
Comparing and Computing Parameters for
Directed Graphs

Inaugural dissertation

for the attainment of the title of doctor
in the Faculty of Mathematics and Natural Sciences

at the Heinrich Heine University Düsseldorf

presented by

Carolin Rehs

from Düsseldorf

Düsseldorf, September 2021

from the institute for Computer Science
Faculty of Mathematics and Natural Sciences
at the Heinrich Heine University Düsseldorf

Published by permission of the
Faculty of Mathematics and Natural Sciences at
Heinrich Heine University Düsseldorf

Supervisor: PD Dr. Frank Gurski

Co-supervisor Prof. Dr. Egon Wanke

Date of the oral examination: 18/03/2022

Contents

1 Introduction 7

2 Undirected Graphs 11

2.1 Graph Width Measures . 12
2.1.1 Path-Width . 12
2.1.2 Tree-Width . 12
2.1.3 Clique-Width . 13
2.1.4 NLC-width . 14

2.2 Graph Minors . 15
2.3 Graph Classes . 16

2.3.1 Cactus trees and Pseudotrees 16
2.3.2 Co-Graphs . 16
2.3.3 Threshold Graphs . 17
2.3.4 Distance-Hereditary Graphs . 18

3 Digraph (Width) Parameters 21

3.1 Preliminaries . 21
3.1.1 Directed graphs . 21
3.1.2 Directed Graph Parameters . 23

3.2 Linear Width Parameters for Digraphs 23
3.2.1 Directed path-width . 24
3.2.2 Directed vertex separation number 26
3.2.3 Directed cut-width . 28
3.2.4 Directed linear NLC-width . 28
3.2.5 Directed linear clique-width . 30
3.2.6 Directed neighbourhood-width 31
3.2.7 Directed linear rank-width . 32

3.3 Non-Linear Width Parameters for Digraphs 32
3.3.1 Directed tree-width . 33
3.3.2 Directed feedback vertex set number 40
3.3.3 Directed feedback arc set number 41
3.3.4 Cycle Rank . 41
3.3.5 DAG-depth . 42

3

4 CONTENTS

3.3.6 DAG-width . 43
3.3.7 Kelly-width . 44
3.3.8 Directed NLC-width . 45
3.3.9 Directed Clique-Width . 46
3.3.10 Cops and Robbers Games . 47

3.4 Directed Coloring . 49
3.4.1 Oriented Coloring . 49
3.4.2 Acyclic coloring of directed graphs 51

3.5 Comparing Directed Width Parameters 51
3.5.1 Directed linear width and undirected linear width 51
3.5.2 Linear width parameters . 56
3.5.3 Non-linear width parameters 60
3.5.4 Coloring and directed width parameters 64

4 Directed Graph Minors 65

5 Width Measures on Directed Graph Classes 67

5.1 Tree-Like Digraphs . 67
5.1.1 Directed Cactus Forests and Pseudoforests 67
5.1.2 Directed Graph Minors of Tree-like Digraphs 69
5.1.3 Directed Path-Width of Tree-like Digraphs 72
5.1.4 Directed Tree-Width of Tree-like Digraphs 73
5.1.5 Conclusion and Outlook . 74

5.2 Directed Co-Graphs . 75
5.2.1 Recursively de�ned Digraphs 76
5.2.2 Directed width parameters and digraph operations 80
5.2.3 Digraph width measures on directed co-graphs 98
5.2.4 Graph Coloring on Recursively De�ned Digraphs 100
5.2.5 Conclusion and Outlook . 106

5.3 Directed Threshold Graphs . 107
5.4 Twin-Distance-Hereditary Digraphs . 110

5.4.1 Directed Distance-Hereditary Graphs 111
5.4.2 Properties of Twin-DH Digraphs 113
5.4.3 Directed Graph Parameters on Twin-DH Digraphs 119
5.4.4 Further Problems on directed twin-dh graphs 132
5.4.5 Conclusion and Outlook . 132

5.5 Sequence Digraphs . 133
5.5.1 From Sequences to Digraphs . 134
5.5.2 From Digraphs to Sequences . 136
5.5.3 Properties of Sequence Digraphs 137
5.5.4 Directed Path-width of Sequence Digraphs 142
5.5.5 Conclusions . 145

5.6 Semicomplete Graphs . 146
5.6.1 Linear Width parameters on semicomplete graphs 146

CONTENTS 5

5.6.2 Non-Linear Width parameters on semicomplete digraphs 147
5.6.3 DAG-width and directed path-width on semicomplete digraphs 149
5.6.4 Escaping pursuit in the jungle: directed path-width, directed

tree-width and Kelly-width . 152
5.6.5 Directed (linear) clique-width and directed path-width on semi-

complete digraphs . 153
5.6.6 Conclusion . 153

6 Conclusions and Outlook 155

7 Appendix 169

7.1 Parts of my published Papers . 169

6 CONTENTS

1 Introduction

The �eld of undirected graph parameters is a very huge one and has been well-
researched since the 1980s. A graph parameter, also called width measure, is a
function that associates a positive integer with every graph. Probably the most
considered undirected graph parameters in literature are path-width and tree-width
[RS83, RS86a] as well as clique-width [CO00]. All of these parameters allow strong
algorithmic results considering �xed-parameter-tractability. Especially for tree-width
and clique-width there is an often cited Theorem by Courcelle, which states that all
graph problems describable in monadic second-order logic on quanti�cation over ver-
tices and vertex sets (and additionally on quanti�cation over edges and edge sets) are
computable in polynomial time for bounded clique-width (tree-width).

This leads to the question, if there exist directed width measures that are as
strong as the undirected ones. There have been numerous attempts to de�ne directed
width measures which admit as many algorithmical results as tree-width and path-
width and there has been some well-known research to compare these parameters, see
[GHK+10] for a survey. Having studied this matter for some time, one comes to the
conclusion that none of the known directed width parameters allows as strong results
as the undirected ones. However, this does not mean that directed width parameters
are not worth working on. Especially when not considered for all digraphs in general,
but on special digraph classes, interesting results on these parameters remain possible.

In this work, several width measures on digraphs are considered. We investigate
especially directed path-width (d-pw) and directed tree-width (d-tw), but particularly
for tree-width there have been many di�erent attempts to de�ne a directed version. As
the idea of undirected tree-width comes from Robertson and Seymour, it seems to be
reasonable to consider mainly the paper by Johnson, Robertson, Seymour and Thomas
in which they de�ne not only a directed version of tree-width, but also directed path-
width [JRST01b]. But even they themselves later published an addendum [JRST01a],
in which they suggested to slightly change the de�nition.

We also consider the directed tree-width versions by Reed [Ree99], by Kreutzer
and Ordyniak in Chapter 6 of the book �Quantitative Graph Theory� [DES14], by
Kreutzer and Kwon in Chapter 9 of �Classes of Directed Graphs� [BJG18] and the
idea of Courcelle and Olariu to use the underlying undirected graph. As an interesting
fact we can see, that all these di�erent de�nitions of directed tree-width but the last
mentioned only di�er by a constant factor, thus they are equivalent.

7

8 CHAPTER 1. INTRODUCTION

Other ideas for directed versions of the well-known tree-width that are studied in
this work are DAG-width (dagw) [BDHK06, BDH+12, Obd06] and Kelly-width (kw)
[HK08].

Directed Clique-width (d-cw) [CO00] and directed NLC-width (d-nlcw) [GWY16]
and their linear versions are de�nable very similar to their undirected versions. Never-
theless they are interesting to consider, as they allow the strongest algorithmic results
on directed graphs in general.

Further directed graph parameters are directed vertex separation number (d-vsn)
[YC08], directed cut-width (d-cutw) [CFS12], directed neighbourhood-width (d-nw)
[GR19a], directed linear rank-width (d-lrw) [GR19a], directed feedback vertex set
number (fvs) [GKR19a], cycle rank (cr) [Egg63], DAG-depth (ddp) [GHK+09], and
directed modular width [SW20].

A very new directed graph parameter which seems to allow some algorithmic
aspects is directed branch-width [BMP20].

As there are such an amount of di�erent parameters, it seems very likely to com-
pare them. In the following, we �rst present linear, then non-linear directed graph
parameters. Many linear width measures are comparable in general, whereas this
is not possible for the non-linear ones. Therefore, we regard several directed graph
classes and compare directed width parameters in this restricted area. On several
graph classes, this leads to the computability of these graph parameters in polyno-
mial or even linear time. We give algorithms for the computation of di�erent graph
parameters and relations between them on tree-like digraphs, directed co-graphs, their
superclass directed distance-hereditary graphs, sequence digraphs and semicomplete
graphs.

In Figure 1.1 the most important results on non-linear directed width measures
in special graph classes are summarized.

Please note that in this work, many of our already published papers are used. An
overview on my parts of these papers is given in the addendum.

9

Extended Directed Co-Graphs

Semicomplete Digraphs

Directed Pseudoforests

Directed Cactus Forests

Directed Threshold
Graphs

Directed Co-Graphs

Directed Twin-Distance-Hereditary Graphs

d-pw ↔ d-tw ↔ dagw ↔ kw → d-cw

d-pw ≤ 1

d-tw ≤ 1

d-tw ↔ dagw ↔ kw ↔ d-pw ↔ cr ← fvs ← fas
↑

ddp

d-cw ≤ 2

d-cw ≤ 3

d-tw, dagw, d-pw, cr computable in linear time

d-tw, dagw, d-pw, cr computable in polynomial time

d-tw, dagw, d-pw, cr, fvs, fas, ddp
computable in linear time

Figure 1.1: Relations between di�erent graph parameters in special directed graph
classes. The rectangles represent the sets of digraph classes and their relations to
each other. Inside the rectangles are the results for the named graph classes. For a
graph parameter α and a constant number c, α ≤ c means that for every graph in
this graph class, α(G) is lower or equal c. For two measures α and β, a directed edge
from β to α indicates that there is some function f such that for every graph in this
graph class it holds α(G) ≤ f(β(G)).

10 CHAPTER 1. INTRODUCTION

2 Undirected Graphs

First of all, we give some preliminary de�nitions and an introduction to the well-
researched area of undirected width measures.

Please note that most of these preliminaries can be refound in several of our
published papers.

Undirected graphs We work with �nite undirected graphs G = (V,E), where V
is a �nite set of vertices and E ⊆ {{u, v} | u, v ∈ V, u 6= v} is a �nite set of edges.
For a vertex v ∈ V we denote by NG(v) the set of all vertices which are adjacent
to v in G, i.e. NG(v) = {w ∈ V | {v, w} ∈ E}. Set NG(v) is called the set of all
neighbors of v in G or neighborhood of v in G. The degree of a vertex v ∈ V , denoted
by degG(x), is the number of neighbors of vertex v in G, i.e. degG(v) = |NG(v)|.
The maximum vertex degree is ∆(G) = maxv∈V degG(v). A graph G′ = (V ′, E′) is a
subgraph of graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E. If every edge of E with both
end vertices in V ′ is in E′, we say that G′ is an induced subgraph of digraph G and
we write G′ = G[V ′]. For some undirected graph G = (V,E) its complement graph
is de�ned by G = (V, {{u, v} | {u, v} 6∈ E, u, v ∈ V, u 6= v}).

Special Undirected Graphs By Pn = ({v1, . . . , vn}, {{v1, v2}, . . . , {vn−1, vn}}),
n ≥ 2, we denote a path on n vertices and by Cn = ({v1, . . . , vn}, {{v1, v2}, . . . ,
{vn−1, vn}, {vn, v1}}), n ≥ 3, we denote a cycle on n vertices. Further by Kn =
({v1, . . . , vn}, {{vi, vj} | 1 ≤ i < j ≤ n}), n ≥ 1, we denote a complete graph on n
vertices and by Kn,m = ({v1, . . . , vn, w1, . . . , wm}, {{vi, wj} | 1 ≤ i ≤ n, 1 ≤ j ≤ m})
a complete bipartite graph on n+m vertices.

By hole, gem, house and domino we denote the graphs given in Figure 2.1.

hole Cn, n ≥ 5 gem house domino

Figure 2.1: Hole, gem, house and domino graph

11

12 CHAPTER 2. UNDIRECTED GRAPHS

2.1 Graph Width Measures

2.1.1 Path-Width

As already mention in the introduction, the notion of path-width has been introduced
by Robertson and Seymour in [RS83].

De�nition 2.1.1 (Path-width). [RS83] A path-decomposition of a graphG = (VG, EG)
is a sequence (X1, X2, . . . , Xr) of subsets of VG, such that the following three condi-
tions hold true.

(pw-1) X1 ∪ . . . ∪Xr = VG.

(pw-2) For every edge {u, v} ∈ EG there is a set Xi, 1 ≤ i ≤ r, such that u, v ∈ Xi.

(pw-3) For all i, j, ` with 1 ≤ i < j < ` ≤ r it holds Xi ∩X` ⊆ Xj .

The width of a path-decomposition (X1, . . . , Xr) is max1≤i≤r |Xi|−1. The path-width
of a graph G, pw(G) for short, is the minimum width over all path-decompositions of
G.

Determining whether the path-width of some given graph is at most some given
value w is NP-complete [KF79] even for bipartite graphs, complements of bipar-
tite graphs [ACP87], chordal graphs [Gus93], bipartite distance hereditary graphs
[KBMK93], and planar graphs with maximum vertex degree 3 [MS88].

On the other hand, determining whether the path-width of some given graph is
at most some given value w is polynomial for permutation graphs [BKK93], circular
arc graphs [ST07], and co-graphs [BM93].

2.1.2 Tree-Width

One of the most famous tree structured graph classes are graphs of bounded tree-
width. Though the concept of tree-width has already bin given in a work of Halin
[Hal76], tree-width was de�ned in the 1980s by Robertson and Seymour in [RS86a]
as follows.

De�nition 2.1.2 (Tree-width). [RS86a] A tree decomposition of a graphG = (VG, EG)
is a pair (X , T) where T = (VT , ET) is a tree and X = {Xu | u ∈ VT } is a family of
subsets Xu ⊆ VG, one for each node u of T , such that the following three conditions
hold true.

(tw-1) ∪u∈VTXu = VG.

(tw-2) For every edge {v1, v2} ∈ EG, there is some node u ∈ VT such that v1 ∈ Xu

and v2 ∈ Xu.

(tw-3) For every vertex v ∈ VG the subgraph of T induced by the nodes u ∈ VT with
v ∈ Xu is connected.

2.1. GRAPH WIDTH MEASURES 13

The width of a tree-decomposition (X = {Xu | u ∈ VT }, T = (VT , ET)) is maxu∈VT |Xu|−
1. The tree-width of a graph G, tw(G) for short, is the smallest integer k such that
there is a tree-decomposition (X , T) for G of width k.

Determining whether the tree-width of some given graph is at most some given
value w is NP-complete even for bipartite graphs and complements of bipartite graphs
[ACP87].

2.1.3 Clique-Width

Before the naming of the clique-width established, its operations has been �rst con-
sidered by Courcelle, Engelfriet, and Rozenberg in [CER93]. The �rst mention of
clique-width for labeled graphs is de�ned by Courcelle and Olariu in [CO00]. The
following de�nition is taken from [GW00].

De�nition 2.1.3 (Clique-width). Let k be some positive integer. The class CWk of
labeled graphs is recursively de�ned as follows.

1. The single vertex graph •a for some a ∈ [k] is in CWk.

2. Let G = (VG, EG, labG) ∈ CWk and J = (VJ , EJ , labJ) ∈ CWk be two vertex-
disjoint labeled graphs, then

G⊕ J := (V ′, E′, lab′)

de�ned by V ′ := VG ∪ VJ , E′ := EG ∪ EJ , and

lab′(u) :=

{
labG(u) if u ∈ VG
labJ(u) if u ∈ VJ

for every u ∈ V ′ is in CWk.

3. Let a, b ∈ [k] be two distinct integers and G = (VG, EG, labG) ∈ CWk be a
labeled graph, then

(a) ρa→b(G) := (VG, EG, lab′) de�ned by

lab′(u) :=

{
labG(u) if labG(u) 6= a
b if labG(u) = a

for every u ∈ VG is in CWk and

(b) ηa,b(G) := (VG, E
′, labG) de�ned by

E′ := EG ∪ {{u, v} | u, v ∈ VG, u 6= v, labG(u) = a, labG(v) = b}

is in CWk.

14 CHAPTER 2. UNDIRECTED GRAPHS

The clique-width of a labeled graph G, cw(G) for short, is the least integer k such
that G ∈ CWk.

An expression X built with the operations •a,⊕, ρa→b, ηa,b for integers a, b ∈ [k] is
called a clique-width k-expression. If integer k is known from the context or irrelevant
for the discussion, then we sometimes use the simpli�ed notion expression for the
notion k-expression. The graph de�ned by expression X is denoted by val(X). Every
unlabeled graph G = (V,E) is considered as the labeled graph (V,E, lab) where
lab : V → [1].

It is NP-hard to compute clique-width when it is unbounded and unknown whether
computable in polynomial time when bounded [FRRS09].

2.1.4 NLC-width

The notion of NLC-width (where NLC results from the node label controlled em-
bedding mechanism for graph grammars) of labeled graphs is de�ned by Wanke in
[Wan94] as follows.

De�nition 2.1.4 (NLC-width). Let k be some positive integer. The class NLCk of
labeled graphs is recursively de�ned as follows.

1. The single vertex graph •a for some a ∈ [k] is in NLCk.

2. Let G = (VG, EG, labG) ∈ NLCk and J = (VJ , EJ , labJ) ∈ NLCk be two vertex-
disjoint labeled graphs and S ⊆ [k]2 be a relation, then

G×S J := (V ′, E′, lab′)

de�ned by V ′ := VG ∪ VJ ,

E′ := EG ∪ EJ ∪ {{u, v} | u ∈ VG, v ∈ VJ , (labG(u), labJ(v)) ∈ S},

and

lab′(u) :=

{
labG(u) if u ∈ VG
labJ(u) if u ∈ VJ

for every u ∈ V ′ is in NLCk.

3. Let G = (VG, EG, labG) ∈ NLCk and R : [k]→ [k] be a function, then

◦R(G) := (VG, EG, lab
′)

de�ned by

lab′(u) := R(labG(u))

for every u ∈ VG is in NLCk.

2.2. GRAPH MINORS 15

The NLC-width of a labeled graph G, nlcw(G) for short, is the least integer k such
that G ∈ NLCk.

An expression X built with the operations •a,×S , ◦R for a ∈ [k], S ⊆ [k]2, and
R : [k] → [k] is called an NLC-width k-expression. If integer k is known from the
context or irrelevant for the discussion, then we sometimes use the simpli�ed notion
expression for the notion k-expression. The graph de�ned by expression X is denoted
by val(X). Every unlabeled graph G = (V,E) is considered as the labeled graph
(V,E, lab) where lab : V → [1].

Expression Trees Every NLC-width k-expression X has by its recursive de�nition
a tree structure that is called the NLC-width k-expression-tree for X. This tree T is
an ordered rooted tree whose leaves correspond to the vertices of graph val(X) and
the inner nodes1 correspond to the operations of X, see [GW00]. In the same way
we de�ne the clique-width k-expression-tree for every clique-width k-expression, see
[EGW03]. If integer k is known from the context or irrelevant for the discussion, then
we sometimes use the simpli�ed notion expression-tree for the notion k-expression-
tree. For some node u of expression-tree T , let T (u) be the subtree of T rooted at
u. Note that tree T (u) is always an expression-tree. The expression X(u) de�ned by
T (u) can simply be determined by traversing the tree T (u) starting from the root,
where the left children are visited �rst. X(u) de�nes a (possibly) relabeled induced
subgraph G(u) of G. For an inner node v of some expression-tree T and a leaf u of
T (v) we de�ne by lab(u,G(v)) the label of that vertex of graph G(v) that corresponds
to u. A node u of T is called a predecessor of a node u′ of T if u′ is on a path from u
to a leaf. A node u of T is called the least common predecessor of two nodes u1 and
u2 if u is a predecessor of both nodes u1, u2, and no child of u is a predecessor of u1,
u2.

Graph Parameters and Relations There is a very close relation between the
clique-width and the NLC-width of a graph. We denote two expressions X1 and X2

as equivalent, if the unlabeled versions of val(X1) and val(X2) are isomorphic.

Theorem 2.1.5 ([Joh98]). Every clique-width k-expression can be transformed into
an equivalent NLC-width k-expression and every NLC-width k-expression can be trans-
formed into an equivalent clique-width 2k-expression. Thus, for every graph G it holds

nlcw(G) ≤ cw(G) ≤ 2 · nlcw(G). (2.1)

Computing the NLC-width of a graph is NP-hard [GW05a].

2.2 Graph Minors

De�nition 2.2.1 (Edge contraction). Let G = (V,E) be a graph with e = {u, v} ∈
E, u 6= v. The contraction of e leads to a new graph G′ = (V ′, E′) with V ′ =

1The vertices in a tree can also be called nodes.

16 CHAPTER 2. UNDIRECTED GRAPHS

V \{u, v} ∪ {w} with w /∈ V and E′ = {{a, b} | a, b ∈ V ∩ V ′, {a, b} ∈ E or a =
w, {u, b} or {v, b} ∈ E or b = w, {a, u} or {a, v} ∈ E}.2

A graph minor of a graph G = (V,E) is a graph G′ = (V ′, E′), if G′ can be
obtained by forming subgraphs and edge contraction of G. Formally, we write G′ � G.

2.3 Graph Classes

2.3.1 Cactus trees and Pseudotrees

This subsection is taken from [GR19b].
Cactus trees are well-known in graph theory. The name "cactus" has been intro-

duced by Harary and Uhlenbeck in 1953 [HU53]. The de�nition has slightly changed
since then, whereas in the original de�nition cacti where requested to consist only of
triangles, today's more common de�nition is as follows:

De�nition 2.3.1 (Cactus tree). A cactus tree is a connected graph G = (V,E),
where for any two cycles C1 and C2 it holds that they have at most one joint vertex.

The set of cactus graphs is a superset of the pseudotrees, which are again a superset
of the well-known sunlet graphs.

De�nition 2.3.2 (Pseudotree). A pseudotree is a connected graph which contains at
most one cycle.

It is possible to extend these de�nitions to forests, which means that they are not
necessarily connected. A cactus forest is a graph where any two cycles have at most
one joint vertex, and a pseudoforest is a graph where every connected component
contains at most one cycle.

Whereas the set of cactus trees and the set of pseudotrees are not closed under the
graph minor operation, as subgraphs could create unconnected graphs, cactus forests
can be characterized by one forbidden graph minor, the diamond graph D4 with
four vertices, which is the K4 with one edge less [EMC88]. This means, that every
graph, which does not have D4 as a graph minor, is a cactus forest. As pseudoforests
are a subset of cactus forests, D4 is also a forbidden minor for them, as well as the
butter�y graph B5. Every graph, which has neither D4 nor B5 as a graph minor, is
a pseudoforest.

Cactus forests are of bounded tree-width and pseudoforests are even of bounded
path-width.

2.3.2 Co-Graphs

Co-graphs have been introduced in the 1970s by a number of authors under di�erent
notations, such as hereditary Dacey graphs (HD graphs) in [Sum74], D∗-graphs in

2This means, in graph G′ the edge e and its two incident vertices u and v are replaced by the
vertex w and all other edges in G incident with u or v are adjacent with w in G′.

2.3. GRAPH CLASSES 17

[Jun78], 2-parity graphs in [BU84], and complement reducible graphs (co-graphs) in
[Ler71]. Co-graphs can be characterized as the set of graphs without an induced
path with four vertices [CLSB81]. From an algorithmic point of view the following
recursive de�nition is very useful.

This section is taken from [GKR21b]

Recursive Operations

Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be k vertex-disjoint graphs.

� The disjoint union of G1, . . . , Gk, denoted by G1 ∪ . . . ∪ Gk, is the graph with
vertex set V1 ∪ . . . ∪ Vk and edge set E1 ∪ . . . ∪ Ek.

� The join composition of G1, . . . , Gk, denoted by G1 × . . . × Gk, is de�ned by
their disjoint union plus all possible edges between vertices of Gi and Gj for all
1 ≤ i, j ≤ k, i 6= j.

Co-graphs

De�nition 2.3.3 (Co-graphs). The class of co-graphs is recursively de�ned as follows.

(i) Every graph on a single vertex ({v}, ∅), denoted by •, is a co-graph.

(ii) If G1, G2 are vertex-disjoint co-graphs, then

(a) the disjoint union G1 ∪G2 and

(b) the join composition G1 ×G2 are co-graphs.

Please note that sometimes in literature, instead of the disjoint union and join
composition of only G1 and G2 these operations on G1, . . . , Gk are used in (ii). How-
ever, the de�ned graph class is the same, as (G1 ∪ G2) ∪ G3 = G1 ∪ G2 ∪ G3 and
(G1 ×G2)×G3 = G1 ×G2 ×G3.

By this de�nition every co-graph can be represented by a tree structure, denoted
as co-tree. The leaves of the co-tree represent the vertices of the graph and the in-
ner nodes of the co-tree correspond to the operations applied on the subexpressions
de�ned by the subtrees. For every graph G one can decide in linear time, whether
G is a co-graph and in the case of a positive answer construct a co-tree for G, see
[HP05]. Using the co-tree a lot of hard problems have been shown to be solvable in
polynomial time when restricted to co-graphs. Such problems are clique, indepen-
dent set, partition into independent sets (chromatic number), partition into cliques,
hamiltonian cycle, isomorphism [CLSB81].

2.3.3 Threshold Graphs

Threshold graphs were introduced by Chvátal and Hammer in the 1970s [CH77] as
a graph class which allows to distinguish between independent and non-independent
sets in a very simple way. Formally G = (V,E) is a threshold graph if it can be
constructed recursively by the following rules:

18 CHAPTER 2. UNDIRECTED GRAPHS

� The graph with only one vertex is a threshold graph.

� Let G = (V,E) be a threshold graph. Then G′ = (V ′, E′) with V ′ = V ∪{v} for
any vertex v /∈ V and E′ = E is a threshold graph. This operation is denoted
as disjoint union ∪ or as adding an isolated vertex.

� Let G = (V,E) be a threshold graph. Then G′ = (V ′, E′) with V ′ = V ∪ {v}
for any vertex v /∈ V and E′ = E ∪ {{u, v} | u ∈ V } is a threshold graph. This
operation is denoted as disjoint sum ⊕ or as adding a dominating vertex.

In [MP95] are presented some equivalent ways to de�ne threshold graphs.
For every graph G = (V,E), the following statements are equivalent:

1. G is a threshold graph.

2. There exist non-negative reals wv, v ∈ V and t such that for every U ⊆ V it
holds:

∑
v∈U wv ≤ t i� U is an independent set of G.

3. G contains no C4, no P4 and no 2K2 as induced subgraph.

4. There exist non-negative reals wv, v ∈ V and T such that for every two vertices
u, v it holds wu + wv > T i� {u, v} ∈ E.

5. G is a split graph with vertex partition V = S ∪K and the neighbourhoods of
vertices of the independent set S are nested.

6. G and its edge complement graph G are trivially perfect.

2.3.4 Distance-Hereditary Graphs

Distance-hereditary graphs have been introduced by Howorka in 1977 [How77]. They
are exactly the graphs which are distance-hereditary for their connected induced sub-
graphs, which means that if any two vertices u and v belong to an induced subgraph
H of a graph G, then some shortest path between u and v in G has to be a subgraph
of H.

But there are many equivalent de�nitions of distance-hereditary graphs, as shown
in [BM86] and summarized in Theorem 10.1.1 of [BLS99]. Let G be a connected
graph with distance function d. Then, the following conditions are equivalent:

1. G is distance-hereditary

2. For every two vertices u and v with d(u, v) = 2, there is no induced path between
u and v of length greater than 2

3. The house, holes, domino, and gem are not induced subgraphs of G, i.e. G is
HHDG-free

2.3. GRAPH CLASSES 19

The Book [BLS99] contains one, the paper [BM86] even more characterizations,
which are not used very often in graph theory and thus not necessary to mention
here.

Further, distance-hereditary graphs can be de�ned recursively from a single vertex
by the following three operations:

1. Add a pendant vertex, which is a vertex with only one edge to an existent vertex

2. Add a false twin, which is a vertex with the same neighbourhood as an existent
vertex and no edge to this vertex

3. Add a true twin, which is a vertex with the same neighbourhood as an existent
vertex and an edge to this vertex

As Co-Graphs are exactly the graphs obtained by the same rules without pendant
vertices, distance-hereditary graphs are a superclass of co-graphs. Further, they are
a subclass of perfect graphs.

20 CHAPTER 2. UNDIRECTED GRAPHS

3 Digraph (Width) Parameters

3.1 Preliminaries

We now give some elementary notations, which are mostly taken from [GR19a].
Let in general [k] = {1, . . . , k} be the set of all integers between 1 and k.

3.1.1 Directed graphs

A directed graph or digraph is a pair G = (V,E), where V is a �nite set of vertices
and E ⊆ {(u, v) | u, v ∈ V, u 6= v} is a �nite set of ordered pairs of distinct1

vertices called arcs. For a vertex v ∈ V , the sets N+
G (v) = {u ∈ V | (v, u) ∈ E}

and N−G (v) = {u ∈ V | (u, v) ∈ E} are called the set of all successors and the
set of all predecessors of v in G. The sets N+

G (v) = {u ∈ V | (v, u) ∈ E} and
N−G (v) = {u ∈ V | (u, v) ∈ E} are called the set of all out-neighbours and the set of
all in-neighbours of v. The outdegree of v, outdegreeG(v) for short, is the number of
out-neighbours of v and the indegree of v, indegreeG(v) for short, is the number of
in-neighbours of v in G. The maximum out-degree is ∆+(G) = maxv∈V outdegreeG(v)
and the maximum in-degree is ∆−(G) = maxv∈V indegreeG(v). The maximum vertex
degree is ∆(G) = maxv∈V outdegreeG(v) + indegreeG(v). A digraph G′ = (V ′, E′) is
a subdigraph of digraph G = (V,E) if V ′ ⊆ V and E′ ⊆ E. If every arc of E with
both end vertices in V ′ is in E′, we say that G′ is an induced subdigraph of digraph
G and we write G′ = G[V ′].

For a set of digraphs F we denote by F-free digraphs the set of all digraphs G
such that no induced subdigraph of G is isomorphic to a member of F . If F = {F},
we write F -free instead of {F}-free. For some digraph class C we de�ne Free(C) as
the set of all digraphs G such that no induced subdigraph of G is isomorphic to a
member of C. This last two de�nitions can be used for undirected graphs as well.

For some digraph G = (V,E) its complement digraph is de�ned by

G = (V, {(u, v) | (u, v) 6∈ E, u, v ∈ V, u 6= v})

and its converse digraph is de�ned by

Gc = (V, {(u, v) | (v, u) ∈ E, u, v ∈ V, u 6= v}).
1Thus we do not consider directed graphs with loops.

21

22 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

Let G = (V,E) be a digraph.

� G is edgeless if for all u, v ∈ V , u 6= v, none of the two pairs (u, v) and (v, u)
belongs to E.

� G is a tournament if for all u, v ∈ V , u 6= v, exactly one of the two pairs (u, v)
and (v, u) belongs to E.

� G is semicomplete if for all u, v ∈ V , u 6= v, at least one of the two pairs (u, v)
and (v, u) belongs to E.

� G is `-semicomplete if for all u ∈ V , there are at most ` vertices in V which are
not neighbours (i.e. in- or out- neighbours) of u.

� G is (bidirectional) complete if for all u, v ∈ V , u 6= v, both of the two pairs
(u, v) and (v, u) belong to E.

Omitting the directions For some given digraph G = (V,E), we de�ne its un-
derlying undirected graph by ignoring the directions of the edges, i.e. und(G) =
(V, {{u, v} | (u, v) ∈ E or (v, u) ∈ E}).

Orientations There are several ways to de�ne a digraph G = (V,E) from an undi-
rected graph Gu = (V,Eu). If we replace every edge {u, v} ∈ Eu by

� one of the arcs (u, v) and (v, u), we denote G as an orientation of Gu. Every
digraph G which can be obtained by an orientation of some undirected graph
Gu is called an oriented graph.

� one or both of the arcs (u, v) and (v, u), we denote G as a biorientation of Gu.
Every digraph G which can be obtained by a biorientation of some undirected
graph Gu is called a bioriented graph.

� both arcs (u, v) and (v, u), we denote G as a complete biorientation of Gu. Since

in this case G is well de�ned by Gu we also denote it by
←→
Gu. Every digraph

G which can be obtained by a complete biorientation of some undirected graph
Gu is called a complete bioriented graph.

Special directed graphs We now recall some special directed graphs. By
−→
Pn =

({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn)}), n ≥ 2 we denote a directed path on n vertices

and by
−→
Cn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn), (vn, v1)}), n ≥ 2 we denote a

directed cycle on n vertices. The k-power graph Gk of a digraph G is a graph with
the same vertex set as G. There is an arc (u, v) in Gk if and only if there is a directed
path from u to v of length at most k in G. An oriented forest (tree) is the orientation
of a forest (tree). A digraph is an out-tree (in-tree) if it is an oriented tree in which
there is exactly one vertex of indegree (outdegree) zero. A directed acyclic digraph

(DAG for short) is a digraph without any
−→
Cn, n ≥ 2 as subdigraph. Further let

3.2. LINEAR WIDTH PARAMETERS FOR DIGRAPHS 23

←→
Kn = ({v1, . . . , vn}, {(vi, vj) | 1 ≤ i 6= j ≤ n}) be a bidirectional complete digraph on
n vertices.

3.1.2 Directed Graph Parameters

In order to classify graph parameters we call two graph parameters α and β equivalent,
if there are two functions f1 and f2 such that for every digraphG the value α(G) can be
upper bounded by f1(β(G)) and the value β(G) can be upper bounded by f2(α(G)).2

If f1 and f2 are polynomials or linear functions, we call α and β polynomially equivalent
or linearly equivalent, respectively.

3.2 Linear Width Parameters for Digraphs

In this section, we study directed graph parameters which are de�ned by the existence
of an underlying path-structure for the input graph. Those parameters are called lin-
ear graph parameters, as a path-structure is, compared to a tree-structure, linear. The
parameters of our interest are obtained by generalizing path-width [RS83], cut-width
[AH73], linear clique-width [GW05b], linear NLC-width [GW05b], neighbourhood-
width [Gur06b], and linear rank-width [Gan11] to directed graphs. With the exception
of cut-width these parameters can be regarded as restrictions of the above mentioned
parameters with underlying tree-structure to an underlying path-structure. The re-
lation between these parameters corresponds to their tree-structural counterparts,
since bounded path-width implies bounded linear NLC-width, linear clique-width,
neighbourhood-width, and linear rank-width. Further the reverse direction is not
true in general, see [Gur06b]. Such restrictions to underlying path-structures are of-
ten helpful to show results for the general parameters, see [FRRS09, FGL+18]. These
linear parameters are also interesting from a structural point of view, e.g. in the
research of special graph classes [Gan11, Gur06a, HMP11].

We now consider directed versions of the above mentioned linear paramters. Lift-
ing them using an underlying tree-structure to directed graphs lead to the known
directed tree-width [JRST01b], directed NLC-width [GWY16], directed clique-width
[CO00], and directed rank-width [KR13].

One of the most famous examples for a directed graph parameter de�ned by the
existence of an underlying path-structure is the directed path-width [RS83], which
has been studied a lot [Bar06, Tam11, KKT15, KKK+16]. Further the cut-width for
directed graphs was introduced by Chudnovsky et al. in [CFS12]. Regarding the
usefulness of linear width parameters for undirected graphs we introduce the directed
linear NLC-width, directed linear clique-width, directed neighbourhood-width, and
directed linear rank-width. In contrast to the linear width measures for undirected
graphs, for directed graphs their relations turn out to be more involved. Table 3.2

2Please note that two parameters are equivalent, if and only if the same families of digraphs have
bounded width for them.

24 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

shows some classes of digraphs demonstrating various possible combinations of the
listed width measures being bounded and unbounded.

undirected directed DAG CB BS OP TT

cut-width cutw [AH73] d-cutw [CFS12] 0 ∞ ∞ 0 0
path-width pw [RS83] d-pw Thomas et al. 0 ∞ 1 0 0
linear clique-width lcw [GW05b] d-lcw [GR19a] ∞ 2 2 3 2
linear NLC-width lnlcw [GW05b] d-lnlcw [GR19a] ∞ 1 1 3 1
neighbourhood-width nw [Gur06b] d-nw [GR19a] ∞ 1 1 2 1
linear rank-width lrw [Gan11] d-lrw [GR19a] ∞ 1 1 2 1

Table 3.1: Width measures and their values for directed acyclic digraphs (DAG),
complete bioriented (CB) digraphs, bioriented stars (BS), oriented paths (OP), and
transitive tournaments (TT).

For all these linear width parameters for directed graphs we compare the directed
width of a digraph and the undirected width of its underlying undirected graph, which
allow us to show the hardness of computing the considered linear width parameters
for directed graphs.

We show that for general digraphs we have three sets of pairwise equivalent pa-
rameters, namely {d-cutw}, {d-pw}, and {d-nw, d-lnlcw, d-lcw, d-lrw}. For digraphs
of bounded vertex degree this reduces to two sets {d-nw, d-lnlcw, d-lcw, d-lrw} and
{d-cutw, d-pw} and for semicomplete digraphs of bounded vertex degree all these six
graph parameters are pairwise equivalent. With the exception of directed rank-width,
the same results are even shown for polynomially and linearly equivalence.

Please note this section is taken in huge parts from [GR19a].

3.2.1 Directed path-width

The path-width (pw) for undirected graphs was introduced in [RS83]. The notion
of directed path-width was introduced by Reed, Seymour, and Thomas around 1995
(cf. [Bar06]) and relates to directed tree-width introduced by Johnson, Robertson,
Seymour, and Thomas in [JRST01b]. Please note that there are some works which
de�ne the path-width of a digraph G in a di�erent and not equivalent way by using
the path-width of und(G).

De�nition 3.2.1 (directed path-width). Let G = (V,E) be a digraph. A directed
path-decomposition of G is a sequence (X1, . . . , Xr) of subsets of V , called bags, such
that the following three conditions hold true.

(dpw-1) X1 ∪ . . . ∪Xr = V ,

(dpw-2) for each (u, v) ∈ E there is a pair i ≤ j such that u ∈ Xi and v ∈ Xj , and

(dpw-3) for all i, j, ` with 1 ≤ i < j < ` ≤ r it holds Xi ∩X` ⊆ Xj .

The width of a directed path-decomposition X = (X1, . . . , Xr) is

max
1≤i≤r

|Xi| − 1.

3.2. LINEAR WIDTH PARAMETERS FOR DIGRAPHS 25

The directed path-width of G, d-pw(G) for short, is the smallest integer w such that
there is a directed path-decomposition for G of width w.

A directed path-decomposition (X1, . . . , Xr) is nice, if X1 = ∅, Xr = ∅, and
|Xi − Xi−1| + |Xi−1 − Xi| = 1 for every 2 ≤ i ≤ r. If Xi = Xi−1 ∪ {v}, we denote
Xi as an introduce node and if Xi−1 = Xi ∪ {v}, we denote Xi as a forget node.
Every directed path-decomposition can be transformed into a nice directed path-
decomposition in time O(|V |2). By the de�nition of a path-decomposition, within
a nice directed path-decomposition every graph vertex is introduced and forgotten
exactly once. Thus every nice path-decomposition has r = 2|V |+ 1 bags.

Example 3.2.2. In Figure 3.1 we show an illustration of a directed path-decomposition
for a digraph G.

1

2

4

3

5

6

7G

5, 6, 7 1, 4 1, 2 1, 3

Figure 3.1: A digraph G (left) and a minimal path-decomposition for this graph
(right).

Lemma 3.2.3. Let G be some digraph, then d-pw(G) ≤ pw(und(G)).

Lemma 3.2.4 (Lemma 1 of [Bar06]). Let G be some complete bioriented digraph,
then d-pw(G) = pw(und(G)).

The proof can be done straightforward since a for G of width k leads to a layout
for
←→
G of width at most k and vice versa.
Determining whether the (undirected) path-width of some given (undirected)

graph is at most some given value w is NP-complete [KF79] even for bipartite graphs,
complements of bipartite graphs [ACP87], chordal graphs [Gus93], and planar graphs
with maximum vertex degree 3 [MS88]. Lemma 3.2.4 implies that determining whether
the directed path-width of some given digraph is at most some given value w is NP-
complete even for digraphs whose underlying graphs lie in the mentioned classes. On
the other hand, determining whether the (undirected) path-width of some given (undi-
rected) graph is at most some given value w is polynomial for permutation graphs
[BKK93], circular arc graphs [ST07], and co-graphs [BM93].

In the undirected cases, there are a number of results on path-width. But even
in the directed case, there are already some algorithmic results for computing di-
rected path-width. While undirected path-width can be solved by a �xed-parameter-
algorithm [Bod96] (FPT-algorithm), the existence of such an algorithm for directed

26 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

path-width is still open. The directed path-width of some directed graph G =
(V,E) can be computed in time O(|E|·|V |2d-pw(G)/(d-pw(G)−1)!) by [KKK+16] and in time
O(d-pw(G) · |E| · |V |2d-pw(G)) by [Nag12]. This leads to XP-algorithms for directed
path-width with respect to the standard parameter and implies that for each constant
w, it is decidable in polynomial time whether a given digraph has directed path-width
at most w. Further it is shown in [KKT15] how to decide whether the directed path-
width of an `-semicomplete digraph is at most w in time (`+ 2w+ 1)2w · nO(1). Fur-
thermore the directed path-width can be computed in time 3τ(und(G)) · |V |O(1), where
τ(und(G)) denotes the vertex cover number of the underlying undirected graph of G,
by [Kob15].

The next lemma follows by the de�nition of converse digraphs and directed path-
decompositions.

Lemma 3.2.5. Let G be a digraph. Sequence (X1, . . . , Xr) is a directed path-decompo-
sition for G if and only if sequence (Xr, . . . , X1) a directed path-decomposition of Gc.

Lemma 3.2.6. Let G be a digraph. Let G be some digraph, then d-pw(G) = d-pw(Gc).

Example for digraphs of small directed path-width are given in Example 3.2.10,
when considering the equivalent (cf. Lemma 3.5.15) notation of directed vertex sepa-
ration number.

The directed path-width can change when taking the complement digraph, this is
not possible if we restrict to tournaments.

Lemma 3.2.7. [GKR21b] For every tournament G it holds d-pw(G) = d-pw(G).

Proof. By Lemma 3.2.6 we know that d-pw(G) = d-pw(Gc) and for tournaments G
it holds d-pw(Gc) = d-pw(G).

Lemma 3.2.8. Let G be a digraph, then the directed path-width of G is the maximum
directed path-width of its strong components.

Proof. Let G be a digraph, AC(G) be the acyclic condensation of G, and v1, . . . , vc
be a topological ordering of AC(G), i.e. for every edge (vi, vj) in AC(G) it holds
i < j. Further let V1, . . . , Vc be the vertex sets of its strong components ordered
by the topological ordering. Then G can be obtained by G = G[V1] 	 . . . 	 G[Vc].
Since we have shown in [GR18] that d-pw(G1 	 G2) = max{d-pw(G1), d-pw(G2)},
the statement of the lemma follows.

3.2.2 Directed vertex separation number

The vertex separation number (vsn) for undirected graphs was introduced in [LT79].
In [YC08] the directed vertex separation number for a digraph G = (V,E) has

been introduced as follows.
Therefore we �rst need the de�nition of a layout of a graph G = (V,E), which is

a bijective function ϕ : V → {1, . . . , |V |}. For a graph G, we denote by Φ(G) the set

3.2. LINEAR WIDTH PARAMETERS FOR DIGRAPHS 27

of all layouts for G. Given a layout ϕ ∈ Φ(G) we de�ne for 1 ≤ i ≤ |V | the vertex
sets

L(i, ϕ,G) = {u ∈ V | ϕ(u) ≤ i} and R(i, ϕ,G) = {u ∈ V | ϕ(u) > i}.

The reverse layout ϕR, for ϕ ∈ Φ(G), is de�ned by ϕR(u) = |V | − ϕ(u) + 1, u ∈ V .

De�nition 3.2.9 (directed vertex separation number, [YC08]). The directed vertex
separation number of a digraph G = (V,E) is de�ned as follows.

d-vsn(G) = min
ϕ∈Φ(G)

max
1≤i≤|V |

|{u ∈ L(i, ϕ,G) | ∃v ∈ R(i, ϕ,G) : (v, u) ∈ E}| (3.1)

For every optimal layout ϕ we obtain the same value when we consider the arcs
forward in the reverse ordering ϕR. Thus we obtain an equivalent de�nition as follows
(cf. [BJG09]).

d-vsn(G) = min
ϕ∈Φ(G)

max
1≤i≤|V |

|{u ∈ R(i, ϕ,G) | ∃v ∈ L(i, ϕ,G) : (v, u) ∈ E}| (3.2)

Since the converse digraph has the same path-width as its original graph, we
obtain an equivalent de�nition, which will be useful later on.

d-vsn(G) = min
ϕ∈Φ(G)

max
1≤i≤|V |

|{u ∈ L(i, ϕ,G) | ∃v ∈ R(i, ϕ,G) : (u, v) ∈ E}| (3.3)

d-vsn(G) = min
ϕ∈Φ(G)

max
1≤i≤|V |

|{u ∈ R(i, ϕ,G) | ∃v ∈ L(i, ϕ,G) : (u, v) ∈ A}| (3.4)

Example 3.2.10 (directed vertex separation number). (1.) Every directed path
−→
Pn has

directed vertex separation number 0.

(2.) The k-power graph (
−→
Pn)k of a directed path

−→
Pn has directed vertex separation

number 0.

(3.) Every directed cycle
−→
Cn has directed vertex separation number 1. This can be

shown by the layout ϕ(vi) = i, 1 ≤ i ≤ n.

(4.) The bidirectional complete digraph
←→
K3 and the complete biorientation of a star

K2,2,2 have directed vertex separation number 2.

(5.) Every bidirectional complete digraph
←→
Kn has directed vertex separation number

n− 1.

28 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

3.2.3 Directed cut-width

The cut-width (cutw) of undirected graphs has been introduced in [AH73]. The cut-
width of digraphs was introduced by Chudnovsky, Fradkin, and Seymour in [CFS12].
The directed cut-width of some digraph G = (V,E) is de�ned by an ordering of
vertices similar to undirected cut-width, with the exception that only arcs directed
forward in the ordering contribute to the width of a cut.

De�nition 3.2.11 (directed cut-width, [CFS12]). The directed cut-width of digraph
G = (V,E) is

d-cutw(G) = min
ϕ∈Φ(G)

max
1≤i≤|V |

|(u, v) ∈ E | u ∈ L(i, ϕ,G), v ∈ R(i, ϕ,G)}|. (3.5)

For every optimal layout ϕ we obtain the same value when we consider the arcs
backwards in the reverse ordering ϕR. Thus we obtain an equivalent de�nition, which
will be useful later on.

d-cutw(G) = min
ϕ∈Φ(G)

max
1≤i≤|V |

|(v, u) ∈ E | u ∈ L(i, ϕ,G), v ∈ R(i, ϕ,G)}| (3.6)

Subexponential parameterized algorithms for computing the directed cut-width
of semicomplete digraphs are given in [FP13b].

Example 3.2.12 (directed cut-width). (1.) Every directed path
−→
Pn has directed cut-

width 0. This can be shown by the layout ϕ(vi) = n− i+ 1, 1 ≤ i ≤ n.

(2.) The k-power graph (
−→
Pn)k of a directed path

−→
Pn has directed directed cut-width

0.

(3.) Every directed cycle
−→
Cn has directed cut-width 1.

(4.) The bidirectional complete digraph
←→
K3 has directed cut-width 2.

(5.) Every bidirectional complete digraph
←→
Kn has directed cut-width bn2 c · d

n
2 e.

3.2.4 Directed linear NLC-width

The linear NLC-width (lnlcw) for undirected graphs was introduced in [GW05b] as a
parameter by restricting the NLC-width, de�ned in [Wan94], to an underlying path-
structure. In [GR19a] we introduce the corresponding parameter for directed graphs
by a modi�cation of the edge inserting operation ×S of the linear NLC-width, which
also leads to a restriction of directed NLC-width [GWY16].

De�nition 3.2.13 (directed linear NLC-width). The class of directed linear NLC-
width at most k, d− lNLCk for short, is recursively de�ned as follows

1. Creation of a new vertex with label a, denoted by •a for some a ∈ [k] is in
d−NLCk.

3.2. LINEAR WIDTH PARAMETERS FOR DIGRAPHS 29

2. Disjoint union of a labeled digraphs G = (V,E, lab) ∈ d − lNLCk and a single

vertex v 6∈ V labeled by a with two relations
−→
S ,
←−
S ∈ [k]2 , denoted by

G⊗
(
−→
S ,
←−
S)
•a := (V ′, E′, lab′),

where V ′ := V ∪ {v},

E′ := EG ∪ {(u, v) | u ∈ V, (lab(u), a) ∈
−→
S }

∪ {(v, u) | u ∈ V, (lab(u), a) ∈
←−
S },

and

lab′(u) :=

{
lab(u) if u ∈ VG
a if u = v

for every u ∈ V ′ is in d− lNLCk.

3. Change every label a in G = (V,E, lab) into label R(a) by some function R :
[k]→ [k] denoted by ◦R := (V,E, lab′) with

lab′(u) := R(lab(u))

for every u ∈ VG is in d− lNLCk.

The directed linear NLC-width of an unlabeled digraph G = (V,E) is the smallest
integer k, such that there is a mapping lab : V → [k] such that the labeled digraph
(V,E, lab) is in d− lNLCk.

An expression X built with the operations de�ned above is called a directed linear
NLC-width k-expression. Note that every expression de�nes a layout by the order in
which the vertices are inserted in the corresponding digraph.

Every such expression has by its recursive de�nition a tree structure which we call
the directed linear NLC-width expression tree.

Example 3.2.14 (directed linear NLC-width). (1.) Every bidirectional complete digraph
←→
Kn has directed linear NLC-width 1.

(2.) The directed paths
−→
P3 and

−→
P4 have directed linear NLC-width 2.

(3.) Every directed path
−→
Pn has directed linear NLC-width at most 3.

(4.) Every directed cycle
−→
Cn has directed linear NLC-width at most 4.

(5.) Every k-power graph (
−→
Pn)k of a directed path

−→
Pn has directed linear NLC-width

at most k + 2.

(6.) Every complete biorientation of a grid
←→
Gn, n ≥ 3, has directed linear NLC-width

at least n and at most n+ 2, see [GR00, Gur08].

30 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

3.2.5 Directed linear clique-width

The linear clique-width (lcw) for undirected graphs was introduced in [GW05b] as a
parameter by restricting the clique-width, de�ned in [CO00], to an underlying path-
structure. Next we introduce the corresponding parameter for directed graphs by
a modi�cation of the edge inserting operation of the linear clique-width, which also
leads to a restriction for directed clique-width [CO00].

De�nition 3.2.15 (directed linear clique-width). The class of directed linear clique-
width at most k, d− lCWk for short, is recursively de�ned as follows:

1. Creation of a new vertex with label a, denoted by •a, for some a ∈ [k] is in
d− lCWk.

2. Disjoint union of a labeled digraph G = (V,E, lab) ∈ d − lCWk and a single
vertex labeled by a, denoted by G⊕ •a where

G⊕ •a = (V ′, E, lab′)

de�ned by V ′ := V ∪ {v} with v 6∈ V and

lab′(u) :=

{
labG(u) if u ∈ VG
a if u = v

for every u ∈ V ′ is in d− lCWk.

3. For G = (V,E, lab) ∈ d − lCWk, inserting an arc from every vertex with label
a to every vertex with label b, where a, b ∈ [k], a 6= b, denoted by αa,b :=
(V,E′, lab) with

E′ := E ∪ {(u, v) | u, v ∈ V, u 6= v, lab(u) = a, lab(v) = b}

is in d− lCWk.

4. For G = (V,E, lab) ∈ d− lCWk, change label a into label b, denoted by ρa→b =
(V,E, lab′) with

lab′(u) :=

{
lab(u) if lab(u) 6= a
b if lab(u) = a

for every u ∈ VG is in d− lCWk.

The directed linear clique-width of an unlabeled digraph G = (V,E) is the smallest
integer k, such that there is a mapping lab : V → [k] such that the labeled digraph
(V,E, lab) is in d− lCWk.

An expression X built with the operations de�ned above is called a directed linear
clique-width k-expression. Note that every expression de�nes a layout by the order in
which the vertices are inserted in the corresponding digraph. Every such expression
has by its recursive de�nition a tree structure which we call the directed linear clique-
width expression tree.

3.2. LINEAR WIDTH PARAMETERS FOR DIGRAPHS 31

Example 3.2.16 (directed linear clique-width). (1.) Every edgeless digraph has directed
linear clique-width 1.

(2.) Every bidirectional complete digraph
←→
Kn has directed linear clique-width 2.

(3.) Every directed path
−→
Pn has directed linear clique-width at most 3.

(4.) Every directed cycle
−→
Cn has directed linear clique-width at most 4.

(5.) Every k-power graph (
−→
Pn)k of a directed path

−→
Pn has directed linear clique-

width at most k+ 2. For n ≥ k(k+ 1) + 2 the given bound on the directed linear
clique-width is even exact by Corollary 3.5.4.

(6.) Every complete biorientation of a grid
←→
Gn, n ≥ 3, has directed linear clique-width

at least n and at most n+ 2, see [GR00, Gur08].

3.2.6 Directed neighbourhood-width

The neighbourhood-width (nw) for undirected graphs was introduced in [Gur06b].
It di�ers from linear NLC-width and linear clique-width at most by one but it is
independent of vertex labels.

Let G = (V,E) be a digraph and U,W ⊆ V two disjoint vertex sets. The set of
all out-neighbours of u into set W and the set of all in-neighbours of u into set W are
de�ned by N+

W (u) = {v ∈ W | (u, v) ∈ E} and N−W (u) = {v ∈ W | (v, u) ∈ E}. The
directed neighbourhood of vertex u into setW is de�ned by NW (u) = (N+

W (u), N−W (u))
and the set of all directed neighbourhoods of the vertices of set U into set W is
N(U,W) = {NW (u) | u ∈ U}. For some layout ϕ ∈ Φ(G) we de�ne d-nw(ϕ,G) =
max1≤i≤|V | |N(L(i, ϕ,G), R(i, ϕ,G))|.

De�nition 3.2.17 (directed neighbourhood-width). The directed neighbourhood-width
of digraph G is

d-nw(G) = min
ϕ∈Φ(G)

d-nw(ϕ,G).

Example 3.2.18 (directed neighbourhood-width). (1.) Every bidirectional complete di-

graph
←→
Kn has directed neighbourhood-width 1.

(2.) Every directed path
−→
Pn has directed neighbourhood-width at most 2.

(3.) Every directed cycle
−→
Cn has directed neighbourhood-width at most 3.

(4.) Every k-power graph (
−→
Pn)k of a directed path

−→
Pn has directed neighbourhood-

width at most k + 1. For n ≥ k(k + 1) + 2 the given bound on the directed
neighbourhood-width is even exact by Corollary 3.5.4.

(5.) Every complete biorientation of a grid
←→
Gn, n ≥ 3, has directed neighbourhood-

width at least n and at most n+ 1, see [GR00, Gur08].

32 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

3.2.7 Directed linear rank-width

The rank-width for directed graphs was introduced by Kanté in [KR13]. In [Gan11]
the linear rank-width (lrw) for undirected graphs was introduced by restricting the
tree-structure of a rank decomposition to caterpillars, which is also possible for the
directed case as follows.

Let G = (V,E) a digraph and V1, V2 ⊂ V be a disjoint partition of the vertex set
of G. Further let MV2

V1
= (mij) be the adjacent matrix de�ned over the four-element

�eld GF(4) for partition V1 ∪ V2, i.e.

mij =


0 if (vi, vj) 6∈ E and (vj , vi) 6∈ E
a if (vi, vj) ∈ E and (vj , vi) 6∈ E
a2 if (vi, vj) 6∈ E and (vj , vi) ∈ E
1 if (vi, vj) ∈ E and (vj , vi) ∈ E

In GF(4) we have four elements {0, 1,a,a2} with the properties 1 + a + a2 = 0
and a3 = 1.

De�nition 3.2.19 (directed linear rank-width). A directed linear rank decomposition
of digraph G = (V,E) is a pair (T, f), where T is a caterpillar (i.e. a path with
pendant vertices) and f is a bijection between V and the leaves of T . Each edge e of
T divides the vertex set of G by f into two disjoint sets Ae, Be. For an edge e in T
we de�ne the width of e as rg(4)(MBe

Ae
), i.e. the matrix rank of M . The width of a

directed linear rank decomposition (T, f) is the maximal width of all edges in T . The
directed linear rank-width of a digraph G, d-lrw(G) for short, is the minimum width
of all directed linear rank decompositions for G.

Example 3.2.20 (directed linear rank-width). (1.) Every bidirectional complete digraph
←→
Kn and every directed path

−→
Pn has directed linear rank-width 1.

(2.) Every directed cycle
−→
Cn has directed linear rank-width at most 2.

(3.) Every complete biorientation of a grid
←→
Gn, n ≥ 3, has directed linear rank-width

at least d2n
3 e and at most n+ 1, see [HOSG08, Gur08].

3.3 Non-Linear Width Parameters for Digraphs

We now come to consider directed width measures with a non-linear underlying struc-
ture. As can be seen lateron, many of these parameters are not comparable in general.
Therefore, we give only de�nitions and some general minor results in this section and
reconsider non-linear directed graph parameters on special graph classes later in this
work.

Please note that huge parts of this section are taken from [GKR21b].

3.3. NON-LINEAR WIDTH PARAMETERS FOR DIGRAPHS 33

3.3.1 Directed tree-width

Tree-width is a well-known parameter for undirected graphs. It has been de�ned
independently by several researchers since 1972. Some of the most famous works are
by Courcelle, Bodlaender, Robertson and Seymour.

Since then, there have been many attempts to de�ne a directed version of tree-
width. The most simple one has been de�ned by Courcelle, setting for the directed
tree-width of a directed graph the tree-width of its underlying undirected graph.

In [JRST01b], Johnson, Robertson, Seymour and Thomas de�ned an "aboreal
tree-decomposition" for directed graphs, which seems to be the most famous directed
tree-width de�nition.

This de�nition of directed tree-width di�ers very much from the undirected ver-
sion, but several important properties for undirected tree-width on undirected graphs
remain ful�lled using this directed aboreal tree-width on directed graphs.

In a later published addendum to this paper [JRST01a], the authors correct the
using of normality by a new de�nition of regularity, which strongly di�ers from nor-
mality. However, though the de�nitions lead to very di�erent versions of directed
tree-decompositions, the obtained directed tree-widths only di�er by a constant fac-
tor.

Further, in this addendum an aboreal predecomposition is de�ned, which allows
empty sets for the sets W ⊆ W . There is also presented a linkage between this pre-
decomposition and directed tree-width, with further properties as strongly connected
components.

These ideas seemed to lead to the de�nition of directed tree-width by Kreutzer
and Ordyniak in Chapter 6 of the book "Quantitative Graph Theory" [DES14]. They
do not work with the terms of normality or regularity, but with strong components.
In their de�nition, for all e = (s, t) ∈ V the set

⋃
t̃≥tWt̃ has to be a strong component

of G−Xe. Further, the sets
⋃
t̃≥tWt̃ and Xe have to be disjoint. It is not mentioned

whether the sets W ∈ W have to be non-empty or not. In this book the authors
remark that this de�nition di�ers from the de�nition in [JRST01b], but only in a
constant factor.

In Chapter 9 of "Classes of Directed Graphs" [BJG18], Kreutzer and Kwon de�ne
directed tree-width using so-called strong guards. This de�nition looks very similar
to the original one in [JRST01b], but a huge di�erence is that, as possibly in the
addendum [JRST01a], the sets

⋃
t̃≥tWt̃ and Xe do not need to be disjoint.

A di�erent de�nition of directed tree-width has been given by Reed in [Ree99].
But though the de�nition seems not very similar, it is strongly connected to the one
of Johnson et al.

Though directed tree-width has been investigated a lot in the last years and is
surely one of the most famous directed graph parameters [Bod98, Adl07, GR19b,
GR18, Wie20], not everyone seems to be aware that it is not at all clear what is
meant by "the" directed tree-width. Important results are only proven for one of
the de�nitions, but not for all of them. But by comparing them, one comes to
the conclusion, that most of these de�nition are equivalent, as they only di�er by a

34 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

constant factor. Therefore, many results are applicable to other de�nitions.

Underlying directed tree-width (u-d-tw)

In [CO00], Courcelle and Olariu use the de�nition of undirected tree-width also for
directed graphs, which is possible for De�nition 2.1.2, as adjacency is de�ned on
undirected as well as on directed graphs. This leads to the equivalent de�nition:

De�nition 3.3.1. Let G be a directed graph. Then u-d-tw(G) = tw(und(G)).

For this de�nition it is possible to bound directed clique-width by directed tree-
width:

Lemma 3.3.2 ([CO00]). Let G be a directed graph. Then d-cw(G) ≤ 2u-d-tw(G)+1 +1.

Bounding u-d-tw by directed clique-width is not possible on the set of all graphs.

Aboreal Directed Tree-Width

We now give the de�nition of Johnson et al. [JRST01b], which has been named
aboreal directed tree-width. We will modify it a little bit, by allowing empty sets, as
will be seen in the de�nition. But this does only changes to the original by a constant
factor. Please note, that this is the de�nition, with which we will mostly work in
the following sections. We therefore simply name it by directed tree-width, d-tw for
short.

A directed walk in digraph G = (V,E) is an alternating sequence W = (u1, e1, u2,
e2, u3, . . . , ek−1, uk) of vertices vi ∈ V , 1 ≤ i ≤ k, and edges ei ∈ E, 1 ≤ i ≤ k − 1,
such that ei = (ui, ui+1), 1 ≤ i ≤ k − 1. If the vertices of the directed walk W are
distinct, then W is a directed path.

An acyclic digraph (DAG for short) is a digraph without any cycles as subdigraph.
An out-tree or aboreal tree is an orientation of a tree with a distinguished root such
that all arcs are directed away from the root. For two vertices u, v of an out-tree T
the notation u ≤ v means that there is a directed path on ≥ 0 arcs from u to v and
u < v means that there is a directed path on ≥ 1 arcs from u to v.

Let G = (V,E) be some digraph and Z ⊆ V . The digraph G[V − Z] which is
obtained from G by deleting Z will be denoted by G− Z. A vertex set S ⊆ V \ Z is
Z-normal if there is no directed walk in G − Z with �rst and last vertices in S that
uses a vertex of G− (Z ∪S). That is, a set S ⊆ V is Z-normal, if every directed walk
which leaves and again enters S in G−Z must contain only vertices from Z ∪S. Or,
a set S ⊆ V is Z-normal, if every directed walk which leaves and again enters S must
contain a vertex from Z see [BJG09].

In an aboreal tree, we de�ne the set W>v =
⋃
ṽ>rWṽ as the union of all sets Wṽ

of all (indirect) successors ṽ of v. As W≥v =
⋃
ṽ≥vWṽ we de�ne the union of the sets

Wṽ of all (indirect) successors ṽ of v including Wv.

3.3. NON-LINEAR WIDTH PARAMETERS FOR DIGRAPHS 35

De�nition 3.3.3 (directed tree-width, [JRST01b]). A (arboreal) tree-decomposition
of a digraph G = (VG, EG) is a triple (T,X ,W). Here T = (VT , ET) is an out-tree,
X = {Xe | e ∈ ET } and W = {Wr | r ∈ VT } are sets of subsets of VG, such that the
following two conditions hold true.

(dtw-1) W = {Wr | r ∈ VT } is a partition of VG into possibly empty subsets.3

(dtw-2) For every (u, v) ∈ ET the set
⋃
{Wr | r ∈ VT , v ≤ r} is X(u,v)-normal.

The width of a (aboreal) tree-decomposition (T,X ,W) is

max
r∈VT

|Wr ∪
⋃
e∼r

Xe| − 1.

Here e ∼ r means that r is one of the two vertices of arc e. The directed tree-width
of G, d-tw(G) for short, is the smallest integer k such that there is a (arboreal)
tree-decomposition (T,X ,W) of G of width k.

In the following, by directed tree-decomposition is meant an aboreal directed tree-
decomposition.

Example 3.3.4. In Figure 3.2 we show an illustration of an aboreal tree-decomposition
for a digraph G.

Every DAG has directed tree-width 0. Furthermore, several types of tree-like
digraphs have directed tree-width 1 [GR19b].

Remark 3.3.5 (Z-normality and Z-regularity). Please note that our de�nition seems
to di�er of Z-normality from the following de�nition in [JRST01b] where S and Z
are disjoint. But as S ⊆ V \ Z, the sets S and Z are disjoint by de�nition.

Note that this means, that we use exactly the same de�nition for normality as in
[JRST01b].

In their addendum [JRST01a], Johnson et al. suggested to use a de�nition, where
Z and S are not necessarily disjoint, which means that S ⊆ V . They name this
di�erent de�nition Z-normality, which is formally de�ned by: Let S,Z ∈ V . The set
S is Z-regular, if every directed walk which leaves and again enters S must contain a
vertex from Z

The usage of regularity instead of normality leads to a di�erent de�nition of abo-
real directed tree-width. However, this new width only di�ers in a constant factor
and all important theorems remain true.

We now give some properties about aboreal directed tree-width.

Lemma 3.3.6 ([JRST01b]). Let G be some digraph, then d-tw(G) ≤ tw(und(G)).

Lemma 3.3.7 ([JRST01b]). Let G be some complete bioriented digraph, then d-tw(G)
= tw(und(G)).

3A remarkable di�erence to the undirected tree-width [RS86a] is that the sets Wr have to be
disjoint.

36 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

1

2

4

3

5

6

7G

3

3 33 ∅

2 1 4 5

5

6

5, 6

7

Figure 3.2: On the left a digraph G which is used in Examples 3.3.4, 3.3.28,
3.3.32 to illustrate decompositions of width measures. On the right an aboreal tree-
decomposition of width 1 for digraph G. In the aboreal tree-decomposition, theXe set
is represented as a square on the respective edge e, while the W sets are represented
as round vertices of the out-tree.

Determining whether the (undirected) tree-width of some given (undirected) graph
is at most some given value w is NP-complete even for bipartite graphs and comple-
ments of bipartite graphs [ACP87]. Lemma 3.3.7 implies that determining whether
the directed tree-width of some given digraph is at most some given value w is NP-
complete even for digraphs whose underlying graphs lie in the mentioned classes.

The results of [JRST01b] lead to an XP-algorithm for directed tree-width w.r.t. the
standard parameter which implies that for each constant w, it is decidable in poly-
nomial time whether a given digraph has directed tree-width at most w.

Lemma 3.3.8 ([JRST01b]). Let G be some digraph and H be an induced subdigraph
of G, then d-tw(H) ≤ d-tw(G).

Lemma 3.3.9. Let G be a digraph of directed tree-width at most k. Then, there is a
directed tree-decomposition (T,X ,W), T = (VT , ET), of width at most k for G such
that |Wr| ≤ 1 for every r ∈ VT .

Proof. Let G = (V,E) be a digraph and (T,X ,W), T = (VT , ET), be a directed tree-
decomposition of G. For every r ∈ VT such that |Wr| ≤ 1 the statement of the lemma
is ful�lled. Let r ∈ VT such thatWr = {v1, . . . , vm} for some m > 1. Further, let p be
the predecessor of r in T and s1, . . . , s` be the successors of r in T . Let (T ′,X ′,W ′) be

3.3. NON-LINEAR WIDTH PARAMETERS FOR DIGRAPHS 37

de�ned by the following modi�cations of (T,X ,W): We replace vertex r in T by the
directed path P (r) = ({r1, . . . , rm}, {(r1, r2), . . . , (rm−1, rm)}) and replace arc (p, r)
by (p, r1) and the ` arcs (r, sj), 1 ≤ j ≤ `, by the ` arcs (rm, sj), 1 ≤ j ≤ ` in T ′. We
de�ne the setsW ′rj = {vj} for 1 ≤ j ≤ m. Further, we de�ne the sets X ′(p,r1) = X(p,r),
X ′(rm,sj) = X(r,sj), 1 ≤ j ≤ `, and X ′(rj ,rj+1) = X(p,r) ∪ {r1, . . . , rj}, 1 ≤ j ≤ m− 1.

By our de�nition,W ′ leads to a partition of V . The normality holds for the arcs of
T ′ as follows. First, we consider the arcs (ri−1, ri), 1 < i ≤ m, which we inserted for
sets Wr of size m > 1. The set W ′≥ri is X

′
(ri−1,ri)

-normal since W≥r is X(p,r)-normal

and X ′(ri−1,ri)
= X(p,r)∪{r1, . . . , ri−1}. Further, the property is ful�lled for arc (p, r1)

and (vm, sj), 1 ≤ j ≤ ` since the considered vertex sets of G did not change. Thus,
triple (T ′,X ′,W ′) is a directed tree-decomposition of G.

The width of (T ′,X ′,W ′) is at most the width of (T,X ,W) since for every rj ,
1 ≤ j ≤ m, then it holds that |W ′rj ∪

⋃
e∼rj X

′
e| ≤ |Wr ∪

⋃
e∼rXe|.

If we perform this transformation for every r ∈ VT such that |Wr| > 1, we obtain
a directed tree-decomposition of G which ful�lls the properties of the lemma.

Remark 3.3.10. By considering the directed tree-width forbidding empty sets Wr in
[JRST01b] the statement of Lemma 3.3.9 can be strengthened to |Wr| = 1 for every
r ∈ VT .

Lemma 3.3.11. Let G be a digraph, then the directed tree-width of G is the maximum
directed tree-width of its strong components.

Proof. The proof can be done similar to the proof of Lemma 3.2.8 using the result
in [GR18] for directed tree-width d-tw(G1 	 G2) = max{d-tw(G1), d-tw(G2)}, the
statement of the lemma follows.

For undirected tree-width, it is possible to de�ne it by so called cops and robber
games. In [JRST01b], the authors de�ne a form of directed cops and robber game
which is is strongly related to the de�nition of directed tree-width. We will consider
these games in section 3.3.10.

Strong Component Directed Tree-Width

In the book "Quantitative Graph Theory" [DES14] in Chapter 6, Ordyniak and
Kreutzer de�ne a version of directed tree-width using strong components, which Or-
dyniak has �rst introduced in his thesis. They note that this de�nition that we call
strong component directed tree-width di�ers from arboreal directed tree-width, the
original one in [JRST01b], but only in a constant factor.

A strong component of a graph G is a maximum induced subdigraph of G which
is strongly connected.

De�nition 3.3.12 (strong component directed tree-width(sc-d-tw)). Let G be a di-
graph. A strong component directed tree-decomposition is a triple (T,X ,W) such
that T = (VT , ET) is an out-tree, X = {Xe | e ∈ ET } and W = {Wr | r ∈ VT } are
sets of subsets of VG. Further the following conditions hold true:

38 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

(scdtw-1) W = {Wr | r ∈ VT } is a partition of VG

(scdtw-2) For all (u, v) ∈ ET the set W≥v =
⋃
ṽ≥vWṽ is a strong component of

G−X(u,v).

(scdtw-3) For all v ∈ VT it is W≥v ∩
⋃
eṽXe = ∅

The width of a strong component directed tree-decomposition (T,X ,W) is

max
r∈VT

|Wr ∪
⋃
e∼r

Xe|.

The strong component directed tree-width of G, sc-d-tw(G) for short, is the smallest
integer k such that there is a strong component directed tree-decomposition (T,X ,W)
of G of width k.

Please note, that in this de�nition the width is obtained very similar from the
decomposition tree like for d-tw, but it lacks of adding "−1". This is only a con-
stant factor, but for example though for a DAG D it holds that d-tw(D) = 0, it is
sc-d-tw(D) = 1.

Example 3.3.13. The aboreal tree-decomposition given in Figure 3.2 is also a strong
component directed tree-decomposition.

Strong Guards Directed Tree-Width

In Chapter 9 of [BJG18], Kreutzer and Kwon de�ne a version of directed tree-width
using strong guards.

For a digraph G = (V,E) and two sets X,Y ∈ V it holds that Y strongly guards
X (or Y is a strong guard of X) if every directed walk starting and ending in X which
contains a vertex of V \X also contains a vertex of Y . In other words, X \ Y is the
union of the vertex sets of some set of strong components of G \ Y .

Y weakly guards X (or Y is a weak guard of X) if every edge e = (u, v) ∈ E with
u ∈ X \ Y has v ∈ X ∪ Y .

De�nition 3.3.14 (strong guards directed tree-width(sg-d-tw)). Let G be a digraph.
A strong guard directed tree-decomposition is a triple (T,X ,W) such that T =
(VT , ET) is an out-tree, X = {Xe | e ∈ ET } and W = {Wr | r ∈ VT } are sets of
subsets of VG Further the following conditions hold true:

(sgdtw-1) W = {Wr | r ∈ VT } is a partition of VG into non-empty sets

(sgdtw-2) For all (u, v) ∈ ET the set X(u,v) is a strong guard of W≥v =
⋃
ṽ≥vWṽ.

The width of a strong guard directed tree-decomposition (T,X ,W) is

max
r∈VT

|Wr ∪
⋃
e∼r

Xe| − 1.

The strong guards directed tree-width ofG, sg-d-tw(G) for short, is the smallest integer
k such that there is a strong component directed tree-decomposition (T,X ,W) of G
of width k.

3.3. NON-LINEAR WIDTH PARAMETERS FOR DIGRAPHS 39

Note that this de�nition is very similar to the one using Z-regularity and therefore
it di�ers only in a constant factor to the aboreal directed tree-width de�nition.

Example 3.3.15. The aboreal tree-decomposition given in Figure 3.2 is also a strong
guards directed tree-decomposition.

Reed's Directed Tree-Width

In [Ree99], Reed suggested an apparently very di�erent de�nition of directed tree-
width. But though the de�nition di�ers from the aboreal directed tree-decomposition
by Johnson et al., the obtained widths di�er by at most one.

The biggest di�erence is, that in contrary to all other directed tree-width de�ni-
tion, Reed does not create a decomposition tree with bags for every vertex, but only
for the leaves of this tree.

De�nition 3.3.16 (Reed's directed tree-width(r-d-tw)). Let G be a digraph. A
Reed's directed tree-decomposition is a triple (T,X ,W) such that T = (VT , ET)
is an out-tree, X = {Xe | e ∈ ET } and W = {Wr | r is a leaf of VT } are sets of
subsets of VG Further the following conditions hold true:

(rdtw-1) W = {Wr | r is a leaf of VT } is a partition of V into subsets of size 1 (i.e.
there is a bijection between the leaves of T and the vertices of G)

(rdtw-2) For all (u, v) ∈ ET the setX(u,v) is a cutset ofW≥v = {Wṽ | ṽ ≥ v is a leaf of VT }
and V \W≥v.

The width of a Reed's directed tree-decomposition (T,X ,W) is

max
r∈VT

|
⋃
e∼r

Xe| − 1.

The Reed's directed tree-width of G, r-d-tw(G) for short, is the smallest integer k such
that there is a strong component directed tree-decomposition (T,X ,W) of G of width
k.

In his paper, Reed says that it is straightforward to show, that this de�nition is
equal to the de�nition of aboreal directed tree-width by Johnson et al., if we modify
the width such that it is obtained by maxr∈VT |Wr ∪

⋃
e∼rXe|. However, without this

modi�cation, it just di�ers by ±1.
Note that Reed did not de�ne what he meant by cutset. However, by the equality

to the de�nition of aboreal tree-width by Johnson et al., we can assume that he meant
the same as they do by Z-regularity.

We can be sure, that not Z-normality is meant instead: Let S1,n = (V,E) be a
star graph on 1 + n vertices, i.e. V = {v0, v1, . . . , vn} and E = {{v0, vi} | 1 ≤ i ≤ n}.
Further, let Gn be the complete biorientation of S1,n, which is a directed co-graph.
Then, tw(S1,n) = 1 and further we know d-pw(Gn) = d-tw(Gn) ≤ 1. But in any
possible Reed's tree-decomposition (T,X ,W) for Gn there is a leaf u of T such that

40 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

3

3 33 ∅

2 1 4 5

5

5, 6

5, 6

5, 6, 7

Figure 3.3: A Reed's directed tree-decomposition for graph G given in Figure 3.2.

Wu = {v0} and there is some u′ ∈ VT , such that (u′, u) ∈ ET . If X(u′,u) would be
{v0}-normal, this would include that those two sets are disjoint. This would lead
to X(u′,u) = {v1, . . . , vn} which implies a Reed's directed tree-width of n − 1. So in
this case, Reed's directed tree-width and the aboreal directed tree-width would not
be comparable. Thus, we can assume that regularity is meant, which would allow
X(u′,u) = {v0} and therefore lead to a constant Reed's tree-width.

Note that in [Sei11], the author proves that the aboreal directed tree-width of
[JRST01b] is not equal to the one de�ned by Reed. This only holds because the
authors there used normality instead of regularity and therefore did not use the same
de�nition as Reed himself in [Ree99].

At that point, please note that using normality or regularity does make a huge
di�erence in Reed's directed tree-width, so that both variants are not comparable
anymore. However, this does not make such a big di�erence for the aboreal directed
tree-width, as this de�nition allows a rearrangement of the bags such that there is no
bijection from the leafs of T to the vertices of G.

3.3.2 Directed feedback vertex set number

The directed feedback vertex set number (or DFVS-number for short) is probably the
oldest of the measures considered here and was already considered by Karp in the 70s
[Kar72].

3.3. NON-LINEAR WIDTH PARAMETERS FOR DIGRAPHS 41

De�nition 3.3.17 (Directed feedback vertex set number). The directed feedback ver-
tex set number of a digraphG = (V,E), denoted by fvs(G), is the minimum cardinality
of a set S ⊂ V such that G[V \ S] is a DAG.

Example 3.3.18. 1. A DAG has directed feedback vertex set number 0.

2. A bioriented path
←→
Pn has directed feedback vertex set number bn2 c

3. A cycle
−→
Cn has directed feedback vertex set number 1.

4.
←→
Kn has directed feedback vertex set number n− 1.

3.3.3 Directed feedback arc set number

Finding the directed feedback arc set number is a very fundamental problem and has
applications in layered graph drawing.

De�nition 3.3.19 (Directed feedback arc set number). The directed feedback arc set
number of a digraph G = (V,E), denoted by fas(G), is the minimum cardinality of a
set S ⊂ E such that (V,E \ S) is a DAG.

Example 3.3.20. 1. A DAG has directed feedback arc set number 0.

2. A bioriented path
←→
Pn has directed feedback arc set number n− 1

3. A cycle
−→
Cn has directed feedback arc set number 1.

4.
←→
Kn has directed feedback arc set number n(n−1)

2 .

3.3.4 Cycle Rank

Cycle rank was introduced in [Egg63] and also appeared in [Coh68] and [McN69].

De�nition 3.3.21 (Cycle rank). The cycle rank of a digraph G = (V,E), denoted
by cr(G), is de�ned as follows.

� If G is acyclic, cr(G) = 0.

� If G is strongly connected, then cr(G) = 1 + minv∈V cr(G− {v}).

� Otherwise the cycle rank of G is the maximum cycle rank of any strongly con-
nected component of G.

Results on the cycle rank can be found in [Gru08, Gru12]. In this papers Gruber
proved the hardness of computing cycle rank, even for sparse digraphs of maximum
outdegree at most 2.

Example 3.3.22. 1. A DAG has cycle rank 0.

2. A bioriented path
←→
Pn has cycle rank blog(n)c

3. A cycle
−→
Cn has cycle rank 1.

4.
←→
Kn has cycle rank n− 1.

42 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

3.3.5 DAG-depth

The DAG-depth of a digraph was introduced in [GHK+09] and motivated by tree-
depth for undirected graphs, given in [NdM06].

For a digraph G = (V,E) and v ∈ V , let Gv denote the subdigraph of G induced
by the vertices which are reachable from v. The maximal elements in the partially
ordered set {Gv | v ∈ V } w.r.t. the digraph inclusion order (subdigraph) are the
reachable fragments of G and will be denoted by R(G).4

De�nition 3.3.23 (DAG-depth). Let G = (V,E) be a digraph. The DAG-depth of
G, denoted by ddp(G), is de�ned as follows.

� If |V | = 1, then ddp(G) = 1.

� If G has a single reachable fragment, then ddp(G) = 1 + minv∈V ddp(G−{v}).

� Otherwise, ddp(G) equals the maximum over the DAG-depth of the reachable
fragments of G.

We introduce a decomposition for DAG-depth, which is very similar to the one
for cycle rank in [Gru12, McN69].

De�nition 3.3.24 (Directed Elimination Forest). A directed elimination tree for a
digraph G = (V,E) with |R(G)| = 1 reachable fragment is a rooted tree T = (VT , ET)
having the following properties.

1. VT ⊆ V × 2V and if (x,X) ∈ VT , then x ∈ X.

2. The root of T is (v, V) for some v ∈ V .

3. If there is some vertex (x,X) ∈ VT , then there is no vertex (y,X) ∈ VT for
x 6= y.

4. If there is some vertex (x,X) ∈ VT , and G[X] − {x} has j reachable frag-
ments G1 = (X1, E1), . . . , Gj = (Xj , Ej), then (x,X) has exactly j children
(x1, X1), . . . , (xj , Xj) for x1, . . . , xj ∈ V .

A directed elimination forest for some digraph G with |R(G)| = j reachable fragments
G1, . . . , Gj , is a rooted forest consisting of directed elimination trees for G1, . . . , Gj .

For some rooted tree T the height h(T) is the number of edges on a longest path
between the root and a leaf. For some forest F of rooted trees the height h(F) is the
maximum height of its trees.

Observation 3.3.25. For a digraph G the DAG-depth can be determined as follows:

ddp(G) = 1 +min{h(F) | F is a directed elimination forest for G}.

Example 3.3.26. 1. A bioriented path
←→
Pn has dag-depth blog(n)c+ 1

2.
←→
Kn has DAG-depth n.

4In the undirected case, reachable fragments coincide with connected components.

3.3. NON-LINEAR WIDTH PARAMETERS FOR DIGRAPHS 43

3.3.6 DAG-width

The DAG-width has been de�ned in [BDHK06, BDH+12, Obd06]. While all variants
of directed tree-width use a tree as a decomposition, the DAG-width uses a directed
acyclic graph (DAG).

Let G = (VG, EG) be an acyclic digraph. The partial order 4G on G is the
re�exive, transitive closure of EG. A source or root of a set X ⊆ VG is a 4G-minimal
element of X, that is, r ∈ X is a root of X if there is no y ∈ X, such that y 4G r
and y 6= x. Analogously, a sink or leaf of a set X ⊆ VG is a 4G-maximal element.

Let V ′ ⊆ VG, then a set W ⊆ VG guards V ′ if for all (u, v) ∈ EG it holds that if
u ∈ V ′ then v ∈ V ′ ∪W .

De�nition 3.3.27 (DAG-width). A DAG-decomposition of a digraph G = (VG, EG)
is a pair (D,X) where D = (VD, ED) is a directed acyclic graph (DAG) and X =
{Xu | Xu ⊆ VG, u ∈ VD} is a family of subsets of VG such that:

(dagw-1)
⋃
u∈VD Xu = VG.

(dagw-2) For all vertices u, v, w ∈ VD with u <D v <D w, it holds that Xu ∩Xw ⊆
Xv.

(dagw-3) For all edges (u, v) ∈ ED it holds that Xu ∩Xv guards X<v \Xu, where
X<v = ∪v<DwXw. For any source u, X<u is guarded by ∅.

The width of a DAG-decomposition (D,X) is the number

max
u∈VD

|Xu|.

The DAG-width of a digraph G, dagw(G) for short, is the smallest width of all possible
DAG-decompositions for G.

Note that the de�nition of DAG-width does not contain a −1, which di�ers from
the other presented directed width measures. We will notice this again in the com-
parison of several width parameters: There we will see, that this leads to a di�erence
of at least +1 to many other width parameters, even for small and trivial examples.

Example 3.3.28. In Figure 3.4 we show an illustration of a DAG-decomposition for a
digraph G, see Figure 3.2.

We use the restriction to nice DAG-decompositions from [BDH+12].

De�nition 3.3.29 (Nice DAG-decomposition, [BDH+12]). A DAG-decomposition
(D,X) of a digraph G is nice, if the following properties are ful�lled.

1. D has exactly one root r.

2. Every vertex in D has at most two successors.

3. If vertex d has two successors d′ and d′′, then it holds that Xd = Xd′ = Xd′′ .

44 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

5,6,7

1,3

1,2,31,3,4

5

6 5

7 5, 6

1 1, 3

3 1 4 32 3

Figure 3.4: An illustration of a DAG-decomposition of DAG-width 3 (left) and a
Kelly decomposition of width 3 (right) for digraph G, see Figure 3.2. In the Kelly
decomposition, the round vertices represent the W sets, while the squares next to
them represent the corresponding X sets.

4. If vertex d has one successors d′, then it holds that |Xd4Xd′ | = 1. 5

Lemma 3.3.30 ([BDH+12]). If digraph G has a DAG-decomposition of width k, it
also has a nice DAG-decomposition of width k.

There are even digraphs on n vertices whose optimal DAG-decompositions have
super-polynomially many bags w.r.t n [AKR16]. Furthermore, it has been shown
that deciding whether the DAG-width of a given digraph is at most a given value is
PSPACE-complete [AKR16].

3.3.7 Kelly-width

Next, we consider the digraph width measure Kelly-width. Its de�nition is also based
on the existence of a special DAG. While a DAG-decomposition has one vertex set for
every vertex of the decomposition, within a Kelly-decomposition there are two vertex
sets for every vertex of the decomposition. Kelly-width has been de�ned in [HK08].

De�nition 3.3.31 (Kelly-width). A Kelly decomposition of a digraph G = (VG, EG)
is a triple (W,X , D) where D is a directed acyclic graph, X = {Xu | Xu ⊆ VG, u ∈
VD} and W = {Wu |Wu ⊆ VG, u ∈ VD} are families of subsets of VG such that:

(kw-1) W is a partition for VG.

(kw-2) For all vertices v ∈ VG, Xv guards W<v .

5We de�ne A4B as the symmetric di�erence.

3.3. NON-LINEAR WIDTH PARAMETERS FOR DIGRAPHS 45

(kw-3) For all vertices v ∈ VG, there is a linear order u1, . . . , us on the children of
v such that for every ui it holds that Xui ⊆ Wi ∪ Xi ∪

⋃
j<iW<uj

. Similarly,
there is a linear order r1, r2, . . . on the roots of D such that for each root ri it
holds that Wri ⊆

⋃
j<iW<rj

.

The width of a Kelly decomposition (W,X , D) is the number

max
u∈VD

|Xu|+ |Wu|.

The Kelly-width of a digraph G, denoted with kw(G), is the smallest width of all
possible Kelly decompositions for G.

Example 3.3.32. In Figure 3.4 we show an illustration of a Kelly decomposition for a
digraph G, see Figure 3.2.

We will use the following notation of a directed elimination ordering.

De�nition 3.3.33 (Directed Elimination Ordering). Let G = (V,E) be a digraph. A
directed elimination orderingC onG is a linear ordering on V . ForC= (v0, v1, . . . , vn−1)
we de�ne

� GC
0 = G

� GC
i+1 = (V C

i+1, E
C
i+1) with V C

i+1 = V C
i \ {vi} and

EC
i+1 = {(u, v) | (u, v) ∈ EC

i and u, v 6= vi or (u, vi), (vi, v) ∈ EC
i , u 6= v}

GC
i is the directed elimination graph at step i according to C.
The width of C is the maximum out-degree of vi in GC

i over all i.

Lemma 3.3.34 ([HK08]). Let G be a digraph. The following are equivalent:

1. G has Kelly-width at most k + 1

2. G has a directed elimination ordering of width ≤ k

3.3.8 Directed NLC-width

The NLC-width (nlcw) for undirected graphs was introduced in [Wan94]. We now
give a directed version of this parameter, similar to the directed linear NLC-width
given in [GR19a].

De�nition 3.3.35 (directed NLC-width). The class of directed NLC-width at most
k, d−NLCk for short, is recursively de�ned as follows

1. Creation of a new vertex with label a, denoted by •a for some a ∈ [k] is in
d−NLCk.

46 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

2. Disjoint union of two vertex-disjoint labeled digraphs G = (VG, EG, labG), H =

(VH , EH , labH) ∈ d−NLCk with two relations
−→
S ,
←−
S ∈ [k]2, denoted by

G⊗
(
−→
S ,
←−
S)
H := (V ′, E′, lab′),

where V ′ := VG ∪ VH ,

E′ := EG ∪ EH ∪ {(u, v) | u ∈ VG, v ∈ VH , (labG(u), labH(v)) ∈
−→
S }

∪ {(v, u) | u ∈ VG, v ∈ VH , (labG(u), labH(v)) ∈
←−
S },

and

lab′(u) :=

{
labG(u) if u ∈ VG
labH(u) if u ∈ VH

for every u ∈ V ′ is in d−NLCk.

3. Change every label a in G = (V,E, lab) into label R(a) by some function R :
[k]→ [k] denoted by ◦R := (V,E, lab′) with

lab′(u) := R(labG(u))

for every u ∈ VG is in d−NLCk.

The directed NLC-width of an unlabeled digraph G = (V,E) is the smallest integer
k, such that there is a mapping lab : V → [k] such that the labeled digraph (V,E, lab)
is in d−NLCk.

An expression X built with the operations de�ned above is called a directed NLC-
width k-expression.

Example 3.3.36. 1. A bioriented path
←→
Pn has directed NLC-width at most 3.

2. A cycle
−→
Cn has directed NLC-width at most 4.

3.
←→
Kn has directed NLC-width 1.

4. An out-tree has directed NLC-width at most 3.

3.3.9 Directed Clique-Width

Directed clique-width has been introduced together with clique-width on undirected
graphs by Courcelle in [CO00]. The linear clique-width for undirected graphs was in-
troduced in [GW05b] as a parameter by restricting the clique-width, to an underlying
path-structure.

De�nition 3.3.37 (directed clique-width). The class of directed clique-width at most
k, d− CWk for short, is recursively de�ned as follows:

1. Creation of a new vertex with label a, denoted by •a, for some a ∈ [k] is in
d− CWk.

3.3. NON-LINEAR WIDTH PARAMETERS FOR DIGRAPHS 47

2. Disjoint union of two vertex-disjoint labeled digraphs G = (VG, EG, labG), H =
(VH , EH , labH) ∈ d− CWk, denoted by G⊕H where

G⊕H = (V ′, E′, lab′)

de�ned by V ′ := VG ∪ VH , E′ := EG ∪ EH , and

lab′(u) :=

{
labG(u) if u ∈ VG
labH(u) if u ∈ VH

for every u ∈ V ′ is in d− CWk.

3. For G = (V,E, lab) ∈ d−CWk, inserting an arc from every vertex with label a to
every vertex with label b, where a, b ∈ [k], a 6= b, denoted by αa,b := (V,E′, lab)
with

E′ := E ∪ {(u, v) | u, v ∈ V, u 6= v, lab(u) = a, lab(v) = b}

is in d− CWk.

4. For G = (V,E, lab) ∈ d−CWk, change label a into label b, denoted by ρa→b =
(V,E, lab′) with

lab′(u) :=

{
lab(u) if lab(u) 6= a
b if lab(u) = a

for every u ∈ VG is in d− CWk.

The directed clique-width of an unlabeled digraph G = (V,E), d-cw(G) for short,
is the smallest integer k, such that there is a mapping lab : V → [k] such that the
labeled digraph (V,E, lab) is in d− CWk.

An expression X built with the operations de�ned above is called a directed (lin-
ear) clique-width k-expression.

Example 3.3.38. 1. A bioriented path
←→
Pn has directed clique-width at most 3.

2. A cycle
−→
Cn has directed clique-width at most 4.

3.
←→
Kn has directed clique-width 2.

4. An out-tree has directed clique-width at most 3.

3.3.10 Cops and Robbers Games

A cops and robbers game on a (directed) graph is a pursuit-evasion game with two
teams of players, the cops and the robbers, moving from vertex to vertex along the
arcs/edges of a graph. The cops try to �catch� the robbers by moving onto the vertices
where the robbers are positioned, while the robbers try to evade this capture. But cops
and robbers games with varying rules do not only model a range of pursuit-evasion
games, but relate to useful graph parameters. In the undirected case, there are equiv-
alent graph parameters for path-width and tree-width [Bod98, ST93]. We analyzed

48 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

some special undirected cops and robbers game in [MRW20]. For directed graphs,
there are also some known relations, for example for directed path-width [Bar06],
directed tree-width [JRST01b], DAG-width [BDHK06] or Kelly-width [HK08]. For
the survey in this chapter, we cite from Chapter 6 of [DES14].

Let G = (V,E) be a directed graph with one robber and a set of cops. A position
in the game is a pair (C, r) where C ⊆ V is the current position of the cops and
r ∈ V is the current position of the robber. Initially, there is no cop on the graph,
i.e. C0 = ∅ and in the �rst round the robber can choose a start position r0. In
every round i + 1, (Ci, ri) is the current position of the cops and robber. The game
is then played as follows: The cops give their new position Ci+1. Then the robber
can chose any vertex ri+1 as a new position, that is reachable from ri in the graph
G − (Ci ∩ Ci+1). In the undirected case, reachability is very clear. In the directed
case, there are two variations of reachability: In (strong) component searching, the
robber can move to every vertex in the same strong component of G − (Ci ∩ Ci+1).
In reachability searching, the robber can move to any vertex ri+1 such that there is
a directed walk from ri to ri+1. If ri ∈ Ci after any round i, then the cops capture
the robber and win the game. Otherwise, the game never ends and the robber wins
the game. Clearly, the game can allways be won by the cops, by positioning a cop on
every vertex of G. However, an interesting question ist, how many cops are needed
for a graph G, such that there is always a winning strategy for the cops.

By varying the rules, many di�erent cops and robber games can be de�ned. The
best known modi�cation is, if the cops know the current robber position (visible CnR-
Game) or do not know the current robber position (invisible CnR-Game). Another
variant is a so-called inert robber: This robber is only allowed to move, if ri ∈ Ci+1,
so if the robber would be captured in the next round.

In the undirected case, the minimal number of cops required to capture a robber in
the invisible CnR-Game is exactly the path-width, in the visible CnR-Game exactly
the tree-width of a graph.

An interesting subject in this context is monotonicity. A strategy for the cops is
called monotone, if the cops never move twice to the same vertex, i.e. if any cop has
been placed on a vertex v and then move this cop elsewhere, they are not allowed
to move back to v. To de�ne robber monotonicity, we �rst need to de�ne robber
space. At any position (Ci, ri) of the game let Ri be the set of nodes reachable by
the robber from ri, if he were allowed to move with all cops remaining on Ci. This
means, Ri = {v | there is a directed path in V − Ci from ri to v}. A strategy is
called robber monotone if in every play (C0, r0), . . . , (Ci, ri), . . . the robber space is
nonincreasing, i.e. Ri+1 ⊆ Ri for all i. A game is called robber monotone, if whenever
k cops su�ce to catch a robber on a graph G, then k cops have a robber-monotone
winning strategy. The game is called cop montone, if the analogous condition holds
for cop-monotone winning strategies.

While in the undirected case many game variants turn out to be monotone (that
is robber and cop monotone), especially the game variants equal to path-width and
tree-width, this is quite di�erent for directed gaphs. The invisible reachability cops
and robber game on digraphs is monotone, but the strong component game with

3.4. DIRECTED COLORING 49

visible robber is not cop monotone and not robber monotone, but has bounded rob-
ber monotonicity: Whenever k cops have a winning strategy in the game, then 3k
cops have a robber-monotone winning strategy. The reachability game with visible
robber is neither cop nor robber monotone and further, it is unknown whether the
monotonicity cost can be bounded.

In the following proposition we give the relation between several directed width
parameters and directed cops and robber games. They are also taken from [DES14]
and [BJG18].

Proposition 3.3.39. Let G = (V,E) be a directed graph.

� G has directed path-width k if and only if k cops have a (monotone) winning
strategy for the invisible reachability cops and robber game on G.

� If G has directed tree-width k, then k cops have a robber monotone winning
strategy in the visible strong component cops and robber game on G. If k cops
have a winning strategy in this game, then the directed tree-width of G is at
most 3k + 2.

� G has DAG-width k if and only if k cops have a robber monotone winning
strategy in the visible reachability cops and robber game on G.

� G has Kelly-width at most k if and only if k cops have a cop monotone winning
strategy for an inert robber in the invisible reachability cops and robber game on
G.

3.4 Directed Coloring

Graph coloring is one of the basic problems in graph theory, which has already been
considered in the 19th century. A k-coloring for an undirected graph G is a k-labeling
of the vertices of G such that no two adjacent vertices have the same label. The
smallest k such that a graph G has a k-coloring is named the chromatic number of
G. Thus, by de�nition, the chromatic number is a graph parameter, as it assigns an
integer to every graph. However, as this does not lead to a structure of the graph, like
a tree or a path, one could not speak of a width measure for graphs. As we consider
graph parameters in general, but mainly digraph width measures in this work, we will
only give a short view on directed graph coloring.

3.4.1 Oriented Coloring

Oriented coloring has been introduced much later by Courcelle [Cou94]. One could
easily apply the de�nition of graph coloring to directed graphs. But as this would
not take the direction of the arcs into account, this would not be very interesting.
For such a de�nition, the coloring of a directed graph would be the coloring of the
underlying undirected graph.

50 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

Oriented coloring also considers the direction of the arcs. An oriented k-coloring
of an oriented graph G = (V,A) is a partition of the vertex set V into k independent
sets, such that all the arcs linking two of these subsets have the same direction. In
the oriented chromatic number problem there is given some oriented graph G and
some integer k and one has to decide whether there is an oriented k-coloring for G.
As even this problem is NP-hard, �nding the chromatic number of an oriented graph
is NP-hard, like it is for so many other graph parameters.

Please note that huge parts of this chapter are taken from [GKR19b].
We now give some formal de�nitions.

De�nition 3.4.1 (Oriented Graph Coloring [Cou94]). An oriented k-coloring of an
oriented graph G = (V,A) is a mapping c : V → {1, . . . , k}, such that:

� c(u) 6= c(v) for every (u, v) ∈ A

� c(u) 6= c(y) for every two arcs (u, v) ∈ A and (x, y) ∈ A with c(v) = c(x)

The oriented chromatic number of G, denoted by χo(G), is the smallest k, such that
G has an oriented k-coloring. The vertex sets Vi = {v ∈ V | c(v) = i}, 1 ≤ i ≤ k,
divide a partition of V into so called color classes.

For two oriented graphs G1 = (V1, A1) and G2 = (V2, A2) a homomorphism from
G1 to G2, G1 → G2 for short, is a mapping h : V1 → V2, such that (u, v) ∈ A1

implies that (h(u), h(v)) ∈ A2. The oriented graphs G1 and G2 are homomorphically
equivalent, if there is a homomorphism from G1 to G2 and one from G2 to G1. A
homomorphism from G1 to G2 can be regarded as an oriented coloring of G1 that uses
the vertices of G2 as colors classes. This leads to equivalent de�nitions for oriented
coloring and oriented chromatic number. There is an oriented k-coloring of an oriented
graph G1 if and only if there is a homomorphism from G1 to some oriented graph G2

on k vertices. That is, the oriented chromatic number of G is the minimum number
of vertices in an oriented graph G2, such that there is a homomorphism from G1 to
G2. Obviously, G2 can be chosen as a tournament.

Observation 3.4.2. There is an oriented k-coloring of an oriented graph G1 if and
only if there is a homomorphism from G1 to some tournament G2 on k vertices.
Further, the oriented chromatic number of G is the minimum number of vertices in a
tournament G2, such that there is a homomorphism from G1 to G2.

Lemma 3.4.3. Let G be an oriented graph and H be a subdigraph of G, then χo(H) ≤
χo(G).

Example 3.4.4. For oriented paths and oriented cycles we know: χo(
−→
P2) = 2, χo(

−→
P3) =

3, χo(
−→
C4) = 4, χo(

−→
C5) = 5.

An oriented graph G = (V,A) is an oriented clique (o-clique) if χo(G) = |V |. Thus
all graphs given in Example 3.4.4 are oriented cliques.

Name: Oriented Chromatic Number (OCN)

3.5. COMPARING DIRECTED WIDTH PARAMETERS 51

Instance: An oriented graph G = (V,A) and a positive integer c ≤ |V |.
Question: Is there an oriented c-coloring for G?

If c is constant and not part of the input, the corresponding problem is denoted
by OCNc. Even for DAGs OCN4 is NP-complete [CD06].

The de�nition of oriented coloring is also used for undirected graphs. For an
undirected graph G the maximum value χo(G′) of all possible orientations G′ of G is
considered. In this sense, every tree has oriented chromatic number at most 3. For
several further graph classes there exist bounds on the oriented number. Among these
are outerplanar graphs [Sop97], planar graphs [Mar13], and Halin graphs [DS14].

3.4.2 Acyclic coloring of directed graphs

This section is taken from our paper [GKR21a].
We consider the approach for coloring digraphs given in [NL82]. A set V ′ of

vertices of a digraph G is called acyclic if G[V ′] is acyclic.

De�nition 3.4.5 (Acyclic graph coloring [NL82]). An acyclic r-coloring of a digraph
G = (V,E) is a mapping c : V → {1, . . . , r}, such that the color classes c−1(i) for
1 ≤ i ≤ r are acyclic. The dichromatic number of G, denoted by ~χ(G), is the smallest
r, such that G has an acyclic r-coloring.

There are several works on acyclic graph coloring [BFJ+04, Moh03, NL82] includ-
ing several recent works [LM17, MSW19, SW20]. The following observations support
that the dichromatic number can be regarded as a natural counterpart of the well
known chromatic number χ(G) for undirected graphs G.

Observation 3.4.6. For every complete bioriented digraph G it holds thats ~χ(G) =
χ(und(G)).

Observation 3.4.7. For every directed graph G it holds that ~χ(G) ≤ χ(und(G)).

Observation 3.4.8. Let G be a digraph and H be a subdigraph of G, then ~χ(H) ≤
~χ(G).

Name: Dichromatic Number (DCN)
Instance: A digraph G = (V,E) and a positive integer r ≤ |V |.
Question: Is there an acyclic r-coloring for G?

If r is a constant and not part of the input, the corresponding problem is denoted
by r-Dichromatic Number (DCNr). Even DCN2 is NP-complete [FHM03].

3.5 Comparing Directed Width Parameters

3.5.1 Directed linear width and undirected linear width

Next we compare the directed width of a digraph G and the undirected width of its
underlying undirected graph und(G). Several of the following results are taken from
[GR19a].

52 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

Theorem 3.5.1. Let G be a directed graph.

(a) d-pw(G) ≤ pw(und(G))

(b) d-cutw(G) ≤ cutw(und(G))

(c) nw(und(G)) ≤ d-nw(G) ≤ ∆(und(G)) · nw(und(G))

(d) lnlcw(und(G)) ≤ d-lnlcw(G) ≤ ∆(und(G)) · lnlcw(und(G)) + 1

(e) lcw(und(G)) ≤ d-lcw(G) ≤ ∆(und(G)) · lcw(und(G)) + 1

(f) lrw(und(G)) ≤ d-lrw(G) ≤ ∆(und(G)) · 2lrw(und(G))+1 − 1

(g) [JRST01b] d-tw(G) ≤ tw(und(G))

Proof. (a) See Lemma 3.2.3.

(b) Let G = (V,E) be a digraph and und(G) be the underlying undirected graph of
cut-width k. Let ϕ be the corresponding ordering of the vertices, such that for
every i, 1 ≤ i ≤ |V | there are at most k edges {u, v} such that u ∈ L(i, ϕ, und(G))
and v ∈ R(i, ϕ, und(G)). Since every undirected edge {u, v} in und(G) comes
from a directed edge (u, v), a directed edge (v, u), or both, and the directed cut-
width only counts edges directed forward, the same layout shows that the directed
cut-width of G is at most k.

(c) Let G = (V,E) be a digraph of directed neighbourhood-width k and ϕ ∈ Φ(G) a
linear layout, such that for every i ∈ [|V |], we have |N(L(i, ϕ,G), R(i, ϕ,G))| ≤ k.
Since for every pair of vertices in G of the same directed neighbourhood the
corresponding vertices in und(G) have the same neighbourhood, it follows that
for every i ∈ [|V |], we have |N(L(i, ϕ, und(G)), R(i, ϕ, und(G)))| ≤ k. Thus, the
neighbourhood-width of und(G) is at most k.

Let G = (V,E) be a digraph and und(G) = (V,Eu) be the underlying undirected
graph of neighbourhood-width k. Then there is a layout ϕ ∈ Φ(und(G)), such
that for every 1 ≤ i ≤ |V | the vertices in L(i, ϕ, und(G)) can be divided into
at most k subsets L1, . . . , Lk, such that the vertices of set Lj , 1 ≤ j ≤ k, have
the same neighbourhood with respect to the vertices in R(i, ϕ, und(G)). One of
these sets Lj may consist of vertices that have no neighbours v ∈ R(i, ϕ, und(G)).
Every of the remaining sets Lj has at most ∆(und(G)) vertices u such that there
is an edge {v, u} ∈ Eu with v ∈ R(i, ϕ, und(G)). Let 1 ≤ i ≤ |V |.

� If there is one set Lj which consists of vertices that have no neighbours
v ∈ R(i, ϕ, und(G)), then there are at most ∆(und(G)) · (k − 1) vertices
u ∈ L(i, ϕ, und(G)), such that there is an edge {v, u} ∈ Eu with v ∈
R(i, ϕ, und(G)).

� Otherwise there are at most ∆(und(G)) ·k vertices u ∈ L(i, ϕ, und(G)), such
that there is an edge {v, u} ∈ Eu with v ∈ R(i, ϕ, und(G)).

3.5. COMPARING DIRECTED WIDTH PARAMETERS 53

Thus for every 1 ≤ i ≤ |V | the vertices in L(i, ϕ,G) can be divided into k′ ≤
∆(und(G)) · k subsets L′1, . . . , L

′
k′ , such that the vertices of set L′j , 1 ≤ j ≤ k′,

have the same directed neighbourhood with respect to the vertices in R(i, ϕ,G).
Thus the directed neighbourhood-width of G is at most ∆(und(G)) · k.

(d) Let G be a digraph of directed linear NLC-width k and X be a directed linear
NLC-width k-expression forG. A linear NLC-width k-expression c(X) for und(G)
can recursively be de�ned as follows.

� Let X = •t for t ∈ [k]. Then c(X) = •t.
� Let X = ◦R(X ′) for R : [k]→ [k]. Then c(X) = ◦R(c(X ′)).

� LetX = X ′⊗
(
−→
S ,
←−
S)
•t for

−→
S ,
←−
S ⊆ [k]2 and t ∈ [k]. Then c(X) = c(X ′)×−→

S ∪
←−
S

•t.

The second bound follows by

d-lnlcw(G) ≤ d-nw(G) + 1 ≤ ∆(und(G)) · nw(und(G)) + 1
≤ ∆(und(G)) · lnlcw(und(G)) + 1,

whereas the inequalities hold, respectively, by Lemma 3.5.8, (c), and [Gur06b].

(e) Let G be a digraph of directed linear clique-width k and X be a directed linear
clique-width k-expression for G. A linear clique-width k-expression c(X) for
und(G) can recursively be de�ned as follows.

� Let X = •t for t ∈ [k]. Then c(X) = •t.
� Let X = X ′ ⊕ •t for t ∈ [k]. Then c(X) = c(X ′)⊕ •t.
� Let X = ρi→j(X

′) for i, j ∈ [k]. Then c(X) = ρi→j(c(X
′)).

� Let X = αi,j(X
′) for i, j ∈ [k]. Then c(X) = ηi,j(c(X

′)).

The second bound follows by

d-lcw(G) ≤ d-nw(G) + 1 ≤ ∆(und(G)) · nw(und(G)) + 1
≤ ∆(und(G)) · lcw(und(G)) + 1.

whereas the inequalities hold, respectively, by Lemma 3.5.8, (c), and [Gur06b].

(f) Let G be a digraph of directed linear rank-width k and (T, f) be a directed
linear rank-decomposition for G of width k. Then (T, f) is also a linear rank-
decomposition for und(G). Let e be an edge of T . Let NV2

V1
= (nij) be the

adjacent matrix de�ned over the two-element �eld GF(2) for partition V1 ∪V2. If
for G two rows in MBe

Ae
are linearly dependent then for und(G) these two rows in

NBe
Ae

are also linearly dependent. Thus we conclude that rg(2)(NBe
Ae

) ≤ rg(4)(MBe
Ae

)
and thus linear rank-width of und(G) ≤ k.

54 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

The second bound follows by

d-lrw(G) ≤ d-nw(G) ≤ ∆(und(G)) · nw(und(G))

≤ ∆(und(G)) · 2lrw(und(G))+1 − 1,

whereas the inequalities hold, respectively, by Lemma 3.5.9, (c), and [OS06,
Proposition 6.3].

See also Lemma 3.3.6. This completes the proof.

Remark 3.5.2. In Theorem 3.5.1(a) and (b) the directed path-width of some digraph
cannot be used to give an upper bound on the path-width of und(G). Any transitive
tournament has directed path-width 0 but its underlying undirected graph has a path-
width which corresponds to the number of vertices. Also by restricting the vertex
degree this is not possible by an acyclic orientation of a grid. The same examples also
show that the directed cut-width of some digraph cannot be used to give an upper
bound on the cut-width of und(G).

Remark 3.5.3. Theorem 3.5.1(a) and (b) show that for path-width and cut-width the
values do not grow when going to the directed variant. This changes for the other four
parameters, since the set of all tournaments has unbounded directed width while the
corresponding undirected width of set of all complete graphs is bounded by a small
constant.

The relations shown in Theorem 3.5.1 allow to imply the following values for the
directed linear clique-width and directed neighbourhood-width of a k-power graph of
a path.

Corollary 3.5.4. (a) For n ≥ k(k + 1) + 2, we have d-lcw((
−→
Pn)k) = k + 2.

(b) For n ≥ k(k + 1) + 2, we have d-nw((
−→
Pn)k) = k + 1.

Proof. For n ≥ k(k + 1) + 2 we know from [HMP09] that the (undirected) linear
clique-width of a k-power graph of a path on n vertices is exactly k + 2.

(a) For n ≥ k(k + 1) + 2 the �rst statement follows by

k + 2 = lcw(und((
−→
Pn)k)) ≤ d-lcw((

−→
Pn)k) ≤ k + 2,

whereas these equality and inequalities hold, respectively, by [HMP09], Theorem
3.5.1, and Example 3.2.16.

(b) For n ≥ k(k + 1) + 2 the second statement follows by

k + 1 = lcw(und((
−→
Pn)k))− 1 ≤ d-lcw((

−→
Pn)k)− 1

≤ d-nw((
−→
Pn)k) ≤ k + 1,

whereas these equality and inequalities hold, respectively, by [HMP09], Theorem
3.5.1, Lemma 3.5.8, and Example 3.2.18.

3.5. COMPARING DIRECTED WIDTH PARAMETERS 55

This completes the proof.

Comparing the undirected width of a graph G and the directed width of its com-
plete biorientation

←→
G the following results hold.

Theorem 3.5.5. For each width measure β ∈ {pw, cutw, nw, lnlcw, lcw, lrw} and every
undirected graph G, we have β(G) = d-β(

←→
G).

Proof. � By Lemma 3.2.4, this holds for directed path-width.

� By Theorem 3.5.1(b) it remains to show that the cut-width of G is at most

the directed cut-width of
←→
G . Let G = (V,E) be a graph and

←→
G its complete

biorientation of directed cut-width k. Let ϕ be the corresponding ordering of
the vertices, such that for every i, 1 ≤ i ≤ |V | there are at most k arcs (u, v)
such that u ∈ L(i, ϕ, und(G)) and v ∈ R(i, ϕ, und(G)). Since every such arc
corresponds to one undirected edge {u, v} in G, the same layout shows that the
cut-width of G is at most k.

� By Theorem 3.5.1(c) it remains to show that the directed neighbourhood-width

of
←→
G is at most the neighbourhood-width of G. Let ϕ ∈ Φ(G) a linear lay-

out, such that for every i ∈ [|V |], we have |N(L(i, ϕ,G), R(i, ϕ,G))| ≤ k. By

the de�nitions of
←→
G and for neighbourhoods of directed graphs, it follows

that for every i ∈ [|V |] for the number of directed neighbourhoods, we have

|N(L(i, ϕ,
←→
G), R(i, ϕ,

←→
G))| ≤ k.

� By Theorem 3.5.1(d) it remains to show that the directed linear NLC-width of
←→
G is at most the linear NLC-width of G. Let X be an NLC-width k-expression
for G. A directed NLC-width k-expression c(X) for

←→
G can recursively be

de�ned as follows.

* Let X = •t for t ∈ [k]. Then c(X) = •t.
* Let X = ◦R(X ′) for R : [k]→ [k]. Then c(X) = ◦R(c(X ′)).

* Let X = X ′ ×S X ′′ for S ⊆ [k]2. Then c(X) = c(X ′)⊗(S,S) c(X
′′).

� By Theorem 3.5.1(e) it remains to show that the directed linear clique-width of
←→
G is at most the linear clique-width of G. Let X be a clique-width k-expression
for G. A directed clique-width k-expression c(X) for

←→
G can recursively be

de�ned as follows.

* Let X = •t for t ∈ [k]. Then c(X) = •t.
* Let X = X ′ ⊕X ′′. Then c(X) = c(X ′)⊕ c(X ′′).
* Let X = ρi→j(X

′) for i, j ∈ [k]. Then c(X) = ρi→j(c(X
′)).

* Let X = ηi,j(X
′) for i, j ∈ [k]. Then c(X) = αj,i(αi,j(c(X

′))).

56 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

� By Theorem 3.5.1(f) it remains to show that the directed linear rank-width of
←→
G

is at most the linear rank-width of G. Let (T, f) be a linear rank-decomposition

of width k for G. Then (T, f) is also a linear rank-decomposition for
←→
G . Let

NV2
V1

= (nij) be the adjacent matrix de�ned over the two-element �eld GF(2)

for partition V1 ∪ V2. Since for every bioriented graph NV2
V1

= MV2
V1

we conclude

that the directed linear rank-width of
←→
G is at most k.

This completes the proof.

It is already known that recognizing path-width ([ACP87]), cut-width ([Gav77]),
linear NLC-width ([Gur06b]), linear clique-width ([FRRS09]), neighbourhood-width
([Gur06b]), and linear rank-width (by [Oum17] due [Kas08] and [Oum05]) are NP-
hard. The results of Theorem 3.5.5 imply the same for the directed versions.

Corollary 3.5.6. Given a digraph G and an integer k, then for every width measure
β ∈ {d-pw, d-cutw, d-nw, d-lnlcw, d-lcw, d-lrw}, the problem to decide whether β(G) ≤
k is NP-complete.

3.5.2 Linear width parameters

Relations between linear NLC-width, linear clique-width, neighbourhood-

width, and linear rank-width

First we state the relation between the directed linear NLC-width and directed linear
clique-width. The proofs can be done in the same way as for the undirected versions
in [GW05b].

Lemma 3.5.7. For every digraph G, we have

d-lnlcw(G) ≤ d-lcw(G) ≤ d-lnlcw(G) + 1.

Further there is also a very tight connection between the directed neighbourhood-
width, directed linear NLC-width, and directed linear clique-width. The proofs of the
following bounds can be done in a similar fashion as for the undirected versions in
[Gur06b].

Lemma 3.5.8. For every digraph G, we have

d-nw(G) ≤ d-lnlcw(G) ≤ d-nw(G) + 1

and
d-nw(G) ≤ d-lcw(G) ≤ d-nw(G) + 1.

By the examples given in section 3.2 and simple observations, we conclude that
every path

−→
Pn, n ≥ 3, has directed linear clique-width 3, paths

−→
P3 and

−→
P4 have

directed linear NLC-width 2, every path
−→
Pn, n ≥ 5, has directed linear NLC-width 3,

and every path
−→
Pn, n ≥ 3, has directed neighbourhood-width 2, which implies that

the bounds of Lemma 3.5.7 and Lemma 3.5.8 cannot be improved.

3.5. COMPARING DIRECTED WIDTH PARAMETERS 57

Lemma 3.5.9. For every digraph G, we have

d-lrw(G) ≤ d-nw(G).

Proof. Let G be a digraph with n vertices of directed neighbourhood-width k and
ϕ : V → [n] be a layout such that d-nw(ϕ,G) ≤ k. Using ϕ we de�ne a caterpillar
Tϕ with consecutive pendant vertices ϕ−1(1), . . . , ϕ−1(n). Pair (Tϕ, ϕ) leads to a
directed linear rank decomposition for G. We want to determine the width of (Tϕ, ϕ).
Since for every i the vertices in L(i, ϕ,G) de�ne at most k neighbourhoods with
respect to set R(i, ϕ,G), every edge of Tϕ leads to a partition of V into L(i, ϕ,G)

and R(i, ϕ,G) for some i such that MR(i,ϕ,G)
L(i,ϕ,G) has at most k di�erent rows and thus

rg(M
R(i,ϕ,G)
L(i,ϕ,G)) ≤ k.

The following bound can be proved similarly to the case of clique-width and rank-
width in [OS06, Proposition 6.3].

Lemma 3.5.10. For every digraph G, we have

d-lcw(G) ≤ 4d-lrw(G)+1 − 1.

The shown bounds imply the following theorem.

Theorem 3.5.11. Any two parameters in {d-nw, d-lnlcw, d-lcw, d-lrw} are equivalent.

Theorem 3.5.12. Any two parameters in {d-nw, d-lnlcw, d-lcw} are linearly equiva-
lent.

Using the arguments of [FOT10, Section 8] we obtain the next result.

Lemma 3.5.13. There is some polynomial p such that for every digraph G, we have
d-lcw(G) ≤ p(∆(G), d-lrw(G)).

Theorem 3.5.14. For every class of digraphs G such that for all G ∈ G the value
∆(G) is bounded, any two parameters in {d-nw, d-lnlcw, d-lcw, d-lrw} are polynomially
equivalent.

Relations between cut-width and path-width

The directed path-width is even equal to the directed vertex separation number.

Lemma 3.5.15 ([YC08]). For every digraph G, we have

d-pw(G) = d-vsn(G).

In [FP13a] it is shown how to construct a directed path-decomposition of width
twice the directed cut-width of the graph. Using the directed vertex separation num-
ber, we next show a better bound.

58 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

Lemma 3.5.16. For every digraph G, we have

d-pw(G) ≤ d-cutw(G).

Proof. Let G = (V,E) be a digraph of directed cut-width k. By (3.6) there is a layout
ϕ ∈ Φ(G), such that for every 1 ≤ i ≤ |V | there are at most k arcs (v, u) ∈ E such
that v ∈ R(i, ϕ,G) and u ∈ L(i, ϕ,G). Thus for every 1 ≤ i ≤ |V | there are at most
k vertices u ∈ L(i, ϕ,G), such that there is an arc (v, u) ∈ E with v ∈ R(i, ϕ,G).
Thus by (3.1) the directed vertex separation number of G is at most k and by Lemma
3.5.15 the directed path-width of G is at most k.

The directed path-width and directed cut-width of a digraph can di�er very much,
e.g. a

←−→
K1,n has directed path-width 1 and directed cut-width dn2 e.

Lemma 3.5.17. For every digraph G, we have

d-cutw(G) ≤ min(∆−(G),∆+(G)) · d-pw(G).

Proof. Let G = (V,E) be a digraph of directed path-width k. By Lemma 3.5.15 and
(3.1) there is a layout ϕ ∈ Φ(G), such that for every 1 ≤ i ≤ |V | there are at most
k vertices u ∈ L(i, ϕ,G), such that there is an arc (v, u) ∈ E with v ∈ R(i, ϕ,G).
Thus for every 1 ≤ i ≤ |V | there are at most ∆−(G) · k arcs (v, u) ∈ E such that
v ∈ R(i, ϕ,G) and u ∈ L(i, ϕ,G). By (3.6) this implies that the directed cut-width
of digraph G is at most ∆−(G) · k.

The bound using ∆+ instead of ∆− can be shown in the same way using de�nition
(3.3) instead of (3.1) and using de�nition (3.5) instead of (3.6).

Theorem 3.5.18. For every class of digraphs G such that for all G ∈ G the value
min(∆−(G),∆+(G)) is bounded any two parameters in {d-cutw, d-pw} are linearly
equivalent.

Relations between path-width and neighbourhood-width

The directed neighbourhood-width and directed path-width of a digraph can di�er
very much, e.g. a

←→
Kn has directed neighbourhood-width 1 and directed path-width

n− 1.

Lemma 3.5.19. For every digraph G, we have

d-pw(G) ≤ min(∆−(G),∆+(G)) · d-nw(G).

Proof. Let G = (V,E) be a digraph of directed neighbourhood-width k. Then there
is a layout ϕ ∈ Φ(G), such that for every 1 ≤ i ≤ |V | the vertices in L(i, ϕ,G) can be
divided into at most k subsets L1, . . . , Lk, such that the vertices of set Lj , 1 ≤ j ≤ k,
have the same neighbourhood with respect to the vertices in R(i, ϕ,G). Every of
these sets Lj has at most ∆−(G) vertices u such that there is an arc (v, u) ∈ E with
v ∈ R(i, ϕ,G). Thus for every 1 ≤ i ≤ |V | there are at most ∆−(G) · k vertices

3.5. COMPARING DIRECTED WIDTH PARAMETERS 59

u ∈ L(i, ϕ,G), such that there is an arc (v, u) ∈ E with v ∈ R(i, ϕ,G). Thus by
(3.1) the directed vertex separation number of G is at most ∆−(G) ·k and by Lemma
3.5.15 the directed path-width of G is at most ∆−(G) · k.

The bound using ∆+ instead of ∆− can be shown in the same way using de�nition
(3.3) instead of de�nition (3.1).

The example
←→
Kn shows that the bound given in Lemma 3.5.19 is tight.

Lemmas 3.5.19, 3.5.8, and 3.5.10 imply the following bounds.

Corollary 3.5.20. For every digraph G, we have

d-pw(G) ≤ min(∆−(G),∆+(G)) · d-lnlcw(G),

d-pw(G) ≤ min(∆−(G),∆+(G)) · d-lcw(G), and

d-pw(G) ≤ min(∆−(G),∆+(G)) · (4d-lrw(G)+1 − 1).

After considering the maximum vertex degree, we next make a stronger restriction
by excluding all possible orientations of a K`,` as subdigraphs.

Corollary 3.5.21. Let G be a digraph where und(G) has no K`,` subgraph, then we
have

d-pw(G) ≤ pw(und(G)) ≤ 2 · lnlcw(und(G))(`− 1) ≤ 2 · d-lnlcw(G)(`− 1).

Proof. By the results for undirected graphs in [Gur06b] we know that for every graph
G which has no K`,` subgraph, we have

pw(G) ≤ 2 · lnlcw(G)(`− 1).

This implies for every digraph G, where und(G) has no K`,` subgraph, we have

pw(und(G)) ≤ 2 · lnlcw(und(G))(`− 1).

Furthermore by Theorem 3.5.1(a) and Theorem 3.5.1(d) for every digraph G, where
und(G) has no K`,` subgraph, we have

d-pw(G) ≤ pw(und(G)) ≤ 2 · lnlcw(und(G))(`− 1) ≤ 2 · d-lnlcw(G)(`− 1).

This completes the proof.

Next we want to bound the directed linear clique-width in terms of the directed
path-width.

Remark 3.5.22. For general digraphs and even for digraphs of bounded vertex degree
the directed linear clique-width, directed linear NLC-width, directed neighbourhood-
width, and directed linear rank-width cannot be bounded by the directed path-width
by the following examples.

60 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

1. Let T ′ be an orientation of a tree, e.g. an out-tree or an in-tree. Then d-pw(T ′) =
0, as T ′ is a DAG. But d-lcw(T ′) is unbounded, since lcw(und(T ′)) is unbounded
[GW05b] and since lcw(und(T ′)) ≤ d-lcw(T ′) by Theorem 3.5.1.

2. Let G′ be an acyclic orientation of a grid. Then d-pw(G′) = 0, as G′ is a DAG.
But d-lcw(G′) is unbounded, since lcw(und(G′)) is unbounded [GR00] and since
lcw(und(G′)) ≤ d-lcw(G′) by Theorem 3.5.1.

3. The set of all k-power graphs of directed paths has directed path-width 0 (cf. Ex-
ample 3.2.10) and directed linear clique-width k + 2 (Corollary 3.5.4).

Equivalent parameters

In Table 3.2 we summarize our results on the equivalence of linear width parameters
for directed graphs. For general digraphs we have three classes of pairwise equivalent
parameters, which reduces to two or one class for ∆(G) bounded or semicomplete
∆(G) bounded digraphs, respectively.

digraphs equivalence d-cutw d-pw d-lcw d-lnlcw d-nw d-lrw

general equivalent • • • • • •
polynomially equivalent • • • • •
linearly equivalent • • • • •

∆(G) bounded equivalent • • • • • •
polynomially equivalent • • • • • •
linearly equivalent • • • • •

semicomplete equivalent • • • • • •
∆(G) bounded polynomially equivalent • • • • • •

linearly equivalent • • • • •

Table 3.2: Classi�cation of linear width parameters for directed graphs. The gray
shades of the points represent sets of pairwise (linearly, polynomially) equivalent
parameters.

3.5.3 Non-linear width parameters

There are also some known relations between non-linear width parameters. First of
all, there is an equivalence of most de�nitions of directed tree-width. By [JRST01b,
JRST01a, DES14, BJG18, Ree99] it follow that:

Theorem 3.5.23. The following graph parameters are linearly equivalent:

� Aboreal directed tree-width d-tw

� Aboreal directed tree-width using Z-regularity instead of normality

� Strong-component directed tree-width sc-d-tw

� Strong guards directed tree-width sg-d-tw

� Reed's directed tree-width r-d-tw

3.5. COMPARING DIRECTED WIDTH PARAMETERS 61

As all those parameters are equivalent, we will only consider d-tw in the following
work. For this parameter we further get, by Theorem 3.5.1, g:

Theorem 3.5.24. Let G be a digraph. Then d-tw(G) ≤ u-d-tw(G).

In Table 3.3, we summarize some examples for the values of digraph width mea-
sures, which are considered in this work, for special digraphs. Further examples can
be found in [GHK+14, Table 1].

G d-tw(G) d-pw(G) fvs(G) fas(G) cr(G) ddp(G) dagw(G) kw(G) d-cw(G)
−→
Pn 0 0 0 0 0 blog(n)c+ 1 1 1 3
−→
Cn 1 1 1 1 1 blog(n− 1)c+ 2 2 2 4
−→
Tn 0 0 0 0 0 n 1 1 3
←→
Pn 1 1 bn

2
c n− 1 blog(n)c blog(n)c+ 1 2 2 3

←→
Kn n− 1 n− 1 n− 1

n(n−1)
2

n− 1 n n n 2

Table 3.3: The value of digraph width measures of special digraphs.

We now give some relationships between other non-linear (and linear) width pa-
rameters. The following proposition is taken of [GKRW21].

Proposition 3.5.25. Let G be a digraph and f, g ∈ {d-pw, d-tw, dagw, kw, cr, fvs, fas, d-lcw, d-cw}.
If f(G) ≤ k, then g(G) ≤ h′f,g(k) where h′f,g : N→ N is given by Table 3.4.

Proof. 1. d-pw is unbounded in terms of kw: In [BJG18] the example of a complete
biorientation of an undirected binary tree of height h is considered. This digraph
has directed path-width h while it has the �xed Kelly-width of 2.

2. d-pw is unbounded in terms of d-tw: Holds with the example from 1 which is in-
spired by the undirected comparisons of path-width and tree-width. Increasing
h, the directed tree-width is 1, while the directed path-width increases.

3. d-pw, d-tw, dagw and kw are unbounded in terms of d-lcw and thus in d-cw:
The set of all bioriented cliques is a counterexample.

4. By [Gru12], cycle rank is an upper bound for directed path-width and thus for
directed tree-width and further, cr plus 1 is an upper bound for dagw and kw.

5. The cycle rank can be much larger than directed path-width, directed tree-
width, Kelly-width and DAG-width, which can be shown by a complete biori-
entation of a path graph

←→
Pn which has arbitrary large cycle rank blog(n)c, see

[McN69].

6. By [GHK+14], fvs is an upper bound of cr and thus the bounds from 4 are
extendable to fvs.

62 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

g

f
d
-p
w

d
-t
w

d
a
g
w

k
w

cr
fv
s

fa
s

d
-l
cw

d
-c
w

d
-p
w

k
∞

∞
[B
D
H

+
1
2
]

∞
k

k
k

∞
∞

d
-t
w

k
k

3
k

+
1

[B
D
H

+
1
2
]

6
k
−

2
[H
K
0
8
]

k
k

k
∞

∞
d
a
g
w

k
+

1
[B
D
H

+
1
2
]

∞
[B
D
H

+
1
2
]

k
7
2
k

2
[A
K
K

+
1
5
]

k
+

1
k

+
1

k
+

1
∞

∞
k
w

k
+

1
[G

H
K

+
1
4
]

∞
??
?

[H
K
0
8
]

k
k

+
1

k
+

1
k

+
1

∞
∞

cr
∞

∞
∞

∞
k

k
k

∞
∞

fv
s

∞
∞

∞
∞

∞
k

k
∞

∞
fa
s

∞
∞

∞
∞

∞
∞

k
∞

∞
d
-l
cw

∞
∞

∞
∞

∞
∞

∞
k

∞
d
-c
w

∞
∞

∞
∞

∞
∞

∞
k

k

Table 3.4: Relations between digraph parameter on digraphs. The parameter of the
left column is bounded by the respective parameter of the top row by the speci�ed
function where k is the corresponding width. We use `∞' if the relation is unbounded,
that is if h′f,g does not exist. The cell with `???' represents the remaining relation of
the conjecture on DAG-width and Kelly-width.

3.5. COMPARING DIRECTED WIDTH PARAMETERS 63

7. As fvs of a bioriented path is bn2 c, by the same reason as in 5, fvs can be much
larger than d-tw, d-pw, kw and dagw. Further it can be much larger than cycle
rank, which can be shown by the disjoint union of n

3 directed cycles
−→
C3 which

has cycle rank 1 but arbitrary large DFVS-number n
3 .

8. By de�nition, fas is an upper bound for fvs. Therefore, the results of 4 can be
extended to fas.

9. As fas of a bioriented path is n−1, it can be much larger than d-pw, d-tw, dagw,
kw as well as directed (linear) clique-width. Further, by the same Argument as
in 7 it can be much larger than cycle rank.

10. fas can not be upper bounded by fvs. A counterexample can be given by a
bioriented star: The directed feedback vertex set number of a bioriented star is
1, whereas the directed feedback arc set number is n− 1.

11. d-cw and thus also d-lcw is unbounded in terms of d-pw, d-tw, dagw, kw, cr,
fvs and fas. An acyclic orientation of a grid graph is a counterexample.

12. d-lcw is unbounded in terms of d-cw: Same example as in 1.

13. d-cw is bounded by d-lcw: This follows immediately from the de�nition.

Note that to compare DAG-width and Kelly-width, right now, only one direction
is known. Till now it is only possible to bound Kelly-width by DAG-width. However,
it is assumed that both directions are possible with a polynomial factor. We will
prove later that equivalence holds on special directed graph classes.

Further note that directed DAG-depth is not included in Table 3.4. This is as
most relations between ddp and other parameters are not known yet. However, by
the fact that ddp is an upper bound for cr, the results of 4 in the previous proof are
extandable to directed DAG-depth.

Furthermore, Proposition 3.5.25 contains in particular the known fact that di-
rected path-width poses as an upper bound for all tree-width inspired width param-
eters. Moreover, on semicomplete digraphs, it also is an upper bound on directed
clique-width. It therefore su�ces, towards a proof of Theorem 5.6.6, to establish up-
per bounds on directed path-width in terms of directed tree-width, DAG-width, and
Kelly-width, as well this can be extended to also include directed linear clique-width.

In Table 3.4 we give exact bounds for several directed non-linear graph param-
eters and the linear directed path-width. However, the exact values are not always
necessary, sometime it su�ces to know if the parameters are comparable at all. In
Table 3.5 we summarize the known relations between some measures considered in
this work.

64 CHAPTER 3. DIGRAPH (WIDTH) PARAMETERS

ddp
↓

d-tw
[BDH+12]←− dagw

[AKK+15]←− kw
[GHK+14]←− d-pw

[Gru08]←− cr
[GHK+14]←− fvs ←− fas

Table 3.5: Known relations between digraph width measures. A directed edge from
measure β to measure α indicates that within the cited work there has been shown
some function f such that for every digraph it holds α(G) ≤ f(β(G)).

As seen in this section, it is not possible to compare non-linear directed width
parameters as good as linear directed width parameters. Further, they are all at least
NP-hard, DAG-width even PSCPACE-hard to compute. It therefore seems likely
to consider width parameters on restricted graph classes, as we do in the following
sections.

3.5.4 Coloring and directed width parameters

As mentioned before, graph coloring can be understood as a directed parameter by
de�nition, but is not one of the standard width parameters. Even though, it is an
interesting matter to investigate the graph coloring problem on classes of bounded
width.

We will here only shortly summarize the results of [GKR21a].

Corollary 3.5.26. The Dichromatic Number problem is W[1]-hard on complete bior-
iented digraphs and thus, on all digraphs when parameterized by directed clique-width.

Theorem 3.5.27. The Dichromatic Number problem on digraphs on n vertices given

by a directed clique-width k-expression can be solved in n2O(k2)
time.

Corollary 3.5.28. The Dichromatic Number problem is in XP when parameterized
by directed clique-width.

4 Directed Graph Minors

Graph minors are an important tool to characterize directed graph classes. Several
special graph classes can be de�ned by a set of forbidden graph minors. Further, in
the undirected case, by Halins grid theorem, there is a strong relationship between
the tree-width of a graph and the size of its largest minor grid, shown by Robertson et
al. in [RS86b, RST94]. For directed graphs, Kreutzer et al. could show a relationship
between the directed tree-width of a graph and the size of its largest cylindrical minor
grid [KK15, HKK19].

Therefore, concerning directed graph parameters, it seems likely to consider di-
rected versions of graph minors.

Please note that the de�nitions in this sections can be refound in [GR19b].

De�nition 4.0.1 (Directed edge contraction). Let G = (V,E) be a digraph with
e = (u, v) ∈ E. The contraction of e leads to a new digraph G′ = (V ′, E′) with
V ′ = V \ {u, v} ∪ {w} with w /∈ V and E′ = {(a, b) | a, b ∈ V ∩ V ′, (a, b) ∈ E or a =
w, (u, b) or (v, b) ∈ E or b = w, (a, u) or (a, v) ∈ E}.1

There are di�erent ways of de�ning graph minors using directed edge contrac-
tion. As directed path-width and directed tree-width are not monotone under the
directed edge contraction on every edge, it is sensible to restrict the edges, on which
directed edge contraction can be used. We introduce an equivalent de�nition to the
one introduced by Kintali and Zhang in [KZ17]. Therefore we need to de�ne cycle
contraction:

De�nition 4.0.2 (Directed cycle contraction). Let G = (V,E) be a digraph with
C = {v1, . . . , v`} a cycle. The contraction of C leads to a new digraph G′ = (V ′, E′)
with V ′ = V \C∪{w} with w /∈ V and E′ = {(a, b) | a, b ∈ V ∩V ′, (a, b) ∈ E or a =
w, (vi, b) ∈ E for 1 ≤ i ≤ ` or b = w, (a, vi) ∈ E for 1 ≤ i ≤ `}.2

Butter�y contractions are de�ned by Johnson et al. in [JRST01b] as directed edge
contractions of an edge e = (u, v), where either e is the only outgoing edge of u
or e is the only incoming edge of v. The de�nition of out-contraction of [KZ17] is

1This means, in digraph G′ the edge e and its two incident vertices u and v are replaced by the
vertex w and all other edges in G incident with u or v are incident with w in G′.

2This means, in digraph G′ the cycle C is replaced by the vertex w and all other edges in G
incident with a vertex in C are incident with w in G′.

65

66 CHAPTER 4. DIRECTED GRAPH MINORS

equal to deleting all outgoing edges of u but e and then doing a butter�y contraction,
the de�nition of in-contraction is equal to deleting all incoming edges of v but e and
doing a butter�y contraction of e. Therefore, the following de�nition of directed graph
minors is equal to the one given in [KZ17]:

De�nition 4.0.3 (Directed graph minor). Let G = (V,E) be a digraph. A digraph
G′ = (V ′, E′) is a directed minor of G, i.e. G′ � G, if G′ can be obtained by creating
subgraphs, performing cycle contractions and performing butter�y contractions on G.

Furthermore, the directed graph minor relation is transitive, re�exive and anti-
symmetric, but not symmetric.

Note that unfortunately, unlike assumed by Johnson et al. in [JRST01b], directed
tree-width is not closed under the butter�y minor operation. This has been shown
by a counterexample in [Adl07]. Therefore, it seems impossible to get something
like the grid theorem on directed tree-width. However, it seems to be true that
directed tree-width does not increase a lot by the butter�y minor operation. Further,
it seems possible to de�ne the class of digraphs with directed tree-width 1 by forbidden
minors, using hypergraphs. In [Wie20], Wiederrecht gives some characterizations with
directed graph minors.

5 Width Measures on Directed Graph
Classes

5.1 Tree-Like Digraphs

In this section we consider directed version of cactus trees and forests as well as
pseudotrees and -forests, which are digraphs resembling to trees. We show that these
graph classes are characterizable by directed graph minors and show that they have
bounded directed tree-width or even path-width. Please note that huge parts of this
section are taken from [GR19b].

5.1.1 Directed Cactus Forests and Pseudoforests

First we will apply the de�nitions of undirected cactus trees and forests as well as
pseudotrees and -forests to directed graphs. For directed cactus trees, it is possible
to use nearly the same de�nition as for undirected cactus trees:

De�nition 5.1.1 (Directed cactus tree). A directed cactus tree is a strongly connected
digraph G = (V,E), where for any two directed cycles C1 and C2 it holds that they
have at most one joint vertex.

This de�nition remains equal if C1 and C2 must have exactly one joint vertex,
and it is equal to the de�nition given in [BJG18]:

De�nition 5.1.2 (Directed cactus tree). A directed cactus tree is a strongly connected
digraph in which each arc is contained in exactly one directed cycle. The class of all
directed cactus trees is named DCT.

It would also be possible to de�ne cactus trees as weakly connected subgraphs,
where two directed cycles have at most one joint vertex. This would lead to a superset
of De�nition 5.1.1 and a subset of directed cactus forests, which can be de�ned as
follows:

De�nition 5.1.3 (Directed cactus forest). A directed cactus forest is a digraph G =
(V,E), where for any two directed cycles C1 and C2 it holds that they have at most
one joint vertex. The class of all directed cactus forests is named DCF.

67

68 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Note that if G does not need to be strongly connected, it is not equal if C1

and C2 have exactly one directed cycle. It though holds that a graph is a directed
pseudoforest, if and only if each arc is contained in at most one cycle. It further holds
that if G is a directed cactus tree, then its underlying (undirected) graph und(G)
is a cactus tree. But if G is a directed cactus forest, the underlying graph does not
need to be neither a cactus tree nor a graph of which every connected component
is a cactus tree. The other way around is only true if we use an orientation where
no bioriented arcs are allowed. Then if G is an undirected cactus tree or a graph of
which every connected component is a cactus tree, then every orientation of G is a
directed cactus forest.

For pseudotrees, there are also di�erent ideas of de�ning a directed version, de-
pending on whether strong or weak connectivity is used. Here it is more sensible to
use weak connectivity, because a strongly connected graph containing at most one
cycle is exactly a cycle.

De�nition 5.1.4 (Directed pseudotree). A directed pseudotree is a weakly connected
digraph which contains at most one directed cycle. The class of all directed pseu-
dotrees is named DPT.

In contrast to directed cactus forests, it does matter for directed pseudoforests if
we consider strong or weak connectivity:

De�nition 5.1.5 (Directed weak pseudoforest). A directed weak pseudoforest is a
digraph, in which every weakly connected component contains at most one directed
cycle. The class of all directed weak pseudoforests is named DWPF.

De�nition 5.1.6 (Directed strong pseudoforest). A directed strong pseudoforest is
a digraph, in which every strongly connected component contains at most one di-
rected cycle, i.e. contains exactly one directed cycle. The class of all directed strong
pseudoforests is named DSPF.

Then directed strong pseudoforests are a superclass of directed weak pseudoforest,
as every strongly connected component is also a weakly connected component. It
further holds, that directed strong pseudoforests are exactly those graphs, where any
two directed cycles have no joint vertex, or where every vertex is in at most one cycle.

Note that here as well it holds that if G is a directed pseudotree, the underly-
ing graph und(G) is an undirected pseudotree. For directed weak pseudoforests the
underlying undirected graphs are undirected pseudoforests, but for directed strong
pseudoforests this is not generally true. But it holds that every orientation of an
undirected pseudoforest, is a directed strong pseudoforest.

Proposition 5.1.7. We have the following inclusions for tree-like digraphs.

DPT ⊂ DCT ⊂ DCF (5.1)

DPT ⊂ DWPF ⊂ DSPF ⊂ DCF (5.2)

5.1. TREE-LIKE DIGRAPHS 69

5.1.2 Directed Graph Minors of Tree-like Digraphs

As cactus forests and pseudoforests are characterizable by forbidden graph minors,
we want to characterize their directed versions by forbidden directed graph minors.

Directed pseudotrees and directed cactus trees can not be closed under directed
minor operations, as they are not even closed under the subgraph operation. Directed
cactus forests and directed strong/weak pseudoforests are closed under directed graph
minor operations by the following results.

Lemma 5.1.8. Directed cactus forests are closed under directed graph minor opera-
tions.

Proof. Let G = (V,E) be a directed cactus forest. Then it holds for every two cycles
C1, C2 that they have at most one joint vertex. That is, for all e ∈ E holds that e is
part of at most one cycle.

� Subdigraphs: By deleting vertices or arcs, no edge can become part of another
cycle.

� Butter�y contraction: Let e = (u, v) be an arc in G such that e is the only
outgoing edge of u or e is the only incoming edge of v. Then there is no path
from u to v in G−(u, v). Then no additional cycle can be created by contraction
of e, as no additional arc is created and therefore the only additional possibility
to create a new cycle would be containing the new vertex w and a path from w
to w, in G, which has not been a path from v to u in G. This is a contradiction
to that there is no path from u to v in G. It follows that every arc is still only
in at most one cycle in G′.

� Cycle contraction Let C be a cycle in G. By contracting C, no new cycle can
be created, as no additional arc is created and there has already been a path
from u to v and from v to u for all u, v ∈ C. Therefore, assigning C to only one
vertex w does not create new path from w to w. Thus, every arc is still only in
at most one cycle in G′.

Lemma 5.1.9. Directed strong/weak pseudoforests are closed under directed graph
minor operations.

Proof. We use the same argument as in Lemma 5.1.8. For subgraphs, by deleting
vertices or arcs, no edge can become part of another cycle. By butter�y and cy-
cle contraction, no additional cycles can be created. From this also follows that
these contractions can not create additional strongly connected components. It is
easy to see that both contractions can not create weakly connected components,
as only arcs are considered, and there are no arcs between two weakly connected
components. As directed strong/weak pseudoforests are de�ned as graphs, where
each strong/weakly connected component contains at most one cycle, this means

70 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

that directed strong/weak pseudoforests are closed under directed graph minor oper-
ations.

So directed cactus forests and directed strong and weak pseudoforests are closed
under graph minor operation. But even more, it is possible to characterize those
classes by a �nite number of forbidden directed graph minors:

a

b c

D3

a b c

←→
P3

a b c d

−−→
P4,2

Figure 5.1: The forbidden directed minors D3,
←→
P3 and

−−→
P4,2.

Theorem 5.1.10. Digraph G is a directed cactus forest if and only if it does not

contain the digraph D3, the directed cycle
−→
C3 with one additional arc, as a directed

graph minor.

Proof. ⊆ Let G be a directed cactus forest. Assume that D3 is a minor of G. As
there are two cycles in D3, C1 = {a, b, c} and C2 = {b, c} containing the vertex
b as well as the vertex c, D3 is not a directed cactus forest. Then Lemma 5.1.8,
leads to a contradiction.

⊇ Let G be a digraph with no D3 as a directed minor. Assume, that G is not
a cactus graph. Then there is an arc e = (u, v) in G, such that there are two
cycles C1, C2 with u, v ∈ C1 and u, v ∈ C2. By subgraph operations we obtain
G′ which contains only of C1 and C2 as a graph minor of G. Using then butter�y
minor operations on all arcs of C2 but e and on all arcs of C1 but e and two
other arcs, we obtain D3 as a directed minor of G′. Then D3 is a directed minor
of G, which leads to a contradiction.

Further, it holds thatD3 is the minimal forbidden minor for directed cactus forests,
as every further minor operation would lead to a graph with only one cycle, so every
graph minor of D3 is a directed cactus forest.

Theorem 5.1.11. Digraph G is a directed strong pseudoforest if and only if it does

not contain the digraph D3 or the digraph
←→
P3 as a directed graph minor.

Proof. ⊆ Let G be a directed strong pseudoforest. Assume that D3 or
←→
P3 is a

minor of G. Both D3 and
←→
P3 consist of only one strongly connected component,

but include two cycles {a, b, c} and {b, c} for D3 and {a, b} and {b, c} for
←→
P3 ,

both graphs are no directed strong pseudoforest. Thus Lemma 5.1.9, leads to a
contradiction.

5.1. TREE-LIKE DIGRAPHS 71

⊇ Let G be a digraph with no D3 or
←→
P3 as directed minor. Assume that G is not a

directed strong pseudoforest. Then G includes a strongly connected component,
which has at least two cycles. Let G′ be the subgraph of G which only consists
of this strongly connected component.

Case 1 Assume that the two cycles in G′ have a joint arc. Then, as in the proof
of Theorem 5.1.10, G′ and therefore G has D3 as a directed minor. This
is a contradiction.

Case 2 Assume that the two cycles in G′ do not join an arc. As G′ is strongly
connected, there are two cycles C1 and C2 in G′ which have a joint vertex.
By subgraph operations, delete all arcs and vertices except these two cycles.
Then use butter�y contractions to transform these cycles to cycles of size 2.
By this,

←→
P3 results as a directed minor of G. This leads to a contradiction.

Theorem 5.1.12. Digraph G is a directed weak pseudoforest if and only if it does

not contain the digraph D3, the digraph
←→
P3 or the digraph

−−→
P4,2 as a directed graph

minor.

Proof. ⊆ Let G be a directed weak pseudoforest. Assume that D3, the graph
←→
P3

or the digraph
−−→
P4,2 is a minor of G. As all three graphs contain only one weakly

connected component, but two cycles, they are no directed strong pseudoforests.
Then Lemma 5.1.9 leads to a contradiction.

⊇ Let G be a digraph with no D3,
←→
P3 or

−−→
P4,2 as directed minor. Assume that

G is not a directed weak pseudoforest. Then G includes a weakly connected
component, which has at least two cycles. Let G′ be the subgraph of G which
only consists of this weakly connected component.

Case 1 Assume that any two cycles in G′ have a joint arc. Then, as in the proof
of Theorem 5.1.10, G′ and therefore G has D3 as a directed minor. This
is a contradiction.

Case 2 Assume that all two cycles in G′ do not join an arc, but there are two
cycles which have a joint vertex. Then, as in the proof of Theorem 5.1.11,
G′ and therefore G has

←→
P3 as a directed minor. This is a contradiction.

Case 3 Assume that any two cycles in G′ do not have a joint vertex. Let C1, C2

be two cycles in G′. By subgraph operations, delete all arcs and vertices
except C1 and C2 and a directed path connecting C1 and C2. Then use
butter�y contractions to transform C1 and C2 to cycles of size 2 and the
path connecting them to a path of length 1. By this,

−−→
P4,2 results as a

directed minor of G. This is a contradiction.

72 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

5.1.3 Directed Path-Width of Tree-like Digraphs

In order to process the strong components of a digraph we recall the following de�ni-
tion. The acyclic condensation of a digraph G, AC(G) for short, is the digraph whose
vertices are the strongly connected components V1, . . . , Vc of G and there is an edge
from Vi to Vj if there is an edge (vi, vj) in G such that vi ∈ Vi and vj ∈ Vj . Obviously
for every digraph G the digraph AC(G) is always acyclic.

Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be k vertex-disjoint digraphs. The directed
union of G1, . . . , Gk, denoted by G1	 . . .	Gk, is de�ned by their disjoint union plus
possible arcs from vertices of Gi to vertices of Gj for all 1 ≤ i < j ≤ k.

Theorem 5.1.13. Directed cactus trees have unbounded directed path-width.

Proof. Let G be the complete biorientation of the undirected, binary tree of height
h. We know that the path-width of perfect binary trees of hight h is dh/2e (cf.
[Sch89]). Then, by Lemma 3.2.4 it follows that d-pw(G) = pw(und(G)) = dh/2e. As
all complete biorientations of binary trees are directed cactus trees, it follows that
directed path-width is not bounded for directed cactus trees.

As all directed cactus trees are directed cactus forests, it follows directly:

Corollary 5.1.14. Directed cactus forests have unbounded directed path-width.

This is not true for directed strong or weak pseudoforests. As complete biori-
entations of binary trees are no directed pseudoforests, neither strong or weak, as
they consist of only one strongly connected component, but contain lots of cycles,
the counterexample from the proof of Theorem 5.1.13 does not work here. Further,
it holds that this graph class has bounded directed path-width:

Theorem 5.1.15. Directed strong pseudoforests have directed path-width at most 1.

Proof. Let G = (V,E) be a directed strong pseudoforest. Every strong component has
at least size one, so the smallest strong components could be single vertices. Let C be
a strongly connected component of G. As G is a pseudoforest, C is exactly a directed
cycle. For every directed cycle C = {c1, . . . , cr} with arcs (ci, ci+1) for 1 ≤ i ≤ r − 1
and (cr, c1) we give a directed path-decomposition as follows: For the cycle with r = 1
vertex a path-decomposition consists of only one bag, which only contains this single
vertex. This is obviously a directed path-decomposition of width 0. For cycles with
r > 1 vertices, we construct X1, . . . , Xr−1 with X1 = {c1, c2}, X2 = {c1, c3}, . . . ,
Xr−1 = {c1, cr}. Then X = (X1, . . . , Xr−1) is a directed path-decomposition of C
of width 1. As each strong component of G has directed path-width at most 1, by
Lemma 3.2.8 the digraph G also has directed path-width at most 1.

Since the proof of Lemma 3.2.8 using the results of [GR18] is constructive, we
even can give a directed path-decomposition of width 1 for every (not strongly con-
nected) directed pseudoforest. As directed strong pseudoforests are a superclass of
weak pseudoforests and directed weak pseudoforests are a superclass of directed pseu-
dotrees, it follows directly:

5.1. TREE-LIKE DIGRAPHS 73

Corollary 5.1.16. Directed weak pseudoforests and directed pseudotrees have directed
path-width at most 1.

5.1.4 Directed Tree-Width of Tree-like Digraphs

Theorem 5.1.17. Directed cactus forest have directed tree-width at most 1.

Remark 5.1.18. Every strong component of a directed cactus forest G consists of r
cycles C1, . . . , Cr such that for every Ci, 1 ≤ i ≤ r, there is a Cj with i 6= j, 1 ≤ j ≤ r
such that Ci and Cj have exactly one joint vertex. Further, there is a Ci, 1 ≤ i ≤ r
such that there is exactly one other cycle Cj with i 6= j, 1 ≤ j ≤ r such that Ci and
Cj have exactly one joint vertex.

Proof of Theorem 5.1.17. Let G be a directed cactus forest. By Lemma 3.3.11, the
directed tree-width of G is the maximum directed tree-width of the strong components
of G. So we only need to consider the strong components of G. Let G′ be a strong
component of G. By Remark 5.1.18, G′ consists of r cycles C1, . . . , Cr and there is a
Ci, 1 ≤ i ≤ r such that there is exactly one other cycle Cj with i 6= j, 1 ≤ j ≤ r such
that Ci and Cj have exactly one joint vertex. To give a directed tree-decomposition
(T,X ,W) for the strong component of G, we start with a vertex of this Ci. A directed
tree decomposition of a cycle Ci = {ci,1, . . . , ci,`} is always given by a path T and bags
Wi,t = {ci,t} for all 1 ≤ t ≤ ` and edge sets X(ci,t,ci,t+1) = {ci,t}. Since the order of the
vertices in Ci is not unique, our construction leads to a directed tree-decomposition
for any order of the vertices in Ci. So we can start with any vertex in Ci and create
a directed tree-decomposition for this cycle.

By Remark 5.1.18, there is at least one cycle Cj , i 6= j, 1 ≤ j ≤ r which has a
joint vertex with Ci. So for Cj = {cj,1, . . . , cj,k} there is some ci,q, 1 ≤ q ≤ ` such that
cj,1 = ci,q. (Without loss of generality order Cj in a way such that cj,1 is the joint
vertex with Ci.) Then append the vertices of Cj to the directed tree-decomposition
by creating new bags Wj,t = {cj,t} for all 1 < t ≤ k and edges X(cj,t,cj,r) = {ci,t} for
2 ≤ i < k, 2 < r ≤ k and X(cj,1,cj,2) = X(ci,q ,cj,2) = {ci,q} = {cj,1}.

By Remark 5.1.18 and as of course the strong components of G are strongly
connected, there is always a next cycle to insert in the same way somewhere in the
tree structure T of our tree-decomposition, till all vertices of the strong component
are in a bag of the directed tree-decomposition (T,X ,W). It remains to show that
(T,X ,W) really is a directed tree-decomposition of width 1 for a strong component
of G:

(dtw-1) W = {Wr | r ∈ VT } is a partition of VG into nonempty subsets. As already
said, all vertices of G are inserted one by one in bagsW by the fact that they
are all strongly connected and share a vertex with another cycle. Further,
no vertex occurs twice, as in a cactus forest all cycles share at most one joint
vertex, and this joint vertex is not added a second time in a W -set.

(dtw-2) For every (u, v) ∈ ET the set
⋃
{Wr | r ∈ VT , v ≤ r} is X(u,v)-normal. Let

(u, v) ∈ ET . Then it holds, by the de�nition of T that there is a cycle

74 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Cj in G such that (u, v) = (cj,t, cj,t+1) for cj,t, cj,t+1 are elements of the
cycle Cj = (Cj,1, . . . , Cj,k). Further, it holds that X(u,v) = {cj,t}. By the
de�nition of (T,X ,W) the set

⋃
{Wr | r ∈ VT , v ≤ r} consists of a number

of cycles, lets say Cj+1, . . . , Cr and the vertices {cj,t+1, . . . , cj,k}. As any
to cycles in G have at most one vertex in common, it is not possible that
there is an arc from one of those cycles to one of the cycles in C1, . . . , Cj−1,
as this would create a big cycle including lots of vertices and edges from
the cycles this arc would connect. So the only way to get a path from⋃
{Wr | r ∈ VT , v ≤ r} out and back in this set is by using the cycle Cj . It

follows that in G′−X(u,v) = G′−{cj,t} there is no path out and back in the
set
⋃
{Wr | r ∈ VT , v ≤ r}, which means that this set is X(u,v)-normal.

It further holds that Wr∪
⋃
e∼rXe = {cj,t}∪{cj,t}∪{cj,t−1} = {cj,t, cj,t+1} for all Wr

for some Cj cycle of G′ and t > 1. It then follows that maxr∈VT |Wr ∪
⋃
e∼rXe|− 1 =

2−1 = 1, so the directed tree-decomposition (T,X ,W) of G′ has width 1. It therefore
follows that each strong component of G has directed tree-width at most 1, so G has
directed tree-width at most 1.

Since the proof of Lemma 3.3.11 using the results of [GR18] is constructive, we
even can give a directed tree-decomposition of width 1 for every (not strongly con-
nected) directed cactus forest.

As directed pseudoforests and directed cactus trees are both subclasses of directed
cactus forests, we can conclude the following corollaries. The �rst statement also
follows by Theorem 5.1.15, as the directed tree-width of a graph is always smaller or
equal to the directed path-width of this graph [GR18].

Corollary 5.1.19. Directed strong/weak pseudoforests have directed tree-width at
most 1.

Corollary 5.1.20. Directed cactus trees have directed path-width at most 1.

The other direction of Theorem 5.1.17 does not hold true. There are graphs
of directed tree-width 1 which are not directed cactus forests, as for example their
forbidden directed graph minor D3. This graph has directed path-width 1 by the
directed path-decomposition X = (X1, X2) with X1 = {a, c} and X2 = {b, c}. It then
follows that it also has directed tree-width at most 1 and as it includes a cycle, it has
directed tree-width exactly 1.

5.1.5 Conclusion and Outlook

We now introduced directed cactus trees (DCT) and forests (DCF), directed pseu-
dotrees (DPT) and directed strong (DSPF) and weak pseudoforests (DWPF). We
could prove that DCF, DSPF, and DWPF can be characterized by at most three for-
bidden digraph minors, using a graph minor operation for which directed path-width
is monotone. Furthermore, we showed that DCF and its subclasses have directed tree-
width at most 1 and DSPF, DCT and their subclasses even have directed path-width
at most 1.

5.2. DIRECTED CO-GRAPHS 75

We also considered an oriented version of Halin graphs by connecting the leaves
within a planar embedding of an out-tree in their clockwise ordering. This leads to
a subclass of DWPF as well as DAGs. But these graphs can not be closed under
directed minor operations, as they are not even closed under the subgraph operation.

In the paper [GR19b], we wrote that our results should be a �rst step on the way
to �nd forbidden directed graph minors for the classes of directed tree-width at most
1 and classes of directed path-width at most 1. The latter have already been proven
to have a countable number of forbidden directed graph minors [KZ15], but these
minors could not be found yet. Finding them could be an issue of future work, as
well as checking if there is a countable number of forbidden digraph minors for the
set of digraphs of directed tree-width at most 1 and to �nd them.

Note that since then there has been some further works to characterize the class
of digraphs oft directed tree-widht at most 1 in [Wie20]. There, this matter could be
solved using hypergraphs.

5.2 Directed Co-Graphs

As undirected co-graphs have already been introduced in the 1970s, there has been
a lot of research on this graph class right now. Regarding graph parameters, a very
important result has been presented by Bodlaender and Möhring in [BM90, BM93].
There, the authors show that tree-width and path-width are computable in linear
time on co-graphs and further, both parameters are equal for each co-graph.

This leads to the question, if that result is expandable to a directed version of
co-graphs. As already mentioned before, there has been many attempts to give di-
rected versions of path-width and tree-width. We will therefore not only consider
directed path-width and directed tree-width, but also other directed graph param-
eters. We consider the parameters directed path-width(d-pw), directed tree-width
(d-tw), directed feedback vertex set number (fvs), directed feedback arc set number
(fas), cycle rank (cr), DAG-depth (ddp), DAG-width (dagw) and Kelly-width (kw).
As also mentioned before, the minimization problem for these parameters is generally
NP-hard. We will now show that this is not true on directed co-graphs.

We therefore show useful properties of the width measures decompositions. The
bidirectional complete subdigraph and bidirectional complete bipartite subdigraph
lemmas give tight connections between such subdigraphs and the bags in decomposi-
tions of the considered digraph. These properties allow us to show how the measures
can be computed for the disjoint union, order composition, and series composition
of two directed graphs. Our proofs are constructive, i.e. a decomposition can be
computed from a given co-expression.

Our results imply that for every directed co-graph G, we have

kw(G)− 1 ≤ d-pw(G) = d-tw(G) = cr(G) = dagw(G)− 1 ≤ fvs(G) ≤ fas(G) (5.3)

and
dagw(G) ≤ ddp(G). (5.4)

76 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

We thereby give linear time solutions to compute these width parameters for
the disjoint union, series composition and for the order composition of two directed
graphs. This leads to a constructive linear-time-algorithm for computing the width
as well as the according decompositions of a directed co-graph. This works for all
parameters in (5.3) and (5.4) except for Kelly-width, which does not allow a simple
method for the series operation of two digraphs. Furthermore, we obtain that for
directed co-graphs Kelly-width can be bounded by DAG-width (Theorem 5.2.34).
Due to [HK08, Conjecture 30], [AKK+15], and [BJG18, Section 9.2.5] this question
remains open for general digraphs.

For most of the parameters, we could even expand the algorithms to extended
directed co-graphs, which are an extension of the directed co-graphs de�ned in [CP06]
by an additional transformation considered in [JRST01b].

We thus prove that many directed width measures are linearly computable on the
special class of directed co-graphs. As directed co-graphs have many applications,
this is very helpful to use FPT-algorithms with those directed width measures as
parameter in these cases.

This section presents the results of [GR18, GKR19a, GKR21b]. Huge parts of the
following section are taken from [GKR21b].

5.2.1 Recursively de�ned Digraphs

Operations and Transformations

Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex-disjoint digraphs. The following
operations have already been considered by Bechet et al. in [BdGR97].

� The disjoint union of G1 and G2, denoted by G1⊕G2, is the digraph with vertex
set V1 ∪ V2 and arc set E1 ∪ E2.

� The series composition of G1 and G2, denoted by G1 ⊗G2, is de�ned by their
disjoint union plus all possible arcs between vertices of G1 and G2.

� The order composition of G1 and G2, denoted by G1 � G2, is de�ned by their
disjoint union plus all possible arcs from vertices of G1 to vertices of G2.

The following transformation has already been considered by Johnson et al. in
[JRST01b] and generalizes the operations disjoint union and order composition.

� A graph G is obtained by a directed union of G1 and G2, denoted by G1	G2, if
G is a subdigraph of the order composition of G1�G2 and contains the disjoint
union G1 ⊕G2 as a subdigraph.

Please note that the directed union is not unique and thus no operation.

5.2. DIRECTED CO-GRAPHS 77

D1 D2 D3 D4

D5 D6 D7 D8

Figure 5.2: The forbidden subdigraphs for directed co-graphs

Directed co-graphs

We recall the de�nition of directed co-graphs from [CP06].

De�nition 5.2.1 (Directed co-graphs, [CP06]). The class of directed co-graphs is
recursively de�ned as follows.

(i) Every digraph on a single vertex ({v}, ∅), denoted by •, is a directed co-graph.

(ii) If G1 and G2 are vertex-disjoint directed co-graphs, then

(a) the disjoint union G1 ⊕G2,

(b) the series composition G1 ⊗G2, and

(c) the order composition G1 �G2 are directed co-graphs.

By this de�nition we conclude that for every directed co-graph G = (V,E) the
underlying undirected graph und(G) is a co-graph. On the other hand, not every
orientation of an undirected co-graph is a directed co-graph.

In [CP06] it has been shown that directed co-graphs can be characterized by eight
forbidden induced subdigraphs. Those digraphs are shown in Figure 5.2.

Obviously, for every directed co-graph we can de�ne a binary tree structure, de-
noted as di-co-tree. The leaves of the di-co-tree represent the vertices of the graph and
the inner nodes of the di-co-tree correspond to the operations applied on the subex-
pressions de�ned by the subtrees. For every directed co-graph one can construct a
di-co-tree in linear time, see [CP06].

Using the di-co-tree a lot of hard problems have been shown to be solvable in
polynomial time when restricted to directed co-graphs [Gur17].

Lemma 5.2.2. For a digraph G the following properties hold.

1. Digraph G is a directed co-graph if and only if digraph G is a directed co-graph.

2. Digraph G is a directed co-graph if and only if digraph Gc is a directed co-graph.

78 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Proof. We sketch the proof by a simple modi�cation of the directed co-graph expres-
sion of G.

1. Let X be a directed co-graph expression for digraph G. We can get G given by
an expression X ′ by modifying X as follows. Every directed union in X is a
series composition in X ′ and every series composition in X is a disjoint union
in X ′. Further if X1 �X2 in X, we change this into X2 �X1 in X ′.

2. Let X be a directed co-graph expression for digraph G. We can get Gc given
by an expression X ′ by modifying X as follows. For every X1 � X2 in X, we
change this into X2 �X1 in X ′. The rest remains as in X.

Extended directed co-graphs

Since the directed union generalizes the disjoint union and also the order composition,
we can generalize the class of directed co-graphs as follows.

De�nition 5.2.3 (Extended directed co-graphs). The class of extended directed co-
graphs is recursively de�ned as follows.

(i) Every digraph on a single vertex ({v}, ∅), denoted by •, is an extended directed
co-graph.

(ii) If G1 and G2 are vertex-disjoint extended directed co-graphs, then

(a) every directed union G1 	G2 and

(b) the series composition G1 ⊗G2 are extended directed co-graphs.

Also for every extended directed co-graph we can de�ne a tree structure, denoted
as ex-di-co-tree. The leaves of the ex-di-co-tree represent the vertices of the graph
and the inner nodes of the ex-di-co-tree correspond to the operations applied on the
subexpressions de�ned by the subtrees. For the class of extended directed co-graphs
it remains open how to compute an ex-di-co-tree.

By applying the directed union, which is not a disjoint union and an order compo-
sition, we can obtain digraphs whose complement digraph is not an extended directed
co-graph. An example for this leads the directed path on 3 vertices

−→
P3. Thus, we only

can carry over one of the two results shown in Lemma 5.2.2 to the class of extended
directed co-graphs.

Lemma 5.2.4. Let G be some digraph. Digraph G is an extended directed co-graph
if and only if digraph Gc is an extended directed co-graph.

Proof. Let X be an expression using extended directed co-graph operations for G. We
can get Gc given by an expression X ′ by modifying X as follows. For every X1 	X2

in X, we change this into X2 	X1 in X ′. The rest remains as in X.

5.2. DIRECTED CO-GRAPHS 79

Oriented Co-Graphs

Oriented colorings are de�ned on oriented graphs, which are digraphs with no bidi-
rected edges. Therefore we introduce oriented co-graphs by omitting the series oper-
ation from the de�nition of directed co-graphs, as given in [BdGR97]

De�nition 5.2.5 (Oriented Co-Graphs). The class of oriented co-graphs is recursively
de�ned as follows.

1. Every digraph on a single vertex ({v}, ∅), denoted by •, is an oriented co-graph.

2. If G1, G2 are k vertex-disjoint oriented co-graphs, then

(a) G1 ⊕G2 and

(b) G1 �G2 are oriented co-graphs.

The class of oriented co-graphs was already analyzed by Lawler in [Law76] and
[CLSB81, Section 5] using the notation of transitive series parallel (TSP) digraphs.
A digraph G = (V,A) is called transitive, if for every pair (u, v) ∈ A and (v, w) ∈ A
of arcs with u 6= w the arc (u,w) also belongs to A.

Theorem 5.2.6 ([CLSB81]). A graph G is a co-graph if and only if there exists an
orientation G′ of G, such that G′ is an oriented co-graph.

A di-co-tree T of an oriented co-graph is canonical if on every path from the root
to the leaves of T , the labels disjoint union and order operation strictly alternate.
Since the disjoint union ⊕ and the order composition � are associative, we always
can assume canonical di-co-trees.

Lemma 5.2.7. Let G be an oriented co-graph and T be a di-co-tree for G. Then, T
can be transformed in linear time into a canonical di-co-tree for G.

The recursive de�nitions of oriented and undirected co-graphs lead to the following
observation.

Observation 5.2.8. For every oriented co-graph G the underlying undirected graph
und(G) is a co-graph.

The reverse direction of this observation only holds under certain conditions, see
Theorem 5.2.10. By

←→
P2 = ({v1, v2}, {(v1, v2), (v2, v1)}) we denote the complete biori-

entation of a path on two vertices.

Lemma 5.2.9. Let G be a digraph, such that G ∈ Free({
←→
P2 , D1, D6}). Then, it holds

that G is transitive.

Proof. Let (u, v), (v, w) ∈ A be two arcs of G = (V,A). Since G ∈ Free({
←→
P2}), we

know that (v, u), (w, v) 6∈ A. Further, since G ∈ Free({D1, D6}), we know that u and
w are connected either only by (u,w) ∈ A or by (u,w) ∈ A and (w, u) ∈ A, which
implies that G is transitive.

80 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Oriented co-graphs can be characterized by forbidden subdigraphs as follows.

Theorem 5.2.10. Let G be a digraph. The following properties are equivalent:

1. G is an oriented co-graph.

2. G ∈ Free({D1, D6, D8,
←→
P2}).

3. G ∈ Free({D1, D6,
←→
P2}) and und(G) ∈ Free({P4}).

4. G ∈ Free({D1, D6,
←→
P2}) and und(G) is a co-graph.

5. G has directed NLC-width 1 and G ∈ Free({
←→
P2}).

6. G has directed clique-width at most 2 and G ∈ Free({
←→
P2}).

7. G is transitive and G ∈ Free({
←→
P2 , D8}).

Proof. (1) ⇒ (2) If G is an oriented co-graph, then G is a directed co-graph and by

[CP06] it holds that G ∈ Free({D1, . . . , D8}). Furthermore, G ∈ Free({
←→
P2}) because

of the missing series composition. This leads to G ∈ Free({D1, D6, D8,
←→
P2}).(2)⇒ (1)

If G ∈ Free({D1, D6, D8,
←→
P2}), then G ∈ Free({D1, . . . , D8}) and is G a directed co-

graph.Since G ∈ Free({
←→
P2}), there is no series operation in any construction of G

which implies that G is an oriented co-graph. (3)⇔ (4) Since co-graphs are precisely
the P4-free graphs [CLSB81]. (2)⇒ (7) By Lemma 5.2.9. (7)⇒ (2) If G is transitive,
then G ∈ Free({D1, D6}).(1) ⇔ (5) and (1) ⇔ (6) By [GWY16]. (1)&(2) ⇒ (4) By
Observation 5.2.8. (3)⇒ (2) If und(G) does not contain a P4, then G can not contain
any orientation of P4.

Among others are two subclasses of oriented co-graphs, which will be of interest
within our results. By restricting within De�nition 5.2.5 (2) to k = 2 and graph G1 or
G2 to an edgeless graph or to a single vertex, we obtain the class of all oriented simple
co-graphs or oriented threshold graphs, respectively. The class of oriented threshold
graphs has been introduced by Boeckner in [Boe18].

5.2.2 Directed width parameters and digraph operations

We will now regard how di�erent directed width parameters behave regarding the
above mentioned digraph operations and transformation. These results can then be
used to extend Bodlaender and Möhrings results on undirected graphs to directed
graphs and show, that several directed graph parameters are computable in lin-
ear/polynomial time on directed co-graphs and further, that some directed graph
parameters are equal on directed co-graphs.

5.2. DIRECTED CO-GRAPHS 81

Directed path-width

In order to prove our main results, we show some properties of directed path-decompo-
sitions. Similar results are known for undirected path-decompositions and are useful
within several places.

Lemma 5.2.11 ([YC08]). Let G be some digraph and H be a subdigraph of G, then
d-pw(H) ≤ d-pw(G).

Lemma 5.2.12 (Bidirectional complete subdigraph). Let G = (V,E) be some di-
graph, G′ = (V ′, E′) with V ′ ⊆ V be a bidirectional complete subdigraph, and (X1, . . . , Xr)
a directed path-decomposition of G. Then, there is some i, 1 ≤ i ≤ r, such that
V ′ ⊆ Xi.

Proof. We show the claim by an induction on |V ′|. If |V ′| = 1 then by (dpw-1) there
is some i, 1 ≤ i ≤ r, such that V ′ ⊆ Xi. Next, suppose |V ′| > 1 and v ∈ V ′. By
our induction hypothesis there is some i, 1 ≤ i ≤ r, such that V ′ − {v} ⊆ Xi. By
(dpw-3) there are two integers r1 and r2, 1 ≤ r1 ≤ r2 ≤ r, such that v ∈ Xj for all
r1 ≤ j ≤ r2. If r1 ≤ i ≤ r2 then V ′ ⊆ Xi. Further, suppose that i < r1 or r2 < i. If
i < r1, we de�ne j′ = r1 and if i > r2, we de�ne j′ = r2. We now show that V ′ ⊆ Xj′ .
Let w ∈ V ′ \ {v}. Since there are two arcs (v, w) and (w, v) in E, by (dpw-2) there
is some r1 ≤ j′′ ≤ r2 such that v, w ∈ Xj′′ . By (dpw-3) we conclude w ∈ Xj′ . Thus,
V ′ \ {v} ⊆ Xj′ and {v} ⊆ Xj′ , i.e. V ′ ⊆ Xj′ .

Lemma 5.2.13 (Bidirectional complete bipartite subdigraph). Let G = (V,E) be a
digraph and (X1, . . . , Xr) a directed path-decomposition of G. Further, let A,B ⊆ V ,
A ∩B = ∅, and {(u, v), (v, u) | u ∈ A, v ∈ B} ⊆ E. Then, there is some i, 1 ≤ i ≤ r,
such that A ⊆ Xi or B ⊆ Xi.

Proof. Suppose that B 6⊆ Xi for all 1 ≤ i ≤ r. Then, there are b1, b2 ∈ B and
i1,`, i1,r, i2,`, i2,r, 1 ≤ i1,` ≤ i1,r < i2,` ≤ i2,r ≤ r, such that {i | b1 ∈ Xi} =
{i1,`, . . . , i1,r} and {i | b2 ∈ Xi} = {i2,`, . . . , i2,r} (and both sets are disjoint). Let
a ∈ A. Since (b2, a) ∈ E there is some i2,` ≤ i ≤ r such that a ∈ Xi and since
(a, b1) ∈ E there is some 1 ≤ j ≤ i1,r such that a ∈ Xj . By (dpw-3) it is true that
a ∈ Xk for every i1,r ≤ k ≤ i2,`.

If we suppose A 6⊆ Xi for all 1 ≤ i ≤ r, it follows that b ∈ Xk for every i1,r ≤ k ≤
i2,`.

Lemma 5.2.14. Let X = (X1, . . . , Xr) be a directed path-decomposition of some
digraph G = (V,E). Further, let A,B ⊆ V , A ∩ B = ∅, and {(u, v), (v, u) | u ∈
A, v ∈ B} ⊆ E. If there is some i, 1 ≤ i ≤ r, such that A ⊆ Xi then there are
1 ≤ i1 ≤ i2 ≤ r such that

1. for all i, i1 ≤ i ≤ i2 is A ⊆ Xi,

2. B ⊆ ∪i2i=i1Xi, and

82 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

3. X ′ = (X ′i1 , . . . , X
′
i2

) where X ′i = Xi ∩ (A ∪ B) is a directed path-decomposition
of the digraph induced by A ∪B.

Proof. Let i1 = min{i | A ⊆ Xi} and i2 = max{i | A ⊆ Xi}. Since X satis�es
(dpw-3), statement (1.) holds.

Since there is some i, 1 ≤ i ≤ r, such that A ⊆ Xi, we know that X = (X1, . . . , Xr)
is also a directed path-decomposition of G′ = (V,E′) where E′ = E ∪ {(u, v) | u, v ∈
A, u 6= v}. For every b ∈ B the digraph with vertex set {b} ∪ A is bidirectional
complete subdigraph of G′ which implies by Lemma 5.2.12 that there is some i,
i1 ≤ i ≤ i2 such that A ∪ {b} ⊆ Xi. Thus, there is some i, i1 ≤ i ≤ i2 such that
b ∈ Xi which leads to (2.).

In order to show (3.) we observe that for the sequence X ′ = (X ′i1 , . . . , X
′
i2

)
condition (dpw-1) holds by (1.) and (2.).

By (1.) and (2.) the arcs between two vertices from A and the arcs between a
vertex from A and a vertex from B satisfy (dpw-2). So let (b′, b′′) ∈ E such that
b′, b′′ ∈ B. By (2.) we know that b′ ∈ Xi and b′′ ∈ Xj for i1 ≤ i, j ≤ i2. If j < i then
by (dpw-3) for X there is some Xj′ , j′ > i2 such that b′′ ∈ Xj′ but by (dpw-3) for X
is b′′ ∈ Xi.

Further, X ′ satis�es (dpw-3) since X satis�es (dpw-3).

Theorem 5.2.15. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint di-
graphs, then the following properties hold.

1. d-pw(•) = 0

2. d-pw(G⊕H) = max{d-pw(G), d-pw(H)}

3. d-pw(G�H) = max{d-pw(G), d-pw(H)}

4. d-pw(G	H) = max{d-pw(G), d-pw(H)}

5. d-pw(G⊗H) = min{d-pw(G) + |VH |, d-pw(H) + |VG|}

Proof. 1. d-pw(•) = 0 holds by a simple directed path-decomposition.

2. In order to show d-pw(G ⊕ H) ≤ max{d-pw(G), d-pw(H)} we consider a di-
rected path-decomposition (X1, . . . , Xr) for G and a directed path-decomposition
(Y1, . . . , Ys) for H. Then (X1, . . . , Xr, Y1, . . . , Ys) leads to a directed path-decom-
position of G⊕H.

Since G and H are induced subdigraphs of G⊕H, by Lemma 5.2.11 the directed
path-width of both digraphs leads to a lower bound on the directed path-width for
the combined digraph.

3. By the same arguments as used for 2.

4. By the same arguments as used for 2.

5.2. DIRECTED CO-GRAPHS 83

5. In order to show d-pw(G ⊗ H) ≤ d-pw(G) + |VH | let (X1, . . . , Xr) be a directed
path-decomposition of G. Then, we obtain by (X1 ∪ VH , . . . , Xr ∪ VH) a directed
path-decomposition of G⊗H. In the same way a directed path-decomposition ofH
leads to a directed path-decomposition of G⊗H which implies that d-pw(G⊗H) ≤
d-pw(H) + |VG|. Thus, d-pw(G⊗H) ≤ min{d-pw(G) + |VH |, d-pw(H) + |VG|}.
For the reverse direction let X = (X1, . . . , Xr) be a directed path-decomposition
of G ⊗ H. By Lemma 5.2.13 we know that there is some i, 1 ≤ i ≤ r, such
that VG ⊆ Xi or VH ⊆ Xi. We assume that VG ⊆ Xi. We apply Lemma 5.2.14
using G ⊗ H as digraph, A = VG and B = VH in order to obtain a directed
path-decomposition X ′ = (X ′i1 , . . . , X

′
i2

) for G ⊗ H where for all i, i1 ≤ i ≤ i2,

it holds that VG ⊆ Xi and VH ⊆ ∪i2i=i1Xi. Further, X ′′ = (X ′′i1 , . . . , X
′′
i2

), where
X ′′i = X ′i ∩ VH is a directed path-decomposition of H. Thus, there is some i,
i1 ≤ i ≤ i2, such that |Xi ∩ VH | ≥ d-pw(H) + 1. Since VG ⊆ Xi, we know that
|Xi∩VH | = |Xi|−|VG| and |Xi| ≥ |VG|+d-pw(H)+1. Thus, the width of directed
path-decomposition (X1, . . . , Xr) is at least d-pw(H) + |VG|.
If we assume that VH ⊆ Xi it follows that the width of directed path-decomposition
(X1, . . . , Xr) is at least d-pw(G) + |VH |.
This shows the statements of the theorem.

Directed tree-width

In order to show our main results, we �rst show some properties of directed tree-
decompositions.

Lemma 5.2.16 (Bidirectional complete subdigraph). Let (T,X ,W), T = (VT , ET),
where rT is the root of T , be a directed tree-decomposition of some digraph G = (V,E)
and G′ = (V ′, E′) with V ′ ⊆ V be a bidirectional complete subdigraph. Then, V ′ ⊆
WrT or there is some (r, s) ∈ ET , such that V ′ ⊆Ws ∪X(r,s).

Proof. First, we choose a vertex s in VT , such that Ws ∩ V ′ 6= ∅ but for every vertex
s′ such that s < s′ it holds that Ws′ ∩ V ′ = ∅.

Next, we show that Ws leads to a set which shows the statement of the lemma. If
s is the root of T , thenWs′ ∩V ′ 6= ∅ for none of its successors s′ in T i.e. Ws′ ∩V ′ = ∅
for all of its successors s′ in T , which implies by (dtw-1) that V ′ ⊆ Ws. Otherwise,
let r be the predecessor of s in T . If V ′ ⊆ Ws the statement is true. Otherwise, let
c ∈ V ′ \Ws and c′ ∈ V ′ ∩Ws. Then, (c, c′) ∈ E and (c′, c) ∈ E implies that c ∈ X(r,s)

by (dtw-2), since otherwise (c′, c, c′) is a directed walk in G−X(r,s) with �rst and last
vertex c′ ∈W≥s that uses a vertex of G− (X(r,s) ∪W≥s), namely c.

Lemma 5.2.17 (Bidirectional complete bipartite subdigraph). Let G = (V,E) be
some digraph, (T,X ,W), T = (VT , ET), where rT is the root of T , be a directed tree-
decomposition of G. Further, let A,B ⊆ V , A∩B = ∅, and {(u, v), (v, u) | u ∈ A, v ∈
B} ⊆ E. Then, A∪B ⊆WrT or there is some (r, s) ∈ ET , such that A ⊆Ws ∪X(r,s)

or B ⊆Ws ∪X(r,s).

84 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Proof. Similar as in the proof of Lemma 5.2.16 we can �nd a vertex s in VT , such
that Ws ∩ (A ∪B) 6= ∅ but for every vertex s′ with s < s′ holds Ws′ ∩ (A ∪B) = ∅.

If s is the root of T , then Ws′ ∩ (A ∪ B) 6= ∅ for none of its successors s′ in T ,
i.e. Ws′ ∩ (A ∪B) = ∅ for all of its successors s′ in T , which implies by (dtw-1) that
A ∪B ⊆Ws.

Otherwise, let r be the predecessor of s in T . If A ∪ B ⊆ Ws the statement is
true. Otherwise, we know that either there is some a ∈ A ∩Ws and b ∈ B \Ws or
a ∈ A \Ws and b ∈ B ∩Ws.

We assume that there is some a ∈ A ∩Ws and b ∈ B \Ws. Then, (a, b) ∈ E and
(b, a) ∈ E implies that b ∈ X(r,s) by (dtw-2). Thus, we have shown B ⊆Ws ∪X(r,s).

If we assume that there some b ∈ B such that b ∈ Ws, we conclude A ⊆ Ws ∪
X(r,s).

Lemma 5.2.18. Let G = (V,E) be a digraph of directed tree-width at most k, such
that there is a 2-partition (V1, V2) of V with V1 6= ∅, V2 6= ∅ and {(u, v), (v, u) | u ∈
V1, v ∈ V2} ⊆ E. Let (T,X ,W), T = (VT , ET) be a directed tree-decomposition of
width k for G with |W | ≤ 1 for all W ∈ W. Then, it holds that either

(i) ∀t ∈ VT with Wt ⊆ V1: |Wt ∪
⋃
e∼tXe ∪ V2| ≤ k

(ii) ∀t ∈ VT with Wt ⊆ V2: |Wt ∪
⋃
e∼tXe ∪ V1| ≤ k

To prove this Lemma we �rst need some claims. Therefore, let G = (V,E) be a
digraph as in the statement of the Lemma.

Claim 5.2.19. If (T,X ,W) has width |V | − 1, for all t ∈ VT it holds that |Wt ∪⋃
e∼tXe ∪ V2 ∪ V1| ≤ |V | − 1 = k.

By this claim, the Lemma holds true for k = |V | − 1. So in all further claims we
assume that the width k of (T,X ,W) is smaller than |V | − 1.

We further assume w.l.o.g. that for all leafs ` of T , W` 6= ∅.
Claim 5.2.20. For k < |V |−1 every vertex s ∈ VT withW>s∩V1 6= ∅ andW>s∩V2 6= ∅
has exactly one successor t such that W≥t ∩ V1 6= ∅ and W≥t ∩ V2 6= ∅. It further
holds that W>s \W≥t ⊆ V1 or W>s \W≥t ⊆ V2.

Proof. We show this Claim in two steps.

� We �rst show that s has at most one successor t, such that W≥t ∩ V1 6= ∅
and W≥t ∩ V2 6= ∅. Assume that s has two successors t1 and t2 such that
W≥t1 ∩V1 6= ∅ and W≥t1 ∩V2 6= ∅ and W≥t2 ∩V1 6= ∅ and W≥t2 ∩V2 6= ∅. Then,
it holds that V \W≥t1 ⊆ X(s,t1) and V \W≥t2 ⊆ X(s,t2). As W≥t1 ∩W≥t2 = ∅ it
follows that V \W≥t1 ∪ V \W≥t2 = V and thus Ws ∪

⋃
e∼sXe = V . Then the

resulting width of (T = (VT , ET),X ,W) is |V | − 1 which is a contradiction to
the assumption that the width k < |V | − 1.

� We now show that s has at least one successor t, such that W≥t ∩ V1 6= ∅ and
W≥t∩V2 6= ∅. Assume that for all successors t of s it holds that eitherW≥t ⊆ V1

5.2. DIRECTED CO-GRAPHS 85

or W≥t ⊆ V2. As W>s ∩ V1 6= ∅ and W>s ∩ V2 6= ∅ there exist successors t1, t2
of s such that W≥t1 ⊆ V1 and W≥t2 ⊆ V2. Then, it holds that V2 ⊆ X(s,t1) and
V1 ⊆ X(s,t2) and thus, that V ⊆ Ws ∪

⋃
e∼sXe. Then, the resulting width of

(T = (VT , ET),X ,W) is |V |−1 which is a contradiction to the assumption that
the width k < |V | − 1.

As we have now proven that there is exactly one successor t such that W≥t ∩ V1 6= ∅
andW≥t∩V2 6= ∅, for all other successors ti of s it holds thatW≥ti ⊆ V1 orW≥ti ⊆ V2.
But by the same argumentation as in the second bullet point, if there are successors ti
and tj of s such that W≥ti ⊆ V1 and

⋃
t̃≥tj Wt̃ ⊆ V2, it would follow that k = |V | − 1.

As this is a contradiction we can conclude thatW>s\W≥t ⊆ V1 orW>s\W≥t ⊆ V2.

Claim 5.2.21. Assume that k < |V | − 1. Let L ⊆ VT be the set of all leaves ` of T
and L =

⋃
`∈LW`, such that for the directed path (u1, . . . , uq) starting at root u1 and

ending with leaf ` = uq it holds that
⋃

1≤i≤qWui ∩ V1 6= ∅ and
⋃

1≤i≤qWui ∩ V2 6= ∅
and ∀ui, 1 ≤ i ≤ q:

� W≥ui\W≥ui+1 ⊆ V1 or

� W≥ui\W≥ui+1 ⊆ V2.

Then L 6= ∅ and it holds that either L ⊆ V1 or L ⊆ V2.

Proof. We search set L by traversing T starting at the root and choosing all possible
paths to leafs that ful�ll the conditions above.
Let u1 be the root of T . Obviously, it holds that W≥u1 ∩ V1 6= ∅ and W≥u1 ∩ V2 6= ∅.
For all ui with only one successor we choose this successor ui+1.
By Claim 5.2.20 for every ui with more than one successor and W≥ui ∩ V1 6= ∅ and
W≥ui∩V2 6= ∅ there is exactly one successor t such thatW≥t∩V1 6= ∅ andW≥t∩V2 6= ∅.
In this case we take this t as ui+1.
For ui with W≥ui ∩ V1 6= ∅ or W≥ui ∩ V2 6= ∅ it holds that W≥ui ⊆ V1 or W≥ui ⊆ V2.
Then, we choose all paths from this ui to any following leaf and add this leaf to L.
Then, it holds that L ⊆ V1 or L ⊆ V2 and by construction for every ` ∈ L it holds
that for the path (u1, . . . , uq) from the root to ` it holds that ∀ui, 1 ≤ i ≤ q:

� W≥ui\W≥ui+1 ⊆ V1 or

� W≥ui\W≥ui+1 ⊆ V2,

as we always choose the path containing vertices of V1 and V2, until only vertices from
one of the sets are left. By Claim 5.2.20 this path is unique. Further, L 6= ∅ holds
since by construction at least one path, as described above, must exist. And as we
can assume that there are no leafs with empty bags in T , it follows that L 6= ∅.

In Claim 5.2.20 and Claim 5.2.21 we restricted the structure of the decomposition
tree. But this does not su�ce to prove the Lemma, we need further restrictions. As
we cannot simply exclude this structures as we could in Claims 5.2.20 and 5.2.21, we
give a way to transform the decomposition, such that the new decomposition tree
ful�ls more structural characteristics.

86 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Claim 5.2.22. Let k < |V | − 1. We can assume that for (T,X ,W) it holds that
if L ⊆ V1 (L ⊆ V2 respectively), then all Ws ⊆ V1 (Ws ⊆ V2 respectively) with
W>s ∩ V1 6= ∅ and W>s ∩ V2 6= ∅ have exactly one successor t such that W≥t ∩ V1 6= ∅
and W≥t ∩ V2 6= ∅ and it further holds that W>s \W≥t ⊆ V1 (V2 respectively).

Proof. We show that, if (T,X ,W) does not ful�ll this claim, we can transform it to a
decomposition (T ′,X ′,W ′) of width k′ such that k′ ≤ k and all former claims remain
true.

For every vertex v ∈ VT we de�ne w(v) = Wv∪
⋃
e∼T v

Xe (the set that determines
the width of this tree-decomposition) and for v ∈ VT ′ we de�ne w′(v) respectively.

Without loss of generality we assume that L ⊆ V1. (As the proof for L ⊆ V2 works
analogously.

By Claim 5.2.20 we know that s has exactly one successor t such thatW≥t∩V1 6= ∅
and W≥t ∩ V2 6= ∅. We further know that W>s \W≥t ⊆ V1 or W>s \W≥t ⊆ V2.

The only thing which now remains open to show this Claim is that for (T ′,X ′,W ′)
it holds that if W ′s ⊆ V1 it holds that

⋃
s̃>sW

′
s̃ \
⋃
t̃≥tW

′
t̃
⊆ V1.

To prove this we assume the contrary and then transform the decomposition such
that the Claim holds true. So therefore we assume that in T it does not hold that⋃
s̃>sW

′
s̃ \
⋃
t̃≥tW

′
t̃
⊆ V1, which by Claim 5.2.20 means, that W>s \ W≥t ⊆ V2.

Let p be the predecessor of s in T and t, t1, . . . , tr the successors of s in T . Then,
we construct T ′ = (V ′T , E

′
T) with V ′T = VT and E′T = {(u, v) | (u, v) ∈ ET , u, v 6=

s}∪{(t1, s), (s, t), (p, t1)}∪
⋃

2≤i≤r{(t1, ti)}. In words this means means that t1 is now a
successor of p in T ′ and the predecessor of s and t2, . . . , tr in T ′. Further, it holds that
W ′v = Wv for all v ∈ V ′T and that X ′e = Xe for all e ∈ E′T ∩ET \{(t1, v) | (t1, v) ∈ ET }.
Let X ′(p,t1) = X(p,s), X

′
(t1,s)

= X(s,t) \Ws, X ′(t1,ti) = X(s,ti) and for all successors v of
t1 in T let X ′(t1,v) = X(t1,v).

We brie�y show that all conditions of a directed tree-decomposition remain ful-
�lled. As the W -sets does not change, it is obvious that they form a partition of V .
Remains to show, that for all edges (u, v) ∈ V ′T the set W ′≥v remains X ′(u,v)-normal.

� For all arcs (u, v) ∈ V ′T with (u, v) ∈ VT and W ′≥v = W≥v and X ′(u,v) = X(u,v)

it holds that W ′≥v is X
′
(u,v)-normal, as W≥v is X(u,v)-normal

� (p, t1): W ′≥t1 = W≥s is X(p,s) = X(p,t1)-normal

� (t1, s): W ′≥s = W≥t∪Ws. It holds thatW≥t is X(s,t)-normal and thusW≥t∪Ws

is X(s,t) ∪Ws-normal. It follows that W ′≥s = W≥t ∪Ws is X ′(t1,s) = X(s,t) ∪Ws-
normal.

We show that for every vertex v in V ′T it holds that |w′(v′)| − 1 ≤ k by showing
that for every vertex v′ ∈ V ′T there exists a vertex u ∈ VT such that |w′(v)| ≤ |w(u)|
. As for all other vertices it holds that w′(v) = w(v), we only need to look at the
widths induced by p, s and t.

� Consider w′(p). As W ′>p = W>p, it is possible to set X ′(p,t1) = X(p,s). Then, it
holds that w′(p) = w(p) and further that w′(p)− 1 ≤ k.

5.2. DIRECTED CO-GRAPHS 87

� Consider w′(t1) = W ′t1 ∪X
′
(p,t1) ∪X

′
(t1,s)

∪
⋃
v∈N+

T (t1)X
′
(t1,v) ∪

⋃
2≤i≤rX

′
(t1,ti)

.

AsW≥t∩V1 6= ∅ andW≥t∩V2 6= ∅, it holds thatX(s,t) = V \W≥t, soWt1 ⊆ X(s,t).
It further holds that X(t1,t̃1) \Wt1 ⊆ Xs,t1 , such that X(t1,t̃1) ⊆ Xs,t1 ∪Wt1 for

all successors t̃1 of t1 in T . Thus, it follows that

w′(t1)
= W ′t1 ∪ X ′(p,t1) ∪ X ′(t1,s) ∪

⋃
v∈N+

T (t1)X
′
(t1,v) ∪

⋃
2≤i≤rX

′
(t1,ti)

= Wt1 ∪ X(p,s) ∪
(
X(s,t) \Ws

)
∪
⋃
v∈N+

T (t1)X(t1,v) ∪
⋃

2≤i≤rX(s,ti)

⊆ X(s,t) ∪ X(p,s) ∪ X(s,t) ∪ X(s,t1) ∪Wt1 ∪
⋃

2≤i≤rX(s,ti)

⊆ X(s,t) ∪ X(p,s) ∪ X(s,t) ∪ X(s,t1) ∪X(s,t) ∪
⋃

2≤i≤rX(s,ti)

⊆ Ws ∪
⋃
e∼T s

Xe

= w(s)

� Consider w′(s) = W ′s ∪X ′(t1,s) ∪X
′
(s,t). As W≥t ∩ V1 6= ∅ and W≥t ∩ V2 6= ∅, it

holds that X ′(t1,s) = V \W≥s ⊂ V \W≥t = X ′(s,t). As further X
′
(s,t) = X(s,t) it

follows that

w′(s) = W ′s ∪X ′(t1,s) ∪X
′
(s,t) ⊆ X

′
(s,t) = X(s,t) ⊆ w(s).

Thus, the widths induced by the vertices v with w′(v) 6= w(v), are not increasing the
width of the directed tree-decomposition.

Proof. of Lemma 5.2.18. By Claim 5.2.19 the Lemma holds for k = |V |−1. Assume
that k < |V |−1. Let L be the set of all leaves ` in T such that for the path (u1, . . . uq)
from the root to ` it holds that

⋃
1≤i≤qWui ∩ V1 6= ∅,

⋃
1≤i≤qWui ∩ V2 6= ∅ and ∀ui

with 1 ≤ i ≤ q:

� W≥ui\W≥ui+1 ⊆ V1 or

� W≥ui\W≥ui+1 ⊆ V2.

By Claim 5.2.21 it holds that L 6= ∅ and either L ⊆ V1 or L ⊆ V2.
W.l.o.g. assume that L ⊆ V1, for L ⊆ V2 the proof works analogously.
We show that ∀Wt ∈ W with Wt ⊆ V1 it holds that Wt ∪

⋃
e∼tXe ∪ V2 ≤ k. By the

construction in Claim 5.2.21 and the structural information of Claim 5.2.22, there is
a vertex ur such that L ⊆ W>ur , W>ur ⊆ V1 and Wur ⊆ V2. Let (u1, . . . ur) be the
path from the root to this vertex. As W>ur ⊆ V1, it holds that for all successors u
of ur that V2 ⊆ X(ur,u) and as Wur ⊆ V2, it holds that V \W≥ur ⊆ X(ur−1,ur). It
then holds that V2 ∪ (V \W≥ur) ⊆Wur ∪

⋃
e∼ur Xe and thus |V2 ∪ (V \W≥ur−1)| ≤ k.

Further, for the path (u1, . . . , ur−1) it holds that for every 1 ≤ i ≤ r− 1, X(ui,ui+1) =
V \W≥ui+1 ⊆ V \W≥ur−1 = X(ur−1,ur). Let now Wt be any element of W such that
Wt ⊆ V1. By Claim 5.2.21 and Claim 5.2.22 it holds that either

(i) There is a successor t′ of t such that W≥t′ ⊆ V1 or

88 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

(ii) t = ui with 1 ≤ i ≤ r − 2.

In case (i) it holds that V2 ⊆ X(t,t′) and thus, Wt∪
⋃
e∼tXe∪V2 = Wt∪

⋃
e∼tXe ≤ k.

In case (ii) it holds that X(ui−1,ui) = V \W≥ui and X(ui,ui+1) = V \W≥ui+1 . By Claim
5.2.22 it holds that W>ui \W≥ui+1 ⊆ V1. Thus, we can assume that ui has no other
successors but ui+1, as otherwise we are in case (i). If ui+1 is the only successor of
ui, then Wui ∪

⋃
e∼ui Xe = V \W≥ui+1 ⊆ V \W≥ur−1 and then V2 ∪Wui ∪

⋃
e∼ui Xe ⊆

V \W≥ur−1∪V2 ⊆Wur−1∪
⋃
e∼ur−1

Xe and further |V2∪Wui∪
⋃
e∼ui Xe| ≤ k holds.

Theorem 5.2.23. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint di-
graphs then the following properties hold.

1. d-tw(•) = 0

2. d-tw(G⊕H) = max{d-tw(G), d-tw(H)}

3. d-tw(G�H) = max{d-tw(G), d-tw(H)}

4. d-tw(G	H) = max{d-tw(G), d-tw(H)}

5. d-tw(G⊗H) = min{d-tw(G) + |VH |, d-tw(H) + |VG|}

Proof. LetG = (VG, EG) andH = (VH , EH) be two vertex-disjoint digraphs. Further,
let (TG,XG,WG) be a directed tree-decomposition of G such that rG is the root of
TG = (VTG , ETG) and (TH ,XH ,WH) be a directed tree-decomposition of H, such that
rH is the root of TH = (VTH , ETH).

1. d-tw(•) = 0 holds by a simple directed tree-decomposition.

2. We de�ne a directed tree-decomposition (TJ ,XJ ,WJ) for J = G ⊕H. Let `G
be a leaf of TG. Let TJ be the disjoint union of TG and TH with an additional
arc (`G, rH). Further, let XJ = XG ∪ XH ∪ {X(`G,rH)}, where X(`G,rH) = ∅ and
WJ =WG ∪WH . The triple (TJ ,XJ ,WJ) satis�es (dtw-1) since the combined
decompositions satisfy (dtw-1). Further, (TJ ,XJ ,WJ) satis�es (dtw-2) since
additionally in J there is no arc from a vertex of H to a vertex of G. This
shows that d-tw(G⊕H) ≤ max{d-tw(G), d-tw(H)}. Since G and H are induced
subdigraphs of G⊕H, by Lemma 3.3.8 the directed tree-width of both leads to
a lower bound on the directed tree-width for the combined digraph.

3. The same arguments lead to d-tw(G�H) = max{d-tw(G), d-tw(H)}.

4. The same arguments lead to d-tw(G	H) = max{d-tw(G), d-tw(H)}.

5. In order to show d-tw(G ⊗ H) ≤ d-tw(G) + |VH | let TJ be the disjoint union
of a new root rJ and TG with an additional arc (rJ , rG). Further, let XJ =
X ′G ∪ {X(rJ ,rG)}, where X ′G = {Xe ∪ VH | e ∈ ETG} and X(rJ ,rG) = VH and
WJ = WG ∪ {WrH}, where WrJ = VH . Then, (TJ ,XJ ,WJ) is a directed tree-
decomposition of width at most d-tw(G) + |VH | for G⊗H.

5.2. DIRECTED CO-GRAPHS 89

In the same way a disjoint union of a new root rJ and TH with an additional
arc (rJ , rH), X ′H = {Xe ∪ VG | e ∈ ETH}, X(rJ ,rH) = VG, WrJ = VG lead to a
directed tree-decomposition of width at most d-tw(H) + |VG| for G⊗H. Thus,
d-tw(G⊗H) ≤ min{d-tw(G) + |VH |, d-tw(H) + |VG|}.

For the reverse direction let (TJ ,XJ ,WJ), TJ = (VT , ET), be a directed tree-
decomposition of minimum width for G ⊗H. By Lemma 3.3.9 we can assume
that |Wt| ≤ 1 for every t ∈ VT . Then, by Lemma 5.2.18 we can assume that
∀t ∈ VT with Wt ⊆ VG it holds that |Wt ∪

⋃
e∼tXe ∪ VH | ≤ d-tw(G ⊗ H) or

∀t ∈ VT with Wt ⊆ VH it holds that |Wt ∪
⋃
e∼tXe ∪ VG| ≤ d-tw(G⊗H).

We assume that ∀t ∈ VT with Wt ⊆ VH : |Wt ∪
⋃
e∼tXe ∪ VG| ≤ d-tw(G⊗H).

We de�ne (T ′J ,X ′J ,W ′J) as follows. We initialize T ′J = (V ′T , E
′
T) with V ′T = VT ,

E′T = ET , X ′e = Xe ∩ VH , and W ′s = Ws ∩ VH . Whenever this leads to an
empty set W ′s such that

⋃
s̃≥sW

′
s̃ = ∅, delete vertex s. Then, (T ′J ,X ′J ,W ′J) is a

directed tree-decomposition of H.

The width of (T ′J ,X ′J ,W ′J) is at most d-tw(G ⊗ H) − |VG| as shown in the
following.

� Suppose s is a vertex in T ′J such that W ′s = Ws. Then, it holds that
Ws ⊆ VH and thus |Ws ∪

⋃
e∼sXe ∪ VG| ≤ d-tw(G⊗H). So it holds that

|W ′s ∪
⋃
e∼sX

′
e| ≤ d-tw(G⊗H)− |VG|.

� Suppose s is a vertex in T ′J such that W ′s 6= Ws. Then Ws ⊆ VG and
Ws 6= ∅. By construction of T ′J , we know that

⋃
s̃≥sWs̃ ∩ VH 6= ∅. Now,

we distinguish two cases:

� Suppose there is a successor t of s such that
⋃
t̃≥tWt̃ ⊆ VH . Then

VG ⊆ X(s,t) and thus |W ′s ∪
⋃
e∼sX

′
e| ≤ d-tw(G⊗H)− |VG|.

� Suppose that for all successors t of s it holds that
⋃
t̃≥tWt̃ 6⊆ VH . Then,

as
⋃
t̃≥tWt̃ ∩ VH 6= ∅ and

⋃
t̃≥tWt̃ ∩ VG 6= ∅ it follows by the same

argumentation as in the proof of Lemma 5.2.18 that |Ws ∪
⋃
e∼sXe ∪

VG| ≤ d-tw(G⊗H). So it holds that |W ′s∪
⋃
e∼sX

′
e| ≤ d-tw(G⊗H)−

|VG|.

Thus, the width of (T ′J ,X ′J ,W ′J) is at most d-tw(G ⊗ H) − |VG| and since
(T ′J ,X ′J ,W ′J) is a directed tree-decomposition of H, it follows that d-tw(H) ≤
d-tw(G⊗H)− |VG|.

If we assume that ∀t ∈ VT with Wt ⊆ VG: |Wt ∪
⋃
e∼tXe ∪ VH | ≤ d-tw(G⊗H)

or ∀t ∈ VT , it follows that d-tw(G) ≤ d-tw(G⊗H)− |VH |.

This shows the statements of the theorem.

The proof of Theorem 5.2.23 is constructive as we give a tree-decomposition
(T,X ,W) of minimum width for every directed co-graph. Since for any operation

90 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

we de�ne a decomposition where T is a path, we conclude that for any directed co-
graph there is a tree-decomposition (T,X ,W) of minimum width such that T is a
path.

Next, we give some examples where the equality of directed path-width and di-
rected tree-width does not hold, as also claimed in Proposition 3.5.25.

Example 5.2.24. Every complete biorientation of a rooted tree has directed tree-width
1 and a directed path-width depending on its height. The path-width of perfect 2-ary
trees of height h is dh/2e (cf. [Sch89]) and for k ≥ 3 the path-width of perfect k-ary
trees of height h is exactly h by [EST94, Corollary 3.1].

Remark 5.2.25. The results of Theorem 5.2.15 and Theorem 5.2.23 imply that for
every directed co-graph its directed path-width equals its directed tree-width using
the de�nition allowing empty sets Wr of [JRST01a] (see Section 5.2.3 for details).
Since d-tw(G) ≤ d-pw(G) for all graphs G holds for both variants of directed tree-
width allowing and forbidding empty sets Wr and directed tree-width allowing empty
sets Wr is smaller or equal to directed tree-width forbidding empty sets Wr, the
statements of Theorem 5.2.23 also hold true when considering the directed tree-width
forbidding empty sets Wr in [JRST01b].

Directed feedback vertex set number

Theorem 5.2.26. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint di-
graphs, then the following properties hold.

1. fvs(•) = 0

2. fvs(G⊕H) = fvs(G) + fvs(H)

3. fvs(G�H) = fvs(G) + fvs(H)

4. fvs(G	H) = fvs(G) + fvs(H)

5. fvs(G⊗H) = min{fvs(G) + |VH |, fvs(H) + |VG|}

Proof. 1. fvs(•) = 0 holds since a single vertex digraph is a DAG.

2. Since there is no edge between a vertex from G and a vertex from H, all cycles in
G⊕H are between two vertices from G or two vertices from H.

3. Since the edges from G to H do not create any new cycle in G �H all cycles in
G�H are between two vertices from G or two vertices from H.

4. Same arguments as (3.)

5. In order to show fvs(G⊗H) ≤ min{fvs(G) + |VH |, fvs(H) + |VG|}, we can obtain
a DAG from G⊗H either by removing all vertices from H and a minimum subset
S ⊂ VG or by removing all vertices from G and a minimum subset S ⊂ VH .

5.2. DIRECTED CO-GRAPHS 91

For the reverse direction we observe the following. Since in G⊗H every vertex of
VG has an edge to and from every vertex of VH , every subset S such that (G⊗H)\S
is a DAG must ful�ll VG ⊆ S or VH ⊆ S. If VG ⊆ S, we have to remove all cycles
from H which optimally can be done by fvs(H) vertices and if VH ⊆ S, we have to
remove all cycles from G which optimally can be done by fvs(G) vertices. Thus,
min{fvs(G) + |VH |, fvs(H) + |VG|} leads a lower bound on fvs(G⊗H).
This shows the statements of the theorem.

Directed feedback arc set number

Theorem 5.2.27. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint di-
graphs, then the following properties hold.

1. fas(•) = 0

2. fas(G⊕H) = fas(G) + fas(H)

3. fas(G�H) = fas(G) + fas(H)

4. fas(G	H) = fas(G) + fas(H)

5. fas(G⊗H) = fas(G) + fas(H) + |VG| · |VH |

Proof. 1. fas(•) = 0 holds since a single vertex digraph is a DAG.

2. Since there is no edge between a vertex from G and a vertex from H, all cycles in
G⊕H are between two vertices from G or two vertices from H.

3. Since the edges from G to H do not create any new cycle in G �H all cycles in
G�H are between two vertices from G or two vertices from H.

4. Same arguments as (3.)

5. In order to show fas(G ⊗ H) ≤ fas(G) + fas(H) + |VG| · |VH |, the cycles with all
vertices in G can be removed by fas(G) arcs, the cycles with all vertices in H can
be removed by fas(H) arcs, and the cycles of length 2 between a vertex of G and
a vertex from H can be removed by |VG| · |VH | arcs.
Since none of these three types of removals destroys a cycle of a further type, this
number is best possible and is also a lower bound.
This shows the statements of the theorem.

Cycle Rank

Theorem 5.2.28. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint di-
graphs, then the following properties hold.

1. cr(•) = 0

2. cr(G⊕H) = max{cr(G), cr(H)}

92 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

3. cr(G�H) = max{cr(G), cr(H)}

4. cr(G	H) = max{cr(G), cr(H)}

5. cr(G⊗H) = min{cr(G) + |VH |, cr(H) + |VG|}

Proof. 1. cr(•) = 0 holds by de�nition.

2. If G ⊕ H is acyclic, then G and H are acyclic and thus cr(G) = cr(H) = 0 and
the statement is true. Otherwise, since digraph G⊕H is not strongly connected,
by de�nition cr(G ⊕ H) is the maximum cycle rank of any strongly connected
component of G ⊕ H. Since every strongly connected component of G ⊕ H is a
subset of VG or a subset of VH , the statement is true.

3. Holds by the same arguments as in (2.).

4. Holds by the same arguments as in (2.).

5. First, we show cr(G ⊗ H) ≤ min{cr(G) + |VH |, cr(H) + |VG|}. Since G ⊗ H is
strongly connected, we can apply the second case of De�nition 3.3.21 to verify an
upper bound of cr(G)+ |VH | by removing the vertices of H one by one from G⊗H
and to verify an upper bound of cr(H) + |VG| by removing the vertices of G one
by one from G⊗H.

For the reverse direction we observe the following. Since in G⊗H, every vertex of
VG has an edge to and from every vertex of VH such that digraph G⊗H remains
strongly connected at least as long as it has vertices from VG and VH . Thus, we
have to apply the second case of De�nition 3.3.21 as long we have vertices from VG
and vertices from VH . This either leads to a subdigraph induced by VG \ V ′G for
some V ′G ⊂ VG or to a subdigraph induced by VH \ V ′H for some V ′H ⊂ VH . Thus,
we have

cr(G⊗H) ≥ min{|VH |+ |V ′G|+ cr(G− V ′G), |VG|+ |V ′H |+ cr(H − V ′H)}
≥ min{|VH |+ cr(G), |VG|+ cr(H)}.

This shows the statements of the theorem.

DAG-width

Lemma 5.2.29. Let G = (V,E) be a directed graph of DAG-width at most k, such
that V1 ∪ V2 = V , V1 ∩ V2 = ∅, and {(u, v), (v, u) | u ∈ V1, v ∈ V2} ⊆ E. Then, there
is a DAG-decomposition (D,X), D = (VD, ED), of width at most k for G such that
for every v ∈ VD it holds that V1 ⊆ Xv or for every v ∈ VD it holds that V2 ⊆ Xv.

Proof. Let G = (V,E) be a digraph of DAG-width at most k and (D,X) be a nice
DAG-decomposition of width at most k for G. Assume that k < |V |. Otherwise,
for k = |V | the DAG consisting only of one vertex v with bag Xv = V would be a
minimum DAG-decomposition such that for every v ∈ VD it holds that V1 ⊆ Xv and
V2 ⊆ Xv.

5.2. DIRECTED CO-GRAPHS 93

SinceD is a DAG it allows a topological ordering. We show the claim by traversing
the vertices of D in a reverse topological ordering, i.e. we start visiting the sinks of D.
Let d′′ be a sink of D and d′ be a predecessor of d′′ in D. Without loss of generality let
v ∈ Xd′′ for some v ∈ V1. Then, by (dagw-3) it holds that v ∈ Xd′ or V2 ⊆ Xd′ ∩Xd′′ .

Case 1 v ∈ Xd′ . Let d be a predecessor of d′ in D. Then, by (dagw-3) it holds that
v ∈ Xd or V2 ⊆ Xd ∩Xd′ .

Case 1.1 V2 ⊆ Xd ∩Xd′ This is equivalent to Case 2, but Xd′ is bigger or equal
than in Case 2, as | Xd′ \ {v}∪V2 |≤| Xd′ ∪V2 |. So we can omit this case.

Case 1.2 v ∈ Xd Assume we repeat this to source s because otherwise, we
create an equivalence to Case 1.1. Then, for the path (s, v1, . . . , d

′, d′′) we
have Xv1 ∪ · · · ∪ Xd′ ∪ Xd′′ ⊆ Xs. Repeating this for all vertices to the
source and all sinks would lead to V1 ∪ V2 = V ⊆ Xs for source s, which
contradicts k < |V |. So for some sink ` this Case 1.2 cannot be repeated
to the source. Regarding the omitted cases, we then know that for every
predecessor p of ` it holds that V2 ∈ Xp. Then, it holds that V2 ∈ Xs. As
also Xv1 ∪ · · · ∪Xd′ ∪Xd′′ ⊆ Xs, the width of this digraph would be lower
or equal by adding V2 to Vv1 , . . . , Xd′ , Xd′′ . So we can omit this case.

Case 2 V2 ⊆ Xd ∩Xd′ . Let d be a predecessor of d′ in D. Then, by (dagw-3) it holds
that V2 ⊆ Xd or V1 ⊆ Xd ∩Xd′ .

Case 2.1 V1 ⊆ Xd ∩Xd′ In this case, V1 ∪ V2 ⊆ Xd′ . This is a contradiction to
k < |V |, so we can omit this case.

Case 2.2 V2 ⊆ Xd By using this argument recursively, for every predecessor
p of d it holds that V1 ⊆ Xp. Using this argumentation on all sinks of
D, for every path (s, v1, . . . , vi) from source s to a sink vi it holds that
V1 ⊆ Xs, Xv1 , . . . , Xvi or V2 ⊆ Xs, Xv1 , . . . , Xvi . Because of minimality of
Xs, it follows that V2 ⊆ Xv for all v ∈ VD.

This shows the statements of the lemma.

Obviously, this lemma also holds for a nice DAG-decomposition.

Theorem 5.2.30. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint di-
graphs, then the following properties hold.

1. dagw(•) = 1

2. dagw(G⊕H) = max{dagw(G), dagw(H)}

3. dagw(G�H) = max{dagw(G), dagw(H)}

4. dagw(G	H) = max{dagw(G), dagw(H)}

5. dagw(G⊗H) = min{dagw(G) + |VH |, dagw(H) + |VG|}

94 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Proof. Let G and H be two vertex-disjoint digraphs and let further (DG,XG) and
(DH ,XH) be their nice DAG-decompositions with minimum DAG-width. Let rH be
the root of DH and let `G be a leaf of DG.

1. dagw(•) = 1 holds by a simple DAG-decomposition.

2. For J = G⊕H, we �rst de�ne a DAG-decomposition (DJ ,XJ) for J and show
that it is of minimum width afterwards. Let DJ be the disjoint union of DG

and DH with an additional arc (`G, rH). Further, XJ = XG ∪ XH . (DJ ,XJ)
is a valid DAG-decomposition because it satis�es the conditions as follows. It
holds that (dagw-1) is satis�ed by (DG,XG) and (DH ,XH) it is also satis�ed by
(DJ ,XJ) because all vertices of J are included. As we do not add any vertices to
the X-sets and G and H are vertex-disjoint, (dagw-2) is satis�ed for (DJ ,XJ).
Further, (dagw-3) is satis�ed for all arcs in DG and DH . In DJ there is only one
additional arc, (`G, rH). Since it holds that for rH , X<rH is guarded by ∅ and we
do not add any outgoing vertices to H and X`G ∩XrH = ∅, (dagw-3) is satis�ed
for (DJ ,XJ). Thus, the DAG-width of the decomposition is limited by the
larger width of G and H, such that dagw(G⊕H) ≤ max{dagw(G), dagw(H)}.
The lower bound holds as G and H are both induced subdigraphs of J and a
digraph cannot have lower DAG-width than its induced subdigraphs. Hence
dagw(J) ≥ max{dagw(G), dagw(H)} applies, which then leads to dagw(J) =
max{dagw(G), dagw(H)}.

3. Holds by the same arguments as given in (2.).

4. Holds by the same arguments as given in (2.).

5. For J = G⊗H, set DJ = DG and XJ = {Xu∪VH | Xu ∈ XG}. Then, (DJ ,XJ)
is a DAG-decomposition for J : Obviously, (dagw-1) is satis�ed. (dagw-2) and
(dagw-3) are satis�ed since they are satis�ed for XG and we add VH to every
vertex set in XG. Further, it holds that the width of (DJ ,XJ) is dagw(G)+|VH |.
In the same way, we get a DAG-decomposition of width dagw(H) + |VG|, so we
have dagw(G⊗H) ≤ min{dagw(G) + |VH |, dagw(H) + |VG|}.
We use Lemma 5.2.29 for a lower bound. Assume dagw(G⊗H) < min{dagw(G)+
|VH |, dagw(H) + |VG|}. Let (DJ ,XJ) be a minimum DAG-decomposition of J
of width k < min{dagw(G) + |VH |, dagw(H) + |VG|}. By Lemma 5.2.29 we
have VH ⊆ Xv for all Xv ∈ XJ or VG ⊆ Xv for all Xv ∈ XJ . Without loss of
generality assume VH ⊆ Xv for all Xv ∈ XJ (because VG ⊆ Xv for all Xv ∈ XJ ,
respectively). Then, (D′G,X ′G) with D′G = DJ , X ′G = {Xu \ VH | Xu ∈ XJ} is a
DAG-decomposition of width k − |VH | of G:

� (dagw-1) is satis�ed since
⋃
u∈VD′

G

Xu =
⋃
u∈VDJ

(Xu\VH) =
(⋃

u∈VDJ
Xu

)
\

VH = VJ \ VH = (VG ∪ VH) \ VH = VG.

� (dagw-2) is satis�ed since for all u, v, w ∈ VD′G with u <D′G
v <D′G

w and

XJ
u , X

J
v and XJ

w the corresponding sets in (DJ ,XJ) it holds that Xu ∩

5.2. DIRECTED CO-GRAPHS 95

Xw =
(
XJ
u \ VH

)
∩
(
XJ
w \ VH

)
=
(
XJ
u ∩XJ

w

)
\ VH ⊆ XJ

v \ VH = Xv as
u <DJ

v <DJ
w.

� (dagw-3) is satis�ed since for all edges (u, v) ∈ ED′G , we have (u, v) ∈ EDJ

and asXu∩Xv =
(
XJ
u ∩XJ

v

)
\VH which guardsX<D′

G
v\Xu = X<DJ

v\XJ
u .

For the root the condition is trivially satis�ed.

But it holds that k − |VH | < min{dagw(G) + |VH |, dagw(H) + |VG|} − |VH | ≤
dagw(G) + |VH | − |VH | = dagw(G). This is a contradiction, as it is not possible
to create a DAG-decomposition of width smaller than dagw(G). Thus, it follows
that dagw(G⊗H) ≥ min{dagw(G) + |VH |, dagw(H) + |VG|}.

This shows the statements of the theorem.

Kelly-width

Theorem 5.2.31. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint di-
graphs, then the following properties hold.

1. kw(•) = 1

2. kw(G⊕H) = max{kw(G), kw(H)}

3. kw(G�H) = max{kw(G), kw(H)}

4. kw(G	H) = max{kw(G), kw(H)}

5. max{kw(G), kw(H)} ≤ kw(G⊗H) ≤ min{kw(G) + |VH |, kw(H) + |VG|}

Proof. We use the fact that by Lemma 3.3.34, a digraph has Kelly-width k + 1 if
and only if it has a directed elimination ordering of width k. Let G = (VG, EG) and
H = (VH , EH) be two vertex-disjoint digraphs with kw(G) = kG and kw(H) = kH .
Then, there exists a directed elimination ordering CG of G of width kG − 1 and a
directed elimination ordering CH of H of width kH − 1.

1. kw(•) = 1 holds by a simple Kelly decomposition.

2. For J = G⊕H, we obtain a linear ordering CJ of J by adding �rst all vertices
from CH and from CG to CJ afterwards. As no edges from H to G are inserted
to J , this is a directed elimination ordering of width max{kH − 1, kG − 1}.
As G and H are both induced subdigraphs of J , there cannot exist a directed
elimination ordering of smaller width. By Lemma 3.3.34 it follows that kw(J) =
max{kH , kG}, such that kw(G⊕H) = max{kw(G), kw(H)}.

3. Holds by the same arguments as in (2.).

4. Holds by the same arguments as in (2.).

96 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

5. For J = G⊗H, we obtain a linear ordering CJ of J by adding �rst all vertices
from CH and afterwards from CG to CJ (�rst CG, then CH respectively). As
there are exactly VG (VH) more outgoing edges for every vertex in VH (VG), this
is a directed elimination ordering of J of width kH − 1 + |VG| (kG − 1 + |VH |,
respectively).

The lower bound holds as G and H are both induced subdigraphs of J and a
digraph cannot have lower Kelly-width than its induced subdigraphs.

This shows the statements of the theorem.

Remark 5.2.32. The value min{kw(G) + |VH |, kw(H) + |VG|} is not a lower bound for
kw(G ⊗H), even not if G and H are directed co-graphs. Figure 5.3 shows two iso-
morphic digraphs G and H of Kelly-width 3, by the elimination orderings (a, b, c, d, e)
and (f, g, h, i, j) and the induced 4-cliques. But G⊗H has Kelly-width at most 7, by
the elimination ordering (a, f, b, c, d, e, g, h, i, j), so we have

kw(G⊗H) = 7 < 8 = min{kw(G) + |VH |, kw(H) + |VG|}.

a b

c

d

e

G

f g

h

i

j

H

Figure 5.3: Two isomorphic digraphs G and H of Kelly-width 3.

DAG-depth

Theorem 5.2.33. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint di-
graphs, then the following properties hold.

1. ddp(•) = 1

2. ddp(G⊕H) = max{ddp(G), ddp(H)}

3. ddp(G�H) = ddp(G) + ddp(H)

4. max{ddp(G), ddp(H)} ≤ ddp(G	H) ≤ ddp(G) + ddp(H)

5. ddp(G⊗H) = min{ddp(G) + |VH |, ddp(H) + |VG|}

Proof. 1. ddp(•) = 1 holds by de�nition.

5.2. DIRECTED CO-GRAPHS 97

2. To show the upper bound ddp(G ⊕H) ≤ max{ddp(G), ddp(H)}, let FG and FH
be directed elimination forests of minimum height for G and H, respectively. Since
none of the vertices of VG is reachable from a vertex of VH and none of the vertices
of VH is reachable from a vertex of VG the disjoint union of FG and FH leads to a
directed elimination forest FG⊕H for G⊕H. Then, it holds that

ddp(G⊕H) ≤ h(FG⊕H) + 1 = max{h(FG), h(FH)}+ 1
= max{ddp(G)− 1, ddp(H)− 1}+ 1
= max{ddp(G), ddp(H)}.

Further, the lower bound ddp(G⊕H) ≥ max{ddp(G), ddp(H)} holds by [GHK+14,
Corollary 3.12] since G and H are both subdigraphs of G⊕H.

3. To show the upper bound ddp(G � H) ≤ ddp(G) + ddp(H), let FG and FH be
directed elimination forests of minimum height for G and H, respectively. Since
the set of reachable fragments for G�H can be obtained by R(G�H) = {f ∪VH |
f ∈ R(G)} we obtain a directed elimination forest FG�H for G � H as follows.
Starting with a copy of FG we replace every vertex (x,X) by (x,X∪VH). Further,
for every leaf ` of FG we insert a copy of FH and an edge between ` and every root
in the corresponding copy of FH . This leads to a directed elimination forest for
G�H of height h(FG) + h(FH) + 1. This leads to

ddp(G�H) ≤ h(FG�H) + 1 = h(FG) + h(FH) + 1 + 1 = ddp(G) + ddp(H).

In order to show the lower bound ddp(G � H) ≥ ddp(G) + ddp(H), let FG�H
be a directed elimination forest of minimum height for G �H. Since none of the
vertices of VG is reachable from a vertex of VH , the vertices of VH do not a�ect
the number of fragments, reachable from VG. Thus, we can assume that no vertex
of VH is a predecessor of a vertex of VG in a tree of FG�H . Thus, we can a obtain
directed elimination forest FG for G by removing all vertices (x,X) from FG�H
where x ∈ VH , as well as all vertices in VH from all sets X. In the same way we
can obtain a directed elimination forest FH for H. This leads to

ddp(G�H) = h(FG�H) + 1 = h(FG) + h(FH) + 1 + 1 ≥ ddp(G) + ddp(H).

4. Since G	H is a subdigraph of G�H, we know by [GHK+14, Corollary 3.12] that
ddp(G	H) ≤ ddp(G�H) and thus, that the upper bound follows by (2.).

Further, the lower bound ddp(G	H) ≥ max{ddp(G), ddp(H)} holds since G and
H are both subdigraphs of G	H.

5. First, we show that ddp(G ⊗ H) ≤ min{ddp(G) + |VH |, ddp(H) + |VG|}. Since
G ⊗ H has only one reachable fragment as long as it contains vertices from VG
and vertices from VH , we can apply the second case of De�nition 3.3.23 to verify
an upper bound of ddp(G) + |VH | by removing the vertices of H one by one from
G ⊗H and to verify an upper bound of ddp(H) + |VG| by removing the vertices
of G one by one from G⊗H.

98 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Next, we show that ddp(G⊗H) ≥ min{ddp(G) + |VH |, ddp(H) + |VG|}. Since in
G ⊗ H every vertex of VG has an edge to and from every vertex of VH , G ⊗ H
has only one reachable fragment as long as it contains vertices from VG and VH .
Thus, we have to apply the second case of De�nition 3.3.23 as long as we have
vertices from VG and vertices from VH . This either leads to a subdigraph induced
by VG − V ′G for some V ′G ⊂ VG or to a subdigraph induced by VH − V ′H for some
V ′H ⊂ VH . Thus, we have

ddp(G⊗H) ≥ min{|VH |+ |V ′G|+ ddp(G− V ′G), |VG|+ |V ′H |+ ddp(H − V ′H)}
≥ min{|VH |+ ddp(G), |VG|+ ddp(H)}.

This shows the statements of the theorem.

Note that ddp(G	H) cannot be computed from ddp(G) and ddp(H) by a simple
formula since the disjoint union and the order operation behave di�erently.

5.2.3 Digraph width measures on directed co-graphs

Next, we apply the results of Section 5.2.2 in order to show close relations between
the considered parameters on directed co-graphs.

Theorem 5.2.34. For every extended directed co-graph G, we have

kw(G)− 1 ≤ d-pw(G) = d-tw(G) = cr(G) = dagw(G)− 1 ≤ fvs(G) ≤ fas(G) (5.5)

and

dagw(G) ≤ ddp(G). (5.6)

Proof. Let G = (V,E) be some extended directed co-graph. The equations and
inequations given in (5.5) can be all be shown in a similar way using the results of
Section 5.2.2. We exemplify this by showing d-pw(G) = d-tw(G) by induction on the
number of vertices |V |. If |V | = 1, then d-pw(G) = d-tw(G) = 0. If G = G1 ⊕ G2,
then by Theorem 5.2.15 and Theorem 5.2.23 it follows:

d-pw(G) = max{d-pw(G1), d-pw(G2)} = max{d-tw(G1), d-tw(G2)} = d-tw(G).

For the other two operations � and ⊗ and for the transformation 	 similar relations
hold.

For the inequations given in (5.5) equality is not possible by the following exam-
ples.

� Let K ′n be the 2n vertex digraph which is obtained by a complete digraph Kn

on n vertices and adding a pendant vertex for every of the n vertices of Kn,

then for the complete biorientation
←→
K ′n it holds that kw(

←→
K ′n ⊗

←→
K ′n) = 2n− 1 <

3n− 1 = d-pw(
←→
K ′n ⊗

←→
K ′n).

5.2. DIRECTED CO-GRAPHS 99

� For transitive tournaments
−→
Tn, n ≥ 2, it holds that dagw(

−→
Tn) = 1 < n =

ddp(
−→
Tn).

� For the disjoint union of two
←→
Kn, n ≥ 3, it holds that dagw(2

←→
Kn) = n <

2n− 2 = fvs(2
←→
Kn).

� For a
←→
Kn, n ≥ 3, it holds that fvs(

←→
Kn) = n− 1 < n(n−1)

2 = fas(
←→
Kn).

Furthermore, the two inequations (5.5) and (5.6) cannot be combined by the following
examples.

� For transitive tournaments
−→
Tn, n ≥ 1, it holds that fas(

−→
Tn) = 0 < n = ddp(

−→
Tn).

� For the disjoint union of ` ≥ 3 many
←→
Kn, n ≥ 3, it holds that ddp(`

←→
Kn) = n <

` · n− ` = fvs(`
←→
Kn).

Theorem 5.2.35. For every extended directed co-graph G = (V,E) which is given
by a binary ex-di-co-tree, the directed path-width, directed tree-width, directed feedback
vertex set number, directed feedback arc set number, cycle rank, and DAG-width can
be computed in time O(|V |).

Proof. For all mentioned width measures the statement can be shown in a similar way
using the results of section 5.2.2. We exemplify this by the result for directed path-
width. Let G be some extended directed co-graph and TG be a di-co-tree rooted at r
for G. Then, algorithm Directed Path-width(r), shown in Figure 5.4, returns the
directed path-width of G. The correctness follows by Theorem 5.2.15. The necessary
sizes of the subdigraphs de�ned by subtrees of di-co-tree TG can be precomputed in
time O(|V |).

Algorithm Directed Path-width(v)

if v is a leaf of di-co-tree TG
then d-pw(G[Tv]) = 0
else {

Directed Path-width(v`) I v` is the left successor of v
Directed Path-width(vr) I vr is the right successor of v
if v corresponds to a ⊕, a �, or a 	 operation

then
d-pw(G[Tv]) = max{d-pw(G[Tv`]), d-pw(G[Tvr])}

else I v corresponds to a ⊗ operation
d-pw(G[Tv]) = min{d-pw(G[Tv`]) + |VG[Tvr]|, d-pw(G[Tvr]) + |VG[Tv`]|}

}

Figure 5.4: Computing the directed path-width of G for every vertex of a di-co-tree
TG.

100 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Since di-co-trees can be computed in linear time and Theorem 5.2.33 allows to
compute the DAG-depth for directed co-graphs operations we obtain the following
result.

Theorem 5.2.36. For every directed co-graph G = (V,E) the directed path-width, di-
rected tree-width, directed feedback vertex set number, directed feedback arc set number,
cycle rank, DAG-width, and DAG-depth can be computed in time O(|V |+ |E|).

Please note that, as we can not compute ex-di-co-trees in linear time, these results
can not be expanded to extended directed co-graphs.

By Lemma 3.2.4 and Lemma 3.3.7 the equality of directed path-width and di-
rected tree-width for directed co-graphs generalizes the known results from [BM93]
but cannot be obtained by the known results.

For general digraphs d-pw(G) leads to a lower bound for pw(und(G)) by Lemma
3.2.3 and d-tw(G) leads to a lower bound for tw(und(G)) by Lemma 3.3.6. For
directed co-graphs we obtain a closer relation as follows.

Corollary 5.2.37. Let G be a directed co-graph and ←→ω (G) be the order of a largest
bidirectional complete subdigraph of G. Then, it holds that

←→ω (G) = d-pw(G)−1 = d-tw(G)−1 ≤ pw(und(G))−1 = tw(und(G))−1 = ω(und(G)).

All values are equal if and only if G is a complete bioriented digraph.

Proof. The equality pw(und(G))−1 = tw(und(G))−1 = ω(und(G)) has been shown
in [BM93]. The equality ←→ω (G) = d-pw(G) − 1 = d-tw(G) − 1 follows by Lemma
5.2.12 (or Lemma 5.2.16) and Theorem 5.2.34. The upper bound follows by Lemma
3.2.3 or Lemma 3.3.6.

The relations between digraph width measures given in Table 3.5 can be improved
when restricting to directed co-graphs as shown in Table 5.1.

ddp
↓

d-tw ←→ dagw ←→ kw ←→ d-pw ←→ cr ←− fvs ←− fas

Table 5.1: Known relations between digraph width measures restricted to directed
co-graphs. A directed edge from measure β to measure α indicates that by the results
summarized in Table 3.5 and Theorem 5.2.34 there has been shown some function f
such that for every directed co-graph it holds α(G) ≤ f(β(G)).

5.2.4 Graph Coloring on Recursively De�ned Digraphs

We now consider graph coloring problems on recursively de�ned digraphs, especially
on oriented and directed co-graphs. Huge parts of this subsection are taken from
[GKR19b] and [GKR21a].

5.2. DIRECTED CO-GRAPHS 101

Oriented Graph Coloring for Oriented Graphs

First, we give some results on the oriented graph coloring for general recursively
de�ned oriented graphs. These results will be very useful to prove our results for
oriented co-graphs.

Please note that this section is taken in huge parts from [GKR19b].

Lemma 5.2.38. Let G1, . . . , Gk be k vertex-disjoint oriented graphs. Then the fol-
lowing equations holds:

1. χo(G1 ⊕ •) = χo(G1)

2. χo(G1 ⊕ . . .⊕Gk) ≥ max{χo(G1), . . . , χo(Gk)}

3. χo(G1 � . . .�Gk) = χo(G1) + . . .+ χo(Gk)

Proof. 1. χo(G1 ⊕ •) ≤ χo(G1)

Since no new arcs are inserted G1 can keep its colors. The added isolated vertex
gets a color of G1 in order to obtain a valid coloring for G1 ⊕ •.
χo(G1 ⊕ •) ≥ χo(G1)

This relation holds by Lemma 3.4.3, since G1 is an induced subdigraph of G1⊕•.

2. χo(G1 ⊕ . . .⊕Gk) ≥ max{χo(G1), . . . , χo(Gk)}
Since the digraphs G1, . . . , Gk are induced subdigraphs of digraph G1⊕. . .⊕Gk,
all values χo(G1), . . . , χo(Gk) lead to a lower bound for the number of necessary
colors of the combined graph by Lemma 3.4.3.

3. χo(G1 � . . .�Gk) ≤ χo(G1) + . . .+ χo(Gk)

For 1 ≤ i ≤ k let Gi = (Vi, Ai) and ci : Vi → {1, . . . , χo(Gi)} a coloring for Gi.
For G1 � . . .�Gk = (V,A) we de�ne a mapping c : V → {1, . . . ,

∑k
j=1 χo(Gi)}

as follows.

c(v) =

{
c1(v) if v ∈ VG1

ci(v) +
∑i−1

j=1 χo(Gi) if v ∈ VGi , 2 ≤ i ≤ k.

The mapping c satis�es the de�nition of an oriented coloring, because no two
adjacent vertices from Gi, 1 ≤ i ≤ k, have the same color by assumption and by
de�nition of c. For 1 ≤ i 6= j ≤ k a vertex of Gi and a vertex of Gj are always
adjacent, but never colored equally by de�nition of c.

Further, the arcs between two color classes of every Gi, 1 ≤ i ≤ k, have the
same direction by de�nition of c. For 1 ≤ i 6= j ≤ k the arcs between a color
class of Gi and a color class of Gj have the same direction by de�nition of the
order operation.

χo(G1 � . . .�Gk) ≥ χo(G1) + . . .+ χo(Gk)

102 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Since every Gi, 1 ≤ i ≤ k, is an induced subdigraph of the combined graph, all
values χo(G1), . . . , χo(Gk) lead to a lower bound for the number of necessary
colors of the combined graph by Lemma 3.4.3. Further, the order operations
implies that for every 1 ≤ i 6= j ≤ k no vertex in Gi can be colored in the same
way as a vertex in Gj . Thus, χo(G1) + . . .+ χo(Gk) leads to a lower bound for
the number of necessary colors of the combined graph.

This shows the statements of the lemma.

By Lemma 5.2.38, we can solve oriented coloring for oriented simple co-graphs and
thus, also for subclasses, such as oriented threshold graphs and transitive tournaments,
in linear time.

Proposition 5.2.39. Let G be an oriented simple co-graph. Then, it holds that
χo(G) = χ(und(G)) = ω(und(G)) and all values can be computed in linear time.

It is not easy to generalize these results to oriented co-graphs. To do so, we would
need to compute the oriented chromatic number of the disjoint union of two oriented
co-graphs with at least two vertices. But it is not possible to compute this oriented
chromatic number of the disjoint union of general oriented graphs from the oriented
chromatic numbers of the involved graphs. In Lemma 5.2.38 (2) we only show a lower
bound. The following example proves that in general this can not be strengthened to
equality.

Figure 5.5: Special oriented graphs: oriented cycle
−→
C3 and transitive tournament

−→
T3.

Example 5.2.40. The two graphs
−→
C3 and

−→
T3 in Figure 5.5 have the same oriented

chromatic number χo(
−→
C3) = χo(

−→
T3) = 3, but their disjoint union needs more colors.

Oriented Graph Coloring for Oriented Co-Graphs

On the other hand, there are several examples for which the disjoint union does not
need more than max{χo(G1), χo(G2)} colors, such as the union of two isomorphic

oriented graphs. By Theorem 5.2.10, we know that
−→
T3, shown in Figure 5.5, is an

oriented co-graph, but
−→
C3, shown in Figure 5.5, is not an oriented co-graph. Conse-

quently, the question arises whether oriented coloring could be closed under disjoint
union, when restricted to oriented co-graphs.

In order to solve OCN restricted to oriented co-graphs G we created an algorithm,
which is shown in Figure 5.6. The method traverses a canonical di-co-tree T for G
using a depth-�rst search, such that for every inner vertex the children are visited
from left to right. For every inner vertex u of T , we store two values in[u] and out[u].
These values ensure that the vertices of G, corresponding to the leaves of the subtree,

5.2. DIRECTED CO-GRAPHS 103

rooted at u will we labeled by labels `, such that in[u] ≤ ` ≤ out[u]. For every leaf
vertex u of T , we additionally store the label of the corresponding vertex of G in
color[u]. These values lead to an optimal oriented coloring of G by the next theorem.

Algorithm Label(G, u, i)

if (u is a leaf of T) {
color[u] = i; in[u] = i; out[u] = i;

}
else {

in[u] = i; out[u] = 0;
for all children v of u from left to right do {

j =Label(G, v, i);
if (out[u] < j)

out[u] = j;
if (u corresponds to a disjoint union)

i = in[u];
else I u corresponds to an order operation

i = out[v] + 1;
}

}
return out[u];

Figure 5.6: Computing an oriented coloring for an oriented co-graph.

Theorem 5.2.41. Let G be an oriented co-graph. Then, an optimal oriented coloring
for G and χo(G) can be computed in linear time.

Proof. Let G = (V,A) be an oriented co-graph. Using the method of [CP06] we can
build a di-co-tree T with root r for G in linear time. Further by Lemma 5.2.7, we can
assume that T is a canonical di-co-tree. For some node u of T we de�ne by Tu the
subtree of T which is rooted at u and by Gu the subgraph of G which is de�ned by
Tu. Obviously, for every vertex u of T the tree Tu is a di-co-tree for the digraph Gu
which is also an oriented co-graph.

Next, we verify that algorithm Label(G, r, 1), shown in Figure 5.6, returns the
value χo(G) and computes an oriented coloring for G within array color[u]. Therefore,
we recursively show for every vertex u of T that after performing Label(G, u, i) for
all leaves u of Tu the value color[u] leads to an oriented coloring of Gu using the colors
{i = in[u], . . . , out[u]}1 and the value out[u]− in[u]+1 leads to the oriented chromatic
number of Gu.

We distinguish the following three cases depending on the type of operation cor-
responding to the vertices u of T .

� If u is a leaf of T , then color[u] = out[u] = in[u] by the algorithm leads to an
oriented coloring of Gu.

1Please note that using colors starting at values greater than 1 is not a contradiction to De�nition
3.4.1.

104 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Further, out[u] − in[u] + 1 = 1, which obviously corresponds to the oriented
chromatic number of Gu.

� Let u be an inner vertex of T which corresponds to an order operation and
u1, . . . , u` are the children of u in T .

We already know that the oriented colorings of Gui , 1 ≤ i ≤ `, are feasible.
Further, for 1 ≤ i 6= j ≤ `, the algorithm's way of working ensures that a
vertex from Gui and a vertex from Guj are never colored equally in Gu. For
1 ≤ i 6= j ≤ `, the arcs between a color class of Gui and a color class of Guj
have the same direction by the de�nition of the order operation.

By the algorithm, value out[u]− in[u] + 1 is equal to
∑`

i=1 χo(Gui). By Lemma
5.2.38, we conclude that out[u]−in[u]+1 is equal to χo(Gi1�. . .�Gi`) = χo(Gu).

� Let u be an inner vertex of T which corresponds to a disjoint union operation
and u1, . . . , u` are the children of u in T .

We already know that the oriented colorings ofGui , 1 ≤ i ≤ `, are feasible. Since
a disjoint union operation does not create any arcs, no two adjacent vertices
have the same color in Gu. Further, our method ensures that for every arc (u, v)
in G it holds that color[u] < color[v]. Thus, all arcs between two color classes
in Gu have the same direction.

By the algorithm, value out[u]− in[u] + 1 is equal to max{χo(G1), . . . , χo(G`)}.
By Lemma 5.2.38, we conclude that out[u] − in[u] + 1 ≤ χo(G1 ⊕ . . . ⊕ G`) =
χo(Gu). The relation out[u]− in[u] + 1 ≥ χo(G1 ⊕ . . .⊕G`) = χo(Gu) holds by
the feasibility of our oriented coloring.

By applying the invariant for u = r, the statements of the theorem follow.

Please note that this result could be generalized in [GKL20] regarding transitive
acyclic graphs.

Example 5.2.42. We illustrate the method given in Figure 5.6 by computing an ori-
ented coloring for the oriented co-graph G, which is given by the canonical di-co-tree
T of Figure 5.7. On the left of each vertex u of T , the values in[u] and out[u] are
given. An optimal oriented coloring for G is given in blue letters below the leaves of
T . The root r of T leads to χo(G) = out[r] = 5.

Next, we can improve the result of Lemma 5.2.38(2) for oriented co-graphs.

Corollary 5.2.43. Let G1, . . . , Gk be k vertex-disjoint oriented co-graphs. Then, it
holds that

χo(G1 ⊕ . . .⊕Gk) = max{χo(G1), . . . , χo(Gk)}.

Proof. Let G = G1 ⊕ . . . ⊕ Gk be an oriented co-graph and T be a di-co-tree with
root r for G. The method given in Figure 5.6 computes an oriented coloring using
χo(G) = χo(G1 ⊕ . . . ⊕Gk) colors. Further, the proof of Theorem 5.2.41 shows that
χo(G1 ⊕ . . .⊕Gk) = max{χo(G1), . . . , χo(Gk)}.

5.2. DIRECTED CO-GRAPHS 105

1
5

1
1 2

2
1
1

2
1

2
2

1
2

1
2

3
3

4
4

4
4

4
4

3
3

3
3

3
3

1
4

1
2
2

2
1

1

1
2

1
1

2
2

1
2

3
3

3
3

3
3

1
3

1
5

1
1

1
1

1
1

5
2

2
5

2
2

5
5

2
2

2
2

3
3

3
3

3
3

4
4

4
4

2
4

2
3

1 2 1 2

3 3 3 4 4

1 2 1 2

3 3 1 1

2 3 32 2 34 5 4

Figure 5.7: Canonical di-co-tree T for oriented co-graph G.

Corollary 5.2.44. Let G be an oriented co-graph. The following properties are equiv-
alent:

1. G is an oriented clique.

2. G has a di-co-tree, which does not use any disjoint union operation.

3. G is a transitive tournament.

Further characterizations for transitive tournaments and oriented co-graphs, which
are oriented cliques, can be found in [Gou12, Chapter 9].

As mentioned in Observation 3.4.2, oriented coloring of an oriented graph G can be
characterized by the existence of homomorphisms to tournaments. These tournaments
are not necessarily transitive and G is not necessarily homomorphically equivalent to
some tournament. For oriented co-graphs we can show a deeper result.

Corollary 5.2.45. There is an oriented k-coloring of an oriented co-graph G if and

only if there is a homomorphism from G to some transitive tournament
−→
Tk on k

vertices. Further, the oriented chromatic number of an oriented co-graph G is the
minimum number k, such that G is homomorphically equivalent with the transitive

tournament
−→
Tk.

Proof. Within an oriented co-graph G = (V,A) the color classes V1, . . . , Vk of an

oriented k-coloring de�ne a transitive tournament
−→
Tk = ({V1, . . . , Vk}, {(Vi, Vj) | vi ∈

Vi, vj ∈ Vj , (vi, vj) ∈ A}). If k = χo(G), then there is a homomorphism from
−→
Tk to

G.

Acyclic coloring of directed co-graphs

Lemma 5.2.38 can be used to obtain the following result.

Theorem 5.2.46. Let G be a directed co-graph. Then, an optimal acyclic coloring
for G and ~χ(G) can be computed in linear time.

106 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

The clique number ωd(G) of a digraph G is the number of vertices in a largest
complete bioriented subdigraph of G and the clique number ω(G) of a (-n undirected)
graph G is the number of vertices in a largest complete subgraph of G. Since the
results of Lemma 5.2.38 also hold for ωd instead of ~χ we obtain the following result.

Proposition 5.2.47. Let G be a directed co-graph. Then, it holds that

~χ(G) = χ(und(sym(G))) = ω(und(sym(G))) = ωd(G)

and all values can be computed in linear time.

5.2.5 Conclusion and Outlook

By that, we have shown linear time algorithms for the directed path-width, directed
tree-width, directed feedback vertex set number, directed feedback arc set number,
cycle rank and DAG-width of extended directed co-graphs and a linear-time algorithm
for the DAG-depth of directed co-graphs. Further, we provided a comparison of
all considered parameters for extended directed co-graphs and obtained equality for
directed path-width, directed tree-width, cycle rank and DAG-width. Furthermore,
we showed for bounds for the class of directed co-graphs for the directed vertex set
number, DAG-depth and Kelly-width.

The results on directed path-width and directed tree-width generalize the equiv-
alence of path-width and tree-width of co-graphs which is known from [BM93] to
directed graphs. The shown equality can be generalized to an equivalence of directed
path-width and other de�nitions of directed tree-width, see Theorem 3.5.23.

Our results on the width measures for the directed union of digraphs can be used
to show that most of the considered width measures can be obtained by the width of
of its strong components. In order to process the strong components of a digraph G,
we use its acyclic condensation such that every digraph G can be represented by the
directed union of its strong components, see section 5.1. Our results on the directed
union imply that the directed path-width2, directed tree-width, cycle rank, DAG-
width, and Kelly-width of a digraph is the maximum width of its strong components.
Further, the directed feedback vertex set number and the directed feedback arc set
number of a digraph is the sum of the widths of its strong components.

Furthermore, we obtain that for directed co-graphs Kelly-width can be bounded
by DAG-width (Theorem 5.2.34). Due to [HK08, Conjecture 30], [AKK+15], and
[BJG18, Section 9.2.5] this remains open for general digraphs and is related to one
of the biggest open problems in graph searching, namely whether the monotonicity
costs for Kelly- and DAG-width games are bounded.

It remains open whether there is a linear or polynomial time algorithm to compute
Kelly-width on directed co-graphs. Furthermore, it would be interesting to know

2This result is known from [YC08] using the directed vertex separation number, which is equal
to the directed path-width. Our results allow to show this connection directly using directed path-
decompositions.

5.3. DIRECTED THRESHOLD GRAPHS 107

for which superclasses of directed co-graphs it is still possible to �nd polynomial
algorithms to get the considered parameters and for which superclasses these problems
become NP-hard. While the class of directed co-graphs was studied well in [CP06],
for the class of extended directed co-graphs it remains to show how to compute an
ex-di-co-tree in order to apply Theorem 5.2.35.

5.3 Directed Threshold Graphs

Directed threshold graphs are a subclass of directed co-graphs. They are useful
to characterize digraphs of directed linear NLC-width 1 and digraphs of directed
neighbourhood-width 1.

Huge parts of this section are taken from [GR19a].

De�nition 5.3.1 (Directed threshold graphs). The class of directed threshold graphs
is recursively de�ned as follows.

(i) Every digraph on a single vertex ({v}, ∅), denoted by •, is a directed threshold
graph.

(ii) If G is a directed threshold graph, then (a) G ⊕ •, (b) G � •, (c) • � G, and
(d) G⊗ • are directed threshold graphs.

In Theorem 5.3.4 we will show that directed threshold graphs can be characterized
by the eighteen forbidden induced subdigraphs shown in Figures 5.2 and 5.8.

The related class oriented threshold graphs was considered by Boeckner in [Boe18]
by using all given operations except the series composition G⊗ •.
Observation 5.3.2. Every oriented threshold graph is a directed threshold graph and
every directed threshold graph is a directed co-graph.

Corollary 3.5.20 allows us to bound the directed path-width of directed threshold
graphs as follows.

Corollary 5.3.3. The directed path-width of a directed threshold graph G is at most
min(∆−(G),∆+(G)).

Proof. The set of directed threshold graphs has directed linear NLC-width 1 (see
Theorem 5.3.4. Thus the result follows by Corollary 3.5.20.

Since ∆−(G) ≤ ∆(G) and ∆+(G) ≤ ∆(G) and thus

min(∆−(G),∆+(G)) ≤ ∆(G)

the given bounds also hold for the more common measure ∆(G) instead of min(∆−(G),
∆+(G)).

Theorem 5.3.4. For every digraph G the following statements are equivalent.

(a) d-lnlcw(G) = 1.

108 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

(b) d-nw(G) = 1.

(c) d-lcw(G) ≤ 2 and G ∈ Free({D2, D4, D9, D10, D12, D13, D14}).

(d) G is a directed threshold graph.

(e) G ∈ Free({D1, . . . , D15, 2
−→
P2,
−→
P2 ∪

←→
P2 , 2

←→
P2}).

(f) G ∈ Free({D1, . . . , D6, D10, D11, D13, D14, D15}) and und(G) ∈ Free({P4, 2K2, C4}).

(g) G ∈ Free({D1, . . . , D6, D10, D11, D13, D14, D15}) and und(G) is a threshold graph.

Proof. (a) ⇔ (b) By the proof of Lemma 3.5.8 (which can be proved similarly to the
case of the undirected versions in [Gur06b]) the set of all digraphs of directed linear
NLC-width 1 is equal to the set of all digraphs of directed neighbourhood-width 1.

(e) ⇒ (d) If digraph G does not contain D1, . . . , D8 (see Table 5.2), then digraph
G is a directed co-graph by [CP06] and thus has a construction using disjoint union,
series composition, and order composition. By excluding D9, D10, and D11 we know
that for every series composition of G1 and G2 either G1 or G2 is bidirectional com-
plete. Thus this subdigraph can also be added by a number of series operations with
one vertex.

Further by excluding D12, D13, D14, and D15 we know that for every order com-
position of G1 and G2 either G1 or G2 is a tournament and since we exclude a directed
cycle of length 3 by D6, we know that G1 or G2 even is a transitive tournament. Thus
this subdigraph can also be added by a number of order operations with one vertex.

By excluding 2
−→
P2,
−→
P2 ∪

←→
P2 , 2

←→
P2 for every disjoint union of G1 and G2 either G1

or G2 has no edge. Thus this subdigraph can also be added by a number of disjoint
union operations with one vertex.

(a) ⇒ (d) Let G = (V,E) be a digraph of directed linear NLC-width 1 and X be
a directed linear NLC-width 1-expression for G. An expression c(X) using directed
threshold graph operations for G can recursively be de�ned as follows.

� Let X = •1 for t ∈ [k]. Then c(X) = •.

� Let X = ◦R(X ′) for R : [1]→ [1]. Then c(X) = c(X ′).

� Let X = X ′ ⊗
(
−→
S ,
←−
S)
•1 for

−→
S ,
←−
S ⊆ [1]2.

� If
−→
S = ∅ and

←−
S = ∅, then c(X) is the disjoint union of c(X ′) and •.

� If
−→
S = {(1, 1)} and

←−
S = ∅, then c(X) is the order composition of c(X ′)

and •.
� If

−→
S = ∅ and

←−
S = {(1, 1)}, then c(X) is the order composition of • and

c(X ′).

� If
−→
S = {(1, 1)} and

←−
S = {(1, 1)}, then c(X) is the series composition of

c(X ′) and •.

5.3. DIRECTED THRESHOLD GRAPHS 109

D9 D10 D11

D12 D13 D14 D15

2
−→
P2

−→
P2 ∪

←→
P2 2

←→
P2

Figure 5.8: Forbidden induced subdigraphs for directed threshold graphs.

(d) ⇒ (a) Let G = (V,E) be a directed threshold graph and X be an expression
using directed threshold graph operations for G. A directed linear NLC-width 1-
expression c(X) for G can recursively be de�ned as follows.

� If X de�nes a single vertex, then c(X) = •1.

� If X de�nes the disjoint union of expression X1 and •, then c(X) = c(X1)⊗(∅,∅)
•1

� If X de�nes the order composition of expression X1 and •, then c(X) =
c(X1)⊗({(1,1)},∅) •1

� If X de�nes the order composition of expression of • and X1, then c(X) =
c(X1)⊗(∅,{(1,1)}) •1

� If X de�nes the series composition of expression X1 and •, then c(X) =
c(X1)⊗({(1,1)},{(1,1)}) •1

(d)⇒ (c) DigraphsD2, D4, D9, D10, D12, D13, D14are not directed threshold graphs.
Since directed threshold graphs are exactly graphs of directed linear NLC-width 1
((a) ⇔ (d)) has been shown above) by Lemma 3.5.7 we know that directed threshold
graphs have directed linear clique-width at most 2.

(c)⇒ (e) Digraphs D1, D3, D5, D6, D7, D8have directed clique-width greater than
two and thus directed linear clique-width greater than two. D11, D15 have directed
linear clique-width at least 3. Further 2

−→
P2,
−→
P2 ∪

←→
P2 , 2

←→
P2 have an underlying 2K2

which has linear clique-width at least 3 and thus by Theorem 3.5.1(e) the directed
linear clique-width of the three digraphs is also at least 3.

110 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

(d) ⇒ (g) If G is a directed threshold graph, then und(G) is a threshold graph
by the recursive de�nition. Further the given forbidden digraphs are no directed
threshold graphs and the set of directed threshold graphs is closed under taking
induced subdigraphs.

(f) ⇒ (e) For digraphs G which are excluded within (e) but not in (f), we have
und(G) ∈ {P4, C4, 2K2}.

(f) ⇔ (g) Threshold graphs are exactly the set Free({P4, 2K2, C4}), see [CH77].

Corollary 3.5.21 allows us to bound the directed path-width of planar directed
threshold graphs as follows.

Corollary 5.3.5. Planar directed threshold graphs have a directed path-width of at
most 4.

Proof. The set of directed threshold graphs has directed linear NLC-width 1 (see
Theorem 5.3.4 and for planar digraphs G we know that und(G) has no K3,3 subgraph.
Thus the result follows by Corollary 3.5.21.

5.4 Twin-Distance-Hereditary Digraphs

Distance-hereditary graphs have been introduced by Howorka in 1977 [How77]. They
are exactly the graphs which are distance-hereditary for their connected induced sub-
graphs, which means that if any two vertices u and v belong to a connected induced
subgraph H of a graph G, then some shortest path between u and v in G has to be
a subgraph of H.

But this is not the only de�nition of distance-hereditary graphs. Most important
from an algorithmic perspective are the de�nition by forbidden induced subgraphs
and the recursive construction by twins and pendant vertices. That is, a distance-
hereditary graph can be de�ned recursively from a single vertex by the following three
operations:

1. Adding a pendant vertex, which is a vertex with only one edge to an existent
vertex,

2. adding a false twin, which is a vertex with the same neighborhood as an existent
vertex and no edge to this vertex and

3. adding a true twin, which is a vertex with the same neighborhood as an existent
vertex and an edge to this vertex.

Attempting to de�ne a directed version of distance-hereditary graphs, it is necessary
to decide which of these de�nitions modi�ed to a directed de�nition is most promising
to give an useful digraph class. We consider this matter concerning some directed
graph parameters. In [LS10], the authors use a straightforward way in generaliz-
ing the property of distance-hereditary, i.e. the property that some shortest path

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 111

has to be induced subgraph, on digraphs. But their graphs are limited to oriented
digraphs,which are digraphs without bidirectional edges. For undirected distance-
hereditary graphs, tree-width is computable in linear time [BDK00]. Further, linear
rank-width of distance-hereditary graphs is computable in polynomial time [AKK17].
The clique-width of any distance-hereditary graph is at most 3 [GR99], but path-width
is hard even on bipartite distance-hereditary graphs [KBMK93].

In this section we introduce a directed version of distance-hereditary graphs, which
di�ers from the already known distance-hereditary digraphs from [LS10]. We preserve
the distance-hereditary property for our new class of directed twin-distance-hereditary
graphs (twin-dh digraphs for short) but we expand it as we allow bidirectional edges.
These twin-dh digraphs are generated by a directed pruning sequence, as in the undi-
rected class, by using twins and pendant vertices. This structure is algoritmically
useful for showing that twin-dh digraphs have bounded clique-width. After the def-
inition by a directed pruning sequence we go on with an other characterization of
this class. Distance-hereditary graphs can be characterized by forbidden induced
subgraphs, so we provide as well such a characterization for twin-dh digraphs.

Please note that huge parts of this section are taken from [KR21].
We show how to place the class in the hierarchy of related common directed graph

classes and conclude that the class of twin-dh digraphs is a subclass of extended
directed co-graphs, which allows to deduce some properties. Further, we take a closer
look to show the connection between directed co-graphs and twin-dh digraphs and
compare the class to the previously de�ned distance-hereditary digraphs from [LS10].

Moreover, we investigate directed width parameters on this graph class. By show-
ing that every strong component of a twin-dh digraphs is a directed co-graph, we can
prove that there are linear time algorithms to compute directed path-width, directed
tree-width, DAG-width, and cycle rank on twin-dh digraphs. This further reproves
the equality of these parameters, which is already given by the fact that twin-dh
digraphs are also extended directed co-graphs. It generalizes our results on directed
co-graphs in [GKR21b].

Furthermore, we present some properties which demonstrate the usability of the
class. Showing that twin-dh digraphs have directed clique-width at most 3, it fol-
lows that for every digraph problem expressible in monadic second order logic with
quanti�cation over vertices and vertex sets there exists an fpt-algorithm with respect
to the parameter directed clique-width. Thus, we can get polynomial time solutions
for several di�erent problems. From the bounded directed clique-width we can also
follow that we can solve problems like Directed Hamiltonian Path, Directed Hamil-
tonian Cycle, Directed Cut, and Regular Subdigraph in polynomial time, following
from [GWY16]. From our results in [GKR21a] we conclude that we also can solve the
dichromatic number problem in polynomial time on this class.

5.4.1 Directed Distance-Hereditary Graphs

We now come to de�ne a directed version distance-hereditary graphs. A straight-
forward idea given by the name of the graph class is, to say that a digraph G is called

112 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

distance-hereditary, if for every induced subdigraph H of G and for every vertices u, v
in H, the shortest path between u and v in H has the same length as the shortest path
between u and v in G. This idea has been pursued in [LS10] but only for oriented
digraphs without bioriented edges [Sch21].

In the following, we generalize the recursive de�nition by twins and pendant ver-
tices to digraphs, which admits several algorithmic results.

There are at least three di�erent de�nitions of twins in digraphs. In [KR09],
twins have been de�ned to obtain distance-hereditary digraphs in context of directed
rank-width and split decomposition. Thus, [KR09] can be seen as an attempt to
extend undirected distance-hereditary graphs to directed distance-hereditary graphs.
In [FHP19], twins have been de�ned to obtain results about domination and location-
domination, and in [GY02] (see also [BG18, p. 282]) in studying diameter in digraphs.
In [LS10] twins are introduced in context of a distance based directed version of
distance-hereditary graphs, but they do not lead to a characterization of this graph
class.

We de�ne directed twins and pendant vertices in digraphs as follows.

De�nition 5.4.1. Let G = (V,E) be a directed graph.

� Vertices x, y ∈ V are directed twins3 if N−(x)\{y} = N−(y)\{x} and N+(x)\
{y} = N+(y) \ {x}. We distinguish between

� x is a (directed) false twin (�) of y, if (x, y), (y, x) 6∈ V .
� x is a true out-twin (←) of y if (y, x) ∈ V , (x, y) 6∈ V .
� x is a true in-twin (→) of y if (x, y) ∈ V , (y, x) 6∈ V .
� x is a bioriented true twin (↔) of y if (x, y), (y, x) ∈ V .

� A vertex v ∈ V is called pendant if |N+(v)| + |N−(v)| = 1. We distinguish
between

� v is a pendant plus vertex (+) if |N+(v)| = 1 and |N−(v)| = 0.

� v pendant minus vertex (−) if |N+(v)| = 0 and |N−(v)| = 1.

This leads to the de�nition of a recursively de�ned graph class which is close to the
de�nition for undirected distance-hereditary graphs. We denote this class of digraphs
as directed twin-distance-hereditary graphs.

De�nition 5.4.2 (directed twin-distance-hereditary graphs). A digraph G = (V,E)
is directed twin-distance-hereditary, twin-dh or in DDH for short, if it can be con-
structed recursively by taking disjoint union, adding twins and pendant vertices,
starting from a single vertex.

A directed pruning sequence for G is a sequence S = (s1, . . . , sn−1), where σ =
(v0, . . . , vn−1) is an ordering of V and every si is one of the following triples:

3We say twins for short, but the meaning is directed twins if the context is a digraph.

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 113

� (vi,+, vai) if vi is a pendant plus vertex of vai in G[{v0, . . . , vi}]

� (vi,−, vai) if vi is a pendant minus vertex of vai in G[{v0, . . . , vi}]

� (vi, �, vai) if vi is a false twin of vai in G[{v0, . . . , vi}]

� (vi,←, vai) if vi is a true out-twin of vai in G[{v0, . . . , vi}]

� (vi,→, vai) if vi is a true in-twin of vai in G[{v0, . . . , vi}]

� (vi,↔, vai) if vi is a bioriented true twin of vai in G[{v0, . . . , vi}]

In general, we denote si = (vi, opi, vai) and say for vertex vi, that opi is the
operation and vai the anchor vertex of si.

Like in the undirected case, for a given twin-dh digraph, it is easy to get a directed
pruning sequence.

Proposition 5.4.3. Let G be a twin-distance-hereditary digraph. Then, a directed
pruning sequence of G can be computed in polynomial time.

5.4.2 Properties of Twin-DH Digraphs

The class of directed twin-distance-hereditary graphs is closed under the connected
induced subgraph operation.

Lemma 5.4.4. Let G be a twin-dh digraph and let H be a weakly connected induced
subdigraph of G. Then H is a twin-dh digraph.

Proof. Let G = (V,E) ∈ DDH with V = {v0, . . . , vn−1} and let S(G) = (s1, . . . , sn−1)
with σ(G) = (v0, . . . , vn−1) be a directed pruning sequence of G. Let H = G \ {v} be
the weakly connected induced subdigraph H of G which emerges when deleting vertex
v and all corresponding edges from G. We then create a directed pruning sequence
S(H) with ordering σ(H) with the following procedures for the three di�erent cases.

1. If v = v0, we just delete s1 from S(G) to obtain S(H) and adjust the indies,
now v1 is the �rst vertex in σ(H).

2. If there exists (v, opi, ai) ∈ S(G) and no (uj , opj , v) with i < j:
(After generating v in S(G), v never occurs as an anchor vertex.)
In this case we get S(H) by deleting (v, opi, ai) from S(G) and adjust the indices.

3. If there exists (v, opi, ai) ∈ S(G) and also (uj1, opj1, v), ..., (ujk, opjk, v) ∈ S(G)
with i < j and k, j ≤ m− 1:
(After generating v in S(G), v occurs at least once as an anchor vertex.)
Since the emerging digraph must be weakly connected, it holds that opjk must
be a directed twin operation. We get a temporary S′(H) = (s′1, . . . s

′
m−2) by

the following steps.

114 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

� For t = 1, . . . , i − 1 let s′t = st. We keep the directed pruning sequence
until v is generated.

� For t = i we set s′i = (v′, opi, ai) where v′ is the vertex such that sh =
(v′, oph, v) with oph is a directed twin operation and 6 ∃sp = (v′′, opp, v)
with p > h and oph is a directed twin operation. Thus, v′ is the last
twin of v with respect to S(G). Now we replace v by v′ as an anchor in
all following occurrences. As v′ is the latest twin of v w.r.t. S(G), every
operation applied on v is also applied on v′.

� For t = i + 1, . . . , ` with i + 1 ≤ ` ≤ m − 1 and v = at �rst check if
v′ = ut in st = (ut, opt, at). If this situation arrives, we delete this st
from our pruning sequence, such that we set s′t = (, ,). Vertex v′ is now
generated earlier in the directed pruning sequence and we do not need
this step anymore. We will delete this empty triple at the very end, such
that we don't have counting issues in the following procedure. As long as
v′ 6= ut we set s′t = st if v 6= at and we set s′t = (ut, opt, v

′) if v = at for
st = (ut, opt, at).

� For the remaining t = `+ 1, . . . ,m− 1 we set s′t = st.

At the end of this procedure, we delete the empty entry sc = (, ,) from S′(H),
adjust the indices and get a directed pruning sequence S(H) for H.

This holds for every weakly connected subdigraph H, since we can repeat this proce-
dure for every vertex which is in G but not in H. Thus, we can always get a directed
pruning sequence S(H) and H is a twin-dh digraph.

As every directed pruning sequence can easily be transformed into a pruning
sequence, the relation to undirected distance-hereditary graphs follows immediately.

Proposition 5.4.5. If G is a twin-dh digraph, then und(G) is distance-hereditary.

Sub- and Superclasses of Twin-DH Digraphs

In the undirected case, distance-hereditary graphs can be classi�ed into the hierarchy
with other graph classes. Especially, they are a superclass of co-graphs by the de�ni-
tion of co-graphs using twins. We now show, that this is also possible in the directed
case.

Proposition 5.4.6. Every directed co-graph with at least two vertices has directed
twins.

Proof. Let G be a directed co-graph with at least two vertices. If G has exactly
two vertices, then these are twins. So, let G have more than two vertices. Then
G = G1?G2 for some directed co-graphs G1 and G2 with |V (G1)| ≥ 2 or |V (G2)| ≥ 2,
where ? ∈ {⊕,�,⊗}. By induction, G1 or G2 has twins x, y. Now, by de�nition of
the ?-operation, x and y are also twins in G. Thus, every directed co-graph with at
least two vertices has a twins as claimed.

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 115

Theorem 5.4.7. A digraph is a directed co-graph if and only if it can be constructed
recursively by taking disjoint union and adding directed twins, starting from a single
vertex.

Proof. Note that we may assume that all graphs considered have at least two vertices.
Otherwise, the theorem clearly holds.

First, let G be a directed co-graph. Then, by Proposition 5.4.6, G has twins x
and y. Let G′ = G−y. Since G′ is again a directed co-graph, by induction, G′ can be
constructed by taking disjoint union and adding twins, starting from single vertices.
Since G is obtained from G′ by adding twin y to x, G therefore can be constructed
by taking disjoint union and adding twins, starting from single vertices, too.

For the other direction, suppose that G can be constructed by taking disjoint
union and adding twins, starting from single vertices. We see by induction that G is
a directed co-graph. Now, if G is disconnected, then, as every component of G is a
directed co-graph, G is a directed co-graph. So, let us assume that G is connected. As
every digraph with at most two vertices is a directed co-graph, we may also assume
that G has more than two vertices. Now, by our assumption, G has twins x and y so
that y is the last vertex adding to G−y in obtaining G. Let G′ = G−y. Since G′ can
be constructed by taking disjoint union and adding twins, G′ is a directed co-graph
by induction. Since G′ is connected and has at least two vertices, G′ = G′1 ? G

′
2 for

some directed co-graphs G′1 and G′2, where ? ∈ {�,⊗}. Let x ∈ G′1, say. Write
G1 = G[V (G′1)∪{y}] and G2 = G′2, and note that G1 and G2 are directed co-graphs.

Then, since x, y are twins in G, G = G1 ? G2. Hence G is a directed co-graph,
and the proof of Theorem 5.4.7 is complete.

Then, the relation to twin-dh digraphs follows immediately:

Corollary 5.4.8. Let G be a directed co-graph. Then, G is also twin-distance-
hereditary.

Strong components in Twin-DH digraphs By Lemma 5.4.4 and Theorem 5.4.7,
we can further conclude the following result:

Lemma 5.4.9. Let G be a twin-dh digraph. Then every strong component of G is a
directed co-graph.

Proof. Let H be an induced subdigraph of G that is strongly connected. Then, by
Lemma 5.4.4, H is a twin-dh digraph. Thus, there is a directed pruning sequence
S(H), that creates H. Assume that there is an element si = (vi, opi, vai) in S with
operation opi is a pendant plus (respectively pendant minus) operation. Then, by
the allowed operations in twin-dh digraphs, there is no directed path from vai to vi
(respectively from vi to vai) in H. This is a contradiction to the fact, that H is
strongly connected. Thus, S does not contain any pendant vertex operations. By
Theorem 5.4.7 follows, that H is a directed co-graph.

116 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

This lemma admits many algorithmic results. Every digraph problem, which is
solvable by considering only the strong components and which is further computable
on directed co-graphs, is similarly computable on twin-dh digraphs by Lemma 5.4.9.
For example, this holds for several directed graph parameters, as we see later on.

With these results it also possible to show that twin-dh digraphs are a subclass
of extended directed co-graphs:

Proposition 5.4.10. Let G be a twin-dh digraph. Then G is also an extended directed
co-graph.

Proof. Let G be a twin-dh digraph. With the following procedure we can get a
construction of G with the extended directed co-graph operations. We know from
Lemma 5.4.9 that the strong components are directed co-graphs, thus we build the
di-co-tree of these components. If a vertex does not belong to any bigger strong
component it can be seen as its own strong component. The missing arc which
connect the di�erent strong components in G are built by directed union operations,
where we can leave our all arcs except for the arc of the corresponding pendant vertex.

This result allows us to deduce some results how to solve several graph parameters
on this graph class. However, we show that we can even do better on twin-dh digraphs.
Furthermore, twin-dh digraphs have a decisive advantage compared to its superclass
since it has bounded directed clique-width. As we can build directed grids with the
directed union operation in extended directed co-graphs, the directed clique-width
for this class is not bounded. This allows us to solve many problems on twin-dh-
digraphs, which cannot be solved on extended directed co-graphs. The reason for
this is, that we lose information about the edges and therefore about the reachability
within extended directed co-graphs which we preserve in the subclass.

Next, we show how this class is related to the class of distance-hereditary digraphs
from [LS10].

Twin-DH Digraphs are distance-hereditary Though for the de�nition we used
the approach of a recursive construction by twins and pendant vertices, twin-dh di-
graphs still ful�ll the distance-heredity property.

Theorem 5.4.11. Every twin-distance-hereditary digraph G is distance-hereditary,
i.e. for every two vertices u and v in V (G), all induced u, v-paths have the same
length.

In [LS10] the authors claim that for pendant vertices, for (slightly di�erent, but
more general de�ned) oriented twins and for false twins the distance-hereditary prop-
erty remains ful�lled. However, the result that every path between two distinct ver-
tices is of length one does not hold in general when including bioriented edges. This
is why we need the following lemma, which leads us directly to the theorem above.

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 117

Lemma 5.4.12. For two twins u, v in a twin-dh digraph G it holds that if there exists
a path from u to v then the length of the shortest path in every induced subdigraph G′

of G is ≤ 2.

Note that the proof could be shortened using Theorem 4 of [LS10].

Proof. Let u, v ∈ V (G) be twins in G. If they are bioriented twins, the distance
between them is trivially 1. If u, v are oriented twins let w.l.o.g. be (u, v) ∈ E(G).
Then the distance from u to v is also 1, but this is not the case for the other direction.
So let u and v be oriented twins with (v, u) ∈ E(G) or false twins. In order to proof
the lemma by contradiction, we assume that there is a shortest path from u to v of
length ≥ 3 in an induced subdigraph G′ of G. Let this path be P = (u, v1, . . . , vk, v).
Since N−G′(v) = N−G′(u) and N+

G′(v) = N+
G′(u) it holds that (v, v1) ∈ E(G′) and

(vk, u) ∈ E(G′). Then there is a cycle (u, v1, . . . , vk, u) of length at least 3. If the
length is 3 with there must be at least two bidirectional edges in this cycle, otherwise
this cycle is not constructible by directed twins. But then, one of the bidirectional
edges goes to u and since v is a twin, we could have taken this shorter path (u, vi, v)
of length 2 from the beginning, which is a contradiction to the assumption of length 3.
Let's assume the shortest path is > 3. Then there is a cycle u, v1, v2, . . . , vk, u with the
same argumentation as before. Since und(G) is distance-hereditary, there cannot be
any holes, thus induced cycles of length ≥ 5. Thus, the cycles must contain edges in
between. If these edges are forward edges along the cycle they would shorten the path
from u to v which is a contradiction. If these edges are backward edges along the cycle,
they would again build smaller induced cycles, up to a

−→
C3 which is not constructible

by a directed pruning sequence. Backward edges are only possible, if the outer edges
from the cycle are bioriented. But this would build an induced subdigraph H19 or
H16 (Fig. 5.9), which are not constructible with a directed pruning sequence and thus
are not directed twin-distance-hereditary. Thus, such a path cannot exists and the
shortest path is always of length ≤ 2.

With the same example as for extended co-graphs, the class of distance-hereditary
digraphs has unbounded directed clique-width. In a grid digraph, where all edges
are directed from the top to the bottom and left to right, the directed clique-width
increases with the number of vertices. Here we see a certain advantage of the class of
twin-dh digraphs which justi�es to take a closer look.

Characterization of Twin-DH Digraphs

As already mentioned previously, our de�nition is not only based on the property of
distance heredity as in the undirected case, or regarding directed distance-hereditary
graphs. That is, not every digraph which is distance-hereditary, is also a twin-dh
digraph. This can be easily shown by e.g. a bioriented path. However, it is possible
to give di�erent characterizations of the class DDH by forbidden induced subdigraphs.

We give a characterization by forbidden induced subdigraphs. Therefore, we �rst
need to de�ne the two-leaves-digraph.

118 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

De�nition 5.4.13. A weakly connected digraph G is a two-leaves-digraph if it has at
least 4 vertices and if it contains at least two bioriented leaves u, v with N(u) 6= N(v)
in und(G), see Fig. 5.9.

Theorem 5.4.14. A digraph G is directed Twin-distance-hereditary if and only if it
contains none of the the following graphs, see Fig. 5.9 as induced subdigraph.

�

−→
C3.

� any biorientation of the Cn (hole) for n ≥ 5, domino, house or gem.

� D3, H1, . . . ,H27.

� A two-leaves-digraph.

Proof. � ⇒ None of the graphs can be constructed with directed twins and di-
rected pendant vertices and the class is hereditary, see Lemma 5.4.4.

� ⇐ We proof this by contradiction. Let G be a graph that does not contain
any of the forbidden induced subgraphs above and let's assume that G 6∈ DDH.
A graph is not Twin-distance-hereditary if it cannot be constructed by the di-
rected twin and pendant vertices operations. We distinguish two cases G 6∈
DDH ∧ und(G) 6∈ DH and G 6∈ DDH ∧ und(G) ∈ DH, where DH is the class
of undirected distance-hereditary graphs. Case one is that G is not twin-dh
for structural reasons, thus G 6∈ DDH ∧ und(G) 6∈ DH which is ensured by the
exclusion of any biorientation of the Cn (hole) for n ≥ 5, domino, house or gem,
see Fig. 5.9.
In the other case G 6∈ DDH∧und(G) ∈ DH the graph is not twin-dh for orienta-
tion reasons. This means that there exists a pruning sequence P for und(G) but
there is no directed pruning sequence forG because the arcs have a biorientation,
which cannot be achieved by the directed twin and pendant vertex operations.
By forbidding the two-leaves-digraphs, the pendant vertex operations are not
allowed to be bioriented and thus, every undirected pendant vertex operation
in P can be replaced by a directed pendant vertex operation. It is left to show
that G has as well none of the digraphs of set H = {

−→
C3, D3, H1, . . . ,H27} as

induced subdigraph. Note that H contains every graph with ≤ 4 vertices that
cannot be constructed by the directed twin operations, with no inclusions. If we
look at every possibly biorientation of the operations in P , we get any possible
directed pruning sequence of G. For every induced subdigraph H of G with ≤ 4
vertices there must exists a biorientation, such that there is a directed pruning
sequence, since the set H is exactly the set of graphs with ≤ 4 that has no
directed pruning sequence. There are no more forbidden induced subdigraphs
H ′ that contains none of the previous excluded graphs as induced subgraph
with more than 4 vertices for the following reason. Assume there is an induced
subdigraph H ′ of G with ≥ 5 vertices which is minimal in the sense that it
does not contain a graph from H as induced subdigraph and for which there is

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 119

no directed pruning sequence. Let V (H ′) = {t1, t2, u, v, w1, ..., wk} with k ≥ 1
be the vertex set of H ′, where t1 and t2 are twins in the undirected pruning
sequence P ′ of H ′. As H ′ is minimal, every induced subdigraph H∗ of H ′ with
4 vertices is not forbidden. Thus, the di�erent directed neighborhood of t1 and
t2 must arise by adding the �fth vertex w1. But if this vertex causes an orienta-
tion problem in H[{t1, t2, u, v, w1}] then this vertex also causes an orientation
problem in H[{t1, t2, u, w1}] which would build a forbidden induced subdigraph
with 4 vertices. We end up in the same problem if we chose any other two twins.
Thus, there cannot be a forbidden induced subdigraph with more than 4 ver-
tices for which there is no directed pruning sequence, if an undirected pruning
sequence exists and G ∈ DDH.

To get an better understanding of the construction of the forbidden induced sub-
digraphs D3, H1, . . . ,H27 we group them as follows. In none of them we can �nd
directed twins, but the undirected versions of them are distance hereditary.

� D3, H1, . . . ,H5: Digraphs with 4 or less vertices with und(G) = C4 which are
strongly connected.

� H6, . . . ,H9: Digraphs with 4 vertices with und(G) = C4 which are not strongly
connected.

� H10, . . . ,H19: Digraphs with 4 vertices with und(G) = C4 with an additional
single diagonal edge.

� H20, . . . ,H26: Digraphs with 4 vertices with und(G) = C4 with an additional
bidirectional diagonal edge.

� H27: Forbidden orientation of the K4.

5.4.3 Directed Graph Parameters on Twin-DH Digraphs

In section 5.2, we presented algorithms to compute di�erent directed width measures
on (extended) directed co-graphs in linear time. Among these are directed path-
width, directed tree-width, DAG-width and cycle rank (see [GKR21b] for formal
de�nitions). Those algorithms are not extendable directly to twin-dh digraphs, but
by Lemma 5.4.9, the results can be expanded to the latter.

We have stated the following Lemma in section 5.2 for directed path-width and
directed tree-width. The proof is extendable straight-forward to DAG-width and cycle
rank.

Lemma 5.4.15. The directed path-width (directed tree-width, DAG-width and cycle
rank respectively) of a digraph G is the maximum of the directed path-widths (directed
tree-widths, DAG-widths and cycle ranks respectively) of all strong components of G.

120 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

−→
C3 D3 two-leaves-digraph

hole Cn, n ≥ 5 gem house domino triangle

H1 H2 H3 H4 H5 H6 H7

H8 H9 H10 H11 H12 H13 H14

H15 H16 H17 H18 H19 H20 H21

H22 H23 H24 H25 H26 H27

Figure 5.9: Forbidden induced sub(di)graphs.

By this lemma, we can show that it is possible to bound the computation of the
mentioned parameters on a twin-distance-hereditary digraph.

Theorem 5.4.16. Let G be a twin-distance-hereditary digraph, n = |V (G)|, m =
|E(G)|. Then it holds that directed path-width (d-pw), directed tree-width (d-tw),
DAG-width (dagw), and cycle rank (cr) are computable in time O(n+m) and further

d-pw(G) = d-tw(G) = dagw(G)− 1 = cr(G). (5.7)

Proof. It is possible to get all strong components C1, . . . , Cr of G in linear time. By
Lemma 5.4.9, all Ci, 1 ≤ i ≤ r are directed co-graphs. By section 5.2, it is possible
to get the directed path-width, directed tree-width, DAG-width and cycle rank of
directed co-graphs in linear time and it holds that d-pw(Ci) = d-tw(Ci) = dagw(Ci)−

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 121

1 = cr(Ci) for all 1 ≤ i ≤ r. By Lemma 5.4.15, the directed path-width (directed tree-
width, DAG-width and cycle rank respectively) of G is the maximum of the directed
path-widths (directed tree-widths, DAG-widths and cycle ranks respectively) over all
Ci, 1 ≤ i ≤ r. It then follows that those parameters can be computed in linear time
and that d-pw(G) = d-tw(G) = dagw(G)− 1 = cr(G).

Note that, as twin-dh digraphs are a subclass of extended directed co-graphs, the
equality of these graph parameters follows directly from the results in [GKR21b].
However, on extended directed co-graphs (without given Ex-Di-Co-Tree), there are
only known algorithms to compute them in polynomial, not linear time.

There is also a second variant to compute directed path-width on twin-dh digraphs,
which generates a directed path-decomposition directly from a pruning sequence. If
the pruning sequence is given, the corresponding algorithm is even faster than the
method above, as its running time is only dependent from the number of vertices of
the input graph, not from the edges.

Theorem 5.4.17. Let G be a directed twin-distance-hereditary graph with given di-
rected pruning sequence S. Let n be the number of vertices in G. Then, the directed
path-width of G is computable in time O(n).

We show this theorem by giving an algorithm working on the directed pruning
sequence. Let therefore G be a digraph that is twin-distance-hereditary. Let S =
(s1, . . . , sn−1) with si = (vi, opi, vai) be a pruning sequence of G with ordering σ =
(v0, . . . , vn−1) of the vertices in G. Note that the beginning single vertex v0 does
always exist. We further assume that for s1 = (v1, op1, va1) it holds that op1 6∈ {+,−},
since it is always possible to generate the second inserted vertex v1 as a twin of v0.
Further, note that always va1 = v0.

We will do a step-by-step creation to compute a directed path-decomposition
from a directed pruning sequence. Therefore, we will start by the last element of the
directed pruning sequence and for every element create a directed path-decomposition
and then concatenate or merge it with the existing decompositions. Thus we need
the following de�nition to concatenate and merge path-decompositions. Let

Xu = (Xu1 , . . . , Xua , . . . , Xub , . . . , Xur)

and
Xv = (Xv1 , . . . , Xvc , . . . , Xvd , . . . , Xv`)

be directed path-decompositions with a function T (Xu) = {Xua , . . . , Xub} and
T (Xv) = {Xvc , . . . , Xvd}. According to this function we callXu1 , . . . , Xua−1 , Xv1 , . . . Xvc−1

pendant+ bags,Xua , . . . Xub , Xvc , . . . Xvd twin bags andXub+1
, . . . , Xur , Xvd+1

, . . . , Xv`

pendant− bags.
Then, we de�ne:

� The concatenation of Xu and Xv which consists of �rst all bags from Xu and
then all bags from Xv and where the twin bags of the concatenation are exactly

122 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

the twin bags of Xv. This is denoted by:

Xu ◦+ Xv = (Xu1 , . . . , Xua , . . . , Xub , . . . , Xur ,
Xv1 , . . . , Xvc , . . . , Xvd , . . . , Xv`)

T (Xu ◦+ Xv) = { Xvc , . . . , Xvd} = T (Xv).

� The concatenation of Xu and Xv which consists of �rst all bags from Xu and
then all bags from Xv and where the twin bags of the concatenation are exactly
the twin bags of Xu. This is denoted by:

Xu ◦− Xv = (Xu1 , . . . , Xua , . . . , Xub , . . . , Xur ,
Xv1 , . . . , Xvc , . . . , Xvd , . . . , Xv`)

T (Xu ◦− Xv) = { Xva , . . . , Xvb} = T (Xu).

� The concatenation of Xu and Xv which consists of �rst all pendant+ bags from
Xu, then all pendant+ bags from Xv, then all twin bags from Xu, then all twin
bags from Xv and all pendant− bags from Xu followed by all pendant− bags
from Xv. Twin bags of this concatenation are of all twin bags of Xu and Xv. It
is denoted by:

Xu ◦ Xv = (Xu1 , . . . , Xua−1 , Xv1 , . . . , Xvc−1 ,
Xua , . . . , Xub , Xvc , . . . , Xvd ,
Xua+1 . . . , Xur , Xvd+1

, . . . , Xv`)
T (Xu ◦ Xv) = { Xva , . . . , Xvb , Xvc , . . . , Xvd} = T (Xu) ∪ T (Xv)

� The merge of Xu and Xv where all twin bags from Xv get included in the twin
bags of Xu. It consists of �rst all pendant+ bags from Xu, then all pendant+
bags from Xv, then the twin bags of Xu where every bag is extended by the
union of all twin bags of Xv, then all pendant− bags from Xu followed by all
pendant− bags from Xv. The twin bags of this merge are the twin bags of Xu
extended by the union of all twin bags of Xv. This is denoted by:

Xu ◦⊃ Xv = (Xu1 , . . . , Xua−1 , Xv1 , . . . , Xvc−1 ,

Xua ∪
(⋃

c≤i≤dXvi
)
,

Xua+1 ∪
(⋃

c≤i≤dXvi
)
, . . . ,

Xub ∪
(⋃

c≤i≤dXvi
)
,

Xub+1
, . . . , Xur , Xvd+1

, . . . , Xv`)

T (Xu ◦⊃ Xv) = { Xua ∪
(⋃

c≤i≤dXvi
)
, . . . , Xub ∪

(⋃
c≤i≤dXvi

)
}.

We now give the algorithm to compute a directed path-decomposition for a twin-
distance-hereditary digraph given by a directed pruning sequence.

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 123

Algorithm 1 Computing a directed path-decomposition P of minimal width for a
twin-distance-hereditary input digraph G.
1: Input: directed pruning sequence S = ((v1, op1, va1), . . . , (vn−1, opn−1, van−1))
2: for i = 0, . . . , n− 1 do Initialization
3: Xvi := ({vi})
4: T (Xvi) := {{vi}}
5: t(vi) := 1
6: wt(vi) := 0
7: wp(vi) := 0
8: end for

9: for i = n− 1, . . . , 1 do Main Loop
10: op := opi
11: a := vai
12: v := vi
13: Switch op:
14: + : wp(a) := max{wp(a), wp(v), wt(v)}
15: Xa := Xv ◦+ Xa
16: − : wp(a) := max{wp(a), wp(v), wt(v)}
17: Xa := Xa ◦− Xv
18: ←: wt(a) := max{wt(a), wt(v)}
19: wp(a) := max{wp(a), wp(v)}
20: Xa := Xv ◦ Xa
21: t(a) := t(a) + t(v)
22: →: wt(a) := max{wt(a), wt(v)}
23: wp(a) := max{wp(a), wp(v)}
24: Xa := Xa ◦ Xv
25: t(a) := t(a) + t(v)
26: � : wt(a) := max{wt(a), wt(v)}
27: wp(a) := max{wp(a), wp(v)}
28: Xa := Xa ◦ Xv
29: t(a) := t(a) + t(v)
30: ↔: wt(a) := min{wt(a) + t(v), wt(v) + t(a)}
31: wp(a) := max{wp(a), wp(v)}
32: if wt(a) + t(v) ≤ wt(v) + t(a) then

33: Xa := Xa ◦⊃ Xv
34: else

35: Xa := Xv ◦⊃ Xa
36: end if

37: t(a) := t(a) + t(v)
38: end for

39: Return Xv0 , max{wp(v0), wt(v0)}

In the algorithm we use the following variables:

124 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

� Xvi is a minimal directed path-decomposition of a subdigraph of the input graph,
which is generated by vi and following operations in the pruning sequence

� T (Xvi) is the function which gives the twin bags of every Xvi . Please note that
it is updated by the previously de�ned concatenations and merge in every step

� t(vi) is the number of elements in T (Xvi) in every step of the algorithm

� wt(vi) is the width of X ′vi , which is generated by Xvi by deleting all bags that
are not in T (Xvi)

� wp(vi) is the width of X ′′vi , which is generated by Xvi by deleting all bags that
are in T (Xvi)

The algorithm returns a directed path-decomposition and the directed path-width of
G. A more detailed explanation of the algorithm is in the proof of lemma 5.4.19.

We now give an example how Algorithm 1 works, before we show correctness of
the algorithm.

Example 5.4.18. LetG be a directed twin-distance-hereditary graph with the following
pruning sequence:

S = ((v1,↔, v0), (v2,−, v1), (v3,←, v1), (v4,↔, v3), (v5,−, v2), (v6,↔, v5),
(v7, �, v5), (v8,+, v5), (v9,+, v8), (v10,↔, v9), (v11,←, v10))

v0

v4

v1

v3

v2

v7

v5

v6

v8

v11

v9

v10

Now use Algorithm 1 to �nd the directed path-width of this graph. First, for all
0 ≤ i ≤ 11: Let t(vi) = 1, wt(vi) = 0, wp(vi) = 0, Xvi = ({vi}), T (Xvi) = {{vi}}.

(v11,←, v10) : wt(v10) := max{wt(v10), wt(v11)} = 0
wp(v10) := max{wp(v10), wp(v11)} = 0
Xv10 := Xv10 ◦ Xv11 = ({v10}, {v11})
T (Xv10) = {{v10}, {v11}}
t(v10) := t(v11) + t(v10) = 2

(v10,↔, v9) : wt(v9) := min{wt(v9) + t(v10), wt(v10) + t(v9)} = min{2, 1} = 1
wp(v9) := max{wp(v9), wp(v10)} = 0
Xv9 := Xv10 ◦⊃ Xv9 = ({v9, v10}, {v9, v11})
T (Xv9) = {{v9, v10}, {v9, v11}}

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 125

t(v9) := t(v9) + t(v10) = 3
(v9,+, v8) : wp(v8) := max{wp(v8), wp(v9), wt(v9)} = 1

Xv8 := Xv9 ◦+ Xv8 = ({v9, v10}, {v9, v11}, {v8})
T (Xv8) = {{v8}}

(v8,+, v5) : wp(v5) := max{wp(v5), wp(v8), wt(v8)} = 1
Xv5 := Xv8 ◦+ Xv5 = ({v9, v10}, {v9, v11}, {v8}, {v5})
T (Xv5) = {{v5}}

(v7, �, v5) : wt(v5) := max{wt(v5), wt(v7)} = 0
wp(v5) := max{wp(v5), wp(v7)} = 1
Xv10 := Xv10 ◦ Xv11 = ({v9, v10}, {v9, v11}, {v8}, {v5}, {v7})
T (Xv5) = {{v5}, {v7}}
t(v10) := t(v5) + t(v7) = 2

(v6,↔, v5) : wt(v5) := min{wt(v5)+ t(v6), wt(v6)+ t(v5)} = min{0+1, 0+2} = 1
wp(v6) := max{wp(v5), wp(v6)} = 1
Xv5 := Xv5 ◦⊃ Xv6 = ({v9, v10}, {v9, v11}, {v8}, {v5, v6}, {v6, v7})
T (Xv5) = {{v5, v6}, {v6, v7}}
t(v5) := t(v5) + t(v6) = 3

(v5,−, v2) : wp(v2) := max{wp(v2), wp(v5), wt(v5)} = 1
Xv2 := Xv2◦−Xv2 = ({v2}, {v9, v10}, {v9, v11}, {v8}, {v5, v6}, {v6, v7})
T (Xv5) = {{v5}}

(v4,↔, v3) : wt(v3) := min{wt(v3)+ t(v4), wt(v4)+ t(v3)} = min{0+1, 0+1} = 1
wp(v3) := max{wp(v3), wp(v4)} = 0
Xv3 := Xv3 ◦⊃ Xv4 = ({v3, v4})
T (Xv3) = {{v3, v4}}
t(v3) := t(v3) + t(v4) = 2

(v3,←, v1)) : wt(v1) := max{wt(v1), wt(v3)} = 1
wp(v1) := max{wp(v1), wp(v3)} = 0
Xv1 := Xv1 ◦ Xv3 = ({v1}, {v3, v4})
T (Xv1) = {{v1}, {v3, v4}}
t(v1) := t(v1) + t(v3) = 3

(v2,−, v1) : wp(v1) = max{wp(v1), wp(v2), wt(v2)} = 1
Xv1 := Xv1 ◦− Xv2 = ({v1}, {v3, v4}, {v2}, {v9, v10}, {v9, v11}, {v8},

{v5, v6}, {v6, v7})
T (Xv1) = {{v1}, {v3, v4}}

(v1,↔, v0) : wt(v0) = min{wt(v0) + t(v1), wt(v1) + t(v0)} = min{0 + 3, 1 + 1} = 2
wp(v0) := max{wp(v0), wp(v1)} = 1
Xv0 := Xv1 ◦⊃ Xv0 = ({v0, v1}, {v0, v3, v4}, {v2}, {v9, v10},

{v9, v11}, {v8}, {v5, v6}, {v6, v7})
T (Xv0) = {{v0, v1}, {v0, v3, v4}}
t(v0) := t(v0) + t(v1) = 4

Return Xv0 , max{wt(v0), wp(v0)} = 2

The generated directed path-decomposition for digraph G is therefore X = Xv0 =

126 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

({v0, v1}, {v0, v3, v4}, {v2}, {v9, v10}, {v9, v11}, {v8}, {v5, v6}, {v6, v7}). This path-de-
composition has width 2, which equals to the directed path-width of G. Therefore,
X is a minimum and thus, optimum directed path-decomposition for G.

Lemma 5.4.19. Let G be a twin-distance-hereditary digraph with |V (G)| = n and
directed pruning sequence S. Algorithm 1 gives the directed path-width of graph G in
time O(n).

Proof. Let S = (s1, . . . sn−1) be the directed pruning sequence of G with correspond-
ing vertex-ordering σ = (v0, . . . , vn−1). We now use Algorithm 1 to generate a directed
path-decomposition for G. As the pruning sequence contains exactly n− 1 elements
and the algorithm passes each element once for the initialization and once again during
the algorithm, performing at maximum 3 operations, it works in time O(n). Remains
to show, that Algorithm 1 gives a minimal directed path-decomposition for G.

First we need some de�nitions. For vj a vertex of V (G), let G(vj)i be the graph
consisting of vj and every vertex that is generated by operations on vj after step i,
which means that G(vj)i is created by the pruning sequence S(vj)i which contains
elements sk = (vk, opk, vak) with k ≥ i and vak has been generated by a series of
operations by vj . For i = n, this means that G(vj)i = ({a}, ∅). Note that S(v0)1 = S
and G(v0)1 = G.

We further say a vertex vi is a far twin of vj in G if vi can be created by a
series of twin operations from vj . Formally, this means that there is a series of
elements sj1 , . . . , sjk such that sj1 = (vj1 , opj1 , vi), sj2 = (vj2 , opj2 , vj1), . . . , sjk =
(vjk , opjk , vjk−1

) = sj where opj` ∈ {�,←,→,↔} for 1 ≤ ` ≤ k. Let further be every
vertex a far twin of itself.

The algorithm works on the pruning sequence starting at the last element. We
will now show that after the initialization (step n) and then after every step of the
main loop (steps n − 1 to 1), so for 1 ≤ i ≤ n, for every vertex vj ∈ V (G) it holds
that

1. Xvj is a minimal directed path-decomposition of G(vj)i

2. T (Xvj) is the set of all bags in Xvj containing a far twin of vj .

3. t(vj) =
∣∣⋃{u ∈ X | X ∈ T (Xvj)}

∣∣
4. wt(vj) is the width of X ′vj , which is generated by Xvj by deleting all bags that

are not in T (Xvj)

5. wp(vj) is the width of X ′′vj , which is generated by Xvj by deleting all bags that
are not in T (Xvj)

We show this by induction on the pruning sequence. After the initialization, the
statement is true: Let vj ∈ V (G). It then holds that G(vj)n is the graph that consists
only of one vertex vj . It then holds by the initialization of the algorithm:

1. Xvj = ({vj}) is a minimal directed path-decomposition of G(vj)n

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 127

2. As vj is the last inserted vertex, there is no vertex generated from vj by any
operations, so T (Xv) = {v} is the set of all bags in Xvj containing a vertex that
is generated by vj by a series of twin operations including vj .

3. t(vj) = 1 =
∣∣⋃{u ∈ X | X ∈ T (Xvj)}

∣∣
4. wt(vj) = 0 is the width of X ′vj = ({vj})

5. wp(vj) = 0 is the width of X ′′vj , which is an empty decomposition.

Let 1 ≤ i < n+ 1. We now assume that the statement is true for i+ 1 and show
that it is still true for step i. Let si = (vi, opi, vai) be the pruning element which is
treated in step i of the algorithm. To simplify, we denote (vi, opi, vai) =: (v, op, a).
As it holds that G(vj)i = G(vj)i+1 for vj 6= a and Xvj , T (vj), t(vj), wt(vj) and wp(vj)
do not change in this step for vj 6= a, it only remains to show that the statement is
true for a after step i. Further, note that V (G(a)i) = V (G(v)i+1) ∪ V (G(a)i+1) and
V (G(v)i+1 ∩ V (G(a)i+1) = ∅. We now consider the di�erent cases of the algorithm:

� op ∈ {+, −}:

1. If v is a pendant plus vertex of a, this means by construction rules of
a twin-distance-hereditary digraph that every edge between V (G(v)i+1)
and V (G(a)i+1) is an arc from a vertex in V (G(v)i+1) to V (G(a)i+1), i.e.
there is no strong component containing v and a. Then, for creating a
directed path-decomposition for G(a)i, it is possible to just concatenate
the two path-decompositions of V (G(v)i+1) and V (G(a)i+1). Therefore,
Xa := Xv ◦+Xa is a directed path-decomposition of G(a)i. As G(v)i+1 and
G(a)i+1 are induced subdigraphs of G(a)i, this decomposition is minimal.
For a pendant minus vertex, the argumentation is equal, though the direc-
tion of the arcs and so the order of v and a is the other way round.

2. By de�nition of the ◦+ and the ◦− operator, T (a) does not change in this
step. As v is a pendant vertex of a, there is no far twin of a in G(v)i+1.
As further V (G(v)i+1) ∩ V (G(a)i+1) = ∅ and T (Xa) contains all bags of
the path-decomposition of G(a)i+1 containing a far twin of a and as Xa is
a concatenation of the path-decompositions of G(v)i+1 and G(a)i+1 after
step si, T (a) still is the set of all bags in Xa containing a far twin of a.

3. t(v) does not change in this step. As before this step it holds that t(a) =
|
⋃
{u ∈ X | X ∈ T (Xa)}| by induction and T (a) does not change, this re-

mains true.

4. wt(a) does not change in this step. As T (Xa) does not change, X ′a does
not change either and thus wt(a) is by induction the width of X ′a.

5. As Xa changes but T (Xa) does not, wp(a) has to change, too. As Xa now
contains all elements previously included in Xa and Xv, but only T (Xa)
does not change, X ′′a contains all elements of Xv and all elements that
where previously contained in Xv, but not in T (Xv). Thus, the width of
X ′′a is exactly max{wp(a), wp(v), wt(v)}.

128 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

� op ∈ {→,←, �}:

1. By de�nition of →, ← and �, for all these options, as in the �rst case,
it holds that there is no strong component containing v and a. So here,
as before, it is possible to concatenate the two path-decompositions of
G(a)i+1 and G(v)i+1, where the order is given by the operation. (For →,
it has to be far twins of a before far twins of v, for ← the other way
round and for � both is possible.) As only a and v and their twins matter,
we here concatenate in a way such that the created path-decomposition
still has the form, that T (Xa) is placed in a connected part of the path-
decomposition. As G(v)i+1 and G(a)i+1 are induced subdigraphs of G(a)i,
this decomposition is minimal.

2. As v is a twin of a, all far twins of v are also far twins of a. As V (G(a)i) =
V (G(v)i+1) ∪ V (G(a)i+1) and T (Xa) := T (Xv) ∪ T (Xa), T (Xa) is the set
of all bags in Xa containing a far twin of a.

3. t(a) := t(a) + t(v) and as T (Xa) := T (Xv) ∪ T (Xa) and those two sets are
disjoint, t(a) = |

⋃
{u ∈ X | X ∈ T (Xa)}|

4. wt(a) := max{wt(a), wt(v)} as Xa := Xa◦Xv and T (Xa) := T (Xv)∪T (Xa).
5. wp(a) := max{wp(a), wp(v)} for the same reason as in 4.

� op =↔:

1. The operation↔ means, that there is a bidirectional arc in G(a)i between
every far twin of a in V (G(a)i+1) and every far twin of v in V (G(v)i+1).
There are created no edges between any vertices, that are not far twins
of a and v. Therefore, to create a directed path-decomposition of G(a)i,
only vertices that are far twins of a and v matter, and those are saved
in T (Xa) and T (Xv) before step i. Every vertex in G(a)i, which is not
included in T (Xa) and T (Xv) can thus be simply concatenated, regarding
the placement before or after the sets T (Xa) and T (Xv) in the created
path-decomposition. Now the question is, how to unify the part of the
path-decomposition containing T (Xa) and T (Xv). The graphs generated
by the vertex sets T (Xa) and T (Xv) are co-graphs, which is easy to see
by Theorem 5.4.7. As X ′a and X ′v are the path-decompositions of those
co-graphs and there are double arcs between all vertices in T (Xa) and all
vertices in T (Xv), by the same argumentation as in Theorem 1 in [GR18],
either X ′a ◦⊃X ′v or X ′v ◦⊃X ′a give a minimal directed path-decomposition of
the induced subdigraph of G(a)i generated by T (Xa) ∪ T (Xv). Therefore
Xa ◦⊃ Xv or Xv ◦⊃ Xa is a minimal directed path-decomposition for the
whole graph G(a)i, and the smaller of those two is chosen here to be set
in Xa (see 4).

2. As a and v are twins, all far twins of v are also far twins of a. All bags
including far twins of a or v, have not been concatenated, but been merged

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 129

in Xa. Those are exactly the bags, which are set in T (Xa) in this step by
the ◦⊃ operation. So T (a) is the set of all bags in Xa containing a far twin
of a.

3. As all bags, which have been in T (Xv) and T (Xa) have been merged in this
step and included in the new T (Xa), and V (G(a)i+1) ∩ V (G(v)i+1) = ∅,
all vertices in the bags of the new T (Xa) now are vertices that have been
in T (Xv) and T (Xa) before. Therefore, we get that t(a) := t(a) + t(v) =
|
⋃
{u ∈ X | X ∈ T (Xa)}|.

4. As in 1, we here also use the argumentation of Theorem 1 in [GR18].
As the graphs generated by the old sets T (Xa) and T (Xv) are co-graphs,
X ′a ◦⊃ X ′v or X ′v ◦⊃ X ′a give a minimal directed path-decomposition of the
induced subdigraph of G(a)i and their size is t(a) +wt(v) or wt(a) + t(v).
The algorithm chooses the smaller value by the if-statement and then the
associated decomposition and thus, wt(a) := min{wt(a)+t(v), wt(v)+t(a)}
is the width of X ′a = {a}.

5. Here, X ′′a contains exactly all elements, which has been in X ′′a previously
and all which of X ′′v . Therefore, its width is max{wp(a), wp(v)}.

By this induction, it �nally holds that after the last step of the algorithm, when
s1 has been processed, that Xa = Xv0 is a minimal directed path-decomposition of
G(v0)1 = G. Further, as all elements of X0 are either contained in X ′0 or in X ′′0 ,
max{wp(v0), wt(v0)} gives the width of the decomposition Xv0 which is the directed
path-width of G.

Please note that the Operation ◦⊃ can not be performed in constant time. Thus,
Algorithm 1, as it is presented above, does not work in linear time. But by modifying
it such that it does not create a directed path-decomposition but only the directed
path-width (which means deleting lines 15, 17, 20, 24, 28, 32-36), the algorithm takes
linear time and does compute the directed path-width of the input graph G.

So, the directed path-width of G is computable in linear time.

As obtaining a minimal directed path-decomposition of G in time O(n) also allows
to get the directed path-width in the same time, Theorem 5.4.17 follows directly.

Directed Clique-width of Twin-DH Digraphs

We now consider the already mentioned parameter directed clique-width. It di�ers
from the previously mentioned parameters as instead of representing the size of strong
components in some way, it describes the number of di�erent neighbourhoods. Es-
pecially for bioriented cliques, the above mentioned parameters are in�nitely large
whereas directed clique-width is linear.

Undirected clique-width was introduced by [CO00] and is de�ned correspondingly.
In the undirected case, co-graphs are exactly the graphs of clique-width at most 2
and distance-hereditary graphs have clique-width at most 3, which leads to the idea
of regarding directed clique-width on twin-dh digraphs.

130 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Theorem 5.4.20. Every twin-dh digraph has directed clique-width at most 3.

Proof. We show a construction for a directed clique-width 3-expression for every G =
(V,E) ∈ DDH and then argue, why this is best possible. The method we use is closely
related to the undirected case: Distance-hereditary graphs have clique-width at most
3, see [GR00]. Let G ∈ DDH and S = (s1, . . . , sn) be a directed pruning sequence
creating G. We give an algorithm to construct a 3-expression traversing S starting
with the last element of the sequence. The idea for computing this expression is to
use three labels 1, 2 and 3 as follows: After every step of the algorithm, expressions
which are already constructed consist of vertices labeled with 1 and 3, where 1 means
that the vertex has not been �nally treated and possibly has edges to other vertices
not inserted yet, whereas for vertices labeled by 3 all incident edges have already
been considered. The label 2 is only used as a working label. For initialization, let
Xv = •1 for every vertex v ∈ V . As this is a 1-expression, it is also a 3-expression. In
the following let now si = (vi, opi, ai), for simpli�cation denoted by (v, op, a), be the
currently treated element of S and Xv and Xa be the 3-expressions which exists by
induction for v and a. Then, we get a 3-expression by the following rules depending
on the operation op.

(1) op = + : Xa := ρ2→3(α2,1(ρ1→2(Xv)⊕Xa))

(2) op = − : Xa := ρ2→3(α1,2(ρ1→2(Xv)⊕Xa))

(3) op = � : Xa := Xv ⊕Xa

(4) op = →: Xa := ρ2→1(α2,1(ρ1→2(Xv)⊕Xa))

(5) op = ←: Xa := ρ2→1(α1,2(ρ1→2(Xv)⊕Xa))

(6) op = ↔: Xa := ρ2→1(α1,2(α2,1(ρ1→2(Xv)⊕Xa)))

To prove correctness we �rst need some de�nitions. For w a vertex of V (G), let
G(w)i be the graph consisting of w and every vertex that is generated by operations
on w after step i, which means that G(w)i is created by the pruning sequence S(w)i
which contains elements sk = (vk, opk, vak) with k ≥ i and vak has been generated by
a series of operations by w. For i = n, this means that G(w)i = ({w}, ∅). Note that
for element v0, which is the �rst anchor in the pruning sequence, i.e. s1 = (v1, op1, v0),
it holds that S(v0)1 = S and G(v0)1 = G.

We then show by induction that at any step i with n ≥ i ≥ 0 of the algorithm, it
holds that Xw is a 3-expression of G(w)i for all vertices w ∈ V . We further assume
that every Xw contains only vertices labeled by 1 and 3, where the vertices labeled by
1 are exactly those, which are created by a series of twin operations on w (including
w itself). To simplify, we call such a vertex a far twin in the following.

After the initialization, it is easy to see for i = n that for all w ∈ V , Xw = •1 is a
3-expression of G(w)i = ({w}, ∅). Obviously, the only vertex in G(w)i is w which is
labeled by 1.

5.4. TWIN-DISTANCE-HEREDITARY DIGRAPHS 131

Consider now step i. By induction we know that Xa is a 3-expression of G(a)i+1

where far twins of a are labeled by 1 and all other vertices are labeled by 3. Further,
Xv is a 3-expression of G(v)i+1 where all far twins of v are labeled by 1 and all
other vertices are labeled by 3. We now show that after step i it holds that Xa is a
3-expression of G(a)i. Therefore, we consider element si =: (v, op, a) in step i.

(1) As v is a pendant plus vertex of a, there exist edges from every far twin of v to
every far twin of a. By ρ1→2(Xv) we relabel every vertex in Xv which is labeled
by 1, i.e. every far twin of v with 2. We join this expression with Xa and add
edges from all labels 2 to 1, which inserts all edges created by the pendant plus
relation of v to a. As v is a pendant plus vertex of a, all far twins of a can not
be far twins of v and thus, we relabel these vertices from 2 to 3. Now, the newly
created Xa is a 3-expression of G(a)i consisting only of labels 1 and 3, where
the vertices labeled by 1 are exactly the far twins of a.

(2) Analogously to (1).

(3) As v is a false twin of a, no new edges are inserted by this operation and
further all far twins of v are also far twins of a. Therefore, we only need to join
expressions Xv and Xa to create an expression for G(a)i where every far twin
of a is labeled by 1 and every other vertex is labeled by 3.

(4) As v is a true in-twin of a, like in (1), there exist edges from every far twin of v
to every far twin of a. We therefore use the same method to join the expressions
Xv and Xa and create edges between them. But unlike in (1), every far twin
of v is a far twin of a. Therefore, we relabel the far twins of v from 2 to 1, to
obtain a 3-expression for G(a)i in which exactly all far twins of a are labeled
by 1.

(5) Analogously to (4).

(6) Is very similar to (4) and (5), with the only di�erence that we need edges from
every far twin of v to every far twin of a and the other way round. Therefore,
we insert edges from labels 2 to 1 and from labels 1 to 2, before relabeling, to
obtain a 3-expression for G(a)i in which exactly all far twins of a are labeled
by 1.

Further, the directed clique-width of a twin-dh digraph has to be at least 3, as
can be seen by the following counterexample: The

−→
P3, which means a directed path

of 3 vertices, is twin-distance-hereditary, but it is not expressible by a 2-expression.

In [CMR00], Courcelle et al. proved that every problem, which is describable
in monadic second order logic, is computable in polynomial time on clique-width
bounded graphs. As the directed clique-width of a graph is always greater or equal
the clique-width of the underlying undirected graph, this result can be extended to
directed clique-width. It therefore holds that:

132 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Corollary 5.4.21. Let G be a twin-dh digraph. Then every graph problem, which is
describable in MSO1 logic, is computable in polynomial time on G.

5.4.4 Further Problems on directed twin-dh graphs

From the result in [GKR21a] we can follow, that the r-dichromatic number problem
can be solved in polynomial time on twin-dh digraphs.

By [GWY16] we can solve the problems Directed Hamiltonian Path, Directed
Hamiltonian Cycle, Directed Cut, and Regular Subdigraph using an XP-algorithm
w.r.t. the parameter directed NLC-width in polynomial time. Directed NLC-width
is a digraph parameter which is closely related to directed clique-width, since we
can transform every directed clique-width k-expression into an equivalent directed
NLC-width k-expression, see [GWY16]. Thus, directed twin-dh graphs have bounded
directed NLC-width and we can solve the above mentioned problems in polynomial
time on this class.

5.4.5 Conclusion and Outlook

In this section, we introduce directed twin-distance-hereditary graphs, which are
developed by a generalization of the recursive de�nition for undirected distance-
hereditary graphs. The class of twin-dh digraphs is a superclass of directed co-graphs,
de�ned in [CP06] and when excluding the bioriented true twin operation, it is a sub-
class of distance-hereditary digraphs, de�ned in [LS10]. We characterize this class
by forbidden induced subdigraphs. Further, we show that the class is a subclass of
extended directed co-graphs which allows us to deduce interesting results. However,
due to the unbounded directed clique-width of extended directed co-graphs, twin-dh
digraphs exhibit properties which allow supplemental results such that an investiga-
tion of this class is advisable. We show interesting properties of the class such as that
every strong component is a directed co-graph. This is helpful in the computation of
several problems. For future work it might be interesting to investigate if problems
which are solvable on undirected distance-hereditary graphs, as e.g. the (directed)
Steiner tree problem can also be solved on twin-dh digraphs.

Moreover, we show that several directed width parameters, namely directed path-
width, directed tree-width, DAG-width and cycle rank can be computed in linear time
on directed twin-distance-hereditary graphs. From the associated proof (as well as
from the fact that this twin-dh digraphs are a subclass of extended directed co-graphs)
further the equality of all these parameters follows.

Further, we can conclude by our results and [GKR21b] that for twin-dh digraphs,
as for directed co-graphs, Kelly-width can be bounded by DAG-width. Due to [HK08,
Conjecture 30], [AKK+15], and [BJG18, Section 9.2.5] this remains open for general
digraphs and is related to one of the biggest open problems in graph searching, namely
whether the monotonicity costs for Kelly- and DAG-width games are bounded. In
previous sections we could show, that the equivalence of those two parameters is given
on directed co-graphs. In this section we can extend this result to their superclass of

5.5. SEQUENCE DIGRAPHS 133

twin-dh digraphs.
Like in the undirected case, every twin-dh digraph has directed clique-width at

most 3, though not every digraph of directed clique-width 3 is a twin-dh digraph.
From that we can conclude several interesting results, since there are many NP-hard
problems which are solvable on digraphs of bounded directed clique-width.

It would be interesting for future work to consider other superclasses of twin-dh
digraphs and whether it is still possible to �nd e�cient algorithms to compute several
graph parameters on these classes and at which point it becomes NP-hard.

5.5 Sequence Digraphs

We now present the set of sequence digraphs and an algorithm to obtain directed
path-width on this graph class.

A sequence digraph is de�ned by a set Q = {q1, . . . , qk} of k sequences qi =
(bi,1, . . . , bi,ni), 1 ≤ i ≤ k. Further there is a function t which assigns to every item
bi,j a type t(bi,j). The sequence digraph g(Q) = (V,A) for the set Q has a vertex for
every type and an arc (u, v) ∈ A if and only if there is some sequence qi in Q where an
item of type u is on the left of some item of type v. The set of all sequence digraphs
which can be de�ned by sets Q on at most k sequences that together contain at most
` items of each type is denoted by Sk,`.

We show in Theorem 5.5.17 that S1,1 is equal to the well known class of transitive
tournaments. Since only the �rst and the last item of each type in every qi ∈ Q
are important for the arcs in the corresponding digraph all classes S1,`, ` ≥ 2 are
equal. We show in Theorem 5.5.25 that S1,2 is equal to the set of semicomplete

{co-(2
−→
P2),
−→
C3, D3}-free digraphs (cf. Table 5.3 for the digraphs). By our Proposition

5.5.19 set Sk,1 can be characterized by only three forbidden subdigraphs. It is also
the class of disjoint unions of k transitive tournaments.

Considering the directed path-width problem on sequence digraphs, we get some
remarkable results. We show that for digraphs de�ned by k = 1 sequence the directed
path-width can be computed in polynomial time. Further we show that for sets Q
of sequences of bounded length, of bounded distribution of the items of every type
onto the sequences, or bounded number of items of every type computing the directed
path-width of g(Q) is NP-hard. We show that for a �xed number k of sequences the
directed path-width is computable in polynomial time. Therefore in Theorem 5.5.37
we introduce an algorithm which computes the directed path-width of a digraph which
is given by a set of k sequences in time O(k · (1 + max1≤i≤k ni)

k). The main idea
is to discover an optimal directed path-decomposition by scanning the k sequences
left-to-right and keeping in a state the numbers of scanned items of every sequence
and a certain number of active types.

From a parameterized point of view our solution leads to an XP-algorithm w.r.t.
parameter k. While the existence of FPT-algorithms for computing directed path-
width is open up to now, there are further XP-algorithms for the directed path-
width problem for some digraph G = (V,A). The directed path-width can be com-

134 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

puted in time O(|A|·|V |2d-pw(G)/(d-pw(G)−1)!) by [KKK+16] and in time O(d-pw(G) · |A| ·
|V |2d-pw(G)) by [Nag12]. Further in [KKT15] it is shown how to decide whether the
directed path-width of an `-semicomplete digraph is at most w in time (`+2w+1)2w ·
|V |O(1). All these algorithms are exponential in the directed path-width of the input
digraph while our algorithm is exponential within the number of sequences. Thus our
result improves theses algorithms for digraphs of large directed path-width which can
be decomposed by a small number of sequences (see Table 5.2 for examples). Fur-
thermore the directed path-width can be computed in time 3τ(und(G)) · |V |O(1), where
τ(und(G)) denotes the vertex cover number of the underlying undirected graph of
G, by [Kob15]. Thus our result also improves this algorithm for digraphs of large
τ(und(G)) which can be decomposed by a small number of sequences (see Table 5.2
for examples).

digraphs G = (V,A), n = |V | d-pw(G) τ(und(G)) k `

transitive tournaments 0 n− 1 1 1

union of k′ transitive tournaments 0 (
∑k′

i=1 ni)− k′ k′ 1

bidirectional complete digraphs
←→
Kn n− 1 n− 1 1 2

semicomplete {
−→
C3, D0, D3}-free [0, n− 1] n− 1 1 2

semicomplete {co-(2
−→
P2),
−→
C3, D3}-free [0, n− 1] n− 1 1 2

union of k′ semicomplete {co-(2
−→
P2),
−→
C3, D3}-free [0, n− 1] (

∑k′

i=1 ni)− k′ k′ 2k′

Table 5.2: Values of parameters within XP-algorithms for directed path-width.

Please note that this section is taken from [GRR18].

5.5.1 From Sequences to Digraphs

Let Q = {q1, . . . , qk} be a set of k sequences. Every sequence qi = (bi,1, . . . , bi,ni)

consists of a number ni of items, such that all n =
∑k

i=1 ni items are pairwise distinct.
Further there is a function t which assigns to every item bi,j a type t(bi,j). The set of
all types of the items in some sequence qi is denoted by types(qi) = {t(b) | b ∈ qi}. For
a set of sequences Q = {q1, . . . , qk} we denote types(Q) = types(q1) ∪ · · · ∪ types(qk).
For some sequence q` = (b`,1, . . . , b`,n`

) we say item b`,i is on the left of item b`,j in
sequence q` if i < j. Item b`,i is on the position i in sequence q`, since there are i− 1
items on the left of b`,i in sequence q`.

In order to insert a new item b on a position j in sequence qi we �rst move all
items on positions j′ ≥ j to position j′ + 1 starting at the rightmost position ni and
then we insert b at position j. In order to remove an existing item b at a position j
in sequence qi we move all items from positions j′ ≥ j + 1 to position j′ − 1 starting
at position j + 1.

We consider the distribution of the items of a type t onto the sequences by

dQ(t) = |{q ∈ Q | t ∈ types(q)}| and dQ = max
t∈types(Q)

dQ(t).

5.5. SEQUENCE DIGRAPHS 135

For the number of items for type t within the sequences we de�ne

cQ(t) =
∑
q∈Q
|{b ∈ q | t(b) = t}| and cQ = max

t∈types(Q)
cQ(t).

Obviously it holds dQ ≤ k and 1 ≤ dQ ≤ cQ ≤ n.
The sequence digraph g(Q) = (V,A) for a set Q = {q1, . . . , qk} has a vertex for

every type, i.e. V = types(Q) and an arc (u, v) ∈ A if and only if there is some
sequence qi in Q where an item of type u is on the left of an item of type v. More
formally, there is an arc (u, v) ∈ A if and only if there is some sequence qi in Q, such
that there are two items bi,j and bi,j′ such that (1) 1 ≤ j < j′ ≤ ni, (2) t(bi,j) = u,
(3) t(bi,j′) = v, and (4) u 6= v.

Sequence digraphs have successfully been applied in order to model the stacking
process of bins from conveyor belts onto pallets with respect to customer orders,
which is an important task in palletizing systems used in centralized distribution
centers [GRW16]. In our examples we will use type identi�cations instead of item
identi�cations to represent a sequence qi ∈ Q. For r not necessarily distinct types
t1, . . . , tr let [t1, . . . , tr] denote some sequence qi = (bi,1, . . . , bi,r) of r pairwise distinct
items, such that t(bi,j) = tj for j = 1, . . . , r. We use this notation for sets of sequences
as well.

Example 5.5.1. Fig. 5.10 shows the sequence digraph g(Q) for Q = {q1, q2, q3} with
sequences q1 = [a, a, d, e, d], q2 = [c, b, b, d], and q3 = [c, c, d, e, d].

b

c

d

a

e

Figure 5.10: Sequence digraph g(Q) of Ex-
ample 5.5.1.

a b

c

d

f

e
1

e
7

e
6

e
4

e
3

e
2

e
5

e

Figure 5.11: Digraph G of Example
5.5.5.

Next we give results in order to compute the sequence digraph g(Q) and also its
complement digraph co-(g(Q)) = g(Q).4 Therefore we de�ne the position of the �rst
item in some sequence qi ∈ Q of some type t ∈ types(Q) by first(qi, t) and the position
of the last item of type t in sequence qi by last(qi, t). For technical reasons, if there
is no item for type t contained in sequence qi, then we de�ne first(qi, t) = ni + 1 and
last(qi, t) = 0.

Lemma 5.5.2. Let Q = {q1} be a set of one sequence, g(Q) = (V,A) the sequence
digraph, co-(g(Q)) = (V,Ac) its complement digraph, and u 6= v, u, v ∈ V .

4Please note that in this section, to improve readability, for a graph G we will use the term co-G
for the complement graph instead of G.

136 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

1. There is an arc (u, v) ∈ A, if and only if first(q1, u) < last(q1, v).

2. There is an arc (u, v) ∈ Ac, if and only if last(q1, v) < first(q1, u).

3. If (u, v) ∈ Ac, then (v, u) ∈ A.

4. There is an arc (u, v) ∈ A and an arc (v, u) ∈ Ac, if and only if last(q1, u) <
first(q1, v).

Lemma 5.5.3. Let Q = {q1, . . . , qk} be a set of k sequences, g(Q) = (V,A) the
sequence digraph, co-(g(Q)) = (V,Ac) its complement digraph, and u 6= v, u, v ∈ V .

1. There is an arc (u, v) ∈ A, if and only if there is some qi ∈ Q such that
first(qi, u) < last(qi, v).

2. There is an arc (u, v) ∈ Ac, if and only if for every qi ∈ Q we have last(qi, v) <
first(qi, u).

By Lemma 5.5.3(1) only the �rst and the last item of each type in every qi ∈ Q are
important for the arcs in the corresponding digraph. Let M(qi) be the subsequence
of qi which is obtained from qi by removing all except the �rst and last item for each
type and M(Q) = {M(q1), . . . ,M(qk)}.
Observation 5.5.4. Let Q = {q1, . . . , qk} be a set of k sequences, then g(Q) =
g(M(Q)).

5.5.2 From Digraphs to Sequences

Let G = (V,A) be some digraph and A = {a1, . . . , a`} its arc set. The sequence
system q(G) = {q1, . . . , q`} for G is de�ned as follows. (1) There are 2` items
b1,1, b1,2, . . . , b`,1, b`,2. (2) Sequence qi = (bi,1, bi,2) for 1 ≤ i ≤ `. (3) The type of
item bi,1 is the �rst vertex of arc ai and the type of item bi,2 is the second vertex of
arc ai for 1 ≤ i ≤ `. Thus types(q(G)) = V .

Example 5.5.5 (Sequence System). For the digraph G of Fig. 5.11 the corresponding
sequence system is q(G) = {q1, q2, q3, q4, q5, q6, q7}, where q1 = [a, b], q2 = [b, c],
q3 = [c, d], q4 = [d, e], q5 = [e, a], q6 = [e, f], q7 = [f, a].

By the de�nition of sequence systems and sequence digraphs we obtain the fol-
lowing result.

Observation 5.5.6. For every digraph G it holds G = g(q(G)).

Lemma 5.5.7. For every digraph G = (V,A) with underlying undirected graph
und(G) = (V,E) there is a set Q of at most |E| sequences such that G = g(Q).

There are digraphs which even can be de�ned by one sequence (see Theorem 5.5.25
for a complete characterization) and there are digraphs for which |E| sequences are
really necessary (see Lemma 5.5.13). For digraphs of bounded vertex degree the
sequence system Q = q(G) leads to sets whose distribution and number of items of
each type can be bounded as follows.

5.5. SEQUENCE DIGRAPHS 137

Lemma 5.5.8. For every digraph G = (V,A) where max{∆−(G),∆+(G)} ≤ d there
is a set Q with dQ ≤ 2d and cQ ≤ 2d such that G = g(Q).

In case of complete bioriented digraphs, i.e. we have none or both arcs between
any pair of vertices, we can improve the latter bounds.

Lemma 5.5.9. For every complete bioriented digraph G = (V,A) such that max{∆−(G),
∆+(G)} ≤ d there is a set Q with dQ ≤ d and cQ ≤ 2d (for d ≥ 2 even cQ ≤ 2d− 1)
such that G = g(Q).

5.5.3 Properties of Sequence Digraphs

Graph Classes and their Relations

We de�ne Sk,` to be the set of all sequence digraphs de�ned by sets Q on at most
k sequences that contain at most ` items of each type in types(Q). By Observation
5.5.4 and Lemma 5.5.7 we obtain the following bounds.

Corollary 5.5.10. Let Q be a set on k sequences and g(Q) = (V,A) ∈ Sk,` the
de�ned graph with und(g(Q)) = (V,E). Then we can assume that 1 ≤ ` ≤ 2k and
1 ≤ k ≤ |E|.

Lemma 5.5.11. Let ` ≥ 1 and G ∈ S1,` be de�ned by Q = {q1}, then g(Q) is
semicomplete and graph und(g(Q)) is the complete graph on |types(Q)| vertices.

Next we consider the relations of the de�ned classes for k = 1 sequence. Since
S1,1 contains only digraphs with exactly one arc between every pair of vertices (cf.
Theorem 5.5.17) and S1,` for ` ≥ 2 contains all bidirectional complete digraphs we
know that S1,1 (S1,` for ` ≥ 2. Further by Sk,` ⊆ Sk,`+1 and Observation 5.5.4 it
follows that all classes S1,` for ` ≥ 2 are equal.

Corollary 5.5.12. For ` ≥ 2 the following inclusions hold true.

S1,1 (S1,2 = . . . = S1,`

Lemma 5.5.13. Let G = (V,E) be a triangle free graph, i.e. a C3-free graph, with
|E| ≥ 2, such that ∆(G) = ` and let G′ = (V,A) be an orientation of G. Then for
k = |E| it holds that G′ ∈ Sk,` but for k′ < k or `′ < ` it holds that G′ 6∈ Sk′,`′ .

Since for every k ≥ 2 and every ` = 2, . . . , k there is a tree T on k edges and
∆(T) = ` we know by Lemma 5.5.13 that for k ≥ 2 and ` = 2, . . . , k it holds
Sk,`−1 (Sk,`. Further by Observation 5.5.4 we know that for k ≥ 2 and ` ≥ 2k it
holds Sk,` = Sk,`+1.

Corollary 5.5.14. For k ≥ 2 the following inclusions hold true.

Sk,1 (Sk,2 (. . . (Sk,k ⊆ Sk,k+1 ⊆ . . . ⊆ Sk,2k = Sk,2k+1 = . . .

138 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

a b

c

a b

c

a

c

b

c

a b

d c d

ba a

b

a

b

D0
−→
C3 D3 2

−→
P2 co-(2

−→
P2) 2

←→
K1

←→
K2

Table 5.3: Special digraphs.

Lemma 5.5.15. Let G ∈ Sk,`, then for every induced subdigraph H of G it holds
H ∈ Sk,`.

Graph classes which are closed under taking induced subgraphs are called hered-
itary. Hereditary graph classes are exactly those classes which can be de�ned by
forbidden induced subgraphs.

Characterizations of Sequence Digraphs for k = 1 or ` = 1

In this section we show a �nite set of forbidden induced subgraphs for all classes
Sk,` where ` = 1 and for all classes where k = 1. These characterizations lead to
polynomial time recognition algorithms for the corresponding graph classes. Further-
more we give characterizations in terms of special tournaments and conditions for the
complement digraph.

Digraphs for k = 1 and ` = 1 A digraph G = (V,A) is called transitive if for
every pair (u, v) ∈ A and (v, w) ∈ A of arcs with u 6= w the arc (u,w) also belongs to
A.

Lemma 5.5.16. Every digraph in S1,1 is transitive.

For a digraph G and an integer d let dG be the disjoint union of d copies of G.

Theorem 5.5.17. For every digraph G the following statements are equivalent.

1. G ∈ S1,1

2. G is a transitive tournament.

3. G is an acyclic tournament.

4. G is a
−→
C3-free tournament.

5. G is a tournament with exactly one Hamiltonian path.

6. G is a tournament and every vertex in G has a di�erent outdegree.

7. G is {2
←→
K1,
←→
K2,
−→
C3}-free.

8. G ∈ {({v}, ∅)} ∪ {(
−→
Pn)n−1 | n ≥ 2}, i.e. G is the (n− 1)-th power of a directed

path
−→
Pn.

5.5. SEQUENCE DIGRAPHS 139

Proof. The equivalence of (2)− (6) is known from [Gou12, Chapter 9]. (1)⇒ (2) By
Lemma 5.5.16 every digraph G ∈ S1,1 is transitive and by de�nition of S1,1 digraph
G is a tournament. (3) ⇒ (1) Every acyclic digraph G has a source, i.e. a vertex v1

of indegree 0, see [BJG09]. Since G is a tournament there is an arc (v1, v) for every
vertex v of G, i.e. v1 is an out-dominating vertex. By removing v1 from G, we obtain
a transitive tournament G1 which leads to an out-dominating vertex v2. By removing
v2 from G1, we obtain a transitive tournament G2 which leads to an out-dominating
vertex v3 and so on. The sequence [v1, v2, . . . , vn] shows that G ∈ S1,1. (4)⇔ (7) and
(1)⇔ (8) can be easily veri�ed.

By part (3)⇒ (1) of the proof of Theorem 5.5.17 we have shown the next result.

Proposition 5.5.18. Let G = (V,A) ∈ S1,1, then a sequence q, such that G = g({q})
can be found in time O(|V |+ |A|).

Sequence Digraphs for ` = 1 The sequence digraph g(Q) = (V,A) for a set
Q = {q1, . . . , qk} can be obtained by the union of g({qi}) = (Vi, Ai), 1 ≤ i ≤ k by
V = ∪ki=1Vi and A = ∪ki=1Ai. Since for digraphs in Sk,1 the vertex sets Vi = types(qi)
are disjoint, all properties of Theorem 5.5.17 can be generalized to k ≥ 1 sequences.
Some of them are given next.

Proposition 5.5.19. For every digraph G and every integer k ≥ 1 the following
statements are equivalent.

1. G ∈ Sk,1.

2. G is the disjoint union of k digraphs from S1,1.

3. G is {(k + 1)
←→
K1,
←→
K2,
−→
C3}-free.

By Proposition 5.5.18 and Proposition 5.5.19 we have shown the next result.

Proposition 5.5.20. Let G = (V,A) ∈ Sk,1, then a set Q on k sequences, such that
G = g(Q) can be found in time O(|V |+ |A|).

Sequence Digraphs for k = 1 The digraph D0 in Table 5.3 is not transitive, since
it has among others the arcs (b, c) and (c, a) but not the arc (b, a). Further D0 belongs
to the set S1,2, since it can be de�ned by set Q = {q1} of one sequence q1 = [c, a, b, c].
Thus for ` ≥ 2 items for each type even one sequence can de�ne digraphs which
are not transitive. A digraph G = (V,A) is called quasi transitive if for every pair
(u, v) ∈ A and (v, w) ∈ A of arcs with u 6= w there is at least one arc between u and
w in A. Since every semicomplete digraph is quasi transitive, by Lemma 5.5.11 every
digraph in S1,`, ` ≥ 1, is quasi transitive.

To show characterizations for the class S1,2 we next give some lemmas.

Lemma 5.5.21. Let ` ≥ 1 and G ∈ S1,`, then its complement digraph co-G is tran-
sitive.

140 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Lemma 5.5.22. Let ` ≥ 1 and G ∈ S1,`, then its complement digraph co-G is 2
−→
P2-

free.

Lemma 5.5.23. Let G be a semicomplete {
−→
C3, D3}-free digraph on n vertices, then G

has a vertex v such that outdegree(v) = n− 1 and a vertex v′ such that indegree(v′) =
n− 1.

Lemma 5.5.24. Every semicomplete {
−→
C3, D3}-free digraph has a spanning transitive

tournament subdigraph.

These results allow us to show the following characterizations. Since we use several
forbidden induced subdigraphs the semicompleteness is expressed by excluding 2

←→
K1

(see Table 5.3 for the special digraphs).

Theorem 5.5.25. For every digraph G the following statements are equivalent.

1. G ∈ S1,2

2. G ∈ S1,` for some ` ≥ 2

3. co-G is transitive, co-G is 2
−→
P2-free, and G has a spanning transitive tournament

subdigraph.

4. G is {co-(2
−→
P2), 2

←→
K1,
−→
C3, D3}-free.

Proof. (2)⇒ (1) By Corollary 5.5.12. (1)⇒ (4) co-(2
−→
P2), 2

←→
K1,
−→
C3, D3 6∈ S1,2. (4)⇒

(3) By Lemma 5.2.9 and Lemma 5.5.24. (3)⇒ (2) Let G′ = (V,A′) be a subdigraph
of G = (V,A) which is a transitive tournament. By Theorem 5.5.17 we know that
G′ ∈ S1,1 and thus there is some sequence q′ = [v1, . . . , vn] such that g({q′}) = G′.
If A′ = A we know that G ∈ S1,1 ⊆ S1,` for every ` ≥ 2. So we can assume that
A′ (A. Obviously for every arc (vi, vj) ∈ A − A′ there are two positions j < i in
q′ = [v1, . . . , vj , . . . , vi, . . . , vn]. In order to de�ne a subdigraph of G which contains
all arcs of G′ and arc (vi, vj) we can insert (cf. Section 5.5.1 for the de�nition of
inserting an item) an additional item for type vi on position k ≤ j, or an additional
item for type vj on position k > i, or �rst an additional item for type vj and then
an additional item for type vi on a position k, j < k ≤ i, into q′ without creating
an arc which is not in A. This is possible if and only if there is some position k,
j ≤ k ≤ i, in q′ = [v1, . . . , vj , . . . , vm′ , . . . , vk, . . . , vm′′ , . . . , vi, . . . , vn] such that for
every m′, j < m′ ≤ k, it holds (vm′ , vj) ∈ A and for every m′′, k ≤ m′′ < i, it holds
(vi, vm′′) ∈ A.

If it is possible to insert all arcs of A − A′ by adding a set of additional items
into sequence q′ resulting in a sequence q such that G = g(q), then it obviously holds
G ∈ S1,` for some ` ≥ 2. Next we show a condition using the new items of every
single arc of A−A′ independently from each other.

Claim 5.5.26. If for every arc (vi, vj) ∈ A − A′ there is a position k, j < k ≤ i such
that �rst inserting an additional item for type vj and then an additional item for type
vi at position k into q′ de�nes a subdigraph of G which contains all arcs of G′ and
arc (vi, vj), then G ∈ S1,` for some ` ≥ 2.

5.5. SEQUENCE DIGRAPHS 141

Assume that G 6∈ S1,` for every ` ≥ 2. By the Claim there is some arc (vi, vj) ∈
A−A′ such that for every position k, j < k ≤ i inserting an additional item for type
vi and an additional item for type vj at position k de�nes an arc which is not in A.
That is, for every position k, j < k ≤ i, in q′ there exists some m′, j < m′ ≤ k,
such that it holds (vm′ , vj) 6∈ A or there exists some m′′, k ≤ m′′ < i, such that it
holds (vi, vm′′) 6∈ A. By the transitivity of co-G it follows that there is one position
k, j < k ≤ i, in q′ such that there exists some m′, j < m′ ≤ k, such that it holds
(vm′ , vj) 6∈ A and there exists some m′′, k ≤ m′′ < i, such that it holds (vi, vm′′) 6∈ A.

If co-G = (V,Ac) is the complement digraph of G we know that

(vm′ , vj) ∈ Ac and (vi, vm′′) ∈ Ac. (5.8)

Since m′ ≤ m′′ we know that (vm′ , vm′′) ∈ A. We also know that (vm′′ , vm′) ∈ A,
since otherwise (vm′′ , vm′) ∈ Ac, property (5.8), and the transitivity of co-G would
imply that (vi, vj) ∈ Ac which is not possible. Thus we know that

(vm′ , vm′′) 6∈ Ac and (vm′′ , vm′) 6∈ Ac. (5.9)

Further the arcs (vj , vm′), (vj , vm′′), (vm′ , vi), (vm′′ , vi) belong to A′ ⊆ A and thus

(vj , vm′) 6∈ Ac, (vj , vm′′) 6∈ Ac, (vm′ , vi) 6∈ Ac and (vm′′ , vi) 6∈ Ac. (5.10)

If (vi, vm′) ∈ Ac or (vm′′ , vj) ∈ Ac then (5.8) and the transitivity of co-G would
imply that (vi, vj) ∈ Ac, thus we know

(vi, vm′) 6∈ Ac and (vm′′ , vj) 6∈ Ac. (5.11)

Properties (5.8)-(5.11) imply that ({vi, vj , vm′ , vm′′}, {(vi, vm′′), (vm′ , vj)}) induces
a 2
−→
P2 in co-G, which implies that G contains a co-(2

−→
P2).

Corollary 5.5.27. Every digraph in Sk,` can be obtained by the union of at most k

many {co-(2
−→
P2), 2

←→
K1,
−→
C3, D3}-free digraphs.

Proposition 5.5.28. Let G = (V,A) ∈ S1,2, then a sequence q, such that G = g({q})
can be found in time O(|V |+ |A|).

Proof. Let G = (V,A) ∈ S1,2 and q = []. We perform the following steps until
G = (∅, ∅).

� Choose v ∈ V such that (v, u) ∈ A for all u ∈ V − {v} and append v to q.

� Remove all arcs (v, u) from A.

� If indegree(v) = outdegree(v) = 0, remove v from V .

� If there are vertices u such that indegree(u) = outdegree(u) = 0, remove u from
V and append u to q.

142 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

In order to perform the algorithm there has to be an ordering v1, . . . , vn of V such
that for 1 ≤ i < n vertex vi has maximum possible outdegree in subdigraph obtained
by removing the outgoing arcs of v1, . . . , vi−1 and thereby created isolated vertices
from G. Since G ∈ S1,2 there is a sequence q′ such that G = g({q′}). The order
in which the types corresponding to the vertices of V appear in subsequence F (q′),
de�ned in the proof of Theorem 5.5.25, ensures the existence of such an ordering.

Finally it holds G = g({q}) by the de�nition of sequence digraphs and since every
vertex which has only outgoing or only incoming arcs will be inserted once into q and
every vertex which has outgoing and incoming arcs will be inserted at most twice into
q this sequence ful�ls the properties stated in the theorem.

5.5.4 Directed Path-width of Sequence Digraphs

Determining whether the (undirected) path-width of some given (undirected) planar
graph with maximum vertex degree 3 is at most some given value w is NP-complete
[MS88]. Since for complete bioriented digraphs the directed path-width (d-pw) is
equal to the (undirected) path-width (pw) of the underlying undirected graph it
follows that determining whether the directed path-width of some given digraph with
maximum semi-degree ∆0(G) = max{∆−(D),∆+(D)} ≤ 3 is at most some given
value w is NP-complete, which will be useful to show Proposition 5.5.30.

Hardness of Directed Path-width on Sequence Digraphs

Next we give some conditions on the sequences in Q such that for the corresponding
digraph g(Q) computing its directed path-width is NP-hard.

Proposition 5.5.29. Given a set Q on k sequences such that ni = 2 for 1 ≤ i ≤ k and
an integer p, then the problem of deciding whether d-pw(g(Q)) ≤ p is NP-complete.

Proof. The stated problem is in NP. To show the NP-hardness by a reduction from the
directed path-width problem we transform instance (G, p) in linear time into instance
(q(G), p) for the stated problem. The correctness follows by Observation 5.5.6.

Proposition 5.5.30. Given a set Q with dQ = 3 or cQ = 5 and an integer p, then
the problem of deciding whether d-pw(g(Q)) ≤ p is NP-complete.

Proof. To show the NP-hardness by a reduction from the directed path-width problem
for digraphs G with max{∆−(G),∆+(G)} ≤ 3, we transform instance (G, p) in linear
time into instance (q(G), p) for the stated problem. The correctness follows by Lemma
5.5.9.

Polynomial Cases of Directed Path-width on Sequence Digraphs

We consider the directed path-width of sequence digraphs for k = 1 or ` = 1.

Proposition 5.5.31. Let G ∈ Sk,1, then d-pw(G) = 0.

5.5. SEQUENCE DIGRAPHS 143

Proof. By Proposition 5.5.19 every digraph in Sk,1 is the disjoint union of k digraphs
in S1,1. By Theorem 5.5.17 every digraph in S1,1 is acyclic and thus has directed
path-width 0.

For digraphs in S1,2 the directed path-width can be arbitrary large, since this
class includes all bidirectional complete digraphs. We can compute this value as
follows. Let Q = {q}. For type t ∈ types(q) let It = [first(q, t), last(q, t)] be the
interval representing t, and let Iq = {It | t ∈ types(q)} be the set of all intervals
for sequence q. Let I(q) = (V,E) be the interval graph where V = types(q) and
E = {{u, v} | u 6= v, Iu ∩ Iv 6= ∅, Iu, Iv ∈ Iq}.

Proposition 5.5.32. Let G ∈ S1,2 de�ned by a set Q = {q1} of one sequence, then
d-pw(G) = ω(I(q))− 1 = pw(I(q)).

Proof. We obtain d-pw(G) ≤ ω(I(q))− 1 by an obvious directed path-decomposition
along I(q). Further for every integer r the set I(r) = {It | r ∈ It} de�nes a complete

subgraph K|I(r)| in I(q) and also a bidirectional complete subdigraph
←−−→
K|I(r)| in G.

Thus it holds d-pw(G) ≥ ω(I(q))−1. The second equality holds since the (undirected)
path-width of an interval graph is equal to the size of a maximum clique [Bod98].

Sets Q where dQ = 1 can be handled in polynomial time.

Proposition 5.5.33. Given a set Q with dQ = 1 and an integer p, then the problem
of deciding whether d-pw(g(Q)) ≤ p can be solved in time O(|types(Q)|2 + n).

Proof. Let Q = {q1, . . . , qk}. If dQ = 1 the vertex sets Vi = types(qi) are disjoint.
That is, g(Q) is the disjoint union of digraphs in S1,2 for which the directed path-
width can be computed in time O(

∑k
i=1 |types({qi})|2 + ni) ⊆ O(|types(Q)|2 + n) by

Proposition 5.5.32.

An XP-Algorithm for Directed Path-width

We next give an XP-algorithm for directed path-width w.r.t. the parameter k, which
implies that for every constant k for a given set Q on at most k sequences the value
d-pw(g(Q)) can be computed in polynomial time. The main idea is to discover an
optimal directed path-decomposition by scanning the k sequences left-to-right and
keeping in a state the numbers of scanned items of every sequence and a certain
number of active types.

Let Q = {q1, . . . , qk} be a set of k sequences. Every k-tuple (i1, . . . , ik) where
0 ≤ ij ≤ nj for 1 ≤ j ≤ k is a state of Q. State (0, 0, . . . , 0) is the initial state and
(n1, . . . , nk) is the �nal state. The state digraph s(Q) for a set Q has a vertex for
each possible state. There is an arc from vertex u labeled by (u1, . . . , uk) to vertex v
labeled by (v1, . . . , vk) if and only if ui = vi − 1 for exactly one element of the vector
and for all other elements of the vector uj = vj . Let (i1, . . . , ik) be a state of Q. We
de�ne L(i1, . . . , ik) to be the set of all items on the positions 1, . . . , ij for 1 ≤ j ≤ k
and R(i1, . . . , ik) is the set of all items on the remaining positions ij + 1, . . . , nj for

144 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

1 ≤ j ≤ k. Further let M(i1, . . . , ik) be the set of all items on the positions ij for
1 ≤ j ≤ k such that there is exactly one type of these items in Q. Obviously, for every
state (i1, . . . , ik) it holds that L(i1, . . . , ik)∪R(i1, . . . , ik) leads to a disjoint partition
of the items in Q and M(i1, . . . , ik) ⊆ L(i1, . . . , ik).

Further each vertex v of the state digraph is labeled by the value f(v). This value
is the number of types t such that either there is at least one item of type t in L(v)
and at least one item of type t in R(v) or there is one item of type t inM(v). Formally
we de�ne active(v) = {t ∈ types(Q) | b ∈ L(v), t(b) = t, b′ ∈ R(v), t(b′) = t} ∪ {t ∈
types(Q) | b ∈ M(v), t(b) = t} and f(v) = |active(v)|. Obviously for the initial state
v it holds |active(v)| = 0. Since the state digraph s(Q) is a directed acyclic graph we
can compute all values |active(v)| using a topological ordering topol of the vertices.
Every arc (u, v) in s(Q) represents one item bi,j if item bi,j−1 6∈M(v) and two items
bi,j and bi,j−1 if item bi,j−1 ∈ M(v) of some types t(bi,j) = t and t(bi,j−1) = t′ from
some sequence qj , thus

|active((i1, . . . , ij−1, ij + 1, ij+1, . . . , ik))|
= |active((i1, . . . , ij−1, ij , ij+1, . . . , ik))|+ cj

where

cj =



1, if first(qj , t) = ij + 1 and first(q`, t) > i` ∀ ` 6= j and
not(first(qj , t

′) = last(qj , t
′) = ij and last(q`, t

′) = 0 ∀ ` 6= j)
0, if first(qj , t) = ij + 1 and first(q`, t) > i` ∀ ` 6= j and

first(qj , t
′) = last(qj , t

′) = ij and last(q`, t
′) = 0 ∀ ` 6= j

−1, if last(qj , t) = ij + 1 and last(q`, t) ≤ i` ∀ ` 6= j and
not(first(qj , t

′) = last(qj , t
′) = ij and last(q`, t

′) = 0 ∀ ` 6= j)
−2, if last(qj , t) = ij + 1 and last(q`, t) ≤ i` ∀ ` 6= j and

first(qj , t
′) = last(qj , t

′) = ij and last(q`, t
′) = 0 ∀ ` 6= j

0, otherwise.

Thus, the calculation of value |active(i1, . . . , ik)| for the vertex labeled (i1, . . . , ik)
depends only on already calculated values, which is necessary in order to use dynamic
programming.5

Let P(Q) the set of all paths from the initial state to the �nal state in s(Q). Every
P ∈ P(Q) has r = 1 +

∑k
i=1 ni vertices, i.e. P = (v0, . . . , vr). First we show that

every path in P(Q) leads to a directed path-decomposition for g(Q).

Lemma 5.5.34. Let Q be a set of k sequences and (v0, . . . , vr) ∈ P(Q). Then
(active(v1), . . . , active(vr−1)) is a directed path-decomposition for g(Q).

Lemma 5.5.34 leads to an upper bound on the directed path-width of g(Q) using
the state graph. The reverse direction is more involved and considered next.

5For sets Q such that the number of items for which there is no further item of the same type in
Q is small, we suggest to modify Q by inserting a dummy item of the same type at the position after
such items. This does not change the sequence digraph and allows to make a case distinct within
three instead of �ve cases when de�ning cj . But this modi�cation increases the size of the sequence
digraph.

5.5. SEQUENCE DIGRAPHS 145

Lemma 5.5.35. Let Q be a set of k sequences. If there is a directed path-decomposition
of width p − 1 for g(Q), then there is a path (v0, . . . , vr) ∈ P(Q) such that for every
1 ≤ i ≤ r it holds |active(vi)| ≤ p.

By Lemma 5.5.34 and Lemma 5.5.35 we obtain the following result.

Corollary 5.5.36. Given a set Q of k sequences, then

d-pw(g(Q)) = min
(v0,...,vr)∈P(Q)

max
1≤i≤r−1

|active(vi)| − 1.

In order to apply Corollary 5.5.36 we consider some general digraph problem. Let
G = (V,A, f) be a directed acyclic vertex-labeled graph. Function f : V → Z assigns
to every vertex v ∈ V a value f(v). Let s ∈ V and t ∈ V be two vertices. For some
vertex v ∈ V and some path P = (v1, . . . , v`) with v1 = s, v` = v and (vi, vi+1) ∈ A
we de�ne valP (v) := maxu∈P (f(u)). Let Ps(v) denote the set of all paths from vertex
s to vertex v. We de�ne val(v) := minP∈Ps(v)(valP (v)). Then it holds:

val(v) = max{f(v), min
u∈N−(v)

(val(u))}.

By dynamic programming it is possible to compute all the values of val(v), v ∈ V , in
time O(|V |+ |A|). This is possible, since G is acyclic.

Theorem 5.5.37. Given a set Q, such that g(Q) ∈ Sk,` for some ` ≥ 1, then the
directed path-width of g(Q) and also a directed path-decomposition can be computed
in time O(k · (1 + max1≤i≤k ni)

k).

Proof. Let Q be a set, such that g(Q) ∈ Sk,`. The state digraph s(Q) has at most
(1+max1≤i≤k ni)

k vertices and can be found in time O(k ·(1+max1≤i≤k ni)
k) from Q.

By Corollary 5.5.36 the directed path-width of g(Q) can be computed by considering
all paths from the initial state to the �nal state in s(Q). This can be done by any
algorithm for the above general digraph problem on s(Q) = (V,A) using f(v) =
|active(v)|, v ∈ V , s as the initial state, and t as the �nal state. Since every vertex
of the state digraph has at most k outgoing arcs we have O(|V | + |A|) ⊆ O(k · (1 +
max1≤i≤k ni)

k). Thus we can compute an optimal path in s(Q) in time O(k · (1 +
max1≤i≤k ni)

k).

5.5.5 Conclusions

In this section, we have considered digraphs which can be de�ned by a set of k
sequences. We have shown an XP-algorithm for directed path-width w.r.t. number
of sequences k needed to de�ne the input graph. For special digraphs our solution
improves known solution w.r.t. the standard parameter as shown in Table 5.2. This
implies that for each constant k, it is decidable in polynomial time whether for a
given set Q on at most k sequences the digraph g(Q) has directed path-width at
most w. If we know that some digraph can be de�ned by one sequence, we can
�nd this in linear time (Proposition 5.5.28). This implies that for each constant k,

146 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

it is decidable in polynomial time whether for a digraph G, which is given by the
union of at most k many semicomplete {co-(2

−→
P2),
−→
C3, D3}-free digraphs, digraph G

has directed path-width at most w.
There are several interesting open questions. (a) Is there is an FPT-algorithm

for the directed path-width problem w.r.t. parameter k? (b) Does the hardness of
Proposition 5.5.30 also hold for cQ ∈ {2, 3, 4} and for dQ = 2? (c) By Theorem 5.5.17,
Proposition 5.5.19 and Theorem 5.5.25 one can decide in polynomial time whether
a given digraph belongs to the class Sk,` for ` = 1, for k = 1, or both. It remains
to consider this problem for the classes Sk,` for k ≥ 2 and 2 ≤ ` ≤ 2k. (d) Can we
�nd for a given digraph G a set Q with a smallest number of sequences such that
g(Q) = G in polynomial time?

5.6 Semicomplete Graphs

The map of relations between the di�erent directed width measures in general still
has some blank spots. In this section we �ll in many of these open relations for the
restricted class of semicomplete digraphs. To do this we show the equivalence between
the parameterss directed path-width, directed tree-width, DAG-width, and Kelly-
width. Moreover, we show that directed (linear) clique-width is upper bounded in a
function of directed tree-width on semicomplete digraphs. This allows for a quadratic
approximation of many of these parameters by using the known FPT-approximation
algorithm for directed tree-width. Moreover, in general the algorithmic use of many
of these parameters is fairly restricted. On semicomplete digraphs our results allow
to combine the nice computability of directed tree-width with the algorithmic power
of directed clique-width.

5.6.1 Linear Width parameters on semicomplete graphs

For semicomplete digraphs the directed path-width can be used to give an upper
bound on the directed clique-width, which has been shown in [FP13a]. The main
idea of the proof is to de�ne a directed clique-width expression along a nice path-
decomposition.6 Since the proof only uses directed linear clique-width operations we
can state the next theorem.

This subsection is taken from [GR19a].

Lemma 5.6.1 ([FP13a]). For every semicomplete digraph S, we have

d-lcw(S) ≤ d-pw(S) + 2.

6Please note that in [FP13a] a di�erent notation for directed path-width was used. In De�nition
3.2.1(dpw-2) the arcs are directed from bags Xi to Xj for i ≤ j. The authors of [FP13a] take
arcs from bags Xi to Xj for i ≥ j into account. Since an optimal directed path-decomposition
(X1, . . . , Xr) w.r.t. De�nition 3.2.1 leads to an optimal directed path-decomposition (Xr, . . . , X1)
w.r.t. the de�nition of [FP13a], and vice versa, both de�nitions lead to the same value for the directed
path-width.

5.6. SEMICOMPLETE GRAPHS 147

Lemmas 5.6.1, 3.5.7, 3.5.8, and 3.5.9 imply the following bounds.

Corollary 5.6.2. For every semicomplete digraph S, we have

d-lnlcw(S) ≤ d-pw(S) + 2,

d-nw(S) ≤ d-pw(S) + 2, and

d-lrw(S) ≤ d-pw(S) + 2.

Theorem 5.6.3. For every class of semicomplete digraphs G such that for all G ∈ G
the value min(∆−(G),∆+(G)) is bounded any two parameters in {d-cutw, d-pw, d-nw,
d-lnlcw, d-lcw, d-lrw} are equivalent.

Using the results of Theorem 3.5.1(a), [FOT10, Section 8], and Theorem 3.5.1(f),
respectively, there is some polynomial p such that for every digraph G, we have

d-pw(G) ≤ pw(und(G)) ≤ p(∆(und(G)), lrw(und(G))) ≤ p(∆(G), d-lrw(G)).

This allows us to strengthen the result of Theorem 5.6.3 as follows.

Theorem 5.6.4. For every class of semicomplete digraphs G such that for all G ∈ G
the value ∆(G) is bounded any two parameters in {d-cutw, d-pw, d-nw, d-lnlcw, d-lcw,
d-lrw} are polynomially equivalent.

Except for directed linear rank-width we even have shown linear equivalence.

Theorem 5.6.5. For every class of semicomplete digraphs G such that for all G ∈ G
the value min(∆−(G),∆+(G)) is bounded any two parameters in {d-cutw, d-pw, d-nw,
d-lnlcw, d-lcw} are linearly equivalent.

By Lemmas 3.5.19 and 5.6.1 the restriction to semicomplete digraphs7 leads to the
same relation between path-width and linear clique-width as for undirected graphs
(see [Gur06b]).

5.6.2 Non-Linear Width parameters on semicomplete digraphs

Comparing non-linear width parameters to each other and to the linear parameter of
directed path-width on semicomplete digraphs also leads to algorithmically interesting
results.

Especially the relation between directed clique-width and the tree-based param-
eters of directed tree-width, DAG-width and Kelly-width is worth investigating, as
they have very di�erent algorithmic properties. Huge parts of this section are taken
from [GKRW21].

7When considering the directed path-width of almost semicomplete digraphs in [KKT15] the class
of semicomplete digraphs was suggested to be �a promising stage for pursuing digraph analogues of
the splendid outcomes, direct and indirect, from the Graph Minors project�.

148 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

g
f

d-pw d-tw dagw kw d-lcw d-cw

d-pw k 4k2 + 15k + 10 k − 1 4k2 + 7k ∞ ∞
d-tw k k k − 1 6k − 2 ∞ ∞
dagw k + 1 4k2 + 15k + 11 k k2 ∞ ∞
kw k + 1 4k2 + 15k + 11 k k ∞ ∞
d-lcw k + 2 4k2 + 15k + 12 k + 1 k2 + 2 k ∞
d-cw k + 2 4k2 + 15k + 12 k + 1 k2 + 2 k k

Table 5.4: Relations between digraph parameter on semicomplete digraphs. The
parameter of the left column is bounded by the respective parameter of the top row by
the speci�ed function where k is the corresponding width. We use `∞' if the relation
is unbounded, that is if hf,g does not exist.

Directed path-width, directed tree-width, DAG-width and Kelly-width correspond
to di�erent variants of so-called cops and robber games. Width parameters cor-
responding to variants of the cops & robber game have the inherent advantage of
coming with an XP-time (approximation) algorithm for �nding a decomposition of
(almost) optimal width. They also tend to correlate with structural properties and
thus, as exempli�ed by tree-width, make for great tools for structure theory. How-
ever, strong evidence exists that for digraphs no such parameter can, in addition to
these advantages, replicate the algorithmic power of tree-width in undirected graphs
[GHK+16].

An algorithmically stronger parameter is directed clique-width (d-cw) [CMR00] by
Courcelle et al., a width measure which is, in essence, de�ned for relational structures
and whose algorithmic properties do not distinguish between graphs and digraphs.
Hence directed clique-width does not su�er from the sudden increase in complexity
when transitioning from graphs to digraphs and the existence of a powerful algorith-
mic meta theorem is preserved: Every problem expressible in MSO1 logic is �xed
parameter tractable with respect to the parameter directed clique-width [CMR00].
Still, directed clique-width has its drawbacks, as there is no known direct way to
compute a bounded width expression. The current method to obtain such an expres-
sion is by approximating birank-width which leads to an exponential approximation
of directed clique-width [OS06]. Unfortunately, directed clique-width is in general
incomparable to the previously mentioned tree-width inspired parameters. So in gen-
eral the nice computability properties of the decompositions relating to variants of
the cops and robber game cannot be used to obtain bounded width expression for
directed clique-width.

Semicomplete digraphs are a superclass of tournaments which received signi�cant
attention in the past [CS11, KS15]. In this section we show that on semicomplete
digraphs, all of the path-width and tree-width inspired parameters are equivalent.

5.6. SEMICOMPLETE GRAPHS 149

Indeed, all of these equivalences are realized by relatively tame functions obtained
without complicated proofs.

As by [FP19] for a semicomplete digraph G it holds that d-cw(G) is at most
d-pw(G) + 2, we conclude that all above mentioned parameters are upper bounds to
directed clique-width. This result is even extendable to directed linear clique-width
(d-lcw). More precisely we show in this section that, for any choice of functions
f, g ∈ {d-pw, d-tw, dagw, kw, d-lcw, d-cw}, there exists a function hf,g such that, if G
is a semicomplete digraph with f(G) ≤ k then g(G) ≤ hf,g(k) where the functions
hf,g are presented in Table 5.4 if they exist.

Theorem 5.6.6. Let G be a semicomplete digraph and f, g ∈ {d-pw, d-tw, dagw, kw,
d-lcw, d-cw}. If f(G) ≤ k, then g(G) ≤ hf,g(k) where hf,g : N → N is given by Table
5.4.

Combining these results with the above mentioned theorem of Courcelle et al. on
bounded directed clique-width [CMR00] and the FPT-algorithm for approximating
directed tree-width within a linear factor by Campos et al. [CLMS19], this leads to
the following result:

Theorem 5.6.7. Every problem expressible in MSO1 logic is �xed parameter tractable
on semicomplete digraphs with respect to the parameter directed tree-width.

5.6.3 DAG-width and directed path-width on semicomplete digraphs

As a �rst step towards Theorem 5.6.6 we show that DAG-width plus 1 and directed
path-width are equal on the class of semicomplete digraphs, which leads also to the
fact that computing DAG-width of a semicomplete digraph is in NP.

This later fact might be of independent interest since DAG-width is PSPACE-
complete in general [AKK+15], but, it is one of only few known parameters from
the tree-width inspired family which allows for an e�cient solving of parity games
[BDHK06].

As a tool we need a normalized version of DAG-decompositions.

De�nition 5.6.8 (Nice DAG-decomposition). A DAG-decomposition (D,X) of a
digraph G is nice, if the following properties are ful�lled.

1. D has exactly one source r.

2. Every vertex in D has at most two successors.

3. If vertex d has two successors d′ and d′′, then Xd = Xd′ = Xd′′ .

4. If vertex d has one successors d′, then |(Xd \Xd′) ∪ (Xd′ \Xd)| = 1.

Berwanger et al. [BDHK06] showed that if digraph G has a DAG-decomposition
of width k, it also has a nice DAG-decomposition of width k. Moreover, since delet-
ing transitive edges from D does neither destroy any of the properties of a DAG-
decomposition, nor increase the width of the DAG-decomposition, we get the follow-
ing property.

150 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

Lemma 5.6.9. If digraph G has a DAG-decomposition of width k, it also has a nice
DAG-decomposition (D,X) of width k such that D has no transitive edges.

Proposition 5.6.10. For every semicomplete digraph G it holds that d-pw(G) ≤
dagw(G)− 1.

Proof. Let G be a semicomplete digraph and let (D,X) be a nice DAG-decomposition
for G of width k with digraph D, vertex set VD and X = {Xu | u ∈ VD}. By Lemma
5.6.9 we can assume that D has exactly one source, every vertex in D has at most
two successors and no transitive edges. We show that in case D is not a path, we can
convert it into a path without increasing the width. Assume D is not a path. For
any vertex r let VDr is the set of vertices of D which are reachable from r. Let Dt

be the maximal subdigraph of D with unique source t. Consider vertex q ∈ VD with
two successors s and t. We di�erentiate three cases: All vertices from G which are in
bags of Ds are also in the bags of Dt (Case 1.a), the opposite inclusion (Case 1.b) or,
at last none of these inclusions (Case 2) occur.

Case 1.a: (
⋃
u∈VDs

Xu) ∪Xq ⊆ (
⋃
u∈VDt

Xu) ∪Xq.

In order to de�ne a new DAG-decomposition (D′,X ′) for G, we simply remove
all vertices VDs\VDt fromD and forget all bags associated with removed vertices.
We now show that (D′,X ′) is a DAG-decomposition for G by checking the
conditions of the de�nition.

� (dagw-1) Is satis�ed since⋃
u∈VD′

Xu =
⋃

u∈VD\VDs

Xu ∪
⋃

u∈VDt

Xu

(∗)
⊇

⋃
u∈VD\VDs

Xu ∪
⋃

u∈VDs

Xu =
⋃
u∈VD

Xu = VG

The inclusion in (∗) holds by assumption of case 1a) since q ∈ VD\VDs .

� (dagw-2) is still satis�ed since for every a, b, c ∈ VD′ it holds that if a 4D′

b 4D′ c then
X ′a ∩X ′b = Xa ∩Xc ⊆ Xb = X ′b

� (dagw-3) Let (a, b) ∈ ED′ , then it follows that (a, b) ∈ ED. Therefore,
it must hold that Xa ∩ Xb guards X<b\Xa. It holds that X ′a = Xa and
X ′b = Xb. Further, X ′<b is the union of all bags of vertices that we can
reach from vertex b in D′, such that X ′<b =

⋃
b4D′u

Xu.

(i) If b 4D′ t, then:

X ′<b =
⋃

b4D′u4D′ t

Xu ∪
⋃

t4D′u

X ′u =
⋃

b4Du4Dt

Xu ∪
⋃
t4Du

Xu

(since Xq ⊆
⋃

b4Du4Dt

Xu)

=
⋃

b4Du4Dt

Xu ∪
⋃
t4Du

Xu ∪
⋃
s4Du

Xu =
⋃
b4Du

Xu = X<b

5.6. SEMICOMPLETE GRAPHS 151

(ii) Else t ≺D′ b, then: Since every successor of b in D is also in D′ it holds
that

X ′<b =
⋃

b4D′u

Xu =
⋃
b4Du

Xu = X<b

This leads to X ′a ∩X ′b = Xa ∩Xb guards X ′<b\X ′a = X<b\Xa.

Thus, all requirements of a DAG-decomposition are met by (D′,X ′).

Case 1.b: (
⋃
u∈VDt

Xu) ∪ Xq ⊆ (
⋃
u∈VDs

Xu) ∪ Xq can be handled analogously to
case 1.a.

Case 2: (
⋃
u∈VDs

Xu)∪Xq 6⊆ (
⋃
u∈VDt

Xu)∪Xq and (
⋃
u∈VDt

Xu)∪Xq 6⊆ (
⋃
u∈VDs

Xu)∪
Xq. More informally, this means that there exist vertices from G that are only
represented in bags of Ds but not in bags of Dt. We show now, that this case
cannot occur. There are x, y such that

x ∈ Xq ∪
⋃

u∈VD≥s

Xu, x 6∈ Xq ∪
⋃

u∈VD≥t

Xu (5.12)

y 6∈ Xq ∪
⋃

u∈VD≥s

Xu, y ∈ Xq ∪
⋃

u∈VD≥t

Xu (5.13)

Since G is semicomplete, there is an arc between x and y in G. W.l.o.g. let
(x, y) ∈ EG. By the connectivity property given by (dagw-2) it holds that
x, y 6∈

⋃
u4Dq

Xu, since x, y 6∈ Xq. Let w ∈ VD, x ∈ Xw, x 6∈ Xu and u 4D w.
As equation (5.12) holds, this leads to s 4D w. By (dagw-3) it further holds
that Xw′ ∩ Xw guards X<w\Xw′ for a predecessor w′ of w in D with w′ 6= s.
This means that for all (z, z′) ∈ EG with z ∈ X<w\Xw′ it holds that z′ ∈
(X<w\Xw′) ∪ (Xw′ ∩Xw).

As assumed before, it holds that (x, y) ∈ EG with x ∈ X<w\Xw′ . By equation
(5.13) it holds that y 6∈ Xw′ ∩ Xw ⇒ y ∈ X<w\Xw′ . By equation (5.13) it
holds that y 6∈ Xw′ ⇒ y ∈ X<w =

⋃
w4Du

Xu. But since s 4D w it holds that⋃
w4Du

Xu ⊆
⋃
s4Du

Xu. This contradicts that by equation (5.13) it holds that
y 6∈

⋃
s4Du

Xu. This leads to the conclusion that case 2 cannot occur.

Consequently, starting at the root, we can transform every DAG D of a DAG-
decomposition of the semicomplete digraph G into a directed path. Since directed
path-width is exactly the path variant of DAG-width, d-pw(G) ≤ dagw(G) − 1
holds.

By Proposition 5.6.10 we can conclude that on semicomplete digraphs, DAG-width
and path-width are equal.

Corollary 5.6.11. For every semicomplete digraph G it holds that

d-pw(G) + 1 = dagw(G)

152 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

5.6.4 Escaping pursuit in the jungle: directed path-width, directed
tree-width and Kelly-width

Fradkin and Seymour [FS13] gave a description of semicomplete digraphs of bounded
directed path-width. Indeed, they proved that every semicomplete digraph of huge
directed path-width must contain a subdivision of a large bioriented clique [FS13].
While this result immediately implies that directed path-width acts, parametrically,
as a lower bound for all tree-width inspired directed width measures discussed in this
section, the proof uses a Ramsey argument and thus, for G to contain a subdivision
of the complete biorientation of Kt, the directed path-width must be exponential in
t. However, Fradkin and Seymour introduced another obstruction to small directed
path-width on semicomplete digraphs which is similar to the idea of well linked sets.
With a bit of more careful analysis we are able to obtain the quadratic bounds of
Theorem 5.6.6.

Note that [FS13] could also be used for comparisons between directed path-width
and DAG-width, but this would only lead to equivalence between those parameters,
whereas we could prove equality (plus 1).

Two vertices u, v are k-connected, if there are at least k internally-disjoint paths
from u to v and from v to u. For digraph G = (V,E) a set U ⊆ V is a k-jungle in G
if |U | = k and for all u, v ∈ U it holds that u and v are k-connected.

For both, directed tree-width and Kelly-width, we show that the existence of a
k+1-jungle is enough to ensure a winning strategy for the robber against k cops in the
respective variants of of cops & robber game. Let us start with directed tree-width.

Proposition 5.6.12. Let G be a semicomplete digraph. If d-pw(G) ≥ 4(k + 1)2 +
7(k + 1) then d-tw(G) ≥ k.

Proof. Let us assume d-pw(G) ≥ 4(k + 1)2 + 7(k + 1). Then, by the results from
[FS13], we know that G = (V,E) contains a k + 1-jungle J ⊆ V . If we can show
that the existence of J is enough to ensure that k-cops cannot catch the robber in
the visible strong component cops and robber game on G, it follows from Proposition
3.3.39 that the directed tree-width of G must be at least k and thus the assertion
follows. Hence what is left to do is describe a winning strategy for the robber against
k cops on a k + 1-jungle J . For the �rst position (C0, r0) we have C0 = ∅ and the
robber may select r0 to be any vertex of J . Now suppose the game has been going
on for i rounds and in each round the robber was able to select a vertex of J as her
position. Let (Ci−1, ri−1) be the current state of the game and let Ci ⊆ V be the
next position of the cops. In case ri−1 /∈ Ci there is nothing to do for the robber and
she can stay where she is i.e. ri := ri−1. So we may assume ri−1 ∈ Ci. In this case
we know |Ci \ {ri−1}| ≤ k− 1 and thus |Ci−1 ∩Ci| ≤ k− 1. Hence there must exist a
vertex v ∈ J \ Ci. As ri−1 6= v we know from J being a k + 1-jungle that there exist
k + 1 pairwise internally disjoint paths from ri−1 to v and vice versa. As |Ci| ≤ k
in G− (Ci−1 ∩ Ci) at least one path from ri−1 to u and one from u to ri−1 must be
left and thus both vertices belong to the same strong component of G− (Ci−1 ∩Ci).
Thus v is reachable from ri−1 and we may set ri := v. As the robber was able to �ee

5.6. SEMICOMPLETE GRAPHS 153

to another vertex of J our claim now follows by induction.

From [AKK+15] and Corollary 5.6.11 we already know an upper bound on directed
path-width in terms of Kelly-width, which is d-pw(G) ≤ 72kw(G)2 + 1. We can
improve this bound following the same general idea as given above. Indeed, since in
the strategy as described in the proof of Proposition 5.6.12 the robber only changed
her position if she was threatened to be caught if she did not, the strategy above
is already a strategy for a visible robber in the strong component game. Since the
reachability searching game is a relaxation of the strong component game and the
(in)visibility of the robber does not play a role in this strategy it is straight forward
to see that using the same technique, an invisible and inert robber can also avoid
being caught by k cops in the reachability searching game. From these arguments we
obtain the following result.

Proposition 5.6.13. Let G be a semicomplete digraph. If d-pw(G) ≥ 4(k + 1)2 +
7(k + 1) then kw(G) ≥ k.

5.6.5 Directed (linear) clique-width and directed path-width on semi-
complete digraphs

As already mentioned in the previous section in Corollary 5.6.2, in [FP19], the authors
prove that on semicomplete digraphs, directed path-width can be used to give an
upper bound for directed clique-width, which can be generalized to directed linear
clique-width.

Note that the other direction, i.e. using directed (linear) clique-width as an upper
bound of directed path-width, is not possible for semicomplete digraphs in general.
That follows directly from the proof of Proposition 3.5.25, as the counterexample, a
bioriented clique, is a semicomplete digraph.

Using the results from this and previous subsections, it is possible to improve
the general results for the comparison of directed width parameters on semicomplete
digraphs.

By using Proposition 5.6.10, 5.6.12, 5.6.13 and Corollary 5.6.2 we improve also
other bounds between directed width parameters on semicomplete digraphs.

5.6.6 Conclusion

The landscape of directed width measures is a wild one. Started by the introduc-
tion of directed tree-width many di�erent generalizations of undirected tree-width
have been invented and received di�erent amounts of attention. Some of these pa-
rameters were considered very little; possibly because of the results of [GHK+16],
which essentially rule out any algorithmic application of these parameters beyond
some specialized routing problems. So while the search for `good' digraph width
parameters inspired by tree-width does not seem very promising, one could turn to
the logic based parameters instead. Here directed clique-width reigns supreme, but

154 CHAPTER 5. WIDTH MEASURES ON DIRECTED GRAPH CLASSES

recently other attempts at �nding interesting parameters such as a directed version
of maximum induced matching width [JKT21] have been made.

In this section we have shown the equivalence of directed path-width, directed
tree-width, Kelly-width and DAG-width on semicomplete digraphs. In particular
this implies that each of these measures acts as an upper bound on directed clique-
width and thus the algorithmic power of directed clique-width can now be accessed
by any of the other parameters. Hence as a consequence of our results every digraph
problem, which is describable in MSO1 logic is �xed parameter tractable for these
width measures for a given decomposition on semicomplete graphs.

Our result, that computing DAG-width is in NP on semicomplete digraphs while it
is PSPACE-hard in general [AKR16], recalls the question if computing directed path-
width and thus, DAG-width is NP-hard on semicomplete digraphs, though there are
FPT algorithms to solve this problem [FP19].

6 Conclusions and Outlook

In this work, we give a discussion on the best known directed graph parameters.
Especially we give comparisons and regard computability of these parameters, �rstly
in general and then on special directed graph classes.

While directed linear graph parameters are well comparable in general [GR19a],
this is not true for directed non-linear width measures. Tables giving an overview
about the general relations can be found in chapter 3.5.

But this changes on restricted graph classes.
The smallest considered class in this work are tree-like digraphs, especially directed

pseudoforests and directed cactus forests [GR19b]. Those classes are very useful, as
they are de�nable by forbidden directed graph minors and they further have strongly
bounded directed path-width and directed tree-width. We show that directed cactus
forests and its subclasses have d-tw at most 1 while directed pseudoforests and their
subclasses even have d-pw at most 1. This is a remarkable result, as it has been a
long considered matter to obtain all graphs of d-pw and d-tw at most 1.

Further, we extensively consider directed co-graphs [GR18, GKR19a, GKR21b]
and show, that several of the most important graph parameters as d-pw, d-tw, dagw−
1 and cr are not even equivalent, but exactly equal on this graph class. For kw,
equivalence holds. The parameters fvs, fas and ddp are upper bounds to the other
mentioned width measures (see Table 5.1). It is also much easier to compute these
width parameters on directed co-graphs than on general digraphs. While the question,
whether a digraph has at most width k concerning one of the mentioned parameters
is NP-hard or even PSPACE-hard, d-pw, d-tw, cr and dagw are computable in linear
time on directed co-graphs.

Many of these relations remain true for the superclass of directed co-graphs, which
we call directed twin-distance-hereditary graphs [KR21]. These graphs are the di-
rected version of the de�nition of distance-hereditary graphs by twins and pendant
vertices. We could prove that for every twin-ddh digraph, all strong components
are directed co-graphs and thus, we can generalize the results for all directed graph
parameters, for which the directed width equals the maximum width of all strong com-
ponents. It therefore holds that d-pw, d-tw, dagw and cr are equivalent on directed
twin-ddh graphs and computable in linear time.

The equivalence of these parameters can also be generalized to extended directed
co-graphs, but to compute them, we could only �nd polynomial time algorithms on

155

156 CHAPTER 6. CONCLUSIONS AND OUTLOOK

this graph class right now.
On sequence digraphs, there is an XP-algorithm to compute directed path-width

[GRR18, GRR21].
A further graph class to consider are semicomplete digraphs. In general directed

clique-width is incomparable to all tree- and path-structure-based parameters. On
directed co-graphs and directed twin-dh graphs, the directed clique-width is constant,
which admits some interesting results, but rules out a comparison between d-cw and
other parameters. On semicomplete digraphs however, there exists a result that
directed path-width is an upper bound to directed clique-width [FP19], which we can
extend to directed linear clique-width. This result permits to use Courcelle's Theorem
for directed clique-width, i.e. the computability of all MSO1-de�nable problems for
graphs of bounded d-cw also for semicomplete graphs of bounded d-pw. In this
work (and in [GKRW21]), we show equality between d-pw and dagw and equivalence
between those parameters and d-tw and kw on semicomplete digraphs. By that, we
can extend Courcelle's Theorem to all mentioned graph parameters on semicomplete
digraphs.

Regarding all these results it gets clear that, although in general graph parameters
for directed graphs seems to be of minor interest, on special digraph classes they could
become very promising. In future work one could consider further directed graph
classes. Another idea would be to investigate applied digraph problems, for example
in bioinformatics, and see if the results in this work could help solve these digraph
problems.

Bibliography

[ACP87] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of �nding
embeddings in a k-tree. SIAM Journal of Algebraic and Discrete Methods,
8(2):277�284, 1987.

[Adl07] I. Adler. Directed tree-width examples. Journal of Combinatorial Theory,
Series B, 97(5):718�725, 2007.

[AH73] D. Adolphson and T.C. Hu. Optimal linear ordering. SIAM Journal on
Applied Mathematics, 25(3):403�423, 1973.

[AH15] S.D. Andres and W. Hochstättler. Perfect digraphs. Journal of Graph
Theory, 79(1):21�29, 2015.

[AKK+15] S.A. Amiri, L. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz. Graph
Searching Games and Width Measures for Directed Graphs. In 32nd
International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 30 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 34�47. Schloss Dagstuhl�Leibniz-Zentrum fuer Infor-
matik, 2015.

[AKK17] I. Adler, M.M. Kanté, and O. Kwon. Linear rank-width of distance-
hereditary graphs I. A polynomial-time algorithm. Algorithmica,
78(1):342�377, 2017.

[AKR16] S. A. Amiri, S. Kreutzer, and R. Rabinovich. DAG-width is PSPACE-
complete. Theoretical Computer Science, 655:78�89, 2016.

[Bar06] J. Barát. Directed pathwidth and monotonicity in digraph searching.
Graphs and Combinatorics, 22:161�172, 2006.

[BdGR97] D. Bechet, P. de Groote, and C. Retoré. A complete axiomatisation of
the inclusion of series-parallel partial orders. In Rewriting Techniques
and Applications, volume 1232 of LNCS, pages 230�240. Springer-Verlag,
1997.

[BDH+12] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, and J. Obdrzálek. The
dag-width of directed graphs. Journal of Combinatorial Theory, Series
B, 102(4):900�923, 2012.

157

158 BIBLIOGRAPHY

[BDHK06] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. The dag-width
and parity games. In Proceedings of the Annual Symposium of Theoretical
Aspects of Computer Science (STACS), volume 3884 of LNCS, pages 524�
536. Springer-Verlag, 2006.

[BDK00] H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for
minimum �ll-in and treewidth for distance hereditary graphs. Discrete
Applied Mathematics, 99(1-3):367�400, 2000.

[BFJ+04] D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll, and B. Mohar. The circular
chromatic number of a digraph. Journal of Graph Theory, 46(3):227�240,
2004.

[BG18] J. Bang-Jensen and G. Z. Gutin, editors. Classes of Directed Graphs.
Springer Monographs in Mathematics. Springer, 2018.

[BJG09] J. Bang-Jensen and G. Gutin. Digraphs. Theory, Algorithms and Appli-
cations. Springer-Verlag, Berlin, 2009.

[BJG18] J. Bang-Jensen and G. Gutin, editors. Classes of Directed Graphs.
Springer-Verlag, Berlin, 2018.

[BKK93] H.L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth
of permutation graphs. In Proceedings of International Colloquium on
Automata, Languages and Programming (ICALP), volume 700 of LNCS,
pages 114�125. Springer-Verlag, 1993.

[BLS99] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey.
SIAM Monographs on Discrete Mathematics and Applications. SIAM,
Philadelphia, 1999.

[BM86] H.-J. Bandelt and H.M. Mulder. Distance-hereditary graphs. Journal of
Combinatorial Theory, Series B, 41:182�208, 1986.

[BM90] H.L. Bodlaender and R.H. Möhring. The pathwidth and treewidth of
cographs. In Proceedings of Scandinavian Workshop on Algorithm Theory
(SWAT), volume 447 of LNCS, pages 301�309. Springer-Verlag, 1990.

[BM93] H.L. Bodlaender and R.H. Möhring. The pathwidth and treewidth of
cographs. SIAM J. Disc. Math., 6(2):181�188, 1993.

[BMP20] B.M. Bumpus, K. Meeks, and W. Pettersson. Directed branch-width: A
directed analogue of tree-width. arXiv preprint arXiv:2009.08903, 2020.

[Bod96] H.L. Bodlaender. A linear-time algorithm for �nding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25(6):1305�1317, 1996.

[Bod98] H.L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209:1�45, 1998.

BIBLIOGRAPHY 159

[Boe18] D. Boeckner. Oriented threshold graphs. Australasian Journal of Com-
binatorics, 71(1):43�53, 2018.

[BU84] M. Burlet and J.P. Uhry. Parity graphs. Annals of Discrete Mathematics,
21:253�277, 1984.

[CD06] J.-F. Culus and M. Demange. Oriented coloring: Complexity and approx-
imation. In Proceedings of the Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM), volume 3831 of LNCS,
pages 226�236. Springer-Verlag, 2006.

[CER93] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hyper-
graph grammars. Journal of Computer and System Sciences, 46:218�270,
1993.

[CFS12] M. Chudnovsky, A.O. Fradkin, and P.D. Seymour. Tournament immer-
sion and cutwidth. Journal of Combinatorial Theory, Series B, 102(1):93�
101, 2012.

[CH77] V. Chvátal and P.L. Hammer. Aggregation of inequalities in integer pro-
gramming. Annals of Discrete Math., 1:145�162, 1977.

[CLMS19] V. Campos, R. Lopes, A.K. Maia, and I. Sau. Adapting the directed grid
theorem into an fpt algorithm. Electronic Notes in Theoretical Computer
Science, 346:229�240, 2019.

[CLSB81] D.G. Corneil, H. Lerchs, and L. Stewart-Burlingham. Complement re-
ducible graphs. Discrete Applied Mathematics, 3:163�174, 1981.

[CMR00] B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable opti-
mization problems on graphs of bounded clique-width. Theory of Com-
puting Systems, 33(2):125�150, 2000.

[CO00] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101:77�114, 2000.

[Coh68] R.S. Cohen. Transition graphs and the star height problem. In Proceedings
of the 9th Annual Symposium on Switching and Automata Theory, pages
383�394. IEEE Computer Society, 1968.

[Cou94] B. Courcelle. The monadic second-order logic of graphs VI: On several
representations of graphs by relational structures. Discrete Applied Math-
ematics, 54:117�149, 1994.

[CP06] C. Crespelle and C. Paul. Fully dynamic recognition algorithm and certi�-
cate for directed cographs. Discrete Applied Mathematics, 154(12):1722�
1741, 2006.

160 BIBLIOGRAPHY

[CS11] M. Chudnovsky and P.D. Seymour. A well-quasi-order for tournaments.
Journal of Combinatorial Theory, Series B, 101(1):47�53, 2011.

[DES14] M. Dehmer and F. Emmert-Streib, editors. Quantitative Graph Theory:
Mathematical Foundations and Applications. Crc Pr Inc, New York, 2014.

[DS14] J. Dybizba«ski and A. Szepietowski. The oriented chromatic number of
Halin graphs. Information Processing Letters, 114(1-2):45�49, 2014.

[Egg63] L.E. Eggan. Transition graphs and the star height of regular events.
Michigan Math. J., 10:385�397, 1963.

[EGW03] W. Espelage, F. Gurski, and E. Wanke. Deciding clique-width for graphs
of bounded tree-width. Journal of Graph Algorithms and Applications -
Special Issue of JGAA on WADS 2001, 7(2):141�180, 2003.

[EMC88] E. El-Mallah and C.J. Colbourn. The complexity of some edge deletion
problems. IEEE Transactions on Circuits and Systems, 35(3):354�362,
1988.

[EST94] J.A. Ellis, I.H. Sudborough, and J.S. Turner. The vertex separation and
search number of a graph. Information and Computation, 113(1):50�79,
1994.

[FGL+18] F.V. Fomin, P. Golovach, D. Lokshtanov, S. Saurabh, and M. Zehavi.
Cliquewidth III: The Odd Case of Graph Coloring Parameterized by
Cliquewidth. ACM Transactions on Algorithms, 15(1):9:1�9:27, 2018.

[FHM03] T. Feder, P. Hell, and B. Mohar. Acyclic homomorphisms and circular
colorings of digraphs. SIAM Journal on Discrete Mathematics, 17(1):161�
163, 2003.

[FHP19] F. Foucaud, S. Heydarshahi, and A. Parreau. Domination and location
in twin-free digraphs. CoRR, abs/1910.05311, 2019.

[FOT10] F.V. Fomin, S. Oum, and D. Thilikos. Rank-width and tree-width of H-
minor-free graphs. European Journal of Combinatorics, 31(7):1617�1628,
2010.

[FP13a] F.V. Fomin and M. Pilipczuk. Jungles, bundles, and �xed parameter
tractability. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 396�413. ACM-SIAM, 2013.

[FP13b] F.V. Fomin and M. Pilipczuk. Subexponential parameterized algorithm
for computing the cutwidth of a semi-complete digraph. In Proceedings
of the Annual European Symposium on Algorithms (ESA), volume 8125
of LNCS, pages 505�516. Springer-Verlag, 2013.

BIBLIOGRAPHY 161

[FP19] F.V. Fomin and M. Pilipczuk. On width measures and topological prob-
lems on semi-complete digraphs. Journal of Combinatorial Theory, Series
B, 138:78�165, 2019.

[FRRS09] M.R. Fellows, F.A. Rosamond, U. Rotics, and S. Szeider. Clique-width
is NP-complete. SIAM Journal on Discrete Mathematics, 23(2):909�939,
2009.

[FS13] A. Fradkin and P.D. Seymour. Tournament pathwidth and topological
containment. Journal of Combinatorial Theory, Series B, 103:374�384,
2013.

[Gan11] R. Ganian. Thread graphs, linear rank-width and their algorithmic ap-
plications. In Proceedings of International Workshop on Combinatorial
Algorithms, volume 6460 of LNCS, pages 38�42. Springer-Verlag, 2011.

[Gav77] F. Gavril. Some NP-complete problems on graphs. In Proceedings of the
11th Conference on Information Sciences and Systems. Johns Hopkins
University, Baltimore, Md., pages 91�95, 1977.

[GHK+09] R. Ganian, P. Hlinený, J. Kneis, A. Langer, J. Obdrzálek, and P. Ross-
manith. On digraph width measures in parameterized algorithmics. In
Proceedings of the International Symposium on Parameterized and Ex-
act Computation, volume 5917 of LNCS, pages 185�197. Springer-Verlag,
2009.

[GHK+10] R. Ganian, P. Hlinený, J. Kneis, D. Meisters, J. Obdrzálek, P. Ross-
manith, and S. Sikdar. Are there any good digraph width measures? In
Proceedings of the International Symposium on Parameterized and Exact
Computation, volume 6478 of Lecture Notes in Computer Science, pages
135�146. Springer-Verlag, 2010.

[GHK+14] R. Ganian, P. Hlinený, J. Kneis, A. Langer, J. Obdrzálek, and P. Ross-
manith. Digraph width measures in parameterized algorithmics. Discrete
Applied Mathematics, 168:88�107, 2014.

[GHK+16] R. Ganian, P. Hlinený, J. Kneis, D. Meisters, J. Obdrzálek, P. Ross-
manith, and S. Sikdar. Are there any good digraph width measures?
Journal of Combinatorial Theory, Series B, 116:250�286, 2016.

[GKL20] F. Gurski, D. Komander, and M. Lindemann. Oriented coloring of msp-
digraphs and oriented co-graphs. In International Conference on Combi-
natorial Optimization and Applications, pages 743�758. Springer, 2020.

[GKR19a] F. Gurski, D. Komander, and C. Rehs. Computing digraph width mea-
sures on directed co-graphs. In Proceedings of International Symposium
on Fundamentals of Computation Theory (FCT), volume 11651 of LNCS,
pages 292�305. Springer-Verlag, 2019.

162 BIBLIOGRAPHY

[GKR19b] F. Gurski, D. Komander, and C. Rehs. Oriented coloring on recursively
de�ned digraphs. Algorithms, 12(4):87, 2019.

[GKR21a] F. Gurski, D. Komander, and C. Rehs. Acyclic coloring parameterized by
directed clique-width. In Proceedings of the International Conference on
Algorithms and Discrete Applied Mathematics (CALDAM), volume 12601
of LNCS, pages 95�108. Springer-Verlag, 2021.

[GKR21b] F. Gurski, D. Komander, and C. Rehs. How to compute digraph width
measures on directed co-graphs. Theoretical Computer Science, 855:161�
185, 2021.

[GKRW21] F. Gurski, D. Komander, C. Rehs, and S. Widerrecht. Directed width
parameters on semicomplete digraphs. 2021. Submitted at COCOA.

[Gou12] R. Gould. Graph Theory. Dover Publications Inc., New York, NY, USA,
2012.

[GR99] M.C. Golumbic and U. Rotics. On the clique-width of some perfect graph
classes. In Proceedings of Graph-Theoretical Concepts in Computer Sci-
ence (WG), volume 1665 of LNCS, pages 135�147. Springer-Verlag, 1999.

[GR00] M.C. Golumbic and U. Rotics. On the clique-width of some perfect
graph classes. International Journal of Foundations of Computer Sci-
ence, 11(3):423�443, 2000.

[GR18] F. Gurski and C. Rehs. Directed path-width and directed tree-width
of directed co-graphs. In Proceedings of the International Conference
on Computing and Combinatorics (COCOON), volume 10976 of LNCS,
pages 255�267. Springer-Verlag, 2018.

[GR19a] F. Gurski and C. Rehs. Comparing linear width parameters for directed
graphs. Theory of Computing Systems, 63(6):1358�1387, 2019.

[GR19b] F. Gurski and C. Rehs. Forbidden directed minors, directed path-width
and directed tree-width of tree-like digraphs. In Proceedings of the Con-
ference on Current Trends in Theory and Practice of Computer Sci-
ence (SOFSEM), volume 11376 of LNCS, pages 234�246. Springer-Verlag,
2019.

[GRR18] F. Gurski, C. Rehs, and J. Rethmann. Directed pathwidth of sequence
digraphs. In Proceedings of the International Conference on Combinato-
rial Optimization and Applications (COCOA), volume 11346 of LNCS,
pages 79�93. Springer-Verlag, 2018.

[GRR21] F. Gurski, C. Rehs, and J. Rethmann. Characterizations and Directed
Path-Width of Sequence Digraphs. In Theory of Computing Systems,
2021. to appear.

BIBLIOGRAPHY 163

[Gru08] H. Gruber. Digraph complexity measures and applications in formal lan-
guage theory. In Proceedings of MEMICS'08, pages 60�67, 2008.

[Gru12] H. Gruber. Digraph complexity measures and applications in formal lan-
guage theory. Discrete Mathematics and Theoretical Computer Science,
14(2):189�204, 2012.

[GRW16] F. Gurski, J. Rethmann, and E. Wanke. On the complexity of the
FIFO stack-up problem. Mathematical Methods of Operations Research,
83(1):33�52, 2016.

[Gur06a] F. Gurski. Characterizations for co-graphs de�ned by restricted NLC-
width or clique-width operations. Discrete Mathematics, 306(2):271�277,
2006.

[Gur06b] F. Gurski. Linear layouts measuring neighbourhoods in graphs. Discrete
Mathematics, 306(15):1637�1650, 2006.

[Gur08] F. Gurski. Graph parameters measuring neighbourhoods in graphs �
Bounds and applications. Discrete Applied Mathematics, 156(10):1865�
1874, 2008.

[Gur17] F. Gurski. Dynamic programming algorithms on directed cographs.
Statistics, Optimization and Information Computing, 5:35�44, 2017.

[Gus93] J. Gusted. On the pathwidth of chordal graphs. Discrete Applied Math-
ematics, 45(3):233�248, 1993.

[GW00] F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs
without Kn,n. In Proceedings of Graph-Theoretical Concepts in Computer
Science (WG), volume 1938 of LNCS, pages 196�205. Springer-Verlag,
2000.

[GW05a] F. Gurski and E. Wanke. Minimizing NLC-width is NP-complete. In
Proceedings of Graph-Theoretical Concepts in Computer Science (WG),
volume 3787 of LNCS, pages 69�80. Springer-Verlag, 2005.

[GW05b] F. Gurski and E. Wanke. On the relationship between NLC-width and
linear NLC-width. Theoretical Computer Science, 347(1-2):76�89, 2005.

[GWY16] F. Gurski, E. Wanke, and E. Yilmaz. Directed NLC-width. Theoretical
Computer Science, 616:1�17, 2016.

[GY02] G. Z. Gutin and A. Yeo. Orientations of digraphs almost preserving
diameter. Discrete Applied Mathematics, 121(1-3):129�138, 2002.

[Hal76] R. Halin. S-functions for graphs. J. Geometry, 8:171�176, 1976.

164 BIBLIOGRAPHY

[HK08] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions,
games, and orderings. Theoretical Computer Science, 399(3):206�219,
2008.

[HKK19] M. Hatzel, K. Kawarabayashi, and S. Kreutzer. Polynomial planar di-
rected grid theorem. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1465�1484. ACM-SIAM, 2019.

[HMP09] P. Heggernes, D. Meister, and C. Papadopoulos. A complete character-
isation of the linear clique-width of path powers. In Proceedings of the
Annual Conference on Theory and Applications of Models of Computa-
tion, volume 5532 of LNCS, pages 241�250. Springer-Verlag, 2009.

[HMP11] P. Heggernes, D. Meister, and C. Papadopoulos. Graphs of linear clique-
width at most 3. Theoretical Computer Science, 412(39):5466�5486, 2011.

[HOSG08] P. Hlinený, S. Oum, D. Seese, and G. Gottlob. Width parameters be-
yond tree-width and their applications. Computer Journal, 51(3):326�
362, 2008.

[How77] E. Howorka. A characterization of distance-hereditary graphs. The Quar-
terly Journal of Mathematics Ser. 2, 28:417�420, 1977.

[HP05] M. Habib and C. Paul. A simple linear time algorithm for cograph recog-
nition. Discrete Applied Mathematics, 145:183�197, 2005.

[HU53] F. Harary and G.E. Uhlenbeck. On the number of husimi trees: I. Pro-
ceedings of the National Academy of Sciences, 39(4):315�322, 1953.

[JKT21] L. Ja�ke, O. Kwon, and J. A. Telle. Classes of intersection digraphs
with good algorithmic properties. ACM Computing Research Repository
(CoRR), abs/2105.01413, 2021.

[Joh98] Ö. Johansson. Clique-decomposition, NLC-decomposition, and modular
decomposition - relationships and results for random graphs. Congressus
Numerantium, 132:39�60, 1998.

[JRST01a] T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Addentum to
�Directed tree-width�, 2001.

[JRST01b] T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Directed tree-
width. Journal of Combinatorial Theory, Series B, 82:138�155, 2001.

[Jun78] H.A. Jung. On a class of posets and the corresponding comparability
graphs. Journal of Combinatorial Theory, Series B, 24:125�133, 1978.

[Kar72] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller
and J.W. Thatcher, editors, Complexity of Computer Computations,
pages 85�103, New York, 1972. Plenum Press.

BIBLIOGRAPHY 165

[Kas08] N. Kashyap. Matroid pathwidth and code trellis complexity. SIAM J.
Discrete Math., 22(1):256�272, 2008.

[KBMK93] T. Kloks, H. Bodlaender, H. Müller, and D. Kratsch. Computing
treewidth and minimum �ll-in: All you need are the minimal separa-
tors. In Proceedings of the Annual European Symposium on Algorithms
(ESA), volume 726 of LNCS, pages 260�271. Springer-Verlag, 1993.

[KF79] T. Kashiwabara and T. Fujisawa. NP-completeness of the problem of
�nding a minimum-clique-number interval graph containing a given graph
as a subgraph. In Proceedings of the International Symposium on Circuits
and Systems, pages 657�660, 1979.

[KK15] K. Kawarabayashi and S. Kreutzer. The directed grid theorem. In
Proceedings of the Annual ACM Symposium on Theory of Computing
(STOC), pages 655�664. ACM, 2015.

[KKK+16] K. Kitsunai, Y. Kobayashi, K. Komuro, H. Tamaki, and T. Tano. Com-
puting directed pathwidth in O(1.89n) time. Algorithmica, 75:138�157,
2016.

[KKT15] K. Kitsunai, Y. Kobayashi, and H. Tamaki. On the pathwidth of al-
most semicomplete digraphs. In Proceedings of the Annual European
Symposium on Algorithms (ESA), volume 9294 of LNCS, pages 816�827.
Springer-Verlag, 2015.

[Kob15] Y. Kobayashi. Computing the pathwidth of directed graphs with small
vertex cover. Information Processing Letters, 115(2):310�312, 2015.

[KR09] M. Kanté and M. Rao. Directed rank-width and displit decomposition. In
Proceedings of Graph-Theoretical Concepts in Computer Science (WG),
volume 5911 of LNCS, pages 214�225. Springer-Verlag, 2009.

[KR13] M. Kanté and M. Rao. The rank-width of edge-coloured graphs. Theory
Comput. Syst., 52(4):599�644, 2013.

[KR21] D. Komander and C. Rehs. Twin-distance hereditary digraphs. 2021.
arXiv preprint arXiv:2112.04183.

[KS15] I. Kim and P.D. Seymour. Tournament minors. Journal of Combinatorial
Theory, Series B, 112(C):138�153, 2015.

[KZ15] S. Kintali and Q. Zhang. Forbidden directed minors and directed path-
width. Research Report, 2015.

[KZ17] S. Kintali and Q. Zhang. Forbidden directed minors and Kelly-width.
Theoretical Computer Science, 662:40�47, 2017.

166 BIBLIOGRAPHY

[Law76] E.L. Lawler. Graphical algorithms and their complexity. Math. Centre
Tracts, 81:3�32, 1976.

[Ler71] H. Lerchs. On cliques and kernels. Technical report, Dept. of Comput.
Sci, Univ. of Toronto, 1971.

[LM17] Z. Li and B. Mohar. Planar digraphs of digirth four are 2-colorable. SIAM
J. Discrete Math., 31:2201�2205, 2017.

[LS10] M. Lätsch and R. Schrader. Distance-hereditary digraphs. Journal of
Discrete Algorithms, 8(2):231�240, 2010.

[LT79] R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36(2):177�189, 1979.

[Mar13] T.H. Marshall. Homomorphism bounds for oriented planar graphs of
given minimum girth. Graphs and Combin., 29:1489�1499, 2013.

[McN69] R. McNaughton. The loop complexity of regular events. Information
Sciences, 1(3):305�328, 1969.

[Moh03] B. Mohar. Circular colorings of edge-weighted graphs. Journal of Graph
Theory, 43(2):107�116, 2003.

[MP95] N.V.R. Mahadev and U.N. Peled. Threshold Graphs and Related Topics.
Annals of Discrete Math. 56. Elsevier, North-Holland, 1995.

[MRW20] N. Morawietz, C. Rehs, and M. Weller. A Timecop's Work Is Harder
Than You Think. In Proceedings of Mathematical Foundations of Com-
puter Science (MFCS), volume 170 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 71:1�71:14, 2020.

[MS88] B. Monien and I.H. Sudborough. Min cut is NP-complete for edge
weighted trees. Theoretical Computer Science, 58:209�229, 1988.

[MSW19] M.G. Millani, R. Steiner, and S. Wiederrecht. Colouring non-
even digraphs. ACM Computing Research Repository (CoRR),
abs/1903.02872:37 pages, 2019.

[Nag12] H. Nagamochi. Linear layouts in submodular systems. In Proceedings
of the International Symposium on Algorithms and Computation, volume
7676 of LNCS, pages 475�484. Springer-Verlag, 2012.

[NdM06] J. Ne²et°il and P.O. de Mendez. Tree-depth, subgraph coloring and ho-
momorphism bounds. Eur. J. Comb., 27:1022�1041, 2006.

[NL82] V. Neumann-Lara. The dichromatic number of a digraph. Journal of
Combinatorial Theory, Series B, 33(2):265�270, 1982.

BIBLIOGRAPHY 167

[Obd06] J. Obdrzálek. Dag-width: Connectivity measure for directed graphs.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 814�821. ACM-SIAM, 2006.

[OS06] S. Oum and P.D. Seymour. Approximating clique-width and branch-
width. Journal of Combinatorial Theory, Series B, 96(4):514�528, 2006.

[Oum05] S. Oum. Rank-width and vertex-minors. Journal of Combinatorial The-
ory, Series B, 95:79�100, 2005.

[Oum17] S. Oum. Rank-width: Algorithmic and structural results. Discrete Ap-
plied Mathematics, 231:15�24, 2017.

[Ree99] B. Reed. Introducing directed tree width. Electronic Notes in Discrete
Mathematics, 3:222�229, 1999.

[RS83] N. Robertson and P.D. Seymour. Graph minors I. Excluding a forest.
Journal of Combinatorial Theory, Series B, 35:39�61, 1983.

[RS86a] N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects
of tree width. Journal of Algorithms, 7:309�322, 1986.

[RS86b] N. Robertson and P.D. Seymour. Graph minors V. Excluding a planar
graph. Journal of Combinatorial Theory, Series B, 41:92�114, 1986.

[RST94] N. Robertson, P.D. Seymour, and R. Thomas. Quickly excluding a planar
graph. Journal of Combinatorial Theory, Series B, 62(2):323�348, 1994.

[Sch89] P. Sche�er. Die Baumweite von Graphen als Mass für die Kompliziertheit
algorithmischer Probleme. Ph. D. thesis, Akademie der Wissenschaften
in der DDR, Berlin, 1989.

[Sch21] R. Schrader. Personal communication, 2021.

[Sei11] S. Seidler. Über Minoren gerichteter Graphen. Diplomarbeit, TU Dres-
den, 2011.

[Sop97] É. Sopena. The chromatic number of oriented graphs. Journal of Graph
Theory, 25:191�205, 1997.

[ST93] P.D. Seymour and R. Thomas. Graph searching and a min-max theorem
for tree-width. Journal of Combinatorial Theory, Series B, 58(1):22�33,
1993.

[ST07] K. Suchan and I. Todinca. Pathwidth of circular-arc graphs. In Proceed-
ings of Graph-Theoretical Concepts in Computer Science (WG), volume
4769 of LNCS, pages 258�269. Springer-Verlag, 2007.

[Sum74] P.D. Sumner. Dacey graphs. Journal of Aust. Soc., 18:492�502, 1974.

168 BIBLIOGRAPHY

[SW20] R. Steiner and S. Wiederrecht. Parameterized algorithms for directed
modular width. In Proceedings of the International Conference on Algo-
rithms and Discrete Applied Mathematics (CALDAM), volume 12016 of
LNCS, pages 415�426. Springer-Verlag, 2020.

[Tam11] H. Tamaki. A Polynomial Time Algorithm for Bounded Directed Path-
width. In Proceedings of Graph-Theoretical Concepts in Computer Science
(WG), volume 6986 of LNCS, pages 331�342. Springer-Verlag, 2011.

[Wan94] E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied
Mathematics, 54:251�266, 1994.

[Wie20] S. Wiederrecht. Digraphs of directed tree-width one. Discrete Mathemat-
ics, 343(12):112�124, 2020.

[YC08] B. Yang and Y. Cao. Digraph searching, directed vertex separation and
directed pathwidth. Discrete Applied Mathematics, 156(10):1822�1837,
2008.

7 Appendix

7.1 Parts of my published Papers

Directed path-width and directed tree-width of directed co-graphs
[GR18]

On this paper, I worked with my supervisor Frank Gurski. We did a lot of literature
search together. While the results for directed path-width can be obtained very similar
to the undirected case, what we did together, the results for directed tree-width are
much more di�cult. The main results and proofs for directed tree-width were my
work.

Directed path-width of Sequence Digraphs [GRR18]

On this paper I worked with Frank Gurski and Jochen Rethmann. My main results in
this paper are the characterizations of sequence digraph classes, especially Proposition
2 and Theorem 2.

Comparing linear width parameters for directed graphs [GR19a]

On this paper, I worked with Frank Gurski. We both generalized many results on
undirected linear width parameters to directed linear width parameters. While he did
all directed clique-width relations and I did some of the directed cut-width, directed
rank-width and directed neighborhood-width relations. As this was my �rst paper
(though it was published later, as it is a journal paper and not a conference paper),
Frank Gurski revised many of my proofs.

Forbidden directed minors, directed path-width and directed tree-
width of tree-like digraphs [GR19b]

On this paper, I worked nearly alone, with two small lemmas and some proof-reading
of Frank Gurski.

169

170 CHAPTER 7. APPENDIX

Oriented coloring on recursively de�ned digraphs [GKR19b]

On this paper, I mainly worked with Frank Gurski. My at that time new colleague
Dominque Komander only gave some minor support. Frank Gurski and me did a
lot of literature search together. While he formulated most of the preliminaries, I
created the two main algorithms of the paper by strongly modifying some undirected
algorithms. Therefore, I invented the de�nition of a canonical di-co-tree. I also
proved running time and correctness for these algorithms and some of the lemmas
and corollaries. Only for the correctness proof of the second algorithm I worked with
Dominique Komander.

Computing digraph width measures on directed co-graphs [GKR19a]

On this paper I worked with Frank Gurski and Dominique Komander. It shows how
to compute di�erent directed width measures on recursively de�ned graphs. While
directed path-width and directed tree-width only cite [GR18], the results of DVFS-
Number, Cycle Rank and DAG-depth were obtained by Dominique Komander and
Frank Gurski. However, I developed the much more complex results for DAG-width.
I further elaborated the results for Kelly-width in collaboration with Dominique Ko-
mander.

How to compute digraph width measures on directed co-graphs [GKR21b]

This paper is a long version of the papers [GR18] and [GKR19a]. My parts of this
paper are the same as described above. In this paper, a mistake in a proof of [GR18]
is corrected by several lemmata and a modi�cation of this proof, which is primarily
my work with some help from Dominique Komander.

Acyclic coloring parameterized by directed clique-width [GKR21a]

For this paper, which was written during my parental leave, I only did some minor
support for the proofs and some proof-reading and corrections in the end.

Directed Versions of Distance-Hereditary Digraphs [KR21]

On this paper I mainly worked with Dominique Komander. It bases on discussions
about directed twins with her, Frank Gurski and Van Bang Le. While Dominique
Komander and me did the main de�nitions together, her part of the paper were the
characterizations by forbidden subdigraphs and di�erent properties and my part were
the algorithms for directed width parameters on twin-dh digraphs.

Characterizations and Directed Path-Width of Sequence Digraphs
[GRR21]

This paper is a long version of [GRR18]. My parts of the paper are the same as
described above.

7.1. PARTS OF MY PUBLISHED PAPERS 171

Directed Width Parameters on Semicomplete Digraphs [GKRW21]

This paper is a strong cooperation with my colleague Dominique Komander. For
most proofs, we worked together, sometimes with some help of our supervisor Frank
Gurski. In the last terms of the paper Sebastian Wiederrecht joined us and helped
with the proof to compare directed path-width and directed tree-width. Together
we optimized the result for directed path-width and Kelly-width we had before. He
further gave some very valuable ideas for a restructuring of this paper.

	Introduction
	Undirected Graphs
	Graph Width Measures
	Path-Width
	Tree-Width
	Clique-Width
	NLC-width

	Graph Minors
	Graph Classes
	Cactus trees and Pseudotrees
	Co-Graphs
	Threshold Graphs
	Distance-Hereditary Graphs

	Digraph (Width) Parameters
	Preliminaries
	Directed graphs
	Directed Graph Parameters

	Linear Width Parameters for Digraphs
	Directed path-width
	Directed vertex separation number
	Directed cut-width
	Directed linear NLC-width
	Directed linear clique-width
	Directed neighbourhood-width
	Directed linear rank-width

	Non-Linear Width Parameters for Digraphs
	Directed tree-width
	Directed feedback vertex set number
	Directed feedback arc set number
	Cycle Rank
	DAG-depth
	DAG-width
	Kelly-width
	Directed NLC-width
	Directed Clique-Width
	Cops and Robbers Games

	Directed Coloring
	Oriented Coloring
	Acyclic coloring of directed graphs

	Comparing Directed Width Parameters
	Directed linear width and undirected linear width
	Linear width parameters
	Non-linear width parameters
	Coloring and directed width parameters

	Directed Graph Minors
	Width Measures on Directed Graph Classes
	Tree-Like Digraphs
	Directed Cactus Forests and Pseudoforests
	Directed Graph Minors of Tree-like Digraphs
	Directed Path-Width of Tree-like Digraphs
	Directed Tree-Width of Tree-like Digraphs
	Conclusion and Outlook

	Directed Co-Graphs
	Recursively defined Digraphs
	Directed width parameters and digraph operations
	Digraph width measures on directed co-graphs
	Graph Coloring on Recursively Defined Digraphs
	Conclusion and Outlook

	Directed Threshold Graphs
	Twin-Distance-Hereditary Digraphs
	Directed Distance-Hereditary Graphs
	Properties of Twin-DH Digraphs
	Directed Graph Parameters on Twin-DH Digraphs
	Further Problems on directed twin-dh graphs
	Conclusion and Outlook

	Sequence Digraphs
	From Sequences to Digraphs
	From Digraphs to Sequences
	Properties of Sequence Digraphs
	Directed Path-width of Sequence Digraphs
	Conclusions

	Semicomplete Graphs
	Linear Width parameters on semicomplete graphs
	Non-Linear Width parameters on semicomplete digraphs
	DAG-width and directed path-width on semicomplete digraphs
	Escaping pursuit in the jungle: directed path-width, directed tree-width and Kelly-width
	Directed (linear) clique-width and directed path-width on semicomplete digraphs
	Conclusion

	Conclusions and Outlook
	Appendix
	Parts of my published Papers

