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Zusammenfassung

Die Atmung beeinflusst die kardiale Magnetresonanztomografie (MRT) sowohl durch die
mit der Atmung einhergehende Bewegung des Herzens als auch durch die durch die
Atmung induzierten Veranderungen der Herz-Kreislauf-Funktion (Herz-Lungen-

Interaktion).

Ziel dieser Machbarkeitsstudie war es, zu untersuchen, wie die Kombination von
schneller MRT-Bildgebung (Echtzeit-MRT), einer MRT-kompatiblen Spirometrie und
retrospektiver Sortierung toleriert wird, inwieweit hierdurch eine Bildstabilisierung zu
erzielen ist und ob so auch eine quantitative Untersuchung der kardialen Funktion und

Herz-Lungen-Interaktion wahrend freier Atmung durchgefiihrt werden kann.

Zu diesem Zweck wurden bei gesunden erwachsenen Probanden (n=4) Echtzeit-MRT-
Aufnahmen des Herzens (30 Bilder/s) mit gleichzeitiger MRT-kompatibler Spirometrie
durchgefuhrt. Retrospektiv wurden die MR-Bilder aufgrund der EKG- und Spirometrie-
Daten zu neuen Herzzyklen sortiert. Der Patientenkomfort wurde durch einen
Fragebogen erfasst. Ausgewertet wurden die Qualitat der erzielten Bildstabilisierung, der
linksventrikulare Exzentrizitatsindex als Indikator der Stellung des interventrikularen
Septums und die Volumina der beiden Ventrikel der unterschiedlichen Atemphasen zur

Beurteilung von Herzfunktion und Herz-Lungen-Interaktion.

Die Beeintrachtigung des Wohlbefindens durch die gleichzeitige Spirometrie war gering.
Die Bildstabilisierung wurde durch die Sortierung nach der Atemphase deutlich

verbessert.

Die Volumina beider Ventrikel veranderten sich atemabhangig signifikant. Am starksten
beeinflusst wurde das rechtsventrikuldare enddiastolische Volumen (Beginn der
Inspiration: 79 +/- 17 ml/m?, endexspiratorisch: 98 +/- 18 ml/m?), begleitet von einem
Anstieg des rechtsventrikularen Schlagvolumens von 41 +/- 8 ml/m? auf 59 +/- 11 ml/m?
und von korrespondierenden Veranderungen des enddiastolischen linksventrikularen
Exzentrizitatsindex. Die aus den atemabhangigen Anderungen von Schlagvolumen und
enddiastolischen Volumen ermittelte Steigung der Frank-Starling-Kurve entsprach den

aus der Literatur bekannten, mit invasiven Methoden erhobenen Werten.

Zusammenfassend verbessert die Kombination aus Echtzeit-MRT, freier Atmung, MRT-
kompatibler Spirometrie und retrospektiver, atemabhangiger Sortierung die
Bewegungskontrolle und bietet vor allem eine einzigartige, nicht-invasive Moglichkeit der

Quantifizierung der Herz-Lungen-Interaktion.



Abstract

Respiration influences cardiac magnetic resonance (MR) imaging both through the
heart’'s movement associated with respiration and through the respiratory-induced

changes of cardiovascular function (heart-lung interactions).

The aim of the feasibility study was to investigate how the combination of fast MR
imaging (real-time magnetic resonance imaging), MR-compatible spirometry, and
retrospective binning is tolerated, to what extent image stabilization can be achieved,
and if this also allows quantitative investigation of cardiac function and heart-lung

interactions during free- breathing.

For this purpose, real-time MR images of the heart (30 frames/s) with simultaneous MR-
compatible spirometry were acquired in healthy adult subjects (n=4). Retrospectively,
MR images were binned into new cardiac cycles based on ECG and spirometry data.
Patient comfort was assessed by a questionnaire. The quality of image stabilization, the
left ventricular eccentricity index as an indicator of the position of the interventricular
septum, and the ventricular volumes of different respiratory phases were evaluated to

assess cardiac function and heart-lung interactions.

The impairment of comfort by simultaneously measured spirometry was low. Image

stabilization was significantly improved by respiratory-based binning.

Volumes of both ventricles changed significantly in the different respiratory classes. The
right ventricular end-diastolic volume was influenced most strongly (onset of inspiration:
79 +/- 17 ml/m?, end-expiratory: 98 +/- 18 ml/m?), paralleled by an increase of the right
ventricular stroke volume from 41 +/- 8 ml/m? to 59 +/- 11 ml/m?, and accompanied by
corresponding changes of the end-diastolic left ventricular eccentricity index. The slope
of the Frank-Starling curve determined from the respiratory-dependent changes in stroke
volume and end-diastolic volume was consistent with values known from the literature

that were obtained primarily by invasive methods.

In conclusion, the combination of real-time MRI, free-breathing, MR-compatible
spirometry, and retrospective respiratory binning improves motion control and, most

importantly, provides a unique, noninvasive possibility to quantify heart-lung interactions.
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bSSFP

El
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FLASH
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HASTE
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right ventricle
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right ventricular stroke volume indexed to body surface area
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1 Introduction

1.1 Cardiac MRI in pediatric cardiology

Echocardiography is the imaging technique most frequently used in pediatric cardiology.
Advantages of echocardiography are its almost ubiquitous availability and its applicability
at any age without the need for sedation or anesthesia. It offers a high temporal
resolution of 20-80 frames per second and is therefore particularly suitable for imaging
fast moving structures like e.g., valves. Temporal resolution of 3D echocardiography is
lower, but allows for ventricular function analysis likewise to cardiac magnetic resonance
imaging (MRI) (1).

Despite the great advantages of echocardiography, it shows significantly weaker soft
tissue contrast (2) and the representation of the heart is sometimes limited by the

acoustic window, by bone or air.

Cardiac MRI allows for non-invasive diagnostic free image-plane adjustment (2), which
is relevant for an exact anatomical representation and assessment of ventricular
volumes, flow measurements in heart-related vessels as well as the left and right
ventricular outflow tract (3, 4, 5, 6). These cardiac function parameters are relevant for
diagnosing, establishing indications, planning cardiac surgery and subsequent follow-up
for children with congenital and acquired heart disease (7, 8). An invasive cardiac
catheter examination with radiation exposure can sometimes even be dispensed due to

the extensive diagnostic possibilities of cardiac MRI (9).

Although the importance of conventional cardiac MRI in everyday clinical practice in
pediatric cardiology is increasing, it still has relevant disadvantages: This includes the
need to hold one's breath during cardiac MRI measurements e.g., ventricular volumetry.
Breath-holding is only possible from a certain age for pediatric patients and poses a
major challenge for even adolescent patients with a history of pulmonary or cardiac
disease. Additionally, breath-holding is only possible for a limited time and is associated
with a major reduction in patient’'s comfort (10, 11). For infants and small children, a
cardiac MRI examination is only possible with anesthesia and ventilation, so that this
non-invasive method loses its harmless character and makes every day clinical use in
infants almost impossible. In addition, holding one’s breath creates an unphysiological
state that does not consider the effects on cardiac function in the context of heart-lung
interactions (12, 13, 14). Mechanical ventilation based on positive intrathoracic pressure

completely reverses the physiological respiratory influence (15). Another disadvantage



of conventional cardiac MRI is the low temporal resolution and the resulting need for

ECG-based retrospective gating or prospective triggering to display one heartbeat (16).

1.2 Cine-bSSFP in conventional cardiac MRI

Cardiac cine imaging consists of several static images that are quickly presented as a
sequence, enabling the retrospective presentation of a full heart cycle. Due to the natural
movement of the heart, it is not possible to obtain all the necessary k-space data for
image acquisition during a single cardiac cycle. Therefore, signals to complete k-space
filling must be recorded during several heart cycles and must be interpolated afterwards
(16, 17). The MR data acquisition is linked to the temporal information of the heart cycle,
provided from the ECG via prospective triggering or retrospective gating. In prospective
triggering, certain k-space data lines are acquired specifically for a cardiac phase during

a cardiac cycle. For this, one k-space is assigned to each cardiac phase (16) (Figure 1).
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Figure 1. Prospective triggering.

The cardiac cycle is divided in several phases (red) based on the mean RR-interval. Each
phase is assigned a defined segmented k-space, which is filled line by line over several
heartbeats (blue). The data acquisition begins shortly after the R-wave and ends before the
next R-wave based on a defined average RR-interval. A disadvantage of prospective
triggering is the lack of data attainment during the time of the QRS complex. Filled k-spaces

serve as basis for MR image reconstruction (modified from Rigdway JP (16)).



In retrospective gating, k-space lines are acquired continuously during a cardiac cycle.
Based on the associated time after the R-wave, these are subsequently assigned to
specific cardiac phases. The data acquisition is performed over several heartbeats until

enough k-space data are available for all heart phases (16) (Figure 2).
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Figure 2. Retrospective gating.

MRI data are acquired continuously during cardiac cycles. These are retrospectively
assigned to k-spaces (blue) from specific cardiac phases (red) based on the associated
time after the R-wave. Filled k-spaces serve as basis for the subsequent MR image

reconstruction (modified from Rigdway JP (16)).

In addition to the heart’'s own movement, the respiratory-induced displacement of the
heart must be considered to provide high image quality and to prevent moving artefacts.

This is typically achieved by breath-holding (16, 17).

Although cardiac cine SSFP MRI suffers from disadvantages like the need for
interpolating of cardiac cycles and data acquisition under unphysiological conditions, it
represents the current MRI standard for analyzing cardiac function in adults (18) and for

the examination of children with congenital heart defects (19).



1.3 Real-time MRI of the heart

1.3.1 Relevance of real-time MRI
The importance of real-time MRI and other fast imaging techniques increased over the
last years. The relevance of this method is reflected by the number of publications related

to real-time MRI and other fast imaging techniques (Figure 3).
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Figure 3. Relevance of fast imaging techniques and real-time MRI.
The number of publications that can be found when searching for fast imaging (A) or real-
time MRI (B) on pubmed increased continuously over the last years demonstrating the

relevance and importance of these topics.



1.3.2 Methodological aspects and advantages of real-time MRI

Real-time MRI is a technique that was developed by Jens Frahm and his research group
in Gottingen in 2010 (20). Real-time MRI is based on rapid MRI studies that were done
already in 1985 when the Frahm group developed low-flip angle gradient-echo MR, the
FLASH method, which reduced the acquisition time for a single high-quality image

significantly to a few hundred milliseconds (21).

In addition to this development, the data acquisition was further accelerated by
undersampling of the image raw data. For this, k-space is filled by radial scanning (20)
(Figure 4). Radial trajectories rely on frequency-encoding gradients covering low- and
high-spatial frequencies. Especially, the center of k-space is densely sampled and
therefore, most of the relevant image information is covered (22). The number of spokes
can be reduced for shorter acquisition times without image blurring or aliasing (20).
Thereby, radial encoding schemes are attractive for fast imaging and undersampling
(22).

A novel image reconstruction technique referred to as “regularized nonlinear inversion”
is then used for the generation of real-time MR images (20) (Figure 4). The conventional
image computation by Fourier transformation is replaced by the solution of a nonlinear
inverse problem. For the acquisition of real-time MR, the iterative numerical method can
be decisively improved by the fact that two immediately successive images of a film have
very high similarity (temporal regularization). Thereby, fast imaging with 30-50 fps is
enabled (22).

Real-time MRI achieves unique advantages for the representation of the heart: Cardiac
cycles are presented without the need for repeated measurements and data interpolation
for image reconstruction to display one heartbeat. Therefore, significantly shorter
acquisition times are possible. Thus, data acquisition can be done during free-breathing.
This allows for the examination of small children without the need of anesthesia or
mechanical ventilation and most importantly enables evaluation of the heart function
under physiological conditions and even allowing for the quantification of heart-lung
interactions (22, 23).

Despite the highly relevant advantages, the analysis of cardiac real-time MRI suffers
from respiratory-induced motion, aggravating the subsequent clinical evaluation. To
establish cardiac real-time MRI in everyday clinical practice further development of

evaluation methods is required.
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Figure 4. Real-time MRI.

Real-time MRI offers the unique opportunity to acquire heart cycles without data
interpolation by using radial scanning with 9 spokes (yellow) for k-space filling and

nonlinear inverse reconstruction. Thereby, sampling rates of 33ms/image are possible
for covering cardiac cycles.



1.3.3 Real-time volumetry
The volumetric analysis of the ventricles represents a relevant parameter for the
assessment of cardiac function. Accordingly, a volumetry MRI sequence is one of the

basic measurements of every cardiac MRI examination.

Every cardiac MRI exam starts with the exact determination of the heart’s position and
orientation derived from localizer MRI sequences (Figure 5 Part A). Subsequently,
retrospective two-chamber and four-chamber view cine stack are acquired for planning
the short axis stack. The slices covering the ventricles are oriented perpendicular to the

septum (yellow lines) (Figure 5 Part B).

With the help of the short-axis data set, the entire volume of the right and left ventricle is
covered (Figure 5 Part C). Left ventricular endocardial and epicardial contours and right

ventricular endocardial contours are provided by the analysis software.
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Figure 5. Cardiac volumetry.

A) Localizer images as basis for planning the retrospective two- and four-chamber-
view cine stacks (loc-multi, transverse HASTE (half acquisition single-shot turbo
spin echo), loc-two-chamber, loc-four-chamber, loc-shortaxis).

B) Retrospective two-and four-chamber-view cine stacks serve as basis for planning
the 20 slices of the short axis stack perpendicular to the septum (yellow lines).

C) Images of 20 slices covering the whole ventricles are acquired for the analysis of

the left and right ventricular real-time volumetry.



Right and left ventricular volumes and left ventricular mass are calculated from the
epicardial and endocardial contouring area and the slice thickness based on three-

dimensional reconstruction (24) (Figure 6).
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volume calculation based on 3D reconstruction:
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Figure 6. Ventricular volume calculation.
A) 3D-model visualizing the contours of the ventricles.
B) Right and left ventricular volumes are calculated by multiplying slice

thickness and the sum of the area of the endocardial contours.



Respiratory-induced through-plane motion of the heart results in a change of the slice’s
location in the short axis stack during free-breathing (Figure 7) disturbing the selection

of the correct plane.
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Figure 7. Through-plane motion.

Schematized anatomy of the heart with a midventricular plane (green), a basal plane (blue)
and a corresponding image plane. Through-plane motion during deep inspiration causes a
defined image plane that is located midventricular to move basally (A). Thereby, the

volumetric assessment is disturbed (B).
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1.4 Physiological heart-lung interactions during free-breathing

Respiration has a major impact on the heart function resulting from physiological heart-

lung interactions.

The heart and lungs are inseparably connected due to their combined location in the
thorax cavity. Physiological intrathoracic pressure changes during the respiratory cycle
influence venous blood volume distribution, direct ventricular interactions as well as the

ventricular afterload (14, 25).

1.4.1 Respiratory influence on cardiac volumes

The impact of preload on cardiac function is well explained by the Frank-Starling law:
During inspiration, the decreasing pleural pressure leads to an increased venous return
due to the negative pressure difference between the right heart surrounded by the pleural
pressure and the mean afferent inferior caval vein surrounded by the intraabdominal
pressure (14). The right ventricular end-diastolic preload induces a higher initial
sarcomere lengthening. Increased sarcomere lengthening causes a titin modulated
reduction of interfilament lattice spacing and triggers the “on-off” equilibrium of the thin
filament state. This results in an increased number of myosin attaching to actin. Thereby
an increase in active force with an increasing sarcomere length within the physiological
range (i.e., ~1.7-2.2 ym) is attained (26) (Figure 8A). Due to the higher tension, an
increasing intraventricular pressure and rising right ventricular stroke volume can be
achieved demonstrated by an increase in pressure-volume work (Figure 8B). In contrast
to the increasing of the right ventricular stroke volume, the left ventricular stroke volume
decreases during inspiration. The main reason for this decrease is an increasing
afterload due to the lower intrathoracic pressure relative to the higher pressure in
extrathoracic compartments (27). In addition, inspiration causes a decrease in left
ventricular compliance, resulting from interventricular interactions, effecting a decreased
LV preload (27, 28).

11
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Figure 8. Frank-Starling mechanism.

A)

B)

Influence of the sarcomere length on muscle tension (modified from Sequiera V et al. (29)).
An increasing sarcomere length up to a maximum pre-expansion of 2.2 um in
cardiomyocytes leads to an increase of tension and contractility.

Regulation of heart function with increased preload by the Frank-Starling law (modified from
Kuhtz-Buschbeck JP et al. (30)).

Otto Frank's pressure volume diagram, as published in 1899.

Otto Frank's diagram as schematized version: A higher ventricular volume load results in an
increase of ventricular pressure following the distension curve of the minima (1).
Consequently, higher isotonic maxima (curve of the isotonic maxima (2)) and higher
isometric maxima (curve of the isometric maxima (4)) can be reached, leading to an
increased pressure-volume work (shaded area EW= external pressure-volume work). The
physiological combination of the isometric and isotonic contraction results in the curve of
the after loaded twitches (3). The small arrows present the positive influence of digitalis on

the curve of after loaded twitches (3) and the curve of isometric maxima (4).
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1.4.2 Direct ventricular interactions during free-breathing

The right and left part of the heart are surrounded by non-distensible fibrous pericardium,
limiting acutely occurring extreme dilatation. The right and left ventricle are solely
separated by the flexible muscular interventricular septum. An increasing end-diastolic
right ventricular volume results in a septal shift to the left ventricle and provides a
physiological change of the left ventricular eccentricity index in end-diastole (27) (Figure
9). Therefore, the changes of the left ventricular shape result in a negative effect on the

left-ventricular pressure-volume relationship, reducing left ventricular stroke volume (25).

(A) endocardium endocaﬁrg‘_i.ium

epicéi'rdium 1
septum septum epicardium

(B)

inspiration
_—

end-expiration end-inspiration

Figure 9. Direct ventricular interactions during inspiration and expiration.

A) Schematized anatomy of the heart with left ventricular epicardial and endocardial and
right ventricular endocardial contours during end-diastole. Both ventricles are
separated by the flexible septum. With increasing right ventricular (RV) volume in
inspiration, the flexible septum shifts to the left ventricle changing the left ventricular
(LV) shape.

B) Demonstration of the septal shift during inspiration in cardiac real-time MRI images

during end-diastole.
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1.5 Registration of respiration during MRI examinations

1.5.1 Conventional methods (respiratory bellows, navigator echoes)
Real-time MRI offers the opportunity to perform data acquisition during free-breathing.
This is a major advantage especially for pediatric cardiology. However, free-breathing
causes a breath-induced movement of the heart, making an evaluation particularly
difficult.

Breath-induced movement is a well-known problem that has been a major challenge for
radiology for decades (31, 32). Currently, the problem is most frequently addressed by

using respiratory bellows or navigator echoes, registering respiration indirectly (33).

Respiratory bellows are placed on the patient’s abdomen, tracing the breathing-induced

abdominal and/or thoracal movement during data acquisition (Figure 10). The
continuously recorded respiratory bellows signal highly correlates with cardiac
displacement during the breathing cycle (33). Thus, it is useful for selecting images from
the same breathing phase e.g., end-expiration retrospectively. This technique was used

in our experiments to allow a comparison with spirometry.

(A) (B)

air t_ube

fixation

Measuring technique:
pressure change in the

respiratory bellows due
to expansion during
inspiration

respiratory bellows

Figure 10. Respiratory bellows.

The respiratory bellows are placed on the subject’s abdomen (A) and individually fixed and
connected to the PERUOQ98 Physiological Respiratory Unit from Siemens (B) for the
registration of respiratory-induced abdominal movement during real-time MRI data

acquisition during free-breathing.
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Navigator echoes detect the position of the diaphragm during free-breathing based on a

high image contrast between lung and diaphragm (Figure 11). Since the apex cordis is
fused with the diaphragm, its movement is highly correlated with the cardiac mean
superior-inferior movement during in- and expiration. Therefore, navigator echoes can
be used for the determination of certain time points in the breathing cycle predefining the
gating window for accepted MR images to be e.g., only in end-expiration (31). For

technical reasons, real-time MR imaging could not be combined with navigator echoes.

end-expiration end-inspiration

ROI navigator echo

lung

exp.

diaphragm

rd

time
Figure 11. Navigator echoes.
Navigator echoes can be used for the determination of the respiratory phase due to the variation
of the diaphragm’s position in the region of interest during in- and expiration (modified from
Nehrke K et al. (34)).

Importantly, both methods are only indirect indicators of respiration. Although the
problem of breath-induced movement can be improved by the registration of the
breathing phase, the quantitative, physiological respiratory influence on cardiac function
in the context of heart-lung interactions cannot be addressed quantitatively with these

techniques.
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1.5.2 MR-compatible spirometry

Eichinger et al. (35) developed a MR-compatible spirometer that allows to perform
spirometry during MRI. Since spirometry remains the gold standard for lung volume
measurement, it offers the unique possibility for the quantitative evaluation of respiration.
Technically, the spirometer consists of the pneumotachograph, that detects pressure
differences caused by breathing. Based on Hagen-Poiseuille’s law, which implies that
the flow velocity in a rigid pipe with laminar flow is proportional to the pressure difference
per unit length, the respiratory flow can be calculated. Integration of the flow curve results

in the exact lung volume (36) (Figure 12).
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Figure 12. Pneumotachograph.
Basic principle of a pneumotachograph: In- and expiration induces pressure differences detected
by a pressure sensor that are used to calculate the respiratory flow based on the Hagen-

Poiseuille law. Respiratory volume is calculated from the flow curve.

Previous studies have used spirometry for image stabilization (37).
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1.6 Aims of the work
The following feasibility study was designed to test the hypotheses that

the combination of real-time volumetry with MR-compatible spirometry

a) s technically feasible,

b) is well-tolerated by subjects,

c) improves motion control during free-breathing and

d) enables the quantification of respiratory-induced cardiac changes (heart-lung

interactions) non-invasively.
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2 Material and Methods

Parts of the Material and Methods section are published in: Réwer LM, Uelwer T, HuBmann J, et
al. Spirometry-based reconstruction of real-time cardiac MRI: Motion control and
quantification of heart-lung interactions. Magn Reson Med. 2021;86:2692-2702.
https://doi.org/10.1002/mrm.28892

2.1 Data acquisition

2.1.1 Imaging protocol

Adult volunteers (n=4, age 39 t 14 (24-55) years, two male / two female, body weight
72.5 £ 8.2 kg) were recruited for cardiac MRI studies at a 1.5 Tesla MRI system
(MAGNETOM Avanto fit Siemens Healthcare, software version syngo MR E11). Only
healthy persons without contraindications for MRI were included. All subjects signed a
written declaration of consent based on detailed information and the study was proven
by the ethics committee of the University Hospital Duesseldorf, study number
6176R.

Conventional cardiac MRI localizers were acquired for the measurement of
retrospectively gated four-chamber and two-chamber cine datasets for planning real-
time MRI volumetry. Real-time MRI volumetry consisted of a series of cross-sectional
real-time MRI movie slices with steady state free precession (SSFP) contrast, field of
view: 320mmx320mm, repetition time (TR): 3.7ms, echo time (TE): 1.85ms, 33ms per
image covering the left and right ventricle during free-breathing. Dependent on the heart
size, 20 slices for three subjects and 14 slices for one subject with 900 phases were
acquired, providing 5 respiratory cycles for each slice. The slice thickness was defined
as 8 mm and the slices were measured without a distance factor. Imaging of each slice
lasted 30 seconds, resulting in a total real-time MRI volumetry time of 10 minutes for 20

slices and 7 minutes for 14 slices (Figure 13).

Simultaneously, the ECG and the abdominal movement from respiratory bellows were
registered with Siemens Signal logging VD11a (ECG/RESPIRATORY UNIT, PERU 098
Siemens). Information on the respiratory flow and lung volume were provided by MR-

compatible spirometry. (Figure 13).
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Figure 13. Imaging protocol.

A) Complete protocol: 20 slices were acquired, covering the whole heart with 900 images

€——  ca. 1200 ms

v

per slice. MR-compatible spirometry and ECG were registered in parallel.

B) Detailed presentation of 1200ms data acquisition (modified from Réwer LM et al. (38)).
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2.1.2 MR-compatible spirometry

The MR-compatible spirometer was developed based on a conventional spirometer
(Masterscreen pneumo, VIASYS Healthcare, Hoechberg Germany) with renovations for
the use in the MR scanning room. Therefore, the MR-compatible handpiece from the
pneumotachograph was freed from all magnetic components and connected via two 7m
long pressure tubes (Rauclair®-E; RAU-PVC 8006, internal diameter 3 mm, gauge 1.5
mm) to the original VIASYS healthcare handpiece (H6chberg, Germany) in the control
room (35) (Figure 14 D-F). To achieve the highest possible comfort and to avoid the
need to hold the handpiece during the MRI examination, the pneumotachograph was
connected via a filter (Viaire Microgard® IIC) to a face mask (Hans-Rudolph Mask (7450
Series V2 Mask™)). A custom-made stabilization tool was developed to distribute the
weight of the pneumotachograph evenly and to prevent pressure on the face ensuring a

comfortable examination situation (Figure 14 A-C).
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(A)  spirometry with mouthpiece (B) face mask (C) stabilization tool

v

(D) MR scanning room (E) penetration panel
—

Figure 14. MR-compatible spirometry set-up.

The MR-compatible spirometry set-up was improved by replacing a conventional spirometry
mouthpiece (A) with a well-sealed mask (B). A customized stabilization tool was developed to
distribute the weight of the pneumotachograph to prevent pressure on the subject’s face (C). 7m
long pressure tubes connect the pneumotachograph with the empty handpiece in the MR
scanning room (D) with the technical handpiece and the spirometry software in the control room
(F) through a penetration panel (E).

Following the MRI examination, all subjects were surveyed regarding their anxiety and
comfort during the real-time MRI data acquisition with a standardized questionnaire
(developed based on Chen S et al. (39) (Supplement 1)).
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2.2 Binning

The real-time images of each slice of different cardiac cycles were binned into different
categories depending on the respiratory information (respiratory flow and lung volume)
and ECG information (RR-interval), to enable evaluation of real-time cardiac volumetry
during free-breathing (Figure 15).
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- all ECG classes - all spirometry classes

Figure 15. Binning.

A) Images were binned into heart cycles dependent on respiratory information and ECG.

B) Similar to retrospective cine imaging, images were rearranged to a heart cycle for a
defined spirometry class.

C) Rearrangement of images for a defined ECG class, but different respiratory classes to
visualize effects of respiration on the heart (heart-lung interactions) (modified from Réwer
LM et al. (38)).
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Binning is the prerequisite for left and right ventricular volumetry analysis based on the

arrangement in respiratory dependent heart cycles (Figure 15B).

Additionally, it enables the arrangement and selection of real-time MR images for further
analysis focusing on respiratory effects on cardiac function (e.g., heart-lung interactions,

eccentricity index) (Figure 15C).

To achieve binning, respiratory flow and lung volume provided by MR-compatible
spirometry were written to the dicom tags of the corresponding real-time MR images
offline with Python (Python Software Foundation), by adapting published open-source
packages (e.g., Numpy (40) and pydicom (41)) (Figure 16). ECG-derived information on
the time after the R peak had already been included in the dicom tags by the intrinsic
MR scanner software (Syngo MR E11, Siemens Healthineers, Erlangen, Germany).
Depending on the RR-interval and the respiratory information, real-time MR images were
binned into eight respiratory classes, four different lung volume groups each in inspiration
and expiration, and 25 cardiac phases (33.5 + 4.3ms) (Figures 15A, 16). The program
code that was developed for binning is openly available
(https://doi.org/10.5281/zenod0.4899285). Similarly, real-time MRI images were binned

with respiratory bellows data instead of spirometry data.
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Figure 16. Data preprocessing and binning.

MR-compatible spirometry derived respiratory flow and lung volume (A) and real-time MR-images
including ECG data (RR-interval) (B) were imported to Python. After preprocessing (C),
spirometry volume and respiratory flow were added to the dicom tags of the corresponding MR-
images (D). Depending on the spirometry volume, the respiratory flow and the information on the
time after the R-peak, the images were binned in respiratory classes (E) and exported from

Python for further evaluation in a commercially available analysis software (F).
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The typical tidal volume and heart rate from each subject was used to optimize binning,
especially regarding minimizing the number of empty classes. In the case of unfilled bins,
images from the following ECG classes were used for filling and the images were
excluded from the evaluation. For bins where multiple images were available, the one
closest to the median of the lung volume of the corresponding spirometry class was
chosen.
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2.3 Data analysis

After respiratory-dependent binning and rearrangement to heart cycles, the real-time MR

volumetry images were analyzed focusing on three different aspects:

1. Evaluation regarding an achieved benefit for motion control
2. Respiratory influence on the left ventricular eccentricity index

3. Respiratory influence on the right and left ventricular volume

The left ventricular eccentricity index and the respiratory effect on the right and left
ventricular volumetry were evaluated with a commercial cardiac MR software (cvi42;

Release 5.10.1.(1241); Circle Cardiovascular Imaging Inc. Calgary, Canada).

2.3.1 Motion control

Motion control is a prerequisite for a high-quality analysis both by qualitative, visual
assessment (“eyeballing”), but also using an automated evaluation. A midventricular
slice was selected for the characterization of cardiac movement and the quantification of
motion control in all subjects and all respiratory categories. To achieve this, the cranial
and caudal junction of the interventricular septum with the right ventricle were determined
manually. The displacement of the midpoint between these two points served as the
basis for the analysis of anterior(-right)-to-posterior(-left), superior(-left-anterior)-to-
inferior(-right-posterior) displacement and rotation of the heart during the arranged heart
cycles (Figure 17). The evaluation of motion control in eight cardiac cycles, binned with
the respiratory information from MR-compatible spirometry and ECG, were compared to
eight heart cycles solely sorted by ECG and eight heart cycles sorted by data from

respiratory bellows and ECG from the same midventricular slice for all subjects.
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Figure 17. Evaluation of motion control.

P(mean) was defined as midpoint between the cranial (P1) and caudal (P2) junction of the
interventricular septum with the right ventricle and used as reference point for the analysis of

motion control (modified from Rower LM et al. (38)).
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2.3.2 Left ventricular eccentricity index

The left ventricular eccentricity index was determined for all end-diastolic and end-
systolic phases of a midventricular slice for all spirometry-dependent binned heart cycles
from all volunteers. Therefore, the series overview module from Circle cardiac MRI
software cvi 42 was used to draw the horizontal diameter perpendicular to the septum
and the vertical diameter parallel to the septum separately for the endocardial and
epicardial contours (Figure 18). Subsequently, the left ventricular eccentricity indices

were calculated:

End-diastole:

Eld (endocardial) = D2/D1 (endocardial), Eld (epicardial) = D2/D1 (epicardial)
End-systole:

Els (endocardial) = S2/S1 (endocardial), Els (epicardial) = S2/S1 (epicardial)

. .
Eld = D2/D1 Els = S2/81
= S2(epi) -

D1(epi) | s (epi)

A

spirom&ry class: 2 spiromo(ry class:
> 600 ml > 600 ml

end-diastole end-systole

Figure 18. Evaluation of LV eccentricity index.

The left ventricular eccentricity index was calculated for end-diastolic and end-systolic
phases of a midventricular slice for the endocardial (red) and epicardial (yellow) border. The
eccentricity index is defined as the ratio of the axis parallel to the interventricular septum
(D2, S2) to the perpendicular axis (D1, S1) (modified from Réwer LM et al. (38)).
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2.3.3 Right and left ventricular volumetry

The calculation of right and left ventricular volumes was performed for all eight
respiratory categories with the Short3D module of the cardiac MRI software cvi 42 (Circle
Cardiovascular Imaging Co.) by automatically contouring the left ventricular epicardial

and endocardial and right ventricular endocardial borders.

Thereafter, manual corrections were performed applying current recommendations on
image analysis and a real-time MRI contoured dataset for reference (42, 43, 44, 45),
(Figure 19), (Video link to the supplemental digital content:
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fmrm.2889
2&file=mrm28892-sup-0001-VideoS1.mp4).
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Figure 19. Contouring reference images.

Reference images served as basis for manual contour corrections for the left ventricular
epicardial (green) and endocardial (red) border as well as right ventricular endocardial
border (yellow) (modified from Réwer LM et al. (38)).
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As recommended by current cardiac MRI guidelines and because detection was

unreliable, papillary muscles were included in the ventricular volume (42, 45).

The end-systolic and end-diastolic phases were defined separately for the left and right
ventricle as phases with the smallest (end-systolic) and largest (end-diastolic) blood

volume of the corresponding ventricle (43).

The basal slice of the left ventricle was defined as the first end-diastolic slice with more
than 50% myocardium surrounding the blood volume (Figure 20A). The right ventricular
basal slice was defined as the first slice that was completely apical of the tricuspid valve
and consequently part of the right ventricle. The position of the slice was evaluated with
the help of the multiplanar cross-referencing tool from Circle cvi 42 demonstrating the

position of the slice in the four-chamber view (44) (Figure 20B).

Apical slices of the ventricles were evaluated separately for the left and right ventricle
and determined as most apical slice of the stack with visible right or left ventricular cavity
(43) (Figure 20C).
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(A)

(C)

Figure 20. Definition of the basal and apical slice.

A)

B)

Left ventricular basal slice is included and contoured when 50% of the circumference
was ventricular myocardium (slice in the middle). The slice on the left was excluded
because less than 50% of the circumference was ventricular myocardium.

Right ventricular basal slice is included when the yellow line in cross-referencing
showed that the slice is part of the ventricle (right part) and excluded when cross-
referencing showed that it is part of the atrium (left part)

The apical slice is contoured when containing visible right and/or left ventricular cavity
(modified from Réwer LM et al. (38)).
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2.3.4 Frank-Starling mechanism

Based on the left and right ventricular volumetry, the Frank-Starling relationship between

end-diastolic volume and stroke volume was calculated (Figure 21).

SV

ASV

SVmin
ASV

AEDV
slope= AEDV

: : >
EDVmin EDVmax EDV

Figure 21. Frank-starling curve slope calculation.
The slope of the Frank-Starling curve was calculated from the difference between
maximum and minimum of the stroke volume divided by the difference between the

maximum and minimum of the end-diastolic volume.
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2.4 Statistical analysis
SPSS (IBM Corp. Released 2017, IBM SPSS Statistics for Windows, Version 25.0.

Armonk, NY: IBM Corp.) was used to calculate the statistical analysis for the motion

control results, results on ventricular volumetry and the left ventricular eccentricity index.

First, the motion control data were checked for normal distribution using the Shapiro-
Wilk test. Due to non-normally distributed data, the further statistical evaluation was
performed with the non-parametric Wilcoxon matched pair test and the Kruskal-Wallis

test.

The relationship between the left and right ventricular volumetry and the corresponding
lung volume and respiratory flow was tested for a statistically significant correlation using
linear regression. In addition, linear regression analysis was calculated to assess the
effect of the spirometry volume on the end-diastolic and end-systolic left ventricular

eccentricity index.

Test results with p < 0.05 were considered statistically significant.
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3 Reslults

Parts of the Results section are published in: Réwer LM, Uelwer T, HuRmann J, et al. Spirometry-
based reconstruction of real-time cardiac MRI: Motion control and
quantification of heart-lung interactions. Magn Reson Med. 2021;86:2692-2702.
https://doi.org/10.1002/mrm.28892

3.1 MR-compatible spirometry

MR-compatible spirometry showed that all subjects breathed calmly and evenly during
the real-time MRI data acquisition. The mean respiratory rate was 13.45 + 1.44 per
minute with a tidal volume of 9.86 + 3.75 ml/kg (end-inspiratory volume 9.8 + 3.7 ml/kg;

n=4) resulting in a respiratory minute volume of 125.6 £ 38.3 ml/kg/min.

3.2 Comfort survey

The results of the comfort survey (Table 1) proved that the subjects’ degree of anxiety
during cardiac real-time MRI was low and hardly influenced by additional spirometry.
Overall comfort with connected spirometry was still high but lower than without
spirometry (5.75 + 0.43 vs. 7.75 £ 0.43; numeric rating scale 1 = low comfort, 10 = high

comfort).

However, comfort reduction by spirometry was lower (3.25 + 0.83; n=4) than the
reduction of comfort by other factors (climate (heat, draft or cold): 4.50 + 2.29, duration
of the scan: 3.75 £ 2.49, back pain: 3.50 + 2.60; acoustic noise: 3.50 £ 1.12; n=4 for all).
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subject mean £
test item specification standard
01 02 03 04 deviation
with mask connected to spirometry ® 6 6 6 5.8+0.4
with mask but not connected to 6 7 7 7 6.8+0.4
overall comfort soiromet
(1= low, 10 = high) P Y
without mask/spirometry 7 8 8 8 7.8%+0.4
with mask connected to spirometry 1 3 2 3 22+0.8
anxiety with mask but not connected to 1 2 2 & 20%0.7
(1 = low, 10 = high) spirometry
without mask/spirometry 1 2 2 3 2.0+0.7
duration of the scan 8 3 2 2 3.8%25
acoustic noise 2 3 5 4 3.5%1.1
chest coil & 2 1 1 1.8+0.8
neck and or back pain 7 5 1 1 3.5+2.6
comfort restriction peripheral nerve stimulation 1 2 1 1 1.2+0.4
(1 =not at all, 10 = very
much) climate (heat, draft, cold) 3 2 8 5 45+23
spirometry 4 4 2 3 3.2%£0.8
claustrophobia 8 2 2 2 22+04
not being allowed to move 2 7 7 4 5.0%£2.1
unspecific fear/anxiety 2 2 1 2 1.8+£0.4

Table 1. Comfort survey results.
Detailed presentation of the comfort survey results for all subjects (modified from Roéwer
LM et al. (38)).



3.3 Binning

Binning would be optimal if exactly one image was available for each category. In this
case, for hearts with 20 slices (20 slices x 25 ECG phases x 8 spirometry classes) 4000
images would be sufficient, for hearts with 14 slices (14 slices x 25 ECG classes x 8

spirometry classes) a number of 2800 images would be necessary (Figure 22).

The distribution of the images among the ECG classes was uniform and was additionally
optimized for each subject by a class definition based on the mean RR-interval. Thus,
only a small proportion of images in the ECG classes that exceeded the mean RR-
interval had to be excluded (Figure 22 A, B (n=1), Table 2 (n=4)). The very even
distribution among ECG classes resulted in a high number of available images per ECG
class (Figure 22 C (n=1), Table 2 (n=4)).

In contrast, the distribution among spirometry classes was uneven (Figure 22 D, E (n=1),
Table 3 (n=4)). Significantly more images were available in the high and low respiratory
volume classes for inspiration and expiration (68.9% of all images after excluding RR
intervals above the mean RR interval), whereas significantly less images were available
in the middle respiratory classes (31.1%). This resulted in a higher number of filled
classes in the high and low spirometry categories of 99.5% and a significantly lower
percentage of filled classes in the middle spirometry classes (93%) (Figure 22 F (n=1),
Table 3 (n=4)).

To have a sufficiently high number of filled classes available in the middle respiratory
categories despite the uneven lung volume distribution and to achieve the best possible
ratio of overfilled to empty bins, it was necessary to extend the acquisition time and to
increase the optimal total number of images to 4000 (for 20 slices) and to 2800 (for 14

slices), respectively.

Acquisition of 138-199 images per combined respiratory and ECG class corresponding
to a percentage of 186-269% of the minimum required images, allowed filling the
combined categories with 80-84% for 9.5% of all classes, with 85-89% for 23.8%, with
36.5% for 90-95% and a nearly complete filling with 95-99% of all classes with 30.2%.

When 200-299 images, corresponding to 270-400% of the minimum number of required
images were available, 2.1% of the classes could be filled with 85-89%, 10.6% with 90-
94%, 63.8% with 95-99% and 23.4% of all classes could be filled completely.

With 400-540% of the minimum number of required images per class, corresponding to

300-399 images, all classes could be filled by more than 90%. 5.6% of the classes
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showed a filling of 90-94%, 27.8% had a filling of 95-99% and 66.7% of the classes were

filled completely.

400-486 available images (i.e., 540-650% of the minimum number required) resulted in
a fill of 95-99% for 23.7% of all classes. 76.3% could then be filled completely.

As soon as more than 486 images, corresponding to 650% of the minimum necessary

images, were available, all classes were always filled completely for all subjects.

The defined data acquisition of 900 images per slice results in a total number of 68000
real-time images for all subjects together, corresponding to 4.6 times the total number of
bins to be filled, and serves as a prerequisite for a very low number of empty classes of
only about 4% (Tables 2,3).

In conclusion, the number of images should be ~4-5 times the number of bins to obtain

good results.
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Figure 22. Distribution.

Among the ECG classes there was a very even distribution of images. Accordingly, all classes were
filled evenly and without empty classes (A-C). In contrast, the images of the spirometry classes were
unevenly distributed. In the high and low respiratory classes there were many images, and almost
all classes could be filled. In the middle respiratory categories, fewer images were available, so that

not all of them could be filled completely (D-F) (modified from Réwer LM. et al. (38)).
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3.4 Motion control

Already the visual inspection of the cardiac cycles sorted by ECG and spirometry, by
ECG and respiratory bellows and solely ECG sorted heart cycles showed significant
differences related to motion control (Video link to the supplemental digital content:
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fmrm.2889
2&file=mrm28892-sup-0002-VideoS2.mp4).

Cardiac cycles that were created solely based on the ECG information (time after the R-
wave) without considering the respiratory information resulted in blurred sequences that
could hardly be assessed visually. In contrast, simultaneous consideration of respiratory
information via either MR-compatible spirometry or respiratory bellows data achieved
high image stability of the contiguous images in the defined respiratory classes. The
resulting motion control allows significant advantages for further analysis of the real-time

volumetry data even when viewed purely visually.

Quantitative analysis of motion within cardiac cycles as compared to a defined reference
point in a midventricular slice from all subjects confirmed the results of visual
observation. The cardiac cycles whose binning additionally considered the respiratory
information resulted in significantly less motion compared with the cardiac cycles
considered only on the ECG information (Tables 4-7 for details, Figure 23 A-J)). Using
the respiratory information of the respiratory bellows as well as spirometry, motion
between successive images of a cardiac cycle could be reduced to less than ~1Tmm
(Tables 4-7, Figure 23 C-J). These results were confirmed for all subjects and all

spirometry and respiratory bellows categories.

Analysis of the motion in the different respiratory classes allowed quantification of the
breath-induced motion of the heart. The main movement of the heart during a respiratory
cycle was in the direction of the y-axis (i.e., from superior(-left-anterior) to inferior(right-
posterior)), whereas the movement in the direction of the x-axis (anterior(-right) to
posterior(-left)) was much less pronounced. Rotational movement was minimal (Tables
4-7, Figure 23 C-J).

Since the results of the four subjects hardly differed and the Kruskal-Wallis test did not
confirm a significant difference, the subsequent evaluation of motion control was

calculated for all subjects together.

There was a reduction to 29 + 28% for motion along the y-axis and a reduction to 44 +
44% for motion along the x-axis in the cardiac cycles that additionally accounted for

respiratory information compared with the cardiac cycles solely sorted by ECG.
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In summary, the overall mean motion between subsequent phases was reduced to 34 +
26% in the cardiac cycles sorted by ECG and spirometry as compared to solely ECG
sorted heart cycles. Non-parametric Wilcoxon matched pair test achieved significant
results for the motion control achieved in the x- and y-axis direction as well as for the
total movement reduction in the respiratory sorted cardiac cycles for all subjects (Tables
4-7).

Since rotation between images within a cardiac cycle was negligible, no further

significant reduction could be achieved with the aid of respiratory binning (Tables 4-7).
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3.5 Left ventricular eccentricity index

The left ventricular end-diastolic eccentricity index (Eld) was significantly modified by
lung volume in the context of heart-lung interactions, whereas there was no influence on
the end-systolic left ventricular eccentricity index (Els) during free-breathing (Figure
24A-D), (Tables 2-9).

The mean Eld increased during inspiration from the respiratory class minimum-low to
high-maximum from 1.17 £ 0.10 to 1.31 £ 0.13 (endocardial contouring) and from 1.04 +
0.04 to 1.19 £ 0.05 (epicardial contouring) (Figure 24A).

Similar results were achieved during expiration (Figure 24C).

Linear regression of the increasing of the Eld with increasing lung volume during
inspiration and expiration demonstrates statistical significance (Eld inspiration epicardial:
R2=0.95, p<0.05; Eld expiration epicardial: R?=0.97, p<0.05; Eld inspiration endocardial:
R2=0.97, p<0.05; Eld expiration endocardial: R?=0.92, p<0.05).

Epicardial and endocardial LV eccentricity contouring achieved similar results. However,
the epicardial contour could be more easily delineated, resulting in a lower standard

deviation.
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Figure 24. Left ventricular eccentricity index.
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Mean results from the analysis of left ventricular eccentricity index for epicardial and

endocardial contouring at end-diastole (Eld) and end-systole (Els) as a function of the

spirometry volume and respiratory phase of four subjects. Circles represent the mean

values, whiskers standard deviation. Linear regression results are presented in the

corresponding graphs. Significant results with p<0.05 are marked with *. The unit of the x-

axis is lung volume in ml. The Eld increased in inspiration and expiration with higher lung

volume both for epicardial and endocardial contouring (A, C). In contrast, the Els was not

influenced by respiration (B, D) (modified from Réwer LM et al. (38)).
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heart respiratory class epicardial contouring left ventricle
p:aase | spirometry horizontal rtical
ung . volume (ml orizonta vertica -
volume res;:‘l;as?ry (mi) diameter diameter ecciir:’t;';(cny
m mm mm
| p
<150 inspiration 29.87 75.47 76.26 1.0105
expiration -68.64 75.52 75.52 1.000
150-300 inspiration 190.90 70.90 77.26 1.0897
end- i expiration 157.70 74.22 77.70 1.0375
diastolic 300-450 inspiration 408.56 67.03 78.29 1.1680
expiration 357.76 72.65 77.90 1.0723
450 inspiration 450.82 67.19 78.94 1.1749
>
expiration 573.19 69.77 77.77 1.1147
<150 inspiration -30.15 67.26 64.88 0.9646
expiration -40.31 66.02 67.26 1.0188
150-300 inspiration 226.93 66.14 65.24 0.9864
end- expiration 209.42 65.81 65.70 0.9983
systolic 300450 inspiration 321.03 65.43 64.70 0.9888
expiration 399.41 66.43 64.40 0.9694
450 inspiration 468.93 65.35 64.50 0.9870
expiration 466.41 66.40 64.40 0.9699

Table 8. LV-El: Epicardial contouring subject 1.

respiratory class . endocardial contouring left ventricle
heart spirometry
hase i i
P Jugd respiratory volume (mi) hqrnzontal \{ertncal eccentricity
volume diameter diameter o
phase index
(ml) (mm) (mm)
<150 inspiration 29.87 58.00 58.15 1.0026
expiration -68.64 58.10 58.61 1.0088
inspiration 190.90 57.16 58.31 1.0201
150-300 o
end- expiration 157.70 56.96 58.45 1.0262
diastolic inspiration 408.56 52.66 55.48 1.0536
300-450 o
expiration 357.76 51.39 58.54 1.1391
5450 inspiration 450.82 51.95 56.72 1.0918
expiration 573.19 50.56 57.74 1.1420
<150 inspiration -30.15 37.68 36.04 0.9565
expiration -40.31 39.62 38.01 0.9594
inspiration 226.93 37.51 37.22 0.9923
150-300 o
end- expiration 209.42 37.68 36.85 0.9780
systolic 300450 inspiration 321.03 37.65 36.88 0.9795
expiration 399.41 36.80 37.61 1.0220
450 inspiration 468.93 37.70 37.50 0.9947
expiration 466.41 38.82 38.81 0.9997
Table 9. LV-El: Endocardial contouring subject 1.
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heart respiratory class epicardial contouring left ventricle
P::se lung spirometry horizontal vertical
. I I .
vellme respiratory volume (ml) diameter Bl eccentricity
phase index
(ml) (mm) (mm)
<200 inspiration 7.32 78.42 79.26 1.0107
expiration -46.27 78.66 80.20 1.0196
inspiration 343.45 76.44 82.43 1.0784
200-400 R
end- expiration 231.20 77.20 82.40 1.0674
diastolic inspiration 401.34 76.02 84.42 1.1105
400-600 o
expiration 554.17 76.00 84.80 1.1158
600 inspiration 674.24 75.20 84.82 1.1279
expiration 644.60 75.63 84.42 1.1162
<200 inspiration -23.85 72.43 73.27 1.0116
expiration -64.98 72.40 73.60 1.0166
inspiration 312.85 71.69 71.64 0.9993
200-400 o
end- expiration 361.48 72.85 71.71 0.9844
systolic 400600 inspiration 548.67 71.29 72.05 1.0107
expiration 459.97 73.31 73.76 1.0061
600 inspiration 602.56 70.49 71.63 1.0162
expiration 600.92 70.16 72.62 1.0351

Table 10. LV-El: Epicardial contouring subject 2.

respiratory class

endocardial contouring left ventricle

heart .
spirometry = :
hase
P y respiratory volume (ml) el vzl eccentricity
volume diameter diameter o
phase index
(ml) (mm) (mm)
<200 inspiration 7.32 53.60 62.83 1.1722
expiration -46.27 52.84 62.73 1.1872
inspiration 343.45 52.45 64.04 1.2210
200-400 o
end- expiration 231.20 53.61 64.80 1.2087
diastolic inspiration 401.34 49.21 68.02 1.3822
400-600 o
expiration 554.17 53.61 65.20 1.2162
600 inspiration 674.24 48.46 68.66 1.4168
expiration 644.60 52.41 65.24 1.2448
<200 inspiration -23.85 39.23 40.42 1.0303
expiration -64.98 41.08 40.78 0.9927
inspiration 312.85 39.33 39.40 1.0018
200-400 o
end- expiration 361.48 41.21 39.61 0.9612
systolic 400-600 inspiration 548.67 40.07 40.53 1.0115
expiration 459.97 41.32 41.04 0.9932
600 inspiration 602.56 41.76 41.79 1.0007
expiration 600.92 41.30 41.92 1.0150

Table 11. LV-El: Endocardial contouring subject 2.
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heart

respiratory class

epicardial contouring left ventricle

spirometry - -
hase
P ) respiratory volume (ml) L £ VL eccentricity
volume hase diameter diameter index
(ml) P (mm) (mm)
<150 inspiration 5.74 73.93 81.56 1.1032
expiration -11.07 75.20 81.44 1.0830
inspiration 232.60 66.59 82.73 1.2424
150-300 o
end- expiration 207.62 74.84 82.81 1.1065
diastolic inspiration 515.82 66.94 83.39 1.2457
300-450 o
expiration empty empty empty empty
450 inspiration 751.37 66.88 84.06 1.2569
expiration 956.10 73.60 84.40 1.1467
<150 inspiration -22.46 67.34 70.13 1.0414
expiration 17.91 66.82 70.59 1.0564
inspiration 24413 64.12 68.03 1.0610
150-300 o
end- expiration 278.88 68.57 68.26 0.9955
systolic inspiration 495.93 64.53 64.79 1.0040
300-450 —
expiration 536.64 65.93 68.13 1.0334
450 inspiration 681.78 63.00 64.24 1.0197
expiration 647.85 68.73 70.53 1.0262

Table 12. LV-El: Epicardial contouring subject 3.

heart

respiratory class

endocardial contouring left ventricle

phase I spirometry I ntal rtical
ung respiratory volume (ml) orizonta vertica eccentricity
volume hase diameter diameter index
(ml) P (mm) (mm)
<150 inspiration 5.74 56.47 69.20 1.2254
expiration -11.07 57.48 68.96 1.1997
150-300 inspiration 232.60 53.44 68.53 1.2824
end- expiration 207.62 57.67 69.92 1.2105
diastolic inspiration 515.82 52.56 68.67 1.3065
300-450 o
expiration empty empty empty empty
450 inspiration 751.37 51.29 68.46 1.3348
expiration 956.10 56.41 70.32 1.2466
<150 inspiration -22.46 39.73 44.64 1.1236
expiration 17.91 42.67 49.15 1.1519
inspiration 24413 38.21 42.42 1.1102
150-300 o
end- expiration 278.88 40.49 46.82 1.1563
systolic 300450 inspiration 495.93 38.83 40.57 1.0448
expiration 536.64 39.39 45.85 1.1640
450 inspiration 681.78 40.96 40.41 0.9866
expiration 647.85 41.05 46.86 1.1415

Table 13. LV-El: Endocardial contouring subject 3.

53



heart respiratory class ) epicardial contouring left ventricle
phase 7] respirato :5::127::?{) L) VR eccentricit
volume p%ase ry diameter diameter index y
(ml) (mm) (mm)
<70 inspiration 47.20 53.60 55.21 1.0300
expiration 8.71 56.81 56.04 0.9864
20-140 inspiration 77.84 50.81 56.82 1.1183
end- expiration 136.97 56.02 57.62 1.0286
diastolic 140210 inspiration 158.47 48.80 56.40 1.1557
expiration 159.50 55.80 58.20 1.0430
210 inspiration 231.15 48.46 58.05 1.1979
expiration 294 .37 52.80 58.80 1.1136
<70 inspiration -1.12 50.06 51.31 1.0250
expiration -10.04 48.77 49.08 1.0064
20.140 inspiration 107.03 50.37 51.49 1.0222
end- expiration 88.52 51.56 50.41 0.9777
systolic 140-210 inspiration 142.13 48.66 51.10 1.0501
expiration 149.92 50.97 49.27 0.9666
210 inspiration 213.83 48.87 50.13 1.0258
expiration 215.14 50.86 50.46 0.9921

Table 14. LV-El: Epicardial contouring subject 4.

heart respiratory class ) . endocardial contouring left ventricle
spirometr - -
prase || dana, [ rospratory | votume mi [ Ferionel | werienl * ccconticiy
(ml) phase (mm) (mm) index
<70 inspiration 47.20 40.80 51.60 1.2647
expiration 8.71 44 .81 50.41 1.1250
inspiration 77.84 40.40 52.41 1.2973
end- 70-140 expiration 136.97 44.42 52.40 1.1796
diastolic 140-210 inspiration 158.47 38.80 52.40 1.3505
expiration 159.50 45.10 53.61 1.1887
210 inspiration 231.15 36.85 52.15 1.4152
expiration 294.37 42.40 55.60 1.3113
<70 inspiration -1.12 28.63 30.32 1.0590
expiration -10.04 29.08 29.37 1.0100
20.140 inspiration 107.03 28.80 29.50 1.0243
end- expiration 88.52 31.76 30.22 0.9515
systolic 140-210 inspiration 142.13 28.16 30.95 1.0991
expiration 149.92 30.61 30.78 1.0056
210 inspiration 213.83 26.91 30.37 1.1286
expiration 215.14 30.22 30.45 1.0076

Table 15. LV-El: Endocardial contouring subject 4.
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3.6 Respiratory influence on ventricular shape and volumetry

The respiratory influence on the left and right ventricle was already apparent when
images from defined phases of the cardiac cycle but different respiratory classes were
considered. Therefore, images from the same midventricular slice and from the same
ECG classes (e.g., end-diastole and end-systole) were arranged for visual evaluation
(Figures 25, 26), (Video link to the supplemental digital content:
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fmrm.2889
2 &file=mrm28892-sup-0003-VideoS3.mp4 ).

end-diastole

inspiration expiration

lung volume

Figure 25. Visual assessment of left and right ventricle during end-diastole.
During inspiration, the right ventricle becomes rounded, while the left ventricle

turns from a circle to an ellipse with increasing lung volume.
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end-systole

inspiration  expiration

lung volume

Figure 26. Visual assessment of left and right ventricle during end-systole.

The left and right ventricular shape is not influenced by respiration during end-

systole.
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3.6.1 Right ventricle

A comparison of the right ventricle at different defined time points during the cardiac
cycle in the different respiratory classes already showed clear differences of the
ventricular shape. Especially during inspiration, the ventricle becomes rounded and
loses its triangular configuration resulting from a higher preload. During expiration, it then
resumes its original triangular shape. This effect is especially pronounced during end-
diastole, whereas in end-systole there are hardly any differences in visual assessment
(Figures 25, 26).

The evaluation of the right ventricular volumetry confirmed the results of visual analysis.
The largest effect of respiration on right ventricular volume was achieved for the right
ventricular end-diastolic volume (RV-EDVi), stroke volume (RV-SVi) and for the right
ventricular ejection fraction (RV-EF). These parameters showed a significant increase
with increasing lung volume during inspiration for all subjects. In contrast, the end-
systolic volume remained nearly unchanged. The largest effect was observed for the
right ventricular end-diastolic volume from the lowest to the highest spirometry class
during inspiration (79 £ 17 ml/m? to 98 £ 18 ml/m?). This was paralleled by an increase
of the right ventricular stroke volume (41 £ 8 ml/m? to 59 £ 11 ml/m?) (Figure 27) and an

increase of the right ventricular ejection fraction (53 £ 3% to 60 + 1%).

Linear regression analyses proved that correlations between an increasing RV-EDVi,
RV-SVi and RV-EF with increasing lung volume during inspiration (RV-EDVi: R?=0.992,
p=0.004, RV-SVi: R?*=0.989, p=0.005, RV-EF: R*=0.978, p=0.011) and a decreasing RV-
SVi and RV-EF with decreasing lung volume during expiration (RV-SVi: R?=0.975,
p=0.013, RV-EF: R?=0.970, p=0.015) were statistically significant.

Considering the increase in right ventricular end-diastolic volume and right ventricular
stroke volume relative to an increase in lung volume by 100 ml in inspiration, there is an
increase in RV-EDVi about 3.6 ml/m? i.e., about 5% and RV-SVi about 3.3 ml/m? i.e.,
about 8%.
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3.6.2 Left ventricle

At end-diastole, visual assessment allows one to recognize that the shape of the left
ventricle becomes more elliptic during inspiration, whereas at end-systole, the left
ventricular shape remains unchanged and maintains its round shape during free-
breathing (Figures 25, 26).

The evaluation of the left ventricular volumetry showed a decrease of the left ventricular
end-diastolic volume (LV-EDVi), left ventricular stroke volume (LV-SVi) and left
ventricular ejection fraction (LV-EF) with increasing lung volume during inspiration for all
subjects. In contrast, the left ventricular end-systolic volume (LV-ESVi) increased
(Figure 27).

Compared to the effect of respiration on the right ventricle, the respiratory impact on the
left ventricle was much less pronounced. LV-EDVi decreased by 10% during inspiration,
LV-SVi decreased by 17% during inspiration, and by 6% during expiration and LV-EF

decreased by 8% during inspiration.

Linear regression analysis revealed a decreasing LV-EDVi, LV-SVi, LV-EF with
increasing spirometry volume during inspiration as statistically significant (LV-EDVi:
R?=0.978, p=0.011; LV-SVi: R?=0.998, p=0.001; LV-EF: R?=0.987, p=0.007).

During expiration, a statistically significant linear correlation was detected only for an

increasing LV-ESVi (R?=0.915, p=0.043) with increasing lung volume.
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Figure 27. Ventricular volumetry.
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The volume graphs demonstrate the mean results + standard deviation of end-

diastolic volume, end-systolic volume, stroke volume and ejection fraction for the left

and right ventricle indexed to the body surface for all spirometry volume classes

during inspiration and expiration. In the case of statistical significance for the

corresponding results from linear regression analyses, formulas of the regression

lines were displayed in the volume graphs. Linear regression analysis was calculated

with the measured spirometry volume in ml as numerical variable instead of

respiratory volume classes (modified from Réwer LM et al. (38)).
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3.7 Frank-Starling mechanism
Ventricular volumetry analysis showed a linear increase in stroke volume with an
increase in end-diastolic volume. This observation required an increase of >5ml/m? to

become significant (Figure 28).

This relationship between end-diastolic volume and stroke volume (SVIi/EDVi) is known
as the Frank-Starling mechanism. The results obtained showed the slope of the Frank-
Starling relationship to be ~0.9 for the right ventricle in inspiration as well as expiration

and ~1.1 for the left ventricle with increasing lung volume during inspiration (Figure 28).

Linear regression analysis achieved highly significant results for the left ventricle with
R?=0.988 and p=0.006 during inspiration and for the right ventricle with R?=0.998 and
p=0.001 in inspiration and R?=0.963 and p=0.019 in expiration (Figure 28).
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Figure 28. Frank-Starling mechanism.

The graphs demonstrate the relationship between end-diastolic volume and stroke
volume for the left (A) and right (B) ventricle. Linear regression analysis results are
shown in the graphs. The mean value is demonstrated as circle, the whiskers

represent the standard error of the mean (modified from Réwer LM et al. (38)).
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4 Discussion

Parts of the Discussion section are published in: Réwer LM, Uelwer T, HuBmann J, et al.
Spirometry-based reconstruction of real-time cardiac MRI: Motion control and
quantification of heart-lung interactions. Magn Reson Med. 2021;86:2692-2702.
https://doi.org/10.1002/mrm.28892

The combination of real-time MRI with MR-compatible spirometry and respiratory-
dependent binning to generate separate cardiac cycles for each respiratory phase
resulted in a good motion control. Furthermore, the developed method provided a unique

non-invasive opportunity to study physiological heart-lung interactions.

Spirometry is the gold standard for assessing pulmonary function quantitatively. MR-
compatible spirometry has already been used to assess respiration in previous MR
studies (35). Compared to these studies, the comfort during data acquisition with MR-
compatible spirometry could be improved by implementing a well-sealed mask instead
of a mouthpiece along with an adequate support by designing a customized stabilization
tool to prevent the weight of the tubing and the handpiece from interfering. A
questionnaire showed that this improved spirometry set-up was well tolerated and
reduced comfort far less than other MR-related factors (e.g., “not being allowed to move”,
“duration of the scan”, “neck and/or back pain”). Thus, in contrast to other techniques to
perform respiratory binning (e.g., navigator echoes or respiratory bellows), a quantitative

measurement of the lung volume while maintaining physiological conditions is feasible.

To achieve sufficient stabilization of the respiratory-induced movement, four spirometry
volume classes were defined individually for each subject dependent on the lung volume
range. In addition, a differentiation was made between inspiration and expiration, since
both our results and previous studies showed that there are physiologically relevant
differences between inspiration and expiration. During expiration, cardiac function is less
influenced than during inspiration as expiration is passive and has less influence on
preload as compared to the active process of inspiration (14). An even higher number of
respiratory classes would have resulted in an improved image stabilization, but the data

acquisition time would have increased significantly.

Due to the uneven distribution of images between different respiratory classes, the
number of images needed to fill all respiratory classes exceeded the number of bins. For
an average heart size, 20 slices with 900 images corresponding to an acquisition time of
10 min with a total number of 18000 images were necessary to guarantee a sufficient

filling of all 4000 bins (20 slices x 25 ECG classes x four respiratory volume classes each
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in inspiration and expiration). The number of images needed was approximately 4-5

times the number of bins.

Respiratory motion is a problem especially for cardiac MRI with conventional imaging
techniques and long acquisition times per image. Resulting blurry and displaced images
largely disturb automatic image analysis tools. The current strategy to address this issue
is breath-holding. Thus, high-quality cardiac MRI in young pediatric patients as well as
patients suffering from cardiac, or lung disease remains problematic (10, 11). In addition,
breath-holding is unphysiological and precludes the analysis of cardiac function and the
study of the left and right ventricular dimensions under physiological conditions. (13, 14,
46).

In contrast, in fast imaging techniques like real-time MRI, respiratory movement can be
visualized nicely. However, the subsequent quantitative evaluation of the moving heart
remains an issue. Especially the contouring of the left and right ventricle as basis for the
quantification of cardiac function from real-time MRI with free-breathing is time-
consuming and the semi-automatic analysis tools achieve unsatisfying results that
almost preclude its actual use in clinical applications. Even if in the future, sufficient
image stabilization will be provided by the evaluation software, respiratory induced
through-plane motion of the heart cannot be accounted for by the image stabilization
software without information on the respiratory phase. Our results from the motion control
analysis revealed that spirometry-based binning is a useful tool for a reduction of
respiratory motion. However, we could not demonstrate that it provides significantly
better results as compared to a conventional method for respiratory motion registration

(i.e., respiratory bellows).

To test the hypothesis, that MR-compatible spirometry during real-time MRI data
acquisition in combination with retrospective binning is suitable for the quantification of
heart lung interactions, the heart cycles from different respiratory classes were analyzed
regarding the effect of respiration on the left ventricular eccentricity index as well as the
respiratory impact on ventricular volumetry and dimensions. The results were then
compared to the effect of respiration on cardiac function and ventricular shape already

demonstrated with other, primarily invasive techniques from existing studies.

The effects of respiration on cardiac function can be assessed quickly by inspection of a
midventricular slice. In this plane, the position of the ventricular septum is influenced
especially by right ventricular pressure and volume load. The left ventricular eccentricity
index, measuring primarily septal flattening, can be used for quantification and is an

established parameter in echocardiography (47).
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A significant increase in the left ventricular end-diastolic eccentricity index with increasing
spirometry volume was observed in our healthy subjects. This is physiological and can
be explained by a volume loading of the right ventricle with increasing preload during
inspiration. In contrast, an increase in the left ventricular end-systolic eccentricity index
is caused by a change of the right ventricular pressure (47). Under physiological
conditions, this is not affected significantly by respiration. Therefore, as expected, our
healthy subjects did not show any change of the left ventricular end-systolic eccentricity

index.

Although the eccentricity index of a midventricular slice can be determined easily and
quickly, it cannot replace the volumetry analysis of the heart sufficiently, especially given
the respiratory-dependent through-plane motion of the heart. A true volumetry analysis
was made possible by binning the real-time MR images of every slice in different
respiratory dependent heart-cycles. This resulted in eight stacks of images that could be
evaluated separately, similarly to images obtained during breath-holding at different time

points during the breathing cycle.

Evaluation of ventricular volumetry showed that even quiet, free-breathing results in
significant changes in right and left ventricular volumes in healthy subjects. This
observation underlines that mixing images from different respiratory phases is
inadequate for the analysis of cardiac function, as already shown in previous studies
(14).

An increasing right ventricular end-diastolic volume and stroke volume with increasing
lung volume during inspiration has already been demonstrated in previous invasive
physiological studies (48, 49, 50). This is caused by a change of ventricular preload (14)

and paralleled by an increase in stroke volume explained by the Frank-Starling law (51).

The increase in the end-diastolic volume of the right ventricle is accompanied by a less
pronounced decrease in the left ventricular end-diastolic volume. This respiratory effect
on the left ventricle has also been described before by different methods (14, 50).
However, the underlying mechanism of this decrease is still a matter of debate (14, 52,
53). Common explanations suggest that the decrease in end-diastolic volume results
from a decrease in left ventricular compliance as well as an increase in left ventricular
afterload (14, 27, 53).

The Frank-Starling mechanism is one of the most fundamental concepts of
cardiopulmonary physiology and describes an increase of stroke volume with increasing
end-diastolic volume (51). We could confirm that even normal breathing results in an

increase of the right ventricular end-diastolic volume during inspiration and a decrease
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during expiration. The left ventricular end-diastolic volume decreases during inspiration.
These physiological modifications of the end-diastolic volume enabled us to quantify the
relationship between end-diastolic volume and stroke volume non-invasively. Such an
investigation of the Frank Starling law (54, 55) was mostly done with invasive methods
or cardiac models in previous studies (56, 57). It should be helpful for understanding and
analyzing heart-lung interactions in healthy subjects and in patients with congenital or

acquired heart disease to study this non-invasively.
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4.1 Conclusions

Real-time MRI during free-breathing in combination with MR-compatible spirometry and
retrospective ECG- and respiratory-based binning is feasible and improves the
evaluation of cardiac real-time volumetry. In addition, it offers the unique opportunity to

study heart-lung interactions and to investigate the Frank-Starling law non-invasively.

Spirometry is the gold standard for measuring quantitative respiratory data. MR-
compatible spirometry was well tolerated in healthy full-aged subjects, its use in
adolescents and adult patients with congenital or acquired heart disease could be
conceivable. Nevertheless, the use of spirometry in small children remains difficult.
Therefore, an alternative non-invasive method for providing quantitative respiratory flow

and lung volume during real-time MRI would be desirable.

Future studies could investigate heart-lung interactions in healthy subjects under
different conditions e.g., deep breathing and designated breathing maneuvers but also
to analyze heart-lung interactions in patients with pathophysiologic circulation situations

e.g., patients with congenital or acquired heart disease.

The investigation of the Frank-Starling curve in healthy subjects resulted in physiological
values. Especially in patients with heart failure, the non-invasive investigation of the
Frank-Starling relationship could potentially improve the diagnosis and help to monitor

the therapy of this highly relevant disease.
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Supplements

Please rate the overall comfort of the MR investigation
a) Dwring imaging with the mask connected to spirometry
w102023040506070809010 T high
b} Cwuring imaging with the mask but not connected to spirometny
w10203040%06807 08080100 high
c} Estimate what the owerall comfort would hawve been without meskispiromstry
low 1020304050607 08 0190100 high
Please rate your anxisty during the MR investigation
a) Dwring imaging with the mask connected to spirometry
owi1O203040506807 0808010 high
b} Dwring imaging with the mask but not connected to spirometny
w1 020304080607 080 8310 [ high
c) Estimate what the cwerall anxdety would have besn without maskispirometry
low1 320304080607 08086 010 T high
Plaase rate how much your comford was reduced by
1) Duration of the scan
notatalf 1020304068060 708050 10 O very much
2] Acoustic Noise
notatell1 J203 0405060708 08 0O 10 O wery much
3) Chest Coil
notatell1 J20304 305060708 O8O0 10 O very much
4} Meck and'or Back Fain
notetelli J2030430506070%8 O8O 10 O very much
5) Perpheral Merve Stimulation
notetelii J20304305060708 38 0O 10 O very much
&) Climate {Heat draft or cold in the room)
notetell1 J2030430506070%8 3080 10 O very much
71 Spiromstry
notetell1 D203 04305060708 O8O 10 O wvery much
2] Marrowness | tightness { feeling of confinement ! claustrophobiz
notatall1 J2E 3040508070836 010 O very much
2} Mot being sliowed to move | need to e still
notatall1 J203040508070& 380 10 O very much
10% Unspecific Fear [ Anxiety { Concerm
notetell1 J203 04050680708 380 10 O very much
113 Suggestions for improvements

Supplement 1. Comfort survey.

A standardized questionnaire was used to evaluate the degree of anxiety and comfort

during the real-time MRI data acquisition (modified from Chen, S. et al. (39)).
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