
Characterizations and Algorithms for Special Digraph

Classes

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Vorgelegt von

Dominique Komander

aus Düsseldorf

16th December 2021

Aus dem Institut für Informatik

Mathematisch-Naturwissenschaftlichen Fakultät

Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät

Heinrich-Heine-Universität Düsseldorf

Berichterstatter:

1. PD Dr. Frank Gurski

2. Prof. Dr. Egon Wanke

Tag der mündlichen Prüfung: 01.03.2022

Acknowledgements

First, I would like to thank my supervisor and academic mentor PD Dr. Frank Gurski for all

the support and teaching. As well, I would like to thank my second supervisor Prof. Dr. Egon

Wanke for his good advices. In addition, I would like to thank Frank Gurski and Van Bang Le

for the very useful discussions about directed versions of distance-hereditary graphs. Since

parts of the research was funded by the Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation, I would also like to thank the DFG for the funding. And finally, I

would like to thank my wonderful parents and my beloved sister who are my biggest fans and

supporters, and at the same time, what I value most in life.

Abstract

The investigation of directed graph classes is highly motivated by the existence of NP-hard

problems on directed graphs, which can be solved faster when restricted to special directed

graph classes. But besides designing algorithms for hard problems, there are some open spots

in the characterization of directed graph classes that are already solved for undirected graphs.

The objective of this work is to expand the research in the field of directed graph classes

and show on several examples how we can use the structures of special directed graphs to

solve NP-hard problems, in some cases even in linear time. We deepen the understanding of

several directed graph classes and show a new directed version of distance-hereditary graphs,

namely twin-distance-hereditary graphs, fit them into the hierarchy and characterize them by

a set of forbidden induced subdigraphs. We show some properties of this new directed graph

class which are algorithmical useful for solving problems on this class. Furthermore, we

study some directed graph parameters, compare them on semicomplete digraphs, and show

an efficient computation of some directed width parameters on recursive defined directed

graph classes as, e.g., directed co-graphs, and related classes. Moreover, we focus on different

NP-hard digraph problems, namely the subset sum problem with (weak) digraph constraints,

the directed Steiner path cover problem and several vertex and arc colorings on directed

and oriented graphs. We show how to solve these problems on various recursive directed

graph classes using dynamic programming by exploiting the underlying tree structure of the

recursive digraph classes. Doing so, we achieve more efficient algorithms, in some cases we

even show linear time solutions. Thus, with this work we take another small step to expand

research in the rather young field of directed graph classes.

Contents

1 Introduction 5

2 Basic Definitions 9

2.1 Notations . 9

2.2 Graph Parameters . 13

2.3 Directed Graph Classes . 24

3 Recursive Digraph Classes 27

3.1 Introduction . 27

3.2 Undirected Recursive Graph Classes . 27

3.2.1 Co-graphs . 27

3.2.2 Distance-Hereditary Graphs . 28

3.2.3 Series-Parallel Graphs . 29

3.2.4 Subclasses of Directed Co-graphs 30

3.3 Directed Co-graphs . 30

3.3.1 Definition of Directed Co-graphs 30

3.3.2 Oriented Co-graphs . 34

3.3.3 Extended Directed Co-graphs . 35

3.3.4 Isomorphism Problem on Oriented Co-graphs 36

3.4 Subclasses of Directed Co-graphs . 37

3.4.1 Oriented Threshold Graphs . 39

3.4.2 Threshold Digraphs and Ferres Digraphs 41

3.4.3 Further Subclasses of Directed Co-graphs 42

3.5 Twin-dh Digraphs . 42

3.5.1 Distance-Hereditary Digraphs . 42

3.5.2 Motivation of Defining a New Class 45

3.5.3 Properties . 47

3.5.4 Sub- and Superclasses . 49

3.5.5 Characterization by Forbidden Induced Subdigraphs 52

3.6 Directed SP-graphs . 56

3.6.1 MSP-digraphs . 56

3.6.2 Series-parallel Digraphs . 58

3.6.3 Series-parallel Partial Order Digraphs 58

1

2 CONTENTS

3.6.4 Properties of Series-parallel Partial Order Digraphs 59

3.6.5 ESP-digraphs . 60

3.7 Hierarchy . 62

4 Directed Graph Parameters on Special Digraphs 65

4.1 Parameters on Semicomplete Digraphs . 65

4.1.1 Parameters on General Digraphs 66

4.1.2 DAG-width and Directed Path-width on Semicomplete Digraphs . . 67

4.1.3 Escaping Pursuit in the Jungle: Directed Path-width, Directed Tree-

width and Kelly-width . 69

4.1.4 Directed (Linear) Clique-width and Directed Path-width on Semi-

complete Digraphs . 71

4.1.5 Summary and Conclusion . 71

4.2 Parameters on (Extended) Directed Co-graphs 73

4.2.1 Directed Path-width on (Extended) Directed Co-graphs 73

4.2.2 Directed Tree-width on (Extended) Directed Co-graphs 74

4.2.3 Further Directed Width Measures on Extended Directed Co-graphs 82

4.2.4 Overview of Directed Width Measures on Extended Directed Co-graphs 82

4.3 Parameters on Twin-dh Digraphs . 85

4.3.1 Directed Graph Parameters with a Tree-like Decomposition 85

4.3.2 Directed Clique-width . 86

4.3.3 Conclusion . 88

5 NP-hard Problems: SSG and SSGW 89

5.1 Introduction . 89

5.2 Problem Definition . 90

5.3 Basic Results . 92

5.4 SSG and SSGW on Directed Co-graphs 96

5.4.1 Subset Sum with Digraph Constraint (SSG) 96

5.4.2 Subset Sum With Weak Digraph Constraint (SSGW) 98

5.5 SSG and SSGW on Series-parallel Digraphs 102

5.5.1 Subset Sum with Digraph Constraint (SSG) 103

5.5.2 Subset Sum with Weak Digraph Constraint (SSGW) 105

5.6 Conclusions . 107

5.6.1 An Outlook to the Knapsack Problem with Special Neighbor Constraints108

6 NP-hard Problems: Directed Steiner Path Covers 111

6.1 Introduction . 111

6.2 Normal form for Directed Steiner Path Covers 113

6.3 Computing the Optimal Number of Paths 117

6.4 Computing the Optimal Number of Steiner Vertices 118

6.5 Computing an Optimal Directed Steiner Path Cover 123

6.6 Conclusion . 123

CONTENTS 3

7 NP-hard Problems: Digraph Coloring 125

7.1 Introduction . 125

7.2 Undirected Graph Coloring . 127

7.3 Oriented Coloring . 128

7.3.1 Oriented Coloring on MSP-digraphs 130

7.3.2 Oriented Coloring on Transitive Acyclic Digraphs 133

7.3.3 Oriented Coloring on Oriented Co-graphs 134

7.3.4 Oriented Coloring on ESP-digraphs 135

7.4 g-oriented r-coloring . 137

7.5 Oriented Arc-coloring . 138

7.5.1 Oriented Arc-coloring of ESP-digraphs 139

7.5.2 Oriented Arc-coloring of MSP-digraphs 140

7.6 Acyclic Coloring . 141

7.6.1 Acyclic Coloring on Directed Co-graphs 141

7.6.2 Acyclic Coloring Parameterized by Directed Clique-width 143

7.7 Conclusions and Outlook . 149

8 Conclusions and Outlook 151

9 Bibliography 153

10 Appendix 169

10.1 Contributions . 169

10.2 Affirmation in lieu of an oath . 173

4 CONTENTS

1 Introduction

Graphs are frequently used to model networks, problem settings or relations. These problems

can be connectivity or network flow problems. In such a graph we have vertices which

represent certain objects and arcs or edges that model the relation between the different

objects. However, there are many cases in which this does not suffice as the structure of the

problem is more complex. When modeling an infrastructure network for example, especially

in urban areas we have many one-way streets that cannot be passed in both directions. Also,

when modeling time sequences we need a model which represents that one event happens

after an other, such that we need an order within the objects. In modeling relationships,

there also could be one-way connections. Probably, every student at the university knows

the director, but conversely she does not know every student at the university. This is how

directed graphs come into play. In a directed graph, or digraph for short, we have vertices as

our main elements, and directed edges (which are also called arcs), that set the vertices in

relation to each other.

There are several NP-hard problems on directed graphs, such as different coloring prob-

lems, the directed Hamiltonian path problem or the directed path-width problem. At this point,

the analysis of certain directed graph classes becomes interesting. Since NP-hard problems

are not solvable in polynomial time, assuming that P6=NP holds, we try to come closer to a

solution by restricting our input digraph with several structural constraints. A set of digraphs

that fulfills several restrictions, is called digraph class. Bang-Jensen and Gutin [BJG18]

present an overview on several directed graphs classes such as tournaments or semicomplete

digraphs and planar digraphs. Especially tournaments received significant attention in the past

[CS11, KS15]. A frequently used digraph class is the set of directed acyclic graphs (DAGs),

see [KN09, ALLM16]. In [VSR+18] for example, a DAG is used to represent a vehicle

sharability network in a special variation of the minimum fleet problem. Another possibility

for restriction is to regard special rules with which the members of a special digraph class

can be constructed. Therefore, we start with a very basic digraph as, e.g., with the one vertex

digraph which consists of only one vertex. Then, we can follow certain instructions to build

larger digraphs and insert edges. Such a construction of a digraph is called decomposition.

An example of a digraph class with a recursive structure is the class of directed co-graphs.

When extending this class by special rules, we come to extended directed co-graphs, which

are a superclass of DAGs, the well-known class we mentioned before. Superclass means,

that every directed acyclic graph can be constructed following instructions from the class of

extended directed co-graphs.

5

6 CHAPTER 1. INTRODUCTION

The aim of this work is the deeper exploration of some directed graph classes and extend

the research in this field. In addition, we show how to solve several NP-hard digraph problems

more efficiently, when restricted to a special digraph class. But how could hard problems get

easier of a sudden? We achieve this by exploiting the restrictions on the input digraphs and

develop algorithms that use these structures to find a solution without checking every possible

subsolution or combinations of those, which is often the reason for the high complexity of

the problem. Using these restrictions, the input digraphs have a special tree-structure or

it is possible to build a tree-like decomposition in a reasonable amount of time. On this

tree-structure it is possible to work with dynamic programming, such that there are less

subsolutions which must be considered within the computation. This is how we reduce the

complexity of the problem and save time. Among the NP-hard problems we consider several

directed graph parameters, multiple coloring problems, directed Steiner Path covers (which

are related to the well known Hamiltonian path problem) and subset sum problems with

digraph constraints. Also we investigate some new digraph classes and characterize them in

different ways. This can help e.g., in solutions for solving recognition problems.

This work is structured as follows. In the second chapter, we start with some necessary

notation and basic definitions of digraphs, directed graph parameters and some common

directed graph classes.

Afterwards, we continue with recursive digraph classes, which play an important role

in this work. We start with definitions of several well-known undirected graph classes

such as co-graphs, series-parallel graphs and distance-hereditary graphs and continue with

several directed versions of these classes. We aim to deepen the understanding about the

properties of these classes. Thus, we characterize the classes in different ways, e.g., by

restricted graph parameters or forbidding a set of induced subdigraphs. In this sense there

is extensive research on undirected graph classes, meanwhile the research in the directed

classes is not as advanced. There already exist several useful definitions of directed co-graphs,

especially the characterization by forbidding eight induced subdigraphs by Crespelle and Paul

[CP06]. We show similar characterizations for sub- and superclasses of directed co-graphs,

each one of them motivated by the corresponding undirected class. Nevertheless, the set of

forbidden induced subdigraphs of these classes looks very different than the undirected ones.

Furthermore, we investigate a digraph class that is motivated by distance-hereditary graphs

[How77]. These graphs maintain their distance heredity property when deleting vertices

and the corresponding edges from the graph. The same attempt was made by [LS10] called

distance-hereditary digraphs. Unfortunately, this directed version of distance-hereditary

graphs does not fulfill some other useful properties of the undirected class. Among others,

there is no recursive structure by twins and pendant vertices which defines a digraph, which

is very useful in the undirected version for several algorithms. Moreover, we do not have a

bound of the famous graph parameter directed clique-width. To overcome this drawback, we

introduce another version, the so-called twin-distance-hereditary digraphs (twin-dh digraphs).

For this class we present a definition by several directed versions of twins and pendant vertices,

a characterization by a set of forbidden induced subdigraphs and we show a tight upper bound

for directed clique-width.

In the fourth chapter, we talk about some results on directed graph parameters on several

digraph classes. While tree-width and clique-width are the most famous parameters in

7

undirected graph theory, at least directed tree width is not such a clear winner on digraphs.

While the definition of directed clique-width [CO00] is very straightforward, there are several

attempts to transfer the tree-width concept to directed graphs. Among these there are directed

tree-width [JRST01b], DAG-width [BDHK06] or Kelly-width [HK08], as well as measures

like directed path-width which are related to the well-known path-width for undirected graphs.

And those are not all of them. The corresponding decision problems, whether a digraph has

width k for some integer k, are at least NP-hard in general. But computing or bounding these

parameters is very useful for developing parameterized algorithms. We give a comparison

of some of these parameters for the directed graph class semicomplete digraphs, which are

digraphs for which the underlying undirected graph is a clique. Especially this digraph class

is interesting in this context, since the undirected parameters are often neither useful nor

meaningful on a clique. However, directed parameters are not as trivial on semicomplete

digraphs, which due to the different directions have a much more complex structure than

an undirected clique. For directed co-graphs we show that we can compute some directed

graph parameters with quite straightforward formulas using the construction rules. For some

parameters, this is even possible on extended directed co-graphs, such that the results are

transferable to the previously mentioned twin-dh digraphs.

In Chapter 5, 6 and 7 we show how to solve certain digraph problems on several digraph

classes.

More concretely, in Chapter 5 we investigate the subset sum problem with (weak) digraph

constraints (SSG and SSGW) on directed co-graphs and on series-parallel digraphs. Within

the well-known subset sum problem we try to fit a subset of maximum size of items into

a given capacity. Additionally, we have to fulfill certain digraph constraints. Since both

problems are NP-hard even on oriented co-graphs as well as on minimal series-parallel

digraphs (msp-digraphs), we give pseudo-polynomial1 solutions. For these solutions, we use

the recursive structure and compute the subsolutions along the decomposition of the digraph

classes.

Further on, in Chapter 6 we regard the directed Steiner path cover problem. The (directed)

Steiner path problem is a special variant of the (directed) Steiner tree problem in which the

so-called terminal vertices must lie on one path of minimal cost. Since a (directed) Steiner

path not always exists, it makes sense to look at a directed Steiner path cover. Given a directed

graph G and a set of so-called terminal vertices, the problem is to find a directed Steiner path

cover for G, which is a set of vertex-disjoint simple directed paths, that contain all terminal

vertices as well as some non-terminal vertices if needed. The size of a directed Steiner path

cover is defined as the number of Steiner paths, while the cost of a directed Steiner path cover

is the minimum number of Steiner vertices in a directed Steiner path cover of minimum size.

The associated decision problem is NP-hard such that we consider it on directed co-graphs, for

which there is a linear time solution using the recursive structure and the forbidden induced

subdigraphs.

In Chapter 7 we then talk about the coloring of digraphs. Although directed coloring

problems such as oriented vertex and arc coloring as well as acyclic colorings are NP-

1Pseudo-polynomial means polynomial in some numerical value of the input instead of the length of the

input.

8 CHAPTER 1. INTRODUCTION

hard problems, we provide tight upper bounds and linear time solutions on several recursive

digraph classes such as minimal series-parallel digraphs and edge series-parallel digraphs (esp-

digraphs), acyclic transitive digraphs and (oriented) directed co-graphs. The corresponding

problem in acyclic coloring is called the Dichromatic number problem which is obviously

motivated by one very fundamental problem in graph theory which is the Chromatic number

problem. As already mentioned it is an NP-hard problem. Thus, we give a parameterized

algorithm for solving this problem with respect to the parameter directed clique-width. This

implies that there exists a polynomial time solution on digraphs of bounded directed clique-

width, like for example on twin-dh digraphs, which we invented in the third chapter.

2 Basic Definitions

2.1 Notations

In this chapter we start with some terminology and notations which we use within this work.

As a reference for definitions around digraphs we use Bang-Jensen and Gutin [BJG09]. We

consider exclusively graphs without loops or multi-edges if not explicitly stated.

A graph G is a pair G = (V,E) of vertices and edges E ⊆ {u,v} | u,v ∈V,u 6= v}. Corre-

spondingly, a directed graph, digraph for short, is a pair G = (V,E) of vertices and directed

edges or arcs E ⊆ {(u,v) | u,v ∈V,u 6= v}. At some points we use the following notation for

edges and vertices for sake of simplicity: For a (directed) graph G, we denote by V (G) the

vertex set and E(G) the edge set of G.

Let und(G) be the underlying undirected graph of a digraph G, which arises by replacing

every edge (u,v) by {u,v} and deleting multi-edges. If (u,v) and (v,u) exist both, we call them

bidirectional edges or symmetric edges. If an edge is not symmetric we call it asymmetric. The

spanning subdigraph with only symmetric arcs is denoted by sym(G), which is the symmetric

part of digraph G. We define asym(G) as the asymmetric part, respectively. There are different

ways to give an undirected graph G a special orientation such that it becomes digraph D, see

[BJG09]. We illustrate the different occasions in Figure 2.1. If we replace every edge {u,v}
of E(G) by

• one of the arcs (u,v) and (v,u), we denote D as an orientation of G. Every digraph D

that can be obtained by an orientation of an undirected graph G is called an oriented

graph.

• one or both of the arcs (u,v) and (v,u), we denote D as a biorientation of G. A digraph

D that we get by a biorientation of an undirected graph G is called a bioriented graph.

• both arcs (u,v) and (v,u), we denote D as a complete biorientation of G. Since in this

case D is well defined by G we also denote it by
←→
G . A digraph D that we obtain by a

complete biorientation of an undirected graph G is called a complete bioriented graph.

A (di)graph G′ = (V ′,E ′) is a sub(di)graph of G = (V,E) if we have V ′ ⊆ V as well as

E ′ ⊆ E. A vertex set V ′ ⊆V (G) induces a graph G′, if E(G′)⊆ E(G) and for every edge in

G it holds that if u,v ∈ V ′ then (u,v) ∈ E(G) implies (u,v) ∈ E(G′). Then G′ is called an

induced sub(di)graph of G. For short we define with G[V ′] the sub(di)graph induced by the

9

10 CHAPTER 2. BASIC DEFINITIONS

G0 G1 =
←→
G0 G2 G3

Figure 2.1: An undirected graph G0, its complete biorientation G1, G2 which is an orientation

of G0 and G3 which is a biorientation of G0.

vertex set V ′. Looking at a (di)graph class F we define Free(F) as the set of all (di)graphs G

such that there is no induced sub(di)graph of G isomorphic to a (di)graph of F .

An independent set in a (di)graph G is a subset I ⊆V (G) such that none of the vertices

v,u ∈ I are connected by an edge. In contrast, a clique in a graph G is a subset C⊆V (G) such

that for every vertices v,u ∈C with u 6= v are connected by an edge. A directed clique in a

digraph G is a subset C′ ⊆V (G) such that for every vertices v,u ∈C′ with u 6= v are connected

by bidirectional edges.

The neighborhood of a vertex v in an undirected graph G is denoted by N(v)= {u | {u,v}∈
E(G)}. For a digraph G we distinguish between the set of predecessors N−G (v) = {u | (v,u) ∈
E(G)}, called in-neighbors, and the set of successors N+

G (v) = {u | (v,u) ∈ E(G)}, called out-

neighbors. A vertex is a source if it has no in-neighbors and a sink if it has no out-neighbors.

The outdegree of v denoted by outdegreeG(v) = |N
+
G (v)| is the number of successors of v and

the indegree of v is the number of predecessors denoted by indegreeG(v) = |N
−
G (v)|. For the

neighbors as well as for the degrees we omit indices if the graph under consideration is clear

from the context. The maximum outdegree is denoted by ∆+(G) = maxv∈V outdegree(v) while

the maximum indegree is ∆−(G) = maxv∈V indegree(v). The maximum (vertex) degree of

digraph G is denoted by ∆(G) = maxv∈V (G){outdegree(v)+ indegree(v)} and the maximum

semidegree by ∆0(G) = max{∆−(G),∆+(G)}.

For a digraph G a strongly connected component is an induced subdigraph H of G

such that for all vertices u,v ∈ V (H), there is a directed walk from u to v in H as well

as a directed walk from v to u in H. A strong component of G is a maximal strongly

connected component of G, i.e., a strongly connected component H of G such that there is no

vertex v ∈V (G)\V (H) such that the induced subdigraph of G generated by V (H)∪{v} is

a strongly connected component of G. Notice that, all strong components of a digraph are

vertex-disjoint. A digraph G is weakly connected if und(G) is connected, such that a weakly

connected component of G is a maximal subdigraph, such that the corresponding underlying

graph is connected (maximal in terms of non-extensibility). A vertex v in digraph G is called a

bioriented leaf if there is (u,v),(v,u) ∈ E(G) and if v is a leaf in und(G), such that in und(G)
it holds that |Nund(G)(v)|= 1. A digraph G is transitive if for every two edges (u,v) ∈ E(G)
and (v,w) ∈ E(G) it holds that also (u,w) ∈ E(G). The digraph tc(G) is the transitive closure

of G if V (tc(G)) =V (G) and for two distinct vertices u,v there is an edge (u,v) ∈ E(tc(G))
if and only if vertex v is reachable from u in digraph G. A (di)graph G is bipartite if we can

divide V (G) into two distinct possibly empty independent sets A⊆V (G) and B⊆V (G). For

an illustration of an example of an oriented bipartite graph see Figure 2.2.

2.1. NOTATIONS 11

Figure 2.2: An oriented bipartite graph.

We continue with members of some well known (di)graph classes where n is the number

of vertices of the respective (di)graph.

• An oriented path is
−→
Pn = ({v1, . . . ,vn},{(v1,v2), . . . ,(vn−1,vn)}) with n≥ 2.

• A path is Pn = ({v1, . . . ,vn},{{v1,v2}, . . . ,{vn−1,vn}}) with n≥ 2.

• An oriented cycle is
−→
Cn = ({v1, . . . ,vn},{(v1,v2), . . . ,(vn−1,vn),(vn,v1)}) with n≥ 2.

• A cycle is Cn = ({v1, . . . ,vn},{{v1,v2}, . . . ,{vn−1,vn},{vn,v1}}) with n≥ 2.

• A bidirectional complete digraph is
←→
Kn = ({v1, . . . ,vn},{(vi,v j) | 1≤ i 6= j ≤ n}) with

n≥ 1. This is also called bioriented clique.

• A complete graph is Kn = ({v1, . . . ,vn},{{vi,v j} | 1 ≤ i 6= j ≤ n}) with n ≥ 1. Thus,

the vertices of these graphs form a clique.

• An oriented complete bipartite digraph is
−−→
Kn,m = ({v1, . . . ,vn,w1, . . . ,wm},{(vi,w j) |

1≤ i≤ n,1≤ j ≤ m}).

• A complete bipartite graph is Kn,m = ({v1, . . . ,vn,w1, . . . ,wm},{{vi,w j} | 1≤ i≤ n,1≤
j ≤ m}).

• An edgeless (di)graph is In = ({v1, . . . ,vn},{}).

A DAG (directed acyclic graph) is a digraph that does not contain a
−→
Cn, with n ≥ 2, as

subdigraph. A tree is a connected undirected graph without cycles while a forest is the

union of trees, such that forests are the class of cycle free undirected graphs. We have a

distinguished root in a possibly directed tree T and a vertex v with |Nund(T)(v)|= 1 is called

leave. An oriented forest (tree) is any orientation of a forest (tree). The class of oriented trees

is denoted by OT. An out-tree (in-tree) is an orientation of a tree with a root with indegree

(outdegree) zero such that all arcs are directed away from (to) the root. In some literature an

out-tree is called an arborescence. We have a deeper look into directed graph classes and

their characterization in Chapter 3.

Vertex v is reachable from vertex u in G, if there exists a directed path in G from u to v.

Further, we call G odd cycle free, if it contains no
−→
Cn for an odd number n as subdigraph. We

call a digraph even, if it contains a directed cycle of even total weight for every 0-1-weighting

of the edges. A vertex v ∈V is out-dominating (in-dominated) if it is adjacent to every other

12 CHAPTER 2. BASIC DEFINITIONS

vertex in V and is a source (a sink, respectively). We call a linear order of the vertices of a

digraph such that for every edge (u,v), vertex u is before vertex v in the order a topological

ordering of this digraph.

For a directed graph G = (V,E) its complement digraph is defined by

co-G = (V,{(u,v) | (u,v) 6∈ E,u,v ∈V,u 6= v})

or G for short and its converse digraph is defined by

Gc = (V,{(u,v) | (v,u) ∈ E,u,v ∈V,u 6= v}).

The complement of an undirected graph is

co-G = (V,{{u,v} | {u,v} 6∈ E,u,v ∈V,u 6= v}).

For a digraph class X we define by co-X = {co-G | G ∈ X}. For a digraph G and an integer d

let dG be the disjoint union of d copies of G.

The notations and results below are from [KL15, Chapter 2] where they are introduced

for undirected graphs. They can be transferred, as they also hold for directed graphs. This

part can also be found in [GKR21c].

Classes of (di)graphs which are closed under taking induced sub(di)graphs are called

hereditary. Given a (di)graph class F , then Free(F) is the set of all (di)graphs G such that no

induced sub(di)graph of G is isomorphic to a (di)graph in set F .

Theorem 2.1.1 ([KL15]). For a class of (di)graphs X, this class is hereditary if and only if

there is a set F for that holds that Free(F) = X.

A (di)graph G is a minimal forbidden induced sub(di)graph for a hereditary class X if G

does not belong to X and if also every proper induced sub(di)graph of G is a member of X .

Given a hereditary (di)graph class X let Forb(X) be the set of all minimal forbidden induced

sub(di)graphs of X .

Theorem 2.1.2 ([KL15]). For a hereditary class of (di)graphs X it holds that X =Free(Forb(X)),
and the set Forb(X) is unique and of minimum size.

Theorem 2.1.3 ([KL15]). It holds that Free(F1)⊆ Free(F2) if and only if for every (di)graph

G ∈ F2 there exists a (di)graph H ∈ F1 where H is an induced sub(di)graph of G.

Lemma 2.1.4 ([KL15]). Let X = Free(F1) and Y = Free(F2) be hereditary (di)graph classes.

Then, it holds that X ∩Y = Free(F1∪F2) and co-X = Free(co-F1).

Observation 2.1.5 ([GKR21c]). Let G be a digraph with G ∈ Free(X) for a hereditary class

of digraphs Free(X). Further, there exists a digraph X∗ ∈ X such that every biorientation of

und(X∗) is in Free(X). Then, it holds that und(G) ∈ Free(und(X∗)).

Observation 2.1.6 ([GKR21c]). Let G be a digraph such that und(G) ∈ Free(X) for a

hereditary class of digraphs Free(X), then it holds for all X∗ ∈ X and all biorientations b(X∗)
of X∗ that G ∈ Free(b(X∗)).

2.2. GRAPH PARAMETERS 13

We continue with a short excursion into computational complexity theory. In complexity

theory we classify problems into certain complexity classes such that two problems in a class

have the same complexity in the sense that they have the same upper bound. Two of the major

classes here are P and NP, especially as it is still not proven if P is a proper subset of NP or if

the two classes are equal. All decision problems in P can be solved in polynomial time while

decision problems in NP can be solved in non-deterministic polynomial time (in polynomial

time by a non-deterministic Turing machine). As already mentioned in the introduction, we

assume that P 6= NP applies. For a deeper look into complexity theory we refer to the famous

work of Garey and Johnson [GJ79].

In complexity theory there is a part called parameterized complexity. Within parameter-

ized complexity we classify problems according to their hardness with respect to different

parameters of the input. By this parameterizations we want to solve NP-hard problems

efficiently in practice. Intuitively, we want to exchange the high number of vertices within

the exponent by a smaller fixed parameter. XP is the class of all parameterized problems

which can be solved by algorithms that are polynomial if the parameter is considered to be

a constant. FPT is the class of all parameterized problems that can be solved by algorithms

that are exponential only in the size of a fixed parameter k while polynomial in the size of

the input x, thus in time f (k)|x|O(1) for a computable function f . For more details about both

classes see [DF13]. Parameters that can be used in this field are presented in the next Section.

2.2 Graph Parameters

A (directed) graph parameter of a (di)graph G is a function α that maps from (di)graph

G to an integer. We call two graph parameters α and β equivalent, if there exist functions

f ,g such that for every (directed) graph α(G)≤ f (β(G)) and β(G)≤ g(α(G)). A (directed)

width parameter or (digraph) width measure is as well a graph parameter which often has an

underlying structure or decomposition.

In this section we give a more formal definition for some directed width parameters

especially by so-called decompositions. Many of these tree-width inspired directed graph

parameters correspond to different variants of cops and robber games, which we also define

later in this section. The content from this section is mostly from [GKR21b] and [GKRW21].

Undirected path-width and tree-width

The concept of tree-width was developed, among others, by Robertson and Seymour [RS86].

The idea of tree-width is straightforward as it describes how tree-like a graph is. Thus, forests

are exactly the graphs with tree-width 1.

Definition 2.2.1 (Tree-width). For a graph G a tree-decomposition is a tuple (X ,T) where T

is a tree and X = {Xu | Xu ⊆V (G),u ∈V (T)} is a set of subsets of V (G) which satisfies the

following conditions:

1.
⋃

u∈V (T) Xu =V (G).

14 CHAPTER 2. BASIC DEFINITIONS

2. For two distinct vertices u,v ∈ V (G) and every edge {u,v} ∈ E(G) there is a vertex

t ∈V (T) with both vertices u,v ∈ Xt .

3. For every vertex v ∈V (G) the corresponding tree vertices u ∈ T with v ∈ Xu induce a

connected subtree.

The width of a tree-decomposition (X ,T) is

max
u∈V (T)

|Xu|−1.

The tree-width of a graph G, denoted by tw(G), is the minimum width of all possible tree-

decompositions for G.

The decision whether a graph G has tree-width of at most k is an NP-complete problem

[ACP87]. If k is a fixed constant, the recognition of a graph of tree-width k as well as the

construction of a corresponding tree-decomposition of at most width k is possible in linear

time [Bod96].

If we restrict the tree in a tree-decomposition to be a path, we get the definition of

path-width. We take an equivalent definition from [RS83].

Definition 2.2.2 (Path-width). A sequence of subsets (X1, . . . ,Xr) with Xi ⊆V (G) and 1≤
i≤ r, is a path-decomposition for graph G if the following conditions are satisfied.

1. X1∪·· ·∪Xr = V (G).

2. For every edge {u,v} ∈ E(G) there exist a Xi, 1≤ i≤ r, such that u,v ∈ Xi.

3. If u ∈ Xi and u ∈ X j for an u ∈V (G) and two indices i, j with i≤ j, then u ∈ Xℓ for all

indices ℓ with i≤ ℓ≤ j.

The width of a path-decomposition is

max
1≤i≤r

|Xi|−1.

The path-width of G, denoted by pw(G) is the minimum width over all possible path-

decompositions for G.

The decision whether a graph G has path-width of at most k is an NP-complete problem

[ACP87].

Directed path-width

The notion of directed path-width was introduced by Reed, Seymour, and Thomas in the

1990s and leads a restriction of directed tree-width which is defined by Johnson, Robertson,

Seymour, and Thomas in [JRST01b]. The following subsections are taken from [GKR21b].

Definition 2.2.3 (Directed path-width). A directed path-decomposition of a directed graph

G is a sequence (X1, . . . ,Xr) of subsets of V (G), called bags, such that the following three

conditions hold.

2.2. GRAPH PARAMETERS 15

(dpw-1) X1∪·· ·∪Xr = V (G).

(dpw-2) For each (u,v) ∈ E(G) there is a pair i≤ j such that u ∈ Xi and v ∈ X j.

(dpw-3) If u ∈ Xi and u ∈ X j for an u ∈V (G) and two indices i, j with i≤ j, then u ∈ Xℓ for

all indices ℓ with i≤ ℓ≤ j.

The width of a directed path-decomposition X = (X1, . . . ,Xr) is

max
1≤i≤r

|Xi|−1.

The directed path-width of G, d-pw(G) for short, is the smallest integer k such that there is a

directed path-decomposition of G of width k.

The following illustrations which exemplify some of the digraph parameters are taken

from [GKR21b].

Example 2.2.4. In Figure 2.4 we show an illustration of a directed path-decomposition for a

digraph G, see Figure 2.3.

1

2

4

3

5

6

7G

Figure 2.3: A digraph G which is used in Examples 2.2.4, 2.2.9, 2.2.15 and 2.2.19 to illustrate

a decompositions of the corresponding width measures.

Every DAG has directed path-width 0. Furthermore, several types of tree-like digraphs

have directed path-width 1 [GR19b].

There are several definitions of directed path-width, e.g. there exists a cops and robber

variant for directed path-width [Bar06]. Additionally, there is the well known concept of the

directed vertex separation number which is equivalent to the directed path-width [YC08].

Definition 2.2.5 (Directed vertex separation number, [YC08]). Let G be a digraph and

L : V (G)→ {1, . . . , |V (G)|} a linear layout of G. Let further DVL(i) = {x ∈ V (G)|∃y ∈
V (G) such that (y,x) ∈ E(G) and L(x) ≤ i and L(y) > i}. The directed vertex separation

of G w.r.t. L (dvsL(G)) is defined as dvsL(G) = max{|DVL(i)| : 1 ≤ i ≤ |V (G)|}. The

directed vertex separation of G is the minimum over all layouts dvs(G) = min{dvsL(G) :

L is a linear layout of G}.

Lemma 2.2.6 ([YC08]). Let G be a digraph, then d-pw(G)≤ pw(und(G)).

The proofs shown in [YC08] use the notation of directed vertex separation number.

16 CHAPTER 2. BASIC DEFINITIONS

5,6,7 1,4 1,2 1,3

3

3 33

2
1

4

6,75,6 5,7

7
5

6

Figure 2.4: An illustration of a directed path-decomposition (left) of width 2 and an arboreal

tree-decomposition (right) of width 3 for digraph G, see Figure 2.3. In the aboreal tree-

decomposition, the Xe set is represented as a square on the respective edge e, while the W

sets are represented as round vertices of the out-tree. For sake of simplicity the set braces are

omitted.

Lemma 2.2.7 ([Bar06]). Let G be a complete bioriented graph, then d-pw(G) = pw(und(G)).

The proof is straightforward since for a complete bioriented graph G a directed path-

decomposition of width k is a path-decomposition of width k for und(G), and vice versa.

Directed tree-width

We use the directed tree-width introduced by Johnson et al. [JRST01b, JRST01a]. There are

different directed tree-width definitions such as forbidding and allowing empty sets Wr in

[JRST01a, JRST01b], using sets Wr of size one only for the leaves of T in [Ree99] and using

strong components within (dtw-2) in [DES14, Chapter 6]. Further, in works of Courcelle et

al. [Cou18, CE12, CO00] the directed tree-width of a digraph G is defined by the tree-width

of the underlying undirected graph.

A directed walk in digraph G=(V,E) is an alternating sequence W =(u1,e1,u2,e2,u3, . . . ,
ek−1,uk) of vertices vi ∈V , 1≤ i≤ k, and edges ei ∈ E, 1≤ i≤ k−1, such that ei = (ui,ui+1),
1≤ i≤ k−1, if the vertices of the directed walk W are distinct, then W is a directed path.

For two vertices u,v of an out-tree T the notation u≤ v means that there is a directed path

on ≥ 0 arcs from u to v and u < v means that there is a directed path on ≥ 1 arcs from u to v.

Let G = (V,E) be a digraph and Z ⊆ V . The digraph G[V −Z] which is obtained from

G by deleting Z will be denoted by G−Z. A vertex set S⊆V \Z is Z-normal if there is no

directed walk in G−Z with first and last vertices in S that uses a vertex of G− (Z∪S). In

other words, a set S⊆V is Z-normal, if every directed walk which leaves and again enters S

must contain a vertex from Z.

As W≥v =
⋃

ṽ≥vWṽ we define the union of the sets Wṽ of all (indirect) successors ṽ of v

including Wv.

2.2. GRAPH PARAMETERS 17

Definition 2.2.8 (directed tree-width). A (-n arboreal) tree-decomposition (or directed tree-

decomposition) of a digraph G = (VG,EG) is a triple (T,X ,W). Here T = (VT ,ET) is an

out-tree, X = {Xe | e ∈ ET} and W = {Wr | r ∈VT} are sets of subsets of VG, such that the

following two conditions hold.

(dtw-1) W = {Wr | r ∈VT} is a partition of VG into non-empty subsets.1

(dtw-2) For every (u,v) ∈ ET the set W≥v is X(u,v)-normal.

The width of a (-n arboreal) tree-decomposition (T,X ,W) is

max
r∈VT

|Wr ∪
⋃

e∼r

Xe|−1.

Here e ∼ r means that r is one of the two vertices of arc e. The directed tree-width of G,

d-tw(G) for short, is the smallest integer k such that there is a (-n arboreal) tree-decomposition

(T,X ,W) of G of width k.

Example 2.2.9. In Figure 2.4 we show an illustration of an arboreal tree-decomposition for a

digraph G, see Figure 2.3.

Every DAG has directed tree-width 0. Furthermore, several types of tree-like digraphs

have directed tree-width 1 [GR19b].

Remark 2.2.10 (Z-normality). Notice that, our above used definition of Z-normality slightly

differs from the following definition in [JRST01b] where S and Z are disjoint. A vertex

set S ⊆ V \Z is Z-normal, if there is no directed walk in G−Z with first and last vertices

in S that uses a vertex of G− (Z ∪ S). Or, a set S ⊆ V \ Z is Z-normal, if every directed

walk which leaves and again enters S must contain a vertex from Z, see [BJG09]. Every set

S⊆V \Z which is is Z-normal w.r.t. the definition in [JRST01b] is also Z-normal w.r.t. our

definition. Further, a set S⊆V which is Z-normal w.r.t. our definition, is also Z \S-normal

w.r.t. the definition in [JRST01b]. Thus, the directed tree-width of a digraph is equal for both

definitions of Z-normality.

Lemma 2.2.11 ([JRST01b]). Let G be a digraph, then it holds that d-tw(G)≤ tw(und(G)).

Lemma 2.2.12 ([JRST01b]). Let G be a complete bioriented graph, then it holds that

d-tw(G) = tw(und(G)).

Directed cops and robbers games

We continue with a small insertion as we now slide in with a notion of cops and robber games.

This part is taken from [GKRW21].

A cops and robbers game on a (directed) graph is a pursuit-evasion game with two

teams of players, the cops, which can move without any restriction to every vertex with their

helicopters and the robbers moving from vertex to vertex along the arcs/edges of a graph. The

1A remarkable difference to the undirected tree-width (Definition 2.2.1) is that the bags, which are the sets

Wr here, have to be disjoint and non-empty.

18 CHAPTER 2. BASIC DEFINITIONS

cops try to “catch” the robbers by moving onto the vertices where the robbers are positioned,

while the robbers try to evade this capture.

Let G = (V,E) be a directed graph with one robber and a set of cops. A position in the

game is a pair (C,r) where C ⊆V is the current position of the cops and r ∈V is the current

position of the robber. Initially, there is no cop on the graph, i.e., C0 = /0 and in the first round

the robber can choose a start position r0. In every round i+1, (Ci,ri) is the current position

of the cops and robber. The game is then played as follows: The cops announce their new

position Ci+1. Then the robber can chose any vertex ri+1 as a new position, that is reachable

from ri in the graph G− (Ci ∩Ci+1). There are two variations of reachability: In strong

component searching, the robber can move to every vertex in the same strong component of

G− (Ci∩Ci+1). In reachability searching, the robber can move to any vertex ri+1 such that

there is a directed walk from ri to ri+1.

If ri ∈Ci after any round i, then the cops capture the robber and win the game. Otherwise,

the game never ends and the robber wins the game. Clearly, the game can always be won by

the cops, by positioning a cop on every vertex of G. However, an interesting question is, how

many cops are needed for a graph G, such that there is always a winning strategy for the cops.

By varying the rules, many different cops and robber games can be defined. The best

known modification is, if the cops know the current robber position (visible CnR-Game) or

do not know the current robber position (invisible CnR-Game). Another variant is a so-called

inert robber: This robber is only allowed to move, if ri ∈ Ci+1, i.e., the robber would be

captured in the next round.

A winning strategy of the cops is called robber monotone if for every sequence of cop

moves C1,C2, . . . and all possible resulting moves of the robber, the strong components of the

digraph without Ci are a non-increasing sequence [JRST01b].

There is a strong link between a variant of the cops and robber game and directed tree-

width, which we defined in the previous subsection. Indeed, this link played an important role

in finding the definition of directed tree-width in the first place.

Proposition 2.2.13 ([JRST01b]). If G has directed tree-width of at most k, then k+1 cops

have a robber monotone winning strategy in the visible strong component cops and robber

game on G. If k cops have a winning strategy in this game, then the directed tree-width of G

is at most 3k+2.

DAG-width

This part is taken from [GKRW21]. The DAG-width has been defined in [BDHK06, BDH+12,

Obd06] and can be intuitively understood as a measure for how DAG-alike a digraph is. The

main difference between directed tree-width and DAG-width is that the separations in an

arboreal decomposition only destroy strong connectivity, while those in a DAG-decomposition

block all directed paths leaving the bags of a sub-DAG. Since directed separations are more

restricted than strong separations, the model graph which is used for the decomposition needs

to be relaxed from an arborescence to a DAG. We recall the definition of [BDHK06].

Let G = (VG,EG) be an acyclic digraph. The partial order 4G on G is the reflexive,

transitive closure of EG. A source or root of a set X ⊆VG is a 4G-minimal element of X , that

2.2. GRAPH PARAMETERS 19

is, r ∈ X is a root of X if there is no y ∈ X , such that y 4G r and y 6= x. Analogously, a sink or

leaf of a set X ⊆VG is a 4G-maximal element.

Let V ′ ⊆VG, then a set W ⊆VG guards V ′ if for all (u,v) ∈ EG it holds that if u ∈V ′ then

v ∈V ′∪W .

Definition 2.2.14 (DAG-width). A DAG-decomposition of a digraph G = (VG,EG) is a pair

(D,X) where D = (VD,ED) is a directed acyclic graph (DAG) and X = {Xu | Xu ⊆VG,u∈VD}
is a family of subsets of VG such that:

(dagw-1)
⋃

u∈VD
Xu =VG.

(dagw-2) For all vertices u,v,w ∈VD with u <D v <D w, it holds that Xu∩Xw ⊆ Xv.

(dagw-3) For all edges (u,v) ∈ ED it holds that Xu ∩ Xv guards X<v
\ Xu, where X<v

=
∪v<DwXw. For any source u, X<u

is guarded by /0.

The width of a DAG-decomposition (D,X) is the number

max
u∈VD

|Xu|.

The DAG-width of a digraph G, dagw(G) for short, is the smallest width of all possible

DAG-decompositions for G.

It is straightforward that a DAG-decomposition where D is a path can also be seen as a

directed path decomposition, as it meets the same conditions.

5,6,7

1,3

1,2,31,3,4

5

6 5

7 5,6

1 1,3

3 1 4 32 3

Figure 2.5: An illustration of a DAG-decomposition of DAG-width 3 (left) and a Kelly

decomposition of width 3 (right) for digraph G, see Figure 2.3. In the Kelly decomposition, the

round vertices represent the W sets, while the squares next to them represent the corresponding

X sets. For sake of simplicity the set braces are omitted.

Example 2.2.15. In Figure 2.5 we show an illustration of a DAG-decomposition for a digraph

G, see Figure 2.3.

20 CHAPTER 2. BASIC DEFINITIONS

One can restrict to a special structure of the decomposition, called nice DAG-decompositions

from [BDH+12]. We define A△B as the symmetric difference.

Definition 2.2.16 (Nice DAG-decomposition, [BDH+12]). A DAG-decomposition (D,X) of

a digraph G is nice, if the following properties are fulfilled.

1. D has exactly one root r.

2. Every vertex in D has at most two successors.

3. If vertex d has two successors d′ and d′′, then it holds that Xd = Xd′ = Xd′′ .

4. If vertex d has one successors d′, then it holds that |Xd△Xd′ |= 1.

Lemma 2.2.17 ([BDH+12]). If digraph G has a DAG-decomposition of width k, it also has

a nice DAG-decomposition of width k.

The complexity of DAG-width has been studied in [AKR16]. They showed that there are

digraphs on n vertices whose optimal DAG-decompositions have super-polynomially many

bags w.r.t n. Thus, it has been shown that deciding whether the DAG-width of a given digraph

is at most a given value is PSPACE-complete.

Kelly-width

We now come to Kelly-width, which has originally been introduced in [HK08]. This part is

taken from [GKRW21]. The original definition of Kelly-width bears some resemblance to

the definition of DAG-width, but it is more technical. Its definition is based on the existence

of a special DAG. While a DAG-decomposition has one vertex set for every vertex of the

decomposition, within a Kelly-decomposition there are two vertex sets for every vertex of the

decomposition. In [HK08] it was conjectured that Kelly-width and DAG-width are indeed

parametrically equivalent, but so far only one of the two relations has been shown [AKK+15].

Definition 2.2.18 (Kelly-width). A Kelly decomposition of a digraph G = (VG,EG) is a

triple (W ,X ,D) where D is a directed acyclic graph, X = {Xu | Xu ⊆ VG,u ∈ VD} and

W = {Wu |Wu ⊆VG,u ∈VD} are families of subsets of VG such that:

(kw-1) W is a partition for VG.

(kw-2) For all vertices v ∈VG, Xv guards W<v
.

(kw-3) For all vertices v ∈VG, there is a linear order u1, . . . ,us on the successors of v such

that for every ui it holds that Xui
⊆Wi∪Xi∪

⋃
j<iW<u j

. Similarly, there is a linear order

r1,r2, . . . on the roots of D such that for each root ri it holds that Wri
⊆

⋃
j<iW<r j

.

The width of a Kelly decomposition (W ,X ,D) is the number

max
u∈VD

|Xu|+ |Wu|.

2.2. GRAPH PARAMETERS 21

The Kelly-width of a digraph G, denoted with kw(G), is the smallest width of all possible

Kelly decompositions for G.

Example 2.2.19. In Figure 2.5 we show an illustration of a Kelly decomposition for a digraph

G, see Figure 2.3.

Since the definition via a Kelly decomposition is not exactly intuitive, we introduce the

directed elimination ordering, see [HK08]. Therefore we use the following notation.

Definition 2.2.20 (Directed Elimination Ordering). Let G = (V,E) be a digraph. A directed

elimination ordering ⊳ on G is a linear ordering on V . For ⊳= (v0,v1, . . . ,vn−1) we define

• G⊳

0 = G.

• G⊳

i+1 = (V⊳

i+1,E
⊳

i+1) with V⊳

i+1 =V⊳
i \{vi} and

E⊳

i+1 = {(u,v) | (u,v) ∈ E⊳
i and u,v 6= vi or (u,vi),(vi,v) ∈ E⊳

i ,u 6= v}.

G⊳
i is the directed elimination graph at step i according to ⊳.

The width of ⊳ is the maximum outdegree of vi in G⊳
i over all i.

Lemma 2.2.21 ([HK08]). For digraph G the following statements are equivalent:

1. G has Kelly-width at most k+1.

2. G has a directed elimination ordering of width ≤ k.

Kelly-width can also be characterized by a certain variant of cops and robber games.

Proposition 2.2.22 ([HK08]). A digraph G has Kelly-width of at most k+ 1 if and only if

k+1 cops have a winning strategy to capture an invisible and inert robber in the reachability

searching game.

(Directed) (linear) clique-width

For undirected graphs the clique-width [CO00] is one of the most important parameters.

Clique-width measures how difficult it is to decompose the graph into a special tree-structure.

It can also intuitively be understood as as measure of how different the neighborhoods

inside a graph are. From an algorithmic point of view, only tree-width [RS86] is a more

studied graph parameter. But clique-width is more general than tree-width since graphs of

bounded tree-width have also bounded clique-width [CR05]. Meanwhile, tree-width can only

be bounded by the clique-width under certain conditions [GW00]. Many NP-hard graph

problems admit polynomial-time solutions when restricted to graphs of bounded tree-width or

graphs of bounded clique-width. This part is from [GKR21a]. Just like clique-width, directed

clique-width was defined by Courcelle and Olariu in [CO00].

Definition 2.2.23 (Directed clique-width [CO00]). The directed clique-width of a vertex

labeled digraph G, d-cw(G) for short, is the minimum number of labels needed to define G

using the following four operations:

22 CHAPTER 2. BASIC DEFINITIONS

1. Creation of a new vertex with label a (denoted by •a).

2. Disjoint union of two labeled digraphs G and H (denoted by G⊕H).

3. Inserting an arc from every vertex with label a to every vertex with label b (a 6= b,

denoted by αa,b).

4. Change every label a into label b (denoted by ρa→b).

The directed clique-width of an unlabeled digraph G = (V,E), d-cw(G) for short, is the

smallest integer k, such that there is a mapping lab : V → {1, . . . ,k} such that the labeled

digraph (V,E, lab) has directed clique-width at most k.

An expression X built with the operations defined above using k labels is called a directed

clique-width k-expression. Let digraph(X) be the digraph defined by k-expression X . By

the given definition every graph of directed clique-width at most k can be represented by a

tree structure, denoted as k-expression-tree. The leaves of the k-expression-tree represent

the vertices of the digraph and the inner nodes of the k-expression-tree correspond to the

operations applied to the subexpressions defined by the subtrees. Using the k-expression-tree

many hard problems have been shown to be solvable in polynomial time when restricted to

graphs of bounded directed clique-width [GHK+14, GWY16]. The following example which

is partly from [KR21] shows an k-expression.

Example 2.2.24. A 3-expression for the
−→
P3 is

α2,3(α1,2(•1⊕•2)⊕•3).

A 3-expression for the
−→
P4 is

α2,3((ρ2→1(α2,3(α1,2(•1⊕•2))⊕•3))⊕•2).

The linear clique-width for undirected graphs was introduced in [GW05] as a parameter

that restricts the clique-width to an underlying path-structure. Directed linear clique-width

can be obtained, when the disjoint union operation is only allowed for one digraph and one

labeled vertex, i.e., in the Definition 2.2.23, the graph H contains exactly one vertex, as also

showed in Example 2.2.24.

Further directed width measures

The remaining part of this subsection is taken from [GKR21b]. The directed feedback vertex

set number is probably the oldest of the measures considered here and was already considered

by Karp [Kar72], where it is shown that the corresponding decision problem is NP-complete.

Definition 2.2.25 (Directed feedback vertex set number). The directed feedback vertex set

number of a digraph G = (V,E), denoted by fvs(G), is the minimum cardinality of a set S⊂V

such that G[V \S] is a DAG.

We come to the directed feedback arc set. Finding the directed feedback arc set number is

a very fundamental problem and has applications in layered graph drawing [EL89].

2.2. GRAPH PARAMETERS 23

Definition 2.2.26 (Directed feedback arc set number). The directed feedback arc set number

of a digraph G = (V,E), denoted by fas(G), is the minimum cardinality of a set S⊂ E such

that (V,E \S) is a DAG.

The corresponding decision problem of computing the directed feedback arc set number

is NP-hard since it is one of the 21 NP-complete problems of Karp, see [Kar72].

Cycle rank was introduced in [Egg63] and also appeared in [Coh68] and [McN69].

Definition 2.2.27 (Cycle rank). The cycle rank of a digraph G = (V,E), denoted by cr(G), is

defined as follows.

• If G is acyclic, cr(G) = 0.

• If G is strongly connected, then cr(G) = 1+minv∈V cr(G−{v}).

• Otherwise, the cycle rank of G is the maximum cycle rank of any strongly connected

component of G.

Results on the cycle rank can be found in [Gru12]. In this papers Gruber proved the

hardness of computing cycle rank, even for sparse digraphs of maximum outdegree at most 2.

If we compare the definitions of the directed feedback vertex set number and the cycle

rank the two width measures seem very similar. However, the values can differ significantly

from each other for some digraphs. The reasons for the difference is that the cycle rank is

about the maximum number of cycles in the biggest component while the directed feedback

vertex set number is more about the number of all contained cycles in every component.

Assume digraph G =
←→
K2 ⊕

←→
K2 ⊕

←→
K2 ⊕

←→
K2 , where ⊕ is the disjoint union of digraphs. Then,

the cycle rank of G is 1, as we look at one component, while the directed feedback vertex set

number is 4.

The DAG-depth of a digraph was introduced in [GHK+09] motivated by tree-depth for

undirected graphs, given in [NdM06].

For a digraph G = (V,E) and v ∈ V , let Gv denote the subdigraph of G induced by the

vertices which are reachable from v. The maximal elements in the partially ordered set

{Gv | v ∈V} w.r.t. the digraph inclusion order (subdigraph) are the reachable fragments of

G and will be denoted by R(G). In the undirected case, reachable fragments coincide with

connected components.

Definition 2.2.28 (DAG-depth). Let G = (V,E) be a digraph. The DAG-depth of G, denoted

by ddp(G), is defined as follows.

• If |V |= 1, then ddp(G) = 1.

• If G has a single reachable fragment, then ddp(G) = 1+minv∈V ddp(G−{v}).

• Otherwise, ddp(G) equals the maximum over the DAG-depth of the reachable fragments

of G.

24 CHAPTER 2. BASIC DEFINITIONS

We introduce a decomposition for DAG-depth, which is very similar to the one for cycle

rank in [Gru12, McN69].

Definition 2.2.29 (Directed Elimination Forest). A directed elimination tree for a digraph

G = (V,E) with |R(G)| = 1 reachable fragment is a rooted tree T = (VT ,ET) having the

following properties.

1. VT ⊆V ×2V and if (x,X) ∈VT , then x ∈ X .

2. The root of T is (v,V) for some v ∈V .

3. If there is some vertex (x,X) ∈VT , then there is no vertex (y,X) ∈VT for x 6= y.

4. If there is some vertex (x,X) ∈ VT , and G[X]−{x} has j reachable fragments G1 =
(X1,E1), . . . ,G j = (X j,E j), then (x,X) has exactly j children (x1,X1), . . . ,(x j,X j) for

x1, . . . ,x j ∈V .

A directed elimination forest for some digraph G with |R(G)| = j reachable fragments

G1, . . . ,G j, is a rooted forest consisting of directed elimination trees for G1, . . . ,G j.

For some rooted tree T the height h(T) is the number of edges on a longest path between

the root and a leaf. For some forest F of rooted trees the height h(F) is the maximum height

of its trees.

Observation 2.2.30 ([GKR21b]). For a digraph G the DAG-depth can be determined as

follows:

ddp(G) = 1+min{h(F) | F is a directed elimination forest for G}.

2.3 Directed Graph Classes

Directed graph classes, or digraph classes for short, are special subsets of the set of all

digraphs, that fulfill certain conditions. We already introduced some well-known digraph

classes as DAGs and directed paths, now we continue with the class of semicomplete digraphs.

In a semicomplete digraph there is at least one edge between each two distinct vertices. A

special property of semicomplete digraphs is that many problems are polynomial time solvable

on their underlying undirected graph, which is very natural since it is a clique. This makes

this class particularly interesting in the context of NP-hard problems on digraphs, as it is

not possible to transfer the problem directly and apply the same methods as for solving the

corresponding problem on the undirected graph. More about semicomplete digraphs and

related classes can be read in [BJG09].

The class of semicomplete digraphs is a superclass of the so-called tournaments which

received significant attention in the past [CS11, KS15]. In a tournament there is exactly one

edge between each two distinct vertices. If G is transitive and a tournament, it is a transitive

tournament. The class of transitive tournaments is denoted by TT and a member of this class

with n vertices is denoted by
−→
Tn . Transitive tournaments can be characterized in several ways,

see [Gou12, Chapter 9]. A (directed) hamiltonian path in (directed) graph G is a (directed)

path that contains each vertex of V (G) exactly once.

2.3. DIRECTED GRAPH CLASSES 25

Lemma 2.3.1 ([Gou12]). For every digraph G the following statements are equivalent.

1. G is a transitive tournament.

2. G is an acyclic tournament.

3. G is a tournament with exactly one directed Hamiltonian path.

4. G is a tournament and every vertex in G has a different outdegree, i.e., {outdegree(v) | v∈
V (G)}= {0, . . . , |V |−1}.

5. G can be constructed from the one-vertex graph by repeatedly adding an out-dominating

vertex.

6. G can be constructed from the one-vertex graph repeatedly adding an in-dominated

vertex.

A grid is a (di)graph with k rows of m vertices such that each vertex is only connected to

its neighbor directly to the left, to the right, the one on the top and below such that it looks

very matrix-alike, see Figure 2.6.

m

k
1

1

Figure 2.6: An undirected grid with m× k vertices (left) and an acyclic orientation of a grid

(right).

26 CHAPTER 2. BASIC DEFINITIONS

3 Recursive Digraph Classes: Char-

acterization and Hierarchy

3.1 Introduction

Recursive (directed) graph classes are classes of digraphs which can be defined recursively

by several instructions. We normally start with the smallest graph, which is member of the

class and then follow some rules. These classes are also called decomposable graphs, as

many of them can be represented by a special decomposition. These structures can be used in

algorithms, as showed e.g. in [BPT09]. Some examples of these classes will be introduced in

this chapter.

3.2 Undirected Graph Classes

3.2.1 Co-graphs

Some NP-hard graph problems, e.g. the maximum clique or the minimum vertex cover

problem can be solved efficiently or in polynomial time on so-called complement reducible

graphs, co-graphs for short, such that they are an important graph class in the current field of

research. Most of the solving algorithms use the tree structure which defines a co-graph and

which is described further below.

For the definition of co-graphs and subclasses we need the following operations. Let

G1 = (V1,E1) and G2 = (V2,E2) be two vertex-disjoint graphs.

• The disjoint union of G1 and G2, denoted by G1⊕G2, is the graph with vertex set

V1∪V2 and edge set E1∪E2.

• The join of G1 and G2, denoted by G1⊗G2, is the graph with vertex set V1∪V2 and

edge set E1∪E2∪{{v1,v2} | v1 ∈V1,v2 ∈V2}.

With these operations we define the class of co-graphs, which have been introduced

independently by different authors, for example in [Jun78], [Ler71], [Sei74] or [Sum74].

Definition 3.2.1 (Co-Graphs [CLSB81]). The class of co-graphs is recursively defined as

follows.

27

28 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

(i) A graph on a single vertex ({v}, /0), denoted by •, is a co-graph.

(ii) If G1 and G2 are two vertex-disjoint co-graphs, then (a) G1⊕G2 and (b) G1⊗G2 are

co-graphs.

We denote the class of co-graphs by C.

As mentioned before, the recursive structure of co-graphs allows certain problems to be

solved in linear time, e.g. see [CLSB81]. Further, this structure can be used to compute the

path-width, as well as the tree-width of co-graphs in linear time [BM93].

A co-graph G can be represented by a co-tree T in which the leaves represent the vertices

of G, while the inner nodes of T correspond to the operations which are applied on the

respective subtrees.

Following [CLSB81], co-graphs can be defined equivalently by different properties.

Observation 3.2.2 ([CLSB81]). The following statements about graph G are equivalent.

1. G is a co-graph.

2. co-G is a co-graph.

3. G contains no P4 as induced subgraph.

4. G has clique-width of at most 2.

3.2.2 Distance-Hereditary Graphs

This subsection is taken from [KR21]. Distance-hereditary graphs have been introduced by

Howorka in 1977 [How77]. They are exactly those graphs that are distance-hereditary for

their connected induced subgraphs, which means that if any two vertices u and v belong to a

connected induced subgraph H of a graph G, then some shortest path between u and v in G has

to be a subgraph of H. But this is not the only definition of distance-hereditary graphs. Most

important from an algorithmic perspective are the definition by forbidden induced subgraphs

as well as the recursive construction by so-called twins and pendant vertices.

We take different definitions of undirected distance-hereditary graphs from [BM86,

Oum05]. Let G be an undirected, connected graph.

• A vertex v ∈V (G) is called pendant if there is u ∈V (G) such that {u,v} ∈ E(G) and

for all other w ∈V (G), w 6= u it holds that {w,v} 6∈ E(G).

• A vertex v ∈V (G) is called twin of u ∈V (G), if N(x)\{y}= N(y)\{x}.

• It is called true twin if {u,v} ∈ E(G), otherwise false twin.

Observation 3.2.3 ([BM86, Oum05]). The following conditions are equivalent.

1. G is distance-hereditary, G ∈ DH for short, that is, for every two vertices u and v, all

induced u,v-paths have the same length.

3.2. UNDIRECTED RECURSIVE GRAPH CLASSES 29

2. For every two vertices u and v that have distance 2 to each other, there is no induced

path between u and v of length greater than 2.

3. The house, holes, domino, and gem (see Figure 3.13) are not induced subgraphs of G.

4. G has rank-width 1 at most one.

5. G can be defined recursively from a single vertex by adding twins and pendant vertices.

The recursive structure emerging by adding twins and pendant vertices can be represented

by the so-called pruning sequence, which is algorithmically useful to compute along this

structure. For a distance-hereditary graph G, let σ(G) = (v0, . . .vn−1) be an ordering on V (G).
Then, S(G) = (s1, . . . ,sn−1) is the pruning sequence of G, where for every 1≤ j ≤ i≤ n−1,

si is one of the following:

• (xi,P,x j) if xi is a pendant vertex of x j.

• (xi,T T,x j) if xi is a true twin of x j.

• (xi,FT,x j) if xi is a false twin of x j.

The relation between co-graphs and distance-hereditary graphs can be followed by a result

from [CLSB81], where twins are called siblings.

Observation 3.2.4 ([CLSB81]). A co-graph can be obtained starting with a single vertex, by

adding true and false twins.

This can also be shown as we can build a co-tree from a given pruning sequence that

contains only true and false twins and the other way around. The intuitive idea behind this

is the following: A leaf in a subtree T ′ in a co-tree T is always a twin of all the other leaves

in T ′ with respect to the leaves in the remaining part of T , since they all have the same

neighborhood to these vertices in T .

Concerning graph parameters, for undirected distance-hereditary graphs the tree-width

is computable in linear time [BDK00]. The clique-width of any distance-hereditary graph

is at most 3 [GR99]. Further, linear rank-width of distance-hereditary graphs is computable

in polynomial time [AKK17], but path-width is hard even on bipartite distance-hereditary

graphs [KBMK93].

3.2.3 Series-Parallel Graphs

Undirected series-parallel graphs are formed recursively by parallel and series composition

[BLS99, Section 11.2], which are defined as follows.

Let G1 and G2 be vertex-disjoint graphs such that each of the two has exactly one source

and one sink.

• the parallel composition G1∪G2 identifies the source of G1 with the source of G2 and

the sink of G1 with the sink of G2.

1Rank-width has been introduced by Oum and Seymour, see [OS06] for a definition.

30 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

• the series composition G1×G2 identifies the sink of G1 with the source of G2.

Definition 3.2.5 (Series-Parallel Graphs). The class of series-parallel graphs consists of

graphs with two distinguished vertices called terminals and is recursively defined as follows.

(i) A graph with two distinct vertices joined by a single edge ({u,v},{{u,v}}), denoted by

{u,v}, is a series-parallel graph. We call vertex u the source and vertex v the sink.

(ii) If G1 and G2 are vertex-disjoint series-parallel graphs, then

(a) the parallel composition G1∪G2 is a series-parallel graph and

(b) the series composition G1×G2 is a series-parallel graph.

From a practical point of view these graphs have interesting applications in modeling

series and parallel electric circuits. Additionally, this class play an important role in theoretical

computer science, as they have tree-width of at most 2 and they are K4-minor free graphs

[Bod98].

3.2.4 Subclasses of Directed Co-graphs

In Figure 3.2 we summarize co-graphs and some well-known subclasses. All of them can

be defined recursively by the operations showed in the third column of the shown table,

starting with a single vertex denoted by •, a clique K, or an edgeless graph I. As shown in

the table, it is also possible to characterize them by a set of forbidden induced subgraphs, see

[CLSB81, Gol78, CH77, NP11, HMP11].

P4 C4 2K2 2P3

Figure 3.1: Some special undirected graphs.

In Figure 3.3 we compare the above graph classes to each other and show the hierarchy of

the subclasses of co-graphs, the corresponding classes are defined in Figure 3.2.

3.3 Directed Co-graphs

3.3.1 Definition of Directed Co-graphs

Directed co-graphs are a recursive digraph class which are the directed version of the already

introduced class of complement reducible graphs. In [GWY16] the set of directed co-graphs

is characterized by excluding two digraphs and at the same time being a proper subset of the

set of all graphs of directed clique-width 2.

3.3. DIRECTED CO-GRAPHS 31

class X notation operations Forb(X)

co-graphs C • G1⊕G2 G1⊗G2 P4

quasi threshold/trivially perfect graphs TP • G1⊕G2 G1⊗• P4, C4

co-quasi threshold/co-trivially perfect graphs CTP • G1⊕• G1⊗G2 P4, 2K2

threshold graphs T • G1⊕• G1⊗• P4, C4, 2K2

simple co-graphs SC • G1⊕ I G1⊗ I P4, co-2P3, 2K2

co-simple co-graphs CSC • G1⊕K G1⊗K P4, 2P3, C4

weakly quasi threshold graphs WQT I G1⊕G2 G1⊗ I P4, co-2P3

co-weakly quasi threshold graphs CWQT K G1⊕K G1⊗G2 P4, 2P3

Figure 3.2: [GKR21c] Overview on subclasses of co-graphs. By G1 and G2 we denote

graphs of the class X , by I we denote an edgeless graph and by K we denote a complete

graph. The given forbidden sets in the last column are known from the existing literature

[CLSB81, Gol78, CH77, NP11, HMP11]. The corresponding graphs can be found in Figure

3.1.

T

T P SC CSC

WQT CT P

CWQT

C

Figure 3.3: [GKR21c] Relations between the subclasses of co-graphs. If there is a path from

A to B, then it holds that A ⊂ B. The classes, that are not connected by a directed path are

incomparable.

At first, we introduce operations that are used in the definition of directed co-graphs from

[BdGR97]. Let G1 = (V1,E1) and G2 = (V2,E2) be two vertex-disjoint digraphs.2

• The disjoint union of G1 and G2, denoted by G1⊕G2, is the digraph with vertex set

V1∪V2 and arc set E1∪E2.

• The series composition of G1 and G2, denoted by G1⊗G2, is the digraph with vertex

set V1∪V2 and arc set E1∪E2∪{(u,v),(v,u) | u ∈V1,v ∈V2}.

• The order composition of G1 and G2, denoted by G1⊘G2, is the digraph with vertex

set V1∪V2 and arc set E1∪E2∪{(u,v) | u ∈V1,v ∈V2}.

2We use the same symbols for the disjoint union and join between undirected and digraphs. Although the

meaning becomes clear from the context we want to emphasize this fact.

32 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

Additionally, the directed union transformation was introduced by Johnson et al. in

[JRST01b]. It generalizes the operations disjoint union and order composition.

• A graph G is obtained by a directed union of G1 and G2, denoted by G1⊖G2, if G

is a subdigraph of the order composition of G1⊘G2 and contains the disjoint union

G1⊕G2 as a subdigraph.

Notice that, the directed union is not unique and thus no operation. Every graph which

can be obtained by the operations introduced above, is constructible by a tree structure or even

a sequence, as we see for undirected co-graphs and threshold graphs. These tree structures or

sequences can be used for algorithmic properties of those graphs.

Definition 3.3.1 (Directed co-graphs, [CP06]). The class of directed co-graphs, DC for short,

is recursively defined as follows.

(i) Every digraph on a single vertex ({v}, /0), denoted by •, is a directed co-graph.

(ii) If G1 and G2 are vertex-disjoint directed co-graphs, then

(a) the disjoint union G1⊕G2,

(b) the series composition G1⊗G2, and

(c) the order composition G1⊘G2 are directed co-graphs.

The recursive definition of directed and undirected co-graphs leads to the following

observation.

Observation 3.3.2. For every directed co-graph G the underlying undirected graph und(G)
is a co-graph.

The reverse direction only holds under certain conditions, see Theorem 3.3.6.

Obviously, for every directed co-graph we can define a tree structure, denoted as (binary)

di-co-tree. We take a definition from [GKR20b].

Definition 3.3.3 (Di-co-tree). The di-co-tree for a directed co-graph G is recursively defined

as follows.

• The di-co-tree T for di-co-expression v consists of a single vertex r (the root of T)

labeled by v.

• The di-co-tree T for di-co-expression G1⊕G2 consists of a copy T1 of the di-co-tree

for G1, a copy T2 of the di-co-tree for G2, an additional vertex r (the root of T) labeled

by ⊕ and two additional arcs from vertex r to the roots of T1 and T2. The root of T1 is

the first child of r and the root of T2 is the second child of r.

• The di-co-tree T for di-co-expressions G1⊗G2 and G1⊘G2 are defined analogously

to G1⊕G2.

3.3. DIRECTED CO-GRAPHS 33

While the leaves of the di-co-tree represent the vertices of the graph, the inner nodes of

the di-co-tree correspond to the operations applied on the subexpressions which are defined

by the associated subtrees. In a binary di-co-tree is a di-co-tree in which each inner vertex has

only one or two successors. We can convert every non-binary di-co-tree in a binary one in

linear time, as well as constructing a di-co-tree.

Theorem 3.3.4 ([CP06]). A binary di-co-tree T can be computed in O(n+m) time from a

directed co-graph with n vertices and m arcs.

Crespelle and Paul [CP06] also developed a recognition algorithm for directed co-graphs.

Giving a digraph, their algorithm decides in linear time whether the digraph is a directed

co-graph and if not, it returns a certificate. This is possible as the class has certain forbidden

induced subdigraphs, see Theorem 3.3.6.

Directed co-graphs are interesting from an algorithmic point of view since several hard

graph problems can be solved in polynomial time by dynamic programming along the tree

structure of the input digraph, see [BJM14, Gur17, GR18]. Additionally, we use this property

in Chapter 4,5, 6 and 7.

The property of complement reducibility is also found in directed co-graphs.

Lemma 3.3.5 ([GKR21b]). For a digraph G the following properties hold.

1. Digraph G is a directed co-graph if and only if digraph co-G is a directed co-graph.

2. Digraph G is a directed co-graph if and only if digraph Gc is a directed co-graph.

Directed co-graphs are closed under taking induced subdigraphs and can be characterized

by excluding forbidden subdigraphs, see [CP06, Figure 2].

D1 D2 D3 D4

D5 D6 D7 D8

Figure 3.4: The eight forbidden induced subdigraphs for directed co-graphs (see [CP06]).

The following properties hold for directed co-graphs:

Theorem 3.3.6 ([GKR21c]). Let G be a digraph. The following properties are equivalent:

1. G is a directed co-graph.

2. G ∈ Free({D1, . . . ,D8}).

34 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

3. G ∈ Free({D1, . . . ,D6}) and und(G) ∈ Free({P4}).

4. G ∈ Free({D1, . . . ,D6}) and und(G) is a co-graph.

5. G has directed NLC-width 13.

6. G has directed clique-width at most 2 and G ∈ Free({D2,D3}).

The proof can be read in [GKR21c], the statements follow from literature [CP06] and

[GWY16]. Since the complement digraphs of {D1, . . . ,D8} are also included in {D1, . . . ,D8},
it holds the following.

Proposition 3.3.7. DC = co-DC.

3.3.2 Oriented Co-graphs

Definition 3.3.8 (Oriented Co-Graphs). The class of oriented co-graphs, OC for short, is

recursively defined as follows.

1. Every digraph on a single vertex ({v}, /0), denoted by •, is an oriented co-graph.

2. If G1,G2 are two vertex-disjoint oriented co-graphs, then

(a) G1⊕G2 and

(b) G1⊘G2 are oriented co-graphs.

Obviously, we can find a di-co-tree in linear time, as for directed co-graphs, see Theorem

3.3.4. The property of recursiveness of oriented and undirected co-graphs leads us to the

following observation.

Observation 3.3.9. For every oriented co-graph G the underlying undirected graph und(G)
is a co-graph.

The reverse direction only holds under certain conditions, see Theorem 3.3.10 below. The

class of oriented co-graphs is closed under taking induced subdigraphs.

Theorem 3.3.10 ([GKR19c]). Let G be a digraph. The following properties are equivalent:

1. G is an oriented co-graph

2. G ∈ Free({D1,D5,D8,
←→
K2}).

3. G ∈ Free({D1,D5,
←→
K2}) and und(G) ∈ Free({P4}).

4. G ∈ Free({D1,D5,
←→
K2}) and und(G) is a co-graph.

5. G has directed clique-width at most 2 and G ∈ Free({
←→
K2}).

3For a definition of directed NLC-width, see [GWY16].

3.3. DIRECTED CO-GRAPHS 35

6. G is transitive and G ∈ Free({
←→
K2 ,D8}).

The corresponding digraphs can be found in Figure 3.1 and 3.4. Following the notations

of [VTL82] we denote the orientation of a P4 which produced the D8, see Figure 3.4 or 3.5,

as the N graph. The class of oriented co-graphs has been analyzed by Lawler [Law76] and in

[CLSB81, Section 5] with the notation of transitive series-parallel (TSP) digraphs.

Every oriented co-graph is obviously a DAG, since no cycles can emerge by the allowed

operations. An superclass of oriented co-graphs is the class of transitive DAGs. As an example

for a transitive DAG which is not an oriented co-graph we can just consider the N-graph

(= D8), see Figure 3.5.

Figure 3.5: The N-graph.

3.3.3 Extended Directed Co-graphs

Since the directed union generalizes the disjoint union and also the order composition, we

can define the class of extended directed co-graphs, which forms a superclass of directed and

oriented co-graphs. The content is mostly from [GKR21b].

Definition 3.3.11 (Extended directed co-graphs). The class of extended directed co-graphs,

EDC for short, is recursively defined as follows.

(i) Every digraph on a single vertex ({v}, /0), denoted by •, is an extended directed co-graph.

(ii) If G1 and G2 are vertex-disjoint extended directed co-graphs, then

(a) every directed union G1⊖G2 and

(b) the series composition G1⊗G2 are extended directed co-graphs.

As well as for directed co-graphs, for every extended directed co-graph we can define a

tree structure, denoted as ex-di-co-tree. Like in a di-co-tree, the leaves of the ex-di-co-tree

represent the vertices of the graph and the inner nodes of the ex-di-co-tree correspond to the

operations applied on the subexpressions defined by the subtrees. For the class of extended

directed co-graphs it remains open how to compute an ex-di-co-tree for a given digraph G.

Since in the directed union it is not clear which edges arise, a special ex-di-co-tree represents

several different extended directed co-graphs. Regarding the properties of of extended directed

co-graphs, we see that they are not closed under complementation. By applying the directed

union, which is not a disjoint union or an order composition, we can obtain digraphs whose

complement digraphs are not extended directed co-graphs. An example for this is the directed

path on 3 vertices
−→
P3 . Thus, we only can carry over one of the two results shown in Lemma

3.3.5 to the class of extended directed co-graphs, see [GKR21b].

36 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

Lemma 3.3.12. A digraph G is an extended directed co-graph if and only if digraph Gc is an

extended directed co-graph.

Proof. Let X be an expression using extended directed co-graph operations for G. We can get

Gc given by an expression X ′ by modifying X as follows. For every X1⊖X2 in X , we change

this into X2⊖X1 in X ′. The rest remains as in X .

The class of extended directed co-graphs is much more powerful than the class of directed

co-graphs. An interesting fact is that the oriented extended directed co-graphs, thus extended

directed co-graphs without series operations, are exactly the class of all DAGs.

Observation 3.3.13. G is an acyclic extended directed co-graph if and only if G is a DAG.

Proof. If G is a DAG with n vertices, G is a subgraph of the transitive tournament with n

vertices. We can construct a transitive tournament by applying the order composition. To

get G we just replace the order composition by a directed union and leave out all the edges

e 6∈ E(G). Every acyclic digraph G is a DAG, thus this direction trivially holds.

This can also be proven by using a topological ordering.

3.3.4 Isomorphism Problem on Oriented Co-graphs

Using the tree-structure of a directed co-graph or the bounded directed clique-width of the

class, there are many NP-hard problems which are solved on directed co-graphs in linear or at

least polynomial time e.g. the Hamiltonian path, Hamiltonian cycle, regular subdigraph, and

directed cut problem are polynomial on directed co-graphs, see [Gur17]. Directed co-graphs

were also used together with with pomset logic in [Ret98]. From [BJM14] we know as

well that the weak k-linkage problem is solvable in polynomial time on the class of directed

co-graphs. Further, the recursive structure leads us to the existence of linear time dynamic

programming algorithms for the computation of the size of a largest independent set, the size

of a largest directed clique, the size of a largest subdigraph that is a tournament and the size

of a largest semicomplete subdigraph of a directed co-graph. In the following we take a look

at the Isomorphism problem. On undirected co-graphs the isomorphism problem is solvable

in polynomial time, see [CLSB81]. This result can be improved by the following instructions.

The content of this subsection is taken from [GKR19c].

For an oriented co-graph, a di-co-tree T is canonical if on every path from the root to the

leaves of T , the disjoint union and order operation strictly alternate. As the disjoint union

⊕ and the order operations ⊘ are associative, we get the following lemma for an ordered

structure in a di-co-tree.

Lemma 3.3.14 ([GKR19c]). Let G be an oriented co-graph and T be a di-co-tree for G, then,

T can be transformed into a canonical di-co-tree for G in linear time.

Two undirected co-graphs G1 and G1 are isomorphic if and only if their corresponding

canonical co-trees T1 and T2 are isomorphic. We get a canonical co-tree of a co-graph in

linear time. Thus, by applying a linear time isomorphism test for rooted labeled trees (cf.

[AHU74], Section 3.2) on canonical co-trees, we decide in linear time whether G1 and G2

3.4. SUBCLASSES OF DIRECTED CO-GRAPHS 37

are isomorphic for undirected co-graphs. Formally, the isomorphism problem on oriented

co-graphs is defined as follows:

Name: Oriented co-graph isomorphism problem

Instance: Two oriented co-graphs G1 = (V1,E1) and G2 = (V2,E2).

Question: Are G1 and G2 isomorphic, i.e., is there a bijection b : V1→V2 such that for all

u,v ∈V1 it holds that (u,v) ∈ E1 if and only if (b(u),b(v)) ∈ E2?

This method of using an isomorphism test for rooted labeled trees on the co-trees can not

directly be used for oriented co-graphs, as we have to preserve the order of the vertices, which

are representing the order operations in the di-co-tree. So we give a procedure in Algorithm

1 that provides a solution for di-co-trees. Our solution is obtained by a modification of the

method given in [AHU74, Section 3.2]. There is also explained in detail, how the labeling of

the tree is working.

Theorem 3.3.15. Let G1 and G2 be two oriented co-graphs, then oriented co-graph isomor-

phism for G1 and G2 can be solved in linear time.

Proof. Let G1 and G2 be two oriented co-graphs with the corresponding di-co-trees T1 and

T2, which can be found in linear time with Theorem 3.3.4. Moreover we can assume, that the

di-co-trees are canonical by Lemma 3.3.14. If two graphs are isomorphic, the two canonical

di-co-trees must be isomorphic, too. W.l.o.g. assume that the height and the roots of T1 and T2

are equal. Then, if two trees are isomorphic, there must be a bijection from the vertices of T1

of level ℓ to the vertices of T2 of level ℓ. We look at the procedure from Algorithm 1. Under

the given conditions, the operation of the vertices of level ℓ are either order compositions or

disjoint unions for both trees. If the operation on level ℓ is a directed union, the labels of the

children of each node on level ℓ are sorted. Otherwise, it is an order composition, where the

order of the children cannot be changed, such that the labels of the children will stay in the

same order. After visiting every vertex on level ℓ, the vectors with the labels of the children

are sorted in the sequences S1 and S2. With the method given in [AHU74] (Section 3.2) the

sorting can be done in linear time with respect to the number of edges from each vertex to

its children. If both sequences are equal, the algorithm continues, since the isomorphism

is satisfied for level ℓ+1. If it is not, the ordered sequences will be different, such that the

algorithm terminates and returns false. This is repeated for every level of both trees, except

for level 0, which is the root, where the operations are assumed to be equal, and level h, which

is the first level the algorithm goes through. When the leaves on this level are labeled, there

is nothing more to do, since these vertices have no children. The isomorphism of level h is

checked on level h− 1. Let n be the number of vertices in T1 and T2 and m the number of

edges. Then, the algorithm needs 2n steps for looking at every vertex of both trees, additional

to 2m steps for looking at the children of each vertex. Thus, it runs in linear time.

3.4 Subclasses of Directed Co-graphs

In order to obtain new insights for the study of directed graph classes we investigate further

recursive digraph classes. After showing a superclass and a subclass of directed co-graphs

38 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

Algorithm 1 [GKR19c] Testing graph isomorphism for two oriented co-graphs given by

canonical di-co-trees.

procedure TEST(T1,T2)

let h be the height of T1 and T2

for ℓ= h downto 0 do

for all vertices v on level ℓ in T1 from left to right do

if (v is a leaf)

label[v] = 0

else

let v1, . . . ,vr be the children of v

label[v] = (label[v1], . . . , label[vr])
if (v corresponds to a union operation)

sort vector label[v] ascending

let S1 be the sequence of all label[v] for all v on level ℓ in T1

for all vertices v on level ℓ in T2 from left to right do

if (v is a leaf)

label[v] = 0

else

let v1, . . . ,vr be the children of v

label[v] = (label[v1], . . . , label[vr])
if (v corresponds to a union operation)

sort vector label[v] ascending

let S2 be the sequence of all label[v] for all v on level ℓ in T2

sort S1 to obtain S′1 and sort S2 to obtain S′2
if (S′1 6= S′2)

return f alse

let Vℓ be the set of all vectors on level ℓ in T1

find a bijection b : Vℓ→{1, . . . , |Vℓ|}
for all vertices v on level ℓ in T1 do

label[v] = b(v);
for all vertices v on level ℓ in T2 do

label[v] = b(v);
}
return true;

3.4. SUBCLASSES OF DIRECTED CO-GRAPHS 39

we now continue with further subclasses, which are motivated by corresponding undirected

versions of these classes. The content of this section is taken from [GKR21c].

3.4.1 Oriented Threshold Graphs

The class of oriented threshold graphs has been introduced in [Boe18] as follows.

Definition 3.4.1 (Oriented threshold graphs [Boe18]). A graph G is a threshold graph if

there exists an injective weight function w : V (G)→ R and a threshold value t ∈ R such that

(x,y) ∈ E(G) if and only if |w(x)|+ |w(y)| ≥ t and w(x)> w(y).

Theorem 3.4.2 ([Boe18]). Let G be an oriented graph. The following properties are equiva-

lent:

1. G is an oriented threshold graph.

2. G ∈ Free({D1,D5}) and und(G) ∈ Free({2K2,C4,P4}).

3. G is a transitive orientation of a threshold graph.

4. G can be constructed from the one vertex empty graph by successively adding an

isolated vertex, an out-dominating vertex or an in-dominated vertex.

Using Theorem 3.4.2 we obtain the following definition, which is equivalent to Definition

3.4.1:

Definition 3.4.3 (Oriented threshold graphs). The class of oriented threshold graphs, OTD

for short, is recursively defined as follows.

(i) Every digraph on a single vertex ({v}, /0), denoted by •, is an oriented threshold graph.

(ii) If G is an oriented threshold graph, then (a) G⊕•, (b) G⊘•, and (c) •⊘G are oriented

threshold graphs.

The recursive definition of oriented and undirected threshold graphs lead to the following

observation.

Observation 3.4.4. For every oriented threshold graph G the underlying undirected graph

und(G) is a co-graph.

This class can also be defined by forbidden induced subdigraphs. As it was possible for

oriented co-graphs and oriented trivially perfect graphs, we can use the fact that oriented

threshold graphs are exactly the directed threshold graphs not containing an induced
←→
K2 :

Theorem 3.4.5. Let G be a digraph. The following properties are equivalent:

1. G is an oriented threshold graph.

2. G is an oriented co-trivially perfect graph.

40 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

3. G ∈ Free({D1,D5,D8,D12,2
−→
P2 ,
←→
K2}).

4. G ∈ Free({D1,D5,
←→
K2}) and und(G) ∈ Free({2K2,C4,P4}).

5. G ∈ Free({D1,D5,
←→
K2}) and und(G) is a threshold graph.

6. G ∈ Free({D1,D5,D12,
←→
K2}) and und(G) ∈ Free({P4,2K2}).

7. G ∈ Free({D1,D5,D12,
←→
K2}) and und(G) is a co-trivially perfect graph.

8. G ∈ Free({D1,D5,D12,2
−→
P2 ,
←→
K2}) and und(G) ∈ Free({P4}).

9. G ∈ Free({D1,D5,D12,2
−→
P2 ,
←→
K2}) and und(G) is a co-graph.

10. G is transitive and G ∈ Free({D8,D12,2
−→
P2 ,
←→
K2}).

The digraphs can be found in Figure 3.1, 3.4 and 3.8.

Proof. (1)⇔ (2) By the recursive definition of the classes, which arises from the restriction

of the directed classes to oriented graphs.

(1)⇒ (3) If G is an oriented threshold graph, then G is a directed threshold graph and

thus, it holds that G ∈ Free({D1, . . . ,D15,co-D11,co-D10,co-D9}), see [GKR21c, Theorem

18]. Further G ∈ Free({
←→
K2}) because of the missing series composition. This leads to

G ∈ Free({D1,D5,D8,D12,
←→
K2 ,2

−→
P2}).

(3)⇒ (1) If G∈Free({D1,D5,D8,D12,
←→
K2 ,2

−→
P2}), then G∈Free({D1, . . . ,D15,co-D11,co-D10,co-D9})

and is a directed threshold graph. Since G ∈ Free({
←→
K2}) there is no series operation in any

construction of G which implies that G is an oriented threshold graph.

(4)⇔ (5) Since Forb(T) = {C4,P4,2K2} (Figure 3.10).

(6)⇔ (7) Since Forb(CTP) = {P4,2K2} (Figure 3.10).

(8)⇔ (9) Since Forb(C) = {P4} (Figure 3.10).

(3)⇒ (5), (3)⇒ (7), and (3)⇒ (9) By Observation 3.4.4.

(4)⇒ (3), (6)⇒ (3), and (8)⇒ (3) By Observation 2.1.6

(3)⇒ (10) By [GKR21c, Lemma 3] we know that G is transitive.

(10)⇒ (3) If G is transitive, then G ∈ Free({D1,D5}).

A very famous subclass of oriented threshold graphs is the previously defined class of

transitive tournaments, which can be easily constructed by repeating G⊘•.

The proof for the next Theorem can be done very similar to the proof of [GKR21c,

Theorem 10].

Theorem 3.4.6 ([GKR21c]). A graph G is a threshold graph if and only if there exists an

orientation G′ of G such that G′ is an oriented threshold graph.

Observation 3.4.7 ([GKR21c]). If G ∈ DT , then the underlying undirected graph of the

symmetric part of G is a threshold graph and the asymmetric part of G is an oriented

threshold graph.

3.4. SUBCLASSES OF DIRECTED CO-GRAPHS 41

This holds since the asymmetric part is constructed according to the same rules as

threshold graphs and the asymmetric part is constructed according to the rules of OTD.

Similar to directed threshold graphs every oriented co-graph can be defined by a sequence

with only three operations, which can be used to give a linear time recognition algorithm.

3.4.2 Threshold Digraphs and Ferres Digraphs

The following idea of defining a directed version of threshold graphs, i.e., threshold digraphs,

is from [CLMS14] where they define them by a set of forbidden subdigraphs. The content is

taken from [GKR21c].

A 2-switch is a vertex set {w,x,y,z} such that there exist the edges (w,x) and (y,z) but not

the edges (w,z) and (y,x), see Figure 3.6. Examples for a 2-switch are co-D10,co-D9,co-D11

and
−→
P4 .

Observation 3.4.8 ([GKR21c]). Let G be a directed threshold graph, then G does not contain

a 2-switch.

Definition 3.4.9 (Threshold digraphs [CLMS14]). A digraph G is a threshold digraph if it

does not contain a 2-switch nor a
−→
C3 as induced subdigraph. The class of threshold digraphs

is denoted by TD.

This class is not very useful for the directed co-graph hierarchy, as they are incomparable

to most of the graph classes in it, though it is a superclass of directed threshold graphs.

x

y

z

w

Figure 3.6: A 2-switch. All vertices are distinct. Solid arcs must appear in the digraph and

dashed arcs must not appear in the digraph. If an arc is not given, then it may or may not be

present.

x

y

z

w

Figure 3.7: An alternating 4-anticircuit. The vertices are not necessarily distinct but x 6= z and

y 6= w. The solid arrows represent the presence of an arc and a dashed arrow its absence.

A well studied class of digraphs are Ferres digraphs, see [MP95, Chapter 2] for a survey.

Ferres digraphs are introduced by Riguet in [Rig51]. In their first definition, Ferres digraphs

were defined on digraphs including loops. As the subclasses of directed co-graphs do

not use loops, only Ferres digraphs without loops will be used here. An alternating 4-

anticircuit consists of vertices x,y,z,w, not necessarily distinct but x 6= z and y 6= w, satisfying

(x,y),(z,w) ∈ A and (x,w),(z,y) 6∈ A (cf. Figure 3.7).

42 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

Definition 3.4.10 (Ferres digraphs). A digraph is a Ferres digraph if it does not contain an

alternating 4-anticircuit. The class of Ferres digraphs is denoted by FD.

By considering all possible equalities of vertices in an alternating 4-anticircuit, an equiva-

lent characterization is obtained by G ∈ Free({D1,
←→
K2}) and G does not contain a 2-switch,

see [MP95, Figure 2.2] additional to the restriction to digraphs without loops. This class

is comparable to oriented threshold graphs, but not to any other graph class in the directed

co-graph hierarchy, as we will see in the overview.

3.4.3 Further Subclasses of Directed Co-graphs

In Figure 3.10 we summarize directed co-graphs and some subclasses. Since directed co-

graphs and all defined subclasses are hereditary, by Theorem 2.1.2 there exist sets of minimal

forbidden induced subdigraphs. Figure 3.10 shows the finite sets of minimal forbidden induced

subdigraphs for the different digraph classes. These characterizations lead to polynomial time

recognition algorithms for the corresponding digraph classes. The table and the forbidden

subdigraphs are taken from [GKR21c] and also occur in [Kom19].

3.5 Twin-distance-hereditary Digraphs

Since the class of distance-hereditary graphs is a very useful one in undirected graph theory

we try to consider this concept for directed graphs. Attempting to define a directed version of

distance-hereditary graphs, it is necessary to decide which of these definitions modified to a

directed definition is most promising to give a useful digraph class. We consider this matter

concerning some digraph parameters. In [LS10] the authors use a straightforward way in

generalizing the property of distance heredity on digraphs as described in the next subsection.

3.5.1 Distance-Hereditary Digraphs

As already mentioned, there has been previously an attempt to define a directed version of

distance-hereditary graphs. A straightforward idea given by the name of the graph class is

to say that a digraph G is called distance-hereditary, if for every induced subdigraph H of

G and for every vertices u,v in H, the shortest directed path between u and v in H has the

same length as the shortest directed path between u and v in G. This idea has been pursued

in [LS10] but only for oriented graphs without bidirectional edges [Sch21]. They also show

an equivalence to a characterization by a set of forbidden induced subdigraph as they stated

that a digraph G is a distance-hereditary digraph if and only if G does not contain an induced

subdigraph that is a so-called skew bipath, which is a special digraph structure with two paths

where certain arcs which connect these two paths and therefore shorten them are forbidden
4. This class of distance-hereditary digraphs is abbreviated as DHD in the following. The

directed clique-width of this digraph class is not bounded, as we can see by the following

example.

4See [LS10] for a formal definition.

3.5. TWIN-DH DIGRAPHS 43

D9 D10 D11 D12 D13

co-D9 co-D10 2
−→
P2 = co-D11 D14 D15

Q1 Q2 Q3 Q4

Q5 Q6 Q7

co-Q1 co-Q4 co-Q3 co-Q2

co-Q5 co-Q6 co-Q7

Figure 3.8: Digraphs from Figure 3.10

44 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

D21 D22 D23

Figure 3.9: Forbidden induced subdigraphs of OCWQT.

class X notation operations Forb(X)

directed co-graphs DC • G1⊕G2 G1⊘G2 G1⊗G2 D1, . . . ,D8

oriented co-graphs OC • G1⊕G2 G1⊘G2 D1,D5,D8,
←→
K2

directed trivially perfect DTP • G1⊕G2 G1⊘• •⊘G2 G1⊗• D1, . . . ,D15

oriented trivially perfect OTP • G1⊕G2 G1⊘• •⊘G2 D1,D5,D8,
←→
K2 ,D12

directed co-trivially perfect DCTP • G1⊕• G1⊘• •⊘G2 G1⊗G2 D1, . . . ,D8, D12, . . . ,D15

co-D11,co-D10,co-D9

oriented co-trivially perfect ∗ OCTP • G1⊕• G1⊘• •⊘G2 D1,D5,D8,D12,co-D11,
←→
K2

directed weakly quasi threshold DWQT I G1⊕G2 G1⊘ I I⊘G2 G1⊗ I D1, . . . ,D8,Q1, . . . ,Q7

oriented weakly quasi threshold OWQT I G1⊕G2 G1⊘ I I⊘G2 D1,D5,D8,
←→
K2 ,Q7

directed co-weakly quasi thresh. DCWQT K G1⊕K G1⊘K K⊘G2 G1⊗G2 D1, D8,co-Q1, . . . ,co-Q7

oriented co-weakly OCWQT T G1⊕T G1⊘T T ⊘G2 D1,D5,D8,
←→
K2 ,

quasi threshold D12,D21,D22,D23

directed simple co-graphs DSC • G1⊕ I G1⊘ I I⊘G2 G1⊗ I D1, . . . ,D8,Q1, . . . ,Q7,
co-D9,co-D10,co-D11

oriented simple co-graphs OSC • G1⊕ I G1⊘ I I⊘G2 D1,D5,D8,
←→
K2 ,Q7,co-D11

directed co-simple co-graphs DCSC • G1⊕K G1⊘K K⊘G2 G1⊗K D1, . . . ,D8,Q1,
co-Q1, . . . ,co-Q7,D9,D10

oriented co-simple co-graphs OCSC • G1⊕T G1⊘T T ⊘G2 D1,D5,D8,
←→
K2 ,

D12,D21,D22,D23

directed threshold graphs DT • G1⊕• G1⊘• •⊘G2 G1⊗• D1, . . . ,D15

co-D11,co-D10,co-D9

oriented threshold graphs ∗ OTD • G1⊕• G1⊘• •⊘G2 D1,D5,D8,
←→
K2 ,D12,co-D11

Figure 3.10: [GKR21c] Overview on subclasses of directed co-graphs, see Figure 3.4, 3.8 and

3.9 for illustrations of the forbidden induced subdigraphs. By G1 and G2 we denote graphs

of the class X , by I we denote an edgeless graph, by K we denote a bidirectional complete

digraph, and by T we denote a transitive tournament.

3.5. TWIN-DH DIGRAPHS 45

Example 3.5.1. Let G be an oriented n×m grid such that all arcs are oriented from left to

right as from the top to the bottom, see Figure 2.6. G is a distance-hereditary digraph, since

the path from each vertex to each other vertex has always the same length due to the grid

structure. However, the clique-width increases with n or m, such that the directed clique-width

is not bounded.

3.5.2 Motivation of Defining a New Class

There are several arguments that motivate a different definition of directed distance-hereditary

graphs. A very obvious reason is that not all digraphs are covered by the former definition,

since no bidirectional edges are allowed. Further, we cannot get a directed form of a pruning

sequence for these digraphs. They give a relation to some kind of directed twins, but it is not

possible to give a sequence which describes the digraph since several edges not necessarily

exist. Thus, in a new definition we would have the concept of a directed pruning sequence

and consequently, a recursive structure which precisely describes the digraph. The property

of distance heredity is very reasonable such that it would be nice to keep that attribute. Since

distance-hereditary graphs have bounded clique-width, it would be preferable to get a digraph

class of bounded directed clique-width. This would also offer the possibility for parameterized

solutions. Additionally, since the tree-width of distance-hereditary graphs is computable in

linear time, we would like to have a class for which we also get efficient solutions for directed

width parameters related to tree-width. Moreover, the new class should fit into the hierarchy,

in such a manner that that directed co-graphs are a subclass, just as co-graphs are a subclass

of distance-hereditary graphs in undirected graphs.

The content of this subsection is taken from [KR21]. There are at least three different

definitions of twins in digraphs. In [KR09], twins are used to obtain distance-hereditary

digraphs in context of directed rank-width and split decomposition. Thus, [KR09] can be seen

as an attempt to extend undirected distance-hereditary graphs to directed distance-hereditary

graphs. In [FHP19], twins have been defined to obtain results about domination and location-

domination, and in [GY02] (see also [BJG18, p. 282]) in studying diameter in digraphs.

In [LS10] twins are introduced in context of a distance based directed version of distance-

hereditary graphs, but as said before, they do not lead to a characterization of this graph class.

Further, in their twin construction there are optional arcs contained and no bidirectional arcs

are allowed.

We define directed twins and pendant vertices in digraphs as follows.

Definition 3.5.2. Let G be a digraph.

• Vertices x,y∈V (G) are directed twins5 if N−(x)\{y}=N−(y)\{x} and N+(x)\{y}=
N+(y)\{x}. We distinguish between

– x is a (directed) false twin (◦) of y if (x,y),(y,x) 6∈ E(G).

– x is a true out-twin (←) of y if (y,x) ∈ E, (x,y) 6∈ E(G).

– x is a true in-twin (→) of y if (x,y) ∈ E, (y,x) 6∈ E(G).

5We say twins for short, but the meaning is directed twins if the context is a digraph.

46 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

– x is a bioriented true twin (↔) of y if (x,y),(y,x) ∈ E(G).

• A vertex v ∈V (G) is called pendant if |N+(v)|+ |N−(v)|= 1. We distinguish between

– v is a pendant plus vertex (+) if |N+(v)|= 1 and |N−(v)|= 0.

– v pendant minus vertex (−) if |N+(v)|= 0 and |N−(v)|= 1.

This leads to the definition of a recursively defined digraph class which fulfills the prop-

erties required above. We denote this class of digraphs as directed twin-distance-hereditary

graphs.

Definition 3.5.3 (directed twin-distance-hereditary graphs). A digraph G = (V,E) is a di-

rected twin-distance-hereditary graph, twin-dh digraph for short, if it can be constructed

recursively by taking the disjoint union, adding twins and pendant vertices, starting from a

single vertex. The class of twin-dh digraphs is denoted by DDH.

A directed pruning sequence for a twin-dh digraph G is a sequence S(G) = (s1, . . . ,sn−1),
where σ(G) = (v0, . . . ,vn−1) is an ordering of V (G) and every si is one of the following

triples:

• (vi,+,vai
) if vi is a pendant plus vertex of vai

in G[{v0, . . . ,vi}].

• (vi,−,vai
) if vi is a pendant minus vertex of vai

in G[{v0, . . . ,vi}].

• (vi,◦,vai
) if vi is a false twin of vai

in G[{v0, . . . ,vi}].

• (vi,←,vai
) if vi is a true out-twin of vai

in G[{v0, . . . ,vi}].

• (vi,→,vai
) if vi is a true in-twin of vai

in G[{v0, . . . ,vi}].

• (vi,↔,vai
) if vi is a bioriented true twin of vai

in G[{v0, . . . ,vi}].

In general, we denote si = (vi,opi,vai
) and say for vertex vi, that opi is the operation and

vai
the anchor vertex of si.

Intuitively one can ask for the reason why there is not the concept of a bioriented pendant

vertex. The inclusion of this operation would come with a couple of drawbacks. Most of all

this would destroy the property that the class is a subclass of extended directed co-graphs

and thus, lose all properties which we can transfer from this superclass. Due to this we only

include oriented pendant vertices in our construction.

Example 3.5.4. The directed pruning sequence S(G) below with σ(G) = (v0, . . . ,v5) creates

the twin-dh digraph G in Figure 3.11.

S = ((v1,↔,v0),(v2,+,v1),(v3,◦,v1),(v4,−,v2),(v5,←,v2))

3.5. TWIN-DH DIGRAPHS 47

v0

v1 v2

v3

v4

v5

Figure 3.11: The twin-dh-digraph G from Example 3.5.4.

The algorithm used in [DHP01] can recognize a distance-hereditary graph and give its

pruning sequence in linear time w.r.t. the number of vertices and edges. Unfortunately, this

cannot directly be transferred to a recognition algorithm of twin-dh digraphs. To get the

directed pruning sequence of a twin-dh digraph, we need a transformation of algorithm 3

from [DHP01]. Therefore, we need to define a directed version of a distance layout, which

cannot be easily translated. But like in the undirected case, for a given twin-dh digraph, it is

easy to get a directed pruning sequence.

Proposition 3.5.5. Let G be a twin-distance-hereditary digraph. Then, a directed pruning

sequence of G can be computed in polynomial time.

Therefore, we check the pendant vertices in a first step of a loop and remove them. Then,

we compare the neighborhoods of the different vertices and remove twins. After removing a

twin we go on with removing pendant vertices again. If a vertex is removed, it is added to the

directed pruning sequence with the corresponding operation.

3.5.3 Properties

The class of directed twin-distance-hereditary graphs is closed under the connected induced

subdigraph operation. The content of this subsection is taken from [KR21].

Lemma 3.5.6. Let G be a twin-dh digraph and let H be a weakly connected induced subdi-

graph of G. Then H is a twin-dh digraph.

Proof. Let G ∈ DDH with V (G) = {v0, . . . ,vn−1} and let S(G) = (s1, . . . ,sn−1) with σ(G) =
(v0, . . . ,vn−1) be a directed pruning sequence of G. Let H = G\{v} be the weakly connected

induced subdigraph H of G which emerges when deleting vertex v and all corresponding

edges from G. We then create a directed pruning sequence S(H) with ordering σ(H) with the

following procedures for the three different cases.

1. If v = v0, we just delete s1 from S(G) to obtain S(H) and adjust the indies, now v1 is

the first vertex in σ(H).

2. If there exists (v,opi,ai) ∈ S(G) and no (u j,op j,v) with i < j:

(After generating v in S(G), v never occurs as an anchor vertex.)

In this case we get S(H) by deleting (v,opi,ai) from S(G) and adjust the indices.

48 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

3. If there exists (v,opi,ai) ∈ S(G) and also (u j1,op j1,v), ...,(u jk,op jk,v) ∈ S(G) with

i < j and k, j ≤ m−1:

(After generating v in S(G), v occurs at least once as an anchor vertex.)

Since the emerging digraph must be weakly connected, it holds that op jk must be a

directed twin operation. We get a temporary S′(H) = (s′1, . . .s
′
m−2) by the following

steps.

• For t = 1, . . . , i−1 let s′t = st . We keep the directed pruning sequence until v is

generated.

• For t = i we set s′i = (v′,opi,ai) where v′ is the vertex such that sh = (v′,oph,v)
with oph is a directed twin operation and 6 ∃sp = (v′′,opp,v) with p > h and oph

is a directed twin operation. Thus, v′ is the last twin of v with respect to S(G).
Now we replace v by v′ as an anchor in all following occurrences. As v′ is the

latest twin of v w.r.t. S(G), every operation applied on v is also applied on v′.

• For t = i+ 1, . . . , ℓ with i+ 1 ≤ ℓ ≤ m− 1 and v = at first check if v′ = ut in

st = (ut ,opt ,at). If this situation arrives, we delete this st from the directed

pruning sequence, such that we set s′t = (, ,). Vertex v′ is now generated earlier

in the directed pruning sequence and we do not need this step anymore. We will

delete this empty triple at the very end, such that we don’t have counting issues

in the following procedure. As long as v′ 6= ut we set s′t = st if v 6= at and we set

s′t = (ut ,opt ,v
′) if v = at for st = (ut ,opt ,at).

• For the remaining t = ℓ+1, . . . ,m−1 we set s′t = st .

At the end of this procedure, we delete the empty entry sc = (, ,) from S′(H), adjust the

indices and get a directed pruning sequence S(H) for H.

This holds for every weakly connected subdigraph H, since we can repeat this procedure for

every vertex which is in G but not in H. Thus, we can always get a directed pruning sequence

S(H) and H is a twin-dh digraph.

As every directed pruning sequence can easily be transformed into a pruning sequence,

the relation to undirected distance-hereditary graphs follows immediately.

Proposition 3.5.7. If G is a twin-dh digraph, then und(G) is distance-hereditary.

Twin-dh digraphs are distance-hereditary

Though for the definition we used the approach of a recursive construction by twins and

pendant vertices, directed twin-distance-hereditary graphs still fulfill the distance heredity

property.

Theorem 3.5.8. Every twin-distance-hereditary digraph G is distance-hereditary, i.e., for

every two vertices u and v in V (G), all induced u,v-paths have the same length.

3.5. TWIN-DH DIGRAPHS 49

In [LS10] the authors claim that for pendant vertices, for (slightly different, but more

general defined) oriented twins and for false twins the distance-hereditary property remains

fulfilled. However, the result that every path between two distinct vertices is of length one does

not hold in general when including bidirectional edges. This is why we need the following

lemma, which leads us directly to the theorem above. Notice that, the proof could be shortened

using Theorem 4 of [LS10].

Lemma 3.5.9. For two twins u,v in a directed twin-distance-hereditary graph G it holds

that if there exists a path from u to v then the length of the shortest path in every induced

subdigraph G′ of G is at most 2.

Proof. Let u,v ∈V (G) be twins in G. If they are bioriented twins, the distance between them

is trivially 1. If u,v are oriented twins let w.l.o.g. be (u,v) ∈ E(G). Then the distance from u

to v is also 1, but this is not the case for the other direction. So let u and v be oriented twins

with (v,u) ∈ E(G) or false twins. In order to proof the lemma by contradiction, we assume

that there is a shortest path from u to v of length ≥ 3 in an induced subdigraph G′ of G. Let

this path be P = (u,v1, . . . ,vk,v). Since N−G′(v) = N−G′(u) and N+
G′(v) = N+

G′(u) it holds that

(v,v1) ∈ E(G′) and (vk,u) ∈ E(G′). Then there is a cycle (u,v1, . . . ,vk,u) of length at least 3.

If the length is 3 with there must be at least two bidirectional edges in this cycle, otherwise

this cycle is not constructible by directed twins. But then, one of the bidirectional edges goes

to u and since v is a twin, we could have taken this shorter path (u,vi,v) of length 2 from the

beginning, which is a contradiction to the assumption of length 3. Let’s assume the shortest

path is > 3. Then there is a cycle u,v1,v2, . . . ,vk,u with the same argumentation as before.

Since und(G) is distance-hereditary, there cannot be any holes, thus induced cycles of length

≥ 5. Thus, the cycles must contain edges in between. If these edges are forward edges along

the cycle they would shorten the path from u to v which is a contradiction. If these edges are

backward edges along the cycle, they would again build smaller induced cycles, up to a
−→
C3

which is not constructible by a directed pruning sequence. Backward edges are only possible,

if the outer edges from the cycle are bioriented. But this would build an induced subdigraph

H19 or H16 (Figure 3.13), which are not constructible with a directed pruning sequence and

thus are not directed twin-distance-hereditary. Thus, such a path cannot exists and the shortest

path is always of length ≤ 2.

Since we include bidirectional edges in the new class and distance-hereditary digraphs

can leave out certain edges, twin-dh digraphs are neither a superclass nor a subclass of

distance-hereditary digraphs, although they are distance-hereditary. With the same example

as for extended co-graphs, the class of distance-hereditary digraphs has unbounded directed

clique-width, see Example 3.5.1. Here we see a certain advantage of the class of twin-dh

digraphs which justifies to take a closer look.

3.5.4 Sub- and Superclasses

Directed co-graphs

The first part of this subsection is taken from [KR21]. In the undirected case, distance-

hereditary graphs can be classified into the hierarchy with other graph classes. Especially,

50 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

they are a superclass of co-graphs by the definition of co-graphs using twins. We now show,

that this is also possible in the directed case.

Proposition 3.5.10. Every directed co-graph with at least two vertices has directed twins.

Proof. Let G be a directed co-graph with at least two vertices. If G has exactly two vertices,

then these are twins. So, let G have more than two vertices. Then G = G1 ⋆G2 for some

directed co-graphs G1 and G2 with |V (G1)| ≥ 2 or |V (G2)| ≥ 2, where ⋆ ∈ {⊕,⊘,⊗}. By

induction, G1 or G2 has twins x,y. Now, by definition of the ⋆-operation, x and y are also twins

in G. Thus, every directed co-graph with at least two vertices has a twins as claimed.

Theorem 3.5.11. A digraph is a directed co-graph if and only if it can be constructed

recursively by taking disjoint union and adding directed twins, starting from a single vertex.

Proof. Note that we may assume that all graphs considered have at least two vertices. Other-

wise, the theorem clearly holds.

First, let G be a directed co-graph. Then, by Proposition 3.5.10, G has twins x and y.

Let G′ = G− y, thus the digraph that emerges when deleting vertex y form G as well as all

incident edges of y. Since G′ is again a directed co-graph, by induction, G′ can be constructed

by taking disjoint union and adding twins, starting from single vertices. Since G is obtained

from G′ by adding twin y to x, G therefore can be constructed by taking disjoint union and

adding twins, starting from single vertices, too.

For the other direction, suppose that G can be constructed by taking disjoint union and

adding twins, starting from single vertices. We see by induction that G is a directed co-graph.

Now, if G is disconnected, then, as every component of G is a directed co-graph, G is a

directed co-graph. So, let us assume that G is connected. As every digraph with at most

two vertices is a directed co-graph, we may also assume that G has more than two vertices.

Now, by the assumption, G has twins x and y so that y is the last vertex adding to G− y

in obtaining G. Let G′ = G− y. Since G′ can be constructed by taking disjoint union and

adding twins, G′ is a directed co-graph by induction. Since G′ is connected and has at least

two vertices, G′ = G′1 ⋆G′2 for some directed co-graphs G′1 and G′2, where ⋆ ∈ {⊘,⊗}. Let’s

assume x ∈ G′1. We write G1 = G[V (G′1)∪{y}] and G2 = G′2 and notice that, G1 and G2 are

directed co-graphs.

Then, since x,y are twins in G, G = G1 ⋆G2. Hence G is a directed co-graph, and the

proof of Theorem 3.5.11 is complete.

Then, the relation to twin-dh digraphs follows immediately:

Corollary 3.5.12. Let G be a directed co-graph. Then, G is also twin-distance-hereditary.

By Lemma 3.5.6 and Theorem 3.5.11, we can further conclude the following result:

Lemma 3.5.13. Let G be a directed twin-distance-hereditary graph. Then every strong

component of G is a directed co-graph.

Proof. Let H be an induced subdigraph of G that is strongly connected. Then, by Lemma

3.5.6, H is a directed twin-distance-hereditary graph. Thus, there is a directed pruning

3.5. TWIN-DH DIGRAPHS 51

sequence S(H), that creates H. Assume that there is an element si = (vi,opi,vai
) in S(H) with

operation opi is a pendant plus (respectively pendant minus) operation. Then, by the allowed

operations in twin-dh digraphs, there is no directed path from vai
to vi (respectively from vi to

vai
) in H. This is a contradiction to the fact, that H is strongly connected. Thus, S(H) does

not contain any pendant vertex operations. By Theorem 3.5.11 follows, that H is a directed

co-graph.

This lemma admits many algorithmic results. Every digraph problem, which is solvable

by considering only the strong components and which is further computable on directed

co-graphs, is similarly computable on twin-dh digraphs by Lemma 3.5.13. For example, this

holds for several digraph parameters, as we see later on.

With these results it also possible to show that twin-dh digraphs are a subclass of extended

directed co-graphs.

Proposition 3.5.14. Let G be a twin-dh digraph. Then G is also an extended directed

co-graph.

Proof. Let G be a twin-dh digraph. With the following procedure we can get a construction

of G with the extended directed co-graph operations. We know from Lemma 3.5.13 that the

strong components are directed co-graphs, thus we build the di-co-tree of these components.

If a vertex does not belong to any bigger strong component it can be seen as its own strong

component. The missing arcs which connect the different strong components in G are built

by directed union operations, where we can leave out all arcs except for the arc of the

corresponding pendant vertex.

This result allows us to adopt some results how to solve several graph parameters on this

graph class. However, we show that we can even do better on twin-dh digraphs.

Bipartite oriented twin-distance-hereditary graphs

When developing the twin-dh digraphs, we investigated some subclasses, which also can

be characterized by forbidden induced subdigraphs. This gives the opportunity for further

research e.g. on problems, which are still hard on directed twin-dh digraphs. Bandelt and

Mulder [BM86] already considered bipartite distance-hereditary graphs. So first, we introduce

the class of bipartite oriented twin-dh graphs. We define the class by limiting the allowed

operations in the construction via twins and pendant vertices.

Definition 3.5.15. A graph G is a bipartite oriented twin-dh graph, iff it can be constructed

by adding false twins and pendant vertices to the single vertex graph. We call the class of

bipartite oriented twin-dh graphs BODH for short.

Consequently, if a twin-dh digraph G is bipartite and oriented then, G ∈ BODH.

Oriented twin-distance-hereditary graphs

We introduce the class of oriented twin-distance-hereditary graphs, where we forbid the

bioriented true twin operation.

52 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

Definition 3.5.16. A graph G is a oriented twin-dh graph, iff it can be constructed by adding

false twins, true out-twins, true in-twins and pendant vertices to the single vertex graph. We

call the class of oriented twin-dh graphs ODH for short.

Thus, digraph G ∈ ODH if it is a twin-dh digraph and it contains no bidirectional edges.

Observation 3.5.17. The following relation between the directed graph classes hold:

BODH⊂ ODH⊂ DDH

and

ODH⊂ DHD

In Figure 3.12 we have examples for digraphs lying in the previous defined classes.

G1 G2 G3

Figure 3.12: These digraphs show the differences of the digraph classes since G1 ∈ DDH but

G1 6∈ ODH, G2 ∈ ODH but G2 6∈ BODH and G3 ∈ BODH.

3.5.5 Characterization by Forbidden Induced Subdigraphs

The following part about the characterization of DDH is taken from [KR21]. As already

mentioned previously, the new definition is not only based on the property of distance heredity

as in the undirected case or in distance-hereditary digraphs. That is, not every digraph which

is distance-hereditary, is also a twin-dh digraph. This can be easily shown by e.g. a bioriented

path. However, it is possible to give different characterizations of the class DDH by forbidden

induced subdigraphs.

Definition 3.5.18. A weakly connected digraph G is a two-leaves-digraph if it has at least 4

vertices and if it contains at least two bioriented leaves u,v with N(u) 6= N(v) in und(G), see

Figure 3.13.

Theorem 3.5.19. A digraph G is directed twin-distance-hereditary if and only if it contains

none of the following digraphs, see Figure 3.13 as induced subdigraph.

•
−→
C3.

• any biorientation of the Cn (hole) for n≥ 5, domino, house or gem.

• H0, . . . ,H27.

• A two-leaves-digraph.

3.5. TWIN-DH DIGRAPHS 53

Proof. • ⇒ None of the digraphs can be constructed with directed twins and directed

pendant vertices and the class is hereditary, see Lemma 3.5.6.

• ⇐ We proof this by contradiction. Let G be a digraph that does not contain any of

the forbidden induced subdigraphs above and let’s assume that G 6∈ DDH. A digraph

is not twin-distance-hereditary if it cannot be constructed by the directed twin and

pendant vertices operations. We distinguish two cases G 6∈ DDH∧un(G) 6∈ DH and

G 6∈ DDH∧un(G) ∈ DH. Case one is that G is not twin-dh for structural reasons, thus

G 6∈ DDH∧un(G) 6∈ DH which is ensured by the exclusion of any biorientation of the

Cn (hole) for n≥ 5, domino, house or gem, see Figure 3.13.

In the other case G 6∈ DDH∧ un(G) ∈ DH the digraph is not twin-dh for orientation

reasons. This means that there exists a pruning sequence P for und(G) but there is no

directed pruning sequence for G because the arcs have a biorientation, which cannot

be achieved by the directed twin and pendant vertex operations. By forbidding the

two-leaves-digraphs, the pendant vertex operations are not allowed to be bioriented

and thus, every undirected pendant vertex operation in P can be replaced by a directed

pendant vertex operation. It is left to show that G has as well none of the digraphs

of set H = {
−→
C3,H0, . . . ,H27} as induced subdigraph. Notice that, H contains every

digraph with ≤ 4 vertices that cannot be constructed by the directed twin operations,

with no inclusions. If we look at every possibly biorientation of the operations in P,

we get any possible directed pruning sequence of G. For every induced subdigraph H

of G with ≤ 4 vertices there must exists a biorientation, such that there is a directed

pruning sequence, since the set H is exactly the set of digraphs with ≤ 4 that has

no directed pruning sequence. There are no more forbidden induced subdigraphs H ′

that contains none of the previous excluded digraphs as induced subgraph with more

than 4 vertices for the following reason. Assume there is an induced subdigraph H ′ of

G with ≥ 5 vertices which is minimal in the sense that it does not contain a digraph

from H as induced subdigraph and for which there is no directed pruning sequence.

Let V (H ′) = {t1, t2,u,v,w1, ...,wk} with k ≥ 1 be the vertex set of H ′, where t1 and

t2 are twins in the undirected pruning sequence P′ of H ′. As H ′ is minimal, every

induced subdigraph H∗ of H ′ with 4 vertices is not forbidden. Thus, the different

directed neighborhood of t1 and t2 must arise by adding the fifth vertex w1. But if this

vertex causes an orientation problem in H[{t1, t2,u,v,w1}] then this vertex also causes

an orientation problem in H[{t1, t2,u,w1}] which would build a forbidden induced

subdigraph with 4 vertices. We end up in the same problem if we chose any other two

twins. Thus, there cannot be a forbidden induced subdigraph with more than 4 vertices

for which there is no directed pruning sequence, if an undirected pruning sequence

exists and G ∈ DDH.

This shows the statement of the theorem.

To get a better understanding of the construction of the forbidden induced subdigraphs

H0, . . . ,H27 we group them as follows. In none of them we can find directed twins, but the

undirected versions of them are distance hereditary.

• H0, . . . ,H5: Digraphs with 4 or less vertices with und(G) = C4 which are strongly

54 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

connected.

• H6, . . . ,H9: Digraphs with 4 vertices with und(G) = C4 which are not strongly con-

nected.

• H10, . . . ,H19: Digraphs with 4 vertices with und(G) = C4 with an additional single

diagonal edge.

• H20, . . . ,H26: Digraphs with 4 vertices with und(G) = C4 with an additional bidirec-

tional diagonal edge.

• H27: Forbidden orientation of the K4.

−→
C3 H0 two-leaves-digraph

hole Cn, n≥ 5 gem house domino

H1 H2 H3 H4 H5 H6 H7

H8 H9 H10 H11 H12 H13 H14

H15 H16 H17 H18 H19 H20 H21

H22 H23 H24 H25 H26 H27

Figure 3.13: Forbidden induced sub(di)graphs.

We also give a characterization for the subclasses BODH and ODH. In the undirected

case there is the following characterization for bipartite distance-hereditary graphs.

3.5. TWIN-DH DIGRAPHS 55

Lemma 3.5.20 ([BM86]). An undirected graph G is bipartite distance hereditary if and only

if it has no triangle, domino or cycle Cn with n≥ 5 as induced subgraph.

The class BODH is hereditary for the same reasons as its superclass such that we can

characterize this class by a set of forbidden induced subdigraphs.

Theorem 3.5.21. G ∈ BODH if and only if it contains none of the following graphs, see

Figure 3.13, as induced subdigraph.

• any orientation of the Cn (hole) for n≥ 5, domino or triangle.

•
←→
K2 ,H6,

−→
C4(= H1)

Proof. • ⇒ None of the graphs can be constructed with the operations from Definition

3.5.15 and the class is hereditary.

• ⇐We call the set of forbidden induced subdigraphs FBODH . Let G be a digraph with

no induced subdigraph H ∈ FBODH , from Theorem 3.5.21. We divide FBODH into two

distinct sets FBO and FDH such that FBODH = FBO ∪FDH with FDH = {H | H is an

orientation of a triangle, hole or domino} and FBO = {
←→
K2 ,
−→
C4,H6}. On this way we

divide the forbidden induced subdigraphs in two sets: The forbidden subdigraphs H

for which there is not even a pruning sequence for und(H) (structural reasons) and the

forbidden subdigraphs F for which there is a pruning sequence for und(F) but there is

no twin operation which allows the orientations (orientation reasons). Since orientations

of holes with at least 5 vertices are forbidden, dominoes or triangles, und(G) is bipartite

distance hereditary, see Lemma 3.5.20. Thus, there exists a pruning sequence P for

the underlying undirected graph und(G) using false twins and pendant (plus or minus)

vertices. It is left to show that there exists also a directed pruning sequence
−→
P , by

excluding the graphs from FBO. By forbidding the
←→
K2 there are no bidirectional edges

in the digraph. Since there are there are no holes with n = 3 or n≥ 5 the graph only has

tree-like structures with arcs (no bidirectional) and cycles on 4 vertices. The tree-like

structures can be constructed by the pendant plus and pendant minus vertices. The

remaining graph consists of cycles of length 4. There exists 3 different non-isomorphic

digraphs on 4 vertices with 4 oriented edges. Since the C4 and the F6 are forbidden

induced subdigraphs, the only possible orientation is the one from Figure 3.14, which

consist of false twins. Thus, we can always create G with a directed pruning sequence

consisting of false twins and pendant plus or minus vertices, such that G ∈ BODH.

Figure 3.14: Oriented graph G with und(G) is a C4 and there exist directed twins: Only

allowed non-tree-like structure in BODH having false twins.

56 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

Theorem 3.5.22. G ∈ODH if and only if it contains none of the following graphs, see Figure

3.13, as induced subdigraph.

•
−→
Cn for n ∈ {2,3,4}.

• any orientation of the Cn (hole) for n≥ 5, domino, house or gem.

• H6,H10,H11.

Proof. • ⇒ None of the graphs can be constructed with the operations from Definition

3.5.16 and the class is hereditary.

• This direction of the proof can be conducted exactly like the proof of Theorem 3.5.19.

The only difference is that we forbid the
−→
C2 =

←→
K2 which is a bidirectional edge, such

that we can omit all graphs that contain bidirectional edges, which leads us to the which

leads us to that exactly the above given set of forbidden induced digraphs.

To sum up, the class of twin-dh digraphs is a superclass of directed co-graphs and when

excluding the bioriented true twin operation, it is a subclass of distance-hereditary digraphs,

defined in [LS10]. Further, the class is a subclass of extended directed co-graphs which

allows us to adopt interesting results, which we see in Chapter 4. One of these results is

that twin-dh digraphs have bounded directed clique-width. Due to the unbounded directed

clique-width of extended directed co-graphs, twin-dh digraphs exhibit properties which allow

supplemental results such that an investigation of this class is advisable. The property that

every strong components is a directed co-graph is helpful in the computation of solutions for

several problems.

3.6 Directed Versions of Series-parallel Graphs

The content of the following two subsections is taken from [GKR20b] and [GKL20].

3.6.1 MSP-digraphs

We recall the definition of minimal vertex series-parallel digraphs from [BJG18] which is

based on [VTL82]. The motivation of this class is based in the superclass of series-parallel

digraphs, which are are exactly the digraphs whose transitive closure equals the transitive

closure of a minimal series-parallel digraph, see Subsection 3.6.2. By [BJG18, Section 11.1]

msp-digraphs are useful for modeling flow diagrams and dependency charts and they are used

in applications for scheduling under constraints.

First, we introduce two operations for two vertex-disjoint digraphs G1 = (V1,E1) and

G2 = (V2,E2). Let O1 be the set of sinks in G1 and I2 be the set of sources in G2.

• The parallel composition of G1 and G2, denoted by G1∪G2, is the digraph with vertex

set V1∪V2 and arc set E1∪E2.

3.6. DIRECTED SP-GRAPHS 57

• The series composition of G1 and G2, denoted by G1×G2 is the digraph with vertex

set V1∪V2 and arc set E1∪E2∪ (O1× I2) with O1× I2 = {(u,v) | u ∈ O1 and v ∈ I2}.

Definition 3.6.1 (Minimal series-parallel digraphs). The class of minimal series-parallel

digraphs6, msp-digraphs for short, is recursively defined as follows.

1. Every digraph on a single vertex ({v}, /0), denoted by v, is a minimal series-parallel

digraph.

2. If G1 and G2 are vertex-disjoint minimal series-parallel digraphs, then

(a) the parallel composition G1∪G2 and

(b) then series composition G1×G2 are minimal series-parallel digraphs.

The class of minimal series-parallel digraphs is denoted by MSP.

An expression X using the operations of Definition 3.6.1 is called an msp-expression and

digraph(X) is the corresponding digraph. For an illustration of such an expression see the

following example.

Example 3.6.2. 1. The msp-expression

X = ((v1∪ v2)× (v3∪ v4)) (3.1)

defines digraph(X) shown in Figure 3.15.

2. The msp-expression

X = (((v1× v2)∪ (v3× v4))× (v5× v6)) (3.2)

defines digraph(X) shown in Figure 3.16.

1
v

4
v

3
v

2
v

Figure 3.15: Digraph in Example 3.6.2(1.).

1
v

2
v

v
5

v
6 4

v

3
v

Figure 3.16: Digraph in Example 3.6.2(2.).

For every msp-digraph we can define a tree structure T , which is denoted as msp-tree.

In [VTL82], the tree-structure for an msp-digraphs is denoted as binary decomposition tree.

The leaves of an msp-tree represent the vertices of the digraph and the inner vertices of the

msp-tree correspond to the operations applied on the subexpressions defined by the subtrees.

Observation 3.6.3 ([VTL82]). For every minimal series-parallel digraph G one can construct

an msp-tree in time O(n+m), where m = |E(G)| and n = |V (G)|.

58 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

2
v 3

v

1
v v

6

4
v

v
5

Figure 3.17: An msp-digraph with msp-expression X = (v1× (((v2× v3)× v4)∪ v5))× v6,

see [GKL20].

The class of msp-digraphs is not closed under taking induced subdigraphs, as by removing

vertex v3 from digraph(X) in Figure 3.6.1, we get a digraph which is no msp-digraph. The

class of oriented complete bipartite graphs, denoted by
−−→
Kn,m, is a subclass of msp-digraphs.

We have already seen that not every orientation of a tree is a msp-digraph, however a certain

orientation of trees form a subclass.

Observation 3.6.4. Every in- or out-tree is a minimal series-parallel digraph.

3.6.2 Series-parallel Digraphs

Definition 3.6.5 (Series-parallel digraphs). Series-parallel digraphs are exactly the digraphs

whose transitive closure equals the transitive closure of some minimal series-parallel digraph.

The class of series-parallel digraphs is denoted by SPD.

Theorem 3.6.6 ([VTL82]). An acyclic digraph is series-parallel, if and only if its transitive

closure is N-free, see Figure 3.5.

From an algorithmic point of view series-parallel digraphs are interesting since several

hard graph problems can be solved in polynomial time by dynamic programming along the

tree structure of the input graph, see [MS77, Ste85, Ren86].

3.6.3 Series-parallel Partial Order Digraphs

We take a look at the definitions of from [BJG18] that base on [VTL82]. The content about

series-parallel partial order digraphs is taken from [GKR21c] and [GKR20b]. A series-parallel

partial order is a partially ordered set (X ,≤) that is constructed by the series composition and

the parallel composition operation starting with a single element.

• Let (X1,≤) and (X2,≤) be two disjoint series-parallel partial orders, then distinct

elements x,y ∈ X1∪X2 of a series composition7 have the same order they have in X1 or

X2. Respectively, this holds if both of them are from the same set, and x≤ y if x ∈ X1

and y ∈ X2.

6also known as minimal vertex series-parallel digraphs
7Notice that, the series composition in this case corresponds to the order composition in the definition of

directed co-graphs.

3.6. DIRECTED SP-GRAPHS 59

• Two elements x,y ∈ X1∪X2 of a parallel composition are comparable if and only if

both of them are in X1 or both in X2, while they keep their corresponding order.

Definition 3.6.7 (Series-parallel partial order). The class of series-parallel partial orders,

SPO for short, over a set X is recursively defined as follows.

1. Every single element ({x}, /0), x ∈ X , is a series-parallel partial order.

2. If (X1,≤) and (X2,≤) are series-parallel partial orders over set X , such that X1 ⊆ X ,

X2 ⊆ X , and X1∩X2 = /0, then

(a) the series composition of (X1,≤) and (X2,≤) and

(b) the parallel composition of (X1,≤) and (X2,≤) are series-parallel partial orders.

Example 3.6.8. The following partially ordered sets are series-parallel partial orders over set

{x1,x2,x3,x4}.

• The parallel composition of ({x1}, /0) and ({x3}, /0) leads to the series-parallel partial

order ({x1,x3}, /0).

• The series composition of ({x2}, /0) and ({x4}, /0) leads to the series-parallel partial

order ({x2,x4},{(x2,x4)}).

• The series composition of ({x1,x3}, /0) and ({x2,x4},{(x2,x4)}) leads to the series-

parallel partial order ({x1,x2,x3,x4},{(x2,x4),(x1,x2),(x1,x4),(x3,x2),(x3,x4)}).

Definition 3.6.9 (Series-parallel partial order digraphs). A series-parallel partial order

digraph G = (V,E) is a digraph, where (V,≤) is a series-parallel partial order and (u,v) ∈ E

if and only if u 6= v and u≤ v. We denote the class of series-parallel partial order digraphs by

SPO.

3.6.4 Properties of Series-parallel Partial Order Digraphs

Bechet et al. showed in [BdGR97] the following property of directed co-graphs in relation to

series-parallel partial order digraphs.

Lemma 3.6.10 ([BdGR97]). For every directed co-graph G it holds that the asymmetric part

of G is a series-parallel partial order digraph and for the symmetric part the underlying

undirected graph a co-graph.

The class of series-parallel partial ordered digraphs is equal to the class of oriented co-

graphs since they have exactly the same recursive structure. Thus, this lemma is easy to prove

with the following idea.

• symmetric part: Exchange each order composition with a directed union composition.

Since there are no more oriented arcs left, this tree represents a co-graph.

60 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

• asymmetric part: Exchange each series composition with a directed union composi-

tion. Since there are no more bidirectional edges left, this tree represents an oriented

co-graph, e.g. a series-parallel partial order digraph.

Example 3.6.11. The series-parallel partial orders given in Example 3.6.8 show that the

digraph shown in Figure 3.18 is a series-parallel partial order digraph.

1
v

3
v

2
v

4
v

Figure 3.18: Directed co-graph with di-co-expression X = ((v1⊕ v3)⊘ (v2⊘ v4)).

Comparing the definitions of the order composition of oriented co-graphs with the series

composition of series-parallel partial order digraphs and the disjoint union composition of

oriented co-graphs with the parallel composition of series-parallel partial order digraphs, see

Figure 3.18 and Example 3.6.8, we obtain the following result.

Observation 3.6.12. The sets OC and SPO are equal.

In Subsection 3.7 we give an overview about the relation between the presented digraph

classes.

3.6.5 ESP-digraphs

Undirected series-parallel graphs are graphs with two distinguished vertices called terminals,

which are formed recursively by parallel and series compositions. In contrast to the classes

introduced earlier, we now start with a single edge instead of a single vertex. This subsection

is taken from [LGK21]. A multidigraph is a digraph that can have multiple edges between

two vertices. More precisely, not only bidirectional edges are allowed but also multiple edges

with the same start and end vertex.

Let G1 = (V1,A1) and G2 = (V2,A2) be two vertex-disjoint multidigraphs such that each

of them has exactly one source and one sink.

• The parallel composition G1∪G2 identifies the source of G1 with the source of G2 and

the sink of G1 with the sink of G2.

• The series composition G1×G2 identifies the sink of G1 with the source of G2.

Edge series-parallel digraphs have been defined originally as edge series-parallel multidi-

graphs, from [VTL82].

Definition 3.6.13 (Edge Series-Parallel Multidigraphs). The class of edge series-parallel

multidigraphs, esp-digraphs for short, is recursively defined as follows.

(i) Every digraph of two distinct vertices joined by a single arc ({u,v},{(u,v)}), denoted

by (u,v), is an esp-digraph.

3.6. DIRECTED SP-GRAPHS 61

(ii) If G1 = (V1,A1) and G2 = (V2,A2) are vertex-disjoint minimal edge series-parallel

multidigraphs, then

(a) the parallel composition G1∪G2 is an esp-digraph and

(b) the series composition G1×G2 is an esp-digraph.

An expression X using the operations of Definition 3.6.13 is called an esp-expression and

digraph(X) is the defined digraph. For a better understanding we now give an example of

such an expression.

Example 3.6.14. The esp-expression

Xe = ((v1,v2)× (((v2,v3)× ((v3,v4)× (v4,v5)))∪ (v2,v5)))× (v5,v6)

defines the esp-digraph shown in Figure 3.19.

1
v

2
v

3
v

4
v

v
5

v
6

Figure 3.19: Digraph(Xe) in Example 3.6.14.

As for the other digraph classes with a recursive structure, we can define a tree structure

for every esp-digraph, denoted as esp-tree. The leaves of the esp-tree represent the arcs of

the digraph and the inner nodes of the esp-tree correspond to the operations applied on the

subexpressions which are defined by the subtrees. For a vertex u of an esp-tree T we denote

by T (u) the subtree rooted at u and by X(u) the sub-expression defined by T (u). For every

esp-digraph the construction of an esp-tree is possible in linear time, see [Val78]. These

graphs are also subject in [HY87] where they appear as two-terminal series-parallel (TTSP)

graphs and where a parallel algorithm for recognizing directed series-parallel graphs is shown.

Additionally, in [Epp92] we can find an improved parallel algorithm for recognizing directed

(and undirected) series-parallel graphs.

There is a relation between esp and msp-digraphs. In a line digraph LD(G) of a digraph

G there exists a vertex for every arc in G. More precisely, there is an arc (u,v) in LD(G) if

and only if u = (x,y) and v = (y,z) for the vertices x,y,z ∈ V (G) [HN60]. In this sense we

call digraph G the root digraph of LD(G).

Lemma 3.6.15 ([VTL82]). An acyclic multidigraph G with a single source and a single sink

is an esp-digraph if and only if its line digraph LD(G) is an msp-digraph.

Example 3.6.16. The msp-digraph G, which is defined in Figure 3.6.1 defines the line digraph

of esp-digraph Ge defined in Example 3.6.14, see Figure 3.19.

Since esp-digraphs can have multi-edges, this class can not be a subclass of the classes

introduced earlier.

62 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

Example 3.6.17. Let G be a digraph and e1 is a single arc in E(G). Then X = (e1× e1)∪ e1

is an esp-digraph but not an msp-digraph. The digraph consisting of a single vertex is an

msp-digraph but no esp-digraph.

From the digraphs in the previous example we can conclude the following observation

about the relation between msp and esp-digraphs, even when excluding multi-edges.

Observation 3.6.18. The class of msp-digraphs and esp-digraphs are not comparable.

As well the bidirectional arcs, which are allowed in esp-digraphs but not in msp-digraphs

can be mentioned at this point. Later we also need the following properties of esp-digraphs.

Observation 3.6.19 ([LGK21]). Let G be an esp-digraph. Then, it holds that G has exactly

one source and exactly one sink.

Proposition 3.6.20. Let G be an esp-digraph. Then, it holds that und(G) is a series-parallel

graph.

Proof. For every start digraph G = ({v,u},(u,v)), und(G) is series-parallel graph. Further,

we can replace every parallel composition by a parallel composition in the undirected case,

and every series composition by a series composition in the undirected case. The sources in

G are also sources in und(G), same holds for sinks.

3.7 Hierarchy

In Figure 3.20 we summarize the relation of directed co-graphs, series-parallel digraphs and

related graph classes. The directed edges represent the existing relations between the graph

classes, which follow by their definitions. For the relations to further graph classes we refer

to [BJG18, Figure 11.1]. Since a skew bipath (which is not a distance-hereditary digraph) is

is an extended directed co-graph and a
−→
C3 is a distance-hereditary digraph but not an extended

directed co-graph these classes are incomparable. Additionally, DAGs are not a subclass of

DDH, since every acyclic orientation of a Cn with n≥ 5 is a DAG but not in DDH. The other

direction is trivially not satisfied, since DDH includes bidirectional edges.

3.7. HIERARCHY 63

OT

MSP

SPD

DAG

ESP∗

T T

OT D

OC = SPO

DC

EDC

DDH DHD

ODH

BODH

Figure 3.20: Hierarchy between the digraph classes: A directed edge from class A to class

B indicates that B⊆ A. Two classes A and B are incomparable if there is neither a directed

path from A to B, nor a directed path from B to A. ESP∗ is the class of esp-digraphs without

multi-edges, which we leave out to enable comparability.

64 CHAPTER 3. RECURSIVE DIGRAPH CLASSES

4 Directed Graph Parameters on Spe-

cial Digraph Classes

Directed graph parameters are often hard to compute in general, however they are useful in

parameterized complexity. This leads to the idea of looking at directed width-measures of

special digraph classes, which we do in this chapter. First, we give some bounds for several

directed width-measures on semicomplete digraphs. Then, we move on showing the efficient

computation of various directed width-measures on (extended) directed co-graphs and twin-dh

digraphs.

4.1 Bounds of Digraph Parameters on Semicomplete Digraphs

The content of this section is taken from [GKRW21]. The rediscovery of path-width and

tree-width in the graph minors project by Robertson and Seymour [RS86] has led to a wide

range of algorithmic results. In the wake of this success several possible generalizations to

directed graphs have since emerged, among which are directed path-width (d-pw), directed

tree-width (d-tw) [JRST01b], DAG-width (dagw) [BDH+12] and Kelly-width (kw) [HK08].

While all of these parameters are related, directed path-width and directed tree-width

are not parametrically equivalent to either of the other parameters and the equivalence of

DAG-width and Kelly-width is an open conjecture.

All these width parameters correspond to different variants of so-called cops and robber

games. Width parameters corresponding to variants of the cops and robber game have

the inherent advantage of coming with an XP-time (approximation) algorithm for finding a

decomposition of (almost) optimal width. They also tend to correlate with structural properties

and thus, as exemplified by tree-width, make for great tools for structure theory. However,

there exists strong evidence that for digraphs no such parameter can, in addition to these

advantages, replicate the algorithmic power of tree-width in undirected graphs [GHK+16].

We show that on semicomplete digraphs, all of the path-width and tree-width inspired

parameters are equivalent. Indeed, all of these equivalences are realized by relatively tame

functions obtained without complicated proofs.

65

66 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

4.1.1 Comparison of Directed Graph Parameters on General Digraphs

We start with the comparisons between different parameters and thus, the current landscape

of bounding functions between these parameters on general digraphs.

Proposition 4.1.1. Let G be a digraph and f ,g ∈ {d-pw,d-tw,dagw,kw,d-lcw,d-cw}. If

f (G)≤ k, then g(G)≤ h′f ,g(k) where h′f ,g : N→ N is given by Table 4.1 if the functions exist.

Proof. 1. d-pw is unbounded in terms of kw: In [BJG18] the example of complete

complete biorientation
←→
Th of an undirected binary tree Th of height h is considered.

Since the undirected path-width of Th is h it follows that
←→
Th has directed path-width h.

Furthermore,
←→
Th has Kelly-width 2 since a directed elimination ordering t of width 1

can be obtained by any level order starting with the leaves of Th.

2. d-pw is unbounded in terms of d-tw: Holds with the example from 1 which is inspired

by the undirected comparisons of path-width and tree-width. Increasing h, the directed

tree-width is 1, while the directed path-width increases.

3. d-tw is bounded by d-pw: This follows immediately from the definition.

4. d-pw, d-tw, dagw and kw are unbounded in terms of d-lcw and thus in d-cw: The set

of all bioriented cliques is a counterexample.

5. kw is unbounded in terms of d-tw: As an example consider a binary tree, where all

edges are oriented from the root to the leaves. Additionally, every vertex has a backward

edge to each of its predecessors on the unique path from the root to itself.

6. d-cw and thus also d-lcw is unbounded in terms of d-pw, d-tw, dagw and kw. An

acyclic orientation of a grid graph is a counterexample, see Figure 2.6.

7. d-lcw is unbounded in terms of d-cw: In Lemma 11 of [GW05] it has been shown

that for G1 = • and Gi+1 = (Gi∪Gi)× (Gi∪Gi) for i≥ 1, graph Gi has linear NLC-

width at least i. The proof idea can be used to show that for G1 = • and Gi+1 =
(Gi⊘Gi)⊗ (Gi⊘Gi) for i≥ 1, digraph Gi has directed linear NLC-width at least i. All

graphs Gi are directed co-graphs which implies that they have directed clique-width at

most 2, see [GWY16]. Since directed linear clique-width is greater or equal to directed

linear NLC-width [GR19a], the result follows.

8. d-cw is bounded by d-lcw: This follows immediately from the definition.

Notice that, Proposition 4.1.1 contains in particular the known fact that directed path-

width poses as an upper bound for all tree-width inspired width parameters. Moreover, on

semicomplete digraphs, by Proposition 4.1.7 it also is an upper bound on directed clique-

width. It therefore suffices, towards a proof of Theorem 4.1.8, to establish upper bounds on

directed path-width in terms of directed tree-width, DAG-width, and Kelly-width, as well as

proving that Proposition 4.1.7 can be extended to also include directed linear clique-width.

4.1. PARAMETERS ON SEMICOMPLETE DIGRAPHS 67

g

f
d-pw d-tw dagw kw d-lcw d-cw

d-pw k ∞ ∞ [BDH+12] ∞ ∞ ∞

d-tw k k 3k+1 [BDH+12] 6k−2 [HK08] ∞ ∞

dagw k+1 [BDH+12] ∞ [BDH+12] k 72k2 [AKK+15] ∞ ∞

kw k+1 [GHK+14] ∞ ??? [HK08] k ∞ ∞

d-lcw ∞ ∞ ∞ ∞ k ∞

d-cw ∞ ∞ ∞ ∞ k k

Table 4.1: Relations between digraph parameters on digraphs. The parameter of the left

column is bounded by the respective parameter of the top row by the specified function where

k is the corresponding width. We use ‘∞’ if the relation is unbounded, that is if h′f ,g does not

exist. The cell with ‘???’ represents the remaining relation of the conjecture on DAG-width

and Kelly-width.

4.1.2 DAG-width and Directed Path-width on Semicomplete Digraphs

As a first step towards Theorem 4.1.8 we show that DAG-width plus 1 and directed path-width

are equal on the class of semicomplete digraphs. Before proving this relation formally, we

give brief interjection about the intuitive idea behind it. The definition of the compositions of

directed path-width and DAG-width are quiet alike, except for the path and the DAG-structure.

In both decompositions we can read informally which vertex is reachable from which other

vertex in the corresponding digraph. In the DAG-decomposition we have the possibility

to branch, such that two vertices which do not share edges or reachability can occur in

separate branches and we do not have an increase of the width due to preserve condition

(dagw-2). But in a semicomplete digraph every vertex has an edge to every other vertex,

which means that all vertices are related to each other. This relation must be represented in

the DAG-decomposition. By this, it makes no sense to branch, such that we end up in a path

as a decomposition structure. In the following we formalize this idea and prove it.

This result also leads to the fact that computing DAG-width of a semicomplete digraph is

in NP.

This later fact might be of independent interest since DAG-width is PSPACE-complete in

general [AKK+15], but, it is one of only few known parameters from the tree-width inspired

family which allows for an efficient solving of parity games [BDHK06].

We look at a nice DAG-decomposition of a digraph D. Since deleting transitive edges

from D does neither destroy any of the properties of a DAG-decomposition, nor increase the

width of the DAG-decomposition, we get the following property.

Lemma 4.1.2. If digraph G has a DAG-decomposition of width k, it also has a nice DAG-

decomposition (D,X) of width k such that D has no transitive edges.

Since the DAG-width of a graph is also known as being the non-linear path-width of a

digraph the following result seem very natural.

Theorem 4.1.3. For every semicomplete digraph G it holds that d-pw(G)≤ dagw(G)−1.

68 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

Proof. Let G be a semicomplete digraph and let (D,X) be a nice DAG-decomposition for

G of width k with digraph D, vertex set VD and X = {Xu | u ∈VD}. By Lemma 4.1.2 we can

assume that D has exactly one source, every vertex in D has at most two successors and no

transitive edges. We show that in case D is not a path, we can convert it into a path without

increasing the width. Assume D is not a path. For any vertex r let VDr
is the set of vertices of

D which are reachable from r. Let Dt be the maximal subdigraph of D with unique source t.

Consider vertex q ∈VD with two successors s and t. We differentiate three cases: All vertices

from G which are in bags of Ds are also in the bags of Dt (Case 1.a), the opposite inclusion

(Case 1.b) or, at last none of these inclusions (Case 2) occur.

Case 1.a: (
⋃

u∈VDs
Xu)∪Xq ⊆ (

⋃
u∈VDt

Xu)∪Xq.

In order to define a new DAG-decomposition (D′,X ′) for G, we simply remove all

vertices VDs
\VDt

from D and forget all bags associated with removed vertices. We

now show that (D′,X ′) is a DAG-decomposition for G by checking the conditions of

Definition 2.2.14.

• (dagw-1) Is satisfied since

⋃

u∈VD′

Xu =
⋃

u∈VD\VDs

Xu∪
⋃

u∈VDt

Xu

(∗)

⊇
⋃

u∈VD\VDs

Xu∪
⋃

u∈VDs

Xu =
⋃

u∈VD

Xu =VG

The inclusion in (∗) holds by assumption of case 1a) since q ∈VD\VDs
.

• (dagw-2) is still satisfied since for every a,b,c ∈VD′ it holds that if a 4D′ b 4D′ c

then

X ′a∩X ′b = Xa∩Xc ⊆ Xb = X ′b

• (dagw-3) Let (a,b) ∈ ED′ , then it follows that (a,b) ∈ ED. Therefore, it must hold

that Xa∩Xb guards X<b\Xa. It holds that X ′a = Xa and X ′b = Xb. Further, X ′
<b is

the union of all bags of vertices that we can reach from vertex b in D′, such that

X ′
<b =

⋃
b4D′u

Xu.

(i) If b 4D′ t, then:

X ′<b =
⋃

b4D′u4D′ t

Xu∪
⋃

t4D′u

X ′u =
⋃

b4Du4Dt

Xu∪
⋃

t4Du

Xu

(since Xq ⊆
⋃

b4Du4Dt

Xu)

=
⋃

b4Du4Dt

Xu∪
⋃

t4Du

Xu∪
⋃

s4Du

Xu =
⋃

b4Du

Xu = X<b

(ii) Else t ≺D′ b, then: Since every successor of b in D is also in D′ it holds that

X ′<b =
⋃

b4D′u

Xu =
⋃

b4Du

Xu = X<b

This leads to X ′a∩X ′b = Xa∩Xb guards X ′
<b\X

′
a = X<b\Xa.

4.1. PARAMETERS ON SEMICOMPLETE DIGRAPHS 69

Thus, all requirements of a DAG-decomposition are met by (D′,X ′).

Case 1.b: (
⋃

u∈VDt
Xu)∪Xq ⊆ (

⋃
u∈VDs

Xu)∪Xq can be handled analogously to case 1.a.

Case 2: (
⋃

u∈VDs
Xu)∪Xq 6⊆ (

⋃
u∈VDt

Xu)∪Xq and (
⋃

u∈VDt
Xu)∪Xq 6⊆ (

⋃
u∈VDs

Xu)∪Xq. More

informally, this means that there exist vertices from G that are only represented in bags

of Ds but not in bags of Dt . We show now, that this case cannot occur. There are x,y
such that

x ∈ Xq∪
⋃

u∈VD≥s

Xu,x 6∈ Xq∪
⋃

u∈VD≥t

Xu (4.1)

y 6∈ Xq∪
⋃

u∈VD≥s

Xu,y ∈ Xq∪
⋃

u∈VD≥t

Xu (4.2)

Since G is semicomplete, there is an arc between x and y in G. W.l.o.g. let (x,y) ∈ EG.

By the connectivity property given by (dagw-2) it holds that x,y 6∈
⋃

u4Dq Xu, since

x,y 6∈ Xq. Let w ∈VD,x ∈ Xw,x 6∈ Xu and u 4D w. As equation (4.1) holds, this leads to

s 4D w. By (dagw-3) it further holds that Xw′ ∩Xw guards X<w\Xw′ for a predecessor

w′ of w in D with w′ 6= s. This means that for all (z,z′) ∈ EG with z ∈ X<w\Xw′ it holds

that z′ ∈ (X<w\Xw′)∪ (Xw′ ∩Xw).
As assumed before, it holds that (x,y) ∈ EG with x ∈ X<w\Xw′ . By equation (4.2) it

holds that y 6∈ Xw′ ∩Xw⇒ y ∈ X<w\Xw′ . By equation (4.2) it holds that y 6∈ Xw′ ⇒ y ∈
X<w =

⋃
w4Du Xu. But since s 4D w it holds that

⋃
w4Du Xu ⊆

⋃
s4Du Xu. This contradicts

that by equation (4.2) it holds that y 6∈
⋃

s4Du Xu. This leads to the conclusion that case

2 cannot occur.

Consequently, starting at the root, we can transform every DAG D of a DAG-decomposition

of the semicomplete digraph G into a directed path. Since directed path-width is exactly the

path variant of DAG-width, d-pw(G)≤ dagw(G)−1 holds.

By Theorem 4.1.3 we can conclude that on semicomplete digraphs, DAG-width plus 1

and path-width are equal.

Corollary 4.1.4. For every semicomplete digraph G it holds that

d-pw(G)+1 = dagw(G).

4.1.3 Escaping Pursuit in the Jungle: Directed Path-width, Directed Tree-

width and Kelly-width

Fradkin and Seymour [FS13] gave a description of semicomplete digraphs of bounded directed

path-width. Indeed, they proved that every semicomplete digraph of huge directed path-width

must contain a subdivision of a large bioriented clique [FS13]. While this result immediately

implies that directed path-width acts, parametrically, as a lower bound for all tree-width

inspired directed width measures discussed here, the proof uses a Ramsey argument and thus,

70 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

for G to contain a subdivision of the complete biorientation of Kt , the directed path-width

must be exponential in t. However, Fradkin and Seymour introduced another obstruction

to small directed path-width on semicomplete digraphs which is similar to the idea of well

linked sets. With a bit of more careful analysis we are able to obtain the quadratic bounds of

Theorem 4.1.8.

Notice that, [FS13] could also be used for comparisons between directed path-width and

DAG-width, but this would only lead to equivalence between those parameters, whereas we

could prove equality (plus 1).

Two vertices u,v are k-connected, if there are at least k internally-disjoint paths from u to

v and from v to u. For digraph G = (V,E) a set U ⊆V is a k-jungle in G if |U |= k and for all

u,v ∈U it holds that u and v are k-connected.

For both, directed tree-width and Kelly-width, we show that the existence of a k+1-jungle

is enough to ensure a winning strategy for the robber against k cops in the respective variants

of of cops & robber game. We start with directed tree-width.

Proposition 4.1.5. Let G be a semicomplete digraph. If d-pw(G)≥ 4(k+1)2+7(k+1) then

d-tw(G)≥ k.

Proof. Let us assume d-pw(G)≥ 4(k+1)2 +7(k+1). Then, by the results from [FS13], we

know that G = (V,E) contains a k+1-jungle J ⊆V . If we can show that the existence of J is

enough to ensure that k-cops cannot catch the robber in the visible strong component cops and

robber game on G, it follows from Proposition 2.2.13 that the directed tree-width of G must

be at least k and thus the assertion follows. Hence what is left to do is describe a winning

strategy for the robber against k cops on a k+1-jungle J. For the first position (C0,r0) we

have C0 = /0 and the robber may select r0 to be any vertex of J. Now suppose the game has

been going on for i rounds and in each round the robber was able to select a vertex of J as her

position. Let (Ci−1,ri−1) be the current state of the game and let Ci ⊆V be the next position

of the cops. In case ri−1 /∈Ci there is nothing to do for the robber and she can stay where

she is i.e. ri := ri−1. So we may assume ri−1 ∈Ci. In this case we know |Ci \{ri−1}| ≤ k−1

and thus |Ci−1∩Ci| ≤ k−1. Hence there must exist a vertex v ∈ J \Ci. As ri−1 6= v we know

from J being a k+1-jungle that there exist k+1 pairwise internally disjoint paths from ri−1

to v and vice versa. As |Ci| ≤ k in G− (Ci−1∩Ci) at least one path from ri−1 to u and one

from u to ri−1 must be left and thus both vertices belong to the same strong component of

G− (Ci−1∩Ci). Thus v is reachable from ri−1 and we may set ri := v. As the robber was able

to flee to another vertex of J the claim now follows by induction.

From [AKK+15] and Corollary 4.1.4 we previously mentioned an upper bound on directed

path-width in terms of Kelly-width, which is d-pw(G) ≤ 72kw(G)2 + 1. We can improve

this bound following the same general idea as given above. Indeed, since in the strategy as

described in the proof of Proposition 4.1.5 the robber only changed her position if she was

threatened to be caught if she did not, the strategy above is already a strategy for a visible

robber in the strong component game. Since the reachability searching game is a relaxation

of the strong component game and the (in)visibility of the robber does not play a role in

this strategy it is straightforward to see that using the same technique, an invisible and inert

4.1. PARAMETERS ON SEMICOMPLETE DIGRAPHS 71

robber can also avoid being caught by k cops in the reachability searching game. From these

arguments we obtain the following result.

Proposition 4.1.6. Let G be a semicomplete digraph. If d-pw(G)≥ 4(k+1)2+7(k+1) then

kw(G)≥ k.

4.1.4 Directed (Linear) Clique-width and Directed Path-width on Semicom-

plete Digraphs

In [FP19], the authors prove that on semicomplete digraphs, directed path-width can be used

to give an upper bound for directed clique-width. The main idea of the proof of [FP19,

Lemma 2.14] is to define a directed clique-width expression along a nice path-decomposition.

Since this proof only uses linear clique-width operations, we can restrict their result to the

following result:

Proposition 4.1.7 ([FP19]). For every semicomplete digraph G it holds that

d-cw(G)≤ d-lcw(G)≤ d-pw(G)+2.

Notice that, the other direction, i.e., using directed (linear) clique-width as an upper bound

of directed path-width, is not possible for semicomplete digraphs in general. That follows

directly from the proof of Proposition 4.1.1, as the counterexample, a bidirectional complete

digraph, is a semicomplete digraph.

Using the results from this and previous subsections, it is possible to improve the general

results for the comparison of directed width parameters on semicomplete digraphs.

4.1.5 Summary and Conclusion

As by [FP19] for a semicomplete digraph G it holds that d-cw(G) is at most d-pw(G)+ 2,

we finally conclude that all above mentioned parameters are upper bounds to directed clique-

width. This result is even extendable to directed linear clique-width (d-lcw). More precisely

we show by using Theorem 4.1.3 and Propositions 4.1.5, 4.1.6 and 4.1.7 that for any choice

of functions f ,g ∈ {d-pw,d-tw,dagw,kw,d-lcw,d-cw}, there must exist a function h f ,g such

that, if G is a semicomplete digraph with f (G)≤ k then g(G)≤ h f ,g(k) where the functions

h f ,g are presented in Table 4.2.

Theorem 4.1.8. Let G be a semicomplete digraph and f ,g ∈ {d-pw,d-tw,dagw,kw,d-lcw,
d-cw}. If f (G)≤ k, then g(G)≤ h f ,g(k) where h f ,g : N→ N is given by Table 4.2.

Combining these results with the above mentioned theorem of Courcelle et al. on bounded

clique-width [CMR00] and the FPT-algorithm for approximating directed tree-width within a

linear factor by Campos et al. [CLMS19], we have the following result:

Theorem 4.1.9. Every problem expressible in monadic second-order logic on quantification

over vertices and vertex sets (MSO1) is fixed parameter tractable on semicomplete digraphs

with respect to the parameter directed tree-width.

72 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

g

f
d-pw d-tw dagw kw d-lcw d-cw

d-pw k 4k2 +15k+10 k−1 4k2 +7k ∞ ∞

d-tw k k k−1 6k−2 ∞ ∞

dagw k+1 4k2 +15k+11 k k2 ∞ ∞

kw k+1 4k2 +15k+11 k k ∞ ∞

d-lcw k+2 4k2 +15k+12 k+1 k2 +2 k ∞

d-cw k+2 4k2 +15k+12 k+1 k2 +2 k k

Table 4.2: Relations between digraph parameters on semicomplete digraphs. The parameter

of the left column is bounded by the respective parameter of the top row by the specified

function where k is the corresponding width. We use ‘∞’ if the relation is unbounded, that is

if h f ,g does not exist.

A more detailed explanation about Courcelles theorem is given later in Chapter 7, more

precisely in Subsection 7.6.2.

The landscape of directed width measures is a wild one. Started by the introduction of

directed tree-width many different generalizations of undirected tree-width have been invented

and received different amounts of attention. Some of these parameters were considered very

little; possibly because of the results of [GHK+16], which essentially rule out any algorithmic

application of these parameters beyond some specialized routing problems. So while the

search for ‘good’ digraph width parameters inspired by tree-width does not seem very

promising, one could turn to the logic based parameters instead. Here directed clique-width

reigns supreme, but recently other attempts at finding interesting parameters such as a directed

version of maximum induced matching width [JKT21] have been made.

Summarized we can say that directed path-width, directed tree-width, Kelly-width and

DAG-width are equivalent on semicomplete digraphs. In particular this implies that each

of these measures acts as an upper bound on directed clique-width and thus the algorithmic

power of directed clique-width can now be accessed by any of the other parameters.

Hence as a consequence of these results on semicomplete digraphs every digraph problem,

which is describable in MSO1 logic is fixed parameter tractable for these width measures if a

decomposition of bounded width is given.

Is the directed path-width problem NP-hard on semicomplete digraphs?

Our result, that computing DAG-width is in NP on semicomplete digraphs while it is PSPACE-

hard in general [AKR16] recalls the question if computing directed path-width and thus,

DAG-width is NP-hard on semicomplete digraphs. This problem has been considered in some

works, but while there are given several FPT algorithms to solve this problem [FP13] or ,e.g.,

using degree orderings [FP19], it is still open if the problem is NP-hard at all. There are

some problems as for example the k-vertex disjoint directed path problem which is NP-hard

4.2. PARAMETERS ON (EXTENDED) DIRECTED CO-GRAPHS 73

on general digraphs even for k = 2. However, when restricting to semicomplete digraphs,

for the case k = 2 Bang-Jensen and Thomassen [BJT92] and for k ≥ 2 Chudnovsky et al.

[CSS15] showed that the problem is polynomial time solvable. So one can get the impression

that on semicomplete the directed path-width problem could be polynomial time solvable

as well. The intuitive hardness proof would lead to a reduction from undirected path-width.

However, in this case the underlying undirected graph of a semicomplete digraph is a clique,

which makes path-width trivially solvable. Thus there is the demand for different ideas. Since

we now know that DAG-width (−1) is equal to the directed path-width on semicomplete

digraphs, one could use this to solve this complexity issue. Further, there are equivalent

definitions for directed path-width as a cops and robber game [Bar06] or the directed vertex

separation number. Unfortunately, none of the ideas led to a fruitful approach yet and the

problem remains open.

4.2 Computing Directed Graph Parameters on (Extended) Di-

rected Co-graphs

In the following we show how to compute several directed graph parameters on (extended)

directed co-graphs. The content in this section is taken from [GKR21b].

4.2.1 Directed Path-width on (Extended) Directed Co-graphs

As already mentioned, determining whether the (undirected) path-width of some given

(undirected) graph is at most some given value w is NP-complete [KF79] even for bipartite

graphs, complements of bipartite graphs [ACP87], chordal graphs [Gus93], bipartite distance-

hereditary graphs [KBMK93], and planar graphs with maximum semidegree ∆0(G) ≤ 3,

see [MS88]. Lemma 2.2.7 implies that determining whether the directed path-width of

some given digraph is at most some given value w is NP-complete even for digraphs whose

underlying graphs lie in the mentioned classes. On the other hand, determining whether the

(undirected) path-width of some given (undirected) graph is at most some given value w

is polynomial for permutation graphs [BKK95], circular arc graphs [ST07], and co-graphs

[BM93]. While undirected path-width can be solved by an FPT-algorithm [Bod96], the

existence of such an algorithm for directed path-width is still open. The directed path-width of

a digraph G = (V,E) can be computed in time O(|E|·|V |2d-pw(G)/(d-pw(G)−1)!) by [KKK+16] and

in time O(d-pw(G) · |E| · |V |2d-pw(G)) by [Nag12]. This leads to XP-algorithms for directed

path-width w.r.t. the standard parameter and implies that for each constant w, it is decidable

in polynomial time whether a given digraph has directed path-width at most w. Beside

the standard parameter there are results for other parameters. A digraph G = (V,E) is ℓ-
semicomplete, if each vertex v ∈ V has at most ℓ non-neighbors [KKT15]. In [KKT15]

it is shown how to decide whether the directed path-width of an ℓ-semicomplete digraph

is at most w in time (ℓ+ 2w+ 1)2w · nO(1). The directed path-width can be computed in

time 3τ(und(G)) · |V |O(1), where τ(und(G)) denotes the vertex cover number of the underlying

undirected graph of G, by [Kob15]. A digraph G is a sequence digraph using k sequences, if

there are k sequences with entries from V (G), such that (u,v) ∈ E(G) if and only if in one

74 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

of the sequences there is an occurrence of u appearing before an occurrence of v [GRR18].

For sequence digraphs with a given decomposition into k sequences the directed path-width

can be computed in time O(k · (1+N)k), where N denotes the maximum sequence length

[GRR18].

Right now, special graph classes have been considered very few regarding directed width

measures. Not even graph classes of small widths are known. For undirected graphs the

Robertson/Seymour Theorem [RS04] leads to characterizations for the set of graphs of tree-

width at most k and the set of graphs of path-width at most k by a finite set of forbidden

minors. For small values of k these sets are known. Finding forbidden graph minors for some

digraph class of bounded directed path-width seems to be much more involved. In [KZ15] it

has been shown that digraphs of directed path-width at most one are characterized by a finite

number of forbidden directed butterfly minors and in [Wie20] digraphs of directed tree-width

at most one are characterized by a minimal, although infinite, family of forbidden butterfly

minors. For some classes of digraphs G of directed path-width at most one and directed

tree-width at most one such that und(G) is tree-like in [GR19b] characterizations by at most

three forbidden directed minors are given. But no graph classes of directed width k are known

and also special digraph classes of bounded width are hard to find.

For extended directed co-graphs it is possible to compute the directed path-width in linear

time.

Theorem 4.2.1 ([GKR21b]). Let G = (VG,EG) and H = (VH ,EH) be two vertex-disjoint

digraphs, then the following properties hold.

1. d-pw(•) = 0

2. d-pw(G⊕H) = max{d-pw(G),d-pw(H)}

3. d-pw(G⊘H) = max{d-pw(G),d-pw(H)}

4. d-pw(G⊖H) = max{d-pw(G),d-pw(H)}

5. d-pw(G⊗H) = min{d-pw(G)+ |VH |,d-pw(H)+ |VG|}

4.2.2 Directed Tree-width on (Extended) Directed Co-graphs

We can conclude some hardness results from the corresponding undirected tree-width problem.

Lemma 2.2.12 implies that determining whether the directed tree-width of some given digraph

is at most some given value w is NP-complete even for digraphs whose underlying graphs lie

in the mentioned classes (bipartite and co-bipartite graphs).

The results of [JRST01b] lead to an XP-algorithm for directed tree-width w.r.t. the

standard parameter which implies that for each constant w, it is decidable in polynomial time

whether a given digraph has directed tree-width at most w.

In order to show how to compute directed tree-width efficiently on extended directed

co-graphs, we introduce some properties of directed tree-decompositions.

Lemma 4.2.2 ([JRST01b]). Let G be some digraph and H be a subdigraph of G, then

d-tw(H)≤ d-tw(G).

4.2. PARAMETERS ON (EXTENDED) DIRECTED CO-GRAPHS 75

Lemma 4.2.3 (Bidirectional complete subdigraph). Let (T,X ,W), T = (VT ,ET), where rT is

the root of T , be a directed tree-decomposition of some digraph G = (V,E) and G′ = (V ′,E ′)
with V ′ ⊆ V be a bidirectional complete subdigraph. Then, V ′ ⊆WrT

or there is some

(r,s) ∈ ET , such that V ′ ⊆Ws∪X(r,s).

Proof. First, we choose a vertex s in VT , such that Ws∩V ′ 6= /0 but for every vertex s′ such

that s < s′ it holds that Ws′ ∩V ′ = /0.

Next, we show that Ws leads to a set which shows the statement of the lemma. If s is the root of

T , then Ws′ ∩V ′ 6= /0 for none of its successors s′ in T i.e., Ws′ ∩V ′ = /0 for all of its successors

s′ in T , which implies by (dtw-1) that V ′ ⊆Ws. Otherwise, let r be the predecessor of s in T .

If V ′ ⊆Ws the statement is true. Otherwise, let c ∈V ′ \Ws and c′ ∈V ′∩Ws. Then, (c,c′) ∈ E

and (c′,c) ∈ E implies that c ∈ X(r,s) by (dtw-2), since otherwise (c′,c,c′) is a directed walk

in G−X(r,s) with first and last vertex c′ ∈W≥s that uses a vertex of G− (X(r,s)∪W≥s), namely

c.

Lemma 4.2.4 (Bidirectional complete bipartite subdigraph). Let G = (V,E) be some digraph,

(T,X ,W), T = (VT ,ET), where rT is the root of T , be a directed tree-decomposition of G.

Further, let A,B⊆V , A∩B = /0, and {(u,v),(v,u) | u ∈ A,v ∈ B} ⊆ E. Then, A∪B⊆WrT
or

there is some (r,s) ∈ ET , such that A⊆Ws∪X(r,s) or B⊆Ws∪X(r,s).

Proof. Similar as in the proof of Lemma 4.2.3 we can find a vertex s in VT , such that

Ws∩ (A∪B) 6= /0 but for every vertex s′ with s < s′ holds Ws′ ∩ (A∪B) = /0.

If s is the root of T , then Ws′∩(A∪B) 6= /0 for none of its successors s′ in T , i.e., Ws′∩(A∪B) =
/0 for all of its successors s′ in T , which implies by (dtw-1) that A∪B⊆Ws.

Otherwise, let r be the predecessor of s in T . If A∪B⊆Ws the statement is true. Otherwise,

we know that either there is some a ∈ A∩Ws and b ∈ B\Ws or a ∈ A\Ws and b ∈ B∩Ws.

We assume that there is some a ∈ A∩Ws and b ∈ B \Ws. Then, (a,b) ∈ E and (b,a) ∈ E

implies that b ∈ X(r,s) by (dtw-2). Thus, we have shown B⊆Ws∪X(r,s).

If we assume that there some b ∈ B such that b ∈Ws, we conclude A⊆Ws∪X(r,s).

Lemma 4.2.5. Let G be a digraph of directed tree-width at most k. Then, there is a directed

tree-decomposition (T,X ,W), T = (VT ,ET), of width at most k for G such that |Wr| ≤ 1 for

every r ∈VT .

Proof. Let G=(V,E) be a digraph and (T,X ,W), T =(VT ,ET), be a directed tree-decomposition

of G. For every r ∈ VT such that |Wr| ≤ 1 the statement of the lemma is fulfilled. Let

r ∈ VT such that Wr = {v1, . . . ,vm} for some m > 1. Further, let p be the predecessor of

r in T and s1, . . . ,sℓ be the successors of r in T . Let (T ′,X ′,W ′) be defined by the fol-

lowing modifications of (T,X ,W): We replace vertex r in T by the directed path P(r) =
({r1, . . . ,rm},{(r1,r2), . . . ,(rm−1,rm)}) and replace arc (p,r) by (p,r1) and the ℓ arcs (r,s j),
1 ≤ j ≤ ℓ, by the ℓ arcs (rm,s j), 1 ≤ j ≤ ℓ in T ′. We define the sets W ′r j

= {v j} for

1 ≤ j ≤ m. Further, we define the sets X ′(p,r1)
= X(p,r), X ′(rm,s j)

= X(r,s j), 1 ≤ j ≤ ℓ, and

X ′(r j,r j+1)
= X(p,r)∪{r1, . . . ,r j}, 1≤ j ≤ m−1.

By the definition, W ′ leads to a partition of V . The normality holds for the arcs of T ′ as follows.

First, we consider the arcs (ri−1,ri), 1 < i≤ m, which we inserted for sets Wr of size m > 1.

76 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

The set W ′≥ri
is X ′(ri−1,ri)

-normal since W≥r is X(p,r)-normal and X ′(ri−1,ri)
=X(p,r)∪{r1, . . . ,ri−1}.

Further, the property is fulfilled for arc (p,r1) and (vm,s j), 1 ≤ j ≤ ℓ since the considered

vertex sets of G did not change. Thus, triple (T ′,X ′,W ′) is a directed tree-decomposition of

G.

The width of (T ′,X ′,W ′) is at most the width of (T,X ,W) since for every r j, 1 ≤ j ≤ m,

then it holds that |W ′r j
∪
⋃

e∼r j
X ′e| ≤ |Wr ∪

⋃
e∼r Xe|.

If we perform this transformation for every r ∈VT such that |Wr|> 1, we obtain a directed

tree-decomposition of G which fulfills the properties of the lemma.

Remark 4.2.6. By considering the directed tree-width forbidding empty sets Wr in [JRST01b]

the statement of Lemma 4.2.5 can be strengthened to |Wr|= 1 for every r ∈VT .

Lemma 4.2.7. Let G = (V,E) be a digraph of directed tree-width at most k, such that there

is a 2-partition (V1,V2) of V with V1 6= /0, V2 6= /0 and {(u,v),(v,u) | u ∈V1,v ∈V2} ⊆ E. Let

(T,X ,W), T = (VT ,ET) be a directed tree-decomposition of width k for G with |W | ≤ 1 for

all W ∈W . Then, it holds that either

(i) ∀t ∈VT with Wt ⊆V1: |Wt ∪
⋃

e∼t Xe∪V2| ≤ k

(ii) ∀t ∈VT with Wt ⊆V2: |Wt ∪
⋃

e∼t Xe∪V1| ≤ k

To prove this Lemma we first need some claims. Therefore, let G = (V,E) be a digraph

as in the statement of the Lemma.

Claim 4.2.8. If (T,X ,W) has width |V |−1, for all t ∈VT it holds that |Wt ∪
⋃

e∼t Xe∪V2∪
V1| ≤ |V |−1 = k.

By this claim, the Lemma holds for k = |V |−1. So in all further claims we assume that

the width k of (T,X ,W) is smaller than |V |−1.

We further assume w.l.o.g. that for all leafs ℓ of T , Wℓ 6= /0.

Claim 4.2.9. For k < |V |− 1 every vertex s ∈ VT with W>s ∩V1 6= /0 and W>s ∩V2 6= /0 has

exactly one successor t such that W≥t ∩V1 6= /0 and W≥t ∩V2 6= /0. It further holds that

W>s \W≥t ⊆V1 or W>s \W≥t ⊆V2.

Proof. We show this Claim in two steps.

• We first show that s has at most one successor t, such that W≥t∩V1 6= /0 and W≥t∩V2 6= /0.

Assume that s has two successors t1 and t2 such that W≥t1 ∩V1 6= /0 and W≥t1 ∩V2 6=
/0 and W≥t2 ∩V1 6= /0 and W≥t2 ∩V2 6= /0. Then, it holds that V\W≥t1 ⊆ X(s,t1) and

V\W≥t2 ⊆ X(s,t2). As W≥t1 ∩W≥t2 = /0 it follows that V\W≥t1 ∪V\W≥t2 = V and thus,

Ws∪
⋃

e∼s Xe =V . Then the resulting width of (T = (VT ,ET),X ,W) is |V |−1 which

is a contradiction to the assumption that the width k < |V |−1.

• We now show that s has at least one successor t, such that W≥t∩V1 6= /0 and W≥t∩V2 6= /0.

Assume that for all successors t of s it holds that either W≥t ⊆ V1 or W≥t ⊆ V2. As

W>s∩V1 6= /0 and W>s∩V2 6= /0 there exist successors t1, t2 of s such that W≥t1 ⊆V1 and

W≥t2 ⊆V2. Then, it holds that V2⊆X(s,t1) and V1⊆X(s,t2) and thus, that V ⊆Ws∪
⋃

e∼s Xe.

Then, the resulting width of (T = (VT ,ET),X ,W) is |V |−1 which is a contradiction

to the assumption that the width k < |V |−1.

4.2. PARAMETERS ON (EXTENDED) DIRECTED CO-GRAPHS 77

As we have now proven that there is exactly one successor t such that W≥t ∩V1 6= /0 and

W≥t ∩V2 6= /0, for all other successors ti of s it holds that W≥ti ⊆V1 or W≥ti ⊆V2. But by the

same argumentation as in the second bullet point, if there are successors ti and t j of s such

that W≥ti ⊆V1 and
⋃

t̃≥t j
Wt̃ ⊆V2, it would follow that k = |V |−1. As this is a contradiction

we can conclude that W>s \W≥t ⊆V1 or W>s \W≥t ⊆V2.

Claim 4.2.10. Assume that k < |V | − 1. Let L ⊆ VT be the set of all leaves ℓ of T and

L =
⋃

ℓ∈L Wℓ, such that for the directed path (u1, . . . ,uq) starting at root u1 and ending with

leaf ℓ= uq it holds that
⋃

1≤i≤qWui
∩V1 6= /0 and

⋃
1≤i≤qWui

∩V2 6= /0 and ∀ui,1≤ i≤ q:

• W≥ui
\W≥ui+1

⊆V1 or

• W≥ui
\W≥ui+1

⊆V2.

Then, L 6= /0 and it holds that either L⊆V1 or L⊆V2.

Proof. We search set L by traversing T starting at the root and choosing all possible paths to

leafs that fulfill the conditions above.

Let u1 be the root of T . Obviously, it holds that W≥u1
∩V1 6= /0 and W≥u1

∩V2 6= /0. For all ui

with only one successor we choose this successor ui+1.

By Claim 4.2.9 for every ui with more than one successor and W≥ui
∩V1 6= /0 and W≥ui

∩V2 6= /0

there is exactly one successor t such that W≥t ∩V1 6= /0 and W≥t ∩V2 6= /0. In this case we take

this t as ui+1.

For ui with W≥ui
∩V1 6= /0 or W≥ui

∩V2 6= /0 it holds that W≥ui
⊆ V1 or W≥ui

⊆ V2. Then, we

choose all paths from this ui to any following leaf and add this leaf to L .

Consequently, it holds that L⊆V1 or L⊆V2 and by construction for every ℓ ∈ L it holds that

for the path (u1, . . . ,uq) from the root to ℓ it holds that ∀ui,1≤ i≤ q:

• W≥ui
\W≥ui+1

⊆V1 or

• W≥ui
\W≥ui+1

⊆V2,

as we always choose the path containing vertices of V1 and V2, until only vertices from one of

the sets are left. By Claim 4.2.9 this path is unique. Further, L 6= /0 holds since by construction

at least one path, as described above, must exist. Additionally, as we can assume that there

are no leafs with empty bags in T , it follows that L 6= /0.

In Claim 4.2.9 and Claim 4.2.10 we restricted the structure of the decomposition tree. But

this does not suffice to prove the Lemma, we need further restrictions. As we cannot simply

exclude this structures as we could in Claims 4.2.9 and 4.2.10, we give a way to transform the

decomposition, such that the new decomposition tree fulfills more structural characteristics.

Claim 4.2.11. Let k < |V |−1. We can assume that for (T,X ,W) it holds that if L⊆V1 (L⊆V2

respectively), then all Ws ⊆ V1 (Ws ⊆ V2 respectively) with W>s∩V1 6= /0 and W>s∩V2 6= /0

have exactly one successor t such that W≥t ∩V1 6= /0 and W≥t ∩V2 6= /0 and it further holds that

W>s \W≥t ⊆V1 (V2 respectively).

78 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

Proof. We show that, if (T,X ,W) does not fulfill this claim, we can transform it to a

decomposition (T ′,X ′,W ′) of width k′ such that k′ ≤ k and all former claims remain true.

For every vertex v ∈ VT we define w(v) =Wv∪
⋃

e∼T v Xe (the set that determines the width

of this tree-decomposition) and for v ∈ VT ′ we define w′(v) respectively. Without loss of

generality we assume that L ⊆ V1. (As the proof for L ⊆ V2 works analogously. By Claim

4.2.9 we know that s has exactly one successor t such that W≥t ∩V1 6= /0 and W≥t ∩V2 6= /0. We

further know that W>s \W≥t ⊆V1 or W>s \W≥t ⊆V2.

The only thing which now remains open to show this Claim is that for (T ′,X ′,W ′) it holds

that if W ′s ⊆V1 it holds that
⋃

s̃>sW ′s̃ \
⋃

t̃≥t W ′t̃ ⊆V1.

In order to prove this, we assume the contrary and then transform the decomposition such that

the Claim holds. So therefore we assume that in T it does not hold that
⋃

s̃>sW ′s̃ \
⋃

t̃≥t W ′t̃ ⊆V1,

which by Claim 4.2.9 means, that W>s \W≥t ⊆ V2. Let p be the predecessor of s in T and

t, t1, . . . , tr the successors of s in T . Then, we construct T ′ = (V ′T ,E
′
T) with V ′T =VT and E ′T =

{(u,v) | (u,v) ∈ ET ,u,v 6= s}∪{(t1,s),(s, t),(p, t1)}∪
⋃

2≤i≤r{(t1, ti)}. In words this means

means that t1 is now a successor of p in T ′ and the predecessor of s and t2, . . . , tr in T ′. Further,

it holds that W ′v =Wv for all v∈V ′T and that X ′e = Xe for all e∈ E ′T ∩ET \{(t1,v) | (t1,v)∈ ET}.
Let X ′(p,t1)

= X(p,s), X ′(t1,s)
= X(s,t) \Ws, X ′(t1,ti)

= X(s,ti) and for all successors v of t1 in T let

X ′(t1,v)
= X(t1,v).

We briefly show that all conditions of an directed tree decomposition remain fulfilled. As the

W -sets does not change, it is obvious that they form a partition of V . Remains to show, that

for all edges (u,v) ∈V ′T the set W ′≥v remains X ′(u,v)-normal.

• For all arcs (u,v) ∈V ′T with (u,v) ∈VT and W ′≥v =W≥v and X ′(u,v) = X(u,v) it holds that

W ′≥v is X ′(u,v)-normal, as W≥v is X(u,v)-normal

• (p, t1): W ′≥t1
=W≥s is X(p,s) = X(p,t1)-normal

• (t1,s): W ′≥s =W≥t∪Ws. It holds that W≥t is X(s,t)-normal and thus W≥t∪Ws is X(s,t)∪Ws-

normal. It follows that W ′≥s =W≥t ∪Ws is X ′(t1,s)
= X(s,t)∪Ws-normal.

We show that for every vertex v in V ′T it holds that |w′(v′)|−1≤ k by showing that for every

vertex v′ ∈V ′T there exists a vertex u ∈VT such that |w′(v)| ≤ |w(u)| . As for all other vertices

it holds that w′(v) = w(v), we only need to look at the widths induced by p,s and t.

• Consider w′(p). As W ′>p =W>p, it is possible to set X ′(p,t1)
= X(p,s). Then, it holds that

w′(p) = w(p) and further that w′(p)−1≤ k.

• Consider w′(t1) =W ′t1 ∪X ′(p,t1)
∪X ′(t1,s)

∪
⋃

v∈N+
T (t1)

X ′(t1,v)
∪
⋃

2≤i≤r X ′(t1,ti)
. As W≥t ∩V1 6=

/0 and W≥t ∩V2 6= /0, it holds that X(s,t) = V \W≥t , so Wt1 ⊆ X(s,t). It further holds that

X(t1,t̃1) \Wt1 ⊆ Xs,t1 , such that X(t1,t̃1) ⊆ Xs,t1 ∪Wt1 for all successors t̃1 of t1 in T . Thus,

4.2. PARAMETERS ON (EXTENDED) DIRECTED CO-GRAPHS 79

it follows that

w′(t1) =W ′t1 ∪X ′(p,t1)
∪X ′(t1,s)

∪
⋃

v∈N+
T (t1)

X ′(t1,v)
∪
⋃

2≤i≤r X ′(t1,ti)

=Wt1 ∪X(p,s)∪
(

X(s,t) \Ws

)

∪
⋃

v∈N+
T (t1)

X(t1,v)∪
⋃

2≤i≤r X(s,ti)

⊆ X(s,t)∪X(p,s)∪X(s,t)∪X(s,t1)∪Wt1 ∪
⋃

2≤i≤r X(s,ti)

⊆ X(s,t)∪X(p,s)∪X(s,t)∪X(s,t1)∪X(s,t)∪
⋃

2≤i≤r X(s,ti)

⊆Ws∪
⋃

e∼T s Xe

= w(s)

• Consider w′(s) =W ′s ∪X ′(t1,s)
∪X ′(s,t). As W≥t ∩V1 6= /0 and W≥t ∩V2 6= /0, it holds that

X ′(t1,s)
=V \W≥s ⊂V \W≥t = X ′(s,t). As further X ′(s,t) = X(s,t) it follows that

w′(s) =W ′s ∪X ′(t1,s)∪X ′(s,t) ⊆ X ′(s,t) = X(s,t) ⊆ w(s).

Thus, the widths induced by the vertices v with w′(v) 6= w(v), are not increasing the width of

the directed tree-decomposition.

Proof. of Lemma 4.2.7. By Claim 4.2.8 the Lemma holds for k = |V |− 1. Assume that

k < |V |−1. Let L be the set of all leaves ℓ in T such that for the path (u1, . . .uq) from the root

to ℓ it holds that
⋃

1≤i≤qWui
∩V1 6= /0,

⋃
1≤i≤qWui

∩V2 6= /0 and ∀ui with 1≤ i≤ q:

• W≥ui
\W≥ui+1

⊆V1 or

• W≥ui
\W≥ui+1

⊆V2.

By Claim 4.2.10 it holds that L 6= /0 and either L⊆V1 or L⊆V2.

W.l.o.g. assume that L⊆V1, for L⊆V2 the proof works analogously.

We show that ∀Wt ∈W with Wt ⊆V1 it holds that Wt ∪
⋃

e∼t Xe∪V2 ≤ k. By the construction

in Claim 4.2.10 and the structural information of Claim 4.2.11, there is a vertex ur such that

L ⊆W>ur
, W>ur

⊆ V1 and Wur
⊆ V2. Let (u1, . . .ur) be the path from the root to this vertex.

As W>ur
⊆ V1, it holds that for all successors u of ur that V2 ⊆ X(ur,u) and as Wur

⊆ V2, it

holds that V \W≥ur
⊆ X(ur−1,ur). It then holds that V2∪ (V \W≥ur

)⊆Wur
∪
⋃

e∼ur
Xe and thus

|V2∪(V \W≥ur−1
)| ≤ k. Further, for the path (u1, . . . ,ur−1) it holds that for every 1≤ i≤ r−1,

X(ui,ui+1) =V \W≥ui+1
⊆V \W≥ur−1

= X(ur−1,ur). Let now Wt be any element of W such that

Wt ⊆V1. By Claim 4.2.10 and Claim 4.2.11 it holds that either

(i) There is a successor t ′ of t such that W≥t ′ ⊆V1 or

(ii) t = ui with 1≤ i≤ r−2.

80 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

In case (i) it holds that V2 ⊆ X(t,t ′) and thus, Wt ∪
⋃

e∼t Xe ∪V2 = Wt ∪
⋃

e∼t Xe ≤ k. In case

(ii) it holds that X(ui−1,ui) = V \W≥ui
and X(ui,ui+1) = V \W≥ui+1

. By Claim 4.2.11 it holds

that W>ui
\W≥ui+1

⊆ V1. Thus, we can assume that ui has no other successors but ui+1,

as otherwise we are in case (i). If ui+1 is the only successor of ui, then Wui
∪
⋃

e∼ui
Xe =

V\W≥ui+1
⊆V\W≥ur−1

and then V2∪Wui
∪
⋃

e∼ui
Xe ⊆V\W≥ur−1

∪V2 ⊆Wur−1
∪
⋃

e∼ur−1
Xe and

further |V2∪Wui
∪
⋃

e∼ui
Xe| ≤ k holds.

On this way we come to the main theorem about the computation of directed tree-width

on extended directed co-graphs.

Theorem 4.2.12. Let G = (VG,EG) and H = (VH ,EH) be two vertex-disjoint digraphs then

the following properties hold.

1. d-tw(•) = 0

2. d-tw(G⊕H) = max{d-tw(G),d-tw(H)}

3. d-tw(G⊘H) = max{d-tw(G),d-tw(H)}

4. d-tw(G⊖H) = max{d-tw(G),d-tw(H)}

5. d-tw(G⊗H) = min{d-tw(G)+ |VH |,d-tw(H)+ |VG|}

Proof. Let G = (VG,EG) and H = (VH ,EH) be two vertex-disjoint digraphs. Further, let

(TG,XG,WG) be a directed tree-decomposition of G such that rG is the root of TG = (VTG
,ETG

)
and (TH ,XH ,WH) be a directed tree-decomposition of H, such that rH is the root of TH =
(VTH

,ETH
).

1. d-tw(•) = 0 holds by a simple directed tree-decomposition.

2. We define a directed tree-decomposition (TJ,XJ,WJ) for J = G⊕H. Let ℓG be a

leaf of TG. Let TJ be the disjoint union of TG and TH with an additional arc (ℓG,rH).
Further, let XJ = XG∪XH ∪{X(ℓG,rH)}, where X(ℓG,rH) = /0 and WJ = WG∪WH . The

triple (TJ,XJ,WJ) satisfies (dtw-1) since the combined decompositions satisfy (dtw-1).

Further, (TJ,XJ,WJ) satisfies (dtw-2) since additionally in J there is no arc from a

vertex of H to a vertex of G. This shows that d-tw(G⊕H)≤max{d-tw(G),d-tw(H)}.
Since G and H are induced subdigraphs of G⊕H, by Lemma 4.2.2 the directed tree-

width of both leads to a lower bound on the directed tree-width for the combined

digraph.

3. The same arguments lead to d-tw(G⊘H) = max{d-tw(G),d-tw(H)}.

4. The same arguments lead to d-tw(G⊖H) = max{d-tw(G),d-tw(H)}.

5. In order to show d-tw(G⊗H)≤ d-tw(G)+ |VH | let TJ be the disjoint union of a new

root rJ and TG with an additional arc (rJ,rG). Further, let XJ = X ′G∪{X(rJ ,rG)}, where

X ′G = {Xe∪VH | e ∈ ETG
} and X(rJ ,rG) = VH and WJ = WG∪{WrH

}, where WrJ
= VH .

Then, (TJ,XJ,WJ) is a directed tree-decomposition of width at most d-tw(G)+ |VH |

4.2. PARAMETERS ON (EXTENDED) DIRECTED CO-GRAPHS 81

for G⊗H.

In the same way a disjoint union of a new root rJ and TH with an additional arc

(rJ,rH), X ′H = {Xe ∪VG | e ∈ ETH
}, X(rJ ,rH) = VG, WrJ

= VG lead to a directed tree-

decomposition of width at most d-tw(H) + |VG| for G⊗H. Thus, d-tw(G⊗H) ≤
min{d-tw(G)+ |VH |,d-tw(H)+ |VG|}.
For the reverse direction let (TJ,XJ,WJ), TJ = (VT ,ET), be a directed tree-decom-

position of minimum width for G⊗H. By Lemma 4.2.5 we can assume that |Wt | ≤ 1

for every t ∈ VT . Then, by Lemma 4.2.7 we can assume that ∀t ∈ VT with Wt ⊆ VG

it holds that |Wt ∪
⋃

e∼t Xe∪VH | ≤ d-tw(G⊗H) or ∀t ∈VT with Wt ⊆VH it holds that

|Wt ∪
⋃

e∼t Xe∪VG| ≤ d-tw(G⊗H).
We assume that ∀t ∈VT with Wt ⊆VH : |Wt ∪

⋃
e∼t Xe∪VG| ≤ d-tw(G⊗H).

We define (T ′J ,X
′
J,W

′
J) as follows. We initialize T ′J = (V ′T ,E

′
T) with V ′T =VT , E ′T = ET ,

X ′e = Xe ∩VH , and W ′s = Ws ∩VH . Whenever this leads to an empty set W ′s such that⋃
s̃≥sW ′s̃ = /0, delete vertex s. Then, (T ′J ,X

′
J,W

′
J) is a directed tree-decomposition of H.

The width of (T ′J ,X
′
J,W

′
J) is at most d-tw(G⊗H)−|VG| as shown in the following.

• Suppose s is a vertex in T ′J such that W ′s = Ws. Then, it holds that Ws ⊆ VH

and thus |Ws ∪
⋃

e∼s Xe ∪VG| ≤ d-tw(G⊗H). So it holds that |W ′s ∪
⋃

e∼s X ′e| ≤
d-tw(G⊗H)−|VG|.

• Suppose s is a vertex in T ′J such that W ′s 6= Ws. Then Ws ⊆ VG and Ws 6= /0. By

construction of T ′J , we know that
⋃

s̃≥sWs̃ ∩VH 6= /0. Now, we distinguish two

cases:

– Suppose there is a successor t of s such that
⋃

t̃≥t Wt̃ ⊆VH . Then VG ⊆ X(s,t)

and thus |W ′s ∪
⋃

e∼s X ′e| ≤ d-tw(G⊗H)−|VG|.

– Suppose that for all successors t of s it holds that
⋃

t̃≥t Wt̃ 6⊆ VH . Then, as⋃
t̃≥t Wt̃ ∩VH 6= /0 and

⋃
t̃≥t Wt̃ ∩VG 6= /0 it follows by the same argumentation

as in the proof of Lemma 4.2.7 that |Ws∪
⋃

e∼s Xe∪VG| ≤ d-tw(G⊗H). So

it holds that |W ′s ∪
⋃

e∼s X ′e| ≤ d-tw(G⊗H)−|VG|.

Thus, the width of (T ′J ,X
′
J,W

′
J) is at most d-tw(G⊗H)−|VG| and since (T ′J ,X

′
J,W

′
J)

is a directed tree-decomposition of H, it follows that d-tw(H)≤ d-tw(G⊗H)−|VG|.
If we assume that ∀t ∈VT with Wt ⊆VG: |Wt ∪

⋃
e∼t Xe∪VH | ≤ d-tw(G⊗H) or ∀t ∈VT ,

it follows that d-tw(G)≤ d-tw(G⊗H)−|VH |.

This shows the statements of the theorem.

The proof of Theorem 4.2.12 is constructive as we give a tree-decomposition (T,X ,W)
of minimum width for every directed co-graph. Since for any operation we define a de-

composition where T is a path, we conclude that for any directed co-graph there is a tree-

decomposition (T,X ,W) of minimum width such that T is a path. For general digraphs the

directed tree-width is at most the directed path-width.

Lemma 4.2.13 ([GKR21b]). Let G be some digraph, then d-tw(G)≤ d-pw(G).

Next, we give some examples where the equality does not hold in Lemma 4.2.13.

82 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

Example 4.2.14. Every complete biorientation of a rooted tree has directed tree-width 1 and a

directed path-width depending on its height. The path-width of perfect 2-ary trees of height h

is ⌈h/2⌉ (cf. [Sch89]) and for k≥ 3 the path-width of perfect k-ary trees of height h is exactly

h by [EST94, Corollary 3.1].

Remark 4.2.15. The results of Theorem 4.2.1 and Theorem 4.2.12 imply that for every

directed co-graph its directed path-width equals its directed tree-width using the definition

allowing empty sets Wr of [JRST01a]. Since Lemma 4.2.13 holds for both variants of directed

tree-width allowing and forbidding empty sets Wr and directed tree-width allowing empty

sets Wr is smaller or equal to directed tree-width forbidding empty sets Wr, the statements of

Theorem 4.2.12 also hold when considering the directed tree-width forbidding empty sets Wr

in [JRST01b].

4.2.3 Further Directed Width Measures on Extended Directed Co-graphs

In the following we give an overview of how to compute some directed width-measures for

the operations of (extended) directed co-graphs. The proofs can be read in [GKR19b].

X = • G⊕H G⊘H G⊖H G⊗H

fvs(X) 0 fvs(G)+ fvs(H) fvs(G)+ fvs(H) fvs(G)+ fvs(H) min{fvs(G)+ |VH |, fvs(H)+ |VG|}

fas(X) 0 fas(G)+ fas(H) fas(G)+ fas(H) fas(G)+ fas(H) fas(G)+ fas(H)+ |VG| · |VH |

cr(X) 0 max{cr(G),cr(H)} max{cr(G),cr(H)} max{cr(G),cr(H)} min{cr(G)+ |VH |,cr(H)+ |VG|}

dagw(X) 1 max{dagw(G),dagw(H)} max{dagw(G),dagw(H)} max{dagw(G),dagw(H)} min{dagw(G)+ |VH |,dagw(H)+ |VG|}

kw(X) 1 max{kw(G),kw(H)} max{kw(G),kw(H)} max{kw(G),kw(H)} ≤min{kw(G)+ |VH |,kw(H)+ |VG|}
≥max{kw(G),kw(H)}

ddp(X) 1 max{ddp(G),ddp(H)} ddp(G)+ddp(H) ≤ ddp(G)+ddp(H) min{ddp(G)+ |VH |,ddp(H)+ |VG|}
≥max{ddp(G),ddp(H)}

Table 4.3: Overview: results about the computation of directed width-measures on directed

co-graph operations from [GKR19b] for two vertex-disjoint digraphs G = (VG,EG) and

H = (VH ,EH). At two points an exact computation is not possible, so only a range is given.

4.2.4 Overview of Directed Width Measures on Extended Directed Co-graphs

In Table 4.4 we summarize the known relations between the previous mentioned width

measures.

ddp fas

↓ ↓

d-tw
[BDH+12]
←− dagw

[AKK+15]
←− kw

[GHK+14]
←− d-pw

[Gru08]
←− cr

[GHK+14]
←− fvs

Table 4.4: Known relations between digraph width measures. A directed edge from measure

β to measure α indicates that within the cited work there has been shown some function f

such that for every digraph it holds α(G)≤ f (β(G)).

The previous results lead us to close relations between the considered parameters on

extended directed co-graphs.

4.2. PARAMETERS ON (EXTENDED) DIRECTED CO-GRAPHS 83

Theorem 4.2.16. For every extended directed co-graph G, it holds that

kw(G)−1≤ d-pw(G) = d-tw(G) = cr(G) = dagw(G)−1≤ fvs(G)≤ fas(G) (4.3)

and

dagw(G)≤ ddp(G). (4.4)

For the inequations given in (4.3) equality is not possible by the following examples.

• Let K′n be the 2n vertex digraph which is obtained by a complete digraph Kn on n vertices

and adding a pendant vertex for every of the n vertices of Kn, then for the complete

biorientation
←→
K′n it holds that kw(

←→
K′n ⊗

←→
K′n) = 2n−1 < 3n−1 = d-pw(

←→
K′n ⊗

←→
K′n).

• For transitive tournaments
−→
Tn , n≥ 2, it holds that dagw(

−→
Tn) = 1 < n = ddp(

−→
Tn).

• For the disjoint union of two
←→
Kn , n ≥ 3, it holds that dagw(2

←→
Kn) = n < 2n− 2 =

fvs(2
←→
Kn).

• For a
←→
Kn , n≥ 3, it holds that fvs(

←→
Kn) = n−1 < n(n−1)

2
= fas(

←→
Kn).

Furthermore, the two inequations (4.3) and (4.4) cannot be combined by the following

examples.

• For transitive tournaments
−→
Tn , n≥ 1, it holds that fas(

−→
Tn) = 0 < n = ddp(

−→
Tn).

• For the disjoint union of ℓ≥ 3 many
←→
Kn , n≥ 3, it holds that ddp(ℓ

←→
Kn) = n < ℓ ·n−ℓ=

fvs(ℓ
←→
Kn).

Theorem 4.2.17 ([GKR21b]). For every extended directed co-graph G which is given by a

binary ex-di-co-tree, the directed path-width, directed tree-width, directed feedback vertex set

number, directed feedback arc set number, cycle rank, and DAG-width can be computed in

time O(|V (G)|).

Since di-co-trees can be computed in linear time and following the results shown in Table

4.3 for the computation of the DAG-depth for directed co-graphs operations, we obtain the

following result.

Theorem 4.2.18. For every directed co-graph G the directed path-width, directed tree-width,

directed feedback vertex set number, directed feedback arc set number, cycle rank, DAG-width,

and DAG-depth can be computed in time O(|V (G)|+ |E(G)|).

By Lemma 2.2.7 and Lemma 2.2.12 the equality of directed path-width and directed

tree-width for directed co-graphs generalizes the known results from [BM93] but cannot be

obtained by the known results.

For general digraphs, d-pw(G) leads to a lower bound for pw(und(G)) by Lemma 2.2.6

and d-tw(G) leads to a lower bound for tw(und(G)) by Lemma 2.2.11. For directed co-graphs

we obtain a closer relation as follows.

84 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

Corollary 4.2.19. Let G be a directed co-graph and
←→
ω (G) be the order of a largest bidirec-

tional complete subdigraph of G. Then, it holds that

←→
ω (G) = d-pw(G)−1 = d-tw(G)−1≤ pw(und(G))−1 = tw(und(G))−1 = ω(und(G)).

All values are equal if and only if G is a complete bioriented graph.

Proof. The equality pw(und(G))− 1 = tw(und(G))− 1 = ω(und(G)) has been shown in

[BM93]. The equality
←→
ω (G) = d-pw(G)− 1 = d-tw(G)− 1 follows by Lemma 4.2.3 (or

Lemma 4.2.3) and Theorem 4.2.16. The upper bound follows by Lemma 2.2.6 or Lemma

2.2.11.

The relations between digraph width measures given in Table 4.4 can be improved when

restricting to directed co-graphs as shown in Table 4.5.

ddp

↓
d-tw ←→ dagw ←→ kw ←→ d-pw ←→ cr ←− fvs ←− fas

Table 4.5: Known relations between digraph width measures restricted to directed co-graphs.

A directed edge from measure β to measure α indicates that by the results summarized in

Table 4.4 and Theorem 4.2.16 there has been shown some function f such that for every

directed co-graph it holds α(G)≤ f (β(G)).

To sum up, there are linear time algorithms for the directed path-width, directed tree-

width, directed feedback vertex set number, directed feedback arc set number, cycle rank and

DAG-width of extended directed co-graphs and a linear-time algorithm for the DAG-depth

of directed co-graphs. We can compare all considered parameters for extended directed

co-graphs and obtain equality for directed path-width, directed tree-width, cycle rank and

DAG-width. This shows bounds for the class of directed co-graphs for the directed vertex

set number, DAG-depth and Kelly-width. The results on directed path-width and directed

tree-width generalize the equivalence of path-width and tree-width of co-graphs which is

known from [BM93] to digraphs. The shown equality also holds for more general directed

tree-width definitions such as allowing empty sets Wr in [JRST01a]. That is not possible

for the directed tree-width approach suggested by Reed in [Ree99], which uses sets Wr of

size one only for the leaves of T of a directed tree-decomposition (T,X ,W). To obtain a

counter-example let S1,n = (V,E) be a star graph on 1+n vertices, i.e., V = {v0,v1, . . . ,vn}
and E = {{v0,vi} | 1≤ i≤ n}. Further, let Gn be the complete biorientation of S1,n, which is

a directed co-graph. Then, tw(S1,n) = 1 and by Theorem 4.2.16 and Theorem 2.2.11 we know

d-pw(Gn) = d-tw(Gn)≤ 1. Using the approach of [Ree99] in any possible tree-decomposition

(T,X ,W) for Gn there is a leaf u of T such that Wu = {v0}. Further, there is some u′ ∈VT ,

such that (u′,u) ∈ ET . By the normality for edge (u′,u) it holds that X(u′,u) = {v1, . . . ,vn}
which implies that using the approach of [Ree99] the directed tree-width of G is at least n.

4.3. PARAMETERS ON TWIN-DH DIGRAPHS 85

The results on the width measures for the directed union of digraphs can be used to show

that most of the considered width measures can be obtained by the width of of its strong

components. In order to process the strong components of a digraph G, we use its acyclic

condensation, which is the digraph whose vertices are the strongly connected components

V1, . . . ,Vc of G and there is an edge from Vi to Vj if there is an edge (vi,v j) in G such that

vi ∈Vi and v j ∈Vj. Using the acyclic condensation, every digraph G can be represented by the

directed union of its strong components [GR19b]. Furthermore, we obtain that for directed

co-graphs Kelly-width can be bounded by DAG-width (Theorem 4.2.16). Due to [HK08, Con-

jecture 30], [AKK+15], and [BJG18, Section 9.2.5] this remains open for general digraphs

and is related to one of the biggest open problems in graph searching, namely whether the

monotonicity costs for Kelly- and DAG-width games are bounded. It remains open whether

there is a linear or polynomial time algorithm to compute Kelly-width on directed co-graphs.

4.3 Directed Graph Parameters on Twin-dh Digraphs

The content of this section is taken from [KR21].

4.3.1 Directed Graph Parameters with a Tree-like Decomposition

In the previous section we presented algorithms to compute different directed width measures

on (extended) directed co-graphs in linear time. Among these are directed path-width, directed

tree-width, DAG-width and cycle rank. Those algorithms are not extendable directly to twin-

dh digraphs, but by Lemma 3.5.13, the results can be expanded to the latter. We have stated

the following Lemma in [GR19b] for directed path-width and directed tree-width. The proof

is extendable straight-forward to DAG-width and cycle rank.

Lemma 4.3.1. The directed path-width (directed tree-width, DAG-width and cycle rank

respectively) of a digraph G is the maximum of the directed path-widths (directed tree-widths,

DAG-widths and cycle ranks respectively) of all strong components of G.

By this lemma we can show that it is possible to bound the computation of the mentioned

parameters on a twin-distance-hereditary digraph.

Theorem 4.3.2. Let G be a twin-distance-hereditary digraph. Then, it holds that directed path-

width, directed tree-width, DAG-width, and cycle rank are computable in time O(|V (G)|+
|E(G)|) and further, that

d-pw(G) = d-tw(G) = dagw(G)−1 = cr(G). (4.5)

Proof. It is possible to get all strong components C1, . . . ,Cr of G in linear time. By Lemma

3.5.13, all Ci, 1≤ i≤ r are directed co-graphs. By [GKR21b], it is possible to get the directed

path-width, directed tree-width, DAG-width and cycle rank of directed co-graphs in linear time

and it holds that d-pw(Ci) = d-tw(Ci) = dagw(Ci)−1 = cr(Ci) for all 1≤ i≤ r. By Lemma

4.3.1, the directed path-width (directed tree-width, DAG-width and cycle rank respectively)

86 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

of G is the maximum of the directed path-widths (directed tree-widths, DAG-widths and

cycle ranks respectively) over all Ci, 1≤ i≤ r. It then follows that those parameters can be

computed in linear time and that d-pw(G) = d-tw(G) = dagw(G)−1 = cr(G).

Note that, as twin-dh digraphs are a subclass of extended directed co-graphs, the equality

of these graph parameters follows directly from the results in [GKR21b]. However, on

extended directed co-graphs, the computation is only possible in linear time if an expression

of the digraph is given. Since it is open if an expression of an extended directed co-graph can

be computed in linear time, in this case the computation of the parameters without a given

expression is still open.

4.3.2 Directed Clique-width

The parameter directed clique-width differs from the previously mentioned parameters as

instead of representing the size of strong components in some way, it describes the number of

different neighborhoods. Especially for bioriented cliques, the above mentioned parameters

are infinitely large whereas directed clique-width is linear. In the undirected case, co-graphs

are exactly the graphs of clique-width at most 2 and distance-hereditary graphs have clique-

width at most 3. This leads to the idea of regarding directed clique-width on twin-dh digraphs.

Theorem 4.3.3. Every twin-dh digraph has directed clique-width at most 3.

Proof. We show a construction for a directed clique-width 3-expression for every G =
(V,E) ∈ DDH and then argue, why this is best possible. The method we use is closely related

to the undirected case: Distance-hereditary graphs have clique-width at most 3, see [GR00].

Let G ∈ DDH and S(G) = (s1, . . . ,sn) be a directed pruning sequence creating G. We give

an algorithm to construct a 3-expression traversing S(G) starting with the last element of

the sequence. The idea for computing this expression is to use three labels 1,2 and 3 as

follows: After every step of the algorithm, expressions which are already constructed consist

of vertices labeled with 1 and 3, where 1 means that the vertex has not been finally treated

and possibly has edges to other vertices not inserted yet, whereas for vertices labeled by

3 all incident edges have already been considered. The label 2 is only used as a working

label. For initialization, let Xv = •1 for every vertex v ∈ V . As this is a 1-expression, it is

also a 3-expression. In the following let now si = (vi,opi,ai), for simplification denoted by

(v,op,a), be the currently treated element of S and Xv and Xa be the 3-expressions which

exists by induction for v and a. Then, we get a 3-expression by the following rules depending

on the operation op.

(1) op = + : Xa := ρ2→3(α2,1(ρ1→2(Xv)⊕Xa))

(2) op = − : Xa := ρ2→3(α1,2(ρ1→2(Xv)⊕Xa))

(3) op = ◦ : Xa := Xv⊕Xa

(4) op =→: Xa := ρ2→1(α2,1(ρ1→2(Xv)⊕Xa))

(5) op =←: Xa := ρ2→1(α1,2(ρ1→2(Xv)⊕Xa))

4.3. PARAMETERS ON TWIN-DH DIGRAPHS 87

(6) op =↔: Xa := ρ2→1(α1,2(α2,1(ρ1→2(Xv)⊕Xa)))

To prove correctness we first need some definitions. For w a vertex of V (G), let G(w)i be

the graph consisting of w and every vertex that is generated by operations on w after step i,

which means that G(w)i is created by the directed pruning sequence S(w)i which contains

elements sk = (vk,opk,vak
) with k ≥ i and vak

has been generated by a series of operations by

w. For i = n, this means that G(w)i = ({w}, /0). Notice that, for element v0, which is the first

anchor in the directed pruning sequence, i.e., s1 = (v1,op1,v0), it holds that S(v0)1 = S and

G(v0)1 = G. We then show by induction that at any step i with n≥ i≥ 0 of the algorithm, it

holds that Xw is a 3-expression of G(w)i for all vertices w ∈V . We further assume that every

Xw contains only vertices labeled by 1 and 3, where the vertices labeled by 1 are exactly those,

which are created by a series of twin operations on w (including w itself). To simplify, we call

such a vertex a far twin in the following.

After the initialization, it is easy to see for i = n that for all w ∈V , Xw = •1 is a 3-expression

of G(w)i = ({w}, /0). Obviously, the only vertex in G(w)i is w which is labeled by 1.

Consider now step i. By induction we know that Xa is a 3-expression of G(a)i+1 where far

twins of a are labeled by 1 and all other vertices are labeled by 3. Further, Xv is a 3-expression

of G(v)i+1 where all far twins of v are labeled by 1 and all other vertices are labeled by 3. We

now show that after step i it holds that Xa is a 3-expression of G(a)i. Therefore, we consider

element si =: (v,op,a) in step i.

(1) As v is a pendant plus vertex of a, there exist edges from every far twin of v to every

far twin of a. By ρ1→2(Xv) we relabel every vertex in Xv which is labeled by 1, i.e.,

every far twin of v with 2. We join this expression with Xa and add edges from all

labels 2 to 1, which inserts all edges created by the pendant plus relation of v to a. As v

is a pendant plus vertex of a, all far twins of a can not be far twins of v and thus, we

relabel these vertices from 2 to 3. Now, the newly created Xa is a 3-expression of G(a)i

consisting only of labels 1 and 3, where the vertices labeled by 1 are exactly the far

twins of a.

(2) Analogously to (1).

(3) As v is a false twin of a, no new edges are inserted by this operation and further all far

twins of v are also far twins of a. Therefore, we only need to join expressions Xv and

Xa to create an expression for G(a)i where every far twin of a is labeled by 1 and every

other vertex is labeled by 3.

(4) As v is a true in-twin of a, like in (1), there exist edges from every far twin of v to every

far twin of a. We therefore use the same method to join the expressions Xv and Xa and

create edges between them. But unlike in (1), every far twin of v is a far twin of a.

Therefore, we relabel the far twins of v from 2 to 1, to obtain a 3-expression for G(a)i

in which exactly all far twins of a are labeled by 1.

(5) Analogously to (4).

(6) Is very similar to (4) and (5), with the only difference that we need edges from every

far twin of v to every far twin of a and the other way round. For this purpose, we

88 CHAPTER 4. DIRECTED GRAPH PARAMETERS ON SPECIAL DIGRAPHS

insert edges from labels 2 to 1 and from labels 1 to 2, before relabeling, to obtain a

3-expression for G(a)i in which exactly all far twins of a are labeled by 1.

Further, the directed clique-width of a twin-dh digraph has to be at least 3, as can be seen

by the following counterexample: The
−→
P3 , which means a directed path of 3 vertices, is

twin-distance-hereditary, but it is not expressible by a 2-expression, see Example 2.2.24.

By Courcelles Theorem on clique-width, the bounded directed clique-width of these

digraphs leads to the computability of every problem, which is describable in monadic second

order logic.

Corollary 4.3.4. Let G be a twin-dh digraph. Then every graph problem, which is describable

in MSO1 logic, is computable in polynomial time on G.

From the results which are presented later in Subsection 7.6.2, we can follow, that the

r-Dichromatic number problem can be solved in polynomial time on twin-dh digraphs. By

[GWY16] we can solve the problems Directed Hamiltonian Path, Directed Hamiltonian

Cycle, Directed Cut, and Regular Subdigraph using an XP-algorithm w.r.t. the parameter

directed NLC-width in polynomial time. Directed NLC-width is a digraph parameter which is

closely related to directed clique-width, since we can transform every directed clique-width k-

expression into an equivalent NLC-width k-expression, see [GWY16]. Thus, twin-dh digraphs

have bounded NLC-width and we can solve the above mentioned problems in polynomial

time on this class.

4.3.3 Conclusion

We show that several directed width parameters, namely directed path-width, directed tree-

width, DAG-width and cycle rank can be computed in linear time on twin-dh digraphs. From

the associated proof (as well as from the fact that this twin-dh digraphs are a subclass of

extended directed co-graphs) further the equality of all these parameters follows.

Further, we can conclude by our results in this chapter and Chapter 4 that for twin-dh

digraphs, as for directed co-graphs, Kelly-width can be bounded by DAG-width. Due to

[HK08, Conjecture 30], [AKK+15], and [BJG18, Section 9.2.5] this remains open for general

digraphs and is related to one of the biggest open problems in graph searching, namely

whether the monotonicity costs for Kelly- and DAG-width games are bounded.

Like in the undirected case, every twin-dh digraph has directed clique-width at most

3, though not every digraph of directed clique-width 3 is a twin-dh digraph. From that we

can conclude several interesting results, since there are many NP-hard problems which are

solvable on digraphs of bounded directed clique-width.

It would be interesting for future work to consider other superclasses of twin-dh digraphs

and whether it is still possible to find efficient algorithms to compute several graph parameters

on these classes and at which point they become NP-hard.

5 NP-hard Problems on Various Re-

cursive Digraph Classes: Subset

Sum Problem with Digraph Con-

straint

5.1 Introduction

The subset sum problem (SSP) is one of the simplest and most fundamental NP-hard prob-

lems in combinatorial optimization. More formally this means, in SSP there is given a set

A = {a1, . . . ,an} of n items. Every item a j has a size s j and there is a capacity c. All values

are assumed to be positive integers and s j ≤ c for every j ∈ {1, . . . ,n}. The task is to choose a

subset A′ of A, such that the sum of the sizes of the items in A′ is maximized and is at most c.

We consider two extensions of this problem: The subset sum problem with digraph constraint

(SSG) and subset sum problem with weak digraph constraint (SSGW). Both problems have

been introduced recently by Gourvès et al. [GMT18]. In both problems there is given a

digraph with sizes assigned to the vertices. In the SSG we want to find a subset of vertices

whose total size does not exceed a given capacity and which contains a vertex if at least

one of its predecessors is part of the solution. Within SSGW we want to find a subset of

vertices whose total size does not exceed a given capacity and which contains a vertex if all its

predecessors are part of the solution. Since SSG and SSGW generalize SSP, they are NP-hard.

Both problems are integer-valued problems, which motivates to observe whether they are

weakly NP-hard, i.e., the existence of pseudo-polynomial algorithms.

For related works we refer to [GMT18, Section 3]. In [GMT18] it has been shown that

on directed acyclic graphs (DAGs) SSG is strongly NP-hard and SSGW is even APX-hard.

Further, they showed that the restriction to oriented trees (OT) allows to give a pseudo-

polynomial algorithm using dynamic programming along the tree.

In the following we show that both problems are NP-hard even on oriented co-graphs

and minimal series-parallel digraphs. We provide pseudo-polynomial solutions for SSG and

SSGW on directed co-graphs and sp-digraphs and deduce a pseudo-polynomial time solution

for SSG on series-parallel digraphs. The considered digraph classes are incomparable w.r.t.

inclusion to oriented trees considered in [GMT18], see Figure 3.20. Moreover, the digraphs

89

90 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

of our interest allow to define dense graphs, i.e., graphs where the number of directed edges

is quadratic in the number of vertices.

In Table 5.1 we summarize the known results from [GMT18] and the results of this work

about subset sum problems with special digraph constraints.

SSG SSGW

transitive tournaments O(n2) Remark

5.4.6

O(n ·c4+m) Theorem

5.4.12

bioriented cliques O(n) Remark

5.4.7

O(n ·c4+m) Theorem

5.4.12

DAGs strongly NP-

hard

[GMT18] APX-hard [GMT18]

oriented trees O(n · c3) [GMT18] O(n · c2) [GMT18]

directed co-graphs O(n ·c2+m) Theorem

5.4.5

O(n ·c4+m) Theorem

5.4.12

minimal series-parallel O(n ·c2+m) Theorem

5.5.6

O(n ·c4+m) Theorem

5.5.10

series-parallel O(n · c2 +
n2.37)

Theorem

5.5.7

open

Table 5.1: Known running times for SSG and SSGW with digraph constraints restricted to

special graph classes. Let n be the number of vertices and m the number of directed edges of

the input digraph and c be the capacity.

The content of this chapter is from [GKR20b] (except for the outlook).

5.2 Problem Definition

Let A = {a1, . . . ,an} be a set of n items, such that every item a j has a size s j. For a subset A′

of A we define

s(A′) := ∑
a j∈A′

s j

and the capacity constraint by

s(A′)≤ c. (5.1)

Name: Subset sum problem (SSP)

Instance: A set A = {a1, . . . ,an} of n items. Every item a j has a size s j and there is given a

capacity c.

Task: Find a subset A′ of A that maximizes s(A′) subject to (5.1).

The parameters n, s j, and c are assumed to be positive integers. For a survey on the

subset sum problem we refer to [KPP10, Chapter 4]. In order to consider generalizations of

the subset sum problem we will consider constraints for a digraph G = (A,E) with objects

5.2. PROBLEM DEFINITION 91

assigned to the vertices.

The digraph constraint ensures that A′ ⊆ A contains a vertex y, if it contains at least one

predecessor of y, i.e.

∀y ∈ A
(

N−(y)∩A′ 6= /0
)

⇒ y ∈ A′. (5.2)

The weak digraph constraint ensures that A′ contains a vertex y, if it contains every

predecessor of y, i.e.,

∀y ∈ A
(

N−(y)⊆ A′∧N−(y) 6= /0
)

⇒ y ∈ A′. (5.3)

This allows us to state the following optimization problems given in [GMT18].

Name: Subset sum problem with digraph constraint (SSG)

Instance: A set A = {a1, . . . ,an} of n items and a digraph G = (A,E). Every item a j has a

size s j and there is a capacity c.

Task: Find a subset A′ of A that maximizes s(A′) subject to (5.1) and (5.2).

Name: Subset sum problem with weak digraph constraint (SSGW)

Instance: A set A = {a1, . . . ,an} of n items and a digraph G = (A,E). Every item a j has a

size s j and there is a capacity c.

Task: Find a subset A′ of A that maximizes s(A′) subject to (5.1) and (5.3).

In these problems the parameters n, s j, and c are assumed to be positive integers. The

results in [GMT18] also consider null sizes, which are excluded in here. All our solutions can

be extended to pseudopolynomial solutions which solve SSG and SSGW using null sizes, see

Section 5.6. Further, in the defined problems a subset A′ of A is called feasible, if it satisfies

the prescribed constraints of the problem. By OPT (I) we denote the value of an optimal

solution for input I.

Observation 5.2.1. Every feasible solution for SSG is also a feasible solution for SSGW, but

not vice versa.

Observation 5.2.2. A′ = /0 and A′ = A for s(A)≤ c are feasible solutions for every instance

of SSG and for every instance of SSGW.

In order to give equivalent characterizations for SSG and SSGW we use binary integer

programs.

Remark 5.2.3. To formulate SSG and SSGW as a binary integer program, we introduce a

binary variable x j ∈ {0,1} for each item a j ∈ A, 1≤ j ≤ n. The idea is to have x j = 1 if and

only if item a j ∈ A′.

1. SSG corresponds to maximizing ∑n
j=1 s jx j subject to ∑n

j=1 s jx j ≤ c, xi ≤ x j for every

j ∈ {1, . . .n} and for every ai ∈ N−(a j), and x j ∈ {0,1} for every j ∈ {1, . . .n}.

2. SSGW corresponds to maximizing ∑n
j=1 s jx j subject to ∑n

j=1 s jx j ≤ c, ∑{i|ai∈N−(a j)} xi≤
x j + indegree(a j)−1 for every j ∈ {1, . . .n}, and x j ∈ {0,1} for every j ∈ {1, . . .n}.

The complexity for SSG and SSGW restricted to DAGs and oriented trees was considered

in [GMT18].

Theorem 5.2.4 ([GMT18]). On DAGs SSG is strongly NP-hard and SSGW is APX-hard.

92 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

5.3 Basic Results

Let G = (A,E) be a digraph and x ∈ A. By Rx we denote the vertices of A which are reachable

from x and by Sx we denote the vertices of A which are in the same strongly connected

component as x. Thus, it holds that {x} ⊆ Sx ⊆ Rx ⊆ A.

Lemma 5.3.1. Let A′ be a feasible solution for SSG on a digraph G = (A,E) and x ∈ A. Then,

it holds that x ∈ A′ if and only if Rx ⊆ A′.

Lemma 5.3.2. Let A′ be a feasible solution for SSG on a digraph G = (A,E) and x ∈ A. Then,

it holds that x ∈ A′ if and only if Sx ⊆ A′.

Lemma 5.3.3. SSG is solvable in O(2t · (n+m)) time on digraphs with n vertices, m arcs,

and t strongly connected components.

Proof. By Lemma 5.3.2 for every feasible solution A′ and every strongly connected compo-

nent S, it either holds that S⊆ A′ or S∩A′ = /0. Since all strongly connected components are

vertex disjoint, we can solve SSG by verifying 2t possible feasible solutions. Verifying the

capacity constraint can be done in O(n) time and verifying the digraph constraint can be done

in O(n+m) time.

In the condensation con(G) of a digraph G = (V,E) every strongly connected component

C of G is represented by a vertex vC. Moreover, there is an arc between two vertices vC and

vC′ if there exist u ∈ C and v ∈ C′, such that (u,v) ∈ E. For every digraph G it holds that

con(G) is a directed acyclic graph.

In order to solve SSG it is useful to consider the condensation of the input digraph

G = (A,E). By defining the size of a vertex vC of con(G) by the sum of the sizes of the

vertices in C, the following result has been shown in [GMT18, Lemma 2].

Lemma 5.3.4 ([GMT18]). For a given instance of SSG on digraph G, there is a bijection

between the feasible solutions (and thus the set of optimal solutions) of SSG for G and the

feasible solutions (and thus the set of optimal solutions) for con(G).

Thus, in order to solve SSG we can restrict ourselves to DAGs by computing the conden-

sation of the input graph in a first step. The next example shows that Lemma 5.3.4 does not

hold for SSGW.

a
1

a
3

a
4

a
5

a
2

Figure 5.1: Digraph in Example 5.3.5.

a
1

a
2

a
3

a
4

Figure 5.2: Digraph in Example 5.3.7.

5.3. BASIC RESULTS 93

Example 5.3.5. We consider the digraph G in Figure 5.1. For SSGW with c = 2 and all sizes

s j = 1 we have among others {a4} as a feasible solution. Since con(G) is a path of length

one, formally

con(G) = ({v{a1,a2,a3,a4},v{a5}},{(v{a1,a2,a3,a4},v{a5})}),

the only feasible solution is {a5}, which implies that {a4} is not a feasible solution for SSGW

using con(G).

The transitive closure td(G) of a digraph G has the same vertex set as G and for two

distinct vertices u,v there is an arc (u,v) in td(G) if and only if there is a directed path from

u to v in G. The transitive reduction tr(G) of a digraph G has the same vertex set as G and

as few arcs of G as possible, such that G and tr(G) have the same transitive closure. The

transitive closure is unique for every digraph. The transitive reduction is unique for directed

acyclic graphs. However, for arbitrary digraphs the transitive reduction is not unique. The

time complexity of the best known algorithm for finding the transitive reduction of a graph is

the same as the time to compute the transitive closure of a graph or to perform Boolean matrix

multiplication [AGU72]. The best known algorithm to perform Boolean matrix multiplication

has running time O(n2.3729) by [Gal14].

Lemma 5.3.6. For a given instance of SSG on a directed acyclic graph G, the set of feasible

solutions and thus the set of optimal solutions of SSG for G and for tr(G) are equal.

Proof. Since a transitive reduction is a subdigraph of the given graph, every feasible solution

A′ for G is also a feasible solution for the transitive reduction tr(G). To show the reverse

direction, let A′ be a feasible solution for tr(G). By the definition of tr(G) we know that for

every vertex v, every predecessor u of v in G is also a predecessor of v in tr(G) or there is

a path from u to v in tr(G). By Lemma 5.3.1 we know that A′ is also a feasible solution for

G.

Thus, in order to solve SSG we can restrict ourselves to transitive reductions. The next

example shows that Lemma 5.3.6 does not hold for SSGW.

Example 5.3.7. We consider the digraph G in Figure 5.2. For SSGW with c = 2 and all sizes

s j = 1 we have among others {a2} as a feasible solution. Since tr(G) is a path, formally

tr(G) = ({a1,a2,a3,a4},{(a1,a2),(a2,a3),(a3,a4)}),

a2 implies by (5.3) that a3 and a4 must be part of the solution, which implies that {a2} is not

a feasible solution for SSGW using tr(G).

In the correctness proofs of our algorithms in Sections 5.4 and 5.5 we use the following

lemmata.

Lemma 5.3.8. Let G= (VG,EG) be a digraph and let H = (VH ,EH) be an induced subdigraph

of G. If A′ is a feasible solution for SSG on G, then A′∩VH is a feasible solution for SSG on

H.

94 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

Proof. If A′ is a feasible solution for SSG on G, then it holds that

∀y ∈VG

(

N−G (y)∩A′ 6= /0
)

⇒ y ∈ A′.

By restricting to y having no predecessors from VG \VH , we obtain

∀y ∈VG

(

N−G (y)∩A′∩VH 6= /0
)

⇒ y ∈ A′.

By restricting y to VH ⊆VG we obtain

∀y ∈VH

(

N−H (y)∩A′∩VH 6= /0
)

⇒ y ∈ A′∩VH ,

i.e., A′∩VH is a feasible solution for SSG on H.

The reverse direction of Lemma 5.3.8 does not hold, since vertices with predecessors in

A′∩ (VG \VH) are not considered by the feasible solutions for SSG on H. By considering the

induced subdigraph H = ({a2,a3,a4},{(a2,a3),(a3,a4)}) of digraph G in Example 5.3.7 we

observe that Lemma 5.3.8 does not hold for SSGW.

Next, we give two weaker forms of Lemma 5.3.8 which also hold for SSGW.

Lemma 5.3.9. Let G = (VG,EG) be a digraph and let H = (VH ,EH) be a weakly connected

component of G. If A′ is a feasible solution for SSGW on G, then A′∩VH is a feasible solution

for SSGW on H.

Proof. If A′ is a feasible solution for SSGW on G, then it holds that

∀y ∈VG

(

N−G (y)⊆ A′∧N−G (y) 6= /0
)

⇒ y ∈ A′.

By restricting y to VH ⊆VG we obtain

∀y ∈VH

(

N−G (y)⊆ A′∧N−G (y) 6= /0
)

⇒ y ∈ A′∩VH .

Since H is a weakly connected component of G for all y ∈VH it holds that N−H (y) = N−G (y)
such that

∀y ∈VH

(

N−H (y)⊆ A′∩VH ∧N−H (y) 6= /0
)

⇒ y ∈ A′∩VH ,

i.e., A′∩VH is a feasible solution for SSGW on H.

Lemma 5.3.10. Let G = (VG,EG) be a digraph and let H = (VH ,EH) be an induced subdi-

graph of G, such that no non-source of H has a predecessor in VG \VH . If A′ is a feasible

solution for SSGW on G, then A′∩VH is a feasible solution for SSGW on H.

Proof. If A′ is a feasible solution for SSGW on G, then it holds that

∀y ∈VG

(

N−G (y)⊆ A′∧N−G (y) 6= /0
)

⇒ y ∈ A′.

By restricting y to VH ⊆VG we obtain that

∀y ∈VH

(

N−G (y)⊆ A′∧N−G (y) 6= /0
)

⇒ y ∈ A′∩VH .

5.3. BASIC RESULTS 95

By restricting y to be a non-source of H, we obtain

∀y ∈VH

(

N−G (y)⊆ A′∧N−G (y) 6= /0∧N−H (y) 6= /0
)

⇒ y ∈ A′∩VH .

Since no non-source of H has a predecessor in VG \VH , we obtain

∀y ∈VH

(

N−G (y)⊆ A′∧N−H (y) 6= /0
)

⇒ y ∈ A′∩VH .

Then it holds in H that

∀y ∈VH

(

N−H (y)⊆ A′∩VH ∧N−H (y) 6= /0
)

⇒ y ∈ A′∩VH ,

i.e., A′∩VH is a feasible solution for SSGW on H.

Lemma 5.3.11. Let G = (VG,EG) be a digraph such that there is a 2-partition (V1,V2) of

VG with {(u,v) | u ∈V1,v ∈V2} ⊆ EG. If A′ is a feasible solution for SSGW on G such that

V1 ⊆ A′, then A′∩V2 is a feasible solution for SSGW on G[V2].

Proof. If A′ is a feasible solution for SSGW on G, then it holds that

∀y ∈VG

(

N−G (y)⊆ A′∧N−G (y) 6= /0
)

⇒ y ∈ A′.

By restricting y to V2 ⊆VG we obtain

∀y ∈V2

(

N−G (y)⊆ A′∧N−G (y) 6= /0
)

⇒ y ∈ A′∩V2.

Since V1 ⊆ A′ it holds that

∀y ∈V2

(

N−G (y)⊆V1∪A′∩V2∧N−G (y) 6= /0
)

⇒ y ∈ A′∩V2.

Thus, it holds that

∀y ∈V2

(

N−
G[V2]

(y)⊆ A′∩V2∧ (N
−
G[V1]

(y)∪N−
G[V1]

(y)) 6= /0
)

⇒ y ∈ A′∩V2.

Since V1 = N−
G[V1]

(y) 6= /0 it holds that

∀y ∈V2

(

N−
G[V2]

(y)⊆ A′∩V2

)

⇒ y ∈ A′∩V2.

By the properties of the logical implication it also holds that

∀y ∈V2

(

N−
G[V2]

(y)⊆ A′∩V2∧N−
G[V2]

(y) 6= /0
)

⇒ y ∈ A′∩V2,

i.e., A′∩V2 is a feasible solution for SSGW on G[V2].

Further, we will use the following result for solutions of SSP on digraphs with sizes

assigned to the vertices.

Observation 5.3.12. Let G = (VG,EG) be a digraph with sizes assigned to the vertices and

let H = (VH ,EH) be an induced subdigraph of G. If A′ ⊆ VG satisfies (5.1), then A′ ∩VH

satisfies (5.1).

96 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

5.4 SSG and SSGW on Directed Co-graphs

Observation 5.4.1. Let G be a directed co-graph and T be a di-co-tree for G. For every

vertex u of T which corresponds to a series operation, the subtree rooted at u defines a

strongly connected subdigraph of G. Further, for every vertex u of T representing a series

operation, such that no predecessor of u corresponds to a series operation, the leaves of the

subtree rooted at u correspond to a strongly connected component of G.

Since SSP corresponds to SSG and also to SSGW on a digraph without arcs, which is an

oriented co-graph, we obtain the following result.

Proposition 5.4.2. SSG and SSGW are NP-hard on oriented co-graphs.

Next, we will show pseudo-polynomial solutions for SSG and SSGW restricted to directed

co-graphs. The main idea is a dynamic programming along the recursive structure of a given

directed co-graph.

5.4.1 Subset Sum with Digraph Constraint (SSG)

By Lemma 5.3.4 in order to solve SSG we can restrict ourselves to directed acyclic graphs.

This can be done by replacing every strongly connected component S by a new vertex xS

whose size is the sum of the sizes of the vertices in S. In order to identify the strongly

connected components of directed co-graphs using a di-co-tree we apply Observation 5.4.1.

We perform a breadth first search on a di-co-tree T starting at the root and for every vertex u

of T which corresponds to a series operation we substitute the subtree rooted at u by a single

vertex whose size is the sum of the sizes of the vertices corresponding to the leaves of the

subtree rooted at u. This does not reduce the size of the digraph or its di-co-tree in general,

e.g. for oriented co-graphs we have no non-trivial strongly connected component.

We consider an instance of SSG such that G = (A,E) is a directed co-graph which is given

by some di-co-expression X . For some subexpression X ′ of X let F(X ′,s) = 1 if there is a

solution A′ in the graph defined by X ′ satisfying (5.1) and (5.2) such that s(A′) = s, otherwise

let F(X ′,s) = 0. We use the notation s(X ′) = ∑a j∈X ′ s j.

Lemma 5.4.3. Let 0≤ s≤ c.

1. F(a j,s) = 1 if and only if s = 0 or s j = s. In all other cases F(a j,s) = 0.

2. F(X1⊕X2,s) = 1, if and only if there are some 0 ≤ s′ ≤ s and 0 ≤ s′′ ≤ s such that

s′+ s′′ = s and F(X1,s
′) = 1 and F(X2,s

′′) = 1. In all other cases F(X1⊕X2,s) = 0.

3. F(X1⊘X2,s) = 1, if and only if

• F(X2,s) = 1 for 0≤ s≤ s(X2)
1 or

• there is an s′ > 0, such that s = s′+ s(X2) and F(X1,s
′) = 1.

1The value s = 0 is for choosing an empty solution in digraph(X1⊘X2).

5.4. SSG AND SSGW ON DIRECTED CO-GRAPHS 97

In all other cases F(X1⊘X2,s) = 0.

4. F(X1⊗X2,s) = 1, if and only if s = 0 or s = s(X1)+ s(X2). In all other cases F(X1⊗
X2,s) = 0.

Proof. We show the correctness of the stated equivalences. Let 0≤ s≤ c.

1. The only possible solutions in digraph(a j) are /0 and {a j} which have size 0 and s j,

respectively.

2. If F(X1⊕X2,s) = 1, then by Lemma 5.3.8 there are s′ and s′′ such that s′+ s′′ = s

and solutions in digraph(X1) and in digraph(X2) which guarantee F(X1,s
′) = 1 and

F(X2,s
′′) = 1. Further, for every s′ and s′′, such that s′+ s′′ = s, F(X1,s

′) = 1, and

F(X2,s
′′) = 1, it holds that F(X1⊕X2,s) = 1 since the operation (disjoint union) does

not create new edges.

3. If F(X1 ⊘ X2,s) = 1, then we distinguish two cases. If the solution of size s in

digraph(X1⊘ X2) contains no vertices of digraph(X1), then by Lemma 5.3.8 there

is a solution in digraph(X2) which guarantees F(X2,s) = 1. If the solution A′ of size s

in digraph(X1⊘X2) contains at least one vertex of digraph(X1), then by (5.2) solution

A′ has to contain all vertices of digraph(X2) and by Lemma 5.3.8 there is a solution in

digraph(X1) which guarantees F(X1,s− s(X2)) = 1. Further, for every 0 ≤ s ≤ s(X2)
where F(X2,s) = 1 we have F(X1⊘X2,s) = 1 since the solutions from digraph(X2) do

not contain any predecessors of vertices from digraph(X1) in digraph(X1⊘X2). Also for

every 1≤ s′ ≤ s(X1) where F(X1,s
′) = 1 for s = s′+ s(X2) we have F(X1⊘X2,s) = 1

since every solution in digraph(X1) has to be extended by X2 since at least one prede-

cessor of digraph(X2) is part of the solution and thus, all vertices of digraph(X2) have

to belong to the solution.

4. If F(X1⊗X2,s) = 1, then we distinguish two cases. If the solution of size s is empty,

then s = 0. Otherwise, s = s(X1)+ s(X2) since digraph(X1⊗X2) is strongly connected

and thus, all vertices of digraph(X1) and all vertices of digraph(X2) have to be part of

the solution.

Further, if s = 0 or s = s(X1)+ s(X2), it holds that F(X1⊗X2,s) = 1 since the empty

and the complete vertex set both satisfy (5.2).

Corollary 5.4.4. There is a solution with sum s for an instance of SSG such that G is a

directed co-graph which is given by some di-co-expression X if and only if F(X ,s) = 1.

Therefore, OPT (I) = max{s | F(X ,s) = 1}.

Theorem 5.4.5. SSG can be solved in directed co-graphs with n vertices and m arcs in

O(n · c2 +m) time and O(n · c) space.

Proof. Let G = (A,E) be a directed co-graph and T be a di-co-tree for G with root r. For

some vertex u of T we denote by Tu the subtree rooted at u and Xu the co-expression defined

98 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

by Tu. In order to solve the SSG problem for an instance I on graph G, we traverse di-co-

tree T into bottom-up order. For every vertex u of T and 0 ≤ s ≤ c we compute F(Xu,s)
following the rules given in Lemma 5.4.3. By Corollary 5.4.4 we can solve our problem by

F(Xr,s) = F(X ,s).
A di-co-tree T can be computed in O(n+m) time from a directed co-graph with n vertices

and m arcs, see Theorem 3.3.4. All s(Xi) can be precomputed in O(n) time. Our rules given

in Lemma 5.4.3 show the following running times.

• For every a j ∈ A and every 0≤ s≤ c value F(a j,s) is computable in O(1) time.

• For every 0≤ s≤ c, every F(X1⊕X2,s) and every F(X1⊘X2,s) can be computed in

O(c) time from F(X1,s
′) and F(X2,s

′′).

• For every 0≤ s≤ c, every F(X1⊗X2,s) can be computed in O(1) time from s(X1) and

s(X2).

Since we have n leaves and n−1 inner vertices in T , the running time is in O(nc2 +m).

In [GMT18, Lemma 4] it is shown that SSG is polynomial on acyclic tournaments without

stating a running time. Since acyclic tournaments, and equivalently transitive tournaments,

are a subclass of oriented co-graphs, we reconsider the following result.

Remark 5.4.6. Every transitive tournament G can be defined from a single vertex graph v1 by

repeatedly adding a vertex of maximum indegree and outdegree 0, i.e., an in-dominated vertex

v2, . . . ,vn (cf. Lemma 2.3.1). This order can be defined in O(n2) time from G. The feasible

solutions w.r.t. the digraph constraint (5.2) are /0 and for 1 ≤ k ≤ n the set {vi | k ≤ i ≤ n}.
This leads to at most n+1 possible solutions for SSG for which we have to check the capacity

constraint (5.1) and among those satisfying (5.1) we select one set with largest sum of sizes.

Thus, SSG is solvable in O(n2) time on transitive tournaments with n vertices.

Remark 5.4.7. Within a bioriented clique G = (A,E) the whole vertex set is a strongly

connected component. By Lemma 5.3.2 the only possible solutions are A and /0. Thus, SSG is

solvable in O(n) time on bioriented cliques with n vertices.

5.4.2 Subset Sum With Weak Digraph Constraint (SSGW)

Next, we consider SSGW on directed co-graphs. In order to get useful information about

the sources within a solution, we use an extended data structure. We consider an instance of

SSGW such that G = (A,E) is a directed co-graph which is given by some di-co-expression

X . For some subexpression X ′ of X let H(X ′,s,s′) = 1 if there is a solution A′ in the digraph

defined by X ′ satisfying (5.1) and (5.3) such that s(A′) = s and the sum of sizes of the sources

in A′ is s′, otherwise let H(X ′,s,s′) = 0. We denote by o(X) the sum of the sizes of all sources

in digraph(X).

Remark 5.4.8. A remarkable difference between SSGW and SSG w.r.t. co-graph operations

is the following. When considering X1⊘X2 we can combine solutions A1 of X1 satisfying

(5.1) and (5.3) which do not contain all items of X1 with solutions A2 of X2 satisfying only

(5.1) to obtain solution A1 ∪A2 of X1⊘X2 satisfying (5.1) and (5.3), if s(A1)+ s(A2) ≤ c.

5.4. SSG AND SSGW ON DIRECTED CO-GRAPHS 99

Furthermore, within X1⊗X2 we can combine solutions A1 of X1 satisfying (5.1) which do

not contain all items and solutions A2 of X2 satisfying (5.1) which do not contain all items to

obtain solution A1∪A2 of X1⊗X2 satisfying (5.1) and (5.3), if s(A1)+ s(A2)≤ c.

Thus, in order to solve SSGW on a directed co-graph G, we use solutions for SSP on

subexpressions for G. We consider an instance of SSP such that G = (A,E) is a directed

co-graph which is given by some di-co-expression X . For a subexpression X ′ of X let

H ′(X ′,s) = 1 if there is a solution A′ in the digraph defined by X ′ satisfying (5.1) such that

s(A′) = s, otherwise let H ′(X ′,s) = 0.

Lemma 5.4.9. Let 0≤ s≤ c.

1. H ′(a j,s) = 1 if and only if s = 0 or s = s j. In all other cases H ′(a j,s) = 0.

2. H ′(X1⊕X2,s) = 1, if and only if there are some 0 ≤ s′ ≤ s and 0 ≤ s′′ ≤ s such that

s′+ s′′ = s and H ′(X1,s
′) = 1 and H ′(X2,s

′′) = 1.

In all other cases H ′(X1⊕X2,s) = 0.

3. H ′(X1⊘X2,s) = H ′(X1⊕X2,s)

4. H ′(X1⊗X2,s) = H ′(X1⊕X2,s)

Proof. We show the correctness of the stated equivalences. Let 0≤ s≤ c.

1. The only possible solutions in digraph(a j) are /0 and {a j} which have size 0 and s j,

respectively.

2. If H ′(X1⊕X2,s) = 1, then by Observation 5.3.12 there are s′ and s′′ such that s′+s′′ = s

and solutions in digraph(X1) and in digraph(X2) which guarantee H ′(X1,s
′) = 1 and

H ′(X2,s
′′) = 1. Further, for every s′ and s′′, such that s′+ s′′ = s, H ′(X1,s

′) = 1, and

H ′(X2,s
′′) = 1, we can combine these two solutions into one solution of size s in

digraph(X1⊕X2). Thus, it holds that H ′(X1⊕X2,s) = 1.

3. Since the arcs are irrelevant for the capacity constraint (5.1), it holds that H ′(X1⊘
X2,s) = H ′(X1⊕X2,s).

4. Since the arcs are irrelevant for the capacity constraint (5.1), it holds that H ′(X1⊗
X2,s) = H ′(X1⊕X2,s).

This allows us to compute the values H(X ′,s,s′) as follows.

Lemma 5.4.10. Let 0≤ s,s′ ≤ c.

1. H(a j,s,s
′) = 1 if and only if s = s′ = 0 or s j = s = s′.

In all other cases H(a j,s,s
′) = 0.

2. H(X1 ⊕ X2,s,s
′) = 1, if and only if there are 0 ≤ s1 ≤ s, 0 ≤ s2 ≤ s, 0 ≤ s′1 ≤ s′,

0≤ s′2 ≤ s′, such that s1 + s2 = s, s′1 + s′2 = s′, H(X1,s1,s
′
1) = 1, and H(X2,s2,s

′
2) = 1.

In all other cases H(X1⊕X2,s,s
′) = 0.

100 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

3. H(X1⊘X2,s,s
′) = 1, if and only if

• H(X1,s,s
′) = 1 for 1≤ s < s(X1) or

• H ′(X2,s) = 1 for 0≤ s≤ s(X2)
2 and s′ = 0 or

• there are 1≤ s2≤ s(X2), such that s(X1)+s2 = s, o(X1)= s′, and H(X2,s2,o(X2))=
1, or

• s = s(X1)+ s(X2) and s′ = o(X1), or

• there are 0≤ s1 < s(X1), 0≤ s2 ≤ s(X2), such that s1 + s2 = s, H(X1,s1,s
′) = 1,

and H ′(X2,s2) = 1.

In all other cases H(X1⊘X2,s,s
′) = 0.

4. H(X1⊗X2,s,0) = 1, if and only if

• H ′(X1,s) = 1 for 1≤ s < s(X1) or

• H ′(X2,s) = 1 for 0≤ s < s(X2)
3 or

• there are 1≤ s2 ≤ s(X2), such that s(X1)+ s2 = s, and H(X2,s2,o(X2)) = 1, or

• there are 1≤ s1 ≤ s(X1), such that s1 + s(X2) = s, and H(X1,s1,o(X1)) = 1, or

• s = s(X1)+ s(X2), or

• there exist 1≤ s1 < s(X1) and 1≤ s2 < s(X2) such that s1+s2 = s, H ′(X1,s1) = 1,

and H ′(X2,s2) = 1.

In all other cases H(X1⊗X2,s,s
′) = 0.

Proof. We show the correctness of the stated equivalences. Let 0≤ s,s′ ≤ c.

1. The only possible solutions in digraph(a j) are /0 and {a j} which have size 0 and s j,

respectively. Further, a single vertex is a source.

2. If H(X1⊕X2,s,s
′) = 1, then by Lemma 5.3.9 there are s1, s2 and s′1, s′2 such that s1 +

s2 = s, s′1 + s′2 = s′ and solutions in digraph(X1) and in digraph(X2) which guarantee

H(X1,s1,s
′
1) = 1 and H(X2,s,s

′
2) = 1.

Further, for every 0≤ s1 ≤ s, 0≤ s2 ≤ s, 0≤ s′1 ≤ s′, 0≤ s′2 ≤ s′, such that s1 + s2 = s,

s′1 + s′2 = s′, H(X1,s1,s
′
1) = 1, and H(X2,s2,s

′
2) = 1, it holds that H(X1⊕X2,s,s

′) = 1

since the operation (disjoint union) does not create new edges.

3. If H(X1⊘X2,s,s
′) = 1, then we distinguish the following cases. If the solution of size

s in digraph(X1⊘X2) is a non-empty proper subset of the vertices of digraph(X1), then

by Lemma 5.3.10 there is a solution in digraph(X1) which guarantees H(X1,s,s
′) = 1.

Next, assume that the solution A′ of size s in digraph(X1⊘X2) contains no vertices of

digraph(X1). Since every solution satisfying constraints (5.1) and (5.3) is also a solution

which satisfies only (5.1), we have H ′(X1⊘X2,s) = 1. And since A′ contains no vertices

2The value s = 0 is for choosing an empty solution in digraph(X1⊘X2).
3The value s = 0 is for choosing an empty solution in digraph(X1⊗X2).

5.4. SSG AND SSGW ON DIRECTED CO-GRAPHS 101

of digraph(X1), Observation 5.3.12 implies that there is a solution in digraph(X2) which

guarantees H ′(X2,s) = 1.

If the solution A′ of size s in digraph(X1⊘X2) contains all vertices of digraph(X1),
then the order composition and the weak digraph constraint (5.3) imply that the set

A′ can be extended by every solution of digraph(X2) which includes all sources of

digraph(X2). Thus, by Lemma 5.3.11, there is a solution in digraph(X2), which guaran-

tees H(X2,s− s(X1),o(X2)) = 1.

Further, if the solution A′ of size s in digraph(X1⊘X2) contains all vertices of digraph(X1),
it is also possible to extend A′ by all vertices of digraph(X2) and thus s = s(X1)+ s(X2).
Finally, if the solution A′ of size s in digraph(X1⊘X2) contains some but not all ver-

tices of digraph(X1) and possibly vertices of digraph(X2), then by Lemma 5.3.10 and

Observation 5.3.12 there are s1 and s2 such that s1+ s2 = s and solutions in digraph(X1)
and in digraph(X2) which guarantee H(X1,s1,s

′) = 1 and H ′(X2,s2) = 1.

The solutions of size 1≤ s < s(X1) from digraph(X1) remain feasible for digraph(X1⊘
X2).
Every subset A′ of size 0≤ s≤ s(X2) from digraph(X2) which satisfies (5.1) leads to a

solution A′ of size s satisfying (5.1) and (5.3) in digraph(X1⊘X2) since every vertex of

digraph(X2) gets a predecessor in digraph(X1), which is not in A′.

Further, the set of all vertices of digraph(X1) extended by every solution of digraph(X2)
of size s2 which includes all sources of digraph(X2) leads to a feasible solution for

digraph(X1⊘X2) of size s(X1)+ s2. The size of the sources has to be updated to o(X1),
since the sources of digraph(X1) are the sources of digraph(X1⊘X2).
Moreover, the complete vertex set of digraph(X1⊘X2) is obviously a feasible SSGW

solution if it fulfills the capacity constraint.

Furthermore, by Remark 5.4.8 we can combine SSGW solutions of size s1 < s(X1) of

digraph(X1) and SSP solutions of size s2 of digraph(X2) to a SSGW solution of size

s1 + s2 of digraph(X1⊘X2).

4. First, we want to mention that H(X1⊗X2,s,s
′) = 1 is only possible for s′ = 0, since

digraph(X1⊗X2) has no sources. If H(X1⊗X2,s,0) = 1, we distinguish the follow-

ing cases. Assume the solution of size s in digraph(X1⊗X2) is a proper and non-

empty subset of the vertices of digraph(X1). Since H(X1⊗X2,s,0) = 1, it holds that

H ′(X1⊗X2,s) = 1. And since A′ contains only vertices of digraph(X1), Observation

5.3.12 implies that there is a solution in digraph(X1) which guarantees H ′(X1,s) = 1.

If the solution of size s in digraph(X1 ⊗ X2) is a proper subset of the vertices of

digraph(X2), then by the same arguments as for digraph(X1) there is a solution in

digraph(X2) which guarantees H ′(X2,s) = 1.

If the solution A′ of size s in digraph(X1⊗X2) contains all vertices of digraph(X1),
then the series composition and the weak digraph constraint (5.3) imply that the

set A′ can be extended by all solutions of digraph(X2) which include all sources of

digraph(X2). Thus, by Lemma 5.3.11, there is a solution in digraph(X2), which guaran-

tees H(X2,s− s(X1),o(X2)).
If the solution A′ of size s in digraph(X1⊗X2) contains all vertices of digraph(X2), then

by the same arguments as for digraph(X1) there is a solution in digraph(X1), which

102 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

guarantees H(X1,s− s(X2),o(X1)).
If the solution A′ of size s in digraph(X1⊗X2) contains all vertices of digraph(X1) or

all vertices of digraph(X2), then by (5.3) solution A′ can be extended by all vertices of

digraph(X2) or all vertices of digraph(X1), respectively, and thus s = s(X1)+ s(X2).
Finally, if the solution A′ of size s in digraph(X1⊗X2) contains some but not all vertices

of digraph(X1) and some but not all vertices of digraph(X2), then by Observation 5.3.12

there are s1 and s2 such that s1+s2 = s and solutions in digraph(X1) and in digraph(X2)
which guarantee H ′(X1,s1) = 1 and H ′(X2,s2) = 1.

Every subset A′ of size 1≤ s < s(X1) from digraph(X1) which satisfies (5.1) leads to

a solution A′ of size s satisfying constraints (5.1) and (5.3) in digraph(X1⊗X2) since

every vertex of digraph(X1) gets a predecessor in digraph(X2), which is not in A′.

In the same way every subset A′ of size 0≤ s < s(X2) from digraph(X2) which satisfies

(5.1) leads to a solution A′ of size s satisfying (5.1) and (5.3) in digraph(X1⊗X2) since

every vertex of digraph(X2) gets a predecessor in digraph(X1), which is not in A′.

Further, all the set of all vertices of digraph(X1) extended by every solution of digraph(X2)
of size s2 which includes all sources of digraph(X2) leads to a feasible solution for

digraph(X1⊗X2) of size s(X1)+ s2 and the set of all vertices of digraph(X2) extended

by every solution of digraph(X1) of size s1 which includes all sources of digraph(X1)
leads to a feasible solution for digraph(X1⊗X2) of size s1 + s(X2).
Moreover, the complete vertex set of digraph(X1⊗X2) is obviously a feasible SSGW

solution.

Furthermore, by Remark 5.4.8, we can combine SSP solutions of size s1 < s(X1) and

SSP solutions of size s2 < s(X2) to a SSGW solution of size s1 + s2.

In order to solve the SSGW problem we traverse di-co-tree T into bottom-up order and

perform the following computations depending on the type of operation.

Corollary 5.4.11. There is a solution with sum s for an instance of SSGW such that G is a

directed co-graph which is given by some di-co-expression X if and only if H(X ,s,s′) = 1.

Therefore, OPT (I) = max{s | H(X ,s,s′) = 1}.

The next result can be obtained by similar arguments as given within the proof of Theorem

5.4.5.

Theorem 5.4.12. SSGW can be solved in directed co-graphs with n vertices and m arcs in

O(n · c4 +m) time and O(n · c2) space.

5.5 SSG and SSGW on Series-parallel Digraphs

We now look at SSG and SSGW on (minimal) series-parallel digraphs.

5.5. SSG AND SSGW ON SERIES-PARALLEL DIGRAPHS 103

5.5.1 Subset Sum with Digraph Constraint (SSG)

Lemma 5.5.1. Let G be a minimal series-parallel digraph. Then, for every vertex x ∈V (G)
there is a sink xs of G, such that there is a directed path from x to xs in G and there is a source

xo of G, such that there is a path from xo to x in G.

Proof. Can be shown by induction on the recursive definition of minimal series-parallel

digraphs.

Lemma 5.5.2. Let G = (A,E) be a minimal series-parallel digraph. Then, every non-empty

feasible solution of SSG contains a sink of G.

Proof. If a feasible solution A′ contains some x ∈ A, then Lemma 5.5.1 implies that there is a

sink xs of G, such that there is a path from x to xs in G which implies by (5.2) that xs ∈ A′.

Since SSP corresponds to SSG and also to SSGW on a digraph without arcs, which is a

minimal series-parallel digraph, we obtain the following result.

Proposition 5.5.3. SSG and SSGW are NP-hard on minimal series-parallel digraph.

Next, we show pseudo-polynomial solutions for SSG and SSGW restricted to (minimal)

series-parallel digraphs. The main idea is a dynamic programming along the recursive

structure of a given (minimal) series-parallel digraph. We consider an instance of SSG such

that G = (A,E) is a minimal series-parallel digraph which is given by some msp-expression X .

For some subexpression X ′ of X let F(X ′,s) = 1 if there is a solution A′ in the graph defined

by X ′ satisfying (5.1) and (5.2) such that s(A′) = s, otherwise let F(X ′,s) = 0. We use the

notation s(X ′) = ∑a j∈X ′ s j.

Lemma 5.5.4. Let 0≤ s≤ c.

1. F(a j,s) = 1 if and only if s = 0 or s j = s. In all other cases F(a j,s) = 0.

2. F(X1 ∪X2,s) = 1, if and only if there are some 0 ≤ s′ ≤ s and 0 ≤ s′′ ≤ s such that

s′+ s′′ = s and F(X1,s
′) = 1 and F(X2,s

′′) = 1.

In all other cases F(X1∪X2,s) = 0.

3. F(X1×X2,s) = 1, if and only if

• F(X2,s) = 1 for 0≤ s≤ s(X2)
4 or

• there is some 1≤ s′ ≤ s(X1) such that s = s′+ s(X2) and F(X1,s
′) = 1.

In all other cases F(X1×X2,s) = 0.

Proof. We show the correctness of the stated equivalences. Let 0≤ s≤ c.

1. The only possible solutions in digraph(a j) are /0 and {a j} which have size 0 and s j,

respectively.

4The value s = 0 is for choosing an empty solution in digraph(X1×X2).

104 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

2. If F(X1 ∪X2,s) = 1, then by Lemma 5.3.8 there are s′ and s′′ such that s′+ s′′ = s

and solutions in digraph(X1) and in digraph(X2) which guarantee F(X1,s
′) = 1 and

F(X2,s
′′) = 1.

Further, for every s′ and s′′, such that s′+ s′′ = s, F(X1,s
′) = 1, and F(X2,s

′′) = 1, it

holds that F(X1∪X2,s) = 1 since the parallel composition creates no additional arcs.

3. If F(X1 × X2,s) = 1, then we distinguish two cases. If the solution of size s in

digraph(X1×X2) contains no vertex of digraph(X1), then by Lemma 5.3.8 there is

a solution in digraph(X2) which guarantees F(X2,s) = 1.

Otherwise, the solution A′ of size s in digraph(X1×X2) contains at least one vertex

of digraph(X1). By the definition of the series composition and the digraph constraint

(5.2) every solution from digraph(X1) which contains a sink has to be extended by

every vertex of X2 which is reachable by a source from digraph(X2). Since by Lemma

5.5.2 every non-empty feasible solution of SSG contains a sink, every solution from

digraph(X1) has to be extended by every vertex of X2 which reachable by a source from

digraph(X2). By Lemma 5.5.1 every solution from digraph(X1) has to be extended by

all vertices of digraph(X2). Thus, by Lemma 5.3.8 there is a solution in digraph(X1)
which guarantees F(X1,s− s(X2)) = 1.

Further, for every 0≤ s≤ s(X2) where F(X2,s) = 1 we have F(X1×X2,s) = 1 since

the solutions from digraph(X2) do not contain any predecessors of vertices from

digraph(X1) in digraph(X1×X2).
For every 1≤ s′≤ s(X1) where F(X1,s

′) = 1 the definition of the series composition and

the digraph constraint (5.2) imply that for s = s′+ s(X2) it holds that F(X1×X2,s) = 1

for reasons given above.

Corollary 5.5.5. There is a solution with sum s for some instance of SSG such that G is

a minimal series-parallel digraph which is given by some msp-expression X if and only if

F(X ,s) = 1. Therefore, OPT (I) = max{s | F(X ,s) = 1}.

Theorem 5.5.6. SSG can be solved in minimal series-parallel digraphs with n vertices and

m arcs in O(n · c2 +m) time and O(n · c) space.

Proof. Let G = (V,E) be a minimal series-parallel digraph and T be an msp-tree for G

with root r. For some vertex u of T we denote by Tu the subtree rooted at u and Xu the

msp-expression defined by Tu. In order to solve the SSG problem for an instance I graph

G, we traverse msp-tree T into bottom-up order. For every vertex u of T and 0≤ s≤ c we

compute F(Xu,s) following the rules given in Lemma 5.5.4. By Corollary 5.5.5 we can solve

our problem by F(Xr,s) = F(X ,s).
According to Observation 3.6.3 an msp-tree T can be computed in linear time w.r.t. vertices

and edges from a minimal series-parallel digraph. All s(Xi) can be precomputed in O(n) time.

Our rules given in Lemma 5.5.4 show the following running times.

• For every a j ∈V and every 0≤ s≤ c value F(a j,s) is computable in O(1) time.

5.5. SSG AND SSGW ON SERIES-PARALLEL DIGRAPHS 105

• For every 0≤ s≤ c, every F(X1∪X2,s) can be computed in O(c) time from F(X1,s
′)

and F(X2,s
′′).

• For every 0≤ s≤ c, every F(X1×X2,s) can be computed in O(1) time from F(X1,s
′),

F(X2,s
′′), and s(X2).

Since we have n leaves and n−1 inner vertices in T , the running time is in O(nc2 +m).

Theorem 5.5.7. SSG can be solved in series-parallel digraphs with n vertices and m arcs in

O(n · c2 +n2.3729) time and O(n · c) space.

Proof. Let G be some series-parallel digraph. By Lemma 5.3.6 we can use the transitive

reduction of G, which can be computed in O(n2.3729) time by [Gal14].

5.5.2 Subset Sum with Weak Digraph Constraint (SSGW)

Next, we consider SSGW on minimal series-parallel digraph. In order to get useful informa-

tion’s about the sinks within a solution, we use an extended data structure. We consider an

instance of SSGW such that G = (A,E) is a minimal series-parallel digraph which is given

by some msp-expression X . For some subexpression X ′ of X let H(X ′,s,s′) = 1 if there is a

solution A′ in the graph defined by X ′ satisfying (5.1) and (5.3) such that s(A′) = s and the

sum of sizes of the sinks in A′ is s′, otherwise let H(X ′,s,s′) = 0. We denote by i(X) the sum

of the sizes of all sinks in digraph(X).

Lemma 5.5.8. Let 0≤ s,s′ ≤ c.

1. H(a j,s,s
′) = 1 if and only if s = s′ = 0 or s j = s = s′.

In all other cases H(a j,s,s
′) = 0.

2. H(X1 ∪ X2,s,s
′) = 1, if and only if there are 0 ≤ s1 ≤ s, 0 ≤ s2 ≤ s, 0 ≤ s′1 ≤ s′,

0≤ s′2 ≤ s′, such that s1 + s2 = s, s′1 + s′2 = s′, H(X1,s1,s
′
1) = 1, and H(X2,s2,s

′
2) = 1.

In all other cases H(X1∪X2,s,s
′) = 0.

3. H(X1×X2,s,s
′) = 1, if and only if

• 0≤ s≤ s(X2)
5 and 0≤ s′ ≤ s(X2), such that H(X2,s,s

′) = 1 or

• there are 1 ≤ s1 ≤ s(X1) and 1 ≤ s′1 < i(X1), such that s1 = s, 0 = s′, and

H(X1,s1,s
′
1) = 1, or

• there are 1≤ s1≤ s(X1), such that s1+s(X2)= s, i(X2)= s′, and H(X1,s1, i(X1))=
1, or

• there are 1 ≤ s1 ≤ s(X1), 1 ≤ s′1 < i(X1), 1 ≤ s2 ≤ s(X2), and 1 ≤ s′2 ≤ s(X2),
such that s1 + s2 = s, s′2 = s′, H(X1,s1,s

′
1) = 1, and H(X2,s2,s

′
2) = 1.

In all other cases H(X1×X2,s,s
′) = 0.

5The value s = s′ = 0 is for choosing an empty solution in digraph(X1×X2). The values s > s′ = 0 are for

choosing a solution without sinks in digraph(X1×X2)

106 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

Proof. We show the correctness of the stated equivalences. Let 0≤ s,s′ ≤ c.

1. The only possible solutions in digraph(a j) are /0 and {a j} which have size 0 and s j,

respectively. Further, a single vertex corresponds to a sink.

2. If H(X1∪X2,s,s
′) = 1, then by Lemma 5.3.9 there are s1, s2 and s′1, s′2 such that s1 +

s2 = s, s′1 + s′2 = s′ and solutions in digraph(X1) and in digraph(X2) which guarantee

H(X1,s1,s
′
1) = 1 and H(X2,s,s

′
2) = 1.

Further, for every 0≤ s1 ≤ s, 0≤ s2 ≤ s, 0≤ s′1 ≤ s′, 0≤ s′2 ≤ s′, such that s1 + s2 = s,

s′1 + s′2 = s′, H(X1,s1,s
′
1) = 1, and H(X2,s2,s

′
2) = 1, it holds that H(X1∪X2,s,s

′) = 1

since we do not create any new edges by the parallel composition.

3. If H(X1×X2,s,s
′) = 1, then we distinguish four cases. If the solution of size s and sink

size s′ in digraph(X1×X2) contains no vertices of digraph(X1), then by Lemma 5.3.10

there is a solution in digraph(X2) which guarantees H(X2,s,s
′) = 1.

If the solution of size s and sink size s′ in digraph(X1×X2) contains only vertices of

digraph(X1) but not all sinks of digraph(X1), then by Lemma 5.3.10 there is a solution

in digraph(X1) which guarantees H(X1,s,s
′) = 1.

If the solution A′ of size s and sink size s′ in digraph(X1×X2) contains all sinks of

digraph(X1), the series composition and the weak digraph constraint (5.3) imply that

the set A′ has to be extended by all sources of digraph(X2). After ignoring the sources

of digraph(X2) (because the graph is acyclic), there must exist new sources, which have

to be contained in A′, since all their predecessors were sources in the original graph and

so on. Thus, set A′ contains all vertices of X2 and by Lemma 5.3.10 there is a solution

in digraph(X1) which guarantees H(X1,s− s(X2), i(X1)) = 1.

If the solution A′ of size s and sink size s′ in digraph(X1×X2) contains vertices of

digraph(X1) but not all sinks of digraph(X1) and vertices of digraph(X2), then by

Lemma 5.3.10 there are s1,s
′
1 and s2,s

′
2 such that s1 + s2 = s, s′2 = s′ and solutions in

digraph(X1) and in digraph(X2) which guarantee H(X1,s1,s
′
1) = 1 and H(X2,s2,s

′
2) =

1.

Further, the solutions of size 0 ≤ s ≤ s(X2) from digraph(X2) remain feasible in

digraph(X1×X2) since the solutions from digraph(X2) do not contain any predecessors

of vertices from digraph(X1) in digraph(X1×X2).

The solutions from digraph(X1) which do not contain all sinks of X1, i.e., 1≤ s′1 < i(X1)
remain feasible in digraph(X1×X2), but the sizes of sinks have to be changed to 0 since

these sinks are no longer sinks in the digraph(X1×X2).

Next we consider solutions A′ from digraph(X1) which contain all sinks of digraph(X1),
i.e., s′ = i(X1). As mentioned above, the series composition and the weak digraph

constraint (5.3) imply that the set A′ has to be extended by all vertices of X2. The

sizes of sinks have to be changed to i(X2), since all sinks of X2 are also sinks in the

digraph(X1×X2).

5.6. CONCLUSIONS 107

Further, we can combine solutions of size 1≤ s1 ≤ s(X1) from digraph(X1), which do

not contain all sinks of X1, i.e., 1 ≤ s′1 < i(X1), and solutions of size 1 ≤ s2 ≤ s(X2)
from digraph(X2), to a solution of size s1 + s2 and sizes of sinks s′2 in digraph(X1×X2).

Corollary 5.5.9. There is a solution with sum s for some instance of SSGW such that G is

a minimal series-parallel digraph which is given by some msp-expression X if and only if

H(X ,s,s′) = 1. Therefore, OPT (I) = max{s | H(X ,s,s′) = 1}.

Theorem 5.5.10. SSGW can be solved in minimal series-parallel digraphs with n vertices

and m arcs in O(n · c4 +m) time and O(n · c2) space.

Proof. Let G = (V,E) be a minimal series-parallel digraph and T be an msp-tree for G with

root r. For some vertex u of T we denote by Tu the subtree rooted at u and Xu the msp-

expression defined by Tu. In order to solve the SSGW problem for an instance I graph G,

we traverse msp-tree T into bottom-up order. For every vertex u of T and 0 ≤ s,s′ ≤ c we

compute H(Xu,s,s
′) following the rules given in Lemma 5.5.8. By Corollary 5.5.9 we can

solve our problem by H(Xr,s,s
′) = H(X ,s,s′).

An msp-tree T can be computed in O(n+m) time from an msp-digraph with n vertices

and m arcs, see Observation 3.6.3. All s(Xi) and all i(Xi) can be precomputed in O(n) time.

Our rules given in Lemma 5.5.8 show the following running times.

• For every a j ∈ A and every 0≤ s,s′ ≤ c value H(a j,s,s
′) is computable in O(1) time.

• For every 0 ≤ s,s′ ≤ c, every H(X1 ∪X2,s,s
′) can be computed in O(c2) time from

H(X1,s1,s
′
1) and H(X2,s2,s

′
2).

• For every 0 ≤ s,s′ ≤ c, every H(X1×X2,s,s
′) can be computed in O(c2) time from

H(X1,s1,s
′
1), H(X2,s2,s

′
2), and i(X1).

Since we have n leaves and n−1 inner vertices in T , the running time is in O(nc4 +m).

5.6 Conclusions

The presented methods allow us to solve SSG and SSGW with digraph constraints given by

directed co-graphs and (minimal) series-parallel digraphs in pseudo-polynomial time.

In contrast to [GMT18], we do not consider null sizes in the method used. This allows

to verify whether a solution consists of all vertices or contains all sinks of a subgraph by

using the sum of the sizes of the corresponding items. SSG and SSGW using null sizes can

also be solved in pseudo-polynomial time on directed co-graphs and (minimal) series-parallel

digraphs by additional counting the number of vertices or sinks within a SSGW solution.

For future work it could be interesting to find a solution for SSGW for series-parallel

digraphs in general. Example 5.3.7 shows that Lemma 5.3.6 and the recursive structure of

minimal series-parallel digraphs cannot be used in this case.

It remains to analyze whether the shown results also hold for other graph classes. There-

fore one could consider edge series-parallel digraphs, see Subsection 3.6.5. Further, it remains

108 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

to look at more general graph classes, such as graphs of bounded directed clique-width, as e.g.

twin-dh digraph, which have directed clique-width at most three and which are a superclass

of directed co-graphs. Since in the directed case bounded directed tree-width does not imply

bounded directed clique-width, solutions for subset sum problems with digraph constraints of

bounded directed tree-width are interesting as well.

Moreover, one could take a look at related problems. These include the two minimization

problems which are introduced in [GMT18] by adding a maximality constraint to SSG and

SSGW. Additionally, a generalization of the results for SSG to the partially ordered knapsack

problem [JN83, KP04] or the one-neighbor and the all-neighbors knapsack problem6 seems

promising. In the following, we provide a brief look at what research has recently developed

from these findings.

5.6.1 An Outlook to the Knapsack Problem with Special Neighbor Constraints

The knapsack problem (KP) is about a given set A = {a1, . . . ,an} of n≥ 1 items, where every

item a j has a size s j and a profit p j, and a given capacity c. We further assume that all values

are non-negative integers and s j ≤ c for every j ∈ {1, . . . ,n}. The aim is to choose a subset A′

of A, such that p(A′) := ∑a j∈A′ p j is maximized while the capacity constraint holds, which

means that the sum of the sizes of the items in A′ does not exceed the given capacity c. The

previously discussed subset sum problem (SSP) is a special case of the knapsack problem for

which we have p j = s j.

As in SSG and SSGW we can also define knapsack problems with special neighbor

constraints, see [BHW11, BHW12]. Within the one-neighbor knapsack problem, we can

put an item into subset A′ only if at least one of its neighbors is in A′. Meanwhile within

the all-neighbors knapsack problem, we can put an item to A′ only if all its neighbors are in

A′. For both problems, there are variants with uniform and general profits and weights. In

[GGK22] there are given upper bounds for the time complexity of computing the different

variants of the problems where the constraints are given by graphs of special digraph classes,

namely on directed co-graphs, minimal series-parallel digraphs, and directed trees.

In [GGK22] there is given the following overview about the results of the various problems

on the mentioned digraph classes.

graph one-neighbor all-neighbors

uniform undirected linear [BHW12] O(n · c)⊆ O(n2) [BHW12]

directed strongly NP-hard [BHW12] strongly NP-hard [BHW12]

general undirected APX-hard [BHW12] PFTAS [BHW12]

O(n ·P+n2) [GGK22]

directed strongly NP-hard [BHW12] strongly NP-hard [BHW12]

Table 5.2: Time complexity of knapsack problems with neighbor constraints

6The general, directed, all-neighbors knapsack problem is closely related to the partially ordered knapsack

problem

graph one-neighbor all-neighbors

uniform undirected linear [BHW12] O(1) one component

directed O(n3) [GGK22] O
(

n3
)

[GGK22]

general undirected NP-hard [GGK22] O(n) [GGK22]

directed NP-hard [GGK22] NP-hard [GGK22]

O(n ·P2 +n) [GGK22] O(n · (P+1) · (P+n)) [GGK22]

Table 5.3: Time complexity of knapsack problems with neighbor constraints given by trees

graph one-neighbor all-neighbors

uniform undirected linear [BHW12] O(n · c)⊆ O(n2) [BHW12]

directed O(n3) [GGK22] O(n3) [GGK22]

general undirected O(n ·P2+n2) [GGK22] O(n ·P+n2) [GGK22]

directed O(n ·P2+n2) [GGK22] O(n · (P+1) ·max{n,P+1}) [GGK22]

Table 5.4: Time complexity of knapsack problems with neighbor constraints given by co-

graphs

one-neighbor all-neighbors

uniform O(n3) [GGK22] O(n3) [GGK22]

general O(n ·P2 +n2) [GGK22] O(n · (P+1) ·max{n,P+1}) [GGK22]

Table 5.5: Time complexity of knapsack problems with neighbor constraints given by msp-

digraphs

110 CHAPTER 5. NP-HARD PROBLEMS: SSG AND SSGW

6 NP-hard Problems on Various Re-

cursive Digraph Classes: Comput-

ing Directed Steiner Path Covers

In this chapter we show the directed Steiner path cover problem on a special digraph class.

The content is taken from [GKR+22].

6.1 Introduction

In the Steiner tree problem on undirected graphs we have given a graph G with non-negative

edge weights and a subset of so-called terminal vertices in G. We search for a subtree of

minimum (edge) weight that contains all so-called terminal vertices and possibly additional

non-terminal vertices. The Steiner path problem is a special restriction of the Steiner tree

problem in which the required terminal vertices lie on one path with minimal cost. It can also

be seen as a generalization of the Hamiltonian path problem, since if we choose each vertex

as a terminal vertex and if we have uniform edge weights, the Steiner path problem is equal

to the Hamiltonian path problem. In [AACKS14] they observed the Euclidean bottleneck

Steiner path problem. Moreover, in [MJV13] there was given a linear time solution for the

Steiner path problem on trees.

For the well known Steiner tree problem there are efficient algorithms on special graph

classes like series-parallel graphs [WC83], outerplanar graphs [WC82] and graphs of bounded

tree-width [BCKN15, CMZ12]. We consider the class Steiner tree problem (CSP), which is

a generalization of the Steiner tree problem where the vertices are partitioned into classes

of terminals [RW90]. The unit-weight version of CSP is linear time solvable on co-graphs

[WY95].

A Steiner tree always exists within connected graphs. Nevertheless, it is not always

possible to find a Steiner path, which motivates us to look at Steiner path cover problems.

This Steiner path cover problem was already considered in [CL18] on interval graphs.

In the following we investigate the directed Steiner path cover problem for which we give

the following definition. Let G be a digraph with vertex set V (G) and edge set E(G) and let

T ⊆V (G) be a set of terminal vertices. Further, let c : E(G)→R≥0 be a function that assigns

a weight to each edge. A directed Steiner path cover for G is a set of vertex-disjoint simple

directed paths P in G that consists of all terminal vertices T and possibly some additional

111

112 CHAPTER 6. NP-HARD PROBLEMS: DIRECTED STEINER PATH COVERS

non-terminal (Steiner) vertices of V (G)−T . We define the size of a directed Steiner path

cover as the number of its paths, i.e., the size is |P|, while the cost is defined as the sum of

weights of the edges used in the paths in a directed Steiner path cover of minimum size.

Name: Directed Steiner path cover problem

Instance: A digraph G, a set of terminal vertices T ⊆V (G), and edge weights c : E(G)→
R≥0.

Task: Find a directed Steiner path cover P of minimum size for G that minimizes ∑p∈P ∑e∈p c(e).

Minimizing only the sum of the weights of the edges is not reasonable since this sum is

minimized if we take each terminal vertex on its own as a path of length 0. So we primary

require that the number of paths is minimal.

The directed Steiner path cover problem is NP-hard since it is a generalization of the

directed Hamiltonian path problem.

Name: Directed Hamiltonian path problem

Instance: A digraph G.

Task: Find a directed Hamiltonian path in G.

This gives a motivation for a restriction of the problem to special graph classes. We

observe digraphs of a very natural graph class, namely directed co-graphs.

For graphs where all edges have the same weight, the above definition of the directed

Steiner path cover problem results in a minimum number of Steiner vertices. Graphs without

edge weights can be considered as a special case of graphs with unit-edge weights. Since

edge weights do not occur in co-graphs, we use the following problem definition.

Name: Unit-edge-weight directed Steiner path cover problem

Instance: A digraph G and a set of terminal vertices T ⊆V (G).

Task: Find a directed Steiner path cover of minimum size for G such that the number of

Steiner vertices is minimal.

In the following we present how to compute the value of a directed Steiner path cover of

minimum size and cost for the disjoint union, order composition and series composition of

two directed co-graphs in linear time from the corresponding values of the involved directed

co-graphs. For this purpose, we give a definition of a useful normal form for directed Steiner

path covers in digraphs which are defined by the order composition or series composition of

two directed co-graphs. Moreover, we conclude that a directed Steiner path cover of minimum

size and cost for a directed co-graph can be computed in linear time.

Name: Directed Steiner path problem

Instance: A digraph G, a set T ⊆V (G) of terminal vertices, and a function c : E(G)→ R≥0

that assigns to each edge some weight.

Task: Find a directed Steiner path p in graph G that minimizes ∑e∈p c(e).

6.2. NORMAL FORM FOR DIRECTED STEINER PATH COVERS 113

6.2 Normal form for Directed Steiner Path Covers

In the following we give a definition of a normal form for directed Steiner path covers in

directed co-graphs which are defined by the order composition or series composition of two

directed co-graphs.

Let G be a directed co-graph and let T ⊆V (G) be a set of terminal vertices. Further, let C

be a directed Steiner path cover for G with respect to T , while s(C) denotes the number of

Steiner vertices in the paths of C.

Lemma 6.2.1. Let C be a directed Steiner path cover for some directed co-graph G = A⊘B

or G = A⊗B with respect to a set T ⊆V (G) of terminal vertices. Then, there is a directed

Steiner path cover C′ with respect to T that does not contain paths p and p′ satisfying one

of the structures (1)-(4), such that |C| ≥ |C′| and s(C)≥ s(C′) applies. Let q1, . . . ,q4 denote

sub-paths which may be empty.

1. p = (x,q1) or p = (q1,x) where x 6∈ T . Comment: No path starts or ends with a Steiner

vertex.

2. p = (q1,u,x,v,q2) where u ∈ V (A), v ∈ V (B), and x 6∈ T . Comment: On a path, the

neighbors u,v of a Steiner vertex x are both contained in the same digraph.

3. p = (q1,x), p′ = (u,q2), where x ∈V (A), u ∈V (B), p 6= p′. Comment: No path p ends

in A, if there is a path p′ 6= p that starts in B.

4. p = (. . . ,x,u,v,y, . . .) where u,v 6∈ T . Comment: The paths contain no edge between

two Steiner vertices.

If G = A⊗B, then the cover C′ also does not contain paths satisfying structures (5)-(8).

5. p = (x,q1), p′ = (u,q2), where x ∈V (A), u ∈V (B), p 6= p′. Comment: All paths start

in the same digraph.

6. p= (q1,x,y,q2), p′= (q3,u,v,q4) where x,y∈V (A), u,v∈V (B). Comment: The cover

C′ contains edges of only one of the digraphs.

7. p = (x,q1), p′ = (q2,u,y,v,q3), where x,y ∈V (A), u,v ∈V (B), and y 6∈ T . Comment:

If a path starts in A then there is no Steiner vertex in A with two neighbors on the path

in B.

8. p = (x,q1), p′ = (q2,u,v,q3), where x ∈ V (A) and u,v ∈ V (B). Comment: If a path

starts in A, then no edge of B is contained in the cover.

Proof. 1. If x is removed from p we get a cover with one Steiner vertex less than C.

2. If x is removed from p, we get a cover with one Steiner vertex less than C.

3. We combine the paths to only one path (q1,x,u,q2) and we get a cover with one path

less than C.

114 CHAPTER 6. NP-HARD PROBLEMS: DIRECTED STEINER PATH COVERS

4. Since G is a directed co-graph, the underlying undirected graph is a co-graph such

that the path cannot include a P4, i.e., a simple path of 4 vertices, as induced subgraph.

Thus, there must be at least one additional arc. If such an additional arc would shorten

the Steiner path by skipping u, v or both then we remove u or v or both and take the

shortcut for getting a cover C′. Additional arcs that do not shorten the path would create

a forbidden induced subgraph from Figure 3.4 which is not possible. For details see

Table 6.1.

5. The new paths are q1 and (x,u.q2). The cover C′ is as good as C.

6. If p 6= p′, then (q1,x,v,q4) and (q3,u,y,q2) are the paths in cover C′, see Figure 6.1.

If p = p′, then we have to distinguish whether (u,v) ∈ q1, (u,v) ∈ q2, (x,y) ∈ q3, or

u v

x y

u v

x y

Figure 6.1: Substitution in the proof of Lemma 6.2.1(6.) for p 6= p′.

(x,y) ∈ q4. We show how to handle the first case, the other three cases are similar.

Let p = (q3,u,v,q5,b,a,q6,x,y,q2), where b ∈V (B) and a ∈V (A). Then the new path

in cover C′ is (q3,u,a,q6,x,v,q5,b,y,q2). Such vertices a and b must exist because

v ∈V (B) and x ∈V (A), possibly it holds a = x or b = v. In any case cover C′ is as good

as C, see Figure 6.2.

x y

b b

a a

vu

yx

u v

Figure 6.2: Substitution in the proof of Lemma 6.2.1(6.) for p = p′.

7. If p 6= p′, then q1 and (q2,u,x,v,q3) are the new paths in cover C′. If p = p′, i.e.,

q1 = (q′2,u,y,v,q3), where q′2 is obtained from q2 by removing x, then (q′2,u,x,v,q3) is

the new path in cover C′. The cover C′ is as good as C, see Figure 6.3. If p 6= p′, then

the edge (a,b) is missing in Figure 6.3.

u v

a

b

x

u v

a

b

x

Figure 6.3: Substitution in the proof of Lemma 6.2.1(7.).

6.2. NORMAL FORM FOR DIRECTED STEINER PATH COVERS 115

8. If p 6= p′, then q1 and (q2,u,x,v,q3) are the new paths in cover C′. If p = p′, i.e.,

q1 = (q′2,u,v,q3), where q′2 is obtained from q2 by removing x, then (q′2,u,x,v,q3) is

the new path in cover C′. The cover C′ is as good as C, see Figure 6.4. If p 6= p′, then

the edge (a,b) is missing in Figure 6.4.

u v

a

b

x

u v

a

b

x

Figure 6.4: Substitution in the proof of Lemma 6.2.1(8.).

Operations 1, 2, 4 and 7 reduce the number of Steiner vertices by one, the remaining

operations 3, 5 and 6 do not change the number of Steiner vertices. Therefore, operations 1, 2,

4 and 7 can only be executed at most |V − (TA∪TB)| times.

Operation 6 reduces the number of paths by one, the remaining operations do not increase

the number of paths. Therefore operation 6 can be executed at most max{|TA|, |TB|} times.

Let us now consider those edges on a path that connect vertices of A and vertices of

B. The maximum number of those edges is |V (A)|+ |V (B)|− 1. Operation 7 can remove

two such edges, operations 3 and 5 can add two such edges. Since the other operations

1, 2, 4 and 6 do not reduce the number of edges, operations 3 and 5 can be used at most

(|V (A)|+ |V (B)|−1)/2+ |V − (TA∪TB)| times.

The hypothesis of Lemma 6.2.1 is symmetric in A and B and thus, the statement of Lemma

6.2.1 is also valid for co-graphs G = A⊗B if we switch A and B.

Definition 6.2.2. A directed Steiner path cover C for some directed co-graph G = A⊘B or

G = A⊗B is said to be in normal form if none of the operations described in the proof of

Lemma 6.2.1 is applicable.

Now we assume that a directed Steiner path cover for some directed co-graph G = A⊘B

or G = A⊗B is always in normal form, since the operations of the proof of Lemma 6.2.1

do not increase the number of paths or Steiner vertices of a cover. Lemma 6.2.1 implies the

following theorem.

Theorem 6.2.3. For each directed co-graph G = A⊗B and set of terminal vertices T ⊆V (G)
any directed Steiner path cover C in normal form with respect to T does not contain an edge

of digraph A, and no path in C starts or ends in digraph A if |TA|< |TB|.

Proof. [by contradiction] Assume, the Steiner path cover C contains an edge of digraph A.

Then by Lemma 6.2.1(5), all paths starts in digraph A. By Lemma 6.2.1(4), it holds that no

Steiner vertex v of V (A) is contained in C, where the neighbors of v are both of digraph B. By

Lemma 6.2.1 (1), (2), and (5), it holds that all vertices of V (B) from C are connected with a

terminal vertex of V (A), thus |TA|> |TB|.�
Second, we have to show that no path in C starts or ends in digraph A. Assume on the

contrary, that there is one path that starts in A. By Lemma 6.2.1(6), it holds that all paths start

in A. Continuing as in the first case this leads to a contradiction.

116 CHAPTER 6. NP-HARD PROBLEMS: DIRECTED STEINER PATH COVERS

graph with underlying P4 and additional none a b c

edges that do not shorten the path a, b a, c b, c a, b, c

a b c

1 2 3 4

D5 D4 D4 D3

{1,2,3} {1,2,3} {1,2,3} {1,3,4}
D3 D4 D4 D3

{2,3,4} {1,2,3} {1,2,3} {1,3,4}

a b c

1 2 3 4

D5 D2 D2 D4

{2,3,4} {1,2,4} {1,2,3} {2,3,4}
D2 D4 D2 D2

{1,2,4} {2,3,4} {1,2,3} {1,2,4}

a b c

1 2 3 4

D5 D4 D4 D4

{2,3,4} {1,2,3} {1,2,3} {2,3,4}
D4 D4 D4 D2

{2,3,4} {2,3,4} {1,2,3} {1,2,4}

a b c

1 2 3 4

D5 D4 D4 D4

{1,2,3} {1,2,3} {1,2,3} {2,3,4}
D4 D4 D4 D6

{2,3,4} {2,3,4} {1,2,3} {1,2,3,4}

a b c

1 2 3 4

D5 D3 D2 D1

{2,3,4} {1,2,3} {1,2,3} {1,2,3}
D1 D3 D3 D3

{1,3,4} {1,3,4} {1,3,4} {1,3,4}

a b c

1 2 3 4

D5 D1 D1 D1

{1,2,3} {2,3,4} {1,2,4} {1,2,4}
D2 D2 D1 D2

{1,2,4} {1,2,4} {1,2,4} {1,2,4}

a b c

1 2 3 4

D1 D1 D1 D1

{1,2,3} {2,3,4} {1,2,4} {1,2,3}
D3 D2 D2 D3

{2,3,4} {1,2,4} {1,2,3} {1,3,4}

Table 6.1: The leftmost column shows a graph with underlying undirected P4 and at least one

additional arc that do not shorten the path. The other columns shows the forbidden subgraphs

that are contained in the leftmost graph depending on the edges of the P4.

6.3. COMPUTING THE OPTIMAL NUMBER OF PATHS 117

Remark 6.2.4. For each directed co-graph G = A⊘B and set of terminal vertices T ⊆V (G)
any directed Steiner path cover C in normal form with respect to T it holds that each path that

starts in A either remains in A or it crosses over to B and remains in B. Each path that reaches

a vertex of B has to stay in B since no edge from a vertex in B to a vertex in A exists.

6.3 Computing the Optimal Number of Paths

Let G be a directed co-graph and T ⊆V (G) be a set of terminal vertices. We define p(G,T)
as the minimum number of paths within a Steiner path cover for G with respect to T . Further,

let s(G,T) be the minimum number of Steiner vertices in a directed Steiner path cover of size

p(G,T) with respect to T . If it is clear from the context, we do not specify set T . To name a

single vertex by v, we use •v here instead of just •, as in the actual definition of co-graphs.

Lemma 6.3.1. Let A and B be two vertex-disjoint directed co-graphs and let TA ⊆V (A) and

TB ⊆V (B) be two sets of terminal vertices. The following equations apply.

1. p(•v, /0) = 0 and p(•v,{v}) = 1

2. p(A⊕B,TA∪TB) = p(A,TA)+ p(B,TB)

3. p(A⊗B, /0) = 0

4. p(A⊗B,TA∪TB) = max{1, p(B,TB)−|V (A)|} if 1≤ |TB| and |TA| ≤ |TB|

5. p(A⊗B,TA∪TB) = max{1, p(A,TA)−|V (B)|} if 1≤ |TA| and |TA|> |TB|

6. p(A⊘B,TA∪TB) = p(A,TA) if p(A)≥ p(B)

7. p(A⊘B,TA∪TB) = p(B,TB) if p(A)< p(B)

Proof. 1. - 3. Obviously holds.

4. We show p(A⊗B)≥max{1, p(B)−|V (A)|} by an indirect proof. We assume that in a

directed Steiner path cover C for A⊗B there are less than max{1, p(B)−|V (A)|} paths.

Removing all vertices of A from all paths in C leads to a directed Steiner path cover of

size |C|+ |V (A)|< p(B) for B. �We now show that p(A⊗B)≤max{1, p(B)−|V (A)|}
applies. We can use any vertex of A to combine two paths of the cover of B to one path,

as the series composition of A and B creates every possible directed edge between A

and B. If there exists more terminal vertices in TA than there are paths in the cover of B,

i.e., p(B)< |TA|, we split paths of B and reconnect them with terminal vertices of TA,

which is always possible since |TA| ≤ |TB|.

5. Similar to 4.

6. We show that p(A⊘B)≤ p(A) holds. Consider that it is possible to append any path

of A by any path of B, see Lemma 6.2.1(3). As this creates no edge between B and A,

we cannot extend a path of B with a path of A.

118 CHAPTER 6. NP-HARD PROBLEMS: DIRECTED STEINER PATH COVERS

We show by an indirect proof that p(A⊘B)≥ p(A) applies. We assume that a directed

Steiner path cover C for A⊘B contains less than p(A) paths. By removing all vertices

of B from all paths in C we get a Steiner path cover of size |C|< p(A). �

7. Similar to 6.

6.4 Computing the Optimal Number of Steiner Vertices

Remark 6.4.1. For two vertex-disjoint directed co-graphs A, B and two sets of terminal

vertices TA ⊆ V (A), TB ⊆ V (B) it holds that s(A⊕B,TA ∪TB) = s(A,TA)+ s(B,TB), as the

disjoint union does not create new edges.

Remark 6.4.2. Let G = A⊘B be a directed co-graph, and let C be a directed Steiner path

cover of G such that p = (q1,u1,x,q2,v1) is a path in A, p1 = (u2,q3) and p2 = (v2,q4) are

paths in B and all paths are vertex-disjoint paths in C, where x 6∈ T , u1,u2,v1,v2 ∈ T , and

q1, . . . ,q4 are sub-paths. Now, we split p at vertex x into two paths and combine them with p1

and p2 to obtain (q1,u1,u2,q3) and (q2,v1,v2,q4) as new paths. On this way we get a Steiner

path cover without increasing the cost. If we switch A and B, we obtain (u2,q3,q1,u1) and

(v2,q4,q2,v1) as new paths such that the statement holds as well.

We conclude the central lemma of our work. The proof is done by induction on the

structure of the co-graph.

Lemma 6.4.3. Let G be a directed co-graph and C a directed Steiner path cover for G with

respect to a set T ⊆V (G) of terminal vertices. Then, it holds that p(G)+ s(G)≤ |C|+ s(C).

Proof. We proof this by induction. Obviously, the statement is valid for directed co-graphs

with only one vertex. We now assume that the statement is valid for directed co-graphs of n

vertices. Let A and B are vertex-disjoint directed co-graphs with at most n vertices each.

Disjoint union: Let G = A⊕B be a directed co-graph with more than n vertices. By Lemma

6.3.1, and Remark 6.4.1, we know that p(A⊕B)+ s(A⊕B) = p(A)+ p(B)+ s(A)+ s(B).
By the induction hypothesis, p(A)+ s(A)≤ |C|A|+ s(C|A) and p(B)+ s(B)≤ |C|B|+ s(C|B)
apply, where C|A denotes the cover C restricted to digraph A, i.e., the cover which results if

we remove all vertices of B from C. This yields to the statement of the lemma.

p(A⊕B)+ s(A⊕B)≤ |C|A|+ s(C|A)+ |C|B|+ s(C|B) = |C|+ s(C)

Series composition: Let G = A⊗B be a directed co-graph on more than n vertices and

without loss of generality it holds that |TA| ≤ |TB|.

1. Let X(A) denote the vertices of A used in cover C, and let D be the cover for B that

results by removing the vertices of X(A) from the cover C. By induction hypothesis,

we get p(B)+ s(B)≤ |D|+ s(D).

2. Let nt(X(A)) be the number of non-terminal vertices of X(A). By Theorem 6.2.3 we

get that s(C) = s(D)+ nt(X(A)) and |C| = |D|− |TA|− nt(X(A)). Consequently, we

come to |C|+ s(C) = |D|+ s(D)−|TA|.

6.4. COMPUTING THE OPTIMAL NUMBER OF STEINER VERTICES 119

Combining these results together we get:

p(B)+ s(B)−|TA| ≤ |D|+ s(D)−|TA|= |C|+ s(C)

To prove the statement of the lemma, we start with considering the case p(B)−1≤ |V (A)|.
Then, we get p(A⊗B) = 1. If |TA| ≥ p(B)− 1, then d := |TA| − (p(B)− 1) many Steiner

vertices from B, are replaced by terminal vertices from A, if they are available. Otherwise, if

|TA|< p(B)−1, we get −d = (p(B)−1)−|TA| many Steiner vertices from A with which we

combine the paths. Consequently, it holds that s(A⊗B)≤max{0,s(B)−d} as the number

of Steiner vertices in an optimal cover is at most the number of Steiner vertices in a certain

cover. Thus, since p(A⊗B) = 1 we obtain for s(B)≥ d:

p(A⊗B)+ s(A⊗B) ≤ 1+ s(B)−d = 1+ s(B)− (|TA|− (p(B)−1))

= ✁1+ s(B)−|TA|+ p(B)− ✁1 ≤ |C|+ s(C)

If s(B) < d, then all Steiner vertices of B are replaced by terminal vertices of A and as we

have |TA| ≤ |TB|, some of the paths of B are reconnected by the remaining terminal vertices of

A. Consequently, we get p(A⊗B)+ s(A⊗B) = 1≤ |C|+ s(C).
Now, we come to the case where p(B)− 1 > |V (A)|, i.e., it is not possible to combine

all paths in an optimal cover for B with vertices of A. By Lemma 6.3.1, we know that

p(A⊗B) = max{1, p(B)−|V (A)|}. Consequently, for p(A⊗B)> 1 it follows:

p(A⊗B)+ s(A⊗B) ≤ p(B)−|V (A)|+ s(B)+nt(A)

= p(B)+ s(B)−|TA| ≤ |C|+ s(C)

Since the non-terminal vertices of A are now used to combine paths of the cover, the non-

terminal vertices of A become Steiner vertices.

Order composition: Let G = A⊘B be a directed co-graph with more than n vertices. By the

induction hypothesis, we get p(A)+ s(A)≤ |C|A|+ s(C|A) and p(B)+ s(B)≤ |C|B|+ s(C|B).
Let us first consider the case p(A)> p(B). By Lemma 6.3.1 it holds p(A⊘B) = p(A). We

can append any path of A by any path of B, and by Remark 6.4.2 it holds that for every path

that there is more in A than in B, a Steiner vertex of B can be removed. Additionally, as an

optimal cover has at most as many Steiner vertices as a concrete cover, we get s(A⊘B) ≤
s(C|A)+ s(C|B)−min{s(C|B), |C|A|− |C|B|}. If we sum up both equations we come to

p(A⊘B)+ s(A⊘B)≤ p(A)+ s(C|A)+ s(C|B)−min{s(C|B), |C|A|− |C|B|}

If s(C|B)≥ |C|A|− |C|B| applies, and as s(C) = s(C|A)+ s(C|B) applies, we get

p(A⊘B)+ s(A⊘B)≤ p(A)+ s(C)−|C|A|+ |C|B|.

The statement would be shown if p(A)−|C|A|+ |C|B| ≤ |C| applied. It holds p(A) ≤ |C|A|
since an optimal cover has at most as many paths as a concrete cover, and it holds |C|B| ≤ |C|,
since |C| = max{|C|A|, |C|B|} by Remark 6.2.4. We sum up these equations which leads

to p(A) + |C|B| ≤ |C|A|+ |C|. That is equivalent to p(A)− |C|A|+ |C|B| ≤ |C|, such that

p(A⊘B)+ s(A⊘B)≤ |C|+ s(C) has been shown.

120 CHAPTER 6. NP-HARD PROBLEMS: DIRECTED STEINER PATH COVERS

If s(C|B) < |C|A| − |C|B|, then we get p(A⊘ B) + s(A⊘ B) ≤ p(A) + s(C|A). It is left to

show that p(A)+ s(C|A) ≤ |C|+ s(C) applies. Since an optimal cover has at most as many

paths as a concrete cover, it holds p(A) ≤ |C|A|. Further, we know that |C|A| ≤ |C| since

|C|= max{|C|A|, |C|B|} by Remark 6.2.4. Moreover, it holds s(C|A)≤ s(C), as a part can at

most be as big as the whole.

We can show the other case p(A)≤ p(B) on a similar way.

To see why Lemma 6.4.3 is crucial for the rest of this work, consider the digraph B

of Figure 6.5 that is not a directed co-graph. Terminal vertices TA = { f ,g} and TB =
{a,c,e,u,w,x} are shown as squares. In the left part of the figure a Steiner path cover

Cℓ = {(a,b,c,d,e),(u,v,w,x,y)} for graph B is shown with |Cℓ|= 2 and s(Cℓ) = 4 which is

optimal. In the right part of the figure a Steiner path cover Cr = {(a,b,c,w,x,y),(e),(u)} for

B is shown with |Cr|= 3 and s(Cr) = 2.

B

A

a b c d e

u v w x y

f g

B

A f g

a b c d e

u v w x y

Figure 6.5: Small example that shows the contra positive of the statement of Lemma 6.4.3 in

a graph B that is not directed co-graph.

The right cover can be extended to an optimal cover for A⊗B if the vertices of A are used

to combine the path: {(u, f ,a,b,c,w,x,y,g,e)} is an optimal cover for A⊗B with only one

path and 2 Steiner vertices. The left Steiner path cover can not be extended to an optimal

cover for A⊗B. For example, we can split path (a,b,c,d,e) at vertex b into two paths (a)
and (c,d,e) and reconnect them by a vertex of A and get (a, f ,c,d,e). The other vertex of A

must be used to combine the remaining two paths to (a, f ,c,d,e,g,u,v,w,x,y) which results

in a cover for A⊗B that consists of one path but 3 Steiner vertices. For graph B the statement

of Lemma 6.4.3 is not satisfied: p(B)+ s(B) = 2+4 = 6 > |Cr|+ s(Cr) = 3+2 = 5

In the proof of Lemma 6.4.5 we use the statement of Lemma 6.4.3 to show that optimal

solutions for directed co-graphs A and B can be combined to an optimal solution for A⊘B

and A⊗B.

Remark 6.4.4. Let G be a directed co-graph and let C be a directed Steiner path cover for

G with respect to some set of terminal vertices T ⊆V (G). Then s(C)≥ s(G) holds only if

|C|= p(G). If |C|> p(G) then s(C) might be smaller than s(G).

Lemma 6.4.5. Let A and B be two vertex-disjoint digraphs, and let TA ⊆V (A), TB ⊆V (A)
be sets of terminal vertices. Then the following equations applies:

1. s(•v, /0) = 0 and s(•v,{v}) = 0

2. s(A⊕B,TA∪TB) = s(A,TA)+ s(B,TB)

6.4. COMPUTING THE OPTIMAL NUMBER OF STEINER VERTICES 121

3. s(A⊗B) = max{0,s(B)+ p(B)− p(A⊗B)−|TA|} if |TA| ≤ |TB|

4. s(A⊗B) = max{0,s(A)+ p(A)− p(A⊗B)−|TB|} if |TA|> |TB|

5. s(A⊘B) = s(A)+ s(B) if p(A) = p(B)

6. s(A⊘B) = s(A)+ s(B)−min{s(A), p(B)− p(A)} if p(A)< p(B)

7. s(A⊘B) = s(A)+ s(B)−min{s(B), p(A)− p(B)} if p(A)> p(B)

Proof. 1. Obvious.

2. See Remark 6.4.1

3. At first we show s(A⊗B)≤max{0,s(B)+ p(B)− p(A⊗B)−|TA|}.
Lemma 6.4.3 implies that s(A⊗B)+ p(A⊗B)≤ s(C)+ |C| holds for any cover C for

directed co-graph A⊗B and any set of terminal vertices T . We consider the cover C for

A⊗B which is obtained by an optimal cover D for B in the following way: Take the

terminal vertices of A to either combine paths of D or to remove a Steiner vertex of D

by replacing v 6∈ T by a terminal vertex of A in a path as (. . . ,u,v,w, . . .) ∈ D, where

u,w ∈ T . If |TA| ≥ s(B)+ p(B), then we can combine all paths of D while all Steiner

vertices can be removed by terminal vertices of A. Since |TA| ≤ |TB| holds, we can

split some of the paths and reconnected them by the remaining terminal vertices of A.

Consequently, we get s(C)+ |C|= 1 and s(A⊗B) = 0.

Otherwise, if |TA| < s(B)+ p(B), then we have s(C)+ |C| = s(B)+ p(B)−|TA|, and

by Lemma 6.4.3, the statement follows.

s(A⊗B)+ p(A⊗B) ≤ s(B)+ p(B)−|TA| = s(C)+ |C|
⇐⇒ s(A⊗B) ≤ s(B)+ p(B)− p(A⊗B)−|TA|

We prove now that s(A⊗B)≥max{0,s(B)+ p(B)− p(A⊗B)−|TA|}.
By X(A) we denote the vertices of V (A) that are part of the paths in an optimal cover

C for A⊗B. Let D be the cover for B which we get by removing the vertices of X(A)
from C. Then, by Theorem 6.2.3 we come to the following:

|X(A)|= nt(X(A))+ |TA| = |D|− p(A⊗B)
⇐⇒ nt(X(A)) = |D|− p(A⊗B)−|TA|

Thus, we get:

s(A⊗B)−nt(X(A)) = s(D) = s(A⊗B)−|D|+ p(A⊗B)+ |TA|
⇐⇒ s(A⊗B) = s(D)+ |D|− p(A⊗B)−|TA|
⇒ s(A⊗B) ≥ s(B)+ p(B)− p(A⊗B)−|TA|

The implication follows, as by Lemma 6.4.3 it holds s(D)+ |D| ≥ s(B)+ p(B).

4. Can be shown similar to the previous item.

122 CHAPTER 6. NP-HARD PROBLEMS: DIRECTED STEINER PATH COVERS

5. To show that s(A⊘ B) ≤ s(A) + s(B) holds, we consider optimal covers C and D

for A and B. We then build a cover E for A⊘ B in such a way that any path of

C is appended by a path of D, see Lemma 6.2.1(3). Since |E| = p(A⊘B) applies,

s(A⊘B) ≤ s(E) = s(C)+ s(D) = s(A)+ s(B) follows. That is because an optimal

cover has at most as many Steiner vertices as a concrete cover.

To show that s(A⊘B)≥ s(A)+ s(B) holds, we consider an optimal cover C for A⊘B.

Then, we have s(A⊘B) = s(C|A)+s(C|B)≥ s(A)+s(B), as |C|A|= p(A) = p(A⊘B) =
p(B) = |C|B|.

6. We distinguish two cases. At first, let s(A)> p(B)− p(A).
To show that s(A⊘ B) ≤ s(A) + s(B)− (p(B)− p(A)) holds, we consider optimal

covers C and D for A and B. We construct a cover E for A⊘ B as follows. We

first split p(B)− p(A) many paths of C at Steiner vertices as stated in Remark 6.4.2.

After, we combine each of the resulting paths with a path of D. On this way, it holds

that |E|= p(A⊘B) = p(B) and therefore, s(A⊘B)≤ s(C)+ s(D)− (p(B)− p(A)) =
s(A)+ s(B)− (p(B)− p(A)).
Please note, a Steiner path cover C for A⊘B with s(C|A)> 0 is not optimal if |C|A|<
|C| = p(A⊘B) holds. By Remark 6.4.2 a path of C|A could be split up at a Steiner

vertex and the number of Steiner vertices could be reduced.

To show s(A⊘B) ≥ s(A)+ s(B)− (p(B)− p(A)), we look at an optimal cover C for

A⊘B. Thus, we have s(A⊘B) = s(C) = s(C|A)+ s(C|B). Further, by the previous note

it holds |C|= p(A⊘B) = p(B) = |C|A|. By Lemma 6.4.3 we come to s(C|A)+ |C|A| ≥
s(A)+ p(A). Summing up these equations, we get s(A⊘B)+ p(A⊘B) = s(C|A)+
|C|A|+ s(C|B). Finally, we come to:

s(A⊘B) = s(C|A)+ |C|A|− p(A⊘B)+ s(C|B)

≥ s(A)+ p(A)− p(B)+ s(C|B) ≥ s(A)+ p(A)− p(B)+ s(B)

The last step holds since p(B) = |C|B| and by Remark 6.4.4.

Now we consider the case in which s(A)≤ p(B)− p(A). To show that s(A⊘B)≤ s(B)
applies, we consider optimal covers C and D for A and B. We then build a cover E for

A⊘B such that we first split as many paths of C at Steiner vertices as possible in a

way described in Remark 6.4.2. After this, all Steiner vertices of C have been removed

and we combine each of the resulting paths with a path of D. Consequently, it we get

|E|= p(A⊘B) = p(B) and thus, s(A⊘B)≤ s(E) = s(B).
To show that s(A⊘B)≥ s(B) applies, we consider an optimal cover C for A⊘B. By

the above note we know that s(C|A) = 0, otherwise, C would not be optimal. Then, by

|C|B|= p(B) and by Remark 6.4.4 it follows s(A⊘B) = s(C|B)≥ s(B).

7. Can be shown similar to the previous item.

A directed co-tree can be computed in linear time from the input directed co-graph, see

Theorem 3.3.4. Combining this with Lemma 6.3.1 and 6.4.5, we come to the following result.

6.5. COMPUTING AN OPTIMAL DIRECTED STEINER PATH COVER 123

Theorem 6.4.6. The value of a directed Steiner path cover of minimum cost for a directed

co-graph can be computed in linear time with respect to the size of the directed co-expression.

Lemma 6.4.3 allows us to minimize the following additional cost function.

Corollary 6.4.7. The value of a directed Steiner path cover C for a directed co-graph G

such that |C|+ s(C) is minimal can be computed in linear time with respect to the size of the

directed co-expression.

6.5 Computing an Optimal Directed Steiner Path Cover

A detailed exact algorithm to compute an optimal directed Steiner path cover for a directed

co-graph can be read in [GKR+22]. By algorithm DIRECTEDSTEINERPATHCOVER from

[GKR+22] and the results presented in this chapter we obtain the following result.

Theorem 6.5.1 ([GKR+22]). A directed Steiner path cover of minimum cost for a directed

co-graph can be computed in linear time with respect to the size of the directed co-expression.

6.6 Conclusion

To sum up we could show that there is a linear time solution for computing the minimum

number of paths within a directed Steiner path cover and the minimum number of Steiner

vertices in such a directed Steiner path cover in directed co-graphs. Thus, we conclude with a

linear time computation of an optimal directed Steiner path, if it exists, for directed co-graphs.

For an undirected co-graph G, we can solve the Steiner path cover problem in linear time

by the following transformation. We replace every edge {u,v} of G by two directed edges

(u,v) and (v,u) and apply our solution for directed co-graphs. This reproves our result of

[GHK+20b].

The directed Hamiltonian path problem can be solved by an XP-algorithm w.r.t. the

parameter directed clique-width [GHO13]. Since directed co-graphs have directed clique-

width at most two [GWY16] a polynomial time solution for the directed Hamiltonian path

problem follows. Such an algorithm is also given in [Gur17]. A directed Hamiltonian path

exists if and only if we have T =V (G) and p(G) = 1. Thus, our results lead to the first linear

time algorithm for the directed Hamiltonian path problem on directed co-graphs, which is a

generalization of the known results for undirected co-graphs of Lin et al. [LOP95].

In our future work we want to investigate whether these results can be carried over to

other graph classes such as chordal graphs, interval graphs, or distance-hereditary graphs.

124 CHAPTER 6. NP-HARD PROBLEMS: DIRECTED STEINER PATH COVERS

7 NP-hard Problems on Various Re-

cursive Digraph Classes: Digraph

Coloring

7.1 Introduction

The following part is taken from [GKL20]. Coloring problems are among the most famous

problems in graph theory, since they allow to model many real-life problems under a graph

theoretical formalism. Graph coloring is an assignment of labels, which we call colors, to the

objects of a graph subject to some constraints. Usually, vertices or edges are considered as

objects. Such problems have multiple applications [Bys04, HKdW97, JP04, dWELS02]. The

coloring problem on undirected graphs has been well studied, but there are not many results

for coloring problems on directed graphs.

In undirected graphs we have the well known Chromatic number problem, where no two

vertices that are adjacent get the same color. The target is to get the minimum number of

colors for coloring the whole graph. As even the problem whether a graph has a 3-coloring,

is NP-complete, finding the chromatic number of an undirected graph is an NP-hard prob-

lem. However there are many efficient solutions for the coloring problem on special graph

classes, like chordal graphs [Gol80], comparability graphs [Hoà94], and co-graphs [CLSB81].

In the coloring of digraphs we differentiate between the following types of coloring. For

the oriented chromatic number (OCN) we have the same condition as for the chromatic

number, but additionally we set a condition to the colors with respect to the directions of the

arcs in the digraph. Thus, if there is an arc from a vertex colored by 1 to a vertex colored by 2,

it is not allowed to have also an arc in the oriented graph from color 2 to color 1. The oriented

chromatic number is the minimum number of colors we need to color the oriented graph

following these conditions. The oriented chromatic number was often used for undirected

graphs, such that we look at every possible orientation of an undirected graph. Then, the max-

imum number of the optimal oriented colorings of every orientation leads us to the oriented

coloring of the undirected graph. In this sense, there are already interesting results of the

oriented coloring of special undirected graph classes. E.g., every tree has oriented chromatic

number of at most 3. Oriented coloring arises in scheduling models where incompatibilities

125

126 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

are oriented [CD06]. For several special undirected graph classes the oriented chromatic

number is also bounded e.g. for outerplanar graphs [Sop97], planar graphs [Mar13], and Halin

graphs [DS14]. There exists also an FPT-algorithm for OCN w.r.t. the parameter tree-width

of the underlying undirected graph, see [Gan09]. Further, it is shown in the same paper that

OCN is DET-hard1 for classes of oriented graphs with bounded rank-width of the underlying

undirected class. But it does also make sense to look at the oriented coloring of oriented

graph classes with the following justification. If r is a constant and not part of the input, we

call the corresponding problem OCNr, which is an NP-hard problem. Nevertheless, for r ≤ 3

we can decide OCNr in polynomial time. While the undirected problem is easy to solve on

trees, OCN4 is NP-complete on DAGs [CD06], which are the cycle free graphs in digraphs.

Thus, it is reasonable to look at the oriented chromatic number of other special oriented graph

classes which we do in this chapter.

The following part is taken from [GKR21a]. The dichromatic number (DCN) is about

acyclic coloring. This means we want to divide the digraph into color classes such that the

vertices in each color class induces an acyclic subdigraph. Acyclic colorings of digraphs

received a lot of attention several years ago [BFJ+04, Moh03, NL82] but also in recent works

[LM17, MSW19, SW20]. The dichromatic number is one of two basic concepts for the class

of perfect digraphs [AH15] and can be regarded as a natural counterpart of the well known

chromatic number for undirected graphs. If r is a constant and not part of the input we call

the corresponding problem DCNr. Even DCN2 is NP-complete [FHM03], which motivates

to consider the Dichromatic number problem on special graph classes, as well as to search

for parameterized algorithms for a solution. Up to now, only few classes of digraphs are

known for which the dichromatic number can be found in polynomial time. The set of DAGs

is obviously equal to the set of digraphs of dichromatic number 1. Further, every odd-cycle

free digraph [NL82] and every non-even digraph [MSW19] has dichromatic number at most

2. We consider the dichromatic number restricted to directed co-graphs and show a parame-

terized algorithm for solving the Dichromatic number problem w.r.t. the parameter directed

clique-width.

The upcoming part is taken from [LGK21]. While the previously mentioned problems

are considering vertex colorings, the oriented Chromatic index problem (OCI) is about arc

coloring. Within the problem we have an oriented graph G and an integer r and we have to

decide whether there is an oriented r-arc-coloring for G. If r is a constant and not part of the

input, the corresponding problem is denoted by OCIr. Even OCI4 is NP-complete [OPS08].

This persuades to examine the problem in the context of special digraph classes.

In this chapter we consider the above mentioned coloring problems on different digraph

classes, namely on msp and esp-digraphs, transitive DAGs, oriented, and directed co-graphs.

The content of this whole chapter is from [LGK21] and [GKL20], while the dichromatic

number parts as well as the parameterization in Subsection 7.6.2 are from [GKR21a]. Within

1DET is the class of decision problems that are reducible in logarithmic space to the problem of computing

the determinant of an integer valued n×n-matrix.

7.2. UNDIRECTED GRAPH COLORING 127

the latter one, we show how acyclic coloring can be parameterized my the parameter directed

clique-width. Table 7.1 provides an overview in advance.

G ∈ digraph class coloring bound computation

msp-digraphs χo(G) ≤ 7 linear time

esp-digraphs χo(G) ≤ 7 linear time

transitive DAGs χo(G) = ℓ(G)+1 linear time

DAGs χo(G) ≤ ℓ(G)+1 NP-hard

oriented co-graphs χo(G) = ℓ(G)+1 linear time

msp-digraphs χ′o(G) ≤ 7 linear time

esp-digraphs χ′o(G) ≤ 7 linear time

directed co-graphs ~χ(G) unbounded linear time

Table 7.1: Overview about the results on coloring different digraph classes given in this

chapter. Linear time means always w.r.t. number of vertices and edges in G. Notice that,

ℓ(G) is the length of the longest oriented path in G. The last column shows how much time

is needed for the calculation of the respective coloring number (χo = oriented chromatic

number, χ′o = oriented chromatic index,~χ = dichromatic number).

7.2 Undirected Graph Coloring

This section is taken from [GKL20]. Graph coloring of undirected graphs can be defined as

follows.

Definition 7.2.1 (Graph Coloring). A r-coloring of a graph G is a mapping c : V (G)→
{1, . . . ,r} such that:

• c(u) 6= c(v) for every {u,v} ∈ E(G)

The chromatic number of G, denoted by χ(G), is the smallest integer r such that G has a

r-coloring.

Thus, the graph coloring problem is equivalent to the partition into independent sets

problem, where we separate the vertices into subsets, such that no two vertices in a subset are

connected by an edge. Accordingly, vertices with the same color build an independent set.

Name: Chromatic number problem (CN)

Instance: A graph G and a positive integer r ≤ |V (G)|.

Question: Is there an r-coloring for G?

It is well known that bipartite graphs are exactly these graphs which allow a 2-coloring as

well as planar graphs are graphs that allow a 4-coloring. The problem whether graph G has

a 3-coloring is already NP-complete, such that the Chromatic number problem is NP-hard

128 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

in general. However, coloring problems on undirected graphs allow efficient solutions when

restricted to special graph classes such as chordal graphs [Gol80], comparability graphs

[Hoà94], and co-graphs [CLSB81]. On undirected co-graphs, the graph coloring problem can

be solved in linear time, see [CLSB81]. If r is a constant and not part of the input we get the

corresponding r-Chromatic Number problem.

Name: r-Chromatic number problem (CNr)

Instance: A graph G.

Question: Is there a r-coloring for G?

Even on 4-regular planar graphs CN3 is NP-complete, see [Dai80]. A graph G can colored

by a greedy algorithm. For some given ordering π of V (G), the vertices are ordered as a

sequence in which each vertex is assigned to the minimum possible value that is not forbidden

by the colors of its neighbors, see Algorithm 2. Obviously, different orders can lead to

different numbers of colors. But there is always an ordering yielding to the minimum number

of colors, which is hard to find in general.

Algorithm 2 GREEDY COLORING

Data: A graph G and an ordering π : v1 < .. . < vn of its vertices.

Result: Admitted vertex coloring c : {v1, . . . ,vn} 7→ N of G.

for (i = 1 to n) do c(vi) = ∞

end for

c(v1) = 1;

for (i = 2 to n) do c(vi) = min{N−{c(v) | v ∈ N(vi)}}
end for

For the set of perfectly orderable graphs the greedy algorithm leads to an ordering with

an optimal coloring, not only for the graph itself but also for all of its induced subgraphs.

Definition 7.2.2 (Perfectly orderable graph [Chv84]). For a graph G a linear ordering on

V (G) is perfect if a greedy coloring algorithm with that ordering optimally colors every

induced subgraph of G. A graph G is perfectly orderable if it admits a perfect order.

Theorem 7.2.3 ([Chv84]). A linear ordering π of a graph G is perfect if and only if there is no

induced P4 = ({a,b,c,d},{{a,b},{b,c},{c,d}}) in G such that π(a) < π(b), π(b) < π(c),
and π(d)< π(c).

Since they do not contain a P4 at all, co-graphs are perfectly orderable. For the coloring

of series-parallel graphs there exists the following result.

Proposition 7.2.4 ([Sey90]). Let G be some series-parallel graph. Then, it holds that χ(G)≤
3.

7.3 Oriented Coloring

Courcelle introduced oriented coloring in 1994 [Cou94]. The definition of the oriented

coloring of undirected graphs is of course easily transferable on oriented graphs. The

following part is taken from [GKL20].

7.3. ORIENTED COLORING 129

An oriented r-coloring of an oriented graph G is a partition of V (G) into r independent

sets, such that all arcs linking two of these r subsets have the same direction.

Definition 7.3.1 (Oriented vertex-coloring [Cou94]). An oriented r-vertex-coloring2 of an

oriented graph G = (V,E) is a mapping c : V →{1, . . . ,r} such that:

• c(u) 6= c(v) for every (u,v) ∈ E,

• c(u) 6= c(y) for every two arcs (u,v) ∈ E and (x,y) ∈ E with c(v) = c(x).

The oriented chromatic number of G, denoted by χo(G), is the smallest r such that there exists

an oriented r-vertex-coloring for G. Then, Vi = {v ∈V | c(v) = i}, 1≤ i≤ r, is a partition of

V , which we call color classes.

Name: Oriented chromatic number problem (OCN)

Instance: A graph G and an integer r.

Question: Is there an oriented coloring with r or less colors for G?

If r is a constant and not part of the input, the corresponding problem is denoted by OCNr,

which is an NP-hard problem. For two oriented graphs G1 = (V1,E1) and G2 = (V2,E2)
a homomorphism from G1 to G2, G1 → G2 for short, is a mapping h : V1 → V2 such that

(u,v) ∈ E1 implies (h(u),h(v)) ∈ E2. A homomorphism from G1 to G2 can be regarded as an

oriented coloring of G1 that uses the vertices of G2 as colors classes. Therefore, digraph G2 is

called a color graph of G1. So, there is an oriented r-coloring of an oriented graph G1 if and

only if there is a homomorphism from G1 to an oriented graph G2 with r vertices. That is, the

oriented chromatic number of G1 is the minimum number of vertices in an oriented graph G2

such that there is a homomorphism from G1 to G2. Obviously, it is advisable to choose G2 as

a tournament.

Observation 7.3.2. There is an oriented r-coloring of an oriented graph G1 if and only if

there is a homomorphism from G1 to a tournament G2 with r vertices. The oriented chromatic

number of G1 is the minimum number of vertices in a tournament G2 such that there is a

homomorphism from G1 to G2.

We define the sum of two color graphs H1 = (V1,E1) and H2 = (V2,E2) as H1 +H2 =
(V1∪V2,E1∪E2), which we use in some proofs later on.

An interesting property of oriented coloring is that the oriented chromatic number can

increase when combining two graphs without adding edges. So, the oriented chromatic

number of the disjoint union of two oriented graphs can grow larger than the maximum

oriented chromatic number of these graphs, as the direction between the different colors play

a role.

Example 7.3.3. Look at the
−→
C3 and the transitive tournament on 3 vertices, denoted by

−→
T3 .

When considering both digraphs on their own they both have the same oriented chromatic

2We say oriented coloring for short.

130 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

number χo(
−→
C3) = χo(

−→
T3) = 3. If we combine both graphs by uniting them without creating

any new edges, we need more colors to fulfill the conditions of oriented coloring, otherwise

the directions of the color classes collapse.

The following relation holds for oriented coloring of a digraph with respect to the oriented

coloring of its underlying undirected graph.

Observation 7.3.4. For every oriented graph G it holds that χ(und(G))≤ χo(G).

As well, we can keep an existing oriented coloring for subdigraphs.

Lemma 7.3.5. Let G be an oriented graph and H be a subdigraph of G. Then, it holds that

χo(H)≤ χo(G).

7.3.1 Oriented Coloring on MSP-digraphs

The following part is from [GKL20], where also the missing proofs of the theorems can be

read. As indicated before, the disjoint union of two msp-digraphs can be larger than the

maximum oriented chromatic number of the involved digraphs, see Example 7.3.6. The

digraphs defined by expressions X1 and X2 both have oriented chromatic number 4 but their

disjoint union leads to a digraph with oriented chromatic number 5.

Example 7.3.6. In the following two msp-expressions we assume that the × operation binds

more strongly than the ∪ operation.

X1 = v1× (v2∪ v3× v4)× v5× v6

X2 = w1× (w2∪w3× (w4∪w5×w6))×w7

In [Sop97] there is given a bound for the oriented chromatic number of undirected

series-parallel graphs. As well they have shown that this bound is tight.

Theorem 7.3.7 ([Sop97]). Let G′ be some orientation of a series-parallel graph G. Then, it

holds that χo(G
′)≤ 7.

In [PS06] this was strengthened by giving a triangle-free orientation of a series-parallel

graph of order 15 and oriented chromatic number 7. This bound can not be applied to

msp-digraphs, since the set of all
−−→
Kn,m is a subset of msp-digraphs while the underlying

graphs are even of unbounded tree-width and thus, no series-parallel graphs. Nevertheless,

for msp-digraphs we get the same sharp bound by 7.

Theorem 7.3.8 ([GKL20]). Let G be an msp-digraph. Then, it holds that χo(G)≤ 7.

Digraph G on 27 vertices defined in Example 7.3.9 satisfies χo(G) = 7, which was found

by a computer program with the following procedure. We implemented an algorithm which

takes an oriented graph G and an integer k as an input and which decides whether χo(G)≤ k.

The existence of such an msp-digraph implies that the bound given in Theorem 7.3.8 is best

possible.

7.3. ORIENTED COLORING 131

Example 7.3.9. In the following msp-expression we assume that the × operation binds more

strongly than the ∪ operation.

X = v1× (v2∪ v3× (v4∪ v5× v6))× (v7∪ (v8∪ v9× v10)× (v11∪ v12× v13))×
(v14∪ (v15∪ (v16∪ v17× v18)× (v19∪ v20× v21))× (v22∪ (v23∪ v24× v25)× v26))× v27

In order to compute the oriented chromatic number of an msp-digraph G defined by an

msp-expression X , we recursively compute the set F(X) of all triples (H,L,R) such that H

is a color graph for G, where L and R are the sets of colors of all sinks and all sources in

G with respect to the coloring by H. The number of vertex labeled, i.e., the vertices are

distinguishable from each other, oriented graphs on n vertices is 3
n(n−1)/2. By Theorem 7.3.8

we can conclude that

|F(X)| ≤ 3
7(7−1)/2 ·27 ·27 ∈ O(1)

which is independent of the size of G.

Lemma 7.3.10. 1. For every v ∈V it holds F(v) = {(({i}, /0),{i},{i}) | 0≤ i≤ 6}.

2. For every two msp-expressions X1 and X2 we obtain F(X1∪X2) from F(X1) and F(X2)
as follows. For every (H1,L1,R1) ∈ F(X1) and every (H2,L2,R2) ∈ F(X2) such that

graph H1 +H2 is oriented, we put (H1 +H2,L1∪L2,R1∪R2) into F(X1∪X2).

3. For every two msp-expressions X1 and X2 we obtain F(X1×X2) from F(X1) and F(X2)
as follows. For every (H1,L1,R1) ∈ F(X1) and every (H2,L2,R2) ∈ F(X2) such that

graph H1 +H2 together with the arcs in R1×L2 is oriented, we put ((V1∪V2,E1∪E2∪
R1×L2),L1,R2) into F(X1×X2).

Proof. 1. F(v) includes obviously all possible solutions to color every vertex on its own

with the seven given colors.

2. Let (H1,L1,R1) be any possible solution for coloring digraph(X1), which therefore is

included in F(X1), as well as a possible solution (H2,L2,R2) for coloring digraph(X2)
which is included in F(X2). Let further H1 +H2 be an oriented graph. Since the

operation ∪ creates no additional edges in digraph(X1∪X2), the vertices of digraph(X1)
can still be colored with H1 and the vertices of digraph(X2) can still be colored with

H2 such that all vertices from digraph(X1∪X2) are colored correctly. Further, all sinks

in digraph(X1) and digraph(X2) are also sinks in digraph(X1∪X2). The same holds for

the sources. For an oriented graph H1 +H2 this leads to (H1 +H2,L1∪L2,R1∪R2) ∈
F(X1∪X2).

Let (H,L,R) ∈ F(X1∪X2), then there is an induced subdigraph H1 of the color graph

H which colors digraph(X1), an induced subdigraph of digraph(X1∪X2). Since H is

oriented, H1 is oriented. Let L1 ⊆ L be the sources with vertices in digraph(X1) and

R1 ⊆ R be the sinks for vertices in digraph(X1). Then, it holds that (H1,L1,R1)∈ F(X1).
The same arguments hold for X2, such that (H2,L2,R2) ∈ F(X2).

3. Let (H1,L1,R1) be any possible solution for coloring digraph(X1), which therefore is

included in F(X1), as well as a possible solution (H2,L2,R2) for coloring X2 which

132 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

is included in F(X2). Further, let H1 +H2 together with edges from R1× L2 be an

oriented graph. Then, H = (V1∪V2,E1∪E2∪R1×L2) is an oriented coloring for X =
X1×X2. Since the sinks of digraph(X1) are connected with the sources of digraph(X2)
in digraph(X) the sources of L1 are the only sources left in digraph(X) as well as the

sinks in R2 are the only sinks left in digraph(X). This leads to (H,L1,R2) ∈ F(X).

Let (H,L,R) ∈ F(X1×X2), then there is an induced subdigraph H1 of the color graph

H which colors digraph(X1) which is an induced subdigraph of digraph(X1 × X2).
Since H is oriented, H1 is also oriented. Since all the sources of digraph(X1×X2)
are in digraph(X1) it holds that L1 = L are also sources of digraph(X1). Let R1 be the

vertices in digraph(X1) which only have out-going neighbors in digraph(X2) but not

in digraph(X1), then R1 are the sinks of digraph(X1). Thus, it holds that (H1,L1,R1) ∈
F(X1). Simultaneously, there is an induced subdigraph H2 of the color graph H which

colors digraph(X2) which is an induced subdigraph of digraph(X1×X2). Since H is

oriented, H2 is also oriented. Since all the sinks of digraph(X1×X2) are in digraph(X2)
it holds that R2 = R are also sinks of digraph(X2). Let L2 be the vertices in digraph(X2)
which only have in-coming neighbors in digraph(X1) but not in digraph(X2), then L2

are the sources of digraph(X2). Thus, it holds that (H2,L2,R2) ∈ F(X2).

This shows the statements of the lemma.

Since every possible coloring of G is part of the set F(X), where X is an msp-expression

for G, it is easy to find a minimum coloring for G.

Corollary 7.3.11 ([GKL20]). There is an oriented r-coloring for some msp-digraph G which

is given by an msp-expression X if and only if there is (H,L,R) ∈ F(X) such that color graph

H has r vertices. Therefore, it holds that χo(G) = min{|V | | ((V,E),L,R) ∈ F(X)}.

Theorem 7.3.12. For an msp-digraph G the oriented chromatic number can be computed in

linear time.

Proof. Let G be an msp-digraph on n vertices and m edges and let T be an msp-tree for

G with root r. For a vertex u of T we denote by Tu the subtree rooted at u while Xu is the

msp-expression defined by Tu.

In order to solve OCN for an msp-digraph G, we traverse the msp-tree T into bottom-up

order. For every vertex u of T we compute F(Xu) following the rules given in Lemma 7.3.10.

By Corollary 7.3.11 we can solve our problem by F(Xr) = F(X).

An msp-tree T can be computed in linear time from a minimal series-parallel digraph, see

Observation 3.6.3. Our rules given in Lemma 7.3.10 show the following running times.

• For every v ∈V set F(v) is computable in O(1) time.

• Every set F(X1∪X2) can be computed in O(1) time from F(X1) and F(X2).

• Every set F(X1×X2) can be computed in O(1) time from F(X1) and F(X2).

Since we have n leaves and n−1 inner vertices in msp-tree T , the total running time is in

O(n+m).

7.3. ORIENTED COLORING 133

As we see later in Corollary 7.3.15 for every oriented co-graph G it holds that the oriented

chromatic number of G is equal to the chromatic number of its underlying undirected graph.

This does not hold for msp-digraphs by Example 7.3.9 and the next result, which can be

shown on a similar way as the bound for msp-digraphs.

Proposition 7.3.13 ([GKL20]). For an msp-digraph G it holds that χ(und(G))≤ 3.

7.3.2 Oriented Coloring on Transitive Acyclic Digraphs

Next, we will apply the concept of perfectly orderable graphs and Theorem 7.2.3 in order to

color transitive acyclic digraphs. This part is as well taken from [GKL20].

Theorem 7.3.14. Every greedy coloring along a topological ordering of a transitive DAG G

leads to an optimal oriented coloring of G while χo(G) can be computed in linear time.

Proof. Since G is a DAG there is a topological ordering t for G. As G is transitive, it does

not contain a special orientation of the P4, namely the N graph (see Figure 3.5), as an induced

subdigraph. Theorem 7.2.3 implies that every linear ordering and thus, also t is perfect on

und(G). Let c : V (G)→{1, . . . ,k} be a coloring for und(G) obtained by the greedy Algorithm

2 for t on V (G). It remains to show that c is an oriented coloring for G.

• c(u) 6= c(v) holds for every (u,v) ∈ E(G) since c(u) 6= c(v) holds for every {u,v} ∈
E(und(G)).

• c(u) 6= c(y) for every two arcs (u,v) ∈ E(G) and (x,y) ∈ E(G) with c(v) = c(x) holds

by the following argumentation. Assume there is an arc (vi,v j) ∈ E(G) with vi < v j in

t but c(vi)> c(v j). Then, when coloring vi we would have taken c(v j) if possible, as

we always take the minimum possible color value. Since this was not possible there

must have been an other vertex vk < vi which was colored before vi with c(vk) = c(v j)
and (vk,vi) ∈ E(G). But if (vk,vi) ∈ E(G) and (vi,v j) ∈ E(G), due to transitivity it

must also hold that (vk,v j) ∈ E(G) and consequently, c(vk) = c(v j) is not possible.

Therefore, the assumption was wrong and for every arc (vi,v j) ∈ E(G) with vi < v j in

t it must hold that c(vi)< (c j).

The optimality of oriented coloring c holds since the lower bound of Observation 7.3.4 is

achieved.

The proof of Theorem 7.3.14 leads also to an optimal oriented coloring. In order to state

the next result, let ω(H) be the number of vertices in a largest clique in the (undirected) graph

H.

Corollary 7.3.15 ([GKL20]). Let G be a transitive DAG. Then, it holds that χo(G) =
χ(und(G)) = ω(und(G)) and all values can be computed in linear time.

For some oriented graph G we denote by ℓ(G) the length of a longest oriented path in G.

Proposition 7.3.16 ([GKL20]). Let G be a transitive acyclic digraph. Then, it holds that

χo(G) = ℓ(G)+1.

134 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

Next, we consider oriented colorings of oriented graphs with bounded vertex degree. For

every oriented graph its oriented chromatic number can be bounded (exponentially) by its

maximum degree ∆ according to [KSZ97]. For small values ∆≤ 7 there are better bounds in

[Duf19] and [DOPS20]. By Proposition 7.3.16 and the observation that the first vertex of a

longest path within a transitive digraph G has a minimum outdegree of ℓ(G), it follows that

the oriented chromatic number of G can be estimated as follows.

Corollary 7.3.17 ([GKL20]). Let G be a transitive acyclic digraph. Then, it holds that

χo(G)≤ ∆(G)+1.

The next proposition can be proved over the coloring of the transitive closure of a digraph.

Proposition 7.3.18 ([GKL20]). Let G be an acyclic digraph. Then, it holds that χo(G) ≤
ℓ(G)+1.

7.3.3 Oriented Coloring on Oriented Co-graphs

We continue with the following results about the oriented coloring of oriented co-graphs

which can be found in [GKR19c].

Proposition 7.3.19 ([GKR19c]). For two vertex-disjoint oriented co-graphs G1 and G2, the

following equations hold.

1. χo(v) = 1

2. χo(G1⊕G2) = max(χo(G1),χo(G2))

3. χo(G1⊘G2) = χo(G1)+χo(G2)

Theorem 7.3.20 ([GKR19c]). For an oriented co-graph G, an optimal oriented coloring and

χo(G) can be computed in linear time.

The coloring algorithms in [GKR19c] are based on a dynamic programming along the

di-co-tree of a given oriented co-graph. Since every oriented co-graph is transitive and acyclic,

Theorem 7.3.14 leads to the next result, which re-proves Theorem 7.3.20.

Corollary 7.3.21. For an oriented co-graph G every greedy coloring along a topological

ordering leads to an optimal oriented coloring and χo(G) can be computed in linear time.

Note that, Theorem 7.3.14 is more general than Corollary 7.3.21 since it does not exclude

N which is a forbidden induced subdigraph for oriented co-graphs. With Theorem 3.3.10, it

holds that

OC = Free{
←→
P2 ,
−→
P3 ,
−→
C3,N} ⊆ Free{

←→
P2 ,
−→
P3 ,
−→
C3}

and Free{
←→
P2 ,
−→
P3 ,
−→
C3} is equivalent to the set of all acyclic transitive digraphs. Since every

oriented co-graph is transitive and acyclic, Corollary 7.3.17 leads to the following bound.

Corollary 7.3.22. For an oriented co-graph G it holds that χo(G)≤ ∆(G)+1.

There are classes of oriented co-graphs, e.g., the class of all
−−→
K1,n, for which the oriented

chromatic number is even bounded by a constant and thus, is smaller than the shown bound.

Considering transitive tournaments we conclude that the bound given in Corollary 7.3.22 is

best possible.

136 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

Proof. We show for each operation that the stated formulas hold.

1. Set F((u,v)) includes obviously all possible solutions to color the end vertices of every

arc on its own with the 7 given colors.

2. Set F(X1) includes all possible solutions for coloring X1, just as F(X2) for X2. In

particular we have solutions included, that are equal but a permutation of the colors.

Since the sources and sinks are each identified with each other, we only keep solutions

where ℓ1 = ℓ2 and r1 = r2. In this step it is essential that we kept all possible solutions

before, even if they are just permutations of the different colors. H1 +H2 is oriented

and has by construction at most 7 vertices. Since in X1 ∪X2 there are no additional

edges compared to E1∪E2, every vertex can get the same color as in the individual

solutions, such that all vertices are legally colored. So (H1 +H2, ℓ1,r1) is a possible

solution to color and thus (H1 +H2, ℓ1,r1) ∈ F(X1∪X2).

Let (H, ℓ,r) ∈ F(X1∪X2), then we can take an induced subdigraph H1 which colors

all the vertices of digraph(X1) as well as H2 which colors all the vertices of H2. Let

ℓ1 = ℓ be the color of the source in digraph(X1) and r1 = r the color of the sink in

digraph(X2). It holds that (H1, ℓ1,r1) ∈ F(X1). The same arguments hold for X2 such

that (H2, ℓ2,r2) ∈ F(X2).

3. Set F(X1) includes all possible solutions for coloring X1, just as F(X2) for X2. In

particular we have solutions included, that are equal but a permutation of the colors.

Since the source and the sink are identified with each other, we only keep solutions

where r1 = ℓ2. In this step it is essential that we kept all possible solutions before,

even if they are just permutations of the different colors. H1 +H2 is oriented and has

by construction at most 7 vertices. In X1×X2 there no additional edges compared to

E1∪E2, every vertex can get the same color as in the individual solutions, such that

all vertices are legally colored. So (H1 +H2, ℓ1,r2) is a possible solution and thus,

(H1 +H2, ℓ1,r2) ∈ F(X1×X2).

Let (H, ℓ,r) ∈ F(X1×X2), then we can take an induced subdigraph H1 which colors all

the vertices of digraph(X1) as well as H2 which colors all the vertices of H2. Let ℓ1 = ℓ
be the color of the source in digraph(X1) and r1 the color of the sink in digraph(X2). It

holds that (H1, ℓ1,r1) ∈ F(X1). The same arguments hold for X2, if ℓ2 is the color of

the source of digraph(X1) and r1 = r is the color of the sink of digraph(X2), such that

(H2, ℓ2,r2) ∈ F(X2).

This shows the statements of the lemma.

The optimal solution for digraph G given by some esp-expression X is always included in

F(X) since all possible subsolutions are maintained in the process and not only the optimal

solutions. We can show this shortly by contradiction. Assumed there exists an optimal

solution (H, ℓ,r) for X1×X2, but (H, ℓ,r) 6∈ F(X1×X2) such that (H, ℓ,r) was not taken into

the solution. Thus, for either X1 or X2 (which we call Xi in the following), the solution of

coloring the vertices with color graph H ′, which is an induced subdigraph of H and which

only contains the colors we need for coloring Xi, was not part of the solution F(X). But

7.4. G-ORIENTED R-COLORING 137

since there are all the possible solutions in F(X) and not only minimal solutions, this is a

contradiction to our procedure. The same holds for the parallel composition X1∪X2. Thus,

we find a minimal coloring for G.

Corollary 7.3.26. There is an oriented vertex r-coloring for some esp-digraph G which is

given by some esp-expression X if and only if there is some (H, ℓ,r) ∈ F(X) such that color

graph H has r vertices. Therefore, χo(G) = min{|V | | ((V,E), ℓ,r) ∈ F(X)}.

Theorem 7.3.27. Let G be an esp-digraph. Then, the oriented chromatic number of G can be

computed in linear time.

Proof. Let G = (V,E) be an esp-digraph with n = |V | vertices and m = |E| edges and let T

be an esp-tree for G with root r. For a vertex u of T we denote by Tu the subtree rooted at u

and by Xu the esp-expression defined by Tu.

For computing the oriented chromatic number for some esp-digraph G, we traverse esp-tree

T in bottom-up order. For every vertex u of T we can compute F(Xu) by following the rules

given in Lemma 7.3.25. By Corollary 7.3.26 we can solve our problem using F(Xr) = F(X).
An esp-tree T can be computed in O(n+m) time from G, see [Val78]. By Lemma 7.3.25 we

obtain the following running times.

• For every arc (u,v) ∈ E set F((u,v)) is computable in O(1) time.

• For every two esp-expressions X1 and X2 set F(X1∪X2) can be computed in O(1) time

from F(X1) and F(X2).

• For every two esp-expressions X1 and X2 set F(X1×X2) can be computed in O(1) time

from F(X1) and F(X2).

Since T consists of n leaves and n− 1 inner vertices, the overall running time is in O(n+
m).

7.4 g-oriented r-coloring

In [GKL21b] the concept of oriented coloring excluding homomorphisms to digraphs with

short cycles is introduced. A g-oriented r-coloring of an oriented graph G is a homomorphism

from G to some digraph H on r vertices of girth at least g+ 1. The g-oriented chromatic

number of G is the smallest integer r such that G allows a g-oriented r-coloring. It holds

that for every msp-digraph the g-oriented chromatic number is at most 2g+1 − 1. This

bound together with the recursive structure of msp-digraphs lead to a linear time solution

for computing the g-oriented chromatic number of msp-digraphs. This reproves the already

known result, that every msp-digraph has oriented chromatic number at most 7. A well known

concept in graph theory is the concept of graph powers, see [BJG18] and [BLS99]. A k-power

graph Gk of a digraph G is a digraph with the same vertex set as G and an arc (u,v) is in Gk if

and only if u 6= v and there exists a directed path from u to v in G of length at most k. Thus,

G1 is G. As well, k-power digraphs of msp-digraphs have oriented chromatic number at most

22k+1−1. More about this can be found in [GKL21b].

138 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

7.5 Oriented Arc-coloring

While the previous sections deal with vertex-coloring, we continue now with arc-coloring.

Therefore, we introduce the oriented chromatic index problem and show bounds for special

graph classes. The content from this whole arc-coloring section is taken from [LGK21].

Definition 7.5.1 (Oriented arc-coloring [OPS08]). An oriented r-arc-coloring of an oriented

graph G = (V,E) is a mapping c : E→{1, . . . ,r} such that:

• c((u,v)) 6= c((v,w)) for every two arcs (u,v) ∈ E and (v,w) ∈ E.

• c((u,v)) 6= c((y,z)) for every four arcs (u,v) ∈ E, (v,w) ∈ E, (x,y) ∈ E, and (y,z) ∈ E,

with c((v,w)) = c((x,y)).

The oriented chromatic index of G, denoted with χ′o(G), is the smallest r such that G has an

oriented r-arc-coloring. Then, Ei = {e ∈ E | c(e) = i}, 1≤ i≤ r, is a partition of E which we

call again color classes.

There is an oriented r-arc-coloring of an oriented graph G if and only if there is a

homomorphism from line digraph LD(G) to some oriented graph H on r vertices. Then, the

oriented chromatic index of G is the minimum number of vertices in an oriented graph H

such that there is a homomorphism from line digraph LD(G) to H. The oriented chromatic

index problem can be defined as follows.

Name: Oriented chromatic index problem (OCI)

Instance: An oriented graph G and a positive integer r ≤ |E(G)|.

Question: Is there an oriented r-arc-coloring for G?

If r is a constant, i.e., not part of the input, the corresponding problem is denoted by

OCIr. If r ≤ 3, then we can decide OCIr in polynomial time, but even OCI4 is NP-complete

[OPS08]. The hardness of OCI4 motivates to consider the oriented chromatic index of special

graph classes. The definition of oriented arc-coloring was often used for undirected graphs,

where the maximum value χ′o(G
′) of all possible orientations G′ of a graph G is considered.

There are already bounds on the oriented chromatic index for special graph classes, e.g. for

planar graphs [OPS08] and outerplanar graphs [PS06].

Observation 7.5.2 ([OPS08]). Let G be an oriented graph. Then, it holds that χ′o(G) =
χo(LD(G)).

Observation 7.5.3 ([OPS08]). Let G be an oriented graph. Then, it holds that χ′o(G) ≤
χo(G).

One can find an equivalent characterizations for OCI using binary integer programs.

Remark 7.5.4. To formulate OCI for some oriented graph G= (V,E) with n= |V | and m= |E|
as a binary integer program, we introduce a binary variable yk ∈ {0,1}, k ∈ {1, . . . ,n}, such

that yk = 1 if and only if color k is used.3 Further, we use m ·n≤ n3 variables xi, j,k ∈ {0,1},

3By Observation 7.5.3 we need at most n colors.

7.5. ORIENTED ARC-COLORING 139

i, j,k ∈ {1, . . . ,n}, such that xi, j,k = 1 if and only if edge (vi,v j) receives color k. The main

idea is to ensure the two conditions of Definition 7.5.1 within conditions (7.3) and (7.5).

W.l.o.g. we assume that E has at least two arcs belonging to a directed path of length two.

Minimize
n

∑
k=1

yk (7.1)

subject to

n

∑
k=1

xi, j,k = 1 for every (vi,v j) ∈ E (7.2)

xi0,i1,k + xi1,i2,k ≤ yk for every (vi0 ,vi1),(vi1 ,vi2) ∈ E, k ∈ {1, . . . ,n} (7.3)
n∨

k=1

xi1,i2,k∧ xi3,i4,k ≤ 1−
n∨

k=1

xi0,i1,k∧ xi4,i5,k (7.4)

for every (vi0 ,vi1),(vi1 ,vi2),(vi3 ,vi4),(vi4 ,vi5) ∈ E (7.5)

yk ∈ {0,1} for every k ∈ {1, . . . ,n} (7.6)

xi, j,k ∈ {0,1} for every i, j,k ∈ {1, . . . ,n} (7.7)

Equations (7.5) are not in propositional logic. In order to reformulate them for binary

integer programming, one can use the results of [Gur14].

7.5.1 Oriented Arc-coloring of ESP-digraphs

This subsection is taken from [LGK21]. For the chromatic index of orientations of undirected

series-parallel graphs Observation 7.5.3 and Theorem 7.3.7 lead to the following bound.

Corollary 7.5.5 ([PS06]). Let G′ be some orientation of a series-parallel graph G. Then, it

holds that χ′o(G
′)≤ 7.

They even showed that the bound is tight (even for an orientation of an outerplanar graph).

Since every esp-digraph is an orientation of a series-parallel graph by Corollary 7.5.5 we have

the following bound.

Corollary 7.5.6. Let G be an esp-digraph. Then, it holds that χ′o(G)≤ 7.

Alternatively, the last result can be obtained from Theorem 7.3.8, Lemma 3.6.15 and

Observation 7.5.2.

Remark 7.5.7. We can also bound the oriented chromatic index of an esp-digraph G using the

corresponding line digraph LD(G) which is a vertex series-parallel digraph by Lemma 3.6.15.

χ′o(G) = χo(LD(G)) Observation7.5.2
≤ 7 Lemma 3.6.15 and Theorem 7.3.8

The results of [PS06] even show that 7 is a tight upper bound for the oriented chromatic

index of every orientation of series-parallel graphs (even for an orientation of an outerplanar

graph). In order to show that this bound is also tight for the subclass of esp-digraphs we give

the next example.

7.6. ACYCLIC COLORING 141

7.6 Acyclic Coloring

The content from this whole section is from [GKR20a] and is also partly published in

[GKR21a]. Coming from the coloring of oriented graphs, we now continue with the coloring

of digraphs, such that we include bidirectional arcs. The following approach for coloring

digraphs is given in [NL82]. A set V ′ of vertices of a digraph G is called acyclic if G[V ′] is

acyclic.

Definition 7.6.1 (Acyclic graph coloring [NL82]). An acyclic r-coloring of a digraph G is

a mapping c : V (G)→{1, . . . ,r}, such that the color classes c−1(i) for 1≤ i≤ r are acyclic.

The dichromatic number of G, denoted by~χ(G), is the smallest r, such that G has an acyclic

r-coloring.

There are several works about acyclic graph coloring [BFJ+04, Moh03, NL82] including

the recent works [LM17, MSW19, SW20]. The Dichromatic number problem can be defined

as follows.

Name: Dichromatic number problem (DCN)

Instance: A digraph G and a positive integer r ≤ |V (G)|.

Question: Is there an acyclic r-coloring for G?

If r is a constant and not part of the input, the corresponding problem is denoted by

r-Dichromatic number problem (DCNr). Even DCN2 is NP-complete [FHM03].

The following observations support that the dichromatic number can be regarded as a

natural counterpart of the well known chromatic number χ(G) for undirected graphs G.

Observation 7.6.2. For every symmetric digraph G it holds that~χ(G) = χ(und(G)).

Observation 7.6.3. For every digraph G it holds that~χ(G)≤ χ(und(G)).

Observation 7.6.4. Let G be a digraph and H be a subdigraph of G, then~χ(H)≤~χ(G).

7.6.1 Acyclic Coloring on Directed Co-graphs

As recently mentioned in [SW19], only few classes of digraphs for which the dichromatic

number can be found in polynomial time are known. The set of DAGs is obviously equal to

the set of digraphs of dichromatic number 1. Every odd-cycle free digraph [NL82] and every

non-even digraph [MSW19] has dichromatic number at most 2. Thus, for DAGs, odd-cycle

free digraphs, and non-even digraphs the dichromatic number can be computed in linear time.

Furthermore, for every perfect digraph the dichromatic number can be found in polynomial

time [AH15]. We next show how to find an optimal acyclic coloring for directed co-graphs,

which are defined below, in linear time. Given the ex-di-co-tree, an optimal acyclic coloring

can as well be computed in linear time on extended directed co-graphs.

Lemma 7.6.5. Let G1 and G2 be two vertex-disjoint directed graphs. Then, the following

equations hold:

142 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

1. ~χ(•) = 1

2. ~χ(G1⊕G2) =~χ(G1⊘G2) =~χ(G1⊖G2) = max(~χ(G1),~χ(G2))

3. ~χ(G1⊗G2) =~χ(G1)+~χ(G2)

Proof. 1. ~χ(•) = 1 is obviously clear.

2. ~χ(G1⊕G2) ≥ max(~χ(G1),~χ(G2)) Since the digraphs G1 and G2 are induced subdi-

graphs of digraph G1⊕G2, both values~χ(G1) and~χ(G2) lead to a lower bound for the

number of necessary colors of the combined digraph by Observation 7.6.4.

~χ(G1⊕G2) ≤ max(~χ(G1),~χ(G2)) Since the disjoint union operation does not create

new arcs, we can combine the color classes of G1 and G2.

The results for the order composition and directed union follow by the same arguments.

3. ~χ(G1⊗G2)≥~χ(G1)+~χ(G2)

Since both digraphs G1 and G2 are induced subdigraphs of digraph G1⊗G2, both

values~χ(G1) and~χ(G2) lead to a lower bound for the number of necessary colors of

the combined digraph by Observation 7.6.4. Further, the series composition implies

that every vertex in G1 is on a cycle of length two with every vertex of G2. Thus, no

vertex in G1 can be colored in the same way as a vertex in G2. So,~χ(G1)+~χ(G2) leads

to a lower bound for the number of necessary colors of the combined digraph.

~χ(G1⊗G2)≤~χ(G1)+~χ(G2)

For 1 ≤ i ≤ 2 let Gi = (Vi,Ei) and ci : Vi → {1, . . . ,~χ(Gi)} a coloring for Gi. For

G1⊗G2 = (V,E) we define a mapping ci : Vi→{1, . . . ,~χ(G1)+~χ(G2)} as follows.

c(v) =

{

c1(v) if v ∈V1

c2(v)+~χ(G1) if v ∈V2

The mapping c satisfies the definition of an acyclic coloring, because every color class

c−1(j), j ∈ {1, . . . ,~χ(G1)+~χ(G2)} is a subset of V1 or of V2, such that c−1(j) induces

an acyclic digraph in G1 or G2 by assumption. Since the series operation does not insert

any further arcs between two vertices of G1 and G2, vertex set c−1(j) induces also an

acyclic digraph in G.

This shows the statements of the lemma.

With Lemma 7.6.5 we immediately get the following Theorem.

Theorem 7.6.6. Let G be a directed co-graph. Then, an optimal acyclic coloring for G and

~χ(G) can be computed in linear time.

This holds as well for extended directed co-graphs if the ex-di-co-tree is given. The clique

number ωd(G) of a digraph G is the number of vertices in a largest complete bioriented

subdigraph of G and the clique number ω(G) of a (-n undirected) graph G is the number of

vertices in a largest complete subgraph of G. Since the results of Lemma 7.6.5 also hold for

ωd instead of~χ we obtain the following result.

7.6. ACYCLIC COLORING 143

Proposition 7.6.7. Let G be an extended directed co-graph. Then, it holds that

~χ(G) = χ(und(sym(G))) = ω(und(sym(G))) = ωd(G)

and all values can be computed in linear time.

7.6.2 Acyclic Coloring Parameterized by Directed Clique-width

The Dichromatic number problem remains hard even for inputs of bounded directed feed-

back vertex set size [MSW19]. This result implies that there are no XP-algorithms for the

Dichromatic number problem parameterized by directed width parameters such as directed

path-width, directed tree-width, DAG-width or Kelly-width. The first positive result con-

cerning structural parameterizations of the Dichromatic number problem is the existence of

an FPT-algorithm for the Dichromatic number problem parameterized by directed modular

width [SW19].

We show a polynomial-time algorithm for the Dichromatic number problem on digraphs

of constant directed clique-width. Therefore, we consider a directed clique-width expression

X of the input digraph G of directed clique-width k. For each node t of the corresponding

rooted expression-tree T we use label-based reachability information about the subgraph Gt

of the subtree rooted at t. For every partition of the vertex set of Gt into acyclic sets V1, . . . ,Vs

we compute the multi set 〈reach(V1), . . . , reach(Vs)〉, where reach(Vi), 1≤ i≤ s, is the set of

all label pairs (a,b) such that the subgraph of Gt induced by Vi contains a vertex labeled by

b, which is reachable by a vertex labeled by a. By using bottom-up dynamic programming

along expression-tree T , we obtain an algorithm for the Dichromatic number problem of

running time n2O(k2)
where n denotes the number of vertices of the input digraph. Since any

algorithm with running time in n2o(k)
would disprove the Exponential Time Hypothesis (ETH),

the exponential dependence on k in the degree of the polynomial cannot be avoided, unless

ETH fails.

From a parameterized point of view, the algorithm we present shows that the Dichromatic

number problem is in XP when parameterized by directed clique-width. Further, we show that

the Dichromatic number problem is W[1]-hard on symmetric digraphs when parameterized

by directed clique-width. Inferring from this, there is no FPT-algorithm for the Dichromatic

number problem parameterized by directed clique-width under reasonable assumptions.

The best parameterized complexity, which can be achieved, is given by an XP-algorithm.

Furthermore, we apply definability within monadic second order logic (MSO1) in order

to show that Dichromatic number problem is in FPT when parameterized by the directed

clique-width and r, which implies that for every integer r it holds that DCNr is in FPT when

parameterized by directed clique-width.

Since the directed clique-width of a digraph is at most its directed modular width [SW20],

we reprove the existence of an XP-algorithm for DCN and an FPT-algorithm for DCNr

parameterized by directed modular width [SW19]. On the other hand, there exist several

classes of digraphs of bounded directed clique-width and unbounded directed modular width,

which implies that directed clique-width is the more powerful parameter and thus, the results

of [SW19] does not imply any parameterized algorithm for directed clique-width.

144 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

In Table 7.2 we summarize the known results for DCN and DCNr parameterized by width

parameters.

parameter DCN DCNr

directed modular width FPT [SW19] FPT [SW19]

directed clique-width W[1]-hard Corollary 7.6.10 FPT Corollary 7.6.20

XP Corollary 7.6.17

directed clique-width + r FPT Theorem 7.6.19 ///

directed tree-width 6∈ XP [MSW19] 6∈ XP [MSW19]

directed path-width 6∈ XP [MSW19] 6∈ XP [MSW19]

DAG-width 6∈ XP [MSW19] 6∈ XP [MSW19]

Kelly-width 6∈ XP [MSW19] 6∈ XP [MSW19]

clique-width of und(G) 6∈ FPT by Corollary 7.6.10 open

Table 7.2: Complexity of DCN and DCNr parameterized by width parameters. We assume

that P 6= NP. The ”///” entries indicate that by taking r out of the instance the considered

parameter makes no sense.

The first positive result concerning structural parameterizations of DCN was recently

given in [SW19] using the directed modular width (dmw).

Theorem 7.6.8 ([SW19]). The Dichromatic number problem is in FPT when parameterized

by directed modular width.

By [GHK+14], directed clique-width performs much better than directed path-width,

directed tree-width, DAG-width, and Kelly-width from the parameterized complexity point of

view. Hence, we consider the parameterized complexity of DCN parameterized by directed

clique-width.

Directed clique-width is not comparable to the directed variants of tree-width mentioned

above, which can be observed by the set of all complete biorientations of cliques and the set

of all acyclic orientations of grids, see Figure 2.6 for an example. The relation of directed

clique-width and directed modular width [SW20] is as follows.

Lemma 7.6.9 ([SW20]). For every digraph G it holds that d-cw(G)≤ dmw(G).

On the other hand, there exist several classes of digraphs of bounded directed clique-width

and unbounded directed modular width, e.g. even the set of all directed paths {
−→
Pn | n≥ 1},

the set of all directed cycles {
−→
Cn | n≥ 1}, and the set of all minimal series-parallel digraphs

[VTL82]. Thus, the result of [SW19] does not imply any XP-algorithm or FPT-algorithm for

directed clique-width.

Corollary 7.6.10. The Dichromatic number problem is W[1]-hard on symmetric digraphs

and thus, on all digraphs when parameterized by directed clique-width.

Thus, under reasonable assumptions there is no FPT-algorithm for the Dichromatic

number problem parameterized by directed clique-width and an XP-algorithm is the best that

7.6. ACYCLIC COLORING 145

can be achieved. Next, we introduce such an XP-algorithm. The results are, like the rest of

this section, from [GKR21a].

Let G = (V,E) be a digraph which is given by some directed clique-width k-expression X .

For some vertex set V ′ ⊆V , we define reach(V ′) as the set of all pairs (a,b) such that there is

a vertex u ∈V ′ labeled by a and there is a vertex v ∈V ′ labeled by b and v is reachable from u

in G[V ′]. In the following we use a slightly different notation for the creation of a new vertex

v with label a for a directed clique-width expression: We denote this by a(v).

Within a construction of a digraph by directed clique-width operations only the edge

insertion operation can change the reachability between the present vertices. Next, we show

which acyclic sets remain acyclic when performing an edge insertion operation and how the

reachability information of these sets have to be updated due to the edge insertion operation.

Lemma 7.6.11. Let G = (V,E) be a vertex labeled digraph defined by some directed clique-

width k-expression X, a 6= b, a,b ∈ {1, . . . ,k}, and V ′ ⊆V be an acyclic set in G. Then, vertex

set V ′ remains acyclic in digraph(αa,b(X)) if and only if (b,a) 6∈ reach(V ′).

Proof. If (b,a) ∈ reach(V ′), then we know that in digraph(X) there is a vertex y labeled by

a which is reachable by a vertex x labeled by b. That is, in digraph(X) there is a directed

path P from x to y. The edge insertion αa,b leads to the arc (y,x) which together with path

P brings us to a cycle in digraph(αa,b(X)). If (b,a) 6∈ reach(V ′) and V ′ ⊆ V is an acyclic

set in digraph(X), then there is a topological ordering of digraph(X)[V ′] such that every

vertex labeled by a is before every vertex labeled by b in the ordering. The same ordering

is a topological ordering for digraph(αa,b(X))[V ′] which implies that V ′ remains acyclic for

digraph(αa,b(X)).

Lemma 7.6.12. Let G = (V,E) be a vertex labeled digraph defined by some directed

clique-width k-expression X, a 6= b, a,b ∈ {1, . . . ,k}, V ′ ⊆ V be an acyclic set in G, and

(b,a) 6∈ reach(V ′). Then, reach(V ′) for digraph(αa,b(X)) can be obtained from reach(V ′) for

digraph(X) as follows:

• For every pair (x,a)∈ reach(V ′) and every pair (b,y)∈ reach(V ′), we extend reach(V ′)
by (x,y).

Proof. Let R1 be the set reach(V ′) for digraph(X), R2 be the set reach(V ′) for digraph(αa,b(X)),
and R be the set of pairs constructed in the lemma starting with reach(V ′) for digraph(X).
Then, it holds R1 ⊆ R. Furthermore, the rule given in the lemma obviously puts feasible pairs

into reach(V ′) which implies R ⊆ R2. It remains to show R2 ⊆ R. Let (c,d) ∈ R2 then, if

(c,d) ∈ R1 then also (c,d) ∈ R as mentioned above. Thus, let (c,d) 6∈ R1, which implies that

there is a vertex u ∈V ′ labeled by c and a vertex v ∈V ′ labeled by d and v is reachable from

u in digraph(αa,b(X)). Since digraph(X) is a spanning subdigraph of digraph(αa,b(X)) and

the labels of the vertices are not changed by the performed edge insertion operation, there

is a non-empty set Vu ⊆V ′ of vertices labeled by c and there is a non-empty set Vv ⊆V ′ of

vertices labeled by d and no vertex of Vv is reachable from a vertex of Vu in digraph(X). By

the definition of the edge insertion operation we know that in digraph(X) there is a vertex u′

labeled by a and a vertex V ′ labeled by b such that u′ is reachable from u and v is reachable

146 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

from v′. Thus, it holds that (c,a) ∈ R1 and (b,d) ∈ R1. Our rule given in the statement leads

to (c,d) ∈ R.

We use the notion of a multi set, i.e., a set that may have several equal elements. For

a multi set with elements x1, . . . ,xn we write M = 〈x1, . . . ,xn〉. There is no order on the

elements of M . The number how often an element x occurs in M is denoted by ψ(M ,x).
Two multi sets M1 and M2 are equal if for each element x ∈M1∪M2, ψ(M1,x) = ψ(M2,x),
otherwise they are called different. The empty multi set is denoted by 〈〉.

For a disjoint partition of the vertex set V into acyclic sets V1, . . . ,Vs, let M be the multi

set 〈reach(V1), . . . , reach(Vs)〉. Let F(X) be the set of all mutually different multi sets M for

all disjoint partitions of vertex set V into acyclic sets. Every multi set in F(X) consists of

nonempty subsets of {1, . . . ,k}×{1, . . . ,k}. Each subset can occur 0 times and not more than

|V | times. Thus, F(X) has at most

(|V |+1)2k2
−1 ∈ |V |2

O(k2)

mutually different multi sets and is polynomially bounded in the size of X .

In order to give a dynamic programming solution along the recursive structure of a

directed clique-width k-expression, we show how to compute F(a(v)), F(X⊕Y) from F(X)
and F(Y), as well as F(αa,b(X)) and F(ρa→b(X)) from F(X).

Lemma 7.6.13. Let a,b ∈ {1, . . . ,k}, a 6= b.

1. F(a(v)) = {〈{(a,a)}〉}.

2. Starting with set D = {〈〉}×F(X)×F(Y) extend D by all triples that can be obtained

from some triple (M ,M ′,M ′′) ∈D by removing a set L′ from M ′ or a set L′′ from M ′′

and inserting it into M , or by removing both sets and inserting L′∪L′′ into M . Finally,

we choose F(X⊕Y) = {M | (M ,〈〉,〈〉) ∈ D}.

3. F(αa,b(X)) can be obtained from F(X) as follows. First, we remove from F(X) all

multi sets 〈L1, . . . ,Ls〉 such that (b,a) ∈ Lt for some 1≤ t ≤ s. Afterwards, we modify

every remaining multi set 〈L1, . . . ,Ls〉 in F(X) as follows:

• For every Li which contains a pair (x,a) and a pair (b,y), we extend Li by (x,y).

4. F(ρa→b(X)) = {〈ρa→b(L1), . . . ,ρa→b(Ls)〉 | 〈L1, . . . ,Ls〉 ∈ F(X)},
where we use ρa→b(Li) = {(ρa→b(c),ρa→b(d)) | (c,d) ∈ Li} and ρa→b(c) = b, if c = a,

and ρa→b(c) = c, if c 6= a.

Proof. 1. In digraph(a(v)) there is exactly one vertex v labeled by a and thus, the only

partition of V into one acyclic set of the vertex set of digraph(a(v)) is {v}. The

corresponding multi set is 〈reach({v})〉= 〈{(a,a)}〉.

2. F(X⊕Y)⊆ {M | (M ,〈〉,〈〉) ∈ D}:
Every acyclic set of digraph(X⊕Y) is either an acyclic set in digraph(X) or an acyclic

set in digraph(Y) or is the union of two acyclic sets from digraph(X) and digraph(Y).

7.6. ACYCLIC COLORING 147

1
v

2
v 3

v
4

v

v
5v

6
v

7

1 2

412

4

3

Figure 7.3: Digraph from Example 7.6.15. The dashed lines indicate a partition of the vertex

set into three acyclic sets. The small numbers at the vertices represent their labels.

All three possibilities are considered when computing {M | (M ,〈〉,〈〉) ∈ D} from

F(X) and F(Y).
F(X⊕Y)⊇ {M | (M ,〈〉,〈〉) ∈ D}:
Since the operation ⊕ does not create any new edges, the acyclic sets from digraph(X)
and from digraph(Y) as well as the union of acyclic sets from digraph(X) and digraph(Y)
remain acyclic sets for digraph(X⊕Y).

3. By Lemma 7.6.11 we have to remove all multi sets 〈L1, . . . ,Ls〉 from F(X) for which

holds that (b,a)∈ Lt for some 1≤ t ≤ s. The remaining multi sets are updated correctly

by Lemma 7.6.12.

4. In digraph(X) there is a vertex labeled by d which is reachable from a vertex labeled

with c if and only if in digraph(ρa→b(X)) there is a vertex labeled by ρa→b(d) which is

reachable from a vertex labeled with ρa→b(c).
This shows the statement of the lemma.

Since every possible coloring of G is realized in the set F(X), where X is a directed

clique-width k-expression for G, it is easy to find a minimum coloring for G.

Corollary 7.6.14. Let G = (V,E) be a digraph given by a directed clique-width k-expression

X. There is a partition of V into r acyclic sets if and only if there is some M ∈ F(X) consisting

of r sets of label pairs.

Example 7.6.15. We consider the digraph G = (V,E) in Figure 7.3. The given partition into

three acyclic sets V = V1∪V2∪V3, where V1 = {v1,v6,v7}, V2 = {v2} and V3 = {v3,v4,v5}
leads to the multi set M = 〈reach(V1), reach(V2), reach(V3)〉, where reach(V1) = reach(V3) =
{(1,1),(2,2),(4,4),(1,2),(2,4),(1,4)} and reach(V2) = {(3,3)}.

Theorem 7.6.16. The Dichromatic number problem on digraphs on n vertices given by a

directed clique-width k-expression can be solved in n2O(k2)
time.

Proof. Let G = (V,E) be a digraph of directed clique-width at most k and T be a k-expression-

tree for G with root w. For some vertex u of T we denote by Tu the subtree rooted at u and Xu

148 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

the k-expression defined by Tu. In order to solve the Dichromatic number problem for G, we

traverse k-expression-tree T into bottom-up order. For every vertex u of T we compute F(Xu)
following the rules given in Lemma 7.6.13. By Corollary 7.6.14 we can solve our problem by

F(Xw) = F(X).

Our rules given Lemma 7.6.13 show the following running times. For every v ∈V and

a ∈ {1, . . . ,k} set F(a(v)) can be computed in O(1). The set F(X ⊕Y) can be computed in

time (n+1)3(2k2
−1) ∈ n2O(k2)

from F(X) and F(Y). The sets F(αa,b(X)) and F(ρa→b(X)) can

be computed in time (n+1)2k2
−1 ∈ n2O(k2)

from F(X).

In order to bound the number and order of operations within directed clique-width

expressions, we can use the normal form for clique-width expressions defined in [EGW03].

The proof of Theorem 4.2 in [EGW03] shows that also for directed clique-width expression

X , we can assume that for every subexpression, after a disjoint union operation first there

is a sequence of edge insertion operations followed by a sequence of relabeling operations,

i.e., between two disjoint union operations there is no relabeling before an edge insertion.

Since there are n leaves in T , we have n−1 disjoint union operations, at most (n−1) · (k−1)
relabeling operations, and at most (n−1) · k(k−1) edge insertion operations. This leads to

an overall running time of n2O(k2)
.

The running time shown in Theorem 7.6.16 leads to the following result.

Corollary 7.6.17. The Dichromatic number problem is in XP when parameterized by directed

clique-width.

Up to now there are only very few digraph classes for which we can compute a directed

clique-width expression in polynomial time. This holds for directed co-graphs, digraphs of

bounded directed modular width, and orientations of trees. For such classes we can apply

the result of Theorem 7.6.16. In order to find directed clique-width expressions for general

digraphs one can use results on the related parameter bi-rank-width [KR13]. By [BJG18,

Lemma 9.9.12] we can use approximate directed clique-width expressions obtained from

rank-decomposition with the drawback of a single-exponential blow-up on the parameter.

Next, we give a lower bound for the running time of parameterized algorithms for

Dichromatic number problem parameterized by the directed clique-width.

Corollary 7.6.18. The Dichromatic number problem on digraphs on n vertices parameterized

by the directed clique-width k cannot be solved in time n2o(k)
, unless ETH fails.

Proof. In order to show the statement we apply the following lower bound for the Chromatic

number problem parameterized by clique-width given in [FGL+18]. Any algorithm for the

Chromatic Number problem parameterized by clique-width with running in n2o(k)
would dis-

prove the Exponential Time Hypothesis. By Observation 7.6.2 and since for every undirected

graph G its clique-width equals the directed clique-width of
←→
G [GWY16], any algorithm for

the Dichromatic number problem parameterized by directed clique-width can be used to solve

the Chromatic number problem parameterized by clique-width.

7.7. CONCLUSIONS AND OUTLOOK 149

In order to show fixed parameter tractability for DCNr w.r.t. the parameter directed clique-

width one can use its definability within monadic second order logic (MSO). We restrict

to MSO1-logic, which allows propositional logic, variables for vertices and vertex sets of

digraphs, the predicate arc(u,v) for arcs of digraphs, and quantification over vertices and

vertex sets [CE12]. In [GHK+14, Theorem 4.2] it has been shown that for every integer k

and MSO1 formula ψ, every ψ-LinEMSO1 optimization problem (see [GHK+14]) is fixed-

parameter tractable on digraphs of clique-width k w.r.t. the parameters k and length of the

formula |ψ|. Next, we will apply this result to DCN.

Theorem 7.6.19. The Dichromatic number problem is in FPT when parameterized by directed

clique-width and r.

Proof. Let G = (V,E) be a digraph. We can define DCNr by an MSO1 formula

ψ = ∃V1, . . . ,Vr :

(

Partition(V,V1, . . . ,Vr)∧
∧

1≤i≤r

Acyclic(Vi)

)

with
Partition(V,V1, . . . ,Vr) = ∀v ∈V : (

∨
1≤i≤r v ∈Vi)∧

∄v ∈V : (
∨

i 6= j, 1≤i, j≤r(v ∈Vi∧ v ∈Vj))

and

Acyclic(Vi) = ∀V ′ ⊆Vi,V
′ 6= /0 : ∃v ∈V ′(outdegree(v) = 0∨outdegree(v)≥ 2)

For the correctness we note the following: For every induced cycle V ′ in G it holds that for

every vertex v∈V ′ we have outdegree(v) = 1 in G. This does not hold for non-induced cycles.

But since for every cycle V ′′ in G there is a subset V ′ ⊆V ′′, such that G[V ′] is a cycle, we can

verify by Acyclic(Vi) whether G[Vi] is acyclic. Since it holds that |ψ| ∈ O(r), the statement

follows by the result of [GHK+14] stated above.

Corollary 7.6.20. For every integer r the r-Dichromatic number problem is in FPT when

parameterized by directed clique-width.

7.7 Conclusions and Outlook

This part is taken from [LGK21]. The bound of 7 for the oriented chromatic number and the

oriented chromatic index of series-parallel digraphs can be followed in different ways. These

bounds are tight even for series-parallel digraphs. As well we can get linear time solutions for

the oriented chromatic number and the oriented chromatic index of series-parallel digraphs.

The existence of graph classes of arbitrary large vertex degree but bounded oriented chromatic

index, such as msp-digraph and esp-digraphs, implies that Vizings Theorem [Viz64] can not

be carried over to the oriented chromatic index.

In future work we analyze the existence of polynomial or even linear time algorithms

for computing the oriented chromatic index on msp-digraphs. Furthermore, it remains open

whether it is possible to compute oriented chromatic index and oriented chromatic number

150 CHAPTER 7. NP-HARD PROBLEMS: DIGRAPH COLORING

of orientations of series-parallel graphs efficiently which would lead to generalizations of

Theorem 7.5.9 and Theorem 7.3.27.

The following part is taken from [GKR21a]. The methods presented in Subsection 7.6.2

allow us to compute the dichromatic number on directed co-graphs in linear time and on

graph classes of bounded directed clique-width in polynomial time.

The shown parameterized solutions of Corollary 7.6.17 and Theorem 7.6.19 also hold

for any parameter which is larger or equal than directed clique-width, such as the parameter

directed modular width [SW20] (which even allows an FPT-algorithm by [SW19, SW20])

and directed linear clique-width [GR19a].

Further, the hardness result of Corollary 7.6.10 rules out FPT-algorithms for the Dichro-

matic number problem parameterized by width parameters which can be bounded by directed

clique-width. Among these are the clique-width and rank-width of the underlying undi-

rected graph, which also have been considered in [Gan09] on the Oriented chromatic number

problem.

From a parameterized point of view width parameters are so-called structural parameters,

which are measuring the difficulty of decomposing a graph into a special tree-structure.

Beside these, the standard parameter, i.e., the threshold value given in the instance, is well

studied. Unfortunately, for the Dichromatic number problem the standard parameter is the

number of necessary colors r and does even not allow an XP-algorithm, since DCN2 is

NP-complete [MSW19]. A positive result can be obtained for parameter ”number of vertices”

n. Since integer linear programming is fixed-parameter tractable for the parameter ”number

of variables” [Len83] the existence of an integer program for DCN using O(n2) variables

implies an FPT-algorithm for parameter n, see [GKR20a].

It remains to verify whether the running time of our XP-algorithm for DCN can be

improved to n2O(k)
, which is possible for the Chromatic number problem by [EGW01]. Further,

it remains open whether the hardness of Corollary 7.6.10 also holds for special digraph classes

and for directed linear clique-width [GR19a]. Additionally, the existence of an FPT-algorithm

for DCNr w.r.t. parameter clique-width of the underlying undirected graph is open.

8 Conclusions and Outlook

We conclude with a short summary of this work and give some outlook to further possible

follow-up research and open questions.

We presented different classes of digraphs and characterized them by different properties.

Further, we showed how to use these properties such as for example bounded directed clique-

width. By introducing the new class of twin-dh digraphs we have opened up some possibilities

for further research. Multiple problems were shown to be not NP-hard anymore when

restricted to directed co-graphs. Since twin-dh digraphs are a superclass of directed co-graphs

there could be a possibility to expand these results. More precisely, twin-dh digraphs are also a

subclass of extended directed co-graphs. Thus, for further research especially those problems

are interesting to consider on this digraph class, which are easily solvable on directed co-

graphs but still NP-hard on extended directed co-graphs. These could be problems, where we

need to know about the connectivity between several vertices. This neighborhood information

is still given in twin-dh digraphs, while it is missing in extended directed co-graphs. In a

di-co-tree for an extended directed co-graph this explicit neighborhood information is lost.

On this topic, it is also an open problem whether an extended directed co-graph can be

recognized in linear time and whether we can build its ex-di-co-tree in polynomial or even

linear time for any digraph. In order to generalize twin-dh digraphs, the very recent work of

[BKTW20] seems to give a promising approach with their definition of twin-width. For future

work it might also be interesting to investigate problems which are solvable on undirected

distance-hereditary graphs on the corresponding digraphs. Accordingly, we could study, for

example, whether the (directed) Steiner tree problem can also be solved on twin-dh digraphs.

A question still open is the hardness of the directed path-width problem on semicomplete

digraphs. Although there are several FPT-algorithms solving this problem, there is still no

proof that the problem is NP-hard on semicomplete digraphs at all. Considering directed

graph parameters there is also the open Conjecture from Hunter and Kreutzer for general

digraphs, namely that Kelly-width and the DAG-width of a digraph are equivalent within a

constant factor [HK08]. From the results about twin-dh digraphs and directed co-graphs at

least we know that DAG-width bounds Kelly-width of a digraph which belongs to one of

these classes.

The pseudo-polynomial solutions for the subset sum problems with (weak) digraph

constraints are given for directed co-graphs and minimal series-parallel digraphs. Thus,

research on other superclasses of directed co-graphs or minimal series-parallel digraphs could

be interesting, e.g., on extended directed co-graphs. Moreover, one could look at more general

151

152 CHAPTER 8. CONCLUSIONS AND OUTLOOK

digraph classes of bounded width. In addition, there are other NP-hard digraph problems that

can be considered on various recursive digraph classes. Furthermore, it seems likely that there

are possibilities of constructing a polynomial or even linear time algorithm for the oriented

chromatic index problem on minimal series-parallel digraphs. To sum up, research in the

field of digraphs is still very young and offers many open questions and opportunities for new

results in the future.

9 Bibliography

References

[AACKS14] A.K. Abu-Affash, P. Carmi, M.J. Katz, and M. Segal. The euclidean bottle-

neck steiner path problem and other applications of (α,β)-pair decomposition.

Discrete & Computational Geometry, 51(1):1–23, 2014.

[ACP87] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embed-

dings in a k-tree. SIAM Journal of Algebraic and Discrete Methods, 8(2):277–

284, 1987.

[AGU72] A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a directed

graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[AH15] S.D. Andres and W. Hochstättler. Perfect digraphs. Journal of Graph Theory,

79(1):21–29, 2015.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Company, Massachusetts, 1974.

[AKK+15] S.A. Amiri, L. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz. Graph

Searching Games and Width Measures for Directed Graphs. In 32nd Inter-

national Symposium on Theoretical Aspects of Computer Science (STACS),

volume 30 of Leibniz International Proceedings in Informatics (LIPIcs), pages

34–47. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

[AKK17] I. Adler, M.M. Kanté, and O. Kwon. Linear rank-width of distance-hereditary

graphs i. a polynomial-time algorithm. Algorithmica, 78(1):342–377, 2017.

[AKR16] S. A. Amiri, S. Kreutzer, and R. Rabinovich. DAG-width is PSPACE-complete.

Theoretical Computer Science, 655:78–89, 2016.

[ALLM16] K. Agrawal, J. Li, K. Lu, and B. Moseley. Scheduling parallel dag jobs online

to minimize average flow time. In Proceedings of the Twenty-Seventh Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, page 176–189,

2016.

153

154 CHAPTER 9. BIBLIOGRAPHY

[Bar06] J. Barát. Directed pathwidth and monotonicity in digraph searching. Graphs

and Combinatorics, 22:161–172, 2006.

[BCKN15] H.L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic sin-

gle exponential time algorithms for connectivity problems parameterized by

treewidth. Information and Computation, 243:86–111, 2015.

[BdGR97] D. Bechet, P. de Groote, and C. Retoré. A complete axiomatisation of the inclu-

sion of series-parallel partial orders. In Rewriting Techniques and Applications,

volume 1232 of LNCS, pages 230–240. Springer-Verlag, 1997.

[BDH+12] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, and J. Obdrzálek. The dag-

width of directed graphs. Journal of Combinatorial Theory, Series B, 102(4):900–

923, 2012.

[BDHK06] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. The dag-width and parity

games. In Proceedings of the Annual Symposium of Theoretical Aspects of

Computer Science (STACS), volume 3884 of LNCS, pages 524–536. Springer-

Verlag, 2006.

[BDK00] H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for min-

imum fill-in and treewidth for distance hereditary graphs. Discrete Applied

Mathematics, 99(1-3):367–400, 2000.

[BFJ+04] D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll, and B. Mohar. The circular chromatic

number of a digraph. Journal of Graph Theory, 46(3):227–240, 2004.

[BHW11] G. Borradailea, B. Heeringa, and G. Wilfong. The 1-neighbour knapsack prob-

lem. In Proceedings of International Workshop on Combinatorial Algorithms

(IWOCA), volume 7056 of LNCS, pages 71–84. Springer-Verlag, 2011.

[BHW12] G. Borradailea, B. Heeringa, and G. Wilfong. The knapsack problem with

neighbour constraints. Journal of Discrete Algorithms, 16:224–235, 2012.

[BJG09] J. Bang-Jensen and G. Gutin. Digraphs. Theory, Algorithms and Applications.

Springer-Verlag, Berlin, 2009.

[BJG18] J. Bang-Jensen and G. Gutin, editors. Classes of Directed Graphs. Springer-

Verlag, Berlin, 2018.

[BJM14] J. Bang-Jensen and A. Maddaloni. Arc-disjoint paths in decomposable digraphs.

Journal of Graph Theory, 77:89–110, 2014.

[BJT92] J. Bang-Jensen and C. Thomassen. A polynomial algorithm for the 2-path

problem for semicomplete digraphs. SIAM Journal on Discrete Mathematics,

5(3):366–376, 1992.

[BKK95] H.L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permu-

tation graphs. SIAM Journal on Discrete Mathematics, 8(4):606–616, 1995.

155

[BKTW20] E. Bonnet, E. J. Kim, S. Thomassé, and R. Watrigant. Twin-width I: tractable

FO model checking. CoRR, abs/2004.14789, 2020.

[BLS99] A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM

Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia,

1999.

[BM86] H.-J. Bandelt and H.M. Mulder. Distance-hereditary graphs. Journal of Combi-

natorial Theory, Series B, 41:182–208, 1986.

[BM93] H.L. Bodlaender and R.H. Möhring. The pathwidth and treewidth of cographs.

SIAM J. Disc. Math., 6(2):181–188, 1993.

[Bod96] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of

small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[Bod98] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.

Theoretical Computer Science, 209:1–45, 1998.

[Boe18] D. Boeckner. Oriented threshold graphs. Australasian Journal of Combinatorics,

71(1):43–53, 2018.

[BPT09] R. B. Borie, R. G. Parker, and C. A. Tovey. Solving problems on recursively

constructed graphs. 41(1), 2009.

[Bys04] J. M. Byskov. Enumerating maximal independent sets with applications to

graph colouring. Operations Research Letters, 32(6):547–556, 2004.

[CD06] J.-F. Culus and M. Demange. Oriented coloring: Complexity and approximation.

In Proceedings of the Conference on Current Trends in Theory and Practice of

Computer Science (SOFSEM), volume 3831 of LNCS, pages 226–236. Springer-

Verlag, 2006.

[CE12] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order

Logic. A Language-Theoretic Approach. Encyclopedia of Mathematics and its

Applications. Cambridge University Press, Cambridge, 2012.

[CH77] V. Chvátal and P.L. Hammer. Aggregation of inequalities in integer program-

ming. Annals of Discrete Math., 1:145–162, 1977.

[Chv84] V. Chvátal. Perfectly ordered graphs. In C. Berge and V. Chvátal, editors, Topics

on Perfect Graphs, volume 88 of North-Holland Mathematics Studies, pages

63–65. North-Holland, 1984.

[CL18] A. Custic and S. Lendl. On streaming algorithms for the steiner cycle and path

cover problem on interval graphs and falling platforms in video games. ACM

Computing Research Repository (CoRR), abs/1802.08577:9 pages, 2018.

156 CHAPTER 9. BIBLIOGRAPHY

[CLMS14] B. Cloteaux, M.D. LaMar, E. Moseman, and J. Shook. Threshold Digraphs. J

Res Natl Inst Stand Technol, 119:227–234, 2014.

[CLMS19] V. Campos, R. Lopes, A.K. Maia, and I. Sau. Adapting the directed grid

theorem into an fpt algorithm. Electronic Notes in Theoretical Computer

Science, 346:229–240, 2019.

[CLSB81] D.G. Corneil, H. Lerchs, and L. Stewart-Burlingham. Complement reducible

graphs. Discrete Applied Mathematics, 3:163–174, 1981.

[CMR00] B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization

problems on graphs of bounded clique-width. Theory of Computing Systems,

33(2):125–150, 2000.

[CMZ12] M. Chimani, P. Mutzel, and B. Zey. Improved steiner tree algorithms for

bounded treewidth. Journal of Discrete Algorithms, 16:67–78, 2012.

[CO00] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete

Applied Mathematics, 101:77–114, 2000.

[Coh68] R.S. Cohen. Transition graphs and the star height problem. In Proceedings of

the 9th Annual Symposium on Switching and Automata Theory, pages 383–394.

IEEE Computer Society, 1968.

[Cou94] B. Courcelle. The monadic second-order logic of graphs VI: On several rep-

resentations of graphs by relational structures. Discrete Applied Mathematics,

54:117–149, 1994.

[Cou18] B. Courcelle. From tree-decompositions to clique-width terms. Discrete Applied

Mathematics, 248:125 – 144, 2018.

[CP06] C. Crespelle and C. Paul. Fully dynamic recognition algorithm and certificate

for directed cographs. Discrete Applied Mathematics, 154(12):1722–1741,

2006.

[CR05] D.G. Corneil and U. Rotics. On the relationship between clique-width and

treewidth. SIAM Journal on Computing, 4:825–847, 2005.

[CS11] M. Chudnovsky and P.D. Seymour. A well-quasi-order for tournaments. Journal

of Combinatorial Theory, Series B, 101(1):47–53, 2011.

[CSS15] M. Chudnovsky, A. Scot, and P.D. Seymour. Disjoint paths in tournaments.

Advances in Mathematics, 270:582–597, 2015.

[Dai80] D.P. Dailey. Uniqueness of colorability and colorability of planar 4-regular

graphs are NP-complete. Discrete Mathematics, 30(3):289–293, 1980.

[DES14] M. Dehmer and F. Emmert-Streib, editors. Quantitative Graph Theory: Mathe-

matical Foundations and Applications. Crc Pr Inc, New York, 2014.

157

[DF13] R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity.

Springer-Verlag, New York, 2013.

[DHP01] G. Damiand, M. Habib, and C. Paul. A simple paradigm for graph recognition:

application to cographs and distance hereditary graphs. Theoretical Computer

Science, 263(1-2):99–111, 2001.

[DOPS20] J. Dybizbański, P. Ochem, A. Pinlou, and A. Szepietowski. Oriented cliques

and colorings of graphs with low maximum degree. Discrete Mathematics,

343(5):111829, 2020.

[DS14] J. Dybizbański and A. Szepietowski. The oriented chromatic number of Halin

graphs. Information Processing Letters, 114(1-2):45–49, 2014.

[Duf19] C. Duffy. A note on colourings of connected oriented cubic graphs. ACM

Computing Research Repository (CoRR), abs/1908.02883:8 pages, 2019.

[dWELS02] D. de Werra, C. Eisenbeis, S. Lelait, and E. Stöhr. Circular-arc graph coloring:

On chords and circuits in the meeting graph. European Journal of Operational

Research, 136(3):483 – 500, 2002.

[Egg63] L.E. Eggan. Transition graphs and the star height of regular events. Michigan

Math. J., 10:385–397, 1963.

[EGW01] W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems

on clique-width bounded graphs in polynomial time. In Proceedings of Graph-

Theoretical Concepts in Computer Science (WG), volume 2204 of LNCS, pages

117–128. Springer-Verlag, 2001.

[EGW03] W. Espelage, F. Gurski, and E. Wanke. Deciding clique-width for graphs of

bounded tree-width. Journal of Graph Algorithms and Applications - Special

Issue of JGAA on WADS 2001, 7(2):141–180, 2003.

[EL89] P. Eades and X. Lin. How to draw a directed graph. [Proceedings] 1989 IEEE

Workshop on Visual Languages, pages 13–17, 1989.

[Epp92] D. Eppstein. Parallel recognition of series-parallel graphs. Information and

Computation, 98(1):41–55, 1992.

[EST94] J.A. Ellis, I.H. Sudborough, and J.S. Turner. The vertex separation and search

number of a graph. Information and Computation, 113(1):50–79, 1994.

[FGL+18] F.V. Fomin, P. Golovach, D. Lokshtanov, S. Saurabh, and M. Zehavi.

Cliquewidth III: The Odd Case of Graph Coloring Parameterized by

Cliquewidth. ACM Transactions on Algorithms, 15(1):9:1–9:27, 2018.

[FHM03] T. Feder, P. Hell, and B. Mohar. Acyclic homomorphisms and circular colorings

of digraphs. SIAM Journal on Discrete Mathematics, 17(1):161–163, 2003.

158 CHAPTER 9. BIBLIOGRAPHY

[FHP19] F. Foucaud, S. Heydarshahi, and A. Parreau. Domination and location in

twin-free digraphs. CoRR, abs/1910.05311, 2019.

[FP13] F.V. Fomin and M. Pilipczuk. Jungles, bundles, and fixed parameter tractability.

In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 396–413. ACM-SIAM, 2013.

[FP19] F.V. Fomin and M. Pilipczuk. On width measures and topological problems on

semi-complete digraphs. Journal of Combinatorial Theory, Series B, 138:78–

165, 2019.

[FS13] A. Fradkin and P.D. Seymour. Tournament pathwidth and topological contain-

ment. Journal of Combinatorial Theory, Series B, 103:374–384, 2013.

[Gal14] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of

the International Symposium on Symbolic and Algebraic Computation (ISSAC),

pages 296–303. ACM, 2014.

[Gan09] R. Ganian. The parameterized complexity of oriented colouring. In Proceedings

of Doctoral Workshop on Mathematical and Engineering Methods in Computer

Science, MEMICS, volume 13 of OASICS. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, Germany, 2009.

[GGK22] St. Goebbels, F. Gurski, and D. Komander. The knapsack problem with special

neighbor constraints. Mathematical Methods of Operations Research, 2022. to

appear.

[GHK+09] R. Ganian, P. Hlinený, J. Kneis, A. Langer, J. Obdrzálek, and P. Rossmanith.

On digraph width measures in parameterized algorithmics. In Proceedings of

the International Symposium on Parameterized and Exact Computation, volume

5917 of LNCS, pages 185–197. Springer-Verlag, 2009.

[GHK+14] R. Ganian, P. Hlinený, J. Kneis, A. Langer, J. Obdrzálek, and P. Rossmanith.

Digraph width measures in parameterized algorithmics. Discrete Applied Math-

ematics, 168:88–107, 2014.

[GHK+16] R. Ganian, P. Hlinený, J. Kneis, D. Meisters, J. Obdrzálek, P. Rossmanith,

and S. Sikdar. Are there any good digraph width measures? Journal of

Combinatorial Theory, Series B, 116:250–286, 2016.

[GHK+20a] F. Gurski, S. Hoffmann, D. Komander, C. Rehs, J. Rethmann, and E. Wanke.

Computing Directed Steiner Path Covers for Directed Co-Graphs. In Proceed-

ings of the Conference on Current Trends in Theory and Practice of Computer

Science (SOFSEM), volume 12011 of LNCS, pages 556–565. Springer-Verlag,

2020.

159

[GHK+20b] F. Gurski, S. Hoffmann, D. Komander, C. Rehs, J. Rethmann, and E. Wanke.

Exact solutions for the steiner path problem on special graph classes. In Op-

erations Research Proceedings (OR 2019), Selected Papers, pages 331–338.

Springer-Verlag, 2020.

[GHO13] R. Ganian, P. Hlinený, and J. Obdrzálek. A unified approach to polynomial

algorithms on graphs of bounded (bi-)rank-width. European Journal of Combi-

natorics, 34(3):680–701, 2013.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, San Francisco, 1979.

[GKL20] F. Gurski, D. Komander, and M. Lindemann. Oriented coloring of msp-digraphs

and oriented co-graphs. In Proceedings of the International Conference on

Combinatorial Optimization and Applications (COCOA), volume 12577 of

LNCS, pages 743–758. Springer-Verlag, 2020.

[GKL21a] F. Gurski, D. Komander, and M. Lindemann. Efficient computation of the ori-

ented chromatic number of recursively defined digraphs. Theoretical Computer

Science, 890:16–35, 2021.

[GKL21b] F. Gurski, D. Komander, and M. Lindemann. Homomorphisms to digraphs

with large girth and oriented colorings of minimal series-parallel digraphs. In

Proceedings of the International Workshop on Algorithms and Computation

(WALCOM), volume 12635 of LNCS, pages 182–194. Springer-Verlag, 2021.

[GKR19a] F. Gurski, D. Komander, and C. Rehs. Characterizations for special directed

co-graphs. In Proceedings of the International Conference on Combinatorial

Optimization and Applications (COCOA), volume 11949 of LNCS, pages 252–

264. Springer-Verlag, 2019.

[GKR19b] F. Gurski, D. Komander, and C. Rehs. Computing digraph width measures on

directed co-graphs. In Proceedings of International Symposium on Fundamen-

tals of Computation Theory (FCT), volume 11651 of LNCS, pages 292–305.

Springer-Verlag, 2019.

[GKR19c] F. Gurski, D. Komander, and C. Rehs. Oriented coloring on recursively defined

digraphs. Algorithms, 12(4):87, 2019.

[GKR20a] F. Gurski, D. Komander, and C. Rehs. Acyclic coloring of special digraphs.

ACM Computing Research Repository (CoRR), abs/2006.13911:16 pages, 2020.

[GKR20b] F. Gurski, D. Komander, and C. Rehs. Solutions for subset sum problems with

special digraph constraints. Mathematical Methods of Operations Research,

92(2):401–433, 2020.

[GKR20c] F. Gurski, D. Komander, and C. Rehs. Subset sum problems with special digraph

constraints. In Operations Research Proceedings (OR 2019), Selected Papers,

pages 339–346. Springer-Verlag, 2020.

160 CHAPTER 9. BIBLIOGRAPHY

[GKR21a] F. Gurski, D. Komander, and C. Rehs. Acyclic coloring parameterized by

directed clique-width. In Proceedings of the International Conference on

Algorithms and Discrete Applied Mathematics (CALDAM), volume 12601 of

LNCS, pages 95–108. Springer-Verlag, 2021.

[GKR21b] F. Gurski, D. Komander, and C. Rehs. How to compute digraph width measures

on directed co-graphs. Theoretical Computer Science, 855:161–185, 2021.

[GKR21c] F. Gurski, D. Komander, and C. Rehs. On characterizations for subclasses of

directed co-graphs. Journal of Combinatorial Optimization, 41(1):234–266,

2021.

[GKR+22] F. Gurski, D. Komander, C. Rehs, J. Rethmann, and E. Wanke. Computing

directed steiner path covers. Journal of Combinatorial Optimization, 2022. to

appear.

[GKRW21] F. Gurski, D. Komander, C. Rehs, and S. Widerrecht. Directed width parameters

on semicomplete digraphs. In Proceedings of the International Conference

on Combinatorial Optimization and Applications (COCOA), volume 13135 of

LNCS, pages 615–628. Springer-Verlag, 2021.

[GMT18] L. Gourvès, J. Monnot, and L. Tlilane. Subset sum problems with digraph

constraints. Journal of Combinatorial Optimization, 36(3):937–964, 2018.

[Gol78] M.C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24:105–107,

1978.

[Gol80] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic

Press, 1980.

[Gou12] R. Gould. Graph Theory. Dover Publications Inc., New York, NY, USA, 2012.

[GR99] M.C. Golumbic and U. Rotics. On the clique-width of some perfect graph

classes. In Proceedings of Graph-Theoretical Concepts in Computer Science

(WG), volume 1665 of LNCS, pages 135–147. Springer-Verlag, 1999.

[GR00] M.C. Golumbic and U. Rotics. On the clique-width of some perfect graph

classes. International Journal of Foundations of Computer Science, 11(3):423–

443, 2000.

[GR18] F. Gurski and C. Rehs. Directed path-width and directed tree-width of directed

co-graphs. In Proceedings of the International Conference on Computing and

Combinatorics (COCOON), volume 10976 of LNCS, pages 255–267. Springer-

Verlag, 2018.

[GR19a] F. Gurski and C. Rehs. Comparing linear width parameters for directed graphs.

Theory of Computing Systems, 63(6):1358–1387, 2019.

161

[GR19b] F. Gurski and C. Rehs. Forbidden directed minors, directed path-width and

directed tree-width of tree-like digraphs. In Proceedings of the Conference

on Current Trends in Theory and Practice of Computer Science (SOFSEM),

volume 11376 of LNCS, pages 234–246. Springer-Verlag, 2019.

[GRR18] F. Gurski, C. Rehs, and J. Rethmann. Directed pathwidth of sequence digraphs.

In Proceedings of the International Conference on Combinatorial Optimization

and Applications (COCOA), volume 11346 of LNCS, pages 79–93. Springer-

Verlag, 2018.

[Gru08] H. Gruber. Digraph complexity measures and applications in formal language

theory. In Proceedings of MEMICS’08, pages 60–67, 2008.

[Gru12] H. Gruber. Digraph complexity measures and applications in formal language

theory. Discrete Mathematics and Theoretical Computer Science, 14(2):189–

204, 2012.

[Gur14] F. Gurski. Efficient binary linear programming formulations for boolean func-

tions. Statistics, Optimization and Information Computing, 2(4):274–279, 2014.

[Gur17] F. Gurski. Dynamic programming algorithms on directed cographs. Statistics,

Optimization and Information Computing, 5:35–44, 2017.

[Gus93] J. Gusted. On the pathwidth of chordal graphs. Discrete Applied Mathematics,

45(3):233–248, 1993.

[GW00] F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without

Kn,n. In Proceedings of Graph-Theoretical Concepts in Computer Science (WG),

volume 1938 of LNCS, pages 196–205. Springer-Verlag, 2000.

[GW05] F. Gurski and E. Wanke. On the relationship between NLC-width and linear

NLC-width. Theoretical Computer Science, 347(1-2):76–89, 2005.

[GWY16] F. Gurski, E. Wanke, and E. Yilmaz. Directed NLC-width. Theoretical Computer

Science, 616:1–17, 2016.

[GY02] G. Z. Gutin and A. Yeo. Orientations of digraphs almost preserving diameter.

Discrete Applied Mathematics, 121(1-3):129–138, 2002.

[HK08] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games,

and orderings. Theoretical Computer Science, 399(3):206–219, 2008.

[HKdW97] P. Hansen, J. Kuplinsky, and D. de Werra. Mixed graph coloring. Mathematical

Methods of Operations Research, 45:145–160, 1997.

[HMP11] P. Heggernes, D. Meister, and C. Papadopoulos. Graphs of linear clique-width

at most 3. Theoretical Computer Science, 412(39):5466–5486, 2011.

162 CHAPTER 9. BIBLIOGRAPHY

[HN60] F. Harary and R.Z. Norman. Some properties of line digraphs. Rend. Circ. Mat.

Palermo, 9(2):161–168, 1960.

[Hoà94] C.T. Hoàng. Efficient algorithms for minimum weighted colouring of some

classes of perfect graphs. Discrete Applied Mathematics, 55:133–143, 1994.

[How77] E. Howorka. A characterization of distance-hereditary graphs. The Quarterly

Journal of Mathematics Ser. 2, 28:417–420, 1977.

[HY87] X. He and Y. Yesha. Parallel recognition and decomposition of two terminal

series parallel graphs. Information and Computation, 75:15–38, 1987.

[JKT21] L. Jaffke, O. Kwon, and J. A. Telle. Classes of intersection digraphs with

good algorithmic properties. ACM Computing Research Repository (CoRR),

abs/2105.01413, 2021.

[JN83] D.S. Johnson and K.A. Niemi. On knapsacks, partitions, and a new dynamic

programming technique for trees. Mathematics of Operations Research, 8(1):1–

14, 1983.

[JP04] K. Jansen and L. Porkolab. Preemptive scheduling with dedicated processors:

Applications of fractional graph coloring. Journal of Scheduling, 7:35–48, 2004.

[JRST01a] T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Addentum to ”Di-

rected tree-width”, 2001.

[JRST01b] T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Directed tree-width.

Journal of Combinatorial Theory, Series B, 82:138–155, 2001.

[Jun78] H.A. Jung. On a class of posets and the corresponding comparability graphs.

Journal of Combinatorial Theory, Series B, 24:125–133, 1978.

[Kar72] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and

J.W. Thatcher, editors, Complexity of Computer Computations, pages 85–103,

New York, 1972. Plenum Press.

[KBMK93] T. Kloks, H. Bodlaender, H. Müller, and D. Kratsch. Computing treewidth and

minimum fill-in: All you need are the minimal separators. In Proceedings of

the Annual European Symposium on Algorithms (ESA), volume 726 of LNCS,

pages 260–271. Springer-Verlag, 1993.

[KF79] T. Kashiwabara and T. Fujisawa. NP-completeness of the problem of finding a

minimum-clique-number interval graph containing a given graph as a subgraph.

In Proceedings of the International Symposium on Circuits and Systems, pages

657–660, 1979.

[KKK+16] K. Kitsunai, Y. Kobayashi, K. Komuro, H. Tamaki, and T. Tano. Computing

directed pathwidth in O(1.89n) time. Algorithmica, 75:138–157, 2016.

163

[KKT15] K. Kitsunai, Y. Kobayashi, and H. Tamaki. On the pathwidth of almost semi-

complete digraphs. In Proceedings of the Annual European Symposium on

Algorithms (ESA), volume 9294 of LNCS, pages 816–827. Springer-Verlag,

2015.

[KL15] S. Kitaev and V. Lozin. Words and Graphs. Springer-Verlag, Berlin, 2015.

[KN09] B. Karrer and M. E. J. Newman. Random graph models for directed acyclic

networks. Phys. Rev. E, 80:046110, 2009.

[Kob15] Y. Kobayashi. Computing the pathwidth of directed graphs with small vertex

cover. Information Processing Letters, 115(2):310–312, 2015.

[Kom19] D. Komander. Characterization and algorithmic use of directed cographs.

Master-Thesis, Heinrich-Heine Universität, Düsseldorf, Germany, 2019.

[KP04] H. Kellerer and U. Pferschy. A new fully polynomial time approximation

scheme for the knapsack problem. Journal of Combinatorial Optimization,

8:5–11, 2004.

[KPP10] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag,

Berlin, 2010.

[KR09] M. Kanté and M. Rao. Directed rank-width and displit decomposition. In

Proceedings of Graph-Theoretical Concepts in Computer Science (WG), volume

5911 of LNCS, pages 214–225. Springer-Verlag, 2009.

[KR13] M. Kanté and M. Rao. The rank-width of edge-coloured graphs. Theory Comput.

Syst., 52(4):599–644, 2013.

[KR21] D. Komander and C. Rehs. Twin-distance-hereditary digraphs. ACM Computing

Research Repository (CoRR), abs/2112.04183:19 pages, 2021.

[KS15] I. Kim and P.D. Seymour. Tournament minors. Journal of Combinatorial

Theory, Series B, 112(C):138–153, 2015.

[KSZ97] A.V. Kostochka, E. Sopena, and X. Zhu. Acyclic and oriented chromatic

numbers of graphs. Journal of Graph Theory, 24(4):331–340, 1997.

[KZ15] S. Kintali and Q. Zhang. Forbidden directed minors and directed pathwidth.

Research Report, 2015.

[Law76] E.L. Lawler. Graphical algorithms and their complexity. Math. Centre Tracts,

81:3–32, 1976.

[Len83] H.W. Lenstra. Integer programming with a fixed number of variables. Mathe-

matics of Operations Research, 8:538–548, 1983.

[Ler71] H. Lerchs. On cliques and kernels. Technical report, Dept. of Comput. Sci,

Univ. of Toronto, 1971.

164 CHAPTER 9. BIBLIOGRAPHY

[LGK21] M. Lindemann, F. Gurski, and D. Komander. Oriented vertex and arc coloring of

edge series-parallel digraphs (Abstract). International Conference on Operations

Research (OR 2021), 2021.

[LM17] Z. Li and B. Mohar. Planar digraphs of digirth four are 2-colorable. SIAM J.

Discrete Math., 31:2201–2205, 2017.

[LOP95] R. Lin, S. Olariu, and G. Pruesse. An optimal path cover algorithm for cographs.

Comput. Math. Appl., 30:75–83, 1995.

[LS10] M. Lätsch and R. Schrader. Distance-hereditary digraphs. Journal of Discrete

Algorithms, 8(2):231–240, 2010.

[Mar13] T.H. Marshall. Homomorphism bounds for oriented planar graphs of given

minimum girth. Graphs and Combin., 29:1489–1499, 2013.

[McN69] R. McNaughton. The loop complexity of regular events. Information Sciences,

1(3):305–328, 1969.

[MJV13] S.S. Moharana, A. Joshi, and S. Vijay. Steiner path for trees. International

Journal of Computer Applications, 76(5):11–14, 2013.

[Moh03] B. Mohar. Circular colorings of edge-weighted graphs. Journal of Graph

Theory, 43(2):107–116, 2003.

[MP95] N.V.R. Mahadev and U.N. Peled. Threshold Graphs and Related Topics. Annals

of Discrete Math. 56. Elsevier, North-Holland, 1995.

[MS77] C.L. Monma and J.B. Sidney. A general algorithm for optimal job sequencing

with series-parallel constraints. Math. Oper. Res., 4:215–224, 1977.

[MS88] B. Monien and I.H. Sudborough. Min cut is NP-complete for edge weighted

trees. Theoretical Computer Science, 58:209–229, 1988.

[MSW19] M.G. Millani, R. Steiner, and S. Wiederrecht. Colouring non-even digraphs.

ACM Computing Research Repository (CoRR), abs/1903.02872:37 pages, 2019.

[Nag12] H. Nagamochi. Linear layouts in submodular systems. In Proceedings of the

International Symposium on Algorithms and Computation, volume 7676 of

LNCS, pages 475–484. Springer-Verlag, 2012.

[NdM06] J. Nešetřil and P.O. de Mendez. Tree-depth, subgraph coloring and homomor-

phism bounds. Eur. J. Comb., 27:1022–1041, 2006.

[NL82] V. Neumann-Lara. The dichromatic number of a digraph. Journal of Combina-

torial Theory, Series B, 33(2):265–270, 1982.

[NP11] S.D. Nikolopoulos and C. Papadopoulos. A simple linear-time recognition

algorithm for weakly quasi-threshold graphs. Graphs and Combinatorics,

27(4):557–565, 2011.

165

[Obd06] J. Obdrzálek. Dag-width: Connectivity measure for directed graphs. In Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

814–821. ACM-SIAM, 2006.

[OPS08] P. Ochem, A. Pinlou, and E. Sopena. On the oriented chromatic index of

oriented graphs. Journal of Graph Theory, 57(4):313–332, 2008.

[OS06] S. Oum and P.D. Seymour. Approximating clique-width and branch-width.

Journal of Combinatorial Theory, Series B, 96(4):514–528, 2006.

[Oum05] S. Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory,

Series B, 95:79–100, 2005.

[PS06] A. Pinlou and E. Sopena. Oriented vertex and arc coloring of outerplanar graphs.

Information Processing Letters, 100:97–104, 2006.

[Ree99] B. Reed. Introducing directed tree width. Electronic Notes in Discrete Mathe-

matics, 3:222–229, 1999.

[Ren86] F. Rendl. Quadratic assignment problems on series-parallel digraphs. Z. Oper.

Res. Ser. A-B, 30(3):A161–A173, 1986.

[Ret98] C. Retoré. Pomset logic as a calculus of directed cographs. In Proceedings of

the Fourth Roma Workshop: Dynamic perspectives in Logic and Linguistics,

pages 221–247. CLUEB, 1998.

[Rig51] J. Riguet. Les relations de ferrers. C.R. Acad. Sci. Paris, 232:1729–1730, 1951.

[RS83] N. Robertson and P.D. Seymour. Graph minors I. Excluding a forest. Journal of

Combinatorial Theory, Series B, 35:39–61, 1983.

[RS86] N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of tree

width. Journal of Algorithms, 7:309–322, 1986.

[RS04] N. Robertson and P.D. Seymour. Graph minors XX. Wagners conjecture.

Journal of Combinatorial Theory, Series B, 92:325–357, 2004.

[RW90] G. Reich and P. Widmayer. Beyond steiner’s problem: a VLSI oriented general-

ization. In Proceedings of Graph-Theoretical Concepts in Computer Science

(WG), volume 411 of LNCS, pages 196–210. Springer-Verlag, 1990.

[Sch89] P. Scheffler. Die Baumweite von Graphen als Mass für die Kompliziertheit

algorithmischer Probleme. Ph. D. thesis, Akademie der Wissenschaften in der

DDR, Berlin, 1989.

[Sch21] R. Schrader. Personal communication, 2021.

[Sei74] D. Seinsche. On a property of the class of n-colorable graphs. Journal of

Combinatorial Theory B, 16:191–193, 1974.

166 CHAPTER 9. BIBLIOGRAPHY

[Sey90] P.D. Seymour. Colouring series-parallel graphs. Combinatorica, 10(4):379–392,

1990.

[Sop97] E. Sopena. The chromatic number of oriented graphs. Journal of Graph Theory,

25:191–205, 1997.

[ST07] K. Suchan and I. Todinca. Pathwidth of circular-arc graphs. In Proceedings

of Graph-Theoretical Concepts in Computer Science (WG), volume 4769 of

LNCS, pages 258–269. Springer-Verlag, 2007.

[Ste85] G. Steiner. A compact labeling scheme for series-parallel graphs. Discrete

Applied Mathematics, 11(3):281–297, 1985.

[Sum74] P.D. Sumner. Dacey graphs. Journal of Aust. Soc., 18:492–502, 1974.

[SW19] R. Steiner and S. Wiederrecht. Parameterized algorithms for directed modular

width. ACM Computing Research Repository (CoRR), abs/1905.13203:37 pages,

2019.

[SW20] R. Steiner and S. Wiederrecht. Parameterized algorithms for directed modular

width. In Proceedings of the International Conference on Algorithms and

Discrete Applied Mathematics (CALDAM), volume 12016 of LNCS, pages

415–426. Springer-Verlag, 2020.

[Val78] J. Valdes. Parsing flowcharts and series-parallel graphs. Technical Report

STAN-CS-78-682, Computer Science Department, Stanford University, Stan-

ford, California, 1978.

[Viz64] V.G. Vizing. On an estimate of the chromatic class of a p-graph. Metody Diskret.

Analiz., 3:9–17, 1964.

[VSR+18] M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and C. Ratti. Addressing the

minimum fleet problem in on-demand urban mobility. Nature, 557(7706):534–

538, 2018.

[VTL82] J. Valdes, R.E. Tarjan, and E.L. Lawler. The recognition of series-parallel

digraphs. SIAM Journal on Computing, 11:298–313, 1982.

[WC82] J.A. Wald and C.J. Colbourn. Steiner trees in outerplanar graphs. In Thirteenth

Southeastern Conference on Combinatorics, Graph Theory, and Computing,

pages 15–22, 1982.

[WC83] J.A. Wald and C.J. Colbourn. Steiner trees, partial 2-trees, and minimum IFI

networks. Networks, 13:159–167, 1983.

[Wie20] S. Wiederrecht. Digraphs of directed treewidth one. Discrete Mathematics,

343(12):112124, 2020.

167

[WY95] J. Westbrook and D. Yan. Approximation algorithms for the class steiner tree

problem. Research Report, 1995.

[YC08] B. Yang and Y. Cao. Digraph searching, directed vertex separation and directed

pathwidth. Discrete Applied Mathematics, 156(10):1822–1837, 2008.

168 CHAPTER 9. BIBLIOGRAPHY

10 Appendix

10.1 Contributions

As it is conventional in our field, the authors are in almost all cases in alphabetical order.

Directed width Parameters on Semicomplete Digraphs [GKRW21]

F. Gurski, D. Komander, C. Rehs, and S. Widerrecht

This paper was written in a close collaboration with my colleague Carolin Rehs. We developed

the results and proofs together with help of Frank Gurski. Later in the process Sebastian

Wiederrecht joined us and supported the proof of the directed path-width and directed tree-

width comparison, as well as he supported us to optimize the result for Kelly-width and

directed tree-width.

Twin-Distance-Hereditary Digraphs [KR21]

D. Komander and C. Rehs

This paper bases on discussions about directed twins with Carolin Rehs, Frank Gurski and Van

Bang Le. The definitions and the proofs of the further properties of the class were developed

in collaboration with Carolin Rehs. The characterizations by forbidden induced subdigraphs

was completely my part.

Computing Directed Steiner Path Covers for Directed Co-Graphs [GKR+22]

F. Gurski, D. Komander, C. Rehs, J. Rethmann, and E. Wanke

This is an extended version of the conference paper [GHK+20a]. For this paper I played

a role in the developing process of the ideas, which was mostly a collaboration of Egon

Wanke, Jochen Rethmann, Frank Gurski and me. The proofs for computing a minimum

Steiner path cover on directed co-graphs were developed by me and Jochen Rethmann in

close collaboration, supported by Frank Gurski. Additionally, my part was especially giving

the idea, how the forbidden subdigraph reduce the problem on directed co-graphs. Jochen

Rethmann was responsible for the algorithms (such that I left them out in this work).

169

170 CHAPTER 10. APPENDIX

Computing Directed Steiner Path Covers [GHK+20a]

F. Gurski, S. Hoffmann, D. Komander, C. Rehs, J. Rethmann, and E. Wanke

For my contribution see above.

Exact Solutions for the Steiner Path Problem on Special Graph Classes [GHK+20b]

F. Gurski, S. Hoffmann, D. Komander, C. Rehs, J. Rethmann, and E. Wanke

This results were developed in discussion with all of the authors on which I took part. I also

helped with the final completion of the work.

Oriented Vertex and Arc Coloring of Edge Series-parallel Digraphs [LGK21]

M. Lindemann, F. Gurski, and D. Komander

In this paper I was included in developing the edge coloring results (the oriented chromatic

index), while the vertex coloring part was done by Marvin Lindemann and Frank Gurski. I

developed the proof of Lemma 7.3.25 with support of Frank Gurski.

Homomorphisms to Digraphs with Large Girth and Oriented Colorings of Min-

imal series-parallel digraphs [GKL21b]

F. Gurski, D. Komander, and M. Lindemann

In this work I guided the research assistant Marvin Lindemann, who developed the results.

Frank Gurski wrote it up and I did the proof reading work.

Acyclic Coloring Parameterized by Directed Clique-width [GKR21a]

F. Gurski, D. Komander, and C. Rehs

This work was mainly grown by Frank Gurski and me, we developed the results and proofs

about coloring directed co-graphs together. Frank Gurski developed the main results about

the directed clique-width parameterization and proofs and I supported him. I presented the

results at the CALDAM 2021 conference.

Oriented Coloring of msp-digraphs and Oriented Co-graphs [GKL20]

F. Gurski, D. Komander, and M. Lindemann

In this paper I have done some important preliminary work for the main theorem 7.3.8,

since we started with a hypothesis for the minimum oriented coloring number of 3, which I

increased step by step up to 7. The final proof of this result was subsequently constructed by

10.1. CONTRIBUTIONS 171

Marvin Lindemann. Additionally, I was responsible for the proof of the lemma 7.3.10 with

support of Frank Gurski.

Efficient Computation of the Oriented Chromatic Number of Recursively De-

fined Digraphs [GKL21a]

F. Gurski, D. Komander, and M. Lindemann

Same as in the corresponding conference paper [GKL20].

How to Compute Digraph Width Measures on Directed Co-Graphs [GKR21b]

F. Gurski, D. Komander, and C. Rehs

This journal version is an extended summary of the work of papers [GR18] and [GKR19b]

which were presented at the conferences FCT 2019 and COCOON 2018. Since there was a

major mistake in the proof of the directed tree-width results in paper [GR18], I was part of the

intense correction process. We fixed it by developing some lemmata and claims, where I was

part of the process of constructing and proving them. The directed path-width results were

from [GR18], so this result is the work of Frank Gurski and Carolin Rehs. For the remaining

results, which were from [GKR19b], read below.

Solutions for Subset Sum Problems with Special Digraph Constraints [GKR20b]

F. Gurski, D. Komander, and C. Rehs

This is an extended journal version of the conference paper [GKR20c]. The results and proofs

of this work have been developed in close collaboration with Frank Gurski. Carolin Rehs

only helped with some proof reading.

Subset Sum Problems with Special Digraph Constraints [GKR20c]

F. Gurski, D. Komander, and C. Rehs

The results and proofs of this work have been developed in collaboration with Frank Gurski.

Carolin Rehs only helped with some proof reading.

The Knapsack Problem with Special Neighbor Constraints on Directed Co-

graphs [GGK22]

St.J. Goebbels, F. Gurski, and D. Komander

I was part of the early development process of the ideas which based on our paper from

[GKR20c].

Characterizations for Special Directed Co-graphs [GKR19a]

F. Gurski, D. Komander, and C. Rehs

The results and proofs in this paper are completely from my master thesis, such that they

are not part of this work. Here, we just give a short overview about the results, since they

are interesting compared to the further results in this work. Nevertheless, we did some

further research on this topic, which is included in this work as well as it is published in the

corresponding journal paper [GKR21c].

On Characterizations for Subclasses of Directed Co-Graphs [GKR21c]

F. Gurski, D. Komander, and C. Rehs

This is an extended journal version of our paper [GKR19a]. For the contribution of the results

and proofs of the conference version of this paper [GKR19a], see above. The remaining part

was proceeded later in close collaboration with Frank Gurski.

Computing Digraph Width Measures on Directed Co-Graphs [GKR19b]

F. Gurski, D. Komander, and C. Rehs

This work was written in collaboration with Carolin Rehs and Frank Gurski. Since the results

and proofs are already part of my master thesis, I here only give an overview about the results

as they are interesting in the context of the further results in this work.

Oriented Coloring on Recursively Defined Digraphs [GKR19c]

F. Gurski, D. Komander, and C. Rehs

My part of this work was the correctness proof of Theorem 3.3.15 (Theorem 7 in the original

work) with some support of Carolin Rehs. Apart from that I only helped with some minor

support at the end of the process.

10.2. AFFIRMATION IN LIEU OF AN OATH 173

10.2 Affirmation in lieu of an oath

Ich versichere an Eides statt, dass die Dissertation von mir selbständig und ohne unzulässige

fremde Hilfe unter Beachtung der „Grundsätze zur Sicherung guter wissenschaftlicher Praxis

an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist.

	Introduction
	Basic Definitions
	Notations
	Graph Parameters
	Directed Graph Classes

	Recursive Digraph Classes
	Introduction
	Undirected Recursive Graph Classes
	Co-graphs
	Distance-Hereditary Graphs
	Series-Parallel Graphs
	Subclasses of Directed Co-graphs

	Directed Co-graphs
	Definition of Directed Co-graphs
	Oriented Co-graphs
	Extended Directed Co-graphs
	Isomorphism Problem on Oriented Co-graphs

	Subclasses of Directed Co-graphs
	Oriented Threshold Graphs
	Threshold Digraphs and Ferres Digraphs
	Further Subclasses of Directed Co-graphs

	Twin-dh Digraphs
	Distance-Hereditary Digraphs
	Motivation of Defining a New Class
	Properties
	Sub- and Superclasses
	Characterization by Forbidden Induced Subdigraphs

	Directed SP-graphs
	MSP-digraphs
	Series-parallel Digraphs
	Series-parallel Partial Order Digraphs
	Properties of Series-parallel Partial Order Digraphs
	ESP-digraphs

	Hierarchy

	Directed Graph Parameters on Special Digraphs
	Parameters on Semicomplete Digraphs
	Parameters on General Digraphs
	DAG-width and Directed Path-width on Semicomplete Digraphs
	Escaping Pursuit in the Jungle: Directed Path-width, Directed Tree-width and Kelly-width
	Directed (Linear) Clique-width and Directed Path-width on Semicomplete Digraphs
	Summary and Conclusion

	Parameters on (Extended) Directed Co-graphs
	Directed Path-width on (Extended) Directed Co-graphs
	Directed Tree-width on (Extended) Directed Co-graphs
	Further Directed Width Measures on Extended Directed Co-graphs
	Overview of Directed Width Measures on Extended Directed Co-graphs

	Parameters on Twin-dh Digraphs
	Directed Graph Parameters with a Tree-like Decomposition
	Directed Clique-width
	Conclusion

	NP-hard Problems: SSG and SSGW
	Introduction
	Problem Definition
	Basic Results
	SSG and SSGW on Directed Co-graphs
	Subset Sum with Digraph Constraint (SSG)
	Subset Sum With Weak Digraph Constraint (SSGW)

	SSG and SSGW on Series-parallel Digraphs
	Subset Sum with Digraph Constraint (SSG)
	Subset Sum with Weak Digraph Constraint (SSGW)

	Conclusions
	An Outlook to the Knapsack Problem with Special Neighbor Constraints

	NP-hard Problems: Directed Steiner Path Covers
	Introduction
	Normal form for Directed Steiner Path Covers
	Computing the Optimal Number of Paths
	Computing the Optimal Number of Steiner Vertices
	Computing an Optimal Directed Steiner Path Cover
	Conclusion

	NP-hard Problems: Digraph Coloring
	Introduction
	Undirected Graph Coloring
	Oriented Coloring
	Oriented Coloring on MSP-digraphs
	Oriented Coloring on Transitive Acyclic Digraphs
	Oriented Coloring on Oriented Co-graphs
	Oriented Coloring on ESP-digraphs

	g-oriented r-coloring
	Oriented Arc-coloring
	Oriented Arc-coloring of ESP-digraphs
	Oriented Arc-coloring of MSP-digraphs

	Acyclic Coloring
	Acyclic Coloring on Directed Co-graphs
	Acyclic Coloring Parameterized by Directed Clique-width

	Conclusions and Outlook

	Conclusions and Outlook
	Bibliography
	Appendix
	Contributions
	Affirmation in lieu of an oath

