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Zusammenfassung

In der vorliegenden Dissertation untersuchen wir die Stokes Gleichungen in drei verschiede-

nen Settings auf einem zweidimensionalen Keilgebiet mit Öffnungswinkel kleiner π. Der

Grund, Keilgebiete zu betrachten, liegt in der Physik. In der Tat kann man, indem man

eine geeignete Hanzawa Transformation anwendet, Kontaktlinienprobleme zu Problemen

auf einem Keilgebiet transformieren, was zu Navier-Stokes-Gleichungen mit freiem Rand

führt. Da ein analytischer Ansatz, diese Probleme zu lösen, sehr schwierig ist, und da

viele Resultate der Navier-Stokes-Gleichungen aus den linearisierten Stokes-Gleichungen

folgen, ist es sinnvoll, die Stokes-Gleichungen mit verschiedenen Randbedingungen auf

dem Keilgebiet zu betrachten. Bisher sind die instationären Stokes-Gleichungen auf Keil-

gebieten wenig untersucht. In dieser kumulativen Dissertation werden wir also die in-

stationären Stokes-Gleichungen bzw. ihre zugehörige Resolventengleichung mit Perfect-

Slip-, Dirichlet- und Navier-Randbedingungen betrachten. Ziel ist es dann, die W 2,p-

Regularität des jeweiligen Stokes Operator in drei verschiedenen Manuskripten zu zeigen.

Während W 2,p-Regularität für glatte Gebiete schon seit langem wohlbekannt ist, ist dies

für Gebiete mit singulären Randanteilen alles andere als offensichtlich und gilt generell als

schwieriges Problem. Das erste Manuskript handelt über die Stokes-Gleichung mit Perfect-

Slip-Randbedingungen. Da in diesem Setting die Helmholtz-Projektion mit dem Laplace-

Operator kommutiert, können wir den Stokes-Operator als Teil des Laplace-Operators

im Raum Lp
σ betrachten. Ziel dieses Manuskripts ist, die W 2,p-Regularität und maxi-

male Regularität auf Lp vom damit verbundenen stationären und instationären Stokes-

Problem für alle p ∈ (1,∞) zu zeigen. Hinsichtlich Regularität ist dies eine enorme

Verbesserung von [15, Theorem 1.1, Corollary 3], indem diese nur für p ∈ (1, 1 + δ) für

kleine δ > 0 gezeigt wird. W 2,p-Regularität für den perfect-slip Stokes Operator für alle

p ∈ (1,∞) ist überraschend, da, wie es ja ebenfalls im Manuskript gezeigt wird, dies für

den entsprechenden Laplace Operator nicht gilt. Im zweiten Manuskript behandeln wir

das Resolventenproblem für den Stokes-Operator mit Dirichlet-Randbedingungen. Ziel

ist es, die W 2,p-Regularität vom entsprechenden Stokes-Operator für alle p in einem of-

fenen Intervall um p = 2 zu zeigen. Indem wir die biharmonische Gleichung betrachten,

können wir dank eines Resultats aus [5] die schwache und starke Regularität des bihar-

monischen Operators und somit des Stokes-Operators für geeignete p zeigen. Dank dieser

Resultate folgt die W 2,p-Regularität für das Resolventenproblem für den Stokes-Operator.

Im letzten Manuskript betrachten wir die Stokes-Gleichungen mit inhomogenen Navier-

Randbedingungen. Wir zeigen die Existenz und Eindeutigkeit der Lösung mit optimaler

Regularität in einem Lp-Setting für alle p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 3/2, 2, 3 }, wobei

θ0 der Öffnungswinkel des Keils ist. Der Beweis basiert unter anderem auf einem Resultat

aus dem ersten Manuskript.





Summary
In this thesis we consider the Stokes equations defined on a two-dimensional wedge type

domain with opening angle less than π in three different settings. The reason to consider

this type of domain is motivated by problems from physics. In fact, by employing a suit-

able Hanzawa transformation, one may transform a contact line problem onto a problem

on a wedge, which leads to the Navier-Stokes equations subject to free boundary condi-

tions. Since an analytical approach of these problems seems to be very difficult and since

many results for the Navier-Stokes equations are obtained based on the linearized Stokes

equations, it is useful to consider the Stokes equations subject to different boundary con-

ditions on a wedge domain. It seems that results on the instationary Stokes equations on

wedge domains are very rare. Hence, in this cumulative thesis we consider the instationary

problem or the resolvent problem of the Stokes equations subject to perfect slip, Dirichlet

and Navier boundary conditions. The main objective is then W 2,p-regularity of the corre-

sponding Stokes operator. This is studied in three independent manuscripts of the thesis.

Whereas the W 2,p-regularity on smooth domains is well-known, similar results on domains

with singular boundary parts are not obviously available and difficult to prove. In the first

manuscript, we consider the Stokes equations subject to perfect slip boundary conditions.

There, since the Helmholtz projector and the Laplacian commute in the underlying set-

ting, we can treat the Stokes operator as part of the Laplacian in the space Lp
σ. We show

the W 2,p-optimal regularity and maximal regularity on Lp
σ of the associated stationary

and instationary Stokes problem for the whole range of p ∈ (1,∞). Concerning regularity,

this improves a result of [15, Theorem 1.1, Corollary 3] to a large extend as there it is

merely proved for p ∈ (1, 1 + δ) and δ > 0 small. W 2,p-regularity for p ∈ (1,∞) is for

perfect slip Stokes surprising, since as it is shown in the manuscript as well, this does not

hold for the corresponding Laplacian. In the second manuscript we treat the Stokes resol-

vent problem subject to Dirichlet boundary conditions. The objective of this manuscript

is to prove the W 2,p-regularity of the corresponding Stokes operator for all p defined in

an open interval about p = 2. Considering the corresponding biharmonic equation, to

which the stationary Stokes problem can be transformed, we can prove with the aid of

a result of [5] weak and strong regularity of the biharmonic operator and, hence, of the

Stokes operator in the Lp-setting for suitable p. Based on these results the W 2,p-regularity

follows for the resolvent problem of the Stokes operator. In the last manuscript we con-

sider the Stokes equations subject to inhomogeneous Navier slip boundary conditions. We

prove existence and uniqueness of solutions with optimal regularity in an Lp-setting for

all p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 3/2, 2, 3 } where θ0 is the opening angle of the wedge.

Its proof is based on a result of the first manuscript.
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Chapter 1

Introduction

1.1 General information

Properties of PDEs on non-smooth domains are important for many applications. For

example a water drop running down a glass describes a contact line problem, which con-

stitutes a three-phase problem with one solid and two fluid phases. Employing a suitable

Hanzawa transformation, see e.g. [2, 18], the contact line problem can be transformed

onto a wedge type domain, which leads to the Navier-Stokes equations subject to the free

boundary conditions on the liquid-gas interface. An analytical approach of these problems

seems to be very difficult. Up to know, results for 0◦ or 90◦ contact angle are available,

for instance, see [20] (0◦) or [21, 22] (90◦). Since many results for the Navier-Stokes

equations are obtained by properties of the linearized Stokes equations, it is significant

to consider the Stokes equations subject to different boundary conditions on a wedge.

However concerning regularity, results for the Stokes equations in domains with conical

boundary points or non-smooth domains are very rare. One may find some classical reg-

ularity results in [11, 9, 1, 14, 5, 4]. We also refer to [6], where an approach to analytic

regularity was presented, or to [12], where the Stokes equations subject to no-slip bound-

ary conditions in a cone are studied and to [7] for an overview of the Stokes equations

including approaches to non-smooth domains. In this thesis we consider the Stokes equa-

tions on a two-dimensional wedge type domain in three different settings, which are the

Stokes equations subject to perfect slip, Dirichlet and Navier boundary conditions. These

results are contained in three independent manuscripts included in this thesis. They are

joint works with Jürgen Saal and Matthias Köhne.

The Navier-Stokes equations are the fundamental equations in fluid dynamics, which

describe the flow of incompressible Newtonian fluids. Many results for the Navier-Stokes
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equations are obtained based on properties of the linear Stokes equations given as

∂tu−Δu+∇p = f in J ×G,

div u = 0 in J ×G,

B(u) = 0 on J × ∂G,

u(0) = u0 in G,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (1.1)

where J = (0, T ) with T > 0 is a time interval, B(u) are certain boundary conditions and

G ⊂ R2 is a two-dimensional domain. Moreover, by u = u(t, x) we denote the velocity

field and by p = p(t, x) the pressure. The given data are described by the external force

f = f(t, x), and by the initial velocity field u0 = u0(x). In this cumulative thesis the main

objective is to find a unique solution (u, p) of system (1.1) in three different settings, which

are explained in the following. The thesis is structured in three independent manuscripts.

Note that the uniqueness of the pressure is to be understood as uniqueness up to a constant.

The boundary conditions defined on the two-dimensional domain G considered in the

manuscripts are given by

B1(u) :=

(
curl u

u · ν

)
(perfect slip boundary condition),

B2(u) := u (no slip or Dirichlet boundary condition),

B±
3 (u) :=

(
αu · τ − τTD±(u)ν

u · ν

)
(Navier or partial slip boundary condition).

Here, we denote by D±(u) := 1
2(∇u ± ∇uT ) the rate of the deformation tensor and the

rate of rotation tensor, respectively, by ν the outer normal vector and by τ the tangential

vector on the boundary ∂G, respectively. The parameter α ∈ BUC1(∂G) is related to the

slip length. We notice that the homogeneous boundary condition B±
3 (u) = 0 on ∂G can

be reformulated as

αuτ ±
1

2
curl u = 0, u · ν = 0 on ∂G.

Hence, for the special case α ≡ 0, the boundary condition B±
3 (u) = 0 on ∂G corresponds

to the perfect slip boundary condition B1(u) = 0 on ∂G. If α → ∞, the condition

B±
3 (u) = 0 on ∂G would formally approximate the no-slip (or Dirichlet) boundary condi-

tion B1(u) = 0 on ∂G. In our setting, however, we always assume α|x=0 = 0.

Now, let G ⊂ R2 be a two-dimensional wedge domain given as

G :=
{
(x1, x2) ∈ R2 : 0 < x2 < x1 tan θ0

}
(1.2)

with opening angle θ0 ∈ (0, π). Throughout the included manuscripts, we are interested in

the best possible regularity for the solution to the Stokes equations subject to the bound-
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ary conditions mentioned above posed in the wedge domain G. In the case of perfect

slip boundary conditions, we prove that the instationary Stokes equations have optimal

regularity in the Lp-setting for all p ∈ (1,∞), i.e. the solution of (1.1) is in W 2,p. For the

Dirichlet boundary conditions, we consider the corresponding resolvent problem of (1.1)

and show its well-posedness in the Lp-setting for a small range of p in a neighborhood of

p = 2. Moreover, we show that the corresponding Stokes operator is sectorial with angle

equal to zero. Finally, we prove the optimal regularity of (1.1) subject to inhomogeneous

Navier boundary conditions with J = (0, T ) for a finite T > 0 in the Lp-setting for all

p ∈ (1,∞) \ {2θ0/(3θ0 − 2π), 3/2, 2, 3}.

This thesis is stuctured as follows: In Section 1.2, we give an overview of the three

manuscripts contained in this thesis. Section 1.3 is divided in three parts. We first give

some basic notation used throughout this thesis. Then we give an introduction into oper-

ator classes, H∞-calculus, maximal regularity and a result on the operator sum method,

which is based on the Kalton-Weis theorem, see [8]. In fact, in two of the manuscripts

included in the thesis, which are contained in Chapter 2 and 4, the operator sum method

will play an important role to show the invertibility of differential operators defined on

a layer domain. Moreover, since in all the three manuscripts we transform some elliptic

problems defined on the wedge domain onto a layer domain, we give an introduction to

these transformations in the last part of Subsection 1.3. The subsequent three chapters

contain the self-contained manuscripts called “Optimal Sobolev regularity for the Stokes

equations on a 2D wedge type domain”, “The Dirichlet Stokes operator on a 2D wedge

domain in Lp: Sectoriality and optimal regularity” and “Optimal regularity of the Stokes

equations on a 2D wedge domain subject to Navier boundary conditions”.

1.2 Summary

The first manuscript included in Chapter 2 was published in Mathematische Annalen

online in 2020 and in print in 2021, see [10]. It contains the W 2,p-optimal regularity

and maximal regularity on Lp of the Stokes operator of the associated stationary and

instationary Stokes problem on the two-dimensional wedge domain subject to perfect slip

boundary conditions. The advantage of the perfect slip conditions is explained by the

fact that Helmholtz projector and the Laplacian commute (this has been already utilized

in [16, 15]). Hence, we can treat the Stokes operator as part of the Laplacian in the

subspace of solenoidal functions. In [15, Theorem 1.1 and Corollary 3] it is already proven

that the Laplace and Stokes operators in the underlying setting defined on a three- and

two-dimensional wedge domain have maximal regularity on Lp and optimal Sobolev W 2,p-

regularity, but only for a small range of p. This small range of p is restricted to the interval
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1 < p < 1 + δ for a small δ > 0 depending on the opening angle of the wedge. The main

objective of the manuscript [10] is to improve these last results for the Stokes operator,

that means maximal regularity on Lp and W 2,p-Sobolev regularity of the Stokes operator

in the space Lp
σ for the full range of 1 < p < ∞ and opening angles less than π for the

two-dimensional wedge. For the Laplacian these results only hold on a suitable subspace

depending on the opening angle of the wedge and not for every p ∈ (1,∞) on the entire

Lp-space. However, the problematic subspace is complemented to the space of solenoidal

vector fields.

The manuscript in Chapter 3 is on the Stokes resolvent problem on a two-dimensional

wedge type domain subject to Dirichtlet boundary conditions. The objective of this

manuscript is the W 2,p-regularity of the corresponding Stokes operator for p in a neighbor-

hood of p = 2. A main part of the manuscript is to consider the corresponding biharmonic

equation, to which the stationary Stokes problem can be transformed. In [5] there are

already results available on the stationary Stokes equations on polygonal domains in the

Lp-setting. The corresponding biharmonic problems are also considered there. They are

localized on the vertices and transformed from the polygonal domain to a layer domain. In

fact transforming the biharmonic equation defined on the wedge onto the layer leads to the

same problem as considered in [5] on the layer. Hence, thanks to regularity results of the

transformed operator on the layer in [5], we can prove weak and strong optimal regularity

of the Stokes operator in the Lp-setting for p ∈ (1, 2)∪(2,∞) and p ∈ Iκ := ((2+κ)′, 2+κ)

with a small κ > 0, respectively. Based on these results, the W 2,p-regularity for the resol-

vent problem of the Stokes operator follows for all p ∈ Iκ.

In Chapter 4 the included manuscript shows the W 2,p-regularity of the instationary

Stokes equations subject to inhomogeneous Navier boundary conditions on the two-dimen-

sional wedge type domain for all p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 3/2, 2, 3 } where θ0 is

the opening angle of the wedge. The proof of this result is based on a result of the

first manuscript included in Chapter 2 (see also [10]). Decomposing the instationary

Stokes system into two systems, we obtain one system describing the instationary Stokes

equations subject to an inhomogeneous boundary condition curl u = h. Based on the

result of [10] we can derive that it is well-posed in the Lp-setting for all p ∈ (1,∞) \
{ 2θ0
3θ0−π ,

2θ0
3θ0−2π , 3/2, 2, 3 } with θ0 being the opening angle of the wedge. Then, solving

the other system, which describes a divergence equation in the wegde subject to inhomoge-

neous boundary conditions, which is left after decomposing the Stokes system, we can prove

the W 2,p-regularity of the Stokes operator for all p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 3/2, 2, 3 }.
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1.3 Preliminaries

1.3.1 Basic notation

Let N be set of natural numbers with N = {1, 2, 3, . . . }, where N0 := N ∪ {0}, and R be

the real numbers. Let n ∈ N and Ω ⊂ Rn be a domain. We employ the usual notation

for partial derivatives. For a multiindex α = (α1, . . . , αn) ∈ Nn
0 with |α| = ∑n

k=1 αk and a

suitable function u : Ω → R we write

Dαu(x) := Dα1 · · ·Dαnu(x) = ∂αu(x) := ∂α1
x1

· · · ∂αn
xn

u(x), x ∈ Ω.

We denote the gradient of u by ∇u(x) = (∂x1u(x), · · · , ∂xnu(x))
T for x ∈ Ω and the

Laplacian of u by Δu(x) =
∑n

k=1 ∂
2
xk
u(x) for x ∈ Ω. For a suitable vector field f : Ω → Rn

we define

divf(x) :=

n∑
k=1

∂xk
fk(x), x ∈ Ω

and the Laplacian of f by Δf(x) = (Δf1(x), · · · ,Δfn(x))
T for x ∈ Ω. For n = 2 the curl

of f is given by curlf(x) = ∂x1f2(x)− ∂x2f1(x) for x ∈ Ω.

Let X be a Banach space and Ω ⊂ Rn be a domain. For 1 ≤ p ≤ ∞, we denote by

Lp(Ω, X) the X-valued Bochner-Lebesgue space. We denote the Sobolev space of order

k ∈ N0 as W k,p(Ω) := W k,p(Ω,R) and W k,p(Ω,Rn), where W 0,p := Lp. We denote the

Kondrat’ev spaces by

Lp
γ(Ω) := Lp(Ω, ργd(x1, x2)), ρ := |(x1, x2)|, γ ∈ R,

and we abbreviate Lp
γ(Ω) := Lp

γ(Ω,R). We set

Ŵ k,p
γ (Ω) := {u ∈ L1

loc(Ω) : ∂αu ∈ Lp
γ(Ω), |α| = k}.

For Banach spaces X, Y the space of bounded linear operators from X to Y is denoted

by L (X,Y ), where L (X) := L (X,X).

We denote for a linear operator A in X domain and range by D(A) and R(A). Its

spectrum, point spectrum, and resolvent set are written as σ(A), σp(A), and ρ(A).

1.3.2 Operator classes, maximal regularity and the operator sum method

We refer to [3, 8, 13, 17] for an introduction to sectorial operators, the H∞-calculus,

R-bounded operators and the operator sum method.

Let φ ∈ (0, π) be fixed and
∑

φ := {z ∈ C : z 
= 0, |arg(z)| < φ} be the complex sector

of angle φ. A closed linear operator A in a Banach space X is called sectorial if D(A) = X,

R(A) = X, (−∞, 0) ⊂ ρ(A) and ‖λ(λ + A)−1‖L (X) ≤ M for a constant M > 0 and all
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λ > 0. We denote the spectral angle of A by

φA := inf

{
φ : ρ(−A) ⊃ Σπ−φ, sup

λ∈Σπ−φ

‖λ(λ+A)−1‖L (X) < ∞
}
.

We denote the class of sectorial operators in X by S(X). If A is sectorial with spectral

angle φA < π/2, then −A generates a bounded holomorphic C0-semigroup on X. We refer

to [3] for a detailed introduction to sectorial operators.

Now, we turn to the H∞-calculus. We first introduce the following functional algebras:

For a σ ∈ (0, π), we define

H∞(Σσ) := {f ∈ Σσ → C : f holomorphic, ‖f‖∞ < ∞}

with ‖f‖∞ := sup {|f(z)| : z ∈ Σσ} and its subalgebra H0(Σσ) given by

H0(Σσ) := {f ∈ H∞(Σσ) : |f(z)| ≤ C|g(z)|ε for some C ≥ 0, ε > 0 and all z ∈ Σσ}

with g(z) = z
(1+z)2

. Let A be a sectorial operator with spectral angle φA, let φ ∈ (φA, π)

and let θ ∈ (φA, φ). We define the path Γ :=
{
teiθ : ∞ > t > 0

}
∪
{
te−iθ : 0 ≤ t < ∞

}
. It

passes from ∞eiθ to ∞e−iθ and stays in the resolvent set of A with the exception at t = 0.

Then by the Cauchy integral formula and sectoriality of the operator A we may define the

Dunford integral

f(A) :=
1

2πi

∫
Γ
f(μ)(μ−A)−1dμ,

which is well defined for all f ∈ H0(Σφ). The above formula defines an algebra homomor-

phism

ΦA : H0(Σφ) → L (X), f �→ f(A)

called Dunford calculus. The operator A is said to admit a bounded H∞-calculus on X,

if there exists a constant Cσ > 0 satisfying

‖f(A)‖L (X) ≤ Cσ‖f‖∞, f ∈ H0(Σσ). (1.3)

We define the class of all operators admitting a bounded H∞-calculus on X by H∞(X)

and denote the H∞-angle of A by φ∞
A := inf {σ ∈ (φA, π) : (1.3) is fulfilled}.

Now, we turn to the definition to R sectorial operators. See e.g. [3, 13] for an introduc-

tion of R-boundedness. Let X,Y be Banach spaces. We say that a family of operators

T ⊂ L (X,Y ) is R-bounded, if there is a constant C > 0 and p ∈ [1,∞) and a probability

space (Ω,M, μ) such that for each N ∈ N, Tj ∈ T , xj ∈ X and for all independent,
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symmetric {−1, 1}-valued random variables εj for j = 1, . . . , N the inequality

‖
N∑
j=1

εjTjxj‖Lp(Ω,Y ) ≤ C‖
N∑
j=1

εjxj‖Lp(Ω,X) (1.4)

is valid. We call R(T ) := inf {C : (1.4) holds} R-bound of T . A sectorial operator is

then called R-sectorial if there exists an angle φ ∈ (φA, π) and a constant Cφ > 0 such

that

R({λ(λ+A)−1 : λ ∈ Σπ−φ}) ≤ Cφ. (1.5)

We denote the class of R-sectorial operators by RS(X) and the R-angle of A by φR
A :=

inf{φ ∈ (φA, π) : (1.5) holds}.
Now, we give an introduction to maximal regularity for an operator A. We refer here,

e.g., again to [3, 13]. Let X be a Banach space, A : D(A) → X be a closed densely defined

operator. Moreover, let 1 < p < ∞ and T ≤ ∞, and (·, ·)θ,p be the real interpolation space

with parameter θ ∈ (0, 1). We consider the Cauchy problem

u′ +Au = f in (0, T ),

u(0) = u0

}
(1.6)

with given data f and u0. Then A has maximal Lp-regularity on X for (0, T ) if for each

f ∈ Lp((0, T ), X) and each u0 ∈ Ip := (X,D(A))1−1/p,p there exists a unique solution

u : (0, T ) → D(A) of (1.6) satisfying

‖u‖
Ŵ 1,p((0,T ),X)

+ ‖Au‖Lp((0,T ),X) ≤ C
(
‖f‖Lp((0,T ),X) + ‖u‖Ip(A)

)
for a constant C > 0 independent of f and u0. The following result from [23, Theorem

4.2] gives a characterization of maximal regularity in terms of R-sectoriality. There, the

notion of class HT appears. Hence, we introduce its definition before giving the result of

[23, Theorem 4.2]. A Banach space X is said to be of class HT if the Hilbert transform

Hf(t) :=

√
2

π
lim
ε→0

∫
|s|>ε

|f(t− s)|
s

ds, f ∈ S(R, X)

is bounded on Lp(R, X) for some p ∈ (1,∞). Here, S(R, X) denotes the Schwartz space

of rapidly decreasing X-valued functions. Then we have:

Proposition 1.3.1. [23, Theorem 4.2] Let X be a Banach space of class HT , 1 < p < ∞
and let A be a sectorial operator with spectral angle φA < π/2. Then A admits maximal

regularity on X for (0,∞) if and only if A is R-sectorial with φR
A < π/2.

The next proposition [17, Proposition 3.5] is on the operator sum method, which is based

10



on the Kalton-Weis theorem, see [8, Corollary 5.4]. Since the result of [17, Proposition 3.5]

employs the notion of property (α) we first give its definition and refer to [3, 8, 13] for more

details. Let P be a probability space. EP denotes the set of all independent symmetric

{−1, 1}-valued random variables on P. A Banach space X has property (α) if there exist

spaces P(Ω,M, μ), P ′(Ω′,M′, μ′), p ∈ [1,∞) and a constant α > 0, such that for all

N ∈ N, xjk ∈ X, ajk ∈ C, |ajk| ≤ 1 and (εj)j=1,··· ,N ⊂ EP , (ε′k)k=1,··· ,N ⊂ EP ′ the estimate

‖
N∑

j,k=1

εjε
′ajkxjk‖Lp(Ω×Ω′,X) ≤ α‖

N∑
j,k=1

εjε
′
kxjk‖Lp(Ω×Ω′,X)

holds. Summarizing, it is well known that for a Banach space X having property (α)

that H∞(X) ⊂ RS(X) ⊂ S(X) with corresponding angles satisfying φA ≤ φR
A ≤ φ∞

A .

Furthermore, we remark that Lp(Ω)-spaces, 1 ≤ p < ∞, enjoy property (α).

Proposition 1.3.2. [17, Proposition 3.5] Let X be a Banach space of class HT having

property (α). Suppose A,B ∈ H∞(X) with φ∞
A + φ∞

B < π be two resolvent commuting

operators. Then A+B ∈ H∞(X) with φ∞
A+B ≤ max{φ∞

A , φ∞
B }.

1.3.3 Transformations from the wedge onto the layer domain and the

appearing W k,p-spaces

In all of the three manuscripts included in this thesis we consider elliptic problems on the

two dimensional wedge domain G subject to different boundary conditions. To solve these

problems we transform them from the wedge onto a layer domain and solve them at first

on the layer. Since the problems on the wedge and layer are equivalent we obtain the

solvability of the elliptic problems on the wedge domain. The transformations we apply

follow a standard procedure used for example in [5, 15, 19]: we use polar coordinates to

transform the problem on a semi-layer and employ Euler transformation to transform the

latter problem onto a layer. The corresponding pull-back and push-forward operators on

W−k,p-spaces depend on k and p, hence weighted function spaces appear in the transformed

setting. Choosing the right transformation, roughly speaking the right k, p included in the

pull-back and push-forward respectively, we can then work in unweighted W−k,p-spaces on

the layer for k ∈ N0. In this subsection we give an introduction to these transformations.

We consider
Δiu = f in G,

B(u) = 0 on ∂G,

}
(1.7)

with G ⊂ R2 be the wedge defined in (1.2), B(u) be one of the boundary conditions

introduced in Section 1.1, u = u(x1, x2), f = f(x1, x2) and i ∈ N. We write the inverse of

11



the transform to polar coordinates as

ψP : R+ × I → G, (r, θ) �→ (r cos θ, r sin θ) = (x1, x2).

Next, we employ the Euler transformation r = ex in radial direction, where by an abuse

of notation we write x ∈ R for the new variable. We set

ψE : Ω → R+ × I, (x, θ) �→ (ex, θ) =: (r, θ).

It is not difficult to see that

ψ := ψP ◦ ψE : Ω → G

is a diffeomorphism. For u : G → R and v : Ω → R we set

Ψu := u ◦ ψ and Ψ−1v := v ◦ ψ−1.

For α ∈ R we also denote the multiplication operator by Mαv := eαxv for all x ∈ R.

θ

x

θ = θ0

ψ−1ψ

Ω

r

θ

x1x1

x2

ψ−1
P

ψP

G
θ0

ψE

ψ−1
E

θ = θ0

– transformations between the domains –

Let u be the solution of (1.7), βp ∈ R. Analogous to [15] we define pull-back and push-

forward by

v := Θ∗
pu := M−βpΨu and u = Θp

∗v = Ψ−1Mβpv,

12



respectively.

Now let i ∈ N, u be the solution of problem (1.7), βp ∈ R. Then Lemma B.4 of Chapter 3

implies

Θ∗
p(Δ

iu) = e−2ix
i∏

j=1

(
rβp−2(i−j)(∂x) + ∂2

θ

)
v

with the polynomial

ra(∂x) := (∂x + a)2 (a ∈ R).

We remark that the order of problem (1.7) is equal to 2i for i ∈ N. Hence we see that

the term 2i of the factor e2ix defined in Θ̃∗
p is equal to the order of problem (1.7). In the

manuscripts included in this thesis we defined l := 2i. In the following we continue to use

the notation l := 2i ∈ N. Hence, l will be a fixed value depending on the order of the

elliptic problem.

Now, let 1 < p < ∞. We introduce the role of βp defined in the pull-back and push-

forward, respectively. In fact, βp depends on p ∈ (1,∞), k ∈ N0 and l ∈ N. Hence, to

work in unweighted W−k,p-spaces for k ∈ N0, we set

βp := l − k − 2 + γ

p
, γ ∈ R. (1.8)

By the proof of Lemma B.3 (2) of the manuscript of Chapter 3, we have

∑
|α|=k

∫
G

∣∣∣Dα(ρ2kΘ̃p
∗g(ψ

−1(x1, x2))
∣∣∣p ργd(x1, x2)

=

∫
Ω

∣∣∣∣∣∣
∑
m≤α

(
α

m

)
elxe

−(l−k− 2+γ
p

)x
e−kxe2kxP (∂x, ∂θ)g(x, θ)

∣∣∣∣∣∣
p

e(2+γ)xd(x, θ).

There P (∂x, ∂θ) is the product of homogeneous polynomial in ∂x, ∂θ of order k with

coefficients depending on cos θ, sin θ functions, and m = (m1,m2) ∈ N2 such that m ≤ α.

See Lemma B1 of Chapter 3 for its precise definition. The determinant of the transform

on the right-hand side of the above equation is equal to e2x. The term 2
p of βp absorbs

this determinant. Hence, we see that by the choice of βp defined in (1.8) we can work in

the transformed setting in an unweighted W k,p(Ω)-space. Lemma B1 (3) and (5) of the

manuscript in Chapter 3 then imply

Θ̃∗
p ∈ Lis

(
Ŵ−k,p

γ (G),W−k,p(Ω)
)
, k ∈ N0.

Furthermore, we remark that in the third manuscript of Chapter 4, we show higher regular-

ity for the Neumann-Laplace problem in Ŵ 1,p(G) on the wedge. This follows by consider-

ing this equation on the layer domain. On the contrary to the other two manuscript, to get

13



higher regularity, we substitute k := −k′ with k′ := 1 in βp, i.e. βp := 2+k′− 2+γ
p = 3− 2+γ

p .

Hence weighted functions appear. The norms in the corresponding weighted function

spaces can be estimated thanks to Hardy’s inequality for all p ∈ (1,∞) except for p = 2,

see Lemma A.2 of the manuscript in Chapter 4.
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OPTIMAL SOBOLEV REGULARITY FOR THE STOKES EQUATIONS

ON A 2D WEDGE DOMAIN

MATTHIAS KÖHNE, JÜRGEN SAAL, AND LAURA WESTERMANN

Abstract. In this note we prove that the solution of the stationary and the instationary
Stokes equations subject to perfect slip boundary conditions on a 2D wedge domain ad-
mits optimal regularity in the Lp-setting, in particular it is W 2,p in space. This improves
known results in the literature to a large extend. For instance, in [17, Theorem 1.1 and
Corollary 3] it is proved that the Laplace and the Stokes operator in the underlying set-
ting have maximal regularity in the Lp-setting. In that result the range of p admitting
W 2,p regularity, however, is restricted to the interval 1 < p < 1 + δ for small δ > 0,
depending on the opening angle of the wedge. This note gives a detailed answer to the
question, whether the optimal Sobolev regularity extends to the full range 1 < p < ∞.
We will show that for the Laplacian this does only hold on a suitable subspace, but,
depending on the opening angle of the wedge domain, not for every p ∈ (1,∞) on the
entire Lp-space. On the other hand, for the Stokes operator in the space of solenoidal
fields Lp

σ we obtain optimal Sobolev regularity for the full range 1 < p < ∞ and for all
opening angles less that π. Roughly speaking, this relies on the fact that an existing
“bad” part of Lp for the Laplacian is complementary to the space of solenoidal vector
fields.
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1. Introduction and main results

It is well-known that regularity properties for PDE on non-smooth domains are im-
portant for many applications. The main objective of this note is to derive best possible
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regularity in the Lp-setting for the instationary Stokes equations

∂tu−Δu+∇π = f in (0,∞)×G,
divu = 0 in (0,∞)×G,

curlu = 0, u · ν = 0 on (0,∞)× ∂G,
u(0) = u0 in G,

⎫⎪⎪⎬⎪⎪⎭ (1.1)

subject to perfect slip boundary conditions on a two-dimensional wedge type domain given
as

G :=
{
(x1, x2) ∈ R2 : 0 < x2 < x1 tan θ0

}
. (1.2)

Here ν denotes the outer normal vector at ∂G, θ0 ∈ (0, π) the opening angle of the wedge,
and curlu = ∂1u2 − ∂2u1.

Whereas the Lp-theory for classical elliptic and parabolic problems on domains with
conical boundary points is well developed, see e.g. the classical monographs [7, 18], cor-
responding results for the Stokes equations are very rare, in particular for the instation-
ary case. For the stationary Stokes equations there are the classical regularity results
[15, 14, 3, 18, 7, 5]. For a negative result concerning the generation of an analytic semi-
group in three dimensions for the Stokes operator subject to the no-slip condition see [6].
More recently, an approach to analytic regularity was presented in [8]. We also refer to
[10] for an overview on the Stokes equations including approaches to non-smooth domains.

It seems that a general approach to the instationary Stokes equations on domains with
edges and vertices does not exist in the literature, even for domains having a simple
structure such as wedge domains. There is, of course, the Lipschitz approach to even
more general non-smooth domains. Existence and analyticity of the Stokes semigroup on
Lp
σ on Lipschitz domains is proved, for instance, in [19, 22, 24]. Note that the Lipschitz

approach does not provide full W 2,p Sobolev regularity which, however, might be crucial
for the treatment of related quasilinear problems. Moreover, in the Lipschitz approach the
range of available p is restricted in general. Thus, for our purposes this approach seems
to be too general. The main objective of this note is W 2,p Sobolev regularity for (1.1) for
all p ∈ (1,∞).

Concerning Stokes the advantage of imposing perfect slip conditions lies in the fact that
Helmholtz projector and Laplacian commute, which is not the case in general. Hence the
Stokes operator is given as the part of the Laplacian in the solenoidal subspace. Note
that this observation has been utilized in [19] and [17] already. In fact, in [17] maximal
regularity for (1.1) is proved in two and three dimensional wedges in Kondrat’ev spaces

Lp
γ(G,R2) := Lp(G, ργd(x1, x2),R

2), ρ := |(x1, x2)|, γ ∈ R. (1.3)

(Note that [17] focuses on the 3D version; the 2D counterpart then is completely analo-
gous.) Optimal regularity in the sense of our main results below, however, could only be
established for 1 < p < 1 + δ with δ > 0 possibly small, depending on the opening angle
θ0 of the wedge and the Kondrat’ev exponent γ. This shortcoming relies on a spectral
constraint that relates to the constraint (1.6) in Theorem 1.3 below. In fact, for γ = 0
under the constraint imposed in [17] we even have δ → 0 for θ0 → π such that for angles
close to π only a very small interval for p remains.

In this note we will show that in 2D this vast restriction on p can be dropped completely.
To be precise, our main result reads as follows (see (3.1) for the definition of the solenoidal
subspace Lp

σ(G) on a wedge domain).

Theorem 1.1. Let 1 < p < ∞, θ0 ∈ (0, π), ρ = |(x1, x2)|, and G ⊂ R2 be defined as in
(1.2). Then the Stokes operator subject to perfect slip

ASu = −Δu,
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u ∈ D(AS) =

{
v ∈ W 2,p(G,R2) ∩ Lp

σ(G) : curl v = 0, ν · v = 0 on ∂G,

ρ|α|−2∂αv ∈ Lp(G,R2) (|α| ≤ 2)

}
is R-sectorial with R-angle φR

AS
< π/2, hence has maximal regularity on Lp

σ(G).

As an immediate consequence we obtain strong solvability of (1.1).

Corollary 1.2. Let 1 < p, q < ∞, θ0 ∈ (0, π), ρ = |(x1, x2)|, and G ⊂ R2 be defined as
in (1.2). Then for every f ∈ Lq ((0,∞), Lp

σ(G)) and u0 ∈ Ip,q := (Lp
σ(G), D(AS))1−1/p,q

there is a unique solution (u, π) of (1.1) such that π = 0 and

‖∂tu‖Lq(R+,Lp) +
∑
|α|≤2

‖ρ|α|−2∂αu‖Lq(R+,Lp) ≤ C
(
‖f‖Lq(R+,Lp) + ‖u0‖Ip,q

)
with C > 0 independent of f and u0.

For the proof of Theorem 1.1 we basically follow the strategy in [17], that is, we first
consider the Laplace equation subject to perfect slip conditions. In a standard procedure,
by employing polar coordinates and Euler transformation, we reduce the Laplace equation
on a wedge to a problem on a layer. On the layer we apply the operator sum method as
it is performed originally in [21].

The difference to [17] lies in the fact that here we consider the elliptic problem

−Δu = f in G,
curlu = 0, u · ν = 0 on ∂G

}
(1.4)

instead of the corresponding resolvent problem. The advantage is that for the transformed
problem we then have precise knowlege on the spectrum. This, in turn, allows to com-
pletely characterize the set of p for which optimal regularity for (1.4) is available. We
formulate this in our second main result which also represents the basis for Theorem 1.1
and which we even prove in Kondrat’ev spaces.

Theorem 1.3. Let 1 < p < ∞, θ0 ∈ (0, π), γ ∈ R, and ρ = |(x1, x2)|. Then equation
(1.4) is for each f ∈ Lp

γ(G,R2) uniquely solvable with a solution u satisfying

ρ|α|−2∂αu ∈ Lp
γ(G,R2) (|α| ≤ 2) (1.5)

if and only if

2− 2 + γ

p

∈

{
kπ

θ0
± 1 : k ∈ N

}
∪ {1}. (1.6)

Remark 1.4. (a) For γ = 0 condition (1.6) reduces to

2− 2

p

∈

{
1,

π

θ0
− 1,

2π

θ0
− 1

}
, (1.7)

see Subsection 2.5. From this we see that for each angle θ0 ∈ (0, π) the case p = 2
is excluded. On the other hand, from the results obtained in [7] one would expect
∂αu ∈ L2(G,R2) for |α| = 2. Taking into account Hardy’s inequality, by which the
lower oder terms in (1.5) can be estimated by the second order terms, this looks curi-
ous at a first glance. However, p = 2 is exactly the case when Hardy’s inequality is
not valid. Thus, for p = 2 (1.5) still can fail for one of the lower order terms, although
∂αu ∈ L2(G,R2), |α| = 2, might be true. For the excluded p 
= 2 (1.5) must fail for at
least one of the second order terms, since otherwise Hardy’s inequality would yield (1.5)
to be valid for all terms, see also Remark 2.7(b).
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(b) Another curious looking case is given by γ = 0 and θ0 = π/2. Then, by reflection argu-
ments the wedge G can be reduced to −Δu = f on R2. This fact implies ∂αu ∈ Lp(G,R2),
|α| = 2, to be valid for all p ∈ (1,∞). Again this does not contradict the assertion of
Theorem 1.3, since in this case (1.7) is reduced to 2 − 2/p 
∈ {1}. Thus, only p = 2 is
excluded and we find ourselves in the situation explained in (a).

It seems that Theorem 1.3 is not contained in the previous literature. This might rely
on the fact that due to the boundary conditions (1.4) is a system, whereas in previous
literature the Laplace equation is preferably considered as a scalar equation.

In contrast to Theorem 1.1, as a first consequence of Theorem 1.3 we obtain that for
the instationary diffusion equation subject to perfect slip W 2,p regularity is not available
if condition (1.6) is not fulfilled, see Theorem 2.19 below. The point why we nevertheless
can prove Theorem 1.1 relies on the fact that the part of Lp destroying W 2,p regularity is
more or less complementary to the space of solenoidal fields Lp

σ(G). By this fact we obtain
optimal regularity for the stationary Stokes equations, too.

Theorem 1.5. Let 1 < p < ∞ and θ0 ∈ (0, π). Then for each f ∈ Lp
σ(G,R2) there exists

a unique solution (u, π) of the stationary version of (1.1) satisfying π = 0 and

ρ|α|−2∂αu ∈ Lp(G,R2) (|α| ≤ 2).

Of course, the Stokes equations subject to perfect slip in 2D can also be considered with-
out taking the path via the Laplace equation, by utilizing its equivalence to a biharmonic
equation. The authors of this note, however, also wanted to compare the two equations
concerning regularity. In this regard, we find it most interesting that in the underlying
situation the outcome for the Stokes equations is better than for the Laplace or diffusion
equation, which usually is vice versa by the fact that the Laplacian enjoys much nicer
properties than the Stokes operator.

We outline the strategy of the proofs and the organization of this note. Section 2
contains the approach to the Laplace operator and equation. After fixing notation and
transforming from a wedge to a layer, in Subsection 2.3 we establish optimal regularity for
the transformed problem. This is based on operator sum methods, that is, Kalton-Weis
type theorems. Since the transform from a wedge to a layer is a diffeomorphism, this
gives instantly Theorem 1.3, as stated in Subsection 2.4. To carry over regularity from the
elliptic problem (1.4) to the instationary diffusion equation, it is enough to show optimal
regularity for the resolvent problem

(1−Δ)u = h in G,
curlu = 0, u · ν = 0 on ∂G.

}
(1.8)

The idea is to regard u as the solution of the elliptic problem (1.4) with right-hand side
f = h − u ∈ Lp(G,R2). According to Theorem 1.3 we know that this problem has
a solution, say v, with the regularity given in (1.5). It remains to prove u = v. By the
outcome given in [17] this is valid for p > 1 close to 1. This means, if the solution operators
to problems (1.4) and (1.8) are consistent on the scale (Lp(G,R2))1<p<∞, the regularity
in (1.5) transfers to the solution u of (1.8) for all 1 < p < ∞. By the equivalence
in Theorem 1.3, however, consistency for the solution operator of (1.4) cannot hold on
the full scale (Lp(G,R2))1<p<∞. But, as shown in Subsection 2.5, it is consistent on a
suitable scale of “nice” subspaces. This leads in Subsection 2.6 to optimal regularity for
the diffusion equation on the subspaces for all 1 < p < ∞ (see Theorem 2.23).

A major difficulty for the transference of optimal regularity to the Stokes equations is
given by the fact that the space of solenoidal fields Lp

σ(G,R2) is not directly included in the
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“nice” subspace of Lp. A crucial issue, taking the major part of Section 3, is therefore to
prove that it can be isomorphically embedded into this subspace. This isomorphic embed-
ding is also valid for the domains of the involved operators, finally leading to Theorem 1.1
and Theorem 1.5.

2. The Laplace operator on a wedge domain subject to perfect slip

2.1. Notation. First we introduce the notation used throughout this note. Let X be a
Banach space. For 1 ≤ p ≤ ∞ and a measure space (S,Σ, μ), we denote by Lp(S, μ,X) the
usual Bochner-Lebesgue space. If 1 ≤ p ≤ ∞ and (S,Σ, μ) is a complete measure space,
then Lp(S, μ,X) is a Banach space. If Ω ⊂ Rn is a domain and μ is the (Borel-) Lebesgue
measure, we write Lp(Ω, X). We define the Sobolev space of order k ∈ N0 as W k,p(Ω,Rn),
where W 0,p := Lp.

Let G ⊂ R2 be the wedge domain defined in (1.2) and let ρ = ρ(x1, x2) = |(x1, x2)|. We
set

Km
p,γ(G,R2) := {u ∈ L1

loc(G,R2) : ρ|α|−m∂αu ∈ Lp
γ(G,R2), |α| ≤ m}

where α ∈ Nm denotes a multiindex, γ ∈ R, and Lp
γ(G,R2) is defined as in (1.3). Then

Km
p,γ(G,R2) equipped with

‖u‖Km
p,γ

:= ‖u‖Km
p,γ(G,R2) :=

( ∑
|α|≤m

‖ρ|α|−m∂αu‖p
Lp
γ(G,R2)

)1/p

is a Banach space. We also set Km
p (G,R2) := Km

p,0(G,R2). Let 1 < p < ∞ with 1/p +

1/p′ = 1. If u ∈ Lp(Ω,R2) and v ∈ Lp′(Ω,R2) we denote the duality pairing by (u, v) :=
(u, v)Ω :=

∫
Ω uvdx. For a family (xj)j≥1 of elements in a linear space X, we denote by

〈xj〉j≥1 = 〈x1, x2, . . . 〉

its linear hull.

For Banach spaces X, Y the space of bounded linear operators from X to Y is denoted
by L (X,Y ), where L (X) := L (X,X). The subclass of isomorphisms is denoted by
Lis(X,Y ) or Lis(X), respectively. If X ′ is the dual space of X, then we use for the
corresponding duality pairing the notation

〈x′, x〉X′,X , x ∈ X, x′ ∈ X ′.

We denote for a linear operator A inX domain and range byD(A) and R(A). Its spectrum,
point spectrum, and resolvent set are written as σ(A), σp(A), and ρ(A). We say that an

operator A : D(A) ⊂ X → X is sectorial, if D(A) = R(A) = X, (0,∞) ⊂ ρ(−A), and
the family ((λ+ A)−1)λ>0 is uniformly bounded. If the latter family is R-bounded, then
we call A R-sectorial. By φA and φR

A we denote the corresponding spectral and R-angle,
respectively [13, 4, 16].

In this note we also employ elements of the H∞-calculus (e.g. in Theorem 2.3). By
H∞(X) we denote the class of all operators A in X admitting a bounded H∞-calculus
on X. The corresponding H∞-angle is denoted by φ∞

A . We refer to [13, 4, 16] for an
introduction into H∞-calculus, R-boundedness, and related notions.
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2.2. Transformation of the elliptic linear problem. In this section we transform the
elliptic linear problem (1.4) on a two-dimensional wedge domain onto a layer domain of
the form Ω := R × I. If θ0 denotes the angle of the wedge G we set I := (0, θ0). In
the first step we introduce polar coordinates whereas in the second step we employ the
Euler transformation. Last we rescale the appearing terms such that we can work in the
transformed setting in unweighted Lp-spaces.

We write the inverse of the transform to polar coordinates as

ψP : R+ × I → G, (r, θ) �→ (r cos θ, r sin θ) = (x1, x2)

with the associated orthogonal basis

er =

(
cos θ
sin θ

)
, eθ =

(
− sin θ
cos θ

)
.

We identify the orthogonal transformation matrix O of the components of a vector field
as

O =

(
cos θ − sin θ
sin θ cos θ

)
.

Next, we employ Euler transformation r = ex in radial direction, where by an abuse of
notation we write x ∈ R for the new variable. We set

ψE : Ω → R+ × I, (x, θ) �→ (ex, θ) =: (r, θ).

It is not difficult to see that
ψ := ψP ◦ ψE : Ω → G

is a diffeomorphism. We set

Ψu := u ◦ ψ and Ψ−1v := v ◦ ψ−1.

For α ∈ R we also denote the multiplication operator by

Mαv := eαxv.

Analogous to [17] we define pull back resp. push forward by

v := Θ∗
pu := M−βpO−1Ψu resp. u = Θp

∗v = Ψ−1OMβpv (2.1)

with βp ∈ R to be chosen later. Then the transformed Laplacian, computed straight
forwardly, is given as

Θ∗
p(Δu) = e−2x

(
rp(∂x)vx + ∂2

θvx − vx − 2∂θvθ
rp(∂x)vθ + ∂2

θvθ − vθ + 2∂θvx

)
with the polynomial

rp(∂x) := ∂2
x + 2βp∂x + β2

p . (2.2)

To absorb the factor e−2x, we put

g = (gx, gθ) := Θ̃∗
pf := e2xΘ∗

pf (2.3)

so that ∫
R

|g(x, θ)|pdx =

∫ ∞

0
|r2−βpO−1f(ψp(r, θ))|p

dr

r
.

Then by the choice p(2− βp) = γ + 2, that is

βp = 2− 2 + γ

p
, (2.4)

we see that in the transformed setting we can work in an unweighted Lp-space, see [21, 17].
Notice that by this choice of βp also pull back and push forward depend on p, i.e., the
corresponding families are not consistent in p.



PERFECT SLIP STOKES ON A 2D WEDGE DOMAIN 25

Finally, we transform the boundary conditions ν · u = 0, curl u = 0 on ∂G of the
problem (1.4) to the result that

∂θvx = 0, vθ = 0 on ∂Ω = R× {0, θ0}.
Summarizing, we receive the following transformed problem on Ω = R× I:

rp(∂x)vx + ∂2
θvx − vx − 2∂θvθ = gx in Ω,

rp(∂x)vθ + ∂2
θvθ − vθ + 2∂θvx = gθ in Ω,

∂θvx = 0, vθ = 0 on ∂Ω.

⎫⎪⎬⎪⎭ (2.5)

2.3. Optimal elliptic regularity for the transformed problem. Here we consider
problem (2.5). In this subsection we frequently identify Lp(Ω,R2) with its isometrically
isomorphic version Lp

(
R, Lp(I,R2)

)
, often without further notice. We introduce the op-

erators associated to the single parts in (2.5):

(1) Let rp be the polynomial given in (2.2). We define Tp,x in Lp(R) by means of

Tp,xv := rp(∂x)v, v ∈ D(Tp,x) := W 2,p(R).

The spectrum of Tp,x is given by the parabola rp(iR) which is symmetric about the real
axis, open to the left and has its intersection point with the x-axis at β2

p with βp as in (2.4).

It is straight forward to show that −Tp,x+b ∈ H∞(Lp(R)) for b > β2
p with φ∞

−Tp,x+b < π/2,

e.g., by the use of Fourier transform, see also [21, 17]. By means of operator-valued Fourier
multiplier results [27, 4, 16] these facts obviously transfer to the vector-valued version on
Lp(R, Lp(I,R2)) given as

Tp,xv := Tp,xv, v ∈ D(Tx) := W 2,p(R, Lp(I,R2)).

(2) We define Tp,θ in Lp(I,R2) by

Tp,θv :=

(
∂2
θ − 1 −2∂θ
2∂θ ∂2

θ − 1

)
v

on D(Tp,θ) := {v = (vx, vθ) ∈ W 2,p(I,R2) : ∂θvx = 0, vθ = 0 on ∂I}. It is also straight
forward to identify

σ(Tp,θ) = σp(Tp,θ) =
{
−

(
kπ

θ0
± 1

)2

: k ∈ N

}
∪ {−1} (2.6)

as its spectrum with corresponding eigenfunctions (vkx, v
k
θ )

τ , where

vkx(θ) := cos

(
kπ

θ0
θ

)
, vkθ (θ) := ± sin

(
kπ

θ0
θ

)
, k ∈ N0, θ ∈ I,

see also [17]. Note that Tp,θ is self-adjoint in L2(I,R2). Hence the eigenfunctions represent
a basis of L2(I,R2). We denote by (λi)i∈N0 the set of eigenvalues, i.e., (λi)i∈N0 = σ(Tp,θ)
such that λ0 = −1 and λ1 > λ2 > . . .. Setting e0 :=

(
1/

√
θ0, 0

)τ
and ei :=

ẽi√
θ0

for i ∈ N

where ẽi denotes the eigenfunction to the eigenvalue λi, we have

(ei, ej) =
1

θ0

∫ θ0

0
ẽi · ẽj dθ = δij .

By Fourier series techniques it is also standard to prove that −Tp,θ admits an H∞-calculus
on Lp(I,R2) with φ∞

−Tp,θ = 0. The same properties remain valid for the canonical extension

to Lp(R, Lp(I,R2)) denoted by

Tp,θv := Tp,θv, D(Tp,θ) := Lp(R, D(Tp,θ)).
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Optimal regularity for (2.5) is then reduced to invertibility of the operator

Tp := Tp,x + Tp,θ : D(Tp,x) ∩D(Tp,θ) → Lp(Ω,R2), (2.7)

if we can also show that

D(Tp) :=
{
v = (vx, vθ) ∈ W 2,p(R× I,R2), ∂θvx = vθ = 0 on ∂Ω

}
= D(Tp,x) ∩D(Tp,θ).

(2.8)

The proof of these facts requires some preparation. Let

P c
m,pv := Σm

i=1(v, ei)ei (2.9)

be the projection of v ∈ Lp(I,R2) to 〈e1, ..., em〉. We set Pm,p := 1 − P c
m,p and Ep

m :=

Pm,p

(
Lp(I,R2)

)
, i.e., Ep

m is the complement to 〈e1, ..., em〉. Note that (Pm,p)1<p<∞ is a
consistent family. By this fact we omit the index p and write just Pm. We denote the
extension of Pm to Lp(R, Lp(I,R2)) by Pm. Obviously then Pm ∈ L (Lp(Ω,R2)) is a
projector as well and we have

Lp(Ω,R2) = Lp(R, 〈e1, ..., em〉)⊕ Lp(R, Ep
m). (2.10)

The following properties are obvious.

Lemma 2.1. Let Tp,x and Tp,θ in Lp(Ω,R2) for 1 < p < ∞ be defined as above and let
b > β2

p with βp as given in (2.4). Then we have

(1) Pmv ∈ D(Tp,i) and PmTp,iv = Tp,iPmv for v ∈ D(Tp,i) and i ∈ {θ, x};
(2) −Tp,x+b,−Tp,θ ∈ H∞(Lp(R, Ep

m))∩H∞(Lp(R, 〈e1, ..., em〉)) with the corresponding
angles φ∞

−Tp,x+b <
π
2 and φ∞

−Tp,θ
= 0;

(3) PmR(λ, Tp,i) = R(λ, Tp,i)Pm for λ ∈ ρ(Tp,i) and i ∈ {θ, x};
(4) (λ−Tp,x)

−1(μ−Tp,θ)
−1 = (μ−Tp,θ)

−1(λ−Tp,x)
−1 for λ ∈ ρ(Tp,x) and μ ∈ ρ(Tp,θ).

The domains of the Operators Tp,x and Tp,θ in the subspace Lp(R, Ep
m) are defined as

Dm(Tp,x) := D(Tp,x) ∩ Lp(R, Ep
m) and

Dm(Tp,θ) := D(Tp,θ) ∩ Lp(R, Ep
m)

(2.11)

respectively. The assertions of Lemma 2.1 then easily yield

Corollary 2.2. The operator Pm is a projector on D(Tp,i) and we have

(1) Dm(Tp,i) = Pm (D(Tp,i)),
(2) D(Tp,i) = Dm(Tp,i)⊕ (1− Pm)D(Tp,i)

for i ∈ {θ, x}.

We will characterize the invertibility of the operator in (2.7) by employing the opera-
tor sum method. More precisely, we apply [20, Proposition 3.5] which is obtained as a
consequence of the Kalton-Weis theorem [13, Corollary 5.4].

Theorem 2.3. Let 1 < p < ∞ and βp = 2− 2+γ
p . Then

Tp,θ + Tp,x ∈ Lis

(
D(Tp,θ) ∩D(Tp,x), L

p(Ω,R2)
)

if and only if −β2
p 
∈ σ(Tp,θ).

Proof. Assume that −β2
p 
∈ σ(Tp,θ) and that b > β2

p . The fact that −β2
p 
∈ σ(Tp,θ) guaran-

tees
σ(−Tp,x) ∩ σ(Tp,θ) = ∅. (2.12)

We first show that −Tp,θ − Tp,x − ε ∈ H∞(Lp(R, Ep
m)) for some ε > 0, which essentially

gives the assertion.
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To this end, pick m ∈ N0 so that −λm+1 > b with λm+1 ∈ σ(Tp,θ). This implies
σ(−Tp,θ) ⊂ (b,∞) on Lp(R, Ep

m) and hence 0 ∈ ρ(−Tp,θ − b− ε) for some ε > 0. This fact,
Lemma 2.1(2) and a standard perturbation argument for H∞-calculus [9, Corollary 5.5.5]
yield that the shifted operator −Tp,θ − b− ε still satisfies

−Tp,θ − b− ε ∈ H∞(Lp(R, Ep
m)) with φ∞

−Tp,θ−b−ε = 0.

Thanks to Lemma 2.1(2), which yields φ∞
−Tp,θ−b−ε + φ∞

−Tp,x+b < π, and to Lemma 2.1(4)

we may apply [13, Corollary 5.4] (see also [20, Proposition 3.5]) to the result that

−Tp,θ − Tp,x − ε = −Tp,θ − b− ε+ (−Tp,x + b) ∈ H∞(Lp(R, Ep
m))

with φ∞
−Tp,θ−Tp,x−ε ≤ max{φ∞

−Tp,θ−b, φ
∞
−Tp,x+b}. Particularly, we obtain 0 ∈ ρ(−Tp,θ−Tp,x),

hence

Tp,θ + Tp,x ∈ Lis

(
Dm(Tp,x) ∩Dm(Tp,θ), L

p(R, Ep
m)

)
. (2.13)

For the invertibility of the operator Tp,θ + Tp,x on Lp(R, 〈e1, ..., em〉) observe that due
to (2.12) we have λi ∈ ρ(−Tp,x) on Lp(Ω,R2) for each λi ∈ σp(Tp,θ). Thus

λi + Tp,x : Lp(R, 〈e1, ..., em〉) ∩D(Tp,x) → Lp(R, 〈e1, ..., em〉)

is invertible. By the fact that

(Tp,x + Tp,θ)
−1f =

m∑
i=1

(λi + Tp,x)
−1(f, ei)ei, f ∈ Lp(R, 〈e1, ..., em〉),

we conclude that

Tp,θ + Tp,x ∈ Lis

(
Lp(R, 〈e1, ..., em〉) ∩D(Tp,x), L

p(R, 〈e1, ..., em〉)
)
. (2.14)

Gathering (2.10), (2.13), and (2.14) we end up with

Tp,θ + Tp,x ∈ Lis

(
D(Tp,x) ∩D(Tp,θ), L

p(Ω,R2)
)
.

Now, assume that −β2
p ∈ σ(Tp,θ). Then the symbol λ+rp(iξ) of the operator Tp,θ+Tp,x

vanishes exactly at (λ, ξ) = (−β2
p , 0), where λ ∈ σ(Tp,θ). Thus, (λ + rp(i·))−1 is not

bounded, hence not an Lp(R, Lp(I,R2))-multiplier. This gives the assertion. �

Remark 2.4. An inspection of the proof of Theorem 2.3 shows that we even have that
−Tp,x − Tp,θ − ε ∈ H∞(Lp(Ω,R2)) with φ∞

−Tp,x−Tp,θ−ε < π/2 for some ε > 0.

To obtain optimal regularity we show (2.8).

Lemma 2.5. Let 1 < p < ∞. Then we have

D(Tp) = D(Tp,θ) ∩D(Tp,x).

Proof. Considering the function ξ �→ iξi·iξj
|ξ|2 |ξ|2 for ξ ∈ R2 and applying Mihklin’s Multiplier

Theorem [23] it is not difficult to see that

W 2,p(R2,R2) = Lp(R,W 2,p(R,R2)) ∩W 2,p(R, Lp(R,R2))

with equivalent norms. The validity of (2.8) is proved via an extension Theorem, i.e., via a
bounded operator E : W 2,p(Ω,R2) → W 2,p(R2,R2) with Ef |Ω = f for all f ∈ W 2,p(Ω,R2).
See [1, Theorem 4.26] for the existence of E. �
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2.4. Optimal elliptic regularity for problem (1.4). We next consider equivalence of
the problems (1.4) and (2.5). The Laplace operator on the wedge domain is defined as

Bpu := −Δu, u ∈ D(Bp) := {v ∈ K2
p,γ(G,R2) : curl v = 0, ν · v = 0 on ∂G}.

Observe that the boundary conditions are defined in a local sense. Indeed, each u ∈
K2

p,γ(G,R2) is locally away from the vertex (0, 0) a W 2,p-function for which the traces are
well-defined.

Lemma 2.6. Let 1 < p < ∞. Let Θp
∗, Θ̃

p
∗,Θ∗

p, Θ̃
∗
p be defined as in Subsection 2.2. Then

we have

Θ̃p
∗ ∈ Lis

(
Lp(Ω,R2), Lp

γ(G,R2)
)
, Θp

∗ ∈ Lis (D(Tp), D(Bp)) (2.15)

where ‖ · ‖D(Bp) = ‖ · ‖K2
p,γ(G,R2) and ‖ · ‖D(Tp) = ‖ · ‖W 2,p(Ω,R2).

In particular, u ∈ D(Bp) is the unique solution of (1.4) to the right-hand side f ∈
Lp
γ(G,R2) if and only if v = Θ∗

pu ∈ D(Tp) is the unique solution of (2.5) to the right-hand

side g = Θ̃∗
pf .

Proof. By utilizing the transformations given in Subsection 2.2 and by the definition of

Θ̃p
∗ and Θp

∗, it is straight forward to verify (2.15). Hence problem (1.4) and problem (2.5)
are equivalent. �

Since −β2
p 
∈ σ(Tp,θ) is precisely condition (1.6), Theorem 2.3, Lemma 2.5, and

Lemma 2.6 now imply our second main result Theorem 1.3.

Remark 2.7. (a) Theorem 1.3 in particular implies that (B−1
p )1<p<∞ cannot be a consis-

tent family on the scale
(
Lp(Ω,R2)

)
1<p<∞. Otherwise it would be possible to recover the

excluded p subject to condition (1.6) by an interpolation argument. By the equivalence
in Theorem 1.3 this, however, is not possible.

(b) Note that for γ = 0 we have∫
G

∣∣u(x1, x2)/|(x1, x2)|2∣∣p dx1dx2 =

∫ θ0

0

∫
R

∣∣∣e−(2−2/p)xu(ψ(x, θ))
∣∣∣p dxdθ.

Thus, employing twice Hardy’s inequality on the x integral, the terms ρ|α|−2∂αu for |α| ≤ 1
can be estimated by the second order terms. This, however, does only work provided
2 − |α| − 2/p 
= 0 which means at the end that p 
= 2, since otherwise Hardy’s inequality
is not applicable. As a consequence, Theorem 1.3 implies that

(∂j∂ku)1≤j,k≤2 
⊂ Lp(G,R8),

if condition (1.6) is not satisfied and p 
= 2. In the case p = 2 second order derivatives

might belong to L2(G,R2), but then at least one of the terms ρ|α|−2∂αu, |α| ≤ 1, cannot
be in L2(G,R2).

2.5. Consistency of (B−1
p )1<p<∞ on a subscale. Observe that condition (1.6) is always

fulfilled if every eigenvalue λi of Tp,θ satisfies

λi < −
(
2− 2 + γ

p

)2

. (2.16)

As our main interest concerns the Stokes equations in Lp
σ(G), from now on we restrict

ourselves to the case γ = 0, i.e., to the case of Kondrat’ev weight ργ ≡ 1. Then we have

−β2
p = −

(
2− 2

p

)2

≥ −4 (1 < p < ∞).
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From (2.6) it is easily seen that

λi < −4 (i ≥ 3).

Thus, relation (2.16) remains true for all λi ∈ σ(Tp,θ) with i ≥ 3.

As we will see later (Proposition 3.2), excluding the eigenfunctions e0, e1, e2 to the
eigenvalues λ0, λ1, λ2 of the transformed operator Tp,θ, will play no significant role for
the Stokes equations. Roughly speaking, this is due to the fact that their linear hull in
Lp(Ω,R2) does not contain divergence free vector fields. Hence, from now on we consider

Lp(R, Ep
3) = P3

(
Lp(Ω,R2)

)
as the base space for Tp : D3(Tp) → Lp(R, Ep

3) with the projector P3 defined in (2.10) and
domain

D3(Tp) := D(Tp) ∩ Lp(R, Ep
3) = D3(Tp,θ) ∩D3(Tp,x),

with D3(Tp,θ) and D3(Tp,x) as given in (2.11). As an immediate consequence of Theo-
rem 2.3 (and its proof for m = 3, i.p. (2.13)) we obtain

Corollary 2.8. We have Tp ∈ Lis (D3(Tp), L
p(R, Ep

3)) for all 1 < p < ∞.

By Lemma 2.6 Θ̃p
∗ and Θp

∗ are isomorphisms with inverse Θ̃∗
p and Θ∗

p, respectively. This
implies that

Q̃p := Θ̃p
∗P3Θ̃

∗
p and

Qp := Θp
∗P3Θ

∗
p

(2.17)

are projectors on Lp(G,R2) and D(Bp), respectively. We set

Lp := Q̃p

(
Lp(G,R2)

)
= Θ̃p

∗L
p(R, Ep

3)

and define the restricted operator

Bp := Bp|D(Bp) with D(Bp) := Qp (D(Bp)) = Θp
∗D3(Tp).

Notice that, unless its meaning is given otherwise, in what follows we understand the
multiplication operator Mαv := eαxv for α ∈ R as an operator Mα : F → Mα(F ) for
a function space F . It is clear that Mα is injective for all appearing function spaces
F . Equipping Mα(F ) with its canonical norm, we even have Mα ∈ Lis (F, Mα(F )) and
M−1

α = M−α. Furthermore, if T ∈ L (F ) commutes with Mα, then we also have T ∈
L (Mα(F )).

By construction it follows

Proposition 2.9. Let 1 < p < ∞. Then we have

(1) The scale (Q̃p)1<p<∞ is consistent on (Lp(G,R2))1<p<∞ and the scale (Qp)1<p<∞
on (D(Bp))1<p<∞;

(2) Q̃pv = Qpv for v ∈ D(Bp) ∩ Lp(G,R2);

(3) BpQp = Q̃pBp;
(4) Bp ∈ Lis (D(Bp), L

p).

In particular, for every f ∈ Lp there is a unique solution u ∈ D(Bp) of (1.4).

Proof. (1) Obviously we have

MαP3v = P3Mαv (v ∈ C∞
c (R, D(Tp,θ)), α ∈ R) (2.18)
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with Tp,θ as defined in the beginning of Subsection 2.3. From Lemma 2.5 and Lemma A.1
we infer that C∞

c (R, D(Tp,θ)) is dense inD(Tp). Thus equality (2.18) extends to v ∈ D(Tp).
By the definition of Θp

∗ and Θ∗
p (see (2.1)) this implies

Qpu = Ψ−1OMβpP3M−βpO−1Ψu = Ψ−1OP3O−1Ψu (u ∈ D(Bp)). (2.19)

By the fact that all operators on the right-hand side do not depend on p we obtain

consistency of (Qp)1<p<∞. The consistency of (Q̃p)1<p<∞ is completely analogous.

(2) For u ∈ D(Bp) ∩ Lp(Ω,R2) we deduce similarly as in (2.19) that

Qpu = Ψ−1OMβpP3M−βpO−1Ψu = Ψ−1OP3O−1Ψu

= Ψ−1OMβp+2P3M−βp−2O−1Ψu = Q̃pu.

(3) Thanks to Lemma 2.1 we have

BpQp = Θ̃p
∗ TpΘ

∗
pΘ

p
∗ P3Θ

∗
p = Θ̃p

∗ P3 TpΘ
∗
p = Q̃pBp.

(4) This is a consequence of representation

Bp = Θ̃p
∗ TpΘ

∗
p on D(Bp),

Lemma 2.6, Corollary 2.8, and the definition of Lp, D(Bp). �

As for the projector P3 before, due to the consistency we write from now on Q and Q̃,
i.e., we omit the subscript p.

Next, we show consistency of the family (B−1
p )1<p<∞ on the subscale (Lp)1<p<∞. Ob-

serve that the operator B−1
p is represented as

B−1
p = Θp

∗T
−1
p Θ̃∗

p

∣∣
Lp . (2.20)

So, for consistency we need to prove that the right-hand side above does not depend on

p. Note, however, that the single components Θp
∗, T−1

p , Θ̃∗
p do depend on p. Merely their

combination can be consistent. For this purpose we first show

Lemma 2.10. Let 1 < p ≤ q < ∞ and βp = 2− 2/p. For f ∈ C∞
c (R, Eq

3) we have

T−1
p e(βq−βp)xf = e(βq−βp)xT−1

q f.

Proof. First note that f ∈ C∞
c (R, Eq

3) and p ≤ q yield

e(βq−βp)xf ∈ C∞
c (R, Eq

3) ⊂ Lp(R, Ep
3). (2.21)

Hence the application of T−1
p to this quantity is defined. Also recall that

Tpv = Tp,θv + Tp,xv = Tp,θv + Tp,xv = Tp,θv + (∂x + βp)
2v.

We observe that
(∂x + βq)

2e−(βq−βp)x = e−(βq−βp)x(∂x + βp)
2

implies that

e(βq−βp)xTqe
−(βq−βp)xv = Tpv (v ∈ C∞

c (R, D3(Tθ,q))) , (2.22)

as an equality in C∞
c (R, Ep

3). Here we set D3(Tθ,q) = D(Tθ,q) ∩ Eq
3 and notice that the

assertions of Corollary 2.2 also hold for Tθ,q.
For v ∈ C∞

c (R, D3(Tθ,p)) ↪→C∞
c (R, Eq

3) (Sobolev embedding) we set

vk := k(k + Tq,θ)
−1v ∈ C∞

c (R, D3(Tθ,q)), k ∈ N. (2.23)

By the sectoriality of Tq,θ we obtain vk → v in D3(Tp). Hence equality (2.22) extends to
v ∈ C∞

c (R, D3(Tθ,p)). Setting X = D3(Tθ,p), Y = Ep
3 , k = 0, and � = 2 in Lemma A.1, we

see that (2.22) extends to all v ∈ D3(Tp).
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As before, for α ∈ R we set Mαv = eαxv. For α = βq − βp relation (2.22) then yields

Tq = M−αTpMα ∈ Lis

(
M−α(D3(Tp)), M−α(L

p(R, Ep
3))

)
with inverse

T̃−1
q = M−αT

−1
p Mα.

Thanks to (2.21) we see that

f = M−α (Mαf) ∈ M−α (L
p(R, Ep

3))

for f ∈ C∞
c (R, Eq

3). Due to this fact it remains to show that T̃−1
q is consistent with T−1

q

on C∞
c (R, Eq

3).

For f ∈ C∞
c (R, D3(Tθ,q)) we have Mαf ∈ C∞

c (R, Ep
3) and hence T−1

p Mαf ∈ D3(Tp).
Since (2.22) holds for all v ∈ D3(Tp) this yields

TqT̃
−1
q f = TqM−αT

−1
p Mαf = M−αMαTqM−α︸ ︷︷ ︸

=Tp

T−1
p Mαf = f.

Completely analogous we deduce T̃−1
q Tqf = f for f ∈ C∞

c (R, D3(Tθ,q)). Hence T̃−1
q = T−1

q

on the set C∞
c (R, D3(Tθ,q)). By a similar approximation argument as in (2.23) we see that

this consistency extends to C∞
c (R, Eq

3). This finally yields the assertion. �

In the proof of consistency we also employ the following density property.

Lemma 2.11. Let 1 < p ≤ q < ∞. Then we have

Θ̃q
∗
(
C∞
c (R, Eq

3)
) d
↪→Lq ∩ Lp.

Proof. Note that

Lp = Θ̃p
∗
(
Lp(R, Ep

3)
)
= Θ̃q

∗M−α

(
Lp(R, Ep

3)
)

with M−α as defined in the proof of Lemma 2.10 and where M−α

(
Lp(R, Ep

3)
)
is again

equipped with its canonical norm. This shows that Θ̃q
∗ ∈ Lis

(
M−α

(
Lp(R, Ep

3)
)
, Lp

)
with

inverse Θ̃∗
q . Since Θ̃q

∗ ∈ Lis (L
q(R, Eq

3), L
q) has the same inverse we conclude that

Θ̃q
∗ ∈ Lis

(
Lq(R, Eq

3) ∩M−α

(
Lp(R, Ep

3)
)
, Lq ∩ Lp

)
.

Thus, it suffices to show that

C∞
c (R, Eq

3)
d
↪→ Lq(R, Eq

3) ∩M−α

(
Lp(R, Ep

3)
)
=: Y.

To this end, pick v ∈ Y and choose a bounded interval J ⊂ R such that

‖v − χJv‖Y = ‖v − χJv‖Lq(R,Eq
3)
+ ‖Mα(v − χJv)‖Lp(R,Ep

3 )
< ε/2,

where χJ denotes the characteristic function to J . By the fact that χJv ∈ Lq(J,Eq
3) we

find (vk) ⊂ C∞
c (J,Eq

3) such that vk → χJv in Lq(R, Eq
3). Note that, thanks to Eq

3 ↪→Ep
3 ,

we also have

‖Mα(χJv − vk)‖Lp(R,Ep
3 )

≤ C(J, α)‖χJv − vk‖Lp(J,Eq
3)

→ 0 (k → ∞).

Consequently, choosing k large enough we can achieve

‖v − vk‖Y ≤ ‖v − χJv‖Y + ‖χJv − vk‖Y < ε

and the assertion is proved. �

Now we are in position to prove the claimed consistency.

Proposition 2.12. The family (B−1
p )1<p<∞ is consistent on the subscale (Lp)1<p<∞.
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Proof. Let p, q ∈ (1,∞) and without loss of generality p ≤ q. By the definition of Θp
∗, Θ̃∗

p

we have

Θp
∗ = Θq

∗e
−(βq−βp)x and Θ̃∗

p = e(βq−βp)xΘ̃∗
q .

Now, pick

f ∈ Θ̃q
∗ (C

∞
c (R, Eq

3)) ⊂ Lp ∩ Lq.

From (2.20) and Lemma 2.10 we infer

B−1
p f = Θp

∗ T
−1
p Θ̃∗

pf

= Θq
∗ e

−(βq−βp)x T−1
p e(βq−βp)x Θ̃∗

qf

= Θq
∗ T

−1
q Θ̃∗

qf = B−1
q f.

Proposition 2.9(4) and Lemma 2.11 then yield the assertion. �

2.6. The diffusion equation. As before let θ0 ∈ (0, π) be the opening angle of the wedge
G. For 1 < p < ∞ we define the Laplacian Ap subject to perfect slip boundary conditions
in Lp(G,R2) by

Apu := −Δu,

u ∈ D(Ap) :=
{
v ∈ W 2,p(G,R2) : curl v = 0, ν · v = 0 on ∂G

}
∩K2

p(G,R2).
(2.24)

Now [17, Theorem 1.1 and Corollary 3.15] gives the following result.

Theorem 2.13. There is a δ = δ(θ0) such that for 1 < p < 1 + δ the operator Ap as
defined in (2.24) has maximal regularity on Lp(G,R2).

Remark 2.14. (a) Note that in [17] the case of a three-dimensional wedge is considered.
However, by an inspection of the single steps in the proof it is clear that the case of a
two-dimensional wedge is completely analogous.

(b) Also observe that δ > 0 can be very small. In fact, the methods in [17] yield the
constraint 2− 2/p < min{1, (π/θ0 − 1)}. Hence we have δ(θ0) → 0 for θ0 → π.

(c) From the proof of [17, Theorem 1.1 and Corollary 3.15] it also follows that for each
λ ∈ ρ(Ap) the family

(
(λ−Ap)

−1
)
1<p<1+δ

is consistent on
(
Lp(G,R2)

)
1<p<1+δ

.

By a scaling argument we obtain the following estimate in the homogeneous norm.

Lemma 2.15. Let 1 < p < ∞ and ρ(Ap) 
= ∅. Then we have

‖u‖K2
p(G,R2) ≤ C‖Apu‖Lp(G,R2) (u ∈ D(Ap)).

Proof. We have μ−Ap ∈ Lis

(
D(Ap), L

p(G,R2)
)
for a μ ∈ C. We introduce the rescaled

function Jλu(x) := λ−2u(λx), λ > 0, and note that the wedge G is invariant under this
scaling. This yields

‖u‖K2
p(G,R2) = λ2/p‖Jλu‖K2

p(G,R2) ≤ Cλ2/p‖(Ap − μ)Jλu‖Lp(G,R2)

≤ Cλ2+2/p‖Jλ(Ap − μλ−2)u‖Lp(G,R2)

= C‖(Ap − μλ−2)u‖Lp(G,R2) (λ > 0, u ∈ D(Ap)).

Letting λ → ∞ yields the assertion. �

Remark 2.16. The estimate in Lemma 2.15 implies that Ap is injective provided that
ρ(Ap) 
= ∅. This implies that Ap is sectorial or R-sectorial, whenever ((λ + Ap)

−1)λ>0 is
uniformly bounded or R-bounded, respectively, see [9].
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Next, we show that Theorem 2.13 is still valid on Lp. To this end, for 1 < p < ∞ we
define Ap as the part of Ap in Lp, that is

Apu := Ap|Lpu, u ∈ D(Ap) := {v ∈ D(Ap) ∩ Lp : Apv ∈ Lp} .

With the projectors Q and Q̃ as defined in (2.17) we obtain

Lemma 2.17. Let 1 < p < ∞. We have

(1) D(Ap) = D(Bp)∩Lp(G,R2) with equivalent norms as well as Q = Q̃ and Ap = Bp

on D(Ap). In particular, Q̃ on Lp(G,R2) is the continuous extension of Q regarded
as a projector on D(Ap).

(2) Q̃Apu = ApQu for u ∈ D(Ap).

(3) Q(λ−Ap)
−1f = (λ−Ap)

−1Q̃f for f ∈ Lp(G,R2) and λ ∈ ρ(Ap).
(4) D(Ap) = D(Ap) ∩ Lp = QD(Ap).
(5) (λ− Ap)

−1 = (λ−Ap)
−1|Lp for λ ∈ ρ(Ap).

(6)
(
(λ− Ap)

−1
)
1<p<1+δ

is consistent on (Lp)1<p<1+δ for λ ∈ ρ(Ap).

Proof. (1) Note that D(Ap) ↪→D(Bp) is an immediate consequence of the definition of

D(Ap). This gives Bp = Ap and, by virtue of Proposition 2.9(2), also Q = Q̃ on D(Ap).
Furthermore, the Gagliardo-Nirenberg inequality and Young’s inequality yield

‖∇u‖p ≤ C
(
‖∇2u‖p + ‖u‖p

)
(u ∈ Lp(G,R2) ∩K2

p(G,R2)).

Note that the wedge G is an (ε,∞) domain and on domains of this type the Gagliardo-
Nirenberg inequality holds true [17, Section 5] thanks to the extension operator for homo-
geneous Sobolev spaces constructed in [11, 2]. This implies

‖u‖W 2,p ≤ C
(
‖u‖p + ‖∇2u‖p

)
≤ C

(
‖u‖p + ‖u‖K2

p

)
.

Thus D(Ap) = D(Bp) ∩ Lp(G,R2) with equivalent norms. From this we easily obtain

that Q is also a projector on D(Ap). Since D(Ap) is dense in Lp(G,R2), Q̃ extends Q

continuously on Lp(G,R2).

(2) follows directly from (1) and Proposition 2.9(3).

(3) Let λ ∈ ρ(Ap). From (1) and (2) we obtain

(λ−Ap)Q(λ−Ap)
−1f = Q̃f (f ∈ Lp(G,R2)).

Applying (λ−Ap)
−1 on both sides yields (3).

(4) Let u ∈ D(Ap) ∩ Lp. By (1) we obtain u = Q̃u = Qu, hence u ∈ QD(Ap). Conversely,
(1) also yields QD(Ap) ⊂ D(Ap) ∩ Lp. In view of (2) we next conclude

Apu = ApQu = Q̃Apu ∈ Lp,

hence u ∈ D(Ap). Since the inclusion D(Ap) ⊂ D(Ap) ∩ Lp is trivial, the assertion is
proved.

(5) Let λ ∈ ρ(Ap). For f ∈ Lp relations (3) and (4) yield

(λ−Ap)
−1f = Q(λ−Ap)

−1f ∈ D(Ap).

Thus,

(λ− Ap)(λ−Ap)
−1f = f

which proves (5).

(6) follows from (5) and Remark 2.14(c). �
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By combining the well-known equivalence of maximal regularity and R-sectoriality [27,
Theorem 4.2] with Theorem 2.13, Remark 2.16, and Lemma 2.17 (especially assertion (5))
we obtain

Theorem 2.18. Let 1 < p < 1+δ with δ > 0 as in Theorem 2.13. Then Ap : D(Ap) → Lp

with domain

D(Ap) =
{
u ∈ W 2,p(G,R2) : curlu = 0, ν · u = 0 on ∂G

}
∩K2

p(G,R2) ∩ Lp

is R-sectorial with φR
Ap

< π/2. Thus, Ap has maximal regularity on Lp.

Our ultimate aim in this subsection is to show that Theorem 2.18, in particular the
optimal Sobolev regularity, is available on the full range 1 < p < ∞. Note that this is
not true for Ap : D(Ap) ⊂ Lp(G,R2) → Lp(G,R2) with D(Ap) given in (2.24) as the next
result shows.

Theorem 2.19. Let 1 < p < ∞ and θ0 ∈ (0, π) such that condition (1.6) (with γ = 0) is
not satisfied. Then ρ(Ap) = ∅. In other words, in this situation for every λ ∈ C there is
an f ∈ Lp(G,R2) such that there is no solution u of

λu−Δu = f in G,
curlu = 0, u · ν = 0 on ∂G

}
(2.25)

satisfying u ∈ K2
p(G,R2). More precisely, if p 
= 2 then ∂αu ∈ Lp(G,R2) for all α with

|α| = 2, while for p = 2 we have ρ|α|−2∂αu 
∈ L2(G,R2) for some α with |α| < 2.

Proof. Suppose there exists a complex number μ ∈ ρ(Ap). We can assume μ 
= 0, since
otherwise this would immediately contradict Theorem 1.3.

By the scaling argument used in the proof of Lemma 2.15 it easily follows that ((λ −
Ap/μ)

−1)λ>0 is uniformly bounded. Thanks to Remark 2.16 then Ap/μ is sectorial, see
[9], in particular it has dense range. For f ∈ Lp(G,R2) we hence find (uk) ⊂ D(Ap)
such that Apuk → f in Lp(G,R2). Due to Lemma 2.15 (uk) is a Cauchy sequence in
K2

p(G,R2) and its limit u = limuk satisfies equation (1.4). The fact that u ∈ K2
p(G,R2)

then contradicts Theorem 1.3. Thus ρ(Ap) must be empty. The additional statement
follows from Remark 2.7(b). �

Next, we show that the resolvent of Ap in Lp is consistent with its dual resolvent. For
this purpose we first identify (Lp)′. This, in turn, is connected to the identification of P′

3

and Q′. By this fact, just within the following lemma, we write P3,p and Qp again.

Lemma 2.20. Let 1 < p < ∞, βp = 2− 2/p, and 1/p + 1/p′ = 1. Let Θ̃p
∗ : Lp(Ω,R2) →

Lp(G,R2) be defined as in Subsection 2.2 with inverse Θ̃∗
p and the projectors P3,p and Q̃p

be defined as in (2.9) (and the subsequent lines) and (2.17) respectively. Then we have

(1) (Θ̃p
∗)′ = Θ̃∗

p′ and (Θ̃∗
p)

′ = Θ̃p′
∗ ; in particular Θ̃p

∗ is an isometric isomorphism;

(2) (P3,p)
′ = P3,p′;

(3) (Q̃p)
′ = Q̃p′;

(4) (Lp)′ = Lp′ with respect to (u, v) =
∫
G uvdx in the sense of a Riesz isomorphism.

Proof. (1) Recall that by (2.1) and (2.3) we have Θ̃p
∗u = Ψ−1OMβp−2u with Ψ, O, Mβp−2

as defined in Subsection 2.2. Thanks to

βp = 2− 2

p
= −βp′ + 2
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we can calculate(
Θ̃p

∗u, v
)
G
=

∫
G
v(y)(OMβp−2u)(ψ

−1(y))dy

=

∫
Ω
v(ψ(x, θ))(OMβp−2u)(x, θ)e

2xdxdθ

=

∫
Ω
(M−βp′+2O−1Ψv)(x, θ)u(x, θ)dxdθ

=
(
u, Θ̃∗

p′v
)
Ω

(
u ∈ Lp(Ω,R2), v ∈ Lp′(G,R2)

)
.

Relation (Θ̃∗
p)

′ = Θ̃p′
∗ then follows since Θ̃∗

p = (Θ̃p
∗)−1.

Relation (2) follows immediately by the definition of P3,p and (3) is a consequence of
(1) and (2).

(4) By the fact that Lp = Q̃pL
p(G,R2) this follows from the symmetry of Q̃p proved in

(3) and since (Lp(G,R2))′ = Lp′(G,R2) with respect to (·, ·). �

Now, let

A′
p : D(A′

p) ⊂ Lp′ → Lp′

be the Banach space dual operator to Ap in Lp for 1 < p < 1+δ. By permanence properties
and Theorem 2.18 it follows that also A′

p is R-sectorial with φR
A′
p
= φR

Ap
< π/2. At this

point, however, we do not know how D(A′
p) looks like. On our way to characterize D(A′

p)

we next show consistency of (λ− Ap)
−1 and (λ− A′

p)
−1 on Lp ∩ Lp′ .

Proposition 2.21. Let 1 < p < 1+ δ with δ > 0 as in Theorem 2.18 and 1/p+ 1/p′ = 1.
Then

(λ− Ap)
−1f = (λ− A′

p)
−1f (f ∈ Lp ∩ Lp′ , λ ∈ ρ(Ap) ∩ R).

Proof. Let λ ∈ ρ(Ap) ∩ R. We intent to apply Lemma A.2. Setting T = λ − Ap, we
first have to verify that there exists an embedding J : D(Ap) → (Lp)′ with dense range.
Observe that, since D(Ap) ↪→W 2,p(G,R2) and G ⊂ R2, the Sobolev embedding yields

D(Ap)
d
↪→Lp′(G,R2) ∩ Lp = Lp′ .

Thus J can be chosen essentially as the Riesz isomorphism given in Lemma 2.20(4).

However, since we identify (Lp)′ with Lp′ anyway and T � with (λ − Ap)
� on Lp′ , that

is, with its dual induced by the Riesz isomorphism, we omit J (and hence also J̃) in what
follows.

By virtue of Lemma A.2 and (A.1) it then remains to prove that

λ− Ap ⊂ (λ− Ap)
�,

where (λ−Ap)
� : Lp′ → D(Ap)

′ denotes the dual operator of λ−Ap regarded as a bounded
operator from D(Ap) to Lp, see Appendix A. To this end, pick u, v ∈ D(Ap). Observe that

by the fact that D(Ap) ↪→Lp ∩ Lp′ all duality pairings appearing below are well-defined.
Also note that

Δu = ∇div u− curl′ curl u,

where curl′ϕ = (∂x2 ,−∂x1)
T ϕ for a scalar function ϕ. Employing the Gauß theorem and

the boundary conditions for u and v we calculate

(∇ divu, v) =

∫
∂G

ν · v divu dσ − (divu, div v) = (u, ∇ div v)
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as well as (
curl′ curlu, v

)
= −

∫
∂G

((
v2,−v1

)T · ν
)
curlu dσ + (curlu, curl v)

=
(
u, curl′ curl v

)
.

This yields
〈T �u, v〉D(Ap)′,D(Ap) = (u, (λ+Δ)v) = ((λ+Δ)u, v)

= (Tu, v) = 〈Tu, v〉D(Ap)′,D(Ap)

which proves the claim. �

Now we can characterize D(A′
p).

Theorem 2.22. Let 1 < p < ∞ and 1/p + 1/p′ = 1. Then we have A′
p = Ap′, i.e., in

particular D(A′
p) = D(Ap′) with D(Ap′) as characterized by (2.24) and Lemma 2.17(4).

Furthermore, for λ ∈ ρ(Ap) the family
(
(λ− Ap)

−1
)
1<p<∞ is consistent on (Lp)1<p<∞.

Proof. By definition it is obvious that Ap′ ⊂ A′
p. It is clear that the converse inclusion,

particularly the assertion on D(A′
p), is proved, if we can show that

(1 + Ap)
−1 ∈ Lis(L

p, D(Ap)) (2.26)

for every p ∈ (1,∞). By Theorem 2.18 relation (2.26) holds for every 1 < p < 1 + δ. We
take p out of that interval and consider (2.26) for its Hölder conjugated exponent p′.

Let f ∈ Lp ∩ Lp′ . Then there is a u ∈ D(A′
p) such that

(1 + A′
p)u = f.

By the consistency of the resolvents of Ap and A′
p proved in Proposition 2.21 we see that

u ∈ D(Ap) and that

(1 + Ap)u = f ⇔ Apu = f − u =: g ∈ Lp ∩ Lp′ .

On the other hand, Proposition 2.9(4) and the consistency of (B−1
p )1<p<∞ established in

Proposition 2.12 imply that there is an v ∈ D(Bp) ∩D(Bp′) such that

Bpv = g.

The fact that D(Ap) ⊂ D(Bp) and Ap = Bp on D(Ap) (Lemma 2.17(1),(4)) then gives
u = v. From this and Lemma 2.17(1) we obtain

‖(1 + A′
p)

−1f‖D(Ap′ ) = ‖u‖D(Ap′ ) ≤ C
(
‖u‖p′ + ‖v‖K2

p′

)
≤ C‖f‖p′ (f ∈ Lp ∩ Lp′).

Since Lp ∩ Lp′ lies dense in Lp′ , relation (2.26) follows for p′.

According to what we just have proved, Lemma 2.17(6), and Proposition 2.21 the family(
(1 + Ap)

−1
)
p∈I is consistent on (Lp)p∈I for

I = (1,∞) \ [1 + δ, (1 + δ)′]. (2.27)

For the remaining p we interpolate. In fact, since Lp = Q̃Lp(G,R2) complex interpolation
and [25, Theorem 1.17.1.1] yield[

Lp,Lp′]
s
= Lq,

1

q
= s

1

p′
+ (1− s)

1

p
.

Furthermore, by [25] we also have

W 2,q(G,R2) =
[
W 2,p(G,R2),W 2,p′(G,R2)

]
s
,
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K2
q (G,R2) =

[
K2

p(G,R2),K2
p′(G,R2)

]
s
.

(Note that the second identity above follows, e.g., from

W 2,q(Ω,R2) =
[
W 2,p(Ω,R2),W 2,p′(Ω,R2)

]
s
,

and an application of Stein’s interpolation theorem [26], since the dependence of Θq
∗,Θ∗

q

on z = 1/q is analytic on a suitable strip in the complex plane.) This shows that

(1 + Ap)
−1 ∈ L

(
Lp, W 2,p(G,R2) ∩K2

p(G,R2) ∩ Lp
)

for every p ∈ (1,∞). For f ∈ Lp ∩Lq with q ∈ I, we also see that (1+Ap)
−1f satisfies the

boundary conditions included in D(Ap). By a density argument and boundedness of the
corresponding trace operators relation (2.26) follows to be valid for all p ∈ (1,∞). This
completes the proof. �

Thanks to Theorem 2.22 we can generalize Theorem 2.18 to all p ∈ (1,∞).

Theorem 2.23. Let 1 < p < ∞. Then Ap with domain

D(Ap) =
{
u ∈ W 2,p(G,R2) : curlu = 0, ν · u = 0 on ∂G

}
∩K2

p(G,R2) ∩ Lp

is R-sectorial on Lp with φR
Ap

< π/2, and hence has maximal regularity on Lp.

Proof. Due to A′
p = Ap′ and Theorem 2.18, the operator Ap with D(Ap) as stated is

R-sectorial with φR
Ap

< π/2 for p ∈ I with I given in (2.27). Note that injectivity,

hence also R(Ap) = Lp, follows from Remark 2.16. Since the property of R-sectoriality is
invariant under interpolation [12, Theorem 3.23], the result follows by interpolation and
the equivalence of maximal regularity and R-sectoriality [27, Theorem 4.2]. �

In this subsection we have shown by consistency arguments that regularity for the
elliptic operator Bp transfers to the parabolic operator ∂t +Ap. The next result, which in
principle shows that the converse is true as well, we state also for later purposes.

Proposition 2.24. Let 1 < p < ∞ , then

lim
k→∞

(1/k − Ap)
−1 = B−1

p in L
(
Lp, K2

p(G,R2)
)
.

In particular, D(Ap) is dense in D(Bp).

Proof. Pick f ∈ Lp. For � ∈ N by the resolvent identity, Lemma 2.15, and since Ap is
sectorial we obtain

‖(1/(k + �)− Ap)
−1f − (1/k − Ap)

−1f‖K2
p

≤ C‖(1/(k + �)− 1/k)(1/k − Ap)
−1Ap(1/(k + �)− Ap)

−1f‖p
≤ C‖(k/(k + �)− 1)Ap(1/(k + �)− Ap)

−1f‖p
≤ C‖(k/(k + �)− 1)f‖p → 0 (k → ∞).

Thus (1/k − Ap)
−1f → v in D(Bp). The fact that Bp ∈ L (D(Bp), L

p), Lemma 2.17(1),
and again sectoriality of Ap yield

Bpv = lim
k→∞

Ap(1/k − Ap)
−1f = f,

hence v = B−1
p f . �
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3. The Stokes equations

In this section, we consider the Stokes problem (1.1). We introduce the space of
solenoidal vector fields. For 1 < p < ∞ and 1/p+ 1/p′ = 1 we set

Lp
σ(G) :=

{
u ∈ Lp(G,R2) :

∫
G
u · ∇ϕd(x1, x2) = 0 (ϕ ∈ Ŵ 1,p′(G))

}
, (3.1)

where

Ŵ 1,p′(G) :=
{
ϕ ∈ L1

loc(G) : ∇ϕ ∈ Lp′(G,R2)
}
.

Since C∞
c (G,R2) ⊂ Ŵ 1,p(G,R2), it is evident that u ∈ Lp

σ(G) satisfies the condition
divu = 0 in the sence of distributions. Moreover ν · u is well-defined in the trace space

(Slobodeckii space) W
−1/p
p (O) for all bounded domains O with O ⊂ ∂G \ {(0, 0)}. This

yields that the boundary condition u · ν = 0 is fulfilled in a local sense away from 0.

We define the Stokes operator AS as the part of Ap in Lp
σ(G), i.e.,

ASu := Ap|Lp
σ(G)u, u ∈ D(AS),

D(AS) := {v ∈ D(Ap) ∩ Lp
σ(G) : Apv ∈ Lp

σ(G)} . (3.2)

The next lemma justifies this definition of the Stokes operator.

Lemma 3.1. Let 1 < p < ∞. Then

D(AS) = D(Ap) ∩ Lp
σ(G).

Proof. We only have to show, that the right-hand side is a subset of D(AS). To this end,
let u ∈ D(Ap) ∩ Lp

σ(G) and f := Apu. It remains to show that f ∈ Lp
σ(G). By the fact

that f = Apu = curl ′curlu and u ∈ D(Ap) ∩ Lp
σ(G), the Gauß theorem yields∫

G
f · ∇ϕd(x1, x2) =

∫
G
(curl ′curlu) · ∇ϕd(x1, x2)

= −
〈
curlu, ν · curl ′ϕ

〉
W

1−1/p
p (∂G),W

−1/p′
p′ (∂G)

= 0

for all ϕ ∈ Ŵ 1,p′(G,R2). Note that div curl ′ϕ = 0, hence the trace ν · curl ′ϕ is defined

in W
−1/p′
p′ (∂G) in the usual sense. By the fact that curlu ∈ W 1,p(G,R2) therefore the

duality pairing on the boundary above is well-defined. The proof is complete. �

Recall from (2.10) that Lp(Ω,R2) is decomposed in Lp(R, Ep
3) and Lp(R, 〈e0, e1, e2〉)

with Ep
m defined in the lines before (2.10) and e0, e1, e2 the normed eigenfunctions to the

first three eigenvalues of the operator Tp,θ introduced in Subsection 2.3.

In order to transfer the properties of Ap to the Stokes operator AS a crucial point is

that Θ̃p
∗Lp(R, 〈e0, e1, e2〉) does not contain non-trivial solenoidal vector fields. To carry over

full Sobolev regularity, however, this fact is not enough. This purpose requires stronger
properties:

Proposition 3.2. Let 1 < p < ∞. Then there exists a δ > 0 such that

(1) ‖Q̃u‖p ≥ δ‖u‖p for all u ∈ Lp
σ(G),

(2) ‖Qu‖K2
p
≥ δ‖u‖K2

p
for all u ∈ D(Bp) such that div u = 0, and

(3) ‖Qu‖D(Ap) ≥ δ‖u‖D(Ap) for all u ∈ D(AS).
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Remark 3.3. Proposition 3.2 relies of course on the specific structure of the solenoidal
subspace. In fact, its proof (including the proof of the subsequent Lemma 3.4) shows that
the operator ’div’ is isomorphic on the complementary space to Lp and on the correspond-
ing higher order complementary subspaces. Furthermore, it keeps the complementary
structure in its image. This essentially can be read off the representations of the trans-
formed ’div’ operator applied on elements of the complementary subspaces given in (3.4)
and (3.9) below.

Proof of Lemma 3.2(1). Step 1. Recall from Subsection 2.3 that the eigenfunctions to
the first three eigenvalues (λi)i∈{0,1,2} ∈ σ(Tp,θ) are explicitly given as

• e0(θ) :=
1√
θ0

(
1
0

)
which corresponds to λ0 = −1 and

• ek(θ) :=
1√
θ0

(
cos(kπθ0 θ)

− sin(kπθ0 θ)

)
which corresponds to λk := −(kπθ0 − 1)2 for k ∈ {1, 2}.

We notice that, depending on the value of the angle θ0, there might be a doubled eigen-
value. This, however, does not matter for what follows. An element ϕ ∈ Lp(R, 〈e0, e1, e2〉)
is then represented by

ϕ(x, θ) = ϕ0(x)e0(θ) + ϕ1(x)e1(θ) + ϕ2(x)e2(θ) (3.3)

with coefficients ϕi ∈ Lp(R) for i ∈ {0, 1, 2}.
Step 2. On our way to show (1) we first derive suitable estimates for ϕ ∈

Lp(R, 〈e0, e1, e2〉) in terms of the transformed divergence operator. To this end, first
observe that

div Θ̃p
∗v ◦ ψ = e(βp−3)x ((βp − 1 + ∂x)vx + ∂θvθ) =: e(βp−3)xdiv

Θ̃
v.

Applying the transformed divergence operator div
Θ̃
to representation (3.3) yields

div
Θ̃
ϕ = (βp − 1 + ∂x)ϕ0b0 +

(
βp − 1− π

θ0
+ ∂x

)
ϕ1b1

+

(
βp − 1− 2π

θ0
+ ∂x

)
ϕ2b2

(3.4)

where

{b0, b1, b2} :=

{
1√
θ0

,
cos( π

θ0
·)

√
θ0

,
cos(2πθ0 ·)√

θ0

}
(3.5)

is linearly independent in Lp(I,R). We set

F p
3 := 〈b0, b1, b2〉.

The form of the coefficients in (3.4) is

(sj + ∂x)ϕj , sj ∈ R, j = 0, 1, 2.

Observe that depending on the values of p and θ0 it can occur sj = 0. Thus, in order
to estimate expression (3.4) by ϕj from below we distinguish two cases: sj 
= 0 for all
j = 0, 1, 2 or sj = 0 for one j ∈ {0, 1, 2}.

Step 2.1. The case sj 
= 0 for all j = 0, 1, 2. Then we have

sj + ∂x ∈ Lis(L
p(R),W−1,p(R)). (3.6)

Furthermore, since F p′
3 is finite dimensional, we observe that W 1,p′(R, F p′

3 ) is isomorphic
to the space

W 1,p′(R, F p′
3 ) ∩ Lp′(R,W 1,p′(I,R)

)
.
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This implies that the norm of W 1,p′(R, F p′
3 ) and the norm of W 1,p′(Ω,R) are equivalent on

W 1,p′(R, F p′
3 ) and that the latter space can be regarded as a closed subspace ofW 1,p′(Ω,R).

Utilizing these facts, we can estimate as

‖ϕj‖p ≤ C‖(sj + ∂x)ϕj‖W−1,p(R)

≤ C
∥∥ 2∑
j=0

(sj + ∂x)ϕjbj
∥∥
W−1,p(R,F p

3 )
= C‖div

Θ̃
ϕ‖W−1,p(R,F p

3 )

= C sup
0 �=h∈W 1,p′ (R,F p′

3 )

|〈h, div
Θ̃
ϕ〉|

‖h‖
W 1,p′ (R,F p′

3 )

≤ C sup
0 �=h∈W 1,p′ (Ω,R)

|〈h, div
Θ̃
ϕ〉|

‖h‖W 1,p′ (Ω,R)

= ‖div
Θ̃
ϕ‖

W−1,p
0 (Ω,R)

,

for j = 0, 1, 2 with C > 0 independent of ϕ and where W−1,p
0 (Ω,R) = (W 1,p′(Ω,R))′.

Step 2.2. The case s� = 0 for one � ∈ {0, 1, 2}. This case is more involved, since here
we have

s� + ∂x = ∂x ∈ Lis(L
p(R), Ŵ−1,p(R)),

whereas for the remaining j ∈ {0, 1, 2} \ {�} we still have (3.6). We set

Uj :=

{
Ŵ−1,p(R, 〈bj〉), if j = �,
W−1,p(R, 〈bj〉), if j ∈ {0, 1, 2} \ {�}, (3.7)

and

V := div
Θ̃
Lp(R, Ep

3)
W−1,p(Ω,R)

. (3.8)

In Lemma 3.4 below it is proved that the sum of U0 ⊕ U1 ⊕ U2 and V is direct and
consequently that

U0 ⊕ U1 ⊕ U2 ⊕ V, ‖ · ‖U0⊕U1⊕U2⊕V := ‖ · ‖U0 + ‖ · ‖U1 + ‖ · ‖U2 + ‖ · ‖V
is a Banach space. Then, this time we obtain

‖ϕj‖p ≤ C‖(sj + ∂x)ϕjbj‖Uj

≤ C
∥∥ 2∑
j=0

(sj + ∂x)ϕjbj
∥∥
U0⊕U1⊕U2

= C‖div
Θ̃
ϕ‖U0⊕U1⊕U2

≤ C‖div
Θ̃
ϕ‖U0⊕U1⊕U2⊕V

for j = 0, 1, 2 with C > 0 independent of ϕ.

Step 3. Now, let u ∈ Lp
σ(G) and ϕ ∈ Lp(R, 〈e0, e1, e2〉) such that Q̃u = u − Θ̃p

∗ϕ.
Observe that both,

div
Θ̃
: Lp(Ω,R2) → W−1,p

0 (Ω,R)

and by Lemma 3.4 also

div
Θ̃
: Lp(Ω,R2) → U0 ⊕ U1 ⊕ U2 ⊕ V

are bounded operators. By the fact that div
Θ̃
Θ̃∗

pu = 0, we can continue the calculations
in steps 2.1 and 2.2 to the result that

‖ϕj‖p ≤ C‖div
Θ̃
ϕ‖W = C‖div

Θ̃
(Θ̃∗

pu− ϕ)‖W
≤ C‖u− Θ̃p

∗ϕ‖Lp(G,R2) = C‖Q̃u‖p (j = 0, 1, 2),
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where W denotes either the space W−1,p
0 (Ω,R) or the space U0 ⊕U1 ⊕U2 ⊕ V , depending

on whether we have sj 
= 0 for all j or sj = 0 for one j. Summing up over j yields

‖ϕ‖p = ‖ϕ‖Lp(R,〈e0,e1,e2〉) ≤ C
2∑

j=0

‖ϕj‖p ≤ C‖Q̃u‖p

for all u ∈ Lp
σ(G) and Θ̃p

∗ϕ = (1− Q̃)u. By the fact that

C0‖ϕ‖Lp(Ω,R2) ≥ ‖Θ̃p
∗ϕ‖Lp(G,R2) = ‖u− Q̃u‖p ≥ ‖u‖p − ‖Q̃u‖p

we arrive at (1) by setting δ := 1/(C0C + 1).

Proof of (2). The proof of (2) is in large parts similar to the proof of (1). Hence we will
be briefer in detail.

Step 1. Again we will first provide estimates for ϕ ∈ (1− P3)Θ
∗
pD(Bp) in terms of the

transformed divergence. Note that such a ϕ is still represented by (3.3), but now with
coefficients ϕj ∈ W 2,p(R). The transformed divergence operator here is

divΘp
∗v ◦ ψ = e(βp−1)x ((βp + 1 + ∂x)vx + ∂θvθ) =: e(βp−1)xdivΘ v.

Consequently,

divΘ ϕ = (βp + 1 + ∂x)ϕ0b0 +

(
βp + 1− π

θ0
+ ∂x

)
ϕ1b1

+

(
βp + 1− 2π

θ0
+ ∂x

)
ϕ2b2

(3.9)

for ϕ ∈ (1 − P3)Θ
∗
pD(Bp). Again we write the coefficients as (sj + ∂x)ϕj . Here still s1

and s2 can vanish. Hence we again distinguish the two cases: sj 
= 0 for all j = 0, 1, 2 or
sj = 0 for one j ∈ {1, 2}.

Step 1.1. For the case sj 
= 0 for all j = 0, 1, 2 we use

sj + ∂x ∈ Lis(W
2,p(R),W 1,p(R))

in order to deduce

‖ϕj‖W 2,p(R) ≤ C‖(sj + ∂x)ϕj‖W 1,p(R)

≤ C
∥∥ 2∑
j=0

(sj + ∂x)ϕjbj
∥∥
W 1,p(R,F p

3 )
≤ C‖divΘϕ‖W 1,p(Ω,R)

for j = 0, 1, 2 with C > 0 independent of ϕ.

Step 1.2. If s� = 0 for one � ∈ {1, 2} we use for that �,

s� + ∂x = ∂x ∈ Lis(Ŵ
2,p(R), Ŵ 1,p(R))

to estimate

‖ϕ�‖Ŵ 2,p(R)
≤ C‖(s� + ∂x)ϕ�‖Ŵ 1,p(R)

≤ C‖(s� + ∂x)ϕ�‖W 1,p(R)

≤ C
∥∥ 2∑
j=0

(sj + ∂x)ϕjbj
∥∥
W 1,p(R,F p

3 )
≤ C‖divΘϕ‖W 1,p(Ω,R)

with C > 0 independent of ϕ. The corresponding estimate for ϕ in the Lp-norm can be
established completely analogous as in step 2.2 of the proof of (1). In this regard, observe
that all assertions there as well as of Lemma 3.4 obviously remain true, if we replace div

Θ̃
by divΘ. Hence we obtain

‖ϕ�‖Lp(R) ≤ C‖divΘϕ‖U0⊕U1⊕U2⊕V .
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Taking into account the well-known interpolation estimate ‖∇v‖Lp(R) ≤ C(‖∇2v‖Lp(R) +
‖v‖Lp(R)), altogether we have

‖ϕj‖W 2,p(R) ≤ C
(
‖divΘϕ‖W 1,p(Ω,R) + ‖divΘϕ‖U0⊕U1⊕U2⊕V

)
for j = 0, 1, 2 with C > 0 independent of ϕ.

Step 2. Let u ∈ D(Bp) with div u = 0 and ϕ ∈ (1 − P3)Θ
∗
pD(Bp) such that Qu =

u−Θp
∗ϕ. Thanks to Lemma 3.4 and since

divΘ : W 2,p(Ω,R2) → W 1,p(Ω,R)

is bounded, by virtue of divΘΘ
∗
pu = 0 and the estimates in Steps 1.1 and 1.2 we conclude

‖ϕj‖W 2,p(R) ≤ C
(
‖divΘ ϕ‖W 1,p(Ω,R) + ‖divΘϕ‖U0⊕U1⊕U2⊕V

)
≤ C‖Θ∗

pu− ϕ‖W 2,p(Ω,R)

≤ C‖u−Θp
∗ϕ‖K2

p(G,R2) = C‖Qu‖K2
p(G,R2) (j = 0, 1, 2).

Summing up over j, analogous to step 3 of the proof of (1) we arrive at (2).

Proof of (3). According to Lemma 2.17(1), ‖ · ‖p + ‖ · ‖K2
p
is an equivalent norm on

D(Ap) and we have Q = Q̃ on D(Ap). The estimates proved in (1) and (2) then yield

‖u‖D(Ap) ≤ C
(
‖u‖p + ‖u‖K2

p

)
≤ C

(
‖Qu‖p + ‖Qu‖K2

p

)
≤ C‖Qu‖D(Ap) (u ∈ D(AS)).

The proof is now completed. �

We have used the following facts in the proof of Proposition 3.2.

Lemma 3.4. Let 1 < p < ∞. Let Uj, j = 0, 1, 2, div
Θ̃
, and V be as defined in the proof

of Proposition 3.2(1). Then U0, U1, U2, V are Banach spaces, their sum is direct, and we
have

div
Θ̃
∈ L

(
Lp(Ω,R2), U0 ⊕ U1 ⊕ U2 ⊕ V

)
. (3.10)

Proof. By their definition (3.7) and (3.8) it is obvious that U0, U1, U2, V are Banach spaces
and that the sum of U0, U1, U2 is direct. Note that

Lp(Ω,R2) = Lp(R, Ep
3)⊕ Lp(R, 〈e0〉)⊕ Lp(R, 〈e1〉)⊕ Lp(R, 〈e2〉).

It is also obvious that div
Θ̃
: Lp(R, 〈ej〉) → Uj and hence also

div
Θ̃
: Lp(R, 〈e0, e1, e2〉) → U0 ⊕ U1 ⊕ U2 (3.11)

is bounded (even isomorphic due to the estimates for ϕ in steps 2.1 and 2.2 of the proof
of Proposition 3.2). Due to div

Θ̃
∈ L

(
Lp(Ω,R2),W−1,p(Ω,R)

)
we see that by definition

of V the operator

div
Θ̃
: Lp(R, Ep

3) → V (3.12)

is bounded too. It remains to prove that the sum of V and U0 ⊕ U1 ⊕ U2 is direct.

To this end, denote by Q3 : W
1,p′(Ω,R) → W 1,p′(Ω,R) the projector

Q3v :=

2∑
j=0

(v, bj)bj , v ∈ W 1,p′(Ω,R)

with bj , j = 0, 1, 2, be defined as in (3.5). Writing

W 1,p′(Ω,R) = W 1,p′(R, Lp′(I,R)) ∩ Lp′(R,W 1,p′(I,R))
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it is easily seen that Q3 is a bounded projector onto W 1,p′(R, F p′
3 ). Note that (bk)

∞
k=0 with

bk(θ) = cos(kπθ/θ0)/
√
θ0 as the collection of eigenfunctions of the Neumann-Laplacian on

the interval I = (0, θ0) forms an orthonormal Hilbert basis of L2(I,R). This shows that
Q3 is symmetric, hence Q3 is a bounded projector on

W−1,p
0 (Ω,R) = (W 1,p′

0 (Ω,R))′ = W−1,p(R, Lp(I,R)) + Lp(R,W−1,p
0 (I,R)),

too. Since all norms on F p
3 are equivalent, for its image we calculate

Q3W
−1,p
0 (Ω,R) = W−1,p(R, F p

3 ) + Lp(R, F p
3 ) = W−1,p(R, F p

3 )

= W−1,p(R, 〈b0〉)⊕W−1,p(R, 〈b1〉)⊕W−1,p(R, 〈b2〉).
(3.13)

We next show that V ⊂ (1 − Q3)W
−1,p
0 (Ω,R). By the fact that (ek)

∞
k=0 forms a basis

of L2(I,R2) (see (2.6) and the subsequent lines), every v ∈ L2(R, E2
3) is represented as

v =
∑∞

k=3 vkek with (vk) ⊂ L2(R). Hence we obtain

div
Θ̃
v =

∞∑
k=3

(β2 − 1 + ∂x)vke
1
k + vk∂θe

2
k

=

∞∑
k=3

(
β2 − 1± kπ

θ0
+ ∂x

)
vkbk.

This shows that

Q3divΘ̃v = 0
(
v ∈ Lp(R, Ep

3) ∩ L2(R, E2
3)
)
.

The boundedness of the operators div
Θ̃
,Q3 and a density argument yield that this identity

remains true for all v ∈ Lp(R, Ep
3). Once more the boundedness of Q3 on W−1,p

0 (Ω,R)

then gives V ⊂ (1−Q3)W
−1,p
0 (Ω,R).

Finally, W 1,p(R, 〈bj〉) d
↪→ Ŵ 1,p(R, 〈bj〉) implies

Ŵ−1,p(R, 〈bj〉) ↪→W−1,p(R, 〈bj〉).
In combination with (3.13) this gives

U0 ⊕ U1 ⊕ U2 ⊂ Q3W
−1,p
0 (Ω,R),

hence V ∩
(
U0 ⊕ U1 ⊕ U2

)
= {0}.

Since we equip U0 ⊕U1 ⊕U2 ⊕V with the norm ‖ · ‖U0⊕U1⊕U2⊕V := ‖ · ‖U0 + ‖ · ‖U1 + ‖ ·
‖U2 + ‖ · ‖V , relations (3.11) and (3.12) result in (3.10). Now all assertions are proved. �

Corollary 3.5. Let 1 < p < ∞. Then we have that

(1) Q̃Lp
σ(G) is closed in Lp and Q̃ ∈ Lis

(
Lp
σ(G), Q̃Lp

σ(G)
)
,

(2) QDσ is closed in D(Bp) and Q ∈ Lis (Dσ, QDσ), where Dσ := {v ∈ D(Bp) :
div v = 0}, and

(3) QD(AS) is closed in D(Ap) and Q ∈ Lis (D(AS), QD(AS)).

With these facts at hand we can prove our main result on the Stokes operator.

Proof of Theorem 1.1. Assume that λ ∈ ρ(Ap). By the fact that AS is the part of Ap from
Lemma 3.1 we infer that

(λ−AS)
−1 = (λ−Ap)

−1|Lp
σ(G).

In combination with Lemma 2.17(3),(4) this implies

Q(λ−AS)
−1u = (λ− Ap)

−1Q̃u (u ∈ D(AS)).
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In particular, the above line yields (λ − Ap)
−1Q̃Lp

σ(G) ⊂ QD(AS). Thus, thanks to
Corollary 3.5 we conclude that

(λ−AS)
−1f = Q−1(λ− Ap)

−1Q̃f (Lp
σ(G)). (3.14)

For 1 < p < 1 + δ with δ > 0 given in Theorem 2.13 we know by that result that
the resolvent set of Ap contains a suitable sector. For those p the assertion hence follows
from Corollary 3.5 and Theorem 2.23. For general p ∈ (1,∞) representation (3.14) gives
a candidate for the resolvent of AS . In fact, choosing 1 < q < 1 + δ, on Lp

σ(G) ∩ Lq
σ(G)

we already know that it is the resolvent. A density argument and again Corollary 3.5 and
Theorem 2.23 then yield the assertion. �

Remark 3.6. From Proposition 2.9(1) and Theorem 2.22 it also follows consistency of the
resolvent of AS , that is, for every λ ∈ ρ(AS) the family

(
(λ−AS)

−1
)
1<p<∞ is consistent

on the scale (Lp
σ(G))1<p<∞.

Finally we prove our third main result.

Proof of Theorem 1.5. We follow the strategy in the proof of Theorem 1.1. For f ∈ Lp
σ(G)

the candidate for the solution of

−Δu+∇π = f in G,
div u = 0 in G,

curlu = 0, u · ν = 0 on ∂G

⎫⎬⎭ (3.15)

is given as π = 0 and u = Q−1B−1
p Q̃f . Thanks to Proposition 2.9 and Corollary 3.5 it

remains to show that div u = 0. This, in turn, follows from Proposition 2.24, Q−1(λ −
Ap)

−1Q̃f ⊂ D(AS), and the fact that the operator div acts continuously on the space
K2

p(G,R2). �

Appendix A. Elements from harmonic and functional analysis

The following facts might be well-known. Since we could not find an appropriate refer-
ence, we give their proofs here.

Lemma A.1. Let X,Y be Banach spaces such that X ↪→Y . Then we have

C∞
c (R, X)

d
↪→W k,p(R, X) ∩W �,p(R, Y )

for every k, � ∈ N0 and p ∈ (1,∞).

Proof. First recall that

C∞
c (R, E)

d
↪→W k,p(R, E)

for every k ∈ N0, p ∈ (1,∞), and arbitrary Banach space E. In fact, it is standard to
construct a (universal) sequence of operators (Φk)k∈N such that for u ∈ W k,p(R, E) we
have (Φku) ⊂ C∞

c (R, E) and

Φku → u in W k,p(R, E) (k → ∞)

for every k ∈ N0, p ∈ (1,∞), and arbitrary Banach space E. Since X ⊂ Y , for u ∈
W k,p(R, X) ∩W �,p(R, Y ) this gives Φku → u in W k,p(R, X) and in W �,p(R, Y ). �
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Let T : D(T ) ⊂ X → X be a closed, densely defined operator on a Banach space X.
We denote by

T � : X ′ → D(T )′

the dual operator of T , regarded as a bounded operator from D(T ) to X, and by

T ′ : D(T ′) ⊂ X ′ → X ′

the usual Banach space dual operator of T . The fact that D(T ) ⊂ X is dense, obviously
implies D(T ′) ↪→X ′ ↪→D(T )′ and that

T �|D(T ′) = T ′. (A.1)

Furthermore, we have the following lemma on consistency.

Lemma A.2. Let X be a reflexive Banach space and let T : D(T ) ⊂ X → X be densely
defined such that T ∈ Lis(D(T ), X). Assume there is an embedding (with means i.p.

injection) J : D(T ) → X ′ with dense range. Then there exists an embedding J̃ : X →
D(T )′ such that, if J̃ ◦ T ⊂ T � ◦ J , we have

J ◦ T−1 ◦ J̃−1|
J̃X∩X′ = (T �)−1|

J̃X∩X′ = (T ′)−1|
J̃X∩X′ in X ′. (A.2)

Proof. Since D(T ) = X we have X ′ ↪→D(T )′. Reflexivity of X and J(D(T ))
d
↪→X ′ further

imply that there is an embedding J̃ : X → D(T )′. Thus, J̃X ∩X ′ is well-defined and due
to T ∈ Lis(D(T ), X) which also implies T � ∈ Lis(X

′, D(T )′) and T ′ ∈ Lis(D(T ′), X ′),
line (A.2) is meaningful.

Now, let z ∈ J̃X ∩X ′ and set x1 := JT−1J̃−1z ∈ X ′ and x2 := (T �)−1z ∈ X ′. Thanks
to J̃ ◦ T ⊂ T � ◦ J we obtain

T �(x1 − x2) = T �
(
JT−1J̃−1z − (T �)−1z

)
= J̃TT−1J̃−1z − T �(T �)−1z = z − z = 0.

Thus x1 = x2 in X ′ and the assertion is proved. The second equality in (A.2) follows in a
similar manner from (A.1). �
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THE DIRICHLET-STOKES OPERATOR ON A 2D WEDGE DOMAIN

IN LP : SECTORIALITY AND OPTIMAL REGULARITY

MATTHIAS KÖHNE, JÜRGEN SAAL, AND LAURA WESTERMANN

Abstract. In this note we prove that the solution of the Stokes equations subject to
Dirichlet boundary conditions on a 2D wedge domain admits optimal regularity in the
Lp-setting for a small neighborhood of p about 2. Here, optimal regularity means that
the domain of the Stokes operator in Lp

σ is embedded in W 2,p. Furthermore, we obtain
sectoriality for the Stokes operator with spectral angle equal to zero for the same range
of p.
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1. Introduction and main result

The objective of this note is to consider the Stokes resolvent problem on a two-
dimensional wedge type domain subject to Dirichlet boundary conditions and to derive
best possible regularity in the Lp-setting for p in a small neighborhood of p = 2. The
problem reads as

λu−Δu+∇p = f in G,
div u = 0 in G,

u = 0 on ∂G,

⎫⎬⎭ (1.1)

49



50 M. KÖHNE, J. SAAL, AND L. WESTERMANN

where G represents the wedge domain

G :=
{
(x1, x2) ∈ R2 : 0 < x2 < x1 tan θ0

}
(1.2)

with opening angle θ0 ∈ (0, π).

There still exits a Lipschitz approach to the existence and analyticity of the Stokes
semigroup on Lp

σ on Lipschitz domains, see e.g. in [12, 13, 8, 14]. Since in the Lipschitz
approach W 2,p-regularity is not avalaible, this approach seems to be too general for our
purpose. Whereas one may find for instance in [5, 6] an Lp-theory for the nonstationary
Stokes equations in cone domains, similar results on wedge domains are not obviously
available.

The main result of this note, which is formulated in Theorem 8.2, establishes resolvent
estimates on Lp

σ(G) for the solution (u,∇p) ∈ W 2,p(G,R2)×Lp(G,R2) of system (1.1) for
p in a small neighborhood of p = 2.

We outline the strategy of the proof of Theorem 8.2 and the organization of this note.
In Section 2 we fix the notation. For the proof of the main theorem, we initially consider
the stationary Stokes equations

−Δu+∇p = f in G,
div u = 0 in G,

u = 0 on ∂G.

⎫⎬⎭ (1.3)

Then using the stream function u =

(
−∂2φ
∂1φ

)
and applying curl u = ∂2u1 − ∂1u2 to (1.3)

we get the corresponding bi-Laplacian problem

Δ2φ = F in G,
∂1φ = 0, ∂2φ = 0 on ∂G,

}
(1.4)

where F := curlf = ∂2f1 − ∂1f2.

Our first results concern the solvability of (1.4) in two weak settings: Ŵ−1,p(G) for all

p ∈ (1, 2)∪(2,∞) and Ŵ−2,p(G) for all p ∈ (1,∞)\N , where N ⊂ (1,∞) is a finite set. For
the proof of these two results, we follow the strategy in [4, 7, 9], that is, by employing polar
coordinates and Euler transformation we reduce (1.4) on a wedge domain to a problem on a
layer, see Section 3. Then, to solve the problem on the layer, we use results given in [4]. In
fact, in [4] bi-Laplacian problems on polygonal domains are considered and after localizing
the vertices and transforming them to the layer leads exactly to the transformed problem
of (1.4). Since problem (1.4) on the wedge and its transformed version on the layer are

equivalent, the solvability on the layer implies the well-posedness of (1.4) in Ŵ−1,p(G) for

all p ∈ (1, p) ∪ (2,∞) and in Ŵ−2,p(G) for all p ∈ (1,∞) \ N , see Proposition 5.3 and
Proposition 5.7, respectively. As a consequence, we obtain weak and strong well-posedness
of (1.3) in the underlying setting. This is contained in Theorem 5.4 and Theorem 5.8,
respectively. Based on these results we then can prove Theorem 8.2. This will be proved
in three steps: We first consider the weak formulation of the resolvent problem (1.1) which
is given by

λ(u, v) + (∇u,∇v) = 〈f, v〉
W−1,p

σ ,W 1,p′
0,σ

(v ∈ W 1,p′
0,σ ).

Making use of functional analytic tools and an extrapolation result due to Sneiberg in
the version of [11, Theorem 2.7], we prove that the corresponding Stokes operator Ap is
sectorial in Lp

σ for p ∈ Iκ = ((2+κ)′, 2+κ) and κ > 0 sufficiently small. By this approach

we also deduce that the Stokes resolvent is consistent on (W−1,p
σ )p∈Iκ , see Proposition 6.5
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and Proposition 6.4. Then, in a second step we consider the weak formulation of problem
(1.3) which is

(∇u,∇v) = 〈f, v〉
Ŵ−1,p

σ ,Ŵ 1,p′
0,σ

(v ∈ Ŵ 1,p′
0,σ ). (1.5)

Thanks to Theorem 5.4 and to the consistency of the Stokes resolvent, in Proposition 7.4

we can prove that the solution operator Â−1
p of (1.5) is consistent on (Ŵ 1,p

σ )p∈(1,∞). By

regarding u as the unique solution of −Δu = f−λu ∈ Lp
σ∩Ŵ−1,p

σ , using consistency of Âp

yields that Âpu = Apu = f − λu ∈ Lp
σ ∩ Ŵ−1,p

σ . Since Theorem 5.8 implies the existence
of a unique solution v of −Δv = f − λv ∈ Lp

σ and since Ap is consistent, we can prove
that u = v. Then Theorem 8.2 follows.

2. Notation

Throughout this note we will use standard notation. The norm in a Banach space X
will be denoted by ‖·‖X . Let Y be another Banach space. By L (X,Y ) we denote the class
of all bounded linear operators from X to Y , whereas Lis(X,Y ) stands for its subclass of
isomorphisms, and we write L (X), Lis(X) in case of X = Y . The (abstract) topological
dual is defined as X ′ = L (X,C). Its elements are given by linear continuous functionals

� : X → C, x �→ �(x),

and the norm on X ′ is given as

‖�‖X′ = sup
0 �=x∈X

|�(x)|
‖x‖X

.

For a linear operator A in X we denote its domain by D(A). Its spectrum is given as

σ(A) and its resolvent set as ρ(A). We say that the operator A is sectorial if D(A) =

R(A) = X, (0,∞) ⊂ ρ(−A) and the family (λ(λ+A)−1)λ>0 is uniformly bounded. By φA

we denote the corresponding spectral angle.

Let A : D(A) ⊂ X → X be a closed, densely defined operator on a Banach space X.
Then we denote by

A′ : D(A′) ⊂ X ′ → X ′

the usual Banach space dual operator of A and by

A# : X ′ → D(A)′

the dual operator of A, when A is regarded as a bounded operator from D(A) to X.

Let Ω ⊂ R2 be a domain. We set C∞
c (Ω) := {u ∈ C∞(Ω) : supp(u) ⊂⊂ Ω} and

C∞
c,σ(Ω) := {u ∈ C∞

c (Ω,R2) : div u = 0} where supp(u) is the support of u. Let X
be a Banach space and let 1 ≤ p ≤ ∞. We denote by Lp(Ω, X) the X-valued Borel-

Lebesgue space. The space of solenoidal fields in Lp(Ω) is defined by Lp
σ(Ω) := C∞

c,σ(Ω)

for 1 < p < ∞. Let n ∈ N, we define W k,p(Ω,Rn) to be the Sobolev space of order

k ∈ N0 and W 0,p := Lp. We denote by W k,p
0 (Ω,Rn) the closure of C∞

c (Ω,Rn) in the space
W k,p(Ω,Rn). We will also need the homogeneous Sobolev space

Ŵ k,p(Ω,Rn) := {u ∈ L1
loc(Ω,R

n) : ∂αu ∈ Lp(Ω,Rn), |α| = k}
for n ∈ N, with seminorm

‖u‖
Ŵk,p := ‖u‖

Ŵk,p(Ω,Rn)
:=

∑
|α|=k

‖∂αu‖Lp(Ω,Rn).
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By Ŵ k,p
0 (Ω,Rn) we denote the completion of (C∞

c (Ω,Rn), ‖ · ‖
Ŵk,p(Ω,Rn)

). We set

W k,p
0,σ (Ω) := W k,p

0 (Ω,R2) ∩ Lp
σ(Ω) and

Ŵ k,p
0,σ (Ω) :=

{
v ∈ Ŵ k,p

0 (Ω,R2) : div v = 0
}
.

Note that W k,p
0,σ (Ω) equals the completion of (C∞

c,σ(Ω), ‖ · ‖Wk,p(Ω,Rn)) and that Ŵ k,p
0,σ (Ω)

equals the completion of (C∞
c,σ(Ω), ‖ · ‖

Ŵk,p(Ω,Rn)
).

Now, let G ⊂ R2 be the wedge domain defined as in (1.2) and n ∈ {1, 2}. We define the
Kondrat’ev spaces by

Lp
γ(G,Rn) := Lp(G, ργd(x1, x2),R

n), ρ = |(x1, x2)|, γ ∈ R,

and
Km

p,γ(G,Rn) := {u ∈ L1
loc(G,Rn) : ρ|α|−m∂αu ∈ Lp

γ(G,Rn), |α| ≤ m},
where α ∈ N2 denotes a multiindex, γ ∈ R. Then Km

p,γ(G,Rn) equipped with the norm

‖u‖Km
p,γ

:= ‖u‖Km
p,γ(G,Rn) :=

⎛⎝ ∑
|α|≤m

‖ρ|α|−m∂αu‖p
Lp
γ(G,Rn)

⎞⎠1/p

is a Banach space, and we set Km
p (G,Rn) := Km

p,0(G,Rn). The weighted homogeneous
Sobolev space is defined by

Ŵ k,p
γ (G) := {u ∈ L1

loc(G) : ∂αu ∈ Lp
γ(G), |α| = k},

with the seminorm

‖u‖
Ŵk,p

γ (G,Rn)
:= ‖u‖

Ŵk,p
γ

:=
∑
|α|=k

‖∂αu‖Lp
γ(G,Rn)

where γ ∈ R. We define Ŵ k,p
0,γ (G,Rn) to be the completion of (C∞

c (G,Rn), ‖ · ‖
Ŵk,p

γ (G,Rn)
)

for n ∈ {1, 2}.

3. Transformation of the problem

In this chapter we consider

Δ2φ = F in G,
∂x1φ = 0, ∂x2φ = 0 on ∂G,

}
(3.1)

on a two-dimensional wedge domain G and transform it onto a layer domain of the form
Ω := R× I, where I := (0, θ0) and θ0 denotes the angle of the wedge G. To this end, we
apply a standard procedure as utilized also in [4, 9, 7]: In the first step we introduce polar
coordinates to transform the problem on a semi-layer; by employing Euler transformation
the latter problem is transformed on a layer; finally we rescale the appearing terms such
that we can work in the transformed setting in unweighted W−k,p-spaces for k ∈ {1, 2}.

We write the inverse of the transform to polar coordinates as

ψP : R+ × I → G, (r, θ) �→ (r cos θ, r sin θ) = (x1, x2).

Then we apply the Euler transformation r = ex in radial direction and write by an abuse
of notation x ∈ R for the new variable. We set

ψE : Ω → R+ × I, (x, θ) �→ (ex, θ) =: (r, θ).

It is not difficult to see that
ψ := ψP ◦ ψE : Ω → G
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is a diffeomorphism. We set

Ψφ := φ ◦ ψ and Ψ−1ϕ := ϕ ◦ ψ−1.

For α ∈ R we denote the multiplication operator by

Mαϕ := eαxϕ. (3.2)

Analogously to [9] we define pull-back and push-forward as follows:

Definition 3.1. Let βp ∈ R be given, Mα, Ψ defined as above. Suppose φ is the solution
of (3.1). Then pull-back and its inverse push-forward are defined through

ϕ := Θ∗
pφ := M−βpΨφ and φ = Θp

∗ϕ = Ψ−1Mβpϕ, (3.3)

respectively.

Let φ be the solution of problem (3.1), βp ∈ R. Lemma B.4 implies for i = 2 that the
transformed bi-Laplacian reads as

Θ∗
p(Δ

2φ) = e−4x(rβp−2(∂x) + ∂2
θ )

(
rβp(∂x) + ∂2

θ

)
ϕ (3.4)

with the polynomial

ra(∂x) := (∂x + a)2 (a ∈ R). (3.5)

In order to absorb the factor e−4x in (3.4), we set

g := Θ̃∗
pF := e4xΘ∗

pF (3.6)

with inverse (Θ̃∗
p)

−1 = Θ̃p
∗.

Let 1 < p < ∞. In this note we will first show that problem (3.1) is well-posed in two

weak settings, i.e., we consider (3.1) in Ŵ−1,p(G) and Ŵ−2,p(G), respectively. Here the
choice of βp plays an important role. We set

βp := βp,−k = 4− k − 2 + γ

p
(k ∈ {1, 2}, γ ∈ R). (3.7)

We notice that by this choice of βp, pull-back and push-forward depend explicitly on p
and k, i.e., the corresponding families are neither consistent in p nor in k. To indicate the

dependence of βp,k on k we put a sub- or superscript on Θ̃∗
p,k := Θ̃∗

p and Θ̃p,k
∗ := Θ̃p

∗ and

the same for Θ∗
p,k := Θ∗

p and Θp,k
∗ := Θp

∗. To work in the unweighted spaces W−1,p(Ω)

and W−2,p(Ω) we choose k = 1 and k = 2, respectively. Then Lemma B.3 (5) implies for
k = 1 that

Θ̃∗
p = Θ̃∗

p,1 ∈ Lis(Ŵ
−1,p
γ (G),W−1,p(Ω)),

and for k = 2 that
Θ̃∗

p = Θ̃∗
p,2 ∈ Lis(Ŵ

−2,p
γ (G),W−2,p(Ω)).

Next, we transform the boundary conditions of (3.1) from the wedge onto the layer.
From

∂x1φ = 0, ∂x2φ = 0 on ∂G,

we deduce
βpϕ+ ∂xϕ = 0, ∂θϕ = 0 on ∂Ω = R× {0, θ0}. (3.8)

Since the general solution of the ODE βpϕ+ ∂xϕ = 0 is ϕ(x, θ) = α(θ)e−βpx for all x ∈ R

and θ ∈ {0, θ0} with α(θ) constant in x, it follows for ϕ ∈ Lp(∂Ω) that α(θ) = 0 for
θ ∈ {0, θ0} and hence ϕ = 0 on ∂Ω. Then (3.8) is equivalent to

∂θϕ = 0, ϕ = 0 on ∂Ω = R× {0, θ0}.
The transformed problem on Ω = R× I is then given as
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(rβp−2(∂x) + ∂2
θ )

(
rβp(∂x) + ∂2

θ

)
ϕ = g in Ω,

∂θϕ = 0, ϕ = 0 on ∂Ω.

}
(3.9)

4. Weak regularity of the transformed problem

Here we consider problem (3.9). Let 1 < p < ∞. We introduce the operator which is
associated to problem (3.9). We define

Tp,−kϕ := T
a−k
p T

b−k
p ϕ :=

(
∂2
θ + ra−k

(∂x)
) (

∂2
θ + rb−k

(∂x)
)
ϕ

with a−k := βp,−k − 2, b−k := βp,−k and with βp,−k be defined as in (3.7) for k ∈ {1, 2}.
Utilizing results derived in [4], we will prove optimal regularity for problem (3.9) in

the two weak settings and for certain ranges of p. This is reduced to invertibility of the
operator

Tp,−k : D(Tp,−k) → W−k,p(Ω) (4.1)

for k ∈ {1, 2} with

D(Tp,−2) := W 2,p
0 (Ω) and D(Tp,−1) := W 3,p(Ω) ∩W 2,p

0 (Ω).

4.1. Weak well-posedness of the transformed problem in W−2,p(Ω). Here we show
invertibility of (4.1) for k = 2. Note that this case is not explicitly included in [4]. However,
it can be reduced to results in [4] and a duality and an interpolation argument. In fact,
utilizing [4, Lemma 7.3.1.3, Theorem 7.3.1.8] we will first show strong optimal regularity
of

T
±a−2
p T

±b−2
p ϕ = g in Ω,

∂θϕ = 0, ϕ = 0 on ∂Ω.

}
(4.2)

To be precise, we prove that T
±a−2
p T

±b−2
p : D(T

±a−2
p T

±b−2
p ) → Lp(Ω) is isomorphic with

D(T±a−2
p T±b−2

p ) = W 4,p(Ω) ∩W 2,p
0 (Ω)

for all p ∈ (1,∞) such that the condition

the characteristic equation
sinh2(λθ0) = λ2 sin2(θ0)

has no solution on the line
Imλ = −(1− (2 + γ)/p), λ ∈ C, γ ∈ R,

⎫⎪⎪⎬⎪⎪⎭
is satisfied. Then we show that

T a−2
p T b−2

p ⊂ (T
−a−2

p′ T
−b−2

p′ )# ∈ Lis

(
Lp(Ω), D(T

−a−2

p′ T
−b−2

p′ )′
)
.

Finally, we apply an interpolation argument.

We start by applying partial Fourier transform in x to the operator T
±a−2
p T

±b−2
p which

yields the following representations.

Lemma 4.1. Let a−2 = βp,−2 − 2 and b−2 = βp,−2. Then we have

F
(
T a−2
p T b−2

p ϕ
)
(τ, θ) =

(
(E4

+ + 2E2
+ + 1) + (2− 2E2

+)∂
2
θ + ∂4

θ

)
ϕ̂(τ, θ)

F
(
T−a−2
p T−b−2

p ϕ
)
(τ, θ) =

(
(E4

− + 2E2
− + 1) + (2− 2E2

−)∂
2
θ + ∂4

θ

)
ϕ̂(τ, θ)

with E± := ±τ + i(−βp,−2 + 1) for τ ∈ R.
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Proof. Since the following calculation does not depend on βp,−2, i.e. it is fulfilled for all
βp ∈ R we write in the following βp instead of βp,−2, a for a−2 and b for b−2. It is straight
forward to compute

T a
p T

b
pϕ =

(
(∂x + βp)

4 − 4(∂x + βp)
3 + 4(∂x + βp)

2
)
ϕ

+
(
(∂x + βp − 2)2 + (∂x + βp)

2
)
∂2
θϕ+ ∂4

θϕ.

Applying partial Fourier transform in x to the first term of the T a
p T

b
p operator in x and

substituting E+ = τ + i(−βp + 1) ⇔ iτ + βp = iE+ + 1 we get

F
((
(∂x + βp)

4 − 4(∂x + βp)
3 + 4(∂x + βp)

2
)
ϕ
)
(τ, θ)

=
(
(iτ + βp)

4 − 4(iτ + βp)
3 + 4(iτ + βp)

2
)
ϕ̂(τ, θ)

= (E4
+ + 2E2

+ + 1)ϕ̂(τ, θ).

With the same calculation as above we have for the second term of T a
p T

b
p

F
((
(∂x + βp − 2)2 + (∂x + βp)

2
)
∂2
θϕ

)
(τ, θ)

=
(
2(iE+ + 1)2 − 4(iE+ + 1) + 4

)
∂2
θ ϕ̂(τ, θ)

= (2− 2E2
+)∂

2
θ ϕ̂(τ, θ).

Summarizing the computations, the first assertion follows for βp := βp,−2, a := a−2 and
b := b−2.

The second assertion follows analogously to the first one. Applying the Fourier trans-
form to

T−a
p T−b

p ϕ =
(
(∂x − βp)

4 − 4(∂x − βp)
3 + 4(∂x − βp)

2
)
ϕ

+
(
(∂x − βp + 2)2 + (∂x − βp)

2
)
∂2
θϕ+ ∂4

θϕ

and substituting E− = −τ + i(−βp + 1) ⇔ iτ − βp = iE− − 1 we get the second assertion
for βp := βp,−2, a := a−2 and b := b−2. �

As a consequence, formally ϕ̂(τ, θ) is a solution of(
(E4

± + 2E2
± + 1) + (2− 2E2

±)∂
2
θ + ∂4

θ

)
ϕ̂ = ĝ in (0, θ0),

∂θϕ̂ = 0, ϕ̂ = 0 on {0, θ0}

}
(4.3)

for τ ∈ R if and only if ϕ solves (4.2). Now, [4, Lemma 7.3.1.1] states that (4.3) is uniquely
solvable if and only if the following condition is satisfied:

the characteristic equation
sinh2(λθ0) = λ2 sin2(θ0)

has no solution on the line
Imλ = −(3− (2 + γ)/p− k) = −βp,−(k+1), λ ∈ C, γ ∈ R.

⎫⎪⎪⎬⎪⎪⎭ (4.4)

In Appendix C this condition is analyzed for the case γ = 0, in particular concerning the
values of the involved parameters interesting for the purposes considered in this note.

Remark 4.2. a) Note that the k in [4, Lemma 7.3.1.1], which we will denote by k′ in the
following, corresponds to −k here.

b) Also observe that in E± = ±τ + i(−βp,−2 + 1) only the sign of the real part changes
and that p only enters the imaginary part. Thus, the assumptions of [4, Lemma 7.3.1.1],

remain fulfilled for E+ and E− with βp,−2 = 2 − 2+γ
p and for all p ∈ (1,∞) such that

condition (4.4) is satisfied.

c) In [4, Lemma 7.3.1.3, Theorem 7.3.1.8] the k′ defined in Imλ = −(k′ + 1 + 2/q) =

−(3 − 2/p + k′) corresponds to the k′ of the Sobolev space W k′+4,p(Ω). Since in our
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setting, [4, Lemma 7.3.1.1] remains fulfilled for E+, E−, all p ∈ (1,∞) and βp,−2 such that
condition (4.4) is fulfilled, i.e. for k = 2, we can use [4, Lemma 7.3.1.3, Theorem 7.3.1.8]

for βp,−2 and the space W k′+4,p(Ω) with k′ = 0.

In [4, Chapter 7] bi-Laplacian problems on polygonal domains are considered. Localizing
the vertices and transforming them onto a layer leads exactly to problem (4.3). The

invertibility of T
±a−2
p T

±b−2
p for all p ∈ (1,∞) such that condition (4.4) is satisfied therefore

follows by [4, Lemma 7.3.1.3, Theorem 7.3.1.8]:

Proposition 4.3. Let p ∈ (1,∞) and γ ∈ R such that condition (4.4) is satisfied. For

a−2 = βp,−2 − 2, b−2 = βp,−2 with βp,−2 = 2− 2+γ
p we have

T±a−2
p T±b−2

p ∈ Lis

(
W 4,p(Ω) ∩W 2,p

0 (Ω), Lp(Ω)
)
.

Proof. [4, Theorem 7.3.1.8] and Remark 4.2 imply that

T±a−2
p T±b−2

p ∈ Lis

(
W 4,p(Ω) ∩W 2,p

0 (Ω), Lp(Ω)
)

if and only if the characteristic equation sinh2(λθ0) = λ2 sin2(θ0) has no solution λ ∈ C

with Im λ = −(1− 2+γ
p ). This equation is part of the solution formula from the operator

of problem (4.3) which has been constructed in [4, Chapter 7]. See [4, Lemma 4.2.1.3 and
Theorem 7.3.1.8] for details of its proof. �
Lemma 4.4. Let p ∈ (1,∞) and γ ∈ R such that condition (4.4) is satisfied and 1 = 1

p+
1
p′ .

Let a−2 = βp,−2 − 2, b−2 = βp,−2. Then

T a−2
p T b−2

p ⊂ (T
−a−2

p′ T
−b−2

p′ )# ∈ Lis

(
Lp(Ω),

(
W 4,p′(Ω) ∩W 2,p′

0 (Ω)
)′)

.

Proof. Employing the fact that C∞
c (Ω) ⊂ W 2,r

0 (Ω) once for r = p and once for r = p′, we
see that 〈

u, T
−a−2

p′ T
−b−2

p′ v
〉
p,p′

=
〈
T a−2
p u, T

−b−2

p′ v
〉
p,p′

=
〈
T b−2
p T a−2

p u, v
〉
p,p′

for all v ∈ W 4,p′(Ω)∩W 2,p′
0 (Ω) and u ∈ W 4,p(Ω)∩W 2,p

0 (Ω). Since T
b−2
p and T

a−2
p commute

this yields〈
(T

−a−2

p′ T
−b−2

p′ )#u, v
〉
p,p′

=
〈
u, T

−a−2

p′ T
−b−2

p′ v
〉
p,p′

=
〈
T a−2
p T b−2

p u, v
〉
p,p′

.

Then Proposition 4.3 gives the assertion. �

Note that D(T
a−2
p T

b−2
p ) = W 4,p(Ω)∩W 2,p

0 (Ω) lies dense in Lp(Ω). Thus (T
−a−2

p′ T
−b−2

p′ )#

represents the unique extension of T
a−2
p T

b−2
p to Lp(Ω). By this fact we write T

a−2
p T

b−2
p

also for the operator (T
−a−2

p′ T
−b−2

p′ )# in the sequel.

Theorem 4.5. Let p ∈ (1,∞) and γ ∈ R such that condition (4.4) is satisfied, a−2 =

βp,−2 − 2 and b−2 = βp,−2 with βp,−2 = 2− 2+γ
p . Then

Tp,−2 = T a−2
p T b−2

p ∈ Lis

(
W 2,p

0 (Ω),W−2,p(Ω)
)
.

Proof. Proposition D.1 and Corollary D.2 imply that

W 2,p
0 (Ω) =

[
W 4,p(Ω) ∩W 2,p

0 (Ω), Lp(Ω)
]

1
2

W−2,p(Ω) =

[
Lp(Ω),

(
W 4,p′(Ω) ∩W 2,p′

0 (Ω)
)′]

1
2

.
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Proposition 4.3, Lemma 4.4 and complex interpolation then give

T a−2
p T b−2

p ∈ Lis

(
W 2,p

0 (Ω),W−2,p(Ω)
)

for all p ∈ (1,∞) such that condition (4.4) is satisfied. �

4.2. Weak well-posedness of the transformed problem in W−1,p(Ω). Here we show
invertibility of (4.1) for k = 1. This follows directly from results given in [4].

Theorem 4.6. Let p ∈ (1,∞) and γ ∈ R such that condition (4.4) is satisfied and

βp,−1 = 3− 2+γ
p . Then

Tp,−1 ∈ Lis

(
W 3,p(Ω) ∩W 2,p

0 (Ω),W−1,p(Ω)
)
.

Proof. Still solvability of (4.3) has to be ensured, this time for

E+ = τ + i(−βp,−1 + 1), τ ∈ R.

Again due to [4, Lemma 7.3.1.3, Theorem 7.3.1.8] the assertion is proved. �

5. Well-posedness of the stationary Stokes equations

5.1. Weak optimal regularity of the stationary Stokes equations in Ŵ−1,p(G,R2).
First we consider the equivalence of the problems (3.1) and (3.9). To this end, we define
the bi-Laplacian on wedge domains as

Bp,2φ := Δ2φ, φ ∈ D(Bp,2) := {η ∈ K2
p,γ(G) : ∂1η = 0, ∂2η = 0 on ∂G}.

Lemma 5.1. Let 1 < p < ∞, βp,−2 = 2 − 2+γ
p and γ ∈ R. Let Θp,2

∗ , Θ̃p,2
∗ , Θ∗

p,2, Θ̃∗
p,2 be

defined as in Section 3. Then we have

Θ̃∗
p,2 ∈ Lis

(
Ŵ−2,p

γ (G),W−2,p(Ω)
)
, Θ∗

p,2 ∈ Lis (D(Bp,2), D(Tp,−2))

where ‖ · ‖D(Bp,2) = ‖ · ‖K2
p,γ(G) and ‖ · ‖D(Tp,−2) = ‖ · ‖W 2,p(Ω). In particular, φ ∈ D(Bp,2)

is the unique solution of (3.1) to the right-hand side F ∈ Ŵ−2,p
γ (G) if and only if ϕ =

Θ∗
p,2φ ∈ D(Tp,−2) is the unique solution of (3.9) to the right-hand side g = Θ̃∗

p,2F .

Proof. The assertion for Θ̃∗
p,2 follows directly from Lemma B.3(5) for k = 2. Furthermore,

Lemma B.3(1) for k = 2 and l = 4 in combination with the transformation of the boundary
conditions performed at the end of Section 3 show that

Θ∗
p,2 ∈ L (D(Bp,2), D(Tp,−2)) .

Analogously, we obtain
Θp,2

∗ ∈ L (D(Tp,−2), D(Bp,2)) .

Since Θ∗
p,2 is the inverse of Θp,2

∗ the result is proved. �

Remark 5.2. For βp = 2− 2+γ
p with γ ∈ R condition (4.4) is fulfilled if the characteristic

equation sinh2(λθ0) = λ2 sin2(θ0) has no solution λ ∈ C on the line Imλ = −(1 − 2+γ
p ).

For the case γ = 0, i.e. Kondrat’ev weight ργ = 1, Corollary C.5 implies that condition
(4.4) is satisfied for all p ∈ (1, 2) ∪ (2,∞).

Theorem 4.5, Lemma 5.1 and the last remark imply the following result.

Proposition 5.3. Let 1 < p < ∞, p 
= 2, θ0 ∈ (0, π) and ρ = |(x1, x2)|. Then equation

(3.1) is for each F ∈ Ŵ−2,p(G) uniquely solvable with a solution φ satisfying

ρ|α|−2∂αφ ∈ Lp(G) (|α| ≤ 2).
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As a consequence we obtain weak regularity for the stationary Stokes equation (1.3).

Theorem 5.4. Let 1 < p < ∞, p 
= 2 and θ0 ∈ (0, π). Then for each f ∈ Ŵ−1,p(G,R2)
there exists a unique solution

(u,∇p) ∈
{
v ∈ K1

p(G,R2) : div v = 0 in G, v = 0 on ∂G
}
× Ŵ−1,p(G,R2)

of (1.3).

Proof. For f ∈ Ŵ−1,p(G,R2) we obviously have F = curl f ∈ Ŵ−2,p(G). Let φ ∈ D(Bp,2)
be the unique solution of (3.1) to the right-hand side F given by Proposition 5.3. Setting

u =

(
−∂2φ
∂1φ

)
, we obtain div u = 0 in G, u = 0 on ∂G and

ρ|α|−1∂αu ∈ Lp(G,R2) (|α| ≤ 1).

Next, we observe that

curl (−Δu− f) = Δ2φ− F = 0

in the sense of distributions. The Poincaré lemma, see e.g. [2, Theorem VIII.3.8], yields

that for ψ ∈ C∞
c,σ(G,R2) we find an η ∈ C∞

c (G) such that curl ′η =

(
−∂2η
∂1η

)
= ψ. This

yields

〈 −Δu− f, ψ〉D ′,D = 〈curl (−Δu− f), η〉D ′,D = 0 (ψ ∈ C∞
c,σ(G,R2)).

From the theorem of de Rham (see e.g. [3, Lemma III.1.1]) we obtain a p ∈ D ′(G) such
that

−Δu− f = ∇p in D ′(G,R2).

Since the left-hand side belongs to Ŵ−1,p(G,R2) so does the right-hand side. Hence, we
proved existence of a solution as claimed.

It remains to prove its uniqueness. So, we assume that (u,∇p) in the given regularity
classes solves (1.3). Let (hk)k∈N be a mollifier and set

uk := hk ∗ u ∈ C∞(G,R2) ∩ Ŵ 1,p(G,R2).

Then we have div uk = 0 and uk → u in Ŵ 1,p(G,R2). Hence, by the Poincaré lemma, there

is a φk ∈ C∞(G) such that uk =

(
−∂2φk

∂1φk

)
. Since uk converges in Ŵ 1,p(G,R2) we see

that φk converges in Ŵ 2,p(G). Thus, there is a limit φ ∈ Ŵ 2,p(G) such that u =

(
−∂2φ
∂1φ

)
.

Since u vanishes on the boundary, we also have ∇φ = 0 on ∂G. So, applying curl to
(1.3) we see that φ solves (3.1) with homogeneous right-hand side. Since such a solution
is unique by Proposition 5.3, we conclude φ = 0. This implies u = 0 and then by equation
(1.3) also ∇p = 0. Hence, the theorem is proved. �

5.2. Strong optimal regularity of the stationary Stokes equations in Lp(G,R2).
At first we consider equivalences of the problems (3.1) and (3.9) in W−1,p. We define
Bp,1φ := Δ2φ on the wedge domain as

Bp,1φ := Δ2φ, φ ∈ D(Bp,1) := {η ∈ K3
p,γ(G) : ∂1η = 0, ∂2η = 0 on ∂G}.

Lemma 5.5. Let 1 < p < ∞, βp,−1 = 3 − 2+γ
p and γ ∈ R. Let Θp,1

∗ , Θ̃p,1
∗ , Θ∗

p,1, Θ̃∗
p,1 be

defined as in Section 3. Then we have

Θ̃∗
p,1 ∈ Lis

(
Ŵ−1,p

γ (G),W−1,p(Ω)
)
, Θ∗

p,1 ∈ Lis (D(Bp,1), D(Tp,−1))
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where ‖ · ‖D(Bp,1) = ‖ · ‖K3
p,γ(G) and ‖ · ‖D(Tp,−1) = ‖ · ‖W 3,p(Ω).

In particular, φ ∈ D(Bp,1) is the unique solution of (3.1) to the right-hand side F ∈
Ŵ−1,p

γ (G) if and only if ϕ = Θ∗
p,1φ ∈ D(Tp,−1) is the unique solution of (3.9) to the

right-hand side g = Θ̃∗
p,1F .

Proof. The fact that Θ̃∗
p,1 and Θ∗

p,1 are isomorphisms as claimed follows directly from

Lemma B.3(1) and (5) with k = 1 and l = 4. The remaining assertions follow by the same
arguments as in the proof of Lemma 5.1. �

Remark 5.6. For βp = 3− 2+γ
p with γ ∈ R condition (4.4) is fulfilled if the characteristic

equation sinh2(λθ0) = λ2 sin2(θ0) has no solution λ ∈ C on the line Imλ = −(2 − 2+γ
p ).

For the case γ = 0, i.e. Kondrat’ev weight ργ = 1, Corollary C.3 implies that there is a
finite set N ⊂ (1,∞) such that condition (4.4) is satisfied for all p ∈ (1,∞) \N .

Theorem 4.6, Lemma 5.5 and the last remark imply the following result

Proposition 5.7. Let θ0 ∈ (0, π) and ρ = |(x1, x2)|. There is a finite set N ⊂ (1,∞)
such that for every p ∈ (1,∞) \ N we have the following: Equation (3.1) is for each

f ∈ Ŵ−1,p(G) uniquely solvable with a solution φ satisfying

ρ|α|−3∂αφ ∈ Lp(G) (|α| ≤ 3).

Now, we can show strong optimal regularity of the stationary Stokes equations (1.3) for
the same range of p.

Theorem 5.8. Let θ0 ∈ (0, π). There is a finite set N ⊂ (1,∞) such that for every
p ∈ (1,∞) \ N we have the following: For each f ∈ Lp(G,R2) there exists a unique
solution

(u,∇p) ∈
{
v ∈ K2

p(G,R2) : div v = 0 in G, v = 0 on ∂G
}
× Lp(G,R2)

of (1.3).

Proof. The proof goes along the lines of the proof of Theorem 5.4. �

6. Sectoriality in a neighborhood of p = 2

Here we consider the Stokes resolvent problem

λu−Δu+∇p = f in G,
div u = 0 in G,

u = 0 on ∂G.

⎫⎬⎭ (6.1)

In the sequel we always consider 1 < p < ∞. Its weak formulation reads

λ(u, v) + (∇u,∇v) = 〈f, v〉
W−1,p

σ ,W 1,p′
0,σ

(v ∈ W 1,p′
0,σ ).

Since in this section the domain is always a wedge G, we drop it in the notation of the
space, i.e., we write Lp, W k,p, etc.

To recover the pressure once a solution of the weak formulation is given, the following
lemma will be helpful.

Lemma 6.1. We have (H1
0,σ)

⊥ = ∇L2.
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Proof. We prove H1
0,σ = (∇L2)⊥. Then the assertion follows by reflexivity. It is obvious

that H1
0,σ ⊂ (∇L2)⊥. Conversely, for w ∈ H1

0 such that

(w,∇p) = 0 (p ∈ L2),

we obtain w ∈ L2
σ. The fact that H1

0,σ = H1
0 ∩ L2

σ implies the result. �

In the lemma below, we will consider (6.1) also with inhomogeneous divergence condition
div u = g. To this end, we define the Banach space

Rp := div (W 1,p
0 ), ‖g‖Rp := inf{‖w‖

W 1,p
0

; g = divw}.
Furthermore, we will utilize the following observation: since the embedding operator J =

Jp′ : W
1,p′
0,σ → W 1,p′

0 is bounded, injective, and has closed range, its dual operator

J ′ = J ′
p : W

−1,p → W−1,p
σ (6.2)

is bounded and surjective, where W−1,p
σ := (W 1,p′

0,σ )′. It is also clear that (Jp)1<p<∞ and

(J ′
p)1<p<∞ are consistent scales.

Lemma 6.2. Let ψ ∈ (0, π). Let λ ∈ Σπ−ψ. There is a κ = κ(λ) > 0 such that for

p ∈ Iκ := ((2 + κ)′, 2 + κ) (6.1) is well-posed. Indeed, for every f ∈ W−1,p
σ there is a

unique solution (u, p) ∈ W 1,p
0,σ × Lp to (6.1). Furthermore, if Sp : f �→ (u, p) denotes

the solution operator to (6.1), then (Sp)p∈Iκ is consistent on (W−1,p)p∈Iκ and uniformly
bounded w.r.t. p ∈ Iκ.

Proof. Our aim is to apply the Sneiberg type extrapolation result in the form given in [11,
Theorem 2.7]. First, pick r ∈ (4,∞) and set

Fp := [Rr′ , Rr]s ,
1

p
= (1− s)

1

r′
+ s

1

r
, s ∈ [0, 1].

By the reiteration theorem for the complex interpolation functor, see e.g. [15, Re-

mark 1.9.3/1], (Fp)p∈(r′,r) is a complex interpolation scale. Thus,
(
W 1,p

0 × Lp
)
p∈(r′,r)

and
(
W−1,p × Fp

)
p∈(r′,r) are complex interpolation scales, too. It is also obvious, that

Lp : W
1,p
0 × Lp → W−1,p × Fp, Lp(u, p) :=

(
(λ−Δ)u+∇p

div u

)
is bounded.

Next, we show that for λ ∈ Σπ−ψ the map L2 is isomorphic. For (f, g) ∈ H−1×F2 first
choose w ∈ H1

0 such that divw = g. Note that

J ′h := J ′(f − (λ−Δ)w) ∈ H−1
σ = (H1

0,σ)
′.

By standard Hilbert space arguments we hence obtain a unique v ∈ H1
0,σ such that

λ(v, ϕ) + (∇v,∇ϕ) = 〈J ′h, ϕ〉H−1
σ ,H1

0,σ
= 〈h, Jϕ〉H−1,H1

0
(ϕ ∈ H1

0,σ).

This implies
〈(λ−Δ)Jv − h, Jϕ〉H−1,H1

0
= 0 (ϕ ∈ H1

0,σ).

Thanks to Lemma 6.1 there is a p ∈ L2 such that

(λ−Δ)Jv − h = −∇p in H−1.

Thus, setting u := Jv + w, we conclude L2(u, p) = (f, g). It is obvious that L2(u, p) = 0
implies (u, p) = (0, 0). Consequently,

L2 ∈ Lis

(
H1

0 × L2, H−1 × F2

)
.
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Due to [11, Theorem 2.7] there is a κ(λ) > 0 such that

Lp ∈ Lis

(
W 1,p

0 × Lp, W−1,p × Fp

)
(p ∈ Iκ).

Note that consistency and uniform boundedness w.r.t. p ∈ Iκ of (L−1
p )p∈Iκ on

(
W−1,p ×

Fp

)
p∈Iκ also follow from the results in [11]. Thus, (Sp)p∈Iκ is consistent and uniformly

bounded, too, as claimed. �

From Lemma 6.2 we have

Corollary 6.3. Let ψ ∈ (0, π). Then there is a κ = κ(ψ) > 0 such that for p ∈ Iκ =
((2 + κ)′, (2 + κ)) and all λ ∈ Σπ−ψ with |λ| = 1 (6.1) is well-posed. Indeed, for every

f ∈ W−1,p
σ and every λ ∈ Σπ−ψ with |λ| = 1 there is a unique solution (u, p) ∈ W 1,p

0,σ×Lp to

(6.1). Furthermore, if Sp : f �→ (u, p) denotes the solution operator to (6.1), then (Sp)p∈Iκ
is consistent on (W−1,p)p∈Iκ.

Proof. Let ψ′ := ψ/2. For λ ∈ Σπ−ψ′ choose κ(λ) > 0 according to Lemma 6.2. Let Ap

be the operator defined by the left-hand side of (6.1) in W−1,p
σ with domain D(Ap) =

W 1,p
0,σ × W−1,p

σ . Then we have that λ ∈ ρ(−Ap) for all p ∈ Iκ(λ). Since ρ(−Ap) is open

and since (λ+Ap)
−1 is uniformly bounded w.r.t. p ∈ Iκ(λ), there exists an ε(λ) > 0 such

that Bε(λ)(λ) ⊂ ρ(−Ap) for all p ∈ Iκ(λ). The set M := {λ ∈ Σπ−ψ : |λ| = 1} ⊂ Σπ−ψ′

is compact with M ⊂ ⋃
λ∈Σπ−ψ′ Bε(λ)(λ). Now choose λ1, . . . , λm ∈ Σπ−ψ′ such that M ⊂⋃m

k=1Bε(λk)(λk). We set I :=
⋂m

k=1 Iκ(λk) = Iκ with κ = min{κ(λk)} > 0 independent of
λ ∈ M . Then λ ∈ ρ(−Ap) for all λ ∈ M and all p ∈ Iκ. �

We define the Stokes operator in W−1,p
σ = (W 1,p′

0,σ )′ by

Ap : D−1(Ap) := W 1,p
0,σ → W−1,p

σ , u �→ Apu := (∇u,∇·).

From Corollary 6.3 we derive

Corollary 6.4. Let ψ ∈ (0, π) and p ∈ Iκ. Then Kψ :=
{
λ ∈ Σπ−ψ : |λ| = 1

}
⊂ ρ(−Ap)

and for every λ ∈ Kψ the scale
(
(λ+Ap)

−1
)
p∈Iκ is consistent on (W−1,p

σ )p∈Iκ.

Proof. Note that by Corollary 6.3 we can choose a uniform κ > 0 for all λ ∈ Kψ. For

f ∈ W−1,p
σ , by surjectivity of J ′ we find a h ∈ W−1,p such that f = J ′h. Setting

(u, p) := Sph ∈ W 1,p
0,σ × Lp, from this we infer

λ(u, ϕ) + (∇u,∇ϕ) = 〈h, Jϕ〉
W−1,p,W 1,p′

0

= 〈J ′h, ϕ〉
W−1,p

σ ,W 1,p′
0,σ

= 〈f, ϕ〉
W−1,p

σ ,W 1,p′
0,σ

(ϕ ∈ W 1,p′
0,σ ).

This shows that the Stokes resolvent (λ + Ap)
−1 ∈ L (W−1,p

σ ) in −λ ∈ Kψ exists. In
particular, we have

(λ+Ap)
−1J ′h = (λ+Ap)

−1f = u = (Sph)
1.

By the properties of J and J ′ it is clear that for f ∈ W−1,p
σ ∩W−1,r

σ we find h ∈ W−1,p ∩
W−1,r such that f = J ′h. Thus, the consistency of the Stokes resolvent follows from the
consistency of (Sp)p∈Iκ given by Corollary 6.3. �
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For fixed λ0 ∈ ρ(−Ap) we set

D(Ap) := (λ0 +Ap)
−1(Lp

σ).

The restriction of Ap on D−1(Ap) to D(Ap) we again denote by Ap. For later purposes
also note that

W 1,p
0,σ

d
↪→ Ŵ 1,p

0,σ ⇒ Ŵ−1,p
σ := (Ŵ 1,p′

0,σ )′
d
↪→ W−1,p

σ . (6.3)

Furthermore, we define the Stokes operator on homogeneous spaces as

Âp : Ŵ
1,p
0,σ → Ŵ−1,p

σ , u �→ Âpu := (∇u,∇·). (6.4)

Then obviously Âp ∈ L
(
Ŵ 1,p

0,σ , Ŵ
−1,p
σ

)
and for u ∈ W 1,p

0,σ we obtain

〈Âpu, ϕ〉Ŵ−1,p
σ ,Ŵ 1,p′

0,σ

= (∇u,∇ϕ) = 〈Apu, ϕ〉W−1,p
σ ,W 1,p′

0,σ

(ϕ ∈ W 1,p′
0,σ ),

hence Ap ⊂ Âp. Corollary 6.4 and a scaling argument result in

Proposition 6.5. The Stokes operator Ap : D(Ap) → Lp
σ is sectorial on Lp

σ with spectral
angle φAp = 0 for p ∈ Iκ. In addition, we have

sup
λ∈Σπ−ψ

(
‖λ(λ+Ap)

−1‖
L (Ŵ−1,p

σ )
+ ‖Ap(λ+Ap)

−1‖
L (Ŵ−1,p

σ )

)
< ∞

for ψ ∈ (0, π).

Proof. Thanks to Corollary 6.3 Kψ lies in the resolvent set of −Ap in W−1,p
σ and we obtain

‖(λ+Ap)
−1f‖p ≤ ‖(λ+Ap)

−1f‖
W 1,p

0,σ
≤ C(λ)‖f‖

W−1,p
σ

≤ C(λ)‖f‖p (f ∈ Lp
σ, λ ∈ Kψ).

Thus, the resolvent of Ap on Lp
σ in λ ∈ Kψ exists. The fact that

Kψ ⊂ ρ(−Ap) � λ �→ (λ+Ap)
−1 ∈ L (Lp

σ)

is a holomorphic map yields

sup
λ∈Σπ−ψ ,|λ|=1

‖λ(λ+Ap)
−1‖L (Lp

σ)
< ∞.

Utilizing the fact that a wedge is scaling invariant, a scaling argument gives the claimed
sectoriality on Lp

σ.

Taking into account (6.3) and the outcome of the lines after this fact, for λ ∈ Σπ−ψ we
further calculate

‖Ap(λ+Ap)
−1f‖

Ŵ−1,p
σ

≤ ‖(λ+Ap)
−1f‖

Ŵ 1,p
0,σ

≤ ‖(λ+Ap)
−1f‖

W 1,p
0,σ

≤ C(λ)‖f‖
W−1,p

σ

≤ C(λ)‖f‖
Ŵ−1,p

σ
(f ∈ Lp

σ).

Since Σπ−ψ � λ �→ (λ + Ap)
−1 ∈ L (Ŵ−1,p

σ ) still is holomorphic and by the fact that

Ŵ−1,p
σ is homogeneous the same scaling argument as for Lp

σ yields the second assertion.
The consistency of the family ((λ+Ap)

−1)p∈Iκ for λ ∈ Kψ given by Corollary 6.4 obviously
implies its consistency for every λ ∈ Σπ−ψ. �
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7. Stationary consistency

Consider the stationary Stokes equations (1.3) on the wedge G. Its weak formulation
reads

(∇u,∇v) = 〈f, v〉
Ŵ−1,p

σ ,Ŵ 1,p′
0,σ

(v ∈ Ŵ 1,p′
0,σ ). (7.1)

Note that this can be expressed in terms of the Stokes operator on homogeneous spaces

Âq : Ŵ
1,p
0,σ → Ŵ−1,p

σ , u �→ f as defined in (6.4). From Theorem 5.4 we deduce

Proposition 7.1. For p ∈ (1,∞) we have

Âp ∈ Lis

(
Ŵ 1,p

0,σ , Ŵ
−1,p
σ

)
.

Proof. The case p = 2 follows from standard Hilbert space arguments. For p 
= 2 we set

Fp := Ŵ 1,p
0,σ ∩K1

p . In accordance with (6.2) note that the dual operator

Ĵ ′ = Ĵ ′
p : Ŵ

−1,p → Ŵ−1,p
σ

of the embedding operator Ĵ = Ĵp′ : Ŵ
1,p′
0,σ → Ŵ 1,p′

0 is bounded and surjective. Now, pick

f ∈ Ŵ−1,p
σ and choose h ∈ Ŵ−1,p such that f = Ĵ ′h. From Theorem 5.4 we obtain unique

(u,∇p) ∈ Fp × Ŵ−1,p satisfying (1.3) with right-hand side Ĵ ′h, hence

(∇u,∇v) = 〈h, Jv〉
Ŵ−1,p,Ŵ 1,p′

0

= 〈J ′h, v〉
Ŵ−1,p

σ ,Ŵ 1,p′
0,σ

= 〈f, v〉
Ŵ−1,p

σ ,Ŵ 1,p′
0,σ

(v ∈ Ŵ 1,p′
0,σ ).

So, we have proved

Âp′ ∈ Lis

(
Fp′ , Ŵ

−1,p′
σ

)
.

Dualizing this implies

(Âp′)
′ ∈ Lis

(
Ŵ 1,p

0,σ , F
′
p′
)
.

It is not difficult to see that Âp ⊂ (Âp′)
′. On the other hand, we also have

Âp ∈ L
(
Ŵ 1,p

0,σ , Ŵ
−1,p
σ

)
.

The fact that Fp′
d
↪→ Ŵ 1,p′

0,σ , hence Ŵ−1,p
σ

d
↪→ F ′

p′ , then implies that Fp = Ŵ 1,p
0,σ with

equivalent norms. Thus, the assertion follows also for p 
= 2. �

Remark 7.2. The fact that the norms of Fp and Ŵ 1,p
0,σ are equivalent also follows as a

consequence of the Hardy inequality, which is applicable for p 
= 2.

Lemma 7.3. Let ψ ∈ (0, π) and p ∈ Iκ with Iκ from Corollary 6.3. Then

lim
k→∞

(1/k +Ap)
−1 = Â−1

p in L
(
Ŵ−1,p

σ , Ŵ 1,p
0,σ

)
.

Proof. Pick f ∈ Ŵ−1,p
σ . Thanks to Propositions 6.5 and 7.1 for � ∈ N by the resolvent

identity we obtain

‖(1/(k + �) +Ap)
−1f − (1/k +Ap)

−1f‖
Ŵ 1,p

0,σ

≤ C‖
(
1/(k + �)− 1/k

)
(1/k +Ap)

−1Âp(1/(k + �) +Ap)
−1f‖

Ŵ−1,p
σ

≤ C‖
(
k/(k + �)− 1

)
Ap(1/(k + �) +Ap)

−1f‖
Ŵ−1,p

σ

≤ C‖
(
k/(k + �)− 1

)
f‖

Ŵ−1,p
σ

→ 0 (k → ∞).
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Thus (1/k +Ap)
−1f → v in Ŵ 1,p

0,σ . The fact that Âp ∈ L
(
Ŵ 1,p

0,σ , Ŵ
−1,p
σ

)
yields

Âpv = lim
k→∞

Âp(1/k +Ap)
−1f = lim

k→∞
Ap(1/k +Ap)

−1f = f,

hence v = Â−1
p f . �

We come to the main result of this section.

Proposition 7.4. The scale (Â−1
p )p∈(1,∞) of the operators Â−1

p : Ŵ−1,p
σ → Ŵ 1,p

0,σ is con-

sistent on (Ŵ−1,p
σ )p∈(1,∞).

Proof. Thanks to Proposition 7.1 Â−1
p exists for every p ∈ (1,∞). Let Bp,2 : D(Bp,2) →

Ŵ−2,p be the operator corresponding to the bi-harmonic equation as defined in the begin-
ning of Section 5.1 for γ = 0. According to Proposition 5.3 we have

Bp,2 ∈ Lis

(
D(Bp,2), Ŵ

−2,p
)
.

The proof of Theorem 5.4 shows that

u = Â−1
p f =

(
−∂2
∂1

)
B−1

p,2 curl f (7.2)

for f ∈ Ŵ−1,p. We will show that

(B−1
p,2)p∈I is consistent on (Ŵ−2,p)p∈I (7.3)

for I = (1, 2) and for I = (2,∞).

Given (7.3), by (7.2) (Â−1
p )p∈I is consistent on (Ŵ−1,p

σ )p∈I for I = (1, 2) and for I =

(2,∞) as well. Then consistency on (1,∞) for the scale of operators Â−1
p : Ŵ−1,p

σ → Ŵ 1,p
0,σ

results from the following argument: Let p, r ∈ Iκ and f ∈ Ŵ−1,p
σ ∩ Ŵ−1,r

σ . Thanks to
Corollary 6.4 we have

(1/k +Ap)
−1f = (1/k +Ar)

−1f (k ∈ N).

Letting k → ∞, Lemma 7.3 yields Â−1
p f = Â−1

r f . By the fact that (1, 2) ∩ Iκ 
= ∅ and
(2,∞) ∩ Iκ 
= ∅ the assertion follows.

Hence, it remains to prove (7.3). This is very similar to the proof of [7, Lemma 4, Propo-
sition 2]. Indeed, it is even easier, since we can work with compactly supported functions all

along. For the readers convenience we sketch the proof: Let Tp,−2 : W
2,p
0 (Ω) → W−2,p(Ω)

denote the operator corresponding to the transformed problem (3.9) as defined in the
beginning of Section 4. Thanks to Theorem 4.5 we have

Tp,−2 ∈ Lis

(
W 2,p

0 (Ω),W−2,p(Ω)
)
.

Further, let Θp
∗,Θ∗

p and Θ̃p
∗, Θ̃∗

p be the push-forwards and pull-backs as introduced in
Section 3. Then we have

B−1
p,2 = Θp,2

∗ T−1
p,−2 Θ̃

∗
p,2, (7.4)

Note that the single operators on the right-hand side by definition cannot be consistent,
just their combination.

Now, let I = (1, 2) or I = (2,∞) pick p, r ∈ I and set βp = 2 − 2/p. It is straight
forward to show that

e(βr−βp)xTr,−2e
−(βr−βp)xv = Tp,−2 v (v ∈ C∞

c (Ω)).

Suitable manipulations (similar to the ones given in the proof of [7, Lemma 4]) lead to

T−1
p,−2e

−(βr−βp)xg = e−(βr−βp)xT−1
r,−2 g (g ∈ C∞

c (Ω)).
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Then, based on representation (7.4) very similar to the proof of [7, Proposition 2] it follows

B−1
p,2f = B−1

r,2 f (f ∈ Ŵ−2,p ∩ Ŵ−2,r).

Hence, we arrive at (7.3) and the proof is complete. �

Remark 7.5. Note that (7.3) can not be expected on I = (1,∞),

neither for (Â−1
p )p∈(1,∞) regarded as scale of operators from Ŵ−1,p

σ to{
v ∈ K1

p(G,R2) : div v = 0 in G, v = 0 on ∂G
}
, see also Remark 7.2.

8. Strong sectoriality in a neighborhood of p = 2

Now, we are in position to prove higher regularity for p close to 2. We start with a
lemma on weak-strong consistency.

Lemma 8.1. Assume that 1 < p < ∞ such that (1.3) is uniquely solvable in the weak and

the strong setting and let f ∈ Lp
σ ∩ Ŵ−1,p

σ . If

(1) v ∈
{
w ∈ K2

p : divw = 0, w = 0 on ∂G
}
is the velocity of the unique solution of

(1.3) to the right-hand side f ∈ Lp
σ and

(2) u ∈ Ŵ 1,p
0,σ is the unique solution of (7.1), i.e. the weak form of (1.3), to the right-

hand side f ∈ Ŵ−1,p
σ ,

then u = v (in L1
loc).

Proof. This follows along the lines of the proof of Theorem 7.4. In fact, the two a priori
different solutions are represented by

u =

(
−∂2
∂1

)
B−1

p,2 curl f,

v =

(
−∂2
∂1

)
B−1

p,1 curl f.

The two operators related to the bi-harmonic equation, in turn, are given as

B−1
p,k = Θp,k

∗ T−1
p,−k Θ̃

∗
p,k

for k = 1, 2. Note that the push-forwards and pull-backs depend on βp = βp,−k, hence in
particular on k, see Definition 3.1 and what follows. To indicate this dependence, here we
also put a sub- or superscript k.

By interchanging the roles of p and k from this point on we can follow the last lines of
the proof of Theorem 7.4, in order to obtain in a similar way that

B−1
p,2f = B−1

p,1f (f ∈ Ŵ−1,p ∩ Ŵ−2,r)

in the L1
loc-sense. The above representations for u and v then give the result. �

As before, if Ap is the Stokes operator associated to (6.1), then u = (λ+ Ap)
−1f gives

the velocity to (6.1).

Theorem 8.2. Let ψ ∈ (0, π). There is a κ > 0 such that for p ∈ Iκ =
(
(2 + κ)′, 2 + κ

)
the following holds: For f ∈ Lp

σ let u = (λ + Ap)
−1f ∈ D(Ap). Then we have u ∈ W 2,p

and

‖λu‖p + ‖∇2u‖p + ‖∇p‖p ≤ C‖f‖p (f ∈ Lp
σ, λ ∈ Σπ−ψ).

Furthermore, the scale
(
(λ+Ap)

−1
)
p∈Iκ is consistent on (Lp

σ)p∈Iκ.
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Proof. According to Theorem 5.8 the set N of possibly singular p ∈ (1,∞) concerning
strong solvability of (1.3) is discrete in (1,∞). It might happen that 2 ∈ N or 2 
∈ N .
Either way there is a κ > 0 such that for Iκ as defined we have N ∩ (Iκ \ {2}) = ∅. We
also may assume that the κ chosen here is smaller as or equal to the κ in Proposition 6.5.

We fix p ∈ Iκ, p 
= 2, and pick f ∈ C∞
c,σ. As a consequence of Corollary 6.4 (or

Proposition 6.5) we have

u = (λ+Ap)
−1f ∈ W 1,p

0,σ .

Since W 1,p
0,σ ↪→ Ŵ 1,p

0,σ , this yields

Âpu = Apu = f − λu =: g ∈ Lp
σ ∩ Ŵ−1,p

σ .

Due to Theorem 5.8 there exists a unique solution

v ∈
{
w ∈ K2

p : divw = 0, w = 0 on ∂G
}
⊂ Ŵ 2,p

of (1.3) with right-hand side g ∈ Lp
σ. Lemma 8.1 implies u = v and we deduce

‖∇2u‖p ≤ C‖g‖p ≤ C (‖f‖p + ‖λu‖p) ≤ C‖f‖p
with C > 0 independent of f and λ and where we applied Proposition 6.5 for the last
estimate. A density argument yields

‖λu‖p + ‖∇2u‖p ≤ C‖f‖p (f ∈ Lp
σ, λ ∈ Σπ−ψ).

The estimate for the pressure gradient then follows from equations (6.1) and the assertion
is proved for p 
= 2.

By standard arguments it can now be proved that A′
p = Ap′ for p ∈ Iκ\{2}. Completely

analogously to [7, Proposition 3] it also follows that (λ+Ap)
−1 and (λ+A′

p)
−1 are consistent

on Lp
σ ∩Lp′

σ for λ ∈ Σπ−ψ. Combining these two facts, we see that
(
(λ+Ap)

−1
)
p∈Iκ\{2} is

consistent on (Lp
σ)p∈Iκ\{2}. But then the case p = 2 follows by interpolation. �

Appendix A. Elements from functional analysis

In the following let G ⊂ R2 be the wedge defined as in (1.2). The next lemma is already
known by [3, Remark II.6.3]. Here, we give a more detailed version of its proof.

Lemma A.1. Let 1 < p < ∞. Let Ω1 := R × (0, θ0) be a layer domain, and Ω2 :=

G ∩ (B2r(0) \Br(0)) with 0 < r < ∞. Moreover, let k ∈ N. Then Ŵ k,p
0 (Ωi) and W k,p

0 (Ωi)
are isomorphic for i ∈ {1, 2}.

Proof. Let i ∈ {1, 2}. Since φ ∈ C∞
c (Ωi)

d
↪→ W k,p

0 (Ωi), the Poincaré inequality implies that

‖φ‖Lp(Ωi) ≤ C‖∇φ‖Lp(Ωi) (φ ∈ C∞
c (Ωi)),

for a constant C > 0. We again have by the Poincaré inequality that

‖∇φ‖Lp(Ωi) ≤ C‖∇2φ‖Lp(Ωi) (∇φ ∈ C∞
c (Ωi)),

and hence
‖φ‖Lp(Ωi) ≤ C2‖∇2φ‖Lp(Ωi),

with C2 = C2 > 0. Induction implies for all k ∈ N the estimate

‖φ‖Lp(Ωi) ≤ Ck‖∇kφ‖Lp(Ωi) = Ck‖φ‖Ŵk,p(Ωi)
. (A.1)

Now let u ∈ Ŵ k,p
0 (Ωi) and let (φl)l∈N ⊂ C∞

c (Ωi) such that φl → u in Ŵ k,p
0 (Ωi) as

l → ∞. This and (A.1) imply that

‖φl − φm‖Lp(Ωi) ≤ Ck‖φl − φm‖
Ŵk,p(Ωi)

−→
l,m→∞

0.
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Hence (φl)l∈N ⊂ Lp(Ωi) is a Cauchy sequence, thus φl → v in Lp(Ωi) as l → ∞ for some
v ∈ Lp(Ωi).

It remains to show that u = v ∈ Lp(Ωi). From [3, Lemma II.6.1] it follows that

Ŵ k,p(Ωi) ↪→ Lp
loc(Ωi), and since Ŵ k,p

0 (Ωi) ↪→ Ŵ k,p(Ωi), it follows that φl → u in Lp
loc(Ωi)

as l → ∞. On the other hand since Lp(Ω) ↪→ Lp
loc(Ωi) we also have that φl → v in Lp

loc(Ωi)
as l → ∞. Hence, u = v ∈ Lp(Ωi) since Lp

loc(Ωi) is a Hausdorff space.

Let u ∈ Ŵ k,p
0 (Ωi). Then (A.1) implies

‖u‖Lp(Ωi) = lim
l→∞

‖φl‖Lp(Ωi) ≤ lim
l→∞

Ck‖φl‖Ŵk,p(Ωi)
= Ck‖u‖Ŵk,p(Ωi)

,

and hence

‖u‖Wk,p(Ωi) ≤ C‖u‖
Ŵk,p(Ωi)

(u ∈ Ŵ k,p
0 (Ωi)).

Now let u ∈ W k,p
0 (Ωi). Then it follows directly that

‖u‖
Ŵk,p(Ωi)

≤ C‖u‖Wk,p(Ωi)

for a constant C > 0. �

Lemma A.2. Let 1 < p < ∞ with 1 = 1/p+ 1/p′, γ ∈ R, k ∈ N and ρ = |(x1, x2)|. Then
for any p ∈ (1,∞), functionals of the form

F(u) = (f, u), f ∈ C∞
c (G), u ∈ Ŵ k,p

0,γ (G) (A.2)

are dense in (Ŵ k,p
0,γ (G))′.

Proof. Let f ∈ C∞
c (G) with supp(f) ⊂⊂ G, such that supp(f) ⊂ G ∩

(
B2r(0) \Br(0)

)
=:

Gr for r > 0. Then we have that r < ρ < 2r in Gr and it follows that

Ŵ k,p
0,γ (Gr)=̂Ŵ k,p

0 (Gr).

Lemma A.1 implies that

Ŵ k,p
0 (Gr)=̂W k,p

0 (Gr),

and since W k,p
0 (Gr) ↪→ Lp(Gr), we have

Ŵ k,p
0,γ (Gr) ↪→ Lp(Gr). (A.3)

Now consider

F(u) = (f, u), f ∈ C∞
c (G), u ∈ Ŵ k,p

0,γ (G). (A.4)

Applying the Hölder inequality and (A.3) in (A.4) we get

|(f, u)G| =
∣∣∣∣∫

Gr

f(x)u(x)dx

∣∣∣∣ ≤ ‖f‖Lp′ (Gr)
‖u‖Lp(Gr) ≤ C‖f‖Lp′ (Gr)

‖u‖
Ŵk,p

0,γ (Gr)

≤ C‖f‖Lp′ (G)‖u‖Ŵk,p
0,γ (G)

for u ∈ Ŵ k,p
0,γ (G) and some constant C > 0. Hence, we can characterize the normed dual

space
(
Ŵ k,p

0,γ (G)
)′

by

‖F‖(
Ŵk,p

0,γ (G)
)′ = sup

u∈Ŵk,p
0,γ (G), ‖u‖

̂W
k,p
0,γ (G)

=1

|(f, u)G| < ∞.

The proof that the functionals F of the form (A.2) are dense in
(
Ŵ k,p

0,γ (G)
)′

is analogous

to the proof of [3, Lemma II.8.1]. �
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Appendix B. Transformations from the wedge onto the layer domain

In this section we give a detailed calculation about the transformed functions between

the wedge and layer domain and the relation about the transformed W k,p
0 , Ŵ k,p

0 -spaces on
the layer and wedge domain for all k ∈ N0. Let in the following G ⊂ R2 be the wedge
domain defined as in (1.2) with opening angle θ0, Ω := R × (0, θ0) be the layer domain.
Moreover, let ψ := ψP ◦ ψE : Ω → G with ṽ := Ψũ with inverse Ψ−1 and let Θp

∗ : G → Ω
with u := Θp

∗v with inverse Ψ, Θ∗
p be defined as in Section 3. The corresponding pull-back

and push-forward operators on W−k,p-spaces are depending on k and p, hence, weighted
functions appear in the transformed setting. Choosing the right transformation, roughly
speaking the right k and p included in the pull-back and push-forward respectively, we
can then work in unweighted W−k,p-spaces on the layer for k ∈ N0. Now, set

g := Θ̃∗
pf = elxΘ∗

pf = e(l−βp)xΨf,

f := Θ̃p
∗g = Θp

∗e
−lxg = Ψ−1e(βp−l)xg, (B.1)

with l ∈ N and βp ∈ R. Next, we give the detailed proof about the calculation of the
transformed functions between the domains.

Lemma B.1. Let l ∈ N and βp ∈ R. Then we have

(1) Ψ(∇ũ) = e−x

(
h10,0(∂x, ∂θ)

h20,0(∂x, ∂θ)

)
ṽ for ũ = Ψ−1ṽ,

(2) Θ∗
p(∇u) = e−x

(
h1βp,0

(∂x, ∂θ)

h2βp,0
(∂x, ∂θ)

)
v for u = Θp

∗v,

(3) Θ̃∗
p(∇f) = e−x

(
h1βp−l,0(∂x, ∂θ)

h2βp−l,0(∂x, ∂θ)

)
g for f = Θ̃p

∗g,

with

h1r,j(∂x, ∂θ) := cos θ (r + j + ∂x)− sin θ ∂θ

h2r,j(∂x, ∂θ) := sin θ (r + j + ∂x)− cos θ ∂θ (B.2)

for r, j ∈ R.

Proof. (1) The gradient Ψ∇ũ is given as

Ψ∇ũ = Ψ∇(Ψ−1ṽ) = e−x

(
cos θ ∂x − sin θ ∂θ
sin θ ∂x − cos θ ∂θ

)
ṽ.

(2) Employing u = Θp
∗v, (1) yields that

∇u = ∇(Θp
∗v) = ∇(Ψ−1Mβp

v) = Ψ−1e(βp−1)x

(
cos θ (βp + ∂x)− sin θ ∂θ
sin θ (βp + ∂x)− cos θ ∂θ

)
v,

and hence

Θ∗
p(∇u) = M−βpΨ∇u = e−x

(
cos θ (βp + ∂x)− sin θ ∂θ
sin θ (βp + ∂x)− cos θ ∂θ

)
v.

(3) In the same way we compute for f = Θ̃∗
pg that

∇f = ∇(Θ̃p
∗g) = ∇(Ψ−1Mβp−l g) = Ψ−1e(βp−(l+1))x

(
cos θ (βp − l + ∂x)− sin θ ∂θ
sin θ (βp − l + ∂x)− cos θ ∂θ

)
g,

hence

Θ̃∗
p(∇f) = Ml−βpΨ∇f = e−x

(
cos θ (βp − l + ∂x)− sin θ ∂θ
sin θ (βp − l + ∂x)− cos θ ∂θ

)
g.
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�
Lemma B.2. Let k ∈ N0, βp ∈ R and ρ := |(x1, x2)|. Let α = (α1, α2) ∈ N2

0 and
m = (m1,m2) ∈ N2 with m ≤ α. Let hir,j(∂x, ∂θ) for i ∈ {1, 2}, r, j ∈ R be defined as in

(B.2). Then we have

(1) Θ̃∗
p(D

αf) = e−|α|x ∏α1
n=1 h

1
r1,−|α|+n(∂x, ∂θ)

∏α2
n=1 h

2
r1,−α2+n(∂x, ∂θ)g with r1 := βp−l

and for f = Θ̃p
∗g,

(2) Θ∗
p(D

αu) = e−|α|x ∏α1
n=1 h

1
βp,−|α|+n(∂x, ∂θ)

∏α2
n=1 h

2
βp,−α2+n(∂x, ∂θ)v for u = Θp

∗v,

(3) Ψ(Dαũ) = e−|α|x ∏α1
n=1 h

1
0,−|α|+n(∂x, ∂θ)

∏α2
n=1 h

2
0,−α2+n(∂x, ∂θ)ṽ for ũ = Ψ−1ṽ,

(4) Ψ(Dα(ρ2kf)) =
∑

m≤α

((
α
m

)
e(βp−l)xe−|α|xe2kx

∏m1
n=1 h

1
r1,−|α|+2k+n(∂x, ∂θ)·∏m2

n=1 h
2
r1,−|α−m|−m2+2k+n(∂x, ∂θ)

∏α1−m1
n=1 h1r1,−|α−m|+n(∂x, ∂θ) ·∏α2−m2

n=1 h2r1,−(α2−m2)+n(∂x, ∂θ)g
)
with r1 := βp − l and for f = Θ̃p

∗g.

Proof. (1) We calculate Dαf for any multiindex α ∈ N2
0 satisfying |α| ≤ k.

First we compute Dj
i f for a fixed j ∈ N0 and i ∈ {1, 2}. If j = 0 then it follows by the

definition of the push-forward that f = Ψ−1e(βp−l)xg. Now let j ∈ N\{0}. We will use in
the following the relation

hir,j(∂x, ∂θ)e
sxg̃ = esxhir,s+j(∂x, ∂θ)g̃ (r, s ∈ R, g̃ := Ψf̃ , i ∈ {1, 2}). (B.3)

Now define

gi,j := Θ̃∗
p

(
∂j

∂xji
f

)
(i ∈ {1, 2}),

then using Lemma B.1 (3) j-times for each first partial derivative yields

Dj
i f =

∂j

∂xji
f =

∂

∂xi

∂j−1

∂xj−1
i

f =
∂

∂xi
Θ̃p

∗gi,j−1

= Ψ−1e(βp−(l+1))xhiβp−l,0(∂x, ∂θ)gi,j−1

= Ψ−1e(βp−(l+1))xhiβp−l,0(∂x, ∂θ)e
−xhiβp−l,0(∂x, ∂θ)gi,j−2

. . .

= Ψ−1e(βp−l)x e−xhiβp−l,0(∂x, ∂θ) · ... · e−xhiβp−l,0(∂x, ∂θ)︸ ︷︷ ︸
j×e−xhi

βp−l,0(∂x,∂θ)

g

(B.3)
= Ψ−1e(βp−l)xe−jxhiβp−l,−j+1(∂x, ∂θ) · ... · hiβp−l,−j+j(∂x, ∂θ)g

= Ψ−1e(βp−l)xe−jx
j∏

n=1

hiβp−l,−j+n(∂x, ∂θ)g (i ∈ {1, 2}). (B.4)

Induction implies (B.4) for arbitrary j ∈ N0.

Now let α ∈ N2
0 satisfying |α| ≤ k with α = (α1, α2). Then the last calculation yields

that

Dαf = Dα1
1 Dα2

2 f = Ψ−1e(βp−l)xe−α1x
α1∏
n=1

h1βp−l,−α1+n(∂x, ∂θ)g2,α2

= Ψ−1e(βp−l)xe−α1x
α1∏
n=1

h1βp−l,−α1+n(∂x, ∂θ) e
−α2x

α2∏
n=1

h2βp−l,−α2+n(∂x, ∂θ)g
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= Ψ−1e(βp−l)xe−(α1+α2)x
α1∏
n=1

h1βp−l,−(α1+α2)+n(∂x, ∂θ)·

α2∏
n=1

h2βp−l,−α2+n(∂x, ∂θ)g.

(2) and (3) follow analogously to (1). We compute (4) by using the Leibniz rule for

partial derivatives. Here by ρ2k = Ψ−1e2kx, f = Θ̃p
∗g and by (1), (3) and (B.3) we have

Dα(ρ2kf) =
∑
m≤α

(
α
m

)
Dmρ2kDα−mf

=
∑
m≤α

(
α
m

)
Ψ−1e−|m|x

m1∏
n=1

h10,−|m|+n(∂x, ∂θ)

m2∏
n=1

h20,−m2+n(∂x, ∂θ)e
2kx·

e(βp−l)xe−|α−m|x
α1−m1∏
n=1

h1r1,−|α−m|+n(∂x, ∂θ)

α2−m2∏
n=1

h2r1,−(α2−m2)+n(∂x, ∂θ)g

= Ψ−1
∑
m≤α

(
α
m

)
e−|α|xe2kxe(βp−l)x

m1∏
n=1

h1r1,−|α|+2k+n(∂x, ∂θ)·

m2∏
n=1

h2r1,−|α−m|−m2+2k+n(∂x, ∂θ)

α1−m1∏
n=1

h1r1,−|α−m|+n(∂x, ∂θ)·

α2−m2∏
n=1

h2r1,−(α2−m2)+n(∂x, ∂θ)g,

with r1 := βp − l. �

For the next lemma we recall that K l−k
p,γ (G) is equipped with the norm

‖u‖Kl−k
p,γ (G) =

⎛⎝ ∑
|α|≤l−k

‖ρ|α|−(l−k)∂αu‖p
Lp
γ(G)

⎞⎠1/p

(B.5)

with Lp
γ(G) = Lp(G, ργd(x1, x2)), ρ := |(x1, x2)| and γ ∈ R.

Lemma B.3. Let 1 < p < ∞ and 1 = 1
p + 1

p′ . Let γ ∈ R, l ∈ N, k ∈ N0 such that l ≥ k,

βp := l − k − 2+γ
p and ρ := |(x1, x2)|. Then

(1) Θp
∗ ∈ Lis

(
W l−k,p(Ω),K l−k

γ,p (G)
)
,

(2) ρ2kΘ̃p
∗ ∈ Lis

(
Ŵ k,p

0 (Ω), Ŵ k,p
0,γ (G)

)
,

(3) (ρ2kΘ̃p′
∗ )′ = Θ̃∗

p and (Θ̃∗
p′ρ

−2k)′ = Θ̃p
∗,

(4) Θ̃∗
p ∈ Lis

(
Ŵ−k,p

γ (G), Ŵ−k,p(Ω)
)
,

(5) Θ̃∗
p ∈ Lis

(
Ŵ−k,p

γ (G),W−k,p(Ω)
)
.

Proof. (1) Let α = (α1, α2) ∈ N2. Let v ∈ W l−k,p(Ω). Then Lemma B.2 (2) implies that∑
|α|≤l−k

‖ρ|α|−(l−k)DαΘp
∗v‖pLp

γ(G)
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=
∑

|α|≤l−k

∫
Ω

∣∣∣∣∣e(|α|−(l−k))xe
(l−k− 2+γ

p
)x
e−|α|x

α1∏
n=1

h1βp,−|α|+n(∂x, ∂θ)·

α2∏
n=1

h2βp,−α2+n(∂x, ∂θ)v(x, θ)

∣∣∣∣∣
p

e(γ+2)xdxdθ

≤ C
∑

|α|≤l−k

‖v‖p
W |α|,p(Ω)

≤ C‖v‖p
W l−k,p(Ω)

. (B.6)

Since Θp
∗ is linear (B.6) also implies that

Θp
∗ : W

l−k,p(Ω) → K l−k
γ,p (G)

is continuous. The open mapping principle implies then that its inverse Θ∗
p : K l−k

γ,p (G) →
W l−k,p(Ω) is continuous, too.

(2) Let α = (α1, α2) ∈ N2. Let g ∈ Ŵ k,p
0 (Ω), then Lemma B.2 (4) and Lemma A.1

imply

‖ρ2kΘ̃p
∗g‖pŴk,p

γ (G)
=

∑
|α|=k

‖Dα(ρ2kΘ̃p
∗g)‖pLp

γ(G)

=
∑
|α|=k

∫
Ω

∣∣∣∣∣∣
∑
m≤α

(
α
m

)
e(βp−l)xe−|α|xe2kx

m1∏
n=1

h1r1,j1+n(∂x, ∂θ)

m2∏
n=1

h2r1,j2+n(∂x, ∂θ)·

α1−m1∏
n=1

h1r1,−|α−m|+n(∂x, ∂θ)

α2−m2∏
n=1

h2r1,−(α2−m2)+n(∂x, ∂θ)g(x, θ)

∣∣∣∣∣
p

e(2+γ)xdxdθ

≤ C
∑
|α|=k

∫
Ω

∣∣∣∣∣∣e2kxe((l−k− 2+γ
p

−l)x
e−kx

∑
m≤α

m1∏
n=1

h1r1,j1+n(∂x, ∂θ)

m2∏
n=1

h2r1,j2+n(∂x, ∂θ)

α1−m1∏
n=1

h1r1,−|α−m|+n(∂x, ∂θ)

α2−m2∏
n=1

h2r1,−(α2−m2)+n(∂x, ∂θ)g(x, θ)

∣∣∣∣∣
p

e(2+γ)xdxdθ

≤ C‖g‖p
Wk,p(Ω)

≤ C‖g‖p
Ŵk,p(Ω)

,

with j1 := −|α|+ 2k and j2 := −|α−m| −m2 + 2k.

Since ρ2kΘ̃p
∗ is linear, the last estimates yield that

ρ2kΘ̃p
∗ : Ŵ

k,p
0 (Ω) → Ŵ k,p

0,γ (G)

is continuous. The open mapping principle implies that its inverse Θ̃∗
pρ

−2k is also

continuous from Ŵ k,p
0,γ (G) to Ŵ k,p

0 (Ω).

(3) We recall that by (B.1) we have Θ̃p
∗u = Ψ−1Mβp−lu. Lemma A.2 implies that

C∞
c (G) = (Ŵ k,p

0,γ (G))′. Hence, for a ϕ ∈ C∞
c (G) and by

βp′ = l − k − 2 + γ

p′
= −βp + 2(l − k − 1)− γ

we compute(
ρ2kΘ̃p′

∗ g, ϕ
)
G
=

∫
G
ρ2kϕ(y)(Mβp′−l g)(ψ

−1(y))ργdy
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=

∫
Ω
e2kxϕ(ψ(x, θ))(Mβp′−l g)(x, θ) e

(γ+2)xdxdθ

=

∫
Ω
ϕ(ψ(x, θ))e2kxe(−βp+2(l−k−1)−γ−l)xg(x, θ)e(γ+2)xdxdθ

=

∫
Ω
(Ml−βpΨϕ)(x, θ)g(x, θ)dxdθ

=
(
g, Θ̃∗

pϕ
)
Ω

(g ∈ Ŵ k,p
0 (Ω), ϕ ∈ C∞

c (G)),

and hence (ρ2kΘ̃p′
∗ )′ = Θ̃∗

p.

The next relation follows since

(Θ̃∗
p′ρ

−2k)′ = ((ρ2kΘ̃p′
∗ )

−1)′ = ((ρ2kΘ̃p′
∗ )

′)−1 = (Θ̃∗
p)

−1 = Θ̃p
∗.

(4) is a consequence from relations (2) and (3).

(5) We have that
(
W k,p′

0 (Ω)
)′

= W−k,p(Ω) and
(
Ŵ k,p′

0 (Ω)
)′

= Ŵ−k,p(Ω). Lemma A.1

implies for Ω = R× (0, θ0) that W
k,p′
0 (Ω) and Ŵ k,p′

0 (Ω) are isomorphic. This yields that

W−k,p(Ω)=̂Ŵ−k,p(Ω),

and the assumption follows by relation (4). �

In the following we give the transformation of an elliptic operator from the wedge
domain onto a layer domain. We consider

Δiu = f in G,
B(u) = 0 on ∂G,

}
(B.7)

B(u) defines the boundary conditions, u = u(x1, x2), f = f(x1, x2) and i ∈ N. Then we
have:

Lemma B.4. Let i ∈ N, u be the solution of problem (B.7), βp ∈ R. Then we have

Θ∗
p(Δ

iu) = e−2ix
i∏

j=1

(
rβp−2(i−j)(∂x) + ∂2

θ

)
v (B.8)

with the polynomial
ra(∂x) := (∂x + a)2 (a ∈ R).

Proof. Let i ∈ N be fixed. By definition of the pull-back and the calculations of [4] we
know that for u = Θp

∗v we have

Δu = Δ(Θp
∗v) = Δ(Ψ−1Mβpv) = Ψ−1Mβp−2(rβp(∂x) + ∂2

θ )v.

Hence Θ∗
p(Δu) = M−2(rβp(∂x) + ∂2

θ )v. This yields that

Δiu = Ψ−1Mβp−2

(
rβp(∂x) + ∂2

θ

)
Θ∗

p(Δ
i−1u)

= Ψ−1Mβp−2

(
rβp(∂x) + ∂2

θ

)
M−βpΨΔi−1u

= Ψ−1Mβp−2

(
rβp(∂x) + ∂2

θ

)
M−2

(
rβp(∂x) + ∂2

θ

)
M−βpΨΔi−2u

. . .

= Ψ−1Mβp M−2

(
rβp(∂x) + ∂2

θ

)
M−2

(
rβp(∂x) + ∂2

θ

)
· · · · · M−2

(
rβp(∂x) + ∂2

θ

)︸ ︷︷ ︸
i×M−2(rβp (∂x)+∂2

θ )

v.

Since

∂2
θM−αv = M−α∂

2
θv and rβp(∂x)M−αv = M−αrβp−α(∂x)v (α ∈ R),
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we then have

Θ∗
p(Δ

iu) = M−βpΨ(Δiu)

= M−βpMβp−2i

(
rβp−2(i−1)(∂x) + ∂2

θ

)
· · · · ·

(
rβp−2(i−i)(∂x) + ∂2

θ

)
v

= M−2i

i∏
j=1

(
rβp−2(i−j)(∂x) + ∂2

θ

)
v.

This proves the assertion for all i ∈ N. �

Appendix C. Critical values

In this section we consider for 0 < θ0 < π the set

N :=
{
λ ∈ C : sinh2(λθ0) = λ2 sin2(θ0)

}
,

which represents the set of zeros of an entire analytic function. In particular, N is locally
finite. We are interested in the intersection N ∩ S(a, b) of N and a strip S(a, b) := {λ ∈
C : a ≤ Imλ ≤ b }, where a, b ∈ R with a < b. With the aid of the following lemma we
will show that N ∩ S(a, b) is finite.

Lemma C.1. Let φ > 0 and let σ ∈ R.

(1) For every solution τ ∈ R of the equation cosh(φτ) = σ it holds that

|τ | ≤ 1
φ log(1 + 2|σ|).

(2) For every solution τ ∈ R of the equation sinh(φτ) = στ it holds that

|τ | ≤ 2
φ log(1 + 2

φ |σ|).

Proof. (1) If σ < 1, then the equation cosh(φτ) = σ has no solution τ ∈ R and there
is nothing that needs to be proved. So assume that σ ≥ 1 in the following. Then the
equation cosh(φτ) = σ has precisely one solution τ ≥ 0 and precisely one solution τ ′ ≤ 0
and it holds that τ ′ = −τ . Since we have cosh(φt) ≥ 1

2 exp(φt) − 1
2 for all t ∈ R, we

infer that τ ≤ τ∗, where τ∗ > 0 is defined by the equation 1
2 exp(φτ

∗) − 1
2 = σ. Since

τ∗ = 1
φ log(1 + 2σ) we obtain the asserted estimate.

(2) For σ ≤ 0 the function t �→ σt : R −→ R represents a straight line with non-positive
slope. In this case, τ = 0 is the only solution of the equation sinh(φτ) = στ and there
is nothing that needs to be proved. So assume that σ > 0 in the following. Then the
equation sinh(φτ) = στ has precisely three solutions: The solution τ0 = 0, a positive
solution τ > 0 and a negative solution τ ′ < 0. Since τ ′ = −τ we only need to estimate the
positive solution τ . To this end we observe that

σ

φ
=

1

φτ
sinh(φτ) =

∑
k≥0

(φτ)2k

(2k + 1)!
≥

∑
k≥0

(φτ)2k

(2k)! · 22k =
∑
k≥0

(φ2 τ)
2k

(2k)!
= cosh(φ2 τ) =: σ′

and (1) yields

τ ≤ 2
φ log(1 + 2σ′) ≤ 2

φ log(1 + 2
φσ)

due to the monotonicity of the logarithm. This proves the estimate (2). �
Corollary C.2. We have:

(1) For all k ∈ Z the set N ∩ S(k π
θ0

− 1
3

π
θ0
, k π

θ0
+ 1

3
π
θ0
) is finite.

(2) For all � ∈ Z the set N ∩ S((�+ 1
2)

π
θ0

− 1
3

π
θ0
, (�+ 1

2)
π
θ0

+ 1
3

π
θ0
) is finite.

(3) For all a, b ∈ R with a < b the set N ∩ S(a, b) is finite.
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Proof. Let λ ∈ N . Then, by definition of N there exists ε ∈ {±1 } such that sinh(λθ0) =
ελ sin(θ0). Taking the real and the imaginary part of this equation, respectively, we arrive
at

(i) sinh(τθ0) cos(αθ0) = ετ sin(θ0), (ii) cosh(τθ0) sin(αθ0) = εα sin(θ0),

where τ, α ∈ R such that λ = τ + iα.

To prove (1) assume that k π
θ0

− 1
3

π
θ0

≤ α ≤ k π
θ0

+ 1
3

π
θ0

for some k ∈ Z. Then we have

|cos(αθ0)| ≥ 1
2 and (i) implies that

sinh(τθ0) = ετ
sin(θ0)

cos(αθ0)
=: στ

with |σ| ≤ 2 sin(θ0). Hence, Lemma C.1 (2) yields

|τ | ≤ 2
θ0

log(1 + 2
θ0
|σ|) ≤ 2

θ0
log(1 + 4

θ0
sin(θ0)).

Thus, all points of the set N ∩ S(k π
θ0

− 1
3

π
θ0
, k π

θ0
+ 1

3
π
θ0
) are contained in the compact set

A :=
{
z ∈ C : |Re z| ≤ 2

θ0
log(1 + 4

θ0
sin(θ0)), k π

θ0
− 1

3
π
θ0

≤ Im z ≤ k π
θ0

+ 1
3

π
θ0

}
.

Since N is locally finite, N ∩ A is finite. Therefore, we infer that the set N ∩ S(k π
θ0

−
1
3

π
θ0
, k π

θ0
+ 1

3
π
θ0
) is also finite.

To prove (2) assume that (�+ 1
2)

π
θ0

− 1
3

π
θ0

≤ α ≤ (�+ 1
2)

π
θ0

+ 1
3

π
θ0

for some � ∈ Z. Then

we have |sin(αθ0)| ≥ 1
2 and (ii) implies that

cosh(τθ0) = εα
sin(θ0)

sin(αθ0)
=: σ

with |σ| ≤ 2(|�|+ 5
6)

π
θ0

sin(θ0). Hence, Lemma C.1 (1) yields

|τ | ≤ 1
θ0

log(1 + 2|σ|) ≤ 1
θ0

log(1 + (|�|+ 5
6)

4π
θ0

sin(θ0)).

Thus, all points of the set N ∩ S((� + 1
2)

π
θ0

− 1
3

π
θ0
, (� + 1

2)
π
θ0

+ 1
3

π
θ0
) are contained in the

compact set

A :=
{
z ∈ C : |Re z| ≤ 1

θ0
log(1 + (|�|+ 5

6)
4π
θ0

sin(θ0)),

(�+ 1
2)

π
θ0

− 1
3

π
θ0

≤ Im z ≤ (�+ 1
2)

π
θ0

+ 1
3

π
θ0

}
.

Since N is locally finite, N ∩A is finite. Therefore, we infer that the set N ∩S((�+ 1
2)

π
θ0
−

1
3

π
θ0
, (�+ 1

2)
π
θ0

+ 1
3

π
θ0
) is also finite.

To prove (3) let a, b ∈ R with a < b. Since there exist finite sets K ⊂ Z and L ⊂ Z

such that

S(a, b) ⊂
⋃
k∈K

S(k π
θ0

− 1
3

π
θ0
, k π

θ0
+ 1

3
π
θ0
) ∪

⋃
�∈L

S((�+ 1
2)

π
θ0

− 1
3

π
θ0
, (�+ 1

2)
π
θ0

+ 1
3

π
θ0
),

the assertion is a consequence of (1) and (2). �

Corollary C.3. For every k ∈ Z there exists at most finitely many values p ∈ [1, ∞] such
that the equation

sinh2(λθ0) = λ2 sin2(θ0)

has a solution λ ∈ C with Imλ = −(k+3− 2
p) = −(k+1+ 2

q ), where q ∈ [1, ∞] such that
1
p + 1

q = 1.

Proof. According to Corollary C.2 the set N ∩ S(−(k + 3), −(k + 2)) is finite. To each
point in this set corresponds one “critical” value of p ∈ [1, ∞]. �
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Of particular interest is the case k = −2 in Corollary C.3. Since −1 ≤ −(1 − 2
p) ≤ 1,

we employ the following result.

Lemma C.4. We have N ∩ S(−1, 1) = { 0, ±τ1, ±i }, where τ1 > 0 such that ±τ1 are
the two non-trivial real solutions of the equation sinh(τ1θ0) = τ1 sin(θ0).

Proof. As in the proof of Corollary C.2 we assume that λ ∈ N ∩ S(−1, 1) and infer that
there exists ε ∈ {±1 } such that

(i) sinh(τθ0) cos(αθ0) = ετ sin(θ0), (ii) cosh(τθ0) sin(αθ0) = εα sin(θ0),

where τ ∈ R and α ∈ [−1, 1] such that λ = τ + iα. Since we have that −π < −θ0 ≤
αθ0 ≤ θ0 < π, we observe that sin(αθ0) = 0, if and only if α = 0. In this case (i) yields
τ ∈ { 0, ±τ1 }. For α ∈ (0, 1] we have sin(αθ0) > 0 and (ii) yields ε = 1 and

cosh(τθ0) =
α sin(θ0)

sin(αθ0)
. (∗)

Now, we consider the functions

u, v : [0, π
θ0
] −→ R, u(s) := s sin(θ0), v(s) := sin(sθ0), 0 ≤ s ≤ π

θ0
.

We have u(0) = 0 = v(0) and u′(0) = sin(θ0) < θ0 = v′(0). Hence, if we assume that
u(s0) = v(s0) for some 0 < s0 ≤ π

θ0
such that u(s) < v(s) for all 0 < s < s0, then we

necessarily have u′(s0) = sin(θ0) ≥ θ0 cos(s0θ0). Thus, since cos( · θ0) : [0, π
θ0
] −→ R is

strictly decreasing, we infer that u′(s) > v′(s) for all s0 < s ≤ π
θ0
, which implies that

u(s) > v(s) for all s0 < s ≤ π
θ0
. This shows that the graphs of u and v have at most two

intersection points in [0, π
θ0
] and one is given by s = 0. However, since u(1) = v(1) and

0 < 1 < π
θ0
, the other one is given by s = 1. As a consequence, α sin(θ0) < sin(αθ0) for

all α ∈ (0, 1), in which case the equation (∗) has no solution τ ∈ R. Therefore, α ∈ (0, 1]
implies α = 1. In this case (ii) yields τ = 0. Analogously, or, alternatively, by symmetry,
we infer that α ∈ [−1, 0) implies α = −1. In this case (ii) yields τ = 0 again. �
Corollary C.5. The equation

sinh2(λθ0) = λ2 sin2(θ0)

has no solution λ ∈ C with Imλ = −(1 − 2
p) = 1 − 2

q for all p ∈ (1, 2) ∪ (2, ∞). Here

q ∈ (1, ∞) such that 1
p + 1

q = 1.

Appendix D. Interpolation results

Proposition D.1. Let θ0 > 0 and let Ω = R× (0, θ0). Let k, �, m ∈ N and let 0 < η < 1
such that k = ηm ≥ �. Let 1 < p < ∞. Then we have[

Lp(Ω), Wm,p(Ω) ∩W �,p
0 (Ω)

]
η
= W k,p(Ω) ∩W �,p

0 (Ω),

where [ · , · ]η denotes the complex interpolation functor. In particular, we have

[Lp(Ω), W 4,p(Ω) ∩W 2,p
0 (Ω)] 1

2
= W 2,p

0 (Ω).

Proof. (1) Let E∗
0 : C∞

c (Ω) −→ C∞
c (R2) be given as E∗

0φ(x) := φ(x), if x ∈ Ω, and
E∗
0φ(x) := 0, if x ∈ R2\Ω, for φ ∈ C∞

c (Ω). Then ‖E∗
0φ‖Lp(R2) = ‖φ‖Lp(Ω) for all φ ∈ C∞

c (Ω)

and, hence, E∗
0 extends to a continuous linear isometry E0 : Lp(Ω) −→ Lp(R2). Moreover,

‖E0φ‖Wm,p(R2) = ‖E∗
0φ‖Wm,p(R2) = ‖φ‖Wm,p(Ω) for all φ ∈ C∞

c (Ω), which implies that

E0u ∈ Wm,p(R2) with ‖E0u‖Wm,p(R2) = ‖u‖Wm,p
0 (Ω) for all u ∈ Wm,p

0 (Ω). Indeed, let

u ∈ Wm,p
0 (Ω) and let (φj)j∈N ⊂ C∞

c (Ω) such that φj → u in Wm,p
0 (Ω) as j → ∞. Then,

on the one hand, φj → u in Lp(Ω) as j → ∞, which implies that E0φj = E∗
0φj → E0u in
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Lp(R2) as j → ∞. On the other hand, (E0φj)j∈N ⊂ Wm,p(R2) is a Cauchy sequence and,
thus, E0φj → v in Wm,p(R2) as j → ∞ for some v ∈ Wm,p(R2). It follows that E0u = v
and ‖v‖Wm,p(R2) = limj→∞ ‖E0φj‖Wm,p(R2) = limj→∞ ‖φj‖Wm,p

0 (Ω) = ‖u‖Wm,p
0 (Ω).

(2) Let χ ∈ C∞
c (R, [0, 1]) such that χ|(−∞, θ0/3] ≡ 0 and χ|[2θ0/3,∞) ≡ 1. Let

α1, . . . , αm+1 ∈ R be the solution of the linear system of equations

m+1∑
j=1

(
− j

m+ 2

)i

αj = 1, i = 0, . . . , m.

We define R∗
m : C∞

c (R2) −→ C∞
c (Ω̄) as

R∗
mϕ(x, θ) :=ϕ(x, θ)−

m+1∑
j=1

αj(1− χ)(θ)ϕ(x, − j
m+2θ)

−
m+1∑
j=1

αjχ(θ)ϕ(x, (1 +
j

m+2)θ0 −
j

m+2θ)

for (x, θ) ∈ Ω and ϕ ∈ C∞
c (R2). Then ‖R∗

mϕ‖Lp(Ω) ≤ C‖ϕ‖Lp(R2) for all ϕ ∈ C∞
c (R2)

and, hence, R∗
m extends to a continuous linear operator Rm : Lp(R2) −→ Lp(Ω). For

φ ∈ C∞
c (Ω) we have RmE0φ = φ, which implies that RmE0u = u for all u ∈ Lp(Ω), i. e. Rm

is a continuous linear retraction and E0 is a corresponding continuous linear coretraction.
Moreover, ‖Rmϕ‖Wm,p(Ω) = ‖R∗

mϕ‖Wm,p(Ω) ≤ C‖ϕ‖Wm,p(R2) for all ϕ ∈ C∞
c (R2), which

implies that Rmv ∈ Wm,p(Ω) with ‖Rmv‖Wm,p(Ω) ≤ C‖v‖Wm,p(R2) for all v ∈ Wm,p(R2).
This follows with the same argument as used in Step (1) above. Finally, by construction
we have (∂i

θRmϕ)|∂Ω ≡ 0 for i = 0, . . . , m for all ϕ ∈ C∞
c (R2), which implies that

Rmv ∈ Wm,p
0 (Ω) for all v ∈ Wm,p(R2). Thus, Rm|Wm,p(R2) : W

m,p(R2) −→ Wm,p
0 (Ω) is a

continuous linear retraction and E0|Wm,p
0 (Ω) : W

m,p
0 (Ω) −→ Wm,p(R2) is a corresponding

continuous linear coretraction. Now, [15, Thm. 2.4.2/1 (7)] shows that[
Lp(R2), Wm,p(R2)

]
η
∼= W k,p(R2) (D.1)

and the retraction principle, [15, Thm. 1.2.4], yields[
Lp(Ω), Wm,p

0 (Ω)
]
η
∼= W k,p

0 (Ω). (D.2)

(3) Let χ ∈ C∞
c (R, [0, 1]) and α1, . . . , αm+1 ∈ R as in Step (2). We define E∗

m :
C∞
c (Ω̄) −→ Cm(R2) as

E∗
mφ(x, θ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ(x, θ), 0 < θ < θ0,
m+1∑
j=1

αj(1− χ)(− j
m+2θ)φ(x, −

j
m+2θ), θ ≤ 0,

m+1∑
j=1

αjχ((1 +
j

m+2)θ0 −
j

m+2θ)φ(x, (1 +
j

m+2)θ0 −
j

m+2θ), θ ≥ θ0,

for (x, θ) ∈ R2 and φ ∈ C∞
c (Ω̄). As in the proof of [1, Thm. 4.26] one verifies that

E∗
m is well-defined and satisfies ‖E∗

mφ‖Lp(R2) ≤ C‖φ‖Lp(Ω) as well as ‖E∗
mφ‖Wm,p(R2) ≤

C‖φ‖Wm,p(Ω) for all φ ∈ C∞
c (Ω̄). Therefore, E∗

m extends to a continuous linear operator

Em : Lp(Ω) −→ Lp(R2) that satisfies Emu ∈ Wm,p(R2) with ‖Emu‖Wm,p(R2) ≤ C‖u‖Wm,p(Ω)

for all u ∈ Wm,p(Ω). This follows with the same argument as used in Step (1) above.

(4) We define R∗
0 : Cm(R2) −→ Cm(Ω̄) as R∗

0ϕ := ϕ|Ω for ϕ ∈ C∞
c (R2). Then, clearly,

R∗
0 extends to a continuous linear operator R0 : L

p(R2) −→ Lp(Ω) that satisfies R0Emφ =
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φ for all φ ∈ C∞
c (Ω̄). Hence, R0Emu = u for all u ∈ Lp(Ω), i. e. R0 is a continuous linear

retraction and Em is a corresponding continuous linear coretraction. Clearly, we also
have R0v ∈ Wm,p(Ω) with ‖R0v‖Wm,p(Ω) ≤ C‖v‖Wm,p(R2) for all v ∈ Wm,p(R2). Thus,

R0|Wm,p(R2) : W
m,p(R2) −→ Wm,p(Ω) is a continuous linear retraction and Em|Wm,p(Ω) :

Wm,p(Ω) −→ Wm,p(R2) is a corresponding continuous linear coretraction. Therefore,
(D.1) and the retraction principle yield[

Lp(Ω), Wm,p(Ω)
]
η
∼= W k,p(Ω). (D.3)

(5) Since the inclusions

Wm,p
0 (Ω) ⊂ Wm,p(Ω) ∩W �,p

0 (Ω) ⊂ Wm,p(Ω)

are continuous, the same is true for the inclusions

W k,p
0 (Ω) ∼=

[
Lp(Ω), Wm,p

0 (Ω)
]
η
⊂

[
Lp(Ω), Wm,p(Ω) ∩W �,p

0 (Ω)
]
η

⊂
[
Lp(Ω), Wm,p(Ω)

]
η
∼= W k,p(Ω),

where we used (D.2) and (D.3), respectively. Hence, [Lp(Ω), Wm,p(Ω) ∩ W �,p
0 (Ω)]η

is a linear subspace of W k,p(Ω) and ‖ · ‖Wk,p(Ω) constitutes an equivalent norm on

[Lp(Ω), Wm,p(Ω) ∩W �,p
0 (Ω)]η. According to [10] the trace operator

T : W �,p(Ω) −→
�−1∏
j=0

W �−j−1/p,p(∂Ω)

is a continuous linear retraction. Due to [15, Thm. 1.9.3 (c)] the space

Lp(Ω) ∩
(
Wm,p(Ω) ∩W �,p

0 (Ω)
)
=

{
u ∈ Wm,p(Ω) : T u = 0

}
=: E

is a dense linear subspace of [Lp(Ω), Wm,p(Ω)∩W �,p
0 (Ω)]η and, thus, [Lp(Ω), Wm,p(Ω)∩

W �,p
0 (Ω)]η coincides with the completion of E in W k,p(Ω), which is given as{

u ∈ W k,p(Ω) : T u = 0
}
= W k,p(Ω) ∩W �,p

0 (Ω).

This completes the proof. �
Corollary D.2. Let θ0 > 0 and let Ω = R × (0, θ0). Let k, �, m ∈ N and let 0 < η < 1
such that k = ηm ≥ �. Let 1 < p, p′ < ∞ such that 1

p + 1
p′ = 1. Then we have[

Lp(Ω), (Wm,p′(Ω) ∩W �,p′
0 (Ω))′

]
η
= (W k,p′(Ω) ∩W �,p′

0 (Ω))′,

where [ · , · ]η denotes the complex interpolation functor. In particular, we have

[Lp(Ω), (W 4,p′(Ω) ∩W 2,p′
0 (Ω))′] 1

2
= W 2,p′

0 (Ω)′ = W−2,p(Ω).

Proof. This is a direct consequence of Proposition D.1, the identification (Lp′(Ω))′ ∼= Lp(Ω)
and [15, Thm. 1.11.3]. �
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OPTIMAL REGULARITY FOR THE STOKES EQUATIONS

ON A 2D WEDGE DOMAIN

SUBJECT TO NAVIER BOUNDARY CONDITIONS

MATTHIAS KÖHNE, JÜRGEN SAAL, AND LAURA WESTERMANN

Abstract. We consider the Stokes equations subject to Navier boundary conditions on
a two-dimensional wedge domain with opening angle θ0 ∈ (0, π). We prove existence and
uniqueness of solutions with optimal regularity in an Lp-setting. The results are based
on optimal regularity results for the Stokes equations subject to perfect slip boundary
conditions on a two-dimensional wedge domain that have been obtained by the authors
in [7]. Based on a detailed study of the corresponding trace operator on anisotropic
Sobolev-Slobodeckij type function spaces on a two-dimensional wedge domain we are able
to generalize the results proved in [7] to the case of inhomogeneous boundary conditions.
Existence and uniqueness of solutions to the Stokes equations subject to (inhomogeneous)
Navier boundary conditions are then obtained using a perturbation argument.
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1. Introduction and Main Result

The main objective of this note is to study the (instationary) Stokes equations subject
to (inhomogeneous) Navier boundary conditions

∂tu−Δu+∇p = f in J ×G,
div u = g in J ×G,

αu · τ − τTD±(u)ν = h1 on J × Γ,
u · ν = h0 on J × Γ,
u(0) = u0 in G,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (1.1)

on a two-dimensional wedge domain G. We aim at existence and uniqueness of solutions
with optimal regularity in an Lp-setting for p ∈ (1,∞). The wedge domain is defined as

G :=
{
(x1, x2) ∈ R2 : 0 < x2 < x1 tan θ0

}
(1.2)

with opening angle θ0 ∈ (0, π) and J = (0, T ) with T > 0. Here α is a given (variable)
parameter, ν and τ denote the unit outer normal vector and a unit tangential vector

81
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on Γ := ∂G \ {0} respectively. We have ν1 = −e2 and set τ1 = −e1 as the unit outer
normal vector and a unit tangential vector on Γ1 := (−∞, 0) · τ1. Furthermore, we have
ν2 = (− sin θ0, cos θ0)

T and set τ2 = (cos θ0, sin θ0)
T as the unit normal vector and a unit

tangential vector on Γ2 := (0,∞) · τ2. Thus, the boundary of G is decomposed as

Γ = Γ1 ∪ Γ2 = ∂G \ {0} (1.3)

and we have (τ, ν) = (τj , νj) on Γj for j = 1, 2. Note that (τj , νj) is positively oriented
for j = 1, 2. The boundary conditions in the third and fourth equation of system (1.1)
have to be understood as:

αu · τ1 − τT1 D±(u)ν1 = h
(1)
1 on J × Γ1,

αu · τ2 − τT2 D±(u)ν2 = h
(2)
1 on J × Γ2,

u · ν1 = h
(1)
0 on J × Γ1,

u · ν2 = h
(2)
0 on J × Γ2,

where h
(j)
� := h�|Γj for � = 0, 1 and j = 1, 2. Moreover, D±(u) := 1

2(∇u ± ∇uT ) denote
the rate of deformation tensor and the rate of rotation tensor, respectively.

If ψ : G −→ R or ψ : Γ −→ R is a function, we denote by 〈ψ〉j := limx→0 ψ|Γj (x) its trace
at the corner x = 0 of the wedge G taken w. r. t. its values on Γj for j = 1, 2, whenever it
exists. By 〈〈ψ〉〉• := 〈ψ〉2 − 〈ψ〉1 we denote its jump across the corner, whenever the two
traces exist. Finally, we denote by 〈ψ〉• := 〈ψ〉1 = 〈ψ〉2 its unique trace at the corner,
provided that 〈〈ψ〉〉• = 0. Thus, a condition like 〈ψ〉• = 0 implicitly requires 〈〈ψ〉〉• = 0.

We aim at solutions

(u, p) ∈ E := Eu × Ep, (1.4)

where

Eu := W 1,p(J, Lp(G,R2)) ∩ Lp(J,W 2,p(G,R2))

Ep := Lp(J, Ŵ 1,p(G))

are given as anisotropic (homogeneous) Sobolev spaces; see Section 2. Of course, in this
setting uniqueness of the pressure p has to be understood as uniqueness up to an additive
constant. Then, necessarily, the given data in (1.1) have to satisfy the regularity conditions

f ∈ Ff := Lp(J, Lp(G,R2)),

g ∈ Fg := W
1/2
p (J, Lp(G)) ∩ Lp(J,W 1,p(G)),

h1 ∈ Fτ := {h : Γ −→ R : h|Γj ∈ F
(j)
τ for j = 1, 2 }, where

F
(j)
τ := W

1/2−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

1−1/p
p (Γj)), j = 1, 2,

h0 ∈ Fν := {h : Γ −→ R : h|Γj ∈ F
(j)
ν for j = 1, 2 }, where

F
(j)
ν := W

1−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

2−1/p
p (Γj)), j = 1, 2,

u0 ∈ F0 := W
2−2/p
p (G,R2),

i. e. we have to work with anisotropic Sobolev-Slobodeckij spaces; see Section 2. For
convenience we abbreviate

F := Ff × Fg × Fτ × Fν × F0. (1.5)

We employ the space BUC1(Γ) := {α : Γ −→ R : α|Γj ∈ BUC1(Γj), j = 1, 2 } for
the coefficients. Besides the obvious necessary compatibility conditions between the right-
hand side g in the divergence equation and the initial datum u0 and between the boundary
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datum hj and the initial datum u0, respectively, there is a somewhat hidden but well-
known necessary compatibility condition between g and the normal boundary datum h0.
To formulate this compatibility condition we denote by p′ ∈ (1,∞) the dual exponent of

p ∈ (1,∞) and define the functional F (γ, η) : W 1,p′(G) −→ R for γ ∈ Fg and η ∈ Fν as

[F (γ, η)](φ) := (η, φ)Γ − (γ, φ)G, φ ∈ W 1,p′(G). (1.6)

Since
[F (g, h0)](φ) = (h0, φ)Γ − (g, φ)G = (u · ν, φ)Γ − (div u, φ)G

= (u, ∇φ)G ∈ W 1,p(J), φ ∈ W 1,p′(G),

we infer that
F (g, h0) ∈ W 1,p

(
J, (W 1,p′(G), ‖∇ · ‖Lp′ (G,R2))

′).
By the fact that C∞

c (Ḡ) is dense in Ŵ 1,p′(G) it follows that F (g, h0) ∈ W 1,p(J, Ŵ−1,p(G)).

Remark 1.1. For g ∈ Fg the requirement F (g, 0) ∈ W 1,p(J, Ŵ−1,p(G)) is equivalent to

g ∈ W 1,p(J, Ŵ−1,p(G)), while for h0 ∈ Fν the requirement F (0, h0) ∈ W 1,p(J, Ŵ−1,p(G))

is equivalent to h0|Γj ∈ W 1,p(J, Ŵ
−1/p
p (Γj)) for j = 1, 2.

Now, our main result reads as follows.

Theorem 1.2. Let J = (0, T ) with 0 < T < ∞ and let G ⊂ R2 be defined as in (1.2) with

θ0 ∈ (0, π). Let p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π ,

3
2 , 2, 3 }. Let α ∈ BUC1(Γ) with 〈α〉• = 0.

Suppose the data satisfy the regularity condition

(f, g, h1, h0, u0) ∈ F

and the compatibility conditions

divu0 = g|t=0, if p > 2,

u0 · ν = h0|t=0, if p > 3
2 ,

αu0 · τ − τTD±(u0)ν = h1|t=0, if p > 3,

as well as
F (g, h0) ∈ W 1,p(J, Ŵ−1,p(G)).

If the boundary condition is posed based on D+, then assume the compatibility conditions
〈〈∂τh0 + h1〉〉• = 0 in J , if p > 2, and

1
2〈∂τ1h0〉1 + 1

2〈∂τ2h0〉2 = 〈∂τh0 + h1〉• in J, if θ0 =
π
2 and p > 2.

If the boundary condition is posed based on D−, then assume the compatibility conditions
〈〈h1〉〉• = 0 in J , if p > 2, and

−1
2〈∂τ1h0〉1 − 1

2〈∂τ2h0〉2 = 〈h1〉• in J, if θ0 =
π
2 and p > 2.

Then there exists a unique solution (u, p) ∈ E to (1.1).

Remark 1.3. The values p = 2, p = 2θ0
3θ0−π and p = 2θ0

3θ0−2π with θ0 ∈ (0, π) are excluded in
Theorem 1.2 due to technical reasons. In Section 3 we solve the Laplace equation subject
to Neumann boundary conditions on the wedge domain by transforming this problem into
a problem on a layer domain. The latter is then solved using the operator sum method,
which is based on the Kalton-Weis theorem. Due to this method a condition on the
spectrum of the operators appears, which excludes p = 2θ0

3θ0−π and p = 2θ0
3θ0−2π . Moreover,

the transformation from the layer back to the wedge introduces weights. The norms in
the corresponding weighted function spaces can be estimated thanks to Hardy’s inequality
for all p ∈ (1,∞) except for p = 2. See Lemma A.2 for Hardy’s inequality on the wedge.
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Thanks to the solvability of the Laplace equation we can then prove the solvability of
equation (1.7) below, which is a crucial step for the proof of Theorem 1.2.

To provide an outline for the following sections we summarize the strategy of the proof
of Theorem 1.2. At the end, problem (1.1) is a perturbed variant of the problem

∂tu−Δu+∇p = f in J ×G,

div u = g in J ×G,

−τTD±(u)ν = h1 on J × Γ,

u · ν = h0 on J × Γ,

u(0) = u0 in G,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1.7)

with fully inhomogeneous right-hand sides (f, g, h1, h0, u0) ∈ F. Therefore, it is sufficient
to show existence and uniqueness of solutions (u, p) ∈ E to problem (1.7), provided the
data satisfy appropriate compatibility conditions. This is achieved by Corollary 4.7.

This result, in turn, relies on the unique solvability of the Stokes equations subject to
inhomogeneous perfect slip boundary conditions

u · ν = h0, curlu = h1 on J × Γ.

The latter problem is dealt with in Theorem 4.6. On the one hand, the proof of The-
orem 4.6 relies on the result [7, Corollary 1], which provides optimal regularity for the
Stokes equations subject to homogeneous perfect slip boundary conditions in the Lp-
setting for all p ∈ (1,∞). On the other hand, to cope with the inhomogeneous boundary
conditions, for the proof of Theorem 4.6 we also need to show optimal regularity for the

Laplace equation subject to Neumann boundary conditions in the space Ŵ 1,p(G) for all

p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 2 }. This is accomplished by Corollary 3.8, where we show

the invertibility of the operator AL,Tφ := Δφ associated to the problem

Δφ = f in J ×G,
∂νφ = 0 on J × Γ,

}
(1.8)

to obtain φ ∈ Lp(J,K3
p(G)) for f ∈ Lp(J, Ŵ 1,p(G)). For a definition of the weighted

Sobolev space K3
p see (2.1) below.

Now, this note is organized as follows. In Section 2 we introduce the notation. Section 3
is devoted to the proof of Corollary 3.8, i. e. , to the treatment of the Laplace equation
subject to Neumann boundary conditions in a wedge within the above function spaces.
Finally, in Section 4 we prove the unique solvability of problem (1.7) and we provide a
complete proof of Theorem 1.2. As auxiliary results, we provide several generic trace
theorems for the wedge domain G for anisotropic Sobolev-Slobodeckij spaces, which may
be of independent interest. For convenience this note is complemented by an appendix,
where we discuss Hardy’s inequality for the wedge domain G.

2. Notation

Let X be a Banach space, let 1 ≤ p ≤ ∞ and let Ω ⊂ R2 a domain. We set C∞
c (Ω) :=

{u ∈ C∞
c (Ω) : supp(u) ⊂⊂ Ω} where supp(u) is the support of u. We denote by Lp(Ω, X)

the X-valued Bochner-Lebesgue space. For n ∈ {1, 2} we define W k,p(Ω,Rn) to be the

Sobolev space of order k ∈ N and we set W 0,p := Lp. We denote by W k,p
0 (Ω,Rn) the

closure of C∞
c (Ω,Rn) in the space W k,p(Ω,Rn). Furthermore, for s = k + λ with k ∈ N0
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and 0 < λ < 1 we define W s
p (Ω) to be the Sobolev-Slobodeckij space that consists of all

functions u ∈ W k,p(Ω) satisfying

‖u‖W s
p (Ω) := ‖u‖Wk,p(Ω) +

∑
|α|=k

(∫
Ω

∫
Ω

|∂αu(y)− ∂αu(x)|p
|y − x|n+λp

dydx

)1/p

< ∞.

For k ∈ N0 the homogeneous Sobolev space of scalar valued functions is defined as

Ŵ k,p(Ω) := {u ∈ L1
loc(Ω) : ∂αu ∈ Lp(Ω), |α| = k },

and equipped with the seminorm

‖u‖
Ŵk,p(Ω)

:= ‖u‖
Ŵk,p :=

∑
|α|=k

‖∂αu‖Lp(Ω).

Now, let G ⊂ R2 be the wedge domain defined in (1.2) with opening angle θ0 ∈ (0, π).
We define the Kondrat’ev spaces as

Lp
γ(G) := Lp(G, ργd(x1, x2)), ρ = |(x1, x2)|, γ ∈ R,

and for m ∈ N0 as

Km
p,γ(G) := {u ∈ L1

loc(G) : ρ|α|−m∂αu ∈ Lp
γ(G), |α| ≤ m }, γ ∈ R. (2.1)

The space Km
p,γ(G) equipped with the norm

‖u‖Km
p,γ

:= ‖u‖Km
p,γ(G) :=

⎛⎝ ∑
|α|≤m

‖ρ|α|−m∂αu‖p
Lp
γ(G)

⎞⎠1/p

is a Banach space for all m ∈ N0 and all γ ∈ R and we abbreviate Km
p (G) := Km

p,0(G).
For k ∈ N the weighted homogeneous Sobolev space is defined as

Ŵ k,p
γ (G) := {u ∈ L1

loc(G) : ∂αu ∈ Lp
γ(G), |α| = k }, γ ∈ R,

and equipped with the seminorm

‖u‖
Ŵk,p

γ (G)
:= ‖u‖

Ŵk,p
γ

:=
∑
|α|=k

‖∂αu‖Lp
γ(G)

for k ∈ N and γ ∈ R.

The norm on a generic Banach space X is usually denoted by ‖ · ‖X . If Y is another
Banach space, then L (X,Y ) denotes the space of all bounded linear operators from X
to Y and Lis(X,Y ) denotes the subspace of all linear isomorphisms from X onto Y . For
Y = X we employ the abbreviations L (X) and Lis(X), respectively.

If ψ : Γ −→ R is a function, we occasionally denote by ψ(j) = ψ|Γj the restriction to Γj

for j = 1, 2. The same notation is also occasionally used for vector fields ψ : Γ −→ Rm

with m ∈ N and should not be confused with the components of ψ in this case. Moreover,
if ψ : Γj −→ R with j ∈ { 1, 2 } is a function that is defined on one of the smooth parts of
the boundary of G only, we also employ the notation 〈ψ〉j := limx→0 ψ(x) its trace at the
corner x = 0 of the wedge G.
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3. The Laplace Equation subject to Neumann Boundary Conditions

Let G ⊂ R2 be the wedge domain defined as in (1.2) and J = (0, T ) with 0 < T < ∞.
The objective of this section is to consider the problem

Δφ = f in J ×G,
∂νφ = 0 on J × Γ,

and to show its optimal regularity. Here ν denotes the unit outer normal vector at Γ with
Γ defined as in (1.3). Recall that τ1 = −e1 and ν1 = −e2 on Γ1 := (−∞, 0) · τ1 and
τ2 = (cos θ0, sin θ0)

T and ν2 = (− sin θ0, cos θ0)
T on Γ2 := (0,∞) · τ2, respectively. The

boundary condition in the above system is to be understood as:

∂ν1φ = 0 on Γ1,

∂ν2φ = 0 on Γ2.

Here, optimal regularity of the Neumann-Laplace equation means to show the invertibility
of the operator AL,Tφ := Δφ, where

AL,T : Lp(J,K3
p(G)) → Lp(J, Ŵ 1,p(G))

for all p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 2 }.

The strategy will be to start considering the time independent Neumann problem for
the Laplace operator

Δφ = f in G,
∂νφ = 0 on Γ,

}
(3.1)

and to transform it onto a layer domain Ω := R× (0, θ0) in a first step. Using the operator
sum method we can then show the well-posedness of the transformed problem in the
unweighted Lp-setting. In a second step we will show higher regularity of the transformed
problem and then transform it back onto the wedge domain.

Remark 3.1. In [5, Chapter 4] the Laplace equation subject to general boundary con-
ditions, where the Neumann boundary conditions are included, is studied on polygonal
domains. There, localizing the vertices and transforming the Laplace equation to a layer
domain yields the same form of the Laplace equation on the layer as in our setting. Hence,
alternatively to the operator sum method, by modifying a step in the proof of [5, The-
orem 4.3.2.3] we could also prove the invertibility of the transformed Neumann-Laplace
operator on the layer. For this approach a suitable variant of the condition [5, (4.3.2.10)]
has to be satisfied, which leads to a constraint on the parameter p of the Lp-space. Now,
inserting into that equation βp = 3 − 2+γ

p instead of 2
p′ = 2 − 2

p , we get a condition that

is equivalent to our spectral condition (3.9); see also Remark 3.6. Thus, this approach
would lead to optimal regularity for the Neumann problem for the Laplace operator for
the same values of p. However, we prefer to provide a self-contained proof based on the
operator sum method.

Let’s start with the transformation of problem (3.1) onto the layer domain. We set
Ω := R × I, with I := (0, θ0) where θ0 is the angle of the wedge G. We write the inverse
of the transform to polar coordinates as

ψP : R+ × I → G, (r, θ) �→ (r cos θ, r sin θ) = (x1, x2).

We use the Euler transformation r = ex in radial direction and write by an abuse of
notation x ∈ R for the new variable. We set

ψE : Ω → R+ × I, (x, θ) �→ (ex, θ) =: (r, θ).
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It is not difficult to see that

ψ := ψP ◦ ψE : Ω → G

is a diffeomorphism. We set

Ψφ := φ ◦ ψ and Ψ−1ϕ := ϕ ◦ ψ−1.

Analogously to [9] we define pull-back and push-forward by

ϕ := Θ∗
pφ := e−βpxΨφ and φ := Θp

∗ϕ := Ψ−1eβpxϕ (3.2)

with βp ∈ R. Let φ be the solution of (3.1), then by [5, Chapter 4] we have that

Θ∗
p(Δφ) = e−2x(rβp(∂x) + ∂2

θ )ϕ, (3.3)

where

rβp(∂x)ϕ := (∂x + βp)
2ϕ. (3.4)

To absorb the factor e−2x in (3.3), we put

g = Θ̃∗
pf = e2xΘ∗

pf (3.5)

with inverse (Θ̃∗
p)

−1 = Θ̃p
∗. By the choice of

βp = 3− 2 + γ

p
(3.6)

Lemma 3.5 implies that

Θ̃∗
p ∈ Lis

(
Ŵ 1,p

γ (G),W 1,p(Ω)
)
.

We notice that βp, the pull-back and the push-forward depend on p. That means that the
corresponding operator families are not consistent in p.

After transforming the boundary conditions of (3.1) to the layer domain we obtain

∂θϕ = 0 on ∂Ω = R× {0, θ0}.

Hence, (3.1) is equivalent to

−(rβp(∂x) + ∂2
θ )ϕ = g in Ω
∂θϕ = 0 on ∂Ω.

}
(3.7)

The proof of the well-posedness of problem (3.7) needs some preparation. We start to
describe the operators associated to the single parts of (3.7):

(1) Let rβp be the polynomial given in (3.4) with βp given as in (3.6). We define Tx in
Lp(R) by

Txϕ := −rβp(∂x)ϕ, ϕ ∈ D(Tx) := W 2,p(R).

The spectrum of Tx is given by the parabola −rβp(iR), which is symmetric w.r.t.
the real axis, open to the right and has its intersection point with the real axis at
−β2

p . It is known that Tx+ d ∈ H∞(Lp(R)) for d > β2
p with φ∞

Tx+d < π
2 , see [11, 9].

These properties are also true for the canonical extension of Tx to Lp(R, Lp(I)),
that is

Txϕ := Txϕ, ϕ ∈ D(Tx) := W 2,p(R, Lp(I)),

see, for instance, [12, 3, 8] for operator-valued Fourier multiplier results.
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(2) We define Tθ in Lp(I) by

Tθϕ := −∂2
θϕ, ϕ ∈ D(Tθ) :=

{
φ ∈ W 2,p(I) : ∂θφ = 0 on ∂I

}
.

It is straight forward to calculate its spectrum, which is given as

σ(Tθ) = {0} ∪
{(

πk

θ0

)2

, k ∈ N

}
(3.8)

with corresponding eigenfunctions

ẽk(θ) := cos

(
πk

θ0
θ

)
, k ∈ N0, θ ∈ I,

see also [9]. Since Tθ is self-adjoint in L2(I), the eigenfunctions form a basis of
L2(I). We denote by (λi)i∈N0 the set of eigenvalues of Tθ, i.e., (λi)i∈N0 = σ(Tθ)
such that λ0 < λ1 < . . . . Setting e0 := ẽ0√

θ0
, where ẽ0 is the eigenfunction to the

eigenvalue λ0 = 0, and setting ei := ẽi
√
2√

θ0
, where ẽi is the eigenfunction to the

eigenvalue λi for all i ∈ N, we have

〈ei, ej〉 =
2

θ0

∫ θ0

0
ẽi · ẽj dθ = δij (i, j ∈ N),

and

〈e0, ej〉 =
√
2

θ0

∫ θ0

0
ẽ0 · ẽj dθ = 0 (j ∈ N),

〈e0, e0〉 =
1

θ0

∫ θ0

0
ẽ0 · ẽ0 dθ = 1.

By Fourier series techniques it is straight forward to see that Tθ admits an H∞-
calculus on Lq(I) with φ∞

Tθ = 0; see [4] for more details. Again these facts remain

valid for the canonical extension of Tθ to Lp(R, Lp(I)), which is defined by

Tθϕ := Tθϕ, D(Tθ) := Lp(R, D(Tθ)).
Optimal regularity for (3.7) is reduced to invertibility of the operator

Tp := Tx + Tθ : D(Tp) → Lp(Ω)

if we can show that

D(Tp) =
{
ϕ ∈ W 2,p(Ω) : ∂θϕ = 0 on ∂Ω

}
= D(Tx) ∩D(Tθ).

To this end, for m ∈ N let

P c
m,pϕ =

m∑
i=0

〈ϕ, ei〉 ei

be the projection of ϕ ∈ Lp(I) onto 〈e0, . . . , em〉 and put Pm,p := 1 − P c
m,p. We also set

Ep
m := Pm,p (L

p(I)). It is obvious that (Pm,p)1<p<∞ is a consistent family on (Lp(I))1<p<∞,

so we omit the index p and write Pm. If Pm denotes the canonical extension of Pm to
Lp(R, Lp(I)), then Pm ∈ L (Lp(Ω)) is a projector onto Lp(R, Ep

m). Consequently, we have
the decomposition

Lp(Ω) = Lp(R, 〈e0, . . . , em〉)⊕ Lp(R, Ep
m).

The proof of the following properties is straight forward.
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Lemma 3.2. Let 1 < p < ∞. Let d > β2
p with βp as given in (3.6), m ∈ N and Tx, Tθ be

given as above. Then we have

(1) Pmϕ ∈ D(Tx) and PmTxϕ = TxPmϕ for ϕ ∈ D(Tx),
(2) Pmϕ ∈ D(Tθ) and PmTθϕ = TθPmϕ for ϕ ∈ D(Tθ),
(3) Tx + d, Tθ ∈ H∞ (Lp(R, Ep

m)) ∩ H∞ (Lp(R, 〈e0, . . . , em〉)) with the corresponding
angles φ∞

Tx+d < π
2 , φ

∞
Tθ

= 0,

(4) Pm, (λ− Tx)
−1 and (μ− Tθ)

−1 commute pairwise for λ ∈ ρ(Tx) and μ ∈ ρ(Tθ).

The invertibility of Tp = Tx + Tθ essentially follows by the operator sum method. For
instance one can apply [10, Proposition 3.5], which is a consequence of the Kalton-Weis
theorem [6, Cororallary 5.4].

Proposition 3.3. Let 1 < p < ∞ and βp be defined as in (3.6). Then

Tp ∈ Lis

(
D(Tp), L

p(Ω)
)

if and only if

βp
2 /∈ σ(Tθ) = {(πk/θ0)2, k ∈ N0}. (3.9)

Proof. Relying on Lemma 3.2, the fact that

Tp ∈ Lis

(
D(Tx) ∩D(Tθ), L

p(Ω)
)

follows by copying almost verbatim the lines of the proof of [7, Theorem 2.3]. The proof
of [7, Lemma 2.5] in addition shows that

W 2,p(Ω) = W 2,p(R, Lp(I)) ∩ Lp(R,W 2,p(I)).

The definition of the Sobolev space then yields that

D(Tx) ∩D(Tθ) =
{
ϕ ∈ W 2,p(Ω) : ∂θϕ = 0 on ∂Ω

}
.

This completes the proof. �

Next, we show higher regularity of the transformed problem (3.7).

Corollary 3.4. Let 1 < p < ∞, βp be defined as in (3.6) and condition (3.9) be fulfilled.
Then for every g ∈ W 1,p(Ω) the solution ϕ of (3.7) satisfies the estimate

‖ϕ‖W 3,p(Ω) ≤ C‖g‖W 1,p(Ω)

for some constant C > 0 that is independent of ϕ and g.

Proof. Denote by Dh
1ϕ the difference quotient

Dh
1ϕ(x, θ) :=

ϕ((x, θ) + he1)− ϕ(x, θ)

h
(h ∈ R, h 
= 0),

where e1 := (1, 0). Let ϕ ∈ D(Tp) be the solution of (3.7). Applying Dh
1 to (3.7) and

using the fact that Dh
1 commutes with Tp, we obtain

Dh
1Tpϕ = Dh

1g in D′(Ω)

⇔ TpD
h
1ϕ = Dh

1g in D′(Ω). (3.10)

Now, let g ∈ W 1,p(Ω). The above calculation and Proposition 3.3 imply

‖Dh
1ϕ−Dh′

1 ϕ‖W 2,p(Ω) ≤ C‖(Dh
1 −Dh′

1 )g‖Lp(Ω) (3.11)

for a constant C > 0.
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For the right-hand side of (3.11) it is straight forward to see that

‖(Dh
1 −Dh′

1 )g‖Lp(Ω) −→
h,h′→0

0,

which implies that Dh
1g is a Cauchy sequence in Lp(Ω) converging to ∂xg ∈ Lp(Ω).

It follows by the estimate (3.11) that Dh
1ϕ is a Cauchy sequence in D(Tp) converging

to ∂xϕ ∈ D(Tp). The last calculations imply

‖∂xϕ‖W 2,p(Ω) ≤ C‖∂xg‖Lp(Ω) ≤ C‖g‖W 1,p(Ω), g ∈ W 1,p(Ω)

for a constant C > 0. This yields that ∂xϕ ∈ W 2,p(Ω), i.e.

ϕ,∇ϕ,∇2ϕ,∇2∂xϕ ∈ Lp(Ω).

We still have to prove that ∂3
θϕ ∈ Lp(Ω). This, however, follows by Tpϕ = g. Since

Tpϕ = (∂2
x + 2βp∂x + β2

p + ∂2
θ )ϕ

we have that

∂2
θϕ = −

(
∂2
x + 2βp∂x + β2

p

)
ϕ+ g ∈ W 1,p(Ω),

and, hence, ∂3
θϕ ∈ Lp(Ω). �

Now, we consider the equivalence of problem (3.1) and (3.7). We define ALφ := Δφ on
the wedge domain as

ALφ := Δφ, φ ∈ D(AL) =
{
η ∈ K3

p,γ(G) : ∂νη = 0 on Γ
}
. (3.12)

Lemma 3.5. Let p ∈ (1,∞), γ ∈ R such that γ 
= p − 2 and βp = 3 − 2+γ
p . Let Θp

∗, Θ∗
p

be defined as in (3.2) and Θ̃p
∗, Θ̃∗

p be defined as in (3.5). Then we have

Θ̃∗
p ∈ Lis

(
Ŵ 1,p

γ (G),W 1,p(Ω)
)
, Θ∗

p ∈ Lis (D(AL), D(Tp))

where ‖ · ‖D(AL) = ‖ · ‖K3
p,γ(G) and ‖ · ‖D(Tp) = ‖ · ‖W 3,p(Ω).

In particular, φ ∈ D(AL) is the unique solution of (3.1) to the right-hand side f ∈ Ŵ 1,p
γ (G)

if and only if ϕ = Θ∗
pφ ∈ D(Tp) is the unique solution of (3.7) to the right-hand side

g = Θ̃∗
pf ∈ W 1,p(Ω).

Proof. The proof of Θ∗
p ∈ Lis

(
K3

p,γ(G),W 3,p(Ω)
)
follows from Chapter 3, Lemma B.3 (1)

of this thesis with l − k := 3. In combination with the boundary conditions transformed
at the beginning of this section, we obtain

Θ∗
p ∈ L (D(AL), D(Tp)) and Θp

∗ ∈ L (D(Tp), D(AL)) ,

and since Θ∗
p is the inverse of Θp

∗ the second assertion is proved.

Now, set

h1r1,j(∂x, ∂θ) := cos θ(r1 + j + ∂x)− sin θ,

h2r1,j(∂x, ∂θ) := sin θ(r1 + j + ∂x)− cos θ

with r1 := βp − 2, j ∈ R. Let g ∈ W 1,p(Ω). Then by Chapter 3, Lemma B.1 (1) of this
thesis with l := 2 we have
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‖Θ̃p
∗g‖pŴ 1,p

γ (G)
=

∑
|α|=1

‖Dα(Θ̃p
∗g)‖pLp

γ(G)

=
∑
|α|=1

∫
Ω

∣∣∣∣∣e(βp−2)xe−|α|x
α1∏
n=1

h1r1,−|α|+n(∂x, ∂θ)

α2∏
n=1

h2r1,−α2+n(∂x, ∂θ)g(x, θ)

∣∣∣∣∣
p

e(2+γ)xdxdθ

=
∑
|α|=1

∫
Ω

∣∣∣∣∣e(3− 2+γ
p

−2)x
e−x

α1∏
n=1

h1r1,−|α|+n(∂x, ∂θ)

α2∏
n=1

h2r1,−α2+n(∂x, ∂θ)g(x, θ)

∣∣∣∣∣
p

e(2+γ)xdxdθ

≤ C‖g‖p
W 1,p(Ω)

for some constant C > 0.

Next, we show the converse estimate. Let f ∈ Ŵ 1,p
γ (G) such that f(0) = 0 if γ < p− 2

and f(∞) = 0 if γ > p− 2. Then Hardy’s inequality, see Lemma A.2, implies

‖Θ̃∗
pf‖pLp(Ω) =

∫
Ω
|e2xe−βpxΨf(x, θ)|pd(x, θ)

=

∫
G
|ρ2ρ−(3− 2+γ

p
)
f(x1, x2)|pρ−2d(x1, x2)

= ‖ρ−1f‖p
Lp
γ(G)

≤ C‖∇f‖p
Lp
γ(G)

,

for some constant C := C(p, γ) > 0. Moreover, we have

‖Θ̃∗
pf‖pŴ 1,p(Ω)

=

∫
Ω
|∇e(2−βp)xΨf(x, θ)|pd(x, θ)

=

∫
G

∣∣∣∣ρ2−βp

((
2− βp

0

)
f(x1, x2) + ρ

(
cos θ sin θ
− sin θ cos θ

))
∇f(x1, x2)

∣∣∣∣p ρ−2d(x1, x2)

≤
∫
G
|ρ2−(3− 2+γ

p
)
(
2− βp

0

)
f(x1, x2)|pρ−2d(x1, x2)

+

∫
G
|ρ3−(3− 2+γ

p
)∇f(x1, x2)|pρ−2d(x1, x2)

≤ C(‖ρ−1f‖p
Lp
γ(G)

+ ‖f‖p
Lp
γ(G)

) ≤ C‖∇f‖p
Lp
γ(G)

,

for a constant C := C(p, γ) > 0. Hence, the first assertion Θ̃∗
p ∈ Lis(Ŵ

1,p
γ (G),W 1,p(Ω))

follows. �

Remark 3.6. (a) For βp = 3 − 2+γ
p the condition (3.9) is fulfilled, if every eigenvalue λi

of Tp,θ satisfies

λi 
= β2
p =

(
3− 2 + γ

p

)2

. (3.13)

For the case γ = 0, i.e. for the Kondrat’ev weight ργ ≡ 1, we then have

λi 
= β2
p ⇔

(
3− 2

p

)2


=
(
iπ

θ0

)2

, i ∈ N0.

This is equivalent to

p 
= 2θ0
3θ0 − iπ

, i ∈ N0.

Since θ0 ∈ (0, π), the above relation is always fulfilled for p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π}.
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(b) Lemma 3.5 is fulfilled for all p ∈ (1,∞) such that γ 
= p− 2 with γ ∈ R. For γ = 0
this is equivalent to p 
= 2.

Proposition 3.3, Corollary 3.4, Lemma 3.5 and the last remark yield the following result.

Corollary 3.7. Let p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 2}, θ0 ∈ (0, π) and ρ = |(x1, x2)|. Then

equation (3.1) is for each f ∈ Ŵ 1,p(G) uniquely solvable with a solution φ satisfying

ρ|α|−3∂αφ ∈ Lp(G), |α| ≤ 3.

The next corollary generalizes the above result to time dependent data:

Corollary 3.8. Let p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 2 }, θ0 ∈ (0, π) and ρ = |(x1, x2)|. Let

J = (0, T ) with 0 < T < ∞. Then for every f ∈ Lp(J, Ŵ 1,p(G)) the equation

Δφ = f in J ×G,
∂νφ = 0 on J × Γ,

}
(3.14)

has a unique solution φ satisfying

ρ|α|−3∂αφ ∈ Lp(J, Lp(G)), |α| ≤ 3.

Proof. Assume that f ∈ C∞(J ×G) ∩ Lp(J, Ŵ 1,p(G)). For every t ∈ R choose
φ(t, · ) ∈ K3

p(G) to be the unique solution to the problem

Δφ(t, ·) = f(t, ·) in G, ∂νφ(t, ·) = 0 on Γ,

which exists due to the Corollary 3.7. Now, we have

‖φ‖p
Lp(J,K3

p(G))
=

∫ T

0
‖φ(t, ·)‖p

K3
p(G)

dt ≤ Cp

∫ T

0
‖f(t, ·)‖p

Ŵ 1,p(G)
dt = Cp‖f‖p

Lp(J,Ŵ 1,p(G))

for a constant C > 0 which is independent of u, f and t ∈ R. This shows unique solvability

of (3.14) for a right-hand side f ∈ C∞(J ×G) ∩ Lp(J, Ŵ 1,p(G)). Now, since the latter

space is dense in Lp(J, Ŵ 1,p(G)), using an approximation argument yields the assertion

for every right-hand side f ∈ Lp(J, Ŵ 1,p(G)). �

4. The Stokes Equations subject to Navier Boundary Conditions

Let J = (0, T ) with 0 < T < ∞ and let G ⊂ R2 be the wedge defined as
in (1.2) with opening angle θ0 ∈ (0, π). The aim of this section is to prove Theo-
rem 1.2, that is the unique solvability of problem (1.1) in the Lp-setting for all p ∈
(1,∞) \ { 2θ0

3θ0−π ,
2θ0

3θ0−2π ,
3
2 , 2, 3}. We start with a proof of the well-posedness of the

Stokes equations subject to inhomogeneous perfect slip boundary conditions.

4.1. Inhomogeneous Perfect Slip Boundary Conditions. Let E and F be defined as
in (1.4) and (1.5), respectively. Here we consider the system

∂tu−Δu+∇p = f in J ×G,
div u = g in J ×G,
curl u = h1 on J × Γ,
u · ν = h0 on J × Γ,
u(0) = u0 in G,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.1)

where the boundary of G is decomposed as in (1.3) as ∂G = Γ ∪ { 0 } with its smooth
part given as Γ = Γ1 ∪ Γ2. Recall that (τ, ν) = (τj , νj) for j = 1, 2 denotes the positively
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oriented pair of unit tangential and unit outer normal vector on Γj as introduced in
Section 1. Of course, the boundary conditions in (4.1) have to be understood as

curl u = h
(1)
1 on J × Γ1,

curl u = h
(2)
1 on J × Γ2,

u · ν1 = h
(1)
0 on J × Γ1,

u · ν2 = h
(2)
0 on J × Γ2,

where h
(j)
� = h�|Γj for � = 0, 1 and j = 1, 2. We aim at solutions

(u, p) ∈ E

and, hence, the given data in (4.1) have to satisfy the regularity conditions

(f, g, h1, h0, u0) ∈ F.

In order to treat problem (4.1) we first need the following result concerning traces on the
wedge domain G.

Proposition 4.1. Let J = (0, T ) with 0 < T < ∞ and let G ⊂ R2 be the wedge domain
defined as in (1.2) with opening angle θ0 ∈ (0, π). Let 1 < p < ∞ with p 
= 2. Furthermore,
let Γ1 = (−∞, 0) · τ1 and Γ2 = (0, ∞) · τ2 with

τ1 = −e1, ν1 = −e2, τ2 = (cos θ0, sin θ0)
T , ν2 = (− sin θ0, cos θ0)

T

such that ∂G = Γ1
.∪ Γ2

.∪ {0}. Now, suppose that

gj ∈ W
1−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

2−1/p
p (Γj)), j = 1, 2,

hj ∈ W
1/2−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

1−1/p
p (Γj)), j = 1, 2,

such that

〈g1〉1 = 〈g2〉2 in J,

〈∂τ1g1〉1 + cos θ0 · 〈∂τ2g2〉2 = sin θ0 · 〈h2〉2 in J, if p > 2,

−〈∂τ2g2〉2 − cos θ0 · 〈∂τ1g1〉1 = sin θ0 · 〈h1〉1 in J, if p > 2.

Then there exists a function u ∈ W 1,p(J, Lp(G)) ∩ Lp(J,W 2,p(G)) that satisfies

u = g1 and ∂ν1u = h1 on J × Γ1,

u = g2 and ∂ν2u = h2 on J × Γ2.

Proof. Step 1. We first show that we can w. l. o. g. assume that 〈gj〉j = 0 as well as
〈∂τjgj〉j = 〈hj〉j = 0, if p > 2, for j = 1, 2. Indeed, there exist extensions

ĝ1 ∈ W
1−1/2p
p (J, Lp(Σ1)) ∩ Lp(J,W

2−1/p
p (Σ1)),

ĥ1 ∈ W
1/2−1/2p
p (J, Lp(Σ1)) ∩ Lp(J,W

1−1/p
p (Σ1))

of g1 and h1, respectively, to the hyperplane Σ1 := R · τ1; cf. [1, Thm. 4.26]. Now, the
trace theory for anisotropic function spaces on the halfspace implies that there exists

v ∈ W 1,p(J, Lp(R× (0,∞))) ∩ Lp(J,W 2,p(R× (0,∞)))

such that v = ĝ1 and ∂ν1v = ĥ1 on J × Σ1. Then we set u = v + û and infer that
û ∈ W 1,p(J, Lp(G)) ∩ Lp(J,W 2,p(G)) has to satisfy the boundary conditions

û = 0 and ∂ν1 û = 0 on J × Γ1,

û = ĝ2 and ∂ν2 û = ĥ2 on J × Γ2
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for ĝ2 := g2 − v|Γ2 and ĥ2 := h2 − ∂ν2v. Due to the choice of v and the compatibility
conditions for the boundary data we have 〈ĝ2〉2 = 〈g2〉2 − 〈g1〉1 = 0 and

〈∂τ2 ĝ2〉2 = 〈∂τ2g2〉2 − 〈∂τ2v〉2
= − cos θ0 · 〈∂τ1g1〉1 − sin θ0 · 〈h1〉1 − 〈∂τ2v〉2
= cos θ0 · 〈∂x1v〉• + sin θ0 · 〈∂x2v〉• − 〈∂τ2v〉2 = 0, if p > 2,

as well as

〈ĥ2〉2 = 〈h2〉2 − 〈∂ν2v〉2
= 1

sin θ0

(
〈∂τ1g1〉1 + cos θ0 · 〈∂τ2g2〉2

)
− 〈∂ν2v〉•

= 1
sin θ0

(
〈∂τ1g1〉1 − cos2 θ0 · 〈∂τ1g1〉1 − sin θ0 · cos θ2 · 〈h1〉1

)
− 〈∂ν2v〉2

= sin θ0 · 〈∂τ1g1〉1 − cos θ0 · 〈h1〉1 − 〈∂ν2v〉2
= − sin θ0 · 〈∂x1v〉• + cos θ0 · 〈∂x2v〉• − 〈∂ν2v〉2 = 0, if p > 2.

Hence, 〈∂τ2 ĝ2〉2 = 〈ĥ2〉2 = 0, if p > 2.

Step 2. Now, assume that 〈gj〉j = 0 as well as 〈∂τjgj〉j = 〈hj〉j = 0, if p > 2, for j = 1, 2.

Let G̃ := (0,∞)2 be the wedge domain with opening angle π
2 . Here we set Γ̃1 := Γ1 and

Γ̃2 := { 0 } × (0,∞) to obtain the decomposition ∂G̃ = Γ̃1
.∪ Γ̃2

.∪ { 0 } of the boundary of

G̃. We abbreviate ρ := |x| = |(x1, x2)| for x ∈ R2 and define a transformation

Φ : G → G̃, Φ(x1, x2) =

(
ρ cos

(
π

2θ0
arccos

(
x1
ρ

))
, ρ sin

(
π

2θ0
arccos

(
x1
ρ

)))
.

It is not difficult to see that Φ : G → G̃ is a C∞-diffeomorphism. We set g̃1 := g1, h̃1 := h1
as well as

g̃2(t, se2) := g2(t, sτ2), h̃2(t, se2) := h2(t, sτ2), t ∈ J, s > 0.

Then we have

g̃j ∈ W
1−1/2p
p (J, Lp(Γ̃j)) ∩ Lp(J,W

2−1/p
p (Γ̃j)), j = 1, 2,

h̃j ∈ W
1/2−1/2p
p (J, Lp(Γ̃j)) ∩ Lp(J,W

1−1/p
p (Γ̃j)), j = 1, 2,

and lims→0 g̃j(t, sej) = 0 as well as lims→0 ∂xj g̃j(t, sej) = lims→0 h̃j(t, sej) = 0, if p > 2,
for t ∈ J and j = 1, 2. Now, we apply [2, Theorem VIII.1.8.5], which shows that there

exists ũ ∈ W 1,p(J, Lp(G̃)) ∩ Lp(J,W 2,p(G̃)) satisfying

ũ = g̃1 and ∂ν1 ũ = h̃1 on J × Γ̃1,

ũ = g̃2 and ∂ν2 ũ = h̃2 on J × Γ̃2.

Finally, we set u = ũ ◦ Φ ∈ W 1,p(J, Lp(G)) ∩ Lp(J,W 2,p(G)). By construction, u satisfies
all desired boundary conditions. Note that we indeed have u ∈ Lp(J,W 2,p(G)), which can
be seen as follows: We have ∂jΦ ∼ ρ0 as ρ → 0 and ρ → ∞ for j = 1, 2 for the first
derivatives of Φ and ∂j∂kΦ ∼ ρ−1 as ρ → 0 and ρ → ∞ for j, k = 1, 2 for the second
derivatives of Φ, i. e. ∂jΦn, ρ∂j∂kΦn ∈ L∞(G) for j, k, n = 1, 2. Moreover, det∇Φ ≡ π

2θ0
.

However, the chain rule shows that

∂j∂k(ũ ◦ Φ) =
2∑

m,n=1

(
(∂m∂nũ) ◦ Φ

)
∂jΦm∂kΦn +

2∑
n=1

(
(∂nũ) ◦ Φ

)
∂j∂kΦn, j, k = 1, 2



PARTIAL SLIP STOKES ON A 2D WEDGE DOMAIN 95

and we have ρ−1∂j ũ ∈ Lp(J, Lp(G̃)) for j = 1, 2 due to Hardy’s inequality; cf. Lemma A.2.
Note that by construction we have ∂j ũ( · , 0) = 0 in J for j = 1, 2, if p > 2, since

lims→0 h̃j(t, sej) = 0, for t ∈ J and j = 1, 2, if p > 2. �

Remark 4.2. For θ0 =
π
2 we have cos θ0 = 0 and sin θ0 = 1 as well as τ1 = −e1, ν1 = −e2,

τ2 = e2 and ν2 = −e1. In this case the compatibility conditions in Proposition 4.1 read

〈g1〉1 = 〈g2〉2 in J,

−〈∂x1g1〉1 = 〈h2〉2 in J, if p > 2,

−〈∂x2g2〉2 = 〈h1〉1 in J, if p > 2.

These are precisely the compatibility conditions [2, (VIII.1.8.7) & (VIII.1.8.8)]. This is
not surprising, since for θ0 =

π
2 Proposition 4.1 is a special case of [2, Thm. VIII.1.8.5].

Corollary 4.3. Let J = (0, T ) with 0 < T < ∞ and let G ⊂ R2 be the wedge domain
defined as in (1.2) with opening angle θ0 ∈ (0, π). Let 1 < p < ∞ with p 
= 2. Furthermore,
let Γ1 = (−∞, 0) · τ1 and Γ2 = (0, ∞) · τ2 with

τ1 = −e1, ν1 = −e2, τ2 = (cos θ0, sin θ0)
T , ν2 = (− sin θ0, cos θ0)

T

such that ∂G = Γ1
.∪ Γ2

.∪ {0} and set Γ = Γ1 ∪ Γ2. Now, suppose that

h
(j)
0 ∈ W

1−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

2−1/p
p (Γj)), j = 1, 2,

h
(j)
1 ∈ W

1/2−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

1−1/p
p (Γj)), j = 1, 2,

such that 〈〈h1〉〉• = 0 in J , if p > 2, and

〈∂τ1h0〉1 + 〈∂τ2h0〉2 = 〈h1〉• in J, if θ0 =
π
2 and p > 2.

Then there exists a function u ∈ W 1,p(J, Lp(G,R2)) ∩ Lp(J,W 2,p(G,R2)) that satisfies

u · ν = h0 and curlu = h1 on J × Γ. (4.2)

Proof. First note that for v ∈ W 1,p(J, Lp(G,R2)) ∩ Lp(J,W 2,p(G,R2)) we have

curl v = ∂1v2 − ∂2v1 = ∂τ (v · ν)− ∂ν(v · τ) on J × Γ.

Hence, if v · ν = h0 and curl v = h1 on J × Γ, then ∂ν(v · τ) = ∂τh0 − h1 on J × Γ.

Now, we choose gj ∈ W
1−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

2−1/p
p (Γj)) for j = 1, 2 such that

cos θ0 · ∂τ1g1 = −(1− cos θ0) · ∂τ1h
(1)
0 + 1

2 sin
2 θ0 · h(1)1 at J × {0},

cos θ0 · ∂τ2g2 = (1− cos θ0) · ∂τ2h
(2)
0 − 1

2 sin
2 θ0 · h(2)1 at J × {0}

and gj( · , 0) = 0 in J for j = 1, 2, if θ0 
= π
2 and p > 2, and gj := 0 for j = 1, 2, if θ0 =

π
2 .

Next, we define h̃
(j)
0 ∈ W

1−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

2−1/p
p (Γj)) for j = 1, 2 as

sin θ0 · h̃(1)0 (t,−sτ1) := h
(2)
0 (t, sτ2) + cos θ0 · h(1)0 (t,−sτ1) + g1(t,−sτ1), t ∈ J, s > 0,

sin θ0 · h̃(2)0 (t, sτ2) := −h
(1)
0 (t,−sτ1)− cos θ0 · h(2)0 (t, sτ2) + g2(t, sτ2), t ∈ J, s > 0,

and H0 ∈ W
1−1/2p
p (J, Lp(Γ,R2)) ∩ Lp(J,W

2−1/p
p (Γ,R2)) as H0 := h̃0 · τ + h0 · ν. By

construction we then have H0 · ν = h0 on J × Γ.

Finally, we define h̃
(j)
1 ∈ W

1/2−1/2p
p (J, Lp(Γj)) ∩ Lp(J,W

1−1/p
p (Γj)) for j = 1, 2 as

sin θ0 · h̃(1)1 (t,−sτ1) := (∂τ2g2)(t, sτ2) + (1− cos θ0) · (∂τ1h
(1)
0 )(t,−sτ1), t ∈ J, s > 0,

sin θ0 · h̃(2)1 (t, sτ2) := (∂τ1g1)(t,−sτ1)− (1− cos θ0) · (∂τ2h
(2)
0 )(t, sτ2), t ∈ J, s > 0,
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and H1 ∈ W
1/2−1/2p
p (J, Lp(Γ,R2))∩Lp(J,W

1−1/p
p (Γ,R2)) as H1 := (∂τh0−h1) · τ + h̃1 · ν.

By construction we then have H1 · τ = ∂τh0 − h1 on J × Γ.

Now, it is readily checked that

〈H0〉1 = 〈H0〉2 in J,

〈∂τ1H0〉1 + cos θ0 · 〈∂τ2H0〉2 = sin θ0 · 〈H1〉2 in J, if p > 2,

−〈∂τ2H0〉2 − cos θ0 · 〈∂τ1H0〉1 = sin θ0 · 〈H1〉1 in J, if p > 2,

Therefore, due to Proposition 4.1 there exists u ∈ W 1,p(J, Lp(G,R2))∩Lp(J,W 2,p(G,R2))
that satisfies

u = H0 and ∂νu = H1 on J × Γ.

By construction this function satisfies the desired boundary conditions. �

Remark 4.4. For θ0 =
π
2 we have cos θ0 = 0 and sin θ0 = 1 as well as τ1 = −e1, ν1 = −e2,

τ2 = e2 and ν2 = −e1. In this case the compatibility conditions in Corollary 4.3 read

〈〈h1〉〉• = 0 in J, if p > 2,

−〈∂x1h0〉1 + 〈∂x2h0〉2 = 〈h1〉• in J, if p > 2,

which explains the additional compatibility condition between h0 and h1 that is necessary
in this case:

−〈∂x1h0〉1 + 〈∂x2h0〉2 = 〈∂x1u2〉1 − 〈∂x2u1〉2 = 〈curlu〉• = 〈h1〉•, if p > 2,

for every u ∈ W 1,p(J, Lp(G,R2)) ∩ Lp(J,W 2,p(G,R2)) that satisfies u · ν = h0 as well as
curlu = h1 on J × Γ.

The next auxiliary result is important, since it allows for the inhomogeneous divergence
constraint in problem (4.1).

Proposition 4.5. Let J = (0, T ) with 0 < T < ∞ and let G ⊂ R2 be the wedge domain
defined as in (1.2) with opening angle θ0 ∈ (0, π) and let Γ = ∂G \ {0}. Assume that

p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π , 2 }. Then for each

g ∈ W 1,p(J, Ŵ−1,p(G)) ∩ Lp(J, Ŵ 1,p(G))

there exists a function u ∈ W 1,p(J, Lp(G,R2)) ∩ Lp(J,W 2,p(G,R2)) such that

div u = g in J ×G,
curl u = 0, u · ν = 0 on J × Γ.

}
(4.3)

Proof. Let φ ∈ Lp(J,K3
p(G)) be the unique solution of the problem

Δφ = g in J ×G,
∂νφ = 0 on J × Γ,

which exists according to Corollary 3.8, since g ∈ Lp(J, Ŵ 1,p(G)).

By the fact that we also have g ∈ W 1,p(J, Ŵ−1,p(G)) it follows that φ is also a
weak solution to the above problem, i. e. ∇φ ∈ W 1,p(J, Lp(G,R2)). Note that we have
∂αφ ∈ Lp(J, Lp(G)) for |α| = 3, since φ ∈ Lp(J,K3

p(G)). Now, let u := ∇φ. We have then

u, ∂αu ∈ Lp(J, Lp(G,R2)) for |α| = 2. Interpolation (e. g. using the Gagliardo-Nirenberg
inequality) yields that ∂αu ∈ Lp(J, Lp(G,R2)) also for |α| = 1. Summarizing we have
u ∈ W 1,p(J, Lp(G,R2)) ∩ Lp(J,W 2,p(G,R2)). Moreover, divu = Δφ = g in J × G and
curlu = curl∇φ = 0 on J × Γ. Finally, u · ν = ∂νφ = 0 on J × Γ. �

Now, we are in position to prove the main result of this subsection.
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Theorem 4.6. Let J = (0, T ) with 0 < T < ∞ and let G ⊂ R2 be the wedge domain
defined as in (1.2) with opening angle θ0 ∈ (0, π) and let Γ = ∂G \ { 0 }. Assume that

p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π ,

3
2 , 2, 3 }. Suppose the data satisfy the regularity condition

(f, g, h1, h0, u0) ∈ F

and the compatibility conditions

div u0 = g|t=0, if p > 2,

u0 · ν = h0|t=0, if p > 3
2 ,

curl u0 = h1|t=0, if p > 3,

as well as

F (g, h0) ∈ W 1,p(J, Ŵ−1,p(G))

and 〈〈h1〉〉• = 0 in J , if p > 2, and

〈∂τ1h0〉1 + 〈∂τ2h0〉2 = 〈h1〉• in J, if θ0 =
π
2 and p > 2.

Then there exists a unique solution (u, p) ∈ E to problem (4.1).

Proof. The uniqueness of the solution (u, p) ∈ E follows directly from [7, Corollary 1].

To show the existence of the solution to (4.1) we proceed in three steps: First, we
employ Corollary 4.3 and choose u1 ∈ Eu such that

curl u1 = h1 on J × Γ,

u1 · ν = h0 on J × Γ.

Next, we employ Proposition 4.5 and choose u2 ∈ Eu such that

div u2 = g − div u1 in J ×G,

curl u2 = 0, u2 · ν = 0 on J × Γ.

Note that the compatibility conditions and the fact that u1 · ν = h0 on J × Γ ensure

that g−divu1 ∈ W 1,p(J, Ŵ−1,p(G))∩Lp(J,W 1,p(G)); cf. Remark 1.1. Finally, we employ
[7, Corollary 1] and choose (u3, p3) ∈ E such that

∂tu3 −Δu3 +∇p = f − ∂tu1 +Δu1 − ∂tu2 +Δu2 in J ×G,

div u3 = 0 in J ×G,

curl u3 = 0, u3 · ν = 0 on J × Γ,

u3(0) = u0 − u1(0)− u2(0) in G.

By construction (u, p) := (u1 + u2 + u3, p) ∈ E is a solution to (4.1). �

4.2. Inhomogeneous Free and Perfect Slip Boundary Conditions. Let E and F be
defined as in (1.4) and (1.5), respectively. Here we consider the system (1.7) and show that
it is uniquely solvable within the maximal regularity class E. Recall that the boundary of
G is decomposed as in (1.3) as ∂G = Γ ∪ { 0 } with its smooth part given as Γ = Γ1 ∪ Γ2.
Also recall that (τ, ν) = (τj , νj) for j = 1, 2 denotes the positively oriented pair of unit
tangential and unit outer normal vector on Γj as introduced in Section 1.

For the boundary conditions in problem (1.7) we observe that

τTD±(u)ν =
1

2

(
∂x1u1 ± ∂x1u1 ∂x1u2 ± ∂x2u1
∂x2u1 ± ∂x1u2 ∂x2u2 ± ∂x2u2

)
ν · τ

=
1

2

(
∂x1(u · ν)
∂x2(u · ν)

)
· τ ± 1

2

(
∂νu1
∂νu2

)
· τ
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= 1
2∂τ (u · ν)± 1

2∂ν(u · τ) on J × Γ,

which implies that

τTD+(u)ν = 1
2∂τ (u · ν) + 1

2∂ν(u · τ)
= ∂τ (u · ν)− 1

2∂τ (u · ν) + 1
2∂ν(u · τ) = ∂τ (u · ν)− 1

2curlu on J × Γ

as well as

τTD−(u)ν = 1
2∂τ (u · ν)− 1

2∂ν(u · τ) = 1
2curlu on J × Γ.

Therefore, if the tangential boundary condition in (1.7) is posed based on D+, then (1.7)
is equivalent to

∂tu−Δu+∇p = f in J ×G,

div u = g in J ×G,

u · ν = h0 on J × Γ,

u(0) = u0 in G

(4.4)

together with the boundary condition

curlu = 2(∂τh0 + h1) on J × Γ. (4.5)

Analogously, if the tangential boundary condition in problem (1.7) is posed based on D−,
then (1.7) is equivalent to (4.4) together with the boundary condition

curlu = −2h1 on J × Γ. (4.6)

Both systems (4.4, 4.5) and (4.4, 4.6) are uniquely solvable using Theorem 4.6 and, hence,
we obtain the following result.

Corollary 4.7. Let J = (0, T ) with 0 < T < ∞ and let G ⊂ R2 be the wedge domain
defined as in (1.2) with opening angle θ0 ∈ (0, π) and let Γ = ∂G \ { 0 }. Assume that

p ∈ (1,∞) \ { 2θ0
3θ0−π ,

2θ0
3θ0−2π ,

3
2 , 2, 3 }. Suppose the data satisfy the regularity condition

(f, g, h1, h0, u0) ∈ F

and the compatibility conditions

div u0 = g|t=0, if p > 2,

u0 · ν = h0|t=0, if p > 3
2 ,

−τTD±(u0)ν = h1|t=0, if p > 3,

as well as

F (g, h0) ∈ W 1,p(J, Ŵ−1,p(G)).

If the boundary condition is posed based on D+, then assume the compatibility conditions
〈〈∂τh0 + h1〉〉• = 0 in J , if p > 2, and

1
2〈∂τ1h0〉1 + 1

2〈∂τ2h0〉2 = 〈∂τh0 + h1〉• in J, if θ0 =
π
2 and p > 2.

If the boundary condition is posed based on D−, then assume the compatibility conditions
〈〈h1〉〉• = 0 in J , if p > 2, and

−1
2〈∂τ1h0〉1 − 1

2〈∂τ2h0〉2 = 〈h1〉• in J, if θ0 =
π
2 and p > 2.

Then there exists a unique solution (u, p) ∈ E to problem (1.7).
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4.3. Proof of Theorem 1.2. A unique solution to (1.1) can now be obtained with the
aid of the usual perturbation argument. To this end, we denote by L : E −→ F the linear
operator induced by the left-hand side of problem (1.7). Now, if (f, g, h1, h0, u0) ∈ F

satisfy all compatibility conditions stated in Theorem 1.2, then (1.1) is equivalent to

L(u, p) = (f, g, h1 − αu · τ, h0, u0).
Now, we choose h̃1 ∈ Fτ such that 〈h̃1〉• = 0, if p > 2 and h̃1|t=0 = αu0|Γ · τ . This is pos-
sible, since 〈αu0 · τ〉• = 0, if p > 2, due to the requirement 〈α〉• = 0. By construction, the

data (f, g, h1 − h̃1, h0, u0) ∈ F satisfy all compatibility conditions stated in Corollary 4.7.

Hence, Corollary 4.7 shows that there exists a unique solution (u∗, p∗) to the problem

L(u∗, p∗) = (f, g, h1 − h̃1, h0, u0). Thus, the ansatz (u, p) = (u∗, p∗) + (v, q) leads to the
problem

L(v, q) = h̃1 − αu∗|Γ · τ − αv|Γ · τ, (v, q) ∈ 0E,

where the linear operator L : 0E −→ 0Fτ between the spaces

0E :=

{
(w, r) ∈ E :

∂tw −Δw +∇r = 0 in J ×G, divw = 0 in J ×G

w · ν = 0 on J × Γ, w|t=0 = 0 in G

}
and

0Fτ :=
{
h ∈ Fτ : 〈h〉• = 0, if p > 2, h|t=0 = 0, if p > 3

}
is given as L(w, r) := (curlw)|Γ for (w, r) ∈ 0E.

Thanks to the homogeneous initial conditions the operator L is a linear isomorphism
by Corollary 4.7, where the operator norm of L−1 does not depend on the length T > 0
of the time interval J = (0, T ) under consideration. Moreover, we have

〈h̃1 − αu∗ · τ〉• = 〈αv · τ〉• = 0, if p > 2,

since 〈α〉• = 〈h̃1〉• = 0, as well as

(h̃1 − αu∗|Γ · τ)|t=0 = h̃1|t=0 − αu0|Γ · τ = 0, if p > 3,

which shows that h̃1−αu∗|Γ ·τ ∈ 0Fτ . Clearly, we also have αv|Γ ·τ ∈ 0Fτ for all (v, q) ∈ 0E

and we are left with the task to solve the problem

(1− L−1R)(v, q) = L−1(h̃1 − αu∗|Γ · τ), (v, q) ∈ 0E,

where the linear operator R : 0E −→ 0Fτ is given as R(v, q) := −αv|Γ · τ . However, this
operator is of lower order and the usual estimates employed within perturbation arguments
for parabolic problems show that 1 − L−1R is invertible by a Neumann series argument,
at least for small values T < T ∗. Here T ∗ > 0 is independent of the data. Consequently,
problem (1.1) may be solved this way successively on small time intervals, which cover
any given time interval J = (0, T ) after finitely many steps. This completes the proof of
Theorem 1.2.

Appendix A. Hardy’s inequality on the 2D wedge domain

The famous Hardy’s inequality is well known and many proofs exist within the litera-
ture. However, a proper formulation for the wedge requires boundary conditions at the
corner point x = 0 or at infinity, if one wants to have a version of Hardy’s inequality
at hand, that is not only valid for equivalence classes of functions that differ by additive
constants. A version in the latter sense is easily deduced as a consequence of, for instance,
[2, Corollary VIII.1.5.3].
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However, we note that Lp
γ(0,∞) ↪→ L1

loc(0,∞) for 1 < p < ∞ by Hölder’s inequality,
provided that γ ∈ R with γ < p − 1. Hence, if u ∈ Lp

loc(0,∞) and u′ ∈ Lp
γ(0,∞), then

u ∈ W 1,1
loc (0,∞), if γ < p− 1, which shows that the trace u(0) is well-defined in this case.

Analogously, the value u(∞) = limx→∞ u(x) is well-defined, if γ > p − 1. Now, with the
same proof as given in [2] we obtain the following version of [2, Corollary VIII.1.5.3], which
is Hardy’s inequality on the halfline (0,∞).

Corollary A.1. Suppose 1 < p < ∞, γ ∈ R and γ 
= p − 1. Let u ∈ Lp
loc(0,∞) with

u′ ∈ Lp
γ(0,∞) such that u(0) = 0, if γ < p − 1, and u(∞) = 0, if γ > p − 1, respectively.

Then we have ∥∥∥u
x

∥∥∥
Lp
γ(0,∞)

≤ C(p, γ) ‖u′‖Lp
γ((0,∞))

with a constant C(p, γ) > 0 that is independent of u.

In the following let ψ := ψp ◦ ψE : Ω → G be the transformation from the wedge onto
the layer domain defined at the beginning of Section 3. As consequences of Corollary A.1
we obtain:

Lemma A.2. Let 1 < p < ∞, γ ∈ R such that γ 
= p − 2 and ρ := |(x1, x2)|. Let
u ∈ Lp

loc(G) with ∇u ∈ Lp
γ(G) such that u(0) = 0, if γ < p−2, and u(∞) = 0, if γ > p−2,

respectively. Then we have

‖ρ−1u‖Lp
γ(G) ≤ C(p, γ) ‖∇u‖Lp

γ(G)

with a constant C(p, γ) > 0 that is independent of u.

Proof. Let γ̃ ∈ R such that γ̃ 
= p − 1. Let v ∈ Lp
loc(0,∞) with v′ ∈ Lp

γ̃(0,∞) such that

v(0) = 0, if γ̃ < p− 1, and v(∞) = 0, if γ̃ > p− 1, respectively. Then by Lemma A.1 we
have that ∫

R

e(γ̃−p)x|v(ex)|pexdx =

∫ ∞

0

∣∣∣∣v(y)y

∣∣∣∣p yγ̃dy ≤ C(p, γ̃)

∫ ∞

0
|v′(y)|pyγ̃dy

= C(p, γ̃)

∫
R

eγ̃x|v′(ex)|exdx. (A.1)

Now, let u ∈ Lp
loc(G) with ∇u ∈ Lp

γ(G) such that u(0) = 0, if γ < p− 2, and u(∞) = 0,
if γ > p− 2, respectively, and set γ̃ := γ + 1. Then the above calculation implies

‖ρ−1u‖p
Lp
γ(G)

=

∫
G

∣∣∣∣u(x1, x2)ρ(x1, x2)

∣∣∣∣p ργd(x1, x2) = ∫ θ0

0

∫
R

e(γ−p)x|u(ψ(x, θ))|pe2xdxdθ

=

∫ θ0

0

∫
R

e(γ−p+1)x|u(ψ(x, θ))|pexdxdθ

≤ C(p, γ + 1)

∫ θ0

0

∫
R

e(γ+1)x|∇u(ψ(x, θ))|pexdxdθ

= C(p, γ + 1)

∫ θ0

0

∫
R

eγx|∇u(ψ(x, θ))|pe2xdxdθ

= C(p, γ + 1)

∫
G
ργ |∇u(x1, x2)|pd(x1, x2)

= C(p, γ + 1) ‖∇u‖p
Lp
γ(G)

.

Note that γ̃ ≷ p− 1, if and only if γ ≷ p− 2. �
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Lemma A.3. Let 1 < p < ∞, γ ∈ R such that γ 
= −2 and ρ := |(x1, x2)|. Let u ∈ Lp
loc(G)

with ρ∇u ∈ Lp
γ(G) such that u(0) = 0, if γ < −2, and u(∞) = 0, if γ > −2, respectively.

Then we have

‖u‖Lp
γ(G) ≤ C(p, γ) ‖ρ∇u‖Lp

γ(G)

with a constant C(p, γ) > 0 that is independent of u.

Proof. Let γ̃ ∈ R such that γ̃ 
= p − 1. Let v ∈ Lp
loc(0,∞) with v′ ∈ Lp

γ̃(0,∞) such that

v(0) = 0, if γ̃ < p − 1, and v(∞) = 0, if γ̃ > p − 1, respectively. Then as above by
Lemma A.1 we obtain (A.1).

Now, let u ∈ Lp
loc(G) with ρ∇u ∈ Lp

γ(G) i. e. ρ
1+ γ

p∇u ∈ Lp(G), such that u(0) = 0, if
γ < −2, and u(∞) = 0, if γ > −2, respectively, and set γ̃ := γ + p + 1. Then the above
calculation implies

‖u‖p
Lp
γ(G)

=

∫
G
|u(x1, x2)|pργd(x1, x2) =

∫ θ0

0

∫
R

eγx|u(ψ(x, θ))|pe2xdxdθ

=

∫ θ0

0

∫
R

e(γ+1)x|u(ψ(x, θ))|pexdxdθ

≤ C(p, γ + p+ 1)

∫ θ0

0

∫
R

e(γ+p+1)x|∇u(ψ(x, θ))|pexdxdθ

= C(p, γ + p+ 1)

∫ θ0

0

∫
R

e(γ+p)x|∇u(ψ(x, θ))|pe2xdxdθ

= C(p, γ + p+ 1)

∫
G
ργ+p|∇u(x1, x2)|pd(x1, x2)

= C(p, γ + p+ 1) ‖ρ∇u‖p
Lp
γ(G)

.

Note that γ̃ ≷ p− 1, if and only if γ ≷ −2. �
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