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Zusammenfassung

Meine Motivation für diese Arbeit sind die folgenden Fragen. Sei f : X → Y
ein Morphismus von Schemata und β ∈ Br′(Y ) eine kohomologische Brauer-
Klasse so, dass f ∗β ∈ Br′(X) von einer Azumaya-Algebra A auf X repräsen-
tiert wird. Gibt es eine Azumaya-Algebra B auf Y so, dass f ∗B � A ? Und
repräsentiert B dann auch β?

Sei Az(X) die Kategorie der Azumaya Algebren auf X. Zu einem gegebe-
nen kartesischem und kokartesischem Quadrat

X ′ w ��

g

��

X

f

��

Y ′
u

�� Y,

wobei f ein affin und u eine abgeschlossene Einbettung sei, konstruieren wir
eine adjungierte Äquivalenz von Kategorien

Az(Y )
G ��

Az(Y ′)×Az(X′) Az(X),
F

��

wobei die rechte Seite das kategorielle Faserprodukt, konstruiert via Pull-
backs, bezeichnet. Für die Konstruktion verwenden wir ein Ergebnis von
Ferrand [21], wo er eine derartige adjungierte Äquivalenz für die Kategorien
der endlichen lokal freien Garben konstruiert.

Unter Nutzung der ersten Resultats zeigen wir, dass, wenn f : X → Y
eine endliche Modifikation in endlichen vielen abgeschlossenen Punkten ist,
dann wird eine kohomologische Brauer Klasse β ∈ Br′(Y ) genau dann von
einer Azumaya Algebra auf Y repräsentiert, wenn ihr Pullback f ∗β von einer
Azumaya Algebra auf X repräsentiert wird.

Im ersten Kapitel der Dissertation werden Azumaya Algebren und Brauer
Gruppen eingeführt. Wir geben Beispiele und definieren die Brauer Abbil-
dung. Im zweite Kapitel wird das Ergebnis von Ferrand diskutiert. Schließlich
werden im dritten Kapitel die Hauptresultate bewiesen.
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Summary

My motivation for this thesis are the following questions: For a morphism
of schemes f : X → Y , given a cohomological Brauer class β ∈ Br′(Y ) such,
that f ∗β ∈ Br′(X) is represented by an Azumaya Algebra A on X. Does
there exist an Azumaya Algebra B on Y such that f ∗B � A ? And does B
then also represent β?

Let Az(X) be the category of Azumaya algebras on X. Given a cartesian
and cocartesian square of schemes

X ′ w ��

g

��

X

f

��

Y ′
u

�� Y,

where f is affine and u a closed immersion, we will construct an adjoint
equivalence of categories

Az(Y )
G ��

Az(Y ′)×Az(X′) Az(X),
F

��

where the right hand side denotes the fiber product category constructed
via pullbacks. For this construction we use a similar result by Ferrand [21],
where he constructs such an adjoint equivalence for the categories of finite
locally free sheaf.

Using the first result, we show, that if f : X → Y is a finite modification
in finitely many closed points, then a cohomological Brauer class β ∈ Br′(Y )
is represented by an Azumaya algebra on Y if and only if the pullback f ∗β
is represented by an Azumaya algebra on X.

The first chapter of this thesis give an introduction to Azumaya algebras
and Brauer groups. We give examples and define the Brauer map. The
second discusses the result by Ferrand. Finally, the third chapter presents
the proofs of the main results.
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Introduction

What we today know as the Brauer group was introduced by Richard Brauer
in [11]. He showed that it is a torsion abelian group. The term Brauer group
was first coined by Hasse as "R. Brauersche Algebrenklassengruppe" in a
paper dedicated to Emmy Noether’s fiftieth birthday [37]. An interesting
survey on the early theory of the Brauer group as developed by Albert,
Brauer, Hasse and Noether is [61].

Azumaya generalized central simple algebras and the Brauer group to
local rings [6]. Today, these generalizations and their successors are called
Azumaya algebras in his honor. Auslander and Goldman further general-
ized this ideas to arbitrary rings in [4]. In "Le groupe de Brauer I, II, III"
[29],[30],[31], Grothendieck developed the theory of Azumaya algebras and
Brauer groups over schemes. Grothendieck generalized the Brauer group in
two ways: Once as equivalence classes of Azumaya algebras over a scheme
X, defining the Brauer group Br(X), and secondly with cohomology theory,
defining the cohomological Brauer group Br′(X) = H2(Xet,Gm)tors. These
two groups are connected by an injective map called the Brauer map.

The Brauer group has a variety of applications. Noted is for example the
Brauer-Manin obstruction to the Hasse principle. Given some Diophantine
equation every rational solution also yields a real and p-adic solution. The
Hasse principle asks whether the reverse can be done, or more accurate, what
the obstruction to the reverse is. When can real and p-adic solutions be
patched to a rational one? In 1970, Manin [52] showed that the obstruction
for all know counter examples to the Hasse principle at that time could be
expressed in terms of Brauer classes. When X is a separated scheme of finite
type over Q, that is given by a Diophantine equation, the obstruction of X to
have a Q-rational point can be described as an element in the Brauer group.

The Brauer group can also be used to describe an obstruction in relation
to the Picard scheme. Let X be a proper k-scheme that is geometrically
reduced and geometrically connected, and PicX/k its Picard scheme. Using
the Leray-Serre spectral sequence, one obtains an exact sequence of abelian
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groups
0 −→ Pic(X) −→ PicX/k(k) −→ Br(k) −→ Br(X).

For a k rational point of the Picard scheme to come from a line bundle in
Pic(X) it needs to be mapped to zero in Br(k). The obstruction lies in the
Brauer group. There is a good survey by Kleiman [44] on the Picard group,
which treats the more general case of this obstruction with regard to the
relative Picard functor.

Another application is due to Artin and Mumford. They used the Brauer
group to construct an example of a unirational but not rational variety over
the complex numbers [2]. Here a variety means an separated scheme X of
finite type over some field. Such a scheme is called unirational if it is defined
over an algebraically closed field k and there exist an embedding k(X) ⊂
k(X1, . . . , Xn). It is called rational if this embedding is an isomorphism.
The question whether these two cases are equivalent is know as the Lüroth
problem and the Brauer group gives one way to construct a counterexample.

The Brauer group Br(k) of a field k consists of equivalence classes of cen-
tral simple algebras over k. Two such algebras are seen as equivalent if they
are isomorphic after tensoring with some matrix algebra Mn(k). The group
operation is given by the tensor product and the class of the matrix algebras
themselves is the trivial class. Every central simple algebra is isomorphic
to the matrix algebra of some central division ring, so it is equally possible
to define the Brauer group as equivalence classes of such. Furthermore, a
central simple algebra becomes isomorphic to a matrix algebra Mn(K) after
some field extension K/k, so one can view them as twisted forms of matrix
algebras. The best know non-trivial example of a central simple algebra is
probably the Hamilton quaternions H over the real number, which where
discovered by Hamilton in 1843 [33], [34]. In fact over R there exist no other
central simple algebra that is not a matrix algebra.

An Azumaya algebra over a local ring R is an associative R-algebra with
identity, that is free of finite rank as an R-module, such that the canonical
morphism

A �R A◦ −→ EndR-mdl(A)

is an isomorphism. This holds if and only if A becomes a central simple
algebra over the residue field of R, which gives the connection to the Brauer
group of a field. As with central simple algebras two Azumaya algebras are
declared to be equivalent if they are isomorphic after tensoring with some
matrix algebra Mn(R). Again, the Brauer group Br(R) is defined with the
tensor product as the group operation, and the matrix algebras determine
the trivial class. An Azumaya algebra A on some scheme X is sheaf of
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OX-algebras, that is finite locally free as a OX-module, such that Ax is an
Azumaya algebra over the local ring OX,x for every point. Following the
theme, the equivalence relation is given by tensoring with endomorphism
sheaves EndOX

(E ) of some locally free sheaf E . The equivalence classes of
Azumaya algebras form the Brauer group Br(X); group operation is again
given by the tensor product, and the trivial class consists of sheaves of the
form EndOX

(E ).
One of Grothendieck’s insights was to link Azumaya algebras and Brauer

groups to cohomology theory. The link is possible since the Brauer group of
a strictly Henselian local ring is trivial. This implies that every Azumaya al-
gebra A on a scheme X is trivialized by some étale cover (Ui → X) such that
A|Ui

� Mni
(OUi

). An Azumaya algebra is thus a twisted form of Mni
(OUi

)
and these can be described by classes of 1-cocycles in Ȟ1(Xet, PGLn) with
PGLn(U) = Aut(Mn(OU)). The connection of the cohomological Brauer
group

Br′(X) = H2(Xet,Gm)tors

to the "classical" Brauer group Br(X) arises from the short exact sequence

1 −→ Gm −→ GLn −→ PGLn −→ 1.

Using non abelian cohomology gives maps Ȟ1(Xet, PGLn) → H2(Xet,Gm)
which combine to an injective map, the Brauer map

δ : Br(X) → Br′(X).

We say that a cohomological Brauer class is represented by an Azumaya
algebra, if the Brauer class of the Azumaya algebra is mapped to it.

Grothendieck asked whether the Brauer map is surjective. The question
gains relevance since it is usually quite hard to calculate a Brauer group. On
the other hand, for the cohomological Brauer group one can use the whole
machinery of cohomology theory. The question whether the Brauer map is
bijective is still open in the general case. Positive answers where given by
Grothendieck himself for schemes of dimension ≤ 1 and for regular surfaces
[30]. The result which is perhaps best known, is due to Gabber. He proves
Br(X) = Br′(X) for schemes that admit an ample invertible sheaf. Gabber’s
proof is unpublished but there exists a proof by de Jong [13]. However the
Brauer map is not always surjective. A counterexample for a non-separated
normal surface was given by Edidin, Hassett, Kresch and Vistoli ([18] Tag
3.11).

For a morphism of schemes f : X → Y the pullback of an Azumaya
algebra B on Y is an Azumaya algebra on X. One wonders when the reverse
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is true. For a morphism of schemes f : X → Y , given a cohomological Brauer
class β ∈ Br′(Y ) such, that f ∗β ∈ Br′(X) is represented by an Azumaya
Algebra A on X. Does there exist an Azumaya Algebra B on Y such that
f ∗B � A ? And does B then also represent β?

For the first question there are positive answers if f is a flat and surjective
morphism. We will discuss results of this kind. In the general case it is hard
to answer the question. We will show the following:

Denote by Az(X) the category of Azumaya algebras on a scheme X.
Given a cartesian and cocartesian square of schemes

X ′ w ��

g

��

X

f

��

Y ′
u

�� Y,

where f is affine and u a closed immersion, we will construct functors

Az(Y )
G ��

Az(Y ′)×Az(X′) Az(X),
F

��

where the right hand side denotes the fiber product category constructed via
pullbacks. This means, that the objects of this category are triples (B′, τ,A ),
with B′ ∈ Az(Y ′), A ∈ Az(X) and τ : g∗B′ → w∗A is an isomorphism.

This construction leads to the first main result of this thesis:

Theorem. (Theorem 3.2) The functors F and G are an adjoint equivalence
of categories

Az(Y )
G ��

Az(Y ′)×Az(X′) Az(X).
F

��

Furthermore, a quasicoherent OY -algebra B is an Azumaya algebra on Y if
and only if u∗B ∈ Az(Y ′) and f ∗B ∈ Az(X).

Since pullbacks of Azumaya algebras are Azumaya algebras we see that
G(B) = (u∗B, σB, f

∗B), with σB : g∗u∗B → w∗f ∗B an isomorphism,
defines an element in the fiber product category. The trouble lies in the
other direction. We use a result by Ferrand [21] to map a triple (B′, τ,A ) to
a finite locally free sheaf on Y . Then we show that there is a canonical way
to equip this sheaf with an algebra structure. It is possible to check locally
that this algebra is an Azumaya algebra. The way we construct F and G
furthermore implies that they are an adjoint equivalence of categories.

The theorem allows us to construct an Azumaya algebra on Y by con-
structing Azumaya algebras on Y ′ and X that agree after pullback to X ′. So
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given some Azumaya algebra A on X, it is enough to find an Azumaya alge-
bra B′ on Y ′ that is isomorphic to A after pullback to X ′, so g∗B′ � w∗A .
Then the adjoint equivalence of categories determines an Azumaya algebra
on Y .

The proof of the theorem relies on the fact that Azumaya algebras are
finite locally free sheaves. In his work, Ferrand constructs an adjoint equiv-
alence of categories

Loc(Y )
T ��

Loc(Y ′)×Loc(X′) Loc(X),
S

��

for finite locally free sheaves. Ferrand starts by constructing an adjunction
between the categories of quasicoherent sheaves and the respective fiber prod-
uct category. Calculating the fixed points of this adjunction, we will point
out why flat OX-modules, and then of course finite locally free sheaves, are
a natural choice of subcategories, when one wants to construct an adjoint
equivalence of categories. Ferrand’s original statement is about the affine
case (Theorem 2.13) but since all involved morphism are affine it is clear
how to prove the statement for schemes.

For the second question, we can give the following answer, which consti-
tute the second main result of this thesis:

Theorem. (Theorem 3.3) Let f : X → Y be finite modification in finitely
many closed points. A cohomological Brauer class β ∈ Br′(Y ) is represented
by an Azumaya algebra on Y if and only if the pullback f ∗β is represented
by an Azumaya algebra on X.

A finite modification f : X → Y in finitely many closed points means,
that f is finite, there are dense open subsets U ⊂ X and V ⊂ Y such that
f(U) ⊂ V , f|U : U → V is an isomorphism and Y ′ = Y \ V consists of only
finitely many closed points Y ′ = {y1, · · · , yn}. Furthermore, the image of f
shall be schematically dense, i.e. the map OY → f∗OX is injective.

So we have Y ′ = Spec(S) for some Artin ring S. The finite fibers
f−1(yi) = Spec(Ri) have to be Artin rings Ri. Set R =

⊕
Ri. This al-

lows us to construct a cartesian and cocartesian square

Spec(R) w ��

g

��

X

f

��

Spec(S) u
�� Y.
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Here u and w are closed embeddings. We call such a square a conductor
square, since the closed embeddings are both determined by the conductor
ideal C = AnnOY

(f∗OX/OY ).
We can apply Theorem 3.2 to this square. Given a cohomological Brauer

class α = f ∗β, that is represented by an Azumaya algebra on X, we explicitly
construct an Azumaya algebra B on Y , such that f ∗B represents α. Thanks
to the unique structure of the commutative square we can use étale cohomol-
ogy to show that the pullback map f ∗ : Br′(Y ) → Br′(X) is injective. This
shows that the Azumaya algebra B does represent the cohomological Brauer
class β.

Outline of structure. The first chapter gives an introduction to Brauer
groups. We introduce central simple algebras and their Brauer groups. Then,
we continue with Azumaya algebras over local rings and their close connection
to central simple algebras. In particular, this includes the fact that a Brauer
group of a strictly Henselian local ring is zero (Corollary 1.20). We also show
how Azumaya algebras behave under restriction and extension of scalars for
a morphism of rings R → S. We define Azumaya algebras for schemes and
generalize facts about Azumaya algebras on local rings. We define the Brauer
group of a scheme and show that the pullback of an Azumaya algebra is an
Azumaya algebra (Lemma 1.30). We also give some answers for the other
direction. We will not treat Azumaya algebras on general rings separately
but view them as a special case of Azumaya algebras over an affine scheme.
Finally we connect Azumaya algebras to étale cohomology and define the
Brauer map. We include a discussion on what is know on the bijectivity of
the Brauer map.

The second chapter is a discussion of Ferrand’s results in [21]. We start by
stating the necessary category theory, with a focus on adjunctions and how
to construct an adjoint equivalence of categories from them. We continue
by showing some facts about fiber products of rings and modules. After
this preparation we thoroughly discuss Ferrand’s results ([21] Théorème 2.2)
in the affine case (Theorem 2.13). Via the fixed points of the adjunction,
we explain why the category of flat modules seem to be a natural choice
of subcategory, if one wants to obtain an adjoint equivalence of categories
(Proposition 2.12). We explain how to check whether a commutative square
of schemes is cartesian as well as cocartesian, and show that a cartesian and
cocartesian square of rings gives one of affine schemes (Proposition 2.14).
Furthermore, we define finite modifications (Definition 2.15) and explain how
to attach a cartesian and cocartesian square of schemes, which we call a
conductor square, to them. In the last section, we show how to generalize
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the affine results to schemes and sheaves, and prove that we also have an
adjoint equivalence of categories in the case of schemes (Theorem 2.18 and
Theorem 2.20).

The third chapter contains the main results. Having done thorough
groundwork, we can construct an adjoint equivalence of categories for cate-
gories of Azumaya algebras and prove Theorem 3.2. Then we move to the
case where f : X → Y is finite modification in finitely many closed points.
We discuss the structure of Artin rings and their Brauer groups, which play
an important part in the proof of Theorem 3.3. The proof gives an explicit
construction of an Azumaya algebra B that represents β. Finally, we show
how the theorem can be applied to the S2-ization of a surface.

The Appendix contains a summary of (étale) cohomology theory of group
schemes and twisted forms.

Acknowledgments. I would like to thank the many people who made it
possible for me to write this thesis. First and foremost, I would like to thank
my adviser Professor Dr. Stefan Schröer for the interesting and challenging
topic, the many discussions on mathematics, his invaluable advice, for sharing
his enthusiasm on mathematics, and for giving me the opportunity to write
this thesis. I also wish to thank Professor Dr. Marcus Zibrowius for agreeing
to write the second report on this thesis.

Furthermore, I would like to thank all my colleagues at the Mathemati-
cal Institute of the Heinrich-Heine-University Düsseldorf, who made working
here both pleasant and productive experience. It was a pleasure to work with
you. In particular, I would like to thank my colleagues Benedikt Schilson,
Saša Novaković and Jakob Bergqvist, who were always willing to listen to
and discuss my mathematical ideas. Special thanks to Jakob for checking my
English; the remaining errors are solely my own. Moreover, I thank our sec-
retaries Ulrike Alba, Petra Simons and Sabine May for their organizational
backing.

Last, but definitely not least, my deepest thanks go to my family and
friends, for always being there, for their support of my mathematical en-
deavors; and for not running away when I sometimes could not stop myself
talking about them.

This research was conducted in the framework of the research training
group GRK 2240: Algebro-Geometric Methods in Algebra, Arithmetic and
Topology, which is funded by the DFG.

7



Danksagung. Ich möchte den vielen Menschen danken, die es mir er-
möglicht haben diese Arbeit zu schreiben. An erster Stelle gilt mein Dank
meinem Betreuer Professor Dr. Stefan Schröer, für das interessante und her-
ausfordernde Thema, die vielen fachlichen Gespräche, seinen unschätzbaren
Rat, dafür dass er seine Begeisterung für die Mathematik geteilt hat und für
die Gelegenheit diese Dissertation zu schreiben. Ich danke Professor Dr. Mar-
cus Zibrowius dafür, dass er sich als zweiter Berichterstatter zur Verfügung
gestellt hat.

Ich danke all meinen Kolleginnen und Kollegen am Mathematischen In-
stitut der Heinrich-Heine-Universität, die das Arbeiten sowohl angenehm als
auch produktiv gemacht haben. Es war mir eine Freude mit Euch zusam-
menzuarbeiten. Insbesondere möchte ich meinen Kollegen Benedikt Schilson,
Saša Novaković and Jakob Bergqvist danken, die immer bereit waren sich
meine mathematischen Ideen anzuhören und sie mit mir zu diskutieren. Vie-
len Dank an Jakob dafür, dass er mein Englisch korrigiert hat; die verbleiben-
den Fehler sind allein meine Verantwortung. Außerdem danke ich unseren
Sekretärinnen Ulrike Alba, Petra Simons and Sabine May für Ihre organ-
isatorische Rückendeckung.

Zum Schluss gilt mein herzlicher Dank meiner Familie und meinen Freun-
den. Dafür das Ihr immer für mich da seid, dass Ihr meine mathematischen
Unternehmungen unterstützt habt; und dafür das Ihr nicht weggelaufen seid,
wenn ich es mir nicht verkneifen konnte von selbigen zu erzählen.

Diese Arbeit ist im Rahmen des von der DFG geförderten Graduiertenkol-
legs GRK 2240: Algebro-geometrische Methoden in Algebra, Arithmetik und
Topologie entstanden.

8



Chapter 1

Brauer groups

In this chapter we will discuss Azumaya algebras and Brauer groups. The
presented facts can be found in most textbooks. A good introduction to
the subject can be found in the book “Étale cohomology” by Milne [55].
As the name suggests Milne’s book also includes all required background
on étale cohomology. For central simple algebras most facts can be found
in “Central simple algebras and Galois cohomology” by Gille and Szamuely
[24]. We will quote the standard results from these two books. Other sources
include books by Colliot-Thélène and Skorobogatov [12], Jahnel [42], Knus
and Ojanguren [45]; and of course the work of Grothendieck [29],[30],[31].
For a view on Azumaya algebras as central separable algebras over a ring
refer to Auslander and Goldman [4] and DeMeyer and Ingraham [15].

1.1 Central simple algebras
We give a short reminder about facts on central simple algebras. Let k be a
field. In the following a k-algebra A shall always be an associative algebra
with an identity element. This means, that A is a k-vector space, equipped
with a k-bilinear map A × A → A, defining a multiplication on A, which is
associative and has an identity element. The center

Z(A) = {x ∈ A | ax = xa for all a ∈ A}
denotes the subring of A whose elements commute with all elements in A.

Definition 1.1. Let k be a field and A a k-algebra. The algebra A is called
simple if the only two-sided ideals in A are the trivial ideals 0 and A. We
say that A is central if its center Z(A) equals k. A k-algebra A is called a
central simple algebra if it is finite dimensional as a k-vector space, and both
central and simple over k.

9



Every field is a central simple algebra over itself. Every non trivial field
extension is simple but not central. Over any field k the matrix algebras
Mn(k) are an example of a central simple algebras and we have Mn(k) �k

Mm(k) � Mnm(k). Of course not all central simple algebras are matrix
algebras.

For example over the real numbers R we have the Hamilton quaternions

H = R · 1 � R · i � R · j � R · k,
with relation ij = −ji = k, and i2 = j2 = −1. They are a central sim-
ple algebra over R, but they are not isomorphic to a matrix algebra. For
a, b, c, d ∈ R, we have

(a1 + bi+ cj + dk)(a1− bi− ci− dk) = a2 + b2 + c2 + d2 ∈ R≥0,

which shows that non-zero elements of the Hamilton quaternions have a
multiplicative inverse. So H �= Mn(R). Note that even though we can define
an inclusion C → H, (a+ bi) �→ a+ bi, the relation ij = −ji ensures that C
is not in the center.

This construction can be generalized to every field k with char(k) �= 2:
A quaternion algebra Qk(a, b) is generated over k by the basis 1, i, j, ij with
relations

i2 = a, j2 = b, ij = −ji,

where a, b ∈ k×. Quaternion algebras are central simple over k. As a k-vector
space they are 4-dimensional. Note that in general quaternion algebras can
be isomorphic to matrix algebras.

Quaternion algebras are a special case of cyclic algebras. Such a algebras
are constructed as follows: Let k be a field and K/k be a cyclic Galois field
extension; such an extension has a cyclic Galois group G = Gal(K/k) of order
n. We fix a group isomorphism χ : Z/n → G, which in turn fixes σ = χ(1).
This σ generates G; note that there exist some isomorphism χ : Z/n → G
with χ(1) = σ for every generator σ ∈ G. Finally we choose an x ∈ k×.

Now we can construct a k-algebra, which we denote by Dk(χ, x). For
the additive group we define an n-dimensional K vector space with basis
e0 = 1, e, e2, . . . , en−1 by

Dk(χ, x) =
n−1⊕
i=0

Kei.

We define multiplication with the relations

en = x and λe = eσ(λ), for all λ ∈ K.

10



In other words Dk(χ, x) is generated as a k-algebra by K and e subjected to
the relations above. It is straightforward to check that this in fact defines an
associative k-algebra, that is then a central simple k-algebra. We call such an
algebra a cyclic algebra. Note that Dk(χ, x) has dimension n2 as a k-vector
space.

For example we choose k = R, K = C, χ : Z/2 → G such that σ ∈
Gal(C/R) is the conjugation automorphism σ(z) = z̄ for all z ∈ C, and
x ∈ R×. Then

Dk(χ, x) = {z + we | z, w ∈ C},
with e2 = x and ze = ez̄. In particular let z + we be non trivial, we have

(z + we)(z − we) = |z|2 − x|w|2 ∈ R.

For x < 0 the right side is positive and we can divide by it, to get 1 ∈ R.
So

(z + we)−1 = (z − we)(|z|2 − x|w|2)−1.

Thus every non zero element of the algebra is invertible. We will discuss
such algebras, called division algebras, at the end of the section. For now
we see that Dk(χ, x) � H. To see this extend the inclusion C → H, to a
map φ : Dk(χ, x) → H by setting φ(e) =

√|x|j and check that this is an
isomorphism.

For x > 0 not every element of Dk(χ, x) is invertible. Instead we have an
isomorphism Dk(χ, x) � M2(R). For every element z + we ∈ Dk(χ, x) one
writes z = a+bi and w = c+di with a, b, c, d ∈ R. As before one extends the
usual embedding C → M2(R) to a map of R-algebras φ : Dk(χ, x) → M2(R)
by setting

φ(e) =

(√
x 0
0 −√

x

)
, so φ(a+bi+γe+γie) =

(
a+ c

√
x b− d

√
x

−b− d
√
x a− c

√
x

)
.

Now φ is injective and dimk(Dk(χ, x)) = 4 = dimk(M2(R)), which shows
that φ is an isomorphism (for details, see [67] Example 2.1).

We would like to see that the tensor product A�kB of two central simple
algebras A and B is again a central simple algebra over k. This is a direct
consequence of the following theorem.

Theorem 1.2. ([24] Theorem 2.2.1) Let k be a field and A a finite dimen-
sional k-algebra. Then A is a central simple algebra if and only if there exist
a finite field extension K/k and an integer n > 0 so that A �k K � Mn(K).
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We call such a finite field extension K/k a splitting field, which splits the
central simple algebra A. This theorem also shows that the dimension of a
central simple algebra A as a vector space is always a square of some positive
integer d. We call d the degree of A. Furthermore, over an algebraically
closed field k̄ every central simple algebra has to be of the form Mn(k̄).

We can now give anther important example of a central simple algebra.
Let A be any k-algebra. Define the opposite algebra A◦ of A as a k-algebra
which has the same underling vector space, but the multiplication is defined
as the opposite of the multiplication in A, i.e. x ∗A◦ y = y ∗A x. If A is a
central simple algebra the opposite algebra A◦ is also central simple. The
algebra A � A◦ is central simple, more so:

Proposition 1.3. For a central simple algebra A of degree d the morphism
of k-algebras

A �k A
◦ −→ Endk(A),

∑
ai � bi �−→ (x �→

∑
aixbi)

is an isomorphism. Consequently A �k A
◦ � Md(k).

Note that the multiplication aixbi is defined in A.

Proof. The map is non-zero, take for example ai = bi = 1. Since A � A◦

is simple it has trivial kernel and is injective. Since both sides have the
same dimension as a k-vector space this is enough to show that it is an
isomorphism.

This isomorphism will play a central part in the definition of Azumaya
algebras in the next section. Keep in mind that A�kA

◦ � Endk(A) � Md(k).
We have defined a composition of two central simple algebras via tensor

product and an inverse with opposite algebra. We want to use this to define
a group. We declare two central simple algebras over a field k as equivalent
A ∼ B if there exist n,m ≥ 1 such that there exist a morphism of k-algebras
A�Mn(k) � B�Mm(k). One can see that this is an equivalence relation. For
transitivity one checks that if A1, A2, B1 and B2 are central simple algebras
over k with A1 ∼ B1 and A2 ∼ B2 then A1 �A2 ∼ B1 �B2. This holds true
because Mn(k) � Mm(k) = Mnm(k). Write [A] for the equivalence class.

Theorem 1.4. (Brauer) The set of all equivalence classes equipped with the
tensor product is an abelian group.

Proof. The neutral element is the class [k], the class consists of all matrix
algebras Mn(k). The group is associative and commutative since the tensor
product is. An inverse element to a class [A] is given by the class of the
opposite algebra [A◦].

12



This group is called the Brauer group of k and denoted as Br(k). We call
the class of the neutral element [k] the trivial class. Br(−) can be seen as a
functor from the category of fields to (Ab).

So far almost everything we have said about Brauer groups can be gener-
alized to rings. There is another useful description due to Wedderburn that
can not be generalized but will nevertheless be useful later on.

Definition 1.5. Let D be a non-zero algebra over a field k. If every non-zero
element of D has a multiplicative inverse we call D a division algebra.

The center of a division algebra is a field and D is then a central simple
algebra over K = Z(D). More so Mn(D) is also a central simple algebra
over K. Take note that in general it is possible that k �= Z(D), for example
every finite field extension of k is a division algebra. Division algebras are
thus examples of simple algebras that are not necessarily central. But k lies
in the center of D, so K/k is a finite field extension. We are of course mostly
concerned with division algebras viewed as central simple algebras over their
center, i.e. central division algebras over some field k.

A useful way to construct division algebras is the following: Let M be a
simple R-module. By Schur’s lemma ([24] Lemma 2.1.5), the endomorphism
ring D = EndR(M) is a division ring. The proof of Schur’s lemma uses the
fact that the kernel and the image of some endomorphism f : M → M is
a submodule of M . Since M is simple it is either ker(f) = M , so f = 0;
or ker(f) = 0 and im(f) = M , hence f is an isomorphism. So each non
zero element in D has an inverse. Then D is central simple over the field
K = Z(D). This links central simple algebras to representation theory.

For another example we have already seen that every non-zero element in
the Hamilton quaternions H is invertible, so the quaternions H form a central
division algebra over R. On can show that a quaternion algebra Qk(a, b) over
a field k is either a division algebra or isomorphic to M2(k) ([24] Proposition
1.1.7).

Central simple algebras can be characterized as following:

Theorem 1.6. (Wedderburn)([24] Theorem 2.1.3) Let A be a central simple
algebra over a field k. There exist a central division algebra D over k such that
A � D�Mn(k) � Mn(D). The division algebra is unique up to isomorphism.

Obviously A and D are in the same Brauer class. So this theorem implies
that every Brauer class is represented by a central division algebra. In fact
one could define the Brauer group using this theorem. Furthermore, it follows
that two central simple algebras A and B, that have the same class in Br(k)
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and have the same rank, are already isomorphic to each other; since then
A � Mn(D) � B. Moreover, if for three central simple algebras it holds that
A � C � B � C, this implies A � B.

We can use this to describe the Brauer group over R. The Frobenius
theorem ([38] Chapter 4 Section 3.(3)) shows that the only division algebras
over R are R itself, the complex numbers C and the Hamilton quaternions H.
The complex number are not central over R, so there exist only two different
Brauer classes, which shows that Br(R) = Z/2Z.

Since over an algebraically closed field there exist no finite dimensional
division algebra other than the field itself, this again shows that the Brauer
group of an algebraically closed field is zero ([24] Corollary 2.1.7). We can
improve this with the following result:

Theorem 1.7. ([24] Theorem 2.2.7) Let k be an infinite field and D a central
division algebra over k of degree d. Then D is split by a finite separable field
extension K/k of degree d. Moreover, K can be chosen in the center of D
and is thus a k-subalgebra of D.

For a finite field every finite field extension is separable, so in that case
every central division algebra is split by a finite separable extension as well.
In fact by a theorem of Wedderburn every finite division algebra over a finite
field is a field itself ([24] Remark 6.2.7), so the Brauer group of a finite field
is trivial.

Important for us is that every central division algebra over k is split by
the separable closure ksep. As a direct consequence this also shows:

Corollary 1.8. The Brauer group of a separably closed field is trivial.

Now every finite separable field extension embeds into finite Galois ex-
tension. Together with the fact that a central simple algebra is isomorphic
to Mn(D) for some division algebra and Theorem 1.2 we get:

Corollary 1.9. Let k be a field and A a finite dimensional k-algebra. Then
A is a central simple algebra if and only if there exist a finite Galois extension
K/k and an integer n > 0 so that A �k K � Mn(K).

One can use this describe the Brauer group as isomorphism classes of
twisted forms of central simple algebras over k. In this sense two central
simple algebras are equivalent if the have the same finite Galois extension as
a splitting field; then one central simple algebra is called a twisted form of the
other. This is yet another way to see that the Brauer group of an algebraically
closed field is trivial. More importantly, this opens up the machinery Galois
cohomology theory. It is possible to describe Twisted forms in terms of first
Galois cohomology groups. We will return to and give some details on this
point of view when talking about Azumaya algebras over schemes.

14



1.2 Azumaya algebras over local rings
Let R be any (commutative) ring. An algebra A over R shall be an asso-
ciative algebra with an identity element. The only part that changes from
the definition to an associative algebra over a field, is that we allow a ring
R instead of only fields and A shall be an R-module. Of course an algebra
over a field is also an associative algebra in this sense. This means that A is
an R-module with an R-bilinear map A×A → A, called the multiplication,
such that the multiplication is associative and there is an identity element.
The multiplication does not need to be commutative. The opposite algebra
of A, where multiplication is reversed, is denoted by A◦. We note that A and
A◦ do have the same center.

For the rest of this section let R be a local ring with maximal ideal m
and A an R-algebra.

Definition 1.10. An algebra A over a local ring R is called an Azumaya
Algebra if it is free of finite rank as an R-module and if the R-algebra homo-
morphism

A �R A◦ −→ EndR-mod(A),
∑

ai � bi �−→ (x �→
∑

aixbi)

is an isomorphism.

Note that the multiplication aixbi is defined in A. This homomorphism
always exists. It simply fails to be an isomorphism if A is not an Azumaya
algebra. Furthermore, since an Azumaya algebra A is a free R-module of
finite rank, the map R → A, r �→ 1r is an injection and we can identify R
with a subring in the center of A. We have EndR-mod(A) = Mn(R).

Proposition 1.3 tells us immediately that all central simple algebras are
Azumaya algebras. The obvious question is if the reverse is true? If R = k is
a field, are all Azumaya algebras then central simple algebras? The answer is
positive. An Azumaya algebra over a field is a central simple algebra and we
can use these properties interchangeable. We show even more by describing
the center and the ideals of an Azumaya algebra.

Proposition 1.11. Let A be an Azumaya algebra over a local ring R. Then
R is the center of A. Furthermore, for any ideal I ⊂ R it holds that I =
(IA) ∩ R. And for any ideal J ⊂ A it holds that J = (J ∩ R)A. Finally the
map J �→ J ∩R gives a bijection between ideals of A and ideals of R.

Proof. Let ϕ ∈ EndR-mod(A). Then by the definition of Azumaya algebras
ϕ(x) =

∑
aixbi. Choose a basis x1, x2, . . . , xn of the free R-module A with
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x1 = 1. Define R-linear endomorphisms ϕ1, . . . , ϕn of A by

ϕi(xj) =

{
0 if i �= j,

1 if i = j.

For any x ∈ A we have

x =
∑

rjxj, with rj ∈ R and ϕi(x) = ϕi(
∑

rjxj) = ri.

Let c ∈ Z(A) = Z(A◦) then ϕ(xc) =
∑

aixcbi = ϕ(x)c. Write c =
∑

rixi,
ri ∈ R with respect to the basis of A. Then in particular

c = ϕ1(x1)c = ϕ1(x1c) = ϕ1(c) = r1

and thus c ∈ R.
Let I ⊂ R be an ideal and x ∈ IA. Then x =

∑
rixi with ri ∈ I. We

have x ∈ R if and only if ri = 0 for i > 1. This shows that IA ∩R = I.
Let J ⊂ A be an ideal. It holds that ϕ(J) ⊂ J . Let x ∈ J and write it

with respect to the basis as x =
∑

rixi, with ri ∈ R. Then ϕi(x) = ri but
since ϕi(x) ∈ J this shows ri ∈ J . Thus x ∈ (J ∩R)A.

The map J �→ J ∩R is a bijection since I �→ IA is an inverse.

As a next step, we wish to understand how Azumaya algebras behave un-
der base change. In particular base change to the residue field. Let R′ a local
rings with a homomorphism f : R → R′ that makes R′ into a commutative
R-algebra. Note that f is not required to be a local morphism. The base
change to the residue field is included since we can choose R′ = R/m. We
can say the following

Proposition 1.12. Let A be an Azumaya algebra over R and let R′ be as
above. Then A �R R′ is an Azumaya algebra over R′

Proof. Obviously R′
�R A is an R′-algebra, that has R′ as a subring in its

center, and is free and of finite ranks as an R′-module. We get a commutative
diagram

idR′ �RΦ : R′
�R (A �R A◦) ��

�
��

R′
�R EndR-mod(A)

�
��

Φ′ : (R′
�R A) �R′ (R′

�R A◦) �� EndR-mod(R
′
�R A).

Here Φ is the isomorphism in the definition of an Azumaya algebra. This
directly implies that idR′ �RΦ is an isomorphism. Since the vertical arrows
are isomorphisms Φ′ is also an isomorphism.

16



We ask ourselves if this can be done in the other direction.

Lemma 1.13. Let f : R → R′ be faithfully flat morphism of rings and A a
R-algebra that is finite as an R-module. Then A is an Azumaya algebra if
and only if R′

�R A is.

Proof. One direction has already been shown in Proposition 1.12. So let
R′

�R A be an Azumaya algebra. In particular it is free of finite rank as an
R′-module. Since R′ is a faithfully flat R-module this directly implies that
A is free and of finite rank as an R-module. We have an isomorphism

R′
�R (A �R A◦) −→ R′

�R EndR-mod(A)

and since f is faithfully flat this is equivalent to

A �R A◦ −→ EndR-mod(A)

being an isomorphism.

An important special case occurs if R = k, R′ = K are fields and K/k is
a field extension. Since field extensions are faithfully flat this lemma always
holds for central simple algebras. Continuing this line of thought, what
happens if we set R′ = R/m as the residue field of the local ring R. For this
to work we need a way to "lift" isomorphisms.

Before we start. Since we will apply it at several places we repeat the
statement of Nakayama’s Lemma. Note that this statement does not require
that the ring is local.

Theorem 1.14. (Nakayama’s Lemma) ([54] Chapter I Theorem 2.2) Let S
be a ring, M be a finite S-module and I ⊂ S an ideal that is contained in the
Jacobson radical I ⊂ rad(S). If M = IM , or equivalent M/IM = 0, then
M = 0.

Lemma 1.15. Let M be a finite R-module, N a free R-module, m ⊂ R
the maximal ideal and Φ : M → N a R-linear map. If the induced map
Φ̄ : M/mM → N/mN of R/m-modules is an isomorphism then Φ is an
isomorphism as well.

Proof. We have an exact sequence 0 → K → M
Φ→ N → C → 0, with

K := ker(Φ) and C := coker(Φ). Tensoring with R/m is right exact so
C/mC = coker(Φ̄) = 0. By Nakayama’s Lemma is C = 0. We get a short
exact sequence 0 → K → M → N → 0. Since N is free it is also flat and
tensoring with R/m gives the short exact sequence 0 → K/mK → M/mM

Φ̄→
N/mN → 0 (see [50] Chapter 1 Proposition 2.6). So K/mK = ker(Φ̄) = 0
and Nakayama’s Lemma again gives K = 0.
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Now we will see what can be said of Azumaya algebras under base change
to the residue field. And we will see that Azumaya algebra over a local ring
corresponds to an Azumaya algebra, or better a central simple algebra, over
its residue field.

Proposition 1.16. Let A be R-algebra that is free and of finite rank as a R-
module and let m ⊂ R be the maximal ideal. Then A is an Azumaya algebra
if and only if A/mA is one over R/m.

Proof. On direction has already been shown in Proposition 1.12. So let A/m
be an Azumaya algebra. Then it is a central simple algebra. Also, we have
a commutative diagram

A � A◦ ��

��

EndR-mod(A)

��

A/m � (A/m)◦ �� End(R/m)-mod(A/m)

The lower arrow is an isomorphism according to Proposition 1.3, and since
A is a free R-module so is EndR-mod(A). Now Lemma 1.15 tells us that the
upper arrow is an isomorphism as well.

Since the dimension of a central simple algebra as a vector space is always
a square, the lemma also implies that the rank of an Azumaya algebra as a
free module is a square.

Corollary 1.17. If A and B are two Azumaya algebras over R then their
tensor product A�B is also an Azumaya algebra over R. The Matrix algebra
Mn(R) is an Azumaya algebra over R.

Proof. We have seen in the last section that both statements hold for central
simple algebras, so Proposition 1.16 directly proves the result.

Next we define the Brauer group of a ring. The definition is a general-
ization of the one for central simple algebras. Let A and B two Azumaya
algebras over R. They are equivalent A ∼ B if there exist n,m ≥ 1 such that
there exists a morphism of R-algebras

A �R Mn(R) � B �R Mm(R).

One sees that this is an equivalence relation. For transitivity one has to check
that if A1, A2, B1 and B2 are Azumaya algebras over R with A1 ∼ B1 and
A2 ∼ B2 then A1 � A2 ∼ B1 � B2. As for fields, this is the case because
Mn(R) � Mm(R) = Mnm(R). Write [A] for the equivalence class.
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Lemma 1.18. The set of all equivalence classes equipped with the tensor
product [A][A′] = [A � A′] as an operation is an abelian group.

Proof. The neutral element is the class [R], this class consists of all matrix
algebras Mn(R). The group is associative and commutative since the tensor
product is. An inverse element to a class [A] is given by the class of the
opposite algebra [A◦].

This group is called the Brauer group of R and denoted as Br(R). Again
we call the neutral element [R] the trivial class. If R = k is a field the
definition agrees with the definition of the Brauer group of a field. Br(−)
can again be seen as a functor from the category of local rings to (Ab).

A map of rings f : R → R′ induces a canonical map of Brauer groups

Br(R) −→ Br(R′), [A] �−→ [R′
� A].

This map is well defined, as the base change of an Azumaya algebra is still
an Azumaya algebra, and base change respects isomorphism so equivalent
Azumaya algebras stay equivalent. Keep in mind that this map is in general
neither surjective not injective. For example f : R → C gives a non injective
map Br(R) = Z/2Z → Br(C) = 0. A non surjective map can be constructed
by taking any morphism f : k → R where R has a non trivial Brauer group
and k is separably closed, which implies Br(k) = 0. We are particularly
interested in the following case:

Proposition 1.19. Let R be an Henselian local ring and R/m the residue
field. Then the map Br(R) → Br(R/m) is injective.

Proof. Let A be an Azumaya algebra over R with A �R R/m � Mn(R/m).
We have to show that then A is itself trivial.

Set k = R/m. Choose an idempotent matrix ε ∈ Mn(k) of rank 1. We
simply take the Matrix with 1 at the (1, 1) position and 0 otherwise. Let
a ∈ A such that ā ∈ A �R k is mapped to ε under the isomorphism. Then
R[a] is a finite commutative R-algebra, and such an algebra over a Henselian
ring is a direct product of local rings ([55] Chapter I Theorem 4.2). Since
R[a] �R k � k[ε] � k � k this direct product has to consist exactly of two
local rings R[a] � R/I�R/J . Let ε correspond to the element (1, 0) ∈ k�k.
This lifts to an idempotent (1, 0) ∈ R/I �R/J , which in turn determines an
idempotent e ∈ R[a].

Since A = Ae�A(1− e) we see that Ae is a finite and free R-module. In
particular this implies EndR(Ae) � Mm(R) for some m > 0. We then define
a homomorphism of R-algebras

Φ : A −→ EndR(Ae), a �−→ (xe �→ axe).
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It is left to check that this map is an isomorphism. The kernel of Φ is an ideal
in A and its intersection with R is zero, since Ae is a free R-module. But then
the kernel has to already be zero itself by Proposition 1.11. Using the same
argument we show that Φ̄ : A �R k → Endk((A �R k)ε) is injective. Both
sides have the same dimension as k vector spaces, so Φ̄ is an isomorphism.
By Nakayama’s Lemma, this implies that Φ is also surjective

We will later show in Corollary 1.40 that this map is actually an isomor-
phism.

Corollary 1.20. For any strictly Henselian local ring R it holds that

Br(R) = 0.

Proof. The residue field of a strictly Henselian local ring is separably closed
and the Brauer group of such a field is zero by Corollary 1.8

As the last part in this section we describe the automorphism group of an
Azumaya algebra. This is a generalization of the Skolem-Noether Theorem.

Proposition 1.21. (Skolem-Noether) Let A be an Azumaya algebra on R.
Every R-algebra automorphism of A is of the form

a �−→ uau−1,

where u ∈ A is a unit, i.e. every automorphism of A is inner.

Proof. Let Φ : A → A be an R-algebra automorphism. We equip A with
two different left A � A◦-module structure by defining two different scalar
multiplication

(a � b) ∗1 x = axb,

(a � b) ∗2 x = Φ(a)xb,

for a � b ∈ A � A◦ and x ∈ A. The multiplication on the right hand side is
defined in A. We denote the resulting modules A1 and A2.

Since A � A◦ � EndR−mod(A) they are also left EndR−mod(A)-modules.
We show that A1 is projective. Since A1 = A as an R-module and A is
a free R-module, there exist a homomorphism of R-modules g : A → R
with g(r) = r for all r ∈ R. Now the morphism of EndR−mod(A)-modules
EndR−mod(A) → A1, f �→ f(1) is surjective and a �→ (a′ �→ g(a′)a) defines a
section. This shows that A1 is projective.

Base change to the residue field makes both A1 � R/m and A2 � R/m
into simple left modules over Ā = (A�R/m)� (A�R/m)◦ = Mn(A�R/m),
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that do have the same rank. And Ā is a central simple algebra over the field
R/m. This in particular implies that Ā is a simple Artin ring and over such
a ring all simple modules are isomorphic ([38] Lemma 4.3.2). There exists an
isomorphism Ψ̄ : A1 � R/m

∼→ A2 � R/m of Ā-modules. This isomorphism
can be lifted to a morphism of A � A◦-modules

A1
Ψ ��

��

A2

��

A1 � R/m
Ψ̄

�� A2 � R/m.

The lift Ψ exist since the vertical arrows are surjective and A1 is projective.
We can view everything as a map of R-modules, then Nakayama’s lemma
shows that Ψ is surjective. Actually, Lemma 1.15 implies that Ψ is an iso-
morphism.

Set u = Ψ(1). The A � A◦-linearity of Ψ shows that for any a ∈ A1

Ψ(a) = Ψ((a � 1) ∗1 1) = (a � 1) ∗2 Ψ(1) = (a � 1) ∗2 u = Φ(a)u,

and

Ψ(a) = Ψ((1 � a) ∗1 1) = (1 � a) ∗2 Ψ(1) = (1 � a) ∗2 u = ua.

So Φ(a)u = ua holds in A2 and as an R-module we have A = A2. It remains
to show that u is a unit. Since Ψ is surjective there exist a1 ∈ A1 with
Ψ(a1) = 1, and we get

1 = Ψ(a1) = Ψ((a1 � 1) ∗1 1) = Φ(a1)u.

So we have a left inverse u−1 = Φ(a1). Since also 1 = ua1, left composition
with u−1 gives u−1 = a1 and so Φ(a1) also defines a right inverse. Note that
this also shows Φ(a1) = a1.

Corollary 1.22. The group Aut(Mn(R)) of automorphisms of Mn(R) as an
R-algebra is PGLn(R) = GLn(R)/R∗

Proof. Mn(R) is an Azumaya algebra so every automorphism is given by
conjugation with a unit. The group of units is GLn(R) and conjugation by
an element U of this group is the identity map if and only if U is in the center
R∗ of Mn(R).
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1.3 Azumaya algebras on schemes
Before we come to the definition of Azumaya algebras on schemes we give a
short reminder on properties of locally free sheaves.

Definition 1.23. Let X be a scheme and E be an OX-module.

(i) We call E locally free if for every point x ∈ X there exist a open
neighborhood U ⊂ X of x and a set I such that E|U � ⊕

i∈I OU is an
isomorphism of OU -modules.

(ii) We call E finite locally free or locally free of finite type if for all U the
index sets I can be chosen to be finite.

(iii) We call E locally free of finite rank r if for all U the index sets I can
be chosen to have cardinality r.

Note that a locally free sheaf is quasicoherent. Furthermore, if X is a
connected scheme, than a finite locally free sheaf is of finite rank. Otherwise
the rank may vary between different connected components. All locally free
sheaves we work with will at least be assumed to be finite. These sheaves
can be described by the following lemma.

Lemma 1.24. ([5] Tag 05P2 and Tag 00NX) Let F be a quasi-coherent sheaf
on a scheme X. Then F is a finite locally free OX-module if and only if it
is a flat OX-module of finite presentation. If X = Spec(R) is additionally
an affine scheme and F = M̃ this is also equivalent to M being a finite
projective R-module.

This allows us to implicitly use the following at several places. Let E be
a finite locally free sheaf, so in particular it is of finite presentation. Then
for all x ∈ X the canonical homomorphism

ϕ : EndOX
(E )x −→ EndOX,x

(Ex)

is an isomorphism of OX,x-modules. Furthermore, there exist an open neigh-
borhood U ⊂ X of x such that

φ : EndOX
(E )|U −→ EndOU

(E|U)

is an isomorphism and φx = ϕ (see [26] Proposition 7.27). This in particular
implies that End(E ) is finite locally free.

Now let us get back to Azumaya algebras. Let X be any scheme and A
an OX-algebra, or more precisely a sheaf of OX-algebras. Note that again
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we do not require an OX-algebra to be commutative. In particular for every
x ∈ X the stalk Ax is an algebra over the local ring OX,x. We denote the
sheaf of opposite algebras by A ◦.

Proposition 1.25. Let A be an OX-algebra, that is finite locally free as an
OX-module. The following are equivalent:

(i) For all x ∈ X the stalk Ax is an Azumaya algebra over the local ring
OX,x.

(ii) For all x ∈ X the algebra Ax �OX
κ(x) is a central simple algebra over

the residue field κ(x).

(iii) The canonical homomorphism

A �OX
A ◦ −→ EndOX -mod(A )

is an isomorphism.

(iv) A is étale locally isomorphic to an matrix algebra sheaf, i.e. there exist
an étale covering (Ui → X) and positive integers ni, with A �OX

OUi
�

Mni
(OUi

).

(v) A is isomorphic to a matrix algebra sheaf with respect to the fppf topol-
ogy, i.e. there exist an flat covering (Ui → X) and positive integers ni,
with A �OX

OUi
� Mni

(OUi
).

Proof. (i) ⇔ (ii) Follows directly with Proposition 1.16.
(i) ⇔ (iii) Since A is locally free we have (A �OX

A ◦)x � Ax �OX,x
A ◦

x

and (EndOX
(A ))x � EndOX,x

(Ax). From the definition of Azumaya algebras
over local ring we get an isomorphism Ax �OX,x

A ◦
x � EndOX,x

(Ax) which
shows the equivalence.

(i) ⇒ (iv) Let x ∈ X and x̄ ∈ X be the a geometric point over x, then
OX,x̄ is a strictly Henselian local ring. By Corollary 1.20 every Azumaya
algebra over this ring is trivial, in particular A �OX

OX,x̄ � Mn(OX,x̄).
There has to exist an étale morphism U → X whose image contains x such
that A �OX

OU � Mn(OU).
(iv) ⇒ (v) Any étale covering is also a flat covering.
(v) ⇒ (ii) Let x ∈ X. There exists a Ui, with A �OUi

� Mni
(OUi

), such
that x is in the image of Ui → X. Also there is an xi ∈ Ui that is mapped
to x. So we have a field extension κ(xi)/κ(x) for the residue fields. The fact
that A �OUi

� Mni
(OUi

) implies that A �OX
OUi

�OUi
κ(xi) � Mni

(κ(xi)).
By construction this is the same as the base change of A �OX

κ(x) along
the field extension κ(xi)/κ(x). By Lemma 1.13 A �OX

κ(x) is then a central
simple algebra.
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Note that Proposition 1.12 implies that we could demand condition (i)
only for closed points.

Definition 1.26. A finite locally free OX-algebra A is called Azumaya al-
gebra over X if it fulfills the equivalent conditions of Proposition 1.25.

Two Azumaya algebras are isomorphic to each other if they are isomorphic
as OX-algebras. Such an isomorphism automatically respects the structure
of an Azumaya algebra. The fact that the rank of an Azumaya algebra over
a local ring is always a square implies that the rank of A as a locally free
sheaf is a square when restricted to each of the connected components of
X. Of course the rank may vary on different connected components. If
an Azumaya algebra has constant rank n2 we call n the degree of A , even
though we are mostly concerned with the rank. Furthermore, Lemma 1.24
immediately shows that an Azumaya algebra is flat as an OX-module and
corresponds to a finite projective module in the affine case.

Let X = Spec(R) be an affine scheme. Then an Azumaya algebra A
corresponds to an associative R-algebra with identity, that we denote by
A. This algebra is finite locally free as an R-module, and for every prime
p ∈ Spec(R) is Ap an Azumaya algebra over the local ring Rp. We call A
then an Azumaya algebra over the ring R. As first example, Mn(R) is an
Azumaya algebra over R.

We can "generalize" the quaternion algebras to Z[ 1
n
]. Define an algebra

Aa,b = Z[ 1
n
]〈i, j, t〉/(i2 − a, j2 − b, t− ij, t+ ji).

Here a, b and n shall have the following properties: First a, b �= 0. Next
2 | n, and for every prime p, that divides either a or b, we demand p | n.
This ensures that for all primes (p) in Z[ 1

n
] we have a, b ∈ F×

p . So Aa,b � Fp

is a quaternion algebra over Fp. Note that this algebra is trivial, since the
Brauer group of Fp is trivial. This construction is not possible over the whole
integers, since there always exist finitely many primes p with amod p ≡ 0.
In fact it can be shown that Br(Z) = 0 ([42] Chapter III Example 8.1.ii).

Part (iii) of Proposition 1.25 together with Lemma 1.24 shows that an
algebra A over a ring R is an Azumaya algebra if and only if A is finite
and projective as an R-module and A�R A◦ → EndR(A) is an isomorphism.
Proposition 1.11 also implies that R is the center of A. This shows that
our definition of Azumaya algebras over rings agrees with that of central
separable algebras by Auslander and Goldman in [4].

A separable algebra is a R-algebra A, which is projective as an A�R A◦-
module; the scalar multiplication is given by (a � b)x = axb for x ∈ A and
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(a � b) ∈ A �R A◦. Even if A is not projective we have an A �R A◦-module
homomorphism μ : A �R A◦ → A by μ(

∑
ai � bi) =

∑
aibi. This gives a

short exact sequence

0 −→ J −→ A �R A◦ μ−→ A −→ 0.

A is projective if and only if μ has a section. If it exists, such a section can
always be given by an element e ∈ A �R A◦ with μ(e) = 1 and Je = 0,
by defining a homomorphism ψ : A → A �R A◦ with ψ(a) = (a � 1)e. The
condition Je = 0 essentially means (a�1−1�a)e = 0 for all a ∈ A. Such an e
is necessarily an idempotent since e2−e = (e−1�1)e ∈ eJ = 0 ([15] Chapter
II Proposition 1.1). This is a useful criterion to check for separability. We
remark, that if R = k is a field, this definition of separability agrees with the
classic definition of a separable algebra over a field ([15] Chapter II Corollary
2.4).

The scalar multiplication commutes with the center of A, so there exist an
inclusion η : A�RA

◦ → EndZ(A)(A), given by η(a, b)(x) = axb. For a central
separable algebra A, so Z(A) = R over R, the map η is an isomorphism and
A is a finite and projective R-module ([4] Theorem 2.1). Since furthermore
any separable R-algebra A is separable over its center ([4] Theorem 2.3),
every separable algebra is an Azumaya algebra over its center.

Let us consider an example. Let R be a ring and G be a finite group
of order n such that n is invertible in R. Then the group algebra R[G] is a
separable algebra. We set

e =
1

n

∑
g∈G

g � g−1 ∈ R[G] � R[G]◦.

Then

μ(e) = 1 and (x � 1)e =
1

n

∑
g∈G

xg � g−1 =
1

n

∑
y∈G

y � y−1x = (1 � x)e

for any x ∈ G as required. The center of R(G) is spanned by the conjugacy
classes of G ([43] Proposition 3.1.1), and R(G) is an Azumaya algebra over
it.

Another example can be given by Weyl algebras over fields k of charac-
teristic p. Let An(k) = k[x1, . . . , xn, y1, . . . , yn] with non commuting inde-
terminates, which have the relations [xi, yi] = xiyi − yixi = 1 and [xi, xj] =
[yi, yj] = [xi, yj] = 0 for all i �= j. It is shown by Revoy [58] that these alge-
bras are central separable over their center, with the center of An(k) being
isomorphic to the ring of polynomials in 2n variables k[xp

1, . . . , x
p
n, y

p
1, . . . , y

p
n].
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We aim to define the Brauer group of a scheme.

Corollary 1.27. Let A and B be two Azumaya algebras on a scheme X,
then their tensor product A � B is also an Azumaya algebra on X.

Proof. A � B is locally free and is an OX-algebra. The fact that it is an
Azumaya algebra can be checked on stalks. Let x ∈ X. The stalk at x is
(A �B)x = Ax�Bx, and over a local ring OX,x we already know that product
of two Azumaya algebras is an Azumaya algebra by Corollary 1.17.

Corollary 1.28. Let E be a finite locally free sheaf on X, then EndOX
(E )

is an Azumaya algebra on X.

Proof. EndOX
(E ) is finite locally free and a sheaf of algebras. Since E is fi-

nite locally free there exist a Zariski open cover Ui such that EndOX
(E )|Ui

�
Mni

(OUi
). Since a Zariski cover is also an étale cover EndOX

(E ) is an Azu-
maya algebra.

Two Azumaya algebras A and A ′ are equivalent if there exist locally free
OX-modules E and E ′ such that

A �OX
EndOX

(E ) � A ′
�OX

EndOX
(E ).

Note, as before, that the relation is an equivalence relation. We check only
transitivity. If A1, A2, B1 and B2 are Azumaya algebras on a scheme X
with A1 ∼ B1 and A2 ∼ B2 then A1 �A2 ∼ B1 �B2, since EndOX

(E )�OX

EndOX
(E ′) � EndOX

(E �OX
E ′).

Lemma 1.29. The set of all equivalence classes equipped with the tensor
product [A ][A ′] = [A �OX

A ′] as an operation is an abelian group.

Proof. The neutral element is the class [OX ], the class consists of all sheaves
of the form EndOX

(E ) where E is locally free. The group is associative and
commutative since the tensor product is. An inverse element to a class [A ]
is given by the class of the opposite algebra [A ◦].

This group is called the Brauer group of X and denoted as Br(X). Again,
we call the neutral element [OX ] the trivial class. In particular the sheaves
End(⊕n

i=1 OX) � Mn(OX) are representatives of this class. Br(−) can be
seen as a functor from the category of schemes to (Ab). For the Brauer
group of an affine scheme Spec(R), we usually write Br(R). For a local ring
this is the same group as the Brauer group of a local ring defined in the last
section, since the definitions of Azumaya algebras agree. Some authors calls
Br(X) the geometric Brauer group to distinguish it from the cohomological
Brauer group, which we will define in the next section.
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Lemma 1.30. Let f : X → Y be a morphism of schemes and B an Azumaya
algebra on Y . Then the pullback f ∗B is an Azumaya algebra on X.

Proof. The pullback of a finite locally free sheaf is finite locally free and
the pullback of a sheaf of algebras has a canonical algebra structure. The
Azumaya property can be checked locally and thus follows from Proposi-
tion 1.12.

A morphism of schemes f : X → Y now induces a canonical map of
Brauer groups

Br(Y ) −→ Br(X), [B] �−→ [f ∗B].

The map is well defined, as the pullback of an Azumaya algebra is an Azu-
maya algebra, and pullbacks respect isomorphism, so equivalent Azumaya
algebras stay equivalent. As already seen in the last section this map is in
general neither injective nor surjective.

Lemma 1.31. Let f : X → Y be a surjective morphism of schemes and B
be an OY -algebra, that is finite locally free as an OY -module. Then B is an
Azumaya algebra on Y if and only if A = f ∗B is an Azumaya algebra on
X.

Proof. Again, one direction has already been shown in Lemma 1.30. So let
A be an Azumaya algebra. By Proposition 1.25 it is enough to check that
B �OY

κ(y) is an Azumaya algebra over κ(y) for every y ∈ Y . Since f is
surjective there always exists an x ∈ X with f(x) = y and A �OX

κ(x) is an
Azumaya algebra over κ(x). Now

A �OX
κ(x) = B �OY

OX �OX
κ(x) = B �OY

κ(x).

And κ(x)/κ(y) is a field extension and thus faithfully flat. Then B �OY
κ(y)

is an Azumaya algebra over κ(y) by Lemma 1.13.

Lemma 1.32. Let f : X → Y be flat and surjective morphism of schemes
and B be a quasicoherent OY -algebra. Then B is an Azumaya algebra on Y
if and only if A = f ∗B is an Azumaya algebra on X.

Proof. One direction has already been shown in Lemma 1.30. So let A be
an Azumaya algebra. We show B is finite locally free. Let y ∈ Y and
choose x ∈ X with f(x) = y. Since f is flat and surjective we know that
OY,y → OX,x is a faithfully flat morphism of rings (see [5] Tag 00HQ). Also
Ax = (f ∗B)x = By �OY,y

OX,x is an Azumaya algebra over the local ring
OX,x. In particular it is free of finite rank, hence By has to be free and of
finite rank as an OY,y-module. This in turn shows that B is finite locally
free. The fact that B is Azumaya follows from Lemma 1.31.
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Next we generalize Skolem-Noether to Azumaya algebra over schemes.

Proposition 1.33. Let A be an Azumaya algebra on a scheme X and let
Φ : A → A be an automorphism. Then there exists a Zariski covering X =⋃

Ui of open sets such that Φ|Ui
is given by a �→ uau−1 where u ∈ Γ(Ui,A )

is a unit.

Proof. Let x ∈ X, then the automorphism Φ induces an automorphism
Φx : Ax → Ax. By Skolem-Noether (Proposition 1.21) there is a unit
ux ∈ Ax such that Φx(ax) = u−1

x axux for all ax ∈ Ax. Then x has some
open neighborhood U such that u ∈ Γ(U,A ) is a unit, which localizes to ux.
Now define a map A|U → A|U , (a �→ u−1au), which localizes to Φx. The map
Φ|U : A|U → A|U also localizes to Φx, so there exist a open neighborhood
V ⊂ U of x on which these maps agree.

So far we have not made any demands on the rank of an Azumaya algebra
as a finite locally free sheave. If X is connected, this implies that an Azumaya
algebra A has constant rank n2. Under this assumption the matrix algebras
Mni

(OX) in Proposition 1.25 are of rank n2 with ni = n.

Lemma 1.34. Let X be a scheme with at most finitely many connected com-
ponents. Then every Azumaya algebra is equivalent to an Azumaya algebra of
constant rank. In particular every Brauer class is represented by an Azumaya
algebra of constant rank.

Proof. We write X =
⊔l

i=1 Xi as the finite union of its connected components
Xi. On each of the connected components the Azumaya algebra Ai = A|Xi

,
has constant rank ni and A = A1 � · · ·� Al. For the Brauer group we have
Br(X) = Br(X1) � · · · � Br(Xl). Set

ri =
l∑

j=1,j 	=i

√
ni.

For i = 1, . . . , l we replace Ai by

Ai � (End(

ri⊕
j=1

OXi
)).

This does not change the Brauer class of Ai in Br(Xi) and thereby does not
change the Brauer class of A in Br(X). Now every Ai has the same rank
and thus A has constant rank n =

∏l
i=1 ni.
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If X has infinitely many connected components we could have an Azu-
maya algebra whose rank increases on each connected component and thus
increases infinitely. In particular the Lemma does not hold true. In many
ways one wants only to work with Azumaya algebras of constant rank. We
will be exclusively concerned with schemes with finitely many connected
components and can assume that a Brauer class is represented by an Azu-
maya algebra of constant rank. For the second main result we need to allow
schemes with finitely many connected components, which is the main reason
why we do not restrict to connected schemes.

1.4 The cohomological Brauer group
We aim to connect Azumaya algebras and Brauer groups to cohomology
theory. This makes it possible to use cohomology theory to show facts about
the Brauer group.

Let A be an Azumaya algebra over a scheme X of constant rank n2.
Proposition 1.25 tells us, that there exists a cover (Ui → X) for the flat
(fppf) and étale topology, respectively, such that the Azumaya algebra A
and the sheaf Mn(OX) become isomorphic when restricted to this cover. So
an Azumaya algebra of rank n is a twisted form of Mn(OX), which determines
the class of a 1-cocycle in the pointed set Ȟ1(X,PGLn). Here PGLn is
defined as the sheaf PGLn(U) = Aut(Mn(OU)). A short discussion on this
non standard definition of PGLn, the definition of twisted forms, and the
necessary theory for sheaf of groups can be found in Appendix A. We work
with the étale topology and write c(A ) for the class in Ȟ1

et(X,PGLn).

Proposition 1.35. Let X be a scheme. The set of isomorphism classes of
Azumaya algebras of rank n2 over X is isomorphic to Ȟ1

et(X,PGLn).

Proof. We already discussed that every Azumaya algebra of rank n2 deter-
mines the class of a 1-cocycle in Ȟ1

et(X,PGLn). We need to show that every
1-cocycle does come from an Azumaya algebra. A section of PGLn is an au-
tomorphism of Mn as an OX-algebra. It determines an endomorphism of Mn

as an OX-module, which is a section of GLn2 . So every PGLn 1-cocycle gives
rise to a GLn2 1-cocycle. Furthermore, we know that every GLn2 1-cocycle
determines a locally free OX-module of rank n2 (Appendix A). Since the
1-cocycle that determines the locally free OX-module comes from a PGLn

1-cocycle, this locally free OX-module has the structure of an Azumaya al-
gebra.

Using Lemma 1.34 we see that if X has at most finitely many connected
components, then every Brauer class is representable by an Azumaya alge-
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bra of constant rank. This shows that every Brauer class is connected to
Ȟ1

et(X,PGLn) for some n. Of course there are always Azumaya algebras
that have different rank in the same Brauer class. We can construct simple
examples by tensoring an Azumaya algebra with a trivial one of rank ≥ 2,
this increases the rank but does not change the Brauer class.

The proposition connects Azumaya algebras to Brauer-Severi schemes. A
scheme P over X is a Brauer-Severi scheme of relative dimension n − 1 if
there exist an étale covering (Ui → X), such that P � OUi

� Pn−1
Ui

. Such a
scheme is by definition a twisted form of Pn−1

X for the étale topology. It is
know that

Aut(Pn−1
X ) = PGLn = Aut(Mn(OX))

(see [57] Chapter 0 §5.b), so we get an injection from the set of isomor-
phism classes of Brauer-Severi schemes of relative dimension n − 1 into
Ȟ1(Xet, PGLn). According to [32] Chapter VIII Proposition 7.8 every 1-
cocycle in turn determines a Brauer-Severi scheme, so this is an isomorphism.
The argument uses decent theory to show that the gluing data in a 1-cocycle
determines a Brauer-Severi scheme. This gives a connection between isomor-
phism classes of Azumaya algebras and Brauer-Severi scheme. Even more,
the data in a 1-cocycle determines an Azumaya algebra as well as a Brauer-
Severi scheme, and vice versa both objects give a 1-cocycle. So there exist a
bijection between Azumaya algebras of rank n2, or better here, of degree n,
and Brauer-Severi schemes of relative dimension n− 1 via this 1-cocycle.

Brauer-Severi schemes over k are called Brauer-Severi varieties. For ex-
ample, set k = R. Then a quadric curve X ⊂ P2

R given by a homogeneous
polynomial

X2
0 +X2

1 +X2
2 = 0

has no rational point over R, and thus cannot be isomorphic to P1
R. But over

C this is not the case anymore, and we have X � C � P1
C. In fact this is a

necessary and sufficient condition; a Brauer-Severi variety over k is trivial if
and only if it has a k-rational point (see [12] Proposition 7.1.5).

Lemma 1.36. Let X be a scheme. The sequence

1 −→ Gm −→ GLn −→ PGLn −→ 1

is exact with respect to the flat, big and small étale and Zariski topologies on
X.

Proof. Let U → X be any object in the site. We need to check that Gm(U)
is in the kernel of GLn(U) → PGLn(U) and that every section s ∈ PGLn(U)
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is locally liftable to a section of GLn(U). This is a direct consequence of the
Skolem-Noether theorem, namely Corollary 1.22. For every local ring R the
sequence

1 −→ R∗ −→ GLn(R) −→ PGLn(R) −→ 1

is exact as a sequence of R-modules, and this shows the sought-after proper-
ties.

This exact sequence induces a long exact sequence of pointed sets. Since
the sheaf Gm is abelian and is mapped to the center of GLn we have the
boundary map δ constructed by Giraud to the second cohomology group of
Gm (see A.1). We obtain a long exact sequence where we are interested in
the terms

Ȟ1
et(X,GLn)

ι−→ Ȟ1
et(X,PGLn)

d−→ H2
et(X,Gm).

We want to determine the kernel of d. Therefore we determine the image of
ι. From Appendix A we know that Ȟ1

et(X,GLn) is isomorphic to the set of
isomorphism classes of locally free sheaves E of rank n over X.

Lemma 1.37. The map ι sends the class of a locally free sheaf E of rank n
to the class of the Azumaya algebra End(E ).

Proof. We have to show that ιc(E ) = c(End(E )). Choose a Zariski covering
U = (Ui) of X that trivializes E . So there exist isomorphisms φi : On

Ui
→ E|Ui

and the locally free sheaf E is mapped to the 1-cocycle (φ−1
i φj). Set A =

End(E ). By construction there exist isomorphisms ψi : Mn(OUi
) → A|Ui

,
which have the property that ψi(x) = φiaφ

−1
i , for all x ∈ Mn(OUi

). Thus
A corresponds to the 1-cocycle αij = (ψ−1

i ψj) in PGLn, with αij(x) =
φ−1
i φjxφ

−1
j φi for x ∈ Mn(OUij

). Then (αij) is the image of (φ−1
i φj) under ι,

since GLn → PGLn is determined by u �→ (x �→ uau−1).

To determine the Brauer map we need one last fact, namely that boundary
maps d are compatible for varying n. That means if A is an Azumaya algebra
of rank n2 and B is an Azumaya algebra of rank m2, then dc(A � B) =
dc(A )dc(B). The verification of this fact is purely technical. For details see
[25] Chapter IV §3.

We finally have every ingredient to define the Brauer map

Theorem 1.38. Let X be a scheme with at most finitely many connected
components. There exist a canonical injective homomorphism δ : Br(X) →
H2

et(X,Gm). We call this morphism the Brauer map.
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Proof. By Lemma 1.34 every Brauer class is represented by an Azumaya
algebra A of constant rank n2. This determines a class [A ] ∈ Br(X) and
c(A ) ∈ Ȟ1

et(X,PGLn). We define the Brauer map by

δ : Br(X) −→ H2
et(X,Gm), [A ] �−→ dc(A ),

for the appropriate boundary map d.
We check that this map is well defined. To do this, we use the fact that by

Lemma 1.37 dc(A ) = 1 maps to the neutral element in the group if and only
if A = End(E) for some locally free sheaf E . If B is an Azumaya algebra
with constant rank m2 that is another representative of the Brauer class [A ],
there exist locally free sheaves E and F with A � End(E ) � B � End(F ).
Both sides are Azumaya algebras and they are isomorphic so

dc(A � End(E )) = dc(B � End(F )).

Then
dc(A � End(E )) = dc(A )dc(End(E )) = dc(A ),

dc(B � End(F )) = dc(B)dc(End(F )) = dc(B),

which shows dc(A ) = dc(B). The map respects the group structure of
Br(X) since d fulfills the compatibility condition dc(A �B) = dc(A )dc(B).
The map is injective since dc(A ) = 1 if and only of A is a trivial Azumaya
algebra (see also [55] Chapter IV Theorem 2.5).

Though we are only concerned with schemes that have at most finitely
many connected components it is nevertheless possible to define a Brauer
map, even if X does have infinitely many connected components (see [55]
Chapter IV Theorem 2.5 or [12] Theorem 4.2.1). The proof relies on Giraud’s
description of the second cohomology group via gerbes. Basically one maps
an Azumaya algebra to its Gm-gerbe of trivializations (see [25] Chapter V
§4).

Using the Kummer exact sequence 1 → μn → Gm → Gm → 1 and a
diagram chase, one can show that d : Ȟ1

et(X,PGLn) → H2
et(X,Gm) factors

through H2(X,μn) which implies that the image of d is torsion and that any
Azumaya algebra of rank n2 is annihilated by n. Furthermore, if X has at
most finitely many connected components this implies that Br(X) is torsion
([55] IV Proposition 2.7.). The fact that an Azumaya algebra of constant
rank n2 is annihilated by n is also directly proven by Saltman [62] in the
affine case. His argument can be extended to arbitrary schemes ([5] Tag
0A2L).

Let X be a scheme with at most finitely many connected components. So
the image of δ always lies in a torsion subgroup. We call the whole torsion
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subgroup Br′(X) = H2
et(X,Gm)tors the cohomological Brauer group. The

Brauer map is then an injective map

δ : Br(X) −→ Br′(X).

There exist schemes where H2
et(X,Gm) is not a torsion group, so the choice

of Br′(X) as the torsion subgroup is important. A first example of a normal
surface with this property was given by Grothendieck using an example of
Mumford ([30] Remarques 11.1.b).

Philosophically the Brauer group is in line with the lower cohomological
groups of Gm. We have

H0
et(X,Gm) = O×

X , H1
et(X,Gm) = Pic(X), H2

et(X,Gm)tors = Br(X).

For a morphism of schemes f : X → Y we have pullback morphism
f ∗ : H2

et(Y,Gm) → H2
et(X,Gm). The pullback of a torsion element is a

torsion element, so we get pullback maps

f ∗ : Br′(Y ) → Br′(X).

We have already seen that we can pullback pullback Brauer classes. This
gives a diagram

Br(X) δ �� Br′(X)

Br(Y )
δ

��

f∗
��

Br′(Y )

f∗
��

Lemma 1.39. The Brauer map is functorial, i.e. the diagram above is com-
mutative.

Proof. Since the boundary map d is functorial it is enough to show that
the pullback of an Azumaya algebra B on Y of rank n2 has the same class
in Ȟet,

1 (XPGLn) as the pullback of the class of B in Ȟ1
et(Y, PGLn). We

have to show that c(f ∗B) = f ∗(c(B)). Choose some trivialization cover
V = (Vi → Y ) of B with isomorphisms φi : OY |Ui

→ B|Ui
. This defines a

1-cocycle (βij) with βij = (φi | Vij)
−1(φj | Vij) that represents the class c(B).

The lift of the cover f ∗U = (Vi×X → X) trivializes f ∗B. Set Ui = Vi×X.
The lifts of the φi define isomorphism φ′

i : OX|Ui
→ f ∗B|Ui

. They determine
a 1-cocycle (αij) with αij = (φ′

i | Uij)
−1(φ′

j | Uij), which represents c(f ∗B).
This cocycle is a lift of the cocylce (βij), so we are done.
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We call an Azumaya algebra A whose class [A ] ∈ Br(X) is mapped to
a cohomological Brauer class α ∈ Br(X) a representative of α, and we say
that A represents α.

The Brauer map connects Brauer groups to cohomology theory which is
useful in many ways. This makes it possible to calculate the Brauer group
using technique from cohomology theory. For example:

Corollary 1.40. Let R be a Henselian local ring with maximal ideal R. Then
Br(R) = Br(R/m).

Proof. For the étale cohomology groups of the sheaf of groups Gm over a
Henselian local ring it holds that

H i
et(Spec(R),Gm) � H i

et(Spec(R/m),Gm),

for all i ≥ 1 ([55] Chapter III Remark 3.11.a)). So this particularly holds
true for i = 2 and then Br′(R) � Br′(R/m). And for affine schemes the
Brauer map is an isomorphism.

In fact we have not stated yet that the Brauer map is an isomorphism for
affine schemes. The question whether the Brauer map is an isomorphism, i.e.
whether over a given scheme every cohomological Brauer class is represented
by an Azumaya algebra was asked by Grothendieck in [30].

For smooth algebraic surfaces a positive answer was essentially know to
Auslander and Goldman [4], even before Grothendieck’s invention of the
cohomological Brauer group for schemes. Grothendieck himself gave first
positive answers for schemes of dimension ≤ 1 and for regular surfaces. He
also showed that the Brauer map is surjective for a local Henselian ring [30];
this would be enough for the proof of Corollary 1.40. Another early positive
result is due to Hoobler for Abelian Varieties [39].

Gabber then proved in [23], that Br(X) = Br′(X), in the case where X is
either an affine scheme or the union of an affine scheme, whose intersection is
again an affine scheme. Other proofs of this result can be found in [40], [46]
and [49]. Gabber later improved his result to the case where there exists an
ample invertible sheaf on X. In particular this means that X is quasicompact
and separated. For example a quasiprojective scheme over a base scheme has
an ample invertible sheaf. Gabber’s proof is unpublished but there exist a
different proof by DeJong [13].

DeMeyer and Ford proved a positive result for a toric variety over an
algebraically closed field of characteristic 0 [17]. Schröer [63] showed that the
Brauer map is an isomorphism, when X is a separated geometrically normal
algebraic surface. A recent preprint of Mathur shows Br(X) = Br′(X) for a
separated surface [53].
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However the Brauer map is not always an isomorphism. There is a coun-
terexample by Edidin, Hassett, Kresch, Vistoli ([18] Corollary 3.11). They
construct a scheme X, as the union of two copies of Spec(C[x, y, z]/(xy−z2)),
glued along the non-singular locus, and show Br(X) �= Br′(X). Here X is a
non-separated normal surface. A further discussion of this counterexample
can also be found in paper by Bertuccioni [8], where the different Brauer
groups of X are explicitly calculated as Br(X) = 0 and Br′(X) = Z/2Z. In
general Grothendieck’s question remains open to this day. In particular not
much is know about higher dimensional schemes that do not admit an ample
invertible sheaf.

Our definition of the cohomological Brauer group of course also works for
fields and there we have Br(k) = Br′(k). The usual way to define this group
for fields uses Galois cohomology. For details on the construction see [24]. We
have seen that every central simple algebras is trivialized by a finite Galois
extension and that the Brauer group of a separably closed field is trivial. For
a Galois extension K/k with Galois group Gal(K/k) the isomorphism classes
of central simple algebras of rank n, which are split by K, are the same as
1-cocyles in H1(Gal(K/k),PGLn(k)). One uses the exact sequence

1 −→ k× −→ GLn(k) −→ PGLn(k) −→ 1

to obtain a map H1(Gal(K/k),PGLn(K)) → H2(Gal(K/k), K×). Hilbert’s
Theorem 90 ([24] Example 2.3.4) shows that the map is injective. Taking
limits over all n gives a map Br(K/k) → H2(Gal(K/k), K×), which can be
shown to be an isomorphism. Here Br(K/k) denotes the equivalence classes
of all central simple algebras split by K. Since all central simple algebras are
split by a separable closure one can fix a separable closure ksep and take the
limit over all finite Galois extension contained in it. For the Galois group
this gives the absolute Galois group Gal(ksep/k) and an isomorphism Br(k) →
H2(Gal(ksep/k), k

×
sep). For the étale topology we have an isomorphism

H2
et(Spec(k),Gm) � H2(Gal(ksep/k), k

×
sep)

(see [12] 2.2.3), so everything works out fine.
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Chapter 2

Pinching of sheaves

In this chapter we discuss results by Ferrand [21] on pinching of schemes and
sheaves. For the convenience of the reader we give some more details and
examples. In particular, we explicitly describe the fixed points of the adjunc-
tion used in the main theorem, to motivate why flat modules are a natural
choice of subcategory to obtain an adjoint equivalence of categories. Then
we describe how to generalizes this results to affine morphism of schemes.
Additionally, we introduce what we understand under a finite modification.

2.1 Category theory
Before we start on Ferrand’s results, we recall some general definitions of
category theory, which can be found in most textbooks on the subject (see
for example [51] or [60]). Note that a category has a set of objects ob(C). So
we tacitly assume to be working in a Grothendieck universe (see for example
[64] Section 1).

We keep in mind that the following categories are abelian: the category
of (finite) modules over a ring, and (quasicoherent) sheaves over a scheme.
On the other hand, the categories of locally free sheaves over a given scheme
is not abelian, though it is an additive category.

Let C be a category and

P
p2

��

p1
��

Y

g
��

X
f

�� Z

a commutative square. Note that if the category is abelian, every square,
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with notation as above, defines a sequence

0 −→ P
(p1,p2)−−−−→ X � Y

(f,−g)−−−→ Z −→ 0.

The square is commutative if and only if the sequence is a complex.
A commutative square is called cartesian if for any triple (T, q1, q2), with

q1 : T → X, q2 : T → Y and fq1 = gq2, there exist a unique morphism
t : T → P so that p1t = q1 and p2t = q2. The situation is illustrated in the
following diagram:

T

q1

��

q2

��

t
��

P

p1
��

p2
�� Y

g
��

X
f

�� Z.

If a square is cartesian we write P = X ×Z Y . This is also called a pullback
or fiber product. Given two morphism f : X → Z and g : Y → Z we
ask, whether there exists a fiber product X ×Z Y such that we obtain a
cartesian square. If a fiber product exists, it is uniquely defined up to unique
isomorphism, so we can talk about the fiber product.

In an abelian category the fiber product always exists. It is the kernel of
the morphism

(f,−g) : X � Y −→ Z.

A given commutative square is cartesian, if and only if the complex

0 −→ P
(p1,p2)−−−−→ X � Y

(f,−g)−−−→ Z −→ 0

is exact at P and X � Y .
For example, in the abelian category of R-modules the fiber products

is defined as follows: Given homomorphism of R-modules f : X → Z and
g : Y → Z the fiber product is defined by X ×Z Y = {(x, y) ∈ X × Y |
f(x) = g(y)}.

One notes that the fiber product in the category of rings is also the fiber
product of sets, when we forget the ring structure. In many categories, whose
objects are sets endowed with some algebraic structure, the fiber product in
the category agrees with the fiber product of sets, when equipped with a
suitable algebraic structure.

A commutative square is called cocartesian if for any triple (U, j1, j2) with
j1 : X → U , j2 : Y → U and j1p1 = j2p2, there exist a unique map u : Z → U
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so that uf = j1 and ug = j2. The situation is illustrated in the following
diagram:

P

p1
��

p2
�� Y

g
�� j2

		

X
f

��

j1 



Z

u

��

U.

If a square is cocartesian we write Z = X �P Y . This is also called a pushout
or fibered coproduct. Given two morphism p1 : P → X and p2 : P → Y we
ask, whether there exist a pushout X�P Y , such that we obtain a cocartesian
square. If a pushout exist, it is uniquely defined up to unique isomorphism,
so we can talk about the pushout.

In an abelian category the pushout always exists. The pushout is the
cokernel of of the morphism

(p1, p2) : P −→ X � Y.

A given commutative square is cocartesian, if and only if the complex

0 −→ P
(p1,p2)−−−−→ X � Y

(f,−g)−−−→ Z −→ 0

is exact at X � Y and Z.
For example in the category of commutative rings the pushout is given

by the tensor product of rings.
For another example, let P , X and Y be topological spaces and p1, p2

continuous maps. Then the pushout is defined by an equivalence relation. It
is Z = X � Y/ ∼, where the relation identifies a point in x ∈ X with a point
in y ∈ Y if there exists a point in p ∈ P , with p1(p) = x and p2(p) = y. A
subset V of Z is open if and only if f−1(V ) is open in X and g−1(V ) is open
in Y .

Note that the pushouts of rings does not agree with the pushout of sets,
contrary to the case for fiber products. For example as a tensor product of
rings we have Z/2Z �Z Q = 0, while the pushout in the category of sets is
non zero.

We will mostly be interested in commutative squares that are cartesian
as well as cocartesian. For an abelian category this is the case if and only if
the complex

0 −→ P
(p1,p2)−−−−→ X � Y

(f,−g)−−−→ Z −→ 0

is exact.
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In the following it will be assumed that functors are covariant, mostly for
ease of notation in some commutative diagrams. The definitions do hold for
contravariant functors, just with inverted arrows at some points. One can
also use opposite categories, to make the definitions work for contravariant
functors.

Let C and D be categories, and F and G functors C → D. A natural
transformation η : F → G is a family η = (ηX)X∈C of morphisms

ηX : F (X) → G(X)

in D such that for every morphism f : X → Y in C it holds that

ηY ◦ F (f) = G(f) ◦ ηX .
This property is visualized by the following commutative diagram

X

f

��

F (X)
ηX ��

F (f)

��

G(X)

G(f)

��

Y F (Y ) ηY
�� G(Y ).

If for every object X in C the morphism ηX is an isomorphism in D, then η
is called a natural isomorphism or isomorphism of functors.

Next we define fiber products of categories themselves (see for example
[7] Chapter VII §3). Let A′,B,B′ be categories with functors G : B → B′

and P ′ : A′ → B′. We define the fiber product category

A = B ×B′ A′

as follows:
An objects in A is a triple (N, s,M ′), where N is an object of B, M ′ is

an object of A′ and
s : G(N)

∼−→ P ′(M ′)

is an isomorphism in B′.
A morphism (N1, s1,M

′
1) → (N2, s2,M

′
2) in A is a pair (b, a′), where

b : N1 → N2 is a morphism in B and a′ : M ′
1 → M ′

2 is a morphism in A′,
such that the following diagram commutes:

G(N1)
s1 ��

G(b)

��

P ′(M ′
1)

P ′(a′)
��

G(N2) s2
�� P ′(M ′

2).
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There are canonical forgetful functors F : A → A′ given by

(N, s,M ′) �−→ M ′,

(b, a′) �−→ a′,

and P : A → B given by

(N, s,M ′) �−→ N,

(b, a′) �−→ b.

The square
A F ��

P
��

A′

P ′
��

B
G

�� B′.

is commutative up to the isomorphism of functors (or natural isomorphism)

σ : GP −→ P ′F

which maps GP (N, s,M ′) = G(N) to P ′(M ′) = P ′F (N, s,M ′) via s.
This construction has the following universal property, which is similar

to the universal property of pullbacks. Given a square

C H ��

Q
��

A′

P ′
��

B
G

�� B′.

and a isomorphism of functors τ : GQ → P ′H, there exist a unique functor
T : C → A such that H = FT , Q = PT and τ = σ ∗ T . Concretely, for an
object C of C we have T (C) = (Q(C), τC , H(C)) and for a morphism f in C
we have T (f) = (Q(f), H(f))

Note that the fiber product category can be equally defined for contravari-
ant functors.

If the given categories and functors are additive so is the fiber product
category. However if we additionally demand, that the categories are abelian,
this does not necessarily mean that the fiber product category is abelian. For
a morphism (b, a′) we would like to define the kernel as (ker(b), s, ker(a′));
unfortunately there is no reason that such an s exist. It is possible that
G(ker(b)) and P ′(ker(a′)) are not isomorphic. Same is true for the cokernel.
If we additionally demand that our functors are exact, an argument using the
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five lemma can show that now G(ker(b)) � P ′(ker(a′)), and the same is true
for the cokernels. It is then straightforward to check that the fiber product
category is abelian. However we will not be working with exact functors.

Our main interest in the following sections will be questions of the follow-
ing kind: Suppose we have morphisms of rings g : B → B′ and p′ : A′ → B′,
then the universal property of the fiber product category defines a unique
morphism

Mod(B ×B′ A) → Mod(B)×Mod(B′) Mod(A′).

We wish to understand this morphism.
To do this we construct a functor in the other direction, which will define

an adjunction. For more details on adjunctions than given here see [51]
Chapter IV, especially Section 1, Theorem 1 and Theorem 2.

Definition 2.1. Let C and D be categories. An adjunction from C to D
is a triple (S, T, ϕ) consisting of two functors T : C → D and S : D → C ,
while ϕ is a function, which assigns to each pair of objects c ∈ C and d ∈ D
a bijection of sets

ϕc,d : MorD(Tc, d)
�−→ MorC (c, Sd), (2.1.1)

which is natural in c and d. The functor T is called a left adjoint to S, while
S is the right adjoint to T .

The condition of ϕ being natural in c and d means, that for every mor-
phism v : Tc → d holds

ϕc′,d(v ◦ T (g)) = ϕc,d(v) ◦ g and ϕc,d′(h ◦ v) = S(h) ◦ ϕc,d(v)

for all morphisms g : c′ → c and h : d → d′. Illustrated this means that the
following diagrams do commute:

MorD(Tc, d)
ϕc,d

��

T (g)

��

MorC (c, Sd)

g

��

MorD(Tc
′, d) ϕc′,d

�� MorC (c
′, Sd)

and

MorD(Tc, d)
ϕc,d

��

h
��

MorC (c, Sd)

S(h)

��

MorD(Tc, d
′) ϕc,d′

�� MorC (c, Sd
′).

Let us begin with an example. Let f : A → B be a morphism of rings, M
be an A-module, and N a B-module. Then the extension of scalars functor

f ∗ : Mod(A) −→ Mod(B), M �−→ B �A M
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is left adjoint to the restriction of scalars functor

f∗ : Mod(B) −→ Mod(A), N �−→ NA.

The latter restricts N to an A-module NA by defining multiplication a · n =
f(a)n. We will often say, that we treat N as an A-module, instead of writing
NA.

We define

ϕM,N : HomB-mod(B �A M,N) −→ HomA-mod(M,NA),

v �−→ v ◦ (f � idM),

where f � idM : M � A �A M → B �A M , so ϕM,N(v)(m) = v(1 � m). To
see that it is an isomorphism we give an inverse. For w : M → NA we set

ϕ−1
M,N(w) : B �A M

idB �w−−−−→ B �A NA −→ N,

where the second homomorphism is defined by b � n �→ bn. So we have
ϕ−1
M,N(w)(b � m) = bw(m).

To be thorough, we check that ϕ is natural in M and N . So let v :
B �A M → N , g : M ′ → M and h : N → N ′. We have

ϕM,N ′(h ◦ v) = f∗h ◦ ϕM,N(v).

The equality of

ϕM ′,N(v ◦ f ∗g) = f∗(v ◦ f ∗g ◦ (f � idM ′))

and
ϕ(v)M,N ◦ g = f∗(v ◦ (f � idM)) ◦ g = f∗(v ◦ (f � idM) ◦ g),

follows, since the square

M ′ g
��

f�id′M
��

M

f�idM
��

B �A M ′
f∗g

�� B �A M

is commutative.
This adjunction generalizes to schemes. Let f : X → Y be a morphism

of schemes. Then the pullback functor f ∗ is left adjoint to the pushforward
functor f∗. For every OX-module F and every OY -module G we have

HomOX
(f ∗G ,F ) � HomOY

(G , f∗F )

(see for example [26] Proposition 7.11).
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When working with adjoint functors other points of view are useful. If we
set d = Tc in (2.1.1) the identity idTc ∈ MorD(Tc, T c) is sent to a morphism
ηc ∈ MorC (c, STc). We get such a morphism for every object of C and the
function c �→ ηc defines a natural transformation η : idC → ST , because
every diagram

c′
ηc′ ��

g

��

STc′

ST (g)
��

c ηc
�� STc

is commutative. This follows from the fact that ϕ is natural.
More so each ηc is universal from c to S. This means that for each

morphism w : c → Sd there exist a unique morphism v : Tc → d such that
the following diagram commutes

c
ηc

��

w
��

STc

S(v)
��

Sd.

To check that ηc actually is universal set v = ϕ−1
c,d(w). Then

w = ϕc,d(v ◦ idTc) = S(v) ◦ ϕc,T c(idTc) = S(v) ◦ ηc.
Given functors S, T and a universal natural transformation η as above we

can recover the adjunction. For every v : Tc → d set

ϕc,d(v) = S(v) ◦ ηc. (2.1.2)

We have recovered ϕ, so this datum defines an adjunction.
Let f : A → B again be a morphism of rings. For the adjunction,

which is given by extension and restriction of scalar functors, we get ηM =
f∗(f�idM) and this gives the universal property for extension of scalars. For a
homomorphism of A-modules w : M → NA there is a unique homomorphism
of B-modules v : B �A M → N such that f∗v makes the following diagram
commute

M
ηM ��

w
��

(B �A M)A

f∗v
��

NA.

A similar construction can be done in the other direction. This time we
set c = Sd in (2.1.1) and obtain a universal natural transformation

εd = ϕ−1(idSd), εd : TSd → d, d ∈ D .
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Again for a morphism v : Tc → d we can recover ϕ−1(v) = εd ◦T (v). We call
η the unit and ε the counit of the adjunction.

Finally we again set d = Tc in (2.1.1). Using the definition of ϕ via unit
and counit we have

idTc = ϕ−1(ηc) = εTc ◦ T (ηc).
This assures that the composition

T
Tη−→ TST

εT−→ T (2.1.3)

is the identity. If we instead set c = Sd the same holds for

S
ηS−→ STS

Sε−→ S. (2.1.4)

Given two natural transformations such that the identities above hold we can
recover ϕ. In conclusion we have the following theorem:

Theorem 2.2. ([51] Chapter IV.1 Theorem 2) An adjunction (S, T, ϕ) :
C → D is completely determined by any of the following data:

(i) Functors S, T and a natural transformation η : idC → ST such that
for every c ∈ C the morphism ηc : c → STc is universal from c to S.

(ii) Functors S, T and a natural transformation ε : TS → idD such that
for every d ∈ D the morphism εd : TSd → d is universal from T to d.

(iii) Functors S, T as well as natural transformations η : id → ST and
ε : TS → id, such that both composites (2.1.3) and (2.1.4) are the
identity transformations.

For two contravariant functors S and T it is often useful to use opposite
categories. If these two functors define an adjunction between C and Dop we
get a dual adjunction between C and D . The dualization causes the counit
to be ε : idD → TS and (2.1.3) reads as T

εT−→ TST
Tη−→ T . Furthermore,

ϕc,d : MorD(d, T c)
�→ MorC (c, Sd).

Let us make an example, by viewing a classical construction as an ad-
junction. Let R be a ring and

Spec(R) = {p ⊂ R | p prime ideal }
the spectrum, viewed solely as a set without any additional structure. For
every subset M ⊂ R we define

V (M) = {p ∈ Spec(R) | M ⊂ p}.
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This defines a inclusion reversing map from the subsets of R to the subsets of
Spec(R). We define a map in the other direction. For a subset X ⊂ Spec(R)
define

I(X) =
⋂
p∈X

p.

One immediately sees that this map is also inclusion reversing. Furthermore,
we have inclusions

M ⊂ IV (M) and X ⊂ V I(X),

for any subsets M ⊂ R and X ⊂ Spec(R) (see for example [9] Chapter II
§4.3). For the sake of making an example we can view this construction as an
adjunction. Treat the sets C = {M | M ⊂ R} and D = {X | X ⊂ Spec(R)}
as categories where the only morphisms are inclusions. The inclusion re-
versing maps I and V are treated as contravariant functors between these
categories

C
V ��

D .
I

��

We show that they define an adjunction. Unit and counit are given by
the inclusions X ⊂ V I(X) and M ⊂ IV (M). We check property (i) of
Theorem 2.2. Let M ⊂ R and X ⊂ Spec(R) so that there exists an inclusion
w : M ⊂ I(X). We have to find a inclusion v : X → V (M) so that the
following diagram commutes

M
ηM ��

��

IV (M)

I(v)
��

I(X).

But that is just the inclusion X ⊂ V I(X) ⊂ V (M). We do not need to check
uniqueness since our inclusions are unique by definition. There are simply
no other morphisms.

Of course in Algebraic Geometry the set on both sides are then restricted
in a certain way such that the maps I and V become inclusion reversing
bijections; we will sketch this construction later. From a functorial point of
view this means that the adjunction defined by V and I can be restricted to
an adjoint equivalence of categories.

This is a general fact. One can always obtain an adjoint equivalence of
categories from an adjunction.

Definition 2.3. Let C , D be categories. An adjoint equivalence of categories
between this categories is an adjunction (S, T, ϕ) between them, in which
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both the unit η : idC → ST and the counit η : idD → ST are natural
isomorphism.

If (S, T, ϕ) is an adjoint equivalence of categories, then both S and T ,
respectively, are an equivalence of categories in the usual sense. In reverse,
if some functor T : C → D is an equivalence of categories then it is part of
an adjoint equivalence of categories (S, T, ϕ) ([51] Chapter IV.4 Theorem 1).

We will mostly construct adjunctions via Theorem 2.2, by constructing
two functors S and T and then give their unit and/or counit, without speci-
fying ϕ. If both unit and counit are isomorphisms of functors we say that S
and T are an adjoint equivalence of categories

C
T ��

D .
S

��

Note that unit and counit are natural transformations by definition, to check
whether a given adjunction defines an adjoint equivalence, we need to check
whether they become isomorphisms for every object in the category.

Definition 2.4. Let C , D be categories and (S, T, ϕ) an adjunction between
them. An object c ∈ C is a fixed point of the adjunction if its unit

ηc : c
�−→ STc

is an isomorphism. We write Cfix ↪→ C for the full subcategory of these
objects. An object d ∈ D is a fixed point of the adjunction if its counit

εd : TSd
�−→ d

is an isomorphism. We write Dfix ↪→ D for the full subcategory of these
objects.

Proposition 2.5. Let C , D be categories and (S, T, ϕ) an adjunction from
C to D . Then for every c ∈ Cfix we have Tc ∈ Dfix, and for every d ∈ Dfix

it holds that Sd ∈ Cfix. This gives an adjoint equivalence of categories

Cfix

T ��
Dfix.

S
��

Proof. Let c ∈ Cfix. By definition c � STc, which- implies Tc � TSTc and
thus Tc ∈ Dfix. The other direction is equivalent. Now the unit and counit,
respectively, are isomorphisms for every object in the subcategories of fixed
points, and hence the functors are an adjoint equivalence of categories.
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Back to our example. First we equip Spec(R) with a topology. We define
closed sets as V (M) where M runs through all subsets of R. This topology
is called the Zariski topology. To see that it is a topology one checks that the
V (M) fulfill the axioms for closed sets:

V (0) = Spec(R), V (1) = ∅ and

V (
⋃

Mi) = V (
∑

Mi) =
⋂

V (Mi),

for every family (Mi)i∈I of subsets of R. Finite unions are still missing. One
shows that for any pair of ideals a, a′ in R

V (a ∩ a′) = V (aa′) = V (a) ∪ V (a′),

and uses the fact that if a is the ideal generated by a subset M then V (a) =
V (M) (see for example [9] Chapter II §4.3).

The last fact suggests that we should replace the set of all subsets of R
with the set of ideals. This does not change the closed sets in the Zariski
topology though we write them as V (a) now. We have now inclusion reversing
maps

{a | a ⊂ R ideal } V ��
Spec(R).

I
��

From a functorial point of view, this is an adjunction and we want to deter-
mine the fixed points.

Denote the radical of a by
√
a = {f ∈ A | ∃r ∈ N : f r ∈ a}.

An ideal is called a radical ideal if a =
√
a. One sees that prime ideals are

radical ideals. An important result from commutative algebra is that
√
a =

⋂
a⊂p

p

with p ∈ Spec(R) ([9] Chapter II §2.6 Corollaire 1). Then for any ideal a ⊂ R
we have

IV (a) = I({p ∈ Spec(R) | a ⊂ p}) =
⋂
a⊂p

p =
√
a.

The fixed points in C = {a | a ⊂ R ideal } are exactly the radical ideals.
The fixed points in Spec(R) are the closed sets. Let X ⊂ Spec(R) be a

subset. We determine the closure of X. The set X is contained in any closed
set X ⊂ V (a) if and only of for all p ∈ X holds p ⊂ a i.e. a ⊂ I(X). This
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implies that X̄ = V I(X) is the smallest closed subset that contains I. So the
closed subsets are the fixed points of the adjunction. Actually from a certain
perspective the closed sets have been chosen exactly as the fixed points of
the adjunction. We get mutually inverse bijections

{a | a ⊂ R radical ideal } V �� { closed subsets in Spec(R)},
I

��

and this is an adjoint equivalence of categories between the subcategories of
fixed points by Proposition 2.5 (for more details, see [9] Chapter II §4.3 or
[26] Proposition 2.3).

Another example occurs in Galois theory. Let E/F be a Galois extension,
i.e. it is algebraic, separable, and normal. Denote the Galois group by G =
Gal(E/F ). We have sets

C = {L | F ⊂ L ⊂ E subextension }
D = {H | H ⊂ G subgroup }.

Both sets are ordered by inclusion and have G-action σ · L = σ(L) and
σ ·H = σHσ−1, respectively. There are inclusion reversing maps

T : C −→ D , L �−→ Gal(E/L)

and
S : D −→ C , H �−→ EH

between these sets.
If the extension E/F is finite the main theorem of Galois theory tells us

these maps are bijections who are inverse to each other. Furthermore, normal
subgroups N ⊂ G correspond exactly to the subextensions L = EN where
L/K is a Galois extension (see for example [41] Theorem 8.5).

For an infinite Galois extension E/F the theorem fails. Though we retain
the maps S and T , they fail to be a bijection. The first counter example was
given by Dedekind in 1901 ([14] §6). A solution involving a topology on the
Galois group was proposed by Krull in 1928 ([47]).

The main problem is that there are to many subgroups in the Galois
group. We give an example. The idea for this construction can be found in
[41] Chapter 8.6. Let p be a prime and Fp the finite field with p elements.
Any finite Galois extension of Fp has the form Fpn . The algebraic closure
Fp is an infinite Galois extension of Fp. Denote G = Gal(Fp/Fp). Clearly
the Frobenius homomorphism π : x → xp is an element in the Galois group
with fixed field Fp. The powers of π generate a subgroup H = 〈π〉 of G and
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S(H) = Fp
H
= Fp. Indeed, for any finite Galois extension of Fp the Frobenius

generates the Galois group. This is not the case here. We construct an
element s ∈ G that is not a power of π. Then H ′ = 〈π, s〉 is a subgroup of G
with S(H ′) = Fp but is clearly larger than H. Take any infinite field extension
with Fp � L � Fp. For example let q be a prime and set L =

⋃
Fpm , where

m = qr, r = 1, 2, . . . . Since this set of subfields is totally ordered, their union
L is a subfield and it is an infinite field extension of Fp. Take an element
x ∈ Fp\L. Let f be the minimal polynomial of x over L. Since x /∈ L we have
deg(f) > 1 and f has a second root b �= a in Fp. Since Fp is a splitting field
of {xpn − x | n = 1, 2, . . . } over the fields L(a) and L(b), Galois theory tells
us that there exist a non trivial automorphisms s ∈ Gal(Fp/L) with s(a) = b
([41] Theorem 8.2). Clearly s ∈ G, and the infinite field L is fixed by s. But
the fixed points under πk are the roots of xpk − x and there are only finitely
many of these. So s �= πk, and thus s /∈ 〈π〉. If we want to build examples
with another fixed field instead of Fp, we can use the subgroup 〈πm〉 with
fixed field Fpm instead; the construction works for any finite field Fpm which
is a subfields Fpm ⊂ L.

Again we can view C and D as categories whose only morphism are
inclusions. The maps S and T can be seen as contravariant functors between
these categories. One checks that

L = EGal(E/L) = ST (L) for any L ∈ C ,

H ⊂ Gal(E/EH) = TS(H) for any H ∈ D .

This defines unit and counit, thus we have an adjunction. We check property
(i) of Theorem 2.2. Let L ∈ C and H ∈ D such that there exists an inclusion
w : L ⊂ S(H) = EH . We have to find a inclusion v : H → Gal(E/L) such
that the following diagram commutes

L
ηL ��

��

L

S(v)
��

EH .

But since L ⊂ EH is a subfield that is just the inclusion H ⊂ Gal(E/EH) ⊂
Gal(E/L).

So how can one fix the Galois correspondence, or, from our point of view
what are the fixed points of this adjunction? Since L = EGal(E/L) we have
C = Cfix, we only need to find fixed points in D . From this perspective the
fixed points are simply all subgroups of the form Gal(E/L) where L is some
subextension. But this is not a very useful description.
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The solution is again to equip Gal(E/F ) with a topology, where the
subgroups Gal(E/L) are the closed subgroups. This topology is called the
Krull topology. Set K = {Ki | i ∈ I} the collection of all intermediate fields
F ⊂ Ki ⊂ E, where Ki/F is a finite Galois extension. Set G = Gal(E/F )
and Ui = Gal(E/Ki). Then

E =
⋃
i∈I

Ki.

One checks that the collection {Ui | i ∈ I} is a fundamental system of
neighborhoods of the identity element 1 ∈ G. For then the fundamental
system defines a unique topology on G, compatible with the group structure
(see [10] Chapter III §1 Proposition 1). Basically one has to check that

• Ui is a subgroup in G and G/Ui = Gal(Ki/F ) is finite for all i ∈ I;

• For i, j ∈ I then there exist an h ∈ I such that Uh ≤ Ui ∩ Uj;

•
⋂

i∈I = {1}.
This can be done by applying standard facts from Galois theory. Then
one proves ([59] Theorem 2.11.1) that the Galois group equipped with Krull
topology is a profinite group with

Gal(E/F ) = lim←−
i∈I

Gal(Ki/F ).

This topology is discrete if E/F is a finite extension. Now for any subexten-
sion L we have

L =
⋃
i∈I′

K ′
i

where K ′
i are all intermediate extensions F ⊂ K ′

i ⊂ L with K ′
i/F a finite

Galois extension. So

Gal(L/F ) = lim←−
i∈I′

Gal(K ′
i/F )

is a closed subgroup. Furthermore, all closed subgroups of the profinite group
G are of this form ([59] Proposition 2.2.1(a)). This shows that the subgroups
Gal(L/F ) are exactly the closed subgroups in the Krull topology (for details,
see [59] Chapter 2.11)
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2.2 Fiber products of rings and modules
We start with the affine case and give some facts about fiber products re-
spectively cartesian squares of rings and modules. Fiber products as well as
coproducts exist in both categories. If C is the category of modules over a
fixed ring, or if it is the category of commutative rings, then a commutative
square is cartesian if and only if the underlying square in the category of sets
is. As noted this does not hold for cocartesian squares.

We prove some facts on cartesian squares.

Lemma 2.6. Let A be a ring and let the following diagram be a commutative
square in the category of A-modules

M
u ��

w
��

M ′

w′
��

N v
�� N ′.

It is a cartesian square if and only if the by u induced homomorphism

ũ : ker(w) → ker(w′)

is an isomorphism, and the by v induced homomorphism

ṽ : coker(w) → coker(w′)

is an injection.

Proof. For x ∈ N we denote its image in the cokernel by x̃ ∈ coker(w).
Suppose the square is cartesian, so

M � N ×N ′ M ′ = {(x, y) ∈ N ×M ′ | v(x) = w′(y)}.
It is w(x, y) = x and u(x, y) = y.

The map ũ is surjective. If y ∈ ker(w′), then (0, y) ∈ M and also (0, y) ∈
ker(w) with ũ(0, y) = y.

The map ũ is also injective. It holds that w(x, y) = x = 0 for all (x, y) ∈
ker(w). So for two elements (0, y), (0, y′) ∈ ker(w) we have ũ(0, y) = ũ(0, y′),
which implies y = y′.

The map ṽ is injective. If x̃ ∈ coker(w), with ṽ(x̃) = 0, this implies
that v(x) ∈ im(w′). So there exists a y ∈ M ′ with w′(y) = v(x). Then by
assumption (x, y) ∈ M . Thus x ∈ im(w) and x̃ = 0.

In the converse case we assume that ũ is an isomorphism and ṽ is an
injection. We have to show that M � N×N ′M ′. The fiber product N×N ′M ′
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induced by v and w′ exists in the category of modules. By definition there
exist projections pr1 : N ×N ′ M ′ → N , pr2 : N ×N ′ M ′ → M ′ and a unique
homomorphism t : M → N ×N ′ M ′ with pr1t = w and pr2t = u . We show
that t is an isomorphism.

The map t is injective. Let m ∈ M , with t(m) = 0. This implies that
w(m) = 0 and u(m) = 0. The first gives m ∈ ker(w). The second shows that
ũ(m) = 0 and since ũ is an isomorphism this implies m = 0.

The map t is surjective. Let (x, y) ∈ N×N ′M . We have to find an element
m ∈ M , with w(m) = x and u(m) = y, since this would imply t(m) = (x, y).
Since (x, y) is an element of the fiber product we have v(x) = w′(y); in
particular, v(x) ∈ im(w′). It follows ṽ(x̃) = 0 for x̃ ∈ coker(w). Now by
assumption ṽ is injective so x̃ = 0 in coker(w′). This implies x ∈ im(w).
So there exist an element m′ ∈ M with w(m′) = x. Set y′ = u(m′). The
commutativity of the diagram gives w′(y′) = w′u(m′) = vw(m′) = v(x) =
w′(y), so y − y′ ∈ ker(w′). Since ũ is an isomorphism, there exists an m′′ ∈
ker(w) with u(m′′) = y−y′. Set m = m′+m′′, then w(m) = x and u(m) = y
as demanded.

Lemma 2.7. Let
A

f
��

p

��

A′

p′
��

B g
�� B′.

be a cartesian square in the category of rings and let p′ be surjective. Then
the following hold:

(i) The homomorphism p is surjective.

(ii) Set I = ker(p), the map f induces a bijection between I and f(I) =
ker(p′), in particular we have f(I)A′ = f(I).

(iii) Via the homomorphism g and p′ we can identify B′ with B �A A′, i.e.
the square is cocartesian.

Proof.

(i) Let b ∈ B. Since p′ is surjective there exists an a′ ∈ A′ with p′(a′) =
g(b). The square is cartesian, so there exists an a ∈ A with f(a) = a′

and in particular p(a) = b.

(ii) This follows directly from the previous lemma.
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(iii) Since in the category of ring coproducts always exist and are given
by tensor products, we can use their universal property. There exists
a unique map u : B �A A′ → B′, with maps j1 : B → B �A A′

and j2 : A′ → B �A A′, such that g = uj1 and p′ = uj2. The map
u is surjective since p′ is. We show that u is invective and thus an
isomorphism.

Let m ∈ ker(u). If m ∈ im(j1) or m ∈ im(j2) then m is trivial.
For the first case suppose there exists b ∈ B with j1(b) = m. Then
g(b) = uj1(b) = 0. Since the square is cartesian g(b) = 0 = p′(0) defines
an element a ∈ A with p(a) = b and f(a) = 0. The commutativity of
the diagram gives m = j1(b) = j2(0) = 0. The same construction can
be done if there exists a′ ∈ A with j2(a

′) = m.

Since any possible non trivial element of ker(u) is in the image of neither
j1 nor j2 the composition maps uj1 and uj2 can be factored through
(B �A A′)/ ker(u). So if the kernel is non trivial this is a contradiction
to uniqueness of the coproduct.

In the situation of the lemma the commutative square is cartesian as well
as cocartesian. This is the situation that is of most interest to us.

We will work with cartesian squares of modules which lie over cartesian
squares of rings. Therefore it is useful to understand what happens to ideals
under this maps.

Lemma 2.8. Let f : A → A′ be a morphism of rings and M an A-module.
Let M ′ be an A′-module which is a quotient of A′

�A M and u : M →
A′

�A M � M ′ the resulting composition map. Furthermore, let I be an
ideal in A whose image f(I) is an ideal in A′. Then f(I)M ′ = u(IM). So
the image of the A-module IM under the map u is an A′-module.

Proof. Since M ′ is a quotient of A′
�A M any element of M ′ can be written

as a finite sum of elements a′u(x), with a′ ∈ A′ and x ∈ M . Since f(I)
is an ideal of A′ the elements of the module f(I)M ′ can also be written as
finite sums of elements a′u(x), this time with a′ ∈ f(I) and x ∈ M . Since
a′ ∈ f(I), there exists an a ∈ I with f(a) = a′, which implies a′u(x) = u(ax)
and elements of IM are exactly of this form.

One has to be careful here. In the above notation the module IM is not
necessarily an A′-module; at least when u is not injective. Only the image
u(IM) is an A′-module.
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Definition 2.9. Let A → A′ be an injective morphism of rings. The con-
ductor of A in A′ is the ideal AnnA(A

′/A) = {a ∈ A | aA′ ⊂ A}.
For example, let A be an integral ring and A′ a finite commutative A-

algebra which is contained in the field of fractions of A but not A itself. The
conductor I of A → A′ is not trivial and can be rewritten as

I = {0} ∪ {a ∈ A− {0} | A′ ⊂ 1
a
A},

where 1
a
A is considered as a subset of the fraction field. For each non trivial

element t ∈ I we have strict inclusions tA � tA′ � A, so tA is not an A′-
module. Define an A-module M = A/tA, then IM = I/tA and this is also
not an A′-module.

To make this more concrete we take a look at a cusp singularity. Set

A = k[x, y]/(x2 − y3) and A′ = k[T ].

The inclusion f : A → A′ is defined by f(x) = T 3 and f(y) = T 2. The
conductor ideal in A is I = (x, y) and in A′ we get I ′ = (T 2, T 3) = f(I),
so we can simply write I instead of I ′. We have M = A/(y) = k[x]/(x2)
and IM = x(k[x]/(x2)) = k + kx. This is not a k[T ]-module. To see
this concretely we write A = k[T 2, T 3] and IM as a k[T 2, T 3]-module, so
IM = T 3k[T 2, T 3]/(T 2) = T 3k[T 3]/(T 6). This module is not a k[T ]-module,
since multiplication by T is not defined. For example T 4 /∈ IM .

2.3 Affine Pinching
For the next part suppose we have homomorphism of rings g : B → B′ and
p′ : A′ → B′. We construct first a fiber product category Mod(B) ×Mod(B′)
Mod(A′). Then we construct an adjunction from the category Mod(B×B′ A)
to this fiber product category. We study this adjunction.

We start by constructing the fiber product category. We have the carte-
sian square

A
f

��

p

��

A′

p′
��

B g
�� B′.

(2.3.1)

with A = B ×B′ A′. Using the extension of scalars functors

g∗ : Mod(B) −→ Mod(B′), N �−→ B′
�B N
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and
p′∗ : Mod(A′) −→ Mod(B′), M �−→ B′

�B M

we can define the fiber product category and get a diagram

Mod(B)×Mod(B′) Mod(A′) ��

��

Mod(A′)

p′∗
��

Mod(B)
g∗

�� Mod(B′).

(2.3.2)

Recall from Section 2.1, that the objects of the fiber product category are
triples (N, s,M ′), where N is an B-module and M ′ an A′-module, and s :
g∗(N) → p′∗(M ′), or better s : B′

�B N → B′
�A′ M ′, is an isomorphism of

B′-modules.
The equality gp = p′f from (2.3.1) induces an isomorphism of functors

σ : g∗p∗ ∼−→ p′∗f ∗.

Thus for each A-module M we have an isomorphism

σM : g∗p∗(M) −→ p′∗f ∗(M).

This is the last datum we need to define the additive covariant functor

T : Mod(B ×B′ A) −→ Mod(B)×Mod(B′) Mod(A′),

M �−→ (B �A M,σM , A′
�A M),

which is induced by the universal property of the fiber product category.
We define an additive functor in the other direction

S : Mod(B)×Mod(B′) Mod(A′) −→ Mod(B ×B′ A),

(N, s,M ′) �−→ {(y, x′) ∈ N ×M ′ with s(1 � y) = 1 � x′},
and get the following cartesian square of A-modules

S(N, s,M ′) ��

��

M ′

��

N �� B′
�B N s

�� B′
�A′ M ′.

(2.3.3)

Abusing notation one could also write S(N, s,M ′) = N ×s M
′. The lower

morphism should be read as the composition of the canonical homomorphism
N → B′

�B N with s.
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Keep in mind that the canonical morphism is given by the unit of the
adjunction between restriction and extension of scalars functors and can be
written as N → g∗g∗N . Or to be completely precise as p∗N → p∗g∗g∗N . We
technically used the restriction of scalars functors here, to treat all modules
and homomorphisms as objects respectively morphisms in Mod(A). Since
all our rings are over A by construction, we can always do this. For ease
of notation we do not write NA for restricted modules. Nevertheless, we
will often use the fact that our modules respectively homomorphism have
additional structure over A′, B and B′.

Let M be an A-module and T (M) = (B �A M,σM , A′
�A M). Since

B′
�B B � M � B′

�A M � B′
�A′ A′

�A M,

the isomorphism σM is also encoded by homomorphisms

B �A M → B′
�A M and A′

�A M → B′
�A M.

We can write

ST (M) = (B �A M)×(B′�AM) (A
′
�A M). (2.3.4)

The universal property for the fiber product of modules gives a morphism
ηM : M → ST (M). The situation is displayed in the commutative diagram

M





��

ηM

��

B �A M ×B′�AM A′
�A M ��

��

A′
�A M

��

B �A M �� B′
�A M.

(2.3.5)

Since ηM exist for every M we have constructed a natural transformation

η : idMod(A) → ST.

Lemma 2.10. The functors S and T , together with natural transformation
η, determine an adjunction, i.e. the functor S is right adjoint to T and η is
the unit of the adjunction.

Proof. According to Theorem 2.2 it is left to check that for every A-module
M , the homomorphism ηM : M → ST (M) is universal from M to S. So
let (N, s,M ′) ∈ Mod(B)×Mod(B′) Mod(A′) be an object of the fiber product
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category and g : M → S(N, s,M ′) a homomorphism. We need to construct
a unique homomorphism f : T (M) → (N, s,M ′) such that the following
diagram commutes:

M
ηM ��

g
��

ST (M)

S(f)

��

S(N, s,M ′).

(2.3.6)

Composition of g with the homomorphisms in the cartesian square (2.3.3)
defines homomorphism u : M → M ′ and w : M → N . Vice versa the
universal property of cartesian squares ensures that these morphism define
g. The situation is displayed in the diagram

M

w





u

��

g

��

S(N, s,M ′) ��

��

M ′

��

N �� B′
�B N s

�� B′
�A′ M ′.

We view both M ′ and N as A-modules induced by the restriction of scalar
functors f∗ and p∗, to which the respective extension of scalar functors f ∗ and
p∗ are left adjoint (see first example to Definition 2.1). These adjunctions
applied to u and w induce canonical maps

ū : A′
�A M −→ M ′ and w̄ : B �A M −→ N,

of A′ respectively of B-modules. These maps now define a morphism (w̄, ū) :
T (M) → (N, s,M ′) and we set f = (w̄, ū).

It is left to check that S(f) makes (2.3.6) commutative. But this can be
seen by the universal property of the extension of scalar functor, which says
that the diagrams

M ��

u
��

A′
�A M

ū
��

M ′
and

M ��

w
��

B �A M

w̄
��

N

commute over A. Here the horizontal arrows, from M to the tensor products,
are induced by those in (2.3.5) that define ηM uniquely by the universal
property of cartesian squares.
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It is useful to know the counit of the adjunction ε : TS → id. Therefore
let (N, s,M ′) be an object of the fiber product category. We construct

ε(N,s,M ′) : TS(N, s,M ′) −→ (N, s,M ′).

Set N ′ = B′
�A′ M ′. We get a cartesian square of A-modules as in (2.3.3),

which we relabel as
S(N, s,M ′) u ��

w

��

M ′

w′

��

N v
�� N ′,

(2.3.7)

where w′ : M ′ → B′
�A′ M ′, v : N → B′

�B N
s→ B′

�A′ M ′. We can again
use the adjunction between restriction and extension of scalars functors to
obtain canonical maps

ū : A′
�A S(N, s,M ′) −→ M ′ and w̄ : B �A S(N, s,M ′) −→ N, (2.3.8)

of A′ and B-modules, respectively. The pair (w̄, ū) now defines a homomor-
phism ε(N,s,M ′) : TS(N, s,M ′) → (N, s,M ′).

To check whether ε actually is the counit of the adjunction, we check
whether ε(N,s,M ′) = (w̄, ū) is mapped to idS(N,s,M ′) under the adjunction map.
We recall, that the adjunction is also defined by

ϕ(ε(N,s,M ′)) = S(ε(N,s,M ′)) ◦ ηS(N,s,M ′)

following (2.1.2). Since we have constructed (w̄, ū) the same way as in the
proof of Lemma 2.10 the diagram

S(N, s,M ′)
η(N,s,M′)

��

idS(N,s,M′) ��

STS(N, s,M ′)

S(w̄,ū)

��

S(N, s,M ′)

commutes.

We now have the necessary tools to formulate the main result of this
section. For the remainder of this section we use the following setting: Let
g : B → B′ and p′ : A′ → B′ be homomorphisms of rings. Additionally, we
demand that p′ is a surjection. Let A = B ×B′ A′ be the fiber product with
cartesian square

A
f

��

p

��

A′

p′
��

B g
�� B′.

(2.3.9)
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Then according to Lemma 2.7 the map p is a surjection and f induces an
A-linear bijection f̃ : ker(p) → ker(p′). We set I = ker(p) = ker(p′) with
this identification, so I is an ideal in A as well as in A′. Furthermore, the
cartesian square is also cocartesian, i.e. B′ is isomorphic to A′

�A B. Note
that B = A/I and B′ = A′/I.

We have an adjunction

Mod(B ×B′ A′)
T ��

Mod(B)×Mod(B′) Mod(A′)
S

��

as already defined, with unit η and counit ε. We can show the following:

Theorem 2.11. ([21] Théorème 2.2) In the setting above it holds that:

(i) The counit ε : TS → id is an isomorphism of functors.

(ii) Let M be an A-module, then M = 0 if and only if T (M) = 0.

(iii) For every A-module M , the homomorphism ηM : M → ST (M) is
surjective. Its kernel ker(ηM) is annihilated by I = ker(p) and ker(ηM)
is a subset of IM .

(iv) Furthermore, let Ā be a commutative A-algebra. The homomorphism

ηĀ : Ā −→ (Ā �A A′)×(Ā�AB′) (Ā �A B)

is surjective and its kernel has square zero.

Proof.

(i) Let (N, s,M ′) be an element of the fiber product category. To prove
the statement, we have to show that the homomorphisms

ε(N,s,M ′) : TS(N, s,M ′) → (N, s,M ′)

are isomorphisms. Set M = S(N, sM ′). With (2.3.7) we have a com-
mutative diagram

M u ��

w

��

M ′

w′
��

N v
�� N ′,

(2.3.10)

It is enough to show that the canonical homomorphisms

ū : A′
�A M → M ′ and w̄ : B �A M → N,
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from (2.3.8), which determine ε(N,s,M ′), are isomorphisms. We have to
check whether they are bijective. But to check bijectivity we can also
treat them as homomorphism of A-modules.

We start by noting that v induces a homomorphism v̄ : A′
�A N → N ′

of A′-modules. This is an isomorphism. Of course to check bijectivity
we can again treat v̄ as a homomorphism of A-modules. The homomor-
phism v̄ can be viewed as a composition of the following isomorphisms
of A-modules:

A′
�A N

∼−→ A′
�A B �B N

∼−→ B′
�B N

∼−→
s

N ′.

This works since v is a composition v : N → B′
�B N

s→ N ′, B′ �
A′

�A B and N is also a B-module.

In the following part of the proof we treat everything as an A-module
respectively as a homomorphism of such.

Since p′ is surjective, so is w′ = p′ � 1M ′ . Now Lemma 2.7 i) also holds
for cartesian square of modules, which tells us that w is also surjective.
This implies that w̄ is surjective.

The homomorphism u : M → M ′ factors as u : M → A′
�A M

ū→ M ′,
by the universal property of extension of scalars functor; similar for v.
Thus from the cartesian square (2.3.10) we can construct the following
commutative diagram:

ker(w) ��

��

∼




ker(1 � w) ��

��

ker(w′)

��

M ��

w

��

A′
�A M

ū ��

1�w
��

M ′

w′
��

N �� A′
�A N v̄ �� N ′.

The isomorphism from ker(w) to ker(w′) is induced by u following
Lemma 2.6. The surjectivity of w implies the surjectivity of 1 � w.
This allows us to apply the snake lemma (see [9] Chapter I §1 Propo-
sition 2) to the right hand side of the diagram. Now since v̄ is an
isomorphism and the homomorphism ker(1 � w) → ker(w′) is at least
surjective, both have an empty cokernel. By the snake lemma the same
holds for coker(ū) = 0, thus ū is surjective.
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The module IM is a submodule of ker(w). Furthermore, Lemma 2.8
tells us that u(IM) = I ′M ′ = ker(w′). Since u induces an isomorphism
between these two kernels, it follows that

ker(w) = IM.

Since B�AM = A/I�AM = M/IM = M/ ker(w), the homomorphism
w̄ is injective and thus an isomorphism.

It is left to show that ū is injective. Using a variant of the five lemma
(see [9] Chapter I Exercises 1.4) on the right hand side of the diagram
above, we can instead show that the morphism ker(1 � w) → ker(w′)
is injective. Since ker(w) � ker(w′), we can instead show that the
morphism ker(w) → ker(1�w) is surjective. Now, since w is surjective
ker(1�w) is the image of the homomorphism A′

�Aker(w) → A′
�AM .

Since ker(w) = IM and f(I)A′ = f(I) this image equals f(I)(A′
�AM).

By Lemma 2.8 this is exactly the image of ker(w) = IM under the
homomorphism M → A′

�A M .

(ii) Obviously T (0) = 0 if M = 0. So let M be an A-module with T (M) =
0, we have to show that M is trivial. By assumption B �A M = 0 and
A′

�A M = 0. The first statement gives B �A M = M/IM = 0, which
implies that the canonical homomorphism I �A M → M is surjective.
Now, f induces an isomorphism of A-modules from I to f(I), which in
turn gives us isomorphisms I �A M � f(I) �A′ (A′

�A M) � 0.

(iii) Let M be an A-module. To prove that ηM : M → ST (M) is surjective,
we use the fact that the functor T is right exact and gives a homomor-
phism T (ηM) : T (M) → TST (M). If we can show that T (ηM) is sur-
jective it will imply T (coker(ηM)) = 0 and by (ii) then coker(ηM) = 0.
By the property (2.1.3) of adjoint functors the composition

T (M)
T (ηM )−→ TST (M)

εT (M)−→ T (M)

is an isomorphism, and we know from (i) that εT (M) : TST (M) →
T (M) is already an isomorphism; so T (ηM) has to be an isomorphism.

We give a second argument which allows us to get a handle on M0 =
ker(ηM). Since the commutative square of rings is cartesian as well as
cocartesian we have an exact sequence of A-modules

0 −→ A −→ A′
� B

q−→ B′ −→ 0,
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where q is defined as q(a′, b) = p′(a′) − g(b). Tensoring with M gives
an exact sequence

TorA1 (M,B′) −→ M
h−→ (A′

�A M) � (B �A M)
q�1−→ B′

�A M −→ 0,

and by construction ST (M) = ker(q � 1). The exactness of this se-
quence again shows that ηM : M → ST (M) is surjective. The kernel
M0 of ηM is the same as the kernel of h. By exactness of the sequence
it is then the image of TorA1 (M,B′) → M . Since I annihilates B′ the
same holds for TorA1 (M,B′) and so also for M0. Furthermore, for an
element of M to be in this kernel it has to at least be zero in B �A M .
Since B = A/I, this is only the case for elements of the submodule
IM ⊂ M , which implies M0 ⊂ IM .

(iv) Let Ā be a commutative A-algebra. Since fiber product exists for alge-
bras, the homomorphism

ηĀ : Ā → ST (Ā)

is
Ā −→ Ā �A A′ ×Ā�AB′ Ā �A B.

With part (iii) the kernel of this map is contained in IĀ and is annihi-
lated by I, so its square is zero.

Unfortunately, in the general case, the surjections ηM : M → ST (M) fail
to be injective. So the unit is not necessarily a isomorphism of functors, and
S and T are not necessarily an adjoint equivalence of categories.

We give examples where ηM is not injective. The idea is to use the
conductor I of an injection f : A → A′ to construct a cartesian square. By
its very definition the conductor I is both an ideal in A as well as in A′. So
f restricted to I is an isomorphism. Then Lemma 2.7 tells us that

A
f

��

��

A′

��

A/I g
�� A′/I.

(2.3.11)

is a cartesian and cocartesian square as in the setting of Theorem 2.11. We
call such a commutative diagram a conductor square. We will later generalize
this construction to schemes, where it will play quite an important role.
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Here the morphism g is injective by construction. It is important to note
that the generators of I in A and A′ might vary and we use this fact to
produce examples. Since

ST (M) = (A/I �A M)×(A′/I�AM) (A
′
�A M)

by (2.3.4) we have to construct an A-module M such that there exist m ∈ M
that is zero when mapped to A/I �A M and A′

�A M .
We continue the example to Definition 2.9 of conductor ideals. In this

setting we have

ST (A/tA) = (A/I �A A/tA)×(A′/I�AA/tA) (A
′
�A A/tA)

= A/I ×A′/I A
′/tA′

= A/tA′.

But the surjection A/tA → A/tA′ is in general not injective (see [21] Re-
marques 2.3.a). We construct more concrete examples where the rings a
noetherian and the modules are of finite presentation. Even in this setting
ηM fails to be injective.

First, we continue our example with a cusp singularity, so

A = k[x, y]/(x2 − y3) and A′ = k[T ].

The inclusion f : A → A′ is defined by f(x) = T 3 and f(y) = T 2, with
conductor ideal I = (x, y). Now the element y generates a smaller ideal
(y) � I in A, but for f(y) = T 2 we have (T 2) = I in A′. Then

A/I = k and A′/I = k[T ]/(T 2).

Furthermore, A/I → A′/I is injective. So we have a cartesian square like in
(2.3.11):

k[x, y]/(x2 − y3)
f

��

��

k[T ]

��

k �� k[T ]/(T 2).

(2.3.12)

We define a commutative square of A-modules of finite presentation by

M = A/(y) = k[x]/(x2),

M ′ = A′
�A M = A′/f(y)A′ = k[T ]/(T 2),

N = A/I �A M = A/I �A A/(T 2) = A/I = k,

N ′ = A′/I �A M = A′/I = k[T ]/(T 2).
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So the cartesian square of modules is

k[x]/(x2) ��

��

k[T ]/(T 2)

��

k �� k[T ]/(T 2).

We study the homomorphism ηM : M → ST (M). We have

ST (k[x]/(x2)) = k ×k[T ]/(T 2) k[T ]/(T
2) = k

and ηM : k[x]/(x2) → k is definitely not an isomorphism. Concretely, for the
non zero element x ∈ M we have f(x) = T 3 = 0 in k[T ]/(T 2). Since x ∈ I
it is also mapped to zero in N = A/I. Thus ηM(x) = 0. The element x even
generates the kernel of ηM .

For another example set

A = Z[2i] = Z+ 2iZ and A′ = Z[i].

Or written differently we have A = Z[T ]/(T 2 + 4) and A′ = Z[T ]/(T 2 + 1).
The conductor of the inclusion A → A′ is

I = {2m+ 2ni | m,n ∈ Z}.

The element 2 ∈ I generates an ideal in A as well as in A′, but these ideals
are different. Indeed 2Z[2i] = 2Z + 4iZ and 2Z[i] = 2Z + 2iZ = I. For
example 2i /∈ 2Z[2i] but 2i ∈ 2Z[i]. By construction we have a cartesian
square as in (2.3.11) with

A/I = Z/2Z = F2 and A′/I = Z[i]/2Z[i] = F2[i].

Here Z/2Z → Z/2Z[i] is injective. We define a commutative square of A-
modules of finite presentation by

M = Z[2i]/2Z[2i] = Z/2Z+ 2iZ/4iZ,

M ′ = A′
�A M = Z[i]/2Z[i] = F2[i],

N = A/I �A A/2A = A/I = F2,

N ′ = A′/I �A A/2A = A′/I = F2[i].

The last two equations hold since 2 ∈ I. Then

ST (M) = N ×N ′ M = F2 ×F2[i] F2[i] � F2.
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So the homomorphism ηM : M → ST (M) is

Z[2i]/2Z[2i] → F2

and has kernel 2iZ/4iZ � iF2.

Of course, we would like to have an adjoint equivalence of categories
at least between suitable subcategories of Mod(B) ×Mod(B′) Mod(A′) and
Mod(B×B′A′). Let our setting be as in Theorem 2.11. We know from Propo-
sition 2.5 that S and T are an adjoint equivalence of categories between the
subcategories of fixed points of the adjunction. Since ε is an isomorphisms
of functors the fixed points of Mod(B) ×Mod(B′) Mod(A′) are the whole cat-
egory. We ask ourselves, what are the fixed points in Mod(B ×B′ A′)? Or
formulated differently, for which modules M is

ηM : M −→ ST (M)

an isomorphism?
In the proof of Theorem 2.11 (iii) we already noted that we can describe

the kernel of ηM in the following way: Since (2.3.9) is cartesian as well as
cocartesian we have an exact sequence of A-modules

0 −→ A −→ A′
� B

q−→ B′ −→ 0,

where q is defined as q(a′, b) = p′(a′)− g(b). Tensoring with M gives a exact
sequence

0 −→ TorA1 (M,A′
�B)

g−→ TorA1 (M,B′) −→ M
h−→ (A′

�AM)� (B �AM)

q�1−→ B′
�A M −→ 0.

And ST (M) = ker(q � 1). The kernel M0 of ηM is same as the kernel of h.
To get a handle on M0 we extended the exact sequence to the left. The

exactness of the sequence tells us that M0 = 0 if and only if g is surjective.
Since the Tor functor respects direct sums and the exact sequence shows that
g is always injective, we can say the following:

Proposition 2.12. The subcategory of fixed points of Mod(A), i.e. the sub-
category of A-modules, for which ηM : M → ST (M) is an isomorphism,
consists exactly of the A-modules M for which the injection

g : TorA1 (M,A′) � TorA1 (M,B) −→ TorA1 (M,B′)

is an isomorphism.
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So S and T are an adjoint equivalence of Categories

Mod(A)fix
T ��

Mod(B)×Mod(B′) Mod(A′)
S

��

according to Proposition 2.5. We ask ourselves if there are some nice subcat-
egories, for which S and T still are an adjoint equivalence of categories. The
natural choice are the respective subcategories of flat modules. An A-module
M is flat if and only if TorA1 (M,N) = 0 for any A-module N (see for example
[9] Chapter I §4 Proposition 1). So if M is flat then g is an isomorphism and
this shows that flat A-modules are fixed points. We check whether S and
T give an adjoint equivalence of categories between the subcategory of flat
A-modules and the fiber product category of flat modules. The problem is
to prove that S and T map modules in the correct way.

Theorem 2.13. ([21] Théorème 2.2) Let R be a ring and C(R) category of

(i) flat R-modules,

(ii) flat R-modules of finite type,

(iii) flat R-modules of finite presentation.

In the setting of Theorem 2.11 the following holds: For every M ∈ C(A) we
have T (M) ∈ C(B)×C(B′) C(A′), and for every (N, s,M ′) ∈ C(B)×C(B′) C(A′)
it holds that S(N, s,M ′) ∈ C(A). Furthermore, these functors are an adjoint
equivalence of categories

C(A) T �� C(B)×C(B′) C(A′).
S

��

Moreover, for any A-module M it holds that M ∈ C(A) if and only if A′
�A

M ∈ C(A′) and B �A M ∈ C(B).

The result for (i) regarding flat modules can already be found in an earlier
paper of Ferrand (see [20] Lemme (ii)). A result like in the theorem regarding
projective modules of finite type can be found in early work of Milnor (see
[56] §2 or [7] Chapter IX Theorem 5.1). According to Lemma 1.24 this is
equivalent to the statement of (iii); a R-module M is projective and of finite
type if and only if it is flat and of finite presentation. It is important to note
that condition (iii) is also equivalent to M being finite locally free.

Before we prove the theorem we give examples of the cases (i)-(iii).
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(i) Take the rational numbers Q as a Z-module. This module is flat but
not of finite type.

(ii) We construct a flat and finite R-module, which is not of finite presenta-
tion. This is only possible if R is not noetherian, since over a noetherian
ring every finite module is already of finite presentation. The following
nice example can be found in a paper by Vasconcelos ([68] Example
3.2.). Set R = Z � a, with a =

⊕
α F2 as an infinite sum. We define

addition componentwise, then R becomes a commutative group. We
define a multiplication by (n, a)(n′, a′) = (nn′, na′ + n′a + aa′), where
the multiplication aa′ is defined by a componentwise paring a× a → a.
This makes R into a commutative ring with multiplicative identity
(1, 0). Set f = (2, 0). This is a non zero element in the ring. The ideal
(f) = Rf is flat and of finite type but not of finite presentation.

Obviously Rf is of finite type. To see that it is not of finite presentation
consider the exact sequence

0 −→ ann(f) −→ R −→ Rf −→ 0.

Here ann(f) = a and this is not a finitely generated ideal in R, thus
Rf is not of finite presentation.

It is left to show that M = Rf is flat. It is enough to check, that Mm is
a free Rm-module for any maximal ideal m ∈ Spec(R) (see [9] Chapter
II §3.4 Corollary). If f /∈ m we have Mm = Rm, so it is left to check
this for ideals with f ∈ m. First we assume a �⊂ m. Then there exist
a non zero element a ∈ a \ m and af = 0. Thus Mm = 0 is free. Now
let a ⊂ m. For any element a ∈ a we have a2 = a hence (1 − a)a = 0.
Since 1 − a /∈ m the element a becomes zero in Rm. As this holds for
every element of a, f is not a zero divisor in Rm and Mm = fRm is free
as desired.

(iii) Set R = Z/6Z. Since Z/6Z � Z/3Z � Z/2Z the module Z/3Z is not
free, but it is a finite projective module, and thus also flat, and of finite
presentation (Lemma 1.24). Since every Azumaya algebra over a ring
R is finite locally free, Azumaya algebras give another example of flat
R-modules of finite presentation.

Proof of Theorem 2.13. We use the notation of Theorem 2.11. We know that
ε : TS → id is an isomorphism of functors by Theorem 2.11 (i). Furthermore,
Proposition 2.12 tells us that η : id → TS is an isomorphism of functors for
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the category of flat modules and thus also for all subcategories. It is left to
show, that S and T do map modules as described in the theorem. Indeed
then they are an adjoint equivalence of categories.

The functor T works by tensoring, so it automatically maps as demanded.
If M is a flat module so are B �A M and A′

�A M . The same holds if M is
finite or of finite presentation. Thus

(B �A M,σM , A′
�A M) ∈ C(B)×C(B′) C(A′)

in all three cases.
We have to show that S maps as demanded. Let

(N, s,M ′) ∈ C(B)×C(B′) C(A′)

be an object in the fiber product category. Set M = S(N, s,M ′). We have
to show that M ∈ C(A) . Since ε is an isomorphism of functors we know
that T (M) � id(N, s,M ′) is in C(B) ×C(B′) C(A′) and thus B �A M � N is
in C(B) and A′

�A M � M ′ is in C(A′).

(i) Let C(R) denote the category of flat R-modules.

For the proof we can replace A′ by A′
� B and B′ by B′

� B. This is
possible since one of the two squares

A
f

��

p

��

A′

p′
��

B g
�� B′

and

A
(f,p)

��

p

��

A′
� B

p′�1
��

B
(g,1)

�� B′
� B

is cartesian if and only if the other is. Furthermore, the same holds for
the commutative squares of modules

M
u ��

w

��

M ′

w′
��

N v
�� N ′,

and

M
(u,w)

��

p

��

M ′
� N

w′�1
��

N
(v,1)

�� N ′
� N.

And M ′
� N is flat if and only of M ′ and N are flat.

In the following we can therefore assume that g is injective. This
also implies that f is injective. For f(a1) = f(a2) we have p′f(a1) =
p′f(a2) = gp(a1) = gp(a2) and since g is injective p(a1) = p(a2). Since
the square is cartesian this implies a1 = a2.
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By assumption B �A M and A′
�A M are flat and we use this fact to

show that M is also flat. First we show that TorA1 (M,A/I) = 0, or
equivalently that M �A I → M is injective. Since I is an ideal of A′,
the left vertical arrow of the commutative diagram

M �A I ��

��

M

��

(M �A A′) �A′ I �� M �A A′

is an isomorphism. Since M �A A′ is a flat A′ module, the lower arrow
is injective. Then the upper one has to be injective as well.

According to [9] Chapter I §4 Proposition 2, the last paragraph implies,
that TorA1 (M,M0) = 0 for every A-module M0 that is annihilated by I.
We construct such a module. Let a ⊂ A be an ideal. Set M0 = aA′/a.
This module lies in the exact sequence

0 −→ a −→ aA′ −→ M0 −→ 0.

Since I is also an ideal of A′ with IA′ = I, we have IM0 = 0. Fur-
thermore, since TorA1 (M,M0) = 0, the morphism M �A a → M �A aA′

is injective. As M �A A′ is a flat A′-module, it is also flat as an A-
module. So the injective morphism a → A induces an injective mor-
phism M�AaA

′ → M�AA
′. Composition gives an injective morphism

M �A a → M �A A′, which factors as

M �A a → M → M �A A′.

So the morphism M �A a → M has to be injective as well, hence M is
a flat A-module, according to [9] Chapter I §2 Proposition 1.

(ii) Now let C(R) denote the category of flat R-modules of finite type. Let
B �A M and A′

�A M be flat and of finite type. We can lift their
generators to construct a sub-module of finite type M0 ⊂ M such that
B �A M/M0 = 0 and A′

�A M/M0 = 0. This implies T (M/M0) = 0
and then M = M0 by Theorem 2.11 (ii). By (i) we already know that
M is flat.

(iii) Let C(R) is the category of flat R-modules of finite presentation. So
let M be an A-module and both B �A M and A′

�A M are flat and
of finite presentation. We have already seen in (ii) that M is then
flat and of finite type. So there exist an exact sequence of A-modules
0 → K → L → M → 0, where L is of finite type. All that is left
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to show is that K is also of finite type. Since M is flat we get exact
sequences

0 −→ B �A K −→ B �A L −→ B �A M −→ 0,

and
0 −→ A′

�A K −→ A′
�A L −→ A′

�A M −→ 0.

The right side of both sequences is of finite presentation, so the left
side has to be of finite type. And we have already seen in (ii) that then
K is of finite type itself.

In the proof one could also solve the case (iii) by using the fact that M
being flat and of finite presentation is that same as M being projective and
of finite type (Lemma 1.24). We have an isomorphism A → ST (A). The
functor is additive and thus an isomorphism for free modules. Then using
additivity again this also holds for projective modules of finite type (for this
argument, see [7] Chapter IX proof of Theorem 5.1).

In his paper Farrand also claimed that Theorem 2.13 holds when C(R)
is the category of R-modules of finite type. His proof does not check that
the unit is an isomorphism of functors. And indeed the statement is wrong
(see [66] Remark 4.3.8 and Example 4.3.4. for a non Noetherian counterex-
ample). We have already given counterexample for in case where the rings
are Noetherian and the modules of finite presentation right after the proof of
Theorem 2.11. Take note that we have shown in part (ii) of the proof that
S and T do define maps

C(A) T �� C(B)×C(B′) C(A′),
S

��

when C(R) denotes the category of R-modules of finite type. This simply
fails to be an adjoint equivalence of categories.

2.4 Pinching of schemes
We want to transfer the results from the last section to schemes. To have
nice diagrams of schemes we will write commutative diagrams of rings in the
other direction from now on. The motivational idea goes like this. If we
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have a cusp singularity like in (2.3.12) the Spec functor gives a commutative
diagram of affine schemes

Spec(k[T ]/(T 2)) w ��

g

��

Spec(k[T ])

f
��

Spec(k) u
�� Spec(k[x, y]/(x2 − y3)).

and f resolves the singularity of the curve. The closed embedding u maps to
the singularity and f is a blow up along this closed point. The closed embed-
ding w maps to the exceptional divisor of the blow up and g is a finite mor-
phism. Now Theorem 2.13 can be interpreted as saying, that a quasicoherent
sheaf on Spec(k[x, y]/(x2−y3)) is flat if and only if its pullbacks along f and u
are flat. Furthermore, one can construct a flat sheaf on Spec(k[x, y]/(x2−y3))
by constructing flat shaves on Spec(k) and Spec(k[T ]/(T 2)) that become iso-
morphic after pullback along g respectively w.

More generally let
X ′ w ��

g

��

X

f

��

Y ′
u

�� Y.

be a commutative square of schemes, where w and u are closed immersions.
The square is cartesian if X ′ = Y ′ ×Y X. If furthermore the square is
cocartesian, i.e. Y is the pushout, the scheme Y can be seen as the "pinching"
of X in the closed subscheme X ′ along g.

To be able to apply Theorem 2.11 and Theorem 2.13 to such a diagram
we need some affine covering of Y , where the preimages of the covering are
affine as well. So we will demand that f and thus also g are affine morphism.

So when is a commutative square of schemes

X ′ w ��

g

��

X

f

��

Y ′
u

�� Y.

cocartesian? First Y needs to be the pushout in the category of topological
spaces, i.e. Y needs to be a pushout in the category of sets and a set V ⊂ Y is
open if and only if u−1(V ) and f−1(V ) are open. Secondly the structure sheaf
OY needs to agree with this structure. This means that the commutative
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square of OY -modules
h∗OX′ f∗OX

��

u∗OY ′

��

OY
��

��

with h = ug = fv has to be cartesian (see [21] Scolie 4.3). So we can check
whether

OY = u∗OY ′ ×h∗OX′ f∗OX .

Usually we are interested in commutative squares of schemes which are
cartesian as well as cocartesian. The commutative square of OY -modules
above defines a complex

0 −→ OY −→ u∗OY ′ � f∗OX −→ h∗OX′ −→ 0. (2.4.1)

And the square is cartesian and cocartesian if and only if this complex is
exact.

We check whether this agrees in the affine case.

Proposition 2.14. ([21] Théorème 5.1) Let

A′/I A′��

A/I

��

A��

��

be a cartesian and cocartesian square of rings as in the setting of Theo-
rem 2.11. Then the commutative square of affine schemes

Spec(A′/I) w ��

g

��

Spec(A′)

f

��

Spec(A/I) u
�� Spec(A)

is cartesian as well as cocartesian in the category of schemes.

Proof. We set Y = Spec(A), Y ′ = Spec(A/I), X = Spec(A′), and X ′ =
Spec(A′/I). Then we have A′/I = A/I �A A′ according to Lemma 2.7. So
Spec(A′/I) is exactly the fiber product of schemes (see, for example [35]
Chapter II Theorem 3.3) and thus the diagram is cartesian in the category
of schemes.

We first show that the diagram is cocartesian in the category of sets.
Denote h : A → A′. By Lemma 2.7 we have h(I) = I. For every t ∈ I we
have a homomorphism

ϕt : At −→ A′
h(t)
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and we show that this is an isomorphism.
Any element in the kernel can be written as atm with h(atm) = 0 for

a ∈ A and some m ≥ 0. We have atm+1 ∈ I ∩ ker(h). Since h(I) � I this
intersection is zero. So atm+1 = 0 and thus a is zero in At. So the kernel of
ϕt is trivial.

Any element in A′
h(t) can be written as a′h(t)−m, with a′ ∈ A and some

m ≥ 0. Now a′h(t) is an element of the ideal h(I), so there exist an a ∈ I ⊂ A
with h(a) = a′h(t). Thus we get

a′h(t)−m = a′h(t)h(t)−(m+1) = h(a)h(t)−(m+1) = h(at−(m+1))

with at−(m+1) ∈ At. So ϕt is surjective.
The fact that ϕt is an isomorphism for every t ∈ I implies that we have

an isomorphism of affine schemes

f|D(I) : DA′(I) → DA(I),

where DA′(I) = X −X ′ and DA(I) = Y − Y ′. Since u : Y ′ → Y is a closed
immersion it is injective as a morphism of sets. So u(Y ′) � f(X −X ′) = Y
and both maps are injective. It follows with the universal property that the
canonical morphism of the cocartesian product of sets Y ′ �X′ X → Y has to
be bijective. Thus the diagram is cocartesian in the category of sets.

Next we show that the diagram is cocartesian in the category of topo-
logical spaces. We have to show that a subset U ⊂ Y is open if and only
if u−1(U) and f−1(U) are open. One direction is trivial. For the other let
u−1(U) and f−1(U) be open and y ∈ U . If y ∈ D(I) the isomorphism f|D(I)

shows that U is open. If y /∈ D(I) the argument is more involved:
Let y ∈ V (I). We show that there exist a basic open neighborhood of y

that is contained in U , which implies that U is open. Since u−1(U) is open
there exists a ḡ ∈ A/I such that u−1(y) ∈ D(ḡ) ⊂ u−1(U). Let f̄ ∈ A′/I be
the image of ḡ, and let f ∈ A′ be a preimage of f̄ . This gives an element
g = (ḡ, f) of A = A/I×A′/IA

′ and a point y ∈ D(g) ⊂ Y . Unfortunately this
basic open is not necessarily contained in U , only its intersection with V (I)
is by construction; so D(g)∩ V (I) ⊂ U . We change g so that the basic open
is contained in U . We know that the preimages of D(g) in the diagram are
the basic open D(ḡ) ⊂ Y ′, D(f̄) ⊂ X ′ and D(f) ⊂ X. There exists an ideal
J ⊂ A′ with D(J) = f−1(U) in X. And D(f)∩D(J)∩V (I) = D(f)∩V (I) in
X. This shows that Z = D(f)∩V (I) and Z ′ = D(f)∩V (J) are disjoint closed
subsets of D(f) = Spec(A′

f ). So the closed embedding Z � Z ′ → Spec(A′
f )

gives a surjection A′
f → A′

f/IA
′
f ×A′

f/JA
′
f . Let a′′ be the preimage of (1, 0),

so after clearing denominators we have an element a′ ∈ J such that ā′ = f̄n
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in A′/I, and D(a′f) ⊂ D(J). Set h = (ḡn+1, a′f) in A. By construction
y ∈ D(h) and D(h) ⊂ U (see also [5] Tag 0B7J).

It left to check that the cocartesian square

h∗OX′ f∗OX
��

u∗OY ′

��

OY
��

��

is also cartesian. But the global sections just give our initial cartesian and
cocartesian square of rings. This is equivalent to the complex

0 −→ A −→ A/I � A′ −→ A′/I −→ 0

being exact And since localization is exact the square stays cartesian and
cocartesian under localization.

Note that when we start with a cartesian and cocartesian square of affine
schemes as in the proposition the global sections immediately give a cartesian
and cocartesian square of rings.

This proposition is useful for checking, whether a commutative square
of schemes, where all morphism are affine, is cartesian and cocartesian. We
mostly need it for the cocartesian part. Basically we take an affine open cover
of Y . Then the preimages of each element of this cover form a commutative
square of affine schemes. Next the Proposition tells us that it is enough to
check whether the underling commutative squares of rings are cocartesian.

Lets make this more concrete.

Definition 2.15. We call a morphism of schemes f : X → Y a finite modifi-
cation if the following holds true: First, f is finite. Second, there exist dense
open subsets U ⊂ X and V ⊂ Y such that f(U) ⊂ V and f|U : U → V is
an isomorphism. Third, the image of f is schematically dense, i.e. the map
OY → f∗OX is injective.

For a finite modification we can define the conductor ideal

C = AnnOY
(f∗OX/OY ).

The conductor ideal defines a closed subscheme u : Y ′ → Y . The inverse
image C ′ = COX defines a closed subscheme w : X ′ → X, which is the base
change of the closed immersion u, i.e. X ′ = Y ′ ×Y X. So we get a cartesian
square of schemes

X ′ w ��

g

��

X

f

��

Y ′
u

�� Y.

(2.4.2)
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Again we call such a construction a conductor square. It generalizes the
conductor square of rings (2.3.11).

Lemma 2.16. The conductor square is cartesian and cocartesian in the cat-
egory of schemes.

Proof. The conductor square is cartesian by construction, we have to show
that it is cocartesian.

Choose any affine cover (Vj)j∈J of Y . Since all morphisms in the square
are finite, the preimages

Uj = f−1(Vj), u−1(Vj), and g−1(u−1(Vj)) = w−1(Uj),

are again affine open and form a cover of X, Y ′ and X ′, respectively.
For each j ∈ J we have a cartesian square

w−1(Uj) ��

��

Uj

��

u−1(Vj) �� Vj.

We show that these are also cocartesian.
Locally on the Vj the conductor C is the conductor ideal Ij of a ring

homomorphism OVj
→ f∗OUj

. So with Vj = Spec(Aj), Uj = Spec(A′
j), we

have u−1(Vj) = Spec(Ai/Ij) and w−1(Uj) = Spec(A′
j/Ij). These rings form a

cartesian and cocartesian square as (2.3.11). According to Proposition 2.14
the cartesian square of affine schemes above is then also cocartesian.

This implies that the conductor square is cocartesian. To see that the
complex

0 −→ OY −→ u∗OY ′ � f∗OX −→ h∗OX′ −→ 0

is exact, we use that it is exact after localization.

We will later be mostly concerned with finite modification in finitely many
closed points. This means that, for the open dense subset V ⊂ Y from Def-
inition 2.15, the complement Y ′ = Y \ V , where we "modify" our scheme,
consists of only finitely many closed points. Since f is finite, this implies
that X ′ = X \ U also consists of only finitely many points. In this situation
we have Y ′ = Spec(S), X ′ = Spec(R), and both rings are Artin rings. Fur-
thermore, the lemma above ensures that this conductor square is cartesian
and cocartesian.
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While we are mostly concerned with properties of cartesian and cocarte-
sian squares of schemes, in his paper Ferrand is also interested in the con-
struction of pushouts. He shows that given a closed immersion w : X ′ → X
and integral morphism g : X ′ → Y ′, with the property, that for any y′ ∈ Y ′

there exist an affine open U ⊂ X, such that g−1({y′}) ⊂ w−1(U), then there
exist a pushout in the categories of schemes Y = Y ′�X′ X. And this pushout
gives a cartesian and cocartesian square of schemes

X ′ w ��

g

��

X

f

��

Y ′
u

�� Y,

where f is integral and u a closed immersion. ([21] Théorème 7.1).

2.5 Pinching sheaves
We aim to generalize the statements of Theorem 2.11 and Theorem 2.13. A
short summary of this generalization can also be found in [27] Appendix A.

Let
X ′ w ��

g

��

X

f

��

Y ′
u

�� Y.

be a cartesian and cocartesian square of schemes. Locally our sheaves shall
look like modules, so quasicoherent sheaves are the right choice (see for exam-
ple [35] Chapter II Proposition 5.4). The pullback of a quasicoherent sheaf
is quasicoherent ([35] Chapter II Proposition 5.8.a). We require the same for
pushforwards. Furthermore, the pushforward of an isomorphism of sheaves
should be an isomorphism. To achieve the second, we demand that all mor-
phism in the square are affine. The diagram is cartesian, so it is enough if
f and u are affine. Since affine morphisms are stable under base change this
implies that g and w are also affine ([26] Proposition 12.3). Under an affine
morphism the pushforward of a quasicoherent sheaf is again quasicoherent
([35] Proposition 5.8.c). Finally, while the pushforward f∗ is in general only
left exact, under an affine morphism the higher direct images of quasicoher-
ent sheaves vanish, i.e. Rif∗F = 0, for all i > 0 ([5] Tag 01XC). So in our
case the pushforward is an exact functor.

The constructions are generalizations of the ones for modules in the last
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section. We define the fiber product category through pullbacks

QCoh(X ′) QCoh(X)w∗
��

QCoh(Y ′)

g∗
��

QCoh(Y ′)×QCoh(X′) QCoh(X)��

��

The objects of the fiber product category are triples (N , τ,F ), with N ∈
QCoh(Y ′), F ∈ QCoh(X) and τ : g∗N → w∗F is an isomorphism of
quasicoherent O′

X-modules.
The equality h = ug = fw induces an isomorphism of functors

σ : g∗u∗ �−→ w∗f ∗.

So, for each quasicoherent OY -module G we have an isomorphism

σG : g∗u∗G → w∗f ∗G .

The universal property of fiber products, together with this data, gives an
additive covariant functor

T : QCoh(Y ) −→ QCoh(Y ′)×QCoh(X′) QCoh(X),

G �−→ (u∗G , σG , f
∗G ).

We want to make this into an adjunction, so we define an additive functor
in the other direction

S : QCoh(Y ′)×QCoh(X′) QCoh(X) −→ QCoh(Y ).

This functor should map a triple (N , τ,F ) to a fiber product u∗N ×h∗τ f∗F .
So we have to construct this fiber product in such a way that S(N , τ,F )
makes the diagram

S(N , τ,F ) ��

��

f∗F

��

u∗N �� u∗g∗g∗N h∗τ
�� f∗w∗w∗F

(2.5.1)

cartesian. This diagram is a generalization of (2.3.3) to schemes. We know
that for a morphism of schemes f : X → Y we have an adjunction

HomOX
(f ∗G ,F ) � HomOY

(G , f∗F )
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between pullbacks and pushforwards. The unit of this adjunction gives a
canonical morphism F → f∗f ∗F . This generalizes the canonical morphisms
of the form M ′ → B′

�A′ M ′, which come from the unit of the adjunction be-
tween extension and restriction of scalars functors, to morphisms of sheaves.
Since τ : g∗N → w∗F is a isomorphisms the same holds for the pushforward
h∗τ : h∗g∗N → h∗w∗F , which then allows us to define the fiber product.
We define S(N , τ,F ) as the kernel of

u∗N � f∗F −→ h∗g∗N � h∗w∗F h∗τ−id−−−−→ h∗w∗F .

This gives a well defined fiber product. Abusing notation we can now write

S(N , τ,F ) = u∗N ×h∗τ f∗F .

For any quasicoherent OY -module G we get

ST (G ) = u∗u∗G ×h∗σG
f∗f ∗G .

Then the universal property of the fiber product gives a morphism

ηG : G → ST (G ),

which defines a natural transformation

η : idQCoh(Y) −→ ST.

Lemma 2.17. The functors S and T , together with natural transformation
η, determine an adjunction, i.e. the functor S is right adjoint to T and η is
the unit of the adjunction.

Proof. The proof is similar to the proof of Lemma 2.10. According to Theo-
rem 2.2 we have to check that for every quasicoherent OY -module G , the ho-
momorphism ηG : G → ST (G ) is universal from G to S. So let (N , τ,F ) be
an object of the fiber product category and q : G → S(N , τ,F ) a homomor-
phism. We need to construct a unique homomorphism p : T (G ) → (N , τ,F )
such that the following diagram commutes:

G
ηG ��

q
��

ST (G )

S(p)

��

S(N , τ,F ).

By the universal property of the fiber product the morphism q is uniquely
determined by two maps G → u∗N and G → f∗F , which come from (2.5.1).
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The adjunction between pushforward and pullback gives unique maps u∗G →
N and f ∗G → F , which in turn determine a unique morphism

p : (u∗G , σG , f
∗G ) → (N , τ,F )

as required.
Commutativity of the diagram, i.e. that S(p) ◦ ηG = q, follows again with

the universal properties of cartesian squares and the fact that the diagrams

G ��

��

u∗u∗G

��

u∗N

and

G ��

��

f∗f ∗G

��

f∗F

are commutative.

We want to find the counit ε : TS → id of this adjunction. Let (N , τ,F )
be an object of the fiber product category. We need to define

ε(N ,τ,F ) : TS(N , τ,F ) −→ (N , τ,F ),

so that S(ε(N ,τ,F )) = idS(N ,τ,F ). In the construction we do in the proof of
Lemma 2.17 above we simply set G = S(N , τ,F ) and q = idS(N ,τ,F ). Then
ε(N ,τ,F ) = p is the counit.

To translate the setting of Theorem 2.11 let

X ′ w ��

g

��

X

f

��

Y ′
u

�� Y,

(2.5.2)

be a cartesian and cocartesian square, where f is affine and u a closed im-
mersions. Denote the quasicoherent ideal that defines the closed subschemes
Y ′ by I. The diagram is cartesian, and, as mentioned, this implies that g is
affine. The morphism w is also a closed immersions, since closed immersions
are also stable under base change ([26] Proposition 4.32).

We have already constructed an adjunction

QCoh(Y )
T ��

QCoh(Y ′)×QCoh(X′) QCoh(X),
S

��

with unit η and counit ε. We can now state the theorem in the language of
schemes:
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Theorem 2.18. ([21] Théorème 2.2) In the setting above it holds that:

(i) The counit ε : TS → id is an isomorphism of functors.

(ii) Let G be a quasicoherent OY -module, then G = 0 if and only if T (G ) =
0.

(iii) For every quasicoherent OY -module G , the homomorphism ηG : G →
ST (G ) is surjective. Its kernel ker(ηG ) is annihilated by I and con-
tained in IG .

Proof. Choose any affine cover (Vj)j∈J of Y . Since all morphism are affine,
the preimages Uj = f−1(Vj), u−1(Vj) and g−1(u−1(Vj)) = w−1(f−1(Vj)) are
again affine open and form a cover of X, Y ′ and X ′ respectively. For each
j ∈ J we have a commutative square of affine schemes

w−1(Uj) ��

��

Uj

��

u−1(Vj) �� Vj

that fulfills all the properties in the setting of the theorem. This induces
cartesian and cocartesian squares of rings as in the setting of Theorem 2.11.
Applying Theorem 2.11 to these squares shows that the statements (i)-(iii)
hold for a covering of Y . This finishes the proof.

We will use this technique, where we "cover" the diagram of schemes by
a diagram of affine schemes and then prove the statement with respect to
this covering, for the rest of this section.

We have already seen that this adjunction is not an adjoint equivalence
of categories. Again, we determine the fixed points of the adjunction. Since
the counit ε is an isomorphism the fixed points are the whole category. What
are the fixed points of η, i.e. when is ηG : G → ST (G ) an isomorphism?

Once more we can generalize the affine case of Proposition 2.12. Since dia-
gram (2.5.2) is cartesian and cocartesian we have a cartesian and cocartesian
square of OY -modules

h∗OX′ f∗OX
w#

��

u∗OY ′

g#

��

OY ,
u#

��

f#

��

with h = ug = fv. So we have a short exact sequence

0 −→ OY −→ u∗OY ′ � f∗OX
q−→ h∗OX′ −→ 0,
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where q = w# − g#. Tensoring with a quasicoherent OY -module G gives an
exact sequence

0 −→ TorOY
(G , u∗OY ′ � f∗OX)−→TorOY

(G , h∗OX′) −→ G

−→(u∗OY ′ � G ) � (f∗OX � G )
q�1−→ h∗OX′ � G −→ 0.

Now, if all involved schemes would be affine, we could use that for an mor-
phism of affine schemes f : X → Y we have f∗OX � G = f∗f ∗G . Conve-
niently, we can use the same construction as in the proof of Theorem 2.18.
The exact sequence becomes

0 −→ Tor1OY
(G , u∗OY ′ � f∗OX)

Φ−→ Tor1OY
(G , h∗OX′) −→ G

ϕ−→ (u∗u∗G ) � (f∗f ∗G )
q�1−→ h∗h∗G −→ 0

and with (2.5.1) we see that ST (M) = ker(q � 1). So the kernel of ηG is the
same as the kernel of ϕ. The exact sequence tells us, that this kernel is zero
if and only if Φ is surjective. Since Φ is already injective and since the Tor
functor respects direct sums we can state the following:

Proposition 2.19. The subcategory of fixed points of QCoh(Y ), i.e. the
subcategory of quasicoherent OY -modules for which ηG : G → ST (G ) is an
isomorphism, consists exactly of those quasicoherent OY -modules G for which
the injection

Φ : Tor1OY
(G , u∗OY ′) � Tor1OY

(G , f∗OX) −→ Tor1OY
(G , h∗OX′)

is an isomorphism.

Now S and T are an adjoint equivalence of Categories

QCoh(Y )fix
T ��

QCoh(Y ′)×QCoh(X′) QCoh(X)
S

��

according to Proposition 2.5. Again flat modules are an obvious choice for
subcategories, where S and T still are an adjoint equivalence of categories.

Theorem 2.20. ([21] Théorème 2.2) Let Z be a scheme and C(Z) the cate-
gory of

(i) flat OZ-modules,

(ii) flat OZ-modules of finite type,
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(iii) finite locally free OZ-modules.

In the setting of Theorem 2.18 the following holds true: For every G ∈ C(Y )
we have T (G ) ∈ C(Y ′)×C(X′) C(X), and for every (N , τ,F ) ∈ C(Y ′)×C(X′)
C(X) it holds that S(N , τ,F ) ∈ C(Y ). Furthermore, these functors are an
adjoint equivalence of categories

C(Y )
T �� C(Y ′)×C(X′) C(X).
S

��

Moreover, for any quasicoherent OY -module G it holds that G ∈ C(Y ) if and
only if u∗G ∈ C(Y ′) and f ∗G ∈ C(X).

Proof. Do the same construction as in the proof of Theorem 2.18 and just
apply Theorem 2.13 to the affine squares instead. For part (iii) note that
according to Lemma 1.24 a quasicoherent sheaf is finite locally free if and
only if it is flat and of finite presentation.

One could of course also use Proposition 2.19 in this proof, but since the
affine version of the proposition is used in the proof of Theorem 2.13 this is
not necessary.
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Chapter 3

Pinching Azumaya algebras

In this chapter we will show how to apply the theorems of the last chapter
to Azumaya algebras and then use this results to prove the second main
theorem. We also give a short application.

3.1 Pinching Azumaya algebras
Let f : X → Y be a morphism of schemes. Given an Azumaya algebra A on
X, we ask whether there exist an Azumaya algebra B on Y with f ∗B � A ?

If f is flat and surjective, Lemma 1.32 gives an answer to this question if
we can find some quasicoherent OY -algebra B with f ∗B = A . In general,
this question is quite hard to answer. The trouble lies in constructing a locally
free sheaf B with an algebra structure such that f ∗B = A . Lemma 1.31 then
tells us that such a B is an Azumaya algebra, at least when f is surjective.
Unfortunately, it is quite possible that we find some algebra with f ∗B � A
which is not an Azumaya algebra. This can be seen in the affine case.

We have already given an example. In Section 1.3 we saw that Aa,b =
Z[i, j, k]/(i2 − a, j2 − b, ij − k, ji + k) is not an Azumaya algebra on Z but
becomes one after base change to Z[ 1

n
] for certain n. Aa,b also becomes a

quaternion algebra after base change to Fp, with, p � a, p � b and p �= 2.
Over Z, the module Z/nZ has a canonical algebra structure but it is not

locally free. The module vanishes after base change to Q. For n = p we get
a free module after base change to Fp.

We want to "pinch" Azumaya algebras. Our aim is to construct an adjoint
equivalence of categories for Azumaya algebras like in Theorem 2.20. The
construction of the functors runs along the same lines as the construction in
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Section 2.5. Let
X ′ w ��

g

��

X

f

��

Y ′
u

�� Y,

(3.1.1)

be a cartesian and cocartesian square of schemes, with f affine and u a
closed immersion, like in the setting of Theorem 2.18. Let S and T denote
the functors which are the adjoint equivalence of categories from the theorem

Loc(Y )
T ��

Loc(Y ′)×Loc(X′) Loc(X).
S

��

Here Loc(X) denotes the category of finite locally free sheaves.
We denote the category of Azumaya algebras with Az(X). The pullback

of an Azumaya algebra is an Azumaya algebra (Lemma 1.30). We can again
define the fiber product category through pullbacks

Az(X ′) Az(X)w∗
��

Az(Y ′)

g∗
��

Az(Y ′)×Az(X′) Az(X)��

��

The objects of the fiber product category are triples (B′, τ,A ), where B′ ∈
Az(Y ′), A ∈ Az(X) and τ : g∗B′ → w∗A is an isomorphism.

The equality h = ug = fw induces an isomorphism of functors

σ : g∗u∗ �−→ w∗f ∗.

So for each Azumaya algebra B on Y we have an isomorphism

σB : g∗u∗A → w∗f ∗B.

The universal property of fiber products, together with this data, gives a
covariant functor

G : Az(Y ) −→ Az(Y ′)×Az(X′) Az(X),

B �−→ (u∗B, σB, f
∗B).

Note that every Azumaya algebra is also a finite locally free sheave. And we
have constructed G in such a way that G(B) = T (B).

It is a bit harder do define a functor in the other direction. We wish do
define a functor

F : Az(Y ′)×Az(X′) Az(X) −→ Az(Y ).
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Let (B′, τ,A ) ∈ Az(Y ′)×Az(X′)Az(X). We can view (B′, τ,A ) as an element
in Loc(Y ′)×Loc(X′) Loc(X). Then

B = u∗B′ ×h∗τ f∗A = S(B′, τ,A )

is a finite locally free sheaf.
We equip B with the structure of an Azumaya algebra. From the con-

struction of S, we remember, that the pushforward of a quasicoherent sheaf
along an affine morphism is exact, since Rif∗F = 0, for all i > 0 ([5] Tag
01XC). This implies that u∗B′ and f∗A are both OY -algebras, and h∗τ is an
isomorphism of OY -algebras between them. So u∗B′×h∗τ f∗A can be viewed
as a fiber product of OY -algebras, with the induced algebra structure. This
gives us a canonical way to equip B with an OY -algebra structure.

Lemma 3.1. This OY -algebra B is an Azumaya algebra.

Proof. We know that B is finite locally free. By Theorem 2.20 we have
T (B) � (B′, τ,A )) as locally free sheaves. And thus u∗B � B′ and f ∗B �
A . No,w B′ and A are Azumaya algebras and the algebra structure on
B was constructed in such a way that this isomorphisms respect it. This
implies that u∗B and f ∗B are Azumaya algebras.

To show that B is an Azumaya algebra we have to show that the stalk
By is an Azumaya algebra over the local Ring OY,y, for every y ∈ Y (Propo-
sition 1.25). If y is in the image of the closed immersion y ∈ u(Y ′), there
exist an y′ ∈ Y ′ with u(y′) = y. The fact that u∗By′ is an Azumaya algebra
over OY ′,y′ implies that By is an Azumaya algebra over the local ring OY,y,
by the same argument as used in the proof of Lemma 1.31. If y /∈ u(Y ′) there
exist an x ∈ X with f(x) = y, since the diagram is cocartesian. Since f ∗Bx

is an Azumaya algebra over the local ring OX,x the same has to be true for
By over the local ring OY,y, again by the same argument as used in the proof
of Lemma 1.31.

We set F (B′, τ,A ) = B. We then have F (B′, τ,A ) = S(B′, τ,A ), if
we view B′ and A as locally free sheaves on the right side.

Now we have defined two functors F and G. We have

FG(B) = ST (B) and GF (B′, τ,A ) = TS(B′, τ,A ),

as an equality of finite locally free sheaves. By Theorem 2.18 we have iso-
morphisms of finite locally free sheaves ST (B) � B and TS(B′, τ,A ) �
(B′, τ,A ). From the way we have constructed F and G, we obtain isomor-
phisms of Azumaya algebras B � FG(B) and GF (B′, τ,A ) � (B′, τ,A ).
These isomorphism in turn determine unit and counit, which are isomorphism
of functors. We have shown:
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Theorem 3.2. In the setting above the functors F and G are an adjoint
equivalence of categories

Az(Y )
G ��

Az(Y ′)×Az(X′) Az(X).
F

��

Furthermore, a quasicoherent OY -algebra B is an Azumaya algebra on Y if
and only if u∗B ∈ Az(Y ′) and f ∗B ∈ Az(X).

Basically, we have used Ferrand’s results to construct an adjoint equiva-
lence of categories for finite locally free sheaves that are also algebras. The
question whether such an algebra is Azumaya can then be answered locally.
Here the fact that the diagram is cocartesian ensures that every y ∈ Y is an
the image of u or f .

This theorem allows us to reduce our motivational question. Given some
Azumaya algebra A on X the question whether there exist an Azumaya
algebra B on Y with f ∗B = A can be reduced to the question whether
there is some Azumaya algebra B′ on Y ′ with g∗B′ � w∗A . In fact this
property describes all Azumaya algebras on X, that are the pullback of some
Azumaya algebra on Y .

3.2 Pinching along finite morphisms
Let f : X → Y be finite modification in finitely many closed points, in the
sense of Definition 2.15. We fix dense open subsets U ⊂ X and V ⊂ Y
such that f(U) ⊂ V , f|U : U → V is an isomorphism and Y ′ = X \ U
consists of only finitely many closed points. We take the conductor ideal
C = AnnOY

(f∗OX/OY ) to construct a conductor square

X ′ w ��

g

��

X

f

��

Y ′
u

�� Y.

like in (2.4.2). So g is also finite and u and w are closed embeddings. By
Lemma 2.16 this cartesian square is also cocartesian. This allows us to apply
Theorem 3.2 to it.

Now, f can be written as a finite composition of finite modifications
in one closed point. So we can do the construction for each part of this
composition separately. We can assume that Y ′ consists of only one closed
point. Furthermore, we can restrict Y to the connected component of this
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point. So we can assume that Y is connected. Since f is finite we can then
assume that X has only finitely many connected components.

We purposely do not assume that X is also connected. For example, let
Y be the intersection of two curves, or more generally two schemes, in one
closed point Y ′ = {y} and f the resolution of this singularity. Then X has
at least two connected components.

Now the fact that Y ′ consists of only one closed point implies that we have
Y ′ = Spec(S), where S is a local Artin ring, that is, a ring with only one prime
ideal, namely the maximal ideal m. Of course, every field is a local Artin
ring. The most prominent example, which is not a field, is the ring of dual
numbers k[ε]/(ε2) with maximal ideal (ε). This can be generalized, as the ring
k[ε]/(εn) is a local Artin ring. Other examples include k[x, y]/(x2, y3, xy2)
with maximal ideal (x, y), or k[T 2, T 3]/(T 4) with maximal ideal (T 2, T 3).

Since g is finite, X ′ = Spec(R) has to be the spectrum of a ring R,
which is finitely generated, not only as an S-algebra, but also as a S-module.
And every finite module over an Artin ring is Artin itself (see [54] Chapter I
Theorem 3.1) so R is an Artin ring, i.e. there is no infinite descending chain
of ideals in R. Though R is not necessarily local.

Thus R has finitely many prime ideals mi and all of those are maximal
ideals (see [3] Proposition 8.1 and Proposition 8.3). The structure theorem
for Artin rings ([3] Theorem 8.7) tells us that an Artin ring R is uniquely,
up to isomorphism, a finite direct product of local Artin rings Ri. It is

R =
l∏

i=1

Ri.

So for examples of Artin rings we simply take products of the examples for
local Artin rings. This also shows that the Zariski topology on an Artin
ring agrees with the discrete topology. Set Ui = Spec(Ri), then Spec(R) =⊔l

i=1 Ui and this is a finite and disjoint open cover that consist of local rings.
The structure theorem, together with the fact that every finite algebra

over a local Artin ring is an Artin ring, has another consequence for us. It
shows that every finite algebra over a local Artin ring is a direct product
of local rings. This property implies that a local Artin ring is a Henselian
local ring ([55] Chapter I Theorem 4.2). For such rings the Brauer group is
wholly described by the Brauer group of the residue field, as we have shown
in Corollary 1.40. Thus

Br(S) = Br(k) and Br(R) =
l⊕

i=1

Br(Ri) =
l⊕

i=1

Br(ki),
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with k = S/m and ki = R/mi. Note that the ki are finite field extensions of
k, since g is finite. We remark that we could also have used that Br(R) =
Br(R/I) for a nilpotent ideal ([16] Theorem 1). If we set I as the nilradical of
R, the Chinese remainder theorem (see [48] Chapter II Theorem 2.1.) gives
R/I =

∏l
i=1 Ri/mi =

∏l
i=1 ki.

Theorem 3.3. Let f : X → Y be finite modification in finitely many closed
points. A cohomological Brauer class β ∈ Br′(Y ) is represented by an Azu-
maya algebra on Y if and only if the pullback f ∗β is represented by an Azu-
maya algebra on X.

Proof. As we have discussed, we can assume that f gives a cartesian and
cocartesian square

Spec(R) w ��

g

��

X

f

��

Spec(S) u
�� Y.

(3.2.1)

where u : Spec(S) → Y determines a closed point, so S is a local Artin
ring. Furthermore, Y is connected, X has only finitely many connected
components, and R is an Artin ring, with R =

∏l
i=1 Ri fore some local Artin

rings Ri. Set h = u ◦ g = f ◦ w.
The Brauer maps δ is injective. By Lemma 1.39 we have a commutative

diagram

Br(X)
δX �� Br′(X)

Br(Y )
δY

��

f∗
��

Br′(Y ).

f∗
��

(3.2.2)

If β is represented by an Azumaya algebra the commutativity of the diagram
ensures that the same holds for f ∗β. The problem lies in the other direction.

So let β ∈ Br′(Y ) be a cohomological Brauer class whose pullback f ∗β ∈
Br′(X) is represented by an Azumaya algebra A on X.

If we replace X by Y ′ = Spec(S), and the maps accordingly, in the com-
mutative square (3.2.2), we receive another commutative square. Combined
these give the following commutative square:

Br(S) � Br(X)
δS�δX �� Br′(S) � Br′(X)

Br(Y )
δY

��

(u∗,f∗)

��

Br′(Y ).

(u∗,f∗)

��

(3.2.3)
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First, we show that the pullback map (u∗, f ∗) : Br′(Y ) → Br′(S)�Br′(X)
is injective. This implies, that every morphism in the commutative square
(3.2.3) is injective. Let T ∈ {X, Spec(R), Spec(S)} and ϕ : T → Y the
corresponding finite morphism ϕ ∈ {f, u, h}. From Appendix A we know
that the pullback map ϕ∗ : Br′(Y ) → Br′(T ) is induced by

ϕ∗ : H2
et(Y,Gm,Y )

ϕ1−→ H2
et(Y, ϕ∗Gm,T )

ϕ2−→ H2
et(T,Gm,T ).

We show that

(u∗, f ∗) : H2
et(Y,Gm,Y )

(u1,f1)−−−−→ H2
et(Y, ϕ∗Gm,S) � H2

et(Y, ϕ∗Gm,X)

(u2,f2)−−−−→ H2
et(S,Gm,S) � H2

et(X,Gm,X)

is injective, by showing that (u1, f1) and (u2, f2) are injective.
The Leray-Serre spectral sequence (see [5] Tag 03QC) gives the five term

exact sequence

0 −→ H1
et(Y, ϕ∗Gm,T ) −→ H1

et(T,Gm,T ) −→ H0
et(Y,R

1ϕ∗Gm,T )

−→ H2
et(Y, ϕ∗Gm,T )

ϕ2−→ H2
et(T,Gm,T ).

Now, higher direct images of a finite morphism of schemes vanish ([5] Tag
03QP), so R1ϕ∗Gm,T = 0, and thus also H0

et(Y,R
1ϕ∗Gm,T ) = 0. Now the

exactness of the sequence implies first, that H1
et(Y, ϕ∗Gm,T ) � H1

et(T,Gm,T ),
and second, that ϕ2 is injective. In particular, for T = Y and ϕ = u this
shows that u2 is injective, and for T = X and ϕ = f also that f2 is injective.
Thus (u2, f2) is injective.

The cartesian and cocartesian square of schemes (3.2.1) gives us a short
exact sequence like (2.4.1):

0 −→ OY −→ u∗OS � f∗OX −→ h∗OR −→ 0.

This exact sequence induces a short exact sequence

1 −→ O×
Y −→ u∗O×

S � f∗O×
X −→ h∗O×

R −→ 1.

Now, we could use pullback via a morphism of sites to obtain a short ex-
act sequence of étale sheaves. Instead, we argue more concretely that base
change by any étale morphism U → Y is exact, since étale morphisms are
in particular flat. So the exact sequence of Zariski sheaves above induces an
exact sequence of étale sheaves and, by definition of Gm, this is the short
exact sequence

1 −→ Gm,Y −→ u∗Gm,S � f∗Gm,X −→ h∗Gm,R −→ 1.
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Taking cohomology we obtain an exact sequence

H1
et(Y, h∗Gm,R) −→ H2

et(Y,Gm,Y ) −→ H2
et(Y, u∗Gm,S) � H2

et(Y, f∗Gm,X).

Using the five term exact sequence above for h : Spec(R) → Y we see that
H1

et(Y, h∗Gm,R) � H1
et(Spec(R),Gm,R). Now H1

et(Spec(R),Gm,R) = Pic(R)
and for an Artin ring is Pic(R) = 0. This shows that

(u1, f1) : H
2
et(Y,Gm,Y ) −→ H2

et(Y, u∗Gm,S) � H2
et(Y, f∗Gm,X)

is injective.

Now by assumption we have an Azumaya algebra A on X with δX([A ]) =
f ∗β. Since Spec(S) is affine there exist an Azumaya algebra B′ on it with
δS([B′]) = u∗β. Then (u∗β, f ∗β) ∈ Br′(S) � Br′(X) is in the image of
δS � δX in the commutative diagram (3.2.3). Since all maps in the diagram
are injective it is enough to construct an Azumaya algebra B on Y with
[u∗B] = [B′] and [f ∗B] = [A ]. For then δ([B]) = β.

We can apply Theorem 3.2 to the the cartesian and cocartesian square
of schemes (3.2.1). Unfortunately, it could be that g∗B′ �� w∗A . We will
modify B′ and A , without changing their Brauer class, in such a way that
their pullbacks to Spec(R) become isomorphic and we can apply Theorem 3.2.

If A does not have constant rank n replace it by an equivalent Azumaya
algebra that does. This is possible thanks to Lemma 1.34. Since B′ is
defined over the local Artin ring S it has constant rank m. The rank of an
Azumaya algebra is a square, so there always exist a trivial Azumaya algebra
End(

⊕OX) of the same rank. We replace A and B′ by

A � End(

√
m⊕

j=1

OX) and B′
� End(

√
n⊕

j=1

OY ′)

respectively. This does not change their Brauer class, but they now both have
the same rank, namely nm. So g∗B′ and w∗A are also of the same rank nm.
By construction they still represent the same cohomological Brauer class in
Br′(X ′), so they are in the same Brauer class in Br(X ′).

Over the Artin ring R this is enough to show that they are isomorphic.
Write B′ and A for Azumaya algebras of rank nm over R, that correspond
to the pullbacks g∗B′ respectively w∗A . Now [B′] = [A] have the same
Brauer class in Br(R) =

⊕l
i=1 Br(ki). Then ki � B′ and ki � A also have

the same Brauer class in Br(ki). And, they have the same rank. For central
simple algebras this implies that they are isomorphic, which we explained in
the discussion following Wedderburn’s theorem (Theorem 1.6). But if they
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are isomorphic over each ki then Lemma 1.15 tells us that they are also
isomorphic over Ri, so Ri � B′ � Ri � A. Since R =

∏l
i=1 Ri this shows

B′ � A.
We have constructed an isomorphism τ : g∗B′ � w∗A , so (B′, τ,A ) is

an element in the fiber product category. With Theorem 3.2 we set B =
F (B′, τ,A ) and this Azumaya algebra satisfies u∗B � B′ and f ∗B � A .

The proof also gives a concrete way of constructing an Azumaya alge-
bra B, that represents a cohomological Brauer class β ∈ Br′(Y ), from an
Azumaya algebra A , that represents f ∗β ∈ Br′(X).

3.3 Application: S2-ization
We give a short recollection of the notion of depth and the meaning of Serre’s
criterion. These notions can be found in most books on commutative algebra
(see for example [54] Chapter 6, [19] Section 18) or in algebraic geometry
textbooks ([35] pp. 184-187, [26] Appendix B.12).

Let R be a Noetherian local ring with maximal ideal m and M an R-
module.

Definition 3.4. A finite sequence of elements (r1, . . . , rd) of elements ri ∈ R
is called regular or regular sequence if for all i = 1, . . . , d the image of ri in
R/(r1, . . . , ri−1)R is regular, i.e. not a zero divisor, and R/(r1, . . . , rd)R is
non zero. We define the depth of R as depth(R) = d, where d is the maximal
length of a regular sequence.

Since R is Noetherian depth(R) is well defined. All maximal regular
sequences have the same length. Note that the elements in a regular sequence
are always contained in the maximal ideal m.

It holds depth(R) ≤ dim(R). An arbitrary noetherian ring A is called
Cohen-Macaulay if depth(Ap) = dim(Ap) for all ideals p ⊂ A. One says
that locally Noetherian scheme is Cohen-Macaulay if all of it local rings are
Cohen-Macaulay. We use a slightly different condition.

A Noetherian ring A fulfills Serre’s Criterion (Sn) if

depth(Ap) ≥ min(ht(p), n),

for all prime ideals p ⊂ A. A locally Noetherian scheme X is (Sn) if all local
rings OX,x are. If dim(X) = n Serre’s Criterion (Sn) is equivalent to the
scheme being Cohen-Macaulay.
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On noted application of Serre’s criterion is presented in the following.

Theorem 3.5. (Serre’s normality criterion)([28] Théorème 5.8.6) A noethe-
rian ring A is normal if and only if

• (R1) Ap is regular for all prime ideal p with ht(p) ≤ 1

• (S2) depth(Ap) ≥ min(ht(p), 2), for all prime ideals p.

Lemma 3.6. ([5] Tag 02OL) Let Y be a locally noetherian scheme. The
set of ideals {I ⊂ OY | supp(I ) is nowhere dense in Y } has a maximal
element I . This ideal defines a closed subscheme Y0 with the following prop-
erties:

(i) As topological spaces is Y = Y0;

(ii) Y0 has no embedded points;

(iii) There exists a dense open U ⊂ Y such that U is dense in Y0 and
OY0|U � OY |U .

Since Y0 has no embedded points, it fulfills Serre’s criterion (S1). We call
Y0 the S1-ization of Y .

If Y is a Noetherian scheme the ideal I defining an (S1)-ization is nilpo-
tent. Since Y is Noetherian we can check this locally. So let Y = Spec(R)
with a Noetherian ring R, and I ⊂ R the ideal corresponding to I . For
f ∈ I the prime ideal p = ann(f) is an embedded prime, with ht p ≥ 1. So,
for every generic point ηi there exists an h ∈ p with h /∈ ηi. It holds that
hf = 0 ∈ ηi so f ∈ ηi. Thus the element f is contained in every generic
point, which implies f ∈ p and thus f 2 = 0.

An affine scheme that is (S1) but not (S2), is for example given by the
rings

{f ∈ C[X, Y ] | f(0, 0) = f(0, 1))}
and

k[u, v, w, z]/(u2w − v2, u3z − v3, w3 − z2) � k[x, xy, y2, y3].

If Y is a surface, that is, a 2-dimensional scheme of finite type over some
field k, we can go further. First, note that S1-ization does not change the
cohomological Brauer group. The closed embedding Y0 ⊂ Y gives an exact
sequence

0 −→ I −→ OY −→ OY0 −→ 0.
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Like in the proof of Theorem 3.3 this induces an exact sequence of étale
sheaves

1 −→ I −→ Gm,Y −→ Gm,Y0 −→ 1.

From this we get a long exact étale cohomology sequence

H2
et(Y0,I ) −→ H2

et(Y,Gm,Y ) −→ H2
et(Y0,Gm,Y0) −→ H3

et(Y0,I ).

Now I can be at most one dimensional, by construction. Thus we have
H2

et(Y0,I ) = 0 and H3
et(Y0,I ) = 0. This implies Br′(Y ) = Br′(Y0).

We define an S2-ization f : X → Y0 where X is (S2) and f shall be a
finite modification in finitely many closed points. Set

X = Spec(H 0
X/Z(2)(OY0)).

The general definition of the right hand side can be found in [28] Chapter
IV §5.9. There H 0

X/Z(F ) is defined as a direct limit of an inductive system
which is defined via a family open sets; this family depends on a subset
Z ⊂ X that is stable under specialization.

For our purpose it is enough to know that H 0
X/Z(2)(OY0) is a quasicoherent

OY0-algebra whose affine Y0-scheme f∗OX is determined by

f∗(OX)y =
⋂

x∈Spec(OY0,y
)

ht(x)=1

OY0,x.

The intersection takes place in the ring of total fractions of OY0,y. Since Y0 is
also of finite type over k, [28] Proposition 5.11.1 ensures that H 0

X/Z(2)(OY0)

is coherent and f is finite. In this case, [28] Proposition 5.10.16 tells us,
that X is (S2), that there exist an open subscheme V ⊂ Y0 such that the
restriction of f to f−1(V ) → V is an isomorphism, that this V is (S2), and
that codim(Y0 − V, Y0) ≥ 2.

The S2-ization f : X → Y0 is a finite modification in the finitely many
closed points y ∈ Y0 \ V where OY0,y is not (S2). This allows us to apply
Theorem 3.3. Furthermore, we have Br(Y ) = Br(Y0) for the S1-ization. So
whenever we want to construct an Azumaya algebra that represents some
cohomological Brauer class β ∈ Br(Y ) we can instead construct one that
represents f ∗β on the S2-ization X. This for example allows one to use
methods from [36]. Furthermore, as a short corollary we see the following:

Corollary 3.7. Let Y be a separated surface that is regular in codimension
one and whose normalization is geometrically normal. Then Br(Y ) = Br′(Y ).
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Proof. Since Y is already regular in codimension one, it is S1 and the S2-
ization f : X → Y is the normalization. We already mentioned in the
discussion of the Brauer map that Br(X) = Br′(X) for a separated geomet-
rically normal scheme by [63] Theorem 3.1. Then the result follows from
Theorem 3.3
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Appendix A

Cohomology of group schemes

We repeat some facts about group schemes and cohomology. Most statements
can be found in the book of Milne [55] (in particular Chapter II and III).
Other sources are the books by Tamme [65], Fu [22], or Colliot-Thélène and
Skorobogatov [12]. For details on non abelian sheaves and their cohomology
we refer to the book of Giraud [25].

Let X be a scheme. Milne works on the big flat site Xfl, by which he
means the fppf site. Though this implies that results hold over the big étale
site XEt, with which we will work with initially. We then further restrict to
the small étale site Xet. The small Zariski site is denoted by XZar. We write
XE for an arbitrary flat, étale or Zariski site. A covering U = (Ui → X) is
always a covering with respect to some site.

Let Y be a scheme with site YE. We want to work with sheaves of groups
on Y , i.e. functors from the category of Y -schemes to the category of groups.
On way to check if some presheaf of groups is a sheaf is to check if it is
representable by a group scheme G on Y .

Lets give some examples. Actually these examples will be the only group
schemes that are of relevance to us. With U we denote some Y -scheme, that
is an object U → Y in the site.

• The sheaf Ga is defined by Ga(U) = Γ(U,OU). It is representable by
Spec(Z[T ]).

• The sheaf Gm is defined by Gm(U) = Γ(U,OU)
×. It is representable

by Spec(Z[T, T−1]).

• The sheaf GLn is defined by

GLn(U) = GLn(Γ(U,OU)) = Mn(Γ(U,OU))
×.
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It is representable by

Spec

(
Z[T11, . . . , Tnn, T ]

(T det(Tij)− 1)

)
.

• The sheaf PGLn is defined by PGLn(U) = Aut(Mn(OU)), here the
automorphism group is the one of Mn(OU) as an OU -algebra, such
an algebra automorphism can also be seen as an endomorphism of
Mn(OU) as an OU -module. We can view PGLn as a subfunctor of
Mn2 . The condition that some endomorphism is an automorphism
of algebras is described by polynomials, hence a scheme representing
PGLn has to be a closed subscheme of the one representing Mn2 . Let
S ⊂ Z[T11, . . . , Tnn, det(Tij)

−1] be the subring of elements of degree
zero, then PGLn is represented by Spec(S) (see [55] p.142).

Note that we at first defined presheaves above. The fact that these are
actually sheaves is then shown by giving a representation.

We defined PGLn as functor (Sch) → (Gp) such that PGLn(U) =
Aut(Mn(OU)). Usually the sheaf PGLn is defined different. For a field
it is PGLn(k) = GLn(k)/k

×, then Skolem-Noether (Proposition 1.21) shows
Aut(Mn(k)) = PGLn(k). For rings the quotient GLn(R)/R× does not nec-
essarily define a sheaf but only a presheaf. The same of course holds then
for U �→ GLn(U)/O×

U One usually defines PGLn as the sheafification of this
presheaf. This gives an exact sequence

1 −→ Gm −→ GLn −→ PGLn −→ 1.

Lemma 1.36 then implies, that this more standard definition of PGLn is
isomorphic to the one we use.

The main reason why we initially work on a big site or alternative flat site
is the following: Let Y be a scheme, with flat or big étale site. We denote this
by Ybig. Let G a group scheme over Y , that is not necessarily commutative
which defines a sheaf of groups GY on Y .

For a morphism of schemes f : X → Y the scheme X is an object in
the site. This induces a morphism of sites f : Xbig → Ybig, and any covering
(Ui → Y ) gives a covering (Ui × X → X). The group scheme G can be
restricted to G × X → X and so defines a group scheme on Xbig, which in
turn determines a sheaf of groups GX . In this situation the pullback functor
f ∗ is exact and f ∗GY = GX . In fact, it simply is the restriction functor
f ∗GY = GY |X and the restriction induces a map GY → GX .
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On the other hand the small étale site is a subcategory of the big étale
site; it is also a subcategory of the flat site, so we could use the flat site
instead of the big étale site. There exist a morphism of sites π : YEt → Yet

defined by the identity on Y . In this case both π∗ and π∗ are exact. Then
π∗GY is the sheaf on Yet which is the restriction of GY to the small étale site.
It is represented by G on Yet. So let U → Y be étale over Y an object in
the small étale site. Then U → Y is also an object in the big étale site and
Γ(U,GY ) � Γ(U, π∗GY ). In general we will denote the sheaves on the small
site also by GY . Note that the morphism GY → GX on the big étale site does
restrict to a morphism on the small étale site.

If GY is a sheaf of commutative groups we can extend this to cohomology
groups. For this short part we write GYEt

and GYet if it is necessary to differ-
entiate these sheaves on the big or small site. Let f : X → Y be a morphism
of schemes. There the pullback induces a "pullback" of cohomology groups,

f ∗ : H i
Et(Y,GYEt

) −→ H i
Et(Y, f∗f

∗GYEt
) −→ H i

Et(X, f ∗GYEt
).

The first map is given by the adjunction GYEt
→ f∗f ∗GYEt

. The second comes
from the Leray spectral sequence:

Hp
Et(Y,R

qf∗GXEt
) ⇒ Hp+q

Et (X,GXEt
),

which exists for any continuous morphism of sites f : X ′
Et → XEt and any

sheaf F ′ on X ′
Et ([55] Chapter III Theorem 1.18). Since f ∗GYEt

= GXEt
we

have a pullback map

f ∗ : H i
Et(Y,GYEt

) −→ H i
Et(Y, f∗GXEt

) −→ H i
Et(X,GXEt

).

Let π : YEt → Yet again be the morphism of sites defined by the identity on
Y . There exist canonical isomorphisms

H i
et(Y, π∗GYEt

) −→ H i
Et(Y,GYEt

) and H i
et(Y,GYet) −→ H i

Et(Y, π
∗GYet)

for all i ≥ 0 ([55] Chapter III Proposition 3.1). These isomorphisms allow us
to replace the big étale site by the small étale site. The pullback for the big
site induces a pullback map for the small site

f ∗ : H i
et(Y,GYet) −→ H i

et(Y, f∗GXet) −→ H i
et(X,GXEt

).

and we can stop worrying about the difference between GYEt
and GYet .

Now let G be a possible non abelian group scheme on XEt, which defines a
sheaf of groups GX . The cohomology theory we have used above is defined for
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abelian sheaves. So we need a different approach. We can at least construct
first cohomology classes. The construction can be done for the big and small
étale site, or even for the flat site. Since this is the case of most interest to us
we will describe the construction for the small étale site. Let U = (Ui → X)
denote an étale covering. The construction is similar to the definition of Čech
cohomology. A 1-cocycle for U with values in GX is a family (gij)I×I , with
gij ∈ GX(Uij) such that

(gij | Uijk)(gjk | Uijk) = (gik | Uijk).

Let g and g′ be two cocycles. They are cohomologous if there is a family
(hi)I , with hi ∈ GX(Ui), such that g′ij = (hi | Uij)gij(hj | Uij)

−1. This defines
an equivalence relation. We write Ȟ1(U /X,GX) for the set of cohomology
classes. This set has a distinguished element (1)I×I , by which we mean the
element (gij)I×I , where all gij = 1. Define the set

Ȟ1
et(X,GX) = lim−→ Ȟ1(U /X,GX),

where the limit is taken over all étale coverings of X like in the construction
of Čech cohomology (see [55] Chapter III §2). When GX is abelian this
definition gives the first Čech cohomology group, which is why the notation
is the same. For an abelian sheaf we even have Ȟ1

et(X,GX) � H1
et(X,GX)

([55] Chapter III Corollary 2.10). In general though Ȟ1
et(X,GX) is not a

group but a pointed set.
We define pullbacks f ∗ : Ȟ1

et(Y,GY ) → Ȟ1
et(X,GX) along a morphism of

schemes f : X → Y as a pullback of a 1-cocycle. For a cover (Ui → Y ) we get
a cover (Ui ×X → X) and we have restriction maps GY (Ui) → GX(Ui ×X).
Two cohomologous 1-cocycles stay so under this maps, since we can also pull
back the family (hi) which defines the relation.

The next step is of course cohomology of a short exact sequences. A
sequence of sheaf of groups

1 −→ GX −→ HX −→ KX −→ 1

is called exact, if GX(U) is the kernel of the homomorphism HX(U) →
KX(U) for every étale morphism U → X, and every section s ∈ KX(U)
is locally liftable to a section of HX .

For such an exact sequence of groups there exists an associated sequence
of pointed sets

1 −→ GX(X) −→ HX(X) −→ KX(X)

d−→ Ȟ1
et(X,GX) −→ Ȟ1

et(X,HX) −→ Ȟ1
et(X,KX).
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Let k ∈ KX(X), we describe the image under d. Choose an étale covering
(Ui → X) such that there exist hi ∈ HX(Ui) that are mapped to k | Ui under
HX(Ui) → KX(Ui). Then

d(k)ij = (hi | Uij)
−1(hj | Uij)

(see [55] Chapter III Proposition 4.5 and [25] Chapter III §3.6).
In the case where GX is an abelian sheaf and for every étale morphism

U → X the group GX(U) is mapped into the center of HX(U), there exists
a boundary map

d : Ȟ1
et(X,KX) −→ H2

et(X,GX), (A.1)

which continues the exact sequence. This important construction is due to
Giraud ([25] Chapter IV §3.4). Note that in general this construction is
described in terms of torsors and gerbes.

If X is a quasicompact scheme where every finite subset is contained in
an affine open set, we can use Čech cohomology to describe this boundary
map. For example a quasiprojective scheme over some base ring has this
property. Under the assumption we have Ȟ2

et(X,GX) � H2
et(X,GX), where

the left side describes the second Čech cohomology group ([55] Chapter III
Theorem 2.17). So we can attempt to describe the image of the boundary
map by the class of a 2-cocycle.

Let γ ∈ Ȟ1
et(X,KX) be a class that is represented by a cocylce (kij) for

the covering (Ui → X). Since every finite subset is contained in an affine
open it is possible to apply a theorem of Artin on the joins of Henselian
rings ([1] Theorem 3.4.(iii)). This allows us to refine the cover in such a way,
that under the maps HX(Uij) → KX(Uij), each kij is the image of some
hij ∈ HX(Uij) ([55] Chapter III Lemma 2.19). Then the image d(γ) is given
by the class of the 2-cocycle (gijk) with gijk ∈ GX(Uijk) and

(gijk) = hjk(hik)
−1hij.

The boundary map d is functorial in the following sense: Let f : X → Y
be a morphism of schemes. We have already seen that there exist pullback
morphisms between the cohomology groups. The boundary map is functorial
with respect to this pullbacks, so the diagram

Ȟ1
et(X,KX)

d �� H2
et(X,GX)

Ȟ1
et(Y,KY ) d

��

f∗
��

H2
et(Y,GY )

f∗
��

is commutative ([25] Chapter IV 3.4.1.1.)
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The reason why we are interested in cohomology of non abelian sheaves
of groups is that it can be used to describe twisted forms. Let Y be a scheme
and X an object over Y . Think of X as a scheme, a sheaf, a group scheme,
or, most important for us, an Azumaya algebra. Another object X ′ of the
same type over Y is a twisted-form of X for the étale topology if there exists
an étale covering U = (Ui → Y ) such that there are isomorphisms

φi : X ×Y Ui
∼−→ X ′ ×Y Ui.

We call such a covering U , with isomorphisms φi, a trivialization cover of the
twisted form X ′. X is a trivial twisted form too itself. If two twisted forms X ′

and X ′′ of X are isomorphic over Y this implies that we can choose the same
trivialization cover U for X ′ and X ′′. We equivalently define twisted forms
with respect to the flat or Zariski topology, though we are mostly interested
in the étale case.

A prime example of twisted forms on for the Zariski topology are locally
free sheaves F of a fixed rank n. Each locally free sheaf of rank n is by
definition isomorphic to F|Ui

� ⊕n
i=1 OUi

with respect to a Zariski covering
(Ui → Y ).

Let X ′ be a twisted form of X with fixed trivialization cover U and
isomorphism φi. Furthermore, let Aut(X) be the sheaf of automorphism on
X, i.e. the sheaf associated to the presheaf

U �−→ AutU(X ×Y U).

This is not necessarily an abelian sheaf, so we need non abelian cohomol-
ogy. We can associated X ′ to a class in Ȟ1(U /X,Aut(X)) in the follow-
ing way: If we restrict the isomorphism φi to Uij and compose them as
αij = (φi | Uij)

−1(φj | Uij) we get an automorphism on Uij over X, so an
element αij ∈ Aut(Uij). Then (αij) defines an 1-cocycle. Two twisted forms
have cohomologous 1-cocycles if and only if they are isomorphic over Y . So
we have a well defined injective map from isomorphism classes of twisted
forms trivialized by U to the pointed set Ȟ1(U /X,Aut(X)). We write [X ′]
for the class. Using the limit construction

Ȟ1(X,Aut(X)) = lim−→ Ȟ1(U /X,Aut(X)),

where the limit is taken over all coverings of X, we get classes with respect
to any covering. We have thus constructed an injection from the set of
isomorphism classes of twisted forms to Ȟ1(X,Aut(X)).

In general, this map does not need to be surjective. Of course one is
usually interested in the case where this map is surjective, i.e. where every
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1-cocycle does describe a twisted form. Assume for a moment that we work
in the flat topology. Then every element of Ȟ1(U /X,Aut(X)) defines a
descent datum on X × U , where U =

⊔
Ui (see [55] Chapter I Theorem

2.23). The map X ′ �→ [X ′] is therefore surjective if every descent datum on
X × U comes from a twisted form that is trivialized by U . The statement
for flat topology implies the same for étale and Zariski topology.

For example, let us classify locally free sheaves of rank n on some scheme
Y . By a locally free sheaf we mean a OY -module that is isomorphic to On

Ui

when restricted to a covering (Ui → Y ) with respect to YE, which denotes
the flat, étale or Zariski site. So locally free sheaves are twisted forms of On

Y .
The automorphism sheaf is GLn = AutOY

(On
Y ). Now descent theory shows,

that in this case every 1-cocycle, for a cover U with values in GLn, defines
a locally free sheaf, which is trivial with respect to the cover. Why, in the
Zariski case the 1-cocycles give gluing data aij : OUi∩Uj

→ OUi∩Uj
. Descent

theory further shows that a locally free OY -module of rank n in the flat or
étale topology is locally free on YZar. Taking limits over all coverings we see
that Ȟ1(Y,GLn) does classify isomorphism classes of locally free OY -modules
of rank n in the flat, étale or Zariski topology. If we further restrict to the
case of locally free sheaves of rank 1, i.e. invertible sheaves, we have the
automorphism sheaf Gm = GL1 = AutOY

(OY ). Indeed, Hilbert’s Theorem
90 ([55] Chapter III Proposition 4.9.) tells us that

Ȟ1
Zar(Y,O×

X) � Ȟ1
et(Y,Gm) � Ȟ1

fl(Y,Gm)

and then these cohomology classes are all isomorphic to Pic(X).
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