clustering methods can provide different decisions and,
therefore, complement each other (Boongoen and Iam-On, 2018). E.g., in Bedalli
et al. (2016) multiple base partitions are generated by four different fuzzy clustering
methods with multiple random initializations of the cluster centers for each method.
Gionis et al. (2007) apply five different base clustering algorithms, namely single link-
age, average linkage, complete linkage, Ward’s clustering and K-means, to generate
the cluster ensemble. The cluster ensemble aggregation proposed by Hu and Yoo
(2004) applies K-means, Self-Organizing-Map (SOM) and fuzzy c-means in order to
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obtain the base partitions. Also see Fred and Jain (2006) or Law et al. (2004) for
further heterogeneous cluster ensemble methods.

Any combination of the previously mentioned cluster ensemble generation meth-
ods can be applied as well. E.g., Nguyen and Caruana (2007) use feature weighting
K-means and K-means with different random restarts.

5.4.2 Consensus functions

Having generated the cluster ensemble, various consensus functions, also referred to
as cluster ensemble methods, have been introduced to combine the base partitions
into an ensemble partition of superior accuracy. Well-known consensus functions
can be divided into different categories, e.g., direct approaches, pairwise-similarity
approaches or graph-based approaches (Boongoen and Iam-On, 2018). In this thesis
only pairwise-similarity approaches are employed. Nonetheless, also a brief summary
of the other two approaches is given.

The cluster labels of the base partitions are arbitrary, i.e., the labels of any base
partition are not related to the labels of any other base partition. This labelling
correspondence problem is one of the main issues in unsupervised data combination
(Vega-Pons and Ruiz-Shulcloper, 2011). Therefore, consensus functions that use a
direct approach typically consist of two steps. As first step, the labeling correspon-
dence problem is solved and as second step, the ensemble partition is obtained in a
voting process. To solve the labeling correspondence problem, a reference partition
is determined and, afterwards, a consistent relabeling of all base partitions can be
obtained in accordance with this reference partition (Topchy et al., 2004c). The prob-
lem of relabeling is equivalent to the problem of maximum weight bipartite matching
and this optimization problem can be solved using the Hungarian algorithm (Kuhn,
1955). A general formulation of the relabeling problem as a multi-response regression
problem is given by Ayad and Kamel (2010). In Topchy et al. (2004c) the reference
partition is a randomly selected partition from the cluster ensemble. After the rela-
belling process, plurality voting is employed to assign an ensemble label to each data
point. Dudoit and Fridlyand (2003) as well as Fischer and Buhmann (2003) generate
the base partitions based on bootstrap samples of the input data. However, because
of the missing data points issue, they obtain the reference partition by clustering the
input data set. Therefore, the reference partition is not part of the cluster ensemble.
Again, the ensemble label of a data point is obtained by plurality voting. Note that
the previously mentioned methods which are also referred to as simple voting meth-
ods generally assume each base partition as well as the final ensemble partition to
have the same number of clusters. They are, therefore, not recommended to employ
in scenarios, where the number of clusters is not the same in all base partitions (Vega-
Pons and Ruiz-Shulcloper, 2011). Also see Boulis and Ostendorf (2004) or Tumer
and Agogino (2008) for further direct approaches.

The family of pairwise similarity based consensus functions is based on the pair-
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wise similarity amongst data points. For a cluster ensemble P �
!
C

p1q
Kp1q, . . . ,C

pBq
KpBq

)
calculated based on a data matrix X � px�1 , . . . ,x�NqT , let C

pbq
Kpbqpx�i q be the label

of data point x�i , i � 1, . . . , N, according to base partition C
pbq
Kpbq with Kpbq clusters.

If, e.g., subsampling or bootstrapping is employed as cluster ensemble generation
method, these resampling schemes yield data sets with missing data points. There-
fore, the labels of all data points, which do not belong to the underlying subsample,
are set to 0 (see, e.g., Ayad and Kamel (2005)). Then, an N � N indicator matrix
Ipbq indicates whether two data points are both included in the b-th data set, i.e.,

Ipbqpx�i ,x�` q �
#

1, if C
pbq
Kpbqpx�i q � 0 and C

pbq
Kpbqpx�` q � 0

0, otherwise.

The entries of the N � N connectivity matrix corresponding to C
pbq
Kpbq describe the

relationship between two data points and are given by

M pbqpx�i ,x�` q �
#

1, if C
pbq
Kpbqpx�i q � Cpbq

Kpbqpx�` q and C
pbq
Kpbqpx�i q � 0

0, otherwise.

The B connectivity matrices are, afterwards, merged to form a co-association matrix
(also called consensus matrix)

M px�i ,x�` q �
°B
b�1M

pbqpx�i ,x�` q°B
b�1 I

pbqpx�i ,x�` q
.

Each entry of M specifies how often two data points are assigned to the same cluster
divided by the total number of times both data points are selected (Monti et al.,
2003). Since the co-association matrix is a similarity matrix, the final ensemble
partition is obtained by applying any similarity-based clustering algorithm to M .

The putative easiest clustering method that generates an ensemble partition from
a co-association matrix is choosing a cut-off value t (Fred and Jain, 2002). Accord-
ingly, for each pair of data points with a co-association similarity larger or equal than
t P r0, 1s, the two data points are merged in the same cluster. Typically, a threshold
of t � 0.5 is chosen (Fred and Jain, 2002). This technique can also be used to gen-
erate a set of robust clusters. A robust cluster consists solely of data points, which
are assigned to the same cluster by each base partition (Kellam et al., 2001). Hence,
this is equivalent to choosing a cut-off value of t � 1.

Frequently, a hierarchical clustering algorithm with average linkage (Azimi and
Fern, 2009; Fred and Jain, 2005, 2006; Greene et al., 2004; Minaei-Bidgoli et al.,
2014; Monti et al., 2003; Topchy et al., 2003; Wu et al., 2018), single linkage (Fred
and Jain, 2005; Greene et al., 2004; Minaei-Bidgoli et al., 2014; Topchy et al., 2003;
Wu et al., 2018) or complete linkage (Fern and Brodley, 2003; Greene et al., 2004;
Minaei-Bidgoli et al., 2014; Topchy et al., 2003; Wu et al., 2018) is applied to the
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distance matrix 1 �M , where 1 is the N � N matrix with all entries equal to 1.
Other clustering algorithms that are applied to the co-association matrix are, e.g.,
PAM (Dudoit and Fridlyand, 2003), the normalized cut algorithm (Yu et al., 2007)
or spectral clustering (Yang et al., 2014).

In graph-based approaches the label vectors, which are representing the base par-
titions, are transformed into a suitable hypergraph representation (Strehl and Ghosh,
2002). A hypergraph consists of vertices, which are given by the data points, and
undirected hyperedges, where each cluster from each of the base partitions is trans-
formed into a hyperedge. Accordingly, by concatenating all hyperedges as column
vectors of a adjacency matrix, the cluster ensemble is mapped to a hypergraph. Af-
terwards, to produce the ensemble partition, the hypergraph is cut into K clusters
using a graph-partitioning technique.

The Graph-based Consensus Clustering (GCC) method of Yu et al. (2007) firstly
determines the co-association matrix M . Note that M can be constructed from the
hypergraph (Strehl and Ghosh, 2002). It then constructs an undirected similarity
graph, where the vertices of that graph correspond to the data points and the weights
are given by the respective similarity entries of M . Finally, the normalized cut
algorithm (Shi and Malik, 2000) is applied to this graph, to obtain the ensemble
partition. Similarly, the Cluster-based Similarity Partitioning Algorithm (CSPA) of
Strehl and Ghosh (2002) uses METIS (Karypis and Kumar, 1998) to partition the
undirected similarity graph.

Another graph based partitioning algorithm is the HyperGraph-Partitioning Algo-
rithm (HGPA) (Strehl and Ghosh, 2002). HGPA partitions the hypergraph directly
by cutting a minimal number of hyperedges. Furthermore, HGPA is constrained
to generate comparable sized ensemble clusters. Therefore, if the natural clusters
are highly imbalanced with respect to size, HGPA is not an appropriate method.
The final ensemble partition is obtained by cutting the underlying hypergraph using
HMETIS (Karypis et al., 1999).

The third graph-based consensus function by Strehl and Ghosh (2002) is the Meta-
CLustering Algorithm (MCLA). In MCLA, firstly, related hyperedges are clustered
into a meta-cluster using the graph partitioning package METIS. Then, for each meta-
cluster, the corresponding hyperedges are collapsed into a single meta-hyperedge.
This is done by averaging the indicator vectors, which represent the hyperedges, of
the particular meta-cluster. Hence, each meta-hyperedge is represented by a vector of
length N with real valued entries in r0, 1s. Finally, the i-th data point, i � 1, . . . , N,
is assigned to its most associated meta-cluster, i.e., the meta-cluster whose i-th meta-
hyperedge entry is highest among all i-th meta-hyperedge entries.

Another method, which is introduced by Fern and Brodley (2004), is the Hybrid
Bipartite Graph Formulation (HBGF). HBGF is proposed to improve the methods
CSPA and MCLA of Strehl and Ghosh (2002), which only consider either the asso-
ciation between data points or the association between clusters. It models the data
points as well as the clusters of the ensemble together as vertices in a bipartite graph.
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The graph is bipartite, since the data point vertices are solely connected to the cluster
vertices and vice versa. The final ensemble partition is obtained by applying METIS
or spectral clustering to this bipartite graph.

5.5 Clustering validation methods

In order to find the best partition of a given data set, a very important issue in
cluster analysis is known under the term clustering validation. Clustering validation
techniques can be divided into three different categories, i.e., external, internal and
relative validation techniques (Halkidi et al., 2001). An external validation technique
assesses the degree of consensus between an estimated partition and a known set of
cluster labels (i.e., the ground truth or gold standard). Hence, these techniques use
additional knowledge about the correct cluster labels (Handl et al., 2005). However,
in many data scenarios, the cluster labels are unknown. In these scenarios, internal
validation measures are appropriate. Internal validation measures rely solely on the
information intrinsic to the data, typically, by considering the compactness of the
clusters as well as the degree of separation among the clusters. Relative validation
measures directly compare different data partitions, usually resulting from the same
algorithm but with different parameter settings. Since relative validation measures
also rely only on intrinsic data information, internal and relative validation measures
are considerd as one category, namely internal measures (compare Wu et al. (2009)
or Handl et al. (2005)).

In the following, those popular external (Section 5.5.1) and intenal (Section 5.5.2)
clustering validation techniques are presented in more detail which are employed
for evaluation in Chapter 7. Hereby, only clustering validation techniques for hard
data partitions, i.e., partitions that assign exactly one label to each data point, are
considered.

5.5.1 External methods

As the name implies, external measures use external information, i.e., the true cluster
labels, to assess the quality of a data partition. Since in most applications the
true cluster labels are unknown, these measures are mostly used to validate cluster
algorithms on data sets with known cluster labels, such as simulated data sets or
benchmark clustering data sets with ground truth labels. Nonetheless, all of the
following presented measures are symmetric, and are, therefore, equally well suited
to compare any two partitions, i.e., no ground truth partition is needed.

The class of external measures can be further subdivided into matching based
measures, entropy based measures, pairwise measures and correlation measures (Zaki
and Meira, 2014). In the following, two entropy based measures, i.e., normalized mu-
tual information (NMI) (Strehl and Ghosh, 2002) and adjusted normalized mutual
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information (ANMI) (Vinh et al., 2010), as well as one pairwise measure, i.e., the ad-
justed Rand index (ARI) (Hubert and Arabie, 1985), are described that are employed
for evaluation in Chapter 7. This description is based on Zaki and Meira (2014).

Further pairwise validation measures are, e.g., the Jaccard coefficient (Jaccard,
1908; Jain and Dubes, 1988), the Fowlkes-Mallows measure (Fowlkes and Mallows,
1983), the Minkowski score (Jardine and Sibson, 1971) or the Mirkin metric (Mirkin,
1996). For a summary of external measures in general see, e.g., Zaki and Meira
(2014).

In the following, let TK � tT1, . . . , TKu be the ground truth partition and let
TKpx�i q be the label of data point x�i , i � 1, . . . , N, according to TK . Further, let
CM � tC1, . . . , CMu be a partition obtained through a cluster algorithm, and let
CMpx�i q be the label of data point x�i according to CM . Note that since the true
number of clusters K is known, in most applications the cluster algorithms are run
with the correct number of clusters, i.e., M � K. All external measures are based
on the M �K contingency matrix N , where

N pm, kq � |Cm X Tk|,
i.e., the entryN pm, kq specifies the number of data points which are both in Cm,m �
1, . . . ,M and in Tk, k � 1, . . . , K.

(Adjusted) normalized mutual information

The family of entropy based measures originates in the field of information theory
(Shannon, 1948). If the cluster labels of a partition CM � tC1, . . . , CMu are viewed
as samples from a discrete random variable with support Ω � t1, . . . ,Mu, the entropy
of partition CM is given as

HpCMq � �
M̧

m�1

pm log ppmq ,

where pm � |Cm|
N

is the probability that a randomly chosen data point belongs

to cluster Cm (Meilă, 2007). The entropy of ground truth partition TK is defined
analogously. The entropy of a partition CM measures the uncertainty about the
cluster label of a randomly picked data point. The larger the entropy, the larger
the uncertainty. If a partition assigns all data points to the same cluster, i.e., in
the case of absolute certainty, the entropy is zero (Wagner and Wagner, 2007). The
entropy, and, therefore, the uncertainty, is maximized, if all M clusters include the
same number of data points, i.e., if CM follows a discrete uniform distribution. In
this case it follows that pm � 1{M for all m � 1, . . . ,M and the entropy of CM is
given by

HpCMq � �
M̧

m�1

pm log ppmq � �
M̧

m�1

1

M
log

�
1

M



� logpMq.
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Hence, the normalized entropy (NH) of CM is given as

NHpCMq � � 1

logpMq
M̧

m�1

|Cm|
N

log

� |Cm|
N



and takes values in r0, 1s (Kumar et al., 1986).

Next, the conditional entropy of TK given cluster Cm can be defined, i.e.

HpTK |Cmq � �
Ķ

k�1

N pm, kq
|Cm| log

�
N pm, kq
|Cm|



.

The conditional entropy of TK with respect toCM is the weighted sum overHpTK |Cmq,
m � 1, . . . ,M, that is

HpTK |CMq �
M̧

m�1

|Cm|
N

HpTK |Cmq

� �
M̧

m�1

Ķ

k�1

N pm, kq
N

log

�
N pm, kq
|Cm|



.

HpTK |CMq is always non-negative and measures the remaining entropy of TK , which
is not explained by CM . Let

pmk � P pCMpx�q � m,TKpx�q � kq � N pm, kq
N

be the joint probability of CM and TK , i.e., the probability that a randomly picked
data point x� belongs as well to Cm as to Tk. It can be easily shown (Cover and
Thomas, 1991) that

HpTK |CMq � HpCM ,TKq �HpCMq,
where HpCM ,TKq � �°M

m�1

°K
k�1 pmk logppmkq is the the joint entropy of CM and

TK .

On the one hand, in the case of perfect partitioning, i.e., CM � TK , it follows
from this equation that

HpCM ,TKq � HpCMq ðñ HpTK |CMq � 0.

On the other hand, if CM and TK are independent from each other, i.e., if pmk �
pm � pk, it can be easily shown that

HpCM ,TKq � HpCMq �HpTKq
and, therefore,

HpTK |CMq � HpTKq.
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Thus, the knowledge of CM does not decrease the entropy of TK .

This leads to the concept of mutual information, i.e., the amount of information
that is shared between two partitions. The mutual information between CM and TK
is defined as

MIpCM ,TKq �
M̧

m�1

Ķ

k�1

pmk log

�
pmk
pmpk



.

Obviously, the amount of shared information between CM and TK is zero, if CM

and TK are independent from each other. However, the mutual information is not
bounded by an upper value, which makes it as a validation measure hard to interpret.
Because of this undesirable property, it is of interest to construct a normalized version
of the mutual information.

For this, the convex function ϕpxq � x logpxq, for x ¡ 0, is considered and Jensen’s
inequality is used to see that

MIpCM ,TKq �
M̧

m�1

Ķ

k�1

pmpkϕ

�
pmk
pmpk




¥ ϕ

�
M̧

m�1

Ķ

k�1

pmpk
pmk
pmpk

�
� ϕp1q � 0.

Moreover, the mutual information can be rewritten as

MIpCM ,TKq �
M̧

m�1

Ķ

k�1

pmk
�

logppmkq � logppmq � logppkq
�

�
M̧

m�1

Ķ

k�1

pmk logppmkq �
M̧

m�1

pm logppmq �
Ķ

k�1

pk logppkq

� �HpCM ,TKq �HpCMq �HpTKq
� �HpTK |CMq �HpTKq.

Analogously, it can be shown that

MIpCM ,TKq � �HpCM |TKq �HpCMq.

First, these results yield that

0 ¤MIpCM ,TKq � �HpTK |CMq �HpTKq
ðñ HpTK |CMq ¤ HpTKq

which shows that the knowledge of CM decreases the entropy of TK . Furthermore,
since HpTK |CMq ¥ 0 and HpCM |TKq ¥ 0, it follows that MIpCM ,TKq ¤ HpCMq
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and MIpCM ,TKq ¤ HpTKq. Hence, the following quantities present an upper bound
for MIpCM ,TKq (Vinh et al., 2010):

MIpCM ,TKq ¤ mintHpCMq, HpTKqu ¤
a
HpCMqHpTKq

¤ 1

2
pHpCMq �HpTKqq ¤ maxtHpCMq, HpTKqu

¤ HpCM ,TKq.

The last inequality follows from

HpCM ,TKq � HpTK |CMq �HpCMq,
HpCM ,TKq � HpCM |TKq �HpTKq,

where HpTK |CMq ¥ 0 and HpCM |TKq ¥ 0.

Any of the above mentioned upper bounds can be used for normalization. E.g.,
Kv̊alseth (2017) considers, among others,

NMImaxpCM ,TKq � MIpCM ,TKq
maxtHpCMq, HpTKqu

as normalized mutual information and Strehl and Ghosh (2002) define the normal-
ized mutual information between two partitions CM and TK as the geometric mean
between the two ratios MIpCM ,TKq{HpCMq and MIpCM ,TKq{HpTKq, i.e.

NMIgeompCM ,TKq � MIpCM ,TKqa
HpCMqHpTKq

.

All NMI measures take values in r0, 1s, where NMIpCM ,TKq � 0 in the case of
independent partitions and NMIpCM ,TKq � 1 for CM � TK . Values close to one
indicate a good partitioning. Vinh et al. (2010) show that 1 � NMImax is a metric,
whereas 1� NMIgeom is not.

One problem with all NMI measures is that they are not adjusted for chance.
Vinh et al. (2010) show that, when comparing randomly generated partitions with a
(randomly) genrated ground truth partition, the unadjusted entropy based measures
monotonically increase as the number of clusters increases. Hence, these measures
are biased in favour of larger numbers of clusters. This is especially an issue in
the context of clustering stability, which is discussed in more detail in Section 5.6.1.
Therefore, an adjusted-for-chance version of NMI is desirable.

In order to generate an adjusted-for-chance version of NMI, Vinh et al. (2009)
assume that the random partitions are generated by the ”permutation model” (Lan-
caster, 1969), where the partitions are generated randomly with a fixed number of
clusters and a fixed number of data points in each cluster. Note that Hubert and Ara-
bie (1985) make the same assumptions for the adjustment of the Rand index, which is
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discussed in more detail further below. Under these assumptions, Vinh et al. (2009)
show that the expected value of the mutual information is given by

E
�
MIpCM ,TKq

� �
M̧

m�1

Ķ

k�1

minp|Cm|,|Tk|q¸
Npm,kq�maxp|Cm|�|Tk|�N,0q

�
N pm, kq

N
log

�
N �N pm, kq
|Cm||Tk|




� |Cm|!|Tk|!pN � |Cm|q!pN � |Tk|q!
N !N pm, kq!p|Cm| �N pm, kqq!p|Tk| �N pm, kqq!

� 1

pN � |Cm| � |Tk| �N pm, kqq!

�
.

Then, e.g., the adjusted version of NMImax is given as (Vinh et al., 2010)

ANMImaxpCM ,TKq � NMImaxpCM ,TKq � E rNMImaxpCM ,TKqs
1� E rNMImaxpCM ,TKqs

�
MIpCM ,TKq

maxtHpCMq, HpTKqu � E
�

MIpCM ,TKq
maxtHpCMq, HpTKqu

�
1� E

�
MIpCM ,TKq

maxtHpCMq, HpTKqu
�

� MIpCM ,TKq � E rMIpCM ,TKqs
maxtHpCMq, HpTKqu � E rMIpCM ,TKqs .

Analogously, the adjusted NMIgeom version is given as

ANMIgeompCM ,TKq � MIpCM ,TKq � E rMIpCM ,TKqsa
HpCMq �HpTKq � E rMIpCM ,TKqs

.

For both of the adjusted NMI measures it holds that ANMI � 1, if CM � TK , and
ANMI � 0, if MIpCM ,TKq � E rMIpCM ,TKqs. Moreover, both these measures are
not metrics (Vinh et al., 2010) and they are computationally more expensive than
their unadjusted versions.

Vinh et al. (2010) show further that the expected mutual information between
two random partitions CM and TK is under the hypergeometric distribution model
of randomness bounded by

E rMIpCM ,TKqs ¤ log

�
N �MK �M �K

N � 1



.

Hence, for fixed M and K, limNÑ8 E rMIpCM ,TKqs � 0. This upper bound is a
useful criterion to decide whether an adjustment-for-chance is needed. If the upper
bound is close to zero, which is the case if N ¡¡MK, the expected mutual informa-
tion is close to zero and the adjusted measures are nearly identical to the unadjusted
measures. In this case an adjustment-for-chance is not necessary.
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Adjusted Rand index

As mentioned above, the adjusted Rand index (Hubert and Arabie, 1985) belongs
to the group of pairwise measures. Pairwise measures count the number of pairs of
data points on which a partition CM � tC1, . . . , CMu and the ground truth partition
TK � tT1, . . . , TKu agree or disagree. Agreement of a pair means that the two data
points are either in the same cluster or in different clusters under both partitions.
Four different sets of pairs can be distinguished (Zaki and Meira, 2014):

If x�i and x�` , i � 1, . . . , N � 1, ` � i � 1, . . . , N, both belong as well to the same
cluster in TK as to the same cluster in CM , this is a true positive pair. Hence, the
set of true positive pairs is given as

S11 �
 px�i ,x�` q : CMpx�i q � CMpx�` q and TKpx�i q � TKpx�` q

(
,

and the number of true positive pairs is

TP � |S11|.

If x�i and x�` both belong to the same cluster in TK but they do not belong to
the same cluster in CM , this is a false negative pair. Hence, the set of false negative
pairs is given as

S10 �
 px�i ,x�` q : CMpx�i q � CMpx�` q and TKpx�i q � TKpx�` q

(
,

and the number of false negative pairs is

FN � |S10|.

If x�i and x�` do not belong to the same cluster in TK but they do belong to the
same cluster in CM , this is a false positive pair. Hence, the set of false positive pairs
is given as

S01 �
 px�i ,x�` q : CMpx�i q � CMpx�` q and TKpx�i q � TKpx�` q

(
,

and the number of false positive pairs is

FP � |S01|.

If x�i and x�` belong both to different clusters in TK and to different clusters in
CM , this is a true negative pair. Hence, the set of true negative pairs is given as

S00 �
 px�i ,x�` q : CMpx�i q � CMpx�` q and TKpx�i q � TKpx�` q

(
,

and the number of true negative pairs is

TN � |S00|.
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Since the total number of pairs is
�
N
2

�
, it follows

TP � FN � FP � TN �
�
N

2



.

Compared to a naive imputation, the four values can be calculated more efficiently
by employing the contingency matrixN . It is easy to show (Hubert and Arabie, 1985;
Zaki and Meira, 2014) that the four values can also be calculated by

TP � 1

2

��
M̧

m�1

Ķ

k�1

N pm, kq2
�
�N

�
�

M̧

m�1

Ķ

k�1

�
N pm, kq

2




FN � 1

2

�
Ķ

k�1

|Tk|2 �
M̧

m�1

Ķ

k�1

N pm, kq2
�

FP � 1

2

�
M̧

m�1

|Cm|2 �
M̧

m�1

Ķ

k�1

N pm, kq2
�

TN � 1

2

�
N2 �

M̧

m�1

|Cm|2 �
Ķ

k�1

|Tk|2 �
M̧

m�1

Ķ

k�1

N pm, kq2
�
.

Hence, the computational complexity to compute the four values is OpN �MKq.
Based on these numbers, different measures are introduced in the literature. The

Rand index (Rand, 1971) is given as the quotient of correctly classified pairs of data
points and the total number of pairs. Thus, the Rand index is

RIpCM ,TKq � 2pTP � TNq
NpN � 1q .

RI takes values in r0, 1s, where 0 means that no pair is classified correctly by CM

and 1 means perfect agreement, i.e., the partitions CM and TK are identical. Using
the alternative representations of TP and TN , and let Z � °M

m�1

°K
k�1N pm, kq2,

the numerator of the Rand index can be rewritten as (Hubert and Arabie, 1985)

TP � TN � 1

2
pZ �Nq � 1

2

�
N2 �

M̧

m�1

|Cm|2 �
Ķ

k�1

|Tk|2 � Z

�

� 1

2

�
2Z �N2 �N �

M̧

m�1

|Cm|2 �
Ķ

k�1

|Tk|2
�

� Z �
�
N

2



� 1

2

�
M̧

m�1

|Cm|2 �
Ķ

k�1

|Tk|2
�
.
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Following the Rand index is also given as

RIpCM ,TKq � 1�
�
N

2


�1
�
Z � 1

2

�
M̧

m�1

|Cm|2 �
Ķ

k�1

|Tk|2
��

.

The Rand index depends as well on the sample size as on the number of clusters.
Morey and Agresti (1984) show that the Rand index is highly dependent on the
number of clusters M and K. More precisely, they show that for a random partition
CM and if the clusters in CM and TK are equally sized, the Rand index converges to
1 as M and K increase. So the Rand index is not corrected for chance. This behavior
is undesirable for a validation measure. Therefore, the adjusted Rand index (ARI)
is introduced by Hubert and Arabie (1985), which is a modified version of the Rand
index that is corrected for chance.

Hubert and Arabie (1985) make the following assumptions:

� The row and column sums of the contingency matrix N are fixed and identical.

� The number of data points within each cluster |Cm|,m � 1, . . . ,M, |Tk|, k �
1, . . . , K, are fixed.

� The partitions CM and TK are selected at random and are independent from
each other.

� The entries in N follow a hypergeometric distribution.

Because of these assumptions, the pm, kq-th entry in N follows a hypergeometric dis-
tribution with parameters N, |Tk|, |Cm|, i.e., N pm, kq � HypN,|Tk|,|Cm|. The expected
value and the variance of N pm, kq are then given by (Kemp and Kemp, 1956)

E rN pm, kqs � |Tk||Cm|
N

,

VarpN pm, kqq � |Cm| |Tk|
N

�
1� |Tk|

N



N � |Cm|
N � 1

and the expected value of N pm, kq2 is

E
�
N pm, kq2� � VarpN pm, kqq � E rN pm, kqs2

� |Cm| |Tk|
N

�
1� |Tk|

N



N � |Cm|
N � 1

�
� |Tk||Cm|

N


2

� N2|Cm||Tk| �N |Cm|2|Tk| �N |Cm||Tk|2 �N |Cm|2|Tk|2
N2pN � 1q

� N |Cm||Tk| � |Cm|2|Tk| � |Cm||Tk|2 � |Cm|2|Tk|2
NpN � 1q .
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From that, the expected value of Z can be calculated, i.e.

ErZs � E

�
M̧

m�1

Ķ

k�1

N pm, kq2
�
�

M̧

m�1

Ķ

k�1

E
�
N pm, kq2�

�
N3 �N

M°
m�1

|Cm|2 �N
K°
k�1

|Tk|2 �
M°
m�1

|Cm|2
K°
k�1

|Tk|2

NpN � 1q

�

�
M°
m�1

|Cm|2 �N


�
K°
k�1

|Tk|2 �N



�N3 �N2

NpN � 1q

� 2

�
M°
m�1

�
|Cm|

2

�
�
K°
k�1

�
|Tk|

2

�

�
N
2

� �N

Note that

E

�
M̧

m�1

Ķ

k�1

�
N pm, kq

2


�
� 1

2
E

�
M̧

m�1

Ķ

k�1

N pm, kq2 �N pm, kq
�

� 1

2

�
E

�
M̧

m�1

Ķ

k�1

N pm, kq2
�
�N

�

�

�
M°
m�1

�
|Cm|

2

�
�
K°
k�1

�
|Tk|

2

�

�
N
2

�
which is the formula presented in Hubert and Arabie (1985).

Next, the expected value of the Rand index can be calculated, i.e.

E
�
RIpCM ,TKq

�
� E

�
1� 1�

N
2

� �Z � 1

2

�
M̧

m�1

|Cm|2 �
Ķ

k�1

|Tk|2
���

� 1� 1�
N
2

�E rZs � 1

2
�
N
2

� � M̧

m�1

|Cm|2 �
Ķ

k�1

|Tk|2
�

� 1� 2�
N
2

�2

M̧

m�1

�|Cm|
2


 Ķ

k�1

�|Tk|
2



� N�

N
2

�
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� 1�
N
2

� � M̧

m�1

|Cm|p|Cm| � 1q
2

� |Cm|
2

�
Ķ

k�1

|Tk|p|Tk| � 1q
2

� |Tk|
2

�

� 1� 2�
N
2

�2

M̧

m�1

�|Cm|
2


 Ķ

k�1

�|Tk|
2



� N�

N
2

�
� 1�

N
2

� �N �
M̧

m�1

�|Cm|
2



�

Ķ

k�1

�|Tk|
2


�

� 1� 2�
N
2

�2

M̧

m�1

�|Cm|
2


 Ķ

k�1

�|Tk|
2



� 1�

N
2

� � M̧

m�1

�|Cm|
2



�

Ķ

k�1

�|Tk|
2


�
.

Using this result, the Rand index is adjusted for chance by the general formula

RI � ErRIs
RImax � ErRIs ,

where RImax is the maximum value of RI, i.e., RImax � 1. Inserting the formulas
for RI and ErRIs into this formula, the ARI is given by (Hubert and Arabie, 1985)

ARIpCM ,TKq �

M°
m�1

K°
k�1

�
Npm,kq

2

�� 1�
N
2

� M°
m�1

�
|Cm|

2

� K°
k�1

�
|Tk|

2

�
1

2

�
M°
m�1

�
|Cm|

2

�� K°
k�1

�
|Tk|
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Further it can be shown (see Vendramin et al. (2010)) that ARI can also be written
as

ARIpCM ,TKq �
TP � 2pTP � FNqpTP � FP q

NpN � 1q
pTP � FNq � pTP � FP q

2
� 2pTP � FNqpTP � FP q

NpN � 1q
.

The expected value of ARI is zero for independent partitions and the maximum value
of ARI is one for identical partitions. However, ARI can also take negative values for
some pairs of partitions (Meilă, 2007). Moreover, the distance version of ARI, that
is 1� ARI, is not a proper metric (Vinh et al., 2010).

5.5.2 Internal methods

In contrast to external validation measures, which assess the quality of an estimated
partition by comparing it with a ground truth partition, internal measures only use
information from the estimated partition and the underlying data set for validation.
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Internal measures are typically based on two criteria, namely intra-cluster compact-
ness and inter-cluster separation (Liu et al., 2010). Intra-cluster compactness mea-
sures how similar the data points within a cluster are. One measure for intra-cluster
compactness is, e.g., the (within) variance, where a lower variance means better
compactness. Inter-cluster separation measures how well-separated the clusters of
a partition are. E.g., the mean pairwise distance between cluster centers is often a
measure of inter-cluster separation, where a larger value indicates better separation.
Some measures only account for one of the two aspects. However, most measures con-
sider both criteria, typically as ratio or summation, where there is usually a trade-off
in maximizing these two criteria (Zaki and Meira, 2014).

Following, one of the most commonly used internal validation measures, i.e., the
silhouette coefficient (SC) (Rousseeuw, 1987), is reviewed in more detail. Moreover,
a computationally cheaper variation of the silhouette coefficient, i.e., the simplified
silhouette coefficient (SSC) (Vendramin et al., 2010), is described as well. Both these
measures are employed for evaluation in Chapter 7.

Other internal validation measures which are not considered in this thesis are,
e.g., the Davies-Bouldin index (Davies and Bouldin, 1979), the Calinski-Harabasz
index (Caliński and Harabasz, 1974), the Dunn index (Dunn, 1974), the WB-index
(Zhao and Fränti, 2014) or the PBM criterion (Pakhira et al., 2004).

Silhouette coefficient

The overall average silhouette width (Rousseeuw, 1987), in the following referred to
as silhouette coefficient (SC) (compare Zaki and Meira (2014)), is a popular internal
measure. This measure considers the compactness and separation of clusters. For a
data matrix X � px�1 , . . . ,x�NqT P RN�V , let CK � tC1, . . . , CKu be a partition of
the data points with K clusters. In order to determine the SC of CK with respect
to X, first of all, the silhouette width is calculated for each data point. Therefore,
a distance measure is defined. Note that any distance measure can be employed, as
long as the resulting distances are on a ratio scale (Rousseeuw, 1987). E.g., Euclidean
distances or correlation based distances are on a ratio scale (a dissimilarity of 0.4 is
considered twice as large as a dissimilarity of 0.2). In this thesis, the correlation
based distance

dabsCorrpx�i ,x�` q � 1� |corrpx�i ,x�` q|
is employed. The silhouette width of a single data point x�i belonging to cluster
Ck, k � 1, . . . , K, is given by

si � bi � ai
maxtai, biu ,

where

ai � 1

|Ck| � 1

¸
x�` PCk
`�i

dabsCorr

�
x�i ,x

�
`

�
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is the average distance of x�i to all other data points in Ck and

bi � min
m�k

1

|Cm|
¸

x�` PCm

dabsCorr

�
x�i ,x

�
`

�
is the average distance of x�i to all data points in the closest cluster.

si takes values in r�1, 1s. A value close to 1 indicates that x�i is very close to
data points from its own cluster and very far from data points from other clusters.
If x�i is on the edge between two clusters, si will take a value close to 0. Finally, if
si takes a value close to -1, x�i lies much closer to data points from another cluster
than to data points from its own cluster. A value of si close to -1, therefore, indicates
that x�i is incorrectly clustered. The construction of bi depends on the existence of
at least one other cluster besides Ck. Hence, the number of clusters in a partition
must be at least two.

The average silhouette width of a cluster Ck is defined as

SCk � 1

|Ck|
¸
x�i PCk

si.

SCk can measure the quality of individual clusters. The larger the average silhouette
width of a cluster Ck is, the more separated and compact is Ck. Further, the SC for
the entire partition CK is the average over all silhouette widths, i.e.

SC � 1

N

Ņ

i�1

si.

Just like the silhouette widths, SC also takes values in r�1, 1s, where values close to
1 indicate a high quality partition. The overall computational complexity of SC is
OpN2V q (Vendramin et al., 2010).

Simplified silhouette coefficient

In order to obtain SC, all NpN � 1q{2 pairwise distances among the N data points
have to be calculated. Especially if the number of data points is large, this can be
computationally very expensive. A variation of SC which is computationally less
expensive is the simplified silhouette coefficient (SSC) (Vendramin et al., 2010). In
this variation, ai is the distance of data point x�i to the centroid c�k P RV of its cluster
Ck, i.e.

ai � dpx�i , c�kq
and bi is the minimum of the distances of x�i to the centroids of the other clusters,
i.e.

bi � min
m�k

dpx�i , c�mq.
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Typically, the distance measure d is the Euclidean distance and the centroid is the
mean over all data points in Ck, i.e., c�k � x�k (Vendramin et al., 2010). However,
since this thesis deals with spatially correlated MRI data, a correlation based version
of the SSC is proposed in Section 6.6.1, which is used instead. The computational
complexity of SSC is OpNKV q (Vendramin et al., 2010).

5.6 Estimating the true number of clusters

One of the most pressing questions in the context of clustering is how to estimate the
true number of clusters, if any, in a data set (Von Luxburg, 2010). All the external
and internal validation measures from Section 5.5 can be employed for this task as
decribed in Section 5.6.1 and Section 5.6.2, respectively.

5.6.1 Clustering stability

Clustering stability (Von Luxburg, 2010) is a popular framework to estimate the true
number of clusters. In general, the clustering stability approach can be employed to
find good parameter values for the clustering algorithm. However, the focus here is
solely on the task of estimating the number of clusters. The idea behind clustering
stability is that, if a clustering method is applied to several data sets sampled from
the same underlying distribution, the clustering solutions ideally, i.e., if the right set
of parameters is chosen, are very similar, i.e., stable (Von Luxburg, 2010). More
specifically, the set of partitions, for which the number of clusters coincides with the
true number of clusters, should be more stable than sets of partitions, where the
number of clusters differentiates from the true number of clusters (Vinh and Epps,
2009). In practice, many different methods have been proposed to compute stability
scores and to use them to estimate the number of clusters. A very general summary
of these methods is presented in Algorithm 4 (see also Von Luxburg (2010)).

Vinh and Epps (2009) introduce a framework for estimating the true number of
clusters in a data set based on the Consensus Index. Therefore, given a number
of clusters K, a set of B partitions, all consisting of K clusters, is generated. The
Consensus Index quantifies the average similarity between all BpB � 1q{2 pairs of
partitions in that set. For this, any external clustering evaluation method can be
used, e.g., the ARI (see Section 5.5). The (best) estimate for the true number of
clusters is then given by the number of clusters K,K � 2, . . . , Kmax, Kmax P N¥2, for
which the Consensus Index is largest.

Practically, in order to generate the set of B partitions for each K � 2, . . . , Kmax,
Vinh and Epps (2009) apply the K-means algorithm to B data sets that are generated
from the original normalized data set via subsampling. As clustering evaluation
method for calculating the Consensus Index they use the ARI and the ANMI. Since
a subsampling scheme is used, some data points from one subsample might be not
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Algorithm 4 Clustering stability framework

1. For each number of clusters K,K � 2, . . . , Kmax,

(a) generate B perturbed versions of the original data set,

(b) apply a clustering algorithm to each of the perturbed versions,

(c) calculate an overall stability score based on the labelings of the perturbed
versions, e.g., by applying an external validation measure to all BpB�1q{2
pairs of labelings and then taking the mean over all these pairwise stability
scores.

2. Choose the number of clusters with the best overall stability score as estimate
for the true number of clusters.

present in another subsample. The ARI or the ANMI are, therefore, calculated on
the data points that are present in both subsamples. A variation of this procedure
is presented in Zaki and Meira (2014), where they use bootstrap resampling instead
of subsampling in order to get perturbed data sets.

A similar group of stability measures is introduced by Ben-Hur et al. (2002). The
idea is that inherent structure in the data is stable against subsampling. Therefore,
for each K � 2, . . . , Kmax, 2 � B subsamples of size f � N (typically f = 0.8) are
generated from the full data set. Each subsample is partitioned into K clusters by a
clustering algorithm, such as a hierarchical clustering algorithm. Next, B pairs are
formed from the resulting 2 �B partitions and for each pair the similarity is computed
by applying an external validation measure, e.g., the Fowlkes-Mallows measure or the
Jaccard coefficient, to the labels of the data points common to both subsamples. The
result is a distribution of similarities for each K. Again, the number of clusters, for
which the similarities are largest (measured by the cumulative distribution function),
can be taken as estimate for the true number of clusters. In numerical experiments
Ben-Hur et al. (2002) show that, if the data set is partitioned into a true number of
clusters, the distribution of similarities for this number of clusters will be close to 1.

Levine and Domany (2001) propose another procedure, which assesses the stabil-
ity of clustering solutions against subsampling. Therefore, in a first step, clustering
analysis is performed on the full data set using a specific clustering algorithm. After-
wards, multiple subsamples of the full data set are obtained, where the size of each
subsample is determined by the same dilution factor which can take values in r0, 1s.
The same clustering algorithm, as applied to the full data set, is used to obtain a
clustering result for each subsample. Levine and Domany (2001) introduce a figure
of merit, which compares the connectivity matrices of the clustering solutions of the
subsamples with the connectivity matrix of the clustering solution of the full data set.
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Again, this procedure is performed for different numbers of clusters and local maxima
of this figure of merit indicate partitions, which are stable against subsampling.

Other external procedures to estimate the number of clusters in a data set are,
e.g., a bootstrap approach by Chavent et al. (2012), the Clest procedure introduced
by Dudoit and Fridlyand (2002) or a procedure proposed by Lange et al. (2004),
evaluating the reproducibility of a clustering result on a second independent data
sample.

5.6.2 Clustering quality

All the in Section 5.5.2 mentioned internal validation measures can be employed to
estimate the true number of clusters in a data set. Therefore, a clustering algorithm
is run over the data set multiple times with different numbers of clusters, resulting in
a set of different partitions. Afterwards, an internal validation measure (see Section
5.5.2) is applied to evaluate the quality of each partition. The estimate for the true
number of clusters is given by the number of clusters of that partition, which has the
best score according to the internal validation measure (Arbelaitz et al., 2013). Note
that in this thesis the framework of using internal validation measures to identify
interesting numbers of clusters is referred to as clustering quality.

5.7 Introduction to neuroimaging

The brain is the most complex organ of the human body and is the central part of
the human nervous system. It consists of three main parts, i.e., the cerebrum, the
cerebellum and the brainstem. The cerebrum is the largest of the three parts and is
responsible for higher brain functions such as memory, speech and language, reason-
ing, interpreting sensory input or judgement. It, therefore, determines our subjective
perception of the world. The cerebellum is for example responsible for motor control,
and the brainstem connects the brain with the spinal cord and performs many of
the automatic body functions such as breathing, heartbeat, digestion or coughing.
The cerebrum is divided into the left and the right hemisphere, where each of these
hemispheres is further subdivided into the frontal, temporal, parietal and occipital
lobe as well as the insula. The outer layer of the cerebrum is the cerebral cortex.
The cerebral cortex in folded, where the peaks are called gyri and the grooves are
called sulci. This folding allows the cerebral cortex to take up a much larger sur-
face area without much increasing the brains volume. The cerebral cortex as well
as the most inner part of the cerebrum consist of grey matter, whereas most of the
remaining part of the cerebrum consists of white matter. The difference between
grey matter and white matter is that grey matter consists primarily of neuronal cell
bodies and fewer myelinated axons whereas white matter mainly contains myelinated
axons. The name white matter is based on the white color of myelin, which surrounds
and thereby insulates the axons, i.e., the wires of the human nervous system. Tracts
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of white matter connect the grey matter areas and transport electrical signals, i.e.,
nerve impulses, between neurons. Cytoarchitecture and myeloarchitecture describe
the spatial distribution pattern of neuronal cell bodies (which can vary in density,
shape and size) and myelinated axons, respectively (Amunts and Zilles, 2015). More-
over, the cerebrospinal fluid (CSF) is a clear body fluid that surrounds and fills the
brain and, thereby, protects the brain for example from shock. The information from
this paragraph and further information about the human brain can be found in the
book of Carter (2019).

Two main approaches to draw conclusions about the human brain are histolog-
ical analyses and neuroimaging techniques. E.g., in histological analyses of post-
mortem brains, cytoarchitecture and myeloarchitecture or gyral and sulcal patterns
can be analyzed microscopically or can reveal macroscopical landmarks, respectively
(Amunts and Zilles, 2015). One of the most important neuroimaging imaging tech-
niques is magnetic resonance imaging (MRI) (Lauterbur, 1973; Mansfield, 1977). It
is non-invasive and produces 3D images of body parts with high spatial resolution
(Möllenhoff et al., 2012). The following short summary of the structural MRI gener-
ation process is based on Sprawls (2000).

The water molecules of tissues in the human body contain hydrogen atoms, where
the nucleus, i.e., the core, of an ordinary hydrogen atom consists of a single proton
and no neutron. When a patient is placed inside an MRI scanner which generates
a strong magnetic field, some of these hydrogen nuclei align along the longitudinal
direction of the magnetic field and thereby magnetize the tissue. However, these
nuclei are not fixed but rather rotate, i.e., precess, around the axis of the magnetic
field at a constant rate. This phenomenon is called precession and the rate is called
precession rate. By pulsing a radio frequency (RF) that matches the precession rate
through the patient’s body, the direction of the magnetic field of the tissue can be
changed (usually by 90�) or flipped (by 180�). The nuclei are then in an unnatural,
i.e., excited, state. E.g., a 90� pulse causes saturation (0% magnetization) of the
longitudinal magnetization and in return excitation (100% magnetization) of the
transverse magnetization.

Once the RF pulse is turned of again, the nuclei are urged by the magnetic field
to realign (along the longitudinal axis). This procedure is called relaxation. There
are two different processes that happen simultaneously, i.e., regrowth of longitudi-
nal magnetization (longitudinal relaxation) and decay of transverse magnetization
(transverse relaxation). These two relaxation processes are governed by different
mechanisms. During the longitudinal relaxation or the transverse relaxation the pro-
tons emmit excess energy into the surroundings based on spin-lattice interaction or
spin-spin interaction, respectively (Varikuti, 2018). This excess energy, known as MR
signal, can be measured as an RF signal by a scanner.

The relaxation time depends on physical characteristics of the tissue and, there-
fore, varies between different tissue types. The time a specific tissue type requires to
reach 63% or 37% of the maximum of the longitudinal or transverse magnetization is
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referred to as T1 or T2, respectively. E.g., for a strength of 1.5 T (tesla) of the mag-
netic field the T1 (T2) value of white matter, grey matter or CSF is 780 (90) msec,
920 (100) msec or 2400 (160) msec, respectively. This also demonstrates the general
phenomenon that longitudinal relaxation is a much longer process than transverse
relaxation. Tissues with shorter T1 or larger T2 values appear brighter on images,
since the amount of longitudinal or transverse magnetization, respectively, is larger
in these tissues when the image is snapped. T1-weighted or T2-weighted images put
emphasis on differences in longitudinal or transverse relaxation between tissues, re-
spectively. Since extensive information about the anatomical structure of the human
brain, such as shape, size or constitution of brain tissue, can be derived from T1-
weighted and T2-weighted MRI (Desikan et al., 2006), they are usually referred to
as structural MRI (sMRI).

In contrast, functional MRI (fMRI) (Kwong et al., 1992; Ogawa et al., 1990) can
identify brain regions involved in a task performed by the patient and, therefore,
contributes information about the function of the human brain. The idea is that
task-performance causes neural activity which in turn is accompanied by time-varying
changes in oxygenation concentration and these changes can be made visible by, e.g.,
a clinical 1.5 T MRI scanner using the Blood Oxygen Level Dependent (BOLD)
contrast (Glover, 2011). Note that neural activity is also caused by unregulated
processes that occur even if the patient is resting, i.e., performing no specific task.
Hence, one can distinguish between task-based fMRI and resting-state fMRI. A fMRI
data set consists of multiple images per subject aggregated over time, i.e., fMRI time-
series.

A method to visualize white matter fiber tracts is diffusion tensor imaging (DTI)
which, in turn, is a special form of diffusion-weighted MRI (Mukherjee et al., 2008).
Without going into further detail, the basic idea is that water diffusion in white
matter is faster in the direction of fibers as it is in the perpendicular direction of fibers
(anisotropic diffusion) (Baliyan et al., 2016). This property allows the determination
of a diffusion tensor, i.e., a 3 � 3 matrix of vectors, for each voxel. Following along
the direction of the first eigenvectors of the diffusion tensors generates fiber tracts
among brain regions (Mukherjee et al., 2008).

In order to be able to analyze structural MR images, or, more specifically, grey
matter volumes, from multiple subjects, some preprocessing steps must be performed.
A whole brain tool that can be used for preprocessing is Voxel Based Morphometry
(VBM) (Good et al., 2001). The preprocessing steps for all structural MR images
(typically T1-weighted MRI) in a standard VBM analysis are, firstly, tissue seg-
mentation into grey matter (GM), white matter (WM) and CSF, secondly, spatial
normalization of typically grey matter images to a common 3D template (stereo-
tactic space), thirdly, modulation in order to preserve (grey matter) volume within
a voxel after (nonlinear) spatial normalization (based on the deformation fields ob-
tained from the normalization) and, finally, spatial smoothing with typically a 8-12
mm full-width at half-maximum (FWHM) Gaussian kernel to compensate imperfect
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spatial normalization and to improve the signal-to-noise ratio (SNR) (Kurth et al.,
2015).

Different 3D spatial mapping functions can be employed for image normalization
to a stereotactic space. While linear mapping functions impress with simplicity,
allowing an easier comparability of results from different studies (Evans et al., 2012),
they are inadequate with respect to anatomical correspondence (Klein et al., 2009).
Therefore, numerous more sophisticated non-linear approaches have emerged. See,
e.g., Klein et al. (2009) for an evaluation of 14 non-linear deformation algorithms. In
the VBM8 toolbox a low-dimensional default normalization and the high-dimensional
DARTEL normalization (Ashburner, 2007) are implemented. While there exist many
stereotactic spaces, the Talairach space (Talairach and Tournoux, 1988) and the
Montreal Neurological Institute (MNI) space (Brett et al., 2002) are the most popular
ones, where the latter is most commonly employed in VBM.

There are three segmentation frameworks implemented in SPM8 (Kazemi and
Noorizadeh, 2014), where the default is a unified segmentation framework performing
segmentation, normalization and bias field correction in a single model (Ashburner
and Friston, 2005). The latter, i.e., bias field correction, is necessary since MRI scans
are corrupted by a smooth and low-frequency signal caused by inhomogeneities in the
magnetic field of especially old MRI scanners (Jungnickel, 2005; Song et al., 2017).

The result after these preprocessing steps is a set of spatially normalized and
smoothed grey matter images, i.e., 3D images consisting of voxels (components of
a 3D regular grid structure) with intensity values representing grey matter volume.
Note that the interpretation of grey matter volume is difficult and not identical to
the density of neurons or other properties of cytoarchitectonic tissue. See, e.g., Win-
kler et al. (2010) for an analysis of the relationship between grey matter volume,
brain volume, cortical thickness and surface area. VBM is, e.g., implemented in the
VBM8 toolbox (http://www.neuro.uni-jena.de/vbm8) which is part of the MAT-
LAB software package SPM8 (Ashburner et al., 2012; Penny et al., 2011) in which
statistical methods are implemented in order to analyze sMRI and fMRI. Note that
when using the newer SPM12 version, CAT12 (Gaser and Kurth, 2017) is employed
instead of VBM8.

5.8 Brain parcellation

It is evidently suspected that mental processes and inter-individual differences are
crucially related to the spatial topology of the human brain (Eickhoff et al., 2018b).
Therefore, a field of active research is the generation and application of human brain
atlases, which is fundamental for getting a better understanding of the human brain.
The core concept is to employ a standardized 3D coordinate space, i.e., a stereotactic
space, which is identical for different (neuroimaging) experiments (Evans et al., 2012).
An atlas is then defined as the combination of a coordinate space and a parcellation
of this coordinate space, i.e., a neuroanatomical labeling (Cabezas et al., 2011). The
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parcellation of the coordinate space should provide a number of spatially contiguous
regions (areas) or networks of discontiguous interacting regions of large within ho-
mogeneity and large between heterogeneity with respect to specific neurobiological
features.

One group of atlases are anatomical atlases, which are derived based on histo-
logical analyses of post-mortem brains investigating macroscopical (e.g., myeloarchi-
tecture) and microscopical (e.g., cytoarchitecture) landmarks. A short overview of
existing anatomical atlases is given in Section 5.8.1. Algorithmic parcellation ap-
proaches (typically involving clustering algorithms) based on high-quality magnetic
resonance imaging (MRI) data measured in-vivo are presented in Section 5.8.2.

5.8.1 Anatomical atlases

Historically, the first brain parcellations are performed based on histological analyses
of post-mortem brains, where brain regions could be identified based on differences in
cytoarchitecture and myeloarchitecture (von Economo and Koskinas, 1925; Flechsig,
1920; Vogt, 1919). E.g., a pioneering work are the brain areas of the cortex gen-
erated by Brodmann (1909). However, it is impossible to compare these 2D maps
that are drawn on paper as they are not registered to a standardized 3D coordinate
space. The first brain atlas registered to a 3D coordinate space is the Talairach
and Tournoux atlas (Talairach and Tournoux, 1988) defined on the Talairach space
which includes Brodmann area labels. Other examples of anatomical atlases derived
from macroscopical landmarks are the widely used Automated Anatomical Labeling
(AAL) atlas (90 cortical + 8 subcortical grey matter + 18 cerebellum = 116 areas)
(Tzourio-Mazoyer et al., 2002) or its modification AAL3 (170 areas) (Rolls et al.,
2020) both defined on the MNI space, where the anatomical parcellation is based on
the average of 27 spatially normalized T1-weighted images of a single subject, the
probabilistic Harvard-Oxfort cortical/subcortical structural atlases (48 cortical and
21 subcortical structural areas) (Desikan et al., 2006; Frazier et al., 2005; Goldstein
et al., 2007; Makris et al., 2006) defined on the MNI152 space, which are obtained
based on T1-weighted images of 37 subjects, the MarsAtlas (82 cortical areas and 14
subcortical areas) (Auzias et al., 2016; Brovelli et al., 2017), which is derived from the
spatial organization of key cortical sulci using the HIP-HOP parameterization model,
the widely used Desikan-Killany atlas (68 cortical areas) (Desikan et al., 2006), which
defines gyral based ROIs derived from 40 manually labeled structural MRI scans or
the Destrieux atlas available in the FreeSurfer package (148 areas) (Destrieux et al.,
2010; Fischl et al., 2004), where the computer-assisted hand parcellation is done based
on sulcal-gyral patterns.

A cortical atlas based on microscopical features is the probabilistic JuBrain atlas
available as toolbox in SPM (Amunts and Zilles, 2015; Amunts et al., 2007; Eickhoff
et al., 2005, 2006; Zilles and Amunts, 2010). JuBrain is defined on the MNI space and
is derived from differences in cytoarchitecture based on human post-mortem brains.
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Moreover, Amunts et al. (2020) introduce the Julich-Brain atlas, a probabilistic whole
brain atlas differentiating 248 cytoarchitectonic cortical areas and subcortical nuclei.
Eickhoff et al. (2005) argue that microscopic based areas can be seen as functional
modules of the cerebral cortex and, therefore, should be most appropriate for the
assignment of functional activation areas.

5.8.2 Algorithmic parcellation approaches

Since a post-mortem examination of a single brain is labor-intensive and time con-
suming, sample sizes of corresponding studies are small. Also, it does not allow for a
parallel analysis of function (Eickhoff et al., 2018). In contrast, neuroimaging studies
provide large sample sizes of in-vivo whole brain images and allow a parallel analysis
of function. Moreover, since these images are digital, a vast number of computational
methods, e.g., for automatic registration and parcellation, can be applied.

Two popular features categories deduced from MRI data are connectivity and
function. Connectivity can be further subdivided into structural connectivity and
functional connectivity (Eickhoff et al., 2018b). The two most popular structural
connectivity approaches are tractography based on diffusion MRI (Behrens et al.,
2003) as well as structural covariance based on structural MRI (Kelly et al., 2012), and
the two most popular functional connectivity approaches are resting-state functional
connectivity based on resting-state fMRI (Craddock et al., 2012; Schaefer et al., 2018)
as well as meta-analytic connectivity based on task-based fMRI across many studies
(Eickhoff et al., 2011). Note that among these four approaches, structural covariance
is the least commonly employed approach (Eickhoff et al., 2018b). Since some resting-
state functional connectivity based atlases should be used for convergence analysis in
Chapter 7, it is described in more detail how to deduct connectivity from resting-state
fMRI data. Therefore, let N be the number of subjects and F ¡ 1 be the number of
images per subject. Note that F � 1 for structural MRI. Further let n � NF be the
number of images in the data set. Hence, X P Rn�V

¥0 , where X is the data matrix
storing N time-series of length F in each column and V is the number of voxels in
an image.

Connectivity can be deduced from X in two different ways and on the individual-
or group-level. Starting with the description of the group-level approach, the first
way is to correlate each voxel’s time-series, i.e., the respective column of X, with
the time-series of every other voxel (using, e.g., Pearson’s correlation coefficient), re-
sulting in a V � V times-series based correlation matrix corpXq. corpXq can then
be used as similarity matrix in a preceding parcellation procedure (see, e.g., Thirion
et al. (2014)). Note that in the case of structural MRI data, i.e., for F � 1, corpXq is
referred to as structural covariance (Alexander-Bloch et al., 2013). The second way
goes one step further by calculating the pairwise similarity (using, e.g., Euclidean
metric or Pearson’s correlation coefficient) between voxels connectivity maps, result-
ing in a V � V connectivity maps based matrix, where a voxel’s connectivity map is
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its corresponding row or column in corpXq (Eickhoff et al., 2015). The connectivity
map of a voxel is also referred to as its connectivity fingerprint, where the underlying
idea is that each brain region has its unique set of connections to other brain regions
and, therefore, all voxels from the same region must have the same connectivity
fingerprints (Mars et al., 2018; Passingham et al., 2002).

On the individual-level, connectivity is deduced separately for each subject. This
is done by dividing X into N submatrices X1, . . . ,XN , where Xi P RF�V

¥0 , i �
1, . . . , N, includes all images of the i-th subject. Connectivity can then be determined
based on each Xi in the same ways as based on X, resulting either in N time-
series based correlation matrices (see, e.g., Van Den Heuvel et al. (2008)) or in N
connectivity maps based matrices (see, e.g., Cohen et al. (2008)). Parcellation can
then either be performed collectively on the average of these N connectivity matrices
(see, e.g., Craddock et al. (2012)) or separately on the N subject-specific connectivity
matrices, followed by a merging step, e.g., a consensus clustering method, to obtain a
final parcellation (see, e.g., Van Den Heuvel et al. (2008) or Craddock et al. (2012)).

Function can be deduced, e.g., from meta-analytic activation patterns observed
in task-based functional MRI across many studies (Kurth et al., 2010; Yang et al.,
2016) or from voxel-based lesion behavior mapping (VLBM) (Karnath et al., 2018).

There are mainly two different approaches to parcellate the human brain, namely
boundary mapping (local gradient) and global similarity (clustering) approaches
(Eickhoff et al., 2018b; Schaefer et al., 2018). In contrast to histological based par-
cellations which usually rely on boundary mapping approaches, connectivity based
parcellations (CBPs) mainly rely on clustering methods (Eickhoff et al., 2018b). How-
ever, principally each parcellation method can be applied to all features.

Some examples of atlases deduced from resting-state fMRI that differ from each
other by the parcellation method are listed in the following. Whole brain parcella-
tions are generated by the bootstrap analysis of stable clusters (BASC) method pro-
posed by Bellec et al. (2010, 2015). Therefore, hierarchical Ward clustering is used
in a bootstrap approach generating replicated group clusters and the final parcella-
tion is obtained via an ensemble clustering method. Craddock et al. (2012) employ a
spatially constrained spectral clustering algorithm to derive multiple whole brain par-
cellations with varying numbers of brain regions (ranging from 10 to 1000). Hereby,
only the similarity between neighboring voxels (26 voxels, face and edge touching)
is considered. In their analysis, Craddock et al. (2012) obtain the best results for
200 ROIs. A multigraph K-way clustering algorithm which integrates the multiclass
spectral clustering algorithm (Stella and Shi, 2003) is employed by Shen et al. (2013)
yielding whole brain parcellations with 93, 184 and 278 regions. Schaefer et al. (2018)
introduce and apply a gradient-weighted Markov Random Field (gwMRF) method
which is a hybrid method integrating both boundary mapping and global similarity
in one method, generating cerebral cortex parcellations with 100 to 1000 (in steps of
100) regions. Boundary mapping techniques are applied, e.g., by Cohen et al. (2008)
or Gordon et al. (2016).
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There are also examples of parcellation methods based on other features than
resting-state fMRI. Thirion et al. (2014) compare the performance with respect to
accuracy and stability between spatially constrained hierarchical Ward, K-means and
spectral clustering on task-based fMRI data. Hereby, the dimensionality with respect
to the number of fMRI scans (number of subjects multiplied by number of fMRI scans
per subject) is reduced by a PCA procedure prior to clustering. Additionally, they
consider a geometric clustering method which uses only the spatial information of the
voxels and ignores the voxels intensity values. Their analysis reveals that spatially
constrained hierarchical Ward clustering performs in general better than the other
clustering methods. Varikuti et al. (2018) generate parcellations with different num-
bers of clusters based on two structural MRI data sets using orthonormal projective
non-negative matrix factorization (OPNMF) based clustering.

All of the above named parcellations are based on one specific feature. However,
it is proposed for example by Eickhoff et al. (2018a) to consider multiple features
for parcellation in order to obtain a more complete description of brain organiza-
tion. Practically, Eickhoff et al. (2018a) suggest to either perform clustering based
on a multivariate feature vector or, firstly, to apply clustering separately to each
feature, and, secondly, to combine these partitions into a joint partition, e.g., using
an ensemble clustering method. A multimodal brain atlas with 180 regions is gener-
ated by Glasser et al. (2016) by employing a semi-automated parcellation approach
and multiple features such as resting-state fMRI, task-based fMRI or relative myelin
content.
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Chapter 6

Methodology

The main goal of the second part of this thesis is to provide a methodology for data-
driven parcellation of the human brain into spatially connected brain regions based
on structural MRI data. Each parcellation should reflect a specific level of brain
organization. For this, it is crucial to first identify interesting numbers of brain re-
gions that may correspond to different levels of brain organization. The resulting
data-driven parcellations add value in at least two ways. On the one hand, they pro-
vide an additional view on human brain organization. On the other hand, they can
be employed for dimensionality reduction, e.g., by determining a neurobiologically
meaningful representative variable for each brain region that summarizes the infor-
mation included in that region. The representative variable can, e.g., be the mean
grey matter volume of the voxels in that region, or the first principal component
of that region. The need for dimensionality reduction stems from the fact that the
number of voxels, i.e., the number of features, in an MRI data set is too large to use
all of them as predictors in a statistical analysis.

This chapter is structured as follows. While the generation process of a struc-
tural MRI data set is already described in Section 5.7, its mathematical definition
is presented in Section 6.1. Data-driven parcellation is achieved in this thesis by
using spatial hierarchical agglomerative clustering (SHAC) algorithms. The newly
proposed SHAC algorithm SPARTACUS (SPAtial hieRarchical agglomeraTive vAri-
able ClUStering) is presented in Section 6.2. SPARTACUS is a spatial modification
of the hierarchical variable clustering algorithm introduced by Vigneau and Qannari
(2003) (see Section 5.2.1). Moreover, also classical SHAC algorithms (see Section
5.3.1) are applied to structural MRI data. Those which are considered for analysis
in this thesis are described briefly in Section 6.3.

The performance of SHAC algorithms should be compared with the performance
of spatial spectral clustering (see Section 5.3.2). Thus, the spatial spectral clustering
algorithm which is employed for comparison is presented in Section 6.4. In order to
improve the quality of the parcellations, spatial hierarchical agglomerative ensemble
clustering methods are used. On the one hand, two popular SHAC methods, i.e., sin-
gle and average linkage SHAC, are considered as consensus functions. On the other
hand, a new SHAC method is proposed as consensus function, where the agglomera-
tion method for ensemble clusters is based on the Hellinger distance for quantifying
the similarity between two probability distributions. These methods are presented in
Section 6.5.

The quality of the structural MRI based parcellations can be evaluated using
internal validation measures (see Section 5.5.2). Additionally, a correlation based
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variation of the simplified silhouette coefficient (SSC) is newly introduced in Section
6.6, which is especially developed for the evaluation of variable clustering methods.
However, all these internal measures ignore the spatial information provided by the
data. Therefore, spatial adaptations of the silhouette coefficient (SC) and SSC (see
Section 5.5.2) are introduced in Section 6.6 as well.

In order to identify interesting numbers of brain regions, two subsampling based
approaches, i.e., a clustering stability and a clustering quality approach, are presented
in Section 6.7. Moreover, an ensemble based clustering quality approach is newly
proposed in Section 6.7 as well.

Note that the clustering methodology presented in this chapter is not restricted to
structural MRI data. It can also be applied, e.g., to connectivity data such as struc-
tural connectivity inferred from diffusion MRI, resting-state functional connectivity
or task-based (meta-analytic) connectivity (Eickhoff et al., 2018).

6.1 Structural MRI data set

Mathematically, a structural MRI data set consists of two matrices, i.e., a data matrix
X � px1, . . . ,xV q P RN�V , where N is the number of subjects and V is the number
of voxels, as well as a coordinate matrix Z P NV�3

0 , where the spatial coordinates
of voxel xj, j � 1, . . . , V, are stored in the j-th row z�j of Z. The entries of X
are positive values representing grey matter volumes (see Section 5.8). Thus, each
row-vector of X is a (preprocessed) structural MR brain image consisting of V grey
matter volumes whose spatial locations are stored in Z. The columns of X can be
centered and/or standardized.

The sparse and binary adjacency matrix S � psj`qj,`�1,...,V P t0, 1uV�V is deter-
mined based on Z, i.e., sj` � 1, if voxel xj and voxel x` are neighbors, otherwise
sj` � 0. Two popular definitions of voxel neighborhood in the literature are the 3D
Neumann neighborhood (Gray, 2003), also referred to as face touching neighborhood,
where each voxel has six spatial neighbors, or the 3D Moore neighborhood (Gray,
2003), also referred to as edge and face touching neighborhood (Craddock et al.,
2012), where each voxel has 26 spatial neighbors. The neighborhood can be deter-
mined based on Z. Two voxels xj and x` are face touching neighbors, if these two
voxels share a common face, i.e., if

|z�j1 � z�`1| � |z�j2 � z�`2| � |z�j3 � z�`3| � 1.

Similarly, two voxels xj and x` are edge and face touching neighbors, if these two
voxels share a common face or a common edge, i.e., if

maxt|z�j1 � z�`1|, |z�j2 � z�`2|, |z�j3 � z�`3|u � 1.
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6.2 SPARTACUS

In the task of parcellating the human brain based on structural MRI data using
clustering algorithms, the objects to be clustered are spatially correlated variables,
i.e., voxels, of the data set and not the data points. Therefore, an obvious idea is
to employ a correlation based clustering algorithm which is especially tailored for
the task of clustering variables. As described in detail in Section 5.2.1, Vigneau
and Qannari (2003) propose a HAC algorithm for clustering variables. The idea is
to organize highly correlated variables into clusters, such that for each cluster the
within-cluster variance of the variables in that cluster is well explained by a single
latent variable, called latent component. The distance between two clusters is then
the overall loss in explained total variance by all clusters latent components that
would be caused, if these two clusters are merged.

However, two major issues occur with all HAC algorithms, including the HAC
algorithm of Vigneau and Qannari (2003), in application to structural MRI data.
The first issue is that in the beginning of any HAC algorithm a distance matrix
including all pairwise distances between voxels from the data set must be calculated.
Since (structural) MRI data consists of a large number of voxels, e.g., a whole brain
image with 1mm3 voxel resolution typically consists of 1.2 - 1.4 million voxels, the
calculation and storage of the distance matrix is not only very time consuming but
also requires a large amount of RAM, of which most computers do not have enough
of. The second issue is that the final parcellation is not guaranteed to consist of
spatially contiguous brain regions.

In order to solve these issues, in this thesis a spatial adaptation of the HAC
algorithm for clustering variables by Vigneau and Qannari (2003) is proposed, where
in each agglomeration step only clusters can be merged that are spatially contiguous.
Hereby, two clusters Ck and Cm are spatially contiguous or spatial neighbors, if at
least one voxel from Ck is a spatial neighbor of at least one voxel from Cm, i.e., if

ςkm � I

�� ¸
xjPCk

¸
x`PCm

sj` ¡ 0

�� 1.

Note that this spatial adaptation is the same adaptation that is performed for the
SHAC algorithms (see Section 5.3.1), making this new method a SHAC method
as well. Since this SHAC method is especially designed to cluster variables, it is re-
ferred to as SPARTACUS (SPAtial hieRarchical agglomeraTive vAriable ClUStering)
method.

Accordingly, the SPARTACUS distance between two clusters Ck and Cm is the
spatial adaptation of Dlacomp (see (5.3)), i.e.,

DSPARTACUS pCk, Cmq �
#
λCk1 � λCm1 � λCkYCm1 , if ςkm � 1,

8, otherwise.
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Algorithm 5 SPARTACUS

1. Start with V clusters, where each voxel forms its own cluster.

2. Determine the sparse distance matrix Dspatial P RV�V
¥0 with all pairwise clus-

ter distances according to the SPARTACUS distance DSPARTACUS. Hereby,
”sparse” means that most of the distances are infinity.

3. Merge the two clusters Ck and Cm that have the smallest distance.

4. Update the distance matrix Dspatial by removing the rows and columns corre-
sponding to clusters Ck and Cm and adding one row and one column correspond-
ing to the merged cluster Ck Y Cm, where the entries of the newly added row
and column are the distances according to DSPARTACUS of the merged cluster
to all the remaining clusters.

5. Repeat steps 3. and 4. until all voxels are merged into a single cluster, or until
there are no further adjacent clusters. The latter occurs, if not all voxels in the
data set belong to one contiguous region.

6. Successively split up the last aggregation, until the desired number K of clusters
is reached.

Using DSPARTACUS as distance measure for clusters in the SHAC algorithm (Algorithm
3), while considering that the objects to be clustered are the voxels, i.e., variables, and
not the subjects, i.e., data points, results in the SPARTACUS algorithm as described
in detail in Algorithm 5.

Due to the spatial adaptation, the SPARTACUS method is not suffering from the
two issues described above. Since in the beginning of the algorithm only pairwise
distances between neighboring voxels are calculated, the resulting distance matrix
is sparse. During the run of the algorithm, the distance matrix remains sparse and
decreases in dimensionality. Therefore, the SPARTACUS method requires only lit-
tle memory. Moreover, the SPARTACUS method generates parcellations of strictly
spatially contiguous brain regions. Another advantage of the SPARTACUS method
is that it is very time-effective for the task of comparing parcellations with different
numbers of clusters, which is particularly advantageous for the identification of in-
teresting numbers of clusters. The reason is that once the hierarchy is calculated, a
parcellation with any number of clusters can be generated in no time, by successively
splitting up the hierarchical tree in a top-down approach.

Note that to my knowledge there exist no publications on how the HAC algorithm
of Vigneau and Qannari (2003) performs under spatial constraints, especially not in
the context of structural MRI data.
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6.3 Spatial hierarchical agglomerative clustering

of structural MRI data

The advantages of the SPARTACUS method, i.e., spatial contiguity, low memory
requirement and fast calculation of parcellations with different numbers of clusters,
are not specific to the SPARTACUS method, but apply to all SHAC methods. More-
over, by allowing different choices for the distance metric and the agglomeration
method, SHAC methods are able to identify a variety of cluster shapes. Therefore,
three more SHAC methods are considered for parcellation in this thesis, which are
shortly described in the following. Note that mathematically no new concepts are
presented to those presented in Section 5.3.1 and that all three SHAC algorithms are
already described in Carvalho et al. (2009). The only new modification is that SHAC
algorithms are employed to parcellate structural MRI data.

The first SHAC method is Ward’s minimum variance based SHAC, in the following
referred to as SHACWard. The strictly spatially constrained distance between two
clusters Ck and Cm of SHACWard is given by

Dspatial
Ward pCk, Cmq �

$'''&'''%
dEucl pck, cmq2�

1

|Ck| �
1

|Cm|

 , if ςkm � 1,

8, otherwise,

where |Ck| is the number of voxels belonging to Ck, ck � 1
|Ck|

°
xjPCk

xj and dEucl is
the Euclidean distance.

The other two SHAC methods are average linkage based SHAC methods. One
of these two SHAC methods, referred to as SHACAL, corr, determines the distance
between two voxels xj and x` based on their squared correlation, i.e.

dcorrpxj,x`q � 1� corrpxj,x`q2,
where

corrpxj,x`q �
°N
i�1 pxj,i � xjq px`,i � x`qb°N

i�1 pxj,i � xjq2 �
b°N

i�1 px`,i � x`q2

with xj � 1
N

°N
i�1 xj,i. Hence, the closer to zero the correlation between two voxels

is the more dissimilar they are, regardless of the sign of correlation. The other
SHAC method, referred to as SHACAL, Eucl, considers the Euclidean distance dEucl as
distance measure between two voxels.

Following, the distance between two adjacent clusters Ck and Cm according to
SHACAL, corr is the average over all pairwise squared correlation distances between
the voxels from the two clusters, i.e.

Dspatial
AL, corr pCk, Cmq �

$&%
1

|Ck||Cm|
°

xjPCk

°
x`PCm

dcorrpxj,x`q, if ςkm � 1,

8, otherwise,
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where |Ck| or |Cm| is the number of voxels belonging to Ck or Cm, respectively.
Analogously, the distance between two clusters according to SHACAL,Eucl is defined
as

Dspatial
AL, Eucl pCk, Cmq �

$&%
1

|Ck||Cm|
°

xjPCk

°
x`PCm

dEuclpxj,x`q, if ςkm � 1,

8, otherwise.

Using Dspatial
Ward , Dspatial

AL, corr or Dspatial
AL, Eucl instead of DSPARTACUS as agglomeration measure

in the SPARTACUS algorithm (Algorithm 5) results in the SHACWard, SHACAL, corr

or SHACAL, Eucl algorithm, respectively.

In the beginning of any SHAC algorithm, only distances between neighboring
voxels are considered. However, as the algorithm progresses, also distances between
voxels are considered that belong to neighboring clusters but that are no direct neigh-
bors. Following, e.g., for average linkage, each pairwise distance between any two
voxels is considered at some iteration during the run of the algorithm to make a
merging decision. This is an advantage over other strictly spatially constrained clus-
tering methods, such as spatially constrained spectral clustering (see Section 5.3.2
or Section 6.4), where only the information of neighboring voxels is used during the
entire algorithm. Hence, SHAC methods can be seen as hybrid methods between
non-restricted clustering methods on the one side using all available information all
the time and strictly spatially constrained clustering methods on the other side using
only the information between neighboring voxels.

6.4 Spatial spectral clustering of structural MRI

data

As mentioned in Section 5.8, Craddock et al. (2012) employ a spatial spectral clus-
tering algorithm to generate regions of interest based on resting-state fMRI data.
Hereby, they consider an edge and face touching neighborhood for each voxel, i.e.,
each voxel has maximal 26 neighbors. Also, in this thesis, a spatial spectral cluster-
ing algorithm, more precisely the BSSC method of Yuan et al. (2015), is applied to
structural MRI data. Therefore, let r P N indicate the neighborhood size of a voxel,
where, e.g., r � 2 means that not only the neighbors of a voxel xj, but also the
neighbors of the neighbors of xj belong to its neighborhood. For each r, the sj`prq-th
entry, j, ` � 1, . . . , V , of the binary adjacency matrix Sprq P t0, 1uV�V is determined
via the coordinate matrix Z by

sj`prq � 1t1,...,ru
�|z�j1 � z�`1| � |z�j2 � z�`2| � |z�j3 � z�`3|

�
,

i.e., a face touching neighborhood with neighborhood size r is considered. Again,
sj`prq � 1 indicates that voxels xj and x` are neighbors, otherwise sj`prq � 0. Note
that Sprq is identical to the binarized truncated exponential kernel Sbinprq introduced
by Yuan et al. (2015) (see Section 5.3.2).
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Further let W Full P RV�V
¥0 be the adjacency matrix including all pairwise voxel

similarities. Hereby, the radial basis function (RBF)

wRBFpxj,x`q � exp

�
�dEuclpxj,x`q2

N



(default in Scikit-learn (Pedregosa et al., 2011)) is considered as similarity function
to construct W Full. The spatially constrained adjacency matrix is then given by the
Hadamard product

W prq �W Full � Sprq.
Finally, spectral clustering is performed based on W prq using the Scikit-learn im-
plementation (Pedregosa et al., 2011). Hereby, the ARPACK (Lehoucq et al., 1998)
algorithm and K-means are used to calculate the eigen-decomposition of the Lapla-
cian matrix and to cluster the eigenvector matrix, respectively. In this thesis, a
neighborhood size of r � 2 is selected and the resulting method is referred to as
SSPEC (Spatial SPEctral Clustering).

Note that in order to make clustering decisions, SSPEC only uses the distances
between voxels that are in each others neighborhood. Hereby, a neighborhood size
of r � 2 is small enough to (almost) guarantee that the SSPEC algorithm produces
contiguous clusters, while more information is available to the SSPEC algorithm than
just the information of face touching voxels. In contrast, the SHAC algorithms (in-
cluding the SPARTACUS algorithm) consider all pairwise distances between voxels at
least once when calculating the hierarchy. I.e., the SHAC algorithms use much more
information in order to make the clustering decisions than the SSPEC algorithm.
Therefore, it can be expected that the SHAC algorithms have a better performance
than the SSPEC algorithm. Moreover, the SHAC algorithms are guaranteed to pro-
duce spatially contiguous clusters, whereas the SSPEC algorithm can not guarantee
spatial contiguity.

6.5 Spatial hierarchical ensemble clustering

In order to improve the robustness, stability and quality of the clustering results,
spatial ensemble clustering (SEC) methods are employed. Again, these methods
should organize voxels into strictly spatially contiguous brain regions.

The cluster ensemble of each SEC method considered in this thesis is generated via
the same subsampling approach employed in survivalFS (see Section 2.7.1), i.e., 63.2%
of the subjects are randomly drawn without replacement to obtain B subsample data
setsX1

Sub, . . . ,X
B
Sub. It is worth mentioning that by not clustering samples but voxels

which are all included in each subsample data set, the missing data points issue does
not occur. Hence, the subsampling approach, somehow, can be seen as a random
subspacing approach. This is particularly important when dealing with structural
MRI data, since strictly spatially connected clusters should be generated. If, however,
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the subsamples were generated by randomly drawing voxels instead of samples, the
voxels in the subsamples might not be spatially connected anymore, which is clearly
an unwanted effect.

Next, a spatial clustering algorithm is applied to the B subsample data sets to
generate B base partitions with K clusters each (K is fixed). This yields a cluster
ensemble

PK �  
C

p1q
K , . . . ,C

pBq
K

(
.

PK is a homogeneous cluster ensemble, i.e., its diversity is solely explained by the
subsampling approach. Further note that, if the base clustering method is a SHAC
method, multiple cluster ensembles for multiple numbers of clusters can be obtained
in short time, since, once the dendrograms are calculated for the subsample data sets,
they can be cut to give any number of clusters with low computational cost.

In order to calculate a final ensemble parcellation from the cluster ensemble PK ,
SHAC algorithms are employed, through which the spatial contiguity of the final
ensemble clusters is guaranteed. Two different agglomeration approaches are consid-
ered to calculate the distances between clusters in the SHAC algorithms. In the first
approach, pairwise voxel distances are calculated from the cluster ensemble, and a
popular linkage method, i.e., single or average linkage, is employed for cluster agglom-
eration. In the second approach, which is newly proposed in this thesis, the distance
between two clusters is quantified by the Hellinger distance (see, e.g., Rüschendorf
(2014), page 62) between the discrete probability distributions of these clusters. The
first or second approach is presented in Section 6.5.1 or Section 6.5.2, respectively.

6.5.1 Linkage based ensemble clustering

In order to obtain a final ensemble parcellation based on the cluster ensemble PK , a
pairwise similarity based approach is used as consensus function, i.e., a SHAC algo-
rithm is applied to the cluster ensemble based co-association matrix. Therefore, let
C

pbq
K pxjq, b � 1, . . . , B, be the cluster label of xj due to C

pbq
K . The V �V connectivity

matrix corresponding to C
pbq
K is given by

M
pbq
K pxj,x`q �

#
1, if C

pbq
K pxjq � Cpbq

K px`q,
0, otherwise,

and the co-association matrix is calculated as

MKpxj,x`q � 1

B

B̧

b�1

M
pbq
K pxj,x`q.

Then, the ensemble distance between any two voxels is

denspxj,x`q � 1�MKpxj,x`q.
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Note that denspxj,x`q is dependent on PK and, therefore, different for different cluster
ensembles.

Using dens as distance measure between voxels, the final ensemble parcellation with
K clusters is obtained by employing the SHAC algorithm with either average linkage
or single linkage. According to the average linkage method, the strictly spatially
constrained distance between two clusters Ck and Cm based on dens is

DE
AL pCk, Cmq �

$&%
1

|Ck||Cm|
°

xjPCk

°
x`PCm

denspxj,x`q, if ςkm � 1,

8, otherwise,

where ςkm � 1, if Ck and Cm are adjacent, and ςkm � 0, otherwise. The SHAC
algorithm using DE

AL as distance measure for clusters in Algorithm 5 is referred to as
SECAL. Analogously, SECSL is the single linkage based SHAC algorithm using

DE
SL pCk, Cmq �

$&% min
xjPCk,x`PCm

denspxj,x`q, if ςkm � 1,

8, otherwise,

as distance measure for clusters in Algorithm 5.

Note that in order to obtain the final ensemble parcellation with K brain regions,
a SHAC algorithm is applied to the co-association matrix of the cluster ensemble PK
with identical K. I.e., for each different K a separate SHAC hierarchy is calculated.
Therefore, the advantage of SHAC algorithms that the hierarchy only needs to be
calculated once and parcellations with different K are obtained by simply splitting
up the hierarchy does not apply to the consensus function step of SEC. This makes
the calculation of ensemble parcellations with different numbers of clusters expensive.

6.5.2 Hellinger based ensemble clustering

As mentioned in Section 6.3, during the run of the SHAC algorithm with average or
single linkage, all V pV �1q{2 pairwise distances between all the voxels are calculated.
Since V is very large for structural MRI data, SECAL and SECSL are computationally
expensive. Thus, a new strictly spatially constrained distance between two adjacent
clusters is proposed in the following which avoids calculating all pairwise distances. It
uses the Hellinger distance which is based on the Hellinger integral (Hellinger, 1909) to
calculate the mean distance between the estimated discrete probability distributions
of two clusters.

Each base partition in PK organizes the voxels in exactly K different clusters.
Therefore, even though the cluster labels are arbitrary among the base partitions,
the set of different cluster labels Ω � t1, 2, . . . , Ku can be defined, which is the

same for each base partition C
pbq
K , b � 1, . . . , B. Based on PK , the general idea is to

determine for any cluster Ck� a set of B probability vectors, i.e., vectors including
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positive real values that sum up to one, and to calculate the distance between two
clusters based on their corresponding sets of probability vectors. Hereby, let k P Ω
and let k� be the index of Ck� which is either a temporary cluster occuring at a
certain iteration in a SHAC algorithm or a cluster belonging to a final parcellation.
The estimated probability that a randomly picked voxel xj from Ck� has cluster label

k due to the b-th base partition C
pbq
K is given by

pk
�

bk :� pP�
C

pbq
K pxjq � k

��xj P Ck�	 � 1

|Ck� |
¸

xjPCk�

I
�
C

pbq
K pxjq � k

	
.

Further let
pk

�

b :� �
pk

�

b1 , . . . , p
k�

bK

�
.

Note that pk
�

b P r0, 1sK with
°K
k�1 p

k�

bk � 1. Hence, for each (ensemble) cluster Ck� a
set of B probability vectors

PpCk�q � tpk�1 , . . . ,pk
�

B u
is obtained.

The idea is now to merge in each step of the SHAC algorithm the two clusters
with the most similar sets of probability vectors. Since the cluster labels are ar-
bitrary among the B base partitions, for two clusters Ck� and Cm� one can only
compare a probability vector from PpCk�q with a probability vector from PpCm�q, if

both correspond to the same base partition C
pbq
K . Here, the Hellinger distance (see,

e.g., Rüschendorf (2014), page 62) is employed to estimate the distance between two
probability vectors that correspond to the same base partition, i.e.,

dHellinger

�
pk

�

b ,p
m�

b

	
� 1?

2

gffe Ķ

k�1

�b
pk

�

bk �
b
pm

�

bk


2

.

The strictly spatially constrained Hellinger distance between two (ensemble) clusters
Ck� and Cm� is then given by

DE
Hellinger pCk� , Cm�q �

$&%
1

B

B°
b�1

dHellinger

�
pk

�

b ,p
m�

b

�
, if ςk�m� � 1,

8, otherwise,

�

$'&'%
1

B

B°
b�1

1?
2

d
K°
k�1

�a
pk

�

bk �
a
pm

�

bk

	2

, if ςk�m� � 1,

8, otherwise.

DE
Hellinger can be used as distance measure between two clusters in Algorithm 5 in

order to obtain a final ensemble parcellation with spatially contiguous clusters based
on PK . This method is in the following referred to as SECHellinger.
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Since DE
Hellinger only calculates the Hellinger distance between probability vectors

that correspond to the same base partition, the SHAC algorithm using DE
Hellinger

can also be applied to cluster ensembles, where the base partitions have varying
numbers of clusters. Moreover, if the spatial constraint is removed from DE

Hellinger,
the resulting distance measure can be used for normal hierarchical agglomerative
ensemble clustering.

In order to illustrate the mechanism of DE
Hellinger, an easy example is considered.

Let

P3 �
��1 1 2 2 3 3

2 2 2 3 1 1
2 1 2 2 3 3

��
be a cluster ensemble with B � 3 base partitions of V � 6 voxels, where each base
partition consists of K � 3 clusters. Further assume that after three iterations of the
SHAC algorithm using DE

Hellinger there are the three (temporary) ensemble clusters
C1 � tx1,x2u, C2 � tx3,x4u and C3 � tx5,x6u, where C2 is neighbor to both C1 and
C3 but C1 and C3 are not neighbors, i.e., ς12 � ς23 � 1 and ς13 � 0. The probability
vectors of the three ensemble clusters according to the three base partitions are given
by

PpC1q � tp1
1,p

1
2,p

1
3u � tp1, 0, 0q, p0, 1, 0q, p0.5, 0.5, 0qu,

PpC2q � tp2
1,p

2
2,p

2
3u � tp0, 1, 0q, p0, 0.5, 0.5q, p0, 1, 0qu,

PpC3q � tp3
1,p

3
2,p

3
3u � tp0, 0, 1q, p1, 0, 0q, p0, 0, 1qu.

Then, the pairwise cluster distances wrt. DE
Hellinger are given as

DE
HellingerpC1, C2q �

$'&'%
1

3

3°
b�1

1?
2

d
3°

k�1

�a
p1
bk �

a
p2
bk

	2

, if ς12 � 1,

8, otherwise.
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�
� 0.6941,

DE
HellingerpC2, C3q � . . . � 1,

DE
HellingerpC1, C3q � 8.

137



Hence, in the next iteration of the SHAC algorithm using DE
Hellinger the two ensemble

clusters C1 and C2 are merged.

6.6 Internal validation measures for structural MRI

data

In the context of structural MRI data, some additional internal validation measures to
those presented in Section 5.5.2 are newly proposed. More specifically, a correlation
based version of the SSC, which is particularly designed for the evaluation of variable
clustering methods, is introduced in Section 6.6.1. Spatial adaptations of the SC and
the SSC are introduced in Section 6.6.2.

6.6.1 Correlation based simplified silhouette coefficient

Originally, the SSC is computed by choosing the Euclidean distance as distance mea-
sure and the mean over all data points in a cluster as centroid of that cluster (Ven-
dramin et al., 2010). However, when clustering voxels it is of particular interest to
identify clusters, where the voxels are highly (positively and/or negatively) correlated
to the centroid of their corresponding cluster. Moreover, the voxels should have a
correlation close to zero to the centroids of the other clusters. Since the SC and,
therefore, the SSC, can be computed using any distance measure that produces dis-
tances on a ratio scale, one can also use a correlation based distance measure. In this
case, it seems to be a natural choice to use the first normalized principal component
of cluster Ck as centroid of Ck.

This first principal component of Ck is calculated as (compare Section 5.2.1)

ck � Xke
Ck
1

‖Xke
Ck
1 ‖2

,

where Xk is the data matrix of Ck, and eCk1 is the first eigenvector of the empirical
covariance matrix Sk given by equation (5.2). Assuming that the columns of the data
matrix X are centered, Sk simplifies to Sk � 1{pN � 1qXT

kXk. Note that

corr

�
Xke

Ck
1

‖Xke
Ck
1 ‖2

,xj

�
� corr

�
Xke

Ck
1 ,xj

	
,

since ‖ Xke
Ck
1 ‖2¡ 0. Hence, normalizing Xke

Ck
1 does not affect its correlation with

other voxels.

In the following, SSC is referred to as the version of the SSC using

dabsCorrpxj,x`q � 1� |corrpxj,x`q|
as distance measure and ck as centroid. dabsCorr is on a ratio scale and considers
voxels as similar which are highly negatively correlated.

138



6.6.2 Spatial adaptation of (simplified) silhouette coefficient

Both the SC and SSC ignore the spatial information provided by the data. How-
ever, it is, e.g., known that brain regions in one hemisphere may interact with their
contralateral regions on the other hemisphere (Davis and Cabeza, 2015). These
cross-hemispheric communications may cause similar patterns of grey matter volume
in the concerned brain regions. Since, usually, these brain regions are not spatially
connected, they can not be merged by a spatial clustering algorithm and, thus, re-
duce inter-cluster separation. This results in a worse SC or SSC score. Therefore,
spatial adaptations of the SC and SSC are proposed that are not influenced by cross-
hemispheric communications. The main idea is to calculate inter-cluster separation
of any cluster only with respect to its neighboring clusters.

Remember that for a voxel xj P Ck its bj value in the calculation of the SC or
SSC considers the distance of xj to all other clusters. Thus, SC and SSC consider the
distance of xj even to clusters which are not neighbors of Ck and, thereby, disregard
the neighborhood information between clusters.

In order to consider the neighborhood information, a spatial adaptation of SC
is proposed in this thesis calculating the modified bj-value as the minimum average
distance of xj P Ck to all voxels from a neighbor cluster of Ck, i.e.,

bspatial
j � min

m�k
ςkm�1

1

|Cm|
¸

x`PCm

dabsCorr

�
xj,x`

�
,

where ςkm � 1, if and only if Ck and Cm are neighbors. Apparently, bj ¤ bspatial
j and,

therefore,

bj � aj
max taj, bju � sj ¤ sspatial

j � bspatial
j � aj

max
!
aj, b

spatial
j

) , (6.1)

where it is easy to see that (6.1) holds, by considering the three cases aj ¤ bj,

bj ¤ aj ¤ bspatial
j and aj ¥ bspatial

j .

The spatial average silhouette width of a cluster Ck, that is

SCspatial
k � 1

|Ck|
¸
xjPCk

sspatial
j ,

reflects on the one hand, how compact Ck is and on the other hand, how well separated
Ck is from its neighbor clusters. Finally, the spatial SC is given as

SCspatial � 1

V

V̧

j�1

sspatial
j ,

and SCspatial ¥ SC. SCspatial also takes values in r�1, 1s, where a value close to 1
indicates a partition with compact and well separated clusters.
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Analogously, the spatial adaptation of the SSC, in the following referred to as
SSCspatial, calculates the modified bj-value as the minimum of the distances of xj P Ck
to the centroids, i.e., the first principal components, of the neighbor clusters of Ck,
i.e.,

bspatial
j � min

m�k
ςkm�1

dabsCorrpxj, cmq.

Both SCspatial and SSCspatial are not influenced by cross-hemispheric communica-
tions. Another advantage of SCspatial over SC is the running time. In contrast to
SC, for SCspatial not all pairwise distances between voxels must be calculated, but
only distances between voxels from neighbor clusters. Therefore, the spatial modifi-
cation makes an application of SC to partitions based on structural MRI data with
a couple hundred thousand voxels feasible in the first place. Nonetheless, the neigh-
borhood relationship between the clusters needs to be determined, which, of course,
increases the running time. This is also the reason, why the spatial adaptation of the
computationally less complex SSC only marginally improves the running time.

6.7 Finding interesting numbers of brain regions

An important aspect when performing brain parcellation is the issue of identifying
interesting numbers of brain regions. Since the brain has a multilevel organization,
a true number of brain regions may not exist. Hence, instead of searching for one
true number of brain regions, it is of interest to find multiple interesting numbers
of brain regions, where these different numbers may reflect different levels of brain
organization (Eickhoff et al., 2018b). Based on the results from Section 5.6, a clus-
tering stability and a clustering quality approach are introduced in Section 6.7.1 and
Section 6.7.2, respectively, that identify interesting numbers of brain regions using
a subsampling approach. While these two approaches employ normal clustering al-
gorithms, another clustering quality approach is introduced in Section 6.7.3 which
employs SEC methods to find interesting numbers of brain regions. Therefore, modi-
fications of the SC and SCspatial are proposed which are based on the cluster ensemble
from the respective SEC method.

6.7.1 Subsampling based clustering stability

In order to identify numbers of clusters for which parcellations are particularly stable,
a clustering stability approach is employed. This approach can be allocated to the
Consensus Index framework introduced by Vinh and Epps (2009).

The idea is to generate multiple parcellations based on the same data set by us-
ing a subsampling scheme and to measure the overall stability by the mean over all
pairwise distances between these parcellations. The size of the subsamples is chosen
identically to the size of the subsamples in the SEC framework, i.e., 63.2% of the
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original subjects. Pairwise stability among two parcellations is measured using one
out of three external validation measures, i.e., the ARI, NMIgeom or ANMImax (see
Section 5.5.1). Note that, since all three external validation measures are symmetric,
pairwise stability must only be calculated once (and not twice) between two parcella-
tions, i.e., BpB�1q{2 pairwise stability scores must be calculated, if B is the number
of different subsamples. Further note that since the expected value of the mutual
information of two partitions CK and TK (K being the number of clusters for both
partitions) is according to Vinh et al. (2010) (see also Section 5.5.1) bounded by

E rIpCK ,TKqs ¤ log

�
V �KK � 2K

V � 1



,

ANMImax may differ from NMIgeom only for larger K, as, otherwise, KK    V .

This procedure is performed for different numbers of clusters. Numbers of clusters
for which the overall stability is large are considered for further investigation. More
specifically, this approach is summarized in Algorithm 6.

A major advantage of SHAC algorithms over other clustering algorithms, such as
SSPEC, is that a SHAC algorithm only needs to be applied once to each subsample
and parcellations with different numbers of clusters are obtained by splitting up the

Algorithm 6 Subsampling based clustering stability

Given a data matrix X, a coordinate matrix Z and a spatial clustering algorithm,
e.g., a SHAC or SSPEC algorithm.

1. For K � 2, . . . , Kmax,

a) for b � 1, . . . , B,

(i) draw a subsample Xb
Sub P Rt0.632�Nu�V of size t0.632 � N u from the N

subjects of X,

(ii) apply the spatial clustering algorithm to tXb
Sub,Zu and obtain par-

cellation Cb
K ,

b) calculate the mean external validation score

EVSpKq � 2

BpB � 1q
B�1̧

b�1

B̧

b1�b�1

EVS
�
Cb
K ,C

b1

K

	
,

where EVS is the dummy variable coding for ARI, NMIgeom or ANMImax.

2. Plot EVSpKq against K, where, e.g., local maxima indicate interesting numbers
of clusters.
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hierarchy at low computational cost. This reduces the computational complexity of
Algorithm 6 dramatically, especially, if the goal is to compare many different numbers
of clusters.

6.7.2 Subsampling based clustering quality

The usual approach to identify interesting numbers of clusters using internal valida-
tion measures is to apply the same clustering algorithm with different numbers of
clusters to the input data set (Arbelaitz et al., 2013). Afterwards, an internal vali-
dation measure is applied to each of the parcellations and the validation scores are
plotted against the numbers of clusters in a scatterplot. Local maxima (assuming
that larger scores indicate larger clustering quality) of that curve indicate interesting
numbers of clusters and are considered for further investigation.

However, in this thesis, another approach giving a more stable estimate of clus-
tering quality is employed in order to identify interesting numbers of clusters. For a
fixed number of clusters the idea is to apply the same clustering algorithm to multiple
subsamples of the input data set. The quality of each parcellation is evaluated using

Algorithm 7 Subsampling based clustering quality

Given a data matrix X, a coordinate matrix Z and a spatial clustering algorithm,
e.g., a SHAC or SSPEC algorithm.

1. For K � 2, . . . , Kmax,

a) for b � 1, . . . , B,

(i) draw a subsample Xb
Sub P Rt0.632�Nu�V of size t0.632 � N u from the N

subjects of X,

(ii) apply the spatial clustering algorithm to tXb
Sub,Zu and obtain par-

cellation Cb
K with K clusters,

(iii) calculate an OOB internal validation score IVSpCb
Kq for Cb

K based on
the OOB data set Xb

OOB �XzXb
Sub, where IVS is a dummy variable

coding for SC, SSC, SCspatial or SSCspatial.

b) calculate the mean OOB internal validation score as

IVSpKq � 1

B

B̧

b�1

IVSpCb
Kq.

2. Plot IVSpKq against K, where, e.g., local maxima indicate interesting numbers
of clusters.
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an internal validation measure on the corresponding out-of-bag (OOB) subjects, i.e.,
those subjects from the input data set that are not part of the respective subsample.
One out of four possible internal validation measures is employed in this thesis, i.e.,
SC, SSC, SCspatial or SSCspatial. Clustering quality is then quantified by the mean
over all internal validation scores. This procedure is repeated with different numbers
of clusters. Again, those numbers of clusters are considered for further investigation
that locally achieve the best clustering quality. This subsampling based clustering
quality procedure is described in more detail in Algorithm 7.

Note that in some applications the columns of the data matrixX are standardized
to have zero mean and unit variance prior to clustering. In this case the standard-
ization is twofold. Firstly, X is standardized. Afterward, subsampling is performed,
splitting the standardized data set into an inbagg data set and an OOB data set.
However, these two resulting data sets are only approximately standardized. There-
fore, secondly, the inbagg data set is exactly standardized prior to clustering, as the
theory of, e.g., the SPARTACUS algorithm, assumes centered and, ideally, standard-
ized data. Finally, evaluation is performed on the approximately standardized OOB
data set.

Algorithm 7 has the advantage over the usual approach that the internal validation
scores are calculated based on the OOB subjects, i.e., on subjects that are not used for
generating the parcellations. Moreover, the mean internal validation curves generated
by Algorithm 7 are smoother and more robust. However, if a sufficient infrastructure
for parallelization is not available, the computation of Algorithm 7 takes much longer.

6.7.3 Ensemble based clustering quality

Given a SEC method, another clustering quality algorithm is formulated. This algo-
rithm is employing an ensemble based variant of the SC or SCspatial. For this, let CK

be a parcellation with K brain regions generated by a SEC method. Remember that
the first step of any SEC method is to generate a cluster ensemble. As described in
Section 6.5.1, an ensemble distance dens between two voxels can be calculated based
on the cluster ensemble of a SEC method. Since dens is on a ratio scale, SC or SCspatial

can also be calculated using dens as distance measure. E.g., the aj- or bj-value of the
ensemble version of SCspatial for a voxel xj P Ck with Ck P CK is given by

aj � 1

|Ck| � 1

¸
x`PCk
`�j

dens

�
xj,x`

�
or

bj � min
m�k
ςkm�1

1

|Cm|
¸

x`PCm

dens

�
xj,x`

�
.

The ensemble based version of SC or SCspatial is in the following referred to as SCE

or SCE
spatial, respectively. Note that SCE and SCE

spatial are only defined for ensemble
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Algorithm 8 Ensemble based clustering quality

Given a data matrix X, a coordinate matrix Z and a SEC method.

1. For K � 2, . . . , Kmax,

a) determine the ensemble partition CK with K clusters, by applying the
SEC method to tX,Zu,

b) calculate SCEpCKq or SCE
spatialpCKq.

2. Plot SCEpCKq or SCE
spatialpCKq against K, where, e.g., local maxima indicate

interesting numbers of clusters.

parcellations, as they are based on the underlying cluster ensemble from which the
respective ensemble parcellation is derived from. Further note that two identical
ensemble parcellations can have different SCE or SCE

spatial scores, if they are calculated
from different cluster ensembles.

The idea of the ensemble based clustering quality approach is to employ a SEC
method to generate ensemble parcellations CK , K � 2, . . . , Kmax, with different num-
bers of clusters. Afterwards, the quality of each CK is evaluated using SCE or
SCE

spatial. SC
EpCKq or SCE

spatialpCKq can be plotted against K and maxima of the re-
sulting graph indicate interesting numbers of clusters. This ensemble based clustering
quality procedure is summarized in Algorithm 8.

144



Chapter 7

Results

In this chapter, the procedures presented in Chapter 6 are, on the one hand, evaluated
on simulated data and, on the other hand, applied to the 1000BRAINS data set
including structural brain scans of older subjects. The results are presented in Section
7.1 and Section 7.2, respectively.

7.1 Simulation study

In order to assess the performance of the spatial clustering algorithms introduced in
Chapter 6, a simulation study is conducted in which 3D images with known cluster
labels are simulated. Since for structural MRI data it is assumed that larger brain
regions are further subdivided into multiple smaller brain regions, 3D images are
simulated with nested clusters, i.e., each larger cluster is further subdivided into
two smaller clusters. Hereby, voxels from the same smaller cluster are simulated to
have a larger pairwise correlation than voxels from the same larger cluster (but from
different smaller clusters) which, again, have a larger correlation than voxels from
different larger clusters. Moreover, e.g., SHACWard is known to generate balanced
parcellations, i.e., the clusters from these parcellations are of similar size. In order
to assess how the performance of algorithms with this property is influenced by
whether the true parcellation is balanced or unbalanced, simulations with balanced
parcellations, i.e., all clusters are of equal size, and unbalanced parcellations, i.e.,
the clusters are of three different sizes, are considered. In Section 7.1.1 the setup of
the simulation study is described. In Section 7.1.2 the results of the analysis of the
simulated data are summarized.

7.1.1 Setup

Two different settings are considered in the simulation study. In the first setting, 3D
images with equally sized clusters and, in the second setting, 3D images with clusters
of three different sizes are simulated. All simulated 3D images in all simulations are
on a cubic grid of 18 � 18 � 18 voxels. Hence, each simulated 3D image consists of
V � 18 � 18 � 18 � 5832 voxels.

In a first step, one true parcellation for the first setting and one true parcellation
for the second setting is determined. In both settings the true parcellation consists of
27 larger clusters which again split up into two equally sized smaller clusters. Hereby,
all these clusters are spatially contiguous. However, in the first setting, the 27 larger
clusters are all of size 6 � 6 � 6, and, following, all 54 smaller clusters are of size
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Figure 7.1: The true parcellation of the 3D cubic images: a) and b) display the
true parcellation of the first setting with 54 smaller clusters of equal size embedded
pairwisely in 27 larger clusters of equal size; c) and d) display the true parcellation of
the second setting with 54 smaller clusters of three different sizes embedded pairwisely
in 27 larger clusters of three different sizes.

6 6 3. In the second setting, 9 larger clusters are of size 3 6 6, 9 larger clusters
are of size 6 6 6 and 9 larger clusters are of size 9 6 6, which entails that 18
smaller clusters are of size 3 6 3, 18 smaller clusters are of size 6 6 3 and 18
smaller clusters are of size 9 6 3. The true parcellations from the two settings are
displayed in Figure 7.1. In the following, let
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be the true parcellation with 27 larger clusters, where t � 1, 2 indicates the setting.

In a second step, the voxel intensities are simulated from a multivariate normal
distribution. Since 3D images should be simulated, where each image consists of
V � 5832 voxels, let Y be a V -dimensional random vector which follows a mul-
tivariate normal distribution with mean vector µ and covariance matrix Σ, i.e.,
Y � NV pµ,Σq. Remember that the general assumption is that voxels belonging
to the same true brain region are (highly) correlated among each other. Therefore,
the clusters are simulated solely via the covariance matrix Σ, whereas µ � 0V , i.e.,
the mean vector does not include any cluster information. In order to allow a bet-
ter interpretability of the clustering results, the covariance matrix is chosen to be
a correlation matrix with only two different correlation values 1 ¡ σS ¥ σL ¥ 0.
Hereby, σS is the correlation between voxels from the same smaller cluster and σL
is the correlation between voxels that are in the same larger cluster but not in the
same smaller cluster. Moreover, the correlation between voxels from different larger
clusters is chosen to be zero. Hence, for setting t, t � 1, 2,

σ
ptq
j` pσS, σLq �

$'''&'''%
1, if j � `,

σS, if j � ` and T
ptq
54 pxjq � T ptq

54 px`q,
σL, if j � ` and T

ptq
27 pxjq � T ptq

27 px`q and T
ptq
54 pxjq � T ptq

54 px`q,
0, otherwise.

describes the correlation between voxels xj and x`, where

ΣptqpσS, σLq �
�
σ
ptq
j` pσS, σLq

�
j,`�1,...,V

.

Note that ΣptqpσS, σLq is positive definite and, therefore, a valid correlation matrix.

To show that ΣptqpσS, σLq is indeed positive definite, the squared matrix

A
ptq
k �

�
A

ptq
k,1 A

ptq
k,2

A
ptq
k,2 A

ptq
k,1

�

is considered, k � 1, . . . , 27, where

A
ptq
k,1 � a

ptq
k,1 � 1 |T ptq

k |
2

�
|T ptq
k |
2

,

A
ptq
k,2 � a

ptq
k,2 � 1 |T ptq

k |
2

�
|T ptq
k |
2

with a
ptq
k,1, a

ptq
k,2 P R, and 1 |T ptq

k |
2

�
|T ptq
k |
2

is the

�
|T ptq
k |
2

� |T ptq
k |
2

�
-matrix with all entries
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equal to 1. Hence, A
ptq
k P  aptqk,1, aptqk,2(|T ptqk |�|T

ptq
k |

and

�
A

ptq
k

	T
A

ptq
k �

�
A

ptq
k,1A

ptq
k,1 �Aptq

k,2A
ptq
k,2 2A

ptq
k,1A

ptq
k,2

2A
ptq
k,1A

ptq
k,2 A

ptq
k,1A

ptq
k,1 �Aptq

k,2A
ptq
k,2

�

is a positive semidefinite matrix. The idea is to choose a
ptq
k,1 and a

ptq
k,2 such that

A
ptq
k,1A

ptq
k,1 �Aptq

k,2A
ptq
k,2 � σS � 1 |T ptq

k |
2

�
|T ptq
k |
2
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2A
ptq
k,1A
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k,2 � σL � 1 |T ptq

k |
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�
|T ptq
k |
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,

which is equivalent to
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��
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�
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	2

 |T ptq

k |
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� σS,

pIIq 2a
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|T ptq
k |
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� σL.

Solving this system of equations results in four possible solutions, i.e.,

a
ptq
k,2 � �

gffe σS
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k |

�
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σ2
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|T ptq
k |2

� σ2
L
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a
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σL
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k |aptqk,2

.

Since σS ¥ σL ¥ 0, all four solutions are real. Hence, for any of these four solutions

�
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�����
σS � 1 |T ptq

k |
2
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k |
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σL � 1 |T ptq
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σL � 1 |T ptq
k |
2

�
|T ptq
k |
2
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����
is a positive semidefinite matrix. i.e., all eigenvalues of

�
A

ptq
k

	T
A

ptq
k are nonnegative.

Then,

Σ
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k pσS, σLq �

�
A

ptq
k

	T
A

ptq
k � p1� σSqI
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is positive definite. This is because for any eigenvector e of
�
A

ptq
k

	T
A

ptq
k with corre-

sponding eigenvalue λ ¥ 0

Σ
ptq
k pσS, σLqe �

��
A

ptq
k

	T
A

ptq
k � p1� σSqI



e �

�
A

ptq
k

	T
A

ptq
k e� p1� σSqe

� λe� p1� σSqe � pλ� 1� σSqe,

and, hence, e is also an eigenvector of Σ
ptq
k pσS, σLq with eigenvalue λ � 1 � σS ¡ 0.

Since all eigenvalues of Σ
ptq
k pσS, σLq are positive, Σ

ptq
k pσS, σLq is positive definite.

Finally, without loss of generality, assume the voxels are ordered such that firstly
the voxels from T

ptq
1,1 then the voxels from T

ptq
1,2 and so on until finally the voxels from

T
ptq
27,2 occur in the ordering. Then, it follows that

ΣptqpσS, σLq � diag
!
Σ
ptq
1 pσS, σLq, . . . ,Σptq

27 pσS, σLq
)
,

and ΣptqpσS, σLq is as block diagonal matrix with positive definite diagonal blocks
also positive definite.

For each setting it should be analyzed whether the clustering accuracy increases
for stronger pronounced clusters, i.e., for clusters of higher correlated voxels. Hence,
for each setting three different simulation scenarios are considered. In the first, second
or third scenario of each setting strongly, moderately or weakly pronounced clusters
are simulated by sampling 3D images from a multivariate normal distribution with
covariance matrix Σptqp0.2, 0.1q, Σptqp0.1, 0.05q or Σptqp0.05, 0.025q, respectively. In
each of the six simulation scenarios H � 25 data sets are sampled, where each data
set consists of N � 100 3D images. Let in the following Sim1, Sim2 and Sim3 denote
the first, second and third simulation scenario from the first setting, and let Sim4,
Sim5 and Sim6 denote the first, second and third simulation scenario from the second
setting, respectively. Also, let X

pgq
h P RN�V , h � 1, . . . , 25, g � 1, . . . , 6, be the h-th

data set from the g-th simulation scenario. Since structural MR images have only
positive intensity values, each data matrix is normalized to be in r0, 1sN�V , i.e.,

X
pgq
h �

X
pgq
h �min

!
X

pgq
h

)
max

!
X

pgq
h

)
�min

!
X

pgq
h

)
is calculated, where min

!
X

pgq
h

)
or max

!
X

pgq
h

)
is the minimum or maximum entry

of X
pgq
h , respectively.

A typical preprocessing step for structural MRI data is smoothing (Good et al.,
2001). Therefore, smoothing of the (normalized) spatial images, i.e., of the rows

of X
pgq
h , is also performed by using a multidimensional Gaussian filter (Jones et al.,

2005) with full width at half maximum (FWHM) being equal to two, i.e., FWHM � 2.
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Hereby, the 3D images are extended at the borders by reflecting about the edge of
the border voxels. Finally, another optional preprocessing step is to standardize the
columns of X

pgq
h to have zero mean and unit variance, i.e., to consider standardized

data sets.

7.1.2 Analysis

The analysis of the methods from Chapter 6 based on the simulation study is fourfold.
In a first step, the behavior of the adaptations of the SC (see Section 6.6.1) is assessed
briefly in application to the six simulation scenarios and in application to random
data sets with no simulated clustering information. The performance of the SHAC
methods and of the SSPEC method is evaluated based on the simulation study in
a second step. In a third step, it is analyzed to what extent SEC methods are able
to improve the quality of the SHAC and SSPEC based parcellations. In a last step,
the suitability of the methods to identify interesting numbers of clusters (see Section
6.7) is investigated, depending on the underlying clustering method and validation
measure.

Evaluation of silhouette coefficient adaptations

The behavior of the adaptations of the SC, i.e., SSC, SCspatial and SSCspatial, is investi-
gated, on the one hand, based on the simulated data from the six simulation scenarios
(Sim1-Sim6) and, on the other hand, based on random data having no clustering ef-
fect. The random data is generated by the same procedure as the other six simulation
scenarios, with the only difference that 3D images are sampled from a multivariate
normal distribution with covariance matrix Σptqp0, 0q � IV , V � 183 � 5832, i.e., the
covariance matrix is the identity matrix including no clustering information. Note
that this procedure includes spatial smoothing, such that some spatial structure is
still included in the random data. Again, H � 25 data sets are sampled and the
resulting simulation scenario is referred to as SNE (Smoothed and No Effect).

The idea is to evaluate the quality of the true parcellations of the two settings,
i.e., T

ptq
27 and T

ptq
54 , where t � 1, 2 indicates the setting, based on these seven simu-

lation scenarios using the SC and its three adaptations. The evaluation scores due
to all four internal measures should be, e.g., the largest based on Sim1 and Sim4,
where the clusters are strongly pronounced, or close to zero based on SNE, where
besides spatial smoothing, which adds some quality to any parcellation with spatial
contiguous clusters, no effect is simulated for the true parcellations. The results of
this analysis are shown in Figure 7.2.

As expected, this figure shows that all four internal silhouette measures quantify
the quality of the true parcellations the larger, the larger the simulated effect is. If
no clustering effect is included in the data, all silhouette scores are close to zero, but
slightly positive due to the smoothing effect.
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Figure 7.2: The mean over H 25 SC, SSC, SCspatial or SSCspatial scores evaluating
the true parcellation with K 27 larger clusters (left) or K 54 smaller clusters
(right) on the data sets from the six simulation scenarios (Sim1-Sim6) or on the data
sets with no effect (SNE).

Besides that, the spatial adaptations SCspatial and SSCspatial generate very similar
results as their non-spatial counterparts SC and SSC, respectively. I.e., in a data
scenario, where spatial adaptations are not necessary, as no correlated clusters are
simulated that are spatially discontiguous, SCspatial and SSCspatial perform as good
as SC and SSC, respectively, while they are computationally less expensive. Inter-
estingly, SSC and SSCspatial generate larger scores than SC and SCspatial, suggesting
that the voxels from a cluster are more strongly correlated with the first principal
component of their cluster than they are among each other.

Thus, it can be concluded that SSC, SCspatial and SSCspatial are computationally
less expensive and valid adaptations of SC for evaluating the quality of parcellations.

Performance comparison of spatial clustering methods

The performance of the four SHAC algorithms SPARTACUS, SHACWard, SHACAL, corr

and SHACAL, Eucl as well as of the SSPEC algorithm is compared based on the sim-
ulated data. Furthermore, it is analyzed whether standardization of the simulated
data sets prior to clustering influences clustering quality. Note that SHACAL, corr is
not influenced by standardization, since the correlation is not influenced by stan-
dardization. Moreover, when applying the SPARTACUS method, the columns of the
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simulated data sets must be at least centered but better standardized. Hence, all
five clustering methods are applied to the standardized data sets, whereas only the
non-correlation based algorithms, i.e., SHACWard, SHACAL, Eucl and SSPEC, are also
applied to the non-standardized data sets. Clustering methods that are applied to
standardized data sets are indicated by methodS, e.g., SPARTACUSS.

The performance of the eight clustering methods is evaluated using two ap-
proaches. The first approach compares the predicted parcellations with K � 27
and K � 54 clusters with the respective true parcellations using the ARI. In the
second approach, the quality of each predicted parcellation is evaluated on the same
data set this parcellation is created on using the SSC. In both approaches, the mean
is taken over the 25 scores corresponding to the same simulation scenario, the same
clustering method and the same number of clusters. The mean scores due to ARI and
SSC are displayed for the most critical simulation scenarios Sim3 and Sim6, i.e., the
simulation scenarios in which the clusters are only weakly pronounced and, therefore,
the hardest to find, in Table 7.1. The remaining mean scores are shown in Table B.1
of the Appendix.

From these tables it can be concluded that the standardized methods achieve a
higher quality than their corresponding non-standardized methods, especially if the
clusters are weakly pronounced. While this quality increase caused by standardization
is only marginal for SHACWard, it is severe for SHACAL, Eucl and SSPEC. E.g., for
Sim3 the mean ARI values are 0.929 (K � 27) and 0.710 (K � 54) for SHACS

AL, Eucl

as opposed to 0.004 (K � 27) and 0.143 (K � 54) for SHACAL, Eucl. Moreover,
these tables reveal, that the SHAC algorithms outperform the SSPEC algorithms,
especially if K � 54 or if the true parcellations are unbalanced. E.g., for Sim6 the
mean ARI values of all standardized SHAC algorithms are in r0.869, 0.941s for K � 27
and in r0.709, 0.865s for K � 54, whereas the mean ARI values of SSPECS are 0.547

Table 7.1: The mean over 25 ARI and SSC scores for each of eight clustering methods
based on Sim3 and Sim6, where each ARI value compares a predicted parcellation
with K � 27 or K � 54 clusters with the respective true parcellation and each SSC
score evaluates the quality of a predicted parcellation on the training data.

Sim3 Sim6
ARI SSC ARI SSC

K = 27 K = 54 K = 27 K = 54 K = 27 K = 54 K = 27 K = 54

SPARTACUSS 0.930 0.861 0.450 0.407 0.875 0.865 0.435 0.405
SHACWard 0.907 0.846 0.441 0.401 0.854 0.853 0.424 0.400

SHACS
Ward 0.923 0.852 0.448 0.404 0.869 0.856 0.431 0.402

SHACS
AL, corr 0.936 0.721 0.452 0.430 0.941 0.733 0.448 0.428

SHACAL, Eucl 0.004 0.143 -0.139 0.142 0.005 0.130 -0.136 0.113

SHACS
AL, Eucl 0.929 0.710 0.450 0.430 0.936 0.709 0.447 0.424

SSPEC 0.630 0.278 0.342 0.111 0.403 0.295 0.144 0.132

SSPECS 0.831 0.345 0.430 0.183 0.547 0.420 0.235 0.221
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Figure 7.3: Estimated parcellations for K 27 and K 54 generated by SSPECS

or SHACAL,Eucl applied to the first simulated data set from Sim 2 or Sim 6, respec-
tively.

for K 27 and 0.420 for K 54.

Among the standardized SHAC methods, SPARTACUSS shows a similar perfor-
mance as SHACS

Ward and SHACS
AL, corr performs similar to SHACS

AL, Eucl in all scenar-

ios. SPARTACUSS and SHACS
Ward more stably predict the true parcellations with

K 54 in both settings. However, SHACS
AL, corr and SHACS

AL, Eucl better identify
the true parcellation with K 27 in the second setting. Interestingly, the par-
cellations due to SHACS

AL, corr and SHACS
AL, Eucl achieve slightly better SSC scores
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than SPARTACUSS and SHACS
Ward in all scenarios, even though SPARTACUSS and

SHACS
Ward achieve higher ARI scores for K � 54.

By visualizing parcellations generated by SSPECS or SHACAL, Eucl in Figure 7.3
and, in more detail, in Figures B.1-B.4 of the Appendix, it can be observed that
SSPECS tends to generate cubical-shaped clusters of equal size, regardless of the
underlying data structure. If and only if the data is organized in a cubical, equally
sized fashion as for K � 27 in the first setting, the underlying data structure is found.
However, already in the presence of non-cubic clusters as for K � 54 in the first
setting, SSPECS continues to produce cubical clusters and, therefore, fails in finding
any true cluster. Moreover, SHACAL, Eucl tends to form a few large clusters and many
very small clusters, if the simulated effect is small. E.g., the largest or second largest
cluster of the parcellation with K � 27 clusters due to SHACAL, Eucl based on the
first data set from Sim6 contains 5374 or 326 voxels, respectively. All other clusters
contain less than 20 voxels. These observations explain the poor performance of
SSPECS and SHACAL, Eucl.

Performance of spatial ensemble clustering

In order to investigate whether SEC methods are able to improve clustering quality,
homogeneous cluster ensembles are generated by drawing B � 50 subsamples and
considering SPARTACUSS, SHACS

AL,corr or SSPECS as base clustering method. Note
that only standardized clustering methods are considered as base clustering meth-
ods, since these methods outperformed the non-standardized clustering methods in
the analysis above. Moreover, SHACS

Ward and SHACS
AL,Eucl are not considered as

base clustering methods, since they generate very similar results as SPARTACUSS

and SHACS
AL,corr, respectively. In the consensus function step, SECAL, SECSL or

SECHellinger is employed to obtain the final ensemble parcellation from the cluster
ensemble. Hence, 3 � 3 � 9 SEC methods are applied to all scenarios from the sim-
ulation study, where, e.g., SECAL

�
SPARTACUSS

�
refers to the SEC method using

SPARTACUSS as base clustering method and average linkage based SHAC as consen-
sus function. The same two approaches as used for the evaluation of the non-ensemble
parcellations above are employed in order to evaluate the performance of the SEC
methods.

The results presented in Table 7.2 (for Sim5 and Sim6) and in Table B.2 of the
Appendix reveal that SECAL and SECHellinger perform equally well in all scenarios
and are able to improve clustering quality and robustness of the corresponding SHAC
methods, if these SHAC methods do not already achieve perfect clustering. E.g., in
Sim 6 the mean ARI (SSC) scores for K � 27 and K � 54 increase from 0.875 and
0.865 (0.435 and 0.405) based on SPARTACUSS to 0.948 and 0.968 (0.450 and 0.440)
based on SECAL

�
SPARTACUSS

�
and to 0.952 and 0.968 (0.450 and 0.439) based on

SECHellinger

�
SPARTACUSS

�
, respectively.

SECAL and SECHellinger perform best in combination with SPARTACUSS as base
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Table 7.2: The mean over 25 ARI and SSC scores for each of nine SEC methods
based on Sim3 and Sim6, where each ARI value compares a predicted parcellation
with K � 27 or K � 54 clusters with the respective true parcellation and each SSC
score evaluates the quality of a predicted parcellation on the training data.

Sim3 Sim6

ARI SSC ARI SSC
K = 27 K = 54 K = 27 K = 54 K = 27 K = 54 K = 27 K = 54

SECAL

SPARTACUSS 0.993 0.972 0.467 0.443 0.948 0.968 0.450 0.440

SHACS
AL, corr 0.980 0.721 0.463 0.433 0.988 0.721 0.461 0.432

SSPECS 0.832 0.337 0.425 0.177 0.546 0.415 0.233 0.220

SECSL

SPARTACUSS 0.765 0.674 0.361 0.376 0.761 0.674 0.350 0.368

SHACS
AL, corr 0.761 0.638 0.367 0.393 0.791 0.636 0.367 0.391

SSPECS 0.191 0.007 0.165 -0.205 0.049 0.021 -0.041 -0.169

SECHellinger

SPARTACUSS 0.994 0.967 0.467 0.443 0.952 0.968 0.450 0.439

SHACS
AL, corr 0.980 0.719 0.463 0.433 0.987 0.720 0.461 0.432

SSPECS 0.809 0.338 0.419 0.176 0.544 0.418 0.232 0.222

clustering method. SECAL

�
SPARTACUSS

�
and SECHellinger

�
SPARTACUSS

�
stably

identify even weakly pronounced clusters (smallest mean ARI value over all scenar-
ios is 0.9483), i.e., they are able to find clusters with low intra-cluster correlation.
Moreover, they more stably identify the parcellations with K � 54 clusters than
SECAL

�
SHACS

AL, corr

�
and SECHellinger

�
SHACS

AL, corr

�
. However, they do not improve

the performance of SSPECS. Generally, the SSPEC based SEC methods achieve the
lowest quality among the nine SEC methods.

In contrast, SECSL fails as SEC method, if the corresponding base clustering
method does not already achieve nearly perfect clustering. E.g., in Sim 6 the mean
ARI (SSC) scores for K � 27 and K � 54 decrease from 0.875 and 0.865 (0.435
and 0.405) based on SPARTACUSS to 0.761 and 0.674 (0.350 and 0.368) based on
SECSL

�
SPARTACUSS

�
, respectively. Moreover, SECSL clearly decreases the perfor-

mance of SSPECS.

Performance of methods to identify interesting numbers of brain regions

In the following it is analyzed whether the subsampling based clustering stability
approach (Algorithm 6), the subsampling based clustering quality approach (Algo-
rithm 7) and the ensemble based clustering quality approach (Algorithm 8) are able
to identify the true numbers of clusters of the simulation study. All three algorithms
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Figure 7.4: The mean over H 25 ARI or NMIgeom scores generated by the sub-
sampling based clustering stability approach (Algorithm 6) for each K 2, . . . , 100
based on the data sets from Sim3 and Sim6.

are applied to each data set from the simulation study, choosing Kmax 100 and
drawing the identical B 50 subsamples. In Algorithm 6 and Algorithm 7 all eight
SHAC and SSPEC methods are considered as spatial clustering algorithms. More-
over, three different external validation measures, i.e., ARI, NMIgeom and ANMImax,
and four different internal validation measures, i.e., SC, SSC, SCspatial and SSCspatial,
are considered in Algorithm 6 and Algorithm 7, respectively, in order to find out
which combination of spatial clustering algorithm and validation measure works best
with these two algorithms. Since SECSL performs poorly in the analysis above and
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Figure 7.5: The mean over H 25 SSC or SSCspatial scores generated by the
subsampling based clustering quality approach (Algorithm 7) for each K 2, . . . , 100
based on the data sets from Sim3 and Sim6.

since SECAL shows a nearly identical performance as SECHellinger, only the three
different SEC methods SECHellinger SPARTACUS

S , SECHellinger SHAC
S
AL, corr and

SECHellinger SSPEC
S are employed in Algorithm 8, where SCE and SCE

spatial are con-
sidered as internal ensemble validation measures.

All results of these analyses are presented in Section B.3 of the Appendix in
Figures B.5-B.13. Each figure displays multiple curves, where each curve is the mean
over H 25 curves generated by one of the three algorithms for finding interesting
numbers of brain regions corresponding to the same simulation scenario, the same
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Figure 7.6: The mean overH 25 SCE or SCE
spatial scores generated by the ensemble

based clustering quality approach (Algorithm 8) for each K 2, . . . , 100 based on
the data sets from Sim3 and Sim6.

internal or external validation measure and the same clustering method. An excerpt
of these results is presented in Figure 7.4, Figure 7.5 or Figure 7.6, showing the results
of Algorithm 6 in combination with ARI and NMIgeom, of Algorithm 7 in combination
with SSC and SSCspatial or of Algorithm 8 in combination with SCE and SCE

spatial,
respectively, but only for the most critical scenarios Sim3 and Sim6.

From these figures it can be observed that all three algorithms produce similar
results, that lead to the same conclusions. As expected, they generate larger scores,
the more the simulated clusters are pronounced. All three algorithms perform best
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in combination with SPARTACUSS, where Algorithm 6 and Algorithm 7 perform
identically well in combination with SHACS

Ward or SHACWard. In all scenarios of
the first setting they correctly identify the true numbers of clusters. Also in the
scenarios of the second setting they always correctly produce a maximum at K � 54.
However, K � 27 can not clearly be identified in the second setting. In contrast, all
three algorithms identify in combination with SHACS

AL, corr, where Algorithm 6 and

Algorithm 7 achieve identical results in combination with SHACS
AL, Eucl, K � 27 as

interesting number of clusters in all scenarios, but K � 54 is hardly found in any
scenario. A poor performance is achieved by all three algorithms in combination with
SSPEC as well as by Algorithm 6 and Algorithm 7 in combination with SHACAL, Eucl.
Not only do they achieve a clearly lower quality and stability, but they also hardly
identify any true number of clusters.

The subsampling based clustering stability algorithm does perform well in combi-
nation with any of the three external validation measures. However, in combination
with ARI the peaks at K � 27 and K � 54 are most pronounced, while the computa-
tion of the ARI is fast (OpV �K2q) (Sundqvist et al., 2020). The spatial adaptations
SCspatial and SSCspatial generate nearly the same results in the subsampling based
clustering quality algorithm compared to SC and SSC, respectively. Moreover, the
SC and SSC curves progress very similar to each other, even though SSC produces
larger scores than SC. Thus, all four internal validation measures perform equally
well in the subsampling based clustering quality approach, where SSC and SSCspatial

are computationally cheaper. Also, SCE and SCE
spatial perform equally well in the

ensemble based clustering quality algorithm, where SCE
spatial is computationally less

expensive.

To sum up, all three Algorithms, i.e., the subsampling based clustering stability
algorithm (Algorithm 6), the subsampling based clustering quality algorithm (Algo-
rithm 7) and the ensemble based clustering quality algorithm (Algorithm 8), are valid
algorithms to find interesting numbers of clusters that perform best in combination
with SPARTACUSS, SHACS

Ward or SHACWard and second best in combination with
SHACS

AL, corr or SHACS
AL, Eucl, where it is recommended to consider the ARI with

Algorithm 6, SSC or SSCspatial with Algorithm 7 and SCE
spatial with Algorithm 8.

7.2 Application to 1000BRAINS data set

In this section, a structural MRI data set from the 1000BRAINS study (Caspers et al.,
2014) is parcellated using SHAC and SEC methods. Interesting numbers of brain re-
gions for which the corresponding brain parcellations are stable and of high quality are
identified using the three Algorithms presented in Section 6.7, i.e., subsampling based
clustering stability (Algorithm 6), subsampling based clustering quality (Algorithm
7) and ensemble based clustering quality (Algorithm 8). Reporting these numbers as
well as the corresponding parcellations may provide an alternative or additional view
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on human brain organization. While information about the 1000BRAINS data set
and a description of the preprocessing steps that are performed on this data set prior
to clustering are given in Section 7.2.1, the results of the analysis of this data set are
presented in Section 7.2.2. Using internal validation measures, the performance of
the ensemble clustering method SECALpSPARTACUSSq, which achieves the overall
best results in the analyses conducted in Section 7.2.2, is compared with the perfor-
mance of both SSPECS

RBF and a geometric clustering algorithm using only the voxel
coordinates for clustering. This comparison is presented in Section 7.2.3. As further
quality feature, in Section 7.2.4 it is compared how well the identified brain regions
by the three clustering methods converge with those of popular anatomical atlases
as well as of alternative atlases generated by (semi-)algorithmic approaches based on
MRI data.

7.2.1 1000BRAINS data set

The structural MRI data set is obtained from the 1000BRAINS study (Caspers et al.,
2014). A range of sequences are considered in the 1000BRAINS study which are all
scanned at a single site on a 3 Tesla MR scanner, using the same imaging protocol
for each subject. Hence, reliable and homogeneous data are produced for a large
number of subjects. Here, an anatomical 3D T1-weighted MP RAGE (Mugler III and
Brookeman, 1990) sequence is considered from this study with the following scanning
parameters (Caspers et al., 2014): Repetition time = 2.25 s, echo time = 3.03 ms,
inversion time = 900 ms, field of view = 256 � 256 mm2, flip angle = 9� and voxel
resolution = 1.5�1.5�1.5 mm3. This sequence includes structural scans of 693 older
subjects (age: 55-75 years; 47% females) (Varikuti et al., 2018). The VBM8 toolbox
(http://www.neuro.uni-jena.de/vbm8) is employed to preprocess the structural MRI
data as described in Varikuti et al. (2018). More precisely, the unified framework
(Ashburner and Friston, 2005) combining segmentation, bias field correction and
normalization using the high-dimensional DARTEL normalization (Ashburner, 2007)
in one step is employed for normalizing the structural MRI scans to MNI space.
Afterwards, the normalized grey matter volumes are modulated (only for non-linear
transformations) in order to preserve tissue volume. Finally, smoothing is performed
using an 8 mm FWHM Gaussian kernel. The resulting grey matter images consist
of 344,383 voxels and are saved in a 693 � 344383 data matrix. However, since two
subjects have the same voxel intensity values, these two subjects are removed from
the data set. Moreover, since five voxels are not spatially contiguous to the other
voxels, also these voxels are removed from the data set. Hence, further analysis is
based on a 691 � 344378 data matrix. In accordance with Varikuti et al. (2018), in
the following, this data set is referred to as the 1000BRAINS data set.

160



7.2.2 Analysis

In order to compare the performance of all six SHAC methods, i.e., SPARTACUSS,
SHACWard, SHACS

Ward, SHACS
AL, corr, SHACAL, Eucl and SHACS

AL, Eucl, for different
numbers of brain regions, these methods are applied to the 1000BRAINS data set
and each hierarchy is split up to obtain parcellations with K 2, . . . , 1000 brain
regions. The quality of each parcellation is evaluated on the 1000BRAINS data set
using the SSC and SSCspatial.

The results of this analysis presented in Figure 7.7 reveal that the standardized
SHAC methods produce parcellations of similar quality, where SPARTACUSS and
SHACS

Ward show a slightly better performance than SHACS
AL, corr and SHACS

AL, Eucl. In
contrast, the non-standardized SHAC methods SHACWard and SHACAL, Eucl perform
poorly.

In order to get a better understanding why SHACWard and SHACAL, Eucl pro-

Figure 7.7: The SSC or SSCspatial scores evaluating the quality of the parcellations
with K 2, . . . , 1000 brain regions generated by the six SHAC methods based on
the 1000BRAINS data set.
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Figure 7.8: The NH scores of all parcellations with K 2, . . . , 500 brain regions
generated by any of the six SHAC methods based on the 1000BRAINS data set.

duce low quality parcellations, the parcellations with K 160 brain regions due
to SHACWard and SHACAL, Eucl are visualized in Figure C.2 and Figure C.3 of the
Appendix, respectively. Moreover, the normalized entropy (NH) (see Section 5.5.1)
is displayed in Figure 7.8 for all parcellations with K 2, . . . , 500 clusters that are
based on any of the six SHAC methods. Remember that an NH value close to one
indicates a balanced parcellation, whereas an NH value close to zero indicates an
unbalanced parcellation, e.g., with a few large clusters and many small clusters.

From Figure C.2 it can be observed that SHACWard produces central clusters which
are surrounded by multiple thin cluster rings. This patterning is not established in
the field of brain parcellation and is also not observed in the simulation study. Figure
C.3 reveals that, as in the simulation study, SHACAL,Eucl produces a few very large
brain regions and a large number of very small brain regions, i.e., it assigns outlier
voxels to singleton brain regions. More precisely, SHACAL,Eucl produces three large
clusters with 107079, 85078 and 94755 voxels, while 106 clusters include less than 10
voxels. This observation is also reflected by Figure 7.8, since the NH values due to
SHACAL,Eucl are small. Therefore, it is not very surprising that the quality of these
parcellations is low.

Figure 7.8 further reveals that the NH values due to SPARTACUSS and SHACS
Ward

are constantly close to one, i.e., these algorithms generate balanced parcellations. For
small numbers of clusters the NH values according to SHACS

AL, corr and SHACS
AL, Eucl

are small, indicating unbalanced parcellations. However, the NH values quickly in-
crease as the number of clusters increases (for all K 45 it holds that NH 0.8) and
stabilize at NH 0.9, i.e., for larger numbers of clusters the respective parcellations
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Figure 7.9: The SSCspatial scores evaluating the quality of the parcellations with
K 2, . . . , 500 brain regions generated by four SEC methods as well as, for com-
parison, by the SPARTACUSS and SHACS

AL, corr method based on the 1000BRAINS
data set.

are predominantly balanced.

In order to obtain higher quality parcellations, SEC methods are employed. For
this, B 100 subsamples are drawn from the original 1000BRAINS data set and
two SHAC methods, i.e., SPARTACUSS and SHACS

AL, corr, are applied to these sub-
samples as base clustering methods to obtain homogeneous cluster ensembles with
K 2, . . . , 500 brain regions. Afterwards, SECAL and SECHellinger are employed
as consensus functions to obtain the final ensemble parcellations from the cluster
ensembles. These four SEC methods are referred to as SECAL SPARTACUSS ,
SECHellinger SPARTACUS

S , SECAL SHACS
AL, corr and SECHellinger SHAC

S
AL, corr .

Note that only numbers of brain regions up to 500 are considered (and not up to
1000), since the SEC methods are very expensive to compute and the analysis above
(see Figure 7.7) has shown that the quality of the base clustering methods changes
only marginally for K 500.

The quality of the ensemble parcellations is evaluated on the 1000BRAINS data
set using SSCspatial. The results presented in Figure 7.9 show that SECAL is able to im-
prove clustering quality of the base SHAC methods. For K 88, the SSCspatial scores
by both SECAL methods are larger compared to SPARTACUSS which achieves the
largest SSCspatial scores among the SHAC methods (compare Figure 7.7). The over-
all best performance is achieved by SECAL SPARTACUSS . However, SECHellinger

only marginally improves the quality of the base SHAC methods and, thus, is out-
performed by SECAL. This contrasts with the simulation study, where SECAL and
SECHellinger perform nearly identical.
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Figure 7.10: The subsampling based clustering quality scores SSCspatial gener-
ated by Algorithm 7 for each of the four standardized SHAC methods and for
K 2, . . . , 1000.

Interesting numbers of brain regions are searched for using the subsampling based
clustering stability approach (Algorithm 6), the subsampling based clustering quality
approach (Algorithm 7) and the ensemble based clustering quality approach (Algo-
rithm 8). The same B 100 subsamples as for the calculation of the SEC methods
above are considered in all three algorithms. In Algorithm 6 and Algorithm 7 the
four standardized SHAC methods are employed as spatial clustering methods and
a maximum number of Kmax 1000 brain regions is chosen, while in Algorithm
8 SECAL SPARTACUSS and SECAL SHACS

AL, corr are considered as SEC methods
and the maximum number of brain regions is Kmax 500. ARI, SSCspatial and
SCE

spatial are considered as validation measures in Algorithm 6, Algorithm 7 and Al-
gorithm 8, respectively.

By looking at the results generated by Algorithm 7 presented in Figure 7.10 it is
observed that the SSCspatial curves progress similarly to the respective curves from
Figure 7.7, i.e., they increase monotonic until they reach a plateau approximately at
K 600, from where on the curve’s slopes are close to zero. Hence, by looking for
local maxima of these curves no interesting numbers of clusters can be deduced.

However, the first derivatives of these curves might show some interesting slope
patterns. Therefore, the first derivative of SSCspatial, denoted by

K
SSCspatial, is

displayed together with the respective ARI curves generated by Algorithm 6 in Fig-
ure 7.11 (for SPARTACUSS and SHACS

AL, corr) and Figure C.1 of the Appendix (for

SHACS
Ward and SHACS

AL, Eucl). Note that the first derivative is generated by a two step
process. First, the derivative at each K is determined using the gradient function
from the numpy package in python (Harris et al., 2020). Second, the derivative is pro-
cessed by a median filter, where each entry of the derivative curve is replaced by the
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Figure 7.11: The first derivative of the SSCspatial curve (blue) generated by the
subsampling based clustering quality approach (Algorithm 7), together with the ARI
curve (green) generated by the subsampling based clustering stability approach (Al-
gorithm 6), both with K 2, . . . , 1000 and using SPARTACUSS or SHACS

AL, corr as
spatial clustering algorithm.

median of itself, the three preceding entries and the three following entries. The input
for the edge values, i.e., for the values corresponding to K 2, 3, 4, 998, 999, 1000 ,
is extended by reflecting about the edge of the first and of the last value.

Interestingly, it is observed from these figures that there is some agreement be-
tween the

K
SSCspatial and ARI curves. Consistently, maxima in the ARI curves are

accompanied by changes, e.g., elbow points, in the
K
SSCspatial curves. Therefore,

at least three interesting numbers of brain regions can be deduced, i.e., K 70,
K 150 and K 600. When only looking at the curves due to SHACS

AL, corr and

SHACS
AL, Eucl, K 300 is another interesting number of brain regions.

Moreover, Figure 7.12 shows the SCE
spatial curves generated by the ensemble based

clustering quality approach, again, together with the corresponding ARI curves gener-
ated by the subsampling based clustering stability approach (compare Figure 7.11).
Note that these curves are expected to be in close agreement, since they perform
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Figure 7.12: For K 2, . . . , 500, the SCE
spatial curve (blue) generated by the ensem-

ble based clustering quality approach (Algorithm 8) using SECAL SPARTACUSS or
SECAL SHACS

AL, corr as SEC method, together with the ARI curve (green) gener-
ated by the subsampling based clustering stability approach (Algorithm 6) (compare
Figure 7.11) using SPARTACUSS or SHACS

AL, corr as spatial clustering algorithm.

similarly in the simulation study. Figure 7.12 reveals that the SCE
spatial and the ARI

curves have local maxima at similar numbers of clusters, even though they are not
in perfect agreement. Nonetheless, this figure supports the selection of interesting
numbers of clusters that is made above.

The final parcellations with K 70 and K 150 brain regions generated by
SECAL SPARTACUSS and SECAL SHACS

AL, corr are visualized in Figures C.4-C.7

of the Appendix. These figures reveal that SECAL SPARTACUSS generates brain
regions of similar sizes, whereas SECAL SHACS

AL, corr has a slight tendency to pro-
duce a few large and multiple smaller brain regions.
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7.2.3 Method comparison with geometric and spectral clus-
tering

The performance of SECAL SPARTACUSS is further compared with the perfor-
mance of SSPECS. Moreover, as reference of comparison, similar to Thirion et al.
(2014) a geometric clustering approach is considered that uses only the spatial co-
ordinates and ignores the grey matter volumes. More precisely, SHACAL, Eucl is
applied solely to the spatial coordinates of the 1000BRAINS data set, i.e., using
the coordinate matrix as data matrix and as coordinate matrix. Parcellations with
K 2, . . . , 500 brain regions are generated by all three methods and these parcel-
lations are evaluated on the 1000BRAINS data set using the SSC. The results of
this analysis are presented in Figure 7.13 and reveal that for all numbers of brain
regions SECAL SPARTACUSS outperforms SSPECS. Moreover, SSPECS achieves
a better performance than geometric clustering. Interestingly, the internal validation
curves corresponding to SECAL SPARTACUSS and SSPECS progress similar to the
internal curves corresponding to geometric clustering, i.e., all three curves increase
monotonically with increasing number of brain regions.

In order to get a visual impression of the parcellations due to SSPECS and geo-
metric clustering and to better understand the clustering behavior of these methods,
the parcellations with K 150 are shown in Figure C.8 and Figure C.9 of the Ap-
pendix, respectively. These visualizations show, as already observed in the simulation
study, that SSPECS tends to produce spherical shaped brain regions of equal size.
As expected, geometric clustering produces equally sized brain regions that reflect
the spatial structure of the brain.

Figure 7.13: Evaluation of the parcellations with K 2, . . . , 500 due to
SECAL SPARTACUSS , SSPECS and geometric clustering on the 1000BRAINS data
set using the SSC.
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7.2.4 Convergence analysis with existing brain atlases

The quality of the parcellations belonging to the SECALpSPARTACUSSq, SSPECS
RBF

and geometric family are further compared using existing brain atlases, where, e.g.,
the SECALpSPARTACUSSq family consists of all parcellations with K � 2, . . . , 500
brain regions obtained by applying SECALpSPARTACUSSq to the 1000BRAINS data
set.

As described in Section 5.8, there exist various atlases of the human brain in the
literature which are derived based on different modalities and parcellation methods.
A critical and widely accepted idea in this context is that brain organization can be
described by distinct brain regions/cortical areas of large within homogeneity and
large between heterogeneity with respect to all three modality categories structure,
connectivity and function. Hereby, the edges from all modalities should closely match
each other (Eickhoff et al., 2018a). According to this idea, a quality feature of a brain
parcellation is its convergence to other (well established) atlases, i.e., how well the
brain regions of the parcellation converge with those of existing atlases. Hereby, it is
usually distinguished between convergence with histological mapping, i.e., anatomical
atlases, and convergence with alternative parcellations (Varikuti et al., 2018), e.g.,

Table 7.3: Overview of brain atlases considered for comparison.

Name Number of regions Brain coverage voxel resolution

Anatomical atlases

AAL1 116 Whole brain 2� 2� 2mm3

AAL3 166 Whole brain 1� 1� 1mm3

MarsAtlas 97 Cerebrum 1� 1� 1mm3

Resting-state fMRI based atlases

Bellec
7,12,20,36,64,

Whole brain 3� 3� 3mm3

122,197,325,444

Craddock 10 to 1000 Whole brain 4� 4� 4mm3

Schaefer 100 to 1000 Cerebral cortex 1� 1� 1mm3

Shen 93,184,278 Whole brain 1� 1� 1mm3

Others

Glasser 180 Cerebral cortex 0.5� 0.5� 0.5mm3

Varikuti
25 to 675 Whole brain 1.5� 1.5� 1.5mm3

(MIXED)
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resting-state fMRI based parcellations. Another implication arising from this idea is
that two atlases, regardless of whether they are obtained from the same modality or
from different modalities, should be more similar to each other than to some reference
parcellation, such as a geometric parcellation.

Therefore, the convergence of the parcellations from the SECALpSPARTACUSSq,
SSPECS

RBF and geometric family with, on the one hand, anatomical atlases and,
on the other hand, alternative (algorithmic) atlases is compared in the following.
The convergence between any two atlases with similar numbers of brain regions is
quantified by the ARI.

Multiple anatomical and alternative brain atlases from the literature are consid-
ered. Anatomical atlases are the AAL1 atlas (Tzourio-Mazoyer et al., 2002), the
AAL3 atlas (Rolls et al., 2020) and the MarsAtlas atlas (Auzias et al., 2016; Brovelli
et al., 2017). Resting-state fMRI based atlases are those by Bellec et al. (2010) regis-
tered in the symmetric version of the MNI template, by Craddock et al. (2012), where
similarity is determined based on the temporal similarity between voxels (tcorr) and
clustering is performed using a two-level scheme (2level) clustering individual sub-
jects first before combining these individual parcellations to one final parcellation,
by Schaefer et al. (2018) or by Shen et al. (2013). Moreover, the multimodal brain
atlas by Glasser et al. (2016) and the atlases by Varikuti et al. (2018) which are gen-
erated by applying OPNMF based clustering to the MIXED data set, i.e., to another
structural MRI data set, are considered. More information about these atlases is
summarized in Table 7.3.

However, some issues occur when quantifying the convergence between atlases,
i.e., the brain atlases neither are registered to the same reference space, nor have the
same voxel resolution, nor have the same brain coverage nor have the same numbers
of brain regions. Hence, some preprocessing steps are employed.

In a first preprocessing step, all atlases are registered to the same reference space.
The label information of each atlas is stored in a 3D array and the position of a voxel
in this array determines its coordinate in the atlas specific voxel space. However,
without further information it is unclear to which position in the scanner this voxel
coordinate points to. Let px, y, zq be a coordinate in the atlas specific voxel space.
In order to obtain the corresponding coordinate in the scanner space (measured in
mm3), an affine matrix (Markiewicz, 2021)

M �

����
m1,1 m1,2 m1,3 a
m2,1 m2,2 m2,3 b
m3,1 m3,2 m3,3 c

0 0 0 1

���
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is employed. This affine matrix is multiplied with px, y, z, 1qT , i.e.

M �

����
x
y
z
1

����

����
x�

y�

z�

1

���,
and px�, y�, z�q is the coordinate in scanner space corresponding to px, y, zq. Hereby,
pa, b, cq is a translation which is added to px, y, zq, and

M� �
��m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

�
is a rotation / zoom matrix. Note that��x�y�

z�

��M�

��xy
z

��
��ab
c

�
holds, and, hence, px�, y�, z�q results from px, y, zq via rotating, zooming and shifting.
Since each atlas is provided with such an affine matrix, the coordinates from the atlas
specific voxel spaces can all be transformed to the same scanner space. However,
further calculations are best performed in voxel space. Therefore, the inverse of the
1� 1� 1mm3 MNI brain mask (Patterson, 2021)

M�1
MNI �

����
�1 0 0 77
0 1 0 �111
0 0 1 �72
0 0 0 1

���
�1

�

����
�1 0 0 77
0 1 0 111
0 0 1 72
0 0 0 1

���
is used to back transform scanner coordinates to the reference voxel space. By this
procedure, each voxel from an atlas specific voxel space is transformed to the same
reference voxel space, where voxel labels (or voxel values) are transferred accordingly.
Note that this reference voxel space corresponds to a voxel resolution of 1�1�1mm3.

Since not all atlases have a voxel resolution of 1�1�1mm3, a second preprocessing
step which is performed after the first preprocessing step is to enlarge or shrink atlases
from a lower or higher resolution voxel space, respectively, in order to fill the reference
voxel space. Enlargement is accomplished by a nearest-neighbor approach, where,
depending on the atlas resolution, a labeled voxel in the reference space equips its
nearest unlabeled voxels with its label. If, e.g., the atlas resolution is 2� 2� 2mm3,
3� 3� 3mm3 or 4� 4� 4mm3, a labeled voxel in the reference space with coordinate
px�, y�, z�q also equips all (unlabeled) voxels whose coordinates are in rx�, x� � 1s �
ry�, y� � 1s � rz�, z� � 1s, rx� � 1, x� � 1s � ry� � 1, y� � 1s � rz� � 1, z� � 1s or
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rx��1, x��2s�ry��1, y��2s�rz��1, z��2s with its label, respectively. A special
case is a atlas resolution of 1.5�1.5�1.5mm3 as for the 1000BRAINS parcellations or
the atlases by Varikuti et al. (2018). Therefore, the following example is considered.
The affine matrix of the 1000BRAINS data set is given by

M �

����
�1.5 0 0 91.5

0 1.5 0 �127.5
0 0 1.5 �73.5
0 0 0 1

���.
A coordinate in voxel space is p53, 50, 6q. Then the corresponding coordinate in
scanner space is calculated as

M �

����
53
50
6
1

����

����
12

�52.5
�64.5

1

���
and backtransformation using M�1

MNI yields

M�1
MNI �

����
12

�52.5
�64.5

1

����

����
65

58.5
7.5
1

���,
i.e., the transformation of coordinate p53, 50, 6q to the scanner space and then to
the reference voxel space is p65, 58.5, 7.5q. Note that the entries of p65, 58.5, 7.5q are
not all integers and, therefore, this coordinate does not specify a position in a 3D
array. Therefore, and also to fill the reference voxel space, p65, 58.5, 7.5q equips all
(unlabeled) voxels whose coordinates are in rt65u, r65ss�rt58.5u, r58.5ss�rt7.5u, r7.5ss,
i.e., p65, 58, 7q, p65, 59, 7q, p65, 58, 8q and p65, 59, 8q, with its label. More generally,
if the atlas resolution is 1.5 � 1.5 � 1.5mm3, a labeled voxel in the reference space
with coordinate px�, y�, z�q equips all (unlabeled) voxels whose coordinates are in
rtx�u, rx�ss�rty�u, ry�ss�rtz�u, rz�ss with its label. If the voxel resolution in the atlas
specific voxel space is higher than the voxel resolution in the reference voxel space,
multiple original voxels will correspond to the same reference voxel. Hence, shrinkage
is accomplished by equipping each reference voxel with a randomly chosen label from
the label-list of its corresponding atlas specific voxels. If, e.g., the atlas resolution
is 0.5 � 0.5 � 0.5mm3, all labeled voxels in the reference space which have the same
coordinate px�, y�, z�q after all their coordinate entries are rounded down equip the
voxel with coordinate px�, y�, z�q randomly with one of their labels.

As all atlases are registered to the same reference space, the next issue is that
the brain coverage is different between the existing atlases and the atlases generated
based on the 1000BRAINS data set. Technically this means that, when comparing
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Figure 7.14: The brain slices in the first or second row correspond to the atlas with
100 brain regions from the SECAL SPARTACUSS family or the Schaefer family,
respectively. The first, second or third column displays the brain slices in the atlas
specific voxel space, the reference voxel space before matching or the reference voxel
space after matching, respectively.

two atlases with each other, there exist voxels in the reference space which are labeled
by exactly one atlas but not by the other. Therefore, a third preprocessing step
is to consider only those voxels which are labeled by both atlases. This pairwise
matching might reduce the number of brain regions in both atlases. E.g., when
matching the whole brain atlases from the SECAL SPARTACUSS family with the
cerebral cortex atlases from the Schaefer family, the numbers of brain regions of the
SECAL SPARTACUSS atlases reduce from originally, e.g., 100, 200, 300, 400 or 500
to 95, 189, 276, 363 or 448, respectively. In contrast, the numbers of brain regions
of the atlases from the Schaefer family are not changed by this matching. This is
because the brain coverage of the atlases from the SECAL SPARTACUSS family is
larger than the brain coverage of the atlases from the Schaefer family. Exemplary,
Figure 7.14 contrasts one specific profile of the atlases with 100 brain regions from
the SECAL SPARTACUSS and the Schaefer family in the atlas specific voxel space,
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in the reference voxel space before matching and in the reference voxel space after
matching.

The last issue to be addressed is how to pair parcellations from two different
families, where convergence is only determined between pairs of parcellations. While
the 1000BRAINS families, i.e., the SECALpSPARTACUSSq, SSPECS

RBF and geometric
family, include parcellations with 2, . . . , 500 brain regions, the existing atlas families
presented in Table 7.3 include far less parcellations with selected numbers of brain
regions. An intuitive idea is to assign each parcellation from an existing atlas family
to that parcellation from a 1000BRAINS family, which has the same number of
brain regions (before matching). However, with this strategy the numbers of brain
regions can differ between pairs of parcellations after pairwise matching is performed.
E.g., when pairing the parcellations with 500 brain regions from the Schaefer and
the SECALpSPARTACUSSq family, the SECALpSPARTACUSSq parcellation contains
only 448 brain regions after pairwise matching, while the Schaefer parcellation still
includes 500 brain regions. Therefore, those parcellations from an existing atlas
family and a 1000BRAINS family are paired, whose numbers of brain regions are
closest after pairwise matching, but only if the absolute difference between their
numbers of brain regions is less than or equal to 20. E.g., the parcellations with
100, 200, 300 and 400 brain regions from the Schaefer family are paired with the
parcellations (before matching) with 105, 211, 323 and 444 brain regions from the
SECALpSPARTACUSSq family, where, after matching, the numbers of brain regions
of the Schaefer parcellations remain the same and the numbers of brain regions of
the SECALpSPARTACUSSq parcellations are 100, 200, 300 and 401, respectively.

Using the ARI, the convergence is quantified of the parcellations belonging to the
SECALpSPARTACUSSq, SSPECS

RBF or geometric family with, in a first step, the three
anatomical atlases AAL1, AAL3 or MarsAtlas and, in a second step, the parcellations
from the six alternative atlas families Varikuti (MIXED), Bellec, Craddock, Schaefer,
Shen or Glasser. The convergence of the parcellations from a 1000BRAINS family
with the anatomical atlases or the parcellations from an alternative atlas family is
shown in Table 7.4 or Figure 7.15, respectively.

Table 7.4 reveals that the parcellations from the SECALpSPARTACUSSq and
SSPECS

RBF family converge equally well and above chance (ARI P p0.25, 0.36q) with

Table 7.4: Convergence of 1000BRAINS based parcellations with anatomical atlases
AAL1, AAL3 and MarsAtlas with 115, 153, and 97 numbers of brain regions after
matching, respectively, quantified by ARI.

AAL1 (115) AAL3 (153) MarsAtlas (97)

SECALpSPARTACUSSq 0.288 0.268 0.328
SSPECS

RBF 0.302 0.253 0.352
geometric 0.281 0.251 0.318
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Figure 7.15: Each subplot shows the ARI based convergence of parcellations from
an alternative atlas family with the parcellations from the SECAL SPARTACUSS ,
SSPECS

RBF and geometric family. The values on the x-axis are the numbers of clusters
of the parcellations from the alternative atlas family after matching.

established anatomical brain atlases. However, this convergence is hardly better
than the convergence of parcellations from the geometric family with the anatomical
atlases.

From Figure 7.15 it can be observed that parcellations from all 1000BRAINS
families converge above chance (ARI 0.2) with parcellations from all alternative
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atlas families. The parcellations from the SECALpSPARTACUSSq family converge
well with parcellations from the Varikuti (MIXED) family derived based on the same
modality. This convergence is clearly better compared with parcellations from both
the geometric and the SSPECS

RBF family. However, SECALpSPARTACUSSq parcel-
lations converge worse with resting-state fMRI based parcellations than SSPECS

RBF

and geometric parcellations. Thus, parcellations from the SECALpSPARTACUSSq
family show a good within-modality and a rather poor between-modality conver-
gence. In contrast, SSPECS

RBF parcellations show a poor within-modality and good
between-modality convergence, achieving the largest convergence with resting-state
fMRI based parcellations, but the worst convergence with parcellations from the
Varikuti (MIXED) family (even worse than geometric parcellations). The overall
lowest convergence of parcellations from any 1000BRAINS family is achieved with
the multimodal atlas from Glasser et al. (2016).
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Chapter 8

Discussion

In clinical studies analyzing the effect of a large number of variables on a response,
often the response is much better explained by combinations of these variables than
by the individual variables. Therefore, in this thesis, ensemble methods are further
developed and proposed that find a smaller number of new features based on combi-
nations of the original variables which (potentially) improve the quality of statistical
or machine learning models. Moreover, these combined features allow for a biologi-
cally meaningful interpretation and, therefore, help to get a better understanding of
the data generating processes.

Ensemble methods are developed for and applied to two different types of clinical
data, i.e., genetic data investigating the influence of SNPs on a time-to-event, e.g.,
the recurrence free time of urinary bladder cancer, and neuroimaging data consid-
ering structural MRI scans of, e.g., older subjects. A difference between these two
types of data is that the variables of the genetic data, i.e., the SNPs, are binary
coded, while the variables of the neuroimaging data, i.e., the voxels, assume positive
real values. Moreover, the ensemble methods to analyze the genetic data are super-
vised algorithms using the time-to-event information in relation to the information of
the variables, whereas the ensemble methods to analyze the neuroimaging data are
unsupervised algorithms relying solely on the information of the variables.

However, similar concepts are used for the supervised and unsupervised ensemble
methods. The base learner methods are specifically chosen to suit the respective
clinical data scenario, i.e., logic regression is applied to the genetic data and SHAC
algorithms are applied to the neuroimaging data. The base learner methods are ap-
plied to subsamples, which are generated using the same approach, i.e., 63.2% of
the original observations are sampled without replacement. On the one hand, the
resulting base learners are combined to form a final ensemble result, i.e., a survivalFS
based ensemble prediction model or a SEC based ensemble parcellation. On the other
hand, the base learners are used to identify combined features, i.e., SNP interactions
or brain regions. More precisely, the base learners are used by the importance mea-
sures of survivalFS to identify important SNP interactions, and by the subsampling
based clustering stability or the subsampling based clustering quality approach to
identify interesting numbers of brain regions, based on which the final ensemble par-
cellations are selected. Note that each brain region of a final ensemble parcellation is
considered as combined feature, e.g., by calculating the mean over all voxel intensities
from that brain region or by determining the first principal component of that brain
region.

The importance measures of survivalFS and the subsampling based clustering
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quality approach, i.e., methods to identify combined features, rely on evaluation
measures that quantify the quality of base learners. In this thesis, not only existing
evaluation measures from the literature are employed. Also, adaptations of popular
evaluation measures, i.e., the DPO-based C-index or the spatial adaptations of the
SC and SSC, are newly proposed, which are especially developed to perform well
with these methods to find combined features.

Since this thesis is divided into two parts, where each part considers ensemble
methods for one of the two possible types of clinical data, the two parts are first
discussed separately. Afterwards the main results and insights from these two parts
are concluded in Chapter 9.

The first part is based on the conjecture that in clinical studies analyzing the
effect of a large number of binary variables on a time to a certain event such as
death or recurrence of a disease, often this event time is much more influenced by
interactions, i.e., combinations of the variables, than by the individual variables. The
ensemble method survivalFS introduced by Tietz (2016) is a modification of logicFS
to time-to-event data and combines logic regression and subsampling to stabilize the
search for such potentially important interactions.

The contribution of the first part of this thesis is fourfold. Firstly, some of the
interactions identified by survivalFS might have an influence on the time-to-event,
while others might only be found by random. Therefore, in addition to the impor-
tance measure based on the partial likelihood proposed by Tietz (2016), six impor-
tance measures quantifying the importance of the identified interactions and ranking
them based on their estimated importance. While four of these importance mea-
sures are based on two popular goodness-of-fit measures for time-to-event models,
the other two measures are based on the DPO-based C-index, which is a modifica-
tion of Harrell’s C-index weighting each concordant pair not equally but individually
with respect to its specific DPO score, where the DPO score considers the distance
between predicted outcomes and the distance between observed event times. Sec-
ondly, due to overfitting, survivalFS often finds interactions consisting of the actual
influential interaction and one or in rare cases more than one additional noise variable
which is identified (almost) at random and only slightly improves the performance
of the logic model in the subsample. Since the importance measures of survivalFS
consider these interactions as autonomous interactions, some of the effect of the
influential interaction is, instead, attributed to these noise-equipped interactions, re-
ducing the importance of the influential interaction. To avoid this issue, importance
measures adjusted for such noise variables similar to the one proposed in Schwender
et al. (2011a) are introduced. Thirdly, all importance measures for interactions are
modified to also determine the importance of single logic variables and sets of logic
variables. These importance measures take the multivariate structure of the data into
account and are able to detect even variables which have an interaction effect but
no main effect. Finally, the output from survivalFS is employed to make ensemble
predictions for the CHF or the survival function of (new) observations.
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In a simulation study, the importance measures VIMDPO, VIMConc and VIMEDPO

perform better than the other four measures. While VIMDPO and VIMConc lead to the
highest rankings of the influential interaction, i.e., the interaction intended to have
an effect on the event time, VIMEDPO achieves the highest rankings of extended-
interactions of the influential interaction. VIMEConc shows by far the worst perfor-
mance among the seven importance measures. Its importance values for the influ-
ential interaction even decrease with increasing strength of the simulated effect. It
is, therefore, no adequate importance measure. This is, since Harrell’s C-index is a
discrimination measure, i.e., it only considers the ordering of the event times and of
the predicted outcomes of observations but neither the distances between observed
event times nor the distances between predicted outcomes. Thus, even though the
predicted outcomes of observations belonging to the risk group (indicated by the in-
fluential interaction) decrease when being determined based on the reduced models
instead of the full models, they are often still larger than the predicted outcomes of
observations belonging to the reference group (as, e.g., some of the logic models still
include some effect of the influential interaction via an extended-interaction). In this
case, Harrell’s C-index calculated based on the reduced models would be identical to
Harrell’s C-index calculated based on the full models and VIMEConc would quantify
the importance of the influential interaction to be zero. Interestingly, the importance
becomes even negative, if the strength of the simulated effect is large. The reason
for this behavior must be that the within-group concordance based on the reduced
models is larger than that based on the full models. While the exact explanation of
this behavior is a matter of future investigation, it is likely, that it has to do with
the slight bias the OOB ensemble predicted outcomes are affected by as discussed in
the last paragraph of Section 4.1.

The noise-adjusted importance measures improve the performance of their cor-
responding unadjusted measures. Noise-adjustment leads to higher rankings and to
clearly larger estimated importance values of the influential interaction. However, the
noise-adjusted importance measures usually rank sub-interactions of the influential
interaction higher than the influential interaction itself. This phenomenon may be
driven by two factors. Firstly, interactions including the less complex sub-interactions
are contained in at least the same but usually in more logic models than interactions
including the influential interaction. I.e., more logic models contribute to the im-
portance of the sub-interactions. Secondly, the reduced models corresponding to the
sub-interactions usually have a worse performance than the reduced models corre-
sponding to the influential interaction. E.g., assuming a logic model that includes
both the influential interaction, say L, and a sub-interaction of L, say L�,1. If now
the importance of L is to be determined, only L is removed from the logic model while
L�,1 is still part of the reduced model and, therefore, the score difference between
the full model and the reduced model might be small, since some effect of L is still
included in the reduced model. However, if the importance of the sub-interaction of
L is to be determined, both L�,1 and L are removed from the logic model. Then the
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reduced model contains no effect of L anymore and the score difference between the
new full model including L�,1 and the reduced model might be larger. Beneficially,
due to this phenomenon, the noise-adjusted importance ranking includes information
about which variable or which sub-interaction contributes most to the interaction
effect.

In the simulation scenarios SimA and SimB, where a single interaction is solely
explanatory for the event time, VIMConc

Adj and VIMDPO
Adj perform best among the seven

noise-adjusted importance measures, followed by VIMEDPO
Adj . Nonetheless, VIMBrier

Adj ,

VIMCox
Adj and VIMEBrier

Adj achieve only slightly worse ranking results. Only VIMEConc
Adj is

not competitive to the other six measures in SimB and, thus, is the only inappropriate
noise-adjusted importance measure.

If an additional variable also has an influence on the event time, the rankings as
well as the importance values of the influential interaction based on all noise-adjusted
importance measures are decreased, unless the simulated interaction effect is large.
One reason for this behavior is that, if the confounding variable has a larger or even
similar effect on the event time compared to the influential interaction, the top ranks
are occupied by the confounding variable or extended-interactions of the confounding
variable. This forces the influential interaction to occupy one of the lower ranks. In
these scenarios, VIMEBrier

Adj , followed by VIMEDPO
Adj , performs slightly better than the

other measures. Moreover, allowing two logic trees instead of one logic tree in each
logic regression model of survivalFS clearly improves the performance of all noise-
adjusted importance measures.

In both simulation scenarios SimA and SimC considering an influential two-way
interaction, the noise-adjusted importance measures of survivalFS substantially out-
perform the importance measure IMDMS for bivariate variable interactions of random
survival forests.

When quantifying the importance of individual SNPs, VIMDPO
Set and VIMConc

Set ,
followed by VIMEDPO

Set and VIMEBrier
Set , perform best in the simulation scenarios SimA

and SimB. Compared to this, the other three measures perform poorly and should
not be considered as importance measures for individual variables. Considering an
additional variable with an effect on the event time in SimC and SimD, the rankings
as well as the estimated importance values of the influential interaction according to
all importance measures are clearly decreased, unless the strength of the interaction
effect is large. All importance measures for individual variables perform better, if
one logic tree (and not two logic trees) is allowed in each logic regression model of
survivalFS. Conversely to SimA and SimB, the ensemble-type importance measures
VIMEDPO

Set and VIMEBrier
Set outperform the original-type importance measures VIMDPO

Set

and VIMConc
Set in SimC and SimD.

Moreover, the importance measures of survivalFS for individual SNPs outperform
the variable importance measure VIMP of random survival forests, if, besides the in-
fluential interaction, no further predictor has an effect on the event time. However,
the importance measures of survivalFS are more affected than VIMP by another vari-
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able with an additional effect on the event time. Thus, VIMP more stably finds the
variables assembling the influential two-way interaction in SimC than the importance
measures of survivalFS, while both measures show a similar performance in SimD.

When predicting new observations using ensemble prediction models constructed
by survivalFS as well as prediction models generated by random survival forests, sur-
vivalFS substantially outperforms random survival forests according to all considered
goodness-of-fit measures.

The newly proposed DPO-based C-index achieves very promising results. A
small simulation study reveals its advantages over Harrell’s C-index in evaluating
prediction models based on a single binary predictor. The DPO-based measures
VIMDPO

Adj {VIMDPO
Set and VIMEDPO

Adj {VIMEDPO
Set perform best among the original-type

measures and the ensemble-type measures, respectively. Moreover, the DPO-based
modification of Harrell’s C-index improves the performance of VIMEConc dramati-
cally. Compared to the integrated Brier score and Harrell’s C-index, the DPO-based
C-index more accurately quantifies the predictive accuracy of the prediction models
constructed by survivalFS and by random survival forests.

In application to genetic data from an urinary bladder cancer (UBC) study in-
vestigating the effect of UBC susceptibility SNPs, the deletion variant GSTM1 and
environment variables on the time to recurrence of UBC after surgical removal, a sig-
nificant interaction effect between GSTM1 and the SNP with rs number rs1058396
is found by the noise-adjusted importance measures of survivalFS. Using this inter-
action as predictor in a Cox proportional regression model improves the quality of
the prediction. Moreover, the variable importance measures of survivalFS identify
both GSTM1 and rs1058396 as important variables, since they take the multivariate
structure of the data into account and, therefore, attribute a part of the interaction
effect to the importance of GSTM1 and rs1058396. In contrast, since GSTM1 has no
main effect on the recurrence-free time of UBC, a univariate likelihood ratio test is
not able to detect the effect of GSTM1.

The procedures presented in the first part of this thesis are implemented in the
R package logicFS version 2.2.0 or later which is freely available at http://www.

bioconductor.org.

In future studies, the performance of the DPO-based C-index should be further
tested, as it might turn out to be a proper alternative to popular goodness-of-fit
measures. Moreover, an issue with SNP data is that, according to Schwender et al.
(2011a), the estimated importance of influential SNP interactions can be substan-
tially lowered, if some of the SNPs assembling the interactions are in strong linkage
disequilibrium (LD) to other SNPs from the data set. To avoid this issue, similarly to
Schwender et al. (2011a) importance measures adjusted for SNPs in strong LD should
be employed. While the software to calculate LD-adjusted importance measures is
already implemented in the R package logicFS, the application and testing of these
LD measures on simulated and real data is a matter of future research.

The second part of this thesis deals with the generation of human brain parcel-
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lations/atlases, which is a fundamental concept in the field of neuroscience in order
to understand brain organization. While a large number of different atlases exist in
the literature, these atlases differ mainly from each other by the modalities that they
are derived from, e.g., cyto- and myeloarchitecture, grey matter volume or functional
connectivity, and the parcellation techniques, e.g., local gradient or global clustering
techniques. The second part of this thesis contributes by extensively investigating the
performance and stability of one family of clustering algorithms, namely SHAC algo-
rithms in combination with SEC algorithms, in application to one specific modality,
namely grey matter volume deduced from T1-weighted structural MRI scans.

Based on the results of the performance analysis conducted on simulated data and
on the 1000BRAINS data, it is observed that standardizing the voxels of the input
data to have a mean of zero and a standard deviation of one prior to clustering clearly
improves clustering quality for all considered data sets. E.g., SHACAL, Eucl hardly
finds any simulated clusters based on non-standardized data but stably identifies the
correct parcellation based on standardized data. The reason is that, based on the non-
standardized data, SHACAL, Eucl tends to form a few large clusters and assigns outlier
voxels to singleton or small clusters. This behavior of average linkage hierarchical
clustering is well known in the literature (Senbabaoğlu et al., 2014). Standardizing
the data seems to reduce the impact of outlier voxels, such that SHACAL, Eucl much
more stably finds the true parcellation.

The spatial adaptations SCspatial and SSCspatial proposed in this thesis have two
advantages over their popular non-spatial counterparts SC and SSC. They are compu-
tationally cheaper and they are not influenced by cross-hemispheric communications,
i.e., correlated clusters that are spatially discontiguous. Moreover, they generate very
similar results to SC and SSC based on simulated data, where a spatial adaptation
is unnecessary, since no spatially discontiguous clusters are simulated that are cor-
related. Thus, it is recommended to consider SCspatial or SSCspatial for evaluation of
spatially contiguous structural MRI based parcellations.

Among all considered spatial clustering methods, the best performance is achieved
by SPARTACUSS or SHACS

Ward. Both methods generate parcellations consisting of
similar sized brain regions, while at the same time being sensitive to the structural
data. Thus, these methods consider a good balance between spatial and structural
information. In contrast, SSPECS mainly considers spatial information by tending
to produce spherical shaped brain regions of equal size, while having a low sensitivity
to the underlying structural information. Note that similar observations are made by
Thirion et al. (2014) on task-based functional MRI data. Moreover, SPARTACUSS

and SHACS
Ward outperform SHACS

AL, corr and SHACS
AL, Eucl in the simulation study.

On the 1000BRAINS data set SHACS
AL, corr and SHACS

AL, Eucl tend to produce a
few large and multiple smaller brain regions even after standardization, which is an
unwanted effect.

The quality of brain parcellations generated by a SHAC algorithm can be further
improved using the SECAL or the SECHellinger approach, but not using the SECSL
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approach. The SECAL approach and the SECHellinger approach stably identify even
weakly pronounced clusters in the simulation study. Moreover, SECAL also clearly
improves clustering quality of the 1000BRAINS based parcellations, while SECHellinger

achieves only a marginal improvement. In contrast, SECSL decreases clustering qual-
ity in the simulation study. A main reason for the bad performance of SECSL is its
(well-known) chaining tendency, generating parcellations with a few large and many
very small clusters. Based on these results it is recommended to employ SECAL to
further improve the quality of a parcellation. However, this comes at the cost of
increased computational complexity. A rough estimate of the computation time of
SECAL is that it takes twice as long compared with, e.g., SHACAL, since the gener-
ation of the cluster ensemble can be parallelized and a separate ensemble hierarchy
must be computed based on the cluster ensemble, where both the computation of the
cluster ensemble and of the ensemble hierarchy take roughly as much computation
time as SHACAL.

As recommended by Thirion et al. (2014), interesting numbers of brain regions
are identified in this thesis in a data-driven fashion employing a subsampling based
clustering stability, a subsampling based clustering quality and an ensemble based
clustering quality approach. All three approaches perform equally well in the simula-
tion study, being able to stably identify the correct numbers of clusters. In application
to the 1000BRAINS data set, interesting numbers could be identified by peaks in the
clustering stability and the ensemble based clustering quality curves, which occur at
similar numbers of brain regions. Interestingly, these maxima are accompanied by
changes, e.g., elbow points in the first derivatives of the subsampling based cluster-
ing quality curves. However, the subsampling based clustering quality curves increase
monotonically and show no peaks. Nonetheless, it is advisable to employ all three ap-
proaches. Especially if a number of clusters is identified by all three approaches, the
corresponding parcellation more confidently reflects a true level of brain organization.

As the human brain is assumed to be organized in a multi-level fashion, a sin-
gle true number of brain regions is unlikely to exist. In the analysis based on the
1000BRAINS data set K � 70, K � 150, K � 300 and K � 600 could be identified
as interesting numbers of brain regions. These numbers may reflect different levels
of brain organization.

However, these estimations can be only partly associated with granularity estima-
tions made in the literature. E.g., the granularity of anatomical atlases is typically
coarse, ranging around K � 100 (Auzias et al., 2016; Tzourio-Mazoyer et al., 2002).
I.e., the first two numbers K � 70 and K � 150 are only roughly in the same order
of magnitude. Other estimations evidently suggest that the number of cortical areas
ranges around K � 180 (Amunts and Zilles, 2015; Glasser et al., 2016) and, e.g., the
Julich-Brain atlas differentiates 248 cytoarchitectonic cortical areas and subcortical
nuclei (Amunts et al., 2020). I.e., these estimations are larger than the whole brain
estimation of K � 150 from this thesis. A possible explanation is that the voxel
resolution of the 1000BRAINS data set is not fine enough. Common granularity esti-
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mations based on data-driven approaches are K P r200, 500s, where these estimations
are often based on reproducibility or prediction performance (Schaefer et al., 2018;
Thirion et al., 2014; Van Essen et al., 2012; Varikuti et al., 2018). E.g., Thirion
et al. (2014) recommend a granularity of K P r200, 500s based on reproducibility and
Varikuti et al. (2018) obtain the best age prediction results for 300 to 500 structural
components. Thus, the estimation K � 300 is associated with these estimations.
Finally, K � 600 is to my knowledge not established as interesting granularity in the
literature.

These observations illustrate a major issue of granularity estimation, i.e., interest-
ing numbers of brain regions are variable with respect to, e.g., data sets, modalities
or resolutions. Thus, it might be advisable to make granularity decisions individually
adapted to the respective data scenario.

The convergence of parcellations between different modalities, i.e., the question
of how well the borders identified based on one modality match those detected based
on a different modality, is a very important research topic (Eickhoff et al., 2018a).
Eickhoff et al. (2018a) argue that parcellations generated based on one modality
transfer to another modality but do not reach the quality of parellations that are
directly derived based on the other modality. Also, Varikuti et al. (2018) suggest
that parcellations generated based on one modality are to some extend transferrable
to another modality for data reduction.

From the analysis conducted in this thesis it is observed that the 1000BRAINS
parcellations generated by SECALpSPARTACUSSq achieve a good within-modality,
but a poor between-modality convergence. More precisely, the convergence with
structural parcellations (Varikuti et al., 2018) is clearly better than chance. However,
the convergence with established anatomical brain atlases or resting-state fMRI based
parcellations is hardly better or even worse than chance, respectively. Based on this
observation it can be argued that parcellations derived from structural MRI data
capture both spatial and structural patterns. However, mainly the spatial information
is transferrable to other modalities. Apart from that, other modalities seem to capture
different aspects of brain organization.

Python implementations of all procedures presented in the second part of this
thesis are publicly available on Pypi (https://pypi.org/project/SPARTACUS10)
and Github (https://github.com/totie10/SPARTACUS10). Note that SHACWard is
also implemented in scikit-learn’s (Pedregosa et al., 2011) AgglomerativeClustering
function, producing the same results in less computational time. This observation
suggests that the implementations from this thesis have some potential for run-time
optimization.

A (sparse) voxel-wise statistical/machine learning analysis is suffering from a se-
ries of drawbacks. Both memory consumption and computational complexity are
large. The number of features in a structural MRI data set typically exceeds the
number of samples many times over. This problem is known in the literature as
”curse of dimensionality” and machine learning models derived from such data are
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prone to overfitting (Mwangi et al., 2014). Moreover, the interpretability of im-
portant features identified by such approaches is poor (Varikuti et al., 2018), since
these features are isolated voxels embedded in a highly correlated spatial structure.
More precisely, because of their small spatial size the voxels are too variable between
subjects and because of their high correlation with other voxels, e.g., regularization
methods such as LASSO regression (Tibshirani, 1996) can not perform a reliable
feature selection (Varikuti et al., 2018). Hence, it is commonly agreed upon that
there should be some dimensionality reduction before developing a predictive model
(Mwangi et al., 2014).

The SHAC and SEC algorithms parcellate the human brain into neurobiologically
meaningful regions that allow for a good interpretability. In future studies, these
regions should be used as combined features in a subsequent machine learning analysis
by representing each region, e.g., by the mean grey matter volume over all voxels in
this region or the region’s first principal component. Inspired by Jiang et al. (2020),
another idea for future research is to train a convolutional neural network (CNN)
(LeCun et al., 2015) to each brain region generated by a SHAC or SEC method using
the grey matter volumes from this region as input. Afterwards, a weighted average
of the predictions can be determined, allowing for an ensemble prediction and a
ranking of regions according to their relevance for the final prediction represented by
the weights.

The analyses conducted in the second part of this thesis show that standardizing
the voxels prior to clustering has a positive effect on clustering quality. For future
work it is interesting to investigate whether standardizing subjects instead of voxels
has a similar effect.

The SHAC algorithms (especially the SPARTACUS algorithm) and the SEC
methods show a good performance in application to the simulation study and to
the 1000BRAINS data set including structural scans of older subjects. For further
evaluation, these methods should be applied to other structural MRI data sets in-
cluding also younger subjects.
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Chapter 9

Conclusion

In conclusion, the studies conducted in this thesis reveal some promising results that
should be build upon in future research projects.

The ensemble methods considered in this thesis turned out to be stable and pow-
erful methods for identifying combined features. Hereby, the newly proposed methods
VIMDPO

Adj and VIMEDPO
Adj to find SNP interactions or the subsampling based clustering

stability approach using SPARTACUSS as base clustering method to find interest-
ing numbers of clusters and SECALpSPARTACUSSq to obtain the final brain regions
achieve the best performance. Since these combined features are biologically mean-
ingful, they can help to get a better understanding of the mechanisms underlying
the clinical data. While, in the first part, the combined features, i.e., the SNP inter-
actions, could improve the prediction of the recurrence-free time of urinary bladder
cancer, the performance of the combined features in the second part, i.e., the SHAC
and SEC based brain regions, remains a matter of future investigation. Moreover, the
ensemble methods produce ensemble results, i.e., survivalFS based ensemble predic-
tions or SEC based ensemble parcellations, of superior quality than those generated
by their base learner methods and than those generated by popular competing meth-
ods, i.e., random survival forests or SSPEC.

Using ensemble methods comes at the cost of an increased computational com-
plexity. However, since all ensemble methods can be parallelized and nowadays more
and more infrastructure for large scale parallel computing is available, the computa-
tional time of these methods is not much of an issue.

Evaluation measures, i.e., the DPO-based C-index or (S)SCspatial, are especially
developed to work well with the ensemble methods from this thesis to find combined
features. Indeed, these evaluation measures could improve the overall performance
of the ensemble methods. Due to these promising results, in future studies, the
DPO-based C-index or (S)SCspatial should be considered as alternative to popular
time-to-event goodness-of-fit measures or as alternative to popular internal measures
evaluating parcellations with spatially contiguous brain regions, respectively.

Implementations of all newly proposed methods in R or Python are publicly avail-
able on Bioconductor (https://www.bioconductor.org/packages/release/bioc/
html/logicFS.html) or Pypi (https://pypi.org/project/SPARTACUS10), respec-
tively, making them easy to install and easy to use.

185



Contribution to manuscripts

Identification of interactions of binary variables as-

sociated with survival time using survivalFS

Tobias Tietz1, Silvia Selinski2, Klaus Golka2, Jan G. Hengstler2, Stephan Gripp3,
Katja Ickstadt4, Ingo Ruczinski5 and Holger Schwender1

1Mathematical Institute, Heinrich-Heine University, 40225 Düsseldorf, Germany
2Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund
University, IfADo, 44139 Dortmund, Germany
3Department of Radiation Oncology, Heinrich-Heine University Hospital, 44225 Düsseldorf,
Germany
4Faculty of Statistics, TU Dortmund University, 44221 Dortmund, Germany
5Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA

Authorship: first author
Contributed part: 80%
Contribution: Development of the statistical method

Implementation in software
Creating simulated data sets
Statistical data analysis
Preparing figures and tables
Interpretation of results
Writing the paper

Journal: Archives of Toxicology
Impact factor: 5.059
Date of publication: 06 March 2019
DOI: 10.1007/s00204-019-02398-6

186



Bibliography

Aggarwal CC, Reddy CK (2014) Data clustering. Algorithms and applications. Chap-
man&Hall/CRC Data mining and Knowledge Discovery series, Londra

Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance
between human brain regions. Nature Reviews Neuroscience 14(5):322–336

Allahyari M, Pouriyeh S, Assefi M, Safaei S, Trippe ED, Gutierrez JB, Kochut K
(2017) A brief survey of text mining: Classification, clustering and extraction
techniques. arXiv preprint arXiv:170702919

Alpaydin E (2014) Introduction to machine learning. MIT press

Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brod-
mann. Neuron 88(6):1086–1107

Amunts K, Schleicher A, Zilles K (2007) Cytoarchitecture of the cerebral cor-
tex—more than localization. Neuroimage 37(4):1061–1065

Amunts K, Mohlberg H, Bludau S, Zilles K (2020) Julich-brain: A 3d probabilistic
atlas of the human brain’s cytoarchitecture. Science 369(6506):988–992

Arbelaitz O, Gurrutxaga I, Muguerza J, PéRez JM, Perona I (2013) An extensive
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Bedalli E, Mançellari E, Asilkan O (2016) A heterogeneous cluster ensemble model
for improving the stability of fuzzy cluster analysis. Procedia Computer Science
102:129–136

Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM,
Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, et al. (2003) Non-
invasive mapping of connections between human thalamus and cortex using diffu-
sion imaging. Nature Neuroscience 6(7):750–757
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Rüschendorf L (2014) Mathematische Statistik, vol 62. Springer

Saracco J, Chavent M, Kuentz V (2010) Clustering of categorical variables around
latent variables. Tech. rep., Groupe de Recherche en Economie Théorique et Ap-
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Appendix A

Additional results to simulation study of
survivalFS

In this chapter, additional figures summarizing the results of the application of sur-
vivalFS to the data sets from the simulation study from Section 4.2 are presented.

A.1 Additional results to analysis of importance

measures for interactions
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Figure A.1: survivalFS is applied to the simulation scenarios from simulation setting
SimB. The proportion of survivalFS models, in which L�

� S1,1 � S2,1 � Sc
3,2 (first

row) or L�

+, max (second row) is ranked among the top 1, 2, . . . , 10 most important
SNP interactions by the respective importance measure. Source: Tietz et al. (2019).

209



2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
op

or
tio

n

HR = 1.4, L

●
●

● ● ● ● ● ● ● ●

●

VIMDPO

VIMEDPO

VIMConc

VIMEConc

VIMBrier

VIMEBrier

VIMCox

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HR = 1.6, L

●
●

●
● ●

● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HR = 1.8, L

●

●
● ● ● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HR = 2.0, L

●

●
● ● ●

● ● ● ● ●

n 
= 

55
0

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
op

or
tio

n

HR = 1.4, L

●

● ●
● ● ● ● ● ● ●

●

VIMDPO

VIMEDPO

VIMConc

VIMEConc

VIMBrier

VIMEBrier

VIMCox

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HR = 1.6, L

●

●

●
●

●
● ● ● ●

●

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

HR = 1.8, L

●

●

●
●

●
● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HR = 2.0, L

●

●

● ● ● ● ● ● ● ●

n 
= 

10
00

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank

pr
op

or
tio

n

HR = 1.4, L

●

●

● ● ●
● ● ● ● ●

●

VIMDPO

VIMEDPO

VIMConc

VIMEConc

VIMBrier

VIMEBrier

VIMCox

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank

HR = 1.6, L

●

●

●
●

● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank

HR = 1.8, L

●

●

●
●

● ● ● ● ● ●

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank

HR = 2.0, L

●

●
●

●
● ● ● ● ● ●

n 
= 

15
00

Figure A.2: survivalFS is applied to the simulation scenarios from simulation set-
ting SimA, where all scenarios consist of 100 data sets but differ from each other
by the number of observations (n � 550, 1000, 1500) and by the simulated effect
(HR � �1.4, 1.6, 1.8, 2.0�) of L � S1,1 � Sc

2,1 on the time-to-event. Each subplot
displays the proportion of survivalFS models, in which L is ranked among the top
1, 2, . . . , 10 most important SNP interactions by the respective importance measure.
Source: Tietz et al. (2019).
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Figure A.3: Displayed are boxplots without outliers investigating how the impor-
tance values of L � S1,1 � Sc

2,1 (colored blue) and L�,max (colored red) develop for
varying simulated effect (HR � �1.4, 1.6, 1.8, 2.0�) due to all seven importance mea-
sures for SNP interactions and based on the simulation scenarios from SimA with
n � 1500 observations. Source: Tietz et al. (2019).
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Figure A.4: Displayed are boxplots without outliers investigating how the impor-
tance values of L � S1,1 � Sc

2,1 (colored blue) and L�,max (colored red) develop for
varying numbers of observations �n � 550, 1000, 1500� due to all seven importance
measures for SNP interactions and based on the simulation scenarios from SimA with
simulated effect of HR � 1.8. Source: Tietz et al. (2019).
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Figure A.5: Boxplots without outliers investigating how the importance values of
L�

� S1,1 � S2,1 � Sc
3,2 (colored blue) and L�

�,max (colored red) in SimB develop
for varying simulated effect (HR � �1.6, 1.8, 2.0, 2.5�) due to all seven importance
measures for SNP interactions. Source: Tietz et al. (2019).
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A.2 Additional results to analysis of noise-adjusted

importance measures
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Figure A.6: survivalFS is applied to the simulation scenarios with n � 550, 1000
observations from simulation setting SimA. Each subplot displays the proportion of
survivalFS models, in which L � S1,1�Sc

2,1 is ranked among the top 1, 2, . . . , 10 most
important SNP interactions by the respective noise-adjusted importance measure.
Original-type or ensemble-type importance measures are colored reddish or bluish,
respectively.
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Figure A.7: survivalFS is applied to the simulation scenarios with n � 550, 1000
observations from simulation setting SimA. For each of the noise-adjusted and for
each of the unadjusted importance measures the proportion of survivalFS models,
in which L � S1,1 � Sc

2,1 is ranked among the top 1, 2, . . . , 10 most important SNP
interactions, is calculated. The difference between each noise-adjusted proportion and
its corresponding unadjusted proportion is displayed. Values larger than zero indicate
a ranking improvement due to noise-adjustment. Original-type or ensemble-type
proportion differences are colored reddish or bluish, respectively.
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Figure A.8: survivalFS is applied to the simulation scenarios from SimB. The
subplots in the first row display the proportion of survivalFS models, in which
L�

� S1,1 � S2,1 � Sc
3,2 is ranked among the top 1, 2, . . . , 10 most important SNP

interactions by the respective noise-adjusted importance measure. The difference be-
tween each noise-adjusted proportion and its corresponding unadjusted proportion
is displayed in the second row, where positive differences indicate a performance
improvement due to noise-adjustment. Original-type or ensemble-type importance
measures are colored reddish or bluish, respectively.
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Figure A.9: Displayed are boxplots without outliers comparing the importance
values of L � S1,1 � Sc

2,1 due to all unadjusted importance measures (colored blue)
with those due to all noise-adjusted importance measures (colored red) based on the
simulation scenarios from SimA with n � 1500 observations and varying simulated
effect (HR � �1.4, 1.6, 1.8, 2.0�).
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Figure A.10: Displayed are boxplots without outliers comparing the importance
values of L � S1,1 � Sc

2,1 due to all unadjusted importance measures (colored
blue) with those due to all noise-adjusted importance measures (colored red) based
on the simulation scenarios from SimA with HR � 1.8 and varying sample size
(n � �550, 1000, 1500�).
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Figure A.11: Displayed are boxplots without outliers comparing the importance
values of L�

� S1,1 � S2,1 � Sc
3,2 due to all unadjusted importance measures (colored

blue) with those due to all noise-adjusted importance measures (colored red) based
on the simulation scenarios from SimB.
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Figure A.12: survivalFS allowing one logic trees is applied to the simulation scenar-
ios from simulation setting SimC. The subplots in the first row display the proportions
of survivalFS models in which L is ranked among the top 1, 2, . . . , 10 most important
SNP interactions by the respective noise-adjusted importance measure. The subplots
in the second row display the proportion difference ΔC�A�VIMSCORE

Adj � between SimC
and SimA. Values smaller than zero indicate a ranking deterioration due to an ad-
ditional explanatory variable. Original-type or ensemble-type importance measures
are colored reddish or bluish, respectively.
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Figure A.13: survivalFS is applied to the simulation scenarios from simulation
setting D, where all scenarios consist of 100 data sets with n � 1500 observa-
tions but vary from each other by the simulated effect (HR � �1.6, 1.8, 2.0, 2.5�)
of L� � S1,1�S2,1�Sc

3,2 on the time-to-event. Moreover, S4,2 is included as explana-
tory variable with an effect of HR4 � 1.8 in all scenarios. The subplots in the first
or second row display the proportions of survivalFS models with one or two trees,
respectively, in which L� is ranked among the top 1, 2, . . . , 10 most important SNP
interactions by the respective noise-adjusted importance measure. Original-type or
ensemble-type importance measures are colored reddish or bluish, respectively.
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Figure A.14: Ranking comparison of noise adjusted importance measures between
simulation scenarios from SimB and SimD. The proportion of survivalFS models,
in which L�

� S1,1 � S2,1 � Sc
3,2 is ranked among the top 1, 2, . . . , 10 most impor-

tant SNP interactions by the respective noise-adjusted importance measure, is cal-
culated and the subplots in the first or second row display the proportion difference
ΔD�B�VIM

SCORE
Adj � between SimD with one or two logic trees, respectively, and SimB

with one logic tree. Values smaller than zero indicate a ranking deterioration due to
an additional explanatory variable.
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Figure A.15: Score comparison of noise adjusted importance measures between
simulation scenarios from SimB and SimD. Displayed are boxplots without outliers
comparing the importance values of L�

� S1,1 � S2,1 � Sc
3,2 due to VIMDPO

Adj and

VIMEDPO
Adj obtained in SimB with one logic tree and in SimD with one or two logic

trees.
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A.3 Additional results to analysis of importance

measures for single SNPs
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Figure A.16: survivalFS is applied to the simulation scenarios from simulation set-
ting SimA. Each subplot displays the proportion of survivalFS models, in which S1 is
ranked among the top 1, 2, . . . , 10 most important SNPs by the respective importance
measure for individual SNPs, where S1 is included in the explanatory interaction
L � S1,1 � Sc

2,1. Original-type or ensemble-type importance measures are colored
reddish or bluish, respectively. Source: Tietz et al. (2019).
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Figure A.17: survivalFS is applied to the simulation scenarios from simulation set-
ting SimA. Each subplot displays the proportion of survivalFS models, in which S2 is
ranked among the top 1, 2, . . . , 10 most important SNPs by the respective importance
measure for individual SNPs, where S2 is included in the explanatory interaction
L � S1,1 � Sc

2,1. Original-type or ensemble-type importance measures are colored
reddish or bluish, respectively. Source: Tietz et al. (2019).
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Figure A.18: Displayed are boxplots without outliers investigating how the im-
portance values of S1 (colored blue) and S2 (colored red) which put together
the explanatory interaction L � S1,1 � Sc

2,1 develop for varying simulated effect
(HR � �1.4, 1.6, 1.8, 2.0�) and varying sample size (n � �550, 1000, 1500�) due to
the four importance measures VIMDPO

Set , VIMEDPO
Set , VIMEConc

Set and VIMBrier
Set for indi-

vidual SNPs based on all simulation scenarios from SimA. The brown lines crossing
each boxplot for n � 1000 or n � 1500 are the corresponding median importance
values from n � 550 or n � 1000, respectively, allowing a better evaluation of the
development of the importance values for increasing sample sizes. The respective
results for the remaining three importance measures can be found in Figure A.19.
Source: Tietz et al. (2019).
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Figure A.19: Displayed are boxplots without outliers investigating how the im-
portance values of S1 (colored blue) and S2 (colored red) which put together
the explanatory interaction L � S1,1 � Sc

2,1 develop for varying simulated effect
(HR � �1.4, 1.6, 1.8, 2.0�) and varying sample size (n � �550, 1000, 1500�) due to
the three importance measures VIMConc

Set , VIMEBrier
Set and VIMCox

Set for individual SNPs
based on all simulation scenarios from SimA. The brown lines crossing each boxplot
for n � 1000 or n � 1500 are the corresponding median importance values from
n � 550 or n � 1000, respectively, allowing a better evaluation of the development
of the importance values for increasing sample sizes. Source: Tietz et al. (2019).
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Figure A.20: Displayed are boxplots without outliers investigating how the impor-
tance values of S1 (colored blue), S2 (colored red) and S3 (colored dark green) which
put together the explanatory interaction L�

� S1,1 � S2,1 � Sc
3,2 develop for varying

simulated effect (HR � �1.6, 1.8, 2.0, 2.5�) due to the seven importance measures for
individual SNPs based on all simulation scenarios from SimB. Source: Tietz et al.
(2019).
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Figure A.21: Based on the simulation scenarios from SimC, the proportions of
survivalFS models with one logic tree in which S1, S2 or S3 is ranked among the top
1, 2, . . . , 10 most important SNPs by the respective importance measure are displayed.
Source: Tietz et al. (2019).
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Figure A.22: Based on the simulation scenarios from SimC, the proportions of
survivalFS models with two logic trees in which S1, S2 or S3 is ranked among the top
1, 2, . . . , 10 most important SNPs by the respective importance measure are displayed.
Source: Tietz et al. (2019).
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Figure A.23: Ranking comparison of importance measures for individual SNPs
between simulation scenarios from SimA and SimC with n � 1500. The ranking
proportions of S1 and S2 are obtained based on the simulations from SimC (allowing
one and two trees) and SimA (allowing one tree) and the difference ΔC�A�VIMSCORE

Set �
is displayed. Values smaller than zero indicate a ranking deterioration due to an
additional explanatory variable. Source: Tietz et al. (2019).
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Figure A.24: Based on the simulation scenarios from SimD, the proportions of
survivalFS models with two logic trees in which S1, S2, S3 or S4 is ranked among
the top 1, 2, . . . , 10 most important SNPs by the respective importance measure are
displayed. Source: Tietz et al. (2019).
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Figure A.25: Score comparison of importance measures for individual SNPs between
simulation scenarios with n � 1500 observations from SimA and SimC. Displayed
are boxplots without outliers comparing the importance values due to VIMDPO

Set ,
VIMEDPO

Set , VIMConc
Set and VIMEBrier

Set of S1 and S2 obtained in SimA allowing one logic
tree with those obtained in SimC allowing one or two logic trees. Moreover, the
importance values of the explanatory SNP S3 quantified by the same importance
measures based on simulations from SimC are shown. Source: Tietz et al. (2019).
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Figure A.26: Score comparison of importance measures for individual SNPs between
simulation scenarios from SimB and SimD. Displayed are boxplots without outliers
comparing the importance values of S1, S2 and S3 due to VIM

DPO
Set , VIMEDPO

Set , VIMConc
Set

and VIMEBrier
Set obtained in SimB with those obtained in SimD allowing one logic tree.

Moreover, the importance values of the explanatory SNP S4 quantified by the same
importance measures based on simulations from SimD are shown. Source: Tietz et al.
(2019).
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A.4 Additional results to comparison with ran-

dom survival forests
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Figure A.27: Random survival forests are applied to the simulations from SimA with
n � 1500 observations. Displayed are boxplots without outliers of the importance
values of the paired interaction S1 : S2 quantified by IMDMS. Source: Tietz et al.
(2019).
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Figure A.28: Random survival forests are applied to the simulations from SimC.
Displayed are boxplots without outliers of IMDMS for S1 : S2. Source: Tietz et al.
(2019).

235



2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
op

or
tio

n

HR = 1.4,  S1

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

HR = 1.6,  S1

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HR = 1.8,  S1

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HR = 2.0,  S1

n 
= 

15
00

VIMSet
EDPO

VIMP

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank

pr
op

or
tio

n

HR = 1.4,  S2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank

HR = 1.6,  S2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank

HR = 1.8,  S2

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank

HR = 2.0,  S2

n 
= 

15
00

VIMSet
EDPO

VIMP

Figure A.29: The accuracy of VIMEDPO
Set for sets of variables or of the variable im-

portance measure VIMP from random survival forests is evaluated on the simulation
scenarios from SimA considering n � 1500 observations. Each subplot displays the
proportion of survivalFS or random survival forests models, in which SNP S1 or S2

is ranked among the top 1, 2, . . . , 10 most important single SNPs by the respective
importance measure. Source: Tietz et al. (2019).
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Figure A.30: The accuracy of VIMEDPO
Set from survivalFS or of VIMP from random

survival forests is evaluated on the simulation scenarios with varying intended effect
HR � �1.4, 1.6, 1.8, 2.0� for L � S1,1 � Sc

2,1, where, additionally, variable S3,2 has a
simulated main effect of HR � 1.8. Each subplot displays the proportion of survivalFS
or random survival forests models, in which SNP S1, S2 or S3 is ranked among the
top 1, 2, . . . , 10 most important single SNPs by the respective importance measure.
Source: Tietz et al. (2019).
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Figure A.31: Random survival forests are applied to the simulations from SimA.
Displayed are boxplots without outliers of the importance values of SNPs S1 and S2

quantified by the variable importance measure VIMP. Source: Tietz et al. (2019).
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Figure A.32: Random survival forests are applied to the simulations from SimB.
Displayed are boxplots without outliers of the importance values of SNPs S1, S2 and
S3 quantified by the variable importance measure VIMP. Source: Tietz et al. (2019).
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Figure A.33: Random survival forests are applied to the data sets from the simula-
tion scenarios with varying intended effect HR � �1.4, 1.6, 1.8, 2.0� for L � S1,1�Sc

2,1,
where, additionally, variable S3,2 has a simulated main effect of HR � 1.8 in all sce-
narios. Displayed are boxplots without outliers of the variable importance measure
VIMP from random survival forests of SNPs S1, S2 and S3. Source: Tietz et al.
(2019).

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

0.
00

0
0.

00
5

0.
01

0
0.

01
5

HR = 1.4 HR = 1.6 HR = 1.8 HR = 2

VI
M

P

n 
= 

15
00

Figure A.34: Random survival forests are applied to the data sets from the simula-
tion scenarios from SimD. Displayed are boxplots without outliers of VIMP of SNPs
S1, S2, S3 and S4. Source: Tietz et al. (2019).
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A.5 Additional results to survivalFS based predic-

tion models
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Figure A.35: Prediction models based on survivalFS and random survival forests
are built on each data set from the four simulation scenarios including an explanatory
three-way interaction, where each scenario includes 100 data sets but the intended
effect HR � �1.6, 1.8, 2.0, 2.5� of L� � S1,1 � S2,1 � SC

3,2 varies among the scenarios.
These models are employed to predict the CHF and survival function for 500 new
observations. The accuracy of the CHF predictions is assessed by the PE based on
the DPO-based C-index as well as by the PE based on Harrell’s C-index, while the
accuracy of the survival function predictions is estimated by the integrated Brier
score. Displayed are boxplots without outliers of these performance scores. Source:
Tietz et al. (2019).
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Appendix B

Additional results to structural MRI
simulation study

In this chapter, additional figures summarizing the results of the analysis of the
simulation study in Section 7.1 are presented.

B.1 Additional results to performance comparison

of spatial clustering

Table B.1: The mean over 25 ARI and SSC scores for each of eight clustering
methods based on Sim1, Sim2, Sim4 and Sim5, where each ARI value compares a
predicted parcellation with K � 27 or K � 54 clusters with the respective true
parcellation and each SSC score evaluates the quality of a predicted parcellation on
the training data.

Sim1 Sim2
ARI SSC ARI SSC

K = 27 K = 54 K = 27 K = 54 K = 27 K = 54 K = 27 K = 54

SPARTACUSS 1.000 0.998 0.685 0.684 0.991 0.970 0.583 0.551
SHACWard 0.999 0.998 0.683 0.684 0.984 0.968 0.579 0.550

SHACS
Ward 1.000 0.998 0.685 0.684 0.989 0.968 0.582 0.550

SHACS
AL, corr 1.000 0.955 0.685 0.684 0.990 0.850 0.583 0.561

SHACAL, Eucl 0.976 0.927 0.669 0.678 0.582 0.679 0.419 0.494

SHACS
AL, Eucl 1.000 0.960 0.685 0.684 0.992 0.850 0.584 0.562

SSPEC 0.633 0.277 0.475 0.028 0.633 0.278 0.417 0.067

SSPECS 0.878 0.539 0.639 0.340 0.849 0.442 0.541 0.242

Sim4 Sim5
ARI SSC ARI SSC

K = 27 K = 54 K = 27 K = 54 K = 27 K = 54 K = 27 K = 54

SPARTACUSS 0.956 0.998 0.677 0.684 0.938 0.972 0.570 0.550
SHACWard 0.939 0.998 0.668 0.684 0.917 0.967 0.559 0.548

SHACS
Ward 0.955 0.998 0.676 0.684 0.938 0.969 0.569 0.549

SHACS
AL, corr 1.000 0.941 0.683 0.686 0.991 0.845 0.581 0.562

SHACAL, Eucl 0.990 0.935 0.674 0.675 0.604 0.680 0.403 0.493

SHACS
AL, Eucl 1.000 0.944 0.683 0.686 0.988 0.838 0.580 0.561

SSPEC 0.407 0.299 0.153 0.052 0.401 0.296 0.150 0.095

SSPECS 0.692 0.561 0.432 0.331 0.612 0.483 0.318 0.272
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Figure B.1: Estimated parcellations for K 27 generated by SHACAL,Eucl applied
to the first simulated data set from Sim 6. The slices for z 1 and z 18 are not
displayed for optical reasons.
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Figure B.2: Estimated parcellations for K 54 generated by SHACAL,Eucl applied
to the first simulated data set from Sim 6. The slices for z 1 and z 18 are not
displayed for optical reasons.
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Figure B.3: Estimated parcellations for K 27 generated by SSPECS applied to
the first simulated data set from Sim 2. The slices for z 1 and z 18 are not
displayed for optical reasons.
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Figure B.4: Estimated parcellations for K 54 generated by SSPECS applied to
the first simulated data set from Sim 2. The slices for z 1 and z 18 are not
displayed for optical reasons.
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B.2 Additional results to performance of spatial

ensemble clustering

Table B.2: The mean over 25 ARI and SSC scores for each of nine SEC methods
based on Sim1, Sim2, Sim4 and Sim5, where each ARI value compares a predicted
parcellation with K � 27 or K � 54 clusters with the respective true parcellation
and each SSC score evaluates the quality of a predicted parcellation on the training
data.

Sim1 Sim2

ARI SSC ARI SSC
K = 27 K = 54 K = 27 K = 54 K = 27 K = 54 K = 27 K = 54

SECAL

SPARTACUSS 1.000 1.000 0.685 0.685 1.000 0.998 0.586 0.561

SHACS
AL, corr 1.000 0.963 0.685 0.685 1.000 0.852 0.586 0.565

SSPECS 0.815 0.576 0.604 0.369 0.737 0.454 0.471 0.250

SECSL

SPARTACUSS 1.000 1.000 0.685 0.685 0.994 0.958 0.582 0.558

SHACS
AL, corr 1.000 0.966 0.685 0.685 0.996 0.831 0.583 0.563

SSPECS 0.274 0.054 0.362 -0.147 0.245 0.008 0.296 -0.258

SECHellinger

SPARTACUSS 1.000 1.000 0.685 0.685 1.000 0.998 0.586 0.561

SHACS
AL, corr 1.000 0.961 0.685 0.685 1.000 0.850 0.586 0.564

SSPECS 0.751 0.592 0.582 0.394 0.643 0.454 0.458 0.252

Sim4 Sim5

ARI SSC ARI SSC
K = 27 K = 54 K = 27 K = 54 K = 27 K = 54 K = 27 K = 54

SECAL

SPARTACUSS 0.958 1.000 0.677 0.685 0.953 0.998 0.574 0.561

SHACS
AL, corr 1.000 0.959 0.683 0.686 1.000 0.837 0.584 0.565

SSPECS 0.709 0.608 0.437 0.354 0.625 0.536 0.331 0.289

SECSL

SPARTACUSS 0.959 1.000 0.677 0.685 0.945 0.949 0.569 0.559

SHACS
AL, corr 1.000 0.959 0.683 0.686 0.998 0.820 0.583 0.564

SSPECS 0.333 0.412 0.172 0.250 0.101 0.119 -0.004 -0.033

SECHellinger

SPARTACUSS 0.958 1.000 0.677 0.685 0.953 0.998 0.574 0.561

SHACS
AL, corr 1.000 0.959 0.683 0.686 1.000 0.835 0.584 0.565

SSPECS 0.725 0.612 0.453 0.356 0.629 0.539 0.333 0.294

246



B.3 Additional results to performance of methods

to find interesting numbers of brain regions

Figure B.5: The mean over H 25 ARI scores generated by the subsampling based
clustering stability approach (Algorithm 6) for each K 2, . . . , 100 based on all six
simulation scenarios.
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Figure B.6: The mean over H 25 NMIgeom scores generated by the subsampling
based clustering stability approach (Algorithm 6) for each K 2, . . . , 100 based on
all six simulation scenarios.
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Figure B.7: The mean over H 25 ANMImax scores generated by the subsampling
based clustering stability approach (Algorithm 6) for each K 2, . . . , 100 based on
all six simulation scenarios.
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Figure B.8: The mean over H 25 SC scores generated by the subsampling based
clustering quality approach (Algorithm 7) for each K 2, . . . , 100 based on all six
simulation scenarios.
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Figure B.9: The mean over H 25 SSC scores generated by the subsampling based
clustering quality approach (Algorithm 7) for each K 2, . . . , 100 based on all six
simulation scenarios.
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Figure B.10: The mean over H 25 SCspatial scores generated by the subsampling
based clustering quality approach (Algorithm 7) for each K 2, . . . , 100 based on
all six simulation scenarios.
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Figure B.11: The mean over H 25 SSCspatial scores generated by the subsampling
based clustering quality approach (Algorithm 7) for each K 2, . . . , 100 based on
all six simulation scenarios.
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Figure B.12: The mean over H 25 SCE scores generated by the ensemble based
clustering quality approach (Algorithm 8) for each K 2, . . . , 100 based on all six
simulation scenarios.
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Figure B.13: The mean over H 25 SCE
spatial scores generated by the ensemble

based clustering quality approach (Algorithm 8) for each K 2, . . . , 100 based on
all six simulation scenarios.
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Appendix C

Additional results to 1000BRAINS
analysis

In this chapter, additional figures summarizing the results of the analysis of the
1000BRAINS data set in Section 7.2 are presented.

C.1 Clustering stability and clustering quality to

find interesting numbers of brain regions

Figure C.1: The first derivative of the SSCspatial curve (blue) generated by the sub-
sampling based clustering quality approach (Algorithm 7), together with the ARI
curve (green) generated by the subsampling based clustering stability approach (Al-
gorithm 6), both with K 2, . . . , 1000 and using SHACS

Ward or SHACS
AL, Eucl as

spatial clustering algorithm.
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C.2 Non-standardized SHAC parcellations

Figure C.2: Visualization of the parcellation with K 160 brain regions generated
by SHACWard applied to the 1000BRAINS data set. The coordinates are in the
1000BRAINS specific voxel space.

257



Figure C.3: Visualization of the parcellation with K 160 brain regions generated
by SHACAL,Eucl applied to the 1000BRAINS data set. The coordinates are in the
1000BRAINS specific voxel space.
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C.3 Final ensemble parcellations

Figure C.4: Visualization of the parcellation with K 70 brain regions generated
by applying SECAL SPARTACUSS to the 1000BRAINS data set. The coordinates
are in the 1000BRAINS specific voxel space.
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Figure C.5: Visualization of the parcellation with K 150 brain regions generated
by applying SECAL SPARTACUSS to the 1000BRAINS data set. The coordinates
are in the 1000BRAINS specific voxel space.
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Figure C.6: Visualization of the parcellation with K 70 brain regions generated
by applying SECAL SHACS

AL, corr to the 1000BRAINS data set. The coordinates are
in the 1000BRAINS specific voxel space.
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Figure C.7: Visualization of the parcellation with K 150 brain regions generated
by applying SECAL SHACS

AL, corr to the 1000BRAINS data set. The coordinates are
in the 1000BRAINS specific voxel space.
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C.4 Spectral and geometric parcellations

Figure C.8: Visualization of the parcellation with K 150 brain regions generated
by applying SSPECS to the 1000BRAINS data set. The coordinates are in the
1000BRAINS specific voxel space.
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Figure C.9: Visualization of the parcellation with K 150 brain regions generated
by applying geometric clustering to the 1000BRAINS data set. The coordinates are
in the 1000BRAINS specific voxel space.
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