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Introduction

Modeling heterogeneity across economic agents plays an important role in many empirical economic

studies: Consumers have heterogeneous preferences for product characteristics, firms have hetero-

geneous production costs, or workers differ in their preferences concerning wages and commuting

times. The consistent estimation of heterogeneous parameters in econometric models is not only

important for the identification of the heterogeneity across economic agents but also for consistent

counterfactuals and correct policy recommendations. For instance, firms must have an idea about

consumers’ preferences to assess how different consumers might respond to changes in prices and

quality of existing alternatives, or regulatory agencies need to estimate firms’ costs to evaluate the

desirability of market outcomes.

The literature distinguishes between two sources of heterogeneity: observed and unobserved

heterogeneity. While the former links the differences across agents to differences in their observed

characteristics, the latter captures idiosyncratic variations across agents. Given constraints on the

amount of available data, many empirical studies employ parametric estimators for heterogeneous

parameters. These estimators, however, restrict the form of the observed and unobserved hetero-

geneity to the functional form specified by the researcher. Fortunately, the increasing availability

of large datasets makes it possible to reduce the reliance on parametric methods and to study

heterogeneity across economic agents at new levels of detail. The nuanced study of heterogeneity,

however, requires sufficiently flexible estimation approaches that can handle large amounts of data

while being computationally feasible. This thesis addresses this challenge in two lines of work.

Chapter 1 and Chapter 2 study the nonparametric estimation of random coefficient models,

which are widely used to capture unobserved heterogeneity. In these models, the parameters vary

across agents according to an unknown distribution that the researcher attempts to estimate from

the data.1 Parametric estimators for this model assume a family of distributions for the random

coefficients prior to the estimation, thereby restricting the shape of the estimated distribution to the

shape of the assumed family of distributions. Nonparametric estimators overcome this limitation

as they do not require researchers to make such a priori assumptions but allow them to estimate

distributions of any shape. However, this flexibility is usually accompanied by a high computational

cost, emphasizing the need for computationally simple and fast nonparametric estimators.

Chapter 1, forthcoming in the Journal of Econometrics, proposes such a computationally simple

and fast nonparametric estimator for random coefficient models. The estimator extends the fixed-

grid estimator of Fox, Kim, Ryan, and Bajari (2011), who propose approximating the underlying

1The model can also be combined with observed heterogeneity by specifying the parameters of the random
coefficients’ distribution as a function of observed characteristics (cf. Greene, Hensher, and Rose, 2006).
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random coefficients’ distribution through a discrete distribution with fixed support points. We

show that the estimator is a special case of nonnegative lasso (Wu, Yang, and Liu, 2014), which

explains its sparsity, leading to inaccurate approximations of the true distribution through step

functions with only a few steps. Recognizing this link, we extend the estimator by transforming

it into a special case of the nonnegative elastic net (Wu and Yang, 2014). Our theoretical results

as well as finite sample simulations demonstrate that the extension improves the selection of the

“true” support points and provides more accurate approximations of the underlying distribution.

Many nonparametric estimators for random coefficient models, including the fixed grid esti-

mator, face a severe limitation, which is the exponential increase of the number of parameters in

the number of random coefficients included in the model. This property, known as the curse of

dimensionality, limits the application of such estimators to moderately low-dimensional random

coefficient models. Chapter 2 addresses this problem and presents a nonparametric sparse grid

estimator for high-dimensional random coefficient models. The estimator uses a truncated ten-

sor product of hierarchical basis functions for the approximation of the underlying distribution.

Due to the truncation, the number of parameters increases substantially slower than exponentially,

rendering the nonparametric estimation of high-dimensional random coefficient models feasible.

Monte Carlo experiments show that the truncation deteriorates the approximation accuracy only

slightly if the underlying distribution is sufficiently smooth. Moreover, the experiments show the

good performance of the sparse grid estimator compared to existing nonparametric estimators –

even when the distribution is not smooth. The superiority in performance of our estimator is par-

ticularly pronounced for models with moderately high-dimensional random coefficients, for which

the sample size imposes restrictions on the number of parameters that can be estimated using

existing estimators. For non-smooth distributions, we study a spatially adaptive refinement pro-

cedure. The spatially adaptive refinement gradually adds basis functions in those areas of the

random coefficients’ distribution where it exhibits a wiggly and steep curvature to further improve

the approximation accuracy.

The second line of work, in form of Chapter 3, addresses the nonparametric estimation of mod-

els with observed heterogeneity. In this chapter, we study the finite sample performance of the

flexible estimation approach of Farrell, Liang, and Misra (2021a), who propose to use deep learning

for the estimation of heterogeneous parameters from observed characteristics of economic agents,

in the context of discrete choice models. The approach combines the features of parametric ap-

proaches – which impose a structure on the model based on economic principles and reasoning –

with deep learning – which allows estimating flexible functional forms of heterogeneity. For valid

second-stage inference after first-stage estimation of econometric models with deep learning, Farrell

et al. (2021a) adopt the influence function approach of Chernozhukov et al. (2018). We conduct a

series of Monte Carlo experiments that investigate the impact of regularization, which is commonly

employed when using deep learning – and machine learning in general – on the proposed inference

procedure. The results of these experiments provide three main insights: First, deep learning for

the estimation of heterogeneous parameters generally allows to recover precise estimates of the true

average parameters but does not allow for valid inference statements when regular robust standard

errors are used. Second, the inference procedure proposed by Farrell et al. (2021a) appears to

2



be sensitive to overfitting, expressing itself through substantial bias and large estimated standard

errors. Regularization reduces the impact of overfitting on the estimation results but induces an

additional bias. The bias in combination with decreasing variance associated with increasing regu-

larization leads to the construction of invalid inference statements in our experiments. And third,

the experiments show that much better results are obtained when repeated sample splitting is

used. Unlike regularization, repeated sample splitting reduces the sensitivity to overfitting without

introducing an additional bias, thereby allowing for the construction of valid inference statements.

Taken together, this thesis shows how heterogeneity, which is a fundamental concept in econo-

metric models, can be recovered with less restrictive assumptions on its functional forms by non-

parametric estimation approaches. While our simulations illustrate the ability of the estimators

to recover complex forms of heterogeneity across economic agents, our work also documents some

limitations and areas where the estimators result in poor estimation results. Uncovering these limi-

tations is fundamental for the improvement of existing procedures. Therefore, this thesis paves new

directions for the flexible estimation of heterogeneity in econometric models, which is substantial

to explain the behavior of economic agents.

3



Chapter 1

Nonparametric Estimation of the

Random Coefficients Model: An

Elastic Net Approach

Co-authored by Florian Heiss and Stephan Hetzenecker



1.1 Introduction

Adequately modeling unobserved heterogeneity across agents is a common challenge in many em-

pirical economic studies. A popular approach to address unobserved heterogeneity is the random

coefficients model, which allows the coefficients of the economic model to vary across agents. The

aim of the researcher is to estimate the distribution of the random coefficients.

Fox et al. (2011), hereafter FKRB, propose a simple and computationally fast estimator that

can approximate distributions of any shape. The estimator uses a fixed grid where every grid

point is a prespecified vector of random coefficients. The distribution function is obtained from

the probability weights at the grid points, which are estimated with constrained least squares. In

principle, the approach can approximate any distribution arbitrarily closely if the grid of random

coefficients is sufficiently dense (McFadden and Train, 2000).

Applications of the estimator indicate, however, that it tends to estimate only few positive

weights and, thus, sets the weights at many grid points to zero. As a consequence, the estimator

lacks the ability to estimate smooth distribution functions but instead approximates potentially

continuous distributions through step functions with only few steps. Our first contribution is to

show that the estimator of FKRB is Nonnegative LASSO (Wu et al., 2014) (NNL) with a fixed

tuning parameter to explain its sparse nature.

NNL, which was first mentioned in the seminal work of Efron, Hastie, Johnstone, Tibshirani,

and Others (2004) as positive LASSO, is a popular model selection method typically used in

applications with supposedly sparse models. It is applied in various research fields, e.g., in vaccine

design (Hu, Follmann, and Miura, 2015), nuclear material detection (Kump, Bai, Chan, Eichinger,

and Li, 2012), document classification (El-Arini, Xu, Fox, and Guestrin, 2013), and index tracking

in stock markets (Wu et al., 2014). NNL shares the property of LASSO (Tibshirani, 1996) that it

regularizes the coefficients of the model and shrinks some to zero. This property is observed for the

FKRB estimator in different Monte Carlo studies (e.g., Fox et al., 2011 and Fox, Kim, and Yang,

2016) and applications to real data (e.g., Nevo, Turner, and Williams, 2016, Illanes and Padi, 2019,

Blundell, Gowrisankaran, and Langer, 2020 and Houde and Myers, 2021). Nevo et al. (2016) study

the demand for residential broadband and estimate that there are only 53 out of 8626 potentially

heterogeneous consumer types. Illanes and Padi (2019) use the approach to estimate the demand

for private pension plans in Chile and assign positive weights to only 194 of 83,251 grid points.

Blundell et al. (2020) analyze firms’ reaction to the regulation of air pollution and recover no more

than 12 of the 10,001 potential points.

In addition to its sparse nature, the connection of the FKRB estimator to NNL reveals the

estimator’s potentially incorrect selection of grid points under strong correlation. The estimator

“randomly” selects one out of a group of highly correlated points and sets the remaining weights

to zero (see Zou and Hastie, 2005, and Hastie, Tibshirani, and Friedman, 2009, for the random

behavior of LASSO).

The estimator’s sparsity and “random” selection behavior can cause inaccurate approximations

of the true distribution through non-smooth distributions with the estimated support possibly

deviating from the true distribution’s support. The latter can lead to misleading conclusions with

respect to the heterogeneity of agents in the population. Fox et al. (2016) prove that the estimator

identifies the true distribution if the grid of random coefficients becomes sufficiently dense. However,
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in practice, the correlation tends to increase with the density of the grid and can become so strong

that the optimization problem to the FKRB estimator cannot be solved due to singularity (Nevo

et al., 2016, Online Supplement). Therefore, the high correlation of a dense grid in combination

with the incorrect grid point selection of the estimator under strong correlation can have a drastic

impact on the identification of the model.

Our second contribution is to provide a generalization of the FKRB estimator that is able to

accurately approximate continuous distributions even under strong correlation. Recognizing the

link to NNL, we add a quadratic constraint on the probability weights. The constraint transforms

the estimator to a special case of nonnegative elastic net (Wu and Yang, 2014). The extension

mitigates the sparsity and improves the selection of the grid points. Due to the additional flexibility

that is introduced with the extension, the estimator adjusts to the degree of correlation among grid

points. Note that our generalization always includes the FKRB estimator as a special case such

that the model fit cannot be worse for our estimator than the FKRB estimator.

We show theoretically, under conditions, that our estimator provides more accurate estimates

of the true underlying distribution. For that purpose, we derive the selection consistency and an

error bound on the estimated distributions. The analysis of the selection consistency examines

the estimator’s ability to estimate positive probability weights at grid points that lie inside the

true distributions support, and zero weights at points outside the true support. The selection

consistency is necessary to approximate the true distribution as accurately as possible. Since the

estimated distribution recovers the existing heterogeneity in the population, i.e., agents’ varying

preferences, recovering the true support points is also important for the correct interpretation of

the model.

The analysis reveals that our generalized estimator correctly selects the grid points under less

restrictive conditions than the FKRB estimator. The error bounds on the estimated distribution

functions illustrate the positive impact of our extension on the overall approximation accuracy.

Two Monte Carlo experiments in which we estimate a random coefficients logit model confirm the

superior properties of our generalized estimator.

Other nonparametric estimators for the random coefficients model include Train (2008), Train

(2016), Burda, Harding, and Hausman (2008) and Rossi, Allenby, and McCulloch (2012). Train

(2008) introduces three estimators that are, in principle, similar to the general approach of FKRB

but employ a log-likelihood criterion instead of constrained least squares. Train (2016) suggests

approximating the random coefficients’ distribution with polynomials, splines or step functions

instead of with a fixed grid of preference vectors. The approach substantially reduces the number

of required grid points if the researcher specifies overlapping splines and step functions. Due to the

lower number of required grid points, the approach reduces the curse of dimensionality, which is a

shortcoming of the fixed grid approach if the economic model includes a large number of random

coefficients. However, Train (2008) estimates the respective model with the EM algorithm, which

is sensitive to its starting values and is not guaranteed to converge to a global optimum, and Train

(2016) uses simulated log-likelihood for the estimation. Burda et al. (2008) and Rossi et al. (2012)

employ a Bayesian hierarchical model to approximate the random coefficients’ distribution with a

mixture of Normal distributions. Even though the estimator potentially has better finite sample

properties, it uses a Markov Chain Monte Carlo technique with a multivariate Dirichlet Process
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prior on the coefficients, which is computationally more demanding.

The remainder of the paper is organized as follows. Section 1.2 describes the FKRB estimator

and introduces our generalized version. Section 1.3 derives the condition on the estimators’ sign

consistency and an error bound on the estimated distribution functions. Section 1.4 presents

two Monte Carlo experiments that investigate the performance of our generalized estimator in

comparison to the FKRB estimator. Section 1.5 applies the estimators to the Mode Canada data

set from the R package mlogit (Croissant, 2019). Section 1.6 concludes and provides an outlook.

1.2 Fixed Grid Estimators

To introduce our estimator, we consider the framework of a random coefficient discrete choice model.

The approach, however, is not restricted to discrete choice models but can be applied to any model

with unobserved heterogeneous parameters. Let there be an i.i.d. sample of N observations, each

confronted with a set of J mutually exclusive potential outcomes. The researcher observes a K-

dimensional real-valued vector of explanatory variables xi,j for every observation unit i and potential

outcome j, and a binary vector yi whose entry yi,j is equal to one whenever she observes outcome

j for the ith observation, and zero otherwise. The goal is to estimate the unknown distribution of

heterogeneous parameters F0(β) in the model

Pi,j (x) =

∫
g (xi,j , β) dF0 (β) (1.1)

where g (xi,j , β) denotes the probability of outcome j conditional on the random coefficients β and

covariates xi,j . The researcher specifies the functional form of g (xi,j , β). A prominent example of

Equation (1.1) is the multinomial mixed logit model, the state-of-the-art model for demand esti-

mation. For a detailed description of the multinomial mixed logit see Train (2009, pp. 134–150). In

this model, consumer i realizes utility ui,j = xTi,jβi + ωi,j from alternative j, given product charac-

teristics xi,j and unobserved consumer-specific preferences βi. ωi,j denotes an additive, consumer-

and choice-specific error term. Consumer i chooses alternative j of J alternatives (and an outside

good with utility ui,0 = ωi,0) if ui,j > ui,l for all l 6= j. Under the assumption that ωi,j follows a

type I extreme value distribution, the unconditional choice probabilities, Pi,j(x), are of the form

Pi,j(x) =

∫
exp

(
xTi,jβ

)
1 +

∑J
l=1 exp

(
xTi,lβ

)dF0 (β) . (1.2)

F0(β) represents the distribution of heterogeneous consumer preferences in the population and is

to be estimated.

1.2.1 Fixed Grid Estimator by FKRB

In most applications, researchers place restrictive assumptions on the functional form of F0(β) in

advance, and estimate its parameters from the data. FKRB propose a simple and fast mixture

approach to estimate the underlying random coefficients’ distribution without restrictive assump-

tions on its shape. The estimator is a special case of sieve estimators (Chen, 2007). It uses a finite
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and fixed grid of random coefficient vectors as mixture components to construct the distribution

from the estimated probability weight of every component. The underlying idea of this fixed grid

estimator is the transformation of the unconditional choice probabilities in Equation (1.1) into a

probability model in which F0(β) enters linearly. FKRB derive the linear probability model in two

steps: they transform Equation (1.1) into a regression model with the random coefficients’ distri-

bution as the only unknown term. Adding yi,j to both sides and moving Pi,j to the right results in

the probability model

yi,j =

∫
g (xi,j , β) dF0 (β) + (yi,j − Pi,j (x)) . (1.3)

To exploit linearity in parameters, they use a sieve space approximation to the infinite-dimensional

parameter F0(β). The sieve space approximation divides the support of the random coefficients

β into R fixed vectors. Each vector has length K, the number of random coefficients included

in the model. The location of these vectors is specified by the researcher. With the sieve space

approximation, Equation (1.3) becomes a simple linear probability model with unknown parameters

θ = (θ1, . . . , θR)T

yi,j ≈
R∑
r=1

g (xi,j , βr) θr + (yi,j − Pi,j (x)) (1.4)

where g(xi,j , βr) denotes the conditional choice probability evaluated at grid point r. Given the

fixed grid of random coefficients, BR = (β1, . . . , βR), the researcher estimates the probability weight

θr at every point r = 1, . . . , R. The linear relationship between the outcome variable and the un-

known parameters θ allows to estimate the mixture weights with the least squares estimator. The

linear regression, which regresses the binary dependent variable yi,j on the choice probabilities

evaluated at BR, in total has NJ observations, J “regression observations” for every statistical

observation unit i = 1, . . . , N and R covariates zi,j = (g(xi,j , β1), . . . , g(xi,j , βR)). By the definition

of choice probabilities, the expected value of the composite error term yi,j − Pi,j(xi,j) conditional

on xi,j is zero. Thus, the regression model satisfies the mean-independence assumption of the least

squares approach (Fox et al., 2011).

The estimator of the random coefficients’ joint distribution is constructed from the estimated

weights

F̂ (β) =
R∑
r=1

θ̂r 1 [βr ≤ β] ,

where β is an evaluation point chosen by the researcher and the indicator function 1[βr ≤ β] is

equal to one whenever βr ≤ β, and zero otherwise.

To ensure that F̂ (β) is a valid distribution function, FKRB suggest estimating the weights with

the least squares estimator subject to the constraints that the weights are nonnegative, and sum

to one

θ̂FKRB = arg min
θ

1

2NJ

N∑
i=1

J∑
j=1

(
yi,j −

R∑
r=1

θrz
r
i,j

)2

s.t. θr ≥ 0, r = 1, . . . , R, and
R∑
r=1

θr = 1.

(1.5)
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Key to an accurate approximation of F0(β) is the precise estimation of the probability weights at

every grid point. Basis to a precise estimation of the probability weights is the consistent selection

of the relevant grid points. This requires the constrained least squares estimator to estimate positive

weights at all grid points at which F0(β) has a positive probability mass, and zero weights otherwise.

While zero weights at grid points inside F0(β)’s support cause inaccurate approximations through

step functions with only few steps, positive estimates at grid points outside F0(β)’s support lead

to unreliable estimates of the random coefficients’ distribution.

1.2.2 Nonnegative LASSO vs. Nonnegative Elastic Net

To provide a more accurate non-parametric estimator with similar computational advantages, we

suggest a simple generalization of the FKRB estimator. Our adjusted version includes the baseline

estimator as a special case but allows for smoother estimates of F0(β) when necessary. To derive

our estimator, we extend the optimization problem formulated in Equation (1.5) by a constraint

on the sum of the squared probability weights. This additional constraint provides a straightfor-

ward way to mitigate the estimator’s sparse nature. Our generalized estimator is still simple and

computationally fast.

1.2.2.1 Connection to Nonnegative LASSO

We first illustrate the source of the FKRB estimator’s sparsity, which helps to understand its

behavior and the intuition behind our extension.

One explanation of the potential sparsity of the estimates is the effect of the nonnegativity

constraint. Slawski and Hein (2013) show that nonnegative least squares estimators exhibit a

self-regularizing property that yields sparse solutions. The FKRB estimator restricts the weights

not only to be nonnegative but also to sum up to one. Taking both constraints into account, we

recognize that the FKRB estimator is a special case of the nonnegative LASSO (NNL) (Wu et al.,

2014).

To show the relation of the FKRB estimator to NNL, we transform the equality constrained

problem formulated in Equation (1.5) into its inequality constrained form. The constraint that the

probability weights sum to one allows us to reparametrize the optimization problem in terms of

R−1 instead of R unknown parameters. Without loss of generality, one can rewrite the Rth weight

as θR = 1 −
∑R−1

r=1 θr. Substituting θR in Equation (1.4) with 1 −
∑R−1

r=1 θr gives the inequality

constrained optimization problem

θ̂FKRB = arg min
θ

1

2NJ

N∑
i=1

J∑
j=1

(
ỹi,j −

R−1∑
r=1

θrz̃
r
i,j

)2

s.t. θr ≥ 0, r = 1, . . . , R − 1, and
R−1∑
r=1

θr ≤ 1

(1.6)

where ỹi,j = yi,j − zRi,j and z̃ri,j = zri,j − zRi,j for every r = 1, . . . , R − 1. Because Equation

(1.6) is an equivalent form of the optimization problem in Equation (1.5), the objective functions

are minimized by the same vector of probability weights. The only difference in the inequal-

ity constrained problem is the estimation of the Rth weight, which is calculated after optimiza-
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tion as θ̂R = 1 −
∑R−1

r=1 θ̂r, and is not explicitly part of the optimization. By the constraints

θr ≥ 0, r = 1, . . . , R − 1, and
∑R−1

r=1 θr ≤ 1, the Rth weight satisfies the property of a probability

weight, 1 ≥ θR ≥ 0.

Comparing the FKRB estimator’s transformed optimization problem with that of the NNL

applied to the linear probability model formulated in Equation (1.4),

θ̂NNL = arg min
θ

1

2NJ

N∑
i=1

J∑
j=1

(
ỹi,j −

R−1∑
r=1

θrz̃
r
i,j

)2

s.t. θr ≥ 0, r = 1, . . . , R − 1, and
R−1∑
r=1

θr ≤ c,

(1.7)

reveals that the baseline estimator is a special case of NNL with fixed tuning parameter c = 1.

The constraint that the probability weights sum to one resembles an `1 penalty that regularizes the

parameter estimates and shrinks some weights to zero if the sum of unrestricted weights exceeds

one.

The amount of regularization depends on the size of the unrestricted estimates. The more the

sum of the R− 1 unconstrained weights in Equation (1.6) exceeds one, the stronger the shrinkage

imposed by the constraint, and the larger the number of potential zero weights (see, e.g., Hastie

et al., 2009, p. 69, for the effect of the LASSO tuning parameter). According to Wu et al. (2014),

NNL can result in very sparse models if the constraint is too restrictive. If the sum of the R − 1

unconstrained weights is less than or equal to one, the constraint has no effect, and the estimated

coefficients correspond to the nonnegative least squares solution.

In addition to its sparse nature, the relation to NNL reveals that the FKRB estimator exhibits

a “random” selection behavior among grid points. Just like NNL, the estimator has no unique

solution when the correlation among choice probabilities evaluated at BR is strong. It tends to

select one out of a group of highly correlated grid points at random and estimates the weights of

the remaining grid points to zero (see Zou and Hastie, 2005, and Hastie et al., 2009, for the random

behavior of LASSO).

The correlation is particularly strong in a dense grid among neighboring grid points which is

why the random selection behavior becomes more severe if the number of grid points increases.

The reason for the strong correlation in dense grids can be explained by the calculation of the

regressor matrix Z̃ = (z̃1, . . . , z̃R−1): For every row in Z̃, the column entries are calculated with

the same vector of characteristics xi,j and the only term that differs across columns is the vector of

random coefficients βr. If the grid becomes dense, the difference between the neighboring random

coefficient vectors vanishes and the corresponding column entries for every row in Z̃ are evaluated

at almost exactly the same point. As a consequence, Z̃T Z̃ is at best near-singular if the number

of grid points R approaches infinity. This contradicts the requirement of a dense grid for accurate

approximations of F0(β) (Fox et al., 2016).
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1.2.2.2 Elastic Net Estimator

Extending the FKRB estimator’s optimization problem formulated in Equation (1.6) by a quadratic

constraint on the probability weights alleviates the sparse nature and random selection behavior.

The additional constraint is known from ridge regression (Hoerl and Kennard, 1970) and transforms

the FKRB estimator into the nonnegative elastic net (Wu and Yang, 2014) with fixed constraint

on the `1-penalty. Thus, our adjusted estimator minimizes

θ̂ENET = arg min
θ

1

2NJ

N∑
i=1

J∑
j=1

(
ỹi,j −

R−1∑
r=1

θrz̃
r
i,j

)2

s.t. θr ≥ 0, r = 1, . . . , R − 1, and
R−1∑
r=1

θr ≤ 1 and
R−1∑
r=1

θ 2
r ≤ t

(1.8)

where t is a nonnegative tuning parameter specified by the researcher. Having a linear and quadratic

constraint on the probability weights ensures a more reliable selection of grid points: the quadratic

constraint encourages a grouping effect, which allows us to recover highly correlated points inside the

true support of F (β) together and, hence, reduces the estimator’s sparsity. The linear constraint,

in turn, retains the LASSO property, which makes it possible to select weights inside the support

of the true distribution and to estimate zero weights at points outside the true support (Zou and

Hastie, 2005).

In addition to the improved selection consistency, our theoretical findings in Section 1.3 show

that the quadratic constraint has the desirable property that it allows the specification of a sub-

stantially finer grid of random coefficients. While the FKRB estimator runs into almost perfect

collinearity problems if the grid becomes finer (Fox et al., 2016), the quadratic constraint ensures

that the optimization problem for our adjusted estimator always has a solution. The non-sparse

solutions together with the possibility of a finer grid endow our estimator with the ability to provide

more accurate and reliable estimated distribution functions.

When implementing the estimator in common statistical software (e.g., R, MATLAB), many

quadratic optimization routines only allow for linear constraints. In order to incorporate the con-

straint on the sum of squared probability weights into these routines, consider the Lagrangian

version of our generalized estimator in Equation (1.8)

θ̂ENET = arg min
θ

1

2NJ

N∑
i=1

J∑
j=1

(
ỹi,j −

R−1∑
r=1

θrz̃
r
i,j

)2

+
1

2
µ
R−1∑
r=1

θ 2
r + λ

(
R−1∑
r=1

θr − 1

)
−
R−1∑
r=1

νrθr.

(1.9)

The first term in Equation (1.9) is the least squares objective function that minimizes the sum of

squared residuals. The second term corresponds to the constraint on the sum of squared probability

weights where µ ≥ 0 is the equivalent counterpart to t in Equation (1.8). The third and fourth

terms with their nonnegative Lagrange multipliers λ and νr, r = 1, . . . , R−1, enforce the constraints

that the estimated weights sum to one and that they are nonnegative, respectively. λ and νr,

r = 1, . . . , R− 1, are endogenously determined by the system through the formulation of the linear

constraints. In particular, λ corresponds to an endogenous LASSO parameter. Adding the second

term to the first term in Equation (1.9) transforms the loss function such that we can use quadratic
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optimization routines. The third and fourth terms can be supplied as linear constraints as stated

in Equation (1.8) to these routines.

The tuning parameter µ is specified by the researcher before the optimization commences. It

relates to t in opposite direction: large values of µ imply small values of t. The larger the value of

the tuning parameter µ, the stronger is the penalty on the sum of squared probability weights, and,

hence, the smaller is t. For every µ, there exists a t such that the estimated weights in Equation

(1.9) and Equation (1.8) are the same (Hastie et al., 2009, p. 63).

The specification of the tuning parameter µ allows adjusting the estimator to the level of

correlation among grid points. Larger (smaller) values of µ (t) give more weight to the quadratic

constraint, which enables the joint recovery of grid points if the correlation is strong and, hence,

reduces the sparsity of the estimator.

The specification of the tuning parameter µ allows adjusting the estimator to the level of

correlation among grid points. Larger (smaller) values of µ (t) give more weight to the quadratic

constraint, which enables the joint recovery of grid points if the correlation is strong and, hence,

reduces the sparsity of the estimator. For increasing (decreasing) values of µ (t), the estimator

shrinks the probability weights of highly correlated grid points toward each other and induces an

averaging of the estimated weights. For µ = 0 (any t ≥ 1), the quadratic constraint does not bind,

such that the adjusted estimator simplifies to the baseline estimator. Therefore, our estimator is a

generalization of the FKRB estimator given in Equation (1.6), including it as a special case.

Based on our Monte Carlo experiments, we recommend choosing the tuning parameter µ with

cross-validation and the one standard error rule based on the mean squared error (MSE) criterion.

This approach ensures that our estimator achieves a model fit that is at least as high as the FKRB

estimator’s. If the model fit is highest for µ = 0 (t ≥ 1), the outcome of our generalized estimator

is the same as that for the FKRB estimator, while it performs better if the model fit is highest for

some µ > 0 (t < 1). For decreasing values of t, the estimator shrinks the probability weights of

highly correlated grid points toward each other and induces an averaging of the estimated weights.

The theoretical analysis in Section 1.3 and the Monte Carlo studies in Section 1.4 indicate that

the improved selection property of our generalized estimator leads to more precise estimates of the

probability weights. If the linear constraint on the sum of the probability weights is strictly binding,

i.e., if the sum of unconstrained nonnegative weights is larger than one, the FKRB estimator leads

to biased estimates of the probability weights. This follows from its equivalence to NNL (see, e.g.,

Hastie et al., 2009, p. 91). In comparison to the unconstrained solution, the estimator shrinks

the weights at some grid points to zero despite the potential positive probability mass of F0(β)

at these points. Due to the constraint that the estimated weights sum to one, the incorrect zero

weights lead to downward biased estimates at points with positive weights. The FKRB estimator

reallocates the probability mass from the points with incorrect zero weights to other points, which

imposes an upward bias at these points.

The quadratic constraint potentially reduces the described distortions through its improved

selection consistency. As a result of more correct positive probability weights, the quadratic con-

straint diminishes the reallocation of probability caused by the linear constraint and, therefore,

reduces the bias both at points with incorrect zero weights and positive weights.
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Remark 1. Our generalized estimator can be extended to a generalized least-squares and smooth

basis densities version of our estimator analogous to Fox et al. (2011).1 Furthermore, the proposed

elastic net version is not the only possible way to address the sparse nature of the FKRB estimator.

These extensions have to fit into the framework that the estimated probability weights are non-

negative and sum to one, which, e.g., excludes the adaptive LASSO (Zou, 2006) and post selection

estimators. Among the suitable extensions, we considered the Factor-Adjusted Regularized Model

Selection (FarmSelect) (Fan, Ke, and Wang, 2020) and the nonnegative version of the S-LASSO

(Hebiri and van de Geer, 2011).

FarmSelect is a LASSO extension that addresses highly correlated covariates. The underlying

idea of the approach is the decorrelation of covariates via a factor model with few latent fac-

tors. In our context, Farm-Select requires the choice probabilities to follow an approximate

factor model. S-LASSO is a different variant of the elastic net that uses a `2-fusion penalty,

λ
∑R−1

r=1 θr +µ
∑R−1

r=2 (θr− θr−1)2, which penalizes the squared difference of neighboring probability

weights. The penalty helps to smooth the solution which makes it particularly suitable for the

estimation of continuous distributions.

Monte Carlo simulations suggest that S-LASSO is a promising alternative to the elastic net esti-

mator.2 Compared to the elastic net extension, the S-LASSO imposes additional restrictions on

the shape of the distribution. We believe that the elastic net extension may be the most intuitive

approach.

1.3 Theoretical Analysis of the Estimators’ Properties

The requirement of a sufficiently fine grid, which potentially includes points outside the true sup-

port, transforms the fixed grid estimator into a high dimensional regression problem with potentially

sparse solutions and highly correlated covariates. Recall that in such a context, an important ele-

ment of an accurate estimation of F0(β) is the consistent selection of grid points. It guarantees the

correct recovery of F0(β)’s support, and therefore, is crucial to accurate estimation of the probabil-

ity weights. In Subsection 1.3.1, we study both estimators’ ability to select the correct weights. To

evaluate the overall approximation accuracy of the estimators presented in Section 1.2, we derive

an error bound for the estimated probability weights and the estimated distribution functions in

Subsection 1.3.2.

We show that our generalized estimator is selection consistent under less restrictive conditions

on the design matrix. While the estimator of FKRB is less likely to be selection consistent if the

number of grid points becomes large (and hence, the correlation strong), the generalized estimator

can satisfy the condition through an appropriate choice of the tuning parameter µ. Similarly,

compared to the derived error bounds for the FKRB estimator, the error bounds for the generalized

estimator can be decreased through the choice of the tuning parameter µ.

1The extensions adjust the calculation of the sum of squared residuals. For the generalized least-squares version,
each observation is weighted to address the heteroscedasticity. The smooth basis densities estimator uses pre-specified
parametric distributions instead of fixed random coefficient vectors to simulate the choice probabilities. The estimated
probability weights denote the weight of every parametric distribution. For a more detailed description see Fox et al.
(2011).

2The results are available from the authors on request.
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Due to the relation of the estimators to the NNL and nonnegative elastic net, respectively, we

build on the literature on regularized regression. Our proof of the selection consistency mainly

follows Jia and Yu (2010), who analyze selection consistency of the elastic net under i.i.d. Gaussian

errors. Similarly to Jia and Yu (2010), Wu et al. (2014) and Wu and Yang (2014) derive selection

consistency of the nonnegative LASSO and the nonnegative elastic net for i.i.d. Gaussian errors.

We extend their proof to sub-Gaussian errors and allow for correlation among the J errors that

belong to the same observation unit i. Thereby, we additionally contribute to the literature on

the nonnegative elastic net. Neither Jia and Yu (2010) nor Wu and Yang (2014) calculate error

bounds on the deviation between the estimated and the true coefficients. Our proof of the error

bound on the estimated weights is drawn from Takada, Suzuki, and Fujisawa (2017), who analyze

a generalization of the elastic net. We modify their proof such that it is in line with the probability

model in Section 1.2.

In line with Fox et al. (2016) and in addition to the tuning parameter µ, we also treat the

specification of the grid points as tuning parameters specified by the researcher. In particular, we

allow the number of grid points R(N) to depend on the sample size N . That is, the larger N , the

more grid points R(N) can be included into the grid. To keep notation uncluttered, we drop the

dependence on N and write R instead of R(N) where not relevant in the subsequent analyses.

Suppose θ∗ = (θ∗1, . . . , θ
∗
R−1)T specifies the vector of probability weights that yields the most

accurate discrete approximation, F ∗(β) =
∑R

r=1 θ
∗
r1[βr ≤ β] with θ∗R = 1 −

∑R−1
r=1 θ

∗
r , of F0(β)

which can be obtained with the estimators for a given grid BR.3 In the following, the introduction

of F ∗(β) allows us to study the selection consistency and the distance between θ̂ and θ∗ for any

number of grid points R. In addition, we use F ∗(β) as a benchmark to compare the estimated

distribution function, F̂ (β) =
∑R

r=1 θ̂r1[βr ≤ β] with θ̂R = 1 −
∑R−1

r=1 θ̂r, to the true underlying

distribution F0(β). Fox et al. (2016) show that, under some regularity conditions, it holds that

|F0(β)−F ∗(β)| = O(R−s̄/K) where s̄ ≥ 0 measures the degree of smoothness of F0(β)4 and K refers

to the number of random coefficients. Thus, the difference of F0(β) and F ∗(β) becomes negligibly

small for R going to infinity.

In order to analyze the selection consistency and to derive the error bounds on the estimated

weights and distribution functions, we use the Lagrangian formulation of our generalized estimator

stated in Equation (1.9). We exploit the structure of our data and make the following assumptions

on the linear probability model corresponding to F ∗(β)

yi,j =

R∑
r=1

θ∗rz
r
i,j + εi,j , (1.10)

3For instance, the best discrete approximation θ∗ can be chosen such that it minimizes the MSE of the true
distribution and its best discrete approximation over all grid points. If the true distribution is continuous with
density f0(βr), θ

∗
r can be calculated as the normalized weighted density at grid point βr for r = 1, . . . , R − 1,

i.e., θ∗r = w(βr)f0(βr)/
(∑R−1

r=1 w(βr)f0(βr)
)

. E.g., the weights w(βr) can be obtained by quadrature methods (cf.

Fox et al., 2016, Lemma 1). If the true distribution is discrete and the grid for the estimation includes the true mass
points, θ∗ corresponds to the probability mass of the true distribution at every point and the fixed grid estimator
can, in principle, recover the true distribution without approximation error. Our subsequent results do not rely on
the way the weights θ∗ are calculated and hold for continuous and discrete true distributions.

4The density function of β is assumed to be s̄-times continuously differentiable.
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where εi,j is the linear probability error and θ∗R = 1−
∑R−1

r=1 θ
∗
r , and on the data generating process.

Assumption 1.

(i)
(
εi = (εi,1, ..., εi,J)

)N
i=1

are independent.

(ii) εi,j is sub-Gaussian: E [exp (tεi,j)] ≤ exp
(
σ2t2

2

)
(∀t ∈ R) for σ > 0.

(iii)
(
Z̃i
)N
i=1

are i.i.d. with a density bounded from above and each z̃ri,j ∈ [−1, 1].

(iv) E
[
εi|Z̃1, ..., Z̃N

]
= 0.

Z̃ refers to the regressor matrix of the transformed model in Equation (1.6) and Z̃i to the corre-

sponding J ×R− 1 regressor matrix for observation unit i. Assumption 1(i) imposes independence

across the vectors of errors for each observation unit. It does not assume independence of elements

within each vector of errors. Assumption 1(ii) assumes that the errors are sub-Gaussian with vari-

ance proxy σ. The variance proxy σ serves as an upper bound of the variance of the errors and

allows for (conditional) heteroscedasticity. Note that the error term in the linear probability model

in Equation (1.10) is sub-Gaussian with variance proxy σ ≤ 1. This follows from the fact that the

error term in the linear probability model is bounded between −1 and 1 since yi,j is either 0 or

1, the weights θr are nonnegative and, by Assumption 1(iii), z̃ri,j is also bounded between −1 and

1. z̃ri,j ∈ [−1, 1] is satisfied by the logit kernel in Equation (1.2) and other examples such as the

kernel of binary choice and of multinomial choice without logit errors (see, e.g., Fox et al., 2016).

Assumption 1(iv) holds by the definition of linear probability models.

1.3.1 Selection Consistency

For our analysis of the selection consistency, we adapt the definition of Zhao and Yu (2006). An

estimator is defined as equal in sign if θ̂r and θ∗r have the same sign for every r = 1, . . . , R− 1. Due

to the nonnegativity of the estimates, the definition implies that θ̂ must be positive at all points

in BR for which θ∗r > 0, and zero at those where θ∗r = 0. Therefore, the estimation of the correct

signs is equivalent to the correct selection of grid points. If an estimate θ̂ of θ∗ is equal in sign, we

write θ̂ =s θ
∗.

Our definition only includes R− 1 points of the transformed model in Equation (1.9). That is,

we only identify whether the R − 1 weights included in Equation (1.9) have the correct sign but

not whether the last weight θ̂R = 1−
∑R−1

r=1 θ̂r has the correct sign.

Definition 1. An estimate θ̂ is sign consistent if

lim
N→∞

P
(
θ̂ =s θ

∗
)

= 1.

According to Definition 1, an estimator is sign consistent if it estimates a positive weight at every

grid point at which θ∗r > 0, and zero weights otherwise with probability approaching one as N goes

to infinity.

To derive the condition under which our generalized estimator is sign consistent, we assume

that BR includes both grid points inside the support of F0(β), i.e., points at which θ∗r > 0, and
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points outside the true support, i.e., at which θ∗r = 0. Let S = {r ∈ {1, . . . , R − 1}|θ∗r > 0} define

the index set of grid points at which θ∗ > 0, and let SC = {r ∈ {1, . . . , R − 1}|θ∗r = 0} denote its

complement. The corresponding cardinalities are defined as s :− |S| and sC :− |SC |. We refer to

grid points in S as active grid points and to grid points in SC as inactive grid points. Z̃S and Z̃SC

denote the sub-matrices of all columns of Z̃ that are in S and SC , respectively.

Since we allow the number of grid points R(N) to increase with the sample size N , we typically

expect the number of active points s(N) to increase with N as well if F0(β) is sufficiently smooth.

We again drop the dependence on N for ease of notation and simply write s instead of s(N).

Let λ denote the endogenous LASSO parameter given in Equation (1.9), that follows from the

constraint c = 1 in Equation (1.8). µ is the exogenous tuning parameter that is specified by the

researcher.

For the analysis in this subsection, we assume that λ > 0. This holds if the inequality constraint

on the sum of probability weights is strongly active.5 The assumption implies that (i) the left-out

probability weight, θR, is equal to zero, which can be easily justified by the possibility to exclude

a point that is located far outside the presumed true support, and that (ii) the remaining R − 1

probability weights do not sum to exactly one when estimated without the linear constraint on the

sum of probability weights.6

Following Wu and Yang (2014), we then obtain the subsequent condition for the sign consistency

of the generalized estimator:

Nonnegative Elastic Irrepresentable Condition (NEIC). For λ > 0, there exists a positive

constant η > 0 (independent of N) such that

max
r∈SC

1

NJ
Z̃TSC Z̃S

(
1

NJ
Z̃TS Z̃S + µIS

)−1 (
ιS +

µ

λ
θ∗S

)
≤ 1− η

where ιS is a vector of s ones and IS is the identity matrix.

The NEIC is a condition for the correct recovery of support points through our generalized estima-

tor.

The term Z̃T
SC
Z̃S restricts the linear dependency between active and inactive grid points. The

term Z̃TS Z̃S measures the linear dependency among active grid points. The condition is less likely

to be satisfied if the number of grid points R – and therefore, the correlation – increases. Besides

the linear dependence of the regressor matrix, the condition takes into account the magnitude of

the endogenously fixed LASSO parameter λ and the tuning parameter µ. For µ = 0, the NEIC

reverts to the Nonnegative Irrepresentable Condition (NIC), the corresponding condition for selec-

tion consistency of the FKRB estimator. In comparison to the NEIC, the NIC is more restrictive

in two ways: First, it requires the inverse of Z̃TS Z̃S to exist, which is not necessary for the NEIC.

Note that this restricts the number of points R the researcher can include into the grid for the

5A strongly active constraint requires strict complementary slackness of the KKT condition for the inequality
constraint (cf. Nocedal and Wright, 2006, pp. 341–343).

6Note that for λ = 0, the generalized estimator simplifies to the nonnegative ridge estimator for µ > 0 and to
the nonnegative least squares estimator for µ = 0. For the latter, we refer the interested reader to Slawski and Hein
(2013) who study the selection consistency of the nonnegative least squares estimator.
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FKRB estimator. Second, the researcher can ensure the NEIC to be met through an appropriate

choice of the tuning parameter µ, which is not possible for the NIC.

In addition to the NEIC, we restrict the rate at which the number of active grid points s(N)

and total grid points R(N) can increase with the sample size N . This accommodates the fact that

the number of grid points specified by the researcher should diverge if F0(β) is continuous, which is

necessary for the convergence of the estimated distribution F̂ (β) to the true underlying distribution

F0(β).

Rate Condition on Density of Grid (RCDG).

1. lim
N→∞

2 s(N)J exp

(
−NξSmin(µ,N)

2
ρ(µ,N)2

2 s(N)

)
= 0.

2. lim
N→∞

2(R(N)− 1)J exp

(
−Nη2λ2

(
ξSmin(µ,N)

s(N)
√
s(N)+ξSmin(µ,N)

)2 /
2

)
= 0,

where ξSmin(µ,N) denotes the (unrestricted) minimal eigenvalue of 1/(NJ)Z̃TS Z̃S+µIS and ρ(µ,N) :=

min
i∈S

∣∣∣∣ (1/(NJ)Z̃TS Z̃S + µIS

)−1 (
1/(NJ)Z̃TS Z̃Sθ

∗
S − λιS

) ∣∣∣∣.
The RCDG can only be satisfied if ξSmin(µ,N) > 0.

This is only restrictive for the FKRB estimator and always holds for the generalized estimator

as long as µ > 0 since 1/(NJ)Z̃TS Z̃S + µIS is positive definite for µ > 0 and only positive semidef-

inite for µ = 0. The assumption ξSmin(µ,N) > 0 excludes the possibility of perfect collinearity to

ensure that the solution to the FKRB estimator exists.

Theorem 1. Suppose Assumption 1 holds. Suppose further that NEIC and RCDG hold. Then

lim
N→∞

P
(
θ̂ =s θ

∗
)

= 1.

Proof. See Appendix 1.6.

Theorem 1 establishes the selection consistency of the generalized estimator, for which µ ≥ 0,

and for the FKRB estimator, for which µ = 0. The theorem relies on sufficient conditions for the

estimators to select the true weights. These conditions are more restrictive for the FKRB estimator

than for our generalization. That is, because the minimal eigenvalue ξSmin(µ,N) = ξSmin(0, N) +µ is

higher for the generalized than for the FKRB estimator and moreover, the NEIC holds whenever

the NIC is satisfied.

This implies that our estimator consistently selects the true support whenever the FKRB esti-

mator does. The converse is not true since the NEIC might hold even though the NIC does not.

Thus, Theorem 1 reveals that our estimator can select the true weights in cases in which the FKRB

estimator cannot.

17



Remark 2. Theorem 1 can also be applied to the smooth basis densities estimator proposed by

Fox et al. (2011). The estimator is an extension of the fixed grid version for which the researcher

specifies R parametric density functions φ(β|Ωr) with fixed distribution parameters instead of a

fixed grid of random coefficients.7 Regarding the analysis of the selection consistency, the only

difference to the fixed grid approach lies in the calculation of the regressor matrix Z. For the

smooth basis densities estimator, Fox et al. (2011) suggest to calculate the columns in Z with D

i.i.d. simulation draws from the respective distribution function, i.e., zri,j = (1/D)
∑D

d=1 g(xi,j , βr,d)

where βr,d is drawn from a parametric distribution, e.g., with parameters Ωr :− (µr,Σr), and

g(xi,j , βr,d) denotes the logit kernel as in Equation (1.2). Since Since Assumptions 1(i)-(iv) also

hold true for the smooth basis densities estimator, Theorem 1 also applies to the estimator whereby

the selection consistency relates to the correct recovery of active and inactive basis densities.

1.3.2 Error Bounds

A key requirement for an accurate estimation of F0(β) – in addition to the correct support recovery

discussed in Subsection 1.3.1 – is the precise estimation of the probability weights. In this section,

we derive an error bound for the euclidean distance between the estimated probability weights and

the weights that yield the best discrete approximation of F0(β).

Let H denote the set of vectors of length R−1 in [−1, 1]R−1 for which the `1-norm is no greater

than 2

H :=
{
x ∈ [−1, 1]R−1

∣∣∣ ∥∥x∥∥1
≤ 2
}
.

The set H contains all possible values of ∆θ̂ :− θ̂ − θ∗ since θ̂ and θ∗ are vectors of weights which

sum up to at most 1. Therefore, it is sufficient to consider elements in H when analyzing the

potential error ∆θ̂.

Define the restricted minimum eigenvalue of the real symmetric R− 1×R− 1 matrix

1/(NJ)Z̃T Z̃ + µIR−1 over the set of vectors H as

ξmin(µ) := inf
v∈H

vT
[

1
NJ Z̃

T Z̃ + µIR−1

]
v∥∥v∥∥2

2

.

Because the restricted minimal eigenvalue is greater than or equal to the unrestricted minimal

eigenvalue, we use the restricted eigenvalue to derive a tighter error bound. We still assume

ξmin(µ) > 0, which rules out perfect collinearity. By the same arguments as in Subsection 1.3.1,

ξmin(µ) > 0 is always satisfied for our generalized estimator with µ > 0 and ξmin(µ) > 0 is only

restrictive for the FKRB estimator.

Following the proof in Takada et al. (2017), we obtain an error bound on the R − 1 estimated

probability weights.

7E.g., for fixed normal densities Ωr = (µr,Σr) where µr is k× 1 mean vector and Σr a k× k variance–covariance
matrix that are specified by the researcher before optimization. The probability weight for every basis density is
estimated from the data using the estimator in Equation (1.5). The distribution function estimator for the smooth
basis densities estimator is F̂ (β) =

∑R
r=1 θ̂rΦ(β|Ωr) where Φ(·) is the distribution function corresponding to φ(·)

(Fox et al., 2016).
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Theorem 2. Let 0 < δ ≤ 1. Define γ ≡ γ(N, δ) :=

√
2 log

(
2(R−1)J

δ

)/
N . Suppose Assumption 1

holds, and that ξmin(µ) > 0 for µ ≥ 0. Then, it holds with probability 1− δ that

∥∥θ̂ − θ∗∥∥
2
≤

2
√
R− 1 γ + 2µ

√
s
∥∥θ∗S∥∥∞

ξmin(µ)
.

Proof. See Appendix 1.6.

Theorem 2 holds with probability approaching one as δ → 0. The estimation error for the Rth

weight, θR = 1−
∑R−1

r=1 θr, which is not included in the bound, approaches zero whenever
∥∥θ̂−θ∗∥∥

2

is close to zero.

Because γ(N, δ) decreases in N , the error bound becomes tighter if the number of observation

units increases. The number of grid points leads to a direct increase of the error bound, both

through R and s, which is expected to increase with R, e.g., if the true distribution is continuous.

The number of grid points also has an indirect effect attributable to the stronger correlation typ-

ically associated with an increase in the number of grid points. This effect is captured through

the restricted minimum eigenvalue ξmin(µ), which decreases if the correlation increases. Hence, an

increase in the number of grid points R typically leads to a wider error bound on the estimated

weights (for a given tuning parameter µ).

The researcher can affect the error bound on the estimated weights through the choice of the

tuning parameter µ. For µ = 0, the bound in Theorem 2 simplifies to the error bound for the

FKRB estimator. A comparison of the bound for µ = 0 and µ > 0 reveals that the extension has

two opposing effects on the estimator’s precision. First, a direct increasing effect that is captured

through the tuning parameter in the numerator of Theorem 2 and, second, an indirect decreasing

effect via the restricted minimum eigenvalue since ξmin(µ) = ξmin(0) + µ > ξmin(0) for µ > 0.

While the direct effect becomes stronger with the number of true support points s, the indi-

rect effect is especially relevant if the correlation among grid points is strong. In that case, the

extension leads to an increase of ξmin(µ) and hence, to a tighter error bound. The indirect effect

is most important if the design matrix Z̃ is almost singular, i.e., if the grid is sufficiently dense. In

that case, the restricted minimum eigenvalue ξmin(0) of the FKRB estimator is close to zero. The

appropriate choice of µ offsets this effect and can lead to a tighter error bound.

Corollary 1 establishes the condition under which our extension provides a tighter error bound

on the estimated weights than the FKRB estimator.

Corollary 1. When
√
s
∥∥θ∗S∥∥∞ξmin(0) <

√
R− 1 γ, then the error bound for

∥∥θ̂−θ∗∥∥
2

in Theorem

2 is tighter for the generalized estimator than for the FKRB estimator.

Proof. See Appendix 1.6.

Using the error bound on the estimated and true probability weights in Theorem 2, we derive a

bound on the error of the estimated distribution function F̂ (β) and the best discrete distribution

F ∗(β).
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Theorem 3. Under the assumptions and conditions in Theorem 2, it holds at any point β ∈ RK

with probability 1− δ that

|F̂ (β)− F ∗ (β) | ≤
4(R− 1) γ + 4µ

√
(R− 1)s

∥∥θ∗S∥∥∞
ξmin(µ)

.

Proof. See Appendix 1.6.

The bound on the difference between the estimated distribution and the best discrete approximation

of F0(β) increases in R and decreases in ξmin(µ). Similarly to Theorem 2, the difference in the

distributions decreases in N since k may decrease when N increases.

Recall that the absolute difference |F0(β)−F ∗(β)| becomes negligibly small as R increases (Fox

et al., 2016). Therefore, the estimation error can be well captured by |F̂ (β)−F ∗(β)| which explains

the relevance of Theorem 3.

Remark 3. Theorem 3 can be extended in a straightforward way to an error bound for the

smooth basis densities estimator suggested by Fox et al. (2011) if the support of β is bounded

and D i.i.d. simulation draws. Following the argumentation in Fox et al. (2016), the distribution

function estimated with the smooth basis densities estimator, F̂D(β) =
∑R

r=1 θ̂rΦ(β|Ωr), can be

nested into the discrete approximation model by means of the simulation approximated distribution

F̃D(β) =
∑R

r=1 θ̂r(1/D)
∑D

d=1 1[βr,d ≤ β] where θ̂ is estimated with the smooth basis densities

estimator. Using the simulation approximated distribution, we obtain∣∣∣∣F̂D (β)− F ∗(β)

∣∣∣∣ ≤ ∣∣∣∣F̃D(β)− F ∗(β)

∣∣∣∣+

∣∣∣∣F̂D (β)− F̃D(β)

∣∣∣∣
≤
∣∣∣∣F̃D(β)− F ∗(β)

∣∣∣∣+
R∑
r=1

θ̂r,D

∣∣∣∣ 1

D

D∑
d=1

1[βr,d ≤ β]− Φ(β|Ωr)

∣∣∣∣
For D →∞, F̃D(β) converges to F̂D(β) such that the second expression goes to zero for any given r

(by the Glivenko–Cantelli theorem) Fox et al. (2016). The first expression is the absolute difference

between the fixed grid estimator and the best possible approximation that can be obtained with a

mixture of smooth basis densities (Fox et al., 2016). The expression can be bounded by the error

bound presented in Theorem 3. Consequently, the absolute difference between F̂ (β) and F ∗(β) can

also be bounded by Theorem 3 if D →∞.

1.4 Monte Carlo Simulation

We conduct two Monte Carlo experiments to examine the selection consistency and the approxima-

tion accuracy of our generalized estimator. The Monte Carlo simulation on the selection consistency

uses a discrete distribution with a subset of grid points as support points. The second experiment

generates the random coefficients from a mixture of two normal distributions. This allows us

to study the estimators’ ability to estimate smooth distributions. We use a random coefficients

logit model as the true data generating process to generate individual-level discrete choice data.

Each observational unit i chooses among J = 4 mutually exclusive alternatives and an outside op-

tion. For every alternative j and observation unit i, we draw the two-dimensional covariate vector
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xi,j = (xi,j,1, xi,j,2) from U (0, 5) and U (−3, 1), respectively. To study the effect of the fixed grid

and the number of observation units on the estimators’ performance, we run every experiment for

different sample sizes and numbers of grid points. We repeat the experiment for every combination

of R and N 200 times to compare the performance of our estimator with the FKRB estimator in

terms of selection consistency and accuracy for every setup. All calculations are conducted with

the statistical software R (R Core Team, 2018).

1.4.1 Discrete Distribution

To study the estimators’ selection consistency, we generate the random coefficients β from a discrete

probability mass function. The estimator successfully recovers the true support from the data if it

estimates a positive weight at every support point of F0(β), and zero weights at all points outside

its support. For the support points of F0(β), we select a subset of the grid points from the fixed grid

we use for the estimation. The grid covers the range [−4.5, 3.5]× [−4.5, 3.5] with R = {25, 81, 289}
uniformly allocated grid points. We specify the support of our discrete data generating distribution

on [−4.5,−0.5] × [−4.5, 0.5], and [−0.5, 3.5] × [−0.5, 3.5], whereby the number of support points

varies due to the varying number of grid points. That is, we draw the random coefficients β from a

discrete mass function with S = {17, 49, 161} support points, each drawn with uniform probability

weight θs = 1/S.

In this setup, the data generating process exactly matches the underlying probability model

of the fixed grid estimator. This way, we abstract from any approximation errors that can arise

from the sieve space approximation of the true underlying distribution. Therefore, the experiment

studies the estimators’ selection consistency in the most simple framework possible. The two areas

of the discrete distribution with positive probability mass simulate two heterogeneous groups of

preferences in the population. We estimate every distribution for sample sizes N = {1000, 10, 000}.
Figure 1.1 illustrates the setup of the Monte Carlo experiment for the three data generating

distributions. The blue shaded area indicates the support of the discrete mass functions, and the

filled blue points inside this area the active grid points. The hollow black points outside the blue

shared areas are the inactive grid points that are not used for data generation.

Figure 1.1: Grid of Monte Carlo Study with Discrete Mass Points

(a) R = 25, S = 17 (b) R = 81, S = 49 (c) R = 289, S = 161

We choose the optimal tuning parameter µ for the generalized estimator with 10-fold cross-
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validation from a sequence of 101 potential values. For 100 of these values, we use the sequence

suggested by the R package glmnet for ridge regression with nonnegative coefficients. We also

include µ = 0 in the range of possible values to allow our estimator to simplify to the FKRB

estimator if the model fit in the cross-validation is highest for µ = 0. The selection of the optimal

tuning parameter is based on the mean squared error (MSE) criterion. In addition to the tuning

parameter with the lowest MSE, we report the tuning parameter that follows from the one-standard-

error rule (OneSe).8

As robustness-checks, we consider the prediction accuracy of the predicted choice of every

observation and the log-likelihood as a measure of fit in the cross-validation. We choose the µ

based on the smallest average out-of-sample prediction error and based on the highest log-likelihood,

respectively. The results of the Monte Carlo study for the log-likelihood and predicted choices as

selection criteria can be found in Appendix A. They indicate that the MSE and the one-standard-

error rule give the best results.

To evaluate the estimators’ selection consistency, we calculate the average share of sign con-

sistent estimates. An estimate is sign consistent if it is positive at active grid points, and zero

otherwise. A weight is defined as positive if it is greater than 10−3. To illustrate the sparsity of

the estimators’ solutions, we report the average number of positive weights and the average share

of true positive weights.

Beyond selection consistency, the discrete setup of the Monte Carlo experiment allows us to

study the bias of the estimated probability weights. Denote the estimated weight at grid point r

in Monte Carlo run m by θ̂r,m. We calculate the L1 norm

L1 =
1

M

M∑
m=1

1

R

R∑
r=1

∣∣∣θr − θ̂r,m∣∣∣ (1.11)

to measure the average absolute bias of θ̂ in comparison to the true weights θ over all Monte Carlo

runs M . In addition, we adopt the root mean integrated squared error (RMISE) from Fox et

al. (2011) to provide a metric on the approximation accuracy of the estimated distribution. The

RMISE averages the squared difference between the true and estimated distribution at a fixed set

of grid points across all Monte Carlo runs

RMISE =

√√√√ 1

M

M∑
m=1

[
1

E

E∑
e=1

(
F̂m(βe)− F0(βe)

)2
]
, (1.12)

where F̂m(βe) denotes the estimated distribution function in Monte Carlo run m evaluated at βe.

For the evaluation, we use E = 10,000 points uniformly distributed over the range [−4.5, 3.5] ×
[−4.5, 3.5].

Table 1.1 summarizes the results of the Monte Carlo experiment. The first three columns report

the sample size N , the number of grid points R, and the number of true support points S. The

8We observe that the curve of the MSE in dependency of µ tends to be flat and that the µ chosen by OneSe often
corresponds to the largest element of the sequence of tuning parameters suggested by the glmnet package. Therefore,
a possible strategy is to choose the largest µ given by the glmnet package to obtain µ of OneSe if one wants to avoid
cross-validation.
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Table 1.1: Summary Statistics of 200 Monte Carlo Runs with Discrete Distribution.

RMISE L1 µ ρ

N R S FKRB MSE OneSe FKRB MSE OneSe MSE OneSe 3rd Qu.

1,000 25 17 0.069 0.041 0.035 0.035 0.017 0.015 55.89 67.90 0.808
1,000 81 49 0.082 0.052 0.038 0.019 0.009 0.007 53.91 69.93 0.819
1,000 289 161 0.088 0.057 0.045 0.006 0.004 0.003 55.89 71.29 0.822

10,000 25 17 0.041 0.024 0.022 0.020 0.012 0.011 61.34 66.90 0.808
10,000 81 49 0.050 0.030 0.027 0.015 0.008 0.007 60.40 68.96 0.819
10,000 289 161 0.059 0.037 0.034 0.006 0.004 0.003 61.73 70.48 0.822

Pos. % True Pos. % Sign

N R S FKRB MSE OneSe FKRB MSE OneSe FKRB MSE OneSe

1,000 25 17 13.10 20.77 22.25 67.32 95.23 99.79 71.18 78.44 78.70
1,000 81 49 15.29 46.56 54.44 26.88 77.39 89.81 53.15 75.65 80.95
1,000 289 161 16.00 103.37 123.63 8.38 54.58 65.56 48.10 69.34 74.56

10,000 25 17 17.38 19.46 19.77 91.56 98.71 99.88 87.02 88.38 88.74
10,000 81 49 23.32 45.22 48.02 42.07 82.00 87.14 61.62 82.89 85.65
10,000 289 161 24.34 96.81 105.33 13.24 54.79 59.62 50.62 71.83 74.27

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), and for our generalized estimator with tuning parameter µ from a 10-fold cross-validation
and the MSE criterion (MSE) and the one-standard-error rule (OneSe).

upper part of the table presents the measures on the accuracy of the estimated weights, and the

lower part the shares of positive, true positive, and sign consistent estimated weights. The final

column in the upper part reports the third quantile of the absolute values of the correlation ρ

among grid points.9

Figure 1.2: Correlation Matrix for N = 10, 000 and R = 81

The results show that our generalized estimator outperforms the FKRB estimator for every

combination of N and R, in particular when the tuning parameter µ is chosen based on the one-

9In addition, we also considered the mean and median to summarize the absolute correlation among grid points.
We focus on the third quantile since it best illustrates the strong correlation in this setup.
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standard-error rule. With respect to the selection consistency, the generalized estimator recovers

more true positive and sign consistent probability weights than the FKRB estimator. While the

decrease in these shares is moderate for the generalized estimator when the discrete distribution

becomes more complex, the correct recovery through the FKRB estimator significantly worsens.

This is best illustrated by the small number of positive weights, which changes only slightly

alongside the increasing complexity. For N = 1000 (N = 10, 000) and in the extreme case of

R = 289, the FKRB estimator estimates positive weights at no more than 16 (24) of the grid points

(in comparison to 124 (105) for the generalized estimator with OneSe).

In addition to its improved selection consistency, all measures on the estimated weights indi-

cate that our generalized version provides substantially more accurate estimates of the probability

weights than the FKRB estimator. The bias reduction persists for small and large sample sizes.

The plot of the correlation matrix in Figure 1.2 and the third quantile of the values of absolute

correlation in Table 1.1 both illustrate that correlation among many grid points is strong.

1.4.2 Continuous Distribution

The second Monte Carlo experiment considers a mixture of two bivariate normal distributions for

F0(β) to analyze how our generalized estimator accommodates more complex continuous distribu-

tions. This way, we can assess its ability to recover distributions that cannot be estimated with

parametric techniques.

For the estimation, we use a fixed grid with points spread on [−4.5, 3.5]× [−4.5, 3.5]. The fixed

grid covers the support of the true distribution with coverage probability close to one (0.993). We

keep the correlation among grid points as low as possible and generate the grid points with a Halton

sequence. To study the convergence of the estimated distribution to F0(β) for an increasing number

of grid points, we estimate the model with R = {25, 50, 100, 250}. The number of observation units

N varies between 1000 and 10,000. The variance–covariance matrices of the two normals are

Σ1 = Σ2 =
[

0.8 0.15
0.15 0.8

]
. We generate the random coefficient vectors β from the following two-

component bivariate mixture

0.5 N
(

[−2.2,−2.2],Σ1

)
+ 0.5 N

(
[1.3, 1.3],Σ2

)
.

The left panel in Figure 1.3 displays the bimodal joint density of the mixture of two normals, and

the right panel the joint distribution function.

For the calculation of the RMISE, we use E = 10,000 evaluation points uniformly distributed

over the range of the fixed grid. In addition, we report the average number of positive, true positive,

and sign consistent estimated weights. For the number of true positive and sign consistent weights,

we calculate the true density at every grid point and then normalize the density of each grid point

by the sum of densities at all grid points. We define a true weight as positive if its normalized

density is greater 10−3.

Table 1.2 summarizes the average results over the M = 200 Monte Carlo replicates for the

FKRB estimator and our generalized estimator when µ is chosen with 10-fold cross-validation and

the MSE and one-standard error rule, respectively. Results for the prediction accuracy of the
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Figure 1.3: True Density and Distribution Function of Mixture of two Normals

(a) PDF (b) CDF

Table 1.2: Summary Statistics of 200 Monte Carlo Runs with Mixture of Two Bivariate Normals.

RMISE Pos. µ ρ

N R S FKRB MSE OneSe FKRB MSE OneSe MSE OneSe 3rd Qu.

1,000 25 17 0.086 0.072 0.055 9.83 13.20 17.84 22.72 74.23 0.823

1,000 50 33 0.087 0.068 0.059 12.56 26.84 32.61 48.85 74.27 0.820

1,000 100 61 0.100 0.075 0.062 13.45 43.41 55.36 48.74 73.99 0.823

1,000 250 127 0.101 0.073 0.062 14.22 86.30 105.14 56.42 74.70 0.824

10,000 25 17 0.063 0.061 0.057 11.63 12.60 14.76 18.66 73.90 0.823

10,000 50 33 0.058 0.049 0.047 17.52 25.44 28.33 50.92 74.05 0.820

10,000 100 61 0.061 0.048 0.043 19.94 39.36 47.24 49.69 74.12 0.822

10,000 250 127 0.062 0.043 0.039 22.03 80.90 89.30 63.55 74.66 0.824

% True Pos. % Sign

N R S FKRB MSE OneSe FKRB MSE OneSe

1,000 25 17 49.59 66.82 88.38 60.12 70.06 80.84

1,000 50 33 33.26 70.65 85.44 52.78 73.58 81.55

1,000 100 61 18.82 62.11 79.35 48.51 71.37 80.45

1,000 250 127 7.93 55.58 68.09 51.57 71.15 76.33

10,000 25 17 58.15 64.09 76.91 64.56 68.74 77.58

10,000 50 33 47.15 69.59 77.73 61.21 74.98 79.95

10,000 100 61 28.31 58.41 70.46 53.61 70.90 77.72

10,000 250 127 13.26 55.26 61.13 53.87 72.98 75.59

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB
estimator (FKRB), and for our generalized estimator with tuning parameter µ from a 10-fold cross-
validation and the MSE criterion (MSE) and the one-standard-error rule (OneSe).
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predicted choices and the log-likelihood as criteria are reported in Appendix A.

The RMISE shows that our generalized estimator provides more accurate estimates of the true

underlying random coefficients’ distribution than the FKRB estimator for every combination of N

and R. For N = 10,000 the generalized version becomes more accurate with increasing number of

grid points and approximates F0(β) quite well for R = 250. However, the FKRB estimator does

not result in a lower RMISE for N = 10,000 when R increases.

The improved performance of our estimator for every combination of N and R can be explained

with the larger number of true positive and sign consistent estimated probability weights. Indepen-

dently of the number of (relevant) grid points, the FKRB estimator estimates only a small number

of positive weights and, hence, recovers only few relevant grid points. The share of true positive

and sign consistent estimated weights is substantially higher for our estimator.

Figure 1.4: Estimated Joint Distribution Functions for N = 10, 000 and R = 250

(a) FKRB (b) Generalized with OneSe

Figure 1.5: True and Estimated Marginal Distribution Functions for N = 10, 000 and R = 250

Figure 1.4 plots an example of the joint distribution functions estimated with the FKRB estimator

(Panel (a)) and our generalized estimator (Panel (b)). Figure 1.5 shows the corresponding estimated
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and true marginal distributions of β1 and β2. The distribution functions are estimated for N =

10,000 and R = 250.

The plots illustrate the impact of the FKRB estimator’s sparse nature on the estimated marginal

and joint distribution functions. Visual inspection shows that it approximates F0(β) through a

step function with only few steps due to the small number of positive weights. In contrast, our

generalized estimator provides a smooth estimate that is close to the true underlying distribution

function.

1.5 Empirical Application

To study the performance of our generalized estimator with real data, we apply it to the ModeCanda

data set from the R package mlogit. Originally, the Canadian National Rail Carrier VIA Rail

assembled the data in 1989 to analyze the demand for future intercity travel in the Toronto–

Montréal corridor. The data contains information on travelers who can choose among the four

intercity travel mode options car, bus, train, and air. Due to the small number of bus users (18),

we follow Bhat (1997b) and drop bus as an alternative. Furthermore, we only consider travelers

in our analysis that can choose among all three options. Thus, the analyzed data consists of 3593

business travelers who can choose among airplane, train, and car. In addition to the observed

choices, the data includes information on traveler’s income, the trip distance, the frequency of the

service, total travel cost, an indicator that is one if either the city of arrival or departure is a big

city and zero otherwise, and the in- and out-of-vehicle travel time. We construct the travel time

variable by summing up in-vehicle travel time and out-of-vehicle time. This is done for two reasons:

first, the data on out-of-vehicle time is always zero for car users and would therefore only capture

the preferences of airplane and train users. Second, we think it is plausible that individuals care

more about total travel time than the travel time inside and outside of a vehicle separately.

A detailed description of the data can be found in Marwick and Koppelman (1990). Among

others, the data set has been studied by Bhat (1995, 1997a, 1997b, 1998), Koppelman and Wen

(2000), Wen and Koppelman (2001). The only paper that analyzes the data with a random coef-

ficients logit model is the study by Hess, Bierlaire, and Polak (2005). However, they only use the

explanatory variables as input for a Monte Carlo study and simulate travelers’ mode choices.

We estimate a mixed logit model with a random coefficient on the travel time and fixed coef-

ficient on all other variables to study the preferred travel mode of business travelers. We include

all the above variables into the utility specification along with mode specific constants, where we

specify car as the reference alternative. To apply the fixed grid approach to a model with fixed

and random coefficients, we follow the recommendation of Fox et al. (2016) and Houde and Myers

(2021) who suggest a two-step estimator to estimate the model with fixed and random coefficients.10

In the first step, all coefficients are estimated using a semiparametric mixed logit. We assume that

the random coefficient is normally distributed. In the second step, the fixed variables and their

estimated coefficients from the first stage are treated as data and only the random coefficient of

travel time is estimated with the FKRB and generalized estimator. Houde and Myers (2021) justify

10We also provide an algorithm to update both the fixed and random coefficients in Appendix 1.6. The algorithm
is a modification of the flexible grid estimator in Train (2008). Unfortunately, the algorithm seems to be very slow
and we do not include its results in our comparison here.
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the procedure with the argument that a mixed logit can recover the means of a distribution fairly

well despite the incorrect assumptions on the random coefficients’ distribution. Thus, the fixed

coefficients can be estimated consistently with the semiparametric approach. They illustrate this

property in a Monte Carlo study.

We center the grid of the random coefficient around the mean estimate of the travel coefficient

from the first step11 and add three standard deviations to each side. We estimate the second step

with different numbers of grid points. The preferred specification uses R = 100 uniformly spread

points on the range [−0.061, 0.027]. We choose the tuning parameter with 10-fold Cross-Validation

and the one standard error rule as criterion. Figure 1.6 summarizes the mass and the distribution

functions estimated with the FKRB and the generalized estimator.

The generalized estimator estimates a smooth mass function whereas the FKRB exhibits LASSO-

type behavior. The FKRB estimator only selects five out of 100 grid points whereas the generalized

version selects 75 grid points.12 Furthermore, it can easily be seen that the estimated mass function

obtained by the generalized estimator does not seem to be normally distributed but rather looks

like a mixture of two normal distributions. That is, specifying a normal or any other parametric

distribution function does not seem appropriate in this example. A quite unexpected result is

that there are positive weights at positive grid points implying that some people appreciate longer

trips. Even though one might argue that this might be the case if such travelers accept additional

travel time for, say, additional comfort when traveling, this might also be a sign of a misspecified

model. For the FKRB estimator these weights sum up 9.5% and for the generalized estimator to

10.1%, which is lower than 12.6% for the mixed logit with a normal distribution. The weighted

mean of the coefficient of travel time for the FKRB estimator is −0.01593 and −0.01631 for the

generalized estimator. This is roughly the same as −0.01682, the mean coefficient obtained from

the mixed logit model with normally distributed travel time coefficient which is in line with the

justification of Houde and Myers (2021) for the two-step estimator. In addition to the estimated

distributions, we report the mean (and median) over individuals’ own- and cross-travel time elastic-

ities for the FKRB estimator, the generalized estimator and the semiparametric mixed logit with a

normal distribution in Appendix A. We also calculate the ratio between elasticities estimated with

the FKRB estimator and the semiparametric estimator in comparison to the elasticities estimated

with the generalized estimator. The ratios show that most differences of the estimated own- and

cross-travel time elasticities do not seem to be too large. Yet, few deviate from each other whereby

the semiparametric estimator is up to 6.3 (= 1/0.16) times smaller and the FKRB estimator is

up to 1.8 times larger than the generalized estimator. We also observe in the continuous Monte

Carlo experiment that the estimated elasticities are rather similar for the FKRB estimator and

the generalized estimator.13 Therefore, it is not clear to what extent the generalized estimator

outperforms the FKRB estimator in terms of the estimated elasticities, while it is very clear in

terms of the estimated distribution.

11The estimated coefficients of the first stage are provided in Appendix A.
12We again define a weight as positive if it is greater than 10−3.
13The results are available on request.
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Figure 1.6: Estimated Distributions of Travel Time in Mode Canada Data with R = 100

(a) Mass Function for FKRB

(b) Mass Function for Generalized with OneSe

(c) CDFs for FKRB (red) and Generalized with OneSe (blue)
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1.6 Conclusion

We extend the simple and computationally attractive nonparametric estimator of Fox et al. (2011).

We illustrate that their estimator is a special case of NNL, explaining its sparse solutions. The

connection to NNL reveals that the estimator tends to randomly select among highly correlated

grid points. This behavior gives reason to doubt the precise estimation of the true distribution

through the estimator.

To mitigate its undesirable sparsity and random selection behavior, we add a quadratic con-

straint on the probability weights to the optimization problem of the FKRB estimator. This simple

and straightforward extension transforms the estimator to a special case of nonnegative elastic net.

The combination of the linear and quadratic constraint on the probability weights enables a more

reliable selection of the relevant grid points. As a consequence, our generalized estimator provides

more accurate estimates of the true underlying random coefficients’ distribution without substan-

tially increasing computation time and complexity. We derive conditions for selection consistency

and an error bound on the estimated distribution function to verify the improved properties of our

estimator.

Two Monte Carlo studies illustrate the attractive theoretical properties of our estimator. They

show that our generalized version estimates considerably more positive probability weights and

recovers more grid points correctly. In addition to the improved selection consistency, the estimator

provides more accurate estimates of the true underlying distributions.

Applying the FKRB and the generalized estimator to a data set of travel choices made in

the Toronto–Montréal corridor confirms the sparsity of the FKRB estimator. In contrast, the

generalized estimator selects substantially more grid points, resulting in a smooth distribution

function. This illustrates the fact that our generalized estimator is able to approximate continuous

distribution functions.

A challenging, but practically relevant topic is the development of an inference procedure. To

this end, one has to take into account the relation of the FKRB and our generalized estimator to

the nonnegative LASSO and nonnegative elastic net, respectively. Assuming random regression

coefficients, Pötscher and Leeb (2009) prove that estimators of the distribution function of the

LASSO, including resampling methods, cannot be uniformly consistent. Assuming fixed regression

coefficients, Dezeure, Bühlmann, and Zhang (2017) propose a de-biased LASSO estimator to con-

duct inference. However, it is not straightforward how to construct such a de-biased estimator in

our setting.14

In addition, it might be a promising venue for future research to attempt to weaken some of

our regularity conditions, such as the rate condition on the density of the grid. For a given number

of observations, this would theoretically justify to increase the number of grid points used for the

estimation. Moreover, our derived error bounds are non-asymptotic, so asymptotic results might

provide further useful insights.

14Our experiments for inference regarding the estimated joint CDF and estimated elasticities suggest that the m-
out-of-n-(block-)bootstrap might be a promising choice. Efron‘s (block-)bootstrap (Efron, 1979), in contrast, seems
to have poor coverage. For the m-out-of-n-block-bootstrap, we base our simulation on block length J to take the
correlation structure of our data into account. In these experiments, we followed the recommendation of Jentsch and
Leucht (2016) for discrete data and chose m = (NJ)2/3. The results are available on request.
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Appendix A: Supplementary Tables

Table 1.3: Detailed Summary Statistics of 200 Monte Carlo Runs with Discrete Distribution.

RMISE L1 µ ρ

N R S FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut MSE OneSe LL PredOut 3rd Qu.

1,000 25 17 0.069 0.041 0.035 0.059 0.047 0.035 0.017 0.015 0.028 0.022 55.89 67.90 11.32 31.04 0.808

1,000 81 49 0.082 0.052 0.038 0.067 0.056 0.019 0.009 0.007 0.014 0.011 53.91 69.93 17.93 31.70 0.819

1,000 289 161 0.088 0.057 0.045 0.070 0.061 0.006 0.004 0.003 0.005 0.004 55.89 71.29 25.75 35.59 0.822

10,000 25 17 0.041 0.024 0.022 0.035 0.031 0.020 0.012 0.011 0.017 0.015 61.34 66.90 16.23 29.40 0.808

10,000 81 49 0.050 0.030 0.027 0.044 0.037 0.015 0.008 0.007 0.013 0.011 60.40 68.96 13.95 31.39 0.819

10,000 289 161 0.059 0.037 0.034 0.051 0.046 0.006 0.004 0.003 0.005 0.005 61.73 70.48 17.69 26.40 0.822

Pos. % True Pos. % Sign

N R S FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut

1,000 25 17 13.10 20.77 22.25 15.93 18.84 67.32 95.23 99.79 79.62 90.35 71.18 78.44 78.70 76.56 79.52

1,000 81 49 15.29 46.56 54.44 29.14 38.95 26.88 77.39 89.81 50.46 66.22 53.15 75.65 80.95 64.58 71.55

1,000 289 161 16.00 103.37 123.63 62.08 83.70 8.38 54.58 65.56 33.01 44.46 48.10 69.34 74.56 59.59 64.87

10,000 25 17 17.38 19.46 19.77 18.11 18.73 91.56 98.71 99.88 94.62 96.88 87.02 88.38 88.74 88.24 88.86

10,000 81 49 23.32 45.22 48.02 29.57 37.70 42.07 82.00 87.14 53.94 68.73 61.62 82.89 85.65 68.26 76.12

10,000 289 161 24.34 96.81 105.33 50.80 63.70 13.24 54.79 59.62 28.49 35.99 50.62 71.83 74.27 58.46 62.35

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB estimator (FKRB), and for our generalized estimator
with tuning parameter µ from a 10-fold cross-validation and the MSE criterion (MSE), the one-standard-error rule (OneSe), the log-likelihood criterion
(LL) and the number of correctly predicted binary outcomes (PredOut). The predicted binary outcome is set to one for the alternative with the highest
estimated choice probability.

31



Table 1.4: Detailed Summary Statistics of 200 Monte Carlo Runs with Mixture of Two Bivariate Normals.

RMISE Pos. µ ρ

N R S FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut MSE OneSe LL PredOut 3rd Qu.

1,000 25 17 0.086 0.072 0.055 0.081 0.067 9.83 13.20 17.84 10.66 14.39 22.72 74.23 2.36 30.13 0.823

1,000 50 33 0.087 0.068 0.059 0.079 0.068 12.56 26.84 32.61 17.45 25.25 48.85 74.27 9.00 33.02 0.820

1,000 100 61 0.100 0.075 0.062 0.09 0.076 13.45 43.41 55.36 22.54 39.26 48.74 73.98 8.54 33.56 0.823

1,000 250 127 0.101 0.073 0.062 0.089 0.076 14.22 86.30 105.14 41.64 68.17 56.42 74.70 14.97 33.02 0.824

10,000 25 17 0.063 0.061 0.057 0.062 0.060 11.63 12.60 14.76 11.74 13.35 18.66 73.90 0.77 30.42 0.823

10,000 50 33 0.058 0.049 0.047 0.053 0.049 17.52 25.44 28.33 20.26 24.30 50.92 74.05 8.38 34.56 0.820

10,000 100 61 0.061 0.048 0.043 0.054 0.050 19.94 39.36 47.24 28.10 34.99 49.69 74.12 11.79 30.13 0.822

10,000 250 127 0.062 0.043 0.039 0.053 0.046 22.03 80.90 89.30 48.67 64.80 63.55 74.66 20.32 36.27 0.824

% True Pos. % Sign

N R S FKRB MSE OneSe LL PredOut FKRB MSE OneSe LL PredOut

1,000 25 17 49.59 66.82 88.38 54.03 73.18 60.12 70.06 80.84 62.82 73.94

1,000 50 33 33.26 70.65 85.44 46.83 67.44 52.78 73.58 81.55 60.92 72.51

1,000 100 61 18.82 62.11 79.35 32.71 57.00 48.51 71.37 80.45 56.36 69.28

1,000 250 127 7.93 55.58 68.09 26.34 44.06 51.57 71.15 76.33 59.31 66.70

10,000 25 17 58.15 64.09 76.91 58.79 68.38 64.56 68.74 77.58 64.98 71.62

10,000 50 33 47.15 69.59 77.73 55.27 66.59 61.21 74.98 79.95 66.44 73.30

10,000 100 61 28.31 58.41 70.46 41.07 51.80 53.61 70.90 77.72 61.00 67.21

10,000 250 127 13.26 55.26 61.13 32.33 43.95 53.87 72.98 75.59 62.58 67.94

Note: The table reports the average summary statistics over all Monte Carlo replicates for the FKRB estimator (FKRB), and for our generalized
estimator with tuning parameter µ from a 10-fold cross-validation and the MSE criterion (MSE), the one-standard-error rule (OneSe), the log-
likelihood criterion (LL) and the number of correctly predicted binary outcomes (PredOut). The predicted binary outcome is set to one for the
alternative with the highest estimated choice probability.
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Table 1.5: First Stage Output of Mode Canada Data: Semiparametric Estimation with Normally
Distributed Random Coefficient for the Total Travel Time.

Dependent variable:

Mode Choice

Intercept Train −1.641∗∗∗

(0.304)

Intercept Air −7.153∗∗∗

(0.913)

Frequency 0.077∗∗∗

(0.008)

Cost −0.009

(0.009)

Income Train −0.018∗∗∗

(0.003)

Income Air 0.040∗∗∗

(0.005)

Distance Train 0.002∗

(0.001)

Distance Air 0.003∗∗∗

(0.001)

Urban Train 1.722∗∗∗

(0.163)

Urban Air 1.261∗∗∗

(0.194)

Travel Time −0.017∗∗∗

(0.003)

sd.Travel Time 0.015∗∗∗

(0.002)

Observations 3,593

Mc Fadden R2 0.358

Log Likelihood -2,340.700

LR Test 2,615.034∗∗∗ (df = 12) (p = 0.000)

Note: The table reports the mean estimates and standard errors
(in brackets) obtained by the mlogit package for the semiparamet-
ric mixed logit model with normally distributed travel time.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 1.6: Estimated Own- and Cross-Travel Time Elasticities in Mode Canada Data.

Elasticities estimated with FKRB:

Car Air Train

Car -0.8992 (-0.8444) 1.3982 (0.6692) 0.1164 (0.129)

Air 0.5895 (0.5943) -1.2267 (-0.5079) 0.2049 (0.1589)

Train -0.1622 (0.0346) 0.1840 (0.1352) -0.6712 (-0.8861)

Elasticities estimated with ENet:

Car Air Train

Car -0.8382 (-0.7731) 1.4082 (0.682) 0.1473 (0.1009)

Air 0.5312 (0.5034) -1.2581 (-0.5704) 0.1765 (0.1339)

Train -0.0887 (0.036) 0.1900 (0.1118) -0.6285 (-0.7691)

Elasticities estimated semiparametrically:

Car Air Train

Car -0.8567 (-0.7483) 1.4115 (0.7221) 0.2511 (0.1621)

Air 0.4938 (0.4481) -1.3251 (-0.6791) 0.1595 (0.1051)

Train 0.0138 (0.0466) 0.2322 (0.1004) -0.7057 (-0.8399)

Note: The table reports the mean and the median (in brackets) over individuals’
own- and cross-travel time elasticities for the FKRB estimator, the elastic net
estimator, and the semiparametric mixed logit with normal distribution. The
reported numbers correspond to the percentage change of the choice probability
of an alternative in a column after a one percent increase in the travel time of an
alternative in a row.

Table 1.7: Ratio of Estimated Own- and Cross-Travel Time Elasticities in Mode Canada Data.

Estimated Elasticities of FKRB divided by those of ENet:

Car Air Train

Car 1.0728 (1.0922) 0.9929 (0.9813) 0.7908 (1.2783)

Air 1.1099 (1.1804) 0.9750 (0.8905) 1.1605 (1.1864)

Train 1.8291 (0.9611) 0.9685 (1.2098) 1.0680 (1.1521)

Semiparametrically estimated Elasticities divided by those of ENet:

Car Air Train

Car 1.0221 (0.9679) 1.0023 (1.0589) 1.7054 (1.6064)

Air 0.9296 (0.8901) 1.0533 (1.1906) 0.9032 (0.7846)

Train -0.1559 (1.2961) 1.2221 (0.8984) 1.1230 (1.0920)

Note: The table reports the ratio of the mean and the median (in brackets) over individuals’
own- and cross-travel time elasticities reported in Table 1.6 for (1) the FKRB estimator
and elastic net estimator and (2) the semiparametric mixed logit with normal distribution
and the elastic net estimator.
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Appendix B: Algorithm to Update Fixed and Random Coefficients

The algorithm to update the fixed coefficients uses a modification of the flexible grid estimator in

Train (2008). Let F denote the set of indices corresponding to the fixed coefficients and M to the

set of indices corresponding to the random coefficients. The goal is to maximize with respect to

the fixed coefficients βF and the weights θ = (θ1, . . . , θR) corresponding to βM . Therefore, define

the vector which is to be maximized as π = {βF , θ}. Then, rewrite zri,j more explicitly:

zri,j := zi,j(β
F , βMr ) = g(xi,j , β

F , βMr ) =
exp

(
xFi,jβ

F + xMi,jβ
M
r

)
1 +

J∑
l=1

exp
(
xFi,lβ

F + xMi,lβ
M
r

) . (1.13)

The likelihood criterion given in Train (2008) is

LL(βF , βM ) =
1

N

N∑
i=1

log

(
R∑
r=1

θrz
r
i,yi

)
=

1

N

N∑
i=1

log

(
R∑
r=1

θrzi,yi(β
F , βMr )

)
. (1.14)

The probability of agent i having coefficients π conditional on her observed choice yi and being

type r is

hi,r (π) =
θrzi,yi(β

F , βMr )
R∑
r=1

θrzi,yi(β
F , βMr )

. (1.15)

Based on Equation (1.15) one can derive the iterative EM update scheme which updates πt+1 =

{βF , θ}t+1 = {βF , (θ1, . . . , θR)}t+1 by using a previous estimated trial πt to maximize

πt+1 = arg max
π

Q
(
π|πt

)
= arg max

π

N∑
i=1

R∑
r=1

hi,r
(
πt
)

log
(
θrzi,yi(β

F , βMr )
)
. (1.16)

Since log
(
θrzi,j(β

F , βMr )
)

= log(θr) + log(zi,yi(β
F , βMr )) one can maximize Equation (1.16) sep-

arately for βF and θ. Since we use our generalized estimator given in Equation (1.8), we only

maximize Equation (1.16) over βF :

{βF }t+1
= arg max

βF

N∑
i=1

R∑
r=1

hi,r
(
πt
)

log
(
zi,yi(β

F , βMr )
)
. (1.17)

Plugging Equation (1.13) into Equation (1.17) gives

{βF }t+1
= arg max

βF

N∑
i=1

R∑
r=1

hi,r
(
πt
)

log

 exp
(
xFi,yiβ

F + xMi,yiβ
M
r

)
1 +

J∑
l=1

exp
(
xFi,lβ

F + xMi,lβ
M
r

)
 (1.18)
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or equivalently

{βF }t+1
= arg max

βF

N∑
i=1

J∑
j=1

R∑
r=1

yi,jhi,r
(
πt
)

log

 exp
(
xFi,jβ

F + xMi,jβ
M
r

)
1 +

J∑
l=1

exp
(
xFi,lβ

F + xMi,lβ
M
r

)
 . (1.19)

This is is the formula of a weighted (standard) logit model where only the coefficients βF are to

be maximized and the coefficients βM are treated as constants. The weights hi,r
(
πt
)
, calculated

as given in Equation (1.15), do not depend on the product j, but differ for different observations i

and grid points r.

The whole update scheme is given by the following steps

Generalized Estimator of Equation (1.8) with fixed and random

coefficients

1. Estimate semi-parametric model with all regressors and store the coefficients of the fixed

parameters βF0 .

2. Choose the grid points βMr , r = 1, ..., R.

3. Calculate the logit kernel, zi,j(β
F
0 , β

M
r ), for each agent at each point.

4. Estimate θ0 using the Generalized Estimator in Equation (1.8).

5. Calculate weights for each agent at each point with π0 = {βF0 , θ0} as

hi,r (π0) =
θr0zi,yi(β

F
0 , β

M
r )

R∑
r=1

θr0zi,yi(β
F
0 , β

M
r )

.

6. Update the fixed coefficients βF0 = βF1 by estimating a weighted standard logit as specified

in Equation (1.19) .

7. Repeat steps 3 and 6 until convergence, using the updated coefficients π0 = π1, where

θ0 = θ1 is updated in step 4.

8. Use these estimated weights θ̂ to calculate the estimated distribution

F̂ (β) =
R∑
r=1

θ̂r 1 [βr ≤ β] .
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Appendix C: Proofs of Results in Section 1.3

Below, we provide the proofs of the results presented in Section 1.3. For that purpose, we first

introduce some additional notation. Let A be a m × n matrix and x be a n × 1 vector. In the

following, the ‖A‖∞ norm refers to the matrix norm induced by the maximum norm of vectors.

Then

‖A‖∞ := max
||x||∞=1

‖Ax‖∞ = max
1≤i≤m

n∑
j=1

|aij |

denotes the maximum row sum of matrix A. ‖x‖∞ refers to the largest absolute element of vector

x. Similarly, ‖A‖2 is defined as the matrix norm induced by the euclidean vector norm. That is,

‖A‖2 := max
||x||2=1

‖Ax‖2 ,

is called spectral norm. It can be shown that ‖A‖2 = max
1≤i≤n

√
ψi(ATA) where ψi(A

TA) denotes the

eigenvalues of ATA.

C.1: Proof of Probability Bound

Lemma 1 uses Hoeffding’s inequality to derive a probability bound for sub-Gaussian random vari-

ables. We use the lemma in the proofs of Theorems 1 - 3.

Lemma 1. Suppose Assumption 1 holds. Then, for γ ≥ 0

P
(∥∥∥∥ 1

NJ
Z̃T ε

∥∥∥∥
∞
≥ γ

)
≤ 2(R− 1)J exp

(
−Nγ

2

2

)
.

Proof. Notice that

P
(∥∥∥∥ 1

NJ
Z̃T ε

∥∥∥∥
∞
≥ γ

)
= P

(
max

1≤r≤R−1

∣∣∣∣∣ 1

NJ

N∑
i=1

Z̃rTi εi

∣∣∣∣∣ ≥ γ
)

(1.20)

where εi = (εi,1, . . . , εi,J) denotes a random vector of J dependent variables such that Equation

(1.20) can equivalently be written as

P

(
max

1≤r≤R−1

∣∣∣∣∣ 1

NJ

N∑
i=1

Z̃rTi εi

∣∣∣∣∣ ≥ γ
)

= P

 max
1≤r≤R−1

∣∣∣∣∣∣ 1

NJ

N∑
i=1

J∑
j=1

z̃ri,jεi,j

∣∣∣∣∣∣ ≥ γ


= P

 ⋃
1≤r≤R−1


∣∣∣∣∣∣ 1

NJ

N∑
i=1

J∑
j=1

z̃ri,jεi,j

∣∣∣∣∣∣ ≥ γ

 .
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From
∑N

i=1

∑J
j=1 z̃

r
i,jεi,j ≤ J max

1≤j≤J

∑N
i=1 z̃

r
i,jεi,j , we obtain the upper bound

P

 ⋃
1≤r≤R−1


∣∣∣∣∣∣ 1

NJ

N∑
i=1

J∑
j=1

z̃ri,jεi,j

∣∣∣∣∣∣ ≥ γ

 ≤ P

 ⋃
1≤r≤R−1

{
J max

1≤j≤J

∣∣∣∣∣ 1

NJ

N∑
i=1

z̃ri,jεi,j

∣∣∣∣∣ ≥ γ
}

≤
R−1∑
r=1

P

(
max

1≤j≤J

∣∣∣∣∣ 1

N

N∑
i=1

z̃ri,jεi,j

∣∣∣∣∣ ≥ γ
)

=
R−1∑
r=1

P

 ⋃
1≤j≤J

{∣∣∣∣∣ 1

N

N∑
i=1

z̃ri,jεi,j

∣∣∣∣∣ ≥ γ
}

≤
R−1∑
r=1

J∑
j=1

P

(∣∣∣∣∣ 1

N

N∑
i=1

z̃ri,jεi,j

∣∣∣∣∣ ≥ γ
)

≤ (R− 1)J max
1≤r≤R−1
1≤j≤J

P

(∣∣∣∣∣ 1

N

N∑
i=1

z̃ri,jεi,j

∣∣∣∣∣ ≥ γ
)
.

Recall from Assumption 1(iii) and Equation (1.10) that −1 ≤ z̃ri,j ≤ 1 and −1 ≤ εi,j ≤ 1. Therefore,

ξ := (z̃r1,jε1,j , . . . , z̃
r
N,jεN,j) is a vector of independent uniformly bounded random variables since

for every i = 1, . . . , N it holds that −1 ≤ z̃ri,jεi,j ≤ 1. It follows from the assumption of conditional

exogeneity (Assumption 1(iv)) that E[ξ] = 0. Due to the boundedness of ξi, i = 1, . . . , N , its

moment generating function satisfies

E [exp(sξi)] ≤ exp

(
σ2s2

2

)
.

For any s ∈ R, ξi is said to be sub-Gaussian with variance proxy σ2. Thus, using Hoeffding’s

inequality,

max
1≤r≤R−1
1≤j≤J

P

(∣∣∣∣∣ 1

N

N∑
i=1

z̃ri,jεi,j

∣∣∣∣∣ ≥ γ
)
≤ 2 exp

(
−Nγ

2

2σ2

)
. (1.21)

It follows from ξi ∈ [−1, 1] that σ2 = 1. Therefore,

P
(∥∥∥∥ 1

NJ
Z̃T ε

∥∥∥∥
∞
≥ γ

)
≤ (R− 1)J max

1≤r≤R−1
1≤j≤J

P

(∣∣∣∣∣ 1

N

N∑
i=1

z̃ri,jεi,j

∣∣∣∣∣ ≥ γ
)

≤ 2(R− 1)J exp

(
−Nγ

2

2

)
. (1.22)

C.2: Proof of Selection Consistency

In the following, we provide the proof of Theorem 1. We first derive two sufficient conditions in

Lemma 3 that ensure that the estimated weights are equal in sign, i.e. θ̂ =s θ
∗. Lemma 4 provides a

bound on the probability of the first sufficient condition and Lemma 5 a bound on the probability of

the second sufficient condition. Finally, we use Lemma 4 and Lemma 5 to prove Theorem 1. Both

Lemma 4 and Lemma 5 employ Lemma 2. To keep notation uncluttered, we drop the dependence
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of R(N), s(N), ξSmin(µ,N) and ρ(µ,N) on N and write R, s, ξSmin(µ) and ρ(µ) in the subsequent

proofs.

Lemma 2. It holds that ∥∥∥∥∥
(

1

NJ
Z̃TS Z̃S + µIS

)−1
∥∥∥∥∥
∞

≤
√
s

1

ξSmin(µ)
.

Proof. Using Singular Value Decomposition (SVD), rewrite Z̃S as

1√
NJ

Z̃S = ADMT (1.23)

where A is a NJ × s matrix with orthogonal columns, i.e. ATA = IS .

M is a s × s orthogonal matrix satisfying MTM = MMT = IS . D is a diagonal s × s matrix

consisting of the singular values of (1/
√
NJ)Z̃S on its diagonal. We apply the SVD in Equation

(1.23) to rewrite(
1

NJ
Z̃TS Z̃S + µIS

)−1

=
(
MDTATADMT + µIS

)−1
=
(
MD2MT + µMMT

)−1

= M
(
D2 + µIS

)−1
MT (1.24)

Therefore,∥∥∥∥∥
(

1

NJ
Z̃TS Z̃S + µIS

)−1
∥∥∥∥∥
∞

=

∥∥∥∥∥M (
D2 + µIS

)−1
MT

∥∥∥∥∥
∞

≤
√
s

∥∥∥∥∥M (
D2 + µIS

)−1
MT

∥∥∥∥∥
2

(1.25)

=
√
s

∥∥∥∥∥ (D2 + µIS
)−1

∥∥∥∥∥
2

=
√
smax
i∈S

√
ψi

=
√
smax
i∈S

1

d2
ii + µ

=
√
s

1

min
i∈S

d2
ii + µ

=
√
s

1

ξSmin(µ)

where ψi denotes the eigenvalues of
((
D2 + µIS

)−1
)T (

D2 + µIS
)−1

=
(
D2 + µIS

)−2
. Thus,

ψi =
(
d2
ii + µ

)−2
, as the eigenvalues of a diagonal matrix are its diagonal entries. The (unrestricted)

eigenvalues of 1/(NJ)Z̃TS Z̃S +µIS are defined as ξS(µ). ξSmin(µ) corresponds to the minimal eigen-

value of the matrix. The first inequality in Equation (1.25) holds by the relation of the absolute row

sum norm and the spectral norm. The transformation from the first to the second line follows from

the invariance of the spectral norm to orthogonal transformations (Gentle, 2007, pp. 130-131). The

equality in the second line follows from the spectral norm. The last equality in Equation (1.25)

holds by the relation of singular values to eigenvalues.

Lemma 3. Sufficient conditions for θ̂ =s θ
∗ are

M(V ) :=

{
max
j∈SC

Vj ≤ λ
}
,
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M(U) :=

{
max
i∈S
|Ui| < ρ(µ)

}
where

V :=
1

NJ
Z̃TSC

[
Z̃S

(
1

NJ
Z̃TS Z̃S + µIS

)−1(
λιS + µθ∗S −

1

NJ
Z̃TS ε

)
+ ε

]
,

U :=

(
1

NJ
Z̃TS Z̃S + µIS

)−1 1

NJ
Z̃TS ε,

ρ(µ) := min
i∈S

∣∣∣ ( 1

NJ
Z̃TS Z̃S + µIS

)−1( 1

NJ
Z̃TS Z̃Sθ

∗
S − λιS

) ∣∣∣.
Proof. The Lagrangian of our generalized estimator in Equation (1.9) formulated in matrix notation

is given by

L(θ) :=
1

2NJ
||ỹ − Z̃θ||22 + λ

(
ιT θ − 1

)
+

1

2
µ θT θ − νT θ (1.26)

which is minimized with respect to θ, i.e. θ = arg min
θ

L(θ). λ and ν are Lagrangian multipliers

that enforce that the estimated weights sum to one and that they are non-negative respectively.

µ > 0 is an additional tuning parameter. Note that for µ = 0, Equation (1.26) corresponds to the

objective function of the estimator by Fox et al. (2011).

To analyze the support recovery of our estimator, we follow the proof in Jia and Yu (2010).

The estimator recovers the true support of the distribution if every estimated probability weight

θ̂ has the same sign as the true weights θ∗, i.e. θ̂ =s θ
∗. This is the case if the Karush-Kuhn-

Tucker (KKT) conditions to the optimization problem in Equation (1.26) are satisfied. The KKT

conditions are given by

− 1

NJ
Z̃T
(
ỹ − Z̃θ̂

)
+ λι+ µ θ̂ − ν = 0, (1.27)

λ
(
ιT θ̂ − 1

)
= 0, (1.28)

νr θ̂r = 0, (1.29)

λ ≥ 0, νr ≥ 0 ∀ r = 1, . . . , R − 1. (1.30)

Denote the set of grid points where the true distribution has positive probability mass by

S = {r ∈ {1, . . . , R − 1}|θ∗r > 0} and let SC = {r ∈ {1, . . . , R − 1}|θ∗r = 0} denote its complement

set. The corresponding cardinalities are defined as s := |S| and sC := |SC |. We refer to grid points

in S as active grid points and to grid points in SC as inactive grid points. Splitting θ̂, Z̃ and ν

over S and SC into two blocks gives

− 1

NJ

[
Z̃S Z̃SC

]T (
ỹ −

[
Z̃S Z̃SC

]( θ̂S

θ̂SC

))
+ λι+ µ

(
θ̂S

θ̂SC

)
−

(
νS

νSC

)
= 0.

Recall that θ∗r = 0 for all grid points outside S, so that Z̃θ∗ = Z̃Sθ
∗
S . In order to recover the

active grid points, it must hold that θ̂ =s θ
∗ which implies θ̂SC = 0. The two conditions that follow
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from Equation (1.27) require

− 1

NJ
Z̃TS

(
ỹ − Z̃S θ̂S

)
+ λιS + µθ̂S − νS = 0, (1.31)

− 1

NJ
Z̃TSC

(
ỹ − Z̃S θ̂S

)
+ λιSC − νSC = 0. (1.32)

Note that θ̂S > 0 and θ̂SC = 0 imply

νr = 0 ∀ r ∈ S, (1.33)

νr ≥ 0 ∀ r 6∈ S. (1.34)

It follows from Condition (1.33) that Condition (1.31) simplifies to

− 1

NJ
Z̃TS

(
ỹ − Z̃S θ̂S

)
+ λιS + µθ̂S = 0. (1.35)

Substituting the true model ỹ = Z̃θ∗ + ε, we can re-express the required conditions as

− 1

NJ
Z̃TS Z̃S

(
θ∗S − θ̂S

)
− 1

NJ
Z̃TS ε+ λιS + µθ̂S = 0 (1.36)

and

− 1

NJ
Z̃TSC Z̃S

(
θ∗S − θ̂S

)
− 1

NJ
Z̃TSC ε+ λιSC − νSC = 0. (1.37)

Reformulating Condition (1.36) gives

θ̂S =

(
1

NJ
Z̃TS Z̃S + µIS

)−1( 1

NJ
Z̃TS ε︸ ︷︷ ︸

=:U

+
1

NJ
Z̃TS Z̃Sθ

∗
S − λιS

)
> 0 (1.38)

where the positivity constraint follows from the KKT conditions and the definition of θ̂S .

Plugging Equation (1.38) into Equation (1.37) and using Condition (1.34) yields

1

NJ
Z̃TSC

[
Z̃S

(
1

NJ
Z̃TS Z̃S + µIS

)−1(
λιS + µθ∗S −

1

NJ
Z̃TS ε

)
+ ε

]
︸ ︷︷ ︸

=:V

≤ λιSC . (1.39)

U and V are defined in Equation (1.38) and Equation (1.39), respectively.

The vector U consists of s elements Ui, i ∈ S, and is constructed from the conditions on the

positive weights, and vector V from the condition on the zero weights. Therefore, V has R − s
elements Vj , j ∈ SC . Condition (1.39) is equivalent to the event

M(V ) :=

{
max
j∈SC

Vj ≤ λ
}
.

The event M(U) defines a condition for the positive weights

M(U) :=

{
max
i∈S
|Ui| < ρ(µ)

}
41



where ρ(µ) := min
i∈S
|gi| with gi :=

[ (
1
NJ Z̃

T
S Z̃S + µIS

)−1 (
1
NJ Z̃

T
S Z̃Sθ

∗
S − λιS

) ]
i
. Therefore, the

event M(U) implies

0 < ρ(µ)−max
i∈S
|Ui| < ρ(µ)− |Ui| < |gi| − |Ui| < |gi + Ui| = |θ̂Si | = θ̂Si , ∀i ∈ S

where gi, Ui and θ̂Si denote the ith element of the respective vectors g, U and θ̂S . The second last

equality holds by definition of gi and Ui (see Equation (1.38)) and the last inequality by the reverse

triangle inequality. Because the weights are constrained to be nonnegative by the KKT conditions,

the absolute value |θ̂Si | can be omitted. Consequently, M(U) is a sufficient condition for Equation

(1.38) to hold and thus for θ̂S > 0.

Lemma 4. Suppose Assumption 1 holds. Suppose further that the NEIC holds. Let MC(V ) denote

the complement of M(V ). Then,

P
(
MC(V )

)
≤ 2(R− 1)J exp

−Nη2λ2
(

ξSmin(µ)

s
√
s+ξSmin(µ)

)2

2

 .

Proof. Vj is sub-Gaussian with mean

V := E(V ) =
1

NJ
Z̃TSC Z̃S

(
1

NJ
Z̃TS Z̃S + µIS

)−1

(λιS + µθ∗S) .

Recall the Nonnegative Elastic Net Irrepresentable Condition (NEIC) is

max
r∈SC

1

NJ
Z̃TSC Z̃S

(
1

NJ
Z̃TS Z̃S + µIS

)−1 (
ιS +

µ

λ
θ∗S

)
≤ 1− η.

Therefore, V j ≤ (1 − η)λ. Let Ṽ := 1
NJ Z̃

T
SC

[
− Z̃S

(
1
NJ Z̃

T
S Z̃S + µIS

)−1
1
NJ Z̃

T
S + INJ

]
ε such that

V = V + Ṽ . Consequently, it holds for the complement of M(V ) that

λ < max
j∈SC

Vj = max
j∈SC

(V j + Ṽj) ≤ max
j∈SC

V j + max
j∈SC

Ṽj ⇐⇒ max
j∈SC

Ṽj > λ−max
j∈SC

V j ≥ λ− (1− η)λ = ηλ.
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We use the last inequality to derive an upper bound on MC(V ):

P
(
MC(V )

)
= P

(
max
j∈SC

Vj > λ

)
≤ P

(
max
j∈SC

Ṽj > ηλ

)
≤ P

(
max
j∈SC

|Ṽj | > ηλ

)
= P

(
max
j∈SC

∣∣∣∣∣ 1

NJ
Z̃TSC

[
− Z̃S

(
1

NJ
Z̃TS Z̃S + µIS

)−1 1

NJ
Z̃TS + I

]
ε

∣∣∣∣∣ > ηλ

)

≤ P

(
max
j∈SC

∣∣∣∣∣ 1

NJ
Z̃TSC Z̃S

(
1

NJ
Z̃TS Z̃S + µIS

)−1 1

NJ
Z̃TS ε

∣∣∣∣∣+ max
j∈SC

∣∣∣∣ 1

NJ
Z̃TSC ε

∣∣∣∣ > ηλ

)

= P

(∥∥∥∥∥ 1

NJ
Z̃TSC Z̃S

(
1

NJ
Z̃TS Z̃S + µIS

)−1 1

NJ
Z̃TS ε

∥∥∥∥∥
∞

+ max
j∈SC

∣∣∣∣ 1

NJ
Z̃TSC ε

∣∣∣∣ > ηλ

)

≤ P

(∥∥∥∥∥ 1

NJ
Z̃TSC Z̃S

∥∥∥∥∥
∞

∥∥∥∥∥
(

1

NJ
Z̃TS Z̃S + µIS

)−1
∥∥∥∥∥
∞

∥∥∥∥∥ 1

NJ
Z̃TS ε

∥∥∥∥∥
∞

+ max
j∈SC

∣∣∣∣ 1

NJ
Z̃TSC ε

∣∣∣∣ > ηλ

)
.

The last inequality holds due the property of the absolute row sum norm that ‖ABx‖∞ ≤ ‖A‖∞ ‖B‖∞ ‖x‖∞
for arbitrary matrices A, B and a vector x.

By Lemma 2 and
∥∥∥ 1
NJ Z̃

T
SC
Z̃S

∥∥∥
∞
≤ s (since every entry in Z̃ is at most 1 in absolute value, and

thus the absolute row sum of 1
NJ Z̃

T
SC
Z̃S at most 1

NJ sNJ = s), we obtain

P
(
MC(V )

)
≤ P

(
s
√
s

1

ξSmin(µ)
max
j∈S

∣∣∣∣ 1

NJ
Z̃TSC ε

∣∣∣∣+ max
j∈SC

∣∣∣∣ 1

NJ
Z̃TSC ε

∣∣∣∣ > ηλ

)
≤ P

(
s
√
s

1

ξSmin(µ)
max
j∈R

∣∣∣∣ 1

NJ
Z̃T ε

∣∣∣∣+ max
j∈R

∣∣∣∣ 1

NJ
Z̃T ε

∣∣∣∣ > ηλ

)
= P

((
s
√
s

1

ξSmin(µ)
+ 1
)

max
j∈R

∣∣∣∣ 1

NJ
Z̃T ε

∣∣∣∣ > ηλ

)

≤ P

max
j∈R

∣∣∣∣ 1

NJ
Z̃T ε

∣∣∣∣ > ηλ
1

s
√
s 1
ξSmin(µ)

+ 1

 .

Applying Hoeffding’s inequality with γ = ηλ 1
s
√
s 1

ξS
min

(µ)
+1

as outlined in Lemma 1 gives

P
(
MC(V )

)
≤ 2(R− 1)J exp

−
N

(
ηλ 1

s
√
s 1

ξS
min

(µ)
+1

)2

2σ2


= 2(R− 1)J exp

−N
(
ηλ

ξSmin(µ)

s
√
s+ξSmin(µ)

)2

2σ2


= 2(R− 1)J exp

−Nη2λ2
(

ξSmin(µ)

s
√
s+ξSmin(µ)

)2

2

 .
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Remark 4. The above calculations can be simplified to for the baseline estimator, i.e. if µ = 0.

Assume that the NIC condition for LASSO holds (NEIC with µ = 0). Additionally, note that it

holds for µ ≥ 0 that (
1

NJ
Z̃TS Z̃S + µIS

)−1

Z̃TS = Z̃TS

(
1

NJ
Z̃SZ̃

T
S + µIN

)−1

.

Using the above equality for µ = 0, we obtain

P
(

max
j∈SC

Vj > λ

)
≤ P

(
max
j∈SC

Ṽj > ηλ

)
≤ P

(
max
j∈SC

|Ṽj | > ηλ

)
= P

(
max
j∈SC

∣∣∣∣∣ 1

NJ
Z̃TSC

[
− Z̃S

(
1

NJ
Z̃TS Z̃S

)−1 1

NJ
Z̃TS + IS

]
ε

∣∣∣∣∣ > ηλ

)

= P

(
max
j∈SC

∣∣∣∣∣ 1

NJ
Z̃TSC

[
− 1

NJ
Z̃SZ̃

T
S

(
1

NJ
Z̃SZ̃

T
S

)−1

+ IS

]
ε

∣∣∣∣∣ > ηλ

)

= P
(

max
j∈SC

∣∣∣∣ 1

NJ
Z̃TSC

[
− IS + IS

]
ε

∣∣∣∣ > ηλ

)
= P (0 > ηλ) = 0

since ηλ > 0.

Lemma 5. Suppose Assumption 1 holds. Let MC(U) denote the complement of M(U). Then,

P
(
MC(U)

)
≤ 2sJ exp

(
−Nξ

S
min(µ)2ρ(µ)2

2s

)
.

Proof. Because U is sub-Gaussian with mean 0, the probability of the complement of M(U) cor-

responds to

P
(
MC(U)

)
= P

(
max
i∈S
|Ui| ≥ ρ(µ)

)
= P

(
max
i∈S

(
1

NJ
Z̃TS Z̃S + µIS

)−1 1

NJ
Z̃TS ε ≥ ρ(µ)

)

≤ P

(∥∥∥∥∥
(

1

NJ
Z̃TS Z̃S + µIS

)−1
∥∥∥∥∥
∞

∥∥∥∥∥ 1

NJ
Z̃TS ε

∥∥∥∥∥
∞

≥ ρ(µ)

)
.
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In the next step Lemma 2 is applied again.

P
(
MC(U)

)
≤ P

(
√
s

1

ξSmin(µ)

∥∥∥∥∥ 1

NJ
Z̃TS ε

∥∥∥∥∥
∞

≥ ρ(µ)

)

≤ P

(∥∥∥∥∥ 1

NJ
Z̃TS ε

∥∥∥∥∥
∞

≥ ξSmin(µ)
1√
s
ρ(µ)

)

≤ 2sJ exp

−N
(
ξSmin(µ) 1√

s
ρ(µ)

)2

2σ2

 = 2sJ exp

(
−Nξ

S
min(µ)2ρ(µ)2

2sσ2

)

= 2sJ exp

(
−Nξ

S
min(µ)2ρ(µ)2

2s

)
where the last inequality follows from Hoeffding’s inequality in Lemma 1 with γ = ξSmin(µ) 1√

s
ρ(µ).

We use the above lemmata to prove Theorem 1.

Proof of Theorem 1.

It holds that

P
(
θ̂ =s θ

)
≥ P

(
M(V ) ∩M(U)

)
since M(U) is a sufficient condition for the selection of the true weights according to Lemma 3.

Under the condition that RCDG holds, applying Lemma 4 and Lemma 5 gives lim
N→∞

P
(
MC(V )

)
=

0 and lim
N→∞

P
(
MC(U)

)
= 0.

Thus,

lim
N→∞

P
(
θ̂ =s θ

)
≥ lim

N→∞
P
(
M(V ) ∩M(U)

)
≥ lim

N→∞

{
1− P

(
MC(V )

)
− P

(
MC(U)

)}
= 1.

C.3: Proof of Error Bounds

In the following, we first provide the proof of the error bound of the estimated weights presented in

Theorem 2 and the proof of Corollary 1. We then use the derived bound to proof the error bound

of the estimated random coefficients’ distribution in Theorem 3. In the proofs of Theorem 2 and

Theorem 3, we apply Lemma 1.
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Proof of Theorem 2.

Note that if θ̂ is the solution to the Lagrangian in Equation (1.26), it must hold that it minimizes

(1.26), i.e. L(θ̂) ≤ L(θ) for any θ. Thus, it holds that L(θ̂) ≤ L(θ∗) where θ∗ are the true weights.

Applying this to the objective function in (1.26), we obtain

1

2NJ

∥∥∥ỹ − Z̃θ̂∥∥∥2

2
+ λ

(
ιT θ̂ − 1

)
+
µ

2
θ̂T θ̂ ≤ 1

2NJ

∥∥∥ỹ − Z̃θ∗∥∥∥2

2
+ λ

(
ιT θ∗ − 1

)
+
µ

2
θ∗T θ∗.

Substituting the true model ỹ = Z̃θ∗ + ε into the above condition and simplifying gives

1

2NJ

∥∥∥Z̃ (θ∗ − θ̂)+ ε
∥∥∥2

2
+ λ

(
ιT θ̂ − 1

)
+
µ

2
θ̂T θ̂ ≤ 1

2NJ
‖ε‖22 + λ

(
ιT θ∗ − 1

)
+
µ

2
θ∗T θ∗.

Taking into account that∥∥∥Z̃(θ∗ − θ̂) + ε
∥∥∥2

2
=
∥∥∥Z̃(θ∗ − θ̂)

∥∥∥2

2
+ ‖ε‖22 + 2εT (Z̃(θ∗ − θ̂))

we obtain

1

2NJ

∥∥∥Z̃ (θ∗ − θ̂)∥∥∥2

2
+ λ

(
ιT θ̂ − 1

)
+
µ

2
θ̂T θ̂ ≤

1

NJ
εT Z̃

(
θ̂ − θ∗

)
+ λ

(
ιT θ∗ − 1

)
+
µ

2
θ∗T θ∗. (1.40)

Note that εT Z̃(θ̂ − θ∗) ≤
∥∥∥Z̃T ε∥∥∥

∞

∥∥∥θ̂ − θ∗∥∥∥
1
.

Applying Lemma 1 with γ ≡ γ(N, δ) :=

√
2 log

(
2(R−1)J

δ

)/
N we obtain

P
(∥∥∥∥ 1

NJ
Z̃T ε

∥∥∥∥
∞
≥ γ

)
≤ 2(R− 1)J exp

−N

√√√√2 log

(
2(R−1)J

δ

)
N


2/

2


= 2(R− 1)J exp

(
log

((
2(R− 1)J

δ

)−1
))

= δ. (1.41)

In the following, we assume that {(1/(NJ))||Z̃T ε||∞ ≤ γ}, which happens with probability at

least 1 − δ according to Equation (1.41). Therefore, the rest of the proof holds with probability

1− δ. Using that the event {(1/(NJ))||Z̃T ε||∞ ≤ γ} occurs, we can bound the the right hand side

in Equation (1.40) from above by

1

2NJ

∥∥∥Z̃ (θ∗ − θ̂)∥∥∥2
+ λ

(
ιT θ̂ − 1

)
+
µ

2
θ̂T θ̂ ≤ γ

∥∥∥θ̂ − θ∗∥∥∥
1

+ λ
(
ιT θ∗ − 1

)
+
µ

2
θ∗T θ∗. (1.42)
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We split θ̂, Z̃ and ν over S and SC into two blocks, whereby S again denotes the set of relevant

grid points for which the true weights θ∗ > 0 and SC the set of points for which θ∗ = 0. It follows

that

ιT θ = ιTSθS + ιTSCθSC = ||θS ||1 + ||θSC ||1

and

θT θ = θTS θS + θTSCθSC .

Thus, we can reformulate Equation (1.42) as

1

2NJ

∥∥∥Z̃ (θ∗ − θ̂)∥∥∥2

2
+ λ

(∥∥∥θ̂S∥∥∥
1

+
∥∥∥θ̂SC∥∥∥

1
− 1
)

+
µ

2

(
θ̂TS θ̂S + θ∗TSCθ

∗
SC

)
≤

γ
∥∥∥θ̂ − θ∗∥∥∥

1
+ λ

(∥∥∥θ∗S∥∥∥
1

+
∥∥∥θ∗SC∥∥∥

1
− 1
)

+
µ

2

(
θ∗TS θ∗ + θ∗TSCθ

∗
SC

)
.

It follows from θ∗
SC

= 0 that ||θ̂ − θ∗||1 = ||θ̂S − θ∗S ||1 + ||θ̂SC ||1 such that after some simple

manipulations we obtain

1

2NJ

∥∥∥Z̃ (θ∗ − θ̂)∥∥∥2

2
+ λ

(∥∥∥θ̂S∥∥∥
1

+
∥∥∥θ̂SC∥∥∥

1
− 1
)

+
µ

2

(
θ̂TS θ̂S − θ∗TS θ∗S + θ̂TSC θ̂SC

)
≤

γ
∥∥∥θ̂ − θ∗∥∥∥

1
+ λ

(∥∥∥θ∗S∥∥∥
1
− 1
)
. (1.43)

Note that the terms in (1.43) that are multiplied by the Langrangian parameter λ drop out.

Recall that by the definition of a linear probability model, ||θ∗S ||1 − 1 = 0. With respect to

the second term, λ(||θ̂S ||1 + ||θ̂SC ||1 − 1), there are two different cases to be considered due to the

inequality constraint
∑R−1

r=1 θr ≤ 1: (1) the estimated probability weights sum to one (the constraint

is binding), and (2) the sum of the estimated probability weights is less than one (the constraint is

not binding). In the former case, ||θ̂S ||1 + ||θ̂SC ||1 − 1 = 0. In the latter case, the KKT conditions

require λ = 0. Thus, Condition (1.43) simplifies to

1

2NJ

∥∥∥Z̃ (θ∗ − θ̂)∥∥∥2

2
+
µ

2

(
θ̂TS θ̂S − θ∗TS θ∗S + θ̂TSC θ̂SC

)
≤ γ

∥∥∥θ̂ − θ∗∥∥∥
1
. (1.44)

It follows from ||θ̂S − θ∗S ||22 = θ̂TS θ̂S − 2θ∗TS θ̂S + θ∗TS θ∗S that

θ̂TS θ̂S − θ∗TS θ∗S + θ̂TSC θ̂SC =
∥∥∥θ̂S − θ∗S∥∥∥2

2
+ 2θ∗TS θ̂S − 2θ∗TS θ∗ +

∥∥∥θ̂SC∥∥∥2

2

and from θ∗
SC

= 0 that ||θ̂SC ||p = ||θ̂SC − θ∗SC ||p for p = 1, 2.

Consequently, we can collect the terms over the index sets S and SC to ||θ̂S − θ∗S ||1 + ||θ̂SC ||1 =

||θ̂ − θ∗||1 and ||θ̂S − θ∗S ||22 + ||θ̂SC ||22 = ||θ̂ − θ∗||22.

This yields

θ̂TS θ̂S − θ∗TS θ∗S + θ̂TSC θ̂SC =
∥∥∥θ̂ − θ∗∥∥∥2

2
+ 2θ∗TS θ̂S − 2θ∗TS θ∗.

Therefore, Equation (1.44) can be equivalently expressed as
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1

2NJ

∥∥∥Z̃(θ∗ − θ̂)∥∥∥2

2
+
µ

2

∥∥∥θ̂ − θ∗∥∥∥2

2
≤

γ
∥∥∥θ̂ − θ∗∥∥∥

1
+
µ

2

(
2θ∗TS θ∗S − 2θ∗TS θ̂S

)
. (1.45)

Next, because θ∗S > 0 and ||θ̂S − θ∗S ||1 ≤
√
s||θ̂S − θ∗S ||2 it holds that

θ∗TS

(
θ∗S − θ̂S

)
≤ θ∗TS

∣∣∣θ̂S − θ∗S∣∣∣ ≤ ∥∥∥θ∗S∥∥∥∞ ∥∥∥θ̂S − θ∗S∥∥∥1
≤
√
s
∥∥∥θ∗S∥∥∥∞ ∥∥∥θ̂S − θ∗S∥∥∥2

(1.46)

where |θ̂S − θ∗S | takes the absolute value of each element of the vector θ̂S − θ∗S .

Substituting Condition (1.46) back into the error bound in Equation (1.45) and using the fact

that ||θ̂ − θ∗||1 ≤
√

(R− 1) ||θ̂ − θ∗||2, we can rewrite Equation (1.45) as

1

2NJ

∥∥∥Z̃(θ∗ − θ̂)∥∥∥2

2
+
µ

2

∥∥∥θ̂ − θ∗∥∥∥2

2
≤ γ

√
(R− 1)

∥∥∥θ̂ − θ∗∥∥∥
2

+ µ
√
s
∥∥∥θ∗S∥∥∥∞ ∥∥∥θ̂S − θ∗S∥∥∥2

. (1.47)

Recall that ∥∥∥Z̃(θ̂ − θ∗)∥∥∥2

2
=
(
θ̂ − θ∗

)T
Z̃T Z̃

(
θ̂ − θ∗

)
and that the left-hand-side in Condition (1.47) can be summarized as

1

2

(
θ̂ − θ∗

)T[ 1

NJ
Z̃T Z̃ + µI

](
θ̂ − θ∗

)
≤
(
γ
√

(R− 1) + µ
√
s
∥∥∥θ∗S∥∥∥∞

)∥∥∥θ̂ − θ∗∥∥∥
2
. (1.48)

Recall that ξmin(µ) defines the minimum eigenvalue of the real symmetric matrix 1/(NJ)Z̃T Z̃+

µI over the set of vectors H (see Subsection (1.3.2)).

It holds that ξmin(µ) > 0 if µ > 0 and that ξmin ≥ 0 if µ = 0. In the following, we assume

ξmin(µ) > 0.

Thus, multiplying the left-hand-side in Condition (1.48) by ||θ̂ − θ∗||22/||θ̂ − θ∗||22 and using the

restricted minimum eigenvalue definition gives the upper `2-error bound between the estimated and

true probability weights:

ξmin(µ)

2

∥∥∥θ̂ − θ∗∥∥∥2

2
≤
(
γ
√

(R− 1) + µ
√
s ‖θ∗S‖∞

)∥∥∥θ̂ − θ∗∥∥∥
2

⇒
∥∥∥θ̂ − θ∗∥∥∥

2
≤

2
√

(R− 1) γ + 2µ
√
s ‖θ∗S‖∞

ξmin(µ)
.
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Proof of Corollary 1.

By assumption, it holds that(√
(R− 1) γ + µ

√
s ‖θ∗S‖∞

)
ξmin(0) ≤

√
(R− 1) γξmin(0) + µ

√
(R− 1) γ

=
√

(R− 1) γ(ξmin(0) + µ).

Using ξmin(µ) = ξmin(0) + µ gives(√
(R− 1) γ + µ

√
s ‖θ∗S‖∞

)
ξmin(0) ≤

√
(R− 1) γξmin(µ)

which is equivalent to

2
√

(R− 1) γ + 2µ
√
s ‖θ∗S‖∞

ξmin(µ)
≤

2
√

(R− 1) γ

ξmin(0)
.

Proof of Theorem 3.

It holds that the difference of F̂ (β) and F ∗(β) in any point β ∈ RK can be bounded by

∣∣∣F̂ (β)− F ∗(β)
∣∣∣ =

∣∣∣∣∣
R∑
r=1

θ̂r 1 [βr ≤ β]−
R∑
r=1

θ∗r 1 [βr ≤ β]

∣∣∣∣∣
≤ sup

β

∣∣∣∣∣
R∑
r=1

(
θ̂r − θ∗r

)
1 [βr ≤ β]

∣∣∣∣∣
≤

R∑
r=1

∣∣∣θ̂r − θ∗r ∣∣∣ =
R−1∑
r=1

∣∣∣θ̂r − θ∗r ∣∣∣+
∣∣∣θ̂R − θ∗R∣∣∣

where the last inequality holds by the triangle inequality.

Then,

∣∣∣F̂ (β)− F ∗(β)
∣∣∣ ≤ R−1∑

r=1

∣∣∣θ̂r − θ∗r ∣∣∣+
∣∣∣1− R−1∑

r=1

θ̂r − 1 +
R−1∑
r=1

θ∗r

∣∣∣
=

R−1∑
r=1

∣∣∣θ̂r − θ∗r ∣∣∣+
∣∣∣R−1∑
r=1

(
θ∗r − θ̂r

) ∣∣∣ ≤ 2
R−1∑
r=1

∣∣∣θ̂r − θ∗r ∣∣∣
= 2

∥∥∥θ̂ − θ∗∥∥∥
1
≤ 2
√

(R− 1)
∥∥∥θ̂ − θ∗∥∥∥

2
,

which, by Theorem 2, can be bounded by

|F̂ (β)− F ∗(β)| ≤ 2
√

(R− 1)
2
√

(R− 1) γ + 2µ
√
s ‖θ∗S‖∞

ξmin(µ)
.
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Chapter 2

A Sparse Grid Approach for the

Nonparametric Estimation of

High-Dimensional Random Coefficient

Models



2.1 Introduction

Adequately modeling unobserved heterogeneous behavior of economic agents is a common chal-

lenge in many empirical economic studies. Random coefficient models are frequently applied to

address this challenge. They allow the coefficients of the model to vary across agents according

to an unknown distribution. Conventional parametric estimators typically assume that the ran-

dom coefficients follow a certain family of distributions up to some unknown finite-dimensional

parameters. However, such estimators lack flexibility as they are often limited to a few families of

distributions, and are restrictive as they rely on the assumption that the assumed distribution is

correct. Due to the increasing availability of large data sets, nonparametric estimators for random

coefficient models become more and more attractive for applied research. These estimators allow

to recover distributions from the data without such limiting prior assumptions on the shape of the

distribution.

A popular nonparametric approach is the method of sieves (Chen, 2007). Sieve estimators

approximate the underlying distribution using a finite number of basis functions that typically

increase with the sample size. Unfortunately, sieve estimators can quickly become computation-

ally unfeasible when the model includes multiple random coefficients. Because the standard way

to extend one-dimensional basis functions to multi-dimensional functions is a tensor product con-

struction, the number of parameters increases exponentially in the number of random coefficients.

This property, known as the curse of dimensionality, limits the application of such estimators to

models with only a few random coefficients – even if the number of basis functions in one dimension

is moderately small (Chen, 2007).

This paper proposes and investigates a sparse grid approach for the nonparametric estimation of

high-dimensional random coefficient models. The estimator approximates the underlying distribu-

tion using a linear combination of multi-dimensional hierarchical basis functions. The hierarchical

structure of the basis functions has two major advantages: First, their local support makes it pos-

sible to accurately approximate the local peculiarities of the distribution without imposing certain

functional forms in other regions. Second, they are particularly suited for the construction of sparse

bases. For the construction of a sparse hierarchical basis, we adopt the sparse grid method sug-

gested by Zenger (1991). The approach uses a truncated tensor product which reduces the number

of basis functions substantially. Because smoother functions can typically be approximated by a

smaller number of basis functions (Hansen, 2014), the truncated tensor product deteriorates the ap-

proximation accuracy only slightly if the underlying random coefficients distribution is sufficiently

smooth (see, e.g. Bungartz and Griebel, 2004). In addition to the sparse tensor product construc-

tion, we study a spatially adaptive refinement procedure for estimating non-smooth distribution

functions. Depending on the local shape of the underlying distribution, the spatially adaptive

refinement incrementally adds basis functions in those areas of the distribution where the improve-

ment in the overall approximation accuracy is highest. To provide a computationally simple and

fast estimator, we exploit linearity using the linear probability model transformation suggested by

Fox et al. (2011). This way, the parameters of the model can be estimated using constrained least

squares.

We study the finite sample properties of our estimator in various Monte Carlo experiments.

Using the nonparametric estimator of Fox et al. (2011) as a benchmark, our estimator provides
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comparably accurate approximations of the true underlying distribution, even if the distribution has

a steep and wiggly curvature. Moreover, the results confirm the theoretical properties of the sparse

grid approach. The accuracy of the estimator slowly declines with an increasing number of random

coefficients included into the model and with decreasing smoothness of the true distribution. For

non-smooth distributions, the spatially adaptive refinement improves the approximation accuracy

remarkably. Because the estimator becomes more accurate with increasing sample size if the number

of basis functions is sufficiently large, the estimator can be viewed as a sieve estimator (Chen,

2007). An application to the model of dynamic regulation of air pollution in Blundell et al. (2020)

emphasizes the advantage of our estimator. Blundell et al. (2020) estimate the five-dimensional

distribution with the fixed grid estimator of Fox et al. (2011) using 10, 001 grid points. Even though

our estimator requires substantially fewer parameters, the estimated results are similar to those

of Blundell et al. (2020) – especially with respect to the estimated predictions of the conducted

counterfactual experiments.

The underlying principle of sparse grids – a sparse tensor product decomposition – goes back

to the seminal work of Smolyak (1963). Sparse grids for estimating nonlinear models in economics

(including random coefficient models) have been studied by Heiss and Winschel (2008). In contrast

to our estimator, the approach of Heiss and Winschel (2008) studies sparse grids in combination

with quadrature rules for numerical integration, thereby restricting the approach to the paramet-

ric estimation of random coefficient models. Sparse grids in combination with hierarchical basis

functions have been used in several research areas for function approximation and interpolation to

overcome the curse of dimensionality. Among others, Ma and Zabaras (2009) employ the concept

for the solution of stochastic differential equations (a frequent challenge in physics and engineer-

ing), Pflüger, Peherstorfer, and Bungartz (2010) for high dimensional classification problems (in

data mining), and Peherstorfer, Pflüger, and Bungartz (2014) and Franzelin and Pflüger (2016) for

nonparametric density estimation. The only application of sparse hierarchical bases in economics

which we are aware of is by Brumm and Scheidegger (2017). They employ a sparse hierarchical

basis for the interpolation of macroeconomic policy functions in dynamic optimization problems.

Our sparse grid estimator primarily relates to the nonparametric fixed grid estimator of Train

(2008), Fox et al. (2011) and Heiss, Hetzenecker, and Osterhaus (2021), and to the nonparametric

estimator of Train (2016). Both estimators use linear sieves to approximate the underlying random

coefficients’ distribution. The fixed grid approach uses a set of fixed support points and estimates

the probability mass at every point from the data. The disadvantage of the approach is that

the number of parameters equals the number of support points, leading to a large number of

parameters if the estimated distribution is supposed to be smooth – especially if the model has

multiple random coefficients. In fact, Fox et al. (2016) show that the fixed grid estimator suffers

from the curse of dimensionality as the derived error bound of the estimated distribution function

is less tight if the number of random coefficients increases. Train (2016) proposes to approximate

the random coefficients’ distribution using polynomials, splines or step functions as basis functions

inside logit kernels to model the shape of the distribution. The logit kernel assures nonnegativity

of the probability mass at each support point and summation to one. The parameters of the model

are estimated with simulated maximum likelihood. In order to avoid an exponential increase in the

number of basis functions, Train (2016) proposes to use mainly one-dimensional basis functions and

52



to include only few multi-dimensional basis functions to capture the correlation across dimensions.

In contrast to the approach proposed in this paper, the approach proposed by Train (2016) lacks

theoretical guidance on the choice of basis functions.

The remainder of the paper is organized as follows. Section 2.2 presents a nonparametric

estimator for random coefficients distribution using a linear combination of basis functions. Section

2.3 explains the construction of sparse hierarchical bases, and Section 2.4 presents a spatially

adaptive refinement procedure of the sparse hierarchical basis. Section 2.5 studies the performance

of the estimator in several Monte Carlo experiments, and Section 2.6 presents an application to

real data. Section 2.7 concludes.

2.2 Estimator

This section briefly lays out the random coefficients model and presents a computationally simple

and fast nonparametric estimator that approximates the true distribution using a linear combina-

tion of basis functions. The estimator is general in the sense that it can be applied using any type

of basis functions. The construction of sparse hierarchical bases is deferred until Section 2.2.

For the introduction of the estimator, consider the following random coefficient discrete choice

model. Let there be an i.i.d. sample of N observations, each confronted with a set of J mutually

exclusive potential outcomes, and an outside option. The researcher observes a D-dimensional

real-valued vector of explanatory variables, xn,j = (xn,j,1, . . . , xn,j,D), for every observation unit n

and potential outcome j, and a unit vector yi whose entries are equal to one when she observes

outcome j for the nth observation unit, and zero otherwise.1 Denote the probability of outcome

j for a given covariate vector xn,j and random coefficient vector βn = (βn,1, . . . , βn,D) ∈ RD by

g (xn,j ,βn). The functional form of g(·) is specified by the researcher. Integrating the conditional

outcome probability g (xn,j ,βn) over the distribution of random coefficients yields the unconditional

probability that outcome j occurs for observation n given covariates xn,j ,

Pn,j (x) =

∫
Ω1

· · ·
∫

ΩD

g (xn,j ,β) f0 (β) dβD . . . dβ1, (2.1)

where f0(β) : Ω → R+ represents the joint probability density function of the unknown random

coefficients’ distribution with domain Ω.

The goal of the researcher is to estimate the unknown distribution from the data. A popular

nonparametric approach for this task is the method of linear sieves. Linear sieves use a finite linear

combination of prespecified basis functions (e.g., polynomials or splines) to approximate functions of

unknown shapes. Define ΦB := {φb}Bb=1 as the finite set of such basis functions with corresponding

approximation space VB. The number of functions in ΦB, B, and the shape are specified by

the researcher.2 Starting from the approximation of the true probability density function, f0(β),

1Notation: In the following, vectors and matrices will be written in bold.
2In order to select the domain of the basis, the researcher can use some preliminary estimates. For instance,

estimating the distribution with a parametric approach first and then centering the grid at the mean estimates and
taking multiple standard deviations to specify the domain.
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through a linear combination of the basis functions in ΦB,

f0 (β) ≈ f̃(β) :=
B∑
b=1

αbφb(β) (2.2)

the approximated unconditional outcome probabilities are

Pn,j (x) ≈ P̃n,j (x) =

∫
Ω1

· · ·
∫

ΩD

g (xn,j ,β)

B∑
b=1

αbφb (β) dβD . . . dβ1, (2.3)

where α := (α1, . . . , αB)′ denotes the coefficient vector to be estimated. The ≈ arises from the

approximation of the true joint probability density function f0(β) through f̃(β). For the estimation

of α, we adopt the approach of Fox et al. (2011) and transform Equation (2.3) into a linear

probability model. Adding yn,j to both sides and moving Pn,j to the right yields

yn,j ≈
B∑
b=1

αb

∫
Ω1

· · ·
∫

ΩD

g (xn,j ,β)φb (β) dβD . . . dβ1 + (yn,j − Pn,j (x)) . (2.4)

where we used the sum rule of integration, thereby restricting the summation terms in Equation

(2.3) to be finite. Equation (2.3) reveals two computationally desirable properties: First, the

coefficients αb, b = 1, . . . , B, are independent of the integral, implying that the integral needs to be

simulated only once prior to the estimation. Second, the coefficients enter the unconditional choice

probabilities linearly. For the estimation of α, we simulate the integral in Equation (2.4) using a

finite set of nodes BR := {βr}Rr=1 (e.g., using Halton or Sobol quasi-random sequences),

yn,j ≈
B∑
b=1

αb

R∑
r=1

g (xn,j ,βr)φb (βr) + (yn,j − Pn,j (x)) . (2.5)

The ≈ is now decomposed of the error from the approximation of f0(β) through f̃(β), and

the approximation error arising from the numerical simulation of the integral.3 The property

that α enters Equation (2.5) linearly allows to estimate the coefficients with constrained least

squares, which is easy to implement and computationally fast. The binary outcome vector y =

(y1,1, . . . , y1,J , . . . , yN,J) denotes the dependent variable and
∑R

r=1 g(xn,j ,βr)φb(βr) the bth regres-

sor – the regression in total has NJ observations, J “regression observations” for every statistical

observation unit n = 1, . . . , N and B regressors. In order to estimate a valid distribution function,

we estimate the coefficient vector α subject to the constrains that f̃(β) is nonnegative and has unit

integrand,

α̂ = arg min
α∈Λ

1

2NJ

N∑
n=1

J∑
j=1

(
yn,j −

B∑
b=1

αb

R∑
r=1

g (xn,j ,βr)φb (βr)

)2

(2.6)

where Λ := {α ∈ RD :
∑B

b=1 αbφb(βr) ≥ 0 ∀ βr ∈ BR,
∑B

b=1 αb
∑R

r=1 φb(βr) = 1}.4 By the

3By the strong law of large numbers, the approximated integral over of the basis function converges weakly to
its analytic solution such that the latter approximation error approaches zero (Train, 2009) if R is sufficiently large.

4The estimator relates to the smooth basis densities estimator proposed in Fox et al. (2011). They propose to
approximate the true distribution through a mixture of normal densities, and estimate the probability weight of each
normal subject to the constraint that the weights are nonnegative and sum to one. The proposed estimator is a
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definition of choice probabilities, the expected value of the composite error term yn,j − Pn,j(xn,j)
conditional on xn,j is zero, such that the regression model satisfies the mean-independence assump-

tion of the least squares approach (Fox et al., 2011). The optimization problem stated in Equation

(2.6) is convex and has a single global optimum if the basis functions in ΦB are linearly indepen-

dent. It can be solved with common statistic software using specialized optimization routines (e.g.,

R’s solve.QP function from the quadprog package or MATLAB’s lsqlin function).

The estimated joint distribution function at point β is constructed from the weighted sum of

the estimated coefficients and basis functions,

F̂ (β) =
B∑
b=1

α̂b

R∑
r=1

1 [βr ≤ β]φb (βr) , (2.7)

where 1[βr ≤ β] is an indicator function that is equal to one whenever βr ≤ β, and zero otherwise.

The term to the right of coefficient αb corresponds to the simulated integral of the corresponding

basis function φb(·) with upper bound β using R simulation nodes. The estimated distribution

approximates the true underlying distribution through a discrete distribution with R support points

and probability weight f̂(βr) =
∑B

b=1 α̂bφb(βr) at every point r = 1, . . . , R.

For the estimation of multi-dimensional random coefficients distributions, the multi-dimensional

bases are typically constructed using a regular tensor product of one-dimensional basis functions.

Starting from a one-dimensional basis with B basis functions, the D-dimensional regular tensor

product basis includes BD basis functions (Chen, 2007). Because the exponential dependency

renders the approach computationally unfeasible for high-dimensional distributions, the above es-

timator with a regular tensor basis is limited to moderately low-dimensional random coefficient

models.

Remark 1. The proposed estimator can be easily extended to a generalized least-squares ver-

sion and a simulated maximum likelihood version. For the generalized least-squares version, each

“regression observation” in Equation (2.6) is weighted by a weighting matrix to address the het-

eroscedasticity problem associated with linear probability models and the correlation across obser-

vations that belong to the same observation unit n. For a detailed description of the calculation of

an efficient weighting matrix, see Fox et al. (2011).

As an alternative to constrained least squares, the coefficients α can be estimated with simulated

maximum likelihood using the approach of Train (2016), who proposes to model the probability

weight at support point βr using a linear combination of basis functions inside a logit kernel.

The exponential function in the logit kernel assures that the estimated weights are positive. The

denominator normalizes the probability weights such that they sum up to one.

Remark 2. When choosing the family of basis functions and the number of simulation draws R,

it is important that the basis functions are linearly independent, and that the researcher chooses

R to be sufficiently large such that the draws are sufficient to cover the domain densely. If the

number of simulation draws is too small, there are only a few simulation draws inside the support

special case of nonnegative lasso (see Heiss et al. (2021) for more details), leading to sparse solutions. In contrast,
our estimator does not relate to the lasso and, hence, does not suffer from sparsity.
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of every basis functions with the consequence that most column entries are zero. This property

can lead to an ill-conditioning of the least squares problem (Judd, Maliar, and Maliar, 2011).5 One

tool recommended in the literature to improve the numerical stability of least squares problems is

Thikonov regularization (Hoerl and Kennard, 1970) (see, e.g., Judd et al., 2011, Cohen, Davenport,

and Leviatan, 2013, or Pflüger et al., 2010), which is already successfully used by Heiss et al. (2021)

to improve the performance of the nonparametric fixed grid estimator of Fox et al. (2011).6

2.3 Sparse Hierarchical Bases

This section explains the construction of sparse hierarchical bases. Because the sparse grid is based

on a truncated tensor product of one-dimensional hierarchical basis functions, we start with the

concept of hierarchical basis functions, and then explain how sparse grids can be constructed from

multi-dimensional hierarchical bases. For a more comprehensive presentation of hierarchical bases

and sparse grids, see, e.g., Bungartz and Griebel (2004) and Garcke (2013).

2.3.1 Hierarchical Multilevel Bases

Hierarchical bases are based on a decomposition of the approximation space into a finite number

of hierarchically structured segments – intervals in the univariate case and hyper-rectangles in

the multivariate case. These segments are constructed via a discretization of the domain Ω of

the function under consideration using equidistant grids. In the following, we consider the D-

dimensional unit cube, Ω = [0, 1]D for ease of notation. The construction of the hierarchical

basis can be easily adapted to different domains via rescaling. Furthermore, we assume that f0 is

vanishing on the boundary of Ω (f0|δΩ = 0).7

Let l ∈ N denote the discretization level specified by the researcher. In the one-dimensional

case, the grid Ωl with points bl,i := 2−l i and mesh size hl := 2−l splits the domain Ω into 2l

equally-sized intervals. The index i ∈ N indicates the location of a grid point. Every grid point is

associated with a basis function φ : [0, 1]→ R that is centered at the corresponding grid point. For

the construction of the sparse grid basis, we consider the piecewise-linear hat function

φ(β) :=

1− |β| , if β ∈ [−1, 1]

0, otherwise.
(2.8)

Using translation and scaling according to level l and index i, the basis function centered at grid

5In addition to the multicollinearity problem, choosing fewer simulation draws can also lead to poor scaling of
the regressor matrix. If there are only a few simulation draws inside the support of every basis function, the columns
of the regressor matrix have only a few very small entries, in which case they are treated as if they are columns of
zeros (Judd et al., 2011).

6We noticed that the instability of the estimator for high levels when the distribution is estimated with ordinary
least squares disappears when the coefficients are estimated with constrained least squares. To this end, the constraints
seem to constitute a form of regularization that stabilizes the estimator and potentially makes additional regularization
redundant.

7The restriction that f0 is vanishing at the boundary of Ω can be overcome by adding basis functions that
are nonzero at the boundaries (for more details, see, e.g., Pflüger (2010)). Train (2016) points out that it can be
beneficial to restrict the function to be zero at the boundaries of the domain as this eliminates the long tails of some
distributions, e.g., of the normal or lognormal distribution, which can be unrealistic in real-world applications.

56



point bl,i is

φl,i (β) := φ

(
β − bl,i
hl

)
(2.9)

with φl,i(bl,i) = 1 and local support [bl,i − hl, bl,i + hl].

To construct a basis with hierarchically arranged functions, the locations of the grid points –

and the number of basis functions within a level – are determined by the index sets

Il :=
{
i ∈ N : 1 ≤ i ≤ 2l − 1, i odd

}
. (2.10)

All basis functions with level l centered at the grid points corresponding to index set Il span the

hierarchical subspace Wl,

Wl := span {φl,i : i ∈ Il} . (2.11)

The upper panel in Figure 2.1 illustrates the one-dimensional piecewise-linear hierarchical subspaces

Wl going from level l = 1 (left) to level l = 3 (right). All hierarchical basis functions with the same

Figure 2.1: One-Dimensional Piecewise-linear Hierarchical Basis Functions

Note: The top panel shows the one-dimensional hierarchical subspaces Wl for l = 1 (left), l = 2 (center), and l = 3
(right). The bottom panel illustrates the approximation of a univariate normal density (solid red line) with mean 0.5
and standard deviation 0.15, f(β) = φ(β|0.5, 0.152), through a one-dimensional piecewise-linear hierarchical basis Φl

with levels 1, 2, 3 (solid blue line). The contribution of every basis function to the approximation is indicated by the
grey arrows.

level have the same size, shape and compact support. While the number of basis functions that span

a subspace increase with the level l of the subspace, the support of each function decreases with

l. The index sets Il ensure that (i) different basis functions within the same level have mutually

disjoint support, and (ii) that the support of a basis function with level l nests the support of two
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basis functions of the next higher level, l + 1.

The hierarchical basis of level l is the set of all basis functions with level 1 ≤ k ≤ l and

corresponding index i ∈ Ik,
Φl := {φk,i : i ∈ Ik, 1 ≤ k ≤ l} . (2.12)

The bottom panel in Figure 2.1 illustrates the approximation of a univariate normal density using

a one-dimensional piecewise-linear hierarchical basis. Due to the hierarchical structure, hierarchi-

cal bases of different levels are nested such that the basis of a level l refines a basis of the next

lower level. The smaller support of basis functions with a higher level allows to approximate local

peculiarities more accurately. The shape of the approximated function depends on the shape of

the specified type of basis function. For instance, the one-dimensional piecewise-linear hierarchical

basis approximates the true probability density function on every segment by a linear function.

Starting from the one-dimensional hierarchical basis, a D-dimensional hierarchical basis on

Ω = [0, 1]D is obtained via a tensor product construction. Let the multi-index l = (l1, . . . , lD) ∈ ND

denote the discretization level of the hierarchical basis in every dimension, and i ∈ ND indicate

the spatial position of the D-dimensional grid points. In the following, all relational operations

involving vectors are to be read component-wise. The D-dimensional grid Ωl with grid points

bl,i := (bl1,i1 , . . . , blD,iD) and mesh size hl = (hl1 , . . . , hlD) can be constructed from the cartesian

product of one-dimensional grids in every dimension. Accordingly, the indices id and ld can vary

across d for a given grid point. The grid points are equidistant in each dimension but can differ

across dimensions (e.g., the grid can be finer in more important dimensions).

As in the one-dimensional case, every grid point spans a basis function with support on the

respective segment. The D-dimensional basis function centered at grid point bl,i is defined as the

product of one-dimensional basis functions,

φl,i (β) :=

D∏
d=1

φld,id (βd) . (2.13)

The left panel in Figure 2.2 illustrates the tensor product construction of a two-dimensional

piecewise-bilinear hierarchical basis function with level l = (2, 1) and index i = (1, 1) from the

one-dimensional piecewise-linear basis function φ2,1 in dimension d = 1 and φ1,1 in dimension d = 2

(dashed black lines).

The multivariate hierarchical subspaces are defined analogously to the univariate case,

Wl := span {φl,i : i ∈ Il} , Il := Il1 × · · · × IlD , (2.14)

where the D-dimensional index sets Il can be constructed as the cartesian product of the one-

dimensional index sets. The right panel in Figure 2.2 shows the hierarchical subspace W(2,1) which

is spanned by the basis functions φ(2,1),(1,1) and φ(2,1),(3,1).

The D-dimensional hierarchical basis is the set of all basis functions with level 1 ≤ k ≤ l and

index i ∈ Ik
Φl := {φk,i : i ∈ Ik,1 ≤ k ≤ l} . (2.15)
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Figure 2.2: Two-Dimensional Piecewise-bilinear Hierarchical Basis Functions

Note: The left panel illustrates the tensor product construction of the two-dimensional piecewise-bilinear hierarchical
basis function for level l = (2, 1) and index i = (1, 1) from the one-dimensional piecewise-linear basis function φ2,1 in
dimension d = 1 and φ1,1 in dimension d = 2 (dashed black lines). The right panel shows the hierarchical subspace
W(2,1) = {φ(2,1),(1,1), φ(2,1),(3,1)}.

The approximated function f̃l ∈ Vl is a linear combination of D-dimensional hierarchical basis

functions with coefficients αk,i ∈ R,

f0 (β) ≈ f̃l (β) :=
l∑

k=1

∑
i∈Ik

αk,iφk,i (β) (2.16)

where Vl denotes the function space spanned by the hierarchical basis functions. Due to the linear

independence across piecewise-linear hierarchical basis functions, the underlying function f0 can be

uniquely approximated through f̃l (Valentin and Pflüger, 2016).

Bungartz and Griebel (2004) show that the full hierarchical basis includes |Vl| = (2l − 1)D =

O(2lD) basis functions. The full hierarchical basis has the same limitation as other existing nonpara-

metric estimators for random coefficient models. Due to the regular tensor product construction of

multi-dimensional basis functions from one-dimensional basis functions, the number of parameters

increases exponentially in the number of random coefficients, prohibiting an accurate approxima-

tion of the underlying distribution if the model includes multiple random coefficients. For instance,

for a 5-dimensional distribution and level l = 3 in each dimension, estimating the model using the

full hierarchical basis involves the estimation of (23 − 1)5 = 16, 807 parameters.

2.3.2 Classical Sparse Grids

To alleviate the curse of dimensionality, sparse grids seek to construct an approximation space that

is better than the full grid space Vl in the sense that the same number of basis functions leads to a

higher approximation accuracy. The classical sparse grid approach (Zenger, 1991) takes advantage

of the hierarchical nature of the basis functions. Starting from the definition of the approximation
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space Vl as a direct sum of hierarchical subspaces,8

Vl :=
⊕
k≤l

Wk, (2.17)

the approach reduces the number of basis functions by selecting only those subspaces that contribute

most to an accurate approximation. The selection of subspaces arises from a discrete optimization

that weights the approximation benefit of a hierarchical subspace - measured in terms of its con-

tribution to the overall approximation in the L2 norm - against its cost - measured in terms of the

number of parameters (Bungartz and Griebel, 2004).

The cost of subspace Wl can be immediately derived from its corresponding index set Il, and

is given by |Wl| = |Il| = 2|l−1|1 . The contribution of a subspace to the approximation accuracy

depends on the smoothness of the function under consideration, or more precisely, on its function

class. The Classical sparse grid is derived for functions that are assumed to be sufficiently smooth,

i.e., with bounded second-order mixed derivatives. This function class belongs to the mixed Sobolov

space (of functions vanishing on the boundary)9

H2
mix (Ω) :=

{
f : Ω→ R : Drf ∈ L2(Ω), |r|∞ ≤ c, f |∂Ω = 0

}
(2.18)

with |r|∞ := max1≤d≤D rd and smoothness parameter c = 2, where Dr denotes the differential

operator defined by

Dr :=
∂r

∂βr11 · · · ∂β
rD
D

(2.19)

given a D-tuple r = (r1, . . . , rD) of nonnegative integers. Recall that in the representation of

the probability density function as a weighted sum of hierarchical basis functions, the coefficient

αk,i indicates the refinement of the local approximation constructed with those functions of the

next lower level, l − 1, through the function with level l. Bungartz and Griebel (2004) show

for functions f ∈ H2
mix(Ω) that the coefficients in the representation of the underlying function

as a linear combination of piecewise-linear hierarchical basis functions decay rapidly as the level

increases,

|αl,i| = O
(

2−2|l|1
)
, (2.20)

where |l|1 :=
∑D

d=1 ld. Thus, the decreasing support of basis functions with increasing level together

with the decay of the coefficients imply a decreasing contribution of subspaces with higher level if

the underlying function is sufficiently smooth.

The classical sparse grid leaves out those subspaces within the full grid space Vl that contribute

only little to the function approximation, i.e., for which the absolute values of the coefficients are

small. This is done via an a priori optimization which minimizes the approximation error (measured

8The space Vl is the direct sum of subspaces Wk, 1 ≤ k ≤ l, if Vl = W1+. . .+Wk and the subspaces {W1, . . . ,Wl}
are disjoint (Gentle, 2007, p. 48).

9Assuming a certain smoothness class of functions often required in the nonparametric estimation literature
when studying the approximation accuracy of estimators (see, e.g., Chen (2007) for different smoothness classes).
For example, when deriving the error bound for the nonparametric fixed grid estimator of Fox et al. (2011), Fox et
al. (2016) assume that the density of the true underlying random coefficients distribution is a s-times continuously
differentiable density function with all own and partial derivatives uniformly bounded (with respect to the L2-norm)
by a constant C̄ < ∞. Their derived error bound on the true and estimated distribution is tighter if the true
probability density function is smoother.
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by the L2 norm) while keeping the number of grid points fixed. For functions in the mixed Sobolov

space Hmix
2 (Ω), this yields the classical sparse grid space

VlS :=
⊕

|k|1≤lS+D−1

Wk. (2.21)

of level lS ∈ N specified by the researcher. Note that the set of basis functions that spans VlS is now

decomposed of only those functions from subspaces for which |k|1 ≤ lS +D−1 for every 1 ≤ k ≤ l,

ΦlS := {φk,i : i ∈ Ik, |k|1 ≤ lS +D − 1} . (2.22)

Thus, the sparse grid approximation space VlS is a subset of the full grid approximation space with

discretization level lS in every dimension, VlS ⊂ Vl with l = (lS , . . . , lS). Figure 2.3 illustrates

the construction of a two-dimensional classical sparse grid of level lS = 3. The number of basis

Figure 2.3: Two-Dimensional Full and Sparse Grid for Level l = 3

Note: The upper panel illustrates the construction of a two-dimensional full Cartesian grid of level l = (3, 3), and
the lower panel the construction of a classical sparse grid of level lS = 3.
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functions in the sparse hierarchical basis is

|VlS | =
lS−1∑
i=0

2i ·

(
D − 1 + i

D − 1

)
= 2lS

(
lD−1
S

(D − 1)!
+O

(
lD−2
S

))
. (2.23)

Expressed in terms of the number of basis functions in one dimension, B = 2l − 1, Equation 2.23

implies that the function space spanned by the sparse hierarchical basis is of order O(B log(B)D−1),

compared to O(BD) for regular tensor product bases (Bungartz and Griebel, 2004, Brumm and

Scheidegger, 2017). Table 2.1 reports the number of basis functions in a sparse hierarchical basis

for different dimensions and discretization levels and for a regular tensor product basis with B =

(3, 5, 7) basis functions in one dimension. Clearly, the estimation of the model with a tensor product

basis rapidly becomes computationally unfeasible in five- and higher-dimensional problems for more

than three basis functions in one dimension. The sparse grid approach renders the estimation of

the corresponding random coefficients’ distributions with such discretization levels computationally

feasible.

Table 2.1: Number of Grid Points in Full Cartesian Grid vs. Sparse Grid

Sparse Grid Tensor Product Basis

Dimension |V2| |V3| |V4| B = 3 B = 5 B = 7

2 5 17 49 9 25 49
3 7 31 111 27 125 343
4 9 49 209 81 625 2401
5 11 71 351 243 3125 16807
6 13 97 545 729 15,625 117,649
8 17 161 1,121 6561 390,625 5.76 · 106

10 21 241 2,001 59,049 9, 77 · 106 2.82 · 108

Analogously to the full hierarchical basis, the approximated function f̃lS ∈ VlS corresponds to

the finite weighted sum of hierarchical basis functions centered at the sparse grid points,

f0 (β) ≈ f̃lS (β) =
∑

|k|1≤lS+D−1

∑
i∈Ik

αi,kφi,k (β) . (2.24)

Bungartz and Griebel (2004) show that the approximation accuracy of functions constructed with

the sparse piecewise-linear hierarchical basis deteriorates only slightly from O(2−2l) for the full

hierarchical basis to O(2−2lS · lD−1
S ) if the function under consideration is sufficiently smooth.

Remark 3. The construction of sparse grids is not restricted to piecewise-linear functions but

can be constructed using several different types of basis functions. For instance, Valentin and

Pflüger (2016) consider cardinal B-Splines. If the spline functions are of odd degree, the knots of

the cardinal B-Spline basis coincide with the grid points of the hierarchical basis. In fact, the hat

function corresponds to the cardinal B-Spline of degree one. For more information on alternative

basis functions, see, e.g., Bungartz and Griebel (2004) and Pflüger (2010), respectively.
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2.4 Spatially Adaptive Refinement

The classical sparse grid contains those basis functions that are optimal in the sense that they

deteriorate the approximation accuracy only slightly if the function to be approximated has bounded

second-order mixed derivatives. For functions outside this class, i.e., functions with a wigglier and

steeper curvature, spatially adaptive refinement can be used to further increase the approximation

accuracy. Starting from the sparse grid, the refinement procedure incrementally adds basis functions

to subregions where the underlying distribution is characterized by a steep curvature (Pflüger, 2010).

Due to the nested support of hierarchical basis functions of different levels, hierarchical bases

are particularly suited for spatially adaptive refinement procedures. Recall that the support of

a basis function of level l − 1 is subdivided among the basis functions of the next finer level l

(for each function, multiple functions of the next finer level exist). Thus, by adding additional

basis functions of the next finer level, one can refine the basis in some regions without affecting the

approximation accuracy in others. Figure 2.4 illustrates this tree-like structure of a one-dimensional

hierarchical basis of level l = 3. Each grid point in the tree always serves as origin for two new

points. Suppose that the point 0.25, a point of level l = 2, is selected for refinement. The spatially

adaptive approach adds the two neighboring grid points at location 0.125 and 0.375 of the next

higher level, l = 3. These newly added points span basis functions with disjoint support that

cover half of the support of the basis function spanned at 0.25 (cf. Section 2.3). For the adaptive

Figure 2.4: One-dimensional Tree-like Structure of Full Grid of Level lS = 3

refinement of a D-dimensional hierarchical basis, in every dimension, all neighboring points of the

next higher level that are not yet included into the grid are added, thus keeping the coordinates of

the refined grid point in the remaining dimensions fixed. This way, at most 2D points are added to

the current grid for every point refined. Figure 2.5 illustrates the spatially adaptive procedure for a

two-dimensional sparse grid of level lS = 3. The red point is the grid point selected for refinement,

and the four blue points are those added to the current grid. The basis functions spanned at the

newly added points extend the current sparse basis.

Refinable in the hierarchical structures are only grid points for which at least one neighboring

point of the next higher level does not exist yet in any of the dimensions. To keep the hierarchical

structure of the basis consistent, all originating points of the new grid that are not yet included

have to be added if not already included. This can lead to a scenario where more than 2D points

are added per refinement step (Pflüger, 2010).
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Figure 2.5: Spatially Adaptive Refinement of Two-Dimensional Sparse Grid of Level lS = 3

Note: The figure illustrates the spatially adaptive refinement of a sparse grid of level lS = 3. The red point represents
the grid point that is selected for refinement, and the blue points represent the grid points that are added to the
initial sparse grid.

The challenge of the spatially adaptive refinement is to select those grid points for refinement

that lead to the largest improvement in the approximation accuracy. A possible but computationally

intensive and inefficient strategy is to consider every current grid point for refinement separately,

and add only those candidates that contribute most to the problem’s solution (according to a

suitable error measure).10 However, already in the one-dimensional case, there are as many grid

points to be considered on the next higher level as potential new grid points as there are in the

current grid. The model has to be estimated for each of these points, of which many are unlikely

to be relevant (Pflüger, 2010).

A more efficient strategy is the identification of refinement candidates based on information

available on the current grid. A refinement criterion commonly used in applications is the absolute

value of the estimated coefficients αk,i (see, e.g., Pflüger et al., 2010 and Brumm and Scheidegger,

2017). Recall that in the reconstruction of the underlying function f0 as weighted sum of hierarchical

basis functions, the coefficient αk,i represents the local variation of f0 at the area around the

corresponding grid point bk,i. Accordingly, refining grid points with the largest absolute value of

the corresponding coefficient first promotes the refinement of those regions where the local variation

of f0 is strong (Pflüger, 2010).11 Another criterion suggested by Pflüger (2010) specifically for

regression tasks is the contribution of each basis function to the squared estimated local error. Let

ε̂2n,j := (yn,j −
B∑
b=1

α̂b

R∑
r=1

g(xn,j ,βr)φb(βr))
2

denote the squared estimated local error for observation unit n and alternative j following from

10The strategy relates to the concept of backward deletion in optimal knot search for spline functions (e.g., see
Wand, 2000).

11Peherstorfer et al. (2014) suggest to weight the absolute value of the estimated hierarchical coefficients α̂k,i,
|k|1 ≤ lS +D − 1 and i ∈ Ik, by the function value of the basis function.
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the regression in (2.6). The grid point that centers the basis function with the largest contribution

to the squared local error,

cl,i :=

N∑
n=1

J∑
j=1

|α̂l,i
R∑
r=1

g(xn,j ,βr)φl,i(βr)ε̂
2
n,j |,

is refined first, where R corresponds to the number of simulation draws,and α̂ := (α̂1, . . . , α̂B)′ to

the vector of estimated coefficients (the estimation of the coefficients is explained in Section 2.2).

We employ the criterion in the Monte Carlo experiments presented in the subsequent section, where

the spatially adaptive refinement substantially improves the approximation accuracy of the sparse

hierarchical basis estimator.

In addition to the refinement criterion, the researcher has to specify the number of refinement

steps alongside the number of grid points refined per step. The choice depends on the problem

and the data at hand. On the one hand, refining more than one grid point at once leads to a

broader refinement, which can help to circumvent the refinement from getting stuck in a single

characteristic of the underlying function. On the other hand, refining too many points at once

expedites the increase in the number of points (especially in cases of high dimensional problems)

which can cause overfitting (especially for small data sets) (Pflüger, 2010).

Selecting the number of points and the refinement steps relates to a model selection task. For

sieve series models, Hansen (2014) presents a variety of different model selection procedures, the

most prominent being the Akaike information criterion (AIC) and cross-validation.12 While cross-

validation techniques have the advantage that they take the out-of-sample fit into account to avoid

over-fitting, the AIC is computationally less expensive, which is an advantage in high-dimensional

problems. In the Monte Carlo experiments presented in Section 2.5, we studied both k-fold cross-

validation and the AIC for the selection of the number of refinement steps. The results indicate

that both AIC and k-fold cross-validation appear to be suitable criteria leading to an improved

approximation accuracy of the sparse hierarchical basis estimator when the local squared error is

used for the selection of the grid points to be refined.

2.5 Monte Carlo Simulations

This section studies the finite sample properties of the sparse grid estimator in several Monte Carlo

experiments using true random coefficient distributions of varying smoothness and dimensionality.

The experiments apply the estimator to a random coefficients logit model with individual-level

discrete choice data.13 The model is widely used in applied econometrics to study discrete choices

of economic agents among a finite number of alternatives. In this model, every observation unit

12Selecting the number of grid points and total refinement steps relate to the selection of the number of knots in
spline regression. Another model selector than the AIC and cross-validation that is commonly used in this literature
is generalized cross-validation (e.g., see Zhou and Shen, 2001, Ruppert, Wand, and Carroll, 2003). For the spatially
adaptive refinement of sparse grids, Pflüger (2010) suggests using k-fold cross-validation and to refine the hierarchical
basis as long as the out-of-sample fit decreases. This approach is also used in spline regression where it is known
as the myopic algorithm (the out-of-sample fit is typically measured via generalized cross-validation). We employ
a full-search algorithm (Ruppert et al., 2003, pp. 127-128) in our Monte Carlo experiments, which calculates the
out-of-sample fit for every refined grid and then selects the model with the lowest out-of-sample fit.

13For a detailed description of the random coefficients multinomial logit, see Train, 2009, pp. 134-150.
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n makes a single discrete choice among J mutually exclusive alternatives (and an outside option).

Observation units pick the alternative that realizes the highest utility. Let un,j = xTn,jβn + ωn,j

denote the utility from alternative j, given covariates xn,j and unobserved individual-specific pref-

erences βn. The random variable ωn,j denotes an additive, consumer- and choice-specific error

term. Observation unit n chooses alternative j if un,j > un,k for all k 6= j (and un,0 = ωn,0). Under

the assumption that ωn,j is i.i.d. type I extreme value across alternatives and observation units,

the unconditional choice probabilities, Pn,j(x), are of the form

Pn,j(x) =

∫
Ω1

· · ·
∫

ΩD

exp
(
xTn,jβ

)
1 +

∑J
j=1 exp

(
xTn,jβ

)f (β) dβD . . . dβ1. (2.25)

In our experiments, the observation units choose among J = 5 mutually exclusive alternatives

and an outside option. We estimate the model for different sample sizes N = 1000, 10000, and

number of random coefficients D = 2, 4, 6. We draw the entries of the D-dimensional vectors of

alternative-specific characteristics, xn,j , independently from a N (0, 1) for every observation unit n

and alternative j. In order to study the performance of the sparse grid estimator for distributions

of varying smoothness, we consider two alternative distributions for the true random coefficients

distribution. The first experiment generates the random coefficients β from a mixture of two

multivariate normals,

0.5 · N
(
µ(1),Σ(1)

)
+ 0.5 · N

(
µ(2),Σ(2)

)
,

where the entries of the D-dimensional mean vectors are µ
(1)
d = −1.5 and µ

(2)
d = 1.5 for d = 1, . . . , D.

The variance matrices Σ(1) = Σ(2) have entries Σ
(1)
dd = 0.4 on the main diagonal and Σ

(1)
dk = 0.1

on the off-diagonal, i.e., for d 6= k. The second experiment considers a more sophisticated and

less smooth distribution. It generates the random coefficients from a mixture of four multivariate

normals,

0.25 · N
(
µ(1),Σ(1)

)
+ . . .+ 0.25 · N

(
µ(4),Σ(4)

)
,

with µ
(1)
d = −2.5, µ

(2)
d = −0.8, µ

(3)
d = 0.8, and µ

(4)
d = 2.5 for d = 1, . . . , D. The variance matrices

of the second design, Σ(m), m = 1, . . . , 4, are 1/4 times the variance matrix of the first design,

implying a steeper curvature. Figure 2.6 and Figure 2.7 display the bivariate joint distribution

functions of the mixture of two normals, and the mixture of four normals, respectively. Due to the

smaller variance and the higher number of mixture components, the mixture of four multivariate

normals has a steeper and wigglier curvature, which, in theory, is more difficult to recover for the

sparse grid estimator. Figure 2.10 in the appendix shows the true joint probability densities of true

distributions.

For every distribution, we generate 200 data sets for every combination of N and D. For

every data set, we estimate the random coefficients’ distribution using the sparse grid and the

spatially adaptive sparse grid estimator. The sparse grids are constructed on Ω = [−4, 4]D for

levels lS = (2, 3, 4). The support covers the true support with a coverage probability close to one

(at least 0.998). The hierarchical bases are constructed using piecewise D-linear hat functions. We

simulate the integral using quasi-random number sequences. To ensure proper coverage of the true

distributions’ support, we let the number of simulation draws R increase with the dimension of the
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true distribution, i.e., we use R = D ·2000 Halton draws. We also conducted the experiments using

the mexican hat function (cf. Pflüger, 2010). Table 2.7 in the appendix presents the results which

are similar to those obtained with the piecewise-linear hat function. For the spatially adaptive

refinement, we conduct 10 refinement steps, whereby the maximum discretization level is 5. In

every refinement step, we select the grid point (among those grid points that can be updated)

with the largest contribution to the local squared error (c.f. Section 2.4). We select the number

of refinement steps using 5-fold cross-validation, whereby the final spatially adaptive sparse grid

estimator uses the refined grid that achieves the lowest out-of-sample MSE. In addition, we studied

the performance of the spatially adaptive refinement when the number of refinement steps is selected

based on the out-of-sample log-likelihood, and the AIC. The results are quite similar for all three

criteria as indicated by the results in Table 2.5 in the appendix.

As a benchmark, we estimate the random coefficients distribution using the nonparametric

estimator of Fox et al. (2011). The estimator uses a fixed grid of random coefficients instead of

basis functions for approximating the underlying distribution. To assure a certain comparability

across the estimators in terms of the number of parameters, we use the same number of grid points,

q = 3, 7, 15, in every dimension as the full hierarchical basis has basis functions for l = 2, 3, 4.

We construct the D-dimensional grid points from the cartesian product of the one-dimensional

points. This is in line with Fox et al. (2011), who recommend increasing the number of grid points

exponentially with D. For D = 4, we can only estimate the random coefficients distribution with

q = 3, 7 points in every dimension, and for D = 6 with only q = 3 grid points. Using more grid

points in these setups is not possible as the number of parameters exceeds the sample size.

We assess the estimators’ approximation accuracy using the root mean integrated squared error

(RMISE) from Fox et al. (2011). Denote the estimated distribution function in Monte Carlo run m

evaluated at βe by F̂m(βe), and the true distribution by F0(βe). The RMISE averages the squared

difference between the true and estimated distribution at a fixed set of evaluation points across all

Monte Carlo runs,

RMISE =

√√√√ 1

200

200∑
m=1

[
1

E

E∑
e=1

(
F̂m(βe)− F0(βe)

)2
]
.

We use a uniform grid with E = 10D points spread on [−4, 4]D for the evaluation. All calculations

are conducted with the statistical software R (R Core Team, 2018).

The left part in Table 2.2 presents the average RMISE across the Monte Carlo replicates for the

fixed grid estimator (FKRB), the sparse grid estimator (SG), and the spatially adaptive sparse grid

estimator (ASG) for the mixture of two normals, while the right part the results for the mixture

of four normals. The sparse grid and the spatially adaptive sparse grid estimator achieve more

accurate approximations of the true random coefficients distributions than the FKRB estimator,

independent of the dimension, sample size, and the refinement level/number of fixed grid points

– even though the FKRB estimator uses a substantially greater number of parameters in higher

dimensions. The difference in the approximation accuracy is particularly large for D = 6, where

the FKRB estimator cannot use more than 3 grid points in every dimension.
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Table 2.2: Average Number of Parameters and RMISE over 200 Monte Carlo Replicates for
Mixture of 2 and Mixture of 4 Normals

Mixture of 2 normals Mixture of 4 normals

Parameters RMISE Parameters RMISE

N q/lS FKRB SG ASG FKRB SG ASG FKRB SG ASG FKRB SG ASG

Dimension D = 2

1000 3/2 9 5 35.6 0.2067 0.0736 0.0514 9 5 39.1 0.1955 0.0881 0.0577

1000 7/3 49 17 41.6 0.0993 0.0479 0.0536 49 17 48.3 0.1022 0.0473 0.0589

1000 15/4 225 49 70.4 0.0912 0.0475 0.0561 225 49 72.9 0.0951 0.0549 0.0624

10,000 3/2 9 5 42.5 0.2039 0.0718 0.0280 9 5 50.1 0.1934 0.0863 0.0435

10,000 7/3 49 17 52.9 0.0843 0.0418 0.0290 49 17 63.6 0.0854 0.0434 0.0418

10,000 15/4 225 49 76.3 0.0581 0.0313 0.0303 225 49 84.5 0.0648 0.0519 0.0394

Dimension D = 4

1000 3/2 81 9 149.7 0.2254 0.0983 0.0583 81 9 153.7 0.2328 0.1201 0.0634

1000 7/3 2401 49 213.8 0.1273 0.0620 0.0598 2401 49 226.9 0.1241 0.0850 0.0632

1000 15/4 . 209 341.7 . 0.0502 0.0569 . 209 341.2 . 0.0691 0.0577

10,000 3/2 81 9 144.1 0.2226 0.0979 0.0409 81 9 151.6 0.2316 0.1197 0.0536

10,000 7/3 2401 49 193.8 0.0787 0.0613 0.0386 2401 49 215.2 0.0915 0.0846 0.0511

10,000 15/4 . 209 341.5 . 0.0492 0.0361 . 209 379.6 . 0.0685 0.0480

Dimension D = 6

1000 3/2 729 13 276.2 0.2156 0.0853 0.0569 729 13 266.4 0.2441 0.1099 0.0733

1000 7/3 . 97 386.9 . 0.0643 0.0547 . 97 416.8 . 0.0909 0.0626

1000 15/4 . 545 954.0 . 0.0610 0.0622 . 545 1024.9 . 0.0866 0.0643

10,000 3/2 729 13 246.9 0.2138 0.0849 0.0577 729 13 233.7 0.2441 0.1096 0.0774

10,000 7/3 . 97 207.1 . 0.0640 0.0625 . 97 208.1 . 0.0906 0.0888

10,000 15/4 . 545 1055.3 . 0.0605 0.0687 . 545 1099.1 . 0.0862 0.0568

Note: The table reports the total number of parameter and the RMISE for the FKRB estimator, the sparse grid
estimator (SG), and the adaptive sparse grid estimator (ASG). The adaptive sparse grid estimator performs five
refinement steps, whereby the final number of refinements is determined based on the lowest out-of-sample mean
squared error calculated with five-fold cross-validation. The grid point to be refined in every refinement step is
selected according to its contribution to the local squared error.

The discrepancy in the approximation accuracy can be explained by the FKRB estimator’s

relation to the lasso (cf. Heiss et al., 2021). Due to this relation, the estimator provides sparse

solutions that lead to approximations through step functions with only a few steps. Figure 2.6 and

Figure 2.7 illustrate this property for the bivariate joint mixture of two normals and bivariate joint

mixture of four normals, respectively. In contrast to the FKRB estimator, the sparse grid and the

spatially adaptive sparse grid estimator provide smooth approximations due to the substantially

greater number of simulation draws compared to fixed grid points used by the FKRB estimator.

Overall, the results for the sparse grid estimator presented in Table 2.2 confirm the theoretical

properties of the sparse hierarchical basis outlined by, e.g., Bungartz and Griebel (2004), as follows:

(i) The estimator becomes more accurate with increasing levels – except for D = 2 and the mixture

of four normals, where the RMISE is larger for lS = 4 than for lS = 3, which appears to be the

consequence of over-fitting as indicated by the out-of-sample log-likelihood reported in Table 2.6.
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(ii) The approximation accuracy declines with an increasing number of random coefficients (except

for lS = 2 and when going from D = 4 to D = 6). And (iii), the sparse grid estimator is less

precise when approximating the mixture of four normals than the mixture of two normals due to

the steeper and wigglier curvature of the former (except for D = 2 and lS = 3) – which is also the

case for the FKRB estimator.

The limited ability to accurately approximate non-smooth distributions is illustrated by the

estimated bivariate joint CDFs in Figure 2.6 and Figure 2.7. The visual inspection of the estimated

CDF of the mixture of two normals indicates that the sparse grid estimator is able to accurately

approximate the smooth curvature of the true distribution. Inspecting the estimated mixture of

four normals reveals that the estimator cannot recover the steep and wiggly shape of the true

distribution. This can be explained by the limited number of basis functions with sufficiently

small support in every dimension (i.e., basis functions with a high level in every dimension). The

spatially adaptive sparse grid estimator, in contrast, which incrementally adds basis functions of

higher levels, is able to approximate such a curvature accurately as illustrated by the estimated

joint CDF.

Figure 2.6: True and Estimated Bivariate Joint CDF of Mixture of 2 Normals for N = 10, 000

(a) True (b) FKRB

(c) SG (d) ASG

Note: Estimated bivariate joint distribution function for the mixture of two normals estimated with the FKRB
estimator using 225 grid points, with the sparse grid estimator of level lS = 4 (SG), and the spatially adaptive sparse
grid estimator (ASG). The number of refinement steps is selected using 5-fold cross-validation and based on the
lowest out-of-sample mean squared error.
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Figure 2.7: True and Estimated Bivariate Joint CDF of Mixture of 4 Normals for N = 10, 000

(a) True (b) FKRB

(c) SG (d) ASG

Note: Estimated bivariate joint distribution function for the mixture of four normals estimated with the FKRB
estimator using 225 grid points, with the sparse grid estimator of level lS = 4 (SG), and the spatially adaptive sparse
grid estimator (ASG). The number of refinement steps is selected using 5-fold cross-validation and based on the
lowest out-of-sample mean squared error.

With respect to the finite sample properties, the sparse grid estimator improves only slightly

with increasing sample size for small levels lS = 2 and lS = 3, independent of the true distribution.

Due to the larger support of the hierarchical basis functions with smaller levels and the imposed

shape restriction following from these basis functions, the sparse hierarchical bases of levels lS = 2

and lS = 3 restrict the flexibility of the estimator to rather smooth approximations, despite an

increasing sample size. For sparse hierarchical bases of level lS = 4, in contrast, the approximation

accuracy of the sparse grid estimator improves stronger when increasing the sample size from

N = 1000 to N = 10, 000 due to the larger number of basis functions with small support. However,

this effect declines as the number of random coefficients included in the model increases. In fact, the

improvement in the RMISE is negligible for D = 6, independent of the level and true distribution.

The results indicate that the number of basis functions in the sparse hierarchical basis could

potentially increase faster than in the classical sparse grid to obtain more accurate approximations,

which would be possible with respect to the total number of parameters. This impression is con-

firmed by the estimated marginal CDFs of β1 for the mixture of two normals and the mixture of

four normals in Figure 2.8.
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Figure 2.8: True and Estimated Marginal CDFs of β1 for Mixture of 2 and Mixture of 4 Normals
and N = 10, 000

Note: The figure shows the true and estimated marginal CDFs of β1 for the mixture of two and the mixture of
four normals across models with different number of random coefficients for N = 10, 000. The sparse grid estimator
has level lS = 4, and the spatially adaptive sparse grid estimator refines the sparse grid conducting 15 refinement
steps whereby the final estimator is selected based on the lowest out-of-sample MSE. The FKRB estimator estimates
the two-dimensional distributions with 15 grid points, the four-dimensional distribution with 7 grid points, and the
six-dimensional distribution with 3 grid points in every dimension.

Considering the mixture of two normals, the sparse grid estimator succeeds to accurately ap-

proximate the true marginal CDF for D = 2. However, the approximation becomes less accurate

as the number of random coefficients included in the model increases, indicating that there are

too few hierarchical basis functions with sufficiently small support to recover the curvature of the

true distribution. This effect is even stronger for the mixture of four normals, where the sparse

grid estimator cannot recover the steep and wiggly curvature of the true distribution. While for

D = 2, the sparse grid estimator can at least recover the curvature at the boundary of the domain,
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for D = 4 and D = 6 it approximates the true marginal CDFs through a line – though correctly

located.

The results for the spatially adaptive sparse grid estimator reported in Table 2.2 show that the

performance of the refinement depends on the level of the sparse grid and the true distribution.

First, the improvement is strongest for sparse hierarchical bases of level lS = 2 and declines as

the level increases, independent of the shape of the true distribution. In fact, for D = 2 and

N = 1000, the refinement leads to an improvement only for lS = 2, indicating that the refinement

can rapidly lead to over-fitting if the dimension and sample size is small. This is also indicated by

the out-of-sample MSE plotted in Figure 2.14, which remains more or less constant with increasing

refinement steps. Second, the refinement is more effective for the mixture of four normals than for

the mixture of two normals, as the approximation of the steep and wiggly curvature of the former

requires more basis functions of smaller levels, i.e., with smaller support. For the mixture of two

normals, the spatially adaptive refinement of the sparse grid of level lS = 4 on average leads to less

precise estimates than the sparse grid itself. A potential explanation is that this is the consequence

of an over-fitting problem as indicated by the in-sample and out-of-sample MSE plotted in Figure

2.14 and Figure 2.15.

Figure 2.8 illustrates the improvement of the sparse grid estimator through the spatially adaptive

refinement. Considering the mixture of four normals, the estimated marginal CDF almost perfectly

approximates the shape of the true distribution for D = 2. However, the approximation accuracy

declines with increasing dimensionality of the true distribution. Thus, increasing the number of

refinement steps, which is close to the maximum number of 10 for D = 6 (see Table 2.6 in the

appendix), might lead to more accurate approximations as more basis functions of smaller levels

allow to recover the curvature of the mixture of four normals more precisely.

2.6 Empirical Application

In order to study the performance of the sparse hierarchical basis estimator on real data, we apply it

to the setting of air pollution regulation from Blundell et al. (2020), hereafter referred to as BGL.14

They study the gains from dynamic enforcement of air pollution regulations using a discrete-time

dynamic model of regulator and plant interactions. In this model, the regulator makes decisions

regarding inspections and fines, and plants decide whether and when to invest in pollution abate-

ment technologies. The quantification of the gains from dynamic enforcement of the regulation

crucially depends on the estimation of plants’ costs arising from compliance with the regulation.

BGL estimate a random coefficients model to accommodate the unobserved heterogeneity of costs

across plants. They estimate the five-dimensional joint distribution using the nonparametric fixed

grid estimator of Fox et al. (2011). We apply the sparse grid estimator and the spatially adaptive

sparse grid estimator to this setting and compare the estimated distribution and the results of

counterfactual experiments calculated with the estimated distributions to the results of BGL.

The Clean Air Act and its amendments (CAAA) restrict the pollution of criteria and hazardous

14We gratefully thank Blundell et al. (2020) for the provided data and code, and Stephan Hetzenecker, who
provided a parallelized version of the code that substantially speeds up the calculations of the optimal weighting
matrix and the counterfactuals.
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air pollutants through plants’ in the United States to be at or below thresholds that could be

achieved with the best technologies and practices. The US Environmental Protection Agency

(EPA) used a dynamic enforcement regime to ensure plants’ compliance with the CAAA. The

EPA’s inspections aim to uncover possible violations. Plants detected as violators will be subject

to further inspections. These inspections, in turn, might uncover additional violations, leading to

potential fines. Among other factors, the magnitude of fines depends on the economic benefit of

the violating plant, and on the gravity of the violation. The latter is calculated from the actual

or potential harm and plants’ history of noncompliance. Plants can only exit violator status if

they resolve all outstanding violations. The total cost of noncompliance to a violator arise from

the investment cost required to resolve outstanding violations, from an increased level of oversight

through the EPA, and from fines.15

While plants with fewer and less severe violations are designated as “regular violators”, those

with particularly severe or repeated violations can be designated as “high priority violators”

(HPVs). The idea of this regulatory regime is to make it more costly for plants to be in HPV

status: HPV undergo a higher level of oversight – expressing itself through more frequent inspec-

tions – are exposed to higher fines, and have to fulfill explicit deadlines to resolve all outstanding

violations. The higher cost for HPV in comparison to regular violator are intended to encourage

plants that are out of compliance to return to compliance via investments in improved processes

and technologies (Blundell et al., 2020).

BGL model the regulatory framework using a discrete-time dynamic model in which each plant

plays a dynamic game with the regulator. In this game, the regulator decides whether or not to

inspect a plant, and plants decide whether or not to invest in pollution abatement technologies.

While the regulator wants plants to comply with the CAAA, which causes costs arising from

inspections and issuing fines, plants seek to maximize their surplus. The actions of the regulator

and the investment decision of a plant within period t are functions of the regulatory state Ωt,

which is known to the regulator and plant at the beginning of a period. The regulatory state lists

(i) a plant’s EPA region, (ii) two-digit NAICS industrial sector,16 (iii) expected gravity of potential

violations, as measured by county non-attainment status and potential environmental damages

for plants based on the county and industry, (iv) depreciated accumulated violations with a 10

percent quarterly depreciation rate, (v) regular violator or high priority violator status, and (vi)

two quarterly lags of investment. While the states addressing the EPA region, the industry and

the gravity of fines do not change over time, the depreciated accumulated violations, the violator

status, and the lagged investments can change from period t to period t+ 1.

To incorporate plants’ history of violations into the regulator’s inspection policy, BGL model the

probability of a plant being inspected through the regulator as a function of the regulatory state,

I(Ω). The actual inspection decision Ins arises stochastically. In each period, the regulator first

receives an i.i.d. private information shock to the value of an inspection and then decides whether or

not to inspect the plant. The regulator and plant then receive a compliance signal et ≡ (e1
t , . . . , e

5
t )

15Costs from an increased level of oversight, i.e., from more frequent inspections, are caused by the potential shut
down of production lines.

16The data covers the seven most polluting industrial sectors in North America defined by the North American
Industry Classification System (NAICS).
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which provides information on the presence and severity of a violation. BGL assume that et is a

function only of the regulatory state Ωt, and the regulator’s inspection policy and decisions (i.e.,

of the inspection probabilities I, and the inspection decision Inst). Therefore, et is the predictor

of compliance issues beyond the state, V io(Ω, e1). In addition, e2 affects the fine chosen by the

regulator through Fine(Ω, e2), and e3, e4, and e5 determines plants’ transition to compliance,

regular violator, and HPV status through Ω̃ ≡ T (Ω, e3, e4, e5). Following the regulator’s actions,

Ins, V io, Fine and T , plants that are not in compliance under Ω̃ make a binary decision X ∈ {0, 1}
of whether or not to invest in pollution abatement technologies.

In order to avoid assumptions on the regulator’s objective function, BGL do not estimate the

regulator’s utility function. Instead, they estimate plants’ expectations of regulator actions using

conditional choice probabilities (CCPs), and then use these probabilities to estimate plants’ utility

functions. To condition on the state, they estimate the CCPs separately for plants in compliance,

regular violators, and HPVs, and include indicators for two lags of investments; region; industry

and gravity state dummies; and depreciated accumulated violations (for plants not in compliance).

The utility of a plant depends on the regulatory actions, the HPV status designation HPV (·),
and the investment cost θX + εXt,

U (Ω, e) = θIIns (Ω) + θV V io
(
Ω, e1

)
+ θFFine

(
Ω, e2

)
+

θHHPV
(
T
(
Ω, e3, e4, e5

))
+ θX + εXt,

(2.26)

where εXt is an idiosyncratic cost shock assumed to be known to the plant prior to its investment

decision, and which is assumed to be i.i.d. type I extreme value. The plant chooses its investment

decision in order to minimize its expected discounted sum of costs from inspections (I), violations

(V ), fines (F ), designation as HPV (H), and investment (X).

To account for unobserved heterogeneity across plants, BGL specify a random coefficients model

which allows the structural parameters of the model, θ ≡ (θI , θV , θF , θH , θX), to vary across plants

(but not over time).17 They estimate the distribution of the random coefficients using the non-

parametric fixed grid estimator of Fox et al. (2011) with 10, 0001 five-dimensional grid points

θ ≡ (θ1, . . . , θR) – 10, 000 points from a Halton sequence and one point which corresponds to the

parameter estimates from a model with homogeneous utility parameters. They estimate the prob-

ability weights ηr, r = 1, . . . , R at the grid points from the data using a GMM estimator similar

to the approach of Nevo et al. (2016). The estimator minimizes the squared distance between

the value of some statistic in the data, md
k, and the weighted sum of the statistic estimated at

every grid point, mk(θr), k = 1, . . . ,K, subject to the constraints that the weights are nonnegative

and sum up to one. Let G(η) denote the K × 1 vector of moments with the kth entry being

Gk(η) = md
k −

∑R
r= ηrmk(θr). The GMM estimator solves the constrained optimization problem

η = arg min
η

G′ (η) W G (η)

s.t. ηr ≥0, r = 1, . . . , R, and
R∑
r=1

ηr = 1

(2.27)

17With heterogeneous investment costs, the escalation mechanism may incentivize low-cost plants to invest in
pollution abatement when they are regular violators and fines are low, while high-cost plants will wait until they
become HPVs and fines are high.
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where W is a K × K weighting matrix and G′ the transpose of G. For the estimation of the

probability weights, BGL calculate three sets of moments. The first set (5, 000 moments) represents

the equilibrium share of plants being in a particular time-varying state, conditional on fixed states

of region, industry, and gravity states. The second set (4, 687 moments) multiplies the first set by

the share of plants investing in this state. And the third set (4, 687 moments) multiplies the second

set by the sum of investments in the following six periods.18 The second and third set of moments

are intended to capture the effect of plants’ investments on compliance.

Because the fixed grid approach of Fox et al. (2011) treats the probability weight at every

grid point as a parameter, the estimation of the random coefficients distribution involves the es-

timation of 10, 001 parameters. To reduce the computational burden, and in line with the results

from the Monte Carlo experiments presented in the previous section, we estimate the distribu-

tion with the sparse grid estimator of level lS = 4, and the spatially adaptive sparse grid esti-

mator using the same GMM approach. The corresponding moments are of the form Gk(α) =

md
k−
∑B

b=1 αb
∑R

r=1 φb(θr)mk(θr) for k = 1, . . . ,K. We minimize the weighted squared sum of mo-

ments subject to the constraints
∑B

b=1 αbφb (θr) ≥ 0, r = 1, . . . , R, and
∑B

b=1 αb
∑R

r=1 φb (θr) = 1.

For the spatial refinement of the sparse grid, we make ten refinement steps. In every step, we select

the grid point with the largest contribution to the squared estimated local error. The final number

of refinement steps is determined using five-fold cross-validation.19 The final adaptive estimator

uses the grid for which the out-of-sample mean-squared-error is lowest, which is the case after

eight refinements. Figure 2.17 in the appendix shows the change in the out-of-sample MSE with

an increasing refinement of the sparse grid. The lowest out-of-sample MSE is achieved after 14

refinements. To increase the efficiency of the estimator, we adopt the two-step approach of BGL.

In the first step, we calculate the weighting matrix using the homogeneous parameter estimates

of θ provided by BGL. In the second step, we update W using the estimated random coefficients

distribution from the first step.

Figure 2.9 shows the estimated marginal CDFs for the FKRB estimator, the sparse grid es-

timator, and the spatially adaptive sparse grid estimator. The figure illustrates that the fixed

grid estimator of Fox et al. (2011) approximates the random coefficients’ distribution through a

step function with only a few steps – which is a result of its sparse nature (it estimates only 14

positive weights). The estimated marginal CDFs of the fine, inspection and HPV utility param-

eters look relatively similar for all the three estimators, except that the distributions estimated

with the sparse grid and spatially adaptive sparse grid estimator are much smoother. The esti-

mated marginal CDFs of the HPV utility parameter illustrate that the sparse grid estimator can

approximate a steep curvature – though not as steep as the curvature estimated by the FKRB

estimator. For the remaining utility parameters, the marginal CDFs estimated with the FKRB

estimator and with the sparse grid and spatially adaptive sparse grid estimator deviate to a larger

extent. Except for the inspection utility parameter, where the estimated marginal CDFs seem to

deviate to a larger extent, the sparse grid and spatially adaptive sparse grid estimator provide

similar marginal distributions. The estimated histograms plotted in Figure 2.18 in the appendix

18For the calculation of the moments, BGL solve the relevant Bellman equation and calculate mk(ηr) for each of
the R grid points. They provide a detailed description on the set of moments in their paper and more information
on the calculation of the moments in the online appendix of the paper.

19To preserve all information contained in the data, we sample all moments together that use the same first and
second moments, respectively, for the calculation of further moments.
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Figure 2.9: Estimated Marginal CDFs of Five Utility Parameters

Note: The figure shows the marginal CDFs for the five utility parameters estimated with the FKRB estimator
using 10, 001 grid points, with the sparse grid estimator of level lS = 4 (SG), and the spatially adaptive sparse grid
estimator (ASG). For the spatially adaptive sparse grid estimator, the number of refinement steps is selected using
5-fold cross-validation and based on the lowest out-of-sample mean squared error.

confirm the impression.

The weighted means of the estimated random coefficients’ distribution reported in Table 2.3

confirm the impression from the visual inspection of the estimated marginal CDFs. Maybe most

noticeable, plants find investments, inspections, fines, being in HPV status, and violations costly on

average when the random coefficients distribution is estimated with the sparse grid estimator. This

result is in line with the quasi-likelihood estimates, i.e., if plants have homogeneous utility param-

eters. For the FKRB estimator, in contrast, violations and inspections increase plants’ utility on

average slightly. When estimated with the adaptive sparse grid estimator, plants on average receive

a positive utility from violations. Given that the estimated mean parameters are utility parame-

ters, we can express them as fine-equivalents to compare the magnitude of the estimated means in

a meaningful way. When the model parameters are estimated with the FKRB estimator, plants’

costs for being in HPV status are equivalent to an average fine of about $25, 516 (θH/θF multiplied

by $1 million), whereas the average costs for being designated as HPV are about $114, 380 in fine

equivalents for the sparse grid estimator and about $112, 839 for the spatially adaptive sparse grid

estimator. In line with that, the average costs from investments are equivalent to about $330, 196 in

fines for the FKRB estimator, about $475, 274 in fines for the sparse grid estimator, and $545, 950
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Table 2.3: Plants’ Estimated Structural Mean Parameters

Quasi-
likelihood
estimates FKRB SG ASG

Negative of investment cost (−θX) -2.872 -2.051 -2.831 -3.232

Inspection utility (θI) -0.049 0.047 -0.152 -0.797

Violation utility (θV ) -0.077 0.012 -0.062 0.080

Fine utility (mil. dollars, θF ) -5.980 -6.211 -5.956 -5.920

HPV status utility (θH) -0.065 -0.158 -0.681 -0.668

Parameters 5 10001 351 462

Note: The table reports the homogeneous parameter estimates (QML), and the estimated weighted
mean of each random coefficient together with the total number of parameter required for the estimation
of the random coefficients distribution for the FKRB estimator, the sparse gird estimator (SG), and
the spatially adaptive sparse grid estimator (ASG).

for the adaptive sparse grid estimator. Finally, plants’ average costs from inspections and violations

estimated with the FKRB estimator are equivalent to fines of $-7, 572, and $-2, 002, respectively,

implying that inspections and violations do not decrease utility for some plants. In contrast, in-

spections are equivalent to about $25, 471 in fines, and violations are about $10, 405 on average for

the sparse grid estimator, and $134, 628 and $-13, 514 for the adaptive sparse grid estimator.

To study how the difference in the estimated distributions translates to counterfactual statistics

calculated with the respective estimated random coefficients’ distributions, we replicate three coun-

terfactual experiments conducted by BGL. The first experiment studies how regulatory states, pol-

lution, and investments change when the regulator fines plants in regular violator and HPV status

identically for a given region, industry, and gravity state, keeping the total assessed fines the same

as the baseline model for each such group. Thus, the costs of HPV status are set to zero in this

experiment to fully remove dynamic enforcement. The second experiment considers the same fine

structure as the first experiment but keeps the total pollution damages the same as the baseline

model within each region, industry, and gravity state group. The third experiment doubles the

fines for firms in HPV status compared to the baseline model, which allows to study the effect of

higher escalation rates of fines.20

Table 2.4 presents the results of the experiments in terms of the long-run mean value of reg-

ulatory states, regulatory actions, investment rates, plant utility, and pollution damages for the

FKRB estimator, the sparse grid estimator, and the spatially adaptive sparse grid estimator. The

first column reports the long-run mean values observed in the data. The baseline columns show the

outcomes calculated at the structural parameters estimated with each estimator. The estimated

mean values are similar for all three estimators, and replicate the data quite well. Overall, the

predicted results of the counterfactual experiments are relatively similar – especially for the FKRB

and sparse grid estimator. In the first counterfactual experiment, the share of plants in compliance

predicted by the FKRB and sparse grid estimator decreases substantially from about 95% to 65% if

20The inspection policies in the experiments are the same as in the baseline model to assure the same state-
contingent distribution of the compliance signal e. Furthermore, the counterfactuals are based on surplus-optimizing
plants given alternative regulatory policies and do not necessarily stem from the equilibrium of a dynamic game.
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Table 2.4: Counterfactual Results for Different Fine Structures

Baseline
Same fines for all

violators; fines const.

Data FKRB SG ASG FKRB SG ASG

Compliance (percent) 95.62 95.11 95.39 95.35 66.76 65.47 80.60
Regular violator (percent) 2.88 3.47 3.55 3.61 2.52 2.34 3.00
HPV (percent) 1.50 1.42 1.06 1.04 30.72 32.19 16.40
Investment rate (percent) 0.40 0.54 0.53 0.52 0.47 0.47 0.48
Inspection rate (percent) 9.65 9.41 9.33 9.32 20.52 20.87 15.00
Fines (thousand dollars) 0.18 0.32 0.29 0.28 0.32 0.29 0.28
Violations (percent) 0.55 0.54 0.52 0.51 4.97 5.00 2.82
Pollution damages (mil. dollar) 1.65 1.53 1.48 1.47 4.03 4.12 2.77

Same fines for all
violators; pollution

damages const.
Fines for HPVs doubled

relative to baseline

Data FKRB SG ASG FKRB SG ASG

Compliance (percent) 95.62 94.49 95.09 95.39 95.52 95.73 95.65
Regular violator (percent) 2.88 2.72 2.27 2.70 3.47 3.56 3.62
HPV (percent) 1.50 2.78 2.64 1.91 1.01 0.72 0.73
Investment rate (percent) 0.40 0.65 0.70 0.64 0.55 0.53 0.52
Inspection rate (percent) 9.65 9.88 9.80 9.56 9.28 9.21 9.21
Fines (thousand dollars) 0.18 1.98 4.52 3.67 0.36 0.29 0.29
Violations (percent) 0.55 0.74 0.71 0.63 0.49 0.46 0.46
Pollution damages (mil. dollar) 1.65 1.53 1.48 1.47 1.48 1.44 1.44

Note: Each statistic is the long-run equilibrium mean per plant/quarter, weighted by the number of
plants by region, industry, and gravity state. Baseline refers to the model predictions in the existing
regulatory actions and outcomes. The other experiments vary the escalation of fines.

fines are identical for regular violators and HPVs and the total fines are kept constant compared to

the baseline model. In contrast to the FKRB estimator (66.76% in compliance and 30.72% in HPV

status) and the sparse grid estimator (65.47% in compliance and 32.19% in HPV status), the drop

in the share of plants in compliance predicted with the spatially adaptive sparse grid estimator is

less strong (80.60% plants are in compliance and 16.40% are designated as HPVs). In line with the

higher share of plants in non-compliance, the predicted total pollution damages increase from $1.53

mil. per plant/quarter to $4.03 mil per plant quarter for the FKRB estimator and from $1.48 mil.

per plant/quarter to $4.12 mil per plant/quarter for the sparse grid estimator. For the spatially

adaptive sparse grid estimator, the total pollution damages are predicted to increase less strongly

from $1.47 mil. per plant/quarter to $2.77 mil. per plant/quarter.

The results of the second counterfactual experiment deviate only slightly from each other when

estimated with the three estimators, except for the total fines. If the fines are the same for regular

violators and high priority violators and total pollution damages are kept constant compared to

the baseline model, the total amount of fines increases from $320 per plant/quarter to $1, 980 per

plant/quarter for the FKRB estimator. For the sparse grid and spatially adaptive sparse grid, the

predicted total fines increase stronger from $290 (SG) and $280 (ASG) per plant/quarter to $4, 520

and $3, 670 per plant/quarter in comparison to the baseline model, respectively.

For the third counterfactual experiment, the difference between mean values predicted by the
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FKRB, the sparse grid, and the spatially adaptive sparse grid estimator are even smaller than

in the previous experiments. When the fines are doubled for HPV in comparison to the baseline

model, the FKRB estimator predicts a decrease in the share of plants in compliance from 95.11%

to 95.52$, the sparse grid estimator a decrease from 95.39% to 95.73$, and the spatially adaptive

sparse grid estimator from 95.35% to 95.65$. Thus, the substantial increase in the fines for HPVs

only leads to a slight increase in the predicted share of plants in compliance. The strongest effect

of the counterfactual regulatory policy is the change in the share of plants in HPV status. All three

estimators predict a decrease to a similar extent (from 1.42$ to 1.01% for the FKRB estimator, from

1.42% to 0.53% for the sparse grid, and from 1.04% to 0.52% for the spatially adaptive sparse grid

estimator). Most importantly, the increased escalation of fines does only lead to a slight decrease

in the predicted total pollution damages. When predicted with the FKRB estimator, the total

pollution damages decrease from $1.53 million to only $1.48 in response to the change in the fine

scheme. The predicted change is similar for the sparse grid (from $1.48 million to $1.44 million)

and the spatially adaptive sparse grid estimator (from $1.47 million to $1.44 million).

2.7 Conclusion

A common approach in the nonparametric literature is to approximate functions of unknown shapes

using linear combinations of basis functions. For the approximation of multi-dimensional functions,

the bases are typically constructed using regular tensor product constructions of one-dimensional

basis functions. Such constructions lead to an exponential increase of the number of parameters

in the number of dimensions, which restricts the approach to random coefficient models with only

moderately few random coefficients. In order to circumvent this limitation, we propose to use

sparse hierarchical bases for the nonparametric estimation of high-dimensional random coefficient

models.

The proposed estimator approximates the true distribution using a linear combination of hier-

archical basis functions, whereby the multi-dimensional basis functions are constructed from the

one-dimensional functions using a truncated tensor product. The underlying idea goes back to

Smolyak (1963) and has been frequently applied in mathematics and physics for the approximation

of high-dimensional functions. The truncated tensor product reduces the number of basis functions

substantially in comparison to a regular tensor product – thereby rendering the estimation of high-

dimensional distributions feasible. The sparse hierarchical basis deteriorates the approximation

accuracy only slightly if the underlying distribution is sufficiently smooth. For non-smooth distri-

butions, we additionally propose a spatially adaptive refinement procedure, which incrementally

adds basis functions in those areas of the true distributions’ domain where it has a steeper and

wigglier curvature.

We study the properties of the sparse hierarchical basis estimator in various Monte Carlo ex-

periments. Using the nonparametric fixed grid estimator of Fox et al. (2011) as a benchmark, the

results show that our estimator provides more accurate approximations of the true distribution,

even for models with only a few random coefficients, and especially for models with moderately

many random coefficients. Moreover, the results confirm the theoretical properties of sparse hi-

erarchical bases presented by Bungartz and Griebel (2004). The sparse grid estimator becomes

less accurate if the true distribution has a steeper and wigglier curvature and if the number of
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random coefficients included into the model increases. The spatially adaptive refinement of the

sparse grid works particularly well for those distributions. Applying the estimator to a data set

of plants’ investments in pollution abatement technologies illustrates the advantage of the sparse

hierarchical basis estimator. Even though the approach requires a substantially smaller number of

parameters for the estimation of the five-dimensional random coefficients distribution, the counter-

factuals predicted based on the estimated distribution deviate only slightly from those predicted

by the estimator of Fox et al. (2011), which involves the estimation of 10, 001 parameters.

A practically relevant topic with respect to the application of the estimator in applied research

is a valid inference procedure. Such a procedure has to take into account that the coefficients are

estimated with constrained least squares, i.e., the coefficients on the boundary of the parameter

space cannot have an asymptotic normal distribution. In addition, a promising avenue for future

research is to consider different kinds of sparse grids. The Monte Carlo results show that for random

coefficient models with four or six random coefficients, the number of basis functions could increase

faster than the rate of the classical sparse grid. Studying different kinds pf sparse grid constructions

and their theoretical properties when applied to the estimation of random coefficients’ distributions

would provide valuable insights.
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Appendix: Additional Tables and Figures

Figure 2.10: True Joint PDFs of Mixture of 2 and Mixture of 4 Normals

(a) Mixture of 2 (b) Mixture of 4

Figure 2.11: Approximation Error of Estimated Bivariate Joint CDF for Mixture of 2 Normals
and N = 10, 000

(a) FKRB (b) SG (c) ASG

Note: Approximation error of estimated bivariate distribution functions of mixture of two normals for N = 10, 000,
and estimated with the FKRB estimator with 225 grid points, with the sparse grid estimator with level lS = 4, and
the spatially adaptive sparse grid estimator. The number of refinement steps is selected using 5-fold cross-validation
and based on the lowest out-of-sample mean squared error.

Figure 2.12: Approximation Error of Estimated Bivariate Joint CDF of Mixture of 4 Normals and
N = 10, 000

(a) FKRB (b) SG (c) ASG

Note: Approximation error of estimated bivariate distribution functions of mixture of four normals for N = 10, 000,
and estimated with the FKRB estimator with 225 grid points, with the sparse grid estimator with level lS = 4, and
the spatially adaptive sparse grid estimator. The number of refinement steps is selected using 5-fold cross-validation
and based on the lowest out-of-sample mean squared error.
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Table 2.5: Average Number of Parameters, Refinement Steps and RMISE across 200 Monte Carlo Replicates for Different Selection Criteria for
Spatially Adaptive Refinement

Mixture of 2 Normals Mixture of 4 Normals

Refinements Parameter RMISE Refinements Parameter RMISE

N lS MSE LL AIC MSE LL AIC MSE LL AIC MSE LL AIC MSE LL AIC MSE LL AIC

Dimension D = 2

1000 2 6.8 5.9 3.9 35.6 30.3 19.1 0.0514 0.0500 0.0480 7.3 6.2 4.0 39.1 31.9 19.7 0.0577 0.0568 0.0531

1000 3 4.6 1.9 0.1 41.6 26.3 17.3 0.0536 0.0495 0.0484 5.6 2.3 0.1 48.3 28.7 17.4 0.0589 0.0547 0.0479

1000 4 4.7 2.7 0.0 70.4 61.0 49.0 0.0561 0.0527 0.0475 5.2 2.6 0.0 72.9 60.6 49.0 0.0624 0.0580 0.0549

10,000 2 8.0 4.4 4.2 42.5 21.0 20.1 0.0280 0.0342 0.0351 9.3 4.6 4.2 50.1 22.3 20.4 0.0435 0.0492 0.0485

10,000 3 6.8 0.3 0.3 52.9 18.3 18.2 0.0290 0.0399 0.0401 9.0 0.9 0.6 63.6 20.7 19.2 0.0418 0.0468 0.0457

10,000 4 6.3 0.5 0.0 76.3 50.9 49.1 0.0303 0.0294 0.0312 8.3 0.4 0.0 84.5 50.6 49.1 0.0394 0.0510 0.0518

Dimension D = 4

1000 2 9.1 9.1 6.9 149.7 149.4 99.8 0.0583 0.0586 0.0537 9.3 9.2 7.3 153.7 152.5 105.3 0.0634 0.0635 0.0624

1000 3 8.4 8.5 3.7 213.8 216.1 104.1 0.0598 0.0607 0.0530 8.5 8.7 3.8 226.9 231.3 105.1 0.0632 0.0635 0.0636

1000 4 6.5 6.5 1.3 341.7 339.3 222.3 0.0569 0.0582 0.0482 6.5 6.8 1.8 341.2 350.0 229.9 0.0577 0.0583 0.0545

10,000 2 9.3 8.9 8.6 144.1 133.6 126.2 0.0409 0.0423 0.0429 9.5 9.5 8.7 151.6 151.2 129.4 0.0536 0.0536 0.0529

10,000 3 8.3 7.3 6.6 193.8 167.5 151.3 0.0386 0.0409 0.0420 9.1 8.9 6.9 215.2 210.2 159.8 0.0511 0.0511 0.0501

10,000 4 6.8 5.2 3.6 341.5 303.3 265.0 0.0361 0.0381 0.0405 8.4 7.6 3.6 379.6 360.8 265.8 0.0480 0.0480 0.0472

Dimension D = 6

1000 2 9.7 9.7 7.0 276.2 280.0 154.9 0.0569 0.0573 0.0564 9.8 9.8 7.5 266.4 267.6 170.8 0.0733 0.0734 0.0795

1000 3 9.2 9.5 0.1 386.9 397.9 99.2 0.0547 0.0552 0.0642 9.4 9.6 1.0 416.8 421.6 127.1 0.0626 0.0627 0.0869

1000 4 7.9 8.2 2.2 954.0 974.6 613.3 0.0622 0.0642 0.0451 8.7 8.8 2.8 1024.9 1028.7 638.4 0.0643 0.0644 0.0609

10,000 2 10.0 10.0 9.5 246.9 247.6 225.2 0.0577 0.0577 0.0562 10.0 10.0 9.7 233.7 233.8 222.1 0.0774 0.0774 0.0774

10,000 3 9.7 9.8 0.8 207.1 208.3 108.7 0.0625 0.0625 0.0636 9.8 9.9 1.2 208.1 209.1 113.4 0.0888 0.0888 0.0899

10,000 4 9.5 9.4 3.1 1055.3 1054.3 657.6 0.0687 0.0688 0.0339 9.8 9.8 3.9 1099.1 1102.5 708.9 0.0568 0.0569 0.0429

Note: The table reports the total number of parameter and the RMISE for the spatially adaptive sparse grid estimator using the out-of-sample mean squared error
(MSE), the out-of-sample log-likelihood (LL), and the Akaike information criterion (AIC) for the selection of the final number of refinement steps. For every estimator
five refinement steps are performed. The out-of-sample mean squared error and the out-of-sample log-likelihood are calculated with five-fold cross-validation. The grid
point to be refined in every refinement step is selected according to its contribution to the local squared error.
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Table 2.6: Average Out-of-sample MSE and Out-of-sample Log-likelihood across 200 Monte Carlo Replicates for Different Selection Criteria for
Spatially Adaptive Refinement

Mixture of 2 Normals Mixture of 4 Normals

MSE LL MSE LL

N lS SG MSE LL AIC SG MSE LL AIC SG MSE LL AIC SG MSE LL AIC

Dimension D = 2

1000 2 1422.7 1367.0 1367.4 1369.1 -290.7 -276.2 -276.1 -276.4 1425.3 1358.9 1359.5 1361.5 -291.8 -274.1 -274.0 -274.4

1000 3 1368.7 1366.6 1367.3 1368.7 -276.2 -276.2 -275.9 -276.2 1361.0 1358.2 1359.2 1361.0 -274.2 -274.1 -273.9 -274.1

1000 4 1369.0 1366.8 1367.3 1369.0 -276.6 -276.4 -276.3 -276.6 1360.5 1358.1 1358.8 1360.5 -274.4 -274.3 -274.2 -274.4

10,000 2 1420.9 1366.5 1366.9 1367.0 -2902.1 -2766.4 -2763.2 -2763.3 1423.0 1357.3 1358.2 1358.4 -2911.0 -2741.5 -2738.2 -2738.3

10,000 3 1367.1 1366.4 1367.0 1367.1 -2762.6 -2767.0 -2762.5 -2762.5 1359.0 1357.0 1358.5 1358.7 -2738.2 -2743.4 -2737.9 -2738.0

10,000 4 1366.8 1366.4 1366.7 1366.8 -2765.9 -2767.8 -2765.8 -2765.9 1357.7 1356.8 1357.6 1357.7 -2740.9 -2744.9 -2740.8 -2740.9

Dimension D = 4

1000 2 1471.3 1351.1 1351.2 1356.7 -299.6 -266.2 -266.2 -267.9 1469.6 1333.4 1333.5 1338.4 -299.7 -262.2 -262.1 -263.6

1000 3 1390.3 1348.8 1348.9 1358.8 -278.0 -265.4 -265.4 -268.7 1384.4 1330.8 1331.0 1343.2 -276.7 -261.4 -261.3 -265.1

1000 4 1367.4 1345.6 1345.9 1350.9 -270.9 -264.6 -264.5 -266.1 1358.3 1326.2 1326.6 1332.9 -269.0 -260.0 -259.9 -261.9

10,000 2 1468.9 1344.7 1344.7 1344.8 -2986.8 -2645.8 -2645.6 -2645.7 1466.8 1326.6 1326.6 1326.9 -2991.1 -2601.8 -2601.7 -2602.4

10,000 3 1388.9 1344.2 1344.3 1344.5 -2776.7 -2645.7 -2645.3 -2645.7 1382.6 1324.9 1324.9 1325.4 -2762.6 -2597.7 -2597.6 -2598.9

10,000 4 1364.8 1343.5 1343.7 1344.0 -2703.8 -2645.4 -2644.8 -2645.6 1355.1 1323.2 1323.3 1324.0 -2682.5 -2595.2 -2594.9 -2596.5

Dimension D = 6

1000 2 1497.8 1384.8 1384.8 1404.6 -305.1 -274.5 -274.5 -280.0 1492.5 1369.0 1369.0 1385.0 -303.9 -270.6 -270.6 -275.0

1000 3 1419.0 1366.7 1366.8 1418.2 -284.1 -269.5 -269.5 -283.9 1409.9 1345.8 1345.9 1398.5 -281.8 -264.2 -264.2 -278.7

1000 4 1411.6 1356.6 1356.7 1375.3 -281.5 -266.7 -266.6 -272.0 1401.7 1335.2 1335.3 1349.0 -279.0 -261.3 -261.3 -265.3

10,000 2 1493.8 1390.6 1390.6 1390.9 -3043.6 -2760.5 -2760.5 -2761.7 1488.2 1379.1 1379.1 1379.4 -3033.8 -2733.3 -2733.3 -2734.1

10,000 3 1416.2 1413.1 1413.1 1415.1 -2834.2 -2823.9 -2823.8 -2830.7 1407.1 1403.5 1403.5 1405.5 -2811.5 -2799.9 -2799.9 -2806.8

10,000 4 1406.4 1356.7 1356.7 1359.7 -2802.3 -2667.6 -2667.5 -2677.7 1396.4 1334.9 1334.9 1340.1 -2777.8 -2612.6 -2612.6 -2628.2

Note: The table reports the average out-of-sample mean squared error (MSE) and the average out-of-sample log-likelihood (LL) for the spatially adaptive sparse grid
estimator using the out-of-sample mean squared error (MSE), the out-of-sample log-likelihood (LL), and the Akaike information criterion (AIC) for the selection of the
final number of refinement steps. For every estimator five refinement steps are performed. The out-of-sample mean squared error and the out-of-sample log-likelihood
are calculated with five-fold cross-validation. The grid point to be refined in every refinement step is selected according to its contribution to the local squared error.
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Figure 2.13: True and Estimated Marginal CDFs of β1 for Mixture of 2 and Mixture of 4 Normals
for Spatially Adaptive Sparse Grid Estimator with Different Selection Criteria and N = 10, 000

Note: The figure shows the true and estimated marginal CDFs of β1 for the mixture of two and the
mixture of four normals across models with different number of random coefficients for N = 10, 000.
The spatially adaptive sparse grid estimator refines a sparse grid of level lS = 4 conducting 15 refinement
steps and using the out-of-sample MSE, the out-of-sample log-likelihood (LL), and the Akaike information
criterion (AIC) to select the number of refinement steps.
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Figure 2.14: Average Out-of-sample MSE of Spatially Adaptive Refinement across 200 Monte
Carlo Replicates

Note: The figure shows the average out-of-sample mean squared error (MSE) of the spatially adaptive
refinement of sparse grids of different levels across refinement steps that is calculated via 5-fold cross-
validation. The vertical lines report the average number of refinement steps that are selected based on the
lowest out-of-sample MSE. The solid lines report the results for N = 1000, the dashed lines the results
for N = 10, 000.
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Figure 2.15: Average In-sample Mean Squared Error of Spatially Adaptive Refinement across 200
Monte Carlo Replicates.

Note: The figure shows the average in-sample mean squared error (MSE) of the spatially adaptive refine-
ment of sparse grids of different levels across refinement steps that is calculated via 5-fold cross-validation.
The vertical lines report the average number of refinement steps that are selected based on the lowest
out-of-sample MSE. The solid lines report the results for N = 1000, the dashed lines the results for
N = 10, 000.
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Table 2.7: Average Number of Parameters and RMISE over 200 Monte Carlo Replicates for
Sparse Grid with Mexican Hat Basis

Mixture of 2 Normals Mixture of 4 Normals

Parameters RMISE Parameters RMISE

N q/lS FKRB SG ASG FKRB SG ASG FKRB SG ASG FKRB SG ASG

Dimension D = 2

1000 3/2 9 5 34.6 0.2068 0.0724 0.0516 9 5 39.6 0.1956 0.0882 0.0577

1000 7/3 49 17 41.2 0.0994 0.0484 0.0537 49 17 51.0 0.1021 0.0476 0.0595

1000 15/4 225 49 71.1 0.0912 0.0482 0.0571 225 49 75.1 0.0950 0.0530 0.0625

10000 3/2 9 5 43.1 0.2039 0.0706 0.0300 9 5 50.5 0.1934 0.0864 0.0435

10000 7/3 49 17 55.8 0.0843 0.0424 0.0311 49 17 65.4 0.0854 0.0439 0.0422

10000 15/4 225 49 77.4 0.0580 0.0326 0.0300 225 49 87.0 0.0646 0.0492 0.0397

Dimension D = 4

1000 3/2 81 9 153.1 0.2254 0.0976 0.0578 81 9 153.5 0.2328 0.1199 0.0609

1000 7/3 2401 49 221.5 0.1273 0.0629 0.0589 2401 49 236.4 0.1241 0.0860 0.0613

1000 15/4 . 209 334.1 . 0.0495 0.0574 . 209 338.1 . 0.0684 0.0576

10000 3/2 81 9 147.8 0.2226 0.0972 0.0392 81 9 153.8 0.2316 0.1196 0.0488

10000 7/3 2401 49 211.2 0.0787 0.0623 0.0402 2401 49 228.2 0.0915 0.0857 0.0502

10000 15/4 . 209 339.9 . 0.0485 0.0364 . 209 380.5 . 0.0677 0.0472

Dimension D = 6

1000 3/2 729 13 307.4 0.2156 0.0850 0.0554 729 13 303.2 0.2440 0.1098 0.0674

1000 7/3 . 97 435.6 . 0.0644 0.0540 . 97 451.9 . 0.0911 0.0605

1000 15/4 . 545 966.7 . 0.0609 0.0610 . 545 1029.4 . 0.0866 0.0643

10000 3/2 729 13 292.1 0.2138 0.0846 0.0544 729 13 276.7 0.2441 0.1095 0.0716

10000 7/3 . 97 215.0 . 0.0641 0.0606 . 97 221.0 . 0.0909 0.0859

10000 15/4 . 545 1052.2 . 0.0603 0.0680 . 545 1098.9 . 0.0861 0.0574

Note: The table reports the total number of parameter and the RMISE for the FKRB estimator, the sparse grid
estimator (SG), and the adaptive sparse grid estimator (ASG). The adaptive sparse grid estimator performs five
refinement steps, whereby the final number of refinements is determined based on the lowest out-of-sample mean
squared error calculated with five-fold cross-validation. The grid point to be refined in every refinement step is
selected according to its contribution to the local squared error.

87



Figure 2.16: Probabilities of Further Investments in the Next Six Periods

Note: The figure shows the probability of further investments of plants in the six periods after an
initial investment observed in data, and predicted by the estimator of Fox et al. (2011), the sparse grid
estimator of level l = 4, and the spatially adaptive sparse grid estimator. The spatially adaptive sparse
grid estimator uses ten refinement steps whereby the finale number of refinements is determined using
5-fold cross-validation and is based on the lowest out-of-sample mean squared error.

Figure 2.17: Out-of-sample MSE of the Spatially Adaptive Refinement

Note: The figure shows the out-of-sample mean squared error (MSE) of the spatially adaptive refinement
of the 5-dimensional sparse grid of level lS = 4 calculated via 5-fold cross-validation. In every refinement
step, the grid point with the largest contribution to the squared estimated local error is selected for
refinement.

88



Figure 2.18: Estimated Histograms of the Five Utility Parameters

Note: The figure shows the histograms for the five utility parameter estimated with the estimator of Fox et al. (2011) (FKRB), wit the sparse grid estimator (SG), and
the spatially adaptive sparse grid estimator (ASG). The red lines show the means of the estimated distribution in every of the five dimensions. The spatially adaptive
sparse grid estimator uses ten refinement steps whereby the finale number of refinements is determined using 5-fold cross-validation and based on the lowest out-of-sample
mean squared error.
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3.1 Introduction

Appropriately modeling heterogeneity across economic agents is a key challenge in many empirical

economic studies. Often, the heterogeneity can be linked to observed characteristics of agents.

This is typically achieved using parametric specifications in the form of linear interactions of only

few observed characteristics with the variables of interest. Even restrictive functional forms like

linear functions rapidly lead to a large number of parameters, especially if the heterogeneity is

modeled as a function of multiple characteristics (Cranenburgh, Wang, Vij, Pereira, and Walker,

2021). Furthermore, limiting the heterogeneity to linear functions of only few characteristics can

missspecify the true shape and extent of heterogeneity, and to potentially incorrect results for

quantities of interest, such as elasticities or willingness-to-pay measures.

The increasing availability of large data sets makes it possible to reduce the reliance on para-

metric methods and to apply more flexible approaches to study heterogeneity. A promising tool for

this task is deep learning, which is known for its ability to flexibly model functional forms and to

handle large amounts of data. While deep learning so far has been applied with great success for

pure prediction tasks (LeCun, Bengio, and Hinton, 2015), Farrell et al. (2021a) propose to employ

deep learning for the estimation of heterogeneous parameters. They incorporate the heterogeneity

across economic agents into the economic model specified by the researcher through coefficients that

are functions of agents’ observed characteristics. The approach combines parametric approaches –

which impose structure on the model grounded in economic principles and reasoning – with deep

learning – which lets the data speak for itself with its flexibility.

To derive theoretically valid inference statements after estimating the coefficient functions with

deep learning, Farrell et al. (2021a) extend the deep learning theory for generic regression ap-

proaches developed by Farrell, Liang, and Misra (2021b) to M-estimators. Building on Cher-

nozhukov et al. (2018), they derive an influence function that makes inference feasible in a wide

range of settings – the provided inferential statements cover any parameter of interest that is a

function of the heterogeneous coefficient functions. Farrell et al. (2021a) show that the inference

procedure allows to construct valid inference statements under fairly weak conditions. However,

they leave the role of regularization and its consequences for estimation and subsequent inference

for future research.

Conducting a series of Monte Carlo experiments, we intend to fill this gap and study the finite

sample properties of the proposed inference procedure in the context of discrete choice models. The

results of these experiments show that deep learning generally is well suited for the estimation of

heterogeneous parameters, especially if the sample size is sufficiently large, and that naive inference

after estimating the parameters with deep learning leads to invalid inference. Further, the proposed

estimation procedure is sensitive to overfitting when no regularization is used. We observe that

estimation without regularization can results in substantial bias and large estimated standard er-

rors. The sensitivity to overfitting is more pronounced in small samples but does not completely

disappear with increasing sample size. Regularization in form of l2-penalties on the weights tuned

in the network reduces the sensitivity to overfitting and rapidly decreases the average estimated

standard errors. However, it also appears to introduce a new source of bias, which in combina-

tion with the decreasing variance explains the poor coverage of the estimated confidence intervals

observed in our experiments. Finally, the experiments show that substantially better results are
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obtained when repeated sample splitting is used. Unlike regularization, repeated sample splitting

substantially reduces the bias arising from overfitting without inducing a new bias, this way leading

to valid inferential results in out experiments.

Our paper contributes to a growing literature on the combination of deep learning and structural

modeling in discrete choice models.1 Among others, Sifringer, Lurkin, and Alahi (2020) and Wong

and Farooq (2021) apply deep learning to estimate demand for travel modes in a logit framework. To

avoid model misspecification in discrete choice models, Sifringer et al. (2020) propose to decompose

the systematic part of individuals’ utility into a knowledge-driven part, which includes the variables

of interest and is specified by the researcher, and a data-driven part, which is estimated with deep

learning using the remaining explanatory variables that are not of primary interest. Separating

those two parts of the utility assures that the parameters of interest can be interpreted as in a usual

logit model. However, as the knowledge-driven part needs to be fully specified, its coefficients are

constant across agents. Therefore, this approach seems more restrictive than the approach of Farrell

et al. (2021a) which allows for heterogeneous coefficients. In contrast, Wong and Farooq (2021)

allow for a systematic part of the utility and an additional random component of the utility which

can depend on the characteristics of all alternatives. That is, their approach captures unobserved

heterogeneity and cross-effects of non-linear utilities across all alternatives. Thus, their model

relaxes the IIA property. Both have in common that they do not provide a theoretically valid

inference procedure for parameters of interest but rely on approximations of the confidence intervals

based on the Hessian of the estimated model, which are not guaranteed to have the correct size.

Wang, Wang, and Zhao (2020) focus on estimating economic quantities of interest, e.g., market

shares, elasticities and changes in social welfare, with deep learning using a completely unstructured

utility. Similarly to Sifringer et al. (2020) and Wong and Farooq (2021), they do not present a valid

approach for inference on the quantities of interest.2 They rely on the predicted choice probabilities

and the gradient of the estimated model and do not take into account that the considered quantities

are accompanied with additional uncertainty when no structure is imposed on the utility.

The remainder of this paper is organized as follows. Section 3.2 illustrates how deep learning

can be employed to estimate heterogeneous parameters in economic models and outlines the in-

ference and estimation procedure. Section 3.3 presents Monte Carlo experiments that study the

inference procedure and Section 3.4 applies the influence function approach to real data. Section

3.5 concludes.

3.2 Deep Learning for Heterogeneity

This section introduces the methodical framework of Farrell et al. (2021a) who propose to estimate

heterogeneous parameters in econometric models using deep learning in the form of multi-layer feed-

forward neural networks. The flexibility of deep neural networks (DNNs) makes them ideally suited

for the estimation of economic models with individual heterogeneity. Subsection 3.2.1 explains the

design of the network which directly integrates the economic model specified by the researcher into

1For recent surveys of the application of machine learning and deep learning for the estimation of discrete choice
models, see, e.g., Karlaftis and Vlahogianni (2011), Wang, Mo, Hess, and Zhao (2021), and Cranenburgh et al. (2021).

2For example, they calculate the standard deviation of the average elasticity as the standard deviation of the
elasticiy of each individual.
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the network architecture. Subsection 3.2.2 explains the inference approach which is based on the

concept of influence functions, and Subsection 3.2.3 lays out the estimation procedure. While the

estimation and inference procedure is applicable on a wide range of models, we focus on multinomial

discrete choice models when introducing the estimation procedure.

3.2.1 Deep Learning

The starting point of the estimation approach is the economic model specified by the researcher.

The model relates the outcome Y to the variables of interest X, and to socio-demographic charac-

teristics W that are included to capture the heterogeneity across individuals.3 We are interested in

analyzing consumers’ preferences. For that purpose, we consider a conditional logit model to model

individuals’ choices over a set of J mutually exclusive alternatives. In this context, let xi,j denote a

K-dimensional real-valued vector of observed product characteristics for consumer i = 1, . . . , N and

alternative j = 1, . . . , J , wi a D-dimensional vector of observed socio-demographics of consumer

i, and yi a J-dimensional vector with entry 1 if alternative j is chosen by consumer i and zero

otherwise. Consumers choose the alternative that maximizes their utility. Given the unobserved

individual parameters αj(wi), j = 1, . . . , J , and β(wi) = (β1(wi), . . . , βK(wi))
′ consumer i real-

izes utility ui,j = αj(wi) + x′i,jβ(wi) + ωi,j from alternative j where ωi,j denotes an idiosyncratic,

consumer- and choice-specific error term. Thus, consumer i chooses alternative j if ui,j > ui,l for all

j 6= l. Under the assumption that ωi,j is independently and identically distributed type I extreme

value, the probability that consumer i chooses alternative j conditional on the observed product

characteristics and socio-demographics is

P (yi,j = 1|xi,wi) =
exp (αj (wi) + xi,jβ (wi))∑J

m=1 exp (αm (wi) + xi,mβ (wi))
. (3.1)

The goal of the researcher is to estimate the unknown heterogeneous coefficient functions α(wi) =

(α1(wi), . . . , αJ(wi))
′ and β(wi), which are functions of consumers’ socio-demographic character-

istics that capture the observed heterogeneity across consumers. Thus, the functions capture no

unobserved heterogeneity, i.e., there are no random coefficients.4

For the estimation of α(·) and β(·), Farrell et al. (2021a) advocate deep neural networks. The

proposed network architecture allows to combine a standard fully-connected feedforward neural

network – which is used to estimate the coefficient functions α(·) and β(·) – with the economic

structure imposed by the conditional logit model. The key idea of the network architecture is to be

fully flexible in modeling the individual heterogeneity while retaining the structure which assures

the interpretability of the results. Figure 3.1 illustrates such an architecture. Given consumers’

observed socio-demographics, wi, i = 1, . . . , N , in the input layer, the feedforward network learns

the coefficient functions α(·) and β(·) using two hidden layers, a parameter layer, and a model layer.

The first part of the network, the input layer and the hidden layers, corresponds to the structure

of a standard feedforward neural network. The number of hidden layers and the number of units

3Notation: The variables written in capital letters denote random variables and small letters observational units.
All vectors and matrices are written in bold.

4The parameters β(wi) and α(wi) can be considered as the best approximations to some unobserved individual
parameters αi and βi that lie in an assumed function class.
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per hidden layer determine the flexibility of the approach regarding the shape of the estimated

coefficient functions. The coefficient functions α(·) and β(·) returned in the parameter layer are

then forwarded to the model layer, where they are combined with the variables of interest, xi, and

the observed choices, yi, to minimize the individual loss function, ` (yi,xi,α (wi) ,β (wi)). To be

clear, the variables of interest, xi, are additional inputs provided only to the model layer but are not

used as inputs to the coefficient functions α(·) and β(·). The novelty of this network architecture

is the model layer, which ensures that the coefficient functions α(·) and β(·) are learned within the

structure imposed by the specified model. This way, the estimated results have an economically

meaningful interpretation, which typically is not the case for regular machine learning applications

in economics (Farrell et al., 2021a).

Figure 3.1: Feedforward Neural Network for the Estimation of the Heterogeneous Parameters
α(wi) and β(wi)
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The number of hidden layers (the depth of the network), and the number of units per layer

(the width of each layer) are specified by the researcher. According to the universal approximation

theorem (Hornik, Stinchcombe, and White, 1989, Cybenko, 1989), a feedforward network with only

one hidden layer might be already sufficient to represent any function if the number of hidden units

is sufficiently large. Networks with multiple hidden layers typically require less units per hidden

layer – and hence total parameters – to represent the desired function, and in many circumstances

generalize well in terms of out-of-sample performance. However, such networks tend to be harder

to optimize (Goodfellow, Bengio, and Courville, 2016). In Theorem 1, Farrell et al. (2021a) derive

error bounds for the estimated coefficient functions α̂(·) and β̂(·), where they allow the depth of
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the network to increase with the sample size, and the width of the network with the sample size

and the number of continuous input variables, respectively. Beyond the number of hidden layers

and units, the researcher needs to specify the activation function at every layer. The design of

hidden layers is an active area of research which does not provide definite guidelines for the choice

of activation functions yet. According to Goodfellow et al. (2016), rectified linear units are an

excellent default choice, which are also recommended by Farrell et al. (2021a). Overall, specifying

the network architecture is a trial-and-error process where the final architecture can be selected

based on the best out-of-sample fit (Goodfellow et al., 2016).

When estimating the model, the coefficient functions α(wi) and β(wi) are learned jointly. To

simplify the notation, we write δ(wi) := (α(wi)
′,β(wi)

′)′ and L := J +K in the following. In our

case, the individual loss function, ` (yi,xi, δ(wi)), following from the economic model of interest,

is the empirical log-likelihood for individual i,

` (yi,xi, δ(wi)) =

J∑
j=1

yi,j log (P (yi,j = 1|xi,wi)) , (3.2)

where P (yi,j = 1|xi,wi) is the conditional logit choice probability given in Equation (3.1). Then,

δ̂(wi) := (α̂(wi)
′, β̂(wi)

′)′ are determined such that they simultaneously maximize the log-likelihood

δ̂(wi) = arg max
δ

N∑
i=1

` (yi,xi, δ(wi)) , (3.3)

where we optimize over the class of DNNs which use the type of architecture described in Fig-

ure 3.1. The log-likelihood loss function forces the DNN to learn the coefficient functions within

the structure imposed by the conditional logit model. This has two advantages in comparison to

naively applied prediction-focused machine learning methods, which predict the choice probabili-

ties P̂ (yi,j = 1|xi,wi) using a completely unstructured nonparametric utility û(yi,wi,xi): First,

it assures that the network provides economically meaningful results. For the unstructured ap-

proach, in contrast, it is not clear how estimates of α(wi) and β(wi) can be separately recovered

from û(yi,wi,xi), which, however, is often necessary for interpretation. And second, even if α(wi)

and β(wi) could be separately recovered in the unstructured approach, Farrell et al. (2021a) show

that the additional structure of the model enables a faster rate of convergence for the estimated

coefficient functions (given the model is correctly specified). For the structured approach, the rate

of convergence only depends on the dimension of the socio-demographic characteristics, dim(wi),

whereas for the naive prediction focused machine learning with unstructured û(yi,wi,xi), it de-

pends on both the dimension of the socio-demographic characteristics and the dimension of the

variables of interest, i.e., dim(wi) + dim(xi). While the convergence rate in the structured network

is fast enough for inference, the convergence rate of the unstructured model would often be too

slow for inference (Farrell et al., 2021a).

3.2.2 Inference

Inference for machine learning methods for the estimation of economic models is challenging. For

inference on the coefficient functions estimated with deep learning, Farrell et al. (2021a) adopt the
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semiparametric inference procedure suggested by Chernozhukov et al. (2018). The procedure allows

to perform inference on expected values of heterogeneous quantities using an influence function

approach. Due to the structure imposed by the economic model, the proposed procedure can be

applied to any statistic of interest (e.g., expected value of coefficients, elasticticties, or measures

for the willingness-to-pay) which are functions of the heterogeneous coefficient functions δ(·) (and

a fixed vector x∗ containing arbitrary values of the variables of interest).

Let the real-valued function H(·) specified by the researcher denote the function of interest.

Then, the inference procedure described in the following allows to conduct inference on the expected

value of H(·) given some x∗,

θ0 = E [H (W , δ (W ) ;x∗)] . (3.4)

Note that H(·) directly depends on the coefficient functions δ(·), making inference on θ0 depend

on how well δ̂(·) approximates its true counterpart δ(·). Because the empirical plug-in estimator

of θ0,

θ̂PI =
1

N

N∑
i=1

H
(
wi, δ̂ (wi) ;x∗

)
,

is only valid under strong conditions on δ̂(·), which are unlikely to be satisfied if the functions

are estimated with deep-neural networks, Farrell et al. (2021a) propose to use the concept of

influence functions for inference. The approach builds on the seminal work of Newey (1994) and

has the advantage that it provides results for valid inference under less restrictive conditions on

the distributional approximations of δ(·). These assumptions are known to hold for many machine

learning methods (Farrell et al., 2021a).

The influence function for θ0 involves the gradient and Hessian corresponding to the loss function

` (yi,xi, δ(wi)) with respect to δ(wi). Let `δ (yi,xi, δ(wi)) denote the L-dimensional vector of first

derivatives of ` (yi,xi, δ(wi)) w.r.t. δ(wi),

`δ (yi,xi, δ(wi)) =
∂` (yi,xi, b)

∂b

∣∣∣∣
b=δ(wi)

,

and `δ,δ (yi,xi, δ(wi)) the L×L-matrix of second order derivatives with entries {k1, k2} defined as

[`δ,δ (yi,xi, δ(wi))]k1,k2 =
∂2` (yi,xi, b)

∂bk1∂bk2

∣∣∣∣
b=δ(wi)

.

Define Hδ(wi, δ(wi);x
∗) as the L-dimensional vector of first derivatives of H(wi, δ(wi);x

∗) w.r.t.

δ(wi). Further, define

Λ(wi) := E[`δ,δ(Y ,X, δ(W ))|W = wi], (3.5)

corresponding to the expected individual Hessian for individual i conditional on her socio-demographic

characteristics wi. Then, a valid and Neyman orthogonal score for the parameter of inferential in-

terest, θ0, is ψ(w, δ,Λ)− θ0, where

ψ (wi, δ,Λ) = H (wi, δ (wi) ;x∗)−Hδ (wi, δ (wi) ;x∗)′Λ (wi)
−1 `δ (yi,xi, δ(wi)) (3.6)

is the influence function when centered at θ0. Hence, θ0 can be identified from the condition
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E [ψ (W , δ (W ) ,Λ (W ))− θ0] = 0. In case of the conditional logit model stated in Equation (3.1),

the gradient vector `δ(yi,xi, δ(wi)) for individual i is

`δ(yi,xi, δ(wi)) = (ci,1, . . . , ci,J , c̃i,1, . . . , c̃i,K)′ (3.7)

with jth element ci,j = yj − P(yi,j = 1|xi,wi) and (J + k)th element c̃i,k =
∑J

j=1(yi,j − P(yi,j =

1|xi,wi))xi,j,k. The matrix `δ,δ (yi,xi, δ(wi)) can be written as

`δ,δ (yi,xi, δ(wi)) = Ġix̃ix̃
′
i

with Ġi being the derivative of the conditional logit choice probabilities with respect to the lin-

ear index x̃′iδ(wi), and x̃i = [e1, . . . , eJ ,xi] where ej is a unit vector with L elements where

the jth element is equal to one and zero otherwise. Thus, the L × L matrix Ġi for individual

i has entries ġkk = P (yi,j = 1|xi,wi) (1 − P (yi,j = 1|xi,wi)) on the main diagonal and ġk,l =

−P (yi,j = 1|xi,wi)P (yi,m = 1|xi,wi) for all k 6= l on the off-diagonal. A detailed derivation of the

influence function for the conditional logit model presented in Equation (3.1) is given in Farrell et

al. (2021a, v1 on arXiv.org).

The plug-in estimator θ̂PI takes only one source of uncertainty in H(wi, δ̂(wi);x
∗) into account:

the direct effect of perturbations in the data on H(wi, δ̂(wi);x
∗), while treating δ̂(w) estimated

with the sample as fixed. In contrast, the influence function approach additionally accounts for the

uncertainty in the estimated coefficient functions due to perturbations in the data when estimating

θ0 with machine learning. For illustrative purposes, assume there are estimates δ̂(wi) and Λ̂(wi)

for a given sample. Using δ̂(wi) and Λ̂(wi) to calculate the influence function, ψ(wi, δ̂(wi), Λ̂(wi)),

presented in Equation (3.6), the sample analogue of E
[
ψ
(
W , δ̂ (W ) , Λ̂ (W )

)]
is

θ̂IF =
1

N

N∑
i=1

ψ
(
wi, δ̂(wi), Λ̂(wi)

)
=

1

N

N∑
i=1

H
(
wi, δ̂ (wi) ;x∗

)
(3.8a)

− 1

N

N∑
i=1

Hδ̂

(
wi, δ̂ (wi) ;x∗

)′
Λ̂ (wi)

−1 `δ

(
yi,xi, δ̂(wi)

)
. (3.8b)

Similarly to θ̂PI , the term in Equation (3.8a) captures the changes in the function H(wi, δ̂(wi);x
∗)

in response to perturbations in the data, treating the coefficient functions δ̂(wi) as if they were

known. This way, the term accounts for the uncertainty in the parameter of inferential interest due

to changes in H(wi, δ̂(wi);x
∗). The term in Equation (3.8b) is an additional correction term that

includes an estimate of the nuisance function Λ(w) and, thereby, accounts for the uncertainty in

the functional forms of the coefficient functions δ(wi) arising from perturbations in the data. The

correction term isolates the impact of the nonparametric estimation on the estimated parameters of

inferential interest, which is enabled through the imposed structure of the economic model relating

the outcome Y to the covariates X in a known way.

The correction terms Hδ(wi), `δ (yi,xi, δ(wi)) and `δ,δ (yi,xi, δ(wi)) can be calculated ana-

lytically and do not need to be estimated. In contrast, the matrix Λ(wi) consists of regression-type
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objects which must be estimated, i.e., the individual Hessian `δ,δ(Y ,X, δ(W )) is projected on W .

For this projection, DNNs can be used as well. Further, note that the product Λ(w)−1`δ(w, δ(w))

does not depend on the function H(·), which simplifies calculations if multiple parameters are of

inferential interest.

An important assumption of the inference procedure is that the matrix Λ(wi) is invertible with

bounded inverse. With respect to the conditional logit model in Equation (3.1), the assumption

implies that the choice probabilities are bounded away from zero and one.5

3.2.3 Estimation

With the influence function in Equation (3.6), the estimator θ̂ of θ0 and an corresponding estimator

Ψ̂ of its asymptotic variance can be formed using the semiparametric inference procedure of Cher-

nozhukov et al. (2018). For the estimation, the influence function ψ(wi, δ,Λ) needs to be evaluated

at every data point in the sample. In order to obtain a properly centered limiting distribution under

weaker conditions on the first stage estimates δ̂(wi), the estimation procedure for θ0 is based on

sample splitting (Farrell et al., 2021a).

For the conditional expected individual Hessian matrix of the conditional logit model, Λ(wi),

the dependent variable Z := ĠXX ′ is regressed on the socio-demographic characteristics W .

Because Ġ, and hence Z, depend on the coefficient functions δ(W ), the estimation of the influence

function requires three-way splitting of the sample. The first sub-sample is used to estimate the

heterogeneous parameter functions δ̂(wi). These are subsequently treated as the inputs to calculate

the “observed” matrix zi of Z, using wi and xi of the second sub-sample. Using zi as the dependent

variable and wi as the independent variable, Λ̂(wi) is estimated with the second sub-sample. The

influence function is then calculated with the third sub-sample (Farrell et al., 2021a). The procedure

thus consists of the following steps:

1. Split the observation units {1, . . . , n} into S subsets, denoted by Ss ⊂ {1, . . . , n}, s = 1, . . . , S.

2. For each s = 1, . . . , S, let Scs denote the complement of Ss. For nonlinear models like the

conditional logit model, the functions δs(wi) and Λs(wi), corresponding to split s, cannot be

estimated simultaneously. Instead, the complement Scs is split into two pieces to first estimate

δ̂s(wi) using the first piece, and then Λ̂s(wi) using the second piece together with the fixed

functions δ̂s(wi).

3. The final estimator of θ0 is then

θ̂ =
1

S

∑
θ̂s, θ̂s =

1

|Ss|
∑
i∈Ss

ψ
(
wi, δ̂s, Λ̂s

)
, (3.9)

where |Ss| is the cardinality of Ss and is assumed to be proportional to the sample size.

Furthermore, an estimator Ψ̂ of the asymptotic variance of θ̂ is given by the variance-analogue

5In order to assure the numerical stability of the approach, Farrell et al. (2021a) propose trimming or regularization
of Λ(wi) by adding a positive constant to the main diagonal, e.g., Λ(wi) + I.
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of Equation (3.9)

Ψ̂ =
1

S

S∑
s=1

Ψ̂s, Ψ̂s =
1

|Ss|
∑
i∈Ss

(
ψ
(
wi, δ̂s, Λ̂s

)
− θ̂
)2
. (3.10)

For θ̂ and Ψ̂, Farrell et al. (2021a) provide inference results that establish asymptotic normality

and validity of standard errors,

√
nΨ̂−1/2

(
θ̂ − θ

)
→d N (0, 1) . (3.11)

A central input to the influence function, and hence to the estimated inference results, is the

conditional expected individual Hessian Λ(wi) which is a nuisance function as it is required only

for the calculation of the influence functions but not of interest per se. Estimating Λ̂(wi) is a

prediction problem for which different machine learning methods can be used. In the Monte Carlo

experiments and application presented below, we estimate Λ̂(wi) by another neural network using

the mean squared error (MSE) as loss function. Because the matrix Λ(wi) is symmetric, we only

need to estimate L(L + 1)/2 entries. To keep the estimation procedure as simple as possible, we

estimate the entries of Λ(wi) using a single network with L(L+1)/2 output units. Alternatively, one

could estimate each entry with a separate network, which is more flexible but has the disadvantage

that it is computationally more expensive.

The estimation procedure described above has some potential weaknesses that can lead to

misleading results. The first one is potential overfitting when predicting the choice probability for

each alternative, which can lead to estimated probabilities close to zero and one, respectively. As

a consequence, the matrix Λ̂(wi) might not be invertible (or close to not being invertible, leading

to extremely large entries of the inverse) if the entries are estimated precisely. Related to the

overfitting problem, a practical disadvantage of the sample splitting – beyond the computational

cost – is that small sub-samples potentially provide imprecise estimates, which is particularly

relevant for applications with small sample sizes (Farrell et al., 2021a).6

Remark 1. To increase finite sample precision, Chernozhukov et al. (2018) suggest to repeat the

sample splitting procedure outlined above R times. To this end, let θ̂r and Ψ̂r denote the estimators

shown in Equation (3.9) and (3.10) for repetition r = 1, . . . , R. Then, the final estimator is the

median over the repetitions,7 i.e,

θ̂med = median
{
θ̂r

}R
r=1

, and Ψ̂med = median

{
Ψ̂r +

(
θ̂r − θ̂med

)2
}R
r=1

.

Chernozhukov et al. (2018) note that the choice of R ≥ 1 does not affect the asymptotic distribution

of θ̂med. By Equation (3.11), each θ̂k is asymptotically normal and therefore, θ̂med is asymptotically

normal, too. In our simulations, we set R = 5 and find that repeated sample splitting substantially

improves the precision of the estimates.

6For the asymptotic results of the sample splitting procedure, Farrell et al. (2021a) treat S as fixed and therefore,
the sample splitting is asymptotically negligible.

7Chernozhukov et al. (2018) also consider taking the average across repetitions instead of the median. However,
they recommend to use the median since it is less dependent on the outcome of a single repetition.
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3.3 Monte Carlo Experiments

This section presents different Monte Carlo experiments that study the performance of the deep

learning estimation procedure and, in particular, the inference procedure presented in Section 3.2.

To study the performance in a realistic setup, we use semi-synthentic data for the experiments.

The data is taken from the Swissmetro dataset (Bierlaire, Axhausen, and Abay, 2001), which is an

openly available dataset collected in Switzerland during March 1998.8 The data consists of survey

data from 1, 191 car and train travelers. It was collected to analyze the impact of a new innovative

transportation mode, represented by the Swissmetro, against usual transportation modes, namely

car and regular train connections.9 For every respondent, nine stated choice situations were gen-

erated in which the respondents could choose between three travel mode alternatives: Swissmetro

(abbreviated as sm), train, and car (only for car owners). In total, the data consists of 10, 719

choice situations (Antonini, Gioia, and Frejinger, 2007). When preparing the data, we follow the

instructions of Sifringer et al. (2020) and remove all observations for which not all three alternatives

– Swissmetro, train, car – are available. This reduces the number of travelers to 1, 683 and thus,

the final data set to 9, 036 observations.10

For the data generation, we consider an individual-level discrete choice demand model of the

form presented in Equation 3.1. The variables of interest in our Monte Carlo experiments are the

travel cost (cost), the travel time (time), and the frequency (freq) of the train and Swissmetro

connections (frequency is zero for car).11 Each traveler chooses the travel mode among the three

alternatives car, Swissmetro, and train that provides her with the highest utility,

ui,j = αj (wi) + costi,jβ
cost (wi) + timei,jβ

time (wi) + freqi,jβ
freq (wi) + ωi,j ,

for j = {car, train, sm}. We specify the true coefficients as functions of travelers’ yearly income

(income), age (age), gender (male), and a variable indicating who payed for the ticket (who).

Income and age are categorical variables that assign travelers’ income and age into four and six

groups, respectively. The gender variable is equal to one if the traveler is male and zero otherwise.

The variable who is a categorical variable that takes four values (0 if it is unknown who pays, 1 if the

traveler payed herself, 2 if the employer pays, and 3 if the traveler and employer split half-half). In

order to make the information represented by the categorical variable more easily accessible for the

network, we transform who into three dummy variables denoted by who1, who2, and who3, leaving

out the category 0 as reference category.12 We specify the observed consumer socio-demographics

as wi := (agei, incomei, malei, who
1
i , who

2
i , who

3
i )
′. The intercept functions for each alternative

are

αtrain (wi) = −1 + 1 · incomei,

αsm (wi) = −3 + 1 · agei,

8We downloaded the test and training data from the github repository github.com/BSifringer/EnhancedDCM.
9The Swissmetro is a revolutionary mag-lev underground system operating at speeds up to 500 km/h in partial

vacuum.
10For the estimation, we follow Sifringer et al. (2020) and ignore the panel structure of the data.
11The travel cost, travel time, and frequency variables are scaled downwards by factor 100 (Sifringer et al., 2020).

For those travelers that have an annual season pass, we set the travel cost of the train and Swissmetro to zero.
12A detailed description of the data and summary statistics can be found here.
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and αcar (wi) = 0, i.e., the alternative car serves as reference. The coefficient functions for the

covariates of interest are specified as

βcost (wi) = −6 + incomei − 0.8 · who1
i − 1 · who2

i − 1.2 · who3
i (3.12)

βfreq (wi) = −5 + incomei + 0.9 ·malei

βtime (wi) = −6 + 1 · agei.

To study the finite sample performance of the proposed inference procedure, we consider the

expected value of the heterogeneous coefficients βcost (wi), β
freq (wi), and βtime (wi) as the param-

eters of inferential interest, i.e., θk0 = E[βk(wi)], k ∈ {cost, freq, time}. Accordingly, the function

H(·) corresponds to

H(wi, δ(wi);x
∗) = βk(wi),

where δ(wi) =
(
αtrain (wi) , αsm (wi) , β

cost (wi) , β
freq (wi) , β

time (wi)
)′

. Thus, the gradient vector

Hδ (wi, δ(wi);x
∗) is equal to one for the element corresponding to the derivative with respect to

βk, and zero for all other entries.

3.3.1 Small Data Set

We conduct 1000 Monte Carlo repetitions. In every repetition, we use the individual coefficients,

the covariates, and an idiosyncratic error term ωi,j to calculate the utility for each alternative and

each individual. For that purpose, we draw ωi,j from a Type I extreme value distribution for every

traveler and alternative in every replicate and select the alternative that provides the largest utility.

To simulate deviations between the sample and the population values of the covariates, we split

the data into two sets. We use all observations to calculate the true values, θk0 , k ∈ {cost, freq, time},
but use only three quarter of the data for the estimation. This way, we can test whether the

proposed inference procedure adequately accounts for the uncertainty related to H(·), and for the

uncertainty related to the functional form of the heterogeneous coefficient functions δ(wi) which

arises due to deviations between observations in the sample and the population.

We use the same network architecture to estimate the heterogeneous coefficient functions and

to estimate the conditional expected individual Hessian Λ(wi) – except for the number of output

units in both networks. More precisely, we choose one hidden layer with 100 units and rectified

linear activation functions. For the units in the output layer, we use linear activation functions.

The number of output units are five in the network for the heterogeneous coefficient functions,

and 15 in the network for Λ(wi). Both networks use travelers’ income, age, gender, and the

dummy variables indicating who is paying for the ticket as inputs. When estimating the coefficient

functions, we set the dropout rate to 0.2. For the network used to estimate Λ(wi), we test different

regularizers to account for the difficulty of projecting Λ(wi). We consider the l2-regularizers λ =

0, 10−5, 10−4, 2 ·10−3 which we use to avoid overfitting zi and, thereby, to ensure that the predicted

individual Hessian Λ̂(wi) does not become collinear for any individual i. While using a l2-regularizer

λ > 0 ensures that we can invert Λ̂(wi), we note that λ > 0 potentially introduces a bias in the

estimation and is not covered by the inference results of Farrell et al. (2021a). When training the

networks, we set the maximum number of epochs to 20, 000, and the batch size to 50. During the

training, we track the in-sample log-likelihood and the in-sample mean squared error, respectively,
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and stop the training if the change in the loss function does not exceed 10−8 across epochs (with

a patience of 100 epochs). We select the network with the best in-sample fits. For the estimation

with the influence function approach, we split the training data into S = 5 folds. Furthermore, we

split Scs into two equally sized pieces, using the first one to estimate δs(w), and the second one to

estimate Λs(w).

As a benchmark, we estimate the model with maximum likelihood using the true specification.

We refer to this estimator as oracle logit estimator. In addition, we also estimate a conditional

logit model where we do not account for any type of heterogeneity but instead include only two

alternative-specific intercepts and the slope coefficients for cost, freq, and time. This allows us to

study the potential consequences when one does not account for heterogeneity across travelers even

though it is present in the data. Finally, we also use a neural network to estimate the heterogeneous

coefficient functions without the outlined inference procedure of Farrell et al. (2021a). Instead, we

conduct naive inference using the average heterogeneous coefficient functions and the corresponding

estimated Fisher information matrix to calculate robust standard errors. This allows us to assess

the importance of an appropriate inference procedure after the estimation of the model parameters

with machine learning.

Table 3.1 reports the coverage of the estimated 95% confidence intervals, the average estimated

standard errors, and estimated bias across Monte Carlo replicates for all three covariates of interest.

Furthermore, we present the share of Monte Carlo replicates in which the false null hypotheses that

the coefficients are zero are correctly rejected at a significance level of 0.05. This is supposed to serve

as an indicator for the power of the hypothesis tests when calculated with the different inference

procedures. For the influence function approach, we additionally calculate the in-sample and out-

of-sample MSE of the neural network for Λs(wi), and track the share of outliers across Monte Carlo

replicates. We calculate the in-sample MSE with the part of Scs used for the estimation of Λs(wi),

and the out-of-sample MSE with the left out fold. We treat a Monte Carlo replicate as outlier if

the estimated standard error is larger than 5 for at least one of the three estimated parameters.

The reported average results for the oracle logit estimator across Monte Carlo replicates reveal

that accounting for the correct (functional) form of heterogeneity provides precise estimates of

the true average coefficients, and correct coverage of the true average coefficients through the

estimated 95% confidence intervals. In addition, the hypotheses tests with the nulls that the

average coefficients are zero have high power when calculated with the oracle logit estimator, as

the null hypotheses are correctly rejected in every Monte Carlo replicate. In contrast, the basic logit

estimator, which does not account for any heterogeneity across consumers at all, performs poorly

both in terms of the estimated coefficients and in terms of the coverage of the confidence intervals.

The estimated standard errors of the oracle logit and the basic logit seem similar but the confidence

intervals do not cover the true values of interest in any of the Monte Carlo replicates when estimated

with the basic logit. The poor coverage can be explained by the bias of the estimated coefficients,

which implies confidence intervals centered around biased estimates.

The results for the influence function approach depend on the regularization parameter λ used

for the estimation of Λ(wi). For λ = 0, the confidence intervals for all three parameters have a

coverage of 93%, giving the impression that the influence function approach is a valid inference pro-

cedure when the heterogeneous coefficient functions are estimated with deep learning and without
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Table 3.1: Average Summary Statistics of 1000 Monte Carlo Replicates for Small Data and
without Repeated Sample Splitting

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.93 0.92 0.83 0.40 0.99

θfreq ∈ ĈIfreq 0.95 0.00 0.93 0.92 0.89 0.68 1.00

θtime ∈ ĈItime 0.94 0.00 0.93 0.94 0.88 0.54 1.00

ŝecost 0.07 0.05 6.85 3.67 1.70 0.75 0.61
ŝefreq 0.10 0.07 5.25 8.19 2.26 1.24 3.56
ŝetime 0.07 0.06 5.52 4.91 1.53 1.05 3.08

Biascost -0.01 0.65 -4.95 0.07 -0.09 -0.51 -0.17
Biasfreq -0.00 0.59 0.61 -4.45 -0.77 -0.61 -0.18
Biastime -0.01 0.80 -2.58 -1.49 -0.27 -0.57 -0.17

Rej. θcost = 0 1.00 1.00 0.47 0.56 0.78 0.93 1.00
Rej. θfreq = 0 1.00 1.00 0.27 0.35 0.50 0.79 0.00
Rej. θtime = 0 1.00 1.00 0.60 0.69 0.84 0.93 0.03

MSE(Λ)Train . . 5.04 5.18 5.41 5.99 .
MSE(Λ)Test . . 5.30 5.38 5.51 6.04 .
Share Outlier 0.00 0.00 0.26 0.18 0.11 0.04 0.12

Note: The table reports the average summary statistics over all Monte Carlo replicates
for the conditional logit using the true specification (Oracle), the conditional logit using
the three variables of interest for the estimation (Basic), the influence function approach
using five different values for λ for the estimation of Λs(w), and the neural network (NN),
which uses robust standard erros and does not rely on the influence function approach.

regularization in the network used to estimate Λ(wi). However, the estimated average coefficients

deviate quite substantially from the true values – especially for the travel cost and travel time

coefficients –, and the estimated standard errors are substantially larger than in the oracle logit

estimator. The large estimated standard errors explain the correct coverage of the confidence in-

tervals despite of the biased average coefficient estimates. Even though the confidence intervals are

centered around biased estimates, they are so large that they cover the true parameters in about

93% of the replicates for all three variables of interest. Moreover, the large estimated standard

errors lead to low power of the hypotheses tests with the nulls that the true coefficients are zero as

shown by the small share of rejections of the null hypotheses – at most in only about 60% of the

Monte Carlo replicates.

Overall, choosing λ > 0 leads to more precise estimates of the true average coefficients (consid-

ering all three coefficients together, the estimates are most precise for λ = 10−4), and to smaller

estimated standard errors. However, the bias of the estimated average coefficients remains rela-

tively large, so that the coverage of the confidence intervals gradually declines with increasing λ

due to the smaller estimated standard errors with increasing λ. For instance for λ = 2 · 10−3, the

confidence intervals have a coverage of only about 68% or less. The fact that the estimated coeffi-

cients tend to become more precise and the share of outliers decreases with increasing λ indicates

that the large deviation of the estimated coefficients from the true values for λ = 0 are driven by

outliers. This is illustrated by the boxplot of θ̂freq in Panel (a) of Figure 3.2. The mean (red point)

and median (horizontal line inside the colored boxes) values deviate quite substantially, which is
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due to the high minimum and maximum values of θ̂freq across Monte Carlo replicates.

Figure 3.2: Boxplots of θ̂freq across Monte Carlo Replicates for Small Data and Different λ-values

(a) No repeated sample splitting (R = 1)

(b) Repeated sample splitting (R = 5)

Note: Panel (a) and (b) show boxplots for the influence function approach, using four different values of λ. The
colored region within each boxplots highlights the interquartile range (IQR), the horizontal line within the IQR
corresponds to the median, and the whiskers indicate the 0.05 and 0.95 quantile, respectively. The red dot is the
mean across Monte Carlo replicates.

The median biases and estimated standard errors across Monte Carlo replicates reported in

Table 3.7 in the appendix confirm this impression. The results show that the median of the

estimated coefficients across Monte Carlo replicates are closer to the true values for λ = 0 and

become less precise with increasing λ. More importantly, the median of the estimated standard

errors are substantially smaller than the mean values across Monte Carlo replicates for each λ
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value. Overall, the median results for different values of λ are line with the expected effect of

regularization: The bias increases and the estimated standard errors decrease with increasing λ.

The average of the MSEs of the neural network for Λs(wi) in the training and test sample are

lowest for λ = 0 and therefore, the MSE may be used to choose an appropriate λ value.13

Estimating the average heterogeneous coefficients with a neural network without the influence

function approach provides more accurate estimates than the influence function approach. However,

the confidence intervals are too wide (the coverage is at least 99% for all three variables), implying

that the naive inference procedure with the regular robust standard errors is not valid. This is

also indicated by the poor power of the hypotheses tests with the nulls that the average travel

time and frequency coefficients are zero, which are rejected in only 3% and 0% of the Monte Carlo

replicates, respectively. The results on the share of outliers reveal that the issue is not unique to

the influence function approach but also appears when the parameters are estimated with a neural

network and without sample splitting. However, the share is substantially smaller in comparison

to the influence function approach with λ = 0, indicating that the smaller samples used for the

estimation of the networks due to sample splitting might be one of the reasons causing the issue.

The Monte Carlo experiment in Subsection 3.3.2 studies the performance of the influence function

approach for a larger sample size.

To resolve the sensitivity of the estimated results to potential outliers, we apply the repeated

sample splitting procedure outlined in Remark 1. Table 3.2 reports the results for the sample

splitting procedure with R = 5 repetitions.14 The repeated sample splitting reduces the share

of outliers substantially in comparison to the approach without repeated sample splitting. In

fact, for λ ≥ 10−4, there are no outliers anymore. Comparing Panel (a) and (b) in Figure 3.2

illustrates that the estimates vary less across Monte Carlo replicates when estimated with repeated

sample splitting. Furthermore, the less extreme minimum and maximum values indicate that the

extreme outliers are removed. Accordingly, the mean and median values are closer to each other

when the coefficient functions are estimated with repeated sample splitting. The reduced share

of outliers leads to more precise estimates of the average coefficients and to smaller estimated

standard errors. In contrast to the influence function approach without repeated sample splitting,

the overall average bias of the estimated average coefficients is smallest for λ = 0 and increases

with increasing λ. With respect to the confidence intervals, the coverage for λ = 0 is 94% for

the travel cost and frequency coefficients, and 95% for the travel time coefficient. The coverage

of the confidence intervals gradually decreases with λ. While for λ = 10−5 the coverage is below

but still close to 95% (for the travel time it is exactly 95%), the coverage for λ = 2 · 10−3 is at

most 66% (for the travel cost coefficient, the coverage of the confidence interval is just 42%). Thus,

the influence function approach with repeated sample splitting and regularizer λ = 0 allows to

precisely estimate average effects across travelers and provides a valid inference procedure. Using a

regularizer λ > 0 increases the average bias and decreases the estimated variance of the coefficients.

The combination of increasing bias and decreasing magnitude of the estimated standard errors with

13Note that the MSE in the test sample is also available to the researcher since it is calculated with the left out
fold.

14To reduce computation time, we only employ repeated sample splitting if we observe an outlier in the first
repetition of each Monte Carlo run.
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Table 3.2: Average Summary Statistics of 1000 Monte Carlo Replicates for Small Data and
Repeated Sample Splitting with R = 5

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.94 0.00 0.94 0.93 0.82 0.42 0.99

θfreq ∈ ĈIfreq 0.96 0.00 0.94 0.92 0.90 0.66 1.00

θtime ∈ ĈItime 0.96 0.00 0.95 0.95 0.87 0.59 1.00

ŝecost 0.07 0.05 1.61 1.34 0.72 0.32 0.61
ŝefreq 0.10 0.07 1.91 1.64 1.10 0.58 3.65
ŝetime 0.07 0.06 1.59 1.19 0.68 0.43 3.13

Biascost -0.01 0.65 -0.29 -0.30 -0.32 -0.41 -0.18
Biasfreq -0.00 0.59 -0.26 -0.32 -0.28 -0.39 -0.19
Biastime -0.00 0.81 -0.02 -0.16 -0.23 -0.36 -0.17

Rej. θcost = 0 1.00 1.00 0.48 0.61 0.84 0.96 0.99
Rej. θfreq = 0 1.00 1.00 0.25 0.32 0.54 0.81 0.00
Rej. θtime = 0 1.00 1.00 0.64 0.78 0.92 0.96 0.02

MSE(Λ)Train . . 5.07 5.23 5.46 6.04 .
MSE(Λ)Test . . 5.30 5.37 5.51 6.03 .
Share Outlier 0.00 0.00 0.05 0.02 0.00 0.00 0.12

Note: The table reports the average summary statistics over all Monte Carlo replicates
for the conditional logit using the true specification (Oracle), the conditional logit using
the three variables of interest for the estimation (Basic), the influence function approach,
using five different values of λ for the estimation of Λs(w), and the neural network (NN),
which uses robust standard erros and does not rely on the influence function approach.

increasing λ leads to inappropriately small confidence intervals centered around biased estimates

and, hence, to a poor coverage of the true values. Based on these results, we do not recommend

using regularization in the form of a l2-penalty with λ > 0 in the network used to estimate Λ(wi)

to stabilize the inference procedure but to rather rely on repeated sample splitting. However, even

for the repeated sample splitting, the estimated standard errors are substantially larger than those

in the oracle logit model. This leads to a poor power as indicated by the rare rejection of the false

null hypotheses that the true average coefficients are zero, which are rejected in only about 48%,

25%, and 64% of the Monte Carlo replicates for the travel cost parameter, the frequency parameter,

and the travel time parameter, respectively, for λ = 0.

Figure 3.3 shows the estimated densities of (θ̂cost − θ)/ŝe(θ̂cost) for the oracle logit estimator,

the basic logit estimator, and the influence function approach for different values of λ. The limiting

distribution of the influence function approach is the standard normal as stated in Equation (3.11).

First, the figure illustrates the bias of the basic logit estimator and illustrates that the estimated

t-statistics of the oracle logit estimator are well approximated by a standard normal distribution.

Second, comparing Panel (a) and Panel (b) reveals that the estimates obtained with the influence

function approach only seem to be close to the standard normal distribution when repeated sample

splitting is used and λ = 0 or λ = 10−5.
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Figure 3.3: Density of Estimated t-Statistic of θ̂cost for Different Estimators

(a) No repeated sample splitting (R = 1)

(b) Repeated sample splitting (R = 5)

Note: The plot shows kernel density estimates of the estimated t-statistic for the conditional logit using the true
specification (Oracle), the conditional logit using the three variables of interest for the estimation (Basic), the influence
function approach, using four different values for λ for the estimation of Λs(w). Additionally, the standard normal
distribution is included.

Remark 2. Beyond the repeated sample splitting, we conduct several other adjustments of the

estimation procedure that are intended to reduce outliers in some Monte Carlo replicates. We

considered taking the median instead of the average in Equation (3.9) and (3.10), i.e., replacing

θ̂ = 1
S

∑
θ̂s by θ̂ = median

{
θ̂s

}S
s=1

and Ψ̂ = 1
S

S∑
s=1

Ψ̂s by Ψ̂ = median
{

Ψ̂s

}S
s=1

. This leads to

smaller estimated standard errors but also to a lower average coverage across Monte Carlo replicates

( < 0.85), indicating the the bias remains large. Furthermore, we also apply the modification

suggested by Farrell et al. (2021a) and add a constant c to the diagonal elements of Λ̂s. For c = 1,

the coverage is quite poor, and c = 10−5 seems to have no impact on the results. That is, the

choice of the constant c seems to require further tuning which we did not investigate further.
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3.3.2 Large Data Set

The following Monte Carlo experiment aims to analyze whether the results of the previous experi-

ment persist for larger sample sizes. For that purpose, we revisit the Swiss Metro data set and use

the same specification as before. However, we now sample the socio-demographic characteristics

and the covariates of interest with replacement from the original data set such that we obtain

50, 000 travelers choosing among the three alternatives. With respect to the socio-demographic

characteristics, we randomly generate new travelers by drawing from the values of income, age,

gender, and who. Because we sample independently across characteristics, we create new types of

travelers characterized through new combinations of socio-demographic variables.

With respect to the covariates of interest, we make sure that we randomly draw the travel

time, travel cost, and frequency for a specific alternative only from the the values for the specific

alternative existing in the data (e.g., the cost variable for alternative car can only take values of

existing values of the cost variable for cars). However, for a given alternative, we draw the covariates

independently across variables from different choice situations. Otherwise, the Monte Carlo study

is the same as the one presented above.

Table 3.3 reports the average Monte Carlo results for N = 50, 000 and when the influence

function approach is estimated with repeated sample splitting. The results for the oracle logit and

the basic logit are similar to those obtained for the small sample size. For the oracle logit, the

Table 3.3: Average Summary Statistics of 1000 Monte Carlo Replicates for Large Data and
Repeated Sample Splitting with R = 5

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.94 0.92 0.91 0.76 1.00

θfreq ∈ ĈIfreq 0.95 0.00 0.95 0.93 0.90 0.83 1.00

θtime ∈ ĈItime 0.94 0.00 0.95 0.94 0.92 0.86 1.00

ŝecost 0.02 0.02 0.50 0.41 0.35 0.12 0.49
ŝefreq 0.04 0.04 0.80 0.59 0.44 0.14 1.72
ŝetime 0.03 0.02 0.45 0.36 0.29 0.14 1.27

Biascost 0.00 0.60 -0.05 -0.02 -0.05 -0.05 -0.03
Biasfreq 0.00 0.53 -0.09 -0.07 -0.06 -0.05 -0.03
Biastime 0.00 0.78 0.01 0.02 -0.03 -0.04 -0.02

Rej. θcost = 0 1.00 1.00 0.89 0.91 0.93 0.98 1.00
Rej. θfreq = 0 1.00 1.00 0.62 0.75 0.84 0.96 0.00
Rej. θtime = 0 1.00 1.00 0.95 0.96 0.97 0.99 0.94

MSE(Λ)Train . . 8.80 8.84 8.90 9.23 .
MSE(Λ)Test . . 8.88 8.87 8.91 9.23 .
Share Outlier 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table reports the average summary statistics over all Monte Carlo replicates
for the conditional logit using the true specification (Oracle), the conditional logit using
the three variables of interest for the estimation (Basic), the influence function approach,
using five different values for λ for the estimation of Λs(w), and the neural network (NN),
which uses robust standard erros and does not rely on the influence function approach.
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average estimated bias across Monte Carlo replicates is (almost) zero and the confidence intervals

cover the true frequency and travel time coefficients in 95% of the Monte Carlo replicates, and the

true travel cost coefficient in 94%. For the basic logit model, the standard errors of the estimated

coefficients are similar to those of the oracle logit. Nevertheless, the confidence intervals have zero

coverage due to the substantial bias of the estimated average coefficients.

Figure 3.4: Boxplots of θ̂freq across Monte Carlo Replicates for Large Data and Different λ-values

(a) No repeated sample splitting (R = 1)

(b) Repeated sample splitting (R = 5)

Note: Panel (a) and (b) show boxplots for the influence function approach, using four different values of λ. The
colored region within each boxplots highlights the interquartile range (IQR), the horizontal line within the IQR
corresponds to the median, and the whiskers indicate the 0.05 and 0.95 quantile, respectively. The red dot is the
mean across Monte Carlo replicates.
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For the influence function approach with repeated sample splitting, the estimated coefficients

are almost as precise as those estimated with the oracle logit model, independent of λ (i.e., the

average values vary only slightly across different values for λ), and the estimated standard errors

are substantially smaller in comparison to the results for the small sample size. However, they are

still larger than those estimated with the oracle logit estimator. For λ = 0, the confidence intervals

have the correct coverage (they cover the true travel cost parameter in 94%, and the true frequency

and travel time parameters in 95% of the Monte Carlo replicates). For λ > 0, the coverage of the

confidence intervals decreases below 95%, which is the result of the declining estimated standard

errors with increasing λ. However, the coverage declines not as rapidly with increasing λ as observed

for the small sample size. With respect to the power of the hypotheses tests with the nulls that the

coefficients are zero, the percentage of rejections of the incorrect null hypothesis are substantially

larger for λ = 0 than for the small sample size – in 89% of the Monte Carlo replicates for the travel

time coefficient, 62% for the frequency coefficient, and 95% for the travel time coefficient. Even

though the share of outliers for the influence function approach decreases substantially compared

to the Monte Carlo experiment with the small sample size, repeated sample splitting seems still

necessary as the mean deviates substantially from the median when no repeated sample splitting

is used (cf. Table 3.8 and Table 3.10 and Figure 3.4).

With respect to the estimation of the coefficient functions with a deep neural network and naive

inference, we observe a similar improvement when increasing the sample size as for the influence

function approach. The estimated average coefficients become more precise – they are similarly

precise as those obtained with the oracle logit – and the estimated standard errors become smaller.

A potential explanation for the more precise coefficient estimates and the smaller standard errors

might be the fact that the issue with the outlier disappears completely, both for the influence

function approach with repeated sample splitting (even for λ = 0) and when only the coefficient

functions are estimated with the neural network. However, the confidence intervals remain too

wide, confirming the impression from the experiments with the small sample size that regular

robust standard errors calculated with parameters estimated with deep learning are not a valid

inference procedure.

3.4 Application

This sections applies the estimation procedure presented in Section 3.2 to the Swissmetro dataset.

We consider the same utility specification as in the Monte Carlo experiments. That is, we in-

clude alternative-specific constants (car remains the reference category) along with the travel cost,

frequency, and travel time, i.e,

δ(wi) =
(
αtrain (wi) , αsm (wi) , β

cost (wi) , β
freq (wi) , β

time (wi)
)′
.

We estimate the model with the influence function approach using

wi := (agei, incomei, who
1
i , who

2
i , who

3
i , luggagei)

′
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as the set of input variables to the network. The variable luggage is an ordinal variable with

information on the pieces of luggage a traveler carries on her trip. It is zero if the traveler carries

no luggage, 1 if she carries one piece, and 3 if she carries several pieces.

As a benchmark, we estimate a conditional logit model and a nested logit model. In comparison

to the conditional logit model, the nested logit allows for more realistic substitution patterns across

alternatives (it does not exhibit the IIA property with respect to alternatives across nests). For

the nested logit model, we follow Bierlaire et al. (2001) and group the alternatives car and train in

one nest (representing existing alternatives), and Swissmetro in another other nest (representing

the newly introduced alternative).15 For both models, we use the same utility specification as

for the influence function approach, except that we model the coefficients as linear functions of

the the input variables wi. More precisely, in addition to alternative-specific constants and the

variables travel cost, frequency, and travel time, we include interactions of the alternative-specific

constants and the variables of interest with each of the variables in wi.
16 Similarly to the Monte

Carlo experiments, we also include a neural network estimated with the full training sample as

a benchmark. For the neural network, we conduct naive inference using robust standard errors

for the estimated coefficient functions. For the influence function approach and for the neural

network approach with naive inference, we use the same network architectures as in the Monte

Carlo experiment. In line with the results from the Monte Carlo experiments, we use repeated

sample splitting with R = 5 repetitions and set λ = 0 in the network for the estimation of Λ(wi)

when estimating the model with the influence function approach, as λ > 0 provides incorrect

coverage of the confidence intervals in the Monte Carlo experiments.

For the estimation, we follow Sifringer et al. (2020) and split the 9, 036 observations into a

training and a test set which consist of three and one quarter of the total observations, respectively.

We use the test set to compare the out-of-sample performance of the influence function approach

to the benchmark models. Table 3.4 reports the average heterogeneous coefficient functions for

the travel cost, frequency, and travel time and their corresponding estimated standard errors.

Additionally, we calculate the in- and out-of-sample log-likelihood per observation. Both the in-

and out-of-sample log-likelihood increases with increasing flexibility of the estimation approach.

While there is only slight improvement when going from the conditional logit to the nested logit

model, the influence function approach has a substantially higher in-sample as well as out-of-

sample log-likelihood. With respected to the estimated average coefficients, all four estimators

estimate the same sign. Travelers find alternatives with higher travel cost, frequency, and travel

time less attractive.17 The estimated average coefficients are smallest in magnitude when the

model is estimated with the conditional logit model and increase in magnitude with increasing

out-of-sample log-likelihood, which is especially the case for the travel cost coefficient. The results

for the estimated standard errors are in line with the results from the Monte Carlo experiments, as

the estimated standard errors of the influence function approach are substantially lager than those

of the conditional and nested logit model. In fact, for the influence function approach, none of the

estimated average coefficients is significantly different from zero, highlighting that larger samples

15Since the nest including the alternative Swissmetro is a degenerate nest, we estimate an unscaled version of the
nested logit in order to make the identification of the dissimilarity parameter feasible (see, e.g., Heiss, 2002).

16Interacting the alternative-specific constants with wi yields multinomial coefficients for each variable in wi.
17Frequency is calculated as average minutes of waiting time for a given transportation mode, i.e., a higher

frequency variable implies less frequent connections.
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Table 3.4: Estimated Average Travel Cost, Frequency and TRavel Time Parameters and
Corresponding Estimated Standard Errors

CL NL IFA NN

θ̂cost −1.144 −1.418 −1.849 −1.943

θ̂freq −0.891 −0.966 −1.040 −1.106

θ̂time −1.368 −1.728 −1.797 −2.172

ŝecost 0.061 0.078 0.954 1.343
ŝefreq 0.129 0.154 2.440 2.476
ŝetime 0.085 0.099 2.119 1.375

LLTrain −0.763 −0.762 −0.655 −0.638
LLTest −0.777 −0.772 −0.753 −0.695

Note: The table reports the estimated average coefficients and the standard
errors three variables of interest, and the in- and out-of-sample log-likelihood
for the conditional logit (CL), the nested logit (NL), the influence function
approach with λ = 0 and repeated sample splitting with R = 5 (IFA), and
the neural network with naive inference using robust standard errors (NN).

might be needed for the influence function approach than for traditional logit models.

Figure 3.5 plots the histograms of the predicted coefficients using the test set for the influence

function approach (blue bars) and the nested logit model (green bars). First, the plots reveal

that there is substantial heterogeneity across travelers. Second, the heterogeneity in the intercept

functions across travelers appears to be similar when estimated with the influence function approach

and the nested logit model, implying that the heterogeneity can be well captured by the linear

approximation employed by the nested logit model. In contrast, the heterogeneity in the coefficients

for the travel cost, frequency, and travel time predicted by the more flexible influence approach

deviates to a larger extent from the coefficients predicted by the nested logit model – especially for

the travel time coefficient.

One advantage of the influence function approach is that it can be easily applied to any param-

eter of inferential interest that is a function of the heterogeneous coefficient functions. In addition

to the estimated average coefficient for the travel time, travel cost, and frequency, we are interested

in estimating mean elasticities. More precisely, we focus on the expected own- and cross-travel

time elasticities with respect to changes in the travel time evaluated at the mean values of travel

cost, frequency, and travel time of every alternative. Thus, the parameters of inferential interest

calculated with the influence function approach are

θl,m0 = E
[
H l,m(wi, δ(wi);x

∗)
]

where x∗ is a matrix with row entries x̄′j which contain the average travel time, travel cost and

frequency for alternative j ∈ {car, train, sm}, and

H l,m(wi, δ(wi);x
∗) = βtime (wi) x̄m,time (Im,l − P (yi,m = 1|x∗,wi))

where Il,m is an indicator that is equal to one when l is equal to m and zero otherwise for l,m ∈
{car, train, sm}.
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Figure 3.5: Histograms of Estimated Coefficient Functions for Influence Function Approach and
Nested Logit Model

(a) Cost (b) Frequency

(c) Travel Time (d) Intercept Train

(e) Intercept SM

Note: The green bars represent the heterogeneous coefficients in the test set predicted with the nested logit model,
and the blue bars the heterogeneous coefficients in the test set predicted with the influence function approach with
repeated sample splitting with R = 5.

Hence, H l,m(wi, δ(wi);x
∗) is the individual own- and cross-travel time elasticity calculated at

the average travel cost, frequency, and travel time of every alternative, indicating the percentage

change of choosing alternative l after a one percentage increase in the average travel time of al-

ternative m. Consequently, θl,m0 corresponds to the expected own- and cross-travel time elasticity

across individuals.

For the conditional logit, nested logit, and naive neural network approach, we use Efron’s

Bootstrap (Efron, 1979) with 1000 bootstraps iterations to calculate the estimated standard errors

of the own- and cross-travel time elasticities evaluated at the means.18

Overall, the own- and cross-travel time elasticities estimated with the influence function ap-

proach and the neural network are quite similar. With respect to the own-travel time elasticities,

18For the nested logit model, we estimate the own- and cross-travel time elasticities at the mean using numerical
derivatives of the choice probabilities with respect to the travel time.
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both the influence function approach and the neural network predict that travelers respond more

sensitively to an increase in the travel time than predicted by the conditional and nested logit

model.

Table 3.5: Estimated Own- & Cross-Travel Time Elasticities

Influence Function: Neural Network:

Car SM Train Car SM Train

Car -2.385 (0.274) 1.338 (0.167) 0.143 (0.105) -2.313 (0.172) 1.315 (0.098) 0.237 (0.039)

SM 0.605 (0.274) -0.463 (0.167) 0.143 (0.105) 0.876 (0.066) -0.670 (0.054) 0.237 (0.039)

Train 0.605 (0.274) 1.338 (0.167) -3.466 (0.107) 0.876 (0.066) 1.315 (0.098) -3.526 (0.231)

Conditional Logit: Nested Logit:

Car SM Train Car SM Train

Car -1.71 (0.388) 0.791 (0.127) 0.211 (0.265) -0.936 (0.051) 0.715 (0.061) 0.145 (0.02)

SM 0.559 (0.327) -0.46 (0.126) 0.211 (0.265) 0.398 (0.023) -0.45 (0.032) 0.075 (0.01)

Train 0.559 (0.327) 0.791 (0.127) -1.83 (0.254) 1.097 (0.288) 0.715 (0.061) -1.255 (0.068)

Note: The table reports estimated mean and the standard errors (in brackets) over individuals’ own-
and cross-travel time elasticities evaluated at the mean for the influence function approach, the neural
network, the conditional logit, and the nested logit model. The reported numbers correspond to the
percentage change of the choice probability of an alternative in a row after a one percent increase in the
travel time of an alternative in a column.

A disadvantage of the influence function approach, the neural network, and the conditional logit

model is the restriction of the cross-elasticities through the IIA property imposed by the conditional

logit model and the model specified in Equation (3.1), which restricts the cross-elasticities to be

identical across alternatives. In contrast, the nested logit model, which allows for different cross-

elasticities across alternatives in different nests, predicts that travelers are substantially more likely

to substitute from car to train and vice versa in response to an increase in the travel time of either

of the alternatives.

Moreover, the standard errors of the own- and cross-travel time elasticities estimated with the

influence function approach remain larger than those of the nested logit model estimated with

Efron’s bootstrap – though the difference is not as large as for the estimated average coefficients

– and are only slightly larger than in the conditional logit model and even smaller for some own-

and cross-elasticities.
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3.5 Conclusion

This paper investigates the finite sample performance of the estimation approach of Farrell et al.

(2021a) in the context of discrete choice models, who propose deep learning for the estimation

of heterogeneous parameters in econometric models. For the construction of valid second-stage

inference statements after the first-stage estimation of the heterogeneous parameters with deep

learning, they provide an influence function approach that builds on Neyman orthogonal scores in

combination with sample splitting.

To study the proposed estimation and inference procedure, we conduct several Monte Carlo

experiments. First, the experiments reveal that deep learning generally allows to recover precise

estimates of the true average heterogeneous parameters – especially if the number of observations is

sufficiently large – and that naive inference with robust standard errors leads to incorrect inference

statements. Second, we observe that the influence function proposed for the construction of valid

inference statements is sensitive to overfitting when no l2-regularization is employed. Overfitting

results in substantial average estimated bias and extremely large average estimated standard errors

across Monte Carlo replicates. The sensitivity to overfitting is more pronounced for small samples

but does not disappear with increasing sample size in our experiments. Using l2-regularization ap-

pears to stabilize the estimation as it reduces the number of Monte Carlo replicates with extreme

outliers, but leads to poor coverage of the confidence intervals. This is a consequence of the decreas-

ing magnitude of the estimated standard errors and the increasing bias induced with increasing

regularization, which in combination lead to tighter confidence intervals that are centered around

biased estimates. A tool that achieves substantially better results in our Monte Carlo experiments

than regularization is repeated sample splitting. Unlike l2-regularization, it substantially reduces

the number of outliers across Monte Carlo replicates without inducing additional bias, enabling

the construction of valid inference statements. However, repeated sample splitting appears to have

a less drastic effect on the estimated variance than l2-regularization, which causes relatively large

estimated standard errors.

Due to the complexity of neural networks, we restrict our Monte Carlo experiments to the

impact of l2-regularization on the inference procedure. An interesting avenue for future research is

to consider different forms of regularization, such as dropout rates, and varying complexities of the

network architecture used to estimate the influence function approach (e.g., to vary the number of

neurons and hidden layers).
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Appendix: Additional Tables and Figures

Table 3.6: Median Summary Statistics of 1000 Monte Carlo Replicates for Small Data and
without Repeated Sample Splitting

Conditional Influence Function Approach

Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.93 0.92 0.83 0.40 0.99

θfreq ∈ ĈIfreq 0.95 0.00 0.93 0.92 0.89 0.68 1.00

θtime ∈ ĈItime 0.94 0.00 0.93 0.94 0.88 0.54 1.00

ŝecost 0.07 0.05 1.36 1.02 0.53 0.18 0.60

ŝefreq 0.10 0.07 1.62 1.34 0.84 0.34 3.29

ŝetime 0.07 0.06 1.28 0.96 0.46 0.24 2.98

Biascost -0.01 0.65 -0.23 -0.21 -0.31 -0.44 -0.16

Biasfreq -0.00 0.59 -0.28 -0.32 -0.35 -0.40 -0.19

Biastime -0.01 0.80 -0.09 -0.09 -0.23 -0.41 -0.17

Rej. θcost = 0 1.00 1.00 0.47 0.56 0.78 0.93 1.00

Rej. θfreq = 0 1.00 1.00 0.27 0.35 0.50 0.79 0.00

Rej. θtime = 0 1.00 1.00 0.60 0.69 0.84 0.93 0.03

MSE(Λ)Train . . 4.99 5.13 5.35 5.93 .

MSE(Λ)Test . . 5.20 5.28 5.40 5.93 .

Share Outlier 0.00 0.00 0.26 0.18 0.11 0.04 0.12

Note: The table reports the median of the variables ŝei, BIASi, MSE(Λ)Train, and
MSE(Λ)Test and the average of the variables θi ∈ ĈIi, Rej. θi = 0, and Share Outlier,
i ∈ {cost, freq, time}, over all Monte Carlo replicates for the conditional logit using the
true specification (Oracle), the conditional logit using the three variables of interest for
the estimation (Basic), the influence function approach, using five different values of λ
for the estimation of Λs(w), and the neural network (NN), which uses robust standard
erros and does not rely on the influence function approach.
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Table 3.7: Median Summary Statistics of 1000 Monte Carlo Replicates for Small Data and
Repeated Sample Splitting with R = 5

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.94 0.00 0.94 0.93 0.82 0.42 0.99

θfreq ∈ ĈIfreq 0.96 0.00 0.94 0.92 0.90 0.66 1.00

θtime ∈ ĈItime 0.96 0.00 0.95 0.95 0.87 0.59 1.00

ŝecost 0.07 0.05 1.20 0.96 0.46 0.18 0.60
ŝefreq 0.10 0.07 1.48 1.16 0.73 0.33 3.45
ŝetime 0.07 0.06 1.21 0.85 0.42 0.24 3.04

Biascost -0.01 0.65 -0.26 -0.29 -0.33 -0.41 -0.18
Biasfreq -0.00 0.59 -0.28 -0.31 -0.28 -0.40 -0.18
Biastime -0.00 0.81 -0.03 -0.13 -0.24 -0.38 -0.17

Rej. θcost = 0 1.00 1.00 0.48 0.61 0.84 0.96 0.99
Rej. θfreq = 0 1.00 1.00 0.25 0.32 0.54 0.81 0.00
Rej. θtime = 0 1.00 1.00 0.64 0.78 0.92 0.96 0.02

MSE(Λ)Train . . 5.01 5.15 5.37 5.94 .
MSE(Λ)Test . . 5.22 5.30 5.43 5.95 .
Share Outlier 0.00 0.00 0.05 0.02 0.00 0.00 0.12

Note: The table reports the median of the variables ŝei, BIASi, MSE(Λ)Train, and
MSE(Λ)Test and the average of the variables θi ∈ ĈIi, Rej. θi = 0, and Share Outlier,
i ∈ {cost, freq, time}, over all Monte Carlo replicates for the conditional logit using the
true specification (Oracle), the conditional logit using the three variables of interest for
the estimation (Basic), the influence function approach, using five different values of λ
for the estimation of Λs(w), and the neural network (NN), which uses robust standard
erros and does not rely on the influence function approach.
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Table 3.8: Average Summary Statistics of 1000 Monte Carlo Replicates for Large Data and
without Repeated Sample Splitting

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.94 0.93 0.90 0.75 1.00

θfreq ∈ ĈIfreq 0.95 0.00 0.92 0.94 0.91 0.83 1.00

θtime ∈ ĈItime 0.95 0.00 0.94 0.94 0.92 0.85 1.00

ŝecost 0.02 0.02 3.43 1.45 1.15 0.24 0.49
ŝefreq 0.04 0.04 8.24 2.03 1.60 0.30 1.73
ŝetime 0.03 0.02 3.02 3.24 0.98 0.26 1.28

Biascost -0.00 0.60 1.38 0.87 0.05 -0.24 -0.03
Biasfreq -0.00 0.53 3.82 1.08 0.24 -0.32 -0.03
Biastime -0.00 0.78 0.67 3.13 -0.01 -0.24 -0.02

Rej. θcost = 0 1.00 1.00 0.83 0.88 0.89 0.98 1.00
Rej. θfreq = 0 1.00 1.00 0.58 0.69 0.81 0.97 0.00
Rej. θtime = 0 1.00 1.00 0.90 0.93 0.94 0.98 0.93

MSE(Λ)Train . . 8.81 8.85 8.90 9.23 .
MSE(Λ)Test . . 8.89 8.88 8.92 9.24 .
Share Outlier 0.00 0.00 0.07 0.05 0.04 0.01 0.00

Note: The table reports the average summary statistics over all Monte Carlo replicates
for the conditional logit using the true specification (Oracle), the conditional logit
using the three variables of interest for the estimation (Basic), the influence function
approach, using five different values of λ for the estimation of Λs(w), and the neural
network (NN), which uses robust standard erros and does not rely on the influence
function approach.
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Table 3.9: Median Summary Statistics of 1000 Monte Carlo Replicates for Large Data and
without Repeated Sample Splitting

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.94 0.93 0.90 0.75 1.00

θfreq ∈ ĈIfreq 0.95 0.00 0.92 0.94 0.91 0.83 1.00

θtime ∈ ĈItime 0.95 0.00 0.94 0.94 0.92 0.85 1.00

ŝecost 0.02 0.02 0.35 0.25 0.19 0.04 0.49
ŝefreq 0.04 0.04 0.58 0.37 0.23 0.06 1.72
ŝetime 0.03 0.02 0.27 0.19 0.16 0.05 1.27

Biascost -0.00 0.60 -0.05 -0.01 -0.07 -0.05 -0.03
Biasfreq -0.00 0.53 -0.09 -0.04 -0.08 -0.06 -0.03
Biastime -0.00 0.78 -0.00 0.00 -0.04 -0.03 -0.02

Rej. θcost = 0 1.00 1.00 0.83 0.88 0.89 0.98 1.00
Rej. θfreq = 0 1.00 1.00 0.58 0.69 0.81 0.97 0.00
Rej. θtime = 0 1.00 1.00 0.90 0.93 0.94 0.98 0.93

MSE(Λ)Train . . 8.81 8.85 8.90 9.24 .
MSE(Λ)Test . . 8.89 8.88 8.91 9.24 .
Share Outlier 0.00 0.00 0.07 0.05 0.04 0.01 0.00

Note: The table reports the median of the variables ŝei, BIASi, MSE(Λ)Train, and
MSE(Λ)Test and the average of the variables θi ∈ ĈIi, Rej. θi = 0, and Share Outlier,
i ∈ {cost, freq, time}, over all Monte Carlo replicates for the conditional logit using the
true specification (Oracle), the conditional logit using the three variables of interest for
the estimation (Basic), the influence function approach, using five different values of λ
for the estimation of Λs(w), and the neural network (NN), which uses robust standard
erros and does not rely on the influence function approach.
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Table 3.10: Median Summary Statistics of 1000 Monte Carlo Replicates for Large Data and
Repeated Sample Splitting with R = 5

Conditional Influence Function Approach
Logit with λ equal to

Oracle Basic 0 10−5 10−4 2 · 10−3 NN

θcost ∈ ĈIcost 0.95 0.00 0.94 0.92 0.91 0.76 1.00

θfreq ∈ ĈIfreq 0.95 0.00 0.95 0.93 0.90 0.83 1.00

θtime ∈ ĈItime 0.94 0.00 0.95 0.94 0.92 0.86 1.00

ŝecost 0.02 0.02 0.30 0.23 0.17 0.04 0.49
ŝefreq 0.04 0.04 0.51 0.33 0.22 0.06 1.72
ŝetime 0.03 0.02 0.26 0.18 0.14 0.05 1.26

Biascost -0.00 0.60 -0.04 -0.03 -0.06 -0.04 -0.03
Biasfreq 0.00 0.53 -0.08 -0.06 -0.08 -0.05 -0.02
Biastime -0.00 0.78 -0.01 -0.00 -0.03 -0.03 -0.02

Rej. θcost = 0 1.00 1.00 0.89 0.91 0.93 0.98 1.00
Rej. θfreq = 0 1.00 1.00 0.62 0.75 0.84 0.96 0.00
Rej. θtime = 0 1.00 1.00 0.95 0.96 0.97 0.99 0.94

MSE(Λ)Train . . 8.80 8.83 8.89 9.22 .
MSE(Λ)Test . . 8.87 8.87 8.90 9.23 .
Share Outlier 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table reports the median of the variables ŝei, BIASi, MSE(Λ)Train, and
MSE(Λ)Test and the average of the variables θi ∈ ĈIi, Rej. θi = 0, and Share Outlier,
i ∈ {cost, freq, time}, over all Monte Carlo replicates for the conditional logit using the
true specification (Oracle), the conditional logit using the three variables of interest for
the estimation (Basic), the influence function approach, using five different values of λ
for the estimation of Λs(w), and the neural network (NN), which uses robust standard
erros and does not rely on the influence function approach.
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Figure 3.6: Density of Estimated t-Statistic of θ̂cost for Different Estimators and Large Data

(a) No repeated sample splitting (R = 1)

(b) Repeated sample splitting (R = 5)

Note: The plot shows kernel density estimates of the estimated t-statistic for the conditional logit using the true
specification (Oracle), the conditional logit using the three variables of interest for the estimation (Basic), the influence
function approach, using four different values for λ for the estimation of Λs(w). Additionally, the standard normal
distribution is included.

121



Figure 3.7: Histograms of Estimated Coefficient Functions for Influence Function Approach and
Neural Network

(a) Cost (b) Frequency

(c) Travel Time (d) Intercept Train

(e) Intercept SM

Note: The green bars represent the heterogeneous coefficients in the test set predicted with the neural network model
(without the influence function approach), and the blue bars the heterogeneous coefficients in the test set predicted
with the influence function approach with repeated sample splitting with R = 5.
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Table 3.11: Estimation Results Logit Models

Conditional Logit: Nested Logit:

(1) (2) (1) (2)

Const SM 1.248∗∗∗ (0.183) 0.721∗ (0.424) 1.490∗∗∗ (0.225) 1.109∗∗ (0.548)
Const Train −1.110∗∗∗ (0.417) −0.191 (0.748) −1.013∗∗ (0.411) −0.007 (0.971)
Cost −0.878∗∗∗ (0.042) −0.984∗∗ (0.429) −0.976∗∗∗ (0.046) −1.258∗∗ (0.500)
Freq −0.735∗∗∗ (0.115) −2.307∗ (1.190) −0.778∗∗∗ (0.122) −2.603 (1.918)
Time −1.216∗∗∗ (0.051) −2.710∗∗∗ (0.586) −1.449∗∗∗ (0.048) −3.138∗∗∗ (0.657)
Agesm −0.234∗∗∗ (0.030) −0.198∗∗∗ (0.045) −0.262∗∗∗ (0.036) −0.262∗∗∗ (0.059)
AGEtrain 0.040 (0.047) 0.020 (0.087) 0.035 (0.046) 0.003 (0.088)
Incomesm 0.015 (0.030) −0.009 (0.043) 0.036 (0.034) 0.006 (0.051)
Incometrain −0.279∗∗∗ (0.041) −0.150∗ (0.079) −0.288∗∗∗ (0.043) −0.164∗ (0.087)
Who1sm −0.347∗∗ (0.161) −0.012 (0.408) −0.430∗∗ (0.197) −0.198 (0.530)
Who1train 1.305∗∗∗ (0.390) 0.029 (0.714) 1.317∗∗∗ (0.402) −0.030 (0.957)
Who2sm 0.047 (0.166) 0.497 (0.415) 0.024 (0.200) 0.448 (0.536)
Who2train 1.160∗∗∗ (0.398) 0.080 (0.730) 1.175∗∗∗ (0.411) 0.062 (0.971)
Who3sm −0.072 (0.181) 0.904∗∗ (0.426) −0.128 (0.214) 0.875 (0.547)
Who3train 1.199∗∗∗ (0.418) −0.437 (0.762) 1.184∗∗∗ (0.431) −0.644 (0.998)
Malesm −0.322∗∗∗ (0.077) −0.302∗∗∗ (0.111) −0.327∗∗∗ (0.084) −0.354∗∗∗ (0.137)
Maletrain −0.428∗∗∗ (0.115) −0.206 (0.213) −0.423∗∗∗ (0.114) −0.133 (0.219)
Luggagesm 0.132∗∗ (0.052) 0.211∗∗∗ (0.076) 0.129∗∗ (0.058) 0.214∗∗ (0.102)
Luggagetrain 0.541∗∗∗ (0.079) 0.350∗∗ (0.144) 0.562∗∗∗ (0.088) 0.346∗∗ (0.165)
Cost*Age −0.429∗∗∗ (0.050) −0.531∗∗∗ (0.047)
Freq*Age 0.088 (0.113) 0.089 (0.115)
Time*Age −0.065 (0.055) −0.127∗∗ (0.050)
Cost*Income 0.098∗∗ (0.042) 0.098∗ (0.052)
Freq*Income −0.153 (0.098) −0.134 (0.109)
Time*Income −0.085 (0.054) −0.116∗ (0.070)
Cost*Who1 1.018∗∗ (0.419) 1.362∗∗∗ (0.494)
Freq*Who1 1.747 (1.154) 1.961 (1.905)
Time*Who1 1.739∗∗∗ (0.568) 2.156∗∗∗ (0.661)
Cost*Who2 1.028∗∗ (0.420) 1.327∗∗∗ (0.495)
Freq*Who2 1.543 (1.171) 1.740 (1.916)
Time*Who2 1.768∗∗∗ (0.574) 2.141∗∗∗ (0.671)
Cost*Who3 1.234∗∗∗ (0.433) 1.582∗∗∗ (0.519)
Freq*Who3 1.779 (1.208) 2.060 (1.939)
Time*Who3 3.099∗∗∗ (0.574) 3.837∗∗∗ (0.673)
Cost*MALE −0.536∗∗∗ (0.097) −0.644∗∗∗ (0.119)
Freq*Male −0.053 (0.277) −0.124 (0.285)
Time*Male −0.394∗∗∗ (0.139) −0.601∗∗∗ (0.156)
Cost*Luggage 0.399∗∗∗ (0.075) 0.525∗∗∗ (0.096)
Freq*Luggage 0.081 (0.189) 0.095 (0.230)
Time*Luggage 0.459∗∗∗ (0.093) 0.611∗∗∗ (0.121)
iv:train 0.805∗∗∗ (0.039) 0.738∗∗∗ (0.048)
iv:car 0.872∗∗∗ (0.039) 0.761∗∗∗ (0.048)

Observations 7,234 7,234 7,234 7,234
R2 0.123 0.148 0.124 0.150
Log Likelihood −5,683.250 −5,520.814 −5,676.610 −5,512.196
LR Test 1,599.627∗∗∗ (df = 19) 1,924.500∗∗∗ (df = 40) 1,612.908∗∗∗ (df = 21) 1,941.736∗∗∗ (df = 42)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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grids and applications - stuttgart 2014 (pp. 29–49). Springer International Publishing.

Garcke, J. (2013). Sparse grids in a nutshell. In J. Garcke and M. Griebel (Eds.), Sparse grids and

applications (pp. 57–80). Berlin, Heidelberg: Springer Berlin Heidelberg.

Gentle, J. E. (2007). Matrix Algebra: Theory, Computations, and Applications in Statistics (1st

ed.). Springer Publishing Company, Incorporated.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT Press.

(http://www.deeplearningbook.org)

Greene, W. H., Hensher, D. A., and Rose, J. (2006). Accounting for heterogeneity in the variance

of unobserved effects in mixed logit models. Transportation Research Part B: Methodological ,

40 (1), 75-92.

Hansen, B. E. (2014). Nonparametric sieve regression: Least squares, averaging least squares, and

cross-validation. Handbook of Applied Nonparametric and Semiparametric Econometrics and

Statistics .

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data

mining, inference and prediction (2nd ed.). Springer.

Hebiri, M., and van de Geer, S. (2011). The Smooth-Lasso and other `1 + `2-penalized methods.

Electronic Journal of Statistics , 5 (none), 1184 – 1226.

Heiss, F., Hetzenecker, S., and Osterhaus, M. (2021). Nonparametric estimation of the random

coefficients model: An elastic net approach. Journal of Econometrics .

Heiss, F., and Winschel, V. (2008). Likelihood approximation by numerical integration on sparse

125



grids. journal of Econometrics , 144 (1), 62–80.

Hess, S., Bierlaire, M., and Polak, J. W. (2005). Estimation of value of travel-time savings using

mixed logit models. Transportation Research Part A: Policy and Practice , 39 (2-3), 221–236.

Hoerl, A. E., and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal

problems. Technometrics , 12 (1), 55–67.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal

approximators. Neural Networks , 2 , 359-366.

Houde, S., and Myers, E. (2021). Are consumers attentive to local energy costs? evidence from

the appliance market. Journal of Public Economics , 201 , 104480.

Hu, Z., Follmann, D. A., and Miura, K. (2015). Vaccine design via nonnegative lasso-based variable

selection. Statistics in medicine, 34 (10), 1791–1798.

Illanes, G., and Padi, M. (2019). Competition, Asymmetric Information, and the Annuity Puzzle:

Evidence from a Government-Run Exchange in Chile (Tech. Rep.). Center for Retirement

Research.

Jentsch, C., and Leucht, A. (2016). Bootstrapping sample quantiles of discrete data. Annals of the

Institute of Statistical Mathematics , 68 (3), 491–539.

Jia, J., and Yu, B. (2010). On model selection consistency of the elastic net when p � n. Statistica

Sinica, 20 (2), 595–611.

Judd, K. L., Maliar, L., and Maliar, S. (2011). Numerically stable and accurate stochastic sim-

ulation approaches for solving dynamic economic models. Quantitative Economics , 2 (2),

173-210.

Karlaftis, M. G., and Vlahogianni, E. I. (2011). Statistical methods versus neural networks in

transportation research: Differences, similarities and some insights. Transportation Research

Part C: Emerging Technologies , 19 , 387-399.

Koppelman, F. S., and Wen, C.-H. (2000). The paired combinatorial logit model: properties,

estimation and application. Transportation Research Part B: Methodological , 34 (2), 75–89.

Kump, P., Bai, E.-W., Chan, K.-S., Eichinger, B., and Li, K. (2012). Variable selection via RIVAL

(removing irrelevant variables amidst Lasso iterations) and its application to nuclear material

detection. Automatica, 48 (9), 2107–2115.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521 , 436-444.

Ma, X., and Zabaras, N. (2009). An adaptive hierarchical sparse grid collocation algorithm for the

solution of stochastic differential equations. Journal of Computational Physics , 228 (8), 3084

- 3113.

Marwick, K. P., and Koppelman, F. S. (1990). Proposals for analysis of the market demand for

high speed rail in the Quebec/Ontario corridor. Submitted to Ontario/Quebec Rapid Task

Force.

McFadden, D., and Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied

Econometrics , 15 (5), 447–470.

Nevo, A., Turner, J. L., and Williams, J. W. (2016). Usage-Based Pricing and Demand for

Residential Broadband. Econometrica, 84 (2), 411–443.

Newey, W. K. (1994). The asymptotic variance of semiparametric estimators. Econometrica, 62 ,

1349-1382.

126



Nocedal, J., and Wright, S. J. (2006). Numerical optimization (2. ed. ed.). New York, NY: Springer.
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sparse grids. In J. Garcke and D. Pflüger (Eds.), Sparse grids and applications - stuttgart

2014 (pp. 315–336). Springer International Publishing.

Wand, M. (2000). A comparison of regression spline smoothing procedures. Computational Statis-

tics , 15 , 443-462.

Wang, S., Mo, B., Hess, S., and Zhao, J. (2021). Comparing hundreds of machine learning

classifiers and discrete choice models in predicting travel behavior: an empirical benchmark.

arXiv preprint arXiv:2102.01130 .

Wang, S., Wang, Q., and Zhao, J. (2020). Deep neural networks for choice analysis: Extracting

complete economic information for interpretation. Transportation Research Part C: Emerging

Technologies , 118 , 102701.

127



Wen, C.-H., and Koppelman, F. S. (2001). The generalized nested logit model. Transportation

Research Part B: Methodological , 35 (7), 627–641.

Wong, M., and Farooq, B. (2021). Reslogit: A residual neural network logit model for data-driven

choice modelling. Transportation Research Part C: Emerging Technologies , 126 , 103050.

Wu, L., and Yang, Y. (2014). Nonnegative Elastic Net and application in index tracking. Applied

Mathematics and Computation , 227 , 541–552.

Wu, L., Yang, Y., and Liu, H. (2014). Nonnegative-lasso and application in index tracking.

Computational Statistics and Data Analysis , 70 , 116–126.

Zenger, C. (1991). Parallel algorithms for partial differential equations. In W. Hackbusch (Ed.),

Notes on numerical fluid mechanics (Vol. 31, pp. 241–251). Vieweg.

Zhao, P., and Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine learning

research, 7 (Nov), 2541–2563.

Zhou, S., and Shen, X. (2001). Spatially adaptive regression splines and accurate knot selection

schemes. Journal of the American Statistical Association , 96 (453), 247-259.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical

association, 101 (476), 1418–1429.

Zou, H., and Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. Journal

of the Royal Statistical Society. Series B (Statistical Methodology), 67 (2), 301–320.

128



Eidesstattliche Versicherung

Ich, Maximilian Osterhaus, versichere an Eides statt, dass die vorliegende Dissertation von mir
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