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1. Abstract 
The transition of our current economy to a sustainable bioeconomy requires efficient and high 

performing microbial strains for the production of chemical building blocks and fuels. However, the 

construction and improvement of microbial producer strains is time consuming and costly. In this 

thesis, several ways to improve this process using transcription factor(TF)-based biosensors have been 

investigated.  

First, we used TF-based biosensors to obtain positive amino acid-producing Vibrio natriegens strains. 

V. natriegens is a Gram-negative, non-pathogenic slight-halophilic bacterium that has recently been 

demonstrated to be a promising new host for molecular biology and next generation bioprocesses. Its 

most remarkable property is a doubling time of under 10 minutes. In this work, the LysG biosensor 

from Corynebacterium glutamicum was adapted for expression in V. natriegens, to couple positive 

amino acid production to a fluorescent output. Afterwards, we performed a mutagenesis and 

screening approach, using fluorescence-activated cell sorting (FACS) to isolate highly fluorescent cells 

(potential producer cells). Using this approach, individual L-lysine, L-arginine and L-histidine producer 

cells could be obtained. Investigation of these isolates by whole genome sequencing revealed key 

mutations for positive amino acid production in V. natriegens.  

Second, we used TF-based biosensors to investigate novel evolutionary engineering strategies. 

Evolutionary engineering is a proven and powerful method to improve the performance of microbial 

producer strains. However, it is typically not possible to directly apply it to increase production of 

industrially interesting molecules, due to the lack of an appropriate selection regime. To address this 

problem, we used TF-based biosensors to couple production to growth. More specifically, the growth 

rate of C. glutamicum was coupled to the intracellular concentration of L-valine, L-leucine, L-isoleucine 

and L-methionine. This was enabled by integrating a synthetic regulatory circuit, based on the TF-

based biosensor Lrp, upstream of two growth-regulating genes, pfkA and hisD. Using these strains, 

selection for mutants with increased growth rates should theoretically lead to the selection of mutants 

with increased production. Modeling and experimental data showed that evolutionary strategies 

based on spatial separation were required to limit the selection of ‘cheater’ cells that escaped the 

evolutionary pressure. This was achieved by an agar-plate based selection strategy, which enabled the 

high-throughput isolation of amino acid producing clones that showed a stable production phenotype 

during repetitive cultivations. Whole genome sequencing of the obtained L-valine producing mutants 

highlighted the acetohydroxyacid synthase (AHAS) as a mutational hotspot. Modeling of the AHAS 

enzyme provided insight into the functional effect of the different mutations.  

Finally, we used the construction of TF-based biosensor variants as an application example to 

demonstrate an automated cloning workflow for C. glutamicum rational strain construction. At 

present, cloning is most often a manual, time-consuming and repetitive process that would highly 

benefit from automation. Therefore, we designed an automated cloning workflow covering DNA part 

creation by PCR, DNA assembly by Gibson assembly and transformation into Escherichia coli by heat-

shock transformation. The key step is an automated conjugation workflow, which enables fast, easy 

and high-throughput transfer of plasmids from E. coli to C. glutamicum. Using this approach, we could 

create and analyse 44 biosensor variants in 8 days, with a minimal amount of manual work required. 

Analysis of these variants led to the novel insight that Lrp possibly also has repressor functionality.  

In conclusion, the work presented in this thesis provides novel insights into the use of TF-based 

biosensors to improve strain construction workflows, including the development of new producer 

strains, the improvement of evolutionary engineering strategies, and the transfer from manual to 

automated laboratory workflows.  
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2. Scientific context and key results of this thesis 

2.1. Industrial biotechnology – taking different approaches towards the same goal 
For at least 8,000 years, humans have utilized microorganisms as production tools (Demain et al., 

2010; Nielsen and Keasling, 2016). While early applications used microorganisms to make human lives 

more pleasant, by producing fermented foods and beverages, we now look at microbes to solve 

important global challenges, such as climate change and renewable production of energy and 

chemicals. Biotechnology, the research field that covers the application of biology to make product 

and processes useful to humans, has rapidly developed since the last century, with many 

breakthroughs in both technological development and biological understanding. This has resulted in 

the application of microbes in many different processes, to make a wide range of different products 

including chemicals, biofuels and pharmaceuticals. However, it still takes a lot of time and money 

(typically 6-8 years and of $50 million) to develop a microbial strain into an industrial workhorse (i.e. 

into a strain that performs at a level that matches industrial requirements) (Nielsen and Keasling, 

2016). Over the years, different approaches have been developed to improve the performance of 

microbial production strains in bioprocesses, which have become distinct disciplines in the field of 

biotechnology. The key to drastically reduce the time and effort to create new and better bioprocesses 

is likely in the integration of these disciplines. Therefore, an overall aim of this thesis was to investigate 

the integration of several strain improvement approaches, which are first introduced below.  

The identification and isolation of microorganisms with the goal to find potential producer strains 

started at the beginning of the previous century, when the first non-food and beverage bioprocesses 

were developed. Examples are the mixed production of acetone, butanol and ethanol by Clostridium 

acetobutylicum (attributed as the first process in industrial biotechnology) (Weizmann, 1919), the 

production of citric acid by Aspergillus niger (Currie, 1917), and the production of glycerol by yeast 

(Demain et al., 2010; Nielsen and Keasling, 2016). The most famous bioprocess is probably the 

production of penicillin, first by Penicillium notatum, which sparked a revolution in the fight against 

infectious diseases (Demain et al., 2010). Using bacterial cultivation and isolation techniques, 

researchers were able to identify microbes that naturally produced detectable amounts of a certain 

molecule or set of molecules of interest, which could be exploited for industrial and/or medical use. 

While many microbial species have since been discovered and used for the production of (novel) 

molecules, we have barely scratched the surface of the microbial diversity waiting to be explored. For 

example, Streptomyces species alone are estimated to produce more than 150,000 different bioactive 

compounds (Watve et al., 2001). Furthermore, different microbes can feature characteristics that are 

desirable in an industrial setting, such as stress tolerance, the ability to grow on a wide range of 

substrates or at elevated temperatures. Therefore, the identification and development of novel 

microbial producer strains is important, and would benefit from methods to speed up this process.  

While finding a natural producer is a good starting point for a production process, improvement of 

strain performance is often possible and required. The key performance indicators for a microbial 

bioprocess are the titer (final product concentration), rate (speed of production) and yield (amount of 

production obtained per amount of substrate used), sometimes shortened to TRY (Nielsen and 

Keasling, 2016). The required numbers for these parameters are dictated by the process economics 

and vary widely per product. Strain improvement looks specifically at engineering of the microbe to 

increase process performance. The oldest techniques for strain improvement utilized a process that is 

responsible for every biological development in nature: evolution. Evolution is arguably the most 

important concept in biology, as “nothing in biology makes sense except in the light of evolution” 

(Dobzhansky, 1973). However, next to its importance in understanding biology, it is also a ‘tool’ that 

can be applied to improve microbial strain performance under process relevant conditions. Due to the 
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short generation time of microbes (which can be almost 1 million times shorter than that of humans; 

i.e. comparing 10 minutes to 18 years), occurrence and selection of variants with improved properties 

is possible within a feasible timeline. Over time and with growth, bacteria obtain mutations at a certain 

rate, which can also be increased artificially, for example by adding a mutagen (a chemical which 

causes modifications of DNA) or by UV radiation. By testing the properties of evolved cells, mutants 

with better performance can be identified and isolated, and this process can then be repeated starting 

from the preferred strain. The potential of evolution for strain improvement is very well demonstrated 

with the increase of penicillin production by Penicillium chrysogenum. By performing iterative cycles 

of mutagenesis and screening, production was more than 10,000-fold increased (Nielsen and Keasling, 

2016; Thykaer and Nielsen, 2003). Evolution has been successfully applied already in the early days of 

strain improvement because it allows for a ‘black box’ approach to microbes. It is not necessarily 

required to know about the inner workings of the cells, as long as you can screen or select for strains 

with enhanced properties. Finding such a ‘selectable output’ is the main challenge in evolutionary 

engineering. Especially challenging is the selection of cells with higher production of an inconspicuous, 

non-growth coupled molecule, which does not provide a survival advantage for the cell under any 

cultivation condition. Unfortunately, this type of molecule is often exactly what we want to produce. 

While the penicillin story demonstrates the power of evolution, it did take multiple years and a lot of 

effort (and money) to obtain better producer strains. Therefore, there is a large need for methods that 

can couple the production of molecules to an easily selectable output, to speed up the strain 

development process.  

Strain improvement strategies were further expanded with the advancement of molecular cloning 

tools, which was driven by key developments such as the solving of the DNA structure (Crick and 

Watson, 1953), the discovery of restriction enzymes (Smith and Welcox, 1970) and the establishment 

of polymerase chain reaction (PCR) and DNA sequencing (Cameron et al., 2014). These developments 

helped to increase our understanding of biology, which in turn led to the discovery of novel biological 

systems that could be refined into biological tools. We need the products of biology to engineer 

biology. Biological systems that have been adapted for engineering use are ubiquitous and ever 

increasing. Early examples are the use of plasmids for gene (over)expression and to facilitate genomic 

modifications, enzymes such as thermo-stable DNA polymerases used in PCR, restriction enzymes and 

ligases for cloning (Sambrook et al., 2001), and more recently the use of CRISPR systems to speed up 

strain development (Jinek et al., 2012). In many cases, molecular cloning tools have been applied for 

‘targeted’ or ‘rational’ modification of the DNA sequence, which is in contrast to the ‘untargeted’ 

approach of mutagenesis, screening and selection. One important advantage of rational strain 

engineering over evolutionary engineering is the possibility to design and express genes that enable 

the production of molecules that are not natively produced by the host microbe. An early example is 

the expression of genes in E. coli to make human insulin (Goeddel et al., 1979), a more recent example 

the production of the antimalarial drug artemisinin by Saccharomyces cerevisiae (Paddon et al., 2013). 

With an increased understanding of biology also came the realization that biology is incredibly 

complex, and targeted engineering approaches are still mostly ad hoc and take a long time to develop. 

Therefore, the available microbial toolbox should be improved further, and be applied to develop 

novel producer strains and design novel evolutionary engineering strategies.  

Finally, for most of its history, the development of microbial strains has been a manual process. Most 

of the laboratory work is done by people, especially in academic laboratories. This is in large contrast 

to other engineering disciplines, such as the automotive industry, in which people have been largely 

replaced by robots. In biotechnology, laboratory automation has many benefits for strain 

development, including time and cost savings due to optimization and miniaturization, less manual 

errors and a general increase in quality and quantity (Appleton et al., 2017a; Hillson et al., 2019; 
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SYNTHACE, 2018). A recent, global movement to speed up the transition to laboratory automation in 

biotechnology has been the development of biofoundries (Hillson et al., 2019), which aim to transfer 

complete strain engineering workflows to robotic systems. Still, after a century of manual 

biotechnology, there have been many methods developed for manual use, which have to be 

transferred to lab robots. Thus, efforts are required to increase and develop the use of laboratory 

automation, which promises an overall improvement of the strain development process, by 

decreasing the required time and costs and improving the throughput.  

Key topics of this thesis 

To speed up the transition of our current economy to a sustainable bioeconomy, an integrated, 

multidisciplinary approach should be taken to biotechnology, using the available engineering toolbox, 

the power of evolution and the rapidity of lab automation to both improve production strains and to 

develop new ones. In this thesis, steps towards this goal are investigated. In particular, the aim is to: 

i) Apply transcription factor-based biosensors to develop Vibrio natriegens, an emerging 

biotechnological host, towards a producer strain 

ii) Apply transcription factor-based biosensors to create synthetic regulatory circuits 

coupling amino acid production to growth in Corynebacterium glutamicum, thereby 

creating novel ways to use evolutionary engineering for strain improvement; 

iii) Integrate a molecular cloning workflow for targeted engineering of C. glutamicum on a 

robotic platform, to create and characterize multiple transcription factor-based biosensor 

variants.  

The application of transcription factor(TF)-based biosensors forms an integral part of this thesis, and 

an overview of their development and application is introduced in the next section.  

2.2. Biosensors 

2.2.1. The need for sensors 
Biological sensors are essential to all forms of life; just imagine how you would survive without the 

ability to see, hear, smell, feel and taste. Sensing is also essential in the microbial sphere, and 

microorganisms have evolved a wide array of systems to interact with their environment. 

Furthermore, sensing is not limited to interactions with the extracellular space; on the intracellular 

level an intricate system of sensory circuits is required by cells to maintain homeostasis. The term 

‘biosensor’ can therefore cover a wide range of different biological systems that vary in complexity 

and purpose. This has resulted in their application as biological tools for different objectives, such as 

the use of whole cell biosensors to detect environmental pollution (Roggo and van der Meer, 2017), 

the design of medical biosensors (Kojima et al., 2020), and the development of intracellular sensors 

that can detect light, temperature, osmolarity, and specific molecules (Schallmey et al., 2014; Zhang 

and Keasling, 2011). Covering all biosensors and their applications is beyond the scope of this thesis. 

Therefore, the focus will be on the use of genetically encoded biosensors for microbial strain 

development, with an emphasis on TF-based biosensors.  

For microbial strain development, sensors are also essential, as they are needed to measure strain 

performance and to determine if one strain is better than the other. Many non-biological methods 

are used for this purpose, such as optical density measurements as an indicator of growth and pH-

probes for measuring acid production. To measure production of specific molecules, methods such as 

high pressure liquid chromatography (HPLC), gas chromatography (GC) and mass spectrometry (MS) 

are frequently used (Lin et al., 2017). However, a problem with these methods is the available 

throughput. Nowadays it is possible to generate a large amount of strain variants very quickly, using 
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the different strain engineering methods described previously. This places the bottleneck on the 

characterization of this strains, and methods to increase the throughput are required (Dietrich et al., 

2010; Lin et al., 2017). Genetically encoded biosensors enable the high-throughput detection of 

molecules of interest, and different biosensor systems have been implemented to improve the strain 

optimization process. Frequently used genetically encoded biosensor systems can be divided into 

three main classes; sensors based on RNA-aptamers (riboswitches), sensors based on Förster 

resonance energy transfer (FRET) and sensors based on transcription factors (TF-based biosensors) 

(Figure 1A) (Lin et al., 2017; Zhang et al., 2015). 

RNA-aptamer-based biosensors are based on the conformational change of the RNA secondary 

structure upon ligand binding (Figure 1A). For example, binding of a ligand can change the structure 

to enable translation of the RNA molecule, resulting in a detectable output (e.g. expression of a 

fluorescent protein) (Lin et al., 2017). 

FRET-based sensors typically consist of two fluorescent proteins that are connected by a ligand binding 

domain (Lin et al., 2017; Steffen et al., 2016) (Figure 1A). The fluorescent proteins are chosen as such 

that the emission wavelength of one is the excitation wavelength of the other. Thus, when the two 

proteins are in close proximity, excitation of the first protein will lead to a cascade reaction where 

emitted light of the first protein excites the second fluorescent protein, which finally emits light at its 

specific emission wavelength. The key factor modifying the measured output is the proximity of the 

two proteins, which is altered by substrate binding at the ligand binding domain. Thus, depending on 

ligand binding, the measured ratio of the emission wavelengths from the first and second protein will 

change (Steffen et al., 2016).  

TF-based biosensors are based on transcription factors, which are proteins that bind to DNA to 

modulate the expression of one or multiple genes (Lin et al., 2017; Mahr and Frunzke, 2016) (Figure 

1A). Ligand binding can result in a conformational change in the transcription factor, which can lead 

to either an increase or decrease of expression. By changing the expressed gene (e.g. to one encoding 

a fluorescent protein), the concentration of a particular ligand of interest can be coupled to a 

measurable output. TF-based biosensors are one of the most common biosensor types used for strain 

improvement, and multiple different TF-based biosensors have been developed in the past years 

(Mahr and Frunzke, 2016).  

2.2.2. Transcription factor-based biosensors 
Bacterial transcription factors played a key role in our understanding of bacterial regulatory circuits, 

as the studies of Francois Jacob and Jacques Monod on the lac operon and the LacI transcription factor 

led them to postulate how bacteria use regulatory circuits to interact with their environments (Jacob 

and Monod, 1961). Transcription is carried out by the RNA polymerase, but the rate of transcription 

initiation, elongation and termination is controlled by transcription factors. Transcription factors can 

function as an activator or as a repressor of their respective target genes (Figure 1A). While regulation 

of transcription is complex and based on multiple different types of transcription factors (Browning 

and Busby, 2016), there are transcription factors that are very specific in both their ligand and DNA 

binding. These TFs represent key targets for TF-based biosensor development. In natural systems, the 

binding of a ligand to a transcription factor usually results in the increased or decreased expression of 

a gene or set of genes encoding proteins that modify the concentration of the ligand. Examples are 

the increased expression of genes encoding a catabolic pathway, to metabolize the ligand (Schleif, 

2000), or the increased expression of genes encoding an exporter for the ligand, to prevent 

accumulation of toxic ligand concentrations (Lange et al., 2012). Due to the modularity of transcription 

factor-based gene expression (i.e. the separation of transcription factor, cognate promoter and target 
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gene), it is usually relatively easy to change the target gene into a reporter (e.g. a gene encoding a 

fluorescent protein), thereby creating a useable biosensor.  

 

Figure 1: Schematic overview of main classes of biosensors used for microbial strain improvement and their 
most important characteristics. A) Förster resonance energy transfer (FRET) biosensor, RNA-aptamer-based 
biosensor and transcription factors (TF)-based biosensors, showing output signal in absence (left of arrow) and 
presence (right of arrow) of ligand binding; fluorescent proteins are shown as oval shapes, colored cyan, yellow 
or green, transcription factors are shown as blue oval shapes, ligands are shown as pink pentagons, and 
ribosomal binding sites are shown as grey half-ovals. B) Typical biosensor input-output relationship, highlighting 
derived parameters.  

TF-based biosensors have been developed for the detection of a variety of different molecules, 

including amino acids (Binder et al., 2012; Chou and Keasling, 2013; Mustafi et al., 2012), co-factors 

such as NADPH (Siedler et al., 2014), organic acids (Dietrich et al., 2013), aromatics (Chou and Keasling, 

2013; Raman et al., 2014), fatty acids (Zhang et al., 2012) and antibiotics (Lin et al., 2017; Mahr and 

Frunzke, 2016). They have been applied to analyze the concentration of intracellular metabolites 

during growth. This enables the monitoring of product formation in a culture in time and the detection 

of differences in intracellular metabolite concentration in homogenic cultures (Kiviet et al., 2014; 

Mustafi et al., 2012, 2014; Rogers and Church, 2016). Furthermore, they have been applied to screen 

and select for enzymes or cells with improved properties. For example, a biosensor that couples 

metabolite concentration to expression of a fluorescent reporter can be used in combination with 

fluorescence activate cell sorting (FACS). High-throughput sorting of the most fluorescent cells in a 

populations can subsequently lead to the isolation of strains or enzymes with improved properties 

(Binder et al., 2012; Mahr et al., 2015; Schendzielorz et al., 2014). This is further discussed in Section 
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2.3 and Chapter 3.3. Another way to select cells using biosensors is by coupling production to 

expression of genes conferring a fitness advantage under specific cultivation conditions, such as genes 

encoding antibiotic resistance (Dietrich et al., 2013; Leavitt et al., 2017; Raman et al., 2014; Snoek et 

al., 2018). Biosensors have also been applied to couple intracellular metabolite concentration to 

expression of genes encoding enzymes of metabolic pathways, which has been used to dynamically 

regulate pathway expression based on the concentration of a toxic intermediate (Dahl et al., 2013), or 

to maintain production in producer strains by coupling product concentration to expression of an 

antibiotic resistance marker (Xiao et al., 2016), or to expression of an essential gene (D’Ambrosio et 

al., 2020; Rugbjerg et al., 2018). Strategies to use biosensor-based regulatory circuits to couple 

production to growth, which allows for selection of improved producers based on their growth rate, 

is discussed in Section 2.4 and Chapter 3.2.  

To describe the performance of a biosensor, several parameters are frequently used, which are 

operational range, dynamic range, sensitivity, specificity and the transfer function (Figure 1B) (Dietrich 

et al., 2010). The operational range describes the range of ligand concentrations in which the sensor 

is functional (i.e. a change in ligand concentration results in a change of sensor output). The dynamic 

range describes the difference between the highest and lowest sensor output. The sensitivity 

describes the relationship (the slope) between a change in ligand binding and the change in output 

(i.e. a very sensitive sensor shows a large difference in output upon a small difference in ligand binding, 

and vice versa). Specificity describes if the sensor binds only one specific molecule, or a set of (related) 

molecules. The transfer function describes the complete relation between ligand binding and sensor 

output within the operational range (i.e. this can be visualized as the ‘curve’ indicating the sensor 

signal in a graph in which ligand binding versus sensor output is plotted; Figure 1B). The parameters 

of a transcription factor have been shaped by evolution to be optimal for their physiological function 

in their native host. For biotechnological use, the sensor parameters can often be improved for the 

desired application. Several strategies for sensor modification have been shown, and are further 

discussed in Section 2.5, and Chapter 3.4.  

TF-based biosensors can be used in their native host (i.e. the species that naturally expresses this 

transcription factor), or transferred to other hosts (Skjoedt et al., 2016; Sonntag et al., 2020). To realize 

the orthogonal transfer of a biosensor, modifications of the sensor-construct are often required, such 

as a different expression vector (plasmid backbone) and the use of a promoter upstream of the 

transcription factor that is functional in the heterologous host. Several TF-based biosensors have been 

modified for expression in non-native hosts, which is further discussed in Section 2.3, and Chapter 3.3.  

2.2.3. The Lrp and LysG biosensors of Corynebacterium glutamicum 
For the studies described in this thesis, two previously established biosensors were used that are 

based on the amino acid-responsive transcription factors Lrp and LysG of C. glutamicum. Lrp is a 

transcriptional activator of brnFE, encoding a two-component export system for L-methionine and 

branched chain amino acids (Lange et al., 2012). LysG is a transcriptional activator of lysE, which 

encodes a basic amino acid exporter (Bellman et al., 2001). In C. glutamicum, the transcription factors 

are critical parts of self-contained detoxification systems. Increase in intracellular amino acid 

concentration leads to more binding of those amino acids to Lrp or LysG. This in turn increases the 

expression of the Lrp or LysG target genes, which encode amino acid exporters. The exporter 

expression finally leads to a decrease of the intracellular amino acid concentration, which in turn leads 

to a decreased expression of the exporter system. Hereby, accumulation of high intracellular amino 

acid concentrations is prevented, while amino acids are not exported at low intracellular 

concentrations.  
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The Lrp-based biosensor was developed by placing eyfp, encoding the fluorescent reporter eYFP, 

downstream of the Lrp cognate promoter (i.e. the brnFE promoter) (Mustafi et al., 2012). The sensor 

was shown to be sensitive to L-valine, L-isoleucine, L-methionine and L-leucine (Mustafi et al., 2012). 

The Lrp biosensor has been applied for online monitoring of amino acid production, and to visualize 

differences in intracellular amino acid concentration between isogenic cells (Mustafi et al., 2014). 

Furthermore, the Lrp sensor was used in adaptive laboratory experiments. After expression of the Lrp 

sensor in the L-valine producing strain C. glutamicum ΔaceE, iterative FACS of the most fluorescent 

cells resulted in the isolation of a mutant with showed improved L-valine production and decreased 

production of the by-product L-alanine (Mahr et al., 2015).  

The LysG-based biosensor was developed by placing eyfp downstream of the LysG cognate promoter 

(i.e. the lysE promoter) (Binder et al., 2012). The sensor was shown to be sensitive to L-histidine, L-

arginine and L-lysine (Binder et al., 2012). The LysG biosensor has been used in mutagenesis and 

screening experiments, where a library of mutants was first created, and single cells with a high 

fluorescence were sorted and characterized (Binder et al., 2012). Mutants that produced increased 

amounts of L-lysine and L-arginine were obtained. Furthermore, the LysG sensor has also been used 

for the high-throughput screening of enzyme variants, for example for MurE and ArgB libraries (Binder 

et al., 2013; Schendzielorz et al., 2014).  

Both the Lrp and LysG biosensor have been used in studies investigating microbial production of amino 

acids. Amino acid production is a billion dollar business, and almost all amino acids are industrially 

produced by microbes (Becker et al., 2018; Becker and Wittmann, 2012). High volume products are L-

glutamate, which is used as a human food supplement in the form of monosodium glutamate (MSG), 

and L-lysine, which is used as a food supplement for animals, together with L-threonine, L-tryptophan 

and L-methionine (Eggeling and Bott, 2015). Thus, the improvement of microbial amino acid 

production process is commercially very interesting.  

2.3. Using transcription factor-based biosensors to develop novel microbial hosts 
According to recent estimates, earth might be home to one trillion (1012) microbial species (Locey and 

Lennon, 2016). Up to now, we obtained only a relatively small fraction of that number of species in 

pure cultures, and only a minuscule proportion has been developed into production hosts. A few 

species can be regarded as major microbial workhorse in biotechnology, including E. coli (Theisen et 

al., 2017), S. cerevisiae (Diethard et al., 2017) and C. glutamicum (Becker and Wittmann, 2016). Due 

to decades of research, they are used in a variety of industrial processes, and almost all molecular 

tools which have been developed so far have been adapted to these model hosts. Still, there are many 

other species that might have characteristics that are industrially interesting. The development of such 

novel strains would benefit from the toolbox that is already available for established hosts. In this 

thesis, we investigated the transfer of the Lrp and LysG biosensors of the established industrial 

workhorse C. glutamicum to the potential novel industrial workhorse V. natriegens. The results are 

described in this section after a short introduction of both microorganisms.  

2.3.1. Corynebacterium glutamicum 
C. glutamicum is an established industrial workhorse that is used in multiple industrial processes 

(Becker et al., 2018). It was first isolated in 1957 for its ability to secrete L-glutamate, but has since 

been engineered to produce a wide range of different products, including other amino acids, proteins, 

organic acids, plastic precursors and aromatics (Becker et al., 2018; Eggeling and Bott, 2005; Kinoshita 

et al., 1957). Due to its research history spanning more than 60 years, enough knowledge on C. 

glutamicum is available to fill entire books (Eggeling and Bott, 2005), and only a limited overview can 

be given here. The original isolate was named Micrococcus glutamicus, and many other L-glutamate 
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producers have been isolated that were originally classified in different genera (e.g. Brevibacterium, 

Microbaterium and Arthrobacter). A later revision, however, reclassified all of them as C. glutamicum 

(Becker and Wittmann, 2016; Eggeling and Bott, 2005). The genus name Corynebacterium originates 

from the Coryneform (club-like) shape that these bacteria show in some phases of their growth, and 

glutamicum refers to the production of L-glutamate (Eggeling and Bott, 2005).  

C. glutamicum is a nonmotile, Gram-positive, facultative anaerobic soil bacterium that is able to grow 

on different substrates, including a variety of carbohydrates, organic acids and alcohols (Becker and 

Wittmann, 2016; Eggeling and Bott, 2005). C. glutamicum is non-pathogenic and has the GRAS 

(generally regarded as safe) status. The genome of the WT strain C. glutamicum ATCC 13032 was 

published in 2003; it contains about 3000 genes located on one single chromosome (Kalinowski et al., 

2003). A comprehensive overview of its metabolome is available, including information about 

regulation (Becker et al., 2018; Pfeifer-Sancar et al., 2013; Schröder and Tauch, 2010).  

C. glutamicum has multiple properties that make it a good production host, including growth to high 

cell densities, a high biomass specific production rate and a relatively good resistance to stress. It is 

relatively resistant to shear stress, oxidative stress (due to high catalase expression), high osmotic 

pressure and moderate changes in pH and temperature (Becker and Wittmann, 2016; Eggeling and 

Bott, 2005; Lee et al., 2016). Shortly after its discovery and isolation, industrial production processes 

were established with C. glutamicum. Following establishment of initial bioprocesses for the 

production of L-glutamate, and quickly afterwards L-lysine, C. glutamicum strains were developed that 

produced all essential amino acids except for L-methionine (Becker and Wittmann, 2016). This was 

already achieved in 1978. With the development of the genomic engineering toolbox, C. glutamicum 

was further applied for the production of more amino acids, diamins, vitamis, terpenoids, organic 

acids, polymer precursors, alcohols and proteins (Becker et al., 2018). A large number of molecular 

tools are available, including expression plasmids, integration vectors for genomic modification, a set 

of inducible and constitutive promoters, and TF-based biosensors (Baritugo et al., 2018; Becker et al., 

2018; Wendisch, 2014). However, genome engineering of C. glutamicum is still rather time-

consuming, especially in comparison to microbes such as E. coli and S. cerevisiae. This is mainly due to 

C. glutamicum’s rigid cell wall lowering DNA uptake, and difficulties in establishing modern 

engineering tools based on CRISPR. While several CRISPR systems have been described for use with C. 

glutamicum, including CRISPR/Cpf1 (Jiang et al., 2017) and CRISPRi (Cleto et al., 2016), their 

application is not yet widespread. Therefore, C. glutamicum would benefit from methods to speed up 

genomic engineering, which are discussed in Section 2.5 and Chapter 3.4 of this thesis.  

2.3.2. Vibrio natriegens 
While the marine bacterium V. natriegens was isolated around the same time as C. glutamicum, it was 

not developed into an industrial strain. First described in 1958, as ‘isolate M11’ living in marsh mud in 

Sapelo Island (Georgia, USA), it was originally identified as a member of the Pseudomonadales (which 

is now classified as an order of Gammaproteobacteria), mainly based on the presence of a single, polar 

flagellum (Payne, 1958). The epithet natriegens was given because it requires sodium to grow 

('natrium' meaning sodium, and 'egens' to need) (Payne, 1960; Payne et al., 1961). After changing its 

classification a couple of times, it was finally categorized as a Vibrio (Austin et al., 1978; Baumann et 

al., 1971; Hoff et al., 2020; Payne et al., 1961; Webb and Payne, 1971). With some intervals, some 

studies on V. natriegens have been described. However, only since roughly five years has there been 

a surge in interest to develop it into a novel microbial workhorse. Still, the available knowledge is 

inferior to that available on C. glutamicum, which is exemplified by the timing of the first reviews on 

V. natriegens, which were published from 2020 (Hoff et al., 2020; Thoma and Blombach, 2021).  
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V. natriegens is a non-pathogenic, Gram-negative, slight halophile with a high nutrient versatility, able 

to grow on a wide variety of carbohydrates and organic acids (Baumann et al., 1971; Payne, 1958). It 

is a facultative anaerobe that does not produce gas under anaerobic conditions, is able to use nitrate 

as an electron acceptor and store polyhydroxybutyrate (PHB) as an internal storage compound 

(Baumann et al., 1971). The genome of V. natriegens was first sequenced in 2013 and consists of two 

chromosomes, which were predicted to contain approximately 4700 genes (Maida et al., 2013; Wang 

et al., 2013).  

V. natriegens most characteristic property is its unrivaled growth rate, with a reported doubling time 

under 10 minutes (Eagon, 1962; Hoffart et al., 2017). This very fast doubling time requires high protein 

production, which was shown to be facilitated by high ribosome numbers (Aiyar et al., 2002). Efforts 

are currently underway to leverage the high doubling time to shorten standard molecular biology 

processes (Weinstock et al., 2016). V. natriegens was shown to be a potential production host for next 

generation biotechnology, due to having a very high biomass specific substrate consumption rate (qs), 

which was at least two fold higher than that of Escherichia coli, Pseudomonas putida, Corynebacterium 

glutamicum and yeast, under both anaerobic and aerobic conditions (Hoffart et al., 2017). Also, an 

increase in anaerobic alanine production was shown by deletion of several genes (Hoffart et al., 2017). 

Furthermore, V. natriegens high capacity for translation makes it an attractive platform for cell free 

protein production (Des Soye et al., 2018; Failmezger et al., 2018; Wiegand et al., 2018). While initial 

progress on the development of C. glutamicum was relatively slow due to the lack of available tools 

at the time of its initial development, V. natriegens can benefit from current knowledge and tools that 

can be transferred from other microbes. Several studies have contributed to improving the available 

toolbox for engineering V. natriegens, describing protocols for transformation (Dalia et al., 2017; 

Weinstock et al., 2016), characterization of genetic parts and tools (e.g. promoters, plasmids) 

(Tschirhart et al., 2019), use of CRISPRi (Lee et al., 2019), first developments of a production platform 

strain (Pfeifer et al., 2019) among others (Hoff et al., 2020; Thoma and Blombach, 2021). This has led 

to the comparably quick development of V. natriegens strains for the production of L-alanine (Hoffart 

et al., 2017), poly-β-hydroxybutyrate (Dalia et al., 2017), 2,3-butanediol (Erian et al., 2020), melanin 

(Wang et al., 2020), violacein and β-carotene (Ellis et al., 2019).  

Development of V. natriegens into different production strains could be accelerated with TF-based 

biosensors. Therefore, we aimed to establish TF-based biosensors in V. natriegens. In particular, we 

chose to express two biosensors from C. glutamicum, based on LysG and Lrp, which were previously 

introduced. The results of this work form part of this thesis (Chapter 3.3) and are summarized below.  

2.3.3. Expression of TF-based biosensors in V. natriegens to increase amino acid production 
Expression of the LysG-based and Lrp-based biosensors from C. glutamicum in V. natriegens required 

some modification of the sensor sequences (Figure 2A). First, the plasmid backbone was changed, 

since the original pJC1 vector is based on kanamycin resistance, which is not recommended for V. 

natriegens due to its natural resistance to this antibiotic (Hoff et al., 2020). Instead, the pBR322 

backbone was used, which was originally developed for E. coli (Bolivar et al., 1977). Second, the native 

promoters upstream of lysG and lrp are not likely to be active in V. natriegens, since V. natriegens and 

C. glutamicum are not closely related (belonging to Proteobacteria and Actinobacteria, respectively). 

A library of promoters from the Anderson promoter library were used (Anderson, 2006), which where 

shown to be active with different strength in V. natriegens (Stukenberg et al., 2021; Tschirhart et al., 

2019), creating a series of sensor variants (Figure 2A). Furthermore, a ribosomal binding site (RBS) 

active in V. natriegens and a linker sequence were added to the gene sequences, to facilitate 

translation in V. natriegens. All sensor variants were tested for their output in V. natriegens cultures 

supplemented with the effector amino acids (i.e. L-lysine, L-histidine and L-arginine for LysG, and L-
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methionine, L-leucine, L-isoleucine and L-valine for Lrp). Only for the LysG sensor-variants induced 

with L-lysine, a clear difference between background and induced expression was observed and a 

dose-response relationship could be established (Figure 2B)  

 

Figure 2: Design and expression of two transcription factor-based biosensors in V. natriegens (Adapted from 
Chapter 3.3) A) Schematic overview of LysG and Lrp biosensor design for expression in V. natriegens. Different 
sensor variants were created using promoters from the Anderson promoter library to express lrp or lysG. B) Dose-
response signal of the LysG based biosensor variants and L-lysine. A Hill-curve was fitted to the measured values. 
For all fluorescence measurements, fluorescence per cell of 10.000 cells per culture were measured and averaged, 
and fold change over background was calculated. Average and standard deviation of three cultures are shown 
(n = 3). Promoters from the Anderson promoter library are shown as abbreviations (P100 = J23100, etc.).C) FACS 
scatterplots showing distribution of single cells treated with 3.0 g l-1 MNNG for the first and final enrichment 
culture (n=10000). D) Overview of amino acid production of single isolates. C denotes control strain (non-MNNG 
treated, main population sorted), P denotes parental strain. Small frame shows amino acid concentrations of all 
fluorescence-sorted cells, selection shows strains for which more than 10 μM extracellular amino acid was 
measured.  

The absence of LysG biosensor output in cultures induced with L-histidine and L-arginine can not be 

readily explained, as V. natriegens is able to take up and grow on these amino acids (Baumann et al., 

1971; Ellis et al., 2019). However, it is possible that uptake is low in presence of glucose, as catabolite 

repression is a common regulation mechanism in bacteria, which should be further investigated for V. 

natriegens. The absence of Lrp biosensor output could also be due to amino acid uptake problems, 

but it is also possible that lrp was not correctly transcribed or translated in V. natriegens, or that it 
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could not induce expression of its cognate promoter. Since the upstream promoter was similar for lrp 

and lysG in the biosensors, and both genes have a similar GC content, it is unlikely that transcription 

of lrp was problematic. Since LysG was successfully expressed, it is also unlikely that translation was 

not possible for Lrp. Furthermore, some differences in fluorescence output were measured between 

the different sensor variants featuring promoters with different strengths, which suggest that Lrp was 

expressed but expression of its target genes was not induced by effector binding. Therefore, the most 

likely problem is in the promoter binding and the modification of transcription output in relation to 

effector binding, in V. natriegens. Multiple studies report the successful transfer of a transcription 

factor from one species to another (Lin et al., 2017; Mahr and Frunzke, 2016; Skjoedt et al., 2016; 

Sonntag et al., 2020), but no clear information is available on what determines if a transcription factor 

will function in the new host or not. When the transcriptional activator BenM from Acinetobacter sp. 

ADP1 was expressed in the yeast S. cerevisiae, specific placement of the BenM operator site in a 

modified yeast promoter was required to obtain a functioning sensor (Ambri et al., 2020). 

Construction of such hybrid promoters might improve sensor functioning in non-native host, but this 

is complicated for Lrp since it has no clear operator sequence (Lange et al., 2012). Future studies could 

look into the direction of creating more different Lrp biosensor variants for expression in V. natriegens, 

using methods further described in Section 2.5.  

To demonstrate the application of TF-based biosensor for the development of (novel) host strains, we 

continued with the P106-LysG biosensor (Figure 2B) and subjected the sensor strain to a mutagenesis 

and screening protocol to isolate amino acid producing mutants. First, to generate genotypic diversity, 

a culture carrying the P106-LysG-biosensor was mutagenized with MNNG (N-methyl-N’-nitro-N-

nitrosoguanidine) (Adelberg et al., 1965), to create a library of mutants. Second, repetitive FACS of 

300,000 of the top 5% fluorescent cells was done (Figure 2C). Each MNNG treated culture showed an 

upward shift in fluorescence after three to four enrichment steps, and after the fourth enrichment 

step single cells were sorted on plates for the top 5% fluorescent cells. Cells that formed colonies were 

grown in microtiter plates and the concentration of extracellular positively charged amino acids was 

quantified by HPLC measurement (Figure 2D). From 245 measured strains, 37 produced more than 10 

μM extracellular amino acids (15%). V. natriegens strain were obtained that produced L-lysine, L-

arginine and L-histidine.  

Whole genome sequencing was performed on the top L-lysine, L-histidine and L-arginine producers to 

identify causal mutations for the producer phenotype. For the top L-lysine, L-histidine and L-arginine 

producers, 23, 35 and 23 single nucleotide polymorphisms (SNPs) were identified, respectively. SNPs 

were found in genes encoding enzymes directly active in amino acid biosynthesis or degradation, and 

in other pathways related to amino acid metabolism. Examples are a mutation in gapA encoding 4-

hydroxy-tetrahydrodipicolinate synthase active in L-lysine biosynthesis, a mutation in a gene encoding 

an agmatine deiminase active in L-arginine degradation, and a mutation in a gene encoding a serine 

ammonia-lyase, which is linked to L-histidine metabolism via co-factor regeneration (see also Chapter 

3.3).  

V. natriegens strains producing these amino acids have not been described before, and their isolation 

shows the strength of TF-based biosensors for the development of novel producer strains. While the 

FACS-based selection scheme was successful to select V. natriegens producer strains, it is relatively 

complicated to apply. In contrast, screens based on growth, either in liquid cultures or on plates, are 

more easy to use. To improve the screening and selection of strains, we investigated the differences 

between such selection schemes, in combination with novel evolutionary strategies based on TF-

based biosensors. The results are described in the next section.  



Scientific context and key results of this thesis 

14 

2.4. Using biosensors to improve evolutionary strategies 
As previously discussed, adopting evolution for strain development is a proven and powerful way to 

improve the performance of strains. In this section, various aspects of evolution and different 

evolutionary strategies are investigated first, followed by a discussion of different methods to select 

for better producer strains. Finally, a novel evolutionary strategy for small molecule production, based 

on growth coupling in C. glutamicum using the Lrp biosensor, is presented.  

2.4.1. The theory of laboratory evolution 
“Biology is the study of complicated things that have the appearance of having been designed with a 

purpose” (Dawkins, 1986). It is important to realize this, when studying evolution, because the results 

of laboratory evolution are not the perfectly designable solution that is desired by the experimenter. 

Rather, microorganisms will take anything that work under the applied selective pressure, and run 

with it.  

The process we observe as microbial evolution is the combination of two phenomena: first, the 

imperfect replication of a cell, leading to genomic variation (which is sometimes also due to other 

factors, such as homologous gene transfer or mobile elements), and second, the differences in fitness 

of these variants. Biological fitness is defined as a quantitative measure of the contribution of a specific 

organism or genotype to future generations owing to differential survival, reproduction or both, that 

is associated with its phenotype (Barrick and Lenski, 2013). Biological fitness is always relative, and 

depends on the environment of the cell, which includes factors such as nutrient availability, 

temperature, acidity, and most importantly, other competing microbes. Thus, to influence the 

outcome of laboratory evolution experiments, scientist can change either the amount or type of 

variants that are created (i.e. by mutagenesis experiments that target the complete DNA sequence or 

only specific areas), or alter the cellular environment to improve the relative fitness of a certain 

phenotype (Figure 3). Deciding how this can be done best requires a more detailed understanding of 

the processes underlying laboratory evolution.  

Understanding laboratory evolution experiments requires two ‘perspectives’: population genetics, 

which covers the mathematical framework for describing rates of evolutionary change as a function 

of different processes, and molecular biology, which covers the relation between mutation and 

phenotype (Barrick and Lenski, 2013). Important fundamental processes of population genetics are 

mutation rate, genetic drift and selective pressure.  

The mutation rate is the rate at which mutations occur in a genome, which is usually given as 

mutations per cell per division, or mutations per base pair per replication. Historically, there have been 

two contrasting views on how the mutation rate is influenced (i.e. what causes mutations). The first 

theory states that the mutation rate is dependent on the environment and organisms can actively 

induce specific mutations to adapt themselves to specific situations. This theory of evolution is known 

as Lamarckism (Lamarck, 1809). The second theory states that the mutation rate is independent of 

the environment and mutations happen at random, and due to selection by the environment a mutant 

with improved characteristics will thrive over his less well adapted competitors. This theory is know 

as (neo-)Darwinism, and is nowadays generally accepted to correctly describe evolution, in contrast 

to Lamarckism (Darwin, 1859). Thus, in laboratory evolution, we should assume mutations to be 

occurring at random and independent of the environment. There are some sidenotes to be made here, 

as novel insights show that sometimes the mutation rate of bacteria does actually dependent on the 

environment, as exemplified by prophages (bacterial viruses that are integrated into the genome) that 

are activated under stressful conditions (Nanda et al., 2015). Nevertheless, the effect of mutations is 

random, and their effect on biological fitness determines if they will remain in the population. To 
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design evolutionary engineering experiments, it is therefore appropriate to assume a certain, stable, 

mutation rate of random mutations.  

For bacteria, the mutation rate is typically found to be in the range of 10-9 to 10-10 per base per 

replication (Barrick and Lenski, 2013; Drake, 1991; Lee et al., 2012). This is close to the overall error 

rate of DNA replication, which is the product of errors made by DNA polymerase and the error 

reducing effect of proofreading and mismatch repair systems (Lee et al., 2012; Maslowska et al., 2018; 

Schaaper, 1993). Typical mutations induced by DNA replication are point substitution mutations (the 

substitution of one base for another base). The observation that these occur more frequently than 

other mutations, such as insertions or deletions, further indicates that replication is the main 

introducer of variation during laboratory evolution. However, it should be mentioned that some types 

of mutations, such as integration of mobile genetic element, as well as large scale rearrangements of 

genomic DNA, are more difficult to identify with current (short read) sequencing technology and are 

therefore not always accurately reported (Barrick and Lenski, 2013). Furthermore, it is important to 

keep in mind that these results are from laboratory experiments, in which the replication rates of 

bacteria are orders of magnitude higher than is typical in nature. Therefore, the contribution of 

replication errors to the total mutation rate might be way lower in natural environments, while 

‘horizontal’ gene transfer (i.e. transfer of genetic information between cells, for example by plasmid 

conjugation or viral infection) significantly contributes to the generation of diversity in nature (Barrick 

and Lenski, 2013). Nevertheless, for laboratory evolution experiments these results can be used to 

estimate a mutation rate, which provides the first important aspect to keep in mind when designing 

laboratory experiments (Figure 3).  

While the occurrence of mutations can be approximated by a certain rate, an understanding of 

molecular biology is required to relate a mutation to its effect on fitness. Due to the complexity of 

microorganisms (and all other forms of life), we usually have to rely on causal observations to describe 

the effect of mutations (i.e. we characterize a mutant and compare its phenotype to the non-mutant). 

Mutations can be categorized as beneficial, neutral and deleterious (sometimes lethal). Again, it is 

important to realize that this is always in relationship to the environment. Mutations that are 

beneficial under laboratory conditions are not likely to be beneficial under natural environments, as 

microbes have been adapted to their natural environment by million years of evolution, which is very 

different from the laboratory environment. Furthermore, mutations can be described by their effect 

on cellular function. Small scale mutations, such as point substitution mutations and insertions or 

deletions of a few nucleotides, can either occur in non-coding or coding regions of DNA (i.e. 

synonymous, frameshift, nonsense and missense mutations). It is sometimes possible to predict the 

effect of a mutation in protein sequences, for example a nonsense mutation at the start of the 

sequence will likely prevent the expression of the original protein. Furthermore, for enzymes on which 

structural information is available, the effect of mutations can be inferred from their location. When 

they are in the active site, or at a site important for allosteric regulation, they probably affect 

conversion rates or regulation, respectively. Larger scale mutations, such as amplifications, deletions, 

or insertions, can lead to disruption of gene sequences, but also to multiple other regulatory effects 

that are hard to predict. The type of mutation that is required to get a strain with a certain, desired, 

phenotype is hard (often impossible) to predict. In general, quantitative improvements, such as 

increased growth rate, can often be obtained by one or more small scale mutations. In contrast, 

qualitative mutations, such as the consumption of a non-native substrate, often require more complex 

mutations. This is very well exemplified by the Lenski large long-term evolution experiments, in which 

12 parallel cultures of E. coli have been grown in glucose-limited minimal salts medium for more than 

25 years, with a daily transfer to new media (Lenski, 2017). While mutations to increase the growth 

rate occurred in all lines, only one obtained a mutation to take up citrate, another nutrient (Blount et 
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al., 2008). This required a tandem duplication of citT, encoding a citrate transporter which is normally 

only active in the absence of oxygen (Blount et al., 2012). The duplicated copy was under a different 

promoter, and expressed in the presence of oxygen. To specifically induce certain types of mutations, 

a plethora of methods have been designed (Simon et al., 2019), such as addition of a mutagen 

(Adelberg et al., 1965), but also more targeted methods such as MAGE (Wang et al., 2009) and CRISPR-

AID (Ma et al., 2016). For example, CRISPR-AID is a fusion of dCas9 (catalytically dead Cas9) and a 

cytidine deaminase (AID), which allows for induced mutations at a specific site in the genome (Figure 

3). To conclude, it can be very helpful to consider the type of mutation, or the gene that needs to be 

mutated, when designing a laboratory evolution experiment (Figure 3).  

 

 

Figure 3: Overview of important aspects of evolutionary engineering experiments. Genetic drift demonstrates 
the loss of mutant cells (colored orange) by sampling. Mutation rate demonstrates the effect of the addition of 
mutagens on the occurrence of mutant cells (colored orange and red). Type of mutations demonstrates the 
difference between experiments where mutations occur at random in the genome (top), and experiments where 
targeted mutation-inducing agents such as CRISPR-AID (Ma et al., 2016) are used, which results in mutations 
occurring most frequently at a specific location. Type of cultivations shows different type of evolutionary 
cultivation systems, such as liquid cultivations (top), FACS-based selections (middle) and plate-based cultivations 
(bottom).  
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Next to the rate of mutations and their effects, one needs to consider the effects of genetic drift on 

laboratory evolution experiments. Genetic drift is the effect that random sampling has on the 

frequency of mutants in a population (Masel, 2011). In typical laboratory evolution experiments, 

microbes are grown in liquid media or on solid media, starting with a single or a small number of cells, 

and ending with a number of cells orders of magnitude larger. If a second cultivation is desired, 

typically a fraction of the final population of the first cultivation is taken to start the next culture with. 

This can lead to genetic drift: if multiple mutants are present in small fractions in the population, 

transferring only a small fraction of this culture can lead to the loss of certain variants. This loss is even 

higher when one considers that microbes grow by doubling, and the effect that this has on mutation 

occurrence. As previously discussed, we can assume that the mutation rate of a strain is constant 

during an evolutionary experiment, and during every replication there is only a small chance of a 

mutation (~10-3 per genome per replication). Ergo, if we start a hypothetical experiment with one cell, 

when it replicates into two cells, the likelihood of a mutation is low, and the same holds for the next 

couple of replications. When a million cells replicate, the chance of a mutation per cell per replication 

is still the same, but since the replication is done a million times, there is a high chance that at least 

some of the cells obtain mutations. Thus, the chance that a mutation event happens is dependent on 

the amount of cells. Therefore, in lab cultures where cell numbers increase by doubling, most 

mutation events will happen during the end of the cultivation, since the absolute number of cell 

duplications is the highest at this point. Thus, genetic drift is an even more important phenomenon in 

laboratory evolution, because most of the diversity is generated at the final growth stage, but can 

easily be lost due to genetic drift originating from sampling. Therefore, genetic drift is the third aspect 

to keep in mind when designing laboratory experiments (Figure 3).  

Finally, we come to the ‘core’ of laboratory evolution, the applied selective pressure. Ultimately, this 

will decide the outcome of an evolutionary experiment, as “you get what you screen for” (Schmidt-

Dannert and Arnold, 1999). In the lab, selective pressure is applied by setting the cultivation 

conditions. Next to the selection of the type of media, nutrients, stressors, acidity, and more, also the 

type of screening or selection system has an influence on the evolutionary pressure. Multiple different 

systems have been described, such as solid media (agar plate) based cultivation, repetitive batch 

cultivations in liquid media (also know as serial transfer cultivations), and continuous cultivations 

(Barrick and Lenski, 2013; Fernández‐Cabezón et al., 2019; Mans et al., 2018). Furthermore, more 

specialized selection systems have been described in the form of growth in droplets in water in oil 

emulsions, and FACS-based selection systems, which have been used to evolve cells for increased 

biomass yields, and for increased small molecule production using TF-based biosensors, respectively 

(Bachmann et al., 2013; Mahr et al., 2015). To consider the different evolutionary dynamics in the 

different systems, a distinction has to be made between systems in which cells compete against each 

other and systems in which cells are able to growth separated from each other. In cultivations systems 

with competition, known as adaptive evolution, there is a difference in the mutation rate and the 

observed mutation rate, which is know as the substitution rate. The mutation rate has been discussed 

previously, and is independent of the type of experiment. The substitution rate is defined as the rate 

at which new mutations accumulate in an evolving lineage over time (Barrick and Lenski, 2013). This 

depends on the mutation rate, but also on the fitness effect of the mutation. If a mutation leads to a 

fitness increase, the mutant will outgrow its competitors and quickly ‘take over’ the culture. Thus, to 

the experimenter it appears as if the rate of this mutation is higher, because the mutants quickly 

increase in frequency. The dynamics in bacterial adaptive laboratory evolution (ALE) usually follow the 

steps of: i) initial growth and occurrence of mutants; ii) mutant outcompetes parental strain and 

possibly other mutants, and; iii) possible repetition. A major benefit of this type of systems is the 

relatively easy way in which a small number of beneficial mutations can be acquired in a single evolved 
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strain. However, a problem in such systems can be clonal interference, which is what happens when 

two mutants arise in a population with different but both beneficial mutations, but due to a (small) 

fitness advantage of the one of the mutants, the other mutant will be outcompeted and this beneficial 

mutation is ‘lost’ (Barrick and Lenski, 2013). When cells are grown in spatial separation, which is 

possible when cells are grown on solid media or in small droplets, clonal interference does not play a 

role. In these systems a number of strains with one or a few, different, mutations can be obtained. 

However, it can be more challenging to obtain the ‘best’ mutant, as there is no competition between 

the mutants. The type of cultivation system is therefore the important final aspect to consider in 

laboratory evolution experiments (Figure 3).  

Evolutionary engineering has been applied to improve several aspects of microbial production strains, 

which can be separated into four categories: increasing growth rate, increasing tolerance, improving 

substrate utilization and improving production (Sandberg et al., 2019; Stella et al., 2019), see also 

Chapter 3.1 of this thesis. Growth rate increase can be done for its own purpose (Pfeifer et al., 2017), 

but also to restore the growth rate of rationally engineered strains back towards the levels of the 

parental strain. Evolution for increased tolerance is often desired to improve the performance of 

strains under industrial conditions, which often feature high substrate and product concentrations 

and presence of stressors such as high acidity, temperature, or inhibitors (Sandberg et al., 2019; Stella 

et al., 2019). Evolution for improved substrate utilization is often done with strains that have been 

metabolically engineered to utilize carbon sources present in industrial substrate streams, such as 

pentose sugars (Radek et al., 2017; Wouter Wisselink et al., 2009). Finally, evolution can be applied to 

improve microbial production, which will be further discussed in the next section.  

2.4.2. Evolutionary engineering to improve microbial production 
An evolutionary experiment can only work if the desired mutant has a fitness advantage under the 

applied selective pressure. This proves to be challenging for most production phenotypes. For some 

products, it is possible to modify the cultivation conditions to create an appropriate selective pressure. 

Examples are fermentation products that are natively coupled to growth under anaerobic conditions, 

in which selection for increased growth leads to increased production (e.g. ethanol, lactic acid, acetic 

acid). For some other molecules, it is possible to utilize their intrinsic properties in selection schemes, 

such as antioxidant properties in combination with applying oxidative stress (Reyes et al., 2014), an 

increase in buoyancy in combination with a cultivation method to retain floating cells (Liu et al., 2015), 

or intrinsic fluorescence in combination with selection for fluorescent cells (An et al., 1991). However, 

most of the molecules of interest do not have any intrinsic property that can be exploited in evolution 

experiments and methods to couple production to a fitness advantage are required (Figure 4).  

Especially for primary metabolites, the use of media supplements such as antimetabolites has been 

historically successful to screen for strains with improved production (Figure 4) (Eggeling and Bott, 

2005; Fiedurek et al., 2017), such as improved amino acid production (Adrio and Demain, 2006; Tani 

et al., 1988). This is based on the microbial regulation of these molecules, as their production is usually 

allosterically controlled by the product concentration (i.e. negative feedback regulation). Screening 

for auxotrophic strain is another historically successful strategy (Adrio and Demain, 2006; Fiedurek et 

al., 2017), which is based on competition between pre-cursors of different pathways (i.e. inactivation 

of one pathway leads to overexpression of the other), often in combination with the removal of 

feedback inhibition from the inactivated pathway-product. For example, this has been shown for a 

Brevibacterium ammoniagenes guanine auxotrophic mutant that showed increased production of 5'-

inosinic acid (Teshiba and Furuya, 1983).  
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Figure 4: Comparison of main production-to-fitness coupling strategies used for evolutionary engineering. The 
shake flask and agar plate are shown to indicate different possible cultivation strategies; products are shown as 
pink pentagons, antimetabolites are shown as pink pentagon-red circle combinations, antibiotics are shown as 
skull-and-bones, transcription factors are shown as blue oval shapes, fluorescent proteins are shown as green 
oval shapes.  

Targeted modification of the microbial strain forms another type of strategy to link production to 

fitness. Multiple studies describe metabolic engineering strategies, in which metabolism is ‘rewired’ 

to make the growth rate dependent of the intracellular concentration, and the production, of a specific 

molecule (Figure 4) (Buerger et al., 2019; Sandberg et al., 2019; Shepelin et al., 2018). An example is 

the genetic engineering of an E. coli strain to make L-alanine the sole fermentation product, followed 

by evolution under anaerobic conditions to increase L-alanine production (Zhang et al., 2007). In 

another study, growth was made dependent on S-adenosylmethionine(SAM)–dependent methylation 

(Luo et al., 2019). In the constructed strain, improvement of the rate of any SAM-dependent 

methyltransferase would lead to an increased growth rate, and this could lead to increased production 

of chemicals which require SAM-dependent methylation for their biosynthesis (Luo et al., 2019). Other 

interesting examples are the modification of the isoleucyl-tRNA synthetase to decrease its affinity to 

isoleucine, thereby coupling isoleucine production to growth (Sun et al., 2021), and the use of co-
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cultivation of two strains to obtain improved producers on the basis of cooperation (Saleski et al., 

2019), or competition (Charusanti et al., 2012) between the strains.  

In contrast to metabolic engineering strategies, TF-based biosensors can be used to create synthetic 

regulatory circuits that couple the concentration of molecule of interest to production of a specific 

protein (Figure 4) (Lin et al., 2017; Mahr and Frunzke, 2016; Williams et al., 2016). In principle, 

expression of any gene that provides a selectable phenotype can be used as biosensor-output. The 

most frequently described are genes encoding fluorescent proteins or genes encoding antibiotic 

resistance genes. When production is coupled to expression of a gene conferring antibiotic resistance, 

cultivation in media containing a fixed or increasing amount of antibiotic can be used to enrich 

mutants with increased production, as non-producers are inhibited or killed under these conditions 

(Figure 4) (Leavitt et al., 2017; Raman et al., 2014; Snoek et al., 2018). When a gene conferring 

fluorescence is used as output, spatial separation-based cultivations can be used (e.g. growing cells 

on agar plates) to separate mutants, and screen for cells with increased fluorescence (Chou and 

Keasling, 2013). However, the amount of mutants that can be screened in this type of cultivations is 

rather limited and FACS-based screenings form a high-throughput alternative (Figure 4). FACS-based 

screening and selections have been demonstrated in this thesis using the LysG sensor in V. natriegens 

(Chapter 3.3), and multiple other examples have been described (Binder et al., 2012; Flachbart et al., 

2019; Mahr et al., 2015). Coupling production to expression, or repression, of other types of genes is 

also possible, such as the expression of genes encoding a specific substrate transporter (Liu et al., 

2017) or repression of a gene conferring toxicity under specific cultivation conditions (Xu et al., 2020).  

While all above described approaches have successfully been applied to obtain improved producer 

strains, they require extensive genetic engineering and/or complex selection methods (Figure 4). A 

generally applicable method that couples production directly to growth, without requiring media 

additions, would have a great potential for application in evolutionary engineering. In the next section, 

such a strategy is presented, which has been developed as part of this thesis (Chapter 3.2).  

2.4.3. Coupling amino acids production to growth in Corynebacterium glutamicum using Lrp 
To enable direct coupling of production to growth, we designed a biosensor-based genetic circuit to 

couple production to the expression of an essential gene (Figure 4). To this end, the ‘growth-

regulating’ genes pfkA and hisD were placed under control of the Lrp-based regulatory circuit in the 

C. glutamicum ATCC 13032 WT strain (Figure 5A). A dose-response experiment demonstrated the 

relationship between L-valine concentration and the maximum specific growth rate (μmax) of the two 

strains (Figure 5B), which was done with a dipeptide feeding strategy (addition of ala-val) that was 

described previously (Vrljic et al., 1996). For PbrnF-hisD the growth rate was already restored to WT-

like levels with addition of 1 mM ala-val, while PbrnF-pfkA required 3 mM ala-val to restore growth to 

WT levels. Thus, while the biosensor-base synthetic regulatory circuit was identical for both strains, 

the relation to growth was very dependent on the target growth-regulating gene. This was also 

observed in other studies, for example when the protocatechuic acid-responsive PcaQ sensor was 

coupled to the expression of nine different growth-regulating genes in S. cerevisiae (D’Ambrosio et al., 

2020). Differences in growth were observed between all different strains. It is likely that engineering 

of the promoter region upstream of hisD or pfkA could also change the growth dynamics, as this was 

the case in E. coli, where intracellular arabinose concentration was coupled to expression of the folP-

glmM operon (Rugbjerg et al., 2018). The growth rate was highly dependent on the promoter and RBS 

used. Nevertheless, growth-coupling was successful in C. glutamicum using the Lrp biosensor, and this 

enabled the use of evolutionary engineering strategies to improve amino acid production in these 

strains.  
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2.4.4. Exploring different cultivation strategies to evolve growth-coupled Corynebacterium 

glutamicum  
Taking the two growth coupled strains, PbrnF-pfkA and PbrnF-hisD, we set out to investigate different 

selection strategies to isolate cells with improved amino acid production. All strategies were based on 

selection for improved growth rate. Initially, we evolved both strains in repetitive batch cultivations 

(i.e. we performed repetitive batch adaptive laboratory evolutions; rbALEs) with the aim to 

accumulate mutations that improved production, by growing 22 parallel cultures for each strain. First, 

a cultivation under unselective conditions was done, followed by multiple cultivations under selective 

conditions. In the selective cultivations, all cultures showed a rapid increase in growth rate, but none 

of the evolved strains showed any amino acid production, as measured by HPLC. Sequencing of six 

evolved strains found mutations in the integrated Lrp-based regulatory circuit, indicating that these 

strains were ‘cheaters’ rather than producers (i.e. they escaped the evolutionary pressure by 

cheating).  

Going back to the aspects of evolutionary engineering as discussed previously, we considered the 

possible explanations for the obtained results. It could be that more mutations were possible that led 

to a cheater strain than to a producer strain, in the growth-coupled strains. Alternatively, mutations 

that led to a cheater strain could occur at a higher frequency. In both cases, we could assume that the 

effective mutation rate of a cheater mutation was higher than that of a producer mutation. 

Furthermore, the impact of the different mutations on the growth rate was likely different. Cheater 

mutations might completely restore the growth rate to that of the WT C. glutamicum strain, while a 

mutation leading to a small increase in production might only result in a small increase of growth rate. 

Modelling of the rbALE revealed that a cheater mutant was likely already present at the beginning of 

the selective cultivation, which is reasonable as the absolute amount of mutations is highest at high 

cell densities. Mutations were more likely to occur at the end of the first, nonselective batch 

cultivation, than at the beginning of the selective cultivation. Furthermore, multiple, possibly 

different, cheater cells were likely already present, as otherwise some cultures would have lost them 

in the first selective cultivation due to genetic drift. Using this information, we modelled the outcomes 

of rbALE experiments, with different ratios of cheater to producer cells at the start of the selective 

cultivations, and with different ‘strengths’ of producer mutations (i.e. producer mutations that had a 

small effect on growth rate, and producer mutations that led to almost WT-like growth rates). The 

result was that, in an rbALE, producer strains would only be enriched if strong producer mutants were 

present at a higher number than cheater cells at the beginning of the selective cultivations. In other 

words, we have a special case of clonal interference, in which cheater mutants prevent enrichment of 

producer mutants. To solve this problem, we could either try to influence the occurrence of cheater 

or producer mutations, or change the selection system. We investigated the latter, and tested 

evolutionary strategies based on spatial separation, to prevent the competition between cheater and 

producer cells.  

A challenge for spatial separation strategies is the amount of cells to screen. While many mutants are 

likely to be present at the end of a typical unselective C. glutamicum batch cultivation, their ratio is 

still low compared to non-mutant cells (i.e. this comes from the high number of cells, typically in the 

order of billions, and a mutation rate in the order of 10-3 mutations per cell per replication). However, 

with our growth-coupled strain design, we could simply spread a high concentration of cells on agar 

plates containing selective media. Subsequently, we could pick the earliest observable or largest 

colonies, which were grown from mutants with an improved growth rate (Figure 5C, see also Chapter 

3.2). We observed roughly one large colony per 104 total colonies. When we grew 96 of these colonies 

in selective media, all showed an increased growth rate compared to the parental, growth-coupled 
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strain. Furthermore, about 30 % were identified as producer strains, producing L-valine, L-leucine 

and/or L-isoleucine, while no product was measured for the remaining 70% (Figure 5D). Thus, by 

utilizing a cultivation based on spatial separation, we could successfully isolate producer strains.  

 

 

Figure 5: Overview of C. glutamicum biosensor-based growth coupling and evolution. (Adapted from Chapter 
3.3) A) Schematic overview of the lrp-PbrnF integration, upstream from C. glutamicum genes. The integration 
cassette consists of a terminator to block possible promoter activity of upstream regions, lrp, the lrp-brnF 
intergenic region, and the first 30 bp of brnF, followed by a stop codon, RBS and linker. B) Maximum specific 
growth rates (μmax) of PbrnF-hisD and PbrnF-pfkA cultures supplemented with different amounts of ala-val 
dipeptide, grown in CGXII medium with 2% glucose. Average and standard deviation of three biological replicates 
are shown. Overview of results from plate-based selection strategy of C. glutamicum growth-coupled strains. C) 
Micrograph of C. glutamicum::PbrnF-pfkA, showing the appearance of larger mutant clones on CGXII. D) Amino 
acid production of 48 cultures of each strain started from large clones on CGXII plates, sorted by total amino acid 
production. Results are shown for clones that produced detectable amounts of L-valine, L-isoleucine or L-leucine.  

Next to plate-based cultivation, we also applied FACS to separate single growth-coupled cells. To this 

end, the plasmid pJC1-lrp-brnF’-eyfp was introduced into the growth-coupled strains. Thus, producer 

mutants would also show a fluorescent output. The strains were grown under non-selective conditions 

(i.e. in BHI medium), before FACS. Single cells of the top fluorescent population were sorted on a non-

selective BHI agar plate, before starting a rbALE from 42 clones. Using this strategy, only one of the 

PbrnF-pfkA evolution-cultures showed high extracellular L-valine concentrations (> 1.0 mM). Compared 

to the plate based approach, the FACS approach had a lower effectivity. Furthermore, its use is more 

complicated than a plate-based approach. In conclusion, using a plate-based cultivation for spatially-

separated growth is recommended.  

Finally, sequencing of 15 L-valine producer mutations revealed that all contained mutations in either 

of the two genes encoding the acetohydroxyacid synthase (AHAS), ilvB or ilvN. AHAS catalyzes the first 

step in the biosynthesis of L-valine and related amino acids. We further investigated the functional 

impact of these mutations by constructing an in-silico model of the AHAS enzyme (see also Chapter 

3.2). All obtained mutations are likely to result in a decreased negative feedback inhibition of this 
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enzyme, which would explain the producer phenotype. Multiple other studies also report the effect 

of mutations in AHAS on L-valine production (Guo et al., 2015; Liu et al., 2019; Vogt et al., 2014). Thus, 

the growth-coupled evolutionary engineering resulted in the isolation of strains with specific, causal 

mutations.  

2.4.5. Future improvements of biosensors-based evolution 
Biosensor-based growth coupling is a promising strategy to enable the application of evolutionary 

engineering to isolate mutants with increased production. The simple design and the straightforward 

selection phenotype (i.e. increased growth) result in a good tradeoff between the complexity of strain 

engineering and the complexity of the selection strategy. Furthermore, due to the relative modularity 

of biosensors, this strategy can be applied for a wide range of products, and in different hosts.  

One of the major factors for improvement is dealing with the occurrence of cheaters, which is a known 

phenomenon in biosensor-based evolution. With our Lrp-based regulatory circuit, we observed 

different mutations that led to a cheater phenotype. Both mutations in the promoter (PbrnF), in the 

transcription factor (Lrp) and a duplication event in the pfkA gene-region were obtained, which 

resulted in strains escaping the selective pressure. Only a few other studies clearly reported the 

occurrence of cheater mutations and described them; in a study describing coupling of vanillic acid 

production to GLN1 expression in S. cerevisiae using the transcriptional repressor VanR, a deletion 

mutation of the VanR binding site was described (D’Ambrosio et al., 2020). We showed that one 

method to address cheater mutations is to prevent competition between cheater mutants and 

producer mutants. It is unlikely that producer strains will outcompete cheater strains in direct 

competition, as there is always a direct trade-off between growth rate and production, due to 

resource allocation by the cell (i.e. cellular resources can either be used for growth, or for production; 

an increase in one leads to a decrease of the other). Therefore, cheater strains, which do not have to 

produce the product, will always have a (small) growth advantage. An alternative strategy to deal with 

cheaters is to modify the biosensor-based growth-coupling design, to either decrease the cheater 

mutation rate, or increase the producer mutation rate. Several biosensor modifications were 

previously shown to reduce the escape rate of strains in which biosensors were used to couple 

production to expression of an antibiotic marker (Raman et al., 2014). The described modifications 

where: i) addition of a degradation tag to the transcription factor; ii) modification of the cognate 

promoter of the transcription factor (i.e. the promoter of the antibiotic resistance marker; iii) 

expression of two gene copies of the transcription factor, and; iv) expression of two different antibiotic 

markers (Raman et al., 2014). However, no sequencing of the ‘escapees’ was done, and it is not clear 

if the modifications lowered the escape rate due to lower cheater mutations, or due to non-genetic 

variations, as the latter has been shown to have a large effect on growth-coupled strains (Xiao et al., 

2016). Furthermore, these strategies complicate the design, and depending on the application, 

modification of the selection strategy might be more suitable.  

To further improve the presented biosensor-based growth-coupled evolution, and to improve 

evolutionary strategies in general, modelling should be further applied and improved. We developed 

a very straightforward model, which is essentially based on the difference in growth rate of the 

parental strain, cheater strain and producer strain. With this model, we could simulate the behavior 

of evolution in rbALE experiments, which helped us to find a better selection strategy. Many 

evolutionary workflows to improve strain performance have been described, but few incorporate 

modelling of the evolutionary workflows. Some evolutionary models for strain improvement have 

been described, but they are not yet widely applied (LaCroix et al., 2017). Improvement of our model 

would essentially comprise the incorporation of the factors that are important to design evolutionary 

engineering experiments, which were discussed previously. First, mutation rates could be 
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incorporated, with different rates for different mutations (i.e. cheater mutations and producer 

mutations), which would be updated based on experimental results. Mutation is per definition a 

random process, therefore a model including mutation rates would likely be stochastic rather than 

deterministic (LaCroix et al., 2017). Furthermore, the mutation rates will probably be very dependent 

on the strain, product and biosensor used. Second, modelling of the mutation rate should be extended 

with incorporation of cell numbers and replications. Ideally, mutations could be ‘tracked’ over a 

cultivation; when a mutation occurs (modelled as a random event with a set chance of occurring), the 

mutant is modelled as a new cell type in the cultivation, which replicates at a certain rate, and is able 

to further mutate. The use of deep sequencing could be applied to provide experimental validation 

for such a model (Rugbjerg et al., 2018). Third, the effect of genetic drift should be added, in 

combination with different cultivation/selection strategies. This allows the experimenter to simulate 

expected results based on different evolutionary strategies, and only execute the most promising 

ones. Data on the (average) growth rate of different cheater and producer mutations would improve 

the model. Taking genetic drift into account could even lead to strategies using only liquid cultivations 

to isolate producers from growth-coupled strains, because culture transferring strategies could be 

designed that maximize the chance of only one type of mutant transferring to the next cultivation. 

This would lead to the separation of cheaters and producers in liquid cultures.  

Finally, to further improve the production of the isolated strains, or the production of established 

production strain, modification of the Lrp-based regulatory circuit would be required. The presented 

evolutionary experiments showed the upper limit of the operational range at L-valine concentrations 

of 15 mM. Therefore, modifications of the Lrp-based biosensor were investigated, which are described 

in the next section.  

2.5. Using lab automation to improve biosensors 
The process of rational strain engineering (i.e. molecular biology workflows) usually consists of 

multiple steps that have to be performed in the lab, such as PCR, plasmid assembly and transformation 

(Figure 6). In addition, for less genetically tractable hosts such as C. glutamicum, which do not easily 

take up DNA, additional steps are required. These include plasmid preparation from the cloning host 

(e.g. E. coli) followed by C. glutamicum transformation (e.g. by electroporation). Especially when 

multiple strains have to be created in parallel, this can be very time-consuming, and would highly 

benefit from automation (Chao et al., 2017). In this section, the automation of a complete, standard 

cloning workflow for C. glutamicum engineering is described, which was developed as part of this 

thesis. This workflow was then used to construct and characterize different variants of the Lrp 

biosensor. These results are further described in Chapter 3.4, and have been published (Tenhaef et 

al., 2021).  

With the advent of synthetic biology at the start of the current century (Cameron et al., 2014; Endy, 

2005), the amount of strains that could be rationally designed quickly increased. This was aided by a 

plethora of software tools that have been developed to enable the design of many strains (Appleton 

et al., 2017b; Carbonell et al., 2016). This placed the bottleneck at the actual construction of the 

designed strains, the molecular cloning workflows (Ellis et al., 2011). To increase the throughput of 

molecular biology workflows, automation is required. Multiple studies described the automation of 

(part of) molecular cloning workflows using liquid handling robots (Chao et al., 2017; Hughes et al., 

2007; Jiang et al., 2020; Yehezkel et al., 2011). Other studies highlight the application of microfluidics 

to integrate and automate strain construction on microfluidic chips (Moore et al., 2017; Shih et al., 

2015). In recent years, multiple biofoundries have been developed in different countries, aiming for a 

complete integration of laboratory automation in biotechnology (Hillson et al., 2019). Biofoundries 

aim to “accelerate and enhance both academic and translational research in engineering/synthetic 
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biology by promoting and enabling the beneficial use of automation and high-throughput equipment 

including process scale-up, computer-aided design software, and other new workflows and tools” 

(Hillson et al., 2019). Still, most studies have focused on E. coli, and not on genetically less tractable 

host such as C. glutamicum. While some studies describe automation of C. glutamicum cloning 

workflows, the transformation step is still done manually (Wang et al., 2018). Therefore, we aimed to 

integrate this step into an automated cloning workflow for C. glutamicum.  

2.5.1. Automated construction and characterization of Lrp biosensor variants 
First, we set out to design and validate all the steps of a complete workflow to construct and express 

plasmids in C. glutamicum, using standard liquid handling systems (i.e. robots capable of pipetting and 

plate movement) (Figure 6). The construction workflow consists of PCR, Gibson assembly, E. coli heat 

shock transformation followed by conjugation to C. glutamicum (Figure 6). Furthermore, colony PCR 

and plasmid sequencing were performed to validate the constructs.  

 

Figure 6: Overview of the automated genetic engineering workflow. (Adapted from (Tenhaef et al., 2021), see 
Chapter 3.4). Each box describes one unit operation and informs about the device or entity used for performing 
this operation. OT-2: Opentrons OT-2 liquid handling system. EVO200: Tecan EVO200 liquid handling system. 
MultiNA: Shimadzu MCE-202 MultiNA chip electrophoresis system.  

We started the automated cloning workflow to construct 96 different variants of the Lrp biosensors, 

by combining different versions of the lrp start codon, the lrp RBS, the brnF promoter and the eYFP 

RBS (Figure 7A). Multiple constructs were lost especially after the E. coli heat shock (30 out of 96) and 

conjugation (19 out of 55) step. With future improvement of the workflow, these numbers should be 

decreased. However, it should be noted that during a manual workflow, 100% efficiency is rarely the 
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case. Furthermore, by analyzing the time needed for the workflow, we could conclude that the 

automated workflow could drastically reduce the hands-on time of the experimenter spent on strain 

construction. Additionally, a higher throughput can be achieved, which largely increases the quantity 

of constructs that can be produced in time. While the process has to be further improved, automation 

introduces standardization of the process, as all steps are documented and workflow variation is 

independent of differences between human scientists, which also makes it easier to find room for 

improvement.  

 

 

Figure 7: Design and analysis of Lrp biosensor variants. (Adapted from (Tenhaef et al., 2021), see Chapter 3.4).A) 
Graphical overview of the different Lrp biosensor variants that were designed for construction and expression in 
C. glutamicum. On the left side, 9 different primers were designed, containing combinations of different lrp start 
codons and lrp RBSs. On the right side, 12 different primers were designed, containing combinations of different 
brnF promoter sequences and eYFP RBSs. B) Screening results of 44 Lrp biosensor variants. Fold-change of each 
strain is calculated by dividing the biomass-specific fluorescence after 20 h of growth with inducer (3 mM alanine-
leucine dipeptide) by the biomass-specific fluorescence after 20 h of growth without inducer. Dashed line 
indicates a fold-change of one. Higher values indicate a higher dynamic range of the sensor. Symbols used for 
strain characteristics: lrp RBS strength: ‒ = weak,  o = average (native), + = strong; lrp start codon: ‒ = weak,  o = 
average, + = strong (native); eyfp RBS strength: ‒ = weak,  o = average (native), + = strong;  PbrnFE start site: ‒ = -
15, o = 0, + = +15, ∗ = +30. Mean and standard deviation of three biological replicates are shown. 

Using the automated cloning workflow, we obtained 44 different variants of the Lrp biosensor. To 

characterize these variants, the sensor output was measured by growing the strains in microtiter 
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plates in the presence or absence of 3 mM alanine−leucine dipeptide (Figure 7B). The highest fold-

change was observed for the sensors with the strongest lrp RBS and start codon, eyfp RBS, and the 

longest promoter containing the first 30 bp of brnF. Fold-change was relatively high when a strong lrp 

RBS and start codon was used in combination with a strong eyfp RBS. While the ‘strongest’ expression 

led to the highest dynamic range, this is not always the case, as high transcription factor expression 

can lead to expression of the reporter in absence of ligand binding (Sonntag et al., 2020). When either 

an lrp RBS or eyfp RBS with a low strength was used, hardly any sensor functionality was observed. 

For sensors that had an lrp RBS with low strength in combination with an eyfp RBS with strong or 

medium strength, an interesting result was observed. These sensors showed a high fluorescence 

output both in the presence and in the absence of the ligand. It could be that low expression of lrp 

relieved Lrp-based regulation of eyfp, and in combination with an eyfp RBS with medium or strong 

effect this resulted in Lrp-independent expression of eyfp. This would suggest that Lrp functions both 

as an activator and a repressor, which has previously been shown for the transcription factor AraC 

(Ogden et al., 1980). In contrast, a previous study showed that lrp deletion reduced export of L-

isoleucine, likely due to lower Lrp-based activation of brnFE expression (Kennerknecht et al., 2002). 

To conclude, the regulatory mechanism of Lrp has not been completely elucidated yet, and should be 

further investigated.  

Biosensor-modification strategies can be categorized into targeted and untargeted engineering 

approaches. We have described a targeted approach to modify the Lrp biosensors, as variants were 

created following a rational design. Multiple other studies have described targeted modifications of 

TF-based biosensor to improve their characteristics (Lin et al., 2017; Mahr and Frunzke, 2016), 

including engineering of the TF-based biosensor cognate promoter region (Zhang et al., 2012), 

addition of a degradation tag to the transcription factor and modification of the number of 

transcription factors used (Raman et al., 2014). In contrast, untargeted approaches use evolutionary 

engineering to isolate sensors with improved characteristics, by creating and screening a randomly 

mutated sensor library. For example, multiple sensor variants can quickly be created using error-prone 

PCR, and a library of clones each harboring one of the sensor variants can be screened to find sensors 

with improved characteristics (Chou and Keasling, 2013). Furthermore, some studies also describe a 

combination of both approaches, using targeted engineering to create a few variants, and then further 

improve their characteristics by creation and screening of randomly mutated derivates (Meyer et al., 

2019). The advantage of untargeted strategies is the higher amount of throughput that can be 

achieved. A disadvantage is that knowledge is only obtained from variants that were first created and 

subsequently isolated. By chance, good variants might not be created, for example difficult to 

construct variants, and are therefore not obtained and characterized. This is not a problem for 

rationally designed variants, as the information on the created and characterized variants is available. 

However, the available throughput is lower with this strategy, especially when construction and 

characterization have to be performed manually. Therefore, the use of laboratory automation is highly 

beneficial to further the improvement and functional understanding of biosensors.  

2.6. Conclusions and outlook 
To foster the transition of our current economy into a sustainable bioeconomy, we need 

biotechnology. However, biotechnology is not yet ready to completely take over the role of the fossil 

industry. In this thesis, different ways to speed up strain construction using TF-based biosensors were 

investigated, covering development of novel hosts, evolutionary engineering strategies and lab 

automation. First, we showed the successful transfer of the LysG TF-based biosensor to V. natriegens, 

and applied a mutagenesis and screening protocol to isolate mutants producing L-lysine, L-histidine 

or L-arginine. This work demonstrates the benefit of TF-based biosensors for novel strain 
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development. Second, a novel evolutionary strategy was presented, based on coupling production to 

growth using TF-based biosensors. This strategy can be used to enable straightforward selection of 

producer strains, likely for a wide range of products, and in different microbial hosts. Finally, we 

transferred a complete C. glutamicum cloning workflow to liquid handling robots, to enable the 

automated, high-throughput construction of Lrp biosensor variants. This workflow can be adapted for 

most C. glutamicum cloning workflows, speeding up engineering workflow in general. Furthermore, 

an up-to-date overview of evolutionary engineering using C. glutamicum was presented in a review 

article.  

While TF-based biosensors are promising and, for multiple applications, proven tools for microbial 

strain development, they have some limitations that should be addressed in future work. First, TF-

based biosensors have been evolved to function under physiological conditions. Therefore, their 

operational range covers concentrations that are usually well below the product concentrations 

required in industrial processes. This is clear for the work presented in this thesis, as the top V. 

natriegens isolate produced 1 mM of L-lysine, and the top C. glutamicum isolate produced 15 mM of 

L-valine. Both concentrations are well below the industrial requirements. Therefore, future work 

should focus on shifting the operational range upwards. This can likely be achieved by a combination 

of targeted sensor engineering and screening of sensor libraries (Meyer et al., 2019). This would allow 

the application of screening and selection workflows using TF-based biosensors with strains that 

already produce high amounts of the target molecule, further improving them. Furthermore, by using 

an iterative workflow with biosensors working in different operational ranges, a non-producer strain 

could quickly be developed into a high-producing strain. Second, while the relative modularity of TF-

factor based is one of their strengths, this modularity can still be improved. For example, we were able 

to express LysG in V. natriegens, but Lrp could not be functionally expressed. It would be ideal to have 

a ‘plug-and-play’ set of biosensors, for which one can easily ‘pick’ the detected molecule, the 

operation and dynamic range, and a reporter output. Some work has been done in this regard, by 

modifying transcription factors with clearly distinct ligand binding domains and DNA binding domains 

(Chou and Keasling, 2013), but this is still largely ad hoc engineering. Further research is required for 

widespread application and standardization. Third, for industrial processes the ideal producer strain 

would produce a lot of extracellular, and not intracellular, product. However, most TF-based 

biosensors function intracellularly, which can limit their application to isolate strong extracellular 

producers. This is especially the case when very high concentrations are required, as intracellular 

concentrations in the molar range are physiologically very unlikely to be achievable. In our work, we 

might have also isolated strain with mutations in amino acid exporters, as such strains would show an 

increased sensor output without an increased extracellular product concentration. However, we did 

not investigate this. Some studies report co-cultivation strategies (Saleski et al., 2019) or droplet 

cultivations (Abatemarco et al., 2017) to enable screening or selection of improved extracellular 

producer strains. Such strategies could also be implemented with biosensor or growth-coupled 

strains. Still, there are some issues that need to be addressed, such as the problem of cross-talk in 

liquid cultivations (Flachbart et al., 2019), and the fact that the sensor strain must be able to take up 

the product. In conclusion, TF-biosensors and their applications need to be further developed so they 

can be applied to directly improve industrial processes.  

If there is one development that has the promise to revolutionize biotechnology, it is automation. In 

the lab, liquid handling robots coupled to specialized equipment are already capable of taking over 

most manual tasks. Still, application of robotics is not yet widely integrated, especially in academic 

labs. One of the (likely) reasons are the relatively high investment costs, including that for the robotic 

systems themselves, but also the time and costs of training people and establishing workflows. More 

affordable robotic systems have been developed in the last years. While starting with robotics will 
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require an initial investment phase, scientists would later be able to shift their time away from 

repetitive laboratory work. Instead, they could focus more on the design, analysis and learning from 

experiments. Considering the projects discussed in this thesis, (further) automation would benefit 

each of them. When transferring the TF-based biosensor to V. natriegens, only a few variants were 

constructed, mainly because of the additional hands-on construction time that would be required to 

construct 100 instead of 10 variants. When automated workflows are implemented, as was shown for 

the Lrp variants expressed in C. glutamicum, laboratory time is no longer an important consideration. 

For evolutionary workflows, implementing automated cultivation, culture transferring, clone picking 

and mutant characterization would enable a much higher throughput, which can be leveraged to 

isolate and analyze more producer mutants. This would in turn increase the chance of isolating a 

better producer, but also increase our knowledge on biology. Finally, laboratory automation could be 

implemented to optimize evolutionary workflows by deriving and modelling the important 

parameters, including mutation rate and type of mutations, and picking the best selection system by 

considering genetic drift and clonal interference. While our automation workflow for C. glutamicum 

cloning provides a good first step in general lab automation for strain engineering, there were still 

some manual steps that should be integrated (Figure 6). Furthermore, improvements would include 

optimization of each workflow, by systematically changing the workflow parameters to improve 

efficiency (e.g. minimize amount of expensive enzyme solutions required), effectiveness (e.g. 

maximize throughput by scheduling workflows) and minimize the amount of hands-on time required. 

A transition to completely automated workflows will also require another look at experimental design 

and analysis. Here, steps should be implemented to automate rational strain design, by abstracting 

standard processes for the user (e.g. design and ordering of primers needed to construct the desired 

strain), in a similar fashion to what has been done in the semiconductor industry (SYNTHACE, 2018). 

Instead of considering how a certain strain should be constructed and analyzed, the scientist should 

only be concerned with which strains should be constructed and the type of analyses that have to be 

performed, and leave the implementation to the automation process. Data streams stemming from 

each process in the construction and analysis workflow should be automatically processed, to provide 

the scientist with a clear overview of strains designed and their measured and calculated 

characteristics, again freeing time for the thinking, and not the doing, process. Multiple labs over the 

world have recently bundled their efforts to foster the transition from manual to automated 

laboratories, in the form of biofoundries (Hillson et al., 2019). Developments in laboratory automation 

will hopefully lead to an exponential increase in both the understanding and application of 

biotechnology.  
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3. Publications 
To determine author contributions for the publications and manuscripts presented in the following 

sections of this thesis, the “Contributor Roles Taxonomy” (CRediT) methodology was used (McNutt et 

al., 2018). The author roles and role definitions are summarized in the table below.  

 

Contributor role Role definition 

Conceptualization Ideas; formulation or evolution of overarching research goals and 
aims. 

Formal analysis Application of statistical, mathematical, computational, or other 
formal techniques to analyse or synthesize study data. 

Investigation/Experiments Conducting a research and investigation process, specifically 
performing the experiments, or data/evidence collection. 

Methodology Development or design of methodology; creation of models. 

Project administration Management and coordination responsibility for the research 
activity planning and execution. 

Software Programming, software development; designing computer 
programs; implementation of the computer code and supporting 
algorithms; testing of existing code components. 

Supervision Oversight and leadership responsibility for the research activity 
planning and execution, including mentorship external to the core 
team. 

Visualization Preparation, creation and/or presentation of the published work, 
specifically visualization/data presentation. 

Writing – original draft Preparation, creation and/or presentation of the published work, 
specifically writing the initial draft (including substantive translation). 

Writing – review & editing Preparation, creation and/or presentation of the published work by 
those from the original research group, specifically critical review, 
commentary or revision – including pre- or post-publication stages. 
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3.1. Evolutionary engineering of Corynebacterium glutamicum 
 

Stella, R. G., Wiechert, J., Noack, S. and Frunzke, J. 

Published in Biotechnology Journal, 2019. 

 

Contributor role Role definition 

Conceptualization RS 35%, JW 10%, SN 10%, JF 45% 

Formal analysis - 

Investigation/Experiments - 

Methodology - 

Project administration RS 50%, JW 5%, JF 45% 

Software - 

Supervision RS 50%, JF 50% 

Visualization RS 100% 

Writing – original draft RS 60%, JW 10%, SN 10%, JF 20% 

Writing – review & editing RS 45%, JW 5%, SN 5%, JF 45% 

 

Overall contribution RS: 60% 

 

Robert Stella wrote the main part of this review, and contributed to its conceptualization. More 

specifically, Sections 1, 3, 6 and 7 were written by RS. All visualizations were created by RS.  
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3.2. Biosensor-based growth-coupling and spatial separation as an evolution strategy 

to improve small molecule production of Corynebacterium glutamicum 
 

Stella, R. G., Gertzen, C. G. W., Smits, S. H. J., Gätgens, C., Polen, T., Noack, S., & Frunzke, J. 

Published in Metabolic Engineering, 2021 

 

Contributor role Role definition 

Conceptualization RS 45%, JF 45%, SN 10% 

Formal analysis RS 90%, TP 10%  

Investigation/Experiments RS 90%, CGä 10% 

Methodology RS 20%, SN 30%, CGe 25%, SS 25%  

Project administration RS 50%, JF 50% 

Software RS 70%, SN 10%, CGe 10%, SS 10% 

Supervision RS 50%, JF 50% 

Visualization RS 95%, SS 5% 

Writing – original draft RS 90%, SS 5%, SN 5% 

Writing – review & editing RS 40%, JF 35%, SN 10%, CGe 5%, SS 5%, TP 5% 

 

Overall contribution RS: 80% 

 

This work forms the main body of this thesis. Robert Stella performed all laboratory experiments, 

except for strain construction experiments, which were done in collaboration with CGä. RS analyzed 

all data, except for the raw sequencing data, which were processed and analyzed by TP. All 

visualizations were done by RS, except for the enzyme model, which was created by SS and CGe. RS 

wrote the main part of the manuscript. The Results and M&M part concerning the enzyme model was 

written by SS and CGe. The M&M part concerning the ALE modelling was written by SN.  
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3.3. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains 
 

Stella, R. G., Baumann, P., Lorke, S., Münstermann, F., Wirtz, A., Wiechert, J., Marienhagen, J., & 

Frunzke, J. 

Published in Metabolic Engineering Communications, 2021 

 

Contributor role Role definition 

Conceptualization RS 40%, PF 10%, JM 10%, JF 40% 

Formal analysis RS 100% 

Investigation/Experiments RS 50%, PB 10%, SL 17.5%, FM 17.5%, JW 5% 

Methodology RS 60%, PB 20%, AW 20% 

Project administration RS 40%, JF 60% 

Software RS 100% 

Supervision RS 50%, JF 50% 

Visualization RS 100% 

Writing – original draft RS 100% 

Writing – review & editing RS 30%, PB 15%, JM 15%, JF 40% 

 

Overall contribution RS: 75% 

 

Robert Stella performed most experiments. Molecular cloning experiments were done by RS, partly in 

collaboration with SL. The second FACS enrichment was done in collaboration with FM. Mutagenesis 

experiments were performed by PB. All other experiments were performed by RS. All data was 

analyzed by RS. RS wrote the manuscript and created all figures.  
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3.4. Automated Rational Strain Construction Based on High-Throughput Conjugation 
 

Tenhaef, N.*, Stella, R.*, Frunzke, J., & Noack, S.  

Published in ACS Synthetic Biology, 2021 

*Authors contributed equally 

 

Contributor role Role definition 

Conceptualization RS 30%, NT 30%, JF 15%, SN 25% 

Formal analysis RS 50%, NT 50% 

Investigation/Experiments RS 60%, NT 40% 

Methodology RS 40%, NT 60% 

Project administration RS 30%, NT 30%, JF 15%, SN 25% 

Software RS 50%, NT 50% 

Supervision RS 20%, NT 20%, JF 25%, SN 35% 

Visualization RS 50%, NT 50% 

Writing – original draft RS 50%, NT 50% 

Writing – review & editing RS 20%, NT 30%, JF 20%, SN 30% 

 

Overall contribution RS: 40% 

 

All experiments and data analyses were performed by RS and TN, in close collaboration. RS brought 

the molecular biology expertise, and TN the robotics expertise, to develop all automated workflows. 

All figure were created by RS and TN, RS created the major part of figure 2, 3 and 4, TN created the 

major part of figure 1, 5 and 7. RS and TN wrote the manuscript.  
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5. Appendix 

5.1. Supplementary Information “Biosensor-based growth-coupling and spatial 

separation as a novel evolution strategy to improve microbial small molecule 

production” 
 

Table S1 
Overview of mutations in 15 L-valine producer mutants. Only high frequency mutations (>35%) are shown, 
unless no high frequency mutations were found (ND); fs: frameshift mutation, sv: structural variant, ins: 
insertion. 

# Strain Experiment Phenotype Mutation Occurenc
e (%) 

C1 PbrnF-pfkA rbALE in liquid media cheater Lrp (M1I) 100 

C2 PbrnF-pfkA rbALE in liquid media cheater sv, duplication pfkA 18 

C3 PbrnF-pfkA rbALE in liquid media cheater Lrp (F139L) 100 

C4 PbrnF-hisD rbALE in liquid media cheater sv lrp-PbrnF ND 

C5 PbrnF-hisD rbALE in liquid media cheater C to A lrp-PbrnF 100 

C6 PbrnF-hisD rbALE in liquid media cheater sv lrp-PbrnF ND 
  

 
   

V1 PbrnF-pfkA FACS-based ALE L-valine producer; 2.5 mM ilvN sv 46 

V2 PbrnF-pfkA 1st plate-based ALE, BHI 
plate 

L-valine producer; 4.8 mM IlvN (F29L) #4 50,9 

V3 PbrnF-pfkA 1st plate-based ALE, 
CGXII plate large colony 

L-valine producer; 10.0 
mM 

IlvN (F29L) #2 100 

V4 PbrnF-pfkA 1st plate-based ALE, 
CGXII plate large colony 

L-valine producer; 10.8 
mM 

IlvN (F29I) 100 

V5 PbrnF-hisD 1st plate-based ALE, 
CGXII plate large colony 

L-valine producer; 1.5 mM IlvN fs (ins 442G) 96,4 

  
 

 
A391A in 
NCgl0375(-), 
NCgl0375, cation 
transport ATPase 

100 

V6 PbrnF-hisD 1st plate-based ALE, 
CGXII plate large colony 

L-valine producer; 10.5 
mM 

IlvN (D17E) 34,2 

V7 PbrnF-hisD 1st plate-based ALE, 
CGXII plate large colony 

L-valine producer; 9.9 mM IlvN (F29L) #3 100 

V8 PbrnF-hisD 1st plate-based ALE, 
CGXII plate small colony 

L-valine producer; 3.5 mM ilvN ins 
(105CCTCGTGTC) 

40 

  
 

 
A to T intergenic 
region of NCgl1020 
(major facilitator 
superfamily 
permease) and 
NCgl1021 
(transposase) 

52,4 

V9 PbrnF-hisD 1st plate-based ALE, 
CGXII plate small colony 

L-valine producer; 7.0 mM IlvN (I158M) 63,6 

V1
0 

PbrnF-pfkA 2nd HT plate-based ALE L-valine producer; 5.8 mM IlvB (D133G) 100 
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V1
1 

PbrnF-pfkA 2nd HT plate-based ALE L-valine producer; 12.0 
mM 

IlvB (R141G) 87,7 

V1
2 

PbrnF-pfkA 2nd HT plate-based ALE L-valine producer; 15.0 
mM 

IlvN (S155F) 100 

V1
3 

PbrnF-hisD 2nd HT plate-based ALE L-valine producer; 11.2 
mM 

IlvN (A42E) 100 

V1
4 

PbrnF-hisD 2nd HT plate-based ALE L-valine producer; 13.1 
mM 

IlvN (I22M) 100 

V1
5 

PbrnF-hisD 2nd HT plate-based ALE L-valine producer; 10.7 
mM 

IlvN (F29L) #1 100 

 
Table S2 
Amount of colonies, and size of colony, on agar plates CGXII 2% glucose or BHI media. ND, not determined. 

strain plate media dilution normal colonies large colonies 

PbrnF-pfkA CGXII 106 87 0 

PbrnF-pfkA CGXII 105 1004 0 

PbrnF-pfkA CGXII 104 ND 2 

PbrnF-pfkA CGXII 103 ND 10 

PbrnF-pfkA BHI 106 151 ND 

PbrnF-pfkA BHI 105 924 ND 

WT CGXII 106 104 ND 

WT CGXII 105 828 ND 

PbrnF-hisD CGXII 106 267 0 

PbrnF-hisD CGXII 105 1376 1 

PbrnF-hisD CGXII 104 ND 10 

PbrnF-hisD CGXII 103 ND >30 

PbrnF-hisD BHI 106 219 ND 

PbrnF-hisD BHI 105 2308 ND 

WT CGXII 106 210 ND 

WT CGXII 105 1296 ND 
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Table S3 
Bacterial strains and plasmids used in this study. 
 

Strain/plasmid Genotype and relevant characteristic Reference 

E. coli DH5a supE44 ΔlacU169 (φ80lacZDM15) hsdR17 recA1 endA1 gyrA96 
thi-1 relA1 

Invitrogen 
(Karlsruhe, 
Germany) 

C. glutamicum 
ATCC13032  

Biotin-auxotrophic wild type (Kalinowski 
et al., 2003) 

   

C. glutamicum:: 
PbrnF-pfkA 

Integrated lrp sensor construct (terminator, lrp, lrp-brnF 
intergenic region and first 30 bp of brnF followed by a 
stopcodon, RBS and linker) upstream of pfkA 

This study 

C. glutamicum:: 
PbrnF-hisD 

Integrated lrp sensor construct (terminator, lrp, lrp-brnF 
intergenic region and first 30 bp of brnF followed by a 
stopcodon, RBS and linker) upstream of hisD 

This study 

C. glutamicum:: 
PbrnF-pfkA / 
pJC1-lrp-brnF’-
eyfp 

C. glutamicum PbrnF-pfkA harboring pJC1-lrp-brnF’-eyfp This study 

C. glutamicum:: 
PbrnF-hisD / 
pJC1-lrp-brnF’-
eyfp 

C. glutamicum PbrnF-hisD harboring pJC1-lrp-brnF’-eyfp This study 

   

pJC1-lrp-brnF’-
eyfp 

KanR, Lrp sensor plasmids containing a terminator (term part), 
lrp, the lrp-brnF intergenic region, the first 30 bp of brnF 
followed by a stopcodon, RBS and linker and eyfp 

(Mustafi et 
al., 2012) 

pK19-mobsacB Used for allelic exchange in C. glutamicum; oriVE.c., sacB lacZα 
KanR 

(Schäfer et 
al., 1994) 

pJC1-venus-term Used to obtain term part, KanR (Baumgart 
et al., 2013) 

pK19-mobsacB-
pfkA-lrp-brnF’ 

Vector for integration of the Lrp sensor construct upstream of 
pfkA 

This Study 

pK19-mobsacB-
hisD-lrp-brnF’ 

Vector for integration of the Lrp sensor construct upstream of 
hisD 

This Study 
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Table S4 
Oligonucleotides used in this study 

name sequence 

term_fw TTTTGGCGGATGAGAGAAGA 

term_rv CAAAAGAGTTTGTAGAAACGCA 

lrp_fw  GTTTCTACAAACTCTTTTGTCACACCTGGGGGCGAGC 

lrp_rv ATGATATCTCCTTCTTAAAGTTCAGCT 

hisD_up_fw CCTGCAGGTCGACTCTAGAGTCCGGTGTCGCTGAAGTTAA 

hisD_up_fw TCTTCTCTCATCCGCCAAAAACCTATTGTATTCCCCACGTAAC 

hisD_down_fw CTTTAAGAAGGAGATATCATATGTTGAATGTCACTGACCTGC 

hisD_down_fw TTGTAAAACGACGGCCAGTGGACAGCCCACACCTCATCAA 

pfkA_up_fw CCTGCAGGTCGACTCTAGAGAGAGTCGCCCCGATAAGTTT 

pfkA_up_fw TCTTCTCTCATCCGCCAAAATCTGACCATCTTATTTAATCGCCA 

pfkA_down_fw CTTTAAGAAGGAGATATCATATGCGAATTGCTACTCTCACG 

pfkA_down_fw TTGTAAAACGACGGCCAGTGATACCTGCGTGCAGAGCAAT 
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Supplementary data 1 
Sequence of lrp-PbrnF integration upstream from pfkA, intergenic region upstream of pfkA is given, 

showing the first codon of pfkA (underlined), the terminator sequence (red), lrp (green), the first 30 

bp of brnF (yellow) and the linker sequence (blue) 

GGTGAGCCAGTCTAGAGACAAAATTTTTCCGCGGGGGTTTTCTTGATCTGATCCGACAACCCAATGGG

GGCAAAAATGTGTCCGACCAAAAATTGTGCAGCACACCACATGCCCGCTCGGACAATGTCGATTTGTT

AATGAAACTGCAGCTCTGGCGATTAAATAAGATGGTCAGATTTTGGCGGATGAGAGAAGATTTTCAGC

CTGATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGC

GGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAGTGTGGGGT

CTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGC

CTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATT

TGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAA

ATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTTTGTCACACCTGGG

GGCGAGCTGGTTTCACCACTTTCATAGCAAAACGTGATGAGATCTTTGCAATTCCTGGCACGGTTTGA

ATGTGACTGGATAAAAATTGCTCATACGCCTCCAAATCAGCAACGCCGATGCGGACAAAATAATCTGG

CGAACCAAAAAGCCTGTGCAACTCCAGTACTTCATCATGCTGCGCAACGGAGCTTTCAAAATTGTCTA

CAGTGGAGCGGTCGAAGTTGCTGAGAGTGACATCCACGGTCACCTCAAATCCACGATTCATCACCGCA

GGGTGAATGTCCGCGCTGTAGCCCAAAATGATTCCTTCGGCTTCCAAACGCTGCACCCTCCTCAAGCA

AGGTCCCGGAGTGAGATGCACCTTGTCAGCCAGTGCGAGATTTGAGATGCGCGCATTCGCGCTAAGCT

CCGCAATAATTGCGCGATCAATGGAATCTAGCTTCATATATTGCACAATAGCCTAGTTGAGGTGCGCA

AACTGGCAACAAAACTACCCGGCAATTGTGTGATGATTGTAGTGTGCAAAAAACGCAAGAGATTCATT

CAAGCTGAACTTTAAGAAGGAGATATCATATG 

Supplementary data 2 
Sequence of lrp-PbrnF integration upstream from hisD, intergenic region upstream of hisD is given, 

showing the first codon of hisD. (underlined), the terminator sequence (red), lrp (green), the first 30 

bp of brnF (yellow) and the linker sequence (blue) 

CATATGATATCTCCTTCTTAAAGTTCAGCTTGAATGAATCTCTTGCGTTTTTTGCACACTACAATCAT

CACACAATTGCCGGGTAGTTTTGTTGCCAGTTTGCGCACCTCAACTAGGCTATTGTGCAATATATGAA

GCTAGATTCCATTGATCGCGCAATTATTGCGGAGCTTAGCGCGAATGCGCGCATCTCAAATCTCGCAC

TGGCTGACAAGGTGCATCTCACTCCGGGACCTTGCTTGAGGAGGGTGCAGCGTTTGGAAGCCGAAGGA

ATCATTTTGGGCTACAGCGCGGACATTCACCCTGCGGTGATGAATCGTGGATTTGAGGTGACCGTGGA

TGTCACTCTCAGCAACTTCGACCGCTCCACTGTAGACAATTTTGAAAGCTCCGTTGCGCAGCATGATG

AAGTACTGGAGTTGCACAGGCTTTTTGGTTCGCCAGATTATTTTGTCCGCATCGGCGTTGCTGATTTG

GAGGCGTATGAGCAATTTTTATCCAGTCACATTCAAACCGTGCCAGGAATTGCAAAGATCTCATCACG

TTTTGCTATGAAAGTGGTGAAACCAGCTCGCCCCCAGGTGTGACAAAAGAGTTTGTAGAAACGCAAAA

AGGCCATCCGTCAGGATGGCCTTCTGCTTAATTTGATGCCTGGCAGTTTATGGCGGGCGTCCTGCCCG

CCACCCTCCGGGCCGTTGCTTCGCAACGTTCAAATCCGCTCCCGGCGGATTTGTCCTACTCAGGAGAG

CGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGA

TGCCTGGCAGTTCCCTACTCTCGCATGGGGAGACCCCACACTACCATCGGCGCTACGGCGTTTCACTT

CTGAGTTCGGCATGGGGTCAGGTGGGACCACCGCGCTACTGCCGCCAGGCAAATTCTGTTTTATCAGA

CCGCTTCTGCGTTCTGATTTAATCTGTATCAGGCTGAAAATCTTCTCTCATCCGCCAAAAACCTATTG

TATTCCCCACGTAACAAGTTTCTGATTTGGGTACATCAGAGTTCATTTGAATTAGACTTAAAACTTAA

AATGACCACCCCAGATTTACCTGAATTAAACCCGCTTTCACCTTTGAGATACTGGAAGGA 

Supplementary data 3 
PDF export of the jupyter notebook containing the information on the rbALE simulation model.  
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Figure S1 
Microtiter growth of C. glutamicum growth-coupled strains PbrnF-hisD and PbrnF-pfkA supplemented with different 
amounts of ala-val dipeptide (0-3 mM), grown in CGXII 2% glucose. Supplementary information to the results 
shown in Figure 1C. 
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Figure S2 
Growth of cultures after FACS-based selection. Backscatter values of five C. glutamicum repetitive batch 
cultivations in CGXII 2% glucose media after FACS sorting, covering 44 PbrnF-pfkA PbrnF-pfkA pJC1-lrp-brnF’-eyfp 
and PbrnF-hisD PbrnF-pfkA pJC1-lrp-brnF’-eyfp cultures and three C. glutamicum WT controls. Supplementary 
information to the results shown in Figure 4B.   
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Figure S3 
Growth of C. glutamicum::PbrnF-hisD on agar plates containing CGXII 2% glucose or BHI media. Different amounts 
of culture solutions were plated and photographs were taken after multiple days of incubation.  
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Figure S4 
Growth of C. glutamicum::PbrnF-pfkA on agar plates containing CGXII 2% glucose or BHI media. Different amounts 
of culture solutions were plated and photographs were taken after multiple days of incubation.  
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Figure S5 
Growth of C. glutamicum WT on agar plates containing CGXII 2% glucose media. Different amounts of culture 
solutions were plated and photographs were taken after multiple days of incubation.  
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Figure S6 
Growth of restreaked C. glutamicum::PbrnF-hisD colonies on agar plates containing CGXII 2% glucose or BHI 
media, after one day. Restreaking was done for 8 colonies, either large colonies or small colonies grown on CGXII 
2% glucose media.  
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Figure S7 
Backscatter values of C. glutamicum::PbrnF-pfkA and PbrnF-hisD cultures from plate-based evolutions, covering 15 

cultures started from large colonies on CGXII plates, 15 cultures from small colonies on CGXII plates, and 15 

cultures from normal colonies on BHI plates, for PbrnF-hisD (A) and PbrnF-pfkA (B). Supplementary information to 

the results shown in Figure 5B.   
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Figure S8 
Growth rates of C. glutamicum::PbrnF-pfkA and PbrnF-hisD cultures from plate-based evolutions, covering 15 

cultures started from large colonies on CGXII plates, 15 cultures from small colonies on CGXII plates, and 15 

cultures from normal colonies on BHI plates, for PbrnF-hisD (A) and PbrnF-pfkA (B). Dots denote specific growth 

rates (μmax) of each independent culture per repetitive batch, the line represents average per culture per strain. 

Supplementary information to the results shown in Figure 5B.  
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Figure S9 
Amico acid production of C. glutamicum::PbrnF-pfkA and PbrnF-hisD cultures from plate-based evolutions, started 

from large colonies on CGXII plates, from small colonies on CGXII plates, and from normal colonies on BHI plates, 

for PbrnF-hisD (A) and PbrnF-pfkA (B). Fifteen colonies were picked for each plate-strain combination. Results are 

shown for clones that produced detectable amounts of amino acid (>0.1mM) in at least one repetitive culture. 

Color scales indicate results for a maximum of five repetitive cultures. Supplementary information to the results 

shown in Figure 5B.  



Appendix 

116 

 

Figure S10 
Growth and L-valine production of 15 L-valine producer mutants. Mean values and standard deviations of three 

biological replicates are shown; fs: frameshift mutation, sv: structural variant, ins: insertion. Supplementary 

information to the results shown in Figure 6C.  
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5.2. Supplementary Information “Biosensor-based isolation of amino acid-producing 

Vibrio natriegens strains” 
 
Table S1 
Oligonucleotides used in this study 

name sequence 
lrp_fw tgccgggcctcttgcgggattcacacctgggggcgagc 

lrp_rv atgaagctagattccattgatcgcgc 

lrp_eYFP_fw tgaaaagaggagaaataatctatggtgagcaagggcgag 

lrp_eYFP_rv ttgcatcaacgcatatagcgttacttgtacagctcgtccatg 

PbrnFE_rv agattatttctcctcttttcagcttgaatgaatctcttgc 

P100_PbrnFE_fw tcaatggaatctagcttcatagattatttctcctcttttcattgacggctagctcagtcctaggtacagtgctagcatattgcacaatagcctag 

P101_PbrnFE_fw tcaatggaatctagcttcatagattatttctcctcttttcatttacagctagctcagtcctaggtattatgctagcatattgcacaatagcctag 

P104_PbrnFE_fw tcaatggaatctagcttcatagattatttctcctcttttcattgacagctagctcagtcctaggtattgtgctagcatattgcacaatagcctag 

P106_PbrnFE_fw tcaatggaatctagcttcatagattatttctcctcttttcatttacggctagctcagtcctaggtatagtgctagcatattgcacaatagcctag 

P108_PbrnFE_fw tcaatggaatctagcttcatagattatttctcctcttttcactgacagctagctcagtcctaggtataatgctagcatattgcacaatagcctag 

P110_PbrnFE_fw tcaatggaatctagcttcatagattatttctcctcttttcatttacggctagctcagtcctaggtacaatgctagcatattgcacaatagcctag 

lysG_eYFP_fw cactatggcgtgctgcccgggttaattaaggcgcgccactagtatggtgagcaagggcgag 

lysG_eYFP_rv gagtgaaacgttatctagacttgtacagctcgtcc 

lysG_araC_fw gtctagataacgtttcactccatccaaaaaaac 

lysG_araC_rv gcgtccggcgtagagttatgacaacttgacggc 

lysG_fw gtcactatggcgtgctgcccctaaggccgcaatccctc 

lysG_rv tgaaaagaggagaaataatctatgaaccccattcaactgg 

PlysE_100_fw tagccgtcaatgaagctatattaaaccatgttaag 

PlysE_108_fw tagctgtcagtgaagctatattaaaccatgttaag 

PlysE_101_fw tagctgtaaatgaagctatattaaaccatgttaag 

PlysE_106_fw tagccgtaaatgaagctatattaaaccatgttaag 

PlysE_110_fw tagccgtaaatgaagctatattaaaccatgttaag 

PlysE_104_fw tagctgtcaatgaagctatattaaaccatgttaag 

PlysE_rv cctcgcccttgctcaccatagattatttctcctcttttcatctaggtccgatggacag 

P100_lysG_fw agattatttctcctcttttcagctagcactgtacctaggactgagctagccgtcaatgaagcta 

P100_lysG_rv tagcttcattgacggctagctcagtcctaggtacagtgctagctgaaaagaggagaaataatct 

P108_lysG_fw agattatttctcctcttttcagctagcattatacctaggactgagctagctgtcagtgaagcta 

P108_lysG_rv tagcttcactgacagctagctcagtcctaggtataatgctagctgaaaagaggagaaataatct 

P101_lysG_fw agattatttctcctcttttcagctagcataatacctaggactgagctagctgtaaatgaagcta 

P101_lysG_rv tagcttcatttacagctagctcagtcctaggtattatgctagctgaaaagaggagaaataatct 

P106_lysG_fw agattatttctcctcttttcagctagcactatacctaggactgagctagccgtaaatgaagcta 

P106_lysG_rv tagcttcatttacggctagctcagtcctaggtatagtgctagctgaaaagaggagaaataatct 

P110_lysG_fw agattatttctcctcttttcagctagcattgtacctaggactgagctagccgtaaatgaagcta 

P110_lysG_rv tagcttcatttacggctagctcagtcctaggtacaatgctagctgaaaagaggagaaataatct 

P104_lysG_fw agattatttctcctcttttcagctagcacaatacctaggactgagctagctgtcaatgaagcta 

P104_lysG_rv tagcttcattgacagctagctcagtcctaggtattgtgctagctgaaaagaggagaaataatct 
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Supplementary data 1 

Excel table containing the mutations identified in isolated producer mutants, with a frequency more 

than 50%. 

phenotype Chromo-
some 

Location Mutation description 

L-Histidine 
producer 

1 115403 G to A G256G in PN96_RS00520(-), sodium:calcium antiporter 

 
1 131112 C to T exchange V516I in PN96_RS00615(-), valine--tRNA ligase 

 
1 812084 G to A exchange L433F in PN96_RS03785(-), IMP 

dehydrogenase  
1 823713 G to A exchange P149S in PN96_RS03830(-), hypothetical 

protein  
1 834364 G to A exchange G78S in PN96_RS03875(+), ggdef family 

protein  
1 1593933 C to T exchange V395I in PN96_RS07440(-), D-serine ammonia-

lyase  
1 1807938 C to T LEFT: PN96_RS08370 (two-component system response 

regulator TorR) RIGHT: PN96_RS08375 (molecular 
chaperone TorD)  

1 1811558 C to T LEFT: PN96_RS08385 (DNA transformation protein) 
RIGHT: PN96_RS08390 (TVP38/TMEM64 family protein)  

1 1814095 C to T exchange G339D in PN96_RS08405(-), starch synthase 
 

1 1827130 C to T LEFT: PN96_RS08455 (ATP-dependent Clp protease 
adaptor ClpS) RIGHT: PN96_RS08460 (cold shock 
domain protein CspD)  

1 1838467 C to T exchange R126Q in PN96_RS08510(-), hypothetical 
protein  

1 1876168 C to T exchange A17T in PN96_RS08665(-), NADH 
dehydrogenase  

1 2233378 G to A E259E in PN96_RS10395(+), ppnK, NAD(+) kinase 
 

1 2437594 G to A exchange A74T in PN96_RS11265(+), hypothetical 
protein  

1 2438953 G to A exchange D120N in PN96_RS11275(+), 
adenosylcobinamide-phosphate synthase  

1 2446295 G to A exchange P358L in PN96_RS11305(-), carbamoyl-
phosphate synthase small subunit  

1 2713798 G to A exchange V277I in PN96_RS12575(+), glycosyl 
transferase  

2 837562 G to A exchange V303I in PN96_RS23680(+), hypothetical 
protein  

2 1725147 C to T LEFT: PN96_RS22740 (RNA helicase) RIGHT: 
PN96_RS22745 (GTPase)  

2 1741863 C to T exchange T13I in PN96_RS22830(+), dehydrogenase 
 

2 1808658 C to T exchange S137F in PN96_RS23135(+), copper-binding 
protein  

2 1810687 C to T exchange A85V in PN96_RS23145(+), CARB/PSE/RTG 
family carbenicillin-hydrolyzing class A beta-lactamase  

2 1809346 C to T exchange D293N in PN96_RS23140(-), ferric reductase 

L-arginine 
producer 

1 49410 C_T D8D in PN96_RS00240(+), rrf, 5S ribosomal RNA 

 
1 73517 C_T exchange P77S in PN96_RS00335(+), MSHA biogenesis 

protein MshM  
1 865314 G_A L155L in PN96_RS04020(-), DNA polymerase II 
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1 869721 C_T LEFT: PN96_RS04035 (CDP-diacylglycerol--glycerol-3-

phosphate 3-phosphatidyltransferase) RIGHT: 
PN96_RS04040 (tRNA-Cys)  

1 903971 C_T exchange S91F in PN96_RS04195(+), C4-dicarboxylate 
ABC transporter  

1 976169 C_T exchange P77L in PN96_RS04620(+), hypothetical 
protein  

1 986013 C_T exchange D349N in PN96_RS04685(-), glycosyl 
transferase  

1 989537 C_T Q67Q in PN96_RS04695(-), glycosyl transferase 
 

1 1010834 C_T exchange V594I in PN96_RS04790(-), 5-dehydro-2-
deoxygluconokinase  

1 1012576 C_T exchange G13D in PN96_RS04790(-), 5-dehydro-2-
deoxygluconokinase  

1 1073047 C_T exchange P77L in PN96_RS05090(+), agmatine 
deiminase  

1 1522991 G_A exchange S140F in PN96_RS07100(-), hypothetical 
protein  

1 1534883 G_A R243R in PN96_RS07185(-), integrase 
 

1 1617073 G_A exchange P313S in PN96_RS07530(-), Na+/H+ antiporter 
NhaA  

1 1667869 G_A I15I in PN96_RS07740(-), envelope stress response 
membrane protein PspB  

1 1711044 G_A exchange D44N in PN96_RS07940(+), tRNA 2-
thiouridine(34) synthase MnmA  

1 2298044 C_T LEFT: PN96_RS10675 (Fe-S cluster assembly 
transcriptional regulator IscR) RIGHT: PN96_RS10680 
(tRNA (cytosine(32)/uridine(32)-2'-O)-methyltransferase 
TrmJ)  

1 2362338 G_A L29L in PN96_RS10965(-), phospho-2-dehydro-3-
deoxyheptonate aldolase  

1 2395134 G_A L345L in PN96_RS11115(-), lysine--tRNA ligase 
 

1 2413061 G_A exchange A186V in PN96_RS11195(-), threonine 
synthase  

1 2424548 G_A LEFT: PN96_RS11240 (TIGR01212 family radical SAM 
protein) RIGHT: PN96_RS11245 (glutamate synthase 
subunit alpha)  

1 2424713 G_A LEFT: PN96_RS11240 (TIGR01212 family radical SAM 
protein) RIGHT: PN96_RS11245 (glutamate synthase 
subunit alpha)  

1 2507356 G_A LEFT: PN96_RS11565 (general secretion pathway 
protein GspA) RIGHT: PN96_RS11570 (multifunctional 
CCA tRNA nucleotidyl transferase/2'3'-cyclic 
phosphodiesterase/2'nucleotidase/phosphatase)  

1 2531276 G_A exchange V52M in PN96_RS11675(+), mannitol-1-
phosphate 5-dehydrogenase  

1 2541977 C_T Stop W486* in PN96_RS11720(-), acetolactate synthase 
3 large subunit  

1 2542548 T_C exchange Y296C in PN96_RS11720(-), acetolactate 
synthase 3 large subunit  

1 2944784 C_T exchange P349S in PN96_RS13655(+), ATP-dependent 
protease  

2 1389 G_A exchange R278Q in PN96_RS15190(+), undecaprenyl-
phosphate glucose phosphotransferase  

2 424370 C_T exchange A41V in PN96_RS17005(+), hypothetical 
protein 
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2 570984 C_T exchange L15F in PN96_RS17675(+), potD, ABC 

transporter substrate-binding protein  
2 573727 G_A L163L in PN96_RS17685(-), helix-turn-helix 

transcriptional regulator  
2 1429517 C_T C151C in PN96_RS21465(+), NAD-dependent epimerase 

 
2 1481365 C_T exchange S199N in PN96_RS21670(-), hypothetical 

protein  
2 1571536 C_T E183E in PN96_RS22060(-), TetR family transcriptional 

regulator  
2 1591939 G_A exchange V47I in PN96_RS22155(+), DNA-binding 

response regulator 
L-Lysine 
producer 

1 311032 C_T exchange S91N in PN96_RS01540(-), ABC transporter 
ATP-binding protein  

1 383058 G_A exchange G62R in PN96_RS01835(+), prepilin peptidase 
 

1 527108 C_T E93E in PN96_RS02495(-), arsenate reductase 
(glutaredoxin)  

1 532174 C_T exchange H56Y in PN96_RS02525(+), 4-hydroxy-
tetrahydrodipicolinate synthase  

1 2275172 G_A exchange G283D in PN96_RS10565(+), hypothetical 
protein  

2 128078 C_T LEFT: PN96_RS15770 (hypothetical protein) RIGHT: 
PN96_RS15775 (proton/glutamate symporter)  

2 222295 C_T LEFT: PN96_RS16130 (peptidase M16) RIGHT: 
PN96_RS16135 (chondroitinase)  

2 315182 C_T LEFT: PN96_RS16460 (peptide ABC transporter 
substrate-binding protein) RIGHT: PN96_RS16465 
(murein peptide amidase A)  

2 404227 C_T A114A in PN96_RS16890(-), thiamine phosphate 
synthase  

2 434751 C_T exchange P121S in PN96_RS17055(+), cell envelope 
biogenesis protein TonB  

2 476637 C_T exchange T809I in PN96_RS17235(+), ABC transporter 
 

2 497820 C_T exchange S201L in PN96_RS17330(+), phosphonate ABC 
transporter permease  

2 518361 C_T exchange S52F in PN96_RS17415(+), LruC domain-
containing protein  

2 559540 C_T exchange G64D in PN96_RS17630(-), hypothetical 
protein  

2 610383 C_T exchange G99R in PN96_RS17840(-), NAD(P)H-
dependent oxidoreductase  

2 698150 C_T R65R in PN96_RS18265(+), hypothetical protein 
 

2 1046405 G_A LEFT: PN96_RS19765 (hypothetical protein) RIGHT: 
PN96_RS19770 (hypothetical protein)  

2 1051005 G_A exchange V92I in PN96_RS19785(+), DUF1338 domain-
containing protein  

2 1094072 C_T exchange E125K in PN96_RS19985(-), Cu(I)-responsive 
transcriptional regulator  

2 1107582 G_A N243N in PN96_RS20030(-), 9-hexadecenoic acid cis-
trans isomerase  

2 1110924 G_A exchange G432R in PN96_RS20040(+), arylsulfatase 
 

2 1313905 C_T exchange M75I in PN96_RS20985(-), hypothetical 
protein  

2 1321926 C_T G532G in PN96_RS21020(+), lipase 
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L-lysine 
improved 
producer 

1 1818351 A_G exchange S500P in PN96_RS08415(-), DNA 
topoisomerase I 

 
2 1533754 C_G LEFT: PN96_RS21890 (hypothetical protein) RIGHT: 

PN96_RS21895 (phosphate ABC transporter substrate-
binding protein) 
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5.3. Supplementary Information “Automated Rational Strain Construction Based on 

High-Throughput Conjugation” 
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