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Abstract

This thesis deals with preference and judgment aggregation in the context of computational
social choice, a subfield of multiagent systems and artificial intelligence. In preference
aggregation, agents (typically called voters) have preferences over a given set of candidates
and the goal is to aggregate ballots derived from these preferences to determine an output
(e.g., a single candidate, a set of candidates, or a linear order over the candidates). In
judgment aggregation, agents (typically called judges) have judgments over a given set of
issues and the goal is to aggregate these judgments into a collective set of judgments.

In the context of multiwinner elections that elect a committee of candidates, this thesis
studies a new type of ballot called `-ballots. In contrast to existing ballot types, `-ballots are
a compromise between ordinal and cardinal ballots. This thesis focuses on the axiomatic
properties of two newly defined types of multiwinner voting rules using these `-ballots as
input, and proposes a generalization of `-ballots to fully cardinal ballots.

Furthermore, this thesis explores the computational complexity of strategic attacks on
voting rules. For several prominent iterative voting rules, i.e., voting rules that proceed in
rounds, it is shown that shift bribery is NP-complete in all considered cases. In the context
of iterative voting, voters are encouraged to repeatedly update their ballots as a reaction to
the current state of the election. This thesis uses a model where voters are connected via
an underlying social network and compute their information about the current state of the
election both by observing their neighbors’ ballots and an opinion poll announced by a
polling agency. This thesis explores the manipulation power of the polling agency for the
voting rules plurality and veto and shows that manipulation is para-NP-hard even for very
restricted social networks and permitted ballot deviations. In particular, the thesis focuses
on distance restrictions for the polling agency in regard to the manipulated opinion poll
and for the voters in regard to their deviations.

Finally, this thesis deals with control in judgment aggregation under various preference
types of the chair where a chair tries to achieve a better outcome by changing the structure
of the aggregation process, e.g., by adding or deleting judges. This thesis shows NP-
completeness for most considered problems for the judgment aggregation procedures
uniform (constant) premise-based quota rules.
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Chapter 1

Introduction

Computational social choice is an interdisciplinary field that encompasses among others
political science, economics, mathematics, and computer science. The aim is to aggregate,
e.g, preferences, opinions, or judgments over a set of, e.g., candidates, items, or issues
to reach a collective outcome. This process of collective decision making is present in
everyday life, be it political elections or choosing a selection of menu items. See the book
edited by Brandt et al. (2016) for an overview on the field of computational social choice,
and the book edited by Endriss (2017) for an outlook on current research directions.

In preference aggregation, the goal is to aggregate voters’ preferences over candidates
to either elect a winning candidate, elect a winning committee, or create a ranking over
the given candidates. Examples include electing a president, electing a parliament, or
creating a ranking over politicians of a party stating in which order the party will assign
them seats in parliament. Well-known contributors to the field of preference aggregation
include, for example, the mathematician Jean-Charles de Borda (1733–1799), the Marquis
de Condorcet (1743–1794), a philosopher and mathematician, and economist and Nobel
laureate Kenneth Arrow (1921–2017). But preference aggregation is not confined to
political elections. Preference aggregation provides models that can be used to describe
and design the decision making process for autonomous (computer) systems, and is of
particular interest to the field of artificial intelligence and multiagent systems. Computer
scientists are not only concerned with combinatorial problems that result from large-
scale applications, but also provide tools to analyze, among others, the suitability of
an aggregation procedure for the given application. Important contributions include the
design of algorithms and the study of computational complexity. The latter deals with
quantifying the amount of time or space a problem takes to solve and provides, for example,
barriers against strategic attacks on aggregation procedures by proving that attacks need
an unfeasible span of time to execute in the worst case. The theory of parameterized
complexity is able to give a more fine-grained analysis than the classical complexity setting
that focuses on worst-case complexity.
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Chapter 1 Introduction

In contrast to preference aggregation, the field of judgment aggregation only emerged quite
recently. Kornhauser and Sager (1986) note that in a court of three judges that have to
decide whether the defendant is guilty, the intuitive approach of aggregating consistent
judgments can lead to an inconsistent collective outcome. The reformulation of this
paradox by Pettit (2001) marked the starting point of a series of impossibility theorems
regarding the incompatibility of desirable axioms for judgment aggregation procedures.
Judgment aggregation generalizes preference aggregation and is able to express various
scenarios in one framework. However, this expressiveness often comes with the toll of a
high computational complexity.

This thesis is organized as follows. Chapter 2 formally introduces complexity theory, pref-
erence aggregation, and judgment aggregation, and provides a short overview of related
work. The following chapters then illustrate my contribution to the field of voting and
judgment aggregation. In multiwinner voting, the goal is to elect a committee of candi-
dates. In this thesis, one focus for multiwinner voting is on the representation of voters’
preferences. Chapter 3 deals with a new type of ballot that generalizes existing models
for representing voters’ preferences and studies the axiomatic properties of corresponding
multiwinner rules. The next chapters deal with strategic attacks on aggregation proce-
dures where an attacker tries to reach a more favorable outcome by interfering with the
aggregation process. Chapter 4 extends the study of shift bribery—a type of attack where
voters are influenced to change their ballots—to iterative voting rules. Chapter 5 proposes
distance-based manipulation problems for iterative elections with polls, where an attacker
can influence the information voters have about the election, and gives parameterized
complexity results. Chapter 6 introduces the concept of control to judgment aggregation
where an attacker is able to change the structure of the judgment aggregation process, for
example by adding or deleting judges, and presents complexity results for various notions
of what constitutes a more favorable outcome. Finally, Chapter 7 concludes the thesis and
provides perspectives for future work in my field.
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Chapter 2

Background and Related Work

This chapter provides the necessary background for the following chapters. Section 2.1
shortly introduces the concept of computational complexity that is used in all following
chapters. Then Section 2.2 gives an overview on preference aggregation. In particular,
Section 2.2.1 deals with singlewinner elections, Section 2.2.2 introduces the concept
of strategic behavior in collective decision making with a focus on preference aggre-
gation, Section 2.2.3 extends singlewinner to multiwinner preference aggregation, and
Section 2.2.4 gives the background for iterative elections. Finally, Section 2.3 introduces
judgment aggregation which generalizes preference aggregation.

2.1 Complexity Theory

Computer science is, among others, concerned with solving problems where problems are
defined by the input they receive and the question (or task) they answer (or execute). An
important factor for a given problem is the question how fast the best algorithm is able to
solve it (i.e., the computational complexity of the problem (Hartmanis and Stearns, 1965)),
and therefore how “hard” the problem is. However, if no fast algorithm for a problem is
known, does that mean that a fast algorithm has just not been discovered yet, or does it not
exist? While the specific running time is dependent on the algorithm, there are upper and
lower bounds for a best algorithm that are due to the nature of the problem. For example,
there are problems that can provably be solved in at most linear time (because there is
an algorithm with that running time), or that are impossible to solve without using an
exponential length of time (and therefore no algorithm can exist that solves the problem
faster), where “linear” and “exponential” are seen in relation to the size of the input. This
thesis mostly uses worst-case (computational) complexity, where the given upper bound
is for the input that takes the most time to solve by a best (i.e., fastest) algorithm for the
given problem. Problems can be grouped in so-called complexity classes depending on the
upper bound for the worst-case input.
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Chapter 2 Background and Related Work

This thesis focuses on decision problems, i.e., problems that ask a yes/no question. For-
mally, a decision problem is a set S of words over the alphabet {0,1},1 where S is
considered to be the set of inputs for which the answer is yes. An algorithm solves S

if—given an input x ∈ {0,1}∗—it always correctly decides whether x ∈ S. An algorithm
is deterministic if for each input, each step the algorithm takes is predetermined by the
previous step, which among others implies that executing the algorithm several times for
the same input always results in the same outcome. In contrast to a deterministic algorithm,
a nondeterministic algorithm can take different steps in executions of the same input. In
particular, a nondeterministic algorithm solves a decision problem S if for a given input x,
at least one series of steps leads to the output ’yes’ if x ∈ S, and the algorithm does not
output ’yes’ for any series of steps if x /∈ S. The complexity class P contains all decision
problems that can be solved in deterministic polynomial time (i.e., can be solved by a
deterministic algorithm in polynomial time), whereas NP contains all decision problems
that can be solved in nondeterministic polynomial time. Alternatively, one can define NP as
the class of decision problems where a solution can be verified in deterministic polynomial
time. Obviously, P is a subset of NP. One of the most prominent open problems in the
field of complexity theory is the question whether P is equal to NP.

Since complexity classes only give upper bounds, but not lower bounds for the problems
contained in them, the actual complexity between the problems in one class can vary. One
idea to compare two problems in terms of complexity is to show that one problem is at least
as hard as the other problem. This thesis uses many-one reducibility for the comparison of
problems.

Definition 2.1 (polynomial-time many-one reducibility). Let A and B be sets of words over
{0,1}. A is polynomial-time many-one reducible to a problem B—denoted by A≤P

m B—if
there exists a polynomial-time computable function f : {0,1}∗→{0,1}∗ so that x ∈ A⇔
f (x) ∈ B for all x ∈ {0,1}∗.

If A≤P
m B, then A can be solved given the input x∈ {0,1}∗ by solving B with the input f (x).

That means that problem B is at least as hard as problem A. Note that ≤P
m is transitive, so

that A≤P
m B and B≤P

m C implies A≤P
m C for all A,B,C ⊆ {0,1}∗.

One goal of complexity theory is to find problems that can be seen as representatives of

1Note that it is always possible to encode words over other, more complex alphabets into words in {0,1}∗.
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2.1 Complexity Theory

their complexity class because they are a member of this complexity class and are at least
as hard to solve as every other member of this class.

Definition 2.2 (hardness and completeness). Let B be a set of words over {0,1}∗ and let
C be a complexity class. B is called C-hard if for all A ∈ C , it holds that A≤P

m B, and
C-complete if B is C-hard and B ∈ C.

Problems in P are called tractable, whereas NP-hard problems are called intractable under
the assumption that P and NP are not equal. Since NP is closed under many-one reducibility,
i.e., A≤P

m B and B ∈ NP implies A ∈ NP, the existence of a deterministic polynomial-
time algorithm for an NP-complete problem would imply deterministic polynomial-time
algorithms for all problems in NP. Building on the work by Cook (1971) who proved for
the first time that a decision problem—namely, deciding whether a given Boolean formula
is satisfiable (SAT for short)—is NP-complete, Karp (1972) proved the NP-completeness
for various other natural decision problems. While intractability is a huge disadvantage for
many problems arising in natural applications, in this thesis it is mostly seen as a positive
aspect in the context of problems that deal with strategic behavior (see Section 2.2.2
for a short introduction). Therefore, the following chapters explore the complexity of
the considered problems in detail. See the book by Garey and Johnson (1979) for an
introduction to NP-completeness and the book by Arora and Barak (2009) for an extensive
introduction to complexity theory in general.

A disadvantage of classical complexity theory is the sole focus on the worst case. A
brute-force search approach does not have to be the best way to find a solution for an
intractable problem. In practice, the worst case might appear rarely so that algorithms
might still solve the problem efficiently in the average case, or there might be efficient
heuristics. Furthermore, in many applications the considered instances are bounded in size,
for example because there are only a few data sets or the considered graphs are sparse. If
such a bound is guaranteed to be small or even fixed, an algorithm might exploit it to find
solutions efficiently. The study of problems that include a parameter corresponding to a
bound on the input is called parameterized complexity theory.

A part of this thesis focuses on parameterized decision problems. In contrast to the classical
decision problems, these problems also include a (numerical) parameter that is assumed
to be small, e.g., the number of clauses in a Boolean formula for a parameterized version
of SAT. Formally, a parameterized decision problem is a set S ⊆ {0,1}∗ of inputs for
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Chapter 2 Background and Related Work

which the answer is yes and a parameterization κ that assigns each instance x ∈ {0,1}∗

a numerical value k as a parameter. The parameterized complexity class FPT (fixed-
parameter tractable) is the parameterized equivalent of P (Downey and Fellows, 1995a),
whereas para-NP is the parameterized equivalent of NP (Flum and Grohe, 2003). Note
that the membership in a parameterized complexity class is obviously dependent on
the parameter, i.e., the same classical decision problem can be a member of different
parameterized complexity classes for different choices of parameterization.

Definition 2.3 (FPT, fpt-algorithm, and para-NP). Let S⊆ {0,1}∗, let κ be a parameteri-
zation κ : {0,1}∗→ N, let f : N→ N be a computable function, and let g : {0,1}∗→ N
be a polynomial-time computable function.

1. (S,κ) is in FPT in regard to parameterization κ if there exists a deterministic algo-
rithm that solves S in time f (κ(x)) ·g(x) for each x ∈ {0,1}∗. Such an algorithm is
called an fpt-algorithm.

2. (S,κ) is in para-NP in regard to parameterization κ if there is a nondeterministic
algorithm that solves S in time f (κ(x)) ·g(x) for each x ∈ {0,1}∗.

Analogously to classical complexity theory, a parameterized (polynomial-time many-one)
reduction is a tool to compare the hardness of two parameterized problems.

Definition 2.4 (parameterized reduction). Let A,B be sets of words over {0,1} and let
κ,κ ′ : {0,1}∗→ N be parameterizations. (A,κ) is parameterized polynomial-time many-

one reducible to (B,κ ′) if there exists an fpt-algorithm f : {0,1}∗ → {0,1}∗ so that
x ∈ A⇔ f (x) ∈ B for all x ∈ {0,1}∗, and there exists a computable function g so that
κ ′( f (x))≤ g(κ(x)) for all x ∈ {0,1}∗.

Note that in contrast to the classical setting, the algorithm that transforms an instance of a
problem A into an instance of the problem B is not a polynomial-time, but an fpt-algorithm.
That means that the existence of a parameterized reduction does not imply the existence of
a polynomial-time reduction and cannot be used to show NP-hardness. The definitions for
hardness and completeness as in Definition 2.2 carry over to the parameterized context.

Downey and Fellows (1995a,b) introduce the W-hierarchy including the complexity classes
W[1] and W[2]. A parameterized decision problem is in the complexity class W[t] if
there exists a parameterized reduction to a certain weighted circuit satisfiability problem.
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2.2 Preference Aggregation

Note that FPT = W [0] ⊆W[1] ⊆W[2] ⊆ ·· · ⊆ para-NP and that it is an open question
whether FPT is equal to W[1]. Parameterized problems in FPT are called tractable, whereas
problems that are W[t]-hard, t > 0, or para-NP-hard are called intractable. See the books
by Flum and Grohe (2006) and Cygan et al. (2015) for an introduction to parameterized
complexity theory.

In contrast to the yes/no questions by decision problems, optimization problems ask
for a solution with certain “optimal” properties, e.g., a satisfying truth assignment to a
Boolean formula with the maxinum number of 1’s possible. Finding an optimal solution
for a problem can often be intractable. However, for most applications it is sufficient if
the solution is always provably close to the optimal solution. Johnson (1974) starts the
comprehensive study of approximation algorithms and, among others, gives examples
of algorithms that guarantee that the size of a solution is within a factor c the size of the
optimal solution while still computing the solution in deterministic polynomial time. See
the book by Vazirani (2013) for an overview on approximation.

2.2 Preference Aggregation

In the field of preference aggregation, the goal is to aggregate preferences of agents called
voters over a set of alternatives (or candidates) to elect a winner. One focus in this thesis
is the computational complexity of aggregation and of strategic behavior in preference
aggregation.

Formally, let C = {c1, . . . ,cm} be a set of candidates and let N = {1, . . . ,n} be a set
of voters, where each voter j has a (private, not further specified) preference over the
candidates and submits a ballot v j. In many applications, these ballots are seen as “sincere”,
meaning that they reflect the voters’ preferences over the candidates in some way. In these
contexts, the notions ballot and preference are often used interchangeably in the literature.
See Section 2.2.2 and Section 2.2.4 for examples of “insincere” or “strategic” ballots. A
list of ballots P = (v1, . . . ,vn) is called a profile.

In this thesis, the following types of ballots will be used. Note that these types can also be
used to model preferences (see, e.g., Section 2.2.4), but in general, preferences are assumed
to be far more complex. Using ordinal ballots, each voter ranks the candidates from best
to worst, e.g., each ballot v j is a linear order > j over the candidates where ci > j ck can be
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Chapter 2 Background and Related Work

interpreted as v j strictly preferring candidate ci to candidate ck. Note that a linear order >
is

• complete (a > b or b > a holds for all a,b ∈C, a 6= b),

• transitive (a > b and b > c implies a > c for all a,b,c ∈C), and

• asymmetric (if a > b, then b > a does not hold).

There are also models where the ballot is a weak order % j, where ci % j ck denotes that
voter j either prefers ci over ck, or does not distinguish between them. Weak orders do
not have to be asymmetric. Let pos j(c) denote the rank of candidate c in ballot v j. For
example, for the ballot c3 >2 c1 >2 c2, it holds that pos2(c3) = 1.

For approval ballots, voters only distinguish between approved and disapproved candidates,
and the ballot v j ⊆C is a set denoting the approved candidates of voter j. Note that this
dichotomous model can also be generalized to allow for more groups of candidates (see
Chapter 3 for my contribution to this generalization). Furthermore, for some applications,
the number of candidates in an approval ballot might be fixed. The model studied in
Chapter 5 uses so-called plurality ballots, where each voter can only approve of exactly one
candidate, and veto ballots, where each voter can only disapprove of exactly one candidate
and v j denotes the disapproved candidate of voter j.

Finally, voters can assign a numerical value to each candidate. For these cardinal ballots,
the ballot is a set v j = {(ci,ki) | ci ∈C,ki ∈Q,1≤ i≤ m}. Depending on the application,
there might be upper or lower bounds for the values of ki, or the ballot might be normalized
so that the values for the most preferred candidate and for the most disliked candidate
are fixed for all voters. See Section 3.4 for voting rules designed for cardinal ballots. In
computational social choice, cardinal ballots (or cardinal utilities) are mostly used in the
field fair division of indivisible goods, where agents (the equivalent to voters) assign values
to items (the equivalent to candidates) and the goal is to find an assignment of items to
agents that maximizes the utility in some way.

Example 2.5 (ballot types). Let C = {a,b,c,d} be a candidate set. Assume that a voter is a
big fan of a, likes both b and c equally, and slightly dislikes d. A possible (sincere) ordinal
ballot using linear orders is then v = a > b > c > d, a weak order v = a� b∼ c� d,2 a

2Here, a� b denotes that a % b and not b % a, and b∼ c denotes that b % c and c % b.
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2.2 Preference Aggregation

possible approval ballot v = {a,b,c}, a plurality ballot v = {a}, a veto ballot v = {d}, and
a possible cardinal ballot v = {(a,10),(b,3),(c,3),(d,1)}.

2.2.1 Singlewinner Elections

This section deals with singlewinner elections where the goal is to elect a winner among
the set of candidates. To determine the outcome of the election, an aggregation function is
needed to aggregate the voters’ ballots (and therefore their underlying preferences). In this
chapter, the following two types of functions are used.

Definition 2.6 (voting rule, social welfare function). Let C be a set of candidates, let
N = {1, . . . ,n} be the set of voters, let B(C) be the set of all possible ballots over C,3 and
let L(C) be the set of all possible linear orders over C.

• A (singlewinner) voting rule R maps a profile to a subset of candidates called the
winners of the election. Formally, R : B(C)n→ 2C.

• A social welfare function R maps a profile to a set of linear orders over the candidates.
Formally, R : B(C)n→ 2L(C).

Note that the above definition allows for an empty set of winners. However, most aggrega-
tion functions are designed to always output a winner. If the set of winners of a voting rule
is a singleton, the respective candidate is called a unique winner of the election, and else
a nonunique winner. In the case where the output of the aggregation function is always
a singleton, the function is said to be resolute, and irresolute otherwise. A tiebreaking

scheme is a function that maps a set to a single member from this set and can be used to
make an irresolute aggregation function resolute. See also the book chapter by Baumeister
and Rothe (2015) for a detailed introduction to singlewinner preference aggregation.

In this thesis, one important family of voting rules with ordinal ballots are the (positional)
scoring rules. Each scoring rule is associated with a family of scoring vectors of the
form α = (α1, . . . ,αm) for each number m of candidates, where αi ∈ N, α1 ≥ ·· · ≥ αm,
and α1 > αm. For example, the scoring rule plurality uses scoring vectors of the form
(1,0, . . . ,0), veto (also called anti-plurality) has scoring vectors of the form (1, . . . ,1,0),
and Borda Count uses scoring vectors of the form (m−1,m−2, . . . ,1,0) for m candidates

3Note that most aggregation functions are only defined for a single type of ballot.
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Chapter 2 Background and Related Work

(see Example 2.9). For each voter, a candidate receives the points as indicated in the
scoring vector according to the rank in the respective voter’s ordinal ballot. For example,
the highest-ranked candidate in a ballot receives α1 points. These points are added to
compute the resulting score for each candidate, and the winners of the election are then
the candidates with the highest score (also called plurality winners, veto winners, . . . ,
respectively). Let rα denote the scoring rule with scoring vector α , let C be a set of
candidates, and let P be a profile over C, then

rα(P) = argmax
c∈C

∑
vi∈P

αposi(c).

In the context of approval ballots, the rule approval voting elects the candidates that appear
in the most ballots, i.e., have the highest approval score. See the book by Laslier and
Sanver (2010) for a detailed analysis of approval voting. Note that approval voting in the
context of plurality ballots (respectively, veto ballots) is also called plurality (respectively,
veto). Here, a plurality winner (respectively, veto winner) is the candidate with the most
approvals (respectively, least disapprovals). Scoring rules can also be modified to allow for
several consecutive rounds. These iterative (positional) scoring rules proceed in a (variable
or fixed) number of rounds, where the candidates with the lowest scores are eliminated
each round. After elimination, the voters’ ballots are reduced to only include the candidates
that are still participating. The election ends when all remaining candidates have the same
score (and are therefore considered the winners of the election) or—in the case of a fixed
number of rounds—after the last round (where the candidates with the highest score in the
reduced profile after the final elimination are considered the winners). My contribution
in Chapter 4 deals with the iterative scoring rules iterated veto and veto with runoff. For
iterated veto (see Example 2.12), all but the candidates with the highest veto score are
eliminated. Veto with runoff (see Example 2.10) proceeds in two fixed rounds. In the first
round, all candidates that do not have the highest veto score are eliminated, unless this
leaves only one candidate, then this candidate and the candidate(s) with the second-highest
veto score proceed to the next round. Further iterative scoring rules in this thesis include
the Hare rule, iterated plurality, and plurality with runoff (all based on plurality), the
Baldwin and the Nanson rule (both based on Borda), and another veto-based rule called
Coombs rule, see Chapter 4.

There are various aggregation functions using ordinal ballots that rely on the concept of
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2.2 Preference Aggregation

pairwise comparisons. Given a profile of ordinal ballots, a candidate c wins a pairwise
comparison against a candidate d if c is ranked higher than d in more ballots than the other
way round. A candidate that wins the pairwise comparisons against all other candidates
is called a Condorcet winner. Note that a Condorcet winner does not always have to
exist. The voting rule Condorcet (Condorcet, 1785) elects the Condorcet winner, if such a
candidate exists. The voting rule Copeland (see Example 2.8) based on a social welfare
function proposed by Copeland (1951) elects the candidates with the most wins in pairwise
comparisons against other candidates where a tie with another candidate counts as half
a win. However, there are several variants depending on how tied candidates are treated.
Other examples include counting a tied comparison as a win or as a loss. Define the Kendall
tau distance dτ (Kendall, 1938) between two linear orders >i and > j as the number of
candidates where both orders disagree, i.e.,

dτ(>i,> j) = |{(a,b) | a,b ∈C∧a >i b∧b > j a}|.

The social welfare function Kemeny rule (Kemeny, 1959) returns the linear orders that
minimize the Kendall tau distance to the profile. Note that the rule Kemeny originally
proposed uses weak orders. However, the version with linear orders is more prevalent.

For large-scale applications, an extremely important aspect of a voting rule is the computa-
tional complexity of the winner determination. In these cases, it is essential to be able to
decide in polynomial time whether a candidate is a winner of the election. Formally, the
winner determination decision problem is defined as follows.

R-WINNER-DETERMINATION

Given: An election (C,P), where C = {c1, . . . ,cm} is a set of candidates and
P = (v1, . . . ,vn) is a profile, and a designated candidate w ∈C.

Question: Is w a winner of the election using voting rule R, i.e., is w ∈ R(P)?

Note that it is possible in polynomial time to compute the set of winning candidates for
all scoring rules including iterative scoring rules, so the respective winner determination
problem is in P. However, the winner determination problem for the Kemeny rule is
intractable (Bartholdi III et al., 1989b; Hemaspaandra et al., 2005).

Another important aspect of aggregation functions is the properties they satisfy. For
example, for the voting rule that always returns the highest-ranked candidate of the first
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Chapter 2 Background and Related Work

voter as the winner, the winner determination is tractable, but it definitely does a bad
job at aggregating the ballots and therefore the underlying preferences of the voters.
The aforementioned voting rule is dictatorial, so a non-dictatorial aggregation function
is certainly desirable. A voting rule R is non-imposed . if for each candidate c ∈ C,
there exists at least one profile P in the domain of R so that {c} = R(P). Based on the
aforementioned notion of a Condorcet winner, a voting rule is Condorcet consistent if it
always returns the Condorcet winner as the unique winner if such a candidate exists. The
Condorcet rule is obviously Condorcet consistent, whereas the positional scoring rules are
not (Fishburn, 1974). For ordinal ballots, a voting rule R is monotone (Arrow, 1950) if
a winner w ∈ R remains a winner whenever a voter improves the rank of w in her ballot
(and does not change any other relative rankings), and positive responsive (May, 1952) if
this improvement leads to w being a unique winner. See Chapter 3 for an adaption of these
axioms to multiwinner elections as introduced in Section 2.2.3.

Some (intuitively desirable) properties for social welfare functions for ordinal ballots
include the following axioms: The axiom universal domain demands that the domain of
the social welfare function has to consist of all possible profiles over the given candidate
set. A social welfare function R is Pareto optimal (see, e.g., the book by Arrow (1963)) if
for all candidates a,b ∈C, a >i b for all vi ∈ P implies that a > b for all >∈ R(P). This
axiom ensures that R actually considers the voters’ ballots when returning a winning linear
order, by following the voters’ lead when they all agree on a relative ranking between
two candidates. Furthermore, R is independent of irrelevant alternatives (see, e.g., the
book by Arrow (1963)) if for each pair of candidates a,b ∈C and each pair of profiles
P = (p1, . . . , pn) and Q = (q1, . . . ,qn) that agree on the relative ranking of a and b for all
voters i ∈ N,4 all linear orders in R(P) and R(Q) also agree on the relative ranking of a

and b. That means that R should decide on the relative ranking of a and b in the winning
linear order solely by considering the relative rankings of them in the voters’ ballots and
not rankings of the other candidates.

However, not all aforementioned properties are compatible with each other in the sense that
they can be satisfied by a single aggregation function. In the context of ordinal ballots, the
famous impossibility result by Arrow (1963) states that for at least three candidates, there
exists no social welfare function using ordinal ballots that has a universal domain, is Pareto
optimal, independent of irrelevant alternatives, and is non-dictatorial, i.e., the result does

4This means that either a >i b in both pi and qi, or b >i a in both pi and qi, for all voters i ∈ N.
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not correspond to a fixed voter’s ballot for each given profile. Note that Arrow’s theorem
can also be restated using voting rules and adapted notions of the relevant axioms (Taylor,
2005). One way to circumvent Arrow’s theorem is to restrict the domain of the considered
aggregation function. Black (1958) introduces the concept of single-peaked domains for
ordinal ballots. Given an ordering of the candidates π , the corresponding single-peaked
domain contains all linear orders >i where top(i) π c j π ck or ck π c j π top(i) implies that
c j >i ck for all c j,ck ∈C, where top(i) denotes the highest ranked candidate in >i. This
ordering corresponds to arranging the candidates on an axis, e.g., left to right in political
elections. To illustrate this property, each single-peaked order only has one peak when the
positions of the candidates in the ballots are plotted on axis π (see Example 2.7). Bartholdi
and Trick (1986) show that it is possible in polynomial time to decide whether a given
profile is single-peaked, i.e., whether each ballot in the given profile is single-peaked with
respect to an ordering.

Another well-studied domain restriction are the single-crossing domains as introduced
by Mirrlees (1971) in the context of income taxation, which contain the profiles where,
given an ordering π of the voters, there are no voters vi,v j,vk and candidates c,d so that
vi π v j π vk, but c >i d, d > j c, and c >k d. This corresponds to the idea that the voters are
ordered in a way so that for each pair of candidates c,d ∈C, the voters ranking c higher
than d form an interval in the profile. To illustrate this property, draw a line between each
occurence of a candidate in the profile. Then for each pair of candidates, the respective lines
between them are allowed to only cross once (see Example 2.7). Elkind et al. (2012) and
Bredereck et al. (2013) provide polynomial algorithms to decide whether a given profile
is single-crossing, and Bredereck et al. also characterize the single-crossing domain by
identifying two forbidden substructures of the profiles. Faliszewski et al. (2011) adapt the
notion of single-peaked and Elkind and Lackner (2015) adapt the notion of single-crossing
to approval ballots, and Elkind et al. (2020b) give a characterization for domains that are
single-peaked and single-crossing at the same time.

Example 2.7 (single-peaked and single-crossing profile). Let C = {a,b,c,d} be a can-
didate set and let P be the profile in Figure 2.1a of ordinal ballots over C. Figure 2.1b
plots the candidates against their rank in the respective ballots for the candidate ordering π

where a π b π c π d. Since each plot has exactly one peak, p is single-peaked. Furthermore,
Figure 2.1c plots the ballots for the voter ordering π with v1 π v2 π v3 and shows that the
lines connecting the candidates cross each other line at most once. Therefore, P is also
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P: v1 = a > b > c > d
v2 = b > c > d > a
v3 = c > d > b > a

(a) Profile P
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(b) Profile P is single-peaked.
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(c) Profile P is single-crossing.

Figure 2.1: The profile P in Example 2.7 is single-peaked and single-crossing.

single-crossing.

Restricted domains not only allow for non-dictatorial aggregation functions that satisfy
the axioms in Arrow’s theorem (and allow for non-manipulable aggregation functions that
satisfy the axioms in the Gibbard-Satterthwaite Theorem, see Section 2.2.2), but can also
have an impact on the computational complexity of the winner determination of other
aggregation functions. For example, Brandt et al. (2015) show that the highly intractable
winner determination of the Dodgson rule5 and the Kemeny rule become tractable for
single-peaked profiles. See the book chapter by Elkind et al. (2017b) for an overview on
restricted domains.

5Given a profile of linear orders, the Dodgson rule returns the candidate(s) for which the number of swaps
between adjacent candidates in the ballots needed to make this candidate the Condorcet winner is minimal
(Dodgson, 1876). The complexity of the winner determination for the Dodgson rule was studied by
Bartholdi III et al. (1989b) and Hemaspaandra et al. (1997).
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2.2.2 Strategic Behavior

Unfortunately, not all actors in an election are honest. This section explores strategic
behavior in elections where an attacker changes some aspects of the preference aggregation
in order to reach a more desirable outcome.

There are several ways for strategic attacks on preference aggregation procedures.

• In manipulation (see, e.g., the book chapter by Zwicker (2016)), an agent that
participates in the aggregation procedure reports an insincere ballot, i.e., a ballot that
does not correspond to her underlying preferences over the candidates, in order to
reach a more desired outcome of the election (see Example 2.8). In some problem
variants, there can be a group of manipulators that work together to reach a joint
objective, or there are (distance) restrictions on which insincere ballots may be
reported. This thesis studies a slightly different notion of manipulation in the context
of iterative elections as introduced in Section 2.2.4 where an attacker does not report
an insincere ballot, but an insincere poll. See Chapter 5 for my contribution to the
topic manipulation in iterative elections.

• In bribery, an external agent is able to bribe a given number of voters to submit
insincere ballots in order to change the election result in his or her favor (see
Example 2.9). Variations of the problem include prices for the voters, i.e., the briber
has a budget and each voter (or even each change in a ballot) has a (possibly different)
price attached. This thesis studies a model called shift bribery as introduced on
page 23. See Chapter 4 for my contribution to the topic bribery for iterative scoring
rules.

• In control, an external agent called the chair does not have any influence on the
agents’ ballots, but on the structure of the aggregation procedure (see Example 2.10).
This can include adding or deleting candidates or voters, or partitioning the voters or
candidates in groups where the aggregation takes place for each group separately.
This thesis studies control for the related setting of judgment aggregation as intro-
duced in Section 2.3. See the book chapter by Faliszewski and Rothe (2016) for an
overview of bribery and control in voting, and see Chapter 6 for my contribution to
the study of judge control problems in judgment aggregation.
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Note that it is necessary to define beforehand what constitutes a more desirable outcome
for an attacker. One way is via a preference (see, e.g., the book by Taylor (2005)), where
for a resolute voting rule the new outcome is preferred to the old one if and only if the
attacker prefers the new winner to the old winner. In the case of irresolute voting rules,
the notion of a “better outcome” is more complicated and requires assumptions about the
attacker’s preferences over sets of candidates. For an overview over these so-called set
extensions see, e.g., the book chapter by Barberà et al. (2004). In the models used in this
section, there is a target candidate given. In a constructive attack, the attacker wants the
target candidate to win the election, whereas in a destructive attack, the attacker tries to
prevent the target candidate from winning.

Unfortunately, in most cases, voting rules are susceptible to strategic attacks. Gibbard
(1973) and Satterthwaite (1975) independently proved the so-called Gibbard-Satterthwaite
Theorem stating that there are no resolute, non-dictatorial and non-imposing voting rules
for at least three candidates that cannot be successfully manipulated, assuming there are
no restrictions on the voters’ ballots.6 This result started research on how manipulation
can nevertheless be prevented. One important aspect in this research is the computational
complexity of deciding whether a successful strategic attack is possible in the given
election. If it turns out that the underlying problem is computationally hard for a voting
system, then this might discourage an attacker.

Bartholdi III et al. (1989a) pioneered the approach of studying the computational com-
plexity of manipulation by studying the following decision problem for voting rules using
ordinal ballots.

R-MANIPULATION

Given: A set of candidates C, a profile P = (v1, . . . ,vn) over C, and a
designated candidate c ∈C.

Question: Is there a ballot vn+1 so that c ∈ R((v1, . . . ,vn,vn+1))?

They show that for all voting rules that satisfy certain properties and for a single manip-
ulator, there exists a polynomial-time greedy algorithm that computes a ballot for the
manipulator to successfully make a designated candidate the winner of the election (or

6Black (1958) (respectively, Saporiti and Tohmé (2006)) show the existence of a non-manipulable rule
when the input profile is single-peaked (respectively, single-crossing).
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P: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a

(a) Original profile P

P′: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a
v4 = b > a > c > d

(b) Manipulated profile P′

Table 2.1: Original and manipulated profile in Example 2.8.

determines that such a ballot does not exist). Examples of such voting rules include the
family of positional scoring rules. In contrast to this result, they show that the computa-
tional complexity of manipulating a voting rule called second-order Copeland (a variant
of the Copeland rule) is NP-hard, although the winner can be computed in polynomial
time. Bartholdi III and Orlin (1991) show that is computationally hard to manipulate the
widely used iterative voting rule called STV (Single Transferable Vote, in the singlewinner
version also called the Hare rule, see Chapter 4). Conitzer and Sandholm (2003) add a
preround to several well-known voting rules to increase the complexity of manipulation.
Conitzer et al. (2007) introduce the concept of coalitional manipulation where a group of
manipulators cast ballots to achieve a common goal. A slightly different formulation of
the manipulation decision problem includes the manipulator’s sincere ballot in the given
profile and asks whether the manipulator can successfully change her ballot to achieve a
better outcome. Instead of allowing a complete change in the manipulator’s ballot, one can
restrict the new ballot to have at most a certain distance to the original ballot (Obraztsova
and Elkind, 2012). See the survey by Faliszewski and Procaccia (2010) and the book
chapter by Conitzer and Walsh (2016) for an overview of results for the computational
complexity of manipulating voting rules.

Example 2.8 (manipulation). Let C = {a,b,c,d} be a candidate set and let P = (v1,v2,v3)

be a profile over C defined in Table 2.1a. Consider the voting rule Copeland (rCope) where
candidates acquire one point for each win in a pairwise comparison and half a point
for each tie, and the candidates with the highest score win the election. Assume that a
manipulator wants candidate b to win the election in profile P. Then she can submit the
ballot v4 = b > a > c > d. The election with profile P′ = (v1,v2,v3,v4) (see Table 2.1b)
proceeds as follows: Candidate a wins the pairwise comparison against c and d and ties
with b, so that a has a score of 2.5. Candidate b has a score of 2.5, candidate c a score
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of 1, and candidate d a score of 0. Therefore, {a,b}= rCope(P′) and the manipulation was
successful.

Faliszewski et al. (2009a) were the first to study the computational complexity of bribery
in elections, including the following decision problem.

R-BRIBERY

Given: A set of candidates C, a profile P over C, a designated candidate
c ∈C, and an integer k ∈ N.

Question: Is there a profile P′ where at most k voters change their ballots
compared to P, so that c ∈ R(P′)?

In the priced variant, voters do not have an equal price like in the above scenario, so
the problem includes a price function for voters and asks whether in the profile P′ only
voters changed their ballots whose total price does not exceed the budget k. Hemaspaandra
et al. (2007) focus on destructive bribery where the briber wants to prevent the victory of
a designated candidate. Dey et al. (2017) introduce a mix of manipulation and bribery
where a briber can only bribe voters that profit from this action, i.e., voters who prefer the
outcome after the bribery to the original one. As for manipulation, it is possible to restrict
the new ballots of the bribed voters, for example by a distance restriction to the sincere
ballot. This models scenarios where voters are not willing to deviate too much from their
sincere ballot, be it for ethical reasons or the fear of negative consequences for casting an
insincere ballot if there is a risk of having their ballot exposed. Dey (2021) studies this
problem for bribery. Baumeister et al. (2019) introduce a generalized version of distance
bribery where the resulting bribed profile (and not the individual votes) is subject to a
distance restriction.

Example 2.9 (bribery). Let C = {a,b,c,d} be a candidate set and let P be a profile over C

defined in Table 2.2a. Consider the scoring rule Borda Count (rBorda). Recall that under
Borda, each candidate receives a score based on the positions in the voters’ ballots, and
the candidates with the highest score win. Assume that a briber wants candidate c to win
in profile P and is able to bribe at most one voter. In P, candidate a receives a score of
|C|−1+ |C|−1+ |C|−4 = 3+3+0 = 6, whereas candidate b has a score of 7, candidate
c has a score of 4, and candidate d has a score of 1, therefore {b}= rBorda(P). If the briber
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P: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a

(a) Original profile P

P′ : v′1 = c > d > a > b
v2 = a > b > c > d
v3 = b > c > d > a

(b) Bribed profile P′

Table 2.2: The original and the bribed profile in Example 2.9.

convinces voter 1 to change v1 into v′1 = c > d > a > b, then c wins in the resulting profile
P′ (see Table 2.2b) with a score of 6 in contrast to the scores of 4, 5, and 3 of candidates a,
b, and d, respectively. Therefore, the bribery was successful.

The computational complexity of control by adding, deleting, and partitioning candidates
or voters was first studied by Bartholdi III et al. (1992) for plurality and the Condorcet
rule. For example, the following decision problem shows the notion of control by adding
candidates. Let PS denote the restricted profile of P where each ballot in P is restricted to
the candidates in S.

R-CONTROL-BY-ADDING-CANDIDATES

Given: A set of candidates C, a set of additional candidates D, a profile P

over C∪D, a designated candidate c ∈C, and an integer k ∈ N.
Question: Is there a set D′ ⊆ D of size at most k so that c ∈ R(PC∪D′)?

Faliszewski et al. (2009b) study constructive control for these control types for the
Copeland rule for all variants of ties in the pairwise comparisons. Furthermore, Elkind
et al. (2011) provide, among others, results for the constructive control of Borda by adding
candidates. Analogous to bribery, Miasko and Faliszewski (2016) introduce prices to
control actions.

Example 2.10 (control by adding candidates). Let C = {a,b,c} and D = {d,e} be candi-
date sets, let P be the profile over C∪D defined in Table 2.3a and let PS be the restricted
profile of P where each ballot is restricted to candidates in S.

Consider the iterative voting rule veto with runoff (rVRO). Recall that veto with runoff
proceeds in two fixed rounds. After the first round, all candidates that do not have the
highest veto score are eliminated, unless that leaves just one candidate, then the candidates
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P: v1 = a > e > b > c > d
v2 = e > a > b > c > d
v3 = e > b > c > d > a

(a) The profile P over C∪D.

PC: v1 = a > b > c
v2 = a > b > c
v3 = b > c > a

PC\{c}: v1 = a > b
v2 = a > b
v3 = b > a

(b) Election without adding candidates.

PC∪{d}: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a

P(C∪{d})\{a,d}: v1 = b > c
v2 = b > c
v3 = b > c

(c) Election after adding candidate d.

Table 2.3: Profiles in Example 2.10.

that do not have the highest or second-highest veto score are eliminated. The election
winners are the candidates with the highest veto score in the second round. Assume that
the chair wants candidate b to win and is able to add at most one candidate from D to the
candidate set. In the election using profile PC (see Table 2.3b), b is the unique candidate
with the highest veto score, namely a score of 3, whereas a has the second-highest score of
2. Therefore c is eliminated after the first round, resulting in the profile PC\{c}. Here, a has
a veto score of 2 in contrast to the veto score of 1 of b, therefore b /∈ {a}= rVRO(PC).

Next, consider the profile PC∪{d} where the chair added candidate d (see Table 2.3c). Both
b and c have the highest veto score of 3, so that a and d are eliminated after the first round,
resulting in the profile P(C∪{d})\{a,d}. Here, b has a veto score of 3, whereas c has a veto
score of 0, so b ∈ {b}= rVRO(PC∪{d}). Therefore, the control action was successful.

Note that for all aforementioned results, an attacker is assumed to have complete infor-
mation about the election, notably about the exact ballots of all voters. This is a highly
unlikely assumption, but widely accepted since it cannot be easier to favorably change the
election result in the presence of incomplete information than in an election with complete
information. Therefore, the hardness results carry over to the case where the information
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of the attacker is limited. However, limiting the information an attacker has can make
influencing an election difficult even for voting rules where favorably changing the election
result is a tractable problem in the complete information model. Conitzer et al. (2011)
show for many common voting rules that, given the manipulator only knows partial ordinal
ballots of the other voters, it is NP-hard to decide whether a dominating manipulation
strategy exists (i.e., a vote that will not be detrimental to the manipulator in comparison to
his truthful vote regardless of how the full preferences of the other voters look like). Dey
et al. (2018) extend this model and introduce the concept of weak (respectively, strong)
manipulation where the manipulator has to be successful in at least one (respectively, in all)
extensions of the partial ballots. Inspired by typical limited information a manipulator has
in real life, Endriss et al. (2016b) introduce different models for incomplete information
(e.g., knowledge about the candidate scores, but not about ballots) and study the effect of
limited information on the computational complexity of manipulation for several voting
rules including scoring rules.

The aforementioned results assume that strategic attacks are infeasible when the corre-
sponding decision problems are intractable. However, such a computational barrier as
protection against strategic attacks might still not be effective in practice. Recall that
the notion of NP-hardness relates to the worst-case complexity of a decision problem.
Typical real-world scenarios might involve certain restricted preferences in contrast to
the unrestricted preferences in theory, or might have certain small parameters such as the
number of candidates.

Faliszewski et al. (2011) show that many manipulation and control problems become
tractable when the given profile is single-peaked, whereas Brandt et al. (2015) show the
same for bribery. Magiera and Faliszewski (2017) show that several control problems
become tractable for restricting the input to single-crossing profiles. Procaccia and Rosen-
schein (2007) show that for most profiles, it suffices to compute the fraction of untruthful
and truthful votes to make a decision about the success of manipulation. Conitzer et al.
(2007) introduce the problem of weighted coalitional manipulation (i.e., manipulation by
a coalition of voters in the presence of weighted voters7) and determine for a variety of
common voting rules the number of candidates for which weighted coalitional manipula-

7In an election with weighted voters, there is a given weight function ω : N→ N that maps each voter to
a positive integer called the weight wi of the voter i. The aggregation function then uses the modified
profile P′ as input, where P′ denotes the profile where the ballot of each voter i is duplicated wi−1 times.
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tion becomes intractable. Along these lines, Chen et al. (2017) study the parameterized
complexity of control by adding or deleting candidates for common voting rules when
parameterized by the number of voters, and Bredereck et al. (2015) and Knop et al. (2020)
study the complexity of bribery when the number of candidates is small, the latter for a
form of bribery called multi-bribery (where voters can be bribed to abstain, swap adja-
cent candidates in their preference list, or change the number of approved candidates).
Bredereck et al. (2014a) identify research challenges in voting regarding parameterized
complexity. See the survey by Rothe and Schend (2013) for an overview of typical-case,
parameterized, and approximation results for manipulation and control.

There are other, more positive interpretations of the aforementioned strategic attacks in
voting. Manipulation can increase the satisfaction of voters with the outcome as described
in Section 2.2.4. The concept of destructive bribery is closely related to the margin of

victory, first defined by Xia (2012). Here, the goal is to compute how robust the election
result is by computing the minimal number of voters that would have to report a different
preference in order to change the election outcome. Reisch et al. (2014) show that the
corresponding decision problem is intractable for several tournament voting rules, and
Dey and Narahari (2015) provide sampling algorithms to estimate the margin of victory.
Another interpretation of bribery is campaign management, where the bribing action can
be modeled by real-life election campaigns, e.g., spending money to promote a designated
candidate in the ballots. In the constructive case, campaign managers want to promote their
candidate, for example by running advertisements and therefore positively influencing the
voter’s preference about the candidate, which leads to changes in their ballot. Furthermore,
campaigns are bound by a budget and therefore need to carefully evaluate which actions
yield the desired results. In this context, it makes sense to define a price per change in a
voter’s ballot rather than a price for each voter. Schlotter et al. (2017) focus on approval-
based voting rules and give classical and parameterized complexity results for campaign
management, and Elkind and Faliszewski (2010) give approximation algorithms for several
voting rules including scoring rules.

One important topic for this thesis in the context of campaign management is the notion of
shift bribery for ordinal ballots. Shift bribery is a special case of swap bribery (Elkind et al.
(2009); introduced in another context by Faliszewski et al. (2009b) as microbribery), where
a price function ρ j : C×C→ N denotes the price for swapping two adjacent candidates ci

and ck in the ballot of voter j, and a swap bribery is successful if a given candidate wins
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the election after a series of swaps in the voters’ ballots whose total price do not exceed
the given budget. The price functions for shift bribery are defined in Definition 2.11.

Definition 2.11 (shift bribery price function). Let C be a set of candidates, let c ∈C be
a target candidate, and let v j be a linear order over C. A shift bribery price function

is a function ρ j : N→ N for a voter j where ρ j(0) = 0, ρ j(x) ≥ ρ j(y) for x > y, and
ρ j(x) = ρ j(x−1) for all x≥ pos j(c).

Note that ρ(i) indicates the price for shifting the target candidate c forward by i positions
in the ballot v j and that it is not possible to shift the candidate further than the first position
in the voter’s ballot. For example, ρ j(1) = 2 indicates that changing voter j’s ballot from
. . . > ck > ci > .. . to . . . > ci > ck > .. . costs two units. The shift bribery problem in the
constructive case is then defined as follows.

R-SHIFT-BRIBERY

Given: A set of candidates C, a profile P of n linear orders over C, a target
candidate c ∈C, a budget B ∈ N, and a list of price functions
ρ = (ρ1, . . . ,ρn).

Question: Is it possible to shift c in the ballots in P such that the total price does
not exceed the budget b and c ∈ R(P′) for the new profile P′?

In particular, it is only possible to shift the target candidate rather than all candidates
as in swap bribery, and the shift can only be forwards in the constructive case. This
model assumes that campaign managers do not run so-called smear campaigns where
they negatively influence the voters’ opinions about opposing candidates. To define the
destructive case where the goal is to prevent a target candidate from winning, the shift
bribery price functions are interpreted as the price for shifting the designated candidate
backwards.8

Example 2.12 (shift bribery). Let C = {a,b,c,d} be the candidate set and let P be the
profile over C defined in Table 2.4a. Note that PS denotes the restricted profile of P where
each ballot is restricted to candidates in S. Consider the iterative scoring rule iterated veto
(rIV). Recall that each round, the candidates that do not have the highest veto score are

8Note that in the destructive case, the condition ρ j(x) = ρ j(x−1) for all x≥ pos j(c) changes to ρ j(x) =
ρ j(x−1) for all x≥ m− pos j(c) in order to prevent shifting the candidate too far backwards.
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P: v1 = a > b > c > d
v2 = a > b > c > d
v3 = b > c > d > a

PC\{a,d}: v1 = b > c
v2 = b > c
v3 = b > c

(a) Election with the original profile P.

P′: v1 = a > b > c > d
v2 = a > b > c > d
v′3 = b > c > a > d

P′C\{d}: v1 = a > b > c
v2 = a > b > c
v′3 = b > c > a

(b) Election with the bribed profile P′.

Table 2.4: The election with the original and the bribed profile in Example 2.12.

eliminated. Assume that a briber wants candidate a to win the election and that he has a
budget of 2. Further assume that the price function ρ3 for voter 3 is defined as ρ3(0) = 0,
ρ3(1) = 1, and ρ3(2) = ρ3(3) = 3. In P, the election proceeds as follows. In the first round,
candidates b and c have the highest veto score with a score of 3, so that candidates a and
d are eliminated, resulting in the profile PC\{a,d}. Here, candidate b has the highest veto
score of 3 whereas c only has a veto score of 0. Therefore, a /∈ {b}= rIV(P), so the briber
has to employ a bribing action.

Recall that the briber can only shift the designated candidate a forward. In the ballots of
voters 1 and 2, a is already in the top position and cannot be shifted forward. Shifting a

at least two positions forward in ballot v3 costs 3 units and therefore exceeds the budget.
Consider the profile P′ in Table 2.4b where a was shifted forward in v3 by one position.
The election then proceeds as follows. In the first round, d has the lowest veto score
and is eliminated, resulting in the profile P′C\{d}. In the second round, a, b, and c have
a veto score of 2, 3, and 1, respectively, therefore a and c are eliminated. It holds that
a /∈ {b}= rIV(P′), so there does not exist a successful shift bribing action.

Elkind et al. (2020a) consider swap and shift bribery in single-peaked and single-crossing
domains, whereas Dorn and Schlotter (2012) analyze the parameterized complexity for
swap bribery. Bredereck et al. (2016a) show that different classes of price functions
lead to different complexity results for shift bribery when parameterized by the budget
for a number of voting rules. They also study the parameterized complexity regarding
other parameters. Faliszewski et al. (2021) investigate the approximability of shift bribery
for positional scoring rules and Copeland. For the destructive variant of the problem,
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Kaczmarczyk and Faliszewski (2019) give efficient algorithms for solving the destructive
shift bribery problems and identify cases where the complexity between the constructive
and destructive problem variant differ. Similar to the margin of victory, Shiryaev et al.
(2013) study the robustness of elections by viewing the destructive swap bribery problem
as a mean to measure the maximal number of errors that voters can make in their ballot
before the election result changes. Here, an error in a voter’s ballot is defined as a pair of
adjacent candidates that are swapped in the ballot in contrast to the true preference of the
voter. In another variant of shift bribery called combinatorial shift bribery, it is possible
to affect several votes at once with just a single bribery action (Bredereck et al., 2016c).
See Chapter 4 for my contribution to the study of the computational complexity of shift
bribery.

2.2.3 Multiwinner Elections

In contrast to singlewinner elections as presented in Section 2.2.1, in the context of
multiwinner elections, the goal is to elect a group of candidates called a committee as the
winner of the election. That means that a multiwinner voting rule maps a profile and a
desired committee size k to a set that consists of the winning committees, i.e., subsets of
candidates of size exactly k.

Definition 2.13 (multiwinner voting rule). Let C be a set of candidates, let P be a profile
over C, let k < |C| be a positive integer, and let Wk = {S | S ⊆C∧ |S| = k} be the set of
k-sized committees. A multiwinner voting rule F maps a tuple (P,k) to sets in Wk.

In the above definition of a multiwinner voting rule, the committee size is part of the input.
However, there are a few scenarios where it makes sense to not fix the size of a winning
committee, called the variable number of winners setting. For example, this setting can
be motivated in the context of a Hall of Fame where each year, only the best of the best
candidates (e.g., athletes) are supposed to be elected into the Hall of Fame. However, this
number can vary: Some years, there might be several outstanding candidates, whereas in
other years, there might even be none that are deemed exceptional enough to be honored.
Kilgour (2016) provides an in-depth study of multi-winner voting rules with a variable
number of winners in the approval-based setting and explores the axiomatic properties
of corresponding voting rules. Faliszewski et al. (2020) study the complexity of these
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approval-based rules. The rest of this thesis only considers the fixed number of winners
model as defined in Definition 2.13, where the desired committee size is predetermined.
For an overview on multiwinner elections, see the book chapter by Faliszewski et al.
(2017b).

There are several possible directions for the design of multiwinner voting rules. One
prominent design concept is individual excellence where the winning committee consists
of the best candidates according to certain criteria, e.g., approval scores. One application
for these rules is shortlisting, i.e., preselecting a short list of candidates for the next stage
(e.g., of a hiring process). An example of an excellence-based multiwinner voting rule is
the rule by Debord (1992) that extends Borda Count to multiwinner voting with a fixed
committee size. Lackner and Maly (2021) study shortlisting procedures using approval
ballots.

A second design concept is diversity, where the goal is to elect candidates in a way that
preferably each voter has a candidate she approves of. A possible application is the facility
location problem, where several facilities (e.g., hospitals) have to be placed (e.g., in a city)
according to certain criteria. If candidates are possible locations and voters approve of
locations that are (easily) accessible to them, multiwinner voting rules based on diversity
help in finding optimal locations so that each voter has hospital access. See the article
by Skowron et al. (2016) for other applications for diversity. A voting rule aiming at
diversity was proposed by Chamberlin and Courant (1983). The Chamberlin-Courant rules
are a family of multiwinner rules that elect the committee that—given a misrepresentation
function—minimizes the misrepresentation of voters. Here, each voter is assigned their
most preferred candidate from the committee as a representative.

Definition 2.14 (family of Chamberlin-Courant rules). Let C be a set of candidates, let
N be the set of voters, let B(C) be the set of all possible ballots over C, let P ∈ B(C)

be a profile, let k > 0 be the desired committee size, and let Wk be the set of all k-sized
committees over C.

1. A misrepresentation function µ : N ×C → N computes how much a candidate
misrepresents a voter.

2. For a committee S ⊆ C, an assignment function φS : N → S assigns each voter a
representative from S. For the Chamberlin-Courant rules, φS(i) = argminc∈S µ(i,c),
i.e., voters are represented by the best candidate in a given committee.
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3. A committee misrepresentation function d : B(C)×Wk→ N computes for a given
profile P and k-sized committee S how misrepresented the voters in P are when S is
elected.

4. A Chamberlin-Courant rule is a multiwinner voting rule fCC so that

fCC(P,k) = argmin
S∈Wk

d(P,S).

Note that the Chamberlin-Courant rules are used for both ordinal and approval ballots and
that they can also be stated in terms of satisfaction instead of dissatisfaction (or misrepre-
sentation) of the voters. A widely used misrepresentation function µ for ordinal ballots
outputs the inverse Borda score, i.e., µ(i,c) = posi(c)−1 for a voter vi and a candidate c,
whereas the variant for approval ballots returns 0 if the voter approves of the candidate,
and 1 otherwise. The choice for the committee misrepresentation function d depends on
the application. The utilitarian approach that minimizes the total misrepresentation of each
of the n voters with the winning committee (i.e., that uses the committee misrepresentation
function dsum(P,S) = ∑1≤i≤n µ(i,φS(i))) is called the minisum principle, whereas the egal-
itarian approach that minimizes the maximum misrepresentation for a voter (i.e., that uses
the committee misrepresentation function dmax(P,S) = max1≤i≤n µ(i,φS(i))) is called the
minimax principle (see, e.g., the book chapter by Kilgour et al. (2006)).

Example 2.15 (Chamberlin-Courant rule). Let C = {a,b,c} be the candidate set, let k = 2
be the committee size, and let P be the profile in Table 2.5a of ordinal ballots over C.

For each committee W ⊂C, the assignment function ΦW assigns the respective best-ranked

P: v1 = a > b > c
v2 = b > a > c
v3 = b > a > c
v4 = c > b > a

(a) Profile P

{a,b} {a,c} {b,c}

v1 : µ(1,a) = 0 µ(1,a) = 0 µ(1,b) = 1
v2 : µ(2,b) = 0 µ(2,a) = 1 µ(2,b) = 0
v3 : µ(3,b) = 0 µ(3,a) = 1 µ(3,b) = 0
v4 : µ(4,b) = 1 µ(4,c) = 0 µ(4,c) = 0

∑ : 1 2 1

(b) Misrepresentation of each voter for committees of size 2.

Table 2.5: Profile and misrepresentation values in Example 2.15.
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candidate from W to each voter. For example, Φ{a,b} assigns candidate a to voter 1, and
candidate b to voters 2, 3, and 4. Table 2.5b states the misrepresentation for each voter
with a given committee and computes d(P,W ) for each committee W of size 2 using the
minisum principle. It follows that fCC(P,2) = {{a,b},{b,c}}.

Finally, the third important design concept in multiwinner elections is the concept of
proportional representation. In many settings, e.g., in the election of a parliament, it is
important to ensure that voters’ opinions are adequately represented. Skowron (2018)
studies the proportionality of common multiwinner rules and ranks them in a hierarchy.
Lackner and Skowron (2019) classify multiwinner voting rules by how close they are to
the design concepts individual excellence and proportionality. The voting rules by Monroe
(1995) aim exactly at fully representing voters. The Monroe rules use the same underlying
idea as the Chamberlin-Courant rules, but additionally require that each candidate in a
committee represents the same number of voters (barring rounding differences), therefore
the assignment function does not always assign a voter’s most preferred committee member
as their representative.

However, even determining whether there exists a committee with a misrepresentation of at
most a given integer is already intractable for both the Chamberlin-Courant and the Monroe
rules (Procaccia et al., 2007). Deciding whether a given committee is a winning committee
for these voting rules (which is one variant of the winner determination problem) is at
least as hard as the aforementioned problem. In contrast to the winner determination of
the Monroe rules, the winner determination for the Chamberlin-Courant rules become
tractable in the presence of profiles from restricted domains (see the article by Betzler
et al. (2013) for parameterized complexity results and single-peaked profiles, and see the
article by Skowron et al. (2015b) for single-crossing profiles). Peters (2018b) introduces
a new technique to compute winning committees in polynomial time for single-peaked
profiles for several voting rules whose winner determination is NP-hard, including the
Chamberlin-Courant rules. Skowron and Faliszewski (2017) give approximation algorithms
for Chamberlin-Courant under approval ballots, whereas Skowron et al. (2015a) prove
that the winner determination of both the Chamberlin-Courant and the Monroe rules is
inapproximable under linear orders.

To be able to properly decide on a multiwinner rule in a given context, it is important
to study the properties of multiwinner rules. Felsenthal and Maoz (1992) adapt four
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singlewinner rules to elect more than one winner and study how this change affected
their properties. Elkind et al. (2017a) introduce a variety of axioms—partly inspired by
axioms for singlewinner rules, see Section 2.2.1—and show which of several well-known
multiwinner rules satisfy them. Lackner and Skowron (2021) study the properties of several
approval-based multiwinner rules. There are also a variety of axioms that deal with the
stability of multiwinner rules. In the context of approval ballots, one axiom called justified

representation (Aziz et al., 2017a) and variants thereof have received a lot of attention. A
multiwinner rule satisfies justified representation if it always elects a committee so that
there does not exist a large enough group of unrepresented voters that have a common
approved candidate.

Definition 2.16 (justified representation (Aziz et al., 2017a)). Let C be the set of candidates,
let N = {1, . . . ,n} be the set of voters, let P= (v1, . . . ,vn) be a profile over C using approval
ballots, and let k > 0 be a committee size.

1. A committee S of size k satisfies justified representation under P and k if there does
not exist a subset of voters N′ ⊆ N with size at least n/k, so that

⋂
i∈N′ vi 6= /0 and

vi∩S = /0 for each i ∈ N′.

2. A multiwinner voting rule F using approval ballots satisfies justified representation

if for each profile P and each k > 0, each winning committee W ∈ F(P,k) satisfies
justified representation under P and k.

Aziz et al. (2017a) also define a more demanding axiom named extended justified repre-
sentation (EJR), whereas Sánchez-Fernández et al. (2017) introduce an in-between axiom
called proportional justified representation (PJR). Aziz et al. (2018) give complexity results
for EJR and PJR. An option to measure the stability of an elected committee for multiwin-
ner rules based on ordinal ballots relies in principle on the notion of a Condorcet winner
(see Section 2.2.1). A committee is Gehrlein-stable (Gehrlein, 1985; Ratliff, 2003) if there
are no candidates outside of the committee that a strict majority of voters prefers to any
candidate in the committee. Based on the this concept, Barberà and Coelho (2008) study
which multiwinner rules used for shortlisting are stable in the sense that the elected com-
mittee contains a (weak) Condorcet winner if one exists. Aziz et al. (2017b) study Gehrlein
stability and local stability (the latter based on the Condorcet winning sets introduced by
Elkind et al. (2015)) and determine, among other things, the computational complexity of
mutiwinner rules that satisfy these types of stability. Gupta et al. (2019) complement these

29



Chapter 2 Background and Related Work

results by studying the parameterized complexity of finding a Gehrlein stable committee.
See Chapter 3 for my contribution to the study of properties for multiwinner voting rules.

Bredereck et al. (2018) introduce a model where not only the voters’ preferences, but also
certain attributes of candidates such as gender or skill level play a part in finding the best
committee. In the model by Kagita et al. (2021), voters do not approve candidates, but only
such attributes. Izsak et al. (2018) study the case where there are certain relations between
candidates that have to be taken into account when finding a good committee. For example,
there might be candidates that work exceptionally well (respectively, exceptionally poorly)
with each other. Further, Faliszewski et al. (2017a) introduce voting rules where the
winning committee is a good compromise between several extremes, for example individual
excellency and proportionality. Brill et al. (2019) give approximation algorithms for these
type of balanced rules, and Kocot et al. (2019) adapt these rules to guarantee specific score
results of committee scoring rules. Note that these committee scoring rules defined by
Elkind et al. (2017a) are the multiwinner analogues of the (singlewinner) scoring rules
introduced in Section 2.2.1 (see the articles by Skowron et al. (2019) and Faliszewski et al.
(2019) for an axiomatic characterization of committee scoring rules).

There are a multitude of papers about strategic attacks on multiwinner rules. Lackner and
Skowron (2018) define the axioms independence of irrelevant alternatives, monotonicity,
and SD-strategyproofness to study the susceptibility of approval-based multiwinner rules.
Continuing this work, Peters (2018a) proves an impossibility result that says that no
multiwinner rule can satisfy a form of proportionality and a form of strategy-proofness at
the same time. Meir et al. (2008) study the computational complexity of manipulation and
control for SNTV (Single Non-Transferable Vote; a multiwinner equivalent of Plurality),
Bloc (a multiwinner equivalent of k-approval, where k is the desired committee size),
approval voting, and cumulative voting (a voting rule that uses cardinal ballots). Yang
(2019) also focuses on manipulation and control and, among other things, studies the
parameterized complexity of these attacks for approval-based rules. Obraztsova et al.
(2013) study the complexity of manipulating scoring rules and give several polynomial-
time algorithms. Further, they focus on the role of tie-breaking rules for the success of
manipulation. In the context of bribery for approval-based multiwinner rules, Faliszewski
et al. (2017c) study the computational complexity and approximability of bribery actions
where only a single approval might be added, deleted, or moved within a vote, and Yang
(2020) focuses on destructive bribery and gives classical and parameterized complexity
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results. Bredereck et al. (2016b) study the computational complexity of shift bribery in
multiwinner elections for linear orders. Related to this line of research is the question of
the robustness of a multiwinner voting rule. Bredereck et al. (2021) study what impact a
swap of neighboring candidates has in the linear order of a voter for several rules. Further,
they show that it is NP-hard to decide whether the election result can be changed by a
given number of swaps.

Baumeister and Dennisen (2015) generalize the concept of the multiwinner rules minisum
and minimax from dichotomous ballots to trichotomous ballots9 and to complete and
incomplete linear orders. Then Baumeister et al. (2015a) study the complexity of winner
determination and manipulation for these rules, whereas Liu and Guo (2016) focus on
the parameterized complexity of winner determination for the generalized minimax rules.
Cygan et al. (2018) extend the results for winner determination for the minimax approval
rule including approximation and parameterized complexity results. See Chapter 3 for my
contribution on the research on minisum and minimax based rules.

2.2.4 Iterative Elections

As seen in Section 2.2.2, all “reasonable” voting rules can be manipulated. This section
deals with iterative elections where voters may change their reported ballot in each round,
i.e., repeatedly manipulate the election. This corresponds to the idea of white manipulation,
where manipulation by voters is encouraged as it leads to a better outcome for the voters.
Iterative elections can also model the case where voters submit their ballot sequentially,
for example in Doodle polls.

Formally, let N = {1, . . . ,n} be the set of voters, let C be the set of candidates, let
P = (p1, . . . , pn) be a preference profile10 (usually ordinal preferences) over C, let P0 =

(a1, . . . ,an) be an (optional) profile of ballots over C, and let R be a voting rule. Iterative
elections can be modeled as a game (see, e.g., the book chapter by Faliszewski et al.
(2016) for an introduction to noncooperative game theory), where the voters are the players
and the set of actions Ai (also called strategies) that each player i can take corresponds
to the set of possible ballots over C of a type applicable to R, and are therefore equal

9In a trichotomous ballot, the set of candidates is partitioned into three sets corresponding to approved,
indifferent, and disapproved candidates.

10A preference profile is a list of preferences over a candidate set.
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for all voters. The game proceeds in turns, where—depending on the model—voters
either all act simultaneously or each turn t, a voter j is singled out to take an action so
that at−1

i = at
i for all voters i ∈ N \ { j}. A strategy profile for turn t is then a profile

Pt = (at
1, . . . ,a

t
n) ∈ A1×·· ·×An =A, where in most applications, P0 is a profile of initial

ballots that are assumed to be truthful, i.e., where the ballots a0
1, . . . ,a

0
n correspond to

the preferences p1, . . . , pn. Each voter further has a utility function u j : A→ R where
u j(Pt) denotes the utility voter j gains from the the strategy profile Pt in turn t. In the
context of iterative elections, u j(Pt)> u j(Ps) if voter j prefers R(Pt) to R(Ps) according
to preference p j. Note that in this context, R is generally assumed to be resolute, for
example by applying a tie-breaking scheme to the outcome. Therefore, preferences over
election outcomes can be determined straightforward. Assume that voters only use best-
response dynamics to change their ballots i.e., they submit a ballot that will result in the
best outcome for them.

Definition 2.17 (best response). Let N = {1, . . . ,n} be the set of players, let A = A1×
·· · × An be the set of strategy profiles, and let u j : A→ R be the utility function of
player j ∈ N. An action a j ∈ A j is a best response to the strategy profile (a1, . . . ,a j−1,

a j+1, . . . ,an) ∈ A1×·· ·×A j−1×A j+1×·· ·×An if for all a′j ∈ A j,

u j(a1, . . . ,a j−1,a j,a j+1, . . . ,an)≥ u j(a1, . . . ,a j−1,a′j,a j+1, . . . ,an).

Note that—depending on the information model—a voter’s computed best response does
not have to coincide with the actual best response in that situation since voters may not
have access to the current strategy profile. See Chapter 5 for a model where voters can
only see the submitted ballots of their neighbors in a social network. Further, voters are
assumed to have no memory, i.e., their best response does only depend on the current state
of the election, not past states, and they are assumed to be myopic, i.e., they do not have
access to the preference profile and do therefore not predict any future deviations by a
voter.

In the basic model of Meir et al. (2010), a voter only deviates if he is pivotal, i.e., if his
best response changes the election outcome. In contrast to this, Obraztsova et al. (2016)
study the model where a voter not only changes her ballot when she knows that this change
will impact the outcome positively, but also deviates optimistically, i.e., when she believes
that other voters will also change their ballot in her favor. The winner is announced as
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P: p1 = a > b > c

p2 = b > c > a

p3 = c > b > a

(a) Preference profile P

P0: a0
1 = {a}

a0
2 = {b}

a0
3 = {c}

(b) Ballot profile P0

Table 2.6: The preference profile and ballot profile in Example 2.18.

P1
a : a1

1 = {a}

a1
2 = {b}

a1
3 = {a}

P1
b : a1

1 = {a}

a1
2 = {b}

a1
3 = {b}

P1
c : a1

1 = {a}

a1
2 = {b}

a1
3 = {c}

Table 2.7: Possible profiles in the first turn in Example 2.18.

soon as the profile does not change anymore. Iterative elections where voters take turns are
path-dependent, i.e., the election winner depends on the order in which voters are allowed
to deviate. See the book chapter by Meir (2017) for an overview of iterative elections.

Example 2.18 (iterative elections). Let rPlu be the plurality rule, let C = {a,b,c} be a
candidate set, let P in Table 2.6a be the preference profile over C, and let P0 in Table 2.6b be
the profile of sincere plurality ballots over C. Assume that ties are broken lexicographically
and that voters change their ballot sequentially, starting with voter 3. The plurality winner of
P0 is rPlu(P0) = {a}. It holds that A1 = A2 = A3 = {{a},{b},{c}}, so consider the profiles
P1

a , P1
b , and P1

c in Table 2.7, where voter 3 submits the ballot {a}, {b}, and {c}, respectively,
and the other voters do not change their ballots. It holds that rPlu(P1

a ) = rPlu(P1
c ) = {a}

and rPlu(P1
b ) = {b}, so that

u3(P1
b )> u3(P1

a ) = u3(P1
c ) ,

therefore only the action {b} is a best response for strategy profile ({a},{b}). In the
profile P1

b , the best-response of voter 2 and 3 is to not change ballots, whereas voter 1 does
not change ballots because she is not pivotal. Therefore the winner of the iterative election
is candidate b. Now assume that given profile P0, it is the turn of voter 2. The only best
response for voter 2 is to submit the ballot {c}, after which no other voter changes ballots.
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P0: a0
1 = {a}

a0
2 = {b}

a0
3 = {c}

(a) Initial profile P0.

P1: a1
1 = {a}

a1
2 = {c}

a1
3 = {b}

(b) Profile P1 after the first turn.

Table 2.8: Profiles after turn 0 and 1 in Example 2.19.

Therefore, in this case the winner of the iterative election is candidate c, illustrating the
path-dependency of iterative elections when voting sequentially.

An important topic for iterative elections is convergence. Since voters may change their
ballots repeatedly, the resulting profiles can cycle, i.e., there may be a sequence of profiles
that repeat over and over again.

Example 2.19 (convergence). Consider the setting from Example 2.18, but this time
assume that voters submit their ballots simultaneously. The best response for voter 2 and 3
in profile P0 in Table 2.8a is to submit the ballots {c} and {b}, respectively, whereas voter 1
does not change ballots. In the resulting profile P1 in Table 2.8b, the best response for
voter 2 and 3 is to submit the ballots {b} and {c}, respectively, whereas voter 1 again does
not change ballots, resulting again in profile P0. Recall that voters do not have memories,
therefore this cycle repeats over and over again and the election does not converge.

Meir et al. (2010) initiate the study of conditions and voting rules for which elections are
guaranteed to converge, i.e., result in a profile where no voter has any incentive to change
their ballot. Such a profile is also called an equilibrum. Note that—depending on the
deviations allowed for the voters and their ballots—there are different kinds of equilibria,
e.g., a Nash equilibrium defined as follows.

Definition 2.20 (Nash equlibrium). Let N = {1, . . . ,n} be the set of players and let A=

A1× ·· ·×An be the set of strategy profiles. A strategy profile P = (a1, . . . ,an) ∈ A is
in a Nash equilibrium if action a j is a best response to the strategy profile (a1, . . . ,a j−1,

a j+1, . . . ,an) ∈ A1×·· ·×A j−1×A j+1×·· ·×An for each player j ∈ N.

For example, when voters deviate sequentially, Meir et al. (2010) prove that pluality always
converges to a Nash equilibrium when the inital ballot profile is sincere. Reyhani and
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Wilson (2012) and Lev and Rosenschein (2016) show that no scoring rule except plurality
and veto converges in iterative elections. The latter also study tie-breaking schemes and
show that the result holds for all tie-breaking schemes and that even restricting the tie-
breaking to a certain scheme does not guarantee convergence. Since iterative elections do
not converge for many common voting rules, Grandi et al. (2013) and Obraztsova et al.
(2015b) restrict the allowed deviations even more than the best-response dynamics in
order to achieve guaranteed convergence. Gourvès et al. (2016) consider a model where
voters are embedded in a social network. They introduce considerate equilibria to iterative
voting, where voters do not selfishly update their ballot, but consider their neighbors in the
network. A profile is then a considerate equilibrium when a coalition of voters consisting
of a clique in a graph cannot deviate without harming themselves or their neighbors.

Iterative voting can improve the quality of the election outcome, i.e., lead to a higher utility
of the voter. Brânzei et al. (2013) analyze the price of anarchy in iterative elections, which
is defined as the ratio between the quality of the outcome in a Nash equilibrium that can
be reached when starting a sequence of best responses from the original profile, and the
quality of the outcome in the original profile. Meir et al. (2014) also analyze the quality
of the outcome in iterative elections. They conduct experiments in the situation where
voters are uncertain about the current state of the election. However, in real-world elections
with underlying social networks, this effect of a better outcome is not as pronounced.
Tsang and Larson (2016) explain this phenomenon with the fact that many voters are only
connected to voters with a similar view to their own which lessens the possibilities for
pivotal deviations.

Reijngoud and Endriss (2012) consider opinion polls as a source of information for voters.
Fairstein et al. (2019) compare different models for strategic voting in the presence of
opinion polls and introduce a heuristic to predict how voters will behave in this scenario.
Sina et al. (2015) consider a social network that the voters are embedded in. Voters obtain
their information by an opinion poll and by their neighbors in the social network and
can act accordingly to this information. They introduce the concept of network control
where the chair can introduce new edges to the social network to obtain a desired outcome.
Wilczynski (2019) introduces the concept of manipulation by the agency that publishes
the opinion poll. Here, the agency publishes an incorrect poll to influence the voters to
change their ballots so that a designated candidate wins the election. See Chapter 5 for my
contribution to the study of the computational complexity of poll manipulation.
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2.3 Judgment Aggregation

This section generalizes the notion of preference aggregation. In the field of judgment
aggregation, agents called judges have to come to collective decisions in the form of
yes/no answers concerning several possibly logically related issues. Formally, let Φ =

{ϕ1,¬ϕ1, . . . ,ϕm,¬ϕm} be the agenda consisting of the ϕi (called issues, 1 ≤ i ≤ m) to
be decided over. Note that Φ is closed under complementation, consists of propositional
formulas ϕi over a set of propositional variables built by using the standard boolean
connectives, does not contain any doubly-negated formulas, and is assumed to be finite by
a large part of the existing literature. Let N = {1, . . . ,n} be the set of judges. Each judge
i ∈ N has an individual judgment set Ji ⊆Φ that is required to be complete (i.e., for each
ϕ ∈Φ, Ji contains ϕ or its complement),11 and Ji is required to be consistent (i.e., there
exists a truth assignment for the underlying set of propositional variables so that each issue
in Ji evaluates to true). Then J(Φ) denotes the set of all possible individual judgment sets
and J = (J1, . . . ,Jn) ∈ J(Φ)n is called a profile.

Definition 2.21 (judgment aggregation procedure). Let Φ be an agenda and let N =

{1, . . . ,n} be the set of judges. A judgment aggregation procedure P is a function

P : J(Φ)n→ 22Φ

that maps a profile J = (J1, . . . ,Jn) ∈ J(Φ)n to a set of (possibly incomplete and inconsis-
tent) judgment sets over Φ.

Note that most of the prevalent procedures are resolute, i.e., the collective outcome is
always a singleton. The formula-based framework based on Boolean algebra dominates
the literature, but Dietrich (2007) shows that the concepts of judgment aggregation can
also be employed with different types of logic. Ågotnes et al. (2011) also introduce a
new framework for judgment aggregation based on modal logic. Endriss et al. (2016a)
compare the formula-based framework with a framework where issues are propositional
variables whose logical relations are expressed in an external integrity constraint. This
model is a special case of the field of binary aggregation, see, e.g., the article by Dokow
and Holzman (2010). For a detailed introduction to judgment aggregation, see the book
chapters by Baumeister et al. (2015c), List and Puppe (2009), and Endriss (2016).
11See Terzopoulou et al. (2018) for a model where the judges’ judgment sets are not required to be complete.
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c b `

J1 1 1 1
J2 0 1 0
J3 1 0 0

Maj 1 1 0

Table 2.9: Illustration of the doctrinal paradox/discursive dilemma

The famous doctrinal paradox—first presented by Kornhauser and Sager (1986) and later
generalized to the discursive dilemma by Pettit (2001) and List and Pettit (2002)—shows
that when deciding each issue majority-wise, the resulting majority outcome might be
inconsistent even if all individual judgment sets are consistent. The corresponding rule is
called majority rule and always outputs a single judgment set where a formula ϕ ∈Φ is
contained if and only if more than half of the judges accept it. To illustrate the discursive
dilemma, consider the following example by List and Pettit (2002).

Example 2.22 (discursive dilemma). In the discursive dilemma, three judges have to
decide whether a contract was valid (c), whether there was a breach of contract (b), and
whether the defendant is liable (`), which is only the case if the contract was valid and
it was breached. The agenda is Φ = {c,¬c,b,¬b, `,¬`} where `= c∧b, and the profile
J ∈ J(Φ)3 can be seen in Table 2.9. Note that a 1 means that the corresponding issue was
accepted (i.e., a 1 for an issue ϕ in Ji means that ϕ ∈ Ji and ¬ϕ /∈ Ji), whereas a 0 indicates
that this issue was rejected (i.e., a 0 for an issue ϕ in Ji means that ϕ /∈ Ji and ¬ϕ ∈ Ji).
Even though all judges have consistent judgment sets (as required), taking the majority
decision for each issue leads to an inconsistent outcome: A majority of judges accept that
the contract was valid, that it was breached, but that the defendant is not liable.

Therefore, the majority rule—arguably the most simple and natural judgment aggregation
procedure—has a major drawback, which started the research on judgment aggregation.
See the article by Mongin (2012) for a detailed comparison between the doctrinal paradox
and the discursive dilemma.

As a way out of this dilemma, Dietrich and Mongin (2010) separate the issues into premises
and conclusions and only aggregate the judgments on the premises in the premise-based
approach (respectively, the conclusions in the conclusion-based approach). The premise-
based procedure then infers the conclusions from the premises. Dietrich and List (2007b)
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generalize the majority rule by introducing quota rules where an issue is contained in the
collective outcome if the number of judges that accept this issue is at least as high as a
given respective quota for this issue. However, as with the majority rule, this approach
does not guarantee to produce complete and at the same time consistent outcomes, unless
it is paired with the premise-based approach (resulting in the premise-based quota rules)
and certain assumptions about the agenda are made. Note that the term “uniform” denotes
that the quota is equal for all issues. In this thesis, the following definition for uniform
premise-based quota rules is used (see also Example 2.27).

Definition 2.23 (uniform premise-based quota rules). Let Φ = Φp ∪Φc be the agenda
partioned into a set of premises Φp and a set of conclusions Φc, and let Φp = Φ1∪Φ2

be partioned into sets Φ1 and Φ2 where Φ2 contains the complements of all ϕ ∈Φ1. The
uniform premise-based quota rule with quota q (denoted by UPQRq) for a quota 0≤ q < 1
maps each profile J = (J1, . . . ,Jn)∈ J(Φ)n to the collective outcome UPQRq(J) containing

• the premises ϕ ∈Φ1 that are contained in more than n ·q judgment sets J ∈ J,

• the premises ϕ ∈Φ2 that are contained in at least n · (1−q) judgment sets J ∈ J,

• and all conclusions ϕ ∈Φc that can be derived from the premises in the collective
outcome.

In contrast to this approach, List (2004) uses a slightly modified majority rule in a sequential
context where—following a given ordering of the issues in the agenda—the majority quota
for a formula only comes into play when the acceptance or rejection of an issue cannot
already be inferred by the already determined part of the collective outcome, thus ensuring
a complete and consistent outcome. Following the concept of scoring rules in voting
(see Section 2.2.1), Dietrich (2014) introduces scoring rules in judgment aggregation
that include an equivalent of Borda Count. Other counterparts of voting rules include
rules based on minimization studied by Lang et al. (2011). Furthermore, Lang and
Slavkovik (2013) investigate how the different judgment aggregation procedures relate to
the established voting rules.

The family of distance-based judgment aggregation procedures as introduced by Pigozzi
(2006) and Miller and Osherson (2009) consists of procedures that try to minimize the
distance between the collective outcome and the individual judgment sets. In a similar
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approach, Botan et al. (2021) design an egalitarian rule where the difference in satisfaction
with the collective outcome between the judges is minimized.

Another direction to circumvent the discursive dilemma is to analyze the agenda. An agenda
is called safe for a judgment aggregation procedure P if P produces a consistent outcome
regardless of the input profile. Several axioms for the agenda such as the median property
were introduced to characterize safe agendas. See the article by Endriss et al. (2012) for an
overview and a multitude of axioms regarding the safety of agendas. However, Endriss
et al. (2012) also show that for all considered axioms and procedures, it is intractable
to check whether a given agenda is safe. Endriss et al. (2015) strengthen these results
for the majority rule by showing intractability for agenda safety when parameterized by,
among others, the maximum formula size or the maximum variable degree, but also show
fixed-parameter tractability when parameterizing by the size of the agenda.

There are quite a few properties that judgment aggregation procedures can satisfy. See,
e.g., the article by Lang et al. (2017) for a list of judgment aggregation procedures
and their properties. Corresponding to Arrow’s theorem in preference aggregation (see
Section 2.2.1), Dietrich and List (2007a) show that an analogue to this theorem holds for the
field of judgment aggregation stating that a judgment aggregation procedure can only fulfill
certain (deemed reasonable) properties if it is a dictatorship. This theorem strengthens
earlier impossibility results, for example by List and Pettit (2002, 2004). Dietrich and List
(2010) further weaken the requirements posed on the judgment aggregation procedure to
be dictatorial. Following these results, there are several papers that investigate whether the
aforementioned “reasonable properties” are in fact reasonable for a judgment aggregation
procedure. A judgment aggregation procedure P satisfies neutrality if for each agenda
Φ, each profile J, and each pair of formulas ϕ,ψ ∈ Φ where ϕ ∈ J ⇔ ψ ∈ J for all
J ∈ J, it holds that ϕ ∈ P(J) if and only if ψ ∈ P(J). Intuitively, neutrality requires
that any two issues have to be treated equally. Slavkovik (2014) and Terzopoulou and
Endriss (2019a, 2020) argue that there are several cases where the axiom of neutrality
is too strong, and the latter propose weaker versions of neutrality. List (2003) suggests
to implement domain restrictions to circumvent impossibility theorems and introduces
the unidimensional alignment domain that is the judgment aggregation equivalent to the
single-crossing domain in voting.

As in voting, it is important to take the computational complexity of winner determina-
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tion into account when choosing the best judgment aggregation procedure for the given
application. Endriss et al. (2012) define the first problem for winner determination as
follows.

P-WINNER-DETERMINATION

Given: An agenda Φ, a profile J ∈ J(Φ)n, and a subset of formulas S⊆Φ.
Question: Is there a J ∈ P(J) so that S⊆ J?

Note that using the winner determination problem defined above, a winning judgment set
can be computed with a polynomial number of queries: Start with the empty set S. For
each ϕ ∈Φ, ask whether S∪{ϕ} is part of a judgment set in P(J), and set S := S∪{ϕ}
if the answer is yes. Endriss et al. (2012) then show that the winner determination for
quota rules and the premise-based rule is tractable, while the winner determination for
the distance-based procedure that returns the judgment sets from J(Φ) minimizing the
sum of Hamming distances to the profile is intractable. Here, the Hamming distance

HD(S,T ) between two complete and consistent judgment sets S and T is defined as the
number of issues ϕ ∈Φ on which both sets differ. De Haan and Slavkovik (2017) expand
the aforementioned intractability result by considering several more procedures from the
family of the distance-based procedures. Further, they show that winner determination for
scoring rules in judgment aggregation is also intractable. Lang and Slavkovik (2014) study
the computational complexity of winner determination for several majority-preserving
rules, and Endriss and de Haan (2015) show the intractability of winner determination for
several analogues of voting rules for judgment aggregation, e.g., analogues of the Kemeny
rule defined on page 11 and the Slater rule (see the article by Endriss et al. (2020) for
an overview). De Haan (2016) further studies the parameterized complexity of winner
determination for the Kemeny procedure and shows that the computational complexity
does not coincide in the respective frameworks. For the family of sequential quota rules,
Baumeister et al. (2021a) show that winner determination is intractable.

Based on the concept of iterative voting in preference aggregation (see Section 2.2.4 and
Chapter 5), Terzopoulou and Endriss (2018) introduce a model for iterative judgment
aggregation where judges can update their individual judgment sets. Further, they study
the convergence to equilibria.
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Analogous to Arrow’s theorem, the Gibbard-Satterthwaite Theorem introduced in Sec-
tion 2.2.2 for voting can also be transferred to judgment aggregation. To this end, Dietrich
and List (2007c) introduce the following notion of non-manipulability.

Definition 2.24 (non-manipulability). A resolute judgment aggregation procedure P is
non-manipulable if for each agenda Φ, each set of judges N = {1, . . . ,n}, each profile
J = (J1, . . . ,Jn) ∈ J(Φ)n, each formula ϕ ∈Φ, and each judge i ∈ N, it holds that if ϕ ∈ Ji,
but ϕ /∈ P(J), then ϕ /∈ P(J′) for each J′ = (J1, . . . ,Ji−1,J′i ,Ji+1, . . . ,Jn) where J′i ∈ J(Φ).

They show that, given a certain agenda type, each resolute, non-imposing12, non-manipulable
judgment aggregation procedure that has no further restrictions on the input profile and
always returns a complete and consistent collective outcome is a dictatorship of some judge
i in the sense that P always returns the individual judgment set Ji. Furthermore, they define
the following types of preferences over judgment sets to study whether a manipulator
prefers a new outcome to the original collective outcome and therefore has an incentive to
change her judgment set. Note that these preference types are only defined over complete
and consistent judgment sets to simplify the presentation.

Definition 2.25 (preference types). Let Φ be an agenda, and let J ∈ J(Φ) be a judgment
set.

1. The set UJ of unrestricted preferences contains all possible weak orders % over
J(Φ).

2. Define the set T RJ ⊆UJ of top-respecting J-induced preferences by

T RJ = {%∈UJ | J � Y ∀Y ∈ J(Φ)\{J}}.

3. Define the set CRJ ⊆ T RJ of closeness-respecting J-induced preferences by

CRJ = {%∈UJ | X % Y ∀ X ,Y ∈ J(Φ) where X ∩ J ⊇ Y ∩ J}.

4. Finally, define the Hamming-distance J-induced preference HDJ ⊆CRJ by

HDJ = {%∈UJ | (X % Y ⇔ HD(X ,J)≤ HD(Y,J)) ∀X ,Y ∈ J(Φ)}.
12A judgment aggregation procedure P is non-imposing if for each agenda Φ and each ϕ ∈Φ, there exist

two profiles J1,J2 in the domain of P so that ϕ ∈ P(J1) and ϕ /∈ P(J2).
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b c b∧ c

J: J1 1 1 1
J2 1 0 0
J3 0 1 0

UPQR1/2 1 1 1

(a) The original profile J = (J1,J2,J3).

b c b∧ c

J′: J1 1 1 1
J2 1 0 0
J′3 0 0 0

UPQR1/2 1 0 0

(b) The manipulated profile J′ = (J1,J2,J′3).

Table 2.10: The original and the manipulated profile in Example 2.27.

Define strategy-proofness as follows.

Definition 2.26 (strategy-proofness). A resolute judgment aggregation procedure P is
strategy-proof for a preference type C if for each agenda Φ, each profile J = (J1, . . . ,Jn) ∈
J(Φ)n, each judge i, each profile J′ = (J1, . . . ,Ji−1,J′i ,Ji+1, . . . ,Jn) ∈ J(Φ)n, and each
%i∈ CJi , it holds that P(J)%i P(J′).

Analogous to the impossibility theorem for non-manipulability, Dietrich and List (2007c)
further prove that, given a certain agenda type, each resolute and non-imposing judgment
aggregation procedure that has no further restrictions on the input profile, always returns
a complete and consistent collective outcome, and is strategy-proof for preference type
C is a dictatorship of some judge i. However, as Terzopoulou and Endriss (2019b) show,
this impossibility relies on the full information model, i.e., the model where a potential
manipulator knows the complete profile of judgment sets. When the judgment sets of some
judges are unknown, most impossibility results concerning strategy-proofness do not hold
anymore.

Example 2.27 (non-manipulability and strategy-proofness). Consider the uniform premise-
based quota rule with quota q = 1/2 and the agenda and profile from Example 2.22,
i.e., Φ = {b,¬b,c,¬c,b∧ c,¬(b∧ c)} and the profile J ∈ J(Φ)3 in Table 2.10a. Define
Φp = {b,¬b,c,¬c} as the premises with Φ1 = {b,c} and define Φc = {b∧ c,¬(b∧ c)}
as the conclusions of the agenda. A respective majority accepts b and c, so that b∧ c is
also part of the collective outcome (UPQR1/2(J) = {b,c,b∧ c}). In particular, judge 3
disagrees with the collective outcome on issue b∧c. However, if she changes her judgment
to J′3 = {¬b,¬c,¬(b∧ c)} resulting in profile J′ as seen in Table 2.10b, then the collective
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outcome UPQR1/2(J′) = {b,¬c,¬(b∧ c)} agrees with J3 on issue b∧ c. Therefore, the
uniform premise-based quota rule with quota q = 1/2 is manipulable.

Now consider the same scenario and assume that judge 3 has closeness-respecting (J3-
induced) preferences. There are four complete and consistent judgment sets for Φ, namely
J1, J2, J3, and J′3. According to Definition 2.25, she prefers J3 to all other sets. Furthermore,
she prefers J′3 to J2 since J′3 ∩ J3 = {b,¬(b∧ c)} ⊇ {¬(b∧ c)} = J2 ∩ J3. The relation
between J1 and both J2 and J′3 is not fixed. Therefore,

CRJ3 = {J3 � J1 � J′3 � J2,

J3 � J′3 � J1 � J2,

J3 � J′3 � J2 � J1}

Since there is an %∈CRJ3 so that UPQR1/2(J′)� UPQR1/2(J), it follows that the uniform
premise-based quota rule with quota q = 1/2 is not strategyproof under closeness-respecting
preferences.

Again, as with preference aggregation, there exist a multitude of papers investigating the
complexity of strategic attacks in judgment aggregation. Manipulation includes manipula-
tion by a single judge as defined above as well as manipulation by a coalition of judges.
Endriss et al. (2012) study the complexity of manipulation for the premise-based procedure
where the manipulator has Hamming-distance-induced preferences, whereas Baumeister
et al. (2015b) consider the (uniform) premise based (quota) rules for the preference types in
Definition 2.25 and for the case where the manipulator wants to include a set D as a subset
of the manipulated collective outcome. Coalitional manipulation was first studied by Botan
et al. (2016). The concept of bribery is closely related to lobbying (see, e.g., the papers by
Christian et al. (2007) and Bredereck et al. (2014b) for lobbying in judgment aggregation)
and was introduced to judgment aggregation by Baumeister et al. (2015b). Baumeister et al.
(2015b,d) study the complexity of bribery for the (uniform) premise based (quota) rules
and the preference types defined above. De Haan (2017) studies manipulation and bribery
for the Kemeny procedure. Similar to control in preference aggregation, the concept
of control in judgment aggregation can include adding or deleting judges (Baumeister
et al., 2012, 2015d), bundling issues (Alon et al., 2013) and bundling judges (Baumeister
et al., 2013), adding or deleting issues (Dietrich, 2016), or changing the order of issues
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in sequential rules (Bredereck et al., 2017). See the book chapter by Baumeister et al.
(2017) for an overview of strategic behavior in judgment aggregation and see Chapter 6
for my contribution to the investigation of the complexity of strategic attacks in judgment
aggregation.

De Haan (2018) argues that the intractability results for judgment aggregation are due to
the used framework being overly expressive and proposes to use more limited languages
that yield tractability results and are still able to model certain applications. De Haan
and Slavkovik (2019) give an encoding for several procedures and problems in judgment
aggregation into answer set programming.
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Chapter 3

Minisum and Minimax Committee Election Rules for
General Preference Types

This chapter deals with new types of ballots and new corresponding types of multiwinner
voting rules, also called committee election rules. The corresponding publication is as
follows.

Baumeister, D., Böhnlein, T., Rey, L., Schaudt, O., and Selker, A.-K. (2016). Minisum
and minimax committee election rules for general preference types. In Proceedings of

the 22nd European Conference on Artificial Intelligence, pages 1656–1657. IOS Press.
Extended Abstract

Brams et al. (2007) introduce the minimax procedure for electing a committee. The goal is
to select a committee that minimizes the maximum Hamming distance to a voter in the
given approval-based profile. They also define a corresponding minisum procedure that
aims to minimize the sum of Hamming distances to the voters’ ballots. Baumeister and
Dennisen (2015) modify these procedures to allow trichotomous ballots, complete linear
orders, and incomplete linear orders. Alcantud and Laruelle (2014) characterize a new
voting rule based on trichotomous ballots.

This chapter further extends these articles by introducing a type of ballot called `-ballot,
applying these ballots to minisum and minimax rules, and studying correspondingly
modified axiomatic properties. In an `-ballot, voters partition the candidates into ` (possibly
empty) groups and then rank these groups. This can be seen as a compromise between
dichotomous and trichotomous ballots on the one hand where voters lose the ability to
express more fine-grained relations between the candidates, and linear orders on the other
hand where voters are forced to express a strict preference between each pair of the
(possibly large) candidate set. Note that a similar type of ballot was previously introduced
by Obraztsova et al. (2015a, 2017). However, they study the ballots in a game-theoretic
approach, whereas this chapter deals with the axiomatic properties of minisum and minimax
voting rules using these kind of ballots. Furthermore, Balinski and Laraki (2011) obtain
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`-ballots in an intermediate stage of their majority judgment procedure where each judge
(who correspond to voters in this context) first assigns an integer grade in a fixed interval
to each contestant (or candidate) via a grade function, and the procedure then returns the
contestant with the best median grade of all judges.

This chapter is organized as follows. Section 3.1 introduces the concept of `-ballots and
the corresponding multiwinner rules called `-group rules, and illustrates these concepts in
a detailed example. Section 3.2 then modifies axiomatic properties for rules using ordinal
ballots to ones for rules using `-ballots, and shows which of these properties are fulfilled
by the `-group rules. Next, Section 3.3 studies the complexity of winner determination
for the new rules. Section 3.4 generalizes `-ballots to cardinal ballots that allow for two
independent values a and b for the dissatisfaction with a candidate being a member or not
a member of a committee. Finally, Section 3.5 details my contribution to the findings of
this chapter.

3.1 Minisum and Minimax `-group rules

This section introduces a new type of ballot and corresponding multiwinner rules. For a
more detailed overview on ballot types see Section 2.2, and for the basics of multiwinner
elections see Section 2.2.3. Recall that N = {1, . . . ,n} is a set of voters, C = {c1, . . . ,cm}
is a set of candidates, k ∈ N is a committee size, and F is a multiwinner voting rule.

Definition 3.1 (`-ballots). An `-ballot v for an integer ` ≥ 2 over candidate set C is a
partition of C into ` pairwise disjoint, possibly empty sets (called groups). Formally,
v = (G1, . . . ,G`) so that Gi∩G j = /0 for 1≤ i < j ≤ ` and

⋃`
i=1 Gi =C.

Note that 2-ballots correspond to approval ballots, whereas n-ballots do not correspond to
linear orders or weak orders since groups might be empty. For each group G j, j is called
the group number of G j. Intuitively, a voter prefers candidates with a low group number to
ones with a higher one, and is indifferent between candidates with the same group number.
Furthermore, let the candidates in C have a fixed ordering c1, . . . ,cm and let v(k) denote
the group number of a candidate ck in ballot v. Here, P̀ = (v1, . . . ,vn) denotes the profile
of `-ballots for a fixed ` ∈ N where vi is the ballot submitted by voter i ∈ N. A committee

election is a tuple E= (C, P̀ ,k).
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Definition 3.2 (Confirmed and potential committee members). Let E = (C, P̀ ,k) be a
committee election and let F be a multiwinner rule. A candidate c ∈ C is a confirmed

committee member for E (under F) if c ∈W for all W ∈ F(P̀ ,k), and a potential committee

member for E (under F) if there exists a W ∈ F(P̀ ,k) so that c ∈W .

In this chapter, the focus is on minimizing the dissatisfaction voters have with an elected
committee W . Let Fk(C) = {S | S ⊆ C∧ |S| = k} be the set of all committees of size k

over C. The dissatisfaction of a voter j—associated with `-ballot v j—with a committee
W ∈ Fk(C) is measured as

δ`(v j,W ) =
m

∑
i=1
|v j(i)−W (i)|,

where W (i) = 1 if ci ∈W , and W (i) = ` else. Note that δ`(v j,W ) can be interpreted as
the distance between `-ballot v j and committee W and generalizes the Hamming distance
between two vectors.

Define the following two families of multiwinner rules tailored to `-ballots and minimizing
voters’ dissatisfaction.

Definition 3.3 (minisum and minimax `-group rules). For each ` > 0, let E= (C, P̀ ,k) be
a committee election and let Fk(C) = {S | S⊆C∧|S|= k}.

• The minisum `-group rules are functions f `sum that return the committees minimizing
the total dissatisfaction of the voters with the elected committees, i.e.,

f `sum(P̀ ,k) = argmin
W∈Fk(C)

∑
v∈P̀

δ`(v,W ).

• The minimax `-group rules are functions f `max that return the committees minimizing
the dissatisfaction of the respective least satisfied voter with the elected committees,
i.e.,

f `max(P̀ ,k) = argmin
W∈Fk(C)

max
v∈P̀

δ`(v,W ).

Define ∑v∈P̀ v(i) as the minisum score of a candidate ci for profile P̀ .
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Claim 3.4. For each committee election E= (C, P̀ ,k), an alternative way to compute the

result of f `sum(P̀ ,k) is to calculate the minisum score of each candidate for P̀ and then

return the committees W ∈ Fk(C) that contain all candidates with a minisum score lower

than s, as well as contain only candidates with a minisum score lower or equal than s,

where s denotes the k-lowest minisum score of a candidate.

Proof. Assume that the claim is not true, i.e., there exists a committee election E =

(C, P̀ ,k) so that either (1) for a winning committee W , there exists a candidate c /∈W

that has a lower minisum score than a member of W , or (2) a committee satisfying the
requirements in the claim does not win.

Case (1): Let W ∈ f `sum(P̀ ,k) be a winning committee, so that there exists a ci ∈W and a
c j ∈C\W so that ∑v∈P̀ v( j)<∑v∈P̀ v(i). Consider the committee W ′=(W ∪{c j})\{ci}.

∑
v∈P̀

δ`(v,W )− ∑
v∈P̀

δ`(v,W ′)

= ∑
v∈P̀

(
v(i)−1

)
+ ∑

v∈P̀

(
`− v( j)

)
− ∑

v∈P̀

(
v( j)−1

)
− ∑

v∈P̀

(
`− v(i)

)
=2 · ∑

v∈P̀
v(i)−2 · ∑

v∈P̀
v( j)> 0 ,

i.e., the total dissatisfaction of the voters with W is greater than with W ′, a contradiction to
the fact that W is a winning committee.

Case (2): It follows from case (1) that all winning committees satisfy the requirements
in the claim statement. Assume a committee W /∈ f `sum(P̀ ,k) satisfying the requirements
does not win, whereas a committee W ′ ∈ f `sum(P̀ ,k) does. It holds that

∑
v∈P̀

(
∑

ci∈W
∧ci /∈W ′

v(i)+ ∑
ci /∈W
∧ci∈W ′

v(i)
)
= 2 ·|{c | c∈W ∧c /∈W ′}|·s= ∑

v∈P̀

(
∑

ci∈W ′
∧ci /∈W

v(i)+ ∑
ci /∈W ′
∧ci∈W

v(i)
)
,
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and therefore

∑
v∈P̀

δ`(v,W )

= ∑
v∈P̀

(
∑

ci∈W
∧ci∈W ′

(
v(i)−1

)
+ ∑

ci∈W
∧ci /∈W ′

(
v(i)−1

)
+ ∑

ci /∈W
∧ci∈W ′

(
`− v(i)

)
+ ∑

ci /∈W
∧ci /∈W ′

(
`− v(i)

))

= ∑
v∈P̀

(
∑

ci∈W
∧ci∈W ′

(
v(i)−1

)
+ ∑

ci∈W ′
∧ci /∈W

(
v(i)−1

)
+ ∑

ci /∈W ′
∧ci∈W

(
`− v(i)

)
+ ∑

ci /∈W
∧ci /∈W ′

(
`− v(i)

))
= ∑

v∈P̀
δ`(v,W ′)

This is a contradiction to the fact that W ′ is a winning committee and W is not.

Since both cases end in a contradiction, the claim is true.

The following example illustrates the minisum and minimax `-group rules.

Example 3.5 (minisum and minimax `-group rules). Let E = (C,P3,3) be a committee
election where C = {a,b,c,d} and P3 is the profile of 3-ballots over C in Table 3.1.

G1 G2 G3

P3: v1 = ( {a} {b,c} {d} )
v2 = ( {a,b,d} {} {c} )
v3 = ( {c} {a,b,d} {} )

Table 3.1: The profile P3 in Example 3.5.

Start with the minisum 3-group rule f 3
sum. The minisum scores of the candidates are the

total of the respective group numbers, see Table 3.2a. For example, candidate a is in G1 for
both voter 1 and 2, and in G2 for voter 3, adding up to a score of 1+1+2 = 4. For k = 3,
the third lowest score is 6. According to Claim 3.4, each winning committee has to contain
the candidates with a score lower than 6, namely a and b, and can only contain candidates
with a minisum score of at most 6. It follows that f 3

sum(P3,3) = {{a,b,c},{a,b,d}}.

Next, turn to the minimax 3-group rule f 3
max. Recall that the dissatisfaction of a voter j

with a given committee W is the total of v j(i)−1 for each ci ∈W and `− v j(i) for each
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a b c d

v1 : 1 2 2 3
v2 : 1 1 3 1
v3 : 2 2 1 2

∑ : 4 5 6 6

(a) Minisum scores

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

v1 : 2 4 4 6
v2 : 4 0 4 4
v3 : 3 5 3 3

max : 4 5 4 6

(b) Voters’ dissatisfaction with each committee of size 3.

Table 3.2: The minisum scores of each candidate and the dissatisfaction of each voter for
the minimax 3-group in Example 3.5.

ci /∈W . See Table 3.2b for the dissatisfaction of each voter for each possible committee of
size 3.

For example, voter 1 has a dissatisfaction with committee {b,c,d} of (3− 1) + (2−
1)+ (2− 1)+ (3− 1) = 6. The winning committees are then the committees with the
lowest maximum of dissatisfaction. It follows that f 3

max(P3,3) =
{
{a,b,c},{a,c,d}

}
with

a maximum dissatisfaction of 4.

3.2 Axiomatic Properties

As pointed out in Sections 2.2.1 and 2.2.3, the choice of using a specific (multiwinner) vot-
ing rule depends heavily on the axiomatic properties the rules satisfy. This section studies
whether the minisum and minimax `-group rules satisfy some well-known properties for
singlewinner and/or multiwinner voting rules. Note that the considered properties were
originally defined for linear or weak orders, so some properties have to be specifically
adapted to `-ballots. In this section, all proofs that I did not contribute are omitted.

The first (fundamental) property is non-imposition, that–similar to the singlewinner version
defined on page 12–demands that each committee can win in some election (which also
implies that no candidates are incompatible with each other and therefore cannot be part of
the same committee). The property homogeneity asks that multiplying the given profile
does not change the election result. The multiwinner adaptations of both properties are
due to Elkind et al. (2017a).
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Definition 3.6. A multiwinner voting rule F satisfies

• non-imposition, if for each set of candidates C and and each committee W ∈ Fk(C)

of size k there is a profile P so that F(P,k) = {W}.

• homogeneity, if for each committee election E = (C,P,k) and each t ∈ N it holds
that F(tP,k) = F(P,k), where tP denotes the concatenation of t copies of P.

The families of minisum and minimax ` group rules satisfy both properties.

Theorem 3.7. For each ` ∈ N, the minisum and minimax `-group rules satisfy non-

imposition and homogeneity.

The property consistency (also called reinforcement) states that when a profile can be split
in two so that the two parts agree on some winning committees, these committees should
also win the election for the original profile. Again, this property was adapted from the
singlewinner context to multiwinner rules by Elkind et al. (2017a).

Definition 3.8. Let P1 +P2 denote the concatenation of profiles P1 and P2. A multiwinner
voting rule F satisfies consistency, if for each pair of profiles P1,P2 over the same candidate
set C and for each committee size k ≤ |C|, it holds that F(P1 +P2,k) = F(P1,k)∩F(P2,k)

whenever F(P1,k)∩F(P2,k) 6= /0.

Theorem 3.9. For each ` ∈ N, the minisum `-group rule satisfies consistency, while the

minimax `-group rule does not.

A clone of a candidate c is another candidate c′ that is very similar to c in the voter’s eyes
and will therefore be ranked close to the original candidate in the ballots. For example, a
clone of a job applicant might be another applicant with the same qualifications and age.
Ideally, adding a clone of candidate c to the election should not be detrimental to c, but
for many contexts, the cloning might lead to a split vote. Consider for example plurality
ballots, i.e., approval ballots where exactly one candidate can be approved. Some of the
voters approving c might switch to approve the clone c′ and thereby costing c votes to the
benefit of another candidate. The idea of cloning was first introduced by Tideman (1987)
who considers weak orders as ballots where clones of a candidate c are tied to or ranked
directly above or below c. In the setting of `-ballots, cloning a candidate c means adding
an additional candidate c′ to the set of candidates and placing c′ in the same group as c for
each ballot.

51



Chapter 3 Minisum and Minimax Committee Election Rules for General Preference Types

Definition 3.10. A multiwinner voting rule F is independent of clones if for each commit-
tee election E= (C,P,k) and each candidate c ∈C, a candidate d ∈C that is not a potential
committee member under E cannot be a potential committee member in a committee
election when cloning c.

Note that the candidates c and d in the above definition do not have to be distinct, i.e., the
cloning of candidate c should also not be beneficial to c.

Theorem 3.11. For each `, the minisum `-group rule satisfies independence of clones,

while the minimax `-group rule does not.

Next, consider variants of monotonicity starting with committee monotonicity. This prop-
erty demands that members of winning committees should remain in winning committees
even if the committee size is increased. For example, it is not reasonable to replace candi-
dates on an interview shortlist just because an additional interview slot opened up. The
following definition of committee monotonicity is due to Elkind et al. (2017a).

Definition 3.12. A multiwinner voting rule F satisfies committee monotonicity if for
each committee election E = (C,P,k), and for each elected committee W ∈ F(P,k), the
following holds:

• If k < |C| then there exists a W ′ ∈ F(P,k+1) such that W ⊆W ′, and

• if k > 1 there exists a W ′ ∈ F(P,k−1) such that W ⊇W ′.

Theorem 3.13. For each ` ∈N, the minisum `-group rule satisfies committee monotonicity,

whereas the minimax `-group rule does not for each `≥ 2.

Proof. For an arbitrary positive integer `, let E= (C, P̀ ,k) be a committee election. The
minisum scores ∑v∈P̀ v( j) of each candidate c j ∈C are independent of the committee size
k and therefore do not change by increasing or decreasing k. Since each minisum `-group
rule picks the committees that contain the candidates with the lowest minisum score, it
satisfies committee monotonicity.

However, the minimax `-group rule does not satisfy committee monotonicity for each
`≥ 2. To prove this, consider C = {c1,c2,c3} and the following profile P̀ :
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P̀ : v1 = ({c1}, {}, . . . , {}, {c2,c3})
v2 = ({c2}, {}, . . . , {}, {c1,c3})

It holds that f `max(P̀ ,1) =
{
{c1},{c2},{c3}

}
, whereas f `max(P̀ ,2) =

{
{c1,c2}

}
. This vio-

lates the first condition of committee monotonicity since for k = 1, the winning committee
{c3} is not a subset of any winning committee for k = 2.

The following notions of monotonicity aim at ensuring that additional support for a
candidate c does not hurt the prospect of winning for c. In the example of the shortlist for
a hiring process, a candidate should not lose an already secured interview spot just because
an additional member of the hiring committee announces support for this candidate.
The original multiwinner definition for candidate monotonicity and monotonicity for
linear orders is again due to Elkind et al. (2017a) and states that an improvement of a
potential committee member c should not be detrimental to c (candidate monotonicity)
respectively to the winning committee of which c is a member (monotonicity). In the
original (singlewinner) definition of positive responsiveness for linear orders that goes
back to May (1952), an improvement of a winning candidate c in a ballot should even
lead to c being a unique winner of the election (see Definition 3.14 for a restatement for
multiwinner voting rules). However, their notion of improvement1 of a candidate is tailored
to linear orders and is therefore not suitable for `-ballots. Definition 3.14 below therefore
uses the following notion of improvement.

Given a profile P̀ = (v1, . . . ,vn) of `-ballots over candidate set C, let P′` denote the modified
profile obtained by improving candidate ci in some ballot v j, i.e., shifting ci into a better
group in v j while the rest of the ballot remains unchanged. Formally,

P′` = (v1, . . . ,v j−1,v′j,v j+1, . . . ,vn) where v′j(i)< v j(i) and v′j(g) = v j(g) for all cg 6= ci.

Note that in contrast to the case of linear orders, no candidates are shifted backwards by
improving c j. This is to preserve the spirit of the original notion where the relation between
candidates other than c j remain unchanged. For example, let C = {c1,c2,c3,c4} be the set
of candidates and consider the 2-ballots v = ({c3},{c1,c2}) and v′ = ({c1},{c2,c3}). The

1Improving a candidate c by one position in the linear order of voter i means swapping c and the candidate
in position posi(c)−1. An improvement of t > 1 steps can be carried out by improving c by one position
t times.
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ballot v′ can be obtained by swapping the candidates c1 and c3, but this has consequences
for the relation between c2 and c3.

Furthermore, it does not suffice to just require that all relative candidate relations barring
the ones with ci remain the same, but it is necessary to fix the group numbers of all
candidates but ci. In the 6-ballots

v = ({}, {c4}, {c2}, {c1}, {c3}, {}) and
v′ = ({c4}, {c1,c2}, {}, {}, {}, {c3}),

the candidate c1 is improved in v′ in relation to v, but c2 and c4 improved as well which is
counterintuitive to an improvement of c1. Additionally, the candidate c3 is even shifted
a group back without changing the relation to any other candidate including c1, which
is detrimental to c3 and again counterintuitive. For a recent adaptation of the notion of
monotonicity to approval ballots (respectively, to ballots using weak orders) see the article
by Sánchez-Fernández and Fisteus (2019) (respectively, Aziz and Lee (2020)).

Definition 3.14. A multiwinner voting rule F satisfies

• candidate monotonicity (resp., positive responsiveness), if for each committee elec-
tion E= (C,P,k) and each c ∈C, if c is a potential committee member for E under
F, then it holds that c is a potential (respectively, confirmed) committee member for
(C,P′,k), where P′ is obtained from P by improving c in some ballot v.

• monotonicity, if for each committee election E = (C,P,k), each W ∈ F(P,k), and
each c∈W , it holds that W ∈F(P′,k) for all P′ that are obtained from P by improving
c in some ballot v.

Note that monotonicity as well as positive responsiveness imply candidate monotonicity.

The following theorem shows that the minisum `-group rules satisfy the notions of mono-
tonicity defined above.

Theorem 3.15. For each ` ∈N, the minisum `-group rule satisfies monotonicity, candidate

monotonicity, and positive responsiveness.
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Proof. Start with the the property of monotonicity. Let `≥ 2 be an arbitrary integer and
assume that the minisum `-group rule does not satisfy monotonicity, i.e., there exists a
committee election E = (C, P̀ ,k), a committee W ∈ f `sum(P̀ ,k), and a candidate ci ∈W

so that W /∈ f `sum(P
′
`,k), where P′` is obtained from P̀ by improving ci in ballot v j. In

particular, that means that in the new committee election, there exists a committee W ′ that
has a lower sum of dissatisfaction of the voters with W ′ than with the original winning
committee W . Formally,

∑
v∈P̀

δ`(v,W ′)≥ ∑
v∈P̀

δ`(v,W ) and (3.1)

∑
v∈P′`

δ`(v,W ′)< ∑
v∈P′`

δ`(v,W ). (3.2)

where Equation (3.1) holds due to W ∈ f `sum(P̀ ,k) and Equation (3.2) due to W /∈ f `sum(P
′
`,k).

Recall that ci ∈W and that only the group number of ci differs in v j and v′j while the place-
ment of all other candidates remains unchanged, and all other ballots in P̀ are identical in
P′`. Consequently, for each committee S it holds that

δ`(v′j,S)−δ`(v j,S) = v′j(i)− v j(i). (3.3)

Equation (3.2) can be transformed as follows.

∑
v∈P′`

δ`(v,W ′)< ∑
v∈P′`

δ`(v,W )

⇐⇒
(

∑
v∈P′`\{v

′
j}

δ`(v,W ′)
)
+δ`(v′j,W

′)<
(

∑
v∈P′`\{v

′
j}

δ`(v,W )
)
+δ`(v′j,W )

⇐⇒
(

∑
v∈P̀ \{v j}

δ`(v,W ′)
)
+δ`(v′j,W

′)<
(

∑
v∈P̀ \{v j}

δ`(v,W )
)
+δ`(v′j,W )

⇐⇒
(

∑
v∈P̀

δ`(v,W ′)
)
+δ`(v′j,W

′)−δ`(v j,W ′)<
(

∑
v∈P̀

δ`(v,W )
)
+δ`(v′j,W )−δ`(v j,W )

⇐⇒ ∑
v∈P̀

δ`(v,W ′)− ∑
v∈P̀

δ`(v,W )< δ`(v j,W ′)−δ`(v′j,W
′)+ v′j(i)− v j(i)︸ ︷︷ ︸

due to Eq. (3.3)

⇐⇒ ∑
v∈P̀

δ`(v,W ′)− ∑
v∈P̀

δ`(v,W )︸ ︷︷ ︸
≥0 due to Eq. (3.1)

< v j(i)− v′j(i)︸ ︷︷ ︸
due to Eq. (3.3)

+v′j(i)− v j(i) = 0  
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Due to the contradiction, it follows that the minisum `-group rule satisfies monotonicity
for each ` > 0, which also implies that the minisum `-group rule satisfies candidate
monotonicity for each ` > 0.

Next, assume that the minisum `-group rule does not satisfy positive responsiveness, i.e.,
there exists a committee election E = (C, P̀ ,k), a potential committee member c ∈W

for some W ∈ f `sum(P̀ ,k), and a committee W ′ ∈ f `sum(P
′
`,k) so that c /∈W ′, where P′` is

obtained from P̀ by improving c in ballot v j. Then W ∈ f `sum(P
′
`,k) since f `sum satisfies

monotonicity as proved above. The inequality

∑
v∈P̀

δ`(v,W ′)
(1)
< ∑

v∈P′`

δ`(v,W ′)
(2)
= ∑

v∈P′`

δ`(v,W )
(3)
< ∑

v∈P̀
δ`(v,W )

is a contradiction to the fact that W is a winning committee in the original election. Note
that (1) is due to the fact that c is not a member of W ′ and an improvement of c therefore
leads to a higher dissatisfaction of voter j with W ′. Furthermore, (2) holds since both W

and W ′ are winning committees in the new election, and (3) holds because an improvement
of c leads to a lower dissatisfaction of voter j with W . Therefore, the minisum `-group
rule satisfies positive responsiveness for all ` > 0.

Next, turn to the minimax `-group rules.

Theorem 3.16. For each ` ∈N, the minimax `-group rule satisfies candidate monotonicity.

However, for each `≥ 2, the minimax `-group rule does not satisfy positive responsiveness

and monotonicity.

Proof. First, show that for each ` > 0, the minimax `-group rule satisfies candidate
monotonicity. For each committee election E = (C, P̀ ,k), and each profile P′` that is
obtained by improving a potential committee member c ∈W , W ∈ f `max(P̀ ,k), in a ballot
in P̀ , the following holds:

The dissatisfaction of a least satisfied voter does not change or even grows for all commit-
tees W ′ ∈ Fk(C) where c /∈W ′, so that the following holds.

max
v∈P′`

δ`(v,W )≤max
v∈P̀

δ`(v,W )≤max
v∈P̀

δ`(v,W ′)≤max
v∈P′`

δ`(v,W ′)
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P̀ : v1 = ({c1}, {c2,c3}, {}, . . .)
v2 = ({c3}, {c1,c2}, {}, . . .)

P′` : v′1 = ({c1,c2}, {c3}, {}, . . .)
v2 = ({c3}, {c1,c2}, {}, . . .)

Table 3.3: Profiles P̀ and P′` in the positive responsiveness proof of Theorem 3.16.

P̀ : v1 = ({c1}, {c2,c3}, {}, . . .)
v2 = ({c2}, {c1,c3}, {}, . . .)
v3 = ({c3}, {c1,c2}, {}, . . .)

P′` : v′1 = ({c1,c2}, {c3}, {}, . . .)
v2 = ({c2}, {c1,c3}, {}, . . .)
v3 = ({c3}, {c1,c2}, {}, . . .)

Table 3.4: Profiles P̀ and P′` in the monotonicity proof of Theorem 3.16.

Since c ∈W , this means that there does not exist a committee W ′ not containing c that
has a strictly lower dissatisfaction of the least satisfied voter in the new election than all
committees containing c. It follows that c has to be a potential committee member in the
new election.

However, such a candidate c does not have to be a confirmed committee member after
an improvement, which the following example shows. Consider C = {c1,c2,c3} and the
profiles P̀ and P′` in Table 3.3, where the latter is obtained by improving c2 in the ballot
v1. It holds that f `max(P̀ ,1) = f `max(P

′
`,1) =

{
{c1},{c2},{c3}

}
, so c2 is not a confirmed

committee member in the new election despite being a potential committee member in
the original election and being improved. This proves that the minimax `-group rule does
not satisfy positive responsiveness for each `≥ 2 because the improvement of a candidate
c in a vote that is not the single vote with the minimal maximal dissatisfaction for any
committee has no effect on the election result.

Furthermore, the minimax `-group rule does not satisfy monotonicity for each ` ≥ 2.
Consider for example C = {c1,c2,c3} and the profiles P̀ and P′` in Table 3.4, where the
latter is obtained by improving c2 in the ballot v1. It holds that
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f `max(P̀ ,2) =
{
{c1,c2},{c2,c3},{c1,c3}

}
.

But the improvement of c2 in ballot v1 leads to a lower dissatisfaction of the single most
dissatisfied voter—namely the first voter—with committee {c2,c3}, while the dissatis-
faction of the most dissatisfied voter for the other winning committees does not change.
Therefore, {c1,c2} /∈ f `max(P

′
`,2) =

{
{c2,c3}

}
, although c2 ∈ {c1,c2} was improved in the

original election.

Elkind et al. (2017a) also consider the weaker notion of non-crossing monotonicity where
only improvements for c ∈W are allowed that do not change the respective relations
between all members of W . The results presented above still hold for this variant.

Next, consider Condorcet consistency. In a profile P̀ of `-ballots, a candidate ci beats a
candidate c j in a pairwise comparison if more voters prefer ci to c j than the other way
round, i.e., |{v ∈ P̀ | v(i) < v( j)}| > |{v ∈ P̀ | v( j) < v(i)}|. Recall that a Condorcet
winner c ∈C beats all other candidate in pairwise comparisons, and that a (singlewinner)
voting rule is Condorcet consistent when the Condorcet winner is the unique winner of
the election whenever it exists (see the definitions on pages 11 and 12). As in the case
of monotonicity, one can define two notions of Condorcet consistency in the multiwinner
context, namely one focusing on the candidates and one focusing on the committees. The
candidate variant is due to Felsenthal and Maoz (1992) who adapted the singlewinner
property of Condorcet consistency to resolute multiwinner voting rules by requiring that
a Condorcet winner has to be a member of the winning committee. See Definition 3.17
for a restatement of this definition for irresolute multiwinner voting rules. The committee
variant states that the committee Condorcet winner has to be the unique winning committee
of the election if it exists, where the committee Condorcet winner of size k is a committee
W ∈ Fk(C) for a set of candidates C so that each c ∈W beats each d ∈C \W in a pairwise
comparison (Gehrlein, 1985). Note that a committee Condorcet winner is unique, and that
it contains the Condorcet winner if such a candidate exists.

Definition 3.17. A multiwinner voting rule F satisfies

• Condorcet consistency, if for each committee election E = (C,P,k) where a Con-
dorcet winner c ∈C exists, c is a confirmed committee member under E.
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• committee Condorcet consistency, if for each committee election E= (C,P,k) where
a committee Condorcet winner W exists, it holds that {W}= F(P,k).

Note that committee Condorcet consistency implies Condorcet consistency.

Theorem 3.18. Neither the minisum nor the minimax `-group rules are Condorcet consis-

tent or committee Condorcet consistent.

Similar to the property defined for social welfare functions on page 12, a singlewinner
voting rule is Pareto optimal (or satisfies the Pareto criterion) if only candidates that are
not dominated by another candidate can win. A candidate c dominates a candidate d if
c is preferred to d by all voters. However, this definition has to be slightly modified for
the multiwinner context. For example, a dominated candidate might have to be part of
the winning committee when there are not enough not dominated candidates left to fill
the committee (as can be the case, e.g., in a unanimous profile where all voters prefer a
candidate c to every other candidate). See, e.g., the work by Felsenthal and Maoz (1992).

Definition 3.19. Let E= (C,P,k) be a committee election. A multiwinner voting rule F

satisfies the Pareto criterion if the following holds: If a candidate ci ∈C is preferred to a
candidate c j ∈C by all voters in P, i.e., v(i)< v( j) for all v ∈ P in the context of `-ballots,
it holds that c j ∈W for some W ∈ F(P,k) implies that ci ∈W .

Theorem 3.20. For each ` ∈ N, both the minisum and the minimax `-group rules satisfy

the Pareto criterion.

Proof. Le ` be an arbitrary positive integer. Assume that the minisum `-group rule
(respectively, the minimax `-group rule) does not satisfy the Pareto criterion. Then there
exists a committee election E= (C, P̀ ,k) and candidates ci,c j ∈C, so that v(i)< v( j) ∀v∈
P̀ , but c j ∈W and ci /∈W for some W ∈ f `sum(P̀ ,k) (respectively, W ∈ f `max(P̀ ,k)). A
voter’s dissatisfaction with a committee only depends on the individual members. The
dissatisfaction of each voter v with the committee W ′ = (W ∪{ci})\{c j} is strictly less
than the dissatisfaction with W :

δ`(v,W ′)−δ`(v,W ) = v(i)−1+ `− v( j)−
(
v( j)−1+ `− v(i)

)
= 2v(i)−2v( j)< 0,
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and therefore

∑
v∈P̀

δ`(v,W ′)< ∑
v∈P̀

δ`(v,W )(
respectively, max

v∈P̀
δ`(v,W ′)< max

v∈P̀
δ`(v,W )

)
This is a contradiction to the fact that W is a winning committee under f `sum (respec-
tively, f `max). It follows that both the minisum and the minimax `-group rules satisfy the
Pareto criterion for all ` > 0.

The following properties aim at ensuring proportionality by demanding that a committee
W wins the election when a large enough group of voters prefers the members in W to
the candidates outside W . They were introduced by Elkind et al. (2017a) and weaken an
axiom proposed by Dummett (1984). Here, they are stated in the context of `-ballots. See
the axioms of justified representation and Gehrlein stability on page 29 for similar ideas.

Definition 3.21. A multiwinner voting rule F satisfies

• solid coalitions if for each committee election E= (C, P̀ ,k) with n voters where

|
{

v ∈ P̀ | v(i)< v( j) ∀c j ∈C \{ci}
}
| ≥ n/k

for a candidate ci ∈C implies that ci is a confirmed committee member,

• consensus committee if for each committee election E= (C, P̀ ,k) with n voters and
each W ∈ Fk(C) so that each voter ranks some member of W higher than all other
candidates and each member of W is ranked higher than all other candidates by
either bn/kc or dn/ke voters, it holds that F(P̀ ,k) = {W}, and

• strong (respectively, weak) unanimity if for each committee election E= (C, P̀ ,k),
where v(i)< v( j) for all v ∈ P̀ , ci ∈W , and c j ∈C\W , it holds that {W}= F(P̀ ,k)

(respectively, W ∈ F(P̀ ,k)).

Note that committee Condorcet consistency implies strong unanimity, which implies weak
unanimity.

Theorem 3.22. For each `≥ 2, neither the minisum nor the minimax `-group rules satisfy

solid coalitions and consensus committee, but they satisfy strong unanimity.
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3.3 Computational Complexity of Winner Determination

Table 3.5 summarizes the axiomatic property results in this section. Note that the notion of
(candidate) monotonicity in the article Baumeister et al. (2016) corresponds to candidate
monotonicity as defined in Definition 3.14. The notion of (crossing and non-crossing)
monotonicity was not previously considered for `-group rules.

Property
`-group rules

minisum minimax

Non-imposition X Thm. 3.7 X Thm. 3.7
Homogeneity X Thm. 3.7 X Thm. 3.7
Consistency X Thm. 3.9 × Thm. 3.9
Independence of clones X Thm. 3.11 × Thm. 3.11
Committee monotonicity X Thm. 3.13 × Thm. 3.13
Candidate monotonicity X Thm. 3.15 X Thm. 3.16
Monotonicity X Thm. 3.15 × Thm. 3.16
Positive responsiveness X Thm. 3.15 × Thm. 3.16
Condorcet consistency × Thm. 3.18 × Thm. 3.18
Committee Condorcet consistency × Thm. 3.18 × Thm. 3.18
Pareto criterion X Thm. 3.20 X Thm. 3.20
Solid coalitions × Thm. 3.22 × Thm. 3.22
Consensus committee × Thm. 3.22 × Thm. 3.22
Unanimity strong Thm. 3.22 strong Thm. 3.22

Table 3.5: Property results for the minisum and minimax `-group rules. The respective
results hold for each applicable `.

3.3 Computational Complexity of Winner Determination

This section studies the computational complexity of winner determination for the minisum
and minimax `-group rules, starting with the minisum `-group rules. As stated in Claim 3.4,
the winning committees for f `sum can be determined by computing the minisum scores of
all candidates, which is obviously possible in polynomial time.

Theorem 3.23. For each ` ∈ N, all winning committees for the minisum `-group rule can

be computed in polynomial time.

However, this is not the case for the minimax `-group rules. Recall that 2-ballots correspond
to approval ballots. Therefore, f 2

max corresponds to the original minimax rule introduced
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by Brams et al. (2007). LeGrand (2004) shows the NP-hardness of the following problem
for `= 2.

MINIMAX-`-SCORE

Given: A committee election E= (C, P̀ ,k), and a nonnegative integer d.
Question: Is there a committee W ∈ Fk(C) such that maxv∈P̀ δ (v,W )≤ d?

Since this problem would be tractable if it were possible to compute a winning committee
for f 2

max in polynomial time, it follows that the winner determination for f 2
max is intractable

as well. Furthermore, Misra et al. (2015) show that MINIMAX-2-SCORE is W[2]-hard
when parameterized by the size of the committee k. These results can be generalized to all
values of `. However, Misra et al. (2015) also show that there exists an fpt-algorithm for
MINIMAX-2-SCORE when parameterized by d. The following theorem generalizes the
result for each `.

Theorem 3.24. For each `, MINIMAX-`-SCORE is in FPT when parameterized by d.

3.4 (a,b)-rules

The `-ballots introduced in Section 3.1 are a compromise between ordinal and cardinal
ballots in the way that voters can assign a dissatisfaction value to candidates where the
values are bound by an underlying ranking of the candidates. There are some articles
exploring cardinal preferences,2 but cardinal ballots and corresponding voting rules are
rarely considered in preference aggregation. One example is range voting for singlewin-
ner elections introduced by Smith (2000). Voters assign each candidate a real number
from the interval [−1,1] where a higher number implies a higher satisfaction with the
respective candidate, and range voting then elects the candidate(s) with the highest sum of
satisfaction.

2Ballester and Rey-Biel (2006) study a model where voters have cardinal preferences and have to translate
these to the ballots allowed for the respective voting rules. In particular, they focus on approval voting
which uses approval ballots and study whether the optimal strategy for voters with cardinal preferences
is to submit sincere ballots, i.e., ballots correspond to their underlying preferences in a certain way.
Procaccia and Rosenschein (2006) also focus on cardinal preferences and define a notion of “distortion”
that occurs when translating cardinal preferences into linear orders.
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3.4 (a,b)-rules

This section introduces (a,b)-ballots that generalize the concept of `-ballots to fully
cardinal ballots. In contrast to range voting, voters assign not only a dissatisfaction value a

for the case that a candidate is part of a committe, but also a separate, independent value b

of dissatisfaction with a candidate not being a member of a committee. This models for
example the case when candidates have different attributes and voters have a ranking for
each attribute. A possible attribute for a candidate is, e.g., the party membership. Two
independent dissatisfaction values are able to model cases where the conflicting preferences
over candidates’ attributes do not correspond to an underlying weak order.

Definition 3.25 ((a,b)-ballots). An (a,b)-ballot v j over candidate set C is a set

v j = {(ci,a
j
i ,b

j
i ) | ci ∈C, a j

i ,b
j
i ∈Q, 1≤ i≤ |C|}.

Then voter j is said to strictly prefer candidate c1 to candidate c2 if and only if

(a j
1 < a j

2 and b j
1 ≥ b j

2) or (a j
1 ≤ a j

2 and b j
1 > b j

2),

and voter j is said to be indifferent between c1 and c2 if and only if a j
1 = a j

2 and b j
1 = b j

2.

In the remaining cases, it remains unknown which candidate the voter prefers. Note
that an `-ballot is a special case of an (a,b)-ballot over the same candidate set C where
a j

i = v j(i)−1 and b j
i = `− v j(i) for each candidate ci ∈C, but any (a,b)-ballot where the

sum of both values is a constant can be interpreted as an `-ballot for a corresponding `.

Recall that Fk(C) = {S | S⊆C∧|S|= k} is the set of all committees of size k over C. The
dissatisfaction of a voter j—associated with (a,b)-ballot v j—with a committee W ∈ Fk(C)

is measured as
δ(a,b)(v j,W ) = ∑

ci∈W
a j

i + ∑
ci /∈W

b j
i .

Analogous to the minisum and minimax `-group rules, define the following multiwinner
rules using (a,b)-ballots:

Definition 3.26 (minisum and minimax (a,b)-rules). Let E= (C,P(a,b),k) be a committee
election with a profile P(a,b) of (a,b)-ballots over C and let Fk(C) = {S | S⊆C∧|S|= k}
be the set of committees of size k.
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• The minisum (a,b)-rule is a function f (a,b)sum that returns the committees minimizing
the total dissatisfaction of the voters with the elected committees, i.e.,

f (a,b)sum (P(a,b),k) = argmin
W∈Fk(C)

∑
v∈P(a,b)

δ(a,b)(v,W ).

• The minimax (a,b)-rule is a function f (a,b)max that returns the committees minimizing
the dissatisfaction of the respective least satisfied voter with the elected committees,
i.e.,

f (a,b)max (P(a,b),k) = argmin
W∈Fk(C)

max
v∈P(a,b)

δ(a,b)(v,W ).

The following example illustrates (a,b)-ballots and the corresponding multiwinner rules.

Example 3.27. (a,b)-rules Let E = (C,P(a,b),2) be a committee election where C =

{c1,c2,c3} and P(a,b) = (v1,v2) is a profile of (a,b)-ballots over C with

v1 ={(c1,3,0),(c2,2,2),(c3,1,2)},

v2 ={(c1,1,2),(c2,4,3),(c3,0,4)}.

Voter 1 strictly prefers c3 to both c1 and c2, since (a1
3 < a1

1∧b1
3 ≥ b1

1) and (a1
3 < a1

2∧b1
3 ≥

b1
2), and also strictly prefers c2 to c1. Voter 2 strictly prefers c3 to c2 and strictly prefers c1

to c2, but the ballot does not allow to draw conclusions about the voter’s preference over
c1 and c3.

Now turn to the minisum and the minimax (a,b)-rules. Recall that the dissatisfaction
of a voter j with a committee W is the total of a j

i for all ci ∈W and b j
i for all ci /∈W .

Table 3.6 shows the dissatisfaction of the voters with each committee of size 2. Therefore,
f (a,b)sum (P(a,b),2) =

{
{c2,c3}

}
and f (a,b)max (P(a,b),2) =

{
{c1,c3},{c2,c3}

}
.

The properties presented in Section 3.2 are defined for ballots that correspond to ordinal
ballots. Note that in the restricted model where (a,b)-ballots have to correspond to an
underlying weak order, the results in Section 3.2 also hold for the minisum and minimax
(a,b)-rules. However, the results for winner determination differ slightly from the results
presented in Section 3.3. My coauthors Böhnlein and Schaudt (personal communication,
2016) prove that while a winning committee for the (a,b)-minisum-rule can be computed
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{c1,c2} {c1,c3} {c2,c3}

v1 : 3+2+2 = 7 3+2+1 = 6 0+2+1 = 3
v2 : 1+4+4 = 9 1+3+0 = 4 2+4+0 = 6

∑ : 16 10 9
max : 9 6 6

Table 3.6: Dissatisfaction of voters with each committee of size 2 in Example 3.27.

in polynomial time, the auxiliary problem MINIMAX (a,b)-SCORE—the (a,b)-version
of the problem defined in Section 3.3—is W[2]-hard when parameterized by d and k.
However, when the (a,b)-ballots are restricted in a way that they correspond to `-ballots
after some normalization (where the value of ` may be different for each ballot), they show
that Theorem 3.24 also holds for the (a,b)-minimax rule.

Unfortunately, the expressiveness of the presented model demands a great deal of the
voters since the necessity to assign two values to each candidate becomes more and more
infeasible as the number of candidates grows. Depending on the application, it might
therefore be reasonable to restrict the possible values of a and b by, e.g., providing lower
and upper bounds, fixing the total sum of a voter’s a-values and of a voter’s b-values, or by
using `-ballots.

3.5 My Contribution

In joint work with my coauthors, I developed the models of `-ballots and (a,b)-ballots
and the corresponding rules and modified the properties in Section 3.2—when necessary—
for the context of `-ballots. Furthermore, I contributed the proofs to Claim 3.4 and
Theorems 3.13, 3.15, 3.16, 3.20, and 3.23. The writing of the article Baumeister et al.
(2016) was done jointly with my coauthors.
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Chapter 4

Complexity of Shift Bribery for Iterative Voting Rules

This chapter deals with shift bribery for iterative (positional) scoring rules as defined on
page 23 and on page 10, respectively. The article Maushagen et al. (2021) was submitted
to the Annals of Mathematics and Artificial Intelligence and is based on a preliminary
conference version (Maushagen et al., 2018b). An earlier version was also presented at
ISAIM’18 (Maushagen et al., 2018a).

Maushagen, C., Neveling, M., Rothe, J., and Selker, A.-K. (2021). Complexity of shift
bribery for iterative voting rules. Submitted to Annals of Mathematics and Artificial

Intelligence

Summary

My coauthors and I study the computational complexity of shift bribery for the following
iterative scoring rules.

Hare (defined, e.g., in the textbook by Taylor (2005) eliminates the candidates with the
lowest plurality score.

Coombs (defined, e.g., by Levin and Nalebuff (1995)) eliminates the candidates with the
lowest veto score.

Baldwin eliminates the candidates with the lowest Borda score (Baldwin, 1926).

Nanson eliminates all candidates with lower than average Borda score (Nanson, 1882).

Iterated plurality (defined, e.g., in the textbook by Taylor (2005)) eliminates the candi-
dates that do not have the highest plurality score.

Iterated veto eliminates the candidates that do not have the highest veto score (see
Example 2.12 on page 23).
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Plurality with runoff (again defined, e.g., by Taylor (2005)) proceeds in two rounds.
In the first round, all candidates that do not have the highest plurality score are
eliminated, unless there is a unique plurality winner, then all candidates that do not
have the highest or second-highest score are eliminated.

Veto with runoff is the veto variant of plurality with runoff (see Example 2.10 on
page 19).

We show that shift bribery is NP-complete for all considered voting rules for both the
constructive and the destructive variants. Our results hold for both the unique and the
nonunique winner model: In the constructive case of the unique winner model, the attacker
wants to make the target candidate the unique winner of the election, whereas in the
nonunique winner model, the attack is successful when the target candidate is a member
of the set of winning candidates. Further, as an example we state modified proofs for
constructive shift bribery for the rules Hare and plurality with runoff that show that
the computational complexity does not change when we allow the attacker to exploit
nonmonotonicity. We conjecture that shift bribery for all our considered nonmonotonic
rules does not become tractable in this setting.

My Contribution

The writing of the article Maushagen et al. (2021) was done jointly with my co-authors. I
was responsible for Section 6 (the complexity results for iterated veto and veto with run-off
including the proofs) and Example 2.
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Chapter 5

Manipulation of Opinion Polls to Influence Iterative
Elections

This chapter deals with the complexity of manipulation of opinion polls by a polling agency
in the context of iterative elections. See Section 2.2.4 for a short overview on iterative
elections and opinion polls. The corresponding publication is as follows.

Baumeister, D., Selker, A.-K., and Wilczynski, A. (2020b). Manipulation of opinion polls
to influence iterative elections. In Proceedings of the 19th International Conference on

Autonomous Agents and Multiagent Systems, pages 132–140. IFAAMAS

Note that a version including the omitted proofs was published in the non-archival pro-
ceedings of COMSOC’21 (Baumeister et al., 2021b).

Summary

In iterative elections, voters repeatedly update their ballots to achieve a better outcome
for them. In the model we use, the necessary information to compute a best response
stems from an underlying social network where voters can see the ballots (and updates)
of their neighbors, and from an opinion poll announced by a polling agency. Following
the work by Wilczynski (2019), we study the manipulative power of the polling agency in
iterative elections. First, we introduce a best-response variant for the voting rule veto that
significantly differs from the already known best-response definition for plurality. This
is due to the fact that under veto, changing who to veto might directly benefit a voter’s
most despised candidate since that candidate loses a veto from this voter. Second, as
an addition to the already known poll manipulation problem without a parameter, we
introduce two distance-restricted variants of poll manipulation, i.e., a poll-restricted variant
that includes an upper bound on the distance between the sincere and the manipulated poll,
and a voter-restricted variant where voters do not vote for candidates that need more than
a given maximum number of swaps in their preferences to become their most preferred
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candidates for plurality (respectively, their most despised candidate for veto). Third, we
consider destructive manipulation in the context of poll manipulation.

To this end, we study the (parameterized) computational complexity of all three problem
variants, for constructive and destructive manipulation, and for the voting rules plurality
and veto, among others parameterized by the length of the longest path in the social
network and by the allowed deviation distance. We show that all problems are NP-hard
even in an acyclic social network, and for the constructive poll-restricted poll manipulation
under plurality even when the social network does not contain any edges. Manipulation
under veto is tractable for all considered problem variants, whereas for plurality we are
only able to prove tractability in the destructive case and only for the unrestricted and the
poll-restricted variant. The other three cases remain open.

Furthermore, we design efficient heuristics to compare both voting rules and come to the
conclusion that—in our setting—manipulation is more successful under the veto rule and
that destructive manipulation is more successful than constructive manipulation.

My Contribution

The writing of the article Baumeister et al. (2020b) was done jointly with my coauthors.
I defined the poll-restricted and voter-restricted problem variants and contributed the
complete results in Section 3, Theorem 4.1, and Proposition 4.2.
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Chapter 6

Complexity of Control in Judgment Aggregation for
Uniform Premise-Based Quota Rules

This chapter deals with the complexity of influencing the judgment aggregation procedures
called uniform (constant) premise-based quota rules by adding, deleting, replacing, and
bundling judges. See Section 2.3 for a short introduction to judgment aggregation.

The article Baumeister et al. (2020a) extends several conference versions, including an
article I coauthored (Baumeister et al., 2015d).

Baumeister, D., Erdélyi, G., Erdélyi, O. J., Rothe, J., and Selker, A.-K. (2020a). Complexity
of control in judgment aggregation for uniform premise-based quota rules. Journal of

Computer and System Sciences, 112:13–33

Summary

In the article Baumeister et al. (2020a), my coauthors and I introduce the notions of adding,
deleting, replacing and bundling judges in judgment aggregation. These concepts can,
among others, be found in international arbitration procedures.

There are several ways to measure the success of a control action employed by the chair.
Here, we ask whether the chair can achieve to include a given (possibly incomplete)
judgment set called desired set in the new outcome. We call this problem exact control

by control type C. Further, we use the preference types introduced by Dietrich and List
(2007c)—defined in Definition 2.25 in this thesis and adapted to incomplete desired sets
by Baumeister et al. (2015b)—to identify better outcomes for the chair. This approach is
based on the concept in preference aggregation where an attacker’s preference over the
candidates is part of the input. However, note that it is not feasible in judgment aggregation
to state an explicit preference over different judgment sets since such a preference is
exponential in the size of the agenda. Therefore, we assume that the chair’s preference
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over the outcomes belongs to the set of one of the following four preference types: For the
set of

• unrestricted preferences, we only know that the chair does not differentiate between
two different outcomes that both include the desired set;

• top-respecting preferences, we additionally know that the chair prefers outcomes
that include the desired set over outcomes that do not;

• closeness-respecting preferences, it holds that outcomes that contain a subset X of
the desired set are preferred to outcomes that only contain a strict subset of X (and
no other issues from the desired set);

• Hamming-distance preferences we know that the chair prefers outcomes that include
more issues from the desired set over outcomes with fewer.

We obtain the following results for the uniform (constant) premise-based quota rules,1

where we impose certain restrictions on the agenda’s premises and conclusions to obtain
complete and consistent versions of these judgment aggregation procedures. For the
uniform constant premise-based quota rules, possible and necessary control by adding,
deleting, and replacing judges is NP-complete for each admissible quota q and for exact
control as well as nearly all preference types. The only exception is control under unre-
stricted preferences since the uniform constant premise-based quota rules are immune to
control in this case. However, in the presence of a complete desired set, possible control un-
der unrestricted and top-respecting preferences becomes tractable, whereas the complexity
of exact control and necessary control under top-respecting preferences is unknown. We
do not consider the complexity of bundling judges because this control type does not make
sense for uniform constant premise-based quota rules. Further, note that since for control
by replacing judges the number of judges remains constant throughout the control action,
the results for control by replacing judges also hold for the case of uniform premise-based
quota rules.

1Given n judges, a quota q ∈ N, 0≤ q < n, and a partition of the agenda into premises and conclusions,
the collective outcome under the uniform constant premise-based quota rule for quota q consists of the
positive premises that more than q judges accept (and the negations of the remaining premises) as well as
the conclusions derived from the included premises. The uniform premise-based quota rules are defined
in Definition 2.23 on page 38.
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In the case of uniform premise-based quota rules, the results are similar. Possible and
necessary control by adding, deleting, and bundling judges is NP-complete for the quota
q = 1/2 and for exact control as well as nearly all preference types. The only exceptions are
again control under unrestricted preferences since the uniform premise-based quota rules
are immune to control in this case, and possible control for unrestricted and top-respecting
preferences since control is tractable in these cases. The results also hold for a complete
desired set, but apart from the immunity and the tractability results, the exact complexity
of control for different quotas remains an open problem.

My Contribution

The writing of the article Baumeister et al. (2020a) was done jointly with my coauthors. I
was responsible for the examples (Example 2, Example 6, and Example 7), Definition 8, the
results in Section 4 (i.e., Lemmas 9–11 and Propositions 12–14), Theorem 15, Theorem 16,
Theorem 18, Theorem 19, Theorem 21, and Theorem 22.
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Chapter 7

Conclusions and Future Work

This thesis covers several topics in the field of computational social choice. The goal is
to further the understanding of axiomatic and complexity theoretic properties of decision
making procedures.

First, in Chapter 3, my coauthors and I studied a new type of ballot called `-ballot
that combines the concept of ordinal and cardinal preferences, and defined two types
of committee election rules tailored to these type of ballots. Our proposed minisum
and minimax rules were designed to minimize the dissatisfaction that voters have with
the winning committee. We then modified several existing properties of single- and
multiwinner voting rules to fit our type of ballots and rules and studied the axiomatic
properties of the minisum and minimax rules. Further, we were able to show that although
the winner determination is NP-hard for the minimax rules, an auxiliary problem asking
whether there exists a committee with a voter’s maximum dissatisfaction of at most d is
fixed-parameter tractable when parameterized by d. As an outlook, we proposed a type of
ballot called (a,b)-ballot that is based on cardinal preferences and allows more flexibility
for voters to express their underlying preferences. In contrast to existing cardinal-based
ballots, here, voters can express their dissatisfaction for a candidate being in a winning
committee (a) as well as not being in a winning committee (b), without the restriction that
those two values need to be related (e.g., always add up to a fixed constant). Future work
includes a characterization of our rules in the context of `-group rules. Furthermore, it
would be interesting to define fairness criteria to evaluate the outcome’s quality for the
voters. In regard to (a,b)-ballots, experiments are needed to determine optimal bounds
for the values and study whether the added expressiveness of the model leads to a higher
satisfaction of the voters with the election outcome. It would also be interesting to define a
cardinal-based variant of the Chamberlin-Courant rules as introduced in Definition 2.14,
or to focus on representation in this context, for example by modifying the axiom justified

representation (Definition 2.16) to allow for cardinal ballots.

My respective coauthors and I were also able to identify several barriers to strategic
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behavior in voting and judgment aggregation. In Chapter 4, we closed a gap by showing
that shift bribery is also hard for several iterative scoring rules, i.e., scoring rules that
proceed in rounds where in each round, candidates are eliminated. By allowing the
campaign manager to exploit the nonmonotonicity of most of our considered rules, we
further showed by using Hare and plurality with runoff as an example that this hardness
does not result from restricting the briber to shift the designated candidate forwards in the
constructive case (respectively, backwards in the destructive case). Based on our results,
Zhou and Guo (2020) started the study of parameterized complexity for the iterative scoring
rules considered in this thesis for the parameters number of voters, number of candidates,
and budget. For future work, we propose to extend the study of parameterized complexity
and to investigate the effect of exploiting nonmonotonicity in-depth. We conjecture that the
complexity of shift bribery for all nonmonotonic rules considered by us remains unchanged,
but it would be interesting to identify a rule for which shift bribery becomes tractable in
these circumstances. Furthermore, domain restrictions as defined on page 13 might also
lead to a complexity shift for iterative scoring rules.

For iterative voting, i.e., voting where voters are allowed to update their ballots repeatedly,
we studied the manipulative power of the polling agency that announces a dishonest
opinion poll to reach a desired outcome of the election. Chapter 5 extended the research
on manipulation by the polling agency by introducing a best-response model for the
voting rule veto, by studying destructive manipulation, by conducting experiments on
efficient heuristics, and most importantly by introducing distance-based problem variants
and providing parameterized tractability and intractability results. In particular, we showed
that manipulation is para-NP-hard for all considered problems even for very restricted
underlying social networks. However, we were able to show that all considered problem
variants for veto are tractable when the social network contains no edges, which can be seen
as a case where voters are not influenced by their neighbors. Here, future work includes
completing the complexity results for plurality in the case of a social network without
edges and further the study of parameterized complexity for more natural parameters, for
example parameters that describe the underlying social network. We also propose to define
best-response dynamics for voting rules that require more complex ballots than plurality
and veto and experimentally study how these dynamics affect the quality of the outcome
and the possibilities to manipulate by the polling agency. Currently, the polling agency
has complete information over the voters’ preferences, the voters have no memory and are
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myopic, they only deviate in the rare cases that they are pivotal, voters trust the polling
agency, and they communicate truthfully to their neighbors which candidate they currently
vote for. It would therefore be interesting to incorporate changes regarding these aspects
into the model.

Finally, in Chapter 6, my coauthors and I introduced control in judgment aggregation.
We defined the concepts of control by adding, deleting, replacing, and bundling judges,
and proved that these types of control are intractable for the uniform (constant) premise-
based quota rules and for several types of the chair’s preferences. Our results hold for
each rational quota in the case of the uniform constant premise-based quota rules, and
for the quota q = 1/2 in the case of the uniform premise-based quota rules. Future work
includes completing the classical complexity results for all quotas, studying parameterized
complexity in our context, and considering new rules. The question whether restricted
domains such as the domain of unidimensionally aligned profiles, a variant of the single-
crossing domain in preference aggregation, have an impact of the complexity of control
in judgment aggregation is also still an open problem. Further, it would be interesting to
define new types of control in judgment aggregation, especially types that influence the
agenda or the aggregation rule itself instead of the set of judges.
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zulässige fremde Hilfe unter Beachtung der ”Grundsätze zur Sicherung guter wissenschaft-
licher Praxis an der Heinrich-Heine-Universität Düsseldorf“ erstellt worden ist.
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