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ABSTRACT

Due to the increasing amount of data collected in various domains, the field of data
maning focusing on the automated information extraction from data, becomes increas-
ingly important. The inclusion of temporal information can be very helpful and lead
to a deeper insight of the data in many applications. Some fields of application include
the analysis of sequentially recorded data regarding the disease progression of patients,
user behavior in online shops or stock market data. Time series analysis deals with
such sequentially recorded data, called time series, and covers a large field of data min-
ing methods such as classification, clustering and outlier detection. In this thesis, we
concentrate on outlier detection in time series data sets. Apart from the identification
of errors and malfunctions, the recognition of outliers can help finding anomalies with
other semantic values. For example, credit card fraud, conspicuous user behavior or
seldom diseases might be discovered.

In contrast to other approaches, which consider a single time series or the whole data
set at once, we identify groups of time series in order to focus on a more informative
scope of courses. We believe, that usual group behavior can be extracted, leading to
deeper insights into normal and anomalous developments of time series. Therefore
we cluster the data per timestamp and investigate the sequences’ transitions between
clusters over time. Our approach is applicable to all applications, where a formation
of groups of time series following a similar trend can be assumed. One example is
the examination of annual financial reports of publicly listed companies. Companies
sharing a similar industry and corporate strategy, will most probably exhibit a similar
development of their balance sheet figures. If one company suddenly splits from its
former group, it shows a conspicuous behavior which might indicate advantages or
disadvantages caused by different circumstances including fraud. This behavior can be
detected based on the company’s cluster transitions.

Since this approach is dependent on an underlying clustering, we do not only focus
on outlier detection but also on the clustering of time series and appropriate evaluation
measures. In this thesis, we introduce a new type of outliers based on group-behavior
and two novel approaches for their identification. Moreover, we introduce the term
over-time stability describing the stability of clusters’ member compositions over time.
We propose a novel clustering approach producing clusterings per timestamp under
the consideration of temporal information maximizing the clusters’ over-time stability.
Furthermore, we present two validity measures evaluating the over-time stability of
crisp and fuzzy clusterings. Those measurements enable the evaluation and quantita-
tive comparison of different clusterings per timestamp for the first time. Therefore,
they represent helpful tools for discovering optimal parameter settings and best fitting



algorithms for applications.

Our experiments on various artificial and real-world data sets show the functional-
ity and applicability of our approaches. All intended aims have been achieved. Several
executed analyses of the data demonstrate the variety of our evaluation measure for
crisp environments and highlight the potential for further extensions. The outlier de-
tection algorithm could be quantitatively evaluated regarding the detection of financial
restatements. The achieved results are competitive against other state-of-the-art algo-
rithms in the field of economics, and demonstrate a meaningful field of application. One
important advantage of the approach, that can not be underrated, is the transparency
of decisions, which increases the willingness of usage in real-world environments.



/ZUSAMMENFASSUNG

Aufgrund der zunehmenden Menge an Daten aus unterschiedlichsten Bereichen, gewinnt
das Forschungsgebiet des Data Mining, welches sich mit der automatisierten Informa-
tionsextraktion aus Daten beschéftigt, immer mehr an Bedeutung. Das Einbeziehen
von zeitlichen Informationen kann hierbei in vielen Anwendungen zu einem tieferen
Einblick in die Daten verhelfen. So konnen beispielsweise Krankheitsverldufe von Pa-
tienten, das Nutzerverhalten in Online-Shops oder Borsendaten analysiert werden. Die
Zeitrethenanalyse beschéftigt sich mit solchen sequentiell aufgezeichneten Daten, den
sogenannten Zeitreithen, und umfasst ein grofes Gebiet der Data-Mining-Methoden
wie Klassifizierung, Clustering und Ausreifererkennung. In dieser Arbeit liegt der
Fokus auf der Ausreiffererkennung in Zeitreihen. Neben der Identifikation von Fehlern
und Storungen kann die Erkennung von Ausreiffern helfen, Anomalien mit weiteren
semantischen Bedeutungen zu finden. So kodnnen beispielsweise Kreditkartenbetrug,
auffilliges Benutzerverhalten oder Krankheiten entdeckt werden.

Im Gegensatz zu anderen Verfahren, welche eine einzelne Zeitreihe oder den gesamten
Datensatz betrachten, werden in dieser Arbeit Gruppen von Zeitreihen identifiziert,
da wir glauben, dass ein iibliches Gruppenverhalten extrahiert werden kann, welches
Aufschliisse iiber normale und anormale Verldufe der Zeitreihen bringen kann. Aus
diesem Grund clustern wir die Daten pro Zeitpunkt und untersuchen die Ubergéingen
von Zeitreihen zwischen Clustern iiber die Zeit. Unser Ansatz ist in allen Kontex-
ten anwendbar, in denen ein Gruppenverhalten von Zeitreihen angenommen werden
kann. KEin Beispiel hierfiir ist die Priifung der Jahresabschliisse von borsennotierten
Unternehmen. Unternehmen, welche einer dhnlichen Branche angehoren und iiber
ahnliche Unternehmensstrategien verfiigen, werden héchstwahrscheinlich eine dhnliche
Entwicklung ihrer Bilanzkennzahlen aufweisen. Wenn sich ein Unternehmen plétzlich
von seiner urspriinglichen Gruppe trennt, weist dies auf ein aufféalliges Verhalten hin,
welches durch verschiedenste Umstéande verursacht werden konnten, einschlieftlich Be-
trug. Dieses Verhalten kann anhand der Clusteriibergénge erkannt werden.

Da dieses Verfahren auf einem Clustering der Zeitreihen basiert, liegt der Fokus in
dieser Arbeit nicht nur auf der Ausreifererkennung, sondern ebenso auf dem Clustering
und der Entwicklung geeigneter Evaluationsmafke. Wir definieren einen neuen Aus-
reifsertyp, welcher auf dem Gruppenverhalten von Zeitreihen beruht, und prasentieren
zwei neuartige Methoden zur Erkennung dieser Ausreifer. Dariiber hinaus fithren wir
den Begriff "over-time stability" ein, welcher die Stabilitdat der Zusammensetzung der
Gruppenmitglieder iiber die Zeit beschreibt. Wir stellen ein neues Clustering-Verfahren
vor, das unter Beriicksichtigung des zeitlichen Zusammenhangs Partitionierungen pro
Zeitpunkt erzeugt und dabei die Stabilitét der Cluster {iber die Zeit maximiert. Zudem



prasentieren wir zwei Evaluationsmafe fiir die Bewertung der Stabilitdt von crisp und
fuzzy Clustern. Diese Evaluationsmake machen es erstmals moglich, Clusterings pro
Zeitpunkt auszuwerten und quantitativ miteinander zu vergleichen. Somit stellen sie
hilfreiche Werkzeuge zur Ermittlung optimaler Parametereinstellungen und der Wahl
der geeignetsten Algorithmen dar.

Die Experimente auf diversen kiinstlichen und realen Datensétzen zeigen die Funk-
tionalitdt und Anwendbarkeit unserer Methoden. Alle avisierten Ziele konnten er-
reicht werden. Die ausgiebige Evaluation demonstriert die Vielféltigkeit unseres Be-
wertungsmaftes und verdeutlicht das Potenzial fiir mogliche Erweiterungen. Unser
Ausreiffererkennungsverfahren konnte hinsichtlich der Identifizierung von fehlerhaften
finanziellen Jahresabschlussdaten quantitativ ausgewertet werden. Die erzielten Ergeb-
nisse sind konkurrenzfihig gegeniiber anderen Algorithmen im Bereich der Wirtschafts-
wissenschaften und zeigen einen sinnvollen Anwendungsbereich auf. FEin nicht zu
unterschétzender Vorteil unseres Ansatzes ist die Nachvollziehbarkeit der getroffenen
Entscheidungen, welche die Bereitschaft zur Nutzung in realen Umgebungen erhcht.
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INTRODUCTION

1.1 Motivation

The steadily increasing amount of data recorded on an every-day basis in various do-
mains, such as social networks, online shops, medical clinics, internet of things et
cetera, leads to the necessity of an automated processing. The research field knowl-
edge discovery in databases (KDD) comprises several topics for the preparation and
analysis of that data dealing with numerous problem definitions [Fayyad et al., 1996].
The majority of the analytical part of KDD can be summarized under the buzz word
machine learning (ML) |Frawley et al., 1992|, which describes algorithms successively
exploring diverse structure characteristics of data in order to extract relevant infor-
mation. Apart from supervised machine learning tasks such as classification, it covers
the field of unsupervised methods consisting of clustering and outlier detection. The
difference between supervised and unsupervised ML algorithms can be explained as
follows [Hinton et al., 1999].

In unsupervised tasks there is no knowledge about the expected result. This can
be exemplified by means of the clustering task. The aim of clustering algorithms is to
achieve a partitioning of the underlying data, where data objects of the same partition
are very similar to each other, while objects of different groups vary widely from each
other [Jain et al., 1999]. That means, that the separation of groups as well as the con-
nectedness or compactness within groups is maximized. Clustering algorithms learn
solely from the data distribution without any knowledge about the expected partition-
ing. In supervised ML tasks, the expected result is already known. Considering the
classification task where data objects are assigned to prescribed classes, the algorithms
learn based on a training data set containing input-output pairs corresponding to data-
class pairs [Jain et al., 1999|. The trained model can finally be applied on unseen test
data for a classification of data objects whose class-assignment is unknown. Shortly,
this means, that unsupervised ML algorithms extract information directly from the
data set while supervised ML algorithms need to be trained on a training data set in
order to obtain information about unknown data.



1.1. MOTIVATION

The problem definitions dealt with in this dissertation belong to the field of un-
supervised machine learning. More precisely, clustering and its validity measurement
as well as outlier detection are covered. Herein, the focus lies on a certain type of
data called time series. Time series describe data that is recorded sequentially over
multiple points in time [Cryer, 1986]. Examples are hourly collected weather data,
such as temperature, humidity and wind speed, yearly financial statements, secondly
stock market data, weekly medical examination data in test series and millisecondly
electrocardiogram signals of the human heart.

The detection of anomalies is an important task in the field of time series analysis,
since errors and malfunctions often become apparent by unusual patterns [Aggarwal,
2015] and noise data points might lead to false conclusions. However, the research
field of outlier detection is widely diversified, since the definition of outliers is highly
application-dependent. Regarding an ECG, a prominently striking data point might
e.g. indicate a heart dysfunction. In weather data recordings, a constantly low value
of humidity might be caused by a malfunctioning sensor. Apart from such intuitive
outliers, that can be easily detected by e.g. defining a usual range of values, often the
identification of more complex outliers is desired. In case of the ECG, prominently
striking data points represent only a small subset of all possible outliers that might
indicate a heart disease. All data points deviating from a common periodic pattern
are conspicuous. Therefore, a more complex outlier definition referring to time series
patterns has to be targeted. However, in order to detect those, the common pattern
needs to be recognized first. There are many approaches not only for the recognition of
usual [Keogh et al., 2001; Sternickel, 2002; Spiegel et al., 2011] but also for the detection
of unusual [Keogh et al., 2002, 2005; Lin et al., 2005] patterns in time series. Although
these approaches yield a significantly higher information gain than naive methods for
less complex outliers, they only consider a single time series at once.

However, in some applications, an unusual data point or subsequence in a time
series is not unusual in sight of other time series. A rapid drop in a company’s share
price seems e.g. striking at first. In relation to the entire stock market, however,
this behavior might be normal, if all share prices have fallen. In that case, rather a
constant stock price would stand out. Many outlier detection algorithms considering
multiple time series, take the whole data set into account [Basu and Meckesheimer,
2007; Hill and Minsker, 2010; Munir et al., 2019|. This strategy is particularly suitable
for data sets showing one common course, such as sensor data. In most cases, however,
this specification is not fulfilled. In medical test series, for example, age-dependent
differences in patient’s data might occur, so that multiple usual patterns might exist
dependent on the age. Thus, the consideration of groups of time series in a given data
set is a more generalizable approach.

The detection of anomalous subsequences with regard to groups of time series has
a broad field of application. Again, this kind of outlier detection methods finds usage
in the processing of ECG data. Considering electrocardiograms from various patients
with different preconditions, groups of time series showing similar patterns become
observable. This makes it easier to recognize unusual successions with the knowledge
about a patient’s preconditions and its assigned group. Another example is given by
the analysis of annual reports of publicly listed companies. Considering figures from the
balance sheet of all companies at once will probably not show a meaningful mutual pat-
tern. When partitioning the data set into groups of companies with similar industries
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1. INTRODUCTION

and strategies, however, a common course might be observable, enabling the recogni-
tion of unusual behavior, which might indicate errors or even fraud. The consideration
of groups of time series is thus especially helpful when working with multifarious data
sets. Recent approaches focus on the deviation of a sequence from the others [Sun
et al., 2006; Zhou et al., 2018| or its deviation from the predicted course [Landauer
et al., 2018|, which is calculated based on its group. With regard to companies’ annual
reports, the deviation of a company’s data from its group might not be sufficient for the
detection of anomalies, though. Consider a company’s assets are steadily assigned to
a group of medium-sized companies. If the assets are suddenly significantly increased,
so that the company gets assigned to a group of bigger companies without being in the
outer area of the cluster, the deviation of the company from its cluster members would
not be conspicuous.

In this thesis, we concentrate on the group behavior of sequences. We realize that by
clustering the time series data per timestamp and considering the sequences’ transitions
between clusters over time. In contrast to the research field, where moving clusters are
identified [Kalnis et al., 2005|, in our approach it is not necessary to map the clusters
of different time points. Apart from detecting conspicuous subsequences in time series
data sets, our algorithm enables the analysis of sequences and clusters over time.

1.2 Contribution

This thesis yields three main contributions, which arose during the doctoral studies
working towards the detection of group-based outliers in multivariate time series data
sets. The key contributions are summarized in the following three subsections.

1.2.1 Clustering Time Series Coherently per Timestamp

For the envisioned detection of outliers outstanding by their group behavior, an un-
derlying clustering of the data per timestamp is necessary. Although the clustering
of time-independent data is a well researched topic, the clustering of time series data
still proves to be difficult. When aiming for a partitioning per timestamp, common
time-independent approaches such as DBSCAN [Ester et al., 1996] or K-Means [Mac-
Queen et al., 1967] can be used. Since those methods do not include any temporal
information, the result might deviate from the desired one, as potential connections
between clusters over time are ignored. The research field of evolutionary clustering
tackles this problem [Chakrabarti et al., 2006; Chi et al., 2007, 2009]. It aims to obtain
a clustering per timestamp, which represents the data distribution faithfully per time
point and simultaneously minimizes the variation between clusterings of two consecu-
tive time points [Chakrabarti et al., 2006]. The consideration of only two successive
timestamps, however, leads to cluster assignments which are advantageous in short-
term but not in view of a larger time interval. For this reason we developed a novel
clustering approach considering the connection between multiple time points in order
to achieve a high stability between clusters over time referring to their composition of
members. As only one input parameter is required, the algorithm is simple to use and
minimizes the extensive search for an optimal hyperparameter setting.

3



1.2. CONTRIBUTION

1.2.2 Evaluation Measure for Over-Time Clusterings

The identification of clusters, which are stable over time regarding their cluster mem-
bers, is important in order to provide a solid basis for the outlier detection algorithm.
As this analyzes the transitions of sequences between clusters, a highly stable cluster-
ing suggests the most promising results. In order to verify the quality of a clustering
per timestamp, which we call over-time clustering, we introduced the term over-time
stability and invented an evaluation measure for this characteristic. Although there are
many cluster validity measures for time-independent data [Rand, 1971; Dunn, 1973,;
Davies and Bouldin, 1979; Rousseeuw, 1987|, to the best of our knowledge, there has
not been any evaluation measure for the stability of over-time clusterings yet. There-
fore, we were the first to introduce two stability evaluation measures for crisp and
fuzzy over-time clusterings. These measures firstly enable the rating and quantitative
comparison of different over-time clusterings helping to discover the best parameter
setting and algorithm choice. For this reason, they represent a fundamental milestone
for these doctoral studies.

Because of its exchangeable components, the evaluation measure for crisp environ-
ments called CLOSE,; is suitable for all types of over-time clusterings. Furthermore, it
not only enables the analysis of clusterings, but also of clusters and sequences. This
makes it to a manifold toolkit for further analyses.

1.2.3 Detecting Outliers Regarding Their Over-Time Stability

In order to achieve the main goal of this thesis — detecting conspicuous subsequences,
which stand out because of their group behavior — we defined a new type of outliers
called transition-based outliers and developed a novel approach for their detection. In
contrast to algorithms focusing on a single time series [Cheng et al., 2009; Malhotra
et al., 2015; Ahmad et al., 2017; Kieu et al., 2018; Munir et al., 2018|, we consider
multiple time series at once and cluster the data per timestamp in order to recognize
common group behavior. The over-time clustering provides insight about the cohesion
of time series assigned to the same cluster. This cohesion gets lowered by separations
of sequences caused by cluster transitions and may indicate a conspicuous behavior,
which is detected by our algorithm. Although there are approaches considering groups
of time series [Sun et al., 2006; Landauer et al., 2018; Zhou et al., 2018|, none of
those investigate the transitions of sequences between clusters over time. Therefore,
our approach, called DOOTS, is novel in that it targets a new type of outliers by
examining the compositions of clusters over time.

In these doctoral studies, we did not only invent a new outlier detection algorithm
for the detection of transition-based outliers, but also introduce modifications for it,
in order to expand the field of application of the approach. Furthermore, we proposed
and investigated another simpler approach with lower time complexity, targeting the
same type of outliers. Both methods require only one input parameter enabling a
simple usage. Our experiments on data from annual financial reports of publicly listed
companies show, that DOOTS also yields a contribution for the field of economics
aiming for the identification of financial misstatements.

4



1. INTRODUCTION

1.3 Structure of the Thesis

This dissertation is majorly based on published research work. Each chapter consists
of one or multiple sections presenting one publication each. Apart from embedding the
papers in the context of the doctoral studies, the author’s contribution to these are
outlined. An exception is given by Section 5.2, where unpublished evaluation results
are presented. The thesis is structured as follows.

In Chapter 2, firstly the terms over-time stability and over-time clustering are
introduced, since they are the key aspects of the two presented evaluation measures
CLOSE and FCSETS. The approaches are designed for crisp and fuzzy clusterings,
respectively, and provide a fundamental basis for all following approaches, as they
enable a quality rating of over-time clusterings.

The methods presented in Chapter 3 focus on the detection of outliers, based on
over-time clusterings. First, the main approach DOOTS and its variants, which are de-
rived from CLOSE;, are introduced. Afterwards, a list method called DACT is proposed
targeting the same outlier type.

In Chapter 4, the over-time clustering approach called C(OTS)? is presented. It
addresses the over-time stability introduced in Chapter 2 and provides a clustering per
timestamp, which can be used in DOOTS and DACT.

Chapter 5 represents a digression to a field of application. As part of the Manchot
Research Project Decision-making with the help of Artificial Intelligence at Heinrich-
Heine-University, the automated detection of financial restatements has been investi-
gated. Two publications resulted from this work, evaluating the performance of differ-
ent machine learning algorithms on this task and presenting a simple outlier detection
approach. Furthermore, an unpublished evaluation of DOOTS in this context is dis-
cussed in the chapter.

Finally a conclusion of these doctoral studies is drawn in Chapter 6. Moreover, an
outlook for further modifications and optimizations as well as other future works in
the field of research is given.

Chapter 7 gives an overview of the author’s international peer-reviewed publica-
tions. The doctoral studies resulted in nine related and five unrelated manuscripts.

A comprehensive journal article discussing the key contributions of the doctoral
studies is provided in the appendix. The source code for all approaches as well as the
generated data sets used in this dissertation can be found on GitHub!.

Please note, that the author of this thesis — Martha Krakowski — published under
her birth name Tatusch. Therefore, all references to her work contain the birth name
Tatusch, while summaries refer to the current name Krakowski.

https://github.com/tatusch/ots-eval



1.3. STRUCTURE OF THE THESIS




CLUSTER OVER-TIME STABILITY
EVALUATION

As the overall goal of this work is the detection of anomalous sequences in multivariate
time series databases and we assume that those might be identified by considering
groups of time series, an underlying clustering of the data is needed to determine
those groups. Instead of clustering the whole sequences or parts of them, the data is
clustered per timestamp. This enables the analysis of a time series’ behavior regarding
its transitions between clusters which equals its cohesion to certain groups of sequences.
If a group of time series stays together over various time points, it shows a pattern. If
one member of the group suddenly changes its cluster by deviating from its neighbors,
this behavior is conspicuous and might indicate erroneous or fraudulent actions.

The required clustering per timestamp, which we call over-time clustering, might
e.g. be retrieved by common clustering algorithms, such as DBSCAN [Ester et al.,
1996] or KMEANS [MacQueen et al., 1967|, without using any temporal information,
or by evolutionary clustering algorithms [Chakrabarti et al., 2006; Chi et al., 2007,
2009], which consider historical states between two successive time points. While non-
temporal algorithms are not able to recognize clusters at different timestamps as one
and the same, evolutionary methods attempt to retrieve a pseudo-mapping of the clus-
ters between two successive time points by maximizing the stability of cluster members
over time [Chakrabarti et al., 2006]. A real mapping of the clusters is not striven for as
this is a complex problem and constitutes a research field of its own. When trying to
identify moving clusters [Kalnis et al., 2005|, the assumption is made, that the size of
the clusters remains the same over time. In most applications addressed by this thesis,
such an assumption cannot be made.

However, apart from application-based characteristics, both types of clustering al-
gorithms share the same drawback: There does not exist any appropriate evaluation
measure for the evaluation of the resulting over-time clusterings. Since the temporal
aspect is a crucial property which is not covered by common cluster evaluation mea-
sures, those are not sufficient for a qualitative analysis of the results. For this reason
we developed two evaluation measures, for hard and fuzzy over-time clusterings.
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2.1. HOW IS YOUR TEAM SPIRIT?

2.1 How is Your Team Spirit? Cluster Over-Time
Stability Evaluation

Martha Krakowski, Gerhard Klassen, Marcus Bravidor and Stefan Conrad
“How is Your Team Spirit? Cluster Over-Time Stability Evaluation”

In: Machine Learning and Data Mining in Pattern Recognition, 16th International
Conference, 2020.

Introduction

In order to design a suitable evaluation measure for over-time clusterings, the intention
as well as the demands on the resulting clusterings need to be specified. For many
analyses based on the assumption that there are groups of time series showing a similar
behavior internally and therefore patterns in sight of the whole data set, a clustering
is desired, which on the one hand meets quality requirements for non-temporal data
per timestamp and on the other hand tolerates slight quality reduction in order to
increase the stability of cluster members over time. That means, that the assignment
of a sequence to a cluster should not be forced if it is clearly located in an other one,
but, in marginal cases, the decision should be pointed towards a higher stability. The
over-time stability is significant for further analyses, since it enables the identification
of patterns and ensures that migrating sequences show irregularities.

Thus, an appropriate evaluation measure for over-time clusterings must address
the quality as well as the over-time stability of a considered clustering. Although there
exist some approaches for the evaluation of the stability of clusterings, none of them
are applicable for our task, as they consider another definition of stability. Often, the
stability describes the robustness of hyperparameter settings regarding different random
initializations [Kuncheva and Vetrov, 2006; von Luxburg, 2010]. Those methods are
not easily adjustable for temporal stability evaluation. Therefore, we present CLOSE
(Cluster Over-Time Stability Evaluation), an over-time clustering evaluation measure
that verifies a new definition of temporal cluster stability while analyzing the spectral
quality of the clusterings per timestamp.

This paper represents an important milestone for this thesis since it not only en-
ables a qualitative analysis of the underlying over-time clustering but also provides a
fundamental basis for further analyses based on the over-time stability of sequences
and clusters.
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Abstract. Clustering of time series data is a major part of data mining.
In this paper, we consider multiple multivariate time series and the clus-
tering of their data points per timestamp. One of the major problems of
this approach is that the temporal connection of clusterings at different
times can neither be guaranteed nor tracked. For this reason we present
CLOSE (Cluster Over-Time Stability Evaluation): an internal evalua-
tion measure for clusterings of temporal data. Our method evaluates not
only the quality but also the over-time stability of the clusters. Time
series with an equal cluster neighborhood over time are considered to be
stable while those which change their neighbors often are considered as
unstable. We applied our model to different data and present the results
in this paper.

Keywords: Time Series Analysis - Clustering - Evaluation

1 Introduction

Information extraction from time series (TS) is well researched. There are many
different approaches which all tackle specific problems. Often clustering the data
has an important fraction in the concept of choice. While some of those methods
divide the time series in parts, so called subsequences [2], others consider the
whole time series at once [19], yet others extract feature sets [10,26]. Although
these approaches seem to solve a lot of problems and enable the discovery of
knowledge, new problems like the choice of parameters arise. This parameter
choice often ends up with many apparently good solutions and lacks an evalua-
tion function which distinguishes the quality of clusterings properly. This prob-
lem grows with the amount of dimensions and requires an automatic rating of
the available solutions.

In this paper we consider multiple multivariate time series with same length
and equivalent time steps. We detect clusters for each point in time (called over-
time clustering) with different parameters and identify the best overall clustering
without knowing the ground truth. Therefore, we present an internal evaluation
measure for temporal clusterings which can be used to rate and compare differ-
ent clustering results of time series data. Our method, which is named CLOSE

* Both authors contributed equally to this research.
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Fig. 1: Example of a time series over-time clustering [25]. The red clusters are
less stable over time than the blue ones.

(Cluster Over-Time Stability Evaluation), not only evaluates the quality of the
individual clusterings per time point, but also the over-time stability. The tem-
poral aspect is thus included in the evaluation. For the first time, this makes it
possible to rate a clustering of time series data, in which the data points are clus-
tered per timestamp, regarding the temporal linkage of clusters. Furthermore,
the presented method is able to handle missing data points without adaptation.
An example of an over-time clustering is illustrated in Figure 1. For a simple
visualization, univariate time series are shown. Compared to whole time series
clustering, this technique has a major advantage: similar partial sequences of
undefined length can be found.

This approach is not only novel in the sense that it considers quality and
over-time stability at the same time, but also because over-time stability differs
from the stability usually represented in literature. It serves a different purpose
and is based on transitions between clusters over time, which will be explained
in more detail later in this work. The procedure for example may be useful when
tracking topics in online forums. By clustering per point in time, the development
of relationships between different terms can be investigated. When examining
financial data, the procedure can lead to a gain in information as well. Assuming
that the courses of different companies’ financial data can be divided into groups
— e.g. successful and less successful companies — clustering might be helpful to
detect anomalies or even fraud. Since it cannot be guaranteed that all fraud
cases are known — some may remain uncovered — this problem cannot be solved
with fully supervised learning. The identification of meaningful groups would be
a fundamental step. In General, the evaluation of temporal clusterings enables
the identification of suitable hyper-parameters for different algorithms as a basis
for further analysis such as outlier detection.

In the further course we will first discuss similar work (Section 2). We then
define the considered problem (Section 3) and present our solution (Section 4).
Finally, we give an overview of our experiments and their results (Section 5),
discuss the method (Section 6) and draw a conclusion (Section 7).
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2 Related Work

To the best of our knowledge, there does not exist any approach similar to ours,
since clustering evaluation metrics usually do not contain a temporal compo-
nent. For this reason, we refer on the one hand to related work with regard to
time series clustering and on the other hand to time-independent evaluation of
clusterings.

2.1 Time Series Clustering

In the field of time series analysis, there are different techniques for clustering
time series data. When considering multiple time series, one approach is the
clustering of the entire sequences [7,19]. For our context, this procedure is not
well suited as potential correlations between subsequences of different time series
are not revealed. Additionally, the exact course of the time series is not relevant,
but rather the trend they show. The transformation of entire sequences to feature
vectors, which then are clustered [10], blurs the exact course and is a popular
method. Still, the problem of not recognizing interrelated subsequences persists.

However, there is also the approach of clustering subsequences of a time se-
ries [2,12]. Usually, this is done to find motifs in time series and therefore only a
single time series is considered. In [14], Keogh et al. state that the clustering of
subsequences of a single time series is meaningless, though. However, this state-
ment is controversial, as Chen [4] argues that it is possible to obtain meaningful
results if the correct distance measure is used. For this purpose, various distance
measures have been introduced [23, 24].

There is also the approach of clustering partial sequences of multiple time
series. Outliers may influence the results, though, and there is a need of finding
a meaningful length of the subsequences, since the examination of subsequences
of all lengths is usually very time-consuming. Our approach can provide more
insights as subsequences of any length can selectively be investigated. However,
under the assumption that the entire time course from the beginning is relevant,
CLOSE only considers subsequences starting at the first point in time.

Methods for the clustering of streaming data [9, 18] are not comparable to
our method, as they consider only one time series at a time and deal with other
problems such as high memory requirements and time complexity.

2.2 Internal Evaluation Measures

There are many different evaluation measures for evaluating clusters and clus-
terings. Thereby, a distinction between external and internal measures ought
to be made. In the case of the external evaluation, the ground truth is already
known so that the results can be compared with expectations. In the internal
evaluation, no information about the actual classes is known, so that the clusters
are evaluated primarily on the basis of characteristics such as compactness or
separation.
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One metric that evaluates the compactness of clusters is the Sum of Squared
Errors. 1t calculates the overall distance between the members and the centroid
of a cluster. The centroid is usually the mean of all cluster members. The closer
the objects of a cluster lie together, the smaller the error, the greater the com-
pactness. However, this measure does not take into account the separation of
different clusters.

The Silhouette Coefficient [22] evaluates the compactness as well as the sepa-
ration of different clusters. This is achieved by using both the average distance of
an object to members of its cluster and the average distance to members of the
nearest cluster. These two properties are also addressed in the Davies-Bouldin
Indezx [5] and the Dunn Index [6].

All these metrics cannot be directly compared to our method since they lack
a temporal aspect. However, as we will show in the following, they can be applied

in CLOSE.

2.3 Stability Evaluation

For the stability measurement of a clustering algorithm there are already several
methods. The Rand Index [20], which is usually intended for the external evalu-
ation of a clustering, can e.g. be used for this purpose. This evaluation measure
rates the agreement of a clustering ¢, with the expected result (; (ground truth).
Therefore it examines all object pairs that are located in the same cluster in ¢,
as well as (¢ and all pairs that belong to different clusters in both clusterings.
The number of corresponding object pairs is then set in relation to the number
of all possible object pairs. Considering n objects, the number of all possible
pairs is (Z)

Measuring the stability of a clustering algorithm is for instance made in
order to find the optimal k for KMeans [17] or to determine the dependence of
a clustering on its initialization. When considering m clusterings ¢; (1 < i <
m) with the same parameter k and random initialization, the Rand Index is
calculated for every unordered pair of clusterings (;,(; with ¢ # j by assuming
(; is the ground truth without loss of generality. The stability is expressed by the
average Rand Index across all pairs. Such stability measures, however, pursue a
different objective and clearly do not take a temporal linkage into consideration
[16].

An obvious idea would be to measure over-time stability by comparing clus-
tering pairs of successive points in time. However, this approach is inflexible and
would strongly weight variation between two points in time, although the clus-
tering might deviate only at one point in time and otherwise remain quite stable.
An ongoing change, on the other hand, would be punished only very slightly,
since the variation between clusterings of two adjacent timestamps would be
small, but in regard to the entire period the change would be very large. Fur-
thermore a separation or merge of clusters would have a strong negative impact
on the index. Even when comparing all possible clustering pairs of different time
points these problems would persist. Our method handles such cases in a slightly
different way.

12
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In addition, the Rand Index exclusively evaluates the (over-time) stability
of a clustering. But as stated in [3,15], stability alone does not imply a good
clustering. If this is not the case with constant data points, then certainly it
is not the case with data points that change over time. CLOSE combines the
evaluation of the over-time stability and the quality of a clustering to give an
overall statement about an over-time clustering. However, changing values of the
data objects is another problem that has to be faced when looking at time series
data.

The identification of so called Moving Clusters [13] seems to be a closely
related topic, but addresses a slightly different problem. In contrast to the eval-
uation of an over-time clustering, this field of research deals with the detection
of clusters that remain mostly the same in regard to their members. In [13] an
intuitive approach using the Jaccard Index is presented for the problem. If the
Jaccard Index of two clusters of different timestamps is greater than 6, these
clusters are identified as the same cluster for different timestamps. Apart from
the fact that the clustering is not evaluated here, there is another difference to
our approach: it is assumed that a cluster remains approximately the same size
over time. In real data, however, this is not necessarily the case. This may apply
to some tasks, such as herd tracking, which is examined in the paper, but in
most cases this requirement is not satisfied.

3 Fundamentals

Since there are various approaches and definitions concerning TS analysis, we
next clarify our understanding of some basic concepts regarding our approach.

Definition 1 (Time Series). A time series T = oy, , ..., 0, is an ordered set of
n real valued data points of arbitrary dimension. The data points are chronolog-
ically ordered by their time of recording, with t1 and t,, indicating the first and
last timestamp, respectively.

Definition 2 (Data Set). A data set D =1T,...,T,, is a set of m time series
of same length n and equivalent points in time.

The vectors of all time series are denoted as the set O = {04, 1,...,0¢, m }
With the second index indicating the time series the data point originates from.
We write O,, for all data points at a certain point in time.

Definition 3 (Cluster). A cluster Cy, ; C Oy, at time t;, with j € {1,...,p}
being an unique identifier (e.g. counter), is a set of similar data points, identified
by a cluster algorithm. This means that all clusters have distinct labels regardless
of time.

Definition 4 (Cluster Member). A data point o, ; at time t;, that is assigned
to a cluster Cy, ; is called a member of cluster Cy, ;.

13
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Definition 5 (Noise). A data point oy, ; at time t; is considered as noise, if it
is not assigned to any cluster. A data point that belongs to noise is also called
an outlier.

Definition 6 (Clustering). A clustering is the overall result of a clustering
algorithm for all timestamps. In concrete it is the set ( = {Cy, 1,...,Ct, p} U
Noise.

4 Method

A major disadvantage of creating clusters for every timestamp is an evident miss-
ing temporal link. In our approach we assume that different clusterings deliver
different cluster connectedness and that this bond can be measured. In order
to measure the temporal linking we make use of a stability function. Given a
clustering ¢, we first analyze the behavior of every subsequence of a time series
T = o4, ...0¢,, With t, < ¢, starting at the first timestamp. This is done, be-
cause time series which separate from their clusters’ members often, indicate a
low temporal linkage. One could say we evaluate the team spirit of the individ-
ual time series. Further, we rate every cluster with a stability function, which
depends on the subsequence analysis and the number of clusters merged into this
cluster. Finally, we assign a score to the clustering, depending on the over-time
stability of every cluster.

Let Cy, o and Cy, 3, be two clusters, with ¢;,; € {t1,...t,, }. In order to measure
the stability of a time series we first introduce the temporal cluster intersection

Ne{Ct; .as Ctj,b} ={T} | 01,1 € Ct, o N Ot;,1 € Ctj,b}a (1)

with [ € {1,...,m}. The temporal cluster intersection returns a set of time series,
which contain data points grouped together in ¢; as well as in ?;. Now the
behavior of a subsequence from one cluster Cy, o in ¢; to another Cy, p in ¢; can
be expressed by the proportion of members of Cy, , remaining together in ¢,

- |Ct; .0 Nt Ct; b

p(Cti,aa Ctj,b) = T, (2>

with ¢; < ¢;. In the example in Figure 2 the proportion for C, ; and Cy; , would

be ; 0
CHedd 2

{a, b} 2
With the help of the proportion of clusters we now can rate all data points of a
sequence with a subsequence score. It is defined as

p(Cti,h Ctj,v)

k—1
1 ) .
subseq_score(oy, 1) = T p(cid(oy, 1), cid(o, 1)), (3)
a 1

.
I

14
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Fig.2: Example for transitions of TS a, .., e between clusters over time [25].

with [ € {1,...,m}, ko € [1,k — 1] being the number of timestamps where the
data point exists and is assigned to a cluster (therefore is not recognized as
noise), and cid, the cluster-identity function

0 if the data point is not assigned to a cluster ()

cid(oy, ;) {Cti7l olse
returning the cluster which the data point has been assigned to in f;. Thus,
in this equation, all time points in which an object is an outlier, are ignored.
The subsequence score takes into account how many objects from the previous
clusters have migrated together with the currently viewed object.

Regarding the example of Figure 2, the score of time series a in time point
tr would be:

1
subseq_score(oy, o) = 3 (1.0+1.0) = 1.0.

This value reflects the highest stability. The time series d, on the other hand,
gets a lower value of subseg_score(o, 4) = 0.75 as it once changes the cluster
without its cluster members.

The rating of clusters depends on two factors. The first factor is the number of
merged clusters

m(Ctk,i) = |{Ctl7j | by <tgp Ada: Ot;,a € Ctl,j N Otya € Ctk»i}|’ (5)

which describes the amount of different clusters of previous timestamps, that
merged into the regarded cluster. The second factor is the sum of all subsequence
scores of the data points within the regarded cluster. So the over-time stability
of a cluster is defined as

1 o
T > cc,. . subseq_score(oy, ;)
ot_stability(Ct, ;) = (] Otk7l1 -

=1 - m(Cy, i)

(6)

for k > 1. Note that the entire preceding time frame is considered. For the first
timestamp we consider clusters to be stable and set ot_stability(Cy, ;) = 1.0.
It is important to mention, that the number of merged clusters does not take
outliers into account.
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Regarding the example of Figure 2, the stability of the cluster Cy, , would

be:

1

#-(1.L04+1.04+0.75+0.754+ 1.0

ot_stability(Cy, 4) = > ( T )

34
This low score can be explained by the fact that the cluster under consideration
contains only a few data points, two of which already have an independent course
of their clusters’ members.

Finally we can rate the over-time stability of a clustering (:

1 k >2> : ( 3 ot_stability(C')-(1—quality(c>)>7 (7)
Cce¢

= 0.45.

CLOSE(() = 3 (1 (NC
with N¢ being the number of clusters of the whole clustering, &£ being the number
of considered timestamps and quality being an arbitrary cluster rating function.
We suggest the mean squared error (MSE) but density ratings like the local
outlier factor (LOF) can also be used. Be aware using a function in the interval
of [0,1] in order to get appropriate results. If greater values indicate a higher
quality, (1—quality(C)) may e.g. be replaced by (1—quality(C)~1) or quality(C)
depending on the quality measure.

When using normalized data with feature values in [0, 1], and a measure func-
tion in [0, 1], CLOSE as well returns a score between 0 and 1, with 1 indicating a
good over-time clustering, as long as there is at least one cluster per timestamp.

The pre-factors result on the one hand from averaging by the number of
clusters and on the other hand from the factor 1 — (Nic)2 This is intended to
counteract one large cluster, since such a clustering automatically receives a very
high rate of over-time stability. The more clusters exist per time, the larger the
factor. However, to prevent the creation of too many clusters, the influence of
the fraction is diminished by squaring it.

Remark 1 (Time Point Comparison). In contrast to comparing pairs of con-
secutive points in time, CLOSE contains temporal information that is robust
against outliers. By comparing clusterings of all preceding time points with the
last timestamp of the considered subsequence, short-term changes to other clus-
ters are weighted more lightly. In addition, long-term changes that develop slowly
over time are punished more severely. Since the influence of the over-time stabil-
ity is weighted with the quality of the cluster, the formula cannot be transformed
to simply iterate over all cluster pairs.

Remark 2 (Handling Outliers). Our calculations are suitable for both cleaned
and noisy data. Since outliers are neither considered in the subsequence score
nor in the cluster stability, they have no influence at this point. However, they
do have an indirect influence on the calculation of the clustering score. The pre-
factor favors a large number of clusters. Depending on the quality of the clusters,
it may be more advantageous for the algorithm to assign data points to smaller
clusters than to interpret them as noise and recognize only a few large clusters.

In view of the fact that over-time clustering might be used for outlier detec-
tion, this treatment of outliers is reasoned. In this case, the algorithm should not
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be forced to assign every data object to a cluster. Nevertheless, the treatment of
outliers may be extended in future work. One way to penalize noise would be,
to replace k, in the subsequence score with k. This would cause, that outliers
would get the worst score of 0, as the timestamps would not be skipped.

Remark 3 (Merge & Split of Clusters). Considering the subsequence score, a
merge of clusters has no negative impact on the score. On the contrary: if two
clusters fuse entirely, the score is actually very good, since all objects move with
all their cluster members. This circumstance is intended, as the focus is primarily
on the cohesion of time series. As long as a group of time series remains together,
it is not negative if more are joining.

If a split happens, however, the subsequence score decreases. This is also
wanted, as a split indicates that time series that have formed a group at one
point in time no longer hold together. This fact contradicts the desired cohesion
and will be penalized in any case. If smaller clusters have previously been merged
and then separated again in the same way as before, this has no great influence
on the score over time, though.

Remark 4 (Additional Remark). A small sample size not only influences the sta-
bility when considering constant data points [3], but also leads to a high sensitiv-
ity to transitions between clusters when examining the over-time stability. The
more data points are considered, the easier it is to give a meaningful statement
about the (over-time) stability.

5 Experiments

To the best of our knowledge there are no comparable measures presented in
literature. This is why we decided to make experiments to demonstrate the
results of our measure. We show the transferability of our method to reality by
performing two experiments on real data. Additionally, we present the results
on two artificially generated data sets, that satisfy the necessary assumptions
for the meaningful use of CLOSE, to show the impact of the over-time stability.
For all experiments MSE was chosen as the cluster quality measure.

0.6

\ / T MinPts
0.5 y

0.4 NS R .
© —— g
503 | N N
g / |

0.2 \\ \

0.1 \ \

0.0 ! \

0.05 0.10 0.15 0.20 0.25
epsilon

Fig. 3: Achieved CLOSE scores for minPts € [2,4] depending on € on the EIKON
Financial data set.
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Fig. 4: Detected clusters by DBSCAN with minPts = 2 and € = 0.11 on the
EIKON Financial data set. Red data points represent outliers.

5.1 EIKON Financial Data Set

The first data set is extracted from EIKON [21] which is a commercial set
of software products released by Refinitiv (formerly Thomson Reuters Finan-
cial & Risk). It includes a database with financial information of thousands
of companies. For the ease of visibility we chose two random features of fifty
random companies. The features we chose are the net sales and the total plan
expected return, which are figures taken from the balance sheet of the com-
panies. Thomson Reuters named the according fields TR-NetSales and TR-
TtlPlanEzxpectedReturn, respectively. The first feature represents the sales re-
ceipts for products and services without cash discounts, trade discounts, excise
tax, sales returns and allowance. The second feature represents the total amount
of expected return on all of a company’s pension and post-retirement plans. We
normalized the data through dividing the features by the total assets. This is
a common approach in economics. The coefficient of correlation of these two
features regarding our subset is 0.210. One time series represents the described
features of one company over time.

In order to evaluate the CLOSE score on this data set we used the clus-
tering algorithm DBSCAN [8] and applied a grid search with three different
minPts (2,3,4) in the epsilon interval [0.05,0.25]. In Figure 3 it can be seen, that
minPts = 2 reached the maximal CLOSE score of 0.59 at ¢ = 0.11. Clusterings
with minPts = 3 and minPts = 4 reached lower scores at higher epsilons. This
is an expected behavior, since a higher min Pts would require a higher € in order
to create a cluster in this data set. A higher € leads to a higher mse, which has
a negative effect on the CLOSE score.
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The resulting clustering is illustrated in Figure 4 and shows a very stable
clustering. Especially notable is the subsequence from 2008 to 2012, which shows
only minor variations.

5.2 GlobalEconomy Data Set

The second dataset is obtained from www.theglobaleconomy.com [1], which is a
website that provides economic data for different countries. For this experiment
we randomly selected two features, namely the ” Unemployment Rate” and the
”Public spending on education, percent of GDP”. In order to make the chart
clearer, we removed some countries and reduced it to the years from 2010 to
2013. Further we applied a min-max normalization.

In this experiment, we want to illustrate the differences of a clustering which
received a good score and another clustering which received a worse one. There-
fore we clustered the dataset with seeded KMeans and different k.

In Figure 5 it can be seen, that the clustering with k = 8 received a CLOSE
score of 0.67, which represents the best score. The clustering itself can be seen
in Figure 6. In order to compare this clustering to another with a lower score
Figure 6 also holds the clustering result for k£ = 3.

In direct comparison the first differences that stand out are the cluster sizes.
The clusters received with k = 8 are smaller than those of kK = 3. This alone is
no surprise but it leads to a smaller M SE and thus to a lower negative influence
on the CLOSE score. In numbers, the average MSFE for k = 8 is 0.0036. For
k = 3 it is 0.0289. The second not so obvious observation is the average cluster
stability. While the clustering with £ = 3 has an average stability of 0.56, the
agglomerations found with & = 8 got an average stability of 0.68. One example
which leads to a higher stability is the behavior of the object BRB and its
neighborhood. In the clustering with the highest CLOSE score, BRB has the
same cluster neighbors in the first and the last year. In addition it is alone in
a cluster in 2012, which means it moved with 50% of its neighbors from 2010.
This is not the case in the clustering which was found with & = 3. In fact in the
clustering with k = 3, BRB is never in a cluster with the same cluster members
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Fig.5: Achieved scores for different k& on the GlobalEconomy data set.
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Fig. 6: KMeans Clusters with £ = 8 and k£ = 3 on the GlobalEconomy data set.
The datapoints contain ISO Countrycodes.

over two years. Another observation in the clustering with & = 3 is, that data
points which change their cluster neighbors over time often move with a low
number of other data points.

5.3 Artificially Generated Data Set

To show what a good clustering and the associated CLOSE score may look
like, we generated two artificial data sets. In both cases, at first three random
centroids with two features € [0, 1] were chosen. Then 20, 15 and 10 time series
were placed next to these centroids, respectively. This means that the data points
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Fig.7: Achieved CLOSE scores, average quality and average ot_stability for the
two generated data sets depending on k. The quality line is given by 1 - MSE.
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Fig. 8: Detected clusters by KMeans on the two artificially generated data sets.

of a time series for each time point were set with a maximal distance of 0.1 per
dimension to the assigned centroid. Subsequently, data points for 3 time series
(namely 46, 47 and 48) with random transitions between two of the three clusters
were placed in the feature space. For overview purposes a total of 4 time points
and 48 time series were examined. In Figure 8 the resulted data sets can be seen.
Data set A contains transitions between the two lower clusters. In data set B
there are transitions between the two upper clusters.

The clustering was performed with KMeans [17] for 1 < k& < 10. Figure
7 shows the achieved CLOSE scores, average quality and average ot_stability
depending on k, whereby the quality line is given by 1 - MSE. While for data
set A the best k£ is in accordance to the chosen centroids three, for data set
B k = 2 is preferable. The corresponding clustering results are illustrated in
Figure 8. The outcomes show that the best results regarding the CLOSE score
may deviate from those of normal clustering if a fusion/split of clusters can
increase the over-time stability without causing significant quality loss. As in
data set B the clusters with bouncing time series are located close together, a
merge of the two clusters is beneficial: the quality is only slightly affected, while
the stability is significantly increased.

6 Discussion

Clustering time series is a challenging task. Besides the methodology, the user
needs to choose parameters, which all lead to different results. Improving the
results by adapting the parameters is often only possible with the help of a
specialist. In this paper we provide a systematic approach for the determination
of parameters in order to reach a given target. This enables users not only to

21



2.1.

HOW IS YOUR TEAM SPIRIT?

compare different clusterings, but also to choose a method and parameters suited
for the data set without further knowledge.

Further more our work enables the user to use an arbitrary cluster algorithm
and distance function, without further adaptation. If considering uniformly pop-
ulated convex data groups, measures such as the mean squared error (MSE) or
mean absolute error (MAE), and distance- or partition-based clustering algo-
rithms such as KMeans are suitable. If the data set contains groups whose mem-
bers are not approximately normally distributed, density-based measures such as
the local outlier factor (LOF) and clustering algorithms such as DBSCAN might
be more appropriate. Additionally, the formula of CLOSE (7) can be modified,
so that quality measures for clusterings instead of clusters can be used. In that
case, the average cluster stability avg_stab for every clustering ¢;, at time ¢; can
be considered:

CLOSE(C) = NLC-<1— (NiC)Q) (S avgustab(G,)- (1~ quality(,))). (8)
Ct; C¢

We are aware, that the presented method is computationally intensive but
we are confident to enhance the approach in the future. Moreover, this is only a
small drawback in view of the fact, that the complex manual search, which itself
is very time-consuming anyway, gets simplified and guided.

7 Conclusion and Future Work

The presented method can be divided into two major parts: First the rating
of time series and their subsequences, and second the evaluation of over-time
clusterings. In this paper we focused on the latter. Therefore we presented a
robust method which is able to rate over-time clusterings regarding a temporal
linkage. This enables the comparison of different clusterings and their bond in
time. We have performed several experiments and explained the influence of the
major factors. The results show that our method is able to measure the over-
time stability accurately for over-time clusterings of multiple multivariate time
series. With the help of the presented measure, stable clusters are found. Due
to the consideration of the quality, however, no unintuitive clusters are forced in
favor of stability.

Based on CLOSE, much further research can be done. Apart from investi-
gating different quality measures for clusterings, the treatment of outliers can
be contextually adapted and analyzed. One way to penalize noise would be, to
replace k, in the subsequence score (3) with k. This would cause, that outliers
would get the worst score of 0, as the timestamps would not be skipped. Besides,
an intelligent initialization of the reference timestamp could be developed. In-
stead of examining the behavior with respect to the first point in time, e.g. the
time with the highest clustering quality could be chosen. Furthermore, CLOSE
can be used to detect anomalous subsequences using the subsequence score [25].

The presented measure could also be used in streaming environments. For
example, it could indicate a significant change of data composition. Social media
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could be an interesting field of application, too. The subsequence score of Insta-
gram followers could e.g. be an indicator for their probability of remaining as a
follower. In addition, the combination of CLOSE with contextual clustering [11]
might lead to deeper insights about the resulting cluster compositions. Another
interesting aspect would be the development of an over-time clustering algorithm
using CLOSE as objective function. This would make the time-consuming search
for optimal parameters per time point disappear.
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Introduction

The identification of fuzzy clusters, i.e. that data objects may belong to more than
one cluster with certain membership degrees, is in particular relevant, when it is not
possible to separate the underlying data with sharp borders. An example could be the
clustering of a color histogram of a grayscale image. Let us assume, that the three
intervalls [0,100], [101, 170] and [171, 255] have been determined as suitable clusters.
The value 101 is assigned to the second cluster, although it is close to 100 and the
difference between 101 and 100 is even less than between 100 and 50 (and 50 lies in the
first cluster). The two main advantages of fuzzy clustering algorithms are therefore,
that thresholds or borders are not artificially forced and objects may be assigned to
multiple clusters, which for example is useful if there are overlapping clusters.

Since fuzzy clustering represents an important part in the field of data mining and
can also be used for time series data, we decided to develop an equivalent to CLOSE for
this type of clusterings called FCSETS, in order to enable an appropriate evaluation of
over-time clusterings. To the best of our knowledge, currently there does not exist any
comparable evaluation measure considering the over-time stability of sequences. The
following paper shows, that FCSETS — similar to CLOSE — can not only be used for the
evaluation of clusterings but also for the determination of the optimal hyperparameter
setting.

The findings of this work are very useful in the field of fuzzy clustering. Since this
thesis focuses on hard clusterings, the paper does not represent a main contribution to
it, but it provides a good basis for future works relating analyses on fuzzy clusterings,
such as outlier detection. The quality of the underlying clustering may already be
ensured by the presented approach.
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The main idea of the paper was worked out by Gerhard Klassen. The stability measure
as well as the experiments were implemented by Gerhard Klassen. Martha Krakowski
and Ludmila Himmelspach both acted as consultants in the development process.
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the proposed measure and wrote parts of the Related Work, Fundamentals and Ez-
periments sections. The rest was mainly written by Gerhard Klassen. Stefan Conrad
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Abstract. The discovery of knowledge by analyzing time series is an
important field of research. In this paper we investigate multiple multi-
variate time series, because we assume a higher information value than
regarding only one time series at a time. There are several approaches
which make use of the granger causality or the cross correlation in or-
der to analyze the influence of time series on each other. In this paper
we extend the idea of mutual influence and present FCSETS (Fuzzy
Clustering Stability Evaluation of Time Series), a new approach which
makes use of the membership degree produced by the fuzzy c-means
(FCM) algorithm. We first cluster time series per timestamp and then
compare the relative assignment agreement (introduced by Eyke Hiiller-
meier and Maria Rifqi) of all subsequences. This leads us to a stability
score for every time series which itself can be used to evaluate single
time series in the data set. It is then used to rate the stability of the
entire clustering. The stability score of a time series is higher the more
the time series sticks to its peers over time. This not only reveals a new
idea of mutual time series impact but also enables the identification of
an optimal amount of clusters per timestamp. We applied our model on
different data, such as financial, country related economy and generated
data, and present the results.

Keywords: Time Series Analysis - Fuzzy Clustering - Evaluation

1 Introduction

The analysis of sequential data — so called time series (TS) — is an important
field of data mining and already well researched. There are many different tasks,
but the identification of similarities and outliers are probably among the most
important ones. Clustering algorithms try to solve exactly these problems. There
are various approaches for extracting information from time series data with the
help of clustering. While some methods deal with parts of time series, so called
subsequences [2], others consider the whole sequence at once [9, 28], or transform
them to feature sets first [17,34]. In some applications clusters may overlap, so
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Fig. 1: Example for an over-time clustering of univariate time series [32]. The
blue clusters are more stable over time than the red ones.

that membership grades are needed, which enable data points to belong to more
than one cluster to different degrees. These methods fall into the field of fuzzy
clustering and they are used in time series analysis as well [24].

However, in some cases the exact course of time series is not relevant but
rather the detection of groups of time series that follow the same trend. Addi-
tionally, time-dependent information can be meaningful for the identification of
patterns or anomalies. For this purpose it is necessary to cluster the time series
data per time point, as the comparison of whole (sub-)sequences at once leads
to a loss of information. For example, in case of the euclidean distance the mean
distance over all time points is considered. In case of Dynamic Time Warping
(DTW) the smallest distance is relevant. The information at one timestamp has
therefore barely an impact. The approach of clustering time series per time point
enables an advanced analysis of their temporal correlation, since the behavior
of sequences to their cluster peers can be examined. In the following this proce-
dure will be called over-time clustering. An example is shown in Figure 1. Note,
that for simplicity reasons only univariate time series are illustrated. However,
over-time clustering is especially valuable for multivariate time series analysis.

Unfortunately new problems like the right choice of parameters arise. Often
the comparison of clusterings with different parameter settings is difficult since
there is no evaluation function which distinguishes the quality of clusterings
properly. In addition, some methods, such as outlier detection, require good
clustering as a basis, whereby the quality can contextually be equated with the
stability of the clusters.

In this paper, we focus on multiple multivariate time series with same length
and equivalent time steps. We introduce an evaluation measure named FCSETS
(Fuzzy Clustering Stability Evaluation of Time Series) for the over-time sta-
bility of a fuzzy clustering per time point. For this purpose our approach rates
the over-time stability of all sequences considering their cluster memberships.
To the best of our knowledge this is the first approach that enables the sta-
bility evaluation of clusterings and sequences regarding the temporal linkage of
clusters.

Over-time clustering can be helpful in many applications. For example, the
development of relationships between different terms can be examined when

27



2.2. FUZZY CLUSTERING STABILITY EVALUATION OF TIME SERIES

tracking topics in online forums. Another application example is the analysis
of financial data. The over-time clustering of different companies’ financial data
can be helpful regarding the detection of anomalies or even fraud. If the courses
of different companies’ financial data can be divided into groups, e.g. regarding
their success, the investigation of clusters and their members’ transitions might
be a fundamental step for further analysis. As probably not all fraud cases are
known (some may remain uncovered) this problem cannot be solved with fully
supervised learning.

The stability evaluation of temporal clusterings offers a great benefit as it
not only enables the identification of suitable hyper-parameters for different
algorithms but also ensures a reliable clustering as a basis for further analysis.

2 Related Work

In the field of time series analysis, different techniques for clustering time se-
ries data were proposed. However, to the best of our knowledge, there does not
exist any approach similar to ours. The approaches described in [8, 19, 28] clus-
ter entire sequences of multiple time series. This procedure is not well suited
for our context because potential correlations between subsequences of different
time series are not revealed. Additionally, the exact course of the time series is
not relevant, but rather the trend they show. The problem of not recognizing
interrelated subsequences also persists in a popular method where the entire
sequences are first transformed to feature vectors and then clustered [17]. Meth-
ods for clustering streaming data like the ones proposed in [14] and [25] are not
comparable to our method because they consider only one time series at a time
and deal with other problems such as high memory requirements and time com-
plexity. Another area related to our work is community detection in dynamic
networks. While approaches presented in [12, 13,26, 36] aim to detect and track
local communities in graphs over time, the goal of our method is finding a stable
partitioning of time series over the entire period so that time series following the
same trend are assigned to the same cluster.

In this section, first we briefly describe the fuzzy c-means clustering algorithm
that we use for clustering time series objects at different time points. Then, we
refer on the one hand to related work with regard to time-independent evaluation
measures for clusterings. Finally, we describe a resampling approach for cluster
validation and a fuzzy variant of the Rand index that we use in our method.

2.1 Fuzzy c-means (FCM)

Fuzzy c-means (FCM) [4,7] is a partitioning clustering algorithm that is con-
sidered as a fuzzy generalization of the hard k-means algorithm [22,23]. FCM
partitions an unlabeled data set X = {z1,...,x,} into ¢ clusters represented by
their prototypes V' = {vy,...,v.}. Unlike k-means that assigns each data point
to exactly one cluster, FCM assigns data points to clusters with membership
degrees u;, € [0,1], 1 < i < ¢, 1 < k < n. FCM is a probabilistic clustering
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algorithm which means that its partition matrix U = [u;;] must satisfy two
conditions given in (1).

Zuik =1 Vke{l,..,n},

B (1)
Zuik >0 Vie{l,..c}l

k=1

Since we focus on partition matrices produced by arbitrary fuzzy clustering
algorithms, we skip further details of FCM and refer to the literature [4].

2.2 Internal Evaluation Measures

Many different external and internal evaluation measures for evaluating clusters
and clusterings were proposed in the literature. In the case of the external eval-
uation, the clustering results are compared with a ground truth which is already
known. In the internal evaluation, no information about the actual partitioning
of the data set is known, so that the clusters are often evaluated primarily on
the basis of characteristics such as compactness and separation.

One metric that evaluates the compactness of clusters is the Sum of Squared
Errors. It calculates the overall distance between the data points and the clus-
ter prototype. In the case of fuzzy clustering, these distances are additionally
weighted by the membership degrees. The better the data objects are assigned to
clusters, the smaller the error, the greater the compactness. However, this mea-
sure does not explicitly take the separation of different clusters into account.

There are dozens of fuzzy cluster validity indices that evaluate the compact-
ness as well as the separation of different clusters in the partitioning. Some va-
lidity measures use only membership degrees [20, 21], other include the distances
between the data points and cluster prototypes [3,5,11,35]. All these measures
cannot be directly compared to our method because they lack a temporal aspect.
However, they can be applied in FCSETS for producing an initial partitioning
of a data set for different time points.

2.3 Stability Evaluation

The idea of the resampling approach for cluster validation described in [30] is
that the choice of parameters for a clustering algorithm is optimal when dif-
ferent partitionings produced for these parameter settings are most similar to
each other. The unsupervised cluster stability value s(c), ¢min < ¢ < Cmaz, that
is used in this approach is calculated as average pairwise distance between m
partitionings:

b5l i d(Uci, Uej)
i=1 j=it1
s(c) = mom_1/2 (2)
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where U.; and U.;, 1 <17 < j < m, are two partitionings produced for ¢ clusters
and d(Ue;, Ue;) is an appropriate similarity index of partitionings. Our stability
measure is similar to the unsupervised cluster stability value but it includes the

temporal dependencies of clusterings.

Since we deal with fuzzy partitionings, in our approach we use a modified
version of the Hullermeier-Rifqi Index [18]. There are other similarity indices
for comparing fuzzy partitions like Campello’s Fuzzy Rand Index [6] or Frigui

Fuzzy Rand Index [10] but they are not reflexive.

The Hiillermeier-Rifqi Index (HRI) is based on the Rand Index [29] that
measures the similarity between two hard partitions. The Rand index between
two hard partitions U.y, and ﬁan of a data set X is calculated as the ratio
of all concordant pairs of data points to all pairs of data points in X. A data
pair (xp,x;), 1 < k,j < n is concordant if either the data points z; and z;
are assigned to the same cluster in both partitions U and U, or they are in
different clusters in U and U. Since fuzzy partitions allow a partial assignment
of data points to clusters, in [18], the authors proposed an equivalence relation
Ey(z,x;) on X for the calculation of the assignment agreement of two data

points to clusters in a partition:

C

1
EU(ZZIk,CZIj) =1- 5 Zl |Uzk — ’U/l]|

Using the equivalence relation Ey (z, z;) given in Formula (3), the Hiillermeier-
Rifqi index is defined as a normalized degree of concordance between two parti-

tions U and U:
HRI(U,U) =1 —

LS S ) - Eglana)

k=1j=Fk+1

In [31], Runkler has proposed the Subset Similarity Index (SSI) which is
more efficient than the Hiillermeier-Rifqi Index. The efficiency gain of the Sub-
set Similarity Index is achieved by calculating the similarity between cluster
pairs instead of the assignment agreement of data point pairs. We do not use
it in our approach because we evaluate the stability of a clustering over time
regarding the team spirit of time series. Therefore, in our opinion, the degree of
the assignment agreement between time series pairs to clusters at different time
stamps contributes more to the stability score of a clustering than the similarity

between cluster pairs.

3 Fundamentals

In this chapter we clarify our understanding of some basic concepts regarding
our approach. For this purpose we supplement the definitions from [32]. Our
method considers multivariate time series, so instead of a definition with real

values we use the following definition.
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Fig. 2: Tllustration of transitions of time series Ty, .., T, between clusters over
time [32].

Definition 1 (Time Series). A time series T = o4, ,...,0¢, 1S an ordered set of
n real valued data points of arbitrary dimension. The data points are chronolog-
tcally ordered by their time of recording, with t1 and t,, indicating the first and
last timestamp, respectively.

Definition 2 (Data Set). A data set D =Ty,..., T, is a set of m time series
of same length n and equal points in time.

The vectors of all time series are denoted as the set O = {o¢, 1, ..., 04, m }. With
the second index indicating the time series the data point originates from. We
write Oy, for all data points at a certain point in time.

Definition 3 (Cluster). A cluster Cy, j C Oy, at time t;, with j € {1,...,ky, }
with kg, being the number of clusters at time t;, is a set of similar data points,
identified by a cluster algorithm.

Definition 4 (Fuzzy Cluster Membership). The membership degree
uc,, ;(01,1) € [0,1] expresses the relative degree of belonging of the data object
o, of time series Ty to cluster Cy, ; at time t;.

Definition 5 (Fuzzy Time Clustering). A fuzzy time clustering is the result
of a fuzzy clustering algorithm at one timestamp. In concrete it is the membership
matriz Uy, = [ucti_,]. (0t;,1)]-

Definition 6 (Fuzzy Clustering). A fuzzy clustering of time series is the
overall result of a fuzzy clustering algorithm for all timestamps. In concrete it is
the ordered set ( = Uy, ..., Uy, of all membership matrices.

n

4 Method

An obvious disadvantage of creating clusters for every timestamp is the miss-
ing temporal link. In our approach we assume that clusterings with different
parameter settings show differences in the connectedness of clusters and that
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this connection can be measured. In order to do so, we make use of a stabil-
ity function. Given a fuzzy clustering (, we first analyze the behavior of every
subsequence of a time series T' = oy, , ..., 0¢,, with ¢; < t,,, starting at the first
timestamp. In this way we rate a temporal linkage of time series to each other.
Time series that are clustered together at all time stamps, have a high temporal
linkage, while time series which often separate from their clusters’ peers, indicate
a low temporal linkage. One could say we rate the team spirit of the individual
time series and therefore their cohesion with other sequences over time. In the
example shown in Figure 2, the time series T, and T, show a good team spirit
because they move together over the entire period of time. In contrast, the time
series T, and T, show a lower temporal linkage. While they are clustered together
at time points t; and ¢, they are assigned to different clusters in between at time
point t;. After the evaluation of the individual sequences, we assign a score to
the fuzzy clustering ¢, depending on the over-time stability of every time series.

Let U, be a fuzzy partitioning of the data objects O, of all times series in
ki, clusters at time ¢;. Similar to the equivalence relation in Hiillermeier-Rifqi
Index, we compute the relative assignment agreement of the data objects o, ;
and o, s of two time series 7; and T, 1 <[, s < m to all clusters in partitioning

U;, at time t; as follows

k}t.
1 T
EUti (Oti,l70ti73) =1- 5 Z ’uCti,j (Otz',l) —ucy,,; (Oti,s)"

j=1

Having the relative assignment agreement of time series at timestamps ¢; and
t., t1 < t; < t, <t,, we calculate the difference between the relative assign-
ment agreements of time series 7; and T by subtracting the relative assignment

agreement values:

Dy, v (11, Ts) = |Eu,, (01,1, 01,,5) — Eu,, (04,1, 0t,.,5)|-

We calculate the stability of a time series T;, 1 <[ < m, over all timestamps as
an averaged weighted difference between the relative assignment agreements to

all other time series as follows:

NE

Ey (Oti,l, Oti,s)thi,tT (Tl, Ts)2

t;

stability(T;) =1 —

n(n —1) Z

m
i=1 r=i+1 Z EUti (Oti,la Oti,s)m
s=1

In Formula (7) we weight the difference between the assignment agreements
Dy, +.(T7,Ts) by the assignment agreement between pairs of time series at the
earlier time point because we want to damp the large differences for stable time
series caused by supervention of new peers. On the other hand we aim to penalize
the time series that leave their cluster peers while changing cluster membership

at a later time point.
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Finally, we rate the over-time stability of a clustering ( as the averaged
stability of all time series in the data set:

1 m
FCSETS(() = — tability(1y). 8
(€)= 7 3 stability ) (®)
As we already stated, the over-time stability of the entire clustering depends on
the stability of all time series regarding staying together in a cluster with times
series, that follow the same trend.

5 Experiments

In the following, we present the results on an artificially generated data set,
that demonstrates a meaningful usage of our measure and shows the impact of
the stability evaluation. Additionally, we discuss experiments on two real world
data sets. One consists of financial figures from balance sheets and the other one
contains country related economy data. In all cases fuzzy c-means was used with
different parameter combinations for the number of clusters per time point.

5.1 Artificially Generated Data Set

In order to show the effects of a rating based on our stability measure, we
generated an artificial data set with time series that move between two separated
groups. Therefore, at first, three random centroids with two features € [0, 1]
were placed for time point 1. These centroids were randomly shifted for the next
timestamps whereby the maximal distance of a centroid at two consecutive time
points could not exceed 0.05 per dimension. Afterwards 3, 4 and 5 time series
were assigned to these centroids, respectively. This means that the data points of
a time series for each time point were placed next to the assigned centroid with
a maximal distance of 0.1 per feature. Subsequently, sequences with random
transitions between two of the three clusters were inserted. Therefore 3 time
series (namely 1, 2 and 3) were generated, that were randomly assigned to one
of the two clusters at every time point. All together, a total of 4 time points and
15 time series were examined.

time — 1 time — time — 3 time — 4
1.0 46
85 i 2
[a\] 4 5 7 g 7
© A 6
5:-; 0.5 ﬁ 9108 3 1(l9 52 4 IQ‘)- b 4 10'9 8
& 12 8 3
[ 1134 1248
0.0 i%211 125 1331414 -
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
featurel featurel featurel featurel

Fig. 3: Result of the most stable clustering on the artificially generated data set.
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Table 1: Stability scores for the generated data set depending on k.
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To find the best stability score for the data set, FCM was used with vari-
ous settings for the number of clusters per time point. All combinations with
ki, € [2,5] were investigated. Figure 3 shows the resulting fuzzy clustering with
the highest FCSETS score of 0.995. For illustration reasons the clustering was
defuzzyfied. Although it might seem intuitive to use a partitioning with three
clusters at time points 1 and 2, regarding the over-time stability it is beneficial
to choose only two clusters. This can be explained by the fact that there are time
series that move between the two apparent groups of the upper (blue) cluster.
The stability is therefore higher when these two groups are clustered together.

In Table 1 a part of the corresponding scores for the different parameter
settings of k;, are listed. As shown in Figure 3, the best score is achieved with
k¢, being set to 2 for all time points. The worst score results with the setting
ki, =2, ke, = 3, kty, = 4 and k¢, = 5. The score is not only decreased because
the upper (blue) cluster is divided in this case, but also because the number
of clusters varies and therefore sequences get separated from their peers. It is
obvious that the stability score is negatively affected, if the number of clusters
significantly changes over time. This influence is also expressed by the score of
0.577 for the extreme example in the last row.

5.2 EIKON Financial Data Set

The first data set was released by Refinitiv (formerly Thomson Reuters Financial
& Risk) and is called EIKON. The database contains structured financial data of
thousands of companies for more than the past 20 years. For the ease of demon-
stration two features and 23 companies were chosen randomly for the experiment.
The selected features are named as TR-NetSales and TR-TtlPlanFExpectedReturn
by Thomson Reuters and correspond to the net sales and the total plan expected
return, which are figures taken from the balance sheet of the companies. Since it
is a common procedure in economics, we divided the features by the company’s
total assets and normalized them afterwards with a min-max-normalization.
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Table 2: Stability scores for the EIKON financial data set depending on k, .

ktl kt2 kt3 kt4 kt5 kte kt., ktg FCSETS Score
2121212122 ]2]|2 0.929
3131333333 0.9
3122122222 0.945
514131212222 0.924
2121413124155 0.72

We generated the clusterings for all combinations of k;, from two to five
clusters per timestamp. Selected results can be seen in Table 2. The actual
maximum retrieved from the iterations (in the third row) is printed bold. The
worst score can be found in the last row and represents an unstable clustering.
It can be seen that the underlying data is well separated into three clusters in
the first point in time and into two clusters at the following timestamps. This
is actually a rare case but can be explained with the selection of features and
companies. Actually TR-TtlPlanEzxpectedReturn is rarely provided by Thomson
Reuters and the fact that we only chose companies which got complete data for
all regarded points in time. This may have diminished the number of companies
which might have lower membership degrees.

5.3 GlobalEconomy Data Set

The next data set originates from www.theglobaleconomy.com [1], which is a
website that provides economic data of the past years for different countries.
Again, two features were selected randomly for this experiment and were nor-
malized with a min-max-normalization. Namely the features are the ”Unem-
ployment Rate” and the ”Public spending on education, percent of GDP”. For
illustration reasons, we considered only a part of the countries (28) for the years
from 2010 to 2017.

The results are shown in Table 3. It can be seen that the best score is achieved
with two clusters at every point in time. Evidently the chosen countries can be
well separated into two groups at every point in time. More clusters or different

Table 3: Stability scores for the GlobalEconomy data set depending on ki, .

ktl kitz kit3 kt4 k?t5 ktg kt., ktg FCSETS Score
2121222222 0.978
3131333333 0.963
31221212222 0.945
513141212222 0.955
213121214 |5]5]|5 0.837
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numbers of clusters for different timestamps performed worse. In this experiment
we also iterated over all combinations of k;, for the given points in time. The
bold printed maximum, and the minimum, which can be found in the last row
of the table, represent the actual maximum and minimum within the range of

the iterated combinations.

6 Conclusion and Future Work

In this paper we presented a new method for analyzing multiple multivariate time
series with the help of fuzzy clustering per timestamp. Our approach defines a
new target function for sequence-based clustering tasks, namely the stability of
sequences. In our experiments we have shown that this enables the identification
of optimal k;s per timestamp and that our measure can not only rate time
series and clusterings but also can be used to evaluate the stability of data sets.
The latter is possible by examining the maximum achieved FCSETS score. Our
approach can be applied whenever similar behavior for groups of time series can
be assumed. As it is based on membership degrees, clusterings with overlapping
clusters and soft transitions can be handled. With the help of our evaluation
measure a stable over-time clustering can be achieved, which can be used for

further analysis such as outlier detection.

Future work could include the development of a fuzzy clustering algorithm
which is based on our formulated target function. The temporal linkage could
therefore already be taken into account when determining groups of time series.
Another interesting field of research could be the examination of other fuzzy
clustering algorithms like the Possibilistic Fuzzy c-Means algorithm [27]. This
algorithm can also handle outliers which can be handy for certain data sets. In
the experiment with the GlobalEconomy data set we faced the problem, that one
outlier would form a cluster on its own in every point in time. This led to very
high FCSETS scores. The handling of outliers could overcome such misbehavior.
Future work should also include the application of our approach to incomplete
data, since appropriate fuzzy clustering approaches already exist [15, 16, 33]. We
have faced this problem when applying our algorithm to the EIKON financial
data set. Also, the identification of time series that show a good team spirit for
a specific time period could be useful in some applications and might therefore
be investigated. Finally, the examination and optimization of FCSETS’ compu-
tational complexity would be of great interest as it currently seems to be fairly

high.
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OUTLIER DETECTION

In the field of outlier detection there are various approaches addressing many different
definitions of outliers. Regarding time series (TS) data, the three units anomalous
data point, subsequence or time series can be aimed for, whereby the term anomalous
is used as synonym for outlier. For each unit different criteria can be specified describing
anomalous instances. An outlier data point might for example be detected by crossing
a threshold, deviating too much from the rest or the expected course of a time series
[Fox, 1972; Cheng et al., 2009; Laptev et al., 2015], or indicating a change of the
course |[Kawahara and Sugiyama, 2009; Liu et al., 2013; Cho and Fryzlewicz, 2014].
Subsequences are often considered as conspicuous, if they show an unusual pattern in
a time series [Keogh et al., 2002, 2005; Lin et al., 2005]. A whole outlier time series is
in most cases a sequence, which shows a significantly different course than the other
sequences in the considered data set [Sun et al., 2006; Rebbapragada et al., 2009].

In this thesis we aim for the detection of anomalous subsequences, but consider
multiple time series at a time and analyze the behavior of sequences with respect to
groups of time series. In contrast to most approaches, we neither process a single
time series nor a whole TS database. That is, because we believe, that considering
a sequence in context of other time series leads to a high information gain, but it is
rarely the case that the whole data set shows a similar behavior, as e.g. in sensor data.
Therefore we introduce a new type of outliers: transition-based outliers. Those can
be identified by analyzing the course of a sequence in relation to its peers, where the
peers are determined by an underlying clustering. The transitions refer to changes of
the cluster membership over time. Thus, the cohesion of a time series to its cluster
members and therefore its team spirit is investigated.

In the following we present different application-dependent approaches and their
modifications, for the detection of transition-based outliers and show the usability on
different real-world data sets.
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3.1 Show me your friends and I'll tell you who you
are. Finding anomalous time series by
conspicuous cluster transitions

Martha Krakowski, Gerhard Klassen, Marcus Bravidor and Stefan Conrad

“Show me your friends and I'll tell you who you are. Finding anomalous time series
by conspicuous cluster transitions”

In: Data Mining. AusDM 2019. Communications in Computer and Information
Science, 2019.

Introduction

After presenting evaluation measures for the qualitative analysis of over-time cluster-
ings, which enable the validation of clusterings per timestamps, a further analysis of
the sequences using the calculated over-stability is introduced. Considering an under-
lying over-time clustering of a T'S database, which ideally is highly over-time stable,
the migration behavior of time series between clusters can be examined. Assuming
that sequences of the same cluster follow a similar trend, whereby their locations in
the feature space and their exact courses are not relevant as long as the cluster mem-
bers stick together over time, a deviation of this behavior and thus a splitting from
the cluster might indicate an outlier. Therefore, the over-time stability of a sequence
is contrasted with those of its cluster members. If the history of a cluster shows a
low over-time stability, a sequence’s low score does not stand out, so that it is not
considered conspicuous. However, in case of an over-time stable cluster, which shows
a common pattern in the data set, a low over-time stability of its cluster member is
suspicious and therefore indicates an outlier.

The method presented in the following paper is based on calculations from CLOSE
[Tatusch et al., 2020a] addressing the over-time stability of sequences and clusters.
With the help of a threshold parameter 7, outliers deviating from their cluster’s be-
havior can be identified. With only one parameter, the algorithm is user friendly and
evades an extensive search for the optimal hyperparameter setting.

The paper presents a novel approach for anomaly detection in multivariate time
series data addressing a new type of outliers, which enables the analysis of sequences
with regard to their peers. It constitutes a key contribution to this thesis as it deals with
its main topic, which is the detection of outliers in multiple multivariate time series. In
the further course of this thesis we will call this approach DOOTS (Detecting Outliers
regarding their Over-Time Stability).

Personal Contribution

The method was developed in close cooperation by Martha Krakowski and Gerhard
Klassen. While Martha Krakowski implemented the outlier detection algorithm and
generated the artificial data sets, Gerhard Klassen prepared the remaining data sets
and experiments as well as the illustrations. The paper was written by Gerhard Klassen
and Martha Krakowski in equal parts. Marcus Bravidor and Stefan Conrad supported
the work as supervisors.
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Show me your friends and I’ll tell you who you are.
Finding anomalous time series by conspicuous cluster
transitions

Martha Tatusch[OOOO 0001-6302— 6070] Gerhard Klassen[OOOO 0002—1458— 6546}
Marcus BI‘aVIdOI'[OOOO 0003—1504— 9889} and Stefan COHrad[OOOO 0003—-2788— 3854}

Heinrich Heine University, Universitéatsstr. 1, 40225 Diisseldorf, Germany
{tatusch,klassen,bravidor,conrad}@hhu.de

Abstract. The analysis of time series is an important field of research
in data mining. This includes different sub areas like trend analysis,
outlier detection, forecasting or simply the comparison of multiple time
series. Clustering is also an equally important and vast field in time series
analysis. Different clustering algorithms provide different analysis aspects
like the detection of classes or outliers. There are various approaches how
to apply cluster algorithms to time series. Previous work either extracted
subsequences or feature sets as an input for cluster algorithms. A rarely
used but important approach in clustering of time series is the grouping
of data points per point in time. Based on this technique we present
a method which analyses the transitions of time series between clusters
over time. We evaluate our approach on multiple multivariate time series
of different data sets. We discover conspicuous behaviors in relation to
groups of sequences and provide a robust outlier detection algorithm.

Keywords: Outlier Detection - Time Series Analysis - Clustering.

1 Introduction

Time series data is collected in various domains. Not only the behavior of users on
different platforms, but also the tracking of vehicles and objects or the recording
of financial or weather data can be displayed as time series. For further anal-
ysis, the various data types can be converted into numerical (mostly discrete)
values so that sequences of numerical vectors are derived. These can then be
processed in a variety of ways. Information can be obtained through analyses
such as clustering, prediction or comparison of time series and different outlier
detection methods.

Depending on the context, different aspects can be relevant for the user. For
example, not all clustering algorithms consider the same types of clusters, and
outlier detection techniques do not always address the same types of outliers. In
some cases, very special solutions have to be found for specific problems, whereby
there are many algorithms that can be applied to a wide range of application
areas.

In this paper we focus on databases of multivariate time series with discrete val-
ues, same length and equivalent time steps. We detect anomalous subsequences
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Fig. 1. Example for a time series over-time clustering. The blue color indicates stable
clusters while red stands for instability.

with regard to groups of time series of the given database. Therefore we cluster
the multivariate data of all time series per timestamp and analyze the stability
of all subsequences over time. Thereby we call the resulting clustering over-time
clustering. In Figure 1 an example for such a clustering is displayed. For the sake
of simplicity, only univariate time series are plotted. Since the data is clustered
independently at each point in time, there is at first no time-related connection
between the clusterings.

There are several proposals for clustering time series depending on the applica-
tion. Some methods cluster the time series of a database as a whole [10] [12] [19],
extract feature sets first [22], or consider subsequences of a single time series only
[3]. However, these are not suitable when it comes to detecting irregularities or
gathering information per time point.

Outlier detection in time series is in most cases not based on clustering. Because
of various underlying data such as single or multiple time series with uni- or
multivariate data points and different definitions of what an outlier is, there are
several approaches to their identification. Some papers consider data points [1]
or subsequences [15] that are anomalous with regard to a single time series [5]
[17], such as peaks. Others look for so called change points [6] [16], that imply
that the course of the considered time series significantly changes from that point
on. Yet others analyse data from several time series that are very similar, such
as sensor data, and detect irregularities in relation to the entire data set [1] [11]
[13]. Finding these abnormalities usually presupposes that either the course of a
single time series follows consistent patterns or that the courses of several time
series are highly correlated.

In this paper we assume that the exact course of the individual time series is
not important, but the trend which groups of sequences follow. By anomalies
we denote subsequences that deviate from one trend and therefore cannot be
assigned steadily to a group of sequences. In that case, we say that the sequence
possesses a weak stability. We present an algorithm that identifies such unstable
sequences in a database of multivariate time series and is robust against missing
data points.
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2 Related Work

Anomaly detection in time series is a wide field of research. It can be distin-
guished in the detection of outliers within a single time series and the detection
of outliers in multiple time series. Outliers in single time series are usually cat-
egorized in two classes:

Additive outliers, which represent surprisingly large or small values in a short
period. In case additive outliers occur consecutively they are often summarized
as additive outlier patches.

Innovational outliers are characterized by their impact on subsequent observa-
tions. Additionally the influence of innovational outliers can grow with time.
There are also several different categories of outliers, which can be described as
a mix of both main classes. For example, additive outliers which cause a move
of following observations to a new level are called level shift outliers and have a
permanent impact on the ongoing time series. In case the influence of the level
shift outlier is decreasing over time, it is called a transient change outlier. Ad-
ditive outliers, which occur periodically are named seasonal additive outliers.
Additive and innovational outliers are often identified with extensions of auto-
regressive-moving-average (ARMA) models [2] [18]. Other techniques include
the use of decomposition methods such as STL, a seasonal-trend decomposition
procedure based on LOESS [7]. Yet other methods evaluate derivatives of the
dynamic time warping (DTW) [20] similarity in order to detect anomalies.

The detection of outliers in multiple time series is handled differently. Methods
of this kind are often using the peers of a time series to determine whether it is
anomalous or not. Beside other techniques, recent approaches use Probabilistic
Suffix Trees (PST) [21] and Random Block Coordinate Descents (RBCD) [23]
in order to detect outliers. However, while these approaches focus on the devia-
tion of one time series to the others, we focus on the behaviour of a time series
compared to its peers. More concretely, we assume that a time series which has
a similar development to a group of other time series over a subsequence is ex-
pected to move on with the same group. Therefore we first cluster per point in
time and then analyse the transition of time series regarding these clusters. This
is realized by the analysis of cluster transitions of time series over time. Tran-
sitions of this kind are also analysed in cluster evolution methods. Landauer et
al. [14] makes use of such a method in order to calculate an anomaly score for a
single time series in a sliding window. In contrary to Landauer et al. we relate
to multiple time series. The analysis of the time series behavior not only reveals
new kinds of outliers but also detects different types of additive and innovational
outliers.

This approach is very different from clustering whole time series or their sub-
sequences, since the outlier detection would rely on the single fact whether a
sequence is assigned to a cluster or not. Such an approach would not take the
cluster transitions of the time series into account, which can be an expressive fea-
ture on its own. Hence, our approach detects anomalous subsequences, although
they would be assigned to a cluster in a subsequence clustering.
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3 Fundamentals

In order to create a good basis of knowledge to avoid later misunderstandings,
we will provide some definitions which our work is based on. As these terms are
used in many different areas, it is useful to explain which interpretations are
considered in this paper.

Definition 1 (Time Series). A multivariate time series T = o4,,...,0¢, S an
ordered set of n real valued data points of arbitrary dimension. The data points
are chronologically ordered by their time of recording, with t1 and t,, indicating
the first and the last timestamp, respectively.

Definition 2 (Data Set). A data set D =Ty,..., T, is a set of m time series
of same length and equal points in time. The set of data points of all time series
at a timestamp t; is denoted as Oy, .

Definition 3 (Subsequence). A subsequence Thirt;0 = Oty -, 0,0 With j > i
18 an ordered set of successive real valued data points beginning at time t; and
ending at t; from time series Tj.

Definition 4 (Cluster). A cluster Cy, ; C Oy, at time t;, with j € {1,...,q}
being a unique identifier (e.g. counter), is a set of similar data points, identified
by a cluster algorithm or human. This means that all clusters have distinct labels
regardless of time.

Definition 5 (Cluster Member). A data point o, ; at time t;, that is assigned
to a cluster Cy, ; is called a member of cluster Cy, ;.

Definition 6 (Noise). A data point oy, ; at time t; is considered as noise, if it
18 not assigned to any cluster.

Definition 7 (Clustering). A clustering is the overall result of a clustering
algorithm or the set of all clusters annotated by a human for all timestamps. In
concrete it is the set ¢ = {Cy, 1,...,Cy, q} of all q clusters.

In Figure 2 an example for the above definitions can be seen. The data points
of a data set containing five time series (T, Ty, T., T4, Te) are clustered for the
timestamps t;,¢; and t;. For simplicity, all data points of a time series 7T are
denoted by the identifier [.

In t; the data points o, 4, 0, p of time series T, and T} are cluster members of
cluster C%, ;. The data point o, . is marked as noise, as it is not assigned to any
cluster in t;. In total, the shown clustering consists of five clusters. It can be
described by the set ( = {C, 1, Ct, u, Ct; 0, Ct; 1, Cty. g }-
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Fig. 2. Example for the transitions of time series Ty, .., Te between clusters over time.

4 Method

After the clarification of important foundations, the basic idea of the algorithm
is described. Therefore further terms have to be explained before.

Let Cy, o and Cy, p be two clusters, with t;,t; € {t1,...t,}. First, we introduce
the term temporal cluster intersection for the purpose of measuring the stability
of a time series:

ﬂt{cti,avctj,b} ={T; | o1,1€Cl, 0 Nog1 € Ctj,b}

with [ € {1,...,m}. The result is the set of time series that are assigned to both
of the clusters under consideration. This means all sequences that were grouped
together at time ¢; and ;. The transition of a time series from ¢; to ¢; can now be
described by the proportion of cluster members from the corresponding cluster
in ¢; who migrated together into the cluster in ¢;:

(Z) lf Cti,a - (Z)
P(Cti,a:Cry p) = Ct;,aNeCh bl

1
Cryal else

with ¢; < ¢;. In Figure 2 an example for transitions of time series between clusters
is sketched. There, the proportion for Cy, ; and Cy; , would be
{Ta, Tv }| 2
P(C 1, C, 0) = =—-=1.0.
( ! U) |{Ot¢,a70ti,b}| 2

This proportion can be used to measure the stability of a sequence with a sub-
sequence score. It is defined as

subsequence_score(Ty, ¢, 1) Zp (cid(ot, 1), cid(oy, 1))

with [ € {1,...,m}, k € [1,7 —i] being the number of timestamps between ¢; and
t; where the data point exists and cid, the cluster-identity function
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0 if the data point is not assigned to any cluster

cid(o, 1) = {

Cta else

returning the cluster which the data point has been assigned to in t;. The function
returns an empty set, either if the object is classified as noise or if it does not
exist at the considered time. Note, that the subsequence score is normalized to
[0,1] by k, as the proportion p is a percentage between 0 and 1, as well.

In the example of Figure 2, the score of time series T, between time points ¢;
and ¢, would be:

(1.0 + 1.0) = 1.0.

N | —

subsequence_score(1y, 1, o) =

A notable characteristic is, that the score is always 0, if the last data point of
the considered subsequence is marked as noise. However, this circumstance does
not lead to any handicaps in most cases as all partial sequences of these subse-
quences are treated normally. Nevertheless, the handling of sequences with an
endpoint that is labeled as noise will be analyzed in more detail later on.

For now describing the concrete procedure of detecting conspicuous sequences,
we first provide a vague definition of them:

Definition 8 (Anomalous Subsequence). A subsequence Ty, 1, 1 is called ano-
malous, if it is significantly more unstable than its cluster members at time t;.

With the help of the subsequence score which measures the stability of a subse-
quence, anomalous ones can now be distinguished by comparing the stability of
grouped subsequences at a given time point. Every possible subsequence gets an
outlier score indicating the probability of being anomalous, by calculating the
deviation of its stability from the best subsequence score of its cluster. A formal
description of the best subsequence score can be given by:

best_score(t;, Cy;.a) = maz({subsequence_score(Ty, 1, 1) | cid(os; 1) = C4;.a})
The outlier score of a subsequence is then calculated as follows:
outlier_score(Ty, t, 1) = best_score(t;, cid(oy; 1)) — subsequence_score(Tt, ¢, 1)

As the best score lies between 0 and 1, an outlier score of 100% can only be
achieved in completely stable clusters. The smaller the best score of the consid-
ered cluster is, the smaller is the greatest possible outlier score.

Regarding the example in Figure 2, the time series Ty would get the following
outlier_score between time points t; and tx:

outlier_score(Ty, . .a) = 1.0 — (0.5 - (0.5 4+ 1.0)) = 0.25

With the outlier score, now a more precise definition of an outlier can be given.
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Definition 9 (Outlier). Given a threshold T € [0,1], a subsequence Ty, ¢, 1 is
called an outlier, if its probability of being an outlier is greater than or equal T.
That means, if

outlier_score(Ty, 1,1) > T

Although 7 is a constant, it can be interpreted as a dynamic threshold. That is,
because the greatest possible deviation from the best subsequence score — and
thus the greatest outlier score — depends on the best score of the considered
cluster. Clusters with low stability have a lower probability of containing an
outlier than stable ones, since all their cluster members show irregularities and
that represents a pattern of instability. In this context, the small subsequence
score is thus not conspicuous.

Intuitive outliers from the over-time clustering that were marked as noise get
a special treatment. Subsequences that consist entirely of noise data points are
automatically identified as outliers. Since subsequences whose last data point is
labeled as noise are not assigned to a cluster from which the best score can be
calculated, no outlier score can be determined for them. Therefore, they are not
included in the regular outlier calculation. In the following we will differentiate
between anomalous subsequences, intuitive outliers and noise.

Take another look at the case where the last element of an examined subsequence
T}, .+, is marked as noise. Suppose the subsequence T3, ¢, ; gets a high outlier
score and is detected as outlier. Then one would expect that the subsequence
under consideration T3, ;. ; would be identified as an outlier as well. This will
only be the case, if the previous data point was categorized as noise as well
and the sequence was therefore recognized as an intuitive outlier. However, for
the sequence T}, 4, ; with k > j, which at the last time point ¢; is assigned to
a cluster again for the first time this would also be the case. Thus in the end
T, .+, would be covered.

Yet a marginal case is when a data point is labeled as noise at the last time of
the entire time series. In this scenario, a sequence with end time t¢,, would never
be detected as an outlier if it is not marked as noise in ¢,,_1.

Remark 1 (Stability). The stability is not only influenced significantly by a small
sample size when considering constant data points [4]. When examining the over-
time stability, a small sample size leads to high sensitivity to cluster transitions,
as well. As more data points are considered, the simpler it is to draw meaningful
conclusions about the stability.

5 Experiments

In order to evaluate the presented method, we performed several experiments
on different real world data. We also present two artificially generated data sets
which are used to illustrate the handling of some marginal cases. In order to
cluster the data per point in time, we used DBSCAN [9] with adapted parame-
ters.
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Fig. 3. Two dimensional experiment on the EIKON Financial Data Set with 7 = 0.6,
minPts = 2 and € = 0.15. The colors indicate cluster belongings, whereby grey objects
represent outliers. Circles are outliers by distance and boxes are intuitive outliers, as
well. Red color or font indicates noise.

5.1 EIKON Financial Data Set

Eikon is a set of software products released by Refinitiv (formerly Thomson
Reuters Financial & Risk). It contains a database with financial data of thou-
sands of companies for the past decades. For illustration reasons we randomly
selected thirty companies and two features. The selected features are a figures
which were taken from the balance sheet of the company. In economics it is com-
mon to normalize these figures by the companies’ total assets in order to make
it comparable to other companies. Beside this, we normalized the features with
a min-max normalization. The clustering was done with DBSCAN and ¢ = 0.15,
minPts = 2 as parameters. The outlier detection parameter was chosen to be
7 = 0.6. In Figure 3 one can see the illustrated results. The presented technique
found two outlier subsequences. The first, which is labeled as GM is detected
from the year 2008 until 2009. This is because GM is noise in the year 2008,
which leads to a subsequence score of 0. In 2009 GM merges with a cluster,
which has a high reference score. The second outlier detected is the subsequence

Tt000,t2015, K R- 1t 1s detected as an intuitive outlier.

5.2 Airline On-Time Performance Data Set

The Airline on-time performance data set [8] was originally collected by the
U.S. Department of Transportation’s Bureau of Transportation Statistics. It
contains records of 3.5 million flights. Every flight has a set of 29 features, such
as the departure delay, the delay reason, the arrival delay and the airline which
processed the flight. In order to detect anomalies in this data set, we constructed
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Fig. 4. One dimensional experiment on the Airline On-Time Performance Data Set
with 7 = 0.4, minPts = 3 and ¢ = 0.03. Black sequences represent anomalies, while
white dashed ones stand for intuitive outliers. The color of the dots emphasize which
cluster the data points are assigned to. Red dots represent noise.

a time series for every airline by calculating the average of their features for every
day. Before applying our technique, we normalized the data with the min-max
normalization and clustered it with DBSCAN. Every observation represents a
flight of an airline. In order to illustrate the results we executed our algorithm
to one feature, namely the flight distance. We applied DBSCAN for eight time
points with the following parameters: minPts = 3 and ¢ = 0.03. Additionally
we chose 7 = 0.4. The result can be seen in Figure 4.

The figure shows two kinds of outliers: Intuitive outliers and outliers which were
identified by their distance to a reference time series. Since the time series which
is labeled with the points a, b and ¢ has a large distance to other time series
it is detected as an intuitive outlier from a to b. Due to this, the time series’
accumulated subsequence score is zero and thus it is also detected as an outlier
at the last time stamp c. From point a to b it is not detected as an outlier by
it’s distance to the reference subsequence score, since the neighborhood of the
sequence at time point 8 have also a low stability score. Regarding the time points
1 to 8 and the objects in the neighborhood, there are at most two peers which
remained together. The subsequence labeled with d and e is a good example for
the presented method. It illustrates the detection of outliers by the change of
cluster neighbors of the subsequence.

5.3 Simulated Data

In order to test our method in a targeted manner, two experiments were per-
formed on simulated data. Both a univariate and a multivariate data set with
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Fig. 5. Illustration of the detected outliers on the simulated one-dimensional data
set with 7 = 0.55, minPts = 3 and ¢ = 0.05. Black sequences represent anomalous
subsequences, while white dashed ones stand for intuitive outliers. The color of the
dots emphasize which cluster the data points are assigned to. Red dots represent noise.

two features are considered. In both cases, a time span of 8 time points is exam-
ined.

The one-dimensional data set was generated so that initially four starting points
(for four groups) were selected. In addition, the maximum deviation from the
centroid and the number of members were chosen for each group. The centroids
were then calculated randomly for each time point, whereby the distance of the
centroids of a cluster of two successive time points could not exceed 0.06. After
generating the normal data points, 5 outlier sequences were randomly inserted.
The starting points were chosen randomly and the distance between two con-
secutive points could not be greater than 0.3. For all points, care was taken to
ensure that they were between 0 and 1.

As shown in Figure 5, anomalous sequences from five time series have been found.
Regarding the first time stamp the first and second black line show time series
that are entirely recognized as conspicuous ones. Since their data points often
switch between being noise (red dots) and different cluster members, this result
is meaningful. Between time point 6 and 7 one additional black line in added.
This can be explained by the stability of the sequence’s cluster at time 7. All its
cluster members migrate together from time point 6 to 7, so that an outlier is
very conspicuous.

Looking at the completely randomly generated time series with the uppermost
noise point at time 2, it is noticeable that it was not recognized by our algorithm.
This is due to the fact that the purple cluster at time 3 and the turquoise cluster
at time 5 do not have a high stability and the deviation of the sequence from
the best possible score is therefore not very large. In the last time points, the
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Fig. 6. Illustration of the detected outliers with 7 = 0.5, minPts = 4 and ¢ = 0.11
on the artificially generated data two-dimensional set. The colors indicate cluster be-
longings, whereby grey objects represent outliers. Circles are outliers by distance and
boxes are intuitive outliers, as well. Red color or font indicates noise.

time series migrates stably with the yellow cluster, so that it does not behave
uncommonly.

If the data points of a time series change from one point in time to another from
a cluster to noise, they are not initially interpreted as conspicuous. This is a
problem if the time series remains as noise as the time at which it split from the
cluster is not recognized as an intuitive outlier. This behavior can for example
be seen in the striped line regarding the first time stamp. Between the times 6
and 7, the sequence was not detected as an outlier.

The second data set was created as follows: First, three starting points as
centroids and the number of members of the three clusters were chosen. The
maximum deviation of two consecutive centroids was set to 0.05 and that of the
member data points to the centroid was set to 0.1. One time series was assigned
to each group, which was allowed to deviate from the centroid by up to 0.25.
Finally, two time series with completely random data points were added, so that
a total of 5 outlier sequences should be noticeable. Here, too, we made sure that
all data points are between 0 and 1 for each feature.

In Figure 6 the results for an over-time clustering made by DBSCAN with
minPts = 4 and € = 0.11 and an outlier threshold of 7 = 0.5 are shown.
The time series 16, 37, 48 are generated with higher deviation and 49 and 50
completely random. It can be seen that all these time series were found by our
algorithm as outliers (grey). Since the data points of these time series often are
outliers as well as change their cluster members, this is a correct result. However,
the first two time points are assumed to be normal for time series 16. This is
desired too, as it moves stable with its cluster members at this time.

Although the data points of 42, 45, 46 and 47 split from their cluster members
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in time point 4, they are not identified as outliers. Since they migrate together
and even merge back to their former cluster members in time point 5, their be-
havior is not conspicuous. The sequence 42 is identified as anomalous between
time points 1 and 2 (turquoise cluster), since all its cluster members migrated
completely stable from time point 1 to 2.

In total, the following outlier sequences can be read from Figure 6: 15 g 16, 11,2,42,
T 737, T1 8,48, 118,49, Th 8,50. All are justified and correspond to the desired re-
sult. There is one striking observation, though: Although 37 is conspicuous over
the entire period, it is only found as outlier between time 1 and 7. The reason
for this is that the marginal case mentioned in Section 4 has occurred. Since the
data point of the time series was classified as noise at the very last point in time,
but not at the time before, the sequence is not found by our algorithm.

6 Conclusion & Future Work

In this work we presented a robust outlie