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Zusammenfassung

Eine wachsende Zahl epidemiologischer Studien bringt Perioden hoher Konzentrationen von
Ultrafeinstaub (UFP, Partikeldurchmesser <100 nm) in der AuRenluft mit erhéhten, kurzfristigen
Mortalitatsraten in Verbindung. Dieselabgaspartikel (DEPs) werden dabei als besonders toxisch
eingestuft und diesel-betriebene Stralenfahrzeuge (DPVs) in vielen Landern gesetzlich reguliert -
insbesondere Uber Abgasfiltration. Es ist unklar, wie Dieselabgasfiltration sich auf das kurzfristige
Mortalitatsrisiko von UFPs auswirkt. Die vorliegende Zeitreihenstudie fiir 2009-2018 untersuchte die
Entwicklung groRenspezifischer Partikelanzahlkonzentrationen (PNC) in der AuRenluft, deren
Assoziation mit kurzfristiger Mortalitdt und eine mogliche Effektmodifikation durch europaische
Dieselabgasregulierung.

Die Analyse basierte auf taglichen, mittleren Messwerten fiir gréRenspezifische PNC (elektronischer
Mobilitatsdurchmesser von 13.8-500 nm), Feinstaub (PMso, aerodynamischer Durchmesser < 10 um)
und Stickstoffdioxid (NO;) einer zentralen, urbanen Hintergrundmessstation in Milheim-Styrum
(Deutschland) sowie taglichen natirlichen (NCM), kardiovaskularen (CVM) und respiratorischen (RM)
Todesféllen fir die umliegenden Gemeinden Miilheim an der Ruhr, Essen und Oberhausen Uber
insgesamt 2965 Tage. Mit Poisson-Regressionen wurde das relative Mortalitatsrisiko (RR) (95%
Konfidenzintervall (Cl)) nach unmittelbarer (lag0-1, lagl-2; 0-2 Tage nach Exposition), mittelfristiger
(lag2-3, lag3-4) und verzogerter (lag4-5, lag5-6, lag6-7) Exposition pro Interquartilsabstand berechnet.
Die Modelle wurden fiir Wetter- und Zeitvariablen sowie zur Sensitivitatsanalyse flir PMio und NO;
adjustiert. Die GroRenfraktion von 30-120 nm (PNCsp.120) Wurde evidenzbasiert zur Reprdsentation
ungefilterter Dieselabgaspartikel gewahlt. Zur Abschatzung einer Effektmodifikation durch die
europdische ,Euro-4“ Abgasnorm und die damit zusammenhdngende Installation von Diesel-
partikelfiltern (DPFs) in DPVs wurden multiplikativen Interaktionstermen verwendet: einen
Dichotomen fiir die Einfihrung eines Fahrverbot fir nicht-Euro-4-konforme DPVs in stddtischen
Umweltzonen (UEZs), und einen Ordinalen fiir die jahrlich erhéhte Pravalenz von DPF unter DPV.

Median-Werte (IQR) fiir mittlere, tagliche PNCso.120, und Gesamt-PNC lagen bei 4970 (3189) und 11000
(5630) PNC/cm?®. Die linearen Regressionsschitzer fiir den téaglichen Zeittrend (8) (95% (Cl)) lagen bei -
0.63 (-0.73; -0.56) bzw. -0.86 (-1.01; -0.71). Die gréRenspezifischen PNC waren mit NCM, CVM und RM
assoziiert: unmittelbar (lag0-1) und verzogert (lag4-5, lag5-6, lag6-7) mit NCM bis zu einem RR von
1.0121 (1.0023; 1.022), verzogert (lag4-5, lag5-6, lag6-7) mit CVM bis zu 1.0199 (1.005; 1.0351) und
unmittelbar (lag0-1, lag1-2) und verzogert (lag5-6, lag6-7) mit RM bis zu 1.0333 (0.9971; 1.0707). Das
Modell mit dem dichotomen Interaktionsterm zum UEZ-Fahrverbot ab 01.07.2014 indizierte eine
Effektmodifikation mit einer Senkung des RR fiir NCM, CVM, RM fiir PNCs bis zu einer PartikelgréRe
von 100 nm (inklusive PNCso.120), 30 nm bzw. 50 nm, wahrend fiir groRere Partikel eher einen RR-
Anstieg zu beobachten war. Das Modell mit ordinalem Interaktionsterm im Kontext erhdhter DPF
Anteile (von 49 auf 88%) unter den DPVs zeigte keine graduelle Anderung, auch nicht fiir PNCso.120.
Insgesamt unterschieden sich die RR deutlich zwischen PNC GroRenfraktionen. Alle Modellschatzer
waren weitgehend robust flr die Adjustierung mit PMio und NO,, nur fiir das Modell mit ordinalem
Interaktionsterm verringerte NO,-Adjustierung die Schatzwerte insgesamt.

Diese Studie ldsst auf eine mogliche Erhéhung des Risikos fir NCM, CVM und RM durch UFP (und PNC)
schlieRen. Die beobachteten Assoziationen unterschieden sich substantiell nach PNC GréRenfraktion
und zeigten sich unabhingig von PM1o und NO,. Die RR-Anderungen durch das Fahrverbot in der UEZ
deuten auf eine mogliche Zurechenbarkeit hin. Die Ergebnisse motivieren eine Ausweitung
groRenspezifischer PNC Messungen zur Analyse von Gesundheitseffekten und Interventionsfolgen,
bestenfalls mit hoher zeitlicher Auflésung und zusatzlicher Indikatoren fiir eine Quellenzuordnung.



Abstract

A growing number of epidemiological studies identify possible adverse associations between periods
with elevated ultra-fine particle (UFP, particle diameter <100 nm) concentrations and short-term
mortality. Diesel exhaust particles (DEPs) have shown to be especially toxic. Diesel-powered on-road
vehicles (DPVs) are hence being regulated, particularly through exhaust filtration. It remains unclear
how DPV exhaust filtration may modify short-term mortality associations with UFP. This time series
study investigated the developments of size-specific, particulate number concentrations (PNCs)
between 2009 and 2019, their associations with short-term mortality, and potential effect
modification by European diesel exhaust regulation.

Daily mean, size-specific PNC (electric mobility diameter of 13.8-500 nm), fine particles (PMyy,
aerodynamic diameter < 10 um) and nitrogen dioxide (NO;) concentrations from a central urban
background station in Milheim-Styrum (Germany), and daily natural-cause (NCM), cardiovascular
(CVM) and respiratory mortality (RM) counts for adjacent municipalities (Milheim, Essen,
Oberhausen) were analysed across 2965 days. Immediate (aggregate lag0-1 days, lagl-2; 0-2 days after
exposure), medium-term (lag2-3, lag3-4) and delayed (lag4-5, lag5-6, lag6-7) mortality risk ratios (RR)
(95% confidence interval (Cl)) per interquartile range (IQR) increase of size-specific PNCs were analysed
by Poisson regression. The size fraction of 30-120 nm (PNCso.120) was chosen to represent most DEPs.
The models were adjusted for time and meteorological variables, as well as, for sensitivity analyses for
PMio and NO,. To test effect modification by the European exhaust regulation “Euro-4” norm, that
requires most DPVs to install diesel particulate filters (DPFs), multiplicative interaction terms were
used: a dichotomous one for banning non-compliant DPVs from entering urban environmental zones
(UEZs), and an ordinal one for annual DPF prevalence increase among DPVs.

Medians (IQR) for daily mean PNCso.120 and total PNC were 4970 (3189) and 11000 (5630) PNC/cm?3,
respectively; with simple linear regression estimates (8) (95% Cl) for daily PNC of -0.63 (-0.73; -0.56)
and -0.86 (-1.01; -0.71). Size-specific PNCs were associated with short-term NCM, CVM and RM. RRs
estimates (95% Cl) of PNCs were with NCM immediately (lag0-1) and delayed (lag4-5, lag5-6, lag6-7)
up to 1.0121 (1.0023; 1.022), with CVM delayed (lag4-5, lag5-6, lag6-7) to 1.0199 (1.005; 1.0351) and
with RM immediately (lag0-1, lag1-2) and delayed (lag5-6, lag6-7) up to 1.0333 (0.9971; 1.0707). Upon
non-Euro-4-compliant DPV banning in the local UEZ upon 01.07.2014, RR for NCM, CVM, RM estimates
decreased among PNCs up to particle size 100 nm (including for PNCs0.120), 30 nm and 50 nm,
respectively, while RR for larger particle sizes increase. The model with the annual interaction term in
the context of an increase in DPF-equipped diesel-powered on-road vehicle prevalence (from 49 to
88%) showed no gradual RR change over time, including for PNCso.120. Overall, RRs differed greatly
between PNC size-fractions. All model estimates were largely robust for PMio adjustment, except for
the model with the annual interaction term for which NO; adjustment caused a slight downsizing of
estimates.

This study indicates that short-term UFP and PNC exposure may increase the risk of NCM, CVM and
RM. Observed associations differed substantially depending on PNC size range, while they were robust
to adjustment to the two main co-pollutants PMjoand NO,. Effect modification over time in relation
to the UEZ banning of non-Euro-4-compliant vehicles indicates potential accountability of the UEZ
regulation for human mortality. The findings motivate the extension of size-resolved PNC
measurements for basic epidemiological and for accountability studies, ideally with high temporal
resolution and additional indicators for source apportionment.
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1. Introduction

1.1 Motivation

Short-term exposure to elevated ambient air pollution (AAP) concentrations adversely affects
cardiovascular and respiratory health (Héroux et al., 2015; Thurston et al., 2017, WHO EURO, 2013).
In comparison with other environmental risk factors, AAP is currently deemed most health critical by
a global ranking (Cohen et al., 2017; IHME, 2019). The contribution of individual AAP constituents for
its overall health risk is still being unravelled. An improved understanding of the relative health risk for
individual AAP constituents can be critical for designing (more) effective and equitable interventions
on AAP to improve human health (e.g. Benmarhnia et al., 2014; Boogaard et al., 2019; Hoffmann et al.,
2020). Substantial developments in measurement technology and overall data availability, among
other factors, allow researchers nowadays to differentiate more and more precisely the adverse
effects of individual AAP constituents, as well as AAP intervention accountability (e.g. Abbas et al.,
2018; Kelly & Fussell, et al., 2020; Yang et al., 2019).

One group of AAP constituents of particular concern and subject of political and scientific debate are
particles emitted by diesel-powered (on-road) vehicles (DPVs), also known as diesel exhaust particles
or DEPs (e.g. IARC, 2013; Steiner et al., 2016; Ris et al., 2007; Weitekamp et al., 2020). Many people
worldwide are exposed to varying concentrations of road-traffic emitted DEPs in their neighbourhood
(Anenberg et al., 2019). Studies by toxicologists, exposure scientists and epidemiologists have found
evidence suggesting that DEP exposure may cause short-term health effects and constitute a risk factor
for premature death (e.g. Hachem et al., 2020; Mehus et al., 2015; Ris et al., 2007 or Tousoulis et al.,
2020), beyond the established associations with long-term health effects (e.g. IARC, 2014). Some
research findings imply that DEPs per number of particles may have greater short-term health effects
than particles from (most) other sources (e.g. Farina et al., 2019; IARC, 2014; Park et al., 2018).

The reduction of DEP emissions caused by vehicular traffic, among others, is a priority of (national)
government policy worldwide (Sanchez et al., 2020). Yet, the understanding of regulation effects on
size-specific particulate number concentration (PNC) levels in (urban) residential areas and possible
associations with improved health status of populations remains limited to date (e.g. Burns et al., 2019;
Hulkonnen et al. (2020); Krecl et al., 2020). In the case of DEPs, precise source apportionment outside
controlled environments is complex (e.g. Zeraati-Rezaei et al., 2020). The ongoing debates on on-road
vehicle emission regulations (e.g. Pries & Wacken, 2020) may benefit from a strengthened evidence
base for informed decisions and the design of optimal interventions.

1.2 Air pollution

1.2.1 Air pollutant categories

The management of pollutants in our environment has become institutionalised in societal norms,
institutional structures and academic fields. The industrial revolution, among others, has sustainably
increased the complexity of pollution management in different media, including vegetation, soil, water
and air (e.g. Markham, 1994 or Candelone, 1995). One critical development was the introduction of
combustion-based engines, which particularly affected AAP concentrations and composition (e.g.
Mosely, 2014). Still today, over a century after the invention of the diesel-motor in 1892, debates on
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the effectiveness of exhaust regulation for DPV (e.g. Gross & Sonnberger, 2020; Fujitani et al., 2020)
illustrate the topicality of (air) pollution management.

Ambient air can carry various pollutants from anthropogenic and natural sources and spread them
further and quicker than any other environmental media (WHO, 2016). AAP may be defined as
gaseous, solid and liquid or volatile substances that are either not naturally present or typically only
present in lower concentrations in the atmosphere (Daly & Zannetti, 2007).

The constituents of AAP are typically distinguished based on its physico-chemical properties, but also
on its source. Primarily, AAP can be differentiated into gaseous and particulate, including liquid
constituents (WHO, 2016). The sub-group of AAP in focus of this study, diesel exhaust particles or DEP,
largely falls under the categories of particulate, ultra-fine (<100 nm in particle diameter), and
combustion-formed AAP, as schematically outlined in Figure 1 (Di et al., 2017; Huang et al., 2013; Wang
et al., 2019).
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Fig. 1: Simplified classification of diesel exhaust particles among common air pollution categories (by phase, size and
source). Source: own design based on WHO (2016) and Wang et al. (2019).

1.2.2 Particulate matter

The particulate constituents of AAP are typically referred to as particulate matter (PM). Notably, the
abbreviation “PM” is frequently used synonymously with particulate matter mass concentration,
which is the most common measure for air-borne particles (WHO, 2016). For this study, however, the
basic definition of PM without specification of its measure is utilised.

PM includes primary pollutants as emitted by natural and anthropogenic sources as well as secondary
pollutants formed by precursor substances in the air (Zhang et al., 2018). Precursor substances mainly
include nitrogen oxides (NOx), (semi) volatile organic compounds ((S)VOCs), ammonia (NHs) and
sulphur dioxide (SO,) (Koolen & Rothenberg, 2019; Ali et al., 2019).

PM is typically measured in mass concentration per unit volume of air (e.g. um/m?) for defined particle
size fractions. Two key measures of PM for epidemiological studies are the category of coarse particles
with its common measure defined as PM with an aerodynamic diameters of 10 microns (um) or less,
typically denoted as PM, and of fine particles for PM with 2.5 um or less in aerodynamic diameter,
typically denoted as PM,s (WHO, 2006). The mass measured is usually conducted with gravimetric
metering devices, among others, with common devices described, for example, by Ameral et al. (2015).



1.2.3 Ultra-fine particles

The smallest category of PM defined for atmospheric sciences are particles with an electric mobility
diameter (size) of less than 0.1 um. This category is commonly referred to as ultrafine particles or UFPs
(HEI Review Panel, 2013; Kwon et al., 2020). Air-borne UFPs can change in size, both growth and
degrowth processes over short periods of time, mainly depending on temperature, humidity and air
pressure (e.g. Kwon et al., 2020; Saha et al., 2019). Some researchers therefore use an extended
definition to also include particles sized slightly above 0.1 um, but substantially below 1 um with the
label “quasi-UFP” (WHO 2006; HEI Review Panel, 2013). PM slightly larger than 100 nanometer (nm)
can be considered similar enough in atmospheric behaviour and interaction with the human body to
justify a slight extension of the official definition (e.g. Saha et al., 2019; Ameral et al., 2015).

Due to their low weight relative to larger particles such as PMig or PM,s, UFPs are typically not
measured in mass concentration, but in PNC per unit volume of air, typically expressed in PNC per cm?,
as also applied in this study (e.g. HEI Review Panel, 2013). Another possible, but less common, measure
is the surface area, for which similarly the ratio to mass concentration is much larger for UFPs than
larger particles (e.g. Kumar et al., 2013a).

Most UFPs are produced in the context of combustion processes (e.g. HEI Review Panel, 2013; Li et al.,
2018a; Zhao et al., 2020). Some UPFs originate as industrially manufactured particles, sometimes also
referred to as nanoparticles in material sciences (e.g. HEl Review Panel, 2013). The particle size
categories for PM below 1.0 um are often differentiated into the nucleation mode (particle diameter
< 30 nm), the Aitken mode (30 nm < particle diameter < 100 nm) and the accumulation mode size
fractions (100 nm < particle diameter < 1 um) (e.g. Kwon et al., 2020).

The composition of UFPs depends on their source and genesis. One may differentiate primary and
secondary UFPs, as for PM, with secondary referring to formation by gaseous and (semi)volatile
precursor substances in the air (e.g. Kwon et al., 2020). Rivas et al. (2020) characterised the urban
background UFP composition for four European cities and found photo nucleation, traffic emissions
and secondary particles as the three most common sources of UFP concentration. Thereby, traffic
sources in combination contributed to 71-94% of PNCs. For Germany, based on data gathered by the
European Environment Agency (EEA), on-road traffic-related emissions were the largest contributor to
fine particles (PM.;s), dominated by passenger vehicle emissions (over 90%) (EEA, 2020b).

1.2.4 Diesel exhaust particles

Overall, on-road motorized traffic is a main source of ambient UFP in Western Europe and elsewhere
(e.g. Anenberg et al., 2019). In many urban areas, on-road traffic has been identified as the dominant
source of UFPs (e.g. Karagulian et al., 2015; Li et al., 2018b; Kumar et al., 2014). “Motor vehicles,
especially those powered by diesel engines, have often been cited as a leading source of ambient UFP
emissions and of human exposure,” concluded the HEI Review Panel (2013, p. 1). In Chinese cities, for
example, DEPs are estimated to have been responsible for over 80% of on-road vehicular PM emissions
in around 2010 (Deng et al., 2017). Dallmann & Harley (2010) estimated that over a quarter of mobile
sources of PM; s attributes to DPV emissions between 1996 and 2006 (notably thus based largely on a
vehicular fleet not equipped with diesel particulate filters (DPFs)).

Diesel-engine exhaust typically contains gaseous, (semi)volatile, liquid and solid fractions. Non-filtered
diesel engine exhaust contains SVOCs and VOCs, as well as DEPs which comprises soot particles that
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are coated with organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and its derivates,
nitrogen and sulphur oxides, alkanes, alkenes and aldehydes, as well as ash with its various metallic
compounds (e.g. Wang et al., 2019; Ris et al., 2007). The particulate proportion of diesel exhaust, i.e.
DEPs, are regarded as one of the most health-critical components (e.g. IARC, 2014; Mills et al., 2021).
Besides residential wood burning, DEPs are also considered the primary contributor to carcinogenic
PAHs and nitro- and di-nitroarenes emission, amongst other substances (e.g. Karagulian et al., 2015;
Manoli et al., 2016).

One may differentiate DEPs into: “[1] primary UFPs formed in high temperature, (2] delayed primary
particles formed as gaseous compounds nucleate during the cooling and dilution process and [3]
secondary nanoparticles formed from gaseous precursors via the atmospheric photochemistry (R6nkko
& Timonen, 2019, p. 15)”. Upon emission at the exhaust pipe, in a supersaturated zone, soot and other
primary PM become covered with condensated and adsorbed SVOC like PAHs (e.g. Keskinen & Ronkko,
2010). Black carbon is also a part of DEPs, the definition includes but is not equal to (diesel) soot,
contrary to common source apportionment simplifications (Buseck et al., 2012; Watson & Valberg,
2001; Mdller et al., 2006). The high PNC in the air right behind the tailpipe also favours coagulation of
primary PM to larger PM sizes (e.g. Wehner et al., 2009). Jathar et al. (2017) estimate that the
proportion of secondary compared to primary organic aerosol leans strongly towards secondary as
aging time increases with increases of an order of magnitude and more. Real-world studies have shown
the proportion of secondary aerosols to be more prominent in urban background than sites than at
emission, e.g. roadside, sites (e.g. Taiwo et al., 2014).

The size DEPs roughly ranges between 10 to 150 nm in size — representing both primary and secondary
particles (e.g. Martos et al., 2020). Highest PNCs for fresh diesel exhaust emitted by on-road vehicles
equipped with a DPF were found within a size fraction of 10 to 30 nm (e.g. Rivas et al., 2020). For on-
road vehicles without a DPF, the vast majority of its PNC were estimated between 30 to 120 nm in size
based on an unsystematic review of available literature for this study (including estimates by Agudelo-
Castarieda et al., 2019; Rivas et al., 2020; Harrison, 2018; Zeraati-Rezaei et al., 2020; Martos, 2020).
Exact concentration patterns can depend on engine and vehicle operation properties, exhaust after
treatment, fuel properties, as well as, typically time-varying, environmental factors (Martos et al.,
2020; da Silveira Fleck et al., 2020; Rivas et al., 2020; Wang et al., 2019). Thus, the temperature and
humidity of the dilution air may affect particle size distributions (e.g. Keskinen & Rénkkd, 2010). Due
to the volatility of particularly nucleation-mode particles, some studies assume that particle size may
reduce over time on a neighborhood scale (up to 1 kilometer (km)) due to evaporation (Nikolova et al.
(2018).

Explicitly or implicitly the majority of studies on DPV particle emissions focus on DEPs or at least diesel
engine exhaust while, DPVs also cause other particulate emissions, such as from brake and tire wear,
including associated road wear. Such PM are assumed to largely range outside the UFP size fraction.
The scientific debate on these traffic related particles is ongoing, with recent findings on brake wear
having found minor contributions to the total UFP emission of DPVs through heat induced UFP
emissions from braking (e.g. Jeong et al., 2019 or Kwak et al., 2013).

1.3 Concentration and human exposure of air pollution

AAP concentration values in the ambient air are typically basis for estimates of individual or
population-level AAP exposures. The measurement of AAP concentrations and estimation of human
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exposures differ between locational settings, time perspectives and in-focus pollutants (groups). The
estimation of an individual’s air pollution exposure is naturally limited in accuracy and precision as
discussed by (Dias et al., 2018) with a summary of the challenges in covering spatial and temporal
dynamics for air pollution exposure assessments. Exposure sciences and other disciplines have
developed measurement protocols and modelling approaches for various purposes, with an overview
for urban air pollution exposure provided e.g. by Jerrett et al. (2005) and Xie et al. (2017) and for road
traffic by Khan et al. (2018). Koolen & Rothenberg (2019) provides an overview of air pollutant
concentrations for the European Union (EU). The majority of AAP concentration measurements stems
from fixed, high-cost air pollution measurement stations, while the introduction of low-cost and
mobile, e.g. on-person, sensors is developing rapidly (e.g. Maag et al., 2018; Karagulian et al., 2019).

1.3.1 Ultra-fine particles

Measurements of UFPs are relatively expensive and technically complex. For PNC estimation, currently
the two main measurement types are condensation particle counters (CPCs) for high temporal
resolutions of total UFP counts and differential mobility analysers or mobility particle size
spectrometers (MPSSs) for differentiating counts between several UFP size fractions. To date, there is
not standard measuring device and the lower detection limits of available measurement devices
(including CPCs and MPSSs) differ — often between 5 and 20 nm (e.g. Ameral et al., 2015). UFPs are
currently neither part of one of the key global guidelines, such as the World Health Organization (WHO)
Air Quality Guidelines (AQG) (WHO, 2006), nor regulated by the EU or German legislation. Thus,
typically no reporting duty on UFPs is in place, nor in turn, systematic government exposure
measurements exist.

As UFPs are known to be highly dynamicin time and space, the differentiation of near-emission-source,
often roadside, and urban or rural background concentrations is particularly relevant for exposure
estimation. According to a recent study by Saha et al. (2019), the spatial heterogeneity of PNC (here:
used simplified as a proxy for UFP) can be 2-3 times higher than of PM,s mass concentration. As
another illustration, a time series study in Ontario by Hilker et al. (2021) for the years 2004 to 2015,
found local emissions such as from traffic were estimated to contribute relatively constantly to almost
half of the urban background UFP concentrations). A study around the city of Strasburg (France) found
significant differences between urban background and roadside concentrations of UFPs in contrast to
relatively stable PMo concentrations (Chatain et al., 2021).

In Germany, the German Ultrafine Aerosol Network (GUAN) operates several measurement stations
for UFPs across the country (Birmili et al., 2016). The network has grown to 17 stations in 2020 (as of
31.12.2020; formatted as DD/MM/YYYY), of which six measure rural and seven measure urban and
one measures high altitude background concentrations. Three stations measure roadside
concentrations (Birmili et al., 2016). Typical PNCs are often over 10,000 per cm? in urban background
conditions and below 5,000 and 500 for rural background and alpine regions respectively (Kumar et
al., 2014; Birmili et al., 2016). In the Netherlands, for example, a large UFP modelling study found
average measured UFP concentrations across 20 locations between 3,814 and 7,070 particles/cm?
(Beek et al., 2020). In Germany, in a city of similar size as the municipalities in the study area, annual
mean UFP PNC were found at just below 8,000 for urban background and just above 16,700 in a busy
street canyon (Giemsa et al., 2021).



Various types of concentration measurements of UFPs serve as a proxy for short-term exposures. For
time series studies of population, exposure measurements from fixed stations is common, which uses
short-term concentration measures (e.g. hourly or daily). This is feasible as changes in daily
concentration averages have shown to be mainly due to meteorological conditions. The temporal
correlations between different UFP background measurement stations within one city has been shown
to be high, thus estimation of temporal exposure dynamics for a larger population is deemed possible
based on a central measurement station (e.g. Cyrys et al., 2008). Mobile measurement devices, e.g.
installed on bicycles, cars or airplanes, can be used for spatial differentiation of exposure, e.g. across
a defined trajectory, or exposure of individual persons or specific groups. Exposure measurements of
UFPs have also included experimental determinations of deposited UFP in human respiratory tracts
(e.g. Guo et al., 2019).

1.3.2 Diesel exhaust particles

The measurement of DEPs typically takes place within a vehicle’s exhaust system or at the tailpipe,
while estimations of DEP concentrations in ambient air are difficult due to the complexity of source
apportionment (Giechaskiel et al., 2013). Different parts of the exhaust system filter different parts of
diesel exhaust and inherent DEPs, thus influencing measurements. With distance to the tail pipe, the
properties of DEPs may change through several processes, mainly depending on their size, including:
(1) coagulation, as estimated to cause single-digit (e.g. 5% by (Harrison et al., 2018) in a street canyon)
reductions in DEP PNC numbers, depending on meteorological conditions and overall PNC levels; (2)
deposition to surfaces, also estimated to reduce PNCs in the single digit range, as well as, (3)
condensational growth, (4) evaporation (e.g. Dall’Osto et al., 2011) and (5) further chemical reactions
(e.g. Harrison et al., 2018). Sometimes, DEPs are thus differentiated into fresh and aged, while the
continuous process of aging does not allow a definite differentiation — and fresh DEPs theoretically
start aging in the moment of leaving the tailpipe (e.g. Harrison et al., 2018). DEP concentration
estimations within AAP mixtures can be performed with different source apportionment approaches,
with the precision depending on the available information including size-differentiated PNC at
different time resolutions (e.g. daily or hourly) and chemical particle compositions besides gaseous co-
pollutant concentrations.

1.4 Health effects of air pollution

1.4.1 Ambient air pollution

Public concern about AAP and health dates back to at least ancient Rome and Athens, with the 19t
century often quoted as a game changer with the stark increase in emissions from combustion in the
context of the industrial revolution (Mosely, 2014). Among possible human health outcomes, mortality
is considered to have been studied the longest and most frequent (Anderson, 2009). In the winter of
1952, a smog episode in the city of London, and in following years similar events in Belgium and the
United States, caused thousands of deaths. The “London Smog” is retrospectively regarded as a key
event for AAP research, and could be traced back to elevated (ambient) AAP concentrations due to
combustion emissions (mainly coal) in conjunction with a temperature inversion (Bell & Davis, 2001;
Zhang et al., 2015). Research on AAP has since advanced steadily, amongst others along improving
exposure measurement and data analysis methods (e.g. Anderson, 2009).



Nowadays, epidemiologists basically differentiate between short- and long-term health effects of AAP
(e.g. Sun & Zhu, 2019b). AAP has overall particularly and robustly been associated with elevated risk
for cardiovascular (Lelieveld et al., 2019; including e.g. elevated blood pressure (Yang et al., 2018) or
thrombosis (Robertson & Miller, 2018)) and respiratory diseases (e.g. for asthma (Orellano et al.,
2017)) and associated premature mortality (e.g. Thurston et al., 2017). AAP has also been observed to
cause potentially adverse effects on the central nervous system (including risk increase for stroke and
carotid artery disease (Babadjouni et al., 2017), for cognition (de Prado Bert et al., 2018), for dementia
(Peters et al., 2019) and for other mental health syndromes (Braithwaite et al., 2019). Furthermore,
evidence suggests potential adverse effects on the metabolism (including diabetes (e.g. lkenna et al.,
2015; Liu et al., 2019; Yang et al., 2020)) and by pregnancy exposure for neonatal health (e.g. for lower
birth weight, congenital anomalies and preterm birth (e.g. Jacobs et al., 2017 ; Conforti et al., 2018).

Today, it is widely acknowledged that the quality of the air we breathe is of critical health relevance
(Sun & Zhu, 2019a; Global Health Metrics, 2018). Effects on the cardiovascular system are estimated
to cause the largest proportion of the disease burden (e.g. Lee et al., 2018). Air pollution overall has
recently been estimated as the 4" most important health risk (behind blood pressure, malnutrition
and smoking) and thereby as the leading environmental health determinant globally (Cohen et al.,
2017), even if such rankings are to be interpreted with care as they only include a limited number of
environmental risks. Current estimates suggest that ambient PM may cause the majority of the AAP
disease burden, as reflected in the latest ranking as the 7" most important health risk (IHME, 2019).

1.4.2 Particulate matter

The main exposure pathway for PM is inhalation, while ingestion and dermal, including soft tissue,
contact can also be relevant (Hamanaka & Mutlu, 2018). However, the biological mechanisms behind
identified associations between PM exposure and human health are not fully understood (e.g. de Kok
et al., 2006; Mudway et al., 2020). PM theoretically can enter the human body through skin and
mucosal contact, ingestion, inhalation into the lung and through the nose into the olfactory bulb. The
main pathway is estimated to be inhalation through the lung with the following biological effect chains
commonly hypothesized (e.g. Hamanaka & Mutlu, 2018; Fiordelisi et al., 2017): (a) oxidative stress and
inflammatory responses in the lung induce systemic inflammation and associated effects; (b) activation
of sensory receptors affect the autonomic nervous system with consequences e.g. for heart rate
variability; (c) intrusion of PM into the blood circulation and body tissues can affect various organs.

The health effects of PM have been described repeatedly, e.g. by Riickerl et al. (2011). One may
differentiate between different toxicities of PM, including genotoxicity, cytotoxicity and others. Several
reviews concluded that smaller PM size fractions, relative to their weight, are more toxic and more
radical-generating. Largely in mutagenicity in-vitro assays, the genotoxic effect has been confirmed by
toxicologists, while several methods have confirmed cytotoxicity of PM (e.g. de Kok et al., 2006). One
proxy for PM’s biological reactivity is the oxidative potential (OP). A recent review concluded that,
while many OP-studies reported significant associations between OP and biological effects in humans,
findings were not consistent (@vrevik, 2019), while ANSES (2019) concluded that PM’s OP is still a
recent measurement with many non-standardized methods which could explain limitations in the
evidence strength. The OP is considered highest among the smallest particles, e.g. UFPs. Therefore,
PNC is likely a critical measure alongside the common PM weight per volume of air (e.g. Daellenbach
et al., 2020; Novakova et al., 2020). However, neither particle mass nor size are sufficient information
to estimate toxicity, due to the mentioned differences in composition that defines health-relevant
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factors, like OP, which is e.g. by Bates et al. (2019) proposed as an alternative measure to particle
weight and size.

Like for AAP in general, short- and long-term effects on natural and cause-specific mortality have been
associated with PM exposure (e.g. Yang et al., 2019). PM has particularly shown positive associations
with higher risks of cardiovascular diseases (Rajagopalan et al., 2018), such as acute myocardial
infarction (e.g. Shin et al., 2021), but also with respiratory diseases (e.g. Kyung et al., 2020). A
systematic review on dementia and Alzheimer’s disease concluded on positive associations upon meta-
analysis (Tsai et al., 2019). PM has also shown to serve as an endocrine disruptor, with risk increases
for metabolic diseases including diabetes mellitus or obesity, and thus indirectly for cardiovascular
diseases (e.g. Yang et al., 2020). Thereby, the overall epidemiological understanding of the relative
health effects of individual PM constituents remains limited, as does the understanding of UFP
constituents (e.g. Kwon et al., 2020).

1.4.3 Ultra-fine particles

UFP in general have a larger surface area per weight than larger particles, with consequences for,
among others, the potential to adsorb toxic compounds on their surfaces and thereby increase, among
others, the particles’ OP (e.g. Kwon et al., 2020, Moreno-Rios et al., 2021). The small size also increases
UFPs pulmonary deposition efficiency compared to large size fractions of PM, as well as its deposition
duration (e.g. Schraufnagel, 2020). The size of UFPs and its biochemical properties allow UFPs to pass
the boundaries to the blood, lymphic, and nervous systems and even to enter cellular organelles and
the placenta (e.g. Kwon et al., 2020). Like for PM, the main exposure route is by inhalation into the
lung and the alveoli, but also other pathways, including the direct passage through the olfactory bulb
to the brain are investigated (e.g. Longhin et al., 2020). The review by the HEI Review Panel (2013)
differentiated cardiovascular and respiratory health effects upon deposition in the respiratory tract
through adverse effects on the sensory nerves and ganglia, as well as, the epithelial cells and
macrophages and associated consequences for respiratory tract function, endothelial function, acute
phase response, blood coagulability and platelet activation. Upon UFPs entering the circulation, they
can cause adverse effect in further organs, the bone marrow or the brain. The brain may also be
affected when UFPs enter the olfactory bulb through the nose.

The US-EPA Integrated Science Assessment (USEPA, 2019) describes the biological logic for UFP
induced health effects, including on natural morbidity and mortality, and the plausibility of
epidemiological findings in a comprehensive review. In addition, Hadrup et al. (2020) described acute
phase response as a biological mechanism-of-action for UFP-induced cardiovascular disease, while
Leikauf et al. (2020) summarized the biological mechanisms behind respiratory health effects of UFPs.
Several studies, including those on purposely produced UFPs, or nanoparticles, discuss the difference
in health effects by physico-chemical properties, including composition (e.g. Ajdary et al., 2018).

Epidemiological and toxicological studies have found indications that UFPs can cause various adverse
short-term and long-term health effects, with potentially significantly larger effects by mass
concentration and possibly even by number than larger particles (HEI Review Panel, 2013; Kwon et al.,
2020; Meng et al., 2013; Ohlwein et al., 2019; WHO EURO, 2013). An increasing number of studies
have investigated associations between short-term UFP exposure, with a recent review by Ohlwein et
al. (2019) identifying more assessments of short- than of long-term effects with many studies assessing
PNC size ranges beyond 100 nm. The assessed research suggested short-term associations with
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adverse inflammatory and cardiovascular effects, and various outcomes without conclusive evidence
or assessed independence of other air pollutants. Another review by Redaelli et al. (2019) concluded
on “moderate” evidence levels for cardiovascular health and UFP exposure, while an expert
consultation by ANSES (2019) rated the level of evidence for UFP and cardiovascular health association
highest among respiratory mortality (RM) and natural-cause mortality (NCM). The review by Ohlwein
et al. (2019), but also a multi-city and source apportioned study by Rivas et al. (2021) concluded in
inconsistent and inconclusive observations for most quasi-UFP exposure and mortality outcome pairs.
Notably, the patterns of effect estimates across lags 0 to 5 in the case of Rivas et al. (2021) differed
notably between cities (less than for UFP sources/groups), e.g. concave vs. convex patterns, even for
the same source-apportioned quasi-UFP group.

NCM was found statistically significantly associated 4, 5 and 6 days (lag4, lag5, lag6) after exposure to
elevated PNC by Staffogia et al. (2017), for lag2 to elevated total PNC and for lag5 to traffic-source PNC
with a size range 40-140 nm by Rivas et al. (2021), for lags 0 and 2 for UFP particles source apportioned
to traffic exhaust by Tobias et al. (2018), as well as for aggregate lag of same day and previous day
exposure of PNC size range 250-280 nm by Meng et al. (2013). The percentage changes in mortality
risk were based on IQR increases of PNC, with converted estimates for absolute increases of 5000
particles/ml ranging between 1-5 %. Samoli et al. (2016) generally associated elevated UFP-exposure
with elevated hospitalization rates. Studies on indoor and outdoor UFP exposure showed adverse
associations with cardiopulmonary function particularly indicated by heart rate (variability) (Chen et
al., 2021; Rizza et al., 2019).

Among the (few) observed statistically significant associations, Meng et al. (2013) observed increases
in relative cardiovascular mortality risk for the moving aggregate lag of same day and previous day
exposure, for lag0 and lagl by Rivas et al. (2021), while Su et al. (2015) found increases for PNC sized
3-100 nm upon a 5-day average exposure. The percentage changes in mortality risk convert to
percentage increases in mortality risk for PNC increases of 5000 particles/ml of between 4-6 %. Such
findings may be linked to the experimental results of Soppa et al. (2019), who found increased arterial
stiffness upon UPF exposure in an indoor experimental setting, or Soldevila et al. (2020) who found
associations of blood pressure the day after elevated UFP exposure, as well as Chen et al. (2020) who
observed statistically significant associations between myocardial infarction and same-day UFP
exposure of several size ranges. As an indicator for adversely affected cardiovascular function, studies
have also found associations between prolonged corrected QT intervals and short-term elevated UFP
exposure (Lammers et al., 2020). Nuria et al. (2020) found significantly increase blood pressure upon
lagl elevated UFP exposure.

Significant associations between UFP exposure and RM were not identified by studies included in
Ohlwein et al. (2019), but observed in a more recent study by Rivas et al. (2021) for traffic-source PNC
with a size range of 40-140nm at lagl. A study on COPD mortality found weak, but statistically
significant association with PNC of size range 1-300 nm (Yin et al., 2019). Also, a multicentre study in
Europe found that increased 6-day average UFP exposure was associated with a higher risk of
respiratory hospital admissions (Lanzinger et al., 2016). Also, a lagged effect (here lag2 and lag3) for
short-term UFP exposure were found associated with respiratory hospital admissions by a recent
meta-analysis (Samoli et al., 2020). Several studies, for example by Samoli et al. (2020), have found
associations several days after elevated UFP exposure, including on respiratory morbidity. Studies have
found decreased forced vital capacity, as an indicator of lung function (Lammers et al., 2020). Adverse
short-term effects of elevate UFP PNC were observed persons with asthma (Habre et al., 2018).



On a side note, various long-term effects have been more or less robustly associated with UPF
exposure, including cardiovascular and respiratory illnesses, neuronal and cognitive malfunctioning, as
well as cancers (e.g. Downward et al., 2018; IARC, 2013; Ohlwein et al., 2019). One key limitation for a
better evidence base on long-term effects is the relative to other AAP reduced availability of long-term
concentration datasets.

1.4.4 Diesel exhaust particles

Among the constituents of diesel exhaust, DEPs have been assessed as critical for diesel-exhaust
induced health effects (e.g. IARC, 2014; Mills et al., 2011; Zerboni et al., 2021). The majority of DEPs
fall within the UFP size range, and are thus subject from a size perspective to the biological mechanisms
described above for UFPs. In addition, as the physico-chemical composition of DEPs differ from other
UFP sources, several studies have described biological mechanisms for DEPs separately, particularly
for short-term effects, such as Cardenas et al. (2021), Rankin et al. (2021) and Tousoulis et al. (2020),
even if study designs that compare DEPs with UFPs of other sources to facilitate reliable comparisons
are rare. Tseng et al. (2017), for example, described cellular mechanisms possibly responsible for the
toxic effects of DEPs, while biological mechanisms for adverse respiratory effects through DEPs (e.g.
allergic rhinitis or asthma) are described by (Riedl & Diaz-Sanchez, 2005). Toxicological studies have
e.g. observed DEPs producing reactive oxygen species (superoxide and hydroxyl radicals) without
biological activating systems, as required for some other UFPs (Sagai et al., 1993). The presence of
DEPs in an UFP mixture may also interact adversely with other compounds, such as metal oxides, as
e.g. assessed by Zerboni et al. (2019). The expert consultation by ANSES (2019) concluded on a “high”
evidence level for black carbon, which is also a constituent of unfiltered DEPs, and its association with
NCM, cardio-vascular mortality (CVM) and RM. For PAHs, however, they rate the level of new evidence
since WHO EURO (2013) as low.

While some toxicological studies have compared DEPs with other AAP, the epidemiological evidence
on DEP associations with short-term natural and cause-specific mortality (e.g. Lammers et al., 2020;
Longhin et al., 2016; Zhang et al., 2009) hardly includes comparative effect estimates. However, due
to a dominance of diesel-powered engines in certain occupational contexts (e.g. mining sector), quasi-
experimental setups largely excluding other emission sources are possible. Consistent with UFP
studies, also DEP studies reported associations with NCM, CVM and RM or the respective morbidities
(Andersen et al., 2019; Ris et al., 2007; Mehus et al., 2015). Notably, both primary and secondary DEP
have been observed as respiratory irritants (Ris et al., 2007; Salvi et al., 1997).

For long-term health effects, the evidence on the relatively high toxicity of DEPs is more established
(e.g. Silverman et al., 2012), such as a risk factor for cancer (IARC, 2014). In 1989, the International
Agency for Research on Cancer (IARC), the specialized cancer agency of the WHO, evaluated DEP first
as “probably carcinogenic to humans (Group 2A) on the basis of limited evidence from epidemiological
studies in humans and sufficient evidence for the carcinogenicity in experimental animals (p. 33)”.
Today, IARC rates DEPs as an “class A”-carcinogen, the category with highest certainty, (IARC, 2014;
Steiner et al., 2016). Evidence for carcinogenic effects of DEP focuses on the primary emissions from
engines without DPFs and thus high relative concentrations of polycyclic aromatic hydrocarbon (PAHs)
(IARC, 2014; Abbas et al., 2018).

Among UFPs differentiated by source, DEPs are estimated as the causing the greatest health effect per
PNC (e.g. Park et al.,, 2018). However, the evidence remains inconsistent, with limitations in
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interpreting estimates due to the above-mentioned lack of effect comparisons between UFP sources
within individual studies, that can hardly be replace by comparing individual studies of single UFP
sources due to, among others, methodological differences. Notably, compared to other AAP caused
by road traffic, DEPs and diesel exhaust in general are among the most extensively studied (ANSES,
2019). Above all, source apportionment of DEPs and robust differentiation of exposure to (mainly) DEP
UFPs in contrast to UFPs to other sources, remains difficult, particularly outside (quasi-)experimental
setups or occupational contexts (e.g. Hime et al., 2018). A recent review concluded that the current
evidence does also not allow a clear distinction between the health effects of unfiltered DEP and
filtered DEP (Weitekamp et al., 2020).

1.5 Policies on air pollution

1.5.1 European Union policy on air pollution reduction

For the protection of public health, ambient AAP concentration reduction is subject of laws and
regulations in many countries and regions worldwide (e.g. Giechaskiel et al., 2019). A key resource for
defining AAP concentration limits are the guideline values provided by WHO (2006). The WHO lists PM
as the primary group of concern among currently known air pollutants. To date, however, no WHO
guideline value is available for UFPs (WHO, 2006).

In the EU, the policies on AAP consist of three main pillars, that are largely based on directives. In the
logic of EU legislation directives set out legally binding goals, but allow member states to develop own
laws and strategies to achieve these goals (in contrast to the EU legal instrument of regulations) (EEA,
2020a). The three pillars are:

(a) the “Ambient Air Quality Directives” to define air quality standards and requirements for the
assessment of air quality the implementation of air quality plans. The current Directive 2008/50/EC is,
among others, based on the AQG. It includes previous daughter directives on specific pollutants except
the separate Directive 2004/107/EC on arsenic, cadmium, mercury, nickel and polycyclic aromatic
hydrocarbons and is extended in terms of monitoring by Directive 2015/1480/EC and information
exchange by Commission Implementing Decision 2011/850/EU;

(b) the National Emissions reduction Commitments Directive (2016/2284/EU) to establish national
emission reduction commitments; and

(c) the source-specific legislation to establish specific emission and energy efficiency standards for
selected AAP sources, including the so-called “Euro-norms” for on-road vehicle exhaust limits.

1.5.2 Regulation of on-road vehicle exhaust in the European Union

Among the source-specific regulations, the Euro norms for vehicles for on-road vehicle emissions
specifically date back over 50 years (see Table 1). In 1970, for the first time, a coherent European
directive, the Council Directive 70/220/EEC, on exhaust limits for carbon monoxides and hydrocarbons
in the European Economic Community (EEC), later converted into the EU, was agreed upon (EEC, 1970).
In 1992, the EEC introduced the emission norm “Euro” as part of the Council Directive 91/441/EEC with
its first set of limit values known as “Euro-1” (EEC, 1991).
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Table 1: Overview of European Union policies on vehicle emission standards (Euro norms). Source: own design based on
UBA (2015) and EEC (1970).

Legal document Euro norm Year of taking (first) effect
for passenger vehicles
70/220/EEC pre-Euro 1970
91/441/EEC and 93/59/EEC Euro-1 1992
94/12/EC and 96/69/EC Euro-2 1996
98/96/EC Euro-3 2000
98/691/EC and amendment 2002/80/EC Euro-4 2005
Various Euro-5 2009
Various Euro-6 2014

These Euro norms have become the key tool for regulating on-road vehicle emissions in the EU (UBA,
2015). Most legislation on the Euro norms and its implementation have been decided as directly
binding regulations. Besides the vehicular emission legislation, the above-mentioned Ambient Air
Quality Directives (currently: 2008/50/EC) and its associated national legislation for implementation
set limits for AAP, which particularly affects urban areas due to a concentration of emission sources,
including gaseous and particulate on-road vehicle exhaust. Road traffic was rated the main target of
AAP reduction measures in European cities by a recent study (Viana et al., 2020). Table 1 outlines the
different Euro norms with its associated legal documents in chronological order.

Another regulatory intervention alongside the exhaust limits concerns fuel composition based on EU’s
“EN-590” norm (e.g. Giechaskiel et al., 2019). One main change since concerned continued reductions
of the diesel’s sulphur content (from 0.2% for Euro-1 to 0.001% for Euro-5) and slight increase in cetane
number (from min. 49 for Euro-1 to min. 51 for Euro-5). The diesel fuels with lower sulphur content
were gradually introduced at filling stations, with the last upgrade in terms of sulphur content on
January 1°, 2009. These changes thus occurred before this time series, while studies estimate overall
a small effect of fuel composition changes, particularly sulphur content, on PNC in comparison with
DPFs (e.g. Kontses et al., 2019).

In the EU and in its member states, the key measures taken for DPV emissions include regulations on
diesel fuel composition, diesel particulate filters (DPFs) and so-called “low emission zones” or “urban
environmental zones” (UEZ) in urban areas (Cyrys et al., 2014; Cyrys et al., 2018; Resito}u et al., 2015)
(see Tab. 2). The key intervention on DEP in the EU in the past two decades was thereby the
introduction of the DPF, which were installed in the vast majority of vehicles that were to comply with
Euro-4 norm. “(...) the application of aftertreatment devices (mainly: DPF) not only reduces the emitted
particle mass but also leads to significant changes in the nature of the particles, such as a relative
increase in the volatile fraction,” concluded Burtscher (2005, p. 897). In association with the Euro norm
introduction and implementation of Directive 2008/50/EC, Germany, amongst others EU member
states, introduced and gradual upgraded and extended UEZ in selected urban areas (Cyrys et al., 2014).
All UEZs in Germany that have so-called “level-3” requirements require on-road vehicles to comply
with Euro-4 and for DPVs thus in the vast majority of cases to be equipped with a DPF (UBA, 2020a).
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Table 2: Overview of relevant on-road passenger vehicle exhaust policies with year of introduction in Germany with
regulatory limits for PM. Source: own design based on UBA (2015) and (2020a) and Cyrys et al. (2014)

Intervention Level Year Regulatory specification
(1) Euro emission standards Euro-1 1992
(gradually tightening) Euro-2 1996 PM: 0.08g/km
Euro-3 2000 PM: 0.05g/km
Euro-4 2005 PM: 0.025g/km
Euro-5 2009 PM: 0.005g/km
Euro-6 2014 PM: 0.0045g/km
(2) Environmental zones L1 2008/2012 only Euro-2,3,4
(gradually tightening) L2 2013 only Euro-3,4
L3 07.2014 only Euro-4
(3) Diesel particulate filter Euro-4 2005
(4) Truck driving ban n.a. 1956

(on Sundays and holidays)

The modifications of DPVs through exhaust aftertreatment devices (EADs) started with the
introduction of catalysts, that were required for all on-road vehicles in the study area before the
study’s first measurements. The diesel oxidative catalyst (DOC) and the selective catalytic reduction
systems (SCRs) particularly aimed at carbon monoxide and hydrocarbons (Chirico et al., 2010).
Subsequently, the introduction of the DPF aimed at reducing particle mass, but also PNC. The DPF
effectively leads to a burning and gasification of compounds previously emitted as solid particles, a
large fraction of which containing soot. DPFs are typically “regenerated” periodically to remove
trapped PM. Over time, DPFs also accumulate ash particles, that cannot be regenerated in the same
way, but may require replacement of the DPF (Valverde & Giechaskiel, 2020).

Also, driving bans for certain heavy-duty on-road vehicles on Sundays and public holidays are an
additionally exposure-relevant intervention in several countries, including Germany (§ 30 sections 3
and 4 of the German road traffic regulation). This measure took effect well before 2009 (see
Intervention No. 4 in Tab. 2) and thus the beginning of the time series at hand.

1.5.3 Composition change of diesel exhaust upon regulations

The DPFs were developed and refined as EAD to meet the ordinally more restrictive Euro norms (Euro-
4 and higher) for DPVs, especially the limits for particle mass and later also for PNC (Chirico et al.,
2010). The DPF is estimated to trap most primary PM or non-volatile particles (e.g. Reijnders et al.,
2018). Karjalainen et al. (2019) estimated a 98% reduction in PM by the latest EADs, with DPFs as the
key intervention for PNC reduction, thus leaving mainly SVOCs as potential UFPs, as also illustrated by
experiments (e.g. Chirico et al., 2010; Platt et al., 2017; Kontses et al., 2019). Qadir et al. (2013) found
the contribution of traffic to particulate organic compounds, a component of PM and PNC, to have
decreased by 60% upon UEZ introduction, and thus non-DPF equipped DPV banning, in the German
city of Munich.
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The PNC concentrations in the exhaust of DPF-equipped vehicles were shown to be mainly based on
secondary particle formation through precursor gases right at the tail pipe and in the ambient air (e.g.
Platt et al., 2017; Zeraati-Rezaei et al., 2020). For the remaining primary PM emitted by vehicles with
DPFs, Su et al., (2004) observed smaller and differently shaped, rather fullerene-like, soot particles in
primary particulate exhaust. Thereby, Young et al. (2012) suggests that non-volatile particle reduction
by DPF does not depend on whether normal fuel or biofuels are used. The PNC size ranges emitted by
DPF-equipped DPVs, even if taking nucleation processes right behind the tailpipe are estimated to be
below 30 nm (e.g. by Rivas et al., 2020)

1.6 Research gap

The epidemiological evidence base on UFP and PNC associated health effects remains fragmentary and
inconsistent, including a need for further investigation of short-term mortality associations with size-
differentiated PNCs (HEI Review Panel, 2013; Ohlwein et al., 2019). A limiting factor has been the
availability of long-term UFP concentration data representative for sufficiently large study populations
and thus assessable number of deaths; besides frequently missing adjustments to co-pollutants,
particularly NO, and PMyo (Kwon et al., 2020; Ohlwein et al., 2019).

Ambient UFP and PNC concentrations remain without specific regulation worldwide, to our
knowledge; which motivates accountability assessment for existing AAP interventions. One PNC size
range of particular interest due to potentially high toxicity is the one containing high proportions of
DEPs — as largely associated with DPV traffic emissions. Coincidently, traffic emissions are regarded as
the UFP source with the potentially highest intervention potential (e.g. Rakowska et al., 2014; Burns
et al., 2019), and traffic interventions have also been identified as the most popular AAP intervention
(Burns et al., 2019). At the same time, Hulkonnen et al. (2020) concluded that traffic intervention
effects on PM (or UFP) concentrations and associated mortality remain hardly assessed. Also,
accountability studies for AAP interventions for periods exceeding a few years and reaching beyond a
local scale remain scarce (Boogard et al., 2017).

To fill these research gaps, the German Ruhr Area was identified as a particularly suitable area for
studying both the size-differentiated PNC associations with short-term mortality of a relatively large
population (about one million inhabitants within a 25km radius of an AAP monitoring station), and the
accountability of regulations targeting DPV traffic due to the co-location with one of Europe’s largest
UEZ. Two key regulatory measures on DPVs, the introduction of level-3 restrictions banning non Euro-
4 norm compliant vehicles from the UEZ and a gradual prevalence increase of Euro-4 compliant DPV
fall within the decade of simultaneously available PNC and mortality datasets. The investigation of two
regulatory actions, development of ambient AAP concentrations and development of mortality rates
for this study thereby aligns with the first, third and fifth stage of the accountability framework by HEI
(2003).

1.7 Study objectives and hypotheses

This study’s objective was to investigate how size-differentiated PNCs were associated with short-term
NCM, CVM and RM. In addition, we wanted to assess how size-differentiated PNCs developed over
time and whether traffic exhaust regulations for diesel-powered on-road vehicles modified PNCs short-
term mortality associations. We operationalised the study’s objective through the following research
guestions and hypotheses:
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(1) Has the daily average, size-specific particle number concentration changed during the observation
period (2009-2018)? The underlying hypothesis is that the particle number concentration for the size
fraction that includes most diesel exhaust particles has decreased.

(2) Are size-specific particle number concentrations associated with short-term natural-cause,
cardiovascular and respiratory mortality? The underlying hypothesis is that mortality increases
following exposure to elevated particle number concentrations.

(3) Is time an effect modifier for the exposure-outcome associations considering implementation of
regulatory measures on particulate matter exhaust for diesel-powered on-road vehicles? The
underlying hypothesis is that mortality risk per fixed increment of particle number concentration for
the size fraction that includes most diesel exhaust particles is decreasing over time.
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2. Materials and methods

Statistical descriptions and analyses were conducted in five steps: (i) definition and retrieval of
exposure, outcome and meteorological datasets, besides a literature and primary data search for
auxiliary information; (ii) data cleaning and checking; (iii) computation of annual levels and temporal
dynamics for exposure and outcome variables, alongside Spearman correlation estimation; (iv)
modelling of average daily PNC fractions with short-term NCM, CVM and RM, including sensitivity
analysis for co-pollutant adjustment; (v) estimation of effect modification by two traffic regulations
with a dichotomous and an ordinal interaction term, respectively. In preparation, literature searches
in “Web of Science” (Core Collection) and “Scopus” were conducted, primarily to inform
methodological decisions and to define exposure and traffic intervention variables. Auxiliary data was
compiled for auxiliary descriptions of traffic and study population properties and developments,
including spatial calculations using a Geographic Information System (GIS).

2.1 Descriptive analysis of traffic regulation, composition and volume

2.1.1 Literature search on traffic context

In preparation, literature and primary data searches were conducted to gather auxiliary information
for study design and result discussion. Targeted information included quantitative data on-road
vehicular traffic, particularly of DPVs, and qualitative data on the DEP-related regulations applicable in
the study area, specifically: DEP-related regulatory interventions on DPVs (including information to
estimate the affected study population fraction), on-road vehicle registration numbers differentiated
by fuel use (gasoline and diesel) and Euro-norm compliance (by level), traffic volume differentiated by
vehicle type (based on counts for interstate A40). Thereby, on-road passenger vehicles below a
permissible total weight of 3.5 tons were in focus as the largest contributor to PM,s and assumedly
UFP in the on-road traffic sector (EEA, 2020b). In addition, literature searches following methodological
guidance by Grant and Booth (2009) were conducted in the databases of “Web of Science” (Core
Collection) and “Scopus” on the effects of DPV regulation for DEP concentration and composition, with
insights guiding the selection of PNC size ranges for analysis as elaborated upon in preceding Chapters
1.2.4and 1.5.4.

The following information providers were identified as relevant sources, among others:
(i) grey-literature by the European Union and its institutions, particularly the European Commission
(EC) and the EEA; (ii) grey-literature and datasets by the German Ministry for Environment, Nature
Conservation and Nuclear Safety and the German Ministry for Traffic and Digital Infrastructure with its
respective subordinate institutions, particularly the German Environmental Agency (UBA) and the
Federal Motor Transport Authority (KBA); (iii) peer-reviewed articles published in national and
international scientific journals.

2.1.2 Definition of relevant traffic interventions

The time series period (2009-2018) included the introduction and gradual adoption of two key
regulations for DEP emissions by on-road vehicles in the study area. Both regulations were designed,
among others, to reduce PM exposure through DPF adoption for DPVs in response to EU directives.
Implementation levels are represented by the variables defined in Table 3.
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The first regulation is implemented through vehicle registration requirements, specifically EAT
compliance of on-road passenger vehicles with Euro-4 and higher. Governmental vehicle registration
data is thus differentiated by fuel-use and Euro standard of the EAT-system (see KBA, 2021). For
auxiliary descriptive analysis, we compared annual registration numbers of passenger vehicles by
strata of vehicles’ Euro-norm compliance level, next to annual registration numbers by strata of
vehicles’ fuel use (gasoline vs. diesel).

The second regulation is implemented by access limitation for non-Euro-4-compliant passenger
vehicles with the introduction of “Level-3 requirements” for urban environmental zones (UEZs). The
UEZ requirements are applicable to any public road except interstates (or “Autobahn”) in the defined
UEZ perimeter. Notably, the restrictions exclude old-timers and certain public service vehicles, among
others. The year in which “Level-3” took effect in the study area was defined as a break point in terms
of regulatory measures in the context of this study.

Table 3: Indicator definition for key interventions related to diesel-powered on-road traffic exhaust with potential
relevance for DEP PNC and human mortality.

Intervention indicator Unit Time Specification (and source)

(1) Diesel particulate filter % of annually Number of registered

prevalence among registered registered passenger-class DPVs compliant

vehicles passenger with Euro-4 or higher in the
vehicles study area, based on (KBA,

2021)

(2) Diesel particulate filter dichotomous  annually Year in which , Level 3“ took

requirement in urban effect for the UEZ in the study

environmental zone area to restrict access for most

non-Euro-4-compliant
passenger vehicles, based on
(UBA, 2020a)

2.1.3 Urban environmental zone description using a Geographic Information System

The relevant “Ruhr Valley UEZ” at the time of this study was the largest UEZ in Germany and one of
the largest in Europe (UBA, 2015. This UEZ spanned across 13 municipalities at the time. The study
area partially fell within the UEZ, with the study municipalities constituting three of four municipalities
that form the Western section of the UEZ - only missing the municipality of Duisburg on the Western
edge (UBA, 2020a).

Exact dimensions of the UEZ in relation to municipal borders were reviewed for this study, particularly
to estimate the approximate proportion of the study population residing within versus outside the UEZ
to gauge relevance. This was conducted by basic spatial analysis using a GIS and publicly available data
on population numbers per area and the outline of the UEZ. The statistical approximation of this
population proportion was conducted using the software QGIS® (Version 3.16.8). As input data,
publicly available Geographic Information System (GIS) layers for the boundaries of the three assessed
municipalities, the UEZ (both vector data), and for population density (based on a 1 by 1 km raster
dataset) were combined. The population dataset was based on governmental census data for the year
2011. The population layer was clipped firstly by the outline of the study area, and secondly by the
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cropped outline of those parts of the study area that fell within the UEZ. In this process, only raster
squares were selected that fell to more than 50% into the selected boundaries.

2.1.4 Data collection on traffic volume

The study region was crossed by one major, 4-lane interstate (Autobahn 40 or A40) during the study
period. AAP, including UFP concentrations are known to be affect by traffic counts, even background
concentrations. Annual aggregate traffic counts were used as an indication of the long-term trend in
on-road traffic volume. The A40 has an exit nearby the AAP monitoring station used for this study.
Inherent limitations in this indicator’s precision, but also in accuracy or relevance of actual overall
(beyond interstates), long-term on-road traffic dynamics in the study area are to be considered. Traffic
counts were described as annual aggregates of the daily averages stratified by weekdays and by basic
vehicle types (passenger vehicles and vehicles with a maximum permissible weight above 3.5 tons).

2.2 Design of the time series study

The main analyses for this study were designed as a time series study. Time series studies are
commonly used for predictive studies, but with an adapted methodology can also be used to estimate
the retrospective association between AAP and human health. In preparation of the study design for
this study, the methodological considerations of Bell et al. (2004), Bhaskaran et al. (2013), Chuang et
al. (2011) and Dominici et al. (2004 and 2002) were consulted. For this study, the compiled time series
data of AAP, mortality, meteorological and time variables span from 2009 to 2018.

2.2.1 Exposure assessment

Exposure data was sourced from GUAN’s only site in the German state of North Rhine-Westphalia
(NRW), located in Milheim-Styrum (Global positioning system (GPS) coordinates: 51.453 459 °North
and 6.865 05 ° East (ETRS89)) at an elevation of 37 meters (m) above sea-level (Birmili et al., 2016).
The installed MPSS (model TSI 3936) measures (size-specific) PNCs of both ultrafine (electric mobility
diameter 13.8-100 nm) and fine (electric mobility diameter between 100-750 nm) particles, with
details on measurement procedures described by Birmili et al. (2016). The station is managed by the
(German) Institute for Energy and Environmental Technology e.V. (IUTA). Based on the required
exposure variables defined in Table 4, datasets with daily average values for the period from 2009 until
2019 were obtained from IUTA upon formal data request. Exposure-data processing and cleaning was
conducted based on the standard procedure by State Agency for Nature, Environment and Consumer
Protection (LANUV) and the GUAN-Network as specific in Birmili et al. (2016; p. 370 ff.).

The GUAN station with its MPSS is co-located with a central urban background monitoring station of
the regional air quality network, as managed by the LANUV (Hennig et. al., 2018). This allowed the use
of additional air quality indicators, including daily mass concentration values of PM1o and NO,, which
was also obtained upon request for the same time period.

The two co-located measurement stations in Miilheim-Styrum are positioned within a residential area
and classified as urban background stations with the air inlet positioned at four meters height above
ground (Birmili et al., 2016). The nearby area is characterised by scattered, low-rise buildings (Birmili
et al., 2016). We measured approximate spatial distances using the GIS setup described in the
preceding Chapter 2.1.3. Around the measurement stations, there is an interstate (A40) located within
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a vegetation-lined depression running in East-West direction (in about 350 meter (m) north-ward
distance) and a national road in North-South direction (about 500 m west-ward distance), as well as
near several industrial sites in East and South-East direction (about 1000 m distance). Main wind
directions are from the South/Southwest and from the North-East (Birmili et al., 2016). The site is
within one km of the municipal boundary of Miilheim and Oberhausen (all distance estimates based
on GIS calculations; see Figure 2 with marked buffer areas using equidistant map projection).
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Fig. 2: Map of APP station in Miilheim-Styrum showing surrounding area with main roads and buffers of 250, 500 and 1000
m. The underlying OpenStreetMap (OSM) map broadly classifies areas with vegetation, including sportsgrounds as green, and
areas with buildings as grey. The A40 as the nearby interstate (“Autobahn”) is marked in red, while other main roads are
marked in orange and yellow. Source: own design based on open-access OSM layers converted to an equidistant projection
(ESRI 54032 World Azimuthal).

Upon the literature searches described in Chapter 2.1.1 (results presented in Chapter 1.2.4), the PNC
size spectrum containing the majority of DEP PNCs was defined as 30—-120 nm (PNCso.120; largely Aitken
mode, which covers the size fraction between 30—100 nm). This size range was differentiated into a
small (30-50 nm), medium (50-100 nm) and large (100-120 nm) sub range. Further, a variable for the
smallest measures size range of particles was defined, with the lower limit corresponding to the lower
detection limit, specifically with a mean PNC of 13.8-30 nm (PNCi3.30) (equal to nucleation mode, which
covers any particle sized below <30 nm). Finally, two PNC categories for larger and thus fine particles
with size ranges 120-250 nm (PNCi20-250) and 250-500 nm (PNCzso.500) Were defined for particles sized
just above the DEP category. For comparison, the common variable of total PNC was defined for the
size range of 13.8 to 500 nm (PNCi3.500). Again for comparison PNC results and for sensitivity analyses,
we also included PM3o and nitrogen dioxide (NO3) and thus the two variables concluded as most critical
for UFP-associated mortality by Ohlwein et al. (2019) (for an overview of exposure variable definitions,
see Table 4).
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Table 4: Exposure variables defined for the time-series study.

Exposure (PNC size range) Unit Time Notes

13.8-30 nm PNC/cm3 daily average <30nm

30-50 nm PNC/cm3 daily average within 30-120 nm
50-100 nm PNC/cm3 daily average within 30-120 nm
100-120 nm PNC/cm3 daily average within 30-120 nm
30-120 nm PNC/cm3 daily average in-focus for DEPs
120-250 nm PNC/cm3 daily average >120 nm
250-500 nm PNC/cm3 daily average

13.8-500 nm PNC/cm3 daily average

PM o pg/m?3 daily average

NO; pg/m?3 daily average

2.2.2 Outcome assessment

As outcomes, daily counts of NCM, CWM and RM were defined, based on existing evidence on which
mortality causes may affected by UFP or DEP exposure (e.g. Liu et al., 2019 or Ohlwein et al., 2019).
For mortality cause classification, the 10™ revision of the International Statistical Classification of
Diseases and Related Health Problems (ICD) (WHO, 2015) was used (see Table 5). For each
municipality, namely the cities of Milheim an der Ruhr (Milheim), Essen and Duisburg, and for each
day of the study period (as available at time of study until 31.12.2018; with the start date defined by
the availability of PNC exposure data) daily mortality counts were included in the time series. The data
was retrieved upon formal written request from IT.NRW, the official data provider for the state of NRW
in Germany. A small number of inconsistencies and an unclear differentiation between missing values
and (cause-specific) mortality counts hidden for protection of privacy could be clarified with their staff.
Overall, the data synthesis and data analyses were based on aggregate health data without personal
information or information retraceable to individual persons, as secured by the statistical department
of IT.NRW. Therefore, no ethical declaration was required.

Table 5: Outcome variables defined for this time series study.

Outcome (mortality) Unit Time ICD-10
Natural-cause deaths daily total A00 - R99
Cardiovascular deaths daily total 100 —-199
Respiratory deaths daily total JOO-1J99

The approximate study population were the residents of the three municipalities located in the direct
vicinity of the study’s air-quality measurement station, for which mortality data were obtained. Both
the trend in annual mortality counts and the association modelling is based, amongst other factors, on
the assumption of relatively constant resident or study population numbers. Thus, as auxiliary
information, the total number of residents based on municipal estimates was retrieved from IT.NRW
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and compared for the beginning (municipal population estimates for 31.12.2008), middle (09.05.2011
and 31.12.2013) and end (31.12.2018) of the time series period to reconstruct potential population
dynamics.

2.2.3 Covariates

Based on theoretical considerations of possible interactions and confounding factors for the
relationship between UPF exposure and mortality, a list of potentially confounding, variables was
developed using a directed acyclic graph (DAG) and split into meteorological and other time-variant
variables. The DAG was informed by existing evidence on associations between PM, UFPs and short-
term mortality. The lists were compared with the variable selections in previously published UFP time
series analyses, including one study by Hennig et al. (2018) for the same study area.

Several meteorological variables describing daily weather variations can possibly influence
measurements of urban background concentrations for UFPs and human mortality. Finally, the
variable for adjustment included were air temperature and humidity among the meteorological
variables, as UFP concentration and size distribution are known to be highly dependent on the air’s
temperature and humidity levels due to the processes, particularly photo-nucleation, described before
(e.g. Giernsa et al., 2021). Also, a recent study showed that high air temperatures can enhance
mortality effects of AAP, including UFP (Chen et al., 2018). The following Table 6 lists the variables
deemed relevant based on the study’s DAG and existing literature, such as Bismarck-Osten et al.
(2013). The translation of the temperature factor to a suitable variable was based on the work of
Hennig et al. (2018), which had evolved from the work of several biostatisticians on UFP time series.
Air temperature was thus included through two variables: once as the same-day’s mean temperature
(lag0) and again as the mean temperature averaged across the aggregate lag of the three prior days
(lag1-3) with each three degrees of freedom (df).

Meteorological variables were sourced from daily records of state-managed weather station, located
in the nearby municipality of Duesseldorf in less than 20 km distance (GPS coordinates: 51.30° North,
6.77° East (ETRS89)) at a similar elevation (41 m above sea level), which was deemed representative
of the conditions at in Miilheim-Styrum. The weather station is run according to standard protocols of
the Deutscher Wetterdienst, a public institution under the German Federal Ministry of Transport and
Digital Infrastructure.

Table 6: Meteorological variables selected as potential confounders for time series model integration.

Covariate (meteorology) Unit Time

Precipitation mm daily average

Relative humidity % daily average

Temperature (same-day)* °C daily average

Temperature (prior)* °C aggregate of the daily averages of the three

prior days with 3 df

The following Table 7 lists the selected non-meteorological variables used to control for confounding
by the day of the week, holidays and vacation periods, and the most relevant seasonal epidemic in the
region during the study period, as posed by the influenza flu. Data on these time-dependent variables
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were retrieved from official calendars and records as applicable for the state of NRW and converted
to dichotomous and ordinal variables.

Table 7: Further time-variant variables selected as potential confounders for time series model integration.

Indicator Unit Time Specification

Day of Week ordinal (0-6) daily 0= Sunday to 6= Saturday
Holidays dichotomous (0;1) daily 1= bank holiday in NRW
Summer population ordinal (0;1;2) daily 1= school holiday in NRW;
decrease 2= 4-week period before

and after school holiday
in NRW; 0= all other days

Influenza dichotomous (0;1) weekly 1= week with influenza
based on RKI, 2020

To allow estimation of effect modification for our model by time or the defined DEP-regulation
variables, we defined two different time variables in Table 8: a dichotomous and an ordinal variable.
The dichotomous variable was defined for the years before and after “level-3” of the urban
environmental zone in the study area took effect (= 2014; precisely 01.07.2014). The ordinal variable
used calendar years as a variable.

Table 8: Time variables defined for estimation of effect modification for this time series study.

Variable Unit Explanation
Dichotomous dichotomous before = years 2009-13; after = 2015-18
Annual ordinal (year) by year of the time series

Oberhausen Oberhausen

il
Huk

9 EHHE

itafl
H E Styrum m H H E Styrum
EH Essen EH

Milheim Mulheim

2009 2018

Fig. 3: lllustration of before/after scenario on vehicular traffic regulation for this time series study. Source: own design
with illustrations by Microsoft Office and by Markus Baumer under Creative Commons license 2.0.

Essen
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2.3 Statistical analysis

2.3.1 Dataset preparation

The primary datasets for the time series were combined in SAS®, then run through standard data
cleaning and checking processes before transfer to R®, version: 4.0 (edited with R-Studio version:
1.4.1106; R Foundation for Statistical Computing). Identified data issues and unclarities in variable
attribution were clarified with the respective administrators of the databases at IUTA and IT.NRW.
Auxiliary data on traffic variables, sourced from online resources of KBA, were checked and analysed
separately using Microsoft Excel®. The resulting study dataset was assessed for completeness to define
suitable start- and endpoints of the time series period: only years with over 75% of daily data
availability and only periods with less than a month of continuously missing data for mean PNC and
mortality data were included. Missing values were left blanc and omitted for modelling purposes.

2.3.2 Descriptive analysis of dataset

For description and preparatory screening of the study dataset, the variables’ means, medians, inter-
guartile ranges (IQRs), maxima and minima were computed. We visualized daily mean PNC, PMy, and
NO; values and NCM, CVM and RM mortality counts aggregated for the whole study region by plotting
over the time series period. The plots were complemented with straight simple linear regression lines,
based on computation using the “In()” function of the “DPLYR” package (Version: 1.07) in R®. We
further computed simple linear regression estimates (8) for the daily values of the main exposure and
outcome variables.

In preparation of modelling, we computed Spearman’s correlation coefficients (r) between and among
exposure, outcome and (potentially) confounding variables. Variables with a correlation coefficient
with key exposure and/or outcome variables of r < 0.6 were accepted as unrestricted for subsequent
model integration.

2.3.3 Modelling of association between main exposure and outcome variables

We fitted general additive models (GAMs) defined to follow a Poisson distribution to estimate whether
and how strong daily size-specific PNCs (alongside PMjo and NO,) per interquartile range (IQR) change
and natural and cause-specific mortality were associated across the whole time period. This is a
common association model for AAP time series, which facilitates comparability of resulting estimates
with similar study, and is deemed suitable for this study type (e.g. Chuang et al., 2011; Ravindra et al.,
2019). In preparation, values for all exposure variables were converted to IQRs in R®.

The decision for using a Poisson distribution was based on the fact that exposure and outcome
variables were count data. Notably, Poisson distributions require independence of adjacent variable
values, an assumption that is not naturally met by neither PNC nor mortality data. Poisson distributions
also assume the mean being equal to the variance, and thus the absence of overdispersion, an
assumption that also requires consideration during model building. To check the assumptions
underlying a time series model based on a GAM with a Poisson distribution, we assessed the (a)
internal independence of exposure and outcome variables (i.e. absence or acceptable level of
autocorrelation) and the (b) (quasi) absence of overdispersion, as recommended e.g. by Pan et al.
(2018). The checks were computed using the “gam.check” function of the “mcgv”-package for the main
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exposure (PNCsp.120) and all three outcomes, with a focus on NCM. First, we plotted a bar chart of
autocorrelation residuals that should show a quasi-symmetrical, ideally bell-shaped distribution. Then,
a scatter plot of model residuals and the linear predictor, which should show an even distribution
around the null level. Further, a normal quantile-quantile (Q-Q) plot o residuals’ deviances and
theoretical quantiles, expected to lie on a more or less straight line. Finally, we plotted response values
against fitted values expecting a roughly linear association, ideally on a 1 to 1 line.

We used splines to control for underlying time trends not controlled for by the other variables included
to control for confounding, as specified below. Time trends, particularly by season, e.g. through the
number of sun hours and the change in UFP source fractions have been shown relatedly as a critical
factor (e.g. Giernsa et al., 2021), particularly for long-term, but also for short-term exposure (e.g. Kim
et al., 2021). The used R® package “mgcv” (Version: 1.8-31) allowed specification of the adjustment
level of the spline using a “k-value” that is to be interpreted similarly to specifying the number of knots
or turns of the spline curve. As the time trend of the association between exposure and outcome was
one of the study questions, the time trend adjustment was to be conducted carefully to avoid over-
adjustment. The ideal k-value was approximated by testing the lowest logic value in terms of the
number of major seasonal variable value changes, while being ideally dividable by the number of years
(10) with a substantial minimization of residual autocorrelation (with a resulting value of k=30). Using
PNC30.120 as exposure and CVM as outcome variables, we plotted the resulting spline as a trend line for
visual confirmation.

The association estimates were computed for aggregate lags as the time between the day of exposure
and the day of recorded mortality. Prior to association computation, we transformed the exposure
variables to IQRs. We then chose 2-day lag models to increase statistical power and buffer missing
values and outliers, while presenting daily lags auxiliary in the annex. We computed the moving
aggregate lag values for a period of up to seven days prior to the day of death. The aggregate lags
included the immediate effect (lag0-1, lagl-2), a medium-term effect (lag2-3, lag3-4) and a delayed
effect (lag4-5, lag5-6, lag6-7). Expecting associations strengths to be moderate at best, the plotted
comparison among the aggregate time lags was to allow the identification of potential patterns or
trends.

The coding of the main statistical model (full model) in R® using the “mgcv”-package to compute a
GAM reads as follows (for variable coding see Table 9), with the first line introducing the spline, the
second line the potential meteorological confounders, the third line the potential additional
confounders, and the fourth line specifying the Poisson distribution and omittance of missing values:

gam(Outcome ~ Exposure + s(trend, k=30, bs="cr') +

ns(tempmean, df=3) + ns(mal3_tempmean, df=3) + rhmean +
as.factor(dow) + influenza + hday1 + as.factor(summernrwpopdecrease),
family=quasipoisson, data=data_final, na=na.omit)

Estimates were computed and visualised as point estimates with 95% confidence intervals (Cl) to
facilitate interpretation of the statistical significance of estimates. For results presentation, the
estimates were grouped to facilitate comparison between the main size range PNCsg.120 With its sub-
ranges (small, medium, large), with smaller (PNCi3.30) and larger (PNCi20-250, PNCas0-500) particles, as well
as, with total PNC (PNCi3.500), PMigand NO..
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Table 9: Coding of variables for full model calculations in R®

#  Variable Coded name

2

1  Outcome e.g. mortnatuerl_gesamt (“gesamt
= aggregtae for study area)

2  Exposure e.g. d13_8to30 nm

3 Time trend (using spline function) s(trend,k=30,bs="cr")

4  Mean daily temperature on the same day (with 3 df) ns(tempmean,df=3)

5  Average of mean daily temperature for the prior three ns(ma03_tempmean,df=3)
days (with 3 df)

6 Day of the week as.factor(dow)

7  Relative humidity rhmean

8 Influenza-flu (based on official health statistics for each influenza
year of the time series)
9  Official holidays (for state of NRW) hdayl

9  School summer holidays with travel (for state of NRW) as.factor(summernrwpopdecrease)

2.3.4 Effect modification by traffic regulations

The time series ran in parallel with changes in the EAT required for the registration of vehicles and for
vehicle access to urban areas like our study area. To recall, the basic hypothesis was that in the
beginning of the study period, when less vehicles on most roads of the study area were equipped with
DPFs, the association of size-specific PNCso.120 with mortalities were stronger than later, after a higher
percentage of vehicles used DPFs and the UEZ in the study area started to ban non-DPF equipped
vehicles.

Bernal et al. (2017) propose interrupted time series regression to evaluate public health interventions,
which is ideal for interventions that allow a definite pre- and post-intervention definition around one
point or a limited period in time. As the intervention, i.e. the introduction of Euro-4 and in association
installation of DPFs, took effect gradually starting from before and ending after the time series period,
the potential of interrupted time series regression cannot be utilised fully. However, even if overlaid
by the overall prevalence changes for DPF equipped vehicles, the introduction of “Level 3” for the local
UEZ affecting large parts of the study population comes close to a “level” change, which we translated
to the model with a dichotomous time variable for the period with and without “Level 3”. To a limited
extend, we also used ideas by Bernal et al. (2017) for the annual and quasi-continuous models which
assume a “slope change”. Resulting effect estimates were assessed for patterns and also compared
with the full model estimates.

For interpretation of the model with the dichotomous interaction term, we produced the same figures
as for the full model. Figure 3 illustrates in a simplified manner the before/after scenario (as mainly
represented by the dichotomous variable) for DEP-relevant interventions during the study period in
the study area. We assessed effect modification by patterns across lags, rather than p-values and used
the rule-of-thumb (e.g. Austin and Hux, 2002) that two estimates only overlapping with the Cls or not
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overlapping at all may indicate a statistically significant difference at 95% confidence level, while noting
that coincidental statistical significance is to be considered when running a larger number of models.
For statistical analysis, we added a multiplicative interaction term for a dichotomous variable
(exposure * time period) aggregating estimates for the time periods 2009-2013 versus 2015-2018.

To check for effect modification by the gradually increasing DPF among DPV, we chose an ordinal
variable was defined as equal to the year variable estimating the risk ratios or relative risks (RRs) for
each year (2010-2018) in comparison with the base-year (2009). As the focus was on pattern analysis
of annual estimates, we aggregated lags without overlaps (lag0-1, lag2-3, lag4-7) to facilitate year to
year estimate comparison. For statistical analysis, we added a multiplicative interaction term with an
ordinal variable equalling the year of study (exposition * year) to compute relative risks for the years
2010-2018 in relation to the base-year 2009.

2.3.5 Sensitivity analyses

For each of the main statistical analysis steps, selected results were checked for robustness. The
sensitivity analyses included the following calculations:

For assessing sensitivity of descriptive analyses of exposure variables, the simple linear regression
estimates (B) for exposure were calculated without the year 2012 to check robustness against the
potential effects of an interstate reconstruction phase (A40) on exposure estimates that took place
during several months of 2012. For outcome variables, the descriptive overview of the development
of resident counts in the study municipality was deemed sufficient to exclude potential effect
modification by large population changes.

For assessing sensitivity of the estimate from Poisson regression models, for all exposure, outcome
and aggregate-lag combinations, models separately adjusted for NO, and PMio were calculated.
Further, additional single-lag models were calculated for comparison with the main two-day aggregate
lag models. Already as an integral part of the main result presentation, the calculation of models for
the sub-ranges of PNCso.120 (namely, PNCso-s0, PNCso-100, PNCi00-120), next to the ranges for smaller and
larger particles (PNCis30 and PNCiz0250) Were used to gauge sensitivity for a differing size range
definition of PNCsp.120.

For assessing sensitivity of effect modification models, calculations with an alternative break point, i.e.
before and after 2013 instead of 2014, for the model with the dichotomous interaction term were
performed. For the model with the dichotomous and the ordinal interaction terms, potential sensitivity
for the separate adjustments by the two key co-pollutants, PMipand NO,, was gauged for the relevant
exposure, outcome and aggregate-lag combinations.
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3. Results

3.1 Description of on-road traffic developments

3.1.1 Temporal development of on-road traffic

As a proxy for traffic dynamics in the study area, Figure 4 displays the daily average vehicular traffic
counts for both directions of traffic on the A40 interstate. The values are displayed as average daily
counts for each year, with the daily averages based on counts for the whole week (Monday to Sunday;
figures on the left-hand side), for the main workdays (Monday to Friday figures in the centre) and for
Saturday only (figures on the right-hand side). For both passenger vehicles (top row) and trucks with a
total permissible weight above 3.5 tons (bottom row), the overall traffic counts increased across the
time series period, except for the year of 2012, which included several months of road closure due to
construction. The year 2012 is thus highlighted in blue and subject of a sensitivity analysis for linear
regression of exposure trends. When comparing the year-to-year change in daily average counts for
different days of the week, the overall trend shows similar patterns of increasing vehicular counts. The
average daily counts for weekdays are substantially higher than for Saturday or the whole-week
average.

Daily avg. # cars (Mo-Su)

Daily avg. # cars (Mo-Fr)

Daily avg. # cars (Sa)
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2017 | ! 2017 2017
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Fig. 4: Six graphics depicting the traffic counts for passenger vehicles and trucks on the study region’s interstate (A40) on
different days of the week as defined by graphic titles. Note: The reduced number of vehicular traffic in 2012 was due to a
major construction work on the A40. Source: own design based on data by KBA, 2021.

3.1.2 Relative proportion of diesel-powered vehicular on-road traffic

The following Figure 5 depicts the proportion of DPVs relative to the total number of diesel- and
gasoline-powered registered vehicles in the study area. The proportion of DPVs compared to all
registered fuel-powered vehicles in the study region increased slightly from 22% (2009) to 26% (2018)
within the 10-year study period.
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Fig. 5: Proportion of diesel-powered vehicles among total number of registered vehicles in the study region. Source: own
calculations based on data by KBA (2021)

3.1.3 Status and temporal dynamics of diesel-powered vehicular on-road traffic

The absolute number of registered passenger-class DPVs increased steadily in the study region until
2017 (see Figure 6) from 90,170 (01.01.2009), just before the study period, by 25% to 121,755
(01.01.2019). In the same period, the number of all fuel-powered passenger class vehicles increased
from 441,094 by 10% to 491,141. Among the passenger-class DPVs, the absolute number of vehicles
compliant with Euro-4 and higher increased steadily. Across the whole study period, the proportion of
passenger-class DPVs compliant with Euro-4 or higher increased from 49% at the beginning of 2009
(01.01.2009) to 88% at the end of 2018 (01.01.2019).

time
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Fig. 6: Time trend (2009-2019) of number of registered diesel vehicles (only passenger vehicles) in the study area. Colour-
coded classification along Euro-Norm | to VI (here: displayed as D1 to D6). Source: assembled based on data by KBA (2021).
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3.1.4 Urban environmental zone in the Ruhr Valley

The “Ruhr Valley UEZ” was enacted on 01.10.2008 — and thus shortly before our time series period.
Since 01.07.2014, only vehicles meeting Euro-4 norm or higher and thus for DPVs almost exclusively
those equipped with DPF could access the study municipalities, with regulatory exceptions
summarized in UBA (2020a). Figure 7 shows an overlay of the map layers for the study region (in grey)
and for the UEZ (in green), with large parts of the study region falling within the UEZ, as well as, within
a 25 km perimeter of the AAP measurement station in Milheim-Styrum.
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Fig. 7: Map of air pollution monitoring station in Miilheim-Styrum with a 25km buffer around over municipal and urban
environmental zone boundaries. Explanations: “Station” is AAP monitoring station in Milheim-Styrum; “Urban Env. Zone”
is the urban environmental zone of the Ruhr Valley. Source: own design based on open-access OSM layers converted to
equidistant projection (ESRI 54032 World Azimuthal)

The GIS-based population estimate for the whole study area was 999,712 persons and for the cropped
study area, representing the area within the UEZ, 878,183 persons, with the relevant measure being
the percentage of the estimated total population that resides within the UEZ: 87.84%. Due the data
format (1xlkm raster) and QGIS statistics assuming homogenous population distribution within
individual raster squares for calculating population values of partial squares, the estimates bear a
certain level of imprecision. The total number (999,712) based on 2011 census data only deviates
about 5.56% from the actual census values officially attributed to the study area (Fig. 8). With a 5%
deviation, the actual proportion would remain between 83.45% and 92.23%. Overall, the study
population remains stable in total resident numbers during the study decade (Tab. 10).
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Fig. 8: Map of proportion of study area (aggregate three municipalities) located inside and outside the urban
environmental zone of the Ruhr Area. Raster squares equal population data as saved in 1 by 1 km raster format. Source:
own design based on open-access OSM layers converted to equidistant projection (ESRI 54032 World Azimuthal);
population data by ESRI open source based on census data for the year 2011 by the German statistical offices of the
federal and state governments.

Table 10: Overview of population sizes in study municipalities. Source:
www.landesdatenbank.nrw.de/Idbnrw/online?operation=abruftabelleBearbeiten&levelindex=1&levelid=161642612475
7&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&auswahlziel=werte
abruf&code=12411-01i&auswahltext=&werteabruf=starten#fabreadcrumb; last accessed on 06.08.2021.

Start in 2009 Official census Half-time in 2014 Endin 2018

Municipality Population on Population on Population on Population on
31.12 2008 09.05.2011 31.12.2013 31.12.2018
Essen 579,759 566,201 569,884 583,109
Miilheim 167,471 166,865 167,640 170,880
Oberhausen 214,024 210,216 209,097 210,829
Study region total 961,254 943,282 946,621 964,818
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3.2 Descriptive analysis of time series

3.2.1 Levels and temporal development of exposure variables

Figure 9 depicts periods with missing values for PNC exposure data of the required size fractions
between 13.8-500 nm. January and February 2009 did not meet the requirement for data
completeness with only individual days covered, thus 01.03.2009 was defined as the start date of the
dataset. The maximum percentage of missing values in one year was recorded for 2017 with 21.9% of
daily values missing for the PNC measurements, while the minimum percentage, with no missing
values, was in 2014. In exchange with IUTA, we discussed interpretation of larger periods of missing
values and identified them as data missing due to either technical repairs or irregular maintenance

work on the sensor - and thus at random.

Exposure

I LU I

Fig. 9: Overview of missing PNC exposure values (all PNC size ranges) between 01.03.2009 and 31.12.2018.
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The basic descriptions of the variables used for modelling are listed below (Tab. 11). The particle size
fractions of PNCi3.8.30, PNC30.120, PNC120.250 and PNCi3 8500 had median (IQR) PNC per cm? values of 4,268
(2,334), 4,970 (3,189), 749 (575) and 10,400 (5,630) respectively for the whole time period.
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Table 11: Basic description of measured variables included in the time series models (exposure, mortality, meteorology).
Table includes means, standard deviations (SDs), medians, interquartile ranges (IQRs), minima (min) and maxima (max).

Parameter Mean SD Median IQR Min Max
(Exposure)

PNC 13.8-30 nm 4,630 2,070 4268 2,334 726 20,800
PNC 30-50 nm 2,620 1,070 2,460 1,480 443 8,190
PNC 50-100 nm 2,350 1,180 2,130 1575 258 9,370
PNC 13.8-100 nm 9,600 3,780 9,000 4,942 1,790 29,600
PNC 100-120 nm 376 233 324 273 40 1,990
PNC 30-120 nm 5,340 2,340 4,970 3,189 806 17,500
PNC 120-250 nm 863 3,780 749 575 108 5,810
PNC 250-500 nm 199 142 169 163 16 1,960
PNC 13.8-500 nm 11,000 4310 10,400 5,630 2,050 31,800
PM1g 223 12.9 19.0 12.7 3.7 132
NO, 28.3 12.1 27.2 17.1 2.2 82
(Mortality)

Natural-cause mortality 32.3 6.6 32.0 8 13 60
Cardiovascular mortality 11.3 3.7 11.0 5 1 29
Respiratory mortality 3.0 2.0 3.0 2 0 14
(Meteorology)

Mean temperature 11.5 6.9 11.5 10.5 -8.55 30.2
Mean relative humidity 77.1 12.8 78.5 19.7 33.7 99.9

Figures 10-12 show the PNC dynamics with seasonal variations for selected size fractions (PNCis s.30,
PNC30-120, PNCi20-250, PNCi3.5.500 in Fig. 10), the sub-fractions of PNCsp.120 (PNC30-50, PNCs0-100, PNCi00-120 in
Fig. 11) and PM1o and NO; (Fig. 12) graphically, with a simple linear regression line fitted to the daily
values to illustrate the overall time trend. The daily average PNCs slightly decreases for all size
fractions, as expressed by the statistically significant linear regression estimates (8) listed in Table 12.
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Table 12: Simple linear regression estimates (8) with confidence intervals for all modelled PNC size fractions

Exposure Linear regression estimate Confidence interval
(PNC by size fraction) (B) (2009-18) (2.5%,; 97.5%)
PNC 13.8-30 nm -0.221 -0.307;-0.133
PNC 30-50 nm -0.272 -0.316; -0.228
PNC 50-100 nm -0.303 -0.352;-0.255
PNC 100-120 nm -0.056 -0.066; -0.047
PNC 30-120 nm -0.632 -0.728;-0.562
PNC 120-250 nm -0.130 -0.151;-0.108
PNC 250-500 nm -0.036 -0.042; -0.030

PNC 13.8-500 nm -0.862 -1.011; -0.713
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Fig. 10: Daily mean particle mass concentrations over time at Miilheim-Styrum for variables PNCy3 830, PNC30-120, PNCi20-
250 and PNCj3.500. Simple linear regression estimate displayed as straight line in blue.
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Fig. 12: Daily mean mass concentrations for PM;o and NO,. Simple linear regression estimate displayed as straight line in
blue. WHO guideline value (Source: WHO, 2006) marked as (red) dotted line.

3.2.2 Levels and temporal development of outcome variables

The mortality counts among the population in the study area (absolute numbers as registered by the
three selected municipalities) show seasonal dynamics for NCM, CVM and RM (Fig. 13). CVM (median
11;1QR 5) and RM (median 3, IQR 2) together account for almost half (43.8%) of the total NCM (median
32; IQR 8) in the region. The total counts for NCM, CVM and RM causes during the 2965 days included
in the analyses were 95,867, 33,432 and 8,967, respectively.

Figure 13 depicts the temporal development of the three assessed mortality categories based on
aggregate, daily reported values for the study region. For NCM, the (linear) regression estimate
revealed a significant, minimally positive trend of 0.00061 with a CI of 0.00038 to 0.00085 (CI 2.5%-
97.5%). For CVM, the calculation showed a significant, minimally negative trend of -0.00058 with a Cl
of -0.00070 to -0.00048 (2.5% - 97.5%). Finally, for RM, the regression calculated a non-significant,
minimally positive trend of 0.000045 with a Cl of -0.000025 to 0.00011 (2.5% - 97.5%).
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Fig. 13: Daily mortality counts for the three mortality categories (natural-cause, cardiovascular and respiratory mortality)

in the study region (aggregates for the municipalities of Miilheim, Essen and Oberhausen). Simple linear regression
estimate displayed as straight line in blue.
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3.3 Correlation analyses for time series

We derived the following results from computing correlation matrices with Spearman “r” values for
exposure (Tab. 13), outcome (Tab. 14), and meteorology (Tab. 15).
(i) The exposure variables show relatively high correlation coefficients (including above 0.6)

among the PNCs. NO; showed a maximum correlation with PNCi20.250 at 0.59 and PMyo with
PNCzs0-500 at 0.84.

(ii) The study-region based mortality variables showed r values of 0.61 between NCM and CVM,
of 0.45 between NCM, RM and 0.16 between CVM.

(iii) The time variables did not exceed a correlation coefficient of 0.31 with the main outcome or
the main exposure and among each other of 0.12.

(iv) The meteorological variables did not exceed a correlation coefficient of -0.30 with the main
exposure or outcome and of 0.49 among each other, except for the two temperature variables,
as to be expected, of 0.91.

Among the measured variables finally used for adjusting the full model (see underlined variables), none
exceeded a correlation coefficient of 0.5, except the two adjustment variables for temperature.

Table 13: Correlation matrix (Spearman r) for key exposure variables

PNCi3.8-30 PNC30.120 PNCi20.250 PNC3s0-500 NO; PM 0o
PNCi3.8-30 1
PNCs0-120 0.59 1
PNCi120-250 0.26 0.72 1
PNC;s0-500 0.08 0.45 0.77 1
NO; 0.23 0.53 0.59 0.55 1
PMjio 0.01 0.40 0.67 0.84 0.58 1

Table 14: Correlation matrix (Spearman r) for all outcome variables (municipality-specific and for total study region)

Natural-cause mortality Cardiovascular mortality Respiratory mortality

Essen Mulh. Oberh. Total Essen Milh. Oberh. Total Essen Milh. Oberh. Total

— Essen 1

¢ 2

§ '§ Mulh. 0.08 1

g S Oberh.| 0.07 0.08 1
g

=

Total 0.80 048 0.52 1
Essen | 0.61 0.02 0.01 046 1

Mdlh. | 0.05 061 0.05 0.29] 0.02 1

Oberh.| 0.04 0.03 0.6 031 0.04 0.03 1
Total 0.50 0.27 0.3 0.61f 0.79 0.44 049 1
Essen | 0.44 0.08 0.08 0.39 0.13 0.03 0.09 0.15 1

Mdlh. | 0.06 0.28 0.04 0.16/ 0.04 0 0 0.03] 0.06 1

Oberh.| 0.06 0.05 0.35 0.22| 0.03 0.04 0.08 0.07, 009 0.02 1
Total 0.39 0.18 0.21 045/ 0.13 0.04 0.10 0.16f 0.84 041 0.48 1

mortality

Respiratory Cardiovascular

mortality
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Table 15: Correlation matrix (Spearman r) for meteorological variables and one outcome (natural-cause mortality) and
exposure variable (PNcso.120). Note: variables included in the models are underlined; “*Mean;.3” is the average of the mean
daily temperatures during the three days before the day of exposure.

Outcome Exposure Wind Humidity Temperature
Natural- Direct- Precipi- Relative
cause” PNCs0.120 ion Speed tation Humidity Mean Mean;.3*
Natural-c.” 1
PNC30.120 -0.05 1
Direction -0.07 -0.28 1
Speed 0.11 -0.56 0.12 1
Precipitat. -0.01 -0.19 0.17 0.22 1
Relative 0.08 -0.20 0.23 0 0.34 1
Mean temp. -0.24 0.14 0.11 -0.18 0.03 -0.48 1
Mean; 3* -0.30 0.15 0.14 -0.22 0.06 -0.39 0.91 1

3.4 Association modelling for exposures and outcomes

3.4.1 Full model validation

The gam.check function of R®s “mgcv” package reported full model convergence, as one basic
requirement for model validation. The visual check of the bar chart of autocorrelation residuals (Fig.
14) revealed the validation-supportive, quasi-symmetrical bell-shape distribution. The scatter plot of
residuals and linear predictors showed a relatively even distribution around 0, while the normal QQ-
plot of residuals’ deviances and theoretical quantiles showed a relatively straight line, both in support
of model validation (Fig. 15 and 16). Finally, the scatter plot of response and fitted values (Fig. 17)
showed roughly the validation-supportive linear association, if not on an ideal 1 to 1 line. To check
sensitivity of model validity to exposure and outcome variable selection, the plots were also produced
for CVM and RM (Fig. 26 and Fig. 27 in the annex). We observed similar distributions; however, for RM,
the outcome with fewest daily counts and thus the smallest data basis, the model fit criteria were not
met as clearly, particularly in terms of the scatter plots for residuals versus linear predictors and for
response versus fitted values.
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residuals

Fig. 14: Histogram of model residuals as bar chart for full model. The modelled exposure is PNCso.120 and the outcome
natural-cause mortality.

residuals

-2
1

I T T T T I I
3.35 3.40 3.45 3.50 3.55 3.60 3.65

llinear predictor

Fig. 15: Scatter plot of residuals and linear predictors for the full model (modelled exposure: PNCsq.120; outcome: natural-
cause mortality). Full model adjusted for time trend, day of the week, holidays and summer population decrease,
influenza, temperature and humidity.
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deviance of residuals

theoretical quantities

Fig. 16: Normal Q-Q plot of residuals’ deviances and theoretical quantiles for the full model (modelled exposure: PNCs.
120; outcome: natural-cause mortality). Full model adjusted for time trend, day of the week, holidays and summer
population decrease, influenza, temperature and humidity.
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Fig. 17: Scatter plot of response and fitted values for the full model (modelled exposure: PNCsp.120; outcome: natural-
cause mortality). Full model adjusted for time trend, day of the week, holidays and summer population decrease,
influenza, temperature and humidity.
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The trend line representing the spline function (k=30) for time trend adjustment is shown in Figure 18
along the days of the time series. The computed line shows about 20 turns, which corresponds to the
main seasonal differences (summer vs winter) in each year and thus was appraised as sensible for this
time series.

-
—
75
[
i
N.
o]
o
g o
W
('}l —]
1 | I I I I T
0 200 1000 19500 2000 2500 3000

time trend as day count of time series

Fig. 18: Computed trend-line for spline adjustment (s(trend)) of time trend in the fully adjusted full model. The modelled
exposure was PNCso.120 and the outcome natural-cause mortality.

3.4.2 Association between exposures and outcomes for complete observation period

Based on the full model, the associations between the IQRs of PNC exposures and the three mortality
categories at the level of the study region (aggregate numbers of all three municipalities) are shown
for moving two-day aggregate lags (“lag0-1" to “lag6-7”), while single-lags are shown auxiliary in the
annex (Fig. 27 and 28). Figure 19 shows the RRs for the PNC size fractions including DEPs (PNCso.120) in
comparison with larger (PNCi20.250 and PNCyso.s00) particles, PMio and NO. Figure 20 differentiates the
RRs for the sub-ranges composing PNCso.120, Nnamely for the small (PNCso.50), medium (PNCsp.100) and
large sub-range (PNCioo-120), next to a comparison with smaller particles (PNCi3.5-30).

For NCM, we overall observed positive effect estimates, which for most exposures indicated relatively
consistent values across lags. However, for PNCso.120 we did not observe strong associations or evident
patterns, with risk estimates for IQR of exposure meandering around the 1.00 line. This appears to be
the composite result of the smaller sub-fraction (PNCs.s0), which shows slightly negative associations,
the medium sub-fraction (PNCso-100) With predominantly slightly positive associations and the larger
sub-fraction (PNCioo0-120) With positive associations throughout up to a RR of 1.0121 (1.0023;1.0220) for
lag0-1 and 1.0094 (1.0001;1.0188) for lag4-5. This pattern of increasing RRs with increasing particle
size is also reflected by the larger PNCiz0.250 and PNCsso.s00, as well as PMio, which largely indicate
significant positive associations, with small peaks at lag0-1 and overall peaks for PNCi20.250 at lag4-5 of
1.0106 (1.0021;1.0193), for PNCzs0.500 at lag4-5 of 1.0117 (1.0026;1.0208) and for PMy, at lag6-7 of
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1.0122 (1.0046; 1.0199). For NO,, similarly, most estimates are significantly positive with a peak at
lag4-5 of 1.0173 (1.0050; 1.0298).

For CVM, we observed largely delayed effects for PNC and PM1o. PNCs0.120 Shows a steadily increasing
RR across aggregate lags with largely positive estimates peaking at lag6-7 with an estimate of 1.0171
(0.9978; 1.0368). Within its sub-ranges, the highest estimates are observed for PNCigo.120 at lag4-5 of
1.019 (1.0034; 1.0348), then slightly weaker for PNCsp.100 at lag5-6 of 1.0182 (0.9997;1.0371) and again
weaker for PNCsp.50 at lag6-7 of 1.0147 (0.9941;1.0357). Minimal effect estimates are observed then
for PNCi3.30, notably with lowest (below 1.00) estimates for lag5-6 and lag6-7. On the other hand, the
larger particle ranges show stronger associations, with peaks at lag3-4 for both PNCiz0.250 of 1.0174
(1.0027; 1.0322) and PNC;s0-500 of 1.019 (1.0036;1.0345), as well as a second peak at lag6-7for PNCyso.
so0 of 1.0199 (1.005; 1.0351), that is also found for PMjo of 1.0206 (1.0079; 1.0335). For NO,, most
aggregate lag estimates are significantly positive, particularly immediate at lag0-1 of 1.0221
(1.0016;1.0431) and delayed at lag4-5 of 1.0248 (1,0039; 1.0461).

For RM, the first observation is that Cls are relatively large, at least partially explained by the smaller
number of mortality cases to model from, with some short-term and delayed associations. The pattern
for PNCso.120 vaguely resembles a “U” shape with two peaks: one at lagl-2 of 1.0248 (0.9846;1.0665)
and one at lag6-7 of 1.029 (0.991; 1.0685), while lag3-4 show point estimates at 0.9698
(0.9316;1.0094). For the delayed associations at lag6-7, highest estimates estimate are observed for
PNCig0-120 at 1.0304 (1.006;1.061), for PNCsp-100 at 1.0333 (0.9971; 1.0707) and, slightly lower, for PNCso.
so at 1.016 (0.9758; 1.0578). For the larger size ranges, lag6-7 are at 1.027 (0.9999; 1.0548) for PNCiz0.
250,at 1.0302 (1.0014;1.0599) for PNCzs0.500 and at 1.0249 (1.008;1.0497) for PMio. For the short-term
associations, PNCso.s0 at lagl-2 with 1.0283 (0.9861; 1.0723) and the smaller PNCi3.30 at lag2-3 with
1.0256 (0.99; 1.0625) show highest RRs. For NO,, the estimates resemble a “V” shape with peak
estimates falling within the immediate associations at lag0-1 of 1.0421 (1.0024; 1.0834), and delayed
association category, at lag6-7 with 1.0421 (1.0024; 1.0834).
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Fig. 20: Risk ratios with 95% Cl based on the full model for PNC3¢.120 in comparison with its sub ranges (PNCsg.s0, PNCs-100
and PNCjoo-120) and smaller particles (PNC;3.30) for two-day moving average aggregate lags over one week. Full model
adjusted for time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.

3.5 Estimation of intervention effect on modelled associations

Through two interaction terms added separately to the full association model, we assessed whether
and how the NCM, CVM and RM RRs for selected exposures may have changed over time in the context
of traffic regulations. We show the estimates for the model with the dichotomous interaction term
designed to account for the UEZ regulation banning non-Euro-4 compliant vehicles, and with an ordinal
interaction term for annual estimates to monitor possible effect modification by an increasing DPF
prevalence among registered DPVs.

3.5.1 Effect modification by UEZ regulation

The model with the dichotomous interaction term compared association estimates based on the years
2009-2013 with those of the years 2015 to 2018, thus leaving out the year during which the UEZ
regulation changed. Figure 21 shows the RRs for the PNC size fraction assumed to include most DEPs
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(PNCs30.120) in comparison with larger particles (PNCiz0.2s0 and PNCas0.500), PM1o and NO,. Figure 22
differentiates the RRs for the sub-ranges composing PNCso.120, Nnamely the small (PNCso-50), medium
(PNCsp-100) and large sub-range (PNCioo-120), next to a comparison with smaller particles (PNCi3.5-30).

For NCM, PNCsp.120 shows minimal RR drops for 5 of 7 aggregate, with estimates for both periods
meandering around 1.00, with a similar pattern as for the full model. These observed moderate
differences appear to be the composite results of relatively strong drops in risk estimates for PNCsp.so,
and little change for the larger sub-fractions PNCso.100 and PNCigo-120. The possible reduction in RR
observed for PNCso.50 is more prominent among the smaller PNCi35.30 with maximum drops in RR of
roughly 2.5% for delayed associations and with RRs for lag4-5, lag5-6 and lag6-7 overlapping only for
parts of their Cls and thereby indicating statistical significance. At the same time, little changes, if
leaning towards increases in RR are observed for PNCi20-250, While PNCzso-500 indicates more prominent
increases for mid-term and delayed associations, with the RRs for lag3-4 indicate a statistically
significant effect modification. Likewise, PM1o rather shows increases in RR, particularly for the delayed
effects. For NO,, no pattern can be observed, while the estimates for total PNC (PNCis.s00) roughly
resemble the reductive pattern observed for the smallest PNCs such as PNCi3.30.

For CVM, the patterns across PNC size ranges show similarities to NCM associations, with the smallest
PNCi3.30 showing reductions in RR, while already slightly larger particles in the range of PNCsp.100 Show
overall RR increases, particularly for delayed effects. The sub-ranges of PNCsp.120 show little repealing
estimates across lags for PNCsp.s0, and slight RR increases for PNCsg.100 and PNCigo-120. PNC30.120 thereby
indicates largest RR increases for delayed effects at lag5-6 and lag6-7. Overall, RR appears to increase
with particle size, with PNCi20-250 and PNCas0.500 again showing largest increases for the delayed effects
and minimal changes for the immediate effects, with the RR comparison at lag6-7 for PNCaso-s00
indicating statistical significance. PMio shows a similar pattern to the largest PNC size range, with the
largest and statistically significant RR increase indicated for lag6-7. For NO,, again, no evident pattern
across lags could be observed, similarly as for the estimates of total PNC (PNCi3.500) that show neither
a clear increase nor decrease.

For RM, again, patterns across PNC size ranges appear similar to the preceding mortalities: the two
smallest size ranges (PNCi3-30 and PNCso.50) rather show decreases in RR. PNCso-100 and PNCso.120 do not
reveal a clear pattern across lags. Slight increases in RR are observed for PNCig.120 and increasingly
prominently for PNCi20.250 and PNCaso-s00. Overall, as for the full model, and particularly for the pre-
2014 estimates, the RRs roughly form “U” shapes for PNC size ranges between 30 and 250nm. The
largest (positive) changes are observed for the medium-term and delayed effects, with substantial and
statistically significant increases at lag2-3 and lag3-4 for PNCi20.250 and across most lags for PNCaso-so0.
Similarly, PM1o shows substantial and largely statistically significant increases across all lags, with a
peak at lag6-7. Unlike for NCM and CVM, also NO shows increases in risk, particularly for lagged
effects, while total PNC (PNCiss00) shows mixed effects, rather with decreases in RR, but without a
clear pattern. Overall, the precision of estimates judged by the length of Cls is highest for NCM, over
CVM and RM as expected based on the mean daily counts for the three mortalities.
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Fig. 21: Risk ratios with 95% Cl based on the full model with the dichotomous interaction term for before and after 2014
for PNCs0.120 in comparison with larger particles (PNCi20.250, PNCz50-500), With total PNC as PNCy3.500, and with PM; and
NO:; for two-day moving average aggregate lags over one week. Full model adjusted for time trend, day of the week,
holidays and summer population decrease, influenza, temperature and humidity.
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3.5.2 Effect modification by DPF prevalence

The model with the ordinal interaction term presents RR estimates for each year (2010-2018) in
comparison with the base-year (2009). The analysis focuses on relative changes from year to year, and
differences in patterns between exposures, rather than absolute RR differences with the base year.
The models yield nine RR estimates for 2010 to 2018 per exposure, outcome and lag. In Figure 23, we
present the smallest size range (PNCiss30), total PNC (PNCiss00), PMio and NO; with a two-day
aggregate lag for short-term (lag0-1), medium-term (lag2-3) and delayed (lag4-7) association. In Figure
24, we present the key exposure (PNCsp.120) With differentiation of its sub ranges, namely the small
(PNCsp-50), medium (PNCsp.100) and large sub-range (PNCigo-120).

Overall, the estimates show neither gradually decreasing nor increasing RR patterns across the years,
including for PNCs0.120. In contrast to the full model and the model with the dichotomous interaction
term estimates, the RR patterns across the years do not differ as substantially between exposures, but
rather between the immediate (lag0-1), medium-term (lag2-3) and delayed(lag4-7) aggregate lags. We
observed two partial trend patterns, notably with inconsistencies and substantial uncertainty: firstly,
a possible increasing trend among, mainly the delayed, NCM associations (lag4-7) for the final three
years (2016-2018), and secondly, a change from an increasing to a decreasing trend halfway through
the time period (around 2014) for medium-term and delayed RM association (lag2-3 and lag4-7).

As estimates are relative to one single year (2009), the non-gradual but aggregate changes for all
annual estimates may contain more information about the year 2009 than about the subsequent years
- with one, separate, observation appearing noteworthy: across exposures, the majority of annual
estimates for immediate effects (lag0-1) lie around or below 1.0, for medium-term effects (lag2-3)
around 1.0 and for delayed effects (lag4-7) slightly above 1.00.
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Fig. 23: Risk ratios compared with the base-year 2009 with 95% Cl based on the full model with the ordinal (annual)
interaction term for smaller particles (PNCi3-30), total PNC as PNCi3.500, PM10 and NO, for immediate (lag0-1), slightly
lagged (lag2-3) and lagged (lag4-7) associations. Full model adjusted for time trend, day of the week, holidays and summer

population decrease, influenza, temperature and humidity.
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Fig. 24: Risk ratios compared with the base-year 2009 with 95% Cl based on the full model with the ordinal (annual)
interaction term for PNCs.120 in comparison with its sub ranges (PNCso-s0, PNCso.100 and PNCjgo.-120) for immediate (lag0-1),
slightly lagged (lag2-3) and lagged (lag4-7) associations. Full model adjusted for time trend, day of the week, holidays and

summer population decrease, influenza, temperature and humidity.
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3.6 Sensitivity analyses

3.6.1 Exposure time trends

The following table compares the linear regression estimates for the complete time series with the
one of an adapted time series, upon removal of all values for the year 2012, which included a several-
month closure of the nearby interstate (A40) and thus a potential change in exposure. Table 16
presents the linear regression slopes alongside the Cls for both time series, with no substantial changes
in the direction or magnitude of the trend.

Table 16: Linear regression estimates (8) with 95% ClI for the whole time series, and as sensitivity analysis for the time
series without 2012.

PNC size fraction Linear regression  Confidence Linear regression  Confidence
estimate interval estimate (2009- interval
(2009-18) (2.5%; 97.5%) 18; EXCEPT 2012) (2.5%; 97.5%)
PNC 13-30 nm -0.221 -0.307;-0.133 -0.205 -0.260; -0.152
PNC 30-50 nm -0.272 -0.316; -0.228 -0.226 -0.256;-0.120
PNC 50-100 nm -0.303 -0.352;-0.255 -0.245 -0.278;-0.212
PNC 100-120 nm -0.056 -0.066; -0.047 -0.046 -0.053, -0.040
PNC 30-120 nm -0.632 -0.728; -0.562 -0.517 -0.582;-0.453
PNC 120-250 nm -0.130 -0.151;-0.108 -0.114 -0.128;-0.989
PNC 250-500 nm -0.036 -0.042; -0.030 -0.036 -0.039; -0.032

3.6.2 Definition of DEP PNC size range

PNCs0.120 assumed as the range assumed to contain the vast number of DEPs, was split into three sub-
fractions for separate model runs and comparison of respective estimates. For both the full and the
model with the dichotomous interaction term, the three sub-fractions showed substantial differences
for many mortality-lag combinations among each other, as well as, in comparison with PNCzo.120. Also,
particularly the size range smaller than 30 nm, but also the one larger than 120 nm, partially showed
substantially more pronounced estimates than PNCsp.120 or its small sub-range PNCsg.s0. The model
observations paired with the fact that particularly PNCi3.30 has a relatively high mean daily PNC, suggest
that particularly an extension or shift of the PNCso.120 to include smaller particle sizes could alter
estimate size and patterns.

3.6.3 Full association model

The evidence-based selection of the PNC size fraction attributed to the majority of PNC emitted by
DPVs without DPFs bears limitations in precision and possibly in accuracy, as explained in the
introduction. Therefore, for the selected PNCso120 three sub-ranges were defined and computed
alongside, while a smaller PNC range and two larger PNC ranges were used as comparators.

The preceding presentation of results allowed insights on the sensitivity of the effect estimates of the
in-focus PNCsp.120. It was observed as sensitive to changes in the smallest size range PNCsp.s0 — a
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narrower definition of the PNC size range to represent most DEPs could have changed effect estimates
substantially. Similarly, for the common total PNC indicator, here defined as PNCis.s00, Substantial
changes in the smallest sub-range, here PNCi3.30, were observed to affect the total PNC estimate,
thereby supporting the observation made for PNCso.120. Also, the comparison between aggregate two-
day lags and single lags revealed sensitivity of single lags for missing data, as evident by outliers for
lag0 for PNCioo-120 and PNCzso-500 that was not observable when using lag0-1. We otherwise did not
observe substantial differences by equalization with two-day lags in comparison with daily single-lags
(Fig. 27 and 28). The full model was observed as robust to separate adjustment for both PMyo (Fig. 29
and 30 in the annex) and NO; (Fig. 31 and 32 in the annex). Patterns and association directions
remained constant across the PNC size ranges and for NO, and PMy,, respectively. RR-estimates for
both adjustments were overall found slightly closer to the null-value of 1.00, without substantial
changes in the number of statistically significant estimates.

3.6.4 Effect modification by traffic regulations

For the model with the dichotomous interaction term , we observed no substantial changes for the
model computed with a different break point (2013 instead of 2014) was computed (Fig. 33 and 34 in
the annex). The model thus showed to be robust to inclusion of the year 2014 as the year during which
the UEZ regulation change took effect.

Both, the model with dichotomous and with ordinal (annual) interaction terms were also observed as
largely robust to separate adjustment for both PMig and NO,. Patterns and association directions
remained constant across the PNC size ranges and for PMy (Fig. 35 and 36 in the annex) and NO, (Fig.
38 and 39 in the annex) respectively for the model with the dichotomous interaction term . For the
model with the ordinal interaction term, estimates were found robust for PMigadjustment (Fig. 39 and
40 in the annex), while NO; adjustment showed minimal changes in the pattern for PMjestimates and
RR-estimates substantial closer to the null-value of 1.00 for PNCi3.30 (Fig. 41 and 42 in the annex).
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4. Discussion

4.1 Result summary

This study assessed the association between size-specific PNCs with NCM, CVM and RM, and potential
effect modification by traffic regulation implementation over time. For the years 2009 to 2018, daily
mean PNC, PM;j and NO; concentrations from a central measurement station in Milheim-Styrum and
daily NCM, CVM and RM counts for the adjacent municipalities (Milheim, Essen, Oberhausen) were
analysed across 2965 days. Poisson regression models built as GAMs were adjusted for time-varying
covariates, including meteorological factors. PNCso.120 Was selected size range assumed to include the
vast majority of DEP PNC. Dichotomous and ordinal interaction terms were used to evaluate effect
modification by the banning of Euro-4 incompliant vehicles in the local UEZ and by gradual Euro-4
adoption among registered cars over time. Sensitivity analyses included adjustment for the co-
pollutants PMjo and NO,, as well as alternative time periods for simple linear regression of PNC trend
regression and for the model with the dichotomous interaction term. In response to the three research
guestions, we gathered the following results and observations from the statistical descriptions and
analyses:

(1) The level of daily average, size-specific PNCs showed reductive trends across size fractions during
the observation period (2009-2018), including PNCso.120. PNC30.120 had a median (IQR) level of 4970
(3189) PNC/cm?with a linear regression estimate (95% Cl) of -0.63 (-0.73; -0.56) for daily average PNC.
For mortality, median daily counts (IQR) were 32 (8), 11 (5) and 3 (2), respectively for NCM, CVM and
RM for a total of 95,867 deaths in the study period.

(2) Size-specific PNCs showed, partially statistically significant, associations with short-term NCM, CVM
and RM. The RR for the investigated PNC ranges showed immediate (lag0-1) and delayed (lag4-5, lag5-
6, lagb-7) association (95% Cl) with natural cause mortality up to 1.0121 (1.0023; 1.022), delayed (lag4-
5, lag5-6, lag6-7) association with CVM up to 1.0199 (1.005; 1.0351) and immediate (lag0-1, lagl-2)
and delayed (lag5-6, lag6-7) association with RM up to 1.0333 (0.9971; 1.0707). Across particle size
ranges, for NCM and CVM, we overall observed patterns of point estimates becoming more positive
with increasing size of particles. For RM, patterns across particle size ranges were found relatively
stable up to 250 nm with immediate and delayed associations, while for large particles and PMyg
delayed associations prevailed. Overall, associations were relatively robust for PMij, and NO;
adjustment. Single-lag estimates showed few differences in comparison to the main two-day aggregate
lags.

(3) Effect modification by time in relation to regulatory measures on PM exhaust for DPVs could be
partially observed for the UEZ regulation, but not for the increasing prevalence of Euro-4 compliant
DPVs. The model with the dichotomous interaction term on effect modification by UEZ restrictions for
NCM, CVM and RM showed decreasing point estimates for PNCs below 100 nm (including for PNCso.
120), 30 nm and 50 nm, respectively. However, PNCs above 120 nm, 50 nm and 100 nm respectively, as
well as PMj showed increases in RR, while NO, estimates only showed a RR change (increase) for RM.
Estimates by the model with the dichotomous interaction term were robust to PMjo and NO;
adjustment. The model with the ordinal interaction term showed no gradual RR decreases across
years, including for PNCso.120. Vague trend patterns could be observed among RM estimates across the
time period and for delayed NCM associations for the years 2016-18. For the model with the ordinal
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interaction term, estimates were largely robust for PMjo adjustment, with NO, adjustment causing a
downsizing of estimates.

For interpretation of the main results, auxiliary variables on vehicular traffic properties in the study
region revealed an increase in DPV traffic in the study period. Vehicle registration data (aggregate of
study municipalities) show a substantial absolute increase (+25%) and a slight relative increase
compared to gasoline-powered cars (from 22% to 26%). The traffic counts on interstate A40 showed a
steady increase of car traffic, expect for a year with construction work (2012), for exception of which
linear regression estimates showed to be robust. Approximately at half-time, upon 01.07.2014, the
Ruhr Valley UEZ limited access largely to Euro-4-compliant on-road vehicles, which was estimated to
have affected about 3/4'™ of the study population based on a GIS analysis. Across the study period, the
proportion of DPVs equipped with DPFs, as approximated by registered vehicle compliance with Euro-
4 in the study region, increased from 49% to 88%.

4.2 Levels and development of PNC size ranges over time

In terms of PNC levels, the observed median daily total PNC (PNCi3.500) value of 10,400 particles/cm?
for our urban background station in Milheim-Styrum is almost identical with the global average
estimated by Schraufnagel (2020) of 10,760, while noting that total PNC definitions vary in their (more
importantly) lower and upper limit. The median UFP PNC using the WHO definition (<100 nm) for UFP
(PNCi3-100) with a value of 9,000 makes up most of the total PNC. A study by Birmili et al. (2015) showed
means of about 6000 particles per cm?® for comparable urban background stations on average in
Germany (based on 7 measuring point across Germany), with Miilheim-Styrum listed as a station with
relatively highest PNC values - as supported by our estimates.

For co-pollutant levels, the mean annual value for our study area of 22.3 pm/m?3 for daily PMyo
concentration can be considered high for urban background stations in Germany, with national
averages estimated between 17-22 for the years 2009-2018 (UBA, 2020b). For NO, concentrations, the
study area mean of 28.3 um/m? is even more strongly elevated compared to the annual means for
German urban background stations estimate at 20-24 (UBA, 2020b).

In terms of PNC level development, the observation of generally decreasing PNC trends is consistent
with a multi-city study for Germany by Sun et al. (2020), which found similar declines of 2.6 to 6.3%
per year in PNC (20 — 800 nm) during an almost identical time period among five urban background
measurement sites of the GUAN network. An earlier global study of PNC, including stations in Europe,
North America, Antarctica and on Pacific Ocean Islands related their finding of decreasing PNC for the
decade before the one of this time series (2001-10) mainly with reductions in anthropogenic emissions,
particularly SO as a particle precursor, while they did not long-term trends associated with surface
temperature trends (Asmi et al., 2013).

For co-pollutant levels, a long-term decline fir PMyo is consistent with data from Germany (UBA,
2020b), and other European data, e.g. for a period of 2000-2017 in several European cities by Sicard
et al. (2021), or for the city of Rome by Renzi et al. (2017). Also, the long-term decline in NO; similarly
has been found elsewhere, e.g. for the urban background stations across Germany (UBA, 2020b).
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4.3 Development of vehicular traffic

The reductive trend of daily mean PNC ran contrary to rising numbers of registered DPV and traffic
volumes, besides a slight increase in the proportion of DPV over gasoline-powered on-road vehicles.
This may be interpreted as contrary developments facilitated by the parallel and steady increase in the
proportion of on-road vehicles complying with the Euro-4 norm, particularly among DPVs. A reductive
trend was also observed for PMo, for which traffic emissions make up a relatively much smaller fraction
compared to PNC, thus serving as a possible indication for additional APP reductions in other sectors.
Notably, all studied PNC size fractions between 13.8 and 500 nm, and thus also outside the assumed
DEP-size range, showed statistically significant reductive trends.

Jesus (de) et al. (2020), on the basis of long-term PNC decreases during a similar period, concluded on
a reductive role of Euro-norm uptake, among others, for PNC values in 4 of 5 studies global cities.
Meanwhile, Fujitani et al. (2020) for the similar period of 2004-17 concluded in an associated reduction
in PNCio.100 with DEP measures similar to the Euro norm, if with a slower than expected decline, which
they reasoned with secondary PNC based on diesel-vehicle emitted SVOCs. In comparison with other
areas in Germany, UBA (2015), for the time period of 2008 to 2013, found, similarly to our
observations, overall increasing vehicle registration numbers across Germany — also with relatively
stronger increases for DPVs than for those powered by gasoline.

Among the traffic variables, one trend pattern may raise questions, as only until 2017, the proportion
of diesel-powered in comparison to gasoline-powered vehicles increased, before the trend reversed
to a slight decrease. We interpret this pattern as possibly representative of a turning point associated
with the delayed effects of public debates on diesel-engines in Europe and Germany, including the
penalised manipulation practices for NOx emissions by the Volkswagen AG in 2015 and later by other
car-markers (Gross & Sonnberger, 2020; Pries & Wacken, 2020).

4.4 Association between PNC size ranges and mortality

We generally observed positive, partially statistically significant, associations for NCM, CVM and RM
with size-specific PNC across size fractions for different lags, while the partially negative associations
are not plausible based the current understanding of the underlying biological logic. The (statistical
significance of) individual estimates (is) are to be interpreted with care, mainly due to the number of
model-runs allowing significant estimates based on a p-value below 0.05 to occur by chance that we
did not separately adjust for. As almost half of the NCM consists of cardiovascular and respiratory
causes, the association pattern across the aggregate lags may be expected, as observed, to partially
embody an attenuated composite of their RRs (e.g. as observed in Stolzel et al., 2006).

For NCM, the RR of the investigated PNC ranges showed possible immediate (lag0-1) and delayed
association (lag4-5, lag5-6, lag6-7). Rivas et al. (2021), who limited their analysis to lag0-5, found
immediate associations (lagl, lag2) for total PNC and two size ranges below 60 nm in Barcelona and
Helsinki, and delayed associations (lag5) for large size PNCs (around 80-300 nm) in Zuerich and Helsinki.
Delayed associations were also observed in a study in eight urban areas in Europe, which found a NCM
increase of 0.35% per 10,000 particles/cm? for total PNC that occurred 5-7 days before death (Stafoggia
et al., 2017). Stolzel et al. 2006 identified association for UFP PNC and larger size ranges up to 1000
nm highest at lag4, next to a smaller peak at lag0.
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For CVM, mainly delayed association (lag4-5, lag5-6, lag6-7) were observed. This may be reasoned by
biological mechanisms that trigger a delayed outcome. Rivas et al. (2021) observed delayed (lag5)
associations across for various PNC size ranges in Zuerich, next to almost significant estimates for lag0.
They also observed delayed associations for <20 nm PNC in Barcelona, where, however, the immediate
associations prevailed. Lammers et al. (2020) on the other hand attributed short-term, adverse effects
on cardiovascular function, here indicated by blood pressure, to particle sizes above 50nm, but not
below 20nm.

For RM, immediate and delayed association were observed, with largest point estimates for immediate
associations for the smaller size ranges (<100nm) and for delayed associations for the medium
(>100nm) and the largest size range (>250nm). (Vaguely) similar associations were also found by
studies in other European cities, which have observed possible associations between UFP PNC and RM,
for example, the “UFIREG” study, which assessed UFP and RM association for six, vaguely comparable,
cities in Europe found non-significant associations for lag0-6 of 9.9% [95%-Cl: - 6.3%; 28.8%] with RM
per IQR increase in UFP (20-100 nm) concentration (Lanzinger et al., 2015). Rivas et al. (2021) observed,
less prominent, “U” shapes for Zuerich and among some size ranges for Helsinki — with particularly
Zuerich featuring a relatively comparable climate to our study area. Notably, for example Lammers et
al. (2020) attributed short-term, adverse effects on respiratory function mainly to particle sizes below
20nm, and thus outside PNCsp.120. The estimates were robust against adjustment for PM;o and for NO,,
the key co-pollutants for traffic related UFP studies besides PM;s, thus supporting the conclusion
observed associations to be likely independent of parallel AAP exposures.

4.5 Effect modification by traffic regulations and time

We observed effect modification over time for the change in UEZ regulation for most PNC size ranges
(besides for PM3p and NO,) with direction and magnitude of change dependent of the PNC size range.
At the same time, no gradual decrease (or increase) of annual RR could be identified for any of the
exposure, outcome and lag combinations.

For the model with the dichotomous interaction term the, partially substantial and statistically
significant, decreases in RR for the smaller PNC size ranges and increases for the larger PNC size ranges
and PMyo across mortality causes may indicate a change in PNC composition beyond the fraction
attributed to DEPs (PNCso.120). Differences between lags were also observed, but less pronounced than
for size-range. For the exposure in focus (PNCso.120), the modification differed by morality with overall
- across aggregate lags - reductions for NCM, increases for CVM and mixed effects for RM. The
differences could be disentangled when looking at the sub ranges of PNCs0.120 that show different
“turning points” from a decreasing to an increasing RR, with the smallest size range (PNCi3.30) showing
decreasing RR across mortality causes. PNCi3.30is a range that has been associated by other studies
with highest PNCs for primary gasoline exhaust particles, with typically lower PNC peaks than DEPs
(e.g. Pant & Harrison, 2013), which were also targeted by Euro-4-related EAT systems. Overall, the
strongest RR decreases were observed for NCM, thus, assuming correct mortality attributions, this
suggests health effect changes outside CVM and RM causes. In contrast, the strongest increases in RR
were observed for the largest PNC size range (PNCaso0.500), Which is not a range attributed typically to
(on-road vehicle emitted) DEPs or other primary on-road vehicular traffic exhaust particles, especially
when considering the parallel increase in PMis RR. PMjo can despite its measurement as mass
concentration be highly influenced by traffic-related particles, as conclude by Pant & Harrison (2013).
Our observation raises the question, which particle source (and mixture), likely not on-road traffic-
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exhaust, is responsible for such substantial increases in RR after 2014. Li et al. 2018 for another German
city identified biomass burning (e.g. from power plants or residential heating) and biogenic organic
secondary aerosols as main PNC contributor for larger particles (up to 360 nm), while Pant & Harrison
(2013) reviewed (road) surface and tyre wear at a PNC mode of around 300 nm. At the same time, the
strongest RR increases were observed among RM associations, including for NO,, which for NCM and
CVM showed mixed effects. The fact that strongest increases were observed for RM may be an
indication for an AAP substance (mix) particularly relevant for respiratory health. One potential source
are DEPs from ships, where the prevalence of EAT is lower, that also may proliferate NO, emissions,
and PNC peaks are at larger particle sizes compared to DPVs (e.g. Moldanova et al., 2009).
Unfortunately, epidemiological studies differentiating mortality associations for non-exhaust UFP and
PNC sources remain rare for potential comparison, as the underlying source apportionment is not
trivial, particularly for AAP measurements away from the source due to the relatively high temporal
and spatial variability of quasi-UFP (e.g. Kumar et al., 2013b). Finally, the GIS analyses indicated UEZ
relevance for over 3/4™ of the study area residents, with a stable level of the total (registered)
population number across the time series period.

The model with the ordinal interaction term showed no gradual RR decreases across years, including
for PNCso.120, thus not confirming the hypothesis of a reduction in DEP toxicity being traceable by
reductions in RR for NCM, CVM and/or RM. The vague trend patterns for RM estimates, with increasing
before decreasing RR for the first and second half of the time period respectively, could, however,
hypothetically be linked with the change in UEZ regulation around the time of the trend pattern’s
turning point. Although RR changes for RM associations were higher than for NCM and CVM for the
model with the dichotomous interaction term, they differ substantially between PNC smaller versus
larger than 120 nm, which the pattern in the model with the annual interaction term does not. Also,
the delayed NCM associations with gradually increasing RR for the years 2016-18 took place in parallel
with relatively larger increases in traffic counts (A40 interstate). However, also this pattern is not
limited to a certain size range, and explicitly not to the ones estimated to include most PNC from
gasoline or diesel exhaust — and an association thus hardly plausible.

Overall, the annual estimates are based on a much smaller data basis than the general (about 10 years)
and dichotomous (4-5 years) models, which may partially explain the reduced robustness to co-
pollutant, particularly NO,, adjustment.

4.6 Strengths and limitations

4.6.1 Basic study setup

Overall, and relative to the current evidence base on UFP-associated health effects, this study bears a
number of relevant strengths. The assessed size-resolved PNC data for a largely uninterrupted period
of almost one decade (2965 days) in association with 95,867 deaths of exposure-relevant causes. The
used exposure and mortality data were sourced from renowned institutions with well-established
quality checks for data gathering and processing. The co-location of the PNC measurement station with
a general air pollution monitoring station, allowed inclusion of both PMo and NO, concentrations for
the exact same location in comparative analyses, only missing PM,s as a third, commonly used,
variable.
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The study area in the German Ruhr Valley is particularly suitable for assessing the association of urban
background concentrations with a larger population (about 1 million residents within the study area),
as permitted by the size and relative homogeneity of the combined agglomeration representing one
of the largest urban areas in Europe. At the same time, the location of the study area was predestined
for assessing time trends on DEP-related PNC exposures during the time of study: Germany was a
country with an overall high absolute and relative prevalence of DPVs, while the very study area was
part of one of the largest UEZ in Europe, with over 75% of the locations of residence of the study
population falling within the UEZ perimeter. This is a rare situation for a UEZ, as at least in Germany,
as they are typically smaller and limited to one city, rather than a larger agglomeration as the case of
the Ruhr Valley. The analysis for effect modification by traffic regulation used three different models
for two main regulatory developments. As an urban background station, the measurements are
assumed to be representative of a large area and not influenced by individual roadways, despite the
relative vicinity of the interstate A40, which is not part of the UEZ.

In view of study comparability, the study population was rather unspecific as it represents the total
population of the respective municipalities. The municipality populations may overall have a slightly
lower than average for Germany SES, as the area is highly urbanized, and also parts of the population
are former coal-mining workers, with possible occupational UFP exposure (before the study period),
which is however less relevant for short-term associations. The statistical power of this study was not
assessed explicitly, but two decisive factors according to Winquist et al. (2012), namely series duration
with almost 10 years and outcome counts with a study population of almost one million and three
common mortality causes accounting to almost 100,000 deaths are relatively large.

4.6.2 Time series methodology

Historically, time series studies have typically been performed in econometrics with the main purpose
of forecasting and data stationarity and autocorrelation as key issues for consideration. In
environmental epidemiology, time series studies are rather used for retrospective analyses. Their use
for statistical analyses of AAP associations with health outcomes remains subject to several
methodological challenges (e.g. Dominici, 2004). Issues include the handling of independent effects by
a particular pollutant amidst potentially confounding covariates and co-pollutants, and autocorrelation
among both AAP and health data (Dominici, 2004; Dominici et al., 2002). Our time series, as any air
pollution time series validates this requirement as outcome values are more likely similar for adjacent
days than for days weeks, months or years apart within the time series. Such autocorrelation is typically
not intrinsic to the outcome results, but largely explained by seasonality and other time-dependent
variables, like meteorology. A detailed reflection on time series regression for environmental
epidemiology can be found elsewhere, such as by Baskaran et al. (2013). We followed the guidance of
renowned statisticians and environmental epidemiologists, including the above-mentioned resources
and those named in Chapter 2.3.3 for the full model and Chapter 2.3.4 for the effect modification
models. The controlling for time-dependent variables was performed based on a DAG in combination
with previously established model correction factors for the same study region, while the sensitivity
analyses for two main co-pollutants showed model robustness, particularly for the full mode and
model with the dichotomous interaction term, and the conducted residual autocorrelation
assessments for the used models fulfilled the criteria with minor limitations as expected for such AAP
time series.
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4.6.3 Statistical modelling approach

For the statistical analysis of time series, the use of GAMs with nonparametric splines for Poisson
regression is well established in AAP epidemiology with several methodological debates among groups
of epidemiologists and biostatisticians having advanced both the methodological elaboration and the
software tools, i.e. code (packages) in R®. Poisson regression was a logic choice, as this time series used
count data, although it theoretically requires observations to be independent. GAMs can be more
flexible than generalized linear models, and in contrast to several other model types do not require
assumptions on the nature/shape of the relationship between dependent and independent variables.
However, early uses of GAM-functions in older statistical software had shown to potential
overestimate AAP effects. For correction, the inclusion of smooth functions to adjust for underlying
time trends confounding outcome and exposure have become an integral part of most AAP time series
studies, e.g. through smoothing splines or natural cubic splines with a parameter defining the number
of internal knots or degrees of freedom. Ravindra et al. (2019) reflected on the utilization of the GAM
function used for this study in more detail by comparing several studies.

4.6.4 Limitations of the methodological setup and statistical modelling decisions

The estimates rendered by the full model may have been subject to the following potential limitations
with the results of under- or overestimation associations:

(i) The basic methodological setup with the use of one urban background station for the AAP exposure
of the population in three adjacent urban areas bears risk of exposure misclassification, i.e. the setup
may have not been accurate and precise enough to detect actual differences in associations for
individual size ranges. This may have been particularly relevant for the model with the ordinal
interaction term with its limited data basis. As auxiliary information, the GIS analysis showed that the
vast majority of municipalities’ inhabitants lived within a 25 km radius of the central monitoring
station.

(ii) DEPs have shown to be more toxic than UFP or PNC generally in terms of long-term effects, but as
the evidence based on short-term toxicity remains relatively weak, other sources may cause UFPs that
are relatively more toxic in the short-term. A limitation that may explain that particle size ranges with,
relative to the assumed main DEP size ranges, smaller and larger particles showed partially higher
mortality associations.

(iii) The selection of PNCsp.120 may not actually have included the majority of DEPs or at least the
particularly toxic fraction of those DEP removed by DPFs installed to meet Euro-4 for whatever reason,
e.g. particle size change over time and distance, or was dominated by other particles which rendered
the changes in DEP concentrations irrelevant.

Few studies have performed source apportionments of UFPs, thus evidence for the proportion, spatial
and temporal dynamics is relatively weak in comparison to larger PM (Li et al., 2018b; Valverde &
Giechaskiel, 2020). UFPs are known to generally be more dynamic in size and concentration over small
distances and time periods than larger PM, however this concerns particularly the smallest UFPs within
the nucleation range (0-30 nm). Overall, source apportionment for traffic has been rated inadequate
by some (e.g. Pant & Harrison, 2013).
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(iv) Short-term mortality may not be sensitive enough for the differences between PNC size ranges,
possibly more imminent biomarkers, e.g. inflammation indicators, would have been more sensitive.
Mortality causes are inherently at a higher risk of outcome misclassification than e.g. the measurement
of inflammation markers.

(vi) The model may have missed to include or not adequately adjusted (e.g. not the right variable or
measure) for critical confounders. Typical confounding variables for air pollution effects on human
health like age or socio-economic status are estimated to remain constant over time, and thus should
do not relevantly affect estimates. This may hold particularly for the models with respiratory mortality
as an outcome due to the relatively lower validity of the model, likely linked with fewer mortality cases.

Finally, the misclassification risk for where persons resided (and were exposed) before death
registration is considered less of an issue for study on short-term effects.

4.6.5 Limitations of effect modification models for traffic regulation accountability

For estimation of the effect modification over time by the change of UEZ regulation and/or the increase
in DPF prevalence following additional, potential limitations are to be named:

(i) Changes in toxicity of diesel exhaust over time may have been too small for detection with our
measurement setup and statistical model or hidden among changes in the toxicity or PNC proportion
of other compounds or mixtures.

(ii) The two models to estimate effect modification may not have been able to detect the modification
actually present: for the UEZ regulation, for example, due to the exemption of interstate traffic and
wide-spread violations; for the DEP prevalence, for example, due to a misrepresentation of the actual
traffic composition by the municipal vehicle registries.

(iii) The model smoothing terms (spline) and/or confounder adjustments (various) may have partly
reduced the strength of an actual difference in association over time.

4.7 Public health relevance

4.7.1 Demand for epidemiological studies on UFP exposures

The health effects and relevance of UFPs (and PNCs) to date has not been as robustly quantified in
contrast to more common AAP components like PMio, PM, s or selected gases. Epidemiological studies
on UFP exposure and human health remain relatively few, particularly size-specific UFP studies are
rare, among others due to data availability and measurement costs. The UBA recently assessed the
current level of knowledge sufficient to call for UFP minimisation, but not for setting regulatory limit
values (Wichmann-Fiebig, 2020), thus implicitly calling for further epidemiological evidence, as now
provided by this dissertation and the peer-reviewed publication in preparation.

4.7.2 Demand for guidance on future monitoring requirements for UFP concentrations

As UFP data availability remains a key limitation for epidemiological studies, a logical first step towards
improving the health relevance estimation of UFPs were monitoring requirements, as have been
gradually introduced for other pollutants. To our knowledge, mandatory UFP monitoring has not been
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introduced at the national level in any country. In anticipation of such requirements, latest upon
introduction of limit values, our study strengthens the call for size-specific UFP and PNC measurements
(i.e. also beyond 100 nm in particle size) at urban background stations, amongst other locations.

4.7.3 Informing future research on UFP exposure

This study, as have others, including those named in the introductory chapters, suggests that the health
effect of UFP PNCs may vary substantially between size fractions and is not limited to PNCs of particles
below 100 nm. The change in mortality association over time observed for the model with the
dichotomous interaction term suggests a possible dependency of PNC RR on chemical, physical or
biological composition and properties beyond size, likely attributable to respective sources. Although
source apportionment remains complex, while requiring additional data, the study results raise the
hypothesis that size ranges may not be the only dominant factor for UFP health effects.

The mortality associations for larger particle size ranges (PNCi20-250, PNCas0-500) in this study question
the sensibility of limiting debate of PNC-associated health effects to particles smaller 100 nm, rather
than defining the upper limit based on the biological logic, such as comparable biological logic, such as
partially defined by the potential to cross blood, placenta or blood-brain barriers.

4.7.4 Contribution to research on policy effects for air pollution

The update of the WHO AQG to be published right upon completion of this study on 23.09.2021 is
expected to draw attention to air quality interventions. Albeit a guideline value for UFP not being
expected, changes in UFP concentrations and related mortality are one indicator for the success of
interventions. The study overall included three of five stage in the accountability framework for AAP
interventions by HEI (2003). Thereby this study assessed effect modification to approximate
accountability for two key traffic-related AAP interventions and could identify possible effect
modification by one of them. Traffic interventions, according to Burns et al. (2020), remain the
dominant AAP interventions, motivating further investigations of its accountability.

4.8 Conclusions

This study indicates that short-term UFP and PNC exposure may increase the risk of NCM, CVM and
RM. Observed associations differed substantially depending on PNC size range, while they were robust
to adjustment to the two main co-pollutants PMjgand NO,. Effect modification over time in relation
to the UEZ banning of non-Euro-4-compliant vehicles indicates potential accountability of the UEZ
regulation for human mortality, while the RR increases for larger particles and PMjg raise the question,
which particle composition or source(s) this can be attributed to.

The study results add to the body of evidence on the health effects of size-differentiated PNC and on
effect modification by time. The identified associations with substantial differences between PNC size-
ranges call for more epidemiological studies on size-specific UFP and PNC exposures, ideally using
datasets that facilitate additional adjustment for PM,s. The findings also motivate further research on
traffic regulation accountability that may include: alternative effect modification models, PNC datasets
with high temporal resolution and additional indicators to facilitate source apportionment, and
outcome datasets allowing the comparison of mortality rates with, possibly more sensitive,
biomarkers.
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6. Annex

6.1 Sensitivity results for full model validation
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Fig. 25: Model validation plots for cardiovascular mortality for the full model (modelled exposure: PNCsp.120; outcome:
cardio-vascular mortality). Four graphics from top left to bottom right: residuals, residuals vs linear predictor, Q-Q plot,
response vs fitted values. Full model adjusted for time trend, day of the week, holidays and summer population decrease,
influenza, temperature and humidity.
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Fig. 26: Model validation plots for respiratory mortality for the full model (modelled exposure: PNCsq.120; outcome:
respiratory mortality). Four graphics from top left to bottom right: residuals, residuals vs linear predictor, Q-Q plot,
response vs fitted values. Full model adjusted for time trend, day of the week, holidays and summer population decrease,
influenza, temperature and humidity.
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6.2 Sensitivity results for full model estimates

6.2.1 Full model with single lags
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Fig. 27: Risk ratios with 95% Cl based on the full model for PNCsq.120 in comparison with larger particles (PNCi20-250,
PNC350-500), With total PNC as PNCj3.500, and with PM;o and NO, for single lags over one week. Full model adjusted for time
trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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Fig. 28: Risk ratios with 95% Cl based on the full model for PNCsq.120 in comparison with its sub ranges (PNCzo.s0, PNCs0-100
and PNCjg-120) and smaller particles (PNCy3.30) for single lags over one week. Full model adjusted for time trend, day of the
week, holidays and summer population decrease, influenza, temperature and humidity.
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6.2.2 Full model - adjusted for PM1g
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Fig. 29: Risk ratios with 95% Cl based on the full model adjusted for PM;, for PNC3.120 in comparison with larger particles
(PNCj120-250, PNC3s0-500), With total PNC as PNC;3.500, and with NO, for two-day aggregate lags over one week. Extended full

model adjusted also for PM;o besides for time trend, day of the week, holidays and summer population decrease, influenza,
temperature and humidity.
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Fig. 30: Risk ratios with 95% Cl based on the full model adjusted for PM; for PNC3p.120 in comparison with its sub ranges
(PNC30-50, PNCs0-100 and PNCjg0-120) and smaller particles (PNC;3.30) for two-day aggregate lags over one week. Extended
full model adjusted also for PM;g besides for time trend, day of the week, holidays and summer population decrease,
influenza, temperature and humidity.
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6.2.3 Full model - adjusted for NO,
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Fig. 31: Risk ratios with 95% Cl based on the full model adjusted for NO, for PNCs¢.120 in comparison with larger particles
(PNCj120-250, PNC3s0-500), With total PNC as PNC;3.500, and with PM;, for two-day aggregate lags over one week. Extended
full model adjusted also for NO besides for time trend, day of the week, holidays and summer population decrease,
influenza, temperature and humidity.
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Fig. 32: Risk ratios with 95% Cl based on the full model adjusted for NO, for PNCs¢.120 in comparison with its sub ranges

(PNC30-50, PNCs0-100 and PNCjg0-120) and smaller particles (PNC;3.30) for two-day aggregate lags over one week. Extended
full model adjusted also for NO; besides for time trend, day of the week, holidays and summer population decrease,
influenza, temperature and humidity.
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6.3 Sensitivity results for effect modification by UEZ regulation

6.3.1 Full model with alternative dichotomous interaction term for before/after the year 2013
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Fig. 33: Risk ratios with 95% Cl based on the full model with the dichotomous interaction term before and after 2013 for
PNC30.120 in comparison with larger particles (PNCi20-250, PNCzs0-500), With total PNC as PNCy3-500, and with PM3o and NO,

for two-day moving average aggregate lags over one week. Full model adjusted for time trend, day of the week, holidays
and summer population decrease, influenza, temperature and humidity.
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Fig. 34: Risk ratios with 95% Cl based on the full model with the dichotomous interaction term before and after 2013 for
PNC30.120 in comparison with its sub ranges (PNCso.50, PNCso.100 and PNCig0.120) and smaller particles (PNci3-30) for two-day
moving average aggregate lags over one week. Full model adjusted for time trend, day of the week, holidays and summer

population decrease, influenza, temperature and humidity.
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6.3.2 Full model with dichotomous interaction term - adjusted for PMig
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Fig. 35: Risk ratios with 95% Cl based on the full model with the dichotomous interaction term adjusted for PM,, for

before and after 2014 for PNCs0.120 in comparison with larger particles (PNCi20-250, PNC2s0-500), With total PNC as PNCi3.s00,

and with NO; for two-day moving average aggregate lags over one week. Extended full model adjusted also for PM1o

besides for time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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Fig. 36: Risk ratios with 95% Cl based on the full model with the dichotomous interaction term adjusted for PM,, for
before and after 2014 for PNCs0.120 in comparison with its sub ranges (PNCsp.so, PNCso.100 and PNCig0.120) and smaller
particles (PNCi3.30) for two-day moving average aggregate lags over one week. Extended full model adjusted also for PMyo
besides for time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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6.3.3 Full model with dichotomous interaction term - adjusted for NO,
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Fig. 37: Risk ratios with 95% Cl based on the full model with the dichotomous interaction term adjusted for NO, for
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before and after 2014 for PNCs0.120 in comparison with larger particles (PNCi20-250, PNC2s0-500), With total PNC as PNCis.500,

and with PMy, for two-day moving average aggregate lags over one week. Extended full model adjusted also for NO,

besides for time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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Fig. 38: Risk ratios with 95% Cl based on the full model with the dichotomous interaction term adjusted for NO, for
before and after 2014 for PNCs0.120 in comparison with its sub ranges (PNCsp.so, PNCso.100 and PNCig0.120) and smaller
particles (PNCi3.30) for two-day moving average aggregate lags over one week. Extended full model adjusted also for NO,
besides for time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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6.4 Sensitivity results for effect modification by DPF prevalence

6.4.1 Full model with ordinal interaction term - adjusted for PMyg
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Fig. 39: Risk ratios compared with the base-year 2009 with 95% Cl based on the full model with the ordinal (annual)
interaction term adjusted for PM;, for smaller particles (PNC;3.30), total PNC as PNCj3.500, and for NO, for immediate
(lag0-1), slightly lagged (lag2-3) and lagged (lag4-7) associations. Extended full model adjusted also for PM;q besides for
time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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Fig. 40: Risk ratios compared with the base-year 2009 with 95% Cl based on the full model with the ordinal (annual)
interaction term adjusted for PM;o for PNC3¢.120 in comparison with its sub ranges (PNCso-s0, PNCsp.100 and PNCjg-120) for
immediate (lag0-1), slightly lagged (lag2-3) and lagged (lag4-7) associations. Extended full model adjusted also for PMyg
besides for time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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6.4.2 Full model with ordinal interaction term - adjusted for NO;
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Fig. 41: Risk ratios compared with the base-year 2009 with 95% Cl based on the full model with the ordinal (annual)
interaction term adjusted for NO, for smaller particles (PNCy3.30), total PNC as PNC;3.500, and for PM;, for immediate
(lag0-1), slightly lagged (lag2-3) and lagged (lag4-7) associations. Extended full model adjusted also for NO; besides for
time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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Fig. 42: Risk ratios compared with the base-year 2009 with 95% Cl based on the full model with the ordinal (annual)
interaction term adjusted for NO, for PNC30-120 in comparison with its sub ranges (PNCsg.so, PNCsg.100 and PNCjgo-120) for
immediate (lag0-1), slightly lagged (lag2-3) and lagged (lag4-7) associations. Extended full model adjusted also for NO,
besides for time trend, day of the week, holidays and summer population decrease, influenza, temperature and humidity.
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