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Introduction

In this chapter a short overview of topics, the tradition, and the structure of the book is
provided. The book is about meta-induction and how to engineer applications thereof in
epistemology. It is in the wider tradition of formal learning theory and machine learning.
And it consists of three main parts: a part introducing basic notions and results of the
theory of meta-induction; a part on applying these results in the classical epistemic realm;
and a part on applications in the realm of social epistemology.

Epistemologists are concerned with the analysis of epistemic notions like
justification, truth, belief, and knowledge. In doing so, they often put forward
constraints and desiderata and try to design explications in agreement with
these. Sometimes the desiderata turn out to be too demanding and one is
able to show that no explication adequately suits them. In such a case one
starts to fiddle around with the desiderata until an explication is no longer
excluded for logical reasons. Then the designing procedure starts again. If
one does so by help of tools and methods of the formal sciences, then this
intuitive behaviour is alike that of an engineer who is faced with a task or
problem and needs to devise a solution for it. In practice, it also quite often
turns out that a task is too demanding in order to be reasonably accom-
plished. Then ways of conservatively modifying the task are investigated
and devising a solution for the modified task starts again.

This book tries to tackle epistemological problems in the way just out-
lined; it deals with explicating the notion of epistemic justification broadly
construed, and it does so by employing concepts and results of the the-
ory of meta-induction. It takes up the sceptic’s challenge that this notion
is incoherent and argues for a conservative modification of the desiderata.
The main idea is to explicate justification not as an absolute, but a relative
notion: An inference method is not only justified, if it maximises epistemic
values in absolute terms, but also, if it optimises them in comparison or
relative to its alternatives. Such an instrumental approach is characteristic
for rationality and rationalisation in the practical domain, in particular in
engineering; and next to the choice of our formal tools, it is a reason why
we call this kind of investigation an approach of epistemic engineering.

Before we outline the topics of the book in more detail, we want to lo-
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Introduction 2

cate our investigation very generally within the epistemic enterprise. As
we have mentioned already above, epistemology is concerned with the key
notions of justification (J), truth (T), belief (B), and knowledge (K), and we are
focusing on justification. Whereas in the 20th century investigations of T, B,
and K underwent dramatic developments, it seems that investigations of
J were in a resigning slumber for a long time, and that only quite recently
new developments in philosophy lead to an awakening within this domain
also. Let us illustrate this by help of comparison. Willard van Orman Quine
aptly claimed that “more than once in history the discovery of paradox has
been the occasion for major reconstruction at the foundations of thought”
(1966, p.3)—and without exaggerating it seems that also in epistemology
one can indicate research foci quite well by reference to paradox or anti-
nomy. Clearly, the list of epistemic paradoxes and antinomies is long (for
an overview see Sorensen 2018; and more generally on paradoxes in phi-
losophy see Clark 2002). However, it seems reasonable to attribute a great
bulk of 20th century epistemic research to the following four: Regarding K,
a case in point is Gettier’s paradox: (KA1) One knows p if one has a justi-
fied true belief of p. (KA2) Justification is closed under known entailment.
(KA3) There are Gettier cases where one lacks knowledge, although one has
an (indirectly) justified true belief knowingly entailed by a (directly) justi-
fied belief which is false. Regarding B, it is the lottery and preface paradox
which gained lots of attention: (BA1) It is not rational to believe a contra-
diction. (BA2) Rational belief is closed under conjunction. (BA3) Lockean
bridging: One rationally believes p iff one’s degree of belief in p passes a
threshold. (BA4) There are cases where one’s degree of belief in p and that
in q passes such a threshold, but one’s degree of belief in p&q does not.
Regarding T, the liar antinomy is most prominent: (TA1) Sentence (TA1) is
not true. And, finally, regarding J it is Agrippa’s trilemma: (JA1) non-scepti-
cism: Some beliefs are justified. (JA2) non-dogmatism: A belief is justified
only by help of another justified belief. (JA3) non-coherentism: There are
no circles in justification. (JA4) finitism: All justificatory chains are finite.

The first three paradoxes or antinomies have led to a “major reconstruc-
tion at the foundations of thought”. Just for illustrative purpose, with-
out claiming that this point of view is exhaustive, regarding K, knowledge,
Gettier’s paradox (KA1)–(KA3) triggered a whole industry of epistemic re-
search which, amongst others, resulted in a division of the epistemic com-
munity in internalists and externalists; with respect to B, belief, the lottery-
and preface paradox (BA1)–(BA4) led to far-ranging revisions of the qual-
itative notion of belief, some argued even for its abandonment, while oth-
ers fundamentally revised the bridging principles between qualitative and
quantitative notions of belief; regarding T and the liar (TA1) Alfred Tarski’s
theory of truth was epoch-making and, e.g., the distinction between object
and meta language became indispensable for any primer in logic. But how
about the fourth antinomy, the sceptic riddle of J, justification (JA1)–(JA4)?
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Here it seems that many philosophers have thrown in the sponge and scep-
tics remained sceptic, dogmatists dogmatic, and coherentists simply coher-
ent. Especially starting with the second third of the 20th century and the
upcoming of theories of confirmation it seems that the justification problem
was replaced by a characterisation problem, namely the problem of how to
formally describe inductive inferences which one already accepted on in-
tuitive grounds (see Vickers 2010).

An exception in this respect is Hans Reichenbach who was the first to
think of justification in relative terms (see 1938, and 1940). Since focusing
on achieving the best result relative to one’s alternatives is a quite pragmatic
turn in comparison of focusing on achieving the best result simpliciter or ab-
solutely, this approach is also called a pragmatic vindication. Reichenbach’s
approach was pioneering, but failed to dramatically change our founda-
tion of thought, because it seemed to prove too much and too little at the
same time. Here is why: Reichenbach assumed that justified predictions
are possible only for event series with a limit; however, there are infinitely
many different competing methods which allow one to predict the limit of
an event series correctly. I.e., in comparison with each other, all these meth-
ods are on a par and hence would be justified. So, Reichenbach’s approach
needs to be restricted in order to determine these cases better. On the other
hand, his relative justification proves too little, because for obvious reasons
one can be predictively successful also regarding event series without a
limit, and so his approach needs to be extended in order to account also for
these cases.

Now, both issues are addressed by two contemporary approaches,
namely formal learning theory and the theory of meta-induction (see Hen-
derson 2018, sect.7). Formal learning theory addresses the problem that a
Reichenbachean vindication licenses too many inferences or sources of jus-
tification. The idea is that intuitively acceptable inferences allow for achiev-
ing further epistemic values which others do not. Further epistemic values
might be efficiency, quickness, minimal retractability, etc. The formal learning
approach traces back to Rudolf Carnap’s programme of logical probabilities
(1950/1962), was criticised early on from Reichenbach’s student Hilary Put-
nam via computability considerations (1963), and was prominently taken
up by Ray J. Solomonoff (1964); likewise as Putnam, but independently
of him, E. Mark Gold had also found out about a connection between in-
duction and computability while modelling language acquisition of a child
(learner) whose mental structure encodes syntactic competence (learning
target, hypothesis). Due to this influential model this approach gained its
label formal learning theory. Contemporary perhaps most prominent is the
formal learning approach represented by Kevin T. Kelly (1996). A survey of
formal learning theory is provided in Osherson, Stob, and Weinstein (1986,
subsequent to Gold), Sterkenburg (2018, subsequent to Putnam), and K. T.
Kelly, Schulte, and Juhl (1997, subsequent to both).
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The other route to the problem of epistemic justification is that of meta-
induction which was sketched programmatically by Reichenbach himself,
but carried out only quite recently by Schurz (2004, 2008, 2009, 2012a,
2012b, 2019), Schurz and Thorn (2016), Thorn and Schurz (2012, 2016, forth-
coming), Arnold (2010), Feldbacher-Escamilla (2012, 2017), Feldbacher-
Escamilla and Schurz (m ), Henderson (sect.7.3 2018), and
Sterkenburg (2019). Here the idea is that one can get rid of Reichenbach’s
assumption of a limit in the series to be predicted simply by applying in-
duction not, as is ordinarily done, on the object level, but on the meta level
in form of extrapolating the success rates of prediction methods. There is
an analytic result of the theory of meta-induction and a branch of machine
learning which shows that such an extrapolation is guaranteed to be predic-
tively successful in the long run relative to all available prediction methods;
hence, meta-induction accounts for relative justification.

It is this route to epistemic justification that we take up in this book.
We proceed in three steps: First, we present analytical results of meta-
induction; second, we apply them to the core problem of epistemic justi-
fication, namely to the problem of justifying inductive practice; and third,
we apply them to further problems of epistemic justification in the wider
sense, particularly to the problem of justifying social epistemic practices.
For this reason the book consists of three parts:

Part I Here we outline the programme of epistemic engineering. We show
that, in contrast to traditional approaches, this programme aims
at overcoming the problem of (absolute) epistemic justification via
stressing the relative notion of justification and by this shifting the
epistemic task from proving an ideal towards proving an optimum
(chapter 1). In order to spell out this approach, we first describe
the setting in detail (chapter 2); then, since scepticism—see (JA1)
in Agrippa’s trilemma—is the main challenger to epistemic justi-
fication and deceiving is its strongest weapon, we study the logic
of deceivability and show a blind spot in the best deceiver’s strat-
egy which allows for proving the main optimality result to be ap-
plied in the rest of the book (chapter 3). Finally, we show that and
how, given further constraints, this main result can be generalised
(chapter 4).

Part II After having introduced all necessary engineering tools and the
main optimality result, we present the meta-inductive solution to
the core problem of epistemic justification, namely to the problem
of justifying induction (chapter 5); once the core problem has been
addressed, a new riddle seems to show up, namely the problem of
how to justify induction without, at the same time, also justifying
anti-induction; however, as we will argue, the assumptions un-
derlying this follow-up problem are self-defeating and hence the
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follow-up problem does not undermine the solution of the core
problem (chapter 6). In this part we also outline some bearing of
this solution to the problem of justifying the two other forms of
inferences used in science, namely abduction (chapter 7), and de-
duction (chapter 8).

Part III Finally, we are showing how justification in terms of optimisation
allows also for new approaches to the problem of justification in
the social epistemic realm. We go through the core topics of social
epistemology and show how meta-inductive optimisation allows
for a new approach to the problem of testimony (chapter 9), peer
disagreement (chapter 10), judgement aggregation (chapter 11),
and the wisdom of the crowds (chapter 12).

Before we delve into these issues, a brief note for the reader on what
to expect and what to not expect is in place: The book is about applying
results of the theory of meta-induction to philosophical problems; above
we stated that there are two modern successors of Reichenbach’s vindica-
tion approach to epistemic justification, namely formal learning theory and
meta-induction. It is important to note that we consider here the latter only
and not the former. In formal learning theory one approaches the prob-
lem of justifying induction the same way as a computer scientist conceives
of computational problems which is to find an algorithm that is supposed
to be guaranteed to output a correct answer on every possible input. The
main problem formal learning theorists are after is the question which con-
ditions have to be imposed on a series of events in order to guarantee for
an algorithm, a computable object-inductive method, to achieve reliable re-
sults. In contrast to this, we almost never speak about computability and
complexity—readers interested in this approach are referred to (K. T. Kelly
1996; Sterkenburg 2018). Furthermore, the focus of the first part of the book
is on presenting the main optimality result of the theory of meta-induction based
on theorems about regret-based online learning of machine learning; we aim at
providing a didactically accessible presentation intended especially for a
philosophical audience where basically high school mathematics (and a lit-
tle bit of sweating) should suffice for verifying the result. We consider it to
be the main result, because one can find (a reference to) it in primers and
course manuals of so-called online machine learning. We do not provide
much technical variations or new results in this respect—for such we refer
the interested reader to (Schurz 2019). For didactic reasons we also aimed
at presenting the logic of deceivability and its application as far as possible in
combinatorial terms. Besides the didactics of the first part, the reader can
and should particularly expect applications of the theory of meta-induction
in this book. The application within the classical realm of epistemology
(part II) is thought to provide self-contained support of and additions to
the argumentation of Schurz (2019). The applications within the social
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epistemic realm (part III), on the other hand, provide a completely new
expansion; we hope that they demonstrate further how far-reaching and
fruitful the meta-inductive uncovering and blindspotting of the logic of de-
ceivability is, and how by this the problem of epistemic justification can be
overcome.

“I have the simplest tastes.
I am always satisfied with the best.”

Oscar Wilde



Part I

Epistemic Engineering



Chapter 1

A Tour Through Contemporary
Epistemology

This chapter provides a logical analysis of the problem of epistemic justification. Then
merits and problems of the three classical approaches to this problem, namely founda-
tionalism, coherentism, and infinitism are briefly discussed. Finally, the programme of
naturalised epistemology, the programme whose stance on epistemic engineering this
investigation uses as a take off, is sketched.

In this book we are mainly concerned with the problem of epistemic jus-
tification. The problem of epistemic justification is this: We think that we
are justified in believing some propositions. However, such justification
presupposes reasons, and such reasons, in turn, are in need of justifica-
tion. So, given we are justified in believing something, we seem to face
the following problem: Either we dogmatically stop at some point of the
reasoning chain and do not provide any further reason. Or we circularly
provide reasons. Or we never stop and go on with an infinite regress. This
trilemma of justification is typically ascribed to Agrippa the Sceptic (first cen-
tury CE) who mentioned two further modes or problems of justification: dis-
sent (we will discuss this problem a little bit in chapter 10 on epistemic dis-
agreement; this mode might be subsumed under epistemic relativism in the
sense that if there is reasonable disagreement, adherents of the dissent camp
might argue for a relativist position), and relation (which in the modern
setting might be interpreted as some kind of epistemic contextualism, ac-
cording to which the question of whether p is true or not is considered rel-
ative to a context). Agrippa’s trilemma became quite influential in his after-
math during so-called Pyrrhonism, where many ancient academics turned
to scepticism—they refused reasoning by dogmatism, circularity, and in-
finite regress, and—roughly speaking—bit the bullet of denying the exis-
tence of justified belief (see Sextus Empiricus 1999, book I, sect.1, p.45). We
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Chapter 1. A Tour Through Contemporary Epistemology 9

can explicate the trilemma even as an antinomy, which is—once one makes
the non-sceptic stance explicit—a quadrilemma:

The Problem of Epistemic Justification.

(EJ1) Some beliefs are justified.
Schematically: ∃xJx

(EJ2) No belief is justified unless some other belief serves as a justified
reason for it.
Schematically: ∀x(Jx → ∃y(Jy & yRx))

(EJ3) If a belief is in the reason-ancestry for justifying another one, then
the latter cannot serve (directly or indirectly) as a reason for jus-
tifying the former.
Schematically: ∀xyz(xRy → (¬yRx & yRz → xRz))
(I.e.: R is transitive and asymmetrical.)

(EJ4) The chain of justification via reasons is finite.
Schematically: The axioms on J and R from above have a finite
model.

These four, prima facie plausible, principles of justification and reason
are inconsistent: It is easy to see that the axioms in (EJ1)–(EJ3) have no
finite model. Assume, e.g., a domain with three elements p1, p2, p3 and let
Jp1 (in order to satisfy (EJ1)). Then, by (EJ2), we need to assume Jp2 and
p2Rp1 (w.l.o.g.—analogously for p3; p1Rp1 is excluded by asymmetry of R
according to (EJ3)). Now, since Jp2, we need to assume further that Jp3 and
p3Rp2 (by (EJ2); p1Rp2 is, again, excluded by asymmetry of R). Now, since
Jp3, we need to assume that for some x: xRp3 (by (EJ2)). x �= p3 and x �= p2
due to the asymmetry of R. Furthermore, x �= p1 due to asymmetry and
transitivity of R according to (EJ3) (p3Rp2 and p2Rp1 implies p3Rp1 which
excludes p1Rp3). Hence, in order to satisfy the axioms we need to assume
a further element p4. Induction on the number of elements of the domain
completes the proof that no finite model satisfies (EJ1)–(EJ3).

In order to resolve the problem of justification, the following classical
stances arose (see Van Cleve 2014, p.256):

• Scepticism: There is no justified belief, i.e. vs. (EJ1).

• Foundationalism (or dogmatism): There are some justified beliefs
which are not in need of any justified reasons, i.e. vs. (EJ2).

• Coherentism: There are some beliefs serving (directly or indirectly)
mutually as justifying reasons, i.e. vs. (EJ3).

• Infinitism: The chain of reasoning need not be finite, i.e. vs. (EJ4).
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Foundationalism

p1 p2 p3 p4

Coherentism

p1 p2 p3 p4

Infinitism

p1 p2 p3 . . .

Figure 1.1: Traditional approaches to the problem of epistemic justification (the ar-
rows represent the relation of providing a reason): Foundationalism assumes that
there are reasons which are not in need of any further justification. Coherentism
assumes that at least some reasons can provide mutual justification. Infinitism as-
sumes that the chain of reasoning can be infinitely long. (For simplicity, transitivity
is omitted in the graphical representation.)

The differences between the three main non-sceptical positions is illus-
trated with help of the schemata in figure 1.1.

Our formulation of the problem of epistemic justification is a little bit
simplified. First of all, it seems that there are further possibilities to over-
come this problem. Well known is, e.g., Karl R. Popper’s formulation of the
problem as Fries’ trilemma:

“The problem of the basis of experience has troubled few
thinkers so deeply as Fries. He taught that, if the statements
of science are not to be accepted dogmatically, we must be able
to justify them. If we demand justification by reasoned argu-
ment, in the logical sense, then we are committed to the view
that statements can be justified only by statements. The demand
that all statements are to be logically justified [. . . ] is therefore
bound to lead to an infinite regress. Now, if we wish to avoid
the danger of dogmatism as well as an infinite regress, then it
seems as if we could only have recourse to psychologism, i.e. the
doctrine that statements can be justified not only by statements
but also by perceptual experience. Faced with this trilemma—
dogmatism vs. infinite regress vs. psychologism—Fries, and
with him almost all epistemologists who wished to account for
our empirical knowledge, opted for psychologism. In sense-
experience, he taught, we have ‘immediate knowledge’.” (Pop-
per 2002b, p.75)

Popper mentions the dogmatist and the infinite regress approach to epistemic
justification, however, he also notes another approach, namely psycholo-
gism, according to which the relation of justification is not only between
statements, but also between perceptual experiences and statements. Re-
garding statements p1, p2, . . . the axioms in (EJ1)–(EJ4) still hold true. How-
ever, they do not hold for perceptual experiences e1, e2, . . . . In the same line
as foundationalism, psychologism needs to revise at least principle (EJ2).
This might be as follows:
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2’. No belief is justified unless some other belief serves as a justified rea-
son for it or it is granted by experience.
Schematically: ∀x(Jx → (Ex ∨ ∃y(Jy & yRx)))

It is easy to see that this is not only in the line of foundationalism, but
an approach which was and still is wholeheartedly embraced by logical
empiricists.

Different from this is Popper’s programme of falsificationism which ap-
proaches epistemic justification in a way not covered by the argument
above. The idea of falsificationism is that one need not to argue for a be-
lief to be justified, but that justification is provisorily granted for any (in
principle falsifiable) belief per default, i.e. from the start on. The task then
is to rule out those beliefs that are reasonably considered to be unjustified,
namely falsified. This principle of falsificationism is not in need of justifica-
tion, since—according to falsificationism—it is justified per default. Since
we do not discuss falsificationism any further in this investigation (with
one exception: we will pick up falsificationism very briefly again when dis-
cussing the problem of induction in section 5.2), one of our simplifications
of the problem of epistemic justification consists in bypassing per default
justification.

Another simplification of our framing is that the problem of epistemic
justification usually does not concern just simple chains of reasoning, but
complete systems of belief. However, in order to make the difference be-
tween the main approaches to this problem clear, the simple chain struc-
ture suffices. Also, as Atkinson and Peijnenburg (2009, p.183) already men-
tioned, “the chain is a good starting point: it can help us to understand
more realistic cases, which have been represented as trees, rafts, pyramids,
teepees, houses of cards, cobwebs, or crossword puzzles, all of which have
single chains as their elements.”

Finally, and perhaps most importantly, we need to mention that this
framing is only about the problem of justification on the lower level of ba-
sic propositions (p1, p2, . . . ). However, it is clear that justification is also
about the rules which allow us to proceed from one proposition to another
(represented as arrows in figure 1.1). Typically, these rules are considered
to be either deductive or inductive, sometimes also abductive. The so-
called problem of higher level justification concerns the question of how to
justify these inference rules (see Schurz 2019, sect.3.1). Perhaps the most
prominent of these problems is David Hume’s problem of induction. How-
ever, if one assumes that the inductive and abductive inference rules can
be formulated as principles within a system of deductive rules only, then
one can also embed most of these problems into the above framing of the
problem of epistemic justification. The idea is to reduce all problems of
higher level justification to a single problem of higher level justification,
namely the problem of how to justify deduction, and an increasingly large
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set of lower level justification problems concerning the justification of ba-
sic propositions, namely the principles underlying inductive and abductive
inferences. Since deductive inferences are truth preserving, their justifica-
tion might be considered to be the least problematic one (we will discuss
this justification problem briefly in chapter 8). Among a similar line of
argumentation we could frame the problem differently such that it tends
towards the other extreme: Given the (partial) intertranslatability of prin-
ciples and rules, one can decrease the number of necessary lower level jus-
tifications (to a completely arbitrary degree) by reducing the set of basic
propositions, while at the same time increasing the number of necessary
higher level justifications by increasing the set of inference rules. Figure 1.2
visualises this fact which is well known from logical calculi (where there are
systems with a couple of axioms and few inference rules and systems with
no axioms at all, but many inference rules). In this sense, the foundation-
alist, coherentist, and infinitist approaches described above can be equally
well considered as approaches to the problem of higher level justification.

p1 p2

↑︷ ︸︸ ︷
lower level justification

higher level justification︸ ︷︷ ︸
↓

p1

higher level justification︸ ︷︷ ︸
↓

Figure 1.2: Mutual (partial) reducibility of the problem of higher level justifica-
tion and lower level justification: Usually, the fewer inference rules a system has,
the stronger its basis needs to be in order to allow for enough inferences. In this
case one faces two epistemic problems of justification: a problem of higher level
justification and several problems of lower level justification (left side). Typically,
also the more inference rules a system has, the weaker its basis can be in order to
account for the same inferences. In the extreme case the problem of lower level
justification vanishes completely and one faces several problems of higher level
justification (right side).

To sum up, the problem of epistemic justification consists in the fact that
non-dogmatic, non-circular, and finitary constraints on justification and
reasons are—taken together—only compatible with scepticism. To over-
come the problem there are several alternatives on the market: One can
give up at least one of these constraints and accept foundationalism, coher-
entism, or infinitism. Or one can bite the bullet and accept scepticism.

As the achievements of meta-induction show and as the further inves-
tigations in this book aim to show, is that scepticism can come in different
forms: Being an epistemic sceptic does not imply that one needs to con-
sider all notions of epistemic justification as empty. One can accept that
the strict notion of epistemic justification as characterised by (EJ2)–(EJ4) is
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indeed not instantiated by any belief we have (i.e. one denies (EJ1)). How-
ever, instead of throwing out the baby with the bath water and claiming
that none of our beliefs can be justified at all, one might try to consider
other notions of epistemic justification and check whether they allow for
rationalising our beliefs. An alternative on the market that is concerned
with such a different notion of epistemic justification is naturalised episte-
mology. Here the idea is to accept the sceptical consequence of the strict
notion of justification as characterised by (EJ2)–(EJ4), but at the same time
to introduce a relative notion of justification which does not demand per-
fect or good enough epistemic performance, but simply optimal epistemic
performance—optimal in the sense of being best compared to all the other
available alternatives in the light of some given desiderata.

Here we will not discuss plain scepticism further. Rather, we will in-
vestigate and pick out the relevant parts of it in the context of methodolog-
ical scepticism in section 2.2 (pp.51–54). In the remainder of this chapter
we want to briefly discuss some merits and problems of the mentioned al-
ternatives: foundationalism (section 1.1), coherentism (section 1.2), and in-
finitism (section 1.3). Afterwards, we roughly sketch the programme of nat-
uralised epistemology and identify relevant parts of our approach therein
(section 1.4).

1.1 Foundationalism

Foundationalism comes in different forms. There is classical foundational-
ism which claims that the “foundation of knowledge” is immediately intu-
itively graspable. A strong version of classical foundationalism also puts
forward an infallibility constraint for the foundation. Modern versions of
foundationalism are more moderate regarding the infallibility constraint
and allow for a much weaker basis. Furthermore, the notion of justifica-
tion approached by foundationalism is sometimes spelled out in internalist
terms, i.e. justification is based on reasoning internal to the subject, i.e. rea-
soning the subject is aware of. This was the standard approach in almost all
traditional foundationalist approaches. And sometimes it is spelled out in
purely externalist terms, i.e. independent of some awareness of justifying
reasons. This is an approach which arose especially in course of a turn in
epistemological research caused by Gettier (1963).

Roughly speaking, all forms of foundationalism have at their basis the
claim that we are justified (J) in believing something (EJ1), that justifica-
tion is neither directly nor indirectly circular (EJ3), and that the chain of
justification and reasoning comes to an end (EJ4). More specifically, foun-
dationalism even states necessary and sufficient conditions for justification
J. In Aristotle, e.g., we find such a definition in his characterisation of the
axiomatic method where intuitively graspable principles make up for the
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axiomatic foundation of science. Thomas Aquinas provides a similar char-
acterisation:

“Now a truth is subject to a twofold consideration—as known
in itself, and as known through another. What is known in it-
self, is as a ‘principle,’ and is at once understood by the intellect.
[. . . ] On the other hand, a truth which is known through an-
other, is understood by the intellect, not at once, but by means
of the reason’s inquiry[.]” (see Thomas Aquinas 1981, answer
to Quaestio 57, a2)

And in René Descartes we find it by his reference to the method of geom-
etry, namely putting forward a set of axioms and making demonstrations
which should serve as a general pattern for justification:

“Those long chains of utterly simple and easy reasonings
that geometers commonly use to arrive at their most difficult
demonstrations had given me occasion to imagine that all the
things that can fall within human knowledge follow from one
another in the same way.” (Descartes 1637/1998, part ii, p.11)

This classical foundationalist approach to justification was perpetuated by
adherents of rationalism as, e.g., Gottfried Wilhelm Leibniz. (Note, since as
a foundationalist Leibniz denied (EJ2), (EJ2) must not be mixed up with
his principle of sufficient reason which is not an epistemic, but a metaphys-
ical principle and according to which every effect has a cause or nothing
happens without a reason.) Foundationalism was also the main approach
to justification of the empiricist camp as, e.g., of Hume. The difference with
respect to justification between these two epistemic schools can be nicely
described by the schema of figure 1.2: Whereas rationalists started with
strong metaphysical principles (a heavy basis), they allowed mainly de-
ductive inferences. Empiricists, on the other side, started with a minimal
basis (simple observations), and allowed for much stronger inferences, as,
e.g., inductive inferences.

Not only rationalists and traditional empiricists, but also logical posi-
tivists and logical empiricists like Carnap in his Aufbau (1928) subscribed
to foundationalism. However, they were already relaxing the infallibility
condition for the basis towards a much more conventionalist stance. All
these foundationalist approaches to justification are based on an underly-
ing principle, which we call the ‘main principle of foundationalism’. It is
as follows:

Main Principle of Foundationalism.

(F) A belief is justified iff it is in our epistemic basis or it can be inferred
from propositions of our epistemic basis.
Schematically: Jx ↔ (Bx ∨ ∃y(By & yRx))
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Note that if B is non-empty and if we think of R as the classical deduc-
tive relation of being logically strictly stronger, then we can derive from the
main principle of foundationalism (F) already (a very rough version of)
non-scepticism (EJ2), non-circularity (EJ3), and finiteness (EJ4): This rela-
tion is transitive and asymmetrical; due to the compactness theorem of first
order logic proofs of first order logic can be always reduced to finite ones;
and some beliefs are justified, namely those in B. We can also deduce the
claim that justification is inherited from reason to conclusion:

If a proposition that is a reason for another proposition is justified,
then also the other proposition is justified.
Schematically: ∀xy((Jy & yRx) → Jx)

The principle of justification given up by foundationalism, namely (EJ2),
stated the other direction: If something is justified, then there is a reason
for it which is also justified.

As we mentioned above, classical foundationalism supplemented the
main principle (F) with an assumption about being immediately evident
and being infallible regarding the basis B: Every belief of B is immedi-
ately evident and infallible. For rationalists this evident and infallible basis
consisted of fundamental epistemic and metaphysical principles like, e.g.,
Descartes’ Cogito or Leibniz’ principle of sufficient reason. For empiricists,
the foundation consisted mainly of beliefs due to sense experiences and,
according to our framing of the problem, a principle of induction. In this
framing the higher level justification problem still consists of the justifica-
tion of deductive reasoning which is, for most authors, taken for granted
due to its property of truth-preservation. The problem of justifying the
principle of induction as assumed by empiricists will be discussed in detail
in part II of this book.

Similarly to traditionalist version of foundationalism, logical positivists
and empiricists also supplemented the main principle (F) further: Al-
though they did not subscribe to infallibilism of B, they still thought it to
be most elementary in many respects (see “elementary experiences” in Car-
nap 1928/2003). However, what was really new was their expansion of the
inference rules to logical, definitional, and mathematical inferences:

“The method of logical analysis is what distinguishes the new
empiricism and positivism from the earlier one, whose orien-
tation was more biological-psychological.” (Verein Ernst Mach
1996)

Although there are several problems with such an approach, we want to
focus on what is often considered to be the main problem underlying this
form of foundationalism—namely the justification of the basis: As perhaps
most prominently Laurence BonJour pointed out, the choice of a basis is
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crucial to this approach, for which reason the question of how to justify
such a choice comes up. The form of such a justified choice should be this:
First, one shows that all beliefs in B have a specific feature φ—e.g., that they
are granted by observation. Second, one shows that beliefs having feature
φ are highly likely to be true. And finally, by this one concludes that all
beliefs in B are highly likely to be true (see BonJour 1988, p.31). However,
such a justification of choosing a specific B is not possible. E.g., regarding
beliefs that are immediately evident: to justify them would mean that they
are not immediately evident, but inferred. Usually this argument against
the possibility of a justified choice of the foundation is put forward with
respect to an empirical basis as follows:

“Basic Antifoundationalist Argument.

(1) Suppose that there are basic empirical beliefs, that is, em-
pirical beliefs (a) which are epistemically justified, and (b)
whose justification does not depend on that of any further
empirical beliefs.

(2) For a belief to be epistemically justified requires that there
be a reason why it is likely to be true.

(3) For a belief to be epistemically justified for a particular per-
son requires that this person be himself in cognitive pos-
session of such a reason.

(4) The only way to be in cognitive possession of such a reason
is to believe with justification the premisses from which it
follows that the belief is likely to be true.

(5) The premisses of such a justifying argument for an em-
pirical belief cannot be entirely a priori; at least one such
premise must be empirical.

Therefore, the justification of a supposed basic empirical
belief must depend on the justification of at least one other
empirical belief, contradicting (1); it follows that there can
be no basic empirical beliefs.” (BonJour 1988)

Premise (1) results from denying (EJ2) of the problem of epistemic jus-
tification and putting forward the main principle of foundationalism (F).
Premise (2) makes the assumption about justifying the choice of a basis B
explicit, namely the assumption that such a choice needs to be backed up
by features that make elements of B highly likely to be true. Premisses (3)
and (4) are about the internal states of the epistemic agent making a choice
regarding B. Finally, premise (5) is analytical and explicitly excludes, so to
say, an a priori-a posteriori fallacy.

For a foundationalist clearly (1) and (5) hold, and also (2) once one ac-
cepts the task of justifying the choice of a basis B. So, the premisses that
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remain for a foundationalist to reject are (3) and (4). Here is a point where
usually a prominent fission in approaching epistemic justification shows
up: There is an externalist response to the basic antifoundationalist argu-
ment which denies (3). And there is an internalist response to this argument
which denies (4).

Let us consider the externalist response first: A foundationalist may ob-
ject that it is not necessary that the epistemic agent has a justification for
her beliefs in B. Rather, what matters is that her beliefs in B are de facto
caused in the right way, that they are de facto the product of a reliable belief
forming process. What is very important is that she need not be aware of
this. For achieving our aim of ending up with true beliefs de facto reliably
forming beliefs is sufficient, there is no need for the epistemic agent to be
aware of this. In this sense the justification of the choice of B is external
to the agent, and in this sense denying premise (3) provides an externalist
theory of epistemic justification J. A main proponent of this approach is,
e.g., Goldman (1979) who argues for a reliabilistic theory of justification.
One advantage of such a theory is that it allows for a nice solution of the
problem influentially put forward by Edmund L. Gettier: In a Gettier case
when an agent luckily forms a true belief, e.g., via deducing it from a jus-
tified, but false belief (‘Jones owns a Ford’ which is false but one might be
justified in believing it, and ‘Jones owns a Ford or Brown is in Barcelona’
which is true and seems to be also justified since it is deduced from a jus-
tified belief), the agent’s belief formation is not due to a reliable process
since deduction from false premisses is clearly not reliable. Similarly for
the case of faked barns. Although the agent is not aware that her true belief is
unreliably formed due to the daemonic environment, it de facto is unreliably
formed, and this is what counts for denying justification.

Clearly, this approach to the basic antifoundationalist argument comes
at cost. A very strong argument against it is that the externalist concept
of justification treats cases as different which are not distinguishable for
an epistemic agent: E.g., in a fake barn setting the agent lacks justifica-
tion, whereas in a real barn setting the agent has justification although both
cases are indistinguishable for the agent. In this sense externalism seems to
be relevant only for an outsider, someone who has a God’s eye view. If we
take for illustrative purposes the traditional analysis of knowledge as justi-
fied true belief, then truth clearly is a notion we can ascribe only from such
a perspective. Belief is a notion we tend to completely “internalise” in the
sense that whether it applies to some mental state or not is completely de-
pendent on the respective agent in question. Finally, justification should
serve as an intermediary between truth and belief, something which rele-
vantly contributes to the difference between truly believing something and
knowing something. This is also expressed in the so-called value of knowl-
edge problem (see Pritchard 2007) or Meno problem:
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“Socrates: I will tell you. A man who knew the way to Larissa,
or anywhere else you like, and went there and guided others
would surely lead them well and correctly?—Certainly.
Socrates: What if someone had had a correct opinion as to
which was the way but had not gone there nor indeed had
knowledge of it, would he not also lead correctly?—Certainly.”
(Plato 1997, p.895, Meno, 97c)

If J has no internalist component at all, it seems hard to argue for a differ-
ence between knowing something and simply truly believing something.
And it seems that we aim at ending up knowing the principles of epistemic
justification and not just truly believing them.

Let us come to an internalist response to the basic antifoundationalist ar-
gument, namely by objecting (4): According to this version of foundational-
ism, the epistemic agent is in possession of reasons for choosing B, but this
does not mean that she believes with justification that all beliefs in B are
likely to be true. Rather, a basic belief is an immediate awareness, a self-
evident intuition, which needs no further justification. This is also called
the idea of the given (see Pojman 2000, p.110). A main proponent of this
approach is, e.g., Roderick M Chisholm (1989), however, all classical foun-
dationalists as, e.g., Descartes, Leibniz, John Locke, and Hume, and also
later on almost all foundationalists before the Gettier turn in epistemology
are regarded as internalists in this respect.

Again, there is also a payoff for the internalist approach. Very promi-
nent is, e.g., Wilfrid Sellars critique of the myth of the given (see Sellars 1991,
chpt.5: Empiricism and the Philosophy of Mind) which basically states that
if we refer to immediate awareness etc. we provide no justification for the
choice of B. And indeed, if one denies (4) and refers to self-evident intu-
ition, then one no longer provides justification of the choice of B in terms
of reasons that make the beliefs in B likely to be true: Prima facie it is ques-
tionable whether truth (in terms of God’s eye view) and self-evidence (the indi-
vidual perspective) are related in this way. Furthermore, it is questionable
whether principles needed for justifying a bulk of our knowledge such as
the principle of induction can be considered to be self-evident. And if one
were to avoid this problem by considering the principle in terms of an in-
ference rule, then she would just shift the burden of proof from the lower
level problem of justification to a higher level justification.

In general we want to conclude that the classical as well as modern inter-
nalist foundationalist approaches to epistemic justification face a dilemma: If
only beliefs are in the basis B that are immediately evident, then either the
problem of scepticism or the problem of higher level justification shows up
again: The former is the case if we keep the inferences fixed (just deductive
ones), but have to throw out many beliefs from our basis B due to their
not being self-evident. Such restrictions regarding B and inferences do not
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allow for justifying enough beliefs. The latter is the case if we allow for
the justification of enough beliefs by shifting non self-evident beliefs of the
basis to corresponding inference rules: In such a case, one needs to provide
higher level justifications which a foundationalist approach to justification
in the strict sense cannot provide: Truth-preservation is characteristic and
guaranteed for deductive inferences only, but not for any other. Finally,
externalist foundationalist approaches to justification face the problem that
they provide a theory of justification which seems to be relevant only for
epistemic agents that can take in a God’s eye view. For such a position the rel-
evance of epistemic justification seems to vanish since the value of knowl-
edge in the sense of justified true belief and that of true belief simpliciter
also seems to vanish: If—for deciding whether a belief is justified or not—
an epistemic agent has to take in a God’s eye view, why then not using God’s
eye view directly for deciding whether a belief is true or not?

In the next sections we are going to briefly discuss foundationalism’s
main rivals, i.e. coherentism and infinitism, before we go on with outlining
our approach of epistemic engineering.

1.2 Coherentism

Coherentism is an approach to epistemic justification according to which
coherence is not only a necessary condition for justification, but also a suffi-
cient one. Many traditional positions as, e.g., Plato’s or Georg W. F. Hegel’s
theories of truth have been interpreted as coherentist accounts (see Pojman
2000, p.116). However, it is important to note that most traditional accounts
were concerned with a coherentist understanding of truth. Most modern
coherentists like Quine, Sellars, and BonJour reject the coherence theory of
truth, but support a coherentist theory of justification:

“The indicated conclusion is that there is no real alternative
to the standard and commonsensical conception of truth as,
roughly, correspondence or agreement with independent real-
ity; and thus that a satisfactory metajustification for our envis-
aged coherentist theory of empirical justification must involve
showing in some way that achieving coherence in one’s system
of beliefs is also at least likely to yield correspondence.” (Bon-
Jour 1988, p.158)

Roughly speaking, coherentism has as its basis the claim that we are
justified (J) in believing something (EJ1), that we can provide justified rea-
sons for all justified beliefs (EJ2), and that the chain of justification and
reasoning comes to an end (EJ4). What coherentism denies is that justifica-
tion is never directly or indirectly circular (EJ3). Perhaps the most colourful
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metaphor used in this context is that one of Otto Neurath which was popu-
larised by Quine (1963a, p.79): “The philosopher’s task was well compared
by Neurath to that of a mariner who must rebuild his ship on the open
sea.” Similar metaphors can be also found in explanations of bootstrapping
arguments (originally this term was used in computer science for describ-
ing self-starting processes which were supposed to proceed without exter-
nal intervention), in John D. Norton’s (2014-03) arches where the ultimate
support for each stone derives from many stones both above it and below
it and then from the entirety of the stones in either side of the arch, or also
in literature as, e.g., Baron Muenchausen who pulls himself out of a swamp
by his own hair (backed up on this story Hans Albert called the problem of
epistemic justification also the Muenchhausen Trilemma).

Coherentism is mainly motivated by the problem of the epistemic basis
B: As we have seen in the preceding section, foundationalism either lacks
a justification of the choice of B, or, if one can provide a convincing justifi-
cation for the choice of B, then she must source out many elements of B to
the inferences and lacks justification there. So, in general it seems that any
consensual choice of B (as, e.g., elementary experiences, protocol sentences,
observational statements etc.) and inference rules (as, e.g., deductive ones)
does not allow for justifying principles we typically consider to be justi-
fied. In this sense, B (and the inference rules) underdetermine justification
J. This led, e.g., Quine to a holistic position regarding justification accord-
ing to which nothing is justified per se or absolutely, but only in the context
of a web of belief (see Quine and Ullian 1978). According to this position J is
even that much underdetermined by B that one might even revise logical
inferences (see Quine 1963b, sect.6).

It is common to distinguish two forms of coherentism: There is linear co-
herentism which plainly assumes that there are chains of justification which
are directly or indirectly circular (as illustrated in figure 1.1). And there
is holistic coherentism or emergence coherentism which seems to not state di-
rect or indirect circularity, but to consider justification as a holistic concept
(see Elgin 2014; and Pojman 2000, p.116). However, in order to present the
main critique against coherentism and in order to remain in the framework
from above we do not need to make this distinction, because the relevant
and problematic properties of the holistic notion of justification can be equally
well expressed by help of the linear notion. The relevant bridge principle is
that if we are holistically justified in a set of beliefs, then we are also justified
in using single beliefs in our linear reasoning chains. Or, in more figurative
words, the holistic property of coherence grants justification in linear rea-
soning. Taking this into account, we can formulate the main principle of
coherentism, which supplements (EJ1), (EJ2) and (EJ4), as follows:

Main Principle of Coherentism.

(C) A belief is justified iff its respective system of beliefs is coherent.
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Schematically: Jx ↔ C(ιy)(yBx)

Here (ιy)(yBx) is intended to single out the overarching belief system y of
x—yBx stands for: y is an overarching belief system of x; below we will
further comment on the assumption that for any x there is exactly one such
overarching belief system. Note that the role of the basis B for justifying a
belief in a proposition p in the foundationalist picture is now taken over by
a coherent belief system b = (ιy)(yBp). Note also that from (C) we get the
implausible consequence that all beliefs of one and the same belief system
are either equally justified or unjustified (this is similar to the general inher-
itance principle for justification along a line of reasoning which holds for
foundationalism—which is in some sense more general, because accord-
ing to foundationalism all beliefs are part of one belief system, so to speak,
namely that one which is generated by help of the basis and the inference
rules):

Two beliefs of one and the same belief system are equally justified or
unjustified.
Schematically: ∀xy((ιz)(zBx) = (ιz)(zBy) → (Jy ↔ Jx))

This holds, because if, e.g., the belief system of x and y is b, then via (C)
x’s justification (Jx) implies b’s coherence (Cb) which in turn, again via (C),
implies y’s justification (Jy) and vice versa.

Clearly, there are several parts of principle (C) which are in need of
further specification: First of all, what is the respective system y of a belief
x (yBx) and is there exactly one such system for any belief? The answer is:
“No”. However, we want to make this “modeller assumption”, because
we need not discuss problems related to one and the same belief being part
of different belief systems. As we will see below, the main concerns with
coherentism show up already in this simplified model. For this reason we
want to focus on the second pressing point which needs to be specified,
namely what does it mean that a system of beliefs is coherent?

The notion of coherence C is used quite differently in the literature. If
we take a set of propositions b = {p1, p2, . . . } to be a system of beliefs,
then a quite elementary proposal for considering b to be coherent (Cb) is to
demand logical consistency of b and deducibility within b in the sense that
every proposition pi follows from b \ {pi} (this was, e.g., the position of
Alfred C. Ewing as described in Olsson 2018, sect.3). This is a very strong
notion of coherence which is satisfied only by very little belief systems as,
e.g., {p1, p2, p1&p2}, but, e.g., not by {p1, p2, p1 → p2}.

By help of this very strong notion of coherence which makes up for a
very weak notion of coherentism we can already illustrate the circularity
of coherentist accounts of justification and reasoning: If such an account
supplements an account of reasoning as, e.g., characterised by (EJ1), (EJ2)
and (EJ4), then it follows immediately from the incompatibility of (EJ1),
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(EJ2) and (EJ4) with (EJ3) that such an account is directly or indirectly cir-
cular. Clearly, the principle of coherentism (C) does not need to be consid-
ered as supplementing an account of reasoning satisfying the mentioned
desiderata. But if it does, then it is circular. We can illustrate this by con-
sidering a system of beliefs b = {p1, p2, p3}, where p3 = ‘p1&p′2. As we
have seen above, b is coherent. Hence, by (C) we get Jp1, Jp2, and Jp3. For
simplicity reasons let us assume that this is the only coherent system for
p1, p2, p3 (there are others, but, of course, circularity follows for them too).
By (EJ2), the principle which connects justification J with reasoning R, we
get that for p1, p2, and p3 there must be a justified reason: ∃xJx & xRpi.
Since exactly p1, p2, and p3 are justified, this means that either at least one
of the pi’s is a reason for itself, i.e. there is a direct reasoning circle, or at
least one of the pi’s stands to itself in the relation of the transitive closure
of R, i.e. there is an indirect reasoning circle (e.g.: p1Rp2, p2Rp3, p3Rp1).
An even simpler example is b = {p1} which is “vacuously” coherent and
enforces a direct reasoning circle.

Let us come back to the characterisation of C: Already more power-
ful regarding justification is CI Lewis’ proposal of interpreting C in the
sense of probabilistic dependency: Cb iff Pr(pi|p1 �=i, . . . , pn �=i) > pi, where
pi, p1, . . . , pn are all the propositions of b (see “congruence” in Lewis 1946).
Since (almost) all bs that satisfy the Ewing-criterion for C also satisfy the
Lewis-criterion, Lewis’ notion of coherence is wider. One could also think
of relaxing the criterion by, e.g., not demanding probabilistic increase of pi
conditional on the remainder set, but such increase of pi conditional on sub-
sets of the remainder etc. (see Olsson 2018, sect.3; for a general overview
of common probabilistic coherence measures see Hartmann and Sprenger
2011, sect.4).

Even more moderate is the approach of BonJour who stated some
desiderata for a quantitative notion of coherence (BonJour 1988, pp.95-99):

Some Desiderata for Coherence.

(1) “A system of beliefs is coherent only if it is logically con-
sistent.

(2) A system of beliefs is coherent in proportion to its degree
of probabilistic [coherence].

(3) The coherence of a system of beliefs is increased by the
presence of inferential connections between its component
beliefs and increased in proportion to the number and
strength of such connections.

(4) The coherence of a system of beliefs is diminished to the
extent to which it is divided into subsystems of beliefs
which are relatively unconnected to each other by infer-
ential connections.”
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Desiderata (1) and (2) cover the consistency constraint of Ewing as
well as a probabilistic version thereof (b does not contain any pi and
pj = ‘Pr(pi) < r′, where r is some threshold < 0.5). Desideratum (3)
captures Ewing’s deducibility constraint as well as Lewis’ constraint of
positive correlation. Desideratum (4) considers such interconnections in
a more fine-grained way (as indicated above by not only considering cor-
relations conditional on the remainder set, but also pairwise positive cor-
relations conditional on subsets of the remainder etc.). Putting forward
several desiderata for C opens up the problem of balancing between them.
This is, however, not the concern we have. The main concern we have
is that in whatever way C is characterised, for a solution to the problem
of epistemic justification one needs to provide an argument that C is truth
conducive. Otherwise the choice of C faces the same problem as the choice
of B faces for the fundamentalist (recall, the problem was that, e.g., self-
evidence needs to be truth conducive in order to provide a justification for
a self-evidence-based choice of B). Qualitatively speaking, one needs to
show that if Cb1 whereas ¬Cb2, then b1 is more likely to be true than b2
(Pr(b1) > Pr(b2)). Quantitatively speaking, this means that one needs to
show that given the degree of coherence of b1 is greater than that of b2,
then also Pr(b1) > Pr(b2). However, there are impossibility results which
show that truth conduciveness cannot be guaranteed for any characterisa-
tion of (a measure of) C which satisfies informational constraints in the line
as mentioned above (see, e.g., Bovens and Hartmann 2003, sect.1.4).

Let us illustrate this by help of a simple example: One popular case
that is often put forward in order to argue for the emergence of justifica-
tion out of coherence is the case of consilience of surprising testimony. We
will discuss this case in detail in chapter 9. Here we focus just on some
very simplified features: Assume that h is an event very unlikely to oc-
cur. And assume that there are n testifiers that are independent of each
other, but all testify h: e1, . . . , en. Since they are independent of each other,
it seems that the consilience of the surprising testimonies makes h more
likely to be true, at least more than considering each single testimony. I.e.:
Pr(h|e1, . . . , en) > Pr(h|ei) for all 1 ≤ i ≤ n. So, it seems that the coherence
among the surprising testimonies allows for emergence of justification:

“Evidently the best explanation of the agreement is that the re-
ports are true. [. . . ] The thesis of the sort of epistemological
holism that I want to consider is that epistemic justification is
primarily a property of a suitably comprehensive, coherent ac-
count, when the best explanation of coherence is that the ac-
count is at least roughly true.” (see Elgin 2014, pp.245f)

However, given the independence of the single testimonies e1, . . . , e2 and
by applying Bayes’ theorem it turns out that this assumption is equiva-
lent to simply stating that all agents are positive truth trackers regarding
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h: Pr(ei|h) > Pr(ei). So, the alleged emergence of justification consists de
facto in presupposing justification. Something similar holds if one stresses
so-called wise crowd and Condorcet effects for coherentism—we will discuss
them in detail in chapter 12. In order to achieve these effects one also has to
make independence and reliability assumptions before one can cash them
out for justification.

Missing truth conduciveness is not the only problem with coherentism.
Similarly as is the case for foundationalism, also an internalist version of
coherentism seems to be prone to a regress-problem:

“If we embrace access [i.e. an internalist version of] coheren-
tism, then coherentists face the very regress that traditional
foundationalists tried so desperately to avoid. To justifiably be-
lieve that our beliefs cohere we would need to know first what
we believe and second that the propositions believed stand in
the appropriate evidential relations. But as coherentists we
have no foundations to fall back on. We can’t just give our-
selves privileged access to propositions describing our own be-
lief states. Our only access to what we believe is through a co-
herence we discover between our belief that we have certain be-
liefs and the rest of what we believe. But to discover this coher-
ence we will once again be forced to discover what we believe,
and so on, ad infinitum.” (Fumerton 2002, pp.229f)

As Pojman (2000, p.120) puts it, the problem for internalist coherentism is
that the belief system of an agent needs to be coherent in order to be justi-
fied (C). However, in the internalist version this means that an agent needs
to be aware that her system is coherent. But since there is no coherence-
basis one could stop at, this leads to the following infinite regress:

p1: My belief set is b and p coheres with b.

p2: My belief set is b and p1 coheres with b, i.e.:
My belief set is b and that p coheres with b coheres with b.

p3: My belief set is b and p2 coheres with b.

...

Let us make the regress-problem explicit: Given that every belief is
part of exactly one belief system, it seems to be plausible to assume that
the belief system of a belief system (considered as a belief) and the be-
lief system (considered as a belief) itself are identical with each other, i.e.
b = (ιy)(yBb). But then, by (C), every coherent belief system is justified
(Jb ↔ Cb, we will discuss a problem with this justificatorial inflationism
immediately). Now, according to an externalist coherentist conception of
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justification this seems to be perfectly fine: Once we can decide, from a
God’s eye view whether b is coherent (Cb), we can also ascribe justifica-
tion to b. However, for an internalist coherentist an answer to the ques-
tion whether Cb or not needs to be accessible or internal to the epistemic
agent. Hence, for an internalist coherentist (C) needs to be modified to
Jx ↔ JC(ιy)(yBx). Hence, she demands JCb for Jb and not simply Cb as
the externalist does. And this is where the regress starts: In order to justify
p (Jp), we need to justify that its belief system b is coherent (JCb), which in
turn requires us to justify that Cb’s belief system, let us say b′, is coherent
(JCb′), and so forth.

Even if these problems could be overcome and there were emergence or
bootstrap justification, coherentism would have the problem that it grants
too much justification in the following sense: Given finite belief systems
b1, b2 and Cb1 and Cb2 by the main principle of coherentism (C) we get
Jb1 and Jb2. Now, it is not hard to think of examples where b1 and b2
are incompatible with each other. Even if we take the very strict no-
tion of Ewing from above, we get, e.g., b1 = {p1, p2, p1&p2} as well as
b2 = {¬p1,¬p2,¬p1&¬p2} to be coherent, although b1 and b2 are logically
inconsistent. Note that b1 and b2 share no belief, which shows that this
problem shows up already with our strict “modelling assumption” that ev-
ery belief is part of exactly one belief system. This argument amounts to
a self-refutation argument with the conclusion that coherentism is incoher-
ent. A typical coherentist response consists in claiming that not all coherent
systems allow for justification, but only compatible ones: So, either b1 or b2
is justified, but not both. However, this objection to the self-refutation argu-
ment brings in the problem we were initially concerned with, namely the
underdetermination of J—this time not with respect to the basis B and the
inference rules, but with respect to (C). This problem will show up again
when we discuss a coherentist approach to Hume’s problem of induction
in chapter 5.

At first glance, coherentism seemed to be a promising approach to the
problem of epistemic justification with respect to the underdetermination
of J given B and inference rules we justifiably use in our reasoning. How-
ever, it seems that the justification of coherentism in terms of truth con-
duciveness fails, that coherentism in its internalist variant faces a regress
problem, and that the problem of underdetermination pops up again. So
far, so bad for coherentism. But what about accepting infinite justificatorial
regresses? Is this a viable route?

1.3 Infinitism

Aristotle already discussed infinitism in his Posterior Analytics—the head-
ing of chapter 3 of book I is Two errors—the view that knowledge is impossible
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because it involves an infinite regress, and the view that circular demonstration
is satisfactory (see Aristotle 1957, 72b, p.512). He clearly objected to it and
mentioned as one important reason our finite reasoning capacities. And in
fact, it seems that all non-sceptical traditional approaches afterwards did
not even consider infinitism a viable option. Hume wrote, e.g.:

“If I ask, why you believe any particular matter of fact, which
you relate, you must tell me some reason; and this reason will
be some other fact, connected with it. But as you cannot pro-
ceed after this manner, in infinitum, you must at last terminate in
some fact, which is present to your memory or senses; or must
allow that your belief is entirely without foundation.” (Hume
1748/2007, p.33)

In the last sentence it seems the he speaks of justification when he uses ‘foun-
dation’. This equating of being justified and having a foundation seems to be
symptomatic for the predominant finitist approaches to justification.

Whereas finitist approaches stress the importance of a foundationalist
or coherentist basis B for justification, infinitists stress the importance of
providing reasons (R) for justification. On this account they think that rea-
soning chains never stop or loop: Halting is prevented by demanding to
always provide a reason for a justified belief. And looping is prevented
by demanding new reasons for such a belief. These are the reasoning con-
straints on justification which an infinitist embraces. So, infinitism has as its
basis the claim that we are justified (J) in believing something (EJ1), that we
can provide justified reasons for all justified beliefs (EJ2), and that reason-
ing is neither directly nor indirectly circular (EJ3). What infinitism denies
is that justification ever comes to an end (EJ4). So, the main principle of
infinitism supplements (EJ1) and consists of the following strengthening of
(EJ2) and (EJ3):

Main Principle of Infinitism.

(I) A belief is justified iff it has a justified reason, where reasoning is
never directly or indirectly circular.
Schematically: ∀x(Jx ↔ ∃y(Jy & yRx)) &
Schematically: ∀xyz(xRy → (¬yRx & yRz → xRz))

As an early proponent of infinitism counts Charles S. Peirce (see Aikin
2011, sect.3.2). Contemporary proponents are Klein (1998), Fantl (2003),
Aikin (2011), and Atkinson and Peijnenburg (2009). Besides directly incor-
porating the above intuitions regarding the role of reasons in justification,
infinitism allows also for satisfying the so-called degree requirement for jus-
tification: The basic intuition behind this requirement is the idea that the
more justified reasons one can provide for a belief, the better the propo-
sition itself is justified. So, speaking in quantitative terms, the degree of
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justification of a belief should increase with the number of reasons pro-
vided for the belief (in a chain-wise manner). In the infinitist case “warrant
increases not because we are getting closer to a basic proposition but rather
because we are getting further from the questioned proposition” (see Klein
2014, p.280). And since the longer the reasoning chain, the more reasons
are provided, in the infinitist case the degree of justification is supposed to
asymptotically approach complete justification. To illustrate this, recall the
reasoning chain of an infinitist from figure 1.1—it is as follows (since we are
going to provide a causal model later on, we speak of hypotheses hi instead
of propositions pi now):

h1
R←− h2

R←− h3
R←− · · ·

Now, if, e.g., h1 is the belief that Jones is the murderer, then providing as
reason the belief h2 that he had a knife seems to increase justification of h1.
If one can provide, e.g., as a further reason for h2 the belief h3 that a knife
is missing, this seems to increase justification (not only for h2, but also) for
h1 further, and so forth. So, infinitism seems to allow for the emergence of
justification by simply continuing reasoning.

It is difficult to make exact technical sense of this. Here is a suggestion
which is also intended to show that this intuition behind infinitism is sus-
picious: Assume the reasoning chain of above. And assume further (this
is expanding the chain model a little bit), that each belief hi used as a rea-
son is supplemented with some evidence ei: So, e.g., for h2 (my belief that
Jones had a knife) we have evidence e2 that I have seen Jones with a knife,
and for h3 (my belief that a knife is missing) we have evidence e3 about
me counting the knives before and after the murder etc. Now, in this case
these reasons and evidential reasons seem to be related as follows: The his
and eis are positively correlated (my seeing Jones with a knife increases the
probability of (me believing of) him having a knife etc.). Furthermore, each
hi+1 seems to screen off hi from each further reason h>i+1 in the chain in
the following sense: If I get to know or if I am fully justified in hi+1, then
there is no probabilistic increase in hi once I also got to know h>i+1, since
the burden of justification of hi is mediated completely via hi+1 and hi+1 is
considered to be already fully justified. So, e.g., if I know that Jones had
a knife, then my belief that a knife is missing brings about no further jus-
tificatory support for me believing that Jones was the murderer. Finally,
it seems to be also perfectly reasonable to assume that the correlations be-
tween the reasons and the evidential reasons are not strict and that my
reasons (beliefs) are not fully justified. Speaking in terms of probabilities,
this means that we can represent the case by help of a so-called Bayesian
network as depicted in figure 1.3 (for an excellent introduction to Bayesian
networks see Gebharter 2017, sect.2 and 3; and Sprenger and Hartmann
2019, some basics of this framework are presented in section 2.1). Due to
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the mentioned screening off -property, this network represents the following
probabilistic independencies:

Pr(ei|hi, X) = Pr(ei|hi)

Pr(hi|hi+1, Y) = Pr(hi|hi+1)

where X ⊆ {hj : j ≤ n} ∪ {ej : j ≤ n}, and

where Y ⊆ {hj : n ≥ j ≥ i + 1} ∪ {ej : n ≥ j ≤ i + 1}.

h1 h2

e2

h3

e3

. . . hn

en

Figure 1.3: Bayesian network of a reasoning chain with evidential support: h1 is
the belief which is mainly reasoned for by help of a chain of reason-evidence pairs
〈hi, ei〉 which are positively correlated (ei ← hi stands for a causal relation man-
ifested in probabilistic increase: Pr(ei|hi) > Pr(ei); similarly for hi ← hi+1); also
each reasoning pair 〈hi, hi+1〉 is positively correlated; given the above described
independence assumptions, in the finite case h1’s justification in terms of proba-
bilities grows with a growing number of such reason-evidence pairs 〈hi, ei〉.

Now, if we assume, e.g., that the correlations are all equally strong, i.e.:
Pr(hi|hi+1)− Pr(hi) = Pr(hj|hj+1)− Pr(hj) = Pr(hk|ek)− Pr(hk) > 0 (this
also excludes that the probabilities of the hs are extreme), then it follows
that also all es are positively correlated with h1. Even more, the more ev-
idential reasons (es) one provides, the higher the probability of h1, i.e. the
more h1 is justified: It follows from the assumptions about correlations and
independencies:

If j > i, then Pr(h1|{ek : 2 ≤ k ≤ j}) > Pr(h1|{ek : 2 ≤ k ≤ i})
So, providing further reasons increases justification in our model. How-
ever, note that this holds only for finitely many (n) evidential reasons. For
the infinite case, the situation is different. From the above assumptions it
also follows that the justificatory impact of evidence decreases with dis-
tance: The difference between the probabilistic boost of h1 by e1, . . . , ek+1
and the probabilistic boost of h1 by e1, . . . , ek shrinks with increasing k:

If j > i, then Pr(h1|{ek : 2 ≤ k ≤ j})− Pr(h1|{ek : 2 ≤ k ≤ j − 1}) <

Pr(h1|{ek : 2 ≤ k ≤ i})− Pr(h1|{ek : 2 ≤ k ≤ i − 1})
Since with an increasing number of evidential reasons their probabilistic
boost shrinks and vanishes in the end, at some point in the reasoning chain
it will be epistemically insignificant whether one provides another reason
or not. So, infinitism seems to provide no surplus justification to founda-
tionalist justification.
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With respect to the reasoning aspect of infinitism, Turri (2009) has ar-
gued for a foundationalist approach to epistemic justification which also
allows for infinitely long reasoning chains. This clearly deviates from our
terminology, since we defined ‘foundationalism’ as a position which ex-
cludes infinite reasoning chains. According to the understanding of Turri
(2009), foundationalism is characterised by a basis B which is intended to
justify all beliefs (this is in agreement with our characterisation), but that
the justification or reasoning procedure never stops, because this would
amount to dogmatism (this is different from our characterisation). He ar-
gues for a view “that endorses neither circular reasoning nor arbitrariness”
and can be schematically characterised as follows (see Turri 2009, p.161):

h1
R←− h2

R←− h3
R←− · · · R←− B

The idea is that all beliefs can be justified on the basis of B, but that rea-
soning need not come to a dogmatic end. The example he provides is as
follows: Assume that an epistemic agent has observed that it is 2:05. Since
she observed it, it is part of her epistemic justification and reasoning basis
B. Now, based on this observation she forms the belief and claim h1 that
it is past 2:00 o’clock (h1:>2:00). Now, she can justify and reason for this
claim, e.g., by help of her belief h2: >2:02:30; again, she can justify and rea-
son for this claim by help of her belief h3: >2:03:45; in principle she could
reason this way infinitely long by getting halfway closer to 2:05. By “pro-
ceeding this way ensures that [an epistemic agent] will approach the limit
of, but never arrive at, 2:05. In other words, she has available to her an
infinite series of non-repeating reasons, each of which is entailed by its suc-
cessor. Moreover, the foundationalist has a principled story to tell about
how each member of this infinite series gets justified for her: namely, she
can see that it is 2:05” (see Turri 2009, p.163). This is an example accord-
ing to which a foundationalist can be non-dogmatic in the sense that she
can always provide a justified reason, in principle infinitely many of them.
Hence, also with respect to the reasoning aspect, infinitism seems to not
provide a surplus to foundationalism.

Furthermore, the finite mind objection (as approached, e.g., in Klein and
Turri 2012, sect.2) still strikes many epistemologists as valid:

“The infinite regresses are mushrooming out in an infinite num-
ber of different directions. If finite minds should worry about
the possibility of completing one infinitely long chain of reason-
ing, they should be downright depressed about the possibility
of completing an infinite number of infinitely long chains of rea-
soning. I call this the epistemic regress argument for foundation-
alism” (Fumerton 1995, p.57)

To sum up, infinitism clearly is an alternative approach to the problem
of epistemic justification which deserves further investigation. However,
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it is conceptually hard for many epistemologists to get their head around
a notion of justification that makes use of infinitely many reasons (perhaps
a weaker notion of justifiable, in principle is better captured by it). Regard-
ing the promise of an emergence of justification as well as regarding its non-
dogmaticity it seems to be not better off than foundationalism, because it
also demands to always provide non-circular reasons.

After travelling along the main routes to epistemic justification with
their potholes and dead ends, it seems that we need to get on a new route.
Let us try epistemic engineering which can be motivated excellently by tak-
ing the highway of naturalised epistemology.

1.4 From Naturalised Epistemology to Epistemic En-

gineering

In 1968, Quine gave a lecture on “Epistemology Naturalized” as an in-
vited address to the Fourteenth International Congress of Philosophy in Vienna.
(Large parts were adapted from the lecture “Stimulus and Meaning” he
gave already in 1965 at Michigan State University.) According to followers
of his programme, with this lecture he sounded the death knell of classical
epistemology concerned mainly with the normative notion of justification.
As a new start, so Quine, a new way of performing epistemological re-
search is in need:

“The Cartesian quest for certainty had been the remote moti-
vation of epistemology, both on its conceptual and its doctrinal
side; but that quest was seen as a lost cause. [p.74]
Epistemology still goes on, though in a new setting and a clari-
fied status. Epistemology, or something like it, simply falls into
place as a chapter of psychology and hence of natural science.
[p.82]” (Quine 1969)

This kind of naturalising epistemology is sometimes also called replace-
ment naturalism (see Kornblith 2002) or methodological naturalism (see Gold-
man 1994, p.309). As it is often the case with new and very ambitious pro-
grammes, it seems that also here, at the early stage of naturalised epis-
temology, the baby was thrown out with the bath water: Drawbacks in
finding a convincing account to the problem of the (normative) notion of
epistemic justification led its adherents to fully abandon the enterprise of
normative epistemology and focus on descriptive epistemology instead.

Contemporary proponents of the programme as, e.g., Hilary Korn-
blith are much more sophisticated and cautious. In his (1999), Kornblith
starts with traditional Cartesian epistemology and characterises it as follows:
Descartes proposed that a belief counts as knowledge iff it is foundational
or derived from what is foundational. In such a foundationalist approach,
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even in the light of skeptical challenges, knowledge is possible if the foun-
dation is immune from error. Since particularly empirical knowledge is
prone to error, Descartes conceived the theory of knowledge as prior to em-
pirical knowledge. This is the main pillar of the classical approach which
Kornblith thinks that naturalistic epistemologists strongly disagree with:
The naturalistic alternative considers epistemology not prior to, but contin-
uous with the empirical sciences. A consequence of this is that knowledge
is treated as a natural phenomenon which should be investigated also by
empirical means. For example, investigating the social factors which give
rise to paradigm cases of knowledge might be prior to building a theory of
knowledge (see Kornblith 1999, p.163).

The main issue between traditional epistemology and naturalised epis-
temology is whether there are any epistemological investigations that are
adequately performed in a purely a priori (non-empirical) way. Kornblith
denies this, whereas proponents of the traditional approach take on this
position. So, e.g. Feldman (1999) argues that scepticism is not just a red
herring (see Pojman 2000, p.186), but of real concern and needs to be ar-
gued against on a purely a priori ground. Further objections to naturalised
epistemology are the accusation of being viciously circular due to relying on
empirical science as a legitimate source of knowledge, or being self defeating
in the sense that to evaluate arguments in favour of epistemic naturalism
seems to presuppose the “legitimacy of appeals to a priori or ‘armchair’ in-
tuition” (see Rysiew 2018, sect.3.1). However, the perhaps most important
objection to naturalised epistemology results from concerns with epistemic
normativity. Once epistemology is considered to be a branch of descriptive
sciences like psychology, it is descriptive itself and the question remains of
how to deal with problems of epistemic normativity: We are not only in-
terested in the question of how humans reason in reality, what are their de
facto sources of knowledge, how they incorporate evidence etc. We are also
concerned with normative questions of how they should do so, how an ideal
epistemic agent would act etc. But how can a descriptive discipline like nat-
uralised epistemology provide answers to such normative questions? As
already Kornblith (2002, chpt.5) mentioned, after initiating the programme
of naturalised epistemology, Quine was many times and at many occasions
concerned with clarifying his account of naturalistic epistemology. In par-
ticular, this meant that he tried to clarify the role of normativity within
epistemological theorising. A key passage is the following one:

“For me normative epistemology is a branch of engineering. It
is the technology of truth-seeking, or, in a more cautiously epis-
temological term, prediction [. . . ]. There is no question here of
ultimate value, as in morals; it is a matter of efficacy for an ulte-
rior end, truth or prediction. The normative here, as elsewhere
in engineering, becomes descriptive when the terminal param-
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eter is expressed.” (see Quine 1998, pp.664f)

The idea is that based on a means-end principle of the form (see Schurz 1997,
p.128, note that in Schurz’ investigation the principle is about necessary
means, whereas here we use the principle for any adequate means in a
wider, but still absolute, sense):

Epistemic Means-End Principle.
If A is an epistemic end and if B is a necessary or adequate means for
A, then also B is an epistemic end.
Schematically: (OA & (�(A → B) ∨�(B → A))) → OB

one can argue for the normativity of some epistemic notions given some
epistemic ends as, e.g., truth, prediction etc. In this relative harmless sense
also Alvin I. Goldman can be considered as a prominent proponent of natu-
ralised epistemology: “Science can help identify the forms of social organ-
isation that would optimize the chances of obtaining epistemic ends.” (see
Goldman 1994, p.308).

Note that the question of the ulterior end(s) OA is not accounted for
up to now. Naturalised epistemology suggests to also receive the terminal
parameters from science. So, e.g., Kornblith (2002, chpt.5) identifies them
with desires. However, if achieved this way, normativity would still consist
in some natural property, a view which is highly non-consensual. For this
reason we want to remain completely open in this respect. One might end
up with such ends in a purely descriptive way. But one might also end
up with such ends by purely normative and a priori considerations. What
we want to take over from epistemic naturalism for our enterprise is the
engineering part, the search for necessary (�(A → B)) and adequate con-
ditions (�(B → A)) given some end A. This is what we consider to be the
main task of epistemic engineering. The schema in figure 1.4 demarcates the
epistemic engineering part from other parts of epistemic investigations.

ulterior epistemic ends︷︸︸︷
(OA & �(A → B) ∨�(B → A))︸ ︷︷ ︸

epistemic engineering

→
derived epistemic ends︷︸︸︷

OB

Figure 1.4: The role of epistemic engineering in epistemic enquiry: Given some
epistemic ends (A) it seeks necessary and adequate means (B) to achieve these
ends, which allows also for deriving normative statements about the means.

Several remarks are in place: First of all, what makes a means a neces-
sary or adequate means? We will employ the epistemic means-end principle
only for two kinds of cases namely (i) where ‘necessary’ is understood in
the sense of ‘analytic’ and (ii) where ‘adequate’ means ‘optimal’. Regarding
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the former (i), �(A → B) means that from the principles of logic, math-
ematics together with some definitions one can derive B from A. This is
a very strong case for deriving instrumental normativity, for which reason
the arguments in the subsequent parts of the book should be quite con-
vincing once one accepts the framing of the problems and the postulated
ulterior ends (note that in (Schurz 1997, p.128) ‘necessary’ is understood
differently, namely as necessary by the laws of nature). Regarding the latter
(ii), �(B → A) means that from all available alternative means B, C, D, . . .
to achieve A, B is optimal compared to C, D, . . . . This way of considering
normativity finds broad consensus in the practical domain (in approaches
that suggest to maximise expected utilities, etc.) and seems to be a general
feature of instrumental normativity. For this reason also this notion should
not hinder one considering the arguments in our investigation as strong
ones.

Second, although the schema shows that the tasks of postulating ulte-
rior epistemic ends and epistemic engineering are distinct, it does not force
one to consider them as completely independent. On the contrary, as we
will see especially in part II of the book, sometimes the engineering part
makes clear that there is no means which is generally accepted. Such a
case (and ought implies can) suggests to revise one’s ends then. So, not only
that these tasks need not be independent, it even makes perfect sense to
postulate some end (OA1), start the engineering and come up with some
necessary means (B1), revise one’s end (OA2), start the engineering again
(B2), and so forth.

Finally, epistemic engineering is not only relevant for naturalised epis-
temology. In principle, also traditional approaches as, e.g., foundational-
ism, coherentism, and infinitism can be considered to perform epistemic
engineering: Foundationalism, e.g., values non-circularity and finiteness
((EJ3) and (EJ4)) much higher than, e.g., coherentism does (values (EJ2)
and (EJ4)). Similarly for infinitism which does not value (EJ4) much, but
(EJ2) and (EJ3). Given these desiderata, they also engineer modifications
of the strict notion of justification J, and they easily end up with different
results as, e.g., externalist and internalist accounts of J, by valuing further
desiderata differently. No problem with framing these positions this way,
on the contrary, even better so for our making the case for epistemic engi-
neering. Discussing naturalised epistemology served just as a well-known
vehicle to characterise the instrumental approach to epistemic normativity
and the engineer’s perspective.

In the remainder of this part we introduce, so to say, some engineer-
ing tools. In parts II and III we then apply them in order to end up with
statements about necessary and adequate means for the epistemic end of
predictive success regarding a variety of problem settings. But for now, let
us strike out on the optimality route to justification.



Chapter 2

The Setting

This chapter describes the setting in which all problems and solutions offered in this
book are framed: the framework of online prediction games. For this purpose, the
elementary formal and mathematical tools which are subsequently employed are outlined.
Then definitions that characterise online prediction games in detail are given. Since this
investigation is after optimality claims, prominent measures of success and different
notions of optimality are defined. Also a taxonomy of the epistemic methods under
investigation is provided. At the end a branch of machine learning which is mainly
concerned with defining optimal prediction methods is introduced. It is shown that the
traditional problem of scepticism has a modern pendant in the machine learning literature.
This is what allows one to exploit results of the machine learning literature for the aim of
engineering a solution to the problem of epistemic justification in the subsequent parts of
the book.

From a normative standpoint, in science it is all about getting the truth.
In empirical science this means that we need to get our explanations and
predictions right. And for the other branches this means that we need to
get our conceptual framework right. In our investigation we focus on the
predictive part. There are some approaches in the philosophy of science
which try to reduce the explanatory part to the predictive part. So, e.g.,
the debate about adequate criteria for explanations very often focuses on
the ability of explanations to provide novel, unifying, etc. predictions (see,
e.g., the overview in Schurz 2013, chpt.6). Although we subscribe to such
approaches, we do not want to argue for such a reduction here. If one also
subscribes to it, the better for a generalisation of our setting. If not, then it
is the epistemic engineer’s task to look out for further tools. Similarly for
the conceptual framework part: In part II we outline applications of our
setting to the framework of deductive and abductive reasoning. Getting
along with these applications means that one also subscribes to a partial
reduction of the conceptual framework part to the prediction part. Again,

34
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we consider such an approach promising, however, if it fails then it is again
up to the epistemic engineer to find further tools.

As said before, we are after epistemic engineering regarding predic-
tions. Very simplified speaking, the task of predicting consists in claiming
something about the occurrence or non-occurrence of an event ahead of it
in qualitative (e.g. ‘will occur’/‘will not occur’), comparative (e.g. ‘is more
likely to occur than’) or quantitative (e.g. ‘the probability of it occurring is’)
terms. E.g., if we represent whether an event occurred or not with values
0 and 1, then making a qualitative prediction amounts to providing one of
these values before the event could have taken place or before its outcome
was known. Predictive success comes with both values matching. Predic-
tive failure with a mismatch between them. At least in the case of empirical
science it is, so to speak, nature which fixes the first value and the scientist
who fixes the latter. In this sense one might consider the task of prediction
as a task of playing with (or against) nature. While this is the understand-
ing in formal learning theory (K. T. Kelly 1996), in computational learning
theory and machine learning different prediction algorithms are typically
run against each other. In Schurz (2004, 2008b) this framework is described
as a “prediction game”. . Now, as we have outlined in the preceding chap-
ter, we are more aiming at optimal than at true predictions. Speaking in
figurative terms, nature is an opponent too strong to be beaten (we will
argue for this in detail in chapter 5). Rather, the idea is to make optimal
predictions in the sense that no other competitor outperforms one in terms
of predictive success.

So, the setting of predictions we are working with are prediction games
as studied in the theory of meta-induction. In the next section (2.1) we pro-
vide formal preliminaries of our study. Then, in section 2.2, we provide a
formal characterisation of prediction games. Afterwards, we provide a for-
mal characterisation of predictive success and optimality as well as a tax-
onomy of possible competitors in prediction games (section 2.3). Finally,
we introduce the relevant theoretical background from the theory of meta-
induction and machine learning and argue for our choice of this framework
by help of methodological sceptical considerations as they are found in tra-
ditional epistemology (section 2.4).

2.1 A Basic Formal Toolbox

Although the formal apparatus of the theory of meta-induction is very ad-
vanced, we have restricted the investigation of this book to areas where in
principle elementary tools can be employed which are basically covered by
high-school mathematics and introductory classes on philosophical logic
and probability theory. In particular, we will make use of methods of:
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Elementary Logic. We use elementary logic, i.e. first order logic (and
some propositional modal logic), for our explications and argumentation.
In cases where formalism seems to us advantageous in order to make no-
tions or claims generally more intelligible, we will make use of it—quite
freely in both, the object- as well as the meta-language, as well as by mix-
ing formal and natural language expressions. We use ordinary symbols for
connectives (¬: not, &: and, ∨: or, →: if-then, ↔: if and only if /iff ), quanti-
fiers (∀: all, ∃: some, ∃ i

: exactly one), the identity relation (=: identical), and
expressions for individuation such as the descriptive description operator
ι ((ιx)(ϕ[x]): that x which ϕ[x], where ϕ[x] means that x occurs in ϕ; for
replacing all occurrences of x by y in the expression ϕ we will use later
on ϕ[x/y]); we will use these symbols also in schematic expressions. Re-
garding modalities we use � for necessity and adequacy, and O for obligation
for the respective modality of any kind—the relevant kind should become
clear in the respective context: logical, conceptual, metaphysical, epistemic,
etc. We use � for deductive inferences and |∼ for non-deductive/inductive
inferences. In this section we use ‘d f ’ to mark definitions;

Naı̈ve Set Theory. We operate on basis of naı̈ve set theory with undefined
∈, representing the element relation which is governed by extensionality:

∀x, y (x = y ↔ ∀z (z ∈ x ↔ z ∈ y))

and naı̈ve comprehension:

∃Y∀x(x ∈ Y ↔ ϕ[x])

Based on ∈ we use as defined: subset and proper subset ⊂,⊆: X ⊂ Y iffd f X �=
Y & ∀x(x ∈ X → x ∈ Y) (⊆ allows for X = Y), empty set ∅: ∅ =
X iffd f ∀y y �∈ X, union, intersection ∪,∩: X ∪ / ∩ Y = Z iffd f ∀z(z ∈ Z ↔
(z ∈ X ∨/&z ∈ Y)) (also the general forms

⋃
,
⋂

defined on sets of sets), dif-
ference or relative complement \: X \Y = Z iffd f ∀z(z ∈ Z ↔ (z ∈ X&z �∈ Y)),
(absolute) complement C: XC = Z iffd f ∀z(z ∈ Z ↔ z �∈ X), power
set ℘: ℘(X) = Y iffd f ∀Z(Z ∈ Y ↔ Z ⊆ X), listing set brackets {, }:
{x1, . . . , xn} = X iffd f ∀x(x ∈ X ↔ (x = x1 ∨ · · · ∨ x = xn)), set brackets
with characteristic property {x : ϕ[x]} = X iffd f ∀y(y ∈ X ↔ ϕ[x/y]), tuple
〈x, y〉=d f {{x}, {x, y}}, n-tuple 〈x1, . . . , xn〉 =d f 〈〈x1, . . . , xn−1〉, xn〉 (recur-
sively defined), Cartesian product ×: X × Y =d f {z : ∃x ∈ X∃y ∈ Y z =
〈x, y〉}, n-ary Cartesian product X1 × · · · × Xn =d f {z : ∃x1 ∈ X1 . . . ∃xn ∈
Xn z = 〈x1, . . . , xn〉}, and finally |X| for the cardinality of X defined via
equinumerousity with the respective subset of N.

High School Mathematics. In the following part we have collected the
relevant parts of high school mathematics which are employed in this book;
here are some meta-terminological stipulations:
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• we use i, k, m, n as variables for integers (natural numbers N);

• we use x, y, z as variables for real numbers ≥ 0, sometimes > 0 (most
of the times we operate within ∈ [0, 1] in this book);

• undefined arithmetical operations are + (addition), · (multiplication);
furthermore, basic are the set of natural numbers N: {0, 1, 2, . . . }, and
the set of (non-negative) real numbers R(+);

Defined are less and less or equal <,≤: x < y iffd f ∃z ∈ R+ z �= 0&y =
x + z (≤ allows for = 0); greater than and greater or equal >,≥ as the inverse
of ≤,<; subtraction − as the inverse of +; division / as the inverse of · (if
y > 0, then x/y = z iffd f x = y · z); the absolute function |x| defined as:
|x| = x if x ≥ 0, and |x| = 0 − x if x < 0; proportionality x ∝ y iffd f ∃z x =
y · z; the closed interval [x, y]=d f {z : x ≤ z ≤ y}; furthermore, maximum
and minimum functions for selecting the maximum/minimum according to
domain: max / min(x1, . . . , xn)=d f (ιy)((y = x1 ∨ · · · ∨ y = xn)&y ≥ / ≤
x1& · · ·&y ≥ / ≤ xn); and likewise for selecting the maximum/minimum
according to image: arg max

x∈X
/ arg min

x∈X
f (x)=d f {y : y ∈ X&∀z ∈ X f (y) ≥

/ ≤ f (z)}; defined is also the averaging function (overline): f (x)x∈X =d f
∑

x∈X
f (x)

|X| ; the rounding functions �, � (round down) �, � (round up), and [] (round
to the next integer (half up)): �x� =d f (ιn ∈ N)(n ≤ x&∀m ∈ N(m ≤ x →
m ≤ n)), analogously for �x�, and [x] =d f �x�, if x − �x� < 0.5 and [x] =d f
�x� otherwise;

Furthermore, defined are the following notions:
Sequence. A sequence 〈xn〉 is an ordered collection of objects/numbers

in which elements can repeatedly occur. E.g. 〈xn〉 = 〈0, 2, 4, 6, . . . 〉 is the
sequence of even natural numbers ordered according to <. We can define
such a sequence by providing a characteristic property of its elements as,
e.g.: 〈xn〉 : 2 · n (n ∈ N), or recursively: xn+1 = xn + 2 (with x0 = 0 and
n ∈ N). Now, there is one property of sequences we are mainly interested in
this book, namely convergence. A sequence converges, if almost all elements
of the sequence are arbitrarily close to some value. If there is such a value,
one also says that the sequence converges to that value. In mathematics
arbitrarily close means that for any real number > 0 the elements of the
sequence get close to the value; and almost all means that there is only a
finite number of exceptional cases. Formally, we can express this, e.g., with
the notion of a limit of a sequence:

If ∃x∀ε > 0∃m∀n ≥ m : |xn − x| < ε, then:

lim
n→∞

(〈xn〉) = x iffd f ∀ε > 0∃m∀n ≥ m : |xn − x| < ε

Often, also the angle brackets are suppressed in the notation; if so, one
writes ‘ lim

n→∞
(xn)’. Clearly, 〈xn〉 : 2 · n has no limit, because for any y of 〈xn〉
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there are infinitely many z of 〈xn〉 such that for some ε > 0: |y − z| > ε. But
also, e.g., 〈xn〉 : −1n which is 〈1,−1, 1,−1, . . . 〉 has no limit, because what
is arbitrarily close to 1 is not arbitrarily close to −1 and vice versa, and
for both values there are infinitely many elements in the sequence (note,
however, that both sequences are bounded from below/have a lower bound,
namely 0 and −1 respectively, but, whereas the second sequence is also
bounded from above/has as upper bound 1, the sequence of even numbers
has no upper bound; in such a case we will also write from time to time
lim
n→∞

xn = ∞). Also clearly, 〈xn〉 : 1
n has a limit, namely 0: Consider any

ε > 0. Then there is an m ∈ N such that 1
m < ε (by the Archimedean property

of the real numbers R). Hence, also | 1
m − 0| < ε. Now, for all n ≥ m: 1

n ≤ 1
m ,

hence | 1
m − 0| ≤ | 1

m − 0|, hence | 1
n − 0| < ε. So 0 is the limit of 〈xn〉 : 1

n . Any
such sequence 〈xn〉 with lim

n→∞
(xn) = 0 is called a null sequence.

Now, already from the definition above and the latter definitions the
following important rules for arithmetic operations with the limit follow
(note that the arithmetical operations on the sequences are defined via ap-
plying the operations for all elements of the sequence as, e.g., 〈xn + yn〉 =
〈x1 + y1, x2 + y2, . . . 〉, 〈y · xn〉 = 〈y · x1, y · x2, . . . 〉, etc.): Let 〈xn〉 and 〈yn〉
have a limit, then:

lim
n→∞

(xn + yn) = lim
n→∞

(xn) + lim
n→∞

(yn) (also for subtraction −)

lim
n→∞

(y · xn) = y · lim
n→∞

(xn)

lim
n→∞

(xn · yn) = lim
n→∞

(xn) · lim
n→∞

(yn)

lim
n→∞

( xn
yn
) =

lim
n→∞

(xn)

lim
n→∞

(yn)
(if 0 is not in 〈yn〉 and 〈yn〉 is no null sequence)

lim
n→∞

(xy
n) =

(
lim
n→∞

(xn)
)y

If ∃m∀nxn ≤ ym, then lim
n→∞

(xn) ≤ lim
n→∞

(yn)

Note that 〈xn〉, 〈yn〉 might have no limit, whereas 〈xn � yn〉 might have one
(e.g.: If 〈yn〉 = 〈xn〉 : n; then 〈xn〉 as well as 〈yn〉 have no limit, although,
e.g., the limit of 〈xn − yn〉 is 0).

Summation. Next to the limit, we will often make use of summation. It
is defined as follows:

• Basis:
n
∑

i=m
xi =d f 0 if m > n

• Recursion:
n
∑

i=m
xi =d f xn +

n−1
∑

i=m
xi if m ≤ n
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• Infinity:
∞
∑

i=1
xi =d f lim

n→∞

n
∑

i=1
xi

(The definition for the infinite case is conditional on the existence of the limit.)

Note that strictly speaking the summation operation is defined on se-
quences (we suppressed the angle brackets). The sum of a sequence is also
called a series. Important arithmetical operations on series are:

∑
i
(xi + yi) = ∑

i
(xi) + ∑

i
(yi) ∑

i
(y · xi) = y · ∑

i
(xi)

n
∑

i=1
x = n · x

n
∑

i=m
x = (1 + n − m) · x

Special case:
n
∑

i=1
i = n·(n+1)

2

A sequence/series is arithmetic, if the difference between neighbouring el-
ements remain constant: ∃y : xn+1 = xn ± y. E.g. 〈0, 2, 4, 6, . . . 〉 is an

arithmetic sequence,
n
∑

i=0
2 · i is an arithmetic series. A sequence/series is

geometric, if the ratio between neighbouring elements remains constant:

∃y : xn+1 = y · xn. E.g. 〈1, 1
2 , 1

4 , 1
8 , . . . 〉 is a geometric sequence,

n
∑

i=0

1
2

i
is

a geometric series.
Product. Analogously to summation, we can define also the general

product:

• Basis:
n
∏

i=m
xi =d f 1 if m > n

• Recursion:
n
∏

i=m
xi =d f xn ·

n−1
∏

i=m
xi if m ≤ n

• Infinity:
∞
∏
i=1

xi =d f lim
n→∞

n
∏
i=1

xi

(The definition for the infinite case is conditional on the existence of the limit.)

E.g. it holds:
n
∏
i=1

x = xn; as special case we can define the faculty of an

integer n:

n

i

=d f

n

∏
i=1

i (= 1 · 2 · · · · · n)

Exponentiation. Exponentiation is defined in several steps for different

domains: integer exponentiation is defined as: xn =d f
n
∏
i=1

x; here x is also

called the ‘basis’, and n the ‘exponent’; exponentiation with rational numbers

is defined as: x
m
n = y iffd f xm =

n
∏
i=1

y; the general case of exponentiation

with a real number is defined as: xy = z iffd f
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• ∃〈zn〉: 〈zn〉 is a sequence of rational numbers ( n1
m1

, n2
m2

,. . . ) with
lim
n→∞

(zn) = y, and:

• z = lim
n→∞

x〈zn〉

Important calculation rules for exponentiation are:

x0 = 1 x−y = 1
xy x

1
y = y

√
x xy+z = xy · xz

xy−z = xy

xz (x−y = 1
xy )

(
x
y

)z
= xz

yz (xy)z = xy·z ex = lim
n→∞

(
1 + x

n

)n

e is Euler’s number, where e = e1 ≈ 2.71828. Sometimes we will write
‘exp(x)’ for ‘ex’.

Root. One inverse operation of exponentiation concerns an inversion
function with respect to the exponent, which is the root: If x ≤ 0, then:

n
√

x = y iffd f yn = x

Important calculation rules for the root are (if the degree n of the root is not
relevant, it is omitted):

√
x · y =

√
x · √y

√
x
y =

√
x√
y

√
xn = (

√
x)n

n
√

x · m
√

x = n·m√xn+m m
√

n
√

x = n·m√x n
√

x = x
1
n

Logarithm. The other inverse operation of exponentiation concerns an
inversion function with respect to the basis, which is the logarithm:

logz(x) = y iffd f zy = x

Important calculation rules for the logarithm are (if the basis z of the loga-
rithm is not relevant, it is omitted):

ln(x) =d f loge(x) lb(x) =d f log2(x)

lg(x) =d f log10(x) log(1) = 0

log(x · y) = log(x) + log(y) log
(

n
∏
i=1

xi

)
=

n
∑

i=1
(log(xi))

log
(

x
y

)
= log(x)− log(y) log(xy) = y · log(x)

log( y
√

x) = 1
y log(x) logy(x) = logz(x)

logz(y)



Chapter 2. The Setting 41

Important (In-)Equalities. The following inequalities/equalities are im-
portant for some proofs of upper bounds of learning algorithms (chapter 3):

• e−x ≤ 1 − x + x2

2 (valid for all x ≥ 0)

• e−x ≥ 1 − x (valid for any x)

• Geometric sum: ∀x �= 1:

n

∑
i=0

xi =
1 − xn+1

1 − x

Combinatorics. From time to time we will apply general results of the
machine learning literature to particular cases and illustrate them by com-
binatorial considerations. Most important is the case of selecting items
from a collection where the order does not matter, i.e. the case of combi-
nation. For a selection of k out of n different elements where the order does
not matter, i.e. for a combination of k out of n elements without repetition,
there is (n

k) possibilities: (
n
k

)
=d f

n!
k! · (n − k)!

(n
k) reads as n choose k, and is also called a binomial coefficient, because it

is also the coefficient of the xkyn−k-term in the so-called polynomial expan-
sion of the binomial power (x + y)n. E.g.: (x + y)2 = (2

0)x2y0 + (2
1)x1y1 +

(2
2)x0y2 = x2 + 2xy + y2. Important calculation rules are:

If k > n, then (n
k) =d f 0 (n

0) = 1 (n
n) = 1

(n
1) = n ( n

n−1) = n ( n
n−k) = (n

k)

( n
k−1) = (n

k) · k
n−k+1 (n+1

k ) = (n
k) · n+1

n+1−k (n
k) + ( n

k+1) = (n+1
k+1)

Probability Theory. We start with a set of elementary events or event
types Y = {Y1, . . . , Yn}. Next we choose an algebra A over Y, which is
a subset of ℘(Y) that contains Y and is closed under C (complement), ∪
(union), and ∩ (intersection). I.e.:

(A1) Y ∈ A

(A2) A ⊆ ℘(Y)

(A3) ∀X(X ∈ A → XC ∈ A)

(A4) ∀X∀Z((X ∈ A&Z ∈ A) → X ∪ Y ∈ A)
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(A5) ∀X∀Z((X ∈ A&Z ∈ A) → X ∩ Y ∈ A)

The most fine-grained algebra over Y is ℘(Y), the most coarse-grained one
is Y itself. For illustrative purpose, consider the case of throwing an ordi-
nary dice. The so-called possibility space of event outcomes is {1, 2, 3, 4, 5, 6};
we can characterise a set of event types Y = {Y1, . . . , Y6} via Yi: The dice
lands on i. If we choose as algebra A over Y: A = Y, then we can dis-
tinguish only between the safe event Y that the dice lands on one out of
{1, 2, 3, 4, 5, 6} and the excluded event ∅ that it does not land on one out of
{1, 2, 3, 4, 5, 6}. If we assume, e.g., A = {{Y1}, {Y2, . . . , Y6}, Y}, then we can
distinguish also between landing on 1 or not. And if we assume A = ℘(Y),
then we can distinguish all combinatorial possible cases. The probabilistic
considerations of this book are always about the most fine-grained algebra
over the set of elementary events or event types.

In philosophy, probability theory is often applied on an algebra not over
events, but propositions or statements. Such a sentential algebra is defined
over a set of elementary propositions {p1, p2, . . . , } and is closed under ¬,
&, and ∨ (a Boolean algebra). Since probability theory is applied equivalently
to an algebra of events as to an algebra of propositions, we will also switch
between these two types when applying probability theory (e.g., the former
type is more relevant when we speak about random variables).

On top of such an algebra, we can define a probability distribution Pr as
any function satisfying the so-called Kolmogorov-axioms, first put forward
by Andrey N. Kolmogorov in 1933: Let A, B ∈ A, then:

• Unconditional Pr:

(Pr1) Non-negativity: Pr(A) ≥ 0

(Pr2) Normalisation: Pr(�) = 1 (for any tautology or safe event �)

(Pr3) (Finite) Additivity: Pr(A ∨ B) = Pr(A) + Pr(B), if A and B are
mutually exclusive or logically contrary

• Conditional Pr:

(Pr4) Given Pr(A) > 0, then:

Pr(B|A) =d f
Pr(B&A)

Pr(A)

The conditional probability Pr(B|A) is also described as the probability
of B in the light of A which is thought to express the probability of B once
one got to know or is certain about A. So, e.g., if A logically implies B: A �
B, then, given A or in the light of A, B is certain, i.e: Pr(B|A) = 1. Given a
probability distribution Pr, we can “check” for probabilistic dependencies
and independencies between events or propositions simply by considering
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their probabilistic “impact”: If B turns out to be less probable in the light
of A than unconditioned on A, i.e. if Pr(B|A) < Pr(B), then we say that
A and B are negatively correlated; note that if Pr(B|A) < Pr(B), then also
Pr(A|B) < Pr(A). If B turns out to be more probable conditional on A,
i.e. if Pr(B|A) > Pr(B), then we say that A and B are positively correlated
(again, Pr(B|A) > Pr(B) implies Pr(A|B) > Pr(A)). If A has no positive
or negative probabilistic “impact” on B, i.e. if Pr(B|A) = Pr(B), then we
say that A and B are probabilistically independent (also here Pr(B|A) = Pr(B)
implies Pr(A|B) = Pr(A)); equivalently, probabilistic independence can be
characterised via: Pr(A&B) = Pr(A) · Pr(B).

Important calculation rules are:

Negation theorem: Pr(¬A) = 1 − Pr(A)

Consequence theorem: If B � A, then Pr(B) ≥ Pr(A)

Equivalence theorem: If A � �

B, then Pr(A) = Pr(B)

Chain rule: Pr(A1& · · ·&An) =
n
∏
i=1

Pr(Ai|A1& · · ·&Ai−1)

Law of total probability: If � (B1∨̇ · · · ∨̇Bn), then Pr(A) =
n
∑

i=1
Pr(A&Bi) =

n
∑

i=1
Pr(A|Bi) · Pr(Bi)

(note that ∨̇ is xor, the exclusive dis-
junction, i.e. the Bis are pairwise ex-
clusive and jointly exhaustive; a spe-
cial case is: Pr(A) = Pr(A&B) +
Pr(A&¬B))

Bayes’ theorem: Pr(A|B) = Pr(B|A) · Pr(A)
Pr(B)

When speaking of probabilities of events, we make use of random vari-
ables X, Z, also with sub-indices. A random variable predicates over indi-
viduals properties from a set of mutually exclusive and jointly exhaustive
properties. E.g. if {F(· · · ),¬F(· · · )} is the set of properties under con-
sideration, then X might predicate F(· · · ) to event e, i.e. X(e) is equiv-
alent to F(e). Quite often the properties under consideration are trivial
identifications—as, e.g., in the case of rolling a dice where X predicates
about the rolling event e one of {1, 2, 3, 4, 5, 6}, more specifically, one of the
set of properties {· · · = 1, . . . , · · · = 6}. In such a case, if it is clear from
the context which event is referred to, we will write ‘X = i’ (1 ≤ i ≤ 6) or,
more generally, ‘X ∈ R’ instead of ‘X(e)︸︷︷︸

i=

e’.
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We will make use of discrete random variables only in this book, which
means that the set of mutually exclusive and jointly exhaustive properties
under consideration is finite; if X ∈ V ⊂ R, where V is also called the value
space of X and is finite, then we can define the so-called expected value of X
relative to V and a probability function Pr as:

E[X] =d f ∑
v∈V

Pr(X = v) · v

Intuitively, the expected value of X is the long-run average value of rep-
etitions of events covered by X. E.g., if X is about rolling a fair dice with
V = {1, 2, 3, 4, 5, 6} and Pr(X = 1) = · · · = Pr(X = 6) = 1

6 , then E[X] = 3.5
which is also the average of {1, 2, 3, 4, 5, 6}. If, e.g., the dice has a strong bias
towards 6: Pr(X = 6) = 3

6 and Pr(X = 1) = · · · = Pr(X = 5) = 3
5·6 , then

E[X] = 4.5.
Considering more than one random variable, we might be interested in

their interactions. Many important theorems concern the case where ran-
dom variables are attached to the same (identical) probability distribution
without there being a probabilistic influence of one to the other (indepen-
dent). E.g., when rolling one and the same dice twice, it is assumed that the
possible outcomes of the second roll are equally probable to the possible
outcomes of the first roll. It is furthermore assumed that the probability
of a possible outcome of the second roll is not influenced by a (possible)
outcome of the first roll and vice versa. So, if X1 covers the first roll and
X2 the second one with V1 = V2 = {1, . . . , 6}, we usually assume that
Pr(X1 = i) = Pr(X2 = i), i.e. X1 and X2 are identically probabilistically
distributed, and Pr(X1 = i|X2 = j) = Pr(X1 = i), i.e. X1 and X2 are in-
dependently distributed. If this is the case, one also speaks of independent
and identically distributed (i.i.d.) random variables. An important statisti-
cal theorem we will employ in this book concerns an infinite sequence of
such random events X1, X2, . . . which are pairwise i.i.d.: The so-called weak
law of large numbers states that the arithmetic mean of the values almost
surely (i.e. with probability one) converges (i.e. gets arbitrarily close) to the
expected value as the number of repetitions of such an event approaches
infinity (v1, . . . , vn are the outcomes/values de facto assigned by X1, . . . , Xn
to the events):

∀ε > 0 : lim
n→∞

Pr
(∣∣∣∣v1 + · · ·+ vn

n
− E[X1]

∣∣∣∣ < ε

)
= 1

Bayesian Networks. Finally, we will also sometimes illustrate and apply
the general results of meta-induction in cases best described by help of so-
called Bayesian networks. Such networks allow for graphically representing
the paths over which probabilistic information spreads between random
variables. They consist of a set V of random variables X1, . . . , Xn, a set E of
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directed edges (−→) connecting some of these variables, and a probability
function Pr over V. A triple 〈V, E, Pr〉 is a Bayesian network iff it conforms
to the so-called Markov factorisation (Pearl 2000, p.16)

Pr(X1 = v1& · · ·&Xn = vn) =
n

∏
i=1

Pr(Xi = vi|Par(Xi)), (2.1)

where Par(Xi) is the set of Xi’s “parents” in the Bayesian network’s graph
G = 〈V, E〉, i.e., the set of all Xj ∈ V for which Xj −→ Xi holds. When-
ever the probability distribution Pr of a triple 〈V, E, Pr〉 factors according
to Markov factorisation (equation (2.1)), then one can read off certain inde-
pendencies in Pr from the graph G = 〈V, E〉. In particular, every Xi ∈ V
has to be independent of every Xj that is not connected to Xi via a path
Xi −→ · · · −→ Xj conditional on Par(Xi). Typically applied are Bayesian
networks, e.g., when causally interpreted, i.e. when the arrows (−→) of a
Bayesian network’s graph stand for direct cause-effect relationships. In this
book, however, we will employ Bayesian networks only with respect to the
aim of simpler reading off and representing probabilistic information. Fig-
ure 2.1 illustrates a Bayesian network.

X1

X2

X3 X4

Figure 2.1: Example of a Bayesian network: It encodes the probabilistic informa-
tion that X3 is probabilistically independent of X4 as well as X1—both times condi-
tional on X2; analogously for X4. (Par(X3) = Par(X4) = {X2}, Par(X2) = {X1},
Par(X1) = ∅).

2.2 Prediction Games

Let us start with some kind of atomism by assuming that “the world di-
vides into facts” (Wittgenstein 1961, prop.1.2, p.7). Now, actually we want
to take an epistemic stance of atomism, which is to say that we assume the
world to be distinguishable in events Y. Regarding prediction tasks, we are
interested in the prediction of a series of events of one and the same type,
so we want to distinguish event types Ys: Y1, Y2, . . . . Think, e.g., on types
of stocks as, e.g., Apple stock, Google stock, etc., or different types of weather
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as, e.g., rainy, sunny, etc. But we are also interested in temporal relations.
For this reason we also distinguish events Y according to the time of their
possible occurrence into Y1, Y2, . . . , the (possible) event tokens. Think, e.g.,
on a particular Apple stock or a particular rainy day, etc. How event types
and points in time are distinguished exactly, is left open. There is no need
of making any specific restrictions to natural kinds or some other forms
of filtering out specific types. The only thing that matters is that there are
possibly infinitely many instances of event types in time. In order to keep
technicalities simple, we also assume that for each event the numbers of in-
stances in time are only countably many (N), however, theoretically nothing
hinges on this assumption and one might transfer our results to the case of
dense points in time (R). By combining both ways of distinction as Ys

t , we
describe the world as a matrix as depicted in figure 2.2.

Y1
1 Y1

2 Y1
3 Y1

4 Y1
5 . . .

Y2
1 Y2

2 Y2
3 Y2

4 Y2
5 . . .

Y3
1 Y3

2 Y3
3 Y3

4 Y3
5 . . .

Y4
1 Y4

2 Y4
3 Y4

4 Y4
5 . . .

Y5
1 Y5

2 Y5
3 Y5

4 Y5
5 . . .

...
...

...
...

...
. . .

Figure 2.2: The world as a mosaic or the totality of events: We use super-indices to
refer to event types and sub-indices to refer to points in time. By mixing both we
refer to (possible) event tokens or simply ‘(possible) events’.

Now, we assume that one can always describe the outcomes of such an
event in quantitative terms. In case one just wants to represent whether
an event took place or not, one can simply use binary values 0, 1: Y4

2 , e.g.,
might be mapped to 1 if an event of type Y4 (e.g. rainy) took place at point
in time 2; otherwise it is mapped to 0. In case one wants to transform a
more general qualitative description of the output into a quantitative one,
one can do so by retyping the events and binarising each qualitative value
separately. If, e.g., one wants to speak of possible outcomes sunny, rainy
and windy (having a more general type weather in mind), then one can dis-
tinguish this event type into type Y3 (sunny), type Y4 (rainy) and type Y5

(windy) and proceed as above, i.e. describe the outcome via ∈ {0, 1}. How-
ever, the outcome need not be only binary, but can take on any real value
one wants—as is the case, e.g., with stock values. We only assume that
generally such quantified event outcomes can be normalised to [0, 1]. This
assumption is unproblematic as long as we assume that the quantities we
are speaking about are somehow bounded. To sum up, we assume that event
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outcomes are quantitatively described and bounded. The formal details are
provided below in definition 2.4.

Taking this epistemic point of view, it is easy to describe the task of
making predictions about the world in game-theoretical terms: A predic-
tion task consists in an individual’s i making a claim f at some point in
time t about the quantified outcome y of an event Y occurring at some later
point in time > t. If we take ys

t to be a value provided by the world or nature
and f s

t,i to be a value provided by an individual i, then a prediction task
is a game between nature and individual i. In a round of such a game i
wins if the prediction succeeds, i.e. if f s

t,i = ys
t , and i looses against nature

if the prediction fails, i.e. if f s
t,i �= ys

t . One can also provide a quantitative
measure for winning and loosing per round by introducing a loss func-
tion �. This function is supposed to measure somehow something which
somehow might be interpreted as something like a distance between i’s
prediction and nature’s choice: �( f s

t,i, ys
t). Note that we opted for such an

awkward expression, because we do not really assume that � is a distance
measure (i.e. non-negative, symmetric, subadditive, and indiscernible re-
garding identicals), although this would be a quite natural constraint. It is
also common to interpret � as a loss function, measuring the loss a player
receives at a round for her prediction in a prediction game (for details see
below). For technical convenience we assume that � is indiscernible regard-
ing identicals in the following way:

Axiom 2.1 (Loss).
�(x, x) = 0 ∀x ∈ [0, 1]

Furthermore, we assume that � operates also within [0, 1], so, we as-
sume that � is bounded:

Axiom 2.2 (Loss).
�(x, z) ∈ [0, 1] ∀x, z ∈ [0, 1]

By taking the inverse of the loss, one gets a measure for success:

Definition 2.3 (Simple Success).

s(x, z) = 1 − �(x, z) ∀x, z ∈ [0, 1]

s also operates within [0, 1]; we will discuss several such success mea-
sures in the subsequent section.
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We use such a measure of predictive success for evaluating predictions
and their underlying methods. As we will see soon, non-trivial evaluation
cannot be performed in absolute terms. In order to be non-trivial, a gen-
eral evaluation procedure always needs some standards for comparison.
In the case of making a prediction, this is usually done by considering a
concatenation of predictions or just repeated predictions. We aim to reach
a comparative evaluation, for which reason we will consider concatena-
tions of predictions of several individuals. The latter is provided in the
framework of prediction games which we introduce now by generalising the
notion provided in (Schurz 2008b).

A prediction game consists of the following ingredients:

Definition 2.4 (Events, Predictions, and Truth).

• Ys
t : Y1

1 , Y1
2 , . . . ; Y2

1 , Y2
2 , . . . are infinite series of events.

• Y = 〈〈y1
1, y1

2, . . . 〉, 〈y2
1, y2

2, . . . 〉, . . . 〉 are quantified representations
(within the interval [0, 1]) of the true (or actual) outcomes (or values)
of the events (event variables) to be predicted: ys

t∈ [0, 1].

• Fi: F1, . . . , Fn are the prediction or forecasting methods of n∈ N pre-
dictors or forecasters.

• F = 〈〈〈 f 1
i,1, f 1

i,2, . . . 〉, 〈 f 2
i,1, f 2

i,2, . . . 〉, . . . 〉 : 1 ≤ i ≤ n〉 are the predic-
tions or forecasts of the single events within the interval [0, 1] of the
predictors or forecasters 1 ≤ i ≤ n : f s

i,t∈ [0, 1]

More precisely, we define a prediction game by the following 4-tuple:

Definition 2.5 (Prediction Game). G is a prediction game (with the true
values Y and the predicted values F) about events of type(s) I ⊆ N iff

G = 〈 {〈s, t, Ys
t 〉 : t ∈ N & s ∈ I},

{〈s, t, ys
t〉 : t ∈ N & s ∈ I},

{Fi : 1 ≤ i ≤ n},
{〈s, i, t, f s

i,t〉 : 1 ≤ i ≤ n & t ∈ N & s ∈ I} 〉

I is a set of indices of the event types in question (I ⊆ N). E.g., a predic-
tion game with I = N amounts to a task of predicting everything (assuming
that the set of all properties is countably infinite, as is done, e.g., according
to our approach presented in figure 2.2); I = {3, 4, 5} filters out a prediction
game on weather; one might put forward probabilistic constraints for con-
necting the predicted values f 3

i,t, f 4
i,t, f 5

i,t as well as for the outcomes y3
t , y4

t , y5
t

such that they are non-negative and sum up to 1 and for the ys one typically
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assumes that they are ∈ {0, 1} (for all i, t ∈ N); given these constraints, one
can interpret such a prediction game as a probabilistic one. On the other
hand, setting I = {3} filters out a simple prediction game on all events of
type Y3 (whether it is sunny or not or to which degree it is sunny etc.). If
I is a singleton and the specific event type is irrelevant, then we will just
omit super-indices. We will speak then also about a ‘prediction game’ sim-
pliciter.

Note that our notion of a prediction game generalises that of Schurz
(2008b) insofar we include several sequences of different types of events.
The same holds also for the structure of forecasts and forecasters: In our
setting they are about event variables, whereas in the original setting of
Schurz they are about single events. However, in most parts of the book
our setting coincides with that of Schurz (2008b) as we speak mainly about
prediction games with |I| = 1.

Relevant for the evaluation of predictions within a prediction game are
especially the values of y and fi (see figure 2.3): The closer f s

i,t is to ys
t , the

better the prediction of i. And the closer the f s
i,t’s are to the respective ys

t ’s,
the better i is a predictor in general. Although reference to events them-

y1 y2 y3 y4 y5 . . .

f1,1 f1,2 f1,3 f1,4 f1,5 . . .
...

...
...

...
...

...

fn,1 fn,2 fn,3 fn,4 fn,5 . . .

Figure 2.3: Prediction game with event outcomes y and predictions fi, . . . , fn of n
predictors

selves as well as reference to the forecasting methods is not directly rele-
vant for evaluation, we have included them into our definition of predic-
tion games in order to be able to make more distinctions of such games rel-
evant for our later applications. Thereby we consider a prediction method
Fi to be a function that maps some input, including the event in question,
into the predicted output value:

Fi : Input(s, t) −→ f s
i,t ∈ [0, 1]

Depending on the exact specification of Input, one can differentiate differ-
ent kinds of prediction methods. If, e.g., Input includes, besides Ys

t , all
or some outcomes of past events of type Ys, but none of future events
({〈s, u, ys

u〉 : u < t}), then Fi is an object level method (e.g., an inductive
method). If it includes next to Ys

t outcomes of past events of other types
(Y �=s), then Fi might be an abductive method or a method employing analo-
gies and simulations. However, formally similarly it might be also some
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oracle or witchcraft method, employing empirical data on other event types
like extispicy in order to make a prediction about a future event like the
outcome of a war. If Fi includes also the outcome of the future event (ys

t),
then Fi might be interpreted as a clairvoyant method, since its application
presupposes access to the future. Since the enlightenment, but also already
before, the later kind of methods were tackled especially by science. For
this reason one might speak of para-scientific methods here. If no event out-
come is included at all, then Fi is an a priori method. One such method could
be, e.g., a method that produces its predictions randomly. Another possibil-
ity is, e.g., a purely “rationalistic method” that deduces its predictions only
from first principles that are not empirical. There are further possibilities for
the choice of Input and at the end of this chapter we will provide a taxon-
omy of all prediction methods relevant for our endeavour (see section 2.3).
However, for our current purpose we do not need to make any restrictions
in this respect. Prediction games can consist of any prediction methods one
can think of. The only thing that matters is that such a method provides
predictions of the form f s

i,t, because the latter can be used for evaluation
by measuring their deviation from the true outcome, which is also a mea-
sure for success. Now, before we come to exact definitions of measures for
success, let us provide some motivation for such a measure and link it to
a debate which lasts now longer than two millennia, namely the epistemic
debate about scepticism.

It is clear that nature counts as benchmark regarding success. How-
ever, regarding the aim of such a game between nature and individual
i one might postulate different things: One aim might be to collectively
score best: Since nature itself is the benchmark, it always has minimal
loss: �(ys

t , ys
t) = 0 (due to axiom 2.1), and hence also maximal success:

s(ys
t , ys

t) = 1. In order to increase the collective score, the best strategy to
perform for nature would be to behave exactly like i predicts. To continue
this metaphorical talk, given such an aim, nature has to behave nicely, has
to perform a supportive and innocent strategy �:

Definition 2.6 (Nature’s Strategy: Angel).

� : ys
t ∈ arg max

x∈[0,1]
s( f s

i,t, x) ∀s, t ∈ N

E.g. : ys
t = f s

i,t

If nature plays such a strategy then s( f s
i,t, ys

t) = 1. It is clear that pos-
tulating such an aim for the epistemic realm is very optimistic, naı̈ve, and
innocent too. Concerning the interplay between perception and reality, e.g.,
naı̈ve realism might be a paradigmatic case in point of a position which ar-
gues from a strategy like �. However, this is no common position in epis-
temology. On the contrary, epistemologists are usually doubting such an
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assumption, especially for the epistemic realm. What is much more com-
mon is a sceptical perspective. The strongest version of such a scepticism
is the assumption that nature plays against an individual, by a strategy �
(Daemon) which tries to minimise the individual’s success by maximising
its loss. Most of the times such a sceptical perspective serves a methodolog-
ical purpose: Starting with sceptical considerations, epistemologists often
want to end up with reasons why such a sceptical position is untenable.
In order to provide strong reasons based on a strong foundation, they as-
sume a strong form of scepticism which tries to undermine any foundation
whatsoever. Our application in part II of the book will be in a similar line.
However, for now we want to have a short look on traditional sceptical
positions in order to motivate our approach via meta-inductive prediction
games.

If one considers, e.g., ancient scepticism, then one has to mention first
and foremost Pyrrho, the founder of Pyrrhonian scepticism. However, since
Pyrrhon himself seems to have intended to advocate sceptical lifestyle
rather than to provide reasons for suspension of judgement, in the epistemic
realm more relevant are his followers. Most prominent is perhaps Sex-
tus Empiricus who distinguished three epistemic approaches: dogmatism,
which claims “to have found the truth”, Academic scepticism, which “asserts
that it cannot be apprehended”, and general scepticism, which is “still search-
ing” the truth (see Sextus Empiricus 1999, book I, sect.1, p.45). Dogmatists
like Aristotle might be interpreted as seeing things through rose-coloured
glasses as discussed above: They seem to think that somehow they man-
aged to bring about that nature plays strategy �. General sceptics, like
Sextus Empiricus, so it seems, are opposing dogmatists inasmuch as they
think that assuming strategy � is not justified. However, Sextus Empiri-
cus does, e.g., also not call into question the very existence of an external
world. Rather, he suggests universal suspension of judgement. He claims,
e.g.:

“We do not reject the things that lead us involuntarily to as-
sent in accord with a passively received phantasia, and these
are appearances. [. . . ] For example, the honey appears to us
to be sweet. This we grant, for we sense the sweetness. But
whether it is sweet we question insofar as this has to do with the
[philosophical] theory, for that theory is not the appearance, but
something said about the appearance. [. . . In general] nature’s
guidance is that by which we are naturally capable of sensation
and thought; [. . . ] hunger drives us to food and thirst makes
us drink; [. . . Important is that] we say all these things without
belief.” (see Sextus Empiricus 1999, book I, sect.10, p.49)

So, what Sextus Empiricus seems to claim is that a prediction task as
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framed in terms of a game such as above is not a game he would join play-
ing. Rather, he prefers to “say that as regards belief the Skeptic’s goal is
ataraxia” which “is an untroubled and tranquil condition of the soul” and
the best means to achieve this goal is to perform epoche which “is a state
of the intellect on account of which we neither deny nor affirm anything”
(see Sextus Empiricus 1999, book I, sect.4 and 12, p.46 and p.49). Hence, he
seems to suggest that any epistemic aim of a prediction game runs contra
a practical aim, namely tranquillity, for which reason he thinks one should
better abandon playing such games.

A sceptical position that fits more to our setting is the position of Arcesi-
laus who is said to be responsible for turning Plato’s Academy to a specific
branch of scepticism, the Academic scepticism. Although also Arcesilaus
argued for suspension of judgement as a final mode of thought, contrary to
Sextus Empiricus he thought it to be actually a very good means to join a
game as described above. His idea was to engage into discussion in form of
a debating contest (logos in the sense of discourse) in order to prove suspen-
sion of judgement resulting of debating. Even Socrates’ slogan to know that
one does not know turns in Arcesilaus’ view to not knowing to know that one
does not know (see Thorsrud 2009, pp.43f). And one might suspect that
the iteration of not knowing goes on and on. However, methodologically he
suggested to join discussion and by this, according to our framing, to join
prediction games as indicated above. e.g. his critique of Stoic philosophy is
summarised via reference to Marcus Tullius Cicero as follows:

“For any sense-impression S [represented by our f s
i,t], received

by some observer [i], of some existing object O [represented by
our ys

t . . . ] we can imagine circumstances in which there is an-
other sense-impression S′ [our f s′

i,t], which comes either (i) from
something other than O [i.e. ys′

t ], or (ii) from something non-
existent, and which is such that S′ is indistinguishable from S to
[i]. The first possibility (i) is illustrated by cases of indistinguish-
able twins, eggs, statues or imprints in wax made by the same
ring. The second possibility (ii) is illustrated by the illusions of
dreams and madness [that is strategy �].” (see Thorsrud 2017,
sect.2)

Anecdotal evidence via Diogenes Laërtius suggests that by help of such
a debate Arcesilaus was able to trick a student of the founder of the Stoic
school, Zeno of Citium, into thinking that wax pomegranates were real (see
Thorsrud 2009, note 13 of chpt.3). Although this must have produced an
awful taste experience for the poor student, whatever the practical conse-
quences may have been, it is noteworthy that Arcesilaus was one of the first
to prominently refer to illusions of dreams etc. in order to exploit the setting
of a “prediction game” against any rationale of believing or disbelieving.
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Such reference was prominently made especially in the modern era by
methodological sceptics like Descartes or Hume. Descartes, e.g., suggests:

“Accordingly, I will suppose not a supremely good God [i.e.
our �], the source of truth, but rather an evil genius [our �],
supremely powerful and clever, who has directed his entire ef-
fort at deceiving me. I will regard the heavens, the air, the earth,
colors, shapes, sounds, and all external things as nothing but
the bedeviling hoaxes of my dreams, with which he lays snares
for my credulity.

I will regard myself as not having hands, or eyes, or flesh, or
blood, or any senses, but as nevertheless falsely believing that I
possess all these things.” (Descartes 1637/1998, par.22f)

And Hume formulates it this way:

“All reasonings may be divided into two kinds, namely demon-
strative reasoning, or that concerning relations of ideas, and
moral reasoning, or that concerning matter of fact and existence.
That there are no demonstrative arguments in the case, seems
evident; since it implies no contradiction, that the course of na-
ture may change, and that an object, seemingly like those which
we have experienced, may be attended with different or con-
trary effects. May I not clearly and distinctly conceive, that a
body, falling from the clouds, and which, in all other respects,
resembles snow, has yet the taste of salt or feeling of fire? [our
�]” (Hume 1748/2007, sect.4, part ii, p.25)

We will discuss Hume’s argument also in part II of the book in more de-
tail. For now we want to end our excursus by mentioning the most promi-
nent contemporary sceptical scenario debated in the literature, Putnam’s
thought experiment on a brain in a vat:

“Imagine that a human being (you can imagine this to be your-
self) has been subjected to an operation by an evil scientist [our
�]. The person’s brain (your brain) has been removed from the
body and placed in a vat of nutrients which keeps the brain
alive. The nerve endings have been connected to a super-
scientific computer which causes the person whose brain it is
to have the illusion that everything is perfectly normal. There
seem to be people, objects, the sky, etc; but really all the person
(you) is experiencing is the result of electronic impulses travel-
ling from the computer to the nerve endings.” (Putnam 1981,
pp.5f)
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All these sceptical positions assume that the aim of playing a prediction
game as outlined above consists not in nature playing with individual i
(�), but in nature playing against i (�). At least for methodological reasons
it is assumed that nature tries to minimise i’s success. This is achieved by
choosing ys

t in such a way that it has most distance from f s
i,t within [0, 1]

according to �:

Definition 2.7 (Nature’s Strategy: Daemon).

� : ys
t ∈ arg min

x∈[0,1]
s( f s

i,t, x) ∀s, t ∈ N

Now, clearly � and � are not the only strategies possible. In a predic-
tion game between a forecaster i with method Fi and nature, nature might
play any strategy in between them, so also strategies according to which i’s
success lies on the interval:

arg min
x∈[0,1]

s( f s
i,t, x) . . . 0 |

�

|
�

1 . . . arg max
x∈[0,1]

s( f s
i,t, x)

The upshot of methodological scepticism in our setting is that we have to
allow nature to play any strategy within this interval, also the most sceptic
one: �. I.e., we are not allowed to make any assumptions (other than the
boundary constraint on ys

t of definition 2.4) about the event outcomes. We
will see that there is a branch of machine learning which is concerned with
prediction games as outlined above (definition 2.5) and which makes no
assumptions about the event outcomes which have to be predicted, namely
online learning. However, before we come to this branch, we give precise
definitions of ‘optimality’ in the next section.

2.3 Success, Optimality, and Meta Predictors

When we introduced the notion of a prediction game and strategies � and
� that marked a spectrum of strategies which nature can perform in such a
game, we were also talking about a measure of loss � and a simple measure
for success s . Now, these measures are about a single prediction. However,
in online learning one considers not just one prediction, but a whole series
of predictions (see figure 2.5) or a whole set of possible predictions. This
broader perspective allows us also to define a broader set of measures for
success.

If we do not want to explicitly refer to the true value series Y, but rather
leave it open to the context to either specify it further or allow for any such
series, we will use an indexed notation for �:
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Definition 2.8 (Loss, Indexed).

�i,t = �( fi,t, yt)

In principle we have here a loss � which is monotonically increasing
with the distance between fi,t and yt in mind. Also in most of the results
below we assume a (in its first argument) convex loss function. Note that
this definition and all definitions below are to be understood as definitions
given some prediction game G with the series of the true values Y and a set
of prediction methods F. If we need to specify G further, we will mention
it explicitly in the respective definition or theorem. If there is no need for a
specification, we will often also refrain from mentioning G explicitly, as we
did, e.g., already in definition 2.8.

What we called simple success in definition 2.3, is often called score in
online learning. It is the value which a prediction method Fi earns for one
prediction about an event’s outcome at time or round t, namely the predic-
tion fi,t.

Definition 2.9 (Score).
si,t = 1 − �i,t

Note that the more fine-grained notion of the score defined on a specific
type s of an event is s s

i,t = 1− �( f s
i,t, ys

t). We will make use of this more fine-
grained notion later on in the probabilistic setting.

Now, the score of a prediction method does not say much about its gen-
eral success. What matters in evaluating a prediction method is how well
it scores in general. For this reason we introduce a measure of absolute
success which just states for each point in time or round t how a method
scored in sum (see Schurz 2008b, p.279):

Definition 2.10 (Absolute Success).

asucc i,t =
t

∑
u=1

si,u

More importantly for the optimality results later on is a measure of
relative success which just states for each point in time or round t how
a method scored on average (see the notion of the success rate in Schurz
2008b, p.279):
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Definition 2.11 (Relative Success).

succ i,t =

t
∑

u=1
si,u

t

This kind of success is the most important one for the remainder of this
book and when we speak of success without modification, then we have
this notion in mind. The idea will be to optimise it in several epistemic ap-
plications. Also here the more fine-grained measure succ s

i,t can be defined
in the same way, but on basis of s s

i,t instead of si,t.
For some more general cases we need also two further and somehow

weaker notions of success. First, there is the notion of average group suc-
cess which is just the average of the success rates of a group of prediction
methods:

Definition 2.12 (Average Group Success).

succ{i1,...,im },t =

m
∑

j=1
succ ij,t

m

The more fine-grained measure succ s
{i1,...,im },t is, again, based on succ s

i,t.
Clearly, if the group consists of just one forecaster, then succ = succ .

The second weaker notion of success is the notion of expected success. It
covers the case where we do not have information about the exact forecast
of a forecaster, but we know just the probabilities of her forecasting specific
values. The common notion of an expected value is usually defined with
respect to random variables: For a discrete random variable Z1 with the
value space V = {v1, . . . , vk } and the probability distribution Pr over V,
the expected value of Z1, i.e. E[Z1], is defined as:

Definition 2.13 (Expected Value).

E[Z1] =
k
∑
l=1

Pr(Z1 = vl) · vl

If, e.g., V = {0.0, 0.5, 1.0}, and Pr(Z1 = 0.0) = Pr(Z1 = 0.5) = Pr(Z1 =
1.0) = 1/3, then E[Z1] = 0.5. In the same way we can define a measure
for the expected success of a forecaster with method Fi by considering her
probability of predicting the true value. By averaging along the rounds we
get (see Shalev-Shwartz and Ben-David 2014, p.252):



Chapter 2. The Setting 57

Definition 2.14 (Expected Success).

E[succ i,t] =

t
∑

u=1
Pri( fi,u = yu) · si,u

t
where Pri is i’s randomisation of her prediction

(for details see section 4.1)

The more fine-grained measure E[succ s
i,t] is defined the same way, but

on basis of f s
i,t and ys

t .
These are the three main measures of success we will use for proving

the general results employed in the book. For one or another application
we will define further measures of success. However, they will be fitted
very much to specific cases and they will be still based on these ones.

Now, the main aim of optimisation in a prediction game is to construct
a prediction method Fm with predictions fm whose success is optimal com-
pared to all the other prediction methods of the game. As we have seen
above, in the online learning paradigm with adversarial development the
outcome can be always such that Fm’s success is minimal. This is the case
when nature plays strategy � against Fm. However, one has to be aware
of the difference between maximal, optimal, minimal, and suboptimal success.
Clearly, the maximum of succ is 1. Its minimum is 0. From the sceptic’s
perspective it is important to note that nothing hinders nature to perform
� and by this enforce minimal success for such a predictor Fm. However,
things are different when we switch from maximality to optimality. Opti-
mality and suboptimality are not absolute notions, but relative ones. In
prediction games they are relative to the predictors with highest success.
Nature might play a strategy which lets these predictors’ success rate de-
viate from the maximal one. It might even play strategy � in such a way
that the highest success of a player in a setting equals the minimum 0, so
its strategy is super-adversarial. However, as we will see in chapter 3, there
is an online learning algorithm or prediction method Fm such that nature’s
strategy can not be such that Fm is suboptimal, i.e. not optimal.

Optimality with respect to success consists in having the highest suc-
cess compared to all other methods or agents in the setting. The degree
of suboptimality consists in the deviation of being optimal, i.e., the devia-
tion of the highest success of a prediction method in the game. Before we
define a measure for optimality, we define a measure for the difference of
the successes or losses of two players, regardless of whether one of them
is optimal or not. Concerning the losses, this difference can be also inter-
preted as a degree of regret of one prediction method having not predicted
the same way as the other: For this reason the difference of the accumu-
lated loss of two forecasters is also called ‘regret’ in the machine learning
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literature (see Cesa-Bianchi and Lugosi 2006, p.2). Since we assumed the
loss measure to be within the unit interval (axiom 2.2) and we defined the
simple success and score of a forecaster i as 1 minus its loss (definitions 2.3
and 2.9), we get (see Shalev-Shwartz and Ben-David 2014, p.251):

Definition 2.15 (Absolute Regret).

aregret 〈i,j〉,t =
t

∑
u=1

�i,u −
t

∑
u=1

�j,u =
t

∑
u=1

(sj,u − si,u)

Again, the event variable-relative notion is aregret s
〈i,j〉,t and based on s s

i,t

and s s
j,t. Note that aregret up to time or round t is within the interval [−t, t].

If it is positive, then j’s unaveraged net success is higher than that of i and
so i regrets having performed a different strategy. If it is negative, then
i’s unaveraged net success is higher than that of j and so i does not regret
having performed her strategy (while clearly j does in comparison to i). If
it is zero, then they are on a par and there is no reason for regretting—for
neither of them. Clearly aregret 〈i,j〉,t = −aregret 〈j,i〉,t.

For reasons of completeness, we also introduce the notion of relative
regret which takes the average of the absolute regret up to round t:

Definition 2.16 (Relative Regret).

regret 〈i,j〉,t =

t
∑

u=1
�i,u −

t
∑

u=1
�j,u

t
=

t
∑

u=1
(sj,u − si,u)

t

Now, optimality seems to consist in having nothing to regret in the
following sense: Those agents within a setting are optimal, who need
not regret having performed a different strategy than the other ones, i.e.
those is, whose regret with respect to all other agents j is not positive, i.e.:
aregret 〈i,j〉,t ≤ 0. We could use this as a definition of ‘optimality’. However,
since we introduced different measures of success, we also want to define
several notions of optimality based on the different success measures (the
notion of access optimality was introduced by Schurz and Thorn 2016):

Definition 2.17 (Optimality).
Forecaster i is access optimal in the long run in G iff for all 1 ≤ j ≤ n :

lim
t→∞

(succ i,t − succ j,t) ≥ 0

Forecaster group {i1, . . . , im} is access optimal in the long run in G iff for
all 1 ≤ j ≤ n :

lim
t→∞

(succ{i1,...,im },t − succ j,t) ≥ 0
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Forecaster i is expected to be access optimal in the long run in G iff for all
1 ≤ j ≤ n :

lim
t→∞

(E[succ i,t]− succ j,t) ≥ 0

Note that the first notion is equivalent with demanding having no positive
regret in the long run. We call these methods ‘access optimal’, inasmuch
as their being optimal presupposes that we have access to the method’s
of G success-rates, in particular access to their past predictions. And we
call these methods ‘optimal in the long run’, inasmuch as we compare their
successes in the limit.

One important property of optimality is that it is independent from
any threshold of succ . So, if, e.g., the best prediction method fares worse
than a method would fare that flips a fair coin (E[succ ] = 0.5 in the long
run), this method would still turn out to be optimal. Even in case of
max(succ1, . . . , succn ) = 0 in the long run, i.e. in a super-adversarial set-
ting, all methods are optimal simply because optimality is defined in purely
relative terms. A prediction method i is suboptimal, if it is not optimal.
And i is strictly suboptimal, if it is outperformed by all other accessible pre-
diction methods j in the sense that lim

t→∞
(succ i,t − succ j,t) < 0.

Up to now we have described measures for evaluating prediction meth-
ods. We also defined what it means for a prediction method to be access
optimal in the long run. And we claimed that in online learning one finds
algorithms which are guaranteed to be optimal. In what specific sense they
are optimal will be characterised in chapter 3. But before we come to this,
we need to introduce into our setting one more notion, namely the notion
of a meta predictor.

All prediction methods we were talking up to now have one thing in
common: They are methods that map information about past outcomes
and some Input to their prediction:

Fi : Input(s, t) −→ fi

We have indicated in section 2.2 that this Input might contain also, e.g.,
a priori principles which are used for hypothesis construction. Regarding
the ingredients of a prediction game we distinguished prediction methods
only according to the information they base their predictions on regarding
Y (the outcomes): Clairvoyants have access to future outcomes, oracles to
outcomes of strangely related types of events, abductive forecasters have
access to more systematically related types of events etc. However, the set-
ting of a prediction game allows also to employ some further information.
Besides Y, there is also F (the predictions) which might be used for con-
structing a prediction. So, in principle it is possible to characterise meta
methods Fm that are defined not only on Y and some Input, but also on
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the non-meta methods’—sometimes also called ‘candidate methods’ (see
Schurz and Thorn 2016)—predictions: F:

Fm : F, Input(s, t) −→ fi

Such meta methods can take on different forms: There is, e.g., the possi-

prediction methods

object methods

para-scientific
analogies
& simula-
tions

abductive

a priori

object-inductive

meta methods

mixed

meta-inductive

meta-meta

Figure 2.4: A taxonomy of prediction methods: Prediction methods can be divided
into object methods and meta methods. Object methods base their predictions at
most on information about events, but not information about other predictions. If
their information basis is solely about past events of the same type, they are object-
inductive. If it is also about past events of other types, they might be abductive
or methods employing analogies and simulations. If they (claim) to have as infor-
mation basis outcomes of events (of the same or different type) of the future, they
are para-scientific. If they base their prediction neither on information about other
predictions, nor on information about the events, they are a priori. Meta meth-
ods base their predictions at least on some information about predictions of other
methods. If they make their predictions on the basis of such information and infor-
mation about the events in question, they are mixed. If their predictions are purely
on the basis of information about object methods’ predictions, then they are meta-
inductive. If they base their information solely on predictions of meta-inductive
methods, then they are meta-meta methods (and so forth).

bility to create hypotheses about the data based on the data and modify
the hypotheses according to the other predictions. Such a mixed strategy
could be, e.g., object-induction plus normalising the prediction within the
interval of the other predictions. However, for our purpose most impor-
tant is the so-called meta-inductive strategy which performs induction not
on the level of the data (like object-induction), but on the level of the pre-
dictions by performing induction on the success rates. We will see in the
next chapter that this allows for defining an algorithm that is guaranteed
to be access optimal in the long run. Hence its importance. Furthermore,
there is the possibility to construct predictions not only out of data and
candidate methods, but also out of meta methods. Such meta-meta methods
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will turn out to be relevant regarding optimality results in a discrete set-
ting, i.e. prediction games where the predictions are not within [0, 1], but
within a discrete set of values. Figure 2.4 provides an overview of the most
important methods relevant for our endeavour.

Given a precise characterisation of ‘optimality’, we now want to search
for prediction methods that allow us to achieve optimality. As we have
mentioned above, there is a branch of machine learning which studies ex-
actly such methods. In the next section we are going to indicate which
branch is most relevant for our aim, namely the theory of meta-induction
or online learning.

2.4 Machine Learning and Methodological Scepti-

cism

A great deal of the machine learning literature focuses on the task of design-
ing and studying algorithms for making predictions in a prediction game
as characterised in the preceding section. Learning consists of finding a
hypothesis “in” some data, or better: constructing a prediction method Fi
based on the data Y. It is machine learning, inasmuch as such constructions
should be performable also by machines.

One can differentiate several types of learning, depending on the follow-
ing four parameters (see Shalev-Shwartz and Ben-David 2014, sect.1.3):

1. supervised vs. unsupervised: Learning is supervised, if the data pro-
vided for learning (Y) contains information about whether the prop-
erty, which should be learned, applies to the data or not. So, e.g., if
one is supposed to predict whether it will rain or not and if the data
provided for learning allows the learner to distinguish rainy days
from non-rainy ones and identify the rainy ones, then the learning
process is supervised. On the other hand, if the learner gains only
information about differences in the data without her being able to
identify rainy days, then learning happens unsupervised.

2. active vs. passive: If the learner can intervene on the data set presented
to her, then learning is active. If not, then it is passive. In the first
case the learner can (systematically) decide, e.g., for which parame-
ters data should be generated. In the latter case the learner has to take
what she gets as input.

3. non-adversarial vs. adversarial: If the data is selected such that it con-
tains prototypical cases, then it is non-adversarial. If it is generated
in a random way, e.g., then it is indifferent (typically big random data
is also valuable and by this non-adversarial). If it is generated in a



Chapter 2. The Setting 62

way that is even negatively correlated to finding the right hypothe-
sis/making the right predictions by the learner, i.e. if the environment
is adversarial to some degree, then it is not valuable.

4. sample based vs. online: If the learner gets a data set (learning phase)
before she has to make a prediction (prediction phase), then she has
a so-called batch learning protocol. If she has to respond online, i.e.
throughout the learning process (prediction phase = learning phase),
then she has a so-called online learning protocol. In the online case
the learner may become an expert over time, whereas in the sample-
based case the learner might become an expert already before she
makes any predictions.

We call the first parameter of each pair a positive parameter, for if it is as-
sumed to hold, then the learner has some further possibilities to act or grasp
information.

For illustrative purposes, the difference between online and sample-
based learning is schematically represented in figure 2.5: In online learning
one has to make a prediction about an event in question, receives after-
wards the outcome, and can use this to learn a hypothesis for a prediction
about the next event. In contrast to this, sample-based learning usually
consists of a big data set which is exhausted in a learning phase. Then, af-
ter constructing a hypothesis about the data, one starts with the prediction
phase. Note that results about sample-based learning very often require
an assumption about a distribution of random variables representing the
events: If Z1 and Z2 are random variables representing two specific, but
arbitrarily chosen, events of an infinite event series, then they must be in-
dependent and identically distributed (i.i.d.):

Definition 2.18 (I.I.D.). An event series represented by random variables is
an i.i.d. series iff for any two events of the series represented by Z1 and Z2
it holds:

• Identical distribution: ∀x ∈ [0, 1] : Pr(x ≥ Z1) = Pr(x ≥ Z2)

• Independent distr.: ∀x ∈ [0, 1] : Pr(x ≥ Z1|x ≥ Z2) = Pr(x ≥ Z1)

Intuitively, this condition states that the data set used in sample-based
learning “is a window through which the learner gets partial information
about the distribution [. . . ]. The larger the sample gets, the more likely it is
to reflect more accurately the distribution and labelling used to generate it”
(see Shalev-Shwartz and Ben-David 2014, p.18). For sample-based learning
this is a crucial assumption: It is necessary for proving optimal learning
performance. We will see in chapter 3 that in online learning, at least in
the continuous case, no such assumption is needed. Note that our setting
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above (definitions 2.4 to 2.5) is, up to now, much simpler and considers
only one value of an event. So, random variables are not used by us right
now. However, later on when we introduce probabilistic prediction games
we will show a way of implementing random variables and transforming
the optimality results to this kind of games.

Online Learning:

learning (data input)
events . . .. . .

prediction
time

Sample-Based Learning:

learning phase︷ ︸︸ ︷ prediction phase︷ ︸︸ ︷
events

time

. . . . . .

Figure 2.5: Difference between online learning and sample-based learning: In online
learning the predictor (i) provides a prediction of an event, (ii) receives informa-
tion about the outcome which she can use as learning basis for (iii) providing her
prediction of the next event etc. In sample-based learning the predictor (i) receives
a set of data (information about the outcome of a series of events) which she can
use for (ii) providing her predictions on another series of events.

Before we provide some motivation for the learning paradigm which we
are going to employ in this book, let us give some examples: Unsupervised
learning is learning where the items of the data set whose pattern should
be learned are not labelled. Usually the task of such learning is to identify
items which do not conform to an expected pattern or other items in the
data set. Such anomalous items (also called outliers, noise, deviations, and
exceptions) are interpreted then as an error, a problem or a structural defect.
Applications of this kind of learning are manyfold: It is used in image anal-
ysis, pharmaceutical research (e.g. for finding novel molecular structures),
for detecting mislabelled data in a training set, etc. (see Hodge and Austin
2004).

As a prototypical example of supervised learning one might consider the
task of a (natural) scientist which is very often to generate a theory out of
a set of data with clearly distinguished phenomena and performing exper-
iments for validating the theory. According to the parameters above, this
task falls under the following learning paradigm: Supervised active sample-
based learning based on valuable/indifferent/not valuable data. It is supervised
inasmuch the data set scientists work with is usually operationally acces-
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sible in the sense that they are able to identify the relevant phenomena
therein. A psychologist, e.g., who theorises about a correlation between
frustration, aggression, and depression usually lists a set of operational
properties for each of these phenomena that allows her to clearly distin-
guish them. Such learning is active inasmuch as scientists ideally, when-
ever possible, try to perform experiments in a controlled setting which al-
lows them to state clear conditions for intervention. By this they do not
passively grasp data, but generate it. Furthermore, in most of the cases it
is learning by help of a sample in the sense that in most of the cases one starts
already with a given data set or one generates data on which one bases her
working hypothesis. Whether a hypothesis generated out of the data is true
and whether by this the data was prototypical (also: externally valid) or ran-
dom regarding the scientist’s task of finding a true hypothesis, or whether
it was adversarial with respect to her task, is left open here and discussed in
part II since this question concerns the fundamental epistemic problem of
induction.

A more determinate example within the same paradigm is learning by
a student in a lab, where usually the data provided by the instructor is
prototypical. So this kind of learning is within the paradigm of supervised
active non-adversarial sample-based learning.

An example for the paradigm of learning according to an online protocol is
the case of a stockbroker who has to make every day a decision or predic-
tion which is based on her experience gathered so far. Different from learn-
ing by help of a sample the learner has to present her predictions “on-line”.
In general, her way of learning is supervised inasmuch as she gets feedback
about the true outcome of a stock value. It is also passive inasmuch as there
is usually little space for interventions since the setting is not a controllable
one (foreseeing of interventions of some stockbrokers who are so influen-
tial that in many cases their hypothesis becomes a self-fulfilling prophecy).
Although there are lots of mistakes and errors in predictions, one usually
assumes that the data used is not adversarial with respect to the predictions.

Finally, an example of the paradigm of supervised passive adversarial on-
line learning is learning of a spam filter: Here usually the filter learns in a
supervised way since messages are labelled as spam or not-spam. It is typ-
ically passive, since the filter has to wait until a user tags a message. It is
online since a message is sent to the filter, the filter has to predict whether it
is spam or not, in case it is not spam it is directly forwarded to the user who,
ideally, provides information about whether it was spam or not. Further-
more, it is usually adversarial since senders of a message that is spam aim
at a negative correlation between the filter’s prediction that the message is
not spam while it de facto is spam (see Shalev-Shwartz and Ben-David 2014,
p.5).

We now come to a motivation for selecting the learning paradigm which
we employ in this book for epistemic purposes, namely the adversarial su-
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pervised passive online learning paradigm. In table 2.1 the different learning
paradigms with examples are listed. As we have described above, a suc-
cessful scientist’s way of learning is most demanding regarding the param-
eters: She needs time for a training phase (sample-based), the possibility to
experiment (active), all the data to be labelled (supervised), and luck to be
not in a daemonic setting (non-adversarial). Assuming that we de facto learn
this way is, epistemically speaking, naı̈ve in the sense that one assumes
nature to play a supportive strategy �. The extreme on the other side is
unlucky guessing where one has to make a prediction on-line, i.e. has little
data available, cannot intervene on the data, cannot identify the relevant
data for learning since it is unlabelled and is even in a daemonic setting.
Due to the lack of any “positive information” we think it is problematic
to even call this paradigm a learning paradigm. We suggest to speak of

non-adversarial supervised active sample-based example
0 0 0 0 Unlucky guessing
0 0 0 1 Unsuccessful ordinary

anomaly detection
0 0 1 0
0 0 1 1 Unsuccessful interactive

anomaly detection
0 1 0 0 Spam detection
0 1 0 1 Ordinary data mining
0 1 1 0
0 1 1 1 Anti-realistic ordinary science

or student learning “by help”
of a hostile instructor in a lab

1 0 0 0 Lucky guessing
1 0 0 1 Successful ordinary anomaly

detection
1 0 1 0
1 0 1 1 Successful interactive anomaly

detection
1 1 0 0 Stockbroker
1 1 0 1 Ordinary data mining
1 1 1 0
1 1 1 1 Realistic ordinary science or

student learning by help of an
instructor in a lab

Table 2.1: Examples for different (learning) paradigms. The dark grey coloured
rows represent possibilities of parametrisation which we consider to be no learning
paradigms. The white rows are those learning paradigms that are applicable in the
two most sceptic scenarios. They are the anomaly detection and the spam detection
paradigm.

a learning paradigm only if at least one piece of “positive information” is
available, i.e. if one gets to know the true results or labels of the dataset (su-
pervised), one can perform experiments and intervene on the data (active),
or one has at least a big enough dataset in order to learn some structure
(sample-based). By this unlucky as well as lucky guessing drop out from the
list. Furthermore, intervention with an online learning protocol seems to
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provide a basis too small in order to allow for learning at all. If time or the
number of rounds compensates for this, then online learning can be refor-
mulated as some kind of sample-based learning in the sense that a learn-
ing algorithm based on an online learning protocol can be transformed to
one based on a batch protocol (see Shalev-Shwartz and Ben-David 2014,
exercise 21.5). So, we can foresee from this paradigm too. Hence, as ta-
ble 2.1 shows, the two most sceptic (i.e. adversarial) settings where only one
“positive” learning parameter is satisfied are the ones with the following
prototypical applications: ordinary anomaly detection and spam detection.

Anomaly detection falls within the sample-based learning paradigm. As
we have mentioned above, anomaly detection seeks, in a first phase, for
anomalous items which are, in a second phase, interpreted as some kind of
error or defect. Whereas learning (i.e. the first phase) in this paradigm is
unsupervised, utilising the learned results (i.e. the second phase) needs some
interpretation of the data which corresponds to labelling. So, although the
learning process itself is unsupervised, the evaluation of what is learned falls
within a supervised paradigm. Also that most of the optimality results on
sample-based learning depend on an assumption about the structure of the
events (i.i.d. as described in definition 2.18) makes this kind of learning
richer in presuppositions (if it were really completely unsupervised, we
would hesitate to call it a form of learning).

Spam detection, on the other side, falls within the online learning paradigm.
Clearly, also here one needs supervision for evaluating what was learned.
However, supervision is the only “positive” parameter assumed in this
paradigm. So, at least it seems so, from an epistemic perspective the on-
line learning paradigm of spam detection is that paradigm which can be
applied in one of the most sceptic scenarios: If one has a basis for learning
at all, i.e. if at least one positive parameter is assumed, then the sceptic’s
hardest challenge is to justify learning in an adversarial supervised passive
online paradigm.

So, our motivation for seeking a solution to the sceptic’s challenge in
results of online learning is based on the fact that these results seem to be
very parsimonious regarding presuppositions about the parameters of the
framework. By this they appear to be promising for addressing a strong
form of scepticism. As we will see in part II, we can employ online learning
results even against a super-adversarial nature performing strategy �.

Here also a terminological note is in order. In our investigation we refer
to the theory for the outlined learning paradigm by the term meta-induction
as well as online learning theory. Although both theories were developed
in different disciplines—the former in philosophy and the latter in com-
puter science—they both aim at designing prediction methods for the on-
line learning paradigm for which reason reason we use the terms inter-
changeably.

To put the result of this section in a nutshell: We found a branch
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of machine learning which is concerned with an adversarial environment
that has an analogue in traditional epistemology: online machine learning.
Descartes’ daemon found its way into the digital era: Spam.

Since we have all the ingredients needed, this is also the point from
which we want to start with our survey of epistemic optimality: Online pre-
diction games with meta-inductive forecasters. In the next chapter we are
introducing the main result regarding epistemic optimality which under-
lies almost all applications of this book.



Chapter 3

The Logic of Deceivability

In this chapter further relevant distinctions of the theory of meta-induction and online
learning regarding different learning tasks are explained: online classification and online
regression. A general characterisation of the notion of online learnability is provided.
Afterwards, the logic of deceivability is introduced and a simple example of an online
learning algorithm which is optimal, given there is a best expert in the setting, is provided.
It is shown that by relaxing this assumption, the classification task can be solved only
suboptimally. The regression task, on the other hand, can cope with this relaxation and
proves to be optimal. This is the main optimality result exploit in the remainder of this
book.

Let us start with a coarse characterisation of the general notion of learning.
As Shalev-Shwartz and Ben-David (2014, p.1) put it:

“Roughly speaking, learning is the process of converting expe-
rience into expertise or knowledge. The input to a [learner] is
training data, representing experience, and the output is some
expertise, which usually takes the form of [some disposition to]
perform some task.”

This characterisation of learning is dispositional and in this sense be-
haviouristic—we do not talk about increased understanding etc., rather we
simply speak of better performance. Think, e.g., on the task of learning a
regularity of the form ∀x(Px → Qx) (stating, e.g., that all ravens are black).
Initially, one might react to presented P-states in 50% with Q-answers and
in 50% with ¬Q-answers. However, as soon as one performs better in the
sense that one answers, e.g., in 70% of presented P-states with Q-answers,
we would conclude that one has also learned the regularity a little bit bet-
ter. We would conclude that one has fully learned the regularity, once one
provides in 100% of presented P-states Q-answers. This dispositional no-
tion of learning covers a wide range of phenomena: plants “learn” in the

68
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sense that they, e.g., react to stress factors in a way which increases their
chance of “life prolongation”. Animals as, e.g., rats learn in the sense that
they avoid poisonous baits—when they encounter food with novel look or
smell, they first try very small portions of it and if it causes illness, the look
and smell is associated with the illness and rats will no longer take in such
food. Clearly, also humans learn, e.g., when students are able to solve more
exercises after than before attending a course. And the dispositional notion
of learning is even so wide that it covers also learning of all other kinds of
objects. Whether it makes sense to attribute learning to objects depends on
our purposes and the features we want to describe. In the case of machines,
as we have outlined above and we will see below, it definitely makes sense.

In section 2.4 we already distinguished sample-based learning from on-
line learning. Given the dispositional learning paradigm we presented
here, the difference between both can be described also in terms of expe-
rience to expertise conversion: In the sample-based learning case, a machine
gains a huge data sample first, i.e. has lots of experience, and then starts to
systematise the experienced facts in such a way that it ends up with an ex-
pertise algorithm that performs well. Whereas in the online case, a machine
gains a little bit experience, tries to systematise in form of producing a little
bit better expertise algorithm, gains further experience, and tries to end up
with an even better expertise algorithm, and so on. We argued that online
learning covers much more adversarial cases than sample-based learning
does, since, first of all, an online learning algorithm receives much less in-
put than a sample-based learning algorithm does, and secondly, sample-
based algorithms are usually designed for cases where event outcomes of
the sample are independently and identically distributed (i.i.d. see def-
inition 2.18) with respect to the whole domain, whereas online learning
algorithms are typically designed without any such assumption. For our
purpose of application to epistemology, online learning covers better the
sceptical case, since “in the online learning model we make no statistical as-
sumptions regarding the origin of the sequence of examples. The sequence
is allowed to be deterministic, stochastic, or even adversarially adaptive to
the learner’s own behavior (as in the case of spam e-mail filtering [or an evil
daemon])” (see Shalev-Shwartz and Ben-David 2014, p.246). Also the learn-
ing target differs: In sample-based learning the goal is to learn something
with a small expected loss or generalisation error, so true predictions are
still the main aim (and it is achieved only by making assumptions about
predictability properties of the sample). In contrast to this, the objective in
online learning is to provide optimal predictions which is to minimise the
regret (i.e. the difference between the cumulative loss of the algorithm and
that of the experts in hindsight—see definition 2.15).

Up to now we have indicated only what it means that someone learns:
By help of experience one gains expertise with respect to a specific learning
target (e.g. with respect to true or optimal predictions). This was a learner-
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oriented perspective. However, one might also take in a problem-oriented
perspective and wonder what characteristics a learning target or problem
must have, in order to be learnable in general. This concerns the conditions
for the learnability of a learning target or problem. As we will show in
chapter 5, the traditional learning target put forward for epistemic justifi-
cation (in particular induction), does not allow for learnability. So, given a
traditional learning target for solving the problem of justifying induction,
we cannot justify it. However, as we will also see there, putting forward as
learning target optimality constraints of epistemic engineering as outlined
in section 1.4, one can provide a justification of induction.

In this chapter we provide the most relevant results for this endeav-
our. Thereby we follow Shalev-Shwartz and Ben-David (2014), particularly
chpt.21. We give a formal characterisation of the notion of learnability and
distinguish two sub-tasks of online learning which have different learn-
ability properties, namely online classification and online regression (sec-
tion 3.1). Afterwards, we provide an introductory solution to the learnabil-
ity problem of providing optimal predictions in case there is a best com-
petitor accessible (section 3.2). We then show that there is no such solution
for an online classification task, if one relaxes this condition. In order to
do so, we provide a meta-inductive description of the logic of deceivability
(section 3.3). Finally, we prove the main optimality result by showing that
there is such a solution for an online regression task (section 3.4).

3.1 Online Learning and Learnability: Classification

vs. Regression

In machine learning several learning paradigms are investigated. In sec-
tion 2.4 we provided a fine-grained categorisation, which was formally
correct in the sense of being complete and mutually disjunct regarding
the binary parameters non-adversarial/adversarial, supervised/unsupervised,
active/passive, and sample-based/online (for an overview see table 2.1 in this
section). We have also argued that for the aim of epistemic engineering one
best focuses on the adversarial supervised passive online learning paradigm, i.e.
the learning paradigm according to which the environment provides val-
ues that are intended to minimise the learner’s success (adversarial), the
learner receives information about what were the true outcomes (super-
vised), the learner cannot perform experiments in the sense that she can-
not ask for specific data (passive), and the learner receives the data only
piecewise and has to make her predictions always before receiving data
(online). This paradigm can be relevantly differentiated even further by
help of a fifth parameter, namely the so-called label-type which concerns the
values one is allowed to use in one’s predictions (see Shalev-Shwartz and
Ben-David 2014, pp.25f):
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• Classification: In the case of classification, the data or events have to
be labelled in a discrete way in the sense that they are assigned to
a class, for example spam/non-spam. The task of the learner is to
assign such discrete labels to new unlabelled data or events. For our
setting this means that the values of the predictions or forecasts are
in {n1 ∈ [0, 1], . . . , nm ∈ [0, 1]} (for some n1, . . . , nm).

• Regression: In the case of regression, the data can be labelled in a con-
tinuous way: The learner has to provide for each event a label or
value of [0, 1].

Note that in principle the supervisor could provide labels of a different
type—but relevant for the categorisation in classification and regression is
which labels the learner is allowed to use. Note further that in the machine
learning literature often next to classification and regression, also cluster-
ing is mentioned. In the clustering case data is not labelled at all, but can
be divided into groups based on similarity and other measures of natural
structure in the data. An example would be the task of organising photos
by faces without names, where one has to assign names to classes of photos.
However, as we have argued in section 2.4, this would amount to unsuper-
vised learning. In the sample-based case this concerns anomaly detection
that is still in need of any labelling in the background, since otherwise one
would not be able to speak of success. And in the online case this would
amount to unlucky guessing, a situation which can be hardly understood
as a case of learning (since there is no positive parameter present at all).

The main difference between classification and regression is that classi-
fication consists in discrete predictions, and regression consists in contin-
uous (non-discrete) predictions. We can also make this distinction on the
basis of our definition of prediction games (definition 2.5):

Definition 3.1 (Classification Game). G is a classification game iff G is a
prediction game and the predicted values in G are discrete, i.e.: There are
n1 ∈ [0, 1], . . . , nm ∈ [0, 1] such that all f s

i,t of G are in {n1, . . . , nm}.

Definition 3.2 (Regression Game). G is a regression game iff G is a predic-
tion game, but not a classification game.

As we will see soon, both kinds of games differ in important respects as
they allow for different learnability properties.

Now, what exactly is the learnability property we are talking about? In
order to motivate this notion, let us re-interpret the prediction setting we
have introduced in chapter 2 for a moment (we concentrate on prediction
games with a single event-type now): Such a prediction game consists of
a sequence Y of the true event outcomes y1, y2, . . . and a set F of n se-
quences of predictions or forecasts f1 : f1,1, f1,2, . . . and f2 : f2,1, f2,2, . . .
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and . . . and fn : fn ,1, fn ,2, . . . . We were interpreting the f s as the predic-
tions of competing prediction methods, for which reason we were speaking
of prediction games. Now, one could also interpret the f s not as predictions
of competing prediction methods, but as hypotheses about the truth Y. In
this sense f1, f2, . . . , fn are alternative hypotheses about the truth Y and
F = { f1, f2, . . . , fn} is the set of alternative hypotheses about the truth Y.
This interpretation corresponds better to the learning case. Now, to (abso-
lutely) learn the truth on the basis of the hypotheses set F means that one
becomes more and more an expert and in the end learns the truth. Strictly
speaking, this would mean that one generates a hypothesis fl (the learner’s
hypothesis) which predicts, on average, better and better, i.e. whose ab-
solute success grows strictly superadditive with the number of prediction
rounds t (formally: succ l,t1+t2 · (t1 + t2) > succ l,t1 · t1 + succ l,t2 · t2). How-
ever, learning typically allows also for making errors, for which reason the
process of learning might have also some “valleys”, i.e. absolute success
might grow not strictly additive with t (this feature of absolute success is a
sufficient, but not a necessary condition for absolute learnability). Rather, a
problem, the truth Y, is online learnable on the basis of a set of hypotheses
F in this absolute sense if there is an algorithm fl which is guaranteed to
reach Y, at least in the long run, i.e. in the limit.

Now, clearly we cannot hope to find such an algorithm fl which fits
all prediction games. In an adversarial case, the truth Y of G is not learn-
able via any hypothesis set F in the absolute sense, since for any learn-
ing algorithm, i.e. prediction method or hypothesis, fl which is non-para-
scientific, adversarial Y is simply defined as yt = 1− fl,t. Hence, fl receives
at each round suboptimal score sl,t ≤ 0.5, and hence succ l,t ≤ t·0.5

t = 0.5.
So lim

t→∞
succ l,t ≤ 0.5 which implies that Y of G is not online learnable (in

an absolute sense). Hence, in order to make sense of the notion of absolute
online learnability, one needs to restrict the set of prediction games under
consideration. The restriction which is relevant for online learnability (in
an absolute sense) is that the truth Y is in the set of prediction methods
or hypotheses: Y ∈ F (in our later applications we assume furthermore
that the “truth” is observable or accessible). In the machine learning liter-
ature this case is called realisable, since one can realise, achieve the absolute
learning target (see Mohri, Rostamizadeh, and Talwalkar 2012, p.150; and
Shalev-Shwartz and Ben-David 2014, sect.21.1). We define:

Definition 3.3 (Realisable Game). A prediction game G with Y and F is
weakly realisable iff there is an fi ∈ F, and a u ∈ N such that for all t > u:
fi,t = yt.
We say that G is strictly realisable or simply realisable, if u = 0 and there is
exactly one such fi ∈ F. For short we will also write for this case: ‘Y ∈ F’.

So, in principle, for learning the truth it suffices to include into F any
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hypothesis which deviates from the truth Y only in finitely many instances.
However, the common notion of (strict) realisability as defined above allows
for simpler theorems about the short run performance of algorithms and
regarding the long run properties there is no difference. So, if not stated
otherwise, we use the strict notion of realisability.

Although, as we will see later on, realisability is too strong an assump-
tion in order to be cashed out for approaching the problem of induction,
we want to highlight that the framework of realisable prediction games
might be relevant for studying a logic of deceivability with respect to exter-
nalist accounts of epistemic justification (see our discussion of externalism
in section 1.1 as well as Grundmann 2009, 2017). The idea in a nutshell:
Externalism allows for an evaluation of epistemic attitudes of an epistemic
agent by help of means which are not accessible to the (or any other) epis-
temic agent. So, e.g., in Gettier cases or fake barn cases the agent lacks knowl-
edge because her method of forming a belief was not reliable, although
there might be no way for her to distinguish between a reliable and an
unreliable method for forming such beliefs. The notion of justification and
reliability is external and, although there are no clear (internal) rules for ap-
plying them, there (external) rules: Given the external description of such
cases we can distinguish between reliable/unreliable methods, externally
justified/unjustified beliefs. Now, similarly, an epistemic agent might not
be aware of whether she is part of a realisable prediction game or not (i.e.
this is not internal to her). But from an external perspective, knowing that
she is, one might wonder whether her learning algorithm allows also for
learning the truth. In this sense realisable prediction games might provide
an interesting framework for studying an externalist notion of reliability (I
would like to thank Gerhard Schurz for pointing this out to me).

With this idea of realisable games at the back of our mind, we define
the notion of absolute online learnability as follows (this is a modified version
of “online learnability” as characterised by Shalev-Shwartz and Ben-David
2014, p.246, dfn.21.1):

Definition 3.4 (Absolute Learnability). Given some condition C, a hypoth-
esis set F allows for online learnability (in an absolute sense) iff there is an
fl �∈ F such that for all prediction games G with F∪ { fl} and Y that satisfy
C it holds: fl is not para-scientific/no clairvoyant (i.e. based on Y), and:

lim
t→∞

succ l,t = 1

If fl is an algorithm in the sense of above, we will also say that F is online
learnable in the absolute sense by help of fl or that fl allows for absolute
online learnability of F.

We will also simply say that F is absolutely online learnable, although
what is meant is that F allows for learning the truth Y. The condition that
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fl is not based on Y is needed for ruling out trivial cases of learnability, e.g.,
expansions of the method or hypothesis set F by Y itself. Again, details
are a little bit more sophisticated and what is meant, strictly speaking, is
that the definition of fl,t is not based on y≥t ∈ Y—i.e., that fl is no para-
scientific method according to our characterisation in section 2.3 (see also
figure 2.4). Clearly, if there is an algorithm fl which allows for absolute
online learnability, this means that fl is guaranteed to find the truth Y in
the following sense: succ l = 1 in the long run only, if fl scores maximally
in the long run, i.e. if fl’s score sl = 1 in the long run (via definition 2.11).
But this means that fl’s loss vanishes in the long run: �( fl , y) = 0 (via
definition 2.9). Trivially, also the truth’s loss “vanishes”: �(y, y) = 0 (via
axiom 2.2). So, if we were to partition the set of hypotheses and the truth
according to their long run losses, we could not differentiate the learner and
the truth fl =�

y. So, a prediction game with such an fl contains the truth
and hence is realisable. In the following sense is realisability a necessary
condition for absolute learnability:

Corollary 3.5 (Absolute Learnability ⇒ Realisability). If F of a prediction
game with truth Y is online learnable in an absolute sense by help of fl , then a
prediction game G′ with F ∪ { fl} and Y is realisable.

Note, however, that realisability of G itself is not necessary for absolute
learnability: Assume, e.g., a prediction game G with F = { f1, f2} such that
f1,t = f2,t = 1 = 1 − yt for all t ∈ N. So, G is not realisable. Now, an
algorithm fl defined on F as fl,t = min(0, f1,t − f2,t) is not para-scientific
(its definition does not include y at all), and it online learns in G via F

absolutely the truth, since for all t: succ l,t = 1. So, success is not excluded
for such an fl in the not realisable case. However, a deceiver can always
devise a game G′′ according to which fl is maximally unsuccessful, simply
by defining yt = 1. Then for all t: succ l,t = 0 and hence fl never learns the
truth via F. So, there is no guarantee for the algorithm to reach the truth, if
the game is not realisable.

Now, as we will see soon, there are learning algorithms fls which al-
low for absolute learnability under the realisability and a further charac-
teristic condition of the hypothesis set. So, if we specify C to this fur-
ther characteristic condition, then realisability is also sufficient for abso-
lute online learnability. As we will show in part II (chapter 5) in detail,
the classical conditions for solving the problem of epistemic justification
rule out the realisability of such games, hence, according to the classical
constraints truth cannot be learned in absolute terms. This impossibil-
ity result asks for another approach to the problem of epistemic justifi-
cation, namely that of relative learnability, or optimality. To (relatively)
learn means not that one becomes more and more an expert (in the ab-
solute sense) and in the end learns the truth. Rather, it means that one
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becomes more and more and expert in the relative sense that one is less
and less outperformed by the other prediction methods or hypotheses and
becomes the best predictor or hypothesis in the setting. In section 2.3 we
defined notions which capture this quite well, namely the notions of opti-
mality and regret. Recall, the latter consists in the difference between one’s
own cumulative loss and that of a competitor method or hypothesis (see
definition 2.15). Positive regret with respect to a prediction method or hy-
pothesis means that the predictive success of that method or hypothesis
is greater than one’s own. Negative regret means that one’s own predic-
tive success is greater than that of the other prediction method or hypoth-
esis. That one is less and less outperformed by one’s competitor methods
means that the regrets with respect to the competitor methods or hypothe-
ses grow only strictly subadditively with the number of rounds t (formally:
aregret 〈l,i〉,t1+t2

< aregret 〈l,i〉,t1
+aregret 〈l,i〉,t2

for all 1 ≤ i ≤ n ). Again, also
relative learning might have “valleys”; hence, strict subadditive growth of
the regret with t is a sufficient condition for relative learnability, but not a
necessary one. Rather, a problem, the hypothesis set, F is online learnable
in this relative sense if there is an algorithm fl which is guaranteed to have
no (positive) regret, i.e. which becomes optimal, at least in the long run, the
limit (this is a modified version of “the learner’s goal” as characterised by
Shalev-Shwartz and Ben-David 2014, p.251):

Definition 3.6 (Relative Learnability). Given some condition C, a hypothe-
sis set F is online learnable (in a relative sense) iff there is an fl such that fl
is not para-scientific/no clairvoyant (i.e. based on Y) and for any prediction
game G satisfying C with F ∪ { fl} and Y it holds for all 1 ≤ i ≤ n :

lim
t→∞

succ l,t − succ i,t ≥ 0

I.e.: fl is (according to definition 2.17) access optimal in the long run in G.

Note that if a set of predictions or hypotheses F allows for absolute
online learnability of Y, then it allows also for relative online learnability,
given the constraints for both notions are the same (condition C):

Corollary 3.7 (Absolute ⇒ Relative Learnability). Given one and the same
condition C: If F allows for absolute online learnability of Y, then it allows also
for relative online learnability.

Proof. If F allows for absolute online learnability, then there is a learning
algorithm fl such that lim

t→∞
succ l,t = 1. Since 1 is the maximum, fl can-

not be outperformed by any other prediction method in the long run, i.e.
lim
t→∞

succ l,t − succ i,t ≥ 0.
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We have mentioned above that optimality or non-positive regret can be
achieved by help of strict subadditive growth (with t) of the regret or even
with sublinear growth (with t) of the regret. For this reason online learn-
ability in the relative sense is sometimes characterised also by reference to
the existence of an algorithm for the learner such that the learner’s regret
grows sublinearly with t (see Shalev-Shwartz and Ben-David 2014, p.251;
and Rakhlin, Sridharan, and Tewari 2010, p.1). This is, however, a little bit
stronger notion of relative learnability, since it does not allow for “valleys”
in the learning process (in principle one can achieve access optimality in
the long run, although, e.g. at the beginning, one’s regret even grew super-
linearly with t for some while). Learnability in the sense defined above is
sometimes also called Hannan consistency, which demands in its strict form
that the actual regret becomes negligible as t grows (see Cesa-Bianchi and
Lugosi 2006, p.70). Since non-positive or negligible regret is sometimes also
called ‘no-regret’, learnability in this sense is sometimes also characterised
by the existence of a no-regret algorithm which is the so-called no-regret prop-
erty (see Schapire 2012, p.169).

Note that the difference between absolute and relative learnability con-
cerns mainly the learning target: Absolute learnability is concerned with
learning the truth Y, whereas relative learnability is concerned with learn-
ing the best hypotheses of F, or even outperforming them. Although the
learning target differs in both cases, the task for showing that a learning
problem can be accomplished, i.e. that the truth Y or the best predictions
or hypotheses F can be learned, consists in defining algorithms fl which
reach the truth or are optimal. This is what is investigated in online learn-
ing theory: “Our goal is to study which hypothesis classes are learnable in
the online model, and in particular to find good learning algorithms for a
given hypothesis class” (Shalev-Shwartz and Ben-David 2014, p.246). That,
as we have mentioned above, the no-regret property is also called a ‘consis-
tency property’, shows that no-regret algorithms play a fundamental role
in online learning. Being a no-regret algorithm seems to be, so to say, the
bare minimum an algorithm has to satisfy in order to be of interest for ma-
chine learners. Short run optimisation is the problem they are really after.
As we will see soon, in epistemic engineering we can work already quite
well with this bare minimum.

In the next section we will illustrate cases of online learnability in the
absolute sense. Given that the hypothesis set contains the true hypothesis
in a learning or prediction game G, one can quite easily verify that the truth
(Y of G) is online learnable. We will then show that without this assump-
tion, online classification fails with respect to relative online learnability
(section 3.3). Finally, we will show that there is a powerful algorithm in on-
line regression which allows for relative online learnability too (section 3.4).
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3.2 A Gentle Start Towards an Optimality Result

Online learning gets quite fast quite complicated. For this reason we start
with a simple example illustrating the main idea of the problem under con-
sideration by discussing a relatively simple algorithm that aims at answer-
ing the question of learnability in a comprehensible way.

Recall, the two relevant ingredients of a prediction or learning game G
with n predictors or hypotheses are the truth Y, represented by values yt
with t ∈ N, and the predictions or hypotheses F, represented by values fi,t
with 1 ≤ i ≤ n . The question is whether we can define an algorithm which
is not para-scientific and which figures out the true hypothesis, given the
true method or hypothesis Y is in the set of prediction methods or hy-
potheses F, i.e. given G is realisable? And the answer is: Yes! For reasons
of simple illustration we assume for the remainder of this section that the
prediction games under investigation are binary classification games with
the values 0 and 1 (for the true outcomes as well as the predictors).

The idea of our first algorithm, the so-called consistent algorithm, is sim-
ple: At each round pick out the first hypothesis of the set of hypotheses
which were always correct in past and predict in accordance with this
method. Note that since this method is defined on the predictions of other
methods, it is a meta-method. The definition of this first meta-method is as
follows (after Shalev-Shwartz and Ben-David 2014, p.247):

Definition 3.8 (Consistency Algorithm). Let G be a realisable classification
game with the true values Y and the predictions or hypotheses F. Further-
more, let Ct be recursively defined as the sequence of all predictors of F
(ordered by their index) which were always correct until t − 1. I.e:

• C0 = 〈 f1, . . . , fn 〉
• Ct = 〈 fi : fi ∈ Ct−1 and fi,t−1 = yt−1〉 (ordered by index)

Then the consistency algorithm fcons predicts the value that is predicted by
the first method of Ct:

fcons,t = Ct1︸︷︷︸
an f

t

For obvious reasons fcons reaches the truth Y, since its regret regarding
the best, i.e. the true, hypothesis or method is bounded as follows:

Theorem 3.9 (Regret Bound for Consistency Algorithm). In the realisable
case of a binary classification game G with the true values Y and the predictions
F it holds for all 1 ≤ i ≤ n :

aregret 〈 fcons, fi〉,t ≤ n − 1 i.e. succ fcons,t ≥ 1 − n − 1
t
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Proof. Since in the realisable case Y ∈ F, there will be always at least one
hypothesis or prediction method in the set of consistent hypotheses or pre-
diction methods C. Since we are considering classification games, we can
count the number of mistakes m which fcons makes until it reaches Y and
imitates only true hypotheses or methods in C as follows: m = {t : fcons,t �=
yt}. Now, fcons makes a mistake at t ( fcons,t �= yt) iff also the first method
in Ct made a mistake at t. So, if we denote the set of imitated mistaken
methods or hypotheses with I, it holds: |m| = |I|. In the worst case there
is only one true hypothesis or method in F and its index is n . In this case
|I| = n − 1. Hence, in general |m| ≤ n − 1. Note that in a binary classifi-
cation game |m| = ∑

t∈m
� fcons,t. Since in all t ∈ N \ m fcons makes no mistakes

(i.e. � fcons,t = 0) we get |m| = ∑
t∈N

� fcons,t ≤ n − 1. The best method in the set-

ting fi, at least the truth, has no loss: ∑
t∈N

� fi ,t = 0. Hence, by definition 2.15,

aregret 〈 fcons, fi〉,t ≤ n − 1.

In interpreting the cumulative loss as the number of mistakes, we were
making use of the so-called 0-1-loss, which is the most common loss mea-
sure in binary prediction and can be defined as follows:

Definition 3.10 (0-1 Loss). � is a 0-1 loss function iff

�(x, y) =

{
1 if x = y
0 otherwise

Throughout our consideration of online classification we will use this
loss function.

The relation between the number of mistakes and the number of con-
sistent hypotheses is described in table 3.1.

|m| = 0 1 2 3 4 · · · n
|C| ≤ n − 0 n − 1 n − 2 n − 3 n − 4 · · · n − n

Table 3.1: Mistake bound of the consistency algorithm: Let |m| be the number
of mistakes of the algorithm, and let |C| be the number of consistent or errorless
hypotheses or methods. At the beginning, before any prediction, |C| = n since C

contains all n hypotheses or methods. With each mistake of the algorithm, also the
imitated hypothesis or method is excluded from C. In the realisable case |C| ≥ 1
(Y ∈ F and Y is always errorless). Hence n − |m| ≥ 1, hence also |m| ≤ n − 1.

The regret of fcons grows sublinearly with t which means that in the
limit it vanishes. Hence, fcons is a no-regret algorithm which means that
in the realisable case Y is learnable (compare the general claims about on-
line learnability of classes of hypotheses in Shalev-Shwartz and Ben-David
2014, pp.246ff):
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Theorem 3.11 (Possibility of Absolute Learning). Given realisability, in a
binary classification game G with the true values Y and a finite set of predictions
F the true hypothesis or method Y is learnable (in the absolute sense).

Proof. We simply spell out the argumentation of (Shalev-Shwartz and Ben-
David 2014, pp.246ff): From the proof of theorem 3.9 we know that
∑

t∈N
� fcons,t ≤ n − 1. By arithmetic transformation we get for any t ∈ N:

1− � fcons,1 + · · ·+ 1− � fcons,t ≥ −n + 1+ t. Hence:

t
∑

u=1
s fcons ,u

t ≥ t+1−n
t . Hence

succ fcons,t ≥ 1 + 1−n
t . Hence lim

t→∞
succ fcons,t = 1. Hence, by definition 3.4: Y

is online learnable (in the absolute sense).

This is a very simple algorithm which allows for learning the true hy-
pothesis, once it is in the hypothesis set (and the hypothesis set is finite).
Considering its long run performance it is perfectly fine, since it is a no-
regret algorithm. Regarding its short run performance it is not overwhelm-
ing, since, if n is high, its short run regret bound is also high. Can we do
better? The answer is Yes, we can! How, will be shown in the next section.
There we will also show that relaxing the condition of realisability leads to
an impossibility result regarding relative online learnability within classifi-
cation games.

3.3 Online Classification and Suboptimality

Note that throughout this section we make use of the 0-1 loss � as charac-
terised in definition 3.10:

�(x, y) =

{
1 if x = y
0 otherwise

Let us assume again that G is a binary classification game with the val-
ues 0 and 1, and that G is realisable, i.e. Y ∈ F. In the preceding section
we have defined our first access optimal meta-method which allows also
for absolute learnability: fcons. Its guaranteed short run success is (see the-
orem 3.9)

succ fcons,t ≥ 1 − n − 1
t

where n = |F| is the number of hypotheses or prediction methods of G.
This means that only after t = n − 1 rounds succ fcons,t is guaranteed to be
positive, i.e. success is guaranteed. Now, we can do better by help of an-
other algorithm, the so-called halving algorithm. The idea of halving is to not
simply pick out one of the consistent prediction methods and predict ac-
cordingly. Rather, halving predicts in accordance with the simple majority



Chapter 3. The Logic of Deceivability 80

of the up to now consistent hypotheses or prediction methods. The defini-
tion of fhal f is as follows (see Shalev-Shwartz and Ben-David 2014, p.247):

Definition 3.12 (Halving Algorithm). Let G be a classification game with
the true values Y and the predictions or hypotheses F. Furthermore, let Ct
be recursively defined as the set of all predictors of F which were always
correct until t − 1. I.e:

• C0 = { f1, . . . , fn}
• Ct = { fi : fi ∈ Ct−1 and fi,t−1 = yt−1}

Then the halving algorithm fhal f predicts the value which is predicted by the
majority of Ct:

fhal f ,t =

⎡
⎢⎢⎢⎢

∑
fi∈Ct

fi,t

|Ct|

⎤
⎥⎥⎥⎥

Again, for obvious reasons fhal f reaches the truth Y in the realisable
case, since its regret regarding the best, i.e. the true, hypothesis or method
is bounded as follows (see Shalev-Shwartz and Ben-David 2014, p.247):

Theorem 3.13 (Regret Bound for Halving Algorithm). In the realisable case
of a binary classification game G with the true values Y and the predictions F it
holds for all 1 ≤ i ≤ n :

aregret 〈 fhal f , fi〉,t ≤ �log2(n)� i.e. succ fhal f ,t ≥ 1 − �log2(n)�
t

Proof. (see Shalev-Shwartz and Ben-David 2014, p.247). Again, in the real-
isable case (Y ∈ F) |C| ≥ 1 (more specifically: for all t: |Ct| ≥ 1). Again, we
can count the number of mistakes m which fhal f makes until it reaches Y

and imitates only true hypotheses or methods in C: m = {t : fhal f ,t �= yt}.
Now, fhal f makes a mistake at t ( fhal f ,t �= yt) iff also more than or 50% of
methods in Ct made a mistake at t. So, at t + 1 Ct+1 will contain less than
or 50% of the methods in Ct: |Ct+1| ≤ |Ct|

2 . So, with each mistake of fhal f the
number of consistent hypotheses or methods |C| is at least halved. Since at
the beginning |C0| = n , with |m| mistakes |C0| is at least halved |m| times:
|C0|
2|m| Halving will end in the worst case, when there is only one true hypoth-

esis or method in F so at t when |Ct| = 1. Hence |C0|
2|m| ≥ 1. Since |C0| = n ,

it follows that |m| ≤ log2(n). Note again that in a binary classification
game |m| = ∑

t∈m
� fhal f ,t. Since in all t ∈ N \ m fhal f makes no mistakes (i.e.
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� fhal f ,t = 0) we get |m| = ∑
t∈N

� fhal f ,t ≤ log2(n). The best method in the set-

ting fi, at least the truth, has no loss: ∑
t∈N

� fi ,t = 0. Hence, by definition 2.15,

aregret 〈 fhal f , fi〉,t ≤ log2(n).

The relation between the number of mistakes and the number of con-
sistent hypotheses is described in table 3.2.

|m| = 0 1 2 3 4 · · · n

|C| ≤ n = n
20

n
2 = n

21

n
2
2 = n

22

n
2
2
2 = n

23

n
2
2
2
2 = n

24 · · · n
2n

Table 3.2: Mistake bound of the halving algorithm: Let |m| be the number of mis-
takes of the algorithm, and |C| the number of consistent or errorless hypotheses
or methods. At the beginning, before any prediction, |C| = n since C contains all
n hypotheses or methods. With each mistake of the algorithm, also the imitated
hypotheses or methods are excluded from C. Since they were in the majority, with
each mistake C is reduced by at least 50%, i.e. |C| reduces at least to its half. In the
realisable case |C| ≥ 1 (Y ∈ F and Y is always errorless). Hence n

2|m| ≥ 1, hence
also |m| ≤ log2(n).

Clearly log2(n) ≤ n − 1 (1.6, 3.5, 4.4, . . . vs. 2, 10, 20, . . . ), hence the
halving algorithm allows for much better online learnability in the abso-
lute sense, if the prediction game is realisable. So, we have a second meta-
method which allows for online learnability in the absolute sense of any
hypothesis set F with |F| = n such that lim

n→∞
log2(n) exists. We will see

soon that absolute online learnability is not restricted to finite hypothesis
sets, so there are also some infinitely large hypotheses sets F which can
be learned in an absolute sense. Furthermore, the notion of absolute online
learnability is not trivial in the sense that there are hypotheses sets F which
are not absolutely online learnable. This result will be employed later on
when we proof an impossibility result regarding the traditional problem of
epistemic justification.

Now, considering only the cardinality of F, our halving algorithm is
already optimal—also in the short run. The bound log2(n) is the low-
est regret bound which is guaranteed given we know only that |F| = n .
However, we can do better, once we not only consider the cardinality of
F, but also all of its structural information available to us. The idea is as
follows: Consider the hypothesis set F = { f1, f2, f3, f4} with fi,t = 1 if i = t
and fi,t = 0 otherwise. The sequences are depicted in the left part of ta-
ble 3.3. Now, according to the bound we proved above, fhal f makes at most
log2(4) = 2 mistakes. However, in the realisable case an adversary (�)
cannot fully employ this bound, since the structure of F is such that when-
ever the adversary makes fhal f to err, also the majority, i.e. every hypothesis
but one, makes an error and is ruled out by fhal f as inconsistent. So, due
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to the specific structure of F, an adversary can trick fhal f at most once.
Clearly, with a different hypothesis set F′ with a different structure an ad-
versary can fully employ the log2(n)-bound. Consider, e.g., the hypotheses
f ′1, . . . , f ′4 as defined in the right part of table 3.3: Here an adversary can,
e.g., err fhal f in the first round by setting y1 = 1 − fhal f ,1 = 1 − 1 = 0.
In round 2 fhal f predicts 1, so an adversary can simply err it by setting
y2 = 1 − fhal f ,2 = 1 − 1 = 0, and still there is a hypothesis in the setting,
namely f ′3, which did not make any error, i.e. the predication game is still
realisable.

t 1 2 3 4 5 6 · · ·
f1,t 1 0 0 0 0 0 · · ·
f2,t 0 1 0 0 0 0 · · ·
f3,t 0 0 1 0 0 0 · · ·
f4,t 0 0 0 1 0 0 · · ·

t 1 2 3 4 5 6 · · ·
f ′1,t 1 1 0 0 0 0 · · ·
f ′2,t 0 1 1 0 0 0 · · ·
f ′3,t 0 0 1 1 0 0 · · ·
f ′4,t 1 0 0 1 0 0 · · ·

Table 3.3: Example of two hypothesis sets F and F′. The former allows for bet-
ter learnability via the halving algorithm due to specific structural features of F:
aregret 〈 fhal f , fi〉,t ≤ 1 (vs. log2(4) = 2). The latter does not allow for better learn-

ability: aregret 〈 fhal f , f ′i 〉,t
≤ 2 = log2(4)

The exact structural feature relevant for determining an even more nar-
row bound is described in a, so to say, logic of deceivability: In the unrealis-
able case, an adversary (�) has any freedom to err the learning algorithm.
In the realisable case, there is the restriction that the adversary cannot trick
completely freely, but has to take care that there is always at least one hy-
pothesis, the true hypothesis, which is without any error. Clearly, the realis-
able case is quite unrealistic; also from an epistemic point of view it allows
only for discussing a quite weak form of scepticism. However, didactically
speaking it is very valuable, because it allows one to gain easily insight
into the logic of deceivability. This logic consists of combinatorial consider-
ations regarding the hypothesis set F available to the learning algorithm.
According to the upper bound provided in theorem 3.13, in the realisable
case an adversary can err the learning algorithm fhal f maximally log2(|F|)
times. In order to approach this bound, we now allow the adversary not
only to set the values y such that the learning algorithm fl errs maximally
(still satisfying the constraint of realisability), but we also allow her to pro-
longate the learning phase by freely picking the data in such a way that fl
learns the truth as late as possible. This makes a relevant difference. Con-
sider, e.g., the left and the right sequences in table 3.4: In the left part, the
learning algorithm receives already with the first event (t = 1) favourable
information which allows it to easily learn the true hypothesis by just one
single mistake—regardless at which round the adversary tries to trick it,
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after being tricked fhal f figured out the true hypothesis: If the adversary
were to trick fhal f in round 1, i.e. fhal f ,1 = 0, whereas y1 = 1, then f1, f2, f3
were inconsistent and ruled out. If at round 2, then f4 is ruled out because
of its inconsistency in round 1, and f1, f2 are ruled out after round 2 due
to their inconsistency in this round. At round 3 the adversary cannot trick
fhal f , because f4, f3 would have been ruled out due to their inconsistency in
round 1 and 2 respectively and f1, f2 (amongst them the true hypotheses)
make the same prediction, so the setting would not be realisable. If it were
at round 4, then f2 is inconsistent at round 4 and only f1 remained. And
at round 5 the adversary can no longer trick fhal f since f1 dropped out due
to its inconsistency in round 4 and the remaining hypothesis f2 has to be
the truth, due to the realisability condition. In the right part the first two
events of the left part are just switched. By presenting the learner the sec-
ond event first, the adversary can fully deploy the log2(4) = 2-bound and
err fhal f twice. In part II we will interpret this freedom of the adversary to

t 1 2 3 4 5
f1,t 0 0 0 0 1
f2,t 0 0 0 1 0
f3,t 0 1 1 0 0
f4,t 1 1 0 0 0
yt 0 1 1 0 0
fhal f ,t 0 0 1 0 0

t′ 1 2 3 4 5
f1,t′ 0 0 0 0 1
f2,t′ 0 0 0 1 0
f3,t′ 1 0 1 0 0
f4,t′ 1 1 0 0 0
y′t 0 0 0 0 1
fhal f ,t′ 1 0 0 1 1

Table 3.4: Example of the relevance of order for the possibilities of an adversary
(�) to trick the learning algorithm fhal f : In the left case, the order is favourable
inasmuch fhal f can find out the true hypothesis with just one single mistake—
given this order of the series, the adversary can maximally trick fhal f once. In
the right case, the order is not favourable inasmuch as an adversary can trick the
learning algorithm twice.

change the order of the events as a special form of Hume’s claim that there
is no logical connection between the past and the present.

How can we devise a logic of deceivability? Let us make some combi-
natorial considerations: Recall from theorem 3.13 that in a binary realisable
classification game (realisability is a necessary condition for a prediction
game to be relevant with regards to absolute online learnability) the up-
per bound for mistakes or regret of the best learning algorithm we know
so far, fhal f , is log2(|F|). In our analysis of table 3.4 above, we have al-
ready seen that the more balance there is between hypotheses predicting
0 and hypotheses predicting 1, the less hypotheses fhal f can rule out once
it is being tricked. If there is a complete balance in the remaining set of
consistent hypotheses C, i.e. if 50% of fi ∈ C predict 0 and 50% of them
predict 1, then only 50% are rule out afterwards. If the distribution is not
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balanced between these values at all, e.g., if all predict 0 or 1, then the ad-
versary cannot trick the algorithm at all, since it needs to take care of the
realisability assumption. These considerations allow for deriving two max-
ims for an adversary to trick the algorithm: The learning algorithm can be
tricked at most log2(|F|) times. So, an adversary (�) should look out for
finding log2(|F|) events in Y such that (although not explicitly mentioned,
this seems to be the gist of the logic of deceivability as described in Shalev-
Shwartz and Ben-David 2014, sect.21.1):

• The predictions of the hypotheses are maximally balanced between 0
and 1 in such a way that:

• They can be brought into an order such that the balance remains max-
imal regardless of cutting all hypotheses predicting 0 or all hypothe-
ses predicting 1 at the round before.

Assume, e.g., that n = |F| = 8, so F contains f1, . . . , f8 hypotheses.
From theorem 3.13 we know that the adversary can trick fhal f at most
log2(|F|) = 3 times. So, the adversary’s task is to look out for 3 events
of Y in accordance with the above maxims. Now, in a binary prediction
game with 3 events and 8 hypotheses, best balancing clearly is achieved if
there are 3 events such that all of the 8 hypotheses predict differently re-
garding the 3 events. In the worst case, there are no 3 events such that the
hypotheses differ at all—so their predictions are all identical. The number
of possible hypothesis sets regarding 3 events is calculated as the num-
ber of combinations of possibly different predictions with repetition: In
the binary case, with respect to n = 3 events k = 2n = 8 different pre-
dictions are possible. Since there are n = 8 hypotheses f1, . . . , f8 we can
choose n = 8 elements from the set with k = 8 different predictions, where
our choice is a combination with possible repetition. As we will see later on,
in the general classificatory case of m possible predicted values, the maxi-
mal number of events where an adversary can err the learning algorithm
is logm(n), hence k = mlogm(n) = n in general. So, the—for the adversary
relevant—possible hypothesis space contains (2·n−1)!

(n−1)!·n ! elements, which are
in the case of 8 hypotheses already 6435 combinations. Among them is the
case where all 8 hypotheses predict differently, but also the case where all
8 hypotheses make the same predictions. In the former case the adversary
can fully employ the log2(n)-mistake bound, in the latter she cannot err
the learning algorithm at all. The example already shows that the consid-
erations of the adversary are computationally speaking quite demanding.
Later on we will devise a learning algorithm which incorporates the adver-
sary’s deceivability logic—and it is clear that also such an algorithm would
be computationally quite demanding.

Now, our considerations from above are spelled out in the online learn-
ing literature by help of decision trees. For the following see mainly
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(Shalev-Shwartz and Ben-David 2014, sect.21.1.1). The idea is as follows:
The adversary (�) decides among a decision tree. A binary decision tree
consists of nodes, representing events, which are connected by edges, rep-
resenting occurrence 1 or not-occurrence 0 of the events. Since in the binary
case every event either occurs or does not occur, every node is connected
via two edges to other nodes. The details of such a decision tree are pre-
sented in figure 3.1. We define the depth of such a tree as the number of
edges in a path from the root to the leaf. As can be also seen in figure 3.1, a
binary decision tree with depth n contains 2n+1 − 1 nodes.

Y1

Y2

Y4 Y5

Y3

Y6 Y7

root

leafs

0

1

2︸︷︷︸
depth

20+1 − 1 = 1

21+1 − 1 = 3

22+1 − 1 = 7︸︷︷︸
# of nodes up to depth

0 1

0 1 0 1

Figure 3.1: Example of a binary decision tree of depth 2 (number of edges in a path
from the root to the leaf)

If we take the example from figure 3.1, in the binary case the adversary
(�) designs a prediction game as follows: She presents to the learning al-
gorithm fl and the other predictors some event Y1 and asks for a prediction.
She errs the learner by setting y1 = 1 − fl,1. If y1 = 0, she goes on with the
left child, i.e. Y2, if y1 = 1 she goes on with the right child, i.e. Y3. In the
first case, the adversary presents to the learner event Y2 and asks for a pre-
diction. Again, she errs the learner by setting y2 = 1 − fl,2. Then she goes
on with Y4 in case of y2 = 0 and with Y5 otherwise. Similarly in the second
case of Y3. At the end the events are relabelled such that they produce a
sequence of events of a prediction game (e.g. 〈1, 2, 5〉  → 〈1, 2, 3〉). As we
have mentioned already above, the adversary might freely choose among
the set of events Y and she can also permute the nodes of the decision tree.

Clearly, the adversary can err the learning algorithm in this way only,
if she still satisfies the realisability condition, i.e. if she does not err all the
other predictors. That she can freely err the learning algorithm without
erring all the other predictors too, means that at each end node of such
a binary decision tree (i.e. at each leaf) there are at least two hypotheses
left that are consistent with their respective path: one stating that the leaf-
event does not occur and one stating that it occurs. Every path that does not
satisfy this condition also invalidates the realisability assumption. So, it is a
path not viable for the adversary. This constraint for satisfying realisability
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is depicted in figure 3.2.

Y1

Y2

Y4

f1 f2

Y5

f3 f4

Y3

Y6

f5 f6

Y7

f7 f8

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Figure 3.2: Binary decision tree with consistent hypotheses at each leaf, hence
satisfying the realisability condition

Now we have all ingredients needed in order to make the task of the
adversary � explicit: An adversary has to look out for events such that she
can order them in a decision tree in such a way that for each leaf of the
tree at least two hypotheses remain, where one predicts 0 for the leaf-event
and the other predicts 1. Furthermore, these hypothesis are consistent with
their respective path. If this is the case, then it is said in the online learning
literature that the prediction or hypothesis set F shatters the decision tree
(see Shalev-Shwartz and Ben-David 2014, p.248). In order to employ her
adversarial possibilities maximally, the task of the adversary is to find a
shattered tree with maximal depth. This is the relevant structural feature of
the hypothesis set F we were talking about above.

For illustrative purposes, let us consider an example: Consider the case
with 8 hypotheses as discussed before. And let us assume that in the series
of events we find 2log2(8)−1+1 − 1 = 8 − 1 = 7 (we subtract from the log
1 because we started counting the depth of a tree with 0) events such that
the 8 hypotheses make predictions as presented in table 3.5. Then this hy-
pothesis set F = { f1, . . . , f8} shatters the tree in figure 3.1 accordingly with
figure 3.2.

Considering table 3.5, we see that there is some flexibility for the adver-
sary in finding fitting events. However, this holds only at first glance. As
the following theorem shows, the chance of an adversary to fully employ
the log2-bound for erring a learning algorithm decreases drastically with
the number of hypotheses:

Theorem 3.14 (Chances of Maximal Deceiving). In a realisable classification
game with k possible values the chance for an adversary to be able to deceive the
learning algorithm ( fhal f , f3-div or · · · or fk-div—see below) maximally according
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Y1 Y2 Y3 Y4 Y5 Y6 Y7
t 1 2 3 4 5 6 7
f1,t 0 0 0|1 0 0|1 0|1 0|1
f2,t 0 0 0|1 1 0|1 0|1 0|1
f3,t 0 1 0|1 0|1 0 0|1 0|1
f4,t 0 1 0|1 0|1 1 0|1 0|1
f5,t 1 0|1 0 0|1 0|1 0 0|1
f6,t 1 0|1 1 0|1 0|1 1 0|1
f7,t 1 0|1 0 0|1 0|1 0|1 0
f8,t 1 0|1 1 0|1 0|1 0|1 1

Table 3.5: Example of a hypothesis set shattering the decision tree as depicted in
figure 3.1 accordingly with figure 3.2. 0|1 means that for shattering the tree it does
not matter whether the hypothesis predicts 0 or 1 for the respective event.

to the logk(n) regret bound is (for k ≥ 2):

1
kn ·�logk(n)�

In the binary case with k = 2 it holds:

• Given n = 1 hypothesis, the chance clearly is 0

• Given n = 2 hypotheses, the chances are 1/4

• Given n = 4 hypotheses, the chances are 1/256

Proof. Regarding the generality of k (k > 2) see theorem 3.25 below. Re-
garding the binary case we demonstrate the theorem by help of the example
from above: In the realisable case, a hypothesis class with |F| = n = 8 hy-
potheses allows for maximally log2(n) = 3 mistakes. In order to fully em-
ploy this mistake bound, the adversary needs to provide n − 1 = 7 events
such that at each of the 2log2(n)−1 = n/2 = 4 leafs of a decision tree with
these 7 events is covered by two hypotheses, consistent with the full path to
the root. So we need to employ all of the 2 ·n/2 = n = 8 hypotheses. Since
there are 7 events in the tree, this allows for 2n−1 = 27 = 128 different pos-
sible prediction series. Since we have 8 hypotheses, we need to combine 8
such series, i.e. regarding the 7 events we have

(
2n−1)n = 1288 possible hy-

pothesis sets. As we easily verify by considering table 3.5 or figure 3.2, each
of the 8 hypothesis of F is relevant only for predicting log2(n) = 3 events.
The remaining events remain underdetermined with respect to the shat-
tering property. Hence, for each hypothesis n − 1 − log2(n) = 7 − 3 = 4
predictions can be freely varied. Since there are n = 8 hypotheses we get
n · (n − 1− log2(n)) = 8 · 4 = 32 parameters which can be varied between
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0 and 1 without any harm for the shattering property. Hence, given n = 8
hypotheses, out of the

(
2n−1)n = 1288 possible combinations of prediction

series for n − 1 = 7 events, there are only 2n ·(n−1−log2(n)) = 232 combina-
tions of prediction series which allow for shattering a binary decision tree
with the 7 events. So, the chances are:

kn ·(n−1−logk(n))

(kn−1)
n =

1
kn logk(n)

Now, as theorem 3.14 shows, the log2-bound is more of theoretical than
practical relevance to an adversary (�). Furthermore, the consideration of
shattered decision trees sheds also some light on this bound—so to say, it
provides an illustrative explanation of this bound and shows that it is the
“limiting case” of a decision tree: Given |F| = n hypotheses, an adver-
sary can construct in the best case a shattered decision tree where all end
nodes, i.e. the leafs, are covered by at least two hypotheses. Hence, such
a shattered decision tree has at most n/2 leafs. Now, in a binary decision
tree, exactly two leafs share one parent node, hence, the number of parent
nodes of the leafs is (n/2)/2 = n/22. Again, exactly two parent nodes
of leafs share one parent node (a grand parent of a leaf), so the number of
grand parents of a leaf is ((n/2)/2)/2 = n/23 and so on, until we reach
the overall ancestor, namely the root node, which is 1 element. Hence, the
depth d of a tree, i.e. the number of edges on a path from a leaf to the root,
is given by n/2d = 1. Resolving for d we get d = log2(n). Since an adver-
sary can only trick a learning algorithm along one path, and the number of
edges of a path, i.e. the depth of a tree, represents the number of mistakes
the learning algorithm makes (see figures 3.1 and 3.2) we get as bound for
the mistakes log2(n).

Now, given this result about the role of the structure of the hypothe-
sis class F, we can also provide narrower bounds: First, assume that an
adversary errs a learning algorithm d times. So the depth of the binary
decision tree is d. As described in figure 3.1 such a tree contains 2d+1 − 1
events of Y. Let us relabel them from top to bottom and left to right by
Y1, . . . , Y2d+1−1. Now, such a tree is shattered, if for every path there are hy-
pothesis fi, f j ∈ F which are consistent with the path and cover the leafs of
the path. Now, as can be seen in figure 3.1, paths are specific sequences of
events: 〈Y1, Y2, Y4〉 is a path, and also 〈Y1, Y2, Y5〉, but not, e.g., 〈Y1, Y2, Y3〉.
Due to our labelling, whether a sequence of events is a path or not depends
on the value we assign to an event: In assigning y1 = y2 = 0, we charac-
terise 〈Y1, Y2, Y4〉 as a path, similarly y1 = y3 = 1 characterises 〈Y1, Y3, Y7〉
as path. Given our labelling, the recursive definition of a path depending
on the true values y on it can be defined by the following index function
(taken from Shalev-Shwartz and Ben-David 2014, p.249):
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Definition 3.15 (Index Function for Path Generation).

index(t) = 2t−1 +
t−1

∑
u=1

yu · 2t−1−u

We verify this by considering examples:

• Let t = 1: Then index(t) = 20 = 1, so:

– Yindex(t) refers to event Y1

• Let t = 2: Then index(t) = 21 + y1 · 20 = 2 + y1, so:

– If y1 = 0: Yindex(t) refers to event Y2

– If y1 = 1: Yindex(t) refers to event Y3

• Let t = 3: Then index(t) = 22 + y1 · 21 + y2 · 20 = 4 + 2y1 + y2, so:

– If y1 = 0, y2 = 0: Yindex(t) refers to event Y4

– If y1 = 0, y2 = 1: Yindex(t) refers to event Y5

– If y1 = 1, y2 = 0: Yindex(t) refers to event Y6

– If y1 = 1, y2 = 1: Yindex(t) refers to event Y7

• And so forth . . .

So, index encodes a binary decision tree. We can use the index-function
not only for referring to events Y, but also to the predictions of the hy-
potheses or methods in F (we suppose that these were relabelled with the
relabelling of the events). So if, e.g., t = 2 and y1 = y2 = 0, then fi,index(t) is
the predicted value of fi for event Y4, i.e. fi’s prediction for round 4. Now,
given this codification of decision trees, we can define the notion of a shat-
tered tree precisely (modification of Shalev-Shwartz and Ben-David 2014,
pp.248f):

Definition 3.16 (Shattered Decision Tree). A sequence T = 〈Y1, . . . , Y2d+1−1〉
is a binary decision tree of depth d that is shattered by F iff for any
〈y1, . . . , yd〉 ∈ {0, 1}d there are fi, f j ∈ F such that for all t ∈ {1, . . . , d}
it holds: fi,index(t) = f j,index(t) = yt and fi,index(t+1) �= f j,index(t+1).

Note that the binary decision tree of depth 2 in figure 3.2 is shattered
by F = { f1, . . . , f8} as described in table 3.5, because for all 〈y1, y2〉 ∈
{0, 1}2 there are two consistent hypotheses covering the leafs—details are
presented in table 3.6.

Whether a set of hypotheses F shatters a given tree or not is easily
verified: We have to verify whether each leaf is covered by at least two—
regarding the leaf contradicting—hypotheses? If we also want to know the
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y1 y2 Consistent Covering Hypotheses
0 0 f1, f2

0 1 f3, f4
1 0 f5, f6

1 1 f7, f8

Table 3.6: Shattering according to definition 3.16. E.g.: In case y1 = 0 and y2 = 0,
f1,index(1) = f1,1, f1,index(2) = f1,2, f1,index(3) = f1,4. Analogously: f2,index(1) = f2,1,
f2,index(2) = f2,2, f2,index(3) = f2,4. According to the definition of table 3.5: f1,1 =
f1,2 = f1,4 = 0 and f2,1 = f2,2 = 0 whereas f2,4 = 1. Hence, f1, f2 satisfy the
condition in definition 3.16 for the case y1 = 0 = y2. Similarly for the other cases
and the other hypotheses.

sub-trees of a given unshattered tree which are shattered by F or a subclass
of it, we just need to remove stepwise levels—leaf by leaf so to say—until
we end up with leafs each of which have contradicting hypotheses. The set
of all these hypotheses shatters the remaining sub-tree—see, e.g., figure 3.3.

Y1

Y2

Y4

f1

Y5

f4

Y3

Y6 Y7

f7 f8

↙
Y1

Y2

f1 f4

Y3

f7, f8

→
Y1

f1, f4 f7, f8

Figure 3.3: Verifying the shattering property of a hypothesis set F with reduction
to subtrees: Given F = { f1, . . . , f8} we might verify that F does not shatter the
upper tree from above. So, we remove the leaf-level and verify whether the hy-
potheses allow for shattering the remaining tree (depicted on the left side). We can
iterate this step until we reach at least the root (depicted on the right side). In this
example { f1, f7}, { f1, f8}, { f4, f7}, { f4, f8}, and any superset thereof shatters the
tree containing only Y1 as root and leaf node.

Clearly, every sub-tree of a shattered decision tree is shattered too by
one and the same hypothesis set. So, e.g., the subtree Y4 ← Y2 → Y5 of
the decision tree in figure 3.2 is also shattered by { f1, f3}, { f1, f4}, { f2, f3},
{ f2, f4}, and any superset thereof as, e.g., F. An adversary is not only in-
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terested in finding such a sub-tree, but to fully exploit the potential of F.
For this reason, her task is it not to find any by F shattered binary deci-
sion tree, but such a tree with maximal depth. For this purpose we define
a quantitative measure for the relevant structural property of a hypothe-
sis set, namely the shattering property. Since this measure goes back to
computer scientist Nick Littlestone, it is also called Littlestone’s dimension
(Littlestone himself called it an “optimal mistake bound” see Littlestone
1988; Shalev-Shwartz and Ben-David 2014, p.249):

Definition 3.17 (Littlestone’s Dimension Ldim). Let F be the prediction or
hypothesis set of a prediction game G. Then Ldim(F) is the maximal inte-
ger d such that there exists a binary decision tree T consisting of a sequence
of events of G which has depth d and is shattered by F. (If there is no such
tree, d = 0.)

As we have argued above, the log2-bound is the “limiting case” of shat-
tering. This means that the log2-bound is the upper bound of Ldim (see
Shalev-Shwartz and Ben-David 2014, p.249):

Corollary 3.18 (Upper Bound of Ldim). For any F of some prediction game G:
Ldim(F) ≤ �log2(|F|)�

From definitions 3.16 and 3.17 it follows that Ldim(F) is also the min-
imal value of any upper bound for the regret of a learning algorithm (see
Lemma 21.6 in Shalev-Shwartz and Ben-David 2014, p.249):

Theorem 3.19 (Ldim As Lower Bound). Given a prediction or hypothesis set
F of a prediction game G, any upper bound for the regret of a learning algorithm
as, e.g., fcons (with an upper bound of |F| − 1) or fhal f (with an upper bound of
�log2(|F|)�) is ≥ Ldim(F).

Proof. (Sketch due to restricted theoretical framework) The idea behind this
theorem is that binary decision trees cover all possibilities of deceiving and
the shattering property covers the guarantee. Let G be a realisable predic-
tion game with the true hypothesis fi ∈ F of G and let d be the guaranteed
number after which a learning algorithm fl makes no longer a mistake, i.e.
d is the maximal regret of fl compared to fi. This means that the proof of
the upper bound rules out any possibility of erring fl after d. Now, all pos-
sibilities of erring fl are captured by decision trees that are shattered by F

(this covers all possible combinations and without shattering no guarantee
is possible). Now, assume d < Ldim(F). Ldim(F) is defined as the max-
imal integer d′ such that there is a binary decision tree T of depth d′ such
that F shatters T (Ldim(F) = d′). This means that fl can be erred also un-
til d′ > d, contradicting the claim that d is the guaranteed upper bound.
Hence, d ≥ Ldim(F).
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Whenever all hypotheses fi, f j of F predict equivalently, i.e. for all t:
fi,t = f j,t, then F allows for no shattering, hence Ldim(F) = 0. The limiting
case is where |F| = 1, where the realisability constraint avoids deceiving.
For illustrative purposes, consider also the following examples of (Shalev-
Shwartz and Ben-David 2014, p.249):

• Let F = { f1, . . . , fn} be such that f1, . . . , fn cover all possible predic-
tions regarding log2(n) events (thinking in terms of truth tables this
means that each row of such a table is occupied by one of f1, . . . , fn ).
Then Ldim(F) = log2(|F|).

• Let F = { f1, . . . , fn} such that fi = 1, if i = t and fi = 0, if i �= t. I.e.:
Every hypothesis predicts 1 at exactly one point in time and no two
hypotheses predict 1 at the same time. Then Ldim(F) = 1: At each
t where no fi predicts 1, the adversary cannot err the learner. And at
each round t where exactly one fi predicts 1, the learner just needs to
predict 0. If the adversary errs the learner, then the learner figured
out the true hypothesis. If the adversary does not err the learner, then
the learner excluded one wrong hypothesis without making an error.

• Furthermore, let F = {{〈i, t, x〉 : t ∈ N & x = 1, if i = t & x = 0, if i �=
t} : i ∈ N}. Then Ldim(F) = 1 due to the same reason as above.
Note, however, that here F is not finite and hence lim

n→|F|
log2(n) = ∞.

Recall our explanation of the log2-bound from above: Given a predic-
tion game G with F that is realisable (assume fi to be the true predictor or
hypothesis), we are considering a binary decision tree of depth d which is
shattered by F. We saw that shattering implies that there are two hypothe-
ses at each leaf of the tree, hence a shattered tree contains at most |F|/2
leafs. Going back from the leafs to parent nodes, grandparent nodes etc. is
equivalent to repeatedly halving the number of nodes. We end up at the
root (one single node) after d-times iterated halving, i.e. |F|/2d = 1. Re-
solving for d brought about the log2-bound. Note that this does not only
illustrate the bound, but also the learning algorithm for which we have
proven the bound, namely the halving algorithm fhal f : By at least halving
the number of correct methods C (with initially C = F) iteratively with
every step it has being erred, fhal f approached the root fi after at most d
steps, where |C|/2d = 1.

Now, similarly as described for the halving case, we can devise a learn-
ing algorithm for approaching the Ldim-bound: We know that Ldim(F)
expresses the maximal number of erring possibilities for an adversary. So,
we, as learners, aim at reducing these possibilities. Given two hypothesis
classes F1 and F2 we prefer that one with the lower Littlestone’s dimension
Ldim, because this means we can be erred less often. However, this implies
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that in making a prediction we opt for that one of the hypothesis class with
higher Ldim: If the adversary errs me in making this choice, she has ruled
out also the unfavoured hypothesis class. And if she does not err me, I am
still with my unfavoured choice, but got rid of the other class of hypothe-
ses, and this completely for free (without making a mistake). So, according
to this idea one should not just pick the majority, but that hypothesis set
with higher Ldim. The definition of the so-called standard optimal algorithm
fsoa is as follows (see Littlestone 1988; Shalev-Shwartz and Ben-David 2014,
p.250):

Definition 3.20 (Standard Optimal Algorithm). Let G be a classification
game with the sequence of true values Y and the sequences of predictions
F. Furthermore, let Ct be recursively defined as the set of all predictors of
F which were always correct until t − 1. I.e:

• C0 = { f1, . . . , fn}
• Ct = { fi : fi ∈ Ct−1 and fi,t−1 = yt−1}

Furthermore, based on C define C0 and C1 as:

• C0
t = { fi : fi,t = 0} ∩ Ct

• C1
t = { fi : fi,t = 1} ∩ Ct

Then:

fsoa,t =

{
1 if Ldim(C1

t ) ≥ Ldim(C0
t )

0 otherwise

This algorithm has the following regret bound and for this reason al-
lows for absolute online learnability (see Lemma 21.7 Shalev-Shwartz and
Ben-David 2014, p.250):

Theorem 3.21 (Regret Bound for Standard Optimal Algorithm). In the real-
isable case of a binary classification game G with the true values Y and the predic-
tions F it holds for all 1 ≤ i ≤ n :

aregret 〈 fsoa, fi〉,t ≤ Ldim(F) i.e. succ fsoa,t ≥ 1 − Ldim(F)

t

Proof. We show that whenever fsoa is erred at t, then also Ldim of the
set of consistent hypotheses is reduced at least by 1. I.e.: Ldim(Ct+1) ≤
Ldim(Ct) − 1 in case fsoa,t �= yt. We can count the number of mistakes m
which fsoa makes until it reaches Y and imitates only true hypotheses or
methods in C: m = {t : fsoa,t �= yt}. Given that Ldim of the next chosen
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hypothesis set is at least reduced by 1 if fsoa is erred, this means that when-
ever m grows by 1, Ldim of the next chosen hypothesis set is reduced. Since
the minimal Ldim is 0, m can grow maximally to Ldim of the hypothesis set
F: |m| ≤ Ldim(F).

Now, let us show indirectly that Ldim(Ct+1) ≤ Ldim(Ct)− 1, by assum-
ing Ldim(Ct+1) > Ldim(Ct)− 1, although fsoa was erred at t, i.e. fsoa,t �= yt.
Clearly, Ldim cannot grow with a constant or decreasing hypothesis set,
and since by definition 3.20 Ct+1 ⊆ Ct, we get Ldim(Ct+1) = Ldim(Ct). But
then also Ct+1 = Ct. However, since fsoa was erred at t, at least some com-
peting f s must have been erred too for which reason Ct+1 ⊂ Ct. Hence,
Ldim(Ct+1) �= Ldim(Ct).

In a binary classification game |m| = ∑
t∈m

� fsoa,t. Since in all t ∈ N \ m

fsoa makes no mistakes (i.e. � fsoa,t = 0) we get |m| = ∑
t∈N

� fsoa,t ≤ Ldim(F).

The best method in the setting fi, at least the truth, has no loss: ∑
t∈N

� fi ,t = 0.

Hence, by definition 2.15, aregret 〈 fsoa, fi〉,t ≤ Ldim(F).

For a comparison of fhal f and fsoa, consider table 3.7, with an example
for the suboptimality of the halving algorithm in comparison to the stan-
dard optimal algorithm.

Y1 Y2 Y3 Yu Yu+1 Yu+2
t 1 2 3 u u + 1 u + 2

f1,t 1 0 0 1 0 0
f2,t 0 1 1 0 1 1
f3,t 1 0 0 1 0 0
f4,t 0 0 1 0 0 1
yt 0 0 1 0 0 1

fhal f ,t 1 1 1 0 0 1
fsoa,t 0 1 1 0 0 1

Table 3.7: Example of the suboptimality of fhal f compared to fsoa: The prediction
game consists of F = { f1, f2, f3, f4} and Y with y as defined above (for any 3 <
u ∈ N). The game is realisable, since there is a true hypothesis in F, namely f4.
The halving algorithm simply takes the prediction of the majority (and in tie cases
1) of consistent hypotheses, which means that in this example it errs 2 times (that
is also the maximum log2(4)) until it learns the true hypothesis f4. The standard
optimal algorithm, on the other hand, chooses the consistent hypothesis set with
maximal Ldim (and in tie cases 1). In round 1, the consistent hypothesis classes
are C1

1 = { f1, f3} and C0
1 = { f2, f4}. Since f1,t = f3,t, Ldim(C1

1 ) = 0, whereas
Ldim(C0

1 ) = 1. By predicting accordingly with C0
1 , fsoa makes only one error until

it learns the true hypothesis f4. The errors are marked grey.

Note that fsoa is a meta-method which is computationally very demand-
ing. It is not a meta-inductive method, since it makes use also of informa-
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tion about future predictions. So to say, fsoa must have access to its com-
petitors’ prediction methods in the sense of knowing their algorithms or all
past, present, and future predictions. However, this does not imply that fsoa
is para-scientific, since access to the truth is not at all needed for calculating
Ldim. fsoa needs access only to the true values of past events when devising
the set of consistent hypotheses. By combining theorems 3.19 and 3.21, we
get the following result about the absolute optimality of fsoa in the realis-
able case:

Corollary 3.22 (Realisable Classification Bound). Given a prediction or hy-
pothesis set F of a realisable prediction game G, the best achievable guaranteed
upper and lower bound for an (not para-scientific) online learning algorithm is
that of fsoa whose guaranteed upper and lower bound for regret is Ldim(F).

Furthermore, we can even characterise the notion of absolute online learn-
ability by help of Ldim (see Shalev-Shwartz and Ben-David 2014, pp.250f):

Theorem 3.23 (Characterisation of Absolute Online Learnability). The con-
ditions (C) for a hypothesis set F of a prediction game G to allow for absolute
online learnability are exactly those:

(CA1) G is realisable, and:

(CA2) Ldim(F) is finite.

Proof. Regarding realisability (CA1) we have argued already that other-
wise there were no constraint preventing the adversary to simply define
the truth as yt = 1 − fl,t. So, (CA1) is necessary for absolute learnability.
Regarding finiteness of Ldim (CA2) it holds: By definition 3.4 we know that
F allows for online learnability iff there is a not para-scientific learning al-
gorithm fl such that in any realisable prediction game with hypothesis F

lim
t→∞

succ l,t = 1. Now, by corollary 3.22 we get for any such fl and any

t in the realisable case: succ l,t ≤ succ soa,t. Hence, lim
t→∞

succ l,t = 1, only

if lim
t→∞

succ soa,t = 1. Now, by theorem 3.21 it holds for any t: succ soa,t ≥
1 − Ldim(F)

t . Hence, lim
t→∞

succ soa,t = 1 only if Ldim(F) is finite. Hence, also

(CA2) is a necessary condition of absolute learnability. That both are suffi-
cient for absolute learnability follows from theorem 3.21.

Given the combinational considerations from above, we can generalise
the results for the case of classification. Up to now we were mainly con-
cerned with so-called binary classification. In the following we will indicate
how to expand these results to so-called multiclass classification, i.e. classifi-
cation with more than two values: Here the relevant decision trees are not
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Figure 3.4: Example of a ternary decision tree of depth 2 (number of edges in a
path from the root to the leaf)

binary, but—given k classes—k-ary. An example of a ternary decision tree
is provided in figure 3.4.

Similarly as above, for every classification with k values that can be pre-
dicted, we can define an algorithm fk-div which predicts accordingly with
the majority:

Definition 3.24 (Divide-by-k Algorithm). Let G be a classification game
with the true values Y (v1, . . . , vk) and the predictors or hypotheses F. Fur-
thermore, let Ct be recursively defined as the set of all predictors of F which
were always correct until t − 1. I.e:

• C0 = { f1, . . . , fn}
• Ct = { fi : fi ∈ Ct−1 and fi,t−1 = yt−1}

Then the k-div algorithm fk-div predicts the value which is predicted by the
majority of Ct:

fk-div,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 iff |{ fi : fi ∈ Ct & fi,t = v1}| >
|{ fi : fi ∈ Ct & fi,t = r}|
for all v1 �= r ∈ {v1, . . . , vk}

...
vk−1 iff |{ fi : fi ∈ Ct & fi,t = vk−1}| >

|{ fi : fi ∈ Ct & fi,t = r}|
for all vk−1 �= r ∈ {v1, . . . , vk}

vk otherwise

This general algorithm enjoys the following regret bound (this is a gen-
eralisation of the regret bound for realisable binary classification games as
provided in Shalev-Shwartz and Ben-David 2014, p.247):
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Theorem 3.25 (Regret Bound for Classification in General). In the realisable
case of a k-ary classification game G with the true values Y and the predictions F
it holds for all 1 ≤ i ≤ n :

aregret 〈 fk-div, fi〉,t ≤ �logk(n)� i.e. succ fk-div,t ≥ 1 − �logk(n)�
t

Proof. The proof is analogous to the one for fhal f : In the realisable case
(Y ∈ F) |C| ≥ 1 (more specifically: for all t: |Ct| ≥ 1). We can count the
number of mistakes m which fk-div makes until it reaches Y and imitates
only true hypotheses or methods in C: m = {t : fk-div,t �= yt}. Now, fk-div
makes a mistake at t ( fk-div,t �= yt) iff also more than or 100/k% of methods
in Ct made a mistake at t. So, at t + 1 Ct+1 will contain less than or 100/k%
of the methods in Ct: |Ct+1| ≤ |Ct|

k . So, with each mistake of fk-div the
number of consistent hypotheses or methods |C| is at least divided by k.
Since at the beginning |C0| = n , with |m| mistakes |C0| is at least divided
by k |m| times: |C0|

k|m| . Dividing by k will end in the worst case, when there
is only one true hypothesis or method in F so at t when |Ct| = 1. Hence
|C0|
k|m| ≥ 1. Since |C0| = n , it follows that |m| ≤ logk(n). Note again that in
a binary classification game |m| = ∑

t∈m
� fk-div,t. Since in all t ∈ N \ m fk-div

makes no mistakes (i.e. � fk-div,t = 0) we get |m| = ∑
t∈N

� fk-div,t ≤ logk(n). The

best method in the setting fi, at least the truth, has no loss: ∑
t∈N

� fi ,t = 0.

Hence, by definition 2.15, aregret 〈 fk-div, fi〉,t ≤ logk(n).

Note that the higher k, the better the performance of the algorithm: In
the binary case (k = 2) we ruled out of two hypotheses f1, f2 with different
predictions just one (1 out of 2). In the 3-ary case we rule out of three
hypotheses f1, f2, f3 with different predictions already two (2 out of 3). And
more generally, in the k-ary case, with high enough k, almost all (also: all
but one) differing hypotheses are ruled out. More generally, this fact is
expressed by theorem 3.14 about the chances of maximal deceiving which
decrease drastically with k.

Now, also for the case of multiclass classification one can define the no-
tion of shattering a k-ary tree straightforward analogously to definition 3.16.
Only the index-function has to be modified and the covering-condition:
Each leaf has to be covered by k hypotheses predicting k different values
for the leaf (but are still consistent with one and the same path). And given
this notion of shattering a k-ary tree a quantitative measure Ldim can be de-
fined straightforward analogously to definition 3.17. Then one can devise
a learning algorithm fsoa based on this Ldim analogously to definition 3.20.
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Et Voilà! One ends up with the provably best guaranteed learner for clas-
sification in general. And hence also a perfect characterisation of absolute
online learnability by the finiteness of Ldim accordingly to theorem 3.23.

Note that these results indicate already that absolute learnability can be
achieved also in the case of online regression: Very sloppily speaking, if we
consider online regression as a limiting case where the number of possible
values k approaches infinity (we might represent this—although not well
defined—by lim

k∞
logk(|F|)), then regret also decreases and approaches 1,

i.e. an adversary can maximally err the learner once.
Up to now we were concerned with absolute online learnability only.

Around our discussion of corollary 3.5 we have stated that realisability is
a necessary condition for absolute learnability (otherwise a daemon could
trivially err the learner by setting yt = 1 − fl,t). In the characterisation re-
sult of theorem 3.23 we have stated another necessary condition, namely
finiteness of Ldim. So these are the two conditions which are necessary and
sufficient for absolute online learnability. Now, let us come to the notion
of relative online learnability? Is relative online learnability in the classi-
fication case possible? Recall, relative online learnability means that there
is a no-regret learning algorithm, i.e. an algorithm whose regret vanishes
in the limit (or becomes negative), or equivalently: an algorithm which ap-
proaches or even overshoots the success rates of the best prediction meth-
ods or hypotheses in any prediction game. Regarding realisable predic-
tion games any algorithm that allows for online learnability in the absolute
sense also allows for online learnability in the relative sense, since in the
realisable case the algorithm reaches the true hypotheses and by this gains
maximal success in the long run (see corollary 3.7). So, regarding relative
learnability we need to concentrate on unrealisable prediction games.

Unrealisable prediction games are those whose hypothesis sets do not
contain the true hypothesis. Since from a strict epistemic stance it does not
matter whether the truth is not in our hypothesis class or whether we do not
know whether it is in or not, in online learning such prediction games are
also called agnostic (see Shalev-Shwartz and Ben-David 2014, p.245).

There is a very nice parallel between the realisable case and absolute
online learnability on the one hand, and the case of assuming a best expert
in the setting and relative learnability on the other: If one assumes that
there is a best prediction method or hypothesis in F, then we can simply
restate the task for the adversary. Recall, in case of absolute learning the
task for an adversary was to try to err a learning algorithm fl as often as
realisability allows. The logic of deceivability (i.e. the logic applied by �) as
described above uncovers that an adversary’s possibilities are restricted to
shattered trees and Ldim. In case of relative learning the restated task for
an adversary is to try to err a learning algorithm fl as often as the existence
of a best expert-constraint allows. As we briefly discuss now, the underlying
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logic of deceivability remains the same. Let us first begin with a definition of
the games we are interested in:

Definition 3.26 (Best Expert Game). A prediction game G with Y and F is a
best expert game iff there is exactly one fi ∈ F such that for j ∈ {1, . . . , n} \
{i} and all t ∈ N:

succ i,t ≥ succ j,t

Since the logic of deceivability from above was only about the strict re-
alisable case, we also define here only a strict notion of a best expert game.
Clearly, every realisable prediction game is also a best expert game:

Corollary 3.27 (Realisable ⇒ Best Expert). If a prediction game G is realisable,
then G is also a best expert game.

When we introduced learning algorithms for absolute learnability in
the realisable case, we aimed at devising an algorithm fl which learns
the true hypothesis and by this reaches lim

t→∞
succ l,t = 1. Now, looking

for learning algorithms for relative learnability we aim at devising an al-
gorithm fl which learns the best expert hypothesis and by this reaches
lim
t→∞

succ l,t = lim
t→∞

succb,t, where the best expert is fb. If the best expert

hypothesis is the truth—as, e.g., is the case in realisable games in accor-
dance with corollary 3.27—, then lim

t→∞
succ l,t = lim

t→∞
succb,t = 1. Now, we

can mimic the role realisability plays for absolute learnability by the best
expert assumption and relative learnability as follows: In the case of ab-
solute learnability we included the truth Y into the hypothesis set F, e.g.
by defining an fi ∈ F as fi,t = yt. In the case of relative learnability we
simply reverse the direction and replace, so to say, the truth by the best ex-
pert hypothesis fb: We define yt = fb,t. Note that we assumed that in the
best expert case there is exactly one best expert. Otherwise the choice of an
expert for defining the true series would not be unique and an adversary
(�) could enter the scenery again. The task of the learning algorithm fl is
to learn this “truth” absolutely, i.e. lim

t→∞
succ l,t = 1. This embeds best expert

classification with relative online learnability into realisable classification with
absolute online learnability. The underlying logic is the same, also the al-
gorithms, hence, we can provide a partial characterisation of the notion of
relative online learnability by help of the following conditions (this is the gist
of Shalev-Shwartz and Ben-David 2014, sect.21.1.1):

Theorem 3.28 (Partial Characterisation of Relative Online Learnability).
The following conditions (C) allow for relative online learnability of a hypothesis
set F of a prediction game G:
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(CR1) G is a best expert game, and:

(CR2) Ldim(F) is finite.

Proof. By help of the above embedding we can use any algorithm devised
for absolute learning also for relative learning in a best expert game. In the
embedding Y is defined on basis of fb, the predictions of the expert hypoth-
esis. Conditions for absolute learnability of so-defined Y are realisability—
which holds by definition of Y—and finiteness of Littlestone’s dimension
of the hypothesis set: Ldim(F). By this we end up with the conditions
stated in theorem 3.28. Taken together they are sufficient for relative online
learnability of F.

Now, can we account for relative online learnability also without these
conditions? As we will briefly show now, relaxing condition (CR1) further
by allowing for any prediction games is not possible in the online classifica-
tory setting (note, as stated in corollary 3.27, (CR1) is already a weakening
of the realisability condition (CA1)). In the following section on online re-
gression we will see that there is a regression algorithm which allows for
relative online learnability in any prediction game whatsoever.

An impossibility result for relative learnability in agnostic non-expert
online classification can be traced back to the work of Thomas Cover (see
Cover 1965; the historical claim comes from Shalev-Shwartz and Ben-David
2014, p.252). The example is as follows: Consider such a prediction game
with F = { f1, f2} where these methods are defined as constant hypotheses:
For all t ∈ N: f1,t = 1 and f2,t = 0. Now, for any learning algorithm fl
which aims at relatively learning F, define Y via the adversarial strategy:
yt = 1− fl,t. Note, since the prediction game can be agnostic, the adversary
need not take care of realisability, etc. Clearly, fl never scores and hence
has no predictive success at all. On the other hand, at least one of f1, f2 will
always score from time to time. Hence, fl is no no-regret algorithm:

Theorem 3.29 (Impossibility of No-Regret Classification). There is no no-
regret learning algorithm fl which is not para-scientific.

Proof. Assume fl is a learning algorithm and not para-scientific. Take the
example from above with F = { f1, f2}. For any round t, we can calculate
the regret as follows (see Shalev-Shwartz and Ben-David 2014, p.252): By

definition of f1, f2, at each round either f1 or f2 scores. Define t+ =
t

∑
u=1

yt.

If t+ ≥ t/2 then f1 scored ≥ t/2 times. Otherwise f2 scored ≥ t/2 times.
Hence, the best hypothesis fi (or hypotheses) have a cumulative loss ≤ t/2

(
t

∑
u=1

�i,u ≤ t/2). Also by definition of Y, fl scores never, hence
t

∑
u=1

�l,u = t.

So, at round t the regret of fl with regard to f1 and f2 is ≥ t − t/2 = t/2.
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Since (t/2)/t = t2/2 is superlinear, regret of fl grows with each round:
lim
t→∞

aregret 〈l,i〉,t = lim
t→∞

t2/2 = ∞. This example can be also extended to the

case of k > 2-ary prediction games.

Before we move on to the next section, one note regarding the regret
bounds and the loss function is in place: First of all, we only operated with
the 0-1 loss as defined in definition 3.10. One can use a different loss func-
tion as, e.g., a .25-1 loss function which does not penalise wrong predictions
fully. One might interpret such a loss as providing some incentive for pre-
dicting at all. This can be relevant, e.g., for so-called intermittent prediction
games where the prediction series do not have to be complete (some pre-
dictors might sometimes abstain from predicting). This is a highly relevant
topic which is not covered by our investigation (for an investigation of this
topic see, e.g., Schurz 2019, sect.7.2). However, it is important to note that
the bounds for learning (absolute, not relative) with such loss functions that
do not penalise wrong predictions fully become better: The learning algo-
rithm’s consistency classes need not be varied—in the realisable case the
learner is still after the truth and hence excludes wrong hypotheses strictly.
However, in case of the .25-1 loss every fourth mistake of the learner is, so
to say, free (compared to the 0-1 loss). Hence, regret with respect to the true
hypothesis is to a higher degree sublinear.

Regarding the guaranteed bounds we want to highlight that these
bounds as, e.g., the Ldim bound or the log2 bound do not show that any
algorithm is guaranteed to perform within these bounds. On the contrary,
as we have seen, fhal f sometimes exceeds the Ldim bound and fcons almost
regularly will exceed the log2 bound. These results hold only for the respec-
tive algorithms. Regarding the Ldim bound: We have seen that this is an
upper bound as well as a lower bound for regret (or vice versa for success).
That it is a lower bound for regret means that no algorithm is guaranteed to
have less regret. And that it is an upper bound for regret means that there is
an algorithm which is guaranteed to have at most so much regret. ‘Guaran-
tee’ means that this holds for all prediction games (satisfying the respective
condition C). So, regarding the Ldim upper bound this means that there is
an algorithm such that for all realisable prediction games with F the algo-
rithm regrets ≤ Ldim(F) times not having made a different choice (∃ fl∀G).
The standard optimal algorithm fsoa was such an algorithm. And regard-
ing the Ldim lower bound this means that for any learning algorithm there
is a prediction game with F such that the algorithm regrets ≥ Ldim(F)
times not having made a different choice (∀ fl∃G). Figuratively speaking,
these bounds are about the best learners fighting the best adversaries. An
upper bound concerns the best learner’s part: “Fighting against” the whole
spectrum of worst (most simple minded) and the best adversaries, the best
learner’s “costs” will always be below or equal to the bound. And a lower
bound concerns the best adversary’s part: “Fighting against” the spectrum



Chapter 3. The Logic of Deceivability 102

of worst and best learners, the best adversary’s (�) “harming” will always
be above or equal to the bound.

Let us briefly recap the intermediate results of the logic of deceivability.
Regarding online classification we have:

• If G with F is a realisable classification game, then F is absolutely
and relatively online learnable, as long as Ldim(F) is finite.

• If G with F is a best expert classification game, then F is not abso-
lutely, but relatively online learnable, as long as Ldim(F) is finite.

• If G with F is no best expert game (i.e. also not realisable), but an
agnostic classification game, then F is neither absolutely, nor relatively
online learnable.

Now, this is only a very rough scheme of optimisation and learnability
in online classification. Since we are mainly after online regression, we do
not aim at drawing a complete map of this field. However, we want to
provide at least a short overview of more specific results of the theory of
meta-induction for the case of online classification:

• Schurz (2008b, thrm.1) shows that simple meta-inductive learning in
the sense of “imitating the best candidate method” (here the learner
just copies the prediction of the up to now best expert—see Schurz
2019, sect.6.1, thrm.6.1) also allows for relative learnability; this can be
guaranteed also for games where a best expert shows up only later on
at some point in time t (this is more general than our characterisation
of an expert classification game).

• The result from above can be even more generalised to prediction
games where, starting with some point in time t, there is not only
one best expert, but also a set of ε-best experts whose success rates
deviate from each other only by at most ε. Schurz (2008b, thrm.2)
and (Schurz 2019, sect.6.2, thrm.6.3) show that there is an ε-cautious
learning algorithm—switching from an old best expert to a new best
expert only, if the difference between the success rates of both passes
the ε-threshold—which allows for (ε-)approximation of relative learn-
ability.

• Finally, of its kind completely novel and even more general is the
result about learning based on “deception recording” as proven in
Schurz (2008b, thrm.3). The idea is that the learner not only keeps
track of the success rates, but also of the success rates conditional
on cases where the candidate method was the learner’s favourite. If
a candidate method has significantly more (unconditional) success
than conditional success, i.e. if the candidate method is much more
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often successful in cases where it is not imitated by the learner than
in cases where it is imitated, then the learner labels it as a deceiver and
ignores its predictions until the two success rates are balanced better.
Such an “imitate the best non-deceiver” learning algorithm is proven
to be access-optimal compared to all non-deceiving methods. The
moral seems to be: In online classification there is no general route
to optimality since there always might be deceivers around. But at
least there is a remedy for optimality with regards to non-deceivers:
namely imitating the best non-deceivers (for details on this see Schurz
2019, sect.6.3, thrm.6.6).

• Very interesting is also the result of Cesa-Bianchi and Lugosi (sect.4.3
2006) who show how learning by “following the perturbed leader”
allows for ruling out systematic deceiving via implementing pertur-
bations (which are independent from the true outcome/unknown to
the deceiver beforehand; we will say a bit more on optimality in on-
line classification under such an assumption in section 4.1);

When we discussed the traditional epistemic approaches to the prob-
lem of justification, we mentioned that an epistemic engineer’s approach
consists of seeking optimal means for some given ends (section 1.4). And
if there are no optimal means, then one might try to cautiously and con-
servatively redefine the ends. So, if absolute or relative learnability are our
ends, do we need to redefine them given the above impossibility? As we
will argue in the next section and the subsequent chapter, regarding rel-
ative learnability the answer is: No! Up to now we have not exploit our
framework fully (and for a machine learner it seems that we even have not
scratched it).

3.4 Online Regression and Optimality

Recall, online regression consists in providing predictions within the inter-
val [0, 1]. We have defined the notion of an online regression game and
that of an online classification game in such a way that both are disjoint.
However, since 0, 1 ∈ [0, 1], online classification can be also considered
as a special case of online regression. The relevant difference is that in
online classification the methods or hypothesis (including the learner) are
allowed to provide predictions with only k different values, whereas in on-
line regression there is no such restriction except that the values of the pre-
dictions are within the unit interval. This implies that for any number k of
predicted different values, the learner can always predict a further different
value (k + 1). This allows for more flexibility on the learner’s part, and so
one might wonder whether this brings further restrictions for an adversary
with it? However, note that also the adversary gains more flexibility, and
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it seems even more, inasmuch as she can choose a further different value
(k + 2) and declares it as the true outcome. So, at first glance this seems to
even strengthen the logic of deceivability. But that is only deceptive: As we
will see in this section, the increased flexibility of the learner outperforms
that of the adversary.

We have seen that in online classification there is hope for absolute
learnability only, if the prediction game is a realisable one. And that there
is hope for relative learnability, if the prediction game is a best expert game.
Otherwise an adversary (�) can construct a Cover-style prediction game in
which the learner always errs and where at least one prediction method or
hypothesis has success in the long run to at least some degree. In case of bi-
nary classification with F = { f1, f2} we assumed that for all t ∈ N f1,t = 1
and f2,t = 0 and defined yt = 1 − fl,t, where fl is the learning algorithm.
Regardless of how one defines fl , the learner is guaranteed not to score at
all. The learning algorithm is guaranteed also to be not optimal. But even
worse, if fl is not defined as a function predicting equally to f1 or f2 in the
long run, it is even guaranteed to be strongly suboptimal in the sense that
it is guaranteed to be outperformed by f1 as well as f2. Now, if we allow
for online regression, things are different. If we define fl as just taking the
average of the predictions of f1 and f2, then we achieve already a better
performance. Let us define for all t ∈ N: fl,t = ( f1,t + f2,t)/2. Furthermore,
let us assume the so-called natural loss (�(x, y) = |x − y|). Then, clearly, fl
will also score to some degree. Furthermore, fl is no longer strongly sub-
optimal, since its predictions are always within that of f1, f2. It is, however,
also not guaranteed to be optimal. This is due to its simple definition—
note that fl is a very simple meta-method which is still not inductive since
it does not take into account any information about past outcomes and pre-
dictions. Nevertheless, what is relevant to note is that here the increased
flexibility of the learning algorithm to predict a new value increased also
its performance at least a little bit—from strong suboptimality to simple
suboptimality. And note that the adversary could not at all employ her
increased flexibility, because any different definition of the true outcome
than simply taking a maximum distance from fl’s prediction would have
brought an even better score for fl while at the same time it would have
decreased the score of the better hypothesis.

It is a general strategy in online regression to mix predictions in such a
way that the adversary’s (�) hands/paws are tied. And it is the possibility
to mix which relevantly strengthens a learner’s options in online regression
compared to online classification. However, note also from the example
above that once we allow for a significant increase of predictable values
so that real (valued) mixing is possible, also the question of how to score
becomes more relevant. And this means that our choice of the loss function
is crucial. The best mixing strategy counts for nothing, if we still penalise
any deviation from the true outcome fully (0-1 loss). Recall, in the example
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above we used the natural loss. If we had used the 0-1 loss, then fl’s mixing
would be of no use to avoid strong suboptimality.

Now, there is a family of loss functions which one way or another en-
code that mixing is advantageous. It is the family of convex loss functions.
A convex loss function is defined as follows:

Definition 3.30 (Convex Loss). � is a loss function which is convex (in its

first argument) iff for all x1, . . . , xn, w1, . . . , wn such that
n
∑

i=1
wi = 1 and

wi ≥ 0, and for all y it holds:

�

(
n

∑
i=1

(wi · xi), y

)
≤

n

∑
i=1

wi · �(xi, y)

I.e.: The loss of a weighted average of predictions is smaller than or equal
to the weighted average of the losses of the predictions.

Throughout this section we will make use only of convex loss functions
�. As is easy to see, the 0-1 loss is not convex: If, e.g., for two predictions
the weights w1, w2 = 1 − w1 are not extreme, i.e. if 0 < w1 < 1, then the
loss of two weighted opposed predictions will be always greater than the
weighted loss of the opposed predictions:

�(w1 · 1 + w2 · 0, y)︸ ︷︷ ︸
=1 given a 0-1 loss

> w1 · �(1, y) + w2 · �(0, y)︸ ︷︷ ︸
=w1<1 or =w2<1 given a 0-1 loss

On the other hand, the natural loss is convex since for any weights
w1, . . . , wn as specified in definition 3.30 it holds:∣∣∣∣∣

n

∑
i=1

(wi · xi)− y

∣∣∣∣∣ =
n

∑
i=1

wi · |xi − y|

Now, let us come back to the example from above: the averaging learn-
ing algorithm. We have seen that, given two constant predictors and the
natural loss function, this learning algorithm is at least not strongly subop-
timal in the sense that it is not outperformed by all other predictors. Does
this hold only for the chosen example? As we show now, the answer is: No!
Any convex loss function excludes strong suboptimality of the averaging
learner. In this sense the convexity of a loss function encodes that mixing
is advantageous: It prevents strong suboptimality for the averaging algo-
rithm. The averaging algorithm can be defined as follows:

Definition 3.31 (Averaging Algorithm). Let G be a regression game with
the true values Y and the set of predictions or hypotheses F (with |F| = n ).
Then the averaging learning algorithm fav is defined as:

fav,t =

n
∑

i=1
fi,t

n
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Note that fav is again a meta-method. It is, as mentioned above, not
inductive. Still, it generally excludes being tricked by an adversary in the
form of being strongly suboptimal:

Theorem 3.32 (No Strong Suboptimality of Averaging). Given a convex loss
function � and a prediction game G with a hypothesis set F (|F| = n ) it holds: fav
is not strongly suboptimal in the sense that for all t ∈ N there is some 1 ≤ i ≤ n :

aregret 〈av,i〉,t ≤ 0

Proof. (Indirectly) Assume that � is convex and that for all 1 ≤ i ≤ n and
some t:

t

∑
u=1

�i,u <
t

∑
u=1

�av,t

Then:

n
∑
i=1

t

∑
u=1

�i,u < n ·
t

∑
u=1

�av,u hence
t

∑
u=1

n
∑
i=1

�i,u < n ·
t

∑
u=1

�av,u

Hence:
t

∑
u=1

n
∑
i=1

1
n · �i,u <

t

∑
u=1

�av,u hence
n
∑
i=1

1
n · �i,v < �av,v

Now, by definition 3.31:

�av,v = �

(
n
∑
i=1

1
n · fi,v, yv

)
hence

n
∑
i=1

1
n · �i,v < �

(
n
∑
i=1

1
n · fi,v, yv

)

But this contradicts the convexity assumption about �, according to which:

�

(
n
∑
i=1

1
n · fi,v, yv

)
≤

n
∑
i=1

1
n · �i,v

Hence, there is some 1 ≤ i ≤ n such that:

t

∑
u=1

�i,u ≥
t

∑
u=1

�av,t hence aregret 〈av,i〉,t ≤ 0

From this follows immediately the following possibility result of avoid-
ing strong suboptimality in the online regression setting:
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Theorem 3.33 (Possibility of Avoiding Strict Subotimal Regression). Given
the loss function is convex, there is a learning algorithm fl, e.g. the averaging
algorithm fav, which allows for avoiding strong suboptimal regression.

We have seen that in agnostic online classification every learning algo-
rithm can easily become strongly suboptimal. Here we see that mixing in
online regression allows for tying an adversary’s hand such that she fails
already with respect to a quite simple learner as fav when it comes to strong
suboptimality. However, although avoiding strong suboptimality is a rea-
sonable desideratum for epistemic justification, it is clearly not enough for
arguing by help of optimality. Can we do better than that and provide an
algorithm which does not only avoid suboptimality, but even guarantees
optimality? Yes, we can: The idea is as follows: The averaging algorithm
presented above mixed the predictions in a constant way by assigning each
prediction method a constant weight 1/n . Now, in order to do better, we
need to provide more sophisticated weights. Since we are after optimal-
ity, the idea is to make the weights success-dependent which is the same
as making them regret dependent. The more relative success a prediction
method had in past, the higher its weight. Which is to say that the higher
the regret, the higher the weights. For technical convenience and in order
to provide better bounds it is common practice to design weights in such
a way that the regrets are in the exponent. As we will show now, such
a learning algorithm allows for no-regret learnability, i.e. relative online
learnability. This makes it not only impossible for an adversary to trick the
learner such that she is only strongly suboptimal. It even ties the adver-
sary’s (�) hands such that she cannot avoid long run access optimality of
the learner. Here are the details of the exponentially weighting learning
algorithm:

Definition 3.34 (Exponential Weighting). We define c, the exponential (e)
cumulative (recursion with ·) loss (�) of a prediction method or hypothesis
(i) which is used for learning (η), recursively as follows (for all 1 ≤ i ≤ n ,
t ∈ N):

• ci,1 = 1

• ci,t+1 = ci,t · e−η·�i,t

Based on the exponential cumulative loss we define weights by normalisa-
tion:

wi,t =

⎧⎪⎨
⎪⎩

ci,t
n
∑

j=1
cj,t

if the denominator > 0

1
n otherwise

Given these weights we define the exponential meta-inductive forecaster
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as:

femi,t =
n
∑
i=1

wi,t · fi,t

Now, let us come to the main result applied in our investigation: The
exponential meta-inductive learner femi is a no-regret algorithm. We prove
this in two steps: First, we show that its regret up to some given point in
time (or horizon) T grows only sublinearly with T. Then we show that this
result can be generalised for any point in time which allows us to consider
its regret in the limit. Let us start with the first step (see Shalev-Shwartz
and Ben-David 2014, p.253):

Theorem 3.35 (Regret BoundT for Exponential Weighting Algorithm).

Given the learning parameter η =
√

2·ln(n)
T and a loss function � which is convex

in its first argument, it holds for all prediction games G with the true values Y

and the predictions F (|F| = n ): For all 1 ≤ i ≤ n :

aregret 〈emi,i〉,T ≤
√

2 · ln(n) · T

Proof. Shalev-Shwartz and Ben-David (2014, pp.253f) provide a proof for
the upper regret bound of the weighted majority algorithm in online clas-
sification, where a learning algorithm is allowed to make probabilistic pre-
dictions (randomised across the possible values). In section 4.1 we will
describe this approach to overcome suboptimality in online classification.
Since the probabilities are within [0, 1], this is technically the same as pro-
viding a prediction within online regression. For this reason we can simply
apply their proof also for theorem 3.35. Here is a slight modification of their
proof:

1. Let η =
√

2·ln(n)
T . Furthermore let � be convex.

2. By definition of c in definition 3.34 we get the following equalities
about the ratio of the denominators used in normalisation (the nor-
malising denominator for t + 1 and that of t):

n
∑

i=1
ci,t+1

n
∑

i=1
cj,t

=
n
∑
i=1

ci,t+1

n
∑

j=1
ci,t

=
n
∑
i=1

ci,t ·e−η·�i,t

n
∑

j=1
ci,t

=
n
∑
i=1

wi,t · e−η·�i,t
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3. By the inequality e−x ≤ 1 − x + x2

2 (valid for all x ≥ 0) we get the
instance:

e−η·�i,t ≤ 1 − η · �i,t +
η2 · �2

i,t

2
Note that due to the assumptions in 1. 0 ≤ η < 1 and due to the
boundedness of loss � by [0, 1] (axiom 2.2) η · �i,t ∈ [0, 1).

4. By substituting the right term in the inequality of 3. for the e-term in
2. we get:

n
∑

i=1
ci,t+1

n
∑

i=1
cj,t

≤
n
∑
i=1

wi,t ·
(

1 − η · �i,t +
η2 · �2

i,t

2

)

and by arithmetic transformation:

≤
n
∑
i=1

wi,t −
(

η ·
n
∑
i=1

(wi,t · �i,t)− η2

2
·

n
∑
i=1

(
wi,t · �2

i,t
))

By the normalisation of w:
n
∑
i=1

wi,t = 1, so:

≤ 1 −
(

η ·
n
∑
i=1

(wi,t · �i,t)− η2

2
·

n
∑
i=1

(
wi,t · �2

i,t
))

By taking the ln on both sides of the inequality:

ln

⎛
⎜⎜⎝

n
∑

i=1
ci,t+1

n
∑

i=1
cj,t

⎞
⎟⎟⎠ ≤ ln

(
1 −
(

η ·
n
∑
i=1

(wi,t · �i,t)− η2

2
·

n
∑
i=1

(
wi,t · �2

i,t
)))

5. By the inequality e−x ≥ 1 − x (valid for any x) we get ln(e−x) ≥
ln(1 − x) and hence −x ≥ ln(1 − x). So, as an instance:

−
(

η ·
n
∑
i=1

(wi,t · �i,t)− η2

2
·

n
∑
i=1

(
wi,t · �2

i,t
)) ≥

ln

(
1 −
(

η ·
n
∑
i=1

(wi,t · �i,t)− η2

2
·

n
∑
i=1

(
wi,t · �2

i,t
)))

Verify that due to the assumptions in 1. 0 ≤ η < 1, the boundedness
of loss � by [0, 1] (axiom 2.2), as well as the normalisation of w our
instance of x is within [0, 1].
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6. By substituting the left (upper) term in the inequality of 5. for the
right term in the inequality in 4. we get:

ln

⎛
⎜⎜⎝

n
∑

i=1
ci,t+1

n
∑

i=1
cj,t

⎞
⎟⎟⎠ ≤ −

(
η ·

n
∑
i=1

(wi,t · �i,t)− η2

2
·

n
∑
i=1

(
wi,t · �2

i,t
))

and by arithmetic transformation:

≤ η2

2
·

n
∑
i=1

(
wi,t · �2

i,t
)

︸ ︷︷ ︸
≤1

−η ·
n
∑
i=1

(wi,t · �i,t)

. . . due to
n
∑
i=1

wi,t = 1, and � ∈ [0, 1], so:

≤ η2

2
· 1 − η ·

n
∑
i=1

(wi,t · �i,t)

7. So, we arrived at the inequality (from 6.):

ln

(
n
∑
i=1

ci,t+1

)
− ln

(
n
∑
i=1

cj,t

)
≤ η2

2
− η ·

n
∑
i=1

(wi,t · �i,t)

Now we can sum up each side of the inequality from 1 to T:

T

∑
t=1

⎛
⎜⎜⎜⎜⎜⎝ln

(
n
∑
i=1

ci,t+1

)
︸ ︷︷ ︸

=de f Ct+1

− ln

(
n
∑
i=1

cj,t

)
︸ ︷︷ ︸

=de f Ct

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
= (CT+1−CT)+···+(C3−C2)+(C2−C1)

=CT+1−C1

≤
T

∑
t=1

(
η2

2
− η ·

n
∑
i=1

(wi,t · �i,t)

)
︸ ︷︷ ︸

= T·η2
2 −η· T

∑
t=1

n
∑

i=1
(wi,t·�i,t)

So, we arrive at:

ln

(
n
∑
i=1

ci,T+1

)
− ln

(
n
∑
i=1

ci,1

)
︸ ︷︷ ︸

=n by definition 3.34

≤ T · η2

2
− η ·

T

∑
t=1

n
∑
i=1

(wi,t · �i,t)

Hence:

ln

(
n
∑
i=1

ci,T+1

)
− ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n
∑
i=1

(wi,t · �i,t)
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Recall, ci,t is the cumulative loss up to t in the exponent and we
are after the bound for the regret with respect to the best predictor,
hence we concentrate on the predictor with minimal cumulative loss
up to T: Let us denote this predictor with ‘b’ (b = (ιi)(∑T

t=1 �i,t =
min(∑T

t=1 �1,t, . . . , ∑T
t=1 �n ,t))). If there are more, then we can ran-

domly pick one. Now:

ln(cb,T) ≤ ln

(
n
∑
i=1

ci,T+1

)

Hence:

ln(cb,T)− ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n
∑
i=1

(wi,t · �i,t)

8. By definition of c (definition 3.34):

cb,T = cb,1 ·
T

∏
t=2

e−η·�b,t

︸ ︷︷ ︸
=e−η·(�b,1+�b,2+···+�b,T )

=exp

(
−η· T

∑
t=1

�b,t

)

So:

ln(cb,T) = ln

⎛
⎝e

−η· T
∑

t=1
�b,t

⎞
⎠ = −η ·

T

∑
t=1

�b,t

By substituting the right term in the last inequality in 7. we get:

−η ·
T

∑
t=1

�b,t − ln(n) ≤ T · η2

2
− η ·

T

∑
t=1

n
∑
i=1

(wi,t · �i,t)

And by arithmetical transformation:

T

∑
t=1

n
∑
i=1

(wi,t · �i,t)−
T

∑
t=1

�b,t ≤ T · η

2
+

ln(n)
η

If we substitute for η in accordance with 1: η =
√

2·ln(n)
T , we get:

T

∑
t=1

n
∑
i=1

(wi,t · �i,t) −
T

∑
t=1

�b,t ≤
√

2 · ln(n) · T

Now, what is left is to employ the grey marked term for proving a
bound for the meta-inductive method’s regret.
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9. According to definition 3.34, femi predicts as follows: femi,t =
n
∑

i=1
wi,t ·

fi,t. Hence its loss is: �
( n

∑
i=1

(wi,t · fi,t), yt

)
. And hence its cumulative

loss is:
T

∑
t=1

�

(
n
∑
i=1

(wi,t · fi,t), yt

)

Since � is convex (according to 1.), we get:

�

(
n
∑
i=1

(wi,t · fi,t), yt

)
≤

n
∑
i=1

(wi,t · �( fi,t, yt))

(I.e.: The loss of a weighted average of predictions is smaller than or
equal to the weighted average of the losses of the predictions.) Note
that ‘�i,t’ is just a short form for ‘�( fi,t, yt)’. Hence, from the last in-
equality in 8. and the convexity of � we get:

T

∑
t=1

(
�

(
n
∑
i=1

(wi,t · fi,t), yt

))
−

T

∑
t=1

�b,t︸ ︷︷ ︸
aregret 〈emi,b〉,T

≤
√

2 · ln(n) · T

Since fb was the method with least cumulative loss up to T (we de-
fined b this way in 7.), this regret bound holds also with respect to all
other predictors.

Note that theorem 3.35 is analogous to thrm.6.9(i) in (Schurz 2019)
which is based on theorems 2.2 and 2.3 of (Cesa-Bianchi and Lugosi 2006,
pp.16f). These results prove a better bound than the one stated above,
namely an absolute regret ≤ √ln(n) · T/2.

Now, since according to theorem 3.35 succ emi,t ≥ 1−
√

2·ln(n)·t
t , the term

which is subtracted from 1 grows sublinearly (1/
√

t) with t and hence it
seems as we have a no-regret algorithm. However, note also that the regret

bound holds only for a learning parameter η =
√

2·ln(n)
T with a fixed T.

So, we cannot simply calculate the limit of succ emi,t, because η is not well
defined for T = ∞. This is the reason why theorem 3.35 provides only a
bound for regret up to arbitrary high T, a regret boundT so to say. Since
such a T represents a line separating the relevance of predictions, it is also
called a horizon in online learning (see Cesa-Bianchi and Lugosi 2006, p.15).
In long run optimisation we cannot draw such a line separating relevant
from no longer relevant predictions, so we need to get rid of the horizon-
dependency of the optimality result in theorem 3.35. This brings us to the
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second step of proving no-regret learnability with femi. It turns out that
we can get rid of the horizon-dependency with only slight extra costs for
the short run. The idea is that we divide time or rounds into periods that
become increasingly longer, and that we start for each period the algorithm
with the length of the period as the horizon. Since it is standard to do
so by just doubling the length of the periods, this method is also called the
doubling trick (see Mohri, Rostamizadeh, and Talwalkar 2012, p.158; see also
Cesa-Bianchi and Lugosi 2006, p.17). We start with a horizon of 1 (round 1).
Then we start the algorithm again with a horizon of 2 (rounds 2,3). Then
we go on with a horizon of 4 (rounds 4,5,6,7). Then the horizon is 8 (rounds
8–15) and so on. So, the periods are [2m, 2m+1 − 1] and have length 2m for
m ∈ N. The division of prediction rounds into such periods is depicted
in figure 3.5. For each period we choose a learning parameter in which

T is replaced by the horizon of the period, i.e. 2m: ηm =
√

2·ln(n)
2m . The

cumulative loss or the regret received until some time t is the sum of the
cumulative losses or regrets of these periods.

2︷ ︸︸ ︷ 4︷ ︸︸ ︷ 8︷ ︸︸ ︷
1 3 7 15

2m

2m+1-1

m 0 1 2 3

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.5: Doubling trick: An algorithm with bounds for some horizon is ran for
increasing horizons by doubling the respective former horizon. The rounds are
represented by t. The periods by m. At each 2m+1 − 1th round (m ∈ N) a new
period starts. The length of such a period is 2m rounds.

We can show that with such an “automatic update” of the horizon in
the learning parameter, the following regret bound hold of femi:

Theorem 3.36 (Regret Bound for Exponential Weighting Algorithm). Given
a loss function � which is convex in its first argument, it holds for all prediction
games G with the true values Y and the predictions F (|F| = n ): For all 1 ≤ i ≤
n :

aregret 〈emi,i〉,t ≤ 2√
2 − 1

·
√

ln(n) · t

Proof. In this proof we make use of the doubling trick as described above.
The proof is a modification of a proof of (see Mohri, Rostamizadeh, and
Talwalkar 2012, p.159) for our bound. Let us refer to (one of) the best pre-
dictor(s) in a period m by bm. Then, by theorem 3.35, we get for each period
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with suitable learning parameter ηm =
√

2·ln(n)
2m :

aregret 〈emi,bm〉,2m+1−1 ≤
√

2 · ln(n) · 2m

So, e.g., if we consider figure 3.5, it holds:

• aregret 〈emi,b0〉,1 ≤ √2 · ln(n) · 20

• aregret 〈emi,b1〉,3 ≤ √2 · ln(n) · 21

• aregret 〈emi,b2〉,7 ≤ √2 · ln(n) · 22

• aregret 〈emi,b3〉,15 ≤ √2 · ln(n) · 23

Now, at each 2m+1 − 1th round a new period starts. So, for t = 2m+1 − 1,
the regret of femi with respect to the best predictor(s) is at most the sum of
the regrets of the periods before (it is equal if bm = bm−1 = · · · = b0 and it
is less otherwise):

aregret 〈emi,bm〉,t ≤
m

∑
u=0

aregret 〈emi,bu〉,2u+1−1

≤
m

∑
u=0

√
2 · ln(n) · 2u

≤
√

2 · ln(n) ·
m

∑
u=0

√
2u︸︷︷︸

2
u
2 =(2

1
2 )u=

√
2

u

Note that
m

∑
u=0

√
2

u
is the geometric sum, so we get:

≤
√

2 · ln(n) ·
m

∑
u=0

√
2

u
=
√

2 · ln(n) ·
√

2
m+1 − 1√
2 − 1

=

=

√
2 · ln(n)√

2 − 1
·
(√

2
m+1 − 1

)
Note that

√
2

m+1 − 1 =
√

2m+1 − 1.

Now,
√

2m+1 − 1 ≤
√

2 · 2m+1 − 2 =
√

2 ·
√

2m+1 − 1

Recall that t = 2m+1 − 1, hence
√

2m+1 − 1 ≤
√

2 · √t

By combining these inequalities (grey marked terms):

≤
√

2 · ln(n) · √2 · √t√
2 − 1

=

√
2 ·√2 · ln(n)√

2 − 1︸ ︷︷ ︸
General form of doubling:

√
2√

2−1
· bound(t)
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So, we get the bound:

aregret 〈emi,bm〉,t ≤ 2√
2 − 1

·
√

ln(n) · t

Note that the regret bound in theorem 3.36 is independent of any pre-
diction horizon. If we compare the horizon-dependent bound in theo-
rem 3.35 with the horizon-independent bound in theorem 3.36 we see that
our (doubling) trick comes with the extra cost of a factor

√
2/(

√
2 − 1) ≈

3.41. However, this factor rapidly vanishes with increasing t.
Note also that Cesa-Bianchi and Lugosi (thrm.2.2 and 2.3 in 2006,

pp.16f) and Schurz (thrm.6.9(ii) in 2019) prove a better bound for absolute
regret, namely

√
2 ·√ln(n) · t +

√
ln(n)/8.

There is also a result in the online learning literature which shows a
lower regret bound which cannot be optimised further, namely

√
ln(n) · t ·

1/
√

2 (see Cesa-Bianchi and Lugosi 2006, p.62; and the discussion in Schurz
2019, prop.6.14, sect.6.8). This means that in principle the short run regret
can be optimised even further by about 85%. However, these algorithms
are much more complicated and since we are after long run optimisation,
we can stick to our relatively simple exponentially weighted learning algo-
rithm.

Since the bound in theorem 3.36 is independent of any prediction hori-
zon, we can now derive the main optimality result relevant for our epis-
temic endeavour:

Theorem 3.37 (Optimality of Exponential Weighting). In any regression game
G with the true values Y and the predictions F (with |F| = n , i.e. F is finite) it
holds for all 1 ≤ i ≤ n :

lim
t→∞

(succ emi,t − succ i,t) ≥ 0

Hence: femi is access optimal in the long run in G.

Proof. From theorem 3.36 we get for all 1 ≤ i ≤ n , t ∈ N:

lim
t→∞

(
aregret 〈emi,i〉,t

)
≤ 0

Note that by definition of aregret and succ it holds:

succ emi,t =

t − aregret 〈emi,i〉,t −
t

∑
u=1

�i,u

t
= 1 −

aregret 〈emi,i〉,t
t

−

t
∑

u=1
�i,u

t
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Also from the definition of succ we get:

succ i,t =

t − t
∑

u=1
�i,u

t
hence

t

∑
u=1

�i,u = t − t · succ i,t

By substitution we get:

succ emi,t = 1 −
aregret 〈emi,i〉,t

t
− t − t · succ i,t

t
= succ i,t −

aregret 〈emi,i〉,t
t

Hence:

succ emi,t − succ i,t = −
aregret 〈emi,i〉,t

t
And hence:

lim
t→∞

(succ emi,t − succ i,t) ≥ 0

By this it follows immediately:

Theorem 3.38 (Possibility of No-Regret Regression). There is a no-regret
learning algorithm fl which is not para-scientific. Furthermore:
Any finite hypothesis set F of a regression game G is online learnable in the rela-
tive sense.

In our applications later on we will sometimes use an algorithm which
generates the weights directly out of the success rates instead of taking it
(negative cumulative loss) in the exponent. Now, there is one technical
detail relevant in defining such an algorithm: In order to achieve optimal
performance, the learner needs to disregard those predictors who were out-
performed by her already. In the case of exponentially weighting negative
cumulative loss this is guaranteed since the influence of outperformed pre-

dictions vanishes exponentially ( lim
t→∞

exp(− t
∑

u=1
�i,t) = 0 if the cumulative

loss grows). Now, if we take the success rates directly and do not cut off
outperformed predictions, their impact would not vanish and so the out-
performed predictions prevent that the learner reaches the outperforming
predictions. Figure 3.6 illustrates this problem and the cutting off solution
by help of an example.

In order to avoid this problem, the learner needs to cut off (i.e. zero
weight) those predictions which are already outperformed by it—note that
this does not mean that a prediction method which was once outperformed
by the learner gains never any influence again; this just means that such a
method is ignored until it catches up with the learner again. We can imple-
ment cutting off by taking not the success rate succ i,t itself for calculating
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t

y, fi,t

3
5

f4

f2

f1

y

fl

t

y, fi,t

3
5

f4

f2

f1

y

fl

Figure 3.6: Example of taking success rates as weights without cutting off outper-
formed predictions (left) and with cutting off outperformed predictions (right):
Ad left case: If the learner fl just simply weights the predictions according to their
success rates, the influence of predictions which are outperformed by fl (here:
f3, f4, f5) might never vanish. This prevents that fl reaches the better, outperform-
ing prediction methods (here: f1, f2). Ad right case: If the learner cuts off the
outperformed prediction methods, it reaches the better ones (first, by cutting off
outperformed f3, f4, f5, and then, by cutting off f2 which is outperformed in the
second round).

the weights, but max(0, succ i,t − succ l,t). Since the latter term expresses rel-
ative success of a prediction method fi with respect to the learning method
fl or also how attractive fi is for fl , Schurz has also called this measure an
attractivity measure (Schurz 2008b, p.296; and Schurz 2019, sect.6.6). Given
this measure, we define a relative success or attractivity weighting meta-
inductive learning method as follows:

Definition 3.39 (Attractivity Weighting). We define relative success (attrac-
tivity) based weights recursively as follows (for all 1 ≤ i ≤ n , t ∈ N):

wi,1 =
1
n

wi,t+1 =

⎧⎪⎨
⎪⎩

max(0,succ i,t−succ ami,t)
n
∑

j=1
max(0,succ i,t−succ ami,t)

if the denominator > 0

1
n otherwise

Given these weights we define the relative success or attractivity based
meta-inductive forecaster as:

fami,t =
n
∑
i=1

wi,t · fi,t

The regret bound for fami is as follows (regret grows also sublinearly)
(see Schurz 2019, thrm.6.8):
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Theorem 3.40 (Regret Bound for Attractivity Weighting Algorithm). Given
a loss function � which is convex in its first argument, it holds for all prediction
games G with the true values Y and the predictions F (|F| = n ): For all 1 ≤ i ≤
n :

aregret 〈ami,i〉,t ≤ √
n · t

Proof. For a proof see (Cesa-Bianchi and Lugosi 2006, pp.12f, corollary 2.1
with the polynomial-parameter p = 2; and Schurz 2019, thrm.6.8).

Note that according to the regret bound proven for the exponentially
weighting meta-inductivist femi in theorem 3.36 (2/(

√
2 − 1) ·√ln(n) · t)

and that of the attractivity weighting meta-inductivist fami in theorem 3.40
(
√

n · t), fami is guaranteed to fare better than femi up to n < 110.
Recapping our results of the logic of deceivability for online regression

we have:

• If a regression game G with F is realisable, then F is absolutely online
learnable, if F (or its Littlestone’s dimension) is finite.

• For any regression game (may it be realisable, a best expert or an
agnostic game) G with F it holds: F is relatively online learnable, if
F is finite.

This result about the impossibility of deceiving with respect to relative
online learnability is very strong and allows for several epistemological
applications. However, it only holds for the case of online regression, i.e.
predictions with continuous values. For online classification, i.e. predic-
tions with discrete values, the impossibility result regarding relative on-
line learnability in an agnostic setting still stands. Since we cannot rule out
such a setting from the outset, we are going to discuss several modifications
which allow also for relative learnability in the case of online classification
in the next chapter.



Chapter 4

Further Optimality Results

Here it is shown how the problem of suboptimality in online classification can be overcome
by allowing for predictions in a modified setting. First, there is the possibility to randomise
and by this achieve expected access optimality. Second, there is the possibility to predict as
a group and achieve as a group arbitrary close access optimality. Finally, one can also put
forward synchronisation constraints for online classification and online regression which
rule out suboptimality in the case of classification. At the end the main optimality results
of this part of the book are summarised.

In online classification Cover-style examples show that without any re-
striction, no prediction method is guaranteed to be access optimal: An ad-
versary (�) can always design a prediction game such that the prediction
method does not score at all, whereas the long run success rate of at least
one learner is greater than zero. This is an impossibility result about rela-
tive learnability in the case of online classification.

Now, in the spirit of epistemic engineering as outlined in section 1.4,
impossibility results are no dead ends, but points of departure: Since we
know that in online classification an adversary is free to err us (recall that
in contrast to this in online regression the adversary’s hands are tied), we
need to look out for new epistemic ends.

In order to overcome the problem of suboptimal online classification,
three solutions are suggested in the literature. One is the randomisation ap-
proach according to which a classification meta-method should predict ran-
domly, but with a bias towards the continuous meta-method’s prediction
(see Shalev-Shwartz and Ben-David 2014, sect.21.2). Another approach is
the theory of collective weighted-average meta-induction which introduces
a collective of meta-level methods whose average is aproximally access op-
timal (proposed in Schurz 2008b, sect.8). A further approach consists in
enriching the formal structure of the problem by combining a discrete and
a continuous prediction setting. The former is about qualitative belief; the

119
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latter about degrees of belief. To keep both systems synchronised one sug-
gests synchronisation principles according to which qualitative and quanti-
tative belief should be bridged; finally this bridging is intended to exclude
adversarial scenarios in the case of online classification (see Feldbacher-
Escamilla 2017b, sect.4).

In the following we are going to describe these approaches and discuss
problems related to them. We start with the randomisation approach and
show how the optimality result for online regression can be cashed out for
proving expected success optimality (section 4.1). Afterwards, we describe
in detail the approach to discrete predictions by help of collective action
(section 4.2). We expand the discussion by an investigation of the problem
of optimisation in a synchronised continuous and discrete prediction set-
ting (section 4.3). Finally, we provide an overview of the results collected
and achieved in part I of the book (section 4.4).

4.1 Classification and Randomisation

The randomisation approach is common in online learning and tries to
overcome the gap between access optimality in a continuous and discrete
setting via randomly picking out a prediction in such a way that the out-
come is still biased towards an access optimal prediction method (see Cesa-
Bianchi and Lugosi 2006, chpt.4).

In order to employ the optimality results of online regression as de-
scribed in the preceding chapter also for the case of classification, we can
reframe the case of online classification as follows (see Shalev-Shwartz and
Ben-David 2014, pp.252f): We do not allow the adversary (�) to set the true
value after receiving the learner’s prediction, because then Cover-style im-
possibility applies. Rather, we assume that the adversary has to set the
true value before she receives the learner’s prediction. Only in this way
impossibility can be avoided. Now, we strengthen the case for the adver-
sary by supposing that she has all information about the learner’s predic-
tion method at hand. So, the adversary knows the algorithm used by the
learner. If in this case the learner’s prediction strictly depends on the past
and present predictions and outcomes, the adversary could calculate the
learner’s present prediction (i.e. make a true prediction about the learner’s
prediction) and by this err the learner again Cover-style. For this reason the
learner’s prediction is not allowed to strictly depend on past and present
predictions and outcomes of F and Y. In order to comply with this con-
straint, it is common practice to make the learning algorithm dependent on
past and present predictions only in a non-strict, randomised way. This can
be achieved as follows: Analogously to the case of online regression with
the weighting methods femi and fami, the randomised learner calculates rel-
ative success dependent weights wi,t for each fi ∈ F and round t. However,
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in contrast to online regression where the learning algorithm was a mixing
of the fis’ predictions by taking the weighted average ∑i wi,t · fi,t, in online
classification the learner cannot mix and so needs to decide for one of the
predictions. Which prediction the learner chooses is decided randomly, but
biased towards the weights: The learner is supposed to predict accordingly
with fi,t with the probability of wi,t. So, we can define a randomised online
classification algorithm frmi as follows:

Definition 4.1 (Randomised Weighting). We define relative success (attrac-
tivity) based weights recursively as in definition 3.39 as follows (for all
1 ≤ i ≤ n , t ∈ N):

wi,1 =
1
n

wi,t+1 =

⎧⎪⎨
⎪⎩

max(0,succ i,t−succrmi,t)
n
∑

j=1
max(0,succ i,t−succrmi,t)

if the denominator > 0

1
n otherwise

Given these weights we define the randomised attractivity based meta-
inductive classificatory forecaster frmi as:

Pr( frmi,t = fi,t) = wi,t

Where Pr( frmi,t = fi,t) is the probability of frmi to predict accordingly with
fi.

Note that for all rounds t there is an fi ∈ F such that : frmi,t = fi,t. So,
the randomised meta-inductive forecaster frmi is not mixing. Note also that
for any round t the adversary is allowed to know this probability of frmi.
However, what the adversary is not allowed to know beforehand is frmi’s
prediction, i.e. she has to set yt before she receives frmi,t. Now, since the
prediction of frmi at a round is randomised, we cannot say much about the
bounds of her actual regret. However, since we have the probabilistic infor-
mation about her predictions at hand, we can make a statement about the
learner’s expected regret. Since Pr( frmi,t = fi,t) is within [0, 1], the bound
of expected regret is just a specific instance of online learning regression
(see thrm.6.10 and the proof in appendix 12.25 of Schurz 2019; the proof is
based on Cesa-Bianchi and Lugosi 2006, sect.4.1f, but Schurz’ proof is more
explicit):

Theorem 4.2 (Regret Bound for Randomised Weighting Algorithm). Given
a loss function � which is convex in its first argument, it holds for all prediction
games G with the true values Y and the predictions F (|F| = n ): For all 1 ≤ i ≤
n :

E[aregret 〈 f mi,i〉,t] ≤ √
n · t
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Proof. For an exact proof see (Schurz 2019, theorem 6.10 plus appendix
12.25).

Since E[succ f mi,t] =
n
∑

i=1
succ i,t −

E[aregret 〈 f mi,i〉,t]
t we immediately get as a

result the expected access optimality as characterised in definition 2.17:

Theorem 4.3 (Expected Optimality of Randomised Weighting). Given a loss
function � which is convex in its first argument, it holds for all prediction games
G with the true values Y and the predictions F (|F| = n ): For all 1 ≤ i ≤ n :

lim
t→∞

(E[succ f mi,t]− succ i,t) ≥ 0

I.e.: frmi is expected to be access optimal in the long run.

In the following we are going to spell out how an randomisation might
be implemented. The main idea is to interpret the predicted probabilities
as frequencies. If, e.g., there are only two candidate methods, both of them
gaining equal weights and one predicts 1 and the other 0, then the learning
algorithm would predict 0.5 in an online regression game. However, in
(binary) online classification it has to decide for 0 or 1. In the frequentist
implementation we spell out here the learner might, e.g., predict 1 in the
first case of this type and in the second 0 (and in further cases of this type
the algorithm goes on to oscillate); by this the frequency of her prediction of
cases of this type approaches the “ideal” prediction of 0.5 (see Feldbacher-
Escamilla 2017b, sect.3.1).

It is important to keep in mind that the adversary is not allowed to
know whether the learner uses this randomisation scheme, because other-
wise she could again calculate the value frmi,t before receiving it from frmi
at t. Now, the idea of implementing randomisation is as follows: In pre-
dicting an event outcome one does not consider only past event outcomes,
but all possibilities of past and present event outcomes; then one defines a
prediction method that—regarding the binary setting—randomly predicts
0 or 1, but is—regarding a continuous setting—biased towards the ideal
calculated value of the continuous setting. So, averaging over all possibili-
ties, the method approaches the ideal calculated value in the finite case and
reaches it in the long run. The details are as follows—this presentation is in
accordance with (Schurz 2019, chpt.6.7.1): In order to explain the randomi-
sation approach in detail, we expand the prediction setting further by the
following elements:

• Y1, Y2, . . . is an infinite series of an infinite series of events; we iden-
tify Y1 with the infinite series of events above: Y1 = Y1, Y2, . . . ; and
we use sub-sub-indices to pick out specific events: Y11 = Y1; analo-
gously we refer to the outcome of the single events by y, as, e.g., in
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y11 = y1; finally, in the definitions of the score, success, and weight of
an agents’ prediction the series of events is always restricted to that
provided in the argument place;

• frmi,t is a qualitative prediction on event Yt by a randomising meta-
level agent.
Note, since we need to compare and calculate the randomising
learner’s predictions for different event series, we will, if needed,
make the respective event series in question explicit by writing
frmi(Yut) instead of frmi,t and relativising frmi to a different prediction
game with event series Y = Yu.

The binary randomising meta-inductive agent frmi predicts within the lim-
its of:

P( frmi(Yt) = 1) ≈ fami(Yt)

Here P( frmi(Yt) = 1) is the ratio of the number of possible cases where frmi
predicts 1 in round t and that of all |{0, 1}t| possible series of binary event
outcomes. Take, e.g., the outcomes of series of events as given in table 4.1
with the object-level predictions f1 and f2 (where y1 = y is still considered
to be the true series of outcomes, the other series of outcomes y2–y8 are
the past outcomes, that are up to t = 3 possible; up to t = 4 there are
16 series possible, including the true outcome, etc.). Then a randomising

t = 1 t = 2 t = 3 . . .
y6 0 0 0
y2 0 0 1
y3 0 1 0
y4 0 1 1
y5 1 0 0
y1 1 0 1
y7 1 1 0
y8 1 1 1
f1 1 1 1 1
f2 0 0 0 0
fami 0.5 1.0 0.5 0.6

Table 4.1: Example of predictions of two object-methods ( f1, f2) and one attractiv-
ity based weighting meta inductive method ( fami)

meta-inductive method within the above stated limits would predict, e.g.,
according to table 4.2.

Of course there are numerous other randomising meta-inductive meth-
ods possible; important is only that their (weighted) average over all possi-
ble event series frmi(Y) approximates with increasing t the prediction made
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t = 1 t = 2 t = 3 . . .
frmi(Y1) 1 1 0 1
frmi(Y2) 1 1 0 1
frmi(Y3) 1 1 0 1
frmi(Y4) 1 1 0 1
frmi(Y5) 0 1 1 1
frmi(Y6) 0 1 1 0
frmi(Y7) 0 1 1 0
frmi(Y8) 0 1 1 0

frmi(Y) 0.5 1.0 0.5 0.6

Table 4.2: Example of a randomised success-based meta-method: Such a method
predicts in the binary case on average as often 1 as its real-valued prediction would
be. So, e.g., given the real-valued predictions of table 4.1, it predicts in 50% of
t1-cases (where f1(Y1) = 1 and f2(Y1) = 0) 1 and in 50% of such cases 0. Analo-
gously for all other cases. Which prediction the meta method makes in the end is
chosen randomly/arbitrarily, but biased towards the real-valued prediction. For
the optimality result important is the fact that the exact choice of the meta-method
frmi(Yit) is probabilistically independent from the true outcome Y1t .

according to attractivity weighted meta-induction ( fami) better and coin-
cides with it in the long run.

Now, assume that the pattern of the binary sequences in 1 ≤ t ≤ 3
goes on this way; as can be seen in the tables above, a randomising meta-
inductive method would not approach the best predictor’s success rate
in every possible event series. However, it is the randomised forecasters
weaker aim of approaching the best predictor’s success rate on average. In-
deed, we can define a measure for expected success via the success of frmi
with respect to an event series Yk weighted by the probability of Yk itself
(which is a function of frmi’s predictions). The quite complicated formula
for expected success in our implementation of randomisation is as follows
(the big product produces the value for the probability of each event series
Ek):

E[succ rmi,t] =

|{0,1}t|
∑
k=1

t

∏
l=1

(1 − frmi(Ykl )− ykl + 2 · frmi(Ykl ) · ykl ) · succ rmi(Ykt)

We have seen above, that E[succ rmi,t] allows to for expected access optimal-
ity. Crucial for these bounds is an independence assumption stating that
the true outcome and the prediction of the randomising meta-inductivist
are probabilistically independent in the following way (see the indepen-
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dence assumption 6.10 in Schurz 2019):

P( frmi(Yt) = 1|Yt = 1 & fami(Yt) = r) =

P( frmi(Yt) = 1| fami(Yt) = r) for all r ∈ [0, 1]

This means that an adversary is not allowed to pick the yts for a series of
events in such a way as if she knew already beforehand the predicted value
frmi,t.

A nice feature of randomisation in the discrete settings is its structural
closeness to the continuous case. However, considering the independence
assumption above it is clear that a daemonic scenario is ruled out only by
stipulation. Furthermore, the relativisation of the optimality result to ex-
pected predictive success (E[succ rmi,t]) instead of predictive success per se
(succ rmi,t) opens another dimension into the infinite whose trend is even
opposed: Whereas in the continuous case strict access optimality is re-
stricted to the long run, i.e. to infinite series of predictions, in the randomis-
ing approach access optimality is restricted to the long run as well as to
weighted averaging among the set of possible outcomes; since the number
of possible event outcomes increases with the number of predictions, in the
long run, information about expected success decreases.

These drawbacks of optimality by help of randomised classification
lead us to consider another proposal that is about access optimality of pre-
dictive success per se in a discrete setting.

4.2 Classification and Collective Action

In (Schurz 2008b, sect.8) a set of qualitative meta-inductive prediction
methods is defined which, on average, transforms access optimality results
for a continuous setting to the discrete realm. The idea is as follows: If one
wants to approach a value of a continuum by help of discrete values, one
may arrange discrete values around the value of the continuum in such a
way that the average of the discrete values is close to the value of the con-
tinuum. E.g., one can approach/reach 0.5 ∈ [0, 1] by averaging over the
elements of {0, 1}. Similarly for 0.75 ∈ [0, 1] by averaging over elements
of {0, 1}: 0.75 = (0 + 1 + 1 + 1)/4. Now, in a discrete setting, like the bi-
nary setting, only discrete predictions, e.g., binary predictions, are admis-
sible. So, every method can predict only a value out of {0, 1}. However,
the number of prediction methods is in principle not fixed. This can be
exploited by a meta-strategy by settling around the value of a continuum
0/1-predicting methods in such a way that on average the value of the
continuum is approached. So, e.g., if the calculated ideal prediction is 0.25,
then the meta-method can approach it by averaging over one 1-predictor
and three 0-predictors: 0.25 = (1 + 0 + 0 + 0)/4. In the binary prediction
setting no meta-method can exploit this fact directly, because averaging
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over the predictions leaves the binary value space. However, on a meta-
meta level where one can compare successes of object- and meta-methods
as, e.g., we are doing, a meta-meta-method can average over the single pre-
diction method’s success and can exploit this on the meta-meta-level.

In order to indicate such a meta-meta-method, we add to the discrete
prediction setting a group of binary meta-inductive methods:

• fcmi1,t, . . . , fcmik ,t are the qualitative predictions on Yt of k meta-level
agents

Now, Schurz (2008b) has found an interesting way of emulating real-valued
success-based predictions in the discrete setting by defining the meta-
inductive predictions as follows ([·] rounds to the next integer, as, e.g.
[0.75] = 1, [0.25] = 0, [0.5] = 1):

Definition 4.4 (Collective Weighting).

fcmii ,t =

{
1 if i ≤ [ fami,t · k]
0 otherwise

So, if, e.g., k = 10 and the ideal (continuous) predicted value fami,t =
0.75, then the first seven meta-inductivists predict 1 (1, . . . , 7 ≤ 0.75 · 10),
and the remaining three meta-inductivists predict 0 (8, . . . , 10 > 0.75 · 10).
By this a meta-meta-inductivist can exploit the meta-inductivists’ predic-
tions by averaging and approximating 0.75 by 0.7. In this case, using only
a subset of four meta-inductivists would perform better. It turns out that,
although each meta-inductivist’s success rate is not bounded by the object-
level methods’ success rates, the average of them is (see Schurz 2008b,
p.299):

Theorem 4.5 (Bound for Collective Weighting Algorithm). Given a loss func-
tion � which is convex in its first argument, it holds for all prediction games G with
the true values Y and the predictions F (|F| = n ): For all 1 ≤ i ≤ n :

succ{cmi1,...,cmim },t − succ i,t ≥
√

n
t
− 1

2 · k

Proof. For a proof see (Schurz 2008b, p.299; and Schurz 2019, sect.6.7.2,
thrm.6.11 plus appendix 12.26).

For the long run, i.e. the limiting case, the distance of the average
shrinks as a function of the number of meta-level methods k to 1/(2 · k).
The trick of this collective average-weighting method is to mimic access
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optimality in the real-valued case, which is achieved by, lets say, fami,t, via
bringing fcmi,t as close as possible to fami,t. It is, so to say, lifting the bi-
nary predication game onto a meta-meta level of a prediction game with
1/(2 · k) (with arbitrary high k) as the smallest approximatable unit.

Averaging success rates means that the meta-inductive agents
fcmi1 , . . . , fcmik have to share their success. According to the general im-
possibility result regarding a daemonic setting one cannot define a meta-
method which takes as input the predictions of fcmi1 , . . . , fcmik and produces
a prediction on its own. So, one might say that in order to deal with the
problem of discrete predictions from a meta-inductive perspective one is
forced to act as a collective.

The main advantage of this approach is to be found in its applicabil-
ity to any prediction setting whatsoever. One also does not have to ex-
clude a daemonic scenario by stipulation, as is done in the randomisation
approach. Although in such a setting all meta-inductivist methods might
perform suboptimally, on average these methods approximate access opti-
mal performance. However, it guarantees approximation of access optimal-
ity only in the long run. As we have seen, the lower bound of the average
success rate is in the long run max(succ1,t, . . . , succn ,t)− 1/(2 · k). Now, al-
though k might be chosen arbitrarily high, one cannot achieve equal success
rates in the long run. So, for some daemonic scenarios even the collective
of meta-inductive methods will predict suboptimally.

To sum up the results of this and the preceding section, discrete predic-
tion settings allow for daemonic scenarios; randomisation allows for weak
access optimality in the sense of convergence of expected success rates with
that one of the best object-level method accessible, but at cost of stipulating
independence between meta-inductive prediction and true outcome, thus
stipulating that daemonic scenarios are impossible. On the other hand, col-
lective meta-induction allows for an approximation of average success as
accurate as one wishes; however, strict convergence is not always possible
and by this also a collective of meta-inductive methods performs subop-
timal in at least some daemonic settings, even in the long run. This facts
seem to suggest that in order to approach the problem of induction within
a discrete setting one has to enrich the structure of the problem and try to
prove meta-inductive access optimality or the impossibility of a daemonic
setting for such an enriched structure. This is the line of argumentation we
are following in the next section by considering the problem of daemonic
settings within a synchronised prediction environment.

4.3 Classification and Synchronisation Constraints

Instead of focusing on a modification of the setting (randomisation or con-
sidering collective success), we are here concerned with linking the set-
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tings, namely the classification and the regression setting. The idea is that
if we do not know whether nature allows also for continuous predictions or
for discrete predictions only, we might want to provide both kinds of pre-
dictions. However, in providing two kinds of predictions of one and the
same event, it seems plausible to assume that these two different kinds of
predictions should be linked somehow. In this section we frame the prob-
lem as linking qualitative beliefs with quantitative ones. The idea is that we
can put forward constraints for keeping both systems synchronised. After-
wards, we aim at showing that these constraints exclude cases in which
relative online learning is suboptimal. The argumentation in this section is
along the line of (see Feldbacher-Escamilla 2017b, sect.4).

We want to exclude Cover-style prediction games. Particularly we are
after excluding daemonic scenarios with the following properties:

1. The object-method’s success rates are limited: For all 1 ≤ i ≤ n there
exists lim

t→∞
succ i,t.

2. The meta-inductive learning method performs long run suboptimal:
There is an 1 ≤ i ≤ n such that: lim

t→∞
(succmi,t − succ i,t) < 0

Note that by this characterisation it is supposed that also the success
rate of the meta-inductivist or at least its upper bound with respect to
the best performing method(s) is limited.

(From these two assumptions it follows that at least one object-
method is predictively successful.)

As we mentioned in the preceding section, we suggest structural enrich-
ment for solving the problem of suboptimal success based predictions in a
discrete setting. The structure we are interested in is a synchronised setting.
So, we combine a discrete prediction setting with a continuous one and put
forward some synchronisation constraints. We aim at showing that, given
these constraints, daemonic scenarios are impossible. Daemonic scenarios
underlay the meta-inductivists suboptimality. So, arguing for the impossi-
bility of such daemonic scenarios in a synchronised setting is the same as to
argue for the optimality of meta-induction in all reasonable synchronised
settings.

Since we want to motivate the synchronisation constraints epistemi-
cally, we choose a formalism that allows for such an interpretation:

• The classification or discrete prediction setting consists of:

– Y1, Y2, . . . an infinite series of binary events whose outcomes
y1, y2, . . . are within {0, 1}

– Bel1(Yt), . . . , Beln (Yt) are the binary predictions concerning Yt
(elements of {0, 1}) of the n object-level agents
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– Belsmi(Yt) which is the binary prediction concerning Yt by the
meta-inductive agent (who aims at “synchronisation”, hence
‘s’—details see below)

• The regression or continuous prediction setting consists of:

– The same series of binary events
– Pr1(Yt), . . . , Prn (Yt) which are real-valued predictions concern-

ing Yt (elements of [0, 1]) of the n object-level agents
– Prsmi(Yt) which is a real-valued prediction concerning Yt of the

meta-level agent

Now, Bel is interpreted as qualitative belief or acceptance in the sense that
‘Beli(Yt) = 1’ is supposed to mean that according to method i yt = 1 or just
simply: agent i believes that Yt will take place; analogously ‘Beli(Yt) = 0’
means that agent i believes that Yt will not take place. Note that we as-
sume here that beliefs are complete in the sense that for every event Yt the
agent either believes that it will take place or believes that it will not take
place. In principle one might try to relax the completeness condition by al-
lowing agents to abstain from judgement. But then, of course, the question
arises of how to adequately take into account abstention in scoring. We will
stick to the idealisation of completeness, this the more since under specific
circumstances expert knowledge also spreads from object-level methods to
meta-level methods in a setting with restricted access only, where restricted
access might be equalised with incompleteness (for details see Thorn and
Schurz 2012, sect.7f).

Similarly we re-interpret Pr: ‘Pri(Yt) = r’ is now supposed to mean that
i’s degree of belief that Yt will take place is r. Regarding scoring, this re-
interpretation seems to be fine inasmuch as scoring can be directly related
to betting behaviour. If outcomes are binary, it holds that the more an agent
tends to extremes (0, 1), the higher are also her chances in scoring well. But
at the same time also her risk is of not scoring at all—so scoring tends also
to the extremes then. And the more an agent tends to the indefinite (0.5),
the safer she scores, but also the smaller the scores. In the case of a constant
degree of belief of 0.5, expected predictive success will be equal to a ran-
domisation among all possible event series as, e.g., is the case of flipping a
fair coin—which is, to say the least, not a remarkably good benchmark.

Now, we define the meta-inductive methods intended for synchronised
predictions as follows:

Definition 4.6 (Synchronised Weighting).

Prsmi(Yt) = fami,t

Belsmi(Yt)

{
1 if Prsmi(Yt) > 0.5
0 if Prsmi(Yt) ≤ 0.5
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Due to our optimality and suboptimality results, Prsmi is long run access
optimal, whereas Belsmi is not. Given such an expanded structure, what ra-
tionality constraints can be put forward? In the light of the re-interpretation
provided above it seems to be appropriate to put forward synchronisation
principles between the qualitative and the quantitative series of beliefs. The
first principle we think of is a synchronisation principle that acts event-wise
between these systems. It is a very specific case of the so-called Lockean
thesis and states that a degree of belief above a specific threshold is neces-
sary and sufficient for qualitative belief or acceptance. Since we are dealing
with complete qualitative belief, the natural threshold is 0.5. Otherwise the
situation could arise that one qualitatively believes a proposition and dis-
believes its negation, although one’s degree of belief in the proposition is
strictly lower than the degree of belief in the negation, which sounds at
least paradoxical (see, e.g., Leitgeb’s critique of Lin and Kelly’s approach
in Leitgeb 2017). Since this synchronisation principle is event-wise, we call
it a ‘synchronous synchronisation principle’. It is as follows:

Beli(Yt) =

{
1 if Pri(Yt) > 0.5
0 otherwise

(SynSync)

The case of Pri(Yt) = 0.5 is, epistemically speaking, not clearly regulated—
regarding complete belief one might belief or disbelief that Yt will take
place. For our argument below one can uphold a principle (SynSync∗) simi-
lar to (SynSync) above, where Pri(Yt) = 0.5 enforces one to set Beli(Yt) = 1.
What matters only is that all cases of Pri(Yt) = 0.5 are treated the same
way, i.e. enforce either Beli(Yt) = 0 or Beli(Yt) = 1. (SynSync) can be
also expanded to discrete settings with more than two admissible quali-
tative predictions. If, e.g., there are three qualitative predictions admissi-
ble ({0, 0.5, 1}), then one could state that Beli(Yt) = 1, if Pri(Yt) > 2/3,
Beli(Yt) = 0.5, if 1/3 < Pri(Yt) ≤ 2/3, and Beli(Yt) = 0, if Pri(Yt) ≤ 1/3.
However, such a general bridging between the quantitative and the quali-
tative realm needs further argumentation and so we are not going deeper in
this matter; in the literature often so-called non-epistemic values are cited
for such a bridging (see, e.g., Longino 2008). Note that the binary meta-
inductive prediction method Belsmi from above satisfies this constraint by
definition. For all object-level methods in a daemonic scenario (SynSync)
poses no problem, since they can easily pick out a (partial) probability func-
tion that satisfies for each event this constraint. In the daemonic example
Cover-style mentioned above the agents with Bel1(Yt) = 1 and Bel2(Yt) = 0
might simply equate their constant qualitative belief with their quantitative
one. A discussion of such a synchronisation constraint in the framework of
prediction games is also provided in (Schurz 2019, sect.8.1.7, particularly
the optimality principle 8.3).
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Beside this constraint we suggest another one for diachronic consid-
erations. The idea is as follows: An agent i might believe or disbelieve
and have an event-wise synchronised degree of belief above or below the
threshold 0.5 regarding the event’s taking place or not. However, the event-
wise synchronisation does not oblige i to synchronise her degrees of be-
lief according to her qualitative predictions in the long run. Take, e.g., an
agent i with the alternating acceptance behaviour and equal degrees of be-
lief according to table 4.3. Although both epistemic attitudes towards Yt

t=1 t=2 t=3 t=4 t=5 t=6 · · ·
Beli(Yt) 1 0 1 0 1 0 · · ·
Pri(Yt) 1.0 0.0 1.0 0.0 1.0 0.0 · · ·

Table 4.3: Example of qualitative and quantitative predictions

are event-wise synchronous, one might ask whether it is rational for i to
stick to her degrees of belief also in the long run or whether she should at
some point in time s adopt her degrees of belief also according to her past
prediction behaviour? We think that in order to be diachronic synchronous
too, agents should also calibrate—although it should be highlighted that
this is already a much stronger assumption than that of synchronous syn-
chronisation.

How should calibration in such a setting work? Of course we do
not suggest to oblige the agent to calibrate directly according to the past
outcomes—this would lead to a constraint of applying the straight rule.
The straight rule is to be considered as a possibility for an object-level
method; but it (or convergence in the limit with it) is not to be considered as
a necessary condition for rationality (see our discussion in part II). On the
other hand, calibration according to past predictions alone seems to be a
constraint too weak to be upheld. It would not ground the agent’s degrees
of belief to (experimental) outcomes at all. In the example given above
the agent was obliged to calibrate her degrees of belief in the long run, i.e.
starting at a point in time s, to 0.5; and this regardless of the past outcomes.
What seems to be more reasonable is to demand calibration with respect
to one’s own predictions and the past outcomes. Recall that according to
the definition above, success combines both via keeping track of an agent’s
true predictions in comparison to all predictions made so far by her. For this
reason we suggest as a middle ground between purely outcome-oriented
calibration and calibration that is based on past predictions only: success-
oriented calibration for diachronic synchronicity. So, we think that in the
long run an agent’s degrees of belief should be calibrated by her success
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rate in the following way:

There is an s, such that for all r ≥ s:
Beli(Yr) = 1 ⇒ Pri(Yr) = lim

t→∞
succBeli ,t

Beli(Yr) = 0 ⇒ Pri(Yr) = 1 − lim
t→∞

succBeli ,t

(DiaSync)

The principle (DiaSync) states about quantitative belief, in order to be di-
achronically synchronised, the following: There is a point in the series s
such that for all events following Ys, i.e. for all Yr with r ≥ s, the quantita-
tive belief regarding Yr’s taking place (Pri(Yr)) equals the limiting success
rate regarding Beli. It is clear that (DiaSync) holds only, if the success rate
is limited. This means that there is a point in the series where the success
rate is fixed, where the object method reached an “equilibrium” regarding
closeness of the predictions to the truth. The idea is that s is after such a
limiting point.

(DiaSync) can be expanded also to a discrete setting where the num-
ber of admissible predictions is greater than two, not only in {0, 1}. So
if, e.g., the admissible quantitative predictions are in {0, 0.5, 1}, then for
Beli(Yr) = 1 and Beli(Yr) = 0 things may remain as in (DiaSync); and with
respect to Beli(Yr) = 0.5 the degree of belief in Yr’s taking place may be
equalised with the value in-between them; the third value of such a dis-
crete setting may then be plausibly interpreted as suspension of judgement
(the outcome may be interpreted as undetermined). That there is always
a plausible interpretation for a qualitative value in such an extended di-
achronic synchronisation principle is, of course, not guaranteed. But if
there is a “bridge” between the qualitative and quantitative system under
investigation, then it seems that one can also make sense of an extended
diachronic synchronisation principle.

In our description of daemonic scenarios we have stipulated that in
such scenarios the success rates of the object-methods are limited. So, (Di-
aSync) is supposed to hold for quantitative beliefs in such scenarios. If an
agent believes that an event Yr will take place, then her degree of belief in
Yr’s taking place should cohere with her past performance in predicting Y-
events. And if an agent believes that an event Yr will not take place, then
her degree of belief in Yr’s not taking place should—completeness of be-
lief presupposed—equal the inverse of her degree of belief in Yr’s taking
place. We have argued above that just considering the event outcomes in
calibration would be inadequate since it would enforce the straight rule.
Such a calibration principle might be considered as a purely empirical con-
straint. On the other hand, just calibrating according to one’s past predic-
tions seems to be without any empiricistic spirit at all. An agent would
be considered diachronically rational if she just sticks to her method. In
case the used method is a priori, also the calibration principle would lead
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from a priori predictions to a priori ones. Hence, one might consider such
a principle as rationalistic in spirit. By stipulating diachronic coherence of
predictions through equalising degrees of belief with limiting success rates
(if they exist), we think one gets the right spin from both camps: One re-
mains in an empirically informed way with one’s method.

It should be mentioned here that the diachronic synchronisation princi-
ple is used not as a reflection principle in our argument. It is not intended
that de facto an agent should be supposed to update her degrees of belief
according to her success rate—since this information is available only for
the limiting case such an application would be too much to ask for. How-
ever, we, talking about daemonic scenarios and having knowledge about
the limiting case, may reasonably put forward constraints also for this case.
And we think that from this perspective (DiaSync) is reasonable to ask
for. Note that also the meta-inductive solution to the problem of induc-
tion holds strictly speaking only for the limiting case—only for this case
it can be shown that the meta-inductive weighting method is among the
best accessible methods within the setting (although, of course, the short
run results demonstrate some kind of “epistemic controllability” by help of
meta-induction). In order to uphold access-optimality (DiaSync) just adds
another consideration to the limiting case: Meta-induction remains access-
optimal also in a setting where discrete predictions are coupled with con-
tinuous ones, if all the agents within the setting are diachronically coherent,
i.e. calibrated.

According to this proposal, the alternating predictions above would
force an agent to calibrate her degrees of belief depending on the outcomes
of the events as given in table 4.4. In the first case, predictions are in com-
plete agreement with outcomes, so it seems to be plausible that an agent
trusts completely in her prediction method (regarding qualitative belief) in
the long run; analogously in the second case, where predictions are in com-
plete disagreement with outcomes; here it seems to be plausible that an
agent distrusts her prediction method (regarding qualitative belief) com-
pletely in the long run. Finally, in the third and fourth case, where just 50%
of the predictions are correct, an agent should trust in her method (regard-
ing qualitative belief) no more, but also no less, than trusting in flipping a
fair coin. Note that the last two cases represent the object methods in our
Cover-style example of a daemonic scenario (we just switched the values
predicted by the methods with that of the event outcomes here).

Let us apply the framework presented above to the problem of dae-
monic scenarios. Now, as was pointed out above, in a daemonic setting the
success rates of the relevant, i.e. the best, object-level agents converge. So,
it holds:

lim
t→∞

succBel1,t = lim
t→∞

succBel2,t

But then, in order to be diachronically synchronised, the degrees of belief
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t=1 t=2 t=3 t=4 t=5 t=6 · · · · · ·
Beli(Yt) 1 0 1 0 1 0 · · · · · ·

Yt 1 0 1 0 1 0 · · · · · ·
succPri ,t

1
1

2
2

3
3

4
4

5
5

6
6 · · · 1

Yt 0 1 0 1 0 1 · · · · · ·
succPri ,t

0
1

0
2

0
3

0
4

0
5

0
6 · · · 0

Yt 1 1 1 1 1 1 · · · · · ·
succPri ,t

1
1

1
2

2
3

2
4

3
5

3
6 · · · 1

2

Yt 0 0 0 0 0 0 · · · · · ·
succPri ,t

0
1

1
2

1
3

2
4

2
5

3
6 · · · 1

2

Table 4.4: An example of predictions and their corresponding success-rates show-
ing that object-predictors in a daemonic scenario are not calibrated according to
(DiaSync)

of the agents are also calibrated equally in the long run: By (DiaSync) we
get for some point s in Y (in case s differs agent-wise one has to choose the
“larger” one):

There is an s, such that for all r ≥ s:
Bel1(Yr) = 1 ⇒ Pr1(Yr) = lim

t→∞
succBel1,t

=

Bel2(Yr) = 0 ⇒ Pr2(Yr) = 1 − lim
t→∞

succBel2,t

Since in the binary case with two admissible predictions of the daemonic
scenario the object-level agents’ success rates are 0.5, by (SynSync) we get
indiscernibility of qualitative beliefs, i.e. we get for some point s in Y that
for all r ≥ s:

Bel1(Yr) = Bel2(Yr)

But then the meta-level agent Prsmi and her qualitative counterpart Belsmi
would at some point in Y predict exactly the same way as both object-level
agents Pr1, Bel1 and Pr2, Bel2 do. So the object-level and the meta-level
methods’ success rates would converge which means that the setting can-
not be a daemonic one.

This result also holds for a binary daemonic scenario with more than
two object methods, since their success rates still have to converge in order
to be attractive for the meta-inductive method; by this, again, their degrees
of belief converge (DiaSync); and by this, again, their qualitative beliefs
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converge (SynSync). In case the admissible predictions are not binary, but
discrete to a degree greater than 2, also daemonic scenarios are impossi-
ble. Consider, e.g., the case where Bel1(Yt) is constantly 1, Bel2(Yt) is con-
stantly 0, and Bel3(Yt) is constantly 0.5. Their success rates also have to
converge and can be maximally 1/3. But then, by an expanded version of
(DiaSync), Pr1(Yr) (for all r ≥ some s) equals also a value ≤ 1/3. However,
this would be incoherent with an expanded version of (SynSync), enforc-
ing, e.g.: Pr1(Yr) > 2/3.

To sum up our main argument against the possibility of a daemonic
scenario in such synchronised settings runs as follows:

1. A daemonic setting with successful agents enforces different qualita-
tive beliefs, but equal success rates in the long run among the relevant
object-level agents. (our definition of a daemonic setting)

2. Equal success rates in the long run enforce equal calibration of de-
grees of belief. (see (DiaSync))

3. Equal calibration of degrees of belief enforces equal qualitative be-
liefs. (see (SynSync))

4. Hence, no daemonic setting satisfies synchronic and diachronic syn-
chronisation constraints at the same time. (1–3)

So, in case of a richer structure of prediction tasks meta-inductive subopti-
mality can be overcome by putting forward synchronisation constraints: If
all agents in the combined qualitative and quantitative setting are rational
in the sense that they are synchronically and diachronically synchronised
(calibrated), then no daemonic scenarios are possible and by this meta-
induction remains access optimal.

As the three approaches to learnability and online classification in this
chapter show, the impossibility result about relative learnability in on-
line classification asks for setting different ends and engineering different
means in order to achieve these ends. In the next section we summarise
them together with the other main results about online learnability.

4.4 Summary of Main Results

Let us take stock of the results we have achieved so far: We can categorise
online prediction games as follows: There are online classification games
(discrete values) and there are online regression games (continuous values
within [0, 1]). Both of them can be subdivided into realisable, best expert,
and agnostic prediction games. A prediction game is realisable, if it con-
tains in the predictor or hypothesis set F also the true series Y. It is a best
expert game, if there is one hypothesis which is never outperformed by any
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other prediction method (since the true series is never outperformed by any
other prediction method, it follows that every realisable game is also a best
expert game). If it is no best expert game, then it is agnostic. Figure 4.1
gives an overview about this different prediction games.

expert games

prediction games

classification gamesregression games

realisable games

Figure 4.1: A taxonomy of prediction games

Now, let us come to some preconditions for the online learnability re-
sults we have gained in this part of the book:

• Regarding the loss �:

– Online classification: � is the 0-1 loss (in case of multiclass clas-
sification with k > 2 one can also use a 0-k loss which penalises
wrong predictions not fully, but by some value which increases
with the distance in some ordering of the k values)

– Online regression: � is convex

• Regarding the predictor or hypothesis set F:

– Online classification: Ldim(F) is finite
– Online regression: F is finite

Now, given these conditions, we can summarise the possibility and im-
possibility results regarding online learnability as follows: Absolute online
learnability is guaranteed only for realisable prediction games (possibil-
ity result). Best expert games or agnostic games allow not for guaranteed
absolute online learnability (impossibility result). Regarding relative on-
line learnability it matters whether the setting is one of online classification
or one of online regression. Relative learnability in online classification is
guaranteed only for best expert games (possibility result), but not for ag-
nostic ones (impossibility result). One can bypass the impossibility result
by allowing randomisation, collective action or synchronisation. Randomi-
sation amounts to providing a probabilistic prediction and proves to be
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expected optimal. Collective action allows to approximate collective opti-
mality, but, strictly speaking, does not achieve it. Finally, putting forward
synchronisation allows for optimality, if all classificatory predictions are
supposed to be synchronically and diachronically synchronised with their
respective predictions of online regression. Relative learnability in online
regression is also possible in agnostic prediction games (main possibility
result). Table 4.5 provides an overview of these possibilities and impossi-
bilities.

absolute
learnability
lim
t→∞

succ l,t = 1

relative learnability
lim
t→∞

(succ l,t − succ i,t) ≥ 0

online classification realisable games best expert games;
agnostic games also,
if one is allowed to ran-
domise, act collectively
(approximates optimal-
ity only) or in case of a
synchronised setting.

online regression realisable games agnostic games

Table 4.5: Overview of possibility/impossibility results on absolute and relative
online learnability: fl is a learning algorithm, fi is any method of F.

The most important algorithms we will employ in the following are:

• fami: Attractivity based meta-inductive forecaster with a regret bound
of

√
n · t

• femi: Exponential meta-inductive forecaster with a regret bound of
2 ·√ln(n) · t/(

√
2 − 1)

Finally, let us state the assumptions for this optimality results again:

• The loss � is bounded and convex (in online regression) or 0-1 (in
online classification).

• The past and present predictions of F are complete and accessible to
the learner, i.e. for each round t and fi ∈ F: fi,≤t is accessible to the
learning algorithm fl .

• The past true outcomes (of Y) are accessible to the learner, i.e. for each
round t: y<t is accessible to the learning algorithm fl .

• The number of experts F is finite or its Ldim is finite.
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There are also optimality results for cases where these conditions are
only partly satisfied (e.g. the optimality results about intermittent predic-
tion games or results for unboundedly growing or even infinite set of play-
ers in Schurz 2019, chpts.7-9).

This concludes our investigation of the logic of deceivability. Let us
come to the applications now. We will start with traditional problems of
epistemology and then go on with applications to the realm of social epis-
temology.



Part II

Optimisation in the Classical
Epistemic Realm



Chapter 5

Induction and Hume’s Problem

In this chapter the problem of induction is formulated and its emergence in the modern era
is outlined. Afterwards, traditional and modern approaches are discussed and problems
thereof are highlighted. Subsequently, more general learning theoretical impossibility
results are presented which show that Hume’s problem cannot be accounted for in terms
of absolute learnability. Finally, it is outlined why the problem might be accounted for in
terms of relative learnability and how the approach of meta-induction allows for justifying
induction in this sense.

There are three major types of inference used in science and philosophy:
deduction, induction, and abduction. Deductive inferences are charac-
terised by their feature of truth preservation with certainty (or preservation
of a ranking of truth values) in passing from the premisses to the conclu-
sion. Induction, at least in the sense of enumerative induction, is charac-
terised as non-deductive inference which has as a conclusion a generalised
claim containing predicates that occur already in the premisses. Finally,
abduction is formally characterised as a non-deductive inference with a
conclusion containing also predicates other than that of the premisses.

A more general classification results from distinguishing only between
deductive inferences (by their feature of truth preservation with certainty),
and inductive inferences in the wide sense (see, e.g., Carnap 1952; and the
discussion in Schurz 2019, sect.1.1). In this classification, the latter is an
umbrella term for all non-deductive inferences, so also for inductive in-
ferences as mentioned before (these are inductive inferences in the narrow
sense). As we will see later on, so-called creative abduction is also about hy-
pothesis or theory invention. Since philosophy of science is mainly about
the context of justification of theories, but not about their utilisation and
discovery, there is quite a big controversy whether abduction can be ade-
quately dealt within philosophy of science, whether there is something like
a “logic of abduction”. For this reason, abduction is often not included in

140
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the umbrella term of induction in the sense of non-deductive inferences.
Here we stick mainly to the former classification, however, sometimes we
will also use the latter, more general one. Whenever we do so, we will make
this clear by speaking of induction in the wide or narrow sense.

In this part of the book we will discuss the problem of optimisation with
respect to these inferences: induction (this chapter and chapter 6), abduc-
tion (chapter 7), and deduction (chapter 8). Especially in our investigation
of the problem of how to justify inductive inferences we will apply the re-
sults of the preceding part of the book.

In our investigation of the problem of induction, we first present the
problem (section 5.1). Then we provide a short overview of traditional and
modern approaches and indicate the main problems of these approaches
(section 5.2). Afterwards, we link the problem of induction to the problem
of absolute learnability, i.e. the idea that a prediction method has to be ab-
solutely successful in the long run (section 5.3). Finally, we show that once
one allows for justification via relative learnability in the sense of provid-
ing predictions which might fall apart from being successful, but which are
optimal in the long run, one can also account for the problem of how to
justify induction (section 5.4).

5.1 The Problem of Induction

Hume (1711-1776) wrote about the problem of induction, when inductive
methods were already well established in science. One of the first mod-
ern physicists, Galileo Galilei (1564-1642), was already applying inductive
methods when putting forward and testing his basic principle of relativity.
And his contemporary Francis Bacon (1561-1626), the first “philosopher of
the new physics” (see Hacking 2006, p.25), had already argued at length for
the importance of inductive methods in science. He did so by discussing
the Novum Organum Scientiarum, induction, in contrast to the Organum Ve-
tus of Aristotle, deduction:

“In ordinary logic almost all effort is concentrated on the syl-
logism. The logicians seem scarcely to have thought about in-
duction. They pass it by with barely a mention, and hurry on to
their formulae for disputation. But we reject proof by syllogism,
because it [. . . ] lets nature slip out of our hands. [. . . ] For we
regard induction as the form of demonstration which respects
the senses, stays close to nature, fosters results and is almost
involved in them itself.” (see Bacon 1620/2000, p.16)

Also Isaac Newton’s (1642-1726/27) Principia Mathematica were already
widely accepted and its background methodology was gradually enriched
in the several editions (1687, 1713, 1726) especially by methodological notes
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on the inductive method (see Feldbacher-Escamilla 2019). Induction was
already well entrenched in the methodology of science, when Hume influ-
entially put forward a problem of this method.

Well known is Hume’s formulation of the problem of induction in the
form of the following dilemma: Justification is either deductive or induc-
tive. A principle of induction cannot be justified deductively, since it allows
for inferences which are not truth preserving. It can be also not justified in-
ductively, since this would amount to circular reasoning. Hence, we lack a
justification for a principle of induction. Hume famously stated the problem
of induction the first time in book I (Of the Understanding), part III (Of knowl-
edge and probability), sect. VI (Of the inference from the impression to the idea) of
his A Treatise of Human Nature, published 1738. There the above mentioned
dilemma can be found in more or less explicit form as follows (see Hume
1738/1960, pp.86ff):

Ad: Justification is either deductive or inductive.
“Since it appears, that the transition from an impression present
to the memory or senses to the idea of an object, which we
call cause or effect, is founded on past experience, and on our
remembrance of their constant conjunction, the next question
is, whether experience produces the idea by means of the un-
derstanding or of the imagination; whether we are determin’d
by reason to make the transition, or by a certain association
and relation of perceptions. If reason determin’d us, it would
proceed upon that principle, that instances, of which we have had
no experience, must resemble those, of which we have had experience,
and that the course of nature continues always uniformly the same.”
(pp.88f)

Ad: There is no deductive justification of induction.
“[However], there can be no demonstrative arguments to
prove, that those instances, of which we have had no experience,
resemble those, of which we have had experience. We can at least
conceive a change in the course of nature [. . . which is] a
refutation of any pretended demonstration[.]” (p.89)

Ad: There is no inductive justification of induction.
“[On the other hand] ‘Tis therefore necessary, that in all proba-
ble reasonings there be something present to the mind, either
seen or remember’d; and that from this we infer something
connected with it, which is not seen nor remember’d. The only
connexion or relation of objects, which can lead us beyond the
immediate impressions of our memory and senses, is that of
cause and effect; [. . . ] The idea of cause and effect is deriv’d
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from experience, which informs us, that such particular objects,
in all past instances, have been constantly conjoin’d with each
other: And as an object similar to one of these is suppos’d to be
immediately present in its impression, we thence presume on
the existence of one similar to its usual attendant. According
to this account of things, which is, I think, in every point
unquestionable, probability is founded on the presumption of
a resemblance betwixt those objects, of which we have had ex-
perience, and those, of which we have had none; and therefore
‘tis impossible this presumption can arise from probability. The
same principle cannot be both the cause and effect of another;”
(pp.89f)

Disappointed with the reception of his Treatise, Hume published An En-
quiry Concerning Human Understanding in which he elaborated his thoughts
in a shorter and more polemical way ten years later (1748). There his
thoughts on induction appear in section IV (Sceptical doubts concerning the
operations of the understanding). We can explicate his argument as follows
(see Hume 1748/2007, pp.24ff, 33–36):

1. “All reasonings may be divided into two kinds, namely demonstra-
tive reasoning, or that concerning relations of ideas, and moral rea-
soning, or that concerning matter of fact and existence.” (p.25, 35)
Modern paraphrase: All justification stems from either analytic or
synthetic reasoning.
Schematically: Jx ↔ (Ax ∨ Sx)

2. “When it is asked, What is the nature of all our reasonings concerning
matter of fact? the proper answer seems to be, that they are founded
on the relation of cause and effect. When again it is asked, What is the
foundation of all our reasonings and conclusions concerning that relation?
it may be replied in one word, Experience.” (p.23, 32)
Modern paraphrase: Synthetic reasoning (might be causal reasoning,
but) is ultimately based on experience alone.
Schematically: (Sx → Cx) & (Cx → Ex)

3. “It must certainly be allowed, that nature has kept us at a great dis-
tance from all her secrets, and has afforded us only the knowledge
of a few superficial qualities of objects; while she conceals from us
those powers and principles, on which the influence of these objects
entirely depends. [. . . ] As to past Experience, it can be allowed to give
direct and certain information of those precise objects only, and that
precise period of time, which fell under its cognizance: But why this
experience should be extended to future times, and to other objects,
which for aught we know, may be only in appearance similar; this is
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the main question on which I would insist. [. . . ] It must be acknowl-
edged, that there is here a consequence drawn by the mind; that there
is a certain step taken; a process of thought, and an inference, which
wants to be explained. These two propositions are far from being the
same, I have found that such an object has always been attended with such
an effect, and I foresee, that other objects, which are, in appearance, similar,
will be attended with similar effects.” (pp.24f, 33f)
Modern paraphrase: The principle of induction is not based on expe-
rience alone.
Schematically: ¬Epi

4. “That there are no demonstrative arguments in the case, seems evi-
dent; since it implies no contradiction, that the course of nature may
change, and that an object, seemingly like those which we have ex-
perienced, may be attended with different or contrary effects. [. . . ]
Whatever is intelligible, and can be distinctly conceived, implies no
contradiction, and can never be proved false by any demonstrative
argument or abstract reasoning à priori.” (p.25, 35)
Modern paraphrase: The principle of induction is not analytic.
Schematically: ¬Api

5. Hence: “If we be, therefore, engaged by arguments to put trust in
past experience, and make it the standard of our future judgment,
these arguments must be probable only, or such as regard matter of
fact and real existence.” (p.26, 35)
Modern paraphrase: Hence, if the principle of induction is justified,
then by synthetic reasoning.
Schematically: Jpi → Spi

6. Hence: “But that there is no argument of this kind, must appear, if
our explication of that species of reasoning be admitted as solid and
satisfactory. We have said, that all arguments concerning existence
are founded on the relation of cause and effect; that our knowledge
of that relation is derived entirely from experience; and that all our
experimental conclusions proceed upon the supposition, that the fu-
ture will be conformable to the past. To endeavour, therefore, the
proof of this last supposition by probable arguments, or arguments
regarding existence, must be evidently going in a circle, and taking
that for granted, which is the very point in question.” (p.26, 35f)
Modern paraphrase: Hence, the principle of induction is not justified.
Schematically: ¬Jpi

How influential Hume’s sceptical argument against induction was, is a
matter of historical dispute. Hacking (2006), e.g., argues that it was neces-
sary that the underlying notions of probability, induction, and statistical infer-
ence allowed for a distinction between opinion and knowledge as a matter
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of degree, and that before Hume’s Treatise this was not the case and so his
argument played a central role already quite early on. Laudan (1981), in
contrast, argues that:

“It is one of the wilder travesties of our age that we have
allowed the myth to develop that 19th-century philosophers
of science were as preoccupied with Hume as we are. As
far as I have been able to determine, none of the classic fig-
ures of 19th-century methodology—neither Comte, Herschel,
Whewell, Bernard, Mill, Jevons, nor Peirce—regarded Hume’s
arguments about induction as much more than the musings of
an historian. This claim is borne out by the fact that in Peirce’s
thirty-two papers on induction and scientific method—papers
teeming with historical references—there is only one reference
to Hume; and that is not in connection with the problem of in-
duction but with the problem of miracles.” (Laudan 1981, p.240)

And he adds, tightening his claim: “Hume’s avoidance of [. . . the notion
of] induction [as we understand it nowadays] was probably related to his
almost unparalleled ignorance of the science of his time. [. . . In footnote
38:] Indeed, it is difficult to find a major philosopher between Socrates and
G. E. Moore who knew less than Hume about the science of his time” (see
Laudan 1981, pp.83f).

There could not be any sharper conflict between two positions on the
reception of Hume’s thoughts. These two positions span from necessary in-
fluence due to the underlying conceptual development to almost full neg-
ligence. However, it seems that Reichenbach (1938) proposed already a
middle ground which allows for an explanation of both, negligence (by
classical empiricists) and influence (of logical empiricists due to a new for-
malism):

“If inductive inference can teach us something new, in opposi-
tion to deductive inference, this is because it is not a tautology.
[. . . ] It was David Hume who first attacked the principle from
this side; he pointed out that the apparent constraint of the in-
ductive inference, although submitted to by everybody, could
not be justified. [. . . ] We may summarize his objections in two
statements: We have no logical demonstration for the validity of
inductive inference. There is no demonstration a posteriori for
the inductive inference; any such demonstration would presup-
pose the very principle which it is to demonstrate. [. . . ] In spite
of the deep impression Hume’s discovery made on his contem-
poraries, its relevance was not sufficiently noticed in the sub-
sequent intellectual development. [. . . ] It is astonishing to see
how clear-minded logicians, like John Stuart Mill, or Whewell,
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or Boole, or Venn, in writing about the problem of induction,
disregarded the bearing of Hume’s objections; they did not re-
alize that any logic of science remains a failure so long as we
have no theory of induction which is not exposed to Hume’s
criticism. [. . . ] It remains incomprehensible that their empiri-
cist principles did not lead them to attribute a higher weight to
Hume’s criticism. It has been with the rise of the formalistic in-
terpretation of logic in the last few decades that the full weight
of Hume’s objections has been once more realized. [. . . ] Hume’s
criticism was the heaviest blow against empiricism; if we do not
want to dupe our consciousness of this by means of the narcotic
drug of aprioristic rationalism, or the soporific of skepticism,
we must find a defense for the inductive inference which holds
as well as does the formalistic justification of deductive logic.”
(see Reichenbach 1938, pp.341f, p.347)

In support of Reichenbach’s argument we point to the fact that one of
the first to highlight (and appreciate) Hume’s scepticism regarding induc-
tion was John Maynard Keynes who counts as one of the forerunners of
those philosophers of science who provided a new formalism for inductive
reasoning (the programme of logical probabilities):

“Between Bacon and Mill came Hume. Hume’s sceptical
criticisms are usually associated with causality; but argu-
ment by induction—inference from past particulars to future
generalisations—was the real object of his attack. Hume
showed, not that inductive methods were false, but that their
validity had never been established and that all possible lines
of proof seemed equally unpromising. The full force of Hume’s
attack and the nature of the difficulties which it brought to light
were never appreciated by Mill, and he makes no adequate at-
tempt to deal with them.” (Keynes 1921, pp.312f)

Regardless of the exact influence of Hume’s thought on his contempo-
raries, it is interesting to note that in fact the term ‘induction’ does not at
all appear in Hume’s argument, nor (almost) anywhere in the Treatise or
the Enquiry (Vickers 2010, sect.2). Rather, Hume speaks mainly about infer-
ences concerning causal connections. However, it seems that in his critique
and discussion of such connections he clearly had in mind a principle of
enumerative induction: If all objects of one kind (e.g. objects experienced in
the past) have a property (e.g. that a cause is conjoined with the effect), then
also objects of another kind (e.g. objects to be experienced in the future) are
supposed to have that property. Since enumerative induction is about in-
ferences to generalisations, asking for a justification of this problem is to
ask for a justification of a generalising inference (see Vickers 2010, sect.1).
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However, if one construes the notion of an inductive inference more broadly
and considers, e.g., as an inductive inference all non-deductive (and non-
abductive) inferences (see, e.g., Carnap 1952), then the justification problem
can be also reframed as a characterisation or demarcation problem, namely the
problem of how to characterise or demarcate good inductions in contrast to
bad ones (see Vickers 2010, sect.1).

In the following sections of this and the next chapter we are after the
problem of induction in this more general sense: Can one provide epistemic
justification for any non-deductive (and non-abductive) method?

5.2 Traditional and Modern Approaches

In this section we are going to discuss traditional approaches to the prob-
lem of induction. Since the literature on this topic is enormous, we aim
only at providing a brief sketch for an approach of each of the main posi-
tions discussed in our investigation of the problem of epistemic justifica-
tion (chapter 1). Recall, the approaches to epistemic justification we con-
sidered there were: foundationalism, coherentism, infinitism, and naturalised
epistemology. We will discuss a foundationalist, coherentist, infinitist, and a
naturalised solution to the problem of induction in this section (in reverse
ordering). We will also discuss more modern approaches, namely the fal-
sificationist approach of Popper as well as the approach of inductive logic.
In the subsequent section we provide a formal argument for being scepti-
cal about a strict solution to the problem (a solution in terms of absolute
learnability). Finally, in section 5.4 we describe the solution put forward by
epistemic engineering.

A Naturalised Approach

Let us begin with a naturalised approach to the problem of induction: Hume
himself offers an approach to the problem of induction which might be
assigned to this programme. E.g., in section V (Sceptical solution of these
doubts) of the Enquiry, he argues:

1. “[Suppose one has] observed similar objects or events to be constantly
conjoined together; what is the consequence of this experience?”

(p.31, 42)

2. “He immediately infers the existence of one object from the appear-
ance of the other.” (p.31, 42)

3. “Though he should be convinced, that his understanding has no part
in the operation, he would nevertheless continue in the same course
of thinking. There is some other principle, which determines him to
form such a conclusion.” (p.32, 42)
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4. “This principle is Custom or Habit. For wherever the repetition of any
particular act or operation produces a propensity to renew the same
act or operation, without being impelled by any reasoning or process
of the understanding; we always say, that this propensity is the effect
of Custom. By employing that word, we pretend not to have given the
ultimate reason of such a propensity. We only point out a principle of
human nature, which is universally acknowledged, and which is well
known by its effects. Perhaps, we can push our enquiries no farther,
or pretend to give the cause of this cause; but must rest contented
with it as the ultimate principle[.]” (p.32, 43)

So, according to Hume we are accustomed to make inductive inferences
and that is all about it. This strategy is sometimes also called “explain where
you can’t justify” (see Howson 2000, p.21). However, the achievements of
such a strategy are too modest in order to be satisfying for the bulk of
epistemologists. Similarly, as in general a criminal cannot justify her be-
haviour by simply providing a detailed description of how she committed
the crime, we do not accept an explanation of de facto inductive reasoning
by custom as a justification. As we have seen in our discussion of natu-
ralised epistemology in section 1.4, one needs to account for the normative
part of justification by more than providing descriptive principles. In the
case of custom, we would need justification for a principle which states that
custom is a necessary or an optimal means to achieve our epistemic goals
like truth or accurate predictions. However, a justification of such a prin-
ciple, e.g. by reference to past success of the methods we are accustomed
with, is exposed to the problem of induction again.

An Infinitist Approach

Let us come to another approach which might be subordinated to in-
finitism. This approach tackles the second horn of Hume’s dilemma and
claims to argue for induction by help of induction in a non-circular way.
A proponent of this approach is, e.g., John St. Mill who tried to justify in-
duction by reference to the uniformity of nature (see Chapter iii: Of the
Ground of Induction Mill 1843/1974, pp.1106-1110). A modern form of
such a non-circular approach is provided by M. Black (1954, Inductive Sup-
port of Inductive Rules). Our description of such an infinitist account is
due to (see Skyrms 2000, sect.III.3). The idea is as follows: Assume we
want to infer by help of induction that the next observed rAven is Black
(Aa1n → Ba1n ) on the basis that all up to now observed ravens were black
(Aa11&Ba11 ,. . . ,Aa1n−1&Ba1n−1 ). We can do so by help of our experience as
well as a level 1 principle of induction about the individuals. The argument
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at level 1 is as follows:

a21

⎧⎪⎨
⎪⎩

Aa11&Ba11 , . . . , Aa1n−1&Ba1n−1

Aa11&Ba11 , . . . , Aa1n−1&Ba1n−1 |∼1 Aa1n → Ba1n

Hence: Aa1n → Ba1n

Here ‘|∼1’ stands for a level 1 inference and ‘a1i ’ stands for ordinary objects
like ravens, shoes etc. Now, how to justify this principle of induction? One
can do so by providing a level 2 argument with a level 2 principle of induc-
tion about level 1 inferences: One argues from past experience about the
Truth-conduciveness of level 1 Inductions (I1a21&Ta21 , . . . , I1a2m−1&Ta2m−1 )
and a level 2 principle of induction about level 1 induction as follows:

a31

⎧⎪⎨
⎪⎩

I1a21&Ta21 , . . . , I1a2m−1&Ta2m−1

I1a21&Ta21 , . . . , I1a2m−1&Ta2m−1 |∼2 I1a2m → Ta2m

Hence: I1a2m → Ta2m

Note that ‘a2i ’ stands not for ordinary objects like ravens, shoes etc., but for
inferences or arguments as, e.g., labelled by ‘a21 ’ above. E.g. ‘I1a21&Ta21 ’
is to be interpreted as: the above argument (a21) is an inductive inference
and was successful or truth-conducive. Now, how to argue for the level
2 principle of induction? One can do so by providing a level 3 argument
with a level 3 principle of induction about the Truth-conduciveness of level
2 Inductions. For the level 3 principle of induction one can argue likewise.
In general, one can argue for a level n principle of induction by help of an
n + 1 principle of induction and information about level n principle’s past
success:

Inan+11&Tan+11 , . . . , Inan+1l−1&Tan+1l−1

Inan+11&Tan+11 , . . . , Inan+1l−1&Tan+1l−1 |∼n+1 Inan+1l → Tan+1l

Hence: Inan+1l → Tan+1l

And so on, in principle ad infinitum. Note that the reasoning is not circu-
lar, because one always provides different evidence for different principles
of induction. Ii, T-statements about the past and present are experienced.
And the justification of |∼1 is provided by help of such experience and |∼2,
that of |∼2 by help of such experience and |∼3, and more generally that of
|∼n by help of |∼n+1. The schema of this infinitist inductive reasoning for
induction is depicted in figure 5.1.

Note that suitable information about the method’s past success is
needed. E.g., if we get to know that level 1 inductions do not work properly
in the sense that past level 1 inductive inferences were not truth conducive,
then also no level 2 inductive inference can be performed, since such an in-
ference is licensed only on the basis of the past truth conduciveness of level
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1

2

n + 1

level ...
past success of |∼n + |∼n+1︸ ︷︷ ︸

...
past success of |∼2 + |∼3︸ ︷︷ ︸

⇓
past success of |∼1 + |∼2︸ ︷︷ ︸

⇓

Pa1, . . . , Pan−1 + |∼1 ⇒ Pan

Figure 5.1: Schema of an infinitist inductive justification of induction by arguing
with inductive principles on different levels: On level 1 object properties P are
transferred from the past and presence to the future. On level 2 success properties
from past and present level 1 inferences are transferred to the future. And so on ad
infinitum. (see table III.2 of Skyrms 2000, p.38)

1 inferences. In general, once one accepts an infinitist notion of justification
(J), it seems that one can provide a non-circular inductive justification of in-
duction. Is infinitism a viable solution to the problem of induction? As the
following argument shows, at least this version of an infinitist justification
of induction fails.

The reason for this is that this schema of infinitism allows not only
for justifying induction, but also anti-induction or counterinduction or
counter-conduction (see W. C. Salmon 1957; and Skyrms 2000, pp.41ff): Let
us begin with an anti-inductive argument at level 1 as follows:

a21

⎧⎪⎨
⎪⎩

Pa11 , . . . , Pa1n−1

Pa11 , . . . , Pa1n−1 ||∼1 ¬Pa1n

Hence: ¬Pa1n

Now, how can we argue for ||∼1? Clearly, we cannot do so by help of a
level 2 inductive principle |∼2, because ||∼1 did not work well in past (either
|∼1 or ||∼1 worked well in past, but not both). However, we can provide a
level 2 anti-inductive principle ||∼2 stating that what was successful in past,
wont be successful in the future or what was not successful in past, will be
successful in the future. Arguing from the ¬Truth-conduciveness of level 1
aNti-inductions, a level 2 anti-inductive principle allows for the following
argument, justifying the anti-inductive inference on level 1:

a31

⎧⎪⎨
⎪⎩

N1a21&¬Ta21 , . . . , N1a2m−1&¬Ta2m−1

N1a21&¬Ta21 , . . . , N1a2m−1&¬Ta2m−1 ||∼2 N1a2m → Ta2m

Hence: N1a2m → Ta2m
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In the same way, more generally, an anti-inductive principle at level n can
be justified by help of the same experience as before (past success of |∼n
iff past failure of ||∼n and vice versa) and an anti-inductive principle at
level n + 1. The schema of this infinitist anti-inductive reasoning for anti-
induction is depicted in figure 5.2.

1

2

n + 1

level ...
past failure of ||∼n + ||∼n+1︸ ︷︷ ︸

...
past failure of ||∼2 + ||∼3︸ ︷︷ ︸

⇓
past failure of ||∼1 + ||∼2︸ ︷︷ ︸

⇓

Pa1, . . . , Pan−1 + ||∼1 ⇒ ¬Pan

Figure 5.2: Schema of an infinitist anti-inductive justification of anti-induction by
arguing with anti-inductive principles on different levels: On level 1 object prop-
erties P are inversed from the past and presence to the future. On level 2 failure
properties from past and present level 1 inferences are inversed for the future. And
so on ad infinitum. (see table III.3 of Skyrms 2000, p.43)

Again, once one accepts an infinitist notion of justification (J), it seems
that one can provide also a non-circular anti-inductive justification of anti-
induction. So, this infinitist approach to the problem of induction allows for
justifying principles or inference methods with contradicting consequences
or conclusions. Note that in this case, an infinitist could, e.g., argue likewise
as a coherentist does when facing the problem of licensing contradicting
inferences or systems: She might just state that not all infinitely justifyable
principles and inferences are justified, but only logically compatible ones.
So, either induction or anti-induction is justified by this infinitist approach,
but not both. However, then one still is in need of an argument for choosing
among them. In this sense the notion of justification is still epistemically
underdetermined (see our discussion at the end of section 1.2).

A Coherentist Approach

This brings us to the next approach to the problem of induction, namely
coherentism. Recall, according to Hume, an inductive justification of in-
duction “must be evidently going in a circle” (see Hume 1748/2007, p.26,
35). Infinitism suggested to consider a different notion of justification and
tried to overcome the problem by an infinite hierarchy of reasoning, how-
ever failed as we have outlined above. But what about accepting a notion



Chapter 5. Induction and Hume’s Problem 152

of justification (J) which allows for circular reasoning. One idea of such a
coherentist approach to the problem of justifying induction is that an in-
ductive principle might more or less directly provide epistemic support for
itself. Now, if we take a very fundamental stance of coherentism according
to which the only relevant criterion for justification is logical consistency,
then any conservative expansion of logical inferences would be licensed.
Note that an inductive principle Pa1, . . . , Pan−1 |∼ Pan as well as an anti-
inductive principle Pa1, . . . , Pan−1 ||∼ ¬Pan allow for conservatively ex-
panding classical logic. Hence, according to this criterion both, induction
as well as anti-induction, would be justified (see Schurz 2019, sect.3.3). So,
such an approach ends up with the same problem as we discussed before
for the infinitist approach to the problem of induction. Also putting for-
ward coherence standards with coherence constraints on success fail. If
we assume, e.g., that an inference rule is justified, if it is guaranteed to be
successful “according to its own inferences regarding success”, then such
a success coherent approach to justification licenses induction (success co-
herentism demands that the assumption of successful inferences needs to
be coherent with allowing for replacing the property of objects P by the
success property of principles and inferences):

1. Inductive inferences have been successful in past.

2. Therefore, by the rule of induction, inductive inferences will be suc-
cessful in the future.

3. Therefore, it is (internally) coherent to assume that inductive infer-
ences will be successful.

Clearly, anti-induction is not success coherent according to inductive infer-
ences regarding success:

1. Anti-inductive inferences have failed in past.

2. Therefore, by the rule of induction, anti-inductive inferences will fail
in the future.

3. Therefore, it is not (externally based on induction) coherent to assume
that anti-inductive inferences will be successful.

However, also induction is not success coherent according to anti-inductive
inferences regarding success:

1. Inductive inferences have been successful in past.

2. Therefore, by the rule of anti-induction, inductive inferences will fail
in the future.

3. Therefore, it is not (externally based on anti-induction) to assume that
inductive inferences will be successful.
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Regarding “its own inferential standards concerning success”, a success
coherent approach to justification licences also anti-induction:

1. Anti-inductive inferences have failed in past.

2. Therefore, by the rule of anti-induction, anti-inductive inferences will
be successful in the future.

3. Therefore, it is (internally) coherent to assume that anti-inductive in-
ferences will be successful.

So, the same problem of infinitism shows up not only for naı̈ve coherentism
in the sense of licensing any inference which is logically coherent, but also
for success coherentism licensing any inference which is logically coherent
and coherent with the assumption of its own success. Below we will see
that also a more sophisticated form of coherentism (namely probabilism)
fails with respect to justifying induction.

A Foundationalist Approach

Let us also very briefly sketch a foundationalist approach to the problem of
induction. We will only rush through it, since such an approach seems to
trivialise the problem and faces the general problems we described already
while discussing foundationalism in the context of the general problem of
epistemic justification in section 1.1. According to foundationalism, the no-
tion of justification (J) allows for some propositions to be justified, without
there being any reason provided for them. We have described such propo-
sitions by help of the foundationalist principle (F) as an epistemic basis B.
The idea is that all propositions are justified which are either in B itself or
which can be deduced from B (i.e. for which elements of B serve as reasons).
Now, a simple foundationalist approach to the problem of induction might
consider a/the principle of induction to be an element of B, i.e. not in need
of any reason. In this way the problem of induction vanishes for trivial rea-
sons, since principle (F) allows for justification of the elements of B without
any further reason except them being in B. However, why then not alterna-
tively considering a/the principle of anti-induction to be an element of B?
Clearly, the problem of the choice of B shows up again. In our discussion of
foundationalism we have also seen that there are two approaches relevant
for such a choice: internalism and externalism. Regarding an internalist
account to the problem of choosing B we have seen in section 1.1 that a
regress argument can be triggered by asking for the truth conduciveness
of the choice. For this reason also an internalist foundationalist approach
to the problem of induction fails. According to externalism, on the other
hand, what counts for such a choice is only whether our choice of B leads
to reliable inferences or not. There is no need for an epistemic agent to be
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actually aware of this or not. This means that choosing B with a principle
of induction allows for justification, if induction is de facto a reliable infer-
ence method, and choosing B with a principle of anti-induction allows for
justification, if anti-induction is de facto a reliable inference method. How-
ever, this means that the notion of justification is accessible to us only if we
take in a God’s eye view, something we “do” when we speak about truth, but
something we would not expect for using the notion of justification as serv-
ing as an intermediary between truth and belief. Hence, also an externalist
foundationalist approach to the problem of induction fails.

Popper’s Falsificationist Approach

Finally, we also want to hint at two more modern approaches to Hume’s
problem which do not directly fit into the discussed branches of theories
of epistemic justification. First, and very briefly, there is Popper’s falsifi-
cationist approach. For Popper, Hume’s problem was key for shifting the
paradigm of scientific methodology from verification and confirmation to
falsification and corroboration. He suggested to consider any falsifiable
theory as scientific and to “redefine” the task of (philosophy of) science to
try to falsify theories instead of confirming them. Justification (J) is, so to
say, granted per default for any falsifiable theory, and withdrawn, in case a
theory is in fact falsified. By applying such a methodology only deductive
inferences are needed and Hume’s problem vanishes simply by marginal-
ising the role of induction:

“The best we can say of a hypothesis is that up to now it has
been able to show its worth, and that it has been more successful
than other hypotheses although, in principle, it can never be jus-
tified, verified, or even shown to be probable. This appraisal of
the hypothesis relies solely upon deductive consequences (pre-
dictions) which may be drawn from the hypothesis. There is no
need even to mention induction.” (Popper 2002b, p.317)

Although Popper’s methodological shift was very influential and is de facto
applied in form of null hypothesis significance tests (see Sprenger 2016, sect.1
and 6), it is not considered to cover adequately and fully the whole range
of scientific practice. On the contrary, scientists often speak of verification
and confirmation and as we will indicate now, also most of the philosophy
of science literature on theory assessment is about confirmation. For this
reason Hume’s problem, although contested, still stands as it is.

The Approach of Inductive Logic and Confirmation Theory

This brings us to the second modern account, namely the approach of in-
ductive logic (for an overview see Sprenger 2016). Inductive logic studies
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the notion of and measures for confirmation. This theory of confirmation
covers a bulk of philosophy of science studies of the 20th century and at its
core it studies principles which more or less circumvent Hume’s problem.
Early proponents of such theories of confirmation were Carl G. Hempel
who had a qualitative approach to confirmation (see Hempel 1945a,b) and
Carnap who was one of the first to provide a quantitative approach (see
Carnap 1950/1962, 1952). According to Carnap, Hume’s problem concerns
the task of justifying inductive inferences, in particular their conclusions,
i.e. hypotheses H, on the basis of some evidence E. In contrast to this the
problem of inductive logic is to determine a measure for confirmation of
some hypothesis H by the evidence E. The idea of Carnap was to define
such a measure by help of logical or combinatorial principles—this is the
so-called programme of logical probabilities. In providing such a measure
one simply avoids the qualitative question of justification. Here is how
Carnap describes the aim of inductive logic:

“It seems to me that the view of almost all writers on induction
in the past and including the great majority of contemporary
writers, contains one basic mistake. They regard inductive rea-
soning as an inference leading from some known propositions,
called the premisses or evidence, to a new proposition, called
the conclusion, usually a law or a singular prediction. From
this point of view the result of any particular inductive reason-
ing is the acceptance of a new proposition[. . . . ] This seems to
me wrong. On the basis of this view it would be impossible to
refute Hume’s dictum that there are no rational reasons for in-
duction. [. . . ] I would think instead that inductive reasoning
about a proposition should lead, not to acceptance or rejection,
but to the assignment of a number to the proposition, viz., its
[degree of confirmation]. This difference may perhaps appear
slight; in fact, however, it is essential. If, in accordance with the
customary view, we accept the prediction, then Hume is cer-
tainly right in protesting that we have no rational reason for
doing so, since, as everybody will agree, it is still possible that
[our prediction is wrong]. If, on the other hand, we adopt the
new view of the nature of inductive reasoning, then the situa-
tion is quite different. In this case Input does not assert the hy-
pothesis H in question, e.g., the prediction [rather its degree of
confirmation. . . . Note that this suffices for induction to] fulfil
its purpose of guiding our practical decisions [. . . since] for the
determination of a rational decision neither the acceptance of H
nor knowledge of the objective probability of H is needed.” (see
Carnap 1966, p.317f)

So, the idea of Carnap’s approach can be summarised as follows: Hume
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thought about induction in qualitative terms stating that the inference of
a hypothesis H from some evidence E either is justified or not. Classical
qualitative decision theory then states that H is accepted iff its inference
from E is justified or admissible and rejected otherwise. Alternatives of H
play no role here. And whether we accept H or not hinges completely on
whether the inference from E to H is justified. However, if one switches to
a quantitative consideration and modern decision theory, then one seems
to get fully rid of the question of justification: One considers a collection
of alternative hypotheses H, H′, H′′, . . . and provides for each hypothesis
its degree of confirmation given the evidence E: con f (H, E), con f (H′, E),
con f (H′′, E), . . . . Then, decision theory demands to opt for that hypoth-
esis whose degree of confirmation maximises the underlying utilities (in
this simplified picture we consider con f to be the so-called absolute mea-
sure of confirmation which consists in the conditional probability of H given
E). According to Carnap, no problem of justification shows up, simply be-
cause the decision theoretic framework is justified via optimality considera-
tions, and the measure of confirmation is supposed to be a purely logical or
combinatorial measure. Regarding the justification of the decision theoretic
framework we have discussed already in section 1.4 that it stems from op-
timality considerations and that these are commonly accepted also in other
areas where normativity considerations are relevant, as, e.g., in ethics.

But how about the justification of the measure for the degree of confir-
mation? Whether one has to opt for Pan (H) or ¬Pan (H′) given evidence
Pa1, . . . , Pan−1 (E), clearly depends on whether con f (H, E) > con f (H′, E)
or not (given equal underlying utilities), i.e.: An (enumerative) inductive
inference is justified compared to an anti-inductive inference only, if:

con f (Pan, Pa1& · · ·&Pan−1) > con f (¬Pan, Pa1& · · ·&Pan−1)

Now, Carnap’s idea was to argue for a measure con f which satisfies this
condition (also called a singular predictive inference (see Carnap 1966, §110C,
pp.567f)) in a similar way as one might argue for the validity of deductive
inferences:

“We shall see that a statement of deductive logic like ‘e L-
implies h’ means the entire range of e is included in that of h,
while a statement of inductive logic like ‘c(h, e) = 3/4’ means
three-fourths of the range of e is included in that of h.” (Carnap
1950/1962, p.202)

For illustrative purposes we outline this approach in a nutshell. Consid-
ering only propositional logic with p1, . . . , pn propositional variables, we
can define a state description as the conjunction of ±p1& · · ·& ± pn (where
± means that the respective propositional variable is either negated or not
negated). The range of some p is the set of those state descriptions where
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Pa1 Pa2 State Description
1 0 0 ¬Pa1&¬Pa2
2 0 1 ¬Pa1&Pa2
3 1 0 Pa1&¬Pa2
4 1 1 Pa1&Pa2

Table 5.1: Example of the state descriptions for a monadic first order language
L2,1 with two individual constants and 1 monadic predicate.

p is true (not negated). One can think of the range of a some p also as the
set of disjunctive elements of p’s disjunctive normal form. E.g., if n = 2,
then the disjunctive normal form of p1 is p1&p2 ∨ p1&¬p2, whereas the
disjunctive normal form of p1&p2 is p1&p2 itself. So, the range of p1 is
{p1&p2, p1&¬p2}, whereas the range of p1&p2 is {p1&p2}. That p1 is a
deductive consequence of p1&p2 means that the entire range of p1&p2 is
included in that of p1, which is true. Clearly, p1&p2 is not a deductive
consequence of p1 since the range of the latter is not entirely included in
that of the former. However, it is partially included. As stated above, Car-
nap’s idea was to consider the degree of inclusion also as the degree of
confirmation. Since 1 out of 2 elements of p1’s range is contained in that
of p1&p2, the degree of confirmation of p1&p2 by p1 is 1/2. Our simple
inductive logic for finitely many propositional variables can be straight-
forwardly expanded to a monadic first-order language (without quanti-
fiers) with n individual constants and m monadic predicates: Ln,m . E.g.,
if n = 2 and m = 1 we get the four state descriptions provided in ta-
ble 5.1 (see Carnap 1950/1962, pp.106f). This framework allows us already
to formulate the question of the validity of enumerative induction in com-
parison to anti-induction. Given a monadic first-order language Ln,1: To
which degree is the range of Pa1& · · ·&Pan−1 included in that of Pan, and
to which degree is it included in that of ¬Pan. Furthermore, which one
of both is higher? Now, the answer is simple: Both, Pan and ¬Pan, are
satisfied by equally many state descriptions (2n−1). Furthermore, there
are equally many state descriptions in the range of Pa1& · · ·&Pan−1 which
satisfy Pan as there are which satisfy ¬Pan (namely for each 1). Hence,
con f (Pan, Pa1& · · ·&Pan−1) = con f (¬Pan, Pa1& · · ·&Pan−1). So, accord-
ing to this simple idea, inductive inferences are “logically” not better off
than anti-inductive ones (that the no free lunch theorem is a generalisation
of this fact is shown in Schurz 2017). For this reason, Carnap introduced
a new parameter, λ, which should be an inverse measure for the speed
of learning from experience (see Carnap 1952; and the outline in Carnap
1950/1962, §110C, p.568; also Carnap 1959, p.218): Let si be the number of
H-instances in the evidence E: si = |{ai : E � H[an/ai]}|; let s be the sample
size (i.e. the number of individual constants in E), and let κ be the number
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of so-called Q-predicates of Ln,m (where a Q-predicate is a “maximally con-
sistent predicate” definable in Ln,m and has the form ±P1x& · · ·& ± Pmx;
so κ = 2m). Furthermore, let w be the width of the hypothesis H, which
is defined as the number of Q-predicates whose disjunction is equivalent
with H. Then he defines a measure of confirmation as:

con f λ(H, E) = con f λ(H[an], E[a1, . . . , an−1]) =
si +

λ·w
κ

s + λ

If we ignore for a moment λ, κ and w and if we describe permutability
of the individuals within an expression as the structure of the expression,
then con f is no longer about the degree of inclusion of E’s range in that
of H, but about the inclusion of E’s structure in that of H. In our simple
singular predictive inference we consider just one predicate, hence κ = 2.
The learning parameter λ can take on any value in [0, ∞): Learning can be
super fast or super slow in the sense of impossible. This allows for a whole
spectrum, a continuum of inductive methods. Well known are the follow-
ing specifications (see Carnap 1950/1962, §110C, p.568; and Sprenger 2016,
sect.3):

• λ = 0: Straight rule, transferring the frequency of the observed sample
to the unobserved case: con f 0(H, E)= si

s

• λ = 2: Laplace’s rule of succession, looking at an experiment for which
both success and failure are possible, and estimates as if we had ob-
served one success and one failure, so predicting like the straight rule
where one performed s + 2 experiments and found si + 1 positive in-
stances (here the relative width w/κ is 1/2): con f 2(H, E)= si+1

s+2

• λ → ∞: Inductive scepticism, according to which we cannot learn any-
thing from past experience about the future: con f ∞(H, E)= 0

Now, Carnap’s programme of logical probability is generally consid-
ered to be a degenerative research programme, inasmuch as generalisa-
tions for quantified first-order logic and infinite domains are tricky and
in need of several parametrisations. Regardless of this, we see already
with the free λ parameter that whether inductive inferences are justified
or not and if so, to which degree, depends on the choice of λ. For small
λ, con f λ(Pan, Pa1& · · ·&Pan−1) > con f (¬Pan, Pa1& · · ·&Pan−1), but the
difference decreases with increasing λ and vanishes in the limit. So, also
within a restricted framework of logical probabilities the justification of in-
duction remains underdetermined.

This holds the more for standard approaches to confirmation. These
approaches are much more relaxed regarding constraints of con f . The
most fundamental constraint they put forward is that con f is based on a
probability function Pr satisfying the axioms of probability theory. One
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famous confirmation measure, namely absolute confirmation, simply iden-
tifies con f (H, E) with the conditional probability Pr(H|E): con f abs(H, E)=
Pr(H|E). Another one, namely incremental confirmation, simply consid-
ers the linear probabilistic increase or decrease of H by E: con f incr(H, E)=
Pr(H|E)− Pr(H). There are characterisation results regarding both of them
which provide more or less justification for each measure (e.g., absolute
confirmation avoids the so-called paradox of irrelevant conjunctions, and in-
cremental confirmation avoids the so-called ravens paradox—(for details see
Sprenger 2016)). Besides these measures for confirmation, there is a plu-
rality of further measures. Now, regarding the probabilistic assumption
that confirmation is based on a probability function, one can provide sev-
eral arguments for justifying the axioms of probability theory. Perhaps the
most famous one is the so-called Dutch book argument: If one interprets Pr
as betting odds, and if one puts forward as constraint that one should not
be prone to a Dutch book, i.e. a set of fair bets whose net gains are negative,
then adherence to the axioms of probability theory is necessary and suffi-
cient for being not prone to a Dutch book (see Talbott 2008; Hájek 2005).
Clearly, there is some discussion about the ends. E.g., if one stipulates as
an end not only non-negative gain, but positive gain, then a further condi-
tion for Pr is necessary, namely regularity of Pr, i.e. the condition that only
logical truths receive a probability Pr of 1—for the notion of regularity see
chapter 11; for the constraint see (Howson 2000, p.134). However, the ax-
ioms of probability theory are so widely accepted that, at least so it seems,
de facto people fit the ends towards the means and not vice versa as they
aim at a post hoc rational explanation of our choice of these principles. In
general, such conditions and principles are considered to be “laws of con-
sistency” or coherence (see Howson 2000, p.134). In this sense the standard
approaches to confirmation might be assigned to coherentism. With respect
to the problem of induction they also remain similarly underdetermined:
If we take, e.g., the absolute measure of confirmation, then, probabilisti-
cally speaking, one is completely free in choosing a probability function
Pr such that Pr(Pan|Pa1& · · ·&Pan−1) < Pr(¬Pan|Pa1& · · ·&Pan−1). If we
consider an even stronger form of induction, namely inductive generalisa-
tion of the form Pa1& · · ·&Pan |∼ ∀xPx (for high enough n), then we get
by Bayes’ theorem:

Pr(∀xPx︸ ︷︷ ︸
H

| Pa1& · · ·&Pan︸ ︷︷ ︸
E

) = Pr(E|H)︸ ︷︷ ︸
=1

· Pr(∀xPx)
Pr(Pa1& · · ·&Pan)

The unconditional probabilities Pr(∀xPx) and Pr(Pa1& · · ·&Pan) are also
called prior probabilities, since they are prior to receiving any relevant ev-
idence (in contrast, conditional probabilities are also called posterior prob-
abilities, since they are conditional some evidence and according to or-
dinary updating one identifies them with absolute probabilities after re-
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ceiving the evidence). Now, if we consider as alternative hypothesis H′
the proposition ¬∀xPx, then it is easy to see that there are prior prob-
abilities which allow for higher absolute confirmation of H′ than H by
E: Take, e.g., Pr(∀xPx) = 1/4 and Pr(Pa1& · · ·&Pan) = 3/4, then
Pr(∀xPx|Pa1& · · ·&Pan) = 1/3, hence Pr(¬∀xPx|Pa1& · · ·&Pan) = 2/3,
hence con f abs(H, E) < con f abs(H′, E). Similarly for an anti-inductive al-
ternative H′′: ∀x(x �= a1& · · ·&x �= an → ¬Px). Whether inductive or
anti-inductive inferences are licensed depends completely on the choice of
the prior probabilities. So, also in the probabilistic coherentist approach the
problem of induction remains unresolved due to an underdetermination of
the prior probabilities: “With no assumptions at all, we get no results. Prob-
ability theory is not magic, and in its strongest pure form, the skepticism
of David Hume is unanswerable” (see Skyrms 2000, p.156). However, it
is important to note that subjective Bayesians who do not put forward any
constraints for choosing prior probabilities often see this not as a vice, but
a virtue of their framework:

“The ’synthetic’ premises in a probabilistic inference are gener-
ally prior, or unconditional, probabilities, and because their ex-
ogenous nature is explicitly acknowledged within the so-called
subjective Bayesian theory they are often seen as its Achilles
heel. Hume’s argument enables us to view them in a less un-
favourable light, for it implies that some degree of indeter-
minacy is a natural and indeed inevitable feature in any ade-
quate theory of valid inductive inference.” (Howson and Ur-
bach 2006, p.80)

Coherentism in Probabilistic Disguise: Old Wine in New Skins? Fi-
nally, speaking about probabilistic coherence, a short note on the dynamics
of probabilism and its relation to Hume’s problem is in place. In using
Bayes’ theorem from above we were already speaking of prior probabilities,
meaning those probabilistic statements which are relevant prior, i.e. before,
gathering evidence E. Now, probabilistic statements relevant prior and pos-
terior gathering some evidence are usually described in form of probabilis-
tic dynamics, speaking of a change of an epistemic agent’s degrees of belief
from prior Pr to posterior Pr′ after receiving evidence E. How an epis-
temic agent should change her degrees of belief is normatively stated via
so-called rules of update. One of the most famous rules is Bayesian update,
stating that once one gets to know E, one’s posterior Pr′ should be obtained
from one’s prior Pr by conditionalising on E:

For all propositions H: Pr′(H) = Pr(H|E)
So, e.g., to get to know E means that Pr′(E) = 1—before it might have
been even non-strictly disbelieved: 0 < Pr(E) < 0.5. There are also
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diachronic Dutch book arguments which allow for justifying Bayesian con-
ditionalisation, i.e. considering it as a coherence constraint (see Vineberg
2016, sect.4.1). Now, note that Pr are one’s past degrees of belief, and Pr′
are one’s present degrees of belief relevant also for one’s future degrees of
belief. Conditionalisation demands to infer from the former the latter, and
since there are coherentist arguments in favour of such an inference, one
might ask whether we have a successful case of inductive reasoning from
the past to the present and future? However, note also that the whole “dy-
namics” is only determined by the (very) prior probability distribution, i.e.
one’s degrees of belief prior gathering any evidence at all, and the set of ev-
idence, so the problem of the priors seems to still remain and underdetermine
epistemic justification. Nevertheless, if we consider the relevant update
case as that of having the prior degree of belief Pr at t = 1, receiving all the
evidence E at t = 2, inferring at t ≥ 2 from Pr and E the posterior degree
of belief Pr′ by help of conditionalisation, and finally holding Pr′ at t ≥ 2,
then an argument for conditionalisation seems to be also an argument for
an inductive inference. The problem of the priors concerns, so to say, only
the truth of the premisses of this inference, but not the validity of the infer-
ence itself (likewise as for the validity of a deductive inference it does not
matter whether the premisses of the inference are in fact all true or not). So,
is a dynamic Dutch book argument an argument in favour of an inductive
inference? Yes, it is, but it is not without an inductive assumption: The
argument shows that violating conditionalisation allows a bookie to offer
bets at t = 1 which are licensed by Pr and buying a bet at t = 2 which is li-
censed by Pr’ such that the epistemic agent is guaranteed to have a net loss
at t ≥ 2 (for details see Vineberg 2016, sect.4.1). However, that there is a
guaranteed net loss at t ≥ 2 depends on the inductive assumption that the
bookie can buy back a bet at t = 2. So the argument validates an inductive
inference by help of another one.

To summarise, we have provided approaches to the problem of induc-
tion for each positive branch of epistemic justification: foundationalism,
coherentism, infinitism, and naturalised epistemology. We have seen that
the discussed approaches fail to account for the problem of induction, be-
cause they either leave the notion of epistemic justification underdeter-
mined such that neither induction nor anti-induction or both are charac-
terised as justified or not (as good or bad inductive inferences). Or, as in
the case of naturalised epistemology, they fail to account for the normative
element of the notion of justification. We have also seen that more modern
approaches as, e.g., Popper’s falsificationism, Carnap’s logical probabilism
as well as more relaxed forms of probabilism fall short of resolving the
problem. In the next section we provide a formal learning theoretical ar-
gument against the possibility of accounting for the problem of induction.
This is in support of the negative branch of epistemic justification, namely
scepticism. However, in the subsequent section we want to approach the
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problem of induction with a more positive spin by showing how a rede-
fined epistemic end allows for engineering achievable epistemic means.

5.3 The Impossibility of Humean Justification: Abso-

lute Learnability

Now, as we have argued in the preceding section, neither the traditional
nor the modern probabilistic approaches can account for Hume’s problem
(and sometimes also not aim at accounting for it). Hume’s problem con-
cerns the justification of induction. Its formulation in form of two horns,
namely that a deductive justification is logically impossible and an in-
ductive justification is circular, clearly presupposes a notion of justification
(J) which is non-trivial in the sense of being non-sceptical (EJ1) and non-
circular (EJ3). However, neither the foundationalist approach (vs. (EJ2) re-
stricted to induction) as well as the infinitist approach (vs. (EJ4) restricted
to induction) sketched in the preceding section can account for it. And
even if one allows for a circular coherentist notion of justification (vs. (EJ3)
restricted to induction) then, as we have seen above, these accounts also
fail. Now, one might wonder whether this failure is due to the specific
approaches we were discussing or whether it is generally impossible to
provide an answer to Hume’s task of justifying induction, i.e. there is no
fundamentalist, coherentist or infinitist approach which can account for it
and so only scepticism remains (vs. (EJ1) restricted to induction). As we
will see now, framing Hume’s problem of induction in terms of absolute
learnability in fact leads to scepticism. Note that scepticism regarding a
strict justification of induction is the common position in epistemology and
philosophy of science. So, the conclusion of our argument is in full agree-
ment with the epistemological canon. Note further that this does not imply
epistemic scepticism in general, since it is intended to show that only with
regards to induction strict epistemic justification fails. And furthermore, as
we show in the subsequent section, one might be an epistemic sceptic re-
garding one notion of justification (regarding one “ideal” epistemic end, ab-
solute learnability), but an epistemic non-sceptic regarding another notion
of justification (regarding a “realistic” epistemic end, relative learnability).

Here is how we think of Hume’s problem of induction in terms of meta-
induction and online learning:

Hume (1748/2007) Meta-Induction / Online Learn-
ing
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“When it is asked, What is the na-
ture of all our reasonings concern-
ing matter of fact? [. . . ] it may be
replied in one word, Experience.”
(p.23, 32)

Reasoning happens in online pre-
diction games and is based on
past outcomes and predictions,
i.e.: fl,t (“conclusion”) is based on
fi,<t and y<t (“experience”).

“It must certainly be allowed, that
nature has kept us at a great dis-
tance from all her secrets, and has
afforded us only the knowledge
of a few superficial qualities of
objects;” (pp.24f, 33f)

Y might be construed by �.

“As to past Experience, it can be
allowed to give direct and certain
information of those precise ob-
jects only, and that precise pe-
riod of time, which fell under its
cognizance: But why this experi-
ence should be extended to future
times, and to other objects[?]”
(pp.24f, 33f)

fi,<t and y<t are given, but �
is not given, i.e. it is not to be
expected that (e.g. inductive) fl,t
and yt match.

“There are no demonstrative ar-
guments in the case[. . . . ] It
implies no contradiction, that the
course of nature may change [. . .
and this] can never be proved
false by any demonstrative argu-
ment or abstract reasoning à pri-
ori.” (p.25, 35)

� might present to the learner
fi,<t and y<t such that (e.g. an in-
ductive) fl,t and yt fall apart.

Now, to show that inductive (or any other form of) reasoning or learn-
ing is possible in the strict sense can mean two things:

“We have said, that all arguments concerning existence are
founded on the relation of cause and effect; that our knowl-
edge of that relation is derived entirely from experience; and
that all our experimental conclusions proceed upon the suppo-
sition, that the future will be conformable to the past. To en-
deavour, therefore, the proof of this last supposition by proba-
ble arguments, or arguments regarding existence, must be evidently
going in a circle[.]” (see Hume 1748/2007, p.26, 35f, emphasis
by us)
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We understand ‘probable arguments’ as arguments showing that a conclu-
sion of an inference is more probable than its negation; and we understand
‘arguments regarding existence’ as arguments showing that the conclusion
of an inference is true. So, traditionally two ends allow for justifying an
inference/learning method: the first epistemic end: reaching a true con-
clusion from true premisses; the second epistemic end: reaching a more
probable conclusion from true premisses (in the sense that the conclusion
is at least more probable than its negation). Now, only deduction allows
for achieving both ends, given one’s premisses are true or probable: Given
some (true) experience, just by applying a deductive method one reaches
a true and probable conclusion. Hence, deduction is justified according to
these ends. Clearly, induction does neither allow for achieving the first, nor
the second end: It may lead from true or probable premisses to false or im-
probable conclusions. Anti-induction (as an inductive inference in the wide
sense) is in the same boat. The question is, can we discriminate better be-
tween non-deductive inferences/learning methods by stipulating different
ends. A natural weakening is the following one:

(EE1) reaching a true conclusion (the truth) from true premisses in the
long run

(EE2) reaching a more probable conclusion from true premisses in the
sense of reaching a true conclusion more often on average

Note that (EE1) allows for inferring wrong conclusions from true pre-
misses, but in the long run, i.e. at some point in the infinite series of pre-
dictions, the inference or learning method must succeed in making only
true predictions, i.e. having learned the truth, the true hypothesis. (EE2)
is weaker in the sense that it does not ask for predictions that are in fact
true, but for predictions which are on average more often true than false.
The question is, is induction a better means to achieve these ends than anti-
induction? As we argue now, the answer is negative. In order to keep
technicalities simple, we remain in the realm of online classification. With
a great deal of technicalities these results can be also expanded to the realm
of online regression.

Let us begin with (EE1): Is it possible to learn the truth in the long run?
In the online learning setting G with truth Y and prediction or hypothesis
set F, learning the truth in the long run is equivalent with absolute online
learnability, i.e. having a success rate of 1 in the long run (see section 3.3).
Now, according to theorem 3.23, in the case of online classification absolute
learnability is characterised by realisability of G and finiteness of Littlestone’s
dimension of F (Ldim(F)). So, the question is, can one share the sceptics
concern and still allow for realisability and finiteness? Now, the strongest
sceptic concern is that truth Y is simply defined as inversion of the learn-
ers prediction fl , i.e. the strategy � simply designs a prediction game G



Chapter 5. Induction and Hume’s Problem 165

such that yt = 1 − fl,t in the binary case or more generally yt �= fl,t in any
online classification case with a 0-1 loss; with a different loss function �
simply states yt such that it maximises the distance from fl,t according to
the loss function. Since there is no qualitative difference in our results re-
garding binary and k-ary classification games, we stick to the binary case
for the remainder of our discussion (in section 3.3 we have outlined how
the binary case can be generalised to any k-ary case). A non-sceptic can
only exclude this super sceptic case by putting forward the constraint of
realisability. There is a technical possibility for a learner to implement re-
alisability into any prediction game: For any unrealisable prediction game
G with the truth Y and the prediction or hypothesis set F a learner can
always consider a realisable prediction game G′ with Y and F′, where F′
is the set of all possible series of event outcomes. In this way, a learner
can implement realisability, but this is of course at the cost of an infinite
hypothesis set F′, and the question is whether one can still learn the truth
from such an infinitely large hypothesis set.

That F′ is infinite does not automatically imply that also Ldim(F′)
is infinite. Recall our example from section 3.3 where F was infinite
( f1, f2, . . . ), but each forecaster or hypothesis fi predicted 1 exactly once
namely: fi,t = 1 iff t = i. For this case Ldim(F) = 1. So, if this case is
also realisable, then a learner (e.g. the standard optimal algorithm) could
in principle learn the truth with one single mistake, although F is infinite.
The question is, whether a learner who tries to implement realisability can
do so by also keeping Ldim(F′) finite, although F′ is infinite. And for
quite obvious reasons the answer is: No: Recall from definition 3.17 that
Ldim(F′) is the maximal depth of a decision tree which is shattered by F′,
i.e. which is such that at each leaf of the tree with depth Ldim(F′) there
are two hypotheses from F′, one predicting 0 and one predicting 1. This
means that there is a guarantee for an adversary � to err a learner only
until Ldim(F′) rounds. Afterwards, there is no longer a guarantee that the
adversary can err the learner without having erred also all the hypotheses
in F′, which is excluded by the realisability assumption, i.e. the assump-
tion that at least one hypothesis of F′ is never erred. Now, since the pos-
sible event outcomes at a round t are 0 and 1, by definition the set of all
possible series of event outcomes F′ contains for t two hypotheses f1, f2
which match the truth up to round t − 1 and predict differently at round t:
f1,<t = f2,<t = yt, and 0 = f1,t �= f2,t = 1. Hence, for any t ∈ N: F′ shat-
ters a decision tree with depth t. And hence there is no maximal integer u
such that F′ shatters a decision tree with depth u. So, Ldim(F′) is infinite.
So, adding all possible series outcomes to the hypothesis set and by this
construct a realisable prediction game does not work.

Just to connect this discussion further to the traditional framing of the
problem: The main sceptical assumption which underlies our reasoning
is that an adversary can arbitrarily err a learner. In terms of the logic of
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deceivability outlined in chapter 3 this means that she can pick any events
in the series and put them together in form of a decision tree such that the
learner fl always errs, regardless of whether fl is inductive, anti-inductive
or whatsoever inference method. This free choice of events and putting
them together in any kind of series (in a way it is a possibility to mix up
past, present, and future) encodes, so we think, exactly Hume’s dictum that
all events are independent of each other, that there is no deductive relation
between the past, present, and future (see Hume 1748/2007):

• “As to past Experience [. . . ] why this experience should be extended
to future times, and to other objects, which for aught we know, may
be only in appearance similar;” (p.24, 33)

• “These two propositions are far from being the same, I have found that
such an object has always been attended with such an effect, and I foresee,
that other objects, which are, in appearance, similar, will be attended with
similar effects” (p.25, 34)

• “If there be any suspicion, that the course of nature may change, and
that the past may be no rule for the future, all experience becomes
useless, and can give rise to no inference or conclusion.” (p.27, 37)

• “It is impossible, therefore, that any arguments from experience can
prove this resemblance of the past to the future; since all these argu-
ments are founded on the supposition of that resemblance.” (p.27,
38)

• “Confess, that it is not reasoning which engages us to suppose the
past resembling the future, and to expect similar effects from causes,
which are, to appearance, similar.” (p.29, 39)

So, we conclude that given Hume’s condition that there is no deductive
relation between past, present, and future, inductively learning the truth is
impossible, even in the long run: There is no epistemic means to achieve
end (EE1).

Let us come to the second epistemic end, namely reaching a true con-
clusion from true premisses on average more often than a false one (EE2).
What does ‘on average’ mean here? It means that considering all possible
series of event outcomes up to some round t, taking as input the outcomes
up to round t − 1 as premisses, leads in more than 50% of the series to a
true prediction or conclusion about the outcome of round t. Now, by sim-
ple combinatorial considerations it follows that this is not possible. Again,
we can make our point by considering the binary classification case. To see
this, one just needs to note that of all possible series of event outcomes up
to round t, 50% are indistinguishable regarding the event outcomes up to
round t − 1 and differ with regards to round t in stating an outcome 0 or
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1. For this reason, whichever way an inference rule fl ends up with her
prediction about event Yt based on y1, . . . , yt−1, in 50% of all possible series
of event outcomes up to round t it will be wrong, i.e. fl,t �= yt. Note also
that fl will be right in 50% of the cases, so, averaging over all possible series
of event outcomes a learning method fl does not perform better or worse
than a random choice. Table 5.3 illustrates this fact.

t 1 2
1 0 0
2 1 0

}
50%

3 0 1
4 1 1

}
50%

t 1 2 3
1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0

⎫⎪⎪⎬
⎪⎪⎭ 50%

5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

⎫⎪⎪⎬
⎪⎪⎭ 50%

t 1 2 3 4
1 0 0 0 0
2 1 0 0 0
3 0 1 0 0
4 1 1 0 0
5 0 0 1 0
6 1 0 1 0
7 0 1 1 0
8 1 1 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

50%

9 0 0 0 1
10 1 0 0 1
11 0 1 0 1
12 1 1 0 1
13 0 0 1 1
14 1 0 1 1
15 0 1 1 1
16 1 1 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

50%

. . .

Table 5.3: Illustration of the impossibility of achieving (EE2) in the binary classi-
fication case; left: considering 2 rounds, there are 4 prediction methods possible
which take the true outcome of round 1 as premiss and have a prediction of the
outcome at round 2 as conclusion; each of them fails in 50% of the cases; consider-
ing 3,4,. . . rounds preserves this property of failing in 50% of the cases.

So, again we have to conclude that also for the (in the long run) weaker
epistemic end (EE2) there is no epistemic means to achieve it. Much more
general versions of this kind of impossibility result have been also called no
free lunch results or theorems, because these kinds of results state that without
any restriction of the set of possible series of event outcomes no learning al-
gorithm is better off than any other (the expression ‘no free lunch’ is due to
David Haussler (see Wolpert 1996, p.1343)). Since aiming at good perfor-
mance in averaging across all possible event series is sometimes also called
bias-free learning, these results are sometimes also described as an impossi-
bility of bias-free learning:

“The Futility of Bias-Free Learning[:] The above discussion
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illustrates a fundamental property of inductive inference: a
learner that makes no a priori assumptions regarding the identity of
the target concept has no rational basis for classifying any unseen in-
stances.” (see Mitchell 1997, p.42)

Such no free lunch theorems have been proven also for online regression
and more general cases (see Wolpert 1996; Wolpert and Macready 1997).
And already David H. Wolpert, who was the first to proof such a theo-
rem, linked his result to Hume’s problem by citing the central passage of
the Treatise (see Wolpert 1996, p.1341). Interpreting the no free lunch the-
orems as formal explication of Hume’s problem is on its way to become
philosophical and machine learning folklore (see the easy to follow and
nice linking of Hume’s problem of induction to no free lunch theorems in
Domingos 2015, chpt.3); also Schurz (2017, sect.9.1) prominently discusses
no free lunch theorems in the context of Hume’s problem.

Now, one way to resolve the problem is the restate (EE2) such that truth
is not the aim on average across all possibilities, but across a restricted sub-
set thereof. For practical considerations it might be reasonable to consider
not all possibilities but, e.g., only those that resemble past outcomes. How-
ever, from an epistemic stance this amounts to assuming already that some
principle of induction is justified. For this reason we are taking another line
in the next section by restating the learning target: The epistemic end we
aim at is not to achieve absolute learnability and also not absolute learn-
ability on average, but to achieve relative learnability.

5.4 The Meta-Inductive Approach: Relative Learn-

ability

In section 5.2 we have seen that traditional as well as common modern ap-
proaches to the problem of induction fail. By help of the learning theoreti-
cal arguments presented in section 5.3 the commonly acknowledged claim
that this failure is not inherently due to these approaches, but that Hume’s
problem of induction cannot be resolved in principle, was framed in the
setting of online learning: Putting forward the epistemic end for inferences
to achieve the truth in the long run or on average is an end impossible to
be achieved by any epistemic means (other than deduction). However, in
the spirit of epistemic engineering, impossibilities are no dead ends, but
points of departure. This is exactly what Reichenbach’s so-called pragmatic
justification or vindication of induction is about (see W. Salmon 1963). For
Reichenbach, Hume’s observation was boon and bane at the same time:

“It seems to me that after his brilliant criticism of induction, the
merits of which can not be overestimated, Hume ran the prob-
lem into a side track by his defense of inductive belief as a habit.
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[. . . ] I do not think [one] would ever have written a paper on
the habit of the syllogism. Although syllogistic inference is a
habit also, as well as inductive inference, nobody would men-
tion this fact within a logical analysis. Unfortunately, ever since
David Hume’s turning of the problem of the inference into the
problem of a habit logicians have shared his escape from logic
into psychology.” (see Reichenbach 1940, p.99)

Instead of turning to psychologism or naturalised epistemology, Reichen-
bach prominently suggested to stipulate a new epistemic end for justifying
induction:

“Hume demanded too much when he wanted for a justifica-
tion of the inductive inference a proof that its conclusion is true.
What his objections demonstrate is only that such a proof can-
not be given. We do not perform, however, an inductive infer-
ence with the pretension of obtaining a true statement. What we
obtain is a wager; and it is the best wager we can lay because it
corresponds to a procedure the applicability of which is the nec-
essary condition of the possibility of predictions. To fulfill the
conditions sufficient for the attainment of true predictions does
not lie in our power; let us be glad that we are able to fulfill at
least the conditions necessary for the realization of this intrinsic
aim of science.” (see Reichenbach 1938, pp.365f)

To make a prediction by help of a method which is truth preserving, which
achieves the truth in the long run, or perhaps also which achieves the truth
at least on average is sufficient for epistemic, i.e. predictive, success. How-
ever, is it also necessary? Herbert Feigl, who argued also in line with Re-
ichenbach, stated that our ordinary notion of justification allows also for
other ways of justifying:

“The word ’justification’ shares some of the ambiguities of the
word ’reason’ (as used in phrases like ’giving reasons’). As we
proceed we shall find it not only indispensable but also highly
clarifying to distinguish between justification in the sense of val-
idation and justification in the more usual sense of an argument
concerning means with respect to ends. The type of justification
which we wish to distinguish from validation may be called
’pragmatic’ or ’instrumental’ justification (justificatio actionis as
contrasted with justificatio cognitionis). [. . . ] We shall take the
terminological liberty of using the term ‘vindication’ as a short
expression for this second meaning.” (originally in Feigl 1950;
reprinted as Feigl 1981, pp.239f)
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So, the idea is to justify induction by showing that it is necessary for
predictive success, rather it being sufficient: If any non-deductive method
is predictive successful, then also induction is successful (this leaves it open
whether there are any successful non-deductive methods at all). Note that
this shift in the epistemic end represents a shift from absolute to relative
learnability: We no longer aim at absolutely learning the truth, i.e. learning
it in the long run or at least on average. Rather, we aim at learning the truth
at least as good as any other method might learn it, i.e. we aim at relative
learnability. Skyrms (2000, p.46) puts the idea as follows: “Our decisions
are a gamble and if no method is guaranteed to be successful, then it would
seem rational to bet on that method which will be successful, if any method
will.” He also provides a nice example illustrating the rationale behind
pragmatic justification (here is a slight modification): Suppose there is a
box with red, yellow, and green lights, and you are to bet on one of the
colours by your life. You know there are five states possible: no lights are
on, all lights are on, only the red light is on, the red and yellow lights are
on, or the red and green lights are on. Note, you have to bet on one of the
colours, so, if no light turns on, then you loose your life anyway. However,
whenever you are successful in your prediction (and saving your life), you
would have been also successful by predicting red. Hence, predicting red is
not sufficient for success, but necessary in the sense that whenever you are
successful with your prediction, you would have been also with predicting
red.

Here is Reichenbach’s argument for why induction in form of the so-
called straight rule (see the definition in section 5.2, p.158) is necessary for
epistemic success: In his very influential “Experience and Prediction. An
Analysis of the Foundations and the Structure of Knowledge” (1938) he argues
as follows:

1. “If we cannot realize the sufficient conditions of success, we shall at
least realize the necessary conditions. If we were able to show that
the inductive inference is a necessary condition of success, it would
be justified; such a proof would satisfy any demands which may be
raised about the justification of induction.” (p.348)

2. “Let us introduce the term ”predictable” for a world which is suffi-
ciently ordered to enable us to construct a series with a limit.” (p.350)

3. “The principle of induction [i.e. the straight rule which transfers the
observed frequency to the limit] has the quality of leading to the limit,
if there is a limit [i.e. if the world is predictable].” (p.353)

4. “But is it the only principle with such a property? There might be
other methods which also would indicate to us the value of the limit.
[. . . ] Imagine a clairvoyant who is able to foretell the value p of the
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limit in such an early stage of the series [where the straight rule still
fails];” (p.353)

5. “The indications of the clairvoyant can differ, if they are true, only in
the beginning of the series, from those given by the inductive princi-
ple. In the end there must be an asymptotical convergence between
the indications of the clairvoyant and those of the inductive princi-
ple.”

(p.354)

6. “If there is any method which leads to the limit of the frequency, the
inductive principle will do the same;” (p.355)

7. [Hence, asymptotical convergence or long run equality with the in-
ductive principle is a necessary condition for success in predictable
worlds.]

8. [Hence, the inductive principle is justified regarding predictable
worlds.]

Now, in principle Reichenbach’s solution to the problem of induction is
quite simple, but it seems to be also narrow: If the world is predictable
in the sense that for any distribution under investigation there is a limit-
ing frequency, then a method that is defined as approaching this frequency
in the limit (as, e.g., is guaranteed by the straight rule (see Howson 2000,
p.72; see also “direct inference” in Sprenger 2016, sect.3)), will “lead to the
limit”. It is clear that the whole analytical argument is based on the specific
interpretation of ‘a series is predictable’ as ‘there exists a limit of the series’
(see premise 2) and that by this the meaning of ‘induction’ is some kind of
“smuggled into” the meaning of ‘prediction’.

However, one might be predictive successful regarding a series of
events, although the series is not predictable in the sense of having a limit.
Reichenbach considered this case and concedes that one might object “by
the construction of a world in which there is no series having a limit. In
such a world, so our adversary might argue, there might be a clairvoyant
who knows every event of a series individually, who could foretell pre-
cisely what would happen from event to event—is not this “foreseeing the
future” without having a limit of a frequency at one’s disposal?” (Reichen-
bach 1938, p.358). So, if induction succeeds only in predictable worlds,
but a clairvoyant is epistemically successful also in non-predictable worlds,
how can induction be necessary for epistemic success? Reichenbach’s re-
sponse to this challenge is ingenious and simple at the same time: He ar-
gues that whenever there is a method which is successful in making predic-
tions, then at least the method’s success is predictable, which means that
one can make “an inductive inference as to the reliability of the prophet,



Chapter 5. Induction and Hume’s Problem 172

based on his successes” (Reichenbach 1938, p.359). So, the idea is that ei-
ther (i) the series under investigation is predictable in the sense of having a
limit or (ii) it is not predictable. If it is, then induction in form of the straight
rule predicts this limit and hence succeeds. If it is not, then either (ii.i) there
is no successful prediction method at all or (ii.ii) there is at least one such
prediction method. In case (ii.i) induction fails, similarly as one fails in pre-
dicting a colour of the box when no light at all is on. In case (ii.ii) the series
of success of the prediction method has a limit, hence induction in form of
the straight rule can be applied there (see the interpretation of Reichenbach
in Skyrms 2000, p.47). Hence, induction succeeds also in case (ii.ii). So,
whenever a prediction method succeeds (i.e. cases (i) and (ii.ii)), then also
the inductive method succeeds. This seems to vindicate induction.

However, there is the following problem with this justification (see
Skyrms 2000, pp.47f): Success in case (i) differs from that in case (ii.ii). In
case (i) the inductive method is successful in predicting the limit of the event
series. In case (ii.ii) the inductive method is shown to be successful only in
predicting the limit of the success series of another prediction method. Fur-
thermore, the other prediction method is successful in predicting the event
series. Hence, in order to argue for the inductive method as being necessary
for success—in the sense that if any method is successful regarding predic-
tions of the event series, then also the inductive method would be successful
regarding predictions of the event series—, one needs to show that the in-
ductive method will be also successful in predicting the event series. So,
what Reichenbach’s argument shows for case (ii.ii) is that if any method
is successful in predicting events, then induction is successful in predict-
ing success. What is missing is to show that also in case (ii.ii) it holds: If
any method is successful in predicting events, then induction is also suc-
cessful in predicting events. As it turns out, the learning theory outlined in
chapter 3 allows for adding this missing link between being successful in
predicting success to being relatively successful in predicting events.

Exactly this programme was taken up and carried out by Schurz. In
Schurz (2008b) the problem of induction is tackled based on own results
and results which were ingeniously transferred from online learning the-
ory to the philosophical debate. The idea is as follows: In the line of Re-
ichenbach’s argument, an inductive method is applied to the success rates
of prediction methods (meta-induction). Then, exceeding Reichenbach’s
argument, a prediction about the events is made by taking into account
the prediction methods’ forecasts based on inductively inferred predictive
success. Finally, it is shown that such a meta-prediction method allows
for relative learnability. Hence, if any prediction method is successful in
predicting events, then also this meta-inductive prediction method will be
successful in predicting events. So, this form of meta-induction is necessary
for epistemic success regarding the prediction of events in the sense that
if any prediction method is successful in predicting events, then also the
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meta-inductive method will be.
Here are the details: Let G be a regression game with the truth Y and the

prediction methods F (for classification games the same argument holds
with respect to different forms of success as outlined in chapter 4). Then
we can define, in the line of argumentation suggested by Reichenbach, an
inductive learning method on the series of success rates of fi ∈ F simply
by applying the straight rule to this series. For each fi we define a success
learner flsi as follows:

flsi ,t = succ i,t−1

Intended is the interpretation of flsi ,t as the relative success learner’s pre-
diction of the relative success rate of fi at t, and as the definition shows,
this prediction simply consists in transferring the past relative success rate
(t − 1) to the future (t). Clearly, if fi is predictively successful to some de-
gree r, i.e. if limt→∞ succ i,t = r, then the success learner flsi will learn and
predict this: limt→∞ flsi ,t = r. Hence, flsi will be successful in predicting
success. So much for Reichenbach’s argument.

Now, we go on with the extension of Schurz (2008b, sect.7), showing
that based on this inductive inference we can define a method which al-
lows also for being successful in predicting the events of G. We can do
so by defining the attractivity or relative success based weighting meta-
inductive method fami as defined in definition 3.39. Recall that fami,t is a
weighted average of the prediction on Yt of fi ∈ F, where the weights
wi,t are normalised attractivities, i.e. relative successes (more specifically:
attractivities):

fami,t = ∑
fi∈F

wi,t · fi,t

Now, the attractivity based forecasting method fami is a meta-method, inas-
much as it is defined on the basis of the predictions of other methods. It
is an inductive method, inasmuch as it infers the weights for the future
prediction fami,t from past relative success:

wi,1 =
1
n

wi,t =

⎧⎪⎨
⎪⎩

max(0, flsi ,t−succ ami,t−1)
n
∑

j=1
max(0, flsi ,t−succ ami,t−1)

if the denominator > 0

1
n otherwise

Given our interpretation of the success learner flsi from above we can now
interpret the weights as fami’s prediction about the normalised attractivi-
ties, i.e. relative success rates, of the prediction methods in F. So we can
say that at each round where no information about the attractivities is avail-
able as, e.g., in round 1, fami applies a principle of indifference in her pre-
diction of the value wi,t. And at all the other rounds fami applies indirectly
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the straight rule via setting flsi ,t = succ i,t−1. Figures 5.3 and 5.4 provide an
example for fami’s success dependent choice of such a prediction.
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Figure 5.3: Simulation-setting: F =
{ f1, f2}; since f1 and f2 are at the beginning
equally near to the truth, fami weights them
equally. From day 23 on f1’s prediction is
more accurate than that of f2. Nevertheless
it takes fami three more days until it weights
f1’s prediction higher than that of f2, be-
cause until this time both competitors had
lower success rates than fami.
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Figure 5.4: Simulation-setting: F =
{ f1, f2, f3}; at day 20 fami starts with the av-
erage of its competitor’s prediction. Since
from the beginning on only f3’s success rate
is equal to or better than that of the meta-
inductive method, fami sticks also at the fol-
lowing days to the correct prediction.

(In both figures y are the stock points of AAPL Apple Inc., NasdaqGS (November 2012). f1
and f2 are feigned trend lines of the stock, using only preceding chart information of
http://www.nasdaq.com/symbol/aapl/. Simulation was performed with scripts of the
language PERL.

Now, from theorem 3.40 we know that fami is a no regret learning al-
gorithm, since the regret is aregret 〈ami,i〉,t ≤ √

n · t for any fi ∈ F, and

hence the per round regret ≤ √
n · t)/t vanishes in the limit. So, when-

ever there is an fi which is predictively successful to some degree r, i.e. if
limt→∞ succ i,t = r, then also fami will be successful at least to degree r:

lim
t→∞

succ ami,t ≥ r

This adds the missing link to Reichenbach’s vindication of induction:
Whenever there is a method which is in the long run to some degree suc-
cessful in predicting events, then meta-induction is also in the long run at
least to the same degree successful in predicting these events. So, meta-
induction allows for relative learnability of F. In this sense, meta-induction
is also necessary for predictive success regarding events.

So, we see that if we put forward the epistemic aim of relative learn-
ability, then meta-induction is an epistemic means to achieve this end. But
what about object-induction? Can one also show that object-induction in
the sense of enumerative induction or the straight rule applied to series
of events directly (instead of success rates) is justified? Yes, one can, but
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in a much weaker sense. The “Reichenbach-Schurz” approach to Hume’s
problem of object-induction is twofold. Roughly it is as follows (see Schurz
2008b, p.282): First, it is argued by deductive means as above that meta-
induction allows for relative learnability of F. Hence, predicting in accor-
dance with meta-induction will be long run optimal. Second, taken for
granted the past success of classical inductive methods—something that
is, e.g., also not scrutinised by Hume himself (see Howson 2000, p.4)—
it follows that also selecting these methods for predictions of unobserved
data and events allows for optimal predictive success. This justification
of object-induction is weaker than that of meta-induction, inasmuch meta-
induction is an epistemic means that definitely leads to the epistemic end
of relative learnability. However, object-induction is such a means only if
its success rate in fact outperforms that of all alternatives, and this is a fact
which might change (for this reason Schurz 2008b, p.304, speaks of an ‘a
posteriori’ justification of induction). So, the meta-inductive solution to the
problem of epistemically justify (J) induction is not an absolute, but a time-
dependent one; sloppily: Up to now object-inductive methods proved to be
successful and hence by meta-induction we are justified in applying them;
however, caution, this might change at some point in time!

To sum up this chapter, we saw that Hume’s problem of induction in
the sense of proving absolute learnability by help of induction cannot be
resolved for principal reasons. From an epistemic engineer’s stance one
therefore has to redefine the epistemic goal in question. We have seen that
Reichenbach provided a reasonable redefinition in form of a vindication of
induction meaning that inductive methods allow for relative learnability
in the sense of being optimal in the long run. However, in Reichenbach’s
original approach an important link was missing, namely a proof that suc-
cessful induction over success rates can be also cashed out for successful in-
duction over events. We have seen that Schurz’ approach allows for adding
this missing link and that by this induction can be justified in the sense of
allowing for relative learnability.

If we were concerned with Hume only, this would be a nice point to
stop. However, in the twentieth century a new problem of induction was
put forward, namely Nelson Goodman’s so-called new riddle of induction,
which puts forward a problem for the justification of induction from a new
angle. In the next chapter we investigate this problem, its impact to the
“Reichenbach-Schurz” approach to induction and how it might be over-
come.



Chapter 6

Induction and Goodman’s New
Riddle

This chapter discusses Goodman’s new riddle of induction and shows that it is a
problem also for meta-induction. Afterwards, underlying assumptions are curved out and
further investigated. Finally, it is argued that these assumptions are incoherent for which
reason the new riddle of induction looses its anti-inductive force.

In the preceding chapter we have argued that once one modifies the task
of epistemically justifying induction from proving its ability of absolute
learnability to proving its ability of relative learnability, one can account
for the problem of induction: By help of meta-induction over success rates
of object methods one can learn the best methods and achieve long run
optimality in general. We argued that in a second step one can justify
object-induction by using meta-induction and selecting object-induction in
accordance with its past success. In particular, we can justify enumerative
induction by help of its past success.

However, as Goodman has shown already as early as 1946, Hume’s
problem of induction is accompanied by a new problem, the so-called new
riddle of induction. According to the new riddle, one might be able to resolve
somehow Hume’s problem of induction by, e.g., restating the epistemic end
of justification and in this way provide a justification for enumerative in-
duction. However, by equivalent rephrasing the induction basis one can use
the justified inference method in order to also justify anti-induction (see
Goodman 1946, 1955/1983, chpt.3). So, Goodman’s new riddle tightens
Hume’s problem: Whichever solution you come up with in order to justify
induction, the same solution allows also for justifying anti-induction. As
long as this problem remains unresolved, any proposal to the problem of
induction allows for justifying contradicting conclusions.

In this chapter we tackle Goodman’s new riddle. First, we present the
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new riddle in section 6.1. Afterwards, in section 6.2, we aggravate the prob-
lem for the approach to induction by help of meta-induction in showing
that the same problem shows up on the meta-level too and seems to allow
for justifying meta-anti-induction. In section 6.3 we carve out the underly-
ing assumptions and general constraints of this problem, namely the prob-
lem of language dependency and constraints of language independency.
Finally, in section 6.4 we provide a new solution to the problem of lan-
guage dependency and show how this solution provides an answer also to
Goodman’s new riddle.

6.1 The New Riddle of Induction

Let us briefly recap the meta-inductive justification of induction and why
meta-induction seems to rule out such a justification for anti-induction. For
illustrative purposes we will concentrate on enumerative induction and
anti-induction. In section 5.2 we described enumerative induction |∼ via
the schema:

Pa1, . . . , Pan−1|∼ Pan

And enumerative anti-induction ||∼ via the schema:

Pa1, . . . , Pan−1||∼ ¬Pan

If we consider the problem of justifying induction in comparison to anti-
induction, we can do so by help of a prediction game G with basically two
prediction methods in F: f1 which predicts in accordance with |∼ and f2
which predicts in accordance with ||∼. Now, assume that the event Y of
interest is about the colour of emeralds (let us assume that an emerald is
not by definition green), and that the colour space to be predicted is bi-
nary ({0, 1}): green (P) vs. blue (¬P). The observational basis, which is the
available past experience or event outcomes, grows with each round and
let us assume it is as follows: From round 2 with {Pa1} to round 3 with
{Pa1, Pa2} to . . . to round n with {Pa1, . . . , Pan−1}. Now, given this series,
clearly at each round up to n induction f1 succeeded and by this gained
full success, whereas anti-induction f2 failed at each round up to n and
by this gained zero success. The past success of f1 over that of f2 makes
f1 fully attractive to the meta-inductive learner fami. Since fami is guaran-
teed to be long run optimal (i.e. allows for relative learnability), and fami
fully weights f1’s predictions, f1 is justified given its past success. f2 lacks
such a justification, because fami ignores f2’s predictions. So, according to
meta-induction’s optimality ( fami) and object-induction’s past success ( f1)
as well as object-anti-induction’s past failure ( f2), induction is justified over
anti-induction.

Now, Goodman (1946) presented a method which allows for turning
such a justification of induction to a justification of anti-induction. We
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can illustrate the method as follows (see Goodman 1955/1983, chpt.3; see
also the discussion in Cohnitz and Rossberg 2006, chpt.2; and Thorn 2018,
sect.1): We described the prediction problem with the basic expressions
‘green’ (P) and ‘blue’ (¬P). However, we might also describe the predic-
tion problem with the basic expressions ‘grue’ (Q) and ‘bleen’ (¬Q), where
‘grue’ is defined as ‘green until some round n − 1 and blue starting with n’,
and ‘bleen’ is defined as ‘blue until the same round n− 1 and green starting
with n’:

Qx ⇔d f (Px ↔ (x = a1 ∨ · · · ∨ x = an−1))

Note that given these expressions, the observational basis from before re-
mains structurally unchanged: {Qa1, . . . , Qan−1}. Now, the above defini-
tion of ‘grue’ (Q) by help of ‘green’ (P) is logically equivalent with the fol-
lowing definition of ‘green’ by help of ‘grue’:

Px ⇔d f (Qx ↔ (x = a1 ∨ · · · ∨ x = an−1))

So, if we translate the predictions of f1 and f2 into ‘grue’/‘bleen’ state-
ments, then this amounts to f1 predicting ¬Qan (the next emerald will be
not grue, i.e. bleen) and f2 predicting Qan (the next emerald will be grue).
If we consider induction applied on ‘green’/‘blue’ statements as justified,
and if we allow for definitional transformations among justified inferences
(i.e. justification is invariant under definitional transformations), then we
need to consider also f1’s prediction as justified. However, note that f1’s
conclusion is ¬Qan, although the observational basis is {Qa1, . . . , Qan−1}.
Hence, f1’s prediction is an anti-inductive inference. More generally: If
justification (J) is preserved among definitional transformations, then any
justification of induction can be transformed also to a justification of anti-
induction. Table 6.1 illustrates this schema.

Pa1, Pa2, · · · , Pan−1 |∼ Pan J

⇔
d

f

⇔
d

f

⇔
d

f

⇔
d

f

⇒

Qa1, Qa2, · · · , Qan−1 ||∼ ¬Qan J

Table 6.1: Schema of Goodmanian justification (J) of anti-induction ||∼ by help of a
justification for induction |∼: If inductive inferences are justified and justification is
invariant under definitional transformations, then also an anti-inductive inference
can be justified by switching the language (from P-expressions to Q-expressions).

Note further, that the situation seems to be even worse: By apply-
ing the same method twice one can show that any justification of induc-
tion allows for justifying contradicting statements. To see this, take the
example from above and note that we have {Pa1, . . . , Pan−1}, hence also
{Qa1, . . . , Qan−1}. Now, by applying induction on both observation bases
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we justifiably end up with Pan and Qan. By the definition above we can
transform Qan to ¬Pan. So, under the assumption that justification is
invariant under definitional transformation, we get also justification for
¬Pan. Hence, both, Pan as well as ¬Pan are justified by help of induction
and definitional transformation.

So, not only the versions of infinitism and coherentism we presented
in section 5.2 were prone to provide a justification for anti-induction in the
same way they provide a justification of induction. Rather, as Goodman’s
argument shows, any approach of justifying induction seems to be prone
to this problem: Every justification of induction can be turned to a justifica-
tion of anti-induction. However, note that the meta-inductive justification
of object-induction is not a justification per se, i.e. an unconditional justifi-
cation, but a justification conditional on the object-inductive method’s past
success. And so in order for Goodman’s problem to show up for the meta-
inductive justification of object-induction, object-anti-induction needs to be
also shown to be predictively successful before it can be considered as con-
ditionally justified—conditional on its past success. As one can see from
the example above, this is not automatically guaranteed: If we consider the
cumulative success of the methods and their definitional translated pen-
dants, then one can see that the inductive method f1 is successful, whereas
the anti-inductive method f2 fails to be successful. In order to express this
fact exactly we would need to modify these methods in order to cover also
mixed cases where the premise set contains not only either positive or neg-
ative instances, but also a mixture of both of them. However, if we consider
large enough observational bases and allow for neglecting a marginal num-
ber of counterexamples, then we can illustrate this fact as schematically
expressed in table 6.2: What at round n appears as a P-anti-inductive defi-
nitional transformation of P-induction is, considering large enough obser-
vational bases approximative Q-induction. And likewise: What at round
n appears as a Q-inductive definitional transformation of P-anti-induction
is under the same assumption approximative Q-anti-induction. Hence: In
the long run induction is predictively successful (under both descriptions:
P as well as Q statements) and anti-induction is predictively unsuccessful
(also under both descriptions). So, we can conclude that, at least regarding
the example provided by Goodman, meta-induction still justifies object-
induction and not object-anti-induction, since its justification is conditional
on past success and in the long run object-induction is successful whereas
object-anti-induction fails.

So, does meta-induction provide not only a solution to Hume’s old prob-
lem of induction, but also to Goodman’s new riddle? As we will show in
the next section, this is not the case: Goodman’s new riddle shows up also
for the meta-inductive solution to the problem of induction.
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P-induction P-anti-induction
∑ s1 ∑ s2

1 Pa1 |∼ Pa2 Pa1 |∼ ¬Pa2 0
2 Pa1, Pa2 |∼ Pa3 Pa1, Pa2 |∼ ¬Pa3 0
...

...
...

...
n Pa1, . . . , Pan−1 |∼ Pan Pa1, . . . , Pan−1 |∼ ¬Pan 0
...

...
...

...

Q-induction (approximative) Q-anti-induction (approximative)
∑ s1 ∑ s2

1 Qa1 |∼ Qa2 Qa1 |∼ ¬Qa2 0
2 Qa1, Qa2 |∼ Qa3 Qa1, Qa2 |∼ ¬Qa3 0
...

...
...

...
n Qa1, . . . , Qan−1 |∼ ¬Qan Qa1, . . . , Qan−1 |∼ Qan 0

n + 1 Qa1, . . . , Qan−1,¬Qan |∼ ¬Qan+1 Qa1, . . . , Qan−1,¬Qan |∼ Qan+1 0
...

...
...

...
n + m . . . ,¬Qan, . . . ,¬Qan+m−1 |∼ ¬Qan+m . . . ,¬Qan, . . . ,¬Qan+m−1 |∼ Qan+m 0

...
...

...
...

Table 6.2: Meta-inductive solution to Hume’s problem with a solution to Good-
man’s riddle as a byproduct? Upper left part: P-induction on the basis of P state-
ments. Lower left part: definitional transformations of these predictions. Upper
right part: P-anti-induction on the basis of P statements. Lower right part: defi-
nitional transformations of these predictions. Given a fixed switching point n for
the definition of ‘grue’ (Q) by help of ‘green before n’ (P) and ‘blue at and af-
ter n’ (¬P), a definitional transformation of P-induction turns out to approximate
(m % n) also Q-induction, whereas such a transformation of P-anti-induction
approximates also Q-anti-induction. Note that induction is successful (cumula-
tive success on the left side), whereas anti-induction fails to be successful (cu-
mulative success on the right side). This is the reason why in this example the
meta-inductive justification of induction cannot be used as a justification of anti-
induction.

6.2 The New Riddle of Meta-Induction

Recall, Goodman’s recipe for cooking up a justification for anti-induction
given a justification for induction consists in finding a definitional trans-
lation which transforms an inductive inference in an anti-inductive one.
We have seen in the example of the preceding section that a transforma-
tion of ‘green’/‘blue’ statements to ‘grue’/‘bleen’ statements served this
purpose. Under the assumption that justification is preserved under such
definitional transformations, also anti-induction becomes justified.

In the meta-inductive justification of induction a straightforward ap-
plication of Goodman’s translations failed, since for any switching point
and high enough round numbers a ‘green’/‘blue’-inductive inference is
transformed to an (approximate) ‘grue’/‘bleen’-inductive inference and
analogously for the anti-inductive inference. For this reason the predic-
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tive success of the ‘green’/‘blue’-inductive inferences also centres around
‘grue’/‘bleen’-induction and hence also in the ‘grue’/‘bleen’ setting induc-
tion is justified by the meta-inductive algorithm. However, there are other
definitional transformations which allow for justifying anti-induction. One
possibility is discussed, e.g., in (Schurz 2019, sect.9.2.5) where so-called
Goodman methods are introduced which work with more than one switch-
ing point (in principle there can be arbitrarily many switching points). We
aim at a simpler definitional transformation which allows not only for jus-
tifying object-anti-induction, but also meta-anti-induction by help of meta-
induction.

The idea is as follows: In order to justify object-anti-induction we first
justify meta-anti-induction by help of meta-induction, and then object-anti-
induction by help of meta-anti-induction. In order to justify meta-anti-
induction we are not after definitional transformations of event predictions.
Rather we are after definitional transformations of success itself. It turns
out that there is a very simple definitional transformation, namely that of
success to loss and vice versa. We do not want to mess up our established
terminology and since we aim at inverting the success by help of defini-
tional transformation, we will speak of ‘score’ s in the non-Goodman case
and of ‘erocs’ sin the Goodman case. Now, the definitional translations are
as follows: We define ‘erocs’ by help of ‘score’ via:

si,t =d f 1 − si,t

And we can define ‘score’ by help of ‘erocs’ (arithmetically) equivalently
as:

si,t =d f 1 − si,t
Hence, s and sare interdefinable. Note also that by definition 2.9 of the
score: si,t = 1 − �i,t, so we get: si,t = �i,t. We also want to define the
Goodmanian version of loss which we call ‘ssol’ �:

�i,t =d f 1 − si,t

Hence, �i,t = si,t. So, also � and �are interdefinable. We now can justify
meta-anti-induction by help of the justification of meta-induction in accor-
dance with the schema in table 6.3.

For simplicity reasons, let us consider the exponential weighting meta-
inductive prediction method femi as discussed in section 3.4. It allows for
relative learnability (theorem 3.37), and hence is access optimal. Hence it
is also epistemically justified. Now, according to definition 3.34, femi pre-
dicts according to a weighted average of the predictions of the object-level
methods:

femi,t =
n
∑
i=1

wi,t · fi,t
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s ⇒ fmi ⇒ optimality ⇒ J

⇔
d

f

⇔
d

f

⇒
� ⇒ fm i J

Table 6.3: Schema of justifying meta-anti-induction fm iby help of meta-induction
fmi: Taking ordinary scores s as input, meta-inductive weighting is optimal and
hence justified. Now, ordinary scores can be definitionally transformed to Good-
manian versions of loss (ssol), �. The Goodmanian version of meta-induction fmi,
namely meta-anti-induction fm iuses ssol as input. Since meta-induction and meta-
anti-induction are definitionally intertranslatable, and since the former is justified,
also the latter seems to be justified.

The weight for an object-level predictor fi at round t results from normal-
ising the exponential of the negative cumulative loss with some learning
parameter η: wi,t = N(exp(−η · ∑t−1

u=1 �i,u)). Since si,u = 1 − �i,u, we get
wi,t = N(exp(−η · (t − ∑t−1

u=1 si,u))) = N(exp(−η · t) · exp(∑t−1
u=1 si,u)

η).
So, the weights of the exponential weighting meta-inductive prediction
method femi are proportional to N(exp(∑t−1

u=1 si,u)
η):

wi,t ∝ N

(
exp

(
t−1

∑
u=1

si,u

)η)

N is a normalising operation and η is a learning parameter we can get rid
of by a doubling trick—for details see section 3.4. One can see that femi is a
meta-inductive prediction method in the sense that its prediction is based
on induction over cumulative success or scores: The weight for the predic-
tion at round t depends on the cumulative success or score up to round
t − 1.

Now, we can define also a meta-anti-inductive method which bases her
prediction not on induction over cumulative success or scores, but anti-
induction over such success or scores. So, it weights the forecasters which
scored most in past lowest and those which scored least in past highest.
Note that this is equivalent to weighting the forecasters with highest cu-
mulative loss in the past highest, and forecasters with lowest cumulative
loss lowest. E.g., the anti-meta-inductive exponentially weighting predic-
tion method fem i can be defined analogously to femi simply via replacing �
by s in definition 3.34. Its weights are then proportional to the cumulative
loss in the exponent:

wi,t ∝ N

(
exp

(
t−1

∑
u=1

�i,u

)η)
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At this point we have all ingredients for cooking up a justification for meta-
anti-induction:

1. Meta-induction femi is justified (J) by its optimality (theorem 3.37).

2. Recall, by definition of the Goodmanian version of loss, ssol �, we
know that si,t = �i,t.

3. Hence, the Goodmanian definitional translation of femi is a meta-anti-
inductivist fem i.

4. Justification J is preserved among definitional transformations.

5. Hence, also meta-anti-induction fem i is justified.

By help of the conclusion of this argument (5) we can justify also object-
anti-induction without any need of finding suitable definitional transfor-
mations for object-level predictions in the setting of prediction games. We
can simply argue analogously to the “Reichenbach-Schurz” approach to
Hume’s problem of object-induction by help of meta-induction in a twofold
way: First, we showed already that meta-anti-induction is justified. Sec-
ond, taken for granted the past failure of object-anti-inductive methods,
the meta-anti-inductive choice of object-anti-induction transmits its justifi-
cation also to the object-anti-inductive method. Again, this justification of
object-anti-induction is weaker than that of meta-anti-induction, inasmuch
as meta-anti-induction is justified unconditional its current performance,
whereas object-anti-induction is justified only as long as its success rate is
in fact outperformed by all of its alternatives. Again, this fact might change.

So, we have seen that Goodman’s recipe allows also for justifying meta-
anti-induction as well as object-anti-induction. This seems to be a quite
dissatisfying result for meta-induction as well as object-induction. And in-
deed, there seems to be little which can be done about it: Considering the
argument from above one can see that premise 1 is the main result of sec-
tion 5.4 which depends on deductive proofs, premisses 2 and 3 are about
definitional translations as introduced in this section, and hence there is not
much space left to escape the justificatory inflationism. However, premise 4
is a general constraint on justification J which needs to be further explored.
As we will show in the subsequent section, this constraint can be gener-
alised and has even more devastating consequences. However, in the final
section of this chapter we will provide an argument which is intended to
show that this constraint is incoherent. Hence, justification of meta-anti-
induction Goodman style fails due to the falsity or inadequacy of premise
4: Justification needs not be invariant under definitional transformations.
Note that Schurz (2019, sect.4.2) argues also against premise 4 by stressing
the fact that in order to distinguish between induction and anti-induction
we need to presuppose fixed qualitative basic expressions.
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6.3 The New Riddle Generalised: Language Depen-

dency

It is well-known in philosophy of science that some very important no-
tions like the notion of justification (J) confirmation (con f ), verisimilitude,
simplicity etc. are often explicated in a way that makes the application
of the notions to theories dependent on the language the theories are for-
mulated in. This phenomenon was recently also observed in many other
areas of philosophy and the sciences and so quite a lot of literature on this
topic arose (for an introductory overview see, e.g., Miller 2006, chpt.11; and
Schurz 2013, sect.5.11.3; see also Niiniluoto 1998, sect.6; Oddie 2013; Schurz
and Weingartner 2010, sect.6).

In this section we intend to generalise the problem of justifying anti-
induction by help of definitional transformations. Such transformations
show, that the aforementioned notions depend on the language one defines
them in or applies them to. For this purpose we provide an exact charac-
terisation of the problem of language dependence in the following. In a
nutshell a theory is called ‘language dependent’, if its main notions apply
to synonymous theories differently. So, e.g., if these notions are applied in
theory evaluation, an alleged underdog can quite often beat her opponent
just by switching the language, which sounds at least strange and in case
that the notions are widely accepted also paradox.

Now, let us begin with explicating the devastating constraint underly-
ing the justification of anti-induction, namely the constraint that justifica-
tion J needs to be invariant under definitional translations or language in-
dependent (recall premise 4 of the main argument in the preceding section).
Suppose you have some competence in written Bulgarian and so you might
know that ‘Vizh, ima zaek!’ is an adequate latinised Bulgarian translation
of the English sentence ‘Look, there is a rabbit!’. Suppose furthermore that
indeed there is a rabbit in front of you and you advice a Bulgarian to look
there by exclaiming ‘Vizh, ima zaek!’. Since you are supposed to be compe-
tent in written and not spoken and gesticulated Bulgarian only, you might
be surprised if she shakes her head instead of nodding. But by asking or
testing her reaction on other unambiguous and obvious truths or falsities
you will pretty soon figure out that the Bulgarian gestures for affirmation
and negation are inverse to, e.g., the English ones. So you may learn that in
general she will shake her head when you will nod yours and vice versa.
This means that you can figure out a rule for intertranslating between her
and your gesticulating behaviour and so both are in some way or another
synonymous.

As there is nothing essential in the Bulgarians’ way of affirming and
negating and—believe it or not—also not in the Englander’s, it makes no
sense to prefer one convention against the other except for pragmatic rea-
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sons as, e.g., the fruitfulness of a convention. What holds for simple ges-
tures of natural language holds the more for theories formulated in con-
ventional artificial languages and so one should not bother too much about
different choices of the primitive vocabulary of two different theories about
one and the same domain if there are some rules for intertranslating the vo-
cabulary and theorems of the theories. So, e.g., up to conventional and
pragmatic reasons it does not matter whether one chooses the Sheffer-
stroke | instead of the usual connectives ¬, &,∨,→,↔ (logics) or whether
one chooses as primitive a conditional (Pr2) instead of an absolute prob-
ability function Pr1 (philosophy of science), a modality for obligation O

instead of permission P (ethics), or overlapping ◦ instead of parthood '
(metaphysics). Needless to say, you should also not be bothered about do-
ing amateur mineralogy on emeralds in a ‘grue’/‘bleen’ language instead
of a ‘green’/‘blue’ language.

Bearing this in mind it is widely accepted that if one is not interested
especially in language properties like the length or complexity of formu-
las and also not in pragmatic properties like being easier memorisable or
shorter in derivation length, then one should put intertranslatable or syn-
onymous theories on a par. In philosophy of science, e.g., this maxim is well
known as the constraint for theories to be translationally invariant or lan-
guage independent (for a general discussion see, e.g., Miller 2006, chpt.11).

Let us make this constraint clear by clarifying first the notion of ‘inter-
translatability’ or ‘synonymy’: Technically seen the most favourable way
of translating expressions and statements is to translate them by explicit
definitions. What is true on the level of single expressions and statements
holds also on the level of theories, and so we will say—in accordance with
a common proposal (see, e.g., Bouvère 1978; and Kanger 1968)—that two
theories Φ and Ψ are intertranslatable or synonymous iff they have a com-
mon definitional extension, i.e. there are definitions for all expressions of
the one in terms of the other such that the expansions of the theories by the
definitions are logically equivalent. More precisely:

Definition 6.1. If the descriptive vocabulary of Φ and Ψ is disjoint, then Φ
and Ψ are synonymous iff there is a theory X and there are sets DΦ, DΨ

such that

1. DΨ contains exactly one definition for each descriptive symbol in Ψ
in terms of descriptive symbols of Φ only, and

2. DΦ contains exactly one definition for each descriptive symbol in Φ
in terms of descriptive symbols of Ψ only, and

3. X �( Φ ∪DΨ as well as X �( Ψ ∪DΦ

(which is to say that: Φ ∪DΨ �( Ψ ∪DΦ (and sometimes DΦ �(
DΨ)).
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There is a quite straightforward way to expand the concept of syn-
onymous theories to the concept of synonymous logics (see Pelletier and
Urquhart 2003, pp.265ff), but since our argument is only about the con-
straint to treat synonymous theories on a par and not synonymous logics
(the latter is almost automatically satisfied by all considered theories), we
will not take into account such an expansion.

Note that the condition of a disjoint descriptive vocabulary is not nec-
essary, but convenient here. In order to compare two theories one needs,
at least in some cases, to separate the vocabulary. Take our example of the
English and Bulgarian affirmation and negation: Assume that in both lan-
guages it holds that affirmation and negation are exclusive. By just defining
(English) affirmation with the help of (Bulgarian) negation and vice versa
without distinguishing the vocabulary one would end up with a contradic-
tion. So one has to separate English affirmation and negation from Bulgar-
ian one. Something similar holds, e.g., for a translation of a description of
set theory using ⊂ for being a (proper or improper) subset with a descrip-
tion of set theory using the same sign (⊂) for being a proper subset. For a
technically more favourable way of guaranteeing the disjointedness of the
descriptive vocabulary without conditionalising the definition of synonymy
see (Kanger 1968, pp.2f).

The second part of our clarification concerns the notion of ‘language
dependence’: We will say that a property or relation Rn or an operation f n

respectively of a theory Φ is language dependent iff it does not hold equally
of or operates differently among synonymous theories. More precisely:

Definition 6.2. An n-ary relation Rn or operation f n of a theory Φ is lan-
guage dependent iff there are Φ1, . . . , Φn and Ψ1, . . . , Ψn such that

1. Φ1, Ψ1 and . . . and Φn, Ψn are synonymous (whereby it is assumed
that there is an overall definitional extension), and

2. Φ � Rn(Φ1, . . . , Φn) and Φ � ¬Rn(Ψ1, . . . , Ψn)
or Φ � f n(Φ1, . . . , Φn) �= f n(Ψ1, . . . , Ψn)

Note that the extra constraint in condition 1 of this definition, namely
that there must be an overall definitional extension, is necessary in order
to have it that, e.g., the classical logical consequence relation is language
independent. E.g., it holds in classical logic that {ϕ1&ψ1} � {ϕ1}, whereas
{ϕ2} �� {ψ2}. If the relata of the relation or operation were to be compared
separately only, then one could provide definitions for ϕ2 in terms of ϕ1
and ψ1, e.g. ϕ2 ↔ (ϕ1 & ψ1), and vice versa, e.g. ϕ1 ↔ ϕ2, ψ1 ↔ ϕ2 such
that {ϕ1 & ψ1} is synonymous to {ϕ2}, and one could also provide sepa-
rately a definition for ψ2 in terms of ϕ1, e.g. ψ2 ↔ ϕ1, and vice versa, e.g.
ϕ1 ↔ ψ2 such that {ϕ1} is synonymous to {ψ2}. But then the logical con-
sequence relation would be language dependent. The problem hinges here
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of course on the multiple definition of ϕ1 and is avoided by demanding an
overall definitional extension of all terms in the relata of the first relation or
operation with the help of terms in the relata of the second relation or op-
eration and vice versa. An easy and unproblematic example of a language
dependent operation is the operation of counting the axioms of theories.

In order to talk not only about language dependent relations and op-
erations, but also about language dependent theories, we may say that a
theory is language dependent if it contains a relation or operation that is
language dependent with respect to the theory:

Definition 6.3. Φ is language dependent iff there is an n-ary relation Rn or
operation f n of Φ such that Rn or f n of Φ is language dependent.

Of course, in evaluating a theory as language dependent one has to take
into account that many theories contain language dependent operations as,
e.g., counting procedures, which are not at the heart of the theories. Take,
e.g., a theory of simplicity which measures the degree of simplicity of a
model (polynomial) by the degree of the polynomial. Of course the cal-
culation of the degree of a polynomial is language dependent insofar the
degree of, e.g., y = f1(x)2 is 2, whereas the degree of, e.g., y = f2(x) is 1,
although by defining f2(x) = f1(x)2 and f1(x) = f2(x)−2 all theories con-
taining exactly one of the polynomials are synonymous. Yet the problem of
such a theory of simplicity hinges not on the calculation of the degree of a
polynomial, but on the identification of the degree of simplicity with this
degree. And that the measure of simplicity defined in such a way is lan-
guage dependent makes such a theory a problematic one, not that it also
contains counting procedures etc. So, strictly speaking, one should modify
definition 6.3 by adding a condition like Rn and f n are central in the the-
ory Φ or their characterisations are the by Φ intended explications etc. But
of course such an additional condition would make the whole clarification
quite pragmatic and unclear again and so we just formulate the constraint
of language independence as the constraint for a theory to be language in-
dependent in the above defined way, of course bearing in mind that we
apply the definitions above only to the most relevant and central notions of
the theory.

As we have motivated and clarified the constraint of language indepen-
dence, we will now move on with a very general discussion of some widely
accepted or investigated theories that do not satisfy this constraint: It can
be shown that very many common, interesting and also fundamental and
widely accepted notions of different areas of science and philosophy are
language dependent. In what follows we are going to indicate this fact by
discussing language dependent notions of some main areas of philosophy.
Since many of these notions are quite general and cross-discipline wide in
use, the subsumption of the following discussions under specific headings
is more due to aesthetical than to intrinsic systematic reasons.
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An example of language dependence in philosophy of science. We can
rephrase Goodman’s new riddle as discussed in section 6.1 as a problem of
language dependency: The argument shows, e.g., that at least some com-
mon notions of confirmation are language dependent. Let con f be a con-
firmation measure for theories that satisfies a principle of enumerative in-
duction. Then instances of a general statement confirm other instances of
the statement—at least to a higher degree than negative instances are con-
firmed. So, let us assume that for such a confirmation measure it holds:

con f ({ϕ[an]}, {ϕ[a1] & · · ·& ϕ[an−1]}) >

con f ({¬ϕ[an]}, {ϕ[a1] & · · ·& ϕ[an−1]})
Now, take as example the Goodmanian emerald case: The given data can
be summarised as a theory claiming that all emeralds observed until and
including time n were green:

T1 = {Pa1, . . . , Pan−1}
Of course the question arises whether the emerald observed at time n will
be also green or blue, i.e. not green? Let us take Φ1 to be an affirming, Ψ1 to
be a negating theory:

Φ1 = {Pan}
Ψ1 = {¬Pan}

By the principle of confirmatorial induction it holds:

con f (Φ1,T1) > con f (Ψ1,T1)

Now, let us switch the language by defining a grue predicate Q as in the
discussion before:

Qx ↔ (Px ↔ (x = a1 ∨ · · · ∨ x = an−1))

We can provide a definition of P by help of Q simply by swapping P and
Q in this definition. Then the translation of the data reads as: All emeralds
observed until and including time n − 1 are grue, i.e.:

T2 = {Qa1, . . . , Qan−1}
And the theory stating that the emerald observed at n will be green, Φ1,
translates as: The emerald observed at n will be not grue (but bleen), i.e.:

Φ2 = {¬Qan}
The translation of the competing theory stating that the emerald observed
at n will be not green reads as: The emerald observed at n will be grue:

Ψ2 = {Qan}
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By applying the confirmatorial principle of induction it holds:

con f (Φ2,T2) < con f (Ψ2,T2)

And so, someone claiming that the emerald observed at n will be not green
instead of green is confirmed above its competitor if she switches the basic
language. Since Φ1 and Φ2 as well as Ψ1 and Ψ2 are synonymous theo-
ries, it turns out that a confirmation measure that satisfies a confirmatorial
principle of induction is language dependent. However, confirmation con f
and epistemic justification J in general are not the only notions which turn
out to be language dependent. As we will show now, there are other very
important notions which have this problem.

An example of language dependence in logic (in a wide sense). Take,
e.g., the qualitative notion of verisimilitude introduced by Popper (1972,
p.52). According to this account a theory Φ is closer to the truth than an-
other theory Ψ, if Φ’s truth-content, but not its falsity-content exceeds that
of Ψ or if the falsity-content of Ψ, but not its truth-content exceeds that
of Φ. (Note that this notion of verisimilitude is only logical in a similar
sense as the notion of probability introduced by Carnap is logical.) As
was shown independently by Tichý (1974) and Miller (1974) this theory
of verisimilitude faces the problem that out of two false theories never one
can be shown to be closer to the truth than the other. So, Popper’s theory
was modified by several authors: Oddie (2013) distinguishes three types
of approaches: the content approaches which try to overcome the problem
by specifying different contents (see, e.g., Oddie 2013); the consequence ap-
proaches which employ different consequence relations for explicating Pop-
per’s idea (see, e.g., Schurz and Weingartner 1987, who use a relevance
consequence relation; and Schurz and Weingartner 2010); and the likeness
approaches which employ distance measures for spelling out the notion of
likeness to the truth (see, e.g., Tichý 1976; and Niiniluoto 1987). For simplic-
ity reasons we concentrate here on a simplified form of the latter—namely
a counting approach of verisimilitude. The idea of the counting approach
of verisimilitude is to count the number of basic truths of a theory, the so-
called true literals of the theories, and then to compare this number with
the number of true literals of rival theories (although we wont employ the
full terminology, here is how Niiniluoto (1987) unfolds it: a literal is an un-
/negated atomic formula ±ϕ1, . . . ; a constituent is a state description of a
possible world by help of a conjunction of literals ±ϕ1& ± ψ1& ± χ1& · · · ;
a theory consists in a set of disjunction of constituents). According to a
simplified counting approach of verisimilitude a theory is sayd to be closer
to the truth than another one if its number of true literals exceeds that of
the other one (the here underlying distance measure is the so-called Ham-
ming distance which takes as the distance of two constituents the number of
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diverging literals; for an overview of more common and also more sophis-
ticated measures see Schurz and Weingartner 2010, sect.3). Let us illustrate
this by help of an example. Let Δ(Φ, Ψ)= |Φ| − |Φ ∩ Ψ| be a distance mea-
sure that counts the distance of two sets of literals (in our toy example we
use single constituents represented by a set of literals for a theory only). Let
the truth be:

T1 = {ϕ1, ψ1, χ1}
And let two competing theories Φ1 and Ψ1 claim:

Φ1 = {¬ϕ1, ψ1, χ1}
Ψ1 = {¬ϕ1,¬Ψ1,¬χ1}

Then the competing theories’ distance from the truth calculates as follows:
Δ(T1, Φ1) = 1 and Δ(T1, Ψ1) = 3. So Φ1 is closer to the truth than Ψ1:

Δ(T1, Φ1) < Δ(T1, Ψ1)

Now, as was already put forward by Miller (1974, sect.6), the counting
approach of verisimilitude is language dependent. For a demonstration of
this fact let us switch the language from index-1-expressions to index-2-
expressions by defining:

ϕ2 ↔ ϕ1

ψ2 ↔ (ϕ1 ↔ ψ1)

χ2 ↔ (ϕ1 ↔ χ1)

It is also possible to give analogous definitions for ϕ1, ψ1, χ1 in terms of
ϕ2, ψ2, χ2 by swapping ϕ1 and ϕ2, ψ1 and ψ2, and χ1 and χ2 respectively in
these definitions. Then the translation of the truth and the two competing
theories reads as:

T2 = {ϕ2, ψ2, χ2}
Φ2 = {¬ϕ2,¬ψ2,¬χ2}

Ψ2 = {¬ϕ2, ψ2, χ2}
The competing theories’ distance from the truth calculates now:
Δ(T2, Φ2) = 3 and Δ(T2, Ψ2) = 1. So Ψ2 is closer to the truth than Φ2:

Δ(T2, Φ2) > Δ(T2, Ψ2)

Since Φ1 and Φ2 as well as Ψ1 and Ψ2 are synonymous it follows that the
simple distance measure Δ is language dependent and by this also the log-
ical theory of verisimilitude in the counting approach is language depen-
dent.
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An example of language dependence in epistemology. Impossibility re-
sults in social choice theory and social epistemology show that no aggre-
gation of individual judgements can be universal in the sense that the
whole algebra of a language and all probabilistically possible judgements
are covered, anonymous in the sense that a permutation of the individual
judgements leads to identical results, systematic in the sense that an aggre-
gated judgement about a statement is achieved by individual judgements
about this statement only and not depending on individual judgements
about other statements, and logically and probabilistically consistent (for
an overview see Pivato 2008; for a prominent impossibility result of so-
cial epistemology see List and Pettit 2002). We will discuss this problem
in detail in chapter 11. Since in cases of majority voting all ingredients of
an aggregation, namely individually coherent judgements and the majority
voting procedure itself, seem to be plausible—take as an example the fol-
lowing judgements of the member of a jury (see Kornhauser 1992, p.454):

Claims: ϕ (ϕ → ψ) ψ

Judge1 0 0 0
Judge2 1 0 1
Judge3 1 1 1

And since the output of such an aggregation may not be plausible, as, e.g.,
a majoritarian aggregated judgement turns out to be incoherent:

Claims: ϕ (ϕ → ψ) ψ

Court 1 1 0

such a scenario was labelled as a ‘paradox’ (see Kornhauser 1992, p.454).
Since the impossibility result mentioned above shows that the formation of
an implausible output out of a plausible or coherent input does not hinge
specifically on the majority aggregation method, but on any aggregation
method satisfying the above mentioned constraints, the situation was more
generally labelled as a ‘dilemma’ (see List and Pettit 2002, pp.89ff).

In order to cope with the impossibility results in an adequate way, dif-
ferent proposals were made to weaken the conditions for judgement aggre-
gation. One of the most prominent proposals is a weakening of the system-
aticity condition by taking into account not only the individual judgements
on a proposition, but also the individual judgements on logically related
propositions. So, e.g., so-called premise-based aggregation functions were
proposed which violate only the systematicity constraint by outweighing
an aggregation result of premisses against an aggregation result of conclu-
sions in case of a conflict (see, e.g., List and Pettit 2011, chpt.4.2; Hartmann
and Sprenger 2012). Premise-based majority voting, e.g., would turn the
court’s decision in the example above into a coherent one:

Claims: ϕ (ϕ → ψ) ψ

Court 1 1 1
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But again, one can show that such a premise-based majoritarian aggrega-
tion is language dependent (see Cariani, Pauly, and Snyder 2008): Let aggr
be such a premise-based majoritarian aggregation rule. Now, take three
individual judgements or theories:

Φ1 = {ϕ1, ψ1, (ϕ1 & ψ1)}
Ψ1 = {ϕ1,¬ψ1,¬(ϕ1 & ψ1)}
X1 = {¬ϕ1, ψ1,¬(ϕ1 & ψ1)}

Let us assume that ϕ1 and ψ1 count as premisses and ϕ1 & ψ1 as conclusion.
Then, applying a simple majority rule would lead to the logical inconsistent
judgements:

Majoritarian aggregation: {ϕ1, ψ1,¬(ϕ1 & ψ1)}
And so aggr favours the premisses’ outcome ending with an aggregation
of these judgements as follows:

aggr(Φ1, Ψ1,X1) = {ϕ1, ψ1, (ϕ1 & ψ1)}
Now, again, let us switch from index-1 expressions to index-2 expressions
by defining:

ϕ2 ↔ ϕ1

ψ2 ↔ (ϕ1 ↔ ψ1)

By swapping ϕ2 and ϕ1, and ψ2 and ψ1 respectively in these definitions
one assures intertranslatability. Expressing the judgements in this new lan-
guage, the translations are as follows:

Φ2 = {ϕ2, ψ2, (ϕ2 & ψ2)}
Ψ2 = {ϕ2,¬ψ2,¬(ϕ2 & ψ2)}

X2 = {¬ϕ2,¬ψ2,¬(ϕ2 & ψ2)}
Now, applying the simple majority rule leads to a consistent judgement
and so the aggregation turns out to be:

aggr(Φ2, Ψ2,X2) = {ϕ2,¬ψ2,¬(ϕ2 & ψ2)}
But note that the translation of aggr(Φ1, Ψ1,X1) = {ϕ1, ψ1, (ϕ1 & ψ1)} is:
{ϕ2, ψ2, (ϕ2 & ψ2)}. So, although Φ1, Φ2, Ψ1, Ψ2, and X1,X2 are synony-
mous theories it holds:

aggr(Φ1, Ψ1,X1) �= aggr(Φ2, Ψ2,X2)

This means that also the premise-based majoritarian aggregation procedure
aggr is language dependent in the weakened theory of social opinion pool-
ing and by this the theory itself is language dependent.
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An example of language dependence in ethics. A very similar problem
arises in ethics when one bases her theory on preference aggregation. Take,
e.g., a line of argumentation in the debate on value-free science. One quite
common proposal in this debate is to consider the context of justification
of science as being totally free of non-epistemic values and that a scien-
tist qua scientist should provide for an application of her results just in-
formation about the efficiency of means-ends relations (see Schurz 1997,
pp.239ff as well as 11.3 and 11.4). So, according to this proposal, e.g., in or-
der to apply scientific results, scientific theories provide information about
the probability of achieving some ends by some means, but which ends
and means are chosen depends not only on these probabilities, but also on
the utilities of the ends and means, which are achieved by aggregating the
preferences of all by a policy influenced persons. Since preference aggre-
gation is structurally similar to judgement aggregation, also the problems
of the latter hold for the former (see List and Pettit 2011, pp.46f): Also such
a theory turns out to be language dependent. Take, e.g., the aggregations
aggr(Φ1, Ψ1,X1) and aggr(Φ2, Ψ2,X2) from above, so in terms of an index-1
language people prefer both ϕ1 and ψ1, but in terms of an index-2 language
people have a preference only for ϕ2, but not for ψ2, and let us assume that
scientific tests show that ψ1 is a good means to achieve ends ϕ1 (Pr(ϕ1|ψ1)
is quite high; let us assume that scientific tests also show Pr(ϕ2|ψ2) to be
quite high). Then, since the means is only preferred in the index-1 language
(ψ1), but not in the index-2 language (ψ2), the advice to use the means in or-
der to achieve the ends (a high enough expected utility) will be only given
in the index-1, but not in the index-2 language. And so a decision pro-
cedure based on such a preference aggregation turns out to be language
dependent too.

An example of language dependence in metaphysics. In recent times it
was shown that also some very common notions of metaphysics, e.g., the
Bayesian notion of causality, are language dependent (see Spirtes 2009). In
order to illustrate this fact, we will provide a short discussion in terms of
the so-called SGS-algorithm of Spirtes, Glymour, and Scheines (2000, p.82).
Let us assume that we have grasped some statistical data about the weather
at some specific area—let us consider here only a very simple statistics pro-
viding only very rough information about the weather conditions for each
day of a year. So, the statistics looks something like the following table:

Day 1. 2. 3. 4. 5. . . . 361. 362. 363. 364. 365.
Cold (ϕ1) 1 1 0 1 0 . . . 1 1 1 1 1
Rainy (ψ1) 0 0 0 0 1 . . . 1 1 1 1 1
Snowy (χ1) 0 0 0 1 0 . . . 0 0 1 1 1

Now, assume that at the imagined place a little bit less than one third of
the year’s days were cold and that the same percentage holds also for rainy
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and snowy days. Furthermore, let us assume that it was cold, when it was
rainy and vice versa on 30% of the days and that only on 30% of these days
it was also cold. Finally, let our statistical records claim that only on 9% of
the days it was rainy and snowy. So our statistical data can be summarised
as follows:

Pr(ϕ1) = Pr(ψ1) = Pr(χ1) = 0.30
Pr(ϕ1 ↔ ψ1) = 0.30

Pr((ϕ1 ↔ ψ1) & ϕ1) = 0.09
Pr(ψ1 & χ1) = 0.09

From this data it follows, that Pr(ψ1|χ1) = Pr(ψ1) and Pr((ϕ1 ↔ ψ1)|ϕ1) =
Pr((ϕ1 ↔ ψ1)). So rainyness and snowyness are statistically independent
as well as coldness is statistically independent of the co-occurrence of cold-
ness and rainyness. Let us assume that these are the only relevant inde-
pendences in our sample. Now, imagine that within a simple meteorolog-
ical investigation the causal relation between these three factors should be
brought to the light. For this purpose we can, e.g., apply an algorithm of the
Bayesian theory of causality to our statistical data. Let us do so by applying
the SGS-algorithm stepwise:

(A) First, we list all relevant independences for our variables and then
draw a complete undirected graph with our variables. We use as bi-
nary causal variables Xϕ1 , Xψ1 , Xχ1 . The only relevant independence
for our simple example is IndPr(Xψ1 , Xχ1). We end up with an undi-
rected graph as shown in figure 6.1.

(B) Now, in a second step, we consider our variables pairwise and check
whether they are independent conditional on any (possibly empty)
subset of the remaining variables. If so, then we remove the connec-
tion between them. Since the only independence is between Xψ1 and
Xχ1 conditional on ∅, we end up with the graph shown in figure 6.2.

(C) Now we try to figure out the direction of the causal relation. For this
purpose we consider in a next step all connected parts of the graph of
the form ◦—◦—◦ (NB: exclude cases of such a form where the edges
are also connected). Whenever the edges of such a part are indepen-
dent conditional on every subset of variables containing at least the
variable in between them, then we have figured out a common ef-
fect of the form: ◦−→◦←−◦. Since the only part of our graph of
the form ◦—◦—◦ is the graph itself and since the only variable re-
maining when we extract the edge-variables is Xϕ1 , we only have to
check whether IndPr(Xψ1 , Xχ1 |Xϕ1) holds or not and since this is not
the case, we end up with the graph shown in figure 6.3.
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(D) In the next step we have to repeat the following directives until no
more edges can be oriented:

• If A−→B, B—C and neither A—C nor ◦−→B, then orient B—C
as B−→C!

• If there is a directed path from A to B, and an edge between A
and B, then orient A—B as A−→B!

Since neither of the conditions of these steps is satisfied, our graph
remains unchanged (see figure 6.3).

(E) And finally we simply “check” the so-called Causal Markov Assump-
tion (all variables are independent of their non-effects conditional
on their immediate causes) and the Causal Faithfulness Assumption
(there are exactly those independences that are entailed by the Causal
Markov Condition). Since Xϕ1 has no non-effect and the only non-
effects of Xψ1 and Xχ1 are Xχ1 and Xψ1 respectively, and since Xψ1 as
well as Xχ1 have no immediate causes, the Causal Markov Assump-
tion entails exactly IndPr(Xψ1 , Xχ1). Since this is also the only inde-
pendence in our example, also the Causal Faithfulness Assumption
is satisfied. So we are done.

Xϕ1

Xψ1 Xχ1

Figure 6.1: Performing
the SGS-algorithm: (A)

Xϕ1

Xψ1 Xχ1

Figure 6.2: Performing
the SGS-algorithm: (B)

Xϕ1

Xψ1 Xχ1

Figure 6.3: Performing
the SGS-algorithm: (C)–(E)

An application of the SGS-algorithm brings to the light that in our sim-
ple weather example both, rainyness and snowyness have as a common
effect coldness.

After this small lesson in meteorology let us again come to a foreign
index-2 language for which we again provide rules of intertranslation. Let
us assume that we investigate coldness (ϕ2) and the unsplitted considera-
tion of the co-occurrence of coldness and rainyness (ψ2) on the one hand
and coldness and snowyness on the other (χ2). In terms of the weather vo-
cabulary above we can provide easy definitions for the index-2 expressions:

ϕ2 ↔ ϕ1

ψ2 ↔ (ϕ1 ↔ ψ1)

χ2 ↔ (ϕ1 ↔ χ1)
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If we interchange ϕ1 with ϕ2, ψ1 with ψ2 and χ1 with χ2, we end up with
definitions of index-1 expressions by the help of index-2 expressions only,
that are logically equivalent with these ones. Now, let us consider a little bit
more complicated causal structure within this language. Let us ask if, and if
so: what, causal relation holds between coldness (ϕ2), the co-occurrence of
coldness and the co-occurrence of coldness and rainyness (ψ2) and the co-
occurrence of coldness and the co-occurrence of coldness and snowyness
(χ2). We choose as binary causal variables Xϕ2 , X(ϕ2↔ψ2), X(ϕ2↔χ2).

The co-occurrence of coldness and the co-occurrence of coldness and
rainyness is logically equivalent to the co-occurrence of coldness and rainy-
ness ((ϕ2 ↔ ψ2)). We have seen that the co-occurrence of coldness
and rainyness is independent of coldness. That is also the only rele-
vant independence relation in our new language. So we know exactly
IndPr(X(ϕ2↔ψ2), Xϕ2). Now, by performing the SGS-algorithm we end up
with a causal graph as depicted in figure 6.4.

Xϕ2

X(ϕ2↔ψ2) X(ϕ2↔χ2)

Figure 6.4: Performing the SGS-algorithm with a new set of variables: Steps (A)–(E)

So coldness and the co-occurrence of coldness and rainyness cause the
co-occurrence of coldness and snowyness. The latter is logically equivalent
with the co-occurrence of coldness and the co-occurrence of coldness and
snowyness. And since {ϕ1} is synonymous to {ϕ2} (represented by Xϕ2 in
the graph), {ψ1} is synonymous to {(ϕ2 ↔ ψ2)} (represented by X(ϕ2↔ψ2)

in the graph) and {χ1} is synonymous to {(ϕ2 ↔ χ2)} (represented by
X(ϕ2↔χ2) in the graph), we end up with a different causal structure among
synonymous theories. Hence, also the Bayesian notion of causality is lan-
guage dependent.

So we have seen that many very common notions in logic, philosophy
of science, epistemology, ethics, etc. do not satisfy the constraint of lan-
guage independence (one can even show that the “logical and definitional”
demarcation of analytic from synthetic statements is language dependent—
for details see Feldbacher-Escamilla (2017a)). Since most of these notions
are widely accepted and used, quite natural and in accordance with our
everyday understanding of similar notions, it seems to be paradox that the
correct application of these notions depends on the more or less arbitrary
way we have chosen our language. As Miller (2006, p.215) summarises
some critique on his constraint of language independence: It seems that
“an argument which purports to show that the notions of accuracy, truth-
likeness, structure, change, sameness of state, confirmation and disconfir-
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mation, are all spurious [. . . ] must harbour a defect somewhere.”
As things stand, Goodman’s riddle of induction concerns not only an

encapsulated problem of epistemic justification J in form of a theory of in-
duction or confirmation. Rather, it is an instance of the general problem of
language dependency of many of our notions in logic, philosophy of sci-
ence, ethics, metaphysics etc. We face the dilemma that we do not want to
give up these notions, but also not the constraint of providing language in-
dependent justifications, inferences, assessments, etc. However, we cannot
eat the cake and have it. So, what to do? Shall we keep our justified notion
of induction and abandon the constraint of language independency, or shall
we keep the latter and are once more in need of providing a justification of
induction which cannot be turned to a justification of anti-induction? We
will argue in the next section for the first solution and show that the cake
(language independency) looks nice, but actually does not taste that well,
for which reason one might neither want to keep nor eat it.

6.4 A Solution: Language Dependency of Language

Dependency

We have seen that the constraint of language independence set up for
the most important notions of theories of all areas of philosophy leads to
quite implausible consequences. Since they do not preserve their structure
among synonymous theories, the conventional part of choosing a primi-
tive vocabulary when there are at least two equally well serving alterna-
tives plays a crucial role in all these theories. And even worse, by many
of them an ordering between two pairs of synonymous theories can be in-
verted through language conversion. So, e.g., a perfectly fine argument for
an inductive inference can be turned into a perfectly fine argument for anti-
inductive inference, just by switching from a ‘green’/‘blue’ language to a
‘grue’/‘bleen’ language. So, in applying these theories an alleged under-
dog can quite often beat her opponent just by switching the language. This
sounds paradox.

We can explicate this paradox of allowing for definitional transforma-
tions by putting forward a constraint of language dependency with the fol-
lowing argument:

1. Some important relations R’s and operations f ’s of different theories
seem in general to be adequate with respect to the intended domain
of application of these theories.

2. And also the constraint that the R’s and f ’s should be language inde-
pendent seems to be adequate.
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3. Nevertheless it can be shown that the R’s and f ’s are language de-
pendent.

4. So, either you have to abandon the constraint of language indepen-
dence or your notions (R’s and f ’s)—at least in the form they are now.

But in general we do not think that to abandon our fundamental and quite
fruitful notions is a good idea, nor do we think that language dependence
is an unproblematic feature. What are possible ways out of this dilemma?
Since premise 3 concerns just technical elaboration and is quite uncontro-
versial, there are only two ways left: First of all, one may bring oneself to
doubt premise 1, as, e.g., Miller (2006, chpt.11) did: If one takes the con-
straint of language independence serious and if it turns out that at first
glance adequate seeming notions fall short of satisfying this constraint,
then one should abandon these notions or try to fix the problem by mod-
ifying them until they satisfy this constraint. Second, one may doubt the
constraint of language dependence. A very systematic and summarising
overview of this line of argumentation can be also found in (Miller 2006,
chpt.11). In principle the argumentation against premise 2 can be quite
manifold: (i) One might accept that a theory’s outcome essentially depends
on the language chosen for the theory and by this accept some kind of rel-
ativism: E.g., whether a theory is closer to the truth against another one
depends in the end also on the languages we use to formulate the theories
in (for representatives and discussion see Miller 2006, chpt.11, sect.5). (ii)
One might accept that a theory’s outcome depends on the language chosen,
but one may not accept that all languages serve the endeavour of science
equally well. So theories need not to preserve their structure among syn-
onymous theories, but only among synonymous theories formulated in ac-
ceptable languages (see Miller 2006, chpt.11, sect.3). (iii) One might accept
some constraint of language independence, but not that one presented here
(see Miller 2006, chpt.11, sect.4).

In this section we argue against premise 2 in the line of (i). We do so
by showing an implausible consequence of this plausible constraint of lan-
guage independence: One can show that the property of language inde-
pendence is itself language dependent. So, putting forward a constraint of
language independence is self defeating. In order to do so one just needs
to prove that there are two synonymous theories Φ1 and Φ2 and that one of
them is language dependent whereas the other is not. Take the following
example formulated in a language of first-order logic: We assume that a1
and b1, and a2 and b2 respectively are synonymous theories! Furthermore
we assume that Φ1 and Φ2 are theories (about theories) as follows:

• Φ1 = {a1 �= b1 & ∀xP1x}
• Φ2 = {a2 �= b2 & ∀xP2x ↔ x �= a2}
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One may take Φ1 to be a naı̈ve sceptical theory about theories claiming that
all theories are false. And Φ2 could be seen as a little bit more reflecting
sceptical theory that states, e.g., that all theories are false except the the-
ory itself (a2). Now, since a1, b1 and a2, b2 are assumed to be synonymous,
and since Φ2 � (P2b2 & ¬P2a2) it follows that P2 of Φ2 valuates synonymous
theories differently and so by definition 6.2 P2 of Φ2 is language dependent.
On the other hand, since P1 of Φ1 valuates all—also synonymous—theories
on a par, namely to be false, P1 of Φ1 is not language dependent. As Φ2
contains a language dependent property and Φ1 does not we can say that
Φ2 is a language dependent sceptical theory whereas Φ1 is a language in-
dependent one.

Now, one can easily show that Φ1 and Φ2 are synonymous theories.
Take, e.g., the following sets of definitions:

DΦ2 : P1x ↔ ((x = a2 → ¬P2x) & (x �= a2 → P2x))
a1 = a2, b1 = b2

And:

DΦ1 : P2x ↔ ((x = a1 → ¬P1x) & (x �= a1 → P1x))
a2 = a1, b2 = b1

Then it holds that Φ1 and Φ2 translatable into each other by help of these
definitions: Φ1 ∪DΦ2 �( Φ2 ∪DΦ1 . It even holds that these definitions are
logically equivalent: DΦ2 �( DΦ1 . So Φ1 and Φ2 are intertranslatable, i.e.
synonymous.

Since Φ1 is not language dependent, but Φ2 is, and since Φ1 and Φ2 are
synonymous it follows that the property of language dependence does not
preserve its structure among synonymous theories and is for this reason
itself language dependent. So, the problem that sometimes a bad valuation
can be turned into a good one just by switching the language can sometimes
be overcome by switching the language again.

Note that in the example the two theories are inconsistent given the def-
initions. So, one could, e.g., strengthen the notion of synonymy by demand-
ing consistency of the theories given the definitions. However, although
we were not able to quickly find a counterexample for such a strength-
ened constraint, we conjecture that one can find one by employing a bit
more structure than we did here. Furthermore, note that one might also
reverse the direction of our argument as follows (thanks to Gerhard Schurz
for pointing out this possible objection): Since Φ1 and Φ2 are synonymous
and since Φ2 is language dependent, also Φ1 is. But such an argument
would presuppose a notion of language dependency granting a principle of
the following form: If x is language dependent and x is synonymous with
y, then also y is language dependent. However, we do not see how such a
principle could be constructed out of the notion of language dependency as
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introduced above. For this reason we think that the argument shows that
the property of language independence (at least as it is defined above) is
itself not language independent, and hence putting forward language in-
dependence as a constraint is self-refuting. Coming back to the problem
of justifying anti-induction Goodman style, we think that premise 4 (p.183)
of the argument is inadequate: Claiming that justification needs to be pre-
served among definitional transformations means that justification needs
to be language independent. However, even the notion of language indepen-
dency itself falls short of this constraint. How then can our notion of justi-
fication satisfy it? And even if it were to satisfy it in one language, it might
fail to satisfy it in another one. So, in our understanding the justification of
anti-induction via definitional transformations fails, because justification is
not and need not be language independent, i.e. invariant under such trans-
formation. Our solution to the new riddle of induction is illustrated in the
schema of table 6.4.

s ⇒ fmi ⇒ optimality ⇒ J

⇔
d

f

⇔
d

f

�⇒

� ⇒ fm i \J
Table 6.4: A justification of meta-anti-induction fm iby help of meta-induction fmi
fails, since justification is not preserved among definitional transformations.



Chapter 7

Abduction and Optimisation

In this chapter two forms of abduction are distinguished, selective and creative abduction.
An exact characterisation of selective abduction in terms of accuracy and simplicity is
provided. Afterwards, the epistemic merits of simple explanations and predictions are
discussed. Then an exact characterisation of creative abduction as a form of inference
to a common cause explanation and prediction is provided. Finally, it is outlined how
the theory of meta-induction can be also employed for justifying both kinds of abductive
inferences.

Up to now we have argued that the theory of meta-induction allows for
justifying inductive inferences based on their past successes. However,
there is also another inference method which is widely-used in science and
which is also in need of epistemic justification, namely the method of ab-
duction. The question of justifying this method will be addressed in the
present chapter.

Charles S. Peirce was the first to describe abductive inferences as a topic of
philosophy of science and logic in the broad sense. He characterised such
an inference schematically as follows (see Peirce 1994):

1. The surprising fact, E, is observed;

2. But if H were true, E would be a matter of course;

3. Hence, there is reason to suspect that H is true.

More generally, we can distinguish two kinds of abductive inferences:
those generating new hypotheses and those aiming at determining the best
hypothesis from a set of available candidates. Abductive inferences of the
former kind are sometimes called creative abductions, and those of the latter
kind selective abductions (see, e.g. Magnani 2000; Schurz 2008a). Selective
abduction is often subsumed under the term inference to the best explanation
and most of the philosophical literature on abduction focuses on this form

201
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of abductive inferences (see, e.g., Lipton 2004; Niiniluoto 1999; Williamson
2016). However, there is also an increasing interest in creative abduction
(see Douven 2018) which is intended as an inference method for generat-
ing hypotheses featuring new theoretical concepts on the basis of empirical
phenomena.

At least at first glance, it seems clear that combining creative and se-
lective abduction allows for a powerful inference tool, as in principle any
combination of several inference methods does. Starting from empirical
data, creative abduction might be used for inferring whole theories which
can then, in turn, be used as input for selective abduction in order to infer
the best one. Now, clearly there is the question of how to characterise these
abductive methods exactly. Connected to this is also the question of how to
justify them as viable inference methods. Both problems will be addressed
here.

We will proceed as follows: In section 7.1 we characterise selective ab-
duction roughly as an inference to the best explanation, where best is un-
derstood in terms of accuracy and simplicity. Now, the epistemic value of
accurate explanations and predictions is clear, but that of simplicity needs
to be explored further. This is done in section 7.2, where an information the-
oretical argument in favour of simplicity is discussed and used for fleshing
out the notion of a selective abductive inference further. Afterwards, in sec-
tion 7.3, we characterise creative abduction in detail and evaluate its ability
to achieve simpler explanations and predictions. Finally, in section 7.4, we
use the theory of meta-induction to argue for a positive answer to the ques-
tion whether abduction can be justified or not.

7.1 Selective Abduction

As we have outlined in the first chapter of this part, there are three ma-
jor types of inference used in science and philosophy: deduction, induc-
tion, and abduction. Deductive inferences are truth preserving. Induc-
tive inferences are not truth preserving, but have conclusions containing
predicates that occur already in the premisses. Finally, abduction is for-
mally characterised as a non-deductive inference with a conclusion con-
taining also predicates that do not occur already in the premisses. So, e.g.,
{∀xR(x)} � R(c) is a deductive inference. {R(c1), . . . , R(cn)}|∼ ∀xR(x) is
an inductive inference. And the inference from

{∃1
1xR(x, t1), ∃1

1xW(x, t1), ∀x(R(x, t2)&¬W(x, t2)),

∃n
nxR(x, t3), ∃n/4

n/4xW(x, t3)}
to

∃1
1xE(x, t1)&∃1

1xD(x, t1)&¬∃xM(x, t1)
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is an (abbreviation of an) abductive one, since E, D, and M do not occur in
the premise set (‘∃n

n’ stands for ‘there are exactly n’). Abductive inferences
play a major role in natural sciences as they are widely used for theory con-
struction. Simplified speaking, by abduction one can infer from empirically
accessible data theoretical hypotheses that allow for a more or less simple
explanation of the data. Prominent is the example of Gregor Mendel infer-
ring from phenotypic properties of plants (e.g. colours red R and white W)
laws of inheritance (e.g. the inheritance of recessive E, dominant D, and
mixed M traits). By this he was able to explain, e.g., why and how much
white plants are to be expected in the third generation, although this phe-
notypic property seemed to have died out in the second generation. The
schema of this prototypical abductive inference is depicted in figure 7.1.

50% : 50%

0% : 100%

25% : 75% ⇒

Figure 7.1: A prototypical abductive inference: Gregor Mendel’s famous laws of
inheritance: In the 1850s and 60s, Mendel cultivated and tested about 5.000 pea
plants and performed hybridisation experiments. Mendel inferred from regular-
ities about R, W (red, white colour), laws about E, D, M (recessive (white), dom-
inant (red), mixed traits (red and white)). The data is presented on the left side.
The inferred structure on the right. The edges represent inheritance. The under-
lying theoretical structure was simple and allowed for an empirically adequate
explanation of Mendel’s data.

Now, are there any further characteristics of abductive inferences? Be-
sides the formal constraint of introducing new (theoretical) vocabulary,
materially speaking characteristic for abduction is its validation of expla-
nations. So, usually an abductive inference has no single statement as a
conclusion, but laws and regularities that can be used in an explanation or
that even form a whole theory. In the case of Mendel’s abductive inference,
given the premise set above the laws and regularities of a validated ex-
planation might consist of assumptions about the initial traits as presented
above (one dominant and one recessive) as well as probabilistic reasoning
based on assumptions about the average number of descendants of each
possible pair per each generation.

What are the constraints for validating such an explanation? Abduc-
tion in the sense of an inference to the best explanation (see, e.g., Lipton 2004)
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is usually supposed to maximise the data’s plausibility and the hypotheses’
simplicity. Regarding the former, the parameter consists in the probability
of the premise’ P (also: the explanandum’s) in the light of laws and regular-
ities used in the explanation (the conclusion C or also: the explanans). The
simplicity constraint is considered to be necessary in order to rule out ad
hoc explanations. For, if one takes, e.g., scientists’ conditional degrees of
belief Pr of the explanandum P in the light of the explanans C as a mea-
sure for plausibility: Pr(P|C), which is the likelihood of P given C, then it
is clear that choosing a C such that C � P maximises the explanandum’s
plausibility in the light of the explanans. In the simplest case one might
set ad hoc: C = P. However, what we aim at are not ad hoc explana-
tions that might be even trivial, but universal explanations. Since ad hoc
explanations usually turn out to become more and more complex with an
increased number of data, abductive validation of an explanation hinges
not only on Pr(P|C), but also on C’s simplicity. If we assume that there is
some way of measuring C’s complexity via a non-negative function c(C),
then we can characterise the validation procedure of an abductive inference
as trying to maximise Pr(P|C) on the one side, and minimise c(C) on the
other.

Several remarks are in place: First, in order to remain applicable, in
this method the aim of maximising Pr(P|C) and minimising c(C) is to be
understood not in absolute terms, but in relative ones. We might aim at
Pr(P|C) = 1 and c(C) = 0, but we will almost never achieve this goal. In
particular, it is presupposed that we exclude trivial abductive inferences to
P itself (Pr(P|P) = 1 is maximal). As we have mentioned above, with an
increased number of data P to be plausibly explained by C usually also the
complexity of C increases. And on the other hand, reducing the complex-
ity of C usually leads to generalisations of C that are not in full agreement
with P, for which reason Pr(P|C) decreases. Since these two measures are
intertwined in many applications, often finding a C such that Pr(P|C) = 1
and c(C) = 0 is not achievable. This was highlighted, e.g., also by Popper,
who claimed that the aim of increasing Pr(P|C) “inadvertently but nec-
essarily, implies the unacceptable rule: always use the theory which is the
most ad hoc, i.e. which transcends the available evidence as little as possible
[i.e. which sets C = P]” (see Popper 2002a, p.61). However, what is clearly
achievable is a comparative task: Assume that the only available potential
explanantia are C1, . . . , Cn. Then it holds:

If there is a i ∈ {1, . . . , n} such that for all j ∈ {1, . . . , n} \ {i}:
c(Ci) ≤ c(Cj) & Pr(P|Ci) > Pr(P|Cj)

or
c(Ci) < c(Cj) & Pr(P|Ci) ≥ Pr(P|Cj),

then infer from P by abduction Ci

(Abd)
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(Abd) demands that in case there is an explanans Ci which plausibilises P
better, but not at cost of being more complex, or which is simpler, but still
not at cost of less plausibilising P than all the other possible explanantia,
that in such a case Ci is to be inferred from P. If one generalises this com-
parative validation to the set of all potential explanantia one has thought of
(see Williamson 2016, p.267), then one might regain an absolute phrasing
of abductive inferences that is still applicable.

Second, Pr(P|C) and c(C) can be balanced in several ways. One might
consider, e.g., a combination of the form (1 − Pr(P|C)) · c(C) which is the
product of the inverse of the likelihood and complexity that is to be min-
imised, but one might also think of maximising Pr(P|C) − c(C). These
possibilities of balancing lead to different inferences in at least some appli-
cations. However, what is important to note is that they still satisfy (Abd).
This is also the minimal constraint we want to put forward for abduction
and as long as a non-deductive inference rule introducing new vocabulary
satisfies it, we think it is fine to call it an ‘abductive’ one. In the next section
we will consider another way of balancing that also satisfies (Abd).

Third, the two parameters c(C) and Pr(P|C) are not sufficient for pro-
viding a fully adequate account of selective abduction. Usually, also the
prior probabilities of the hypotheses used in an explanation are relevant.
E.g., if Pr(Ci) is very close to 0 and Pr(Cj) is high, then one will still tend to
opt for Cj instead of Ci, although Pr(P|Ci) might be greater than Pr(P|Cj).
For simplicity reasons we restrict the application of (Abd) to cases with
close prior probabilities of the alternative hypotheses C1, . . . , Cn. Also, as
is pointed out in (Schurz 2008a), other theoretical virtues of C as, e.g., use-
novelty, unification, etc. are typically considered to be relevant for abduc-
tive inferences. Again, we restrict the intended application of (Abd) to cases
where these theoretical virtues are considered to be satisfied equally well.
The reason for this strong restrictions is twofold. First, some of these fur-
ther parameters might be reducible to the two we are proposing. So, e.g.,
regarding unification and use-novelty, Forster and Sober (1994) provide re-
duction strategies which might be cashed out be allowing for complex P
and C (conjunctions of descriptions of phenomena and hypotheses). In
principle, one might even think of reducing the prior probability of a hy-
pothesis (Pr(C)) as relevant parameter via inversely relating it to the com-
plexity measure c(C) (this would be, e.g., along the lines of Solomonoff
1964). The second reason is that in this chapter we are only interested in
an exemplary application of meta-induction to abductive inferences. For
this purpose it suffices to show how the theory can be applied in case one
scores not only according to accuracy, but also according to some theoreti-
cal value like simplicity/complexity. So, we aim at theorising only about a
simple model of abduction which clearly has lots of limitations.

Now, one might wonder why c(C) is relevant here. It is not hard to
provide an epistemic rationale for maximising Pr(P|C) in an inference of C
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out of P, since it is a central aim of science and philosophy to provide good
explanations. In the traditional deductive nomological model of explanations,
the paradigmatic case of a good explanation consists of a deductively valid
argument with true laws and auxiliary assumptions as premisses and the
claim to be explained as conclusion of the argument (see Hempel 1965).
Now, a high likelihood of P given C approximates deduction of P from C
for which reason maximising Pr(P|C) also serves for approximating the
paradigmatic case of a good explanation. But what about c(C)? In how
far does decreased complexity or increased simplicity serve the epistemic
goals of science and philosophy? Clearly, without taking into account c(C)
we would lack a criterion of selecting among a multitude of potential ex-
planations. But if it were just for reducing the number of potential explana-
tions then also a random choice would serve the aim. According to the ar-
gument above, not considering c(C) would allow for ad hoc explanations.
But what is the epistemic rationale of excluding ad hoc explanations? One
argument which is brought forward quite often is that ad hoc explanations
overfit the data and so in case there is some error in the data, ad hoc ex-
planations also fit errors. So, the argument is that since P might contain
false values or statements, validating explanations that perfectly explain
erroneous P are themselves defective and their explanantia C wrong. Since
decreased complexity c(C) allows for avoiding overfitting, less complex Cs
are also less prone to fit errors. As the literature on model selection shows,
this can provide a rationale for also taking into account c(C) in choosing
among accessible potential explanations.

So, abductive inference consists in an inference to the best accessible po-
tential explanation. ‘Best’ is understood as balancing two measures of an
explanation of P by help of C: the likelihood Pr(P|C) should be high and
the complexity c(C) should be low. An epistemic rationale for the former
constraint results from approximating traditional models of explanation.
Such a rationale for the second constraint might result from considerations
of the literature on model selection showing that c(C) influences C’s prone-
ness of overfitting, and by this C’s proneness of also fitting errors. In the
following section we are going to make this argument in favour of min-
imising c(C) explicit.

7.2 The Epistemic Value of Simplicity

One way of arguing for minimising c(C) is to postulate as aim of science
and philosophy not only to provide true explanations, but also non-ad hoc,
universal, simple ones. In this way already by convention about the aim of
science and philosophy a demand of minimising c(C) follows. However,
there is also the possibility of trying to reduce the epistemic value of min-
imising c(C) to the epistemic value of providing true explanations. The
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most famous approach in this direction is an application of an information
theoretical framework to the problem of ad hoc explanations. The main line
of argumentation is as follows (see Forster and Sober 1994):

1. Data P might be noisy and involve error.
Schematically: Error

2. An accurate fit of an explanans C to the data P fits also error, it overfits
the data.
Schematically: Error ⇒ (Accuracy ⇒ Falsehood)

3. Whereas a less accurate fit of C to P may depart from error: Closeness
to the truth is different from closeness to the data.
Schematically: Error ⇒ (Inaccuracy ⇒ PosTruth)

4. Fact: The more parameters an explanans C has, the more prone it is
to overfit P.
Schematically: (Complexity ⇒ Accuracy) & (Simplicity ⇒
Inaccuracy)

5. Hence: Simplicity in the sense of having less parameters may ac-
count for inaccuracy w.r.t. data P in order to achieve accuracy w.r.t.
the truth. So, simplicity is instrumental for truth.
Schematically: (Complexity ⇒ Falsehood) & (Simplicity ⇒
PosTruth)

As the rough schema shows, this argument is valid along general lines. But
what about the truth of the premisses? Considering applications of the ab-
ductive methodology to the natural sciences, premise 1, the assumption of
error in the data, is a very natural assumption. But then also premise 2
and 3 are straightforward: Assuming that P contains errors one only has a
chance of achieving the truth by deviating from P. Intuitively and qualita-
tively speaking, premise 4 is also straightforward: If an explanans is com-
plex, it allows for fitting a simple as well as a complex explanandum. If
an explanans is simple, it might fit a simple explanandum, but it cannot
fit a complex one. But clearly, this is an argument too coarse-grained in
order to be convincingly applied for quantitative considerations regarding
minimising c(C). However, there is also a much more fine-grained version
of premise 4 stemming from the literature on model selection and curve
fitting—here we focus on the latter, since it became a quite influential ap-
proach to the epistemic value of simplicity (see Forster and Sober 1994).

For illustrative purposes we will make only very simplified consider-
ations here. The idea of model selection is that, given a data set X =
{x1, . . . , xn}, one is looking for a curve F = { f1, . . . , fn, . . . } that ade-
quately fits X. Now, it is assumed that X might contain errors, so X de-
viates from the truth T = {y1, . . . , yn, . . . } (see premise 1). Clearly, the
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perfect choice would be F = T, regardless of X, but since only X is avail-
able to us, we have to base our choice of F on X. It is also clear that for
any data set X with n = |X| elements choosing as F a polynomial of de-
gree n − 1 allows one to perfectly fit X. One can always find parameters
an−1, . . . , a0 such that for all x ∈ X there is a z ∈ R: 〈z, x〉 ∈ F, given
F(z) = x = an−1 · zn−1 + · · ·+ a1 · z1 + a0. So, n parameters (an−1, . . . , a0)
allow for defining an F that perfectly fits X. If F has less parameters than n,
then there are cases where one cannot fit F perfectly to X. So, the number of
parameters of F determines possibilities of perfect fitting. However, fitting
X perfectly might deviate from the truth T, whereas fitting X imperfectly
might allow for achieving the truth T (see premisses 2 and 3). Figure 7.2
depicts this possibility.
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Figure 7.2: Curve fitting with a polynomial of degree 4 with 5 parameters F5 and a
polynomial of degree 2 with 3 parameters F3. F5 perfectly fits data set X, whereas
F3 deviates from X. However, F5 has more distance from the truth T, whereas F3
approximates T.

Clearly, the advantage of not overfitting by a simpler model (like F3
in figure 7.2) compared to a more complex model (like F5 in figure 7.2) de-
pends on our choice of error, namely the distance between X and T. If there
were no error (X ⊆ T), then the more complex model F5 would be better
off than the simpler one F3. However, a famous result of Hirotugu Akaike
shows that on average (i.e. in estimating) simplicity matters. Forster and
Sober (1994) have transformed Akaike’s result to the philosophical debate
of problems surrounding curve fitting. The result is as follows (see Forster
and Sober 1994, p.10): The estimated predictive accuracy of the family of a
model F given some data X, which is also called the Akaike information mea-
sure according to the Akaike information criterion AIC(F, X), is determined by:

AIC(F, X) ∝ log(Pr(X|F))− c(F) (AIC)
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Where c(F) is the number of parameters of F (i.e. the degree of the poly-
nomial F plus 1) and F is supposed to be most accurately parameterised
regarding X (i.e. it is the/a polynomial of degree c(F) that is closest to X in
terms of the the sum of squares of the differences).

Note that the idea of the Akaike information criterion is to select an
F such that the estimated accuracy regarding the truth T of the family
of F given some data X is maximised. Now, as (AIC) tells us, maximis-
ing AIC(F, X) is twofold: It consists of maximising the log-likelihood of
F given X while at the same time one needs to keep an eye on holding
complexity or the number of parameters of F low.

Note also that we have chosen this criterion only as a proxy. In princi-
ple any other information criterion, as, e.g., also the Bayes information cri-
terion (BIC) might be employed for cashing out the epistemic value of sim-
plicity (for a discussion of different information criteria see Schurz 2013,
sect.5.10.5; and Schurz 2014). What is relevant for our discussion is not
which exact criterion one chooses, i.e. which exact balance between c(C)
and Pr(P|C) one opts for, but only that there is some balancing going on,
i.e. that c(C) is relevant for abduction.

This framework has a wide range of applications. As Forster and Sober
(1994) demonstrate, it allows for reducing the value of unification, sim-
plicity of causal models, and the value of non-ad hoc explanations to the
epistemic value of gaining truths. Hitchcock and Sober (2004) were able to
expand the discussion in such a way that also the problem of novel facts can
be addressed by help of (AIC): They were able to show that prediction of
data is more instrumental for gaining truths than accommodation is. In the
following part of this section we are going to briefly present some of these
arguments cashing out the value of simplicity in order to provide a gauge
for our application to the abductive methodology.

Regarding unification, the problem is as follows: Given two do-
mains/data sets X1, X2, one might ask why is it sometimes better to
provide a unified model FX about both domains X = X1 ∪ X2 which
might be less accurate than two models FX1 and FX2 , each of which mod-
els just the respective domain X1 and X2? So, why choose FX, although
Pr(X|FX) < Pr(X|FX1 ∪ FX2)? A simple answer in the line of (AIC) is that
in general the number of parameters for defining FX1 ∪ FX2 will be higher
than that of FX, so the inaccuracy of FX might be compensated by its sim-
plicity such that AIC(FX, X) > AIC(FX1 ∪ FX2 , X) (see Forster and Sober
1994, sect.3).

In a similar way one can also account for the problem of ad hoc modi-
fications: Poppers critique of such modifications and explanations in terms
of his falsificationism were expanded onto a methodological level by Imre
Lakatos. Lakatos (1970) suggested to differentiate between innovative and
degenerative research programmes, where a research programme consists
of a methodology plus a core of axioms T and a periphery of auxiliary and
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ceteris paribus assumptions H. A research programme 〈〈T, H1〉, 〈T, H2〉, . . . 〉
is called degenerative, if modifications of the research programme’s periph-
ery from Hn to Hn+1 tend to decrease its degree of falsifiability only, and
innovative otherwise. It is in full agreement with Lakatos’ proposal to
modify the periphery in such a way that the core of the research pro-
gramme remains untouched. However, if modification of the periphery
takes too much effort, i.e. modification in order to avoid falsification be-
comes the standard response to new (conflicting) data, then it might be
better to throw in the sponge and start with a new core establishing a
new research programme. Also here (AIC) turns out to be fruitful, inas-
much as it allows for a nice explication of a research programme being
degenerative (see Forster and Sober 1994, sect.5): A research programme is
degenerative iff a loss in simplicity of the programme’s core plus periph-
ery is not compensated by a sufficient gain in fit with the data accord-
ing to (AIC). So, if there is a negative AIC-development in the sense that
AIC(〈T, Hn+1〉, Xn+1) < AIC(〈T, Hn〉, Xn) for sufficiently many n, then
the research programme has to be evaluated as degenerative and a new
one has to come in place.

We now want to cash out (AIC) also for reducing the value of simplicity
of the abductive methodology presented before—namely the value of c(C)
in (Abd)—to the epistemic value of gaining truths. At least at first glance
it is quite straightforward to implement (AIC) into the abductive method-
ology outlined above: The data set X is to be identified with the premise
of the abductive inference P, the explanandum. And the conclusion of the
abductive inference C, the explanans, is to be identified with the curve that
tries to fit X, i.e. F. The result is an Akaike-motivated characterisation of
abductive reasoning: Assume that the only available potential explanantia
are C1, . . . , Cn. Then it holds:

Ci can be inferred from P by abduction iff
for all j ∈ {1, . . . , n}:

log(Pr(P|Ci))− c(Ci) ≥ log(Pr(P|Cj))− c(Cj)

(In case more than one Ci satisfy this constraint
one might freely choose among them.)

(AIC-Abd)

According to this characterisation, every inference to an explanation is ab-
ductively permitted which manages to get the best balance between like-
lihood and simplicity. Note that since Pr(P|C) ∈ [0, 1], log(Pr(P|C)) ∈
(−∞, 0]. Furthermore, in principle the complexity of C might have no up-
per limit (F might be a polynomial of arbitrarily high degree), so c(C) ∈
[0,+∞). So, in trying to maximise Pr(P|C) and minimise c(C) one also
tries to maximise log(Pr(P|C))− c(C).

Clearly, (AIC-Abd) also satisfies the constraint (Abd). Furthermore, one



Chapter 7. Abduction and Optimisation 211

can easily think of examples where (Abd) fails to license or exclude an in-
ference, whereas (AIC-Abd) does allow for it. If, e.g., the only potential
explanantia are C1, C2, then the values provided in table 7.1 do not allow
for validating an explanation by (Abd), but by (AIC-Abd). So, (AIC-Abd)
is stronger than (Abd):

Expl. Pr(P|C) c(C) log(Pr(P|C))− c(C) (Abd) (AIC-Abd)
C1 0.75 3 −3.1 �
C2 0.85 5 −5.1 ×

Table 7.1: Example of the decisiveness of (AIC-Abd) compared to (Abd) with a
log10-likelihood

Both (AIC) as well as (AIC-Abd) allow for shifting the balance be-
tween the (log-)likelihood and simplicity by help of choosing different log-
functions. E.g., c(C) has relative much impact if one chooses log10. Since
log10(0.1) = 1, if one compares only Cs with likelihoods Pr(P|C) ≥ 0.1,
then only c(C) matters. On the other hand, if one chooses, e.g., log1.001,
then c(C)s influence almost vanishes: Since log1.001(0.94) = −61.91 and
log1.001(0.95) = −51.31, given a difference of |Pr(P|C1)− Pr(P|C2)| = 0.01
close to the upper bound, only a difference of |c(C1)− c(C2)| > 10 allows
for some impact of simplicity which is, speaking in terms of degrees of
polynomials, huge. This shows that there is some room for parameterising
balancing of likelihood and simplicity according to (AIC) as well as (AIC-
Abd).

The implementation of (AIC) in agreement with (Abd) in the criterion
(AIC-Abd) seems to do the job of reducing the value of simplicity (low
c(C)) to the epistemic value of gaining truth. However, this reduction
hinges on several assumptions: First of all, in the case of curve fitting the
setting consisted of values of or functions on R: The truth T was supposed
to contain values of or to be a function on R; similarly for the selected curve
or model F; and also the data set X was supposed to contain elements of
or be a partial function on R. Now, in the case of abductive reasoning,
our straightforward characterisation Akaike style above consists of sets of
propositions P and C. So, in order to be not only an empty formal analogy,
there is a need of also linking P and C with (partial) functions on R too. Sec-
ond, such a linkage needs to allow for defining a measure of simplicity or
complexity c(C) of an explanans C which can be interpreted as the degree
of a polynomial. Finally and most importantly, the rationale of taking care
of such a measure c(C) is provided by the assumption of error in the data.
So one also needs to provide an interpretation of error in such a setting. We
will fill in further details when we come to the meta-inductive justification
of abduction in section 7.4. However, before that we want to characterise
the second kind of abduction, creative abduction, in detail.
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7.3 Creative Abduction

Let us come to the second form of abduction, namely creative abduction.
As we have mentioned above, creative abductions can be thought of as cre-
ating at least some of the hypotheses, explanations, predictions, or theories
which are in a second step assessed by selective abduction. They are in-
tended as inferences for generating hypotheses featuring new theoretical
concepts on the basis of empirical data. Now, theoretical concepts are inti-
mately connected to empirical phenomena via dispositions (see, e.g., Car-
nap 1936, 1937), for which reason creative abduction particularly focuses
on approaching empirically correlated dispositions. Schurz (2008a) differ-
entiates between different patterns of abduction and argues for the view
that at least one kind of creative abduction can be theoretically justified. In
a nutshell, his approach is based on the idea that inferences to theoretical
concepts unifying empirical correlations among dispositions can be justi-
fied by Reichenbach’s (1971) principle of the common cause. The details of
this approach are spelled out by help of the framework of Bayesian net-
works in (Feldbacher-Escamilla and Gebharter 2019). This framework, if
causally interpreted, can be seen as a generalisation of Reichenbach’s ideas
(see Glymour, Spirtes, and Scheines 1991). In the following we characterise
creative abduction. We will proceed as follows: First, we briefly describe
the approach of Schurz (2008a) to creative abduction and how it allows for
unifying strict empirical correlations among dispositions. Afterwards, we
show how successful cases of creative abduction can be modelled within
the more general framework of Bayesian networks.

Following (Schurz 2008a; and Schurz 2016), we focus on a simple analy-
sis of dispositions as introduced by the early logical empiricists (see Carnap
1936, 1937, e.g.). According to this analysis, whether an object x has a dis-
position D depends on whether certain test conditions T lead to a specific
reaction R. For an object x to be soluble in water, for example, it is required
that x dissolves at some time t if put into water at t:

∀t(T(x, t) → (D(x) ↔ R(x, t))) (7.1)

According to the traditional understanding, T and R are empirical con-
cepts, while the dispositional concept D is a not directly observable theo-
retical concept. Note that equation (7.1) comes close to a partial definition
of D on the basis of T and R, except that the dispositional term is not rel-
ativised to t. It is a well-known fact that the only non-conservative (or
creative) import of equation (7.1) is the following assumption about the
uniformity of test-reaction pairs (see Feldbacher-Escamilla 2020b, sect.3.3):
If at some time t an object x satisfies the test conditions and brings about
the corresponding reaction, then x will do so at any time t:

∃t(T(x, t)&R(x, t)) → ∀t(T(x, t) → R(x, t)) (7.2)
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Note that equation (7.1) and equation (7.2) are empirically equivalent. If
equation (7.2) has been established on empirical grounds, then introducing
a disposition D via equation (7.1) is a theoretical means to explain equa-
tion (7.2). However, not much is gained by introducing D since for each
regularity among test-reaction pairs a distinct disposition has to be postu-
lated. Things become more interesting once we focus on regularities among
several dispositions D1, . . . , Dn, each characterised by a corresponding test-
reaction pair consisting of Ti and Ri (with 1 ≤ i ≤ n). Now assume that
we found strict pairwise empirical correlations between all of these dispo-
sitions D1, . . . , Dn, meaning that

Di(x) ↔ Di+1(x) for all 1 ≤ i < n. (7.3)

This amounts to the assumption that the following statement has been em-
pirically established:

∃t(Ti(x, t)&Ri(x, t)) → ∀t(Tj(x, t) → Rj(x, t)) for all 1 ≤ i, j ≤ n (7.4)

Let us call each statement of this form a crossed uniformity assumption. Given
n test-reaction pairs for n dispositions D1, . . . , Dn, we get n2 such crossed
uniformity assumptions (Schurz 2008a, p.226). It is a logical fact that this
is empirically equivalent to introducing one higher-level dispositional con-
cept D characterised by n test-reaction pairs:

∀t(Ti(x, t) → (D(x) ↔ Ri(x, t))) for all 1 ≤ i ≤ n (7.5)

Note that introducing the theoretical concept D via equation (7.5) reduces
the number of law statements from n2 to n. In this sense such a reduction
can be understood as unificatory. The abductive inference consists in the
introduction of D via equation (7.5) on the basis of equation (7.4). It can be
illustrated on the following example inspired by (Hempel 1965): Assume
that at some time the inhabitants of a not too distant possible world re-
alised that some objects have the disposition to attract iron (D1) and that
some objects have the disposition to produce electricity when moved along
a wire (D2), meaning that they introduced the two theoretical concepts D1
and D2 on the basis of equation (7.2) and in accordance with equation (7.1).
Suppose further that both discoveries were made independently of each
other, but that people found out later on that the dispositions D1 and D2
are correlated (equation (7.3)) via observing that their corresponding test
and reaction conditions coincided (equation (7.4)). They might then have
started to explain this correlation by introducing the higher-level disposi-
tion of generating an electromagnetic field D via equation (7.5).

Note that creative abduction as discussed above can be interpreted ei-
ther in a realist or an instrumentalist way. Under the latter interpretation
D is taken to be nothing over and above a more or less useful theoretical
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means to unify empirical descriptions of certain phenomena of interest that
can—in principle—be replaced by any other concept with equal empirical
adequacy and unificatory power. Under the realist interpretation, on the
other hand, D is assumed to represent a real structure; statements involv-
ing D are considered to be either true or false. Schurz (2008a) as well as
Schurz (2016) made a strong case in favour of a realist interpretation by
endorsing the common cause principle of Reichenbach (1971):

(CCP) If two properties P and Q are correlated and neither P causes Q
nor Q causes P, then P and Q are effects of a common cause D.

The common cause principle (CCP) demands that every correlation among
any pair of properties not standing in direct causal dependence to each
other has to be explained by the existence of an independent common
cause. In this sense (CCP) provides a way of causally unifying observed
regularities. In the case of pairwise empirically correlated dispositions such
as D1, . . . , Dn above, (CCP) supports a realist interpretation of the unifying
higher-level disposition D: The correlation among dispositions D1, . . . , Dn
is explained by postulating a common cause D.

Now, this characterisation of creative abduction can be generalised by
embedding it into the more general framework of Bayesian networks. Fur-
thermore, the generalisation allows for several interpretations of creative
abduction. One might consider common cause abduction as a realist infer-
ence method, but one might also consider it as an instrumentalist one. This
is, because, though Bayesian nets can be causally interpreted, one does not
have to subscribe to a realist interpretation when employing this particu-
lar framework to model creative abduction (for an argument supporting a
realist interpretation of the causal Bayesian network framework, see Geb-
harter 2017; Schurz and Gebharter 2016). An instrumentalist can still use
Bayesian networks without a causal interpretation as a tool for making ab-
ductive inferences featuring unification.

Let us now come to the model of creative abduction in the Bayesian
network framework. We represent pairwise empirically correlated lower-
level dispositions by variables D1, . . . , Dn and the abduced higher-level
disposition by a variable D. Evidence for one of the lower-level disposi-
tions Di (with 1 ≤ i ≤ n) is represented by a variable Ei which stands for
an inductive generalisation of instances of test-reaction conditions such as
(Ti(a1, t1)&Ri(a1, t1))& · · ·&(Ti(ak, tl)&Ri(ak, tl)). The dependence of each
lower-level disposition Di on its corresponding evidence Ei is represented
the same way as the dependence of a hypothesis on its evidence is typi-
cally modelled in the Bayesian framework: For each pair Di, Ei we draw an
arrow Di −→ Ei. Since the creative abductive step is conducted by apply-
ing (CCP) in the approach of Schurz (2008a), we introduce the higher-level
disposition variable D as a common parent of the lower-level disposition
variables D1, . . . , Dn. The resulting graph is depicted in figure 7.3.
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Figure 7.3: Bayesian network for modelling successful instances of creative abduc-
tion

Probability flow between dispositions D1, . . . , Dn is established via D if
the following general conditions are satisfied:

1. D is not extreme, i.e., 0 < Pr(D) < 1.

2. Each Di depends positively on D, i.e., Pr(Di|D) > Pr(Di).

From 1 and 2 it follows that Pr(Di|Dj) > Pr(Di) if i �= j (for a proof see,
e.g., Dardashti et al. 2019). To account for the corresponding correlations
between the evidence E1, . . . , En, the following condition has to be satisfied
as well:

3. Each Ei depends positively on its corresponding Di, i.e., Pr(Ei|Di) >
Pr(Ei).

From 1, 2, and 3 it follows that Pr(Ei|Ej) > Pr(Ei) if i �= j.
Conditions 1, 2, and 3 are necessary conditions for successful creative

abduction: They guarantee pairwise correlations among lower-level dis-
positions that have to be inductively inferred on the basis of observed ev-
idence and build the basis for introducing the higher-level disposition D

which is then, in turn, used to explain these correlations.
Like in the approach of Schurz (2008a), creative abduction provides uni-

fication if modelled Bayesian style. In the original (deterministic) approach
introducing the higher-level disposition D provided unification of n2 em-
pirical law statements establishing pairwise empirical correlations among
n lower-level dispositions to n higher-level dispositional statements. In the
Bayesian setting, pairwise empirical correlations between n lower-level dis-
positions D1, . . . , Dn consist in (n

2) probabilistic dependencies of the form
Pr(Di|Dj) > Pr(Di), where 1 ≤ i �= j ≤ n. Similarly, for the dependen-
cies among pairs of evidential variables there are (n

2) empirical correlation
statements of the form

Pr(Ei|Ej) > Pr(Ei), where 1 ≤ i �= j ≤ n. (7.6)
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It follows from the Markov factorisation (equation (2.1)) that these (n
2) em-

pirical correlation statements can be unified by the 2n + 1 probabilistic
statements in conditions 1, 2 and 3.: n statements of the form Pr(Ei|Di) >
Pr(Ei) (with 1 ≤ i ≤ n), n statements of the form Pr(Di|D) > Pr(Di) (with
1 ≤ i ≤ n), and 1 statement 0 < Pr(D) < 1. To compare the approach of
Schurz (2008a) and the Bayesian approach w.r.t. their unificatory power, we
introduce a simple measure u intended to capture the intuitions about uni-
fication outlined above. Given n correlated lower-level dispositions, u(n)
measures the ratio between x(n) empirical statements to be unified and
y(n) unifying theoretical statements. In order to shift the neutral case to 0,
we subtract from this ratio 1:

u(n) =
x(n)
y(n)

− 1

Its output is in the interval [−1, ∞), where a negative value means that
the theoretical description is more costly than simply listing the empirical
statements, 0 means that there is no gain but also no cost in providing a
theoretical description, and a positive value means that the theoretical de-
scription provides unification. This kind of measuring unificatory power
by counting statements, argument patterns, etc. is common in the unifi-
cation literature (see Woodward 2018, sect.5.4). There are, however, also
other ways of measuring unificatory power. To avoid problems Bayesian
measures have with common cause structures (see Schupbach 2005), Myr-
vold (2017) suggests to avoid an explicit representation of common causes.
For purposes of unification, one should use hypotheses postulating such
common causes instead. But since we focus on creative abduction here,
avoiding common causes in order to maintain a Bayesian measure for uni-
fication seems to be inappropriate for our endeavour. For this reason and
in order to compare the Bayesian network analysis with Schurz (2008a), we
decided in favour of a simple counting measure.

A comparison of the unificatory power of both, the original and the
Bayesian network approach, is provided in figure 7.4 (thin and thick solid
line): In the case of strict (unconditional) correlations, the original approach
fares better than the Bayesian approach. This is due to the theoretical power
of the Bayesian framework which requires more parameterisation.

Up to now we focused on comparing unification of statements about
unconditional empirical correlations. However, much more empirical corre-
lations are possible in the Bayesian setting. If the evidential base is strictly
correlated (i.e., Pr(Ei|Ej) and Pr(Ei|Ej) with 1 ≤ i, j ≤ n are extreme),
then it follows from the Markov factorisation (equation (2.1)) and condi-
tions 1, 2, and 3 that each two variables Ei, Ej (with i �= j) are independent
conditional on any set of other evidential variables. Thus, the uncondi-
tional dependence statements in equation (7.6) capture all dependencies
among variables E1, . . . , En in this setting. However, if some correlations
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among pieces of evidence cannot be screened off by some non-empty set of
other evidential variables, then also many conditional empirical dependen-
cies may hold among pairs of evidential variables. In particular, there can
be up to 2n−2 · (n

2) empirical dependencies of the form

Pr(Ei|Ej, Z) > Pr(Ei|Z), where

1 ≤ i �= j ≤ n and Z ⊆ {Ek : 1 ≤ i �= k �= j ≤ n}.
(7.7)

If these conditional dependencies are also taken into account, then creative
abduction Bayesian style provides a tremendous gain in unificatory power
(see figure 7.4, thin and thick solid as well as the dashed line). From 1, 2,
and 3 it also follows that Pr(Ei|Y) > Pr(Ei|Z), where Z ⊂ Y and Y are sets
of evidential variables different from Ei (for a proof see, e.g., Dardashti et al.
2019). So, the Bayesian network framework allows for a much more fine-
grained modelling of non-strictly empirically correlated dispositions which
can be found in many higher-level sciences such as economics, medicine,
psychology, and sociology.

In the preceding two sections we have characterised selective abduc-
tion. We have already provided a partial justification of selective abduction
by highlighting the epistemic value of simplicity. In this section we have
characterised creative abduction. We have also spelled out wherein sim-
plicity of creative abduction consists in, namely in unification as measured
via u. Unification in this sense is expressed by the ratio of the number of
statements to be explained (explanandum/explananda) and the number of
statements used for an explanation (explanans/explanantia). This is the way
we measured simplicity in the case of creative abduction. However, note
that there is a difference between simplicity in the case of creative abduc-
tion (u), and epistemically justified simplicity in the case of selective abduc-
tion (complexity c which is the degree of the polynomial for curve fitting).
In the next section we will show how simplicity in the case of creative ab-
duction in the Bayesian framework translates into simplicity as used in the
case of selective abduction. Afterwards, we complete the justification of
these abductive methods by help of meta-induction.

7.4 A Meta-Inductive Justification of Abduction

In this section we complete the characterisation of selective and creative ab-
duction and then apply the theory of meta-induction in order to show how
they can be justified. For this purpose we need to fulfil two tasks: First, we
need to explain how unification provided by creative abduction translates
into simplicity as discussed in the information theoretical approach Akaike
style, and hence is epistemically relevant. And second, we need to show
how abductive selection of creative abduction amongst others needs to be
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Figure 7.4: Comparison of unificatory power in the original and in the Bayesian
setting: n is the number of pairwise empirically correlated dispositions. u(n) mea-
sures the unificatory power given n such dispositions by taking the ratio between
the number of their corresponding empirical law statements and the number of
unifying statements with a shift of the neutral case to 0. In the original setting
(thin solid line), u(n) is calculated via n2

n − 1, where n2 is the number of empirical
law statements in equation (7.4). The unifying statements consist of the n formulae
in equation (7.5). In the Bayesian setting (thick solid line), the corresponding u(n)

is calculated via (n
2)

2n+1 − 1. The nominator (n
2) expresses the number of statements

describing the strict (unconditional) empirical correlations in equation (7.6), and
the denominator 2n + 1 is the number of unifying statements in conditions 1, 2,
and 3. The unificatory power u(n) in the Bayesian setting with conditional depen-

dencies (dashed line) is calculated via 2n−2·(n
2)

2n+1 − 1. The numerator expresses the
number of statements describing the conditional and unconditional dependencies
according to equation (7.7), and the denominator 2n + 1 is, again, the number of
unifying statements in conditions 1, 2, and 3. This case shows that once one allows
for non-strict (conditional) correlations, then abductive inferences in the Bayesian
network setting receives a tremendous boost in terms of unificatory power—note
that the y-axis plots the logarithm of the ratio with a shift of the neutral case to 0.

done in detail in order to guarantee long run optimality which suffices for
epistemic justification.

Let us begin with the first problem: How does unification u of the
Bayesian framework translates into simplicity (inversely proportional to
c)? Forster and Sober (1994) discuss already the question why, given an
effect E, explanations that postulate fewer causes should be preferred over
explanations that postulate more. If we assume two binary causal variables
(val(D1), val(D2) ∈ {0, 1}) then the cases to be considered are as follows:

Pr(E|·) D1 D1
D2 d0, d1, d2, d1,2 d0, d2
D2 d0, d1 d0
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Where the dis are the parameters of the models. Now, given these ingredi-
ents, one can formulate several models as, e.g.:

(CE1) c = 1: Pr(E|D1, D2) = d0 + d1 · val(D1)

(CE2) c = 2: Pr(E|D1, D2) = d0 + d1 · val(D1) + d2 · val(D2)

(CE3) c = 3:
Pr(E|D1, D2) = d0 + d1 · val(D1) + d2 · val(D2) + d1,2 · val(D1) ·
val(D2)

Here (CE1) states that only a single cause (D1) is relevant for the explana-
tion of E. (CE2) states that two causes (D1, D2) are relevant, but that these
do not interact. And (CE3) states that the same two causes are relevant, but
that they also interact. By similar reasoning as in section 7.2 where we dis-
cussed the Akaike framework, it might be the case that the assumption of
interactive causes (CE3) provides a better explanation in terms of accuracy.
However, since the number of parameters is also increasing from (CE1) to
(CE3), better fit of the models increases also their proneness for overfitting,
i.e. fitting errors in E. If one assumes in particular that the accuracy of these
three models is equal, then (AIC) tells us to favour the simpler model, since
then: AIC(CE3, E) < AIC(CE2, E) < AIC(CE1, E) (see Forster and Sober
1994, sect.4).

Now, we cannot translate the measure for unification u of the preced-
ing section directly into a measure of the number of parameters needed
for such models c. However, we can provide a transformation which pre-
serves, considering the relevant cases only, the comparative structure. This
means that for the relevant cases we cannot provide a transformation of u
to c on the cardinal scale, but we can provide such a transformation on
the ordinal scale. Here is an outline of how it works: Again let (n

2) be
the number of statements about strict and unconditional empirical corre-
lations according to equation (7.6). Then a Bayesian network as depicted in
figure 7.3 allows for explaining these correlations by help of 2n + 1 state-
ments, namely one statement for the non-extremity of the common cause D
(condition 1), n statements for the positive correlation of the intermediate
dispositions Di with respect to the higher-level disposition D (condition 2),
and n statements for the positive correlation between the evidence Ei with
the respective Di (condition 3). So, this explanation has unificatory power
u(n) = (n

2)/(2n + 1)− 1.
In the Bayesian setting, one can account for explaining the empiri-

cal correlations by help of many other networks. So, e.g., one could ac-
count also for a pairwise correlation among the Es by postulating com-
mon causes for pairs of Es which in turn are again linked in pairs by
common causes and so forth until all are linked via a root cause D. Fig-
ure 7.5 illustrates such a Bayesian network. Now, there are n − 1 vari-
ables D1, . . . , Dn−1 (where Dn−1 = D) in such a network one considers as a
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common cause (for combinatorial considerations on this see our discussion
of binary decision trees in section 3.3). In order to account for empirical
correlations in such a network, one would need to postulate conditions
similar to 1–3 for the common causes, namely first, non-extremity of D:
0 < Pr(D < 1. And second, pairwise positive correlations between chil-
dren and parents: Pr(E1|D1) > Pr(E1), Pr(E2|D1) > Pr(E2), . . . as well
as Pr(D1|D n

2 +1) > Pr(D1), Pr(D2|D n
2 +1) > Pr(D2), . . . . As can be seen

according to figure 7.5, the latter amounts to stating such a correlation for
any arrow. Since there are n − 1 Ds and each D has two arrows, there are
2 · (n − 1) such arrows. So, taking these correlation statements plus the one
statement for non-extremity of D, one needs 2n− 1 explanantia statements.
Hence, for such an abductive inference u(n) = (n

2)/(2n − 1)− 1.

D

...
...

. . .

D n
2 +1

D1

E1 E2
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· · ·

· · ·

· · ·

D n
2 +

n
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En−3 En−2

D n
2

En−1 En

Figure 7.5: Bayesian network for modelling creative abduction with complex the-
oretical structure

It is clear that the one can increase the performance of the Bayesian
approach to abduction by cutting intermediary theoretical terms little by
little. One can optimise this approach by omitting all the intermediate
lower-level dispositions (the Ds) and unify the correlations among the evi-
dence E1, . . . , En by directly abducing D. The corresponding Bayesian net-
work’s graph is depicted in figure 7.6. In order to account for the em-
pirical correlations in such a network, one needs to assume condition 1
(0 < Pr(D) < 1) and n times a positive correlations between the Es and D:
Pr(E1|D) > Pr(E1), . . . , Pr(En|D) > Pr(En). Hence, the unificatory power
is: u(n) = (n

2)/(n + 1)− 1.
In general, introducing intermediary lower-level theoretical terms (dis-

positions) comes at the expense of unificatory power. However such dis-
positions D1, . . . , Dn are sometimes practically necessary to find a more
general higher-level disposition D. So, sometimes for practical reasons the
unificatory payoff is diminished. To illustrate this by help of an example,
one might think of the history of electromagnetism (this is a very rough
sketch backing on Verschuur 1993): Already in ancient times attraction of
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D

E1 E2 · · · En

Figure 7.6: Bayesian network for modelling creative abduction with the most sim-
ple theoretical structure

iron by lodestone E1 was correlated with different behaviour E2 of north
and south pole of such stones (to attract and to repel each other) via a dis-
position magnetism D1. In medieval times, geographic directions E3 were
correlated with the displaying of compass needles (E4) via a disposition
compass D2. In the modern era these two dispositions were correlated via a
higher order disposition magnete tellure D3 (by William Gilbert who speaks
of “the great magnet earth”). In the nineteenth century this disposition
was correlated with dispositions in the realm of electricity to a higher or-
der disposition D4 (by Hans Christian Ørsted, André-Marie Ampère, and
Michael Faraday), which was in turn correlated with further dispositions
of optics by James Clerk Maxwell via the higher level disposition of elec-
tromagnetism D5. Correlating via higher level dispositions still goes on and
on (quantum electrodynamics etc.). All these theories achieve better and bet-
ter unification and allow for cutting out more and more intermediary links
(e.g., magnetism, electricity, and optics are treated within one framework
of electromagnetism). Figure 7.7 illustrates these different performances:
Abducing one common cause which allows for explaining all the empirical
correlations as in the Bayesian network of figure 7.6 fares best (dotted line).
Abducing common causes in a pairwise manner as in the Bayesian network
of figure 7.5 fares better (dashed line). And finally, abducing a lower level
disposition for each empirical phenomenon and then unify them by help of
a higher level disposition also allows for unification, but fares worst (thick
line—this is the same abduction as the thick line in figure 7.4).

Now, as we can see from the structural equations (CE1)–(CE3), with an
increasing number of Ds, also the number of parameters in the polynomial
increases. Note that for n empirical variables, the number of theoretical
variables (disposition variables) in figure 7.3 is n + 1. The number of the-
oretical variables in the complex Bayesian network of figure 7.5 is n − 1.
The number of theoretical variables in the simplest Bayesian network of
figure 7.6 is 1. And the number of theoretical variables in any Bayesian
network in between which accounts for the empirical correlations and cuts
out theoretical variables from the complex network is also in between i.e.
< n − 1 and > 1. Hence, the degrees of the polynomial in the respective
structural equations have the same order. So, simplicity in terms of number
of statements in the explanans (u) matches ordinally simplicity in terms of
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Figure 7.7: Comparison of unificatory power in the Bayesian setting: As in fig-
ure 7.4, n is the number of pairwise empirically correlated dispositions and u(n)
measures the unificatory power given n. The dotted line represents unification by

abducing a single common cause (u(n) =
(n

2)
n+1 − 1). The dashed line represents

unification by abducing a pairwise common cause structure (u(n) =
(n

2)
2n−1 − 1).

The thick line represents unification by abducing first lower level dispositions

which are then unified by one higher level disposition (u(n) = (n
2)

2n+1 − 1).

the degree of a polynomial (c). Hence, we can also apply the information
criterion equation (AIC-Abd) for selecting creative abduction.

So much for the first task, the translation of simplicity in terms of uni-
fication u to simplicity in terms of the degree of a polynomial c. This al-
lows for justifying the epistemic relevance of (positive) u. Now, given the
epistemic relevance of simplicity, how should we select among hypotheses,
explanations, theories? According to selective abduction equation (AIC-
Abd), we should try to maximise the information theoretical balance be-
tween accuracy (Pr(P|C)) and simplicity (c(C)). By choosing that hypoth-
esis, explanation or theory which has the best balance, we will be closest
to the truth, which might be different from being closest to the data P (see
Forster and Sober 1994, p.6). So, given the epistemic aim of being close to
the truth, equation (AIC-Abd) seems to be an optimal means to achieve this
end. However, this is with respect to explanation. What about predictions?
What about choosing the best balanced hypothesis or theory for prediction?

Now, the theory of meta-induction can be applied for optimising pre-
dictions in any respect, as long as the formal conditions of the framework
are satisfied. In our application to Hume’s problem of induction as well
as in the motivation of our notions of regret, success, learnability, optimality,
etc. we interpreted the framework plainly epistemically: Given a prediction
game G with Y and F, we interpreted Y as the truth and F as prediction
methods or hypotheses about the truth. However, we can also take in a
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more pragmatic standpoint and interpret Y as past, present, and future
data, and F as prediction methods or hypotheses about which data will
be gathered in the future. Since data typically contains error and noise, it
easily falls apart from the truth, hence this interpretation does not coincide
with the former. And in this sense it seems to be perfectly fine that also the
criteria for success fall apart: Epistemically speaking, we still aim at predic-
tions that are as closest to the truth as possible. However, given our noisy
data, we know that we need to aim at predictions that are best balanced be-
tween accuracy (fitting) and complexity (overfitting). Success consists not
in minimising the distance from the data, but making a prediction which
is best balanced between these two parameters. So, in order to achieve this
goal in the long run, the idea is to use a normalisation of equation (AIC).
If r is the highest polynomial we are going to consider and Pr is ε-regular
(i.e. only Pr(⊥) = 0 and all other probabilities are > ε > 0—for details see
chapter 11), then AIC(C, P) ∈ [log(ε) − r,−r]. Hence, we can normalise
AIC(C, P) to [0, 1] by taking

AIC(C, P)− (log(ε)− r)
− log(ε)

which is in [0, 1].
Now, let us consider a prediction game G with Y, F. Let G be about

predicting the best balancing for making explanations or predictions. As-
sume that Y is a series of objectively best balancing. This will still fall apart
from providing a most accurate prediction, i.e. a true prediction, because
the degree of an extension of a polynomial predicting up to round t − 1
might be increased by 1 if one predicts for round t the true value with
probability 1, whereas it might not be increased at all by predicting the true
value with close to 1 probability and hence deviation from the truth might
have a higher AIC (the AIC is higher, if the deviation allows for no change
in the degree of the polynomial and the basis of log in equation (AIC) is
> 1/(1 − Pr(P|C))). Given such an “objective” best balancing, we can in-
terpret F as a set of theories or hypotheses which provide predictions of
what will be the best balance once new data enters the game (i.e. once one
moves forward to the next round). We take the predictions in F to be the
actual AICs of the same methods in predicting some event in another pre-
diction game, let us say G′. So, if for f ′i ∈ F′, AIC( f ′i , {Y1, . . . , Yt−1}) = a,
then the respective fi ∈ F predicts for round t as best balance the normali-
sation of a, i.e. a−(log(ε)−r)

− log(ε) . G is, so to say, a meta game where any prediction
method of the ordinary game G′ predicts that it has the right balance for fu-
ture predictions. In other words, playing G′ and making predictions comes
with the commitment of claiming also that one’s prediction is right in the
sense of best balanced—that is a claim in G.

Now, again by success-based mixing of the forecasts about the best bal-



Chapter 7. Abduction and Optimisation 224

ance to be expected, a meta-inductive learner achieves long run optimal-
ity in predicting the best balance in G. Now, if we assume that in science
creative abductive methods with high unificatory power had the best bal-
ance in the past, then using such creative abduction for inferring theoreti-
cal frameworks is epistemically justified, since using them is, at the current
state of science, the best thing to do: Following the meta-inductive selec-
tion allows for optimality in predicting the best balance in G (and actually
having the best balance in one’s events predictions in G′).

Note that given this assumption, anti-abduction fails to be justified: Dis-
unification and theoretically laden hypothesis invention fared suboptimal
in past (in G′) and hence its predictions of the best balance in G were also
wrong. Hence, meta-inductive selection ignores these methods and this
is the best thing to do, at least given their past performance. Given this
assumption, anti-abduction is by far no optimal means to achieve the epis-
temic end of being best balanced in G.

A further note is in place: In the argument above we made implicitly
the assumption that success in the meta game G and success in G′ are syn-
chronous: Whenever one was relatively successful in choosing the right
balance for theory and hypothesis invention (G), one also was relatively
successful in predicting events (G′). The problem with this assumption is
that in principle nothing hinders an adversary in letting fall things apart
from each other, and allowing for good performance in G′, although fail-
ing in G. However, we can argue for our assumption by assuming a past
correlation and employing induction (as was justified by meta-induction);
by this we can inductively transfer this correlation and are epistemically
justified in doing so.

Note that such an approach can be considered as introducing cognitive
costs in prediction games. Such an expansion is carried out also, e.g., in
(Schurz 2019, sect.7.6).

To briefly sum up: In this chapter we have provided exact characteri-
sations of selective and creative abduction which aim at inferring hypothe-
ses, explanations or theories on the basis of data; the two main relevant
factors in doing so are likelihood of the data given the inferred hypotheses
and simplicity or unificatory power of the hypotheses; we have provided
an argument for the epistemic value of simplicity and unificatory power
and have shown how inferences based on them regarding explanations al-
low for optimality justification. Finally, we have also outlined how infer-
ences based on them regarding predictions can be justified by employing
the framework of meta-induction not only for the likelihood, but also the
simplicity factor.



Chapter 8

A Note on Deduction

For further illustration of the meta-inductive justification of induction, this chapter
states the problem of justifying deduction analogously to the problem of justifying
induction. Afterwards, problems related with a deductive justification of deduction and
such problems related with an inductive justification are discussed. Finally, the different
epistemic ends which underlie the justifications of different inferences are listed.

Considering the binary case, deductive inferences are characterised by
the property of truth preservation with certainty; they transfer the truth
from the premisses to the conclusion with certainty. Putting forward truth
preservation as the paradigmatic epistemic end, it seems that deductive in-
ferences are by definition an optimal means to achieve this end. However,
in showing this, one presupposes deduction, and so the question is whether
a similar problem as in the case of justifying induction shows up also in the
case of justifying deduction.

In this chapter we are going to briefly consider the problem of justifying
deduction. Since meta-induction and its justification presupposes deduc-
tion and is designed for a purpose different than that of truth preservation,
we do not think that the theory of meta-induction allows for many insights
regarding the justification of deduction. Rather, we think that in restat-
ing some problems of justifying deduction in a similar vein as the problem
of justifying induction, we can shed further light on the theory of meta-
induction.

We will do so by first stating the problem of justifying deduction analo-
gously to Hume’s dilemma regarding induction (section 8.1). Afterwards,
we briefly discuss problems related to the justification of deduction and
link them to the respective problems of justifying induction (sections 8.2
to 8.3). Finally, we briefly compare the different epistemic ends underlying
the justification of the epistemic means deduction, induction, and abduc-
tion (section 8.4).

225
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8.1 Haack’s Dilemma for Deduction

Epistemically speaking, we aim at true (and informative etc.) propositions.
Inferences allow us to move from premisses to conclusions, so, if we put
forward the ends (true propositions) for looking out for suitable means (in-
ferences) in a strict sense, then we would need to justify inferences via an
ability to certainly end up with true conclusions, regardless of the truth of
the premisses. Now, clearly “truth generation with certainty” is a task too
demanding or restricting in order to be satisfied, for which reason we aim
at the next epistemic end, truth preservation with certainty. As stated be-
fore, by definition an inference is deductive, if it is truth preserving with
certainty. So, it seems that epistemic justification J of deductive inferences
can be “readily provided and follows automatically” by definition: By def-
inition deductive inferences preserve the truth from the premisses to their
conclusions with certainty. If an inference preserves truth with certainty,
then it is justified. Hence, deductive inferences are justified. However,
clearly this justification used deductive reasoning (e.g. modus ponens), and
hence it presupposes what it intended to show in the first place. The prob-
lem is, that there seems to be no viable alternative other than using de-
ductive reasoning in justifying deductive reasoning. Now, if we think of
induction in the wide sense as the residue class of inferences that are not
deductive, then one can put forward the same dilemma we had already in
justifying induction also for deduction:

“Hume presented us with a dilemma: we cannot justify induc-
tion deductively, because to do so would be to show that when-
ever the premisses of an inductive argument are true, the con-
clusion must be true too—which would be too strong; and we
cannot justify induction inductively, either, because such a ‘jus-
tification’ would be circular. I propose another dilemma: we
cannot justify deduction inductively, because to do so would
be, at best, to show that usually, when the premisses of a deduc-
tive argument are true, the conclusion is true too—which would
be too weak; and we cannot justify deduction deductively, either,
because such a justification would be circular.” (see Haack 1976,
p.112)

An analogous framing of the problem is explicitly discussed also in (see
Jacquette 2011, p.6). It seems that we face the same problem with justifying
deduction as we faced already with induction. However, recall our discus-
sion of an inductive justification of induction in section 5.2: There we saw
that an inductive justification of induction need not be necessarily circular,
if one allows for infinite chains of reasoning and justification. The problem
there was that such an infinite reasoning chain can be provided not only
for induction, but also for anti-induction. Now, the question is whether the
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same problem shows up also in a deductive justification of deduction. In
the next section we briefly explore this question.

8.2 On a Deductive Justification of Deduction

Consider the following (internal) dialogue: “An inference via modus ponens
p, p → q � q is epistemically justified. Why? Because it is truth preserving
and if an inference as, e.g. modus ponens, is truth preserving, then it is also
justified. Why is it truth preserving? Because of its definition (on the basis
of a definition of → e.g. via truth tables). And why is it justified, if it is truth
preserving, and if it is truth preserving, then it is justified? Because it is truth
preserving to infer that it is justified given that it is truth preserving, and
if it is truth preserving, then it is justified.” Now, one might complain that
in justifying modus ponens this way we used modus ponens, and hence
the justification is circular. However, we could also say that after the first
use of ‘because’ we were arguing on a meta level and used another infer-
ence rule, structurally equivalent to modus ponens, but not modus ponens
itself. Likewise, after the second ‘because’, we argued on a meta meta level
and used another inference rule, again, structurally equivalent to but not
identical with modus ponens and the rule used on the meta level. Since in
principle it seems that one could go on with this kind of reasoning ad in-
finitum, in principle we never need to use one and the same inference rule
again, and hence we can avoid a circle. This justification schema is struc-
turally equivalent to that of an infinitist inductive justification as discussed
in section 5.2. We have depicted the schema of an infinitist circle-free de-
ductive justification of deduction in figure 8.1.
Here is an explicit level 2 argument for modus ponens of level 1 (here we
abstain from considerations regarding truth preservation with certainty):
‘T(p)’ stands for ‘p is true’, ‘TP(�)’ stands for ‘� is truth preserving’, and
‘J(�)’ stands for ‘� is epistemically justified’.

1. Modus ponens is the rule: p, p → q �1 q (partial definition of �1)

2. T(p) and T(p → q). (assumption)

3. If T(p) and T(p → q), then T(q). (from the definition of →)

4. Hence: T(q). (by modus ponens of level 2 and 2,3)

5. Hence: TP(�1). (from 1–4)

6. Hence: J(�1). (from 5 and optimality justification)

This inference on level 2 contains a level 2 modus ponens (step 4) which
can be argued for by iteratively adding arguments which are schematically
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1

2

n + 1

level ...
truth preservation of |−n + |−n+1︸ ︷︷ ︸

...
truth preservation of |−2 + |−3︸ ︷︷ ︸

⇓
truth preservation of |−1 + |−2︸ ︷︷ ︸

⇓

p, p → q + |−1 ⇒ q

Figure 8.1: Schema of an infinitist deductive justification of deduction by arguing
with deductive rules on different levels: On level 1, e.g., q is inferred from p, p → q
by help of level 1 modus ponens which is a rule of �1. On level 2, the truth preser-
vation property of level 1 inferences is used for justifying �1 by help of reasoning
with rules of �2. And so on ad infinitum.

equivalent. But note that also many further inferences are used (defini-
tions, conditional proof, optimisation), which opens up a bulk of parallel
justification hierarchies needed in order to justify these too. However, this
should be not our concern here. We assume that such a parallel justification
hierarchy can be established. Rather, we are concerned with the question
whether such an infinite hierarchy is free of the problem we saw in the case
of such a hierarchy for justifying induction, namely that there is also such
a hierarchy for justifying anti-induction.

Now, first note that this kind of justification might seem a little bit ar-
tificial, but in fact it has already a long history: So, e.g., we think that
Aristotle’s concern of vindicating the principle of non-contradiction against
deductive scepticism is in the line of this argumentation. We do not want
to claim that Aristotle actually considered an infinitist notion of justifica-
tion as reasonable—on the contrary, as outlined in chapter 1 he argued
quite explicitly against circular reasoning and reasoning by help of infi-
nite regress. However, it seems that in his vindication of the principle of
non-contradiction one of his aims was to identify it as a principle whose
truth cannot even be questioned without presupposing that it is true. ‘Pre-
supposing’ is key in ascending from one level to the other, and one might
interpret Aristotle as claiming that a deductive sceptic contradicts herself
in arguing for the falsity or indeterminacy of this (level 1) principle, since
in her arguing she uses the principle (on level 2). Here is a passage which
seems to licence such a reading—emphasis by us:

“It is impossible for anyone to believe that the same thing is
and is not, as some consider Heraclitus said—for it is not nec-
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essary that the things one says one should also believe. But if
it is not possible for contraries to hold good of the same thing
simultaneously (given that the customary specifications are added
to this proposition too), and the opinion contrary to an opinion
is that of the contradictory, then obviously it is impossible for
the same person to believe simultaneously that the same thing
is and is not; for anyone who made that error would be holding
contrary opinions simultaneously. That is why all those who
demonstrate go back to this opinion in the end: it is, in the na-
ture of things, the principle of all the other axioms also.” (Aris-
totle 1993, 1005b22-35)

We need not read Aristotle in the sense of him accepting a direct justifica-
tion of deduction in an infinitist manner. Rather, it suffices to read him as
refuting any critique on the principle of non-contradiction by at least im-
plicitly making the distinction of reasoning levels. This distinction is crucial
for the above justification—and in this, and only in this sense, we consider
Aristotle in the tradition of such reasoning.

Not only Aristotle, but most famously also Immanuel Kant was con-
cerned with the presuppositions and preconditions for reasoning. In Kan-
tian terms, he was after “the a priori grounds for the possibility of . . . ” . . . of
everything, amongst others also deduction. Arguments aiming at such a
conclusion are so-called transcendental arguments, and Kant thought that by
such transcendental inferences we end up with a basis which cannot even
be questioned without presupposing the basis:

“The boundaries of logic, however, are determined quite
precisely by the fact that logic is the science that exhaustively
presents and strictly proves nothing but the formal rules of
all thinking [. . . ] in logic, therefore, the understanding has to
do with nothing further than itself and its own form.” (Kant
1787/1998, BIX, pp.106f)

“Concerning the mere form of cognition (setting aside all
content), it is equally clear that a logic, so far as it expounds
the general and necessary rules of understanding, must present
criteria of truth in these very rules. For that which contradicts
these is false, since the understanding thereby contradicts its
general rules of thinking and thus contradicts itself.” (Kant
1787/1998, A59/B84, p.197)

Again, we suggest to roughly interpret “the understanding thereby contra-
dicts its general rules of thinking” as such a contradiction between different
levels of reasoning.

Now, crucial for this kind of reasoning is the assumption that such rea-
soning chains can be recursively and coherently defined only for deductive
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inferences, but not for non-deductive ones. Otherwise one could question,
e.g., modus ponens “without presupposing that it is true”, or this or other
inference rules “would be no a priori ground for the possibility of” reason-
ing, since there were other reasoning chains providing other grounds. So,
the question is whether one can also justify non-deductive inferences which
are not truth preserving along the lines of the schema in figure 8.1. And the
answer is again quite destructive: Yes, there are. Haack (1976, p.115) pro-
vided an instance of such an inference rule, modus morons. The argument is
as follows:

1. q, p → q ||−1 p (partial definition of ||−1)

2. T(q) (assumption)

3. If T(p) and T(p → q), then T(q). (from the definition of →)

4. Hence: T(p). (by modus morons of level 2, simplification, 1–3)

So, by applying modus morons on the meta level, one can prove that it
is truth preserving (the assumptions in 2 allow for inferring 4), and hence
justified. Although applying modus ponens on the meta level allows for
proving that it is not truth preserving, this does not matter here, because
modus ponens is not supposed to be part of this reasoning chain.

Note, that this time step 4 is in need of another inference rule which
allows for inferring from T(q) and T(p → q) that if T(p → q), then also
T(q) which is classically valid, but it can be questioned whether such an
inference is valid in a moronian logic (see Hale 1978, p.112). However, we
can circumvent this problem by framing the problem a little bit differently:
Let us make the assumption of optimised justification explicit by help of
the principle that truth preservation of an inference rule is sufficient for its
justification:

TP(�) → J(�)
Furthermore, let us consider TP to be fundamental in the sense that we
know without any reasoning whether it applies to an inference rule or
not—in fact we presuppose that it coincides with the valuation according
to the ordinary truth tables, but we do not want and need to make this
explicit. Modus ponens is truth preserving, i.e. TP(�1), modus morons is
not: ¬TP(||−1). Note that TP serves the same role as the assumption about
success served in infinitist inductive reasoning: induction was plainly sup-
posed to be successful regarding the past, anti-induction was plainly sup-
posed to be not successful regarding the past (we did not argue that by help
of anti-inductive reasoning it turns out that anti-induction was successful
in past). Now, the justification of level 1 modus ponens is simply:

1. TP(�1)
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2. TP(�1) → J(�1)

3. Hence: J(�1) (by level 2 modus ponens and 1,2)

It is nice to note that anti-deduction (||−) in the sense of an anti-modus ponens
fails to provide a justification (in contrast to the coherentist and infinitist
justification of anti-induction): Define: p, p → q ||−1 ¬q; since ¬TP(||−1)
one cannot infer by level 2 anti-modus ponens a justification of it. However,
anti-deduction in the sense of licensing the inference of the negation or “de-
negation” of what deduction licenses (e.g.: if ϕ �1 ψ, then ϕ||−1 ¬ψ and if
ϕ �1 ¬ψ, then ϕ||−1 ψ) can be shown to be justified (as well as unjustified):

1. Define: X ||−1 ¬p iff X �1 p

2. ¬TP(||−1)

3. TP(||−1) → J(||−1)

4. Hence: TP(||−1) (by level 2 anti-deduction and 2)

5. Hence: ¬J(||−1) (by level 2 anti-deduction and 3,4)

6. Hence: J(||−1) (by level 2 anti-deduction and 5)

There is also a version of modus morons which allows for proving (of course
in its own terms) its justification, without proving (in its own terms) that it
is not justified:

1. Define: ¬p, p → q ||−1 q

2. ¬TP(||−1)

3. TP(||−1) → J(||−1)

4. Hence: J(||−1) (by the so defined level 2 modus morons, 2,3)

Now, we have seen that some deductive rules can be justified this way,
and some can not. An anti-modus ponens could not be justified this way,
the version of modus morons in 1 could be justified. Note that according to
their own terms, these inference rules are truth preserving (although they
are not according to the terms of classical logic). So, according to their
own terms, they are deductive inferences. That they all can be justified by
such kind of reasoning might be also considered as a virtue than a vice,
given logical pluralism (for a recent discussion discussion of the latter see
Cohnitz, Pagin, and Rossberg 2014).

Even faced with this multitude of justified inferences, one can argue for
the optimality of classical logic. So, e.g., Schurz (2018, sect.5.1) argues for
this in the following way: Typically, if there is an alternative logic, then
there is also a translation which allows to embed the alternative logic into
classical logic:
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“I conjecture that a [. . . ] translation strategy applies to all kinds
of non-classical logics (even those not characterizable by finite
matrices). My reason for this conjecture is that all non-classical
logics known to me use classical logic in their meta-language
in which they describe the semantics of their non-classical prin-
ciples. Therefore there must exist ways to translate the prin-
ciples of these logics into classical logic, by introducing addi-
tional operators into the language of classical logic correspond-
ing to the semantical concepts of the non-classical logic (e.g.,
non-standard truth values in the case of many-valued logic).”
(Schurz 2018, sect.5.1)

This is a clearly tenable strategy. However, it does not allow for arguing
for a special status of classical logic (it ought to be noted that Schurz 2018,
does not aim to argue for this). One might be also able to proof the opti-
mality of non-classical logics: Once one starts to formulate, describe, and
argue for a logic on the meta level in the same way as on the object level
(some meta-mathematicians think, e.g., that mathematicians argue by help
of intuitionistic logic, and hence suggest to also use intuitionistic logic on
the meta level). Then also other—non-classical—logics can be shown to be
optimal in this sense.

Another problem related to this is the following one: What, if a meta-
logic allows for a broader notion of translatability than classical (meta-)logic
does? In such a case there is no longer a guarantee for embeddability of
such a non-classical logic into classical logic, although embeddability might
be possible the other way round. Hence, the optimality argument from
above and its conjecture for classical logic needs to be considered as condi-
tional on its current “past success”. So, also in this sense a deductive justifi-
cation of classical logic is in the same boat as a deductive (meta-inductive)
justification of induction.

To sum up, there is indeed a parallel problem for an infinitist non-
circular deductive justification of deduction as there is for such an inductive
justification of induction: Both allow not only for the deductive/inductive
justification of deduction/induction, but also for the deductive/inductive
justification of anti-deduction/anti-induction. Haack (1976) provided an
example which shows that such reasoning fails, if one allows for evaluat-
ing whether an inference rule preserves the truth, the very same inference
rule is applied. Our examples show that even if we grant classical logic the
evaluation of truth preservation (likewise as we granted classical logic the
evaluation of success in the case of induction), such a justification still fails.
The question is, can one do better by help of an inductive justification of
deduction?
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8.3 On an Inductive Justification of Deduction

Let us now come to the other horn of the dilemma, the inductive justifica-
tion of deduction. Recall, “we cannot justify deduction inductively, because
to do so would be, at best, to show that usually, when the premisses of a
deductive argument are true, the conclusion is true too—which would be
too weak” (Haack 1976, p.112). Now, if ‘usually’ means ‘occasionally not’,
then induction is not too weak for justifying deduction. As Huber (2017,
sect.7) argues, we can take as evidence all the known particular inferences
that are structurally equivalent with classical deductive rules. From these
inferences we know that they have at least one false premise or a true con-
clusion (so they do not occasionally lead from true premisses to wrong con-
clusions). Hence, by induction we are justified in assuming that all these
inferences have at least one false premise or a true conclusion which means
that classical deductive rules and all structurally equivalent rules are truth
preserving, i.e. epistemically justified (see Huber 2017, p.528).

Now, at the beginning of the chapter we stated that the epistemic end of
an inference is not only truth preservation, but guaranteed truth preserva-
tion, i.e. truth preservation with certainty. This addition is relevant, because
otherwise we would fail in modal contexts and all inferences with contin-
gently true conclusions would be licensed as deductive ones. The problem
with an inductive justification of deduction is that we cannot account for
truth preservation with certainty. Huber (2017) suggests to not “blame” in-
duction for the impossibility of achieving truth preservation with certainty,
but us: “it is not the principle of induction that is to be blamed. If anyone,
it is we who are to be blamed, because our cognitive limitations prevent
us from establishing the premise needed to inductively infer this stronger
conclusion” (Huber 2017, p.528). The stronger premise concerns the known
particular inferences that are structurally equivalent with classical deduc-
tive rules. However, we would need to know that with logical necessity they
have at least one false premise or a true conclusion. Since we do not know
this, we also cannot apply induction and infer that all these inferences have
with logical necessity at least one false premise or a true conclusion which
would mean that classical deductive rules are truth preserving with cer-
tainty.

We now want to outline an argument which allows also for an induc-
tive justification of deduction via truth preservation with certainty. It is in-
teresting to note that an infinitist deductive justification of deduction as
discussed in the preceding section can be transformed into a finite induc-
tive justification of deduction, simply by stopping the regress at some level
and applying an inductive principle. Here is how this might be imple-
mented: Assume we aim at justifying �1 (e.g. level 1 modus ponens). We
do so by help of TP(�1), TP(�1) → J(�1) and �2. So, the justification
of �1 hinges on that of �2. Now, we go on with justifying �2, the meta
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level rule. We do so by help of TP(�2), TP(�2) → J(�2) and �3, the meta
meta level rule. Hence we receive J(�2) on the basis of J(�3). Analogously
we base the justification of �3 on �4 . . . that of �n−1 on �n. Hence, we
get J(�2), . . . , J(�n−1) based on J(�n). Now, by induction we infer that all
structurally equivalent inferences �i are justified on the basis of �n, so also
(not by help of modus ponens, but universal instantiation) that �n+1 is jus-
tified (J(�n+1)) on the basis of J(�n). Since J(�n+1) justifies �n by the same
scheme as above, we get J(�n). And, hence, we have an unconditional in-
ductive justification of �1. The schema of such a justification is presented
in figure 8.2.

TP(�n−1) + �n︸ ︷︷ ︸
⇓

J(�n−1)

...

TP(�2) + �3︸ ︷︷ ︸
⇓

J(�3)

J(�2) ︸
︷︷

︸

∀i J
(� i)

, J(�
1)
, J(�

n+
1)

Figure 8.2: Schema of transforming an infinitist deductive justification of deduc-
tion to a finite inductive justification of deduction.

Note that the deductive justification at each level is due to truth preser-
vation with certainty, since for each level it follows by help of the deductive
means of the higher level inference that the lower level inference is guar-
anteed to preserve the truth, and hence is justified. Now, by applying in-
duction on this basis, we can infer that with certainty truth is preserved, and
hence we gain an inductive justification of �1.

8.4 Summary of Main Results

In chapter 5 we provided a justification of induction. In section 8.3 we out-
lined a justification of deduction. Now, once we ask for a stronger notion
of justification than coherence, we cannot achieve both justifications at one
and the same time. From Hume’s dilemma we went with the horn of pro-
viding a deductive justification of induction. From Haack’s dilemma we
went, roughly speaking, with the horn of providing an inductive justifica-
tion of deduction. Now, by combining deduction and induction, a “single
horn” in form of an impossibility remains: We cannot justify deduction and
induction by help of deduction and induction, because such a justification
would be circular. However, this should not bother us further: Granting
any form of inference is an a priori ground for the possibility of reasoning at all
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might Kant have said and we could not agree more (although one might
express this a little bit less prosaic: Nope, sorry!).

We now want to outline how one could characterise the different in-
ference methods by help of their different ways of optimising success (in
the long run): We know that the main epistemic ends for which the differ-
ent inference methods are assumed to be adequate means are as follows:
Deduction is a sufficient means for the epistemic end of truth preserva-
tion (also in the short run). (Meta-)Induction is a sufficient means for the
epistemic end of truth-based relative success preservation in the long run.
Abduction is a sufficient means for the epistemic end of data-based relative
success preservation in the long run.

Now, let us spell out the deductive feature of truth preservation in terms
of success: Let Y1, . . . , Yt−1 be the premisses of a deductive inference, and
let Yt be the conclusion of such an inference. Let y1, . . . , yt−1 and yt be the
respective truth values: They could be binary ({0, 1}), they could be k-ary
({k1 ∈ [0, 1], . . . , km ∈ [0, 1]} for some k1, . . . , km), they could be degrees of
belief ([0, 1]). In the simple case of n = 2, i.e. with Y1 as premise and Y2 as
conclusion, “truth” preservation amounts to the constraint:

y2 ≥ y1

Note that this is clearly satisfied for the case of classical logic, but also for
the case of probabilism due to the consequence theorem. It is not neces-
sarily satisfied for the case of many valued logic, since many rules of these
systems are intended for the preservation of so-called designated values, i.e.
values that are considered to be relevant for validity of inferences in such
systems. In principle this allows for inferences where y2 < y1 as long as y2
is a designated value, if y1 is such a value. However, for simplicity reasons
we restrict our considerations only to rules satisfying y2 ≥ y1. In the case
of n > 2, “truth” preservation amounts to the constraint:

yt ≥
t−1

∏
u=1

yu

Again, this clearly holds for classical logic: Whenever all premisses have
value 1, then also the conclusion has value 1. And by assuming probabilis-
tic independency of the premisses Y1, . . . , Yt−1, it holds also for probabil-
ism: If Y1, . . . , Yt−1 � Yt, then Pr(Yt) ≥ Pr(Y1& · · ·&Yt−1) = ∏t−1

u=1 Pr(Yu).
Again, also for many valued logic this does not hold generally (but, e.g.,
for the typical rules for & and ∨ taking the minimal or maximal value). For
simplicity reasons we restrict our considerations only to cases with proba-
bilistically independent premisses etc.

We can put forward reaching the truth or certainty 1 as the absolute
epistemic end. Analogous to before, we claim that it is the task of the de-
ductive method fd to infer Yt, and �d,t measures somehow the distance be-
tween the inferred conclusion and the truth. We define sd,t = 1 − �d,t as a
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measure for the score of the inference of fd. If we think of fd having inferred
Y1, . . . , Yt−1 before, then we might interpret �d,u = 1 − yu (1 ≤ u ≤ t) as the
losses of fd in deducing Yu, and sd,u = yu as the respective scores. Now, by
geometrically averaging the scores of the premisses, we define a geometri-
cal success measure for fd, the deductive method’s success in deducing the
premisses for Yt:

succd,t−1 =

(
t−1

∏
u=1

sd,u

)1/(t−1)

Keep in mind that this holds for a more general than only a binary setting
(not necessarily succd,t−1 ∈ {0, 1}). Given the restricted notion of truth
preservation we can see that deductive methods aim at and allow for the
preservation of success in the sense of scoring:

sd,t ≥ succd,t−1

We can compare this with the optimality result of meta-induction, stat-
ing that in the long run an inductive method fi will be at least as successful,
as any other method fb is: limt→∞ succ i,t ≥ succb,t. This means that in the
long run, (meta-)inductive methods aim at and allow for the preservation of
relative success in the sense of truth based scoring (where fb is any accessible
alternative method):

si,t − sb,t ≥ succ i,t−1 − succb,t−1

Finally, in chapter 7 we have transferred this optimality result to ab-
duction, where success is no longer truth, but data based, and data might
contain noise and error. So, also abductive methods fa aim at and allow
for the preservation of relative success, but this time not in the sense of truth
based, but in the sense of data based scoring:

sa,t − sb,t ≥ succ a,t−1 − succb,t−1

In terms of success, we can express the main difference between de-
ductive and inductive (in a wide sense) inferences as follows: Deductive
inferences aim at absolute success, whereas inductive inferences aim at rel-
ative success. This means that the conclusion of a deductive inference can
never be farther from the truth than the premisses are. Figure 8.3 illus-
trates this fact. In contrast, the conclusion of an inductive inference might
be farther away from the truth than the premisses are. However, in com-
parison with accessible alternative inference methods, i.e. relative to such
inference methods, the conclusion will not be farther from the truth than
the premisses are (in the long run). This fact is illustrated in figure 8.4.
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Figure 8.3: Example of different deductive methods and their iterated application
to different sets of premisses: fd1 will reach the truth. The application of deductive
method fd3 will not lead to the truth, but wont deviate from it either. Similarly
for the application of fd2 . In deductive inferences the distance from the truth will
never grow (e.g. the shaded area between the truth and fd1 remains constant or
shrinks, but never grows). Note that ‘deduction’ is understood here not only in
terms of classical (two-valued logic), but also in terms of relations of probabil-
ity conservation (any inference between logical consequences which preserves the
probabilistic value is in this sense similar to a classical deductive inference).
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Figure 8.4: Example of the development of scores of a meta-inductive method fi:
As one can see, in this example with increasing number of rounds the method’s
distance from the truth grows. However, compared to the accessible object
method, fb, the relative success grows: The relative difference of the scores (which
is ascended) is marked by the dashed line. Note that this growth holds only while
approaching the limiting case.
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Chapter 9

Testimony

In this chapter the problem of testimony is formulated and traditional accounts are
briefly discussed. Afterwards, it is outlined how meta-induction can be employed for a
reliabilistic testimony acceptance practice. Finally, the general case of expert testimony is
investigated.

Classical epistemology focused mainly on the epistemic individual with its
individual notion of belief and knowledge, as well as the justification thereof.
Although epistemologists and philosophers of science discussed social
phenomena from time to time and in scattered contexts, it took until the
mid 1980s when a social turn in epistemology bloomed, grew fast, and
started to set forth new topics on the agenda of epistemology. Consider-
ing not only an individual epistemic agent, but a set of such agents, puts
forward new problems which are not covered by solutions of the classical
realm. Classically, the focus was on individual sources of belief and knowl-
edge, i.e. perception, introspection, memory, reasoning. In part II we focused
mainly on justifying our reasoning practices. In the social domain another
source of belief and knowledge is predominant, namely testimony. One of
social epistemology’s first and perhaps most influential proponents, Gold-
man, puts it this way: “What others think is part of one’s total evidence, a
social part of that evidence” (Goldman 2011a, p.16).

Looking back at about forty years intensive research since the social
turn, Goldman (2011a) suggests a tripartite division of the domain of so-
cial epistemology: (i) there are individual epistemic agents with social evi-
dence, (ii) there are collective epistemic agents, and (iii) there are epistemic
systems where individuals and collectives are embedded in. (iii) concerns
system design and is perhaps the most holistic social epistemological ap-
proach, ranging from science itself, over law, democracy, to education as
the main modules of our societies (see Goldman 1999, prt.3). Here we con-
centrate on the more encapsulated topics (i) and (ii). The main topics of (i)

239
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concern the problem of testimony and peer disagreement. The problem of
testimony consists in the task to identify and justify testimony acceptance
practices. There, e.g., in particular the problem of the case where an ex-
pert testifies to a novice shows up. But also the problem of how to deal
with disagreeing testimonies of peers resulted in a comprehensive debate.
The main topic of (ii) is the problem of judgement aggregation and, to our
understanding, also the problem of the wisdom of the crowds. Judgement
aggregation becomes especially relevant, when a collective of epistemic in-
dividuals has to act as one single unit, e.g., when a jury has to render a
judgement or when a panel has to provide a recommendation (a prominent
alternative to collective group decision by aggregation is that of finding
a consensus via deliberation—for an investigation of truth-conduciveness
of deliberation see Hartmann and Rafiee Rad 2018). Early impossibility
and characterisation results of the 1960s attracted lots of research in social
choice theory and neighbouring disciplines and triggered a lively debate
which also entered the domain of social epistemology and is today one of
the most prominent areas of research in this field. In the course of judge-
ment aggregation, problems of the wisdom of the crowds become also ur-
gent: Whenever a collective acting as a single unit performs better than an
average individual, one calls such an act a wise crowd effect. The problem of
the wisdom of the crowds concerns the question under which conditions
which forms of (aggregated) collective action produce such a wise crowd
effect. Perhaps most famous is the so-called Condorcet jury theorem.

Now, it is interesting to note that already very early on research on
judgement aggregation was linked to the investigation of wise crowd ef-
fects: In the same work where the famous jury theorem was proven first,
also one of the first impossibility results of judgement aggregation, known
today as Condorcet paradox, was discussed, namely the problem that ma-
jority aggregation of preferences (orderings) might be incoherent in the
sense that the majority preference (ordering) might produce a circle and
hence becomes intransitive (due to a > b, b > c, c > a one has to exclude
a > b, b > c → a > c).

In this part of the book we are going to apply the theory of meta-
induction to the domain of social epistemology ((i) and (ii)). Our inves-
tigation is mainly conceptual. For simulations of meta-inductive perfor-
mance in the social realm we refer the reader particularly to (Schurz 2009,
2012b). For a comparison of meta-induction with other social strategies
see (Schurz and Thorn 2016). We discuss the problem of optimisation with
respect to these problems in the social epistemological realm: testimony
(this chapter), peer disagreement (chapter 10), and judgement aggregation
(chapter 11). Finally, we link the main theoretical property of the frame-
work introduced in part I (convexity of the loss function �) to assumptions
made in the debate of wise crowds (chapter 12).

We begin our investigation of meta-induction in the social realm by
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studying its application to the problem of testimony: In section 9.1 we for-
mulate the problem of testimony. In section 9.2 we provide an overview
of traditional approaches, and in section 9.3 we outline our meta-inductive
approach. Finally, in section 9.4 we discuss problems related to the case of
experts testifying to novices.

9.1 The Problem of Testimony

A great bulk of what we know depends in some way or other on the testi-
mony of others. Whatever proposition p you think of, whenever you belief
or disbelief p, know that p is the case or know that p is not the case, and
sometimes even when you neither belief nor disbelief p, almost always tes-
timony will be involved as a source of your belief, disbelief or suspension
of judgement. You might have read a report, article, textbook, listened to
your teacher, supervisor, a friend, family, news etc.: Most probably your
epistemic attitude towards p is influenced by someone testifying p or ¬p.

One of the main features of testimony seems to be that “communication
is an efficient mode of increasing knowledge because information trans-
mission is typically easier, quicker, and less costly than fresh discovery. [. . . ]
Since not every member of a community observes each fact other members
observe, there is room for veritistic improvement through communication”
(see Goldman 1999, p.103). Clearly, since testimony has de facto such a cen-
tral role in our forming of epistemic attitudes and producing knowledge,
the question about its rationale arises. Is testimony an optimal means to-
wards some epistemic end as, e.g., truth? Given an informal characterisa-
tion, this seems to be not the case: Informally, testimony is often charac-
terised as an utterance, a speech act, where the testifier (intentionally) aims
at conveying information:

“Testimony of the informal kind—roughly, saying something in
an apparent attempt to convey (correct) information to someone else—
plays a very large role in our lives and raises the question of
the importance of testimony for knowledge and justification.”
(Audi 2011, p.150)

Now, even if one puts forward as a necessary condition that the testifier
aims at conveying correct information, this neither implies that in fact cor-
rect information is conveyed correctly (for crazy communication chains think,
e.g., of the children’s game telephone), nor that the correctly conveyed infor-
mation is in fact correct information. So, clearly, testimony is not truth con-
ducive in general. How then can it be an adequate source of knowledge?
This is the problem of testimony we are going to address in the following
sections.
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In our formal analysis we will not make any assumption about the in-
tentions of the testifier. So, she might be aiming at conveying correct infor-
mation, but she might be also aiming at deceiving. Furthermore, we also
make no assumptions about the circumstances of the speech act and what
counts as part of such a speech act. One might interpret Kant’s famous ex-
ample of packing your bags in front of someone else in order to deceive her
into thinking you are going on a trip as a case of testimony or not (see Kant
1762/1997, 27:447, p.202). Rather, we only assume that whoever counts
as testifier and whatever counts as testimony, we can attach to the testifier
somehow a measure of how successful she was in testifying in past.

In the next section we outline traditional and modern approaches to
the problem of testimony. We characterise some general features of testi-
monial practice and argue that one approach, namely reliabilism, seems to
allow for the best explanation of the epistemic rationale of testimony. How-
ever, the reliabilist solution to the problem of testimony is externalistic, and
hence incorporates also the problems of externalism. For this reason we
will afterwards outline an internalistic reliabilist alternative in section 9.3
and indicate how this alternative allows for an optimality justification of
testimony via meta-induction.

9.2 Traditional Approaches

We have seen that the main problem of testimony consists in answering
the question if, and if so, how testimony can be considered as an adequate
epistemic source of knowledge. In the epistemic tradition three major ap-
proaches can be distinguished:

• Testimony is no adequate source of knowledge (Descartes; consider-
ation of Descartes in the context of testimony due to (Zollman 2014)).

• Testimony is a priori an adequate source of knowledge (Thomas Reid).

• Testimony is a posteriori an adequate source of knowledge (Hume).

As we will see soon, a posteriori justifications of testimony are in general
reductionistic:

“Besides the word of the speaker, hearers also causally depend
in believing testimony on other fundamental sources of knowl-
edge like perception, memory, learning, and inference. Can the
reliability of testimony be justified by appeal to these sources? This
question represents the dominant epistemological problem of
testimony—is testimony an autonomous source of epistemic
authority?” (par.1 Adler 2012)
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But let us first provide some evidence that these authors can be also at-
tached to the mentioned positions.

We begin with Descartes who claims in his Discourse on Method, Rule III:

“In the subjects we propose to investigate, our inquiries should
be directed, not to what others have thought, nor to what we our-
selves conjecture, but to what we can clearly and perspicuously
behold and with certainty deduce; for knowledge is not won in any
other way.” (Descartes 1975, Rule III, p.5)

and:

“And thus I thought that book learning, at least the kind
whose reasonings are merely probable and that do not have
demonstrations, having been composed and enlarged little by
the opinions of many different persons, does not draw nearly so
close to the truth as the simple reasonings that a man of good sense
can naturally make about the things he encounters.” (Descartes
1637/1998, part one, p.7)

Descartes’ position on testimony fits perfectly well with his high standards
for epistemic justification in general. For practical reasons we might rea-
sonably incorporate beliefs via testimony, but in theory one’s beliefs have
to be grounded on one’s own fundamental basis (as, e.g., the cogito, and not
a cogitas).

Reid states in his Inquiry, section XXIV: Of the Analogy Between Perception
and The Credit We Give to Human Testimony:

“In the testimony of Nature given by the senses [i.e.: percep-
tion], as well as in human testimony given by language, things
are signified to us by signs.” (see Reid 1764/1785/1788/1983,
p.90)

and:

“The wise and beneficent Author of Nature, who intended
that we should be social creatures, and that we should receive
the greatest and most important part of our knowledge by the
information of others, hath, for these purposes, implanted in
our natures two principles that tally with each other. [. . . ] The
first of these principles is a propensity to speak truth [. . . ] Another
original principle implanted in us by the Supreme Being is, a
disposition to confide in the veracity of others, and to believe what
they tell us. This is the counterpart to the former; and, as that
may be called the principle of veracity, we shall, for want of a
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more proper name, call this the principle of credulity.” (see Reid
1764/1785/1788/1983, pp.94f)

Now, whereas Descartes was quite pessimistic or sceptical regarding
the adequacy of testimony, Reid was much more optimistic and non-
sceptical—one might also consider it a bit epistemically naı̈ve. However,
we think this would fall short of a benevolent interpretation. Rather, one
can put it differently and draw a parallel to approaches to the epistemic
problem of justification we have discussed at length in part II in this book:
Whereas Descartes grants justification only to beliefs and sources of be-
liefs which accommodate high epistemic standards, Reid seems to grant
justification of beliefs and sources of belief—in particular the source of
testimony—per default and just withdraws it in case there is a defeater.
Putting it this way brings it in parallel to the discussion of the justification
of induction and the falsificationist response of failing to provide reasons
for an epistemic stance. Furthermore, as we will see below, seeing it this
way also links Reid’s position closer to modern approaches of the so-called
interpersonalist camp.

Finally, let us provide some evidence for our short characterisation of
Hume’s position: In his Enquiry, Of Miracles he writes:

“We may observe that there is no species of reasoning more
common, more useful, and even necessary to human life, than
that which is derived from the testimony of men, and from the
reports of eye-witnesses and spectators. [. . . ] Our assurance in
any argument of this kind is derived from no other principle than
our observation of the veracity of human testimony, and of the usual
conformity of facts to the reports of witnesses.” (see Hume
1772, p.127)

and:

“The reason why we place any credit in witnesses and
historians, is not derived from any connexion, which we perceive
a priori, between testimony and reality, but because we are
accustomed to find a conformity between them.” (Hume 1772,
p.129)

In contrast to Descartes, Hume considers testimony clearly as an adequate
(even necessary) source of belief and knowledge. However, contrasting
Reid, he explicitly declines to argue for the adequacy of this source by help
of an a priori principle (implanted, put into effect by some supreme be-
ing). Rather, he is after an a posteriori justification, an inductive one. So,
given the pairs of notions a priori/a posteriori and acceptance/denial, we can
distinguish four positions, as depicted in table 9.1.
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denial acceptance
a priori Descartes: Testimony

does not suffice high
epistemic standards of
justification.

Reid: Testimony is justi-
fied due to veracity and
credulity (implanted by
God).

a posteriori Hume: Testimony is un-
justified in case of unreli-
able agents.

Hume: Testimony is jus-
tified in case of reliable
agents.

Table 9.1: Traditional positions in the debate on the epistemic justification of testi-
mony

Note that there is a connection between these positions: Hume’s posi-
tion and that of Descartes coincide in case of unreliable testifiers. Descartes’
approach can be also considered as a special case of Hume’s position where
all testifiers are always unreliably (e.g. according to high epistemic stan-
dards). And Reid’s position can be considered as a special case of Hume’s
approach where all or most of the testifiers are in general reliable. It is
interesting to note that empirical studies suggest some rudimentary im-
plementation of the principles mentioned by Reid: Studies of signalling
(birds, apes, etc.) suggest some rough “innate propensities of” veracity
and credulity in the following sense (see Goldman 1999, p.106):

• More alarm calls are produced to conspecific audiences than to audi-
ences of another species.

• Fewer alarm calls are produced when there is no audience at all.

So, again, Reid’s position is less naı̈ve as one might have thought and a
weaker and naturalised version of justifying testimony per default rules
might be perfectly reasonable.

We now want to provide a simple model for these positions. We can
do so by applying probabilism and the Bayesian framework. Within this
framework the explication of the traditional positions is quite easy: We can
describe them simply as different ways of updating in the case where tes-
timonial evidence enters the scenery. Let us label cases where someone
testifies p with ‘Testi(p)’. In the Bayesian setting, the problem of testimony
amounts to the question of how to incorporate testimonial evidence. So,
assume Pri are one’s degrees of belief prior acquiring such evidence, and
Pru are one’s degrees of belief posterior acquiring testimonial evidence (af-
ter updating). According to Bayesian orthodoxy, once one receives new
evidence Testi(p), one needs to updated by the Bayesian rule:

Pru(p) = Pri(p|Testi(p))
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Now, the three positions from above amount to the following updates in
the Bayesian setting: Descartes’ testimonial scepticism states that testimony
should not have any influence at all, hence:

Pru(p) = Pri(p) (TDescartes)

Note that this means that an independency between facts and testimony
is already hard coded in the priors (i.e. a priori): Pri(p|Testi(p)) = Pri(p).
Reid’s testimonial acceptance rule per default states that p should be ac-
cepted, once someone testifies p:

Pru(p) ≈ 1 (TReid)

Also this means that the impact of testimony is hard coded in the pri-
ors, that a strong correlation is already fixed in the priors (i.e. a priori):
Pri(p|Testi(p)) ≈ 1. Finally, Hume’s account amounts to incorporating the
testimony in accordance with the testifier’s reliability reli (reli is intended
to measure how good a testifier agent i is, i.e., e.g. in a binary testifying
task, how often her testimony that some proposition p holds was correct;
we will provide more details on and an exact characterisation of rel in a
minute):

Pru(p) ∝ reli (THume)

Clearly, the Bayesian framework has it that also the Humean update is al-
ready somehow wired in the priors. However, whereas in (TDescartes) and
(TReid) p is relevantly conditionalised on Testi(p) directly, the idea of the
Humean account is to conditionalise p relevantly on Testi(p) and other evi-
dence about i testifying some propositions in other contexts and matches or
mismatches of these testimonies with the facts in the other contexts. In this
sense also in the Bayesian setting (THume) can be considered as an a pos-
teriori approach to testimony (namely incorporation of testimony posterior
grasping reliability information).

Now, let us come to an evaluation of these testimony acceptance prac-
tices. Clearly:

“The veritistic merits of a hearer acceptance practice cannot be
assessed in isolation from the reporting practices that it com-
plements. This point can be appreciated by reflecting on results
from game theory. A particular strategy for playing a certain
game can be very successful when pitted against a second strat-
egy but much less successful when used against others.” (Gold-
man 1999, p.109)

So, if we consider, e.g., a testifying practice that generates only truths,
then blind trust in the sense (TReid) does the job of achieving truths best,
whereas (TDescartes) cannot employ testimony as epistemic source at all
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and (THume) will at some point in time employ the testimony, but has
some initial costs of evaluating the reliabilities. On the other hand, if we
consider a testifying practice that generates only falsities, then (TReid) per-
forms worst (however, at some point in time it will withdraw its default
acceptance of the testimony), whereas (TDescartes) is not harmed at all,
and (THume) will benefit perfectly since it proportions its degrees of belief
according to the reliability of the testifier and once it is low, Pr(¬p), which
is indirectly proportional to the reliability, will get high.

Prima facie, it seems that in comparison with the other approaches to tes-
timony, (THume) is better off: (TDescartes) cannot account for the de facto
success of testimony and fails in testimony-affine environments. (TReid)
can account for the de facto success of testimony by reference to a priori
principles, perhaps also naturalised variants thereof, however, it fails in
testimony-averse environments. Finally, (THume) can also account for the
de facto success of testimony by reference to a posteriori principles and nei-
ther fails in testimony-affine nor testimony-averse environments. What is
more, it can be justified by applying induction. The argument in its qualita-
tive form for reliable agents is as follows: If testifier i was correct in her past
testimonies, then she will be correct in her present testimony (by induc-
tion). Testifier i was correct in her past testimonies (observation). Hence, i
will be correct in her present testimony—for which reason one should ac-
cept it in accordance with (THume). The argument for unreliable agents is
based on the same principles and goes analogously.

Furthermore, note that (THume) allows also for accounting for a fea-
ture of testimony which has been employed famously for a very long time
now. The feature we are speaking about is the veritistic value of indepen-
dent, but coinciding testimonies. It is not by accident, e.g., that Catholicism
stresses independency of the claims in the four Gospels, or that historians
stress the independency of historical reports, or that judges, prosecutors,
and lawyers are after independent eye witness reports in order to argue for
their main theses. Rather, this is standard methodology. The rough idea
is that some proposition p can be considered as true, if it is testified inde-
pendently of each other by several testifiers. The more improbable it is that
two testifiers came up with a testimony on p, given p is true, and the more
such testifiers there are, the more plausible we consider p. If, e.g., we think
of a huge set of possible conceivable hypotheses h1, . . . , h1.000.000 to explain
some fact, and we have a high number n of testifiers claiming that h22516
is the case: Test1(h22516), . . . , Testn(h22516), then it seems quite improbable
that they all came up with the same hypothesis, once we assume that they
are at least partly independent of each other. A simple Bayesian analysis
reveals why this is so. According to the odds version of Bayes’ theorem, the
posterior odds equal the likelihood ratio times the prior odds. If we com-
pare the case with one testimony Test1(p) with the case of two (or more)
testimonies Test1(p), Test2(p), a boost by more testimonies would amount
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to an increase of the posterior probability:

posterior odds︷ ︸︸ ︷
Pr(p|Test1(p))

Pr(¬p|Test1(p))
=

likelihood ratio︷ ︸︸ ︷
Pr(Test1(p)|p)

Pr(Test1(p)|¬p)
1©

·

prior odds︷ ︸︸ ︷
Pr(p)

Pr(¬p)

<
?

Pr(p|Test1(p)&Test2(p))
Pr(¬p|Test1(p)&Test2(p))

=
Pr(Test1(p)&Test2(p)|p)

Pr(Test1(p)&Test2(p)|¬p)
2©

· Pr(p)
Pr(¬p)

Under what conditions does the inequality hold, does further testimony
provide a boost? As one can see, the prior odds cancel out. So, what is
relevant for the inequality are the likelihood ratios. It turns out that the
ratios 1© and 2© are equal, if testifier 2 is blindly following testifier 1 in the
sense that (see Goldman 2011b, p.122):

Pr(Test2(p)|Test1(p)&p) = Pr(Test2(p)|Test1(p)&¬p) = 1

And 1© < 2©, if the testimonies on a proposition are positively related to
the truth of the proposition, and this positive relevance is invariant under
conditionalisation on the other testimonies, i.e.:

Pr(Testi(p)|p) > Pr(Testi(p)|¬p)

and this holds independently of conditionalisation on other testimonies:

Pr(Testi(p)|p, Testj �=i(p)) > Pr(Testi(p)|¬p, Testj �=i(p))

So, given independent testimonies 1 and 2, Bayesian update allows for
probabilistic boost (for a more detailed analysis of the Bayesian approach
to multiple testimonies see Bovens and Hartmann 2003, sect.3.3).

Two provisos of the advantages of (THume) are in place. First, regard-
ing the explanation of the de facto success of testimony as a social source
of belief and knowledge: (THume) can explain this by reference to the de
facto reliability of testifiers. However, very often we lack such information
about the reliability of a testifier, for which reason the success of the indi-
vidual acceptance practice remains unexplained. So, e.g., children learn a
great bulk via testimony, although at an early stage they seem to have not
really a system of reliabilities established. Also in the case of experts and
novices, it is hard to see how novices could estimate the reliability of ex-
perts without being an expert—we will discuss problems related to this in
section 9.4. In general, any reductionistic account to testimony has it that
the reduction basis might be too weak in order to be able to explain the suc-
cess of testimony. For this and other reasons the so-called interpersonal view
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emerged, according to which testimony is granted via an interpersonal rela-
tionship between the testifier and the recipient of the testimony. However,
such alternative accounts are also prone to problems. Prominent is, e.g.,
the following dilemma (see Lackey 2008, 2011): Any such view needs to
be genuinely interpersonal (to account for success) and “epistemologically po-
tent” (to account for justification). However, if such an account is genuinely
interpersonal, then it is “epistemologically impotent”, since a genuinely in-
terpersonal relation like trust allows not for truth veracity. In section 9.4
we will consider problems related to trust in more detail.

Second, (THume) is successful in testimony-affine as well as testimony-
averse environments, however, there are also testimony-adversarial envi-
ronments where testifiers fail, once they have high reliability, and testifiers
succeed, once they have low reliability. In such environments (TDescartes)
as well as (TReid) are better off. Since the performance of a testimony ac-
ceptance practice varies with the environment, one might wonder whether
another epistemic end can be satisfied by an acceptance practice. For this
purpose, Goldman (1999, p.110) suggests to “seek a veritistically good prac-
tice, even if it is not the best practice relative to this or that reporting en-
vironment, [where . . . ] a good practice is one that produces veritistic im-
provements on average, over a range of actual and possible applications.”

Now, as we have indicated in section 5.3 with a binary version of the so-
called no free lunch theorem of online learning, averaging over all possible
cases of event series (testimonies on p and outcomes of p) allows for no
discrimination of such an acceptance practice, if no restriction to the series
is put forward: Considering all possible series, there are equally many in
which, e.g. (TDescartes) succeeds/fails as there are in which, e.g., (TReid)
succeeds/fails. Similarly for (THume). However, if one puts forward a
restriction, then one can discriminate among them.

Goldman (1999) suggests the following restriction: The reliabilities of
the testifiers are not only subjective ones, but objective ones. I.e., reli cap-
tures to objective reliability of the testifier to testify correctly. So, only series
are to be considered which are in accordance with reli. Now, in the simplest
case we could take as a measure of reliability reli = Pr(p|Testi(p)) which
is sometimes also called a measure for truth indication: How good is i’s testi-
mony that p an indicator for the truth of p (see List and Pettit 2011, sect.4.1).
Then, by the assumption that reli is an objective measure, this means that
reli is not only about the recipient of the testimony’s estimation of how good
i testifies, but it is about how good i testifies in fact (in all relevant series).
But then, clearly accepting Testi(p) in accordance with reli grants (THume)
veritistic improvement on average, since Pru(p) = Pri(p|Testi(p)) = reli,
and hence, whenever Pru(p) > Pri(p), then also Pri(p|Testi(p)) > Pri(p),
and Pri(p|Testi(p)) > Pri(p) expresses a fact of the (average) event series
under consideration. So, the “veracity of the testimony” is transmitted to
accepting the testimony.
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Now, to assume that reli is objective and expresses Pr(p|Testi(p)) is not
common practice. Rather, quite often, e.g., at court, it is practice to as-
sume that reli is somehow objective, but expresses Pr(Testi(p)|p), the so-
called truth tracking reliability of testifier i (see List and Pettit 2011, sect.4.1):
This measure is intended for answering the question of how good a truth
tracker i is. So, e.g., if a prosecutor tries to compromise an antagonist tes-
tifier by bringing forth some conflicts of interests, etc., it seems that the
lawyer intends to show that although if p is or were the case, i does or
would not testify p, because of a conflict of interest—so i is (objectively)
unreliable. However, also such a measure of reliability (THume) is proven
to increase veracity on average, since this property is preserved in applying
the Bayesian formula (see thrm.4.1 Goldman 1999, p.121).

Now, what the objective reliability reli of testifier i is, is not accessible to
us. In this sense the solution proposed by Goldman (1999) is an externalist
one: If, from God’s eye view, i is reliable, then we are justified in accepting
her testimony, if not, then we are not. However, also, if from God’s eye
view reli = 0, then (TDescartes) is justified, and if from such a view point
reli = 1, then (TReid) is justified. So, as long as we have no grip on reli,
also these alternatives might be considered as justified. For this reason we
think that one should also aim at an internalist approach to the problem of
testimony which gets some grip on reli. And we think that the theory of
meta-induction can serve this task.

In stating the epistemic end of veracity increase on average, Goldman
(1999, p.110) asked also whether:

“there [is] any acceptance practice that is optimal in all report-
ing environments, in other words, better in each reporting en-
vironment than every other acceptance practice would be?”

His answer was:“As in game theory, the answer appears to be “no.”” And
true, this answer is correct. However, with a slight modification of the epis-
temic end mentioned in the quote, one can provide a positive answer: If one
is after an acceptance practice that is optimal in all reporting environments
in the long run compared to every other accessible practice, then yes, there
is an epistemic means to achieve this end. In the next section we outline
the meta-inductive generalisation of (THume) in order to account for the
problem of testimony.

9.3 The Meta-Inductive Approach

Now, what is a testimony acceptance practice that is optimal in all environ-
ments in the long run compared to every other accessible practice? Stating
the epistemic end this way almost automatically refers to meta-induction.
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In this section we outline a meta-inductive approach to the problem of tes-
timony. Since we consider the problem of epistemic peer disagreement as
a special case of the problem of testimony (both peers testify to each other),
we sketch here only the meta-inductive solution and spell out the details
of this approach in section 10.3 where we investigate the case of epistemic
peer disagreement.

Testimony is a social source of knowledge. For our solution we need to
shift the problem of justifying testimony as a practice for belief or knowl-
edge acquisition to a fully social level, meaning that we assume there are
testimonies from several individuals which might or might not conflict
with each other. In our setting the task of the recipient of the testimonies,
call her o, consists in incorporating these testimonies (accessible practices)
in such a way that in the long run her reliability is optimal in the sense that
her acceptance practice is not outperformed by any other practice. This
means that in the long run either relo converges with reli of the best prac-
tice i or even outperforms reli. Now, once we understand reliability rel in
terms of predictive success (see succ of section 2.3), then meta-induction
is exactly such a testimony acceptance practice we are looking for, since it
allows for relative learnability, i.e. optimality. The argument is as follows:

1. Frame testimonies in a prediction game G with truth Y and predic-
tion practices F.

2. Then we can define a measure for success succ (for details see defini-
tion 2.11).

3. Now, we consider the individual predictions fi,t also as testimonies
(quantified versions of Testi(p)).

4. We use succ to define rel as: reli,t = succ i,t.

5. We define a meta-inductive learner fo based on succ (for details see
definition 3.39 on fami).

6. This testimony acceptance practice fo is long run access optimal (this
follows from theorem 3.40) in the sense that

lim
t→∞

succo,t − succ i,t ≥ 0

if we assume that � which underlies succ is convex.

7. Hence:
lim
t→∞

relo,t − reli,t ≥ 0

This is only a sketch of the meta-inductive approach which is struc-
turally equivalent to our solution of the problem of epistemic peer disagree-
ment. For how to exactly flesh out the definitions see section 10.3.



Chapter 9. Testimony 252

Let us first come to the advantages of this approach: rel is purely suc-
cess based and in this we need not assume that it represents a general objec-
tive feature of the prediction series under investigation. Rather, rel is only
about the past performance of the testifiers, hence, data which is in prin-
ciple accessible to us. In this sense we consider the notion of reliability rel
as internal. Furthermore, due to the long run optimality of the testimony
acceptance practice fo, we gain epistemic justification for reliability based
testimony acceptance.

Now, let us also mention some provisos of this approach: First of all,
fo is guaranteed to be optimal not for any specific round t, but only in
the long run. Second, fo fully depends on the testimonies of others. So,
what we have shown is that some reliabilist testimony acceptance practice
is justified, but not all such practices. In particular, our approach disregards
such acceptance practices which relevantly use own (prior) estimations in
incorporating testimony. Furthermore, also the internalist version of rel
seems to be a too weak basis for explaining the success of reliability based
testimony acceptance: Children and novices seem to have only very little
information about past success available. In general, also experts seem to
lack such information: Think, e.g., on the case of a judge or prosecutor who
needs to estimate the reliability of a testifier. In such a situation it is very
often hard to figure out relevant information or come up with a testimonial
track record. Clearly, in all these cases the approach outlined above cannot
be employed directly for justifying reliability based testimony acceptance
as an optimal means to achieve the stated epistemic end. However, the
approach from above allows for justifying at least some such acceptance
practices, and it might be considered as an idealised model which we apply
to less ideal situations for the purpose of approximation.

Finally, one note about accessibility is in place. In framing the problem
of accepting testimony within the setting of prediction games, we switched
from comparing testimonial acceptance practices to comparing prediction
practices with such a testimonial acceptance practice. Recall, the initial
question of Goldman (1999, p.110) was about showing that a testimony
acceptance practice is “better in each reporting environment than every
other acceptance practice”. Our framing of the problem compares such a
testimony acceptance practice with any accessible prediction practice. This is
quite a modification. However, the meta-inductive framework allows also
for comparing testimony acceptance practices directly: Take for this pur-
pose the fis to be such testimony acceptance practices. Then fo is a meta
practice, a meta testimony acceptance practice which is reliability based.
The optimality results of meta-induction show that such a meta testimony
acceptance practice is long run optimal. Hence, there is a reliability based
testimony acceptance practice which is epistemically justified. The inves-
tigation of (Schurz 2012b) shows that even if one restricts accessibility of
so-called local meta-induction to the epistemic neighbourhood (i.e. a Moore-
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neighbourhood), still expert knowledge spreads.
So, we have outlined a very general approach to the problem of tes-

timony. As mentioned already, the details are spelled out in section 10.3
when we consider the specific case of peers testifying a disagreement.
However, before that we also want to consider other cases of testimony,
most notably the case where an expert testifies to a novice. Such cases will
be our concern in the next section.

9.4 Experts and Novices

We can differentiate different cases of testimony by help of a rough charac-
terisation of the testifier and the recipient of the testimony in terms of expert
and novice. Combining these categories, we can differentiate four relevant
cases as in table 9.2.

testifier recipient of testimony case
novice novice peers
expert expert peers
novice expert redundant/wise

crowd
expert novice authority

Table 9.2: Different cases of testimony

Now, how to incorporate testimony in case of peers will be discussed in
detail in section 10.3. The case of a novice testifying to an expert seems to
be in principle epistemically redundant, since the expert’s opinion is epis-
temically better off—note that our preliminary notions of expert and novice
include expertise with regards to all aspects, so, e.g., an expert has all the
evidence also a novice has, etc. (e.g., we foresee from cases of citizen science
here where huge data sets are created by laymen and studied by experts).
However, even if the expert has all the evidence that also the novice has,
there might be cases where an expert can deploy novice testimony, particu-
larly if the novice is itself performing epistemically well, but just not as well
as the expert: Such novice testimony might be deployed by an expert in or-
der to make use of a so-called wise crowd effect, where a bulk of novices can
outperform the expert opinion, once the novices are independent of each
other and minimally competent. We will discuss such cases in chapter 12.
In this section we are concerned with the last case, the case of an expert
testifying to a novice.

The case of an expert testifying to a novice is a quite extensively dis-
cussed case of testimony. The traditional discussions of the expert/novice
case centre around two problems: First, the problem of how a novice can
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identify an expert. And second, the problem of how exactly a novice should
incorporate the testimony of an expert.

Let us come to the first problem. We can illustrate the identification
problem well by reference to Plato’s Charmides, where Socrates discusses
with Charmides whether a novice can identify an expert and hence satisfy
a precondition for justifyably taking in an expert’s testimony (Charmides,
Plato 1997, p.657):

Socrates: “When another person claims to know something, [. . . ] our
friend [will not] be able to find out whether he knows what he says
he knows or does not know it. But he will only know this much, it
seems, that the man has some science;” (170d)

Charmides: “Apparently so.”

Socrates: “So neither will he be able to distinguish the man who pre-
tends to be a doctor, but is not, from the man who really is one, nor
will he be able to make this distinction for any of the other experts.”

(170e)

It seems that a novice cannot distinguish between an expert and a pseudo-
expert, for which reason one might be sceptic about the justification of tes-
timony from experts. The argument is as follows:

1. Only experts can distinguish (Dist) experts (e) from pseudo-experts (p),
but not novices (n).
Schematically: Distep(x) → x = e & x �= n

2. Only if one can make such a distinction, than she is justified in relying
on testimony from experts (real ore pretending ones).
Schematically: J(Bx(p|Test(p))) → Distep(x)

3. Hence, novices are not justified in using testimony from experts.
Schematically: x = n → ¬J(Bx(p|Test(p)))

This is a very rough schema based on a rough distinction between
experts and novices, and before one can evaluate the sceptical argument
against testimony in case of an expert testifying to a novice, the notion of
expertise has to be characterised. Basically, in science it is all about evidence
and the inferences we draw from evidence. Hence, it is natural to expect
from an expert in comparison to a novice, that the expert has more evidence
and better inferential skills than the novice. As is almost always the case
in describing a comparative notion by help of more than one parameter, in
reality this relation is not that strict: So, typically we also count someone
as an expert in comparison to a novice, in case the novice might have some
evidence which the expert lacks. However, for simplicity reasons we as-
sume (weak) “dominance” regarding both parameters here: e is an expert
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relative to n (n is a novice relative to e), iff e has all the evidence that n has,
and e is inferentially better than n. In accordance with Goldman (2011b),
we can explicate the latter via the conditions of truth indication:

Pr(p|Teste(p)) > Pr(p|Testn(p))

and truth tracking:

Pr(Teste(p)|p) > Pr(Testn(p)|p)
Note that if e is an expert with regards to n, and given the objective inter-
pretation of truth indication and truth tracking from section 9.2, we have
it that rele > reln, and hence n should incorporate e’s testimony Teste(p)
in order to approach rele. Now, the problem of Plato’s Charmides is about
the impossibility of n to figure out whether rel is high or not, in particular,
whether rele > reln or not or whether rele1 > rele2 , where e1 is an expert
and e2 is a pseudo-expert with regards to n. The latter case is also relevant
in so-called novice/2-experts cases, i.e. a case where rele1 > n < rele2 , but
where the experts provide contradicting or disagreeing testimonies as, e.g.:
Teste1(p) and Teste2(¬p). Here “the novice/2-experts problem is whether a
layperson can justifiably choose one putative expert as more credible or trust-
worthy than the other with respect to the question at hand, and what might
be the epistemic basis for such a choice?” (Goldman 2011b, p.116).

Goldman (2011b) discusses the following five sources of evidence for n
to assess e = e1 or e1 in comparison with e2:

1. Arguments of e1 and e2 for or against p

2. Agreement of further experts: Teste1(p) and Teste3(p) vs. Teste2(¬p)

3. Appraisals by meta-experts:
Teste3(Pr(p|Teste1(p)) > Pr(p|Teste2(p)))

4. Interests and biases of e1 or e2

5. Past track records of e1 and e2

Strategy 1 applies, whenever e can make some of the arguments for her
beliefs transparent to n or e1 can make them better transparent to n than
e2 can do. In the best case, n receives a so-called ostensible rebuttal defeater
against the testimony of one of the experts (see Goldman 2011b, p.218), i.e.
an argument in the expertise of n which allows her to rule out one of e1 or
e2. In general, one can expect that by gaining arguments from the experts n
increases expertise (decreases relative novelty by diminishing her distance
from e1 or e2) and hence should end up with higher rel. Note, e.g., that
the programme of the Vienna Circle was not only programmatic regarding
science, but society in general and based on the idea that experts should
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be able to explain their theories also to novices. In accordance with strat-
egy 1 such claims can be found in “The Scientific Conception of the World.
The Vienna Circle” (see Verein Ernst Mach 1996) and also very explicit in
(Neurath 2006, p.400):

“Ein Physiker muß die Forderung eines geistvollen
Denkers grundsätzlich erfüllen können: ‘Jede streng wis-
senschaftliche Lehre muß man in ihren Grundzügen einem
Droschkenkutscher in seiner Sprache verständlich machen
können.’

[In principle, a physicist must be able to fulfil the follow-
ing demand: ‘Every scientific doctrine must be such that it can
be made comprehensible to a cabman in his own language.’]”

Strategy 2 concerns the case of several coinciding testimonies which, as we
have seen in section 9.2, allow also for an increase in rel. Strategy 3 helps
once one has an accurate estimation of the reliability of the meta expert
e3: rele3 . One can think of such a meta expert, e.g., as an institution that
provides academic degrees, professional accreditations that reflect e1’s and e2’s
training and competence (see Goldman 2011b, p.220). Strategy 4 is directly
related with rele1 or rele2 . As we also have discussed above, this strategy
is often employed at court where prosecutors and lawyers bring biases of
testifiers to the fore in order to undermine the jury’s estimation of the tes-
tifier’s reliabilities. Finally, 5 concerns directly the success based way dis-
cussed in section 9.3 and allows for optimisation regarding rel. These are
all strategies that seem to overcome the problem of a novice n in identifying
an expert e.

Let us briefly come to the second problem, the problem of how to exactly
incorporate testimony of experts. Our arguments in the preceding sections
show that incorporating testimony proportional to the degree of reliability
of the testifier as suggested by (THume) allows for epistemic justification:
In case of a prediction game with testifiers we were able to employ results
of meta-induction to show that (internalist) relo is long run access optimal
compared to (internalist) reli. And in case of single testimonies of single
testifiers one might go along with Goldman’s argument of increased verac-
ity on average given externalist reli. This seems to answer the question of
incorporation of testimony in favour of (THume).

However, there is an argument put forward in the literature on epis-
temic authority which seems to undermine the reliability-proportionality
approach to testimony. It is an argument in favour of the so-called pre-
emption thesis which states that the belief or disbelief of an epistemic au-
thority or expert e in a proposition should completely replace all reasons
for or against the proposition of an epistemic subject submitted to the au-
thority like a novice n. Preemption was prominently defended for the prac-



Chapter 9. Testimony 257

tical domain by Raz (1988) who considered it as a definitional feature of
an authority to provide preemptive reasons. Zagzebski (2012), Keren (2014)
and Constantin and Grundmann (2018) defended preemption for the epis-
temic realm. Roughly speaking, preemption demands a novice n to com-
pletely take over the epistemic attitude of an authority or expert e. If we
assume that the testimony of the expert e is not just course grained Teste(p)
or Teste(¬p), but that e testifies her degree of belief Pre(p) = r, then pre-
emption can be formulated as an update rule, given the expert’s testimony
Pre(p) = r as evidence:

Prn(p) = Pru(p) = Pri(p|Pre(p) = r) = r = Pre(p) (TPreemption)

The main argument in favour of (TPreemption) is that if n ends up with a
different degree of belief than e, then n is watering down the expert’s judge-
ment and is not guaranteed to approximate the reliability of e:

“Suppose I decide [. . . to] first make up my own mind indepen-
dently of the ‘authority’s’ verdict, and then, in those cases in
which my judgment differs from its, I will add a certain weight
to the solution favoured by it, on the ground that it, the au-
thority, knows better than I. [. . . ] How will I fare under this
procedure? [. . . ] We can expect that in the cases in which I
endorse the authority’s judgment my rate of mistakes declines
and equals that of the authority [i.e. reln approximates rele]. In
the cases in which even now I contradict the authority’s judg-
ment the rate of my mistakes remains unchanged, i.e. greater
than that of the authority. This shows that only by allowing the
authority’s judgment to pre-empt mine altogether will I succeed
in improving my performance and bringing it to the level of the
authority.” (see Raz 1988, p.68)

Now, let us assume for simplicity reasons that truth/probability indica-
tion of the expert e as estimated by novice n is an adequate measure for
reliability rel, i.e.: rele = Prn(Pr(p) = r|Pre(p) = r), where Pr(p) is an
objective probability or chance of p. Then, if an expert’s rele is high, then by
Bayesian update on evidence Pre(p) = r also Prn(Pr(p) = r) is high, which
collapses to Prn(p) = r. Hence, (TPreemption) can be considered a special
case of (THume). However, note that given such an interpretation of rel,
(TPreemption) is much stronger. It excludes, e.g., a reliability-proportional
weighting of an expert’s testimony as we needed in order to employ op-
timality. If we assume, e.g., that the novice n faces two experts e1 and e2
with rele1 > rele2 , then preemption seems to demand to preempt in favour
of e1 since this allows for approximation of rele1 by reln which is better than
approximating rele2 . However, the meta-inductive testimony acceptance
practice fo we outlined in section 9.3 needs balancing between Pre1(p) = r1
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and Pre2(p) = r2 in order to cash out long run access optimality. So, pre-
emption seems to put forward a problem for fo: On the one hand it seems
clear that in case of expert testimonies the novice should preempt in favour
of the best expert, because otherwise n might fall short of approximating rel
of the best expert. On the other hand we know that fo can employ optimal-
ity only if it mixes according to the expert’s testimonies (online regression),
because otherwise it is prone to suboptimality (online classification). So,
the question is, is something wrong with our meta-inductive application to
testimony?

As we will show now, everything is perfectly fine, because preemption
concerns cases which are not covered by meta-induction. To see this, let us
focus on the argument of Zagzebski (2012) in favour of (TPreemption): She
refers to the problem of probability matching (see Zagzebski 2012, p.115). The
problem of probability matching is as follows (see Vulkan 2000, sect.2): Given
two mutually exclusive options r (right) and l (left) that are randomly dis-
tributed with fixed probabilities Pr(r) and Pr(l), what is the right strategy
to make a decision for one of the options? As empirical studies show, hu-
mans tend to perform the so-called strategy of probability matching. Accord-
ing to this strategy, the frequency of one’s decisions for an option should
match the probability of the options. So, if, e.g., r shows up 75% of the
time and l only 25% of the time (Pr(r) = 0.75 and Pr(l) = 0.25), then hu-
mans, when asked which option to choose, tend to opt for r also 75% of
the time and for l 25% of the time (see Gallistel 1993, chpt.11). Non-human
animals like rats act differently: They perform a take-the-most-frequent strat-
egy that favours exclusively that option which has a higher probability. So,
after some phase of learning the probabilities of the example above, they
opt for r exclusively. What is the rationale of both strategies? It is easy to
demonstrate that the expected utility of the take-the-most-frequent strategy is
maximal (see Vulkan 2000, sect.2): If we calculate the expected utility for
an agent n having credences Prn as follows:

Prn(r) · Pr(r) · u(r) + Prn(l) · Pr(l) · u(l)

If we furthermore assume that r and l are jointly exhaustive and mutually
exclusive in the considered probability space; and if we finally assume that
the utilities of r and l are equal (u(r) = u(l)), then it turns out that having
Prn(r) = 1.0 in case Pr(r) ≥ Pr(l) maximises the expected utilities for n:
Due to these assumptions the expected utility for n is proportional to:

Prn(r) · (2 · Pr(r)− 1) + 1 − Pr(r)

So, if Pr(r) ≥ Pr(l), then Prn(r) · [0.0, 1.0] + [0.0, 0.5] (the possible values
under this assumption) is maximised by Prn(r) = 1.0. And if Pr(r) < Pr(l),
then Prn(r) · [−1.0, 0.0] + [0.5, 1.0] (the possible values under this assump-
tion) is maximised by Prn(r) = 0.0. On average, the highest, i.e. the max-
imal expected, utility is gained by the take-the-most-frequent strategy: In the
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example above it will decide in 75% of the cases correctly. Probability match-
ing is on average below (although, of course, in single instances it might
perform better).

Now, note that the reasoning by help of maximising expected utilities
amounts to applying a 0-1 loss as defined in definition 3.10 for determin-
ing rel. Note also that in his argument Raz (1988) spoke of “number of
mistakes” in considering rel, so also he has a 0-1 loss in mind. However,
as we have argued in section 3.4, online regression presupposes a convex
loss function � (see definition 3.30). This is the reason why the argument
in favour of preemption (TPreemption) does not run against the meta-
inductive version of (THume), but is about a different case of the problem
of testimony by experts. This concerns the general case. Now, in case of a
best expert (as in the example provided above) meta-induction converges
to imitate the best (see, e.g., the one-favourite method in Schurz 2008b), and
so also such a case (of online classification) is covered by meta-induction.



Chapter 10

Epistemic Peer Disagreement

In this chapter the problem of epistemic peer disagreement is characterised and the
traditional approaches to this problem are explicated. Afterwards, a meta-inductive
solution is introduced in detail which covers cases of peer disagreement and testimony
in general. Finally, the meta-inductive approach is linked to arguments and objections
present in the literature on peer disagreement, it is indicated how these impact the
meta-inductive solution, and it is outlined how they can be overcome.

Roughly speaking, two agents have an epistemic disagreement with respect
to some proposition, if one of them believes the proposition, whereas the
other disbelieves it (or suspends judgement on it). It is a case of epistemic
peer disagreement, once the two agents are epistemic peers. Since in science
it is all about evidence and inferences, epistemic peers are characterised by
having the same evidence and inferential skills.

Now, as we see it, the problem of epistemic peer disagreement con-
cerns partly a generalisation of the problem of testimony, and partly a re-
striction of it. The generalisation results from considering several testifiers.
Recall that in the case of testimony investigations often centre around two
agents as, e.g., expert and laymen. In contrast to this, arguments in the
peer disagreement debate very often crucially rely on considering a group
of testifiers, peers. This brings us also to the restriction: The restriction of
the problem of epistemic peer disagreement in comparison to testimony
consists in considering mainly cases of disagreement, i.e. testimonies which
deviate from one’s own epistemic attitude towards a proposition, whereas
in the debate of testimony matching of the attitudes is also of relevance. A
general approach to the problem of testimony and peer disagreement con-
siders cases with several epistemic agents and provides an answer of how
to deal with any form of testimony, might it be that of a peer or not, might
it be in disagreement with one’s own beliefs or not.

There are several proposals to resolve the problem of epistemic peer
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disagreement which concentrate on the question of how to incorporate ev-
idence of such a disagreement. The main positions in this field are the
equal weight view, the steadfast view, and the total evidence view (see Frances
and Matheson 2018, sect.5). In this chapter we present a new argument in
favour of the equal weight view. As we will show, this view results from
a general approach of forming epistemic attitudes based on testimonies in
an optimal way. This general approach concerns all cases of testimony,
and hence provides also an answer to the question of how to incorporate
testimony in general. With respect to epistemic peer disagreement, our ar-
gument shows that one can strengthen the basis for equal weighting mas-
sively from reasoning via epistemic indifference to reasoning via optimal-
ity.

We will proceed as follows: First, we provide a general characterisa-
tion of epistemic peer disagreement in section 10.1. Then, in section 10.2, we
present the formal framework of the classical approaches to epistemic peer
disagreement in detail. Subsequently, in section 10.3, we expand the frame-
work to the meta-inductive setting and provide our argument in favour of
the equal weight view. There we also show how the other approaches fail
to deal with the optimality argument. Finally, in section 10.4 we list some
possible objections to our meta-inductive solution to the problem of peer
disagreement and outline how they might be overcome.

10.1 The Problem of Epistemic Peer Disagreement

Two peers (more on the notion of peers below, for now we suppose that
peers have the same evidence and inferential skills) have an epistemic dis-
agreement regarding a proposition, if their epistemic attitudes towards
the proposition differ. So, e.g., an agent a1 might believe a proposition p
whereas a peer a2 disbelieves or suspends judgement regarding p. Or a1’s
degrees of belief in p might be different from that of her peer a2, etc. The
question of how to deal with such a disagreement is the problem of epis-
temic peer disagreement.

Several proposals to resolve this problem have been put forward in the
literature. Most of them mainly concentrate on the question of if, and if so,
to what extent one should incorporate evidence of such a disagreement in
forming an epistemic attitude towards a proposition. A classical position is
the so-called conciliatory view which suggests to generally incorporate such
evidence (see, e.g., Christensen 2007; Elga 2007; Feldman 2007). A position
at the other end of the spectrum is the so-called steadfast view which sug-
gests to generally not incorporate such evidence (see, e.g., Rosen 2001). In
between are views that suggest to sometimes incorporate such evidence,
and sometimes not or to incorporate such evidence from case to case dif-
ferently (see, e.g., the total evidence view in T. Kelly 2011). The intensive de-
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bate of how to resolve epistemic disagreement lasts already for more than
a decade now (it was initiated by Feldman 2007; clearly, systematic discus-
sion of epistemic disagreement started much earlier; central is, e.g., Lehrer
and Wagner 1981), and still there is little hope that the disagreement among
epistemologists about epistemic peer disagreement will be resolved—at least
regarding this matter steadfasters seem to have won, although there is also
disagreement about this (see Elga 2010).

In this chapter we want to employ the framework of meta-induction
and present a new argument in favour of the most prominent conciliatory
view, namely the equal weight view. According to this view, one should as-
sign the same weight to one’s peer’s epistemic attitude and to one’s own. A
prominent argument for equal weighting stems from a principle one might
want to call the principle of epistemic indifference: If the epistemic attitudes
of n individuals are, regarding their rational formation, epistemically in-
distinguishable (i.e. the individuals are epistemic peers), then each attitude
should be assigned the same weight and, thus, 1/n if they are supposed to
add up to 1. Similarly, as there is a big debate about such an indifference
principle in statistics, there is also a big debate whether such a principle
of indifference applies to the epistemic realm. Steadfasters typically deny
this. What is missing is a principled argument why, in the case of peer dis-
agreement, the principle of epistemic indifference should be applied. Why
should an agent assign equal weight to both attitudes, her peer’s and her
own? We show in this chapter that the equal weight view results from con-
sequentialist considerations: The equal weight view is an optimal strategy
to resolve disagreement between peers.

Schurz (2012a) indicated already an application of his theory of meta-
induction to the debate on fundamental disagreement, where epistemic
agents “disagree in their underlying cognitive system [. . . i.e. they disagree
on] fundamental principles of reasoning that determine the criteria for jus-
tification”. He suggested to resolve such disagreements by help of apply-
ing methods that are “universal in the sense of being reasonable in every
cognitive system” (Schurz 2012a, p.343 and p.346). As we show, this sug-
gestion can be also expanded to the general case of epistemic peer disagree-
ment and is even decisive regarding the single positions in the debate. We
will argue for the claim that in the case of peer disagreement the under-
lying access-optimal meta-method is instantiated by the equal weight view,
whereas the steadfast view as well as the total evidence view instantiate meta-
methods that are not access-optimal. So, from an epistemic engineer’s point
of view, equal weighting has an important advantage over its competitors.
In the next section we are going to embed the main approaches to peer
disagreement into our setting of prediction games.
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10.2 The Three Main Approaches

Epistemic peer disagreement with respect to a proposition p is that special
case of disagreement, where two epistemic peers differ in their epistemic
attitudes towards p. The explication of the differentiæ specificæ ‘epistemic
peer’ and ‘epistemic attitude’ is crucial for our understanding of how to
resolve the problem of epistemic peer disagreement. Let us briefly recall
how they are understood in the debate:

“Let’s say that people are epistemic peers when they are
roughly equal with respect to intelligence, reasoning powers,
background information, etc.” (Feldman 2007, see p.201)

“[Peer disagreement is at hand if] each of you has access
to the same [. . . ] statistics, [. . . ] reports, and so on, and has no
other relevant evidence. Furthermore, you count your friend as
an epistemic peer—as being as good as you at evaluating such
claims.” (see Elga 2007, p.484)

“[If I] suppose that my friend and I have had long discus-
sions in which we share every bit of evidence we can think
of that’s relevant [. . . ] and suppose further that I have good
reason to believe that my friend and I are equally intelligent
and rational, and that I know of no general reason [. . . ] to
think either of us is especially likely to be particularly good, or
bad, at reacting to evidence[, . . . then] my friend seems to be
what some have called an ‘epistemic peer’.” (Christensen 2007,
pp.188f)

That two individuals, a1 and a2, are epistemic peers is best captured by the
slogan: The same evidence and inferential skills are what make epistemic peers.
Clearly, traditional principles of rationality in epistemology and philoso-
phy of science cover cases where there is some unbalancing in one or both
of these factors. Here is a rough line of argumentation one could follow,
but, clearly, there are many other consensual ways of justifying resolutions
of disagreement cases that are disagreements among non-peers like expert
and layman: If a1 has more relevant evidence than a2 while, generally, a1 is
as good as a2 in making (statistical) inferences, then the statistical principle
of total evidence favours a1’s epistemic attitude over that of a2 (see Carnap
1947, p.141). If the evidence of a1 is different from that of a2 without one
of them being contained in the other, then principles for merging statistics
with different “reference classes” might apply (see Kyburg (Jr.) and Teng
2001). If a1’s inferences are more reliable than that of a2, while at the same
time a1’s evidence is also at least as comprehensive as that of a2, then re-
liabilistic principles favour the epistemic attitude of a1 over that of a2 (see
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Goldman 2014). And, finally, if a1’s inferences are more reliable than that
of a2, while a2 has more relevant evidence, then reliabilistic principles and
the principle of total evidence suggest to form an epistemic attitude based
on a2’s evidence by help of a1’s method of inference.

The same traditional principles of rationality, however, leave it quite
open of how to cope with cases where both factors, evidence and inferen-
tial competence, are equally balanced among the individuals. There are
approaches that seem to rule out the possibility of such cases of disagree-
ment. So, e.g., Carnap’s theory of logical probability as briefly discussed in
section 5.2 suggests that there is only one rational epistemic attitude to-
wards a hypothesis given some evidence (see Carnap 1950/1962, note that
strictly speaking also Carnap allows for a continuum of inductive methods
with a parameter for the speed of learning which does not satisfy unique-
ness). However, this proposal is quite non-consensual as are many other
proposals within the so-called uniqueness framework of epistemic justifi-
cation. Especially if one considers, e.g., fine-grained epistemic attitudes
and the widespread Bayesian framework, there seems to be little hope of
vindicating a general uniqueness principle according to which “a body of
evidence justifies at most one proposition out of a competing set of propo-
sitions” (see Feldman 2007, p.205). In the Bayesian case the relaxed treat-
ment of priors allows for rationalising many different epistemic attitudes.
Nevertheless, also within this paradigm of relatively casual justification au-
thors aim at strictly excluding the possibility of “anything goes!”. A case in
point are investigations of convergence results that aim at predicting a phe-
nomenon called washing out of priors: “Although your [prior] opinion about
future behaviour of a coin may differ radically from your [peer]’s, your
opinion and his will ordinarily be transformed by application of Bayes’
theorem to the results of a long sequence of experimental flips as to be-
come nearly indistinguishable” (see (Edwards, Lindman, and Savage 1963),
cited according to Earman 1992, p.141). So, the idea of such convergence
results is to show that under certain conditions as, e.g., the condition that
all peers incorporate the same evidence and also in the same way—namely
by strict conditionalisation—, the more evidence is accumulated, the more
the initially disagreeing positions converge to each other (another impor-
tant condition is that of the peers being equally dogmatic—see Earman
1992, chpt.6). Hence, although Bayesian orthodoxy denies a uniqueness
thesis as, e.g., held by Feldman (2007), Bayesian epistemologists stressing
the usefulness of convergence results seem to agree with a principle one
might call long run or limiting uniqueness: The more evidence two epistemic
peers gather, the less diverse and more similar their rational epistemic at-
titudes are. Trivially, in the limiting case where all the evidence is on the
table, there is only one single epistemic attitude towards a hypothesis about
the evidence rationalised. Our optimality argument in favour of the equal
weight view will be also such a long run limiting case argument.
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Before we come to our argument, we need to say a little bit more about
the second ingredient of a case of peer disagreement as well as the differ-
ent approaches to resolve it. But step by step! Epistemic attitudes might
be considered on a nominal scale as, e.g., the traditional all-or-nothing be-
lief, disbelief, and suspension of judgement; on an ordinal scale as, e.g., the
epistemic rank κ of one belief in comparison to another (see, e.g., Spohn
2012); or on a cardinal scale as, e.g., the degree of belief Pr. In (T. Kelly
2011) it is convincingly argued that, in order to reasonably compare differ-
ent approaches to epistemic peer disagreement including a “weighting” ap-
proach, one needs to consider epistemic attitudes on the cardinal scale: E.g.,
if peer a1 disbeliefs proposition p and peer a2 suspends judgement regard-
ing p, what would be an intermediate position (see T. Kelly 2011, sect.2)?
Similarly for an ordinal ranking: If a1’s belief in p has rank n, and a2’s belief
in p has the immediately following rank n + 1, what would be an interme-
diate position here? One might even guarantee that in case of disagreement
among two peers there is always an intermediate position available. This
is achieved, e.g., be considering only cases of so-called strong disagreement,
where one agent believes p whereas her peer disbelieves p. However, also
given such a guarantee one can easily construct multi agent cases where
an intermediate position is missing (see T. Kelly 2011, p.188): Consider the
case of a1 believing p, and by this strongly disagreeing with a2 and a3 who
both disbelieve p. How can such attitudes be “weighted” adequately? If
a1 is supposed to resolve the disagreement by also disbelieving p, then her
position seems to be under-weighted. If she resolves towards believing p or
suspending judgement on whether to believe p or not to believe p, her posi-
tion seems to be over-weighted. In order to formulate all classical responses
to the problem of epistemic peer disagreement adequately, it seems neces-
sary to consider the problem on a cardinal scale. So, the epistemic attitudes
under investigation are degrees of belief in a proposition. Disagreement re-
garding these attitudes consists of two individuals having different degrees
of belief in a proposition.

Finally, let us come to the classical responses! Following T. Kelly (2011)
we want to distinguish two types of evidence, namely first order evidence
and higher order evidence. As higher order evidence, sometimes also called
psychological evidence, might serve any kind of information which is about
the degrees of belief of an epistemic agent. So, e.g., in case of peer dis-
agreement it might be the proposition that agent a1’s degree of belief in
a proposition p (Pr1(p)) is such and such. All other information not about
degrees of belief of an epistemic agent might qualify as first order evidence,
sometimes also called non-psychological evidence (see T. Kelly 2011, p.194).

According to a slogan of Feldman (2007, p.208), “evidence of evidence
is evidence”. More specifically, Richard Feldman thinks that “evidence that
there is evidence for P is evidence for P.” As is shown by Fitelson (2012),
this principle runs against the common probabilistic notion of evidential
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support in the sense of probabilistic increase. However, if we consider
only a weak implication of this slogan, namely that higher order evidence
also counts as evidence, then in principle all approaches to the problem of
epistemic peer disagreement can agree on this. They just differ along the
line of how to incorporate this kind of evidence. If we spell out ‘incorpo-
rate’, as is often suggested, in terms of linear weighting (see Elga 2007),
then we can describe the case of peer disagreement as one of finding a cor-
rect weighted update of one’s degrees of belief given some higher order
evidence. Another important way of weighted updating consists in geo-
metrical weighting (see, e.g., Dietrich and List 2016). In contrast to linear
weighting, this method satisfies, e.g., the desideratum of commutativity
with learning—which, sloppily speaking, means in this context that one
can commute the order of updating on first order evidence and on higher
order evidence without any difference in the result (see, e.g., Brössel and
Eder 2014, p. 2368). A geometrical method which satisfies this constraint
and was introduced recently is, e.g., Upco: updating on the credences of oth-
ers (Easwaran et al. 2016). However, since the three classical approaches to
epistemic peer disagreement can be described on the basis of linear weight-
ing, we will not consider these ways of incorporating higher order evidence
in this chapter. We can model the case of epistemic peer disagreement as
follows:

• Let Pr0
1, . . . , Pr0

n be the prior probability distributions of n agents, i.e.
their degrees of belief regarding all propositions of an algebra before
they receive any evidence.

• And let us assume that Pr1
i , Pr2

i , Pr3
i , . . . (1 ≤ i ≤ n) are the agents’

posterior probability distributions after updating on first order evi-
dence e1, e2, e3, . . . . (The superscript indices mark the rounds of up-
date; the prior round without any evidence has the index 0).

• Since in the case of epistemic peer disagreement it is assumed that
the peers share all their evidence, we assume that their sequences of
updating are synchronous, i.e. ai updates on evidence e at the same
round as aj updates on e (for all 1 ≤ i, j ≤ n, e ∈ {e1, e2, e3, . . . }).

• Now, in case of epistemic peer disagreement between ai and aj re-
garding some proposition p it holds at some round t ∈ N: Prt

i (p) =
ri �= rj = Prt

j(p).

• But not only this: Furthermore, the agents get aware of this—they
receive in the same round (but in a second phase) higher order evi-
dence et

h = (Prt
1(p) = r1& · · ·&Prt

n(p) = rn) and have to update on
it. Thus, in this setting the problem of epistemic peer disagreement
can be formulated as follows:

Prt
i (p|et

h&et) = Prt
i (p|Prt

1(p|et) = r1& · · ·&Prt
n(p|et) = rn) =?
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• As we have stated above, incorporation of such higher order evidence
is often described as a form of linear weighting. So it holds:

Epistemic Peer Disagreement
There are wt

1, . . . , wt
n such that:

1. Prt
i (p|et

h&et) =
n

∑
j=1

wt
j · Prt

j(p|et) (EPD)

This is our model of the problem of epistemic peer disagreement. Note that
in this model the weights are round-dependent as they can vary among
the rounds. We will see later on that this is crucial for motivating our
optimality-argument. In most investigations the weights are considered
to be constant, i.e. round-independent. However, as we will see later on,
this expresses the model assumption that the factor of inferential compe-
tence does not change. We want to be flexible on this. The more since we
can “soft-code” this assumption by simply demanding wt+1

i = wt
i (for all

0 < t ∈ N and 1 ≤ i ≤ n). Note also that the problem of epistemic peer dis-
agreement is not intended for covering round 0, i.e. the round prior grasp-
ing any evidence. This is necessary, because otherwise, e.g., according to
the equal weight view epistemic peers would always need to start from
the same prior distributions. An assumption too strong to be generally
subscribed to this view. Finally, observe that the assumption of shared ev-
idence is “hard-coded” in the model: All agents update at the same round
on the same evidence. This is due to the fact that in our discussion we need
no flexibility regarding differences in evidence.

Given this framework, we can describe three classical approaches to
the problem of epistemic peer disagreement with the help of the following
specifications: The equal weight view claims that in case of peer disagree-
ment the epistemic attitudes of all peers should get equal weight. So, the
weights of the model above are specified as follows:

Equal Weight View
Among peers the weights are equal: 1. of (EPD) and:

2. wt
1 = · · · = wt

n = 1/n (for all 0 < t ∈ N) (EWV)

Note that from this it follows that, according to (EWV), the weights among
peers remain constant in all cases: wt+1

i = wt
i (for all 0 < t ∈ N and 1 ≤

i ≤ n). Considering the impact of first order evidence and higher order
evidence in an agent’s forming of an epistemic attitude, it is easy to see
that higher order evidence can swamp first order evidence: Once an agent
becomes aware that she is in a situation of epistemic peer disagreement, her
update is determined by the higher order evidence alone: She computes
her new credence simply as the average of Prt

1(p|et) = r1, . . . , Prt
n(p|et) =
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rn. There is no need for her to recall how she ended up with Prt
i (p|et) =

ri before (which was by conditionalising on first order evidence). In this
sense, according to (EWV), what matters is only higher order evidence.
The most prominent proponents of (EWV) are Christensen (2007) and Elga
(2007). A coarse-grained version of the view for a nominal scale is held by
Feldman (2007).

The steadfast view points in the completely opposite direction: Accord-
ing to it, higher order evidence plays no role in forming one’s epistemic
attitudes. Technically, this is implemented by simply weighting one’s own
epistemic attitude fully, whereas that of one’s peers get no weight:

Remain Steadfast View
Among peers one’s own position gets full weight: 1. of (EPD)
and

2. wt
i = 1 and wt

j = 0

(for all 0 < t ∈ N, j ∈ {1, . . . , n} \ {i})
(RSV)

Note that as above, these weights among peers remain constant. Since up-
dating on higher order evidence does not change anything in the degrees
of belief of an agent, according to (RSV) what matters is only first order ev-
idence in forming one’s epistemic attitudes. Perhaps the most prominent
proponent of (RSV) is Rosen (2001).

Finally, we also want to model the total evidence view: According to
this view, only taking into account either higher order evidence or first or-
der evidence provides no adequate response to the total evidence available:

“The equal weight view and the no independent weight view
[i.e. the steadfast view] both suffer from the same fault: they
embody overly simple models of how one’s first order evidence
and one’s higher order evidence interact in determining facts
about what it is reasonable to believe all things considered. [. . . ]
Rather, what it is reasonable to believe depends on both the
original, first order evidence as well as on the higher order evi-
dence that is afforded by the fact that one’s peers believe as they
do.” (see T. Kelly 2011, p.201)

Now, it is clear that this description of the total evidence view does not
automatically ask for some linear “interaction” between first and higher
order evidence. However, the arguments and further phrasing of it (see,
e.g., swamping, insubstantial and substantial evidence, equally strong pieces of
evidence, greater proportion of our total evidence etc. in T. Kelly 2011, pp.201ff)
seem to grant such a linear “interaction”. This the more, as we will see now,
as the weights can be varied from case to case:
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Total Evidence View
Among peers one’s own position might be partly or fully influ-
enced by the other peers’ positions: 1. of (EPD) and

2. wt
1 + · · ·+ wt

n = 1,

wt
j ≥ 0 (1 ≤ j ≤ n)

(TEV)

Note that (TEV) just guarantees that the weights used in resolving epis-
temic peer disagreement allow for linear weighting. These weights among
peers need not be constant for different rounds, i.e., different situations of
disagreement. And they allow for some impact of one’s higher order as
well as one’s first order evidence.

Considering the ways of determining the impact of higher order evi-
dence in case of an epistemic peer disagreement, these are the three avail-
able possibilities as illustrated in figure 10.1: Higher order evidence is not
at all taken into account (RSV), almost only higher order evidence is taken
into account (EWV) or higher order evidence is variably taken into account
(TEV).

∑
1≤j≤n,j �=i

wt
j = 0 ∑

1≤j≤n,j �=i
wt

j =
n−1

n

(RSV) ←−(TEV)−→ (EWV)

Figure 10.1: Spectrum of possible ways of incorporating higher order evidence in
case of epistemic peer disagreement: Let i by the agent updating her degrees of
belief in case of such a disagreement and let n − 1 be the number of her peers. Ac-
cording to the remain steadfast view, the weights used for updating based on higher
order evidence is 0. According to the equal weight view, given a high number of
(independent) peers, i’s first order evidence (weighted by 1/n) can be swamped
by the higher order disagreement evidence (weighted by (n − 1)/n). The total ev-
idence view allows for any linear weighting of higher order evidence within this
spectrum. Note that in principle the total evidence view could also extend the
spectrum to the right by boosting peers via higher weights (wt

j > wt
i ). However,

since in the traditional debate no argument covers this case, we also do not con-
sider it here.

The arguments for and against each of these views are well discussed in
the debate on epistemic peer disagreement. We will not present and discuss
them here in detail. Rather, given our formal model, we want to add a
further argument to the debate which strikes us as decisive with respect to
(EWV). Afterwards, we will recap some arguments against (EWV) when
we discuss some possible objections to our argument.
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10.3 The Meta-Inductive Approach

As mentioned earlier, one argument for the equal weight view (EWV) orig-
inates from indifference-considerations: If the epistemic attitudes of some
peers are indistinguishable with respect to their underlying evidence as
well as their inferential skills applied to the evidence, why should there
be a difference with respect to their epistemic impact in updating one’s
degrees of belief, once one becomes aware of a disagreement? The assump-
tion, that all agents share the same evidence, is already hard-wired in our
model: At each round all agents update on the same evidence. But how
can we express that the peers have the same inferential skills? We want to
suggest to implement this into the model by help of a reliabilistic measure
of “inferential” or predictive success.

The idea is as follows: Each agent has to make a prediction about the
truth value of a proposition pt or a set of propositions pt

1, . . . , pt
k at each

round t. These predictions Prt
i (pt) or Prt

i (pt
1), . . . , Prt

i (pt
k) are based on the

shared evidence et as well as the individual inference or prediction method
of agent Pri. We assume that afterwards all predictions are revealed to all
agents and might serve as higher order evidence et

h for the same round t.
Each agent has to make again a prediction about pt or pt

1, . . . , pt
k respec-

tively. Now, we assume that at the end of a round t the truth value of pt

or pt
1, . . . , pt

k is settled—and for simplicity of expression we assume also
that it is revealed to all agents. So, the cases to which the argument pre-
sented here applies are no cases of deep disagreement. Rather, they are cases
in which further evidence can dissolve the disagreement. Later on we will
discuss ways of relaxing the assumption that the outcomes are revealed to
the agents.

In this dynamics each round t consists of three phases: a phase of updat-
ing on first order evidence et, a phase of updating on higher order evidence
et

h, and a phase where the truth value(s) are revealed. Figure 10.2 illustrates
how the specified model of making inferences and predictions looks like.
We consider here only cases of predicting one proposition in each round
(pt). Later on we hint at generalising the model to cases where one makes
predictions about several related propositions or a whole algebra in one
and the same round (pt

1, . . . , pt
k).

Now, as we outlined above, given the truth values of the propositions
in question one can define a measure for the reliability of an agent’s pre-
dictions and inferences by measuring the average closeness of the agent’s
predictions and inferences to the truth. For this purpose we take one minus
the squared difference of both values, the inferred one and the truth value
of the proposition p in question, i.e. val(p), where truth is represented by
val(p) = 1 and falsity by val(p) = 0. Our choice of a quadratic scoring
measure (see Brier 1950) is due to its favourable theoretical properties like
being a so-called proper scoring measure (at the end of this chapter we indi-
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t: 0 1 2 3 4 5 6 7 8 . . .

e: priors e1 e1
h e2 e2

h e3 e3
h e4 e4

h e5 e5
h e6 e6

h e7 e7
h e8 e8

h
. . .

p: p1 p2 p3 p4 p5 p6 p7 p8

Figure 10.2: Model of peer disagreement: At each round all agents receive first or-
der evidence et and have to make their inferences based on this evidence regarding
propositions pt. Afterwards, all agents receive information about the other agents’
inferences, i.e. higher order evidence et

h. They have to make again inferences about
the propositions in question which they might base on this further evidence. At
the end of each round the truth value of the proposition(s) in question is revealed.

cate how this approach to epistemic peer disagreement can be generalised
to probabilistic cases and proper scoring rules are particularly suited for
scoring probabilistic predictions). As we have seen in part I of this book,
the optimality result we apply here does not depend on this choice. Rather,
it holds for all scoring measures which are based on an underlying con-
vex loss function. We define the reliability or success st

i of an inference or
prediction method of agent i up to round t regarding proposition(s) p as
follows:

st
i =

∑
0<u≤t

1 − (val(pu)− Pru
i (pu|et))2

t
(10.1)

For illustrative purposes, consider the outcomes, inferences, and reliabil-
ities according to table 10.1: An agent who gets all inferences absolutely
right has a reliability of 1, whereas an agent who gets all inferences abso-
lutely wrong has a reliability of 0. All other kinds of inferences are strictly
in-between this interval.

Now, let us explicate the notion of an epistemic peer in this model. As we
discussed in the preceding section, two agents are epistemic peers iff they
possess the same (i.e. shared) evidence and equal inference skills regarding
the evidence. Since evidence sharing is hard-wired in the model, all agents
of the model are peers in this respect. But how about the other relevant
attribute? It seems plausible to assume that equal inferential skills can be
expressed by equal reliabilities: According to this model, two agents a1
and a2 are equally skilled regarding inferences on shared evidence at round
t, if their reliabilities st

a1
and st

a2
match, i.e.: st

a1
= st

a2
. So, the question

of how to update one’s degrees of belief on higher order evidence about
one’s epistemic peers’ epistemic attitudes results in the question of how
to update, given st

i = st
j (for all 1 ≤ i, j ≤ n)? Now, we can make this

assumption explicit in our model by restricting condition 1. of (EPD) to
cases of disagreement with peers that have the same reliabilities:
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t : 0 1 2 3 4
phase : 1 2 3 1 2 3 1 2 3 1 2 3
pt : 0 0 1 1
Prt

1 0.5 0.5 0.25 0.25 0.125 0.125 0.25 0.25
Prt

2 0.5 0.5 0.5 0.375 0.375 0.25 0.25 0.25
Prt

3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
Prt

4 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
st

1 0.75 0.844 0.641 0.590
st

2 0.75 0.805 0.682 0.621
st

3 1.0 1.0 1.0 1.0
st

4 0.0 0.0 0.0 0.0

Table 10.1: Example of applying the reliability measure: Pr3 is always right and
hence receives a degree of reliability of 1. Pr4 is always wrong and hence has
reliability 0. Pr1 is an inductive method not updating on higher order evidence
(inferences in phase 1 equal that of phase 2). Pr2 is also an inductive method but
updates on higher order evidence (inferences in phase 1 differ from that in phase
2).

Epistemic Peer Disagreement (further specified)
There are wt

1, . . . , wt
n such that:

1∗. Prt
i (p|et

h&et) =
n

∑
j=1

wt
j · Prt

j(p|et)

if st
1 = · · · = st

n.

(EPD∗)

We want to highlight that we intend to interpret the reliabilities si primarily
in an operational way, i.e. as being empirically accessible. So, the question
of whether two agents are peers or not can be empirically addressed. How-
ever, we do not want to exclude a more normative interpretation of our
model: One might, e.g., also argue that the notion of peerhood is norma-
tive insofar as it is about something we put forward or assume without
empirical backup; in this case one might interpret the reliabilities si not em-
pirically: That st

i = st
j is to be interpreted as the normative assumption that

agents i and j are equally reliable.
Note that the problem of epistemic peer disagreement as defined above

is relevant only for cases where the reliabilities st
i of the peers match. Note

also that in this framing of the problem the connection between the weights
and these reliabilities is completely unconstrained—this is what allows us
to spell out the different approaches to peer disagreement by simply defin-
ing different constraints on these weights. Furthermore, higher order evi-
dence et

h consists no longer only in knowing that one’s peers disagree with
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respect to one and the same first order evidence, rather one also knows
that one’s peers are equally reliable (et

h = (Prt
1(p) = r1& · · ·&Prt

n(p) =
rn&st

1 = · · · = st
n)). In the following we assume that all considered ap-

proaches to epistemic peer disagreement, i.e. (EWV), (RSV), and (TEV), are
based on (EPD∗). We want to show now that the equal weight view (EWV)
is a specific instance of a general rule on incorporating higher order evi-
dence which is proven to be optimal. We also want to show that the remain
steadfast view (RSV) as well as the total evidence view (TEV)—in case it
deviates from (EWV)—are, in terms of reliability, epistemically suboptimal.
Here are the details: The reliability measure as defined in equation (10.1)
can be considered as measuring the epistemic performance of an agent. As
we indicated in table 10.1, the best performance possible up to round t is
given if an agent i’s reliability st

i is 1. This means that all of her inferences
were correct up to t. If we take the set of all relevant epistemic propositions
to be countable infinite, then we can interpret the best possible performance
simply as that of an agent i having reliability st→∞

i = 1. As we have argued
in part II of this book, even an ideal agent might miss the target of achieving
the best possible performance. So, st→∞

i = 1, i.e. absolute learnability, is not
a requirement we usually put forward for rational agents. However, a con-
straint which is often put forward results from comparative considerations
on rationality: As in many other domains, the term ‘rationality’ can be also
considered as expressing efficiency. So, e.g., in decision theory, a decision
is rational if it is shown to maximise expected utility. I.e.: given a set of
decisions d1, . . . , dk, choosing a di is rational, if the expected utility eu of di,
i.e. eu(di), is maximal: eu(di) ≥ eu(dj) (1 ≤ j ≤ k). Similarly to the classical
realm, we can demand for the social epistemological realm relative learn-
ability, i.e. long run optimality: An inference method Pri is epistemically ra-
tional, if its reliability is long run optimal compared to all available inference
methods Pr1, . . . , Prn in the sense that st→∞

i ≥ st→∞
j (1 ≤ j ≤ n). Given this

epistemic constraint, one can show that (EWV) satisfies it, whereas (RSV)
as well as (TEV) fail to do so. For the case of (EWV) we will show this by
employing the general optimality results of the theory of meta-induction,
as described in part I and applied in part II of this book. For showing the
suboptimality of (RSV) and (TEV) we will provide examples where both of
them fail to produce optimal inferences.

Let us start with the optimality of (EWV)! It is not hard to see that our
model of epistemic peer disagreement is an instance of the more general
model of the dynamics of epistemic inferences and predictions from the
preceding parts. Here is, how we can employ the optimality results from
before: Let us think of the probability functions Pr1, . . . , Prn as object infer-
ence methods in the sense that whenever they conditionalise on first order
evidence, their inferences are functionally independent, i.e. the definition
of such an inference method Pri based on first order evidence contains no
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reference to one of the other Pr1, . . . , Prn. Now, as described above (equa-
tion (10.1)), for each method we can define a reliability measure st

i . Based
on this reliability measure, we can define a meta-method Prm whose in-
ferences or predictions are weighted averages of the object-methods’ in-
ferences and predictions. For technical reasons (see the short description
in figure 3.6), we have to cut off those object-methods which performed
worse than the meta-method in the past. So, the considered reliabilities for
the meta-method Prm are defined as follows:

s′i,t =

{
st

i , if st
i ≥ st

m or if for all 1 ≤ j ≤ n: st
j ≤ st

m.

0, otherwise.
(10.2)

Here st
m is the reliability of the meta-method Prm up to round t. By nor-

malising the considered reliabilities, we get weights for the meta-method
Prm:

wt
i =

s′i,t−1
n
∑

j=1
s′j,t−1

(10.3)

Finally, by linear weighting we can recursively define the meta-method Prm
as follows:

Prt
m(p) =

n

∑
i=1

wt
i · Prt

i (p) (10.4)

The inference or prediction of Prm at round 0 might be arbitrarily chosen—
it might be, e.g., the unweighted average of the object-level inferences.

Now, note that Prm is an attractivity weighting meta-inductivist ( fami),
so we can simply apply the optimality result of this method and get (by
theorem 3.40):

Theorem 10.1.
lim
t→∞

st
m − max(st

1, . . . , st
n) ≥ 0

So, by this theorem we know that Prm is an inference method that per-
forms optimal in the long run compared to all available inference meth-
ods Pr1, . . . , Prn. Given our epistemic constraint, this provides a reason for
considering Prm to be a rational inference method, i.e. to be epistemically
justified.

Now, it is easy to see that Prm is an inference method based only on
higher order evidence. Furthermore, there are no constraints for update
on evidence or the reliabilities, so Prm is a long run optimal method for all
cases, cases of no disagreement, cases of disagreement, cases of disagree-
ment among epistemic peers, and cases of disagreement among non-peers.
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What is important to note is that in the specific case of epistemic peer dis-
agreement, Prm coincides with (EWV): Given st

1 = · · · = st
n as mentioned

in condition 1∗ of (EPD∗), it follows from the definition of Prm via equa-
tions (10.2) to (10.4) that wt

1 = · · · = wt
n = 1/n. Hence, (EWV) instantiates

Prm for the specific case of epistemic peer disagreement. Since Prm is shown
to be optimal regarding all cases of agreement and disagreement, (EWV) is
optimal regarding cases of epistemic peer disagreement. Hence, according
to our epistemic constraint, (EWV) is epistemically justified regarding cases
of epistemic peer disagreement.

Let us come to a suboptimality proof of the alternative approaches to
epistemic peer disagreement: (RSV) and (TEV). For this purpose it suffices
to provide examples where these approaches fail to be optimal in the long
run. It is easy to construct an “environment” which favours the competi-
tors of (RSV) and (TEV), although both methods might, from time to time,
catch up in reliabilistic terms. Consider, e.g. a setting with two agents, hav-
ing inference methods Pr1 and Pr2, where the latter represents a steadfaster
(RSV) or an agent considering the total evidence (TEV) which does not co-
incide with (EWV). Now, let us assume that out of three pairs of inference
rounds, one is a round with epistemic peer disagreement and the other two
are rounds with disagreement among non-peers. We can easily think of in-
ferences with reliabilities distributed as shown in table 10.2. But then, just
by averaging the reliabilities, one can see that Pr1 outperforms Pr2, since in
the long run (on average) it holds st→∞

1 = 0.50 > 0.497 = st→∞
2 . Note that

the example is constructed in such a way that suboptimality results from
not equally weighting in case of a peer disagreement: Agent 2 outperforms
agent 1 before agent 1 becomes a peer and agent 2 performs suboptimally
when deciding to not equally weight higher order evidence of agent 1’s
epistemic attitude.

t: (for any 0 < v ∈ N) 2 · v 2 · v + 2 2 · v + 4 · · ·
st

1 0.50 0.50 0.50 · · ·
st

2 0.51 0.50 0.48 · · ·

Table 10.2: Example of the suboptimality of (RSV) and (TEV) due to not weighting
equally among one’s epistemic peers in case of epistemic peer disagreement: Pr1
gets the inferences in 50% of the cases right, whereas Pr2 is sometimes slightly
better, then Pr1 catches up and then, in the case of a peer disagreement, strategy
Pr2 of remaining steadfast or incorporating total evidence looses.

The optimality result for (EWV) shows that such a case cannot appear
if one performs equal weighting. Clearly, an agent performing (EWV) can
also be suboptimal compared to her competitors. The simplest case one
might think of is a setting where no peer disagreement shows up, because
the agents’ reliabilities never match. However, this suboptimality of (EWV)
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is due to her being suboptimal already in cases of non epistemic peer dis-
agreement. Regarding cases of epistemic peer disagreement—which are
the cases the debate is mainly about—(EWV) is guaranteed to be optimal.

We want to conclude this section with a short note on generalising this
result: In our model we presupposed that in each inference round t there is
a proposition pt the inference is about and whose truth value is revealed in
the third phase of the round. The inferences of the agents might be consid-
ered to be probabilistic statements about pt, since Pri(pt) ∈ [0, 1]. Now, this
setting can be expanded also to probabilistic statements about not only one
(or two) proposition(s) pt (and ¬pt), but also to a set of mutually exclusive
and jointly exhaustive propositions pt

1, . . . , pt
k. In this case the individual

inferences concern probabilistic statements of the form Pri(pt
1) ∈ [0, 1] and

. . . and Pri(pt
k) ∈ [0, 1], where Pri(pt

1) + · · ·+ Pri(pt
k) = 1. So, each agent

provides in each round a probability distribution. We will see in chapter 11
that also for such a setting a meta-method can be defined which proves to
be optimal. A simple way of doing so is by considering as relevant for the
reliability of an agent in each round t only that event of pt

1, . . . , pt
k which

turned out to be true. Then weights are constructed out of these reliabil-
ities and the resulting view for epistemic peer disagreement is again an
equal weight view.

10.4 Objections, Replies, and Restrictions

Now we are going to embed our argument in favour of the equal weight
view (EWV) a little bit more into the traditional debate about how to resolve
epistemic peer disagreement.

First, let us discuss one objection one might want to put forward against
our model: In order to measure the reliability of the epistemic agents, our
model presupposes that the truth values of the propositions are revealed
at some point in time to the epistemic agents. However, in case of deep
disagreement there might be no possibility to get to know these values. So,
how can our model be employed in these cases? Let us mention that a con-
ditional interpretation of our model might be satisfying for resolving cases
of deep disagreement too. The modification is as follows: At phase 3 the
agents no longer receive the truth values of the propositions in question,
but remain with their own estimations. In this case, the argument reads
as follows: if the agents get their estimations of the reliability of the other
agents in the setting right, then (EWV) proves to be the optimal strategy and
by this is justified. Clearly, whether (EWV) is de facto long run optimal re-
mains an open question. However, it seems that following this possible
route to optimality is the best one can do, the more as even in case of deep
disagreement it is supposed that supposedly peers have no disagreement
about the status of their peerhood. So, even in case of deep disagreement
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steadfasters, total evidentialists, as well as equal weighters agree on the con-
ditional part, namely that they got the estimations of the reliability right.
Things get much trickier, of course, if there is even a disagreement about
whether there is disagreement and if so, whether it is among peers. The
traditional debate about epistemic peer disagreement has little to say about
this and it seems that this is not without reason.

A general objection to (EWV) is provided by the so-called swamping
argument (see Elga 2007, sect.9; and T. Kelly 2011, sect.3): This argument
stresses the fact that according to (EWV) first order evidence can be com-
pletely swamped by higher order evidence. However, at least at first sight
this seems to be implausible: It seems that one’s own arguments should
not count for nothing in case of an increasing number of peers who dis-
agree. Indeed, as we have mentioned already in the description of fig-
ure 10.1, if the number of peers increases, the influence of first order ev-
idence decreases. However, it is important to note that it is not any number
of contestants that has to increase, but the number of peer contestants. The
general method we have introduced in the preceding section, the meta-
inductivist Prm, is a social strategy. And as a social strategy it has to take
her peers seriously. As one can see according to equations (10.2) to (10.4),
this method is even a completely social strategy inasmuch as it bases her
inferences not at all on any individual argument or first order evidence.
It just operates on higher order evidence. And as the optimality result re-
garding Prm as well as the suboptimality results regarding (RSV) and (TEV)
show, taking into account higher order evidence only is not just a sufficient
means for achieving long run optimality, but also a necessary one. In this
sense our framework completely supports Adam Elga’s view, who claims:
“If one really has 99 associates who one counts as peers who have inde-
pendently assessed a given question, then one’s own assessment should
be swamped” (Elga 2007, p.494). Regarding optimality considerations, our
framework shows why and how higher order evidence overwrites first or-
der evidence: Inferences based on first order evidence are prone to being
deceived, whereas inferences based on higher order evidence drastically
decrease possibilities of being deceived relative to one’s fellows.

This holds for cases of disagreement amongst peers. Regarding dis-
agreement amongst non-peers, there is also a conclusion one can draw from
our framework: The long run optimality result for Prm is based on the proof
of an upper bound for differences in the reliability between the individual
inferences and that of the social method. As is shown in theorem 3.40, for
Prm the following bound holds with respect to any inference method Pri of
Pr1, . . . , Prn:

st
i − st

m ≤ √
n/t

In the limit this term goes to 0 which means that sm approaches also the
reliability of the best agents in the setting. However, for the short run,
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i.e. t not arbitrarily high, n, i.e. the number of agents in the setting, has
a relevant influence on the performance. The more non-peers there are
in the setting, the more the social strategy is prone to errors. So, in such
cases individual arguments and first order evidence might easily overwrite
higher order evidence, i.e. higher order evidence should not swamp first
order evidence. Notice, however, that this concerns cases of disagreement
amongst non-peers. And for these cases (EWV) leaves the choice of weights
for incorporating first and higher order evidence completely open.

A further common objection put forward against (EWV) is that of spine-
lessness of equal weighting (see Elga 2007, sect.9): The idea of this argu-
ment is that according to (EWV) too often a response to disagreement will
be something close to suspension of judgement on virtually all controver-
sial issues. Elga argues that this is probably not that often the case as one
might expect, because cases of real epistemic peer disagreement are not that
widespread (see Elga 2007, p.495). Regardless of this, our model shows that
even if epistemic peer disagreement is a widespread phenomenon, from
an optimality point of view something close to suspension of judgement
might turn out to be the optimal strategy. However, this brings us also to
an important assumption made in our model: In the reliability measure of
equation (10.1) we have assumed a quadratic difference measure between
the truth value of the proposition in question and the inference prediction
by the agent. The optimality result for Prm and (EWV) can be also achieved
by any other convex distance measure. However, no such general result is
proven for non-convex distance measures. If one wants to make the opti-
mality of an inference method dependent on its being decisive regarding
the extreme values 0 and 1 (and penalises suspension and close to suspen-
sion cases), then one might want to use a non-convex distance measure.
Such a measure might assign linear weights to distances between 0 and
0.25 and maximal weight to distances above 0.25. Figure 10.3 provides an
example of such a measure. It is important to note that for such non-convex
distance measures our argument does not privilege (EWV) compared to
(RSV) and (TEV). This clearly is a restriction of our model.

One nice feature of our model is that it allows for a natural explana-
tion of the traditional arguments for (EWV) by help of symmetry consid-
erations: As we have already mentioned in the introduction, sometimes a
principle we called the principle of epistemic indifference is stressed for equal
weighting. Our framework does not presuppose such a principle. Rather,
it follows from the optimality considerations of our framework: The idea is
that once we aim at optimality with respect to predictions and inferences,
one can prove that epistemic indifference is the right principle to apply: If
the epistemic performance (reliability) of n agents is indistinguishable, i.e.
they are peers, then their epistemic attitudes need to be weighted equally
in order to achieve an optimal inference or prediction.

We can sum up the cornerstones of our investigation in this chapter as
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f(x)

x

(0.25|0.25)

Figure 10.3: Example of a non-convex distance measure: The reliability of an in-
ference (see equation (10.1)) is measured via 1 − f (|val(p) − Pr(p))|, where dis-
tances within [0, 0.25] are measured linearly, whereas distances within (0.25, 1] are
measured maximally. By this epistemic attitudes that are far away from the truth
or close to suspension of judgement are penalised maximally, i.e. one’s reliability
decreases maximally. The employed optimality result does not hold for such a
non-convex distance measure.

follows: In the debate of epistemic peer disagreement the central question
concerns the problem of how to incorporate higher order evidence about
epistemic peers disagreeing with one’s epistemic attitudes. In this chapter
we have presented a model for such disagreement that frames this prob-
lem as a problem of updating one’s credences given such higher order evi-
dence. We have identified the conditions for epistemic peers in (i) updating
on one and the same set of evidence, and (ii) in having the same inferen-
tial skills regarding this evidence, measured by a reliability track record.
We were able to define in this model the main three traditional approaches:
the remain steadfast view (RSV) which suggests to ignore such evidence
in updating by assigning it zero weight. The equal weight view (EWV)
which suggests to update on such evidence by equally weighting it. In
case the number of peers increases, higher order evidence has much more
impact than first order evidence and can even swamp it. And finally, the to-
tal evidence view (TEV) which suggests to consider higher order evidence
simply as just another kind of evidence. Since updating on higher order
evidence is a social epistemological action, we have put forward an opti-
mality constraint for such actions by aiming at optimality: One’s update
on higher order evidence should be such that (in the long run) one’s infer-
ences are optimal in the sense that they are the most reliable ones compared
to the other inference methods of the setting. By employing the framework
of meta-induction we were able to show that (EWV) satisfies this optimal-
ity constraint for cases of epistemic peer disagreement, whereas (RSV) and
(TEV) fail to do so. This adds a new argument to the debate on epistemic
peer disagreement which seems to be decisive with respect to (EWV).



Chapter 11

Judgement Aggregation

There is a plurality of formal constraints for aggregating probabilities of a group of
individuals. Different constraints characterise different families of aggregation rules. This
chapter focuses on the families of linear and geometric opinion pooling and shows that
applying the main optimality result of the theory of meta-induction provides a general
rationale for choosing the weights in a success-based way by scoring rules.

Probability aggregation is the theory of how to adequately aggregate sev-
eral probability distributions to a single one. For more than two decades
now disciplines concerned with probabilistic reasoning and its rationale
are undergoing a social turn, at least so it seems. This makes the prob-
lem of probability aggregation a highly relevant topic. So, e.g., in philos-
ophy of science recent research centres not only around the relation be-
tween evidence, theory, and explanation, which is quite often spelled out
in probabilistic terms, but also on the relations between scientific groups
having different evidence, holding different theories, and providing alter-
native explanations (see Douven and Riegler 2010; Hartmann, Martini, and
Sprenger 2009; Zollman 2007). Similarly in epistemology, where—as we
have seen previously—core topics of social epistemology like testimony,
peer disagreement, and judgement aggregation are very often framed in a
probabilistic setting (see, e.g., for testimony Goldman 1999; for peer dis-
agreement Elga 2007; and for probabilistic judgement aggregation Dietrich
and List 2016). It is clear that also here the question of how to aggregate
one’s own and one’s testifier’s or peer’s probabilistic opinions shows up.

In a similar line as it is argued in social choice theory, also in the theory
of probability aggregation general constraints for such aggregation meth-
ods are put forward; subsequently it is investigated which aggregation
methods satisfy these constraints. Often the constraints put forward are
not compatible with each other. This led to the famous impossibility re-
sults of social choice theory (see Arrow 1963) and the theory of judgement
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aggregation (see List and Pettit 2002). However, as it turned out, one can
cluster these constraints in such a way that relevant subclasses are jointly
satisfiable and characterise different families of aggregation methods. As
we will see in the next section, broadly accepted constraints lead in particu-
lar to two common aggregation rules, namely linear weighting and geometric
weighting. So, if one can figure out which constraints for probability aggre-
gation are relevant for which domain of application, one seems to be able to
give a partial solution to the problem of probability aggregation. However,
even if one subscribes to such a purpose-dependent strategy (see, e.g., List
and Pettit 2011), the constraints put forward at most determine a family of
aggregation methods, but no exact aggregation method. In particular, the
choice of the weights—which is from the viewpoint of practical applica-
tions the most important factor—is undetermined by these constraints.

In this chapter we are going to argue for a new approach to determine
such weights. We will do so by employing the main optimality result of
meta-induction and show that a success-based determination of weights
allows for proving long run optimality of probabilistic predictions. This
allows, on the one hand, for a more specific determination of the weights
used for aggregating probabilities, and on the other hand it also provides
an epistemic rationale for doing so.

The structure of this chapter is as follows: In section 11.1 we summarise
the characterisation results of the theory of probability aggregation which
lead to two families of aggregation functions, namely the linear and the
geometric weighting rules. Since the exact weights are not determined by
these results we briefly discuss solutions to determining weights and their
problems in section 11.2. There we also outline our solution and present an
instance of the framework of prediction games which we want to employ
for a justified choice of weights for probability aggregation. This prepares
the ground for section 11.3, where we apply this framework to a proba-
bilistic setting: We show how the meta-inductive optimality results can be
transformed to the probabilistic forecasters and provide a general epistemic
rationale for success based linear probability aggregation. Finally, in sec-
tion 11.4 we show how a more restricted result can be also employed in
geometric probability aggregation.

11.1 Probability Aggregation and Characterisation

Results

Many investigations on probability aggregation were triggered by Leonard
J. Savage’s seminal work on the Foundations of Statistics, where he intro-
duced a “model of group decision”. He described the problem at hand as
follows:
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“Consider a group of people [. . . ] supposed to have the same
utility function, at least for the consequences to be considered in
the present context, but their personal probabilities are not nec-
essarily the same. The group of people is placed in a situation
in which it must, acting in concert, choose an act [. . . ] from a
finite set of available acts [. . . ]. The situation just described will
be called a group decision problem.” (see Savage 1972, chpt.10.2)

A paradigmatic example mentioned by Savage is the decision making by
a jury in a court of law: Such a jury is supposed to have common value
judgements for these are incorporated in the law as stated in the instruc-
tions of the court. But, on the other hand, it is clear or desirable of a jury
that its members may have different opinions. Still, as the jury has to come
to a conclusion as a jury, it needs to end up with a group opinion and often
a unanimous decision. The scheme of the problem is as follows:

Pr{1,...,n} = f (Pr1, . . . , Prn)

Here Pr1, . . . , Prn are the graded opinions, probabilities, credences or
graded predictions of the members of a group, f is an aggregation func-
tion, and Pr{1,...,n} is the respective graded group opinion, probability, cre-
dence or graded prediction. In what follows we assume that the set of
propositions under investigation is a finite set of k primitive and mutu-
ally independent propositions (also called propositional variables); this gives
us μ = 2k constituents of the form ci = (±)p1& . . . &(±)pk; we refer to
these constituents simply as “possible worlds” (as they represent possible
worlds—we avoid speaking of “atomic propositions” or “atoms” because
usage of this notion is ambiguous: linguistically one meaning is that of
“primitive” propositions and algebraically one meaning is the notion of a
possible world; obviously these two notions are entirely different). In later
sections the pis will represent primitive propositional functions with a time
variable t.

How to constrain the transmission from the individual to the group is
considered to be the group decision problem. Savage discussed and criticised
two constraints: First, that such a transmission has to be in accordance with
the minimax rule, i.e. that the largest expected loss faced by any member of
the group has to be as small as possible. Note that here ‘expected’ refers
to the individual expectations (before choosing an aggregated probability
distribution), not to that of the group (see Savage 1972, p.174). And second,
that some kind of Pareto principle has to be satisfied, the so-called principle
of admissibility, i.e. that in case the minimax rule allows for different aggre-
gated probability functions, no outcome should be chosen that is outper-
formed in terms of the expected utilities of all individuals by some other
outcome that still satisfies minimax.
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More generally, a plurality of constraints for the group decision prob-
lem has been widely discussed. Such investigations are often performed
in the line of the so-called axiomatic method, where one does not choose a
particular aggregation function directly, as, e.g., a linear aggregation func-
tion, and then proves some properties of it, but instead one formulates gen-
eral constraints on a good aggregation function in the form of axioms, and
then asks which aggregation functions satisfy them, if any at all (see Diet-
rich and List 2016, sect.3). A vast amount of literature evolved in this area
which was collected and commentated by Genest and Zidek (1986).

The axiomatic method has a long tradition also in social choice theory.
Seminal is Kenneth Joseph Arrow’s Social Choice and Individual Values in
which he was able to prove an infamous impossibility result of opinion ag-
gregation already as early as 1951. An error in the statement of these re-
sults is corrected in the second edition of 1963 which is the main reference
now. However, the predominant framework of this domain is not that of
probability aggregation, but that of judgement and preference aggregation,
which is typically within a nominal or ordinal scale. Contrary to this, prob-
ability aggregation operates on a cardinal scale. As is often the case, im-
possibilities on nominal and ordinal scales disappear on a cardinal scale.
Nevertheless, Arrow’s investigations of the former realm were also taken
as a model for investigations of impossibility and characterisation results
about the latter one (e.g. also Savage refers to Arrow).

The motivation put forward for the axioms used in this approach is
manifold. To mention the most prominent reasons, we provide here a short
list categorising constraints according to their cross disciplinary justifica-
tion (see Gaertner 2009; and Gaertner 2016):

• Arguments from social ethics in favour of: minimax rule, non-
dictatorship, anonymity (permuting the credences among individu-
als should not influence the outcome), universal domain (no credence
function should be excluded on a priori grounds), the possibility of
Paretian liberals (it should be possible that there are individuals who
are decisive for the group credence regarding a “private sphere” of
propositions), the possibility of alienable rights (it should be possi-
ble to provide hierarchies for individual credences to allow an indi-
vidual to waive her credence’ impact), avoiding the no-show para-
dox (not considering individual credences in favour of a proposition
should not allow for increasing the group credence in that proposi-
tion), strategy proofness (no individual should be able to increase her
gains from the group opinion in a group decision problem by misrep-
resenting her true opinions; we will discuss this constraint later on in
the context of proper scoring rules)

• Arguments from optimisation in favour of: Pareto principles (e.g.
the constraint to preserve unanimous opinions), the maximax rule
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(the largest gains faced by any individual should be as big as pos-
sible), Condorcet consistency (if there is a Condorcet winner—i.e.
a candidate which wins pairwise in comparison with all the other
candidates—, then it is also elected; regarding propositions: If there is
a proposition which gets unanimously highest credence, then also the
group credence should be highest), avoiding Condorcet losers (anal-
ogous to Condorcet winners)

• Coherence arguments in favour of: non-cyclicity (in comparative ver-
sions of the group decision problem no cycles should show up), par-
tition consistency or reinforcement (splitting up the jury, aggregat-
ing partially, and combining the partial aggregation result should not
change the outcome), monotonicity or positive responsiveness (in-
creasing an individual’s credence in a proposition should, everything
else being equal, not decrease the group credence in that proposition)

• Irrelevance of independent alternatives (the group opinion on a
proposition should be dependent only on individual opinions regard-
ing that proposition)

• Etc.

Many impossibility results of subsets of the constraints indicated above
have been proven in the past. As we mentioned already, seminal is, e.g.,
(Arrow 1963), where it is shown that four very basic constraints cannot
be simultaneously satisfied in the comparative realm: If there are at least
three alternatives and individuals, then the axioms (for details see below)
of universal domain, the weak Pareto principle, and independence of irrelevant
alternatives imply dictatorship and by this non-anonymity (see Arrow 1963,
p.97). (For propositions in terms of ranking theory the weak Pareto prin-
ciple might be expressed as follows: ∀i ∈ {1, . . . , n} : κi(p) ≤ κi(q) ⇒
κ{1,...,n}(p) ≤ κ{1,...,n}(q).) List and Pettit (2002) prove a similar result for
the qualitative realm of opinions, namely belief and disbelief. In this realm
the weak Pareto principle is not necessary for an impossibility theorem, in-
stead further formal constraints are needed (see below). Also here prob-
lems of the qualitative and comparative realm disappear on the quantita-
tive one. What is more, the three axioms that together with other plausible
constraints (see below) lead to an impossibility result within the qualitative
realm even characterise a plausible family of transformations or aggrega-
tion rules. As is discussed and shown in (Lehrer and Wagner 1981, chpt.6;
and Genest and Zidek 1986, sect.3), the mentioned three conditions:

(U) Universal domain: The Pri satisfy the laws of probability theory
(∀i ∈ {1, . . . , n})

(A) Anonymity/Permutation: Pr{1,...,n} = f (Pr1, . . . , Pri, Pri+1, . . . , Prn) =
f (Pr1, . . . , Pri+1, Pri, . . . , Prn)
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(I) Irrelevance of Alternatives: There is not only a function f such that
Pr{1,...,n} = f (Pr1, . . . , Prn), but there is also a function f ∗ such that
Pr{1,...,n}(p) = f ∗(Pr1(p), . . . , Prn(p)) (for all propositions p)

characterise the family of linear opinion aggregation rules which have the
form of a weighted arithmetic mean:

Pr{1,...,n} =
n

∑
i=1

wi · Pri

(where wi ≥ 0 and w1 + · · ·+ wn = 1)

(AM)

So, what resulted in problems and questions of choosing among funda-
mental formal constraints for modelling a group’s opinion before, turns
out to determine an important family of functions now, namely linear opin-
ion aggregation rules. Since many theorists consider (U), (A), and (I) to be
plausible constraints for probability aggregation, this family has been also
proposed as a general framework for probability aggregation (see Lehrer
and Wagner 1981).

However, this characterisation also has some problems. One impor-
tant drawback is that (U), (A), and (I) are jointly incompatible with other
further plausible constraints for aggregating probabilities. Well known
is, e.g., their incompatibility with the axiom of independence preservation
(see Lehrer and Wagner 1983): This axiom demands that if all members
of a group consider two propositions to be probabilistically independent:
Pri(p1|p2) = Pri(p1) (∀i ∈ {1, . . . , n}), then also the aggregation should
be this way: Pr{1,...,n}(p1|p2) = Pr{1,...,n}(p1). Connected with this is the
problem that the constraint of aggregating externally Bayesian (see Genest
and Zidek 1986, p.119), also called commutativity with learning (see Brössel
and Eder 2014), is not compatible with these conditions: Aggregating indi-
vidual credences and then performing a Bayesian update by new evidence
might be different from all individual’s first performing a Bayesian update
of their credences and then aggregating the updated credences (see Mongin
2001, p.320). The commutative update rule resulting from linear weight-
ing is called “imaging” and differs in important respects from Bayesian
updating (see Leitgeb 2016). However, there is another family of aggrega-
tion functions that allows one to satisfy the commutativity constraint while
still upholding Bayesian orthodoxy: Genest (1984, p.1101) and Genest, Mc-
Conway, and Schervish (1986, p.499) show that weak unanimity preserva-
tion (see Russell, Hawthorne, and Buchak 2015, p.1295, fn.8) and external
Bayesianity and some further technical assumptions characterise the fam-
ily of the logarithmic or geometric graded opinion aggregation rules. For
lack of space we will not discuss the technical assumptions here. However,
the constraints of weak unanimity preservation and external Bayesianity
can be characterised easily in detail:
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(P) Weak Unanimity Preservation: If Pr1 = · · · = Prn, then Pr{1,...,n} =
Pr1 = · · · = Prn.

(B) External Bayesianity: There is a function f ∗ such that for all proposi-

tions p, q: Pr{1,...,n}(p|q) = Pr{1,...,n}(p&q)
Pr{1,...,n}(q)

= f ∗(Pr1(p&q),...,Prn(p&q))
f ∗(Pr1(q),...,Prn(q))

These constraints characterise the normalised weighted geometric mean as
defined below. Note that Franz Dietrich and Christian List think that the
additional technical assumptions needed for proving a characterisation re-
sult are in need of further justification for which reason they advance the
view that “we still lack a fully compelling axiomatic characterization of ge-
ometric pooling” (Dietrich and List 2016, sect.6).

The normalised weighted geometric mean of a family of probability
functions is defined as follows:

Pr{1,...,n}(cl) =

n
∏
i=1

Pri(cl)
wi

μ

∑
j=1

n
∏
i=1

Pri(cj)wi

(where Pri is regular, cl ∈ {c1, . . . , cμ},
wi ≥ 0 and w1 + · · ·+ wn = 1)

(GM)

This family of aggregation rules is technically quite demanding. The
denominator in the equation above guarantees normalisation(�) =
Pr{1,...,n}(c1 ∨ · · · ∨ cμ) = Pr{1,...,n}(c1) + · · · + Pr{1,...,n}(cμ). Since the
set of worlds is supposed to be finite, the equation above determines
Pr{1,...,n} for arbitrary propositions, i.e. disjunctions of possible worlds, via
Pr(ci ∨ cj) =de f Pr(ci) + Pr(cj).

We should mention, however, that geometric aggregation suffers from
an oddity compared to arithmetic aggregation. If the arithmetic aggre-
gation rule is defined for possible worlds, then it is preserved for arbi-
trary propositions, i.e., it applies also to disjunctions of possible worlds
(as can be easily proved). This is not so for geometric aggregation, which
applies only to possible worlds, but not to disjunctions of them; rather,
the geometrically aggregated probability of a disjunction of worlds is de-
fined, as explained above, as the sum of the aggregated probabilities of
these worlds (see Dietrich and List 2016, sect.6). For example, if a given
proposition is the disjunction of two worlds (constituents) c1∨̇c2 and the
probabilities of the worlds of the two experts are Pr1(c1), Pr2(c1) and
Pr1(c2), Pr2(c2) respectively, then the geometrically aggregated probability
of the two worlds are Pr1(c1)

w1 · Pr2(c1)
w2 and Pr1(c2)w1 · Pr2(c2)w2 respec-

tively and the aggregated probabilities of the disjunctive event c1∨̇c2 is by
definition Pr1(c1)

w1 · Pr2(c1)
w2 + Pr1(c2)w1 · Pr2(c2)w2 , which in general is
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different from the result of applying geometric aggregation to the disjunc-
tive proposition which is (Pr1(c1) + Pr1(c2))w1 · (Pr2(c1) + Pr2(c2))w2 .

That the Pris are regular means that the individual probability of every
possible world is greater than 0, i.e.: Pri(cl) > 0 for all i ∈ {1, . . . , n} and
every cl ∈ {c1, . . . , cμ}. This assumption is necessary, because otherwise it
is possible that for each possible world there is an individual whose prob-
ability or credence of that world is 0; in this case the generalised geometric
mean would be zero too, which would be probabilistically inconsistent.

More details of the family of geometric aggregation rules are discussed,
e.g., in (Dietrich and List 2016, sect.6). Regardless of the exact characteri-
sation of arithmetic and geometric aggregation rules and the assessments
of their advantages and disadvantages, these two families are amongst the
most common pooling methods. And, although there is no general aggre-
gation method that allows one to satisfy the constraints for aggregating
probabilities as put forward here simultaneously, these two families allow
one to satisfy reasonable subsets of these constraints. If one follows the line
of argumentation of List and Pettit (2011) and makes the choice of the exact
aggregation rule dependent on the context and purposes in question, then
(AM) and (GM) may seem to be good candidates for solving the group de-
cision problem. Hence, it should not make one wonder too much that these
two families are also the two most prominent types of probability aggrega-
tion rules studied in the literature.

However, there is a problem underlying both (AM) and (GM): It is true
that the characterisation results make clear which axioms determine the
choice of which family of aggregation rules. Nevertheless, each family still
allows for a wide range of different aggregations. And as one can easily see
when looking at the equations, this variance is due to the underdetermina-
tion of the weights by the aggregation constraints. So, in order to provide
an adequate answer to the group decision problem, one also has to address
the problem of choosing the right weights.

11.2 The Problem of the Underdetermination of the

Weights

As we have indicated above, the constraints (U), (A), and (I) determine
the family of linear aggregation rules, (P), and (B) (and some technical as-
sumptions not described here further) determine the family of geometric
aggregation rules, but no set of the constraints allows one to determine a
specific aggregation rule. Regarding the weights used for aggregation these
constraints remain undetermined. Now, it is sometimes suggested in the
literature that there is no general objective account of justifying a specific
choice of the weights: “The determination of the weights is a subjective
matter, and numerous interpretations can be given to the weights” (Clemen
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and Winkler 2007, p.157). Also Genest (1984, p.1104) mentions this problem
when stating his characterisation result of (GM): “The problem of choosing
the weights wi [. . . ] remains and is not addressed here. This difficulty is
common to most axiomatic approaches”.

Genest and McConway (1990) provide an overview of approaches to
determine weights and briefly discuss their problems. We are going to
mention just the most prominent approaches here.

According to the interpretation of veridical probabilities (see Bunn 1981,
p.213), weights are considered to represent the probability of an individ-
ual probabilistic forecast to be right: “wi represents the probability that Pri
is the ‘true’ distribution” (see Genest and McConway 1990, p.56, notation
adjusted) and “wi would represent the probability of predictor i being the
‘true’ descriptive model of the underlying stochastic process” (see Bunn
1981, p.213, notation adjusted). So, according to this approach the weights
wi represent the “decision maker’s” credence in Pri making an accurate
prediction: Pr{1,...,n}(Pri = ch), where ch is the true chance distribution (see
Bunn 1981, p.213). However, this approach faces the main problem that it
is not clear how one can determine the relative veracity of competing opin-
ions when one is entirely ignorant about the true distribution in the world.
Moreover, at any stage of evidence this account faces the problem of induc-
tion, i.e. of estimating the distribution over unobserved individuals from
the observed individuals; and different priors give entirely different anwers
to this problem. In conclusion, the account fails to tell us what should be
considered as adequate priors of Pr{1,...,n} in estimating that Pri is an accu-
rate distribution. For this reason, so it seems, this approach fails to set foot
on solid ground.

It was also suggested to consider only such weights that minimise vari-
ance between the group opinion and the individual opinions: If the indi-
vidual’s Pris are unbiased, then “weights [should] be chosen so as to min-
imise the variance of [Pr{1,...,n}], the composite forecast” (see Genest and
McConway 1990, p.60). That the Pris are unbiased means that for all pos-
sible worlds cl the expected difference between Pri(cl) and the objective
chance of cl equals 0 (where cl is a “state description” or a possible value
of a repeatable event). The rationale behind this approach is that a certain
linear combination of unbiased probability distributions decreases the er-
ror variance. For example, if there are unbiased predictors Pri that have
independent forecast error variances σ2

i , then combining the probability
distributions by the following linear weights:

Pr{1,...,n}(cl) =
n

∑
i=1

∑
i �=j∈{1,...,n}

σ2
j

2 · n
∑

j=1
σ2

j

· Pri(cl)

leads to Pr{1,...,n} having a smaller or equal forecast error variance σ2
{1,...,n}
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than the Pris, i.e. σ2
{1,...,n} ≤ σ2

i ∀i ∈ {1, . . . , n} (see Bunn 1981, p.213). A
problem of this interpretation is that it not clear how to technically expand
it also to cases where individuals’ graded predictions are biased.

In a further approach the weights are interpreted as outranking probabil-
ities: “wi should be interpreted as the probability that the next prediction
made using opinion Pri will outperform predictions made from all other
individual opinions in the group” (see Genest and McConway 1990, p.57,
notation adjusted). An advantage of this interpretation is that such weights
are operationally easier to grasp. “However, the main problem with this
approach is that if the experts know in advance how their weights will
be derived, they may experience them as scores and choose to report dis-
honest opinions in order to maximise their influence on the opinion pool”.
This was the reason for introducing another interpretation of the weights,
namely weights being interpreted as scores: In order to avoid the problem of
manipulation, proper scoring rules for weights were put forward, i.e. scor-
ing rules which guarantee “that the distribution reported by each expert
maximises his expected utility if he is honest and coherent”. However, also
here a problem seems to show up: There is a plurality of proper scoring
rules (quadratic, logarithmic, spherical etc.) and empirical investigations
suggest that “weights [resulting from scores are not] quite satisfactory be-
cause they seemed sensitive to the choice of scoring rule” (see Genest and
McConway 1990, pp.56ff).

This is the point where we think that meta-induction should enter the
picture, because it allows for determining weights generally in a success-
based way. Then optimality results of meta-induction can be cashed out for
providing a general rationale for such a determination. The main line of our
argumentation is that at least for linear pooling the epistemological ratio-
nale provided by the optimality result of meta-induction is general enough
to capture all relevant scoring rules. So, in order to accommodate this ra-
tionale, no specific choice of a scoring rule is necessary. Rather, many of
them can be justified generally and the exact choice of a scoring rule might
be plausibly made dependent also on the context and purpose in question.

In the remainder of this section we list the optimality results of the the-
ory of meta-induction which we are going to employ for a meta-inductively
justified choice of weights for probability aggregation in the subsequent
sections.

Recall the main ingredients of our setting, namely prediction games (see
chapter 2):

• Y1, Y2, . . . is an infinite series of events (variables) whose outcomes
(values) y1, y2, . . . are elements of the normalised interval [0, 1]

• f1,t, . . . , fn,t ∈ F are the predictions of Yt (also elements of [0, 1]) of
all n accessible prediction methods, the so-called candidate methods,
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which are typically but not necessarily object-level methods. Since
we are interested in a probabilistic interpretation we will use for the
elements of F throughout this chapter:
Pr1,t, . . . , Prn,t

• Prmi,t is the prediction of Yt of the meta-inductive method (this is the
learning algorithm defined on F of chapter 3)

As we have seen in section 5.4, a meta-inductive method “cooks up” a pre-
diction from the present predictions and past success rates of the candidate
methods. In order to keep track of the success rate of a method i one mea-
sures the score of i’s prediction about event Y via measuring 1 minus the
negative loss � of its predictions for each round and then summing all of its
scores up to event Yt and dividing by t:

succ i,t =

t
∑

u=1
1 − �(Pri,u, yu)

t

The measure succ i,t represents the average per-round success rate of can-
didate method i up to prediction round t. Recall, the only assumption we
make about the loss measure � is that it is within [0, 1], and that it is convex in
its first argument, i.e. that the loss of a weighted average of two predictions
is lower or equal to the weighted average of the losses of these two predic-
tions. Or formally: �(w · x + (1 − w) · y, z) ≤ w · �(x, z) + (1 − w) · �(y, z)
holds for all x, y and w ∈ [0, 1].

Now, based on this measure for the success rate up to round t we define
the weights via the relative success or attractivities:

wi,t =
max(0, succ i,t − succmi,t)

n
∑

j=1
max(0, succ j,t − succmi,t)

Note that the weights are positive and sum up to 1; prediction methods
that are performing worse than Prmi get weight 0. If Prmi outperforms all
candidate methods, then succmi,t ≥ succ i,t for all i ∈ {1, . . . , n}, and we
stipulate wi,t = 1/n.

Based on these weights, we define the weighted-average meta-
inductive method:

Prmi,t+1 =
n

∑
i=1

wi,t · Pri,t+1 (AMI)

Recall, we can also define such weights in the exponent, simply by defining

ewi,t =
e−η·∑t

u=1 �(Pri,u,yu)

n
∑

j=1
e−η·∑t

u=1 �(Prj,u,yu)
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The exponential success-dependent meta-inductive predictor is defined
similarly to the linear success-dependent meta-inductivist (AMI) by the
method of weighted arithmetic average; thus:

Premi,t+1 =
n

∑
i=1

ewi,t · Pri,t+1 (EAMI)

Both methods allow for relative learnability: The bounds of Prmi and Premi’s
relative worst-case regret, i.e., the loss of their success rates compared to
the success rate of the actual best candidate method are (see the proofs in
section 3.4):

• Given (AMI), succ i,t − succmi,t ≤
√

n/t (∀i ∈ {1, . . . , n}).

• Given (EAMI), succ i,t − succ emi,t ≤ 2√
2−1

· √ln(n)/t (∀i ∈
{1, . . . , n}).

As proven here, if n ≥ 110 the exponential success-dependent meta-level
method (EAMI) has a better guaranteed lower bound (there are better
proofs of better bounds for equation (EAMI) which show an advantage al-
ready with n > 6 in the literature (see Schurz 2019, sect.6.6.2)). It should be
noted also that (EAMI) is the best known long run access optimal meta-
inductive method inasmuch as it best approximates the minimal lower
bound that is achievable in principle, namely

√
ln(n)/2t (see Cesa-Bianchi

and Lugosi 2006, p.62, thrm.3.7). However, what is most important in our
context is that the relative regret of the two meta-inductive methods con-
verges quickly to zero when t grows large. An important consequence of
this fact is the following result on the so-called long run acccess-optimality of
meta-induction:

• Given � is convex (where � is used for determining s), then both meta-
inductive prediction methods (AMI) and (EAMI) are optimal in the
long run:

lim
t→∞

max(succ1,t, . . . , succn,t)− succmi,t ≤ 0

lim
t→∞

max(succ1,t, . . . , succn,t)− succ emi,t ≤ 0

In the next sections we are going to utilise these results in order to de-
termine the weights of linear and geometric probability aggregation and
provide an epistemic rationale for such a determination.

11.3 Meta-Inductive Linear Probability Aggregation

In probabilistic prediction games each forecaster or candidate method iden-
tifies the predicted real value with its credence of the predicted event con-
ditional on her information about the past. First, let us ask: When is it
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reasonable to equate one’s real-valued prediction with one’s probability of
the predicted event? According to a well-known result, this identification
is not optimal if the loss function is natural or linear, even if one’s probabil-
ity is close to the true statistical probability. Rather, under this assumption
the optimal prediction rule is the so-called maximum rule which predicts
that event value v whose conjectured probability (i.e., so-far observed fre-
quency f reqt) is maximal (see Rumelhart and Greeno 1971; Reichenbach
1938, pp.310f). Recall, in section 9.4 we discussed this rule already (under
the label take-the-most-frequent strategy). For binary events the maximum
rule predicts 1 as long as f reqt(1) ≥ .5 and 0 otherwise.

Now, although with a linear loss function the maximum rule is better
off in predicting the probabilities of discrete events, we are still often inter-
ested in one’s full probabilistic estimations (arguments for an agreement
between epistemic/subjective and objective probabilities are discussed,
e.g., in Schurz 2019, sect.7.1). In order to enforce a forecaster to reveal her
real credences, non-linear scoring rules have been devised. With such scor-
ing rules the expected success of real-valued predictions in independent
and identically distributed sequences (i.i.d., see definition 2.18) is maximal
exactly if the forecaster predicts according to her credences. The relevant
property for such loss functions is the following one (see Schurz 2019, state-
ment 7.1):

(PS) Proper Scoring: The loss function � for a proper scoring rule of a binary
event Y with event outcome y has to satisfy the following constraint:
The expected loss of prediction r under probability Pr, ExpPr(r) =de f
Pr(y = 1) · �(r, 1) + Pr(y = 0) · �(r, 0), is minimal iff r = Pr(y = 1).

Now, given such a loss function, clearly there is an incentive for a fore-
caster to predict according to her credences: if she does so, then she max-
imises her expected success. Linear losses fail to satisfy requirement (PS);
however, certain non-linear but convex loss functions are in agreement
with it. So, e.g., Brier (1950) showed that the quadratic loss function (with
�(r, y) = (r − y)2) is a proper scoring rule (for details on this see Schurz
2019, sect.7.1). The (expected) quadratic loss function is a standard mea-
sure in statistical investigations of, e.g., judgement aggregation. How-
ever, it was criticised due to penalising large deviations to a much higher
degree than small ones—there is also empirical evidence that decision-
makers are decreasing sensitivity with increasingly larger deviations from
the true value (see Hartmann and Sprenger 2010, p.347, there also condi-
tions for more “realistic loss functions” are discussed). As we will see be-
low, meta-inductive probability aggregation works (is optimal) when using
a quadratic loss function, but it works also with many other (convex) loss
functions.

In the following part of this section as well as in section 11.4 we dis-
cuss implementations of meta-induction into the framework of probability
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aggregation. We will start with an implementation which allows for prov-
ing general optimality for linear pooling. By this, e.g., the quadratic loss
function proposed by Brier (1950) is proven to be optimal. Then we will
go on with proving a much more restrictive optimality result for the much
more complicated case of geometric pooling. Although scoring functions
satisfying constraint (PS) seem to be the most adequate ones for probabilis-
tic forecasts, the following considerations will hold for all convex scoring
functions.

In order to cash out the long run access optimality result of meta-
induction presented above for probability aggregation we have to change
our framework: It contains:

• Again, a series of events represented by random variables Y1, Y2, . . . ,
but now the events do not have outcomes within [0, 1], but within a
space of discrete (non-numerical), mutually disjoint and exhaustive
values vm, Val = {v1, . . . , vk}. In order to indicate which value a
random variable took on at a specific round t, we assume a valuation
function valt to be given by:

valt(vm) =

{
1, if the value of Yt is vm

0, otherwise

• Predictions are the credences of n candidate methods for each event
variable Yt in the series, represented by probability distributions
Pr1, . . . , Prn:

∀ t, i ∈ {1, . . . , n}
k

∑
m=1

Pri,t(vm) = 1 (and Pri,t(vm) ≥ 0)

So, for each event, at each round, the candidate methods provide a
full probability distribution about the outcome of the event in ques-
tion.

• The success-based meta-inductive methods Prami, Prgmi are also rep-
resented by a probability distribution and defined as an arithmeti-
cally/geometrically weighted average of the Pr1, . . . , Prn; details are
presented below.

The attempt to expand the meta-inductive framework of prediction
games to the probabilistic setting faces the problem that the predictions are
real numbers, i.e. probabilities, but the event’s values are not numbers but
non-numeric mutually exclusive and exhaustive values v1, . . . , vk. There
are different possibilities to apply the meta-inductive framework of predic-
tion games to this case.

Let us start with the first possibility: Since each of these values has two
possible truth values, 0 and 1, we can score probabilistic predictions by
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comparing them with these truth values for each of the possible values.
This means in effect that we mimic a prediction game about a random vari-
able with k values v1, . . . , vk by launching k prediction games about k bi-
nary events, vm versus not-vm, in parallel. The schema of this approach is
depicted in figure 11.1.

v1

↓

v2

↓

vk−1

↓

t = 1

t = 2

t = 3

t = 4

. . .

vk ∑ regret

↓
Figure 11.1: Example of launching k prediction games about single events paral-
lel, one for each value of the value space. The bars under the labels of the values
represent the probability predicted by the meta-inductive method; The bars rep-
resenting the probability sum illustrates the possibility of incoherence (not always
summing up to 1). Nevertheless, the forecast is optimal for each event value,
which is indicated in the last column by guaranteed vanishing regrets for each
predicted value w.r.t. the best candidate methods in the setting (regret is the dif-
ference between the per-round success rate of the candidate method and that of
the meta-method).

We can define a measure for the predictive success regarding a value vm
as follows:

succ i,t(vm) =

t
∑

u=1
1 − �(Pri,u(vm), valu(vm))

t
The decisive difference of this setting compared to the previous one is that
now the success rates of the prediction methods are relative to elements of
the value space: Each method has a success rate for each value vm. Based
on this we can define a weight wi,t(vm) of method i for predicting event
value vm up to time t as follows:

wi,t(vm) =
max(0, succ i,t(vm)− succ ami,t(vm))

n
∑

j=1
max(0, succ j,t(vm)− succ ami,t(vm))

Finally, based on these weights one might try to define a probabilistic meta-
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level method. E.g., for the method (AMI) one might define:

Prami,t+1(vm) =
n

∑
i=1

wi,t(vm) · Pri,t+1(vm)

Of course we can now transfer the long run access optimality result of the
foregoing section to such a meta-level method and prove that for each value
vm of Y’s value space the meta-inductive prediction will approximate the
maximum of the success rates of the predictors of vm accessible in the set-
ting. However, there is a problem: It can easily happen that there is not
only one candidate method which is best at a given round for all values of
the value space. In other words, the meta-inductive forecaster uses weights
resulting from different prediction games which can lead to the result that
its aggregated probabilities are incoherent. To see this, consider the follow-
ing example:

• Let Y be a series of discrete random variables Y1, Y2, . . . .

• k = 3, i.e. the value space consists of v1, v2, v3.

• Let n = 2, i.e. the accessible candidate methods are Pr1 and Pr2. Now,
let up to round u candidate method Pr1 be a perfect expert in predict-
ing v1 and Pr2 be a perfect expert in predicting v2. Let up to round u
Pr1 completely fail regarding the predictions of v2, v3 and Pr2 com-
pletely fail regarding predictions of v1, v3. Thus for all t ≤ u: if
valt(v1) = 1, then Pr1,t(v1) = 1 and Pr2,t(v1) = 0; and if valt(v2) = 1,
then Pr2,t(v2) = 1 and Pr1,t(v2) = 0. Moreover if valt(v3) = 1 both
fail, i.e. Pr1,t(v3) = Pr2,t(v3) = 0.

• So, the candidate predictions are such that their success rates at each
round t ≤ u (for all convex loss functions without an additive term)
are:

succ1,t(vi) succ2,t(vi)
v1 100% 0%
v2 0% 100%
v3 0% 0%

• But then Prami,u+1(v1) = Pr1,u+1(v1) and Prami,u+1(v2) = Pr2,u+1(v2).
Now assume that in round u + 1 both of the candidate methods
predict the value they were absolute experts up to round u, i.e.
Pr1,u+1(v1) = 1 and Pr2,u+1(v2) = 1. Then the meta-inductive pre-
dictions are

Prami,u+1(v1) = 1 and Prami,u+1(v2) = 1

which is probabilistically inconsistent.
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So, although each individual provides a probabilistic forecast, pooling the
forecasts according to this simple idea ends up with a forecast that is no
longer probabilistically consistent. Regarding each value of the value space
such a forecast is long run access optimal, however this optimality comes
at cost of consistency.

One can try, of course, to restore consistency by normalising Prami. Here
the idea is to still calculate for each candidate method success rates that
depend on the method’s success regarding a specific value vm of the value
space. These success rates are then, in a second step, used for defining
value-dependent weights for each candidate method. And these weights
are again, in a third step, used to construct a prediction as above. However,
additionally as a fourth step these predictions are normalised in order to
guarantee probabilistic consistency:

Prami∗,t+1(vm) =
Prami,t+1(vm)
k
∑

j=1
Prami,t+1(vj)

A schema of such an implementation is illustrated in figure 11.2: Proba-
bilistic forecasts consist no longer of parallel prediction games, but of com-
bining parallel predictions by help of normalisation to a single probabilistic
forecast.

v1 . . .

. . .

vkv2 vk−1

↓

t = 1

t = 2

t = 3

t = 4

∑ regret

Figure 11.2: Example of a prediction game about single events, making a nor-
malised prediction of the values of Y’s value space. As in figure 11.1 above, the
bars under the value labels represent the predicted probability. Note that for trivial
reasons the predicted probabilities of the values sum up to 1 at each round. So they
are probabilistically coherent. However, through normalisation there is no longer
a guarantee for vanishing regret of the meta-inductive prediction w.r.t. each value
of the value space. As indicated in the most right column, the regret might de-
crease and increase again. So we have probabilistically coherent, but suboptimal
predictions.
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However, such a meta-level method, although clearly probabilistically
consistent, would no longer be long run access optimal. To see this, one
just needs to specify the example from above and normalise the parallel
meta-inductive predictions:

• Let us assume that we have three values v1, v2, v3, two forecasters
Pr1, Pr2 and for simplicity reasons let us assume that each of them
gives at each round full probability to one of the values. Now, let us
assume that the forecasts and the outcome are as follows:

t 1 2 3 4 5 6 7 8 . . .
Pr1 v1 : 1.0 v1 : 1.0 v1 : 0.0 v1 : 0.0 v1 : 1.0 v1 : 1.0 v1 : 0.0 v1 : 0.0 . . .

v2 : 0.0 v2 : 0.0 v2 : 0.0 v2 : 0.0 v2 : 0.0 v2 : 0.0 v2 : 0.0 v2 : 0.0 . . .
v3 : 0.0 v3 : 0.0 v3 : 1.0 v3 : 1.0 v3 : 0.0 v3 : 0.0 v3 : 1.0 v3 : 1.0 . . .

Pr2 v1 : 0.0 v1 : 0.0 v1 : 0.0 v1 : 0.0 v1 : 0.0 v1 : 0.0 v1 : 0.0 v1 : 0.0 . . .
v2 : 1.0 v2 : 0.0 v2 : 1.0 v2 : 0.0 v2 : 1.0 v2 : 0.0 v2 : 1.0 v2 : 0.0 . . .
v3 : 0.0 v3 : 1.0 v3 : 0.0 v3 : 1.0 v3 : 0.0 v3 : 1.0 v3 : 0.0 v3 : 1.0 . . .

val v1 v1 v2 v3 v2 v1 v2 v3 . . .

• Let us furthermore assume a linear loss function (similar counterex-
amples are possible with other convex loss functions). Then the
success rates will converge to succ1,t→∞(v1) = succ2,t→∞(v2) =
7/8, succ1,t→∞(v2) = succ2,t→∞(v1) = 5/8, succ1,t→∞(v3) =
succ2,t→∞(v3) = 7/8. Thus, after some point in time t∗, Pr1 will gain
full attractivity and weight in predicting v1, Pr2 full attractivity and
weight in predicting v2, and both get equal weight in predicting v3.
Hence, starting at t∗ + 1 the unnormalised and the normalised pre-
dictions of the meta-level agents are:

t t∗ t∗ + 1 t∗ + 2 t∗ + 3 . . .
Prami v1 : 1.0 v1 : 1.0 v1 : 0.0 v1 : 0.0 . . .

v2 : 1.0 v2 : 0.0 v2 : 1.0 v2 : 0.0 . . .
v3 : 0.0 v3 : 0.5 v3 : 0.5 v3 : 1.0 . . .

Prami∗ v1 : 0.5 v1 : 0.66 v1 : 0.0 v1 : 0.0 . . .
v2 : 0.5 v2 : 0.0 v2 : 0.66 v2 : 0.0 . . .
v3 : 0.0 v3 : 0.33 v3 : 0.33 v3 : 1.0 . . .

val v1/v2 v1 v2 v3 . . .

• But then—given, e.g., the natural loss function—the success rates of
Prami∗ are: succ ami∗(v1) = 19/24 < 7/8 = succ1(v1), succ ami∗(v2) =
19/24 < 7/8 = succ2(v2), and succ ami∗(v3) = 10/12 < 7/8 =
succ1(v3) = succ2(v3). Hence, regarding all three values Prami∗ is
long run suboptimal.

As things stand, a multiple parallel application of the meta-inductive
framework to probability aggregation faces the dilemma of being either
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prone to inconsistency or suboptimality. We need to find a better way to ap-
ply meta-induction to probabilistic forecasting.

There is indeed a way to employ meta-inductive single event prediction
game access optimality for probability aggregation in such a way that the
meta-level method is both probabilistically consistent as well as access op-
timal. The crucial idea is to define a success measure for each method that
is not relative to the values of Y’s value space. In order to remain access
optimal we will consider at each round the score of a method regarding
that value which turned out to be the true value in the round. The schema
of this approach is depicted in figure 11.3. This method of defining suc-
cess is introduced in (Schurz 2019, sect.9.1); the same method of defining
the success of a probabilistic forecaster is applied in sequential probability
assignment (Cesa-Bianchi and Lugosi 2006, p. 248), but restricted to the
logarithmic loss function. Here, in the context of strategies of probability
aggregation, we introduce this method in a more general way applying to
all convex loss functions.

v1 . . .

. . .

vkv2 vk−1 ∑ regret

↓

t = 1

t = 2

t = 3

t = 4

Figure 11.3: Example of a prediction game about single events using weights cal-
culated out of predictions of those values which turned out to be true. Again, as in
figure 11.1, the bars below the value labels represent the probability forecast. Note
that at each round they sum up to 1 and that the probability forecast is optimal re-
garding the truth (the value which turned out to be the true one in each round), as
indicated by the guaranteed vanishing regret. Hence we have a probabilistically
coherent and optimal meta-inductive prediction method.

So, we define now a measure for the average per-round success in the
probabilistic setting that is based on the loss of the prediction of that value
which turned out to be the correct outcome in the round. We write this
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success rate as succi,t:

succi,t =

t
∑

u=1
1 − �(Pri,u(vu

m), 1)

t
where vu

m is that vm such that valu(vm) = 1

Again we can define success-based weights, but this time without reference
to a specific value of the value space:

wi,t =
max(0, succi,t − succami,t)

n
∑

j=1
max(0, succ j,t − succami,t)

And again, by help of these weights we can define a meta-level probability
aggregation function that aggregates the object-level probability functions
by a success-based weighted arithmetic mean:

Pr{1,...,n},t+1(vm) = Prami,t+1(vm) =
n

∑
i=1

wi,t · Pri,t+1(vm) (AMIp)

This probability aggregation function is an instance of the meta-inductive
method (AMI). For this reason, the long run optimality result regarding
Prmi of (AMI) can be simply transferred to the probability aggregation rule
Pr{1,...,n} = Prami:

Theorem 11.1. Given that � is convex (where � is used for determining s as de-
fined above), then the forecaster Prami (as defined in (AMIp)) is long run access
optimal:

lim
t→∞

max(succ1,t, . . . , succn,t)− succami,t ≤ 0

The same strategy can be applied also for proving optimality of the expo-
nentially weighting meta-inductive probabilistic forecaster in accordance
with (EAMI). The application is straightforward.

In conclusion, if probability aggregation is considered in a dynamical
setting which allows one to compare the scores by calculating past suc-
cess rates, then meta-inductive probability aggregation as presented here
provides an epistemic rationale for using such success-based weights: It is
simply because in doing so one has a guarantee for approaching or even
outperforming the best predictive probabilities accessible in the setting.

Note that the only assumption in the optimality-result is that the used
loss-function � is convex. If, e.g., � is the quadratic loss function, then the
relative (per round) loss 1 − s is equal to the normalised Brier score for bi-
nary events (see Brier 1950).



Chapter 11. Judgement Aggregation 300

Up to now we have achieved an epistemic rationale for choosing
weights used in linear probability aggregation in a success-based way. Let
us now address the problem of providing an epistemic rationale for choos-
ing weights used in geometric probability aggregation.

11.4 Meta-Inductive Geometric Probability Aggrega-

tion

The idea of the following approach to geometric probability aggrega-
tion and the proof of theorem 11.2 is thanks to, courtesy of, Schurz (see
Feldbacher-Escamilla and Schurz m ).

We have seen in the preceding section that there is a way of aggregating
probabilities by a linear success-based weighting rule which allows for long
run access optimality. In this section we want to expand this result also to
geometric success-based weighted probability aggregation. It is clear that
according to (GM) there is no direct implementation of the meta-inductive
optimality results of section 11.2 for geometrical rules, because these opti-
mality results are only about linear success-based weighted predictions of
single events. We succeeded already in transforming the optimality results
from a setting of predictions about single events to the probabilistic case.
Now we want to show how this result can be used further to allow also for
proving optimality of a geometrical rule that uses success-based weights.

First, let us state what such a geometrical meta-level rule has to look
like. In analogy to the instantiation of (AM) by the meta-level method
(AMIp), we aim at an instantiation of (GM) by a meta-level method:

Pr{1,...,n},t+1(vm) = Prgmi,t+1(vm) =
1
c
·

n

∏
i=1

Pri,t+1(vm)
gwi,t

(where 1/c is a factor needed for normalisation:

c =
k

∑
j=1

n

∏
i=1

Pri,t+1(vj)
gwi,t

and the Pris are ε-regular, i.e. Pri(vm) ≥ ε > 0;
for details regarding ε-regularity see equation (11.4) in the proof of
theorem 11.2)

(GMIp)

Second, in order to calculate weights that are success-based and allow for
transferring an optimality result to such a meta-level rule, we want to high-
light that the geometrical rule (GMIp) can be re-stated as a linear rule simi-
lar to (AMIp) aggregating logarithmic values:

log(Prgmi,t+1(vm)) =
n

∑
i=1

gwi,t · log(Pri,t+1(vm))− log(c)
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Third, the main idea of our implementation is to devise a prediction game
which consists of logarithms of probabilistic forecasts. The weights of such
a prediction game are success-based; then it is shown that they allow for
applying the meta-inductive optimality result (AMI) as is done in (AMIp),
and finally, this result is transferred via the equation above to the geomet-
rical rule (GMIp) by fitting “geometrical” weights (gwi) via “geometrical”
scores and success rates (gsucci). The schema of this approach is provided
in figure 11.4.

Pr∗ami, Pr∗i ⇐ Prgmi, Pri
⇓ ⇑

succ∗ami, succ
∗
i gsuccgmi,gsucci

⇓ ⇑
∑
i
w∗

i · Pr∗i = ∏
i

Pri
gwi

Figure 11.4: Schema of transferring the linear meta-inductive optimality result to
the geometric aggregation rule. The ∗–variables are the variables of a logarithmic
prediction game which is a certain instance of (AMIp). For this instance the gen-
eral meta-inductive optimality result holds, as was shown in section 11.3. One
can equate this instance with (GMIp). Now, via reverse engineering one can de-
fine success measures gsuccgmi,gsucci which allow for geometric meta-inductive
optimality in the probabilistic prediction game (∗–free variables).

Given such a procedure, an optimality result also holds for the geomet-
ric rule: We can devise a geometric scoring rule and based on it a defini-
tion for geometric success for the candidate methods as follows (see equa-
tion (11.7)) in the proof of theorem 11.2):

gsucci,t =
1
t
· log

(
t

∏
u=1

Pri,u(vu
m)

ε

)

(where vu
m is that vm such that valu(vm) = 1,

and ε is the smallest real > 0 such that the Pris are ε-regular)

The weights for the candidate methods result from normalising their suc-
cess rates:

gwi,t =
max(0, gsucci,t − gsuccgmi,t)

n
∑

j=1
max(0, gsucc j,t − gsuccgmi,t)

The relative success rate gmisucct of the geometric meta-inductive method
Prgmi (GMIp) is based on an instance of this success rate with Prgmi,u(vu

m),
together with an additional factor c for “de-normalisation” (see equa-



Chapter 11. Judgement Aggregation 302

tion (11.8) of the proof of theorem 11.2):

gmisucct =
1
t
· log

(
t

∏
u=1

Prgmi,u(vu
m) · c

ε

)

c is a specification of the normalisation term of (GM):

c =
k

∑
j=1

n

∏
i=1

Pri,u(vj)
gwi,u

That the success measure for the candidate methods must differ from that
of the geometric meta-inductivist results from the fact that geometric av-
eraging of probabilities requires an additional step of re-normalising the
resulting probability function; this step is not needed in their arithmetic av-
eraging. Now, given this success measures it holds (the theorem and proof
is due to Schurz—see Feldbacher-Escamilla and Schurz m ):

Theorem 11.2. Prgmi as defined in (GMIp) is long run access optimal w.r.t. the
geometrical relative success measures gsucc and gmisucc:

lim
t→∞

max(gsucc1,t, . . . ,gsuccn,t)− gmisucct ≤ 0

Proof. Here we provide details for our approach to geometric meta-
inductive probability aggregation: Recall the schema in figure 11.4. We
go through it according to the following steps: We first define geometric
pooling 1©, then devise a game with predictions of logarithms of proba-
bilities with an arithmetic meta-inductivist 2©, define the respective suc-
cess measures of this game 3©, transform this game into a prediction game
about probabilities with a geometric meta-inductivist 4©, define—via back-
wards engineering—the respective success measures of this game 5©, show
that this is the success measure for geometric pooling and thus verify the
optimality of the geometric meta-inductivist with respect to these success
measures 6©.

2© 1©
Pr∗ami, Pr∗i ⇐ Prgmi, Pri

⇓ ⇑ 6©
3© succ∗ami, succ

∗
i gsuccgmi,gsucci 5©

⇓ ⇑
∑
i
w∗

i · Pr∗i = ∏
i

Pri
gwi

4©

1©: We aim at the optimality of Prgmi as defined in (GMIp).
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Let us assume a prediction game whose task it is to predict the loga-
rithm of the probabilities. We will put an asterix ∗ over all variables of this
prediction game. Then for all candidate methods Pri ∈ {Pr1, . . . , Prn}, val-
ues of the value space vm ∈ {v1, . . . , vk}, and for all rounds (time points) t
it holds:

Pr∗i,t+1(vm) = log(Pri,t+1(vm)) (11.1)

2©: Now, applying probabilistic meta-induction to these candidate methods
of the logarithmic prediction game yields, according to (AMIp):

Pr∗ami,t+1(vm) =
n

∑
i=1

w∗
i,t · Pr∗i,t+1(vm)︸ ︷︷ ︸

=
((11.1))

log(Pri,t+1(vm))

(11.2)

Here the weights w∗
i,t are success-based (succ∗i,t) as follows:

w∗
i,t =

max(0, succ∗i,t − succ∗ami,t)
n
∑

j=1
max(0, succ∗j,t − succ∗ami,t)

(11.3)

The relative (average per round) success succ∗i,t is based on a loss function.
However, since these measures operate on predictions of the logarithm of
probabilities, also the scores are logarithmic. In order to bound them, we
assume that the probabilities of the candidate methods are ε-regular, i.e.:

There is an ε > 0 such that at any point in time t, for any probability
or candidate method Pri, and all values vm of the value space Val:
Pri,t(vm) ≥ ε

(11.4)

Note that ε-regularity implies regularity as assumed in (GM), but not the
other way round, so this assumption is stronger. By this assumption we
know that succ∗i,t is bounded as follows: Since Pri,t+1(vm) ∈ [ε, 1] we know
that Pr∗i,t+1(vm) ∈ [log(ε), 0]. Hence, log(ε) is the maximal logarithmic loss
and − log(ε) = log(1/ε) is the maximal logarithmic score. If we assume
the natural loss function (�(x, y) = |x, y|), we get:

succ∗i,t =

t
∑

u=1
log(1/ε) + log(Pri,u(vu

m))

t
where vu

m is that vm such that valu(vm) = 1

(11.5)

Since (11.2) is an instantiation of (AMIp) and we assumed a convex loss
function, it follows from our investigation in section 11.3 that Pr∗ami is long
run access optimal. So we have defined the relevant success measures
succ∗i , succ∗ami for the logarithmic game 3©�.
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We now transform this scoring measure to an ordinary prediction game
whose task it is to predict the probabilities simpliciter. Re-transforming Pr∗i
to Pri is possible via Pri,t+1(vm) = ePr∗i,t+1(vm) (the inverse function of log).
Similarly for the meta-inductive aggregation method:

Prmi,t+1(vm) = ePr∗ami,t+1(vm) =
((11.2))

exp

⎛
⎜⎜⎜⎝

n

∑
i=1

w∗
i,t · Pr∗i,t+1(vm)︸ ︷︷ ︸

=
((11.1))

log(Pri,t+1(vm))

⎞
⎟⎟⎟⎠ =

n

∏
i=1

Pri,t+1(vm)
w∗

i,t

(11.6)

Now, (11.6) resembles already (GMIp), so 4©�. Only two things are differ-
ent: First, the weights w∗

i,t are still based on the logarithms of the predic-
tions, and second, the normalisation factor 1/c (see (GMIp) is missing.

Now we aim at defining a scoring measure which allows us to achieve
long run optimality of the normalised geometric aggregation Prgmi of (GMIp)
compared to Pr1, . . . , Prn. The average per round score of the prediction
game providing forecasts of the logarithms of probabilities can be used to
construct a success measure which gets rid of the logarithm in the weights:

• We define the score scorei,t of a candidate method Pri in round t as:

scorei,t = Pri,t(vt
m)/ε

where vt
m is that value vm of Val which turned out to be the true value

at t. Each score is in the range [1, 1/ε]. We can then define the absolute
geometric success of a candidate method as the logarithm of the prod-
uct of these scores (log ∏t

u=1 scorei,u). Alternatively we could use a
logarithmic loss function already for the one-round scores and define
log(Pri,t(vt

m)/ε) as the score of one round. In this case the absolute
success after t rounds would be given as the sum of these logarithmic
scores. Both methods are equivalent. This is the reason why one finds
both labels in the literature quite often used interchangeably: geomet-
ric pooling (due to the product) and logarithmic pooling. The relative
geometric success is the absolute geometric success divided by t:

gsucci,t =

log
(

t
∏

u=1
scorei,u

)
t

=

log
(

t
∏

u=1

Pri,u(vu
m)

ε

)
t

(11.7)

• Note that from (11.5) we get: succ∗i,t =

t
∑

u=1
log(Pri,u(vu

m))−log(ε)

t

• From this it follows: succ∗i,t =
log
(

t
∏

u=1

Pri,u(v
u
m)

ε

)
t
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• Since succ∗i,t = gsucci,t, we can also interpret succ∗i,t as the relative geo-
metric success of candidate method Pri up to round t.

• Up to now we have defined a success measure which allows us to
get rid of the logarithms in the weights. However, this is not enough
for the geometric meta-inductive method, since this method also uses
normalisation. For this reason we have to define a success measure
for this meta-inductivist which “de-normalises”. We can do so by
simply implementing the normalisation factor c into the score scorei,t:

gmiscoret = c · scoregmi,t = c · Prgmi,t(vt
m)

ε

where c =
k

∑
j=1

n

∏
i=1

Pri,t(vj)
gwi,t

and gwi,t is defined as usual, namely the normalisation of gsucci,t = succi,t:

gwi,t =
max(0,gsucci,t − gsuccgmi,t)
n
∑

j=1
max(0,gsucc j,t − succ∗gmi,t)

• Based on this “de-normalising” score we can define the de-normalised
relative geometric success of Prgmi as:

gmist =
1
t
· log

(
t

∏
u=1

gmiscoreu

)
=

1
t
· log

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t

∏
u=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Prgmi,u(vu
m)

ε
·

k

∑
j=1

n

∏
i=1

Pri,u(vj)
gwi,u

︸ ︷︷ ︸
c︸ ︷︷ ︸

gmiscoreu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where gwi,t =
max(0,gsucci,t − gsuccgmi,t)
n
∑

j=1
max(0,gsucc j,t − succ∗gmi,t)

(11.8)

So, we calculated the relevant success measures
gsucci,gsuccgmi,gmisucc for the geometric game, hence 5©�

• We already know that the relative geometric success of a candidate
method equals the relative success rate of the respective candidate
method in the logarithmic game: succ∗i,t = gsucci,t
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• We also know that the arithmetic meta-inductive method of the loga-
rithmic game, i.e. Pr∗ami, with its success rate succ∗ami is long run access
optimal.

• We can now show that the geometric meta-inductive method of the
non-logarithmic game, i.e. Prgmi, with its success rate gmisucc is also
long run access optimal, by showing that for all rounds t > 1 (the
special case of t = 1 does not matter, because we can simply stipulate
equivalence there): succ∗ami,t = gmisucct:

– According to our backwards engineering above, the relative ge-
ometric score of the meta-inductive method is as given in (11.8):

gmisucct =
1
t
· log

t

∏
u=1

(
Prgmi,u(vu

m)/ε · c
)

– Now, according to (GMIp):

Prgmi,u(vu
m) =

n
∏
i=1

(Pri,u(vu
m)

gwi,u)

c
so, the normalisation factor c cancels and we get:

gmisucct =
1
t
· log

t

∏
u=1

⎛
⎜⎜⎝

n
∏
i=1

(Pri,u(vu
m)

gwi,u)

ε

⎞
⎟⎟⎠

– By reformulation we get:

gmisucct =
1
t
·

t

∑
u=1

(
n

∑
i=1

(
gwi,u · log(Pri,u(vu

m))
)− log(ε)

)

– Since
n
∑

i=1
gwi,u = 1 we get:

gmisucct =
1
t
·

t

∑
u=1

⎛
⎜⎜⎜⎝

n

∑
i=1

⎛
⎜⎜⎜⎝gwi,u · (log(Pri,u(vu

m))︸ ︷︷ ︸
=

(11.1)
Pr∗i,u(vu

m)

− log(ε)︸ ︷︷ ︸
=log(1/ε)

)

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ = succ∗ami,t

This completes the proof: 6©�.
We conjecture that this result can be generalised by using more appro-

priate loss functions different from the natural one. In particular we conjec-
ture that by this, one could get rid of the “de-normalisation” in the success
rate of Prgmi. However this a very complex topic and work for future re-
search.
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This result also shows that geometric probability aggregation can be
performed in a success-based way such that long run access optimality of
such an aggregation can be guaranteed. This also provides an epistemic
rationale for geometric aggregation. Note, however, that due to the restric-
tions of geometrical pooling this result is much less general. Whereas linear
pooling allows for defining a variety of success-based weights which prove
to guarantee long run access optimality in case the underlying loss function
is convex, for geometrical pooling we were only able to show that there
exists at least a success-based weighting method that proves to guarantee
optimality in the long run.

We can sum up the main findings of this chapter as follows: We have
argued for a new solution to the problem of weighted probability aggre-
gation. We have seen that some general constraints determine families of
aggregation rules. However, even if arguments can be put forward for de-
ciding for a particular family, in the classical approach the choice of an
exact aggregation rule of the respective family remains epistemically unde-
termined. We have argued that a success-based calculation of weights—as
is done in the framework of meta-induction—allows for a much more pre-
cise choice. Success-based weighting also provides a rationale for such a
choice, since it guarantees long run optimality in probabilistic prediction
tasks. Whereas the exact choice of the weights for linear or geometric prob-
ability aggregation might still depend on the context and purposes in ques-
tion, all such choices can be epistemically justified as long as the respective
conditions of the optimality results are justified.



Chapter 12

The Wisdom of the Crowds

This chapter briefly sketches the historical discussion and first analysis of a wise crowd
effect, and provides a general characterisation. Afterwards, Condorcet’s wise crowd
effects in probabilistic predictions are outlined. Subsequently, wise crowd effects in
non-probabilistic predictions and their underlying assumptions are investigated. Finally,
it is shown how meta-induction can be interpreted as cashing out a wise crowd effect.

Oftentimes individuals have to act together in order to achieve their in-
dividual, a shared or a common goal. This holds true not only for the
practical realm of (practical) decision making, but also for the epistemic
realm. Science is a collective endeavour in the sense that all aspects of
scientific investigation—the discovery, the justification, the utilisation of
theories—depend on collective action, may it be collective belief formation
or collective decision making. Logical positivists and empiricists have of-
ten stressed the importance of such collective action also for philosophy. So,
e.g., Carnap wrote in his first influential work, the Aufbau, the following (in
a similar vein was Neurath’s discussion of expert knowledge in section 9.4):

“The new type of philosophy has arisen in close contact with
the work of the special sciences, especially mathematics and
physics. Consequently they have taken the strict and respon-
sible orientation of the scientific investigator as their guide-
line for philosophical work, while the attitude of the traditional
philosopher is more like that of a poet. This new attitude not
only changes the style of thinking but also the type of problem
that is posed. The individual no longer undertakes to erect in
one bold stroke an entire system of philosophy. Rather, each
works at his special place within the one unified science.” (Car-
nap 1928/2003, p.xvi)

Now, in evaluating collective action, one can take individual or other
collective action as a benchmark. A quite common way of evaluation is to

308
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compare the performance of a collective with respect to the performance
of an average individual of that collective. The spectrum of outcomes of
such an evaluation is quite broad. It ranges from the claim that collectives
are mad: “Men, it has been well said, think in herds; it will be seen that
they go mad in herds, while they only recover their senses slowly, and one
by one” (Mackay 1852, p.viii); to the claim that collectives are wise and
knowledgeable: “We are more likely to attribute [. . . ] success to a few smart
people in the crowd than to the crowd itself. [. . . However] chasing the
expert is a mistake, and a costly one at that. We should stop hunting and
ask the crowd [. . . ] instead. Chances are, it knows” (Surowiecki 2005, p.xv).
Clearly, this is about extreme cases of collective performance. More typical
is, however, some form of intermediary performance: Collective action is
often also considered as a trade-off where individuals almost literally trade
with inferiorities and merits, and gain advantages in one area at the cost of
disadvantages in another.

A short note on terminology is in place: Here we speak of ‘collective ac-
tion’ and attribute several epistemic attitudes to a collective as if such a col-
lective were a single epistemic agent. There are many similarities between
single individuals and collectives which seem to grant such a terminology
(so, e.g., List and Pettit 2011, argue prominently for group agency by help
of similarities). However, clearly, there are also many dissimilarities be-
tween single individuals and collectives for which reason one ought to be
cautious when using such a terminology (collectives do not have conscious-
ness in the ordinary sense, etc.). Our choice of terminology is not intended
to make any deep ontological, action theoretical, and moral assumptions.
We think that the agency way of speaking is convenient, but we agree also
that a rephrasing of the claims made here in terms of collective effects, etc. is
completely fine too.

In this chapter we deal with characterisations of cases where collective
action performs well in the sense of approaching wisdom or knowledge.
In section 12.1 we discuss the most famous example of a wise crowd and
provide a very general characterisation. In section 12.2 we briefly discuss
the most famous theorem on wise crowd characteristics, namely the so-
called Condorcet jury theorem. In section 12.3 we investigate another result
on wise crowd characteristics in a setting which is closer to our prediction
setting, namely the so-called The Crowd Beats the Average Law. Finally, in
section 12.4 we hint at an interpretation of meta-inductive optimality as
another result of such wise crowd characteristics.

12.1 Wise Crowd Effects

Let us begin with a true story about the first influential empirical observa-
tion and theoretical analysis of a wise crowd effect. The main proponent
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of this story is Sir Francis Galton (1822-1911) who was a highly versatile
scientist, a real polymath (for the following see Gillham 2001). Galton in-
vented and introduced statistical methods and concepts like correlation and
regression towards the mean. He founded several disciplines as, e.g., psycho-
metrics. He devised the methodology for creating weather maps, and also
explored Africa. It is interesting to note that he was a cousin of Charles Dar-
win (1809-1882) and also highly interested in heredity. Due to this he also
became the founder of eugenics, a discipline concerned with topics which,
back at his time, were simply considered to be subject to ordinary scien-
tific Inquiries into Human Faculty and Its Development (1883). But what is
most relevant for us here is that Galton became also famous for uncovering
and investigating an impressive wise crowd effect (see Surowiecki 2005,
pp.xiff): Jack of all trades as he was, his interest in inheritance lead Gal-
ton also to an interest in livestock. So, one day in fall 1906 he headed to a
cattle show at Plymouth in order to get some more impressions on results
of England’s farmers’ breeding capabilities. By accident he recognised that
at the fair also an ox-weight-judging competition was going on, and this
immediately called the eugenicist and statistician in him.

As an eugenicist he thought that intelligence and intellectual abilities
are much more influenced by nature than nurture which are influences af-
ter conception as, e.g., social influences. Already in his Hereditary Genius.
An inquiry into its laws and consequences (1869) he argued with help of histo-
riometrical means that genius is distributed in clusters around family lin-
eages and not widespread among the whole population. For this purpose
he studied the family trees of influential people in society (judges, politi-
cians, important people of the military), art (poets, musicians, painters),
and science (see Galton 1869). And he interpreted this clustering result as
an indicator for the hereditary of genius. Taking in the stance of an en-
gineer, he considered this as a reason to suggest intellectual enhancement
or at least to avoid thinning of intellectual abilities in society. These were
the main aims of eugenics. The former aim was more due to evolutionary
optimism regarding human species and new possibilities one might open
up by this. Whereas the latter aim was more due to pessimism about the
increased influence of the general population which was considered to be
intellectually inferior to formerly more powerful classes.

Now, given this background, Galton thought that such a weight-
judging competition allows for a further study of the distribution of ability
(this time not necessarily intellectual ones) in the general population. Since
Galton was perhaps one of the most rigid adherents of the Pythagorean
programme (All things are number—he expressed this in his motto “When-
ever you can, count.” (see Pearson 1924, p.340)), he must have felt really
lucky to have come across such an opportunity for a quantitative analy-
sis. This the more since, as he described it, the setting of this competition
seemed to be almost perfect for such a study:
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“A weight-judging competition was carried on at the annual
show of the West of England Fat Stock and Poultry Exhibition
recently held at Plymouth. A fat ox having been selected, com-
petitors bought stamped and numbered cards, for 6d. each, on
which to inscribe their respective names, addresses, and esti-
mates of what the ox would weigh after it had been slaugh-
tered and “dressed.” Those who guessed most successfully re-
ceived prizes. About 800 tickets were issued, which were kindly
lent me for examination after they had fulfilled their immedi-
ate purpose. These afforded excellent material. The judgments
were unbiassed by passion and uninfluenced by oratory and the
like. The sixpenny fee deterred practical joking, and the hope
of a prize and the joy of competition prompted each competitor
to do his best. The competitors included butchers and farm-
ers, some of whom were highly expert in judging the weight
of cattle; others were probably guided by such information as
they might pick up, and by their own fancies.” (Galton 1907c,
pp.450f)

Without further ado he borrowed the tickets from the organisers of the
competition and ran statistical tests on the numbers of the weight guessing
competition. Different to his former study on genius as mentioned above,
he was not only interested in the distribution of the most accurate judge-
ments or predictions, but also in the accuracy of the judgement or predic-
tion of the average individual.

Galton was quite clear on what he considered to be the average individ-
ual; for this purpose he even had introduced a new notion to statistics in
anterior writings: It was the median Galton considered to be the relevant
measure:

“How can the right conclusion be reached, considering that
there may be as many different estimates as there are mem-
bers? That conclusion is clearly not the average of all the esti-
mates, which would give a voting power to “cranks” in propor-
tion to their crankiness. One absurdly large or small estimate
would leave a greater impress on the result than one of reason-
able amount, and the more an estimate diverges from the bulk
of the rest, the more influence would it exert. I wish to point
out that the estimate to which least objection can be raised is
the middlemost estimate, the number of votes that it is too high
being exactly balanced by the number of votes that it is too low.
Every other estimate is condemned by a majority of voters as
being either too high or too low, the middlemost alone escaping
this condemnation.” (Galton 1907a, p.414)
And:
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“I endeavoured in the memoirs just mentioned, to show the ap-
propriateness of utilising the Median vote in Councils and in
Juries, whenever they have to consider money questions. Each
juryman has his own view of what the sum should be. I will
suppose each of them to be written down. The best interpreta-
tion of their collective view is to my mind certainly not the aver-
age, because the wider the deviation of an individual member
from the average of the rest, the more largely would it effect the
result. In short, unwisdom is given greater weight than wis-
dom.” (Galton 1908, p.281)

Now, Galton was quite impressed that in case of the ox-weight-judgement
competition the mean was a very good predictor:

“According to the democratic principle of “one vote one value,”
the middlemost estimate expresses the vox populi, every other
estimate being condemned as too low or too high by a majority
of the voters [. . . ]. Now the middlemost estimate is 1207 lb.,
and the weight of the dressed ox proved to be 1198 lb.; so the
vox populi was in this case 9 lb., or 0.8 per cent. of the whole
weight too high.” (Galton 1907c, p.451)

This led Galton, a former pessimist with regards to the influence of an
empowered general population in the reasonableness of collective judge-
ments, to the more optimistic conclusion: “This result is, I think, more
creditable to the trustworthiness of a democratic judgment than might have
been expected” (Galton 1907c, p.451). Galton published his finding 1907 in
Nature. A brief discussion arose and people were also interested in the aver-
age prediction. In (Galton 1907b) he reported that the arithmetic mean of the
almost 800 estimations was 1197 pounds, i.e. just 1 pound deviating from
the true value. So, regardless of whether one considers the median or the
mean as relevant for the average individual, the guessing crowd was almost
a perfect predictor. What are the reasons for this almost perfect perfor-
mance of the crowd? Galton himself did not analyse the case further. How-
ever, in his description of the case and the preceding discussion he refers to
one property which is nowadays considered to be the main condition rele-
vant for a wise crowd effect to show up, namely diversity (see Page 2007).
Recall, Galton described the setting of the ox-weight-judgement competi-
tion as almost perfect inasmuch as “the judgments were unbiassed [. . . ] and
uninfluenced by oratory and the like” (see Galton 1907c, p.450). And also in
describing how an optimal jury decision is achieved, he states as a condi-
tion “for each juryman to write his own independent estimate on a separate
slip of paper” (Galton 1907a, p.414). We will discuss how to exactly spell
out these conditions in the subsequent sections.

Now, the case presented by Galton is a case where the “vox populi”
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was impressively close to the true outcome. However, it seems that accu-
racy of the “vox populi” in more relative terms suffices already for reducing
prejudices against collective judgements—so, e.g., if the “vox populi” were
not that accurate, Galton might have been still impressed if it had outper-
formed the experts’ judgements. For this reason, in general one speaks of
a wise crowd effect, if a collective performs better than an individual or an
other part of the collective does. As we have mentioned at the beginning
of this part of the book, the problem of the wisdom of the crowds concerns
the question under which conditions which forms of aggregation methods
produce such a wise crowd effect. In this chapter we study different such
conditions and aggregation methods.

Several specifications and remarks of this general characterisation of a
wise crowd effect are in place. The relevant keywords are wise, better perfor-
mance, and the relatum for comparison, namely individual or other part of the
collective. Firstly, wise is to be understood very broadly. As used here, the
notion is not linked to some form of deeper understanding or understand-
ing in general. Rather, it is just used for one component of the much more
general notion, namely the feature that wise actions or decisions are typ-
ically more often correct than others. Furthermore, usually a wise action
is considered to fulfil high standards in absolute terms. Again, the notion
we employ here is much weaker and demands satisfying high standards
in relative terms only. To illustrate this, consider as an analogy the relation
between truth and being closer to the truth than: One of the most ambitious
epistemic aims is it to end up with informative theories that are true (see,
e.g., our elaboration on absolute learnability in section 5.3); however, often
there are no epistemic means to achieve this end for which reason we aim
at informative theories that are closer to the truth than their competitors
(see our elaboration on relative learnability in section 5.4). Similarly with the
notion of wisdom used here: An action is called ‘wise’, if it is better com-
pared to its alternatives; clearly, it would be advantageous, if it were also a
good action; however, this is no necessary condition, if none of the compet-
ing actions is good. This brings us directly to the next notion, namely better
performance.

Secondly, ‘better performance’ means to provide better predictions. Pre-
dictions can be non-probabilistic or probabilistic. A non-probabilistic pre-
diction is better than another one, if it is more accurate than the other one
in terms of closer to the true value. A probabilistic prediction is better than
another one, if it predicts the true event with higher probability than the
other prediction does. In section 12.2 we will consider the probabilistic
case; in section 12.3 the non-probabilistic one.

Thirdly, let us specify what is meant with ‘individual or other part of the
collective’: Usually, a collective consists of quite heterogeneous individuals.
So, comparing a collective action with that of different individuals usually
leads to different results. It is quite natural to use the average individual of
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the collective as a benchmark. Later on, when we discuss non-probabilistic
predictions in detail, we will concentrate on this case. However, in princi-
ple one could also use as a benchmark other individuals than the average
individual. So, e.g., one could also take as a benchmark the worst perform-
ing individuals and put forward the constraint that the collective should
perform better or at least not worse than these individuals do, i.e. that the
collective should be not strongly suboptimal, in order to be wise. In the
light of the madness evaluation of collective action, it seems reasonable to
assume that Mackay (1852) would have been fine with such a low bench-
mark: Any aggregation mechanism which prevents that individuals “go
mad in herds” should be reasonable. Also our argument for using a con-
vex loss function in online regression (section 3.4) was based on such a low
benchmark only: If one demands of a learning algorithm which just aver-
ages predictions (see definition 3.31) that it should not be strongly subop-
timal, i.e. outperformed even by the worst individuals, then employing a
convex loss function is a suitable epistemic means to achieve this end (see
theorem 3.32).

Another possibility is do not use the average individual as a benchmark,
and also not “the weakest link” in the chain clinging together the collec-
tive, but to use the best individuals (the “strongest links”) of the collective
as a benchmark. Characterising conditions for a wise crowd effect based
on such a high benchmark is quite demanding. As we will argue in sec-
tion 12.4, if one expands the horizon from single predictions to long run
prediction series, then the theory of meta-induction characterises condi-
tions and aggregation methods for such wise crowd effects.

There is also the possibility to use another collective as a benchmark.
So, e.g., one might wonder whether, and if so, under which conditions a
collective performs better than one of its sub-collectives. Figuring out con-
ditions and aggregation methods for such a wise crowd effect is relevant
for the question of how to design collectives: When is it better to increase
the size of a collective etc.? The investigation in section 12.2 is also about
wise crowd effects with sub-collectives as a benchmark.

Finally, combinatorially speaking there is even a further possibility to
characterise wise crowd effects via different relevant relata: We have spo-
ken about comparing a collective with an individual and comparing a col-
lective with a sub-collective. Now, it is interesting to note that conditions
and aggregation methods for wise crowd effects can be also defined for the
borderline case where the collective equals an individual. Hinting at this
results concern us in the remainder of this section.

Recent psychological studies show that wise crowd effects arise also
in case one averages over the judgements, estimations or predictions of
one and the same individual. This phenomenon is called the crowd within
effect. E.g. Vul and Pashler (2008) have performed a study where people
were asked to answer questions probing their real-world knowledge as,
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e.g., estimating the percentage of the world’s airports in the United States.
Half the participants had to make a first guess immediately followed by
a second guess. The others had to make a first guess and a second guess
three weeks later (none of them knew when making the first guess that
they are expected to make a second guess also). Now, Vul and Pashler (see
2008, p.646) found out that in both subgroups the average of both guesses
were more accurate than each single guess. Furthermore, the averages in
the group with three weeks delay between the guesses were significantly
more accurate than those of the other group. Given that diversity is a main
condition relevant for wise crowd effects, the three weeks delay might be
interpreted as producing further diversity in the individual’s guesses, and
hence explain the higher accuracy. The main result of this study is depicted
in figure 12.1.
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Figure 12.1: Results of the crowd within experiment of Vul and Pashler (see 2008,
p.646): The study was performed on 428 participants; each of them were asked 8
questions; the “immediate” group (214 members) had to provide a second guess
after their first guess with their first guess in front of them; the “delayed” group
(214 members) had to provide a second guess after 3 weeks.

Herzog and Hertwig (2009) have shown another wise crowd effect with
different means for achieving diversity, namely by what they call dialecti-
cal bootstrapping: Dialectical bootstrapping asks the participants to rethink
their estimations along the following line:

“First, assume that your first estimate is off the mark. Sec-
ond, think about a few reasons why that could be. Which as-
sumptions and considerations could have been wrong? Third,
what do these new considerations imply? Was the first estimate
rather too high or too low? Fourth, based on this new perspec-
tive, make a second, alternative estimate.” (Herzog and Her-
twig 2009, p.234)

The task in their study with 101 participants was to provide estimations
of the year of 40 generally familiar historical events (16th–19th century, 10
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questions each). It turned out that the first estimate was on average 130.8
years off, whereas dialectical bootstrapping was on average only 123.2
years off.

Interestingly, dialectical bootstrapping seems to be not just a curious
phenomenon that can be simply subordinated to the class of wise crowd
effects, rather, it seems to become also more theoretically interesting by
allowing further systematisation of formal decision theory. So, e.g., in a re-
cent paper Hartmann (2017) applies dialectical bootstrapping for providing
a rationale for prospect theory of Kahneman and Tversky (1979).

So much for the first class of wise crowd effects, namely the case where
an individual fares better, if it averages diverse educated guesses of her. Now,
let us come to the other cases. In the next section we start with the case of
wise crowd effects in probabilistic predictions.

12.2 Condorcet Juries

In the preceding section we have claimed that Galton was one of the first
to discover and formally investigate a wise crowd effect in detail. How-
ever, this claim needs modification, if we look back further in history and
take into account the mathematical investigations and arguments of French
mathematicians, philosophers, scientists, and politicians of the 18nth and
19nth century.

The time we are speaking about centres around the Enlightenment (be-
ginning with the death of Louis XIV, 1715 until 1789) and the French Rev-
olution (beginning with the storming of the Bastille 1789 until Napoleon’s
first coup in 1799), where French monarchy was overthrown, and repub-
lic established. This political climate brought it with it, that the problem
of aggregating judgements gained practically more weight; roughly speak-
ing: In absolute monarchy or dictatorship it is all about one single judge-
ment (L’État c’est moi!), whereas in republic and democracy it is about all
the individual judgements that need to be condensed to some single ones
in order to be dealt with. As is often the case, what gains practically more
weight does so also in theory, for which reason electoral studies boomed. The
first main works applying mathematical methodology to study social de-
cision (i.e. the forerunners of social choice theory) were published around
the 1780s. And its main proponents were also important figures of the En-
lightenment. As D. Black (1986, p.183) describes it:

“The second half of the eighteenth century in France was one
of the outstanding epochs of scientific thought. Science had felt
its strength and its impulse and did not know what barriers it
might not cross. The hope had sprung up to carry the methods
of rigorous and mathematical thought beyond the physical and
into the realms of the human sciences.”
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Now, the three main figures of early electoral studies mentioned by D.
Black (see 1986, pp.156ff) are Jean-Charles Chevalier de Borda (1733-1799),
Nicolas, Marquis de Condorcet (1743-1794), and Pierre-Simon, Marquis de
Laplace (1749-1827). Borda argued for a method known today as Borda
count, where individuals rank alternatives according to their preferences.
The ranks are mapped to points, where highest ranked alternatives, i.e. the
most preferred ones, gain the highest number of points. And the aggre-
gated judgement consists of that alternative(s) which gain highest points
in summing over all individuals. Laplace worked out in detail the prob-
abilistic arguments underlying Borda count and other forms of aggrega-
tion. However, out of this triumvirate Borda-Condorcet-Laplace, it is Con-
dorcet who seems to be most entrenched with electoral studies: “Borda and
Laplace discuss the matter no further than is necessary to establish that one
form of election is good and the others, ipso facto, defective. Condorcet set
out with a wider end in view [. . . which] gives a far more vital account of
the nature of elections and of group decision-taking than any other” (see
D. Black 1986, pp.184f). As we will see now, Condorcet’s investigations are
also highly relevant for characterising wise crowd effects.

Perhaps most famous is the so-called Condorcet jury theorem which was
proven and published as early as 1785 by Condorcet. It states that majority
aggregation produces an (estimated) wise crowd effect in deciding between
two alternatives under the condition that the individual opinions are more
likely to be true than false and that they are independent. More specifi-
cally, given these conditions, the probability that majority aggregation is
correct increases as the number of individuals satisfying these conditions
increases, and approaches 1 in case the number of individuals is infinite
(see Condorcet 1785).

The reception of Condorcet’s result underwent a remarkable develop-
ment. Condorcet stated it in 1785 in his Essay on the Application of Analy-
sis to the Probability of Majority Decisions (for a modern reconstruction see
Courgeau 2012, pp.116ff). A rigorous formal proof of a more general re-
sult was provided in Laplace’s Analytic Theory of Probabilities of 1812. In the
19th century Condorcet’s Essay was not very well received and seemed to
have gone forgotten. The main tenor of his critiques seem to be that the
programme of Daniel Bernoulli (1700-1782) to apply the theory of probabil-
ity to the civil, moral and economic realm, was taken up in the Essay, but
that Condorcet was more “enthusiastic rather than scientifically exact”, i.e.
that he was mathematically wrong. D. Black (1986, p.184f) argues that this
negative interpretation of Condorcet is mainly due to issues regarding no-
tation: “symbolism [of the Essay] purported to belong to the mathematical
theory of probability, but would now be regarded as a primitive topology,
though this branch has only been developed quite recently; [. . . for this
reason Condorcet’s theory] was buried away at various parts of a long and
difficult book and its meaning must be wrung from Condorcet’s stilted and
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crabbed sentences.” The first edition from 1958 of D. Black (1986) is also
considered to be the source which rediscovered the theorem and its rele-
vance for electoral studies (see Dietrich and Spiekermann 2013, p.88).

In what follows we describe a more general wise crowd effect based
on modern probability theory and show then how a wise crowd effect de-
scribed by Condorcet can be embedded as a special instance. We have men-
tioned already that Daniel Bernoulli had in mind a research programme
of applying probability theory to the social realm. However, it is a theo-
rem of Daniel’s uncle, Jacob Bernoulli (1655-1705), “discoverer of proba-
bility theory and the Bernoulli numbers”, which we are going to employ
here, namely the weak law of large numbers (see Howson and Urbach 2006,
sect.2.m).

As described in section 2.1, according to the weak law of large numbers,
the average of the results of a large number of independent and identically
distributed (i.i.d.) random experiments will be close to the expected value
of the random experiment and will tend to become closer, the more such
experiments are performed. Formally: Given a series of random variables
(experiments) Z1, Z2, . . . with value space {z1, . . . , zk} which are indepen-
dently and identically distributed (i.i.d.) around the mean z:

• Independence: Pr(Zi = z|Zj = z) = Pr(Zi = z)
(for all z ∈ {z1, . . . , zk}, i �= j ∈ N)

• Identity: E[Zi] = z = Pr(Zi = z1) · z1 + · · ·+ Pr(Zi = zk) · zk
(for all i ∈ N)

It holds that (where we operate on the outcomes of Z1, Z2, . . . ):

For all ε > 0 : lim
n→∞

Pr
(∣∣∣∣Z1 + · · ·+ Zn

n
− z
∣∣∣∣ < ε

)
= 1

So, the law states that given independence and identity, averaging among
the outcomes of the random experiments comes arbitrarily close to the ex-
pected value, once the number of such random experiments becomes arbi-
trarily high.

Let us quickly illustrate this by help of an example: Assume Z1, Z2, . . .
to be random variables representing independently rolling a “fair” dice.
Then E[Zi] =

1
6 · 1 + · · ·+ 1

6 · 6 = 3.5. Now, the law of large numbers states
that with an increasing number of rolling dies, their average tends towards
the expected value, i.e. the average of the outcomes of Z1, . . . , Zn ((Z1 +
· · ·+ Zn)/n) tends better towards 3.5 than Z1, . . . , Zm ((Z1 + · · ·+ Zm)/m),
if n % m.

We show now, how this can be employed for characterising a wise
crowd effect for probabilistic predictions (that Condorcet’s theorem fol-
lows from the law of large numbers is a well-known fact in the litera-
ture; see, e.g., Dietrich 2008, appendix A): Assume a set {Z1, Z2, . . . } of
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probabilistic predictions of the value z ∈ [0, 1] (z is one of {z1, . . . , zk})
with identical expected values E[Z1] = E[Z2] = · · · = z. Assume further-
more that the predictors Z1, Z2, . . . are probabilistically independent. And
furthermore, as indicated already by our notation, assume that the set is
infinite. Let us assume that this infinite crowd aggregates by averaging.
We denote the prediction of the value z of the infinite crowd by ‘Zav’. So
Zav = lim

n→∞

(
Z1+···+Zn

n

)
. Now, we can define the expected loss of an indi-

vidual prediction by an absolute loss function � as E[�i] = �(E[Zi], z), but
since we assumed that E[Zi] = z we automatically get E[�i] = 0. What is
more relevant is the actual loss of an individual prediction, which is:

�i = �(Zi, z)

Let us assume that in fact all individuals have a positive loss which is the
same across all individuals, i.e. �i = �j > 0 (for all i, j ∈ N). Since they all
have the same positive loss, each individual prediction represents also the
predictive performance of the average individual. Let us denote the latter
by �

∅{1,2,... } = �1 = �2 = · · · . Since by assumption the average individual
has a positive loss, it holds:

�
∅{1,2,... } = ε1 > 0 (for some ε1)

Now, by the law of large numbers we get: For all ε >

0 : lim
n→∞

Pr
(
�av(n) < ε

)
= 1 (where � is the absolute loss function,

i.e.: �av(n) = �(Zav(n), z) = |Zav(n) − z|). Hence, we know that �av(n) is also
strictly smaller than ε1, and hence:

lim
n→∞

Pr
(
�av(n) < �

∅{1,2,... }
)
= 1

So, we have a probabilistic wise crowd effect stating that an infinite collec-
tive of individuals who make not perfect predictions almost certainly out-
performs the average individual. If we use s as the inverse of � within
[0, 1], then we can also say:

lim
n→∞

sav(n) > s
∅{1,2,... } almost certainly (i.e. with Pr 1)

We can now embed one part of Condorcet’s jury theorem in this frame-
work. The basic theme of his Essai from 1785 concerns the probability of a
collective to take a correct decision. Recall, according to our summary in
the introduction Condorcet’s jury theorem states that if the votes of a jury
are independent and (equally) competent, then majorities are more likely
to select the correct opinion, i.e. the probability that a majority selects the
correct opinion is greater than the probability of the individual having a
correct opinion. This probability increases with the number of voters and
approaches 1 if the number of voters gets arbitrarily high. Here are some
key passages of the Essai (see Condorcet 1785):
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“Nous supposerons d’abord que tous
ceux qui donnent leurs voix, ont une
égale sagacité, une égale justesse
d’esprit dont ils ont fait également
usage, qu’ils font tous animés d’un
égal esprit de justice, enfin que chacun
d’eux a voté d’après lui-même, comme
il arriveroit fi chacun prononçoit
séparément son avis[.]” (p.3)

[Independence]: We shall first assume
that all those who give their voices have
the same sagacity and equanimity of
mind, which they have also used, that
they all have an equal spirit of justice,
and that each of them voted according to
themselves, as it would happen if each one
pronounces separately her opinion.

“Nous supposerons en général que
v représente le nombre de fois que
l’opinion d’un des Votans doit être con-
forme à la vérité, & e le nombre de fois
qu’elle doit être contraireà la vérité fur
un nombre v + e de décisions; & pour
abréger, nous supposerons v + e = 1 en
général.” (p.3)
“Ainsi, par exemple, [. . . ] v > e[.]” (p.6)

[Equal competence]: We will usually
assume that v represents the number
of times that the opinion of one of the
Votans conforms to the truth, and e the
number of times it is contrary to the
truth for a number of v + e decisions; to
abbreviate, we will assume v + e = 1 in
general.
For example: v > e.

“Le nombre des Votans est 2q + 1, &
l’on cherche la probabilité de la pluralité
d’une seule voix.” (p.3)
“[L]orsque v > e, la probabilité pour
que la décision soit conforme à la vérité,
augmentera fans cesse, en augmentant
le nombre des Votans;” (p.6)
“[La série des] la probabilité qu’il y aura
au moins une feule voix de plus en
faveur de la vérité [(Vq)] est une série
convergente [. . . ] mais lorsque q est
grand v&e restant les mêmes[.]” (p.4,
p.6)

[Result 1]: The number of voters is 2q +
1, and we are looking for the probability
of the majority.
If v > e, then the probability that the de-
cision will conform to the truth will in-
crease steadily with increasing the num-
ber of voters;
The series of the probability that there
will be at least one more voice in favor
of the truth (Vq) is a convergent series
[. . . ] and hence when q is large v and e
will remain the same, [and so the major-
ity will be right].

“Cette première observation nous con-
duit d’abord à cette conséquence, que
plus le nombre des Votans fera grand,
plus il y a de probabilité que leur
décision fera contraire à la vérité
lorsque e > v , c’est-à-dire lorsqu’il y
a probabilité que chacun en particulier
se trompera; & si q est très-grand, cette
probabilité pourra devenir très-grande,
quoique la différence entre v&e soit très-
petite.” (p.6)

[Result 2]: This observation leads us
to the consequence, that the greater the
number of voters, the greater the proba-
bility that their decision will be contrary
to the truth if e > v, that is to say: There
is a probability that everyone in partic-
ular will be deceived; If q is very large,
this probability may become very great,
although the difference between v and e
might be very small.
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Now, by help of our framing of the weak law of large numbers as a wise
crowd effect, we can demonstrate the part on the convergence in Con-
dorcets result 1 and 2: Assume {Z1, Z2, . . . } to be a set of independent and
equally competent/incompetent voters regarding some fact z, where vot-
ing is considered as a binary process only, i.e. either Zi = z or Zi �= z (for
all Zi, Zj ∈ {Z1, Z2, . . . }):

• Pr(Zi = z|Zj = z) = Pr(Zi = z)

• Pr(Zi = z) = Pr(Zj = z) = v (and e = 1 − v)

Then the weak law of large numbers states:

For all ε > 0 : lim
q→∞

Pr
(∣∣∣∣Z1 + · · ·+ Zq

q
− v
∣∣∣∣ < ε

)
= 1

Now, suppose 1 > v > e, i.e. v = 0.5+ ε1. Then |(Z1 + · · ·+Zq)/q− v| < ε1
almost certainly if q → ∞. And hence (Z1 + · · · + Zq)/q > 0.5 almost
certainly (with q → ∞). Hence, also the majority, i.e. majority aggregation
(oddness of q presupposed)

Zmajority(q) = z iff
|{Zi : 1 ≤ i ≤ q and Zi = z}|
|{Zi :≤ i ≤ q and Zi �= z}| > 0.5

is almost certainly right—we end up with the wise crowd effect:

lim
q→∞

Pr(Zmajority(q) = z) = 1 > v = Pr(Zi = z)

The argument for a madness of the crowd effect (convergence part in result
2 of Condorcet) is analogous. If 0 < v < e, i.e. 0 < v < 0.5, then aggregat-
ing the votes of the incompetent jury members by help of a majority rule
leads almost certainly to a false outcome if the number of jury members is
arbitrary high. In this case the crowd almost certainly performs worse than
the average individual.

We have seen in the citations of the Essai above, that Condorcet consid-
ers two relevant parameters in his model: v, the probability of an individual
to judge correctly, and q, the number of individuals. In our framing also a
third parameter is relevant for the investigations in the Essai, namely a pa-
rameter m for specifying the aggregation method. In the case discussed
above, m is 0.5 for characterising absolute majority aggregation. However,
also other values might be of interest as, e.g., m = 2/3 for a qualified ma-
jority, etc. As is pointed out by Daston (1988, p.351), from the result above
“Condorcet concluded that the probability that the tribunal would render
a correct decision in any given case could be increased by increasing either
[q, m], or v. Much of the Essai is devoted to examining the consequences of
allowing one of these to vary while the others remained constant”. So, the
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Essai engaged already systematically with what is called nowadays applied
epistemology (see Goldman 2011a, p.32) or institutional design (see List 2011,
p.221) in social epistemology.

The wise crowd effect stated in terms of the law of large numbers is a
nice gauge for illustrating how the collective outperforms the individual
in case that v, the individual competence, or m, the majority threshold, or
g, the number of individuals is high enough. However, the model is only
very coarse grained (for q arbitrary high, etc.). For this reason we also want
to briefly discuss the recursive form of Condorcet’s jury theorem, comple-
menting the other parts of the results cited above.

We start with a simple comparison of absolute majority aggregation and
the average individual: Assume a binary prediction task, and a group of
predictors with the majority of a individuals (e.g. all predicting 1) and the
minority of i < a individuals (e.g. all predicting 0). The number of indi-
viduals in the collective is g = a + i. Now, let v be the probability that an
individual predicts the correct value (all individuals have the same prob-
ability), and let the individuals’ predictions be probabilistically indepen-
dent. I.e.: The probability of 2 individuals predicting correctly equals v2,
. . . , that of n individuals predicting correctly equals vn. To use the same
terms as Condorcet, let e = 1 − v be the probability that an individual pre-
dicts incorrectly. Now, for any collective with size g and binary predictions,
there are 2 · (g

a) majorities with exactly a equivalent elements (e.g.: if g = 3,
then the possible combinations of predictions are the following 2g = 8 se-
quences: 0, 0, 0 and 0, 0, 1 and 0, 1, 0 and 0, 1, 1 and 1, 0, 0 and 1, 0, 1 and
1, 1, 0 and 1, 1, 1; out of these exactly 2 · (2g

2a) have a equal predictions with
a > g/2; if a = 3, then it is 2 · (3

3) = 2, namely 0, 0, 0 and 1, 1, 1; if a = 2,
then it is 2 · (3

2) = 6, namely the remaining sequences). So, the probability
that a majority of a individuals of a collective with g individuals predicts
correctly is:

2 ·
(

g
a

)
· va · ei

The probability that such a majority predicts incorrectly is:

2 ·
(

g
a

)
· ea · vi

Therefore, the probability for any particular majority (of one particular se-
quence) is:

2 · (g
a) · va · ei

2 · (g
a) · va · ei + 2 · (g

a) · ea · vi =
va · ei

va · ei + ea · vi

We find the latter term also in (Condorcet 1785, p.11; see Daston 1988,
p.350). In comparing it with the individual/average probability of a cor-
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rect prediction v it holds that:

va · ei

va · ei + ea · vi

⎧⎪⎨
⎪⎩
> v, iff 1 > v > 0.5
= v, iff v = 0.5
< v, iff 0 < v < 0.5

If we want to compare the collective with a sub-collective, we can apply the
same idea, but need to add more details. We do so again by combinatorial
considerations: For illustrative purposes, let us assume that the true value
is 1 and assume a collective with g = 3 individuals with the predictions
Z1, Z2, Z3. The probabilities of these predictions are depicted in table 12.1,
the grey lines mark cases where a majority predicts correctly. A majority

Z3 Z2 Z1
0 0 0 Pr : e · e · e = v0e3

0 0 1 Pr : e · e · v = v1e2

0 1 0 Pr : e · v · e = v1e2

0 1 1 Pr : e · v · v = v2e1

1 0 0 Pr : v · e · e = v1e2

1 0 1 Pr : v · e · v = v2e1

1 1 0 Pr : v · v · e = v2e1

1 1 1 Pr : v · v · v = v3e0

∑ = 1

Table 12.1: Probability distribution of a Condorcet jury with three members with
individual probability of a correct (here assumed: 1) prediction v (e = 1 − v); the
cases where a majority gets things right are marked grey.

has at least a = (g + 1)/2 members. In the case of g = 3 the cases are
relevant where a majority with 2 members produces a correct prediction—
there are (3

2) = 3 such cases—and a majority with 3 members produces
such one—there is (3

3) = 1 such case. So, in case of g = 3 we can sum up the
probabilities of a majority reaching a correct decision as (3

2) · v2e1 + (3
3) · v3e0

(see Estlund 1994, e.g.). Table 12.2 displays the case for a jury with g = 5.
Here the probability for a majority reaching a correct decision is the sum
of (5

3) · v3e2, (5
4) · v4e1, and (5

5) · v5e0. Now, as one can see, the general case
for a Condorcet jury with the individual probability of making a correct
prediction v (e = 1 − v) and g probabilistically independent members is:

vg =
g

∑
j= g+1

2

(
g
j

)
· vj · eg−j

By replacing ‘g’ by ‘g+ 2’ we get the probability of the next (odd numbered)
Condorcet jury to make a correct prediction. Grofman, Owen, and Feld
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Z5 Z4 Z3 Z2 Z1
0 0 0 0 0 Pr : v0e5

0 0 0 0 1 Pr : v1e4

0 0 0 1 0 Pr : v1e4

0 0 0 1 1 Pr : v2e3

0 0 1 0 0 Pr : v1e4

0 0 1 0 1 Pr : v2e3

0 0 1 1 0 Pr : v2e3

0 0 1 1 1 Pr : v3e2

0 1 0 0 0 Pr : v1e4

0 1 0 0 1 Pr : v2e3

0 1 0 1 0 Pr : v2e3

0 1 0 1 1 Pr : v3e2

0 1 1 0 0 Pr : v2e3

0 1 1 0 1 Pr : v3e2

0 1 1 1 0 Pr : v3e2

0 1 1 1 1 Pr : v4e1

−→

Z5 Z4 Z3 Z2 Z1
1 0 0 0 0 Pr : v1e4

1 0 0 0 1 Pr : v2e3

1 0 0 1 0 Pr : v2e3

1 0 0 1 1 Pr : v3e2

1 0 1 0 0 Pr : v2e3

1 0 1 0 1 Pr : v3e2

1 0 1 1 0 Pr : v3e2

1 0 1 1 1 Pr : v4e1

1 1 0 0 0 Pr : v2e3

1 1 0 0 1 Pr : v3e2

1 1 0 1 0 Pr : v3e2

1 1 0 1 1 Pr : v4e1

1 1 1 0 0 Pr : v3e2

1 1 1 0 1 Pr : v4e1

1 1 1 1 0 Pr : v4e1

1 1 1 1 1 Pr : v5e0

∑ = 1

Table 12.2: Probability distribution of a Condorcet jury with five members with
individual probability of a correct (here assumed: 1) prediction v (e = 1 − v); the
cases where a majority gets things right are marked grey. The example is con-
structed in line with the remarks above based on (Estlund 1994)

(1983, p.256) transform these formulae to the following recursion formula:
The probability of a jury with g + 2 probabilistically independent members
is:

vg+2 = vg +

(
g

g+1
2

)
·
⎛
⎝v2v

g−1
2 e

g+1
2︸ ︷︷ ︸

t1

− e2e
g−1

2 v
g+1

2︸ ︷︷ ︸
t2

⎞
⎠

Whether vg+2 > vg clearly depends on whether t1 > t2. Again, it holds:

vg+2

⎧⎪⎨
⎪⎩
> vg, iff 1 > v > 0.5
= vg, iff v = 0.5
< vg, iff 0 < v < 0.5

By this we now have also a recursive form of a wise crowd effect, stat-
ing that in a Condorcet jury with equally competent and probabilistically
independent members (competence v > 0.5), increasing the number of in-
dividuals g of the collective also increases the probability of the majority
aggregating group. If we interpret the probability of a collective to predict
correctly as its expectation value of the score smajority, and the individual
probability v as its expectation value of the score sindividual , then we can
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formulate the Condorcet wise crowd effect as:

E[smajority] > E[sindividual ]

And for comparison of collectives: If collective1 and collective2 are Con-
dorcet juries with collective1 ⊂ collective2, then:

E[scollective2 ] > E[scollective1 ]

In the next section we are going to investigate conditions for wise crowd
effects with non-probabilistic predictions.

12.3 Averaging Outperforms the Average

We now come to the case of non-probabilistic predictions. Here the task of
the individuals and the collective is to predict an event outcome by help
of providing a single value. To remain within our prediction setting as de-
scribed in chapter 2, we assume that the event outcome is described by an
element of [0, 1] and that the prediction consists also of an element of [0, 1].
So, e.g., in the ox-weight-judgement competition discussed by Galton, the
competition organisers might simply restrict judgements to an interval of 0
to 2000 pounds, and then normalise the single judgements via dividing the
provided values by 2000. For the rest of this section we use the notation of
chapter 2 and omit the index for the event, since we are considering only
single events. So, Y is the event, y ∈ [0, 1] is the true value representing the
event outcome, F = { f1, . . . , fn} is the set of individual predictions of Y,
i.e. fi ∈ [0, 1]. Furthermore, also in the loss function �i = �( fi, y), and the
score si = 1 − �i no reference is made to an event index.

It is interesting to note that also for non-probabilistic predictions a wise
crowd effect can be characterised. Krogh and Vedelsby (1995) have found
a very interesting way of describing the performance of a collective predic-
tion in comparison to an average individual’s prediction: Take the group’s
prediction of the value of an event Y1 to be the average of the individuals’
predictions (for the following see Krogh and Vedelsby 1995, pp.232f, we de-
fined the average learner fav for the dynamic setting with a series of events
in definition 3.31 on p.105):

Definition 12.1 (Prediction of the Collective).

fav =

n
∑
i=1

fi

n
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If we want to compare the collective’s prediction (again, be aware that
the collective prediction is the average of predictions, so there might be no
actual individual making that prediction) with that of the individuals, then
we cannot do this directly since the individuals’ predictions may be hetero-
geneous. But we can define the notion of an average individual and compare
the collective’s prediction with that of an average individual via the errors
in these predictions. For this purpose, we introduce a measure for the error
of a prediction simply by help of the loss function �. E.g., one might think
of the squared difference of true event outcome and the predicted outcome
as such a measure of error. First, we can take the error of an individual
prediction fi to be simply �i. Then we can define a measure for the aver-
age individuals’ error just by calculating the average of the error of each
individual (see Krogh and Vedelsby 1995, p.232)—note also here that there
might be no individual in the setting which represents the average individ-
ual. We refer to the fictive average individual of a group F = { f1, . . . , fn}
with the help of ‘ f

∅{1,...,n}’:

Definition 12.2 (Prediction Error of Average Individual).

�
∅{1,...,n} =

n
∑
i=1

�i

n

And similar to the individuals’ errors we measure the error of the col-
lective’s prediction simply via the loss function: �av (which is �( fav, y)). So,
we have:

• �i is the error of the individual prediction fi.

• �av is the error of the collective prediction fav.

• �
∅{1,...,n} is the error of the (fictive) average individual of group F =
{ f1, . . . , fn}.

Now, given that the underlying loss function � is convex, we get the
following result:

Theorem 12.3 (The Crowd Beats the Average Law (see Page 2007, p.209;
and Krogh and Vedelsby 1995, p.233)). Given � is convex, it holds:

�av ≤ �
∅{1,...,n}
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Proof. Let us assume that � is convex. Just reformulate �av as defined in
definition 12.1 as: �( 1

n f1 + · · · + 1
n fn , y). Likewise, reformulate �

∅{1,...,n}
as defined in definition 12.2 as: 1

n �( f1, y) + · · ·+ 1
n �( fn , y). Then it is easy

to see that �av is the loss of a weighted average of predictions, whereas
�
∅{1,...,n} is the weighted average of the losses of these predictions. Hence,

by definition 3.30 (convexity of �), �av ≤ �
∅{1,...,n}.

This theorem shows that the error of a prediction of the collective is
equal to or smaller than the error of an average member of the collective,
which is a very general positive feature of applying a meta method (namely
averaging) in predicting the value of an event.

Now, recall our general characterisation of a wise crowd effect of sec-
tion 12.1: Such an effect is at hand, if the collective prediction is better than
an individual prediction or the prediction of another part of the collective.
Clearly, what the Crowd Beats the Average Law aims at is to compare the col-
lective prediction with that of the average individual. However, as stated
up to now, we only know that aggregating predictions by averaging allows
for being at least as accurate as the prediction of an average individual.
We do not know whether averaging allows also for being more accurate, i.e.
better, than the average individual. However, as the analysis of Krogh and
Vedelsby (1995, p.232) shows, there is a measure for characterising cases
where averaging outperforms the average, namely a measure for the diversity
of the predictions of the individuals. The idea is to measure the degree of
diversity of the prediction of an individual of a collective as dependent on
its deviation from the average prediction. Note that �i measures the loss of
prediction fi compared to the true value. In contrast to this, the diversity
measure we aim at measures the loss of a prediction compared to the aver-
age predicted value. So, if we take di to be a measure for the diversity of the
prediction fi, then di can be defined as: di = �( fi, fav) (recall that in con-
tradistinction to this the individual error/loss �i was defined as �( fi, y)).
Now, what is relevant for characterising a wise crowd effect is not the mea-
sure for the diversity of an individual prediction, but a measure for the
average diversity, i.e. the diversity of the (fictive) average individual. If we
use ‘d

∅{1,...,n}’ for this measure, we can define it as follows:

Definition 12.4 (Diversity of Average Individual).

d
∅{1,...,n} =

n
∑
i=1

�( fi, fav)

n

Now, this measure allows for characterising a wise crowd effect. It holds:
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Theorem 12.5 (The Diversity Prediction Theorem (see Page 2007, p.208;
and Krogh and Vedelsby 1995, p.232)). If � is the quadratic error function
(�(x, y) = (x − y)2), then:

�av = �
∅{1,...,n} − d

∅{1,...,n}

Proof.

1. Assume that � is the quadratic error function: �(x, y) = (x − y)2

2. Then we get by definition 12.2: �
∅{1,...,n} =

∑n
i=1( fi−y)2

n

3. Furthermore: �av = ( fav − y)2 where according to definition 12.1:
fav = ∑n

i=1 fi
n

4. Also, by definition 12.4, we get: d
∅{1,...,n} =

∑n
i=1( fi− fav)2

n
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5. Now, let us resolve d
∅{1,...,n} further:

d
∅{1,...,n} =

n
∑

i=1
( fi − fav )2

n

=

n
∑

i=1
( ( fi − y)− ( fav − y) )2

n

=

n
∑

i=1
( fi − y)2 + ( fav − y)2 − 2( fav − y)( fi − y)

n

=

n
∑

i=1
( fi − y)2

n︸ ︷︷ ︸
=�

∅{1,...,n}

+

n
∑

i=1
( fav − y)2

n︸ ︷︷ ︸
=n · ( fav − y)2/n︸ ︷︷ ︸

=�av

−

−

n
∑

i=1
2( fav − y)( fi − y)

n︸ ︷︷ ︸
=2( fav − y) ·

n
∑
i=1

fi − y
n︸ ︷︷ ︸

=

(
n
∑
i=1

fi

)
/n︸ ︷︷ ︸

= fav

−n · y/n︸ ︷︷ ︸
=y

︸ ︷︷ ︸
=2( fav−y)2=2�av

= �
∅{1,...,n} + �av − 2�av = �

∅{1,...,n} − �av

6. Hence:
�av = �

∅{1,...,n} − d
∅{1,...,n}

Theorem 12.5 states that generally, the lower the average error or the
higher the diversity within a collective, the lower the error of the collec-
tive’s prediction. From this the following characterisation of a wise crowd
effect follows immediately:

Theorem 12.6 (Averaging Wise Crowd Effect). Under the conditions that

• � is the quadratic error function, and
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• that the collective is diverse in the sense that d
∅{1,...,n} > 0

aggregating the individual predictions by averaging, i.e. fav, is guaranteed to pro-
vide a better prediction than that of the (fictive) average individual:

�av < �
∅{1,...,n}

The condition regarding d
∅{1,...,n} is quite weak. Note that given the

quadratic error loss function, according to definition 12.4 this condition is
not satisfied, i.e. d

∅{1,...,n} = 0, only if all individuals make the exact same
predictions. In all other cases d is strictly positive, and hence a wise crowd
effect is guaranteed.

What about the condition that � is the quadratic error function? This
condition relevantly entered the proof of theorem 12.5. It allowed us to
define a measure for diversity which provided a characterisation of a wise
crowd effect. However, we can also generalise this assumption: A wise
crowd effect is guaranteed, for any strictly convex loss function �, as long as
not all individuals of the collective make the same prediction:

Theorem 12.7 (The Crowd Really Beats the Average Law). Given � is strictly
convex and d

∅{1,...,n} > 0 (i.e. for some fi, f j ∈ F it holds that fi �= f j. Then:

�av < �
∅{1,...,n}

Proof. The proof is analogous to that of theorem 12.7. One only needs to
substitute ‘strictly convex’ for ‘convex’ and ‘<’ for ‘≤’; strict convexity is
analogously defined to convexity as in definition 3.30, just ‘≤’ is to be re-
placed by ‘<’. The assumption that at least two individuals of the collective
make a different prediction guarantees that the average prediction deviates
from the prediction of at least one individual.

The quadratic error function is strictly convex ((w · x1 + (1 − w) · x2 −
y) < w · (x1 − y)2 + (1 − w) · (x2 − y)2 for 0 < w < 1), and hence proven
to allow for a wise crowd effect already according to theorem 12.7. Also
a normalised exponential error function which takes the absolute differ-
ence between fi and y in the exponent is strictly convex, and hence al-
lows for a wise crowd effect. But what about not strictly convex loss
functions? So, e.g., what about the absolute loss �(x, y) = |x − y|, or
what about concave loss functions as, e.g., a logarithmic error function
�(x, y) = logε(max(ε, |x − y|)) (with any ε ∈ [0, 1])?

Let us begin with the absolute loss: It is not hard to find an example
where there is some diversity within the collective, i.e. d

∅{1,...,n} > 0, and
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still �av = �
∅{1,...,n}. Consider the case where f1 = 0.25, f2 = 0.15, y =

0.35. Then, given the absolute loss, d
∅{1,...,n} = 0.05, and �

∅{1,...,n} =
(0.10 + 0.20)/2 = 0.15; furthermore, fav = (0.25 + 0.15)/2 = 0.20. Hence,
�av = | fav − y| = 0.15 which equals �

∅{1,...,n}. Hence, given the absolute loss
function, not always the collective performs better than the average individ-
ual. So, d

∅{1,...,n} > 0 does not characterise a wise crowd effect. However,
as Lyon (forthcoming) discusses, there is another condition which allows
for such a characterisation: Considering our example one can notice that
both individual predictions were below the true value. Now, strict positive
diversity suffices only for better performance of the collective in the light of
the absolute loss function, if there is diversity in the individual predictions
in the sense that not all of them are either below or above the true value.
I.e., if some individual predictions are overestimating the event outcome,
and some are underestimating it, then also the absolute loss function allows
for a wise crowd effect (see Lyon forthcoming, sect.2). This condition for
a positive effect of averaging is well-known in the psychological literature
and is called ‘bracketing’: “As the actual rate of bracketing [the truth] in-
creases, so does the power of averaging” (see Larrick and Soll 2006, p.112).
In line with Lyon (forthcoming), we do not aim at a quantitative description
of this effect here, but only at a qualitative one:

Theorem 12.8 (Another Averaging Wise Crowd Effect). Under the conditions
that

• � is convex (e.g., the absolute loss �(x, y) = |x − y|), and

• that the collective is diverse in the sense that some individuals fi and fj
bracket the truth y, i.e. there are fi, f j ∈ F such that fi < y < fj

aggregating the individual predictions by averaging, i.e. fav, is guaranteed to pro-
vide a better prediction than that of the (fictive) average individual:

�av < �
∅{1,...,n}

Proof. For the case of a strictly convex loss function �, it suffices to note that
fi < y < fj implies that d

∅{1,...,n} > 0, and hence theorem 12.6 applies.
For the case of the absolute loss function �, we construct the average in

three steps: First, we average among all overestimations. Second, we av-
erage among all underestimations including those predictions which equal
the truth. Since both sets are disjoint, we can finally construct the average
by weighted averaging these averages: Let Fo be the set of overestimations,
i.e.: Fo = { fi ∈ F : fi > y}. Let Fu be the set of underestimations and per-
fect predictions, i.e.: Fu = { fi ∈ F : fi ≤ y}. Now define favo as the

average of Fo: favo =
∑ fi∈Fo fi

|Fo | . Similarly, favu =
∑ fi∈Fu fi

|Fu| . Since for all fi ∈ Fo:
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fi > y, it holds: �avo =
|∑ fi∈Fo ( fi)−|Fo |·y|

|Fo | =
∑ fi∈Fo (| fi−|Fo |·y|)

|Fo | = �∅Fo . Hence
�avo = �∅Fo . Analogously it holds for favu : �avu = �∅Fu . Since fi < y < f j
for some fi, fj ∈ F, it holds that favu < y < favo . Now we weight the
average losses to get the overall losses. The overall loss of the average indi-
vidual amounts to: �∅Fo∪Fu = �∅F = �

∅{1,...,n} = |Fo |
|F| · �∅Fo +

|Fu|
|F| · �∅Fu =

|Fo |
|F| · �avo +

|Fu|
|F| · �avu . However, the overall loss of the collective prediction

amounts to: �av =
∣∣∣ |Fo |
|F| · �avo +

|Fu|
|F| · �avu − y

∣∣∣. Hence, �av < �
∅{1,...,n}.

Diversity in the sense of bracketing ( fi < y < fj for some fi, fj of the
collective) is a stronger condition than diversity in the sense of a devia-
tion of the average (d

∅{1,...,n} > 0). However, also for the absolute loss
function it generally holds that the average individual does not outperform
the collective. This follows immediately from theorem 12.3, since this loss
is also convex, though clearly not strictly convex. It can be also seen by
help of the subadditivity property of the absolute value function, accord-
ing to which |x + y| ≤ |x|+ |y|: We know that �av = | 1

n · ∑n
i=1( fi)− y| =

1
n · |∑n

i=1( fi − y)|. Furthermore, �
∅{1,...,n} = 1

n · ∑n
i=1(| fi − y|), and hence by

subadditivity: �av ≤ �
∅{1,...,n}.

This is different with strictly convex loss functions: It is easy to see that
these do not only not guarantee a wise crowd effect, but on the contrary,
once d

∅{1,...,n} > 0, they even guarantee an anti-wise crowd effect (see Lyon
forthcoming, sect.2). This follows analogously to before:

Theorem 12.9 (The Average Beats the Crowd Law). Given � is strictly con-
cave and d

∅{1,...,n} > 0 (i.e. for some fi, f j ∈ F it holds that fi �= f j. Then:

�av > �
∅{1,...,n}

Proof. The proof is analogous to that of theorem 12.7. One only needs to
substitute ‘strictly concave’ for ‘convex’ and ‘>’ for ‘≤’; strict concavity is
analogously defined to convexity as in definition 3.30, just ‘≤’ is to be re-
placed by ‘>’. Again, the assumption that at least two individuals of the
collective make a different prediction guarantees that the average predic-
tion deviates from the prediction of at least one individual.

The results of this section are summed up in table 12.3.
Note that we can also express the performance of the collective via the

score s . In case of a wise crowd effect, it holds:

sav > s
∅{1,...,n}

This follows from the theorems above, since s = 1 − �. Furthermore, note
that up to now we have characterised wise crowd effects with respect to
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loss function � condition aggregation
method

note

strictly convex diversity in the
sense of a devia-
tion of the aver-
age: d

∅{1,...,n} >
0

averaging

absolute diversity in the
sense of bracket-
ing: fi < y < fj
for some fi, f j of
the collective

averaging

strictly concave no diversity in
the sense of a
deviation of the
average at all:
d
∅{1,...,n} = 0

averaging in order to
avoid an
anti-wise
crowd effect

Table 12.3: Summary of conditions and aggregation methods for wise crowd ef-
fects or avoidance of anti-wise crowd effects in non-probabilistic predictions.

the average individual only. But what about other individuals? In partic-
ular one might wonder what the conditions for a wise crowd effect with
respect to the best individuals of the collective are. Now, in the case of
single predictions it seems that there is little to say about this. A trivial con-
dition which allows for such a wise crowd effect is, e.g., the condition that
all individuals are equally accurate or inaccurate. However, this is quite a
restriction. In the next section we outline how the theory of meta-induction
allows for less restrictive conditions in order to guarantee wise crowd ef-
fects with respect to best individuals of a collective.

12.4 Meta-Inductive Crowdsourcing

Recall, a wise crowd effect is defined by better performance of the collective
than a component of it. In section 12.1 we have seen that there is empirical
evidence that an individual as crowd within performs better than the indi-
vidual as an individual, if it is supposed to make several estimations. In
section 12.2 we have seen that a crowd performs estimatedly better than a
subcrowd or the average (or the best) individual of the crowd in a binary
(classificatory) prediction task, if the predictions of the individuals of the
crowd are diverse in the sense of probabilistically independent, and if the
individuals are equally minimally competent, i.e. better predictors than a
fair coin. In section 12.3 we have seen that a crowd performs actually better



Chapter 12. The Wisdom of the Crowds 334

than the average individual of the crowd in a regression prediction task, if
at least two predictions of the individuals of the crowd are different, and a
strictly convex loss function is used. This result can be expanded to using
the absolute loss function, if some individual predictions bracket the true
value.

Now, these wise crowd effects are mainly about comparing the crowd
with the average individual. In case of Condorcet juries, all individuals are
equally competent in predicting, hence the average individual is also the
best individual. The condition for equal competence can be relaxed, but
still, then the crowd is only expected to beat the best individual, but it is
not guaranteed to do so. Here we want to interpret meta-induction such
that it characterises a “long run” wise crowd effect ensuring actual better
performance compared to the best individuals of the group.

Here is a quite simple implementation: Let us consider the attractiv-
ity weighting meta-inductive learning algorithm fami as defined in defini-
tion 3.39. This learner keeps track of the success rates of each individual
as well as its own; only those individuals are attractive to it, which have a
higher success rate. It makes a prediction by arithmetically weighting the
individual attractive predictions, where the weights are normalised attrac-
tivities (difference between the past success rate of the individual and the
past success rate of fami). We have seen that fami is long run access optimal,
since it is a no-regret algorithm (theorem 3.40). In case no individual is at-
tractive, it uses a fallback strategy. The fallback strategy in definition 3.39 is
averaging among the whole group. However, also other fallback strategies
allow for optimality as, e.g., averaging among up to now two best individ-
uals’ predictions. In what follows, we assume that fami uses this fallback
strategy, and provide also a further specification of which of the best indi-
viduals should be used for averaging in the fallback case.

According to theorem 3.40, the regret (difference of the cumulative loss)
of fami to not have chosen the prediction fi is: aregret 〈ami,i〉,t ≤ √

n · t.
This means for the long run success rates (score averaged according to the
number of rounds, i.e. the cumulative success divided by the number of
rounds): lim

t→∞
(succ ami,t − succ i,t) ≥ 0. So, fami cannot be outperformed in

the long run by any individual of the group, neither the average individual
nor the best one (if there is such a best one). However, for a wise crowd
effect we need more: We need not only that fami cannot be outperformed,
but outperforms itself the average or best individual. Outperforming the
average individual is guaranteed, as long as in the long run the success
rate of the average individual differs from that of the best one: In this case
theorem 3.40 shows that fami’s success rate approaches that of the best in-
dividual and hence fami de facto outperforms the average individual. But
how about our aim of showing that meta-inductive aggregation in the long
run also outperforms the best individual(s)? Clearly, this holds not gener-
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ally. So, e.g., in case there is only one best individual in the setting, then
fami cannot outperform the best individual, since in the long run it will
just imitate the best individual, i.e. copy its prediction. However, putting
forward a strong diversity constraint allows for a wise crowd effect: If we
assume that all prediction methods are always either over- or underesti-
mating (including the case of a perfect estimation), and if we assume that
for any overestimator there is an equal underestimator in the setting, then
fami can be shown to even “beat” the experts. The diversity condition is
quite strong and clearly not very realistic. However, we aim here only at a
general conclusion, namely that diversity can be cashed out for a collective
to even perform better than the best individual of the collective. The di-
versity assumption might be interpreted as method-bracketing or systematic
bracketing. Here is, how we can use theorem 3.40 to proof that diversity in
the sense of systematic bracketing allows for “beating” the experts:

Theorem 12.10 (Meta-Induction Beats the Expert). Let G be a prediction game
with truth Y and the set of prediction methods F. Furthermore, let F be diverse in
the sense that there are several “best” experts allowing for systematic bracketing:

• For a best 1 ≤ i ≤ n there is a best 1 ≤ j ≤ n such that for all t:

fi,t − yt = yt − fj,t

Furthermore, let succ be defined on basis of a convex loss function �. Then for all
1 ≤ i ≤ n :

lim
t→∞

(succ ami,t − succ i,t) > 0

. . . as long as there are no long-run perfect predictors in F (i.e. there is no fi ∈ F

such that lim
t→∞

succ i,t = 1)

Proof. By theorem 3.40 we know that aregret 〈ami,i〉,t ≤ √
n · t for any 1 ≤

i ≤ n . This means that
t

∑
u=1

�ami,t ≤
t

∑
u=1

�i,t +
√

n · t. Hence:

t

∑
u=1

sami,t ≥
t

∑
u=1

si,t −
√

n · t

Now, by systematic bracketing we know that for every overestimation
there is an equal underestimation. Let us denote a, up to t, best predictor
which is an overestimator with ‘bo’, and the respective best underestimator
with ‘bu’. Now, as long as bo and bu are not perfect predictors, averaging
among bo and bu will be closer to the true value yt than any of them is.
Hence, at round t + 1, sami,t+1 > sbo ,t+1 and sami,t+1 > sbu,t+1. Now, let us
assume that ε > 0 is the surplus of the score that fami gains at t + 1. We can
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choose ε to be the smallest surplus score gained by fami at any round, ignor-
ing rounds with perfect predictions of the best predictor. The assumption
that there is no long-run perfect predictor implies that—also for the long
run—there always will be such bos and bus allowing for a ε surplus. So,
generally we can assume that up to round t, fami gains t · ε compared to the
respective bo and bu. Hence:

t

∑
u=1

sami,t ≥
t

∑
u=1

sbo/u,t −
√

n · t + t · ε

Now, if we average over this score, i.e. divide by t, we get:

succ ami,t ≥ succbo/u,t −
√

n
t
+ ε

And hence for any 1 ≤ i ≤ n :

lim
t→∞

(succ ami,t − succ i,t) > 0

Theorem 12.10 shows that meta-induction guarantees a long run wise
crowd effect even if we compare the collective with the best individuals
of the collective. We must admit that the diversity assumption used for
proving this result is very strong. However, we think that the result is
still interesting for the following reasons: First of all, we think that such
a wise crowd effect can be also guaranteed with weaker assumptions as,
e.g., assuming that the average success of overestimators equals that of un-
derestimators. Second, also the diversity assumption of probabilistic inde-
pendence in Condorcet juries is quite strong. And third, meta-induction
really adds a new element in the following sense: Clearly, if we apply or-
dinary averaging as described in the preceding section to the best predic-
tions and assume, as our systematic bracketing assumption implies, that the
best predictions are bracketing the true value, then also ordinary averag-
ing outperforms the predictions of the best individuals. But note, neither
meta-induction nor ordinary averaging is supposed “to know” which pre-
dictions in a round will be the best. Rather, meta-induction as well as or-
dinary averaging have to be applied on the set of all individuals of the
collective. And there, ordinary averaging is not guaranteed to outperform
the best individuals, even if their predictions equally bracket the true value.
Consider, e.g., a collective with the individual predictions 0.1, 0.45, 0.55, 0.6
and assume that the true value y = 0.5. Then the average of the predictions
is 0.425 and hence outperformed by the best predictions 0.45 and 0.55. This,
although the best predictions equally bracket the true value. In contrast to
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this, as theorem 12.10 shows, taking on a dynamic stance allows for prov-
ing that aggregating individual predictions in a success-based way even
outperforms the best predictors, in case the setting is diverse enough.

We can summarise the main results on wise crowd effects of this chap-
ter as in table 12.4: In the static non-probabilistic setting a wise crowd ef-
fect with regards to the average individual is guaranteed given a convex
loss function and bracketing in the sense that at least some individuals of
the collective over-, and some of them underestimate the true value. In
the static probabilistic setting a wise crowd effect with respect to any sub-
collective, the average, and the best individuals is expected, if the individ-
uals of the collective are equally competent and probabilistically indepen-
dent. Finally, in the dynamic non-probabilistic setting a wise crowd effect
with respect to the best individuals is guaranteed for the long run, given a
convex loss function and systematic bracketing.

setting condition(s) aggregation
method

wise crowd effect

static non-
probabilistic

diversity in form
of bracketing,
convex loss
(strictly convex
or absolute loss)

averaging scrowd > s
∅{1,...,n}

static proba-
bilistic

competence and
diversity in form
of prob. indep.

majority E[scrowd] > E[sbest]

dynamic
non-
probabilistic

diversity in
form of system-
atic bracketing,
convex loss

meta-
inductive
weighting lim

t→∞

⎛
⎝ t

∑
u=1

scrowd,u−sbest,u

t

⎞
⎠

> 0

Table 12.4: Overview of different wise crowd effects in different settings: scrowd
is the score of the collective prediction, sbest is the score of the best prediction,
s
∅{1,...,n} is the score of the (fictive) prediction of the (fictive) average individual.



Conclusion

In this chapter a short summary of the results of this book is given in form of an overview
of the general argumentation hierarchy.

If one had to summarise the line of reasoning of this book in a brief state-
ment, it would be: If we allow for optimality as an epistemic end (O) not
only in the practical realm, but also in the theoretical one, then we can en-
gineer a solution to the problem of epistemic justification, namely that of
relative justification (Jr) via meta-induction. Schematically:

O(optimality) ⇒ Jr(induction)

Still very roughly summarising, but a little bit more explicit, we take the
following argumentation hierarchy as the upshot of our investigation.

Main argument of chapter 1: An absolute notion of justification leads
to inductive scepticism.

Chpt.1-1 The absolute notion of epistemic justification constrained as be-
ing non-sceptic, non-foundational, non-coherentist, and non-
infinitist is inconsistent—this is the problem of epistemic justi-
fication.
¬(S)&¬(F)&¬(C)&¬(I) ⇒ �

Chpt.1-2 Hence, at least one of scepticism or foundationalism or coheren-
tism or infinitism is true. (from Chpt.1-1)
(S) ∨ (F) ∨ (C) ∨ (I)

Chpt.1-3 Classical foundationalism, coherentism, and infinitism put for-
ward epistemic ends which characterise an absolute notion of
justification: truth, truth preservation, probability preserva-
tion/increase.
(F) ∨ (C) ∨ (I) ⇒ O(truth)

Chpt.1-4 However, it is impossible to establish the truth, truth preserva-
tion, or probability preservation/increase of important epistemic
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principles of justification as, e.g., the principle of induction; such
principles or inferences are no necessary and adequate means for
these ends. (Chpt.2-1)
¬�(induction → truth)

Chpt.1-5 Hence, scepticism regarding an absolute justification of such
epistemic principles follows. (from Chpt.1-2–Chpt.1-4 and

justification via epistemic means-ends)
(S) regarding absolute justification of induction, i.e.:
¬Ja(induction)

Main argument of chapter 2: In machine learning there is a modern ana-
logue to classical inductive scepticism as described by the case of a Carte-
sian daemon, namely spam.

Chpt.2-1 That important epistemic principles of justification are no neces-
sary means for the classical epistemic ends follows from classical
scepticism: The case of a Cartesian daemon illustrates the possi-
bility of important epistemic principles like induction to fail re-
garding the classical epistemic ends.
daemon ⇒ �(induction & ¬truth)

Chpt.2-2 The classical epistemic ends truth, etc., are about facts, facts are
described as events, so the epistemic task is to make inferences or
predictions about events; this can be represented by the frame-
work of prediction games.

Chpt.2-3 One branch of machine learning is particularly concerned with a
structural analogue to the Cartesian daemon, namely adversarial
supervised passive online learning as is used in spam detection.
spam ⇔ daemon (by help of Chpt.2-1–Chpt.2-2)

Main argument of chapters 3 to 4: The modern analogue to inductive scep-
ticism proves to still allow for guaranteed optimality via meta-induction.

Chpt.3-1 Spam detection or adversarial supervised passive online learn-
ing comes in two forms: as classification (discrete) task and as
regression (continuous) task.
spam ⇔ (spamclass ∨ spamregr)

Chpt.3-2 In case of online regression there is an inference or prediction
method which is long run optimal relative to all available infer-
ence or prediction methods.
spamregr ⇒ �(meta-induction → optimality)

Chpt.4-3 In case of online classification there is no inference or prediction
method which is strictly speaking optimal in the above sense, but
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one which is expected to be optimal in this sense.
spamclass ⇒ �(meta-induction → optimality)

Chpt.4-4 Hence, even in the very sceptic scenario induction proves to al-
low for optimal inferences or predicitons.

(from Chpt.3-1–Chpt.4-3)
spam ⇒ �(meta-induction → optimality)

Main argument of chapter 5: Putting forward an optimality constraint for
a relative notion of justification allows for an a priori justification of meta-
induction, and an a posteriori justification of induction.

Chpt.5-1 Putting things together shows that even in case of a Cartesian
daemon meta-inductive inference is optimal.

(from Chpt.2-3 and Chpt.4-4)
daemon ⇒ �(meta-induction → optimality)

Chpt.5-2 Epistemic engineering and meta-induction puts forward opti-
mality as an epistemic end—this is the relevant end for the rela-
tive notion of justification.
O(optimality)

Chpt.5-3 Hence, we need not be sceptic regarding a relative notion of jus-
tification. (from Chpt.5-1 and Chpt.5-2)
¬(S) regarding relative justification, i.e.:
Jr(meta-induction)

Chpt.5-4 Now, in past inductive methods fared best, hence up to now
meta-induction chooses induction as adequate means.
meta-induction ⇔ induction

Chpt.5-5 Hence, up to now we also need not be sceptic regarding induc-
tion. (from Chpt.5-1–Chpt.5-4)
¬(S) regarding relative justification of induction, i.e.:
Jr(induction)

Main argument of chapter 6: The relative justification of induction cannot
be transferred to a relative justification of anti-induction in a Goodmanian
manner since the underlying principle of language transformation is self-
defeating.

Chpt.6-1 According to Goodman’s new riddle of induction, language
transformation allow for transferring justification of inductive
inferences to a justification of anti-inductive inferences.
J(induction) & J(lang-trans) ⇒ J(anti-induction)



Conclusion 341

Chpt.6-2 So, once language transformations are justified, we inherit rela-
tive justification of anti-induction. (from Chpt.6-1, and Chpt.5-5)
J(lang-trans) ⇒ Jr(anti-induction)

Chpt.6-3 However, allowing for language transformations is self-
defeating.
J(lang-trans) ⇒ ¬J(lang-trans)

Chpt.6-4 Hence, the relative justification of induction cannot be trans-
ferred to anti-induction by help of language transformations.
�⇒ Jr(anti-induction) (from Chpt.6-1–Chpt.6-3)

Main argument of chapters 7 to 8: So, whereas deduction allows for abso-
lute justification, induction allows at least for relative justification. Putting
forward simplicity constraints for optimisation, also abductive reasoning
can be justified.

Chpt.8-1 Although there are some caveats, already by definition deductive
principles and inferences are absolutely justified.
Ja(deduction)

Chpt.8-2 From the arguments above we know that the principle of induc-
tion is relatively justified. (from Chpt.5-5)
Jr(induction)

Chpt.7-3 By putting forward as epistemic end not only optimality regard-
ing truth, but also optimality regarding truth and simplicity, the
relative justification of induction can be transferred also to such
a justification of abduction.
Jr′(abduction)

Chpt.7-4 Hence, optimisation or meta-inductive epistemic engineering al-
lows for non-scepticism regarding the three common types of in-
ferences: deduction, induction, and abduction.

(from Chpt.8-1–Chpt.7-3)
¬(S) regarding deduction, induction, abduction

Main argument of chapters 9 to 12: Meta-induction can be employed not
only for justifying classical sources of knowledge, but also social ones: tes-
timony, peer disagreement, and judgement aggregation.

Chpt.9-1 Meta-induction allows for relative justification of Hume’s relia-
bilism regarding testimony;
Jr(THume)

Chpt.10-2 also for relative justification of the equal weight view regarding
epistemic peer disagreement;
Jr(EWV)



Conclusion 342

Chpt.11-3 and also for relative justification of success-based scoring
in probabilistic judgement aggregation—so-called arithmetic
meta-inductive probability aggregation.
Jr(AMIp)

Chpt.11-4 Hence, optimisation or meta-inductive epistemic engineering
allows for non-scepticism regarding the three social sources of
knowledge: testimony, disagreement, and judgement aggrega-
tion. (from Chpt.9-1–Chpt.11-3)
¬(S) regarding testimony, disagreement, judgement aggregation

Figure 12.2 depicts the rough argumentation hierarchy of this investigation.

It seems that being “satisfied with the best” allows for justifying a
wide range of classical and social sources of knowledge.

“Sometimes the simplest tastes are the best.”
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pp. 478–502. DOI: 10.1111/j.1468-0068.2007.00656.x.

— (2010). “How to Disagree about how to Disagree”. In: Disagreement. Ed.
by Feldman, Richard and Warfield, Ted A. Oxford: Oxford University
Press, pp. 175–186.

Elgin, Catherine Z. (2014). “Non-foundationalist Epistemology: Holism,
Coherence, and Tenability”. In: Contemporary Debates in Epistemology.
Ed. by Steup, Matthias, Turri, John, and Sosa, Ernest. 2nd Edition.
Chichester: John Wiley & Sons, pp. 244–255.

Estlund, David M. (1994-03). “Opinion Leaders, Independence, and Con-
dorcet’s Jury Theorem”. In: Theory and Decision 36.2, pp. 131–162. DOI:
10.1007/BF01079210.

Fantl, Jeremy (2003). “Modest Infinitism”. In: Canadian Journal of Philosophy
33.4, pp. 537–562. DOI: 10.1080/00455091.2003.10716554.

Feigl, Herbert (1950). “De Principiis Non Dispudandum ...? On the Mean-
ing and Limits of Justification”. In: Philosophical Analysis. Ed. by Black,
Max. Ithaca: Cornell University Press, pp. 119–156.

— (1981). “De Principiis Non Dispudandum ...? On the Meaning and Lim-
its of Justification [1950]”. In: Inquiries and Provocations. Selected Writings
1929-1974. Ed. by Cohen, Robert S. Dordrecht: Reidel Publishing Com-
pany, pp. 237–268.

Feldbacher-Escamilla, Christian J. (2012). “Meta-Induction and the Wisdom
of Crowds. A Comment”. In: Analyse und Kritik 34.2, pp. 367–382. DOI:
10.1515/auk-2012-0213.

— (2015). “Is the Equal-Weight View Really Supported by Positive Crowd
Effects?” In: Recent Developments in the Philosophy of Science: EPSA13
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