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Zusammenfassung

In der vorliegenden Dissertation untersuchen wir die Stokes Gleichungen in drei verschiede-
nen Settings auf einem zweidimensionalen Keilgebiet mit Offnungswinkel kleiner . Der
Grund, Keilgebiete zu betrachten, liegt in der Physik. In der Tat kann man, indem man
eine geeignete Hanzawa Transformation anwendet, Kontaktlinienprobleme zu Problemen
auf einem Keilgebiet transformieren, was zu Navier-Stokes-Gleichungen mit freiem Rand
fiihrt. Da ein analytischer Ansatz, diese Probleme zu 19sen, sehr schwierig ist, und da
viele Resultate der Navier-Stokes-Gleichungen aus den linearisierten Stokes-Gleichungen
folgen, ist es sinnvoll, die Stokes-Gleichungen mit verschiedenen Randbedingungen auf
dem Keilgebiet zu betrachten. Bisher sind die instationiren Stokes-Gleichungen auf Keil-
gebieten wenig untersucht. In dieser kumulativen Dissertation werden wir also die in-
stationdren Stokes-Gleichungen bzw. ihre zugehorige Resolventengleichung mit Perfect-
Slip-, Dirichlet- und Navier-Randbedingungen betrachten. Ziel ist es dann, die W2P-
Regularitat des jeweiligen Stokes Operator in drei verschiedenen Manuskripten zu zeigen.
Wihrend W?2P-Regularitit fiir glatte Gebiete schon seit langem wohlbekannt ist, ist dies
fiir Gebiete mit singuldren Randanteilen alles andere als offensichtlich und gilt generell als
schwieriges Problem. Das erste Manuskript handelt {iber die Stokes-Gleichung mit Perfect-
Slip-Randbedingungen. Da in diesem Setting die Helmholtz-Projektion mit dem Laplace-
Operator kommutiert, konnen wir den Stokes-Operator als Teil des Laplace-Operators
im Raum L} betrachten. Ziel dieses Manuskripts ist, die W?P-Regularitit und maxi-
male Regularitat auf LP vom damit verbundenen stationéren und instationdren Stokes-
Problem fiir alle p € (1,00) zu zeigen. Hinsichtlich Regularitdt ist dies eine enorme
Verbesserung von [15, Theorem 1.1, Corollary 3], indem diese nur fiir p € (1,1 + ¢) fiir
kleine § > 0 gezeigt wird. W?P-Regularitit fiir den perfect-slip Stokes Operator fiir alle
p € (1,00) ist iiberraschend, da, wie es ja ebenfalls im Manuskript gezeigt wird, dies fiir
den entsprechenden Laplace Operator nicht gilt. Im zweiten Manuskript behandeln wir
das Resolventenproblem fiir den Stokes-Operator mit Dirichlet-Randbedingungen. Ziel
ist es, die W2P-Regularitit vom entsprechenden Stokes-Operator fiir alle p in einem of-
fenen Intervall um p = 2 zu zeigen. Indem wir die biharmonische Gleichung betrachten,
kénnen wir dank eines Resultats aus [5] die schwache und starke Regularitéat des bihar-
monischen Operators und somit des Stokes-Operators fiir geeignete p zeigen. Dank dieser
Resultate folgt die W2P-Regularitit fiir das Resolventenproblem fiir den Stokes-Operator.
Im letzten Manuskript betrachten wir die Stokes-Gleichungen mit inhomogenen Navier-
Randbedingungen. Wir zeigen die Existenz und Eindeutigkeit der Losung mit optimaler
Regularitét in einem LP-Setting fiir alle p € (1,00) \ { 200 20 _3/2, 2, 3 }, wobei
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0y der Offnungswinkel des Keils ist. Der Beweis basiert unter anderem auf einem Resultat

aus dem ersten Manuskript.






Summary

In this thesis we consider the Stokes equations defined on a two-dimensional wedge type
domain with opening angle less than 7 in three different settings. The reason to consider
this type of domain is motivated by problems from physics. In fact, by employing a suit-
able Hanzawa transformation, one may transform a contact line problem onto a problem
on a wedge, which leads to the Navier-Stokes equations subject to free boundary condi-
tions. Since an analytical approach of these problems seems to be very difficult and since
many results for the Navier-Stokes equations are obtained based on the linearized Stokes
equations, it is useful to consider the Stokes equations subject to different boundary con-
ditions on a wedge domain. It seems that results on the instationary Stokes equations on
wedge domains are very rare. Hence, in this cumulative thesis we consider the instationary
problem or the resolvent problem of the Stokes equations subject to perfect slip, Dirichlet
and Navier boundary conditions. The main objective is then W?P-regularity of the corre-
sponding Stokes operator. This is studied in three independent manuscripts of the thesis.
Whereas the W2P-regularity on smooth domains is well-known, similar results on domains
with singular boundary parts are not obviously available and difficult to prove. In the first
manuscript, we consider the Stokes equations subject to perfect slip boundary conditions.
There, since the Helmholtz projector and the Laplacian commute in the underlying set-
ting, we can treat the Stokes operator as part of the Laplacian in the space L5. We show
the W?2P-optimal regularity and maximal regularity on L% of the associated stationary
and instationary Stokes problem for the whole range of p € (1, 00). Concerning regularity,
this improves a result of [15, Theorem 1.1, Corollary 3] to a large extend as there it is
merely proved for p € (1,1 +§) and § > 0 small. W?P-regularity for p € (1,00) is for
perfect slip Stokes surprising, since as it is shown in the manuscript as well, this does not
hold for the corresponding Laplacian. In the second manuscript we treat the Stokes resol-
vent problem subject to Dirichlet boundary conditions. The objective of this manuscript
is to prove the W?P-regularity of the corresponding Stokes operator for all p defined in
an open interval about p = 2. Considering the corresponding biharmonic equation, to
which the stationary Stokes problem can be transformed, we can prove with the aid of
a result of [5] weak and strong regularity of the biharmonic operator and, hence, of the
Stokes operator in the LP-setting for suitable p. Based on these results the W2P-regularity
follows for the resolvent problem of the Stokes operator. In the last manuscript we con-
sider the Stokes equations subject to inhomogeneous Navier slip boundary conditions. We
prove existence and uniqueness of solutions with optimal regularity in an LP-setting for
all p € (1,00) \ { 260 200 3/9, 2, 3} where 6y is the opening angle of the wedge.

30p—m? 36p—2m’
Its proof is based on a result of the first manuscript.
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Chapter 1

Introduction

1.1 General information

Properties of PDEs on non-smooth domains are important for many applications. For
example a water drop running down a glass describes a contact line problem, which con-
stitutes a three-phase problem with one solid and two fluid phases. Employing a suitable
Hanzawa transformation, see e.g. [2, 18], the contact line problem can be transformed
onto a wedge type domain, which leads to the Navier-Stokes equations subject to the free
boundary conditions on the liquid-gas interface. An analytical approach of these problems
seems to be very difficult. Up to know, results for 0° or 90° contact angle are available,
for instance, see [20] (0°) or [21, 22] (90°). Since many results for the Navier-Stokes
equations are obtained by properties of the linearized Stokes equations, it is significant
to consider the Stokes equations subject to different boundary conditions on a wedge.
However concerning regularity, results for the Stokes equations in domains with conical
boundary points or non-smooth domains are very rare. One may find some classical reg-
ularity results in [11, 9, 1, 14, 5, 4]. We also refer to [6], where an approach to analytic
regularity was presented, or to [12], where the Stokes equations subject to no-slip bound-
ary conditions in a cone are studied and to [7] for an overview of the Stokes equations
including approaches to non-smooth domains. In this thesis we consider the Stokes equa-
tions on a two-dimensional wedge type domain in three different settings, which are the
Stokes equations subject to perfect slip, Dirichlet and Navier boundary conditions. These
results are contained in three independent manuscripts included in this thesis. They are

joint works with Jiirgen Saal and Matthias Koéhne.

The Navier-Stokes equations are the fundamental equations in fluid dynamics, which

describe the flow of incompressible Newtonian fluids. Many results for the Navier-Stokes



equations are obtained based on properties of the linear Stokes equations given as

ou—Au+Vp=f in JxG,
divu=0 in JxG,
B(u) =0 on JxJG,
u(0) =uy in G,

(1.1)

where J = (0,T) with T > 0 is a time interval, B(u) are certain boundary conditions and
G C R? is a two-dimensional domain. Moreover, by u = u(t,x) we denote the velocity
field and by p = p(t, z) the pressure. The given data are described by the external force
f = f(t,z), and by the initial velocity field uy = ug(z). In this cumulative thesis the main
objective is to find a unique solution (u, p) of system (1.1) in three different settings, which
are explained in the following. The thesis is structured in three independent manuscripts.
Note that the uniqueness of the pressure is to be understood as uniqueness up to a constant.
The boundary conditions defined on the two-dimensional domain G considered in the

manuscripts are given by

1

Bi(u) := (C;ll“ z/u> (perfect slip boundary condition),

By(u) == wu (no slip or Dirichlet boundary condition),
r—7T'D

By (u) := (au ’ uT , i(u)u) (Navier or partial slip boundary condition).

Here, we denote by D4 (u) := $(Vu + Vu™) the rate of the deformation tensor and the
rate of rotation tensor, respectively, by v the outer normal vector and by 7 the tangential
vector on the boundary 0G, respectively. The parameter o € BUC'(0G) is related to the
slip length. We notice that the homogeneous boundary condition B?f (u) = 0 on OG can
be reformulated as

1
auTiicurlu:O, u-v=0 ondG.

Hence, for the special case a = 0, the boundary condition B;f(u) = 0 on OG corresponds
to the perfect slip boundary condition Bi(u) = 0 on 0G. If &« — oo, the condition
B3 (u) = 0 on dG would formally approximate the no-slip (or Dirichlet) boundary condi-

tion Bi(u) = 0 on dG. In our setting, however, we always assume a|,—o = 0.

Now, let G C R? be a two-dimensional wedge domain given as
G :={(z1,22) € R?: 0 <y <y tan 6 } (1.2)

with opening angle 6y € (0, 7). Throughout the included manuscripts, we are interested in

the best possible regularity for the solution to the Stokes equations subject to the bound-



ary conditions mentioned above posed in the wedge domain G. In the case of perfect
slip boundary conditions, we prove that the instationary Stokes equations have optimal
regularity in the LP-setting for all p € (1,00), i.e. the solution of (1.1) is in WP, For the
Dirichlet boundary conditions, we consider the corresponding resolvent problem of (1.1)
and show its well-posedness in the LP-setting for a small range of p in a neighborhood of
p = 2. Moreover, we show that the corresponding Stokes operator is sectorial with angle
equal to zero. Finally, we prove the optimal regularity of (1.1) subject to inhomogeneous
Navier boundary conditions with J = (0,7") for a finite 7" > 0 in the LP-setting for all
p € (1,00)\ {200/(30p — 27), 3/2, 2, 3}.

This thesis is stuctured as follows: In Section 1.2, we give an overview of the three
manuscripts contained in this thesis. Section 1.3 is divided in three parts. We first give
some basic notation used throughout this thesis. Then we give an introduction into oper-
ator classes, H-calculus, maximal regularity and a result on the operator sum method,
which is based on the Kalton-Weis theorem, see [8]. In fact, in two of the manuscripts
included in the thesis, which are contained in Chapter 2 and 4, the operator sum method
will play an important role to show the invertibility of differential operators defined on
a layer domain. Moreover, since in all the three manuscripts we transform some elliptic
problems defined on the wedge domain onto a layer domain, we give an introduction to
these transformations in the last part of Subsection 1.3. The subsequent three chapters
contain the self-contained manuscripts called “Optimal Sobolev regularity for the Stokes
equations on a 2D wedge type domain”, “The Dirichlet Stokes operator on a 2D wedge
domain in LP: Sectoriality and optimal regularity” and “Optimal regularity of the Stokes

equations on a 2D wedge domain subject to Navier boundary conditions”.

1.2 Summary

The first manuscript included in Chapter 2 was published in Mathematische Annalen
online in 2020 and in print in 2021, see [10]. It contains the W2P-optimal regularity
and maximal regularity on LP of the Stokes operator of the associated stationary and
instationary Stokes problem on the two-dimensional wedge domain subject to perfect slip
boundary conditions. The advantage of the perfect slip conditions is explained by the
fact that Helmholtz projector and the Laplacian commute (this has been already utilized
in [16, 15]). Hence, we can treat the Stokes operator as part of the Laplacian in the
subspace of solenoidal functions. In [15, Theorem 1.1 and Corollary 3] it is already proven
that the Laplace and Stokes operators in the underlying setting defined on a three- and
two-dimensional wedge domain have maximal regularity on L? and optimal Sobolev W?2P-

regularity, but only for a small range of p. This small range of p is restricted to the interval



1 <p< 1456 for asmall 6 >0 depending on the opening angle of the wedge. The main
objective of the manuscript [10] is to improve these last results for the Stokes operator,
that means maximal regularity on LP and W?P-Sobolev regularity of the Stokes operator
in the space L% for the full range of 1 < p < oo and opening angles less than 7 for the
two-dimensional wedge. For the Laplacian these results only hold on a suitable subspace
depending on the opening angle of the wedge and not for every p € (1,00) on the entire
LP-space. However, the problematic subspace is complemented to the space of solenoidal
vector fields.

The manuscript in Chapter 3 is on the Stokes resolvent problem on a two-dimensional
wedge type domain subject to Dirichtlet boundary conditions. The objective of this
manuscript is the W?2P-regularity of the corresponding Stokes operator for p in a neighbor-
hood of p = 2. A main part of the manuscript is to consider the corresponding biharmonic
equation, to which the stationary Stokes problem can be transformed. In [5] there are
already results available on the stationary Stokes equations on polygonal domains in the
LP-setting. The corresponding biharmonic problems are also considered there. They are
localized on the vertices and transformed from the polygonal domain to a layer domain. In
fact transforming the biharmonic equation defined on the wedge onto the layer leads to the
same problem as considered in [5] on the layer. Hence, thanks to regularity results of the
transformed operator on the layer in [5], we can prove weak and strong optimal regularity
of the Stokes operator in the LP-setting for p € (1,2)U(2,00) and p € I, := ((2+k)', 2+ k)
with a small x > 0, respectively. Based on these results, the W2P-regularity for the resol-
vent problem of the Stokes operator follows for all p € ..

In Chapter 4 the included manuscript shows the W?2P-regularity of the instationary
Stokes equations subject to inhomogeneous Navier boundary conditions on the two-dimen-

sional wedge type domain for all p € (1,00) \ {3920687T, 395%}%, 3/2, 2, 3} where 6y is

the opening angle of the wedge. The proof of this result is based on a result of the
first manuscript included in Chapter 2 (see also [10]). Decomposing the instationary
Stokes system into two systems, we obtain one system describing the instationary Stokes
equations subject to an inhomogeneous boundary condition curl u = h. Based on the

result of [10] we can derive that it is well-posed in the LP-setting for all p € (1,00) \

200 260
30—’ 30p—2m’

the other system, which describes a divergence equation in the wegde subject to inhomoge-

3/2, 2, 3} with 6y being the opening angle of the wedge. Then, solving

neous boundary conditions, which is left after decomposing the Stokes system, we can prove

the W2P-regularity of the Stokes operator for all p € (1,00) \ {3020%, 393%, 3/2, 2, 3}.
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1.3 Preliminaries

1.3.1 Basic notation

Let N be set of natural numbers with N = {1, 2, 3,...}, where Ny := NU {0}, and R be
the real numbers. Let n € N and 2 C R" be a domain. We employ the usual notation
for partial derivatives. For a multiindex o = (s, ..., ay) € N§ with || = Y7} _; a; and a

suitable function v : Q — R we write
D%u(x) := D" --- D u(x) = 0%u(x) := Oy} --- Opru(x), =€

We denote the gradient of u by Vu(z) = (9p,u(x),--- 8, u(z))’ for z € Q and the
Laplacian of u by Au(x) = Y"p_; 82 u(x) for 2 € Q. For a suitable vector field f : O — R”

we define

divf(z) =Y O fr(z), z€Q
k=1

and the Laplacian of f by Af(z) = (Afi(z), -+, Afu(z))T for z € Q. For n = 2 the curl
of f is given by curlf(x) = 0y, fo(z) — O, f1(x) for x € Q.

Let X be a Banach space and 2 C R" be a domain. For 1 < p < oo, we denote by
LP(Q, X) the X-valued Bochner-Lebesgue space. We denote the Sobolev space of order
k € Ng as WFP(Q) := WFP(Q,R) and W*P(Q,R"), where WP := LP. We denote the

Kondrat’ev spaces by
LE(Q) := LP(Q, p'd(x1,32)), p:=|(z1,22)], 7ER,
and we abbreviate L% (Q) := LY (Q,R). We set
WEP(Q) i= {u € Li,o(Q) : 8u € L2(), |a] = k}.

For Banach spaces X, Y the space of bounded linear operators from X to Y is denoted
by Z(X,Y), where Z(X) = Z(X, X).
We denote for a linear operator A in X domain and range by D(A) and R(A). Its

spectrum, point spectrum, and resolvent set are written as o(A), o,(A), and p(A).

1.3.2 Operator classes, maximal regularity and the operator sum method

We refer to [3, 8, 13, 17] for an introduction to sectorial operators, the H>°-calculus,
R-bounded operators and the operator sum method.
Let ¢ € (0,m) be fixed and >, := {2z € C: z # 0, |arg(z)| < ¢} be the complex sector

of angle ¢. A closed linear operator A in a Banach space X is called sectorial if D(A) = X,
R(A) = X, (—00,0) C p(A) and [[A(X+ A) | gx) < M for a constant M > 0 and all



A > 0. We denote the spectral angle of A by

¢ = inf {¢ p(—A) D Sr_g, sup [AA+A) M gx) < OO} :
)\EEW_¢

We denote the class of sectorial operators in X by S(X). If A is sectorial with spectral
angle ¢4 < 7/2, then —A generates a bounded holomorphic Cyp-semigroup on X. We refer

to [3] for a detailed introduction to sectorial operators.

Now, we turn to the H*>°-calculus. We first introduce the following functional algebras:
For a o € (0,7), we define

H*(Es) :=={f € ¥ = C: f holomorphic, | f|e < oo}
with || flleo :=sup{|f(2)| : 2z € X5} and its subalgebra Ho(X,) given by
Ho(Eo) :={f € HT(Zs) : |f(2)] < Clg(2)|® for some C >0, € >0 and all z € ¥,}

with g(z) = ﬁ Let A be a sectorial operator with spectral angle ¢4, let ¢ € (¢4, )
and let 0 € (¢4, ®). We define the path ' := {teie too>t>0}U {te_ie 10 <t<oo}. It
passes from ooe' to coe™ and stays in the resolvent set of A with the exception at ¢t = 0.
Then by the Cauchy integral formula and sectoriality of the operator A we may define the

Dunford i1 1tegral
( 2 i / /L ) H

which is well defined for all f € Ho(X4). The above formula defines an algebra homomor-
phism
D4 Ho(Xg) = L(X), [ = f(A)

called Dunford calculus. The operator A is said to admit a bounded H*°-calculus on X,

if there exists a constant C, > 0 satisfying

IF( Al zx) < Collflloe,  f € Ho(30). (1.3)

We define the class of all operators admitting a bounded H*°-calculus on X by H>(X)
and denote the H*-angle of A by ¢% :=inf{o € (¢4, 7) : (1.3) is fulfilled}.

Now, we turn to the definition to R sectorial operators. See e.g. [3, 13] for an introduc-
tion of R-boundedness. Let X,Y be Banach spaces. We say that a family of operators
T C Z(X,Y) is R-bounded, if there is a constant C' > 0 and p € [1,00) and a probability
space (2, M, uu) such that for each N € N, T; € T, z; € X and for all independent,



symmetric {—1,1}-valued random variables ¢; for j =1,..., N the inequality

N N
l Z ei Tzl ra,y) < C Z 5%l L (0, x) (1.4)
j=1 Jj=1
is valid. We call R(T) := inf {C : (1.4) holds} R-bound of 7. A sectorial operator is
then called R-sectorial if there exists an angle ¢ € (¢a,7) and a constant Cy > 0 such
that
REANA+A) T ANe Xy} <Oy (1.5)

We denote the class of R-sectorial operators by RS(X) and the R-angle of A by qb} =
inf{¢ € (pa,m): (1.5) holds}.

Now, we give an introduction to maximal regularity for an operator A. We refer here,
e.g., again to [3, 13]. Let X be a Banach space, A : D(A) — X be a closed densely defined
operator. Moreover, let 1 < p < co and T < oo, and (-, )¢, be the real interpolation space

with parameter 6 € (0,1). We consider the Cauchy problem

u'+Au=f in (0,7), } (1.6)

u(0) = o

with given data f and ug. Then A has maximal LP-regularity on X for (0,7 if for each
f € LP((0,7),X) and each ug € I, := (X, D(A)),_1/p, there exists a unique solution
u:(0,7) — D(A) of (1.6) satisfying

ullg10 0.7y, x) + 1 AUl Le0,1),x) < € (111 Lo 0,7y, %) + Nl 1, 4))

for a constant C' > 0 independent of f and wug. The following result from [23, Theorem
4.2] gives a characterization of maximal regularity in terms of R-sectoriality. There, the
notion of class H7T appears. Hence, we introduce its definition before giving the result of
[23, Theorem 4.2]. A Banach space X is said to be of class H7 if the Hilbert transform

Hf(t) = \/an/||> HE=3)40 fesm x)

e—0 S

is bounded on LP(R, X) for some p € (1,00). Here, S(R, X) denotes the Schwartz space

of rapidly decreasing X-valued functions. Then we have:

Proposition 1.3.1. [23, Theorem 4.2] Let X be a Banach space of class HT, 1 < p < oo
and let A be a sectorial operator with spectral angle ¢4 < 7/2. Then A admits maximal
regularity on X for (0,00) if and only if A is R-sectorial with ¢ < /2.

The next proposition [17, Proposition 3.5] is on the operator sum method, which is based

10



on the Kalton-Weis theorem, see [8, Corollary 5.4]. Since the result of [17, Proposition 3.5
employs the notion of property («) we first give its definition and refer to [3, 8, 13] for more
details. Let P be a probability space. £p denotes the set of all independent symmetric
{—1, 1}-valued random variables on P. A Banach space X has property («) if there exist
spaces P(Q, M, u), P(QY, M ), p € [1,00) and a constant « > 0, such that for all
NeN, zj, € X, aj, €C, |aji| <1and (¢)j=1,... v C Ep, (€}, )k=1,.. 8 C Eps the estimate

N N
| Z ej€’ ajejillraxorx) < @l Z €5k k|| p(@xar x)
k=1 jk=1

holds. Summarizing, it is well known that for a Banach space X having property («)
that H>°(X) C RS(X) C S(X) with corresponding angles satisfying ¢4 < ¢% < 5.
Furthermore, we remark that LP(2)-spaces, 1 < p < oo, enjoy property («).

Proposition 1.3.2. [17, Proposition 3.5] Let X be a Banach space of class H7 having
property (a). Suppose A, B € H*(X) with ¢ + ¢¥ < 7 be two resolvent commuting
operators. Then A+ B € H*(X) with ¢, 5 < max{¢y’, ¢% }.

1.3.3 Transformations from the wedge onto the layer domain and the
appearing W*P-spaces

In all of the three manuscripts included in this thesis we consider elliptic problems on the
two dimensional wedge domain G subject to different boundary conditions. To solve these
problems we transform them from the wedge onto a layer domain and solve them at first
on the layer. Since the problems on the wedge and layer are equivalent we obtain the
solvability of the elliptic problems on the wedge domain. The transformations we apply
follow a standard procedure used for example in [5, 15, 19]: we use polar coordinates to
transform the problem on a semi-layer and employ Euler transformation to transform the
latter problem onto a layer. The corresponding pull-back and push-forward operators on
W —FP_spaces depend on k and p, hence weighted function spaces appear in the transformed
setting. Choosing the right transformation, roughly speaking the right k, p included in the
pull-back and push-forward respectively, we can then work in unweighted W ~*P-spaces on
the layer for k € Ny. In this subsection we give an introduction to these transformations.

We consider

Aiy=f in G, } an

B(u) =0 on 0G,

with G C R? be the wedge defined in (1.2), B(u) be one of the boundary conditions

introduced in Section 1.1, u = u(x1,x2), f = f(z1,22) and ¢ € N. We write the inverse of

11



the transform to polar coordinates as
Yvp Ry x I — G, (r,0)— (rcosf,rsinf) = (x1,x2).

Next, we employ the Euler transformation r» = e* in radial direction, where by an abuse

of notation we write « € R for the new variable. We set
Y Q=R xI, (z,0)— (e%,0) =:(r,0).

It is not difficult to see that
Yi=vYpotpp:Q—>G

is a diffeomorphism. For v : G — R and v : ) — R we set
Uy :=wuot and U lv:=voy l

For o € R we also denote the multiplication operator by M,v := e**v for all x € R.

— transformations between the domains —

Let u be the solution of (1.7), 8, € R. Analogous to [15] we define pull-back and push-
forward by
vi=0yu:=M g Vu andu=0Ov= \Il_lMﬂpv,

12



respectively.
Now let i € N, u be the solution of problem (1.7), 5, € R. Then Lemma B.4 of Chapter 3

implies
i

@;(Aiu) — ¢ 2 H (r8,—2(i—j)(Or) + 95) v

j=1
with the polynomial
7a(0z) := (0y + a)* (a €R).

We remark that the order of problem (1.7) is equal to 2i for i € N. Hence we see that
the term 2i of the factor €2 defined in (:); is equal to the order of problem (1.7). In the
manuscripts included in this thesis we defined [ := 2i. In the following we continue to use
the notation [ := 2i € N. Hence, [ will be a fixed value depending on the order of the
elliptic problem.

Now, let 1 < p < co. We introduce the role of 3, defined in the pull-back and push-
forward, respectively. In fact, 5, depends on p € (1,00), k € Ny and [ € N. Hence, to

work in unweighted W —*P-spaces for k € Ny, we set
2
Byi=1— J};W v ER. (1.8)

By the proof of Lemma B.3 (2) of the manuscript of Chapter 3, we have

2. / D7 Olg(u ™ w1,22))| (w1, 22)

o=k
:/QZ

m<a

p
(a) elxe_(l_k_%Tw)xe_kxezkxp(ﬁx, 99)g(z,0)] @2 (z, 0).
m

There P(0,, 0p) is the product of homogeneous polynomial in 9,,0p of order k with
coefficients depending on cos 6, sin @ functions, and m = (my, mz) € N? such that m < a.
See Lemma B1 of Chapter 3 for its precise definition. The determinant of the transform
on the right-hand side of the above equation is equal to e?*. The term % of 3, absorbs
this determinant. Hence, we see that by the choice of 3, defined in (1.8) we can work in
the transformed setting in an unweighted W*?(Q)-space. Lemma B1 (3) and (5) of the
manuscript in Chapter 3 then imply

0; € %, (W RP(G), W"“’(Q)) , ke N,

Furthermore, we remark that in the third manuscript of Chapter 4, we show higher regular-
ity for the Neumann-Laplace problem in Wwir (G) on the wedge. This follows by consider-

ing this equation on the layer domain. On the contrary to the other two manuscript, to get

13



higher regularity, we substitute k := —k' with &’ := 1in 3,, i.e. 5, := 2+k:’—2+77 = 3—2Jr77.
Hence weighted functions appear. The norms in the corresponding weighted function
spaces can be estimated thanks to Hardy’s inequality for all p € (1,00) except for p = 2,

see Lemma A.2 of the manuscript in Chapter 4.

14
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ON A 2D WEDGE DOMAIN
MATTHIAS KOHNE, JURGEN SAAL, AND LAURA WESTERMANN

ABSTRACT. In this note we prove that the solution of the stationary and the instationary
Stokes equations subject to perfect slip boundary conditions on a 2D wedge domain ad-
mits optimal regularity in the LP-setting, in particular it is W27 in space. This improves
known results in the literature to a large extend. For instance, in [17, Theorem 1.1 and
Corollary 3] it is proved that the Laplace and the Stokes operator in the underlying set-
ting have maximal regularity in the LP-setting. In that result the range of p admitting
W?2P regularity, however, is restricted to the interval 1 < p < 1+ § for small § > 0,
depending on the opening angle of the wedge. This note gives a detailed answer to the
question, whether the optimal Sobolev regularity extends to the full range 1 < p < oc.
We will show that for the Laplacian this does only hold on a suitable subspace, but,
depending on the opening angle of the wedge domain, not for every p € (1,00) on the
entire LP-space. On the other hand, for the Stokes operator in the space of solenoidal
fields LY we obtain optimal Sobolev regularity for the full range 1 < p < oo and for all
opening angles less that w. Roughly speaking, this relies on the fact that an existing
“bad” part of L? for the Laplacian is complementary to the space of solenoidal vector
fields.
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regularity in the LP-setting for the instationary Stokes equations
Ou—Au+Vr=f in (0,00) x G,
divu =0 in (0,00) x G,
curlu =0, u-v=0 on (0,00)x 0G,
u(0) =up in G,
subject to perfect slip boundary conditions on a two-dimensional wedge type domain given
as

(1.1)

G := {(wl,xg)eRQ: 0 <y <aztanby}. (1.2)
Here v denotes the outer normal vector at dG, 0y € (0, 7) the opening angle of the wedge,
and curlu = O1us — dauy.

Whereas the LP-theory for classical elliptic and parabolic problems on domains with
conical boundary points is well developed, see e.g. the classical monographs [7, 18], cor-
responding results for the Stokes equations are very rare, in particular for the instation-
ary case. For the stationary Stokes equations there are the classical regularity results
[15, 14, 3, 18, 7, 5]. For a negative result concerning the generation of an analytic semi-
group in three dimensions for the Stokes operator subject to the no-slip condition see [6].
More recently, an approach to analytic regularity was presented in [8]. We also refer to
[10] for an overview on the Stokes equations including approaches to non-smooth domains.

It seems that a general approach to the instationary Stokes equations on domains with
edges and vertices does not exist in the literature, even for domains having a simple
structure such as wedge domains. There is, of course, the Lipschitz approach to even
more general non-smooth domains. Existence and analyticity of the Stokes semigroup on
LY on Lipschitz domains is proved, for instance, in [19, 22, 24]. Note that the Lipschitz
approach does not provide full W?2P Sobolev regularity which, however, might be crucial
for the treatment of related quasilinear problems. Moreover, in the Lipschitz approach the
range of available p is restricted in general. Thus, for our purposes this approach seems
to be too general. The main objective of this note is W?2® Sobolev regularity for (1.1) for
all p € (1,00).

Concerning Stokes the advantage of imposing perfect slip conditions lies in the fact that
Helmholtz projector and Laplacian commute, which is not the case in general. Hence the
Stokes operator is given as the part of the Laplacian in the solenoidal subspace. Note
that this observation has been utilized in [19] and [17] already. In fact, in [17] maximal
regularity for (1.1) is proved in two and three dimensional wedges in Kondrat’ev spaces

LP(G,R?) = LP(G, pVd(x1,22),R?), p:=|(z1,22)], v €R. (1.3)

(Note that [17] focuses on the 3D version; the 2D counterpart then is completely analo-
gous.) Optimal regularity in the sense of our main results below, however, could only be
established for 1 < p < 14 ¢ with § > 0 possibly small, depending on the opening angle
0y of the wedge and the Kondrat’ev exponent . This shortcoming relies on a spectral
constraint that relates to the constraint (1.6) in Theorem 1.3 below. In fact, for v = 0
under the constraint imposed in [17] we even have 6 — 0 for #y — 7 such that for angles
close to m only a very small interval for p remains.

In this note we will show that in 2D this vast restriction on p can be dropped completely.
To be precise, our main result reads as follows (see (3.1) for the definition of the solenoidal
subspace L5 (G) on a wedge domain).

Theorem 1.1. Let 1 < p < oo, Oy € (0,7), p = |(71,22)|, and G C R? be defined as in
(1.2). Then the Stokes operator subject to perfect slip

Agu = —Au,
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u€ D(Ag) = {v e W?P(G,R)NLE(G) : curlv =0, v-v=0 on dG,

P2 € (GR) (ol £2) )
15 R-sectorial with R-angle qﬁ}s < 7/2, hence has mazimal regularity on LH(G).

As an immediate consequence we obtain strong solvability of (1.1).

Corollary 1.2. Let 1 < p,q < o0, 0y € (0,7), p = |(x1,22)|, and G C R? be defined as
in (1.2). Then for every f € L9((0,00), Lz (G)) and ug € Tpq := (L6(G), D(As))1-1/pq
there is a unique solution (u,m) of (1.1) such that m =0 and

10wl o, oy + Y 10 20%u Lz, 1oy < C (Il Loey vy + lluollz, )
laf<2

with C' > 0 independent of f and ug.

For the proof of Theorem 1.1 we basically follow the strategy in [17], that is, we first
consider the Laplace equation subject to perfect slip conditions. In a standard procedure,
by employing polar coordinates and Euler transformation, we reduce the Laplace equation
on a wedge to a problem on a layer. On the layer we apply the operator sum method as
it is performed originally in [21].

The difference to [17] lies in the fact that here we consider the elliptic problem

—Au=f in GG, }

curlu =0, u-v =0 on O0G (1.4)

instead of the corresponding resolvent problem. The advantage is that for the transformed
problem we then have precise knowlege on the spectrum. This, in turn, allows to com-
pletely characterize the set of p for which optimal regularity for (1.4) is available. We
formulate this in our second main result which also represents the basis for Theorem 1.1
and which we even prove in Kondrat’ev spaces.

Theorem 1.3. Let 1 < p < oo, Oy € (0,7), v € R, and p = |(z1,22)]. Then equation
(1.4) is for each f € L5(G,R?) uniquely solvable with a solution u satisfying

pl20% € I2(G,R?) (o] <2) (1.5)
if and only if
g 27 {lmil:keN}U{l}. (1.6)
p 0o
Remark 1.4. (a) For v = 0 condition (1.6) reduces to
2 m 2m
2—p¢{1,00—1,90—1}, (1.7)

see Subsection 2.5. From this we see that for each angle 0y € (0,7) the case p = 2
is excluded. On the other hand, from the results obtained in [7] one would expect
0%u € L?*(G,R?) for |a] = 2. Taking into account Hardy’s inequality, by which the
lower oder terms in (1.5) can be estimated by the second order terms, this looks curi-
ous at a first glance. However, p = 2 is exactly the case when Hardy’s inequality is
not valid. Thus, for p = 2 (1.5) still can fail for one of the lower order terms, although
0%u € L*(G,R?), |a| = 2, might be true. For the excluded p # 2 (1.5) must fail for at
least one of the second order terms, since otherwise Hardy’s inequality would yield (1.5)
to be valid for all terms, see also Remark 2.7(b).
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(b) Another curious looking case is given by v = 0 and 6y = 7/2. Then, by reflection argu-
ments the wedge G can be reduced to —Au = f on R2. This fact implies 9%u € LP(G,R?),
la| = 2, to be valid for all p € (1,00). Again this does not contradict the assertion of
Theorem 1.3, since in this case (1.7) is reduced to 2 —2/p ¢ {1}. Thus, only p = 2 is
excluded and we find ourselves in the situation explained in (a).

It seems that Theorem 1.3 is not contained in the previous literature. This might rely
on the fact that due to the boundary conditions (1.4) is a system, whereas in previous
literature the Laplace equation is preferably considered as a scalar equation.

In contrast to Theorem 1.1, as a first consequence of Theorem 1.3 we obtain that for
the instationary diffusion equation subject to perfect slip W?2P® regularity is not available
if condition (1.6) is not fulfilled, see Theorem 2.19 below. The point why we nevertheless
can prove Theorem 1.1 relies on the fact that the part of LP destroying WP regularity is
more or less complementary to the space of solenoidal fields L5 (G). By this fact we obtain
optimal regularity for the stationary Stokes equations, too.

Theorem 1.5. Let 1 < p < oo and 6 € (0,7). Then for each f € L5 (G, R?) there exists
a unique solution (u, ) of the stationary version of (1.1) satisfying m = 0 and

P20 € IP(G,R?)  (|o| < 2).

Of course, the Stokes equations subject to perfect slip in 2D can also be considered with-
out taking the path via the Laplace equation, by utilizing its equivalence to a biharmonic
equation. The authors of this note, however, also wanted to compare the two equations
concerning regularity. In this regard, we find it most interesting that in the underlying
situation the outcome for the Stokes equations is better than for the Laplace or diffusion
equation, which usually is vice versa by the fact that the Laplacian enjoys much nicer
properties than the Stokes operator.

We outline the strategy of the proofs and the organization of this note. Section 2
contains the approach to the Laplace operator and equation. After fixing notation and
transforming from a wedge to a layer, in Subsection 2.3 we establish optimal regularity for
the transformed problem. This is based on operator sum methods, that is, Kalton-Weis
type theorems. Since the transform from a wedge to a layer is a diffeomorphism, this
gives instantly Theorem 1.3, as stated in Subsection 2.4. To carry over regularity from the
elliptic problem (1.4) to the instationary diffusion equation, it is enough to show optimal
regularity for the resolvent problem

(I1-Au=h in G, } (1.8)

curlu =0, u-v =0 on OG.

The idea is to regard u as the solution of the elliptic problem (1.4) with right-hand side
f =h—u € LP(G,R?). According to Theorem 1.3 we know that this problem has
a solution, say v, with the regularity given in (1.5). It remains to prove u = v. By the
outcome given in [17] this is valid for p > 1 close to 1. This means, if the solution operators
to problems (1.4) and (1.8) are consistent on the scale (LP(G,R?))1<p<oo, the regularity
in (1.5) transfers to the solution u of (1.8) for all 1 < p < oco. By the equivalence
in Theorem 1.3, however, consistency for the solution operator of (1.4) cannot hold on
the full scale (LP(G,R?))1<p<oo. But, as shown in Subsection 2.5, it is consistent on a
suitable scale of “nice” subspaces. This leads in Subsection 2.6 to optimal regularity for
the diffusion equation on the subspaces for all 1 < p < co (see Theorem 2.23).

A major difficulty for the transference of optimal regularity to the Stokes equations is
given by the fact that the space of solenoidal fields L5 (G, R?) is not directly included in the
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“nice” subspace of LP. A crucial issue, taking the major part of Section 3, is therefore to
prove that it can be isomorphically embedded into this subspace. This isomorphic embed-
ding is also valid for the domains of the involved operators, finally leading to Theorem 1.1
and Theorem 1.5.

2. THE LAPLACE OPERATOR ON A WEDGE DOMAIN SUBJECT TO PERFECT SLIP

2.1. Notation. First we introduce the notation used throughout this note. Let X be a
Banach space. For 1 < p < oo and a measure space (5, %, 1), we denote by LP(S, u, X) the
usual Bochner-Lebesgue space. If 1 < p < 0o and (S, X, ) is a complete measure space,
then LP(S, u, X) is a Banach space. If Q C R™ is a domain and p is the (Borel-) Lebesgue
measure, we write LP (€2, X). We define the Sobolev space of order k € Ny as W*P(Q, R"),
where WOP := LP,

Let G C R? be the wedge domain defined in (1.2) and let p = p(z1, 22) = |(x1, z2)|. We
set

K]TA/(G,R% = {ue L}, (G,R?): plol=mooy e Lg(G,]R2), la] < m}

where a € N™ denotes a multiindex, v € R, and L(G,R?) is defined as in (1.3). Then
K} (G, R?) equipped with

1/p
(P p—, (Z Iplel- maaunﬂmg)

la|<m

is a Banach space. We also set K;"(G,R?) := KJ,(G,R?). Let 1 < p < oo with 1/p +
1/p = 1. Ifu e LP(Q,R?) and v € L (Q,R?) we denote the duality pairing by (u,v) :=
(u,v)q = [quvdz. For a family (x;);>1 of elements in a linear space X, we denote by

<5Uj>j21 = (z1,Z2,...)
its linear hull.

For Banach spaces X, Y the space of bounded linear operators from X to Y is denoted
by Z(X,Y), where Z(X) := Z(X,X). The subclass of isomorphisms is denoted by
Zs(X,Y) or Zs(X), respectively. If X’ is the dual space of X, then we use for the
corresponding duality pairing the notation

(o, T)xrx: TEX, e X',

We denote for a linear operator A in X domain and range by D(A) and R(A). Its spectrum,
point spectrum, and resolvent set are written as o(A), 0,(A), and p(A). We say that an
operator A : D(A) C X — X is sectorial, if D(A) = R(A) = X, (0,00) C p(—A), and
the family (A + A)~1),>o is uniformly bounded. If the latter family is R-bounded, then
we call A R-sectorial. By ¢4 and qb} we denote the corresponding spectral and R-angle,
respectively [13, 4, 16].

In this note we also employ elements of the H>-calculus (e.g. in Theorem 2.3). By
H>(X) we denote the class of all operators A in X admitting a bounded H*°-calculus
on X. The corresponding H*°-angle is denoted by ¢%. We refer to [13, 4, 16] for an
introduction into H*-calculus, R-boundedness, and related notions.
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2.2. Transformation of the elliptic linear problem. In this section we transform the
elliptic linear problem (1.4) on a two-dimensional wedge domain onto a layer domain of
the form Q := R x I. If 6y denotes the angle of the wedge G we set I := (0,6p). In
the first step we introduce polar coordinates whereas in the second step we employ the
Euler transformation. Last we rescale the appearing terms such that we can work in the
transformed setting in unweighted LP-spaces.

We write the inverse of the transform to polar coordinates as
Yp Ry xI — G, (r,0)— (rcosf,rsinf) = (r1,x2)
with the associated orthogonal basis
e — <09s 9> ep = (— sin 0) .
sin@ )’ cos

We identify the orthogonal transformation matrix O of the components of a vector field

as
cosf) —sinf

0= <sin9 cos > ’
Next, we employ Euler transformation r = e” in radial direction, where by an abuse of
notation we write z € R for the new variable. We set

Y : Q>R xI, (x,0)— (e*,0)=:(r0).

It is not difficult to see that

vi=vYpothp:Q—>G
is a diffeomorphism. We set

Uu:=uoey and U lv:=voy !
For @ € R we also denote the multiplication operator by
Mov = e**o.
Analogous to [17] we define pull back resp. push forward by
vi=O%u:=M_g O 'Wu resp. u=0O= U tOMg,v (2.1)

with 8, € R to be chosen later. Then the transformed Laplacian, computed straight
forwardly, is given as

* 2 rp(aa:)vx + agvx — Vg — 28@1}9
@p(Au) =€ <’r‘p(8x)/l)6 + agvg o UG + 289,UI

with the polynomial
rp(0y) = 0% + 2Bp0, + @’12, (2.2)
To absorb the factor e 2%, we put
9= (92:90) 1= O} f := " O, f (2.3)
so that

d
[ lateoyras = [0 o)
Then by the choice p(2 — f,) = v+ 2, that is

y=2-17, (2.4)

we see that in the transformed setting we can work in an unweighted LP-space, see [21, 17].
Notice that by this choice of [, also pull back and push forward depend on p, i.e., the
corresponding families are not consistent in p.
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Finally, we transform the boundary conditions v -« = 0, curl u = 0 on 9G of the
problem (1.4) to the result that
Opvy =0, vy =0 on 92 =R x{0,6p}.
Summarizing, we receive the following transformed problem on 2 =R x I:
Tp(0) vy + Ofvy — vy — 209vp = g5 in Q,
7p(0z)vp + O3vg — vg + 20pv; = g in Q, (2.5)
Opvz =0, v9g =0 on 0.

2.3. Optimal elliptic regularity for the transformed problem. Here we consider
problem (2.5). In this subsection we frequently identify LP(£2,R?) with its isometrically
isomorphic version LP (]R, Lr(I ,R2)), often without further notice. We introduce the op-
erators associated to the single parts in (2.5):

(1) Let r, be the polynomial given in (2.2). We define 7, , in LP(R) by means of
Tpav i=1p(0z)v, v € D(T,,) == W?P(R).

The spectrum of 7, , is given by the parabola r,(iR) which is symmetric about the real
axis, open to the left and has its intersection point with the z-axis at 512, with ), asin (2.4).
It is straight forward to show that —7, . +b € H*°(LP(R)) for b > 52 with O 4y <T/2,
e.g., by the use of Fourier transform, see also [21, 17]. By means of operator-valued Fourier
multiplier results [27, 4, 16] these facts obviously transfer to the vector-valued version on
LP(R, LP(I,IR?)) given as

Tpov i= Tpav, v € D(T,) := W*P(R, LP(I,R?)).

(2) We define 7,y in LP(I,R?) by

_(0F -1 20,
Tpov = < 20y 63 -1)"
on D(T,p) := {v = (vg,v9) € WHP(I,R?) : 9pv, = 0, vg = 0 on dI}. It is also straight
forward to identify

km

2
o(T50) = op(Tya) = {— (hrs1) he N} U1 (2.6)

k
T

k k

v¥(6) := cos =Ty . vp(f) := £sin Ty , keNgy, 0el,
90 00

see also [17]. Note that 7, is self-adjoint in L*(I,R?). Hence the eigenfunctions represent

a basis of L?(I,R?). We denote by (\;)ien, the set of eigenvalues, i.e., (A;)ien, = 0(Tp.0)

such that A\g = —1 and A\; > Ay > .... Setting e¢g := (1/\/9>7 O)T and e; := \/65;0 fori e N

as its spectrum with corresponding eigenfunctions (v ,vf,?)T, where

where e; denotes the eigenfunction to the eigenvalue \;, we have

1 %
(e =g [ @5 do =3
6o Jo

By Fourier series techniques it is also standard to prove that —7, ¢y admits an H*-calculus
on LP(I,R?) with d)‘ioTp , = 0. The same properties remain valid for the canonical extension

to LP(R, LP(I,R?)) denoted by

Tpov :=Tpov, D(Tpe):=LP(R,D(Tp0)).
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Optimal regularity for (2.5) is then reduced to invertibility of the operator
Ty :=Tpz + Tpo : D(Tpz) N D(Tp ) — LP(Q,R?), (2.7)

if we can also show that
D(T},) := {v = (vg,v9) € W*P(R x I,R?), Jgv, = vg = 0 on 9Q}

= D(Tp) N D(Tpp). (28)

The proof of these facts requires some preparation. Let
Py, v =2 (v, ei)e; (2.9)

be the projection of v € LP(I,R?) to (e1,...,€m). We set Pp, := 1 — PS5 and Ef, =
Py (LP(I,RQ)), i.e., Eh, is the complement to (e1,...,en). Note that (Ppp)1<p<oo iS a
consistent family. By this fact we omit the index p and write just P,. We denote the
extension of P, to LP(R,LP(I,R?)) by P,,. Obviously then P,, € Z(LP(Q,R?)) is a
projector as well and we have

LP(Q,R?) = LP(R, (e1, ...,em)) ® LP(R, EP)). (2.10)
The following properties are obvious.

Lemma 2.1. Let T,,, and T,¢ in LP(Q,R?) for 1 < p < oo be defined as above and let
b > Bg with By, as given in (2.4). Then we have

(1) Ppv € D( pz) and Py, T, v = T), iPpv forve D(T,;) and i € {0, x};
(2) —Tpa+b,—Tpp € HOO(LP(R ED)NH®(LP(R, (1, ...,em))) with the corresponding
angles gb_Tp i < 5 and ¢ T,0 = =0,
(3) PR\, Tpi) = RN, Ty )Py, for X € p(Ty;) and i € {6, x};
(4) A =Tpu) M1, ,0)_1 = (N*Tp,G)_l()‘*Tp,x)_l Jor A € p(Tpz) and p € p(T)0).
The domains of the Operators T, and T}, in the subspace LP(R, E},) are defined as

Dy (Tyz) == D(Tp) N LP(R, EF,) and
Dy (Tp9) := D(Tp0) N LP(R, ET,)

respectively. The assertions of Lemma 2.1 then easily yield

(2.11)

Corollary 2.2. The operator Py, is a projector on D(T},;) and we have

(1) Din(Tp.i) = P (D(Tp.0)),
(2) D(T), )=D (T i) © (1= Prm)D(T},)

forie {6,x}.
We will characterize the invertibility of the operator in (2.7) by employing the opera-

tor sum method. More precisely, we apply [20, Proposition 3.5] which is obtained as a
consequence of the Kalton-Weis theorem [13, Corollary 5.4].

Theorem 2.3. Let 1 <p < oo and f, =2 — 2+—7. Then
Tpo + Tpa € Lis (D(Tpo) N D(Tp0), LP(Q,R?))
if and only if fﬁg Zo(Tpp).

Proof. Assume that —37 & 0(T},4) and that b > 2. The fact that —33 & o(7},9) guaran-
tees

o(=Tpa) No(Tpe) = 0. (2.12)
We first show that —T}, 9 — T)» — e € H(LP(R, EV,)) for some € > 0, which essentially
gives the assertion.
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To this end, pick m € Ny so that —A,, 41 > b with A,p1 € 0(Tpp). This implies
o(=Tpp) C (b,o0) on LP(R, E},) and hence 0 € p(—T) 9 — b—¢) for some € > 0. This fact,
Lemma 2.1(2) and a standard perturbation argument for H*°-calculus [9, Corollary 5.5.5]
yield that the shifted operator —T}, 9 — b — ¢ still satisfies

—Tpp —b—c € H(LP(R, E},)) with ¢, . =0.
Thanks to Lemma 2.1(2), which yields O gbe + T, 1 < T and to Lemma 2.1(4)
we may apply [13, Corollary 5.4] (see also [20, Proposition 3.5]) to the result that
—Tpo—Tpp—e=-Tpg—b—ec+ (=Tp.+b) € H(LP(R,EL))

with ¢ o < max{qﬁioTp’e_b, ¢30Tp,x+b}' Particularly, we obtain 0 € p(—=Tp,9—Tp2),

hence
Tpo + Tpx € Zis(Din(Tpz) N Din(Typ), LP(R, EL)). (2.13)

For the invertibility of the operator T}, 9 + T, on LP(R, (e1,...,€y,)) observe that due
to (2.12) we have \; € p(—Tp ) on LP(Q,R?) for each \; € 0,(T}, ). Thus

Xi+Tpo: LP(R, (e1,...,em)) N D(T} ) = LP(R, (€1, ...,em))

is invertible. By the fact that

m

(Tpvx + pre)ilf = Z()\’L + Tp,m)il(fa 62‘)62‘, f € LP(R, <617 ceey em>)7
=1

we conclude that
Tpo+ Tpw € Lis(LP(R, (€1, ... em)) N D(Tpz), LP(R, (€1, ..., em))). (2.14)
Gathering (2.10), (2.13), and (2.14) we end up with

Tp,9 + Tp,x € ogis (D(Tp,x) a D(Tpﬂ)v Lp(QvR2))'

Now, assume that —65 € 0(T,p). Then the symbol A+, (i) of the operator T}, g+ T »

vanishes exactly at (), &) = (— 3,0), where A\ € o(T,p). Thus, (A + rp(i-))~! is not

bounded, hence not an LP(R, LP(I,R?))-multiplier. This gives the assertion. O
Remark 2.4. An inspection of the proof of Theorem 2.3 shows that we even have that
~Tpo —Tpo — € € H®(LP(Q,R?)) with gb‘iosz_Tpe_a < m/2 for some € > 0.

To obtain optimal regularity we show (2.8).

Lemma 2.5. Let 1 < p < oco. Then we have

Proof. Considering the function & — zﬁg‘f’ |€|? for ¢ € R? and applying Mihklin’s Multiplier

Theorem [23] it is not difficult to see that
W2P(R?, R?) = LP(R, W*?(R,R?)) N WP (R, L”(R, R?))

with equivalent norms. The validity of (2.8) is proved via an extension Theorem, i.e., via a
bounded operator E : W?P(Q, R?) — W2P(R? R?) with Ef|q = f for all f € W2P(Q,R?).
See [1, Theorem 4.26] for the existence of E. O
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2.4. Optimal elliptic regularity for problem (1.4). We next consider equivalence of
the problems (1.4) and (2.5). The Laplace operator on the wedge domain is defined as

Byu = —Au, u € D(Bp) :={v € Kgﬁ(G,RZ) s curlv =0, v-v=0o0n 9dG}.

Observe that the boundary conditions are defined in a local sense. Indeed, each u €
K} (G,R?) is locally away from the vertex (0,0) a W?P-function for which the traces are
well-defined.

Lemma 2.6. Let 1 < p < co. Let @i’,éi’,@;, é; be defined as in Subsection 2.2. Then
we have
ey € 2, (LP(Q,R?), LP(G,R?)), O? € Zs (D(Ty), D(By)) (2.15)
where || - |ps,) =1l - Ixz_(cr2) and || - [Ipe,) = || - lw2e@r2)-
In particular, uw € D(Bp) is the unique solution of (1.4) to the right-hand side f €
LE(G,R?) if and only if v = O,u € D(T}) is the unique solution of (2.5) to the right-hand
side g = O, f.

Proof. By utilizing the transformations given in Subsection 2.2 and by the definition of
OFf and ©F, it is straight forward to verify (2.15). Hence problem (1.4) and problem (2.5)
are equivalent. O

Since —f37 ¢ o(Tpp) is precisely condition (1.6), Theorem 2.3, Lemma 2.5, and
Lemma 2.6 now imply our second main result Theorem 1.3.

Remark 2.7. (a) Theorem 1.3 in particular implies that (B, ")1<p<c cannot be a consis-
tent family on the scale (LP(Q,R2))1<p<OO
excluded p subject to condition (1.6) by an interpolation argument. By the equivalence
in Theorem 1.3 this, however, is not possible.

(b) Note that for v = 0 we have

0o
[ lutera (e PP dovdea = [ [ e @20 uio, )| dods.
G 0 R

Thus, employing twice Hardy’s inequality on the z integral, the terms pl*—29% for lal <1
can be estimated by the second order terms. This, however, does only work provided
2 — |a| — 2/p # 0 which means at the end that p # 2, since otherwise Hardy’s inequality
is not applicable. As a consequence, Theorem 1.3 implies that

(00hu)1<jn<e ¢ LP(G,R®),

if condition (1.6) is not satisfied and p # 2. In the case p = 2 second order derivatives
might belong to L?(G,R?), but then at least one of the terms pl®/=29%u, |a| < 1, cannot
be in L?(G,R?).

. Otherwise it would be possible to recover the

2.5. Consistency of (B, !)1<,<o on a subscale. Observe that condition (1.6) is always
fulfilled if every eigenvalue A; of T}, g satisfies

2
A < — (2 - 2+7> . (2.16)
p

As our main interest concerns the Stokes equations in L5(G), from now on we restrict
ourselves to the case v = 0, i.e., to the case of Kondrat’ev weight p¥ = 1. Then we have

_52:_<2_2>2>—4 (1<p<oo)
P p) = ’
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From (2.6) it is easily seen that
)\z’ < —4 (’L > 3).
Thus, relation (2.16) remains true for all A; € o(T}, ) with i > 3.

As we will see later (Proposition 3.2), excluding the eigenfunctions ey, ej, ez to the
eigenvalues A\g, A1, A2 of the transformed operator 7}, 5, will play no significant role for
the Stokes equations. Roughly speaking, this is due to the fact that their linear hull in
LP(2,R?) does not contain divergence free vector fields. Hence, from now on we consider

LP(R, Ef) = P3 (LP(Q, R?))

as the base space for T}, : D3(T,) — LP(R, EY}) with the projector P5 defined in (2.10) and
domain

Ds(T,) := D(T,) N LP(R, EX) = D3(T,9) N D3(Tpz),

with D3(Ty ) and D3(T), ) as given in (2.11). As an immediate consequence of Theo-
rem 2.3 (and its proof for m = 3, i.p. (2.13)) we obtain

Corollary 2.8. We have T, € %5 (D3(Tp), LP(R, EY)) for all 1 < p < co.

By Lemma 2.6 O and O7 are isomorphisms with inverse (:); and Oy, respectively. This
implies that
@p = éQPgé; and

Q, = O'P;0 (217)
D - 3V

are projectors on LP(G,R?) and D(B,), respectively. We set
L := Q, (LP(G,R?)) = OPLP(R, EY)
and define the restricted operator

By := Bylpw,) with D(By):=Qp(D(By)) = OLD3(T).

Notice that, unless its meaning is given otherwise, in what follows we understand the
multiplication operator Myv := e**v for a € R as an operator M, : F — M,(F) for
a function space F. It is clear that M, is injective for all appearing function spaces
F. Equipping M, (F') with its canonical norm, we even have M, € % (F, M,(F')) and
M;' = M_,. Furthermore, if T € Z(F) commutes with M,, then we also have T €
L (Mo (F)).

By construction it follows
Proposition 2.9. Let 1 < p < oco. Then we have

(1) The scale ((ﬁ@p)1<p<oO is consistent on (LP(G,R?))1<p<co and the scale (Qp)1<p<oo
on (D(Bp))1<p<oo:
(2) Quu = Qv for v € D(B,) N LP(G,R?);

(3) BpQp = QpBy;
(4) B, € Zis (D(By), LP).

In particular, for every f € ILP there is a unique solution v € D(B),) of (1.4).

Proof. (1) Obviously we have
M Psv =P3Myv  (veCF(R,D(Tpp)), @ € R) (2.18)
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with 7,9 as defined in the beginning of Subsection 2.3. From Lemma 2.5 and Lemma A.1
we infer that C2°(R, D(7,,6)) is dense in D(7},). Thus equality (2.18) extends to v € D(T),).
By the definition of ©F and ©} (see (2.1)) this implies

Quu =V"'OMz PsM_g O 'Wu = V'OP;0"'Wu (u€ D(By)). (2.19)

By the fact that all operators on the right-hand side do not depend on p we obtain
consistency of (Qp)1<p<oo. The consistency of (Qp)1<p<oo is completely analogous.

(2) For u € D(B,) N LP(2, R?) we deduce similarly as in (2.19) that

Quu =V"'OMg,PsM_5 0 "Wy = U 'OP3O Ty

= UIOMjs, 1 9PsM_p, 2O~ Wu = Qyu.

(3) Thanks to Lemma 2.1 we have

B,Q, = 6! T, 00V P30} = O/ P3 T, 0} = Q,B,.
(4) This is a consequence of representation

B, =0VT,0% on D(By),

Lemma 2.6, Corollary 2.8, and the definition of L?, D(B),). O

As for the projector P3 before, due to the consistency we write from now on Q and @,
i.e., we omit the subscript p.

Next, we show consistency of the family (B, !)1<,<oo on the subscale (ILP);<p<oo. Ob-

p
serve that the operator B, L is represented as

-1 —1 %
B, =Orr,e; |, . (2.20)

So, for consistency we need to prove that the right-hand side above does not depend on
p. Note, however, that the single components ©%, Tp_l, O, do depend on p. Merely their
combination can be consistent. For this purpose we first show

Lemma 2.10. Let 1 <p<g<oc and B, =2—2/p. For f € C°(R, E) we have
Tp_le(ﬁq_ﬁp)xf — e(ﬁq_ﬁp)ITq_lf.

Proof. First note that f € C2°(R, EY) and p < ¢ yield
eBa=f)e f e (R, EY) C LP(R, EY). (2.21)
Hence the application of Tp_1 to this quantity is defined. Also recall that

Tyv = Ty v + T ov = Tpov + Tpov = Tpov + (0 + Bp)?v.
We observe that
(0 + By)?e Va7 = =)z (0, 4 3,)?

implies that

eBa=Br)r o= (Ba=Bo)zy — Ty (v e CP(R, D3(Toy))) s (2.22)
as an equality in C°(R, EX). Here we set D3(7Tp,) = D(Tg,) N E4 and notice that the
assertions of Corollary 2.2 also hold for Ty ,.

For v € CX(R, D3(Tp,)) — C(R, Ed) (Sobolev embedding) we set

v = k(k+Typ) 'v € C°(R, Ds3(To,)), keN. (2.23)

By the sectoriality of T}, 9 we obtain v, — v in D3(7),). Hence equality (2.22) extends to
v e CX(R,D3(Tpyp)). Setting X = D3(Tp,), Y = ES, k=0, and ¢ = 2 in Lemma A.1, we
see that (2.22) extends to all v € D3(T}).
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As before, for o € R we set M,v = e**v. For o = 8, — 5 relation (2.22) then yields
Ty = M_oTyMy € Ziy(M_o(Ds(Ty)), M_o(LV(R, EY)))
with inverse B
T, ' = M_T, ' M,.
Thanks to (2.21) we see that
f=M_ (Maf) e M_, (LP(R7E§))

for f € C(R, E]). Due to this fact it remains to show that f;l is consistent with 7,
on CX(R, EY).

For f € C2(R,D3(Tgq)) we have My f € C°(R, EY) and hence T, ' M, f € D3(T,).
Since (2.22) holds for all v € D3(T},) this yields

T f = TyM_o T, " Mof = M_o MyT,M_ T, Mo f = f.
:Tp

Completely analogous we deduce f;quf = ffor f € C*(R, D3(7p,4)). Hence T;l = T;l
on the set C°(R, D3(7y,4)). By a similar approximation argument as in (2.23) we see that
this consistency extends to C°(RR, Ef). This finally yields the assertion. O

In the proof of consistency we also employ the following density property.
Lemma 2.11. Let 1 < p < g < oo. Then we have
O1(CX(R, EY)) S LINLP.
Proof. Note that N N
LP = 82(17(R, E})) = OIM o (L (R, E))
with M_, as defined in the proof of Lemma 2.10 and where M_, (LP(R, EY)) is again

equipped with its canonical norm. This shows that 7 € %, (M_o(LP(R, EY)), LP) with
inverse ©}. Since ©f € .7, (L(R, Ef), L9) has the same inverse we conclude that

0! e %, (LQ(R, E$) N M_o(LP(R, EP)), L9 N ]Lp> .
Thus, it suffices to show that
CX(R,Ed) <% LUR,Ed) N M_o(LP(R,E})) = Y.
To this end, pick v € Y and choose a bounded interval J C R such that

v —xgvlly = [lv— XJUHL‘I(R,Eg) + || Mo (v — XJ”)HLP(R,Eg) <e/2,

where x; denotes the characteristic function to J. By the fact that xjv € LI(J, EY) we
find (vy) C C(J, Ed) such that vy — x v in LY(R, EY). Note that, thanks to Ef — E¥,
we also have

[Ma(xsv — Uk)”LP(R,Eg) < O(J, a)[xgv — Uk”Lp(J,Eg) =0 (k—o0).
Consequently, choosing k large enough we can achieve
o —vklly < llo=xsolly + lIxsv —velly <e
and the assertion is proved. O
Now we are in position to prove the claimed consistency.

Proposition 2.12. The family (15351)1<p<oo is consistent on the subscale (ILP)1<p<oo-
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Proof. Let p,q € (1,00) and without loss of generality p < q. By the definition of ©%, C:);‘,
we have

er = @Ze*(’grﬁp)x and (:); = e(ﬁqfﬁp)x(:)z.
Now, pick
f €0l (CX(R,E])) Cc LP NLA.
From (2.20) and Lemma 2.10 we infer
—1r __ -1 %
B, f=0OVT, ©,f

= @Z 6*(54*517)95 Tp*l e(ﬁq*er)‘T (:)Zf

_ —1a*xr _ m—1

=0IiT, ©,f =B, f.
Proposition 2.9(4) and Lemma 2.11 then yield the assertion. d

2.6. The diffusion equation. As before let 6y € (0,7) be the opening angle of the wedge
G. For 1 < p < oo we define the Laplacian A, subject to perfect slip boundary conditions
in LP(G,R?) by

Apu = —Au,

2.24
u € D(Ay) = {ve W*(G,R?): carlv=0, v-v=0on 8G}HK§(G,R2). (2.24)

Now [17, Theorem 1.1 and Corollary 3.15] gives the following result.

Theorem 2.13. There is a 6 = §(0y) such that for 1 < p < 14§ the operator A, as
defined in (2.24) has mazimal regularity on LP(G,R?).

Remark 2.14. (a) Note that in [17] the case of a three-dimensional wedge is considered.
However, by an inspection of the single steps in the proof it is clear that the case of a
two-dimensional wedge is completely analogous.

(b) Also observe that § > 0 can be very small. In fact, the methods in [17] yield the
constraint 2 — 2/p < min{1, (7/6y — 1)}. Hence we have §(6p) — 0 for 0y — .

(¢) From the proof of [17, Theorem 1.1 and Corollary 3.15] it also follows that for each

A € p(4,) the family (A — A,)7") is consistent on (LP(G,R?))

1<p<146 1<p<146°

By a scaling argument we obtain the following estimate in the homogeneous norm.
Lemma 2.15. Let 1 < p < oo and p(A,) # 0. Then we have
lullrzer2) < CllApullrgrz)y (v € D(Ap)).
Proof. We have p— A, € %5 (D(Ap), LP(G,R?)) for a p € C. We introduce the rescaled

function Jyu(z) := A2u(Az), A > 0, and note that the wedge G is invariant under this
scaling. This yields

lull kz(aR2) = )‘2/p||JAUHKg(G7R2) < CAYP||(Ap — w) Iaull o (o r2)
< CNFP2P| 5 (4, — PA?)ul| Lo (6 r2)
= CO(Ap — pA Dulloerzy (A >0, ue D(Ap)).
Letting A\ — oo yields the assertion. O

Remark 2.16. The estimate in Lemma 2.15 implies that A, is injective provided that
p(Ap) # 0. This implies that A, is sectorial or R-sectorial, whenever ((A + A,)"1)\so is
uniformly bounded or R-bounded, respectively, see [9].
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Next, we show that Theorem 2.13 is still valid on L. To this end, for 1 < p < co we
define A, as the part of A, in L?, that is

Apu = Apliru, we DAy :={veDA,)NL: Ay elP}.
With the projectors Q and Q as defined in (2.17) we obtain
Lemma 2.17. Let 1 < p < oo. We have

(1) D(A,) = D(B,)NL*(G, RVQ) with equivalent norms as well as Q = Q and A, =B,
on D(Ap). In particular, Q on LP(G,R?) is the continuous extension of Q regarded
as a projector on D(A,).

2 @Apu = A,Qu for u € D(4,).

QA —A,) 1 f = (A= A)'Qf for f € LP(G,R?) and X\ € p(Ay).
D(Ap) = D(A )NLP = @D( p)-
A=Ayt = (A= Ap) e for X € p(Ap).

L<p<1is is consistent on (]Lp)1<p<1+5 for X € p(A,).

Proof. (1) Note that D(Ap,)— D(B,) is an immediate consequence of the definition of
D(A,). This gives B, = A, and, by virtue of Proposition 2.9(2), also Q = Q on D(A,).
Furthermore, the Gagliardo-Nirenberg inequality and Young’s inequality yield

IVall, < € (IV2ull, + lull,)  (u € LP(G,R?) N KX(G, R2)).

Note that the wedge G is an (e,00) domain and on domains of this type the Gagliardo-
Nirenberg inequality holds true [17, Section 5] thanks to the extension operator for homo-
geneous Sobolev spaces constructed in [11, 2]. This implies

lullw=s < € (lully + 19%ull,) < C (Jully + s )

Thus D(A,) = D(B,) N LP(G,R?) with equivalent norms. From this we easily obtain

that Q is also a projector on D(A,). Since D(A,) is dense in LP(G,R?), Q extends Q
continuously on LP(G,R?).

(2) follows directly from (1) and Proposition 2.9(3).
(3) Let A € p(A,). From (1) and (2) we obtain

(A= 4)Q0 - 4,))"'f =Qf (f € L’(G.R?).
Applying (A — A,)~! on both sides yields (3).
(4) Let w € D(Ap)NLP. By (1) we obtain u = Qu = Qu, hence u € QD(A,). Conversely,
(1) also yields QD(A,) C D(Ap,) NLP. In view of (2) we next conclude
Apu = A,Qu = QAyu € P,

hence u € D(A,). Since the inclusion D(A,) C D(A,) NLP is trivial, the assertion is
proved.

(5) Let A € p(A,). For f € L relations (3) and (4) yield
A=Ay ' f=Q\—4,)7'f € D(Ay).
Thus,

A=A =47 f = f
which proves (5).

(6) follows from (5) and Remark 2.14(c). O
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By combining the well-known equivalence of maximal regularity and R-sectoriality [27,
Theorem 4.2] with Theorem 2.13, Remark 2.16, and Lemma 2.17 (especially assertion (5))
we obtain

Theorem 2.18. Let 1 <p < 1+ with 6 > 0 as in Theorem 2.13. Then A, : D(A,) — L
with domain

D(A,) = {u e W*P(G,R?*): curlu=0, v-u=00ndG} N Kz(G,R2) NP

1s R-sectorial with ¢;§p < 7/2. Thus, A, has mazimal regularity on LP.

Our ultimate aim in this subsection is to show that Theorem 2.18, in particular the
optimal Sobolev regularity, is available on the full range 1 < p < oo. Note that this is
not true for A, : D(4,) C LP(G,R?) — LP(G,R?) with D(A,) given in (2.24) as the next
result shows.

Theorem 2.19. Let 1 < p < oo and Oy € (0,7) such that condition (1.6) (with v =0) is
not satisfied. Then p(Ap) = 0. In other words, in this situation for every X\ € C there is
an f € LP(G,R?) such that there is no solution u of
A—Au=f in G,
curlu=0, u-v =0 on O0G
satisfying u € Kg(G,R2). More precisely, if p # 2 then 0®u € LP(G,R?) for all a with
la| = 2, while for p =2 we have pl®1=20%u ¢ L*(G,R?) for some o with |a| < 2.

(2.25)

Proof. Suppose there exists a complex number p € p(A,). We can assume g # 0, since
otherwise this would immediately contradict Theorem 1.3.

By the scaling argument used in the proof of Lemma 2.15 it easily follows that ((A —
Ap/1) 1) aso is uniformly bounded. Thanks to Remark 2.16 then A,/u is sectorial, see
[9], in particular it has dense range. For f € LP(G,R?) we hence find (ug) C D(A,)
such that Apup — f in LP(G,R?). Due to Lemma 2.15 (uy) is a Cauchy sequence in
Kg(G,RQ) and its limit v = lim uy, satisfies equation (1.4). The fact that u € Kg(G,RQ)
then contradicts Theorem 1.3. Thus p(A,) must be empty. The additional statement
follows from Remark 2.7(b). O

Next, we show that the resolvent of A, in IL? is consistent with its dual resolvent. For
this purpose we first identify (IL?)’. This, in turn, is connected to the identification of P
and Q'. By this fact, just within the following lemma, we write Pz, and Q, again.

Lemma 2.20. Let 1 <p <oo, B, =2—-2/p, and 1/p+1/p' = 1. Let er . LP(2,R?) —
LP(G,R?) be defined as in Subsection 2.2 with inverse ©,, and the projectors Ps;, and Q
be defined as in (2.9) (and the subsequent lines) and (2.17) respectively. Then we have

(1) (OF) = é;, and (@;)/ = oY : in particular ©F is an isometric isomorphism;
Psp) =Py p;

Proof. (1) Recall that by (2.1) and (2.3) we have ©%u = U OMg, _ou with ¥, O, Mg,
as defined in Subsection 2.2. Thanks to

2
bp=2-=Fyt2
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we can calculate

(8ru.0) = [ v)OM, )i )y
_ /Q o((, 0))(OMs, —su)(z, 8)e*dzdd
_ /Q (M_s 4201 00)(z, O)u(x, 6)dwdd
- <u é;,v)Q (u e LP(Q,RY), ve LP’(G,R2)> .

Relation (é;;)’ — @ then follows since (:);7 G

Relation (2) follows immediately by the definition of P53, and (3) is a consequence of
(1) and (2).

(4) By the fact that LP = @pLP (G, R?) this follows from the symmetry of @p proved in
(3) and since (LP(G,R?))" = L¥ (G, R?) with respect to (-, -). O

Now, let
Al : D(A)) C LY — L
be the Banach space dual operator to A, in L for 1 < p < 14-4. By permanence properties
and Theorem 2.18 it follows that also A; is R-sectorial with gf)& = qﬁEp < /2. At this
point, however, we do not know how D(A}) looks like. On our way to characterize D(AJ,)
we next show consistency of (A —A,)~" and (A — A7)~! on LP N LY

Proposition 2.21. Let 1 <p <148 with § > 0 as in Theorem 2.18 and 1/p+1/p' = 1.
Then

A=A ' f=(—A)'f (feLPNLY, Xep(Ay) NR).

Proof. Let A € p(A,) NR. We intent to apply Lemma A.2. Setting 7' = A — A,,, we
first have to verify that there exists an embedding J : D(A,) — (L?)" with dense range.
Observe that, since D(A,) — W?2P(G,R?) and G C R?, the Sobolev embedding yields

D(Ay) <% LY (G,R) NP = L7
Thus J can be chosen essentially as the Riesz isomorphism given in Lemma 2.20(4).
However, since we identify (LP)" with L’ anyway and T* with (A — A,)f on LL”, that

is, with its dual induced by the Riesz isomorphism, we omit J (and hence also J) in what
follows.

By virtue of Lemma A.2 and (A.1) it then remains to prove that
A=A, C (A=A,

where (A —A,)* : P — D(A,) denotes the dual operator of A — A, regarded as a bounded
operator from D(A,) to L?, see Appendix A. To this end, pick u,v € D(A,). Observe that
by the fact that D(A,) —LP N L*" all duality pairings appearing below are well-defined.
Also note that

Au = Vdiv u — curl’ curl u,
where curl’p = (0, —8w1)T p for a scalar function ¢. Employing the Gaufl theorem and
the boundary conditions for u and v we calculate

(Vdivu,v) = / v-vdivudo — (divu, dive) = (u, Vdivo)
oG
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as well as
(curl' curl u, v) = —/ ((02, —Ul)T . V) curludo + (curlu, curlwv)
oG

= (u, curl’ curl ’U) .
This yields
(T*u, ) p(a,y,piay) = (U, (A+ A)v) = (A + A)u, v)
= (T, v) = (T'u, v) p(a,),D(A,)
which proves the claim. O

Now we can characterize D(A7,).

Theorem 2.22. Let 1 < p < o0 and 1/p+1/p’ = 1. Then we have A, = Ay, i.e., in
particular D(A},) = D(A,) with D(Ay) as characterized by (2.24) and Lemma 2.17(4).

Furthermore, for X € p(A,) the family (X — Ap)~1) is consistent on (LP)

1<p<oo 1<p<oo-*

Proof. By definition it is obvious that A, C A;,. It is clear that the converse inclusion,
particularly the assertion on D(A;), is proved, if we can show that

(1+A,) ! e Z(LP, D(A)) (2.26)

for every p € (1,00). By Theorem 2.18 relation (2.26) holds for every 1 < p < 1+4J. We
take p out of that interval and consider (2.26) for its Holder conjugated exponent p'.

Let f € LP NP, Then there is a u € D(A;,) such that
(1+A)u=f.

By the consistency of the resolvents of A, and A; proved in Proposition 2.21 we see that
u € D(Ap) and that

1+A)u=f < Apu:f—u::geLpﬂLpl.
On the other hand, Proposition 2.9(4) and the consistency of (B, 1) 1<p<oo established in
Proposition 2.12 imply that there is an v € D(B,) N D(B,/) such that

Byv =g.

The fact that D(A,) C D(B,) and A, = B, on D(A,) (Lemma 2.17(1),(4)) then gives
u = v. From this and Lemma 2.17(1) we obtain

I(1 —l—A;)*lfHD(Ap/) = HUHD(Ap,) <C (HUHP’ + H”HK@)
<Clfly (feLlPnl¥).

Since IL? N 1LY lies dense in L', relation (2.26) follows for p'.

According to what we just have proved, Lemma 2.17(6), and Proposition 2.21 the family
(1+ Ap)_l)pef is consistent on (ILP),er for
I=(1,00)\[1+6(1+03)] (2.27)
For the remaining p we interpolate. In fact, since ILP = @Lp (G, R?) complex interpolation
and [25, Theorem 1.17.1.1] yield
/ 1 1 1
P I =19 —=s—4+(1-—3s)-.
[ ] S q p/ ( )p
Furthermore, by [25] we also have

W9(G,R?) = [W?P(G,R?), W7 (G, R?)]

s’
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K3(G.R?) = [K}(G,R?), K (G.R)]

o
(Note that the second identity above follows, e.g., from

W24(Q,R?) = [W2P(Q,R?), W (2, R?)]

S?
and an application of Stein’s interpolation theorem [26], since the dependence of ©F, S
on z = 1/q is analytic on a suitable strip in the complex plane.) This shows that

(1+A,) " e Z (P, W*P(G,R*) N K (G,R*) NLP)

for every p € (1,00). For f € LPNLY with ¢ € I, we also see that (1+A,)~!f satisfies the
boundary conditions included in D(A,). By a density argument and boundedness of the
corresponding trace operators relation (2.26) follows to be valid for all p € (1,00). This
completes the proof. O

Thanks to Theorem 2.22 we can generalize Theorem 2.18 to all p € (1, 00).
Theorem 2.23. Let 1 < p < oco. Then A, with domain
D(Ay) ={ue W*P(G,R?) : cwrlu=0,v-u=00ndG} N Kg(G,RQ) NLP

18 R-sectorial on ILP with ¢7A$p < /2, and hence has maximal reqularity on LP.

Proof. Due to A}, = Ay and Theorem 2.18, the operator A, with D(A,) as stated is
R-sectorial with qﬁﬁp < 7/2 for p € I with I given in (2.27). Note that injectivity,

hence also R(A,) = LP, follows from Remark 2.16. Since the property of R-sectoriality is
invariant under interpolation [12, Theorem 3.23], the result follows by interpolation and
the equivalence of maximal regularity and R-sectoriality [27, Theorem 4.2]. O

In this subsection we have shown by consistency arguments that regularity for the
elliptic operator B, transfers to the parabolic operator 0; + A,. The next result, which in
principle shows that the converse is true as well, we state also for later purposes.

Proposition 2.24. Let 1 < p < oo , then
(1/k—Ap)~' =B, in £ (L7, K)(G,R?).

lim
k—o0
In particular, D(Ay) is dense in D(B,).

Proof. Pick f € ILP. For £ € N by the resolvent identity, Lemma 2.15, and since A, is
sectorial we obtain

1L/ (ke +0) = Ap) ™1 f = (1/k — Ap) ™" fll k2

< CN(A/(k+0) = 1/k)(1/k = Ap) T Ap(1/(k + ) = Ap) 7 fp
< Cll(k/(k+0) = 1)Ap(1/(k +0) — Ap) ™ £l
<COl(k/(k+6) =D fllp =0 (k= o0).

Thus (1/k — Ap)~tf — v in D(B,). The fact that B, € .Z(D(B,), L?), Lemma 2.17(1),
and again sectoriality of A, yield

Bpv = kh_g)loAp(l/k —Ay)TN =1,

hencev:IB%Zjlf. O
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3. THE STOKES EQUATIONS

In this section, we consider the Stokes problem (1.1). We introduce the space of
solenoidal vector fields. For 1 < p < oo and 1/p+1/p' =1 we set

LE(G) = {u e LP(G,R?) : /Gu -Vepd(z1,22) =0 (p € Wl’p/(G)) }, (3.1)

where

W (G) = {90 € Lipe(G) : Vi € L”'(G»RQ)} '

Since C°(G,R?) C /W?Lp(G,]RQ), it is evident that u € LE(G) satisfies the condition
divu = 0 in the sence of distributions. Moreover v - u is well-defined in the trace space

(Slobodeckii space) W[l/p((’)) for all bounded domains O with O C 9G \ {(0,0)}. This
yields that the boundary condition u - v = 0 is fulfilled in a local sense away from O.

We define the Stokes operator Ag as the part of 4, in L5(G), i.e.,

Agu = Ap|rzyu, u€ D(Ag),

D(Ag) :={v e D(A,) NLE(G): Apv € LE(G)}. (32)

The next lemma justifies this definition of the Stokes operator.
Lemma 3.1. Let 1 < p < oco. Then

D(4s) = D(4,) N L5(G).

Proof. We only have to show, that the right-hand side is a subset of D(Ag). To this end,
let w € D(4,) N LE(G) and f := Apu. It remains to show that f € L5 (G). By the fact
that f = Apu = curl’curlu and u € D(A,) N L5 (G), the GauB theorem yields

/ f-Veod(z1,z2) = / (curl’curlu) - Vo d(z1, z2)
G G

=— <cur1 u, v - curl 'cp>W;,1/p 0

@G)w " o6
for all ¢ € WP (G, R?). Note that diveurl’g = 0, hence the trace v - curl’y is defined

in Wp71/ P l(@G) in the usual sense. By the fact that curlu € WHP(G,R?) therefore the
duality pairing on the boundary above is well-defined. The proof is complete. U

Recall from (2.10) that LP(Q,RR?) is decomposed in LP(R, E%) and LP(R, (e, €1, €2))
with Ef, defined in the lines before (2.10) and e, e1, e2 the normed eigenfunctions to the
first three eigenvalues of the operator 7, ¢ introduced in Subsection 2.3.

In order to transfer the properties of A, to the Stokes operator Ag a crucial point is

that ©YLP(R, (eq, €1, €2)) does not contain non-trivial solenoidal vector fields. To carry over
full Sobolev regularity, however, this fact is not enough. This purpose requires stronger
properties:

Proposition 3.2. Let 1 < p < oo. Then there exists a § > 0 such that

(1) | Qullp > 8llull, for all u € LE(G),
(2) ||@UHK§ > 5||u||Kg for all w € D(B,) such that divu =0, and

(3) [1Qullpa,) = dllullpa,) for all w € D(Ag).
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Remark 3.3. Proposition 3.2 relies of course on the specific structure of the solenoidal
subspace. In fact, its proof (including the proof of the subsequent Lemma 3.4) shows that
the operator ’div’ is isomorphic on the complementary space to L and on the correspond-
ing higher order complementary subspaces. Furthermore, it keeps the complementary
structure in its image. This essentially can be read off the representations of the trans-
formed ’div’ operator applied on elements of the complementary subspaces given in (3.4)
and (3.9) below.

Proof of Lemma 3.2(1). Step 1. Recall from Subsection 2.3 that the eigenfunctions to
the first three eigenvalues (\i)iefo,1,2) € 0(7p6) are explicitly given as

e ¢y(0) := \/%70 <é> which corresponds to \g = —1 and

km
1 cos(g0) : _(kr _ )2
o ¢x(0) := NS (_ sin(%—ge) which corresponds to A, := — (g —1)% for k € {1,2}.

We notice that, depending on the value of the angle 6y, there might be a doubled eigen-
value. This, however, does not matter for what follows. An element ¢ € LP(R, (e, €1, €2))
is then represented by

p(x,0) = po(z)eo(0) + p1(x)e1() + pa(x)ea(6) (3-3)
with coefficients ¢; € LP(R) for i € {0, 1, 2}.
Step 2. On our way to show (1) we first derive suitable estimates for ¢ €

LP(R, (eg,e1,e2)) in terms of the transformed divergence operator. To this end, first
observe that

div OPv o ¢p = eFr=3)7 ((Bp — 14 0z)vy + Ogug) =: e(ﬁpf‘?)‘”divé v.

Applying the transformed divergence operator divg to representation (3.3) yields

divg o = (Bp — 1 + 92) @obo + <5p -1- 010 +3x) 101

5 (3.4)
+ (ﬂp_l_ez-"‘ar) 902b2
where )
{bo, by, bo} = { \/1% Cojai;‘), CO;(%')} (3.5)

is linearly independent in LP(I,R). We set
FP = (by, b1, ba).
The form of the coefficients in (3.4) is
(sj +0z)pj, s;€R, 7=0,1,2.

Observe that depending on the values of p and 6y it can occur s; = 0. Thus, in order
to estimate expression (3.4) by ¢; from below we distinguish two cases: s; # 0 for all
j=0,1,2 or s; =0 for one j € {0,1,2}.
Step 2.1. The case s; # 0 for all j = 0,1,2. Then we have
sj + 0y € Ls(LP(R), W HP(R)). (3.6)
Furthermore, since F3 " is finite dimensional, we observe that W1+’ (R, FY /) is isomorphic

to the space
W' (R, FY ) 0 LY (R, W' (I, R)).
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This implies that the norm of W1 (R, F¥ /) and the norm of W' (Q, R) are equivalent on

Wh' (R, Fgl) and that the latter space can be regarded as a closed subspace of W' (€, R).
Utilizing these facts, we can estimate as

H@j“p < CH(SJ + 89:)90]'”W—1,p(]]§)

2
= CHZ(SJ + ax)GDijHW—l,p(RF?f) = CHdiV(:)SDHW*LP(R,Fé?)

=0
e sup [(h, divg )]
0£hewLr' (R, FL') 1All gy ®,FY)
(R, divgp)|

<C sup

B ”leNSOH —Lp
0£heWLr' (QR) Hh‘lep (Q,R) eriiw, " (QR)

for j =0,1,2 with C > 0 independent of ¢ and where Wo_l’p(Q,R) = (Wlﬁp'(Q,IR{))’.

Step 2.2. The case s; = 0 for one ¢ € {0,1,2}. This case is more involved, since here
we have

¢+ 0, = 0y € L(LP(R), W™ P(R)),
whereas for the remaining j € {0,1,2} \ {¢} we still have (3.6). We set
W-LP(R, (b;)), ifj=1¢
U = v \Y57 ) ) 3.7
i={ Wi ), e ey g 37
and
———W-LP(QR
V= divg LP(R, B2) T, (3.8)
In Lemma 3.4 below it is proved that the sum of Uy & U; @ Us and V is direct and
consequently that
UooUr Uz 'V, H : HU()@Ul@UQ@V = || : HUo + H : ||U1 + H : ||U2 + H : ||V

is a Banach space. Then, this time we obtain

leillp < Cll(s5 + 02)p;bjllu;
2

< CHZ(SJ + ax)gpjijUo@Ul@U2 = C||diVéSDHU0@U1EBU2
7=0

< Clldivgellvgat,evaev
for j =0,1,2 with C > 0 independent of .
Step 3. Now, let u € LH(G) and ¢ € LP(R,{eg,e1,e2)) such that Qu = u — (:jf:go.
Observe that both,
divg : LP(QL,R?) — W, "P(Q,R)
and by Lemma 3.4 also
divg : LP(QLR*) » g Uy @ Uy &V

are bounded operators. By the fact that divéé;;u = 0, we can continue the calculations
in steps 2.1 and 2.2 to the result that

lpjlly < Clldivg ellw = Clldivg (Bpu — @)llw
< Cllu — ©%¢l oG r2) = CllQull, (1 =0,1,2),
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where W denotes either the space W(fl’p(Q, R) or the space Uy ® Uy @ Uz @V, depending
on whether we have s; # 0 for all j or s; = 0 for one j. Summing up over j yields

2
lelly = el e @ eoereayy < C D llslly < ClIQul,
j=0

for all u € LE(G) and ©2¢p = (1 — Q)u. By the fact that

Collellzrarzy = 1920l o (a r2) = llu — Qullp = [[ully — |Qull,
we arrive at (1) by setting ¢ := 1/(CoC + 1).
Proof of (2). The proof of (2) is in large parts similar to the proof of (1). Hence we will
be briefer in detail.

Step 1. Again we will first provide estimates for ¢ € (1 —P3)©,D(B)) in terms of the
transformed divergence. Note that such a ¢ is still represented by (3.3), but now with
coefficients ¢; € W2P(R). The transformed divergence operator here is

div Py o 1p = lPr= 1)z ((Bp + 14 02)vy + Ogug) =: ePr=D2divg v.

Consequently,

divg ¢ = (,Bp + 1+ 89&) pobo + <Bp +1-— 91 + 81»> 101
0
(3.9)

2

+ <5p +1- + 8;3) (pgbg
to

for ¢ € (1 —P3)0;D(B,). Again we write the coefficients as (s; + 0,)p;. Here still s;
and s can vanish. Hence we again distinguish the two cases: s; # 0 for all 7 = 0,1,2 or
sj = 0 for one j € {1,2}.
Step 1.1. For the case s; # 0 for all j =0, 1,2 we use
sj + 0y € Lis(W>P(R), W'P(R))
in order to deduce

lejllwer®) < Cll(sj + 0z)ejllwrm
2

= CHZ(SJ' + 81)90ij'HW1»p(R,F§) < CHdiV@‘PHWW(Q,R)
j=0

for j =0,1,2 with C' > 0 independent of .
Step 1.2. If s, = 0 for one ¢ € {1,2} we use for that ¢,

S0+ 0y = 8, € Lis(W2P(R), WHP(R))
to estimate

1eelliFnmy < Cll(se + 0x)elli @) < Cll(se + ) eellwrem)
2
< CHZ{)(*SJ‘ + 8:6)90jijW1,p(R7F§’) < Cl|ldive|lwir@qr)
j:
with C' > 0 independent of ¢. The corresponding estimate for ¢ in the LP-norm can be
established completely analogous as in step 2.2 of the proof of (1). In this regard, observe
that all assertions there as well as of Lemma 3.4 obviously remain true, if we replace divg
by divg. Hence we obtain

leellr ) < Clldivepllvpetavsev -
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Taking into account the well-known interpolation estimate ||Vo||1or) < C(||V?0]|1o(r) +
vl e (w)), altogether we have
lejllwem) < C ([divepllwirr) + Idiveellvsatrev,av)
for j =0,1,2 with C > 0 independent of .
Step 2. Let u € D(B,) with divu = 0 and ¢ € (1 — P3)©;D(B,) such that Qu =
u — ©Lp. Thanks to Lemma 3.4 and since
dive : W*P(Q,R?) — WHP(Q,R)

is bounded, by virtue of dive©,u = 0 and the estimates in Steps 1.1 and 1.2 we conclude

lejllwzem) < C (lldive ¢llwrror) + lldiveellvyenavev)
< C10,u = llw2rr)
< Cllu — ©%ollk2 (g r2) = CllQullk2(6R2) (1 =0,1,2).

Summing up over j, analogous to step 3 of the proof of (1) we arrive at (2).

Proof of (3). According to Lemma 2.17(1), |- |l + [/ - [[x2 is an equivalent norm on
D(A,) and we have Q = Q on D(A)). The estimates proved in (1) and (2) then yield

lullpea,) < € (lullp + llullxz) < € (IQull, + [Qulxz)
< Cl|Qullpa,) (u€ D(Ag)).

The proof is now completed. (I

We have used the following facts in the proof of Proposition 3.2.

Lemma 3.4. Let 1 <p <oco. Let Uj, j =0,1,2, divg, and V be as defined in the proof
of Proposition 3.2(1). Then Uy, Uy,Us, V' are Banach spaces, their sum is direct, and we
have

diV(:) e (LP(Q,]R2), Uy U Uy ® V) . (3.10)

Proof. By their definition (3.7) and (3.8) it is obvious that Uy, Uy, Ua, V are Banach spaces
and that the sum of Uy, Uy, Us is direct. Note that
LP(Q,R?) = LP(R, EY) @ LP(R, (o)) ® LP(R, (e1)) ® LP(R, {e2)).
It is also obvious that divg : LP(R, (e;)) — U; and hence also
divg LP(R, {eg,e1,€2)) — Uy ® Uy & Uy (3.11)

is bounded (even isomorphic due to the estimates for ¢ in steps 2.1 and 2.2 of the proof
of Proposition 3.2). Due to divg € 2 (LP(Q,R?), W~ 1P(€,R)) we sce that by definition
of V' the operator

divg : LP(R, E5) =V (3.12)
is bounded too. It remains to prove that the sum of V and Uy @ Uy @ U, is direct.

To this end, denote by Q3 : W' (Q,R) — W (Q,R) the projector
2
Qv =Y (v,b))bj, ve W' (QR)
j=0

with b, j = 0,1,2, be defined as in (3.5). Writing
W (Q,R) = WP'(R, LP (I, R)) N LP (R, WP (I, R))
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it is easily seen that Qs is a bounded projector onto W' (R, F:f/). Note that (b)32, with
bi(0) = cos(kmf/00)//0y as the collection of eigenfunctions of the Neumann-Laplacian on
the interval I = (0,6) forms an orthonormal Hilbert basis of L?(I,R). This shows that
Q3 is symmetric, hence Q3 is a bounded projector on

Wy P(Q,R) = (W (2,R)) = WHP(R, LP(I,R)) + LP(R, W, (I, R)),
too. Since all norms on F} are equivalent, for its image we calculate

QW (4 R) = WHP(R, F) + LP(R, Ff) = WP (R, F)

) : - (3.13)
— WIPR, (b)) & WP (R, (b)) & WP(R, (bo)):

We next show that V' C (1 — Qg)Wo_l’p(Q,R). By the fact that (e;)?2, forms a basis
of L?(I,IR?) (see (2.6) and the subsequent lines), every v € L*(R, E3) is represented as
v =172 supeg with (vg) C L*(R). Hence we obtain

o0

divgv = Z(ﬂg -1+ 835)11;66,,1g + vkagez
k=3

—Z( 2—1i+6>vkbk.

This shows that

Qsdivgv =0 (v € LP(R, EY) N L*(R, E3)).
The boundedness of the operators divg, Q3 and a density argument yield that this identity
remains true for all v € LP (R E%). Once more the boundedness of Qs on W, LP(Q,R)
then gives V C (1 — Q3)W, (S, R).

Finally, W (R, (b;)) <> WLP( , (bj)) implies
WP (R, (b)) = WP (R, (by)).
In combination with (3.13) this gives
Up ® Uy @ Uy € Q3W, "P(Q,R),

hence V N (Uo oU @ UQ) = {0}.

Since we equip Uy @ Uy @ Uy @V with the norm || . ||UOGBU1®U2€BV = || . HUO + H . ”U1 + || -
ll, + 1 - |lv, relations (3.11) and (3.12) result in (3.10). Now all assertions are proved. [

Corollary 3.5. Let 1 < p < oo. Then we have that
(1) QLE(G) is closed in 1P and Q € %, (Lp( ), @L@(G)),
(2) QD, is closed in D(B,) and Q € Zs(Dy, QD,), where Dy := {v € D(B,) :

divev = 0}, and
(3) QD(Ag) is closed in D(Ap) and Q € Zs (D(As), QD(Ag)).

With these facts at hand we can prove our main result on the Stokes operator.

Proof of Theorem 1.1. Assume that A € p(A,). By the fact that Ag is the part of A, from
Lemma 3.1 we infer that

A=A4s) " == 4) e
In combination with Lemma 2.17(3),(4) this implies
QA — Ag)'u=(A—A,)"'Qu (ue D(Ag)).
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In particular, the above line yields (A — Ap)—l@L%.’(G) C QD(Ag). Thus, thanks to
Corollary 3.5 we conclude that

A= As)Hf =Q 7 A - Ay TQf  (ZE(G)). (3.14)

For 1 < p <1+ 6 with 6 > 0 given in Theorem 2.13 we know by that result that
the resolvent set of A, contains a suitable sector. For those p the assertion hence follows
from Corollary 3.5 and Theorem 2.23. For general p € (1, 00) representation (3.14) gives
a candidate for the resolvent of Ag. In fact, choosing 1 < ¢ < 1+ 6, on LE(G) N LL(G)
we already know that it is the resolvent. A density argument and again Corollary 3.5 and
Theorem 2.23 then yield the assertion. U

Remark 3.6. From Proposition 2.9(1) and Theorem 2.22 it also follows consistency of the
resolvent of Ag, that is, for every A € p(Ag) the family ((A— Ag)™!) is consistent

1<p<oo
on the scale (Lt (G))) < pe oo

Finally we prove our third main result.

Proof of Theorem 1.5. We follow the strategy in the proof of Theorem 1.1. For f € LL(G)
the candidate for the solution of

—Au+Vr=f in G,
divu =0 in G, (3.15)
curlu =0, u-v =0 on OJG

is given as m = 0 and u = Q_IB;I@f. Thanks to Proposition 2.9 and Corollary 3.5 it
remains to show that divu = 0. This, in turn, follows from Proposition 2.24, Q~1(\ —

Ap)*l@ f € D(Ags), and the fact that the operator div acts continuously on the space
K2(G,R?). a

APPENDIX A. ELEMENTS FROM HARMONIC AND FUNCTIONAL ANALYSIS

The following facts might be well-known. Since we could not find an appropriate refer-
ence, we give their proofs here.

Lemma A.1. Let X,Y be Banach spaces such that X —Y . Then we have
CP(R, X) <% WFP(R, X) N WP (R,Y)
for every k, ¢ € Ny and p € (1,00).
Proof. First recall that
CX(R, E) <% WFP(R, E)

for every k € Ny, p € (1,00), and arbitrary Banach space E. In fact, it is standard to
construct a (universal) sequence of operators (®;)zen such that for u € WHP(R, E) we
have (®pu) C CP(R, E) and

dpu—u in WHP(R,E)  (k— o0)

for every k € Ny, p € (1,00), and arbitrary Banach space E. Since X C Y, for u €
WHEP(R, X) "W (R,Y) this gives ®pu — u in WHP(R, X) and in W5P(R,Y). O
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Let T : D(T) C X — X be a closed, densely defined operator on a Banach space X.
We denote by
T : X' — D(T)
the dual operator of T', regarded as a bounded operator from D(T') to X, and by
T:D(TcX — X

the usual Banach space dual operator of T'. The fact that D(T") C X is dense, obviously
implies D(T") — X' — D(T)" and that

T\ perny =T (A.1)
Furthermore, we have the following lemma on consistency.

Lemma A.2. Let X be a reflexive Banach space and let T : D(T) C X — X be densely
defined such that T € Z5(D(T'),X). Assume there is an embedding (with means i.p.
injection) J : D(T) — X' with dense range. Then there exists an embedding J:X —
D(T) such that, if JoT C T o J, we have

JoT 'oJ = (T%

. = (1) in X' (A.2)

-1 —1

| Fxnxe | Fxnxe
Proof. Since D(T) = X we have X’ < D(T)'. Reflexivity of X and J(D(T)) <% X' further
imply that there is an embedding J : X — D(T)'. Thus, JX N X' is well-defined and due
to T € Zs(D(T), X) which also implies T% € Z(X’, D(T)') and T' € Z(D(T"), X"),
line (A.2) is meaningful.

Now, let z € JX N X’ and set 21 := JT'J 'z € X’ and x5 := (T%)"'z € X’. Thanks
to JoT C T% o J we obtain

TH(zy — x9) = T* (JTfljflz — (Tﬁ)*lz)
= JIT ' J e —THTH =2 — 2 =0.

Thus z1 = x9 in X’ and the assertion is proved. The second equality in (A.2) follows in a
similar manner from (A.1). O
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IN LP: SECTORIALITY AND OPTIMAL REGULARITY
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ABSTRACT. In this note we prove that the solution of the Stokes equations subject to
Dirichlet boundary conditions on a 2D wedge domain admits optimal regularity in the
LP-setting for a small neighborhood of p about 2. Here, optimal regularity means that
the domain of the Stokes operator in L? is embedded in W#?. Furthermore, we obtain
sectoriality for the Stokes operator with spectral angle equal to zero for the same range

of p.
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1. INTRODUCTION AND MAIN RESULT

The objective of this note is to consider the Stokes resolvent problem on a two-
dimensional wedge type domain subject to Dirichlet boundary conditions and to derive
best possible regularity in the LP-setting for p in a small neighborhood of p = 2. The
problem reads as

A—Au+Vp =f inG,
divuy =0 inG, (1.1)
uw =0 ondG,
49
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where G represents the wedge domain
G = {(z1,22) eR?: 0 < zp < 1 tanby} (1.2)

with opening angle 0y € (0, ).

There still exits a Lipschitz approach to the existence and analyticity of the Stokes
semigroup on L5 on Lipschitz domains, see e.g. in [12, 13, 8, 14]. Since in the Lipschitz
approach W?2P-regularity is not avalaible, this approach seems to be too general for our
purpose. Whereas one may find for instance in [5, 6] an LP-theory for the nonstationary
Stokes equations in cone domains, similar results on wedge domains are not obviously
available.

The main result of this note, which is formulated in Theorem 8.2, establishes resolvent
estimates on L5 (G) for the solution (u, Vp) € W2P(G,R?) x LP(G,R?) of system (1.1) for
p in a small neighborhood of p = 2.

We outline the strategy of the proof of Theorem 8.2 and the organization of this note.
In Section 2 we fix the notation. For the proof of the main theorem, we initially consider
the stationary Stokes equations

—Au+Vp =f inG,

dive =0 in G, (1.3)
u =0 ondG.
Then using the stream function u = (_aaf;b) and applying curl u = douy — Oyug to (1.3)
1

we get the corresponding bi-Laplacian problem

A%2p =F inG,
D6=0, dsé =0 ondG, } (14)

where F' := curlf = 02 f1 — 01 fo.

Our first results concern the solvability of (1.4) in two weak settings: Ww-Lle (G) for all
p € (1,2)U(2,00) and W\_QW(G) forallp € (1,00)\ N, where N C (1, 00) is a finite set. For
the proof of these two results, we follow the strategy in [4, 7, 9], that is, by employing polar
coordinates and Euler transformation we reduce (1.4) on a wedge domain to a problem on a
layer, see Section 3. Then, to solve the problem on the layer, we use results given in [4]. In
fact, in [4] bi-Laplacian problems on polygonal domains are considered and after localizing
the vertices and transforming them to the layer leads exactly to the transformed problem
of (1.4). Since problem (1.4) on the wedge and its transformed version on the layer are
equivalent, the solvability on the layer implies the well-posedness of (1.4) in Ww-lr (G) for
all p € (1,p) U (2,00) and in W‘Q’p(G) for all p € (1,00) \ N, see Proposition 5.3 and
Proposition 5.7, respectively. As a consequence, we obtain weak and strong well-posedness
of (1.3) in the underlying setting. This is contained in Theorem 5.4 and Theorem 5.8,
respectively. Based on these results we then can prove Theorem 8.2. This will be proved
in three steps: We first consider the weak formulation of the resolvent problem (1.1) which
is given by

Moty 0) + (Ve Vo) = (F,0) iy (0 € WoT).

Making use of functional analytic tools and an extrapolation result due to Sneiberg in
the version of [11, Theorem 2.7], we prove that the corresponding Stokes operator A, is
sectorial in L for p € I, = ((2+ k), 2+ k) and x > 0 sufficiently small. By this approach
we also deduce that the Stokes resolvent is consistent on (W Lp )pel,., see Proposition 6.5
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and Proposition 6.4. Then, in a second step we consider the weak formulation of problem
(1.3) which is

(Vu, Vo) = (f,0) (v e W2, (1.5)

W, W
Thanks to Theorem 5.4 and to the consistency of the Stokes resolvent, in Proposition 7.4
we can prove that the solution operator A;l of (1.5) is consistent on (Wal’p)pe(l’oo). By
regarding u as the unique solution of —Au = f —\u € L} QW; Lp , using consistency of A\p
yields that Ayu = Ayu = f— A ue LENW, ' Since Theorem 5.8 implies the existence

of a unique solution v of —Av = f — Av € L5 and since A, is consistent, we can prove
that w = v. Then Theorem 8.2 follows.

2. NOTATION

Throughout this note we will use standard notation. The norm in a Banach space X
will be denoted by ||-||x. Let Y be another Banach space. By .Z(X,Y’) we denote the class
of all bounded linear operators from X to Y, whereas .Z;5(X,Y") stands for its subclass of
isomorphisms, and we write .Z(X), Z;s(X) in case of X =Y. The (abstract) topological
dual is defined as X' = Z(X,C). Its elements are given by linear continuous functionals

(: X =-C, z—{(x),

and the norm on X’ is given as

Uz
el = sup 142N
0#zeX [l x

For a linear operator A in X we denote its domain by D(A). Its spectrum is given as
o(A) and its resolvent set as p(A). We say that the operator A is sectorial if D(A) =
R(A) = X, (0,00) C p(—A) and the family (A(A+ A)~1))s¢ is uniformly bounded. By ¢4
we denote the corresponding spectral angle.

Let A: D(A) C X — X be a closed, densely defined operator on a Banach space X.

Then we denote by

A:DA)YcX = X'
the usual Banach space dual operator of A and by
A7 X" = D(A)
the dual operator of A, when A is regarded as a bounded operator from D(A) to X.
Let Q C R? be a domain. We set C(Q) := {u € C>®(Q) : supp(u) C Q} and

C2 () = {u € CX(Q,R?) : divu = 0} where supp(u) is the support of u. Let X
be a Banach space and let 1 < p < oco. We denote by LP(£2, X) the X-valued Borel-
Lebesgue space. The space of solenoidal fields in LP(Q) is defined by L5 () := C5(Q)
for 1 < p < oo. Let n € N, we define W"P(Q,R") to be the Sobolev space of order
k € Ng and WP := LP. We denote by W(;C’p(Q, R™) the closure of C2°(€2,R™) in the space

WFP(Q,R™). We will also need the homogeneous Sobolev space
Wk’p(Q,R”) = {u € L,.(QR"): 0% € LP(Q,R"), |a| =k}

for n € N, with seminorm

lullgns = lullgrs@pn = D 10%ullrr@mn):
|a|=k
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By /Wéc’p(Q,]R”) we denote the completion of (C°(2,R™), || - Hﬁk»p(ﬂ Rn))' We set
W2 (Q) = WP (Q,R?) N L (Q) and

Wer(Q) == {v e WhP(Q,R?) : dive = o} .
Note that Wécf(Q) equals the completion of (C25(Q), [ - [lwrr@rny) and that Wéﬂf(Q)

equals the completion of (C22(©2), || - ”Wk,p(gz R”))'

Now, let G C R? be the wedge domain defined as in (1.2) and n € {1,2}. We define the
Kondrat’ev spaces by
LQ(G,R”) = LP(G, pVd(x1,22),R"), p=|(x1,22)], 7 ER,
and
K™ (G,R") := {u € Lj,,(G,R") : pl*l=™% € L?(G,R™), |a| < m},

m

where o € N? denotes a multiindex, v € R. Then KPKY(G’ R™) equipped with the norm

1/p

lull g, = g @y = | 32 160l g

la|<m
is a Banach space, and we set K'(G,R") := K](G,R"). The weighted homogeneous
Sobolev space is defined by
WE(G) = {u € Lho(G) : 0°u € LE(G), lal = k),
with the seminorm
[l g = lulges == 3 107l 2@
|a|=k
where v € R. We define W\f’p(G, R™) to be the completion of (C°(G,R™)

! ’ H'”Wf’f’(G,Rn))
for n € {1, 2}.

3. TRANSFORMATION OF THE PROBLEM

In this chapter we consider

A’p=F in G, } (3.1)

Oz, =0, 05,60 =0 on 0G,
on a two-dimensional wedge domain G and transform it onto a layer domain of the form
Q:=R x I, where I := (0,6p) and 6y denotes the angle of the wedge G. To this end, we
apply a standard procedure as utilized also in [4, 9, 7]: In the first step we introduce polar
coordinates to transform the problem on a semi-layer; by employing Euler transformation
the latter problem is transformed on a layer; finally we rescale the appearing terms such
that we can work in the transformed setting in unweighted W—*P-spaces for k € {1,2}.

We write the inverse of the transform to polar coordinates as
Yp: Ry xI —G, (r,0)— (rcos,rsinf) = (z1,z2).

Then we apply the Euler transformation r = e” in radial direction and write by an abuse
of notation x € R for the new variable. We set

Y Q=R xI, (x,0)— (e,0)=:(r0).
It is not difficult to see that
¢::¢PO¢E: Q-G
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is a diffeomorphism. We set
Vo :=¢oyp and ¥ lp:=poyp L
For o € R we denote the multiplication operator by
Moy == e"p. (3.2)
Analogously to [9] we define pull-back and push-forward as follows:

Definition 3.1. Let 38, € R be given, M, ¥ defined as above. Suppose ¢ is the solution
of (3.1). Then pull-back and its inverse push-forward are defined through

Orp:=M_g¥¢ and ¢=0lp=T '"Mg o, (3.3)

respectively.

Let ¢ be the solution of problem (3.1), 8, € R. Lemma B.4 implies for ¢ = 2 that the
transformed bi-Laplacian reads as
0,(A%¢) = e (rp,-2(0x) + 93) (r3,(0x) + 05) (3.4)
with the polynomial

ra(02) == (0x +a)® (a €R). (3.5)
In order to absorb the factor e=4% in (3.4), we set
g:=O}F := O F (3.6)

with inverse ((:j;)_l = or.

Let 1 < p < 0o. In this note we will first show that problem (3.1) is well-posed in two
weak settings, i.e., we consider (3.1) in /W_l’p(G) and /W_Q’p(G), respectively. Here the
choice of 3, plays an important role. We set

2+
Bp = Pp—k =4— k‘TfY (ke{1,2}, v €R). (3.7)
We notice that by this choice of 3,, pull-back and push-forward depend explicitly on p
and k, i.e., the corresponding families are neither consistent in p nor in k. To 1nd1cate the
dependence of B, on k we put a sub- or superscript on ®p b = @* and 2% := OF and

the same for Gp,k = ; and @Q’ := 0. To work in the unweighted spaces W~ ’p(Q)
and W~2P(Q) we choose k = 1 and k = 2, respectively. Then Lemma B.3 (5) implies for
k =1 that
6; = 81 € Liu(W; 17(G), W19(9),
and for k = 2 that B B -
O) = 0}, € Zi(W,>P(G), W2P(Q)).
Next, we transform the boundary conditions of (3.1) from the wedge onto the layer.
From
0z, =0, 0y,0=0 ondG,
we deduce
Bpp+0rp =0, Opp =0 ond=Rx{0,6p}. (3.8)
Since the general solution of the ODE Byp + 9,0 = 0 is p(z,0) = a(f)e * for all x € R
and 6 € {0,00} with (@) constant in z, it follows for ¢ € LP(9) that «(d) = 0 for
0 € {0,0p} and hence ¢ =0 on 9. Then (3.8) is equivalent to

Opp=0, =0 on 0N =R x{0,600}.

The transformed problem on 2 = R x [ is then given as
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(rg,—2(0z) + 02) (r3,(0:) +93) ¢ =g in Q, (3.9)
g =0, =0 on 0N. :

4. WEAK REGULARITY OF THE TRANSFORMED PROBLEM

Here we consider problem (3.9). Let 1 < p < co. We introduce the operator which is
associated to problem (3.9). We define
—kb—
Ty k= T T 1= (0 ra, (00)) (08 70, (00)
with a_y, := B, _ — 2, b_, := B, _ and with 3, _j be defined as in (3.7) for k € {1, 2}.

Utilizing results derived in [4], we will prove optimal regularity for problem (3.9) in
the two weak settings and for certain ranges of p. This is reduced to invertibility of the
operator

Tp—k: D(Tp_) — W HP(Q) (4.1)
for k € {1,2} with

D(T, 2) :=WZP(Q) and D(T,_1) := W3P(Q) nWSP(Q).

4.1. Weak well-posedness of the transformed problem in W~2P(Q2). Here we show
invertibility of (4.1) for &k = 2. Note that this case is not explicitly included in [4]. However,
it can be reduced to results in [4] and a duality and an interpolation argument. In fact,
utilizing [4, Lemma 7.3.1.3, Theorem 7.3.1.8] we will first show strong optimal regularity
of

t+a_ +b_ .
TP ¢ QTP 290 =g Q’ } (42)

dop =0, p=0 on 9.
. ta_oEb_o ta_omEb_o P . .
To be precise, we prove that T, °T, > : D(T, *T, *)— LP(Q) is isomorphic with
D(TF*=>TE=2) = whr(Q) N WiP(Q)
for all p € (1, 00) such that the condition

the characteristic equation
sinh?(A\0y) = A\ sin?(6p)
has no solution on the line
Im)‘:_(l_(2+7)/p)7 )‘E(Ca 7€R7
is satisfied. Then we show that
—a_2—b_ —a_o2—b_
Ty-2Ty~2 C (T, T, )# € £, (LP(Q), D(T,, " T,"*)').

Finally, we apply an interpolation argument.

We start by applying partial Fourier transform in x to the operator Tf ‘=27 ;E b=2 Which
yields the following representations.

Lemma 4.1. Let a_o = 82 — 2 and by = 3, _2. Then we have
F (12T (r,0) = (64 + 262 + 1) + (2 — 262)05 + 95) §(r, )
F (T;LZ’T;M@) (1.0) = (€2 + 262 +1) + (2 — 2E2)0; + 9y) (. 0)

with €4 == x7+ (=P _2+1) for T € R.
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Proof. Since the following calculation does not depend on 3, _o, i.e. it is fulfilled for all
Bp € R we write in the following 3, instead of 3, _2, a for a_o and b for b_o. It is straight
forward to compute

TyThw = (00 + Bp)* = 4(0: + By)° +4(0 + B,)%)
+ (0 + By = 2)* + (90 + 5,)?) G0 + Oy
Applying partial Fourier transform in z to the first term of the TIELTIZ)7 operator in x and
substituting &4 =7+ (=5, + 1) & it + 5, = €4 + 1 we get
F (0 + 8p)* = 4(00 + Bp)° + 4(0: + Bp)°) ) (7. 0)
= ((27 + Bp)4 — 4T + ,8p)3 +4(iT + Bp)Q) o(T,0)
= (&L +2E2 +1)(r,0).
With the same calculation as above we have for the second term of 17T, If
F (02 + By = 2)° + (9 + £p)?) D5p) (7,06)
= (2(i€4 + 1)® — 4(i€4 + 1) +4) 95 5(7, 0)
= (2 —2E3)0;5(r, 0).
Summarizing the computations, the first assertion follows for 3, := £, —2, a := a_2 and
b:=b_s.
The second assertion follows analogously to the first one. Applying the Fourier trans-
form to

Tp_an_b90 = ((az - Bp)4 —4(0y — 517)3 +4(9; — ﬁp)Q) ®
+ ((893 - Bp + 2)2 + (0 — Bp)2) 86280 + 8390
and substituting & = —7 4+ (-0, + 1) < it — 5, =i€_ — 1 we get the second assertion
for 8, := Bp,—2, a :==a_o and b := b_». O
As a consequence, formally @(7,0) is a solution of
(EL+282+1)+(2-262)05+05) =3 in (0,60),
e =0, =0 on {0,060}
for 7 € R if and only if ¢ solves (4.2). Now, [4, Lemma 7.3.1.1] states that (4.3) is uniquely
solvable if and only if the following condition is satisfied:

(4.3)

the characteristic equation
sinh?(A\p) = A2 sin?(6y)
has no solution on the line
ImA=—-(3—-2+7)/p—k)=—Bp_@k+1), A€C, yeR
In Appendix C this condition is analyzed for the case v = 0, in particular concerning the
values of the involved parameters interesting for the purposes considered in this note.

(4.4)

Remark 4.2. a) Note that the k in [4, Lemma 7.3.1.1], which we will denote by k" in the
following, corresponds to —k here.

b) Also observe that in £ = £7 4 i(—f, 2 + 1) only the sign of the real part changes
and that p only enters the imaginary part. Thus, the assumptions of [4, Lemma 7.3.1.1],
remain fulfilled for £; and £_ with 8, 2 = 2 — HTV and for all p € (1,00) such that
condition (4.4) is satisfied.

¢) In [4, Lemma 7.3.1.3, Theorem 7.3.1.8] the k' defined in ImA = —(k' + 1+ 2/q) =
—(3 —2/p + k') corresponds to the k' of the Sobolev space W**+4P(Q). Since in our
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setting, [4, Lemma 7.3.1.1] remains fulfilled for £, £&_, all p € (1,00) and fp,_2 such that
condition (4.4) is fulfilled, i.e. for k = 2, we can use [4, Lemma 7.3.1.3, Theorem 7.3.1.8]
for 8, o and the space W*+4P(Q) with &’ = 0.

In [4, Chapter 7] bi-Laplacian problems on polygonal domains are considered. Localizing
the vertices and transforming them onto a layer leads exactly to problem (4.3). The

invertibility of 7, pi 2 pi "2 forallp € (1, 00) such that condition (4.4) is satisfied therefore
follows by [4, Lemma 7.3.1.3, Theorem 7.3.1.8]:

Proposition 4.3. Let p € (1,00) and v € R such that condition (4.4) is satisfied. For
a_9 = Pp_2—2,b_9 =) o with By _o2=2— 2% we have
TFe= T € 2, (W (Q) N WP (), 1/(Q) )
Proof. [4, Theorem 7.3.1.8] and Remark 4.2 imply that
T T € i, (WA (Q) N WP (Q), L(Q)
if and only if the characteristic equation sinh?(AMy) = A?sin?(fp) has no solution A € C

with Im A = —(1 — 2+77) This equation is part of the solution formula from the operator

of problem (4.3) which has been constructed in [4, Chapter 7]|. See [4, Lemma 4.2.1.3 and
Theorem 7.3.1.8] for details of its proof. O

Lemma 4.4. Letp € (1,00) andy € R such that condition (4.4) is satisfied and 1 =
Leta_o =By _—2—2,b_o0=p0,_2. Then

Te-2Th= (T, T, *)* € 4 (LP(Q), (WP (@) N ngp’(m)’) .

1,1
p+p/'

Proof. Employing the fact that C°(Q) C WOQ’T(Q) once for r = p and once for r = p/, we
see that

—a-21—b_2 _ a_9 —b_2 _ b_orpa_sg
<u,Tp, T, v>p7p/—<Tp T, v>p7p/—<Tp T02u, v

for all v € W4’p/(Q)ﬂWO2’p/ () and u € WHP(Q)NWP(Q). Since TS‘Q and T > commute
this yields

(T2, 2, 0)

p,p’

p

_ —a_zp—b_ _ Jracaghe
_<u,Tp/ sz, 21}> /—<Tz‘f T, 2u,v>

.y’ PP p,p’
Then Proposition 4.3 gives the assertion. U

Note that D(TS”T},’*) = W*P(Q) ﬂWOZ’p(Q) lies dense in LP(2). Thus (Tp_,a*QTp_,b”)#

represents the unique extension of T}, _QT;;_Q to LP(2). By this fact we write T}, ‘QTZI,L2
a’QTp7b’2)# in the sequel.

also for the operator (Tp,

Theorem 4.5. Let p € (1,00) and v € R such that condition (4.4) is satisfied, a_o =

Bp—o—2 and by = By o with B, 5 =2 — L. Then

T2 = [T € 2 (WoP(9), W29(Q)).
Proof. Proposition D.1 and Corollary D.2 imply that
WeP(Q) = [WH(@) N WEP(Q), L7(Q)]

(ST

W2r(Q) = [L”(Q)a <W4’p/ @n W‘%pl(m)/]

1
2
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Proposition 4.3, Lemma 4.4 and complex interpolation then give
— — 27 T4
Ti=2 o= € % (WP (), W22(9))
for all p € (1,00) such that condition (4.4) is satisfied. O

4.2. Weak well-posedness of the transformed problem in W~1P(Q2). Here we show
invertibility of (4.1) for k = 1. This follows directly from results given in [4].
Theorem 4.6. Let p € (1,00) and v € R such that condition (4.4) is satisfied and
Bp,—1 =3 — 2-5-77' Then

T, 1 €%, <W3’p(Q) NW2P(Q), W*LP(Q)) .

Proof. Still solvability of (4.3) has to be ensured, this time for
Er=17+i(—Bp-1+1), TER.
Again due to [4, Lemma 7.3.1.3, Theorem 7.3.1.8] the assertion is proved. O

5. WELL-POSEDNESS OF THE STATIONARY STOKES EQUATIONS

5.1. Weak optimal regularity of the stationary Stokes equations in W-le (G,R?).
First we consider the equivalence of the problems (3.1) and (3.9). To this end, we define
the bi-Laplacian on wedge domains as

Bpag = A%¢, ¢ € D(By2) :={n¢c K2 L(G): din=0, 8277 =0 on 0G}.

Lemma 5.1. Let 1 <p < o0, fy_2=2— 2+—7 and v € R. Let onr? (:)5’2, 25 (:);72 be
defined as in Section 3. Then we have

6y € Lis (Wy2M(G), W), €}, € Lo (D(By2), D(Ty-2))

where || - |ps,.) = I - k2@ and |- [Ipe, o) = I - [w2e(e)- In particular, ¢ € D(By,2)

is the unique solution of (3.1) to the right-hand side F € WW_Z”(G) if and only if p =
0,00 € D(T), —2) is the unique solution of (3.9) to the right-hand side g = ©} o F'

Proof. The assertion for (9* follows directly from Lemma B.3(5) for £ = 2. Furthermore,
Lemma B.3(1) for k = 2 and [ = 4 in combination with the transformation of the boundary
conditions performed at the end of Section 3 show that

Op2 € L (D(Bpz2), D(Tp,—2))-

Analogously, we obtain

Or? € Z(D(Tp—2), D(By2)).-

Since O} , is the inverse of ©2? the result is proved. O
Remark 5.2. For 3, = 2;7 with v € R condition (4.4) is fulfilled if the characteristic
equation sinh?(A\fy) = A2sin?(fg) has no solution A € C on the line Im\ = —(1 — 2£2),

P
For the case v = 0, i.e. Kondrat’ev weight p? = 1, Corollary C.5 implies that condition

(4.4) is satisfied for all p € (1,2) U (2, 00).

Theorem 4.5, Lemma 5.1 and the last remark imply the following result.

Proposition 5.3. Let 1 <p < oo, p # 2, 6y € (0,7) and p = |(z1,22)|. Then equation
(3.1) is for each F € W=2P(QG) uniquely solvable with a solution ¢ satisfying

P20 € IM(G)  (lal <2).
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As a consequence we obtain weak regularity for the stationary Stokes equation (1.3).

Theorem 5.4. Let 1 < p < oo, p# 2 and Oy € (0,7). Then for each f € /W_l’p(G,RQ)
there exists a unique solution

(u, Vp) € {v e KXG,R?) :divo=0in G, v=0 on dG } x W P(G,R?)
of (1.3).

Proof. For f € W=12(G,R?) we obviously have F = curl f € W=22(G). Let ¢ € D(By2)
be the unique solution of (3.1) to the right-hand side F' given by Proposition 5.3. Setting

u= (_82¢>, we obtain divu =0 in G, ©u = 0 on 0G and
1

plo=19%u € IP(G,R?) (Ja| < 1).
Next, we observe that
curl (~Au — f) = A% — F =0
in the sense of distributions. The Poincaré lemma, see e.g. [2, Theorem VIII.3.8], yields

that for ¢ € C° (G, R?) we find an 1 € C°(G) such that curl’n = <68§777> = 1). This
’ !

yields
(=Au—f,Y)gr o= (curl (=Au—f), 0)gn =0 (Y€ Co(G,R?)).
From the theorem of de Rham (see e.g. [3, Lemma III.1.1]) we obtain a p € 2'(G) such
that
~Au—f=Vp in 2'(G,R?).

Since the left-hand side belongs to WLp (G,R?) so does the right-hand side. Hence, we
proved existence of a solution as claimed.

It remains to prove its uniqueness. So, we assume that (u, Vp) in the given regularity
classes solves (1.3). Let (hg)ren be a mollifier and set

wp = hy, xu € C(G,R?) N WH(G,R?).

Then we have divug = 0 and up, — v in /Wl’p(G, R?). Hence, by the Poincaré lemma, there

is a ¢ € C°(G) such that u, = (Bazjsk) Since uy converges in Wl’p(G,Rz) we see
1Pk
that ¢y, converges in W2P(G). Thus, there is a limit ¢ € W2P(G) such that u = <_662¢¢>
1

Since u vanishes on the boundary, we also have V¢ = 0 on 0G. So, applying curl to
(1.3) we see that ¢ solves (3.1) with homogeneous right-hand side. Since such a solution
is unique by Proposition 5.3, we conclude ¢ = 0. This implies © = 0 and then by equation
(1.3) also Vp = 0. Hence, the theorem is proved. O

5.2. Strong optimal regularity of the stationary Stokes equations in LP(G,R?).
At first we consider equivalences of the problems (3.1) and (3.9) in W=, We define
Bp1¢ = A% on the wedge domain as

Bpi¢ =A%, ¢ € D(Bp1) :={ne€ K. (G): dn=0, dan=0on dG}.

Lemma 5.5. Let 1 <p < o0, fBp—1 =3 — QJFTV and v € R. Let er!, er, Pl @);’1 be

defined as in Section 3. Then we have

6;.1 € Zis (WIH7(G). WTIP(Q)) 651 € Zis (D(By), D(Ty, 1))
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where || - [[ps, ) = I - HK{;W(G) and || - | per, ) = || - llwsr@)-

In particular, ¢ € D(Byp1) is the unique solution of (3.1) to the right-hand side F €
W{l’p(G) if and only if ¢ = ©;,¢ € D(Tp 1) is the unique solution of (3.9) to the
right-hand side g = é;’lF

Proof. The fact that @;1 and ©) ; are isomorphisms as claimed follows directly from
Lemma B.3(1) and (5) with £ =1 and [ = 4. The remaining assertions follow by the same
arguments as in the proof of Lemma 5.1. U
Remark 5.6. For 3, =3 — 2;7 with v € R condition (4.4) is fulfilled if the characteristic

equation sinh?(Ady) = A?sin?(fy) has no solution A € C on the line Im\ = —(2 — 2;7)
For the case v = 0, i.e. Kondrat’ev weight p7 = 1, Corollary C.3 implies that there is a
finite set N C (1, oo) such that condition (4.4) is satlsﬁed for all p € (1,00) \ N.

Theorem 4.6, Lemma 5.5 and the last remark imply the following result

Proposition 5.7. Let 6y € (0,7) and p = |(x1,22)|. There is a finite set N C (1,00)
such that for every p € (1,00) \ N we have the following: Equation (3.1) is for each
f € W=LP(G) uniquely solvable with a solution ¢ satisfying

pP=30%0 e LP(G)  (|o < 3).

Now, we can show strong optimal regularity of the stationary Stokes equations (1.3) for
the same range of p.

Theorem 5.8. Let 60y € (0,7). There is a finite set N C (1,00) such that for every
p € (1,00) \ N we have the following: For each f € LP(G,R?) there exists a unique
solution

(u,Vp) € {v e KE(G,RZ) tdivo=01inG, v=0 on0G } x LP(G,R?)
of (1.3).

Proof. The proof goes along the lines of the proof of Theorem 5.4. O

6. SECTORIALITY IN A NEIGHBORHOOD OF p = 2

Here we consider the Stokes resolvent problem

A—Au+Vp =f inG,
divuy =0 inG, (6.1)
u =0 on0G.

In the sequel we always consider 1 < p < co. Its weak formulation reads

Aw,0) + (Vi Vo) = (£, 0}y s (0 € W2,

Since in this section the domain is always a wedge G, we drop it in the notation of the
space, i.e., we write LP, WkP_ etc.

To recover the pressure once a solution of the weak formulation is given, the following
lemma will be helpful.

Lemma 6.1. We have (Hj )" = VL.
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Proof. We prove H(%’U = (VL?)*. Then the assertion follows by reflexivity. It is obvious
that Hj , C (VL?)*+. Conversely, for w € Hj such that

(w,Vp) =0 (peL?),
we obtain w € L2. The fact that H&,o‘ = H} N L% implies the result. g

In the lemma below, we will consider (6.1) also with inhomogeneous divergence condition
divu = g. To this end, we define the Banach space

R, = div (Wy™), |lgllr, == inf{||wHW01,p; g = divw}.

Furthermore, we will utilize the following observation: since the embedding operator J =
Jpr VVO1 S T/VO1 7" is bounded, injective, and has closed range, its dual operator

J =0 WP WP (6.2)

is bounded and surjective, where W, 7 := (Woljf/)’ . It is also clear that (Jp)1<p<oo and
(J))1<p<oo are consistent scales.

Lemma 6.2. Let ¢ € (0,7). Let A € X,_y. There is a k = k(\) > 0 such that for
pel, = (2+k).2+k) (6.1) is well-posed. Indeed, for every f € Wy P there is a
unique solution (u,p) € W&f x LP to (6.1). Furthermore, if S, : f — (u,p) denotes
the solution operator to (6.1), then (Sp)per, is consistent on (W~=1P),cr. and uniformly
bounded w.r.t. p € I,.

Proof. Our aim is to apply the Sneiberg type extrapolation result in the form given in [11,
Theorem 2.7]. First, pick r € (4,00) and set

1 1 1
Fy = [RT’aRr]s7 ;9:(1_8);_'_5;’ s € [0,1].
By the reiteration theorem for the complex interpolation functor, see e.g. [15, Re-
mark 1.9.3/1], (Fp)pe( ) 18 @ complex interpolation scale. Thus, (VVO1 Pox L)

and (W‘l’p X Fp)

pe(r',r)
are complex interpolation scales, too. It is also obvious, that

(A—A)u+vp)

divu

pe(r’,r)
Ly, : Wol’p x LP — WP x F,, Ly(u,p):= <

is bounded.

Next, we show that for A € ,_, the map L5 is isomorphic. For (f,g) € H™! x F; first
choose w € H} such that divw = g. Note that

Jh=J(f-(A\=Aw) e H;" = (Hg,).
By standard Hilbert space arguments we hence obtain a unique v € H&U such that
Av ) + (V0 Vo) = (Th) ot s = (b J@) 1y (9 € Hyp)-
This implies
(A= Ao~ b, Jg) oy =0 (i € HL).
Thanks to Lemma, 6.1 there is a p € L? such that
A=A)Jv—h=-Vp in H '

Thus, setting u := Jv + w, we conclude Lo(u,p) = (f,g). It is obvious that Lo(u,p) =0
implies (u,p) = (0,0). Consequently,

Ly € L (Hy x L?, H' x I).
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Due to [11, Theorem 2.7] there is a k(\) > 0 such that
L, €L (Wg’p P, WLP x Fp) (pel.

Note that consistency and uniform boundedness w.r.t. p € I of (£, Yper, on (WP x
Fp)p ¢, also follow from the results in [11]. Thus, (Sp)per, is consistent and uniformly
bounded, too, as claimed. O

From Lemma 6.2 we have

Corollary 6.3. Let ip € (0,7). Then there is a k = k(¢) > 0 such that for p € I, =
(2+ k), (24 k) and all X € S,_y with |A\| = 1 (6.1) is well-posed. Indeed, for every
f e Wi and every A € Yoy with |A| = 1 there is a unique solution (u,p) € Wol”f x LP to
(6.1). Furthermore, if Sy : f +— (u,p) denotes the solution operator to (6.1), then (Sp)per.
is consistent on (W~1P),cp .

Proof. Let ¢/ := /2. For A € ¥_y choose k(A) > 0 according to Lemma 6.2. Let A,
be the operator defined by the left-hand side of (6.1) in W, '? with domain D(A,) =
Wol”(f x W, 'P. Then we have that A € p(—A,) for all p € Iz Since p(—A,) is open
and since (A + A,)~" is uniformly bounded w.r.t. p € I,;(y), there exists an £(A) > 0 such
that B.(»)(A) C p(—A4,) for all p € Iy). The set M :={X € Xr_y : [\ =1} C Eryy
is compact with M C (¢ o B.(»)(A). Now choose A1, ..., Ay € Xy such that M C
Ukt Bepag)(Ak)- We set T := (VL) Io(M) = I with & = min{s(A\x)} > 0 independent of
A€ M. Then X € p(—A,) for all A € M and all p € I,. O

We define the Stokes operator in Wy " = (Wol’p/)’ by

Nea

Ay D_y(Ap) =Wl = WP ues Ayu = (Vu, Vo).

g
From Corollary 6.3 we derive

Corollary 6.4. Let ¢ € (0,7) and p € I.. Then Ky :={\ € X,_y: [N =1} C p(—A,)

and for every A € Ky, the scale (A + Ap)_l)p is consistent on (W;Lp)pejﬂ.

el

Proof. Note that by Corollary 6.3 we can choose a uniform x > 0 for all A € K. For
f e Wy, by surjectivity of J' we find a h € W~ such that f = J'h. Setting
(u,p) == Sph € W(]l’f x LP, from this we infer

A(”? ()0) + (V’U,, VSD) - <h‘7 J@>w—1,p7W017PI - <th7 90>W(;1;P7W01:5/
= (£ ooy (P EWRD).

This shows that the Stokes resolvent (A + A,)~! € L (W, Py in - € Ky exists. In
particular, we have

AN+ A) T h =M+ A) 1 f =u=(S,h).

By the properties of J and J’ it is clear that for f € WeP MW, " we find h e WP
W=L" such that f = J'h. Thus, the consistency of the Stokes resolvent follows from the
consistency of (Sp)per, given by Corollary 6.3. O
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For fixed A\g € p(—A,) we set
D(Ap) == (ho + Ap)_l(L‘g)-
The restriction of A, on D_;(A,) to D(A,) we again denote by A,. For later purposes
also note that
Tl

Wor <& Wol = W, = (Wl < W, (6.3)

Furthermore, we define the Stokes operator on homoge;leous spaces as
Ap i Wo2 5 WP, wes Ayu = (Vu, Vo). (6.4)
Then obviously Ep eZ (/W&’f, W, te ) and for u € W(]l’f we obtain
(A, O a0 = (V6 V0) = (s @)y yrr (9 €WRE),
hence A, C le\p. Corollary 6.4 and a scaling argument result in
Proposition 6.5. The Stokes operator A, : D(A,) — L% is sectorial on LY with spectral

angle ¢4, =0 for p € I;. In addition, we have

1 . 1 A
S (MO A gy + 1O+ 4 ) < o0

for € (0,m).
Proof. Thanks to Corollary 6.3 Ky lies in the resolvent set of —A, in W, 7 and we obtain
1O+ 4p) 7l < N+ 4) ™ fllyas < CONIS o
SOl (Fe Ly Ae Ky).
Thus, the resolvent of A, on L5 in A € Ky, exists. The fact that
Ky Cp(=A4p) 2 A A+ 4,)" 1 e L(L2)
is a holomorphic map yields

Csup A+ Ap) g rny < oo
AET I A=1

Utilizing the fact that a wedge is scaling invariant, a scaling argument gives the claimed
sectoriality on L% .

Taking into account (6.3) and the outcome of the lines after this fact, for A € ¥,_ we
further calculate

[ 4p(A + Ap) ™ fllgrr < 1O+ Ap) ™ Fll
<O+ 4
< OO fllyy1s
< O fllgg-r  (f € LE).
Since Xpy 2 A = (A + A4,)7 ! € X(Wg_l’p) still is holomorphic and by the fact that

/V[Z; T homogeneous the same scaling argument as for L yields the second assertion.
The consistency of the family ((A+A,)™1)per, for A € Ky given by Corollary 6.4 obviously
implies its consistency for every A\ € X, _. O
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7. STATIONARY CONSISTENCY

Consider the stationary Stokes equations (1.3) on the wedge G. Its weak formulation
reads

(Vi Vo) = {F, )1 g (v e W2, (7.1)

Note that this can be expressed in terms of the Stokes operator on homogeneous spaces
Ay Wolv’f — Wy P u s f as defined in (6.4). From Theorem 5.4 we deduce

Proposition 7.1. For p € (1,00) we have

A, e 2, (Woh, W),

Proof The case p = 2 follows from standard Hilbert space arguments. For p # 2 we set
Fp = VVO PN K}. In accordance with (6.2) note that the dual operator

J =T W Wk

of the embeddlng operator J = J Wo N W 17" is hounded and surjective. Now, pick

fe W P and choose h € WL such that f=J J'h. From Theorem 5.4 we obtain unique
(u,Vp) € F, x W-bp satisfying (1.3) with right-hand side J’h, hence

(Vu, Vo) = (h, Jv)—~ r = (J'h, v)

Wlpwlp lpwlp

<f7 > —1PW1P (UEWO,’U)'

So, we have proved
Ay e 2, (B, W),
Dualizing this implies
(Ay) € Zis (Wok Fy) -
It is not difficult to see that K C (11 /)’. On the other hand, we also have
Ay ez (Wor, Wy'e).
The fact that F SN /W(i’f/, hence Wg_ Lp 4, FI’,,, then implies that F), = /W&f with
equivalent norms. Thus, the assertion follows also for p # 2. ]

Remark 7.2. The fact that the norms of F}, and Wo P are equivalent also follows as a
consequence of the Hardy inequality, which is apphcable for p # 2.

Lemma 7.3. Let ¢ € (0,7) and p € I, with I, from Corollary 6.3. Then
. -1 _ 1T-1 1,p 1,p
klggo(l/k + A4,) A0 e & ( W >

Proof. Pick f € /V[Z? L2 Thanks to Propositions 6.5 and 7.1 for £ € N by the resolvent
identity we obtain

11/ +0) + )7 = (17 + Ap) ™ s

< CI(1/ 0+ €)= 1/R) (15 + Ap) LAy (1 + 0) + Ap) ™ flgrs
< O/ (/e + 0) = 1) Ap(1/(k +€) + Ap) " fllgr,s

< C!\(k/(k +/0)— 1)f||wc_1,p =0 (k— o00).
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Thus (1/k+ A,)"'f = v in /W(if. The fact that A\p € X(W&f, /ng’p) yields
Ay = lim Ay(1/k+ Ay)~'f = lim A,(1/k+ A)~'f = f,
k—o0 k—o00
henceU:A\Ijlf. O
We come to the main result of this section.
Proposition 7.4. The scale (ﬁ;l)pe(lm) of the operators gljl Wy P /Wol’f is con-
sistent on (W;l’p)pe(lm).

Proof. Thanks to Proposition 7.1 21\;1 exists for every p € (1,00). Let By : D(Bp2) —

W27 be the operator corresponding to the bi-harmonic equation as defined in the begin-
ning of Section 5.1 for v = 0. According to Proposition 5.3 we have

By € Zis(D(Byz), W2P).
The proof of Theorem 5.4 shows that

~ —0 .
_ a-lp 2 1
u=A"f= < o, > B, ,curl f (7.2)
for f € W-LP. We will show that
(Bp_é)pe] is consistent on (AW_2’p)pej (7.3)

for I = (1,2) and for I = (2,00).
Given (7.3), by (7.2) (A\;l)pg is consistent on (Wa_l’p)pel for I = (1,2) and for I =
(2,00) as well. Then consistency on (1, 00) for the scale of operators //l\; LW, Wol”f

results from the following argument: Let p,r € I, and f € /V[Z? LP /I/IZ; L7 Thanks to
Corollary 6.4 we have

(1k+ Ap)7f = (b + A7 (ke ).
Letting k — oo, Lemma 7.3 yields Eglf = K,Tlf. By the fact that (1,2) NI, # 0 and
(2,00) N I, # 0 the assertion follows.
Hence, it remains to prove (7.3). This is very similar to the proof of [7, Lemma 4, Propo-
sition 2]. Indeed, it is even easier, since we can work with compactly supported functions all
along. For the readers convenience we sketch the proof: Let T), _o : W02 P(Q) — W=2P(Q)

denote the operator corresponding to the transformed problem (3.9) as defined in the
beginning of Section 4. Thanks to Theorem 4.5 we have

Tz € iy (W3P(Q),W2r(Q)).

Further, let @5,@; and (:jff,@);; be the push-forwards and pull-backs as introduced in
Section 3. Then we have B
B,y =021 1,05, (7.4)
Note that the single operators on the right-hand side by definition cannot be consistent,
just their combination.
Now, let I = (1,2) or I = (2,00) pick p,r € I and set 8, = 2 — 2/p. It is straight
forward to show that

eBr=Bor, o= Br=BTy =Ty (ve CX(Q)).
Suitable manipulations (similar to the ones given in the proof of [7, Lemma 4]) lead to

Tl;iQe‘(ﬁr—ﬁp)mg — e‘(ﬁr—ﬁp)xTTT_IQ g (g€C(Q)).
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Then, based on representation (7.4) very similar to the proof of [7, Proposition 2] it follows
Boyf =By f (feWPnW—2")
Hence, we arrive at (7.3) and the proof is complete. O

Remark 7.5. Note that (7.3) can not be expected on I = (1,00),
neither for (A, 1)p€(17oo) regarded as scale of operators from W, L o
{v € K;(G,RQ) :dive=0in G, v=0o0n 0G }, see also Remark 7.2.

8. STRONG SECTORIALITY IN A NEIGHBORHOOD OF p=2

Now, we are in position to prove higher regularity for p close to 2. We start with a
lemma on weak-strong consistency.

Lemma 8.1. Assume that 1 < p < 0 such that (1.3) is uniquely solvable in the weak and
the strong setting and let f € Lb N W L, If
(1) v e {w € Kg  divw =0, w =0 on 8G} 1s the velocity of the unique solution of
(1.3) to the right-hand side f € L5 and
(2) ue /W()l”f is the unique solution of (7.1), i.e. the weak form of (1.3), to the right-
hand side f € W;l’p,

then w=vv (in L}, ).

Proof. This follows along the lines of the proof of Theorem 7.4. In fact, the two a priori
different solutions are represented by

u = <_8?2> Bp_é curl f,

v = <_8?2> Bp_j curl f.

The two operators related to the bi-harmonic equation, in turn, are given as

»,k p—1 *
p,k - @ T —k @IL

for k = 1,2. Note that the push-forwards and pull—backs depend on 3, = 3, _, hence in
particular on k, see Definition 3.1 and what follows. To indicate this dependence, here we
also put a sub- or superscript k.

By interchanging the roles of p and k from this point on we can follow the last lines of
the proof of Theorem 7.4, in order to obtain in a similar way that

B,yf =B,if (feW 'PnWw=2)
in the Llloc—sense. The above representations for v and v then give the result. O

As before, if A, is the Stokes operator associated to (6.1), then u = (A + A4,) ' f gives
the velocity to (6.1).

Theorem 8.2. Let ¢ € (0,m). There is a £ > 0 such that for p € I, = ((2+ K),2 + k)
the following holds: For f € L5 let u = (A + Ap)~'f € D(A,). Then we have u € W?P
and

[ Aull, + HVZqu +IVpll, <CIfll, (feLb, N€Xry).

Furthermore, the scale (A4 Ap)~1) is consistent on (L%)per, -

pel,
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Proof. According to Theorem 5.8 the set N of possibly singular p € (1,00) concerning
strong solvability of (1.3) is discrete in (1,00). It might happen that 2 € N or 2 ¢ N.
Either way there is a k > 0 such that for I, as defined we have N N (I, \ {2}) = 0. We
also may assume that the s chosen here is smaller as or equal to the s in Proposition 6.5.

We fix p € I;, p # 2, and pick f € Cg. As a consequence of Corollary 6.4 (or
Proposition 6.5) we have
W= Ok Ay WA,
Since Wol,f — /W?Ol’f, this yields
ﬁpu:Apu:f—)\u::gELﬁﬂW;Lp.

Due to Theorem 5.8 there exists a unique solution

UE{wEKg: divsz,w:()onaG} c WP
of (1.3) with right-hand side g € L. Lemma 8.1 implies u = v and we deduce

I2ully < Cllgly < € (11l + IAuly) < ClIf I

with C' > 0 independent of f and A and where we applied Proposition 6.5 for the last
estimate. A density argument yields

IXullp + 1V2ull, < Cllflly  (f € L, A€ Srey).

The estimate for the pressure gradient then follows from equations (6.1) and the assertion
is proved for p # 2.

By standard arguments it can now be proved that A}, = A for p € I\ {2}. Completely
analogously to (7, Proposition 3] it also follows that (A4A,) ™" and (A4A7)~! are consistent
on IEN LY for A € Yr_y. Combining these two facts, we see that (A + 4,)~ ")

per\ 2} 1S
consistent on (L) ,¢ I.\{2}- But then the case p = 2 follows by interpolation. g

APPENDIX A. ELEMENTS FROM FUNCTIONAL ANALYSIS
In the following let G C R? be the wedge defined as in (1.2). The next lemma is already

known by [3, Remark I1.6.3]. Here, we give a more detailed version of its proof.

Lemma A.1. Let 1 < p < oo. Let 1 := R x (0,6p) be a layer domain, and Qg =
G N (Ba(0)\ B(0)) with 0 < r < co. Moreover, let k € N. Then Wg’p(Qi) and Wg’p(Qi)
are isomorphic for i € {1,2}.

Proof. Let i € {1,2}. Since ¢ € C°(€;) <, Wéf’p(ﬂi), the Poincaré inequality implies that
Pl o) < ClIVOl e,y (¢ € CZ(8)),
for a constant C' > 0. We again have by the Poincaré inequality that
HV(b”Lp(QZ) < CHV2¢)HLP(91) (vd) € CSO(Q’L))a
and hence

6]l r ) < Call V2@l Lr(n)s
with Cy = C? > 0. Induction implies for all & € N the estimate

16/l zr00) < Cull VF0ll o) = Crlloll5gkn 0y (A1)
Now let u € WrP(€) and let (¢)ieny C C2°(€;) such that ¢; — u in WrFP(;) as
[ — oo. This and (A.1) imply that
||¢l - @bmHLP(Qi) < Ck||¢l - @bmHWk,p(Qz) — 0.

l,m—00
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Hence (¢7)1en C LP(§2;) is a Cauchy sequence, thus ¢; — v in LP(€);) as | — oo for some
v E LP(QZ)

It remains to show that v = v € LP(€;). From [3, Lemma II.6.1] it follows that

WhP(Q;) < LP (), and since WP (Q;) < WEP(Q,), it follows that ¢; — u in LF (€;)

loc

as | — co. On the other hand since LP(Q) — L} (Q;) we also have that ¢; — v in L} (£2;)
as | — oo. Hence, u = v € LP(;) since L} (£;) is a Hausdorff space.

Let u € WEP(Q;). Then (A.1) implies
lull 2oy = lim (@il e, < tim Crlldullgnnq,) = Crlluligrsq,):

and hence
—r.
HUHW’W(QZ-) < C”U”ﬁ/\k,p(gi) (ue W P(%)).

Now let u € Wéf P(€;). Then it follows directly that
[ullen o, < Cllullwes @)
for a constant C' > 0. 0

Lemma A.2. Let 1 <p<oo withl=1/p+1/p/, v € R, k € N and p = |(x1,22)|. Then
for any p € (1,00), functionals of the form

Flu) = (f,u), fe€CX(G), ueWyP(G) (A.2)

are dense in (Wéﬁf(G))’.

Proof. Let f € C2°(G) with supp(f) CC G, such that supp(f) C G N (B (0) \ B-(0)) =:
G, for r > 0. Then we have that r < p < 2r in G, and it follows that

Wk (G ZWeP(Gy).
Lemma A.1 implies that
Wy (G )Wy ().
and since WE?(G,) < LP(G,), we have
We(Gr) — LP(Gy). (A.3)
Now consider
Flu) = (fu), feCX(G), ue W (G). (A.4)

Applying the Holder inequality and (A.3) in (A.4) we get

(F u)el = \ [ s

< C||f”Lp’(G)”“H’vV§f(G)

< HfHLp/(GT)HUHLP(GT) < CHfHLp/(GT)HuHWé“f(Gr)

for u € /W(;C f(G) and some constant C' > 0. Hence, we can characterize the normed dual
o~ /
space (ng(G)) by

sup |(fyu)g| < 0.

Fll fa onr =
itz wEWG (), | 1

[ull =kp oy =
WU,,g(G)

—~ /
The proof that the functionals F of the form (A.2) are dense in (Wég f/’(G)) is analogous
to the proof of [3, Lemma I1.8.1]. O
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APPENDIX B. TRANSFORMATIONS FROM THE WEDGE ONTO THE LAYER DOMAIN

In this section we give a detailed calculation about the transformed functions between
the wedge and layer domain and the relation about the transformed W(;C P Wf P_spaces on
the layer and wedge domain for all k¥ € Ng. Let in the following G' C R? be the wedge
domain defined as in (1.2) with opening angle 6y, 2 := R x (0,60y) be the layer domain.
Moreover, let ¢ := 1p o g :  — G with ¥ := Ui with inverse ¥ ! and let ©F : G — Q
with u := ©Lv with inverse U, O}, be defined as in Section 3. The corresponding pull-back
and push-forward operators on W ~*P-spaces are depending on k and p, hence, weighted
functions appear in the transformed setting. Choosing the right transformation, roughly
speaking the right k and p included in the pull-back and push-forward respectively, we
can then work in unweighted W ~—*P-spaces on the layer for k € Ny. Now, set

gi=6,f = O f = elTHrw
f= (:)ﬁ’g = QPe vy = gty (B.1)

with [ € N and 8, € R. Next, we give the detailed proof about the calculation of the
transformed functions between the domains.

Lemma B.1. Let [ € N and 3, € R. Then we have

_ o (Pb0(02,09)\ - _ -
(1) ¥(Va)=e <h§:228$,82;> 0 for i = W1p,

. o [ Ph,0(9z, D)
(2) ©,(Vu) =e <h§::0(&m ) v for u= 6%,

~ hl (03, 0p) ~
* _ -z Bp—1,0\7T> ey
(3) Gp(vf) =€ (h%fp—l,O(aiF?a@) g fO?" f - @*ga

with

hy (0, 09) :=cos B (r+j + 0;) — sinf 9

1y (O, 0p) := sinf (r + j + 9) — cos 0 Jg (B.2)
forr,j €R.

Proof. (1) The gradient UV is given as
UVi = UV (I 15) =e® <C°S‘9 0y — sin0 a") 7.

sinf 9, — cosf 9y
(2) Employing u = ©%v, (1) yields that

Vu = V(6%) = V(T Mg v) = U Lelfr= b2 (Cose (B +0;) —sinb a") v,

sin@ (B, + 0z) — cos B Oy
and hence

0,(Vu) = M_5,¥Vu =e* (COSQ (Bp + 0z) —sind 39) ..

sin@ (By + 0,) — cosf Oy

(3) In the same way we compute for f = é;g that

Vf = V(@hg) = V(U Mg, g) = b elom(t+D)e <9 (Bp — 1+ 0z) —sinf 59)
* D bl

sind (B — 4 0y) — cosB Oy
hence

OL(Vf) = My_p, UV f = e (C059 (Bp =1+ 0y) —sin 6 ag> .

sin€ (Bp — 1+ 0,) — cosB Oy
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O

Lemma B.2. Let k € Ny, B, € R and p := |(z1,22)]. Let a = (a1,a2) € N3 and
m = (my,ms) € N> with m < a. Let h', (81,89) forie {1,2}, r,j € R be defined as in
(B.2). Then we have

(1) @*(Daf) = e~ lalz | e h1 |a‘+n(8x,3g) I, h%l —anin(Oz,09)g with ry := By~
and for f = @*g,

(2) ©5(D%) =e ~lode 101, hzla’p 7\a|+n(6$7 o) T2 h%p —apin (O Op)v for u = O%v,

(3) W(D@) = e T bl o140 (D 06) TInZy B — i (D 0 for @ = W1G,

(4) ‘I’(Do‘(pzkf)) = nga <<m> eBp—0z o—lalz o2kz Hm1 hm 7‘a|+2k+n(8x’69).
Hnm:21 h$17—|a—m|—m2+2k+n(alv 80) Hal " h}j —|a m|+n(8I) 89) :
| i hfl’f(aTmQHn(ax,@g)g) with r1 == B, — 1 and for f = Og

Proof. (1) We calculate D®f for any multiindex o € N2 satisfying |a| < k.

First we compute Dzjf for a fixed j € Ny and ¢ € {1,2}. If j = 0 then it follows by the
definition of the push-forward that f = W~ 1e(% =07y Now let j € N\{0}. We will use in
the following the relation

BE (O, 09)e™G = €N (00, 00)F  (rs €R, §i=Uf, i€ {1,2}).  (B3)

Now define
i,j = ; ? ) )
9ij p 9 i ( { )

then using Lemma B.1 (3) j-times for each first partial derivative yields
0 8j -1 0 ~
Dif = —f = = Bl

T

— U 6( P*(lJrl))xh%p_Lo(ax;89)gi,j_1
= Ut DRL (D, Dg)e bl 1 o(O, Dp)gi g

- \Ijile(ﬁpil)z eimh%p—l,o(axv 89) e iﬁp—l,o(aarv 80) g

le*’v’hiﬁpilﬁo(am,ag)

(B.3) — —Dx _—jx1 i

= U hre Il (00, D) - By iy (0, Do)g
J

=0 lePe eI TT b 10 (9., 09)g (i € {1,2}). (B.4)
n=1

Induction implies (B.4) for arbitrary j € Np.

Now let o € N2 satisfying |a| < k with o = (a1, 2). Then the last calculation yields
that

a
Df = DM DS2 f = G Lelfolag-arx H h;p_l,_aﬁn(am, 9) 92,005

n=1

aq a2
= \I]_le(ﬁp_l)xe_alm H hé’p—l,—oa-i-n(ax? 89) e " H h2p—l,—a2+n(aﬂca 89)9

n=1 n=1
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ai
— gl —(antaz)z H h%ap_z,_(al+a2)+n(8x7a9)'

n=1

a2
1173, -1 a0 sn(0z, 06)g.

n=1

(2) and (3) follow analogously to (1). We compute (4) by using the Leibniz rule for
partial derivatives. Here by p2* = U—1e2k f — @Lg and by (1), (3) and (B.3) we have

Da(kaf) _ Z <§‘L> DmIOZkDoz—mf

m<a
mi mo
@ —le=lmlz 1 2 2kx
— Z <m> \II (& I I H h07_|m|+n(al-,89) H h07_m2+n(az789)€ .
m<a« n=1 n=1
ap—mi Qas—msa
—)x e~ la—m|z
elrDrelammle TT gl (D2, 0p) H 12, (s —ma) i (O Do)
n=1
-1 @ —lalx ka —zx
= Z <m) |l (Bp H hm ol +2kn(On, Op)-
m<a
a1—m1
1
Hhrl’fla m|— m2+2k+”(8$’89) H hT‘1ﬁ|0¢fm|+n(a$>a9)'
n=1
ag—ms
2
H hr1,—(a2—m2)+n(8xvat9)ga
n=1
with r := 3, — L. 0

For the next lemma we recall that K;;Yk(G) is equipped with the norm
1/p

lull vy = | 3 o™= CPorul, (B.5)
la|<l—Fk

with LE(G) = LP(G, pVd(z1,x2)), p := |(x1,22)| and v € R.

Lemma B.3. Let 1 < p < oo and1:%+1%. Let v e R, l € N, k € Ny such thatl > k,
Bpi=1—k— 2% and p = |(x1,22)|. Then

(1) &7 € Z, (Whr(Q), K H(G)),

(2) PO € 2 (W™ (), W 2(C)),

(3) p2ery = é;; and ((:j* —2ky — QF,

(4)

(5)

N—
I

(
1) O} € L (W;’“’P(G) Wkp(Q

)
5) ©5 € L (W;’W(G),W r()).

vv

Proof. (1) Let o = (a1, a2) € N2, Let v € W!=%P(Q). Then Lemma B.2 (2) implies that

Z Hp‘al_(l_k)Da@]:vHig(G)

la|<l—k
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-2

la|<i—k

H h2p —a2+n(8xa 86) (CC, 9)

(\og| (1— k)r (I—k— 2+’Y )z _|a|$Hh6 —|al+n agma@)'

p

PIRRIL L

<C Y 11 1aim@) < Clol-rq)- (B.6)
la|<i—k

Since ©F is linear (B.6) also implies that
. -k, l—k
Or : WHP(Q) — K. (G)
is continuous. The open mapping principle implies then that its inverse Oy : K%)k(G) —
W!=FP(Q) is continuous, too.

(2) Let a = (a1,0) € N2, Let g € Wg’p(ﬁ), then Lemma B.2 (4) and Lemma A.1
imply

1P Q%G gy = D 1D (0 OLg) 7,
|o|=k
ma
Z / ( ) Pl lolretts H th Ji+n 81789) H h’72“1,j2+n(8$’89).
|| =k m<a = n=1
a1—my ag—ma P
H hn e m|+n(3x739) H hfh_(w_m)m(&;,69)g(x,0) 2N J1d0
n=1
T ((I—k— 2+7 lm —kz T
<C Z / * * Z H hh Ji+n 8%89) H h72“1,j2+n(8$’89>
lal=k m<an=1 n=1
a1—my ag—ma P
H hn e m|+n(3x739) H hfh_(w_m)%(&;,69)g(x,0) N J1d0
n=1

< cuguwm) < ClglE

with j; := —|a| + 2k and j2 := —|a — m| — ma + 2k.
Since pzkéf is linear, the last estimates yield that

PROr Wy (Q) — WiP(G)

—2k

is continuous. The open mapping principle implies that its inverse (:j;;p is also

continuous from Wéf(G) to WEP(Q).

(3) We recall that by (B.1) we have Oy = U 'Mp,_qu. Lemma A.2 implies that
Cx(G) = (W§$(G))’ Hence, for a ¢ € C°(G) and by

2+7

By =1~ —Bp+2(l—k—1)—~

we compute

(p%@i"y, w) o= /G P o(y) (Mg, 1 9) (@~ (y))p" dy
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= / erxgo(w(:):,@))(Mgp,,l 9)(x,0) 2 dxdl
Q

= / o(¥(x, 0))e?k et 20=k=1)==Dz g (1. )22 g1 qp
Q

_ /Q (Mi_p, Ue)(z, 0)g(x, 0)ddo
= (0 8¢), (9 TE?0), 0 € C2(O),

and hence (p%@)i’/)’ = @);
The next relation follows since
(O p2) = ((p**02) 1) = (L))t = (6;) 7t = oL
(4) is a consequence from relations (2) and (3).

/ / —~1. / —~
(5) We have that (W@P (Q)) — WkP(Q) and (Wgﬁp (Q)) = WEP(Q). Lemma A.1

implies for 2 =R x (0,6p) that Wo k! ( ) and Wo 57 (Q)) are isomorphic. This yields that
SP(Q) =W R (Q),
and the assumption follows by relation (4). O

In the following we give the transformation of an elliptic operator from the wedge
domain onto a layer domain. We consider
Ay = f in G,
B(u) =0 on 0G,

B(u) defines the boundary conditions, u = u(x1,22), f = f(x1,22) and i € N. Then we
have:

(B.7)

Lemma B.4. Let i € N, u be the solution of problem (B.7), 8, € R. Then we have
O5(AMu) = e ] (rs,—aii—j)(02) + 0) v (B.8)

J=1

with the polynomial
7a(0z) := (0z +a)* (a €R).

Proof. Let i € N be fixed. By definition of the pull-back and the calculations of [4] we
know that for u = ©%v we have

Au = A(OP) = AT " Mg v) = U Mg, _s(rg, (0:) + 07 )v.
Hence ©%(Au) = M _5(rg,(0;) + 95)v. This yields that
A= U My (13, (02) + ) 858
= U Mg, 5 (r5,(02) + 05) M5, A Tu
= \1171./\/15?_2 (Tﬁp (0z) + 83) M (T@p(@z) + 83) M_gp\I/Aifzu

= \I’_l./\/lgp Mo (T‘ﬁp(@x) + 63) M_o (T‘ﬁp(ax) + 83) s Mg (Tﬁp(@z) + 892) v

iXM_Q(TBP (Bz)+<9§)

Since

RM_qv=M_o05v and 1y, (0x)M_qv =M_arg,_o(0:)v (e €R),
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we then have
@;(Aiu) = M_g ¥(A"u)
= M_p,Mg, i (r5,-2(-1)(0x) + 0g) -+ -+ (7, ~2(~i) (0z) + ) v

2
=M _y; H (r8,—2(i—j)(0z) + 3) v.
j=1
This proves the assertion for all ¢ € N. O

APPENDIX C. CRITICAL VALUES

In this section we consider for 0 < 8y < 7 the set
N := {)\ € C : sinh?(\y) = A% sin?(6y) },

which represents the set of zeros of an entire analytic function. In particular, N is locally
finite. We are interested in the intersection N N S(a, b) of N and a strip S(a, b) :={\ €
C:a<ImA<b}, where a, b € R with a < b. With the aid of the following lemma we
will show that N N S(a, b) is finite.

Lemma C.1. Let ¢ > 0 and let o € R.
(1) For every solution T € R of the equation cosh(¢T) = o it holds that
|| < %log(l + 2|a]).
(2) For every solution T € R of the equation sinh(¢7) = o7 it holds that
7] < 2 log(1 + ZJo]).

Proof. (1) If ¢ < 1, then the equation cosh(¢7) = o has no solution 7 € R and there
is nothing that needs to be proved. So assume that ¢ > 1 in the following. Then the
equation cosh(¢7) = o has precisely one solution 7 > 0 and precisely one solution 7 < 0

and it holds that 7/ = —7. Since we have cosh(¢t) > Sexp(¢t) — 3 for all t € R, we
infer that 7 < 7%, where 7* > 0 is defined by the equation %exp(qST*) — % = ¢. Since
T = %log(l + 20) we obtain the asserted estimate.

(2) For o < 0 the function t — ot : R — R represents a straight line with non-positive
slope. In this case, 7 = 0 is the only solution of the equation sinh(¢7) = o7 and there
is nothing that needs to be proved. So assume that ¢ > 0 in the following. Then the
equation sinh(¢7) = o7 has precisely three solutions: The solution 79 = 0, a positive
solution 7 > 0 and a negative solution 7/ < 0. Since 7/ = —7 we only need to estimate the

positive solution 7. To this end we observe that

2k 2k b \2k
% = é sinh(¢7) = kzzo (2(22 i kzzo (2(]3? 7 = kzzo ((22;))! = cosh(%7) =: o’
and (1) yields
7 < %log(l +20") < Zlog(1 + %O’)

due to the monotonicity of the logarithm. This proves the estimate (2). O
Corollary C.2. We have:

(1) For all k € Z the set N N S(kg, — %9”—0, kgs + %%) is finite.

(2) For all £ € Z the set N N S((£+ %)% — 35 U+ 3)F + 57) is finite.

N :

1
3
(3) For all a, b € R with a < b the set N N S(a, b) is finite.
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Proof. Let A € N. Then, by definition of N there exists € € { 1 } such that sinh(\fy) =
eAsin(fp). Taking the real and the imaginary part of this equation, respectively, we arrive
at
(i) sinh(76p)cos(aby) = eTsin(fy), (ii) cosh(76p)sin(aby) = easin(by),
where 7, a € R such that A = 7 + ia.
To prove (1) assume that kg — %9”—0 <a< kg + %% for some k € Z. Then we have

|cos(abp)| > 3 and (i) implies that

in(6
sinh(76p) = 67':(')1:((0433) =0T
with |o| < 2sin(6p). Hence, Lemma C.1 (2

) yields
IT| < & ~log(1+ 3 2z ~|o]) < 92 log(1 + ¢ 2 sin(fy)).

Thus, all points of the set N N S(k% — %%, kg + %ei) are contained in the compact set

A= {z €C : |Rez| < %log(l—i—%sin(ﬁo)), ke — %% <Imz < k%—&—g%}.

Since N is locally finite, N N A is finite. Therefore, we infer that the set N N .S (k% —
%%, kg + %el) is also finite.

To prove (2) assume that (¢ + 3) %~ %
we have [sin(afp)| > 3 and (ii) implies that

T << (6—1—%)%—1—%% for some ¢ € Z. Then

sin(f6p) B
sin(afy)

with |o| < 2(|¢] + %)% sin(fy). Hence, Lemma C.1 (1) yields
7| < g log(1+20]) < 7 log(1+ (|€] + 2) 3= sin(6o)).

Thus, all points of the set N N S((£ + %)% — %% ¢+ ) + %91) are contained in the
compact set

cosh(76p) = ca

A= {z €C : [Rez| < 2 log(1+ (/¢ + 2)4Z sin(6p)),
C+HE -tz <me<@+HE+3E}

Smce N is locally finite, N N A is finite. Therefore, we infer that the set NN.S(({+ 5 )el
390 0+ 5 )90 + %%) is also finite.

To prove (3) let a, b € R with a < b. Since there exist finite sets K C Z and L C Z
such that

1 1 1 1 1 1

c U sSkg—sm b+ v USU+ D5 — 35 C+DE+55),

keK teL
the assertion is a consequence of (1) and (2). O
Corollary C.3. For every k € Z there exists at most finitely many values p € [1, o] such
that the equation

sinh?(\0p) = A?sin?(6p)

has a solution A € C with Im A = —(k+3 — %) =—(k+1+ %), where q € [1, oo] such that
1 + 1 _
P q ’
Proof. According to Corollary C.2 the set N N S(—(k + 3), —(k + 2)) is finite. To each
point in this set corresponds one “critical” value of p € [1, oo]. O
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Of particular interest is the case k = —2 in Corollary C.3. Since —1 < —(1 — %) <1,
we employ the following result.

Lemma C.4. We have N N S(—1,1) = {0, 7y, +i }, where 71 > 0 such that 11 are
the two non-trivial real solutions of the equation sinh(7160y) = 1 sin(6fp).

Proof. As in the proof of Corollary C.2 we assume that A € N N S(—1, 1) and infer that
there exists € € { £1 } such that

(i) sinh(76p)cos(aby) = eTsin(by), (i) cosh(T6p)sin(aby) = easin(by),
where 7 € R and a € [—1, 1] such that A = 7 + ia. Since we have that —m < —fp <
aby < 0y < 7, we observe that sin(afy) = 0, if and only if « = 0. In this case (i) yields
7€ {0, £71 }. For a € (0, 1] we have sin(afp) > 0 and (ii) yields € = 1 and

asin(fy)

cosh(76y) = (*)

sin(abp)
Now, we consider the functions

u,v: [0, 7] — R, u(s) == ssin(fp), v(s) :=sin(sbp), 0<s< g
We have u(0) = 0 = v(0) and «/(0) = sin(6y) < 6y = v'(0). Hence, if we assume that
u(sg) = v(so) for some 0 < s9 < g such that u(s) < v(s) for all 0 < s < sp, then we
necessarily have u'(sg) = sin(fly) > 0o cos(soflp). Thus, since cos(-tp) : [0, 5] — R is
strictly decreasing, we infer that u'(s) > v'(s) for all s9 < s < g, which implies that
u(s) > v(s) for all sp < s < g-. This shows that the graphs of u and v have at most two
intersection points in [0, 7] and one is given by s = 0. However, since u(1) = v(1) and
0<1l< %, the other one is given by s = 1. As a consequence, asin(fy) < sin(aby) for
all @ € (0, 1), in which case the equation (x) has no solution 7 € R. Therefore, o € (0, 1]
implies a = 1. In this case (ii) yields 7 = 0. Analogously, or, alternatively, by symmetry,
we infer that o € [—1, 0) implies &« = —1. In this case (ii) yields 7 = 0 again. O

Corollary C.5. The equation

sinh?(M\p) = A% sin?(6y)
has no solution A € C with Im XA = —(1 — %) =1- % for allp € (1,2) U (2, 00). Here
q € (1, 00) such that % + % =1.

APPENDIX D. INTERPOLATION RESULTS

Proposition D.1. Let 6y > 0 and let Q@ =R x (0, 0y). Let k, ¢, m € N and let 0 <n <1
such that k =nm > £. Let 1 < p < oco. Then we have

[ZP(9), W™P(Q) N WGP (Q)], = WHP(Q) n WP (Q),

where [-, -], denotes the complex interpolation functor.  In particular, we have
[LP(Q), WHP(Q) N WP (Q)]y = WP ().

1
2

Proof. (1) Let & : C2() — C(R?) be given as Ed(x) = ¢(z), if z € Q, and
Explx) :=0,if z € R?\Q, for ¢ € C2°(Q). Then |5l 1o (r2) = 9]l e () for all ¢ € C2°(Q)
and, hence, & extends to a continuous linear isometry & : LP(Q) —s LP(R?). Moreover,
1€00llwmrm2y = [E50llwmpmzy = [Pllwmpy for all ¢ € C2°(2), which implies that
Eou € W™P(R?) with [|Eoullymrge)y = [ullymr(qy for all u € Wi™P(Q). Indeed, let
u e WiP(Q) and let (¢j)jen C C°(Q) such that ¢; — u in WP(Q) as j — oo. Then,
on the one hand, ¢; — u in LP(§2) as j — oo, which implies that Ey¢p; = E¢; — Eou in
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LP(R?) as j — oo. On the other hand, (£9¢;)jen C W™P(R?) is a Cauchy sequence and,
thus, Eyp; — v in W™P(R?) as j — oo for some v € W™P(R?). It follows that Eu = v
and HU”W’”»P(RQ) = limj o0 H50¢j||WmvP(R2) = limjo0 H@HW(;"*P(Q) = HUHW(;””’(Q)‘

(2) Let x € C(R, [0, 1]) such that Xl(=o0,00/3) = 0 and Xl[29/3,00) =
i, ..., amt+1 € R be the solution of the linear system of equations

m+1 ] 3

We define R}, : C2°(R?) — C°(Q) as
m+1

Rz, 0) ==p(x, 0) — Y aj(1—x)(0)p(x, —150)
1

1. Let

<.
Il

m+1
=3 ax(0)e(x, (1+ -L5)00 — +150)
=1

for (z, 0) € Q and ¢ € C(R?). Then R} ¢llr) < Cllellierz) for all p € CZ(R?)
and, hence, R}, extends to a continuous linear operator R,, : LP(R?) — LP(Q). For
¢ € CX(Q2) we have R,,E0p = ¢, which implies that R,,Eou = u for all u € LP(Q), i.e. Ry,
is a continuous linear retraction and & is a corresponding continuous linear coretraction.
Moreover, [|Ru¢llwmr) = [IRy¢llwmr@) < Cllollwmsme for all ¢ € C2°(R?), which
implies that Ry,,v € W™P(Q) with [[Rpvllwm.r@) < Cllv|[ymeme) for all v € Wmr(R?).
This follows with the same argument as used in Step (1) above. Finally, by construction
we have (O4Rm¢)lon = 0 for i = 0, ..., m for all ¢ € C®(R?), which implies that
Rmv € WP(Q) for all v € W™P(R?). Thus, Ry |ymaegz) : WP(R?) — WP(Q) is a
continuous linear retraction and Eolymar (o) : Wo'P(Q) — W™P(R?) is a corresponding
continuous linear coretraction. Now, [15, Thm. 2.4.2/1 (7)] shows that

[LP(R2), W (R)] = Whe(R?) (D.1)
and the retraction principle, [15, Thm. 1.2.4], yields
[ZP(9), WP ()], = Wy (). (D.2)

(3) Let x € CX (R, [0,1]) and aq, ..., ams1 € R as in Step (2). We define &, :
C2(Q) — C™(R?) as

o(x, 0), 0<6 <0y,

m+1
aj(1—x)(—=t50)p(z, —=1=0), 6 <0,

g:‘ngb(x’ 6) - ]; j( X)( m+2 )¢( m-+2 )
m+1
Y (L4 5h5)00 — 7hs0)(e, (1+ hs)b0 — 720), 6> o,
j=1
for (z,0) € R? and ¢ € C>(Q). As in the proof of [1, Thm. 4.26] one verifies that
&y is well-defined and satisfies ||€7,0|1r(r2) < Clléllr() as well as [|E;@llwmrp@ey <
Cl|¢llwmp(q) for all ¢ € C°(€2). Therefore, &, extends to a continuous linear operator
Em : LP(2) — LP(R?) that satisfies &,,u € W™P(R?) with [Emullwmrmey < Cllullwmrq)
for all uw € W™P (). This follows with the same argument as used in Step (1) above.

(4) We define R : C™(R?) — C™(Q) as Ry := ¢l for ¢ € C°(R?). Then, clearly,
R} extends to a continuous linear operator R : LP(R?) — LP({2) that satisfies RoEm¢p =
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¢ for all ¢ € C°(€2). Hence, Ro&Enu = u for all uw € LP(Q), i.e. Ry is a continuous linear
retraction and &,, is a corresponding continuous linear coretraction. Clearly, we also
have Rov € W™P(Q) with [Rov|lwmr@) < Cllv|lwmemey for all v € Wm™P(R?). Thus,
Rolwmnemz) : WP(R?) — W™P(Q) is a continuous linear retraction and &y |yym.r(q) :
WmP(Q) —s W™P(R?) is a corresponding continuous linear coretraction. Therefore,
(D.1) and the retraction principle yield

[LP(Q), WP(Q)], = WHP(Q). (D.3)

(5) Since the inclusions
Wy P(Q) € W™P(Q) N WP (Q) € W™P(Q)
are continuous, the same is true for the inclusions
k, ~ m, m, £,
W) = [12(), W@, © [17(@), W) nWEn@)],
C [LP(), wmr(Q)], = WhP(Q),

where we used (D.2) and (D.3), respectively. Hence, [LP(Q2), W™P(Q) N I/V(f’p(Q)]77
is a linear subspace of W*P(Q) and | - (o) constitutes an equivalent norm on
[LP(2), W™P(Q2) N Wg’p(Q)]n. According to [10] the trace operator
-1
T Wi (Q) — [[w7 PP (09)
=0

is a continuous linear retraction. Due to [15, Thm. 1.9.3 (c)| the space
L(Q) 0 (W™ (@) N WP (@) = {u e W™P(Q) : Tu=0} = E

is a dense linear subspace of [LP(Q2), W P(Q) N VVOE’ID(Q)]?7 and, thus, [LP(2), W™P(Q)N
Woe P(Q)],, coincides with the completion of E in W*P(Q), which is given as

{u e WhP(Q) : Tu= o} = WkP(Q) n WP ().
This completes the proof. O

Corollary D.2. Let 0y > 0 and let Q@ =R x (0, ). Let k, ¢/, m € N and let 0 < n < 1

such that k =nm > (. Let 1 < p, p’ < oo such that %0 + ]% = 1. Then we have

[LP (), (W™ () n WP ()], = (WR () n W™ (),

/'7:
where [-, -], denotes the complex interpolation functor.  In particular, we have

[LP(Q), (WA7(2) n W (Q))]; = WeP () = W22(Q).

Proof. This is a direct consequence of Proposition D.1, the identification (L (Q))’ = LP(Q)
and [15, Thm. 1.11.3]. O
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OPTIMAL REGULARITY FOR THE STOKES EQUATIONS
ON A 2D WEDGE DOMAIN
SUBJECT TO NAVIER BOUNDARY CONDITIONS

MATTHIAS KOHNE, JURGEN SAAL, AND LAURA WESTERMANN

ABSTRACT. We consider the Stokes equations subject to Navier boundary conditions on
a two-dimensional wedge domain with opening angle 6y € (0, w). We prove existence and
uniqueness of solutions with optimal regularity in an LP-setting. The results are based
on optimal regularity results for the Stokes equations subject to perfect slip boundary
conditions on a two-dimensional wedge domain that have been obtained by the authors
in [7]. Based on a detailed study of the corresponding trace operator on anisotropic
Sobolev-Slobodeckij type function spaces on a two-dimensional wedge domain we are able
to generalize the results proved in [7] to the case of inhomogeneous boundary conditions.
Existence and uniqueness of solutions to the Stokes equations subject to (inhomogeneous)
Navier boundary conditions are then obtained using a perturbation argument.
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The main objective of this note is to study the (instationary) Stokes equations subject
to (inhomogeneous) Navier boundary conditions

Ou—Au+Vp=f in JxG,
divu=g¢ in JXxG,
au-T—7'Di(u)y = hy on J x T,
u-v=nhgon JxTI,

u(0) =up in G,

(1.1)

on a two-dimensional wedge domain G. We aim at existence and uniqueness of solutions
with optimal regularity in an LP-setting for p € (1,00). The wedge domain is defined as

G = {(:Ul,:cg) ER?: 0<ag < :cltanc%}

(1.2)

with opening angle 6y € (0,7) and J = (0,7") with 7" > 0. Here « is a given (variable)
parameter, v and 7 denote the unit outer normal vector and a unit tangential vector

81
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on I' := 0G \ {0} respectively. We have v; = —eg and set 71 = —ep as the unit outer
normal vector and a unit tangential vector on I'y := (—o00,0) - 7. Furthermore, we have
vy = (—sinfp, cos )’ and set 7o = (cosfy,sinfy)” as the unit normal vector and a unit
tangential vector on I'y := (0, 00) - 7. Thus, the boundary of G is decomposed as

I'=T,UT, =0G\ {0} (1.3)

and we have (1, v) = (7, vj) on I'; for j = 1, 2. Note that (7}, v;) is positively oriented
for j = 1, 2. The boundary conditions in the third and fourth equation of system (1.1)

have to be understood as:
ou -1 — 7 Da(u)vy = hgl) on J xTI'y,

au - Ty — TgDi(u)l/Q = h§2) on J x I'sg,

u-ulzh(()l) on J xI'y,

u-ugzh(()z) on J x I'y,

where héj) := hy|r; for £ =10, 1 and j = 1, 2. Moreover, D4 (u) := $(Vu £ VuT') denote
the rate of deformation tensor and the rate of rotation tensor, respectively.

If: G — Rory : I' — Ris a function, we denote by (); := lim, 0 ¥|r, () its trace
at the corner x = 0 of the wedge G taken w.r.t. its values on I'; for j = 1, 2, whenever it
exists. By (¥)e := ()2 — (1)1 we denote its jump across the corner, whenever the two
traces exist. Finally, we denote by (¢), := ()1 = (¥)2 its unique trace at the corner,
provided that (¢)), = 0. Thus, a condition like (1)), = 0 implicitly requires ((¢)), = 0.

We aim at solutions
(u,p) e E:=E, xE,, (1.4)
where
E, := WYP(J, LP(G,R?)) N LP(J, W*P (G, R?))
E, := LP(J,W"(Q))

are given as anisotropic (homogeneous) Sobolev spaces; see Section 2. Of course, in this
setting uniqueness of the pressure p has to be understood as uniqueness up to an additive
constant. Then, necessarily, the given data in (1.1) have to satisfy the regularity conditions

[ eF; = IV(J,LP(G.RY)),
9 € Fy = W, (J,L(@) N LP(J,W(@)),
hi €F, = {h:T —R:hlr, e FY for j = 1,2}, where
() ._ yrl/2-1/2p P(T. P 1-1/p o
FY) o= WV, () 0 L W), = 1, 2,
ho € F, :={h:T' — R : hlp, e FY for j =1, 2}, where
FY) o= Wy (], LP(T;)) N LP(J, W YP(T,), 5 =1, 2,
up € Fy = W2 *P(G,R?),
i.e. we have to work with anisotropic Sobolev-Slobodeckij spaces; see Section 2. For
convenience we abbreviate
F:=F; xFy xF; xF, x Fy. (1.5)

We employ the space BUCY(I') := {a : ' — R : a|p, € BUCY(Iy), j = 1,2} for
the coefficients. Besides the obvious necessary compatibility conditions between the right-
hand side g in the divergence equation and the initial datum wug and between the boundary
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datum h; and the initial datum wug, respectively, there is a somewhat hidden but well-
known necessary compatibility condition between g and the normal boundary datum hyg.
To formulate this compatibility condition we denote by p’ € (1,00) the dual exponent of
p € (1,00) and define the functional F(v,7) : W' (G) — R for v € F, and n € F,, as

[Faml(@) = (0, )p = (1, d)a: ¢ € WH(G), (1.6)

Since
[F(9:ho)l(¢) = (ho, &)p — (9, )a = (u-v, ¢)r — (divu, ¢)¢
= (u, Vé)g e WHP(J), ¢ € W(G),
we infer that
Flg,ho) € W2 (J, (W (@), IVl ) ))-

By the fact that C2°(G) is dense in Wl’pl(G) it follows that F(g, ho) € WHP(J, W‘l’p(G)).
Remark 1.1. For g € F, the requirement F(g,0) € WL”(J,W_LP(G)) is equivalent to
g € WWP(J,W-12(@)), while for hy € F,, the requirement F(0, hg) € WhP(J,W-17(G))
is equivalent to ho|p, € W'P(J, /Wp_l/p(Fj)) for j =1, 2.

Now, our main result reads as follows.

Theorem 1.2. Let J = (0,T) with 0 < T < 0o and let G C R? be defined as in (1.2) with
0 € (0, 7). Let p € (1,00) \ {572+, 552, 3, 2, 3}. Let a € BUCY(T) with (), = 0.
Suppose the data satisfy the regularity condition

(f7 9, hlu hO) UO) E]F

and the compatibility conditions
divug = gli=0,  ifp>2,
up v = holi—o, ifp>3,
aug - T — 7 Dy (ug)v = hili—o, if p> 3,
as well as -
F(g,ho) € WHP(J,W—H(@)).
If the boundary condition is posed based on D, then assume the compatibility conditions

{(Orho +h1)g =01in J, if p> 2, and
2(0- hod1 + 3(Orho)2 = (Orho + ha),  in J, if 0o = 5 and p > 2.

If the boundary condition is posed based on D_, then assume the compatibility conditions
(h1)g =01in J, if p > 2, and

—3{0rho)1 — 2 (0myho)2 = (M), in J, if 0o =72 and p > 2.
Then there exists a unique solution (u,p) € E to (1.1).

Remark 1.3. The values p =2, p = 3920037r and p = 3939_0% with 0y € (0, 7) are excluded in

Theorem 1.2 due to technical reasons. In Section 3 we solve the Laplace equation subject
to Neumann boundary conditions on the wedge domain by transforming this problem into
a problem on a layer domain. The latter is then solved using the operator sum method,
which is based on the Kalton-Weis theorem. Due to this method a condition on the
spectrum of the operators appears, which excludes p = 3920037r and p = 3939_0%. Moreover,
the transformation from the layer back to the wedge introduces weights. The norms in
the corresponding weighted function spaces can be estimated thanks to Hardy’s inequality

for all p € (1,00) except for p = 2. See Lemma A.2 for Hardy’s inequality on the wedge.
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Thanks to the solvability of the Laplace equation we can then prove the solvability of
equation (1.7) below, which is a crucial step for the proof of Theorem 1.2.

To provide an outline for the following sections we summarize the strategy of the proof
of Theorem 1.2. At the end, problem (1.1) is a perturbed variant of the problem
ou—Au+Vp=f in JxG@G,
divu =g in JxG,
—7'Dy(u)v =hy on JxT, (1.7)
u-v=hyg on JxT,
u(0) =uy in G,

with fully inhomogeneous right-hand sides (f, g, h1, ho,ug) € F. Therefore, it is sufficient
to show existence and uniqueness of solutions (u,p) € E to problem (1.7), provided the
data satisfy appropriate compatibility conditions. This is achieved by Corollary 4.7.

This result, in turn, relies on the unique solvability of the Stokes equations subject to
inhomogeneous perfect slip boundary conditions

u -V = hy, curlu = hy onJ xT.

The latter problem is dealt with in Theorem 4.6. On the one hand, the proof of The-
orem 4.6 relies on the result [7, Corollary 1], which provides optimal regularity for the
Stokes equations subject to homogeneous perfect slip boundary conditions in the LP-
setting for all p € (1,00). On the other hand, to cope with the inhomogeneous boundary
conditions, for the proof of Theorem 4.6 we also need to show optimal regularity for the
Laplace equation subject to Neumann boundary conditions in the space Wwhe (@) for all
p € (1,00)\ {3920927r, 3039_02”, 2}. This is accomplished by Corollary 3.8, where we show
the invertibility of the operator Az r¢ := A¢ associated to the problem

Ap=f in JxG,
oy =0 oanF,} (1.8)

to obtain ¢ € LP(J,K}(G)) for f € LP(J, /W?Lp(G)). For a definition of the weighted
Sobolev space Kg’ see (2.1) below.

Now, this note is organized as follows. In Section 2 we introduce the notation. Section 3
is devoted to the proof of Corollary 3.8, i.e. , to the treatment of the Laplace equation
subject to Neumann boundary conditions in a wedge within the above function spaces.
Finally, in Section 4 we prove the unique solvability of problem (1.7) and we provide a
complete proof of Theorem 1.2. As auxiliary results, we provide several generic trace
theorems for the wedge domain G for anisotropic Sobolev-Slobodeckij spaces, which may
be of independent interest. For convenience this note is complemented by an appendix,
where we discuss Hardy’s inequality for the wedge domain G.

2. NOTATION

Let X be a Banach space, let 1 < p < oo and let  C R? a domain. We set C°(Q2) :=
{u e C(Q) : supp(u) C N} where supp(u) is the support of u. We denote by LP(€, X)
the X-valued Bochner-Lebesgue space. For n € {1,2} we define W*?(Q, R") to be the
Sobolev space of order k¥ € N and we set WP := LP. We denote by Wg’p(Q,Rn) the
closure of C2°(£2, R™) in the space WP (Q, R"). Furthermore, for s = k + A with k € Ny
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and 0 < A < 1 we define W7(2) to be the Sobolev-Slobodeckij space that consists of all
functions u € WHP(Q) satisfying

0%u(y) — 0%u(x)P 1/p
lullws @) = llullwrrq) + z|:k (/Q/Q | |; 1 l,|n+/\1§ ) dydx) < 0.

For k € Ny the homogeneous Sobolev space of scalar valued functions is defined as
WhP(Q) := {u € Lj, () : 0®u e L'(Q), |a| =k},

and equipped with the seminorm

el = lullgns == 3 107l
|a|=k

Now, let G C R? be the wedge domain defined in (1.2) with opening angle 6y € (0, ).
We define the Kondrat’ev spaces as

LE(G) == LP(G, p"d(x1,22)), p=[(z1,72)], v ER,
and for m € Ny as
K (G) == {u € Li,,(G): pl*I™™d"u € LX(G), |a| <m}, veR (2.1)
The space K (G) equipped with the norm
1/p

lullzg, = llullg, ) = | D IP"0%ull}s

Y
laj<m

is a Banach space for all m € Ny and all v € R and we abbreviate K'(G) = K](G).
For k € N the weighted homogeneous Sobolev space is defined as

WIP(G) = {u € Li,o(G) : 9w e IE(G). o] =k}, 7€R,

and equipped with the seminorm

sy = lullges = 3 I0°ulzze
|a|=k
for k € Nand v € R.
The norm on a generic Banach space X is usually denoted by || - [|x. If Y is another

Banach space, then Z(X,Y’) denotes the space of all bounded linear operators from X
to Y and Z;5(X,Y) denotes the subspace of all linear isomorphisms from X onto Y. For
Y = X we employ the abbreviations £ (X) and .Z;s(X), respectively.

If ¢y : T —> R is a function, we occasionally denote by ¢(7) = Y|r, the restriction to I';
for 7 = 1, 2. The same notation is also occasionally used for vector fields ¢ : ' — R™
with m € N and should not be confused with the components of ¢ in this case. Moreover,
if¢p: T'; — R with j € {1, 2} is a function that is defined on one of the smooth parts of
the boundary of G only, we also employ the notation (1); := lim,_,o 9 (z) its trace at the
corner z = ( of the wedge G.
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3. THE LAPLACE EQUATION SUBJECT TO NEUMANN BOUNDARY CONDITIONS

Let G C R? be the wedge domain defined as in (1.2) and J = (0,T) with 0 < T' < oo.
The objective of this section is to consider the problem
Ap=f in JxG,
O, =0 onJxTI,
and to show its optimal regularity. Here v denotes the unit outer normal vector at I' with
I' defined as in (1.3). Recall that 71 = —e; and v; = —ey on I'y := (—00,0) - 71 and
79 = (cosfp,sinfy)? and 1o = (—sinfy,cosfp)? on 'y := (0,00) - T2, respectively. The
boundary condition in the above system is to be understood as:

0,,0=0 only,
Oy, =0 on Iy
Here, optimal regularity of the Neumann-Laplace equation means to show the invertibility
of the operator Az 7¢ := A¢, where
Apr: LP(JK3(Q)) — LP(J,WP(Q))

26 26
for all p € (1,00) \ {39037r, 36,0_0%, 2},
The strategy will be to start considering the time independent Neumann problem for

the Laplace operator

A¢p = f in G,

0,9 =0 on I, } (3.1)
and to transform it onto a layer domain © := R x (0, 0y) in a first step. Using the operator
sum method we can then show the well-posedness of the transformed problem in the
unweighted LP-setting. In a second step we will show higher regularity of the transformed
problem and then transform it back onto the wedge domain.

Remark 3.1. In [5, Chapter 4] the Laplace equation subject to general boundary con-
ditions, where the Neumann boundary conditions are included, is studied on polygonal
domains. There, localizing the vertices and transforming the Laplace equation to a layer
domain yields the same form of the Laplace equation on the layer as in our setting. Hence,
alternatively to the operator sum method, by modifying a step in the proof of [5, The-
orem 4.3.2.3] we could also prove the invertibility of the transformed Neumann-Laplace
operator on the layer. For this approach a suitable variant of the condition [5, (4.3.2.10)]
has to be satisfied, which leads to a constraint on the parameter p of the LP-space. Now,
inserting into that equation 3, = 3 — 217 instead of 1% =2 %, we get a condition that
is equivalent to our spectral condition (3.9); see also Remark 3.6. Thus, this approach
would lead to optimal regularity for the Neumann problem for the Laplace operator for
the same values of p. However, we prefer to provide a self-contained proof based on the
operator sum method.

Let’s start with the transformation of problem (3.1) onto the layer domain. We set
Q:=R x I, with I := (0,60) where 6y is the angle of the wedge G. We write the inverse
of the transform to polar coordinates as

Yp: Ry xI — G, (r,0)— (rcos,rsinf) = (z1,z2).

We use the Euler transformation r» = e® in radial direction and write by an abuse of
notation x € R for the new variable. We set

Yp: Q—=Ry xI, (x,0)— (%, 0)=:(r0).
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It is not difficult to see that
¢Z:¢powEZQ—)G
is a diffeomorphism. We set
Vo :=¢oyp and ¥ lp:=poypt

Analogously to [9] we define pull-back and push-forward by

p:=0,0:= e Wy and ¢ = OPp = ULy (3.2)
with 3, € R. Let ¢ be the solution of (3.1), then by [5, Chapter 4] we have that
0, (A¢) = e % (rp,(0s) + 9, (3.3)
where
75, (0) 1= (O + Bp)*p. (3.4)

To absorb the factor 2% in (3.3), we put
ke 2 *
g=0,f=e"0,f (3.5)
with inverse ((:);)*1 — ©F. By the choice of

24
ﬁp=3——p” (3.6)

Lemma 3.5 implies that

6 c 2, (W;»P(G), WLP(Q)> .
We notice that 3,, the pull-back and the push-forward depend on p. That means that the
corresponding operator families are not consistent in p.

After transforming the boundary conditions of (3.1) to the layer domain we obtain
Jgp =0 on 902 =R x {0,60p}.

Hence, (3.1) is equivalent to

—(r8,(02) + 0j)p = g in ©
Jpp = 0 on 0N2. (3.7)

The proof of the well-posedness of problem (3.7) needs some preparation. We start to
describe the operators associated to the single parts of (3.7):

(1) Let rg, be the polynomial given in (3.4) with 3, given as in (3.6). We define 7, in

LP(R) by
Top = —15,(0x)p, ¢ € D(Tz) = W2’p(R).

The spectrum of T, is given by the parabola —rg (iR), which is symmetric w.r.t.
the real axis, open to the right and has its intersection point with the real axis at
—Bg. It is known that 7, +d € H*>*(LP(R)) for d > Bg with ¢ ; < 7, see [11, 9].
These properties are also true for the canonical extension of 7, to LP(R, LP(I)),
that is

Top :=Tap, @ € D(Ty) := W2P(R, LP(I)),

see, for instance, [12, 3, 8] for operator-valued Fourier multiplier results.
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(2) We define Ty in LP(I) by
Top == 03¢, @€ D(Ty) = {(;5 € W*P(I): 9p¢ =0 on 8[} .

It is straight forward to calculate its spectrum, which is given as

o(T5) = {0} U { (g(’j) ke N} (3.9)

with corresponding eigenfunctions

k
ér(0) := cos <7;9> , keNp, 0el,
0

see also [9]. Since Ty is self-adjoint in L2(I), the eigenfunctions form a basis of
L3(I). We denote by (\;)ien, the set of eigenvalues of Tp, i.e., (Ai)ien, = (7o)

such that \g < A1 < .... Setting eg := \;g—o, where €y is the eigenfunction to the
eigenvalue \g = 0, and setting e; := %57 where ¢é; is the eigenfunction to the
eigenvalue \; for all i € N, we have
2 (% -
(eirej) = 90/ €; - €5 df = d;j (i, €N),
0

and

va [

<€07 ej>:7 éoé] df =0 (]EN)7
0o Jo
1 (%

<€0, 60> = / éo : éo dg = 1.
b0 Jo

By Fourier series techniques it is straight forward to see that Ty admits an H>°-
calculus on L4(I) with ¢ = 0; see [4] for more details. Again these facts remain
valid for the canonical extension of 7y to LP(R, LP(I)), which is defined by

Top := Top, D(Ty) := LP(R, D(Tp)).
Optimal regularity for (3.7) is reduced to invertibility of the operator
T, =T, + Ty : D(T}) — LP()
if we can show that
D(T,) = {p € W*P(Q) : 9pp =0 on 00} = D(T,) N D(Ty).
To this end, for m € N let
m
Pﬁupgp = Z <90a €i> €
i=0
be the projection of ¢ € LP(I) onto (e, ...,em) and put Py, =1 — Pg, . We also set
EY, := Py, (LP(I)). Tt is obvious that (Prm.p) 1 <peoo 1S a consistent family on (LF(1))1<p<oc,
so we omit the index p and write P,,. If P,, denotes the canonical extension of P, to

LP(R, LP(I)), then P,,, € £(LP(Q)) is a projector onto LP(R, EL,). Consequently, we have
the decomposition

LP(Q2) = LP(R, (eg, ..., em)) ® LP(R, EP).
The proof of the following properties is straight forward.



PARTIAL SLIP STOKES ON A 2D WEDGE DOMAIN 89
Lemma 3.2. Let 1 <p < oo. Letd > ﬁf) with By as given in (3.6), m € N and T, Ty be
given as above. Then we have

(1) Ppp € D(Ty) and P, Trp = TP for ¢ € D(T)),

(2) P € D(TQ) and P, Ty = TyP,, o fOT' (NS D(Tg),

(3) Ty +d, Ty € H® (LP(R, EL,)) N H>® (LP(R, (e, ..., em))) with the corresponding
angles ¢F 4 < 5, o7, =0,

(4) P, (X —Ty)" Y and (n — Tp)~t commute pairwise for X € p(Ty) and p € p(Tp).

The invertibility of T}, = T, + T} essentially follows by the operator sum method. For
instance one can apply [10, Proposition 3.5], which is a consequence of the Kalton-Weis
theorem [6, Cororallary 5.4].

Proposition 3.3. Let 1 < p < oo and B, be defined as in (3.6). Then
T, € Ziy(D(T,), L7(Q)
if and only if
By ¢ o(Ty) = {(rk/60)%, k € No}. (3.9)
Proof. Relying on Lemma 3.2, the fact that
T, € Zs(D(T,) N D(Tp), LP())

follows by copying almost verbatim the lines of the proof of [7, Theorem 2.3]. The proof
of [7, Lemma 2.5] in addition shows that

W2P(Q) = WHP(R, LP(I)) N LP(R, W2P(I)).
The definition of the Sobolev space then yields that
D(T,) N D(Tp) = {¢ € W?P(Q) : 9pp = 0 on 90} .
This completes the proof. O

Next, we show higher regularity of the transformed problem (3.7).

Corollary 3.4. Let 1 < p < o0, 3, be defined as in (3.6) and condition (3.9) be fulfilled.
Then for every g € WHP(Q) the solution ¢ of (3.7) satisfies the estimate

|90||W3»P(Q) < CHQHwLp(Q)
for some constant C' > 0 that is independent of ¢ and g.

Proof. Denote by Di‘gp the difference quotient
30(<x7 0) + hel) — QO(.Z', 9)
h
where e; := (1,0). Let ¢ € D(T},) be the solution of (3.7). Applying D} to (3.7) and
using the fact that D} commutes with 7T},, we obtain
DiTyp = Dig in D'(Q)
& T,Dlp = Dl'g in D'(Q). (3.10)

Diy(z,0) = (heR, h#0),

Now, let g € W1P(Q). The above calculation and Proposition 3.3 imply
IDYe — DY ollwzny < CI(DY = DY )glle () (3.11)
for a constant C' > 0.
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For the right-hand side of (3.11) it is straight forward to see that

(D} — DY )gll o0 e O

which implies that D}'g is a Cauchy sequence in LP(§) converging to d,g € LP().

It follows by the estimate (3.11) that D¢ is a Cauchy sequence in D(T},) converging
to Oz € D(T},). The last calculations imply

10z 0llw2r() < Clldzgllri) < Cllgllwing), g€ WHP(Q)
for a constant C' > 0. This yields that 9, € W2P(Q), i.e.
©, Vo, V23, V20,0 € LF(Q).
We still have to prove that 93¢ € LP(Q). This, however, follows by Ty = g. Since
Typ = (9 + 28,0 + B, + 95)
we have that
03 = — (02 + 28,0, + B2) ¢ + g € WHP(Q),
and, hence, 93¢ € LP(1). O
Now, we consider the equivalence of problem (3.1) and (3.7). We define Ap¢ := A¢ on
the wedge domain as
Apg = Ao, peD(AL)={ne K;’N(G) : Om=0onT}. (3.12)
Lemma 3.5. Let p € (1,00), v € R such that v #p —2 and $, = 3 — Q”LTW. Let ©F, ©F
be defined as in (3.2) and ©F, 0% be defined as in (3.5). Then we have
6; € L, (WI7(G),W'7(Q)), O} € %, (D(AL), D(T;))

where || - [pa,) =1 k2 (@) and || - I, = I - llwero)-

In particular, ¢ € D(AL) is the unique solution of (3.1) to the right-hand side f € WiP(G)
if and only if ¢ = O30 € D(T},) is the unique solution of (3.7) to the right-hand side
g=05feWhr(Q).

Proof. The proof of ©% € %, (K (G), WP()) follows from Chapter 3, Lemma B.3 (1)
of this thesis with | — k := 3. In combination with the boundary conditions transformed
at the beginning of this section, we obtain

©, € Z(D(AL),D(Tp)) and ©F € Z(D(T}), D(AL)),

and since ©) is the inverse of ©F the second assertion is proved.

Now, set

hl (8y,09) := cosB(ry + j + 0,) — siné,

1]

hv%l,j(ax’aﬁ) ==sinf(ry +j + 0;) — cosf

with 71 == 8, — 2, j € R. Let g € WHP(Q). Then by Chapter 3, Lemma B.1 (1) of this
thesis with [ := 2 we have
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162g]% i ID*(©%)175
(G ~(G)

|a|=1
a1 as »
- Z/Q (ﬂp_mze_'awr{hi1,—a|+n(ax,89)1_‘[1h$17_a2+n(3x,89)g(1:’6) e2tNT 10 dp
or|=1 n= n—=
3_287 o 2 a2 P
Z / e( “p )me—x H h71,17_|a|+n(3:p,((‘)9) H hzl,—a2+n(ax,3e)g(ﬂ:,9) TN G0 dp

|a|=1 n=1 n=1

< CHgHIP;VLP(Q)
for some constant C' > 0.

Next, we show the converse estimate. Let f € W\%’p(G) such that f(0) =0ify<p—2
and f(oco) =0 if v > p — 2. Then Hardy’s inequality, see Lemma A.2, implies

187 ey = [ 16750, 0)Pda. )
(32t
= L1 sl e )

= o™ 1126 < CIIVI T2 6y

for some constant C' := C(p,7) > 0. Moreover, we have

15712 =

e <( o) s (0, ) 95t
/ o <2_05,,) f @y, m0)Pp~2d(x1, 2)

/ PV f (o) p2d(a, 20)

[ Vel s, )Pz, 0
Q

p
p~2d(wy1, x2)

< CUo™ I ) + 17180 ) < CIV Ay

for a constant C' := C(p,7) > 0. Hence, the first assertion (:); € .,%-s(/WZ}’p(G),Wl’p(Q))
follows. O

Remark 3.6. (a) For 8, =3 — Qﬂ the condition (3.9) is fulfilled, if every eigenvalue \;

of T}, ¢ satisfies
2
X # By = (3 - ;’Y) . (3.13)

For the case v = 0, i.e. for the Kondrat’ev weight p¥ = 1, we then have
2\ ? i\ 2
N # B2 - = -, ) € Np.
#BP@(S p) #<90> i €No

, € Np.
p#?)é?o—z +€ o

Since 6 € (0,7), the above relation is always fulfilled for p € (1,00) \ {5772~

This is equivalent to

200 290 }
Oo—m’ 360p—2m
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(b) Lemma 3.5 is fulfilled for all p € (1,00) such that v # p — 2 with v € R. For y =0
this is equivalent to p # 2.

Proposition 3.3, Corollary 3.4, Lemma 3.5 and the last remark yield the following result.

Corollary 3.7. Letp € (1,00) \ {3920937r, 303@%’ 2}, 00 € (0,7) and p = |(z1,22)|. Then
equation (3.1) is for each f € Wl’p(G) uniquely solvable with a solution ¢ satisfying

P390 € LP(G), o] < 3.

The next corollary generalizes the above result to time dependent data:

Corollary 3.8. Let p € (1,00) \ {32607” 3936_0%, 2}, 6y € (0,7) and p = |(x1,x2)|. Let
J = (0,T) with 0 < T < co. Then for every f € LP(J,W'P(G)) the equation

Ap = fin JxG,
0,0 =0 oanF,} (3.14)

has a unique solution ¢ satisfying

ple=30%% € LP(J, LP(@)), ol < 3.

Proof. Assume that f € C>®(JxG) N Lp(J,/Wl’p(G)). For every t € R choose
¢(t, -) € K3(G) to be the unique solution to the problem

A¢(tv ) = f(t> ) in G, ay¢(t, ) =0 onl,

which exists due to the Corollary 3.7. Now, we have

T
T / 6t g oyt < / et = CIAIE i

for a constant C' > 0 which is mdependent of u, f andt € R. This shows unique solvability
of (3.14) for a right-hand side f € C*(J x G) N LP(J, Wl’p(G)). Now, since the latter
space is dense in LP(.J, Wwip (G@)), using an approximation argument yields the assertion
for every right-hand side f € LP(J, /V[?l’p(G)). O

4. THE STOKES EQUATIONS SUBJECT TO NAVIER BOUNDARY CONDITIONS

Let J = (0,7) with 0 < T < oo and let G C R? be the wedge defined as
n (1.2) with opening angle 6y € (0,7). The aim of this section is to prove Theo-
rem 1.2, that is the unique solvability of problem (1.1) in the LP-setting for all p €
(1,00) \ {3920927r’ 3659_02#, 3,2, 3}. We start with a proof of the well-posedness of the
Stokes equations subject to inhomogeneous perfect slip boundary conditions.

4.1. Inhomogeneous Perfect Slip Boundary Conditions. Let E and F be defined as
n (1.4) and (1.5), respectively. Here we consider the system

Ou—Au+Vp=f in JxG,
divu=¢g in JxG,

curl u = hy on J x T, (4.1)
u-v=nhgon JxTI,
u(0) = ug in G,

where the boundary of G is decomposed as in (1.3) as 0G = I' U { 0 } with its smooth
part given as I' = I'y UT's. Recall that (7, v) = (7, v;) for j =1, 2 denotes the positively
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oriented pair of unit tangential and unit outer normal vector on I'; as introduced in
Section 1. Of course, the boundary conditions in (4.1) have to be understood as

curl u = hgl) on J x I'q,

curl u = h?) on J x I'g,

u'm:h(()l) on J x I',

U'V2:h82) on J x I'y,

where héj) = hy|r; for £=0, 1 and j = 1, 2. We aim at solutions

(u,p) € E
and, hence, the given data in (4.1) have to satisfy the regularity conditions

(fv g, hlv ho, UO) clF.

In order to treat problem (4.1) we first need the following result concerning traces on the
wedge domain G.

Proposition 4.1. Let J = (0,T) with 0 < T < 0o and let G C R? be the wedge domain
defined as in (1.2) with opening angle 6y € (0, 7). Let 1 < p < oo with p # 2. Furthermore,
let 'y = (=00, 0) - 11 and T'y = (0, 00) - 7o with

T1 =— —€1, V] = —eg, T = (COS (90, Singo)T, Vo = (—sin@o, COS eo)T
such that G =T1 UT9 U {0}. Now, suppose that
g5 € Wy VLI N IPULW TN T)), =12,

hy € WP L) N LWy, =12
such that
(g1)1 = (92)2 in J,
<87'191>1 + cos b - <67292>2 = sinf - <h2>2 mJ, ifp>2,
—(0ry92)2 — cos by - (Or,g1)1 = sinby - (h1)1 inJ, ifp>2.
Then there exists a function u € WHP(J, LP(G)) N LP(J,W?P(G)) that satisfies
=g and Oypu=h; ondJxIy,
=g¢g2 and Opu=ha onJxTIs.
Proof. Step 1. We first show that we can w.l.o.g. assume that (g;); = 0 as well as
(0r,95)5 = (hj); = 0,if p > 2, for j =1, 2. Indeed, there exist extensions
g€ W L (E0) N DL W),
hy € W72 g LP(50)) N LP(J, W, P ()

of g1 and hy, respectively, to the hyperplane 3; := R - 7y; cf. [1, Thm. 4.26]. Now, the
trace theory for anisotropic function spaces on the halfspace implies that there exists

v e WH(J, LP(R x (0,00))) N LP(J,W?P(R x (0,00)))

such that v = ¢ and 0,,v = ﬁl on J x 1. Then we set v = v + 4@ and infer that
o€ WhP(J, LP(G)) N LP(J,W?P(@G)) has to satisfy the boundary conditions

and J,u =0 on J xI'y,

5 and 8,,211:ﬁg on J x I'y

>
Il
[an}

>
Il
Na)Y
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for g2 := g2 — v|r, and ﬁg := hg — 0,,v. Due to the choice of v and the compatibility
conditions for the boundary data we have (g2)2 = (92)2 — (91)1 = 0 and
(0ryG2)2 = (Or,92)2 — (Or,v)2
= —cosfy - (0r,g1)1 —sinby - (h1)1 — (Or,v)2
= cos by - (Oz,V)e + sinby - (0y,v)e — (Or,v)2 =0, if p>2,
as well as
(ha)2 = (ha)2 — (Ouv)2
= s ((Omg1)1 + cos by - (Dr,92)2) — (D)
= ﬁ(@nmh — cos? 0y - (O, 91)1 — sinfy - cos by - (h1)1) — (D, 0)2
= sinfp - (Or, 1)1 — cos Oy - (h1)1 — (Ou,v)2
= —sinfy - (0z,v)e + cos by - (Oz,0)e — (Op,v)2 =0, if p>2.

Hence, <87-2§2>2 = <IA7,2>2 =0, ifp > 2.

Step 2. Now, assume that (g;); = 0 as well as (0, g;); = (h;); = 0,if p > 2, for j =1, 2.
Let G = (0,00)? be the wedge domain with opening angle 5. Here we set Iy =T and
Iy := {0} x (0,00) to obtain the decomposition G = I'y UT2 U {0} of the boundary of
G. We abbreviate p := |x| = |(x1,22)| for z € R? and define a transformation

: e — 7 1 (T 1
d:G— G, D(x1,29) = (pcos (200 arccos ( P )) , psin <290 arccos < p )>> )

It is not difficult to see that ® : G — G is a C*°-diffeomorphism. We set g1 := g1, 7L1 = hy
as well as

g2(t, sea) 1= ga(t, sT2), 7L2(t,862) = ha(t, s12), ted, s>0.
Then we have
g € Wy (L LP(T))) (1, Wy VE(T), i=12
hy € WP L)) n (W VET)), =12,

and lims 0 g;(t,sej) = 0 as well as limy 0 0,,9;(t, sej) = lim, o ﬁj(t,sej) =0,if p > 2,
for t € J and j = 1, 2. Now, we apply [2, Theorem VIII.1.8.5], which shows that there

exists u € WIP(J, LP(Q)) N LP(J, W?P(()) satisfying

u=g¢; and 8,,1ﬁ:E1 oanfl,

U=gy and 8,0 =nhy onJxIs.

Finally, we set u = 0 ® € WLP(J, LP(Q)) N LP(J,W*P(G)). By construction, u satisfies
all desired boundary conditions. Note that we indeed have u € LP(J, W*P(@)), which can
be seen as follows: We have 0;® ~ P’ as p— 0 and p — oo for j = 1, 2 for the first
derivatives of ® and 90;0,® ~ p~! as p — 0 and p — oo for j, k = 1, 2 for the second
derivatives of @, i.e. 9;®,, p0;0,P, € L>(G) for j, k, n =1, 2. Moreover, det VP = 200
However, the chain rule shows that

2 2
0;0k(W0 @) =Y ((OmOnil) 0 ) 0; 0Py + Y ((Onh) 0 B); 04Dy, i k=1, 2

m,n=1 n=1
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and we have p~19;u € LP(J, LP(G)) for j = 1, 2 due to Hardy’s inequality; cf. Lemma A.2.
Note that by construction we have d;u(-,0) = 0 in J for j = 1,2, if p > 2, since

limg 0 hj(t, se5) = 0, for t € J and j = 1, 2, if p > 2. O
Remark 4.2. For 6y = § we have cosfly = 0 and sinfly = 1 as well as 71 = —e1, v1 = —ea,
Ty = e and vy = —ey. In this case the compatibility conditions in Proposition 4.1 read

(1)1 = (g92)2 in J,
—(0z,91)1 = (h2)2 inJ, ifp>2,
—(02,92)2 = (hi)1 inJ, ifp>2.

These are precisely the compatibility conditions [2, (VIIL.1.8.7) & (VIII.1.8.8)]. This is

not surprising, since for 6y = § Proposition 4.1 is a special case of [2, Thm. VIIL.1.8.5].

Corollary 4.3. Let J = (0,T) with 0 < T < oo and let G C R? be the wedge domain
defined as in (1.2) with opening angle 6y € (0, 7). Let 1 < p < oo with p # 2. Furthermore,
let 'y = (=00, 0) - 71 and I'y = (0, 00) - 7o with

T = —e1, V] =—ey, To=(cosby, sin90)T, vy = (—sin by, cos GO)T
such that 0G =T1UT2U {0} and set T =T'1 UT's. Now, suppose that
hg) € Wy E) N W), =1
ny e Wy @) N W), =1
such that (h1)), =0 in J, if p > 2, and
(Or ho)1 + (Oryho)2 = (h1), in J, if 0o =5 and p > 2.
Then there exists a function u € WHP(J, LP(G,R?)) N LP(J,W?P(G,R?)) that satisfies
u-v="ho and curlu=h; onJxT. (4.2)
Proof. First note that for v € WYP(J, LP(G,R?)) N LP(J, W?P(G,R?)) we have
curlv = 1vg — dovy = 0-(v-v) —0y(v-7) on J xT.
Hence, if v-v = hg and curlv = hy on J x I, then 0, (v-7) = d:hg — hy on J x I'.
Now, we choose g; € Wpl*l/zp(q], LP(T';)) N LP(J, ngl/p(lj-)) for j =1, 2 such that
cosfy - 0r,g1 = —(1 —cosby) - 8Tlh(1) sin? 0y - h(l) at J x {0},
cosfy - Or,g2 = (1 —cosby) - 6T2h(()) sin? 6y - h( ) at J x {0}
and g;(-,0) =0in J for j =1, 2,if g # § and p > 2, and g; := 0 for j =1, 2, if Oy = 7.
Next, we define E(j) € Wplfl/Qp(J, LP(T';)) N LP(J, WpQ*l/p(Fj)) for j=1,2as
sin 6 - ho (t —s711) = h(()2) (t,sm2) + cos by - h(()l)(t, —s11) + gi1(t,—sm), teJ, s>0,

)
sin 0 - h(() )(t ST9) = —h(()l)(t, —s71) — cos b - h(()2) (t,sm2) + g2(t,sm2), teJ, s>0,
(

and Hy € Wy Y% (J,LP(D,R2)) N LP(J, W2 YP(D,R?)) as Hy := ho -7 + ho - v. By
construction we then have Hy-v = hg on J x I.

Finally, we define Egj) € Wpl/z_l/Qp(J, LP(T;)) N LP(J, Wz}_l/p(l“j)) forj=1,2as
sin Oy -Egl)(t, —s71) = (0r92)(t, s72) + (1 — cosby) - (8Tlhél))(t, —ST1), ted, s>0,
sin 0 -ﬁ?)(t,STg) := (0r,91)(t,—s71) — (1 — cosby) - (87211((]2))(15, ST2), ted, s>0,
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and Hy € Wy/*~?P(J, Lp(T, R2) N LP(J, Wy~ /P(T, R2)) as Hy := (9:hg—ha) -7+ hy - v.
By construction we then have Hy - 7 = d;hg — hy on J x I
Now, it is readily checked that
<H0>1 = <H0>2 n J,
<87—1H0>1 + cos b - <87—2H0>2 = sinf - <H1>2 inJ, ifp> 2,
—<6T2H0>2 — COS 90 . <87—1H0>1 = sin 90 . <H1>1 in J, ifp > 2,
Therefore, due to Proposition 4.1 there exists u € WP(J, LP(G,R?)) N LP(J, W?*P(G,R?))

that satisfies
w=Hy and d,u=H; onJxT.

By construction this function satisfies the desired boundary conditions. (I

Remark 4.4. For 0y = § we have cosfly = 0 and sinfly = 1 as well as 7 = —e1, v1 = —ea,

Ty = eg and o = —ej. In this case the compatibility conditions in Corollary 4.3 read
{(h1))y =0 inJ, ifp>2

*<8x1h0>1 + (6x2h0>2 = <h1>. inJ, ifp>2,
which explains the additional compatibility condition between hy and h; that is necessary
in this case:
—(0z,h0)1 + (Oz,h0)2 = (O, u2)1 — (Ogyur)2 = (curlu)e = (h1),, ifp>2,

for every u € W1P(J, LP(G,R?)) N LP(J, W?P(G,R?)) that satisfies u - v = hg as well as
curlu = hy on J xT.

The next auxiliary result is important, since it allows for the inhomogeneous divergence
constraint in problem (4.1).

Proposition 4.5. Let J = (0,T) with 0 < T < oo and let G C R? be the wedge domain
defined as in (1.2) with opening angle 0y € (0,7) and let I' = G \ {0}. Assume that

peE (1,00)\ {392002W, 3939_0%, 2}. Then for each

g € WHP(LWTIP(G)) N IP(J,WH(G))
there exists a function u € WHP(J, LP(G,R?)) N LP(J, W2P(G,R?)) such that

divu =g in JxG,
curlu=0, u-v=0 onJxT.

Proof. Let ¢ € LP(J, K3(G)) be the unique solution of the problem

Ap=gin J x G,
Oy,¢ =0o0n JxT,

which exists according to Corollary 3.8, since g € LP(J, Wwip (@)).

By the fact that we also have g € W1P(J, W‘l’p(G)) it follows that ¢ is also a
weak solution to the above problem, i.e. V¢ € WHP(.J, LP(G,R?)). Note that we have
0%¢ € LP(J,LP(G)) for |a| = 3, since ¢ € LP(J, KS(G)) Now, let u := V¢. We have then
u, 0%u € LP(J, LP(G,R?)) for |a| = 2. Interpolation (e.g. using the Gagliardo-Nirenberg
inequality) yields that d%u € LP(J, LP(G,R?)) also for |a| = 1. Summarizing we have
u € WEP(J, LP(G,R?)) N LP(J, W?P(G,R?)). Moreover, divu = A¢ = g in J x G and
curlu = curlVo =0on J x I'. Finally, u-v =0, =0o0n J x I. U

Now, we are in position to prove the main result of this subsection.
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Theorem 4.6. Let J = (0,7) with 0 < T < oo and let G C R? be the wedge domain

defined as in (1.2) with opening angle 6y € (0,7) and let I' = 0G \ {0}. Assume that

peE (1,00)\ {?ﬁ%}%’ 393%, %, 2, 3}. Suppose the data satisfy the reqularity condition

(fs 9, b1y ho, up) €F
and the compatibility conditions
divug = gli=0,  ifp>2,
up v = holi=o, ifp>3,
curl ug = hilg=o0, if p > 3,
as well as .
F(g,ho) € WHP(J,W™HE(G))
and (h1))y =0 in J, if p> 2, and
(O, ho)1 + (Oryho)2 = (h1), in J, if 0o =75 and p > 2.

Then there exists a unique solution (u,p) € E to problem (4.1).

Proof. The uniqueness of the solution (u,p) € E follows directly from [7, Corollary 1].

To show the existence of the solution to (4.1) we proceed in three steps: First, we
employ Corollary 4.3 and choose u; € E, such that

curl up = hy on J x 1T,
up-v="hyg ondJxI.
Next, we employ Proposition 4.5 and choose us € E, such that
divug = g —divu; in J X G,
curl uo =0, ug -v =10 on J xT.

Note that the compatibil/izy conditions and the fact that u; - v = hg on J x I' ensure
that g —divuy; € WHP(J, W=LP(G)) N LP(J, WIP(G)); cf. Remark 1.1. Finally, we employ
[7, Corollary 1] and choose (us, p3) € E such that

Orug — Aus + Vp = f — Qs + Aup — Qpus + Aug  in J X G,

divug =0 in J x G,
curl us =0, ug-v =20 on J x T,
u3(0) = up — u1(0) — uz(0) in G.
By construction (u,p) := (u1 + ug + us, p) € E is a solution to (4.1). O

4.2. Inhomogeneous Free and Perfect Slip Boundary Conditions. Let E and F be
defined as in (1.4) and (1.5), respectively. Here we consider the system (1.7) and show that
it is uniquely solvable within the maximal regularity class E. Recall that the boundary of
G is decomposed as in (1.3) as 0G =T'U {0 } with its smooth part given as I' =I'y UT's.
Also recall that (7, v) = (7, v;) for j = 1, 2 denotes the positively oriented pair of unit
tangential and unit outer normal vector on I'; as introduced in Section 1.

For the boundary conditions in problem (1.7) we observe that

_ 1 8$1u1 + 8zlu1 8$IUQ + 6132’11,1 v
2 (9$2U1 + 8z1u2 8$QUQ + 6z2u2

(o)) 1 (0
2 <6x2(u-l/)> TE 2 (8,,1@) T

7T D (u)v
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=10-(u-v)£30,(u-7) onJxT,
which implies that
™'Dy(u)y = 30 (u-v) + 30, (u-7)
= 0r(u-v)— 30 (u-v)+ 39, (u-7) = 0-(u-v) — eurlu onJ xT
as well as
' D_(u)v = 30, (u-v) — 30,(u-7) = temrlu on J xT.
Therefore, if the tangential boundary condition in (1.7) is posed based on D, then (1.7)
is equivalent to

O —Au+Vp = f in JxG,
divu =g in JxG,

(4.4)
u-v=hyg on JxTI,
u(0) =up in G
together with the boundary condition
curlu = 2(0;ho + h1) on J xTI. (4.5)

Analogously, if the tangential boundary condition in problem (1.7) is posed based on D_,
then (1.7) is equivalent to (4.4) together with the boundary condition

curlu = —2h; on J xT. (4.6)

Both systems (4.4, 4.5) and (4.4, 4.6) are uniquely solvable using Theorem 4.6 and, hence,
we obtain the following result.

Corollary 4.7. Let J = (0,T) with 0 < T < oo and let G C R? be the wedge domain
defined as in (1.2) with opening angle 6y € (0,7) and let I' = 0G \ {0}. Assume that
p € (1,00) \ {%20%, &03%’ %, 2, 3}. Suppose the data satisfy the reqularity condition

(f, g, h1, ho, uo) €F
and the compatibility conditions
divug = gli=0,  ifp>2,
ug v = holi=o, ifp>3,
—7T'Dy(uo)v = hili=0, ifp >3,

as well as
F(g.ho) € WP (J,W-1P(@G)).

If the boundary condition is posed based on D, then assume the compatibility conditions
{(Orho +h1)g =0in J, if p> 2, and

%<871h0>1 + %(87-2h0>2 = <87h0 + h1>. m J, if Oy = g and p > 2.

If the boundary condition is posed based on D_, then assume the compatibility conditions
(h1)g =01n J, if p > 2, and

—%(87—1h0>1 — %<87—2h0>2 = <h1>. m J, Zf90 = g andp > 2.

Then there exists a unique solution (u,p) € E to problem (1.7).
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4.3. Proof of Theorem 1.2. A unique solution to (1.1) can now be obtained with the
aid of the usual perturbation argument. To this end, we denote by L : E — F the linear
operator induced by the left-hand side of problem (1.7). Now, if (f, g, h1,ho,up) € F
satisfy all compatibility conditions stated in Theorem 1.2, then (1.1) is equivalent to

L(U,p) = (fvga hl —Qu-T, h07u0)'
Now, we choose hy € F, such that (hi), =0, if p > 2 and hy|—o = aug|r - 7. This is pos-
sible, since (aug - 7), = 0, if p > 2, due to the requirement («), = 0. By construction, the
data (f,g,h1 — h1, ho,up) € F satisfy all compatibility conditions stated in Corollary 4.7.
Hence, Corollary 4.7 shows that there exists a unique solution (u.,p«) to the problem

L(us,ps) = (f,9,h1 — %hho,uo). Thus, the ansatz (u,p) = (us, ps) + (v, q) leads to the
problem

L(U7Q) :%1 —Oéu*|1'“7'—0é'U|1'“7', (U7Q) GOEv
where the linear operator LL : jJE — (IF. between the spaces
ow—Aw+Vr=0in J X G, divw:OianG}

w-v=0onJxI', wi—=0inG

oF := {(w,r) ek

and
oFri={heF, i (h), =0, ifp>2, hlico=0, if p>3}

is given as L(w, r) := (curlw)|r for (w,r) € oE.

Thanks to the homogeneous initial conditions the operator L is a linear isomorphism
by Corollary 4.7, where the operator norm of L.~! does not depend on the length 7' > 0
of the time interval J = (0,7") under consideration. Moreover, we have

<7L1—ozu*-7'>. =(aw-1), =0, ifp>2
since (a), = (h1), = 0, as well as
(h1 — atie|r - 7)]i=0 = hili=0 — auglr -7 =0, if p >3,

which shows that h; —auy|p-T € oF;. Clearly, we also have av|p -7 € oF, for all (v,q) € oE
and we are left with the task to solve the problem

(1-L7'R)(v,q) = L™ (h1 — auy|p - 7), (v,q) € oF,

where the linear operator R : gE — (F; is given as R(v,q) := —awv|p - 7. However, this
operator is of lower order and the usual estimates employed within perturbation arguments
for parabolic problems show that 1 — L™'R is invertible by a Neumann series argument,
at least for small values T' < T*. Here T* > 0 is independent of the data. Consequently,
problem (1.1) may be solved this way successively on small time intervals, which cover
any given time interval J = (0,7) after finitely many steps. This completes the proof of
Theorem 1.2.

APPENDIX A. HARDY’S INEQUALITY ON THE 2D WEDGE DOMAIN

The famous Hardy’s inequality is well known and many proofs exist within the litera-
ture. However, a proper formulation for the wedge requires boundary conditions at the
corner point x = 0 or at infinity, if one wants to have a version of Hardy’s inequality
at hand, that is not only valid for equivalence classes of functions that differ by additive

constants. A version in the latter sense is easily deduced as a consequence of, for instance,
[2, Corollary VIII.1.5.3].
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However, we note that L5(0,00) < Li (0,00) for 1 < p < oo by Hélder’s inequality,
provided that v € R with v < p — 1. Hence, if u € L} (0,00) and v’ € L%(0,00), then

u € VVI})C1 (0,00), if v < p — 1, which shows that the trace u(0) is well-defined in this case.
Analogously, the value u(oco) = limy oo u(z) is well-defined, if v > p — 1. Now, with the
same proof as given in [2] we obtain the following version of [2, Corollary VIII.1.5.3], which

is Hardy’s inequality on the halfline (0, co).
Corollary A.1. Suppose 1 < p < oo, vy € R and v # p—1. Let u € LY (0,00) with

loc

u' € L5(0,00) such that u(0) =0, if v < p—1, and u(co) = 0, if v > p — 1, respectively.
Then we have
|5
T 1115 (0,00)

with a constant C(p,~) > 0 that is independent of .

< O 7)1l 2 (0,00

In the following let 1) := 1), o ¢g : Q@ — G be the transformation from the wedge onto
the layer domain defined at the beginning of Section 3. As consequences of Corollary A.1
we obtain:

Lemma A.2. Let 1 < p < oo, v € R such that v # p — 2 and p := |(x1,22)|. Let
uw € L (G) with Vu € L5(G) such that u(0) =0, if y < p—2, and u(oc) =0, if v > p—2,

loc
respectively. Then we have

~1
o™ ullze@) < Clp,7) IVull e (@
with a constant C(p,~) > 0 that is independent of u.
Proof. Let ¥ € R such that 4 # p — 1. Let v € LY (0,00) with v’ € Lg(O, 00) such that

loc
v(0) =0, if ¥ <p—1, and v(co) =0, if ¥ > p — 1, respectively. Then by Lemma A.1 we
have that

/e(&_p)ﬂv(ex)]”emdx:/
R 0

:C(p,&)éeix\v’(ex)\exdm (A.1)

Now, let v € L} (G) with Vu € L%(G) such that u(0) =0, if v < p—2, and u(c0) = 0,
if v > p — 2, respectively, and set 7 := v + 1. Then the above calculation implies

p 6o
ol = | prieren) = [ [ 0P, o)l deds
v G 0 JR

0o
= / / P2y (4 (2, 0))|Pe” da:db
o JRr

p

v(y)
y

ydy < C(p,7) /0 V' (y) [Py dy

u(xy, xe)
p(r1,72)

0o
<Clpy +1) / / OV T4z, 0)) [Pe” dedd
0 R
o
=C(p,v+ 1)/ /e’“wu(q/}(x, 0))|Pe>* dzdf
0 R
— Clpy + 1) / Ve, 22)Pd(zr, 22)
G

=C(p,y+1) Hvuuig(g)'
Note that ¥ 2 p— 1, if and only if v 2 p — 2. O
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Lemma A.3. Let1 < p < 00, v € R such that v # —2 and p := |(x1, z2)|. Letu € L} (G)
with pVu € L5(G) such that u(0) = 0, if v < —2, and u(oco) = 0, if v > —2, respectively.
Then we have

lullzz @y < Clp,7) lpVull e @
with a constant C(p,~) > 0 that is independent of .

Proof. Let 4 € R such that 5 # p — 1. Let v € Ly, (0,00) with v € L£(0,00) such that
v(0) =0,if ¥ < p—1, and v(c0) = 0, if ¥ > p — 1, respectively. Then as above by
Lemma A.1 we obtain (A.1).

Now, let w € L} (G) with pVu € L5(G) i.e. p1+%Vu € LP(@G), such that u(0) = 0, if
v < =2, and u(o0) = 0, if v > —2, respectively, and set ¥ := v 4+ p + 1. Then the above
calculation implies

0o
|uH / lu(z1, 22)[Pp7d(z1, 22) / /e7$|u (z,0))[Pe**dzdf

0o
= / / OV (4 (2, 0)) P dxd
o JRr

0o
<C(p,y+p+1) / / eOHPHVT |Gy (42, 0))|Pe® dadf
0 R

0o
=C(p,v+p+1) / / P27y (z, 0)) P2  dudb
o Jr
= Clpy+p+1) [ Va0 Pd(an, 2
G

=C(p,y+p+1) HPVUHLP(G
Note that ¥ =2 p — 1, if and only if v = —2. [l
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