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Since the groundbreaking discovery of induced pluripotent stem cells (iPSCs) by Shinya
Yamanaka and his team much research effort has been spend in differentiation of iPSCs to
adult somatic cells of various lineages. The rational behind that is to get personalized cells
of different tissue types which have multiple applications in research and therapy. While
in research of today iPSC-based disease models can already be employed, therapeutic
approaches such as the development of whole organs from stem cells are a long-term goal
on the way to which however progress has already been made by generation of organoids
for many organs. For disease models, often maturity is an important issue because cells
differentiated from pluripotent stem cells by nature resemble the fetal phenotype when
the differentiation process is considered to recapitulate the development in the embryo.
On the other hand, aging is an essential factor in many or even most diseases, e.g.
in Alzheimer’s disease and cancer. This could result in obstacles when cells generated
with a fetal phenotype shall be used to model a phenotype only appearing in aged
individuals. Assessment of iPSC-based disease models in comparison to adult cell types
is indispensable. These adult cell types are originated in biopsies or in transformed
cell lines which have disadvantages of limited availability sometimes only post-mortem
and association with a cancerous phenotype. The iPSC-based models would overcome
most of these drawbacks but would need improvement in reaching an adult or even aged
phenotype.

In this dissertation I assessed transcriptome data from stem-cell-based disease models in
comparison to biopsy-derived transcriptome data. Main focus were Non-alcoholic fatty
liver disease (NAFLD), Alzheimer’s disease and brain aging and in consequence liver
biopsies from NAFLD patients, iPSC-derived hepatocyte-like cells (HLCs), post-mortem
brain biopsies from AD patients and aged individuals and iPSC-derived neuronal cells.
Additionally, also urine-derived renal progenitor cells (UdRPCs) were investigated which



represent a mature phenotype because they were not reprogrammed to the pluripotent
state. Biopsy-derived data was investigated in meta-analyses of microarray and next-
generation sequencing gene expression data retrieved from public repositories. For the
meta-analysis of aging in the human prefrontal cortex an approach was developed to in-
fer relationships between genes from gene expression time series based on the concept of
Granger causality. Applying this approach predicted Granger causality between CAMK4
and GFAP. The comparison of NAFLD in an iPSC-based model and biopsy-derived tran-
scriptome data showed congruency in the results - most outstanding the involvement of
the gene PLIN2 coding a protein surrounding lipid droplets and thus a crucial biomarker
of the disease.

I want to conclude that this dissertation showed that the stem-cell-based models are
already capable of capturing many relevant facets of a disease but need further research
to improve them in their potential to fully reflect the mature or aged phenotype which
is a precondition for the development of the investigated diseases.



Zusammenfassung

Seit der bahnbrechenden Entdeckung der induzierten pluripotenten Stammzellen (iPSCs)
durch Shinya Yamanaka und sein Team wurde viel Forschungsarbeit in die Differen-
zierung von iPSCs in adulte somatische Zellen verschiedener Linien investiert. Die Über-
legung dahinter ist, personalisierte Zellen von verschiedenen Gewebetypen zu erhalten,
die vielfache Anwendungen in Forschung und Therapie haben. Während in der heutigen
Forschung iPSC-basierte Krankheitsmodelle bereits eingesetzt werden können, sind ther-
apeutische Ansätze wie die Entwicklung ganzer Organe aus Stammzellen ein langfristiges
Ziel, auf dem Weg zu dem allerdings Fortschritte durch die Erzeugung von Organoiden für
viele Organe gemacht wurden. Für Krankheitsmodelle ist oft der Reifegrad ein wichtiges
Kriterium, weil aus Stammzellen differenzierte Zellen naturgemäß dem fötalen Pheno-
typ ähneln, wenn der Differenzierungsprozess als eine Rekapitulation der embryonalen
Entwicklung aufgefasst wird. Andererseits ist die Alterung ein essenzieller Faktor in vie-
len oder sogar den meisten Krankheiten, z.B. in der Alzheimerkrankheit oder in Krebs.
Das kann in Hindernissen resultieren, wenn mit einem fötalen Phenotyp erzeugte Zellen
benutzt werden sollen, um eine nur in älteren Individuen auftretende Krankheit zu model-
lieren. Insofern ist die Auswertung von iPSC-basierten Krankheitsmodellen im Vergleich
zu adulten Zelltypen unverzichtbar. Diese adulten Zelltypen kommen aus Biopsien oder
transformierten Zelllinien, die die Nachteile der limitierten Verfügbarkeit - teilweise erst
post-mortem - und die Assoziierung mit dem Krebs-Phenotyp aufweisen. Die iPSC-
basierten Modelle überwinden die meisten dieser Nachteile, benötigen aber Verbesserun-
gen im Erreichen des adulten oder sogar gealterten Phenotyps.

In dieser Dissertation habe ich Transkriptomdaten von stammzellbasierten Krankheitsmod-
ellen im Vergleich zu aus Biopsien gewonnenen Transkriptomdaten ausgewertet. Der
wesentliche Fokus waren dabei die Nicht-alkoholische Fettlebererkrankung (NAFLD), die
Alzheimererkrankung im Zusammenhang mit dem Alterungsprozess des Gehirns und in
Konsequenz Leberbiopsien von NAFLD-Patienten, iPSC-abgeleitete Hepatozyt-ähnliche
Zellen (HLCs), Post-mortem Gehirn-Biopsien von AD-Patienten und älteren Individuen
und iPSC-abgeleitete neuronale Zellen. Zusätzlich wurden auch aus Urin gewonnene
Nierenvorläuferzellen (UdRPCs) untersucht, die einen reifen Phenotyp repräsentieren,
weil sie nicht in den pluripotenten Zustand reprogrammiert wurden. Die Biopsie-gestützten
Daten wurden in Meta-Analysen von Microarray- und NGS- (Next Generation Sequenc-
ing) -Genexpressionsdaten aus öffentlichen Repositorien untersucht. Für die Meta-Analyse
der Alterung im humanen präfrontalen Kortex wurde ein Ansatz entwickelt, um auf dem
Konzept der Granger-Kausalität basierte Beziehungen zwischen Genen aus Zeitreihen
abzuleiten. Die Anwendung dieses Verfahrens erbrachte die Vorhersage von Granger-
Kausalität zwischen den Genen CAMK4 und GFAP. Der Vergleich von NAFLD in einem
iPSC-basierten Modell und Biopsie-gestützten Transkriptomdaten zeigte Kongruenz in
den Ergebnissen. Dabei trat die Involvierung des Gens PLIN2 in den Vordergrund, das
ein Fetttropfen umgebendes Protein kodiert und dadurch ein entscheidender Biomarker
der Krankheit ist.

In Zusammenfassung zeigte diese Dissertation, dass die stammzellbasierten Modelle bere-
its viele wichtige Facetten einer Krankheit abbilden können, aber weitere Forschung
notwendig ist, um sie zu verbessern in ihrem Potenzial, den reifen oder gealterten Phäno-



typ voll zu reflektieren, der eine Voraussetzung für die Entstehung der untersuchten
Krankheiten ist.
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Chapter 1

Introduction

The discovery of a way to reprogram adult cells to pluripotent cells - so called induced
pluripotent stem cells (iPSCs) - by Yamanaka and his colleagues in mice (Takahashi and
Yamanaka 2006) and men (Takahashi et al. 2007) was a big advancement of biological
research implicating a plethora of possible applications in stem cell research and regen-
erative medicine. Pluripotent stem cells can be differentiated into any other cell type
and that can be used to generate specific tissue types paving the avenues for research on
organoids targeting the long-term goal of generating fully functional organs.

1.1 Pluripotent stem cells

Pluripotent stem cells are cells which possess the ability to differentiate into each cell
type of an organism. In contrast to totipotent stem cells which can give rise to a whole
organism pluripotent stem cells lack the potential to differentiate into extra-embryonic
tissues. On the other hand, they are distinguished from adult stem cells which are mul-
tipotent or even unipotent meaning that they can be differentiated into cells of a limited
range or only one tissue type (De Los Angeles et al. 2015). The state of pluripotency
can be further subdivided into naïve and primed state (Devika et al. 2019) describing
early and late phases of epiblast ontogeny (De Los Angeles et al. 2015). Naïve cells
can develop into germline cells and all other embryonic lineages and have the flexibility
to generate chimeras while at the later primed stage cells are primed to the three germ
layers ectoderm, mesoderm and endoderm and can no longer generate chimeras.

Figure 1 illustrates that pluripotent stem cells can be differentiated into the three germ
layers ectoderm, endoderm and mesoderm. Ectoderm gives rise to cell types such as
neurons, endoderm to hepatocytes and mesoderm to cardiomyocytes. In the upper right

15



16 Introduction Pluripotent stem cells

Figure 1: Differentiation of pluripotent stem cells into the three germ layers.

corner a principal component analysis (PCA) of gene expression data of POU family
genes was calculated for different developmental stages of heart, neurons and liver. These
datasets clusters by the three germ layers although showing close similarity between
endoderm and mesoderm for this pluripotency-associated gene family. The trajectories
indicated by the dotted lines correlate with developmental stages.

1.1.1 Embryonic stem cells

Embryonic stem cells are pluripotent stem cells derived from the inner cell mass of a
blastocyst (Thomson et al. 1998), (Adjaye et al. 2005). Evans et al. first reported
establishment of a mouse embryonic cell line derived from a blastocyst in 1981 (Evans
and Kaufman 1981) while Thomson et al. reported this for human embryonic cell lines
in 1998 (Thomson et al. 1998). Blastocysts develop after the eight-cell morula stage in
the human embryo from about day 5 to day 8 after fertilization. The morula gives rise
to the trophectoderm (TE), from which the cytotrophoblast and syncytiotrophoblast
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of the placenta develop, and the inner cell mass (ICM) from which the embryo and
extraembryonic tissues develop (Adjaye et al. 2005).

The great potential of human embryonic stem cells lies in the ability to give rise to any
cell of the adult human body and thus they would open up perspectives for a plethora
of therapies in the context of regenerative medicine. Future research will target the
intermediate steps of the derivation and improvement of organ-specific cell types and the
development of organoids - small functional parts of whole organs - with the ultimate goal
of the generation of functional organs from pluripotent stem cells. However, one serious
challenge in transplanting cells or organs derived from embryonic stem cells represents the
immunological rejection of biological material from a donor different from the acceptor.
As furthermore embryonic stem cells are associated with ethical and legal issues varying
between countries, in the future most developments will be based on induced pluripotent
stem cells (iPSCs) which are described in the next paragraph. Nevertheless, embryonic
stem cells are often used as a “gold standard” in particular when induced pluripotent
stem cells shall be characterized.

1.1.2 Induced pluripotent stem cells

The finding of specific expression of OCT4 (POU5F1 ) and other genes such as SOX2
and NANOG in embryonic stem cells and the findings that they are key regulators of
pluripotency-guarding transcriptional networks (Babaie et al. 2007), (Pesce, Gross, and
Schöler 1998),(Nichols et al. 1998) led to the discovery by Yamanaka and colleagues
that inducing expression of pluripotency-related genes in adult cells can reprogram them
to a pluripotent state in mice (Takahashi and Yamanaka 2006) and men (Takahashi et
al. 2007). This Nobel-Laureated discovery with one strike overcame the drawbacks of
embryonic stem cells: immunological problems, ethical and legal issues. In the meantime
reprogramming of adult cells of a plethora of cell types to so-called induced pluripotent
stem cells (iPSCs) has become routine for stem-cell-committed laboratories (Martins et
al. 2019), (Schröter et al. 2016),(Bohndorf et al. 2017), (M. Zhang et al. 2014). In the
era of personalized medicine iPSCs are a valuable means to generate differentiated cell
types of patients with isogenic gene profiles. Additionally, iPSCs allow access to cell types
which are otherwise complicated or even impossible to gain from healthy individuals such
as cells from brain, kidney or liver.
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1.2 Stem cell based disease models

Stem cell based disease models take advantage of the differentiation potential of pluripo-
tent stem cells. They proceed a path - appearing complicated on the first glimpse - of
reprogramming adult cells to iPSCs and then again differentiating them to cells of ded-
icated tissue types, e.g. instead of directly taking liver biopsies skin biopsies are taken,
the fibroblast from the skin biopsies are reprogrammed to iPSCs and the iPSCs are differ-
entiated into liver cells. However, this putatively complicated procedure circumvents the
problems of complications during the liver biopsy and the limited culturability of liver
cells. In other cases such as Alzheimer’s disease (AD) research stem cell based disease
models enable studies on neuronal cell cultures or brain organoids with patient-specific
genotypes which obviously would not be possible by direct access to the target cell type.

1.2.1 Differentiation of pluripotent stem cells into hepatocyte-like cells

Many protocols for deriving hepatocyte-like cells (HLCs) from pluripotent stem cells
have been published (Matz et al. 2017),(Wruck and Adjaye 2018), (Graffmann et al.
2016),(Jozefczuk et al. 2010), (Hay et al. 2008). The in vitro differentiation of pluripo-
tent cells progresses over the intermediate states of definitive endoderm and hepatic
endoderm to HLCs. Definitive endoderm is usually induced by Activin A (or Nodal)
thus recapitulating processes taking place in gastrulation in vivo (Józefczuk 2009).

In vivo studies provided insight how the endoderm is organized to give rise to specific
organs at specific time points - in particular to the liver which develops from the ventral
foregut endoderm. Hepatogenesis is regulated by exchange of fibroblast growth factor
(FGF) signals between cardiac mesoderm and ventral foregut endoderm in a way that
different FGFs initiate distinct phases, e.g. FGF1 or FGF2 induce hepatic gene expres-
sion in mice while FGF8 contributes to morphogenetic outgrowth of the hepatic tissue
after specification. Importantly, FGFs also block development of the pancreatic lineage
from endoderm which emerges in the absence of these factors (Zaret 2002). The further
development of liver is controlled by transcription factors operating on the intracellu-
lar level including FOXA1 (HNF3A) and FOXA2 (HNF3B), HNF4A, HNF1A/B, HNF6
(ONECUT1) and CCAAT enhancer binding protein (CEBPA) and cytokines operat-
ing on the extracellular level including Activin A (NODAL), FGFs, BMPs , OSM and
HGFs (Józefczuk 2009). Of these HNF4A has a central role in hepatocyte function and
differentiation particularly in converting the hepatic parenchyma to epithelial cells and
maintaining the organization of the sinusoids (Zhao and Duncan 2005). The knowledge
gained about the role of these factors in liver development has been transferred to the
development of protocols for in vitro differentiation of HLCs targeting at cells which
most closely resemble mature liver cells. The quality of the HLCs can be measured by
expression of several marker genes - among which Albumin (ALB) is most important -
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and several functional assays such as glycogen storage, indocyanine green (ICG) uptake
and release, urea and bile acid production, cytochrome activity (Matz et al. 2017).

1.2.2 Differentiation of pluripotent stem cells into neurons

Neuronal cells can be derived from pluripotent stem cells according to several published
protocols, e.g. the protocol by Zhang et al. (S. C. Zhang et al. 2001) for the induction
of neural precursors or the protocol by Liu et al. for the induction of Forebrain GABA
interneurons (Liu et al. 2013). Zhang et al. used FGF2 to differentiate human embryonic
stem cells to neural tubular structures (S. C. Zhang et al. 2001).

Figure 2: iPSC-based disease models.

Figure 2 depicts the process of generating iPSC-based disease models for the examples
of liver diseases and neurodegenerative diseases. Biological material which can easily
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be accessed from the specific patient such as urine, blood or skin is used as basis to
reprogram iPSCs. The iPSCs in turn are differentiated into the hepatocyte or neuron
lineage. If the material comes from patients of the disease of interest the differentiated
cells can be used directly as disease model. Otherwise, the disease can be mimicked in
manifold ways such as adding oleic acid to hepatocytes or introducing disease-causing
mutations via CRISPR-Cas9 (Doudna and Charpentier 2014). In case of Alzheimer’s
disease also the addition of an amyloid-β peptide can be employed to simulate facettes
of the disease (Martins et al. 2020).

1.3 Bioinformatic analyses of pluripotent stem cells and de-

rived disease models

1.3.1 Gene expression analysis

1.3.1.1 Microarrays

Microarrays have been first employed in 1983 by Tse Wen Chang in an antibody mi-
croarray to measure expression of multiple cell surface antigens in parallel (Chang 1983).
Later a publication from the Pat Brown lab introduced the microarray technology for
monitoring the expression of multiple genes in parallel via an array of roboter-printed
complementary DNA (cDNA) probes (Schena et al. 1995). The technology was ad-
vanced to increase the densities of spots printed with roboters on to nylon membranes
or glass slides eventually reaching the goal of representing the whole transcriptome of an
organism such as the human on a single microarray. For the technology at that stage
sophisticated image analysis and visualization software was indispensable as the resulting
scanned images of fluorescent or radioactive labeled hybridizations came with spots ar-
ranged in considerably distorted grid arrays (Steinfath et al. 2001), (Wruck et al. 2002).
Nevertheless, it was possible to assess the whole genomes, e.g. the genes from the EN-
SEMBL database (Hubbard et al. 2002) on such a microarray (Adjaye 2005). Following
these advancements companies such as Affymetrix and Illumina launched microarrays
manufactured in industrial processes providing high precision and accuracy what was
confirmed in a large-scale microarray quality assessment project (MAQC Consortium et
al. 2006), (Mane et al. 2009) . Also other companies offered microarrays but here I will
focus on the most widespread companies Illumina and Affymetrix. The basic principle
of microarrays is to sample genes via short cDNA sequences so-called “oligonucleotides”.
In the case of Illumina the oligonucleotides consist of 50 bases, Affymetrix used 25 bases
in the beginning but later also increased this. Illumina uses a single probe in high re-
dundancy (e.g. 30-fold) to measure a gene while Affymetrix uses a so-called “probesets”
consisting of multiple probes, e.g. 10 probes - matching the RNA sequence of the tran-
script at multiple specific locations. Affymetrix microarrays called “GeneChips” are built
using a photolithographic process. Photolithographic masks for bases A,C,G and T are
applied to the chip in multiple iterations to synthesize oligonucleotides in situ.
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Illumina uses a technology based on beads to which the 50-mer probes are attached
(Gunderson et al. 2004). These beads are taken from pools and are randomly distributed
over the array with a ~30-fold redundancy for each probe. The random distribution
necessitates a decoding of the location of each probe which is performed during the
manufacturing process using hybridizations of additional adapters to the beads. Thus,
the location of the probes is unique for each chip and is provided to the user.

1.3.1.2 Analysis of gene expression microarray data

Most microarray platforms include image processing modules and deliver signal intensi-
ties of probes or probesets (Affymetrix) referring to genes or dedicated transcript variants
as results. Although some proprietary software modules also provide data analysis facili-
ties superior performance has been shown for the plethora of software modules developed
by the Bioinformatics community in the open source R/Bioconductor statistical environ-
ment (Gentleman et al. 2004), (Gautier et al. 2004), (Du, Kibbe, and Lin 2008). Gene
expression microarray analysis includes multiple steps including background correction,
normalization and statistical tests. Background correction refers to removal of back-
ground noise appearing in the image. Pixels without biological information nevertheless
have intensities which often have dedicated spatial distributions and are also dependent
on global parameters such as brightness and contrast. Affymetrix extended this notion to
also include portions of the signal due to unspecific binding. Simple ways to correct the
background are to add a socket value to intensities subtracted by the minimum intensity
or to subtract an quantile-derived offset value derived from a predefined quantile of the
instensities (Du, Kibbe, and Lin 2008). Some proprietary methods which result in neg-
ative values should not be used because they impede logarithmic transformations often
applied during follow-up processing. Before normalization data is usually transformed
to a logarithmic scale which for high values is equivalent to the arcus sinus hyperbolicus
function suggested by Huber et al. for stabilization of the variance (Huber et al. 2002).

Normalization is indispensable to make different datasets comparable meaning that the
true biological but not technical differences, e.g. different scanner brightness adjustments
can be assessed. Methods for normalization range from median-normalization (division
by the median) over Lowess-normalization discarding bias between the two color channels
of microarrays (Cleveland 1979) to quantile-normalization assigning the median of all
sorted datasets to the sorted datasets themselves and thus bringing them all to the same
quantile distribution (Gautier et al. 2004). For Affymetrix the quantile normalization has
been extended to Robust Multiarray average (RMA) normalization which additionally
includes a median polish procedure condensing the values of the probes to one value for
the probeset. Special variants of RMA have been developed such as GCRMA taking
into account GC-content for normalization and fRMA (McCall, Bolstad, and Irizarry
2010) enabling normalization on single array base which allows for later addition of array
without the need for re-normalization.
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Experimental design in the biomedical area usually includes comparison to control ex-
periments what allows for a better dissection of factors involved in processes induced by
a treatment or a disease. A good choice of the control which should be very close to the
tested condition, e.g. same gender and about the same age, is therefore paramount in
order to pinpoint the crucial determinants of the investigated condition. Differential gene
expression tests are employed to detect genes which are involved in the etiology of a dis-
ease or induced by a specific treatment. The classical parametric test which is employed
for differential gene expression is Student’s t-test often used in the Welch-test version
which corrects unequal variances. These tests are based on the assumption that data are
approximately normally distributed what usually is the case. However, this precondition
can be omitted when the non-parametrical Wilcoxon rank-sum test is applied which pro-
vides similar yet more conservative results but needs larger sample sizes (Herwig et al.
2001). Superior results are often achieved - particularly when sample sizes are small - by
taking advantage of the multitude of measurements incorporated on the microarrays via
the application of linear models on the data and basing the statistical test on these models
as is done for the statistical test from the R package limma (Smyth 2004). P-values from
the statistical tests should be adjusted for the multiple testing problem arising from the
multitude of tests executed in parallel. One method to achieve this is the q-value method
(Storey 2002) providing a false discovery rate (FDR). Differentially expressed genes are
then often determined using a logical combination of thresholds for the p/q-value for dif-
ferential expression, the ratio and the detection-p-value., e.g. (q<0.05) AND ((ratio<0.5)
OR (ratio>2)) AND ((detection_p_control<0.05) OR (detection_p_treatment<0.05)).
The detection-p-value is a measure often provided by the proprietary software judging
how good a probe intensity separates from the background what is usually interpreted as
a measure for gene expression. This tells - absolutely - if a gene is expressed in contrary
to the differential expression which tells if a gene is expressed differently in comparison
to the control. Thus, the detection-p-value can be used as additional criterion for the
determination of differentially expressed genes in order to filter out genes which have
expression in the noise level. Using also a ratio threshold is important to account for the
effect size and to sort out too small changes which nevertheless might have low p-values.

1.3.1.3 Next-generation sequencing (NGS)

The Human Genome project was mainly performed employing Sanger sequencing and
resulted in the identification of the whole human DNA sequence in a world-wide effort
of many leading research institutes lasting several years. After it had been declared
complete in 2003 sequencing methods and devices have been continuously improved up
to the degree that it was enabled to sequence the whole genome of a human in less then
one day. A further achievement important for upcoming applications in diagnostics and
personalized medicine was reaching the milestone of the 1000-Dollar genome - meaning
that a human genome could be fully sequenced for less than 1000 Dollar. That shifted
the technology into an area where it was possible to use it for routine diagnostics and
large-scale projects in the context of personalized medicine. An important project in this
context was the 1000 genomes project which delivered the DNA sequence of the genomes
of more than 1000 individuals from all over the whole world and thus providing a valuable
source of variations in a publicly accessible database (Clarke et al. 2012). The short-
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read sequencing (35-700bp) technologies usually applied in Next-generation-Sequencing
can be categorized as sequencing by ligation (SBL) and sequencing by synthesis (SBS)
(Goodwin, McPherson, and McCombie 2016): in SBL a fluorescent probe hybridizes to a
DNA fragment using DNA ligase to identify the nucleotide. In SBS fluorescently labeled
reversible terminally blocked nucleotides which are complementary to the measured base
are sequentially imaged and afterwards cleaved and washed for the new cycle.

1.3.1.4 Analysis of NGS data

NGS data analysis can target distinct goals such as determining gene expression (RNA-
Seq), finding variants in the DNA or finding interactions between proteins and DNA
(ChIP-seq). In any case, the NGS raw data - the reads - have to be aligned against a
reference genome. Alignment software has been continuously improved to face several
computational challenges such as to cope with the huge amount of memory and compu-
tational power needed or algorithmic challenges such as to cope with mismatches within
the reads to be aligned. Soon after the launch of the first next-generation sequencing de-
vices software such as BWA (H. Li and Durbin 2010) was developed which outperformed
existing programs like BLAT or BLAST. Later the so-called “Tuxedo-suite” software
from the Trapnell laboratory provided one of the best performing alignment algorithms
named BOWTIE (Langmead et al. 2009) and additionally whole pipelines also incor-
porating transcript assembly (software TOPHAT) and differential expression (software
CUFFLINKS) assessment (Trapnell et al. 2012). However, many other software solu-
tions for alignment and transcript assembly exist which differ in hardware requirements,
performance and also in the number and accuracy of mapped reads. Shortly after the
Tuxedo-suite the STAR software was developed (Dobin et al. 2013) and was state of
the art for a period of time but was soon after caught up by a new evolution of the
Tuxedo suite including the HISAT aligner (Kim, Langmead, and Salzberg 2015) and the
StringTie transcript assembly (Pertea et al. 2015). Later, improved transcript assembly
and abundance estimation was reported in a publication about the CIDANE software
(Canzar et al. 2016) . Modern fast alignment algorithms are usually based on Burrows-
Wheeler transforms and suffix trees or suffix arrays - combined to the compressed suffix
array (CSA) introduced by Lippert et al. (Lippert 2005) - which are employed to index
the genome and make it accessible efficiently (Döring et al. 2008), (Delcher et al. 2002).

1.3.2 Functional analysis of gene sets

Most biological processes involve not only single genes but complex networks of genes
interacting with each other via various regulatory mechanisms. With respect to this sys-
temic perspective the gene expression analysis has to shift from the Mendelian approach
associating functionality with a single gene to an approach associating functionality with
a gene set. Gene sets usually result from gene expression analysis after filtering for sig-
nificance criteria including correction for the multiple testing problem. The next level
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of analysis then aims at associating functionality with these gene sets. This is usually
achieved by so-called over-representation tests - or sometimes also called enrichment or
functional annotation tests, e.g. in the context of the DAVID tool (Huang, Sherman,
and Lempicki 2009).

1.3.2.1 Statistical methods

Over-representation can be tested with the hypergeometric test or Fisher’s exact test
which for the case of 2x2 contingency tables is equivalent to the hypergeometric test.
Therefore, here we focus on the hypergeometric test. The hypergeometric test is based
on the hypergeometric distribution which relates to the probability of drawing k objects
of a specific type in n trials, without replacement, from a population of size N containing
K objects of the type of interest, e.g. the probability to draw k red marbles in n trials
from an urn containing K red marbles among N marbles. The probability of drawing
exactly k marbles is then:

P (X = k) =

(

K
k

)(

N−K
n−k

)

(

N
n

) (1.1)

However, usually one is not interested in the probability of drawing an exact number of
marbles but in the probability of drawing more marbles than the drawn ones. This would
refer to the sum of the probabilities of drawing all possible numbers of marbles greater
or equal to the drawn number of marbles. This can be calculated via the cumulative
distribution function of the hypergeometric distribution:
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The probability of drawing k or more marbles is:

P (X ≥ k) = P (X > k − 1) = 1− P (X ≤ (k − 1)) (1.3)



Introduction 25

This probability relates to retrieving more than k significant genes from a pathway/GO
with n genes when there are K significant genes among N genes in total (i.e. genes
mappable to pathways/GOs).

Another way of analyzing gene sets is the so-called gene set enrichment analysis (GSEA)
which was introduced by Subramanian et al. (Subramanian et al. 2005). This method
ranks the genes in the gene set in comparison to a so-called background gene set of e.g.
all genes on a microarray. GSEA is based on the Kolmogorov-Smirnov-test and takes
into account the expression values of the involved genes while the over-representation
test solely works on numbers of gene symbols. Thus, GSEA has the advantage to incor-
porate more information into the statistical assessment but on the other hand cannot
be applied in the frequent cases where only gene symbols but no expression values are
available. A plethora of further approaches has tried to improve the performance of gene
set analysis, e.g. the GSVA method which can analyze gene sets using microarray or
NGS gene expression data in a sample-wise manner and also in other experimental de-
signs deviating from the traditional case-control comparison (Hänzelmann, Castelo, and
Guinney 2013). Tarca et al. compared several approaches including GSVA, GSEA and
the traditional overrepresentation analysis (ORA) implemented in many tools such as
the DAVID web tool (Huang, Sherman, and Lempicki 2009) and the R package GOStats
(Falcon and Gentleman 2007). Interestingly, although ORA does not directly integrate
gene expression values it can compete with methods doing so such as GSEA. Tarca et al.
found the software tools PLAGE (Tomfohr, Lu, and Kepler 2005) and GLOBALTEST
(Goeman et al. 2004) were performing best. Pathway Level Analysis of Gene Expression
(PLAGE) uses singular value decomposition (SVD) to calculate a meta-gene represent-
ing the expression of a gene set. GLOBALTEST employs a logistic regression model to
test the null hypothesis that all regression coefficients of all genes in a gene set are zero
meaning that the genes from the gene set cannot predict the phenotype.

Many comparisons between methods of gene set analysis including those by Tarca et
al. (Tarca, Bhatti, and Romero 2013) and Hänzelmann et al. (Hänzelmann, Castelo,
and Guinney 2013) have favored differing approaches. Each publication introducing
a new method usually tries to prove the superiority of the method proposed by the
authors. Therefore, there is no clear favorite method superior to all others. Instead other
issues such as the possibility to use the approach without gene expression values or the
availability of a comprehensive database of gene sets such as in the DAVID tool (Huang,
Sherman, and Lempicki 2009) may have more relevance. Another important issue are
the annotations of datasets which often differ between sources hence demonstrating that
there usually is not full clarity about which genes belong to a pathway and what roles
they play in the pathway. Thus, further refinement of the topology of genes within a
pathway or possibly the assignment of higher weights to more relevant genes would be
other points which would have the potential to improve the quality of pathway analyses.
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1.3.2.2 Gene ontologies

Gene ontologies (GOs) are a hierarchical classification system of genes which are grouped
into functional entities describing either Biological Processes (BP), Cellular Components
(CC) or Molecular Functions (MF) which are the top level GOs. These three top-level
GOs are stepwise refined in a hierarchical structure, e.g. the GO BP is continuously
detailed via the GOs developmental process, anatomical structure development, multicel-
lular organism development to the GO embryo development. GOs have been introduced
in 2000 and are maintained by the gene ontology consortium (Ashburner et al. 2000).
Recently, models for causal relationships between GOs have been proposed - the so-called
GO-CAMs (GO causal activity models) which can help to further elucidate how genes
interact to provide biological functionality (Thomas et al. 2019). They substitute pre-
vious GO terms about positive or negative regulation by new causal relationships which
may have positive or negative effect. This adds more detail to the presentation of genetic
knowledge and may have the potential to enable more sophisticated approaches - possi-
bly even artificial intelligence approaches - to get more mechanistic insight into genetic
networks from gene expression data. Analysis of GOs has been traditionally made via
the R/Bioconductor package GOStats - an ORA approach which can also account for
the hierarchy of GOs (Falcon and Gentleman 2007) - but can also be achieved by most
other tools used for gene set analysis such as DAVID (Huang, Sherman, and Lempicki
2009), ConsensuPathDB (Kamburov et al. 2011) or GSVA (Hänzelmann, Castelo, and
Guinney 2013) or by specific GO analysis tools such as GOminer (Zeeberg et al. 2003),
the Cytoscape plugin BINGO (Maere, Heymans, and Kuiper 2005) and REVIGO (Supek
et al. 2011).

1.3.2.3 Pathways

Pathways are collections of genes that interact to achieve specific biological functions.
The authors of the Reactome pathway database define a pathway as a grouping of reac-
tions into causal chains (Joshi-Tope et al. 2005). Pathways can be further refined into
metabolic e.g. Glycolysis, regulatory and signal transduction pathways, e.g. Insulin-
signaling pathway. Several resources for pathway data exist including KEGG (Kanehisa
et al. 2010), Reactome (Joshi-Tope et al. 2005) and WikiPathways (Slenter et al. 2018).
Furthermore, there have been several approaches to integrate or collect data from multiple
pathway databases such as the ConsensusPathDB (Kamburov et al. 2011), the DAVID
functional annotation tool (Huang, Sherman, and Lempicki 2009) and the Molecular
Signatures Database (MSigDB) at the Broad Institute which is often used in combina-
tion with the GSEA method (Subramanian et al. 2005). Pathway data from distinct
sources may have considerable differences which in consequence can lead to deviating
analysis results. These may emerge when the effects of the investigated data are small -
however large effects will usually result in consistent results independent of the pathway
resource. The classical pathway analysis approaches such as ORA and GSEA regard
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all genes as equivalent and do not give genes playing central roles, e.g. MTOR in the
MTOR-signaling pathway, higher weights than genes playing marginal roles. Develop-
ment of approaches accounting for such weights may have the potential to improve the
results. However, another solution to detect genes with high relevance in the topology of
a pathway is to mark their expression or differential expression directly in the pathway
map with tools such as PathView (Luo and Brouwer 2013).

1.3.2.4 Tissues

Particularly in the area of stem cell research it is relevant to be able to identify the tissue
type of a cell. Pluripotent and also multipotent stem cells are often differentiated into an
adult cell type for various purposes including disease models and therapeutic approaches.
For instance, a disease model for NAFLD could be constructed by differentiating an
iPSC into hepatocyte-like cells which subsequently would be challenged by oleic acid
and possibly other disease-inducing factors. In the course of these experiments, it is of
eminent importance to judge if the cell type one has generated is in fact congruent or
at least sufficiently similar with the target cell type, in this case hepatocytes. Cell types
have distinct gene expression profiles. Thus, one can use the genes expressed in cells
of interest to determine their tissue type. Public databases such as PaGenBase (Pan
et al. 2013) and the Genotype-Tissue Expression (GTEx) project (GTEx Consortium
2013) store associations of tissues with the genes expressed in them . Maturity of cell
types often is an issue with cells derived from pluripotent stem cells because analogously
to human development the differentiated cells are at a fetal stage and would years or
even decades to arrive at the adult phenotype. If one studies Late-Onset-Alzheimer’s
Disease (LOAD) the neuronal cells of interest are usually over 65 years old what imposes
a major challenge to the disease model. With respect to this point the employment
of developmental datasets as provided by the Allen Brain Atlas are a feasible strategy
(Jones, Overly, and Sunkin 2009). In principle, tissues can be detected the same way as
GOs or pathways by ORA based on tissue-specific genesets but beyond that some tools
have emerged for classification of tissue types including KeyGenes (Roost et al. 2015)
and CellNet (Cahan et al. 2014). These also account for tissue-specific gene expression
data.

1.3.2.5 Protein interaction networks

Proteins coded by genes are the central functional interactors in cells. Several databases
have been built up of a plethora of protein interactions derived from experimental as
well as computational sources. As examples here only the STRING (Search Tool for the
Retrieval of Interacting Genes/Proteins) database (Szklarczyk et al. 2015) and the Bi-
oGrid (Biological General Repository for Interaction Datasets) database (Oughtred et al.
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2019) shall be mentioned. The STRING database gets protein interactions from primary
databases, pathway databases, text-mining on Medline abstracts and full-text articles,
prediction algorithms based on genomic information and coexpression analysis, ortho-
logic transfer of interactions from other organisms (Szklarczyk et al. 2015) . STRING
provides an intuitive user interface allowing to analyse interactions of single genes or sets
containing multiple genes and delivers high-quality graphical presentations of the result-
ing networks. Networks can be expanded iteratively by a numer of interaction proteins
in a way that initially not connected gene sets can be connected indirectly via interacting
proteins.

BioGRID started as an open-source repository and in September 2018 has collected about
1.6 Mio protein, genetic and chemical interactions by text-mining. Interactions are well
annotated facilitating retrieval of the data sources (Oughtred et al. 2019) . Recently,
data from genome-wide CRISPR/Cas9 screens has been added to BioGRID.

Integration of gene expression data with protein interaction networks raises the problem
to find optimal functional modules within the large protein interaction networks. Par-
ticularly in weighted graphs where vertices can have also negative weights, e.g. Pearson
correlation coefficients from a gene expresssion experiment, identification of an optimal
connected sub-network can be a not-trivial NP-hard mathematical problem. Ideker et
al. first described this problem in the context of their cytoscape system and proposed
heuristic approaches as solution (Ideker et al. 2002) . Dittrich et al. improved that
solution by transforming the weighted graphs to Price-collecting Steiner trees (PCST)
introducing a cost function for the edges (Dittrich et al. 2008). The cost function for
the edges is initialized with the minimum of the weights in the graph. An optimal PCST
can the be calculated with a time efficient algorithm. Furthermore, the approach also
can deliver suboptimal sub-networks for visual inspection.

However, in many use cases protein interaction networks shall be generated from gene
sets without associated weights. Besides STRING the java tool SubNet (Q. Zhang and
Zhang 2013) offers this feature but different from STRING which uses its own database
SubNet can work on arbitrary protein interaction databases provided by the user as tab-
delimitted files. SubNet offers multiple extraction methods including extraction by shell,
i.e. using interacting vertices connected with one edge (first shell), two edges (second
shell) and further, (ii) using the shortest path between two vertices or (iii) a method
similar to Google’s PageRank working with the node centrality metric.

In publications associated with this work we used one approach combining elements from
the extraction by shell and PageRank methods by using the first-level interactors with
the n=30 most interactions to the gene set (Spitzhorn et al. 2019) and another one
implementing a Shortest Path method (Wruck and Adjaye 2020) .
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1.3.3 Transcription factor analysis

Transcription factors play an essential role in regulation of gene expression. Binding at
transcription factor binding sites in the promoter or enhancer regions of genes they can
initiate, enhance or repress transcription of the DNA sequence of a gene into mRNA.
Promoter regions initiating transcription are close to the transcription start site while
enhancer regions enhancing or repressing transcription may be located up to a few kB
(kilo bases) upstream or downstream of it. Several transcription factors can be involved
in the transcription of a gene and vice versa, one transcription factor can regulate a
multitude of genes. Databases such as Transfaq (Heinemeyer et al. 1999) and JASPAR
(Sandelin et al. 2004) store these often highly conserved relationships between transcrip-
tion factors and genes for humans and other species. The classical in vitro experimental
method to identify transcription factor binding is chromatin immunoprecipitation (ChIP)
which precipitates transcription factors together with their DNA binding sites. The DNA
sequences can be detected via microarrays or NGS (ChIP-seq) approaches. In silico tran-
scription factor analysis can be performed by ORA or similar approaches using datasets
of genes which are associated with the same transcription factors. The oPOSSUM-3
tool (Kwon et al. 2012) can be employed to perform such a transcription factor analysis
using the Fisher-exact-test. Furthermore, the tool can account for the frequency of nu-
cleotides in binding sites in the promoter regions of the investigated gene set and compare
this to a background distribution of binding site nucleotides in the whole genome via a
normal-approximation Z-score of the binomial distribution.

1.3.4 Time series analysis

Time series analysis is a discipline predominantly elaborated in other fields than bioinfor-
matics such as economics and meteorology, e.g. for analysis of stock quotations or carbon
dioxide measurements at Mauna Loa. However, also in bioinformatics several approaches
for gene expression time series analysis have been proposed (Bar-Joseph 2004). In a re-
view Bar-Joseph identifies several challenges including tackling missing data, sampling
rates, synchronization, inference of regulatory networks and describes some proposed so-
lutions such as interpolation between data points to cope with missing or noisy data and
dynamic Bayesian networks to reconstruct regulatory networks (Bar-Joseph 2004). In
general, time series analysis has to cope with cyclic effects such as the obvious seasonal
local maxima and minima overlaying the major continuously rising carbon dioxide curve
at the Mauna Loa or 24-hour cycles in genes associated with circadian rhythm. One
solution for this problem is to use stationary curves resulting from derivations of the
original curve. A test to check the stationarity of a curve is the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test which uses the null hypothesis that the curve is stationary.
An important capability of time series analysis is the Granger test for causality (Granger
1969). The goal of this test is to determine causal relationships between time series,
e.g. to solve the problem if the chicken or the egg came first by comparing time series of
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chicken and egg production as was a bit ironically proposed in an essay about the Granger
test (Thurman and Fisher 1988). The Granger test works by checking if a model using
past lagged values of the time series itself and another putative causative time series is
better predicting values of the time series than a model with only past values of the time
series itself. In fact, that does not actually prove causality but shows that both features
are related and one feature is preceding the other. To exclude that a third is responsible
for the relation the Granger test in the opposite direction must not be significant.

1.4 Outline

In this cumulative thesis publications about meta-analyses and stem-cell-based disease
models are brought together. Table 1 lists all included publications subdivided into two
sections containing publications as first author (or equal contribution) and publications
as co-author. The abstracts of 44 additional PubMed-listed publications are provided
in the appendix. The first author publications predominantly cover meta-analyses or
specialized analyses such as the multi-omics analysis of NAFLD and the phylogenetic
analysis of SARS-CoV-2. Particular emphasis is laid on the two SARS-CoV-2-related first
author publications which are highlighted in the table in bold letters. These represent an
application of the methods developped so far to a rapidly emerging problem manifested
in the Covid-19 pandemic. While the meta-analyses exploring NAFLD, AD and brain
aging have counterparts in co-authored publications about iPSC-based disease models
the SARS-CoV-2-related publications have built a foundation for future projects about
stem-cell-based models of SARS-CoV-2 infection of multiple organs.
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Table 1: Publications in this thesis

publications as first author or equal contribution journal/year pubmed/DOI

Multi-omic profiles of human non-alcoholic fatty liver disease tissue
highlight heterogenic phenotypes

Sci Data.
2015

26646939

Meta-Analysis of Transcriptome Data Related to Hippocampus Biop-
sies and iPSC-Derived Neuronal Cells from Alzheimer’s Disease Pa-
tients Reveals an Association with FOXA1 and FOXA2 Gene Regu-
latory Networks

J Alzheimers
Dis. 2016

26890743

Concise Review: Current Status and Future Directions on Research
Related to Nonalcoholic Fatty Liver Disease

Stem Cells.
2017

27374784

Meta-analysis reveals up-regulation of cholesterol processes in nonal-
coholic and down-regulation in alcoholic fatty liver disease

World J
Hepatol.
2017

28357032

Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models
for uncovering disease-associated signaling pathways and establishing
a screening platform for anti-oxidants

Sci Rep.
2017

28790359

Human pluripotent stem cell derived HLC transcriptome data enables
molecular dissection of hepatogenesis

Sci Data.
2018

29533390

The FGF, TGF and WNT axis Modulate Self-renewal of Human
SIX2+ Urine Derived Renal Progenitor Cells

Sci Rep.
2020

31959818

Meta-analysis of human prefrontal cortex reveals activation of GFAP
and decline of synaptic transmission in the aging brain

Acta Neu-
ropathol
Commun.
2020

32138778

SARS-CoV-2 receptor ACE2 is co-expressed with genes re-
lated to transmembrane serine proteases, viral entry, immu-
nity and cellular stress

Sci Rep.
2020

33293627

Transmission of SARS-COV-2 from China to Europe and
West Africa: a detailed phylogenetic analysis

bioRxiv 2020
DOI: 10.1101/
2020.10.02.323519

publications as contributing author in this thesis

Induced pluripotent stem cell-derived neuronal cells from a sporadic
Alzheimer’s disease donor as a model for investigating AD-associated
gene regulatory networks

BMC Ge-
nomics.
2015

25765079

Footprint-free human fetal foreskin derived iPSCs: A tool for model-
ing hepatogenesis associated gene regulatory networks

Sci Rep.
2017

28740077

Modeling Nonalcoholic Fatty Liver Disease with Human Pluripotent
Stem Cell-Derived Immature Hepatocyte-Like Cells Reveals Activa-
tion of PLIN2 and Confirms Regulatory Functions of Peroxisome
Proliferator-Activated Receptor Alpha

Stem Cells
Dev. 2016

27308945

IPSC-Derived Neuronal Cultures Carrying the Alzheimer’s Disease
Associated TREM2 R47H Variant Enables the Construction of an
Aβ-Induced Gene Regulatory Network

Int J Mol
Sci. 2020

32630447

44 other PubMed-listed publications as first or contributing
author listed in the appendix of this thesis
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2.1.1 Multi-omic profiles of human non-alcoholic fatty liver disease

tissue highlight heterogenic phenotypes.

Sci Data. 2015 Dec 8;2:150068. doi: 10.1038/sdata.2015.68.

Wruck W(1), Kashofer K(2), Rehman S(3), Daskalaki A(4), Berg D(5), Gralka E(6), Jozefczuk

J(4), Drews K(4), Pandey V(4), Regenbrecht C(7), Wierling C(4), Turano P(6), Korf U(5), Zat-

loukal K(2), Lehrach H(4), Westerhoff HV(3)(8)(9), Adjaye J(1)(4).
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Non-alcoholic fatty liver disease (NAFLD) is a consequence of sedentary life style and high
fat diets with an estimated prevalence of about 30% in western countries. It is associated
with insulin resistance, obesity, glucose intolerance and drug toxicity. Additionally, poly-
morphisms within, e.g., APOC3, PNPLA3, NCAN, TM6SF2 and PPP1R3B, correlate
with NAFLD. Several studies have already investigated later stages of the disease. This
study explores the early steatosis stage of NAFLD with the aim of identifying molecular
mechanisms underlying the etiology of NAFLD. We analyzed liver biopsies and serum
samples from patients with high- and low-grade steatosis (also pre-disease states) em-
ploying transcriptomics, ELISA-based serum protein analyses and metabolomics. Here,
we provide a detailed description of the various related datasets produced in the course
of this study. These datasets may help other researchers find new clues for the etiology
of NAFLD and the mechanisms underlying its progression to more severe disease states.
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Background & Summary
With an estimated prevalence of about 30% in western countries, NAFLD is a major public health issue1.
Sedentary life-style and excessive food consumption correlate with rate at which NAFLD cases appear.
Epidemiologic studies showing a prevalence of the disease that differs between countries as well as
between groups in the same country, appear to reflect an interplay of environmental and genetic factors
in its etiology1. Additionally, polymorphisms in, e.g., APOC3, PNPLA3, NCAN, TM6SF2 and PPP1R3B,
correlate with NAFLD2,3. Over-feeding directly induces insulin resistance4. Causality between steatosis
and the metabolic syndrome of insulin resistance, obesity, and glucose intolerance, is still unresolved5.
While the correlation between steatosis and insulin resistance is established there is debate about
the relationship between steatosis and hepatic insulin resistance6. Samuel et al. showed that activated
PKC-ϵ and JNK can induce insulin resistance via impaired IRS1 and IRS2 tyrosine phosphorylation in rats
fed with high fat diet7. An investigation on the insulin-like growth factor (IGF) axis in the Nurses’ Health
Study8 and another population study of 3863 people9 addressed connections between the IGF axis, insulin
resistance, diabetes risk and NAFLD. IGFBP3 is associated with various cancers and up-regulation of
IGF1 receptor (IGF1R) is considered an early event in hepatocarcinogenesis10. Thus, the IGF axis might
play an important role in a direct development of carcinoma from steatosis without the formerly assumed
intermediary phase of cirrhosis11.

The progression of NAFLD from mild steatosis up to severe steatohepatitis and even liver cirrhosis
and hepatocellular carcinoma, varies widely between individual patients. Insulin resistance, dysregulation
of cytokines as a basis for inflammation, and oxidative stress appear to foster progression to
steatohepatitis12. A two-step progression from simple steatosis to steatohepatitis and fibrosis has been
proposed13, and suggests that after fat accumulation in the liver due to insulin resistance, lipids are
peroxidized with cytokines and Fas ligand induced by excessive ROS. However, this two-step progression
has been questioned5. We found that in fibroblasts derived from steatosis patients AKT/mTOR signaling
was reduced and that the insulin-resistant phenotype is exhibited not only by insulin-metabolizing
central organs, e.g., the liver, but also by skin fibroblasts14. Transcriptome data identified a regulatory
network orchestrated by the transcription factor SREBF1 and linked to a metabolic network of
glycerolipid and fatty acid biosynthesis. The downstream transcriptional targets of SREBF1 which include
the phosphatidic acid phosphatase LPIN1 and LDLR, were also involved.

Moreover, there is the possible involvement of ROS in disease progression. Houstis et al.15

demonstrated that oxidative stress can induce insulin resistance and that anti-oxidants may ameliorate
insulin resistance. Depletion of glutathione can improve insulin sensitivity in mice16. Glutathione is
known as the body’s master antioxidant, protecting cells against damage caused by numerous
reactive intermediates17. Detoxification of these reactive metabolites results in the consumption of
glutathione either via oxidation or conjugation. Maintenance of the intracellular glutathione level is
thereby a critical liver function, which could be impaired following insult/injury or in steatosis and
steatohepatitis.

Several other studies exploring various aspects of NAFLD have been published. A recent publication
by Moylan et al. showed that it is possible to discriminate mild versus severe fibrosis stages of NAFLD
patients via their gene expression profiles18. Another study from Speliotes et al. investigated NAFLD via a
genome-wide association study (GWAS) approach3. Besides the most prominent association of PNPLA3
this study reported several other associations including one at locus 19p13.11 which is in strong linkage
disequilibrium with a recently found steatosis-linked polymorphism in TM6SF2, transmembrane6
superfamily member 2 (refs 19,20) . A knockdown of TM6SF2 in human hepatoma cell lines and in mice
led to an increase in lipid droplet area while overexpression led to a decrease19.

Interestingly, the above mentioned genes associated with NAFLD in GWAS were not detected in a
large-scale GWAS about obesity and insulin biology although the metabolic syndrome connects NAFLD
and obesity21. Feldstein et al. found CK-18 as a non-invasive biomarker for NASH by comparison of
plasma samples from patients with biopsy proven NAFLD22. Du Plessis et al. used analysis results from
subcutaneous and visceral fat and liver biopsies to construct a model which predicts NAFLD liver
histology23. This model involves the genes CCL2, DMRT2, GADD45B, IL1RN, and IL8. In contrast to the
studies of Moylan et al. and Feldstein et al. our study highlights potential means of classifying distinct
grades of Steatosis in NAFLD—the very early stage of the disease. Although it is evident that a complex
interplay of genetic and environmental factors contribute to the development of steatosis, to date there
has not been a systemic study of the disease employing a multi-omic approach- transcriptome,
ELISA-based proteome and metabolome. Therefore, the intention of this study is to provide a more
comprehensive view of steatosis based on transcriptomic, metabolomic and protein biomarker profiles.
Additionally, this should lay down the foundation for follow-up systems biology-based studies.

In the current study we analyzed patient liver biopsies and associated serum samples, from patients
with the insulin resistance phenotype confirmed by the HOMA-IR model24. Here, we describe these
valuable data sets deposited in public repositories, which might support other researchers in identifying
new clues for the etiology of NAFLD and the mechanisms underlying its progression to more severe
disease states.
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Methods
Patient recruitment, sample collection and clinical measurements
All patients participating in this study were recruited in the Multidisciplinary Obesity Research (MORE)
project at the Medical University of Graz, Austria or at the Interdisciplinary Adipositas Center at the
Kantonsspital St Gallen, Switzerland. Patients with morbid obesity who admitted into hospital for
treatment by bariatric surgery (gastric banding, gastric bypass, sleeve gastrectomy) were invited to
participate in the study and to sign the informed consent. The study was approved by the institutional
review board of the Medical University of Graz (reg. IRB00002556 at the Office for Human Research
Protections of the US Departments of Health and Human Services) under license 20–143 ex 08/09. All
experiments were performed in accordance with approved guidelines. Written informed consent was
obtained from all participants. In the course of the bariatric surgery, samples of blood, skin and a liver
biopsy were taken. Out of 18 patients (Table 1), 9 liver biopsies were of high quality enabling their use in
the transcriptome analyses. Serum plasma was available from all the patients. The overall experimental
design of this study is illustrated in Fig. 1. A pathological diagnosis of the liver phenotype, including liver
steatosis grading based on H&E morphology, was performed by an experienced, board certified
pathologist (CL). We simplified Kleiner’s scoring scheme by condensing Steatosis grades 2 (34–66%) and
3 (> 66%) to our ‘high-grade’ while adopting grades 0 (‘none’) and 1 (‘low’)25. This simplification was
made because the inter-patient-variability in this complex heterogeneous disease did not allow a more
detailed grading on the omics levels. Two examples of liver biopsies are shown in Fig. 2a.

Illumina bead chip hybridization and data analysis
Microarray experiments were carried out on the Illumina BeadStation 500 platform (Illumina, San Diego,
CA, USA). Briefly, 500 ng DNase-treated total RNA were used as input for amplification and biotin
labeling reactions (Illumina TotalPrep RNA Amplification Kit, Ambion) prior to hybridization of the
resulting cRNAs onto Illumina HumanHT-12_v4_BeadChips, washing, Cy3-streptavidin staining and
scanning according to the manufacturer’s instructions.

Transciptomics data analysis
Illumina data was processed via R/Bioconductor26 and packages lumi27, limma28 and biomaRt.
Background-corrected log2-transformed data was normalized via quantile normalization from the lumi
package.

ID gender Age BMI %

steatosis

grouping by pathologist steatosis grouping medical centre liver illumina

array rep.1

(GSE46300)

liver illumina

array rep.2

(GSE46300)

serum

NMR data

serum ELISA data

H0004 f 54 47 10% obese, low steatosis Graz (Austria) GSM1128362 GSM1128363 MTBLS174 10.6084/m9.figshare.1333564

H0007 f 33 51 40% obese, high steatosis Graz (Austria) GSM1128364 GSM1128365 MTBLS174 10.6084/m9.figshare.1333564

H0008 m 61 46 40% obese, high steatosis obese, high steatosis Graz (Austria) GSM1128366 GSM1128367 MTBLS174 10.6084/m9.figshare.1333564

H0009 f 48 49 5–10% obese, low steatosis obese, low steatosis Graz (Austria) GSM1128368 GSM1128369 MTBLS174 10.6084/m9.figshare.1333564

H0011 f 58 45 70% obese, high steatosis obese, high steatosis Graz (Austria) GSM1128370 GSM1128371 MTBLS174 10.6084/m9.figshare.1333564

H0012 f 50 35 0 obese, low steatosis obese, low steatosis Graz (Austria) GSM1128372 GSM1128373 no no

H0018 f 35 41 30–40% obese, high steatosis obese, high steatosis Graz (Austria) GSM1128374 GSM1128375 MTBLS174 10.6084/m9.figshare.1333564

H0021 m 49 41 0% no steatosis Graz (Austria) GSM1128376 GSM1128377 MTBLS174 10.6084/m9.figshare.1333564

H0022 m 45 49 40% obese, high steatosis Graz (Austria) GSM1128378 GSM1128379 MTBLS174 10.6084/m9.figshare.1333564

H0024 m 29 44 50% obese, high steatosis Graz (Austria) no no MTBLS174 10.6084/m9.figshare.1333564

H0025 f 53 46 15–20% obese, low steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0026 f 46 39 0% no steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0027 m 44 42 50% obese, high steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0028 f 28 43 20% obese, low steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0029 f 40 39 o5% no steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0030 m 22 45 30% obese, low steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0031 m 22 41 0% no steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0033 f 44 43 40% obese, high steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

H0034 m 50 42 10% obese, low steatosis St Gallen (Switzerland) no no MTBLS174 10.6084/m9.figshare.1333564

Table 1. Samples related to data sets in repositories (Data Citations 1–Data Citation 3).
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qRT-PCR
Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to confirm the microarray-
derived data. Reactions were carried out on the ABI PRISM 7900HT Sequence Detection System
(Applied Biosystems). Data analysis was carried out using the ABI PRISM SDS 2.2.1 software (Applied
Biosystems) and Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). GAPDH-normalized,
relative mRNA levels of each gene (high steatosis versus low steatosis) were calculated based on the
2-ΔΔCT Method. Primer sequences for QRT-PCR validation are described in Table 2.

ELISA-based assay for biomarkers
ELISA measurements from plasma samples were carried out using the Ciraplex platform (Aushon
Biosystems, Billerica, MA, US). Commercial assays were purchased and measurements were carried out
according to instructions provided by the manufacturer. The following 29 targets were analyzed either as
single-plex assays or as multiplex assay: hFGFb; hGROa; hLIF;hIFNg; hIL1b; IL4; IL5; hIL6; hIL10;
hIL12p70; hIL13; hTNFa; hI309; hIL8; hIP10; hMCP4; hMIP1a; hMIP1b; hCRP; hLeptin; hPAIactive;
hResistin; hIGFBP1; hIGFBP3; hIGFBP2; hMIF; hApoA1; hCRP; hAcrp30.

NMR sample preparation
Frozen plasma samples were thawed at room temperature and shaken before use. According to standard
methodologies a total of 300 μl of buffer (70 mM Na2HPO4; 20% (v/v) D2O; 6.15 mM NaN3; 6.64 mM
TMSP; pH 7.4) was added to 300 μl of each serum sample. A total of 450 μl of this mixture was
transferred into a 4.25 mm NMR tubes (Bruker BioSpin) for analysis.

liver biopsies serum samples

metabolomics via Nuclear

Magnetic Resonance (NMR) 

transcriptomics via Illumina

BeadChips and RT-PCR 
Protein serum markers

via ELISA assay  

low-grade

steatosis  

high-grade

steatosis  

high-grade

steatosis  

low-grade

steatosis  

high-grade patients
low-grade patients

healthy

Figure 1. Scheme of experiments for multi-omics comparison of steatosis grades. The scheme shows how the

distinct severities of non-alcoholic fatty liver disease (NAFLD) are compared in terms of transcriptomics,

metabolomics and potentially relevant parts of the proteome. Liver biopsies were taken from NAFLD patients

and classified by pathologists as low-grade (5–33% steatosis area) and high-grade (>33% steatosis area). The

transcriptome of liver biopsies were assessed on Illumina HumanHT-12 v4 BeadChips and on RT-PCR. Serum

samples of these NAFLD patients and from healthy persons were taken and investigated at the protein level

employing ELISA assays and at the metabolome level via Nuclear Magnetic Resonance (NMR).
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NMR spectra acquisition and processing
NMR spectra from 18 plasma samples from morbidly obese patients that underwent different type of
bariatric surgery and additionally have developed steatosis were collected (Table 1). 1H-NMR spectra
were acquired using a Bruker spectrometer (Bruker Biospin). Unsupervised and supervised methods were
used in order to identify a disease-related metabolomic profile that might contain a signature of steatosis.

Data Records
Data record 1
The microarray experiments discussed in this publication were carried out on the Illumina BeadStation
500 platform (Illumina, San Diego, CA, USA). The data have been deposited in NCBI's GEO and are
accessible through GEO Series accession number GSE46300 (Data Citation 1).

Data record 2
Metabolomic raw data from Nuclear magnetic resonance (NMR) measurements have been deposited at
the MetaboLights database (http://www.ebi.ac.uk/metabolights) of the European Bioinformatics Institute
(EBI) under MTBLS174 (Data Citation 2).

Figure 2. Histopathological and transcriptome characterization of liver tissue. (a) Liver tissue with only

marginal pathological changes (H9, low-grade steatosis group). The hepatocytes are arranged in one cell thick

plates, separated by sinusoids. They contain only few small isolated fat valuoles (H&E stained section).

Hepatocytes of the intermediate and central lobular areas contain macrovesicular fat (image to the right,

H8, steatosis group, hepatocytes with fatty change are indicated by arrow heads; H&E stained section).

(b) Hierachical clustering of the transcriptomes of patient liver samples. We identified three clusters: high

(>33%) steatosis (cyan), low (5–33%) steatosis (magenta) and heterogeneous clusters of high, low and no

steatosis (grey). (c) Quantitative QRT-PCR confirmation of genes differentially expressed in high versus low

steatotic livers. The columns represent the mean of four biological replicates (high steatosis) versus two

biological replicates (low steatosis). Error bars indicate standard errors of the mean. Array-derived and

RT-PCR-derived columns are depicted in dark grey and red respectively. (d) Heatmap of genes differentially

expressed in high versus low steatotic livers and genes found in literature and in genome-wide association

studies.
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Data record 3
ELISA measurements have been deposited at figshare (http://www.figshare.com) (Data Citation 3).

Technical Validation
Transcriptomic data
Microarray data passed the proprietary Illumina quality controls. All samples were investigated in
duplicates. Fig. 2b shows that—as would be expected—the duplicates cluster together demonstrating the
validity of experiments in terms of whole-genome gene expression. The Pearson correlation coefficients
of all samples versus each other were calculated with the intention to detect outliers. However, all
correlation coefficients were greater than 0.98 and all correlation coefficients of duplicates even greater
than 0.99 so that all samples passed this quality check (Table 3). Genes with significant differential gene
expression were selected for validation via RT-PCR experiments (Fig. 2c). Genes were termed
differentially expressed if the multiple-testing-corrected limma28 P-value was less than 0.05, the ratio was
less than 0.75 or greater than 1.33 and the gene was expressed (detection P-value less than 0.05) in at least
one of both cases. Furthermore, we analysed clusters of genes differentially expressed in high versus low
steatotic livers together with genes found in literature19,23 and genome-wide association studies3 (Fig. 2d).
This analysis confirms high similarity between duplicates and clustering—to some extent but not
fully—according to steatosis grade. Fig. 3a shows a plot of the first two components of the Principal
Component Analysis (PCA) of the microarray data.

Gene Fwd Rev Product size

ACADSB CACCATTGCAAAGCATATCG GCAAGGCACTTACTCCCAAC 117

AGPAT2 GGGGCGTCTTCTTCATCA TTGAGGTTCTCCCTGACCAT 91

ECHS1 AACCTTTGCCACTGATGACC CAAGCAGAGGTGTGAAGCAG 112

IGF1
TGCAGGAGGGACTCTGAAAC

AGCTGCGTGATATTTGAAAGG 111

IGFBP2 CTCCCTGCCAACAGGAACTG
TCTTGCACTGTTTGAGGTTGTACAG

147

IGFBP3 CAACTGTGGCCATGACTGAG CCTGACTTTGCCAGACCTTC 92

INSIG1 CAACACCTGGCATCATCG CTCGGGGAAGAGAGTGACAT 118

KRT18 GAGGTTGGAGCTGCTGAGAC CAAGCTGGCCTTCAGATTTC 99

LIPA CATCTGTGTGAAGCCAAAGC AATCCCTGAGCTGAGTTTGC 112

PLIN2 GCTGAGCACATTGAGTCACG TGGTACACCTTGGATGTTGG 102

Table 2. Primer sequences for QRT-PCR validation of genes differentially expressed between high-grade and

low-grade steatosis.

Table 3. Pearson correlation coefficients of transcriptome data of all samples versus each other.

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150068 | DOI: 10.1038/sdata.2015.68 6

39



Figure 3. Transcriptomic and metabolomic profiles. (a–c) Transcriptomics and metabolomics PCA plots.

Distinct colours are used to aid visualizing patients with distinct levels of steatosis: yellow, patients with o5%

no steatosis; magenta, patients with 5–33%, low level steatosis; cyan, patients with high steatosis >33%, high

steatosis. (a) Unsupervised PCA plot for 18 liver biopsies, Illumina microarray data. (b) Unsupervised PCA

plot for 18 plasma samples, metabolomics data. (c) Supervised discrimination analysis (pls/ca: partial least

squares/canonical analysis) of metabolites in patient plasma samples. The correspondence between numbers in

the plot and sample names in Table 1 is: 1=H0004, 2=H0007, 3=H0008, 4=H0009, 5=H0011, 6=H0018,

7=H0021, 8=H0022, 9=H0024, 10=H0025, 11=H0026, 12=H0027, 13=H0028, 14=H0029, 15=H0030,

16=H0031, 17=H0033, 18=H0034, 19=H0012.
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ELISA-based assay for biomarkers
Samples below and above quantification limit as well as samples with coefficient of variation (cv) greater
than 20% were marked in the measurements table (Data Citation 3). Independent validation of the
ELISA-based measurements was checked by visual inspection of plots comparing disease states.

Metabolomics
Assignment of all metabolites were done manually, signals were assigned on template one-dimensional
NMR profiles by using matching routines of AMIX 7.3.2 (Bruker BioSpin) in combination with the
BBIOREFCODE Version 2-0-0 reference database and published literature when available. Additional
confirmation was done using data provided in our lab -database containing spectra of standard pure
compounds. To assess which metabolites (i.e., NMR peaks) were significantly different between different
sets a univariate paired Wilcoxon test was used. A P-value≤ 0.05 was considered statistically significant
(P-value not corrected for multiple testing).

Robust validation of statistical analysis results was done using a cross-validation technique.
The accuracy of the classification was assessed by means of a single cross-validation scheme. The

original data set was split into a training set (80% of the samples) and a test set (20% of the samples) prior
to any step of statistical analysis. The number of PLS components was chosen on the basis of a 5-fold
cross validation performed on the training set only, and the best model was used to predict the samples in
the test set. The whole procedure was repeated 200 times with a Monte Carlo cross validation scheme,
and the results averaged.

Figure 3b shows a plot of unsupervised discrimination analysis and Fig. 3c shows separation of
steatosis grades in a plot of supervised discrimination analysis (pls/ca: partial least squares/canonical
analysis) of metabolites in patient plasma samples. The clustering of Fig. 3c results from a supervised
PLS/CA based only on the metabolomic NMR profiles. The algorithm takes into account the supervised
information relative to the 3 steatosis groups.

Distribution plots
Figure 4a shows the distribution of percentage parenchymal involvement in steatotic patients derived
from Table 1. The percentage is converted to a scale from zero to one and plotted with the kernel density
function from the R statistical package. Fig. 4b–d display distributions separated into groups of age
above/below median (median= 45), body mass index (BMI) above/below median (median= 43) and
gender. Fig. 4d would suggest a slight tendency for more severe steatosis in males. A similar trend has
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Figure 4. Distribution plots of percentage parenchymal involvement in steatosis. (a) all patients. (b) Kernel

density plot of patients above/below median age (median= 45). (c) Kernel density plot of patients above/below

median BMI (median= 43). (d) Kernel density plot of male/female patients.
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been reported in a NAFLD study on Australian adolescents where 3.1% of males and only 2.2% of females
had moderate to severe steatosis while 7.0% of males and 14.1% of females had mild steatosis29.

Usage Notes
All patients in this study underwent bariatric surgery. This should be taken into account when
generalizing results although these are typical cases of morbid obesity which is connected to the metabolic
syndrome including NAFLD. The sample size of these datasets—in particular the transcriptomics
dataset—poses certain limits onto its usage. Due to its small size it will not enable rigorous analysis of
gender effects. Therefore it would likely need to be combined with other data sources, such as data from
Moylan et al.18 and Du Plessis et al.23.
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Abstract. Although the incidence of Alzheimer’s disease (AD) is continuously increasing in the aging population worldwide,

effective therapies are not available. The interplay between causative genetic and environmental factors is partially understood.

Meta-analyses have been performed on aspects such as polymorphisms, cytokines, and cognitive training. Here, we propose a

meta-analysis approach based on hierarchical clustering analysis of a reliable training set of hippocampus biopsies, which is

condensed to a gene expression signature. This gene expression signature was applied to various test sets of brain biopsies and

iPSC-derived neuronal cell models to demonstrate its ability to distinguish AD samples from control. Thus, our identified AD-

gene signature may form the basis for determination of biomarkers that are urgently needed to overcome current diagnostic

shortfalls. Intriguingly, the well-described AD-related genes APP and APOE are not within the signature because their

gene expression profiles show a lower correlation to the disease phenotype than genes from the signature. This is in line

with the differing characteristics of the disease as early-/late-onset or with/without genetic predisposition. To investigate

the gene signature’s systemic role(s), signaling pathways, gene ontologies, and transcription factors were analyzed which

revealed over-representation of response to stress, regulation of cellular metabolic processes, and reactive oxygen species.

Additionally, our results clearly point to an important role of FOXA1 and FOXA2 gene regulatory networks in the etiology

of AD. This finding is in corroboration with the recently reported major role of the dopaminergic system in the development

of AD and its regulation by FOXA1 and FOXA2.
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INTRODUCTION

Alzheimer’s disease (AD) is estimated to affect

about 35 million of the world’s population and

due to continuous increase in our aging popula-

tion, it is obvious that its prevalence will increase

ISSN 1387-2877/16/$35.00 © 2016 – IOS Press and the authors. All rights reserved
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[1]. Epidemiology shows only slight variation in the

prevalence with a band from 5% to 7% in most

regions of the world—however with some notice-

able outliers of about 2% in West Sub-Saharan Africa

[2]. A dichotomy of rare genetic variants leading to

early-onset AD (EOAD) and more frequent but less

malignant variants leading to late-onset (LOAD) has

been proposed [3]. The most prominent discovery for

LOAD has been the association of a higher risk with

the APOE 4 allele [4]. However, the effect is mediated

by its action on the amyloid-� product of a variant

APP gene. Nonetheless, age and gender remain the

major risk factors for sporadic forms of AD.

The interplay of genetic and environmental influ-

ences leading to the disease is only partially

understood. There is now increasing awareness

that age-associated metabolic impairment might also

have a contributory effect on LOAD. In our earlier

studies on aging in mouse brain, heart, and kidney,

we postulated that metabolic stability of gene regu-

latory networks modulating glutathione metabolism,

oxidative phosphorylation, insulin signaling, and

inflammation which are biological processes inti-

mately associated with aging are under constraint

and should be tightly controlled to attain healthy

aging [5, 6]. The metabolic stability theory which

is the ability of cells to maintain stable concentra-

tions of reactive oxygen species (ROS) and other

critical metabolites is in fact further supported by

emerging evidence that associates type 2 diabetes

mellitus (T2DM), brain insulin resistance, oxidative

stress, and cognitive impairment with AD [7]. More

recent data also imply an interplay between metabolic

homeostasis and neurogeneration [8].

Pistollato et al. hypothesize that progress in AD

research has been hampered by overuse of animal

models inadequate for the study of LOAD which

accounts for about 95% of AD cases [9]. Demetrius

and Driver consider the sporadic late-onset forms of

AD a metabolic disease [10]: the amyloid cascade

hypothesis postulating the imbalance of amyloid

production and clearance due to missense mutations

can explain the familial EOAD forms but cannot

stringently explain the etiology of sporadic forms

as it ignores the impact the brain energy metabolism

has on neuronal dynamics. The simplistic view of

the brain energy metabolism consisting of glucose as

main energy substrate has been refined by the find-

ings that neurons acquire their energy predominantly

from oxidative phosphorylation and astrocytes from

glycolysis via anaerobically produced lactate [10,

11]. Moreover, a dichotomy of AD pathological

changes between the youngest-old (individuals at

about 75 years) and the oldest-old (individuals at

about 95 years) has been reported in view of the fact

that for the youngest-old the severity of dementia

correlates very well with neural plaques and neurofib-

rillary tangles while that correlation is reduced for

the oldest-old [12, 13]. However, correlation between

cerebral atrophy and dementia consistently is strong

for the youngest-old and oldest-old [13]. These

observations for the oldest-old are hard to explain

with the amyloid-cascade hypothesis but in particular

the correlation to brain atrophy is very well in line

with the metabolic model. Inter-relations between

metabolism, brain atrophy, and age have already been

reported in several publications, e.g., by Yoshii et al.

[14], and cerebral glucose metabolism measures have

even been suggested as AD markers [15]. Besides the

age-dependence the metabolic model also referred

to as Inverse Warburg Hypothesis can elucidate

two further hallmarks of sporadic AD which are

in conflict with the amyloid cascade model: the

selective vulnerability of neurons in different brain

regions and the inverse cancer comorbidity [16].

As a consequence of our fragmentary understand-

ing of the molecular basis of AD, fully functional

therapies are not available. Furthermore, unsatisfy-

ing accuracy of diagnoses has been reported, e.g., in

a large study 39% of clinically diagnosed non-AD

dementia patients showed postmortem histopathol-

ogy consistent with AD [17].

Meta-analyses have been performed related to

polymorphisms [18], secreted cytokines [19], and

cognitive training [20]. Here, we performed meta-

analysis based on hierarchical clustering analysis of

transcriptome data of a reliable training set of hip-

pocampus biopsies which led to a gene expression

signature distinguishing AD from healthy control

samples. This gene expression signature was also

applied to various test sets of brain biopsies and

induced pluripotent stem cells (iPSC)-derived neu-

ronal cell transcriptome models to demonstrate its

ability to distinguish AD from control in various

experimental setups. Besides the EOAD PSEN1

mutation brain biopsy dataset from Antonell et al.

[21] and the iPSC-derived sporadic AD model from

Hossini et al. [22], the biopsy datasets we analyzed

are representative of the LOAD form, while the iPSC-

based AD models are based on EOAD-related APP-

and PSEN-mutations.

Recently, links between the monoaminergic/

dopaminergic system and AD were described [23].

The predominant locations of this system (locus
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coeruleus, raphe nuclei, and tuberomammillary

nucleus) are degenerated and thus impair func-

tionality of hippocampus and cortical neurons.

Furthermore, genome-wide association studies of

AD patients detected polymorphisms in genes from

the dopaminergic system, e.g., polymorphisms in

Catechol-O-methyltransferase (COMT) are asso-

ciated with availability of dopamine and, on the

other hand, with loss of behavioral control and

psychosis in AD patients [24]. Moreover, Ferri et

al. [25] and Stott et al. [26] reported that Foxa1 and

Foxa2 regulate development and maintenance of

dopaminergic neurons in the mouse midbrain. This

finding is in corroboration with the observation that

FOXA1 and FOXA2 regulate dopaminergic neurons

and that the dopaminergic system plays a major role

in the development of AD.

MATERIALS AND METHODS

Determining an AD-correlated gene signature

from a training set of transcriptomes from

hippocampus-derived biopsies

Figure 1 illustrates the scheme of this meta-

analysis. A sound dataset of hippocampus biopsies

(GSE29378 downloaded from the public repository

NCBI GEO) with a relatively high sample size of

72 produced on a state-of-the-art microarray plat-

form (Illumina Beadchip) is used as training set

[27]. The correlation of each gene to the AD pheno-

type is calculated on a binary scale (AD = 1, healthy

control = 0) using Spearman correlation. Genes with

the ‘n’ most significant correlations are determined

based on the test for association between paired sam-

ples using the R function cor.test(). This implies

that highly correlated and anti-correlated (down-

regulated in AD) genes are integrated into the gene

signature.

Recalibration of the gene signature

on an alternative platform

In order to place the gene signature on a more

robust basis which is independent of the techni-

cal platform, it was recalibrated with the dataset

GSE36980 downloaded from NCBI GEO [28] on

an alternative technical platform - the Affymetrix

Human Gene 1.0 ST Array. In this dataset, again the

correlation with the AD phenotype was determined

employing the approach used for the first dataset. The

probesets found to be correlated with the AD pheno-

type in this probeset (p < 0.05) were intersected with

the gene signature from the first step. The result is

a reduced gene signature, which, however, is more

robust as it works at least for the Affymetrix and the

Illumina microarray platforms.

Cluster analysis of brain biopsies

The re-confirmed gene signature was employed

for cluster analysis in several test sets of brain

biopsy-derived microarray data. Test datasets for

human brain biopsies were downloaded from NCBI

GEO for Affymetrix and Illumina microarray

platforms. These comprise the datasets: GSE4757

[29], GSE26927 [30], GSE39420 [21]. In detail, the

raw data were processed via R/Bioconductor [31]

packages affy [32], lumi [33] and oligo [34] and

normalized using a platform-specific method (rma

for Affymetrix, quantile normalization for Illumina).

The probes or probesets matching genes from the

gene signature are extracted from the normalized

test dataset and subjected to cluster analysis via the

R function heatmap.2.

Cluster analysis of iPSC-based AD models

As a complement to the brain biopsies, cluster

analysis was also performed for several test sets

of iPSCs-based AD models microarray data for the

re-confirmed gene signature. Test datasets for iPSCs-

based AD models were downloaded from NCBI

GEO for Affymetrix and Illumina microarray plat-

forms. These comprise the datasets: GSE28379 [35],

GSE43326 [36], GSE34879 [37], and GSE42492

[22]. These test datasets were processed in the same

way as described above for the brain biopsy test

datasets.

Transcription factor analysis

Transcription factors were analyzed using the

oPOSSUM-3 tool [38]. Single Site Analysis was per-

formed on a locally installed oPOSSUM database

(downloaded in June 2014) in order to detect over-

represented conserved transcription factor binding

sites within the AD gene signature. Parameters were

set to the following values: species “human”, 2000

base pairs upstream and downstream each, use only

JASPAR Transcription Factor Binding Site (TFBS)

profile matrices which belong to the tax group “ver-

tebrates”, a minimum relative TFBS position weight

matrix (PWM) score of 0.85 and a minimum infor-
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Fig. 1. Scheme of the meta-analysis method. Genes with the highest correlation to the AD phenotype are extracted from the training set of

brain biopsies analyzed on the Illumina platform. In order to achieve platform independency the resulting gene signature is recalibrated with

another training set on the Affymetrix platform. This gene signature is extracted from test sets of brain biopsies on the one hand and from

test sets of iPSC-based AD models on the other hand and subjected to cluster analysis.

mation content (specificity) of JASPAR TFBS profile

matrices of 8.

For the network plot, we used the R package net-

work [39] to connect transcription factors with an

oPOSSUM Z-score > 3 with their target genes. The

oPOSSUM Z-score accounts for an enrichment of

TFBS in the investigated up- and downstream regions

of the set of genes compared to the background.

Genes and transcription factors were distinguished by

red (white in b/w) circles for genes and green (grey in

b/w) circles with sizes corresponding to the Z-scores

for the transcription factors.

Pathway and gene ontology over-representation

analysis

KEGG pathways were analyzed via the hyperge-

ometric test from the R package [40]. The qvalue

package was employed to adjust for multiple testing

[41]. Over-represented gene ontologies were deter-

mined employing the GOstats package [42] from the

R/Bioconductor environment [31].

Gene expression analysis

Quantitative real-time polymerase chain reaction

(qRT-PCR) was carried out as described [22]. Briefly

the data presented fold induction based on the ��Ct

calculation over fetal brain RNA for the adult and

AD brain and undifferentiated H9 or AD5 cells

for the iPSC model. Only one neuronal differenti-

ation of a single well of embryonic stem cell line

H9 and sAD iPSC line AD5 was used for this

analysis.

RESULTS

The meta-analysis of the datasets listed in Table 1

was performed according to the flow chart illus-

trated in Fig. 1. We started with the determination of

genes most significantly correlated or reversely cor-

related with the AD phenotype in the dataset from

Miller et al. Figure 2 shows that the gene signa-

ture consisting of the 40 most significantly correlated

or anti-correlated Illumina probes (mapping to 34

48 Publications as first author or equal contribution



W. Wruck et al. / A Meta-Analysis of AD Brain Biopsies and iPSC-Derived Neuronal Cells 1069

Table 1

Datasets employed for the meta-analysis: (A) brain biopsy datasets, (B) iPSC-derived AD model datasets

A

Literature Dataset Mutation location of biopsy NR of Samples Figure

Miller et al., [27] GSE29378 – hippocampus CA1 and CA3 35x AD 37x control 2

Hokama et al., [28] GSE36980 – hippocampus 7x AD, 10x control 3

Durrenberger et al., 2012 [30] GSE26927 – entorhinal cortex 11x AD, 7x control S6A

Antonell et al., [21] GSE39420 PSEN1 hippocampus 7x EOAD, 7x PSEN1- S5A

mut, 7x control

Dunckley et al., [29] GSE4757 – entorhinal cortex 10x NFT, 10x control S6B

Blalock et al., [44] GSE28146 – hippocampus 22x AD, 8x control S5B

B

Literature Dataset Mutation iPSC Protocol to derive NR of Samples Figure

neurons

Kondo et al., [36] GSE43326 fAD: APP cortical neurons 1x APPE693, 1x APPwild 4

Yagi et al., [35] GSE28379 EOAD, adapted to their murine 2x AD, 2x control S7A

fAD: PSEN2 protocol

Israel et al., [37] GSE34879 fAD: APP FACS purification of 1x APP, 2x NDC S7B

neural progenitor cells

Hossini et al., [22] GE42492 LOAD, sAD 4-weeks of TGFb-receptor 2x sAD, 1x ES S7C

and MEK1/2 inhibiton control

AD, Alzheimer’s disease; NFT, neurofibrillary tangles; EOAD, early-onset Alzheimer’s disease; fAD, familial Alzheimer’s disease; LOAD,

late-onset Alzheimer’s disease; sAD, sporadic Alzheimer’s disease.

distinct gene symbols, Table 2) enables a good sep-

aration into two main clusters. One cluster (healthy

control cluster) contains only healthy control brain

biopsies while the other cluster (AD cluster) con-

tains 35 (87.5%) AD brain biopsies and 5 outliers in

3 groups (one group contains two biopsies from the

same patient). Table 2 lists these 34 genes most signif-

icantly correlated with the AD phenotype. 32 genes

correlate positively (most significant: GEM, S100A6,

YAP1, and PFKFB3) while only two genes (FXYD5

and WDFC1) are anti-correlated.

The good separation of AD and healthy controls

by the gene signature is additionally demonstrated

by the principal component analysis (PCA) plotted

in Supplementary Fig. 1. While we used a super-

vised clustering approach (filtering genes by their

correlation to the AD phenotype), unsupervised clus-

tering analyses revealed no clear separation of AD

and control clusters. For comparison, Supplemen-

tary Fig. 2 shows the result of a clustering analysis

of genes from the KEGG AD pathway, and Sup-

plementary Fig. 3 shows the result of a clustering

analysis of genes from the secretome on the training

dataset GSE29378. The results of the reconfirma-

tion of the gene signature via the GEO dataset

GSE36980 from Hokoma et al. [28] is presented in

Fig. 3. The adjusted gene signature then is reduced to

29 genes.

Intriguingly, neither the well-described AD-related

genes APP and APOE nor the later discovered prese-

nilin1/2 (PSEN1, PSEN2) were within the signature

because their gene expression profiles showed a lower

correlation to the disease phenotype than genes from

the signature. This is in line with the distinct charac-

teristics of the disease as EOAD or LOAD or with

or without genetic predisposition and the low fre-

quency of the AD-causing mutations in APP, APOE,

PSEN1, and PSEN2 [43]. To investigate the gene

signature and its relevance to the AD phenotype in

more detail, associated pathways, gene ontologies,

and transcription factors were analyzed. Finally, we

demonstrated that our gene signature could better dis-

tinguish AD from healthy controls than a collection

of genes encoding secretory factors. Thus, it may be

a good base for determination of biomarkers that are

urgently needed to overcome the current shortfall in

accurate diagnostics.

Cluster analysis of hippocampus biopsy datasets

The good correlation of the clustering of dataset

GSE36980 from Hokama et al. [28] with the AD

phenotype is illustrated by Fig. 3. Also with other

hippocampus datasets, the gene signature performed

very well. Using the gene signature for cluster anal-

ysis of the hippocampus biopsy dataset GSE39420

with EOAD and PSEN1 mutations from Antonell

et al. [21] facilitated a good separation of one pure AD

cluster and one healthy control clusters containing

two AD cases (Supplementary Fig. 4). Additionally,
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Fig. 2. Cluster analysis of the training set separates one healthy control and one AD cluster. The gene signature of the 40 most significantly

correlated or anti-correlated Illumina probes was employed for cluster analysis of the training set of hippocampus biopsies. Red bars at the

bottom indicate healthy control while blue bars indicate AD. Two main clusters are clearly separated one pure healthy control cluster and

one AD cluster with 3 small outlier groups consisting of 5 healthy control samples.

the dataset GSE28146 from Blalock et al. [44] derived

from formalin-fixed, paraffin-embedded (FFPE) hip-

pocampus biopsies was subjected to cluster analysis

and enabled separation into one AD cluster and one

mixed cluster with healthy controls and not-severe

AD cases (Supplementary Fig. 5). The results also

showed that in most datasets, there was a high level of

variation between the various transcript variants and

not all correlated with the AD phenotype. Using the

variants with the highest correlation to the AD phe-

notype unveiled the results shown in (Supplementary

Fig. 5).
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Table 2

Genes from the AD gene signature and their correlation with the AD phenotype

Probeid Correlation p Symbol (alias) PubMedID Reference

ILMN 2367883 0.7104 6.85E-12 GEM

ILMN 1713636 0.7029 2.35E-12 S100A6 15590066 [50] (t)

ILMN 1709479 0.6494 2.07E-10 YAP1 21178287 [64] (a)

ILMN 2186061 0.6417 3.23E-10 PFKFB3 23427097 [65] (p8)

ILMN 1656011 0.6356 1.78E-09 RGS1

ILMN 1784287 0.6138 2.66E-09 TGFBR3 17080199 [48] (t)

ILMN 1769091 0.6065 4.59E-09 PRCP

ILMN 1712075 0.5995 1.25E-08 SYNM

ILMN 1740819 0.5888 3.10E-08 STARD7

ILMN 1801616 0.5861 2.07E-08 EMP1 23978990 [66] (a)

ILMN 1716875 0.5819 5.26E-08 CTNND2 22984439 [67] (t)

ILMN 1655796 0.5786 1.04E-07 MARCH3

ILMN 1698968 0.5734 8.41E-08 ASXL2

ILMN 1803211 0.5718 1.28E-07 FBXO2 24469452 [68] (t)

ILMN 1796734 0.5709 2.60E-08 SPARC 20435134 [69] (Table 3)

ILMN 1810560 0.5681 1.85E-07 NUPR1

ILMN 1812327 0.5666 1.45E-07 RNF19A

ILMN 1714567 0.5654 2.00E-07 AHNAK 11312263 [70] (t)

ILMN 2246956 0.5600 2.65E-07 BCL2 8922409 [49] (t)

ILMN 1706498 0.5592 3.62E-07 DSE

ILMN 1815385 0.5562 2.17E-07 SMAD9 22815752 [71] (p9,11)

ILMN 1726547 0.5556 1.70E-07 MAP3K5(ASK1) 15592360 [59] (t)

ILMN 1710027 0.5553 8.07E-08 PNMT 11378842 [72] (t)

ILMN 1729487 0.5548 1.08E-07 GMPR 25448601 [73] (Table 3)

ILMN 2402600 0.5536 2.44E-07 GLIS3 23562540 [74] (a)

ILMN 2320888 0.5526 4.07E-07 CXCR4 17764962 [75] (t)

ILMN 2399300 0.5502 2.54E-07 NAV2 25859259 [76] (a)

ILMN 1733270 0.5481 3.49E-07 CD163 24528486 [77] (t)

ILMN 1671046 0.5317 8.78E-08 HSPB2 16599941 [78] (a)

ILMN 1710284 0.5243 3.49E-07 HES1 22849569 [79] (t)

ILMN 2086077 0.5191 4.05E-08 JUNB 8313943 [80] (t)

ILMN 1697176 0.5159 2.64E-07 GFAP 25991443 [51] (p364)

ILMN 1786118 –0.5254 4.07E-07 FXYD5

ILMN 1660808 –0.5682 2.84E-08 WFDC1 23705665 [27] (Table 3)

The 34 genes most significantly correlated with the AD phenotype. 32 genes are positively correlated (most significant: GEM, S100A6,

YAP1, and PFKFB3) while only two genes (FXYD5 and WDFC1) are anti-correlated. Beside the reference, the text location is indicated

(t, title; a, abstract).

Cluster analysis of entorhinal cortex biopsy

datasets

Cluster analysis of entorhinal cortex biopsies (Sup-

plementary Figs. 6 and 7) did not yield as good

results as for hippocampus biopsies (Supplementary

Figs. 4 and 5). Cluster analysis with the gene sig-

nature on the test set of entorhinal cortex biopsies

AD dataset GSE26927 from Durrenberger et al. [30]

resulted in three clusters one pure AD cluster con-

taining only two samples and two incoherent clusters

containing AD as well as control samples (Supple-

mentary Fig. 6). Red bars at the bottom indicate

healthy control while blue bars indicate AD. The

dataset GSE4757 from Dunckley et al. [29] consists

of healthy controls and entorhinal cortex biopsies

with neurofibrillary tangles which are considered an

early event in AD pathology (Supplementary Fig. 7).

Cluster analysis with the gene signature on this test

set resulted in three clusters that were more or less

mixed up and only had a few coherent sub-clusters.

Red bars at the bottom indicate healthy control while

blue bars indicate neurofibrillary tangles. The infe-

rior performance of the gene signature on entorhinal

cortex biopsies might be due to its specificity to

hippocampus. AD-related gene expression and reg-

ulatory networks exhibit distinct behavior between

hippocampus and entorhinal cortex.

Cluster analysis of iPCS-derived AD model

datasets

In comparison to brain biopsy-derived datasets, a

major disadvantage of iPSC-derived AD models is

51



1072 W. Wruck et al. / A Meta-Analysis of AD Brain Biopsies and iPSC-Derived Neuronal Cells

Fig. 3. Cluster analysis of the alternative-platform test set separates AD from healthy control. After recalibration of the gene signature

with data from the GSE36980 Affymetrix hippocampus biopsy dataset 29 AD-correlated genes remain. This signature is considered the

platform-independent AD gene signature. It enables clustering of the GSE36980 dataset into one pure AD cluster and one healthy control

cluster containing one outlier AD sample.

the smaller sample size of the datasets due to the

complex process of patient-specific iPSC-derivation

and differentiation into neuronal cells. On the other

hand, the advantages of the iPSC-based models are

obvious: patient-specific in-vitro models of AD can

be perturbed in order to test new hypotheses. A sum-

mary of the analyzed iPSC-derived AD models with

their mutation and the neural protocols is provided in

Table 1B.

The cluster analysis with the gene signature

for the dataset GSE43326 from Kondo et al.

[36] with relatively high sample size for iPSC-

AD-models showed good results: it separated one

familial AD (APP mutations) from the healthy con-
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Fig. 4. Gene signature demonstrates functionality of the iPSC-based AD model in reproducing the AD phenotype. Cluster analysis using

the gene signature with an iPSC-based AD model from Kondo et al. (2013, GEO accession no. GSE43326) enables separation of an AD-

associated cluster. The dataset consists of iPSC-derived neurons from patients with a familial amyloid precursor protein (APP)-E693D

mutation and from control subjects with a wildtype APP. This cluster analysis also showed the relevance of transcript variants as the optimal

cluster separation was only possible with specific transcripts.

trol samples (APP wild type) as demonstrated in

Fig. 4.

As mentioned above, the small sample size has

major impact on the results of the cluster analysis: in

most datasets it is so low that a reasonable clustering

is barely possible. Dataset GSE28379 from Yagi et

al. [35] contains two iPSC-derived AD model cell

lines carrying PSEN2 mutations and two control

iPSC-derived neuron samples—one of them from

a Parkinson’s disease (PD) patient (Supplementary

Fig. 8). Here, one PSEN2 mutation sample clusters

with the PD sample while the other PSEN2 mutation

sample clusters separately from the other samples. In

dataset GSE34879 from Israel et al. [37], there is only
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Fig. 5. Transcription factor analysis of the gene signature reveals FOX-family factors as main regulators. Transcription factor analysis

with the oPOSSUM-3 tool was performed with genes from the AD gene signature. Red circles denote genes while green circles denote

transcription factors with a size corresponding to their significance (z-score). Factors from the FOX family (FOXA1, FOXA2, FOXD1,

FOXO3, FOXQ1, FOXI1) have the highest significance.

one AD patient-specific iPSC sample and one iPSC-

derived neuron sample. Nevertheless, these samples

showed some differences with the healthy control

samples in the cluster analysis of the gene signature

(Supplementary Fig. 9). The dataset from Hossini

et al. [22] comprised two iPSC-derived neuron cell

cultures derived from a single sporadic AD (sAD)

and one healthy control derived from embryonic

stem cell line H9 (Supplementary Fig. 10). Applying

the gene signature to this test set clustered the

two AD samples separate from the healthy control

revealing some prominent differences between the

two AD samples and the control, e.g., the S100

calcium binding protein A6 (S100A6). In summary,

our AD gene signature could separate AD samples

from healthy controls in the iPSC-based AD models,

with the exception of the Yagi et al. (GSE28379,

[35]) dataset which was probably masked by the

similarity of the PD control to the AD phenotype.

Characterization of the gene signature

The gene signature was further investigated with

the aim to identify associated gene regulatory net-

works employing gene set and transcription factor

analyses. Table 3 shows the 20 most significant terms

from gene ontology over-representation analysis of

the AD gene signature. These gene ontology terms

point to a major role of regulation of glial cells

and development of nervous system. Table 4 shows

the results of a KEGG pathway over-representation

analysis. Protein processing in endoplasmatic reticu-

lum, amyotrophic lateral sclerosis and Neurotrophin

signaling pathway are found as significant with a
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Fig. 6. FOX gene expression analysis from commercially available brain RNA and iPSC model. Quantitative real time PCR (qRT-PCR)

analysis of healthy adult and AD brain as well as healthy (H9)- and diseased (AD5)-derived neuronal network of [22] are shown. Both

analyses are presented relative to the “housekeeping” gene �-Actin and normalized to fetal brain RNA (for adult and AD brain) and to

undifferentiated H9 or AD5 cells (for stem cell-derived neurons).

Fig. 7. FOXA and FOXO mediated induction of oxidative stress and consequent neuronal loss. FOXA transcription factors induce Oxidative

Phosphorylation leading to oxidative stress and abnormal neuronal cell cycle entry. Different cellular localizations of FOXO1 together

with its regulators JNK and PI3K-PKB in response to oxidative stress may cause cell cycle arrest. Eventually, cell cycle arrest results in

neuronal loss.
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p-value < 0.05 and at least two genes in the pathway.

KEGG pathway Protein processing in endoplas-

mic reticulum (Supplementary Fig. 11) obviously

is related to AD associated misfolded amyloid-�

(A�) and tau proteins. Furthermore, within this path-

way involvement of the ubiquitin ligase complex via

FBP (FBXO2) and induction of apoptosis (BCL2 and

ASK1:MAP3K5) are fundamentals of AD.

Figure 5 shows the network resulting from a tran-

scription factor analysis with the gene signature using

the oPOSSUM-3 tool [38]. Factors from the FOX

family (FOXA1, FOXA2, FOXD1, FOXO3, FOXQ1,

FOXI1) have the highest significance (see also Sup-

plementary Fig. 12, Supplementary Table 1). The

graphs point to the Forkhead/winged helix tran-

scription factors that regulate the gene signature.

Transcription factors FOXA1 and FOXA2 and others

from the Forkhead/winged helix family were most

significant with a z-score greater than mean plus

two standard deviations. Foxa1 and Foxa2 have been

reported to regulate development and maintenance

of mouse dopaminergic neurons [25, 26] and the

dopaminergic system in midbrain has been associated

with AD [23]. The FOXA1 and FOXA2 mediated reg-

ulation of dopaminergic neurons has been reported

for the midbrain whereas the hippocampus is part

of the forebrain. Thus the question emerged if the

midbrain-located dopaminergic system also affects

the hippocampus. Influences of the dopaminergic sys-

tem on the hippocampus have been described [45]:

dopaminergic neurons promote hippocampal reacti-

vation and axons expressing dopaminergic markers

have been found within the hippocampus. Our results

suggest that the gene regulatory network orches-

trated by FOXA1 and FOXA2 not only affects the

dopaminergic neurons in the midbrain but also in the

hippocampus where dopaminergic axons are located.

However, this hypothesis needs further validation

using an AD-iPSC cell model.

To further investigate if there is contribution of

the FOX genes to AD, we analyzed expression of

several FOX genes by qualitative real-time PCR anal-

ysis as shown in Fig. 6. We analyzed the genes

encoding FOXA2 (see Fig. 5 and Supplementary

Fig. 12), FOXD1 (involved in diencephalon devel-

opment [46]; see Supplementary Fig. 12), FOXF1,

and FOXG1 (associated with forebrain interneuronal

development [47]). For a general overview of these

FOX genes in neuronal patterning, we documented

their expression in healthy adult and AD brain (nor-

malized to fetal brain; all commercial RNA from

Amsbio®), Fig. 6A. In the AD-affected brain, FOXA2

is slightly downregulated, beyond that the medial

ganglionic eminence-progenitor marker FOXG1 is

barely detectable as expressed in both healthy adult

and AD brain. Further analysis in the iPSC models

of Hossini et al. [22], reveals a general depression

of all FOX genes in the neural network derived from

the sAD patient with the exception of FOXA2, which

seems to be upregulated (Fig. 6B).

Furthermore, in Supplementary Fig. 13, signifi-

cant transcription factors FOXA1, FOXA2, FOXO3,

FOXD1, and PAX6 were analyzed together with

genes from the AD signature in the iPSC-based

AD model from Hossini et al. [22]. FOXO3 shows

the highest expression over all samples and clusters

together with PAX6. FOXA1 and FOXA2 have high

differences between AD and healthy control and are

in the same cluster together with GLIS3, CXCR4,

NUPR1, and EMP1.

Consideration of AD as metabolic disease

As described extensively in our introduction, it is

evident that metabolism should be included when

studying the etiology of AD. To this end, we carried

out analyses targeting metabolic processes within the

current datasets.

Table 5 lists the over-representation of central

metabolic KEGG pathways in the analyzed AD

datasets tested via hypergeometric test. We found

TCA-cycle significant (p < 0.05) in the dataset from

Hokama et al. [28] as well as oxidative phosphory-

lation which also is significant in Blalock et al. [44],

while insulin signaling is significant in Hokama et al.

[28] and also in the iPSC AD model from Kondo

et al. [36]. Additionally, other metabolism-related

pathways are detected as significant, for example,

purine metabolism (Supplementary Table 2). Fur-

thermore, gene ontology over-representation analysis

demonstrates that response to stress, regulation of

cellular metabolic processes, and reactive oxygen

species are significantly over-represented in the AD

gene signature (Supplementary Table 3). In sum-

mary, these findings show that several metabolic

processes and particularly oxidative stress are asso-

ciated and intimately involved in the pathogenesis

of AD.

DISCUSSION

With our meta-analysis we found a gene signature

of 34 distinct genes. For most of them an associa-

tion with AD has been reported (Table 2). Trying to
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Table 3

Gene ontology overrepresentation analysis of the AD gene signature

GOID p value Term genes

0014015 0.00003 positive regulation of

gliogenesis

CXCR4,GFAP,HES1

0008283 0.00008 cell proliferation BCL2,CXCR4,EMP1,GFAP,HES1,NUPR1,S100A6,SPARC,TGFBR3,

WFDC1,YAP1

0035295 0.00016 tube development BCL2,CXCR4,HES1,SMAD9,SPARC,YAP1

0023056 0.00020 positive regulation of

signaling

ASXL2,BCL2,CXCR4,GFAP,HES1,MAP3K5,TGFBR3,YAP1

0014013 0.00020 regulation of

gliogenesis

CXCR4,GFAP,HES1

0010647 0.00020 positive regulation of

cell communication

ASXL2,BCL2,CXCR4,GFAP,HES1,MAP3K5,TGFBR3,YAP1

0010720 0.00024 positive regulation of

cell development

BCL2,CXCR4,GFAP,HES1

0021783 0.00026 preganglionic

parasympathetic

nervous system

development

HES1,NAV2

0042127 0.00028 regulation of cell

proliferation

BCL2,GFAP,HES1,NUPR1,S100A6,SPARC,TGFBR3,WFDC1,YAP1

0045597 0.00035 positive regulation of

cell differentiation

ASXL2,BCL2,CXCR4,GFAP,HES1,SMAD9

0048486 0.00035 parasympathetic

nervous system

development

HES1,NAV2

0060251 0.00041 regulation of glial cell

proliferation

GFAP,HES1

0002320 0.00046 lymphoid progenitor

cell differentiation

BCL2,HES1

0016049 0.00064 cell growth BCL2,EMP1,NUPR1,TGFBR3,WFDC1

0030856 0.00065 regulation of

epithelial cell

differentiation

BCL2,HES1,YAP1

0014009 0.00070 glial cell proliferation GFAP,HES1

0035265 0.00072 organ growth BCL2,TGFBR3,YAP1

0045595 0.00075 regulation of cell

differentiation

ASXL2,BCL2,CXCR4,GFAP,HES1,SMAD9,TGFBR3,YAP1

0009628 0.00084 response to abiotic

stimulus

BCL2,CXCR4,GMPR,SMAD9,SPARC,TGFBR3,YAP1

0048713 0.00085 regulation of

oligodendrocyte

differentiation

CXCR4,HES1

The 20 most significant terms from gene ontology over-representation analysis of the AD gene signature point to a major role of regulation

of glial cells and development of nervous system. The analysis had been conducted for all three Gene Ontology top categories but the most

significant Cellular Component term was “glial cell projection” with only the gene GFAP and a p-value of 0.0034, which was above the

p-values of the top 20 Biological Processes terms. The same holds for the Molecular Function terms where “coreceptor activity” was the

most significant term with a p-value of 0.000873, which also was above the p-values of the top 20 Biological Processes terms.

find common functionality in this gene set via lit-

erature search identified the TGF� pathway, which

is represented by the genes SMAD9 and TGFBR3

and the genes BCL2, FBXO2, and MAP3K5 related

to protein processing. Tesseur et al. described that a

deficiency in TGF� signaling can initiate AD pathol-

ogy [48]. Paradis et al. found that A� peptide of AD

downregulates Bcl-2 [49]. Furthermore the astrocytic

calcium/zinc binding gene S100A6 which is part of

our AD signature has been reported to be overex-

pressed in AD and in PS1/APP transgenic mouse

models [50]. Another striking gene from the AD sig-

nature was GFAP. Its expression differed from the

brain-specific- to the iPSC-derived AD models. It

seems that neuronal loss and the inflamed region of

the AD-affected brain induces GFAP gene expres-

sion. Typically, an increased expression of GFAP

represents astroglia activation and gliosis, especially

during neurodegeneration [51]. In the iPSC-derived

and AD neuronal network models, GFAP seemed to

be expressed at a lower level than in the brain biop-

sies. However, in almost all AD models, e.g., Kondo
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Table 4

KEGG pathway analysis of the AD gene signature

KEGGid KEGG name p hyper q hyper Genes

hsa04141 Protein processing in endoplasmic 0.0017 0.3285 FBXO2,MAP3K5,

reticulum BCL2

hsa05014 Amyotrophic lateral sclerosis 0.0029 0.3285 MAP3K5,BCL2

hsa04722 Neurotrophin signaling pathway 0.0151 1.0000 MAP3K5,BCL2

hsa04950 Maturity onset diabetes of the young 0.0377 1.0000 HES1

Results of KEGG pathway over-representation analysis via hypergeometric test (p hyper: p-value from hypergeometric

test, q hyper: p-value adjusted for multiple testing). KEGG pathway over-representation analysis finds Protein processing

in endoplasmatic reticulum, amyotrophic lateral sclerosis, and neurotrophin signaling pathway as significant with a p-value

< 0.05 and at least two genes in the pathway.

Table 5

Overrepresentation of central metabolic KEGG pathways in the analyzed datasets

Dataset Literature Dataset description KEGG name p FDR

GSE26927 Durrenberger et al., [30] entorhinal cortex Glycolysis / Gluconeogenesis 0.77 1.00

GSE28146 Blalock et al., [44] hippocampus Glycolysis / Gluconeogenesis 0.21 0.70

GSE28379 Yagi et al., [35] iPSC AD model EOAD, fAD: PSEN2 Glycolysis / Gluconeogenesis 1.00 1.00

GSE36980 Hokama et al., [28] hippocampus Glycolysis / Gluconeogenesis 0.09 0.27

GSE43326 Kondo et al., [36] iPSC AD model fAD: APP Glycolysis / Gluconeogenesis 0.16 0.45

GSE4757 Dunckley et al., [29] entorhinal cortex Glycolysis / Gluconeogenesis 1.00 1.00

GSE42492 Hossini et al., [22] iPSC AD model LOAD, sAD Glycolysis / Gluconeogenesis 1.00 1.00

GSE29378 Miller et al., [27] hippocampus CA1 and CA3 Glycolysis / Gluconeogenesis 0.96 1.00

GSE26927 Durrenberger et al., [30] entorhinal cortex Citrate cycle (TCA cycle) 1.00 1.00

GSE28146 Blalock et al., [44] hippocampus Citrate cycle (TCA cycle) 0.18 0.65

GSE28379 Yagi et al., [35] iPSC AD model EOAD, fAD: PSEN2 Citrate cycle (TCA cycle) 1.00 1.00

GSE36980 Hokama et al., [28] hippocampus Citrate cycle (TCA cycle) 1.2E-05 4.5E-04

GSE43326 Kondo et al., [36] iPSC AD model fAD: APP Citrate cycle (TCA cycle) 0.41 0.68

GSE4757 Dunckley et al., [29] entorhinal cortex Citrate cycle (TCA cycle) 1.00 1.00

GSE42492 Hossini et al., [22] iPSC AD model LOAD, sAD Citrate cycle (TCA cycle) 1.00 1.00

GSE29378 Miller et al., [27] hippocampus CA1 and CA3 Citrate cycle (TCA cycle) 0.40 1.00

GSE26927 Durrenberger et al., [30] entorhinal cortex Oxidative phosphorylation 0.10 1.00

GSE28146 Blalock et al., [44] hippocampus Oxidative phosphorylation 0.03 0.20

GSE28379 Yagi et al., [35] iPSC AD model EOAD, fAD: PSEN2 Oxidative phosphorylation 1.00 1.00

GSE36980 Hokama et al., [28] hippocampus Oxidative phosphorylation 1.2E-06 6.9E-05

GSE43326 Kondo et al., [36] iPSC AD model fAD: APP Oxidative phosphorylation 0.99 1.00

GSE4757 Dunckley et al., [29] entorhinal cortex Oxidative phosphorylation 1.00 1.00

GSE42492 Hossini et al., [22] iPSC AD model LOAD, sAD Oxidative phosphorylation 0.65 1.00

GSE29378 Miller et al., [27] hippocampus CA1 and CA3 Oxidative phosphorylation 0.94 1.00

GSE26927 Durrenberger et al., [30] entorhinal cortex Insulin signaling pathway 0.84 1.00

GSE28146 Blalock et al., [44] hippocampus Insulin signaling pathway 0.08 0.38

GSE28379 Yagi et al., [35] iPSC AD model EOAD, fAD: PSEN2 Insulin signaling pathway 1.00 1.00

GSE36980 Hokama et al., [28] hippocampus Insulin signaling pathway 1.2E-05 4.5E-04

GSE43326 Kondo et al., [36] iPSC AD model fAD: APP Insulin signaling pathway 2.2E-04 7.3E-03

GSE4757 Dunckley et al., [29] entorhinal cortex Insulin signaling pathway 0.76 1.00

GSE42492 Hossini et al., [22] iPSC AD model LOAD, sAD Insulin signaling pathway 0.67 1.00

GSE29378 Miller et al., [27] hippocampus CA1 and CA3 Insulin signaling pathway 0.17 1.00

P < 0.1 and FDR < 0.1 are marked by italic fonts, p < 0.05 and FDR < 0.05 additionally in bold.

et al. (Fig. 4), the expression of GFAP is higher in AD

patients compared to healthy control individuals.

Our results clearly point to an important role

of FOXA1 and FOXA2 in regulating biological

processes, which are significantly dysregulated in

AD. This finding is in corroboration with reported

observations implying that Foxa1 and Foxa2 regu-

late development of dopaminergic neurons and that

the dopaminergic system plays a major role in the

development of AD. Thus, the results from this

analysis have unveiled a gene regulatory network

controlled by FOXA1 and FOXA2. This gene net-

work is involved in development and maintenance

of dopaminergic neurons and is associated with

AD. The influence of FOXA1 and FOXA2 on the

dopaminergic neurons has been described only for

the midbrain but not for hippocampus where we

found the dysregulation of these transcription fac-

tors. However, McNamara et al. previously discussed

the influence of dopaminergic neurons on the hip-
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pocampus [45] revealing that dopaminergic neurons

promote hippocampal reactivation and that axons

expressing dopaminergic markers have been found

in hippocampus. Furthermore we have elucidated

the FOX gene expression in the AD-affected brain

and in our iPSC model. FOXA1/FOXA2 are regu-

lating ventral midbrain neural development [25], but

beyond that FOXA2 directly induce sonic hedgehog,

a key player in forebrain development of inhibitory

interneurons. Interneurons express FOXG1 upon pro-

genitor state [47] and are impaired in AD patients

[52].

Our results highlight the important role of

metabolic processes, particularly oxidative phos-

phorylation and oxidative stress in the pathology

of AD. Furthermore, the FOX transcription factors

have already been reported to play a major role in

metabolism and induction of oxidative stress. Inter-

estingly, Gao et al. find an inverse regulation of

metabolism-related and neuronal genes in Foxa1 and

Foxa2 compound knockdown mouse beta cells [53].

Kittappa et al. already discussed that impairment of

mitochondrial function via oxidative stress induced

by FOXA2 leads to neuronal loss [54]. However, this

study was based on dopaminergic neurons in PD but

similar mechanisms may also exist in AD. An impor-

tant difference to PD might be the contribution of

other FOX family transcription factors such as the

FOXG and FOXO families.

For FOXO transcription factors which we also

found significantly enriched in the Opossum anal-

ysis, Manolopoulos et al. reported an involvement in

the pathogenesis of AD and in insulin resistance via

oxidative stress [55]. They hypothesize that ROS acti-

vating c-Jun N-terminal kinases (JNK) and inhibiting

Wnt-signaling may lead to amyloid-� plaques and

tau protein phosphorylation. Additionally, inhibition

of Wnt-signaling may further activate FOXO pro-

teins thus leading to a feedback loop of oxidative

stress, insulin resistance, ROS, and neurodegenera-

tion. In summary, we hypothesize that the FOXA-

and FOXO-mediated mechanisms leading to neu-

ronal loss in AD (Fig. 7) might be as follows: FOXA

is involved in the aging-induced dysregulation of

metabolic processes including glucose homeostasis

[56], carbohydrate metabolism [53], and oxidative

phosphorylation [54, 57]. This metabolic dysregula-

tion leads to oxidative stress, the abundant increase of

ROS. ROS activates JNK through MAP3K5 (ASK1)

[58, 59]. JNK regulates several processes includ-

ing a cascade of JUNB and BCL2 connected to

mitochondrial stress and FOXO-mediated processes

involved in neuronal loss: (i) FOXO3 regulates the

pro-apoptotic BCL2 [60]. (ii) Aberrant neuronal cell

cycle re-entry and dysregulation by FOXO together

with its regulators JNK and PI3K-PKB [61] eventu-

ally results in neuronal loss [10, 62, 63].

Finally, we propose an AD-iPSC cell model to test

our hypothesis, which implies an important role of

FOXA1, FOXA2, and FOXO gene regulatory net-

works in the etiology of AD.
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ABSTRACT

Considered a feature of the metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), is

associated with insulin resistance, type 2 diabetes, obesity and drug toxicity. Its prevalence is

estimated at about 30% in western countries mainly due to sedentary life styles and high fat

diets. Genome-wide association studies have identified polymorphisms in several genes, for

example, PNPLA3, and TM6SF2 which confer susceptibility to NAFLD. Here, we review recent

findings in the NAFLD field with a particular focus on published transcriptomics datasets which

we subject to a meta-analysis. We reveal a common gene signature correlating with the pro-

gression of the disease from steatosis and steatohepatitis and reveal that lipogenic and choles-

terol metabolic pathways are main actors in this signature. We propose the use of disease-in-a-

dish models based on hepatocyte-like cells derived from patient-specific induced pluripotent

stem cells (iPSC). These will enable investigations into the contribution of genetic background in

the progression from NALFD to non-alcoholic steatohepatitis. Furthermore, an iPSC-based

approach should aid in the elucidation of the function of new biomarkers, thus enabling better

diagnostic tests and validation of potential drug targets. STEM CELLS 2016; 00:000–000

SIGNIFICANCE STATEMENT

The continuously increasing prevalence of nonalcoholic fatty liver disease (NAFLD) estimated at

approximately 30% in western countries and the paucity of available publications incorporating

epidemiology, genome-wide association studies, epigenetics and meta-analysis of transcriptome

data, served as impetus for this review article. We reveal a NAFLD-gene signature which corre-

lates with the progression of the disease from steatosis to non-alcoholic steatohepatitis, fibro-

sis, cirrhosis, and eventually liver cancer. We also propose the implementation of patient-

specific disease models based on induced pluripotent stem cells differentiated into hepatocytes

and challenged with oleic acid to enable a better understanding of the molecular mechanisms

underlying the etiology of NAFLD.

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) has an

increasingly large impact on public health as it

is estimated at about 30% prevalence in west-

ern countries. This is in contrast with develop-

ing countries where sedentary life style and

lack of exercise are not yet widespread. Bur-

den to public health is further underlined by

the fact that NAFLD is the second most com-

mon reason for liver transplantation [1]. As a

consequence, there is an urgent need for non-

invasive diagnostic tests which are

complication-free unlike liver biopsies-based

diagnosis. Imaging techniques have potential

but also some limitations in non-invasive

detection of NAFLD [2]: while ultrasonography

(US) is cost-effective but lacking accuracy mag-

netic resonance (MR) spectroscopy (MRS) and

imaging (MRI) are at the moment the most

accurate imaging techniques for detection of

steatosis. US elastography and MR elastogra-

phy are promising methods for diagnosis of liv-

er fibrosis.

The etiology of NAFLD and its progression

is caused by a complex interplay of genetic

and environmental factors. The involvement of

genetic background is assessed by genome-

wide association studies (GWAS) [3, 4] while a

plethora of gene expression, proteomics and

metabolomics studies explore environmental

factors and their impact on disease-associated

molecular pathways. An emerging theme is

the function of Peroxisome proliferator-

activated receptor a (PPARa) in lipid homeo-

stasis and its lower expression in NAFLD

patients. Additionally Montagner et al.
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reported that hepatocyte-specific deletion of PPARa is suffi-

cient to promote NAFLD in mice [5]. Ratziu et al. [6] demon-

strated the resolution of non-alcoholic steatohepatitis (NASH)

by the PPARa agonist Elafibranor. Another aspect gaining

attention in the NAFLD community is the role of polyunsatu-

rated fatty acids (PUFAs) in the pathogenesis of NAFLD and

NASH [7]. Arendt et al. found lower hepatic PUFAs in patients

with NASH compared to simple steatosis—possibly due to

overexpression of FADS1 and FADS2 [8].

Disease-models for NAFLD and NASH have been proposed

[9] but a better understanding of the complex mechanisms

involved in NAFLD and its progression will only be possible

when patient-specific differences are accounted for. This can

be achieved by disease-models based on hepatocyte-like cells

derived from induced pluripotent stem cells (iPSCs) [10].

Here, we review and analyse the progress of NAFLD from

steatosis to NASH employing previously published gene

expression datasets [11–13] and examine which of the bio-

markers, signaling and metabolic pathways found in this

meta-analysis are manifested in the progression from low- to

high-grade steatosis [13].

GENOME-WIDE ASSOCIATION STUDIES

GWAS has identified polymorphisms in numerous genes such

as patatin-like phospholipase domain containing protein

(PNPLA3) [14], and Transmembrane 6 Superfamily Member 2

(TM6SF2) [4] which correlate with NAFLD. The relevant

PNPLA3 rs738409 (I148M) variant has a minor allele frequen-

cy (MAF) of 49% in Hispanics, 23% in those of European

ancestry and 17% in African Americans [15] which is much

higher than MAF for the relevant TM6SF2 polymorphism

rs58542926 (E167K) of 7% in Europeans, 4% in Hispanics, and

2% in African Americans [16]. Individuals with these variants

have a higher risk of developing NAFLD (PNPLA3 rs738409:

odds ratio(OR)5 3.26 (95% CI: 2.11–7.21) [3]; TM6SF2

rs58542926: OR5 2.13 (95% CI: 1.36–3.30) [17]). However,

the variants are only one piece of the jigsaw in the develop-

ment of NAFLD as there are many individuals carrying the var-

iants but are disease-free. The mechanisms of PNPLA3 action

still needs to be elucidated in detail. Recently, Pirazzi et al.

reported promising results showing high level expression of

PNPLA3 in hepatic stellate cells (HSCs) and reduction of

PNPLA3 enzymatic lipase activity in retinyl palmitate lysis into

retinol and palmitic acid in the I148M variant [18]. Eichmann

et al. further showed that Perilipin 2 (PLIN2), adipose TG

lipase (ATGL; alias PNPLA2) and co-activator comparative gene

identification-58 (CGI-58) are components of lipid droplets in

rat stellate cells and that also ATGL effectively hydrolises tri-

glycerides and retinol esters [19]. TM6SF2 has a dichotomic

characteristic: the minor allele appears to increase lipid drop-

let area and decrease hepatic very-low-density lipoprotein

(VLDL) excretion while the predominant allele appears to

increase hepatic VLDL excretion and a consequence of this is

the risk of cardiovascular disease [20].

SOURCES OF LIVER FAT

Surplus energy from a plethora of food not matched by ener-

gy expenditure via physical activity results in higher fat levels

in the body. Fat can be stored mainly as triglycerides in adi-

pose tissue or in liver. Browning et al. refer to the conven-

tional explanation for hepatic triglyceride accumulation stating

that obesity and insulin resistance result in increased release

of free fatty acids (FFAs) through hydrolysis from adipocytes

[21]. Uptake of FFAs by the liver is proportional to FFA con-

centrations in the blood [22]. In the liver, FFAs are then either

catabolized by b-oxidation in the mitochondria or esterified to

triglycerides. Steatosis results from impairment in one of

these pathways.

To complement the conventional explanation, hepatic lipo-

genesis has to be added to these fluxes to and from the liver

which according to Donnelly et al. 59.06 9.9% originate from

non-esterified fatty acids (FAs) in adipose tissue, 26.16 6.7%,

from de novo lipogenesis (DNL) and 14.96 7.0%, from diet

[23]. However, a detailed analysis of the origin of liver fat

revealed that individuals with high liver fat had more than

threefold higher DNL than individuals with low liver fat while

having similar levels of adipose flux of FFAs or production of

VLDL triglycerides from FFAs [24]. Thus, DNL emerges as the

major contributor to the development of steatosis besides

lipolysis.

PROGRESSION FROM NAFLD TO NASH AND FIBROSIS

Progression of non-alcoholic steatosis to steatohepatitis has

been described by the “two-hit” hypothesis: triglyceride accu-

mulation in the liver is the “first hit” and oxidative stress or

induction of cytokines the “second hit,” finally resulting in

steatohepatitis and in some cases fibrosis. However, related

mechanisms may be involved in the two hits because FFA can

increase oxidative stress and triglycerides might accumulate in

the liver to protect against this [25].

HSCs play a major role in the progression to fibrosis. In

healthy tissue, HSCs store lipid droplets containing about 80%

of retinoids and do not proliferate. In injured liver fat and ret-

inoids are removed from HSCs and they start to proliferate.

Endoplasmic reticulum (ER) stress and oxidative stress can

trigger this state through autophagy [26]. This state is defined

by the marker, a-smooth-muscle actin and results in the

trans-differentiation of HSCs into myofibroblasts and genera-

tion of fibrotic connective tissue (fibrogenesis) [27]. The

autophagy model is confirmed by Gonzalez-Rodriguez et al.

who report a pattern of the autophagy markers p62 and

increased LC3-II/LC3-I ratio during the progression of NAFLD

and hypothesize that elevated ER stress disrupts the autopha-

gic flux leading to accumulation of unfolded proteins and

damaged organelles, triggering liver injury the and apoptotic

cell death [28].

Carpino et al. describe that, in the lipotoxicity-mediated

progression of NAFLD, prolonged hepatocyte apoptosis and

cell cycle arrest induced by oxidative stress can trigger the

proliferation and activation of hepatic stem/progenitor cells

(HPCs) [29]. A compartment of HPCs which can differentiate

into hepatocytes and cholangiocytes resides within the intra-

hepatic biliary tree. HPCs are activated and recruited only in

cases of massive injuries. The activation of HPCs correlates

with ductular reaction initiating fibrogenesis either through

production of chemotactic agents for inflammatory cells acti-

vating HSCs or through ductular epithelial-mesenchymal
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transition contributing to the portal myofibroblast pool. Liver

macrophages, the Kupffer cells, are involved in progression to

NASH via transformation into foam cells due to excessive

accumulation of lipids. Adipokines such as Adiponectin and

Resistin usually secreted by adipose tissue but also by HPCs

mediate the cross-talk among HSCs, HPCs and liver

macrophages.

There is an urgent need for non-invasive biomarkers of

NASH and fibrosis because liver biopsy as the diagnostic

“gold standard” can result in undesirable complications, fur-

thermore, imaging techniques can detect steatosis but not

steatohepatitis. Tests for fibrosis have better sensitivity and

specificity while for NASH, cytokeratin 18 (CK18/KRT18)

seems to perform better [30]. Despite slight improvements

by new assays or algorithm tests combining CK18 with other

markers or parameters, tests for NASH still lack sensitivity

and specificity. For diagnosing fibrosis satisfactory test panels

exist, for example, the FibroTest [31] can distinguish

advanced fibrosis from not-advanced stages quite accurately

but lacks this accuracy when it comes to distinguishing the

non-advanced stages into moderate, mild or no fibrosis. Rat-

ziu et al. claim that FibroTest provides a continuous quanti-

tative assessment of liver fibrosis in 100% of patients

without indeterminate cases [31]. However, Angulo et al.

interprete the study by Ratziu et al., that in 33% of the

patients the FibroTest value was in between the proposed

cutoffs of 0.30 and 0.70, and thus, unable to predict the

presence or absence of advanced fibrosis [32]. Moreover,

they demonstrate superior performance of their own simple

fibrosis score based on routine clinical parameters. New

putative biomarkers have been proposed by Moylan et al.

[33] which might improve diagnosis. The importance of clas-

sifying fibrosis is emphasized by Angulo et al., they found

that fibrosis stage and to a lesser extent liver histological

feature of NASH are associated with the long-term outcome

of NAFLD patients [34].

META-ANALYSIS OF NAFLD PROGRESSION

To enable better molecular understanding of the progres-

sion of NAFLD, a meta-analysis (methods described in Sup-

porting Information Materials and Methods) of publicly

accessible NAFLD datasets was performed (Fig. 1). Progres-

sion from NAFLD steatosis to NASH was investigated in

datasets from du Plessis et al. [35], Ahrens et al. [12] and

Horvath et al. [11], this was then compared to the progres-

sion from low- to high-grade steatosis utilizing the dataset

from Wruck et al. [13]. This strategy was tailored to find

early detectable biomarkers of disease progression to

NASH. The analysis was constrained to NASH and did not

include fibrosis-related datasets, for example, the dataset of

Moylan et al. [33], which have a distinct fibrosis character-

istic. Moylan et al. revealed that the severity of fibrosis is

reflected in the liver transcriptome and can be reduced to

a gene signature defining severe NAFLD. Our meta-analysis

focused on microarray-based datasets from liver biopsies,

for a more comprehensive view of the disease, a multi-

omics approach is needed (Fig. 1). This comprises analyses

of serum samples, liver biopsies and iPSC-derived hepato-

cyte-like cells challenged with oleic acid to mimic steatosis

in vitro and analysed at the metabolomic, proteomic, lipido-

mic and secretomic level. Figure 2A shows a venn diagram

of genes significantly (p< .05) associated with the progres-

sion of NAFLD to NASH based on datasets from du Plessis

et al. [35], Horvath et al. [11], Ahrens et al. [12] and Wruck

et al. [13]. Figure 2B lists the DAVID terms associated with

subsets of genes exclusively significant in the dedicated

datasets (marked with corresponding colored frames) from

the venn diagram (complete tables of gene correlations,

venn diagram subsets and DAVID analyses can be found in

Supporting Information Tables 1 and 2). Based on the inter-

section of all datasets, a signature of 22 genes (marked

with a blue frame) was unveiled. The most significant path-

ways found via DAVID functional annotation are cholesterol,

fatty acid, lipid synthesis, and metabolism (Fig. 2C). Inter-

estingly, oxido-reductase is among the top categories, this

enzyme is associated with oxidative stress and inflammation

which lead to NASH. The common 22-gene signature mostly

associated with metabolic pathways is listed in Figure 2D.

HPRT1 is central to purine metabolism, SQLE and CYP51A1

are central enzymes in cholesterol biosynthesis [36, 37],

FASN catalyzes the synthesis of palmitate and long-chain

saturated FAs, and FADS1 and FADS2 regulate unsaturation

of FAs.

The correlation of cholesterol synthesis and metabolism

with the severity of NAFLD has been described in numerous

studies, for example, Min et al. reported an association of

hepatic synthesis and dysregulation of cholesterol metabolism

with the severity of NAFLD [38]. Musso et al. identified a piv-

otal role of cholesterol content in the mitochondrial mem-

brane and the membrane of the ER in the induction of NASH

[39]: when cholesterol content in the mitochondrial mem-

brane is high, transport of glutathione to the mitochondria is

reduced thus impairing the regulation of reactive oxygen spe-

cies (ROS). De-regulation of ROS levels leads to oxidative

stress and sensitization of hepatocytes to the action of pro-

inflammatory signals. Within the ER membrane, the ratio of

free cholesterol to phospholipids is needed to maintain its flu-

idity and changes result in sarco(endo)plasmic reticulum

Ca21-ATPase (SERCA) inhibition, a low Ca21 concentration in

the ER and ER stress, unfolded protein response and eventual-

ly inflammation.

CLINICAL TRIALS

Since diagnostic methods for NAFLD still remain imprecise,

many research groups are embarking on large efforts to

identify accurate biomarkers. Recently, Gorden et al., pub-

lished an “omics” approach enabling distinguishing between

steatosis and NASH [40]. They describe a panel of 20 plas-

ma metabolites for the detection of a specific disease signa-

ture. Especially ether-linked phospholipids, certain neutral

lipids and FAs show suggestive differences between NASH

and steatosis. Furthermore, they suggest NOD-like receptor

pyrin domain containing 3 as a marker for fibrosis. Due to

the lack of effective biomarkers there are few definite phar-

macotherapy treatment options available to NAFLD

patients. Current therapy recommendations include weight

reduction by diet, physical exercise or weight reduction

drugs (e.g., orlistat, sibutramine), lipid metabolism-
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regulating drugs and bariatric surgery [41]. As weight loss is

difficult to achieve and maintain, numerous clinical trials

employing distinct drugs have been conducted [42]. Most

extensively evaluated drugs are glitazones (TZDs) and anti-

oxidants to improve insulin sensitivity and reduce oxidative

stress [42]. Past trials demonstrated that TZD medication

leads to significant weight gain as well as higher risks of

myocardial infarction and bladder cancer, and therefore

their impact is still controversial [42]. The PIVENS (https://

clinicaltrials.gov/ct2/show/NCT00063622) trial showed a

comparable effect of vitamin E and pioglitazone [43]. How-

ever, recent studies have not been able to detect superior

efficacy compared to placebo [44]. Many studies also

involve combined treatment with the antioxidants vitamin E

and vitamin C. Although improved insulin sensitivity, transa-

minases and liver histology were detected after supplemen-

tation [45, 46], recent studies linked the risk of developing

prostate cancer and increased mortality to daily administra-

tion of vitamin E [47, 48]. Betaine is a nutrient, which leads

to an up-regulation of PPARa and LXRa in the liver, result-

ing in reduced lipid accumulation and improved insulin

resistance [49]. Furthermore, fibrates (peroxisome

proliferator-activated receptor (PPAR) a ligands) are com-

monly used for treatment of hypertriglyceridemia, sugges-

ting a beneficial effect for NAFLD patients by reducing

serum lipid levels [50]. Nevertheless, there are just few

studies targeting PPARa in human at the present time.

While long-term treatments with fibrates lead to hepatic

cancer in rodent models, Nseir et al. [51] concluded that

they are safe to use in NAFLD patients. Another strategy

might be the treatment with Omega-3 FAs, which are

already approved for hypertriglyceridemia. Therefore, a

dose of 2–4 g/day of eicosapentaenoic acid (EPA) plus doco-

hexaenoic acid (DPA) is recommended. In the WELCOME

study combined treatment of EPA and DPA showed a trend

toward the improvement in liver fat percentage in NAFLD

patients. However, no improvement in fibrosis scores was

detected [52]. Pentoxifyllin and several ACE-inhibitors have

Figure 1. Scheme of experiments for multi-omics comparison of steatosis grades. (adapted from Wruck et al. [13]). In the figure, a
multi-omics experiment design for stratification of nonalcoholic fatty liver disease severity is shown. Patients from du Plessis et al. [35],
Ahrens et al. [12] and Horvath et al. [11] classified as NASH and steatosis and patients from Wruck et al. [13] classified by pathologists
as low-grade (5–33% steatosis area) and high-grade (>33% steatosis area) are compared based on gene expression microarrays and RT-
PCR from liver biopsies. Here these datasets are further investigated via meta-analysis. Furthermore, in our previous study Wruck et al.
[13], ELISA assays (proteome) and NMR-based metabolome were analyzed from patient and healthy control serum samples. Fibroblasts
from skin biopsies were reprogrammed into iPSCs and differentiated into HLCs [73, 74]. Pluripotency in iPSCs were confirmed by the
expression of OCT4 and TRA-1-60. HLCs express ALBUMIN and AFP. After stimulus with for example, oleic acid they incorporate fat as
lipid droplets (Graffmann et al. [75]). Scale bars: 100 mm/50 mm/20 mm. Abbreviations: HLC, hepatocyte like cell; iPSCs, induced pluripo-
tent stem cells; NASH, non-alcoholic steatohepatitis; NMR, Nuclear Magnetic Resonance.
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been suggested to prevent fibrosis and improve NASH due

to the inhibition of proinflammatory cytokines, however

more trials are needed as their effect was mainly shown in

animal studies [53]. To date several promising drugs such as

metformin, with beneficial effects in rodent models have

generated controversial results in human trials [44]. Recent-

ly, a promising clinical trial of the farnesoid X nuclear

receptor (FXR) activator obeticholic acid showed improve-

ment in the histological features of NASH [54]. However, its

safety needs further clarification. The results of our meta-

analysis and literature on the role of cholesterol in the pro-

gression to NASH [38, 39] are in line with the outcome of

this clinical trial on an activator of FXR which is known to

accelerate retrograde cholesterol transport by increasing

the clearance of HDL [54]. Evidence presented suggest we

cannot extrapolate findings in rodent models to human and

further trials are needed to identify feasible medications

for NAFLD patients and medication should be currently

restricted to patients with related comorbidities.

EPIGENETICS AND MICRORNAS IN NAFLD

As in many other diseases not only genetic factors play a role

in the development of NAFLD and NASH, but also epigenetic

alterations are involved. The term epigenetics describes heri-

table changes in gene expression patterns that are not

encoded directly within the DNA but are rather determined

by associated factors such as DNA methylation or histone

modifications [55]. Although heritable, epigenetic modifica-

tions can be altered during a cell’s lifespan in response to

environmental conditions [55]. As the liver is the main meta-

bolic organ it is exposed to nutrition derived factors that can

influence its epigenetic signature [56]. With acetyl-CoA—the

input to fatty-acid synthesis—and S-adenosylmethionine, two

main factors that are required for epigenetic modifications of

histones and DNA are directly linked to glucose or methionine

metabolism, respectively [56]. It has been demonstrated that

histone acetylation contributes to NAFLD via activation of

lipogenic and glycolytic genes, while deviations from the ideal

Figure 2. A gene signature associated with nonalcoholic fatty liver disease (NAFLD) progression highlights involvement of lipid and cho-
lesterol metabolic processes and oxido-reductase/oxidative stress in the development of non-alcoholic steatohepatitis (NASH). (A): The
venn diagram shows the overlap between genes significantly (p< .05) correlated with NAFLD progression to NASH from four datasets
from du Plessis et al. [35], Wruck et al. [13], Ahrens et al. [12] and Horvath et al. [11]. The colored frames correspond to frames in (B–
D). (B): The functional annotations from the DAVID web tool associated with the genes expressed exclusively in the early-stage dataset
from Wruck et al. [13], shows involvement of endoplasmatic reticulum (ER and ER-Golgi transport and furthermore acetylation as over-
lap with the NASH dataset from Ahrens et al. [12] while du Plessis et al. [35] and Horvath et al. [11] overlap in the term phosphopro-
tein. (C): The functional annotations from the DAVID web tool associated with the common gene signature highlights lipid and
cholesterol synthesis and metabolism as major processes involved in disease progression. Furthermore, the term oxido-reductase points
at oxidative stress as the basis for inflammation. (D): The common steatosis- signature consists of 22 genes which include HPRT1, cen-
tral to purine metabolism, SQLE, the rate-limiting enzyme in sterol biosynthesis, CYP51A1, central to cholesterol biosynthesis [37], FASN,
catalyzing the synthesis of palmitate and long-chain saturated fatty acids, and FADS1 and FADS2, regulating unsaturation of fatty acids.
The color scale marks lower p-values in green and higher p-values in red.
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level of S-adenosylmethionine are linked to lipogenesis, accu-

mulation of hepatic triglycerides and NAFLD [56]. However,

epigenetic factors are only suitable as biomarkers when they

can be determined in easily accessible lymphocytes. In this

regard, a study with obese adolescents made promising pro-

gress showing a high correlation between body mass index

loss and DNA methylation changes in selected genes such as

AQP9, DUSP22, HIPK3, TNNT1, and TNNI3 [57].

Another easily accessible epigenetic parameter are micro-

RNAs (miRNAs) which can be measured directly in blood sam-

ples. miRNAs are short RNA molecules of about 22

nucleotides that regulate mRNA stability and thus transcription

levels [58]. Several studies accessed their role in steatosis with

somewhat diverse results, probably depending on differences

of diagnostic methods, staging and miRNA measurement [59].

As miRNA levels can be directly analysed in blood, they are

also suitable as biomarkers for the distinct stages of steatosis.

For example, the expression miRNA-122, which accounts for

70% of the total liver miRNAs is highly upregulated in the

blood of NAFLD patients [60, 61]. Additionally, blood levels of

miRNA-34a and 16 are also upregulated in NAFLD patients

compared to healthy controls. The expression levels of miRNA-

122 and 34a could even serve to distinguish NAFLD and NASH

[60]. Another study demonstrated that in addition to miRNA-

122, expression levels of miRNA-192 and 375 correlate with

the severity of the disease [61]. However, as the relationship

between miRNAs and regulated genes is highly dynamic and

multifactorial, careful additional studies are needed before

they can be reliably used as diagnostic biomarkers.

ROLE OF THE GUT MICROBIOME IN NAFLD

The gut microbiome is highly sensitive toward nutritional

changes and adapts in mice and humans after switches from

healthy to unhealthy diets and vice versa within a day [62,

63]. Dysbiosis, meaning a disturbed balance within the bac-

terial populations, plays a role in the development of NAFLD.

The ratio of Firmicutes to Bacteroidetes, the two main gut-

residing bacterial phyla, increases with obesity [64] and

there is an inverse correlation between Bacteroidetes per-

centage and steatohepatitis [65]. In addition, an overall

reduction of bacterial diversity has been associated with

obesity [66]. Interestingly, transplanting the gut microbiome

of mice with NAFLD into wildtype mice resulted in an

increase in the disease in the latter animals, demonstrating

that NAFLD is transplantable [67]. Dysbiosis is also responsi-

ble for metabolic endotoxemia where increased circulating

Lipopolysaccharids (LPS) trigger inflammatory reactions also

in the liver [68]. In addition, the gut barrier gets leaky

because tight-junctions between gut cells get disrupted

under high fat diets [69]. This leakiness allows LPS to enter

the blood system and to contribute to the systemic low

grade inflammation typically associated with NAFLD [69].

Besides these phenomena it has also been observed that a

couple of other metabolism related pathways, which are

influenced by the gut microbiome, are changed in NAFLD as

for example choline, fatty and bile acid metabolism or the

production of endogenous ethanol for a detailed review on

these processes please refer to Kirpich et al. [65] and

Houghton et al. [70].

THE PROSPECT OF DISEASE-IN-A-DISH MODELS WITH INDUCED

PLURIPOTENT STEM CELLS (IPSCS)

In vitro models of steatosis have been proposed by G�omez-

Lech�on et al. [71] and a sophisticated co-culture model of hepa-

tocytes and HSCs for NASH has been described [9]. As we

showed recently, iPSC derived hepatocyte-like cells are a reliable

cellular tool for modeling NAFLD (Graffmann et al. [75]). iPSCs

have the advantage that they can be derived from distinct

genetic backgrounds and the parental somatic cells are accessi-

ble with minimal invasive methods or can be even taken from

blood and urine [72]. The HLCs derived from these iPSCs can

then be cultured mimicking different nutritional conditions in

order to monitor donor-specific effects on metabolism and LD

incorporation. In contrast to primary hepatocytes, the amount

of HLCs is not limited, which enables larger and more detailed

studies. In addition, HLCs can be cultured longer than primary

hepatocytes before they dedifferentiate, which increases the

time period for analyses (unpublished observation).

With HLCs, the impact of a given genetic background on

hepatocyte TG storage can be analysed under standardized condi-

tions. In combination with CRISPR/cas9 it is even possible to

introduce or correct single mutations and thus directly assess

their role during disease development. Importantly, in vitro mod-

els are also suitable for drug testing and for experimentally verify-

ing the action and function of biomarkers [Wruck et al. Strategies

for identifying predictive biomarkers of non-alcoholic fatty liver

disease. Drug target Review 2016, 2. (17 March 2016)].

CONCLUSION

The importance of finding practicable diagnostic tests and

therapies for the distinct stages of NAFLD is underscored by

the fact it is becoming an economic burden and also an epi-

demic of the 21st century. While there are appropriate tests

for fibrosis which may be even improved by integration of

novel research findings diagnostic tests for NASH suffer from

a lack of sensitivity and specificity. Although it has been

reported that the long-term outcome of the disease depends

only on the fibrosis stage, early diagnosis of NASH or even

steatosis would enable intervention at early disease phases

which are reversible. Our meta-analysis unveiled a 22-gene-

signature which mainly represents cholesterol and lipid meta-

bolic pathways thus confirming publications pinpointing cho-

lesterol as major player in disease progression. Recent

promising results of a clinical trial based on obeticholic acid—

a FXR agonist accelerating cholesterol clearance—corroborates

our findings and highlight that cholesterol transport and

metabolism are potential targets for diagnostic markers and

therapies. We propose the use of disease-in-a-dish-models

based on hepatocytes derived from patient-specific iPSCs

which takes into account individual differences in this complex

metabolic disease. This approach could be combined with

iPSC-derived HSCs from the same patient in order to model

the important interactions between these two cell types

which are responsible for progression to NASH and fibrosis.
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Abstract

AIM

To compare transcriptomes of non-alcoholic fatty liver 
disease (NAFLD) and alcoholic liver disease (ALD) in a 
meta-analysis of liver biopsies.

METHODS

Employing transcriptome data from patient liver biopsies 
retrieved from several public repositories we performed 
a meta-analysis comparing ALD and NAFLD.

RESULTS

We observed predominating commonalities at the 
transcriptome level between ALD and NAFLD, most 
prominently numerous down-regulated metabolic path-
ways and cytochrome-related pathways and a few 
up-regulated pathways which include ECM-receptor 
interaction, phagosome and lysosome. However some 
pathways were regulated in opposite directions in ALD 
and NAFLD, for example, glycolysis was down-regulated 
in ALD and up-regulated in NAFLD. Interestingly, we 
found rate-limiting genes such as HMGCR , SQLE  and 
CYP7A1  which are associated with cholesterol processes 
adversely regulated between ALD (down-regulated) 
and NAFLD (up-regulated). We propose that similar 
phenotypes in both diseases may be due to a lower 
level of the enzyme CYP7A1 compared to the cholesterol 
synthesis enzymes HMGCR and SQLE. Additionally, we 
provide a compendium of comparative KEGG pathways 
regulation in ALD and NAFLD. 

CONCLUSION

Our finding of adversely regulated cholesterol processes 
in ALD and NAFLD draws the focus to regulation of 
cholesterol secretion into bile. Thus, it will be interesting 
to further investigate CYP7A1-mediated cholesterol 
secretion into bile - also as possible drug targets. The 
list of potential novel biomarkers may assist differential 
diagnosis of ALD and NAFLD. 
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Core tip: With a meta-analysis of newly published 
liver biopsy-derived transcriptome datasets we identified 
multiple key genes and pathways in common and mutually 
exclusive in alcoholic liver disease (ALD) and non-alcoholic 
fatty liver disease (NAFLD). We provide a compendium 
of comparative regulation for all KEGG pathways in both 
diseases and propose a list of biomarkers distinguishing 
both diseases. One surprising finding was that chole-
sterol metabolism was up-regulated in NAFLD and 
down-regulated in ALD although leading to the same 
steatosis phenotype which might be explained by an 
insufficient conversion rate to bile acids under both 
conditions.

Wruck W, Adjaye J. Meta-analysis reveals up-regulation of 

cholesterol processes in non-alcoholic and down-regulation in 
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) and alcoholic 

liver disease (ALD) have nearly identical symptoms and 

in the first report non-alcoholic steatohepatitis (NASH) 
was described as histologically mimicking alcoholic 

hepatitis
[1]

. While the cause of ALD is excessive alcohol, 

the cause of NAFLD is excessive fat resulting from an 

imbalance between diet and physical activity often 

associated with insulin resistance and obesity. 

We are working on the hypothesis that alcohol is meta-

bolized to fat and beyond this pathway both diseases 

share a common phenotype. Therefore we place special 

emphasis on alcohol metabolism which naturally plays 

a crucial role in ALD. Associations of variants in alcohol 

and aldehyde dehydrogenases with alcoholism have 

already been proposed
[2]

. Most variants protective against 

alcoholism result in a higher acetaldehyde level either 

by accelerating alcohol dehydrogenase (most common 

variants in ADH1B) metabolizing alcohol to acetaldehyde 

or by reducing aldehyde dehydrogenase (most common 

variants in ALDH2) metabolizing acetaldehyde to acetic 

acid. Acetaldehyde is a carcinogen and causes severe 

reactions such as flushing, accelerated heart rate and 

nausea. These severe reactions will impose on most 

carriers of these variants to abstain from alcohol and thus 

reduce their risk of becoming alcohol addicts. Furthermore, 

it has been reported that aldehyde dehydrogenases are 

down-regulated in alcoholics
[3]

 or animals continually 

exposed to alcohol had lower ethanol elimination rates
[4]

. 

However, this is a matter of debate as no significant 
down-regulation of aldehyde dehydrogenases was 

reported by Vidal et al
[5]

 but instead a down-regulation 

in cirrhotic livers independent of alcoholism. Acetic acid 

- the product of ethanol metabolism, can be further 

metabolized by acyl-CoA synthetases (ACSS1 and 
ACSS2) to acetyl-CoA, the substrate for fatty acid 
synthesis

[6]
. The expression and activity of Acyl-CoA 

synthetases in turn are controlled by the sterol regulatory 

element-binding protein which has been reported to be 

activated by ethanol
[7]

.

The progression of NAFLD from mild steatosis up to 

severe NASH or from ALD to alcoholic hepatitis varies 
widely between individual patients. Oxidative stress 

and dysregulation of cytokines as a basis for inflamma-
tion appear to foster progression to NASH[8]

 as well as 

alcoholic hepatitis (AH)[9]
. A two-hit progression from 

simple steatosis to steatohepatitis and fibrosis has been 
proposed

[10]
, and suggests that after fat accumulation in 

the liver, lipids are peroxidized by oxidative stress induced 

by factors such as CYP2E1. The microsomal enzyme CYP2E1 

metabolizes ethanol to acetaldehyde under conditions of 

alcohol dehydrogenase overload and generates oxidative 

stress as a by-product, however fatty acids also can be a 

substrate of CYP2E1
[9]

.

Recently the role of the gut has attracted attention. 

Under alcoholic or high-fat conditions lipopolysaccharides 

can pass the border of the intestine to the portal vein and 

circulate to the liver where they trigger inflammation in 
ALD

[11]
 and in NAFLD

[12]
.

Some studies have already compared ALD and 
NAFLD

[13]
, e.g., Wilfred de Alwis and Day

[14]
 compared 

the genetics of both diseases addressing the question 

why only a small percentage of heavy drinkers and 

obese people progress from steatosis to severe liver 

disease. Here, we provide an analytical comparison of 
transcriptomic and metabolic processes involved in the 

progression of ALD and NAFLD. Employing transcriptome 

data derived from patient liver biopsies retrieved from 

several public repositories we performed a meta-analysis 

and report a signature of biomarkers distinguishing 

AH from NASH samples. Furthermore, we found pre-
dominating commonalities between both diseases at 

the level of biological pathways thus implying a large 

mechanistic similarity between both diseases.

MATERIALS AND METHODS

Transcriptome data analysis
Datasets of microarray gene expression data from liver 

biopsies were downloaded from the public repositories 

at NCBI GEO and EBI Array-Express. The compen-

dium consisted of the ALD datasets GSE28619[15]
 and 

E-MTAB-2664
[16] and the NAFLD datasets GSE61260[17]

, 

GSE59045[18], GSE48452[19] and GSE46300[12]
. Illumina 

data was processed via R/Bioconductor
[20]

 and packages 

lumi
[21]

, limma
[22]

 and qvalue
[23]

. Background-corrected 

log2-transformed data was normalized via quantile 
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= 0.5.

Pathway charts of KEGG pathways indicating up- 

and down-regulation of genes in ALD and NAFLD were 

generated via the R/Bioconductor package pathview
[27]

.

RESULTS

A gene signature distinquishes ALD from NAFLD
The differences between ALD and NAFLD at the tran-

scriptome level could be condensed to a signature of 

187 genes which are differentially expressed between 

both conditions with a P-value < 0.01 from the limma 

test and a ratio > 3/2 or a ratio < 2/3. The heatmap in 

Figure 1A shows a cluster analysis of this signature of 

gene expression data from ALD liver biopsies (blue bar) 

and NAFLD liver biopsies (red bar). The table in Figure 

1B shows the 20 most up-regulated and 20 most-down-

regulated genes from the signature indicating their log2-

ratios and their P- and Q-values for the comparison 

ALD vs NAFLD. The most up-regulated gene between 

ALD and NAFLD was SPINK1. SPINK1 is secreted in the 
pancreatic juice to reversibly inhibit activated trypsin 

thus preventing pancreatic auto-digestion
[28]

 and variants 

in this gene have been associated with pancreatitis
[29]

. 

Obesity and more prominent alcohol abuse are other 

causative factors for pancreatitis
[28] 

which by its effects on 

insulin may contribute to liver disease. Lanthier et al
[16]

 

revealed the association of SPINK1 with inflammation 
and proliferation via correlation with the inflammatory 

macrophage marker CD68 and the cell cycle markers 

Cdk1 and CyclinB1. At the lower part of the table in 

Figure 1B two RGS (regulator of G-protein signalling) 
encoding genes, RGS1 and RGS2 are down-regulated in 
ALD but up-regulated in NAFLD. Nunn et al

[30]
 reported 

reduced fat deposits, decreased serum lipids, and low 

Leptin levels in RGS2 deficient mice.

Genes regulated in common between ALD and NAFLD
Analysis of the common genes between ALD and 

NAFLD was subdivided into analysis of down- and up-

regulated genes. Figure 2A shows that 104 genes are 

down-regulated in ALD and NAFLD (ratio < 0.8) while 

638 genes are exclusively down-regulated in ALD and 

285 in NAFLD. Figure 2B shows that 97 genes are up-

regulated in ALD and NAFLD (ratio > 1.25) while 519 

genes are exclusively up-regulated in ALD and 362 

in NAFLD. There are more distinctly expressed than 

overlapping genes - in contrary to the KEGG pathways 

where most pathways overlap (Figure 2E and F). Gene 

regulation was further restricted with a threshold for the 

limma test for differential expression of P < 0.05. Figure 

2C shows a venn diagram of the four resulting sets of 

up/down-regulated genes in ALD and NAFLD. Here most 
genes are exclusively regulated but interestingly from 

the genes regulated in both diseases more genes are 

oppositely than commonly regulated: 61 genes are up-

regulated in NAFLD but down-regulated in ALD and 12 

normalization from the lumi package. Affymetrix data 

was processed via R/Bioconductor and packages affy
[24]

, 

limma, qvalue employing the rma normalization method. 

Measurements from the multiple platforms were 

brought together in terms of mean ratios between ALD 

cases and controls and between NAFLD cases and controls. 

As controls, healthy liver biopsies or liver biopsies with a low 

grade of fat accumulation were used. For details we refer 

to the methods sections of the publications associated 

with the employed datasets
[12,15-19]. Heterogeneity of 

the datasets was assessed via the meta-analysis R 

package metafor
[25]

 generating forest and funnel plots 

(supplementary Figure 1A and B). The ratios were 

transformed to a log2 scale and normalized via quantile 

normalization. The results were again assessed with 

forest and funnel plots (supplementary Figure 1C and D).

Pathway analysis
In order to disentangle commonalities and differences 

between ALD and NAFLD, KEGG pathways
[26]

 were 

analysed with respect to common pathways, up- and 

down-regulation and discordant up- and down-regulation. 

The ratios between ALD and control and NAFLD and 

control were employed to count the numbers of up- and 

down-regulated genes for each pathway. A pathway was 

considered up-regulated when it contained more up- 

than down-regulated genes. Genes with a ratio > t were 

termed up-regulated and genes with a ratio < 1/t were 

termed down-regulated. The threshold t was determined 

at the 95-quantile of the mean ratios between ALD and 

NAFLD vs control and was set accordingly to t = 4/5. Up- 

and down-regulation of a pathway was determined via 

the ratio of numbers of up-and down-regulated genes 

and via a binomial test assuming an equal probability of 

P = 0.5 for a gene to be up- or down-regulated.

 

Here, nup,pw,case and ndown,pw,case are the numbers of up- 

and down-regulated genes in a pathway pw, gpw are the 

gene symbols associated with a pathway, xg,case is the 

gene expression value in a case which can be ALD or 

NAFLD, xg,control is the gene expression value in the control 

case, rpw,case is the ratio indicating up-regulation (rpw,case 

> 1) or down-regulation (rpw,case < 1) of pathway pw. 

Significance of up- or down-regulation of a pathway is 
assessed via the Binomial test with the Null hypothesis 

H0:p ≤ p0 and the test statistic B(p0, npw,case). Because of 

assumed equal distribution of up- and down-regulation 

the probability for the binomial distribution is set to p0 

ndown,pw,case = |{g|(             < 1/t) Λ (g ϵ gpw)}|, case ϵ 
{ALD, NAFLD}  (2)

xg,case

xg,control

npw,case = nup,pw,case + ndown,pw,case  (3) 

rpw,case =                    (4)
nup,pw,case

ndown,pw,case

Wruck W et al . Meta-analysis of ALD vs  NAFLD

nup,pw,case = |{g|(         > t) Λ (g ϵ gpw)}|, case ϵ {ALD, 

NAFLD}  (1)

xg, case

xg,control
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Gene log2ratio_

ALD_NAFLD

limma_p limma_q

SPINK1  3.1120     0.00086043   0.18404683

IGFBP2  2.0876     0.00021163   0.11364535

S100P  2.0475     0.00076244 0.1814015

LCN2  1.8578     0.00157791   0.20177258

P4HA1  1.6796 6.30E-5   0.09050201

PDZK1IP1  1.5916 8.43E-5   0.09050201

HKDC1  1.4752   0.0099653   0.27847194

NQO1  1.4712     0.00077208 0.1814015

SHBG  1.4032 0.003424   0.22085368

TRNP1  1.3509 1.28E-5   0.09050201

RAB3B  1.3441   0.0001067   0.09050201

RRM2  1.3100   0.0005424   0.15563552

CLDN2  1.2816   0.0023388   0.21111468

STEAP1  1.2667     0.00207474   0.20878205

C15orf48  1.2369 5.77E-5   0.09050201

SLC16A7  1.1967     0.00684988   0.25828645

TMCO3  1.1675 9.41E-5   0.09050201

SQSTM1  1.1231     0.00140252   0.20177258

FGL1  1.0544     0.00104332   0.18745735

CD109  1.0035   0.0081723 0.1814015

SGK1 -1.4274     0.00386065   0.23007365

HBEGF -1.4634     0.00616426   0.25461827

THRSP -1.5061     0.00141011   0.20177258

IL7R -1.5111     0.00126129   0.19647757

ACSL4 -1.5548     0.00302525 0.2146298

ENO3 -1.6119     0.00193989   0.20878205

CD69 -1.6346     0.00050895   0.15352702

JUN -1.6946     0.00050895   0.11364535

KCNN2 -1.7040   0.0019417   0.27677322

CXCR4 -1.7057     0.00958215   0.27677322

SQLE -1.8663     0.00937092   0.18404683

PTGS2 -1.8778 6.27E-5   0.09050201

ATF3 -1.9327   0.00026863   0.12722548

SRD5A2 -2.0482 3.49E-5   0.09050201

NR4A3 -2.0615   0.00436311   0.23545747

CYR61 -2.0653   0.00104554   0.18745735

CYP7A1 -2.0965 1.68E-5   0.09050201

RGS2 -2.1605   0.00069501   0.17342654

HMGCS1 -2.1724 0.0057275   0.25288411

RGS1 -2.2757   0.00128147   0.19647757

Figure 1  A gene signature distinquishes alcoholic liver disease from non-alcoholic fatty liver disease. A: The heatmap shows a cluster analysis of logarithmic 

ratios of gene expression data from ALD liver biopsies vs control (blue bar) and NAFLD liver biopsies vs control (red bar); B: The table shows the 20 most up-

regulated and 20 most-down-regulated genes from the signature indicating their log2-ratios and their P- and Q-values for the comparison ALD vs NAFLD. The full list 

of these genes can be found in Supplementary Table 2. ALD: Alcoholic liver disease; NAFLD: Non-alcoholic fatty liver disease.
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are up-regulated in ALD and down-regulated in NAFLD 

while only 5 were commonly up and 6 commonly 

down-regulated. Supplementary Table 1 shows the 
corresponding gene sets. The genes up-regulated in 

Wruck W et al . Meta-analysis of ALD vs  NAFLD

ALD_down_0.8          NAFLD_down_0.8

638 104 285

ALD_up_1.25             NAFLD_up_1.25

519 97 362

KEGG_ALD_down     KEGG_NAFLD_down

15 16 1

KEGG_ALD_up         KEGG_NAFLD_up

14 12 1

A B

D

E F

Figure 2  Most biological pathways are regulated in the same direction in alcoholic liver disease and non-alcoholic fatty liver disease but a subset of 

metabolism-associated genes are oppositely regulated. A: Compares ALD and NAFLD in terms of down-regulated genes (ratio < 0.8); B: In terms of up-regulated 

genes (ratio > 1.25). There are more distinct than overlapping genes - in contrary to the KEGG pathways where most pathways overlap (E and F); C: Interestingly, 

when regulation is further restricted with a P-value < 0.05 more genes are oppositely than commonly regulated - but most are exclusively regulated. Many of the 

oppositely regulated genes are associated with cholesterol processes, e.g., HMGCR, SQLE and CYP7A1, and are co-expressed with alcohol (ADH) and aldehyd 

dehydrogeneases (ALDH) as seen in the heatmap (ALD: Blue bar, NAFLD: Red bar) (D). A pathway is considered down-regulated (E) when it contains more down- 

than up-regulated genes as tested by the binomial test and the ratio, analogously up-regulated pathways are determined (F). The table of common down-regulated 

pathways includes metabolic, retinol, cytochrome and fatty acid degradation pathways, the up-regulated include ECM-receptor, lysosome and phagosome. ALD: 

Alcoholic liver disease; NAFLD: Non-alcoholic fatty liver disease.
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NAFLD but down in ALD refer to major players in 

cholesterol processes such as HMGCS1, HMGCR, SQLE, 

CYP7A1 and LDLR. This would confirm the involvement 
of cholesterol biological processes in the etiology 

of NAFLD as we previously reported
[31]

 and which 

distinguish it from the etiology of ALD. The opposite 

regulation of cholesterol processes as down in ALD and 

up in NAFLD can also be observed in the corresponding 

KEGG pathways Steroid biosynthesis, Primary bile acid 
biosynthesis and Terpenoid backbone biosynthesis 

(Supplementary file 1, p22, 34 and 84). These findings 
are in line with reports of a 29% decrease in HMGCR 
and a 56% decrease in cholesterol 7α-hydroxylase alias 

CYP7A1 by Lakshmanan et al
[32]

, they suggested that 

increased ethanol leads to a reduced rate of cholesterol 

degradation to bile acids and accumulation of cholesterol 

in the liver. We also found (Supplementary Table 2) a 
stronger down-regulation of CYP7A1 (log2-ratio = -0.95) 

than of the upstream cholesterol genes HMGCR (log2-

ratio = -0.429) and SQLE (log2-ratio = -0.33) in ALD 

while in NAFLD, CYP7A1 (log2-ratio = 1.15) was weaker 

up-regulated than HMGCR (log2-ratio = 1.57) and SQLE 

(log2-ratio = 1.53). Thus although oppositely regulated 

in ALD and NAFLD in both diseases more cholesterol is 

produced than can be secreted by the bile via CYP7A1.

Amongst the genes up-regulated in ALD but down in 

NAFLD are TNFSF14 in line with the major role of TNF-

alpha in ALD
[11]

 and SPINK1 which was described above 

in “a gene signature distinguishes ALD from NAFLD”. 

To further investigate the mechanisms by which 

ethanol induces these changes in cholesterol processes 

we analysed expression clusters of genes involved in 

ethanol and cholesterol related processes. The analysis 

revealed a cluster of genes down-regulated in ALD and 

up-regulated in NAFLD including among others the genes 

encoding for ALDH2, ADH1A, LDLR, SQLE, HMGCR, CYP7A1, 
CYP2E1 and FOXO1 (Figure 2D). FOXO Transcription factors 

such as FOXO1, whose expression has been reported 

to be altered by ethanol
[33]

 and may play a role in the 

regulation of several genes from this cluster. Interestingly, 

the heatmap (Figure 2D) shows a much higher degree of 

co-regulation of FOXO1 with the rate-limiting cholesterol 

synthesis enzymes HMGCR and SQLE than of SREBF1 

which is known as the main regulator of cholesterol
[34]

.

The five genes up-regulated in common between 

ALD and NAFLD include two collagen encoding genes - 

COL1A1 and COL3A1, thus demonstrating overlapping 

disease pathology in the development of fibrotic tissue. 
The six down-regulated genes in ALD and NAFLD include 

HPRT1 which has been reported to be down-regulated in 

severe liver disease
[35]

.

Pathway analysis
Most biological pathways are regulated in the same 

direction in ALD and NAFLD. A pathway is considered 

down-regulated (Figure 2E) when it contains more down- 

than up-regulated genes as tested by the binomial test 

and the ratio is less than 1. Up-regulated pathways are 

determined accordingly (Figure 2F). The table of common 

down-regulated pathways includes metabolic, retinol, 

cytochrome and fatty acid degradation pathways, the up-

regulated pathways include ECM-receptor, lysosome and 

phagosome.

Common pathways down-regulated in ALD and NAFLD
Sixteen common pathways are down-regulated in ALD 
and NAFLD. A pathway with high relevance to both 

diseases is Fatty acid degradation which is down-regulated 

in ALD and NAFLD but more so in ALD. The KEGG graph 

in Figure 3A shows down-regulation (green) in nearly 

all genes for ALD (left part of the gene boxes) while 

for NAFLD (right part of the gene boxes) there are up-

regulated genes such as ACSL1 and ACAT1 but more are 

down-regulated. Interestingly, in the alcohol metabolism 

at the bottom of the chart, genes are down-regulated in 

ALD. At the bottom of Figure 3A, alcohol metabolism is 

shown in a schematic view. In a more detailed view we 

examined the behaviour of the alcohol dehydrogenase 

(ADH) encoding genes in the heatmap in Figure 3B and 
in the aldehyde dehydrogenase genes in Figure 3C. 

This resulted in a clear image for the ADHs which were 
down-regulated in ALD. The heatmap for the ALDHs 
(Figure 3C) looked more complex showing consistently 

ALD-down-regulated ALDHs only in a cluster at the top 
including ALDH2 while most genes were heterogeneously 

regulated between ALD and NAFLD.

Common pathways up-regulated in ALD and NAFLD
Few pathways (12) were up-regulated in ALD and NAFLD. 

One of these is ECM-receptor interaction (Supplementary 
file 1, p. 142). Up-regulation of this pathway might 

indicate the onset of fibrosis which is accompanied by 

excessive accumulation of extracellular matrix proteins 

including collagen
[36]. Here, the involvement of the 

collagen COL1A1 is shown.

Pathways oppositely regulated in ALD and NAFLD
Of the oppositely regulated pathways, sixteen were 

down-regulated in ALD and up-regulated in NAFLD while 

only one was up-regulated in ALD and down in NAFLD 

(Supplementary Table 3). The Glycolysis pathway was 
down-regulated in ALD and up-regulated in NAFLD. The 

KEGG graph (Supplementary file 1, p. 11) shows more 
down- (green, e.g., PGM1, ENO1) than up-regulated (red, 

e.g., PFKL) genes for ALD (left part of gene boxes) while 

for NAFLD (right part of gene boxes) up-regulated genes 

predominate. Reduction of glycolysis by ethanol has 

been brought into context with consumption of oxygen 

for the alcohol metabolism and has been reported by 

several authors
[37,38]

. Berry et al
[38]

 reported that ethanol 

oxidation inhibits glycolysis in rat hepatocytes via com-

petition of the reducing equivalents generated during 

ethanol oxidation with those arising in glycolysis for 

transfer to the mitochondria. 

Pathway-based functional gene annotation
In “genes regulated in common between ALD and 

NAFLD” we described that after filtering genes with a 

Wruck W et al . Meta-analysis of ALD vs  NAFLD
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A

B C

Figure 3  Fatty acid degradation is down-regulated in alcoholic liver disease and non-alcoholic fatty liver disease but more pronounced in alcoholic 

liver disease. A: The KEGG graph shows down-regulation (green) in nearly all genes for ALD (left part of the gene boxes) while for NAFLD (right part of the gene 

boxes) there are up-regulated genes such as ACSL1 and ACAT1 but more are down-regulated. Interestingly, in alcohol metabolism at the bottom of the chart, genes 

are down-regulated in ALD. Alcohol metabolism at the bottom of (A) is shown in detail in the alcohol dehydrogenase (ADH) genes in the heatmap in (B) and in the 

aldehyde dehydrogenase genes in (C). ADHs are down-regulated in ALD while only dedicated ALDHs, e.g., ALDH2 are down-regulated in ALD. ALD: Alcoholic liver 

disease; NAFLD: Non-alcoholic fatty liver disease.
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P-value < 0.05 for differential expression more genes 

were oppositely than concordantly regulated in ALD 

and NAFLD. This filtering revealed the interesting genes 
described above but was very restrictive due to the 

low number of replicates in the condensed ratios - the 

P-values were relatively high. However, the condensed 
ratios were themselves based on numerous replicates 

so we consider them as reliable. In a second approach, 

we filtered genes only by fold change 1.25 and checked 
on the pathway-level if there were significantly more up- 
or down-regulated genes based on the binomial test. 

With this method more genes were concordantly than 

oppositely regulated in ALD and NAFLD. Figure 4 shows 

the abundance of concordantly and oppositely regulated 

genes in KEGG pathways (for abundances > 3). The 

most abundant MAP2K1 (MEK1) refers to the MAPK/

RAS-signalling module acting in many KEGG-pathways. 
JUN which appears in 17 KEGG pathways and is down-

regulated in ALD and up-regulated in NAFLD shows that 

there are mechanistic differences in molecular basis of 

these diseases. JUN which is directly connected to c-Jun 

N-terminal kinase (JNK) was down-regulated in ALD and 

up-regulated in NAFLD. The up-regulation of JUN in NAFLD 

is in line with reports from Samuel et al
[39] 

showing that 

activated PKC-ε and JNK can induce insulin resistance 
via 

impaired IRS1 and IRS2 tyrosine phosphorylation in rats 
fed with high fat diet. 

Pluripotent stem cell-based models of ALD and NAFLD
We recently described a disease-in-a-dish model of 

steatosis
[40]

. Pluripotent stem cells, both human embryonic 

stem cells and induced pluripotent stem cells were diffe-

rentiated into hepatocyte-like cells and afterwards 

challenged with ethanol (E) and oleic acid. In order to 

test how close these models are to the modeled disease 

we applied our gene signature distinguishing ALD from 

NAFLD to gene expression data described in Graffmann 

et al
[40]

. Figure 5 demonstrates that our gene signature 

can clearly separate two clusters of the ALD and the 

NAFLD model in a heatmap generated from this gene 

expression dataset. Furthermore, relevant regulating or 

rate-limiting genes described above such as CYP7A1, 

CYP2E1, HMGCS1, FOXO1 are down-regulated in the 

ALD-model and up-regulated in the NAFLD-model similar 

to the liver biopsy-derived dataset.

DISCUSSION

In this comparative analysis of gene expression in ALD 

and NAFLD liver biopsies we unveiled many commonalities 

in pathways regulated in the same direction in both 

diseases. However, there were also pathways regulated in 
the opposite direction and maybe even more important, 

essential rate-limiting or regulating genes were adversely 

regulated. This adverse effect was unexpected as in our 

working hypothesis, we stated that alcohol is metabolized 

to fat and beyond this pathway both diseases share a 

common phenotype. It could hardly be brought together 

with the common phenotype that of the genes significantly 
dysregulated between ALD and NAFLD there were more 

genes regulated in the opposite than in the same direction. 

One major complex within the adversely regulated genes 

were cholesterol-related processes including the rate-

limiting genes HMGCR, SQLE, CYP7A1 and LDLR. These 

KEGG abundance
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Figure 4  More genes are concordantly than oppositely regulated in alcoholic liver disease and non-alcoholic fatty liver disease. The chart shows the 

abundance of concordantly and oppositely regulated genes in KEGG pathways (for abundances > 3). The most abundant MAP2K1 (MEK1) refers to the MAPK/RAS-

signalling module acting in many KEGG-pathways. JUN which is appearing in 17 KEGG pathways and is down-regulated in ALD and up-regulated in NAFLD shows 

that there are mechanistic differences in disease pathologies. ALD: Alcoholic liver disease; NAFLD: Non-alcoholic fatty liver disease.
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Figure 5  The pluripotent stem cell models of alcoholic liver disease and non-alcoholic fatty liver disease reflect the characteristics of the biopsy-derived 
gene signature. The gene signature condensed from the meta-analysis of multiple ALD and NAFLD gene expression datasets was applied to the steatosis-model by 

(Graffmann et al
[40]

) where pluripotent-stem-cell-derived hepatocyte-like cells (HLCs) were challenged with ethanol (E) and oleic acid (OA). The cluster analysis shows 

a clear separation into the ethanol model (red bar) and the oleic acid model (blue bar). ALD: Alcoholic liver disease; NAFLD: Non-alcoholic fatty liver disease.
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were down-regulated in ALD and up-regulated in NAFLD 

(each compared vs healthy control). However, we found in 
both cases that the gene encoding CYP7A1 - the enzyme 

responsible for cholesterol removal by catalysing the 

conversion of cholesterol to bile acids was regulated at a 

lower level than the genes encoding for the cholesterol 

synthesis determining enzymes HMGCR and SQLE. 

This would explain cholesterol accumulation in the liver 

because more cholesterol is produced than secreted into 

bile - regardless if the cholesterol processes are down-

regulated in total (in ALD) or up-regulated (in NAFLD). 

Moreover, the strong down-regulation of CYP7A1 in ALD 

might be a clue for the higher risk of cholestasis in ALD 

than in NAFLD
[41]

. Briefly, these findings emphasize the 

importance of cholesterol efflux from the liver via CYP7A1 

and may suggest that the cause of the disease might 

be that the rate of cholesterol efflux is too low. Negative 
feedback loops down-regulating CYP7A1 by bile acids have 

already been described
[42]

: Bile acids can down-regulate 

CYP7A1 via (1) FXR and SHP; or (2) by interaction 
with liver macrophages (Kupffer cells) whose role in 

fibrosis has been established as they produce cytokines 

such as transforming growth factor beta leading to the 

transformation of stellate cells into myofibroblasts
[43]

. 

Furthermore, Kupffer cells secrete cytokines, e.g., tumor 

necrosis factor (TNFα) and interleukin (IL-1β) which in 

turn induce protein kinase, c-Jun N-terminal kinase and 

thus inhibit hepatocyte nuclear factor and consequently 

CYP7A1
[44,45]

. This gives rise to the question if the lower 

CYP7A1 levels are a cause of steatosis or are a consequence 

of the profibrotic stage. Here, systems biology modelling 
of cholesterol fluxes in the liver including bile acids and 

regulatory mechanisms of CYP7A1 could be useful in 

determining under which condition efflux rates are too 

low.

Beside the differences in cholesterol processes 

we could also confirm effects which had been much 

disputed before such as the ethanol-mediated down-

regulation of glycolysis and of alcohol and aldehyde 

dehydrogenases.

The common up-regulated pathways might provide 

synergies for research into ALD and NAFLD. We found 

similar mechanisms underlying the progression of both 

diseases and could identify the common up-regulated 

ECM-receptor interactions and also associated collagen 

encoding genes COL1A1 and COL3A1 which indicate 

development of fibrotic tissue.
Finally, we provide a comprehensive compendium 

displaying comparative regulation of all KEGG pathways 

in ALD vs NAFLD which may serve as an encyclopaedic 

tool to lookup regulation of dedicated pathways asso-

ciated with ALD and NAFLD.

In the current study we performed a meta-analysis 

of gene expression data of liver-derived biopsies from 

ALD and NAFLD patients, and report a gene signature 

which clearly separates the transcriptomes of ALD and 

NAFLD derived liver biopsies. Furthermore, we uncovered 

predominating commonalities between both diseases 

at the level of biological pathways, e.g., common down-

regulation of the Fatty acid degradation pathway and 

common up-regulation of the ECM-receptor interaction 

pathway which may explain common progression of 

both diseases by cytokines being exchanged between 

hepatocytes, Kupffer cells and stellate cells at the fibrosis 
stage. This is confirmed by the common expression of 

COL1A1 and COL3A1 which are associated with fibrotic 
tissue.

Interestingly, we found rate-limiting genes of chole-

sterol processes such as HMGCR, SQLE and CYP7A1 

adversely regulated (Figure 6) between ALD (down-

regulated) and NAFLD (up-regulated). The fact that 

both diseases have the same phenotype may be due 

to a lower level of the enzyme CYP7A1 compared to 

the cholesterol synthesis enzymes HMGCR and SQLE. 
Thus, it will be interesting to further investigate CYP7A1-

mediated cholesterol secretion into bile - possibly by 

systems biology modeling of cholesterol fluxes in the 

liver. For future therapy, drugs able to adjust CYP7A1 

to levels amenable with cholesterol synthesized in or 

transported to the liver will be useful.

COMMENTS

Background
Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) 

are highly prevalent liver diseases and in an increasing number of developed 

countries NAFLD is becoming the most common cause of liver disease. Although 

NAFLD and ALD have distinct etiologies the manifestation and the potential 

progression of both diseases to hepatitis, cirrhosis and cancer is similar. 

Research frontiers
A two-hit hypothesis is the established explanation for disease progression to 

alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH). After steatotic 

fat accumulation due to metabolic disorders such as insulin resistance (NAFLD) 

or due to alcohol (ALD) oxidative stress and dysregulation of cytokines initiate 

inflammation and hence the progression to NASH as well as AH. 

Innovations and breakthroughs
The authors found that rate-limiting enzymes of cholesterol metabolism such as 

HMGCR, SQLE and CYP7A1 are down-regulated in ALD and up-regulated in 

ALD HMGCR  -0.43 SQLE   -0.33 CYP7A1  -0.95

Acetate Squalene Cholesterol Cholic acid

NAFLD HMGCR   1.57 SQLE   1.53 CYP7A1   1.15

Figure 6  Rate-limiting genes of cholesterol metabolism are down-

regulated in alcoholic liver disease and up-regulated in non-alcoholic fatty 

liver disease. This schematic figure shows the log2-ratios of HMGCR, SQLE 

and CYP7A1 indicating down-regulation in ALD (green) and up-regulation in 

NAFLD (red). There was stronger down-regulation of CYP7A1 (log2-ratio = 

-0.95) than of the upstream cholesterol genes HMGCR (log2-ratio = -0.429) and 

SQLE (log2-ratio = -0.33) in ALD while in NAFLD, CYP7A1 (log2-ratio = 1.15) 

was weaker up-regulated than HMGCR (log2-ratio = 1.57) and SQLE (log2-ratio 

= 1.53). The size of the arrows points to a disequilibrium between cholesterol 

production and secretion into the bile via CYP7A1 in both diseases despite the 

opposite regulation in ALD and NAFLD. ALD: Alcoholic liver disease; NAFLD: 

Non-alcoholic fatty liver disease.
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NAFLD compared to a healthy control. However, in ALD and NAFLD CYP7A1 

- associated with conversion of cholesterol into bile acids - is regulated at a 

lower level than HMGCR and SQLE. That might explain the accumulation of 

cholesterol by the reduced efflux into bile acids.

Applications
CYP7A1 is a potential drug target and the proposed gene signature distin-

guishing ALD from NAFLD consists of biomarkers which may be exploited for 

diagnostic tests. The compendium of KEGG pathway regulation in ALD and 

NAFLD and the finding of the adverse regulation of cholesterol metabolism in 
ALD and NAFLD are promising start points for future research.

Terminology
NAFLD is the disease related to fat accumulation (steatosis) in the liver in the 

absence of alcohol abuse (usually the threshold is set at 30 g/d of alcohol for 

men and 20 g/d for women). It ranges from the relatively benign steatosis to 

NASH, cirrhosis and hepatocellular carcinoma.

Peer-review
This manuscript was informative. The authors found commonalities between both 

ALD and NAFLD at the level of biological pathways implying some mechanistic 

similarity between both diseases.
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Nijmegen Breakage Syndrome 
fibroblasts and iPSCs: cellular 
models for uncovering disease-
associated signaling pathways and 
establishing a screening platform 
for anti-oxidants
Barbara Mlody  1, Wasco Wruck2, Soraia Martins2, Karl Sperling3 & James Adjaye2

Nijmegen Breakage Syndrome (NBS) is associated with cancer predisposition, premature aging, 
immune deficiency, microcephaly and is caused by mutations in the gene coding for NIBRIN (NBN) 
which is involved in DNA damage repair. Dermal-derived fibroblasts from NBS patients were 
reprogrammed into induced pluripotent stem cells (iPSCs) in order to bypass premature senescence. 
The influence of antioxidants on intracellular levels of ROS and DNA damage were screened and it was 
found that EDHB-an activator of the hypoxia pathway, decreased DNA damage in the presence of high 
oxidative stress. Furthermore, NBS fibroblasts but not NBS-iPSCs were found to be more susceptible 
to the induction of DNA damage than their healthy counterparts. Global transcriptome analysis 
comparing NBS to healthy fibroblasts and NBS-iPSCs to embryonic stem cells revealed regulation of 
P53 in NBS fibroblasts and NBS-iPSCs. Cell cycle related genes were down-regulated in NBS fibroblasts. 
Furthermore, oxidative phosphorylation was down-regulated and glycolysis up-regulated specifically 
in NBS-iPSCs compared to embryonic stem cells. Our study demonstrates the utility of NBS-iPSCs as 
a screening platform for anti-oxidants capable of suppressing DNA damage and a cellular model for 
studying NBN de-regulation in cancer and microcephaly.

Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder, first described 1981 in 
Nijmegen, the Netherlands1. Characteristics of NBS include genomic instability (resulting in early onset of malig-
nancies), premature aging, microcephaly and other growth retardations, immune deficiency, impaired puberty 
and infertility in females. The consequence of these manifestations is a severe decrease in average life span, caused 
by cancer or infection of the respiratory and urinary tracts2.

On a molecular basis, NBS is caused by mutations in the gene coding for NIBRIN (NBN) which is involved in 
DNA damage repair3. Mutated versions of NBN cause accumulation of unrepaired DNA damage leading to cell 
cycle arrest, apoptosis4 or accumulation of genomic point mutations and aberrations introduced by misregulated 
DNA repair5. Several cases of NBS with a variety of mutations in NBN exist but over 90% of the patients carry a 5 
base pair deletion (657del5) within the NBN exon 66.

This hypomorphic mutation leads to a truncated 26 kD amino-terminal protein and a 70 kD carboxy-terminal 
protein due to alternative translation from a cryptic start site upstream of the deletion7. Mice Nbn null muta-
tions are embryonic lethal and cells expressing only the truncated p26kD NBN fragment containing the FHA 
and the first BRCT domain, were nonviable7. The new splice form, p70 retains sufficient functionality to ensure 
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survival by binding to MRE11 and ATM, which are essential components of DNA damage response8. The 
MRE11-RAD50-NBN (MRN) complex binds directly to DNA double-strand breaks (DSBs) and is involved 
in repair and signaling for homologous recombination (HR), non-homologous end joining (NHEJ) and 
microhomology-mediated end joining (MMEJ). Additionally, NBN is involved in telomere maintenance and 
therefore plays a role in the aging process8.

Recent works indicate that NBN influences the repair pathway choice via 53BP1, which can shift the error-free 
HR-directed repair to the more error-prone NHEJ and MMEJ9. Apart from replication errors, mutagens and 
other external influences, endogenously, DNA damage is mostly caused by reactive oxygen species (ROS), which 
are byproducts of the respiratory chain reaction10. Cells counteract ROS by antioxidant production and enzymatic 
removal but ROS also have cellular signaling functions which must be maintained in a controlled balance11.One 
strategy to minimize endogenous ROS levels is to regulate mitochondrial respiration, which plays a special role 
in stem cells.

Stem cell mitochondrial morphology is immature, rounded and with under-developed cristae. Consequently, 
they depend heavily on glycolysis for their ATP supply12. When cells differentiate and increase respiration, mito-
chondrial mass increases, their morphology then shifts to more matured and elongated tubular forms, with more 
defined cristae and increased mtDNA copy numbers12.

When somatic cells are reprogrammed into induced pluripotent stem cells (iPSCs), they depend predomi-
nantly on glycolysis and their mitochondria become rejuvenated and transformed back to the immature form13.

A key element in the reprogramming of metabolism is the HIF1-alpha pathway, which not only reacts in 
response to hypoxia, but also induces a shift from oxidative phosphorylation to glycolysis14. We have reported 
this “metabolic reprogramming” as an essential step in iPSC-generation, which precedes the activation of 
pluripotency-associated genes like OCT4 and NANOG15.

The aim of this study was to use our previously published iPSC-based cellular model system for NBS and 
provide a screening platform for antioxidants capable of modulating genome stability. NBS-iPSCs may overcome 
several problems associated with NBS research such as: i) small patient numbers, ii) cell cultures limited to fibro-
blasts and lymphocytes, iii) premature senescence in cell culture due to high levels of ROS, iv) discovery of new 
NBS molecular mechanisms and v) provision of new and therapeutically relevant concepts.

There are several diseases like NBS which derive from mutated genes in repair pathways, examples of 
these include Fanconi Anemia (FA)16, Ligase IV (LIG4) syndrome17,Bloom syndrome18,NBS-like disorder19, 
Ataxia-Telangiectasia-Like Disorder (ATLD)20, Nonhomologous end-joining factor 1 (NHEJ1) syndrome21 and 
Seckel syndrome22.

Our group recently published a study on modeling NBS by reprogramming23. Reprogrammed cells from 
patients with similar diseases like FA have been reported, though they could only be reprogrammed after genetic 
correction or with the aid of antioxidants24. In a study of patients with Cockayne syndrome (CS), a mutation in 
the repair pathway gene ERCC6 did not impair genetic reprogramming but exhibited elevated cell death rates and 
ROS production25. As NBS cells are hypersensitive to DNA damage26, ROS may be detrimental to them under 
physiological conditions. Thus, it was hypothesized that antioxidants or the induction of pluripotency in NBS 
fibroblasts might suppress and maybe bypass ROS-mediated genome instability.

Microcephaly is a significant physical characteristic of NBS which can also be found in FA, LIG4 and NHEJ1 
syndromes16, 20, 21. With recent cases in microcephaly which coincided with infections of the Zika virus27, 
NBS-iPSCs and iPSC-derived neurons could serve as an excellent comparative model to study NBN-deregulation 
and associated molecular mechanisms underlying the onset of microcephaly.

In this study we present NBS fibroblasts and iPSCs as a screening platform for anti-oxidants and a model for 
studying NBN de-regulation in cancer and microcephaly. The screen for antioxidants capable of counteracting 
intracellular levels of ROS and DNA damage identified Ethyl-3,4-dihydroxybenzoate (EDHB) - an activator of 
the hypoxia pathway – as most potent antagonist of DNA damage in the presence of high oxidative stress in 
our NBS-model. Another finding was the higher susceptibility of NBS fibroblasts to induction of DNA dam-
age compared to NBS-iPSCs. Furthermore, we found de-regulation of P53 in NBS fibroblasts and NBS-iPSCs, 
down-regulation of Cell cycle in NBS fibroblasts and down-regulation of oxidative phosphorylation and 
up-regulation of glycolysis in NBS-iPSCs compared to healthy embryonic stem cells.

Results
Roadblocks in reprogramming of NBS fibroblasts. Reprogramming of somatic cells towards pluripo-
tent stem cells (PSCs) was reported to be negatively affected when P53 was activated28. Given the nature of NBS, 
which includes genomic instability and premature senescence, both of which are features known to lead to P53 
activation29, thus, hurdles for the reprogramming process were anticipated. To address these, we attempted repro-
gramming dermal fibroblast primary cultures from eight (8) clinically diagnosed patients with NBS.

Of the 8 NBS fibroblast lines (Table 1), 3 lines could not be cultured past passage 6 and were lost due to pre-
mature senescence. Four (4) lines were infected with retroviral reprogramming cocktail (O/S/K/M) but exhib-
ited low infection efficiency (determined by O/S/K/M immuno-staining), senescence (by morphology), hardly 
showed changes in morphology (negative indicator for reprogramming) and did not yield any iPSC colonies (data 
not shown).

As previously reported and characterized, only one of the four NBS fibroblast cell lines (NBS-8) sub-
jected to the reprogramming process was successful23, 30. This shows that fibroblasts from NBS patients can be 
reprogrammed to pluripotency despite genomic instability and premature senescence30. Sanger-sequencing 
of NBN exon 6 and Western Blotting confirmed the heterozygous mutation for 657del5 in NBS-8 fibroblasts 
(Supplementary Figure S1) and in the NBS-8-iPS cells (Supplementary Figure S2). As the 657del5 mutation leads 
to a truncation of NBN on the protein level (wt: 95 kDa; 657del5: 70 kDa), we detected NBN by western blot. 
Full-length NBN was not present in any of the NBS fibroblasts including NBS-8 and the NBS-iPSCs30.
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In vitro cultivation may introduce stress to the cells which may also elevate DNA double-strand breaks events. 
Accumulation of unrepaired damage DNA leads to the activation of P53, which is a known roadblock of induc-
tion of pluripotency as a result of cell cycle arrest, senescence or apoptosis31. Table 1 shows that the reprogramma-
ble cell line NBS8 is heterozygous while the other cell lines are homozygous. It is probable that the homozygous 
nature of the mutated NBS gene increases the level of unrepaired damaged DNA hence drastically reducing the 
efficiency of inducing pluripotency. To examine this further, we performed transcriptome analysis of primary 
NBS fibroblasts cell cultures (1, 3, 5, 7 and 8).

Ingenuity® Pathway Analysis (IPA) was used to predict the status of transcription factors (TFs) using a list 
of differentially regulated genes between NBS and normal fibroblasts (Table 2). In the IPA results in Table 2 the 
fold change was determined by the expression data of the transcription factor itself but this can be different 
from the data inferred from the expression data of the de-regulated genes. The most significant, activated TF 
was P53 (TP53), well known to negatively interfere with reprogramming efficiency. We also found that the P53 
pathway was significantly enriched in the transcriptomic analysis of the NBS fibroblasts (see “NBS-iPSCs as a 
model for studying molecular mechanisms associated with impaired DNA repair”). Among the most significant 
down-regulated or inactivated TFs was MYCN, which is known as transcriptional regulator in pluripotent stem 
cells32. This could also be a roadblock to reprogramming, as cells are required to proliferate continually during 
this process.

Which genes/factors contribute to bypassing of cell cycle arrest, senescence or apoptosis. To 
understand which mechanisms possibly enabled NBS fibroblasts to achieve pluripotency and therefore overcome 
cellular senescence, we compared transcriptomic data between NBS-8 fibs, NBS-8-iPSCs and hESCs. By identi-
fication of the overlaps for expressed genes (determined by expression p value < 0.01) we found 2642 genes to 
be commonly expressed in NBS-iPSCs and hESCs, but not in NBS fibroblasts (Fig. 1). This subset of genes may 
contain the distinct profile enabling NBS fibroblasts to reach pluripotency and therefore rejuvenation. We further 
analyzed the subset in an annotation database. Among the most over-represented results we found MAPK sign-
aling pathway and genes that were specifically expressed in the brain (Fig. 1c). The MAPK signaling pathway is 
regulated by OCT4 and plays an important role in pluripotency and self-renewal33.

Cell line 
[NBS #] Gender

Passage 
[#]

Premature 
senescence

NBN (657del5) 
Mutation

1 male 16 No homozygous

2 male 5 Yes homozygous

3 female 8 No homozygous

4 female 14 Yes homozygous

5 female 4 No homozygous

6 female 10 Yes homozygous

7 male 10 No homozygous

8 male 3 No heterozygous

Table 1. Fibroblasts lines from NBS patients and their behavior in reprogramming. n/a: not available; #: 
number.

Transcription 
Regulator

Fold Change 
(Array data)

Predicted 
Activation State

Regulation 
z-score

Number of 
target molecules

TP53 1.48 Activated 4.32 175

CDKN2A 1.05 Activated 3.93 46

SMARCA4 −1.49 Activated 3.70 34

SMARCE1 1.24 Activated 2.45 6

TCF3 2.02 Activated 2.39 35

Rb (group) n/a Activated 2.26 14

GATA1 −1.09 Activated 2.24 11

TP63 −1.00 Activated 2.23 27

GLI3 1.65 Activated 2.11 4

SMAD7 −1.63 Inhibited −2.13 16

SREBF1 −1.26 Inhibited −2.31 22

RXRA 1.08 Inhibited −2.46 17

SREBF2 1.16 Inhibited −2.48 15

E2F1 1.36 Inhibited −2.60 63

TBX2 −1.72 Inhibited −2.77 24

MYCN −1.07 Inhibited −4.41 33

Table 2. Regulation changes in transcription factors in NBS fibroblasts (Ingenuity® Prediction Tool).
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Global transcriptome analysis of NBS-iPSCs. Global transcriptome analysis with NBS fibroblasts and 
NBS-iPSCs was performed to identify the problems interfering with reprogramming in the cell lines 1,3,5,7, 
determine NBS phenotypes or compensatory mechanisms in NBS-iPSCs derived from NBS-8 fibroblasts. In the 
cluster dendrogram (Fig. 2a), fibroblasts from NBS patients clearly clustered as a group and differed from normal 
fibroblasts, indicating a common transcriptional phenotype distinctive for NBS. Transcriptomes from NBS-iPSCs 
clustered closer to hESCs than to other fibroblasts-derived iPSCs (Fig. 2b). But, the parental fibroblast line NBS-
8, clustered more distinct to the other fibroblasts. The pronounced gap in clustering between NBS-8-Fib-P8 and 
NBS-8-Fib-P15 indicates acquisition of mutations or aberrations since they only differ in passage number.

Figure 1. Statistics of Venn diagram analysis among NBS fibroblasts, NBS iPSCs and hESCs. The overlap of 
significantly expressed genes (detection p value < 0.01) in (a) Fibroblasts comparing the averaged group of NBS 
with unaffected cell lines and in (b) NBS fibroblasts versus NBS-iPSCs and unaffected hESCs. (c) Annotations 
for genes commonly expressed in NBS-iPSCs and hESCs but not NBS fibroblasts resulting from functional 
annotation analysis via the DAVID web tool. The output of the DAVID analysis was condensed to the count of 
genes annotated with the indicated category, p-value and Benjamini-Hochberg-correction for multiple-testing as 
calculated based on the Fisher-exact test.
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After selecting genes that were significantly de-regulated (p value < 0.05; fold change > 1.5) between the 
groups of NBS and normal fibroblasts, the list was subjected to “DAVID Annotation Tools”34 to identify path-
ways which were most affected by mutated NBN (Fig. 3a). The same procedure was performed for the analysis 
of NBS-iPSCs in comparison with hESCs (Fig. 3b). There were different regulatory changes in both groups of 
analyses (NBS fibroblasts and NBS-8-iPSCs), but there was also overlap of pathways, indicating NBS specific traits 
in cell cycle and cancer. Apoptosis and P53, two of the safeguard mechanisms against cancer, were predominantly 
de-regulated in NBS fibroblasts than pluripotent NBS cells while Mismatch repair, another safeguard mechanism 
against cancer, was predominantly de-regulated in pluripotent NBS cells. Mismatch repair is illustrated in more 
detail in the heatmap in Fig. 3c (color bars: blue = NBS, red = healthy). In Cell cycle we observed a shift from 
down-regulation to equally balanced (Fig. 3a,b,d,e).

Interestingly, in NBS-iPSCs, the Glycolysis-pathway was significantly enriched. Most enzymes involved in 
glycolysis, including phosphofructokinase, muscle (PFKM, 2-fold) which catalyzes the rate-limiting step, were at 
least 1.5-fold up-regulated (Supplementary Figure S3). On the other hand, Fructose-1,6-bisphosphatase 1 (FBP1), 
a gluconeogenesis regulatory enzyme, was significantly down-regulated (2.6-fold). As previously reported, hESCs 
derive their energy from glycolysis rather than OXPHOS and have immature mitochondria13, 35. It was also 
observed that cells acquire the same metabolic profile during the reprogramming process13, 35. NBS-iPSCs in this 
case, depended even stronger on glycolysis than other PSCs.

Figure 2. Global transcriptomic comparison of NBS fibroblasts and iPSCs to healthy controls. (a) Hierarchical 
cluster analysis depicting the distance of control (BJ, HFF1, NFH13) and patient (NBS-1, -3, -5, -7) fibroblasts 
global mRNA (Illumina 8-chip). (b) Hierarchical cluster analysis of total mRNA depicting the distance of 
control (BJ-Fib, HFF1-Fib) and patient (NBS8-Fib, passage number 8 and 15) fibroblasts, plus control (H1, H9, 
vHFF-iPS, vBJ-iPS) and patient (vNBS8-iPS, clone 1 and 2) pluripotent stem cells (Illumina 12-chip).
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Figure 3. Functional transcriptomics study of NBS fibroblasts and iPSCs. Significantly de-regulated genes 
(differential p value < 0.05; fold-ratio > 1.5) between control and NBS-patient cells were analyzed by DAVID 
functional annotation tool (https://david.ncifcrf.gov/). The top 10 significantly (p value < 0.05) de-regulated 
KEGG pathways (http://www.genome.jp/kegg/pathway.html) are represented in the figure, numbers of 
significantly up-regulated genes are shown in red and down-regulated genes in green. (a) comparison between 
control (BJ, HFF1) and patient (NBS-1, -3, -5, -7) fibroblasts (b) comparison between control (H1, H9) and 
patient (vNBS8-iPS, clone 1 and 2) pluripotent stem cells. (*) p value of pathway > 0.05. The reprogramming 
procedure induced a shift of the Cell cycle pathway from down-regulated to nearly balanced. Furthermore, 
strong down-regulation of the Mismatch repair pathway was found in NBS-iPSCs. Cluster analysis and 
heatmaps of these de-regulated pathways are shown in (c–e): (c) depicts the Mismatch repair in NBS-iPSCs, (d) 
the Cell cycle in NBS fibroblasts and (e) the Cell cycle in NBS-iPSCs (Color bars: blue NBS, red control).
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NBS-iPSCs as a model for studying molecular mechanisms associated with impaired DNA 
repair. In line with the known predisposition of NBS patients to cancer, we found Pathways in cancer as the 
most enriched pathway in NBS-fibroblasts compared to healthy fibroblasts as well as in NBS-iPSCs compared 
to embryonic stem cells via DAVID analysis34 (Fig. 3a,b). With further cancer-related pathways, Cell cycle was 
found to be enriched in NBS-fibroblasts and NBS-iPSCs, while Apoptosis and p53 signaling were only enriched 
in NBS-fibroblasts. To further explore the relevance of the KEGG pathways in cancer36 we performed a fur-
ther DAVID analysis with the genes annotated with that pathway in differentially expressed genes in NBS-iPSCs 
compared to embryonic stem cells and this way could refine the functional annotation of the pathways in cancer 
(suppl. Table. S2). As expected numerous specific cancer types such as lung cancer and Melanoma are anno-
tated with these genes but also pathways related to NBS emerge. Cell cycle (Supplementary Figure S4) and p53 
signaling (Supplementary Figure S5) are known to be impaired by NBS and are described in more detail in the 
section “Establishing the antioxidant screening platform”. The cluster analyses in Fig. 3 (c–e) and Supplementary 
Figure S6–S8 additionally provide a more detailed view of the dysregulation of dedicated genes in the pathways 
Mismatch repair (Fig. 3c), Cell cycle (Fig. 3d,e), Glycolysis (Supplementary Figure S6), Oxidative phosphoryla-
tion (Supplementary Figure S7) and p53 signaling (Supplementary Figure S8) between NBS and healthy states. 
The Mismatch repair (Fig. 3c) was predominantly down-regulated (6 of 7 genes) in the NBS-iPSCs. Impairment 
of Mismatch repair is associated with predisposition to cancer37. Cell cycle appears to shift from predomi-
nantly down-regulation (36 of 41 genes) in the NBS-fibroblasts to equal balance (16 genes down- and 12 genes 
up-regulated) in the NBS-iPSCs. Another shift along with the reprogramming took place from Oxidative phos-
phorylation in the NBS-fibroblasts to Glycolysis in the NBS-iPSCs (Supplementary Figures S6 and S7). This effect 
may have been induced by p53 down-regulation during reprogramming38 and showed similarities to the Warburg 
effect in cancer cells which produced energy by Glycolysis39. In line with our previous publication23, we found that 
essential genes such as TP53I3 in the p53 pathway shifted from up- to down-regulation during reprogramming. 
Supplementary Figure S8 depicts the p53 signaling in a comparison between NBS/WT PSCs and fibroblasts and 
demonstrates differences (including more down-regulation of the genes P53 and TP53I3) in the only NBS line 
which could be reprogrammed (NBS8) compared to the other NBS lines.

Establishing the antioxidant screening platform. During cultivation of PSCs, which was performed 
at 5% oxygen levels, a temporary switch (12 h) to ambient (21%) oxygen resulted in apoptosis of NBS-iPSCs, but 
HFF1-iPSCs and hESCs were unaffected. We tested the effect of low (5%) and high (21%) oxygen quantitatively, 
by measuring gamma-H2AX, a marker for DNA double strand breaks in the presence or absence of the radiomi-
metic, Bleomycin. The result showed that low oxygen conditions greatly decreased the DNA damage under the 
influence of the mutagen. In addition, NBS Fibroblasts were more sensitive to DNA damage by mutagens than 
normal fibroblasts and the effect of low oxygen was less pronounced (Fig. 4a). NBS-iPSCs were then screened for 
various types of antioxidants to mimic or enhance the effect of low oxygen. The test measuring intracellular ROS 
levels revealed promising candidates to relieve NBS cells of oxidative stress, of which disulfiram (DSF) and EDHB 
were the most pronounced (Fig. 4b).

EDHB is utilized as a substrate analog and competitive inhibitor of prolyl 4-hydroxylases leading to specific 
inhibition of collagen synthesis40 and to activation of the hypoxia inducible factor (HIF)41. We tested the effect of 
EDHB on intracellular ROS levels under stress conditions by supplementation with hydrogen peroxide (H2O2). 
EDHB decreased normal ROS levels and greatly decreased intracellular ROS levels in the presence of H2O2 in 
fibroblasts and PSCs (Fig. 4c,d). Interestingly, in fibroblasts, ROS levels were higher in EDHB treatment alone 
compared to treatment with EDHB plus hydrogen peroxide while in PSCs EDHB alone was lower than that of 
EDHB plus hydrogen peroxide treatment group. This effect was even more pronounced in NBS cells and needs 
further exploration. One possible explanation would be a change in ROS levels due to the shift in energy supply 
from oxidative phosphorylation to glycolysis along with the reprogramming which was described in the above 
paragraph “Global transcriptome analysis of NBS-iPSCs”.

The effect of EDHB on DNA damage under stress conditions was also tested by supplementation with hydro-
gen peroxide or the radiomimetic Bleomycin. In fibroblasts, EDHB greatly decreased the DNA damage induced 
by hydrogen peroxide and moderately decreased the DNA damage caused by Bleomycin (Fig. 4e). In PSCs, EDHB 
decreased the DNA damage induced by H2O2 by 50%, but did not alter the DNA damage caused by Bleomycin 
(Fig. 4f). In addition, the same effects of EDHB, H2O2 and Bleomycin on DNA damage in PSCs could also be 
detected using western blotting (Fig. 4h).

As cells from patients with NBS are known to be affected by abnormal cell cycle checkpoints, e.g. fail-
ure of intra-S checkpoint after radiation42, we determined the influence of DNA damage (administered by 
Bleomycin-treatment) and HIF-Pathway activation by EDHB on the status of CHEK1 and CHEK2, which are 
usually phosphorylated upon activation43. CHEK1 (S345) phosphorylation is mostly facilitated by ATR and 
required for the G2/M DNA damage checkpoint44, 45. Upon DNA damage, CHEK1 becomes activated, it phos-
phorylates and inhibits CDC25C, thereby preventing activation of the cyclin B/CDK2 complex responsible for 
mitotic entry46. HFF1 cells only showed a slight increase in P-CHEK1 after treatment with bleomycin, but NBS-8 
fibroblasts on the other hand exhibited CHEK1 activation without any treatment (Fig. 4g). This was decreased, 
but not eliminated upon treatment with EDHB. Bleomycin did not cause stronger activation than in control and 
this was not challenged by EDHB treatment. Interestingly, the supplementation with H2O2 completely dimin-
ished CHEK1 phosphorylation but not in the presence of EDHB.NBS iPSCs were found to have slightly higher 
base-level of phosphorylated CHEK1 in comparison to unaffected PSCs (H1, Fig. 4h). Treatment with EDHB 
reduced P-CHEK1 levels in NBS iPSCs under radiomimetic stress (Bleomycin) conditions, compared to the 
control.

CHEK2 is known to be phosphorylated (T68) and activated in an ATM-dependent manner in response to ion-
izing radiation47. In our NBS-context it is essential that the MRN complex regulates the activation of ATM43, 48 and 
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Figure 4. Response of NBS cells to oxidative stress and antioxidants. (a) The abundance of DNA damage 
measured by FACS-based detection of the DNA double-strand marker gamma-H2AX in HFF1 and NBS8 
fibroblasts. DNA damage was induced by 30 µg/ml Bleomycin and compared under ambient (21%) and 
physiological (5%) oxygen concentrations. (b) NBS8-iPSCs were treated with either H2O2, several compounds 
known to influence DNA repair and ROS levels, or both. Internal ROS levels were then measured by FACS-
based detection of the fluorescent ROS marker DCF-DA. The results were normalized to the untreated or 
peroxide-alone treated conditions respectively. (c) The influence of EDHB on internal ROS levels was tested 
on control (HFF1) and patient fibroblasts (NBS5, NBS8). The cells were either treated with EDHB alone or in 
combination with H2O2 to stimulate oxidative stress conditions. (d) Same experiment as in (c), but comparing 
control (hESCs) and patient (NBS-iPSCs) pluripotent stem cells. (e) The influence of EDHB on DNA damage 
(by detection of gamma-H2AX) was tested on control (HFF1) and patient fibroblasts (NBS5, NBS8). The 
cells were either treated with EDHB alone, in combination with H2O2 to stimulate oxidative stress conditions, 
or in combination with Bleomycin to stimulate mutagenic stress conditions. (f) Same experiment as in (e) 
but comparing control (hESCs) and patient (NBS-iPSCs) pluripotent stem cells. Bars indicate SD between 
independent experiments (n = 3). (g,h) Influence of DNA damage and EDHB on phosphorylation of DNA 
damage signaling proteins. Cells were treated with EDHB (antioxidant and inducer of HIFpathway), hydrogen 
peroxide (H2O2) and radiomimetic bleomycin (Bleo). (g) Immunofluorescent detection of phosphorylated 
signaling proteins in fibroblasts (HFF1, NBS-8) after SDS-PAGE. (h) Immunofluorescent detection of 
phosphorylated signaling proteins in hESCs (H1) and NBS-8-iPSCs (N1) after SDS-PAGE. Each lane of 
b-Actin corresponds to the lanes directly above and b-Actin is always unphosphorylated. For the sake of better 
readability western blots were cropped.
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acts upstream as well as downstream of ATM49. Activated CHEK2 phosphorylates P53 at serine-2050 CDC25A at 
serine-12351 and CDC25C at serine-216 thus, contributing to the G1/S, S, and G2/M checkpoints respectively52. 
In HFF1 cells treated with H2O2, CHEK2 became phosphorylated and this increased after combined application 
of H2O2 and EDHB (Fig. 4g). The same effect was observed in NBS-8 fibroblasts. Bleomycin did not activate 
CHEK2 in HFF1 cells, but the activation was strong in NBS-8 cells. Here, a low base-level of P-CHEK2 in PSCs 
was observed (Fig. 4h). Upon DNA damage, P-CHEK2 activation was significantly high in NBS-iPSCs (N1) but 
decreased after treatment with EDHB (Fig. 4h).

Previous experiments using FACS analysis revealed that EDHB can decrease DNA damage caused by H2O2 
in fibroblasts and iPSCs, but only moderately reduce the damage in fibroblasts caused by bleomycin (data not 
shown). Western Blot analysis of gamma-H2AX after treating hESCs and NBS-8-iPSCs with H2O2 and bleomycin 
confirmed these measurements (Fig. 4h). It also showed that the application of H2O2 can indeed result in DSBs 
as indicated by the increased detection of gamma-H2AX. But it is important to keep in mind that in comparison 
(y-H2AX measurement, (Fig. 4h), H2O2 induced approx. the same level of DNA damage in hESCs as bleomycin, 
but 2-fold lower DNA damage in fibroblasts than in ESCs. Here, DNA damage was induced by oxidative stress in 
the form of H2O2 and by the DSB-inducer bleomycin (Fig. 4g,h).

This study shows, that in HFF1 cells, P53 S15 phosphorylation was observed after treatment with bleomycin, 
but not after H2O2 administration. In addition, the level of induction was lowered by addition of EDHB in the 
bleomycin treatment. In NBS-8 cells, the same effect was observed, but the P53 activation by bleomycin was lower 
and was almost abolished after EDHB treatment (Fig. 4g). In hESCs and NBS-8-iPSCs P53 was only phosphoryl-
ated at S15 after bleomycin treatment as well. But here, P-P53 was higher in NBS-8-iPSCs and EDHB treatment 
did not show a clear effect (Fig. 4h).

ATR is activated by ssDNA that result at a later stage in homologous recombination repair (HRR), or result 
from stalled replication forks. In NBS, repair from HR is impaired, so ATR signaling is rather activated by stalled 
replication forks. In NBS-8 cells, phosphorylated ATM exhibited a similar level without or after treatment with 
H2O2 or bleomycin (Fig. 4g). EDHB on the other hand increased the signal in cells treated with H2O2 (oxidative 
stress) and decreased the signal in cells treated with bleomycin (DSB inducer). Control cells, HFF1, exhibited 
lower basal levels of P-ATM than in NBS-8 cells but got strongly activated after H2O2 and bleomycin treatment. 
EDHB decreased the ATM activation by bleomycin as well. In contrast to ATM, ATR was not activated in HFF1 
and NBS-8 cells by bleomycin. It was phosphorylated after treatment with EDHB or H2O2 in HFF1 cells, but not 
in NBS-8 cells. Here it only became activated after treatment with H2O2 and EDHB together. Comparison of ATM 
activation with activation of its target CHEK2, did not show the expected similar expression level in the western 
blot, neither did CHEK1 as target of ATM.

Here, BRCA1 S1524 phosphorylation appeared on a similar level of activation as ATR in NBS-8 cells, but 
different in HFF1 and also different in both cases in comparison to ATM (Fig. 4g). In detail, BRCA1 was slightly 
activated by H2O2 and bleomycin in HFF1 cells with no difference after addition of EDHB in any case. Again, 
there was a high level of phosphorylated protein in the control in NBS-8 cells, which was only further raised after 
treatment with H2O2 and EDHB. EDHB alone, H2O2 alone, bleomycin alone and bleomycin plus EDHB did show 
a similar expression of P-BRCA1, which was lower than in control.

The important finding here is the ability of EDHB to decrease the amount of DSBs caused by oxidative 
stress (administered by H2O2). EDHB showed a reduction of P-CHEK1 and P-CHEK2 in hESCs and iPSCs 
after bleomycin treatment, and an induction of P-CHEK1 and P-CHEK2 in fibroblasts after treatment of H2O2. 
Interestingly, the important tumor suppressor TP53 was less activated in NBS-8 fibroblasts as in control cells 
(HFF1) and exhibited an even lower signal after treatment with bleomycin.

The pattern in activation of P53, CHEK1 and CHEK2 is similar, but not identical in NBS-8 fibroblasts and 
iPSCs and differs in comparison to their healthy counterparts. The most prominent difference is the response 
of CHEK1 to EDHB in NBS-8 fibroblasts in comparison to NBS-8-iPSCs (activated in response to H2O2 only in 
the presence of EDHB). Furthermore, the relative activation of CHEK2 to bleomycin is a lot stronger in NBS-8 
fibroblasts compared to iPSCs.

Discussion
The DNA damage sensing NBN is an adapter protein which can bind to a variety of other DNA signaling and 
repair proteins particularly ATM, which is a kinase that amplifies and transduces the DNA damage signal53. The 
657del5 mutation in NBN results in a truncated protein where one specific functional domain (FHA-BRCT) 
is missing. This domain is also a common motif within other DNA repair signaling proteins54. DNA repair 
mechanisms especially those of repair pathway decisions are still not fully understood. NBS-iPSCs and their 
differentiated descendants could therefore serve as a good model to study DNA repair and cell fate after DNA 
damage. This could aid in elucidating the mechanisms underlying the disease. NBS-iPSCs can also provide a 
screening system for treatments which might increase the life span and quality of life of patients with NBS and 
similar diseases like Fanconi Anemia (FA), Ligase IV (LIG4) syndrome, Bloom syndrome, NBS-like disorder, 
ataxia-telangiectasia-like disorder (ATLD), Nonhomologous end-joining factor 1 (NHEJ1) syndrome and Seckel 
syndrome, which all derive from mutated genes in repair pathways55, 56. In a recent publication, we modeled and 
characterized NBS by reprogramming23. Reprogrammed cells from patients with similar diseases like FA have 
been reported, though this can be done only after genetic correction or with the aid of antioxidants24. In another 
study, a mutation in the repair pathway gene ERCC6 did not prevent genetic reprogramming but exhibited ele-
vated cell death rates and ROS production25.

Our cellular NBS model was based on fibroblasts from NBS patients reprogrammed into iPSCs, using retro-
viral transduction of OCT4, SOX2, KLF4 and C-MYC. Further, by employing somatic cells and iPSCs of NBS, 
global transcriptome analysis was performed, to identify new phenotypes and changes in the signaling network of 
NBS cells compared to normal cells. In addition, the influence of oxidative stress, radiomimetics and antioxidants 
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was tested on the genomic integrity of NBS cells before and after reprogramming. Comparative transcriptome 
and associated pathway analyses revealed that, (a) NBS fibroblasts have a higher impact on cell cycle regulation, 
apoptosis and P53 signaling than normal fibroblasts (b) NBS-iPSCs and normal hESCs presented de-regulated 
genes and pathways associated with DNA replication, glycolysis, pyrimidine, fructose and mannose metabo-
lism as well as DNA repair related pathways. Notably, these pathways can be connected to ROS homeostasis. 
Comparative tests based on sensitivity towards oxidative stress and DNA damaging agents such as hydrogen per-
oxide and Bleomycin, revealed that NBS-iPSCs and NBS-fibroblasts compared to normal fibroblasts were highly 
sensitive to DSB inducer Bleomycin and oxidative stress induced by exogenous hydrogen peroxide. Interestingly, 
DNA damage from hydrogen peroxide was efficiently relieved by addition of EDHB, an inducer of the hypoxia 
(HIF) pathway. The results indicate that NBS-iPSCs can serve as an excellent model to study NBS and screen for 
antioxidants in vitro.

NBS is a disease of premature aging resulting from the genomic instability caused by the NBN mutation 
which leads to hurdles in the reprogramming process. Activation of P53 is especially known to restrain repro-
gramming28. We observed that P53, a known tumor-suppressor gene, was activated in NBS fibroblasts, result-
ing in increased senescence in the NBS cell cultures and had extremely low reprogramming efficiency. Once 
reprogrammed, the cells maintained pluripotency and proliferated like normal hPSCs. NBS-iPSCs may protect 
themselves from oxidative stress and ROS-induced DNA damage by increased glycolysis which was up-regulated 
in comparison to hESCs. In previous studies, hESCs were found to have immature mitochondria and depended 
heavily on glycolysis13, 15, 35, 57. This bias towards glycolysis might be related to the down regulation of P53, 
increased stress in the NBS iPSCs and hence increased glycolytic lactate production for survival. Furthermore, 
it is known that P53 promotes oxidative phosphorylation38, thus, reduced P53 results in reduced oxidative 
phosphorylation.

Also, PSCs are known to ensure genomic integrity through enhanced apoptosis induction and increased anti-
oxidant defense, contributing to protection against DNA damage58. The finding that antioxidants, particularly 
EDHB, improved genomic stability of NBS-iPSCs can improve reprogramming of additional NBS fibroblasts and 
other diseases like NBS which derive from mutated genes in DNA repair pathways, examples include, Fanconi 
Anemia (FA)16, Ligase IV (LIG4) syndrome17, Bloom syndrome18, NBS-like disorder19, Ataxia-Telangiectasia-Like 
Disorder (ATLD)20, Nonhomologous end-joining factor 1 (NHEJ1) syndrome21 and Seckel Syndrome22.

EDHB was used in another study to protect cells from hypoxia-mediated oxidative damage59. With EDHB 
known as an activator of the HIF pathway, these results point to a reduction of ROS-induced DNA damage and 
subsequent relief of the impaired DNA damage response as the cause for genomic stabilization.

DNA damage response mediated by the MRN complex, ATM/ATR, P53, CHEK1 and CHEK2 are crucial 
in early development of most types of cancer60. Although the role of this core network in relation to DNA dam-
age, cancer and pluripotency has been widely investigated31, 43, several mechanisms in early oncogenesis remain 
unclear.

In this study, we have demonstrated that our model of fibroblasts and iPSCs derived from NBS patients besides 
the study of NBS itself which is associated with microcephaly, premature aging and growth retardation provides 
the environment for a detailed study of oncogenic mechanisms. The NBS phenotype includes a predisposition 
to cancer due to impaired DNA damage repair. Furthermore, we have shown that the addition of stimuli such 
as oxidative stress and mutagenic factors to this model could be used as a screening platform for anti-oxidants 
capable of suppressing DNA damage. Transcriptome analysis of our NBS-model identified de-regulation of P53, 
cell cycle, oxidative phosphorylation and glycolysis. In screening for antioxidants we identified EDHB as a potent 
modulator of DNA damage. Interestingly we revealed that NBS fibroblasts have a higher susceptibility for induc-
tion of DNA damage compared to NBS-iPSCs. However, although additional research is needed to improve the 
reprogramming efficiency and thus the robustness we believe that NBS-iPSCs can serve as cellular tools for a 
screening platform for molecules with anti-oxidant capabilities.

Methods
Ethical approval. NBS patient dermal fibroblast cells with informed consent (Table 1) were provided by 
Prof. Dr. Karl Sperling (Institute of Medical and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 
Berlin). Approval was obtained from the Ethics Commission of the Charité—Universitätsmedizin. The methods 
and experimental protocols were carried out in accordance with their guidelines and regulations.

Cell culture. Neonatal foreskin fibroblasts, HFF1 and BJ were purchased from ATCC (#SCRC-1041 and 
#CRL-2522, respectively). All cells used were cultured at 37 °C, 5% CO2 and either 21% (standard) or 5% oxygen 
in an incubator under humidified atmosphere. Somatic cells were cultured in DMEM medium (Gibco, USA) sup-
plemented with 10% fetal bovine serum (FBS) and 1x penicillin/streptomycin until reaching 90% confluency and 
then split in a 1:4 ratio. The conditions for passaging human pluripotent stem cells (hPSC) were a combination of 
methods adapted from several published protocols61, 62. This was applied to the culture of the human ESC-lines 
H1 and H9 (WiCell Research Institute, Madison, WI, USA) and iPSCs generated from NBS and HFF1 cells. In 
combination with MEFs, hPSCs were usually cultivated in plates coated with 0,2% gelatin and fed with hESC 
medium containing KO-DMEM supplemented with 20% knockout serum replacement, non-essential amino 
acids, L-glutamine, penicillin/streptomycin, sodium pyruvate, 0.1 mM beta-mercaptoethanol and 4 ng/ml FGF-2, 
which was replaced every second day.

FACS analysis (detection of ROS and DNA damage). The FACSCalibur system (BD Biosciences, USA) 
and the software program CellQuestPro were used as described by the manufacturer’s instructions. Programs 

95



www.nature.com/scientificreports/

1 1SCIENTIFIC REPORTS | 7: 7516  | DOI:ͷͶ.ͷͶ8/sͺͷͻ98-Ͷͷ7-Ͷ79Ͷͻ-

used for data analysis were CellQuestPro (BD Biosciences, USA), Cyflogic (Cyflo Ltd, Finland), Weasel 3.0 
(WEHI, Australia) and Flowing software 2.5.1 (Finland) programs.

For ROS measurement, fibroblast cells were seeded onto 12-well-plates with a density of 5 × 104 cells per well 
one day prior to treatment. hESCs and iPSCs were seeded on Matrigel (Corning) in 6-well-plates and fed with 
hESC medium, one week prior to the treatment. To prepare cells for ROS-measurements, they were washed once 
with PBS and then incubated in 15 µM DCF-DA for 20 min at 37 °C. Afterwards, the solution was removed and 
the cells were briefly rinsed with PBS. Cells were treated with different concentrations of antioxidants (as indi-
cated) and/or 20 µM H2O2 for 30 min. To analyze single cells by FACS, they were trypsinized by colorless 0.05% 
trypsin solution for 5 min. Trypsinization was stopped by adding 10% FBS in PBS. Cells were then centrifuged 
by 500 × g for 5 min and re-suspended in 300 µl PBS. The fluorescence was measured by FACS using the FITC 
channel.

For measurement of DNA damage, fibroblast cells were seeded onto 6-well-plates with a density of 4 × 105 
cells per well one day prior to treatment. hESCs and iPSCs were seeded on Matrigel (Corning) in 6-well-plates 
and fed with hESC medium, one week prior to the treatment. Cells were either treated with antioxidants (as 
indicated) 5 min prior to the addition of 1 mM H2O2 or with H2O2 alone at a total incubation time of 4 h at 37 °C 
in a cell culture incubator with either 21% or 5% oxygen, as indicated. Other cells were treated with antioxidants 
(as indicated) 5 min prior to the addition of 30 µg/ml Bleomycin for 3 h, and released for 1 h by switching to 
Bleomycin-free medium. Afterwards, the cells were briefly rinsed with PBS and trypsinized to generate single 
cells. The cells were centrifuged at 500 × g for 5 min and the cell pellet was re-suspended in 100 µl PBS. Under 
constant shaking (to prevent clumping) 300 µl of 100% ice-cold ethanol was added dropwise to fix the cells and 
incubated at −20 °C for at least 30 min or until further use. Afterwards the solution was mixed with 1 ml PBS and 
centrifuged at 2200 × g for 5 min. The pellet was re-suspended in 50 ml PBS-T with 5% FBS and incubated 30 min 
at RT for blocking. FITC-labeled gamma-H2AX antibody (Millipore, 1:500) was added and incubated overnight 
at 4 °C. The next day, 300 µl PBS was added and the cells were measured by FACS using the FITC channel. In some 
cases, the cells were co-stained with TRA1-60 antibody (Santa Cruz Biotechnology, Inc.) to verify pluripotent cell 
populations.

Western Blot. The membrane was rinsed with dH2O and then blocked with 5% milk powder or 5% BSA 
in PBS-T (blocking solution) by shaking for 1 h at RT. BSA blocking solution was used for phospho-specific 
antibodies, in all other cases blocking was performed with milk. After blocking, the membrane was incubated 
by shaking at 4 °C overnight with the primary antibodies dissolved in PBS-T with 5% milk powder or 5% BSA; 
Beta-actin (Sigma-Aldrich), phospho-histone H2A.X (Ser139), phospho-CHEK1 and phospho-CHEK2 (CST), 
phospho-P53 (Ser15, CST), phospho-BRCA1 (Ser1524, CST), phospho-ATM (Ser1981, CST), phospho-ATR 
(Ser428, CST). Afterwards, the membrane was washed 3 times for 10 min in PBS-T on the Lab shaker, exchang-
ing buffer between each step. Then, the secondary antibody dissolved in milk or BSA blocking solution was 
applied by shaking for 1 h at RT. Afterwards the membrane was washed 3 times for 10 min in PBS-T. Appropriate 
peroxidase-conjugated secondary antibodies and luminescence was induced by ECL Plus Western Blotting 
Detection Reagents and captured on BioMAX XAR film.

Transcriptomics. The microarray hybridization experiments included biotin-labelling of cRNA by using 
500 ng quality-checked total RNA (per sample) as input. Chip hybridizations, washing, Cy3 streptavidin stain-
ing, and scanning were performed on BeadStation 500 platform (Illumina) using reagents and protocols sup-
plied by the manufacturer. cRNA samples were hybridized in duplicates on Illumina human-8 BeadChips 
(NBS-1, NBS-3, NBS-5, NBS-7, HFF1, BJ) or Illumina human-12 BeadChips (NBS-8, NBS-8 iPSCs, H1, H9 
(single), HFF1-iPSCs, BJ-iPSCs). Basic expression data analysis was carried out using the manufacturer’s soft-
ware GenomeStudio (Illumina). Raw data was background-subtracted and normalized using the “rank invariant” 
algorithm. Normalized data was then filtered for significant expression (detection p-value) based on negative 
control beads. All genes with detection p-values below 0.01 were considered as expressed. All genes with differ-
ential p-values below 0.05 were considered as differentially expressed. Selection for differentially expressed genes 
was performed on the basis of arbitrary thresholds (1.5 fold changes) and statistical significance according to an 
Illumina custom model63. Different sets of gene lists were entered into the DAVID functional annotation tool34, 
using the official gene symbol or ILLUMINA-IDs as input, to perform gene-annotation enrichment analysis, 
functional annotation clustering, KEGG pathway mapping (http://www.genome.jp/kegg/)36, transcription factor 
binding site prediction and more. Multiple testing was assessed via the Benjamini-Hochberg correction in the 
results of the DAVID analysis.

For the calculation of the activation state of transcription factors, a list of differentially regulated genes between 
NBS and normal fibroblasts was used as input for Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 
www.qiagen.com/ingenuity).

Microarray data is available at NCBI GEO under the accession number GSE94708 for the superseries and 
GSE94706 for the fibroblasts and GSE94707 for the iPSCs series.
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Induced pluripotent stem cells (iPSCs) and human embryonic stem cells (hESCs) differ-
entiated into hepatocyte-like cells (HLCs) provide a defined and renewable source of cells
for drug screening, toxicology and regenerative medicine. We previously reprogrammed
human fetal foreskin fibroblast cells (HFF1) into iPSCs employing an episomal plasmid-
based integration-free approach, this iPSC-line and the hESC lines H1 and H9 were used
to model hepatogenesis in vitro. Biochemical characterisation confirmed glycogen stor-
age, ICG uptake and release, urea and bile acid production, as well as CYP3A4 activity.
Microarray-based transcriptome analyses was carried out using RNA isolated from the
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Data Descriptor: Human
pluripotent stem cell derived HLC
transcriptome data enables
molecular dissection of
hepatogenesis
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Induced pluripotent stem cells (iPSCs) and human embryonic stem cells (hESCs) differentiated into

hepatocyte-like cells (HLCs) provide a defined and renewable source of cells for drug screening, toxicology

and regenerative medicine. We previously reprogrammed human fetal foreskin fibroblast cells (HFF1) into

iPSCs employing an episomal plasmid-based integration-free approach, this iPSC-line and the hESC lines

H1 and H9 were used to model hepatogenesis in vitro. Biochemical characterisation confirmed glycogen

storage, ICG uptake and release, urea and bile acid production, as well as CYP3A4 activity. Microarray-

based transcriptome analyses was carried out using RNA isolated from the undifferentiated pluripotent

stem cells and subsequent differentiation stages- definitive endoderm (DE) hepatic endoderm (HE) and

HLCs. K-means identified 100 distinct clusters, for example, POU5F1/OCT4 marking the undifferentiated

stage, SOX17 the DE stage, HNF4α the HE stage, and ALB specific to HLCs, fetal liver and primary human

hepatocytes (PHH). This data descriptor describes these datasets which should be useful for gaining new

insights into the molecular basis of hepatogenesis and associated gene regulatory networks.
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• induced pluripotent stem cell line cell • iPSC derived cell line
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Background & Summary
The implementation of a well-characterized renewable source of hepatocytes differentiated from iPSCs
and hESCs provides a powerful in vitro model system for analysing the molecular mechanisms associated
with hepatogenesis. Several essential initiators of hepatogenesis such as fibroblast growth factor 2 and 4
(FGF4 and FGF2)1,2, bone morphogenic protein (BMP2)3, hepatocyte growth factor (HGF), oncostatin M
and dexamethasone4 have already been described. These factors are sequentially supplemented into the
media during the course of the differentiation process.

Besides detoxification the liver is responsible for a number of essential functions e.g. the uptake and
storage of glycogen, various metabolic functions, synthesis of bile acids and production of plasma
proteins. Available liver cellular models have disadvantages: (i) liver biopsy derived primary human
hepatocytes (PHH) cannot be expanded for long periods in vitro, are often obtained from diseased
individuals and are difficult to obtain in sufficient quantities5,6, (ii) transformed, permanent cell lines,
such as HepG2 and HepaRG, have cancer phenotypes which are significantly diverged from normal
primary hepatocytes7–9. A potential alternative could be the differentiation into hepatocyte-like cells.
Although hepatocyte-like cells (HLCs) derived from iPSCs are not fully mature compared to liver biopsy
derived adult hepatocytes they are endowed with many advantages, for example easily generated from
iPSCs, known genetic background and disease states thus optimal for disease modelling in vitro,
toxicology studies and drug screening. iPSC-based cellular models have already been employed in several
studies for drug screening, toxicology studies and disease modeling10–14.

The liver develops in a stepwise process in vivo: first, competence is established in the foregut
endoderm in response to signals emanating from cardiac mesoderm, thereafter liver-specific gene
expression is initiated15. The differentiation of hiPSCs and hESCs also proceed via the intermediate step
of definitive endoderm, the bipotential hepatic endoderm, then maturation into HLCs16. Distinct stage
specific changes in the associated transcriptional regulatory networks control the different phases of
hepatogenesis17. Wang et al. describe a developmental progression from unmarked chromatin to poised
chromatin and then to histone H3K27 acetylation which is accompanied by specific transcription factor
classes18. They suggest FOXA transcription factors - known as pioneer factors facilitating the unwinding
of chromatin - to play a role at poised enhancers while lineage-specific factors such as PDX1 for
pancreatic and HNF4α for hepatic lineage drive the poised to an active enhancer state18.

Attaining maturation comparable to primary hepatocytes is still one of the most challenging issues
associated HLC differentiation. Knowledge on HNF4α, as major transcription factor regulating hepatic
differentiation and maturation has already been described15. Additionally Li et al. reported that HNF4α
lies upstream of the transcription factors HNF1α and PXR suggesting it might initiate a cascade of gene
regulatory networks driving hepatocyte differentiation15. In our publication related to the hESCs and
hiPSC dataset pertinent to this data descriptor we confirmed expression of maturation markers such as
ALB, HNF4α, HNF1α and TTR16,17.

The data described consists of microarray gene expression data from hESCs and hiPSCs differentiated
into HLCs via the DE and HE stages and also fetal liver and primary human hepatocyte samples as
reference. Although transcription factors central to hepatogenesis have been described, the datasets
described here will enable a more detailed analyses of gene regulatory networks associated with modelling
hepatogenesis using pluripotent stem cells.

Methods
Human ES and iPS cells culture
Human ES cell lines H1 and H9 (WiCell Research Institute, Madison, Wisconsin) from passage 39 to 66
were maintained under sterile conditions in a humidified incubator in a 5% CO2-95% air atmosphere at
37 °C (INNOVA CO-170 Incubator, New Brunswick Scientific). In a routine culture cells were
maintained on Matrigel® in conditioned media (CM)19. Under these culture conditions, hESCs were
confirmed to stain positive for OCT4, SSEA-4, TRA-1-60, and TRA-1-81 (ES Cell Characterization Kit,
Chemicon). Before initiating the differentiation cells were washed with PBS without Ca2+Mg2+ (Gibco,
Invitrogen).

Cell culture of iPS cells which were derived from Human neonatal foreskin fibroblasts HFF1 is
described in Matz et al.17.

Differentiation into hepatocyte-like cells (HLCs)
The derivation of HLCs from the hESC lines H1 and H916 followed protocols described by Hay et al.20

and Agarwal et al.21. RNA samples were extracted after each step of the differentiation protocol.
Differentiation of iPS cells into HLCs17 followed in large parts the protocol described by

Jozefczuk et al.16.
The overall experimental design of this study is illustrated in Figure 1a. Two pluripotent stem cells

lines (hESC- H1 and H9) and fetal foreskin derived iPSC were used. Both proceeded via the intermediate
DE and HE stages to HLCs and then compared to commercially bought RNA from fetal liver (Stratagene,
MVP Total RNA: tissue from single male donor, 18th week of gestation; positive control for the iPSC-
based differentiations: Clontech, #636540) and adult liver biopsy-derived primary human hepatocytes-
PHH (Ready Heps Fresh Hepatocytes; Lonza, 65-year old male of Asian origin; positive control for the
iPSC-based differentiations: Clontech, #636531).
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Illumina BeadChip hybridisation
Biotin-labelled cRNA was produced by means of a linear amplification kit (Ambion, Austin, TX, USA)
using 500 ng of quality-checked total RNA as input. Chip hybridisations, washing, Cy3-streptavidin
staining, and scanning were performed on an Illumina BeadStation 500 platform (Il-lumina, San Diego,
CA, USA) using reagents and following protocols supplied by the manufacturer. cRNA samples were
hybridised in biological triplicates on HumanRef-8 Expression BeadChips. The following samples were
hybridized: Undifferentiated cells (H1 cell line), DE (definitive endoderm)-differentiated cells, HE
(hepatic endoderm)-differentiated cells and hepatocyte-like cells (HLCs) derived with two independent
protocols20,21.

Differentiation experiments of iPSCs were hybridised on Illumina HumanHT-12 BeadChips. For
details see the Methods description in Matz et al.17.

The summary of bead-level data to bead-summary data was carried out using the manufacturer's
software BeadStudio 3.0 (Illumina) for hESC and iPSC differentiation experiments. Table 1 provides an
overview of all samples used for this study.

Data analysis and statistical methods
For further analysis, the bead-summary data saved in the BeadStudio was imported into the Bioconductor
environment22 and quantile normalized using the bioconductor package lumi23. Global gene expression
similarities within biological replicates and between dedicated differentiation stages, pairwise Pearson
correlation coefficients were calculated for all samples. Cluster analyses were performed using the R/
Bioconductor environment22 and the package pvclust24 using n= 1000 for bootstrap sampling. k-means
clustering was employed to identify clusters of genes with similar gene expression changes over the stages
of the differentiation protocol using k= 100 as number of clusters. The software is available in the
Supplementary Data File 1.
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Figure 1. Comparison of hepatic differentiation of iPSCs and hESCs. (a) Scheme of comparative hepatic

differentiation of iPSCs and hESCs. iPSCs and hESCs are differentiated into HLCs which can be compared

versus each other and versus fetal liver (FL) and PHHs. Also the intermediate stages DE and HE are captured

and thus can be subjected to comparative analysis. Hierarchical clustering of hESC (b) and iPSC (c)

differentiation into HLCs was performed via pvclust using 1000 bootstrap samples. „au“ (approximately

unbiased) is computed by multiscale bootstrap resampling and „bp“ (bootstrap probability) by normal

bootstrapping. Red rectangles mark clusters with AU larger than 95%. Thus the dendrogram is with one

exception in hESC (98%) at 100% supported by data. All replicates cluster together. HLCs cluster apart from

hESCs/iPSCs, DE and HE. Fetal liver and PHH cluster together and separated from the hESC/iPSC-derived

hepatic differentiation stages.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180035 | DOI: 10.1038/sdata.2018.35 3

102 Publications as first author or equal contribution



Data Records
Data Record 1

The iPSC-related microarray experiments related to this publication have been performed on the
Illumina BeadStation 500 platform (Illumina, San Diego, CA, USA) using the Illumina HumanHT-12
BeadChip. The data were uploaded to NCBI GEO and are accessible under (Data Citation 1). The dataset
(Data Citation 1) was first released to the public with the publication Matz et al.17.

Data Record 2

The hESC-related microarray experiments related to this publication have been performed on the
Illumina BeadStation 500 platform (Illumina, San Diego, CA, USA) using the HumanRef-8 Expression
BeadChip. The data were uploaded to NCBI GEO and are accessible under (Data Citation 2). The dataset
(Data Citation 2) is being released for the first time with the publication of this Data Descriptor.

Technical Validation
Transcriptome data
Microarray data were quality controlled via the proprietary Illumina quality control mechanisms.
Tables of Pearson correlation coefficients of all samples vs. each other were generated validating
the absence of outliers (Tables 2 and 3). Several samples were investigated in triplicates, all others in
duplicates. Figure 1b and Figure 1c show that the replicates cluster together as well in the hESC as in the
iPSC differentiation experiments as one would expect. Both bootstrap sampling methods implemented in
the pvclust clustering software confirmed that all clusters within the dendrogram are with one exception
(98%) at 100% supported by data. This demonstrates the validity of experiments on the level of whole-
genome gene expression.

ID description replicate [#] NCBI GEO sample NCBI GEO accession no.

hESCs_1 human embryonic stem cells (H1) 1 GSM2683216 GSE100447

hESCs_2 human embryonic stem cells (H1) 2 GSM2683217 GSE100447

hESCs_3 human embryonic stem cells (H1) 3 GSM2683218 GSE100447

DE_hESCs_1 definite endoderm from hESCs 1 GSM2683219 GSE100447

DE_hESCs_2 definite endoderm from hESCs 2 GSM2683220 GSE100447

DE_hESCs_3 definite endoderm from hESCs 3 GSM2683221 GSE100447

HE_hESCs_1 hepatic endoderm from hESCs 1 GSM2683222 GSE100447

HE_hESCs_2 hepatic endoderm from hESCs 2 GSM2683223 GSE100447

HE_hESCs_3 hepatic endoderm from hESCs 3 GSM2683224 GSE100447

HLCs_hESCs_1 hepatocyte-like cells from hESCs 1 GSM2683225 GSE100447

HLCs_hESCs_2 hepatocyte-like cells from hESCs 2 GSM2683226 GSE100447

HLCs_hESCs_3 hepatocyte-like cells from hESCs 3 GSM2683227 GSE100447

Fetal_Liver_1 fetal liver 1 GSM2683228 GSE100447

Fetal_Liver_2 fetal liver 2 GSM2683229 GSE100447

PHH_1 primary human hepatocytes 1 GSM2683230 GSE100447

PHH_2 primary human hepatocytes 2 GSM2683231 GSE100447

iPSCs_1 induced pluripotent stem cells 1 GSM1618658 GSE66282

iPSCs_2 induced pluripotent stem cells 2 GSM1618659 GSE66282

DE_iPSCs_1 definite endoderm from iPSCs 1 GSM1618660 GSE66282

DE_iPSCs_2 definite endoderm from iPSCs 2 GSM1618661 GSE66282

HE_iPSCs_1 hepatic endoderm from iPSCs 1 GSM1618662 GSE66282

HE_iPSCs_2 hepatic endoderm from iPSCs 2 GSM1618663 GSE66282

HLCs_iPSCs_1 hepatocyte-like cells from iPSCs 1 GSM1618664 GSE66282

HLCs_iPSCs_2 hepatocyte-like cells from iPSCs 2 GSM1618665 GSE66282

fetal_liver_1 fetal liver 1 GSM1618666 GSE66282

fetal_liver_2 fetal liver 2 GSM1618667 GSE66282

PHH_1 primary human hepatocytes 1 GSM1618668 GSE66282

PHH_2 primary human hepatocytes 2 GSM1618669 GSE66282

Table 1. Samples related to data sets in repositories.
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k-means clustering to assess differentiation stages and similarity to primary hepatocytes
Normalized gene expression microarray data of the iPSC differentiation experiments were further
investigated via a k-means clustering algorithm. The algorithm split the data into 100 clusters of genes
with similar expression over all differentiation stages. Associations of genes with clusters are included in
the publication by Matz et al.17. Several clusters were representative for distinct differentiation stages.
Genes from cluster#9 were employed to make a tissue type prediction via the tool KeyGenes25 (Figure 2a).
Based on the normalized gene expression data of these genes KeyGenes predicted the tissue type “liver”
for HLC, fetal liver and PHH samples. Figure 2b demonstrates that genes from cluster#9 have most
abundantly peaks at the HLC stages.

Furthermore, k-means clustering provided several stage-specific clusters six of which are shown in
Figure 3. These represent stages iPSCs, definite endoderm, hepatic endoderm, HLCs, fetal liver and PHHs
and display a gene expression peak at the dedicated stage. They include stage-specific markers which in
some cases are already known: POU5F1/ OCT4 in the iPSC-cluster, SOX17 in the DE-cluster, AFP in the
fetal-liver-cluster and ALB in the PHH-cluster. In Supplementary Fig. S4F of our previous publication
related to the iPSC dataset17 of this data descriptor we could confirm PHH-cluster activity of the
transcription factors HNF4α and HNF1α reported by Li et al.15 as factors inducing hepatocyte

sample iPSC_B1_1 iPSC_B1_2 DE_1 DE_2 HE_1 HE_2 HLC_1 HLC_2 fetal_liver_1 fetal_liver_2 PHH_1 PHH_2

iPSC_B1_1 1.0000 0.9948 0.9356 0.9387 0.9502 0.9490 0.9155 0.9214 0.8150 0.8244 0.7413 0.7336

iPSC_B1_2 0.9948 1.0000 0.9419 0.9448 0.9541 0.9527 0.9228 0.9274 0.8236 0.8331 0.7512 0.7431

DE_1 0.9356 0.9419 1.0000 0.9980 0.9202 0.9124 0.9546 0.9496 0.8191 0.8285 0.7444 0.7363

DE_2 0.9387 0.9448 0.9980 1.0000 0.9238 0.9165 0.9548 0.9508 0.8199 0.8297 0.7453 0.7371

HE_1 0.9502 0.9541 0.9202 0.9238 1.0000 0.9966 0.9225 0.9363 0.8360 0.8379 0.7643 0.7581

HE_2 0.9490 0.9527 0.9124 0.9165 0.9966 1.0000 0.9165 0.9311 0.8328 0.8345 0.7639 0.7582

HLC_1 0.9155 0.9228 0.9546 0.9548 0.9225 0.9165 1.0000 0.9956 0.8399 0.8488 0.7714 0.7642

HLC_2 0.9214 0.9274 0.9496 0.9508 0.9363 0.9311 0.9956 1.0000 0.8440 0.8510 0.7753 0.7685

fetal_liver_1 0.8150 0.8236 0.8191 0.8199 0.8360 0.8328 0.8399 0.8440 1.0000 0.9941 0.8684 0.8624

fetal_liver_2 0.8244 0.8331 0.8285 0.8297 0.8379 0.8345 0.8488 0.8510 0.9941 1.0000 0.8662 0.8593

PHH_1 0.7413 0.7512 0.7444 0.7453 0.7643 0.7639 0.7714 0.7753 0.8684 0.8662 1.0000 0.9974

PHH_2 0.7336 0.7431 0.7363 0.7371 0.7581 0.7582 0.7642 0.7685 0.8624 0.8593 0.9974 1.0000

Table 3. Pearson correlation coefficients of iPSC-derived transcriptome data of all samples vs. each

other.

sample hESCs_1 hESCs_2 hESCs_3 DE_1 DE_2 DE_3 HE_1 HE_2 HE_3 HLCs_1 HLCs_2 HLCs_3 Fetal_Liver_1 Fetal_Liver_2 PHH_1 PHH_2

hESCs_1 1.0000 0.9927 0.9913 0.9489 0.9455 0.9463 0.9534 0.9539 0.9564 0.9117 0.9057 0.9081 0.6798 0.6787 0.6062 0.6079

hESCs_2 0.9927 1.0000 0.9964 0.9483 0.9458 0.9463 0.9530 0.9538 0.9567 0.9094 0.9081 0.9100 0.6910 0.6919 0.6103 0.6113

hESCs_3 0.9913 0.9964 1.0000 0.9477 0.9463 0.9460 0.9539 0.9544 0.9563 0.9177 0.9182 0.9206 0.6903 0.6907 0.6114 0.6124

DE_1 0.9489 0.9483 0.9477 1.0000 0.9963 0.9968 0.9631 0.9631 0.9640 0.9308 0.9270 0.9273 0.6743 0.6725 0.6133 0.6149

DE_2 0.9455 0.9458 0.9463 0.9963 1.0000 0.9978 0.9620 0.9613 0.9618 0.9255 0.9255 0.9281 0.6663 0.6645 0.6097 0.6115

DE_3 0.9463 0.9463 0.9460 0.9968 0.9978 1.0000 0.9597 0.9586 0.9601 0.9213 0.9200 0.9220 0.6662 0.6643 0.6113 0.6135

HE_1 0.9534 0.9530 0.9539 0.9631 0.9620 0.9597 1.0000 0.9981 0.9974 0.9453 0.9422 0.9447 0.6805 0.6799 0.6224 0.6234

HE_2 0.9539 0.9538 0.9544 0.9631 0.9613 0.9586 0.9981 1.0000 0.9975 0.9458 0.9432 0.9451 0.6831 0.6825 0.6211 0.6223

HE_3 0.9564 0.9567 0.9563 0.9640 0.9618 0.9601 0.9974 0.9975 1.0000 0.9411 0.9379 0.9398 0.6812 0.6809 0.6211 0.6226

HLCs_1 0.9117 0.9094 0.9177 0.9308 0.9255 0.9213 0.9453 0.9458 0.9411 1.0000 0.9871 0.9834 0.6912 0.6889 0.6063 0.6086

HLCs_2 0.9057 0.9081 0.9182 0.9270 0.9255 0.9200 0.9422 0.9432 0.9379 0.9871 1.0000 0.9972 0.6931 0.6923 0.6121 0.6149

HLCs_3 0.9081 0.9100 0.9206 0.9273 0.9281 0.9220 0.9447 0.9451 0.9398 0.9834 0.9972 1.0000 0.6854 0.6849 0.6110 0.6139

Fetal_Liver_1 0.6798 0.6910 0.6903 0.6743 0.6663 0.6662 0.6805 0.6831 0.6812 0.6912 0.6931 0.6854 1.0000 0.9979 0.7384 0.7364

Fetal_Liver_2 0.6787 0.6919 0.6907 0.6725 0.6645 0.6643 0.6799 0.6825 0.6809 0.6889 0.6923 0.6849 0.9979 1.0000 0.7422 0.7403

PHH_1 0.6062 0.6103 0.6114 0.6133 0.6097 0.6113 0.6224 0.6211 0.6211 0.6063 0.6121 0.6110 0.7384 0.7422 1.0000 0.9973

PHH_2 0.6079 0.6113 0.6124 0.6149 0.6115 0.6135 0.6234 0.6223 0.6226 0.6086 0.6149 0.6139 0.7364 0.7403 0.9973 1.0000

Table 2. Pearson correlation coefficients of hESC-derived transcriptome data of all samples vs. each

other.
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differentiation and furthermore reveal the activity of CTCF, ZFX, FOXA2, FOXA1, CEBPA. Additionally,
these datasets may provide new insights into the differences and similarities of the hepatocyte
differentiation processes between hESCs and iPSCs. Figure 4 using marker genes from the representative
k-means-clusters shows that the DE stage and HLCs are very similar between hESC- and iPSC-derived
differentiations while the HE stage provides a pronounced peak in iPSC-derived cells and a small peak in
hESC-derived cells. As a cautionary note, the iPSC and hESC differentiations into HLCs and also the
microarray-based transcriptome analyses were not conducted simultaneously, hence the observed minor
variations.

Usage Notes
The microarray experiments related to this publication have been performed on the Illumina BeadStation
500 platform (Illumina, San Diego, CA, USA) but on different BeadChips. The iPSC-derived
differentiations were hybridized using the Illumina HumanHT-12 BeadChip while the hESC-derived
differentiations were hybridized using the HumanRef-8 Expression BeadChip. The differing chip types
should be taken into account when comparing transcriptomics data between hESC-derived and iPSC-
derived experiments. Further points which should be considered are: (1) The fetal liver RNA was derived
from liver homogenates containing all cells, but the adult liver samples were derived from isolated
hepatocytes; (2) the liver disease for which the biopsy was performed could have an influence on the
dataset; (3) the two different differentiation protocols used may affect the data.
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Figure 2. Characterization of hepatocyte-like cells. (a) Plot of 407 genes from the k-means cluster#9 over all

differentiation stages derived from the iPSCs. The plot demonstrates that this cluster is representative for HLCs.

(b) KeyGenes tissue classification of for iPSCs k-means Hepatocyte-like-cell (HLC) cluster9 (source: Matz

et al.17). Based on NCBI GEO datasets for human liver, brain, intestine, kidney, lung and heart via the

KeyGenes tool a training set for these Illumina microarray platform data was generated. Genes from the HLC

cluster#9 resulting from k-means clustering and HLC, fetal liver (FL) and primary human hepatocyte samples

were used as test set. (c) Plot of 263 genes from the k-means cluster#2 over all differentiation stages derived

from the hESCs. The plot demonstrates that this cluster is representative for HLCs. (d) KeyGenes tissue-based

classification for hESCs k-means Hepatocyte-like-cell (HLC) cluster#2.
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Figure 3. Clusters representative for all stages of differentiation. Via k-means clustering genes were assigned

to 100 clusters having similar behaviour during the hepatic differentiation process. The plots in (a) show

expression of genes in the hESC-differentiation experiments associated with cluster#94 representative for

hESCs, cluster#23 containing SOX17 representative for DE, cluster#64 representative for HE, cluster#77

representative for HLCs, cluster#19 containing AFP representative for fetal liver, cluster#59 containing the liver

marker ALB representative for PHHs. The plots in (b) show expression of genes in the iPSC-differentiation

experiments associated with cluster#68 representative for iPSCs, cluster#81 containing SOX17 representative

for DE, cluster#37 representative for HE, cluster#51 representative for HLCs, cluster#72 containing AFP

representative for fetal liver, cluster#91 containing the liver marker ALB representative for PHHs.
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The FGF, TGFβ and WNT axis 
Modulate Self-renewal of Human 
SIX2+ Urine Derived Renal 
Progenitor Cells
Md Shaifur Rahman  1,2, Wasco Wruck1,2, Lucas-Sebastian Spitzhorn1, Lisa Nguyen1, 

Martina Bohndorf1, Soraia Martins  1, Fatima Asar1, Audrey Ncube1, Lars Erichsen1, 

Nina Graffmann  1 & James Adjaye1*

Human urine is a non-invasive source of renal stem cells with regeneration potential. Urine-derived 

renal progenitor cells were isolated from 10 individuals of both genders and distinct ages. These renal 
progenitors express pluripotency-associated proteins- TRA-1-60, TRA-1-81, SSEA4, C-KIT and CD133, 
as well as the renal stem cell markers -SIX2, CITED1, WT1, CD24 and CD106. The transcriptomes of 
all SIX2+ renal progenitors clustered together, and distinct from the human kidney biopsy-derived 

epithelial proximal cells (hREPCs). Stimulation of the urine-derived renal progenitor cells (UdRPCs) with 

the GSK3β-inhibitor (CHIR99021) induced differentiation. Transcriptome and KEGG pathway analysis 
revealed upregulation of WNT-associated genes- AXIN2, JUN and NKD1. Protein interaction network 

identified JUN- a downstream target of the WNT pathway in association with STAT3, ATF2 and MAPK1 
as a putative negative regulator of self-renewal. Furthermore, like pluripotent stem cells, self-renewal 

is maintained by FGF2-driven TGFβ-SMAD2/3 pathway. The urine-derived renal progenitor cells and the 
data presented should lay the foundation for studying nephrogenesis in human.

According to the International Society of Nephrology, more than 850 million people worldwide are afflicted 
with kidney diseases1, which raises the quest for alternative therapies to overcome the limitations associated 
with current treatments including transplantation and dialysis. One of the most promising options is the utiliza-
tion of renal stem cells for treating of kidney diseases, disease modelling, and drug development2,3. Renal stem/
progenitor cells are self-renewing, multipotent cells with the ability to generate various cell types of the kidney 
to maintain renal function4. These progenitors are in abundance during fetal kidney development in which the 
renal progenitor surface marker CD24 and stem cell self-renewal marker CD133 cells are required for primor-
dial nephrogenesis5,6. However, in adults, CD24, CD133 (Prominin-1) and vascular cell adhesion molecule 1 
(CD106)-positive renal progenitors are present in renal tubules and capsules7. Two progenitor cell populations 
can be distinguished based on the expression of CD106. For instance, CD24+CD133+CD106− progenitors are 
present in proximal tubules whereas CD24+CD133+CD106+ cells are localized in the Bowman’s capsule. The 
latter can differentiate into a variety of cell types of renal tissue such as podocytes and tubular epithelial cells4–7.

Several groups have identified urine as a non-invasive and repetitive source of renal progenitor cells8,9. It 
has been estimated that each day approximately 2,000 to 7,000 cells composed of differentiated epithelial cells, 
bi-potential epithelial cells (transitional cells), multipotent mesenchymal stem cells, and glomerular parietal cells 
are flushed out from the renal tubular network and the upper urinary tract into urine10–12. A subpopulation of 
these urine-derived cells are renal stem/progenitor cells which express master renal markers such as Sine Oculis 
Homeobox Homolog 2 (SIX2), Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-Terminal 
Domain 1 (CITED1) and Wilms’ Tumor 1 (WT1)13–15 and CD24 and CD10616. Interestingly, these cells exhibit 
stem cell properties, i.e. expression of pluripotency-associated markers such as TRA-1-60, TRA-1-81, C-KIT 
(CD117), CD133 and SSEA4 and possess high proliferation capacity as they show telomerase activity. Further, 
they endow multi-differentiation potential and like bone marrow derived mesenchymal stem cells express 
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Vimentin, CD105, CD90, CD73 and not the hematopoietic stem cell markers- CD14, CD31, CD34 and CD4517,18. 
Although, research interest on urine derived renal stem cells is gradually increasing but the mechanistic role of 
genetic factors in these cells in vitro regarding progenitor/differentiated status maintenance is not clear.

Studies in mice have shown that Odd-skipped related 1 (Osr1), Six2, Wnt, Cited1 and Wt1 are required to 
maintain renal progenitor cells during kidney organogenesis19–25. Additionally, signalling pathways such as Fgf, 
Tgfβ and Notch play major roles in renal stem cell maintenance and differentiation26–29. The transcription factor 
Osr1 is an early marker specific for the intermediate mesenchyme (IM); Osr1 knockout mice lack renal struc-
tures due to the failure to form the IM30. The homeodomain transcriptional regulator Six2 is expressed in the 
cap mesenchyme (CM) originating from metanephric mesenchyme. Six2 positive populations can generate all 
cell types of the main body of the nephron31. Inactivation of Six2 results in premature and ectopic renal vesicles, 
leading to a reduced number of nephrons and to renal hypoplasia32. Mechanistically, Osr1 plays a crucial role 
in Six2-dependent maintenance of mouse nephron progenitors by antagonizing Wnt-directed differentiation, 
whereas Wt1 maintains self-renewal by modulating Fgf signals22,23. Cited1 has been reported to be co-expressed 
with a fraction of Six2+ cells undergoing self-renewal and these can be differentiated in response to activated 
WNT signaling during kidney development25. Furthermore, it has been demonstrated in mice that Bmp7 pro-
motes proliferation of nephron progenitor cells via a Jnk-dependent mechanism involving phosphorylation of 
Jun and Atf233.

To date, research related to transcriptional regulatory control of mammalian nephrogenesis has been lim-
ited to the mouse19,26 or to transcriptome “snapshots” in human13. A recent study demonstrated conserved and 
divergent genes associated with human and mouse kidney organogenesis34, thus further highlighting the need 
for primary human renal stem cell models to better dissect nephrogenesis at the molecular level. Furthermore, 
species differences need to be considered, for example, mammalian nephrons arise from a limited nephron pro-
genitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney 
development35. Human kidney development initiates around 4 weeks of gestation and ends around 34–37 weeks 
of gestation. At the anatomical level, human and mouse kidney development differ in timing, scale, and global 
features such as lobe formation and progenitor niche organization34–36. These are all further evidence in support 
of the need of a reliable and robust human renal cell culture model.

Expression of pluripotency-associated proteins has enabled rapid reprogramming of urine derived mes-
enchymal and epithelial cells into induced pluripotent stem cells (iPSCs)37–41. Differentiation protocols for 
generating kidney-associated cell types from human pluripotent stem cells have mimicked normal kidney devel-
opment28,42–44. For example, WNT activation using a GSK3β inhibitor (CHIR99021), FGF9, Activin A, Retinoic 
acid (RA) and BMP7 as instructive signals have been employed to derive functional podocytes, proximal renal 
tubules, and glomeruli29,45–49. Despite these efforts and achievements, there will always be variabilities between 
differentiation protocols, the maturation state of the differentiated renal cells and genes associated with temporal 
maturation during human kidney organoids formation from human iPSCs50,51. We propose that using native 
renal stem cells isolated directly from urine will circumvent most of the shortfalls and deficiencies associated with 
human pluripotent stem cell-based models.

Here we provide for the first time the full characterisation of renal progenitors at the transcriptome, secretome 
and cellular level, which has led to the identification of a gene regulatory network and associated signalling path-
ways that maintain their self-renewal. We anticipate that our data will enhance our meagre understanding of the 
properties of urine-derived renal stem cells, and enable the generation of renal disease models in vitro and even-
tually kidney-associated regenerative therapies.

Results
Urine-derived renal progenitors express a subset of pluripotent stem cell-associated markers 
and possess features typical of bone marrow-derived MSC. Urine samples were collected from 10 
healthy adult donors (4 males-UM and 6 females-UF) with ages ranging from 21 to 61 years, and of mixed eth-
nicity (3 Africans and 7 Caucasians) (Supplemental Table S1). Attached cells emerged from processed urine as 
isolated clusters after 7 days, thereafter these acquired a “rice grain” fibroblast-like morphology resembling MSCs 
(Fig. 1A, Supplemental Fig. S1A). A selection of distinct urine-derived renal stem cells populations (n = 4) were 
used to assay cell proliferation and growth. After 3 days in culture, the cells exited the lag phase and growth began 
in an exponential phase. Cells attained stationary phase at day 7 of subculture (Fig. 1B). All four populations- 
UM27, UM16, UM51 and UF45 showed similar proliferation and growth patterns.

Flow cytometry analysis revealed that approximately 98.9% of the cells express SSEA4, TRA-1–60 (11.3%) 
and TRA-1-81 (16.5%) (Fig. 1C). These data were confirmed by immunofluorescent-based staining of SSEA4 
which also express the proliferation-associated stem cell markers- C-KIT and CD133 (Fig. 1D). In order to 
reveal the detailed methylation pattern of the 5′-regulatory region of the OCT4 gene in the UM51, we employed 
standard bisulfite sequencing. In total 330 Cytosine-phosphatidyl-Guanine-dinucleotides (CpG) upstream of 
the transcription-starting site (TSS) of the OCT4 gene were analysed. Within this 469 bp long region, a dense 
methylation pattern was observed in the UM51 cells, with 92.4% (305) of the CpG dinucleotides identified were 
methylated (Fig. 1E). In contrast, iPSCs derived from UM51 had 72.12% (207) of analysed CpGs were unmeth-
ylated (Supplemental Fig. S1B).

Urine-derived renal progenitors express the mesenchymal marker- Vimentin and not the epithelial marker- 
E-Cadherin (Fig. 1D, Supplemental Fig. S1C). Flow cytometry analysis of critical MSC cell surface markers 
were negative for the hematopoietic markers CD14, CD20, CD34, and CD45 and positive for CD73, CD90 and 
CD105 albeit at variable levels (Supplemental Fig. S1D). Typical of MSCs, urine-derived renal progenitor cells can 
also differentiate into osteocytes, chondrocytes, and adipocytes when cultured in the respective differentiation 
medium for 3 weeks (Fig. 1F, Supplemental Fig. S1E). Furthermore, employing a cytokine array (n = 2), a plethora 
of trophic factors such as IL8, GDF-15, SERPINE-1, Angiogenin, VEGF, and Thrombospondin-1 were detected, 
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Figure 1. Propagation and characterisation of urine-derived renal progenitors. (A) Representative pictures of 
the “rice grain”-like appearance of the cells from the initial attachment to an elongated MSC-like morphology. 
(B) Growth curve analysis of selected urine-derived renal progenitors carried out using the Resazurin metabolic 
assay. Data are presented as means ± SEMs. (C) Immune-phenotyping for SSEA4, TRA-1-81 and TRA-1-60; 
and (D) immunofluorescence-based detection of the expression of pluripotency-associated stem cell- proteins 
SSEA4 (red), C-KIT (green), CD133 (red) and the mesenchymal-associated protein Vimentin (green); cell 
nuclei were stained using Hoechst/DAPI (scale bars: 100 µm and 50 µm). (E) Bisulfite sequencing of CpG 
island methylation patterns within the 5′- regulatory region of the OCT4 gene in UM51. Filled circles stand for 
methylated CpG dinucleotides. White circles stand for unmethylated CpGs. Arrows indicate the transcription 
start site. (F) In vitro Osteoblast, Chondrocyte and Adipocyte differentiation potential of urine-derived renal 
progenitors. (G) Cytokines secreted by urine-derived renal progenitors in culture media. Lists of significant 
GOs and KEGG pathways associated with the genes encoding the secreted cytokines are shown in Supplemental 
Fig. S1G.
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and further analysis of their associated GOs and KEGG pathways revealed immune system related terms (Fig. 1G, 
Supplemental Fig. S1F-G).

Urine-derived renal progenitors express key renal progenitor cell markers and are able to endo-
cytose Albumin. Immunofluorescence-based staining revealed expression of the key renal stem cell proteins 
such as CK19 and the transcription factors- SIX2, CITED1, WT1, as shown by representative images (Fig. 2A). 

Figure 2. Expression of kidney-associated proteins in urine-derived renal progenitors and Albumin transport. 
(A) Urine-derived renal progenitors express the renal stem cell markers- SIX2, CITED1, WT1, and CK19. Renal 
markers (red) and cell nuclei were stained using DAPI/Hoechst (blue). (B) Flow cytometry analysis for the key 
renal stem cell transcription factor SIX2 and (C) Renal stem cell surface markers CD24, CD133, and CD106 
of UM27, UF31, UF45 and UM51. (D) Detailed CpG methylation profiles of the SIX2 5′-regulatory region are 
documented as revealed by bisulfite sequencing. Filled circles represent methylated CpG dinucleotides and 
white circles unmethylated CpGs. Arrows indicate the transcription start site. 1.9% of CpG dinucleotides were 
found to be methylated. (E) Urine-derived renal progenitors (n = 4) like the human kidney biopsy-derived 
hREPCs also transport Albumin. Albumin was coupled to Alexa Fluor 488 (green) and cell nuclei stained with 
DAPI (blue). Scale bars indicate 50 µm.
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To determine the variability of SIX2+cells between the progenitor cell preparations- UM27, UF31, UM51 and 
UF45 (n = 4) a flow cytometry analysis was performed. We observed approximately 95% SIX2+ cells in UM27, 
UF31 and UM51 whereas UF45 had 90% SIX2+ cells (Fig. 2B). In addition, to confirm the renal stemness status 
of the urine-derived progenitor cells a flow cytometry analysis was performed to evaluate expression of the renal 
progenitor markers CD24, CD106 and the self-renewal marker CD133 in the cell preparations- UM27, UF31, 
UM51 and UF45. CD24, CD133 and CD106 were variably expressed in the aforementioned cell preparations. For 
instance, 98% of the UF31 cell population was CD133+, 99% of the cells were positive for CD24 and 84% of the 
cells were CD106+. On the other hand, the UF45 sample displayed a different pattern for CD133 (68%), CD24 
(70%) and CD106 (45%) positive cells, respectively (Fig. 2C). Bisulfite sequencing of a portion of the 5′-regulatory 
region of the SIX2 gene revealed methylation of only 1.9% of CpG dinucleotides (Fig. 2D). As, presence of albu-
min in urine is a mark of kidney cell functionality, and by the endo/exocytosis of albumin, kidney maintain 
the colloid osmotic pressure and transport biomolecules. We performed endocytosis assay and could show that 
urine-derived cells can transport Albumin (Fig. 2E). Furthermore, the CYP2D6 genotypes investigated were 
distinct between groups of individuals, thus reflecting potential diverse drug metabolizing activities. UM51 for 
example expresses the CYP2D6 *4/*17 genotype which confers an intermediate metabolizing activity whereas 
UF31 bears the CYP2D6*1/*41 genotype with an ultra-rapid metabolizing activity. The other three individuals 
(UF21, UF45 and UM27) are endowed with normal drug metabolizing activity (Supplemental Table S1).

Comparative transcriptome analysis of urine-derived renal progenitors and kidney-biopsy 
derived renal epithelial proximal cells (hREPCs). A hierarchical clustering analysis comparing the 
transcriptomes of urine derived renal progenitors with the kidney biopsy-derived renal epithelial proximal cells 
(hREPCs) revealed that all urine derived renal progenitors samples clustered together as a common cell type 
distinct from hREPCs (Fig. 3A). Additionally, expression of renal progenitor surface markers CD24, CD106 and 
CD133 were detected in urine-derived renal progenitors whilst PODXL was not expressed (Fig. 3B). These renal 
progenitors are of mesenchymal origin expressing VIM, however a scatter plot comparison between UM51 with 
hREPCs shows similarity with a high Pearson correlation of 0.9575 (Fig. 3C). The epithelial character of hREPCs 
is reflected by CDH1 expression. The comparison of expressed genes (det-p < 0.05) in renal progenitors (UM51) 
and hREPCs in a venn diagram revealed a common 12281 gene-set, whereas 566 are expressed exclusively in 
UM51 and 438 exclusively in hREPCs (Fig. 3D). The 10 most over-represented GO BP terms (biological pro-
cesses) in the UM51 exclusive gene-set include triglyceride homeostasis, kidney development and urogenital 
system development, whereas the hREPCs exclusive gene set includes chloride transmembrane transport, anion 
transport and response to lipopolysaccharides (Fig. 3E). The common gene set consists of 874 up-regulated genes 
(ratio > 2) in UM51 (e.g. renal tubule development, urogenital system development and anterior/posterior pat-
tern specification) and 1042 down-regulated genes (ratio < 0.5) in UM51 (e.g. cell division and cholesterol bio-
synthetic process) (Fig. 3F).

Comparative gene expression analysis of urine-derived and kidney biopsies-derived renal pro-
genitor cells. Gene expression of urine-derived renal progenitors was compared to public available datasets 
GSE23911 in which nephron progenitor cells were derived from adult human renal cortical tissue52. Additionally, 
the comparison was extended by two further datasets GSE74450 and GSE75949 which contain data from fetal 
kidney biopsy derived nephron progenitor cells53,54. We could show that urine-derived renal progenitors have 
a high level of similarity to other human nephron progenitors at the transcriptome level. The resulting number 
of expressed genes were comparable: 12112 genes in urine-derived renal progenitors, 8446 genes in GSE23911, 
10597 genes in GSE74450 and 13895 genes in GSE75949. In the Venn diagram analysis most genes were found 
in the intersection of all genesets (4411), followed by the intersection of urine-derived renal progenitors with the 
fetal kidney genesets from GSE74450 and GSE75949. Among the intersection with single genesets urine-derived 
renal progenitors had the highest overlap with the GSE75949 pointing at the highest similarity with this gene-
set (Supplemental Fig. S2). A subset of genes expressed in common between urine-derived renal progenitors, 
GSE74450 and GSE75949, are associated with renal system development related GO’s (BP) terms, thus confirm-
ing renal progenitor cell identity (Supplemental Table S5).

Confirmation of the renal origin of urine-derived progenitor cells and retention of 
renal-associated genes in urine-derived progenitors-iPSCs. A venn diagram-based comparison of 
gene expression (det-p < 0.05) in urine-derived renal progenitors and human foreskin fibroblasts (HFF) was 
carried out (Fig. 4A) in order to dissect common and distinct gene expression patterns. The majority of genes 
(11649) are expressed in common, 463 exclusively in urine-derived renal progenitors and 891 in fibroblasts. The 
463 genes were further analysed for over-represented GOs and summarized as a GO network (Fig. 4B) with the 
tools REVIGO, and Cytoscape was used for the GO terms of the category BP. In addition to several developmental 
terms such as organ induction, regulation of embryonic development (high number of edges referring to simi-
larity to many terms), specific renal-related terms including urogenital system development, mesenchymal cell 
proliferation involved in ureteric bud development and positive regulation of nephron tubule epithelial cell differ-
entiation (marked with blue ellipse, intense red indicating higher significance) were identified. Interestingly, the 
non-canonical WNT signalling pathway, which plays a major role in kidney development, is also over-represented 
(orange ring-top left).

The dendrogram based on the global transcriptome analysis revealed a clear separation of urine-derived 
renal progenitors lines (n = 9) from the differentiated urine-derived renal progenitors (CHIR 99021 treated 
urine- derived renal progenitor cells, n = 3), urine derived renal progenitors-iPSCs (n = 4) and embryonic stem 
cells (H1 and H9) (Fig. 4C). Characterization of the derived urine derived renal progenitors-iPSCs is depicted 
in Supplemental Fig. S3. In the Venn diagram (Fig. 4D) we compared expressed genes (det-p < 0.05) in urine 
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derived renal progenitors-iPSCs with ESCs and HFF-iPSCs. Most genes (12092) are expressed in common in all 
cell types while 150 genes are expressed exclusively in urine derived renal progenitors-iPSCs. The genes expressed 
exclusively in one cell type were further analysed for over-representation of GO terms. The treemap summarizing 

Figure 3. Transcriptome analysis of urine-derived renal progenitors in comparison to kidney biopsy-derived 
renal epithelial proximal cells- hREPCs. (A) A hierarchical cluster dendrogram based on transcriptomes of 
urine-derived renal progenitors with the kidney biopsy-derived renal epithelial proximal cells (hREPCs). (B) 
The heatmap of renal progenitor cell surface markers (CD24, CD133, and CD106) expressed in urine-derived 
renal progenitors. (C) Comparison of gene expression values of urine-derived renal progenitors (UM51) 
with hREPCs in a scatter plot confirms the mesenchymal phenotype of urine-derived renal progenitors, 
i.e. expression of Vimentin (VIM) and expression of E-cadherin (CDH1) in hREPCs. (D) Expressed genes 
(det-p < 0.05) in urine-derived renal progenitors (sample UM51) and hREPCs are compared in the Venn 
diagram. (E) The 10 most over-represented GO BP-terms in 566 UM51 genes include triglyceride homeostasis 
and kidney development and in 438 hREPCs genes include chloride transmembrane transport. (F) The 10 most 
over-represented GO BP-terms in the up- and down-regulated genes in UM51 in comparison to hREPCs are 
shown. The complete dataset is presented in Supplemental Table S4.
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Figure 4. In-depth bioinformatic analysis of urine-derived renal progenitors and urine-derived renal 
progenitors derived-iPSCs. (A) Expressed genes (det-p < 0.05) in urine-derived renal progenitors (UdRPCs) 
and fibroblasts are compared in a venn diagram. Most genes are expressed in common (11649), 463 genes are 
expressed exclusively in urine-derived renal progenitors and 891 in fibroblasts. The subsets and urine-derived 
renal progenitors GOs are presented in supplemental_table_S4. (B) The gene ontology network was generated 
with the tools REVIGO and Cytoscape and summarizes the GO terms of category Biological Process (BP) 
over-represented in the 463 genes expressed exclusively in urine-derived renal progenitors. Several general 
developmental terms emerged, e.g. “organ induction”. Specific renal-related terms including “urogenital system 
development” are marked with a blue ellipse. GOs are represented by the network nodes with the intensity of 
red indicating the significance of over-representation of a GO term. The edges refer to similarities between 
the GO terms. (C) The dendrogram shows a clear separation of urine-derived renal progenitors, differentiated 
urine-derived renal progenitors (CHIR treated UdRPCs of UM51, UM27, and UF45) (black bar), ESCs (H1 and 
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the GO terms of category BP over-represented in the 150 genes expressed exclusively in urine derived renal 
progenitors-iPSCs (Fig. 4E) indicates that these iPSCs retain a memory of their kidney origin. In addition to 
the largest most significant group- positive regulation of urine volume, it consists of other renal-related GO 
terms (e.g. calcium transport, vitamin D). Stem-cell-related and developmental terms such as positive regula-
tion of cell proliferation are due to their pluripotent nature. Within the treemap summarizing the GO-BP terms 
over-represented in the 312 genes expressed exclusively in HFF-iPSCs, the largest most significant group is asso-
ciated with negative regulation of myoblast differentiation, thus pointing at the fibroblast origin of these iPSCs 
(Fig. 4E). Furthermore, within the treemap summarizing the GO-BP terms over-represented in the 197 genes 
expressed exclusively in ESCs, the largest most significant group is associated with negative regulation of astro-
cyte differentiation- hinting at their known propensity to differentiate into the ectodermal lineage (Supplemental 
Fig. S4).

WNT pathway activation by GSK3β inhibition induces differentiation of urine-derived renal 
progenitors into renal epithelial proximal tubular cells. To differentiate three independent renal 
progenitors preparations, the cells were treated with 10 µM CHIR99021 (WNT pathway activation by GSK3β 
inhibition) for 2 days and morphological changes from fibroblastic to elongated tubular shape were observed 
(Fig. 5A). In the Venn diagram, expressed genes (det-p < 0.05) in untreated urine-derived renal progenitors 
are compared to renal progenitors treated with CHIR99021. Genes expressed in common amounts to 11790, of 
these 2491 are upregulated in the CHIR99021 treatment (p < 0.05, ratio > 1.33) and 2043 are down-regulated 
(p < 0.05, ratio < 0.75) (Fig. 5B, Supplemental Table S8). Among the upregulated genes, 27 are considered “novel” 
(gene symbol starting with “LOC”), 21 among the down-regulated genes and 98 among the non-regulated genes 
(Supplemental Table S8). The heatmap based on the top 20 regulated genes shows a clear separation between 
untreated and treated cells (Fig. 5C). Amongst the up-regulated genes, the associated KEGG pathways include 
WNT-signaling (AXIN2, JUN, NKD1) (Supplemental Fig. S5). Over-representation analysis of the up-regulated 
genes and their associated KEGG pathways identified protein processing in endoplasmic reticulum as highly 
significant and several signalling pathways such as mTOR, Insulin, p53, AMPK and TNF. Over-representation 
analysis of the down-regulated genes and associated KEGG pathways revealed cell cycle, cellular senescence, 
focal adhesion, FoxO, ErbB and thyroid hormone signalling. Interestingly Hippo pathway was regulated in both 
undifferentiated and differentiated renal cells (Fig. 5D).

Regulation of self-renewal and differentiation in urine-derived renal progenitor cells. Further 
to the transcriptome analyses, a real-time PCR revealed downregulation of the stem cell self-renewal associated 
gene CD133 and activated expression of the nephrogenesis-associated gene BMP7 after CHIR99021 stimulation 
(Fig. 6A). Since FGF signaling is also crucial for maintaining self-renewal, we compared the transcriptome of dif-
ferentiated cells (CHIR99021 treated) and progenitor cells to investigate the effect of CHIR99021 stimulation on 
FGF-signaling with respect to the genes from FGF and FGFR family; BMP7 and BMP4 from the BMP family. We 
detected an upregulation of FGF2 and FGF7 in undifferentiated renal progenitors (Fig. 6B). To validate this, we 
disrupted FGF signaling using fibroblast growth factor receptor (FGFR) inhibitor SU5402, and observed morpho-
logical changes (Supplemental Fig. S6). Interestingly, downregulation of the key renal transcription factor SIX2 
was detected in both the CHIR99021 and SU5402 treated cells (Fig. 6C). Furthermore, to identify the self-renewal 
regulators and pathways in urine-derived renal progenitor cells, a protein-protein-interaction network was gener-
ated. The network of the 40 proteins, encoded by the 20 most significantly up- and down-regulated genes between 
CHIR99021 treated and untreated urine-derived renal progeitors (Fig. 5C) indentified JUN as a major hub – in 
terms of having most connections to other proteins in the network. However, in the WNT-signaling pathway 
JUN is at the end of a downstream cascade from GSK3β, including further downstream targets- AXIN2 and 
CTNNB1. The genes encoding these proteins were differentially regulated by the CHIR99021 treatment (green 
nodes) (Fig. 6D). Several communities with more interactions within the community than to other communities 
can be detected in the network via community clustering of the network via edge-betweenness includes JUN 
(red), GSK3β / AXIN2 / CTNNB1 (green), LATS2 (yellow), EGFR (pink) (Fig. 6E). To analyze the effect of WNT 
activation on the TGFβ-SMAD pathway, Western blot analysis was performed to detect phosphorylation levels of 
SMAD 2/3 and SMAD 1/5/8 in UF45, UM51 and UM27. In the differentiated cells (urine-derived renal progeni-
tors after CHIR treatment) a decreased level of phosphorylated SMAD 2/3 and increased levels of phosphorylated 
SMAD 1/5/8 were observed (Fig. 6F).

Discussion
Although relatively few renal cells are shed under healthy conditions compared to dysfunctional conditions10,55, 
we were able to isolate, culture and expand urine cells from healthy donors. Here we describe urine as a reli-
able, non-invasive, robust and cheap source of renal stem cells, in contrast to amniotic fluid or kidney biop-
sies56,57. Urine derived stem cells can be expand from a single clone with high proliferation potency37,58. We 

H9, red bar) and urine-derived renal progenitors-iPSCs (green bar). (D) Venn diagram of HFF-iPSCs, urine-
derived renal progenitors-iPSCs (UdRPCs_iPScs) and ESCs. (E) GO terms of 150 genes expressed exclusively 
in urine-derived renal progenitors-iPSCs indicate that these iPSCs retain the memory of renal origin. In the 
treemap for the HFF-iPSCs the GO-BP terms of the 312 over-represented genes of the exclusive gene set are 
summarized. The most significant group is associated with negative regulation of myoblast differentiation 
including genes DDIT3, MBNL3, TGFB1, ZFHX3 pointing at the fibroblast origin of these iPSCs. The entire 
dataset is presented in Supplemental Table S7.
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propose naming these cells as urine-derived renal progenitor cells, because they can be kept in culture for almost 
12 passages whilst maintaining expression of the self-renewal associated proteins- SIX2, CITED1, CD133, 
C-KIT, TRA-1-60, TRA-1-81 and SSEA4 as has been shown by others37,56. Despite the expression of a subset of 

Figure 5. Supplementation of urine-derived renal progenitors with the GSK-3β inhibitor. (A) Activation 
of WNT signalling by supplementation with GSK-3β-inhibitor CHIR99021 led to differentiation into renal 
epithelial proximal tubular cells. (B) In the Venn diagram, expressed genes (det-p < 0.05) in untreated urine-
derived renal progenitors (UdRPCs_NoCHIR) are compared to urine-derived renal progenitors treated with 
the GSK-3β-inhibitor CHIR99021 (UdRPCs_CHIR). Among the 11790 genes expressed in both conditions, 
2491 are up-regulated in the CHIR99021 treatment (p < 0.05, ratio > 1.33) and 2043 down-regulated (p < 0.05, 
ratio < 0.75). (C) Heatmap of 3 independent urine-derived renal progenitor cell preparations with and without 
CHIR treatment. (D) Over-representation analysis of the up-regulated genes and associated KEGG pathways 
revealed protein processing in endoplasmic reticulum as highly significant and several signalling and metabolic 
pathways including mTOR, Insulin, p53 and TNF. Over-representation analysis of the down-regulated genes in 
KEGG pathways identified cell cycle, cellular senescence, focal adhesion, FoxO and adherens junction as most 
significant. Supplemental Table S8 provides the full list of regulated genes and associated pathways.
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pluripotency-associated factors, these renal progenitor cells do not express OCT4, SOX2 and NANOG- which are 
key pluripotency-regulating transcription factors59,60. Further evidence in support of the lack of OCT4 expression 
is our observed fully methylated CpG dinucleotides within the OCT4 promoter in the UM51 cells. Urine-derived 
renal progenitors are in fact bon-fide MSCs- i.e. they express VIM and not CDH1, adhere to plastic surfaces, 
express CD73, CD90 and CD105 and not the hematopoietic markers CD14, CD20, CD34, and CD45. Typical of 
MSCs, urine-derived renal progenitors can be differentiated into osteoblasts, chondrocytes and adipocytes56,57,61. 
They also secrete a plethora of cytokines and growth factors- such as EGF, GDF, PDGF and Serpin E162. The 
multipotent features of urine-derived renal progenitors make these cells promising for studying nephrogenesis 
and in the future regenerative therapy of kidney-associated diseases.

Urine-derived renal progenitor cells express key renal progenitor-regulatory proteins SIX2, CITED1 and WT1 
indicating they originate from the kidney as described from others13,14,27,57,63. Unmethylated CpG islands within 

Figure 6. Regulation of self-renewal and differentiation in urine-derived renal progenitors. (A) Real-time 
PCR-based confirmation of down-regulation of CD133 and activated expression of BMP7 after CHIR 
stimulation. (B) Effect of CHIR99021 stimulation on FGF-signaling and BMP (BMP7 and BMP4) signaling. 
The heatmap depicts FGF signaling associated genes up and down regulated upon CHIR treatment of the 
urine-derived renal progenitors. (C) Downregulation of SIX2 expression in differentiated urine-derived renal 
progenitors upon WNT stimulation using the GSK-3β-inhibitor CHIR99021 and blocking of FGF signaling 
using the FGF receptor inhibitor SU5402. (D) JUN is a major hub of protein interaction networks of urine-
derived renal progenitors treated with CHIR. Based on the Biogrid database protein interaction networks were 
constructed from the set of the most highly regulated 40 genes either up- or down in the urine-derived renal 
progenitors treated with CHIR. The selected genes used to connect to the network with interactions from the 
Biogrid database are marked in green, genes added as Biogrid interactions are marked in red. Induction of 
WNT leading to GSK3B inhibition is reflected by the connection of GSK3B to JUN and to AXIN2 which is 
connected to CTNNB1 (β-catenin) – these all downstream targets of GSK3B in the WNT-signaling pathway. 
(E) Community clustering of the network identified several communities: JUN (red), GSK3B/AXIN2/CTNNB1 
(green), LATS2 (yellow), EGFR (pink). Black lines refer to edges within a community, red lines to edges between 
different communities. (F) Western blot analysis of the phosphorylated levels of SMAD 2/3 and SMAD 1/5/8 in 
undifferentiated and differentiated UF45, UM51 and UM27.
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the 5′- regulatory region of the SIX2 gene confirm their progenitor status. Nuclear-localized SIX2 expression is 
critical for maintaining self-renewal of renal stem cell populations and has been described to co-localize with 
CITED125. We observed CITED1 expression in both the nucleus and cytoplasm, this is supported by a subcellular 
fractionation study that demonstrated an abundant portion of CITED1 localized in the cytoplasm whereas only 
5% were expressed in the nucleus64. As CITED1 is a cell cycle-dependent transcriptional co-factor and contains 
a nuclear export signal domain, the subcellular localization might be dependent on its phosphorylation status. 
We previously, showed CITED1 and WT1 expression in the nucleus and cytoplasm of amniotic fluid cells of 
renal origin56. Here, we observed that subpopulations of adult urine-derived progenitor cells express WT1 in the 
nucleus and in some cases, both nuclear and cytoplasmic localization was observed. Wt1 has nucleocytoplasmic 
shuttling activity, however, the shuttling of Wt1 between the nucleus and cytoplasm might regulate the activity as 
a transcription factor as a result of interaction with the cargo protein importins α1 and β65,66.

In line with our study, urine-derived renal progenitor cells have been described to express the surface marker 
CD24, CD106, and CD13316. However, we observed variabilities in the numbers of cells expressing these mark-
ers between preparations. This variance might be due to the origin of the urine- shed cells in the adult4,6,7,67. For 
example, CD24 and CD133 positive cells have been found in renal tubules and the renal capsule, but CD106+ cells 
are only present in the renal capsule.

Furthermore, urine-derived renal progenitors transport albumin56,68. The albumin filtration pathway partly 
takes place in the kidney and the presence of albumin in urine is used as a marker for cell functionality as 
described by the endo/exocytosis of albumin in kidney69. The GOs derived from the exclusively expressed genes 
in urine-derived renal progenitors (compared to HFF1) unveiled renal system development- related terms. To 
overcome the lack of reference human kidney biopsy-derived renal progenitors, we performed a meta-analysis 
comparing our data to nephron progenitor cell transcriptome datasets downloaded from NCBI GEO. The 
analyses revealed that our urine-derived renal progenitors share a high level of similarity with other human 
nephron progenitors at the transcriptome level52–54. Moreover, the GOs from the urine cell derived-iPSC exclusive 
genes-set, in contrast to pluripotent stem cells, identified terms related to renal function therefore implying the 
preservation of their kidney origin. As the conservation of tissue of origin in iPSCs might be linked to epigenetic 
memory17,70, urine-derived renal progenitors as well as corresponding-iPSCs, especially with known CYP2D6 sta-
tus, might be advantageous for differentiation into renal cells, modelling kidney-related diseases, nephrotoxicity 
studies and regenerative medicine55.

Dissecting the gene regulatory mechanisms that drive human renal progenitor growth and differentiation 
in vitro represents the key step for translation but remains a challenge due to the absence of well-characterised 
primary urine derived stem cells. Here we have shown that urine-derived renal cells are a self-renewing stem cell 
population unlike the kidney biopsy-derived hREPCs which are differentiated renal epithelial cells. To demon-
strate that urine-derived renal progenitors can maintain self-renewal when cultured under undifferentiation 
conditions but yet retain the potential for epithelial differentiation and nephrogenesis, we induced active WNT 
signalling, by treatment with the GSK-3β inhibitor- CHIR99021. The differentiated cells adopted an elongated 
tubular morphology and reduced proliferation as also shown for human ESC and iPSC derived renal epithe-
lial cells71–73. Although WNT pathway activation induced an epithelial phenotype, we did not see a dramatic 
increase in CDH1 expression at the time point and dose used but rather activation of CDH-3 expression (8.86 
fold). Cdh-3, a gene encoding a member of the cadherin superfamily, functions in epithelial cell morphogenesis in 
Caenorhabditis elegans74 an event which is poorly understood in human nephrogenesis. Furthermore, the corre-
lation co-efficient (0.941) of the WNT-induced differentiated UM51 with hREPCs is further evidence in support 
of the cellular identify of the UM51 differentiated cells.

In line with our previously published observations in amniotic fluidic-derived renal cells, the down-regulated 
expression of SIX2, WT1, CD133 and upregulated expression of BMP7 induced the loss of self-renewal56. Global 
transcriptome analyses also revealed the down-regulation of 2043 genes some of which are associated with 
pathways such as cell cycle, FoxO, Hippo and ErbB signalling. The Hippo pathway which is composed of WNT 
target genes such as LATS2, AXIN2 and CTNNB1 have been reported to regulate epithelialization of nephron 
progenitors75,76.

We detected differential expression 40 genes in which 20 most significantly up- and down-regulated between 
WNT-induced differentiated and self-renewing urine-derived renal progenitors. Amongst the genes up reg-
ulated in the CHIR99021 treated cells are the WNT targets- AXIN2, JUN and NKD1 known to be associated 
with WNT signalling. Interestingly, a protein interaction network identified JUN as a major hub connected to 
GSK3β and interlinked with ATF2, STAT3, GATA2 and MAPK1. In a mouse model, it has been reported that 
Bmp7 phosphorylates Jun and Atf2 via Jnk signalling which promote the proliferation of mouse nephron pro-
genitors33. This indeed might be contradictory to our observed elevated expression of BMP7 upon WNT induced 
differentiation of urine-derived renal progenitor cells- i.e. suppression of BMP7 expression is needed to maintain 
self-renewal in urine-derived renal progenitor cells. However, in line with our results, during in vitro differenti-
ation (mesenchymal to epithelial transition) of human renal cell line TK173, BMP7 is required for the activation 
of E-Cadherin and WNT4 expression77. Since, SMADs are a target of MAPK particularly of JNK, both BMPs and 
TGFβ can activate the SMAD circuit78,79. Both activation of the WNT pathway and inhibition of FGF signalling 
led to the down-regulation of the key renal progenitor self-renewal associated transcription factor SIX2 and the 
up-regulated expression of BMP7. This is in line with the reported interactions of BMP and FGF signalling during 
nephrogenesis80–82. Fibroblast growth factor signaling is essential for in vivo renal development as well as in vitro 
cultivation and maintenance of nephron progenitor cells as demonstrated by mouse model experiments where 
blocking of FGF receptors led to aberrant nephrogenesis25,81.

Based on the present study and our previously published data in human amniotic fluid-derived renal cells56, 
we propose that similar to self-renewal in human pluripotent stem cells60,83, urine-derived renal progenitor 
cells maintain self-renewal by active FGF signalling leading to phosphorylated TGFβ- SMAD2/3. In contrast, 
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activation of WNT/β-catenin signalling leads to an upregulation of JUN and BMP7 leading to activation of 
SMAD1/5/8 signalling and exit of self-renewal by downregulation of WT1, SIX2, CITED1, and CD133 expression. 
To surmise, we derived a hypothetic scheme of the WNTβ catenin and TGFβ pathway-mediated cell fate decisions 
in urine-derived renal progenitor cells. This simplistic model is depicted in Fig. 7.

Comparing self-renewal of renal progenitor cells in both human (urine-derived renal progenitors) and mouse, 
it is clear that an intricate balance is needed between SIX2, WT1, CITED1 expression and Wnt/β-catenin activity 
in order to determine the cell fate of nephron progenitor cells24,31,34,56. Furthermore, it remains to be determined 
if indeed there exist subtle human and mouse differences in the gene regulatory network needed to maintain a 
self-renewing renal progenitor pool in both species and we believe that human urine-derived renal progenitor 
cells as described here will facilitate these studies.

Materials and methods
Ethics statement. In this study, urine samples were collected with the informed consent of the donors 
and the written approval (Ethical approval Number: 5704) of the ethical review board of the medical faculty of 
Heinrich Heine University, Düsseldorf, Germany. All methods were carried out in accordance with the approved 
guidelines. Medical faculty of Heinrich Heine University approved all experimental protocols.

Isolation, culture, and differentiation of urine-derived renal progenitor cells. Urine samples were 
collected from 10 healthy donors with diverse age, gender and ethnicity (Supplemental Table S1). Isolation and 
expansion of the urine-derived renal progenitors followed the previously established protocols37,41. For differenti-
ation of the urine derived renal progenitors, 10 µM CHIR99021 was added to the cell culture medium for 2 days. 
Adult kidney biopsy derived primary human renal epithelial cells (hREPCs) (C-12665, Promo Cell, Germany) 
were used as control. To inhibit FGF signaling in urine derived renal progenitors, 15 µM SU5402 was added to the 
cell culture medium for 2 days.

Immunofluorescence staining. Immunofluorescence study was performed as described previously84. To 
analyse expression of specific markers, at 80% confluence, attached urine-derived renal progenitor cells of four 
individuals (Passages 4-5) were fixed with 4% PFA (Polysciences Inc., USA) for 15 min at room temperature 
(RT) and washed three times in PBS and permeability was increased using 1% Triton X-100 for 5 min. Next, 
for blocking we used: 10% normal goat serum (NGS; Sigma-Aldrich Chemie GmbH, Germany), 0.5% Triton 
X-100, 1% BSA (Sigma-Aldrich Chemie GmbH, Germany) and 0.05% Tween 20 (Sigma-Aldrich Chemie GmbH, 
Germany) in PBS for 2 h. The cells were incubated with primary antibodies (Supplemental Table S2) for 1 h at 
RT followed by three washes with PBS. Thereafter, the corresponding secondary Cy3-labeled, Alexa Fluor-555 
or Alexa Fluor 488-labeled antibodies (Thermo Fisher Scientific, USA) and Hoechst 33,258 dye (Sigma-Aldrich 
Chemie GmbH, Germany) or DAPI (Southern Biotech, USA) were added. A fluorescence microscope (LSM700; 
Carl Zeiss Microscopy GmbH, Germany) was used for taking the pictures. All pictures were processed with the 
ZenBlue 2012 Software Version 1.1.2.0. (Carl Zeiss Microscopy GmbH, Germany).

CYP2D6 genotyping/phenotyping and Albumin endocytosis assay. CYP2D6 genotyping and phe-
notyping of five individuals (randomly selected) were carried out by CeGat GmbH Germany using genomic 
DNA. The CYP2D6 variant assay reveals the pharmacogenetics (PGx) profile of an individual’s genotype and 

Figure 7. WNT/β-catenin and TGFβ pathway-mediated cell fate decisions in urine-derived renal progenitors. 
Self-renewal (inactive WNT/β-catenin signalling and active TGF-β/SMAD2/3 signalling) is maintained by 
elevated expression of the renal progenitor markers SIX2, WT1, CITED1, CD133, in addition to phospho-
SMAD2/3 and FGF2 resulting in and down regulated expression of BMP7. In contrast, activation of WNT/β-
catenin signalling induces upregulated expression of JUN and BMP7 leading to activation of phospho-
SMAD1/5/8, downregulated expression of WT1, SIX2, CITED1, FGF2, CD133 and ultimately exit of self-
renewal.
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phenotype based on tested pharmacogenetics markers. The assay identifies and discriminates individuals with 
poor, normal, intermediate and ultra-rapid metabolizing activity85. Albumin endocytosis assay was performed as 
described before56. For detailed description, see supplemental materials and methods.

Immunophenotyping by flow cytometry. At 90% confluence, adherent cells at passage 3–5 from UM27, 
UF31, UF45 and UM51 were detached from 6-well plates by incubation in TrypLE (Thermo Fisher Scientific, 
USA) at 37 °C. Then the cell samples were subjected to fluorescence-activated cell sorting (FACS) in order to 
specifically select for MSC cell surface markers, renal stem cell transcription factor SIX2+ cells, and renal stem 
cell surface markers. Unstained cells and IgG isotype served as control for each cell sample. Dead cells and debris 
were gated on a two physical parameter dot plot followed by the exclusion of doublets by using pulse processing. 
Finally, the experimental cells positive subpopulation was gated. Sorting was done using CytoFLEX cell sorter 
(Beckman Coulter, USA), BD FACSCanto (BD Biosciences, Germany) and CyAn ADP (Beckman Coulter, USA). 
Histograms were generated using the Summit 4.3.02 software.

The analysis of MSC-associated cell surface marker expression of urine-derived renal progenitors was per-
formed using MSC Phenotyping Kit (Miltenyi Biotec GmbH, Germany) according to the manufacturer’s instruc-
tions and as described before84. For the pluripotency-associated markers, TRA-1-60, TRA-1-81, and SSEA4 
dye-coupled antibodies were used (anti-TRA-1-60-PE, human (clone: REA157), number 130-100-347; anti-TRA-
1-81-PE, human (clone: REA246), number 130-101-410, and anti-SSEA-4-PE, human (clone: REA101), number 
130-098-369; Miltenyi Biotec GmbH, Germany). For SIX2+ cell sorting, after blocking with Human TruStain 
blocking solution (Biolegend, USA) (5 µL each) for 10 min at RT, the cells (104 cells/condition) were stained with 
anti-m-SIX2 (Abnova, Taiwan) primary antibody overnight at 4 °C. After 3 times washing with the Permwash 
buffer (Invitrogen, Germany), mouse Alexa-Fluor 488 was conjugated by incubating 30 min at RT in the dark. 
For the renal stem cell surface markers anti-CD24-FITC (Sigma-Aldrich Chemie GmbH, Germany), VCAM-1/
CD106-PE (R&D systems, USA) and CD133-APC (R&D systems, USA) were used according to manufacturer 
instructions for flow cytometry analysis. Briefly, after blocking and washing, cells were centrifuged at 300 x g for 
10 min. 5 µl of antibody solution (1:50 dilution) were added to the cell suspension and the samples were incubated 
in the dark at 4 °C for 10 min. Cells were washed afterwards, and stored in 4% PFA at 4 °C until analysis.

Differentiation into adipocytes, chondrocytes and osteoblasts. Differentiation of urine-derived 
renal progenitors into adipocytes, chondrocytes and osteoblasts were tested using the StemPro Adipogenesis, 
Chondrogenesis, and Osteogenesis differentiation Kits (Gibco, Life Technologies, USA) as described before56,84. 
After the differentiation periods, cells were fixed using 4% PFA for 20 min at RT and stained with Oil Red-O for 
detecting adipocytes, Alcian Blue for chondrocytes, and Alizarin Red S for osteoblasts. A light microscope was 
used for imaging.

Western blot analysis. For protein extraction, cells were harvested and lysed in RIPA buffer (Sigma-Aldrich 
Chemie GmbH, Germany) supplemented with complete protease and phosphatase inhibitors cocktail (Roche, 
Switzerland). The lysates were separated on a 4–20% Bis-Tris gel and blotted onto a 0.45 µm nitrocellulose mem-
brane (GE Healthcare Life Sciences, Germany). The membranes were then blocked with 5% skimmed milk in 
Tris-Buffered Saline Tween (TBS-T) and incubated overnight with the respective primary antibodies: Total Smad 
1 (1:1000, TBS-T 5% BSA; CST, USA), phospho Smad 1/5/8 (1:1000, TBS-T 5% milk; CST, USA), Total Smad 2/3 
(CST, 1:1000, TBS-T 5% BSA), and phospho Smad 2/3 (1:1000, TBS-T 5% milk; CST, USA). After incubation with 
the appropriate secondary antibodies, signals were acquired with a Fusion-FX7 imaging system.

Bisulfite genomic sequencing. Bisulfite sequencing was performed following bisulfite conversion with 
the EpiTec Kit (Qiagen, Germany). Primers were designed after excluding pseudogenes or other closely related 
genomic sequences which could interfere with specific amplification by amplicon and primer sequences compar-
ison in BLAT sequence database (https://genome.ucsc.edu/FAQ/FAQblat.html). See supplemental materials and 
methods for full description.

Generation of iPSCs from urine-derived renal progenitors. Four urine-derived renal progenitor cell 
samples were reprogrammed into iPSCs (four lines) using an integration-free episomal based transfection system 
without pathway inhibition. Briefly, urine-derived renal progenitor cells were nucleofected with two plasmids 
pEP4 E02S ET2K (Addgene plasmid #20927) and pEP4 E02S CK2M EN2L (Addgene plasmid #20924) expressing 
a combination of pluripotency factors including OCT4, SOX2, LIN28, c-MYC, KLF4, and NANOG using the 
Amaxa 4D-Nucleofector Kit (Lonza, Swiss) according to the manufacturer’s guidelines and as described previ-
ously41. Please see supplemental materials and methods for full description.

Quantitative RT-PCR analysis. RNA was isolated using the Direct-zol RNA MiniPrep Kit (Zymo 
Research, USA) according to provider guidelines. After checking the quality of mRNA, 500 ng of RNA were 
used for complementary DNA synthesized with the TaqMan Reverse Transcription Kit (Applied Biosystems, 
USA). Real-time quantitative PCR was performed in technical triplicates with Power SYBR Green Master Mix 
(Life Technologies, USA), 12.5 ng cDNA per sample and 0.6 µM primers on a VIIA7 (Life Technologies, USA) 
machine. Mean values were normalized to levels of the housekeeping gene ribosomal protein L37A calculated by 
the 2−∆∆Ct method. Primers used were purchased from MWG (Supplementary Table S3).

Microarray data analyses. Total RNA (1 µg) preparations were hybridized on the PrimeView Human 
Gene Expression Array (Affymetrix, Thermo Fisher Scientific, USA) at the core facility Biomedizinisches 
Forschungszentrum (BMFZ) of the Heinrich Heine University Düsseldorf. The raw data was imported into the 
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R/Bioconductor environment86 and further processed with the package affy87 using background-correction, log-
arithmic (base 2) transformation and normalization with the Robust Multi-array Average (RMA) method. For 
full details, please see supplemental materials and methods.

KEGG pathway, GO and network analysis. Gene ontology (GOs) terms were analysed within the 
Bioconductor environment employing the package GOstats88. GOs of category Biological Process (BP) were 
further summarized with the REVIGO tool89 to generate treemaps populating the parameter for allowed simi-
larity with tiny = 0.4. GO networks were generated from the REVIGO tool in xgmml format and imported into 
Cytoscape90. For full details, see supplemental materials and methods.

Activated WNT pathway associated protein interaction network. The network was constructed 
from the 20 most significantly up- and down down-regulated genes between CHIR99021 treatment and untreated 
controls. Genes were ranked by the limma-p-value and passed the criteria: detection p-value < 0.05 for the dedi-
cated condition, ratio < 0.75 or ratio > 1.33, limma-p-value < 0.05. The resulting 40 genes were marked as green 
nodes in the network. Interacting proteins containing at least one protein coded by the 40 genes were retrieved 
from BioGrid version 3.4.16191. The plot of the interactions network was drawn employing the R package net-
work92. See supplemental materials and methods for full description.

Additional materials and methods. For the materials and methods of the culture supernatant analysis, 
analysis of cell proliferation, meta-analysis for comparison of urine-derived renal progenitors to public nephron 
progenitor data sets and cell lines used in this study and culture conditions, please see supplemental materials 
and methods.

Statistics. All data are presented as arithmetic means ± standard error of mean. At least 3 independent exper-
iments were used for the calculation of mean values. P values of < 0.05 were considered significant.

Data availability
All raw and processed data used in this study have been archived in NCBI gene expression omnibus under GEO 
accession number GSE128281. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128281).
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Meta-analysis of human prefrontal cortex
reveals activation of GFAP and decline of
synaptic transmission in the aging brain
Wasco Wruck and James Adjaye*

Abstract

Despite ongoing research efforts, mechanisms of brain aging are still enigmatic and need to be elucidated for a

better understanding of age-associated cognitive decline. The aim of this study is to investigate aging in the

prefrontal cortex region of human brain in a meta-analysis of transcriptome datasets. We analyzed 591 gene

expression datasets pertaining to female and male human prefrontal cortex biopsies of distinct ages. We used

hierarchical clustering and principal component analysis (PCA) to determine the influence of sex and age on global

transcriptome levels. In sex-specific analysis we identified genes correlating with age and differentially expressed

between groups of young, middle-aged and aged. Pathways and gene ontologies (GOs) over-represented in the

resulting gene sets were calculated. Potential causal relationships between genes and between GOs were explored

employing the Granger test of gene expression time series over the range of ages. The most outstanding results

were the age-related decline of synaptic transmission and activated expression of glial fibrillary acidic protein

(GFAP) in both sexes. We found an antagonistic relationship between calcium/calmodulin dependent protein kinase

IV (CAMK4) and GFAP which may include regulatory mechanisms involving cAMP responsive element binding

protein (CREB) and mitogen-activated protein kinase (MAPK, alias ERK). Common to both sexes was a decline in

synaptic transmission, neurogenesis and an increased base-level of inflammatory and immune-related processes.

Furthermore, we detected differences in dendritic spine morphogenesis, catecholamine signaling and cellular

responses to external stimuli, particularly to metal (Zinc and cadmium) ions which were higher in female brains.

Keywords: Prefrontal cortex, Aging, Sex-specific, Meta-analysis, Transcriptome

Introduction
Mechanisms associated with time-dependent physical

decline, i.e., aging are complex and despite its omnipres-

ence in biological organisms our understanding of it is

still not complete. Recently, López-Otín et al. proposed

nine hallmarks of aging [35] into: (i) the four causative

hallmarks Genomic instability, Telomere attrition, Epi-

genetic alterations and Loss of proteostasis, (ii) the three

hallmarks as response to damage De-regulated nutrient

sensing, Mitochondrial dysfunction and Cellular

senescence and (iii) the two integrative hallmarks Stem

cell exhaustion and Altered intercellular communication

which as a result from the others are responsible for

functional decline. Roles of oxidative stress in aging have

been manifested in a large body of publications, e.g. [7]

but have also been challenged recently [26]. Hekimi

et al. do not consider reactive oxygen species (ROS) as

the primary cause of aging but rather as a mediator of

stress response to age-dependent damage. Brink et al.

propose the metabolic stability theory of aging, which

postulates that the aging process depends on maintain-

ing stable concentrations of reactive oxygen species

(ROS) and other critical metabolites [7].
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The rate of aging varies in an organ-specific manner ([7]).

The observation that adult brains do not grow further led

to the notion that neurogenesis declines with age, this how-

ever remains contentious. The dogma of no postnatal

neurogenesis was rejected as far back as the 1990s by stud-

ies dating back to the 1960s [2] also finding neurogenesis in

adult brains [32]. However, the level of neurogenesis in the

adult brain is at a low level and therefore the established

conclusions that most of the cognitive tasks are controlled

by synapsis dynamics still holds true. We previously de-

scribed that aging is the most important factor in the eti-

ology of Late-onset-Alzheimer’s disease (LOAD) and

identified gene-regulatory networks in hippocampus correl-

ating with metabolic instability and oxidative stress [53].

The distinction between disease-associated and aging-

related phenotypes is important. Whilst AD and Mild cog-

nitive impairment (MCI) are associated with the loss of

neurons, age-related cognitive impairment (ARCI) is not

characterized by neuronal loss but rather by changes in the

dynamics of synapses. Synapse dynamics depend on three

types of dendritic spines: stubby, thin and mushroom

spines [25]. Mushroom spines are considered responsible

for long-term memory while thin spines are considered to

arrange synapses for flexible cognitive tasks [6]. Morrison

et al. reported that these thin spines were found to be re-

duced during aging and their density showed the highest

correlation to performance on a cognitive task (DNMS: de-

layed nonmatching-to-sample) in non-human primates

[39]. Mostany et al. reported that old mice possess the same

spine density but a higher stability of spines when com-

pared to mature mice and therefore might imply that age-

related deficits in sensory perception are rather associated

with alterations in the size and stability of spines and bou-

tons than with the loss of synases [40]. Dendritic spine

density can be increased by estradiol [52], thus, hormonal

balance plays an important role in cognitive performance.

Furthermore, age-associated decrease in hormone levels

can also be considered as a reason for cognitive decline in

elderly persons. In females after menopause, cognitive per-

formance has been shown to be improved by estrogen-

replacement therapies [45]. The body of literature is much

smaller for males but regulation of dendritic spine density

by testosterone has also been reported [20].

The role of astrocytes in healthy and diseased brain is

gaining more attention due to the observation that astro-

cytes play major roles in synaptic transmission, information

processing, energy supply and control of blood flow [46].

Analogous to inflammation, the re-activation of astrocytes

in response to neural injury is indispensable, and uncon-

trolled reactivation can be detrimental- ultimately leading

to brain disease. In this study, we investigated changes in

the transcriptomes, associated pathways and gene ontol-

ogies in the brains of males and females during aging by a

meta-analysis of 591 datasets from prefrontal cortex biop-

sies taking into account sex-specific differences and

commonalities.

Materials and methods
Data analysis

Transcriptome datasets of 591 pre-frontal cortex biop-

sies measured on several Affymetrix microarray plat-

forms and via rnaSeq (Illumina HiSeq) were downloaded

from NCBI GEO (Supplementary Table 1). These data-

sets originate from studies by Narayan et al. [41], Barnes

et al. [4], Lu et al. [36], Lanz et al. [34], Chen et al. [10],

Hagenauer et al. [24] and Cheng et al. [11]. Table 1

shows the distribution of the datasets between female

and male samples and over age groups. All data were

read into R/Bioconductor [21] and normalized together

employing the R package inSilicoMerging [48] parame-

trized to use the Combat method in order to remove

batch effects. For the generation of dendrograms, genes

were filtered with a coefficient of variation greater than

0.1 and afterwards subjected to hierarchical cluster ana-

lysis using complete linkage as an agglomeration method

and Pearson correlation as similarity measure. Colour

bars indicative of aging or sex were added to the dendro-

grams via the R package dendextend [19]. Genes for

Principal Component Analysis (PCA) were filtered

analogously as for dendrograms and afterwards the PCA

of their logarithmic (base 2) gene expression was calcu-

lated using the R function prcomp. Based on the PCA,

Table 1 Characteristics of PFC datasets, distribution of female and male samples and in age groups

Dataset Age < 30 Age 30–65 Age > 65 Male Female M/F Total

GSE21138 6 19 4 24 5 4.80 29

GSE21935 2 5 12 10 9 1.11 19

GSE53890 8 12 21 20 21 0.95 41

GSE53987 1 17 1 10 9 1.11 19

GSE71620 52 316 52 332 88 3.77 420

GSE92538 3 37 15 35 20 1.75 55

GSE106669 1 3 4 8 8 1.00 8

Total 73 409 109 439 160 2.74 591
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gene expression was predicted employing the function

predict and the prediction for the first two components

was plotted with age- or sex -specific colour schemes.

The proportions of variance of the first two principal

components were determined using the attribute named

importance from the summary function of the prcomp

object. The screeplot was generated with the plot()

method of the prcomp object. Genes with most influence

on the principal components were found with the func-

tion get_pca_var() from the R package factoextra [30]

and plotted with the package corrplot [50].

Detection of age-associated gene expression

For each gene-g, the Pearson correlation with age rgxa
was calculated with the R function cor() using the nor-

malized logarithmic (base 2) gene expression as x and

the age of the corresponding individual as a. The corre-

sponding p-value was determined via the R function

cor.test(). The values were calculated separately for male

and female prefrontal cortex gene expression. Plots over

age were generated from the logarithmic normalized ex-

pression data with the R functions matplot() and

matlines() fitting a third order polynomial model to the

gene expression data for the regression curve.

Pathway and GO over-representation plots

Over-represented KEGG pathways were calculated

employing the R built-in hypergeometric test. Pathway

annotations were downloaded from the KEGG database

in March 2018 [29]. Over-represented GOs were deter-

mined via the R package GOStats [16]. The n most sig-

nificantly over-represented KEGG pathways and GOs

(n = 20) were plotted in a special dot plot indicating p-

value of the hypergeometric test, number of significant

genes per pathway/GO and gene ratio (ratio of signifi-

cant genes to all genes in the pathway/GO) using pack-

age ggplot2 [51].

Protein interaction networks

Human protein interactions and interactors of interac-

tors were extracted from the Biogrid database version

3.4.161 [9] using genes significantly correlated and anti-

correlated genes (Bonferroni-corrected p < 0.05). The

resulting complex network was reduced to the shortest

paths between the original set via the method get.shor-

test.paths from R package igraph [12] and was plotted

employing community cluster networks identifying com-

munities with more internal than external links via func-

tion cluster-edge-betweenness.

Time series analysis

In order to identify genes associated with GFAP, Pearson

correlation coefficient of the expression of all genes to

the expression of GFAP was calculated. The genes with

the highest positive or negative correlation were filtered

and subjected to time series analysis. As it was obviously

not possible to generate the time series from multiple

measurements at the same individual during aging they

represent only a model of aging reconstructed from sin-

gle measurements at multiple individuals. Thus, the

measurements include gene expression variability be-

tween individuals. In order to smoothen the time series,

a polynomial of degree three was fitted to the data. For

follow-up analyses a stationary time series was needed.

We used the function ndiffs() from the R package fore-

cast [28] to check the stationarity of the time series and

that no further differentiation was needed. The function

was parametrized to use the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test with the null hypothesis of a

stationary root. We adapted the Granger test which tests

causality between time series [22] to test Granger causal-

ity between these time series reconstructed from gene

expression measured in post-mortem brain biopsies

from individuals comprising a full spectrum of ages at

death. We test the null hypothesis that the time series g

of one gene does not cause the time series h of another

gene. This is tested via an auto-regression model of h to

which lagged values of g are added so that the null hy-

pothesis is equivalent to test the coefficients bi for equal-

ity to zero:

ht ¼
X

L

i¼1

aiht−i þ
X

L

i¼1

bigt−i þ εt ð1Þ

H0 : b1 ¼ ⋯ ¼ bL
¼ 0 gene h does not Granger cause gene gð Þ ð2Þ

Here, ai are coefficients of the auto-regression model

of h and bi coefficients for the added lagged values of g,

εt is the error. The time series of the expression of these

genes during aging compared to the GFAP time series

were tested for Granger causality with the function gran-

gertest from the R package lmtest [56].

Time series analysis on the GO level

The above described time series analysis was extended

in order to uncover relationships between GOs and be-

tween genes and GOs. To achieve this, the means of the

expression values of genes significantly correlated or

anti-correlated with age and associated with a GO were

calculated. The time series consisting of these mean

values was considered a consensus time series for the

dedicated GO. Let A be the set of ages for which data

exists and Ggu and Ggd be the sets of genes significantly

correlated and anti-correlated with age from the GO g:

Ggu ¼ genes correlated upð Þ with age in GO gf g ð3Þ
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Ggd ¼ genes anticorrelated downð Þ with age in GO gf g

ð4Þ

Xu ¼ Xaui; a∈A; i∈Ggu

� �

ð5Þ

Xd ¼ Xadi; a∈A; i∈Ggd

� �

ð6Þ

The consensus time series Xgu and Xgd for GO g are

then:

Xgu ¼
1

Ggu

�

�

�

�

X

i∈Ggu

Xaui ð7Þ

Xgd ¼
1

Ggd

�

�

�

�

X

i∈Ggd

Xadi ð8Þ

Granger causality between this GO consensus time

series and other significantly over-represented GO con-

sensus time series was determined. Furthermore,

Granger causality tests between genes of interest, e.g.

GFAP, and GO consensus time series were carried out.

Results
Sex differences are more prominent than age differences

in prefrontal cortex

Five hundred ninety-one prefrontal cortex (PFC) biopsies-

derived transcriptome datasets (Supplementary Table 1)

from control donors without diagnosed disease were

downloaded from National Center for Biotechnology in-

formation (NCBI) Gene Expression Omnibus (GEO).

After normalization and batch effect adjustment, the data-

sets were characterized via Principal component analysis

(PCA). The plot of the first two components explaining

the highest percentage of variance (Fig. 1a) shows a separ-

ation between female (red) and male (blue). Pooled sam-

ples containing both sexes are located in the middle

between male and female. The dendrogram of male and

female transcriptomes essentially confirms the sex effect

showing large sex-specific contiguous regions (Fig. 1d).

Trying to find reasons for this sex effect, we directly com-

pared male and female transcriptomes and found that the

most significantly differentially expressed genes were lo-

cated on the sex chromosomes (Supplementary Table 2).

Based on this, we performed the follow-up analyses in a

sex-specific manner. Separate cluster analyses for male

and female showed predominantly age-independent clus-

ters with some sub-clusters possessing tendencies for

younger or older samples in male (Fig. 1b) as well as fe-

male (Fig. 1c).

Sex-specific differential expression between young,

middle-aged and old

Differentially down-regulated (ratio < 0.833, p < 0.05;

Fig. 2a, c, e) and up-regulated (ratio > 1.2, p < 0.05; Fig. 2b,

d, f) genes were calculated between three age groups and

compared in venn diagrams between female (red circles)

and male (green circles) prefrontal cortex. Sex-specific age

groups contained age younger than 30 (F30, M30), age be-

tween 30 and 65 (F30_65, M30_65) and age over 65 (F65,

M65). Most genes were differentially expressed between

the more distant groups of age > 65 and age < 30 while in

the comparisons with the middle-aged group there were

fewer genes differentially expressed. This demonstrates

continuous long-term changes in gene expression. In gen-

eral, in the male samples fewer genes were differentially

expressed than in females which may partly be due to the

different sample numbers in male and female. Thus, ex-

cept for the comparison of down-regulated middle-aged

vs. young (Fig. 2a) more genes found in male biopsies

overlapped with female genes than were exclusive in male.

This overlap between male and female shows congruency

between the sexes thus seeming to contradict the sex-

effect found previously in the PCA plot and dendrogram

(Fig. 1a, d). An explanation could be that while most genes

are expressed similarly in male and female, sex-specific ex-

pression is mostly induced by genes on the sex chromo-

somes. As more detailed functional annotation of genes

become available later in this study, analysis carried out so

far revealed that GFAP is up-regulated with increasing age

whereas ALB1 and CX3CR1 are down-regulated with age

in both sexes. For the complete gene lists corresponding

to the venn diagram analyses refer to Supplementary

Table 3.

Genes down-regulated during aging are associated with

synaptic processes

For each gene the Pearson correlation coefficient and

corresponding p-value of its expression with the age of

the associated individuals was calculated separately for

male and female prefrontal cortex (Supplementary Table

4). Figure 3a shows a plot of the expression of the ten

genes most significantly anti-correlated with age in fe-

male ranked by the correlation, Fig. 3c analogously in

male. CYP46A1 (F: r = − 0.57, M: r = − 0.53) and RIMS1

(F: r = − 0.58, M: r = − 0.51) were among these in both

sexes, CX3CL1 (r = − 0.61) was lowest in female, EXPH5

(r = − 0.58) was lowest in male (Supplementary Table 4).

Gene ontologies (GOs) of genes which were most sig-

nificantly anti-correlated with age (Bonferroni-corrected

p < 0.05, r < − 0.1) were analyzed separately for male and

female prefrontal cortex. The 20 most significantly over-

represented GO terms (GO type Biological process) are

shown in dot plots indicating p-value of hypergeometric

test, gene count and ratios of genes annotated with the

GO term (Fig. 3b for female, Fig. 3d for male). In both

sexes, GO terms related to synaptic signaling were found

as most significant (F: p = 1.2E-19, M: p = 8.1E-21, Sup-

plementary Table 5, Fig. 3b, d). Numerous neuron-
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related GO terms were detected as down-regulated with

age – amongst these are, axon development, nervous sys-

tem development, generation of neurons, glutamate re-

ceptor signaling pathway, cell morphogenesis involved in

neuron differentiation. Additionally, further functional

groups including hormones, glucocorticoids, catechol-

amine, neurogenesis and synapse related processes such

as Long-Term-Potentiation (LTP), cAMP signaling, den-

dritic spines, could be identified among the significant

GO terms (Table 2). While most of these GO terms pro-

vide further detail for the central finding of age-related

reduction of synaptic transmission hormones and den-

dritic spines may be causative. The expression levels of

numerous hormones such as estradiol decrease with age

Fig. 1 Sex differences are more prominent than age differences in prefrontal cortex. a Principal component analysis (PCA) of pre-frontal cortex

gene expression data shows a separation between female (red) and male (blue). Pooled samples of both sexes are located in the middle

between male and female. Sex-specific clustering gives heterogeneous images of age groups where only tendencies for clusters of younger

samples to the left and more older samples to the right can be identified in male (b) as well as female (c). d The dendrogram of male and

female samples together shows large sex-specific contiguous regions
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Fig. 2 Most genes were differentially expressed between groups of age > 65 and age < 30. Down-regulated (a, c, e) and up-regulated (b, d, f)

genes were compared in venn diagrams between female (red circles) and male (green circles) prefrontal cortex. Age was grouped in a sex-

specific way into age < 30 (F30, M30), 30 < age < 65 (F30_65, M30_65) and age > 65 (F65, M65). a Genes down-regulated in F30_65 vs. F30 were

compared with genes down-regulated in M30_65 vs. M30. b Genes up-regulated in F30_65 vs. F30 were compared with genes up-regulated in

M30_65 vs. M30. c Genes down-regulated in F65 vs. F30_65 were compared with genes down-regulated in M65 vs. M30_65. d Genes up-

regulated in F65 vs. F30_65 were compared with genes up-regulated in M65 vs. M30_65. e Genes down-regulated in F65 vs. F30 were compared

with genes down-regulated in M65 vs. M30. f Genes up-regulated in F65 vs. F30 were compared with genes up-regulated in M65 vs. M30. Most

genes were differentially expressed between the more distant groups of age > 65 and age < 30 while in the comparisons between the adjacent

age groups there were fewer genes differentially expressed. This demonstrates continuous long-term changes in gene expression. From the

fewer genes differentially expressed in male biopsies most were in common with the female genes
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and are known to influence synaptic plasticity by chan-

ging the numbers and characteristics of dendritic spines.

Genes up-regulated during aging are associated with the

astrocyte marker GFAP and inflammation

Based on the Pearson correlations with age (Supplemen-

tary Table 4) the ten genes most significantly correlated

with age were plotted in female (Fig. 4a) and male (Fig.

4c). GFAP (F: r = 0.62, M: r = 0.55), FKBP5 (F: r = 0.62,

M: r = 0.47), ITGB4 (F: r = 0.56, M: r = 0.51) and ERB-

B2IP (F: r = 0.56, M: r = 0.44) were among these in both

sexes, GFAP was highest in both female and male (Sup-

plementary Table 4). GOs of genes which were most sig-

nificantly correlated with age (Bonferroni-corrected p <

0.05, r > 0.1) were analyzed separately for male and fe-

male prefrontal cortex. The dot plots in Fig. 4b (female)

and Fig. 4d (male) show the 20 most significantly over-

represented GO terms (as in Fig. 3b, d). The GO terms

extracellular matrix organization and circulatory system

development and positive regulation of gene expression

(probably due to selection of upregulated genes) appear

in both sexes while the rest of these top 20 terms differ

between sexes. Further functional GO term groups

shown in Table 3 include immunity, inflammation, ROS

and integrin-associated terms. The immunity and

inflammation-related terms are much more abundant in

females, thus implying probable sex-associated regula-

tion of inflammation and immune response during

aging.

Aging-related changes in pathways

Sex-specific pathway analysis of genes which were most

significantly correlated (Bonferroni-corrected p < 0.05, r >

0.1) and anti-correlated (Bonferroni-corrected p < 0.05,

r < − 0.1) revealed several over-represented KEGG path-

ways [29]. The dot plots in Fig. 5 show the 20 most signifi-

cantly over-represented KEGG pathways for each of these

four analyses. The full pathway analysis results are pro-

vided in Supplementary Table 6. Down-regulation (anti-

correlation) with age was associated with various types of

Fig. 3 Genes down-regulated during aging are associated with synaptic processes . Gene ontologies (GOs) of genes which were most

significantly anti-correlated with age were analyzed separately for male and female prefrontal cortex. GO terms related to synaptic signaling were

found in both sexes
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Table 2 Selected groups of significant GO terms overrepresented in genes anti-correlated with age in female and male

Group Term_female P
value_F

Term_male P
value_
M

Catecholamine catecholamine uptake involved in synaptic transmission 1.47E-
04

catecholamine secretion 5.33E-04

cellular response to catecholamine stimulus 8.13E-
04

catecholamine transport 1.47E-
03

regulation of catecholamine secretion 1.76E-
02

catecholamine binding 4.99E-
02

Hormone hormone transport 8.20E-
07

hormone transport 6.75E-07

regulation of hormone secretion 2.56E-
06

regulation of hormone secretion 3.64E-06

peptide hormone secretion 4.88E-
05

peptide hormone secretion 1.77E-05

response to peptide hormone 1.01E-
03

response to peptide hormone 2.62E-05

hormone-mediated apoptotic signaling pathway 4.18E-
03

cellular response to hormone stimulus 1.11E-04

cellular response to hormone stimulus 5.97E-
03

positive regulation of peptide hormone secretion 9.68E-03

negative regulation of peptide hormone secretion 6.89E-
03

hormone-mediated apoptotic signaling pathway 1.06E-02

regulation of intracellular steroid hormone receptor
signaling pathway

1.97E-
02

thyroid hormone transport 1.72E-02

neuropeptide hormone activity 2.45E-
06

positive regulation of corticosteroid hormone
secretion

3.41E-02

regulation of intracellular steroid hormone receptor
signaling pathway

3.90E-02

cellular response to parathyroid hormone stimulus 4.42E-02

neuropeptide hormone activity 6.12E-05

peptide hormone receptor binding 7.63E-03

Corticoid positive regulation of glucocorticoid receptor signaling
pathway

1.94E-
05

positive regulation of glucocorticoid receptor
signaling pathway

8.12E-05

corticosteroid receptor signaling pathway 1.17E-
03

corticosteroid receptor signaling pathway 6.59E-03

positive regulation of corticosteroid hormone
secretion

3.41E-02

Neurogenesis positive regulation of neurogenesis 2.84E-
05

positive regulation of neurogenesis 1.51E-05

negative regulation of neurogenesis 3.31E-
03

cAMP regulation of cAMP biosynthetic process 7.42E-
05

regulation of cAMP biosynthetic process 6.39E-07

negative regulation of cAMP metabolic process 7.43E-
04

negative regulation of cAMP metabolic process 5.18E-05

positive regulation of cAMP metabolic process 1.01E-
02

positive regulation of cAMP metabolic process 4.47E-04

hippocampus development 7.40E-04

cAMP-mediated signaling 9.50E-04

negative regulation of cAMP-mediated signaling 3.86E-03

cAMP catabolic process 4.08E-02

LTP positive regulation of long-term synaptic potentiation 6.25E-
04

long-term synaptic potentiation 5.54E-06

long-term synaptic potentiation 4.07E- positive regulation of long-term synaptic potentiation 2.49E-03
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Table 2 Selected groups of significant GO terms overrepresented in genes anti-correlated with age in female and male (Continued)

Group Term_female P
value_F

Term_male P
value_
M

03

Dendritic
spine

negative regulation of dendritic spine development 2.02E-
03

dendritic spine morphogenesis 4.75E-05

dendritic spine organization 3.74E-
03

regulation of dendritic spine morphogenesis 2.44E-03

regulation of dendritic spine morphogenesis 5.59E-
03

negative regulation of dendritic spine development 7.75E-03

dendritic spine development 9.70E-
03

positive regulation of dendritic spine morphogenesis 1.03E-02

positive regulation of dendritic spine morphogenesis 3.38E-
02

dendritic spine 4.60E-09

dendritic spine 5.69E-
05

dendritic spine head 2.26E-03

dendritic spine head 5.73E-
04

dendritic spine membrane 2.17E-
02

Fig. 4 Genes up-regulated during aging are associated with the astrocyte marker GFAP and inflammation. Gene ontologies (GOs) of genes which

were most significantly correlated with age were analyzed separately for male and female pre-frontal cortex. In both sexes the astrocyte marker

GFAP has the highest correlation and GO terms related to inflammation were predominant
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synapses, calcium signaling and long-term-potentiation in

both sexes (Fig. 5a, b). To elucidate further causes leading

to decline of synaptic transmission pathways Cortisol syn-

thesis and secretion (F:p = 0.02,q = 0.1; M:p = 0.0001,q =

0.001), cAMP signaling (F:p = 0.05, q = 0.23; M:p = 0.0001,

q = 0.001) and Estrogen signaling (F:p = 0.03,q = 0.17;M:

p = 0.005,q = 0.03) were found (Fig. 5b, Supplementary

Table 6A,B). Estrogens have been reported to regulate

dendritic spine density [52].

Amonsgt the genes correlated with age, we identified

over-represented pathways associated with the extracellular

matrix, cytoskeleton and Hippo- and PI3K-Akt –signaling

(Fig. 5c, d). For the detailed pathways see (Fig. 5c, d, Sup-

plementary Table 6C, D): Regulation of actin cytoskeleton

(F:p = 0.001,q = 0.02; M:p = 0.0004,q = 0.09), Proteoglycans

in cancer (F:p = 7.6E-05,q = 0.01; M:p = 0.002,q = 0.16),

ECM-receptor interaction (F:p = 0.001,q = 0.02; M:p = 0.007,

q = 0.26), Hippo signaling (F:p = 0.0004,q = 0.02; M:p =

0.01,q = 0.27), and PI3K-Akt signaling (F:p = 0.0009,q =

0.02; M:p = 0.02,q = 0.38). Interestingly, the cholesterol me-

tabolism pathway was over-represented in male (p = 0.001,

q = 0.12) but not in female (p = 0.09, q = 0.28).

Protein interaction networks

Protein interaction networks were generated based on

interactions from the BioGrid database (version 3.4.161)

using proteins coded by genes going down with age as

filtered with the criteria of a Pearson correlation < − 0.4

and a Bonferroni adjusted p < 0.05 (Fig. 6a). G protein

subunit alpha L (GNAL; r = − 0.4, p = 4E-18 in male; r =

− 0.46, p = 2E-09 in female; Supplementary Table 4A) is

at the center of this network accounting for the involve-

ment of G-protein and its receptors in most physio-

logical responses to hormones, neurotransmitters.

Several clusters are arranged around GNAL which are

characterized by hub proteins BABAM1 (red), GNAS

(yellow), TRIM25 (petrol), SPATA2 (green), APP (violet)

and ELAVL1 (blue). Analogously to the downregulated

Table 3 Selected groups of significant GO terms overrepresented in genes correlated with age in female and male

Group Term_female P value_F Term_male P value_M

Immunity immune response 2.16E-04 negative regulation of immune
system process

1.25E-02

regulation of immune system process 2.58E-04

regulation of production of molecular
mediator of immune response

7.18E-03

positive regulation of cytokine
production involved in immune
response

1.67E-02

leukocyte mediated immunity 2.98E-02

immune system process 3.53E-02

activation of immune response 3.67E-02

regulation of innate immune response 4.00E-02

immunoglobulin secretion 4.47E-02

negative regulation of immune
response

4.80E-02

Inflammation positive regulation of inflammatory
response

6.21E-03 acute inflammatory response 1.69E-02

regulation of inflammatory response 6.90E-03

acute inflammatory response 1.12E-02

ROS regulation of reactive oxygen
species biosynthetic process

5.79E-04 positive regulation of reactive
oxygen species metabolic process

2.63E-03

positive regulation of reactive
oxygen species metabolic process

2.72E-03 regulation of reactive oxygen
species biosynthetic process

6.00E-03

response to oxidative stress 2.22E-02 response to oxidative stress 3.94E-02

intrinsic apoptotic signaling pathway
in response to oxidative stress

3.64E-02

Integrin-associated terms integrin-mediated signaling pathway 1.67E-05 integrin-mediated signaling
pathway

2.72E-04

integrin binding 7.38E-03 cell adhesion mediated by
integrin

3.53E-02

integrin binding 2.83E-04
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genes, the protein network of the upregulated genes was

generated by filtering with the same p-value but with a

Pearson correlation > 0.4 (Fig. 6b). The reactive astrocyte

marker GFAP – coded by the gene with the highest cor-

relation with age (r = 0.55 in male, r = 0.62 in female;

Supplementary Table 4A) - has a central role in this net-

work and is directly connected with APP.

Time series analysis of GFAP

Time series of GFAP gene expression with age were ana-

lyzed and compared with highly age-correlated and anti-

correlated candidate genes with the aim of finding pos-

sible causal relationships. The gene CAMK4 was found

causative for the GFAP time series with the Granger

causality test from the R package lmtest (p = 0.015). The

Fig. 5 Pathways down-regulated during aging are associated with various types of synapses, calcium signaling and long-term potentiation while

up-regulated pathways are associated with the extracellular matrix, cytoskeleton, Hippo- and PI3K-Akt signaling. KEGG pathways of genes which

were most significantly correlated and anti-correlated with age were analyzed separately for male and female prefrontal cortex. In both sexes

pathways related to various types of synapses, calcium signaling and long-term potentiation were found overrepresented in the genes anti-

correlated with age. In the genes correlated with age pathways associated with the extracellular matrix, cytoskeleton, Hippo- and PI3K-Akt

-signaling are overrepresented
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test for causality in the opposite direction was not sig-

nificant (p = 0.52) indicating that regulation by a third

gene can be excluded. The time series of GFAP posses-

sing the highest positive and CAMK4 possessing nega-

tive correlation with age are plotted in Fig. 7a.

A simplified scheme (Fig. 7b) illustrates these findings

together with results from the previous analyses: astro-

cytes (marker GFAP) react to neuronal injury and ROS

thereby regulating inflammatory processes. They regulate

the uptake and release of neurotransmitters responsible

for synaptic transmission - as described by Sofroniew et al.

[46]. Age-related decline of Calcium signaling decreases

the levels of downstream CAMK4 – as mentioned above

Granger-causing - up-regulation of GFAP. CAMK4 has

been reported as a direct activator of CREB via phosphor-

ylation of the Ser-133 residue [5] or also indirectly via

MAPK [54] . By analyzing the GFAP promoter region we

identified binding sites for CREB - beside STAT and NF-

κB (Supplementary Table 7) which are usually considered

as regulators of GFAP expression [38]. Antagonistic regu-

lation of CREB and GFAP has been reported [43]. The

levels of hormones such as estrogen, which decline with

age play a major role in regulating the density of dendritic

spines and as a consequence, modulation of synaptic

transmission.

Time series analysis of GO synaptic transmission

In order to elucidate which processes induce synaptic

transmission, we set out to test Granger causality be-

tween significant GOs and the GO synaptic transmis-

sion. A consensus time series for the GO synaptic

transmission was generated by taking the mean of all

time series of genes significantly up-regulated with age

in this GO (for details see Methods section). Among the

over-represented GO terms we looked for causal rela-

tionships to this consensus time series of synaptic trans-

mission via the Granger test. Tables 4 and 5 show the

up- and down-regulated GOs found causative for synap-

tic transmission this way. Interestingly, on top of the up-

regulated terms in Table 4, numerous terms related to

nitric oxide appear as most significant. Nitric oxide plays

important roles in the nervous system and in mitochon-

dria and has been described to mediate mitochondrial

fragmentation leading to age-related neurodegenerative

diseases [31]. There was also evidence that nitric oxide

elevates intracellular calcium levels and thus mediates

reactive astrogliosis [47]. Furthermore, in Table 4, the

term negative regulation of monocyte chemotactic

protein-1 (MCP1/CCL2) production indicates an aging-

related loss of CCL2. CCL2 has been reported to be pro-

tective against neurotoxic effects of excessive glutamate

Fig. 6 Protein interaction networks highlight major role of astrocyte marker GFAP during aging. a Protein interaction network of proteins coded

by genes down-regulated with age based on interactions from the BioGrid database. G-protein subunit alpha L (GNAL) is at the center of several

clusters which are characterized by hub proteins BABAM1 (red), GNAS (yellow), TRIM25 (petrol), SPATA2 (green), APP (violet) and ELAVL1 (blue). b

Protein interaction network of proteins coded by genes up-regulated with age based on interactions from the BioGrid database. The astrocyte

marker-GFAP, has a central role and is directly connected to APP
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Fig. 7 Astrocyte marker GFAP has the highest correlation with prefrontal cortex aging and depends causally on CAMK4 in the time series. a The

plots display time series of the genes GFAP possessing the highest positive and CAMK4 possessing negative correlation with age. The Wald test

shows that the time series of CAMK4 is causative for GFAP time series. b A simplified scheme illustrates activation of astrocytes (marker GFAP) by

inflammation, ROS and neuronal injury regulating uptake and release of neurotransmitters responsible for synaptic transmission. GFAP is

regulated by CAMK4 – possibly via pERK and CREB (blue shading) - which is going down during aging and is downstream of Calcium signaling

pathway. Down-regulation during aging is marked with green colour, up-regulation with red colour

Table 4 GOs going up with age “granger-causing” GO synaptic transmission

Term ts2_c_ts1_p ts1_c_ts2_p

Nitric oxide metabolic process 0.0027 0.1969

Regulation of nitric-oxide synthase biosynthetic process 0.0034 0.1853

Positive regulation of nitric oxide biosynthetic process 0.0081 0.3591

Positive regulation of myelination 0.0107 0.0538

Negative regulation of monocyte chemotactic protein-1 production 0.0142 0.5627

Regulation of cell-matrix adhesion 0.0151 0.0445

Schwann cell development 0.0207 0.0897

Histamine secretion 0.0370 0.0772

Azole transport 0.0370 0.0772

Positive regulation of reactive oxygen species metabolic process 0.0372 0.3284

Macrophage activation 0.0386 0.9125

Skin development 0.0436 0.4341

Renal absorption 0.0451 0.9061

Response to muscle stretch 0.0497 0.3531

ts2_c_ts1_p: p-value from Granger test between time series 2 (ts2,synaptic transmission) and ts1 (order of lags = 4)

ts1_c_ts2_p: p-value from Granger test between ts1 and ts2 (order of lags = 4)

Significant p-values < 0.05 are marked in bold

Wruck and Adjaye Acta Neuropathologica Communications            (2020) 8:26 Page 13 of 18

139



at NMDA receptors [15]. El Khoury et al. additionally

described protective effects of CCL2 in Alzheimer-like

disease by triggering the recruitment of astrocytes and

microglia and subsequent removal of Amyloid-β [14].

In Table 5, the first term microtubule nucleation has a

p-value below 0.05 in both directions indicating that a

third factor may cause both. The term lysophosphatic

acid binding has a low p-value of 0.0092 in the direction

of “granger-causing” synaptic transmission and a rela-

tively high p-value of 0.3682 in the opposite direction

thus pointing to lysophosphatic acid binding as “granger-

causing” synaptic transmission. Lysophosphatic acid has

been reported to play a crucial role in the formation of

vesicles at synapses [44]. The decline of this activity and

its consequences in the exchange of neurotransmitters

would be one coherent explanation for the decrease of

synaptic transmission. Besides, many synapsis-related

terms appear in Table 5 such as cAMP-, dendrite- and

calcium-transport–related terms and also aging-related

oxidative-stress-mediated apoptosis.

Discussion
In this meta-analysis of transcriptomes derived from 591

prefrontal cortex biopsies, we found a gene set with sig-

nificantly increasing and another with significantly de-

creasing expression during aging. The most outstanding

gene within these gene sets was the reactive astrocyte

marker GFAP which showed significantly increasing ex-

pression levels in the brains of aging males and females.

The biological process most significantly down-regulated

with aging was synaptic transmission - as expected due

to its close relation to the aging-related symptoms of re-

duced cognitive performance. On the other hand, there

is a complex causal chain of aging-related changes even-

tually leading to reduced synaptic transmission. We tried

to elucidate these mechanistically taking into account

known aging hallmarks such as metabolic instability, in-

creasing inflammation levels and changes in intercellular

communication and could identify several functional

groups. Directly related to the decline of synaptic trans-

mission was the observation of multiple types of synap-

ses negatively correlated with aging in the pathway

analyses - for example, glutamatergic, cholinergic, dopa-

minergic, GABAergic and serotonergic synapses. We

found expression of the reactive astrocyte marker GFAP

increasing with age. Of course, this has to be confirmed

experimentally but however beyond the scope of this

study. Astrocytes play an important role at synapses by

taking up and releasing excessive neurotransmitters and

transferring lactate as energy substrate [46]. Further-

more, they influence pruning and remodeling of synap-

ses [46]. In our previous meta-analysis of human

hippocampus derived biopsies, we also observed that

GFAP expression strongly correlated with Alzheimer’s

disease (AD) [53]. Thus, GFAP represents astroglia acti-

vation and gliosis not only in the AD-affected brain dur-

ing neurodegeneration [27] but also in the disease-free

aging brain.

We identified calcium signaling as decreasing with age

in both sexes. Calcium has been implicated in brain

aging in the Calcium dysregulation hypothesis of brain

aging and AD [33]. Calcium has a 10,000 times higher

concentration outside the cells and is shuffled inside

through ligand-gated glutamate receptors, such as N-

methyl-d-aspartate receptor (NMDAR) or various

voltage-gated channels [33]. The expression levels of

NMDARs decrease with age in our analysis (Fig. 3b,

Supplementary Table 5A, B). We found that up-

regulation of GFAP is connected to the decrease of

CAMK4 possibly involving gene-regulation by CREB.

CAMK4, a member of the family of calcium/calmodulin-

dependent kinases was also found oppositely regulated

to GFAP in the neocortex of frontotemporal dementia-

like mice with TDP-43 depletion [55]. Sticozzi et al. re-

ported that nitric oxide can elevate intracellular calcium

and via calcium together with the ERK/calmodulin sig-

naling pathway can mediate reactive astrogliosis tri-

gerred by cytokines in a specific time frame [47].

cAMP signaling decreases with age in our analysis

(Table 2) and has been reported to be disrupted by aging

while in the healthy brain it modulates the strength of

the synapses [39]. cAMP also regulates Ca2+ release

from the endoplasmic reticulum via ryanodine receptors

(RYR) to eventually release it to the cytosol [33, 42].

A further interesting functional group declining with

age are hormones (Table 2). Hormones are known to

decrease during aging and hormones such as estrogen

have a major impact on synaptic plasticity and cognitive

performance [39].

Interestingly, the KEGG pathway- insulin secretion de-

creases with age in both sexes (Supplementary Table 6).

It has not been fully clarified if there is insulin produc-

tion in the brain but there is some evidence for it and at

least it has been reported for several species [23]. An ex-

planation for our observation is more likely the consid-

erable overlap between down-regulated genes within the

pathways of Insulin secretion and cAMP signaling which

definitely plays a role in brain aging but also in pancre-

atic islets [18].. Frölich et al. found that insulin concen-

tration and insulin receptor densities in the brain

decrease with aging [17]. The role of insulin in aging has

been assessed by a body of literature stating one major

finding that insulin sensitivity is associated with longev-

ity while insulin resistance is associated with higher

mortality [1]. Evidence for the involvement of insulin in

brain aging is provided by the correlation between type

2 diabetes and neurodegenerative dementias [3] and it

culminates in the annotation of Alzheimer’s disease as
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Table 5 GOs going down with age “granger-causing” GO synaptic transmission

Term ts2_c_ts1_p ts1_c_ts2_p

Microtubule nucleation 0.0041 0.0296

Nuclear lamina 0.0057 0.0501

Physiological muscle hypertrophy 0.0080 0.1201

Cell growth involved in cardiac muscle cell development 0.0080 0.1201

Lysophosphatidic acid binding 0.0092 0.3682

Positive regulation of dendrite morphogenesis 0.0094 0.3850

Cyclic purine nucleotide metabolic process 0.0098 0.0463

Regulation of synaptic transmission, glutamatergic 0.0114 0.0279

Dermatan sulfate biosynthetic process 0.0124 0.8968

Positive regulation of cAMP metabolic process 0.0125 0.2016

Positive regulation of cyclic nucleotide biosynthetic process 0.0125 0.2016

Uropod 0.0130 0.7732

1-phosphatidylinositol-4-phosphate 5-kinase activity 0.0130 0.7732

Proton-transporting V-type ATPase, V0 domain 0.0153 0.0617

Regulation of cAMP biosynthetic process 0.0160 0.0609

Regulation of cyclic nucleotide metabolic process 0.0160 0.0609

Synaptic vesicle docking 0.0180 0.2162

Cell-matrix adhesion 0.0183 0.0998

rRNA 3′-end processing 0.0186 0.0670

Asymmetric stem cell division 0.0192 0.1360

Rac GTPase binding 0.0197 0.5859

Macromolecular complex assembly 0.0203 0.0231

Golgi cis cisterna 0.0213 0.1023

Endomembrane system 0.0217 0.0247

Intrinsic apoptotic signaling pathway in response to oxidative stress 0.0222 0.1157

Positive regulation of purine nucleotide biosynthetic process 0.0241 0.1792

Positive regulation of nucleotide metabolic process 0.0249 0.1746

Muscle tissue development 0.0249 0.0884

Transporter activity 0.0250 0.0323

Spindle microtubule 0.0256 0.0620

Striated muscle cell development 0.0264 0.0765

Neuromuscular junction development 0.0269 0.3610

Regulation of nucleotide biosynthetic process 0.0275 0.0665

Endoplasmic reticulum 0.0356 0.0755

Calcium:cation antiporter activity 0.0385 0.3791

Ligand-gated channel activity 0.0400 0.0526

Lipid modification 0.0412 0.3182

Phosphatidylinositol phosphorylation 0.0429 0.6188

Proteoglycan biosynthetic process 0.0433 0.7653

Regulation of purine nucleotide metabolic process 0.0442 0.0842

Positive regulation of nucleocytoplasmic transport 0.0445 0.1855

Chloride channel inhibitor activity 0.0464 0.2701

Regulation of synaptic vesicle transport 0.0469 0.0834

Glutamate secretion 0.0480 0.0499

Dendrite terminus 0.0481 0.7091

ts2_c_ts1_p: p-value from Granger test between time series 2 (ts2,synaptic transmission) and ts1 (order of lags = 4)
ts1_c_ts2_p: p-value from Granger test between ts1 and ts2 (order of lags = 4)
Significant p-values < 0.05 are marked in bold
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“diabetes type 3” [13]. Anti-ageing effects have been at-

tributed to cAMP signaling which is part of a negative

feedback loop with insulin as it regulates insulin secre-

tion in the pancreatic islets but on the other hand is it-

self regulated by insulin [49]. Our findings of down-

regulated cAMP emphasize its role in aging because it

plays a dual role in regulating insulin secretion and syn-

apse strength.

Furthermore, the levels of reactive oxygen species

(ROS) increase with age in both sexes as indicated by

the significantly over-represented GOs Regulation of

ROS biosynthetic and metabolic processes and Response

to oxidative stress (Table 3). A large body of literature

has described oxidative stress as a major player in the

aging process, furthermore, Sofroniew et al. have associ-

ated increased levels of ROS as a trigger of astrogliosis

[46].

We also identified down-regulation of neurogenesis

with age in both sexes (Table 2). However, neurogenesis

in human brain is only reported for hippocampus but

not for cortex [37] and thus this finding may be rather

due to similar gene expression patterns with the hippo-

campus or cell migration from the hippocampus. For the

hippocampus, age-related decline in neurogenesis has

been reported [37] what may partially contribute to di-

minished cognitive abilities.

Finally, we found increased inflammation and immune

response predominantly in females (Table 3). These are

well known aging-associated factors [7, 35] and related

to reactive astrogliosis indicated by increased expression

of GFAP [46]. Inflammation and immunity seem to be

the only major functional group with sex differences.

However, also in males, inflammation and immune re-

sponses are activated, thus confirming the results re-

ported by Brink et al. [8].

This study may be limited by potential technical inac-

curacies including differences between platforms that

may not fully be equalized by cross-platform-

normalization and gene expression changes in the post-

mortem interval. Furthermore, causality tested by the

Granger test refers to the ability of prior values of one

time series to predict values of another time series that

may not be necessarily causative. For the explanatory

power of the time series one has to take into account

the construction from multiple individuals.

In this sex -specific meta-analysis of PFC biopsy-

derived transcriptomes, we uncovered gene sets posi-

tively and negatively correlated with age which eventu-

ally could be condensed to similar functionality in both

sexes. Synaptic transmission was found to be most sig-

nificantly down-regulated with age while the expression

of the reactive astrocyte marker GFAP was the most sig-

nificantly up–regulated gene with age. However, many

more players are involved in the complex mechanisms

of brain aging. We identified age-associated downregu-

lated expression of CAMK4 - potentially contributing to

up-regulation of GFAP - and Calcium signaling, hor-

mones, insulin secretion, cAMP, long-term potentiation,

neurogenesis and dendritic spines declining with age.

On the other hand, inflammation, oxidative stress and

neuronal injury increased with age. In summary, we

found that during aging synaptic transmission declines

due to a complex interplay of increasing factors such as

inflammation, oxidative stress, nitric oxide and decreas-

ing factors such as calcium signaling, cAMP, dendritic

spines, long-term potentiation, hormones and CCL2.

These findings are summarized in the scheme presented

in Fig. 7b.

The dataset provided here should be useful for experi-

mentalist to test and derive novel hypothesis on brain

aging using iPSC-based tools.
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Additional file 1: Supplementary Figure 1: Characteristics of PCA. (A)

Correlation plot of variances of genes influencing PC1 the most (B)

Correlation plot of variances of genes influencing PC2 the most. (C) Scree

plot of variances against the most important principal components (D)

Variances of genes influencing PC1 the most. (E) Variances of genes

influencing PC2 the most.

Additional file 2: Supplementary Table 1. Prefrontal cortex

transcriptome datasets and their GEO accession numbers employed for

the meta-analysis.

Additional file 3: Supplementary Table 2. Results of statistical tests

comparing female versus male PFC biopsy-derived gene expression data.

P-values and q-values are based on the R packages limma and qvalue, ra-

tios are calculated by dividing mean female by mean male expression.

Additional file 4: Supplementary Table 3. Subsets of the venn

diagrams comparing male and female differentially up- and down-

regulated genes in young, middle-aged and old (sheets as in Fig. 2). (A)

Genes down-regulated in F30_65 vs. F30 were compared with genes

down-regulated in M30_65 vs. M30. (B) Genes up-regulated in F30_65 vs.

F30 were compared with genes up-regulated in M30_65 vs. M30. (C)

Genes down-regulated in F65 vs. F30_65 were compared with genes

down-regulated in M65 vs. M30_65. (D) Genes up-regulated in F65 vs.

F30_65 were compared with genes up-regulated in M65 vs. M30_65. (E)

Genes down-regulated in F65 vs. F30 were compared with genes down-

regulated in M65 vs. M30. (F) Genes up-regulated in F65 vs. F30 were

compared with genes up-regulated in M65 vs. M30.

Additional file 5: Supplementary Table 4. Correlation of gene

expression with age. (A) Pearson correlation coefficients of gene

expression with age and corresponding p-value, q-values and Bonferroni

corrected p-values. (B) 48 genes with highest differences in age correl-

ation between female and male. Genes with higher age correlation in

male than in female are marked red in column cor_M-F, with lower age

correlation in green.

Additional file 6: Supplementary Table 5. Over-represented GO

terms in genes anti-correlated and correlated with age. (A) anti-correlated

in female, (B) anti-correlated in male, (C) correlated in female, (D) corre-

lated in male. Genes for GO analysis were filtered with Bonferroni-

corrected p < 0.05 and r < − 0.1 for anti-correlated genes or r > 0.1 for

correlated genes.

Additional file 7: Supplementary Table 6. Over-represented KEGG

pathways in genes anti-correlated and correlated with age. (A) anti-
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correlated in female, (B) anti-correlated in male, (C) correlated in female,

(D) correlated in male. Genes for GO analysis were filtered with

Bonferroni-corrected p < 0.05 and r < − 0.1 for anti-correlated genes or

r > 0.1 for correlated genes.

Additional file 8: Supplementary Table 7. Trancription factors in the

GFAP 2 k base upstream region found with a p-Match search of the pub-

lic Transfac database filtering with core-d-score < 0.9 and matrix-d-

score < 0.9
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SARS‑CoV‑2 receptor ACE2 
is co‑expressed with genes 
related to transmembrane serine 
proteases, viral entry, immunity 
and cellular stress
Wasco Wruck & James Adjaye*

The COVID‑19 pandemic resulting from the severe acute respiratory syndrome coronavirus 2 (SARS‑
CoV‑2) which emerged in December 2019 in Wuhan in China has placed immense burden on national 
economies and global health. At present neither vaccination nor therapies are available. Here, we 
performed a meta‑analysis of RNA‑sequencing data from three studies employing human lung 
epithelial cells. Of these one focused on lung epithelial cells infected with SARS‑CoV‑2. We aimed 
at identifying genes co‑expressed with angiotensin I converting enzyme 2 (ACE2) the human cell 
entry receptor of SARS‑CoV‑2, and unveiled several genes correlated or inversely correlated with 
high significance, among the most significant of these was the transmembrane serine protease 
4 (TMPRSS4). Serine proteases are known to be involved in the infection process by priming the 
virus spike protein. Pathway analysis revealed virus infection amongst the most significantly 
correlated pathways. Gene Ontologies revealed regulation of viral life cycle, immune responses, 
pro‑inflammatory responses‑ several interleukins such as IL6, IL1, IL20 and IL33, IFI16 regulating the 
interferon response to a virus, chemo‑attraction of macrophages, and cellular stress resulting from 
activated Reactive Oxygen Species. We believe that this dataset will aid in a better understanding of 
the molecular mechanism(s) underlying COVID‑19.

Severe acute respiratory disease COVID-19 is a result of infections with the coronavirus SARS-CoV-2 first 
reported in the Chinese city Wuhan, Province Hubei, in December 2019 and has since 11 March 2020 been 
designated as a pandemic by WHO. The origin of the virus is most likely  zoonotic1,2 but the exact species trans-
ferring it is still under investigation as some studies suggest that it was transferred from  pangolins3 or  bats4. 
Tilocca et al. analysed the SARS-CoV-2 nucleocapsid and envelop proteins and found besides highest similarities 
with bat and pangolin also considerable similarities with dog, cat, cattle and other  species5,6. Based on this, they 
suggest that earlier contact to similar viruses hosted by other species might be responsible for protection or—in 
case of multiple contacts—for antibody defense  enhancement7. At the end of April 2020, the number of globally 
confirmed cases of COVID-19 exceeded 3 million and recorded deaths beyond 200,000 in the real-time statistics 
of the Johns Hopkins  University8. Due to many unreported and asymptomatic cases, the infection fatality rate 
(IFR) is difficult to determine however Verity et al. estimate approximately 0.66% (0·39–1·33) in  China9. The 
age-associated IFR is approximately 7.8% for those above 80  years9. Drugs have been re-purposed for stabiliz-
ing COVID-19, but these are not effective  therapies10, examples include hydroxy-chloroquine (Malaria)11,12 
and nelfinavir (HIV)13. However, remdesivir which was designed for Ebola  treatment11,12 was at least shown to 
shorten the time to recovery and to reduce infection in the lower respiratory  tract14. Another treatment option is 
to indirectly immunize individuals with plasma from convalescent COVID-19  patients15. Further approaches aim 
at mimicking the human virus cell entry receptor  ACE24 with human recombinant soluble ACE2 (hrsACE2)16. 
The cell entry receptor ACE2 associates with transmembrane proteases which prime the spike protein of the 
virus. Hoffmann et al. assigned this task to the protein  TMPRSS217 which they identified in the predecessor virus 
SARS-CoV and showed it is the same for SARS-CoV-2. The protease can be inhibited by existing compounds 
to interrupt further propagation of the virus in the human host. Several other publications confirmed the role 
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of TMPRSS2 including a study by Matsuyama et al. showing enhanced SARS-CoV-2 infection in TMPRSS2 
expressing VeroE6  cells18 and a study by Sungnak et al. reporting co-expression of ACE2 and TMPRSS2 in 
multiple  tissues19. Collin et al. found that SARS-CoV-2 may enter the human body through the ocular surface 
epithelium mediated by ACE2 and  TMPRSS220.

Interestingly, ACE2 has been reported to be down-regulated following lung injury by Imai et al.21 and in the 
previous virus SAR-CoV by Haga et al.22 via a mechanism involving TNF-α-converting enzyme (TACE) shed-
ding of the ectodomain of ACE2.

Here, we describe a meta-analysis focussing on the transcriptome data from human lung epithelial cells 
including samples infected with SARS-CoV-2 from a study described by Blanco Melo et al.23. We directed the 
exploration to co-expression with the known SARS-CoV-2 receptor ACE2. The analysis revealed a signature 
consisting of 72 genes significantly co-expressed with ACE2 either with positive or negative Pearson correlation. 
Of the transmembrane serine proteases, the most significantly co-expressed with ACE2 was TMPRSS4, suggest-
ing it to be a putative druggable target.

Results
Cluster analysis of SARS‑CoV‑2 infected cells compared to other non‑infected lung cells. Fig-
ure 1 shows a hierarchical cluster analysis of all samples used in this meta-analysis. Lung epithelial cells (labeled 
“SARS004” in Fig. 1) infected with SARS-CoV-2 cluster together with mock-infected lung epithelial cells but 
separated from all other lung epithelial cells and lung carcinoma cell lines which together we consider as control 
in this analysis. The table of Pearson correlation co-efficients (suppl. Table 2) reflects the grouping implicated 
by the hierarchical clustering: SARS-CoV-2 samples have highest correlation (r = 0.9884–0.9936) to the mock-
infected SARS cells (Table 1).

Figure 1.  Lung epithelial cells (labeled “SARS004”) infected with SARS-CoV-2 cluster together with mock-
infected lung epithelial cells but separated from all other lung epithelial cells.

Table 1.  Datasets used in this focussed meta-analysis.

Dataset Description Reference

GSE147507
Primary human bronchial epithelial cells and lung adenocarcinoma infected with SARS-
CoV-2 or Mock

Blanco-Melo, D. et al. Cell 181, 1036–1045.e9 (2020)

GSE146482 Human bronchial epithelium cell line BEAS-2B Mukherjee SP et al. unpublished

GSE85121 Small airway epithelium brushing Staudt MR et al. Respir Res 2018 May 14;19(1):78. PMID: 29,754,582
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Analysis of genes with correlated and anti‑correlated expression with ACE2. Building on the 
knowledge about ACE2 as receptor of the SARS-CoV-2 virus we set out to indentify genes with highly cor-
related expression with ACE2 with the aim of elucidating the molecular mechanisms underlying COVID-19. 
Figure  2 shows the genes most significantly (Bonferoni-adjusted p < 1E−1) correlated (red to yellow in last 
column) or anti-correlated (green) with ACE2 (full table in suppl. Table 3). The transmembrane serine pro-
tease 4 (TMPRSS4) is one of the most significantly correlated (r = 0.9142, p = 4.59E−20) with ACE2 therefore 
implying a major role in priming the SARS-CoV-2 spike protein. CXCL17 (r = 0.9273, p = 1.1E−21), ABCA12 
(r = 0.9256, p = 1-92E−21) and ATP10B (r = 0.9193, p = 1.14E−20) had marginally higher correlation with ACE2 
while another transmembrane protease TMPRS11E (r = 0.9121, p = 7.91E-20) had a slightly lower correlation. 
The expression of CXCL17 is probably due to a reaction to the infection by chemo-attracting  macrophages24. 
The role of the ATP binding cassette subfamily A member 12 (ABCA12) is not fully elucidated with respect to 
COVID-19 but assumed to transport lipid via lipid granules to the intracellular space and transporting specific 
proteases – in the case of harlequin ichtyosis associated with  desquamation25. Current knowledge on ATP10B is 
scarce. However, Wilk et al. (Table 3 in their publication) report Atp10b gene expression levels as highly inversely 
(negative) correlated with influenza gene expression changes in infected C57BL/6 J  mice26. In Fig. 3a a cluster 
analysis and gene expression heatmap of the 72 most significantly (Bonferoni-adjusted p < 1E−11) correlated and 
anti-correlated genes with ACE2 shows close clustering of the serine protease TMPRSS4 with ACE2. Also in this 
analysis of 72 genes, SARS-CoV-2 (red color bar) cluster together with mock-infected SARS lung epithelial cells 
and separated from the other lung cells (blue color bar indicates control). In the heatmap presented in Fig. 3b, 
TMPRSS family members TMPRSS11D/E and TMPRSS4 show close clustering with ACE2 but also TMPRSS2 
and TMPRSS13 have similar expression in all experiments, especially in the SARS-CoV-2 infected samples.

Pathway analysis of genes co‑regulated with ACE2. In order to investigate the functionality of genes 
interacting with ACE2 we filtered genes correlated with ACE2 by Bonferoni-adjusted p value < 0.05 and Pear-
son correlation coefficient > 0.6. 1891 genes fulfilled these criteria and were subjected to over-representation 
analysis of KEGG  pathways27. The most significantly over-represented pathways associated with the 1891 genes 
correlated with ACE2 (Fig. 4a, suppl. Table 4) are for example, Bacterial invasion of epithelial cells (q = 4.4E−06), 
Human papillomavirus infection (q = 0.0006), Transcriptional misregulation in cancer (q = 0.0006) and Endocy-
tosis (q = 0.002). This reflects the mechanisms of virus infection via invasion of epithelial cells and endocytosis.

Pathway analysis of genes anti‑correlated with ACE2. Analogously to the positively correlated genes 
we also examined the negatively correlated genes with ACE2 by filtering for Bonferoni-adjusted p value < 0.05 
and Pearson correlation coefficient < − 0.6. 1993 genes passed these filtering criteria and were subjected to over-
representation analysis of KEGG  pathways27. The most significantly over-represented pathways in the 1993 genes 
negatively correlated with ACE2 (Fig. 4b, suppl. Table 5) are DNA replication (q = 1E−12), Metabolic pathways 
(q = 1.86E.08), Cell cycle (q = 1.1E−05), Fanconi anemia pathway (q = 1.24E−05), Mismatch repair (q = 9.89E−05) 
and Homologouos recombination (q = 0.0046). Many of these pathways are associated with DNA processing or 
repair. That these are over-represented in genes down-regulated upon infection with SARS-CoV-2 is in line 
with reports about interferon and interferon stimulated genes (ISGs) inhibiting virus  replication28. This would 
be a defense against the attempts of the virus to recruit the host’s DNA repair and homologous recombination 
 mechanisms29.

GO analysis of genes co‑regulated with ACE2. We furthermore assessed the GOs over-represented in 
the 1891 genes positively and the 1993 genes negatively correlated with ACE2. Table 2 shows a selection of sig-
nificant GOs from all three categories Biological Process (BP, Fig. 5a), Cellular Component (CC) and Molecular 
Function (MF), suppl. Table 6 provides the full table and suppl. Table 7 provides the full table for the 1993 genes 
negatively correlated with ACE2. Amongst the GO-BPs, metabolic processes are the most significant. GO-BP 
terms such as Interspecies interaction between organisms, Cytokine production and positive regulation of viral pro-
cess reflect activated mechanisms post-viral infection. Interestingly, we found regulation of coagulation amongst 
the GO-BPs what may help elucidate reports about co-agulation in acro-ischemic COVID-19  patients30. In the 
GO-CCs, the terms intracellular and membrane-bounded organelle are most significant. In the GO-MFs, the 
terms metal ion binding and protein binding emerge as most significant due probably reflecting the binding of the 
virus proteins to the host cells. For the full gene lists associated with these terms refer to suppl. Tables 5 and 6.

Immune system associated GOs co‑regulated with ACE2. Table 3 and Fig. 5b show GOs (all Bio-
logical Processes) related to the immune system over-represented in genes correlated with ACE2. Myeloid 
cells involved in the immune response (GO:0,002,275, p = 5E−07) as well as T-cells (GO:0,050,870, p = 0.02) 
are activated. Chemokines, in particular interleukin-1 are produced (GO:0,032,642, p = 0.0049, GO:0,032,652, 
p = 0.0049) also IL33 and TNF. Additionally, positive regulation of the innate immune response was prominent 
(GO:0,045,089, p = 0.0079). CXCL17 was the gene with the highest correlation with ACE2 and is involved in 
immune system process—as described above by chemo-attracting  macrophages24. Among the most significantly 
ACE2-correlated genes was IFI16 which is associated with several immune system GOs and known as regula-
tor of the interferon response to  viruses31 and will be described in more detail in the next section about Protein 
interaction networks. Also in the protein-interaction network of the most significantly ACE2-correlated genes 
was the interleukin 20 receptor B (IL20RB) which appeared in several GOs listed in Table 3. With respect to 
viruses, there is meagre knowledge on IL20RB, however a study reported over-expression in the pneumonia 
causing avian influenza A H7N9  virus32.
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Figure 2.  Most significantly (Bonferoni-adjusted p < 1E−11) correlated (red to yellow in last column) or 
anti-correlated (green) genes with ACE2. The transmembrane serine protease 4 (TMPRSS4) is one of the most 
significantly correlated (r = 0.9142, p = 4.59E−20) with ACE2 suggesting a major role in priming the SARS-CoV2 
spike protein. CXCL17 (r = 0.9273, p = 1.1E−21), ABCA12 (r = 0.9256, p = 1−92E−21) and ATP10B (r = 0.9193, 
p = 1.14E−20) had marginally higher correlation with ACE2 while another transmembrane protease TMPRS11E 
(r = 0.9121, p = 7.91E−20) had slightly lower correlation.
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Figure 3.  (a) Cluster analysis and gene expression heatmap of 72 most significantly (Bonferoni-adjusted 
p < 1E−11) correlated and anti.correlated genes with ACE2 shows close clustering of the serine protease 
TMPRSS4 with ACE2. (b) Heatmap of TMPRSS family members shows close clustering of TMPRSS11D/E and 
TMPRSS4 with ACE2 but also TMPRSS2 and TMPRSS13 have similar expression, particularly in SARS-CoV-2 
infected samples. The red color bar indicates SARS-CoV-2, blue color bar control.
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GOs associated with inflammation and reactive oxygen species (ROS) amongst genes co‑reg‑
ulated with ACE2. Table 4 and Fig. 5c show GOs (all Biological Processes) related to inflammation and 
ROS over-represented in genes correlated with ACE2. The GO, positive regulation of inflammatory response 
(p = 0.0039) would imply that an inflammatory process is induced which finally leads to apoptosis—as demon-
strated by the GO inflammatory cell apoptotic process (p = 0.042). The virus receptor ACE2 is involved in the posi-
tive regulation of reactive oxygen species metabolic process (p = 0.0185). Induction of ROS by a respiratory virus 
and subsequent inflammation has been reported Jamaluddin et al.33.

Protein‑interaction networks. We further restricted the set of ACE2-correlated or -anti-correlated genes 
by drastically filtering with Bonferoni-adjusted p < 1E−11 in order to construct a human readable protein inter-
action network of the most significant proteins (Fig. 6). The protein-interaction network generated from corre-
lated and anti-correlated genes with ACE2 shows IFI16 (r = 0.8719), LIMA1 (r = 0.8955), CNNM3 (r = − 0.8732), 
HNF4A (r = − 0.8750), TRAF3IP2 (r = 0.8816), ASB2 (r = 0.8791) and FANCC (r = − 0.8682) as hub genes (inter-
actors from the BioGrid database are marked in red, original ACE2-correlated/anti-correlated genes are marked 
in green, hub genes and ACE2 are highlighted with yellow shading ). Interferon plays a major role in the host 
response to a virus and Thompson et al. reported that IFI16 – one of the hub genes in our network—controls 
the interferon response to DNA and RNA  viruses31. Lin and Richardson review that LIMA1 (formerly EPLIN) 
– which is known to enhance bundling of actin  filaments34—mediates the interaction between Cadherins and 
Actin in the context of adherens junctions—playing a role in measles virus infection—via trans-binding with 
molecular interactors on adjacent  cells35. In line with this, LIMA1 is connected with E-cadherin (CDH1) in the 
network and also Cadherin 13 (CDH13) is part of it and among the most significantly correlated genes to ACE2. 
The connection of ACE2 to calmodulin 1 (CALM1) is based on a publication by Lambert et al.36 in which they 
show that CALM1 interacts with the corona virus receptor ACE2 and inhibits shedding of its  ectodomain36. 
CALM1 inhibitors in turn can reverse this process so that the ACE2 ectodomain is shed, and is partially medi-
ated by a  metalloproteinase36. The direct connection between CALM1 and LIMA1 was found in a large-scale 
interactome  study37. The involvement of the hub gene Fanconi anemia complementation group C (FANCC), 
although not experimentally proven, might reflect recruitment of DNA repair and homologous recombination 
mechanisms from the host by the virus.

Role of TMPRSS4 and other TMPRSS gene family members. A pivotal result of this meta-analysis 
is the transmembrane serine protease TMPRSS4 which was one of the most significantly correlated genes with 
ACE2. Additionally TMPRSS11E (r = 0.9121, Bonferoni-corrected p = 1.09E−15) and TMPRS11D (r = 0.9018, 
Bonferoni-corrected p = 1.32E−14) from the same gene family were found more significant than TMPRSS2 
which however was still significantly correlated with ACE2 (r = 0.767, Bonferoni-corrected p = 1.79E−6). The 
assignment of the SARS-CoV-2 spike protein priming functionality to TMPRSS2 was based on the assumption 
that it would be the same as for its predecessor SARS-CoV17 and was confirmed by several  publications19,20. 

Figure 4.  (a) The five most significantly overrepresented pathways correlated with ACE2 are Human 
papillomavirus infection, Bacterial invasion of epithelial cells, Endocytosis, Axon Guidance and Transcriptional 
mis-regulation in cancer. (b) The six most significantly overrepresented pathways anti-correlated with ACE2 
are DNA replication, Metabolic pathways, Cell cycle, Fanconi anemia pathway, Mismatch repair and Homologous 
recombination. Many of these pathways are associated with DNA processing or repair. That these are down-
regulated upon infection with SARS-CoV-2 is in line with reports about interferon and interferon stimulated 
genes (ISGs) inhibiting virus  replication16. This would be a defense against the attempts of the virus to recruit 
the host’s DNA repair and homologous recombination mechanisms as Gillespie et al.  report29.
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Table 2.  Selected over-represented GOs in genes significantly correlated with ACE2.

GO_BP term P value GO_CC term P value GO_MF term P value

Regulation of primary metabolic process 5.23E−11 Intracellular 3.35E−27 Metal ion binding 4.98E−08

Regulation of cellular metabolic process 6.04E−09 Membrane−bounded organelle 8.95E−23 Protein binding 1.84E−05

Organic substance biosynthetic process 8.56E−07 Extracellular exosome 9.79E−18 Catalytic activity, acting on a protein 6.44E−03

Positive regulation of cellular process 2.09E−06 Extracellular organelle 1.21E−17 Metallopeptidase activity 4.99E−02

Negative regulation of cellular metabolic process 2.69E−05 Cytoplasm 2.07E−14

Gene expression 3.24E−05 Vesicle 8.85E−14

Interspecies interaction between organisms 3.30E−05 Ion binding 5.22E−08

Cell junction assembly 1.20E−04 Membrane raft 2.03E−04

Cytokine production 2.21E−04 Membrane region 5.95E−04

Regulation of nitrogen compound metabolic process 3.90E−04 Extracellular region 1.33E−03

Cellular component organization or biogenesis 4.77E−04 Plasma membrane 5.48E−03

Positive regulation of viral process 4.86E−04 Whole membrane 8.94E−03

Establishment of localization 6.03E−04

Regulation of cell junction assembly 7.11E−04

Amyloid precursor protein metabolic process 7.30E−04

Signaling 7.61E−04

Regulation of symbiosis, encompassing mutualism through parasit-
ism

9.15E−04

Organic substance transport 9.22E−04

Regulation of viral life cycle 1.04E−03

Regulation of biological quality 1.31E−03

Regulation of cellular component organization 1.69E−03

Vesicle-mediated transport 2.18E−03

Cellular metabolic process 2.21E−03

Cell–cell junction organization 2.53E−03

Positive regulation of multicellular organismal process 2.74E−03

Viral process 2.81E−03

Endocytosis 3.08E−03

Cellular nitrogen compound metabolic process 3.48E−03

Positive regulation of cellular component biogenesis 5.04E−03

Regulation of biological process 5.23E−03

Catabolic process 6.34E−03

Positive regulation of biological process 1.09E−02

Entry into host cell 1.27E−02

Entry into other organism involved in symbiotic interaction 1.27E−02

Proteolysis 1.72E−02

Positive regulation of reactive oxygen species metabolic process 1.85E−02

Regulation of defense response 2.06E−02

Regulation of multi-organism process 2.09E−02

Regulation of multicellular organismal process 2.12E−02

Regulation of viral entry into host cell 2.49E−02

Gap junction assembly 2.51E−02

Cell proliferation 2.52E−02

Regulation of response to stress 2.57E−02

Receptor biosynthetic process 2.68E−02

Organonitrogen compound catabolic process 2.79E−02

Macromolecule metabolic process 2.91E−02

Response to stress 3.85E−02

Regulation of cardiac muscle contraction 3.93E−02

Zinc ion binding 4.07E−02

Organonitrogen compound metabolic process 4.45E−02
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Figure 5.  GO analysis reflects virus entry and immune response involving ROS and inflammation. (a) Selected 
GOs (Biological processes) shows interaction of virus and host, cell-junction organization, endocytosis, reaction 
involving cytokine production. (b) Immunity-related GOs illustrate the immune response involving activation 
of myeloid cells and T-cells and interleukin-1 and other chemokine production. (c) GOs associated with ROS 
and inflammation demonstrate involvement of ROS and inflammation leading to apoptosis.

Table 3.  GOs (all biological process) related to immune system in genes correlated with ACE2. 

Term P value

Myeloid cell activation involved in immune response 5.3978E−07

Cell activation involved in immune response 4.3656E−05

Negative regulation of immune system process 0.00331363

Immune system process 0.0048604

Regulation of chemokine production 0.00486129

Regulation of interleukin-1 production 0.00486129

Positive regulation of innate immune response 0.0078574

Immune response 0.00855493

Positive regulation of myeloid leukocyte cytokine production involved in immune response 0.01809849

Innate immune response-activating signal transduction 0.02190672

Positive regulation of T cell activation 0.02209419

Astrocyte activation involved in immune response 0.02764374

Microglial cell activation involved in immune response 0.02764374

Immune response-regulating signaling pathway 0.0286071

Negative regulation of immune effector process 0.03757784

Table 4.  GOs (all biological process) related to inflammation and reactive oxygen species (ROS) in genes 
correlated with ACE2. 

Term P value

Positive regulation of inflammatory response 0.0039263

Response to oxygen levels 0.00438988

Positive regulation of reactive oxygen species metabolic process 0.01851891

Reactive oxygen species metabolic process 0.04088524

Inflammatory cell apoptotic process 0.04206722
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However, besides TMPRSS2 other proteases might be involved—see the heatmap in Fig. 3b which illustrates 
expression of transmembrane serine proteases. The highly significant co-expression of TMPRSS4 with ACE2 
and its relevant role as transmembrane serine protease has enabled us to hypothesize that TMPRSS4 might also 
be involved in priming the SARS-CoV-2 spike protein. We therefore anticipate that inhibitors of TMPRSS4, 
TMPRS11D and TMPRS11E—besides those for TMPRSS2—could be a promising subject of further research.

Validation with a dataset of SARS‑CoV‑2 infected human bronchial organoids. We validated 
our results with the RNAseq dataset GSE150819 of human bronchial organoids infected with SARS-CoV-238. 
Suppl. Table 8 shows the correlation of members of the TMPRSS gene family with ACE2 in this dataset. As in the 
first analysis of lung epithelial cells (Fig. 2) TMPRSS4 is also the gene most significantly correlated with ACE2 
expression (p = 4.45E−05, Benjamini-Hochberg-corrected p = 0.0006, r = 0.86 ). Also TMPRSS2 (p = 0.014379, 
Benjamini-Hochberg-corrected p = 0.042562, r = 0.62 ) and TMPRSS11D (p = 0.000456, Benjamini-Hochberg-
corrected p = 0.003185, r = 0.79 ) have significant p values and also Benjamini-Hochberg-corrected p values 
while TMPRSS11E here is not significant.

Discussion
In this meta-analysis we compared RNA-seq data of lung cells infected with SARS-CoV-2 and other lung cells 
with particular focus on correlated gene expression with the known SARS-CoV-2 receptor gene ACE2. We 
identified a signature of genes positively or negatively correlated with ACE2 amongst which the most outstand-
ing was the transmembrane serine protease TMPRSS4. In a recent publication Hoffmann et al.17. Inferred from 
the knowledge that the preceeding virus, SARS-CoV, uses ACE2 as receptor for entry and the serine protease 
TMPRSS2 for spike protein priming that the new virus SARS-CoV-217 would do the same. While the involvement 
of the receptor ACE2 appears to be  established3,16 the use of TMPRSS2 for spike protein priming appears not 

Figure 6.  Protein interaction network of genes most significantly (Bonferoni-adjusted p < 1E−11) correlated 
and anti-correlated genes with ACE2 shows IFI16 (r = 0.8719), LIMA1 (r = 0.8955), CNNM3 (r = − 0.8732), 
HNF4A (r = − 0.8750), TRAF3IP2 (r = 0.8816), ASB2 (r = 0.8791) and FANCC (r = − 0.8682) as hub genes. Genes 
found as interactors in the BioGrid database are marked in red, the original geneset of ACE2-correlated genes is 
marked in green, hub genes and ACE2 have yellow shading.
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fully settled as Hoffmann et al. still have to concede “that SARS-CoV-2 infection of Calu-3 cells was inhibited 
but not abrogated by camostat mesylate” (serine protease inhibitor with activity against TMPRSS2)17. The high 
significance (r = 0.9142, p = 4.59E−20) in our co-expression analysis with ACE2 suggests that TMPRSS4 is a 
considerable candidate for spike protein priming. That is in line with findings by Zang et al. who reported that 
TMPRSS4 besides TMPRSS2 enhances infection of small intestinal enterocytes with SARS-CoV-239. However, 
TMPRSS4 is closely related to TMPRSS2 which both can proteolytically cleave the hemagglutinin of influ-
enza  viruses40. Further transmembrane serine proteases TMPRS11D (r = 0.9018, p = 9.61E−19) and TMPRS11E 
(r = 0.9121, p = 7.91E−20) in our analysis also emerged more significant than TMPRSS2 (r = 0.767, p = 1.3E−10). 
The TMPRS11 family member TMPRS11A was found to enhance viral infection with the first coronavirus 
SARS-CoV by spike protein cleavage in the  airway41. Thus, we should not exclude the probability that other 
members of the TMPRSS gene family may be proteases for the SARS-CoV-2 spike protein. TMPRSS2 inhibitors 
have been proposed by Hoffmann et al.17—and earlier for the SARS-Cov virus by Kawase et al.42 as working best 
together with cathepsin B/L inhibitors. We propose to investigate the effect of TMPRSS4 inhibitors in further 
research. As TMPRSS4 has been implicated in the invasion and metastasis of several cancers it has also been 
considered as target for cancer therapy for which a modest inhibitory effect of the above mentioned inhibitors in 
TMPRSS4-overexpressing SW480 cells was  reported43. Interestingly, also TMPRSS2 is connected with epithelial 
carcinogenesis as consistently over-expressed in prostate  cancer44, and later a gene fusion of TMPRSS2 and ERG 
was reported as the predominant molecular subtype of prostate  cancer45, where TMPRSS2 however only con-
tributes untranslated  sequence46. Assuming that co-expression with ACE2 is an indication that TMPRSS4 may 
prime the SARS-CoV-2 spike protein we suggest that further development and testing of more effective TMPRSS4 
inhibitors in in vitro and in vivo models could support the translation into clinical settings. However, we have 
to state the limitation that this study is a meta-analysis based solely on transcriptome and not proteome data.

Besides the identification of TMPRSS4, we found several significantly over-represented GOs and pathways 
such as Endocytosis, Papilloma virus infection and Bacterial invasion of epithelial cells for which we provide full 
gene lists to foster further elucidation of disease mechanisms. Genes from the constructed protein-interaction 
network provide a first snapshot of a comprehensive image: IFI16 controls the interferon response to the  virus31, 
LIMA1 mediating the interaction between Cadherins (CDH1, CDH13) and Actin in the context of adherens 
junctions potentially playing a role in virus infection, CALM1 inhibits shedding of the ectodomain of the virus 
receptor ACE236.

Furthermore, GO analyses revealed several biological processes related to viral cell entry, host reaction, 
immune response, ROS, inflammation and apoptosis. This led us to propose a cascade of events taking place 
post SARS-CoV-2 entry into host cells- illustrated in Fig. 7 together with possible drug targets. The coronavi-
rus SARS-CoV-2 docks at the receptor ACE2 on the membrane of the human epithelial cell, the early stage of 
infection. According to reports by Monteil et al. these processes can be blocked with recombinant  hrsACE216. 
Transmembrane serine proteases TMPRSS mediate SARS-CoV-2 cell entry via  ACE217,47. TMPRSS2 has been 
described as a mediator of ACE2-coupled endocytosis in the first SARS-CoV48 and by a previous publication 
also for SARS-CoV-217. However, we identified high levels of co-expression between ACE2 and TMPRSS4 and 
other members of the TMPRSS family and hypothesize that any of these additional family members might have 
the same function as the well described TMPRSS2. As a consequence, we propose that besides TMPRSS2 also 
other TMPRSS family members could be targets of pharmaceutical intervention warranting further research. 
After entering the cell, SARS-CoV-2 RNA is released, replicated and packaged again. Drugs can target the 
viral protease and the polymerase needed for  replication49. Replication can further be inhibited by interferon 
and interferon-stimulated genes (ISG)28 which we also found evidence for in negatively correlated replication 
pathways (e.g. DNA replication and homologous recombination). This depends on a healthy immune response 
and may be impaired in individuals with a weak immune system due to age or underlying diseases. The virus is 
packaged and released into the extracellular space where it can be attacked by macrophages chemo-attracted by 
 CXCL1724. Also T-Cells can be involved in the immune response. We found evidence for their activation in GO 
analysis by associated interleukins IL1 and IL7. Although immunity is not the main focus of this manuscript 
it is tempting to speculate that the severity of the clinical manifestations such as the acute respiratory failure 
and also failure in other organs depend on the state of the immune system which decreases with age or diseases 
such as diabetes.The involvement of ACE2 in the renin-angiotensin system as antagonist of ACE in regulating 
blood pressure via Angiotensin II, vasoconstriction, dilation and its protective role against lung  injury41 are 
additional factors which correlate with  age50. This is confirmed by reports from Wadmann et al.51 about Centers 
for Disease Control and Prevention (CDC) data from 14 U.S. states that 50% hospitalized COVID-19 patients 
had pre-existing high blood  pressure51. In their study about ACE2 in the preceeding SARS-CoV virus Imai et al.21 
found that ACE2 protects against lung injury and acid-induced lung injury in a Ace2-knockout mouse can be 
improved by an inhibitor of the Angiotensin II receptor  AT121. The results of clinical studies but also statistics on 
hypertension and even more important statistics on pharmacological treatment of hypertension in COVID-19 
patients may shed light on the discussions if treatment with ACE inhibitors and angiotensin receptor blockers 
(ARBs) are  detrimental52 or  beneficial53.

We conclude, that our meta-analysis of RNA-Seq data of lung cells partially infected with SARS-CoV-2 iden-
tified the transmembrane serine protease TMPRSS4 as one of the most significantly correlated genes with the 
virus receptor ACE2. The importance of this finding is underlined by Zang et al. who simultaneously with our 
preprint publication reported that TMPRSS4 enhances SARS-CoV-2 infection of small intestinal  enterocytes39. 
We propose that inhibitors of TMPRSS family members TMPRSS4, TMPRSS11D and TMPRSS11E besides 
TMPRSS2 are worthwhile testing in in vitro and in vivo studies. As clinicians, pathologists and scientists are 
struggling to get to grips with and understand the damage wrought by SARS-CoV-2 as it invades the body, we 
hope that our analyses and dataset will contribute to a better understanding of the molecular basis of COVID-19.
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Methods
Sample collection of lung cell RNA‑Seq data. Next-generation sequencing datasets measured in 
RNA-Seq experiments with lung cells (GSE147507: Illumina NextSeq 500; GSE146482: Illumina NovaSeq 6000; 
GSE85121: Illumina HiSeq 2500) were downloaded from NCBI GEO (Table 1, suppl. Table 4). These datasets 
were provided along with studies by Blanco-Melo et al.23 (GSE147507) and Staudt et al.54 (GSE85121). A final 
publication related to the dataset GSE146482 is yet to materialize. From accession no. GSE85121 only small 
airway epithelium brushing cells were used but alveolar macrophages were excluded while from accession no. 
GSE147507 only human epithelial and adenocarcinoma lung cells were used but ferret cells and updates after 
March 24 were excluded and from accession no. GSE146482 only control epithelial cells were used but graphene 
oxide treated cells were excluded. After exclusion of the above mentioned datasets not fitting the target cell type, 
49 samples remained useful.

Data normalization and analysis. After the excluded samples had been filtered from the downloaded 
RNA-Seq data data was imported into the R/Bioconductor  environment55,56. Read counts from accesion nos. 
GSE147507 and GSE146482 were converted to FPKM (fragments per kilobase of exon model per million reads 
mapped) using trancript lengths downloaded from ENSEMBL (version GRCh38, p13). Batch effects were 
removed with the package  sva57 employing method  ComBat58. Normalization was performed via the voom 
 method59. Pearson correlation coefficients between samples were calculated with the R-builtin method cor. Den-
drograms were drawn employing the dendextend  package60 filtering genes for high coefficient of variation above 
the 75% quantile.

The validation dataset GSE150819 of human bronchial organoids infected with SARS-CoV-238 downloaded 
from NCBI GEO was normalized with the voom  method59 before calculating correlation of each gene to ACE2 
gene expression.

Detection of genes correlated with ACE2. The Pearson correlation of the normalized gene expression 
values for all samples was calculated between the gene ACE2 and each other gene. The method cor.test was 
applied to calculate the p value for the t test for Pearson correlation. The p value was Bonferoni-corrected by divi-

Figure 7.  Scheme of SARS-CoV-2 infection. The coronavirus SARS-CoV-2 docks at the receptor ACE2 on 
the membrane of the human epithelial cell. Transmembrane serine proteases TMPRSSx mediate SARS-CoV-2 
cell entry via ACE2. TMPRSS2 was reported for this in the first SARS-CoV and by previous publication also 
for SARS-CoV-2 but we hypothesize that due to co-expression with ACE2, TMPRSS4 and other members of 
the TMPRSS family may well perform this task. We suggest that inhibitors of TMPRSS4 and other TMPRSS 
family members might have therapeutic potential. Upon entry into the cell, viral RNA is released, replicated and 
packaged again. Replication can be inhibited by interferon and interferon stimulated genes (ISG) what we also 
saw in negatively correlated replication pathways (e.g. DNA replication and homologous recombination). This 
indicates a healthy immune response and may be impaired in persons with a weak immune system due to age 
or disease. The packaged virus is released from the cell and can be attacked by macrophages chemo-attracted by 
CXCL17—or T-cells for which we found evidence for by GO analysis and by associated interleukins IL1 and IL7. 
It is tempting to speculate that the severity of the clinical manifestations such as the acute respiratory failure and 
also failure in other organs depends on the quality of the immune system decreasing with age or diseases such 
as diabetes. The involvement of ACE2 in the renin-angiotensin system as antagonist of ACE in regulating blood 
pressure via Angiotensin II (Ang-II), vasoconstriction, dilation and its protective role against lung injury are 
additional factors which correlate with  age21,50,53.
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sion by the number of genes and additionally adjusted via the Benjamini–Hochberg  method61. Correlated genes 
were filtered with a very restrictive criterion (Bonferoni-adjusted-p < 1E−11)—in order to get human readable 
numbers of genes for heatmap and network generation- and conventional criteria (r > 0.6, Bonferoni-adjuste-
p < 0.05) for positively correlated genes and (r < 0.6, Bonferoni-adjusted-p < 0.05) for negatively correlated genes.

Pathway and gene ontology (GO) analysis. The R package  GOstats62 was employed for over-represen-
tation analysis of positively and negatively correlated genes with the SARS-CoV-2 receptor gene ACE2. KEGG 
pathway annotations which had been downloaded from the KEGG  database27 in March 2018 were used for test-
ing over-representation of the positively and negatively ACE2-correlated genes via the R-builtin hypergeometric 
test.

Dot plots showing the p value of the hypergeometric test, the ratio of significant genes to all genes in the 
pathway and the number of significant genes per pathway were plotted via the package ggplot263.

Protein‑interaction networks. A human protein interaction network was constructed in a similar man-
ner as we described in our previous  publication64. However, here only direct interactors and no further inter-
actors of interactors were extracted from the Biogrid database version 3.4.16165 using the restrictively filtered 
(Bonferoni-adjusted-p < 1E−1) genes significantly correlated or anti-correlated with ACE2 gene expression. The 
network was reduced to the n = 30 nodes with most interactions and was plotted via the R package network66 
showing original genes in green and BioGrid-derived interactors in red.

Data availability
No datasets were generated during the current study. The datasets used for the meta-analysis are available at the 
National Center for Biotechnology Information (NCBI) Gene expression Omnibus (GEO) accessions referred 
to in Table 1.
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Abstract 

Background: SARS-CoV-2, the virus causing the Covid-19 pandemic emerged in December 2019 in 

China and raised fears that it could overwhelm healthcare systems worldwide. In June 2020, all 

African countries registered human infections with SARS-CoV-2. 

The virus is mutating steadily and this is monitored by a well curated database of viral nucleotide 

sequences from samples taken from infected individual thus enabling phylogenetic analysis and 

phenotypic associations. 

Methods: We downloaded from the GISAID database, SARS-CoV-2 sequences established from four 

West African countries Ghana, Gambia, Senegal and Nigeria and then performed phylogenetic 

analysis employing the nextstrain pipeline. Based on mutations found within the sequences we 

calculated and visualized statistics characterizing clades according to the GISAID nomenclature. 

Results: We found country-specific patterns of viral clades: the later Europe-associated G-clades 

predominantly in Senegal and Gambia, and combinations of the earlier (L, S, V) and later clades in 

Ghana and Nigeria. Contrary to our expectations, the later Europe-associated G-clades emerged 

before the earlier clades. Detailed analysis of distinct samples showed that some of the earlier clades 

might have circulated latently and some reflect migration routes via Mali and Tunisia. 
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Conclusions: The distinct patterns of viral clades in the West African countries point at its emergence 

from Europe and China via Asia and Europe.  The observation that the later clades emerged before 

the earlier clades could be simply due to founder effects or due to latent circulation of the earlier 

clades. Only a marginal correlation of the G-clades associated with the D614G mutation could be 

identified with the relatively low case fatality (0.6-3.2).  

 

Key messages 

• Ghana and Nigeria have a combination of earlier (L, V, S) and later Europe-associated G-

clades of SARS-CoV-2, therefore pointing to multiple introductions while in Senegal and 

Gambia Europe-associated G-clades predominate pointing to introductions mainly from 

Europe. 

• Surprisingly, the later G-clades emerged before the earlier clades (L, V, S) 

• Detailed phylogenetic analysis points at latent circulation of earlier clades before the first 

registered cases. 

• Phylogenetic analysis of some cases points at migration routes to Europe via Tunisia, Egypt 

and Mali. 

• A marginal correlation of r=0.28 between the percentage of the D614G mutation defining the 

G-clades and case-fatality can be detected. 

 

Introduction 

The Covid-19 pandemic resulting from the SARS-CoV-2 coronavirus infection which emerged in 

December 2019 in Wuhan, China, spread all over the world and after a delay of a few months also 

appeared on the African continent. Early in June 2020, all African countries registered human 

infections with SARS-CoV-2. Starting with the first sequenced human sample of SARS-CoV-2, several 

mutations of the virus sequence arose which could be grouped into clades allowing associations with 
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regional prevalences. In this study, we focus on samples from West Africa which was the region from 

which the first African SARS-CoV-2 sequences became available. We aimed at analysing phylogenetic 

characteristics possibly giving clues about the distribution between countries and eventually even 

about putative severity changes between specific clades. We use the nomenclature of clades 

suggested by the GISAID initiative and adopted in several publications. Previous studies reported 

potential impact of the D614G amino acid mutation which is induced by the A23403G single 

nucleotide polymorphism (SNP) (1) and associated with the branch of the phylogenetic tree referred 

to as clade G.  

Brufsky hypothesized that the higher number of deaths on the East coast of the United States 

compared to the West coast could be due to the higher prevalence of the D614G mutation on the 

East coast (2). The D614G mutation has been suggested to affect the adherence of the virus to the 

cell membrane and as a consequence results in higher virulence. Supportive evidence  was reported 

in mice (3), (4). Korber et al. hypothesized that the D614 amino acid on the surface of the spike 

protein protomer region S1 of the virus could have a hydrogen bond to the T859 amino acid in the S2 

region residing on the membrane (1). Furthermore, they showed that clade G rapidly starts to 

replace other clades associated with the D614 amino acid in each country entered (1). In mid-March 

2020, the G clade was found almost exclusively in Europe  (5) but soon after spread all over the 

world. Korber et al. see its origin from China or Europe (1). In China, four early samples carried the 

D614G mutation. One sample from January 24th 2020 had only the A23403G (D614G) but not the 

C3037T and C14408T mutations which usually associate with A23403T in clade G. Three samples with 

the D614G were related to the first German sample. In Europe the first German sample from January 

28th carried the A-to-G mutation at nucleotide position 23403 (D614G) mutation and the C-to-T 

mutation at position 3037, but not the mutation at position 14408. The first sample carrying all of the 

above mentioned mutations plus the C241T in the Untranslated Region (UTR) was identified in Italy 

on February 20th  2020 (1). Another interesting feature of the G clades is that the associated C14408T 
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mutation adjacent to the RNA dependent RNA polymerase (RdRp) putatively increases the mutation 

rate as Pachetti et al. report (5). 

Detailed analyses of virus evolution have been performed for some countries, e.g. France (6), New 

York (7) and India (8). For France it could be deduced by the distinction between clade G and the 

earlier phylogenetic branches that the first SARS-CoV-2 did not lead to local transmission while the 

clade G was circulating for a considerable time before the first recorded case which was of clade G 

and had no travel events or traveller contact (6).  

Since the declaration of Covid-19 as pandemic by the WHO on March 11th  2020, fears were 

expressed that it could overwhelm weaker healthcare systems as existing in many African countries. 

Furthermore, hygiene, social distancing and lockdown face many challenges in countries with high 

percentages without clean running water, cramped confines and the dependence on a daily income. 

However, Africa has the advantage of a very young population, e.g. in Sub-Saharan Africa with a 

median age of 19.7 years (9) for which in average milder etiopathologies can be expected. 

Additionally, for the early outbreak a study evaluating air traffic from affected regions in China 

calculated relatively low transmission risks for most African countries except South Africa and 

Ethiopia (10). For later phases, Cabore et al. proposed a model estimating risk of exposure for African 

countries based on a Hidden Markov model which accounts for factors such as gathering, weather, 

distribution and hygiene with the conclusion that with respect to the high calculated infection rates 

effective containment is indispensable (11).  

Here, we analysed SARS-CoV-2 nucleotide sequenes from samples obtained from the West African 

countries of Gambia, Ghana, Nigeria and Senegal in order to identify characteristic mutations and to 

dissect their patterns of distribution. 

Methods 

Sample collection 
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We downloaded SARS-CoV-2 viral sequences for West African samples and reference samples from 

European, North and South American countries and China from the GISAID database of June 2020. 

The samples used in this study are shown in Table 1. 

 

Construction of the phylogenetic tree 

The phylogenetic tree was constructed using a pipeline adapted from the Zika virus pipeline on the 

nextstrain.org web page (12) employing the Augur (12), the MAFFT (13)  and the IQ-tree (14) 

software. Details of steps which were performed: 

First all West African and reference sequences in FASTA format were aligned employing the augur 

command: 

augur align --sequences westafrica.fasta --reference-sequence sars_cov2_referencesequence.gb --

output wa_aligned.fasta --fill-gaps 

 which called MAFFT (13) with the command: 

        mafft --reorder --anysymbol --nomemsave --adjustdirection --thread 1 

wa_aligned.fasta.to_align.fasta 1> wa_aligned.fasta 2> wa_aligned.fasta.log 

Metadata was extracted from the sequences FASTA via the augur command: 

augur parse --sequences wa_aligned.fasta --fields strain accession date --output-sequences 

wa_aligned_parsed.fasta --output-metadata metadata.tsv 

Then a tree was built via the augur command: 

augur tree --alignment wa_aligned_parsed.fasta --output wa_tree_raw.nwk 

Calling the IQ-tree algorithm (14) via this command: 

        iqtree -ninit 2 -n 2 -me 0.05 -nt 1 -s wa_aligned_parsed-delim.fasta -m GTR  > 

wa_aligned_parsed-delim.iqtree.log 
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The tree was refined via the Augur software calling TreeTime (15) for Maximum-Likelihood analysis 

inferring a time resolved phylogeny tree:  

augur refine --tree wa_tree_raw.nwk --alignment wa_aligned_parsed.fasta --metadata metadata.tsv 

--output-tree wa_tree.nwk --output-node-data wa_branch_lengths.json --timetree --coalescent opt --

date-confidence --date-inference marginal --clock-filter-iqd 4 --keep-polytomies 

Here, the command from the Zika pieline was adapted to --keep-polytomies to keep all samples. 

Metadata information was manually supplemented with country and region information and 

associated with the tree via a call to Augur: 

augur traits --tree wa_tree.nwk --metadata metadata_countries.tsv --output wa_traits.json --

columns region country --confidence 

 

Augur was called to infer ancestral states of discrete character again using TreeTime (15) : 

augur ancestral --tree wa_tree.nwk --alignment wa_aligned_parsed.fasta --output-node-data 

wa_nt_muts.json --inference joint 

Amino acid mutations were identified with the augur translate command: 

augur translate --tree wa_tree.nwk --ancestral-sequences wa_nt_muts.json --reference-sequence 

sars_cov2_referencesequence.gb --output wa_aa_muts.json 

Results were exported via the augur command: 

augur export v2 --tree wa_tree.nwk --metadata metadata_countries.tsv --node-data 

wa_branch_lengths.json wa_traits.json wa_nt_muts.json wa_aa_muts.json --colors colors.tsv --lat-

longs lat_longs.tsv --auspice-config auspice_config.json --output wa_cov19.json 

 

Visualization of the phylogenetic tree and annotation with mutations and clades 
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The phylogenetic tree was annotated with crucial mutations using the tool FigTree version 1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/). Branches of the tree corresponding to clades following 

the nomenclature of GISAID were coloured distinctly. 

 

World map chart 

The world map chart was built using the R-package Rworldmap (16). Clade distribution pie charts 

were copied to the distinct country locations. Connections between countries were based on the 

nextstrain Africa analysis and our own auspice analysis. Further connections between countries were 

retrieved from literature on virus introductions into countries or regions. The first patient on the 

West Coast of the United States returned from a journey to Wuhan, China  (17). The first 

introductions in New York came from multiple independent infected individuals mainly from Europe 

(7). The first cases in France and Europe were Chinese travellers from the predominantly affected 

Hubei province who entered the county in mid-January and were tested positive on January 24th  

2020 (18). Patient zero in Germany was a Chinese resident from Wuhan visiting Germany (19). The 

Italian outbreak started with two Chinese travellers who arrived in Milan-Lombardy, went to Rome 

later on and were tested positive on January 31
st
  2020 (20). The first Italian citizen was confirmed for 

Covid-19 on February 21
st
  2020 in Lombardy (20).  In the Netherlands, the first patient diagnosed on 

February 27
th

  2020 had probably infected himself on a trip to Northern Italy between February 18
th

  

and 21
st

  (21). The first cases in the UK returned from travels to the Chinese Hubei province and were 

tested positive for SARS-CoV-2 on January 30
th

  2020 (22). 

 

Results 

Phylogenetic tree and diversity 

The phylogenetic tree shown in Figure 1a displays similarities of West-African virus sequences with 

representative reference sequences from China and multiple European countries. The tree can be 
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divided into two major branches resulting from the A23403G (D614G) mutation. The branch at the 

bottom is directly associated with the first recorded sequences from Wuhan, China and does not 

carry the D614G mutation. The Nigerian samples cluster with these early Chinese samples in the 

bottom branch of the tree. The branch on top is associated with sequences prevalent in Europe as 

demonstrated by reference sequences from Germany, France, Italy, Austria, Netherlands and UK. 

Ghanaian samples are about equally distributed between the top (European) and bottom branch of 

the tree. Senegalese samples cluster close with the French reference sample at the top of the tree.  

The phylogenetic tree can be viewed interactively via the nextstrain.org framework under the URL: 

https://nextstrain.org/community/wwruck/wa 

The split of the tree by the A23403G (D614G) mutation into two major branches corresponds to the 

highest diversity found at that location (Figure 1b). This mutation resides within the spike protein. 

 

Association with clades 

We associated the West-African and reference samples via their characteristic mutations with clades 

according to the GISAID nomenclature. The phylogenetic tree in Figure 2 is coloured by these clades. 

The West-African samples are distributed over all clades suggesting introductions from China and 

European countries. However, each of the investigated countries has a specific pattern: most 

Senegalese samples have close similarity with the French reference, most Nigerian samples cluster in 

early Chinese-based clade S and Ghanaian samples are spread over all clades, the three Gambian 

samples are distributed over clades V, GR and GH. Within the clade S, there are putatively specific 

West-African mutations at the branches at C24370T and G22468T. Ghanaian samples predominate in 

the branch associated with the C24370T mutation. The branch determined by the mutation G22486T 

(Supplementary Figure 1) may reflect migration routes because in the nextstrain analysis of whole 

Africa there are also samples from Mali and Tunisia in this branch 

(https://nextstrain.org/ncov/africa?f_region=Africa, accessed August 14 2020). Two of the non-
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French-related Senegalese samples emanate from the  C24370T and G22468T branches while the 

other (Senegal/136) has strong similarity with Spanish end-February samples from the early clade S 

(Supplementary Figure 2) pointing at multiple introductions to Senegal from France, Spain and 

African countries. 

 

Timeline of clade distribution 

In the temporal course of the clade distribution in Figure 3, the increased share of the Europe-

associated G-clades becomes obvious. The G-clades harbor the putatively more infective D614G 

mutation (1). Surprisingly, the later Europe-associated G-clades (G, GH, GR) emerged before the 

earlier clades L, S and V in West African sequenced samples. This could be due to founder effects by 

introductions from France closely connected to Senegal and displaying a similar clade distribution 

and by migration and travel routes such as in the first registered Nigerian case infected in Italy (23). 

Furthermore, the China-based L-,V- and S-clade samples were obtained in mid-March,  a time point 

within the Wuhan lockdown and when the epidemic in China was nearly totally over. Thus, the virus 

may have circulated in several countries before the first samples were sequenced. Surprisingly, the 

abundance of the S-clade is relatively high mainly due to the contribution from Nigeria and Ghana. 

However, without  the S-clade distribution, the change in abundance resembles the global one with a 

delay of about 2-4 weeks. 

 

Country-specific patterns of clade distribution 

Figure 4 shows that West African countries have acquired distinct patterns of China-and Europe-

based clades. The first row contains the clade distribution charts of the West African countries 

investigated here whilst the second row contains charts of countries with comparable distributions. 

Nigeria has the highest percentage of the China-based early clades (L,S,V). Ghana has nearly equally 

distributed percentages of China and Europe-based clades (G,GH,GR) and in that sense has 
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similarities with the German distribution. Senegal’s clade distribution resembles the one from France 

but includes also a few samples from the early China-based clades. There were only three sequences 

from Gambian, two from Europe-based clades GR and GH and one from China-based clade V. That 

pattern resembles the one from Italy when the clade G is substituted by the G-derived GH clade 

which however does not infer a connection to Italy but instead a similar combination of Chinese and 

European-related clades. Also the UK distribution in the last row has similarity with the Gambian 

distribution but as it includes also Chinese clades it also resembles the one from Ghana. The Dutch 

distribution which is quite similar to the German also resembles the clade distribution from Ghana. 

Last but not least, there are the quite distinct distribution from the US West and East Coast 

(California, CA and New York, NY). The Californian chart has similarity with the Nigerian because of 

the high percentage of Chinese-based clades while the chart from New York has a comparable high 

percentage of clade GH as the ones from France and Senegal. 

 

Geographic distribution 

The world map in Figure 5 reveals the distinct combinations of introduction of China-and Europe-

based clades in West African countries. Nigeria has the highest percentage of the early clades (L,S,V) 

which were based in China but subsequently distributed to Europe and to the  West Coast of USA. 

Ghana possesses nearly equally distributed percentages of the early clades and the Europe-based 

clades (G,GH,GR) comparable to the West Coast of USA. Senegal has a similar clade distribution like 

France and only few samples from the early China-based clades might be more comparable to the US 

East Coast.  

We set out to further explore the above-mentioned surprising observation (Figure 3) that in West 

Africa the early clades emerged after the later Europe-associated G-clades. Possible explanations 

could be (i) latent circulation of the early clades in West Africa or (ii) later introduction of the earlier 

clades. With the aim to find evidence for one of these alternatives, we looked into detail of the 
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phylogeny of samples from the earlier clades. We picked two samples from the early clades: sample 

Senegal/136/2020 comes from a phylogenetic branch predominated by Spanish samples but also 

including samples from Asia and Latin America (suppl. Figure 2), several West African samples  from 

Nigeria (dated March 29th , 2020), Ghana and Senegal in the phylogenetic branch in suppl. Figure 3 

have a long latency time of about 2 months to the estimated common predecessor estimated on  

January 29th , 2020. Thus, there is evidence for a combination of both explanations : SARS-CoV-2 

samples of the early clades may have circulated latently in West Africa since January 2020 but 

additionally there might have been introductions of the early clades from Europe and Asia or via 

maritime trade. 

 

Discussion 

In this phylogenetic analysis of SARS-CoV-2 sequences from the West African countries Gambia, 

Ghana, Nigeria and Senegal we identified country-specific patterns of earlier (L, S, V) and later 

Europe-associated (G,GR, GH) clades. In Senegal and Gambia, the later Europe-associated clades 

were predominant, in Ghana earlier and later clades were more equally distributed and in Nigeria the 

earlier clades were the predominant  samples downloaded from the GISAID database in June 2020. 

This would suggest multiple introductions mainly from Europe into Senegal and Gambia, from Europe 

and directly or indirectly via other Asian or European countries from China then to Ghana and 

Nigeria. The introductions from China to Nigeria and Ghana are in line with a study by Haider et al. in 

which both countries,  but not Senegal and Gambia,  appear in a table of estimations of SARS-CoV-2 

transmission risk from China based on air traffic statistics (10). However, they are at low risk in the 

second quartile - with the fourth quartile having the highest risk. There was a lack of  data for 

Senegal and Gambia therefore hinting  to no or only low-level air traffic connection to China, thus 

suggesting a predominant introduction from Europe.  
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Against our expectations, we found that the later European-associated clades (G, GR, GH) emerged 

before the earlier Chinese-based clades (L, S, V) in the registered cases in the investigated West 

African countries. We propose the following hypothesis as an explanation to this surprising 

observation: the early clades were already circulating within the populations before the later 

European-associated clades were introduced. A higher disease severity of the later European clades 

might then be a possible explanation for their earlier detection. Intriguingly, most of the cases 

investigated in this study occurred within the time interval of the Wuhan lockdown between January 

23rd   and April 8th  2020. Thus, transmission of the early clades must have taken place very early or 

via intermediate countries or other Chinese provinces. Besides the later Europe-associated G-clades, 

the early clades were also circulating in Europe and the US West coast of USA, for example, the 

Senegal sample no. 136 from the early clade S has similarity with Spanish samples (suppl. Figure 2). 

Other explanations for the relatively long latency may be founder effects that by chance individuals 

infected with the later clades travelled to West Africa before individuals infected with the earlier 

clades – or slower means of transportation such as ships commuting between China, America, 

Europe and West Africa. 

Based on previous reports (1), it might probably be that the later G clades will replace the early 

clades in Nigeria and Ghana. The question if that correlates with the severity of the disease still 

needs to be addressed, Brufsky infers it from the higher mortality at the East Coast of USA with 

predominantly D614G-carrying G-clades compared to the West Coast with the predominant early 

clades (2).  Becerra-Flores et al. found  significant correlations between the percentage of D614G and 

case-fatality on a country by country basis (24). However, others find evidence for higher 

transmissibility and also higher viral-load but no evidence for higher disease severity (1), (25), (26). A 

correlation of the mutation D614G associated with the G-clades and case fatality in the West African 

countries can only be identified at a marginal level of r=0.28 (Supplementary Table 1). The case 

fatality is fortunately rather low ranging from 0.6 in Ghana up to 3.2 in Gambia. Other factors such as 

climate, sunlight exposure (27) and associated Vitamin D (28), medical infrastructure and 
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demographics might influence the etiopathology even more. There are also perspectives of 

decreased disease severity as Benedetti et al. argue that SARS-CoV-2 will mutate continuously and 

attenuate naturally to become endemic at a low mortality rate (29), as has been observed with 

earlier viruses (30). 

The limitations of this study are the sample size, possible selection bias of the samples and the 

intrinsic incompleteness of the phylogenetic analysis which may lead to altered results when more 

samples are included. Nonetheless, this is the first study of its kind, the data and concept should 

form the basis for a more extensive analysis due to an increased number of sequenced samples.  

In conclusion, in this phylogenetic analysis of SARS-CoV-2, we found distinct patterns of viral clades: 

the later Europe-associated G-clades are predominant in Senegal and Gambia, and combinations of 

the earlier (L, S, V) and later clades in Ghana and Nigeria. Intriguingly, the later clades emerged 

before the earlier clades which could simply be due to founder effects or due to latent circulation of 

the earlier clades. Only a marginal correlation of the G-clades in the West African countries can be 

associated with mortality which fortunately is at a rather low level therefore disproving fears that the 

pandemic would massively overwhelm the health systems in Africa. The rather young population and 

the climate might be factors favoring this low fatality rate in comparison to Western countries but 

nevertheless a cautious balance between health protection and economics might prevent future 

disastrous outbreaks. 
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region name accession date clade

hCoV-19/Gambia/GC19-029/2020 EPI_ISL_428857 20.04.2020 GH

hCoV-19/Senegal/611/2020 EPI_ISL_420076 20.03.2020 GH

hCoV-19/Senegal/003/2020 EPI_ISL_418206 28.02.2020 GH

hCoV-19/Senegal/016/2020 EPI_ISL_418207 02.03.2020 GH

hCoV-19/Senegal/026/2020 EPI_ISL_418209 03.03.2020 GH

hCoV-19/Senegal/020/2020 EPI_ISL_418208 04.03.2020 GH

hCoV-19/Senegal/382/2020 EPI_ISL_420073 19.03.2020 GH

hCoV-19/Senegal/370/2020 EPI_ISL_420072 18.03.2020 GH

hCoV-19/Nigeria/OY008-CV29/2020 EPI_ISL_455429 27.03.2020 GH

hCoV-19/Nigeria/KW017-CV24/2020 EPI_ISL_455362 10.04.2020 GH

hCoV-19/Ghana/2333_S5/2020 EPI_ISL_422394 27.03.2020 GH

hCoV-19/Ghana/2986_S10/2020 EPI_ISL_422401 31.03.2020 GH

hCoV-19/Ghana/1622_S2/2020 EPI_ISL_422384 24.03.2020 GH

hCoV-19/Nigeria/OS060-CV9/2020 EPI_ISL_455419 29.03.2020 GH

hCoV-19/Senegal/610/2020 EPI_ISL_420075 20.03.2020 GH

hCoV-19/Senegal/328/2020 EPI_ISL_420071 17.03.2020 GH

hCoV-19/Senegal/640/2020 EPI_ISL_420079 20.03.2020 GH

hCoV-19/Gambia/GC19-015/2020 EPI_ISL_428855 17.03.2020 GR

hCoV-19/Ghana/2914_S8/2020 EPI_ISL_422399 30.03.2020 GR

hCoV-19/Nigeria/NG57752/2020 EPI_ISL_462992 2020-03 GR

hCoV-19/Ghana/1565_S13/2020 EPI_ISL_422404 24.03.2020 GR

hCoV-19/Nigeria/Lagos01/2020 EPI_ISL_413550 27.02.2020 GR

hCoV-19/Senegal/315/2020 EPI_ISL_420070 17.03.2020 G

hCoV-19/Senegal/600/2020 EPI_ISL_420074 20.03.2020 G

hCoV-19/Senegal/073/2020 EPI_ISL_418210 10.03.2020 G

hCoV-19/Senegal/082/2020 EPI_ISL_418211 11.03.2020 G

hCoV-19/Senegal/087/2020 EPI_ISL_418212 11.03.2020 G

hCoV-19/Senegal/094/2020 EPI_ISL_418213 12.03.2020 G

hCoV-19/Senegal/119/2020 EPI_ISL_418215 12.03.2020 G

hCoV-19/Ghana/2853_S7/2020 EPI_ISL_422398 29.03.2020 G

hCoV-19/Senegal/139/2020 EPI_ISL_418217 13.03.2020 G

hCoV-19/Ghana/2944_S9/2020 EPI_ISL_422400 30.03.2020 G

hCoV-19/Ghana/1659_S14/2020 EPI_ISL_422405 25.03.2020 G

hCoV-19/Senegal/102/2020 EPI_ISL_418214 12.03.2020 G

hCoV-19/Senegal/618/2020 EPI_ISL_420077 20.03.2020 S

hCoV-19/Senegal/136/2020 EPI_ISL_418216 13.03.2020 S

hCoV-19/Senegal/620/2020 EPI_ISL_420078 20.03.2020 S

hCoV-19/Ghana/1651_S3/2020 EPI_ISL_422387 25.03.2020 S

hCoV-19/Ghana/2850_S15/2020 EPI_ISL_422406 29.03.2020 S

hCoV-19/Ghana/2828_S6/2020 EPI_ISL_422397 29.03.2020 S

hCoV-19/Ghana/3177_S12/2020 EPI_ISL_422403 30.03.2020 S

hCoV-19/Ghana/3176_S11/2020 EPI_ISL_422402 30.03.2020 S

hCoV-19/Nigeria/OS030-CV5/2020 EPI_ISL_455415 29.03.2020 S

hCoV-19/Nigeria/OS085-CV14/2020 EPI_ISL_455424 29.03.2020 S

hCoV-19/Nigeria/OS055-CV8/2020 EPI_ISL_455418 29.03.2020 S

hCoV-19/Nigeria/OS070-CV11/2020 EPI_ISL_455422 29.03.2020 S

hCoV-19/Nigeria/OS075-CV12/2020 EPI_ISL_455423 29.03.2020 S

hCoV-19/Nigeria/OS122-CV18/2020 EPI_ISL_455426 29.03.2020 S

hCoV-19/Nigeria/OS125-CV20/2020 EPI_ISL_455427 29.03.2020 S

hCoV-19/Gambia/GC19-026/2020 EPI_ISL_428856 21.03.2020 V

hCoV-19/Nigeria/OG007-CV22/2020 EPI_ISL_455412 29.03.2020 V

hCoV-19/Nigeria/OY045A-CV35/2020 EPI_ISL_455431 02.04.2020 V

hCoV-19/Nigeria/OS016-CV3/2020 EPI_ISL_455413 27.03.2020 V

hCoV-19/Senegal/306/2020 EPI_ISL_420069 17.03.2020 L

hCoV-19/Ghana/2230_S4/2020 EPI_ISL_422390 25.03.2020 L

hCoV-19/Nigeria/OY035-CV34/2020 EPI_ISL_455430 02.04.2020 L

hCoV-19/Ghana/1513_S1/2020 EPI_ISL_422382 24.03.2020 L

hCoV-19/Nigeria/OS029-CV4/2020 EPI_ISL_455414 29.03.2020 L

hCoV-19/Nigeria/OS116-CV17/2020 EPI_ISL_455425 29.03.2020 L

hCoV-19/Nigeria/NG02/2020 EPI_ISL_450507 09.04.2020 L

hCoV-19/France/HF1463/2020 EPI_ISL_429968 21.02.2020 GH

hCoV-19/England/SHEF-BFD27/2020 EPI_ISL_416737 03.03.2020 GR

hCoV-19/Brazil/SPBR-13/2020 EPI_ISL_416035 05.03.2020 GR

hCoV-19/Austria/CeMM0045/2020 EPI_ISL_437932 24.02.2020 GR

hCoV-19/Netherlands/Berlicum_1363564/2020 EPI_ISL_413565 24.02.2020 GR

hCoV-19/Italy/CDG1/2020 EPI_ISL_412973 20.02.2020 G

hCoV-19/Germany/BavPat1/2020 EPI_ISL_406862 28.01.2020 G

hCoV-19/Italy/PV-5314-N/2020 EPI_ISL_451307 21.02.2020 G

hCoV-19/Luxembourg/LNS0000001/2020 EPI_ISL_419562 29.02.2020 G

hCoV-19/DRC/3632/2020 EPI_ISL_447607 23.04.2020 G

hCoV-19/HongKong/HKU-908a/2020 EPI_ISL_434569 27.01.2020 V

hCoV-19/DRC/3632/2020 EPI_ISL_447607 23.04.2020 V

hCoV-19/Wuhan-Hu-1/2019 EPI_ISL_402125 31.12.2019 L

hCoV-19/USA/CA2/2020 EPI_ISL_406036 22.01.2020 L

hCoV-19/Wuhan/WH01/2019 EPI_ISL_406798 26.12.2019 L
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Figure legends 

Fig. 1: Phylogenetic tree revealing similarities of West-African viral sequences with Chinese and 

multiple European countries. (a) Nigerian samples cluster with the early Chinese samples within the 

bottom branch of the tree, Ghanaian samples are about equally distributed between the top 

(European) and bottom branch of the tree. Senegalese samples cluster closer with the French 

reference sample on the top of the tree. (b) Highest diversity is at the A23403G (D614G) mutation 

splitting the tree in the bottom (Chinese) and top (European) branch. This mutation was reported to 

increase infectivity. 

Fig. 2: Phylogenetic tree colored by clades shows distribtution of West-African samples over all 

clades suggesting introductions from China and European countries. Patterns are country.specific, 

e.g. most Senegalese samples have close similarity with the French reference, most Nigerian samples 

cluster in early Chinese-based clade S and Ghanaian samples are spread over all clades. Within the 

clade S, there are putatively specific West-African mutations at the branches at C24370T and 

G22468T. G22486T may reflect migration routes because in the nextstrain analysis of whole Africa 

there are also Tunisian samples in this branch (https://nextstrain.org/ncov/africa?f_region=Africa, 

accessed Jun 26th,  2020). Two of the non-French related Senegalese samples come from these 

branches while the other (Senegal/136) has strong similarity with Spanish-end of February samples 

from the early clade S pointing at multiple introductions to Senegal from France, Spain and African 

countries. 

Fig. 3: Temporal course of clade distribution confirms gaining of share of the Europe-associated G-

clades harboring the putatively more infective D614G mutation. Interestingly the younger Europe-

associated G-clades emerged earlier in West African sequenced samples. This could be due to 

founder effects by introductions from France closely connected to Senegal and displaying a similar 

clade distribution. Furthermore, the China-based L-,V- and S-clade samples start in mid-March a time 

when the epidemic in China was nearly totally suppressed. Thus, the virus may have circulated in 

several countries before the first samples were sequenced. Surprisingly, the abundance of the S-
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clade is relatively high mainly due to Nigeria and Ghana but without that exception the clade 

distribution resembles the global one with a delay of about 2-4 weeks.  

Fig. 4: West African countries display distinct patterns of China-and Europe-based clades. Nigeria 

has the highest percentage of the China-based early clades (L,S,V) and Ghana has nearly equally 

distributed percentages of China and Europe-based clades (G,GH,GR). Senegal has a similar clade 

distribution as France but also a few samples from the early China-based clades. In Gambia there 

were only three sequences, two from Europe-based clades GR and GH and one from China-based 

clade V.  

Fig. 5: Geographic map reveals distinct patterns of introduction of China-and Europe-based clades 

in West African countries. Nigeria with the highest percentage of the China-based early clades (L,S,V) 

and Ghana with nearly equally distributed percentages of China and Europe-based clades (G,GH,GR) 

might be comparable with the US West Coast while Senegal with a similar clade distribution like 

France and few samples from the early China-based clades may be more comparable to the US East 

Coast. It will be interesting to observe if the later G clades replace the early clades in Nigeria and 

Ghana and if that correlates with the severity of the disease as was postulated for the US. 

 

 

 

 

 

Supplementary Material 

Supplementary Table 1: Case fatality and percentage of mutation D614G in West African countries 

Supplementary Table 2: Acknowledgement table of sequence samples from the GISAID database 

Supplementary Figure 1: Detailed phylogenetic analysis of the Senegal/618 and several Nigerian 

samples point at introduction through travel or migration routes via Tunisia, Egypt and Mali. 
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Supplementary Figure 2: Detailed phylogenetic analysis of the Senegal/136 sample suggests 

introduction from Spain. 

Supplementary Figure 3: Detailed phylogenetic analysis of Nigerian, Ghanian and Senegalese 

samples points at long latent circulation of early clades of SARS-CoV-2 in these countries between 

end of January until end of March 2020. 
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BACKGROUND: Alzheimer’s disease (AD) is a complex, irreversible neurodegenerative
disorder. At present there are neither reliable markers to diagnose AD at an early stage
nor therapy. To investigate underlying disease mechanisms, induced pluripotent stem
cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish. RESULTS:
In this study, employing iPS technology, we derived and characterized iPSCs from dermal
fibroblasts of an 82-year-old female patient affected by sporadic AD. The AD-iPSCs were
differentiated into neuronal cells, in order to generate disease-specific protein association
networks modeling the molecular pathology on the transcriptome level of AD, to analyse
the reflection of the disease phenotype in gene expression in AD-iPS neuronal cells, in
particular in the ubiquitin-proteasome system (UPS), and to address expression of typical
AD proteins. We detected the expression of p-tau and GSK3B, a physiological kinase of
tau, in neuronal cells derived from AD-iPSCs. Treatment of neuronal cells differentiated
from AD-iPSCs with an inhibitor of γ-secretase resulted in the down-regulation of p-tau.
Transcriptome analysis of AD-iPS derived neuronal cells revealed significant changes in
the expression of genes associated with AD and with the constitutive as well as the
inducible subunits of the proteasome complex. The neuronal cells expressed numerous
genes associated with sub-regions within the brain thus suggesting the usefulness of our
in-vitro model. Moreover, an AD-related protein interaction network composed of APP
and GSK3B among others could be generated using neuronal cells differentiated from two
AD-iPS cell lines. CONCLUSIONS: Our study demonstrates how an iPSC-based model
system could represent (i) a tool to study the underlying molecular basis of sporadic
AD, (ii) a platform for drug screening and toxicology studies which might unveil novel
therapeutic avenues for this debilitating neuronal disorder.
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Background: Alzheimer’s disease (AD) is a complex, irreversible neurodegenerative disorder. At present there are

neither reliable markers to diagnose AD at an early stage nor therapy. To investigate underlying disease

mechanisms, induced pluripotent stem cells (iPSCs) allow the generation of patient-derived neuronal cells in a dish.

Results: In this study, employing iPS technology, we derived and characterized iPSCs from dermal fibroblasts of an

82-year-old female patient affected by sporadic AD. The AD-iPSCs were differentiated into neuronal cells, in order to

generate disease-specific protein association networks modeling the molecular pathology on the transcriptome

level of AD, to analyse the reflection of the disease phenotype in gene expression in AD-iPS neuronal cells, in

particular in the ubiquitin-proteasome system (UPS), and to address expression of typical AD proteins.

We detected the expression of p-tau and GSK3B, a physiological kinase of tau, in neuronal cells derived from

AD-iPSCs. Treatment of neuronal cells differentiated from AD-iPSCs with an inhibitor of γ-secretase resulted in the

down-regulation of p-tau. Transcriptome analysis of AD-iPS derived neuronal cells revealed significant changes in

the expression of genes associated with AD and with the constitutive as well as the inducible subunits of the proteasome

complex. The neuronal cells expressed numerous genes associated with sub-regions within the brain thus suggesting

the usefulness of our in-vitro model. Moreover, an AD-related protein interaction network composed of APP and GSK3B

among others could be generated using neuronal cells differentiated from two AD-iPS cell lines.

Conclusions: Our study demonstrates how an iPSC-based model system could represent (i) a tool to study the

underlying molecular basis of sporadic AD, (ii) a platform for drug screening and toxicology studies which might

unveil novel therapeutic avenues for this debilitating neuronal disorder.
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Background
Alzheimer’s disease (AD) is characterized by histopatho-

logical changes, designated as senile plaques and fibril-

lary deposits, which ultimately lead to the death of

neuronal cells in particular in the cerebral cortex of the

brain [1,2]. The familial form of AD is rare, affecting less

than five percent of AD patients and has been associated

with mutations of Presenilin 1 (PSEN1), Presenilin 2

(PSEN2) and Amyloid Precursor Protein (APP) [3,4].

These mutations result in incorrect cleavage of the

protein, producing a deposited protein of amyloid-β

(Aβ) that is more likely to form plaques [1,5]. Little is

known about the molecular basis of multifactorial

sporadic AD. In post-mortem examination of patients

with AD, massive accumulation of two types of amyl-

oid fibril senile plaques (Aβ40, Aβ42) and hyperpho-

sphorylated tau forming paired helical filaments could

be detected [6,7]. Both types of amyloid fibrils are

mainly created enzymatically by β- and γ-secretase ac-

tivity from the APP [8].

The most widely accepted theory for the onset of spor-

adic AD is the accumulation of extracellular Aβ42 in an

aggregated state in the brain, subsequently leading to the

formation of neurofibrillary tangles (NFT) containing

hyperphosphorylated tau proteins and consequently to

its inactivation, thus leading to inhibition of binding to

the spindle apparatus and hence disrupted axonal trans-

port [9,10]. The major modification of tau is its phos-

phorylation. Its hyperphosphorylation has been shown

to be the critical step in the formation of NFTs [11,12].

One of the kinases that phosphorylates tau in-vivo is

glycogen synthase kinase-3β (GSK3B), which is widely

expressed in all tissues with elevated expression in devel-

oping brains [13]. Unlike many other kinases, GSK3B is

believed to be permanently active in resting cells and in

neurons without extracellular stimulation and can be

inactivated by Ser9 phosphorylation [14].

Moreover, the ubiquitin-proteasome system (UPS)

has been shown to be involved in the pathogenesis of

AD [15-18].

The UPS consists of the 26S proteasome and the small

protein ubiquitin, a post-translational modification, and

is operative in all eukaryotes for intracellular protein

homeostasis and quality [19,20]. The alternative form of

the constitutive proteasome is the immunoproteasome

complex [21]. It was demonstrated in in-vitro experi-

ments that the accumulation of Aβ peptide in APP/

PSEN1 mutant neuronal cell culture leads to the inhib-

ition of the proteasome as well as the de-ubiquitinating

enzymes (DUBs) [15]. Despite increasing knowledge on

AD-associated pathology, the molecular mechanisms

underlying the cause of sporadic and familial AD are still

not completely understood. This limitation is primarily

due to limited access and availability of viable neuronal

cells from AD patients because of ethical and practical

reasons. Human induced pluripotent stem (iPSCs) cells

enables the generation of clinically relevant neuronal

cells in-vitro. Patient-derived skin cells are an easily ac-

cessible source for reprogramming and the obtained

neuronal cells can be used to investigate the pathogen-

esis of neuronal disorders, including Parkinson disease

and Alzheimer’s disease [22-26].

In our study, we reprogrammed dermal fibroblasts ob-

tained from an 82-year-old female patient diagnosed with

late-stage AD to iPSCs in one reprogramming experiment.

The two derived iPSC lines showed pluripotency-associated

properties similar to human embryonic stem cells (hESC)

and they could be successfully differentiated into neuronal

cells in-vitro. The differentiated neuronal cells seemed to

reflect the sporadic AD phenotype in the brain of the

patient, including the expression of p-tau proteins, the

up-regulation of GSK3B protein and its phosphorylation

in contrast to the parental dermal fibroblast cells. In

addition, numerous AD-related genes were found to be

down-regulated, as revealed by microarray-based gene ex-

pression analysis of one neuronal differentiation experi-

ment per AD-iPS cell line. Most notably these genes could

be allocated to brain regions affected by Alzheimer’s

disease.

We demonstrated a down-regulation of p-tau proteins

in AD neuronal cells with an inhibitor of γ-secretase. In

addition, neuronal cells differentiated from the patient

iPSCs showed an up-regulation of a number of neuronal

and biological processes, which include development of

the nervous system, neurogenesis, WNT signaling path-

way, the lysosome, glutathion metabolism as well as the

alanine, aspartate and glutamate metabolism. Further-

more, the down-regulation of AD-related genes enabled

us to successfully construct a protein association net-

work using the STRING database reflecting the presence

of AD-related disease mechanisms in our iPSCs model.

Finally, we could show that gene regulation of the con-

stitutive as well as of the inducible subunits of the prote-

asome complex is affected in iPSC-derived neurons from

the AD patient compared to the healthy subject. Further

investigations are needed to better understand the mo-

lecular basis of the onset and progression of Alzheimer’s

disease. Elucidating the molecular mechanism of spor-

adic AD by modeling it via iPSC technology and protein

association networks could provide valuable information

needed to uncover appropriate strategies against the

early onset of the disease.

Results

Generation and characterization of sporadic AD-iPSCs

Dermal fibroblasts were isolated from an 82-year-old

woman diagnosed with final stage AD. The cell line was

named NFH-46, and lack of AD-related mutations, such
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as APP, PSEN1 and PSEN2 [1,5], was confirmed by direct

sequencing analysis (Additional file 1). HLA haplotype

analysis in the AD donor did not reveal any association of

HLA alleles to Morbus Alzheimer. The HLA-alleles HLA-

A*01:01,*03:01; B*08,*35, C*04:01,*07:01, DRB1*03:01,

*11:01 were found in NFH-46. However, the Alzheimer-

related HLA-alleles HLA-A*02, HLA-B*07 and HLA-

C*07:02 could not be detected.

AD-iPSCs were generated by retroviral transduction

using the classical Yamanaka cocktail [27], which in-

cludes the four transcription factors OCT4, KLF4,

SOX2, and c-MYC, as demonstrated previously [28]. In

a single reprogramming experiment several colonies

exhibiting hESC-like morphologies were identified and

manually picked for expansion and characterization. Two

iPSC lines, AD-iPS5 and AD-iPS26B, were successfully

established from this reprogramming experiment and

characterized with respect to pluripotency-associated

properties. Both lines exhibited hESC-like morphologies

(Figure 1), telomerase activity (Additional file 2), alka-

line phosphatase (AP) activity (Additional file 3a), ex-

pression of pluripotency-associated markers NANOG,

SSEA4, TRA-1-60, and TRA-1-81 (Figure 2), expression

of pluripotency-associated genes such as NANOG,

POU5F1, SOX2, LIN28, TDGF1, DPPA4, FGF4, GDF3,

LEFTY1, LEFTY2 (Additional file 4) and the genetic fin-

gerprinting pattern of the parental NFH-46 fibroblasts

(Additional file 3b).

Finally, the transcriptomes of the AD-iPSC lines are

similar to hESCs (H1 and H9) and to iPS lines previ-

ously generated from control NFH-2 fibroblasts [28]

(Additional file 5).

The ability to differentiate into almost all tissue types

as a hallmark of human pluripotent stem cells was analyzed

employing embryoid bodies (EBs) based differentiation in-

vitro and teratoma formation in-vivo. The AD-iPSC lines

were able to differentiate in-vitro into all three embryonic

germ layers, as detected by the expression of marker pro-

teins specific for ectoderm (b-TUBULIN III and NESTIN),

for mesoderm (Smooth Muscle Actin (SMA) and T/

Brachyury), and endoderm (Alpha feto protein (AFP)

and SOX17) (Additional file 6).

Finally, both AD-iPSC lines successfully generated

teratomas (Additional file 7). For AD-iPS5, the presence

of known endoderm-associated structures appeared un-

clear. However, this must not necessarily imply an im-

pairment of this line towards endoderm differentiation

in-vivo, since the teratoma assay itself is not standard-

ized [29]. Moreover, in the in-vitro differentiated cells

from AD-iPS5, SOX17 and AFP, both protein markers

representative of endoderm, could be detected. Thus, we

consider AD-iPS5 to be pluripotent.

Chromosomal analysis of AD-iPS5 revealed the loss of

a gonosome, probably the X chromosome, because dur-

ing mitosis they revealed a normal female karyotype.

This is in agreement with our previous study showing

Figure 1 Generation of human iPSCs from skin fibroblasts of a sporadic Alzheimer patient. (a): Morphology of fibroblasts NFH-46 in

passage 4 (p4) before viral transduction. (b): Changes in morphology of NFH-46 seven days after infection with retroviruses. (c): Changes of

NFH-46 on day 24 after infection shown in circle with arrow. (d): Typical image of non-embryonic stem cell like colony. (e, f): Typical morphology

of AD-iPS colonies (AD-iPS-5, passage 4; AD-iPS-26B, passage 3) of one reprogramming experiment. (g): Typical morphology of AD-iPS colony in

passage 3(p3). (h): AD-iPSC structure in high magnification. Scale bar, 100 μm.
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that iPSC lines generated from old donors are more

likely to contain chromosomal aberrations [28]. In nine

mitoses, a very small supernumerary marker chromosome

(sSMC) was found besides the monosomy X (Additional

file 8). It is unlikely that the presence of a small supernu-

maray maker chromosome has an effect on AD-iPS5 as

sSMCs are a common phenomenon in human. The

karyotypes of the second iPSC line AD-iPS26B and the

parental cells NFH-46 were normal (Additional file 8).

Generation of neuronal cells from AD-iPSCs

(AD-iPS neurons)

We derived neuronal cells from AD-iPSCs in one ex-

periment to address the potential of these to reflect

Figure 2 AD-iPSCs express key pluripotency-associated proteins. Two AD-iPSC lines were successfully generated with one reprogramming

experiment: AD-iPS5 (a) and AD-iPS26B (b). Both lines exhibited hESC-like morphologies, were positive for pluripotency-associated marker

proteins, such as TRA-1-81, TRA-1-60, SSEA4, and NANOG, and were negative for the differentiation-specific marker SSEA1. Scale bar, 100 μm.
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neuropathological features found in neuronal cells of

sporadic AD patients. As a control, neuronal cells were

derived from the female hESC line H9 in one differen-

tiation experiment. The neuronal cells were generated

following a recently published protocol, which requires

the exposure to TGF-β receptor (SB431542) and

MEK1/2 (PD0325901) inhibitors [30]. AD-iPSC lines

(AD-iPS5 and AD-iPS26B) and H9 were successfully

differentiated into neuronal cells. The efficiency of dif-

ferentiation varied, as AD-iPS5 showed more pro-

nounced neuronal differentiation than AD-iPS26B. All

induced neuronal cells were positive for neuronal cell

markers PAX6, NESTIN, and b-TUBULIN III as shown

in Figure 3. Most of the neuronal marker genes in the

heatmap shown in Figure 4a are expressed in a similar

manner in AD-iPSC neurons and H9 neurons, hence

confirming a neuronal differentiation of comparable

quality across all used pluripotent cell lines.

Expression of neuronal marker genes in AD-iPS neurons

and H9 neurons

The heatmap in Figure 4a shows the expression pattern

of pre-synaptic and post-synaptic genes as well as

markers of distinct subtypes of neural progenitors and

mature neuronal cell types in AD-iPS neurons and H9

neurons of one differentiation experiment conducted.

Neuronal markers FABP7, HES5, SOX2, PROM1 and

ASCL1 are expressed in AD-iPS5 and AD-iPS26B neu-

rons, however, FABP7 was not detected in H9 neurons.

GALC, a marker of oligodendrocyte progenitor cells is

expressed in all samples but lower in AD-iPS26B and

H9 neurons. MAP2, a marker of neuronal dendrites is

expressed in AD-iPS5 neurons but not in neuronal cells

of AD-iPS26B and H9. Moreover, markers of retinal gan-

glion cells (POU4F2), dopaminergic neurons (TH) and

glutamatergic neurons (SLC17A6) are expressed in AD-

iPS5 neurons (Figure 4a). In addition, neural genes such

Figure 3 Neuronal differentiation of AD-iPSCs. Induction of neuronal cells by simultaneous treatment with inhibitors of transforming growth

factor (TGF)-β receptor and MEK1/2 for 4 weeks. Neuronal cells derived from AD-iPSCs (a): AD-iPS5 neurons and (b): AD-iPS26B neurons showed

the expression of neuronal markers, including PAX6, NESTIN and -β-TUBULIN III in a similar fashion as neuronal cells derived from the hESC line

(c): H9. The neuronal differentiation was carried out once per AD-iPS cell line or H9 cell line. Scale bar, 100 μm.
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Figure 4 Expression of neuronal marker genes and genes associated with Alzheimer-related brain regions in AD-iPS neurons.

(a) Cluster analysis of neuronal marker genes in AD-iPS neurons and H9 neurons based on Euclidean distance of microarray-based gene expression

values. (b) A number of genes of the heatmap data in (a) were confirmed by real- time PCR analysis. Bars indicate the RNA level normalized to

β-ACTIN first and compared to gene expression of adult brain tissue (non-diseased, male, 21 years; Amsbio). The samples of AD-iPS neurons and

H9 neurons consisted of cRNA generated from RNA isolated from a single well of a single neuronal differentiation respectively. In addition, to our

data we analyzed AD brain RNA (male, 87 years, diagnosed AD; Amsbio). (c) Brain regions associated with genes from the AD KEGG pathway

(but neither in Huntington disease nor in Parkinson disease) down-regulated in AD-iPS5 compared to H9 neurons. (d) Brain regions associated with

genes from the AD KEGG pathway (but neither in Huntington nor in Parkinson disease) down-regulated in AD-iPS26B compared to H9 neurons.
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as NeuN (HRNBP3 or FOX1), GFAP and GAD1, GAD2

(GABA-ergic genes) on the one hand and specific AD-

related neuronal genes such as CALBINDIN1 and 2 (also

known as calretinin) as well as SST (somatostatin or

SRIF) on the other were analyzed. SRIF-positive inter-

neurons are inhibitory neurons which express GAD1

and/or GAD2 as well as CALB2 [31] and are the most

affected subtypes of neurons in AD [32]. To confirm the

array-derived heatmap data we analyzed relative gene

expression by real-time PCR (Figure 4b) using the sam-

ples of the same neuronal differentiation experiment

which were hybridized for transcriptome analysis. By

matching the gene expression to adult brain RNA, again

the H9-derived neuronal cells did not express subtype-

specific neuronal genes. The astrocyte-specific gene

GFAP was barely detected in all neural cells compared

to the mRNA level of the adult and AD brain (Figure 4b).

The neuronal cells from AD-iPS5 and AD-iPS26B were

positive for SYNAPSIN I, vGLUT2 (SLC17A6) and GAD2

and have the same transcript level as the AD brain for

CALB2 and GAD1 (Figure 4b).

Proof-of-principle drug discovery using sporadic AD-iPSC

derived neuronal cells

In addition to gene expression based analysis of

Alzheimer-related genes we evaluated the possible med-

ical relevance of our neuronal cell model in terms of

drug discovery and selection of an appropriate therapy

for sporadic AD. For this purpose, we subjected the in-

duced neuronal cells to treatment with the γ-secretase-

inhibitor Compound E (CE). The experiment was carried

out once. Two distinct concentrations were employed:

low 10 nM and high 100 nM. After one week of treat-

ment, cells were lysed directly and the protein expres-

sion levels of p-tau, tau, p-GSK3B and GSK3B were

investigated isolating samples from one well of one in-

hibitor treatment experiment conducted. Neuronal cells

derived from both AD-iPSC lines (AD-iPS5 and AD-

iPS26B) exhibited the expression of tau and p-tau, which

were undetectable in the parental fibroblasts (NFH-46)

(Figure 5). The results were confirmed using two anti-

bodies, one recognizing only p-tau and the other binding

to both the phosphorylated and non-phosphorylated

forms of tau (Figure 5). Drug treatment did not result in

any reduction of p-tau in AD-iPS5 derived neuronal

cells. On the other hand, we observed a significant re-

duction of p-tau and tau expression in neuronal cells dif-

ferentiated from AD-iPS26B compared to untreated cells

following high doses of CE (Figure 5). The expression of

both p-GSK3B and GSK3B was significantly higher in

neuronal cells compared to parental fibroblasts NFH-46

(Figure 5). However, no evident change in their expres-

sion could be identified following CE treatment. Neur-

onal cells were identified based on the expression of

NESTIN and b-TUBULIN III, however, expression was

also detected in their parental fibroblast cells, thus con-

firming previous observations in fibroblasts [33].

Differential gene expression associated with

Alzheimer-related pathways and biological processes in

AD-iPSC neurons compared to H9 neurons

Using microarray based gene expression analysis we

looked at the changes in the biological processes within

the AD-iPS neuronal cells compared to H9 neurons as

control. The hybridized samples were isolated from one

neuronal differentiation experiment. Processes related to

WNT signaling pathway and the alanine, aspartate and

glutamate metabolism, in the case of AD-iPS5 neurons

as well as the lysosome pathway and glutathion metabol-

ism in the case of AD-iPS26B appeared to be up-

regulated compared to H9 neurons. Pathways related to

Figure 5 Treatment of AD neuronal cells with the γ-secretase-

inhibitor compound E (CE). Western blot analysis was used to

monitor the expression of phosphorylated tau (p-tau), non-

phosphorylated tau, GSK3α/β and phosphorylated GSK3β in AD-iPS5

neurons (INC5) and AD-iPS26B neurons (INC26B). The samples were

derived from one well of a single neuronal differentiation. The parental

fibroblast cells (NFH-46) were included as control in addition to the

positive control (PC) for p-tau represented by lysate from neuroblastoma.

β-ACTIN and GAPDH and coomassie blue staining were used to confirm

similar protein loading across samples.
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Alzheimer’s disease, Huntington’s disease, Parkinson’s dis-

ease and the proteasome were down-regulated in both

AD-iPS neurons compared to H9 neurons (Additional

files 9 and 10). AD-iPS5 and AD-iPS26B neurons showed

up-regulated gene expression for biological processes such

as neuronal fate commitment, neuron maturation, re-

sponse to oxygen radical and/or response to reactive oxy-

gen species (Additional file 9). In contrast to that, the

UPS, apoptosis, and oxidative phosphorylation emerged as

down-regulated biological processes (Additional file 10).

Overall, these data suggest that AD neuronal cells exhibit

alterations in key signaling pathways related to cell death,

anabolism and catabolism in comparison to the healthy

control.

AD-iPSC neurons show a distinct gene expression pattern

of Alzheimer-associated genes of genome wide association

studies compared to H9 neurons

To further analyze the reflection of Alzheimer-specific

gene expression patterns in our iPSC-based model sys-

tem we performed data mining to extract disease rele-

vant gene expression using an Alzheimer gene list

recently published by the European Alzheimer’s Disease

Initiative (EADI) [34]. The cluster analysis in Figure 6

showed that AD-iPS5 neurons and AD-iPS26 neurons

were more similar to each other than to H9 neurons. Ba-

sically there are six gene clusters: (i) a cluster of genes

expressed in all experiments such as APOE and APP, (ii)

a cluster of genes expressed in no experiment such as

CASS4 and CR1, (iii) a cluster of genes expressed in both

AD-iPSC neuron experiments but not in the H9 neuron

experiment such as PTK2B and PICALM, (iv) a single-

ton cluster of HLA-DRB5 not expressed in both AD-iPS

neuron experiments but expressed in the H9 neurons,

(v) a singleton cluster of MEF2C not expressed in AD-

iPS26B experiments but expressed in AD-iPS5 and the

H9 neurons and (vi) a cluster of genes expressed in AD-

iPS26B neurons but not in AD-iPS5 and H9 neurons

containing genes such as SLC24A4 and ABCA7.

AD-iPSC neurons show down-regulation of genes

involved in Alzheimer’s, Huntington’s and Parkinson’s

disease compared to H9 neurons

Analysis of differences in the iPS-derived neurons

when compared to the annotations Alzheimer’s disease,

Parkinson’s disease and Huntington’s disease revealed that

most genes down-regulated in AD-iPS5 vs. H9 neurons

(Figure 7) and AD-iPS26B vs. H9 neurons (Figure 8) were

common to all three neural disorders. Exclusively associ-

ated with Alzheimer’s disease were 16 genes in AD-iPS5

vs. H9 neurons and 10 genes in in AD-iPS26B vs. H9 neu-

rons. These genes were APP, APOE, PSENEN, CDK5,

HSD17B10, TNFRSF1A, PPP3CB, PPP3CC, CHP, GAPDH,

CAPN2, CAPN1, ATP2A2, GSK3B, CALM3 and CALM2

in the experiment AD-iPS5 vs. H9 neurons and APP,

CDK5, HSD17B10, CHP, GAPDH, NAE1, ATP2A2,

GSK3B, CALM3 and CALM2 in the experiment AD-

iPS26B vs. H9 neurons.

Brain allocation of Alzheimer-specific genes down-regulated

in AD-iPSC neurons compared to H9 neurons

The expression in different brain regions of the Alzheimer-

exclusive genes that were found to be down-regulated in

AD-iPSC neurons of one differentiation experiment were

investigated using the GNF/Atlas organism part. The ex-

pression of the largest set of genes was allocated to pons

with 12% in the case of AD-iPS5 neurons for the genes

APOE, APP, ATP2A2, CALM2, CALM3, CAPN2, CDK5,

GAPDH, GSK3B and PPP3CB (Figure 4c) and 13% in AD-

iPS26B neurons for the genes APP, ATP2A2, CALM2,

CALM3, CDK5, GAPDH and GSK3B (Figure 4d). This

was followed by globus pallidus with 9% in AD-iPS5

neurons for the genes APP, ATP2A2, CALM2, CALM3,

CDK5, GAPDH and PPP3CB and 9% in AD-iPS26B neu-

rons for the genes APP, ATP2A2, CALM2, CALM3,

CDK5 and GAPDH. The percentages for medulla oblon-

gata, prefrontal cortex and amygdala were found to be

5–8% (Figure 4c and d).

An Alzheimer-relevant functional protein association

network can be built using an Alzheimer-specific gene

set down-regulated in AD-iPSC neurons compared to H9

neurons

To further specify the reflected Alzheimer-related pheno-

type in our iPSC-based neuronal disease model we con-

structed protein association networks by means of the

gene expression data generated from one differentiation

experiment. Therefore, protein-interaction networks were

generated using genes annotated with AD pathway that

are down-regulated in AD-iPS5 neurons vs. H9 neurons,

in AD-iPS26B neurons vs. H9 neurons as well as the over-

lap of both datasets. We successfully modeled the associ-

ation of Alzheimer-related proteins within our cellular

system in both AD-iPS neuronal differentiation experi-

ments through the subsequent comparison to non-AD

embryonic stem cell line H9 neuronal cells and further

network construction by applying STRINGv9. The gener-

ated networks in Figures 9, 10 and 11 depict associations

between proteins in a color code. The color of the line be-

tween proteins represents the following evidence categor-

ies: neighborhood in the genome (dark green line), gene

fusion (red line), co-occurrence across genomes (dark blue

line), co-expression (black line), experimental/biochemical

data (purple line), association in curated databases (light blue

line) and co-mentioning in PubMed abstracts/textmining

evidence (light green line).

The protein association networks built from genes

down-regulated in AD-iPS5 vs. H9 neurons in Figure 9
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contains 18 more Alzheimer-related proteins than the

AD-iPS26B vs. H9 neurons network in Figure 10. These

proteins are NDUFB10, NDUFA9, NDUFB8, NDUFB9,

ATP5G1, CAPN2, UQCRQ, NDUFA1, CAPN1, NDUFS7,

SDHB, TNFRSF1A, CASP3, APOE, SDHD, PPP3CB,

PPP3CC and PSENEN (Figure 9). However, the two pro-

teins NDUFA6 and NAE1 are only part of a network built

from the AD-iPS26B vs. H9 neurons dataset (Figure 10).

Interestingly, both interaction networks contain APP and

GSK3Β as well as CDK5 and HSD17B10. In the AD-iPS5

vs. H9 neurons and not in the AD-iPS26B vs. H9 neurons

network APP is depicted to be associated with CASP3 and

APOE by experimental evidence and textmining evidence

Figure 6 Expression of Alzheimer risk genes in AD-iPSC derived

neurons. Cluster analysis of Alzheimer risk genes in experiments

AD-iPS5 neurons, iPS26B neurons and H9 neurons of one neuronal

differentiation experiment each. Up and down-regulated transcripts

are depicted in red and green, respectively. RNA from AD-iPS5

neurons, AD-iPS26B neurons and H9 neurons was hybridized onto

an Illumina human-8 BeadChip version 3. Alzheimer-associated

genes known from genome wide association studies were filtered

from the microarray experiments of AD-iPS5 neurons, AD-iPS26B

neurons and H9 neurons. Illumina detection p-values were mapped

to a binary scale (0 = not expressed if p-value > 0.05, 1 = expressed if

p-value < = 0.05). These values were clustered via the R heatmap2

function using Euclidean distance as distance measure.

Figure 7 Gene expression associated with Alzheimer, Parkinson

and Huntington disease in AD-iPS5 neurons. Venn diagram of

down-regulated genes in the comparison AD-iPS5 vs. H9 neurons in

KEGG pathways Alzheimer disease (AD), Parkinson disease (PD) and

Huntington disease (HD). RNA from AD-iPS5 neurons and H9

neurons of one neuronal differentiation experiment was hybridized

onto an Illumina human-8 BeadChip version 3. Functional annotation

of significantly down-regulated genes from the experiments AD-iPS5

neurons vs. H9 neurons was performed with the DAVID Bioinformatics

Resources 6.7. ips5 vs. H9: numbers of significant genes from KEGG

pathways for ALzheimer, Parkinsons and Huntington.
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as well as with PSENEN, however, only via textmining evi-

dence (Figure 9). In addition, only the AD-iPS26B vs. H9

neurons network depicts the association of APP and

NAE1 through co-expression, database, experimental and

textmining evidence (Figure 10). Furthermore, only in the

AD-iPS5 vs. H9 neurons and not in the AD-iPS26B vs. H9

neurons network functional associations between CASP3

and CDK5, CAPN2, TNFRSF1A, CALM3, APOE and

COX4I1 that are proven by textmining evidence could be

found. TNFRSF1A which is only a part of the network in

Figure 9 is associated with CDK5, CALM3 by textmining

evidence and with CASP3 with additional database evi-

dence. Exclusively in this protein association network

APOE, which plays a major role in Alzheimer pathogen-

esis, is associated with CASP3, CALM3, CALM2 and

GAPDH by textmining evidence whereas CAPN2 is asso-

ciated with CASP3, CALM2 and CALM3 by textminig

evidence. Surprisingly, no associations could be found for

CAPN1 in this network. Additional proteins only part of

the AD-iPS5 vs. H9 neurons network are PPP3CC and

PPP3CB both of which are associated with each other by

co-occurrence, database, experimental and textmining evi-

dence. They are associated with CALM2 and CALM3

with experimental and textmining evidence. PSENEN, a

subunit of the γ-secretase complex, occurs only in this

protein association network and is associated with

UQCRH via textmining and co-expression evidence.

Additional proteins exclusively part of the AD-iPS5 vs.

H9 neurons network are NDUFS7, NDUFA9, NDUFB8,

NDUFB10, NDUFA1, NDUFB9, UQCRQ, ATP5G1,

SDHB and SDHD. These are part of a complex protein

association network-cluster mainly consisting of pro-

teins involved in oxidative phosphorylation (Figure 9).

Interestingly, NDUFA6 is only part of the protein asso-

ciation network based on the genes in the AD-iPS26B

vs. H9 neurons dataset (Figure 10).

The network built from the genes overlapping between

the AD-iPS5 vs. H9 neurons and AD-iPS26B vs. H9 neu-

rons datasets in Figure 11, shows associations with experi-

mental and textmining evidence of APP with HSD17B10,

GAPDH, CDK5, GSK3B and SNCA. In addition, database

evidence to prove the association of APP, SNCA and

GAPDH could be found. Associations with textmining

evidence between CDK5 with CALM2 and CALM3 as

well as between GAPDH and ATP2A, CALM2, CALM3,

SDHA, ATP5B and ATP5J could be found by our method.

Furthermore, the interaction of GAPDH with ATP5B and

ATP5J is associated with co-expression evidence in this

network. GAPDH is associated with CHP via experimental

evidence. Additional Alzheimer-related genes are intercon-

nected to a complex protein association network clus-

ter similar to Figures 9 and 10. consisting of proteins

like NDUFB3, ATP5E, NDUFB5, UQCRC, NDUFB6,

NDUFB7, ATP5B, NDUFAB1, NDUFB2 that are mainly

involved in oxidative phosphorylation or in the electron

transport chain in mitochondria. In our Alzheimer-related

protein association network in Figure 11 we found experi-

mental evidence association between SNCA and NDUFB6

as well as the co-expression evidence interactions of

HSD17B10 with NDUFV2, NDUFB7, UQCRH and

ATP5J. These associations connect Alzheimer-specific

APP, GSK3B, CDK5, CALM2, CALM3 and ATP2A2

with proteins involved in Alzheimer related failure of

the function of mitochondrial processes of the respira-

tory chain of the protein association cluster. A further

association to proteins involved in oxidative phorphor-

ylation are the interactions of GAPDH with ATP5J,

ATP5B and SDHA (Figure 11).

A subset of UPS-related genes is down-regulated in

AD-iPSC neurons compared to H9 neurons

The cluster analysis of UPS-associated genes assembled

both AD-iPS neurons datasets into a cluster separated

from the H9 neurons. Genes were divided into three clus-

ters (i) 36 genes which have lower gene expression values

in both AD-iPS neuron compared to H9 neurons, among

them PSMC1, PSMA5, NEDD8. (ii) 2 genes characterized

by higher expression in both AD-iPS neuron compared to

H9 neurons: PSMD5, PSMB9. (iii) 25 genes the expression

of which varies between the three samples. The last cluster

Figure 8 Gene expression associated with Alzheimer, Parkinson

and Huntington disease in AD-iPS26B neurons. Venn diagram of

down-regulated genes in the comparison AD-iPS26B vs. H9 neurons

in KEGG pathways Alzheimer disease (AD), Parkinson disease (PD)

and Huntington disease (HD). RNA from AD-iPS26B neurons and H9

neurons was hybridized onto an Illumina human-8 BeadChip version

3. Functional annotation of significantly down-regulated genes from

the experiments AD-iPS26B neurons vs. H9 neurons was performed

with the DAVID Bioinformatics Resources 6.7. ips26 vs. H9: numbers

of significant genes from KEGG pathways for ALzheimer, Parkinsons

and Huntington.

Hossini et al. BMC Genomics  (2015) 16:84 Page 10 of 22

200 Publications as contributing author



is subdivided into (i) 5 genes with high expression values

in H9 neurons and AD-iPS5 neurons but not in AD-

iPS26B neurons - PSME2, PSMD8, (ii) 9 genes with high

expression values in H9 neurons and AD-iPS26B neurons

but not in AD-iPS5 neurons - PSMD14, PSMD4, (iii) 5

genes with a low gene expression values in H9 neurons

and AD-iPS26B neurons and a high gene expression in

AD-iPS-5 neurons - PSMD4, SUGT1, (iv) 6 genes with

low gene expression values in H9 neurons and AD-iPS5

neurons and a high gene expression values in AD-26B

neurons - PSME1, PSMB10 (Figure 12).

Discussion

Little is known about the clinical onset and course of

sporadic AD due to the limited insight and access to

brain-derived neuronal cells from patients afflicted with

neurodegenerative diseases. Therefore, it is essential that

we develop new in-vitro-based experimental models that

may reflect affected nerves in the brain. Thus, an early

diagnosis could help in this regard to treat the affected

individuals effectively and to test preventive approaches

of sporadic Alzheimer’s disease treatment. In recent

time, several research groups independently and success-

fully differentiated somatic cells of AD patients directly

or by iPSC-based approaches into neuronal cells, and ex-

amined them with respect to the molecular basis of dis-

ease development [22-26].

The results of these studies lead to valuable insights

regarding understanding of AD molecular disease, given

that these innovative and predictive patient cell models

displayed the AD phenotype [22]. In our current study,

we confirmed that dermal fibroblasts derived from spor-

adic AD patients could be induced to a pluripotent state

(iPSCs) and further differentiated into neuronal cells in

one reprogramming and one neuronal differentiation ex-

periment per derived AD-iPSC clone. The transcrip-

tomes of the derived neuronal cells were characterized

by the expression of neuronal markers such as GALC,

Figure 9 Alzheimer-related protein association network in AD-iPS5 neurons. Protein association network retrieved from STRING v9 using

genes from the Alzheimer disease pathway down-regulated in the AD-iPS5 neurons vs. H9 neurons comparison of one neuronal differentiation

each. The network circles represent proteins. The lines between the circles show the functional association. Co-expression evidence: black,

database evidence: light blue, textmining evidence: yellow, experimental evidence: purple, co-occurrence evidence: blue, neighborhood evidence:

green, fusion evidence: red.
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MAP2, VAMP2, HES5, SOX2, PROM1 and AD-specific

gene expression patterns when compared to control

neuronal cells. We successfully generated an Alzhei-

mer’s disease-related protein association network using

detected AD-related alterations of the transcriptome.

As a control we used neuronal cells generated from the

female embryonic stem cell line H9 in our study. This

is a very clean background, it might be argued that

some of the disease associated effects we see in our

model come from differences between embryonic stem

cells and iPS cells in general or are related to the ad-

vanced age of the AD patient (82-years-old) whose

cells were used in this study. An effect of the age-

related high mutation load in the parental fibroblast

Figure 10 Alzheimer-related protein association network in AD-iPS26B neurons. Protein association network retrieved from STRING v9

using genes from the Alzheimer disease pathway down-regulated in the AD-iPS26B neurons vs. H9 neurons comparison of one neuronal differentiation

each. The network circles represent proteins. The lines between the circles show the functional association. Co-expression evidence: black, database

evidence: light blue, textmining evidence: yellow, experimental evidence: purple, co-occurrence evidence: blue, neighborhood evidence: green, fusion

evidence: red.
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compared to H9 cannot be excluded but could be sig-

nificant since AD is an aged-related disease and as

such one would expect a higher mutation load in pa-

tients. An age-matched control iPS cell line would have

been an alternative to H9 for our study. Many iPSC-

based disease models compare the effect of mutations

in a disease associated gene within the same genetic

background. The parental fibroblasts used for AD-

iPSC generation in this study did not carry any muta-

tions in Alzheimer-related genes which excluded the

possibility to use the same genetic background in our

case. Based on the fact that FABP7 a gene involved in

neuronal development [35] is not expressed in H9 neu-

rons, one could argue that the mixture of neuronal

subtypes found in the neuronal differentiation of H9 is

distinct from the neuronal differentiations of AD

iPSCs. Despite possible differences in neuronal differ-

entiation efficiencies or mixture of neuronal subtypes

we see altered expression of AD-related genes in two

neuronal differentiations of AD patient fibroblast derived

Figure 11 Overlapping Alzheimer-related protein association network of AD-iPS5 neurons and of AD-iPS26B neurons. Protein association

network of genes down-regulated in both AD-iPS5 neurons vs. H9 neurons and in AD-iPS26B neurons vs. H9 neurons comparisons of

one neuronal differentiation. Protein interaction network retrieved from STRING v9 using genes from the Alzheimer disease pathway down-regulated

in AD-iPS5 vs. H9 neurons and in AD-iPS26B vs. H9 neurons experiments. The network circles represent proteins. The lines between the circles show

the functional association. Co-expression evidence: black, database evidence: light blue, textmining evidence: yellow, experimental evidence: purple,

co-occurrence evidence: blue, neighborhood evidence: green, fusion evidence: red.
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iPS cell lines compared to the neuronal differentiation of

H9 used as a control.

At the protein level, the neuronal cells which we de-

rived from sporadic AD-iPSCs in a single neuronal dif-

ferentiation experiment expressed p-tau and GSK3B,

both valid as neuropathological proteins. Analysis of the

brain of sporadic AD patients often shows intracellular

accumulation of hyperphosphorylated tau proteins, an

early event preceding the appearance of NFT in AD [6].

Physiological, GSK3β is a multifunctional protein kinase

that phosphorylates a variety of substrates including the

tau protein, which is associated with neuronal-specific

microtubules. Surprisingly, in our cell model we ob-

served the up-regulation of both isoforms of the GSK3α

and GSK3β protein as well as clear formation of abnor-

mal p-tau (Thr 231) in AD-iPSC derived neuronal cells

in comparison to their parental fibroblast cells, which

expressed minute levels of GSKαβ and no tau.

In a recently published study on neuronal cells derived

from AD-iPSC of familial AD, abnormal p-tau expres-

sion was not detected by western blotting, probably due

to the short time scale in culture [25]. Nevertheless, an-

other study could show increased p-tau in both familial

and one sporadic AD sample, however measured by the

MSD phospho tau kit [22]. In the same study high

amounts of GSK3β were measured in induced neuronal

cells from an AD donor, this is in accordance with the

observation in our AD-iPSC derived neuronal cells.

Global gene expression analysis revealed up-regulation

of AD-related pathways in AD-iPS neurons of one neur-

onal differentiation experiment for each AD-iPS cell line

such as WNT, the lysosome signalling pathway and glu-

tathion metabolism all of which have been shown to be

altered in Alzheimer’s disease [36-38]. Interestingly, we

detected altered expression of genes that are involved in

the alanine, aspartate and glutamate metabolism. A very

recent work showed through meta-analysis of genome-

wide association studies involving 2540 Alzheimer cases

that changes in glutamate metabolism are overrepre-

sented in data from patients with AD [39].

In addition, biological processes involving response to

oxygen radical and response to oxidative stress were

up-regulated in our sporadic AD model. Indeed these

processes are known to be up-regulated in Alzheimer’s

disease [40]. Moreover, biological processes such as

neurogenesis appeared to be up-regulated, underlining

successful neuronal differentiation. The mixture of neur-

onal subtypes generated by our neuronal differentiation

experiments might vary as we did not carry out subtype

specific differentiations.

A cluster analysis of the expression of AD-associated

genes recently published confirmed differential expres-

sion in the generated AD-iPS neurons compared to H9

neurons [34].

Figure 12 UPS-associated gene expression in AD-iPSC neurons.

Cluster analysis based on Pearson correlation of UPS-related genes in

AD-iPS neurons and H9 neurons. Up and down-regulated transcripts

are depicted in red and green, respectively. RNA from AD-iPS5 neurons,

AD-iPS26B neurons and H9 neurons of one well of one neuronal

differentiation each was hybridized onto an Illumina human-8 BeadChip

version 3. Known proteasome-related genes were selected from the

microarray experiments of AD-iPS5 neurons, AD-iPS26B neurons and

H9 neurons. Their Illumina average signal intensities were transformed

to a logarithmic scale (log2) and clustered with the R heatmap2 function

using Pearson correlation as similarity measure.
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Even though 19 of 26 genes of the cluster analysis of

Alzheimer-related genes seemed to be expressed in a

similar manner in H9 neurons compared to AD-iPS

neurons, the transcriptomes of AD-iPS neurons were

more similar to each other than to H9 neurons despite a

possible variation of neuronal subtype mixtures in the

conducted neuronal differentiation experiments. Differ-

ential behavior between both AD-iPS neurons experi-

ments and the H9 neurons experiment points to genes

whose up-regulation (PTK2B, PICALM, IL8) or down-

regulation (HLA-DRB5) may play a major role in devel-

opment of the disease in this patient.

While PTK2B, IL8 and HLA-DRB5 are clearly involved

in Alzheimer pathology [34,41,42], there are controver-

sial studies about the involvement of PICALM in Alzhei-

mers disease [43,44].

The genes EXOC3L2, CLU, CR1 and TNK1 although

associated with AD were not found to be expressed in

AD-iPS neurons. The gene EXOC3L2 has been associ-

ated with late onset Alzheimer disease (LOAD) in

GWAS [45]. However, it could be shown that the associ-

ation is likely to be caused by the close location to APOE

and there was found no more evidence after adjustment

for APOE [46]. Our results showing no expression for

EXOC3L2 in AD-iPS5 and AD-iPS26B neurons are in

line with that finding.

The AD-association with TNK1 which was also not

expressed significantly in our experiments is unclear as

several studies report ambiguous results [47,48].

In contrast to that, differentially expressed genes in

AD-iPS neurons revealed the down-regulation of path-

ways annotated to Alzheimer’s disease, Huntington’s disease

and Parkinson’s disease. The overlap of down-regulated

gene expression related to Alzheimer’s disease, Huntington’s

disease and Parkinson’s disease in our AD-iPS neuronal

cells in Figures 7 and 8 supports the notion of a patho-

logical mechanism common to these three neurodegener-

ative diseases [49].

Sixteen Alzheimer’s disease-specific genes could be

confirmed to be down-regulated in AD-iPS5 (Figure 7)

and 10 genes in AD-iPS26B compared to H9 neurons

(Figure 8). These genes could be allocated to brain re-

gions which are affected by Alzheimer’s disease depicted

in Figure 4b and c. In both AD-iPS neuron experiments

the largest number of Alzheimer-related genes was allo-

cated to pons. Indeed, pons has been reported to have a

smaller volume in patients with familial Alzheimer’s dis-

ease [50]. The second largest gene set was allocated to

the brain region globus pallidus for both AD-iPS neur-

onal cells, a brain region which was reported to be in-

volved in Alzheimers disease [51]. Finally, the medulla

oblongata and amygdala brain regions which show

deregulated gene expression in AD iPS neurons in our

model were reported to be affected in AD [52,53].

We could successfully generate a protein association

network consisting of AD-specific genes down-regulated

in AD-iPS neurons compared to H9 neurons. The net-

works reflects the differences between the two AD-iPS

neurons as there are more Alzheimer risk genes (for ex-

ample, PSEN and APOE) present in the network built

from AD-related genes down-regulated in AD-iPS5 neu-

rons against healthy H9 neurons. Despite these differences

the construction of a STRING-based protein association

network representing the AD phenotype was possible with

our approach for both AD-iPS neuron cell populations.

APP, a protein which plays a central role in the pathology

of Alzheimer’s disease, is part of the protein association

network in both AD-iPS neuron cultures as well as in the

association network built from the overlap of both experi-

ments. Several studies report protein interaction networks

characterizing the molecular disease phenotype in post

mortem brains of sporadic AD patients or patients with

familial Alzheimer disease [54,55]. Despite the usefulness

of these networks for gaining insights into molecular

changes in the final stage of AD, no information can be

drawn about the early molecular pathology of AD with

this approach. Generating iPS from AD patients in the

early stage of the disease would allow modeling disease-

specific changes in the AD-related protein association net-

work over time, which provides valuable information of

the development of new therapy approaches at early

stages. So far, our study is the first demonstration of a pro-

tein interaction network of AD-iPS neurons derived from

skin cells from an 82-year-old sporadic AD patient. Mod-

eling sporadic AD using iPS technology as presented here

enables us to formulate hypotheses to increase our un-

derstanding of AD pathogenetic mechanisms and test

them by monitoring the effect on the protein associ-

ation network.

Next to differential gene expression of AD-specific

genes in AD-iPS derived neurons we detected the down-

reglation of genes in AD-iPS neuronal cells that play a

major role in the UPS. Our data revealed that the major-

ity of the UPS-related genes are down-regulated in AD-

iPS neurons compared to H9 neurons, suggesting that

UPS functionality is lowered in our AD-iPS neurons but

not in healthy H9 neurons. Indeed, UPS deficiency has

been associated with AD pathology [18]. These results

suggest that our Alzeimer model very likely reflects

UPS-related features of AD pathology which are most

probably present in the neuronal cells of the sporadic

AD patients.

Furthermore, the UPS-related gene expression data sug-

gests that both the constitutive and inducible proteasome

play a role in AD pathology. This is reflected in the lower

gene expression of the main constitutive subunits of the

proteasome PSMB5/6/7 in iPS-derived neuronal cells

from the AD patient compared to H9 neurons and the

Hossini et al. BMC Genomics  (2015) 16:84 Page 15 of 22

205



higher gene expression of PSMB9 in both AD-iPS neu-

rons compared to H9 neurons. The genes PSMB8 and

PSMB10, the expression of which is higher than in H9

neurons only in the case of AD-iPS26B neurons are

probably less important in AD-related pathology driven

by the UPS as their expression showed a higher vari-

ation. Indeed, constitutive proteolytic activities have

been reported to be decreased in AD brains, meanwhile

the composition of the proteasome complex is not af-

fected [56]. Interestingly, in contrast to the constitutive

proteolytically-active subunits, the inducible ones have

been reported to be highly expressed in the hippocampus

(HC) of severe diseased AD patients (Braak stage ≥ III)

[57,58].

In addition, we found that the expression of the gene

NEDD8 is down-regulated in AD-iPS neurons compared

to the control. It is known that NEDD8 plays a role in

AD pathology. The APP binding protein-1 (APP-BP1) is

also increased in the AD-affected HC [16]. APP-BP1 as-

sociates with UBA3 resulting in an E1-like activating

enzyme for the process of NEDD8, an ubiquitin-like pro-

tein [16]. However, NEDD8 was additionally found to be

present in high amounts in neurofibrillary tangles (NFTs)

and senile plaques from a patient with AD [59,60], which

would suggest that NEDD8 is up-regulated in AD, which

we do not see in our iPS-based model. Our data suggests

that UPS dysfunction may occur early in AD pathogenesis

eventually leading to cellular protein aggregates later on.

Using our neuronal cell model, we provide a proof of

principle that neuronal cells differentiated from patient

dermal fibroblasts-derived iPS cells offer a valuable tool

for modeling early molecular pathology of AD, screening

and development of appropriate drugs for the treatment

of AD in the future. However, our results suggest that

the different iPSC clones even derived from the same in-

dividual may give rise to different responses which is

reflected in the differences between the two protein as-

sociation networks generated from the gene expression

data of the two different AD-iPS clones differentiated to

neuronal cells in one experiment each. In our study we

generated two sporadic AD-iPSC lines: one (AD-iPS26B)

exhibited complete teratoma formation and normal

karyotype whilst the other cell line (AD-iPS5) showed

karyotype abnormalities and failed to differentiate into

endoderm in-vivo. Due to the fact that the teratoma

assay is not standardized [29] the trend now is towards

a transcriptome-based classification of pluripotency

(PluriTest) rather than the traditional teratoma-based

assay [61]. Interestingly, only AD-iPS26B responded to

the γ-secretase-inhibitor CE treatment in one inhibitor

treatment experiment. This would suggest that the se-

lection of iPSC clones is critical to enable the gener-

ation of results that are clinically relevant. However,

neurons from AD-iPS5 showed a higher number of

AD-related genes that are deregulated compared to

AD-iPS26B neurons as reflected in the different pro-

tein association networks built from these two neuronal

cell differentiation experiments. Therefore, the failure to

respond to CE could be a reflection of this difference in

AD-related gene expression between the two clones. Our

findings, although based on a limited number of AD-

iPSCs, have highlighted the fact that molecular pathology

of sporadic Alzheimer can be modelled in disease-related

protein association networks by means of iPSC technology

and transcriptome analysis. Abnormalities of the karyo-

type in the parental AD-iPS cells should be avoided but as

in our case do not necessarily lead to a distortion of gene

expression-based AD protein association networks with

this approach.

Conclusion

In summary, we have generated patient-specific pluripo-

tent stem cells from skin fibroblasts of an 82-year-old

woman suffering from sporadic AD and induced these

to differentiate into neuronal cells. The patient-derived

cells recapitulated key features of the disease, including

the expression of p-tau, GSK3β, down-regulation of AD-

related genes and altered biological features caused by

differential expression of genes involved in e.g. the UPS

or response to oxidative stress.

The majority of the UPS genes are down-regulated in

AD neurons, thus supporting the idea that dysfunctions

in this system may occur early in AD pathogenesis and

then lead to cellular protein aggregates at later stages of

the disease. Additionally, a few genes were distinctly up-

regulated in neurons derived from the two AD-iPSC

lines. This may suggest that these genes are less important

for AD pathogenesis as their expression varies among dif-

ferent neuronal lines.

In essence, we have successfully generated an Alzheimer-

related protein association network using characteristic

gene expression patterns detected in AD-iPSCs compared

to a healthy control of one neuronal differentiation experi-

ment. Our results lend further support to the fact that

neuronal cells differentiated from iPSCs from sporadic

AD patients in part recapitulate the neuropathological

processes of the disease. We anticipate that iPSC-based

modeling of AD as demonstrated here can be useful for

formulating testable hypotheses that might eventually

enhance our meager knowledge of the molecular basis

of its progression and should eventually lead to the de-

velopment of new drugs to prevent or treat this disease.

Methods

Ethics statement

Full-thickness skin biopsy was resected from the forearm

of the patient undergoing surgery. The Charité University

Medicine Berlin ethics committee specifically approved
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this study. Ethical agreement was preliminarily obtained

from the guardian of the participant including written in-

formed consent.

Cell culture

Adult dermal fibroblasts from an 82-year-old woman

(NFH-46) suffering from late-stage AD under no medica-

tion and with no family history were obtained from 6 mm

full-thickness skin biopsies originating from the sun-

protected forearm inner side. The skin specimens were in-

cubated in dispase solution (2.4 U/ml) overnight at 4°C.

After separation of epidermis, primary dermal fibroblasts

were isolated from dermis by enzymatic digestion and

were expanded within 4 weeks. The dermal fibroblasts

were cultured in DMEM supplemented with 10% fetal calf

serum (FCS), nonessential amino acids, L-glutamine, peni-

cillin/streptomycin and sodium pyruvate (all from Invitro-

gen, Carlsbad, CA). The human embryonic stem cell

(hESC) lines H1 and H9 were purchased from WiCell,

Madison, WI (#WA01 and #WA09, respectively). Control

iPSCs (OiPS3 and OiPS6) have recently been generated

from the skin of an 84-year-old female (NFH-2 fibroblasts)

[62]. hESCs and iPSCs were cultured in hESCs media con-

taining KO-DMEM supplemented with 20% knockout

serum replacement, nonessential amino acids, L-glutamine,

penicillin/streptomycin, sodium pyruvate, 0.1 mM β-

mercaptoethanol (all from Invitrogen) and 8 ng/ml

basic fibroblast growth factor (bFGF) (Preprotech;

Rocky Hill, NJ). Cultures were maintained on mitomy-

cin C-inactivated mouse embryonic fibroblasts (MEFs)

and passaged manually. For experiments feeder layer-free

iPSCs and hESCs were grown on dishes coated with

Matrigel (BD; San Diego, CA) in MEF-conditioned media

(CM). All cultures were kept in a humidified atmosphere

of 5% CO2 at 37°C. Experiments were carried out with

primary fibroblasts at passages 3–6 and AD-iPS cells at

passages 8–18.

Retroviral transduction into fibroblasts and derivation of

iPSCs

NFH46-derived iPSCs (AD-iPS5 and AD-iPS26B) were

obtained using the Yamanaka retroviral cocktail [27] in

one reprogramming experiment. Briefly, pMX vector-

based OCT4, KLF4, SOX2 and c-MYC retroviruses were

generated using 293 T cells, according to the conventional

CaCl2 transfection protocol. 200,000 fibroblasts were used

as input for reprogramming experiments and seeded into

six wells of a six well plate. Four weeks after transduction,

hESC-like colonies were manually picked and expanded

for characterization as previously described [27,28].

DNA fingerprinting analysis

In order to confirm somatic origin and to exclude cross

reaction with hESCs, DNA fingerprinting analysis was

performed as previously described [28]. 100 ng of gen-

omic DNA isolated from one well per AD-iPS cell line

were used for PCR amplification, following this program:

94°C for 1 min, 55°C for 1 min, 72°C for 1 min, for 40 cy-

cles, using Dyad thermal cycler (BioRad, Hercules, CA).

PCR products were resolved in 2.8% agarose gels to

examine the differential amplicon mobility for each pri-

mer set: D7S796, repeat (GATA)n, average heterozygos-

ity = 0.95. The primer sequences are listed in Additional

file 11.

Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction based

gene expression analysis of pluripotency-associated and

neural genes was carried out using the ABI PRISM SDS

2.1 software (Applied Biosystems, Foster City, CA) and

Microsoft Excel [63]. The primer sequences are listed in

Additional file 11. The data are presented as relative

gene expression based on the ΔΔCt calculation over

NFH-46 (Additional file 4) or adult brain tissue (Figure 4)

with respect to standard error of mean (SEM). The real

time PCR analysis was performed using triplicates for

each repetition (n = 3). Real time PCR to confirm pluri-

potency gene expression was performed on 3 independ-

ent wells of AD-iPS5 and AD-iPS26B respectively. Each

iPS line was split from one well into the three wells, and

expanded, prior to RNA isolation. The RNA samples

were not pooled. The real time PCR confirming the ex-

pression of neuronal markers was performed using

cRNA derived from RNA of one neuronal differentiation

of a single well of AD-iPS 5, AD-iPS 26B and H9

respectively.

Confirmation of functional pluripotency in-vitro

For in-vitro differentiation, embryoid bodies (EBs) were

generated from AD-iPSCs in one differentiation experi-

ment each by cell harvesting and seeding onto low-

attachment dishes in DMEM supplemented with 10%

FCS, nonessential amino acids, L-glutamine, penicillin/

streptomycin and sodium pyruvate (all from Invitrogen)

without bFGF supplementation. One week later, EBs

were plated onto gelatin-coated tissue culture dishes,

grown for additional ten days, and analyzed by

immunofluorescence-based detection of the expression

of germ layer-specific proteins.

Confirmation of functional pluripotency in vivo

In-vivo teratoma assays were performed by EPO-Berlin

GmbH, Berlin-Buch, Germany. AD-iPSCs were collected

by trypsinization, washed and injected s.c. into NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ mice, commonly known as

NOD scid gamma (NSG). Histological analysis was per-

formed at the Institute for Animal Pathology, Berlin,

Germany.
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Neuronal differentiation

Pluripotent stem cells (iPSCs and hESCs) were mechanic-

ally dissociated and grown in MEF-conditioned medium

(CM) on matrigel-coated dishes for 72 h. Induction of

neuronal cells was performed by adding 10 μM SB431542

(SB, TGFβ receptor inhibitor) and 1 μM PD0325901 (PD,

MEK1/2 inhibitor) (both from Sigma-Aldrich, Deisenho-

fen, Germany) in the absence of bFGF [30]. The cells were

grown for additional four weeks under daily medium

change. The obtained neuronal cells were fixed for im-

munostaining or used for drug treatment. The neuronal

differentiation and subsequent inhibitor treatment were

carried out once per AD-iPS cell line and for the control

H9.

Alkaline phosphatase analysis and immunofluorescence

staining

Alkaline phosphatase (AP) activity was visualized by the

commercial AP staining kit (Millipore #SCR004; Schwalbach,

Germany) according to the manufacturer’s instructions. In

order to characterize pluripotency of all AD-iPSC col-

onies, the cells were fixed in phosphate-buffered saline

(PBS) containing 4% paraformaldehyde (Science; Munich,

Germany) for 20 min at room temperature, subsequently

washed twice with PBS without Ca2+ and Mg2+, blocked

with 10% FCS serum (Vector; Loerrach, Germany) and

0.1% Triton X-100 (Sigma-Aldrich, Germany) in PBS and

proceeded to immunocytochemistry with primary anti-

bodies against OCT4, SOX-2, KLF-4, SSEA1, SSEA4, TRA-

1-60 and TRA-1-81 from the hESC characterization kit

(all 1:100, Millipore #SCR004), NANOG (1:100, Abcam

#ab62734, Cambridge, UK), Smooth-Muscle-Actin (SMA)

(1:100, Dako #M0851, Hamburg, Germany), Alpha-

Fetoprotein (AFP) (1:100, Sigma-Aldrich #WH0000174M1),

SOX17 (1:50, R&D #AF1924, Minneapolis, MN), PAX6

(1:300, Covance #PRB-278P, Münster, Germany), Nestin

(1:200, Chemicon #MAB5326, Nürnberg, Germany), b-

Tubulin III (1:1000, Sigma-Aldrich #T8660), Brachyury

(T) (1:50, R&D #AF2085). Alexa-488-conjugated second-

ary antibodies were used (1:300, Invitrogen #A11001).

Nuclei were counter-stained with DAPI (200 ng/ml,

Invitrogen #H357) and visualized using the confocal

microscope LSM510 (Carl Zeiss, Jena, Germany).

Western blot

Human AD-iPSCs and their corresponding fibroblast

cells were detached from cell culture dishes by incuba-

tion with AccutaseTM (Millipore). For protein extrac-

tion, cells were harvested 48 h after compound-E

treatment and lysed in RIPA-buffer supplemented with

complete protease and phosphatase inhibitors cocktail

(Roche, Penzberg, Germany). The protein extracts were

derived from one well of a six well plate of a single neur-

onal differentiation. Extracts were homogenized and

centrifuged at 10000 × g for 10 min. SDS–polyacrylamide

gel electrophoresis (PAGE) and Western blot analysis of

total proteins were performed [64]. Western blots were in-

cubated with anti-tau monoclonal antibody (1:1000, Cell

Signaling #4019; Frankfurt, Germany), anti p-tau (1:200,

Santa Cruz #sc-32276; Heidelberg, Germany), anti

GSK3A/B (1:1000, Cell Signaling #5676), anti-p-GSK3B

(1:1000, Cell Signaling #5558), anti-b-Tubulin-III (1:1000,

Sigma Aldrich #T8660) anti-Nestin (1:200, Chemicon

#MAB5326), anti-Actin, anti-GAPDH (1:1000, Cell Signal-

ing #5142). Neuroblastoma cell lysates were used as posi-

tive control for p-tau detection (Santa Cruz #SC-2410).

Following incubation with a peroxidase-labelled anti-

rabbit and anti-mouse secondary antibody (1:5000, Dako,

#p0448, #p0447), antigen–antibody complexes were

detected by ECL Western blotting detection reagents

(Peqlab; Erlangen, Germany) for 1 min and exposed to

imaging with the Fusion-FX7 imaging system (Peqlab).

Global gene expression analysis

Total RNA isolated from one well of one reprogramming

or neuronal differentiation experiment was quality-checked

by Nanodrop analysis (Nanodrop; Wilmington, DE, USA)

and 500 ng were used as input. Biotin-labeled cRNA was

produced using a linear amplification kit (Ambion; Austin,

TX, USA). Hybridizations, washing, Cy3-streptavidin

staining and scanning were performed on the Illumina

BeadStation 500 platform (Illumina; San Diego, CA,

USA) according to the manufacturer’s instruction.

cRNA samples were hybridized onto Illumina human-8

BeadChips version 3. The following samples were hy-

bridized in duplicate: H9, NFH-46, NFH-2, AD-iPS5,

AD-iPS26B, AD-iPS5 neurons, iPS26B neurons and H9

neurons. All basic expression data analysis was carried

out using the BeadStudio software 3.0. Raw data were

background-subtracted and normalized using the “rank

invariant” algorithm and then filtered for significant ex-

pression based on negative control beads. Gene expres-

sion results were deposited in the Gene Expression

Omnibus (GEO) repositary website http://www.ncbi.

nlm.nih.gov/geo/; GEO data access number: GSE42492.

Cluster analysis of expression of Alzheimer-associated

genes

Genes associated with Alzheimer in a published genome-

wide association study (GWAS) [34] and known neuronal

marker genes were filtered from the microarray experi-

ments of AD-iPS5 neurons, AD-iPS26 neurons and H9

neurons from one neuronal differentiation experiment

each. Illumina detection p-values were mapped to a binary

scale (0 = not expressed if p-value > 0.05, 1 = expressed

if p-value < = 0.05). These values were clustered via the

R heatmap2 function using Euclidean distance as distance

measure.
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Differences and commonalities between neural disorders

Alzheimer disease, Huntington disease and Parkinson

disease

Functional annotation of significantly regulated genes

from the experiments AD-iPS5 neurons vs. H9 neurons

and AD-iPS26 neurons vs. H9 neurons from one neur-

onal differentiation was performed with the DAVID tool

[65,66]. We focused the analysis on Alzheimer disease-

related KEGG pathways Alzheimer disease, Huntington

disease and Parkinson disease. Only down-regulated

genes (compared to the reference of H9 neurons) were

significantly enriched in these pathways and were there-

fore intersected via Venn diagrams to find overlaps and

differences in the iPS cells concerning these neural dis-

orders. All disjunct sets from this analysis are comprised

in an excel table.

Analysis of brain regions associated with regulated

genes

Association of genes with tissues was downloaded from

the Ensembl/Biomart Human genes 75 (GRCh37.p13)

GNF/Atlas organism part annotation data set accounting

for gene expression in organism parts. Only brain re-

gions were used for follow-up processing. These brain

regions were mapped to genes significantly down-regulated

in the AD-iPS neuron experiments which were carried out

once per AD-iPS cell line and were in the KEGG Alzheimer

disease pathway but neither in Huntington disease nor in

Parkinson disease pathways.

Cluster analysis of proteasome-specific genes

Genes associated with the proteasome in the literature

and in the gene definition annotation were selected from

the microarray experiments of AD-iPS5 neurons, AD-

iPS26B neurons and H9 neurons from one neuronal

differentiation each. Their Illumina average signal inten-

sities were transformed to a logarithmic scale (log2) and

clustered with the R heatmap2 function using Pearson

correlation as similarity measure.

Building of protein association networks

Differentially expressed genes were filtered from the

microarray data by comparing the signal intensities of

AD-iPS neurons and H9 neurons from one neuronal dif-

ferentiation experiment each. Genes with signal intensity

ratios below 0.8 were considered as down-regulated. The

list of official symbols of these genes was used as input

for gene annotation analysis using DAVID Bioinformat-

ics Resources 6.7 [64,65]. Subsequently, a gene list with

the KEGG annotation Alzheimers disease was used as

input for building of the protein association networks

using STRING v9.1 [67,68].

Sequence analysis

In this study, we performed a systematic analysis of the

entire coding region including flanking intron sequences

of the genes APP, PSEN1 and PSEN2 by direct sequen-

cing. The target fragments were amplified by polymerase

chain reaction (PCR) using intronic primers designed

from genomic sequence with the Primer 3 software. PCR

products were purified by Exo/SAP digestion (Exonuclease

I; New England; Beverly, MA; shrimp alkaline phosphatase;

Promega, San Diego, CA, USA) and directly sequenced

using ABI-PRISM BigDye® Terminator v1.1 Cycle

Sequencing Kit (Applied Biosystems) and the ABI-PRISM

3730 DNA Analyzer, as described by the manufacturer.

Sequences were analyzed using Mutation Surveyor soft-

ware v3.24 (SoftGenetics LLC, State College, PA). The pri-

mer sequences are listed in Additional file 12.

Measurement of telomerase activity

The enzyme activity of telomerase was determined using

the TraPEZE RT Telomerase Detection Kit (Millipore

#S7710) [61].

Karyotype analysis

For detection of possible karyotype abnormalities in two

AD-iPS cell lines, chromosomal analysis after GTG-

banding was performed at the Human Genetic Center,

Berlin, Germany. For each cell line, 25 metaphases were

counted and 6 (NFH-46), 8 (AD-iPS26B) and 10 (AD-iPS5)

karyograms were analyzed [28].

Inhibition of γ-secretase

In order to test the pharmacological response capabilities of

AD-derived neurons, the same cells were treated with com-

pound E, 2S-2-{[(3,5-difluorophenyl)acetyl]amino}-N-[(3S)-

1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-1,4-benzodiaze-

pin-3-yl]propanamide (γ-secretase-inhibitor; Calbiochem;

Darmstadt, Germany). Two distinct concentrations were

used: low 10 nM and high 100 nM. The inhibitor was

added to the medium every alternate day for four weeks.

The treated neuronal cells were then harvested in RIPA-

buffer for protein analysis. One neuronal differentiation

and subsequent inhibitor treatment was conduted. Protein

was isolated from one well of the respective experiment.

Detection of HLA haplotype

In order to further characterize the NFH-46 cell line and

its immunogenetic association with AD, genomic DNA

was isolated with the FlexiGene DNA kit (Qiagen; Hilden,

Germany). The purified DNA was then applied to geno-

typing of the HLA–A,B,C and DRB1 genes by PCR with

sequence-specific primers (HLA DNA typing kit; Olerup;

Vienna, Austria) and sequence-specific oligonucleotide

hybridization (LABType HD; BmT, Meerbusch, Germany)

according to the manufacturer’s instructions.
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Statistical analysis

Data were analyzed using BeadStudio and Microsoft Excel

and are expressed as mean and standard deviation. Data

comparisons between two groups were performed by two-

tailed unpaired Student’s t test, and P-values ≤ 0.05 in

combination with ratios outside the interval [0.8, 1.25]

were considered statistically significant.

Additional files

Additional file 1: Sequencing analysis of Alzheimer-related genes

APP, PSEN1, PSEN2. Representative example for DNA sequencing of APP

gene exon 16 of patient NFH-46, lack of mutations Lys670Asn and

Met671Leu (a) and for exon 17 lack of mutation Val717Ile (b).

Additional file 2: Telomerase activity in Alzheimer donor-derived

AD-iPS cells. The telomerase activity was low in the somatic fibroblast

cells NFH-46 from which the two AD-iPS lines AD-iPS5 and AD-iPS26B

were derived. Upon induction of pluripotency, the enzyme was reactivated

in both iPS lines. Human embryonic stem cell lines H1 and H9 and the

telomerase positive control cells (TPC) provided by the kit served as positive

controls. The minus telomerase control (MTC, only CHAPS lysis buffer), no

template control (NTC, only water) and heat inactivated cell extracts served

as negative controls. The standard deviation is indicated by error bars.

Additional file 3: Alkaline phosphatase (AP) staining and DNA

fingerprinting of sporadic AD-iPS cell lines. (a): The two iPS cell lines

derived from the sporadic Alzheimer fibroblasts NFH-46 were positive for

the pluripotency-associated alkaline phosphatase (AP) staining. Morphologies

of both AD-iPSCs are shown in low and high magnification. (b): DNA

fingerprinting confirmed the somatic origin of the two AD-iPS cell lines,

AD-iPS5 and AD-iPS26B, and the lack of cross-contamination with hESC

lines H1 and H9. The AD-iPS cell lines were derived in one reprogramming

experiment.

Additional file 4: Pluripotency-associated genes are expressed in

AD-iPS cells in a similar manner as in ESC line H1. Quantitative real-time

PCR to analyze the expression of the most common pluripotency genes in

the two generated AD-iPS lines (AD-iPS5 and AD-iPS26B) and embryonic

stem cell line H1. Bars indicate the RNA level normalized to β-ACTIN first

and compared to gene expression of NFH-46 (plus standard error of mean

SEM; n = 3). Each AD-iPS cell line was split from one well into the three wells

for expansion before the RNA was isolated. The RNA samples were not

pooled. Both AD iPS cell lines were generated in one reprogramming

experiment.

Additional file 5: Microarray-based gene expression profiling of

AD-iPS cells, control iPS cells and related parental fibroblast cells.

(a): AD-iPS cells (AD-iPS5 and AD-iPS26B), both from one well of one

reprogramming experiment, cluster with control iPS cells (OiPS3 and

OiPS6) and with hESCs (H1 and H9), and are far apart from AD fibroblasts

(NFH-46) and control fibroblasts (NFH-2). (b): Table showing all the

Pearson correlation values r2 between all the single samples analyzed.

For color coding, five distinct degrees of correlation are represented: red

for r2 = 1, orange for 1 < r2 < 0.9, yellow for 0.9 < r2 < 0.8, light yellow for

0.8 < r2 < 0.75, and grey for r2 < 0.75.

Additional file 6: In-vitro differentiation of sporadic AD-iPS cell

lines. Both lines (a) AD-iPS5 and (b) AD-iPS26B could be successfully

differentiated into all three embryonic germ layers in-vitro through an

embryoid body (EB) based differentiation approach. Indicated are the

expression of marker proteins specific for ectoderm, mesoderm, and

endoderm. Scale bars, 100 μm.

Additional file 7: Teratoma formation of sporadic AD-iPS cell lines.

The differentiation potential of the two AD-iPS cell lines was tested

in-vivo with the teratoma formation assay. AD-iPS26B successfully gave

rise to teratoma containing derivatives of all three germ layers. For

AD-iPS5 endodermal cells could not be clearly determined.

Additional file 8: Karyotype of sporadic AD-iPSCs. Karyotyping analysis

of the AD-reprogrammed cells was performed. AD-iPS26B exhibited a

normal female karyotype, in a similar fashion to the parental fibroblast cells

NFH-46. AD-iPS5 was found to harbour next to monosomy of the X

chromosome, small supernumerary marker chromosoms (circle).

Additional file 9: Pathways and biological processes significantly

up-regulated in AD-iPSC neuronal cells versus neuronal cells

derived from embryonic stem cells of one neuronal differentiation

experiment each.

Additional file 10: Pathways and biological processes significantly

down-regulated in AD-iPSC neuronal cells versus neuronal cells

derived from embryonic stem cells of one neuronal differentiation

experiment each.

Additional file 11: List of primers used for quantitative real-time

PCR, DNA fingerprinting.

Additional file 12: List of primers used for sequencing of APP,

PSEN1, PSEN2 in sporadic AD-patient derived fibroblasts used to

derive neuronal cells.
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Footprint-free human fetal foreskin 
derived iPSCs: A tool for modeling 
hepatogenesis associated gene 
regulatory networks
Peggy Matz1,2,3, Wasco Wruck2, Beatrix Fauler1, Diran Herebian4, Thorsten Mielke  1 &  

James Adjaye1,2

Induced pluripotent stem cells (iPSCs) are similar to embryonic stem cells and can be generated from 

somatic cells. We have generated episomal plasmid-based and integration-free iPSCs (E-iPSCs) from 
human fetal foreskin fibroblast cells (HFF1). We used an E-iPSC-line to model hepatogenesis in vitro. The 
HLCs were characterized biochemically, i.e. glycogen storage, ICG uptake and release, UREA and bile 
acid production, as well as CYP3A4 activity. Ultra-structure analysis by electron microscopy revealed 
the presence of lipid and glycogen storage, tight junctions and bile canaliculi- all typical features of 
hepatocytes. Furthermore, the transcriptome of undifferentiated E-iPSC, DE, HE and HLCs were 
compared to that of fetal liver and primary human hepatocytes (PHH). K-means clustering identified 
100 clusters which include developmental stage-specific groups of genes, e.g. OCT4 expression at the 
undifferentiated stage, SOX17 marking the DE stage, DLK and HNF6 the HE stage, HNF4α and Albumin 

is specific to HLCs, fetal liver and adult liver (PHH) stage. We use E-iPSCs for modeling gene regulatory 
networks associated with human hepatogenesis and gastrulation in general.

Human embryonic stem cells (hESCs) derived from inner cell mass cells of the blastocyst undergo symmetric 
self-renewal and are pluripotent i.e. can give rise to all cells within the three embryonic germ layers-endoderm, 
ectoderm, mesoderm and also germ cells1. Human Induced pluripotent stem cells (iPSCs) were initially derived 
from dermal fibroblasts by viral transduction mediated over-expression of four embryonic transcription factors 
OCT4, SOX2, KLF4 and c-MYC or OCT4, SOX2, NANOG and LIN282, 3. Human iPSCs share similar properties 
with hESCs, however, the integration of pro-viruses into the host genome of viral-derived iPSC is a risk factor 
for clinical applications in the future4, 5. To overcome these drawbacks, non-viral reprogramming methods have 
been described using non-integrating Sendai viruses, episomal-based plasmid vectors, in vitro-derived mRNA 
and miRNA5–11.

The liver is the largest internal organ and hepatocytes are the main functional cells in the liver. Hepatocytes 
perform a number of complex functions which are essential for life e.g. production of plasma proteins, syn-
thesis of bile acids, the uptake and storage of glucose as well as drug detoxification. The use of primary human 
hepatocytes (PHH) is problematic, first, they cannot be expanded in vitro and second, they are difficult to obtain 
routinely or in sufficient quantities12, 13. Alternatives such as human hepatocarcinoma-derived and transformed, 
permanent cell lines, including HepG2, THLE and HepaRG, have phenotypes significantly diverged from normal 
primary hepatocytes14–16. A potential alternative could be the differentiation of iPSCs to hepatocyte-like cells. 
Hepatocyte-like cells (HLCs) generated from human iPSC have shown great promise as an inexhaustible source 
of cells that mirror the genotype of the donor to satisfy this need. Several groups have already shown how multi-
functional applicable HLCs generated from iPSC can serve as cellular models for drug screening and toxicology 
studies, as a source for disease modeling17–19.
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To date most studies use viral-derived iPSC to generate HLC, however these have drawbacks (e.g. genome 
integration). Additionally, most studies focus on one aspect of the multifunctional application of HLCs-derived 
from iPSCs such as the generation of HLCs from iPSCs, the maturation, modeling liver diseases, drug screening 
and toxicology17–24.

In this study we used an integration-free, episomal-derived induced pluripotent stem cell line (E-iPSC) from 
human neonatal foreskin fibroblast (HFF1)25, 26 to derive and characterize hepatocyte-like cells (HLCs) as well as 
untangle human hepatogenesis-associated gene regulatory networks.

Results
Differentiation of E-iPSCs to hepatocyte-like cells (HLCs). We derived an integration-free, episo-
mal-based induced pluripotent stem cell line (E-iPSC) from human neonatal foreskin fibroblast (HFF1)25 to 
derive HLCs for this study. The derivation of HLCs was based on a slight modification of the protocol described 
by Sullivan et al.18. The differentiation to HLCs consists of three steps (Fig. 1A). First, the cells were differentiated 
towards definitive endoderm (DE) resulting in down-regulated expression of the pluripotent markers OCT4, 
SOX2 and NANOG and activation of DE specific markers such as SOX17. The second step in the protocol resulted 
in the emergence of hepatic endoderm cells (HE) as defined by the expression of hepatoblasts markers such as 
AFP, PROM1 and LGR5 (Fig. 1B,C). Finally, the HE cells were forced into maturation resulting in HLCs express-
ing mature liver markers such as ALB, A1AT, FOXA2, HNF4α TBX3, FAH and TDO2 but still maintaining AFP 

Figure 1. Derivation of hepatocyte-like cells (HLC) from E-iPSCs. (A) First row phase contrast images of the 
differentiation stages, from undifferentiated stage the episomal induced pluripotent stem cells (E-iPSCs) to 
definitive endoderm (DE), then hepatic endoderm (HE) and finally hepatocyte-like cells (HLCs). Second row 
immunofluorescence-based staining of stage specific proteins overlapped with DAPI (staining of nucleus). Scale 
bar: 100 µm Alexa Flour 594 (red). (B) Immunofluorescence-based staining of HLC specific proteins AFP, ALB, 
HNF4α and A1AT. Scale bar: 100 µm Alexa Flour 594 (red). (C) Expression patterns of liver specific marker 
genes during HLC differentiation compared to fetal liver and primary human hepatocytes (PHH) are shown 
by quantitative real-time PCR (qPCR). Three biological replicates in technical triplicates of each sample were 
analyzed. The data were normalized to E-iPSCs. The standard deviation is depicted by the error bars.
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expression (Fig. 1B,C)20, 27–31. Quantitative real-time PCR confirmed the results of the immunofluorescence-based 
detection of protein expression (Fig. 1C).

Functional analyses of E-iPSC derived HLCs. The HLCs bear hallmarks of primary hepatocytes, i.e. 
(i) cobblestone-shaped epithelial cells expressing E-Cadherin (E-CAD), (ii) the ability to store glycogen as con-
firmed by Periodic-Acid-Schiff (PAS) staining (Fig. 2A). (iii) Uptake and release of ICG (data not shown) and 
CDFDA were measured (Fig. 2B). (iv) BSEP was detactable in HLCs by immunofluorescence-based protein stain-
ing (Fig. 2C). (v) Urea secretion was measured in all three stages of the differentiation protocol, as anticipated 
the highest level of production was in HLCs (Fig. 2D). (vi) Bile acids (CA, GCA, GCDCA) were also produced 
by HLCs (Fig. 2E and Supplementary Figure S1D). (vii) CYP3A4 activity was measured (Fig. 2F). Quantitative 
real-time PCR and heatmap-based analysis confirmed the expression of CYP3A4 as well as other members of the 
cytochrome P450 super family of enzymes (Fig. 2G and Supplementary Figure S1A). (viii) Electron microscopy 
revealed the ultra-structure typical of hepatocytes such as bile canaliculi with microvilli, lipid storage and tight 
junctions (Fig. 3A). (ix) Bi-nucleated cells could be shown by bright field microscopy (Fig. 3B). Finally, the effi-
ciency of HLC differentiation was scored by HNF4α expression, as well as a double staining of ALBUMIN and 
HNF4α (Fig. 3C,D).

Hepatogenesis associated transcriptional road map. A cluster dendrogram and accompanying cor-
relation co-efficients demonstrates high similarities between replicates. Furthermore, fetal liver and PHH formed 
a cluster and iPSCs, HE and DE formed a cluster which is then extended by HLCs (Fig. 4A). K-means clustering 
identified 100 clusters which include developmental stage-specific groups of genes, e.g. OCT4 expression at the 
undifferentiated stage, SOX17 marking DE stage, HNF6 at the HE stage, PROX1 at the HLC stage, AFP marking 
the fetal liver stage and ALB marking the mature liver (PHH) stage (Fig. 4B and Supplementary Figure S1B). 
We further identified upstream regulators of genes within the six selected clusters shown in Fig. 4B by tran-
scription factor over-representation analysis via the oPOSSUM data base32. These gene regulatory networks 
associated with these clusters are presented in Supplementary Figure 3. The network for iPSCs (Supplementary 

Figure 2. Functional analysis of hepatocyte-like cells (HLCs) derived from E-iPSCs. (A) E-Cadherin (E-CAD) 
antibody staining marking cell shape (left panel), Glycogen storage (right panel), Periodic Acid-Schiff (PAS) 
assay was used. Glycogen storage is indicated by pink or dark red-purple cytoplasm. (B) Visualization of 5 (and 
6)-Carboxy-2′,7′-dichlorofluorescein diacetate (CDFDA), immunofluorescence image of HLCs direct after 
incubation with CDFDA (left panel), and immunofluorescence image of HLCs six hours later (right panel). (C) 
Immunofluorescence-based protein staining of bile salt export pump (BSEP). (D) Analysis of UREA production 
in E-iPSC-DE (DE), E-iPSC-HE (HE) and E-iPSC-HLCs (HLC). Three biological replicates in technical 
triplicates of each sample were analyzed. The levels of urea are presented as a percentage, considering measured 
levels of urea in mg/dL/24 h. The error bars indicate the standard errors of the mean. (E) Measurement of 
bile acid secretion of E-iPSC-HLCs (HLC). (F) Measurement of CYP3A4 secretion of HLC samples. Three 
biological replicates in technical triplicates were analyzed. The levels of CYP3A4 are presented as relative 
light units per milliliter (R.L.U./ml). The error bars indicate the standard errors of the mean. (G) Quantitative 
real-time PCR (qPCR) analysis of cytochrome P450 family member activity of all stages E-iPSC-DE (DE), 
E-iPSC-HE (HE) and E-iPSC-HLC (HLC) are shown. Three biological replicates in technical triplicates of each 
sample were analyzed. The data were normalized to E-iPSCs. The standard deviation is depicted by the error 
bars.
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Figure S4A) shows the well known regulatory relations between OCT4 (POU5F1), SOX2, NANOG, KLF4. Most 
significant factors from the oPOSSUM analysis were STAT1, MZF1 and KLF4 (Z-Score > 10). In the network for 
DE (Supplementary Figure S4B) SP1, INSM1, MZF1, KLF4, REST are most significant (Z-Score >= 10), in HE 
(Supplementary Figure S4C) LHX3, MIZF, CTCF, in HLC (Supplementary Figure S4D), PLAG1, EWSR1-FLI1, 
IRF2, in fetal liver (Supplementary Figure S4E) TAL1::GATA1, HNF1A, ZFN143, GATA1, HNF1B and in pri-
mary human hepatocytes (Supplementary Figure S4F) HNF1A, CTCF, ZFX, HNF4A, FOXA2, FOXA1, CEBPA.

The microarray data and quantitative real-time PCR confirmed the expression profile of the listed genes. 
KRT17 and CXCR4 marking the definitive endoderm stage (DE), ANXA1, TTR and TBX3 represents the 
hepatocyte-like cell stage (HLC), AFP marking the fetal liver stage and ALB represents the mature liver (PHH) 
stage (Fig. 4C). Figure 4D shows a heatmap of the top 30 most abundantly expressed genes in each differentia-
tion stage (k-means cluster). In order to assign a tissue-type to the HLCs we applied a tissue prediction tool - 
KeyGenes33 (Fig. 4E and Supplementary Table S1), which confirmed HLC (cluster 9) as liver, comparable to fetal 
liver and PHH. Furthermore, venn diagram analysis shows the numbers of significantly differentially expressed 
genes between HLCs, fetal liver and PHHs (Fig. 5A). The HLC-related genes ANXA1, TTR and TBX3 as well as 
the fetal liver-related gene AFP and ALB representing the matured liver stage PHH are located in the intersection 
of all three samples and are included in the 11506 genes (Fig. 5A and Supplementary Table S2). A closer look 
into the exclusive expressed genes in HLCs (1808 genes) uncovered tight junction-specific genes such as CLDN9, 
CLDN18, OCLN, PARD6A and PARD6B (Fig. 5B and Supplementary Table S3). One step further, a venn dia-
gram was generated from HLC vs. fetal liver, HLC vs. PHH and fetal liver vs. PHH (Fig. 5C and Supplementary 
Table S4). DAVID analysis of Hippo signaling related genes from the intersection of HLC vs. PHH and HLC vs. 
fetal liver dedicated the activity of cell-cell contact related pathways, adherent and tight junction pathway. A chart 
of these Hippo pathway related genes underlines the predominant expression of cell-cell contact related genes 
in HLCs (Fig. 5D and Supplementary Table S5). The Hippo pathway, which is responsible for maturation and 
stabilization of the tight junctions in hepatocytes, and ABC transporters, which are accountable for the uptake 
and efflux of e.g. bile acids and metabolites, are over represented in HLC, fetal liver and PHH. Bile acid related 
transporter genes such as NTCP, MRP2, ASBT and MDR2/3 are highly expressed in HLC compared to the DE and 
HE stage (Fig. 5D and Supplementary Figure S1C–E).

A venn diagram of genes which were expressed in DE, HE and HLC shows the relation between the stages of 
the HLC differentiation (Fig. 6A and Supplementary Table S6). DAVID analysis based on these genes uncover 
genes which are related to pathways that define the functionality of the liver such as drug metabolism, metabolism 
of xenobiotics and fatty acid metabolism (Supplementary Figure S2).

Cell fate determination: hepatocytes or cholangiocytes? To date most studies on liver cell fate deci-
sion making have been conducted in mice34, 35. This type of analyses can now be conducted in human using 
iPSCs. To demonstrate this we generated a heatmap consisting of key genes co- or differentially- expressed in 
undifferentiated iPSC, DE, HE and HLCs (Fig. 6B and Supplementary Figure S3 and Supplementary Table S7). 
Progenitor-related genes such as HNF1A and HNF1B are expressed in HE and HLCs whereas PROX1 is expressed 
exclusively in HLCs. Hepatocyte-specific genes such as ALB, AFP, ABCB4 and CYP3A7 are expressed in the HLC 
samples. Additionally, there exist a group of hepatocyte-related genes which are expressed in HLCs and HE, 
e.g. ABCC2, RARB and TRR. WNT3A as a marker for cholangiocytes as well as SOX9 and KRT7 are expressed 
in both HE and HLCs, whereas AQP1 and DLK1 are expressed exclusively in HLCs (Fig. 6A,B). To analyze the 

Figure 3. Ultra structure and maturation. (A) Electron microscopy image of E-iPSC-HLCs. BC = bile 
canaliculi; L = lipid; CCP = clathrin coated pits; M = mitochondrion; RER = rough endoplasmic reticulum; 
N = nucleus; arrow = tight junctions; arrowhead = microvilli. (B) Bright field microscopy of HLCs. Bi-nuleated 
cells are marked by arrow-heads. (C) Immunofluorescence-based staining of HNF4α in end-stage HLCs. 
79.4% (+/−3.7%) of the cells counted positive for HNF4α. Scale bar: 200 µm Alexa Flour 594 (red). (D) 
Immunofluorescence-based double staining of Albumin (ALB) and HNF4α in end-stage HLCs. 91.7% (+/− 
3.9) of HNF4α positive cells were also positive for ALB. Scale bar: 100 µm, Alexa Flour 594 (red) and Alexa 
Flour 488 (green).
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Figure 4. Transcriptional dynamic of hepatocyte-like cells (HLCs) derived from E-iPSCs. (A) A cluster 
dendrogram similarities between replicates and relationship of the samples E-iPSC (iPSC_B1), DE, HE, HLC, 
fetal liver and PHH. (B) K-means cluster 68 contained OCT4 marking undifferentiated stage (iPSC), cluster 
81 (sub-cluster 1) contained SOX17 marking DE stage (DE), cluster 37 (sub-cluster 2) represents HE stage 
(HE), cluster 51 represents HLC stage (HLC), cluster 72 contained AFP marking fetal liver stage (fetal liver) 
and cluster 91 contained liver marker ALB (PHH). (C) Confirmation of microarray data by quantitative real-
time (qPCR). On the left hand the array expression data and on the right hand the qPCR expression data of the 
following genes are shown: KRT17 and CXCR4 marking the definitive endoderm stage (DE), ANXA1, TTR and 
TBX3 represents the hepatocyte-like cell stage (HLC), AFP marking the fetal liver stage and ALB represents 
the mature liver (PHH) stage. Three biological replicates in technical triplicates of each sample were analyzed. 
The data were normalized to E-iPSCs. The standard deviation is depicted by the error bars. (D) Heatmap of the 
top 30 genes from each K-means clusters in Fig. 4B. (E) KeyGenes prediction for k-means Hepatocyte-like-cell 
(HLC) cluster9. Data sets for human liver, brain, intestine, kidney, lung and heart were downloaded from NCBI 
GEO and the KeyGenes tool was employed to generate a training set for these Illumina microarray platform 
data. As the test set genes from the HLC cluster 9 and HLC, fetal liver and primary human hepatocyte samples 
were used.
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relation between these genes for cell fate decision a transcription factor network was created by the use of the 
data base oPOSSUM32 (Supplementary Figure S4). To make it more manageable transcription factors with a 
Z-score >10 (green circles) and downstream regulating transcription of the progenitor genes (red circles) are 
shown (Fig. 6C and Supplementary Figure S5). Myc, HNF1A, SP1, MZF1 5–13, HNF4A, Klf4 were the most 
significant upstream transcription factors (Z-score > 10, p < 1e-15). This demonstrates the dedicated function-
alities of this core regulatory network: HNF1A and HNF4A determine the liver fate by regulating ALB and AFP 
while KLF4 regulates SOX17. Bipotential markers DLK1 and NOTCH3 are both regulated by MYC, Klf4, SP1 
and MZF1 5–13. All cholangiocyte marker genes are regulated by KLF4, SP1 and MZF1. SOX9 is only regulated 
by these three, while ONECUT1, ONECUT2 and SALL4 are regulated by these three and additionally by MYC 
and HNF4A. Furthermore, MYC was the most prominent transcription factor in this network (Z-score of 12.54) 
and regulates PROX1 and the transcription factor HNF1A, which is also regulated by HNF4A, as well as the 
cholangiocyte-related gene WNT3A (Fig. 6C, Supplementary Table S8)28, 36, 37.

Discussion
In this study we used an episomal-derived and integration-free iPSC line to model hepatogenesis in vitro. Yu  
et al.6, 26 showed that iPSCs generated using episomal-based plasmids are free of vector and transgene sequences 
as we have also shown25. A whole-genome sequencing of iPSCs, which were generated by episomal vectors based 
on the EBNA1/OriP episomal replicon, showed (i) lack of integration of the episomal vector DNA in the host 
genome, (ii) loss of the episomal vectors in the iPSCs and (iii) no visible changes in the genomes of the iPSCs26, 38, 39.  
The episomal approach is a reliable method for iPSC derivation40.

Hepatocytes are the main cell type supporting the detoxification function of the liver and as such they are 
already extensively used for toxicology screens. Our episomal-derived, viral- and integration-free iPSC line is able 
to differentiate into hepatocyte-like cells (HLCs) which have similar functional properties as liver-biopsy derived 
primary human hepatocyes (Figs 1, 2, 3 and 4). These cells can be used for (i) toxicology and drug screening, (ii) 
future application in tissue replacement therapies, (iii) modeling human diseases in vitro.

An important pathway for hepatogenesis is the Hippo-signaling pathway which influences liver cell fate and size41, 42.  
This signal transduction pathway is crucial for early embryonic development, embryonic and adult stem cells, cell 
proliferation, differentiation, apoptosis, organ size, specific functions in adult organs and tumorgenesis41, 43–46.  
The Hippo pathway is responsible for maturation and stabilization of the tight junctions in hepatocytes47 and is 
over represented in HLCs, fetal liver and PHH. The existence of tight junctions in E-iPSC-derived HLCs is shown 
by electron microscopy (Figs 3A and 5D). ABC transporters, which are accountable for the uptake and efflux of 
e.g. bile acids, are also over represented in HLCs, fetal liver and PHH (Fig. 4D). Bile acid measurement shows 

Figure 5. Comparative transcriptome profile analyses. (A) Venn diagram of HLCs, fetal liver and PHH. (B) 
GO cellular components of HLC exclusively expressed genes (Fisher extract p < 0.01). (C) Venn diagram of fetal 
liver vs. PHH anova, HLC vs. fetal liver anova and HLC vs. PHH anova. (D) GO cellular components of HIPPO 
pathway genes exclusively expressed genes (Fisher extract p < 0.01) in the intersection of HLC vs. fetal liver 
anova and HLC vs. PHH anova (intersection with 1958 genes).
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the excretion of primary bile acids in HLCs. Primary bile acids are involved in drug metabolism and synthesis 
of cholesterol, steroids and other lipids48. Hepatocytes synthesize primary bile acids which carried out by the gut 
microbiota convert to secondary bile acids by several reactions including dehydroxylation, dehydrogenation and 
epimerization49. A heatmap of bile acid related transporter genes underlines the functionality of the HLCs and 
shows the highest expression of NTCP, MRP2, ASBT and MDR2/3 in the HLC samples (Fig. 4D).

A cluster dendrogram shows the highest similarities between replicates. Furthermore, fetal liver and PHH 
formed a cluster and iPSCs, HE and DE formed a cluster which is then extended by HLCs (Fig. 4A). Differences 
and commonalities between HLCs, fetal liver and PHH are assessed by statistical tests vs. iPSCs and pairwise 
statistical tests of the three experiments vs. each other. Most genes (4953) are in the intersection set common to 
all three experiments. Pairwise intersections fetal liver/PHH have 2823 genes, HLCs/PHH 1699 genes and HLCs/
fetal liver 988 genes (Supplementary Table S9).

To assess the differences between HLCs, fetal liver and PHH an ANOVA followed by pairwise t-tests was per-
formed. Venn diagram shows the numbers of significantly differentially expressed genes in these pairwise t-tests 
after filtering for the most variable genes found in the ANOVA (Fig. 5A).

Transcription factor binding site analysis revealed transcription factors are over-represented in these clusters. 
Top transcription factors by z-score were STAT1, MZF1, KLF4, SP1 and IRF1 for iPSCs, ELF5, FEV, INSM1, 
FOXI1 and STAT1 for DE, LHX3, MIZF, CTCF, NR3C1 and PAX6 for HE, PLAG1, EWSR1-FLI1, IRF2, MEF2A 
and ELF5 for HLCs, TAL1:GATA1, HNF1A, ZNF143, GATA1 and HNF1B for fetal liver, HNF1A, CTCF, HNF4A 
and FOXA2 for PHH (data not shown).

The cluster of iPSCs, definite endoderm (DE) and hepatic endoderm (HE) is successively extended by 
hepatocyte-like cells (HLCs), fetal liver and primary human hepatocytes (PHH). In most cases fetal liver and 
PHH are located in one cluster as well as iPSCs, DE and HE are formed another cluster. HLCs mostly are located 
in between the fetal liver/PHH and the early differentiation stage cluster (Fig. 4A).

Liver specific analysis of genes which are exclusively expressed in HLCs by venn diagram, PaGenBase and 
DAVID uncover the functionality of the HLC derived from E-iPSCs by showing the activity of cell-cell contact 
related pathways as well as liver-specific metabolism pathways such as drug metabolism, metabolism of xenobi-
otics and fatty acid metabolism (Figs 5 and 6 and Supplementary Figure S2).

We demonstrated the feasibility of using iPSCs as in vitro models for studying liver cell fate decision making. 
The heatmap presented in Fig. 6B shows differential expression of key cell fate regulating genes specific to the 
hepatic endoderm and in some cases also in the HLCs. This implies that the HLCs also harbor cell populations 
with bipotential properties similar to hepatoblasts. For example, the hepatic endoderm cells express DLK2 and 

Figure 6. Cell fate decision. (A) Venn diagram of DE, HE and HLC. (B) Heatmap of bipotential progenitor-
associated, hepatocyte-related and cholangiocyte-associated genes. (C) An induced network of transcription 
factors with a Z-score >10 (green, size of circle corresponds to Z-score) and associated genes (red).

220 Publications as contributing author



www.nature.com/scientificreports/

8SCIENTIFIC REPORTS | ͽ: 6294 | DOI:ͷͶ.ͷͶ;/sͺͷͻͿ;-Ͷͷͽ-Ͷͼͻͺͼ-Ϳ

also a set of transcription factors specific to this stage (Onecut1/HNF-6) which are not expressed in HLCs. These 
set of transcription factors are putative candidates for directing biliary epithelial cells/cholangiocytes cell fate. 
However, HLCs express DLK1 and progenitor-related genes such as PROX1 and LGR5 which are not expressed 
in HEs. Genes such as WNT3A, NOTCH3, HNF1A, HNF1B and SOX9 are expressed in both stages (Fig. 6B). Our 
overall findings based on gene expression patterns supports the notion that hepatic endoderm (HE) and HLCs in 
our hepatocyte differentiation protocol are equivalent to the DLK, HNF6 and SOX9-positive bipotential hepato-
blasts present in fetal liver and are common progenitors for hepatocytes and biliary epithelial cells/cholangiocytes 
(Fig. 6B)34, 35.

The Notch signaling, hepatocyte nuclear factor-6 (HNF-6) and PROX1 are amongst factors known to regulate 
lineage commitment in the bipotential hepatoblast progenitor cell population35, 50, 51. It should be possible to 
change the fate of HE cells by manipulating the expression levels of e.g. PROX1, SOX9, and HNF6 or even by using 
small molecules targeting for instance Notch signaling.

Odom et al.52 described a core transcriptional regulatory circle in human hepatocytes consisting of six tran-
scription factors (ONECUT1/HNF-6, FOXA2, HNF1A, HNF4A, CREB1 and USF1). These transcription factors 
bound promoters that are central for liver development and function. For this they used a mixture of human 
hepatocytes from multiple healthy donors to maximize the diversity of gender and age52. Our study shows the 
expression of the transcription factors ONECUT1/HNF-6, FOXA2, HNF1A, HNF4A in human HLCs derived 
from human E-iPSCs. Furthermore, we have demonstrated that amongst other transcription factors, HNF1A and 
HNF4A are involved in orchestrating cell fate decision of bipotential hepatoblast cells to become either hepato-
cytes or biliary epithelial cells/cholangiocytes (Fig. 6C).

The generation of a transcription factor network via the oPOSSUM data base32 uncovered transcription factors 
which are involved in cell fate decisions during hepatogenesis. The most prominent transcription factor in our 
network is MYC -transcription factors which regulates numerous biological processes such as glycolysis, cell pro-
liferation and differentiation53, 54. MYC also regulates the expression of bipotential hepatoblast-related genes (e.g. 
DLK1, PROX1), cholangicyte-related genes (e.g. ONECUT1, WNT3A and SALL4) as well as hepatocyte-related 
genes (e.g. HNF1A). The second prominent transcription factor is HNF4A- a central regulator of hepatocyte dif-
ferentiation and function55 and regulates hepatocyte-related genes (e.g. ALB, AFP), cholangiocyte-related genes 
(e.g. ONECUT1, SALL4) as well as the hepatoblast-related gene PROX1 (Fig. 6C, Supplementary Table S8)28, 36, 37.  
his transcription network underlines the bipotential progenitor-related characteristics of the HE and HLC stage 
in our differentiation procedure. This implies that there are bipotential progenitors within HE and HLC cell 
populations.

K-means clustering identified developmental stage-specific groups of genes, e.g. OCT4 expression at the 
undifferentiated stage, SOX17 marking the DE stage, DLK and HNF6 the HE stage, HNF4A and Albumin is 
specific to HLCs, fetal liver and adult liver (PHH) stage gain an insight into hepatogenesis. Furthermore, gene reg-
ulatory networks generated by oPOSSUM data base uncovered the presence of bipotential progenitor populations 
in both stages in HE and HLC. This analysis should lay the foundation for future efforts to generate long-term 
cultures of cholangiocytes and HLCs.

The bipotential progenitor population in iPSC-derived HLCs and the presence of AFP expression underline 
their fetal status. However, we uncovered human hepatogenesis-associated gene regulatory networks which are 
involved in cell fate decision making during hepatogenesis.

Conclusion
In summary, we have demonstrated the derivation of integration-free E-iPSCs from somatic cells and differ-
entiated these to hepatocyte-like cells (HLCs) capable of storing glycogen, ICG uptake and release, UREA and 
bile acid production, as well as CYP3A4 activity. Ultra-structure analysis by electron microscopy revealed the 
presence of lipid and glycogen storage, tight junctions and bile canaliculi- all typical features of biopsy-derived 
primary hepatocytes. Model organisms such as zebrafish or mouse are used in order to analyze developmental 
processes of hepatogenesis34, 35, 56. HLCs derived from human E-iPSCs can be used to analyze the human hepato-
genesis in details. We uncovered a gene regulatory network which uncovered the presence of bipotential progen-
itor populations in HE and HLC stage. Additionally, MYC was identified as a prominent regulator of bipotential 
hepatoblast-related genes expression.

Methods
Cell Culture and Differentiation. Human neonatal foreskin fibroblasts HFF1 were purchased from ATCC 
(HFF1 #SCRC-1041) and were maintained in Dulbecco’s modified Eagle medium (DMEMTM, Gibco) contain-
ing 10% fetal bovine serum (FBSTM, Invitrogen) and 0.5% penicillin and streptomycin (Invitrogen). Human ES 
and iPS cells were maintained on irradiated mouse embryonic fibroblast (MEF) cells in KnockOutTM DMEM 
(Invitrogen) supplemented with 20% KnockOutTM Serum Replacement (Invitrogen), 0.1 mM non-essential 
amino acids (Invitrogen), 0.1 mM L-glutamine (Invitrogen), 0.1 mM ß-Mercaptoethanol (Sigma), 0.5% penicillin 
and streptomycin and 8ng/ml basic fibroblast growth factor (bFGF, Invitrogen) as described by Wolfrum et al.57. 
The human ESC lines H1 and H9 were purchased from WiCell Research Institute (Madison, WI, USA, www.
wicell.org, #WA01 and #WA09).

All used cells and cell lines were cultured at 37 °C and 5% CO2 in an incubator (INNOVA CO-170 Incubator, 
New Brunswick Scientific) under humidified atmosphere. All treatments and maintenance procedures were car-
ried out using a clean bench type HeraSafe (Haereus Instruments).

For differentiation iPSC into HLC the protocol from Sullivan et al.18 was used. We modified the last step of 
HLC generation. During the last step of differentiation we used 25ng/ml dexamethasone instead of 10 µM hydro-
cortisone 21-hemisuccinate.

221



www.nature.com/scientificreports/

9SCIENTIFIC REPORTS | ͽ: 6294 | DOI:ͷͶ.ͷͶ;/sͺͷͻͿ;-Ͷͷͽ-Ͷͼͻͺͼ-Ϳ

Functional Assays for HLC. PAS staining. Glycogen storage was identified by Periodic Acid-Schiff (PAS) 
Staining System (Sigma-Aldrich). Cells were fixed with 4% paraformaldehyde for 15 min and stained according 
to the manufacturer’s instructions.

Uptake and release. To detect the uptake and release of substances ICG (indocyanine green; Cardiogreen, ICG; 
Sigma) and CDFDA (5 (and 6)-Carboxy-2′,7′-dichlorofluorescein diacetate, CDFDA; Sigma) were used. The cells 
were incubated in culture medium with freshly diluted ICG (1 mg/ml) or CDFDA (1 µM) for 30 min. at 37 °C. The 
cells were washed with PBS, fresh culture medium was added and uptake of dye was documented. The release of 
ICG and CDFDA was examined after 6 h. The results of ICG and PAS assays were examined under an Olympus 
CK2 phase-contrast microscope and representative morphology was recorded at a magnification of ×50 using 
a Canon 300D digital camera. The fluorophore of CDFDA was visualized using a Zeiss, LSM 510 Meta confocal 
microscope with a connected camera for microscopy model AxioCam ICc3 and the software Axiovision 4.6 at a 
magnification of ×200.

Urea measurement. Urea secretion was quantified by a colorimetric assay QuantiChromTM Urea Assay Kit 
(DIUR-500 BioAssay Systems) following the manufacturer’s instructions. The assay detects urea directly by 
using substrates that specifically bind urea. Urea assays were carried out in 96-well plates, and concentrations 
were measured using a plate reader. Analysis of urea production in E-iPSC-DE (DE), E-iPSC-HE (HE) and 
E-iPSC-HLC (HLC) were performed. Three biological replicates in technical triplicates of each sample were ana-
lyzed. The levels of urea are presented as a percentage, considering measured levels of urea in mg/dL/24 h.

Bile acid measurement. Bile acids (cholic acid CA, chenodeoxycholic acid CDCA, deoxycholic acid DCA, urso-
deoxycholic acid UDCA, lithocholic acid LCA) including their glycine- and taurine derivatives were analyzed by 
UPLC-MS/MS. The system consisted of an Acquity UPLC-H Class (Waters, UK) coupled to a Xevo-TQS tandem 
mass spectrometer (Waters, UK) which is equipped with an ESI source operating in the negative ion mode. 
Quantitative data were conducted in the multiple reaction monitoring (MRM) mode. The chromatographic sep-
aration was performed on Waters UPLC BEH C18 column (100 mm, 2.1 mm ID, 1.7 µm; Waters, UK) using ace-
tonitrile and acidic water (0.1% formic acid) as mobile phases. Analytes were separated by a gradient elution. The 
injection volume was 5 µL and the column was maintained at 40 °C.

CYP3A4 measurement. CYP3A4 activity was measured by using the pGlo kit (Promega) according to man-
ufacturer’s instruction for nonlytic CYP450 activity estimation. The CYP3A4 production was measured in 
E-iPSC-HLC (HLC). Three biological replicates in technical triplicates of each sample were analyzed. The levels 
of CYP3A4 are presented as relative light units per milliliter (R.L.U./ml). The error bars indicate the standard 
errors of the mean.

Electron microscopy. Cells grown on Thermanox® plastic coverslips (Nunc), were fixed in a modified 
Karnofsky solution, 2%PFA/2,5%GA in 50 mM Cacodylate buffer, pH7.4 at 4 °C. Cells were washed in 50 mM 
Cacodylatpuffer/50 mM NaCl and post-fixed for 90 min at room temperature with 0,5% OsO4 in the same buffer. 
After washing steps with water, cells were incubated for 40 min with 0,1% tannic acid in 250 mM Hepes pH7,4, 
washed with water and stained with 2% uranyl acetate, 90 min at room temperature. Cells were dehydrated 
in a graded series of ethanol and embedded in Spurr’s resin (Low Viscosity Spurr Kit, Ted Pella, CA, USA). 
Ultra-thin sections (70 nm) were prepared with an ultramicrotome (Reichert Ultracut E, Leica) and mounted 
on pioloform-coated slot grids from copper. Sections were counterstained with uranyl acetate and lead citrate.

Ultrathin-sections were first examined using a Philips CM100 transmission electron microscope operated at 
100 kV and finally imaged using a FEI Tecnai Spirit transmission electron microscope operated at 120 kV, which 
was equipped with a 2 k × 2 k Eagle CCD camera (FEI). The MSI-Raster application within the Leginon Software 
package58 was used to automatically image selected regions of interest at a final nominal magnification of 15000× 
applying a defocus of −4 µm. Raw micrographs were stitched using the Trakem2 plugin implemented in the Fiji 
software platform59, 60.

Microarray -Based Gene Expression Analysis. Total RNA from iPSC, DE, HE, HLC, PHH and fetal liver 
in replicates were extracted using the MiniRNeasy Kit (Qiagen) according to the manufacturer’s instructions and 
quality checked by Nanodrop analysis (Nanodrop Technologies, Wilmington, DE, USA, http://www.nanodrop.
com). Approximately 500 ng of DNase treated RNA was sent to ATLAS Biolabs (http://www.atlas-biolabs.de) 
for whole transcriptome analysis by using microarray. All basic expression data analysis was carried out using 
the BeadStudio software 3.0. Raw data were background-subtracted and normalized using the “rank invariant” 
algorithm and then filtered for significant expression on the basis of negative control beads. For correlation coef-
ficient analysis and the generation of Venn diagrams, detected gene expression was defined by a Detection P 
Value < 0.01 as output by BeadStudio. For differential gene expression analyses, genes had to be at least 1.5 fold 
up- or down-regulated in a group-wise comparison, to be considered significantly differentially expressed.

For more detailed information see supplementary Materials and Methods.

Data access. GEO Submission (GSE66282).
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Modeling Nonalcoholic Fatty Liver Disease
with Human Pluripotent Stem Cell-Derived Immature

Hepatocyte-Like Cells Reveals Activation
of PLIN2 and Confirms Regulatory Functions

of Peroxisome Proliferator-Activated Receptor Alpha

Nina Graffmann,1 Sarah Ring,1 Marie-Ann Kawala,1 Wasco Wruck,1 Audrey Ncube,1

Hans-Ingo Trompeter,2 and James Adjaye1

Nonalcoholic fatty liver disease (NAFLD/steatosis) is a metabolic disease characterized by the incorporation of
fat into hepatocytes. In this study, we developed an in vitro model for NAFLD based on hepatocyte-like cells
(HLCs) differentiated from human pluripotent stem cells. We induced fat storage in these HLCs and detected
major expression changes of metabolism-associated genes, as well as an overall reduction of liver-related
microRNAs. We observed an upregulation of the lipid droplet coating protein Perilipin 2 (PLIN2), as well as of
numerous genes of the peroxisome proliferator-activated receptor (PPAR) pathway, which constitutes a reg-
ulatory hub for metabolic processes. Interference with PLIN2 and PPARa resulted in major alterations in gene
expression, especially affecting lipid, glucose, and purine metabolism. Our model recapitulates many metabolic
changes that are characteristic for NAFLD. It permits the dissection of disease-promoting molecular pathways
and allows us to investigate the influences of distinct genetic backgrounds on disease progression.

Introduction

Nonalcoholic fatty liver disease (NAFLD) is a wide-
spread disease in the western hemisphere. Due to a high-

fat diet and a lack of exercise, hepatocytes of NAFLD patients
accumulate fat in the form of lipid droplets (LDs) [1]. This is
often associated with type 2 diabetes and considered part of
the metabolic syndrome [1]. Insulin resistance and obesity-
associated chronic inflammation of adipose tissue are critical
factors for the development and progression of NAFLD [2,3].
This is often seen as a ‘‘first hit’’ manifesting in the rather
benign accumulation of LDs, called steatosis. A ‘‘second hit’’,
frequently due to an increase of reactive oxygen species-
mediated stress, induces the progression toward nonalcoholic
steatohepatitis (NASH), which is accompanied by liver in-
flammation and fibrosis [3]. Approximately, 29% of patients
with NASH develop cirrhosis. Up to 27% of these further de-
velop hepatocellular carcinoma [1].

Hepatocytes store triacylglycerides (TAGs) in LDs as a
reaction to an overload with free fatty acids. These are either
derived directly from the diet or result from inflammation
induced lipolysis in adipose tissues [2]. The occurrence of

LDs in >5% of hepatocytes is the main diagnostic criterion
for NAFLD [1].

In LDs, TAGs are enclosed by a lipid monolayer, which is
encapsulated by distinct proteins, predominantly from the
PAT (Perilipin/ADRP/TIP47) family [4–6]. Perilipins regu-
late hydrolysis of TAGs by controlling the activity of lipases
and their access to LDs [7–9]. Perilipin 2 (PLIN2 or Adipo-
philin,ADRP) is ubiquitously expressed and plays amajor role
in the formation of LDs [10–12]. PLIN2 expression correlates
with LD content in hepatocytes [13]. A reduction of PLIN2
expressionwith antisense oligonucleotides reduced liver TAG
content anddecreased the expression of genes involved in fatty
acid and steroid metabolism in mice [14,15]. In addition,
PLIN2 knockout mice develop neither obesity nor NAFLD
when fed a high-fat diet because they have a higher energy
turnover compared to their wild-type counterparts [16].

Nutrition and energy uptake are important factors for the
development of NAFLD. However, there exist major differ-
ences between humans and mice. Various established diets
reproduce effects of NAFLD/NASH in mice. Unfortunately,
they fail to mirror the whole spectrum of symptoms observed
in humans. While high-fat diets induce obesity and NAFLD,
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mice generally do not proceed toward NASH even if the diet
is supplemented with fructose. To induce NASH, mice are
usually fed with a methionine–choline-deficient diet. A major
drawback of this diet, however, is the fact that mice do not
become obese, which is a major risk-factor for NAFLD in
humans [17,18]. In addition, there exist several knockout
mouse models, none of which is capable of reflecting all
aspects of the disease [17].

Several groups have used human hepatocarcinoma cell
lines or immortalized primary hepatocytes to model NAFLD
[19,20]. However, cancer-derived cell lines are of limited
use for dissecting the molecular basis of NAFLD as they
harbor genomic and hence functional aberrations compared
to healthy primary liver cells [21,22]. The use of liver
biopsy-derived primary human hepatocytes for modeling
NAFLD is also limited because they can only be cultivated
for a few days before the onset of dedifferentiation [23] or
have to be immortalized by virus-mediated transduction
with SV40. In addition, liver biopsies, especially those from
the early stages, are very rare.

To overcome these limitations, we in this study aimed at
dissecting the molecular basis of NAFLD using hepatocyte-
like cells (HLCs), which were in vitro derived from human
pluripotent stem cells (hPSCs). We used the human embry-
onic stem cell (ESC) line H1, as well as induced pluripotent
stem cells (iPSCs), derived from fetal foreskin fibroblasts of a
healthy individual [24,25]. We were able to monitor the ac-
cumulation of fat in the HLCs, as well as major biochemical
alterations concerning lipid, glucose, and purine metabolism.
Our new model system is suitable for the analysis of disease
triggering factors, as well as new therapeutics.

Material and Methods

Cell culture

HepG2 cells (ATCC�HB-8065�) were cultured in DMEM
low glucose with 10% FCS, 1% Penicillin/Streptomycin, and
1% GlutaMAX (Gibco). For fat induction, cells were induced
with 50mMoleic acid (OA) (Stock solution 100mM in ethanol).
As control, cells were treated with the corresponding amount of
ethanol. Fat induction was performed 24h after passaging.

Differentiation of hPSCs into HLCs

hPSCs were cultured onMatrigel (Corning) coated plates in
TeSR E8 medium (STEMCELL Technologies). Medium was
changed daily and spontaneously differentiated cells were re-
moved manually before splitting the cells. One or two days
after passaging, differentiation into definitive endoderm was
induced with definitive endoderm medium: 96% RPMI 1640,
2% B27 (without retinoic acid), 1% GlutaMAX (Glx), 1%
Penicillin/Streptomycin (P/S) (all Gibco), 100 ng/mL Activin
A (Peprotech), and for the first 3 days, 50 ng/mL WNT3A
(R&D). After 5 days, medium was changed toward hepatic
endoderm medium as follows: 78% Knockout DMEM, 20%
Knockout serum replacement, 0.5% Glx, 1% P/S, 0.01% 2-
Mercaptoethanol (all Gibco), and 1% DMSO (Sigma).

After 5 days, differentiation was continued with HLC
medium as follows: 82% Leibovitz 15 medium, 8% fetal
calf serum, 8% Tryptose Phosphate Broth, 1% Glx, 1% P/S
(all Gibco) with 1 mM Insulin (Sigma), 10 ng/mL hepatocyte
growth factor (HGF) (Peprotech), 20 ng/mL Oncostatin M

(OSM) 209 a.a. (Immunotools), and 25 ng/mL Dex-
amethasone (DEX) (Sigma) (Fig. 1A). During the whole
differentiation period, medium was changed daily.

Fat induction in HLCs was performed on day 12 of the dif-
ferentiation process. Interference with peroxisome proliferator-
activated receptor alpha (PPARa) activity was performed by
treatment with 50mM Fenofibrate (agonist) or 2mM GW6471
(antagonist, both from Cayman Chemical) in parallel with OA
induction (Fig. 1C).

Liver-specific biochemical assays of HLCs

The amount of urea produced by the cells over a period of
24 h was determined from the cell culture supernatant using
the QuantiChrom� Urea Assay Kit (BioAssay Systems) ac-
cording to the manufacturer’s recommendations. Cytochrome
p450 3A4, 3A5, and 3A7 activity was measured with the
P450-Glo� CYP3A4 Assay Luciferin-PFBE (Promega) using
a luminometer (Lumat LB 9507; Berthold Technologies).
The presence of active transporter proteins was assessed by
the uptake and release of Indocyanine Green dye. Cells were
incubated for 30min with 1mg/mL Cardiogreen (Santa
Cruz Biotechnology, Inc.). Afterward, they were washed
with PBS and images were captured with a light microscope
(Primo Vert; Zeiss). Subsequently, cells were cultured in
their usual medium for 6 h and images were again captured.

Staining of LDs

Paraformaldehyde-fixed cells were incubated for 20min
with either a 60% working solution of Oil Red O (Sigma) or
with BODIPY 493/503 (1mg/mL; Life technologies) in
PBS/0.05% Tween. After washing, images were captured
with a light microscope (Primo Vert; Zeiss) or a fluores-
cence microscope, respectively (LSM700; Zeiss).

Immunocytochemistry

For intracellular antibody staining, paraformaldehyde-fixed
cells were permeabilized and unspecific binding sites were
blocked by incubating for 2 h at room temperature with
blocking buffer (1·PBS with 10% normal goat or donkey
serum, 1% BSA, 0.5% Triton, and 0.05% Tween). Afterward,
blocking buffer was diluted 1:2 with 1·PBS and cells were
incubated with the primary antibody overnight at 4�C. Cells
were washed thrice with 1·PBS/0.05% Tween and incubated
with the secondary antibody, for 2 h at room temperature.
Cells were washed as above and images captured using a
fluorescence microscope (LSM700; Zeiss).

Extracellular stainings were performed in the same man-
ner without detergents. The following primary antibodies were
used: Alpha Fetoprotein, Albumin (Sigma) E Cadherin (CST),
HNF4a (Abcam), SOX17 (R&D), and PLIN2 (Proteintech).
For details on antibodies, see Supplementary Table S1; Sup-
plementary Data are available online at www.liebertpub.com/
scd. DNAwas stained with Hoechst 33342. Individual channel
images were processed and merged with Photoshop CS6.

Western blot

Cells were lysed in 1 ·RIPA buffer (50mM Tris HCl, pH
8, 150mM NaCl, 1% IGEPAL (NP-40), 0.1% SDS, 1mM
EDTA, and 0.5% Na-Deoxycholate) with protease inhibi-
tors. Twenty microgram of protein was analyzed by western
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blot with antibodies against PLIN2 (Proteintech) and ACTIN
(CST). HRP coupled secondary antibodies were obtained
from Abcam. Chemiluminescence was detected on a Fusion
FX instrument (PeqLab) and analyzed with Fusion Capt
Advance software (PeqLab) using rolling ball background
correction.

RNA isolation and quantitative real-time polymerase

chain reaction

For RNA isolation, up to 500,000 cells were lysed in
500 mL TRIzol. RNAwas isolated with the Direct-zol�RNA
Isolation Kit (Zymo Research) according to the user’s manual,
including the DNase digestion step. Reverse transcription of
up to 1 mg RNA was performed with the TaqMan Reverse
Transcription (RT) Kit (Applied Biosystems). Primers were
purchased from MWG; sequences are provided in Supple-
mentary Table S2. Real-time PCRwas performed in technical
triplicates with Power SYBR Green Master Mix (Life tech-
nologies) on a VIIA7 or StepOnePlus (both Life technolo-
gies) machine. Mean values were normalized to actin and,
subsequently, to the ethanol control. In case of siRNA ex-
periments, data were normalized to the ethanol-treated nt
siRNA sample. Experiments were carried out in biological

duplicates and are depicted as mean values (log2) with
standard error of the mean. Unpaired student’s t-tests were
performed for calculating significances.

Transcriptome and bioinformatics analysis

Microarray experiments were performed using the Affy-
metrix PrimeView chip (BMFZ, Düsseldorf). Details of data
analysis are given in Supplementary Methods.

Liver-specific microRNA array

cDNA synthesis was carried out using the miScript II RT
Kit (QIAGEN) according to the user’s manual. Quantitative
reverse transcription polymerase chain reaction (qRT-PCR)
and data analysis were performed according to the user’s
manual (miScript miRNA PCR Array; QIAGEN). All val-
ues were normalized to six different housekeeping genes
(snoRNA/snRNA).

microRNA target gene validation

microRNA target gene validation was performed in
HEK293T cells as previously described [26,27]. In brief, 3¢
untranslated region (UTR) fragments of putative target

FIG. 1. Differentiation of hPSCs into HLCs. hPSCs were differentiated into HLCs using a three-step protocol (see also
Materials and Methods section) (A). Morphological changes of the differentiating cells are documented for each stage. At
the definitive endoderm (DE) stage, the dense cell–cell contact is lost, and cells acquire the typical endodermal morphology.
The characteristic polygonal shape of hepatocytes is already evident at the hepatic endoderm (HE) stage. This morphology
is even more pronounced at the HLC stage (B). Two days before the end of differentiation, steatosis was induced with
50 mM OA, and control cells were treated with an equal volume of ethanol. To interfere with LD formation, PPARa
modulators were also added on the same day (C). HLCs, hepatocyte-like cells; hPSCs, human pluripotent stem cells; LD,
lipid droplet; OA, oleic acid; PPARa, peroxisome proliferator-activated receptor alpha.
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genes were cloned at the 3¢ end of the Firefly luciferase open
reading frame (ORF) in dual-luciferase reporter vector
pmirGLO (Promega). Ds-oligonucleotides spanning the
predicted microRNA binding sites for ATL3 (hsa-miR-
106b) and CPAMD8 (hsa-miR-122) were used (Supplemen-
tary Table S3), whereas the 3,406-bp EPHA7-3¢ UTR was
represented by a 1,384-bp PCR fragment covering two pre-
dicted hsa-miR-106b binding sites (Supplementary Table S4).
Normalization for effects of endogenous HEK293T micro-
RNAs on the given 3¢ UTR was achieved by transfection of
both empty pmirGLO, as well as pmirGLO/3¢ UTR, into
HEK293T cells. Pairwise cotransfections of empty pmirGLO
or pmirGLO/3¢ UTR with the microRNA mimic of interest
(Supplementary Table S5) (Dharmacon) were performed.
Firefly and Renilla activities were determined 24h after
transfection. All transfections were performed in at least two
independent biological experiments with quadruple transfec-
tions each. Mean values with standard deviations are shown.
Significances were calculated with unpaired Student’s t-test,
***P£ 0.001.

PLIN2 knockdown

PLIN2 knockdown was performed by transfecting 5 pmol
PLIN2 siRNA or a nontarget (nt) control siRNA (Thermo
Scientific) into 100,000 HepG2 cells using lipofectamine
RNAiMAX (Life Technologies). Forty-eight hours post
transfection, the cells were harvested for further analyses.

Results

Pluripotent stem cells differentiate into HLCs

and show characteristic activities of liver cells

We differentiated hPSCs into HLCs using a three-step
protocol, which is based on published protocols [28–30], but
has been adapted in our laboratory to optimize the indi-
vidual differentiation steps (Fig. 1A). We used the estab-
lished ESC line H1 and an iPSC line derived from fetal
foreskin fibroblasts [25] to compare two distinct hPSC
lines. Morphological changes were monitored at every
step of the differentiation process (Fig. 1B). ESCs and
iPSCs behaved similarly during differentiation. At the de-
finitive endoderm stage, they adopted a typical flat and
elongated shape; then at the hepatic endoderm stage, cells
from both sources started to adopt the polygonal shape that
is characteristic for hepatocytes. At the maturation step, that
is, the HLC stage, the vast majority of the cells had acquired
the polygonal morphology.

Stainings with antibodies for the hepatocyte markers al-
bumin, HNF4a, and E-Cadherin were all positive for HLCs
derived from ESCs and iPSCs (Fig. 2A). In addition, several
activity tests indicated that HLCs behave like hepatocytes
(Fig. 2B–D). They were able to synthesize urea (Fig. 2B)
and expressed active transporters as demonstrated by their
ability to take up and release indocyanine green dye
(Fig. 2C). Another important characteristic of hepatocytes is
the activity of phase I enzymes, for example, members of
the Cytochrome p450 family, which was strongly increased
in HLCs compared to undifferentiated hPSCs (Fig. 2D).
Thus, we can reliably generate functional HLCs from ESCs,
as well as from iPSCs, which are suitable for disease
modeling.

HLCs can be induced to accumulate LDs

To analyze early steatosis in cell culture, we first estab-
lished a protocol for the induction of LDs in HLCs, which is
based on the addition of 50 mM OA for 48 h into the me-
dium. For both cell types, we observed similar increases in
LD accumulation with Oil Red O and BODIPY 493/503
staining (Fig. 3A, B). PLIN2 expression increased consis-
tently after induction with OA (Fig. 3C). In addition, we
analyzed the expression of several other genes involved in
lipid metabolism to get a first impression of the immediate
impact of fatty acid overload (Fig. 3C and Table 1). All
factors were selected, because they were significantly reg-
ulated in liver cells of patients with high levels of steatosis
compared to low-level steatosis [31]. In all cases, except for
ACADSB, the expression changes in HLCs mirrored those
observed in patient liver biopsies [31].

We decided to further focus on increased PLIN2 expres-
sion as an indicator and marker for the induction of stea-
tosis, because its role during progression of the disease has
been analyzed extensively [13–16].

Transcriptome and associated pathway

analysis of HLCs after steatosis induction

We next wanted to know how the induction of steatosis
with OA affects the transcriptomes 48 h post treatment. To
achieve this, we induced steatosis in HLCs derived from H1
ESCs and iPSCs as described above. Ethanol-treated cells
were used as a solvent control. We found that *13,000
genes were significantly expressed in H1- or iPSC-derived
HLCs, respectively (Fig. 4A, B). In both cases, about 200
genes were exclusively expressed in the control cells, while
129 (H1) and 186 (iPSC) genes were exclusively expressed
in OA-treated cells (Fig. 4A, B).

Analysis of the genes that were higher or exclusively
expressed in HLCs treated with OA revealed significant
enrichment of gene ontology (GO)-terms related to lipid
metabolism and transport (Fig. 4C and Supplementary
Table S6). As OA is dissolved in ethanol, it is not possible to
completely rule out an ethanol-mediated influence on the
expression of metabolically relevant genes. However, GO
analysis for genes, which were exclusively expressed in
ethanol-treated control cells, did not reveal any nonethanol-
related metabolic pathways. Instead, pathways connected to
signaling and nonhepatic development were enriched
(Fig. 4C and Supplementary Table S7).

Overall, the individual regulated genes, as well as the
associated GO categories and pathways, differed between
both cell lines. This probably reflects innate discrepancies of
the differentiation propensity of ES and iPS cells, as well as
of course their different genetic background. Nonetheless,
numerous genes associated with the PPAR pathway, which
plays a major role in the regulation of lipid metabolism,
were upregulated after OA treatment of HLCs derived from
H1 or iPSCs (Supplementary Fig. S1).

Heatmap analysis of several factors involved in lipid and
glucose metabolism, as well as in insulin signaling, revealed
that although the absolute transcription levels of many fac-
tors differed between H1- and iPSC-derived HLCs, the
OA-induced changes were frequently qualitatively similar
(Fig. 4D). Toget amore detailed insight into the transcriptional
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changes that occur early in steatosis, we expanded our panel of
directly investigated genes (Table 1) and includedmore factors
relevant for lipidmetabolism (CPT1A,CPT2, andHADH).We
also added APOC2 as another lipid binding protein and
GSK3A, which regulates glucose metabolism (Fig. 4E). Inter-
estingly, only CPT1A and APOC2 were consistently upregu-
lated in both samples, while we observed only minor and
opposed expression changes for the other factors.

Many liver-specific microRNAs are downregulated

in HLCs after induction of steatosis

Next, we analyzed whether induction of steatosis in H1-
and iPSC-derived HLCs alters expression of liver-specific
microRNAs. To this end, we used the liver finder micro-

RNA array composed of 84 liver-related microRNAs. In-
terestingly, we found most microRNAs downregulated upon
steatosis induction and only a few microRNAs upregulated
(Fig. 5A). This finding implies that an altered microRNA
expression profile is part and parcel of the early events in
steatosis-induced cells, especially since the liver-specific
microRNA hsa-miR-122 was among the most strongly
downregulated miRNAs, together with hsa-miR-106b
(Fig. 5A).

Bioinformatic target gene predictions revealed several
thousand putative target genes for hsa-miRs-106b and -122
(Supplementary Table S8). Among these, we further analyzed
liver-related genes ATL3, EPHA7 (putative miR-106b targets),
and CPAMD8 (putative miR-122 target), which were upregu-
lated upon steatosis induction in HLCs derived from H1 and

FIG. 2. Characterization of HLCs. The ES cell line H1 and iPS cells were differentiated into HLCs as described in Fig. 1.
(A) HLCs derived from H1 (upper row) and iPS cells (lower row) express the liver-specific proteins Albumin, HNF4a (scale
bar 50 mm), and E-Cadherin (scale bar 20 mm). (B–D) HLCs have liver-specific activity. (B) Urea production increases
during differentiation and reaches its maximum at the HLC. (C) HLCs take up indocyanine green dye (upper row) within
30min and release it within 6 h (lower row). (D) HLCs have phase I enzyme activity as measured by a luminometric assay
detecting Cytochrome P450 (CYP) 3A4, 3A5, and 3A7 activity. In all cases, representative experiments are shown. In (B)
and (D), data represent mean value – standard deviation. HLCs, hepatocyte-like cells. Color images available online at
www.liebertpub.com/scd
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iPSC (Fig. 5B). Remarkably, a significant number of miRNAs
from the liver finder array were found among the predictions
for these three genes (CPAMD8: 15%, ATL3: 12%, EPHA7:
44% from 84 miRNAs, see Supplementary Table S4). Luci-
ferase reporter-based target gene validation indeed confirmed
that hsa-miR-106b downregulates ATL3 and EPHA7, while
miR-122 targets CPAMD8 (Fig. 5C–E).

siRNA-based suppression of PLIN2 level

and function does not impair LD formation

Having characterized the impact of steatosis induction on
the global gene expression, we next wanted to interfere with
LD accumulation to find indications for putative treatments

for NAFLD. First, we reduced PLIN2 expression using
siRNA, because it is known that PLIN2 plays a major role
during the development of steatosis [13–16]. As the trans-
fection efficiency of in vitro derived HLCs is very low, we
decided to focus on HepG2, a hepatocellular carcinoma line,
for these experiments. Forty-eight hour treatment with a
PLIN2 siRNA reduced its expression on protein level to about
33% (Fig. 6A and Supplementary Fig. S2A). Next, we in-
duced the siRNA-treated HepG2 cells with OA for an addi-
tional 48 h. PLIN2 siRNA reduced the expression of PLIN2
on mRNA level to *20% in the control and the OA-treated
samples (Fig. 6B). However, even under siRNA knockdown
conditions, PLIN2 expression was still significantly higher in
the induced sample compared to the control (Fig. 6B).

FIG. 3. Induction of steatosis inHLCs. hPSCswere differentiated intoHLCs. Steatosis was induced by treatment with 50mMOA
for48h.Ethanol (EtOH)-treatedcells servedas controls. SteatosiswasmonitoredbyOilRedO(red) (A)orBODIPY493/503 (green)
(B) stainingofLDs.The control cells treatedwith ethanol show limitedLDaccumulation,while those treatedwith50mMOAfor48h
have abundant LDs. Scale bars: 20/50mm. (C) Expression of genes involved in lipid metabolism was analyzed using qRT-PCR
(n=2). Gene expression was normalized to b-actin and, subsequently, to the control samples. For each sample, the
mean – standard error is shown as log2 scale. HLCs, hepatocyte-like cells; hPSCs, human pluripotent stem cells; LDs, lipid
droplets; OA, oleic acid; qRT-PCR, quantitative reverse transcription polymerase chain reaction. Color images available
online at www.liebertpub.com/scd
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Contrary to our expectations, PLIN2 knockdown did not
alter the accumulation of LDs in the cells after incubation
with OA (Fig. 6C). Nonetheless, microarray analysis revealed
that transcriptomes of cells treated with PLIN2 siRNA cluster
away from those incubated with the nt control siRNA (Sup-
plementary Fig. S2B, left branches). In both clusters, OA
treated and control cells form separate subclusters. A detailed
view on the expression of lipid and glucose metabolism re-
lated genes also confirmed that PLIN2 siRNA treatment in-
duced major transcriptional changes (Fig. 6E).

Numerous factors involved in lipid catabolism such as
ACADSB, LIPA, and CPT1A were downregulated after
PLIN2 siRNA treatment. These tendencies were confirmed
by qRT-PCR (Fig. 6D). However, in this study, the differ-
ences between the OA and EtOH-treated cells became more
obvious. Interestingly, also PPARa and g, which regulate
lipid metabolism, were downregulated after PLIN2 knock-
down (Fig. 6E). This argues in favor of an active PPAR gene
regulatory network associated with steatosis. Overall,
PLIN2 knockdown modulates the expression of steatosis-
related genes, but does not reduce lipid accumulation, at
least in the early stage investigated.

Modulation of the lipid metabolism regulating

factor PPARa has major impact on numerous

metabolism-related pathways

The hepatic nuclear receptor PPARa is activated by a
variety of ligands [32,33]. It regulates lipid and glucose
metabolism in the liver and PLIN2 is one of its known
targets [34,35]. Transcriptome analysis revealed that many
members of the PPARa signaling pathway were upregulated

either in H1- or iPSC-derived HLCs after treatment with OA
(Supplementary Fig. S1). Its expression was also influenced
by PLIN2 knockdown (Fig. 6D, E). As we could not
transfect HLCs with siRNA against PLIN2 to a significant
level, we decided to interfere with PPARa signaling by
activating or inhibiting PPARa action with Fenofibrate or
GW6471, respectively [36].

iPSC-derived HLCs were treated for 48 h with OA and
either Fenofibrate or GW6471. BODIPY staining revealed
that HLCs incorporated LDs regardless of treatment with the
PPARa modulators (Fig. 7A). This is in line with results
from Rogue et al. who showed that PPARa agonist treat-
ment reduced fat load in HepaRG cells only after a pro-
longed incubation of 14 days [37]. However, microarray
analysis revealed that even short-term treatment with Fe-
nofibrate and GW6471 had an impact on gene expression.
The transcriptomes of HLCs incubated with either Fenofi-
brate or GW6471 clearly clustered away from each other
(Fig. 7B).

Heatmap-based analysis of the PPAR pathway revealed
that cells treated with Fenofibrate or GW6471 behave dif-
ferently (Fig. 7C). In both cases, there were two subclusters
detectable that correspond to the control cells and the OA-
treated cells. We monitored the expression levels of genes
important for lipid and glucose metabolism in more detail by
qRT-PCR. In most cases, treatment with the agonist and the
antagonist resulted in opposing changes in gene expression,
as expected (Fig. 7D). Inhibition of PPARa with GW6471
resulted in downregulation of genes involved in lipid catab-
olism, while activation using Fenofibrate reduced expression
of AGPAT2 andHMGCR, which are involved in biosynthesis
of phospholipids and cholesterol, respectively (Fig. 7D).

Table 1. Names and Functions of the Investigated Genes

Gene symbol Name Function Classification

CPT1A Carnitine palmitoyltransferase 1A Transport acyl group of fatty acid-CoA
conjugates across the mitochondrial
membranes for beta-oxidation

Fatty acid
catabolism

CPT2 Carnitine palmitoyltransferase 2
ECHS1 Enoyl coenzyme A hydratase, short chain, 1,

mitochondrial
Mitochondrial fatty acid beta-oxidation

HADH Hydroxyacyl-coenzyme A dehydrogenase Mitochondrial fatty acid beta-oxidation
LIPA Lipase A, lysosomal acid, cholesterol esterase Hydrolase of cholesteryl esters and

triglycerides
ACADSB Acyl-coenzyme A dehydrogenase,

short/branched chain
Dehydrogenase of acyl-CoA derivatives

ACAT1 Acetyl-coenzyme A acetyltransferase 1 Ketone body metabolism

PRKAA2 Protein kinase, AMP-activated, alpha 2
catalytic subunit

Regulator of FA and cholesterol
biosynthesis

Regulators of
metabolism

PPARa Peroxisome proliferator-activated receptor
alpha

Regulator of lipid and glucose
metabolism

GSK3A glycogen synthase kinase 3 alpha Regulator of glucose homeostasis

AGPAT2 1-Acylglycerol-3-phosphate O-acyltransferase 2
(lysophosphatidic acid acyltransferase, beta)

Phospholipid biosynthesis Biosynthesis

HMGCR 3-Hydroxy-3-methylglutaryl-coenzyme
A reductase

Cholesterol synthesis

PLIN2 Perilipin 2 Coats LDs LD coating
APOC2 Apolipoprotein C-II Lipid-binding protein (very low-density

lipoprotein)

LD, lipid droplet.
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FIG. 4. Gene expression profiles of HLCs challenged with OA enable characterization of the early steps in NAFLD. Venn
diagrams of genes expressed (detection P value <0.05) in H1- (A) or iPSC- (B) derived HLCs (n = 2). Green and yellow
segments represent genes exclusively expressed in OA treated or control cells, respectively. Purple segments comprise genes,
which are expressed under both conditions, but not necessarily with the same intensity. (C) GO-analysis of genes upregulated
or exclusively expressed under OA treatment reveals an enrichment of NAFLD-related categories, while ethanol control cells
predominantly express genes mapping to divergent categories. Shown are preselected significant GO-Terms; for full data set,
see Supplementary Tables S6 and S7. (D) Heatmap of genes involved in insulin signaling and lipid or glucose metabolism
reveals differences between H1- and iPSC-derived HLCs, which might, in part, be due to their distinct genetic background.
However, qualitative changes are similar between both groups, which are reflected by the formation of subclusters connected to
OA treatment. (E) Expression of genes involved in lipid and glucose metabolism was analyzed using qRT-PCR (n= 2). Gene
expression was normalized to b-actin and, subsequently, to the control samples. For each sample, the mean – standard error of
duplicate experiments is shown as log2 scale. GO, gene ontology; HLCs, hepatocyte-like cells; iPSC, induced pluripotent stem
cell; NAFLD, nonalcoholic fatty liver disease; OA, oleic acid; qRT-PCR, quantitative reverse transcription polymerase chain
reaction. Color images available online at www.liebertpub.com/scd
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FIG. 5. Regulated expression of microRNAs upon induction of steatosis. (A) Expression of 84 liver-specific microRNAs
from H1-HLCs (dark gray) and iPSC-HLCs (light gray) was analyzed after the induction of steatosis. MicroRNA expression
was normalized to six different genes of small housekeeping RNAs. For H1-derived HLCs, biological and for iPSC-derived
HLCs, technical duplicates were performed. The mean value is shown as log2 expression. With a few exceptions, all miRNAs
were downregulated in steatosis-induced cells from both sources. (B) Expression of selected microRNA target genes was
analyzed through qRT-PCR (n = 2). Gene expression was normalized to b-actin and, subsequently, to the control samples. For
each sample, themean – standard error is shown as log2 scale. (C–E)Validation of predicted target genes for hsa-miRNA-106b
[ATL3 (C), EPHA7 (D)] and hsa-miRNA-122 [CPAMD8 (E)]. To test the influence of endogenousmicroRNAs, emptyFirefly/
Renilla dual-reporter vector pmirGLO and pmirGLO/3¢UTR (containing the 3¢UTR of interest at the 3¢ end of the Firefly open
reading frame) were each transfected into HEK293T cells (n = 4). Normalized Firefly activities were compared with those of
pairwise cotransfections of these vectors with the microRNA mimic of interest (miR-106b, -122, and an unspecific siRNA
negative control) to test for unspecific effects of the given microRNA-mimic on Firefly/Renilla per se and for validation of the
particular target prediction. Dark gray columns show normalized Firefly activities from pmirGLO (mimic-co)-transfections;
light gray columns are those from pmirGLO/3¢UTR cotransfections. Percentage reductions ofFirefly activities of pmirGLO/3¢
UTR compared with pmirGLO are given, as well as their statistical significances (Student’s t-test, unpaired, ***P£ 0.001). All
three predicted interactions were tested positive. HLCs, hepatocyte-like cells; iPSC, induced pluripotent stem cell; qRT-PCR,
quantitative reverse transcription polymerase chain reaction; UTR, untranslated region.
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When we compared the number of GO-terms associated
with distinct metabolic categories that were significantly
regulated after PPARa modulation, it became obvious that
many were connected with glucose, lipid, and purine me-
tabolism (Fig. 7E and Supplementary Table S9). Interest-
ingly, genes exclusively expressed in GW6471-treated

HLCs were predominantly mapped to lipid metabolism or
transport, while this category was only marginally upregu-
lated in Fenofibrate-treated cells, indicating that inhibition of
PPARa strongly affects lipid metabolism (Fig. 7E). In con-
trast, expression of genes that are associated with purine
metabolism was upregulated after PPARa activation, while

FIG. 6. Knockdown of PLIN2 in HepG2 cells does not affect LD formation, but alters gene expression. PLIN2 was
knocked down in HepG2 cells by lipofectamine-mediated siRNA transfection (n = 2). Cells were either transfected with nt
siRNA or with PLIN2 siRNA. (A) After 48 h, PLIN2 expression was assessed by western blot and normalized to ACTIN
levels. (B) After 48 h, steatosis was induced with 50mM OA for an additional 48 h. As control, cells were treated with
ethanol (EtOH). Expression of PLIN2 was analyzed on mRNA level using qRT-PCR. Although levels were reduced by
*80% after transfection, we observed significantly increased levels after OA treatment. Gene expression was normalized to
b-ACTIN and, subsequently, to the control samples. For each sample, the mean – standard error of duplicate experiments is
shown as log2 scale. Significances were calculated with an unpaired Student’s t-test. (C) LD formation was monitored by
Oil Red O staining. In the upper row, untransfected control cells are shown, followed by cells transfected with nt siRNA
(middle row) and PLIN2 siRNA, last row. Ethanol-treated control cells show only minor LD accumulation (left column),
while those treated with 50 mM OA for 48 h have abundant LDs that are stained by Oil Red O. Scale bar: 25mm. Expression
of genes involved and lipid or glucose metabolism (D) were analyzed using qRT-PCR. (E) Heatmap representation of genes
involved in insulin signaling and lipid or glucose metabolism reveals two clusters related to treatment with either PLIN2 or
the nt siRNA. LD, lipid droplet; OA, oleic acid; PLIN, Perilipin 2; qRT-PCR, quantitative reverse transcription polymerase
chain reaction. Color images available online at www.liebertpub.com/scd
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FIG. 7. PPARa signaling has major impact on the induction of steatosis. IPSC-derived HLCs were incubated in parallel
with either Fenofibrate (Feno, PPARa agonist) or GW6471 (PPARa antagonist) during the 48 h OA induction. (A) Steatosis
induction was monitored by BODIPY 493/503 (green) staining of LDs. In every case, LDs increased after OA induction
(right columns) compared to the control (left columns), but no differences between the different PPARa treatments are
visible. (B) Microarray-based transcriptome analysis revealed two distinct clusters representing Fenofibrate and GW6471
treatment and two subclusters related to OA treatment (n = 2). (C) Heatmap representation of PPAR pathway genes shows
distinct gene expression profiles for Fenofibrate (‘‘F’’) and GW6471 (‘‘GW’’) treated cells with qualitative changes after
OA induction. Expression of genes involved in lipid or glucose metabolism (D) was analyzed using qRT-PCR (n = 2). As
expected, in most cases, Fenofibrate and GW6471 treatment had opposing effects on gene expression. Gene expression was
normalized to b-actin and, subsequently, to the ethanol-treated control samples. For each sample, the mean – standard error
of duplicate experiments is shown as log2 scale. (E) Significantly expressed genes from the global analysis were subdivided
into genes only expressed after Fenofibrate treatment, up- or downregulated after Fenofibrate treatment, compared to
GW6471 treatment or only expressed after GW6471 treatment. Then they were assigned to GOs (Supplementary Table S9).
The numbers of GO-terms that were associated with lipid, glucose, or purine metabolism and transport are displayed. GO,
gene ontology; HLCs, hepatocyte-like cells; LDs, lipid droplets; OA, oleic acid; PPARa, peroxisome proliferator-activated
receptor alpha; qRT-PCR, quantitative reverse transcription polymerase chain reaction. Color images available online at
www.liebertpub.com/scd
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none of the genes that were exclusively expressed in
GW6471-treated cells mapped onto this GO-category.

A detailed analysis of the purine metabolic pathway
demonstrated that genes associated with the early steps of
purine metabolism tended to be downregulated under Fe-
nofibrate treatment, while genes for the later steps were
either upregulated or exclusively expressed during Fenofi-
brate treatment (Supplementary Fig. S3). This implies that
PPARa activation regulates purine metabolism.

Taken together, we have generated a robust in vitro model
for NAFLD based on human PSC-derived HLCs. Upon OA
induction, the cells recapitulate many features observed in
NAFLD patients (LD accumulation, PLIN2 overexpression,
and dysregulation of metabolic pathways) and they react to
variation of PPARa activity.

Discussion

In this study, we established a cell culture model for de-
ciphering the molecular basis underlying early steps of LD
accumulation in NAFLD, based on HLCs derived from
hPSCs. We showed that ESCs and iPSCs both differentiate
into HLCs that express hepatocyte-specific proteins and have
characteristic hepatocyte-like biochemical functions. HLCs

could be induced to accumulate fat in LDs by incubating them
with OA. Global gene expression analysis after OA induction
revealed upregulation of many GO-categories associated
with lipid or glucose metabolism. This effect was qualita-
tively similar between ESC- and iPSC-derived HLCs, but
differed quantitatively due to the different genetic back-
grounds of the two cell lines and the usual interdifferentiation
variations. Importantly, ethanol-treated control cells had a
completely different panel of genes upregulated, which
mapped to GO-categories related to signaling or nonhepatic
development. This indicates that expression changes ob-
served in theOAgroup are not induced by the solvent ethanol,
but rather byOA itself. However, for the future, it is important
to compare effects of different steatosis inducing agents, for
example, palmitic acid or steatogenic drugs.

After OA induction, many members of the PPAR sig-
naling pathway, which controls lipid metabolism, were up-
regulated. Of the different PPAR isoforms, PPARa is most
abundant in the liver. It regulates lipid metabolism as a
reaction to nutritional status and partly depends on insulin
signaling [34]. In general, activation of PPARa with fibrates
is a recognized treatment for the metabolic syndrome [38]
and its expression levels negatively correlate with the se-
verity of NASH [39].

FIG. 8. Schematic overview of inducers of NAFLD and potential intervention points. The transition from a healthy liver
(upper panel) toward a fatty liver (lower panel) is shown. Factors that promote NAFLD are shown on the left. Besides diet-
related inducers that are in this study mimicked by OA addition to the medium, intrinsic factors like insulin resistance
promote NAFLD. From a global perspective, the triggers result in increased free fatty acids and reactive oxygen species. We
also observed a global downregulation of hepatic miRNAs. Eventually, every trigger results in an upregulation of PLIN2
expression and an increase in lipid storage within hepatocytes. Beneficial processes that might reduce fat content of
hepatocytes are shown on the right side. In general, PPARa activation (in our case by application of Fenofibrate) decreases
the amount of stored fat by inducing b-oxidation. Besides fibrates, which activate PPARa, it is also regulated by AMPK,
which senses the low energy state of a cell as measured by the ratio between AMP and ATP. AMPK expression increases in
response to PLIN2 knockdown conditions and its activity might be regulated by intermediates of purine metabolism, which
is in turn regulated by PPARa. This indicates a possible positive feedback loop that has to be verified by additional
experiments. Besides PPARa modulation, a direct reduction of PLIN2 expression could also be beneficial. AMP, adenosine
monophosphate; AMPK, adenosine monophosphate-activated protein kinase; ATP, adenosine triphosphate; NAFLD, nonal-
coholic fatty liver disease; OA, oleic acid; PLIN, Perilipin 2; PPARa, peroxisome proliferator-activated receptor alpha. Color
images available online at www.liebertpub.com/scd
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Upon induction of steatosis, expression of a panel of
genes important for lipid metabolism changed in the same
manner as previously observed by comparing liver biopsies
from patients with high versus low levels of steatosis [31].
Among these factors, we identified PLIN2 upregulation as a
suitable marker for successful induction of steatosis. PLIN2
is involved in the synthesis of LDs and plays an important
role in the onset of steatosis. It has been shown that PLIN2
knockout mice develop neither obesity nor steatosis [16] and
the knockdown of PLIN2 expression with an antisense oli-
gonucleotide protected mice against the development of
fatty liver [14].

To analyze the influence of PLIN2 expression on the
development of steatosis, we knocked down PLIN2 in
HepG2 cells using siRNAs. Although the knockdown was
highly efficient with only 32% of protein expression re-
maining, we could not observe any changes in LD accu-
mulation after induction with OA. This might be due to the
short time period of only 48 h. There might still be enough
PLIN2 left for coverage of some LDs, while the shortage of
PLIN2 limits the amount of LDs that can be assembled over
the long term. In addition, several other proteins are in-
volved in LD formation. During steatosis, LDs increase in
size relative to the abundance of TAGs [36]. The largest
LDs are predominantly covered by PLIN1, which competes
on the LD surface with PLIN2 [36]. Global gene expression
analysis of PLIN2 knockdown cells revealed indeed that
PLIN1 and PLIN4 expression was enhanced in at least two
of the four samples compared to the nt siRNA samples.

Overall, we observed profound genome-wide transcrip-
tional changes, which are reflected by the fact that the
transcriptomes of PLIN2 and nt siRNA-treated cells cluster
separately from each other. Interestingly, expression levels
of several factors known to have important regulatory
functions on metabolism were altered after PLIN2 knock-
down. For example, PRKAA2, which is the catalytic subunit
of adenosine monophosphate-activated protein kinase
(AMPK), a sensor of nutritional level that becomes acti-
vated during fasting [40] was strongly upregulated in PLIN2
knockdown cells, but reduced again upon OA induction.
This shows that the cells still react to nutritional abundance.
The lack of PLIN2, although it does not have a detectable
influence on LDs, seems to transfer some kind of fasting
signal that activates PRKAA2 transcription. However, our
data do not provide any information on PRKAA2 activity,
which has to be analyzed in the future.

In addition, PPARa and g, which regulate lipid metabo-
lism, were downregulated inPLIN2 siRNA-treated cells. This
fits well with the predominant downregulation of lipid ca-
tabolism genes that are at least, in part, directly regulated by
PPARa. Our data point at the existence of a PPAR-gene
regulatory network that depends onPLIN2 levels. In addition,
expression levels of genes important for insulin signaling
were altered after PLIN2 siRNA treatment. Interestingly, the
expression of IGFBP2 and 3, two important regulators of
IGF1 signaling [41], were induced, while IGF itself was re-
duced. Overall, these data indicate that although PLIN2
knockdown has no detectable effect on LD formation, it has a
major impact on metabolic activities of the cell.

A knockdown of PLIN2 was not possible in HLCs because
of the low transfection efficiency in primary cells. As PLIN2
is a target of PPARa signaling [39], we interfered with

PPARa activity using two small molecules, Fenofibrate
(agonist) and GW6471 (antagonist). Again, we could not
observe any changes in LD formation after treating induced
HLCs with either Fenofibrate or GW6471. However, we in-
vestigated only short-term effects and it has been shown that
PPARa activation over a longer time period reduces steatosis
in HepaRG cells [37]. Nonetheless, we observed major gene
expression changes that occur as an immediate reaction to-
ward PPARa modulation accompanying OA induction. Ex-
pressed genes could be mapped to pathways related to lipid,
glucose, and purine metabolism. Interestingly, the latter was
not present in OA-induced HLCs, where PPARa activity was
reduced by GW6471. In this study, the most prominently
upregulated GOs belonged to lipidmetabolism. This indicates
that the PPARa agonist and antagonist do not simply influence
gene expression in opposing directions, although we observed
this for a panel of key metabolic genes, but they also modify
metabolic pathways from different angles.

Genes of the purine metabolism were generally regulated
in Fenofibrate-treated cells. A recent study by Asby et al.
demonstrated that Aminoimidazole carboxamide ribonucle-
otide (AICAR), an intermediate product in de-novo purine
synthesis, activates AMPK [42], which is a key regulator of
metabolism that senses the nutritional state of the cell and
induces PPARa activity and catabolic pathways [40]. We
observed that genes, which directly precede the synthesis of
AICAR, were either upregulated or exclusively expressed
during Fenofibrate treatment. Thus, it is possible that in ad-
dition to a direct influence on fat and glucose metabolism,
PPARa also indirectly enhances these pathways by regulating
purine metabolism, and thus, AMPK activity.

For most of the genes that were analyzed in more detail,
treatment with the PPARa agonist and antagonist resulted as
expected in opposing changes in expression.While GW6471-
mediated inhibition of PPARa resulted in downregulation of
genes involved in lipid catabolism, activation using Fenofi-
brate reduced expression ofAGPAT2 andHMGCR, which are
involved in biosynthesis of phospholipids and cholesterol,
respectively. Thus, our HLCmodel can, in part, reproduce the
beneficial role of PPARa enhancement in patients with
metabolic syndrome at least with regard to the reduced ex-
pression of lipid and cholesterol synthesizing enzymes.

In addition to major gene expression changes, we ob-
served that the expression of most liver-specific microRNAs
was downregulated as an early reaction to steatosis induc-
tion. Among the most strongly downregulated miRNAs,
miR-122 is a key factor in liver development, differentia-
tion, and homeostasis. It is elevated in the serum of NAFLD
patients, while its expression levels in hepatocytes are
concomitantly reduced, which is corroborated by our ob-
servations [43,44]. MiR-122a knockout mice develop stea-
tosis and have altered levels of enzymes important for
lipogenesis, LD formation, and lipid transport [45,46]. MiR-
106b has not yet been associated with NAFLD, but its
overexpression has been reported during development of
cirrhosis and hepatocellular carcinoma [47].

Among the putative miR-106b and -122 targets predicted
by at least four of the algorithms implemented in miRWalk,
we confirmed CPAMD8, ATL3, and EPHA7 as new miR-122
and miR-106b targets, respectively. None of these three
proteins have been functionally associated with NAFLD.
However, the validated, as well as the predicted, impact of

IPS/ES CELL-DERIVED HEPATOCYTE-LIKE CELLS MODEL NAFLD 1131

238 Publications as contributing author



downregulated liver-related miRNAs on their expression to-
gether with their concordant upregulation in induced HLCs
point to a functional role of these factors, but mechanisms
remain to be elucidated.

We are aware of the fact that the two analyzed hPSC lines
can only give a first impression of the general mechanisms
of NAFLD development. To dissect these in more detail, we
have generated several patient-specific iPSC lines, which are
currently being characterized and which will be used in the
future for more detailed analyses of the disease [48].

To summarize, our results show that hPSC-derived HLCs
are a valuable in vitro model for investigating the molecular
basis of the early steps of NAFLD. They accumulate LDs,
and expression changes of metabolically relevant genes
mirror those observed in liver biopsies of steatosis patients
[31]. In addition, lipid metabolism can be regulated by
modulating the activity of PPARa. A short overview of the
different processes is given in Fig. 8.
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Abstract: Genes associated with immune response and inflammation have been identified as genetic

risk factors for late-onset Alzheimer´s disease (LOAD). The rare R47H variant within triggering

receptor expressed on myeloid cells 2 (TREM2) has been shown to increase the risk for developing

Alzheimer’s disease (AD) 2–3-fold. Here, we report the generation and characterization of a model

of late-onset Alzheimer’s disease (LOAD) using lymphoblast-derived induced pluripotent stem

cells (iPSCs) from patients carrying the TREM2 R47H mutation, as well as from control individuals

without dementia. All iPSCs efficiently differentiated into mature neuronal cultures, however AD

neuronal cultures showed a distinct gene expression profile. Furthermore, manipulation of the

iPSC-derived neuronal cultures with an Aβ-S8C dimer highlighted metabolic pathways, phagosome

and immune response as the most perturbed pathways in AD neuronal cultures. Through the

construction of an Aβ-induced gene regulatory network, we were able to identify an Aβ signature

linked to protein processing in the endoplasmic reticulum (ER), which emphasized ER-stress, as a

potential causal role in LOAD. Overall, this study has shown that our AD-iPSC based model can be

used for in-depth studies to better understand the molecular mechanisms underlying the etiology of

LOAD and provides new opportunities for screening of potential therapeutic targets.

Keywords: late onset Alzheimer’s disease; iPSC-derived neuronal cultures; TREM2 R47H;

AβS8C dimer

1. Introduction

Currently, there are 47 million people worldwide living with dementia, a number that is estimated

to increase to more than 131 million in 2050 [1]. Alzheimer’s disease (AD) is a neurodegenerative disease

and the most common and devastating cause of dementia, contributing to 60–70% of all cases [2]. AD is

clinically characterized by a progressive decline of cognitive functions and, according to the classical
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amyloid hypothesis two key molecules have been implicated in AD neuropathology: amyloid-beta

(Aß) and the protein TAU [3]. Aß peptides are derived from sequential proteolytic cleavages of the

amyloid precursor protein (APP). They form extracellular aggregated deposits known as amyloid

plaques. Intracellularly, hyper-phosphorylated TAU forms aggregates composed of twisted filaments

known as neurofibrillary tangles (NFTs). As a consequence of the imbalanced crosstalk between Aß

and TAU, multiple neuropathological mechanism ensue, such as, synaptic toxicity, mitochondrial

dysregulation and microglia-derived inflammatory responses, finally leading to neuronal death [4,5].

Age is the greatest risk factor for AD and it can divided it into early-onset AD (EOAD) when the

patients are younger than 65, and late-onset AD (LOAD) when the patients manifest symptoms after

the of age 65 [6]. Despite EOAD being responsible for a small minority of all cases, the studies of

familiar AD patients (fAD) have revealed important aspects of the genetic factors implicated in the

disease, such as the causal mutations in APP, PSEN1 and PSEN2. On the other hand, LOAD is a

very complex and multifactorial disease where most cases are sporadic with no clear familiar pattern

of disease [7,8]. Many genetic risk factors have been implicated in increasing the susceptibility for

LOAD, among which is the well establish apolipoprotein E (APOE). Individuals carrying one ε4 allele

have a 3-fold increased risk of AD while individuals carrying the two ε4 alleles face an approximately

12-fold increased risk of AD [9,10]. More recently genome-wide association studies (GWAS) and large

scale sequencing projects have led to the discovery of other genetic variants in more than 40 loci that

influence the risk for LOAD [11–16]. These genes are known to be involved in biological pathways such

as cholesterol metabolism, APP metabolism, MAPT metabolism, cytoskeleton and axon development,

immune response and endocytosis/vesicle-mediated transport and epigenetics [17,18]. As a more

direct link between immune responses and AD, especially microglia-related genes with an increased

risk for developing LOAD were identified by high-throughput sequencing technologies [19,20]. One of

multiple genetic risk variants identified in these studies is the rare p.Arg47His (R47H) variant within

triggering receptor expressed on myeloid cells 2 (TREM2), which has been shown to increase the risk

of developing AD by 2–3-fold in several European and North American populations [19–24].

TREM2 is a cell surface receptor of the immunoglobulin superfamily expressed on various cells of

the myeloid linage including CNS microglia, bone osteoclasts, alveolar and peritoneal macrophages [25]

According to neuropathology studies in AD patients, animal models and in vitro studies, the TREM2

R47H variant induces a partial loss of function of TREM2, compromising microglia function and thus

contributing to the development of AD. TREM2 deficiency in AD mouse models and patients carrying

the R47H variant showed decreased clustering of microglia around the plaques, thereby facilitating the

build-up of Aβ plaques and injury to adjacent neurons [26–29]. Recent data have shown that cells

expressing the R47H variant displayed impaired TREM2-Aβ binding and altered TREM2 intracellular

distribution and degradation, thus providing a potential mechanism by which TREM2 R47H mutation

increases the risk for LOAD [30,31]. The adoption of induced pluripotent stem cells (iPSCs) technology

provides a platform to derive a reliable human disease model for better understanding the effect of risk

factors in neurons derived from primary cells of affected patients. iPSC modeling of AD has provided

an important proof-of-principle regarding the utility of such cells for a better understanding of the

molecular mechanisms associated with the etiology of AD. So far, a number of the human iPSC-based

AD models have concentrated on using iPSCs derived from EOAD or LOAD patients with unidentified

mutations [32–38].

Here, we report for the first time the generation and characterization of a model of LOAD using

lymphoblast-derived iPSCs from patients harboring the R47H mutation in TREM2, as well as from

control individuals without dementia. To date gene regulatory networks governing LOAD have

been generated using human AD brain biopsies. In our current study, we have shown the feasibility

of using an iPSC-based approach to derive biologically meaningful pathways and an Aβ-induced

regulatory network from neuronal cultures that mirrors some of the pathways that have been identified

by the LOAD brain biopsies, namely immune response, phagocytosis and unfolded protein response

pathways [39]. Our study thus demonstrates that AD iPSC-derived neuronal cultures can be used for
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in depth studies to understand the molecular mechanisms underlying the onset of Alzheimer’s disease

and for screening of potential therapeutic targets.

2. Results

2.1. Ipscs Efficiently Differentiate into a Functional Neuronal Culture

iPSCs derived from lymphoblasts from two LOAD patients carrying the TREM2 R47H risk variant

(AD2-2 and AD2-4), as well as aged-matched control individuals without dementia (CON8 and CON9)

were used for this study [40–43]. The summary of the characteristics of the iPSC lines used in this

study as well as their APOE status are shown in Table 1.

Table 1. Summary of the healthy controls and Alzheimer’s disease (AD) induced pluripotent stem cell

(iPSC) lines used in this study.

iPSCs
Name

Status
AD Risk
Variant

Age
Age at
Onset

Gender
APOE

Genotype
Reference

CON8
Control

individual
Control 69 - M 3/4 [43]

CON9
Control

individual
Control 75 - F 3/3 [40]

AD-2-2 AD patient
TREM2
p.R47H

heterozygous
65 60 M 4/4 [42]

AD-2-4 AD patient
TREM2
p.R47H

heterozygous
67 64 F 2/4 [41]

It has been suggested that GABAergic neurotransmission plays a very important role in AD

pathogenesis such as Aβ toxicity, hyperphosphorylation of TAU and the APOE effect [44–46]. In light

of this information, we modified a previously established embryoid body-based protocol [47] to

generate iPSC-derived neuronal cultures enriched in GABAergic interneurons. Figure 1A shows the

timeline schematic for the protocol in which all iPSC lines were successfully differentiated into neuronal

networks enriched in GABAergic interneurons within a course of 80 days (Figure S1). To qualitatively

characterize the progression of differentiation, we performed immunostaining for various markers

during the differentiation process. Neural rosettes expressed the progenitor markers PAX6 and Nestin

(Figure 1B) and after being selected and grown as neurospheres for 7 days, the progenitor cells

(SOX1+) acquired predominantly a forebrain identity due to the expression of the medial ganglionic

eminence (MGE) transcription factor NKX2.1 (Figure 1C), in addition to the telencephalic transcription

factor FOXG1 (Figure 1D). After maturation, the neural cultures were composed of GFAP+ glia cells

and neurons expressing the pan-neuronal markers Tubulin Beta-III and MAP2 (Figure 1E). Neurons

differentiated for 80 days expressed the maturation markers Synapsin I (SYN1) and neurofilaments

(SMI-32; Figure 1F), as well as the neurotransmitter, GABA (Figure 1G). In order to assess the maturation

status of the neuronal cultures, we performed RNA sequencing to analyze the transcriptome profile

at day 80. Figure 1H shows a heat map of Pearson correlation analysis for key maturation neuronal

markers together with the glia markers OLIG2 and GFAP in the iPSC-derived neuronal cultures

compared to commercially bought RNA from fetal, adult and AD brain. All iPSC-derived neuronal

cultures expressed similar levels of dopaminergic and serotonergic markers and higher levels of

GABAergic interneuron markers. To complement and independently confirm these expression data,

quantitative real-time PCR (qRT-PCR) analysis was carried out to evaluate the expression levels of

GABAergic interneuron markers PV, SOM, CALB2, GAD67 and GAD65 (Figure S1). Despite the

variability of expression levels of the different markers, we observed that the iPSC-derived neuronal

cultures might be composed mostly of somatostain (SST) and calretinin (CALB2) subtypes of GABA
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interneurons. Moreover, due to the low expression level observed for TREM2 when compared with

the commercially bought fetal, adult and AD brain RNA, qRT-PCR was performed for all iPSC-derived

neuronal cultures. TREM2 is expressed in all lines but however significantly upregulated in AD2-2

(Figure 1I). Taken together, we proposed (i) that the presence of the TREM2 R47H variant in the AD2-2

and AD2-4 lines has no significant effect on the neuronal differentiation capacity when compared to the

control lines CON8 and CON9, (ii) though we did not analyze our neuronal cultures for the presence

of microglia, the mixed neuronal culture might probably harbor these.

Int. J. Mol. Sci.  x FOR PEER REVIE of

presence of the TREM R H v riant in the AD2- and AD2-  lines h s no significant effect on the 

neuronal differentiation c pacity when compared to the control lines CON  and CON , (ii) though 

we did not analyze our neuronal cultures for the presence of microglia, the mixed neuronal culture

might probably h rbor these. 

 

Figure 1. Differentiation and characterization of iPSC-derived neuronal cultures. (A) Scheme

illustrating the m in stages of the differentiation protocol for generating iPSC-derived neuronal 

network enriched in GABAergic interneurons. (B-G) Representative immunocytochemistry images of 

(B) neural rosettes expressing the progenitor markers PAX6 (red) and Nestin (green), (C) neurosphere

expressing the progenitor marker SOX1 (green) and the MGE marker NKX2.1 (red)  (D) neurosphere

expressing the progenitor marker SOX1 (green) and the forebrain marker FOXG1 (red), (E) neuronal 

Figure 1. Differentiation and characterization of iPSC-derived neuronal cultures. (A) Scheme illustrating

the main stages of the differentiation protocol for generating iPSC-derived neuronal network enriched

in GABAergic interneurons. (B-G) Representative immunocytochemistry images of (B) neural rosettes
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expressing the progenitor markers PAX6 (red) and Nestin (green), (C) neurosphere expressing the

progenitor marker SOX1 (green) and the MGE marker NKX2.1 (red), (D) neurosphere expressing

the progenitor marker SOX1 (green) and the forebrain marker FOXG1 (red), (E) neuronal network

expressing the pan-neuronal markers TUBB3 (orange) and MAP2 (green) as well as GFAP (magenta),

(F) neural maturation markers SYN1 (green) and SMI-3 (red) and (G) interneurons expressing the

neurotransmitter GABA (green). Nuclei are stained with Hoechst. Scale bar, 50 µM. (H) Heatmap

of Pearson correlation analysis of RNA-seq data from neural differentiation of control (CON8 and

CON9) and AD lines (AD2_2 and AD2 _4) and commercially bought RNA from fetal, adult and

AD brain for neural progenitor, early neuronal and mature dopaminergic, serotonergic, GABAergic

interneuronal markers and glia markers. (I) Relative gene expression of TREM2 in iPSC-derived

GABAergic interneurons network from control and AD lines shown as fold change relative to embryoid

bodies (EBs). * p < 0.05, ** p < 0.01, one-way ANOVA, followed by Tukey´s multiple comparisons test.

Data are presented as mean ± SEM from three independent experiments.

2.2. The AD Neuronal Network Shows a Distinct Gene Expression Associated with Metabolism and
Immune-Related Pathways

To obtain an overview of the transcriptome changes between the AD (AD2-2 and AD2-4) and

the control (CON8 and CON9) neuronal cultures, we screened for differentially expressed genes

(DEGs). Employing RNA-seq, we identified 4990 genes exclusively expressed in the AD neuronal

cultures (Figure 2A). BiNGO was used to perform gene ontology (GO) term enrichment analysis of the

4990 genes, the results are illustrated as a tree-like structure (Figure 2B, Table S1). In depth analyses of

the cellular component identified significant enrichment associated with membrane and extracellular

space. Regarding biological processes, these genes were significantly enriched in processes related to

the response to the stimulus and transport. Moreover, molecular functions such as signal transducer

activity, receptor activity and transporter activity, including ion membrane transporter activity and

channel activity were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis revealed metabolic pathways, which include drug metabolism—cytochrome P450,

retinol metabolism and steroid hormone biosynthesis together with a neuroactive ligand–receptor

interactor (Figure 1C). As it has been shown that TREM2 regulates innate immunity in AD [48],

we additionally analyzed GO terms for biological processes of immune-related genes within the

4990 gene set. Remarkably, 14 significantly enriched terms associated with the regulation of innate

and adaptive immune response were identified (Figure 2D). Overall, these data may suggest that

AD neuronal cultures exhibit alterations in key signaling pathways related to metabolism and the

immune system.

2.3. Characterization of AD Hallmarks in CON and AD Neuronal Cultures

Numerous evidence support the notion that the small oligomers of Aβ42 are intricately associated

with the amyloid cascade [49,50]. However, recent studies have shown that Aβ dimers, abundantly

detected in brains of AD patients, are sufficient to account for neurotoxicity and initiating the amyloid

cascade [51–54]. Here, we aimed at investigating the effects of the TREM2 R47H mutation in Aβ

production as well as the response of CON and AD iPSC-derived neuronal cultures to stimulations

with the well described Aβ-S8C dimer [55–57]. After 4 months of differentiation, neurospheres were

dissociated into single cells and differentiated for a further 6 weeks. Aβ levels were measured and the

neuronal cultures were stimulated with 500 nM of the Aβ-S8C dimer for 72 h (Figure 3A). Conditioned

media from the non-stimulated CON and AD lines were analyzed for comparative Aβ40 and Aβ42 levels

employing ELISA. Interestingly, neurons derived from the AD iPSCs lines (AD2-2 and AD2-4) and the

CON iPSCs lines (CON8 and CON9) secreted Aβ with similar Aβ42 ratio (Figure 3B-D). We further

performed Western blot analysis to evaluate the levels of TAU phosphorylation at Ser202/Thr205 (AT8

epitope), total TAU and total APP after stimulation with the Aβ-S8C dimer (Figure 3E). Although

phosphorylation of TAU was found in all neuronal cultures, no significant differences in the expression

levels of total TAU (Figure 3F) and phosphorylated TAU (Figure 3G) were observed between AD and
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CON neuronal cultures after treatment with the Aβ-S8C dimer. Surprisingly, the results revealed that

stimulation with the Aβ-S8C dimer induced a modest and uniform increase in the expression levels of

APP in all CON and AD neuronal cultures (Figure 3H). To focus on the effect of the Aβ-S8C dimer,

we quantified APP levels in pooled samples, and this revealed significantly increased APP expression

(Figure 3I). Taken together, these results confirm that the neuronal cultures (CON8 and AD) secrete

Aβ and although no significant differences in the expression of total and phosphorylated TAU were

observed, APP expression was significantly elevated after Aβ-S8C dimer stimulation. We therefore

conclude that the CON and the AD iPSC-derived neuronal cultures were capable of recapitulating

in vitro the hallmarks of AD-like cellular pathology.Int. J. Mol. Sci.  x FOR PEER REVIE of
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Figure 2. Distinct gene expression profiles associated with AD neuronal networks. (A) Venn diagram

illustrating genes exclusively expressed in the AD neural network (4990), the control (CON) network

(292) or common between both (intersection -15158) (detection p-value < 0.05). (B) BiNGO analysis of

the differentially expressed genes (DEGs; 4990) exclusively expressed in the TREM2 neuronal network

(4990). The orange color of the circles correspond to the level of significance of the over-represented

gene ontology (GO) category and the size of the circles is proportional to the number of genes in the

category (p-value < 0.05). (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of

the genes exclusively expressed in the AD neuronal network (4990). (D) Significantly enriched gene

ontology (GO) terms (biological processes) of the genes exclusively expressed in the AD neuronal

network (4990) associated with immune system processes (p-value < 0.05).
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Figure 3. Stimulation of iPSC-derived neuronal cultures with the Aβ-S8C dimer. (A) Scheme illustrating

the approach. Neurospheres were maintained for 4 months in culture, dissociated into single cells,

differentiated for 6 weeks then stimulated with 500 nM of Aβ-S8C dimer for 72 h. Western blotting,

microarrays and cytokine arrays were performed. (B-D) ELISA quantification of (B) total Aβ40, (C) total

Aβ42 levels and (D) Aβ42/Aβ40+42 ratio from media collected from the interneuronal network and

normalized to the total protein content. All data are presented as mean ± SEM from six independent

experiments. (E) Representative Western blot images of endogenous TAU, phosphorylated TAU (Ser

202 and Thr 205), APP and the neural differentiation marker βIII-Tubulin after stimulation with 500 nM

of the Aβ-S8C dimer. β-ACTIN was used as a loading control. (F-H) Quantification of (F) total TAU,

(G) phosphorylated TAU and (H) APP levels. Results are normalized against β-ACTIN and shown as a

percentage of control (CTR). All data are presented as mean ± SEM from 3 independent experiments.

(I). Effect of the Aβ-S8C dimer on APP levels in iPSCs derived neuronal network (CON8, CON9, AD2-2

and AD2-4) compared to control. Data are presented as mean ± SEM from 3 independent experiments

from 4 biological replicates. * p < 0.05, one-tail t-test versus control.

2.4. The Aβ-S8C Dimer Induces Metabolic Dysregulation in AD Neuronal Cultures

To assess the impact of the Aβ-S8C dimer on the gene expression profiles of CON and

AD iPSC-derived neuronal cultures, we performed transcriptome analysis of CON8 and AD2-4

iPSC-derived neuronal cultures before and post stimulation with the Aβ-S8C dimer. This analysis

identified differential expressed genes (DEGs) between the control and Aβ-S8C dimer treatment.

Hierarchical cluster analysis revealed a clear separation of CON8 and AD-TREM2-4 iPSC-derived

neuronal cultures (Figure 4A). Remarkably, CON8_Aβ clustered separately from AD2-4_Aβ, therefore

implying that genetic background effects were more pronounced than the response elicited by the

Aβ-S8C dimer.
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gene expression data for CON8 and AD2-4 stimulated with the A -S8C peptide. Transcriptomes of

CON8_CTR cluster with CON8_ A  while those of the AD2-4_CTR cluster separately with TREM2-

4_ A . (B) Venn diagram showing genes expressed only in the CON8 neural network subjected to

A -S8C peptide stimulation (green), the control condition (grey) and common to both conditions 

(intersection; detection value < 0.05). (C) Top 10 significantly enriched gene ontology (GO) terms for 

biological processes of DEGs upregulated (254-red) and downregulated (614-green) subjected to A -

S8C peptide stimulation in CON8 neuronal cultures ( -value < 0 05). (D) KEGG enrichment analysis 

of up- and downregulated DEGs ( -value < 0.05). (E) Venn diagram showing genes expressed only in

the AD2_4 neuronal culture when stimulated with the A -S8C peptide (green), the control condition

(grey) and common to both conditions (intersection; detection  value ). (F) Top  significantly

enriched gene ontology (GO) terms for biological processes of DEGs upregulated (370-red) and 

Figure 4. Gene expression profiles of the CON8 and AD neural cultures stimulated with the Aβ-S8C

dimer. (A) Dendrogram obtained by hierarchical cluster analysis of microarray-based (Affymetrix)

gene expression data for CON8 and AD2-4 stimulated with the Aβ-S8C peptide. Transcriptomes of

CON8_CTR cluster with CON8_ Aβwhile those of the AD2-4_CTR cluster separately with TREM2-4_ Aβ.

(B) Venn diagram showing genes expressed only in the CON8 neural network subjected to Aβ-S8C

peptide stimulation (green), the control condition (grey) and common to both conditions (intersection;

detection p value < 0.05). (C) Top 10 significantly enriched gene ontology (GO) terms for biological

processes of DEGs upregulated (254-red) and downregulated (614-green) subjected to Aβ-S8C peptide

stimulation in CON8 neuronal cultures (p-value < 0.05). (D) KEGG enrichment analysis of up- and

downregulated DEGs (p-value < 0.05). (E) Venn diagram showing genes expressed only in the AD2_4

neuronal culture when stimulated with the Aβ-S8C peptide (green), the control condition (grey) and

common to both conditions (intersection; detection p value < 0.05). (F) Top 10 significantly enriched

gene ontology (GO) terms for biological processes of DEGs upregulated (370-red) and downregulated

(311-green) subjected to Aβ-S8C peptide stimulation in the AD2_4 neuronal cultures (p-value < 0.05).

(G) KEGG enrichment analysis of up- and downregulated DEGs (p-value < 0.05).
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Evaluation of DEGs in CON8 neuronal cultures before and after stimulation with the Aβ-S8C dimer

identified 868 genes (Figure 4B), 254 were upregulated and 614 downregulated (Table S1). Figure 4C

shows the related Top10 GO BP (biological processes) terms. Upregulated genes in CON8_Aβ were

significantly enriched for GO terms such as interferon-gamma-mediated signaling pathway and cellular

response to cytokine stimulus. In contrast, the downregulated genes in CON8_Aβ in comparison to

control were associated with the GO terms, regulation of primary metabolic processes and regulation

of RNA biosynthetic process. In agreement with the GO analysis, KEGG pathway analysis for the

same set of genes revealed the upregulated genes in CON8_ Aβ to be associated in pathways related

to inflammatory responses, for example, Staphylococcus aureus infection and antigen processing and

presentation. In addition, CON8_Aβ also showed upregulation of the phagosome pathway, while Wnt

signaling pathway and axon guidance were among the downregulated KEGG pathways (Figure 4D,

Table S1).

Focusing on AD neuronal cultures, 681 DEGs were identified when comparing Aβ-S8C dimer

stimulated and non-stimulated AD2-4 neuronal cultures (Figure 4F), of these 370 were upregulated

and 311 downregulated (Table S2). Figure 4F lists the Top 10 GO BP terms. The upregulated genes in

AD2-4_Aβwere significantly enriched for amino acid activation and RNA metabolic process. In contrast,

the downregulated genes were associated amongst others with cholesterol biosynthetic process and

neurogenesis. KEGG pathway analysis revealed upregulation of pathways such as glycine, serine and

threonine metabolism, p53 signaling pathway and mTOR signaling pathway. Surprisingly, in contrast

to CON8_Aβ, AD2-4 neuronal cultures stimulated with Aβ-S8C dimers showed down-regulation of the

phagosome pathway (Figure 4G, Table S2). Taken together, these results imply that the AD2-4 neuronal

cultures respond in a unique way to Aβ-S8C dimer stimulation, namely a metabolic dysregulation in

contrast to an inflammatory response, which could be observed in the CON8 neuronal cultures.

2.5. Aβ-S8C Dimer Stimulation of the AD Neuronal Culture Revealed Indications of Impaired
Phagocytosis-Related Pathway

TREM2 is crucial for regulating phagocytosis in microglia and the effect in phagocytosis by the

AD-associated TREM2 mutations have recently been a focus of studies [58–63]. As described above,

phagocytosis appeared as a significantly upregulated pathway in CON8 but was downregulated in

AD2-4 neuronal cultures after Aβ stimulation. We then analyzed differential expression of genes

associated with this pathway. Figure 5A depicts the KEGG annotated phagosome pathway with

upregulated genes in CON8_Aβ (red) and those downregulated in AD2-4_Aβ (green). After stimulation

with the Aβ-S8C dimer, CON8 induced upregulation of HLA-DMA, HLA-DMB. HLA-DOA, HLA-DPB1,

HLA-DQA1, HLA-DQB1, HLA-DRB1 and HLA-F, all genes associated with the Major Histocompatibility

complex II (MHCII). In contrast to the AD2-4 non-stimulated cultures, stimulation with the Aβ-S8C

dimer induced down-regulation of TUBB4A, TUBB4B, DYNC1H1, LAMP2, ATP6V1A, ACTB, THBS1,

CALR and TUBBA1C. Table S3 shows the relative mRNA expression, from which the expression of CALR,

DYNC1H, LAMP2, HLA-DOA and HLA-DQB1 was confirmed by RT-PCR (Figure 5B). Taken together,

these results suggest that neuronal cultures harboring the TREM2 R47H variant but not controls likely

undergo an impaired phagocytosis response in the presence of the Aβ-S8C dimer.

2.6. AD Neuronal Cultures Show a Compromised Inflammatory Response-Related Gene Expression Pattern
upon Stimulation with the Aβ-S8C Dimer

Based on the fact that dysregulated cytokine production from microglia, astrocytes and neurons

are associated with the development of AD [64], we analyzed the cytokine expression profile as

well as the secretion profile from the AD neuronal cultures after stimulation with the Aβ-S8C dimer.

Employing microarray-based global gene expression data, a heatmap-based analysis of 100 key

cytokines (extracted from the Proteome Profiler Human XL Cytokine Array, R&D systems) revealed

that stimulation with the Aβ-S8C dimer induced transcriptional changes in a subset of these genes

in AD-TREM2-4 (Figure 6A). Interestingly, the AD2-2 neuronal culture showed down-regulation of
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cytokines, chemokines and acute phase genes such as IL1RL1, IL13, IL15, IL16, IL27, IL32, CXCL10,

CXCL11, TFRC, SERPINE1, C5, THBS1, RLN2, SPP1, EGF, LIF, GC, BSG, MPO, CST3, FLT3LG and

CCL20. Surprisingly, only IGFBP2, RBP4, VEGFA, CXCL5, IL19 and TDGF1 had higher expression levels

after Aβ-S8C dimer stimulation when compared to the control samples. We next aimed at determining

if stimulation with the Aβ-S8C dimer could also alter the secretion of cytokines and chemokines in

the AD neuronal cultures. To this end, we collected the cell culture supernatants from the AD2-2

and AD2-4 neuronal cultures 72 h post stimulation with the Aβ-S8C dimer and from non-stimulated

controls. Thereafter, we carried out secretome analysis employing the proteome profiler cytokine

array (Figure 6B). In agreement with the previous results, the level of secretion of all cytokines and

chemokines decreased after Aβ-S8C dimer stimulation when compared to control (Figure 6C), with the

exception of ICAM-1, MIF and SerpinE1. Taken together, these results might imply that AD neuronal

cultures compromise the efficient activation of the inflammasome pathway in response to Aβ-S8C

dimer stimulation.

2.7. A Protein–Protein Interaction (PPI) Network Identifies an AD-Depended Aβ-S8C Signature

To gain insights into a probable gene expression signature triggered by the Aβ-S8C dimer in

LOAD, we focused on genes exclusively expressed in the AD neuronal culture after stimulation with

the Aβ-S8C dimer. A Venn diagram analysis revealed that most (12687) genes were expressed in

common between CON and AD with and without Aβ-S8C dimer stimulation (Figure 7A, Table S4).

However, 95 genes were exclusively expressed in AD neuronal cultures stimulated with Aβ-S8C

dimer. GO analysis (Figure 7B) unveiled several terms related to neuron and immune-system related

processes including stimulatory C-type lectin receptor signaling pathway as most significant. Pathway

analysis of the 95 AD Aβ-S8C genes (Figure 7C) revealed neuroactive ligand-receptor interaction as

the most significant pathway and metabolic pathways with the higher number of genes. The 95 genes

were further analyzed in a protein–protein interaction network (PPI) based on interactions from the

BioGrid database resulting in a network containing APP and a big hub centered around HSPA5, which

encodes the endoplasmic reticulum chaperone BiP (Figure 7D). HSPA5 has been reported to control the

activation of the unfolding protein response (UPR), a pro-survival pathway in response to ER stress

caused by misfolded proteins. Since there is evidence that the ER stress response, namely the UPR

plays a role in the pathogenesis of AD [65], we took a deeper look into the GO terms related to ER

after Aβ-S8C dimer stimulation (Table S2, highlighted in yellow). We observed that the Aβ-S8C dimer

triggered an ER stress response, which elevated the expression of ATF3 and DDIT in both CON and AD.

Interestingly, the ER stress response was more prominent in the AD neuronal cultures, where several

genes from the UPR were upregulated (XBP1, AT4, PUMA and HERPUD1) in contrast to HSPA5 and

CALR, which were downregulated (Figure 8, Table S5). These results highlighted the unique response

triggered by the Aβ-S8C dimer in the AD neuronal cultures. By generating a PPI network we were

able to link the Aβ-S8C signature genes to ER-stress, namely the activation of UPR.

251



Int. J. Mol. Sci. 2020, 21, 4516 11 of 27
Int. J. Mol. Sci.  x FOR PEER REVIE of

 

Figure 5. Representation of the KEGG phagosome pathway. (A) Upregulated DEGs genes in response 

to A -S8C peptide stimulation in CON8 neuronal cultures are shown as red boxes and downregulated
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DYNC1H, LAMP2, HLA-DOA and HLA-DQB1 analyzed by RT-PCR. D ta are presented as mean ±
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Figure 5. Representation of the KEGG phagosome pathway. (A) Upregulated DEGs genes in response

to Aβ-S8C peptide stimulation in CON8 neuronal cultures are shown as red boxes and downregulated

DEGs in AD2-4 neuronal cultures are shown as green boxes. (B) Relative gene expression of CALR,

DYNC1H, LAMP2, HLA-DOA and HLA-DQB1 analyzed by RT-PCR. Data are presented as mean ±

SEM from two independent experiments.
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Figure 6. Analysis of cytokine expression and secreted factors in AD neuronal cultures upon Aβ-S8C

stimulation. (A) Heatmap of Pearson correlation analysis of microarrays data from AD neural

differentiation under Aβ-S8C stimulation (AD2-4_ Aβ1 and AD2-4_ Aβ2) or control (AD2-4_ CTR1

and AD2-4_ CTR2) showing the differential expression of cytokines. The highlighted genes in green

represent a cluster of cytokines downregulated upon Aβ-S8C stimulation whereas the highlighted

genes in red represent an upregulated cluster of cytokines. (B) Human cytokine array showing the

effect of the Aβ-S8C peptide on the secreted factors of neuronal cultures from pooled AD2-2 and AD2-4

culture supernatants of control condition and 72 h of Aβ-S8C stimulation. (C) Quantitative analysis of

the secreted factors shows that Aβ-S8C treatment decreases the amount of secreted cytokines in AD

neuronal cultures.
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with and without A -S8C stimulation. (B) Dot plot of gene ontologies (biological process)

overrepresented in the 95 AD_A  genes. (C) Dot plot of KEGG pathways overrepresented in the 95
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Figure 7. Aβ-S8C stimulated AD neuronal cultures activate a protein-protein interaction network,

which includes APP and HSPA5. (A) Venn diagram dissecting 95 genes expressed in Aβ-S8C stimulated

AD neuronal cultures from genes expressed in AD control and healthy neuronal cultures with and

without Aβ-S8C stimulation. (B) Dot plot of gene ontologies (biological process) overrepresented

in the 95 AD_Aβ genes. (C) Dot plot of KEGG pathways overrepresented in the 95 AD_Aβ genes.

(D) Protein–protein interaction network derived from the 95 AD_Aβ genes with APP and HSPA5.

Nodes from the 95 genes are colored green and the nodes added using the Biogrid database to connect

the network are colored red.
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Figure 8. Representation of the KEGG protein process in endoplasmic reticulum pathway. Upregulated

DEGs genes in response to Aβ-S8C stimulation in AD2-4 neuronal cultures are shown as red boxes,

upregulated DEGs genes in response to Aβ-S8C stimulation in CON 8 and AD2-4 neuronal cultures are

shown in yellow boxes and downregulated DEGs in AD2-4 neuronal cultures are shown as green boxes.

3. Discussion

While the mechanisms underlying the etiology of AD have been a focus of study over several

decades, the current knowledge about the etiology and pathogenesis of AD are still incomplete.

The use of primary neurons from animal models and immortalized cell lines based on modifications

in APP, PSEN1 and PSEN2 has provided some insights into EOAD. While these models are helpful

for studying a specific causal mutation (EOAD), there are several hurdles and limitations associated

with studying LOAD, which requires the endogenous expression of genetic mutations and their

genetic interactions. Understanding the biological implications of the recently identified genetic

risk variants, namely the R47H substitution in TREM2, is essential to enable the establishment

of genotype–phenotype correlations, which can lead to potential novel therapeutic approaches.

The breakthrough development of iPSCs technology provides the most applicable tool to create an

in vitro sporadic patient-derived model. Although modeling AD using patient-derived iPSCs has

been prominent, a handful of studies to date have generated and characterized iPSC-derived neuronal

cultures from LOAD patients [32,33,35,37,38]. This is the first study describing the generation and

characterization of a model of LOAD based on Aβ dimer stimulated neuronal cultures originating

from lymphoblast-derived iPSCs derived from LOAD patients carrying the missense mutation R47H

in TREM2.

First, we differentiated the iPSCs to neurons using a modified protocol described by Liu et al., 2013

and analyzed the distinct progression steps during the differentiation process. Transcriptome analysis

and immunocytochemistry confirmed the ability of our modified protocol to derive neurons and glia

cells within our neuronal cultures. Based on gene expression comparison between the iPSC-neuronal
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cultures with commercially bought fetal, adult and AD brain RNA we could show that our cells

expressed the expected maturation markers. Thus, our results imply that lymphoblast-derived iPSCs

from LOAD patients and healthy donors can be robustly differentiated into neuronal cultures. Moreover,

we did not observe profound differences in the differentiation and maturation propensity between iPSCs

derived from LOAD patients and healthy donors, in agreement with previous reports [33,35,37,38].

Cheng-Hathaway et al. and Sudom et al. reported that Trem2 R47H knock-in mice showed reduced

Trem2 mRNA and protein expression in the brain as well as reduced soluble fragments of Trem2

(sTrem2) in plasma [66,67]. More recently, Xiang et al. reported that a mouse-specific splicing caused

this reduction and TREM2 mRNA levels were normal in both iPSC-derived microglia and in patient

brains with the TREM2 R47H variant [68]. We therefore evaluated if TREM2 expression was different

in LOAD patients carrying the TREM2 R47H variant compared to the control. Our results indicate

that TREM2 mRNA was significantly upregulated in AD2-2 but not in the AD2-4 neuronal cultures

compared to the control. This ambiguity is probably due to the limitations imposed by our small

sample size. In addition, our neuronal culture is composed mainly of neurons so the TREM2 positive

cells are in low abundance.

Although the neuronal cultures derived from LOAD patients and healthy donors did not exhibit

differences in morphology or expression of differentiation markers, transcriptome analysis showed

a distinct profile. Interestingly, GO analysis revealed that the proteins encoded by the 4990 genes

exclusively expressed in AD neuronal cultures were predominantly mapped in the cell membrane and in

the extracellular space. These genes were involved in (i) biological processes (BP) terms such as response

to stimulus and secretion and (ii) molecular functions (MF) terms such as signal transducer activity,

receptor activity, transporter activity, channel activity and ion transmembrane transporter activity.

As part of these exclusively expressed genes we also identified genes of the matrix metalloproteinases

(MMPs) family, for example MMP2 and MMP9. Metalloproteinases play an important role in the

pathogenesis of AD. While MMP2 might have a protective role, MMP9 expression, which is increased

in AD patients, is induced by Aβ and it can influence TAU aggregation [69]. Furthermore, members

of the ATP-binding cassette (ABC) and the solute carrier (SLC) families were over-represented in the

GO_MF. ABC transporters have been implicated in AD pathophysiology, associated with processes

leading to the accumulation of Aβ in the CNS. Importantly, we observed the exclusively expression of

GLUT4 (SLC2A4), a crucial insulin sensitive glucose transporter upregulated in AD patients, which is

responsible for regulating glucose metabolism in neurons [70,71]. As anticipated, we also identified GO

terms related to the regulation of the innate and adaptive immune response as significantly enriched.

Implications of these results are that our AD neuronal cultures show a distinct signal transducer and

transporter activity that may contribute to metabolic alterations, to an inadequate immune response

and ultimately to neurotoxicity. According to the amyloid cascade theory, accumulation of Aβ plays a

key role in triggering the cascade of events underlying the pathogenesis of EOAD. However some

studies have shown that Aβ secretion is not altered in LOAD-derived neurons [37,72]. In accordance,

our results show that AD cultures secreted Aβ with a similar Aβ1-42 to Aβ1-40 ratio as the control.

Nonetheless, the levels of Aβ1-40 and Aβ1-42 were highly reproducible across multiple differentiations

(six) and lines (four), thus establishing our cell culture model as robust for manipulating the production

of Aβ. We subsequently aimed at evaluating the potential effect of Aβ in our neuronal cultures in

order to close the gap in our understanding of the mechanisms that are underlying the early stages of

AD. Aβ-S8C dimer can induce neurotoxicity and abnormal synaptic signaling, together with impaired

cognitive functions in the absence of plaque pathology, thus mimicking the early stages of AD [55].

Aβ-induced TAU hyper-phosphorylation has been described to initiate the signaling cascade alterations

that culminate in NFT formation and neuronal degeneration [73]. Phosphorylation of the AT8 epitope

(Ser202/Thr205) has been found to be elevated in sAD-derived neurons [37]. We were not able to detect

an increase in phosphorylation of TAU at Ser202/Thr205 upon Aβ-S8C dimer treatment. In addition,

there were no differences in the levels of phosphorylation detected between control and AD neuronal

cultures in the non-stimulated conditions. TAU can be phosphorylated on more than 80 residues,
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and it is known that Ser422 is phosphorylated earlier than Ser202/Thr205 during NFTs formation [74].

Based on these facts and the results obtained, we can assume that the duration of incubation of the

Aβ-S8C dimer was presumably not long enough to detect increased phosphorylation at Ser202/Thr205.

Our results show that independent of the genetic background, incubation with the Aβ-S8C dimer

increased the levels of total APP. A more in-depth analysis of APP processing will provide more

insights into the pathogenic role of the TREM2 R47H variant in EOAD.

In addition to interfering with total APP levels, Aβ-S8C dimer stimulation induced a remarkable

and significant transcriptome change in the control as well as in the AD neuronal cultures. Annotation

and enrichment analysis revealed that the upregulated DEGs induced by Aβ-S8C stimulation in

the control neuronal cultures are related to immune system activation (interferon-gamma-mediated

signaling pathway, cellular response to cytokine stimulus and adaptive immune response). Aβ soluble

species have also been linked to an attenuation of the Wnt signaling pathway, in addition to putative

effects on cell cycle, contributing to synaptic dysfunction and neurodegeneration. In accord, our data

revealed that Wnt signaling and cell cycle were downregulated after Aβ-S8C stimulation in the control

neuronal cultures. On the contrary, the AD neuronal cultures responded in a completely different

manner to stimulation with the Aβ-S8C dimer.

The effect of the AD-associated TREM2 mutations on phagocytosis is an active area of study

but so far variable results have been obtained. While R47H transduced HEK cells displayed a

reduced up-take of latex beads and Aβ1-42, no changes were observed in the fluorescent pH-sensitive

rhodamine Escherichia coli (pHrodo-linked E. coli) uptake assay [61]. Additionally, TREM2+/R47H

transdifferentiated microglia-like cells [58] and microglia-like cells derived from TREM2 T66M +/−,

T66M −/− and W50C−/− hPSCs, also showed no defects in the E. coli uptake [59,63]. However, Piers et al.

showed that iPSC-derived microglia harboring the TREM2 R47H mutation exhibit a substantial

deficil in the ability to phagocytose β-Amyloid [75]. We found that the control neuronal cultures

upregulated the phagosome pathway after Aβ-S8C stimulation, namely the genes associated with

MHCII. These observations are in line with previous reports where incubation with Aβ led to an

accumulation of MHC-II and AD patients also showed upregulation of MHC-II [76]. On the contrary,

these genes were not differentially regulated in our AD neuronal cultures, but interestingly other genes

associated with the phagosome pathway were downregulated. Calreticulin is encoded by the CALR

gene. It is an endoplasmic reticulum protein that interacts with Aβ, and is considered as a scavenger

for Aβ1-42 [77]. Low levels of calreticulin have been observed in AD brains, and it has been suggested

that this down-regulation can lead to the pathological processes of AD [78]. Notably, the levels of

tubulins TUBB4A and TUBB4B were downregulated, supported by Hondius et al., where the levels

of these tubulins identified by mass spectrometry analysis in human post-mortem brain tissue were

significantly decreased over the progressive stages of AD [79]. On the other hand, lysosome-associated

membrane protein 2 (LAMP-2) together with other lysosome-related proteins was found to be increased

in CSF from AD patients [80]. Interestingly, LAMP2 was downregulated in our AD neuronal cultures

leading us to speculate that R47H AD carriers have a unique response to phagocytosis, probably due

to the partial loss of function of TREM2 activity.

The analysis of pro-inflammatory cytokines at the levels of mRNA and the secretome of the

AD neuronal cultures in response to Aβ-S8C stimulation are of particular interest. Although the

mRNA expression of the IL-1β, IL-6, TNF-α and MIP-1α proinflammatory cytokines was upregulated

in some of the samples, the secretion of these cytokines was downregulated. A recent study using

iPSC-derived microglia-like cells from patients carrying the T66M and W50C missense mutation within

TREM2 showed that these cells have a deficit in the cytokine release [63]. Indeed, SPP1 and GPNMB,

encoding osteopontin and osteoactivin, were also downregulated in AD neuronal cultures and not in

the control after Aβ-S8C stimulation. SPP1 and GPNMB are microglia activation-related transcripts

that are upregulated in AD models and associated with Aβ accumulation. In support of our data,

it was recently reported that SPP1 and GPNMB reflect TREM2 signaling and the expression is highly

sensitive to the R47H variant [26]. Interestingly, there was a cluster of genes associated with insulin
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resistance, which was upregulated after Aβ-S8C stimulation. Increased levels of RBP4 were found in

APP/PSEN1 mice and in insulin resistant humans [81]. Along the same track, it has been suggested that

IGFBP2 plays a role in AD progression [82]. Both of these genes were indeed upregulated in response

to Aβ-S8C in our AD neuronal cultures, thus further lending credence to the fact that metabolic

dysfunction plays an important role in the pathogenesis of AD. It is noticeable that Aβ-S8C triggers

a unique response in AD neuronal cultures, when compared to the control. The creation of a PPI

network between the exclusively expressed genes in the AD after Aβ-S8C stimulation revealed HSPA5

as the core of the Aβ-S8C signature. HSPA5, a chaperone protein that upon accumulation of unfolded

proteins controls the activation of the UPR sensors [65], was found down-regulated after Aβ-S8C

in our AD TREM2 neuronal cultures. Katayama et al. found that HSPA5 levels are reduced in the

brains of AD patients [83]. Although Aβ-S8C stimulation upregulates ATF3 and DDIT3 (CHOP) in

both CON and AD neuronal cultures, the prominent alteration in the UPR was observed in the AD

TREM2 cultures with the upregulation of XBP1, ATF4, BBC3, HERPUD1 and CALR. In support of our

data, several studies have shown upregulation of the UPR in brain samples of AD patients [84,85].

According to Han et al. insufficient protein-folding homeostasis by URP increases expression of ATF4

and CHOP and initiates the ER-stress-mediated cell death, activating target genes involved in protein

synthesis like aminoacyl-tRNA synthetases and RNA metabolic processes leading to oxidative stress

and cell death [86]. Interestingly, biological processes related with increased protein synthesis such as

amino acid activation and RNA metabolic process together with the KEGG pathway protein processing

in the endoplasmic reticulum were upregulated in AD neuronal cultures. It seems that Aβ-S8C

stimulation leads to the activation of the UPR that initially might be protective, however if the balance

in proteostasis is not re-established, ER-stress-mediated cell death might mediate neurodegeneration

in AD.

4. Materials and Methods

4.1. iPSC Lines

The iPSC lines derived from AD patients as well as control individuals without dementia used in

this study have been characterized and published [40–43], as detailed in Table 1. All participants and/or

their legal guardian provided written informed consent for participation in the study. Ethical approval

was obtained by the Ethics Committee of the University Hospital Antwerp and the University of

Antwerp (Approval number 13/15/161 obtained on 22 April 2013). AD patients were ascertained

at the memory clinic of the ZNA Middelheim, Antwerpen, Belgium in the frame of a prospective

study of neurodegenerative and vascular dementia in Flanders, Belgium. Ethnicity-matched healthy

individuals were screened for neurological or psychiatric antecedents, neurological complaints and

organic disease involving the central nervous system. Ascertainment and TREM2 p.R47H genotyping

are described in detail in [24]. iPSCs were maintained on Matrigel-coated (Corning, Bedford, MA, USA)

plates in StemMACs culture medium (Miltenyi Biotec, Bergisch Gladbach, Germany). The medium

was changed every day and the cells were passaged every 5–6 days using PBS without calcium and

magnesium (Gibco, Life Technologies, Karlsruhe, Germany).

4.2. Neural Differentiation of the IPSC Lines

For the induction of GABAergic interneurons, iPSCs were differentiated using an embryoid

body-based protocol [47] with modifications. On day 1, the iPS cells were harvested and recultivated

in suspension in neural induction medium (NIM; DMEM/F-12 (Gibco, Life Technologies, Karlsruhe,

Germany), 1% NEAA (Lonza, Basel, Switzerland), 1% N2 supplement (Gibco, Life Technologies,

Karlsruhe, Germany), 2 µg/mL of Heparin (Sigma-Aldrich, Steinheim, Germany) and 1% P/S)

supplemented with 1 µM purmorphamine (Tocris, Bristol, UK), a SHH agonist. At day 5 the

formed aggregates, called embryoid bodies (EBs), were harvested and replated as adherent cells in

the same medium and the same concentration of purmorphamine. From day 10 to 18, primitive
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neuroepithelia structures were formed and neural rosettes were selected with STEMDiffNeural Rosette

Selection reagent (Stem Cell Technologies, Vancouver, Canada) and recultured in suspension in NIM

plus a B27 supplement (Gibco, Life Technologies, Karlsruhe, Germany; without retinoic acid) and

20 ng/mL of EGF and FGF2 (both PrepoTech, Hamburg, Germany). After 10 days the cells maintained

as aggregates (neurospheres) were dissociated into single cells with accutase (Gibco, Life Technologies,

Karlsruhe, Germany) and replated on Matrigel (Corning, Bedford, MA, USA) for the final differentiation

in neural differentiating medium (NDM; Neurobasal 1% NEAA, 1% N2 supplement and 1% P/S)

supplemented with 1µM of cAMP (Thermo Fisher Scientific, Rockford, IL, USA) and 10 ng/mL of

BDNF, GDNF and IGF-1 (all Immuno Tools, Friesoythe, Germany). The iPSC-derived neurons were

cultivated for approximately 80 days.

4.3. Cryosection of Neurospheres

Neurospheres were fixed in 4% paraformaldehyde (PFA) for 30 min at room temperature, washed

with PBS and cryoprotected in 30% sucrose in PBS overnight at 4 ◦C. Subsequently, these neurospheres

were transferred into embedding medium (Tissue-Tek OCT Compound 4583, Sakura Finetek),

snap-frozen on dry ice and stored at −80 ◦C. Neurospheres were cut into 10 µm thin slides using a

Leica CM3050 S cryostat (Leica Biosystems, Wetzlar, Germany).

4.4. Immunofluorescence Stainings

Cells were fixed with 4% paraformaldehyde for 15 min at room temperature (RT). Neurosphere

slides were thawed, dried and rehydrated in PBS. Fixed cells and neurosphere slides were permeabilized

with 0.2% Triton X-100 for 10 min and blocked with 3% BSA in PBS for 1 h. Samples were then incubated

with the following primary antibodies overnight at 4 ◦C: mouse anti-PAX6 (1:1000, SySy, Goettingen,

Germany # 153011), rabbit anti-Nestin (1:400, Sigma Aldrich, Steinheim, Germany #N5413), mouse

anti-NKX2.1 (1:1000, Merck Millipore, Burlington, MA, USA #MAB5460), goat anti-SOX1 (1:200, R&D,

Bristol, UK # MAB3369), mouse anti-FOXG1 (1:1000, Biozol, Eching, Germany # LS-C197226), mouse

anti-βIII-tubulin (1:200, Cell Signaling, Danvers, MA, USA #TU-20), rabbit anti-MAP2 (1:1000, SySy,

Goettingen, Germany #188002), guinea pig anti-GFAP (1:500, SySy, Goettingen, Germany #173004),

guinea pig anti-Synapsin 1 (1:500, SySy, Goettingen, Germany #106004), mouse anti-SMI-3 (1:2000,

Biolegend, San Diego, CA, USA #SMI-312R) and rabbit anti-GABA (1:1000, Sigma Aldrich, Steinheim,

Germany #A2052). After washing with PBS, cells were then incubated with the appropriate secondary

antibody conjugated with Alexa-488, Alexa-555 or Alexa-647 (1:500, Invitrogen, Thermo Fisher Scientific,

Rockford, IL, USA) for 1 h at RT. The nuclear stain Hoechst 33258 (2 ug/mL, Sigma-Aldrich, Steinheim,

Germany) was added at the time of the secondary antibody incubation. Slices were mounted in

ImmuMount (Thermo Fisher Scientific, Rockford, IL, USA) and fluorescent images were obtained by a

LSM 700 microscope (Carl Zeiss AG, Jena, Germany), and analyzed in Adobe Photoshop software CS6

(Adobe, USA).

4.5. Immunoblotting of Lysates from Aß-S8C Dimer Stimulated Cells

iPSC-derived neurons were differentiated for six weeks and then stimulated with 500 nM of

oxidized S8C dimers [55] for 72 h. Cells were then washed three times with PBS and then lysed

in PBS/1% NP40 + complete protease inhibitor cocktail (Sigma-Aldrich, Steinheim, Germany) and

phosphatase inhibitor cocktail 2 (Sigma-Aldrich, Steinheim, Germany). Lysates were cleared by

centrifugation at 20.000g for 10 min and quantified with the DC Protein assay Kit (Bio-Rad, Hercules,

CA, USA). Of the lysates 25 µg were then separated on NuPAGE 4-12% Bis-Tris gels (Invitrogen,

Thermo Fisher Scientific, Rockford, IL, USA) and blotted to a 0.2 µm nitrocellulose membrane for 2 h at

400 mA. The blots were blocked in PBS containing 5% skim milk and then probed with the following

primary antibodies over night at 4 ◦C: mouse anti-total TAU (HT7, 1:1000, Thermo Fisher Scientific,

Rockford, IL, USA#MN1000), mouse anti-phospho TAU Ser202/Thr205 (AT8, 1:1000, Thermo Fisher

Scientific, Rockford, IL, USA#MN1020), rabbit anti-APP (CT15, 1:3500), rabbit anti-βactin (1:5000,
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Sigma-Aldrich, Steinheim, Germany #A2066) and mouse anti βIII-tubulin (1:1000, Cell Signaling,

Danvers, MA, USA #TU-20). After washing the blots three times with PBS/0.05%Tween20 they were

incubated with the appropriate secondary antibody: goat anti-mouse IRDye 680RD and 800CW as

well as goat anti-rabbit IRDye 680RD and 800CW (all from LI-COR Biosciences, Lincoln, NE, USA).

Following three times washing with PBS/0.05% Tween20 the fluorescent signals were quantified by

applying the Odyssey infrared imaging system (LI-COR Biosciences, Lincoln, NE, USA).

4.6. Measurement of Aß1-40 and Aß1-42 by ELISA

Aß1-40 and Aß1-42 concentrations from cleared supernatants of differentiated iPSCs were

quantified by using the Amyloid beta 40/42 Human ELISA Kits (#KHB3441 and KHB3481; Thermo

Fisher Scientific, Rockford, IL, USA) according to the manufacturer’s recommendations. Results were

normalized to the protein concentration of the cells. The cells were washed three times with PBS and

lysed in PBS/ 1% NP40. The protein content was then measured with the DC Protein assay Kit (Bio-Rad,

Hercules, CA, USA).

4.7. RNA Isolation and Quantitative RT-PCR

Total RNA was extracted from cell lysates using Direct-zol RNA Mini Prep kit (Zymo Research,

Freiburg, Germany) in combination with peqGOLD TriFast (PeqLab Biotechnologie, Darmstadt,

Germany) according to the manufacturer´s protocol. Of purified RNA 0.5 µg was used for first-strand

cDNA synthesis using TaqMan reverse transcription reagent (Applied Biosystems, Rockford, IL, USA).

cDNA was used for subsequent PCR. Real-time quantification of genes was conducted for three

independent cultures from each iPSC-derived interneuron line using the SYBR®Green RT-PCR assay

(Applied Biosystems, Waltham, Massachusetts, USA). Primer sequences are provided in Table S6

(Primers were purchased from Eurofins Genomics). Amplification, detection of specific gene products

and quantitative analysis were performed using a ‘ViiA7’ sequence detection system (Applied

Biosystem, Waltham, Massachusetts, USA). The expression levels were normalized relative to the

expression of the housekeeping gene RPS16 using the comparative Ct-method 2-∆∆Ct.

4.8. Generation of Deep Sequencing Data

Deep sequencing data of cDNA from iPSC-derived neuronal cultures were generated at the

Neuromics Support Facility at the VIB- University Antwerpen Center for Molecular Neurology.

Sequence libraries were constructed using QuantSeq 3’ mRNA-Seq Library Prep Kit (Lexogen,

Greenland, NH, USA). Sequencing was performed by Illumina NextSeq sequencing. Reads were

single-end with a read length of 151. Samples from two independent experiments (n = 4 cell lines) were

multiplexed onto the sequencing flow cell and the measured reads were demultiplexed for follow-up

processing. Total RNA from human adult brain, human brain clinically diagnosed with AD and human

fetal brain were purchased from BioChain®, Newark, CA USA

4.9. Analysis of Deep Sequencing Data

The demultiplexed fastq files were aligned against the GRCh38 genome with the HISAT2

(version 2.1.0) alignment software [87] using options for clipping the 50 bases at the 3’ end of each

read. The exact HISAT2 command, which was mainly derived from the parameter optimizations of

Barruzzo et al. [88], was:

hisat2 -p 7 –trim3 50 -N 1 -L 20 -i S,1,0.5 -D 25 -R 5 –mp 1,0 –sp 3,0 -x hisatindex/grch38 -U

input.fastq.gz -S output.sam

The resulting BAM files were sorted by coordinates applying SAMtools software [89]. Reads

were summarized per gene with the subread (1.6.1) featurecounts software [90] against the

gencode.v22.annotation.gtf using parameter –t exon –g gene_id. Summarized reads were normalized in

R using the voom normalization [91] algorithm from the limma package [92] filtering genes, which were

expressed with CPM (counts per million) > 2 in at least two samples.
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4.10. Analysis of Microarray Data

cDNA from iPSC-derived GABAergic interneurons from CON8 and AD-TREM2-4 untreated

(CTR) and treated with Aß-S8C dimer was subjected to hybridization in duplicates on the GeneChip

PrimeView Human Gene Expression Array (Affymetrix, Thermo Fisher Scientific, Rockford, IL, USA)

at the BMFZ (Biomedizinisches Forschungszentrum) core facility of the Heinrich-Heine University,

Düsseldorf. Data analysis of the Affymetrix raw data was performed in the R/Bioconductor [93]

environment using the package affy [94]. The obtained data were background-corrected and normalized

by employing the robust multi-array average (RMA) method from the package affy. Hierarchical

clustering dendrograms and heatmaps were generated using the heatmap.2 function from the gplots

package with Pearson correlation as similarity measure and color scaling per genes [95]. Expressed

genes were compared in Venn diagrams employing package VennDiagram [96]. Gene expression

was assessed with a threshold of 0.05 for the detection-p-value, which was calculated as described in

the supplementary methods in Graffmann et al. [97]. The datasets generated and analyzed during

the current study are available in the GEO repository (https://www.ncbi.nlm.nih.gov/geo/) under the

accession number GSE143951.

4.11. Protein Interaction Network

A protein interaction network was constructed from the set of 95 genes expressed exclusively

in Aβ-S8C stimulated TREM2 neurons in the Venn diagram analysis. Interactions associated with

Homo sapiens (taxonomy id 9606) were filtered from the Biogrid database version 3.4.161 [98]. From this

dataset interactors and additionally interactors of these interactors starting at the proteins coded by

the above-mentioned set of 95 genes were extracted. The resulting complex network was reduced by

searching the shortest paths between the original set via the method get.shortest.paths () from the R

package igraph [99]. The protein network consisting of these shortest paths was plotted employing the

R package network [100] marking proteins from the original set in green and inferred proteins in red.

4.12. Gene Ontology and Pathway Analysis

Based on the set of 95 genes expressed exclusively in Aβ-S8C stimulated TREM2 neurons in

the Venn diagram analysis over-represented gene ontology terms and KEGG (Kyoto Encyclopedia

of Genes and Genomes) pathways [101] were determined. The hypergeometric test was used for

over-representation analysis—in the version from the GOstats package [102] for GO terms and the

version from the R base package for KEGG pathways, which had been downloaded from the KEGG

database in March 2018. Dot plots of the most significant GO terms and KEGG pathways were done

via the function ggplot() from the R package ggplot2 indicating p-values from the hypergeometric test

on a red-blue color scale, number of significant genes in the dedicated pathway (G) by the size of the

dots and ratios of the number of significant genes in the dedicated pathway/GO to the total number of

genes in that pathway/GO on the x-axis.

4.13. Human Cytokine Array

The secretion of cytokines in AD neuronal cultures before and after stimulation with the Aß-S8C

dimer was measured employing the Proteome Profiler Human Cytokine Array kit (R&D System,

USA). The assay was performed following the manufacturer’s instructions. Briefly, AD2-2 and

AD2-4 cell culture supernatants from control and 72 h of Aß-S8C dimer stimulation were collected,

pooled and mixed with a cocktail of biotinylated detection antibodies for further incubation in a

nitrocellulose cytokine array membrane with the immobilized capture antibodies spotted in duplicates.

Chemiluminescent detection of the streptavidin-HRP secondary antibody was performed and the

average signal (pixel density) was determined for the pair of duplicate spots using Image J (U.S.

National Institutes of Health, Bethesda, Maryland, MD, USA). The relative change in cytokine levels
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was performed comparing the intensity of the spots in the Aß-S8C dimer stimulated membrane with

the control membrane, which was set to 100%.

4.14. Statistical Analysis

Statistical analysis was performed with GraphPad Prism Software version 6.01 (GraphPad software,

San Diego, CA, USA). For comparisons of the mean between two groups, one-tail Student´s t-test was

performed. One-way ANOVA was used for statistical significance analysis for comparisons of the

mean among 4 groups, followed by a post hoc test with the use of Tukey´s multiple comparison test.

Statistical significance was assumed at p < 0.05. All data are expressed as mean ± standard error of the

mean (SEM).

5. Conclusions

Our established neuronal cultures using lymphoblast-derived iPSCs from patients harboring

the R47H mutation in TREM2 is a relevant model for investigating the effect of this variant in the

etiology of LOAD. Comparative global transcriptome analysis identified a distinct gene expression

profile in AD neuronal cultures, further suggesting that these lines exhibit alteration in key signaling

pathways related to metabolism and immune system in comparison to control, thus implying the

partial loss of function of TREM2 due to the R47H substitution. In addition, stimulation with the

Aβ-S8C dimer revealed metabolic dysregulation, impaired phagocytosis-related pathway and altered

inflammatory responses. Furthermore, our data strongly suggests that the Aβ-S8C dimer signature

seems to be centered in the ER-stress response. In conclusion, our AD in vitro model is capable

of efficiently responding to signaling cascades associated with the AD pathogenesis and thus is a

promising cellular tool for investigating the molecular mechanisms underlying LOAD. Additionally,

this cellular model can facilitate the discovery of new AD biomarkers, enable toxicology studies as

well as the identification of potential drug targets for future therapy of this devastating disease.
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Chapter 3

Discussion

3.1 Analysis of stem cell based disease models in liver

Reprogramming adult cells into the pluripotent state has become a routine procedure
and the same holds for the derivation of HLCs. As the name says these cells are only
“hepatocyte-like” but not fully mature hepatocytes. Their phenotype resembles more
the fetal hepatocyte phenotype and we have shown that the gene expression patterns of
HLCs have more overlap with fetal liver (Matz et al. 2017). This behavior is in line
with the expectations considering the differentiation of iPSCs into HLCs as a process
recapitulating liver development in the fetus. Nevertheless, we could show that most of
the functionality which can be measured in functional assays is already existent such as
glycogen storage, urea and bile acid production, indocyanine green (ICG) uptake and
release, and cytochrome activity (Matz et al. 2017). However, cytochromes only in
parts resemble the mature phenotyp in a way that while already some, e.g. CYP3A4,
are expressed, many other cytochromes have lower expression than in the mature cells.
In addition, Albumin (ALB) - the most important gene expression marker in liver - in
HLCs does not reach the level of mature hepatocytes. Gerets et al. have shown that gene
expression and cytochrome activity in the usually employed hepatocarcinoma-derived or
transformed hepatocyte cell lines differ from primary human hepatocytes (Gerets et al.
2012). Thus, HLCs are a promising alternative that however needs further improvements
of cytochrome and ALB expression. Gieseck et al. proposed 3D-culturing of hepatocytes,
Berger et al. a micropatterned co-culture platform with murine embryonic fibroblasts
to improve maturity (Gieseck III et al. 2014), (Berger et al. 2015). Other approaches
tackle maturity and the expression of ALB via transcription factors. Our transcription
factor analysis revealed several transcription factors including HNF4A, HNF1A, FOXA2,
FOXA1 and CEBPA which are regulating ALB and hence are potential targets for in-
ducing maturity via a higher expression level of ALB (Matz et al. 2017) thus expanding
and partly confirming earlier results (J. Li, Ning, and Duncan 2000).
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3.2 Analysis of stem cell based disease models in neurons

Differentiation of pluripotent stem cells into neurons has become a routine procedure.
Challenges exist in reaching an aged phenotype that is needed for modeling of neurode-
generative diseases such as Alzheimer’s and Parkinson’s disease and in the differentiation
into specific neuron types. However, several iPSC-based neuron models exist already for
neurons specific for dedicated neurotransmitters. During differentiation of pluripotent
stem cells into neurons multiple neuron types can arise as e.g. Brennand et al. report a
mixture of glutamatergic, GABAergic and dopaminergic in their differentiation approach
for modeling Schizophrenia (Brennand et al. 2011). Cao et al. generated serotonergic
neurons from iPSCs (Cao et al. 2017). Moreno et al. differentiated iPSCs into cholinergic
neurons in an Alzheimer’s disease study (Moreno et al. 2018).

For neurodegenerative diseases several iPSC-based disease models exist including the
Alzheimer’s disease models from our group (Hossini et al. 2015) and from Israel et al.
(Israel et al. 2012), the Parkinson’s disease model from Cooper et al. (Cooper et al.
2012) and the Huntinton’s disease models by Mehta et al. (Mehta et al. 2018) and An
et al. including genetic correction (An et al. 2012). Wu et al. provide an overview of
existing iPSC-based models of neurodegenerative disease (Wu et al. 2019).

The disease models can be distinguished into models for sporadic disease without known
mutation, such as our publication about an iPSC-model of sporadic AD (Hossini et
al. 2015) and models for familial disease such as the iPSC- AD-model by Kondo et al.
(Kondo et al. 2013) with a APP mutation and the iPSC-AD-model by Yagi et al. with a
PSEN2 mutation (Yagi et al. 2011) . In the familial disease iPSC-models the mutation
usually persists after reprogramming but has to be verified - as we showed for instance
in our publication about an iPSC-model of the Nijmegen Breakage Syndrome (Mlody et
al. 2017).

The aim to detect disease-driving mechanisms can be pursued by comparing iPSC-derived
disease neurons to iPSC-derived healthy neurons as control. Applying CRISPR-Cas9
techniques (Doudna and Charpentier 2014) also an isogenic control can be generated by
editing the mutated gene (Park et al. 2015). Differential gene expression can then be
assessed between the disease and the control model to identify involved genes and the
resulting gene sets can be further analysed for functional annotations such as pathways,
transcription factors, GOs, etc.. However, as many disease arise from a complex interplay
of genetic and other external factors, e.g. aging as the most important risk factor for
AD, it has to be taken into account that only the genetic component of a more complex
system is observed. Nonetheless, in our iPSC-model of sporadic AD we could recapitulate
essential disease mechanisms such as phosphorylated tau and down-regulation of AD-
related genes, in particular genes from the proteasome or genes reacting on oxidative
stress (Hossini et al. 2015). The down-regulation of proteasome-related genes led us to
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the hypothesis that early occurring impairment of the proteasome could result in later
accumulation of amyloid plaques.

3.3 Meta-analysis of biopsy-based data in liver and compar-

ison to stem cell based disease models

The focus of the biopsy-based data analysis was the study of NAFLD and also the
comparison to ALD. In a first multi-omics analysis we could compare the early steatosis
stages of NAFLD which we stratified into a simplified scheme combining stages 2 and
3 (> 33% steatosis area) from the scheme by Kleiner et al. as high-grade and stage 1
(5% - 33% steatosis area) as low-grade steatosis (Kleiner et al. 2005). However, even
in this simplified classification we observed a high heterogeneity in patients manifesting
in the transcriptome, metabolome and proteome. We considered this heterogeneity as a
feature of the disease requiring personalized approaches for a full elucidation of the causes.
We could nevertheless find some marker genes such as PLIN2 in the transcriptome and
proteins such as Adiponectin in ELISA assays from the patients’ serum.

In a meta-analysis along with a review we investigated the progression from simple steato-
sis to NASH for which non-invasive markers are needed (Wruck et al. 2017). Existing
non-invasive markers for NASH such as keratin 18 (KRT18) (Feldstein et al. 2009)
or test panels such as FibroTest (Ratziu et al. 2006) are still missing sensitivity or
specifity. We could condense the results of our meta-analysis to signature of 22 genes
most significantly correlating with the progression of NAFLD. This signature could be
associated with cholesterol and lipid metabolic pathways thus confirming a body of lit-
erature (Min et al. 2012), (Musso, Gambino, and Cassader 2013) indicating cholesterol
as important disease accelerating factor and cholesterol clearance as disease alleviation
(Neuschwander-Tetri et al. 2015).

In a follow-up meta-analysis we compared NAFLD and alcoholic liver disease (ALD)
and found predominating commonalities at the transcriptome level (Wruck and Adjaye
2017). Numerous down-regulated metabolic pathways and cytochrome-related pathways
were down-regulated and a few pathways including ECM-receptor interaction, phagosome
and lysosome were up-regulated in both dieases. Among the pathways going into opposite
directions was glycolysis which was down-regulated in ALD and up-regulated in NAFLD.
Also rate-limiting genes of cholesterol pathways such as HMGCR , SQLE and CYP7A1
were down-regulated in ALD and up-regulated in NAFLD. We hypothesize that the
nevertheless similar phenotypes in both diseases may be due to a lower level of CYP7A1 in
comparison to cholesterol synthesizing genes HMGCR and SQLE. CYP7A1 is responsible
for cholesterol secretion into bile (Ikonen 2008).
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Comparing the results of biopsy-based analysis to stem cell based NAFLD models shows
that the latter are a promising tool for the exploration of NAFLD. While they are just
in the beginning of their development they could already recapitulate the mostimportant
marker for lipid droplets PLIN2 which we found in both approaches (Graffmann et al.
2016). The models will have to be further elaborated in order to capture the progression
of the disease to NASH, cirrhosis and hepatocellular carcinoma. Methods pursued in
NAFLD animal models such as methionine-choline deficient diet (Rinella et al. 2008)
or carbon tetrachloride (CCl4) and high-fat, high-fructose, high-cholesterol western diet
(Tsuchida et al. 2018) may be exploited to achieve stem cell based models of later disease
stages. With that in hand they will be an invaluable tool to explore NAFLD in a per-
sonalized medicine approach which is indispensable to get insights into the individually
varying metabolic mechanisms.

3.4 Meta-analysis of biopsy-based data in neurons and com-

parison to stem cell based disease models

Central topics of the meta-analyses of transcriptome data from human post-mortem brain
biopsies described here were the study of Alzheimer’s disease (AD) and brain aging. The
AD study was focused on hippocampus biopsies (Wruck, Schröter, and Adjaye 2016)
while the brain aging study (Wruck and Adjaye 2020) was focused on pre-frontal cortex
biopsies.

The AD meta-analysis compared hippocampus biopsy studies among each other and
additionally to stem cell based AD models (Wruck, Schröter, and Adjaye 2016) . Hip-
pocampus is the brain region associated with learning and memory and therefore plays
an important role in AD where decreased short-term memory is one of the earlier symp-
toms (M. P. Laakso et al. 1995), (Mikko P Laakso et al. 2000), (Mu and Gage 2011).
However, AD is not restricted to hippocampus and during the course of the disease affects
the whole brain. Other brain regions were excluded from this meta-analysis because the
high variability of gene expression between different brain regions would have confounded
the detection of genes relevant for the etiology of AD. The meta-analysis resulted in a
gene signature which could distinguish AD and healthy control biopsies into two clus-
ters. The prominent AD-related genes APP and APOE only had low correlation with
the AD phenotype in this analysis and therefore were not in the signature. This is likely
to be originated in the data basis containing not only familial early-onset cases but many
sporadic late-onset cases without genetic predisposition. Gene ontology and pathway
analysis of the signature indicated that reactive oxygen species, response to stress and
metabolic processes play a major role in AD. Transcription factor analysis additionally
suggested that FOXA1 and FOXA2 gene regulatory networks are involved in the etiology
of the disease.
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The aging brain meta-analysis characterized 591 transcriptomes of prefrontal cortex biop-
sies for the full range of ages in males and females (Wruck and Adjaye 2020). In this
study we identified a decline of synaptic transmission and up-regulation of glial fibrillary
acidic protein (GFAP) along with progressing age. We found an antagonistic connection
between the down-regulated CAMK4 (calcium/calmodulin dependent protein kinase IV)
and the up-regulated GFAP. Decreased CAMK4 may be involved in up-regulation of
GFAP via a mechanism involving cAMP responsive element binding protein (CREB)
and mitogen-activated protein kinase (MAPK, alias ERK). Besides the decline in synap-
tic transmission also decreased neurogenesis and an increased base-level of inflammatory
and immune-related processes could be detected in both sexes. Differences between both
sexes were found in dendritic spine morphogenesis, catecholamine signaling and cellular
responses to external stimuli. Also on the global transcriptome level principal component
analysis (PCA) and hierarchical clustering dendrograms showed a clustering of samples
by sex which was much more apparent than clustering by age. Detailed analysis showed
that this can be attributed in large parts to genes on the sex chromosomes.

Figure 3: Comparison of meta-analyses and iPSC-based disease models.
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In Figure 3 a scheme is laid out about how the meta-analysis approach and the iPSC-
disease model approach are compared in this thesis. Meta-analyses are based on microar-
ray and NGS transcriptome data retrieved from public repositories. Here, the focus was
on liver and brain for which datasets reflecting the investigated diseases were accessed
accounting for comparability and reliability of the datasets, e.g. comparing only spe-
cific regions of the brain such as hippocampus or prefrontal cortex. For the iPSC-based
approach iPSCs were reprogrammed based on fibroblasts or urine-derived cells from pa-
tients and healthy controls. These iPSCs in turn were differentiated into hepatocyte
or neuronal lineage and subjected to further challenges, e.g. oleic acid for induction of
steatosis, if needed. Gene expression data of the iPSC-disease models was then evaluated
and compared to the results of the meta-analyses.

3.5 Time series analysis of gene expression data

In the above mentioned meta-analysis of 591 prefrontal cortex transcriptomes I developed
methods for the analysis of time series of gene expression data (Wruck and Adjaye 2020).
Gene expression data of the post-mortem prefrontal cortex biopsies covered a range
of ages from 16 to 106 years for both sexes. I reconstructed time series from these
gene expression data and employed the Granger test - which was originally designed for
econometric models (Granger 1969) - to test causality between them. This leads to a
null hypothesis stating that the time series g of one gene x does not cause the time series
h of gene y.

The test is realized by an auto-regression model of h . If adding of lagged values of g
would improve the model this would mean that h would depend on previous values of g.
In that case at least one coefficient bi has to be unequal to zero. The test can then be
realized by checking the coefficients bi for equality to zero:

ht =

L
∑

i=1

aiht−i +

L
∑

i=1

bigt−i + ǫt (3.1)

H0 : b1 = ... = bL = 0 (gene h does notGranger cause gene g) (3.2)

Here, ht and g t are the time series and ai are coefficients of the auto-regression model of
h and bi coefficients for the added lagged values of g, åt is the error.
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As we were also interested in relationships between GOs and between genes and GOs we
developed the above described time series analysis further. For each GO we condensed
the means of the expression values of genes significantly correlated or anti-correlated with
age to a consensus time series.

Let Ggu and Ggd be the sets of genes significantly correlated and anti-correlated with
age from the GO g and X aui and X adi be the corresponding gene expression values over
all existing ages. Then the consensus time series Xgu and Xgd for GO g are:

Xgu =
1

|Ggu|

∑

i∈Ggu

Xaui (3.3)

Xgd =
1

|Ggd|

∑

i∈Ggd

Xadi (3.4)

Figure 4 shows an example of these GO consensus time series for the GO Weibel-Palade
body and the gene GFAP which was found to “Granger-cause” the GO Weibel-Palade
body with p=0.04.

Figure 4: GO consensus time series for the GO Weibel-Palade body and the gene GFAP.
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3.6 Meta-analysis of epithelial lung cells infected with the

coronavirus SARS-CoV-2

The main focus of this meta-analyses of transcriptome data from diverse human epithelial
lung cells was to find genes connected with the already established SARS-CoV-2 receptor
gene ACE2. I retrieved several transcriptome datasets from public repositories some of
which had been infected with SARS-CoV-2 in cell culture. In this particular case the
interest was not to find gene expression clusters or networks grouping genes with similar
expression unsupervisedly as would have been done by approaches such as the ones by
Langfelder et al. (Langfelder and Horvath 2008), Eisen et al. (Eisen et al. 1998) or
Herwig et al. (Herwig 1999) but instead to find exactly the genes with the highest
similarity with ACE2. Therefore, the Pearson correlation coefficient of the expression of
each gene to the expression of ACE2 was calculated across all experiments.

ri = cor(e(i), e(ACE2)) (3.5)

Here, ri is the Pearson correlation coefficient of the expression of gene i (e(i)) with the
expression of ACE2 (e(ACE2 )), cor is the function to calculate the Pearson correlation.
For the Pearson correlation the corresponding test for association between paired samples
using a correlation of zero as null hypothesis is calculated and all genes are ranked by
the resulting p-value. This way the genes with highest positive and lowest negative
correlation with ACE2 are determined which are suggested to interact with ACE2 in the
processing of the virus. The most prominent gene that was found in this study was the
gene TMPRSS4 among others from the transmembrane serine protease TMPRSS family.
These would raise the question if besides TMPRSS2 as already known interactor with
ACE2 also other members of the TMPRSS family play important roles in the entry of
SARS-CoV-2.

Figure 5 illustrates how the results from the SARS-CoV-2 meta-analysis can be further
investigated in 2D- and 3D stem-cell based cellular models. The meta-analysis was fo-
cussed on transcriptome data from SARS-CoV-2 infected lung epithelial cells but to date
the knowledge is already settled that SARS-CoV-2 can attack multiple if not all organs
of the human body. One major finding of the meta-analysis was that several members of
the Transmembrane serine proteases family may be involved in SARS-CoV-2 endocytosis
for instance was already reported in similar way for a distinct organ type: TMPRSS4
was identified as major actor in SARS-CoV-2 infection of intestine by Zang et al. (Zang
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Figure 5: Stem-cell-based 2D- and 3D-models (organoids) can be employed to further
explore findings from the meta-analysis and possible CRISPR or drug interventions.

et al. 2020). Thus, it can be expected that there are common ways of infection of dis-
tinct organs while on the other hand individual differences in infected organs show that
there are also organ-specific mechanisms. Therefore, it is of great importance to study
the infection in multiple organs as illustrated in figure 5. Besides the preference for the
respiratory tract renal tropism has been reported for SARS-CoV-2 (Puelles et al. 2020)
what can be seen in the context of the major role of the SARS-CoV-2 receptor ACE2
in kidneys participating in the regulation of blood pressure via the renin-angiotensin
system . Figure 5 shows that UdRPCs (Urine-derived renal progenitor cells) can be de-
rived from urine and in turn be differentiated into podocytes and renal tubular epithelial
cells (Rahman et al. 2020). This represents a personalized approach as this way from
each individual cells can be harvested non-invasively and rapidly. UdRPCs as well as
podocytes and renal tubular epithelial cells can then directly be used for research on
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SARS-CoV-2: target genes can be edited via CRISPR or can be inhibited or stimulated
by drug candidates. Possible locations for pharmaceutical intervention have been listed
in the SARS-CoV-2 publication including the endocytosis via TMPRSS family members,
virus replication and packaging or interferons and cytokines (Wruck and Adjaye 2020b, 2).

However, reprogramming of the UdRPCs into iPSCs is the route leading to a full spec-
trum of organs. iPSCs can then be differentiated into cell types such as lung cells, hepa-
tocytes, neurons and cells of the immune system. In more sophisticated 3D-approaches
organoids could be generated which represent small pieces of an organ. For exploration
of SARS-CoV-2 lung and kidney organoids will provide in vitro models capturing mul-
tiple organ-specific cell types and thus improve the realism of the models. In all these
approaches target genes found as results of the meta-analysis can be edited via CRISPR
or perturbated via other methods such as silencing RNA.

SARS-CoV-2 infection can be simulated by infection with the spike protein only what
would remove the infectivity from the virus and make it hazard-free. This method could
also account for mutations inside the spike protein which in future may pose severe
challenges to the worlwide efforts to tackle the virus. Phylogenetic analysis as described
in the following chapter is another essential pillar in tracking the virus mutations.

3.7 Phylogenetic analysis of transmission routes of the coro-

navirus SARS-CoV-2 to West-Africa

In this phylogenetic analysis a profound dataset of sequences of the coronavirus SARS-
CoV-2 from the West-African countries Ghana, Nigeria, Senegal and Gambia were in-
vestigated together with a representative set of reference sequences from Asia, Europe
and America. The analysis employed the pipeline from the NextStrain project (Hadfield
et al. 2018) and visualized geographic transmission routes within this framework. With
the development of the novel powerful sequencing methods described above in the chap-
ter “Next-generation sequencing (NGS)” phylogenetic analysis has been advanced on the
one hand by the availability of a much larger base of sequences and on the other hand
by new methods enabling efficient analysis of them. Alignment algorithms have been
improved to tackle the needs in terms of performance, storage and accuracy for NGS
(Dobin et al. 2013), (Langmead et al. 2009) and for phylogenetic analysis (Katoh et
al. 2002). Phylogenetic analysis aims at finding developmental relationships between
genetic sequences such as DNA or proteins. The analysis results open up a multitude
of applications such as to find out how a gene evolved over various species, e.g. the
pluripotency gene POU5F1 which is related to the gene POU2 in earlier evolved species
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(Frankenberg and Renfree 2013). With respect to viruses, phylogenetic analysis enables
to track transmission routes focussing on single mutations or to identify new variants
with characteristic patterns of mutations which when changing proteins may also have
impact on the severity and infectivity. For the research of the evolution of influenza
viruses the GISAID database has been set up harboring a plethora of virus sequences.
On the outbreak of the COVID-19 pandemic this database has been instrumental to store
a multitude of SARS-CoV-2 sequences the COVID-19 causing virus. Novel phylogenetic
algorithms use maximum-likelihood approaches to estimate dates of relevant events such
as the date of zoonosis or the date when a specific virus variant emerged (Sagulenko,
Puller, and Neher 2018). For influenza viruses and SARS-CoV-2 these techniques have
been employed to provide the NextStrain framework to epidemiologists visualizing the
geographic evolution of a virus (Hadfield et al. 2018).

Here, in the SARS-CoV-2 sequences retrieved from the GISAID database and analyzed
via the NextStrain pipeline country-specific patterns of viral clades were found. Clades
are lineages of a virus related to major clusters in the phylogenetic tree and characterized
by specific mutations such as the D614G mutation in the G-clades (Korber et al. 2020).
Employing the GISAID clade nomenclature the study revealed a higher abundance of the
Europe-associated G-clades in Gambia and Senegal, and a mixture of the G-clades and
Asian-associated clades (clades L, S, V) in Nigeria and Ghana. In the analyzed West-
African sequences the Asian-associated clades which globally appeared earlier emerged
after the Europe-associated later G-clades. This unexpected finding can be caused by
founder effects meaning that just by accident G-clade viruses were introduced first. An-
other explanation suggesting latent circulation of the Asian-associated clades appeared
more likely as it was confirmed by detailed analysis of distinct samples which additionally
pointed at migration routes via Mali and Tunisia.

3.8 Future bioinformatics challenges in stem cell-based dis-

ease modeling and regenerative medicine

One main advantage of stem cell based disease models is to provide access to otherwise
hard or even impossible accessible tissues such as brain, liver or kidney. Another advan-
tage is the capability to pursue a personalized approach where a model for each patient or
individual can be established. On the other hand, these models have problems in captur-
ing the maturity or even aged state of cells which play a crucial role in many diseases and
particularly in neurodegenerative diseases. To that end bioinformatics tools may support
these models by providing information about the quality of the differentiations derived
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from the stem cells. They can assess if the target tissue type was reached by determining
gene expression of crucial marker genes, comparisons to huge databases providing asso-
ciations between gene expression and tissues such as GTEX (GTEx Consortium 2013)
or in silico classification approaches (Roost et al. 2015). Furthermore, they can check
the pluripotent state of cells with algorithms such as the Pluritest (Müller et al. 2011)
or simply by comparison to other pluripotent stem cells (Schröter et al. 2016). Future
challenges here may be located in the detection of hitherto unknown or only poorly spec-
ified cell types which may be assessed by novel single-cell sequencing methods such as for
instance Lindström et al. characterize in the developing kidney (Lindström et al. 2018).

Personalized approaches will be challenging as they introduce additional complexity
into the already complex regulatory networks orchestrating many diseases such as AD,
NAFLD, diabetes, cancer, etc.. However - as we already showed the strong heterogeneity
in NAFLD (Wruck et al. 2015) - they will be indispensable to understand many diseases
and to find appropriate personalized therapies. An feasible avenue to cope with the ad-
ditional complexity due to the individual differences will be systems biology modeling
(Jozefczuk et al. 2012) providing the means to use one model for several individuals by
populating it with the personalized parameters.

Figure 6: Meta-analysis and modeling cycle.

I propose the scheme in Figure 6 for the combination of meta-analysis and iPSC- or also
Systems Biology-based models. The meta-analysis of transcriptome data has the advan-
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tage to integrate huge numbers of datasets which directly reflect disease characteristics.
On the other hand, because of the complex production process which also may introduce
additional variation iPSC-based models are usually only generated in small sample size.
Although mutations are kept alongside reprogramming and differentiation, as we had seen
e.g. in the NBS study, other factors such as age or epigenetics are also influenced by the
reprogramming. Thus, the iPSC-models cannot compete with meta-analyses of disease
tissues in screening of the disease-causing genes but are superior in follow-up analyses
such as silencing of genes or introducing and removing mutations via CRISPR. In Figure
6 I show the example that we found PLIN2 correlated with the degree of NAFLD in the
meta-analysis and in subsequent studies we investigated the effect of silencing PLIN2 in
iPSC-models. Analogously, PNPLA3 or TM6SF2 which had been found in genome-wide
association studies associated with NAFLD could be explored in more detail in person-
alized iPSC-models of patients carrying these mutations. Moreover, the mutations could
be introduced or removed in iPSC-models via CRISPR. In that sense the results of the
meta-analysis can be explored in more detail by entering a cycle of modeling – iPSC based
or also Systems biology based - experiments and hypothesis generation. New hypotheses
can be tested by adjustment of the model or by new experiments with the model.

3.9 Conclusion

In this thesis, I have compared the transcriptome analysis of stem-cell based disease
models with meta-analyses of biopsy-derived transcriptome data. Main focuses were the
liver and the brain considering NAFLD in liver and Alzheimer’s disease and aging in
the brain. However, also urine-derived renal progenitor cells were assessed laying the
foundation for kidney disease models (Rahman et al. 2020). Basis of the stem-cell
disease models is the quality of the reprogramming and differentiation process. Here,
I could show with bioinformatics methods that transcriptomes of the derived cell types
resembled the requested target cell types. However, in comparison to a fully mature
phenotype often some factors are missing what could be shown by differences in marker
gene expression between stem-cell- and biopsy-derived cells, e.g. not fully mature albumin
and cytochrome expression in hepatocyte-like-cells. Nevertheless, the comparison showed
that the stem-cell-based models - although not fully mature in some details of gene
expression - can very well capture most phenotypes of diseases: the essential marker of
lipid droplets (PLIN2) found in NAFLD patients’ biopsies (Wruck et al. 2015) could be
recapitulated with the iPSC-based NAFLD model (Graffmann et al. 2016). The same
hold for Alzheimer’s disease where in the iPSC-models of sporadic AD patients features
of the disease could be detected (Hossini et al. 2015) such as the expression of p-tau
and differential expression of genes involved in e.g. the ubiquitin-proteasome system and
response to oxidative stress. In a study of brain aging in prefrontal cortex samples I
developed algorithms for the analysis of gene expression time series (Wruck and Adjaye
2020). These provide the means to elucidate causality between genes via the Granger
test, i.e. a test if a time series of a gene can be better explained by a linear model using
additional lagged time series data from another potentially causal gene than by the data
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of the gene alone. The notion of Granger causality originates in the econometric field and
was first presented by the name-giving author Granger giving a somewhat ironic example
by answering the question if chicken or eggs came first (Granger 1969). In the prefrontal
cortex meta-analysis I could detect a granger causality between the gene CAMK4 and
GFAP which was the most outstanding gene increasing with age indicating the growing
number of astrocytes as reaction to neural destruction (Wruck and Adjaye 2020).

In summary, I want to conclude that analyses of biopsy data have the advantage that
they are closest to the target tissue - possibly only biased by post-mortem interval,
individual variability, biopsy location while stem-cell based models have to cope with
reaching the mature phenotype of the target cell. However, here I could show that they
are already able to reproduce many disease features and that there is considerable overlap
in expression of essential marker genes between biopsy- and stem-cell-based models. In
future, with optimized stem cell based models it will be possible to generate even more
realistic disease models and for particularly hard or impossible to access tissues they can
provide personalized disease models during life-time of the patient. These models then
would also allow testing of manifold research hypotheses and therapy options.



References

Adjaye, James. 2005. “Whole-Genome Approaches for Large-Scale Gene Identification
and Expression Analysis in Mammalian Preimplantation Embryos.” Reproduction, Fer-
tility, and Development 17 (1-2): 37-45. https://doi.org/10.1071/rd04075.

Adjaye, James, John Huntriss, Ralf Herwig, Alia BenKahla, Thore C. Brink, Christoph
Wierling, Claus Hultschig, et al. 2005. “Primary Differentiation in the Human Blastocyst:
Comparative Molecular Portraits of Inner Cell Mass and Trophectoderm Cells.” STEM
CELLS 23 (10): 1514-25. https://doi.org/10.1634/stemcells.2005-0113.

An, Mahru C., Ningzhe Zhang, Gary Scott, Daniel Montoro, Tobias Wittkop, Sean
Mooney, Simon Melov, and Lisa M. Ellerby. 2012. “Genetic Correction of Huntington’s
Disease Phenotypes in Induced Pluripotent Stem Cells.” Cell Stem Cell 11 (2): 253-63.
https://doi.org/10.1016/j.stem.2012.04.026.

Ashburner, Michael, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler,
J. Michael Cherry, Allan P. Davis, et al. 2000. “Gene Ontology: Tool for the Unification
of Biology.” Nature Genetics 25 (1): 25-29. https://doi.org/10.1038/75556.

Babaie, Yasmin, Ralf Herwig, Boris Greber, Thore C Brink, Wasco Wruck, Detlef Groth,
Hans Lehrach, Tom Burdon, and James Adjaye. 2007. “Analysis of Oct4-Dependent
Transcriptional Networks Regulating Self-Renewal and Pluripotency in Human Embry-
onic Stem Cells.” Stem Cells (Dayton, Ohio) 25 (2): 500-510.
https://doi.org/10.1634/stemcells.2006-0426.

Bar-Joseph, Z. 2004. “Analyzing Time Series Gene Expression Data.” Bioinformatics 20
(16): 2493-2503. https://doi.org/10.1093/bioinformatics/bth283.

283



284 References

Berger, Dustin R., Brenton R. Ware, Matthew D. Davidson, Samuel R. Allsup, and
Salman R. Khetani. 2015. “Enhancing the Functional Maturity of Induced Pluripotent
Stem Cell-Derived Human Hepatocytes by Controlled Presentation of Cell-Cell Interac-
tions in Vitro.” Hepatology (Baltimore, Md.) 61 (4): 1370-81. https://doi.org/10.1002/hep.27621.

Bohndorf, Martina, Audrey Ncube, Lucas-Sebastian Spitzhorn, Jürgen Enczmann, Wasco
Wruck, and James Adjaye. 2017. “Derivation and Characterization of Integration-
Free IPSC Line ISRM-UM51 Derived from SIX2-Positive Renal Cells Isolated from
Urine of an African Male Expressing the CYP2D6 *4/*17 Variant Which Confers In-
termediate Drug Metabolizing Activity.” Stem Cell Research 25 (December): 18-21.
https://doi.org/10.1016/j.scr.2017.10.004.

Brennand, Kristen J., Anthony Simone, Jessica Jou, Chelsea Gelboin-Burkhart, Ngoc
Tran, Sarah Sangar, Yan Li, et al. 2011. “Modelling Schizophrenia Using Human Induced
Pluripotent Stem Cells.” Nature 473 (7346): 221-25. https://doi.org/10.1038/nature09915.

Cahan, Patrick, Hu Li, Samantha A. Morris, Edroaldo Lummertz da Rocha, George Q.
Daley, and James J. Collins. 2014. “CellNet: Network Biology Applied to Stem Cell
Engineering.” Cell 158 (4): 903-15. https://doi.org/10.1016/j.cell.2014.07.020.

Canzar, Stefan, Sandro Andreotti, David Weese, Knut Reinert, and Gunnar W. Klau.
2016. “CIDANE: Comprehensive Isoform Discovery and Abundance Estimation.” Genome
Biology 17 (January): 16. https://doi.org/10.1186/s13059-015-0865-0.

Cao, Lining, Rui Hu, Ting Xu, Zhen-Ning Zhang, Weida Li, and Jianfeng Lu. 2017.
“Characterization of Induced Pluripotent Stem Cell-Derived Human Serotonergic Neu-
rons.” Frontiers in Cellular Neuroscience 11 (May). https://doi.org/10.3389/fncel.2017.00131.

Chang, T. W. 1983. “Binding of Cells to Matrixes of Distinct Antibodies Coated on Solid
Surface.” Journal of Immunological Methods 65 (1-2): 217-23. https://doi.org/10.1016/0022-
1759(83)90318-6.

Clarke, Laura, Xiangqun Zheng-Bradley, Richard Smith, Eugene Kulesha, Chunlin Xiao,
Iliana Toneva, Brendan Vaughan, et al. 2012. “The 1000 Genomes Project: Data Man-
agement and Community Access.” Nature Methods 9 (5): 459-62.
https://doi.org/10.1038/nmeth.1974.



References 285

Cleveland, William S. 1979. “Robust Locally Weighted Regression and Smoothing Scat-
terplots.” Journal of the American Statistical Association 74 (368): 829-36.
https://doi.org/10.1080/01621459.1979.10481038.

Cooper, Oliver, Hyemyung Seo, Shaida Andrabi, Cristina Guardia-Laguarta, John Graziotto,
Maria Sundberg, Jesse R. McLean, et al. 2012. “Pharmacological Rescue of Mitochon-
drial Deficits in IPSC-Derived Neural Cells from Patients with Familial Parkinson’s Dis-
ease.” Science Translational Medicine 4 (141): 141ra90.
https://doi.org/10.1126/scitranslmed.3003985.

De Los Angeles, Alejandro, Francesco Ferrari, Ruibin Xi, Yuko Fujiwara, Nissim Ben-
venisty, Hongkui Deng, Konrad Hochedlinger, et al. 2015. “Hallmarks of Pluripotency.”
Nature 525 (7570): 469-78. https://doi.org/10.1038/nature15515.

Delcher, Arthur L., Adam Phillippy, Jane Carlton, and Steven L. Salzberg. 2002. “Fast
Algorithms for Large-Scale Genome Alignment and Comparison.” Nucleic Acids Research
30 (11): 2478-83. https://doi.org/10.1093/nar/30.11.2478.

Devika, A. S., Wasco Wruck, James Adjaye, and Smita Sudheer. 2019. “The Quest
for Pluripotency: A Comparative Analysis across Mammalian Species.” Reproduction
(Cambridge, England), April. https://doi.org/10.1530/REP-18-0083.

Dittrich, M. T., G. W. Klau, A. Rosenwald, T. Dandekar, and T. Muller. 2008. “Identi-
fying Functional Modules in Protein-Protein Interaction Networks: An Integrated Exact
Approach.” Bioinformatics 24 (13): i223-31. https://doi.org/10.1093/bioinformatics/btn161.

Dobin, A., C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
Chaisson, and T. R. Gingeras. 2013. “STAR: Ultrafast Universal RNA-Seq Aligner.”
Bioinformatics 29 (1): 15-21. https://doi.org/10.1093/bioinformatics/bts635.

Döring, Andreas, David Weese, Tobias Rausch, and Knut Reinert. 2008. “SeqAn an Ef-
ficient, Generic C++ Library for Sequence Analysis.” BMC Bioinformatics 9 (January):
11. https://doi.org/10.1186/1471-2105-9-11.

Doudna, Jennifer A., and Emmanuelle Charpentier. 2014. “The New Frontier of Genome
Engineering with CRISPR-Cas9.” Science 346 (6213): 1258096.
https://doi.org/10.1126/science.1258096.



286 References

Du, Pan, Warren A. Kibbe, and Simon M. Lin. 2008. “Lumi: A Pipeline for Processing
Illumina Microarray.” Bioinformatics 24 (13): 1547-48.
https://doi.org/10.1093/bioinformatics/btn224.

Eisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein. 1998. “Cluster Analysis and
Display of Genome-Wide Expression Patterns.” Proceedings of the National Academy of
Sciences of the United States of America 95 (25): 14863-68.
https://doi.org/10.1073/pnas.95.25.14863.

Evans, M. J., and M. H. Kaufman. 1981. “Establishment in Culture of Pluripotential
Cells from Mouse Embryos.” Nature 292 (5819): 154-56. https://doi.org/10.1038/292154a0.

Falcon, S., and R. Gentleman. 2007. “Using GOstats to Test Gene Lists for GO Term
Association.” Bioinformatics (Oxford, England) 23 (2): 257-58.
https://doi.org/10.1093/bioinformatics/btl567.

Feldstein, Ariel E., Anna Wieckowska, A. Rocio Lopez, Yao-Chang Liu, Nizar N. Zein,
and Arthur J. McCullough. 2009. “Cytokeratin-18 Fragment Levels as Noninvasive
Biomarkers for Nonalcoholic Steatohepatitis: A Multicenter Validation Study.” Hepatol-
ogy 50 (4): 1072-1078. https://doi.org/10.1002/hep.23050.

Frankenberg, Stephen, and Marilyn B. Renfree. 2013. “On the Origin of POU5F1.” BMC
Biology 11 (1): 56. https://doi.org/10.1186/1741-7007-11-56.

Gautier, Laurent, Leslie Cope, Benjamin M. Bolstad, and Rafael A. Irizarry. 2004. “Affy–
Analysis of Affymetrix GeneChip Data at the Probe Level.” Bioinformatics (Oxford,
England) 20 (3): 307-15. https://doi.org/10.1093/bioinformatics/btg405.

Gentleman, Robert C, Vincent J Carey, Douglas M Bates, Ben Bolstad, Marcel Dettling,
Sandrine Dudoit, Byron Ellis, et al. 2004. “Bioconductor: Open Software Develop-
ment for Computational Biology and Bioinformatics.” Genome Biology 5 (10): R80.
https://doi.org/10.1186/gb-2004-5-10-r80.

Gerets, H. H. J., K. Tilmant, B. Gerin, H. Chanteux, B. O. Depelchin, S. Dhalluin, and F.
A. Atienzar. 2012. “Characterization of Primary Human Hepatocytes, HepG2 Cells, and
HepaRG Cells at the MRNA Level and CYP Activity in Response to Inducers and Their
Predictivity for the Detection of Human Hepatotoxins.” Cell Biology and Toxicology 28
(2): 69-87. https://doi.org/10.1007/s10565-011-9208-4.



References 287

Gieseck III, Richard L., Nicholas R. F. Hannan, Roque Bort, Neil A. Hanley, Rosemary A.
L. Drake, Grant W. W. Cameron, Thomas A. Wynn, and Ludovic Vallier. 2014. “Matu-
ration of Induced Pluripotent Stem Cell Derived Hepatocytes by 3D-Culture.” Edited by
Majlinda Lako. PLoS ONE 9 (1): e86372. https://doi.org/10.1371/journal.pone.0086372.

Goeman, Jelle J., Sara A. van de Geer, Floor de Kort, and Hans C. van Houwelingen.
2004. “A Global Test for Groups of Genes: Testing Association with a Clinical Outcome.”
Bioinformatics (Oxford, England) 20 (1): 93-99. https://doi.org/10.1093/bioinformatics/btg382.

Goodwin, Sara, John D. McPherson, and W. Richard McCombie. 2016. “Coming of Age:
Ten Years of next-Generation Sequencing Technologies.” Nature Reviews. Genetics 17
(6): 333-51. https://doi.org/10.1038/nrg.2016.49.

Graffmann, Nina, Sarah Ring, Marie-Ann Kawala, Wasco Wruck, Audrey Ncube, Hans-
Ingo Trompeter, and James Adjaye. 2016. “Modeling Nonalcoholic Fatty Liver Disease
with Human Pluripotent Stem Cell-Derived Immature Hepatocyte-Like Cells Reveals
Activation of PLIN2 and Confirms Regulatory Functions of Peroxisome Proliferator-
Activated Receptor Alpha.” Stem Cells and Development 25 (15): 1119-33.
https://doi.org/10.1089/scd.2015.0383.

Granger, C. W. J. 1969. “Investigating Causal Relations by Econometric Models and
Cross-Spectral Methods.” Econometrica 37 (3): 424-38. https://doi.org/10.2307/1912791.

GTEx Consortium. 2013. “The Genotype-Tissue Expression (GTEx) Project.” Nature
Genetics 45 (6): 580-85. https://doi.org/10.1038/ng.2653.

Gunderson, Kevin L., Semyon Kruglyak, Michael S. Graige, Francisco Garcia, Bahram
G. Kermani, Chanfeng Zhao, Diping Che, et al. 2004. “Decoding Randomly Ordered
DNA Arrays.” Genome Research 14 (5): 870-77. https://doi.org/10.1101/gr.2255804.

Hadfield, James, Colin Megill, Sidney M. Bell, John Huddleston, Barney Potter, Charlton
Callender, Pavel Sagulenko, Trevor Bedford, and Richard A. Neher. 2018. “Nextstrain:
Real-Time Tracking of Pathogen Evolution.” Bioinformatics 34 (23): 4121-23.
https://doi.org/10.1093/bioinformatics/bty407.

Hänzelmann, Sonja, Robert Castelo, and Justin Guinney. 2013. “GSVA: Gene Set Vari-
ation Analysis for Microarray and RNA-Seq Data.” BMC Bioinformatics 14 (January):
7. https://doi.org/10.1186/1471-2105-14-7.



288 References

Hay, David C., Debiao Zhao, Judy Fletcher, Zoë A. Hewitt, Doris McLean, Alai Urruticoechea-
Uriguen, James R. Black, et al. 2008. “Efficient Differentiation of Hepatocytes from
Human Embryonic Stem Cells Exhibiting Markers Recapitulating Liver Development in
Vivo.” Stem Cells (Dayton, Ohio) 26 (4): 894-902. https://doi.org/10.1634/stemcells.2007-
0718.

Heinemeyer, T., X. Chen, H. Karas, A. E. Kel, O. V. Kel, I. Liebich, T. Meinhardt, I.
Reuter, F. Schacherer, and E. Wingender. 1999. “Expanding the TRANSFAC Database
towards an Expert System of Regulatory Molecular Mechanisms.” Nucleic Acids Research
27 (1): 318-22. https://doi.org/10.1093/nar/27.1.318.

Herwig, R. 1999. “Large-Scale Clustering of CDNA-Fingerprinting Data.” Genome Re-
search 9 (11): 1093-1105. https://doi.org/10.1101/gr.9.11.1093.

Herwig, R., P. Aanstad, M. Clark, and H. Lehrach. 2001. “Statistical Evaluation of
Differential Expression on CDNA Nylon Arrays with Replicated Experiments.” Nucleic
Acids Research 29 (23): E117. https://doi.org/10.1093/nar/29.23.e117.

Hossini, Amir M., Matthias Megges, Alessandro Prigione, Bjoern Lichtner, Mohammad
R. Toliat, Wasco Wruck, Friederike Schröter, et al. 2015. “Induced Pluripotent Stem
Cell-Derived Neuronal Cells from a Sporadic Alzheimer’s Disease Donor as a Model
for Investigating AD-Associated Gene Regulatory Networks.” BMC Genomics 16: 84.
https://doi.org/10.1186/s12864-015-1262-5.

Huang, Da Wei, Brad T Sherman, and Richard A Lempicki. 2009. “Systematic and
Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources.” Nature
Protocols 4 (1): 44-57. https://doi.org/10.1038/nprot.2008.211.

Hubbard, T., D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, et al.
2002. “The Ensembl Genome Database Project.” Nucleic Acids Research 30 (1): 38-41.
https://doi.org/10.1093/nar/30.1.38.

Huber, Wolfgang, Anja von Heydebreck, Holger Sültmann, Annemarie Poustka, and
Martin Vingron. 2002. “Variance Stabilization Applied to Microarray Data Calibration
and to the Quantification of Differential Expression.” Bioinformatics (Oxford, England)
18 Suppl 1: S96-104. https://doi.org/10.1093/bioinformatics/18.suppl_1.s96.



References 289

Ideker, Trey, Owen Ozier, Benno Schwikowski, and Andrew F. Siegel. 2002. “Discovering
Regulatory and Signalling Circuits in Molecular Interaction Networks.” Bioinformatics
(Oxford, England) 18 Suppl 1: S233-240. https://doi.org/10.1093/bioinformatics/18.suppl_1.s233.

Ikonen, Elina. 2008. “Cellular Cholesterol Trafficking and Compartmentalization.” Na-
ture Reviews Molecular Cell Biology 9 (2): 125-38. https://doi.org/10.1038/nrm2336.

Israel, Mason A., Shauna H. Yuan, Cedric Bardy, Sol M. Reyna, Yangling Mu, Cheryl
Herrera, Michael P. Hefferan, et al. 2012. “Probing Sporadic and Familial Alzheimer’s
Disease Using Induced Pluripotent Stem Cells.” Nature 482 (7384): 216-20.
https://doi.org/10.1038/nature10821.

Jones, Allan R., Caroline C. Overly, and Susan M. Sunkin. 2009. “The Allen Brain Atlas:
5 Years and Beyond.” Nature Reviews. Neuroscience 10 (11): 821-28. https://doi.org/10.1038/nrn2722.

Joshi-Tope, G., M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt, B. de Bono, B.
Jassal, et al. 2005. “Reactome: A Knowledgebase of Biological Pathways.” Nucleic
Acids Research 33 (Database issue): D428-432. https://doi.org/10.1093/nar/gki072.

Józefczuk, Justyna. 2009. Differentiation of Human Embryonic Stem Cells into Hepa-
tocytes as a Tool to Analyse Dynamic Regulatory Events during Hepatogenesis in Vitro.
Berlin: Dissertation at Free University Berlin.

Jozefczuk, Justyna, Karl Kashofer, Ramesh Ummanni, Frauke Henjes, Samrina Rehman,
Suzanne Geenen, Wasco Wruck, et al. 2012. “A Systems Biology Approach to Decipher-
ing the Etiology of Steatosis Employing Patient-Derived Dermal Fibroblasts and IPS
Cells.” Frontiers in Physiology 3: 339. https://doi.org/10.3389/fphys.2012.00339.

Jozefczuk, Justyna, Alessandro Prigione, Lukas Chavez, and James Adjaye. 2010. “Com-
parative Analysis of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-
Derived Hepatocyte-Like Cells Reveals Current Drawbacks and Possible Strategies for
Improved Differentiation.” Stem Cells and Development 20 (7): 1259-75.
https://doi.org/10.1089/scd.2010.0361.

Kamburov, Atanas, Konstantin Pentchev, Hanna Galicka, Christoph Wierling, Hans
Lehrach, and Ralf Herwig. 2011. “ConsensusPathDB: Toward a More Complete Picture
of Cell Biology.” Nucleic Acids Research 39 (suppl 1): D712-17.
https://doi.org/10.1093/nar/gkq1156.



290 References

Kanehisa, Minoru, Susumu Goto, Miho Furumichi, Mao Tanabe, and Mika Hirakawa.
2010. “KEGG for Representation and Analysis of Molecular Networks Involving Diseases
and Drugs.” Nucleic Acids Research 38 (suppl 1): D355-60. https://doi.org/10.1093/nar/gkp896.

Katoh, Kazutaka, Kazuharu Misawa, Kei-ichi Kuma, and Takashi Miyata. 2002. “MAFFT:
A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Trans-
form.” Nucleic Acids Research 30 (14): 3059-66. https://doi.org/10.1093/nar/gkf436.

Kim, Daehwan, Ben Langmead, and Steven L Salzberg. 2015. “HISAT: A Fast Spliced
Aligner with Low Memory Requirements.” Nature Methods 12 (4): 357-60.
https://doi.org/10.1038/nmeth.3317.

Kleiner, David E., Elizabeth M. Brunt, Mark Van Natta, Cynthia Behling, Melissa J.
Contos, Oscar W. Cummings, Linda D. Ferrell, et al. 2005. “Design and Validation of
a Histological Scoring System for Nonalcoholic Fatty Liver Disease.” Hepatology 41 (6):
1313-1321. https://doi.org/10.1002/hep.20701.

Kondo, Takayuki, Masashi Asai, Kayoko Tsukita, Yumiko Kutoku, Yutaka Ohsawa,
Yoshihide Sunada, Keiko Imamura, et al. 2013. “Modeling Alzheimer’s Disease with
IPSCs Reveals Stress Phenotypes Associated with Intracellular Aâ and Differential Drug
Responsiveness.” Cell Stem Cell 12 (4): 487-96. https://doi.org/10.1016/j.stem.2013.01.009.

Korber, Bette, Will M. Fischer, Sandrasegaram Gnanakaran, Hyejin Yoon, James Theiler,
Werner Abfalterer, Nick Hengartner, et al. 2020. “Tracking Changes in SARS-CoV-2
Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus.” Cell 182
(4): 812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043.

Kwon, Andrew T., David J. Arenillas, Rebecca Worsley Hunt, and Wyeth W. Wasserman.
2012. “OPOSSUM-3: Advanced Analysis of Regulatory Motif over-Representation across
Genes or ChIP-Seq Datasets.” G3 (Bethesda, Md.) 2 (9): 987-1002.
https://doi.org/10.1534/g3.112.003202.

Laakso, M. P., H. Soininen, K. Partanen, E. -L. Helkala, P. Hartikainen, P. Vainio, M.
Hallikainen, T. Hänninen, and P. J. Riekkinen Sr. 1995. “Volumes of Hippocampus,
Amygdala and Frontal Lobes in the MRI-Based Diagnosis of Early Alzheimer’s Disease:
Correlation with Memory Functions.” Journal of Neural Transmission - Parkinson’s
Disease and Dementia Section 9 (1): 73-86. https://doi.org/10.1007/BF02252964.



References 291

Laakso, Mikko P, Merja Hallikainen, Tuomo Hänninen, Kaarina Partanen, and Hilkka
Soininen. 2000. “Diagnosis of Alzheimer’s Disease: MRI of the Hippocampus vs Delayed
Recall.” Neuropsychologia 38 (5): 579-84. https://doi.org/10.1016/S0028-3932(99)00111-
6.

Langfelder, Peter, and Steve Horvath. 2008. “WGCNA: An R Package for Weighted Cor-
relation Network Analysis.” BMC Bioinformatics 9 (1). https://doi.org/10.1186/1471-
2105-9-559.

Langmead, Ben, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. 2009. “Ultrafast and
Memory-Efficient Alignment of Short DNA Sequences to the Human Genome.” Genome
Biology 10 (3): R25. https://doi.org/10.1186/gb-2009-10-3-r25.

Li, Heng, and Richard Durbin. 2010. “Fast and Accurate Long-Read Alignment with
Burrows-Wheeler Transform.” Bioinformatics (Oxford, England) 26 (5): 589-95.
https://doi.org/10.1093/bioinformatics/btp698.

Li, J., G. Ning, and S. A. Duncan. 2000. “Mammalian Hepatocyte Differentiation
Requires the Transcription Factor HNF-4alpha.” Genes & Development 14 (4): 464-
74.

Lindström, Nils O., Guilherme De Sena Brandine, Tracy Tran, Andrew Ransick, Gio Suh,
Jinjin Guo, Albert D. Kim, et al. 2018. “Progressive Recruitment of Mesenchymal Pro-
genitors Reveals a Time-Dependent Process of Cell Fate Acquisition in Mouse and Human
Nephrogenesis.” Developmental Cell 45 (5): 651-660.e4. https://doi.org/10.1016/j.devcel.2018.05.010.

Lippert, Ross A. 2005. “Space-Efficient Whole Genome Comparisons with Burrows-
Wheeler Transforms.” Journal of Computational Biology: A Journal of Computational
Molecular Cell Biology 12 (4): 407-15. https://doi.org/10.1089/cmb.2005.12.407.

Liu, Yan, Huisheng Liu, Conall Sauvey, Lin Yao, Ewa D. Zarnowska, and Su-Chun Zhang.
2013. “Directed Differentiation of Forebrain GABA Interneurons from Human Pluripo-
tent Stem Cells.” Nature Protocols 8 (9): 1670-79. https://doi.org/10.1038/nprot.2013.106.

Luo, W., and C. Brouwer. 2013. “Pathview: An R/Bioconductor Package for Pathway-
Based Data Integration and Visualization.” Bioinformatics 29 (14): 1830-31.
https://doi.org/10.1093/bioinformatics/btt285.



292 References

Maere, Steven, Karel Heymans, and Martin Kuiper. 2005. “BiNGO: A Cytoscape Plu-
gin to Assess Overrepresentation of Gene Ontology Categories in Biological Networks.”
Bioinformatics (Oxford, England) 21 (16): 3448-49.
https://doi.org/10.1093/bioinformatics/bti551.

Mane, Shrinivasrao P., Clive Evans, Kristal L. Cooper, Oswald R. Crasta, Otto Folkerts,
Stephen K. Hutchison, Timothy T. Harkins, Danielle Thierry-Mieg, Jean Thierry-Mieg,
and Roderick V. Jensen. 2009. “Transcriptome Sequencing of the Microarray Quality
Control (MAQC) RNA Reference Samples Using next Generation Sequencing.” BMC
Genomics 10: 264. https://doi.org/10.1186/1471-2164-10-264.

MAQC Consortium, Leming Shi, Laura H. Reid, Wendell D. Jones, Richard Shippy, Janet
A. Warrington, Shawn C. Baker, et al. 2006. “The MicroArray Quality Control (MAQC)
Project Shows Inter- and Intraplatform Reproducibility of Gene Expression Measure-
ments.” Nature Biotechnology 24 (9): 1151-61. https://doi.org/10.1038/nbt1239.

Martins, Soraia, Martina Bohndorf, Nina Graffmann, Wasco Wruck, Krystyna H. Chrzanowska,
and James Adjaye. 2019. “Fibroblast-Derived Integration-Free IPSC Line ISRM-NBS1
from an 18-Year-Old Nijmegen Breakage Syndrome Patient Carrying the Homozygous
NBN c.657_661del5 Mutation.” Stem Cell Research 34 (January): 101372.
https://doi.org/10.1016/j.scr.2018.101372.

Martins, Soraia, Andreas Müller-Schiffmann, Lars Erichsen, Martina Bohndorf, Wasco
Wruck, Kristel Sleegers, Christine Van Broeckhoven, Carsten Korth, and James Adjaye.
2020. “IPSC-Derived Neuronal Cultures Carrying the Alzheimer’s Disease Associated
TREM2 R47H Variant Enables the Construction of an Aβ-Induced Gene Regulatory
Network.” International Journal of Molecular Sciences 21 (12): 4516.
https://doi.org/10.3390/ijms21124516.

Matz, Peggy, Wasco Wruck, Beatrix Fauler, Diran Herebian, Thorsten Mielke, and James
Adjaye. 2017. “Footprint-Free Human Fetal Foreskin Derived IPSCs: A Tool for Mod-
eling Hepatogenesis Associated Gene Regulatory Networks.” Scientific Reports 7 (1):
6294. https://doi.org/10.1038/s41598-017-06546-9.

McCall, Matthew N., Benjamin M. Bolstad, and Rafael A. Irizarry. 2010. “Frozen
Robust Multiarray Analysis (FRMA).” Biostatistics (Oxford, England) 11 (2): 242-53.
https://doi.org/10.1093/biostatistics/kxp059.



References 293

Mehta, Shagun R., Colton M. Tom, Yizhou Wang, Catherine Bresee, David Rushton,
Pranav P. Mathkar, Jie Tang, and Virginia B. Mattis. 2018. “Human Huntington’s Dis-
ease IPSC-Derived Cortical Neurons Display Altered Transcriptomics, Morphology, and
Maturation.” Cell Reports 25 (4): 1081-1096.e6. https://doi.org/10.1016/j.celrep.2018.09.076.

Min, Hae-Ki, Ashwani Kapoor, Michael Fuchs, Faridoddin Mirshahi, Huiping Zhou,
James Maher, John Kellum, Russell Warnick, Melissa J. Contos, and Arun J. Sanyal.
2012. “Increased Hepatic Synthesis and Dysregulation of Cholesterol Metabolism Is As-
sociated with the Severity of Nonalcoholic Fatty Liver Disease.” Cell Metabolism 15 (5):
665-74. https://doi.org/10.1016/j.cmet.2012.04.004.

Mlody, Barbara, Wasco Wruck, Soraia Martins, Karl Sperling, and James Adjaye. 2017.
“Nijmegen Breakage Syndrome Fibroblasts and IPSCs: Cellular Models for Uncovering
Disease-Associated Signaling Pathways and Establishing a Screening Platform for Anti-
Oxidants.” Scientific Reports 7 (1). https://doi.org/10.1038/s41598-017-07905-2.

Moreno, Cesar L., Lucio Della Guardia, Valeria Shnyder, Maitane Ortiz-Virumbrales, Ilya
Kruglikov, Bin Zhang, Eric E. Schadt, et al. 2018. “IPSC-Derived Familial Alzheimer’s
PSEN2 N141I Cholinergic Neurons Exhibit Mutation-Dependent Molecular Pathology
Corrected by Insulin Signaling.” Molecular Neurodegeneration 13 (1): 33.
https://doi.org/10.1186/s13024-018-0265-5.

Mu, Yangling, and Fred H Gage. 2011. “Adult Hippocampal Neurogenesis and Its Role in
Alzheimer’s Disease.” Molecular Neurodegeneration 6 (1): 85. https://doi.org/10.1186/1750-
1326-6-85.

Müller, Franz-Josef, Bernhard M. Schuldt, Roy Williams, Dylan Mason, Gulsah Altun,
Eirini P. Papapetrou, Sandra Danner, et al. 2011. “A Bioinformatic Assay for Pluripo-
tency in Human Cells.” Nature Methods 8 (4): 315-17. https://doi.org/10.1038/nmeth.1580.

Musso, Giovanni, Roberto Gambino, and Maurizio Cassader. 2013. “Cholesterol Metabolism
and the Pathogenesis of Non-Alcoholic Steatohepatitis.” Progress in Lipid Research 52
(1): 175-91. https://doi.org/10.1016/j.plipres.2012.11.002.

Neuschwander-Tetri, Brent A, Rohit Loomba, Arun J Sanyal, Joel E Lavine, Mark L Van
Natta, Manal F Abdelmalek, Naga Chalasani, et al. 2015. “Farnesoid X Nuclear Receptor
Ligand Obeticholic Acid for Non-Cirrhotic, Non-Alcoholic Steatohepatitis (FLINT): A
Multicentre, Randomised, Placebo-Controlled Trial.” The Lancet 385 (9972): 956-65.
https://doi.org/10.1016/S0140-6736(14)61933-4.



294 References

Nichols, J., B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-Nebenius, I. Chambers,
H. Schöler, and A. Smith. 1998. “Formation of Pluripotent Stem Cells in the Mam-
malian Embryo Depends on the POU Transcription Factor Oct4.” Cell 95 (3): 379-91.
https://doi.org/10.1016/s0092-8674(00)81769-9.

Oughtred, Rose, Chris Stark, Bobby-Joe Breitkreutz, Jennifer Rust, Lorrie Boucher,
Christie Chang, Nadine Kolas, et al. 2019. “The BioGRID Interaction Database: 2019
Update.” Nucleic Acids Research 47 (D1): D529-41. https://doi.org/10.1093/nar/gky1079.

Pan, Jian-Bo, Shi-Chang Hu, Dan Shi, Mei-Chun Cai, Yin-Bo Li, Quan Zou, and Zhi-
Liang Ji. 2013. “PaGenBase: A Pattern Gene Database for the Global and Dynamic
Understanding of Gene Function.” PloS One 8 (12): e80747.
https://doi.org/10.1371/journal.pone.0080747.

Park, Chul-Yong, Tomer Halevy, Dongjin R. Lee, Jin Jea Sung, Jae Souk Lee, Ofra
Yanuka, Nissim Benvenisty, and Dong-Wook Kim. 2015. “Reversion of FMR1 Methyla-
tion and Silencing by Editing the Triplet Repeats in Fragile X IPSC-Derived Neurons.”
Cell Reports 13 (2): 234-41. https://doi.org/10.1016/j.celrep.2015.08.084.

Pertea, Mihaela, Geo M. Pertea, Corina M. Antonescu, Tsung-Cheng Chang, Joshua
T. Mendell, and Steven L. Salzberg. 2015. “StringTie Enables Improved Reconstruc-
tion of a Transcriptome from RNA-Seq Reads.” Nature Biotechnology 33 (3): 290-95.
https://doi.org/10.1038/nbt.3122.

Pesce, M., M. K. Gross, and H. R. Schöler. 1998. “In Line with Our Ancestors:
Oct-4 and the Mammalian Germ.” BioEssays: News and Reviews in Molecular, Cel-
lular and Developmental Biology 20 (9): 722-32. https://doi.org/10.1002/(SICI)1521-
1878(199809)20:9<722::AID-BIES5>3.0.CO;2-I.

Puelles, Victor G., Marc Lütgehetmann, Maja T. Lindenmeyer, Jan P. Sperhake, Mila-
gros N. Wong, Lena Allweiss, Silvia Chilla, et al. 2020. “Multiorgan and Renal Tropism
of SARS-CoV-2.” New England Journal of Medicine 383 (6): 590–92.
https://doi.org/10.1056/NEJMc2011400.

Rahman, Md Shaifur, Wasco Wruck, Lucas-Sebastian Spitzhorn, Lisa Nguyen, Martina
Bohndorf, Soraia Martins, Fatima Asar, et al. 2020. “The FGF, TGFâ and WNT
Axis Modulate Self-Renewal of Human SIX2+ Urine Derived Renal Progenitor Cells.”
Scientific Reports 10 (1): 739. https://doi.org/10.1038/s41598-020-57723-2.



References 295

Ratziu, Vlad, Julien Massard, Frederic Charlotte, Djamila Messous, Françoise Imbert-
Bismut, Luninita Bonyhay, Mohamed Tahiri, et al. 2006. “Diagnostic Value of Biochem-
ical Markers (FibroTest-FibroSURE) for the Prediction of Liver Fibrosis in Patients with
Non-Alcoholic Fatty Liver Disease.” BMC Gastroenterology 6: 6. https://doi.org/10.1186/1471-
230X-6-6.

Rinella, Mary E., Marc S. Elias, Robin R. Smolak, Tao Fu, Jayme Borensztajn, and
Richard M. Green. 2008. “Mechanisms of Hepatic Steatosis in Mice Fed a Lipogenic
Methionine Choline-Deficient Diet.” Journal of Lipid Research 49 (5): 1068-76.
https://doi.org/10.1194/jlr.M800042-JLR200.

Roost, Matthias S., Liesbeth van Iperen, Yavuz Ariyurek, Henk P. Buermans, Wibowo
Arindrarto, Harsha D. Devalla, Robert Passier, et al. 2015. “KeyGenes, a Tool to Probe
Tissue Differentiation Using a Human Fetal Transcriptional Atlas.” Stem Cell Reports 4
(6): 1112-24. https://doi.org/10.1016/j.stemcr.2015.05.002.

Sagulenko, Pavel, Vadim Puller, and Richard A. Neher. 2018. “TreeTime: Maximum-
Likelihood Phylodynamic Analysis.” Virus Evolution 4 (1). https://doi.org/10.1093/ve/vex042.

Sandelin, Albin, Wynand Alkema, Pär Engström, Wyeth W. Wasserman, and Boris
Lenhard. 2004. “JASPAR: An Open-Access Database for Eukaryotic Transcription Fac-
tor Binding Profiles.” Nucleic Acids Research 32 (Database issue): D91-94.
https://doi.org/10.1093/nar/gkh012.

Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. “Quantitative Monitoring of
Gene Expression Patterns with a Complementary DNA Microarray.” Science 270 (5235):
467-70. https://doi.org/10.1126/science.270.5235.467.

Schröter, Friederike, Kristel Sleegers, Elise Cuyvers, Martina Bohndorf, Wasco Wruck,
Christine Van Broeckhoven, and James Adjaye. 2016. “Lymphoblast-Derived Integration-
Free IPS Cell Line from a 65-Year-Old Alzheimer’s Disease Patient Expressing the
TREM2 p.R47H Variant.” Stem Cell Research 16 (1): 113-15.
https://doi.org/10.1016/j.scr.2015.12.017.

Slenter, Denise N., Martina Kutmon, Kristina Hanspers, Anders Riutta, Jacob Windsor,
Nuno Nunes, Jonathan Mélius, et al. 2018. “WikiPathways: A Multifaceted Pathway
Database Bridging Metabolomics to Other Omics Research.” Nucleic Acids Research 46
(D1): D661-67. https://doi.org/10.1093/nar/gkx1064.



296 References

Smyth, Gordon K. 2004. “Linear Models and Empirical Bayes Methods for Assessing
Differential Expression in Microarray Experiments.” Statistical Applications in Genetics
and Molecular Biology 3 (1). https://doi.org/10.2202/1544-6115.1027.

Spitzhorn, Lucas-Sebastian, Matthias Megges, Wasco Wruck, Md Shaifur Rahman, Jörg
Otte, Özer Degistirici, Roland Meisel, Rüdiger Volker Sorg, Richard O. C. Oreffo, and
James Adjaye. 2019. “Human IPSC-Derived MSCs (IMSCs) from Aged Individuals
Acquire a Rejuvenation Signature.” Stem Cell Research & Therapy 10 (1): 100.
https://doi.org/10.1186/s13287-019-1209-x.

Steinfath, Matthias, Wasco Wruck, Henrik Seidel, Hans Lehrach, Uwe Radelof, and
John O’Brien. 2001. “Automated Image Analysis for Array Hybridization Experiments.”
Bioinformatics 17 (7): 634-641.

Storey, John D. 2002. “A Direct Approach to False Discovery Rates.” Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 64 (3): 479-98.
https://doi.org/10.1111/1467-9868.00346.

Subramanian, Aravind, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Benjamin
L. Ebert, Michael A. Gillette, Amanda Paulovich, et al. 2005. “Gene Set Enrichment
Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Pro-
files.” Proceedings of the National Academy of Sciences of the United States of America
102 (43): 15545-50. https://doi.org/10.1073/pnas.0506580102.

Supek, Fran, Matko Bošnjak, Nives Škunca, and Tomislav Šmuc. 2011. “REVIGO
Summarizes and Visualizes Long Lists of Gene Ontology Terms.” Edited by Cynthia
Gibas. PLoS ONE 6 (7): e21800. https://doi.org/10.1371/journal.pone.0021800.

Szklarczyk, Damian, Andrea Franceschini, Stefan Wyder, Kristoffer Forslund, Davide
Heller, Jaime Huerta-Cepas, Milan Simonovic, et al. 2015. “STRING V10: Protein-
Protein Interaction Networks, Integrated over the Tree of Life.” Nucleic Acids Research
43 (Database issue): D447-452. https://doi.org/10.1093/nar/gku1003.

Takahashi, Kazutoshi, Koji Tanabe, Mari Ohnuki, Megumi Narita, Tomoko Ichisaka,
Kiichiro Tomoda, and Shinya Yamanaka. 2007. “Induction of Pluripotent Stem Cells
from Adult Human Fibroblasts by Defined Factors.” Cell 131 (5): 861-72.
https://doi.org/10.1016/j.cell.2007.11.019.



References 297

Takahashi, Kazutoshi, and Shinya Yamanaka. 2006. “Induction of Pluripotent Stem
Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors.” Cell
126 (4): 663-76. https://doi.org/10.1016/j.cell.2006.07.024.

Tarca, Adi L., Gaurav Bhatti, and Roberto Romero. 2013. “A Comparison of Gene Set
Analysis Methods in Terms of Sensitivity, Prioritization and Specificity.” PloS One 8
(11): e79217. https://doi.org/10.1371/journal.pone.0079217.

Thomas, Paul D., David P. Hill, Huaiyu Mi, David Osumi-Sutherland, Kimberly Van
Auken, Seth Carbon, James P. Balhoff, et al. 2019. “Gene Ontology Causal Activity Mod-
eling (GO-CAM) Moves beyond GO Annotations to Structured Descriptions of Biological
Functions and Systems.” Nature Genetics 51 (10): 1429-33. https://doi.org/10.1038/s41588-
019-0500-1.

Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V.
S. Marshall, and J. M. Jones. 1998. “Embryonic Stem Cell Lines Derived from Human
Blastocysts.” Science (New York, N.Y.) 282 (5391): 1145-47.

Thurman, Walter N., and Mark E. Fisher. 1988. “Chickens, Eggs, and Causality,
or Which Came First?” American Journal of Agricultural Economics 70 (2): 237-38.
https://doi.org/10.2307/1242062.

Tomfohr, John, Jun Lu, and Thomas B. Kepler. 2005. “Pathway Level Analysis of Gene
Expression Using Singular Value Decomposition.” BMC Bioinformatics 6 (September):
225. https://doi.org/10.1186/1471-2105-6-225.

Trapnell, Cole, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R. Kelley,
Harold Pimentel, Steven L. Salzberg, John L. Rinn, and Lior Pachter. 2012. “Differential
Gene and Transcript Expression Analysis of RNA-Seq Experiments with TopHat and
Cufflinks.” Nature Protocols 7 (3): 562-78. https://doi.org/10.1038/nprot.2012.016.

Tsuchida, Takuma, Youngmin A. Lee, Naoto Fujiwara, Maria Ybanez, Brittany Allen,
Sebastiao Martins, M. Isabel Fiel, et al. 2018. “A Simple Diet- and Chemical-Induced
Murine NASH Model with Rapid Progression of Steatohepatitis, Fibrosis and Liver Can-
cer.” Journal of Hepatology 69 (2): 385-95. https://doi.org/10.1016/j.jhep.2018.03.011.

Wruck, Wasco, and James Adjaye. 2017. “Meta-Analysis Reveals up-Regulation of
Cholesterol Processes in Non-Alcoholic and down-Regulation in Alcoholic Fatty Liver



298 References

Disease.” World Journal of Hepatology 9 (8): 443. https://doi.org/10.4254/wjh.v9.i8.443.—
——

. 2018. “Human Pluripotent Stem Cell Derived HLC Transcriptome Data Enables Molec-
ular Dissection of Hepatogenesis.” Scientific Data 5: 180035.
https://doi.org/10.1038/sdata.2018.35.———

. 2020. “Meta-Analysis of Human Prefrontal Cortex Reveals Activation of GFAP and
Decline of Synaptic Transmission in the Aging Brain.” Acta Neuropathologica Commu-
nications 8 (1): 26. https://doi.org/10.1186/s40478-020-00907-8.

Wruck, Wasco, Nina Graffmann, Marie-Ann Kawala, and James Adjaye. 2017. “Concise
Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty
Liver Disease.” Stem Cells (Dayton, Ohio) 35 (1): 89-96. https://doi.org/10.1002/stem.2454.

Wruck, Wasco, Huw Griffiths, Matthias Steinfath, Hans Lehrach, Uwe Radelof, and John
O’Brien. 2002. “Xdigitise: Visualization of Hybridization Experiments.” Bioinformatics
18 (5): 757-60. https://doi.org/10.1093/bioinformatics/18.5.757.

Wruck, Wasco, Karl Kashofer, Samrina Rehman, Andriani Daskalaki, Daniela Berg, Ewa
Gralka, Justyna Jozefczuk, et al. 2015. “Multi-Omic Profiles of Human Non-Alcoholic
Fatty Liver Disease Tissue Highlight Heterogenic Phenotypes.” Scientific Data 2 (De-
cember): 150068.

Wruck, Wasco, Friederike Schröter, and James Adjaye. 2016. “Meta-Analysis of Tran-
scriptome Data Related to Hippocampus Biopsies and IPSC-Derived Neuronal Cells
from Alzheimer’s Disease Patients Reveals an Association with FOXA1 and FOXA2
Gene Regulatory Networks.” Journal of Alzheimer’s Disease: JAD 50 (4): 1065-82.
https://doi.org/10.3233/JAD-150733.

Wu, Yi-Ying, Feng-Lan Chiu, Chan-Shien Yeh, and Hung-Chih Kuo. 2019. “Opportuni-
ties and Challenges for the Use of Induced Pluripotent Stem Cells in Modelling Neurode-
generative Disease.” Open Biology 9 (1): 180177. https://doi.org/10.1098/rsob.180177.

Yagi, Takuya, Daisuke Ito, Yohei Okada, Wado Akamatsu, Yoshihiro Nihei, Takahito
Yoshizaki, Shinya Yamanaka, Hideyuki Okano, and Norihiro Suzuki. 2011. “Modeling
Familial Alzheimer’s Disease with Induced Pluripotent Stem Cells.” Human Molecular
Genetics 20 (23): 4530-39. https://doi.org/10.1093/hmg/ddr394.



References 299

Zang, Ruochen, Maria Florencia Gomez Castro, Broc T. McCune, Qiru Zeng, Paul W.
Rothlauf, Naomi M. Sonnek, Zhuoming Liu, et al. 2020. “TMPRSS2 and TMPRSS4
Promote SARS-CoV-2 Infection of Human Small Intestinal Enterocytes.” Science Im-
munology 5 (47): eabc3582. https://doi.org/10.1126/sciimmunol.abc3582.

Zaret, Kenneth S. 2002. “Regulatory Phases of Early Liver Development: Paradigms of
Organogenesis.” Nature Reviews. Genetics 3 (7): 499-512. https://doi.org/10.1038/nrg837.

Zeeberg, Barry R., Weimin Feng, Geoffrey Wang, May D. Wang, Anthony T. Fojo,
Margot Sunshine, Sudarshan Narasimhan, et al. 2003. “GoMiner: A Resource for Bi-
ological Interpretation of Genomic and Proteomic Data.” Genome Biology 4 (4): R28.
https://doi.org/10.1186/gb-2003-4-4-r28.

Zhang, Miao, Cristina D’Aniello, Arie O. Verkerk, Eva Wrobel, Stefan Frank, Dorien
Ward-van Oostwaard, Ilaria Piccini, et al. 2014. “Recessive Cardiac Phenotypes in In-
duced Pluripotent Stem Cell Models of Jervell and Lange-Nielsen Syndrome: Disease
Mechanisms and Pharmacological Rescue.” Proceedings of the National Academy of Sci-
ences of the United States of America 111 (50): E5383-5392.
https://doi.org/10.1073/pnas.1419553111.

Zhang, Quanwei, and Zhengdong D. Zhang. 2013. “SubNet: A Java Application for Sub-
network Extraction.” Bioinformatics 29 (19): 2509-11. https://doi.org/10.1093/bioinformatics/btt430.

Zhang, S. C., M. Wernig, I. D. Duncan, O. Brüstle, and J. A. Thomson. 2001. “In Vitro
Differentiation of Transplantable Neural Precursors from Human Embryonic Stem Cells.”
Nature Biotechnology 19 (12): 1129-33. https://doi.org/10.1038/nbt1201-1129.

Zhao, Roong, and Stephen A. Duncan. 2005. “Embryonic Development of the Liver.”
Hepatology (Baltimore, Md.) 41 (5): 956-67. https://doi.org/10.1002/hep.20691.



300 Acknowledgements

Acknowledgements

I would like to thank Prof. Dr. James Adjaye for giving me the opportunity to work on
so many interesting projects and to write my dissertation. I would like to express my
great appreciation to Prof. Dr. Gunnar Klau for kindly acting as reviewer of my thesis
as representative of the Faculty of Mathematics and Natural Sciences of the Heinrich-
Heine-University Düsseldorf. Furthermore, I would like to thank all my colleagues at the
Institute for Stem Cell Research and Regenerative Medicine for their support and the
nice working atmosphere.



Appendix – Other publications

A.1. J Cell Mol Med. 2021 Jan 14. doi: 10.1111/jcmm.16222. [Epub ahead of print]

The pioneer and differentiation factor FOXA2 is a key driver of yolk-sac
tumour formation and a new biomarker for paediatric and adult yolk-sac
tumours.

Wruck W(1), Bremmer F(2), Kotthoff M(3), Fichtner A(2), Skowron MA(3), Schönberger
S(4), Calaminus G(5), Vokuhl C(6), Pfister D(7), Heidenreich A(7), Albers P(8), Adjaye
J(1), Nettersheim D(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
University Hospital Düsseldorf, Düsseldorf, Germany. (2)Institute of Pathology, Uni-
versity Medical Center Goettingen, Goettingen, Germany. (3)Department of Urology,
Urological Research Lab, Translational UroOncology, University Hospital Düsseldorf,
Düsseldorf, Germany. (4)Department of Pediatric Hematology and Oncology, Univer-
sity Children’s Hospital, Essen, Germany. (5)Department of Pediatric Hematology and
Oncology, University Hospital Bonn, Bonn, Germany. (6)Institute of Pathology, Uni-
versity Hospital Bonn, Bonn, Germany. (7)Department of Urology, University Hospital
Cologne, Cologne, Germany. (8)Department of Urology, University Hospital Düsseldorf,
Düsseldorf, Germany.

Yolk-sac tumours (YSTs), a germ cell tumour subtype, occur in newborns and infants as
well as in young adults of age 14-44 years. In clinics, adult patients with YSTs face a
poor prognosis, as these tumours are often therapy-resistant and count for many germ cell
tumour related deaths. So far, the molecular and (epi)genetic mechanisms that control
development of YST are far from being understood. We deciphered the molecular and
(epi)genetic mechanisms regulating YST formation by meta-analysing high-throughput
data of gene and microRNA expression, DNA methylation and mutational burden. We
validated our findings by qRT-PCR and immunohistochemical analyses of paediatric
and adult YSTs. On a molecular level, paediatric and adult YSTs were nearly indis-
tinguishable, but were considerably different from embryonal carcinomas, the stem cell
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precursor of YSTs. We identified FOXA2 as a putative key driver of YST formation,
subsequently inducing AFP, GPC3, APOA1/APOB, ALB and GATA3/4/6 expression.
In YSTs, WNT-, BMP- and MAPK signalling-related genes were up-regulated, while
pluripotency- and (primordial) germ cell-associated genes were down-regulated. Expres-
sion of FOXA2 and related key factors seems to be regulated by DNA methylation,
histone methylation / acetylation and microRNAs. Additionally, our results highlight
FOXA2 as a promising new biomarker for paediatric and adult YSTs.

DOI: 10.1111/jcmm.16222 PMID: 33448076

A.2. BMC Genomics. 2020 Mar 30;21(1):265. doi: 10.1186/s12864-020-6684-z.

Transcriptomic analysis of marine endophytic fungi extract identifies highly
enriched anti-fungal fractions targeting cancer pathways in HepG2 cell lines.

Blessie EJ(1), Wruck W(2), Abbey BA(1), Ncube A(2), Graffmann N(2), Amarh V(1),
Arthur PK(3), Adjaye J(4)(5).

Author information: (1)West African Center for Cell Biology of Infectious Pathogens,
Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra,
Ghana. (2)Institute for Stem Cell Research and Regenerative Medicine, Medical fac-
ulty, Heinrich-Heine University, Düsseldorf, Germany. (3)West African Center for Cell
Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biol-
ogy, University of Ghana, Accra, Ghana. PArthur@ug.edu.gh. (4)West African Center
for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecu-
lar Biology, University of Ghana, Accra, Ghana. James.Adjaye@med.uni-duesseldorf.de.
(5)Institute for Stem Cell Research and Regenerative Medicine, Medical faculty, Heinrich-
Heine University, Düsseldorf, Germany. James.Adjaye@med.uni-duesseldorf.de.

BACKGROUND: Marine endophytic fungi (MEF) are good sources of structurally unique
and biologically active secondary metabolites. Due to the increase in antimicrobial re-
sistance, the secondary metabolites from MEF ought to be fully explored to identify
candidates which could serve as lead compounds for novel drug development. These sec-
ondary metabolites might also be useful for development of new cancer drugs. In this
study, ethyl acetate extracts from marine endophytic fungal cultures were tested for their
antifungal activity and anticancer properties against C. albicans and the human liver can-
cer cell line HepG2, respectively. The highly enriched fractions were also analyzed by
high performance liquid chromatography coupled with high resolution mass spectrometry
(HPLC-HRMS) and their effect on the HepG2 cells was assessed via transcriptomics and
with a proliferation assay. RESULTS: We demonstrated that the fractions could reduce
proliferation in HepG2 cells. The detailed transcriptome analysis revealed regulation
of several cancer- and metabolism-related pathways and gene ontologies. The down-
regulated pathways included, cell cycle, p53 signaling, DNA replication, sphingolipid
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metabolism and drug metabolism by cytochrome P450. The upregulated pathways in-
cluded HIF-1 signaling, focal adhesion, necroptosis and transcriptional mis-regulation
of cancer. Furthermore, a protein interaction network was constructed based on the
26 proteins distinguishing the three treatment conditions from the untreated cells. This
network was composed of central functional components associated with metabolism and
cancer such as TNF, MAPK, TRIM21 and one component contained APP. CONCLU-
SIONS: The purified fractions from MEF investigated in this study showed antifungal
activity against C. albicans and S. cerevisiae alone or both and reduced proliferation
of the human liver cancer cell line HepG2 implicating regulation of several cancer- and
metabolism-related pathways. The data from this study could be instrumental in iden-
tifying new pathways associated with liver cancer anti-proliferative processes which can
be used for the development of novel antifungal and anti-cancer drugs.

DOI: 10.1186/s12864-020-6684-z PMCID: PMC7106652 PMID: 32228434

A.3. Reproduction. 2019 Sep;158(3):R97-R111. doi: 10.1530/REP-18-0083.

The quest for pluripotency: a comparative analysis across mammalian species.

Devika AS(1), Wruck W(2), Adjaye J(2), Sudheer S(1).

Author information: (1)Department of Genomic Science, Central University of Kerala,
Kerala, India. (2)Institute for Stem Cell Research and Regenerative Medicine, Medical
Faculty, Heinrich Heine University, Düsseldorf, Germany.

Pluripotency is the developmental potential of a cell to give rise to all the cells in the three
embryonic germ layers, including germline cells. Pluripotent stem cells (PSCs) can be
embryonic, germ cell or somatic cell in origin and can adopt alternative states of pluripo-
tency: naïve or primed. Although several reports have described the differentiation of
PSCs to extra-embryonic lineages, such as primitive endoderm and trophectoderm, this
is still debated among scientists in the field. In this review, we integrate the recent
findings on pluripotency among mammals, alternative states of pluripotency, signalling
pathways associated with maintaining pluripotency and the nature of PSCs derived from
various mammals. PSCs from humans and mouse have been the most extensively studied.
In other mammalian species, more research is required for understanding the optimum
in vitro conditions required for either achieving pluripotency or preservation of distinct
pluripotent states. A comparative high-throughput analysis of PSCs of genes expressed
in naïve or primed states of humans, nonhuman primates (NHP) and rodents, based on
publicly available datasets revealed the probable prominence of seven signalling pathways
common among these species, irrespective of the states of pluripotency. We conclude
by highlighting some of the unresolved questions and future directions of research on
pluripotency in mammals.
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A.4. Brief Bioinform. 2014 Jan;15(1):65-78. doi: 10.1093/bib/bbs064. Epub 2012 Oct
9.

Data management strategies for multinational large-scale systems biology
projects.

Wruck W(1), Peuker M, Regenbrecht CR.

Author information: (1)Institute of Pathology, Charite - Universitaetsmedizin Berlin,
Chariteplatz 1, 10117 Berlin. Tel.: +49 30 2093 8951; Fax: +49 30 450 536 909;
wasco.wruck@charite.de.

Good accessibility of publicly funded research data is essential to secure an open scientific
system and eventually becomes mandatory [Wellcome Trust will Penalise Scientists Who
Don’t Embrace Open Access. The Guardian 2012]. By the use of high-throughput
methods in many research areas from physics to systems biology, large data collections
are increasingly important as raw material for research. Here, we present strategies
worked out by international and national institutions targeting open access to publicly
funded research data via incentives or obligations to share data. Funding organizations
such as the British Wellcome Trust therefore have developed data sharing policies and
request commitment to data management and sharing in grant applications. Increased
citation rates are a profound argument for sharing publication data. Pre-publication
sharing might be rewarded by a data citation credit system via digital object identifiers
(DOIs) which have initially been in use for data objects. Besides policies and incentives,
good practice in data management is indispensable. However, appropriate systems for
data management of large-scale projects for example in systems biology are hard to find.
Here, we give an overview of a selection of open-source data management systems proved
to be employed successfully in large-scale projects.

DOI: 10.1093/bib/bbs064 PMCID: PMC3896927 PMID: 23047157 [Indexed for MED-
LINE]

A.5. Bioinformatics. 2002 May;18(5):757-60.

Xdigitise: visualization of hybridization experiments.

Wruck W(1), Griffiths H, Steinfath M, Lehrach H, Radelof U, O’Brien J.
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Author information: (1)Max-Planck-Institute for Molecular Genetics Berlin-Dahlem,
Ihnestrasse 73, 14195 Berlin, Germany. wruck_w@molgen.mpg.de

Xdigitise is a software system for visualization of hybridization experiments giving the
user facilities to analyze the corresponding images manually or automatically. Images of
the high-density DNA arrays are displayed as well as the results of an external image
analysis bundled with Xdigitise, e.g. the spot locations are marked and the duplicate
correlations are shown by a color scale.AVAILABILITY: Xdigitise can be downloaded
from http://www.molgen.mpg.de/~xdigitise.

DOI: 10.1093/bioinformatics/18.5.757 PMID: 12050072 [Indexed for MEDLINE]

A.6 Biol Open. 2020 Dec 28. pii: bio.054189. doi: 10.1242/bio.054189. [Epub ahead of
print]

A stem cell based in vitro model of NAFLD enables the analysis of patient
specific individual metabolic adaptations in response to a high fat diet and
AdipoRon interference.

Graffmann N(1), Ncube A(1), Martins S(1), Fiszl AR(1), Reuther P(2), Bohndorf M(1),
Wruck W(1), Beller M(3)(4), Czekelius C(2), Adjaye J(5). Author information: (1)Insti-

tute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düs-
seldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany. (2)Institute of Or-
ganic Chemistry and Macromolecular Chemistry, Heinrich-Heine University, Düsseldorf,
Germany. (3)Institute for Mathematical Modeling of Biological Systems, Heinrich-Heine
University, Düsseldorf, Germany. (4)Systems Biology of Lipid Metabolism, Heinrich-
Heine University, Düsseldorf, Germany. (5)Institute for Stem Cell Research and Regen-
erative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse
5, 40225 Düsseldorf, Germany nina.graffmann@med.uni-duesseldorf.de.

Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. Its development
and progression depend on genetically predisposed susceptibility of the patient towards
several hits which induce fat storage first and later inflammation and fibrosis. Here, we
differentiated induced pluripotent stem cells (iPSCs) derived from four distinct donors
with varying disease stages into hepatocyte like cells (HLCs) and determined fat storage
as well as metabolic adaptations after stimulations with oleic acid. We could recapitulate
the complex networks that control lipid and glucose metabolism and we identified distinct
gene expression profiles related to the steatosis phenotype of the donor. In an attempt
to reverse the steatotic phenotype, cells were treated with the small molecule AdipoRon,
a synthetic analogue of adiponectin. Although the responses varied between cells lines,
they suggest a general influence of AdipoRon on metabolism, transport, immune system,
cell stress and signalling.
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A.7. Sci Rep. 2020 Feb 24;10(1):3284. doi: 10.1038/s41598-020-60065-8.

Functional omics analyses reveal only minor effects of microRNAs on human
somatic stem cell differentiation.

Schira-Heinen J(1)(2), Czapla A(3), Hendricks M(2), Kloetgen A(4)(5), Wruck W(6),
Adjaye J(6), Kögler G(3), Werner Müller H(2)(7), Stühler K(8)(9), Trompeter HI(3).

Author information: (1)Institute for Molecular Medicine, University Hospital Düsseldorf,
Moorenstr. 5, Düsseldorf, Germany. (2)Molecular Neurobiology Laboratory, Department
of Neurology, University Hospital Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
(3)Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital
Düsseldorf, Moorenstr. 5, Düsseldorf, Germany. (4)Department of Pediatric Oncology,
Hematology and Clinical Immunology, University Hospital Düsseldorf, Moorenstr. 5,
Düsseldorf, Germany. (5)Computational Biology of Infection Research, Helmholtz Cen-
ter for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany. (6)Institute for
Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Mooren-
str. 5, Düsseldorf, Germany. (7)Biologisch-Medizinisches Forschungszentrum (BMFZ),
Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany. (8)Institute
for Molecular Medicine, University Hospital Düsseldorf, Moorenstr. 5, Düsseldorf, Ger-
many. Kai.Stuehler@uni-duesseldorf.de. (9)Biologisch-Medizinisches Forschungszentrum
(BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
Kai.Stuehler@uni-duesseldorf.de.

The contribution of microRNA-mediated posttranscriptional regulation on the final pro-
teome in differentiating cells remains elusive. Here, we evaluated the impact of microR-
NAs (miRNAs) on the proteome of human umbilical cord blood-derived unrestricted
somatic stem cells (USSC) during retinoic acid (RA) differentiation by a systemic ap-
proach using next generation sequencing analysing mRNA and miRNA expression and
quantitative mass spectrometry-based proteome analyses. Interestingly, regulation of
mRNAs and their dedicated proteins highly correlated during RA-incubation. Addition-
ally, RA-induced USSC demonstrated a clear separation from native USSC thereby shift-
ing from a proliferating to a metabolic phenotype. Bioinformatic integration of up- and
downregulated miRNAs and proteins initially implied a strong impact of the miRNome
on the XXL-USSC proteome. However, quantitative proteome analysis of the miRNA
contribution on the final proteome after ectopic overexpression of downregulated miR-
27a-5p and miR-221-5p or inhibition of upregulated miR-34a-5p, respectively, followed
by RA-induction revealed only minor proportions of differentially abundant proteins. In
addition, only small overlaps of these regulated proteins with inversely abundant pro-
teins in non-transfected RA-treated USSC were observed. Hence, mRNA transcription
rather than miRNA-mediated regulation is the driving force for protein regulation upon
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RA-incubation, strongly suggesting that miRNAs are fine-tuning regulators rather than
active primary switches during RA-induction of USSC.

DOI: 10.1038/s41598-020-60065-8 PMCID: PMC7040006 PMID: 32094412

A.8. Sci Rep. 2019 Nov 22;9(1):17365. doi: 10.1038/s41598-019-53907-7.

FGF Signalling in the Self-Renewal of Colon Cancer Organoids.

Otte J(1), Dizdar L(2), Behrens B(2), Goering W(3), Knoefel WT(2), Wruck W(1),
Stoecklein NH(2), Adjaye J(4).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf,
Düsseldorf, Germany. (2)General, Visceral and Paediatric Surgery, University Hospital
and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
(3)Institute for Pathology, University Hospital and Medical Faculty of the Heinrich-Heine
University Düsseldorf, Düsseldorf, Germany. (4)Institute for Stem Cell Research and
Regenerative Medicine, University Hospital and Medical Faculty of the Heinrich-Heine
University Düsseldorf, Düsseldorf, Germany. James.Adjaye@med.uni-duesseldorf.de.

The progression of colorectal cancer (CRC) is supposedly driven by cancer stem cells
(CSC) which are able to self-renew and simultaneously fuel bulk tumour mass with highly
proliferative and differentiated tumour cells. However, the CSC-phenotype in CRC is
unstable and dependent on environmental cues. Fibroblast growth factor 2 (FGF2) is
essential and necessary for the maintenance of self-renewal in adult and embryonic stem
cells. Investigating its role in self-renewal in advanced CRC patient-derived organoids, we
unveiled that FGF-receptor (FGFR) inhibition prevents organoid formation in very early
expanding cells but induces cyst formation when applied to pre-established organoids.
Comprehensive transcriptome analyses revealed that the induction of the transcription
factor activator-protein-1 (AP-1) together with MAPK activation was most prominent
after FGFR-inhibition. These effects resemble mechanisms of an acquired resistance
against other described tyrosine kinase inhibitors such as EGF-receptor targeted ther-
apies. Furthermore, we detected elevated expression levels of several self-renewal and
stemness-associated genes in organoid cultures with active FGF2 signalling. The com-
bined data assume that CSCs are a heterogeneous population while self-renewal is a
common feature regulated by distinct but converging pathways. Finally, we highlight
FGF2 signalling as one of numerous components of the complex regulation of stemness
in cancer.

DOI: 10.1038/s41598-019-53907-7 PMCID: PMC6874569 PMID: 31758153
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A.9. Bone Res. 2019 Oct 24;7:32. doi: 10.1038/s41413-019-0069-4. eCollection 2019.

Human iPSC-derived iMSCs improve bone regeneration in mini-pigs.

Jungbluth P(#)(1), Spitzhorn LS(#)(2), Grassmann J(1), Tanner S(1), Latz D(1), Rah-
man MS(2), Bohndorf M(2), Wruck W(2), Sager M(3), Grotheer V(1), Kröpil P(4),
Hakimi M(5), Windolf J(1), Schneppendahl J(1), Adjaye J(2).

Author information: (1)1Department of Trauma and Hand Surgery, Heinrich Heine Uni-
versity Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany. (2)2Institute for
Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine Univer-
sity, Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany. (3)3Animal Research Insti-
tute, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
(4)4Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich
Heine University, Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany. (5)5Vivantes
Klinikum Am Urban, Dieffenbachstraße 1, 10967 Berlin, Germany. (#)Contributed
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Autologous bone marrow concentrate (BMC) and mesenchymal stem cells (MSCs) have
beneficial effects on the healing of bone defects. To address the shortcomings associ-
ated with the use of primary MSCs, induced pluripotent stem cell (iPSC)-derived MSCs
(iMSCs) have been proposed as an alternative. The aim of this study was to investi-
gate the bone regeneration potential of human iMSCs combined with calcium phosphate
granules (CPG) in critical-size defects in the proximal tibias of mini-pigs in the early
phase of bone healing compared to that of a previously reported autograft treatment and
treatment with a composite made of either a combination of autologous BMC and CPG
or CPG alone. iMSCs were derived from iPSCs originating from human fetal foreskin
fibroblasts (HFFs). They were able to differentiate into osteoblasts in vitro, express a
plethora of bone morphogenic proteins (BMPs) and secrete paracrine signaling-associated
cytokines such as PDGF-AA and osteopontin. Radiologically and histomorphometrically,
HFF-iMSC +CPG transplantation resulted in significantly better osseous consolidation
than the transplantation of CPG alone and produced no significantly different outcomes
compared to the transplantation of autologous BMC + CPG after 6 weeks. The results of
this translational study imply that iMSCs represent a valuable future treatment option
for load-bearing bone defects in humans.

DOI: 10.1038/s41413-019-0069-4 PMCID: PMC6813363 PMID: 31667001

Conflict of interest statement: Competing interestsThe authors declare no competing
interests.
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Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuve-
nation signature.

Spitzhorn LS(1), Megges M(1), Wruck W(1), Rahman MS(1), Otte J(1), Degistirici Ö(2),
Meisel R(2), Sorg RV(3), Oreffo ROC(4), Adjaye J(5).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düssel-
dorf, Germany. (2)Division of Paediatric Stem Cell Therapy, Clinic for Pediatric Oncol-
ogy, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University,
Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany. (3)Institute for Transplantation
Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstr, 5,
40225, Düsseldorf, Germany. (4)Bone and Joint Research Group, Centre for Human De-
velopment, Stem Cells and Regeneration, Institute of Developmental Sciences, University
of Southampton, Southampton, SO16 6YD, UK. (5)Institute for Stem Cell Research and
Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Mooren-
str. 5, 40225, Düsseldorf, Germany. james.adjaye@med.uni-duesseldorf.de.

BACKGROUND: Primary mesenchymal stem cells (MSCs) are fraught with aging-related
shortfalls. Human-induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) have
been shown to be a useful clinically relevant source of MSCs that circumvent these
aging-associated drawbacks. To date, the extent of the retention of aging-hallmarks in
iMSCs differentiated from iPSCs derived from elderly donors remains unclear. METH-
ODS: Fetal femur-derived MSCs (fMSCs) and adult bone marrow MSCs (aMSCs) were
isolated, corresponding iPSCs were generated, and iMSCs were differentiated from fMSC-
iPSCs, from aMSC-iPSCs, and from human embryonic stem cells (ESCs) H1. In addi-
tion, typical MSC characterization such as cell surface marker expression, differentiation
capacity, secretome profile, and trancriptome analysis were conducted for the three dis-
tinct iMSC preparations-fMSC-iMSCs, aMSC-iMSCs, and ESC-iMSCs. To verify these
results, previously published data sets were used, and also, additional aMSCs and iM-
SCs were analyzed. RESULTS: fMSCs and aMSCs both express the typical MSC cell
surface markers and can be differentiated into osteogenic, adipogenic, and chondrogenic
lineages in vitro. However, the transcriptome analysis revealed overlapping and distinct
gene expression patterns and showed that fMSCs express more genes in common with
ESCs than with aMSCs. fMSC-iMSCs, aMSC-iMSCs, and ESC-iMSCs met the criteria
set out for MSCs. Dendrogram analyses confirmed that the transcriptomes of all iM-
SCs clustered together with the parental MSCs and separated from the MSC-iPSCs and
ESCs. iMSCs irrespective of donor age and cell type acquired a rejuvenation-associated
gene signature, specifically, the expression of INHBE, DNMT3B, POU5F1P1, CDKN1C,
and GCNT2 which are also expressed in pluripotent stem cells (iPSCs and ESC) but not
in the parental aMSCs. iMSCs expressed more genes in common with fMSCs than with
aMSCs. Independent real-time PCR comparing aMSCs, fMSCs, and iMSCs confirmed
the differential expression of the rejuvenation (COX7A, EZA2, and TMEM119) and ag-
ing (CXADR and IGSF3) signatures. Importantly, in terms of regenerative medicine,
iMSCs acquired a secretome (e.g., angiogenin, DKK-1, IL-8, PDGF-AA, osteopontin,
SERPINE1, and VEGF) similar to that of fMSCs and aMSCs, thus highlighting their
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ability to act via paracrine signaling. CONCLUSIONS: iMSCs irrespective of donor age
and cell source acquire a rejuvenation gene signature. The iMSC concept could allow
circumventing the drawbacks associated with the use of adult MSCs und thus provide a
promising tool for use in various clinical settings in the future.

DOI: 10.1186/s13287-019-1209-x PMCID: PMC6423778 PMID: 30885246

A.11. Stem Cell Res. 2019 Jan;34:101372. doi: 10.1016/j.scr.2018.101372. Epub 2018
Dec 27.

Fibroblast-derived integration-free iPSC line ISRM-NBS1 from an 18-year-
old Nijmegen Breakage Syndrome patient carrying the homozygous NBN
c.657_661del5 mutation.

Martins S(1), Bohndorf M(1), Graffmann N(1), Wruck W(1), Chrzanowska KH(2), Ad-
jaye J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf,
Germany. (2)Department of Medical Genetics, Children’s Memorial Health Institute,
Warsaw, Poland. (3)Institute for Stem Cell Research and Regenerative Medicine, Medi-
cal Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Ger-
many. Electronic address: james.adjaye@med.uni-duesseldorf.de.

Human fibroblasts cells from a female diagnosed with Nijmegen Breakage Syndrome
(NBS) carrying the homozygous NBN c.657_661del5 mutation were used to gener-
ate integration-free induced pluripotent stem cells (iPSCs) by over-expressing episomal-
based plasmids harbouring OCT4, SOX2, NANOG, KLF4, c-MYC and LIN28. The
derived iPSC line - ISRM-NBS1 was defined as pluripotent based on (i) expression of
pluripotency-associated markers (ii) embryoid body-based differentiation into cell types
representative of the three germ layers and (iii) the similarity between the transcriptome
of the iPSC line and the human embryonic stem cell line H1 with a Pearson correlation
of 0.955.

DOI: 10.1016/j.scr.2018.101372 PMID: 30616142 [Indexed for MEDLINE]

A.12. Stem Cells Dev. 2018 Nov 20. doi: 10.1089/scd.2018.0010. [Epub ahead of print]

Transplanted Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells
Support Liver Regeneration in Gunn Rats.



Appendix · Abstracts 311

Spitzhorn LS(1), Kordes C(2), Megges M(1), Sawitza I(2), Götze S(2), Reichert D(2),
Schulze-Matz P(1), Graffmann N(1), Bohndorf M(1), Wruck W(1), Köhler JP(2), Here-
bian D(3), Mayatepek E(3), Oreffo ROC(4), Häussinger D(2), Adjaye J(1).

Author information: (1)1 Institute for Stem Cell Research and Regenerative Medicine,
Neonatolgy and Pediatric Cardiology, Heinrich Heine University , Düsseldorf, Germany
. (2)2 Clinic of Gastroenterology, Hepatology and Infectious Diseases, and Neonatolgy
and Pediatric Cardiology, Heinrich Heine University , Düsseldorf, Germany . (3)3 De-
partment of General Pediatrics, Neonatolgy and Pediatric Cardiology, Heinrich Heine
University , Düsseldorf, Germany . (4)4 Centre for Human Development, Stem Cells and
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Kingdom .

Gunn rats bear a mutation within the uridine diphosphate glucuronosyltransferase-1a1
(Ugt1a1) gene resulting in high serum bilirubin levels as seen in Crigler-Najjar syndrome.
In this study, the Gunn rat was used as an animal model for heritable liver dysfunction.
Induced mesenchymal stem cells (iMSCs) derived from embryonic stem cells (H1) and in-
duced pluripotent stem cells were transplanted into Gunn rats after partial hepatectomy.
The iMSCs engrafted and survived in the liver for up to 2 months. The transplanted
iMSCs differentiated into functional hepatocytes as evidenced by partially suppressed
hyperbilirubinemia and expression of multiple human-specific hepatocyte markers such
as albumin, hepatocyte nuclear factor 4α, UGT1A1, cytokeratin 18, bile salt export
pump, multidrug resistance protein 2, Na/taurocholate-cotransporting polypeptide, and
α-fetoprotein. These findings imply that transplanted human iMSCs can contribute to
liver regeneration in vivo and thus represent a promising tool for the treatment of inher-
ited liver diseases.

DOI: 10.1089/scd.2018.0010 PMID: 30280963

A.13. Stem Cell Res. 2018 Aug;31:131-134. doi: 10.1016/j.scr.2018.07.011. Epub 2018
Jul 27.

Establishment and characterization of an iPSC line from a 58 years old high
grade patient with nonalcoholic fatty liver disease (70% steatosis) with ho-
mozygous wildtype PNPLA3 genotype.

Graffmann N(1), Bohndorf M(1), Ncube A(1), Wruck W(1), Kashofer K(2), Zatloukal
K(2), Adjaye J(3).
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Pathology, Medical University of Graz, 8036 Graz, Austria. (3)Institute for Stem Cell
Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225
Düsseldorf, Germany. Electronic address: james.adjaye@med.uni-duesseldorf.de.

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic
syndrome and its prevalence increases continuously. Here, we reprogrammed fibroblasts
of a high grade NAFLD patient with homozygous wildtype PNPLA3 genotype. We
characterized the induced pluripotent stem cells (iPSCs) by immunocytochemistry, flow
cytometry, embryoid body formation, pluritest DNA-fingerprinting, and karyotype anal-
ysis.

DOI: 10.1016/j.scr.2018.07.011 PMID: 30081348 [Indexed for MEDLINE]

A.14. Stem Cell Res. 2018 Aug;31:113-116. doi: 10.1016/j.scr.2018.07.015. Epub 2018
Jul 25.

Establishment and characterization of an iPSC line from a 35 years old high
grade patient with nonalcoholic fatty liver disease (30-40% steatosis) with
homozygous wildtype PNPLA3 genotype.

Graffmann N(1), Bohndorf M(1), Ncube A(1), Kawala MA(1), Wruck W(1), Kashofer
K(2), Zatloukal K(2), Adjaye J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Heinrich Heine University, 40225 Düsseldorf, Germany. (2)Institute of Pathology, Med-
ical University of Graz, 8036 Graz, Austria. (3)Institute for Stem Cell Research and
Regenerative Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany. Elec-
tronic address: james.adjaye@med.uni-duesseldorf.de.

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic
syndrome and its prevalence increases continuously. Here, we reprogrammed fibroblasts
of a high grade NAFLD patient with homozygous wildtype PNPLA3 genotype. The in-
duced pluripotent stem cells (iPSCs) were characterized by immunocytochemistry, flow
cytometry, embryoid body formation, pluritest, DNA-fingerprinting and karyotype anal-
ysis.

DOI: 10.1016/j.scr.2018.07.015 PMID: 30071394 [Indexed for MEDLINE]

A.15. PLoS One. 2018 Jul 10;13(7):e0200416. doi: 10.1371/journal.pone.0200416.
eCollection 2018.
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Cell fate decisions of human iPSC-derived bipotential hepatoblasts depend
on cell density.

Graffmann N(1), Ncube A(1), Wruck W(1), Adjaye J(1).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical faculty, Heinrich-Heine University, Düsseldorf, Germany.

During embryonic development bipotential hepatoblasts differentiate into hepatocytes
and cholangiocytes- the two main cell types within the liver. Cell fate decision depends on
elaborate interactions between distinct signalling pathways, namely Notch, WNT, TGFβ,
and Hedgehog. Several in vitro protocols have been established to differentiate human
pluripotent stem cells into either hepatocyte or cholangiocyte like cells (HLC/CLC) to
enable disease modelling or drug screening. During HLC differentiation we observed
the occurrence of epithelial cells with a phenotype divergent from the typical hepatic
polygonal shape- we refer to these as endoderm derived epithelial cells (EDECs). These
cells do not express the mature hepatocyte marker ALB or the progenitor marker AFP.
However they express the cholangiocyte markers SOX9, OPN, CFTR as well as HNF4α,
CK18 and CK19. Interestingly, they express both E Cadherin and Vimentin, two markers
that are mutually exclusive, except for cancer cells. EDECs grow spontaneously under
low density cell culture conditions and their occurrence was unaffected by interfering
with the above mentioned signalling pathways.

DOI: 10.1371/journal.pone.0200416 PMCID: PMC6039024 PMID: 29990377 [Indexed for
MEDLINE]
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Lymphoblast-derived integration-free iPSC line AD-TREM2-3 from a 74 year-
old Alzheimer’s disease patient expressing the TREM2 p.R47H variant.

Martins S(1), Yigit H(1), Bohndorf M(1), Graffmann N(1), Fiszl AR(1), Wruck W(1),
Sleegers K(2), Van Broeckhoven C(2), Adjaye J(3).
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Germany. (2)Neurodegenerative Brain Disease Groups, Department of Molecular Genet-
ics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, Univer-
sity of Antwerp, Belgium. (3)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf,
Germany. Electronic address: james.adjaye@med.uni-duesseldorf.de.

Human lymphoblast cells from a male diagnosed with Alzheimer’s disease (AD) express-
ing the TREM2 p.R47H variant were used to generate integration-free induced pluripo-
tent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4,
SOX2, KLF4, LIN28, L-MYC and p53 shRNA. The derived iPSC line - AD-TREM2-3
was defined as pluripotent based on (i) expression of pluripotency-associated markers
(ii) embryoid body-based differentiation into cell types representative of the three germ
layers and (iii) the similarity between the transcriptome of the iPSC line and the human
embryonic stem cell line H1 with a Pearson correlation of 0.940.

DOI: 10.1016/j.scr.2018.05.018 PMID: 29902745 [Indexed for MEDLINE]

A.17. Stem Cell Res Ther. 2018 Apr 25;9(1):113. doi: 10.1186/s13287-018-0864-7.

The presence of human mesenchymal stem cells of renal origin in amniotic
fluid increases with gestational time.

Rahman MS(1), Spitzhorn LS(1), Wruck W(1), Hagenbeck C(2), Balan P(2), Graffmann
N(1), Bohndorf M(1), Ncube A(1), Guillot PV(3), Fehm T(2), Adjaye J(4).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
(2)Department of Obstetrics and Gynaecology, Medical Faculty, Heinrich Heine Univer-
sity Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany. (3)Institute for Women’s
Health, Maternal and Fetal Medicine Department, University College London, London,
WC1E 6HX, UK. (4)Institute for Stem Cell Research and Regenerative Medicine, Med-
ical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
james.adjaye@med.uni-duesseldorf.de.

BACKGROUND: Established therapies for managing kidney dysfunction such as kid-
ney dialysis and transplantation are limited due to the shortage of compatible donated
organs and high costs. Stem cell-based therapies are currently under investigation as
an alternative treatment option. As amniotic fluid is composed of fetal urine harbor-
ing mesenchymal stem cells (AF-MSCs), we hypothesized that third-trimester amniotic
fluid could be a novel source of renal progenitor and differentiated cells. METHODS:
Human third-trimester amniotic fluid cells (AFCs) were isolated and cultured in dis-
tinct media. These cells were characterized as renal progenitor cells with respect to
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cell morphology, cell surface marker expression, transcriptome and differentiation into
chondrocytes, osteoblasts and adipocytes. To test for renal function, a comparative
albumin endocytosis assay was performed using AF-MSCs and commercially available
renal cells derived from kidney biopsies. Comparative transcriptome analyses of first,
second and third trimester-derived AF-MSCs were conducted to monitor expression of
renal-related genes. RESULTS: Regardless of the media used, AFCs showed expression of
pluripotency-associated markers such as SSEA4, TRA-1-60, TRA-1-81 and C-Kit. They
also express the mesenchymal marker Vimentin. Immunophenotyping confirmed that
third-trimester AFCs are bona fide MSCs. AF-MSCs expressed the master renal progen-
itor markers SIX2 and CITED1, in addition to typical renal proteins such as PODXL,
LHX1, BRN1 and PAX8. Albumin endocytosis assays demonstrated the functionality
of AF-MSCs as renal cells. Additionally, upregulated expression of BMP7 and down-
regulation of WT1, CD133, SIX2 and C-Kit were observed upon activation of WNT
signaling by treatment with the GSK-3 inhibitor CHIR99201. Transcriptome analysis
and semiquantitative PCR revealed increasing expression levels of renal-specific genes
(e.g., SALL1, HNF4B, SIX2) with gestational time. Moreover, AF-MSCs shared more
genes with human kidney cells than with native MSCs and gene ontology terms revealed
involvement of biological processes associated with kidney morphogenesis. CONCLU-
SIONS: Third-trimester amniotic fluid contains AF-MSCs of renal origin and this novel
source of kidney progenitors may have enormous future potentials for disease modeling,
renal repair and drug screening.

DOI: 10.1186/s13287-018-0864-7 PMCID: PMC5918774 PMID: 29695308 [Indexed for
MEDLINE]
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Lymphoblast-derived integration-free iPSC line AD-TREM2-1 from a 67year-
old Alzheimer’s disease patient expressing the TREM2 p.R47H variant.
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Human lymphoblast cells from a male diagnosed with Alzheimer’s disease (AD) express-
ing the TREM2 p.R47H variant were used to generate integration-free induced pluripo-
tent stem cells (iPSCs) by over-expressing episomal-based plasmids harbouring OCT4,
SOX2, NANOG, LIN28, c-MYC and L-MYC. AD-TREM2-1 was defined as pluripotent
based on (i) expression of pluripotency-associated markers (ii) embryoid body-based dif-
ferentiation into cell types representative of the three germ layers and (iii) the similarity
between the transcriptome of the iPSC line and the human embryonic stem cell line H1
with a Pearson correlation of 0.947.

DOI: 10.1016/j.scr.2018.03.011 PMID: 29602048 [Indexed for MEDLINE]
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Lymphoblast-derived integration-free ISRM-CON9 iPS cell line from a 75year
old female.
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Human lymphoblast cells were used to generate integration-free induced pluripotent stem
cells (iPSCs) employing episomal-based plasmids expressing OCT4, SOX2, NANOG,
LIN28, c-MYC and L-MYC. The derived iPSCs were defined as pluripotent based on (i)
expression of pluripotency-associated markers, (ii) embryoid body-based differentiation
into cell types representative of the three germ layers and (iii) the similarity between
the transcriptomes of the iPSC line and the human embryonic stem cell line H1 with a
Pearson correlation of 0.95.

DOI: 10.1016/j.scr.2017.12.007 PMID: 29268155 [Indexed for MEDLINE]

A.20. Stem Cells Int. 2017;2017:5932706. doi: 10.1155/2017/5932706. Epub 2017 Oct
31.
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Isolation and Molecular Characterization of Amniotic Fluid-Derived Mes-
enchymal Stem Cells Obtained from Caesarean Sections.

Spitzhorn LS(#)(1), Rahman MS(#)(1), Schwindt L(1), Ho HT(1), Wruck W(1), Bohn-
dorf M(1), Wehrmeyer S(1), Ncube A(1), Beyer I(2), Hagenbeck C(2), Balan P(2), Fehm
T(2), Adjaye J(1).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany. (2)De-
partment of Obstetrics and Gynaecology, Heinrich Heine University Düsseldorf, Mooren-
str. 5, 40225 Düsseldorf, Germany. (#)Contributed equally

Human amniotic fluid cells are immune-privileged with low immunogenicity and anti-
inflammatory properties. They are able to self-renew, are highly proliferative, and have a
broad differentiation potential, making them amenable for cell-based therapies. Amniotic
fluid (AF) is routinely obtained via amniocentesis and contains heterogeneous popula-
tions of foetal-derived progenitor cells including mesenchymal stem cells (MSCs). In this
study, we isolated human MSCs from AF (AF-MSCs) obtained during Caesarean sections
(C-sections) and characterized them. These AF-MSCs showed typical MSC characteris-
tics such as morphology, in vitro differentiation potential, surface marker expression, and
secreted factors. Besides vimentin and the stem cell marker CD133, subpopulations of
AF-MSCs expressed pluripotency-associated markers such as SSEA4, c-Kit, TRA-1-60,
and TRA-1-81. The secretome and related gene ontology (GO) terms underline their
immune modulatory properties. Furthermore, transcriptome analyses revealed similari-
ties with native foetal bone marrow-derived MSCs. Significant KEGG pathways as well
as GO terms are mostly related to immune function, embryonic skeletal system, and
TGFβ-signalling. An AF-MSC-enriched gene set included putative AF-MSC markers
PSG5, EMX-2, and EVR-3. In essence, C-section-derived AF-MSCs can be routinely
obtained and are amenable for personalized cell therapies and disease modelling.

DOI: 10.1155/2017/5932706 PMCID: PMC5684599 PMID: 29225627

A.21. Stem Cell Res. 2017 Dec;25:18-21. doi: 10.1016/j.scr.2017.10.004. Epub 2017
Oct 7.

Derivation and characterization of integration-free iPSC line ISRM-UM51
derived from SIX2-positive renal cells isolated from urine of an African male
expressing the CYP2D6 *4/*17 variant which confers intermediate drug me-
tabolizing activity.

Bohndorf M(1), Ncube A(1), Spitzhorn LS(1), Enczmann J(2), Wruck W(1), Adjaye
J(3).
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University, 40225 Düsseldorf, Germany. (3)Institute for Stem Cell Research and Regener-
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Electronic address: james.adjaye@med.uni-duesseldorf.de.

SIX2-positive renal cells isolated from urine from a 51year old male of African origin
bearing the CYP2D6 *4/*17 variant were reprogrammed by nucleofection of a combi-
nation of two episomal-based plasmids omitting pathway (TGFβ, MEK and GSK3β)
inhibition. The induced pluripotent stem cells (iPSCs) were characterized by immuno-
cytochemistry, embryoid body formation, DNA-fingerprinting and karyotype analysis.
Comparative transcriptome analyses with human embryonic stem cell lines H1 and H9
revealed a Pearson correlation of 0.9243 and 0.9619 respectively.

DOI: 10.1016/j.scr.2017.10.004 PMID: 29035842 [Indexed for MEDLINE]

A.22. FEBS Lett. 2017 Aug;591(15):2226-2240. doi: 10.1002/1873-3468.12716. Epub
2017 Jul 2.

New insights into human primordial germ cells and early embryonic develop-
ment from single-cell analysis.

Otte J(1), Wruck W(1), Adjaye J(1).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.

Human preimplantation developmental studies are difficult to accomplish due to associ-
ated ethical and moral issues. Preimplantation cells are rare and exist only in transient
cell states. From a single cell, it is very challenging to analyse the origination of the
heterogeneity and complexity inherent to the human body. However, recent advances in
single-cell technology and data analysis have provided new insights into the process of
early human development and germ cell specification. In this Review, we examine the
latest single-cell datasets of human preimplantation embryos and germ cell development,
compare them to bulk cell analyses, and interpret their biological implications.

DOI: 10.1002/1873-3468.12716 PMID: 28627120 [Indexed for MEDLINE]
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A.23. Stem Cell Res. 2017 Apr;20:50-53. doi: 10.1016/j.scr.2017.02.007. Epub 2017
Feb 24.

Generation and characterization of two iPSC lines from human epicardium-
derived cells.

Paulitschek C(1), Schulze-Matz P(2), Hesse J(1), Schmidt T(1), Wruck W(2), Adjaye
J(2), Schrader J(3).

Author information: (1)Department of Molecular Cardiology, Medical Faculty, Heinrich
Heine University, 40225 Duesseldorf, Germany. (2)Institute for Stem Cell Research and
Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf,
Germany. (3)Department of Molecular Cardiology, Medical Faculty, Heinrich Heine Uni-
versity, 40225 Duesseldorf, Germany. Electronic address: schrader@uni-duesseldorf.de.

Human epicardium-derived cells (EPDC) were reprogrammed to generate two iPSC lines,
MCDU1i-EPDC and MCDU2i-EPDC, by nucleofection of episomal-based plasmids ex-
pressing the reprogramming factors OCT4, SOX2, KLF4, c-MYC, NANOG and LIN28.
Pluripotency was confirmed in vitro by immunofluorescence analysis and embryoid body
formation. The iPSC lines and the human embryonic stem cell line H1 show a Pear-
son correlation co-efficient of 0.951 (MCDU1i-EPDC) and 0.937 (MCDU2i-EPDC) as
assessed by comparative transcriptome profiling.

DOI: 10.1016/j.scr.2017.02.007 PMID: 28395740 [Indexed for MEDLINE]

A.24. Mol Ther. 2017 Feb 1;25(2):427-442. doi: 10.1016/j.ymthe.2016.11.014.

Human Amniocytes Are Receptive to Chemically Induced Reprogramming
to Pluripotency.

Hawkins KE(1), Moschidou D(1), Faccenda D(2), Wruck W(3), Martin-Trujillo A(4),
Hau KL(5), Ranzoni AM(1), Sanchez-Freire V(6), Tommasini F(7), Eaton S(8), De Coppi
P(8), Monk D(3), Campanella M(9), Thrasher AJ(8), Adjaye J(3), Guillot PV(10).

Author information: (1)Institute for Women’s Health, Maternal and Fetal Medicine De-
partment, University College London (UCL), London WC1E 6HX, UK. (2)Department of
Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College
Street, London NW1 0TU, UK. (3)Institute for Stem Cell Research and Regenerative
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Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany. (4)Im-
printing and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Insti-
tute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, Barcelona 08908,
Spain. (5)Institute for Women’s Health, Maternal and Fetal Medicine Department, Uni-
versity College London (UCL), London WC1E 6HX, UK; Imperial College London, Na-
tional Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London W12
0NN, UK. (6)Departments of Medicine and Radiology, Stanford University, Stanford,
CA 94305-5454, USA. (7)Institute for Women’s Health, Maternal and Fetal Medicine
Department, University College London (UCL), London WC1E 6HX, UK; Institute for
Child Health, University College London, London WC1N 1EH, UK. (8)Institute for Child
Health, University College London, London WC1N 1EH, UK. (9)Department of Com-
parative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street,
London NW1 0TU, UK; Consortium for Mitochondrial Research, University College Lon-
don, Royal College Street, London NW1 0TU, UK. (10)Institute for Women’s Health,
Maternal and Fetal Medicine Department, University College London (UCL), London
WC1E 6HX, UK. Electronic address: p.guillot@ucl.ac.uk.

Restoring pluripotency using chemical compounds alone would be a major step forward
in developing clinical-grade pluripotent stem cells, but this has not yet been reported
in human cells. We previously demonstrated that VPA_AFS cells, human amniocytes
cultivated with valproic acid (VPA) acquired functional pluripotency while remaining dis-
tinct from human embryonic stem cells (hESCs), questioning the relationship between the
modulation of cell fate and molecular regulation of the pluripotency network. Here, we
used single-cell analysis and functional assays to reveal that VPA treatment resulted in a
homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks
of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expres-
sion of epigenetic modifications on histones 3 and 4, and reactivation of endogenous
OCT4 and downstream targets at a lower level than that observed in hESCs. Mech-
anistic insights into the process of VPA-induced reprogramming revealed that it was
dependent on OCT4 promoter activation, which was achieved independently of the PI3K
(phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) path-
way or GSK3β inhibition but was concomitant with the presence of acetylated histones
H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time,
the pluripotent transcriptional and molecular signature and metabolic status of human
chemically induced pluripotent stem cells.

DOI: 10.1016/j.ymthe.2016.11.014 PMCID: PMC5368475 PMID: 28153093 [Indexed for
MEDLINE]

A.25. Stem Cell Res. 2016 Nov;17(3):597-599. doi: 10.1016/j.scr.2016.10.002. Epub
2016 Oct 19.

Characterization of iPSCs derived from dermal fibroblasts from a healthy
19year old female.
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Kawala MA(1), Bohndorf M(1), Graffmann N(1), Wruck W(1), Zatloukal K(2), Adjaye
J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany. (2)Institute of
Pathology, Medical University of Graz, 8036 Graz, Austria. (3)Institute for Stem Cell
Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225
Düsseldorf, Germany. Electronic address: James.Adjaye@med.uni-duesseldorf.de.

Primary fibroblasts from a healthy 19years old female were reprogrammed by trans-
duction of retroviruses OCT4, SOX2, c-MYC and KLF4. iPSCs were characterized by
immunocytochemistry, embryonic body-formation, DNA-fingerprint and karyotype anal-
ysis and comparative transcriptome analyses with the human embryonic stem cell line
H1 revealed a Pearsons correlation coefficient of 0.8952.

DOI: 10.1016/j.scr.2016.10.002 PMID: 27934589 [Indexed for MEDLINE]

A.26. Stem Cell Res. 2016 Nov;17(3):568-571. doi: 10.1016/j.scr.2016.10.007. Epub
2016 Oct 19.

Characterization of dermal fibroblast-derived iPSCs from a patient with high
grade steatosis.

Kawala MA(1), Bohndorf M(1), Graffmann N(1), Wruck W(1), Zatloukal K(2), Adjaye
J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany. (2)Institute of
Pathology, Medical University of Graz, 8036 Graz, Austria. (3)Institute for Stem Cell
Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225
Düsseldorf, Germany. Electronic address: James.Adjaye@med.uni-duesseldorf.de.

Primary fibroblasts from a high grade steatosis patient were reprogrammed by trans-
duction of retroviruses OCT4, SOX2, c-MYC and KLF4. IPSCs were characterized by
immunocytochemistry, embryoid body-formation, DNA-fingerprint, karyotype analysis
and comparative transcriptome analyses with the human embryonic stem cell line H1
revealed a Pearsons correlation coefficient of 0.9287. Resource table.

DOI: 10.1016/j.scr.2016.10.007 PMID: 27789412 [Indexed for MEDLINE]



322 Appendix · Abstracts

A.27. Stem Cell Res. 2016 Nov;17(3):560-563. doi: 10.1016/j.scr.2016.10.003. Epub
2016 Oct 19.

Lymphoblast-derived integration-free iPSC lines from a female and male
Alzheimer’s disease patient expressing different copy numbers of a coding
CNV in the Alzheimer risk gene CR1.

Schröter F(1), Sleegers K(2), Van Cauwenberghe C(2), Bohndorf M(1), Wruck W(1),
Van Broeckhoven C(2), Adjaye J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf,
Germany. (2)Neurodegenerative Brain Diseases Group, Department of Molecular Genet-
ics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, Univer-
sity of Antwerp, Belgium. (3)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf,
Germany. Electronic address: James.Adjaye@med.uni-duesseldorf.de.

Human lymphoblast cells from a female and male patient diagnosed with Alzheimer’s
disease (AD) with different genotypes of a functional copy number variation (CNV) in
the AD risk gene CR1 were used to generate integration-free induced pluripotent stem
cells (iPSCs) employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28,
c-MYC and L-MYC. The iPSCs retained the CR1 CNV, and comparative transcriptome
analyses with the human embryonic stem cell line H1 revealed a Pearson correlation of
0.956 for AD1-CR10 and 0.908 for AD1-CR14.

DOI: 10.1016/j.scr.2016.10.003 PMID: 27789410 [Indexed for MEDLINE]

A.28. Stem Cell Res. 2016 Nov;17(3):553-555. doi: 10.1016/j.scr.2016.10.005. Epub
2016 Oct 20.

Lymphoblast-derived integration-free iPS cell line from a female 67-year-old
Alzheimer’s disease patient with TREM2 (R47H) missense mutation.

Schröter F(1), Sleegers K(2), Cuyvers E(2), Bohndorf M(1), Wruck W(1), Van Broeck-
hoven C(2), Adjaye J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düssel-
dorf, Germany. (2)Neurodegenerative Brain Disease Group, Department of Molecular
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Genetics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge,
University of Antwerp, Belgium. (3)Institute for Stem Cell Research and Regenerative
Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225
Düsseldorf, Germany. Electronic address: James.Adjaye@med.uni-duesseldorf.de.

Human lymphoblast cells from a female patient diagnosed with Alzheimer’s disease (AD)
possessing the missense mutation TREM2 p.R47H were used to generate integration-free
induced pluripotent stem cells (iPSCs) employing episomal plasmids expressing OCT4,
SOX2, NANOG, LIN28, c-MYC and L-MYC. The iPSCs retained the TREM2 mutation,
and were defined as pluripotent based on (i) expression of pluripotent-associated markers,
(ii) embryoid body-based differentiation into cell types representative of the three germ
layers and (iii) the similarity between the transcriptomes of the iPSC line and the human
embryonic stem cell line H1 with a Pearson correlation of 0.961.

DOI: 10.1016/j.scr.2016.10.005 PMID: 27789408 [Indexed for MEDLINE]

A.29. Stem Cell Res. 2016 Nov;17(3):547-549. doi: 10.1016/j.scr.2016.10.004. Epub
2016 Oct 20.

Characterization of dermal fibroblast-derived iPSCs from a patient with low
grade steatosis.

Kawala MA(1), Bohndorf M(1), Graffmann N(1), Wruck W(1), Zatloukal K(2), Adjaye
J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany. (2)Institute of
Pathology, Medical University of Graz, 8036 Graz, Austria. (3)Institute for Stem Cell
Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225
Düsseldorf, Germany. Electronic address: James.Adjaye@med.uni-duesseldorf.de.

Primary fibroblasts from a low grade steatosis patient were reprogrammed by transduc-
tion of a combination of two episomal-based plasmids OCT4,SOX2, c-MYC and KLF4.
iPSCs were characterized by immunocytochemistry, embryonic body-formation, DNA-
fingerprint karyotype analysis and comparative transcriptome analyses with the human
embryonic stem cell line H1 revealed a Pearsons correlation of 0.9251.

DOI: 10.1016/j.scr.2016.10.004 PMID: 27789406 [Indexed for MEDLINE]
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A.30. Stem Cell Res. 2016 Jan;16(1):113-5. doi: 10.1016/j.scr.2015.12.017. Epub 2015
Dec 28.

Lymphoblast-derived integration-free iPS cell line from a 65-year-old Alzheimer’s
disease patient expressing the TREM2 p.R47H variant.

Schröter F(1), Sleegers K(2), Cuyvers E(2), Bohndorf M(1), Wruck W(1), Van Broeck-
hoven C(2), Adjaye J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr, 5, 40225 Düsseldorf,
Germany. (2)Neurodegenerative Brain Diseases Group, Department of Molecular Genet-
ics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, Univer-
sity of Antwerp, Belgium. (3)Institute for Stem Cell Research and Regenerative Medicine,
Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr, 5, 40225 Düsseldorf,
Germany. Electronic address: James.Adjaye@med.uni-duesseldorf.de.

Human lymphoblast cells from a male patient diagnosed with Alzheimer’s disease (AD)
expressing the TREM2 p.R47H variant were used to generate integration-free induced
pluripotent stem (iPS) cells employing episomal plasmids expressing OCT4, SOX2, NANOG,
LIN28, c-MYC and L-MYC. The iPS cells retained the TREM2 mutation, and were de-
fined as pluripotent based on (i) expression of pluripotent-associated markers, (ii) em-
bryoid body-based differentiation into cell types representative of the three germ layers
and (iii) the similarity between the transcriptomes of the iPS cell line and the human
embryonic stem cell line H1 with a Pearson correlation of 0.966.

DOI: 10.1016/j.scr.2015.12.017 PMID: 27345793 [Indexed for MEDLINE]

A.31. Stem Cell Res. 2016 Jan;16(1):29-31. doi: 10.1016/j.scr.2015.11.016. Epub 2015
Dec 1.

Lymphoblast-derived integration-free iPS cell line from a 69-year-old male.

Schröter F(1), Sleegers K(2), Bohndorf M(1), Wruck W(1), Van Broeckhoven C(2), Ad-
jaye J(1).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
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Germany. (2)Neurodegenerative Brain Disease Groups, Department of Molecular Genet-
ics, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, Uni-
versity of Antwerp, Belgium.

Human lymphoblast cells were used to generate integration-free induced pluripotent stem
(iPS) cells employing episomal plasmids expressing OCT4, SOX2, NANOG, LIN28, C-
MYC and L-MYC. The derived iPS cells were defined as pluripotent based on (i) ex-
pression of pluripotent-associated markers, (ii) embryoid body-based differentiation into
cell types representative of the three germ layers and (iii) the similarity between the
transcriptomes of the iPS cell line and the human embryonic stem cell line H1 with a
Pearson correlation of 0.95.

DOI: 10.1016/j.scr.2015.11.016 PMID: 27345781 [Indexed for MEDLINE]

A.32. Genom Data. 2016 Apr 26;8:131-3. doi: 10.1016/j.gdata.2016.04.014. eCollection
2016 Jun.

Combined sequencing of mRNA and DNA from human embryonic stem cells.

Mertes F(1), Kuhl H(2), Wruck W(3), Lehrach H(1), Adjaye J(3).

Author information: (1)Department of Vertebrate Genomics, Max Planck Institute for
Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany. (2)Next Generation Se-
quencing Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195
Berlin, Germany. (3)Institute for Stem Cell Research and Regenerative Medicine, Hein-
rich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.

Combined transcriptome and whole genome sequencing of the same ultra-low input sam-
ple down to single cells is a rapidly evolving approach for the analysis of rare cells.
Besides stem cells, rare cells originating from tissues like tumor or biopsies, circulating
tumor cells and cells from early embryonic development are under investigation. Herein
we describe a universal method applicable for the analysis of minute amounts of sample
material (150 to 200 cells) derived from sub-colony structures from human embryonic
stem cells. The protocol comprises the combined isolation and separate amplification of
poly(A) mRNA and whole genome DNA followed by next generation sequencing. Here
we present a detailed description of the method developed and an overview of the re-
sults obtained for RNA and whole genome sequencing of human embryonic stem cells,
sequencing data is available in the Gene Expression Omnibus (GEO) database under
accession number GSE69471.

DOI: 10.1016/j.gdata.2016.04.014 PMCID: PMC4880790 PMID: 27275414



326 Appendix · Abstracts

A.33. BMC Genomics. 2015 Nov 12;16:925. doi: 10.1186/s12864-015-2025-z.

Combined ultra-low input mRNA and whole-genome sequencing of human
embryonic stem cells.

Mertes F(1)(2), Lichtner B(3), Kuhl H(4), Blattner M(5), Otte J(6), Wruck W(7), Tim-
mermann B(8), Lehrach H(9), Adjaye J(10)(11).

Author information: (1)Department of Vertebrate Genomics, Max Planck Institute for
Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany. mertes@molgen.mpg.de.
(2)Molecular Exposomics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764,
Neuherberg, Germany. mertes@molgen.mpg.de. (3)Department of Vertebrate Genomics,
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ics, Ihnestr. 63-73, 14195, Berlin, Germany. blattner@molgen.mpg.de. (6)Institute
for stem cell research and regenerative medicine, Medical Faculty, Heinrich Heine Uni-
versity, Moorenstr. 5, 40225, Düsseldorf, Germany. joerg.otte@med.uni-duesseldorf.de.
(7)Institute for stem cell research and regenerative medicine, Medical Faculty, Heinrich
Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany. wasco.wruck@med.uni-
duesseldorf.de. (8)Next Generation Sequencing Group, Max Planck Institute for Molec-
ular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany. timmerma@molgen.mpg.de.
(9)Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics,
Ihnestr. 63-73, 14195, Berlin, Germany. lehrach@molgen.mpg.de. (10)Department of
Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73,
14195, Berlin, Germany. james.adjaye@med.uni-duesseldorf.de. (11)Institute for stem
cell research and regenerative medicine, Medical Faculty, Heinrich Heine University,
Moorenstr. 5, 40225, Düsseldorf, Germany. james.adjaye@med.uni-duesseldorf.de.

BACKGROUND: Next Generation Sequencing has proven to be an exceptionally pow-
erful tool in the field of genomics and transcriptomics. With recent development it is
nowadays possible to analyze ultra-low input sample material down to single cells. Never-
theless, investigating such sample material often limits the analysis to either the genome
or transcriptome. We describe here a combined analysis of both types of nucleic acids
from the same sample material. METHODS: The method described enables the com-
bined preparation of amplified cDNA as well as amplified whole-genome DNA from an
ultra-low input sample material derived from a sub-colony of in-vitro cultivated human
embryonic stem cells. cDNA is prepared by the application of oligo-dT coupled magnetic
beads for mRNA capture, first strand synthesis and 3’-tailing followed by PCR. Whole-
genome amplified DNA is prepared by Phi29 mediated amplification. Illumina sequencing
is applied to short fragment libraries prepared from the amplified samples. RESULTS:
We developed a protocol which enables the combined analysis of the genome as well as
the transcriptome by Next Generation Sequencing from ultra-low input samples. The
protocol was evaluated by sequencing sub-colony structures from human embryonic stem
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cells containing 150 to 200 cells. The method can be adapted to any available sequencing
system. CONCLUSIONS: To our knowledge, this is the first report where sub-colonies
of human embryonic stem cells have been analyzed both at the genomic as well as tran-
scriptome level. The method of this proof of concept study may find useful practical
applications for cases where only a limited number of cells are available, e.g. for tis-
sues samples from biopsies, tumor spheres, circulating tumor cells and cells from early
embryonic development. The results we present demonstrate that a combined analysis
of genomic DNA and messenger RNA from ultra-low input samples is feasible and can
readily be applied to other cellular systems with limited material available.

DOI: 10.1186/s12864-015-2025-z PMCID: PMC4643517 PMID: 26564201 [Indexed for
MEDLINE]
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3D culture of ovarian follicles: a system towards their engineering?

Zuccotti M(1), Merico V, Rebuzzini P, Belli M, Vigone G, Mulas F, Fassina L, Wruck
W, Adjaye J, Bellazzi R, Garagna S.

Author information: (1)Sezione di Anatomia, Istologia ed Embriologia, Dipartimento di
Scienze Biomediche, Biotecnologiche e Traslazionali (S.Bi.Bi.T.), Università degli Studi
di Parma, Italy. maurizio.zuccotti@unipr.it.

Infertility in women is a health priority. Designing a robust culture protocol capable
of attaining complete follicle growth is an exciting challenge, for its potential clinical
applications, but also as a model to observe and closely study the sequence of molec-
ular events that lie behind the intricate relationship existing between the oocyte and
surrounding follicle cells. Here, we describe the procedures used to maintain the ovar-
ian follicle 3D architecture employing a variety of in vitro systems and several types of
matrices. Collagen and alginate are the matrices that led to better results, including
proof-of-concept of full-term development. Pioneer in its kind, these studies underlie the
drawbacks encountered and the need for a culture system that allows more quantitative
analyses and predictions, projecting the culture of the ovarian follicle into the realm of
tissue engineering.

DOI: 10.1387/ijdb.150172mz PMID: 26505254 [Indexed for MEDLINE]
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Association between in vivo bone formation and ex vivo migratory capacity
of human bone marrow stromal cells.

Andersen RK(1), Zaher W(2)(3), Larsen KH(4), Ditzel N(5), Drews K(6), Wruck W(7),
Adjaye J(8)(9), Abdallah BM(10)(11), Kassem M(12)(13)(14).
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Saudi Arabia. mkassem@health.sdu.dk. (14)Danish Stem Cell Center (DanStem), Fac-
ulty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. mkassem@health.sdu.dk.

INTRODUCTION: There is a clinical need for developing systemic transplantation pro-
tocols for use of human skeletal stem cells (also known bone marrow stromal stem cells)
(hBMSC) in tissue regeneration. In systemic transplantation studies, only a limited num-
ber of hBMSC home to injured tissues suggesting that only a subpopulation of hBMSC
possesses "homing" capacity. Thus, we tested the hypothesis that a subpopulation of
hBMSC defined by ability to form heterotopic bone in vivo, is capable of homing to
injured bone. METHODS: We tested ex vivo and in vivo homing capacity of a num-
ber of clonal cell populations derived from telomerized hBMSC (hBMSC-TERT) with
variable ability to form heterotopic bone when implanted subcutaneously in immune de-
ficient mice. In vitro transwell migration assay was used and the in vivo homing ability
of transplanted hBMSC to bone fractures in mice was visualized by bioluminescence
imaging (BLI). In order to identify the molecular phenotype associated with enhanced
migration, we carried out comparative DNA microarray analysis of gene expression of
hBMSC-derived high bone forming (HBF) clones versus low bone forming (LBF) clones.
RESULTS: HBF clones were exhibited higher ex vivo transwell migration and follow-
ing intravenous injection, better in vivo homing ability to bone fracture when compared
to LBF clones. Comparative microarray analysis of HBF versus LBF clones identified
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enrichment of gene categories of chemo-attraction, adhesion and migration associated
genes. Among these, platelet-derived growth factor receptor (PDGFR) α and β were
highly expressed in HBF clones. Follow up studies showed that the chemoattractant ef-
fects of PDGF in vitro was more enhanced in HBF compared to LBF clones and this effect
was reduced in presence of a PDGFRβ-specific inhibitor: SU-16 f. Also, PDGF exerted
greater chemoattractant effect on PDGFRβ(+) cells sorted from LBF clones compared
to PDGFRβ(-) cells. CONCLUSION: Our data demonstrate phenotypic and molecu-
lar association between in vivo bone forming ability and migratory capacity of hBMSC.
PDGFRβ can be used as a potential marker for the prospective selection of hBMSC
populations with high migration and bone formation capacities suitable for clinical trials
for enhancing bone regeneration.

DOI: 10.1186/s13287-015-0188-9 PMCID: PMC4599318 PMID: 26450135 [Indexed for
MEDLINE]

A.36. PLoS One. 2014 Nov 4;9(11):e111637. doi: 10.1371/journal.pone.0111637. eCol-
lection 2014.

miR-27 negatively regulates pluripotency-associated genes in human embry-
onal carcinoma cells.

Fuchs H(1), Theuser M(2), Wruck W(1), Adjaye J(3).

Author information: (1)Institute for Stem Cell Research and Regenerative Medicine,
Faculty of Medicine, Heinrich Heine University, Duesseldorf, Germany. (2)Department
of Vertebrate Genomics, Molecular Embryology and Aging Group, Max Planck Insti-
tute for Molecular Genetics, Berlin, Germany. (3)Institute for Stem Cell Research and
Regenerative Medicine, Faculty of Medicine, Heinrich Heine University, Duesseldorf, Ger-
many; Department of Vertebrate Genomics, Molecular Embryology and Aging Group,
Max Planck Institute for Molecular Genetics, Berlin, Germany.

Human embryonic stem cells and human embryonal carcinoma cells have been studied
extensively with respect to the transcription factors (OCT4, SOX2 and NANOG), epi-
genetic modulators and associated signalling pathways that either promote self-renewal
or induce differentiation in these cells. The ACTIVIN/NODAL axis (SMAD2/3) of the
TGFß signalling pathway coupled with FGF signalling maintains self-renewal in these
cells, whilst the BMP (SMAD1,5,8) axis promotes differentiation. Here we show that
miR-27, a somatic-enriched miRNA, is activated upon RNAi-mediated suppression of
OCT4 function in human embryonic stem cells. We further demonstrate that miR-27
negatively regulates the expression of the pluripotency-associated ACTIVIN/NODAL
axis (SMAD2/3) of the TGFß signalling pathway by targeting ACVR2A, TGFßR1 and
SMAD2. Additionally, we have identified a number of pluripotency-associated genes
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such as NANOG, LIN28, POLR3G and NR5A2 as novel miR-27 targets. Transcriptome
analysis revealed that miR-27 over-expression in human embryonal carcinoma cells leads
indeed to a significant up-regulation of genes involved in developmental pathways such
as TGFß- and WNT-signalling.

DOI: 10.1371/journal.pone.0111637 PMCID: PMC4219743 PMID: 25369332 [Indexed for
MEDLINE]

A.37. PLoS One. 2014 May 5;9(5):e92596. doi: 10.1371/journal.pone.0092596. eCol-
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The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity
and stem-like properties of melanoma cells.

Redmer T(1), Welte Y(2), Behrens D(3), Fichtner I(3), Przybilla D(4), Wruck W(5),
Yaspo ML(6), Lehrach H(6), Schäfer R(4), Regenbrecht CR(7).

Author information: (1)Institute for Pathology, Charité - Universitätsmedizin Berlin,
Berlin, Germany. (2)Institute of Pathology - University Hospital Berlin, Berlin, Ger-
many. (3)Experimental Pharmacology & Oncology Berlin-Buch GmbH, Berlin, Germany.
(4)Institute of Pathology - University Hospital Berlin, Berlin, Germany; Comprehensive
Cancer Center Charité - University Hospital Berlin, Berlin, Germany. (5)Institute of
Pathology - University Hospital Berlin, Berlin, Germany; Laboratory of Functional Ge-
nomics (LFGC) - University Hospital Berlin, Berlin, Germany. (6)Max-Planck Institute
for Molecular Genetics, Berlin, Germany. (7)Institute of Pathology - University Hospi-
tal Berlin, Berlin, Germany; Laboratory of Functional Genomics (LFGC) - University
Hospital Berlin, Berlin, Germany; Comprehensive Cancer Center Charité - University
Hospital Berlin, Berlin, Germany.

Erratum in PLoS One. 2014;9(8):e105274.

BACKGROUND: Large-scale genomic analyses of patient cohorts have revealed exten-
sive heterogeneity between individual tumors, contributing to treatment failure and drug
resistance. In malignant melanoma, heterogeneity is thought to arise as a consequence
of the differentiation of melanoma-initiating cells that are defined by cell-surface mark-
ers like CD271 or CD133. RESULTS: Here we confirmed that the nerve growth factor
receptor (CD271) is a crucial determinant of tumorigenicity, stem-like properties, het-
erogeneity and plasticity in melanoma cells. Stable shRNA mediated knock-down of
CD271 in patient-derived melanoma cells abrogated their tumor-initiating and colony-
forming capacity. A genome-wide expression profiling and gene-set enrichment analysis
revealed novel connections of CD271 with melanoma-associated genes like CD133 and
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points to a neural crest stem cell (NCSC) signature lost upon CD271 knock-down. In
a meta-analysis we have determined a shared set of 271 differentially regulated genes,
linking CD271 to SOX10, a marker that specifies the neural crest. To dissect the con-
nection of CD271 and CD133 we have analyzed 10 patient-derived melanoma-cell strains
for cell-surface expression of both markers compared to established cell lines MeWo and
A375. We found CD271+ cells in the majority of cell strains analyzed as well as in
a set of 16 different patient-derived melanoma metastases. Strikingly, only 2/12 cell
strains harbored a CD133+ sub-set that in addition comprised a fraction of cells of a
CD271+/CD133+ phenotype. Those cells were found in the label-retaining fraction and
in vitro deduced from CD271+ but not CD271 knock-down cells. CONCLUSIONS: Our
present study provides a deeper insight into the regulation of melanoma cell properties
and points CD271 out as a regulator of several melanoma-associated genes. Further,
our data strongly suggest that CD271 is a crucial determinant of stem-like properties of
melanoma cells like colony-formation and tumorigenicity.

DOI: 10.1371/journal.pone.0092596 PMCID: PMC4010406 PMID: 24799129 [Indexed for
MEDLINE]
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A Systems Biology Approach to Deciphering the Etiology of Steatosis Em-
ploying Patient-Derived Dermal Fibroblasts and iPS Cells.

Jozefczuk J(1), Kashofer K, Ummanni R, Henjes F, Rehman S, Geenen S, Wruck W,
Regenbrecht C, Daskalaki A, Wierling C, Turano P, Bertini I, Korf U, Zatloukal K,
Westerhoff HV, Lehrach H, Adjaye J.

Author information: (1)Department of Vertebrate Genomics, Max Planck Institute for
Molecular Genetics Berlin, Germany.

Non-alcoholic fatty liver disease comprises a broad spectrum of disease states ranging
from simple steatosis to non-alcoholic steatohepatitis. As a result of increases in the
prevalences of obesity, insulin resistance, and hyperlipidemia, the number of people with
hepatic steatosis continues to increase. Differences in susceptibility to steatohepatitis
and its progression to cirrhosis have been attributed to a complex interplay of genetic
and external factors all addressing the intracellular network. Increase in sugar or refined
carbohydrate consumption results in an increase of insulin and insulin resistance that
can lead to the accumulation of fat in the liver. Here we demonstrate how a multidis-
ciplinary approach encompassing cellular reprogramming, transcriptomics, proteomics,
metabolomics, modeling, network reconstruction, and data management can be employed
to unveil the mechanisms underlying the progression of steatosis. Proteomics revealed
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reduced AKT/mTOR signaling in fibroblasts derived from steatosis patients and further
establishes that the insulin-resistant phenotype is present not only in insulin-metabolizing
central organs, e.g., the liver, but is also manifested in skin fibroblasts. Transcriptome
data enabled the generation of a regulatory network based on the transcription factor
SREBF1, linked to a metabolic network of glycerolipid, and fatty acid biosynthesis in-
cluding the downstream transcriptional targets of SREBF1 which include LIPIN1 (LPIN)
and low density lipoprotein receptor. Glutathione metabolism was among the pathways
enriched in steatosis patients in comparison to healthy controls. By using a model of
the glutathione pathway we predict a significant increase in the flux through glutathione
synthesis as both gamma-glutamylcysteine synthetase and glutathione synthetase have
an increased flux. We anticipate that a larger cohort of patients and matched controls
will confirm our preliminary findings presented here.

DOI: 10.3389/fphys.2012.00339 PMCID: PMC3432516 PMID: 22969728
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2011 May 9.

The BTB and CNC homology 1 (BACH1) target genes are involved in the
oxidative stress response and in control of the cell cycle.

Warnatz HJ(1), Schmidt D, Manke T, Piccini I, Sultan M, Borodina T, Balzereit D,
Wruck W, Soldatov A, Vingron M, Lehrach H, Yaspo ML.

Author information: (1)Department of Vertebrate Genomics, Max Planck Institute for
Molecular Genetics, 14195 Berlin, Germany.

The regulation of gene expression in response to environmental signals and metabolic
imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homol-
ogy 1 (BACH1) is a heme-binding transcription factor repressing the transcription from
a subset of MAF recognition elements at low intracellular heme levels. Upon heme
binding, BACH1 is released from the MAF recognition elements, resulting in increased
expression of antioxidant response genes. To systematically address the gene regulatory
networks involving BACH1, we combined chromatin immunoprecipitation sequencing
analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three
independent types of small interfering RNAs followed by transcriptome profiling using
microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation
sequencing were found highly enriched in genes showing expression changes after BACH1
knockdown, demonstrating the impact of BACH1 repression on transcription. In addi-
tion to known and new BACH1 targets involved in heme degradation (HMOX1, FTL,
FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we
also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2,
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CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellu-
lar transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified
impact of BACH1 on genes involved in neurodegenerative processes and proliferation
provides an interesting basis for future dissection of BACH1-mediated gene repression in
neurodegeneration and virus-induced cancerogenesis.

DOI: 10.1074/jbc.M111.220178 PMCID: PMC3123115 PMID: 21555518 [Indexed for
MEDLINE]

A.40. Stem Cells. 2007 Feb;25(2):500-10. Epub 2006 Oct 26.

Analysis of Oct4-dependent transcriptional networks regulating self-renewal
and pluripotency in human embryonic stem cells.

Babaie Y(1), Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon
T, Adjaye J.

Author information: (1)Roslin Institute, Department of Gene Function and Develop-
ment, Roslin, Midlothian, United Kingdom.

The POU domain transcription factor OCT4 is a key regulator of pluripotency in the
early mammalian embryo and is highly expressed in the inner cell mass of the blastocyst.
Consistent with its essential role in maintaining pluripotency, Oct4 expression is rapidly
downregulated during formation of the trophoblast lineage. To enhance our understand-
ing of the molecular basis of this differentiation event in humans, we used a functional
genomics approach involving RNA interference-mediated suppression of OCT4 function
in a human ESC line and analysis of the resulting transcriptional profiles to identify
OCT4-dependent genes in human cells. We detected altered expression of >1,000 genes,
including targets regulated directly by OCT4 either positively (NANOG, SOX2, REX1,
LEFTB, LEFTA/EBAF DPPA4, THY1, and TDGF1) or negatively (CDX2, EOMES,
BMP4, TBX18, Brachyury [T], DKK1, HLX1, GATA6, ID2, and DLX5), as well as
targets for the OCT4-associated stem cell regulators SOX2 and NANOG. Our data set
includes regulators of ACTIVIN, BMP, fibroblast growth factor, and WNT signaling.
These pathways are implicated in regulating human ESC differentiation and therefore
further validate the results of our analysis. In addition, we identified a number of differ-
entially expressed genes that are involved in epigenetics, chromatin remodeling, apopto-
sis, and metabolism that may point to underlying molecular mechanisms that regulate
pluripotency and trophoblast differentiation in humans. Significant concordance between
this data set and previous comparisons between inner cell mass and trophectoderm in
human embryos indicates that the study of human ESC differentiation in vitro represents
a useful model of early embryonic differentiation in humans.
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Substrate-dependent regulation of anaerobic degradation pathways for toluene
and ethylbenzene in a denitrifying bacterium, strain EbN1.

Kühner S(1), Wöhlbrand L, Fritz I, Wruck W, Hultschig C, Hufnagel P, Kube M, Rein-
hardt R, Rabus R.

Author information: (1)Max Planck Institute for Marine Microbiology, Celsiusstr. 1,
28359 Bremen, Germany.

Anaerobic biodegradation of toluene and ethylbenzene is of environmental concern and
biochemical interest due to toxicity and novel reactions, respectively. The denitrifying
strain EbN1 is unique in anaerobically degrading both alkylbenzenes via different path-
ways which converge at benzoyl coenzyme A. The organization of genes involved in both
pathways was only recently determined for strain EbN1. In the present study, global
expression analysis (DNA microarray and proteomics) indicated involvement of several
thus-far-unknown proteins in the degradation of both alkylbenzenes. For example, orf68
and orf57, framing the ebd operon, are implicated in ethylbenzene degradation, and the
ebA1932 and ebA1936 genes, located 7.2 kb upstream of the bbs operon, are implicated
in toluene degradation. In addition, expression studies were now possible on the level of
the complete pathways. Growth experiments demonstrated that degradative capacities
for toluene and ethylbenzene could be simultaneously induced, regardless of the substrate
used for adaptation. Regulation was studied at the RNA (real-time reverse transcription-
PCR and DNA microarray) and protein (two-dimensional-difference gel electrophoresis)
level by using cells adapted to anaerobic growth with benzoate, toluene, ethylbenzene,
or a mixture of toluene and ethylbenzene. Expression of the two toluene-related operons
(bss and bbs) was specifically induced in toluene-adapted cells. In contrast, genes in-
volved in anaerobic ethylbenzene degradation were induced in ethylbenzene- and toluene-
adapted cells, suggesting that toluene may act as a gratuitous inducer. In agreement
with the predicted sequential regulation of the ethylbenzene pathway, Ebd proteins (en-
coding subunits of ethylbenzene dehydrogenase) were formed in ethylbenzene- but not
in acetophenone-adapted cells, while Apc proteins (subunits of predicted acetophenone
carboxylase) were formed under both conditions.

DOI: 10.1128/JB.187.4.1493-1503.2005 PMCID: PMC545613 PMID: 15687214 [Indexed
for MEDLINE]
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Cross-species hybridisation of human and bovine orthologous genes on high
density cDNA microarrays.

Adjaye J(1), Herwig R, Herrmann D, Wruck W, Benkahla A, Brink TC, Nowak M,
Carnwath JW, Hultschig C, Niemann H, Lehrach H.

Author information: (1)Max Planck Institute for Molecular Genetics, Department of
Vertebrate Genomics, Ihnestrasse 73, D-14195, Berlin, Germany. adjaye@molgen.mpg.de

BACKGROUND: Cross-species gene-expression comparison is a powerful tool for the dis-
covery of evolutionarily conserved mechanisms and pathways of expression control. The
usefulness of cDNA microarrays in this context is that broad areas of homology are com-
pared and hybridization probes are sufficiently large that small inter-species differences
in nucleotide sequence would not affect the analytical results. This comparative genomics
approach would allow a common set of genes within a specific developmental, metabolic,
or disease-related gene pathway to be evaluated in experimental models of human dis-
eases. The objective of this study was to investigate the feasibility and reproducibility
of cross-species analysis employing a human cDNA microarray as probe. RESULTS: As
a proof of principle, total RNA derived from human and bovine fetal brains was used
as a source of labelled targets for hybridisation onto a human cDNA microarray com-
posed of 349 characterised genes. Each gene was spotted 20 times representing 6,980
data points thus enabling highly reproducible spot quantification. Employing high strin-
gency hybridisation and washing conditions, followed by data analysis, revealed slight
differences in the expression levels and reproducibility of the signals between the two
species. We also assigned each of the genes into three expression level categories- i.e.
high, medium and low. The correlation co-efficient of cross hybridisation between the
orthologous genes was 0.94. Verification of the array data by semi-quantitative RT-PCR
using common primer sequences enabled co-amplification of both human and bovine tran-
scripts. Finally, we were able to assign gene names to previously uncharacterised bovine
ESTs. CONCLUSIONS: Results of our study demonstrate the harnessing and utilisation
power of comparative genomics and prove the feasibility of using human microarrays to
facilitate the identification of co-expressed orthologous genes in common tissues derived
from different species.

DOI: 10.1186/1471-2164-5-83 PMCID: PMC535340 PMID: 15511299 [Indexed for MED-
LINE]
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Construction of a ’unigene’ cDNA clone set by oligonucleotide fingerprinting
allows access to 25 000 potential sugar beet genes.
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Herwig R(1), Schulz B, Weisshaar B, Hennig S, Steinfath M, Drungowski M, Stahl D,
Wruck W, Menze A, O’Brien J, Lehrach H, Radelof U.

Author information: (1)Max-Planck Institute for Molecular Genetics, Ihnestr. 73, D-
14195 Berlin, Germany. herwig@molgen.mpg.de

Access to the complete gene inventory of an organism is crucial to understanding phys-
iological processes like development, differentiation, pathogenesis, or adaptation to the
environment. Transcripts from many active genes are present at low copy numbers.
Therefore, procedures that rely on random EST sequencing or on normalisation and
subtraction methods have to produce massively redundant data to get access to low-
abundance genes. Here, we present an improved oligonucleotide fingerprinting (ofp)
approach to the genome of sugar beet (Beta vulgaris), a plant for which practically no
molecular information has been available. To identify distinct genes and to provide a
representative ’unigene’ cDNA set for sugar beet, 159 936 cDNA clones were processed
utilizing large-scale, high-throughput data generation and analysis methods. Data anal-
ysis yielded 30 444 ofp clusters reflecting the number of different genes in the original
cDNA sample. A sample of 10 961 cDNA clones, each representing a different cluster,
were selected for sequencing. Standard sequence analysis confirmed that 89% of these
EST sequences did represent different genes. These results indicate that the full set of 30
444 ofp clusters represent up to 25 000 genes. We conclude that the ofp analysis pipeline
is an accurate and effective way to construct large representative ’unigene’ sets for any
plant of interest with no requirement for prior molecular sequence data.

DOI: 10.1046/j.1365-313x.2002.01457.x PMID: 12472698 [Indexed for MEDLINE]
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Automated image analysis for array hybridization experiments.

Steinfath M(1), Wruck W, Seidel H, Lehrach H, Radelof U, O’Brien J.

Author information: (1)Max-Planck-Institute for Molecular Genetics Berlin-Dahlem,
Ihnestrasse 73, D-14195 Berlin, Germany. steinfat@molgen.mpg.de

MOTIVATION: Image analysis is a major part of data evaluation for array hybridization
experiments in molecular biology. The program presented here is designed to analyze au-
tomatically images from hybridization experiments with various arrangements: different
kinds of probes (oligonucleotides or complex probes), different supports (nylon filters or
glass slides), different labeling of probes (radioactively or fluorescently). The program is
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currently applied to oligonucleotide fingerprinting projects and complex hybridizations.
The only precondition for the use of the program is that the targets are arrayed in a
grid, which can be approximately transformed to an orthogonal equidistant grid by a
projective mapping. RESULTS: We demonstrate that our program can cope with the
following problems: global distortion of the grid, missing of grid nodes, local deviation
of the spot from its specified grid position. This is checked by different quality measures.
The image analysis of oligonucleotide fingerprint experiments on an entire genetic library
is used, in clustering procedures, to group related clones together. The results show that
the program yields automatically generated high quality input data for follow up analy-
sis such as clustering procedures. AVAILABILITY: The executable files will be available
upon request for academics.

DOI: 10.1093/bioinformatics/17.7.634 PMID: 11448881 [Indexed for MEDLINE]
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