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Abstract

Topological phases opened a new field of research in condensed matter physics. Symme-
tries and topology that lead to states protected from disorder, thus defined new phases in
materials. Within the scope of this work, the focus lies on topological insulators and Weyl
semimetals. The topologically insulating phase can either follow from the quantum Hall
effect, if time-reversal symmetry is broken, or spin-orbit coupling, if time-reversal sym-
metry is present. As a consequence, conducting surface states emerge. While topological
insulators provide Dirac fermions, a Weyl semimetal has Weyl fermions that are chiral,
massless particles. Weyl semimetals are topological semimetals with the Fermi energy
residing at the Weyl nodes. The surface states form an arc connecting the projection of
the nodes in the surface Brillouin zone. The splitting of the Weyl nodes happens due to
a broken symmetry.
Within this thesis, the effects of electron-phonon interaction in nanowires made of topolog-
ical insulators and Weyl semimetals are presented. The magnetic field is applied parallel
to the axis of the topological insulator nanowire. A half-integer magnetic flux leads to a
protected surface states. The topological insulator nanowire corresponds to a one dimen-
sional system that allows for the approach of bosonization in order to describe interactions
within the system. Electron-phonon interaction is described by deformation potential cou-
pling in isotropic elastic continuum theory. Based on the bosonized Hamiltonian including
electron-electron interactions, the effect of both interactions on the conductivity is deter-
mined by the Kubo formula. Furthermore, a zero temperature phase diagram is derived
and the Boltzmann equation is used to determine the effects of electron-phonon scattering
in absence of electron-electron interaction.
The Weyl semimetal band structure shows conducting surface and bulk states at the same
time. In the context of this thesis, the dependence of the dispersion of a Weyl semimetal
nanowire on the boundary condition and the magnetic flux parallel to the axis is stud-
ied. The boundary condition includes a parameterizing angle that preserves momentum
conservation. The focus lies on the magnetoresistivity that follows from the semiclassical
Boltzmann approach involving electron-phonon coupling via the deformation potential.
The bands provide different shapes and intersect the Fermi energy either with one or
two pairs of Fermi points. This leads to the possibility of more scattering processes and
also an increase of the resistivity. Furthermore, these different bands provide interesting
features regarding the zero temperature conductance and the phonon-induced resistivity.
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Zusammenfassung

Topologische Phasen haben ein neues Forschungsfeld im Bereich den kondensierten Ma-
terie eröffnet. Symmetrien und Topologie, die zu geschützen Zuständen vor Störungen
führen, definierten folglich neue Phasen in Materialien. Im Rahmen dieser Arbeit liegt der
Fokus auf topologischen Isolatoren und Weyl Halbmetallen. Die topologische isolierende
Phase kann entweder aus dem Quanten Hall Effekt folgen, wenn die Zeitumkehrinvarianz
gebrochen ist, oder durch Spin-Bahn-Kopplung, wenn Zeitumkehrinvarianz präsent ist.
Die Folge dessen ist das Entstehen von leitfähigen Oberflächenzuständen. Während topol-
ogische Isolatoren Dirac Fermionen haben, besitzt ein Weyl Halbmetall Weyl Fermionen,
welche chirale, masselose Teilchen sind. Weyl Halbmetalle sind topologische Halbmetalle,
die eine Fermi Energie auf Höhe der Weyl-Knoten besitzen. Die Oberflächenzustände
formen einen Bogen, der die Projektion der Weyl-Knoten in der Oberflächenbrillouinzone
verbindet. Die Teilung in zwei Weyl-Knoten geschieht durch eine gebrochene Symmetrie.
In dieser Arbeit, werden die Effekte von Elektron-PhononWechselwirkung in Nanodrähten
aus topologischen Isolatoren und Weyl Halbmetallen vorgestellt. Das Magnetfeld ist par-
allel zur Achse des topologischen isolierenden Nanodrahts angelegt. Ein halbzahliger mag-
netischer Fluss führt zu geschützen Oberflächenzuständen. Der topologische isolierende
Nanodraht kann als ein eindimensionales System betrachtet werden und erlaubt die An-
wendung von Bosonisierung, mittels derer die Wechselwirkungen beschrieben werden
können. Elektron-Phonon Wechselwirkung wird durch die Kopplung über ein Deforma-
tionspotential in elastischer isotroper Kontinuumstheorie beschrieben. Basierend auf dem
bosonisierten Hamiltonian, der Elektron-Elektron Wechselwirkungen beinhaltet, werden
die Effekte beider Wechselwirkungen auf die spezifische Leitfähigkeit mithilfe der Kubo-
Formel bestimmt. Zusätzlich wird ein Phasendiagramm aufgestellt und die Boltzmann-
Gleichung wird zur Bestimmung der Auswirkung von Elektron-Phonon Streuung in Ab-
wesenheit von Elektron-Elektron Wechselwirkung verwendet.
In Weyl Halbmetallen zeigt die Bandstruktur gleichzeitig leitende Oberflächen- und Bulkzu-
stände. Im Kontext dieser Arbeit wird die Abhängigkeit der Dispersion eines Weyl Halb-
metall Nanodrahtes von der Randbedingung und dem magnetischen Fluss parallel zur
Achse untersucht. Die Randbedingung beinhaltet einen parametrisierenden Winkel, der
den Impuls erhält. Der Fokus liegt dabei beim magnetoresistiven Effekt, der aus dem
semiklassichen Boltzmann-Ansatz folgt und Elektron-Phonon-Kopplung über das Derfor-
mationspotential berücksichtigt. Die Bänder besitzen verschiedene Formen und schnei-
den die Fermi Energie entweder mit einem oder an zwei Paaren an Fermi Punkten. Das
führt zum möglichen Auftreten mehrerer Streuungsprozesse und ebenso zu einem Anstieg
des spezifischen Widerstands. Darüber hinaus zeigen die verschiedenen Bänder interes-
sante Merkmale bezüglich der Leitähigkeit bei Temperaturen bei Null und dem Phonon-
induzierten spezifischen Widerstand.
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Chapter 1

Introduction

The experimental investigation of topological insulators by König et al. has opened a
whole new field of interest [1]. As the name reveals, these materials possess topological
properties and, therefore, lead to characteristic features like, for instance, the existence
of topologically protected surface states.
The formulation of a relativistic, spinful particle by Paul Dirac [2] in 1928, gave a base for
further theoretical investigation of particles in quantum mechanics. Only one year later
Hermann Weyl [3] proposed the Weyl fermion by splitting the massless Dirac equation
into the eigenstates of the chirality operator. While the Dirac fermion is a non chiral par-
ticle, splitting the Dirac cone into two cones of each chirality results in a Weyl fermion.
The particularity of the Weyl fermion is given by the construction of a pair of cones with
opposite chirality.
The following 70 years, studies on the Quantum Hall Effect by v.Klitzing et al. [4] and
Thouless et al. [5] showed the increase of conductance in steps of conductance quanta at
low temperatures. This led to the definition of topological invariants. Moreover, Kane and
Mele predicted topological invariant systems with gapless surface states [6–8]. First, the
two dimensional topological insulator (2DTI) was experimentally shown in HgTe quan-
tum wells [1,9]. Then, the three dimensional topological insulator (3DTI) was discovered
experimentally in Bi1−xSbx by the group of Hsieh et al. [10]. In ARPES1 measurements
they showed that this topological material has a conducting surface state and gapped
bulk states. Its gapless surface state is protected by inversion- and time-reversal symme-
try [11]. Furthermore, they observed Dirac particles forming the surface states. Unlike
Bi1−xSbx where band inversion occurs for more than one band, the second generation of
3DTI, Bi2Se3 and Bi2Te3, even shows a single Dirac cone and has a large band gap [12].
Based on the existence of a topological insulator with Dirac fermions, first predictions for
topological semimetals were made. The proposed materials needed a broken symmetry
and the Fermi energy had to lie within the Fermi surface close to the band touching points.
Burkov and Balents suggested a multilayer heterostructure of topological and ordinary
insulators [13]. In 2015, the Princeton and the IOP groups discovered the Weyl semimetal
TaAs [14–18]. Instead of a surface state within a single point, the two Weyl cones impose
a segment of such surface state points. This alignment of surface states connects the
projection of the Weyl nodes the surface Brillouin zone resulting in a Fermi surface arc.
However, the Fermi arc is no longer protected by inversion- and time-reversal symmetry,
as one of these symmetries needs to be broken in order to obtain Weyl fermions. Other
consequences of symmetry breaking in Weyl semimetal are the chiral anomaly and the

1angle-resolved photoemission spectroscopy
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CHAPTER 1. INTRODUCTION

Quantum Anomalous Hall Effect, which are discussed further in chapter 2.
The experimental evidence that topological states in such materials exist opened a rich
field of research. In the context of this thesis, transport properties of topological insula-
tors and Weyl semimetals in nanowire geometry are discussed which are of large interest
in theoretical and experimental studies. An important feature of the nanowire-geometry
in topological insulators is that a half-integer flux piercing the wire closes the gap of the
lowest band [19]. Experimental and theoretical investigation showed Aharonov-Bohm os-
cillations of conductance with a period of flux quanta [20–23]. In Weyl semimetals, the
surface states impose a Fermi arc confined by the Weyl nodes. While the existence of Weyl
fermions in several materials was already known, topological Fermi arcs were discovered
recently in TaAs. Their contribution to conductance has been investigated in nanowire
geometry by Kaladzhyan et al. for surface states with a flat Fermi arc [24–26].
The consequences of electron-phonon interactions have been studied for many geome-
tries and materials, for instance topological insulators in half-space and thin-film geome-
try [27, 28]. Moreover, although electron-electron interactions can increase the resistivity
of a system, attractive phonon interaction can provide instabilities leading to a super-
conducting phase [29, 30]. The nanowire-geometry will be of large interest in this thesis
since transport measurements have already shown interesting features in 3DTI nanowires
that are discussed in chapter 3 [20,21]. The geometry of a nanowire allows the system to
be treated one-dimensional. Furthermore, one-dimensional systems with Dirac fermions
can be described by Luttinger Liquids. The bosonization approach is a useful method to
study complicated, one dimensional systems [31, 32]. Given a half-integer magnetic flux,
the zero-temperature phase diagram presents order fluctuations of density waves. Away
from half-integer flux, the Boltzmann approach shows, that phonon interaction provides
backscattering which leads to an increase of temperature and resistivity [30,33,34].
In contrast to topological insulators, Weyl semimetals have a pair of cones, whose surface
states form a Fermi arc. It is shown, that the choice of boundary conditions has a huge
impact on the curvature of the arc [35]. The transport in Weyl semimetals is of large
interest, since transport measurements have been recently studied experimentally [36,37].
In contrast to a topological insulator nanowire, where only one band intersects the Fermi
energy at one point, a Weyl semimetal can have more than only one band intersecting the
Fermi energy under the same conditions. This leads to interesting features in the conduc-
tance and also in case the scattering of phonons is present. Chapter 4 presents a Weyl
semimetal nanowire setup on a substrate with a magnetic flux piercing the nanowire.
The focus is set on phonon-induced backscattering effects within a disorder free Weyl
semimetal nanowire. Since transport in Weyl semimetal nanowires depends on the rich
band structure, chapter 4 discusses the conductance at zero temperature and the corre-
sponding effects of phonons on the magnetoresistivity.
Further, this thesis focuses on these two topological materials and examines how the
differences of their topological nature affect the devices of nanowire geometry at low
energy. Moreover, the effects of nonzero temperature appear in different ways and are
studied according to the topological material. Chapter 5 gives a summary over this work
about Dirac and Weyl fermions and their interactions in topological insulators and Weyl
semimetals. These results are mapped to current topics with an outlook for future work.
If not mentioned otherwise, the constants are set ~ = c = e = kB = 1.
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Chapter 2

Fundamental Principles

This chapter introduces the fundamentals on Dirac and Weyl fermions and their appear-
ance in topological materials. These are necessary to understand the effects of inter-
actions that are discussed in chapters 3-4. At the beginning, Dirac and Weyl fermions
are introduced which are both solutions from the Dirac equation following from different
conditions [2, 3]. The fermions follow from the topology of the materials they occur in.
Dirac fermions appear as surface states in three dimensional topological insulators (TI)
whose interesting physics will be discussed further in Sec.2.3. In order to understand the
appearance of Dirac fermions, the fundamentals of TIs have to be established. Therefore,
the band structure following from their topological properties has to be discussed. TIs
define themselves by their topologically protected surface states. The topological invari-
ance can for instance follow from the Quantum Hall (QH) effect. In a two dimensional
system, a perpendicular external magnetic field can be responsible for the QH effect by
breaking time-reversal symmetry. However, in systems with protected time-reversal sym-
metry, topological invariants exist due to spin-orbit interactions and are defined by the
Z2-invariant. In three dimensions, one has four time-reversal invariant momenta. These
additional invariant momenta distinguish between a "strong" and a "weak" TI [7, 8].
In 3DTI, the existence of two symmetries, for instance, time-reversal- and inversion-
symmetry, protects the surface state. However, this is quite different in Weyl semimetals.
As the derivation in Sec.2.1.2 will show, symmetry breaking is necessary to obtain a
pair of Weyl cones. This leads to peculiar effects like chiral anomaly and the Quantum
Anomalous Hall Effect (QAH), that are discussed in Sec.2.4. Therefore, the breaking of
each of these symmetries will be represented. Moreover, the Weyl fermions are a solution
of the Dirac equation which gives rise to the idea of creating Weyl semimetals by layers
of magnetically doped TIs. In contrast to TIs, the Weyl semimetal band structure has
gappless bulk and surface states at the same time. This interesting band structure will
be discussed in Sec.2.4.3 with a focus on conductance effects.

Beyond the particles and materials, it is of interest in this thesis, to study the effects of
electron-phonon interaction. Sec.2.7 gives an insight about electron-phonon coupling and
deformations in isotropic media. The effects of electron-phonon interaction will be evalu-
ated by the Boltzmann-equation and by the Kubo-formula. A rather new approach which
is quite useful to study one-dimensional systems, is bosonization. A short introduction to
this topic will be given in Sec.2.6.
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CHAPTER 2. FUNDAMENTAL PRINCIPLES

2.1 Dirac and Weyl Fermions

With the interaction of fermions being the key interest in this work, the theoretical basis of
Dirac and Weyl fermions is discussed in this section. Since Weyl fermions are a solution of
the Dirac equation found by Hermann Weyl in 1929 [3], this section follows the derivation
of Weyl fermions from the Dirac equation, proposed by Paul Dirac in 1928 [2]. The
solution is followed by the massless chiral fermions leading to the Weyl equation [3, 38].

2.1.1 Dirac fermions

Dirac fermions are the solution of the Dirac equation

(iγµ∂µ −m)ψ(x) = 0 (2.1)

and represent spinful, relativistic particles in µ time and space dimensions. The conti-
nuity equation gives restrictions to the properties of the Dirac matrices, which in three
dimensions need at least a dimension of 4× 4. Therefore, they can be defined as

γ0 =

(
I 0
0 −I

)
and γk =

(
0 σk

−σk 0

)
(2.2)

in Dirac basis where σk with k = 1, 2, 3 are the Pauli matrices and I is the 2× 2 identity
matrix. The matrix γ0 is hermitian, while the matrices γk are antihermitian. The γ-
matrices anticommute with each other, i.e. {γi, γj} = 0, if i 6= j. The result of Eq.(2.1)
is the Dirac fermion. The free Dirac theory is invariant under charge conjugation, parity
and time-reversal symmetry (CPT ) separately. In nature, however, these symmetries can
be violated.
Invariant systems can for instance protect states and therefore lead to a certain topology.
Transformation under parity is denoted by P and leads to inversion in spacial coordinates.
Invariance under inversion (or parity) implies that PH(k)P−1 = H(−k), i.e. the inverted
momentum should keep the spin. The system is then even under inversion. The inversion
operator P has the eigenvalues ±1, where P2 = 1.
Time-reversal transformations reverses the time within a system. In a system with time-
reversal symmetry (T ) a particle will follow the same trace back, if time goes reverse. This
symmetry can be broken for instance by applying a magnetic field. A Bloch Hamiltonian
h(k) with momentum k is T -invariant if T h(k)T −1 = h(−k). A spinful particle obeys
the T -operator T = iσ2K, where σ2 (also σy) is the Pauli matrix for spin and K is
the complex conjugation operator. Acting twice, the operator yields T 2 = −1 for a
particle with half-integer spin. Moreover, the operator of a spinful particle is odd under
T -symmetry. Kramers degenracy is given for a T -invariant system with spin 1/2 particles
that obtain the same eigenenergies while having opposite spin.
Charge conjugation implies that a fermion transforms into its antiparticle while keeping
the spin. A system with such symmetry obeys C−1γµC = −γµ where C = iγ2γ0 is the
charge conjugation matrix [39–42].
Sec.2.3.1 will present how these symmetries protect the Dirac fermion in the topological
insulator. In the following, the Weyl equation will be derived and one of the invariances
will be lost due to neglecting the mass term.
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2.1. DIRAC AND WEYL FERMIONS

2.1.2 Weyl fermions

One year after the proposal of the Dirac equation, Hermann Weyl derived another solution
of the Dirac equation by setting the mass m→ 0 [3, 38]. An important condition is that
the particle is massless, or at least has a very small mass compared to its momentum.
Thus, the mass term can be set to m = 0. An example for a fermion with nearly zero
mass and a half-integer spin is the neutrino [41]. In fact, m = 0 decouples the Dirac
equation in the sense that each component of ψ becomes independent. Hence, the Dirac
equation in three dimensions remains

3∑
µ=0

γµ∂µψ(x) = 0 (2.3)

and therefore, one can write the Hamiltonian as

i
∂ψ

∂t
= −i

(
γ0γ1 ∂ψ

∂x1
+ γ0γ2 ∂ψ

∂x2
+ γ0γ3 ∂ψ

∂x3

)
(2.4)

since γ0 is hermitian. Following the anti-commutation relation of Dirac-matrices one finds
that the matrix

γ5 = iγ0γ1γ2γ3 =

(
0 I
I 0

)
(2.5)

commutes with the helicity Σ ·k where Σ defines the spin and k the momentum [41]. The
γ5-matrix has also common eigenfunctions with the helicity operator. While the helicity
describes whether the spin of a particle has the same or the opposite direction as the
momentum, the γ5 matrix is responsible determining the sign of energy and therefore is
also called the chirality operator. Hence, in case of Weyl fermions the helicity is equal to
the chirality since it is massless. Splitting the chirality operator into its eigenvalues ±1, it
reduces the γ-matrices to σ-matrices. Furthermore, the spinor ψ has to fulfill γ5ψ = ±ψ.
Thus, Eq.(2.4) yields

i∂tψ± = ∓~σ · ~p ψ± (2.6)

resulting in two chiral fermions, one with a right-handed chirality ψ+ and one with a
left-handed chirality ψ−. This equation describes the Weyl fermions. It is invariant under
charge conjugation and parity,i.e. CP , where the CP conjugate of a Weyl fermion with
left-handed chirality is a Weyl fermion with right-handed chirality [43].
In condensed matter physics, the Nielsen-Ninomiya theorem states that a massless chiral
fermion requires the existence of a fermion with opposite chirality in order to keep gauge
invariance in an electromagnetic field. Otherwise, the gauge field is anomalous. This
means that within a Brillouin zone (BZ) the number of positive and negative chiralities
is equal [38].

Heretofore, Dirac and Weyl fermions have been introduced. The following section ad-
dresses the topology and thus, the reason for the appearance of Dirac and Weyl fermions
in a topological system. Furthermore, the section covers the symmetries that determine
the topology.
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CHAPTER 2. FUNDAMENTAL PRINCIPLES

2.2 Topological invariants
As topological material is of main interest in this thesis, the concept of topological in-
variants is discussed in this section. The topological invariant is deduced by the Berry-
connection and can be expressed by a physical quantity. This can have different conse-
quences for the system, for instance a system imposes a topologically insulating phase
with two protected gapless edge states. In 1982 Thouless et al. showed the Chern in-
variant appears within the Hall conductivity [5]. The Chern invariant follows from an
analogy between condensed matter physics and topology [42]. In a 2DTI (two dimen-
sional TI), this phase was shown to be the Quantum Spin Hall (QSH) effect by Kane and
Mele [6, 8]. While the QH effect requires broken T -symmetry, the QSH phase phase is
T -symmetric. Therefore, Moore and Balents generalized this to the Z2-invariant model
including T -symmetric systems. Moreover, Fu, Kane and Mele established an extended
model for 3DTI systems involving four invariant momenta [8]. This section represents
topological invariants and their consequences for materials and begins with the Chern
invariant.

2.2.1 Berry Phase

In 1984, M. Berry pointed out, that the phase difference of wave functions has impact on
adiabatic systems [44,45]. Some years earlier, in 1959, Y. Aharonov and D. Bohm discov-
ered that an electromagnetic potential leading to a magnetic flux has influence on charged
particles, namely, the Aharonov-Bohm-Effect [46]. The consequences of phases that occur
from potentials arise in physical properties. A system that changes adiabatically in time
depends on a real phase

Φ(t) = i

∫ r(t)

r(0)

〈u(k)|∇k|u(k)〉 · dS (2.7)

the s.c. Berry phase and
A(k) = 〈u(k)|∇k|u(k)〉 (2.8)

is the Berry-connection where |u(k)〉 are the eigenstates of a Hamiltonian H(k) and the
momentum k is defined within a contour of path C. The curl of the Berry-connection, the
Berry curvature,

Ω(k) = ∇k ×A(k) (2.9)
solves the surface integral over a closed loop with the path C. The importance of Ω(k)
exists within the Chern invariant

nk =
1

2π

∫
C

Ω(k) · dS (2.10)

where Ω(k) · dS describes the topology of the path C by the sources or sinks of Ω(k).
Hence, the Chern invariant is a topological invariant, depending on the Berry-connection.
Furthermore, the Gauss-Bonnet theorem connects the Berry curvature of a given surface
dS to the topological invariant. Moreover, the Chern invariant is the quantity that stays
in systems which change adiabatically like, for instance, a Hamiltonian. Degenerate points
play a huge role for the Chern-invariant since they act as monopoles in parameter space.
The integration over a two-dimensional surface then leads to the integer in Eq. (2.10), the
Chern number [39]. In 2004, Haldane stated that the Berry phase is a topological property
[47]. The connection between the Berry phase, or the Chern number, and condensed
matter physics will be discussed in the following.
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2.2. TOPOLOGICAL INVARIANTS

2.2.2 Quantum Hall Effect

The integer Quantum Hall (IQH) state describes the conductance increase in steps of
conductance quanta e2/h, while an external magnetic field is applied. The magnetic field
leads to Landau level and, furthermore, to the quantized Hall conductance. The conduc-
tance steps are defined by the carrier concentration N [4]. Based on the experimental
investigation by v. Klitzing et al., Thouless et al. showed, that topology is responsible for
the difference between the QH state and an ordinary insulator [5]. The Chern invariant
with integer-valued invariant

ni =
1

2π

∫
BZ

∇k ×A(k) (2.11)

appears as the quantized Hall conductivity

σxy =
Ne2

h
(2.12)

with the Chern number N =
∑

i ni defined by the sum over all Chern invariants. Thus, the
IQH state is of topological nature. The TKNN1 integers N are elements of the homotopy
groups π(M) = 0 or π(M) = Zn−1 [48, 49]. The homotopy groups describe continuous
deformations between functions. An example is given by the deformation of a torus into a
mug which keeps the "gap". In contrast a deformation into a sphere would close the gap
since it corresponds to a different invariant [42]. The homotopy groups π(M) represent
topological manifolds M that can be obtained from a sphere Sn. In condensed matter
physics, one finds the Brillouin zone is topologically equivalent to a torus and the band
structure can be treated as a map to the Bloch Hamiltonian similarly [45,49].
Another important aspect is that the Hall conductivity requires a broken T -symmetry
at zero magnetic field [47]. However, in some systems, where T -symmetry is given, an-
other interaction can be responsible for the topological order without even breaking T -
symmetry. Based on Haldane’s model, Kane and Mele showed that spin-orbit interactions
provide a topologically non trivial phase in a T -invariant system with Dirac fermions as
well [6,8]. The T -operator yields T 2 = −1 for spinful particles with half-integer spin. The
consequence is described by Kramers’ theorem and requires at least twofold degenerate
states as eigenstates of the T -operator. Therefore, the spinful fermions yield a QSH con-
ductivity. What distinguishes the QH and the QSH states from ordinary insulators are the
gapless edge states appearing in two dimensionsional systems [50]. If spin-conservation is
not given anymore, the edge states form a Kramers doublet which protects those states
even, if T -symmetry is given. Therefore, the Hall conductivity provided by broken T -
symmetry cannot be the only topological aspect which stabilizes the system. Kane and
Mele showed that the Z2 topological invariant distinguishes the QSH insulator from an
ordinary insulator analog to the TKNN invariant [51].
Experimental investigation showed that the QSH insulating state exists in quantum well
structures made of stacked layers of HgTe and CdTe. These materials belong to the family
of semimetals and semiconductors and provide a zinc blende lattice structure [52,53]. The
group of König et al. measured quantized conductance provided by the edge states [1].

1D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs [5]
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CHAPTER 2. FUNDAMENTAL PRINCIPLES

Figure 2.1: TRIM Γ1,2,3,4 of (a) a weak TI (b) a strong TI. (c) Dirac cone inside the Fermi
surface arc. Adapted from Ref. [53].

2.2.3 Topological invariance in three dimensions

The existence of gapless edge states in a two dimensional system was fundamental to
explore the three dimensional generalization of the QSH phase. Two years after the
QSH state was deduced, Moore and Balents extended the model by suggesting a three
dimensional Brillouin Zone with given T -invariance [49]. The result is a phase with four
Z2 invariants for each pair of bands. Fu, Kane and Mele distinguished between "weak"
and "strong" TI phases, based on a fourth invariant [8]. Furthermore, Roy derived the
QSH effect in three dimensions [54].
In three dimensions, one has eight T -invariant momenta (TRIM) which correspond to
four Z2 invariants ν0; (ν1ν2ν3). Three of the four invariants describe the layers of each two
dimensional plane. The invariant ν0 distinguishes between weak and strong TI phases.
It is zero, if the phase is a weak TI and ν0 = 1, if the phase corresponds to a strong
TI. The phases are distinguished by the number of Kramers degenerate Dirac point pairs
the surface Fermi surface intersects. The degenerate Dirac points resemble the Kramers
degenerate points in the surface Brillouin zone. Fig.2.1 shows the TRIM Γ1,2,3,4 for a weak
and strong TI phase. The weak TI behaves similar to layers of 2D QSH states. The phase
is called a "weak" insulator since the band in that system intersects the Fermi energy
between an even number of invariant points, for instance Γ1 and Γ2 as well as Γ3 and
Γ4. Hence, the weak periodic potentials occur providing a gap and for clean surfaces one
finds surface states. Nonetheless, disorders reduce topological distinction and lead to a
localization of surface states [8, 53].
The strong TI phase cannot be obtained from stacking layers of 2DTIs, as the Kramers’
degenerate Dirac points are confined within the Fermi surface arc. A simplified model is
shown in Fig.2.1 where Γ1 appears as a single Dirac point. What makes the strong TI
unique is this single Dirac point. Although the Dirac point with a given spin appears to
be a single Dirac point, the fermion doubling theorem by Nielsen and Ninomiya remains
valid. The other Dirac point, however, can be found for a Dirac cone with opposite mass
sign [7]. Then, the Berry phase follows from spin-momentum locking around the Fermi
surface [8, 53,55].
One proposed material was Bismuth since bilayer Bismuth imposes a QSH phase [8].
Realizations of strong TIs with Bismuth and the crystal structure will be discussed in
Sec. 2.3.
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2.2. TOPOLOGICAL INVARIANTS

2.2.4 Topological semimetals

As the name reveals, topological semimetals require the topological invariant to be con-
nected to the Fermi arc. The Berry curvature, which is shown in Eq.(2.9), is a topological
quantity. While the magnetic flux B is not a topological quantity, it acts as a normal flux
where magnetic monopoles do not occur. The Berry curvature, however, is a topological
quantity and can have magnetic monopoles. For a two dimensional Fermi surface sheet
that confines the Berry curvature, a monopole will lead to the Chern number

C =
1

2π

∫
Ω(k) · dS = ±1 (2.13)

corresponding to a topological charge of ±1 depending whether it is a source or sink [56].
Weyl points can be characterized as such monopoles [57]. The Chern number can be
associated with the chirality of the Weyl nodes. However, the monopoles being degen-
erate points of the Berry curvature require a broken inversion or T -symmetry to lift the
Kramers’ degeneracy. As shown in Sec.2.1.2 the Weyl equation fulfills this requirement,
since it implies a broken symmetry. This is necessary to define a topological metal. Hence,
Fermi energy at the Weyl nodes has topological consequences, for instance the quantum
anomalous Hall (QAH) effect. A 3DTI doped with magnetic impurities can provide bro-
ken T -symmetry. A thin film with two dimensional Dirac surface states will then have
the form

Hr = vF (ẑ × ~σ) · k + (b+ r∆S)σz (2.14)

where the Dirac fermion has the mass m = b + r∆S with r = ± and the tunneling
amplitude ∆S between the surfaces of the film and the exchange spin-splitting b provided
by magnetic impurities. If the Fermi energy lies close to the nodes of the Dirac fermions,
the Hall conductivity contributed by each fermion

σrxy =
e2

2h
sgn(m) (2.15)

acts anomalous as m and, therefore also σrxy, vanishes. The Hall conductivity is exactly
half of the conductivity a normal TI has and depending on the mass it imposes a critical
point between a TI and an ordinary insulator [56,58]. The idea of stacking TI layers will
be discussed later leading to the Weyl semimetal heterostructure (s.Fig.2.5) proposed by
Burkov and Balents in Ref. [13]. For a better understanding of the QAH effect in Weyl
semimetals, the model of a Weyl semimetal has to be discussed, first. A further insight
to this and the QAH effect will be given in Sec.2.4.

2.2.5 Topological superconductivity and Majorana fermions

Another topological classification, that is briefly mentioned here, are topological super-
conductors. Their importance lies within the Majorana fermions, named after Ettore
Majorana [59]. More particularly, a qubit can be constructed by Majorana bound states.
Majorana fermions are their own antiparticles and fulfill γj = γ†j . This follows from the
intrinsic particle-hole symmetry of the Bogoliubov-de Gennes Hamiltonian within the su-
perconducting Hamiltonian [39]. Analog to the TI, the topological superconductor has
egde states described by the Majorana fermions that are topologically protected [52,53].
The T -symmetric topologically superconducting phase refers to a Z2 topological quan-
tum number [60].There are many similarities between the T -invariant QSH states and the

9



CHAPTER 2. FUNDAMENTAL PRINCIPLES

T -invariant topological superconductors. Equivalent to the QSH state, the topological su-
perconductor provides helical edge states in form of Majorana edge states. Furthermore,
a Majorana fermion can be treated as half of a Dirac fermion and similarly to the QSH
state the edge states counterpropagate.

So far, the topological invariants have been discussed. The topological invariant is a math-
ematical description that can be utilized to define the topological equivalent characterizing
the band structure. Therefore, topological phases can be defined. One of these phases, is
the 3DTI. The following section describes the crystal structure of the 3DTI Bi2Se3 and
presents the symmetries which lead to the topological protection of the surface states.

2.3 Topological insulators
Similar to the ordinary insulator, the topological insulator (TI) has an insulating bulk gap.
What makes it a TI, is the topologically protected, gapless surface state. The topological
protection follows from time-reversal symmetry and is discussed further in Sec.2.3.1. In a
2DTI one Z2 invariant momentum protects the surface state. In a 3DTI, there exist four
Z2 invariant momenta which protect the surface state. As the 3DTI is of large interest
in this thesis, the crystal structure and symmetries of Bi2Se3 that is part of the Bismuth-
family will be represented in the following section. The symmetry is fundamental for
the model Hamiltonian describing the TI in Sec.2.3.2. The effective surface Hamiltonian,
defining the topological surface states follows from the model Hamiltonian.

2.3.1 Symmetries

Topological insulating phases can be found in Bismuth-alloys. While the first generation
of 3DTI, Bi1−xSbx, was difficult to study due to its small band gap, the group from Prince-
ton University by Hasan showed the existence of Dirac cones in Bi2Se3 [12]. The crystal
structure belongs to the D5

3d(R3̄m) space group and is composed of s.c. quintuple-layers.
Furthermore, Bi2Te3 belongs to the same space group and has an equivalent rhombohe-
dral crystal structure [52]. Since chapter 3 focuses on a bulk-insulating TI as well, for a
better understanding of the symmetries in 3DTI, the Bismuth-family is discussed, first.
It will be shown later that HgTe, known as a 2DTI, imposes a bulk-insulating TI, when
it is strained [20].
The crystal structure of Bi2Se3 is shown Fig.2.2. A gap of ≈ 0.3 eV of the lowest band

makes Bi2Se3 a bulk insulator. The two lattice constants a and c are defined in the x-y-
plane and in z-direction, respectively. Furthermore, the primitive lattice vectors are given
by t1 = (

√
3a/3, 0, c/3), t2 = (−

√
3a/6, a/2, c/3) and t3 = (−

√
3a/6,−a/2, c/3).

Inversion symmetry of the Se2 site with respect to the center appears at first sight, while
Bi1 and Se1 have their inversion center in the Se2 site. For instance, the Bi1 (Se1) atoms
impose inversion symmetry with the Se2 atoms being the center of inversion. Two- and
threefold rotation symmetries exist along the x- and the z-direction. T -invariance is rep-
resented in Fig.2.3, where the red points show the T -invariant momenta. As already
stated, the T -operator for a spinful particle is T = iσyK.
As discussed in the previous section, spin-orbit interaction can lead to the QSH effect

and further to the T -invariant momenta. The T -invariant momenta Γ, F , L and Z are
presented in Fig.2.3 and lead to four Z2-invariants classifying the TI. Turning on spin-
orbit coupling (SOC), band inversion close to the Γ-point arises and changes the parity

10



2.3. TOPOLOGICAL INSULATORS

Figure 2.2: Left: The red box shows the quintuple layer structure of Bi2Se3. The primitive
lattice vectors are labeled t1,2,3. Right: SOC acting on the states of Bi and Se leading to
inversion of the states. The Fermi energy is set on the blue line. The horizontal green
box represents the basis states. Both figures are adapted from Ref. [61].

of an occupied band [61]. The states of Bi and Se are pushed into opposite directions due
to chemical bonds and their orbitals are split into two perpendicular directions. This is
shown in Fig.2.2 and follows from crystal structure. Crystal-field splitting then provides
a repulsion between these perpendicular states (II) and beyond a critical value of SOC
their energies become inverted (III). Furthermore, these states are now doubly degener-
ate [52, 61, 62].
Fig.2.3 shows a high-resolution ARPES measurement of the second generation 3DTI
Bi2Se3. The method of ARPES implies measuring the energy of electrons. Those oc-
cur from the photoelectric effect provided by a radiation beam on the sample. ARPES
measurement is a technique which is used often to study topological material since it
allows for the distinction between bulk and surface states [11, 63]. A photon energy of
about 22 eV was used in this measurement along the 2D BZ momenta represented in
Fig.2.3. The measurements show a single Dirac cone. Bi2Se3 is stochiometric and, there-
fore, it can have a high purity. Including the large band gap of ∼ 0.3 eV of Bi2Se3, TI
states at room temperature are possible. Furthermore, the topological states are pro-
tected by T -symmetry. Nonetheless, a gap within the surface spectrum can appear due
to magnetic impurities breaking the symmetry [53,64]. TI nanoribbons of Bi2Se3 showed
Aharonov-Bohm oscillations at low temperatures. Also, a quantized conductance e2/h
was estimated in the experiments of Ref. [21]. The effects of an applied magnetic field on
the conductance oscillations will be further discussed in Sec.2.3.3.
The model Hamiltonian has to obey the symmetries in order to fulfill the topology of a
3DTI. In the following section, the corresponding model Hamiltonian will be evaluated.
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Figure 2.3: Left: Brillouin Zone of Bi2Se3. The T -invariant momenta are represented by
the red points. The high-symmetry momenta are indicated by the blue points in the 2D
BZ. Adapted from Ref. [61]. Right: ARPES measurements representing the surface band
dispersion of the 3DTI Bi2Se3 (111) close to the Γ-point along the 2D BZ momenta Γ̄−M̄
and Γ̄− K̄. Adapted from Ref. [12].

2.3.2 Band structure and surface states

The model Hamiltonian was derived in two different steps, first by exploiting the crystal
structure and atomic orbitals, second by symmetry principles. In both cases the previ-
ously mentioned symmetries and spin-orbit coupling play an important role. This section
represents the properties of the model Hamiltonian and the resulting band structure.
Topology as well as the ARPES measurements showed that the system can be repre-
sented by low-energy physics close to the Γ-point. The basis describing the conduction
and valence band consists of four states. The parameters of the system were determined
by fitting the bands onto ab initio calculations. Moreover, the basis can be represented
by the symmetries which were discussed in the previous section. The low-energy Hamilto-
nian can be obtained from expansion to the order of O(k2) of a 4× 4-Dirac Hamiltonian.
Thus, a model Hamiltonian which obeys the topology of a 3DTI with a single Dirac cone
can be represented by

Heff =


ε0(k) +M(k) A1kz 0 A2k−
A1kz ε0(k)−M(k) A2k− 0

0 A2k+ ε0(k) +M(k) −A1kz
A2k+ 0 −A1kz ε0(k)−M(k)

+O(k2)

(2.16)
where the energies are given by ε0(k) = C+D1k

2
z +D2k

2
⊥ andM(k) = M −B1k

2
z −B2k

2
⊥

with k± = kx ± iky and k⊥ =
√
k2
x + k2

y. The parameters are shown in the App.A.1
Tab.A.1. Furthermore, one finds band inversion near k = 0 representing the topology
[61].This model Hamiltonian is fundamental to the following discussion and the topic of
chapter 3, where a system with a single Dirac cone is considered.
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Surface states in half-space geometry

Characterizing the topology, surface states are a very interesting aspect in the TI. The
density of states can be obtained by ab initio calculations. These calculations also showed
a higher density of states near the Γ-point representing the surface states. Moreover,
a surface Hamiltonian can give information about the connection between the bulk-
Hamiltonian and the topology of surface states. In order to obtain surface states in
half-space geometry, i.e. imposing open boundary conditions for z > 0, the Hamiltonian
can be written as H = H0 +H1, where one part depends only on momenta in z-direction.
The first part is

H0 =


ε̃(kz) + M̃(kz) A1kz 0 0

A1kz ε̃(kz)− M̃(kz) 0 0

0 0 ε̃(kz) + M̃(kz) −A1kz
0 0 −A1kz ε̃(kz)− M̃(kz)

 (2.17)

of order k2
z where ε̃(kz) = C +D1k

2
z and M̃(kz) = M − B1k

2
z the second part

H1 =


−B2k

2
⊥ 0 0 A2k−

0 B2k
2
⊥ A2k− 0

0 A2k+ −B2k
2
⊥ 0

A2k+ 0 0 B2k
2
⊥

 (2.18)

of order k2
⊥ [52, 62]. Moreover, according to half-space geometry, one can now solve the

Schrödinger equation. The block diagonal Hamiltonian allows for eigenstates of two two-
component spinors Ψ↑ = (φ(z),~0)T and Ψ↓ = (~0, φ(z))T where the function φ(z) = φ̃eλz

includes a two-component wave function φ̃ with eigenstates ϕ± [52, 62]. Moreover, the
wave function yields

φ(z) =

{
a
(
eλ1z − eλ2z

)
ϕ+ , for A1/B1 > 0

c
(
e−λ1z − e−λ2z

)
ϕ− , for A1/B1 < 0

(2.19)

with
λ1,2 =

1

2B1

(
−A1 ±

√
4MB1 +A2

1

)
where the sign of A1/B1 defines the helicity [52,62]. Furthermore, projecting the states in
the subspace of the eigenstates denoting the surface states, one finds the surface Hamil-
tonian

Hsurf (kx, ky) = C +A2(σxky + σykx) (2.20)

where C � A2. Thus, the surface Hamiltonian describes a Dirac fermion. Hence, one ob-
tains a Fermi velocity of A2/~ ∼ 6.2×105m/s for the surface states (s.App.A.1, Tab.A.1).
The effective surface state Hamiltonian allows for further investigation of surface states,
for instance electron-phonon interaction [27,28,65]. Considering electron-phonon interac-
tion in a TI with open boundary conditions, one finds a Bloch-Grüneinsen temperature of
TBG = 3.9 K referring to Rayleigh surface modes which propagate along the surface and
dominate at low-temperatures [27,66]. The consequence of electron-phonon scattering is a
resistivity with a temperature dependence of ρ ∝ T 5 for T → 0. At high temperatures the
resistivity scales with ρ ∝ T with a dominant contribution from longitudinal modes [27].
A general insight about phonon modes and their interaction with electrons will be given
in Sec.2.7.
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Figure 2.4: Numerically estimated band structure of a Bi2Se3 nanowire with radius R =
15 nm. The bulk states are represented by the dots and surface states by lines. The
inset shows the charge density (red dashed line), the angular spin density sφ (blue line)
and spin density along the wire sz (black line) with respect to the radius of a state with
momentum k = 0.02Å along the wire and angular momentum j = 1/2. The densities
increase near the surface indicating surface states. Adapted from Ref. [19].

Surface states in a topological insulator nanowire

The model of an infinitely long nanowire can be considered as a cylinder along the z-
direction with a radius R. The total angular momentum operator Jz = −i∂φ + σz/2
is conserved and its eigenvalues are given by half-integer values j. Solving the model
Hamiltonian in Eq.(2.16) with respect to radial coordinates, one finds orthonormal radial
eigenfunctions

ψj∓1/2,n(r < R) =

√
2

RJj∓3/2(γj∓1/2,n)
Jj∓1/2

(
γj∓1/2,n

r

R

)
(2.21)

where ± corresponds to the spin and γp,n is the pth zero of the nth Bessel function Jn(z)
of the first kind. The boundary condition for an infinite long nanowire requires that the
wave functions vanish at the boundary r = R. The band structure then follows from the
model Hamiltonian and provides a gapped surface state. Fig.2.4 presents the numerically
derived band structure in a TI nanowire based on the diagonalized Hamiltonian [19].
One observes the bulk gap of ∼ 0.3 eV and the surface state gap for the given radius is
∼ 30 meV. The fermion moves with a momentum k along the cylinder and has an angular
momentum j perpendicular to the momentum. One can obtain the surface states in a
nanowire geometry by wrapping the surface Hamiltonian on a cylindrical surface. Thus,
the Hamiltonian described in Eq.(2.20) can be expressed as a curved surface. A Dirac
fermion can in general be described by H = n · (p × ~σ), if the spin is perpendicular to
the momentum. This is the case in a TI nanowire. The effective Hamiltonian of a curved
surface is then defined by H = σφpz − σzpφ where

σr,φ = U †(φ)σx,yU(φ) (2.22)

are "cylindrical" Pauli matrices with U(φ) = eiφσz/2, pz = −i∂z and pφ = −i/R ∂φ [65].
Moreover, the effective Hamiltonian can be written in terms of a unitary transformation.
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Assuming a magnetic flux ΦB piercing the nanowire, the effective Hamiltonian describing
the cylindrical surface with radius R yields

Hel(k) = e−iφσz/2
(
v1kσy −

v2

R
(−i∂φ + ΦB)σz

)
eiφσz/2, (2.23)

where the Fermi velocities are v1,2 = A1,2

√
1− (D2/B2)2 [19, 65]. T -symmetry is re-

sponsible for certain topological aspects in the nanowire. First, the gap closes as the
flux reaches a half-integer value and prohibits spin-conserving single-particle backscatter-
ing processes. Degenerate states exist for integer flux where elastic scattering between
Kramers pairs is forbidden. The degeneracy is lifted, if the flux is noninteger [19, 67].
Nanowires and nanoribbons have already been synthesized. Experiments on transport
properties in nanoribbons and nanowires have shown, that the conductance correction
of surface states in Bi2Se3 and strained HgTe TI nanowires shows Aharonov-Bohm-type
oscillations [20,21]. The presented model of Ref. [19] will be utilized in chapter 3 to study
the electron-phonon interaction in a TI nanowire [67].

2.3.3 Aharonov-Bohm oscillations in a TI nanowire

So far, the band structure of a TI nanowire surface state has been established. An inter-
esting feature that has been observed for Bi2Se3 and HgTe nanowires are Aharonov-Bohm
oscillations due to a magnetic field piercing the nanowire. One of the earliest observations
was made by Peng et al. (Ref. [21]) where Aharonov-Bohm oscillations of the order h/e
occured within the low-temperature resistivity of the nanoribbons. These nanoribbons
were synthesized with layers of Bi2Se3 and a magnetic field was applied in direction of
the ribbon length. The resistance was observed to oscillate in periods of an integer flux
quantum. However, the surface states were expected to impose a closed gap at half-integer
flux. Theoretical investigation in Ref. [22] by Bardason, Brouwer and Moore showed that
these oscillations depend on the strength of the disorder as well as the location of the
Fermi level. At small doping, near the Dirac point, one finds that the conductance max-
imum is given for half-integer flux. For larger doping the conductance oscillates with a
period of integer flux and has a maximum either at zero or half-integer flux depending on
the doping level.
Although HgTe is a semimetal it turns into a 3DTI when the tetragonal unit cell expe-
riences a strain and the bulk states become gapped [68, 69]. The Dirac point in strained
HgTe lies in the valence band and therefore cannot be accessed directly. Ziegler et al.
(Ref. [20]) studied the conductance oscillations in strained HgTe in order to investigate the
distinction between topological and trivial states in a 3DTI without an accessible Dirac
point. Detecting the Aharonov-Bohm oscillations, conductance correction measurement
was used to determine topological features. The gate voltage for instance gives informa-
tion about the subband spacing as well as it responds to the spin degeneracy which allows
the distinction between topological and trivial states. Moreover, their experiments showed
that the transport in strained HgTe nanowires can reach a ballistic transport regime.
Chapter 3 discusses the ballistic transport in a TI nanowire with a magnetic field applied
along the wire that is described as a Luttinger liquid [19]. A Luttinger liquid allows the
description of quasiparticles in 1D that cannot be described by Fermi-Liquid theory any-
more. Sec.2.6 presents the advantages of the Tomonaga-Luttinger liquid model and gives
an overview about the method of bosonization.
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2.4 Weyl semimetals

The existence of Weyl nodes in materials is not uncommon. However, a material with
Fermi energy set at the Weyl nodes becomes interesting. Topology has consequences like
the appearance of surface states as the Fermi arc and the QAH. Predictions for possible
materials were made involving also TI layers with Fermi energy set at the Weyl nodes.
The analogy from TIs with broken T -symmetry gave large insight about the topology of
Weyl semimetals (WSM). The WSM requires a broken symmetry. This can be either T -
symmetry or inversion symmetry (P-symmetry). A material which imposes those states
was recently discovered by the Princeton University group by Xu et al. (s.Ref [14]) and
independently the same year by the IOP group by Lv et al. (s.Ref [16]). Experimental
investigations showed topological Fermi arcs with nonvanishing Chern number in TaAs.
ARPES measurements confirmed the coexistence of bulk Weyl cones and Fermi arcs.
In the following section, transport properties of WSMs will be discussed including impor-
tant topological features like chiral anomaly.

2.4.1 Weyl semimetals from topological insulators

One proposal for a WSM was made by Burkov and Balents in 2011 [13]. Based on the
idea of 3DTI films with magnetic impurities, they proposed a multilayer heterostructure
of TIs and ordinary insulators. The proposed heterostructure is shown in Fig.2.5 with TI
layers in orange and layers of the ordinary insulator in between. ∆S defines the tunneling
amplitude between the surfaces of each layer and ∆D represents the tunneling through
the ordinary TI, for instance between adjacent surfaces of TI layers. A simplified version
of that model can be obtained by canonical transformation and yields

H(k) = vF (kyσ
x − kxσy) + (m±∆(kz))σ

z (2.24)

for each block of the diagonalized Hamiltonian with ∆(kz) =
√

∆2
S + ∆2

D + 2∆S∆D cos(kzd)
and superlattice period d. If the mass m vanishes, Dirac nodes emerge for ∆S/∆D = ±1
at kz = π/d or kz = 0, otherwise the system is gapped [56, 57]. However, block-
diagonalization shows, that these nodes are actually two Weyl nodes at the same mo-
mentum. Since they are topologically unstable, m must not vanish, such that the Weyl
nodes are separated in momentum-space and T -symmetry is broken. Then, one finds two
separated nodes at

k±z = π/d± k0 = π/d± 1

d
arccos

(
1− [m2 − (∆S −∆D)2]

2∆S∆D

)
. (2.25)

The phase diagram in Fig. 2.5 shows the different phases which occur for a given relation
of m, ∆S and ∆D. If the mass |m| is smaller than m1 = |∆S −∆D| the phase represents
an ordinary insulator. When the mass surpasses this critical value and stays smaller than
m2 = |∆S + ∆D|, where the phase turns into the 3D QAH insulator, the WSM phase is
reached. At the lower critical mass m1 two Weyl nodes at the edge of the BZ move towards
each other until they annihilate at the upper critical mass m2. These non-degenerate Weyl
nodes originate from a degenerate Dirac node. The anomalous Hall conductivity of a 3D
WSM depends on the separation k0 of the nodes. As shown in Fig.2.5, these nodes
arise from a QAH insulating phase which has an integer Hall conductivity. On the other
hand, the mass vanishes at the Dirac nodes. Therefore, the contribution of a 2D Hall
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Figure 2.5: (a) WSM heterostructure composed of TI layers (orange) with tunneling ∆S

and ordinary insulator layers with tunneling strength ∆D. The superlattice period is given
by d. Adapted from Ref. [56]. (b) Phase diagrams with m = 0 and m 6= 0. Adapted from
Ref. [13].

conductivity must contribute whenever the momentum kz in Eq.(2.25) is between the
Weyl nodes. Hence, the anomalous Hall conductivity yields

σxy =
e2k0

πh
(2.26)

and one finds k0 = π/d at the critical mass m2 where the phase changes into the QAH
insulator.

Toy model

A Hamiltonian describing a WSM requires a broken symmetry. Hence, T - or P-symmetry
are broken. While T -symmetry implies that a Dirac cone splits into at least two Weyl
cones of opposite chirality, a WSM with broken P-symmetry will provide at least four
Weyl points. Since inversion only reverses the momentum but keeps the chirality, two
Weyl cones with opposite chirality are needed to fulfill the Nielsen-Ninomiya theorem [55].
Therefore, a WSM with broken P-symmetry will appear with a number of Weyl cones
that is a multiple of four. A Hamiltonian which preserves P-symmetry, yields

H(k) = tz(2− cos(kxa)− cos(kya) + γ− cos(kza))τz + tx sin(kxa)τx + ty sin(kya)τy (2.27)

where tx,y,z are the hopping amplitudes and τx,y,z are defined for the pseudospin orbital
degrees of freedom and τz keeps the P-symmetry. If cos(kza) = γ with γ = ±1, one finds
Weyl nodes at the momentum ±k0 = (0, 0,±k0). The Chern number which is N = 1 at
kz = 0 vanishes as the Weyl nodes move towards each other and annihilate. This happens
at γ = −1, i.e. at the boundary of the BZ where kz = π/a. Thus, the Weyl nodes occur
at γ = −1 and annihilate again γ = +1 [57, 70,71].
Based on the model of Fu, Kane and Mele describing a 3DTI, a P-breaking WSM can
be considered as a phase transition between weak and strong TIs. In a T -symmetric
WSM Kramers’ degeneracy is lifted since the level-repulsion is reduced. Hence, the band
inversion in a 3DTI at the Dirac point is not given anymore. On the other hand, the
nodes move apart as a pair of monopoles and antimonopoles. Changing parameters, these
two can be brought together again [72].
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2.4.2 Chiral anomaly

One of the interesting consequences of the WSM topology is the chiral anomaly. Massless
relativistic fermions obey the conservation of chiral charge which follows from the massless
Hamiltonian that commutes with the γ5 matrix. As discussed in Sec.2.1.2, the γ5 matrix
acts as a chirality operator and the chirality is an eigenvalue of the γ5 matrix. However,
the chiral charge is not conserved anymore, as an electromagnetic field is applied to the
system. Classically, the chiral current is expected to vanish in such that the difference
of the number of right- and left-moving fermions vanishes [40]. The violation of the
conservation law which requires the electric and the chiral charge to be conserved both,
corresponds to the Adler-Bell-Jackiw anomaly. It implies that in a gauge invariant system
the axial current is not conserved [73–75]. The anomalous nonconservation leads to the
axial current

∂µj
µ
5 =

e2

16π2
εµναβFµνFαβ =

e2

2π2
E ·B (2.28)

where Fµν and Fαβ represent electromagnetic tensors [56]. Furthermore, it also appears
in the Landau level. Thus, it can be shown, that the difference of right- and left-moving
fermions will lead to the same anomaly [56,75]. Moreover, the chiral anomaly contribution
to the charge current yields

jν =
e2

2π2
bµε

µναβ∂αAβ (2.29)

with electromagnetic gauge field Aµ, εµναβ is the totally antisymmetric tensor with ε0,1,2,3 =
+1 and the chiral gauge field is given by bµ = (b0,−b). Even though the total charge
is conserved in the system, imbalance of chirality can provide that the electric charge is
not conserved. In the following, the two topological effects that follow from Eq.(2.29) will
be discussed. The one, that depends on the spacial components of the gauge field, is the
QAH effect which was already mentioned above. The second one is the chiral magnetic
effect and depends on the temporal part b0.

Quantum anomalous Hall effect

A 3D QAH insulator occurs from stacking layers of 2DTIs [58]. A 2DTI has broken T -
symmetry which is given in the WSM as well. Eq.(2.14) represents a two dimensional Dirac
Hamiltonian with a half-integer quantum Hall conductance. The anomaly occurs, when
the mass vanishes. Chiral massless fermions obey the previously presented chiral anomaly
which leads to a chiral current contribution. The charge contribution in Eq.(2.29), follows
from the action

Sθ = − e2

8π2

∫
dtd3r ∂µθε

µναβAν∂αAβ (2.30)

where ∂µθ corresponds to the chiral gauge field −bµ with µ = 1, 2, 3. The current in
Eq.(2.29) is nonconserved and follows from the chiral anomaly. This current, however,
leads to the anomalous Hall effect (AHE) with conductivity

σxy =
e2|b|
πh

(2.31)

which for |b| = k0 equals Eq.(2.26). This equation states that the chiral anomaly has an
impact on the Hall conductivity. Therefore, the AHE has a topological origin.
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Figure 2.6: Fermi arc in WSM for half space geometry for different parameterizing angle
γ. A flat surface arc exists for γ = π/2. This figure is adapted from Ref. [35].

Chiral magnetic effect

Another peculiar aspect that follows from chiral anomaly is the chiral magnetic effect
(CME). The CME arises from an energy difference between the Weyl nodes. This en-
ergy difference can be provided by an external magnetic field which can be applied for
instance according to the multilayerstrucure in Fig.2.5 perpendicular to the layers. In lin-
ear response theory the order of taking the limits can lead to different results. A further
discussion will be given in Sec.2.8.1. The CME arises if the limit of small momenta of
the response function that results from the action in Eq.(2.30) is taken first. The limit
of small momenta corresponds to a time-dependent magnetic field which leads to a non
vanishing response in the low-frequency limit. Changing the order of the limits, the cur-
rent will vanish. This response, however, implies a static vector potential and additional
contributions from intra-Landau-level processes let the response vanish. Hence, the CME
can be interpreted as an response to a time-dependent magnetic field in dc limit [76].

2.4.3 Fermi arcs

The most interesting aspect about WSMs is the existence of the Fermi arc states, although
the WSM has gapless bulk states. In Sec.2.3, the surface states of band insulators were
discussed. To get a better understanding of surface states in a WSM, one can define a
surface BZ (sBZ) which implies translational invariance and one assumes surface states
are well defined everywhere except at the Weyl points. As mentioned the Weyl nodes
act as monopoles to the Berry flux. Integration over a surface will then yield a Chern
number. As long as the momenta are in between the Weyl nodes at Fermi energy EF = 0,
the Chern number of the 2D plane yields C = 1. Another interesting aspect is that, if
the surface is parallel to the Weyl node separation in the sBZ, the Fermi arc imposes a
flat line at EF = 0 [57].
Witten proposed another boundary condition for Weyl fermions [35,38]. While the Dirac
fermion imposes both helicities, the Weyl fermion has only one. Therefore, the angular
momentum in general is not conserved at the boundary. Witten considered a boundary
condition with a rotation matrix taking into account an angle γ. The angle γ ensures
a vanishing current at the boundary and depends on the band structure as well as the
material [35]. Hence, the set of wave functions will impose edge localized states decaying
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Figure 2.7: Left: Band structure of a cylindrical WSM nanowire with infinite mass bound-
ary condition, i.e. open boundary condition, and energy in units of the hopping amplitude
t. Right: Numerical conductance in dependence of the chemical potential µ/t of a Weyl
semimetal nanowire with a magnetic field treading the wire. Thermal broadening with
T = 23 K was included. The inset represents a close up of the conductance steps at low
chemical potential. Both figures are adapted from Ref. [24].

at the boundary. Moreover, these states form a Fermi arc. The Fermi arc breaks down at
the Weyl nodes. However, the Nielsen-Ninomiya theorem implies that the Fermi arc has
two endings of opposite chirality, if the Weyl nodes do not project to same momentum
in the sBZ. A further insight to the boundary condition for a nanowire will be given in
chapter 4.
The latter boundary condition in half space geometry was studied by Burrello et al. [35].
Therefore the eigenstates ψ(r) have to fulfill

(σx cos γ + σy sin γ)ψ(r)|z=0 = ψ(r)|z=0 (2.32)

with a parameterizing angle γ. The T -breaking model Hamiltonian similarly to Eq.(2.27)
contains Weyl nodes split in px-direction and located at ±p0êx. As mentioned, the bound-
ary condition defined at z = 0 preserves a vanishing current at the boundary. Fig.2.6
shows the Fermi arc form for different angle γ with respect to the distance px between the
Weyl nodes. An important feature are the flat Fermi arcs, that appear at γ = π/2. This
represents the infinite mass boundary condition which assumes that the mass becomes
infinitely large beyond the boundary of the system. The boundary at γ = π/2 also corre-
sponds to the minimum length of Fermi arcs. The rich band structure of WSM, especially
regarding the Fermi arcs, leads to interesting consequences in transport properties that
are presented in the following.

Transport in Weyl semimetals

In WSM nanowires, infinite mass boundary condition provides the flat Fermi surface
arcs [24, 25]. Furthermore, a small surface gap of size ∼ v/(2πR) and a bulk gap with
∼ v/(2R) exist for a cylindrical nanowire. Fig. 2.7 shows the band structure in a cylin-
drical nanowire. For very low energies, one finds only surface states. Increasing |E|,
bulk and surface states coexist. Thus, the fact that bulk and surface states can coexist
has an impact on the conductance which increases in steps of conductance quanta, first.
Reaching the bulk states, the conductance steps vary. This behavior is represented in Fig.
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2.7. The numerical evaluation was done applying the KWANT-package2 and the chemical
potential is given in units of the hopping amplitude. Thus, the interest arises how the
parameterized boundary condition affects the band structure of a nanowire. Chapter 4
addresses a nanowire under the boundary condition by Witten and presents the effect on
transport for certain forms of the Fermi arc.
The direction of the magnetic field with respect to a WSM nanowire affects the con-
ductance. This has been studied in Ref. [26] for nanowires with Weyl-node dispersion
perpendicular to the direction of the wire length. While the conductance corresponds to
the Landauer-Büttiker conductance (s.Sec.2.8.3) for zero magnetic field, an applied mag-
netic field parallel to the wire leads to the emergence of the zeroth Landau level. This
results in an increase of the conductance. However, the surface states are perpendicular
to the wire length as well as the magnetic field and thus barely affected. This is different
for a magnetic field applied perpendicular to the wire axis and the separation of the Weyl
nodes. There, the conductance reduces due to the flat-bands occurring from the increase
of the magnetic field and hybridization of the surface modes.
The surface states act different to the bulk states on the dc-conductivity.The longitudinal
dc-conductivity in WSM nanowires has been determined by Kubo linear response theory
(s.Sec.2.8.1) in Ref. [25] for a Weyl-node separation parallel to the wire axis. The band
structure follows from the infinite-mass boundary condition leading to the flat bands. The
electric charge density shows that the flat-band provides a diverging charge density at the
boundary of the wire, where r → R. Bands with two local extrema presented a larger
density near the origin of the wire. Similar results are obtained for the dc-conductivity,
i.e. the contributions by flat bands dominate at the boundary, while the bands with local
extrema contribute mainly at the origin.
The interesting band structure of WSMs allows for the study of the band shapes according
to the parameterized boundary condition. Further, the two types of states affect the con-
ductance in different ways. Hence, the question arises, whether and how different shapes
of Fermi arcs act on the conductance. This case will be presented in chapter 4. Chapter
4 presents the study of the magnetoresistivity applying the parameterized boundary con-
dition to a WSM nanowire according to Ref. [78].

2.4.4 Materials

The search for materials imposing WSM phases was cumbersome. The realization of P-
symmetry breaking candidates seemed more likely since ab initio calculations were much
easier. Also, earlier research served a huge groundwork of experiments where inversion
breaking materials were found [15]. Although P-symmetry breaking materials were more
likely to be found, the first proposed materials were presented by Wan et al. who sug-
gested magnetic pyrochlore iridates R2Ir2O7. These T -breaking materials were composed
of tetrahedral Iridium sublattices and a rare-earth-element R.
Nonetheless, their realization was difficult, especially since the crystal growth was chal-
lenging. The next proposal was the multilayer heterostructure by Burkov and Balents [13].
However, difficulties arose in preparation of the layers which had to be very thin. The
multilayer structure was followed by the well known topological insulator, HgTe. The
idea of Bulmash et al. was doping the 3DTI with Cd in order to provide magnetic order.
Also, Xu et al. proposed HgCr2Se4 with magnetic order provided by Cr. Both proposals

2s.Ref. [77]
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Figure 2.8: (a) WSM TaAs with lattice constants a = 3.437Å and c = 11.656Å. Adapted
from Ref. [79]. (b) Band structure obtained by first-principle calculations. At EB = 0
two crossings appear. Adapted from Ref. [15]. (c) Surface-sensitive ARPES measurements
showing Fermi arc states. Adapted from [15].

had inefficient ARPES measurements.
In 2014, the Princeton group and the IOP group independently discovered the WSM

structure in TaAs [14–17, 80]. ARPES measurements confirmed the existence of Fermi
arcs and the nonzero Chern number. TaAs is an P-symmetry breaking WSM with a
body-centered tetragonal lattice structure and belongs to the I41md (109) space group.
Fig.2.8 shows the first-principle band structure of TaAs where due to the breaking of
P-symmetry the bands are degenerate at the Kramers points, if SOC is turned on [15].
Using soft X-ray measurements the bulk states were observed to disperse linearly at spe-
cific points. These points are the Weyl nodes. Surface sensitive ARPES measurements
showed the bowtie-shaped structure in Fig.2.8 which represents a Fermi arc and agrees
with the ab initio calculations. The Chern number can also be defined by Fig.2.8. The
red and blue dot represent the edge states. There are two of each chirality at the Fermi
level which corresponds to a net chirality of +2 and stays in agreement with the Chern
number for a tube which encloses two points of same chirality [15].
The two sections have shown that although TIs and WSMs have common topological
background, their topological properties and thus also their band structure are of dif-
ferent nature. This of course has impact on transport properties, like for instance the
coexistence of bulk and surface states in a WSM nanowire. The following sections discuss
the mathematical methods that are applied in the following chapters. Beyond mathemat-
ical methods, the following sections also address phonons and electron-phonon interac-
tion. Electron-phonon interaction at low-temperature implies the excitation of low-energy
phonons affecting the system. This is of large interest considering transport properties.
Therefore, two ways of deriving the conductance of a system are represented in the last
section of this chapter.

22



2.5. GREEN’S FUNCTIONS

2.5 Green’s functions

2.5.1 Time-ordered Green’s Functions

For a better understanding of the electron-phonon coupling, the electron Hamiltonian will
be discussed first. Based on the Hamiltonian, the particles can be described by Green’s
functions. Green’s functions are useful to solve problems involving a perturbation, like for
instance phonon-interaction. It is proportional to the inverse of the Hamiltonian including
perturbations and can be utilized to solve the Schrödinger equation. Moreover, there are
different types of Green’s functions. Retarded and advanced Green’s functions describe
particles in a later or earlier state respectively. Green’s functions at nonzero temperature
can be computed in imaginary time very well, since one can introduce the perturbation
together with the Hamiltonian. This type is called the Matsubara Green’s function. In
the following, the non-interacting electron Hamiltonian and the Green’s function will
be presented. Based on the single particle Green’s function the two-particle correlation
function will be defined.
The behavior of a non-interacting free electron can be described by

H =
∑
λ

ελc
†
λcλ (2.33)

where λ denotes the quantum numbers, like for instance a momentum k and ελ is the
energy in momentum space. The fermion operators describe the creation (annihilation)
of a fermion c†λ (cλ) with anti-commutation relation [cλµ , c

†
λν

]+ =
{
cλµ , c

†
λν

}
= δλµ,λν [30].

Then, the retarded Green’s function describing a fermion yields

Gret(λ, t− t′) = −iΘ(t− t′)
〈

[cλ(t)c
†
λ(t
′)]+

〉
(2.34)

with time t where t′ denotes system in the earlier and t the later time. At V = 0 one
finds the unperturbed Green’s function G(0)(λ, t− t′). Fourier transformation leads to

G(0)(λ,E) =
1

E − ελ + iδ
(2.35)

where iδ is infinitesimal and prevents divergence in case that E → ελ [30, 34]. Temper-
ature dependence is included within the correlation of free fermions that corresponds to
the Fermi-Dirac distribution, i.e.

〈
c†λcλ

〉
= nF (ελ). A perturbation can affect the tem-

perature. However, introducing a perturbation for instance as a scalar potential into the
Green’s function becomes more convenient, switching to imaginary time t→ iτ . The tem-
perature dependence T in β = 1/T can be treated as imaginary time defining the range
of τ , where −β < τ < β. For fermions, the Mastubara frequency is ωn = (2n+ 1)π/β fol-
lowing from the poles of the Fermi-Dirac distribution. The Matsubara Green’s functions
are defined as

G0(k, iωn) =
1

iωn − εk
(2.36)

where k is the momentum and iωn the Matsubara frequency [30, 34]. The connection
between real and complex Green’s functions lies within the Matsubara frequency iωn,
where analytic continuation yields iωn → E + iδ. Thus, one returns back to the retarded
Green’s function. For iωn → E − iδ one obtains the advanced Green’s function.
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The correlation between two particles can be described by the correlation function. The
correlation function is basically a two-particle Green’s function. However, instead of
observing single points one observes the correlation within a range [81]. It is fundamental
for the Kubo formula in Sec.2.8.1. The two-particle correlation function consists of two-
particle operators, for instance a charge operators. A correlation function in imaginary
time is defined as

CAB(τ, τ ′) = −〈Tτ [A(τ)B(τ ′)]〉 (2.37)

where A(t) and B(t) are fermionic two-particle operators with imaginary time-ordering
operator Tτ

Tτ [A(τ)B(τ ′)] = θ(τ − τ ′)A(τ)B(τ ′)− θ(τ ′ − τ)B(τ ′)A(τ) (2.38)

which sets the time τ on the left side, if τ − τ ′ > 0. As the name reveals, the time-
ordering operator arranges the fermions with respect to time. Therefore, the sooner time
is sorted to the right side. Furthermore, regarding Wick’s theorem, each paring of creation
and annihilation operators has to fulfill the ordering. The Matsubara Green’s function
is periodic in β. Fourier transformation changes the time-dependence into a frequency
dependence. As mentioned, the Matsubara frequency is connected to the frequency in real
correlation functions. Moreover, the Matsubara frequency is defined as ωn = (2n+ 1)π/β
for fermions and depends on temperature itself.
A huge advantage of the Matsubara Green’s function is that computation of interactions
by summing over frequencies becomes much easier in complex analysis. A frequency sum
can be described as a contour integral. Then, integration over a contour with poles given
by the Green’s function, will yield a sum of residues. One can consider a charge-charge
correlation function involving two many-particle operators c†k+q(τ)ck(τ) and c†k′(0)ck′−q(0)
with momentum k. The time-ordering operator will move all fermions with τ ′ = 0 to the
right hand side and according to Wick’s theorem the fermions will split into pairings.
Each pairing will then correspond to a single-particle Green’s function. The result is a
sum over a product of Green’s functions that can be solved in frequency space by the
residue theorem leading to

1

β

∑
ikn

G0(k + q, ikn + iωn)G0(k, ikn) =
nF (εk)− nF (εk+q)

iωn + εk − εk+q
(2.39)

where nF (ξp) is the Fermi-Dirac distribution [30,34].

2.5.2 Path Integral

The path integral connects classical physics to quantum mechanics. Its origin lies within
the Gauss-integral derived by J. Gauss [81]. The idea is to integrate an exponential
function with quadratic argument. This can also be done in more than one dimension.
The generalized complex multidimensional integral then takes the form∫

d
(
v†,v

)
e−v†Av+w†·v+v†·w′ = πN detA−1ew

†A−1w′ (2.40)

where A is a complex matrix and v, w and w′ are complex N -component vectors. The
differential is a product over N -dimensions with

∫
d
(
v†,v

)
=
∏N

i=1 dRevi dImvi. The
Gaussian functional integral can be evaluated similarly. Therefore, the differential denotes
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a functional and the elements of A become propagators. The connection between classical
and quantum mechanics appears solving the partition function. Switching to imaginary
time t → −iτ , one finds analogies between the partition function and the path integral.
The Feynman path integral follows the idea to integrate an amplitude over N -dimensions,
whereN actually defines the number of time-steps. In other words, one divides the integral
into N classical parts corresponding to a time-slice ∆t. Moreover, the path integral of a
Hamiltonian can be described by〈

qi

∣∣∣e− i
~ Ĥt
∣∣∣ qj〉 =

∫
qi=q(t),qj=q(0)

D(p, q) exp

(
i

~

∫ t

0

dt′(pq̇ −H(p, q))

)
(2.41)

where D(p, q) is the integration measure of infinite dimension, q defines the position
and p the momentum. The path integral can be extended to a functional field integral
involving coherent states. Coherent states are eigenstates of the annihilation operator.
The identities of coherent states including their completeness leads to the representation
as Grassmann variables. The Grassmann Gaussian integral∫

d
(
φ̄, φ

)
e−φ̄

TAφ+v̄T ·φ+φ̄T ·v = det Ae−v̄TAv (2.42)

is again a generalization of a multidimensional Gaussian integral focusing on Grassmann
fields φ and φ̄. The partition function can be expressed as a Grassmann Gaussian integral
in terms of coherent states as well. Hence, the path integral of the partition function
yields

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ] , (2.43)

S[ψ̄, ψ] =

∫ β

0

dτ [ψ̄∂τψ +H(ψ̄, ψ)− µN(ψ̄, ψ)] (2.44)

where S[ψ̄, ψ] is the action, µ is the chemical potential and N(ψ̄, ψ) is the particle number
operator. The integration measure is D(ψ̄, ψ) = limN→∞

∏N
n=1 d(ψ̄n, ψn) with Grassmann

fields ψ̄n and ψn in frequency space. The Green’s function G(x, τ) =
〈
ψ†(x, τ)ψ(0, 0)

〉
of

the Grassmann fields ψ†(x, τ) and ψ(x, τ) can be solved by〈
ψ†(x, τ)ψ(0, 0)

〉
=

1

Z

∫
D(ψ†, ψ)ψ(x, τ)†ψ(0, 0)e−S[ψ†,ψ] . (2.45)

This procedure will be deepened in chapter 3, where the effective action will be used to
solve the Green’s function and the current-current correlation functions.

2.6 Tomonaga-Luttinger Liquid
The model of a Luttinger liquid was established by Haldane in 1981 based on the Tomonaga-
Luttinger model. The idea is to reduce a system to a one dimensional problem. Although
Fermi-Liquid theory follows a similar idea of treating single particles as free particles, it
does not hold for one dimensional systems. This means, Fermi Liquid theory describes
interacting particles by quasiparticle excitations. However, this description does not hold
for small quasiparticle momenta in 1D, since single particle excitations are not well de-
fined anymore. Hence, the Luttinger liquid describes excitations by density-waves instead

25



CHAPTER 2. FUNDAMENTAL PRINCIPLES

-kF kF
k

ϵF

ϵk

Figure 2.9: Electronic dispersion of a one-dimensional fermion. The dashed lines represent
the linearized dispersion around the Fermi points ±kF . The dotted line shows the Fermi
energy εF . Adapted from Ref. [30], [84] and [32].

of quasiparticles. In 1D, the excitations are not well-defined for quasiparticles. Exam-
ples for one dimensional systems with Luttinger Liquid behavior are for instance carbon
nanotubes or semiconductor wires [82, 83]. The model of a TI nanowire, that will be
discussed in chapter 3, can be treated as a 1D system along the wire axis [19]. As rep-
resented in Fig.2.9, the dispersion of a Hamiltonian as in Eq.(2.33) is linearized in the
Tomonaga-model which restricts the applicability as long as the linearization holds. Lut-
tinger extented the model including all real momenta in form of a linearized dispersion.
The electrons are split in left- and right-moving parts contributing to left- and right mov-
ing densities respectively [30,34,82].
As already mentioned, the Hamiltonian can be described with this kind of 1D-model.

A particularly new method in conformal field theory and especially regarding Luttinger
liquids is bosonization. The behavior of particle-hole excitations in one dimension can be
treated bosonic. Jordan-Wigner transformation implies that a fermion can be expressed
by bosonic operators. These bosonic operators depend on the charge ρ and a phase
field ϕ with the commutator [ρ(x), ϕ(x′)] = iδ(x − x′) [81, 85]. One can define the field
θ(x) = π

∫ x
−∞ dx

′ρ(x′) and replace the charge in the bosonic operator by the derivative of
that field. The fermion operator follows from the bosonized Hamiltonian H = H0 +Hint,
where the non-interacting part

H0 = vF
∑
q>0

q(a†qaq + b†qbq) (2.46)

follows from the non-interacting Hamiltonian in Eq.(2.33) and vF is the Fermi velocity that
occurs from the linearized dispersion εk ≈ (±k− kF )vF . The Hamiltonian is expressed in
terms of bosonic annihilation (creation) operators aq and bq (a†q and b†q) which follow boson
commutation relations, i.e. [aµ, a

†
ν ] = [bµ, b

†
ν ] = δµ,ν . They describe the density operators

ρL,R(q) of left- and right-moving fermions. These density operators define the functional
fields. Moreover, one finds the non-interacting Hamiltonian in terms of functional fields

H0 =
1

2
vF

∫
dx
(
(∂xθ)

2 + (∂xϕ)2
)
. (2.47)

If spin is involved in interactions, the phase field can be expressed by two components, i.e.
the spin component ϕs and the charge component ϕc. In this case, the Hamiltonian can
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written as a sum over those fields. Interactions can be included in the bosonized model by
bosonization of the interaction Hamiltonian. The electron-electron interaction in terms
of fermion creation and annihilation operators is given by

Hint =
1

2

∑
k,k′,q

V (q)c†k+qc
†
k′−qck′ck (2.48)

where V (q) denotes a potential due to the interactions and k, k′, k + q and k − q are
fermion momenta near the Fermi points [86]. The interaction can lead to various scattering
processes, for instance forward- and backscattering as well as Umklapp scattering [19,32,
84,87]. Furthermore, the effects of interaction can be stored with a interaction parameter
K, that yields

K =
1√

1 + V0

πvF

(2.49)

where V0 is the Fourier transform of the interaction potential without including spin
degrees of freedom. Then, the bosonized Hamiltonian is given by

H =
ṽ

2

∫
dx

(
K(∂xθ)

2 +
1

K
(∂xϕ)2

)
(2.50)

including interactions with ṽ = vF/K [19, 87]. The interaction parameter is a renor-
malization of the phase field ϕ. Including the spin, the interaction parameter Kµ=c,s

renormalizes the charge and the spin component of the phase field respectively [84, 86].
Furthermore, these functional fields can be utilized to determine a bosonized form of the
fermion operator. Expanding the fermion operator around the Fermi momentum kF , one
obtains the bosonized fermion operator

Ψ±(x) = Γ
∑
ν=±1

eiνkF xe−i
√
π[ϕ(x)+νθ(x)] (2.51)

where Γ = 1/(2πa)1/2 is a scalar prefactor which can be obtained solving the correlation
function and ν = −1 (ν = +1) describes the right (left) mover [30,32,81]. The Lagrangian
action can be expressed by those fields as well. In case of non-interacting electrons, it
reads

S0[θ] =
1

2π

∫
dxdτ [vF (∂xθ)

2 +
1

vF
(∂τθ)

2] . (2.52)

It is rotationally invariant and the fields impose a linear dispersion. Introducing the dual
boson field leads to the relation ∂xϕ = −(1/v)∂τθ.
An important approach for bosonization is solving Green’s functions and correlation func-
tions. One can consider a Green’s function with the fermion described by the operator in
Eq.(2.51). The Green’s function then can be split into the left and right movers keeping
the ordering. The expectation value of the functional field can be solved by the partition
function [31]. Another advantage of the Tomonaga-Luttinger liquid model is the possibil-
ity to examine correlations. To be more precise, one focuses on the ordering of two-particle
correlation functions. Moreover, it is an exactly solvable model [34]. The bosonic fermion
operator allows to construct charge and spin density operators and also superconducting
fluctuations. The orders of charge density waves and spin density waves are described
by the two-particle correlation functions of charge and spin respectively. The supercon-
ducting order parameters follow from singlet or triplet superconducting paring. These
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fluctuations can give information about possible phases in a system [31,32,81,88].
The following chapter discusses a phase diagram of the TI nanowire. Since, the nanowire
geometry allows for the approach of bosonization including Coulomb interaction, as shown
in Ref. [19], one can compute the single particle Green’s function describing the system
and moreover, also the density fluctuations [31, 67]. The order parameter of the density
fluctuations are then represented in a phase diagram.

2.7 Electron-phonon Interaction
Lattice vibrations can have various effects on a solid. Such quantized lattice vibrations are
known as phonons. While electrons are fermion particles with a half-integer spin, phonons
are of bosonic nature with integer spin. They follow other commutation rules and can
interact with fermions. Phonon interaction can for instance lead to the deformation of
a system. Furthermore, the movement of acoustic phonons sets in at a certain tempera-
ture called the Bloch-Grüneisen-temperature. Increasing with temperature, it can have
significant impact on transport properties. This section addresses the electron-phonon
coupling and is followed by two methods to evaluate the interaction, the Kubo formula
and the Boltzmann equation.

2.7.1 Phonons

The electron-phonon-Hamiltonian consists in general of a non-interacting electron Hamil-
tonian, a phonon-Hamiltonian and an interaction Hamiltonian. The electron Hamiltonian
is described by Eq.(2.33). Phonons are quantized oscillations in a chain of ions. They
move between the ions with momentum pj and are located at a position R0

j with a dis-
placement uj. The Fourier transform of the displacement is given by

uqλ =

√
~

Mωq,λ

(
b†−q,λ + bqλ

)
ξqλ e

iq·R0
j (2.53)

where ξqλ is the polarization vector, q is the phonon momentum and λ describes the
phonon mode. Isotropic media, for instance, correspond to a polarization which is parallel
or perpendicular to the phonon momentum. These oscillations are described in the lattice
model by the harmonic oscillator in second quantization

Hph =
∑

Λ

~ωΛ

(
b†ΛbΛ +

1

2

)
(2.54)

where b†Λ (bΛ) is the bosonic creation (annihilation) operator with Λ = q, λ denoting the
set of quantum numbers and Ω being the phonon frequency [30,34]. The types of phonon
differ in their excitation energies. At low energy one has mostly acoustic phonons, while
at higher energies, like for instance light, optical phonons are excited. Phonons move
with different velocities depending on the polarization which can be longitudinal, trans-
verse or a general polarization. Longitudinal waves provide displacements in direction of
propagation while transverse waves impose displacements perpendicular to the direction
of their propagation. General modes can have properties of both. Another type of modes
are Rayleigh waves which propagate along the surface and decrease as they enter the
medium [66].
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2.7.2 Electron-phonon coupling

Electron-phonon coupling is needed to describe the interaction between electrons and
phonons. The general form of an electron-phonon interaction Hamiltonian is

H = He +Hph +Hel−ph (2.55)

where the first two terms were already described above. The last term defines the electron-
phonon coupling and includes interactions between electrons and ions which for instance
can be atoms. The lowest trivial order in displacement yields

Vel−ph =
∑
j

uj · ∇Vei(r−R0
j) (2.56)

where rj describes the position of the electron and Vei the (unscreened) electron-atom
potential. The reciprocal lattice vectors enter as the sum over G through Fourier trans-
formation of the phonon displacement. The summation over phonon momenta q has to
be defined within the first BZ (FBZ). The potential can be obtained by estimating the
phonon energies and polarizations for each mode. The electron-phonon Hamiltonian is
described by the charge density ρ(r) and the electron-phonon potential. The general form
is given by

Hel−ph =
1

V
∑
k

∑
qGλ

Mq+G,λc
†
k+q+Gck

(
b†−q,λ + bq,λ

)
(2.57)

with

Mq+G,λ = −Vq+G(q + G) · ξqλ
(

~
2%ωqλ

)1/2

where % is the mass density, ξqλ is the polarization vector, Vq+G is the Fourier transform
of Vei and ρ(q) =

∑
k c
†
k+qck the density operator. The matrix Mq+G,λ is the coupling-

matrix. The electron-phonon coupling Hamiltonian describes a phonon that is emitted or
absorbed by a scattering electron. Momentum and spin conservation are required within
the FBZ. In low-energy theory, electron phonon interaction is usually provided by long
wavelength phonons, for instance acoustic phonons [30,34]. In chapter 3, electron-phonon
interaction is discussed within the low-energy theory. To determine the modes acting in
the TI nanowire, isotropic elastic continuum is considered which allows to express the free
energy by two constants describing the deformation. In the following, the free energy in
crystals and the isotropic elastic continuum theory are addressed.

Isotropic elastic continuum theory

Phonon interaction provides a deformation of the medium. This deformation is given
by deformation potentials. Depending on the medium the response on temperature and
stress leads to different conditions for deformations. Elastic deformations imply weak
deformations. Hence the medium keeps its original form after the deformation. An
isotropic medium is defined by continuous symmetries. These are given by the equation
of motion

0 = ∂xkσik + %üi (2.58)

where σik is the stress tensor and %üi is a force. Free energy is in general given by

F =
1

2
λiklmuikulm (2.59)
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in deformed crystals where σik = λiklmulm. The deformation is described by the strain
tensors uik and ulm and λiklm is the tensor of elastic moduli, called the Young modulus.
The Young modulus describes linear stress in form of a tensor respecting the symmetries of
the crystal. A deformation in a crystal can be considered to be isotropic, if it is constructed
as a polycrystalline of many significantly small crystallites [42,66]. Furthermore, the free
energy reduces to

F = µ

(
uik −

1

3
δikull

)2

+
K

2
u2
ll (2.60)

where K = λ + (2/3)µ is the bulk modulus and λ and µ are the LAMÉ coefficients.
In order to derive the modes that cause the lattice vibrations, the equation of motion
(2.58) has to be solved for elastic waves according to the geometry of the medium. Given
the boundary conditions for the stress, for instance stress-free boundary conditions, one
obtains the modes given in the system. However, the coupling within the Hamiltonian
determines the impact of the mode on the interaction [27,28,66].
The aspect, that phonon excitation already arises for low-temperatures in form of acoustic
phonons, can in principle affect transport properties even at low-temperatures. However,
electron-phonon interaction can also lead to Cooper instability and further to supercon-
ductivity [30]. Acoustic phonon interaction in TIs has been studied theoretically in thin
film and half-space geometry [27, 28]. In chapter 3, the electron-phonon interaction in
a TI nanowire will be discussed. The TI nanowire can be treated as a helical Luttinger
liquid [19]. The bosonization approach then allows studying the effects of electron-phonon
interaction including also electron-electron interactions.

2.8 Conductivity

Transport properties are of large interest in condensed matter. The scattering of electrons,
phonons or other impurities can reduce the conductivity of a solid. Depending on the ma-
terial, low-temperature resistivity can already occur for instance induced by phonons.
This section presents two methods to derive the conductivity. The Kubo formula solves
the conductivity in linear response. The other method is solving the Boltzmann equa-
tion. Both methods have their advantages regarding the studied system. In the following
chapters both methods are represented for different purposes.

2.8.1 Kubo-formula

A very common method to compute the conductivity of a system, is the Kubo formula
(1957) [89]. The Kubo formula considers a linear response to a perturbation similar as
the linear response to a perturbation is measured in experiments. The perturbation can
for instance be an applied external electric field. The Hamiltonian describing the system
can also include various interactions. Chapter 3 will present such a conductivity including
electron-electron and electron-phonon interactions in a TI nanowire.
Linear response theory in general considers a time-dependent Hamiltonian composed of
an initial state in equilibrium and a time-dependent weak perturbation. The expectation
values of states with time-dependent perturbation provide time-dependent expectation
values. The linear order of the expectation value in perturbation then corresponds to a
correlation function [30].
Linear response theory considers a linear order of the perturbation. One can consider a
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system with a time-dependent external electric field applied to it. Hence, the induced
current is proportional to that external field. The conductivity follows from the total
electric field, which composes from the external field and the fields induced by the external
one. The current can be described by

Jα(r, t) =

∫
d3r′

∫ t

−∞
dt′
∑
β

σαβ(r, r′; t, t′)Eβ(r′, t′) (2.61)

where α = x, y, z and the electric field is given by Eβ(r′, t′) [34]. The conductivity tensor
σαβ(r, r′; t, t′) refers to a current response on the direction of the external field. The current
then consists of two parts, one described only by the electric field, the other one by the
expectation value of the current operator jα. The non-vanishing terms of the second part
are of linear order in perturbation. Thus, the expectation value of the current operator
is proportional to the external electric field. Moreover, the conductivity is given by

σαβ(q, ω) =
1

ωv

∫ t

−∞
dt′eiω(t−t′) 〈ψ|[j†α(q, t), jβ(q, t′)]|ψ

〉
+ i

n0e
2

mω
δαβ (2.62)

where ω is the frequency, n0 is the particle number, e the charge andm is the particle mass
[34]. The conductivity defines the proportionality of the electric field in the expectation
value. This is the Kubo formula for conductivity which depends on the current-current
correlation function

Πα,β(q, ω) = − i
v

∫ ∞
−∞

dt eiω(t−t′)Θ(t− t′)
〈
ψ|[j†α(q, t), jβ(q, t′)]|ψ

〉
. (2.63)

The dc-limit of a conductivity follows by letting the momentum q → 0 and afterwards
setting ω → 0. This is crucial, since letting ω → 0, first, would imply a static field instead
of a time-dependent field [34].

2.8.2 Boltzmann equation

The conductivity can also be computed by the Boltzmann equation. The connection to the
Kubo formula was derived by Green. Nonetheless, for high-energy phonons the derivation
from the Kubo formula will not provide the full Boltzmann equation describing the system.
In low-energy theory with elastic scattering in isotropic media, the vertex corrections
including inelastic scattering that are important to estimate the exact model can be
neglected. Since the Boltzmann theory characterizes electrons by a classical distribution
function, one finds the distribution function

0 =
df

dt
=
∂f

∂t
+ v · ~∇rf +

∂k
∂t
· ~∇kf +

(
∂f

∂t

)
collisions

(2.64)

changes in time according to the Boltzmann equation. The Boltzmann equation follows
from the continuity equation, where the first and the last term describe the time derivative
of the distribution function without and with collisions respectively and the divergence of
the current is split into the second and third term [30]. In a homogeneous material, the
gradient vanishes. The time rate of the distribution function for dc conductivity vanishes
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as well. The collision term yields

−
(
∂f

∂t

)
collisions

=
2π

~

∫
q
|Mq|2f(p)[1− f(p + q)]

× [(Nq + 1)δ(εp − εp+q − ~ωq) +Nqδ(εp − εp+q + ~ωq)]

−2π

~

∫
q
|Mq|2f(p + q)[1− f(p)]

× [(Nq + 1)δ(εp − εp+q + ~ωq) +Nqδ(εp − εp+q − ~ωq)] (2.65)

by applying relaxation time approximation which implies that a system pursues equi-
librium [34]. This collision term represents electron-phonon interactions. Emission of a
phonon is described by (Nq +1) and absorption of a phonon by Nq where Nq is the expec-
tation value of the particle number for Bose-Einstein statistics. The transition probability
is given by the matrix elements |Mq| due to electron-phonon coupling (s.Eq.(2.57)). The
collision integral contains two scattering terms, one from state p to p+ q which is repre-
sented by the factor f(p)[1− f(p + q)] and the other into the opposite direction.
The collision integral can be used to compute transport properties. In the following, the
Boltzmann equation will be utilized to solve the phonon-induced current correction [33].
Another approach will be shown in chapter 4 where the linearized Boltzmann eqaution
will be applied to compute the phonon-induced resistivity [90].

2.8.3 Landauer conductance formula

In mesoscopic systems, electron transport can be studied in a coherent system. This
allows for the definition of scattering states that characterize the transport. Assuming
coherence lengths beyond the sample size, one can for instance consider a nanoscale device
at low temperatures. A system can be treated as mesoscopic, if certain lengths of the
system have particular sizes, i.e.

a0 � λF . l0 < L < lφ . lin (2.66)

where a0 is the Bohr radius, λF the Fermi wavelength describing an electron, l0 the
elastic mean free path, L is the size of the sample, lφ is the coherence length and lin is the
relaxation length of the energy [30]. The setup contains two electron reservoirs, on the left
and right side thermalizing the electrons. The states of the mesoscopic sample in between
will be filled by these electrons which enter through one of the N channels of the lead. The
conductance derivation of such a setup is referred to as the two-probe Landauer-Büttiker
formalism. The scattering states can then be solved in form of a 2N × 2N scattering
matrix (S-matrix) which composes of two reflection and two transmission matrices of size
N ×N

S(ε) =

(
r(ε) t′(ε)
t(ε) r′(ε)

)
. (2.67)

The matrix elements of the transmission and reflection matrices describe the transmis-
sion and reflection amplitudes respectively. The S-matrix is unitary and can be sym-
metric if T -symmetry is present. The unitarity of the S-matrix allows the relation
Tr[t†′(ε)t′(ε)] = Tr[t†(ε)t(ε)]. In terms of scattering states, one can then derive the
Landauer conductance formula which describes a two-terminal conductance.Assuming
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completely thermalized electrons, the electrons correspond to the Fermi-Dirac distribu-
tion function. Their energy is defined by the chemical potential at the reservoir. The
electrical current can be expressed in terms of the scattering states

Ie =
e

π

∫ ∞
0

dεTr[t†(ε)t(ε)] [nF (ε− µ+ eVL)− nF (ε− µ+ eVR)] (2.68)

where the trace appears from summing over diagonal elements and VL,R are the applied
voltages. The current can be expanded in low voltage and temperature regime. Hence,
one obtains the Landauer conductance formula

G(µ, T ) =
2e2

h

∫ ∞
0

dεTr[t†(ε)t(ε)]
(
−∂nF
∂ε

)
T→0−−−→ 2e2

h
Tr[t†(ε)t(ε)] . (2.69)

At zero temperature the formula describes a conductance increasing in steps of 2e2/h with
increasing number of channels where e2/h is the conductance quantum. The derivation
in Kubo formalism leads to the same result. As this is beyond the scope of the thesis, the
main ideas are briefly summarized in the following. The conductance in linear response
implies a current-current correlation function. The correlation function can be solved in
dc-limit. The current matrix elements will then provide the transmission probabilities
in form of the trace over the transmission amplitudes. Thus, one arrives at the same
equation as above [30,33].

This chapter established the fundamental principles in this thesis. The following two
chapters represent the study of electron-phonon interaction in a TI nanowire and in a
WSM nanowire. The different topological nature of both materials has already been
shown in this chapter. Moreover, the consequences of the different band structures will
be discussed in the following chapters.
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Chapter 3

Phase diagram and phonon-induced
backscattering in topological insulator
nanowires

Electron-phonon interaction has been examined in various materials and geometries.
Moreover, phonon-induced effects have already been studied theoretically, for instance
in TI thin films and half-space geometries [27, 28, 91–99]. In experiments, like for in-
stance ARPES measurements, the temperature-dependent quasiparticle lifetime has been
measured and transport properties have been evaluated [100–117]. Furthermore, the
experiments on magnetotransport in TI nanowires are proceeding [20, 118–121].The cou-
pling constant can be determined by measuring the quasiparticle lifetime of surface states.
However, measurements of acoustic phonon coupling constants have led to very different
results. The origin of the variety can only partially be explained by different experimental
conditions.
The Dirac surface states of 3DTIs have been studied theoretically and experimentally
since the last decade [8,52,53,122]. In nanowires, the one-dimensional model of a helical
Luttinger liquid has been established for the surface states [19]. This chapter addresses a
cylindrical TI nanowire pierced by a magnetic flux ΦB in units of flux quantum Φ0 = hc/e.
The surface states are established first. Electron-electron interactions in Abelian bosoniza-
tion approach are also taken into account based on the model derived in Ref. [19]. The
surface states are followed by the acoustic phonons acting in an infinitely long cylindrical
wire. Phonon-induced effects are considered to occur due to deformation potential cou-
pling of acoustic phonons in isotropic elastic continuum theory. Transport properties like
conductivity are evaluated applying the Kubo formula. A phase diagram will be evaluated
in Sec. 3.4 for the case of half-integer magnetic flux presenting the order-fluctuations of
density waves and superconducting paring in dependence of the interaction parameters
describing the strength of electron-electron and electron-phonon interactions.
The last section addresses the phonon-induced resistivity slightly away from half-integer
flux. This derivation follows without electron-electron interactions. The temperature
dependence is obtained by the Boltzmann approach in Ref. [33]. The theoretical work
will be compared to experimental investigations on ballistic transport in TI nanowires [20].

This chapter rests upon the included publication by Dorn et al. [67]. A lot of the content
was reproduced here, since the publication has a pedagogical nature.
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IN TOPOLOGICAL INSULATOR NANOWIRES

3.1 Electronic surface states

This section covers the electronic surface states in a TI nanowire including electron-
electron interactions. The electron-electron interaction is described by the interaction
parameter K of the helical Luttinger liquid established for helical Dirac fermions. At
K = 1 no interactions are present, while for smaller K repulsive Coulomb interactions
occur. Large K could be possible, taking into account gapped phonon modes.

3.1.1 Surface state Hamiltonian

The model for the low-energy electronic states of a cylindrical TI nanowire, is dis-
cussed at first. Typically, TI materials are characterized by a sizeable bulk gap of or-
der ∆b ' 0.3 eV [7, 52, 53, 62, 123]. As long as the Fermi energy resides well within the
bulk gap and provided that one has sufficiently clean materials to realize the ballistic
transport regime, only surface states will be relevant for the low-energy transport prop-
erties. For a cylindrical wire of radius R, the electronic surface spectrum consists of
massive 1D Dirac fermion modes with conserved momentum k along the cylinder axis
(êz) [19, 22, 23, 65, 124–126]. The model discussed below includes an axial magnetic field
B giving rise to the dimensionless flux ΦB = πR2B/(h/e) piercing the nanowire. As
mentioned in the previous chapter, the energy spectrum of a TI nanowire is gapped away
from half-integer flux [19].
In cylindrical coordinates (r, φ, z), with unit vectors (êr, êφ, êz), the electronic single-
particle Hamiltonian describing surface states with conserved momentum k is a Dirac
Hamiltonian wrapped onto the cylinder surface [19,65,124],

Hel(k) = e−iφσz/2
(
v1kσy −

v2

R
(−i∂φ + ΦB)σz

)
eiφσz/2, (3.1)

with the Fermi velocities v1 (v2) along êz (perpendicular to êz). The Pauli matrices σx,y,z
act in spin space. The dispersion relation of the 1D fermion modes is thus given by (±
refers to conduction and valence bands) [22,124,125]

Ej,±(k) = ±
√
v2

1k
2 + v2

2(j + ΦB)2/R2. (3.2)

Different bands are distinguished by the half-integer eigenvalue j of the conserved z-
component of the total angular momentum operator.
For integer magnetic flux, a time-reversal (T ) transformation connects the states (k, j +
ΦB)↔ (−k,−j−ΦB). Due to this emergent T -symmetry, all states are arranged into dou-
bly degenerate Kramers pairs. Elastic scattering between such pairs is forbidden by virtue
of the Kramers theorem, as the overlap vanishes [19]. Nonetheless, 2kF backscattering
(k → −k) for given j is allowed and there is no protection against elastic disorder effects.
However, for half-integer magnetic flux, the emergent T -symmetry now comes with a
topological protection against weak spin-conserving backscattering. This is because for
the special massless 1D Dirac mode with j = −ΦB, the two states with momentum ±k
constitute a protected Kramers pair [22, 124–126]. While this scenario — a single Dirac
fermion species protected by an emergent T -symmetry — is ruled out for conventional
systems by the Nielsen-Ninomiya theorem [53], it can be realized using the surface states
of TI nanowires with half-integer flux ΦB. The special mode with j = −ΦB is protected
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against elastic disorder effects and dominates the physics on energy scales below the sur-
face state gap Eg ' v2/R. This is fundamental for the helical Luttinger liquid model
of Ref. [19] which will be utilized in the following to describe the Dirac fermions. On
higher energy scales, also other transverse bands with j 6= −ΦB have to be included in
the theory.

3.1.2 Bosonization approach

Nanowire geometries are usually suitable for bosonization approach since one can reduce
the fermion propagation to a 1D problem [30]. As mentioned in the previous chapter,
bosonization is a useful method to study a system including several interactions which
can be described by interaction parameters. Low energies, |E| � ∆g ≡ min(Eg,∆b), are
considered throughout this chapter. Putting ΦB to a half-integer value, only the gapless
Dirac mode with j = −ΦB and E±(k) = ±v1|k| remains relevant. The electron field
operator is now represented in terms of the spinor [19]

Ψel(r, φ, z) =
f⊥(r)√

4π

∑
ν=±

eiνkF zei(j−1/2)φψν(z)

(
ν
ieiφ

)
(3.3)

with Fermi momentum kF = µ/v1. For simplicity, the chemical potential is assumed
to be below the surface state gap, i.e. 0 < µ � ∆g. The slowly varying chiral 1D
fermion operators, ψν=+/−(z), correspond to right- and left-movers, respectively. The
radial part, f⊥(r), obeys the normalization

∫∞
0
rdr|f⊥(r)|2 = 1, vanishes for r > R and

decays exponentially away from the surface for r < R. Here the radial width, ξ⊥, of the
surface state depends on microscopic details [19]. For ξ⊥ � R, one has

f⊥(r) '
√

2

ξ⊥R
e−(R−r)/ξ⊥ Θ(R− r), (3.4)

with the Heaviside step function Θ. Using the standard bosonization approach, the 1D
field operators appearing in Eq. (3.3) can be expressed in terms of the dual boson field
operators θ(z) and ϕ(z) [32],

ψν=±(z) ' 1√
2πξ⊥

ei
√
π[ϕ(z)+νθ(z)], (3.5)

with the short-distance cutoff length ξ⊥. Using Eq. (3.3), the electron density operator is
then given by

ρel(r) ≡ Ψ†elΨel =
1√
4π3
|f⊥(r)|2 ∂zθ(z). (3.6)

However, the standard 2kF -term, in the density operator is not present for this topological
band [19]. This fact implies that charge density wave ordering is not possible. Nonetheless,
once the magnetic flux deviates from half-integer values, one can see in Sec. 3.5.2 that a
2kF -oscillatory term appears in the density operator since backscattering is now allowed.
The bosonization approach is particularly advantageous for 1D systems because it allows
one to easily take into account Coulomb interaction effects [32]. Including the dominant
long-range interactions within the helical Luttinger liquid picture of Ref. [19], the effective
low-energy Hamiltonian for the many-electron system with half-integer flux ΦB is given
by a noninteracting boson theory,

Hel =
v1

2

∫
dz
[
(∂zϕ)2 +K−2(∂zθ)

2
]
, (3.7)

37



CHAPTER 3. PHASE DIAGRAM AND PHONON-INDUCED BACKSCATTERING
IN TOPOLOGICAL INSULATOR NANOWIRES

where the Luttinger liquid parameter K takes into account the effect of electron-electron
interactions. The Luttinger Liquid parameter K follows from the bosonized Coulomb
interaction Hamiltonian in 1D. Rescaling the fields then yields v = v1/K with

K =
1√

1− 2e2

πκv1
(ln[L/(2πR)] + 0.51)

(3.8)

including the electric charge, the dielectric constant within κ, the wire length L and the
radius R. For more details, see Ref. [19].The noninteracting limit corresponds to K = 1,
and repulsive interactions imply K < 1. For instance, K ≈ 0.5 has been estimated for
Bi2Se3 or Bi2Te3 nanowires assuming that there is no closeby metallic gate [19]. Very long
wires or small radii imply that the interaction parameter vanishes and the correlations are
very strong [87, 88]. Moreover, due to the identity of conjugate field, ∂xϕ = −(1/v)∂τθ,
one finds the electron action

Sel =
1

2

∫
dτdz

[
1

v1

(
∂θ

∂τ

)2

+
v1

K2

(
∂θ

∂z

)2
]

(3.9)

in terms of bosonized fields.

3.2 Acoustic phonon modes
In TI nanowires made of Bi2Se3 or Bi2Te3 ab initio calculations have shown that low-
energy phonons can be represented by two Lamé constants although the crystal structure
is quite complex [127, 128]. In the following section, the acoustic phonon modes of a
cylindrical wire are established by assuming that its elastic properties can be described
as isotropic continuum [27, 28, 66, 129, 130]. The previous section showed that, given
the half-integer magnetic flux, only one band remains gapless. Furthermore, the nanowire
geometry allows for certain gapless modes. The phonon interaction will be studied in low-
energy theory. However, Sec.3.2 will show that only one longitudinal mode contributes to
the deformation potential.

3.2.1 Displacement fields in 3D isotropic elastic continuum

In a quantized form, lattice vibrations can be described by phonons. The vibrations
lead to deformation and, thus, to displacements. The strain tensor is symmetric and
diagonalizable and defines the extension or compression. It characterizes the superposition
of perpendicular deformations in an infinitesimal volume. In general, small displacements
u(r, t) lead to the strain tensor

uij(r) = (∂iuj + ∂jui)/2 (3.10)

with i, j = x, y, z. A body experiencing deformation will provide stress, since the body
is not in equilibrium anymore. The stress occurs from interaction between molecules.
The components of the stress tensor describe how the forces from molecular interactions
distribute over the surface. The stress tensor is a constant, if the forces compensate.
Elastic deformation implies that a body returns to its original form after deformation.
This is given for small deformations while sufficiently large forces provide a remaining de-
formation. This thesis focuses on elastic deformations by low-energy phonons. Moreover,
the studied geometries are assumed to be in isotropic continuum.
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Considering a 3D isotropic elastic continuum described by the linearized strain tensor,
uij(r), and the displacement field u(r, t). The elastic free energy density then reads [66]

F [u] =
λ

2
(Tru)2 + µTr(u2), (3.11)

with the Lamé constants λ and µ, and the stress tensor takes the form

σij = λTr(u) δij + 2µuij. (3.12)

The forces provided by the stress tensor compensate the gravitational force. Hence, one
obtains the equation of motion from Eq. (3.11), which are then are given by

ü = c2
t∆u + (c2

l − c2
t )∇(∇ · u), (3.13)

with the velocities for transverse and longitudinal sound waves, ct =
√
µ/ρM and cl =√

(λ+ 2µ)/ρM , respectively. Here ρM is the mass density. As mentioned in Sec.2.7,
a crystal can be treated as an isotropic medium, if the crystallites are small enough
compared to the polycrystalline structure they form [66]. For Bi2Te3, experiments and
simulations have shown that the isotropic elastic continuum approximation is expected to
work reasonably well and one finds the mass density ρM ' 7860 kg/m3 and the velocities
ct ' 1600 m/s, and cl ' 2800 m/s [27], cf. Refs. [127,128]. For later use, the dimensionless
ratio is defined by

ξ = ct/cl < 1. (3.14)

The displacement field can always be represented as sum of longitudinal and transverse
parts,

u(r, t) = ul + ut = ∇Φ +∇×Ψ, (3.15)

as this ansatz solves the equation of motion [66]. The longitudinal part is presented by
a scalar potential Φ(r, t) and the transverse part by a vector potential Ψ(r, t), where
Eq. (3.13) implies decoupled wave equations,(

∂2
t − c2

l ∆
)

Φ = 0,
(
∂2
t − c2

t∆
)

Ψ = 0. (3.16)

However, boundary conditions will generally couple both potentials. In the next step,
Eq. (3.16) is written in cylindrical coordinates. Assuming periodic boundary conditions
with length L and eventually letting L→∞, translation invariance along êz implies the
(z, t)-dependence Φ,Ψ ∼ ei(qz−Ωt), where q is a conserved wave number along êz and
Ω > 0 a possible eigenfrequency. For convenience, one defines the two wave numbers

kl =

√
Ω2

c2
l

− q2, kt =

√
Ω2

c2
t

− q2. (3.17)

Second, to exploit rotation symmetry around êz, one expands Φ and Ψ in terms of eigen-
states of the conserved total angular momentum operator Jph

z . This operator has integer
eigenvalues denoted by m. For the longitudinal part, ul = ∇Φ, Jph

z is observed to act like
−i∂φ on the scalar field Φ. Solutions to Eq. (3.16) are of the form

Φ(r, t) = f(r)
eimφ√

2π

eiqz√
L
e−iΩt, (3.18)
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with a radial Bessel equation for f(r),(
1

r
∂r(r∂r)−

m2

r2
+ k2

l

)
f(r) = 0. (3.19)

The general solution of Eq. (3.19) is given by

f(r) = A1Jm(klr) + A2Ym(klr), (3.20)

with kl in Eq. (3.17), arbitrary constants A1,2, and the Bessel functions of the first second
and kind Jm(z) and Ym(z) respectively [131]. Regularity at the origin imposes A2 = 0
unless one considers a hollow cylinder. The gradient of the scalar field Φ yields the
longitudinal part of the displacement field, which implies that the waves are effected by
compression and extension. Hence, one obtains, for given (m, q), the longitudinal part of
the displacement field as

ul(r, t) = a
[
klJ
′
m(klr)êr +

im

r
Jm(klr)êφ + iqJm(klr)êz

] eimφ√
2π

eiqz√
L
e−iΩt, (3.21)

with an arbitrary coefficient a and J ′m(z) = dJm(z)/dz. The above expressions hold
for a real wave number kl, but analytic continuation, kl → iκl with κl =

√
q2 − Ω2/c2

l ,
produces the corresponding results for Ω < cl|q|. For R → ∞, this step does not yield
physical solutions since Jm(klr) → eimπ/2Im(κlr), diverges for r → ∞, where Im(κlr) is
the modified Bessel function of the first kind. The other modified Bessel function, Km,
diverges at the origin and is also not acceptable. However, such solutions are admitted
for finite radii. With the replacement kl → kt, see Eq. (3.17), the same remarks apply for
ut in Eq. (3.26) below.
Next the transverse part, ut = ∇×Ψ is addressed, where Jph

z acts like1

Jph
z = −i∂φ + Σz, Σz =

 0 −i 0
i 0 0
0 0 1

 (3.22)

on the vector field Ψ.The Σz-eigenstates, Σz|s〉 = s|s〉, for the respective eigenvalues
(s = −1, 0, 1) are given by

|1〉 =

 1
i
0

 , |0〉 =

 0
0
1

 , | − 1〉 =

 1
−i
0

 . (3.23)

In cylindrical coordinates, solutions to Eq. (3.16) then have the form

Ψ(r, t) =
(

[f−1(r) + f1(r)]êr + i[f−1(r)− f1(r)]êφ + f0(r)êz

) eimφ√
2π

eiqz√
L
e−iΩt, (3.24)

where fs(r) is the radial function for the respective Σz-eigenstate. Using kt in Eq. (3.17),
the wave equation (3.16) then yields Bessel equations that are solved by

fs=−1,0,1(r) = BsJm+s(ktr), (3.25)

1the spin-1 operator Σz is here expressed in Cartesian coordinates
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with arbitrary constants Bs. As a result, one obtains the transverse part of the displace-
ment field as

ut(r, t) =

[
q

(
b1
m

ktr
Jm(ktr) + b2J

′
m(ktr)

)
êr

+ iq

(
b1J

′
m(ktr) + b2

m

ktr
Jm(ktr)

)
êφ

− iktb2Jm(ktr)êz

]
eimφ√

2π

eiqz√
L
e−iΩt. (3.26)

Due to the constraint ∇ · ut = 0, here only two linear combinations of the three Bs

parameters appear, namely b1 = B−1 − B1 + iktB0/q and b2 = B−1 +B1.
For a given set Λ of conserved phonon quantum numbers (see below), the normal modes
of the displacement field, uΛ(r, t) = ul +ut, then follow from Eqs. (3.21) and (3.26). This
result still depends on three arbitrary constants (a, b1, b2) which must be determined by
geometry-specific boundary conditions and by overall normalization.

3.2.2 Modes in a cylindrical nanowire

To calculate the acoustic phonon eigenmodes of an infinitely long cylindrical wire with ra-
dius R, one imposes stress-free boundary conditions at the surface r = R. After expressing
the stress tensor (3.12) in cylindrical coordinates [66], one finds that

uΛ(r, t) = urêr + uφêφ + uz êz (3.27)

has to obey the following conditions

iqur + ∂ruz = 0, ∂ruφ −
uφ
r

+
im

r
ur = 0, (3.28)

(1− 2ξ2)

(
∂rur +

ur
r

+
im

r
uφ + iquz

)
+ 2ξ2∂rur = 0,

with ξ given in Eq. (3.14). The phonon dispersion is then given by the solutions of the
boundary condition. The following section starts with the case m = 0.

Modes with angular momentum m = 0

One can consider torsional modes [129], where ur = uz = 0 and only uφ 6= 0. This implies
that the displacement only takes place in direction of φ. Moreover, this corresponds to
the case a = b2 = 0 in the general solution, where uφ ∼ J1(ktr). For angular momentum
m = 0, the boundary conditions (3.28) simplify to ∂ruφ − uφ/r = 0. Inserting the
solution, one arrives at a radial quantization condition, J2(ktR) = 0, such that only
certain eigenfrequencies Ω = ΩT,i(q) (with i = 0, 1, . . .) implying zeroes of the Bessel
function are allowed. Hence, one obtains the frequency

ΩT,i(q) = ct

√
q2 + z2

2,i/R
2, (3.29)
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where zk,i denotes the non-negative zeroes of the Bessel function Jk(z). The only gapless
torsional mode comes from i = 0 since z2,0 = 0, where one finds

ΩT(q) = ct|q|, uT
q (r) =

2r

R2

eiqz√
2πL

êφ. (3.30)

For all i > 0, the dispersion relation acquires the finite gap z2,ict/R. Using z2,1 ' 5.1356,
the smallest of the gaps can be estimated as ≈ 34 meV for Bi2Te3 wires of radius R ≈
100 nm. Staying on energy scales well below this gap, all gapped torsional phonon modes
can be neglected. This step is assumed in the low-energy theory from now on where only
the i = 0 torsional mode in Eq. (3.30) will be retained. However, torsional modes cannot
exist for Ω < ct|q|, since the modified Bessel function I2(κtR) obtained after analytic
continuation has no zeroes except at the origin. All other phonon eigenmodes for m = 0
follow by setting uφ = 0, corresponding to b1 = 0 in the general expression for uΛ. The
boundary conditions (3.28) then yield

M

(
a
b2

)
= 0 (3.31)

with the matrix M given by(
qklJ1(klR) −(k2

t − q2)J1(ktR)

(k2
t − q2)J0(klR)− 2klJ1(klR)

R
4qktJ

′
1(ktR)

)
. (3.32)

A non-trivial solution exists only for detM = 0, which yields the radial quantization
condition in the form of Pochhammer’s frequency equation [132–134],

4q2klktJ1(klR)J0(ktR) + (k2
t − q2)2J1(ktR)J0(klR) =

2klΩ
2

Rc2
t

J1(klR)J1(ktR). (3.33)

Note that J ′0(ktR) = −J1(ktR) and J ′1(ktR) = J0(ktR) − (1/ktR)J1(ktR) follow from
the Bessel function identities (s.App.B.1). As the following paragraph shows, Eq. (3.33)
describes both longitudinal modes [129] for Ω > ct|q|, and Rayleigh surface modes for
Ω < ct|q|. The longitudinal phonon modes are addressed first. Longitudinal modes in
wires act as stress or stain along the wire [66]. For vanishing momentum q, Eq. (3.33)
simplifies to

J1($) [$J0(ξ$)− 2ξJ1(ξ$)] = 0, $ ≡ RΩ/ct. (3.34)

where the ratio ξ is defined in Eq. (3.14). Noting that $ = Ω = 0 solves Eq. (3.34), one
observes that a gapless longitudinal phonon mode will always exist, since J1($ = 0) = 0.
In addition, Eq. (3.34) admits gapped longitudinal modes as for the torsional case, which
again are not taken into account in the low-energy theory. Second, for long wavelengths,
|q|R� 1, by expanding the Bessel functions in Eq. (3.33), one finds the dispersion relation
for the gapless longitudinal mode [129],

ΩL(q) = cL|q|
[
1− (σqR/2)2

]
+O

(
|qR|5

)
. (3.35)

The sound velocity for this mode is given by cL =
√
E/ρM with the Young modulus

E = 2(1 + σ)µ. For Bi2Te3, the value for E in Refs. [127, 128] results in cL ' 2500 m/s.
In Eq. (3.35), Poisson’s ratio σ = λ/[2(λ+ µ)] in terms of the LAMÉ coefficients is used.
Since usually the latter quantity is within the window 0 < σ < 1/2, one finds that the
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sound velocity resides within ct < cL < cl. As a consequence, the longitudinal mode (3.35)
has imaginary wave number kl = iκl but real wave number kt.
At short wavelengths, |q|R� 1, the longitudinal mode evolves into a Rayleigh mode with
Ω < ct|q|. From Eq. (3.33), after analytic continuation kl,t → iκl,t, no physical solutions
are found for |q|R� 1, i.e., there are no cylindrical Rayleigh waves in the long wavelength
limit. However, for |q|R � 1, asymptotic expansion of Eq. (3.33) shows that Rayleigh
modes do exist at short wavelength, with dispersion relation

ΩR(q) = cR|q|+
η0cR

R
+O

(
1

|q|R

)
, (3.36)

where cR = ζct is the Rayleigh mode velocity for a planar surface [27,135] which follows by
letting R→∞. The dimensionless number ζ < 1 is a lengthy function of ξ = ct/cl, that
follows from the boundary condition leading to ζ ' 0.92 for Bi2Te3 [27]. In Eq. (3.36),
the number

η0 =
γt(1− γlγt)

2ζ2[2
√
γlγt − ξ2γt/γl − γl/γt]

, (3.37)

with γt =
√

1− ζ2 and γl =
√

1− ζ2ξ2 is used as well. The longitudinal mode with
ΩL(q) ' cL|q| thus gradually evolves into the Rayleigh mode with ΩR(q) ' cR|q| as |q|R
increases. Focusing on the low-energy regime, only the longitudinal mode will be kept in
what follows. To leading order in |q|R � 1, the dispersion relation and the normalized
eigenmode yield

ΩL(q) = cL|q|, uL
q (r) =

√
2 sgn(q)

R

eiqz√
2πL

(σqrêr + iêz) . (3.38)

Modes with finite angular momentum

The case of finite phonon angular momentum, m 6= 0 will be discussed briefly in this
paragraph. The boundary conditions (3.28) then yield the condition Mm(a, b2, b1)T = 0,
where the m = 0 matrix M in Eq. (3.32) is replaced by

Mm =

 qklJ
l′
m (q2 − k2

t )J
t′
m

mq2

ktR
J tm

(q2 + 2m2

R2 − k2
t )J

l
m − 2kl

R
J l′m qkt(J

t
m−2 + J tm+2 − 2J tm) qkt(J

t
m−2 − J tm+2)

1
2
k2
l (J

l
m−2 − J lm+2) qkt(J

t
m−2 − J tm+2) qkt(J

t
m−2 + J tm+2)

 .

(3.39)
where the shorthand notations J l,tm ≡ Jm(kl,tR) and J l,tm

′ were used for the respective
derivative. One easily checks that for m = 0, the above results are recovered from these
expressions.For |q|R � 1 and angular momentum m = ±1, one obtains flexural modes
with a quadratic dispersion relation [129],

ΩF(q) =
1

2
cLRq

2 +O
(
|qR|3

)
. (3.40)

These are the energetically lowest phonon modes in a cylindrical wire at long wavelengths.
However, for the deformation potential coupling in Sec. 3.3, one finds that phonons with
only angular momentum m = 0 couple to electrons since the divergence of a rotational
vector field ∇ · ut(r, t) = ∇ · (∇ ×Ψ) vanishes. For that reason, m 6= 0 phonon modes
are not discussed in more detail here.
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3.2.3 Quantization

The quantization of the phonon theory now proceeds along standard paths as described
in chapter 2. The displacement field is expressed in terms of bosonic annihilation opera-
tors, bΛ, with the commutation relation [bΛ, b

†
Λ′ ] = δqq′δmm′δλλ′ , where Λ denotes the set

of quantum numbers (q,m, λ). The index λ labels the different branches (e.g., torsional
or longitudinal modes) and, in general, includes gapless as well as gapped modes. Insert-
ing the eigenfrequencies Ω = ΩΛ into the above normal mode expressions uΛ(r, t), the
displacement field yields

u(r, t) =
∑

Λ

1√
2ρMLΩΛ

uΛ(r, t)bΛ + h.c., (3.41)

with the non-interacting second-quantized phonon Hamiltonian

Hph =
∑

Λ

ΩΛ

(
b†ΛbΛ + 1/2

)
. (3.42)

As shown in the following section, the only gapless phonon branch that couples to elec-
trons via the deformation potential is given by longitudinal phonons with zero angular
momentum. Their dispersion relation and the corresponding normal-mode expression are
specified for |q|R � 1 in Eq. (3.40). All other phonon branches are either gapped (and
can thus be included by a renormalization of the Luttinger liquid parameter), or they do
not couple to electrons within the low-energy theory, like for instance longitudinal modes
of nonzero angular momentum.

3.3 Electron-phonon coupling
This section focuses on the electron-phonon interaction in a cylindrical nanowire in low-
energy theory. The electron-phonon coupling in rectangular nanowires has already been
addressed in Ref. [136]. The electron-phonon coupling will be defined by a parameter A
that can be obtained by the deformation potential. The deformation potential is derived
from the electron-phonon coupling Hamiltonian based on stress free boundary conditions
for the phonons.

3.3.1 Deformation potential

This section discusses the electron-phonon coupling Hamiltonian and the resulting effec-
tive action. The effective action can be solved by a functional field integral, where one
integrates over phonon amplitudes. This result is important when solving the single par-
ticle Green’s function in Sec.3.3.2 which depends on the functional field θ(z).
The deformation potential in low-energy theory only allows for the zero angular momen-
tum longitudinal acoustic phonon mode. Assuming that the dominant contribution arises
from the deformation potential, cf. Refs. [27, 28],

He−ph = α

∫
drρel(r)Tru(r), (3.43)

where Ref. [127] estimates the bare coupling strength α ≈ 35 eV for Bi2Te3. However,
this value could be significantly reduced by internal screening effects and it can only
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be used as a rough estimate. Inserting Eq. (3.6) for the electronic density operator,
keeping only a single Dirac fermion subband corresponding to TI surface states with
angular momentum j = −ΦB, only phonon modes with angular momentum m = 0 can
couple to electrons, since the band gap vanishes. Later, in Sec. 3.5.2 the case of a flux
deviating from half-integer will be addressed. Moreover, at low energy scales, only gapless
torsional and longitudinal phonon modes with m = 0 exist, see Eqs. (3.30) and (3.38),
respectively. Since Tru = ∇·uT = 0 for the torsional phonon mode in Eq. (3.30), the only
contribution of the deformation potential (3.43) to the low-energy theory arises from the
m = 0 longitudinal phonon mode in Eq. (3.38). Assuming that only phonon momenta
with |q|R � 1 are important and taking the continuum limit L→ ∞ in Eqs. (3.41) and
(3.42), one finds

∇ · u(r, t) = −(1− 2σ)

∫
dq

2π

|q|√
2ρ̄Ωq

eiqz
(
bqe
−iΩqt + b†−qe

iΩqt
)
, (3.44)

and

Hph =

∫
dq

2π
Ωq

(
b†qbq + 1/2

)
, Ωq ≡ cL|q|. (3.45)

Here the linear mass density is given by ρ̄ = πR2ρM , and the phonon operators bq refer
to m = 0 longitudinal modes, with commutator [bq, b

†
q′ ] = 2πδ(q − q′).

Using Eqs. (3.6), (3.38), and (3.41), one then finds from Eq. (3.43) the coupling Hamil-
tonian

He−ph = − iα(1− 2σ)

cL

∫
dq

2π

√
Ωq

2πρ̄
qθ̃(q)

(
bq + b†−q

)
, (3.46)

where θ(z) =
∫

dq
2π
eiqz θ̃(q) with [θ̃(q)]† = θ̃(−q) is the boson field introduced in Sec. 3.1.

For half-integer flux ΦB, the coupled electron-phonon problem can now be solved ex-
actly even in the presence of electron-electron interactions. One can proceed in analogy
to Refs. [31, 137], where non-helical Luttinger liquids coupled to acoustic phonons have
been studied. The Euclidean action for the entire system, S = Sel + Sph + Se−ph, follows
from the low-energy Hamiltonian terms in Eqs. (3.7), (3.45) and (3.46), respectively. In-
stead of the bq and b†q phonon operators, it is convenient to use the oscillator amplitude
operators

uq =
1√
2Ωq

(
bq + b†−q

)
, pq = −i

√
Ωq

2

(
bq − b

†
−q

)
, (3.47)

with the commutator [uq, pq′ ] = 2πδ(q + q′). Using bosonic Matsubara frequencies, ωn =
2πnT (integer n and temperature T ), the dependence on imaginary time τ is resolved by
the expansion

uq(τ) = T
∑
ωn

e−iωnτ ũq(ωn), ũ∗q(ωn) = ũ−q(−ωn), (3.48)

and likewise for pq(τ) and θq(τ). With the shorthand notation∫
[dq] (· · · ) = T

∑
ωn

∫
dq

2π
(· · · ), (3.49)
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and writing ũq(ω)→ uq(ω) (and so on), one obtains the action contributions

Sel =
1

2vK

∫
[dq]

(
ω2
n + v2q2

)
|θq(ωn)|2 ,

Sph =
1

2

∫
[dq]

(
ω2
n + Ω2

q

)
|uq(ωn)|2 , (3.50)

Se−ph =
iα(1− 2σ)

π
√
ρ̄

∫
[dq] sgn(q)q2uq(ωn)θ−q(−ωn).

Here v ≡ v1/K is the plasmon velocity in the helical Luttinger liquid. Moreover, v1 is the
Fermi velocity along the wire axis and K the Luttinger liquid parameter given in Eq.(3.8)
including the electron-electron interaction. In practice, one has v � cL. Therefore, one
finds an exactly solvable Gaussian functional integral for the coupled electron-phonon
system.

3.3.2 Electronic Green’s function

The Gaussian integral was introduced in chapter 2. As the focus lies on the electronic
degrees of freedom, one can proceed by integrating over the phonon amplitudes uq(ωn).
As a result of this Gaussian functional integration, the effective action for the bosonized
θ field describing the electronic sector is given by

Seff =
1

2

∫
[dq] D−1

θθ (ωn, q) |θq(ωn)|2 , (3.51)

with the inverse propagator

D−1
θθ (ωn, q) =

1

vK

(
ω2
n + v2q2 −

(
AvK

cL

)2 Ω4
q

ω2
n + Ω2

q

)
, (3.52)

where the dimensionless electron-phonon coupling parameter is defined as

A =
(1− 2σ)α

πcL

√
ρ̄v1

. (3.53)

Inserting theoretical estimates for the parameters in Eq. (3.53) for Bi2Se3 and/or Bi2Te3

[127, 128], one finds typical values of the order A . 1. This approach represents a con-
trolled approximation in the low-energy regime. In particular, one assumes that the
relevant energy scales are well below v1/R such that higher electronic subbands can be
neglected. However, gapped phonon bands could be included by a renormalization of the
Luttinger liquid parameter [32], and one only has to explicitly retain the gapless phonon
mode considered above. With the velocities v± > 0 defined from

v2
± =

1

2

(
v2 + c2

L ±
√

(v2 − c2
L)2 + (2AvKcL)2

)
(3.54)

and the residues

F± =
v2
± − c2

L

v2
± − v2

∓
, (3.55)

the propagator follows as

Dθθ(ωn, q) = vK
∑
s=±

Fs
ω2
n + v2

sq
2
. (3.56)
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Moreover, Eq. (3.55) implies F+ + F− = 1 and
∑

s Fs(v/vs)
2 = 1/(1− A2K2). Similarly,

the propagator for the dual boson field ϕ in Eq. (3.5) follows as

Dϕϕ(ωn, q) =
1

vK

∑
s=±

v2
sFs

ω2
n + v2

sq
2
. (3.57)

For A = 0, one finds v+ = v and v− = cL, with F+ = 1 and F− = 0. Using the above
expressions, the electronic Green’s function,

G(r, τ) = −
〈
TτΨel(r, τ)Ψ†el(0, 0)

〉
, (3.58)

with the electron operator in Eq. (3.3) and the time ordering operator Tτ , can be computed
in an exact manner. The nontrivial (z, τ) dependence, G(z, τ) ∝

∑
ν=± e

iνkF zGν(z, τ),
follows from the 1D Green’s functions,

Gν(z, τ) = −〈Tτψν(z, τ)ψ†ν(0, 0)〉, (3.59)

where off-diagonal contributions (with ν 6= ν ′) vanish identically. Using the bosonized 1D
operators in Eq. (3.5), one obtains the left- and right moving Green’s functions

Gν=±(z, τ) =
sgn(τ)

4πξ⊥

∏
s=±

∣∣∣∣ ξ⊥
z + ivsτ

∣∣∣∣( vK2vs
+ vs

2Kv )Fs (z + iνvsτ

z − iνvsτ

)Fs
. (3.60)

Given this result, one can compute the spectral function from the imaginary part of G,
cf. Refs. [32, 138]. The latter quantity could in principle be measured by photoemission
spectroscopy. However, in what follows the focus lies on simpler observables.

3.4 Zero-temperature phase diagram
In this section, the zero-temperature phase diagram of the coupled electron-phonon system
with half-integer magnetic flux ΦB is represented. The effective low-energy action (3.51)
for the electronic sector, obtained after integration over the phonon degrees of freedom,
allows to obtain the exact correlation functions of all possible order parameters. In this
1D system, long-range order is not possible and one can at best find an algebraic decay of
correlation functions (at T = 0). It is then common practice to define the phases accord-
ing to the smallest decay exponent [32]. For extremely strong electron-phonon couplings
with A ≥ 1/K in Eq. (3.53), one encounters the so-called Wentzel-Bardeen singularity,
where the system becomes unstable and undergoes phase separation. Furthermore, this
instability occurs as the electron-phonon coupling reaches a critical value where the spe-
cific heat diverges [31, 137]. In what follows, it is assumed that A < 1 and the system
is stable since K < 1. Moreover, the previously derived model is helpful to examine
different candidate order parameter correlations, for instance order parameters for singlet
superconductivity. As it is of large interest in experiments, correlation functions can give
an insight about dominant correlation processes within an system [87,88].
First, as pointed out in Sec. 3.1, charge density wave correlations cannot exist in this
system due to the absence of 2kF backscattering. Therefore, one finds a vanishing charge
density wave correlation. However, spin density wave (SDW) correlations are possible.
For the surface state of the TI wire, one can either have a spin density operator component
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sφ along the circumferential direction, or a component sz along the wire axis. In bosonized
form, they are given by [19]

sφ(z, τ) =
1

2
√
π
∂zϕ(z, τ), (3.61)

sz(z, τ) = − 1

2πξ⊥
cos[2kF z + 2

√
πθ(z, τ)].

The first relation is due to spin-momentum locking of the TI surface state: the current
density operator along the z-axis has precisely the same form. The correlation functions
at T = 0 are (the mixed correlator vanishes)

〈sz(z, τ)sz(0, 0)〉 ∝ cos(2kF z)
∏
s=±

∣∣∣∣ ξ⊥
z + ivsτ

∣∣∣∣2vKFs/vs ,
〈sφ(z, τ)sφ(0, 0)〉 ∝

∏
s=±

|z + ivsτ |−νφ/2 , (3.62)

and can be solved by computing the path integral which yields the corresponding decay
exponents νz = 2vK

∑
s Fs/vs and νφ = 2. Here the F± have been defined in Eq. (3.55).

For material parameters where νφ represents the slowest decay, the phase can be called
‘metallic’ since here the current-current correlations have the same decay law as in an
unperturbed Luttinger liquid. Next, the order parameter for singlet superconductivity2 is
proportional to Osc(z, τ) = ψ+(z, τ)ψ−(z, τ) ∝ e2i

√
πϕ [139,140]. Pairing correlations thus

decay along the wire direction as

〈Osc(z, τ)O†sc(0, 0)〉 ∝
∏
s=±

∣∣∣∣ ξ⊥
z + ivsτ

∣∣∣∣2vsFs/(Kv)

. (3.63)

The resulting decay exponent is given by νsc = (2/vK)
∑

s vsFs.
Using the above results for the three exponents (νz, νφ, νsc), the phase diagram in the K-A
plane is readily determined by finding the smallest exponent for given parameter choice;
see Fig.3.1. For a TI nanowire pierced by a half-integer flux ΦB, the radius R appears only
implicitly via the definition of the dimensionless electron-phonon coupling parameter A in
Eq. (3.53), and possibly through a weak R-dependence of the Luttinger liquid parameter
K [19]. The latter parameter can encode both the effects of Coulomb interactions and
those of residual optical phonon modes not taken into account in this model, cf. Ref. [32],
where K = 1 in the absence of interactions, K < 1 for repulsive interactions, and K > 1
for effectively attractive interactions. Fig. 3.1 shows the phase diagram using parameters
appropriate for the TI material HgTe, with v1 ' 5×105 m/s [20] and cL ' 2400 m/s [142].
The HgTe case is especially interesting since it is not only a very clean material [143,144].
It has also been established by recent nanowire experiments that the ballistic regime is
reachable in practice [20]. Moreover, these experiments have shown that the conductance
oscillations of Aharonov-Bohm type allow for the distinction between topological and
trivial states in nanowires made of strained HgTe. The phase diagram for Bi2Te3 looks
qualitatively very similar, as shown in the left panel of Fig.3.1. Please note that the
different sound velocity cL ' 2500 m/s and the Fermi velocity vF ' 4×105 m/s according
to Ref. [145] provide changes in the diagram [27].

2The angular dependence of the superconducting order parameter may include a phase winding factor
∝ einφ (with some integer n) due to the magnetic flux; see Ref. [139] for a related case.
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Figure 3.1: Left: Zero-temperature phase diagram of a TI nanowire (pierced by half-
integer flux ΦB) in the K-A plane, where A in Eq. (3.53) parametrizes the electron-
phonon coupling strength and K is the Luttinger liquid parameter, encoding the effective
electron-electron interaction strength. The material parameters for HgTe were used. For
A ≥ 1/K, the system is unstable (Wentzel-Bardeen regime, ‘WB’). For A < 1/K, three
phases are possible: Superconducting correlations dominate in the ‘SC’ part of the phase
diagram. A spin-density wave phase (with ordering along the nanowire axis) is denoted by
‘SDW’. The inset gives a magnified view of a region where the tiny intermediate ‘metallic’
phase (white) is visible. Here conventional 1D current-current correlations represent the
slowest decay. The phase diagram has been computed with python (Matplotlib: A 2D
graphics environment [141]) where the order parameter determine the limits of the phases.
Adapted from Ref. [67]. Right: Zero-temperature phase diagram of a TI nanowire with
material parameters for Bi2Te3. Please note, that the inset has a slightly different scale.

In the absence of electron-electron interactions (K = 1), superconducting correlations are
observed that dominate for arbitrary electron-phonon coupling strength 0 < A < 1, in
accordance with earlier studies for non-helical Luttinger liquids [31,137]. Unless electron-
electron interactions are screened off, however, superconducting correlations are expected
to be quickly overcome by SDW correlations which are favored for K < 1 and small values
of A. For large A (but A < 1/K), one also finds a tiny intermediate metallic phase, see
inset of Fig. 3.1. The phase boundary curves separating the metallic phase from the SDW
and the SC phases, respectively, can be analytically shown to merge at the special point
(K = 1, A = 0). However, no merging point exists in the limit K → 0. Ultimately, for
A ≥ 1/K, the system becomes unstable.
The theory therefore suggests the possibility of dominant intrinsic pairing fluctuations
when Coulomb interactions are well screened off. The resulting superconducting wire
could then even harbor Majorana bound states, see Ref. [146–148]. Such states can exist
even in 1D wires with intrinsic superconducting pairing [149]. However, proximity-induced
superconductivity is expected to be necessary in practice to achieve this goal since the
relevant energy scales protecting the Majorana state will otherwise be tiny.
The phase diagram can significantly change when ΦB does not have half-integer values.
As discussed in detail in Sec. 3.5.2, the presence of 2kF scattering then implies that also
regions with CDW ordering become possible. The exploration of the phase diagram for
general ΦB is left to future work.
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3.5 Phonon-induced resistivity
The next step is to evaluate the phonon-induced electrical resistivity, ρ, of a long cylin-
drical TI nanowire pierced by a magnetic flux ΦB, taking into account electron-phonon
couplings of dimensionless strength A < 1/K, see Eq. (3.53). The following section stud-
ies the case of half-integer flux ΦB for arbitrary Luttinger liquid parameter K. From the
Kubo formalism, one can show that phonons do not generate a finite resistivity correc-
tion ρ(T ) due to the absence of 2kF -backscattering processes. These processes vanish for
half-integer magnetic flux which provides a closed gap of the surface state. Hence, it is
a consequence of the topological protection of the states. Sec. 3.5.2 examines the case
without electron-electron interactions (K = 1), where small flux deviations δΦB away
from half-integer values are allowed. Backscattering between (k → −k) then becomes
possible and one obtains a finite resistivity for T > 0. For quantitative results, one
follows the Boltzmann equation approach of Ref. [33]. Alternatively, one could proceed
along the bosonization route of Ref. [150], which also allows to cover the K 6= 1 case
for δΦB 6= 0. However, in Sec. 3.5.2 the physically transparent Boltzmann approach for
K = 1 is applied.

3.5.1 Half-integer magnetic flux: Kubo formula

First, the case of precisely half-integer flux ΦB is discussed starting from the Kubo formula
for the (ω, q)-dependent conductivity [32],

σ(ω, q) =
i

ω

(
e2vK

π
+ Π(ω, q)

)
, (3.64)

where Π(ω, q) is the retarded current-current correlation function. The latter quantity is
first computed in Matsubara frequency space,

Π(iωn, q) = −〈J∗(iωn, q)J(iωn, q)〉Seff
, (3.65)

followed by the analytic continuation iωn → ω+ i0+. The charge current operator is here
given by J = evK√

π
∂zϕ [32]. Using Eq. (3.57), one obtains

Π(iωn, q) =
e2vK

π

(
−1 +

∑
s=±

ω2
n

ω2
n + v2

sq
2
Fs

)
. (3.66)

Performing the analytic continuation, Eq. (3.64) yields

σ(ω, q) =
e2vK

2π

∑
s=±,ν=±

Fs

(
πδ(ω − νvsq) + iP 1

ω − νvsq

)
, (3.67)

where P denotes the principal part and the velocities v± have been specified in Eq. (3.54).
Thus, one obtains

lim
q→0

Reσ(ω, q) = e2vKδ(ω)
∑
s=±

Fs = e2vKδ(ω). (3.68)

The real part of the conductivity in dc limit yields a δ-function Drude peak at ω = 0
for q → 0, and hence a vanishing resistivity at all temperatures (where the above model
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applies). Since vK = v1 by Galilean invariance, neither electron-electron nor electron-
phonon interactions cause corrections to the conductivity. This result is rationalized by
the absence of 2kF -backscattering processes in TI nanowires pierced by a precisely half-
integer flux ΦB. The next subsection addresses, what happens when ΦB deviates from
half-integer values.

3.5.2 Away from half-integer flux

This case is evaluated without electron-electron interactions, K = 1, while the effects of
a static deviation of ΦB from half-integer values, δΦB 6= 0 are studied. Such a situation
may arise either due to changes in the magnetic field strength or its direction, or from
fluctuations of the cross-sectional area of the nanowire. For simplicity, |δΦB| � 1is as-
sumed below. For δΦB 6= 0, since the electron density operator (3.6) will now have a
2kF -oscillatory contribution due to the absence of topological protection, phonons can
cause electron backscattering. Then, a temperature-dependent correction to the electrical
conductance of a TI nanowire is expected to occur. To study this effect in quantitative
terms, one follows the approach in Ref. [33] and uses the Boltzmann equation to evaluate
the phonon-induced conductance correction for a long TI nanowire of length L. Without
coupling to phonons (A = 0), the ballistic system has the quantized and temperature-
independent conductance G = G0 = e2/h [19].

To determine the low-energy form of the electron density operator, the electron operator
in Eq. (3.3) is generalized to the case δΦB 6= 0, first. At low energies, one may focus on
the single band with total angular momentum j such that ΦB = −j + δΦB. Assuming
that the chemical potential µ is located in the conductance band, Eq. (3.2) implies that
the Fermi momentum is now given by

kF '
µ

v1

(
1− 2γ2

)
, γ =

v2δΦB

2µR
. (3.69)

In the following, the consequences of γ 6= 0 to leading order in γ, i.e., for |γ| � 1,
are studied. Taking the conduction band eigenstate of Hel(k) in Eq. (3.7) with angular
momentum j from Ref. [19], the low-energy electron operator follows as

Ψel(r, φ, z) =
f⊥(r)√

4π

∑
ν=±

eiνkF zei(j−1/2)φψν(z)

(
ν(1− γ)
i(1 + γ)eiφ

)
, (3.70)

where all O(γ2) terms are dropped. As for γ = 0 in Eq. (3.3), the 1D field operators
ψν=±(z) describe right- or left-moving fermionic quasiparticles. Indeed, linearization of
the dispersion relation (3.2) around the respective Fermi point, k = νkF +p with |p| � kF ,
yields Eν=±(p) ' µ ± v1p. The 1D electron density operator, ρ1D(z), is obtained by
integration over the cross section of the nanowire and follows (to leading order in γ) as

ρ1D(z) =

∫
rdrdφΨ†el(r)Ψel(r)

=
∑
ν=±

ψ†νψν + 2γ
∑
ν

e−iν2kF zψ†νψ−ν (3.71)

=
1√
π
∂zθ(z) +

2γ

πξ⊥
cos
[
2kF z + 2

√
πθ(z)

]
.
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Figure 3.2: Phonon-induced backscattering of a the a surface state in a TI nanowire. The
orange line defines the energy dispersion.The linearized dispersions are presented by the
dashed black lines. Loosely adapted from Ref. [19, 30].

In the last step, the bosonization identity (3.5) was used. Equation (3.71) shows that for
δΦB 6= 0, the electron density operator contains a 2kF -oscillatory term corresponding to
electron backscattering. The backscattering process is presented in Fig.3.2. By variation
of the flux δΦB, the relative importance of this term compared to the forward scattering
contribution — the first term in Eq. (3.71) — can be changed. For γ 6= 0, on top of
Eq. (3.46) the electron-phonon interaction Hamiltonian then receives an additional term
from the deformation potential in Eq. (3.43),

H ′e−ph = −v1Z

∫
dz
∑
ν=±

e−iν2kF zψ†νψ−ν

∫
dq

2π
eiqz
√
|q|
(
bq + b†−q

)
, (3.72)

which describes electron backscattering with the simultaneous absorption or emission of
a phonon. The corresponding dimensionless coupling constant is given by

Z =
√

2π2cL/v1 Aγ, (3.73)

with the electron-phonon coupling parameter A in Eq. (3.53) and γ ∝ δΦB in Eq. (3.69).
The transition probability for absorption (‘−’) or emission (‘+’) of a phonon during a
quasiparticle scattering process with momentum p→ p′ with respect to the Fermi points
ν → ν ′ can be estimated from Fermi’s golden rule as

W±
ν′,ν(p

′, p) ∝ Ωp−p′ δ
(
Eν′(p

′)− Eν(p)± Ωp−p′+(ν−ν′)kF
)

(3.74)

where energy conservation implies Eν′(p′) − Eν(p) ± Ωp−p′+(ν−ν′)kF .Using the linearized
dispersion relation Eν(p) = µ+ νv1p, one first observes that energy conservation requires
v1|p − p′| = cL|p − p′| for forward scattering processes (ν ′ = ν). Unless one accidentally
has cL = v1, the only solution is given by p = p′. Transition probabilities for forward
scattering processes thus vanish identically, W±

ν,ν(p
′, p) = 0, in accordance with the results

in Sec. 3.5.1. For γ 6= 0, phonon-induced backscattering transitions (with ν ′ = −ν)
become possible because of H ′e−ph in Eq. (3.72). Fermi’s golden rule then yields the
transition probabilities

W±
−ν,ν(p

′, p) = 2πv2
1Z

2|2νkF + p− p′| (3.75)
× δ (−ν[2kF + v1(p+ p′)]± Ωp−p′+2νkF ) .
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The next step is to compute the conductance correction, G = G0 + ∆G(T ), arising due
to phonon-induced backscattering transitions. Following Ref. [33], one can consider a
TI wire of length L across which a small bias voltage V is applied. The quasi-classical
distribution function of fermionic quasiparticles at position z with momentum νkF + p
(where |p| � kF and ν = ± for right- or left-moving particles) is denoted by fν(z, p). For
A = 0, this distribution function reduces to a z-independent Fermi-Dirac distribution,

fν(z, p)|A=0 = f (0)
ν (p) ≡ 1

eν(v1p−eV/2)/T + 1
(3.76)

where the ±eV/2 will be omitted later, expanding the voltage bias V to the first order [33].
Writing fν(z, p) = f

(0)
ν (p) + ∆fν(z, p), the Boltzmann equation is given by [33]

νv1∂z∆fν = I
[
f (0)
]

+ e∂zφe ∂pf
(0)
ν , (3.77)

where φe(z) is the electrostatic potential along the wire. With the shorthand notation
qν = p − p′ + 2νkF , the collision integral (omitting the superscripts ‘(0)’ in intermediate
steps) is given by

I [fν(p)] = −
∫
dp′

2π

{
W+
−ν,ν(p

′, p) [fν(p) (1− f−ν(p′)) (1 +Nqν )− f−ν(p′) (1− fν(p))Nqν ]

+ W−
−ν,ν(p

′, p) [fν(p) (1− f−ν(p′))N−qν − f−ν(p′) (1− fν(p)) (1 +N−qν )]
}
,(3.78)

where phonons are distributed according to the Bose-Einstein distribution function, Nq =
1/
(
eΩq/T − 1

)
. Inserting the transition probabilities (3.75) into Eq. (3.78), one finds

I [fν(p)] = −2 sinh

(
νeV

2T

)
fν(p)

∫
dp′

2π
f−ν(p

′)Nqν

[
W+
−ν,ν(p

′, p)eνv1p/T +W−
−ν,ν(p

′, p)e−νv1p′/T
]
.

(3.79)
By using the identity W+

ν′,ν(p
′, p) = W−

ν,ν′(p, p
′), one observes that

∑
ν=±

∫
dp
2π
I [fν(p)] = 0.

Solving the Boltzmann equation (3.77) as detailed in Ref. [33], the conductance correction
then follows as

∆G = lim
V→0

eL

V

∫
dp

2π
I
[
f

(0)
+ (p)

]
. (3.80)

Next one observes that the δ-function in the transition probabilities (3.75) enforces the
energy conservation condition v1(p′ + p) = ±cL|2kF + p − p′|. Taking into account that
cL � v1 and |p|, |p′| � kF , the solution is given by p′ ' −p± 2kF cL/v1. To lowest order
in V , Eq. (3.79) then gives

I [f+(p)] ' −2kFv1Z
2N2kF

eV eTBG/2T

T
(3.81)

×
∑
±

f+(p) (1− f+(p∓ TBG/v1)) e±TBG/2T ,

with the Bloch-Grüneisen temperature TBG ≡ 2cLkF . Once T drops below TBG, phonon-
induced 2kF -backscattering becomes suppressed since phonon modes with the required en-
ergy of order Ω2kF are not available anymore. One then basically has only forward scatter-
ing processes, where the corresponding transition amplitudes vanish and one therefore ex-
pects an exponential suppression of the phonon-induced resistivity, see Refs. [33,150,151].
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Performing the integration in Eq. (3.80), the conductance reduction is given by

∆G(T )

e2/h
= −2kFLZ

2 TBG/(2T )

sinh2 [TBG/(2T )]
. (3.82)

As a consequence, the phonon-induced electrical resistivity is

ρ(T ) =
h

e2

2(v2/v1)2

πρMTBG

(
(1− 2σ)α δΦB

v1R2

)2
TBG/(2T )

sinh2 [TBG/(2T )]
, (3.83)

where the definitions of A and γ in Eq. (3.73) were used as well as kF ≈ µ/v1, see
Eq. (3.69). Since only one channel contributes at the same time, the relation between
the conductance correction and the resistivity is immediately given. However, this is
different if more than one channel contributes to the conductivity as will be represented
in chapter 4. At fixed temperature and chemical potential, the resistivity thus scales as
ρ ∝ (αδΦB/R

2)2 with the deformation potential coupling α, the deviation δΦB of magnetic
flux from the nearest half-integer value, and the nanowire radius R. In particular the
prediction ρ ∝ δΦ2

B may allow for direct tests of this theory using available TI nanowires
[20,121]. At low temperatures compared to the Bloch-Grüneisen temperature, Eq. (3.83)
implies an exponential suppression of the resistivity, ρ(T � TBG) ∝ (TBG/T )e−TBG/T , as
expected from Refs. [33,150,151]. On the other hand, at high temperatures, the standard
linear T dependence, ρ(T � TBG) ∝ T/TBG, is recovered.

3.6 Summary and Conclusions

In this chapter the electron-phonon interaction in a cylindrical TI nanowire was discussed.
Based on the model in Ref. [19], the electron action was defined including electron-electron
interactions within the helical Luttinger liquid parameter K. The electron action was
then expressed in terms of bosonized, conjugate fields. The half-integer flux treading the
nanowire along the length of the wire, prohibits 2kF backscattering processes induced by
phonons and provides topologically protected Dirac fermions.
The phonon modes were established in the isotropic elastic continuum model. However,
in low-energy theory, the only contributing modes to electron-phonon interactions are the
lowest longitudinal phonon modes with m = 0 angular momentum. Torsional modes do
not contribute to the deformation potential and flexural modes as well as longitudinal
modes of larger angular momentum are gapped for half-integer magnetic flux. Rayleigh
surface modes do not exist in the long-wave length regime. The magnetic flux enters the
electron-phonon interaction only for small deviation away from the half-integer flux.
While the half-integer flux protects the system from phonon-induced backscattering, a
magnetic flux slightly deviating from half-integer leads to phonon-induced resistivity with
a Bloch-Grüneisen temperature proportional to 2kF as it allows for 2kF backscattering.
The phase diagram at half-integer flux represents a spin density phase which dominate for
electron-electron interactions and low electron-phonon coupling strength. Furthermore,
superconducting pairing is possible in absence of electron-electron interactions. These
phases are separated by a very small metallic phase.
The conductivity at half-integer magnetic flux is not effected by electron-electron nor
electron-phonon interaction. Furthermore, away from half-integer flux the resistivity in-
creases since 2kF backscattering is allowed. This, however, implies that δΦB is very small
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and electron-electron interaction is absent. However, it has been shown that electron-
electron interactions on TI surfaces provide temperature dependent contributions [29].
This case is left for future study.

The topological insulator nanowire has one channel contributing to the conductivity at
the same time. The following chapter introduces the WSM nanowire with a significantly
different band structure providing different transport properties.
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Chapter 4

Transport in Weyl semimetal nanowires

Weyl semimetals (WSM) are of large interest in recent studies [15,56,152]. These materi-
als impose surface states at the Weyl nodes and connect them in the surface Brillouin zone
(sBZ) forming arcs. The arcs are known as Fermi arc surface states. ARPES measure-
ments of these Fermi arc states have been shown in Fig.2.8 in chapter 2 [14–16, 18]. An
interesting phenomenon that appears in WSMs is chiral anomaly which leads to various
effects like anomalous Hall conductivity [153,154]. However, the impact of chiral anomaly
on transport properties is not clarified, yet.
This chapter discusses the band structure in a WSM nanowire threaded by a magnetic
flux along the wire. WSM nanowires without disorder have already shown interesting
transport properties [26, 35, 155]. Moreover, the significance of the Fermi arcs is observ-
able [24, 156, 157]. In this chapter, the interactions of electrons with acoustic phonons
leading to backscattering will be compared to the disorder-free case. Also the parame-
terized boundary condition (s.Ref. [35, 38]) will be used in order to preserve the angular
momentum at the boundary.
Transport experiments have already been done for Dirac semimetals [158–161]. Magne-
toresistance has also been studied for quasi 1D-WSMs and ultra thin devices [36,37]. As
already seen in the previous chapters, temperature has a significant impact on phonon
interaction [33, 150, 151]. This was also shown in WSM experiments [162–165]. While
phonon-induced resistivity has been studied for different geometries of various materials,
in WSMs electron-phonon interaction has been studied in slab geometry so far [166–171].
Phonon interaction in a wire can be described similarly to the TI case in the isotropic
elastic continuum with a stress free boundary. However, in WSMs also bulk states are
gapless. This leads to an important difference between WSMs and TIs [172]. This chapter
will show, how the different bands correspond to magnetoresistivity. The model is based
on the two-band model in Eq.(2.27) [71,173,174].
The first section addresses the electronic band structure and discusses the effects of mag-
netic flux and the boundary condition. The band structure is followed by the phonon
coupling. The discussion about magnetoresistivity is split into two parts. In the first part
the two-terminal conductance without phonon-interaction is discussed. In the second part
phonon-induced backscattering will be introduced.

This chapter follows the structure of Ref. [78] by De Martino et al. on which it is based1.
Ref. [78] is in principal reproduced in the following, including extended results and is
partially presented in App.C.

1For the preprint s.Ref. [175]
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CHAPTER 4. TRANSPORT IN WEYL SEMIMETAL NANOWIRES

4.1 Model and band structure
This section focuses on the electronic band structure in a WSM nanowire. The model
is based on the commonly used two band-model [70, 71]. Furthermore, the model is P-
symmetric. Therefore, T -symmetry is broken in order to have two Weyl nodes in the bulk
BZ which are set at the momenta k = ±bêz. The wire length goes along the z-direction.
It has cylindrical geometry with a radius R around the axis êz. The magnetic flux in units
of flux quantum Φ0 = hc/e treads the wire in z-direction as well. Moreover, the Weyl
nodes are separated in the same direction. Hence the magnetic field with positive B is
B = Bêz and a symmetric gauge A = 1

2
B(−y, x, 0) will yield B = ∂xAy − ∂yAx. Ref. [26]

showed that magnetic fields perpendicular to the wire axis provide a reduced conductance
due to the occurrence of zeroth chiral Landau Levels.
The electronic Hamiltonian follows from Eq.(2.27) and Ref. [70, 71]. Isotropic circular
planes require that the hopping amplitudes yield tx = ty = t⊥. Including the magnetic
field, one obtains the low-energy Hamiltonian

H0 = v[σx(−i∂x + Ax) + σy(−i∂y + Ay)] +mkσz (4.1)

where the Pauli-matrices σx,y,z act in spin-orbital space and the bulk Fermi velocity is
denoted by v. The momentum k is the quantum number describing the momentum along
the wire. Linearizing in k, the t′-term with hopping amplitude t′ has vanished and the
effective mass function yields

mk =
v

2b
(k2 − b2) (4.2)

focusing on energies |E| . vb/2 with a mass gap of vb/2 at k = 0. Therefore, the
Weyl nodes at k = ±b are well defined.The magnetic flux is perpendicular to the wire
cross-section and can be described by the dimensionless parameter

Φ =
πR2B

Φ0

=
R2

2l2B
(4.3)

in units of flux quantum with the magnetic length lB =
√

~c/(eB), where a nanowire with
25 nm radius corresponds to a magnetic field of B ≈ 2 T. The Zeeman term in Eq.(4.2)
remains absent, since it was shown to have a small contribution to the band structure
compared to orbital effects [176]. The dimensionless parameter determines the finite-size
scale v/R and the magnetic energy scale v/lB, since it depends on the ratio of R and
lB. Furthermore, within this energy regime the number of bands in a thin wire can be
estimated by ∼ vb/(v/R) = bR. In the following the ratio is set Rb = 10 in most examples
implying that Rb� 1. Fig.2.8 (right) represents the ARPES measurement of TaAs, where
one can estimate b ∼ 0.5 nm−1 leading to a nanowire with radius R ∼ 20 nm [15].
The Hamiltonian in Eq.(4.1) leads to the eigenspinor

Ψk,j(r) =
eikz√
L

eijφ√
2π

(
e−iφ/2Y+(ξ)
ieiφ/2Y−(ξ)

)
(4.4)

in polar coordinates (x, y) = r(cosφ, sinφ) where êr and êφ are the unit vectors. The
dimensionless parameter ξ is defined by

ξ =
r2

2l2B
(4.5)
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where ξ/Φ = r2/R2. The half-integer values j are eigenvalues of the conserved angular
momentum operator Jz = −i∂φ + 1

2
σz. Normalization is required for the real-valued

radial eigenfunctions Y±(ξ). Therefore, the length L of the nanowire is included. Thus,
the radial spinor Yk,j(ξ) yields

l2B

∫ Φ

0

dξ(Y 2
+ + Y 2

−) = 1 , where Yk,j(ξ) =

(
Y+(ξ)
Y−(ξ)

)
(4.6)

with normalization with respect to the cylindrical geometry. Solving the Dirac-Weyl
equation for the spinor in Eq. (4.4), one finds −E−

√
ξ∂ξ +

ξ+j+ 1
2

2
√
ξ

−
√
ξ∂ξ +

ξ+j− 1
2

2
√
ξ

−E+

Yk,j(ξ) = 0 (4.7)

where the vector potential in radial coordinates yields −iB(x ± iy) = −e±iφBr. The
energies are given by the dimensionless quantity

E±(k,E) =
E ±mk√

2v/lB
. (4.8)

The differential equation that results from Eq.(4.7) is known as confluent hypergeometric
equation (s.App.B.2). The solution is the confluent hypergeometric function (or Kum-
mer’s function) M(a, b; ξ) which has a regular singularity at the origin and an irregular
singularity for infinite argument [131,177,178]. Then, the spinor has the form

Yk,j(ξ) =


ξ

1
2(j− 1

2)e−ξ/2

((
j + 1

2

)
M(aj, j + 1

2
; ξ)

E−
√
ξM(aj, j + 3

2
; ξ)

)
, j > 0

ξ−
1
2(j+ 1

2)e−ξ/2

(
E+

√
ξM(aj + 1,−j + 3

2
; ξ)(

j − 1
2

)
M(aj,−j + 1

2
; ξ)

)
, j < 0

(4.9)

where the energy and momentum dependence is kept within the parameter aj = (j +
1/2)Θ(j)−E+E− with Heaviside step function Θ implicitly. As mentioned in chapter 2, a
good boundary condition for a Weyl fermion preserves the angular momentum [38, 179].
The parameterized boundary condition implies that for a given angle, called α here, the
angular momentum will be conserved. Similar to the case in half-space geometry, one can
define the boundary condition for a nanowire [35]. In a cylindrical nanowire the current
should vanish at the cylinder surface, i.e. at r = R. Hence, the boundary condition yields

M(α)Ψ(R) = ±Ψ(R) with M(α) = σφ cosα + σz sinα (4.10)

where the Pauli matrix σφ = e−i
φ
2
σzσye

iφ
2
σz can be derived by unitary transformation. The

radial part of the current density jr = Ψk,j(r)
†σrΨk,j(r) can be obtained by Noether’s

theorem (E. Noether, 1918) [40, 180]. At the boundary the current then responds to

jR = Ψk,j(R)†σrΨk,j(R) = Ψk,j(R)†σrM(α)Ψk,j(R) = [M(α)Ψk,j(R)]†σrΨk,j(R) = 0 .
(4.11)

Moreover, M(α) anticommutes with σr where σr = e−i
φ
2
σzσxe

iφ
2
σz . The following deriva-

tions and examples focus on the eigenvalue +1, where α is in range −π/2 < α ≤ π/2.
The direction of the pseudospin is then tangential to the boundary of the wire. However,
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CHAPTER 4. TRANSPORT IN WEYL SEMIMETAL NANOWIRES

Figure 4.1: Energy bands of a WSM nanowire with boundary parameter α = π/2 and
bR = 10. The energy Ek,j,p is in dependence of momentum k and in units of vb. The
three panels show different magnetic fluxes Φ = 0 (left), Φ = 2 (center) and Φ = 4 (right).
Negative angular momenta are represented by the dashed blue curves and positive angular
momenta by the solid black curves. The green dotted curves represent the E = ±mk states
which coincide with the degenerate Fermi arc surface states. The energy range represents
bands with the states of angular momentum −21/2 ≤ j ≤ 27/2. Adapted from Ref. [78].

it is not in direction of the unit vector êφ but instead shifted by the angle α. Applying
Eq.(4.10) on the spinor in Eq.(4.4), one finds

Y+(Φ)

Y−(Φ)
= tan

(α
2

+
π

4

)
(4.12)

where α = 0 corresponds to the infinite mass boundary condition. This condition implies
a finite mass term in Eq.(4.2) inside the wire and mk →∞ for ξ > Φ [24,35]. The energy
spectrum of the WSM nanowire is defined by the solutions of the boundary condition in
Eq.(4.12). For each angular momentum j and radial band index p the dispersion of a 1D
subband is given by Ek,j,p. A marginal aspect is given by P-symmetry which provides
a symmetric dispersion. Hence, each subband with energy εk = Ek,j,p yields ε−k = εk.
Moreover, the spectrum will be characterized by the dimensionless flux Φ, the dimension-
less ratio bR and the angle α.
The confluent hypergeometric function possesses a range of known analytic expansions

and limits. New limits have even been derived recently [131,181]. Nonetheless the param-
eter regime in case of a WSM nanowire only allows for some limiting cases. Beyond these,
the spectral condition is solved numerically. At the boundary angle α = π/2, the spectral
condition can be solved for the full spectrum. The condition then reduces to Y−(Φ) = 0.
The zeros of the confluent hypergeometric function regarding the first argument aj,p with
band index p = 1, 2, ... solve the equation. Another solution is given by the band index
p = 0 where E− = 0. The radial eigenfunction yields

Yk,j>0,0(ξ) ∝ ξ
1
2(j− 1

2)eξ/2 (4.13)

which corresponds to a probability density which maximizes at the surface, where ξ = Φ
and decreases if ξ → 0. Furthermore, one obtains the spectrum

Ek,j>0,0 = mk , Ek,j,±p = ±

√
2Cj,pv2

l2B
+m2

k (4.14)

with Cj>0,p = j+ 1/2−aj,p and Cj<0,p = −a−(j+1),p. A detailed derivation of the α = π/2
case is presented in App.C.1. It is worth noting that the p = 0 band with negative
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4.1. MODEL AND BAND STRUCTURE

Figure 4.2: Energy bands of a WSM nanowire with boundary parameter bR = 10 and
(a) α = 0 and (b) α = π/4. The other parameters and the representation are equal to
Fig.4.2. The energy Ek,j,p is in dependence of momentum k and in units of vb. Adapted
from Ref. [78].

angular momentum implies an infinite radius and, thus, is not given within the parameter
regime. The band structure for α = π/2 with different values of magnetic flux is shown in
Fig. 4.1. The range of angular momenta j is chosen such that the spectrum is fully given
within this energy spectrum. Since α = π/2, also larger j will contribute to the degenerate
surface states. However, the other subbands do not appear within this energy window. At
α = π/2 the bands with positive angular momentum have the same degenerate dispersion
relation εk = mk of the Fermi arc which is represented by the green doted line in Fig.
4.1. The α = π/2 case corresponds to the γ = 0 in Fig.2.6. However, the degeneracy is
lifted as soon as α is below π/2. Fig.4.2 shows the dispersions for α = 0 and α = π/4
respectively. These dispersions were obtained numerically solving the boundary condition.
One can observe that the band structure clearly depends on the magnetic flux. For positive
angular momenta the states move away from E = 0, while for negative angular momenta,
the energy surpasses E = 0.
An approximate analytical solution can be found for surface states. Solving the Dirac-

Weyl equation (Eq.(4.7)), − 1
v
(E −mk) ∂r +

j+ 1
2

r
+ r

2l2B

−∂r +
j− 1

2

r
+ r

2l2B
− 1
v
(E +mk)

Y (r) = 0 (4.15)

for a spinor Y (r) (including k, j), one focuses on states with r → R. Therefore, one can
shift the radial coordinate by r = R+ x such that x is within the range −R < x < 0 and
|x| � R for a surface state. The lowest non-trivial order in |x|/R� 1 yields the equation(

− 1
v
(E −mk) ∂x + j+Φ

R
− j−Φ

R
x

−∂x + j+Φ
R
− j−Φ

R
x − 1

v
(E +mk)

)
χ(x) = 0 (4.16)

with the spinor Y (r) = e(x−R)2/4R2
χ(x). Neglecting the terms that are proportional to x

an approximate solution can be found such that the spinor yields χ(x) ∝ eκxχ(0). This
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Figure 4.3: Probability density |Ψk,j|2 in dependence of the radial coordinate with respect
to the surface for one j = +1/2 eigenstate and two eigenstates of j = −1/2 at E =
−0.15vb. The dimensionless parameters are given by α = π/4, bR = 10 and Φ = 2.
Adapted from Ref. [78].

leads to the spinor Y (r) ∝ e−κ(R−r)Y (R), where

κ =

√
(j + Φ)2

R2
+
m2
k − E2

v2
(4.17)

is the inverse decay length. A surface state requires κR � 1. Applying the boundary
condition, one obtains the Fermi arc dispersion

Ek,j =
v(j + Φ)

R
cos(α) +mk sin(α) for

v(j + Φ)

R
sin(α)−mk cos(α) > 0 (4.18)

which depends on the boundary angle α and the magnetic flux Φ. This stays in agreement
with numerical solutions showing that the angle α and the magnetic flux affect the band
structure. Similar to topological insulator nanowires, one finds that the magnetic flux
acts as shift of the angular momentum. Moreover, the Fermi arc dispersion and the
corresponding condition hold for ∣∣∣∣j − Φ

j + Φ

∣∣∣∣� κR (4.19)

except when j → −Φ. The analytical and numerical solutions of the Fermi arc dispersion
are compared in App.C.2. It is shown that the approximation works very well between
the Weyl nodes. The flat bands for α = 0 scale with v/R. The bands for α 6= 0 form a
Fermi arc dispersion. In both cases the approximation fits the band structure.
Focusing on bulk states located at the center of a nanowire with very large finite radius,
one finds Landau states since the zeros of the confluent hypergeometric function corre-
spond to integers with aj,p → −(p − 1) and aj,p < 0 (s.App.C.1). The dispersions of the
Landau states are given by

Ek,j,p =


±
√

2(n+j+ 1
2)v2

l2B
+m2

k , j > 0, p = (n,±)

±
√

2nv2

l2B
+m2

k , j < 0, p = (n ≥ 1,±)

−mk , j < 0, p = n = 0 .

(4.20)
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where n = 0, 1, 2, ... denotes the Landau level and the n = 0 state with j < 0 describes the
chiral zero mode. The dispersions are valid for lB � R. With the decrease of the angular
momentum the state with Landau level n moves towards the surface which finally results
in a chiral edge state. Moreover, one finds a Fermi arc state with p = 0 and positive
angular momentum as long as the radius is finite. The bulk state dispersion of a state
with Ψk,j<0,p=±1 becomes E = ±|mk|. This dispersion follows from the fact that the state
with p = 1 yields −p + 1 = 0 and therefore does not solve M(−p + 1,−j + 1/2; Φ) = 0
which results in an avoided crossing at mk = 0. However, for infinite R, the dispersion
E = mk vanishes and E = −mk yields the n = 0 Landau level dispersion which leads to
a closed gap.
The radial probability density shows that surface states exist reaching the surface. How-
ever, states that have a large respond on the boundary angle α can also be identified as
such. This is presented in Fig. 4.3 for E = −0.15vb where the solid black line shows a
state of the j = 1/2 subband, which at α = π/4 acts as a Fermi arc dispersion. The red
dashed-dotted line represents the "inner" state, i.e. the one with the smaller |k|, of the
j = −1/2 subband shown in Fig.4.2. The probability of this state increases as r → R,
i.e. near the surface. The "outer" state defined by the dashed blue line behaves like a
bulk state as it decreases reaching the surface. Nonetheless, this shows that in a WSM
nanowire the bulk and surface bands are not clearly distinguishable. The band with local
extrema close to the Weyl nodes for instance has one bulk and one surface state.

4.2 Phonon-induced resistivity and Boltzmann theory
This section addresses the electron-phonon interaction in a WSM nanowire leading to
phonon-induced backscattering. Similar to the topological insulator nanowire, one finds
that the only contributing phonon mode is the longitudinal mode with angular momentum
m = 0. The electron-phonon Hamiltonian will be presented in Sec.4.2.1. The resistivity
in Sec.4.2.3 follows from Boltzmann theory. However, there is a significant difference
between the resistivity from Boltzmann theory in a WSM nanowire and the result in
the previous chapter. In contrast to the topological insulator, the WSM nanowire has a
spectrum where more than only one band can contribute to the resistivity. This implies
that the total resistivity also depends on the resistivity of each channel. Moreover, the
different shapes of the bands lead to one or more Fermi points contributing. In Sec. 4.2.3
a state with angular momentum j will be considered to contribute with either one or two
Fermi momenta.

4.2.1 Electron-phonon coupling in a Weyl semimetal nanowire

Acoustic phonon modes in a nanowire can be described by the model in chapter 3 assum-
ing isotropic elastic continuum. Expecting the nanowire to be deposited on a substrate,
flexural modes will be gapped out [160, 161, 182]. Thus, the remaining gapless modes in
low-energy theory, regarding the low-temperature regime with qR� 1, are the longitudi-
nal phonon modes with angular momentum m = 0. These modes propagate in z-direction
with a sound velocity cL =

√
E/ρM where E is the Young modulus and ρM the mass den-

sity. Their dispersion follows from expansion of phonon momentum q → 0. Furthermore,
qR� 1 implies that the phonons act effectively as 1D modes. Like in Bi2Te3, the sound
velocity is considerably smaller than the Fermi velocity. According to Ref. [183], the ratio
is cL/v ∼ 0.01 in TaAs.
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The displacement field of a longitudinal acoustic phonon mode in an isotropic elastic
nanowire is defined by

u(r) =

∫
dq

2π

sgn(q)eiqz√
2πR2ρmωq

(νqrêr + iêz)
(
b†−q + bq

)
(4.21)

where b†−q (bq) is a bosonic creation (annihilation) operator with a phonon frequency ωq
and the bulk mass density is given by ρM . Poisson’s ratio is defined by 0 < ν < 1/2.
Studying the electron-phonon coupling in low-energy theory, the dominant contribution
is given by the deformation potential provided by these longitudinal phonon modes. The
electron-phonon Hamiltonian is then proportional to the coupling constant g0. Hence,
one finds

Hel−ph = g0

∫
drρe(r )∇ · u(r) (4.22)

where ρe(r) is the charge density operator. Screening processes have a huge impact on the
coupling constant. Therefore, theoretical estimations are made concerning Thomas-Fermi
screening [30]. The coupling constant g0 is given in dimension of energy and anticipated
to be of order 1/nbulk(µ) by a Thomas-Fermi argument. Here nbulk(µ) denotes the density
of states in the bulk which reduces as the chemical potential µ vanishes. Hence, coupling
between electrons and phonons increases as µ approaches zero and is expected to be of
order ≈ 10 meV [184]. However, variation within the coupling is implied. Nonetheless,
the resistivity will be observed with respect to a resistivity scale containing the coupling
constant in the following sections.
The electron density can be expressed by fermion creation and annihilation operators
c†k′,j,p′ and ck,j,p respectively by performing Fourier transformation. Furthermore, one
finds the electron-phonon coupling Hamiltonian

Hel−ph =− (1− 2ν)g0

∑
j,p,p′

∫
dk

2π

dk′

2π

dq

2π
δ(k − k′ − q) |q|R l2B√

2πρMωq

×
∫ Φ

0

dξ Y †k′,j,p′(ξ)Yk,j,p(ξ)
(
b†−q + bq

)
c†k′,j,p′ck,j,p (4.23)

that depends on the radial part of the eigenstates Yk,j,p(ξ). The z and φ-dependencies
are integrated out considering the limit of an infinite nanowire. Assuming that only
longitudinal phonons with zero angular momentum couple to electrons, scattering can
only take place between states with the same angular momentum. This would be different
including phonon modes of larger angular momentum, where scattering between different
angular momenta j becomes possible. This, however, presents an interesting future work.
Considering the chemical potential in the range of |µ| . vb/2, only one band with given
angular momentum is present at given energy. This is important, since scattering between
Fermi momenta of more than one band having the same angular momentum becomes
possible. To ensure this, the band structure of each setup that is presented, was monitored.
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4.2.2 Boltzmann theory

Acoustic longitudinal phonons can described very well by Boltzmann theory. This section
addresses the Boltzmann approach in a WSM nanowire. Nonetheless, this result will
be different than the resistivity of a TI nanowire, since the band shapes in a WSM can
be parabolic, having one extremum, and also two-valley bands with two local extrema
providing up to two pairs of Fermi momenta.
According to Ohm’s law one finds a steady-state charge current density J = σE along
the axis of the nanowire. The electric field is considered to be weak and translational-
invariance of the wire is required. The transition rates in Boltzmann theory follow from
Fermi’s golden rule. Here, the coupling matrix elements are taken into account in case of
electron-phonon coupling regarding that an electron scatters between two states of same
angular momentum, as described in chapter 2.
The conductivity can then be obtained by the transition rates and leads to the resistivity
ρ = 1/σ. Furthermore, one finds the total conductivity by summing the conductivity
contributions given by each angular momentum., i.e.

1

ρ
=
∑
j

σj =
∑
j

1

ρj
. (4.24)

where each resistivity ρj depends on the transition probabilities of the corresponding
scattering processes given by Fermi’s golden rule. Further processes are not included in
this model. In such a case, this model will not yield the exact resistivity. As described
in chapter 2, the collision integral obtained from Boltzmann equation is usually very
difficult to solve. In the previous chapter, the collision integral was solved by linearizing
the energy dispersion of one contributing band [33, 67]. However, this approach is not
applicable to this problem, since one band can contribute with more than one pair of
Fermi points to the resistivity simultaneously. It will be shown later, that for one pair of
Fermi points contributing, one indeed finds the same solution. Nonetheless, a band with
two contributing Fermi momenta has more scattering processes taking place between
them. Thus, the resistivity will vary.
Following the ansatz of Ref. [90], one can linearize the Boltzmann equation. The ansatz
estimates that the distribution functions are nearly in equilibrium. Nonequilibrium is
introduced by small correction terms of linear order δnk. Moreover, the distribution
function yields

δnk = nF (εk) + δnk with nF (ε) =
1

eβ(ε−µ) + 1
(4.25)

where the energy of the fermion is given by εk = ε−k with angular momentum j. Since
the energy range that is observed here, always considers only one radial band for each
angular momentum, one can write Ek,j,p = εk and Yk,j,p = Yk. Thus, the nonequilibrium
correction can be parameterized as

δnk = −eE
(
−∂nF (εk)

∂εk

)
vkg(εk) (4.26)

where the fermionic group velocity is given by vk = ∂kεk and g(εk) is a function that will
be discussed later. Phonons with a frequency ωq = cL|q| enter the linearized Boltzmann
equation via the collision integral. The collision kernel given by the transition probabilities
and the distribution functions can be rearranged such that the linearized Boltzmann
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equation yields

vk
∂nF (εk)

∂εk
=

1

T

∫ ∞
−∞

dk′

2π
D(k, k′)[vk′g(εk′)− vkg(εk)]

∑
ν=±

δ(εk − εk′ − νωk−k′) (4.27)

where ν = ± corresponds to phonon emission and absorption. The kernel D(k, k′) is then
described by

D(k, k′) = W (k, k′)
nF (εk)nF (εk′)

|e−β(εk−µ) − e−β(εk′−µ)|
(4.28)

whereW (k, k′) is the transition probability. Scattering takes place between two electrons.
The initial state corresponds to an electron with momentum k and the final state to an
electron of momentum k′. The scattering process includes either emission of a phonon
with momentum q = k − k′ or absorption of a phonon with momentum q = k′ − k.
The scattering process between the electron involving phonon absorption has the same
probability as the emission of a phonon due to microreversability. This leads to the
identity W (k, k′) = W (k′, k). The transition probability follows from Fermi’s golden rule.
The electron-phonon matrix elements then yield the probability

W (k, k′) = 2πZv2|k − k′|Ik,k′ (4.29)

where Z denotes the dimensionless coupling parameter and Ik,k′ the (squared) dimension-
less overlap integral. It is interesting to note, that the overlap integral

Ik,k′ = Ik′,k =

∣∣∣∣l2B ∫ Φ

0

dξY †k′(ξ)Yk(ξ)

∣∣∣∣2 (4.30)

becomes equal to 1 for normalized eigenfunctions with k = ±k′. This is allowed, since
the radial eigenfunctions depend only on k2 within the mass term. The dimensionless
electron-phonon coupling matrix parameter

Z =
g2

0(1− 2ν)2

2π~R2ρMcLv2
(4.31)

is equivalent to the parameter in the TI nanowire. A TaAs nanowire with 20 nm radius
and a mass density of 10 g/cm3 is expected to have a coupling parameter of an order of
magnitude Z ∼ 10−8 which follows from a phonon velocity of cL ≈ 2000 m/s that corre-
sponds to cL/v ∼ 0.01.
The linearized Boltzmann equation can be solved by expressing Eq.(4.27) as the varia-
tional derivative of an auxiliary functional to find the function g(εk) where εk = E(kj)
implies the energy for given angular momentum j. The function g(εk) = g is assumed
to be constant, as this is expected to be the case for scattering with low-energy phonons
(s.Sec.2.7). The variational ansatz then yields the function

g =
C

A
where (4.32)

C =

∫
dk

2π
v2
k

(
−∂nF (εk)

∂εk

)
A =

1

2T

∫
dk

2π

dk′

2π
D(k′, k)(vk′ − vk)2

∑
ν=±

δ(εk − εk′ − νωk−k′)
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characterizing the coupling in the resistivity

1

ρj
= e2

∫
dk

2π
v2
k

(
−∂nF (εk)

∂εk

)
g(εk) (4.33)

which is the only solution of the Boltzmann equation above, due to the setup. A WSM
nanowire has two different shapes of bands, a two-valley band and a single-valley band.
Similar to the TI surface state, the single valley band has one local extremum at k = 0
and a single pair of Fermi points k = ±kF . The two-valley band has up to two local
extrema at m ≈ 0 occuring from the regular (with two minima) or inverted (with two
maxima) mexican hat shape. The chemical potential defines, whether zero, one or two
pairs of Fermi points exist. If the two-valley band reaches the chemical potential at its
minima or maxima at k = 0, it will also provide only one pair of Fermi points.

4.2.3 Resistivity

The phonon-induced resistivity is characterized by the scattering processes. Moreover, the
number of scattering processes increases with the number of Fermi points. The number
of Fermi points includes all the bands that intersect the Fermi energy and also, how often
they intersect. This section discusses the resistivity regarding one or two pairs of Fermi
points. Although Sec.4.3.1 will show that the conductance increases faster by a two-valley
band with two Fermi point pairs than a band with one Fermi point pair, it provides more
Fermi momenta with more scattering processes. Below, the resistivity of a band with one
pair of Fermi momenta will be discussed, first.

One pair of Fermi points

A single pair of Fermi points can for instance occur from a parabolic band as represented
in Fig.4.4. The Fermi points are denoted by k = ±kF where kF > 0. In low-energy theory,
one considers acoustic phonons with low excitation energies. Hence, they are significantly
smaller than the electron energies. The electron energies at the Fermi points lie near the
Fermi energy µ = εk=±kF . The group velocity at those points then yields vF = |∂kεk=kF |.
Solving the integrals in order to obtain the coupling constant g, one can linearize the
energy dispersions, since the δ-function implies, that scattering takes place close to the
Fermi energy according to the low-energy phonons. Thus, one finds k → ±kF . How-
ever, close to the extremum or extrema - depending on the band shape - the linearized
model becomes inappropriate. Nonetheless, solving the Boltzmann equation without lin-
earization is quite difficult and Eq.(4.24) states, that diverging resistivity contributes only
negligibly small to the total resistivity.
Proceeding as in Ref. [90], the coefficient A in Eq.(4.32) is given by

A =
1

2T

∫
dεdε′

∫ ∞
0

dωF (ε, ε′, ω)
ωnF (εk)nF (εk′)

|e−β(εk−µ) − e−β(εk′−µ)|
∑
ν=±

δ(ε− ε′ − νω) (4.34)

F (ε, ε′, ω) =
1

ω

∫
dk

2π

dk′

2π
W (k′, k)(vk′ − vk)2δ(ε− εk)δ(ε′ − εk′)δ(ω − ωk−k′)

where F (ε, ε′, ω) is an auxiliary function. As mentioned above, low-energy theory implies
acoustic phonons with low excitation energies confining the electron energies near Fermi
energy. Hence, for a single pair, one finds the momenta k = skF + k̃ and k′ = s′kF + k̃′
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defining the initial and final states where s, s′ = ± defines whether the momentum is
positive or negative and k̃ is much smaller than the Fermi momentum. Thus, one can
linearize the energy dispersion around the chemical potential lying at the Fermi energy, i.e.
ε±kF+k̃ ' µ±vF k̃. Similar to the topological insulator surface state, the forwardscattering
with s′ = s is suppressed, since the scattering electrons have nearly the same group
velocity, i.e. (vk′ − vk)

2 ∝ (k̃ − k̃′). However, backscattering takes place between the
momenta −k′ and k, where s′ = −s. Linearization of the energy implies that vk ' svF .
This is valid as long as the Fermi points are not close to the band bottom. Also changing
α, a flat band can for instance become a two-valley band and linearization does not hold
anymore. In such cases, resistivity contributions diverge. Nonetheless, the total resistivity
holds, if linearization holds for other bands, since the contributions add up with 1/ρj and
diverging resistivity contributions are negligible. The momentum k appears only in the
mass termmk with an order ofO(k2). Thus, the overlap integrals Ik,−k and I−k,k are equal.
Furthermore, the normalization of the radial part of the wave function yields also the same
result as the overlap integrals. Therefore, the overlap integrals yield Ik,−k = I−k,k = 1.
Hence, the transition probability is

Wbs ≈ W (kF ,−kF ) = W (−kF , kF ) = 4πZv2kF (4.35)

and moreover, the auxiliary function yields

F (ε, ε′, ω) ' 4Zv2

πcL
δ(ω − 2cLkF ) . (4.36)

According to Ref. [90], the integral in A leads to∑
ν=±

∫
dεdε′

nF (εk)nF (εk′)

|e−β(εk−µ) − e−β(εk′−µ)|
δ(ε− ε′ − νω) =

ω

cosh(βω)− 1
=

ω

2 sinh2(βω
2

)
(4.37)

and one obtains the ratio A/C with

A ' 4kF
π
Zv2

TBG
2T

sinh2
(
TBG
2T

) =
4kF
π
Zv2F(TBG/T ) (4.38)

and C =' vF/π. The Bloch-Grüneisen temperature describes the temperature regime
where acoustic phonon interaction arises. In the case of one Fermi point pair intersecting
the Fermi momentum, one finds TBG = 2cLkF , similar to the TI nanowire. This means
that an energy 2cLkF is necessary for backscattering of an electron by a phonon. The
Bloch-Grüneisen temperature is scaled around TBG ∼ 10 K for a WSM made of TaAs.
The resistivity for given angular momentum follows from Eq.(4.33)

ρj '
π~
e2vF

A

C
. (4.39)

Rescaling the resistivity with ρ0 = (h/e2)Zb, one finds the resistivity for a single pair of
Fermi points

ρj
ρ0

=
2kF
b

v2

v2
F

F(TBG/T ) (4.40)

which is similar to the result of the TI nanowire. However, the difference lies within
the dependence on angular momentum j which determines kF ,vF and thus the Bloch-
Grüneisen temperature. Analog to the TI nanowire, the limits of the resistivity ρj are
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Figure 4.4: Scattering processes in a WSM nanowire. Left: Single pair of Fermi points
with 2kF -backscattering between them. Right: Two pairs of Fermi points. The scattering
processes of a two-valley band are described below.Adapted from Ref. [78].

given by an exponential suppression for very low temperatures, for instance ρj ∝ e−TBG/T

with T � TBG. At high temperatures with T � TBG, one finds a linear dependence, i.e.
ρj ∝ T .

A single pair of Fermi points can only yield backscattering processes between these two
momenta. In the following, the scattering between four momenta will be discussed. Fur-
thermore, the Boltzmann theory will show that the approach in Ref. [33] and [67] does
not hold anymore.

Two pairs of Fermi points

A two-valley band provides up to two pairs of Fermi points. Moreover, two pairs of Fermi
points yield more scattering processes which can contribute to the resistivity of one chan-
nel. The model implies that the Fermi energy is set on a two-valley band such that it
intersects the Fermi energy four times. The two pairs of Fermi points are set at k = ±kγ=±
where k+ is the momentum on the outside, i.e. 0 < k− < k+. The corresponding group
velocities vs,γ = sγvγ yield opposite signs s = ± for the momenta k− and k+. The Fermi
velocity is given by vγ = |∂kεk=kγ |. Fig.4.4 represents the scattering processes of a two-
valley band providing two pairs of Fermi points:

• Inter-node backscattering: Similar to the case, where only one pair of Fermi
points exists, one has inter-node backscattering processes between momenta kγ ↔
−kγ. Here, one has two pairs, where theses processes takes place with a phonon mo-
mentum of 2kγ. In the following, k ∼ kγ and k′ ∼ −kγ for inter-node backscattering
("inter-bs").

• Intra-node backscattering: The Weyl nodes appear as two local extrema of
the band. Scattering between the momenta of each of these nodes, for instance
k−γ ↔ kγ, is possible, if the chemical potential is set properly. As Fig.4.4 shows,
the momentum between the Fermi momenta k ∼ sk+ and k′ ∼ sk− of each node is
smaller than 2kγ. This implies, that intra-node backscattering ("intra-bs") becomes
significant for low-temperatures.
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• Inter-node forwardscattering: In the previous case forwardscattering processes
were forbidden since the states were topologically protected. However, forwardscat-
tering can now take place between a momentum k ∼ skγ and k′ ∼ −sk−γ , since
the momenta yield an overlap of the states. Even though the contributions can be
rather small, the different velocities v+ 6= v− are responsible that forward scattering
contributions to the resistivity.

Hence, a two-valley band that intersects the chemical potential such that two pairs of
Fermi momenta exist allows for the scattering processes that are described above. The
Fermi momenta are located at k = ±kγ, where γ = ±, has the corresponding group
velocities vs,γ = sγvγ with s = ± due to the symmetry of the energy dispersion. The Fermi
velocities v+ and v− are considered to be positive. The linearized dispersion provides that
the auxiliary function F (ε, ε′, ω) composes of these scattering processes, i.e. F (ε, ε′, ω) '
Finter-bs + Fintra-bs + Finter-fs where k ≈ skγ. The inter-node backscattering process yields
similar results to the case, where only one pair of Fermi points exists

Finter-bs '
4Zv2

πcL

∑
γ=±

δ(ω − 2cLkγ) (4.41)

and includes a sum over both scattering processes. Intra-node backscattering and inter-
node forward scattering depend on k+ and k−. This implies that the overlap integral is
not equal to the normalization anymore. However, the k-dependence of the eigenstate
allows that Ik+,−k− = Ik+,k− . Furthermore, one obtains the auxiliary functions

Fintra-bs '
2Zv2

πcL

(v+ + v−)2

v+v−
Ik+,k−δ(ω − 2cL|k+ − k−|) (4.42)

Finter-fs '
2Zv2

πcL

(v+ − v−)2

v+v−
Ik+,k−δ(ω − 2cL|k+ + k−|) . (4.43)

The sum over all processes of the auxiliary function implies a sum over A, i.e. A '
Ainter-bs+Aintra-bs+Ainter-fs. Analog to the crossing of a singe pair, the inter-node backscat-
tering has a Bloch-Grüneisen temperature of T (γ)

inter-bs = 2cLkγ for the scattering between
each pair with kγ. Hence, Ainter-bs yields

Ainter-bs '
4

π
Zv2

∑
γ=±

kγF
(
T

(γ)
inter-bs/T

)
. (4.44)

The difference between a single pair of Fermi points appears already here. The ratio A/C
with C ' (v+ + v−)/π does not yield the previous result. Instead, the sum over the
momenta implies that the resistivity contribution from inter-node backscattering is com-
posed by the scattering between both momenta. The intra-node backscattering processes
and the inter-node forward scattering processes provide

Aintra-bs '
1

π
Zv2 (v+ + v−)2

v+v−
(k+ − k−)Ik+,k−F (Tintra-bs/T ) (4.45)

Ainter-fs '
1

π
Zv2 (v+ − v−)2

v+v−
(k+ + k−)Ik+,k−F (Tinter-fs/T ) (4.46)

with Bloch-Grüneisen temperatures Tintra-bs = cL(k+ − k−) and Tinter-fs = cL(k+ + k−)
respectively. The resistivity of each channel is then given by a sum over all the scattering
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processes ρj = ρinter-bs + ρintra-bs + ρinter-fs where each contribution is given by

ρinter-bs

ρ0

=
∑
γ

2kγ
b

v2

(v+ + v−)2
F
(
T

(γ)
inter-bs/T

)
(4.47)

ρintra-bs

ρ0

=
k+ − k−

b
Ik+,k−

v2

2v+v−
F (Tintra-bs/T ) (4.48)

ρinter-fs

ρ0

=
k+ + k−

b
Ik+,k−

(
v+ − v−
v+ + v−

)2
v2

2v+v−
F (Tinter-fs/T ) (4.49)

where ρ0 is the resistivity scale given above Eq.(4.40). Focusing again on the resistivity
contribution by inter-node backscattering ρinter-bs, one observes that the final resistiv-
ity contribution also depends on the combined contributions of the backscattering pro-
cesses. Therefore, Matthiessen’s rule does not hold in this case due to the overall factor
1/(v+ + v−)2. Each channel provides a contribution ρj for a given angular momentum
j affecting each scattering contribution involving the Fermi momenta k± and the cor-
responding Fermi velocities v±. Thus, also the Bloch-Grüneisen temperatures and the
overlap integrals vary in each channel. Eq.(4.24) implies that the dominant contribu-
tions to the total resistivity are given by the smallest ρj. Hence, the largest contribution
within this channel yields the dominant term. For very small temperatures the contri-
bution (k+ − k−) needs the smallest phonon energy and thus dominates the resistivity
contribution. In general the contribution for T � TbBG is given by ρj ∝ e−TbBG/T where
the TbBG describes one of the Bloch-Grüneisen temperatures above. At high temperature
T � TbBG, one recovers the linear T -dependence.

In contrast to the TI nanowire where only one pair contributes to the resistivity, the
crossing of two Fermi momenta pairs in the WSM represents more scattering processes.
The intra-node backscattering arises already at very low temperatures. The following
section discusses the results of the two-terminal conductance at zero temperature and the
phonon-induced resistivity. In both cases the effect of two crossing momenta is present
and also the magnetic field is responsible for changes in transport.

4.3 Transport properties
Transport in nanowires is of large interest within this thesis, since the scattering of elec-
trons by emission or absorption of a phonon, can affect the conductance. This section
discusses the two-terminal conductance at zero temperature where phonon interaction is
not present. In a WSM nanowire, this involves both type of bands, single- and two-valley
bands. In the limit of zero temperature, the conductance increases with each channel
that intersects the Fermi energy. Thus, the number of intersections of the Fermi energy
sets the conductance. Away from zero temperature, scattering processes take place, as
described in Sec.4.2.3. The model in Sec.4.2.3 is used to describe the resistivity at given
temperature and for different parameterized angle α and chemical potential µ.
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Figure 4.5: Two-terminal conductance G0 in dependence of the magnetic flux Φ. G0 is
given in units of conductance quantum at zero temperature. The magnetic flux depen-
dence is represented for chemical potential set at zero and −π/4 ≤ α ≤ 3π/8 as well as
α = π/4 and −0.2vb ≤ µ ≤ 0.2vb. Adapted from Ref. [78].

4.3.1 Zero-temperature conductance

In the limit of zero-temperature, the two-terminal conductance is not affected by phonon
interaction since they remain frozen. The setup considers no disorder. Moreover, the setup
responds to the Landauer-Büttiker formalism implying that the contacts connecting the
nanowire to the source and drain electrodes are perfectly adiabatic [185]. As shown in
Fig.4.1-4.2, number of contributing channels depends on the chemical potential µ, the
magnetic flux Φ and the boundary angle α. Thus, it can be denoted as N = N(µ,Φ, α).
Since the bands are symmetric in k, the number of contributing channels equals the
number of positive momenta intersecting the chemical potential. Similar to Ref. [24–26]
that have been discussed in Sec.2.4.3, the conductance can be obtained by

G0(µ,Φ, α) = N
e2

h
. (4.50)

The two-terminal conductance is shown in Fig.4.5 in dependence of the magnetic flux
and the chemical potential. As the magnetic flux increases, the number of crossing bands
varies in steps. As one band starts intersecting the Fermi energy, the conductance G0

increases either with a step of ∆G0 = +e2/h, if the band intersects with one pair of
Fermi momenta, or a step of ∆G0 = +2e2/h, if the band intersects with two pairs. If a
band leaves the chemical potential and does not intersect the Fermi energy anymore, the
conductance decreases with ∆G0 = −e2/h in case of one pair and ∆G0 = −2e2/h in case
of Fermi point pairs.

Especially for α ≤ 0 in the left panel of Fig.4.5, one observes that the conductance in-
creases in periods of magnetic flux step ∆Φ ≈ 1. It was shown before in Eq.(4.18) that
the Aharonov-Bohm effect provides a phase shift j → j + Φ of the Fermi arc disper-
sion. A shift of the magnetic flux by Φ → Φ + 1 then yields the following subband.
As Φ increases for α ≤ 0, the band structure is dominated by surface states at µ = 0.
Hence, the conductance increases by one conductance quantum approximately once the
magnetic flux increases by one unit. Aharonov-Bohm oscillations have also appeared in
Dirac semimetal nanowires made of Cd3As2 where a magnetic field breaks T -symmetry

72



4.3. TRANSPORT PROPERTIES

Figure 4.6: Two-terminal conductance G0 in dependence of the chemical potential µ in
units of vb. G0 is given in units of conductance quantum at zero temperature and zero
magnetic flux, i.e. Φ = 0. The dependence of the chemical potential is presented for
values of −π/4 ≤ α ≤ π/4. Adapted from Ref. [78].

and splits the Dirac node into Weyl nodes [160,161].
Since the boundary angle α changes the shape of the Fermi arc, it determines whether
a band contributes to the conductance. The effects are represented in the left panel of
Fig.4.5. For α ≤ 0, the bands with negative angular momentum obey single-valley bands
with negative angular momentum and thus increasing the magnetic field, the bands in-
tersecting the chemical potential at µ = 0 contribute with one pair of Fermi points. This
is represented in Fig.4.2 (a) for α = 0. For α > 0 the band structure composes of single-
valley bands with positive angular momentum intersecting the chemical potential at zero
magnetic field. One observes in Fig.4.2 (b) that increasing the magnetic field shifts these
single-valley bands away from µ = 0 and two-valley bands with negative angular momen-
tum reach the chemical potential contributing with two pairs of Fermi points. Moreover,
the steps are non-monotonic, since a two-valley band can also contribute with only one
pair of Fermi points, if the chemical potential is away from the local minimum or maxi-
mum at k = 0. This leads to a drop by ∆G0 = −e2/h. The band structure in a cylindrical
WSM is very different compared to the infinite WSM case, where the lowest chiral Landau
level in principle implies a negative magnetoresistance. However, the left panel of Fig.4.5
represents that for 0 ≤ α < π/2 a minimum of magnetoconductance Φ ≈ ξmin(α) exists.
This minimum follows from surface states dominating the regime for small energies and
allows for the empirical relation α ' 0.28ξmin − 0.01ξmin between the boundary angle α
and the magnetic flux. This connection follows from the fit of a third-order polynomial
function onto the conductance. It implies that the minimum of the magnetoconductance
contains information about the boundary angle α. Since α cannot be directly estimated,
the connection to the minimum of the magnetoconductance can reveal some information
about it.

The right panel of Fig.4.5 shows the dependence on the chemical potential for α = π/4.
In Fig.4.2 (b) one observes that for the given chemical potentials only single-valley bands
with positive angular momentum exist at Φ = 0. These bands shift away as the magnetic
field increases. For a certain magnetic flux, the conductance increases by ∆G0 = +2e2/h
as a two-valley band is reached.
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Figure 4.7: Magnetoresistivity (solid black curve) and number of Fermi point pairs (red
dashed line) in dependence of boundary angle α for magnetic flux Φ = 1/2 (left panel)
and Φ = 2 (right panel). The other parameters are estimated as follows, T = 0.1cLb,
µ = 0, Rb = 10 and cL = 0.01v. For Φ = 2 one observes that the number of bands
increases and decreases for α . π/8. This case is describes in detail below. Note that the
resistivity is given in logarithmic scale. Adapted from Ref. [78].

In agreement with Ref. [24], the conductance increases in steps of ∆G0 = +e2/h for small
varying chemical potential at α = 0 as shown in Fig.4.6. For µ & 0.35vb, the steps
increase faster, as the two-valley bands are reached. The conductance is zero for µ = 0
where no bands intersect the chemical potential within a gap of ∼ v/R and increases
again for chemical potential µ < 0, where the chemical potential reaches the following
bands. For α 6= 0, one finds that at µ = 0 the conductance is nonzero. Nonetheless, the
conductance has a minimum.
This section has shown that the magnetoconductance shows interesting features for the
WSM band structure. On the one hand the band shapes contribute in different ways.
On the other hand the magnetic flux shifts the bands in relation with the boundary
angle which determines the band shape of Fermi arc states (s.Eq.(4.18)). So far, phonon
interaction has been suppressed at zero temperature. The following section discusses the
phonon-induced magnetoresistivity that arises at nonzero temperature.

4.3.2 Phonon-induced resistivity

As yet, the conductance at zero temperature has been addressed. However phonon-
interaction can already arise at low temperatures and induce backscattering processes
that lead to an increase of resistivity. This section addresses the magnetoresistivity that
has been derived in Sec.4.2.3. The resistivity includes the interaction of a longitudinal
phonon mode.
Fig.4.7 shows how the resistivity changes with α. The chemical potential is set at

zero and T = 0.1cLb. One observes that the resistivity decreases as the boundary angle α
approaches π/2. Concurrently, the number of contributing Fermi point pairs increases and
diverges for α→ π/2. According to Fig.4.1, the number diverges since the bands become
degenerate for α = π/2. The increase of the number of Fermi points in general follows
from the boundary angle changing the band shapes such that they start intersecting the
chemical potential. Hence, the resistivity in the left panel diverges for α → 0 where
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Figure 4.8: Magnetoresistivity (solid black curve) and number of Fermi point pairs (red
dashed line) in dependence of the magnetic flux Φ for boundary angle α = π/4 and
chemical potential µ = 0 (left panel) and µ = 0.1vb (right panel). The other parameters
are estimated as follows, T = 0.1cLb, Rb = 10 and cL = 0.01v. Adapted from Ref. [78].

no bands intersect the chemical potential (s.Fig.4.2 (a)). As the first band enters the
chemical potential, the resistivity is still very large since the Fermi velocity is close to
zero. Nonetheless, since the total resistivity sums over the inverse of the contribution of
each angular momentum, the total resistivity decreases as soon as the Fermi velocities are
large enough. The right panel refers to a more difficult band structure for Φ = 2. Around
α ≈ π/8, the resistivity does not only diverge but it has also a steep increase. Beyond
α ≈ π/8 the resistivity behaves similar to the resistivity for Φ = 1/2, where only bands
with one pair of Fermi points contribute. For α = 0, one observes in Fig.4.2 (a) that the
j = −1/2 and j = −3/2 flat bands intersect with one pair of Fermi points. Increasing
the boundary angle to α ' π/16 the band shape changes and the j = −1/2 becomes a
two-valley band that intersects with two pairs of Fermi points. This leads to the sudden
increase in resistivity since more scattering processes can occur. Furthermore, the intra-
node backscattering processes have a large contribution in this temperature regime. As
α approaches π/8, the j = −1/2 leaves the chemical potential and no band contributes
until the positive angular momenta fall underneath the chemical potential.

For the two-terminal conductance and the band structure, one observes that the magnetic
flux shifts the bands and thus affects the number of Fermi point pairs. The left panel of
Fig.4.8 represents the resistivity for µ = 0. The resistivity increases until Φ ≈ 4 where it
drops until Φ ≈ 5.5 and increases again as it reaches Φ = 6. The first increase appears in
the regime where two-valley bands intersect the chemical potential as shown in Fig.4.2.
Hence, again the intra-node backscattering has a significant impact. The drop occurs
when the number of Fermi points decreases by one point pair that follows from the lowest
subband with positive angular momentum leaving the chemical potential. However, being
in the regime with two-valley bands, one observes the abrupt decrease at Φ ≈ 6 where
the number of Fermi points decreases by one. Since a two-valley band can also contribute
with one pair of Fermi momenta, it suddenly contributes with a lower resistivity. More-
over, Eq.(4.24) determines that the channel with the smallest resistivity dominates. Thus,
the drop follows from the j = −1/2 subband having only one pair of Fermi points. The
other panel shows µ = 0.1vb. Since the chemical potential is now shifted upwards, more
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Figure 4.9: Magnetoresistivity (solid black curve) and number of Fermi point pairs (red
dashed line) in dependence of the chemical potential µ in units of vb for boundary angle
α = π/4 and magnetic flux Φ = 2 (left panel) and Φ = 4 (right panel). The other
parameters are estimated as follows, T = 0.1cLb, Rb = 10 and cL = 0.01v. Adapted from
Ref. [78].

bands with positive angular momentum intersect the chemical potential at Φ = 0. As the
magnetic flux shifts the band structure, this drop occurs at a larger Φ.
Changing the chemical potential determines how many bands contribute to the resistiv-
ity. From Fig.4.9, one follows that for Φ = 2 the resistivity has a small increase and then
decreases smoothly within the regime of µ. The small increase is due to two-valley bands
contributing with two pairs of Fermi points. The resistivity decreases the more bands
with one pair of Fermi points intersect the chemical potential. The right panel represents
the resistivity at Φ = 4. It behaves similar to the resistivity at Φ = 2 as µ decreases until
µ ≈ 0.05vb. Then it increases as a two-valley band enters the chemical potential with
two pairs of Fermi points. At a critical value of µc ' −0.136vb the lowest subband with
negative angular momentum j = −1/2 has its local minimum well above the chemical
potential only intersecting with one pair of Fermi points. To get a better understanding
about the abrupt change at the critical chemical potential, App.C.3 represents the Toy
model with a simplified dispersion following Ref. [78]. Since the intra-node backscattering
is absent for µ < µc, the large contribution by phonon backscattering to the resistivity is
not given anymore. Hence, the resistivity of one subband is larger, if the Bloch-Grüneisen
temperature is determined by TBG = cL(k+ − k−) for low temperatures. As the chemi-
cal potential approaches the critical value the local minimum of the subband leaves the
chemical potential. The linearization, however, does not hold for v− → 0. This leads to
the sudden change in resistivity.
As already mentioned before, the temperature defines the scale of the resistivity. Fig.4.10
represents the temperature dependence for Φ = 0, 1 and 4 at zero chemical potential and
boundary angle α = π/4. At high temperatures, for instance T � 2cLb, one observes the
expected linear temperature dependence. According to Fig.4.8, the small temperature
resistivity is larger for Φ = 4 than the other values due to intra-node backscattering pro-
cesses. This feature is also observable in Fig.4.10. Furthermore, the decay of resistivity is
exponential as the temperature approaches zero and no phonon-interactions take place.
Hence, the resistivity of a WSM nanowire depends very much on the magnetic flux Φ and
the boundary angle α. For instance, the angle α changes the curvature of the Fermi arc
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Figure 4.10: Magnetoresistivity in dependence of temperature T in units of Tb = 2cLb for
boundary angle α = π/4 and different values of magnetic flux with double-logarithmic
scale. The other parameters are estimated as follows, µ = 0, Rb = 10 and cL = 0.01v.
Adapted from Ref. [78].

and therefore, it can fall below the chemical potential. The magnetic flux shifts the band
structure and provides that certain bands contribute to the resistivity. At low temper-
ature, the resistivity then obtains a large increase, if intra-node backscattering becomes
possible. This step is smears out for large temperatures.

4.4 Summary
This section has shown that the diverse band structure of a WSM nanowire represents
very different features in transport properties compared to the TI nanowire. The setup
involved a P-symmetric WSM nanowire with a magnetic flux piercing the wire in direc-
tion parallel to the wire length. The band structure of a WSM nanowire depends on the
magnetic flux. In case of Fermi arc states, it acts as a shift on the angular momentum j.
An important aspect is that the curvature of the Fermi arcs is defined within the bound-
ary condition by the angle α. This boundary angle ensures momentum conservation at
the boundary [38].
Phonon-interaction at low-temperatures follows from longitudinal acoustic phonons as-
suming that the nanowire lies on a substrate. Electron-phonon coupling then follows
from deformation potential coupling similar to the TI nanowire. This setup allows taking
into account only longitudinal phonons with zero angular momentum. One expects the
other modes to be gapped since the substrate reduces the deformations [66]. The study
of the interaction with other phonon modes involves also other scattering processes. The
scattering between the subbands then becomes possible, if the angular momentum is dif-
ferent from zero. Further, one can extend the model including a T -symmetric WSM.
A T -symmetric WSM would have at least four Weyl nodes and possibly allow for more
scattering processes. Both of this, however, is left for future work.
The consequences of the WSM band structure on transport properties already appeared in
the zero temperature magnetoconductance. The zero temperature magnetoconductance
increases or decreases in steps of ∆G0 = ±e2/h or ∆G0 = ±2e2/h depending on the
number of Fermi points that are added or removed from the chemical potential. This
is quite different to the case of semiconductor wires [33]. Moreover, one finds a strong
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dependence on the parameterized boundary condition that changes the behavior. The
number of Fermi points itself depends on number of subbands with angular momentum
j. The boundary angle changes the curvature of the Fermi arcs and thus provides that
they intersect the chemical potential. The magnetic flux shifts the band structure which
leads to different bands contributing to the conductance. The magnetoconductance also
presents a relation between the magnetic flux and the boundary angle.
The scattering processes induced by phonon interaction depend on how many Fermi mo-
menta are given by one band. A band with one pair will act similar to the surface state of
a TI nanowire. The total resistivity then depends on the sum over the inverse contribution
of each channel since in a WSM more than one band can contribute. A two-valley band
can intersect the chemical potential with up to two pairs of Fermi points. This allows for
more scattering processes including intra-node scattering which at low temperatures leads
to a large increase in resistivity. However, disorder effects have been absent in this study
which are also present at low-temperatures and have been investigated without magnetic
field so far [157]. Furthermore, the study on effects of the Zeeman field is relevant for a
better comparison between the experiments and the theoretical model.
Thus, it was shown that the band structure in a WSM nanowire allows for very interesting
features. The effects of the magnetic field have been studied for a magnetic field that is
parallel to the wire axis and the Weyl nodes are separated in this direction as well. In chap-
ter 2, the Weyl node separation perpendicular to the wire axis has been introduced [26].
Such a case can in principle not be solved without generalizing the model unless one as-
sumes small perturbations. Moreover, the studied WSM is a type-I WSM. Type-II WSM
materials have a tilted Weyl which show analogies to black hole physics [186]. Further-
more, pseudo-magnetic effects provide an interesting study according to their differences
compared to electromagnetic fields [187].
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Chapter 5

Summary and Outlook

This chapter presents a summary of this thesis beginning with the two materials, three
dimensional topological insulators and Weyl semimetals, and their topological nature.
Furthermore, it outlines the important results of phonon-induced backscattering and the
magnetoresistance.

Topological insulators and Weyl semimetals were both introduced in chapter 2 as mate-
rials with topological nature. Quantized Hall conductance can be treated as an analogy
to the Chern-number in materials. In topology the homotopy groups describe continuous
deformations. This idea can be utilized to describe the mapping of a Bloch Hamiltonian
in condensed matter physics. The quantum Hall effect requires a broken time-reversal
symmetry that can for instance be given by a magnetic field. However, there exist also
states that are time-reversal invariant and still considered topological, i.e. the quantum
spin Hall state. The topology in such cases follows from spin-orbit interactions character-
ized by the Z2 topological invariant in a two dimensional topological insulator. In a three
dimensional topological insulator four Z2 topological invariants determine the topology
of the material. The topological semimetal has a topological invariant connected to the
Berry curvature which is a topological quantity. The required broken symmetry within
a three dimensional topological insulator films leads to the two dimensional quantum
anomalous Hall effect. The anomalous Hall conductivity can be treated as critical point
between ordinary and topological insulators.
Furthermore, chapter 2 focused on the materials and the transport properties of the
topological insulators and Weyl semimetals. The three dimensional topological insula-
tor, Bi2Se3, provides crystal symmetries. These are time-reversal symmetry, inversion
symmetry as well as two- and threefold rotation symmetry. Moreover, the symmetries
combined with spin-orbit interaction provide a single Dirac cone at the Γ-point that can
be observed in ARPES measurements. The band structure well is approximated by a
4×4-Dirac Hamiltonian and describes gapped bulk bands and a conducting surface state.
In Weyl semimetals, one observes Fermi arc surface states. These are an assembly of sur-
face states at given Fermi energy connecting the Weyl nodes in the surface Brillouin zone.
Weyl semimetals require a broken symmetry that splits the Weyl nodes apart. Their band
structure consists of conducting surface and bulk states at the same time. Among several
candidates, the Fermi arcs were observed in TaAs, first.

In chapter 3, the resistivity in a topological insulator nanowire was discussed. The topo-
logical insulator is a topological phase that provides conducting surface states while im-
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posing a gapped bulk. The surface states in a topological insulator nanowire become
topologically protected for half-integer flux. The model discussed in chapter 3 included
electron-electron interaction within the bosonized Hamiltonian and electron-phonon in-
teraction induced by acoustic phonons [67]. The phase diagram of the three dimensional
topological insulator nanowires HgTe and Bi2Te3 presented orders of spin-density waves
and superconducting phases. The conductivity at half-integer flux presented no effects of
the interactions. However, if the flux is slightly away from half-integer, resistivity contri-
butions follow from phonon-induced backscattering.

Chapter 4 presented the transport properties in a Weyl semimetal nanowire. The band
structure of the Weyl semimetal nanowire followed from the parametrized boundary con-
dition which ensured momentum conservation at the boundary. This allowed studying
different curvatures of the Fermi arc. In agreement with previous work, the flat-bands
were determined and the magnetoconductance showed similar behavior. Moreover, for
different shapes of the Fermi arc dispersion, the magnetoconductance responded with dif-
ferent increase or decrease of conductance in steps of conductance quanta. Finally, the
magnetoresistivity that followed from phonon-interaction as well, showed also different
behavior depending on the shape of the contributing bands. Moreover, in contrast to the
topological insulator nanowire, bands with two local extrema provided the possibility of
more scattering processes.

In summary, this thesis discussed the effects of electron-phonon interaction in two dif-
ferent materials. Focusing on the topological insulator nanowire first, it was shown that
given the half-integer magnetic flux that protects the surface state, the conductivity is not
affected by electron-electron or electron-phonon interaction. The study of finite magnetic
flux including electron-electron interaction is left for future work. The phase diagram
showed that superconducting phases and spin density waves. The aspect that supercon-
ducting phases were still observable provides a promising basis for the Majorana bound
states, for instance by proximity induced superconductivity implying a topological insula-
tor nanowire on an s-wave superconductor. Regarding the Weyl semimetals, the conduc-
tance showed a connection between the Fermi arc curvature and the magnetic field which
could allow gaining information about the curvature defining angle. Moreover, the mag-
netoresistivity can also be affected by other modes, if the wire is not setup on substrate
that prevents other deformations. Further, the effects of the Zeeman fields are of inter-
est for experiments. The studied Weyl semimetal has a broken time-reversal symmetry.
Scattering effects in Weyl semimetals with broken inversion symmetry can be different,
since such a material has at least four Weyl nodes. Furthermore, there exists another
type of Weyl semimetals, the type-II Weyl semimetal, which has a tilted Weyl cone. A
junction of these two types is for instance expected to act in analogy to black holes [186].
Especially the chiral anomaly appearing in Weyl semimetals is expected to show further
interesting features also in tilted Weyl semimetals [188]. In conclusion, these topological
phases have already shown their rich physics and one can expect more interesting research
in this field.
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In the following, the publications included within this thesis are presented. The own
contributions to the research are mentioned below as well.

Phase diagram and phonon-induced backscattering in topological
insulator nanowires, published 3 January 2020 in Physical Review
B

In this paper, the phase diagram of a TI nanowire was established and the effects of
phonon-induced backscattering on transport properties were investigated. My contribu-
tions to this project involved the derivation of the Green’s function. Therefore, I solved
the Gaussian functional integral estimated the electron-phonon coupling parameter. Fur-
thermore, I derived the order fluctuations for the topological insulator nanowire and
computed the phase diagram. I was involved in the conductivity derivation by solving
the current-current correlation function at half-integer magnetic flux.

Reference: Kathrin Dorn, Alessandro De Martino, and Reinhold Egger. Phase diagram
and phonon-induced backscattering in topological insulator nanowires. Phys. Rev. B
101.045402 (2020).

Phonon-induced magnetoresistivity of Weyl semimetal nanowires,
published 19 October 2021 in Physical Review B

In this project, the Weyl semimetal band structure of a Weyl semimetal nanowire was es-
tablished and the transport properties were investigated. I determined the parametrized
boundary condition and applied it to the nanowire setup and computed the numerical
band structures. Moreover, I calculated the probability density numerically. The numer-
ical evaluation of the conductance plots was done by me. This includes the dependence
of the conductance on the boundary angle, the magnetic flux and the chemical potential.
Furthermore, I was involved in the numerical implementation of the resistivity plots where
I found the origin of the abrupt resistivity changes.

Reference: Alessandro De Martino, Kathrin Dorn, Francesco Buccheri, and Reinhold
Egger. Phonon-induced magnetoresistivity of Weyl semimetal nanowires. Phys. Rev. B
104, 155425 (2021)
Preprint available on arXiv: https://arxiv.org/abs/2110.05149 .
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Appendix A

Topological insulator

A.1 Parameters in the effective Hamiltonian
The parameters of the effective Hamiltonian describing Bi2Se3 were determined by putting
it in contrast to ab initio calculations. Therefore, the energy spectrum which follows from
the model Hamiltonian was solved and compared with the spectrum obtained by ab initio
calculations. Moreover, the following parameters were established with this method for
Bi2Se3 (s.Ref. [61]) and for Bi2Te3 (s.Ref. [52]).

Parameter Bi2Se3 Bi2Te3

A1 2.2 eVÅ 0.3 eVÅ
A2 4.1 eVÅ 2.87 eVÅ
C −0.0068 eV −0.18 eV

D1 1.3 eVÅ2
6.55 eVÅ2

D2 19.6 eVÅ2
19.6 eVÅ2

M 0.28 eV 0.30 eV

B1 10 eVÅ2
2.79 eVÅ2

B2 56.6 eVÅ2
57.38 eVÅ2

Table A.1: Parameter set for 3DTI of the D5
3d(R3̄m) space group with rhombohedral

crystal structure. Table adapted from Ref. [61] and [52].
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Appendix B

Bessel- and Hypergeometric functions

B.1 Identities of Bessel functions
The following identities of Bessel functions have been used throughout this thesis [131,
178]:

Definition

The Bessel’s equation is given by

0 = z2d
2u

dz2
+ z

du

dz
+ s(z2 − sn2)u (B.1)

where s = + corresponds to the Bessel’s equation and leads to the solution of Bessel
functions Jn(z) and Yn(z), while s = − corresponds to the modified Bessel’s equation
and leads to the modified Bessel functions. The Bessel’s equation provides a regular
singularity at the origin and an irregular singularity, if z → ∞. The modified Bessel’s
equation obtains equivalent singularities by setting z → iz. The Bessel function of the
first kind is defined by

Jn(z) =
(z

2

)n ∞∑
m=0

(−1)m

(
z2

4

)m
m!Γ(n+m+ 1)

(B.2)

and the modified Bessel function of the first kind is given by

In(z) =
(z

2

)n ∞∑
m=0

(
z2

4

)m
m!Γ(n+m+ 1)

. (B.3)

Recurrence relations

The following recurrence relations were used:

J ′ν(z) = Jν−1(z)− ν

z
Jν(z) (B.4)

J ′ν(z) = −Jν+1(z) +
ν

z
Jν(z) (B.5)

2J ′ν(z) = Jν−1(z)− Jν+1(z) (B.6)
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(2ν/z)Jν(z) = Jν−1(z) + Jν+1(z) (B.7)

I ′ν(z) = Iν+1(z) +
ν

z
Iν(z) (B.8)

I ′ν(z) = Iν−1(z)− ν

z
Iν(z) (B.9)

Connection between Bessel-functions

The modified Bessel-function is conntected by

Jj±1/2(−iκR) = ij±1/2Ij±1/2(κR) (B.10)

to the Bessel-function of the first kind.

Limits of Bessel-functions

The limit of Bessel functions with large argument is

Iν(z) ≈ ez√
2πz

(
1− 4ν2 − 1

8z

)
(B.11)

and

Jν(z) ≈
√

2

πz
cos
(
z − νπ

2
− π

4

)
. (B.12)

B.2 Identities of the confluent hypergeometric func-
tions

The following identities of the confluent hypergeometric function have been used through-
out this thesis [131,177,178]:

Definition

The confluent hypergeometric equation, or Kummer’s equation, is given by

0 = z
d2u

dz2
+ (b− z)

du

dz
− au (B.13)

with a regular singularity for z → 0 and an irregular singularity for z → ∞. Kummer’s
function follows from the differential equation above

M(a, b, z) =
∞∑
ν=0

(a)ν
(b)νν!

zν (B.14)

where (c)n is Pochhammer’s symbol. The confluent hypergeometric function is also named
Φ(a, b, z) or 1F1(a, b, z).

Derivatives

The following derivatives were applied in this note:

d

dz
M(a, b, z) =

a

b
M(a+ 1, b+ 1, z) (B.15)
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Relation of the solutions of the confluent hypergeometric function

Kummer’s transformation yields

M(a, b, z) = ezM(b− a, b,−z) . (B.16)

The relation between M(a, b, z) and U(a, b, z) is

U(a, b, z) =
π

sin(πb)

[
M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

]
. (B.17)
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Appendix C

Weyl semimetal nanowire

This chapter of the appendix also follows Ref. [78] (preprint s.Ref. [175]) and covers the
derivations of the band structure for α = π/2, the Fermi arc solution and the toy model
mentioned in Sec.4.3.2.

C.1 Band structure for α = π/2 and different limits of
magnetic flux

Among the certain limits of the confluent hypergeometric function, the band structure
for α = π/2 can be computed exactly. Setting α = π/2 leads to the boundary condition
Y−(Φ) = 0. This yields two possible solutions. The first one considers E− = 0 and j > 0
that leads to the radial eigenfunction

Yk,j>0,0(ξ) ∝ ξ
1
2(j− 1

2)eξ/2
(

1
0

)
(C.1)

of a radial band index p = 0. The corresponding energy dispersion relation is given by

Ek,j>0,0 = mk (C.2)

and thus it is equal to the result of the Fermi arc dispersion in Eq.(4.18) at α = π/2. The
dispersion is presented in Fig.4.1. The other bands follow from the zeros of the confluent
hypergeometric function in M(a, j + 3/2; Φ) = 0. The zeros are given by a = aj,p for any
j and p = 1, 2, ... . Therefore, one obtains the energy

Ek,j,±p = ±

√
2Cj,pv2

l2B
+m2

k (C.3)

with Cj>0,p = j+1/2−aj,p where the zeros aj,p correspond to negative numbers. However,
no bands with p = 0 exist for j < 0 and finite radius. Hence, one finds Cj<0,p = −a−(j+1),p

implying that the bands appear pairwise as shown in Fig.4.1.
Considering the limit of small magnetic flux, first, one finds that the dispersion in Eq.(C.2)
remains unchanged, since it does not depend on the radius or the magnetic length. How-
ever, the radial eigenfunction in Eq.(C.1) does depend on the magnetic flux and,thus, it
reduces to

Yk,j>0,0(r) ∝ rj−
1
2

(
1
0

)
(C.4)
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describing degenerate Fermi surface arc states. Eq.(C.3) yields bulk states with dispersion

Ek,j,±p = ±
√(vzj,p

R

)2

+m2
k (C.5)

including the pth zero of the Bessel function of the first kind Jj+1/2(z). The bulk states
correspond to a finite-size quantization of v/R of the energy scale.
Second, in the limit of very large magnetic flux, which is still finite, one finds the bulk
Landau spectrum that is described by Eq.(4.20). The main aspects are presented here as
well. The zeros of the confluent hypergeometric functions yield aj,p → −(p − 1), where
p is an integer leading to the Landau Level spectrum. One observes that the Fermi arc
with j > 0 and p = 0 vanishes for infinite radius. Moreover, an avoided crossing appears
at m = 0 following from the eigenstate Ψk,j<0,±1 with the dispersion E = ±|mk|, since
a = 0 cannot be a solution of M(−p+ 1,−j + 1/2; Φ) = 0. In the limit of infinite radius,
one finds that the positive dispersion vanishes and E = −mk becomes a bulk zero mode.

C.2 Fermi arc dispersion
Following Ref. [78], the Fermi arc dispersion in a WSM nanowire is given by the approx-
imation

Ek,j =
v(j + Φ)

R
cos(α) +mk sin(α) (C.6)

with the condition defining the range

v(j + Φ)

R
sin(α)−mk cos(α) > 0 . (C.7)

Fig.C.1 represents the numerical and analytical Fermi arc dispersions for j = ±1/2 for
α = 0 and α = π/4 with magnetic flux Φ. Although j = −1/2 for a magnetic flux Φ = 1/2,
the approximation fits well. However, for positive angular momenta the approximation
fits better. Moreover, the boundary condition shows that the magnetic field is involved in
the first parameter which differs for positive and negative angular momenta. Regarding
to Eq.(4.19) the approximation deviates from the numerical band structure at the Weyl
nodes. This also stays in agreement with Fig.C.1.

Figure C.1: Fermi arc dispersion relation plotted numerically (solid lines) and analytically
(dashes lines). The bands represent angular momentum j = 1/2 and j = −1/2 for
Φ = 0, 0.5 and 1. The dispersion relation in Eq.(C.6) yields the same result for j = 1/2
at Φ = 0 and for j = −1/2 and Φ = 1. Adapted from Ref. [78].
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C.3 Toy model
For a better understanding of the abrupt changes in the phonon-induced resistivity in
Fig.4.8 and 4.9 this toy model dispersion

εk = −|k2 − 1| (C.8)

is utilized to describe a simple two valley band with v = b = 1. Following Ref. [78] the
model shall represent the case in in Fig.4.9 where the chemical potential is below zero
and is intersected by one pair of Fermi points ±k+ with Fermi velocity v+ for µ < µc. If
µ > µc, two pairs of Fermi points k± intersect the chemical potential. From εk = µ follows
that the Fermi momenta are given by k± =

√
1± |µ| with corresponding Fermi velocity

v± = 2
√

1± |µ|.

Figure C.2: Resistivity of a toy model dispersion for a two-valley band in dependence
of the chemical potential µ in units of vb. The critical chemical potential µc defines the
point, where the number of Fermi point pairs changes between one and two pairs. The
overlap-integral is set Ik+,k− = 0.5. The temperature is given units of Tb = 2cLb. Please
note the logarithmic scale. Adapted from Ref. [78].

The resistivity in Fig.C.2 shows the expected abrupt increase of resistivity at µ = µc ≈ 1 as
µ→ 0. The critical value of the chemical potential determines that k = 0, where the band
has its local minimum. The contribution to the resistivity for µ < µc arises from inter-
node backscattering with a Bloch-Grüneisen scale of TBG = 2cLk+. For µ > µc, intra-node
backscattering processes provide the dominant contribution due to a much smaller Bloch-
Grüneisen temperature TBG = cL(k+−k−). These processes yield a much higher resistivity
than the inter-node backscattering. This difference between the resistivity values results
in the sudden change. Eventually, this jump is a consequence of the transition between
the number of Fermi points.
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