Elucidation of the Dynamics of the Autophagosomal Membrane-Associated Protein GABARAP and Structure Calculation of Lipoprotein (CD1348) by Solution NMR Spectroscopy

Inaugural dissertation

for the attainment of the title of doctor in the Faculty of Mathematics and Natural Sciences at the Heinrich Heine University Düsseldorf

presented by

Irina Apanasenko

from Kurgan

Jülich, August 2021

from the institute for Physikalische Biologie at the Heinrich Heine University Düsseldorf

Published by permission of the Faculty of Mathematics and Natural Sciences at Heinrich Heine University Düsseldorf

Supervisor: Prof. Dr. Dieter Willbold Co-supervisor: Prof. Dr. Birgit Strodel

Date of the oral examination: 30/09/2021

Abstract

Abstract

Membrane proteins account roughly for a third of all proteins expressed by the genomes of most organisms and carry out some of the most important cellular functions. Unfortunately, due to experimental difficulties that arise during work with these proteins, only 10% of the solved structures in the protein data-based (PDB) are membrane proteins. Nuclear magnetic resonance spectroscopy (NMR) is a unique technique for determining structures, elucidating the dynamics, and studying the binding of lipids, ligands and drugs to membrane proteins. The current work shows two different applications of solution NMR for studying membrane proteins.

The first application is an elucidation of the dynamics of the autophagosomal membrane-associated protein GABARAP. The 117-residue GABA_A receptor-associated protein (GABARAP) interacts with various molecules to perform critical regulatory functions in vesicle transport and fusion events in autophagy [1]. Enzymatic lipidation of the C-terminus of GABARAP allows anchoring to autophagic membranes, which was reported to facilitate membrane hemifusion upon oligomerization. Structure determination of GABARAP using NMR and X-ray crystallography suggests significant conformational heterogeneity and dynamics. Some previous research shows that at high salt concentrations in crystal structure, the N-terminal domain can interact with the hydrophobic binding pockets of a neighbouring protein molecule [2]. Oligomerization of GABARAP *in vivo* might be induced and stabilized via interactions with the other proteins, such as tubulin, or with membranes. In this work, GABARAP was studied together with phospholipids nanodiscs in order to mimic a membrane-associated environment.

Understanding the molecular mechanisms of a multifunctional protein, such as GABARAP, requires knowledge not only its tertiary structure but also of its conformational dynamics. NMR spectroscopy is a powerful tool to study structure and dynamics on virtually all time scales at atomic resolution. In particular, the fast protein dynamics describes the movement of loops, side-chain rotations, and local atomic vibrations in the time range from a picosecond to a few nanoseconds. To determine the dynamics of GABARAP anchored to a nanodisc, we have measured ¹⁵N relaxation rates R₁, R₂ and the {¹H}-¹⁵N heteronuclear Nuclear Overhauser Effects (NOEs), which quantify the dynamics of the protein and reveal conformational dynamics of various regions of the tertiary structure. Residues in the termini and loop regions are highly mobile on the nanosecond time-scale as indicated by low order parameters for free GABARP. GABARAP anchored to nanodisc shows decreased internal mobility. The conformation changes of the N-terminal in the presence of a nanodisc were quantified by calculating differences of chemical shifts in three dimensions.

Studying the dynamics of the membrane protein GABARAP anchored to nanodiscs is essential for the characterization of conformational changes on different time scales to achieve a complete picture of GABARAP interacting with a membrane and finally determine the role of this protein in autophagy.

Another membrane protein, the 178-residue lipoprotein CD 1348, was found in the resistance machinery of gram-positive anaerobe bacterium *Clostridium difficile*. This bacterium has a strong line of defence against the innate immune system of the human host, such as cationic antimicrobial peptides (CAMPs), and against different antibiotics and lantibiotics. An operon encoding a three-

Abstract

component ABC-transporter in *C.difficile* is characterized as a resistance system. Also, a twocomponent system, which includes histidine kinase (HK) and a response regulator (RR), located on the same gene cluster might play an essential role in sensing to lantibiotics. Interestingly, lipoprotein CD 1348 is encoded directly in front of the CprABC transporter and can play an essential role in the resistance. Lipoprotein structure and its function are unknown.

The second application is the determination of 3D structure of lipoprotein by solution NMR. Also, Small-angle X-ray scattering (SAXS) and theoretical calculations using the computation method "TopModel" were used independently to generate the lipoprotein structure. The assignment of the protein backbone side chains was made by the sequential backbone assignment using 3D ¹⁵N, ¹³C Transverse relaxation optimized spectroscopy (TROSY) NMR experiments.

The calculation of the tertiary structure of proteins is one of the most important applications of NMR in structural biology. For this reason, the 3D structure calculation methods by solution NMR were performed here. The experimental 3D structure of the lipoprotein CD1348 was obtained from calculating interproton distances of NOE data from 3D ¹⁵N NOESY-TROSY experiments and one 4D ¹³C, ¹³C Nuclear Overhauser Effect Spectroscopy (NOESY) HSQC experiment.

Protein structure determines function, given that the specificity of active sites and binding sites depends on the precise three-dimensional conformation. Thus, resolving the protein structure is a considerable step forward for future analysis for each protein. In the current work, the possibility of binding lantibiotics with lipoprotein was analysed via titration experiments by measuring the chemical shifts of lipoprotein with different concentrations of lantibiotic gallidermin. The chemical shifts of some amino acids were observed in the presence of lantibiotic. The calculated structure of the lipoprotein is important for a better understanding of its role in the resistance machinery of the bacterium *C. difficile* against CAMP, antibiotics and lantibiotics.

Zusammenfassung

Zusammenfassung

Membranproteine machen ungefähr ein Drittel aller endogenen Proteine aus, die von dem Großteil aller Organismen exprimiert werden und führen einige der wichtigsten zellulären Funktionen aus. Aufgrund experimenteller Hürden, die während der Arbeit mit diesen Proteinen auftreten können, wird sind lediglich ungefähr 10 % der in Membranproteine. Die Kernspinresonanzspektroskopie (NMR-Spektroskopie) von Membranproteinen ist eine einzigartige Messtechnik, um Strukturen zu lösen, Proteindynamik zu beobachten und die Bindung von Lipiden, Liganden und Wirkstoffen an den Proteinen zu validieren. Die vorliegende Arbeit beschreibt zwei Anwendungen Methoden der Lösungs-NMR Spektroskopie, auf Membran-assoziierte Proteine.

Die erste Anwendung dient der Charakterisierung der Dynamik des autophagosomal Membranassoziierten Proteins GABARAP. Das aus 117 Aminosäure bestehende GABA_A-Rezeptor-assoziierte Protein (GABARAP) interagiert mit verschiedenen Molekülen, um entscheidende regulatorische Funktionen im Vesikeltransport sowie bei Fusionsereignissen in der Autophagie auszuführen [1]. Enzymatische Lipidierung des C-Terminus von GABARAP erlaubt die Verankerung an Autophagieassoziierten Membranen, was zur Stabilisierung der Membran-Hemifusion nach Oligomerisierung beiträgt. Strukturauflösungen von GABARAP durch NMR und Röntgenkristallographie weisen auf eine signifikante strukturelle Heterogenität und Dynamik hin. Zuvor veröffentlichte Forschungsergebnisse zeigen, dass eine in hohen Salzkonzentrationen vorliegende Alternativstruktur des N-Terminus mit der hydrophoben Bindungsstasche eines benachbarten Moleküls interagieren kann [2]. *In vivo* Oligomerisierung von GAPARAP wird wahrscheinlich durch Interaktionen mit anderen Proteinen wie Tubulin oder mit Membranen induziert und stabilisiert. In der vorliegenden Arbeit wurde GABARAP an Phospholipid-Nanodisks untersucht, um eine Membran-assoziierte Umgebung zu simulieren.

Um die molekularen Mechanismen von solchen multifunktionalen Proteinen zu verstehen, wird nicht nur ein Verständnis der Tertärstruktur benötigt, sondern auch der konformationellen Dynamik. Die NMR-Spektroskope ist ein leistungsstarkes Werkzeug um sowohl die Struktur als auch die Dynamik auf praktisch jeder Zeitskalierung auf atomarer Ebene zu untersuchen. Im Speziellen beschreibt schnelle Proteindynamik die Bewegung von Loop-Regionen, Seitenketten-Rotationen und lokalen atomaren Schwingungen in Auflösungsbereichen von Pico- bis Nanosekunden. Um die Dynamik von GABARAP zu bestimmen haben wir die ¹⁵N-Relaxationsraten R₁, R₂ und die {¹H}-¹⁵N heteronuklearer Kern Overhauser Effekt (NOEs) gemessen, welche die Dynamik quantifizieren und die Konformations dynamik verschiedener Regionen der Tertiärstruktur offenbaren. Die Aminosäurereste, die in den Termini- und Loop-Bereichen zu finden sind, sind höchst mobil auf der Nanosekunden Skala. An Nanodisks verankertes GABARAP eine geringere interne Dynamik. Die Konformationsänderungen des N-Terminus in Gegenwart der Nanodisks wurde durch die Berechnung der chemischen Verschiebungen in drei Dimensionen charakterisiert.

Die Untersuchung der Dynamik des Membranproteins GABARAP zusammen mit Nanodisks ist essenziell für die Charakterisierung konformationeller Änderungen auf verschiedenen

Zusammenfassung

Zeitskalierungen, um ein vollständiges Bild von GABARAP und seiner Rolle bei der Autophagie zu erhalten.

Ein weiteres Membranprotein, das aus 178 Aminosäuren bestehende Lipoprotein CD 1348, wurde in der Resistenzmachinerie des Gram-positiven anaeroben Bakteriums *Clostridium difficile* entdeckt. Dieser Bakterienstamm hat eine starke Abwehr gegenüber der angeborenen Immunität des menschlichen Wirtes, wie kationische antimikrobielle Peptide (CAMPs) und verschiedene Antibiotika. Ein Operon welches für einen drei Komponenten ABC Transporter in *C. difficile* codiert, ist durch ein Resistenzsystem charakterisiert. Zudem ist ein Zwei-Komponenten-System, welches eine Histidin Kinase (HK) und einen Response Regulator (RR) beinhaltet, auf demselben Gencluster lokalisiert und spielt wahrscheinlich eine entscheidende Rolle in der Sensorik. Interessanterweise ist das Lipoprotein CD 1384 direkt vor dem CprABC Transporter codiert und könnte daher eine entscheidende Rolle in der Resistenz spielen. Weder die Struktur des Lipoproteins noch seine Funktion sind bisher bekannt.

Die zweite Anwendung ist die Berechnung der 3D-Struktur des Lipoproteins. Andere Methoden wie Kleinwinkel-Röntgenstreuung (SAXS) sowie die theoretische Berechnung mit Hilfe der Computergestützten Methode "TopModel" wurden unabhängig benutzt, um die Lipoproteinstruktur zu generieren. Die Zuweisung der Seitenketten des Proteinrückrates wurde durch die sequenzielle Zuweisung über 3D 15N, 13C TROSY-NMR-Experimente erreicht

Die Berechnung der Tertiärstruktur von Proteinen ist eine der wichtigsten Anwendungen von NMR innerhalb der Strukturbiologie. Die experimentelle 3D Struktur des Lipoproteins CD1348 wurde durch die Berechnung von Interproton-Distanzen aus NOE Daten von 3D 15N NOESY-TROSY Experimenten sowie mittels 4D 13C, 13C, NOESY HSQC Experimente erstellt.

Die Proteinstruktur bestimmt die Funktion, da die die Spezifität aktiver Bereiche und Bindungsstellen von der präzisen dreidimensionalen Struktur abhängig ist. Folglich ist die Auflösung unbekannter Proteinstrukturen ein bedeutender Schritt für zukünftige Analysen von Proteinen. In der vorliegenden Arbeit wurde die Möglichkeit der Bindung von Lantibiotika mit Lipoproteinen über Titrationsexperimente mittels der Messung der chemischen Verschiebung bei verschiedenen Konzentrationen des Lantibiotikums Gallidermin analysiert. Hier wurde die chemische Verschiebung einiger Aminosäuren in der Anwesenheit des Lantibiotikums beobachtet. Die berechnete Struktur des Lipoproteins ist wichtig für ein besseres Verständnis seiner Rolle in der Resistenzmachinerie des Bakteriums *C. difficile* gegenüber CAMP, Antibiotika und Lantibiotika.

4

Content

Content

Abstract	1
Zusammenfassung	3
Content	5
List of Figures	9
List of Tables	12
Chapter I Introduction	13
1. Membrane Proteins	14
1.1. GABARAP	14
1.1.1. Autophagy	14
1.1.2. Autophagy Related Protein GABARAP	15
1.1.3. Nanodiscs	17
1.2. Lipoprotein CD1348	
1.2.1. The Importance of Antibiotics in our Life	
1.2.2. Lantibiotics	
1.2.3. Resistance Machinery <i>Clostridium difficile</i> to CAMPs	20
1.2.3.1. ABC Transporter	20
1.2.3.2. lipoprotein	21
2. Nuclear Magnetic Resonance	23
2.1. Basic Principles of NMR	23
2.2. Chemical Shift Assignments	25
2.3. Structure Calculation of Proteins Using NMR	27
2.4. Using NMR to Study Dynamics in Proteins	
2.4.1. Integrated NMR for studying dynamics in proteins	
2.4.2. Protein dynamic on the pico- to nanosecond time scale	29
2.5. Extending the Size limitation of NMR	
3. Aims	
Chapter II GABARAP	35
1. Materials	
1.1. Chemicals, enzymes, and media components	
1.2. Bacteria cultures and plasmids	
The bacterial strain <i>E. coli</i> BL21	
1.3. Laboratory equipment	37

1.4. Column chromatography	38
1.5. NMR spectrometers	38
1.6. Software and databases	39
2. Methods	40
2.1. Microbiological methods	40
2.1.1. Bacterial growth media	40
2.1.2. Transformation in <i>E.coli</i> with plasmid DNA	41
Bacterium transformation of MSP1D1 Δ 5	41
Bacterium transformation of His-TEV-Protease	41
Bacterium transformation of GABARAP and GABARAP-G116C Δ 117	41
2.1.3. Expression of proteins	42
Expression of MSP1D1 Δ 5 and His-TEV-Protease	42
High-yield expression of deuterated and labelled GABARAP and GABARAP-G116C Δ 1	17
	42
2.2. Preparation of protein samples	43
2.2.1. Purification of His-TEV-Protease	43
2.2.2. Purification of His tag cleaved MSP1D1 Δ 5 protein	45
2.2.3. Purification of wild type GABARAP and mutant GABARAP-G116C Δ 117	46
2.2.4. Lipidation of GABARAP-G116CΔ117	48
2.2.5. Anchoring GABARAP-PE I to nanodiscs	49
2.3. Analytical methods	49
2.3.1. SDS-polyacrylamide gel electrophoresis	49
2.3.2. Quantification and concentration of protein by UV/Vis spectrophotometry	50
2.4. Nuclear magnetic resonance (NMR) spectroscopy	51
2.4.1. NMR samples	51
2.4.2. NMR experiments	51
2.4.3. Processing the NMR spectra	54
2.4.4. Sequential resonance assignment	54
2.4.5. Chemical shift perturbation analysis	55
2.4.6. Fast protein dynamics from pico- to nanoseconds	55
Experimental determination of R_1	55
Experimental determination of R_2 with the help of $R_{1\rho}$	56
Experimental determination of heteronuclear NOE	56
Backbone and sidechain dynamics	57

Content

2.4.7. Hydrodynamical radius	57
3. Results	58
3.1. Expression and purification of MSP1D1 Δ 5 belt protein and TEV protease	58
3.2. Expression of fully deuterated GABARAP-G116C Δ 117 in two different M9 mediums	59
3.3. Purification of fully deuterated GABARAP-G116C Δ 117 after expression in new medium.	и M9 59
3.4. Purification of fully deuterated wt GABARAP	62
3.5. NMR chemical shifts of GABARAP wt and GABARAP mutant	62
3.6. GABARAP-G116C Δ 117 anchored to nanodiscs	63
3.7. Differences between free GABARAP-G116C Δ 117 and GABARAP-G116C Δ 117 ancho ND by NMR spectroscopy	red to 65
3.8. Differences between free wt GABARAP and GABARAP-G116C Δ 117 anchored to I NMR spectroscopy	ND by 66
3.9. Stability of GABARAP anchored to nanodisc	68
3.10. Pico- to nanosecond dynamics	68
4. Discussion	72
4.1. High yield expression of GABARAP	72
4.2. Structural comparison of GABARAP, GABARAP mutant and GABARAP mutant anc to nanodisc	hored 73
4.3. Changes in pico- to nanosecond dynamics of GABARAP anchored to ND	74
Chapter III Lipoprotein	81
1. Materials	82
1.1. NMR spectrometers	82
1.2. Software and databases	82
2. Methods	84
2.1. Nuclear magnetic resonance spectroscopy	84
2.1.1. NMR sample	84
2.1.2. NMR spectra	84
2.1.3. Assignment of resonances	86
2.1.4. Determination of torsion angle restraints	87
2.1.5. NOE resonance assignment and extraction of distance restraints from NOE che shifts	emical 88
2.2. Protein structure determination	88
2.3. Chemical shift perturbation analysis	89

Content

3. Results90
3.1. Assignment of backbone resonances of lipoprotein90
3.2. Determination of structural restraints from NMR data for lipoprotein secondary structure calculation
3.3. Tertiary structure calculation94
3.4. Titration experiments of lipoprotein and lantibiotic gallidermin
4. Discussion
4.1. Comparison of the theoretically predicted lipoprotein model with secondary structure from NMR data
4.2. Comparison of the theoretically predicted lipoprotein model with tertiary structure from NMR data
4.3. Titration experiments with lantibiotic gallidermin104
Chapter IV Conclusion and Outlook
Literature
Abbreviations
Appendix
Acknowledgements
Publications and Presentations
Publications
Oral presentations131
Eidesstattliche Erklärung

List of Figures

List of Figures

Figure 1. Schematic depiction of autophagosome formation	15
Figure 2. Structure of GABARAP	16
Figure 3. Open conformation of GABARAP.	16
Figure 4. Schematic representation of the liquidation process of GABARAP	17
Figure 5. Structure of nanodiscs.	18
Figure 6. Schematic presentation of lantibiotics nisin, gallidermin and subtilin	19
Figure 7. Mode of action of nisin	20
Figure 8. Schematic representation of the CprABC resistance system of <i>C.difficile</i>	21
Figure 9. The 3D model of lipoprotein from the theoretical data	22
Figure 10. ¹ J- and ² J-coupling constants in peptides and proteins	25
Figure 11. Schematic depiction of standard 2D and 3D NMR experiments for protein assignment	26
Figure 12. A general example of a sequential backbone assignment	26
Figure 13. Backbone torsion angles (ϕ, φ) and the χ 1,2,3 torsion angles of the amino acids	27
Figure 14. Illustration of structural restraints with hydrogen bond and NOE	28
Figure 15. The timescale of different dynamic processes in proteins and NMR experiments	
corresponding to them	29
Figure 16. Illustrates the increased resolution in a two-dimensional nitrogen-proton HSQC coupled	
experiment using the TROSY technique	32
Figure 17. Maleimide reaction of MPB-PE with 116 Cys of GABARAP-G116C Δ 117	48
Figure 18. Overview of data processing with the NMRPipe package.	54
Figure 19. SDS-PAGE (15%) gel slices containing MSP1D1 Δ 5 protein (right) and TEV protease (left)	
were taken after purification	58
Figure 20. SDS-PAGE (15%) gel slices containing deuterated protein samples before and after	
expression in two different M9 mediums	59
Figure 21. Anion Exchange Chromatography of deuterated GABARAP-G116C Δ 117 from M9+ mediu	m
	60
Figure 22. SDS-PAGE (15 %) of fractions after Anion Exchange Chromatography	60
Figure 23. Size Exclusion Chromatography of deuterated GABARAP-G116C Δ 117 from M9+ medium	61
Figure 24. SDS-PAGE (15%) of fractions after Size Exclusion Chromatography.	61
Figure 25. SDS-PAGE (15%) gel slices containing protein samples of GABARAP protein	62
Figure 26. 2D [1 H - 15 N] TROSY-HSQC spectrum of GABARAP and [1 H - 15 N] HSQC GABARAP-	
G116CΔ117	63
Figure 27. SDS-PAGE (15%) of lipidated GABARAP-PE	64
Figure 28. Size Exclusion Chromatography of lipidated GABARAP-G116C Δ 117 anchored to DMPC	
nanodiscs	64
Figure 29. SDS-PAGE (15%) gel slice containing protein sample of GABARAP-PE anchored to nanodis	SCS.
	65

List of Figures

Figure 30. 2D [1 H - 15 N] HSQC spectrum of GABARAP-G116C Δ 117 and 2D [1 H - 15 N] TROSY-HSQC
spectrum of GABARAP-G116C∆117 anchored to nanodisc66
Figure 31. Weighted chemical shift ($\Delta\delta$) perturbation analysis between free molecule GABARAP and
GABARAP-PE anchored to ND67
Figure 32. 3D model of GABARAP molecule67
Figure 33. Expanded corrected 2D [1 H - 15 N] TROSY-HSQC and 2D [1 H - 15 N] HSQC spectra of GABARAP
mutant and GABARAP mutant-ND68
Figure 34. $^{\rm 15}N$ relaxation rates R_1 and R_2 of GABARAP-ND complex69
Figure 35. { ¹ H} $-^{15}$ N NOE values of GABARAP-ND complex70
Figure 36. Order parameter S ² was determined from 15 N relaxation data for 600 MHz at 40°C71
Figure 37. Anion Exchange Chromatography of deuterated GABARAP-G116C Δ 117 from 125 ml of M9+
and 500 ml of M9 mediums72
Figure 38. Size Exclusion Chromatography of deuterated GABARAP-G116C Δ 117 from M9 and M9+
mediums73
Figure 39. $\{^{1}H\}^{-15}$ N heteronuclear NOE values of GABARAP (black) and GABARAP anchored to ND (red)
for 600 MHz (top) and 900 MHz (bottom)75
Figure 40. R_1 and R_2 relaxation rates of GABARAP (black) and GABARAP anchored to ND (red) at 600
MHz77
Figure 41. R_1 and R_2 relaxation rates of GABARAP (black) and GABARAP anchored to ND (red) at 900
MHz
Figure 42. Backbone flexibility of free GABARAP and GABARAP anchored to ND
Figure 43. Sequential assignment of backbone nuclei resonances of lipoprotein residues M21-L30
from the 3D HNCACB spectrum90
Figure 44. Fully assigned 2D [¹ H, ¹⁵ N]-TROSY-HSQC spectrum of lipoprotein
Figure 45. Part of the [¹ H, ¹⁵ N] HSQC spectrum of lipoprotein92
Figure 46. Part of [¹ H, ¹³ C] CT-HSQC spectrum of lipoprotein93
Figure 47. Secondary structure restraints were obtained from TALOS-N torsion angle prediction 94
Figure 48. Lipoprotein secondary structure prediction from TALOS-N with the help of backbone
chemical shifts94
Figure 49. Superposition of the ten lowest energy structures calculated from NMR data from two
points of view95
Figure 50. Ramachandran plot of the backbone torsion angles of the lipoprotein ten lowest energy
models96
Figure 51. The final 3D model of lipoprotein from NMR data97
Figure 52. Weighted chemical shift ($\Delta\delta_{ave}$) perturbation analysis between 630 μM lipoprotein and
lipoprotein with gallidermin99
Figure 53. Prospective modelling of lipoprotein from <i>C. difficile</i> (without disordered N-terminal tail)

List of Figures

Figure 54. Overlapped two 3D models of lipoprotein from C. difficile from NMR experimental data	and a
theoretical prediction	104
Figure 55. Fluorescence of samples in the presence of different concentrations of gallidermin	105
Figure 56. 3D model of lipoprotein molecule.	106

List of Tables

Table 1: Chemicals used in this work
Table 2: Enzymes used in this work
Table 3: Bacterial strains used for recombinant protein expression
Table 4: Plasmids used for recombinant gene expression
Table 5: Laboratory equipment used in this work
Table 6: Columns and resins used for column chromatography. 38
Table 7: NMR spectrometers used for the GABARAP project
Table 8: Software and databases used for the GABARAP project. 39
Table 9: Composition of bacterial growth media for recombinant gene expression40
Table 10: Composition of TS2 solution and vitamin cocktail solution used in M9 medium41
Table 11: Buffers used for the purification of His-TEV-Protease. 44
Table 12: Buffers used for the purification of MSP1D1 Δ 545
Table 13: Buffers used for the purification of GABARAP and GABARAP-G116C Δ 11747
Table 14: Buffers used for the lipidation of GABARAP. 48
Table 15: Compositions used for SDS-PAGE gel50
Table 16: NMR spectrometers used in this work
Table 17: NMR experiments
Table 18: Dependence of the average Relaxation rates R_1 from different temperatures for free
GABARAP and GABARAP anchored to ND at 600 MHz76
Table 19: Dependence of the average relaxation rates R_2 from different temperatures for free
GABARAP and GABARAP anchored to ND at 600 MHz76
Table 20: Dependence of the correlation time τ_c from different temperatures for free GABARAP and
GABARAP anchored to ND at 600 MHz79
Table 21: NMR spectrometers were used for the Lipoprotein project. 82
Table 22: Software and databases used for the Lipoprotein project. 82
Table 23: NMR spectrometers are used in this work. 84
Table 24: NMR experiments. 85
Table 25: Assigned spectra that were used for 3D structure calculation89
Table 26: Plot statistics of Ramachandran plot of the backbone torsion angles of the lipoprotein ter
lowest energy models. A-α helix, B-β strand, L-loop97

Chapter I Introduction

In this chapter, the basic information about two membrane-associated proteins GABARAP and lipoprotein, are presented. The GABARAP protein plays a crucial role in Autophagy and especially in autophagosome formation. After the enzymatic lipidation, GABARAP can anchor to the membrane. Lipids nanodiscs were used as a model system of biological membranes. Another protein, lipoprotein, is involved in the resistance machinery of bacteria *C. difficile* against antibiotics and antibiotics. Because of the strong antibiotic-resistant strains in *C. difficile*, a new treatment must be found. Some promising lantibiotics like subtilin, nisin and gallidermin might be good candidates. In this chapter, the dynamics of proteins and structure calculation investigated with the help of solution NMR is described, the same as fundamental principles and extending size limitation problems.

1. Membrane Proteins

Membrane proteins play an essential role in living organisms. They are involved in many cell processes such as ion transport, metabolites, sending and receiving signals, anchoring enzymes and other proteins to specific locations in the cell, to regulate intracellular vesicular transport, form the shape of organelles and others [3]. Approximately 20% and 30% of all genes encode α -helical membrane proteins [4], but this number is more significant because of the presence of β -barrels in some membrane proteins [5]. Membrane proteins can be separated into different groups based on how they are associated with the lipid bilayer. Some are thought to extend across the membrane; others are located in the cytosol and associated with the membrane by one or more covalently attached lipid chains [6].

1.1. GABARAP

1.1.1. Autophagy

Autophagy ("self-eating") is a natural cellular degradation and recycling process. This is one of the main catabolic mechanisms that helps cells to survive in different stress situations such as heat, starvation, infection, oxidative stress, and others. The process of Autophagy is involved in preventing some types of human diseases, including cancer, muscular dystrophies, and neurodegenerative disorders such as Huntington, Alzheimer, and Parkinson [7-13]. There are three types of autophagy processes in mammalian cells: microautophagy, macroautophagy, and chaperone-mediated autophagy (CMA). During microautophagy, the cytoplasmic cargo is directly engulfed by the lysosome during a random process of membrane invagination. Another type of Autophagy is the CMA, where proteins are specifically targeted to lysosomes via signal peptides and coordinated by chaperones located on both sides of the targeted membrane [14]. Macroautophagy is based on the sequestration of cytoplasmic contents in a *de novo* formed double-membrane vesicle "autophagosome" followed by the fusion with the lysosomes where the lysosomal enzymes facilitate the degradation of the sequestered products. In 2016 the Nobel Prize for Physiology or Medicine was awarded to Yoshinori Ohsumi for discoveries of the mechanisms of Autophagy in yeast organisms. The essential roles of ubiquitin-like proteins in forming the double-membrane sequestering vesicle autophagosome were shown, which plays a central role in the macroautophagy process. The process of autophagosome formation is shown in Figure 1. In yeast, autophagosome formation starts at a single perivacuolar site called the phagophore assembly site (PAS) [15, 16]. In mammalian cells, an isolated membrane is known as phagophore appears from vesicles from the endoplasmic reticulum (ER) [17, 18] and other cytosolic membrane structures such as trans-Golgi network and late endosomes [18-20]. The structure of vesicles from ER was forming an Ω -like shape "omegasomes" and was very dynamic and colocalized with autophagy-specific proteins [18]. The formation of omegasomes leads to phagophore formation and correspond to the early stage in the autophagic process [17, 18, 21]. Multiple Atg (Autophagy) proteins are involved in autophagosome formation [22]. Especially Atg 8 proteins family plays a crucial role in intracellular transport and fusing vesicles into autophagosome [23]. Human

analogies of Atg8 such as microtubule-associated protein 1 light chain 3 (LC3) and the gammaaminobutyric acid receptor-associated protein (GABARAP) family proteins have been identified as a required system for elongation and maturation of the autophagosome [24-26].

Figure 1. Schematic depiction of autophagosome formation. Phagophore surrounds the content that should be removed from the cells by forming the double membrane. Then vesicles with anchored Autophagy relate proteins on it (blue dots) elongate and close the phagophore. Sequestering vesicle autophagosome is formed.

1.1.2. Autophagy Related Protein GABARAP

The y-aminobutyric acid type A receptor-associated protein (GABARAP) is a mammalian cells Atg8 homolog, which was found in plants to mammals and can be expressed in a wide variety of organisms and tissues. Mammalian forms of GABARAP have identical amino acid levels, suggesting that the function of GABARAP is essential or beneficial in mammals [1]. GABARAP is a 117 amino acids protein with a molecular weight of around 14 kDa. It belongs to small ubiquitin (Ub)-like proteins (UBLs) covalently anchored to lipid membranes and play an essential role in growing and closing the autophagosome. GABARAP is implicated in various membrane trafficking and fusion of autophagosome formation during the autophagy process [1, 26]. Figure 2 shows the structure of GABARAP. It contains a C-terminal domain (residues 27–117) and a small N-terminal subdomain (residues 1–26). The C-terminal domain shows structural similarity to ubiquitin. N-terminal is not present in ubiquitin and is located on the opposite side of the C-terminal. It has two hydrophobic pockets (hp) where hp1 is formed by Gly 17, Ile 21, Pro 30, Lys 48, Leu 50 and Phe 104, whereas hp2 is formed by Tyr 49, Val 51, Pro 52, Leu 55, Phe 60, Leu 63 and Ile 64.

Figure 2. Structure of GABARAP. The picture shows the sequence, secondary and tertiary structure of GABARAP, where pink is the α -helix, yellow is the β -sheet.

A monomeric form mainly represents GABARAP structure at low protein concentration and in solution with salt concentration up to 100 μ M [2]. The oligomeric conformation was detected in the crystal structure at the high salt concentration (2.4 M ammonium sulphate). This enhances the hydrophobic interactions dominating the multimerization interface. Oligomerization of GABARAP *in vivo* might be induced and stabilized via interactions with other proteins, such as tubulin, or with membranes [2]. GABARAP protein can exist in two distinct conformations called "open" and "close". In "close" conformation, the first ten amino acids from the N-terminal have some of van der Waal's interactions with residues from the central β sheets (β 1 and β 2). When the N-terminal is flipped almost 180° relate to the start position, this is "open" conformation. Figure 3 represents the open conformation of GABARAP. The first six amino acids from N-terminal binds a β 2 strand of neighbouring molecule in the crystal structure. The N-terminal is flipped almost 180° relate to the start position [2].

Figure 3. Open conformation of GABARAP. Intermolecular contacts between neighbouring molecules of GABARAP. The N-terminal (N(2)) of one GABARAP molecule binds with the β 2-strand of neighbouring GABARAP in the crystal structure. The first six amino acids from N-terminal are coloured violet. β -strands are coloured green, and α -helixes are coloured red. Picture from the ref. [2].

GABARAP protein plays an essential role in vesicle transport and membrane fusion during autophagosome formation [1, 27]. For the association with the membrane, GABARAP is reversibly coupled to membranes in a Ubq-like manner [28]. Enzymatically lipidated C-terminal allows to anchor

to the membrane. GABARAP protein is covalently attached to the membrane via four steps mechanisms (Figure 4). First, Leu 117 in C-terminal was cleaved off by cysteine protease Atg4B, which leads to a truncated form GABARAP-I with Gly 116 in the end. Then it is subsequentially activated by Atg7 and transferred to the E2-like enzyme Atg3. After it, GABARAP-I is enabled to covalently bind to phospholipids (PE, PS) subsequentially transformed into GABARAP-PE. The process of lipidation can be reversed by the cysteine protease Atg 4B back to GABARAP-I.

Figure 4. Schematic representation of the liquidation process of GABARAP. (1) The Leu 117 is cleaved off by Atg4B. (2) With the help of ATP, GABARAP-I is activated by Atg7 and transferred (3) to the E2-like enzyme Atg3. (4) The Atg3-GABARAP complex enables the binding of GABARAP with the phospholipids (PS, PE). Atg4B facilitates delipidation to GABARAP-I. The picture from [1].

This modification of GABARAP into GABARAP-PE is proposed to be crucial for its intracellular distribution during the autophagy process [25].

1.1.3. Nanodiscs

Nanodiscs are suitable membrane mimicking systems for membrane proteins, which allow the study of these types of proteins in a native-like environment. Due to low molecular mass, nanodiscs have some advantages for nuclear magnetic resonance (NMR) spectroscopy compared to liposomes. Figure 5 shows the schematic representation of the nanodisc structure [29]. They usually consist of an assembly of phospholipids held together by two copies of amphipathic apolipoproteins, known as membrane scaffold proteins (MSPs), arranged in a disc-shaped lipid bilayer [30, 31]. MSP is an amphipathic helical protein designed to self-assemble into a small lipid bilayer upon detergent removal [32, 33]. A detergent-free environment provides a near native-like lipid membrane system. With MSP's help, the nanodiscs' size might be controlled from 9.5 to 12.8 nm by deleting one or more of the α -helixes [34]. One of the shorted constructs is MSP1D1 Δ 5 does not have a fifth α -helix and consist of 167 amino acids. It forms nanodiscs with a diameter of 9.2 nm and has a molecular weight of around 95 kDa [35]. Smaller nanodiscs have advantages in solution NMR to reduce the rotational correlation time and thus increase spectral resolution and sensitivity of the spectrum. MSP1D1 Δ 5 construct shows an efficient application in NMR [31, 35]. The lipid compositions of biological membranes have many variations, and it might be challenging to define the exact lipid composition for a studied membrane protein. Standard phospholipids such as DMPC, DPPC or POPC are most used for nanodiscs preparation [31]. Nanodiscs have some advantages over liposomes due to their smaller size, homogeneity and higher stability [36].

Chapter I Introduction

Figure 5. Structure of nanodiscs. Top and side view of the nanodisc. The lipid bilayer is surrounded by two copies of amphipathic helices of belt protein (MSP). The picture was reproduced from [29].

1.2. Lipoprotein CD1348

1.2.1. The Importance of Antibiotics in our Life

Antibiotics ("against life") is a type of medicine against infections caused by bacteria. The first antibiotic, penicillin, was discovered a few decades ago by Sir Alexander Fleming. Nowadays, antibiotics are widely used to treat different bacterial infections and significantly increased the human standard of living. Antibiotics can be separated into antibiotics to induce cell death (bactericidal) or inhibit cell growth (bacteriostatic). Most bactericidal antibiotics are divided by their mode of action, in other words, how they kill the bacteria. Antibiotics inhibit one of four targets in the cell: DNA synthesis, RNA synthesis, cell wall synthesis, or protein synthesis [37]. The cell wall synthesis of bacteria is the most effective target for antibiotic intervention [38]. The bacterial cell wall is critical to the ability of bacteria to survive in an unfavourable environment because successful treatment with cell wall synthesis inhibitor can course cell lysis. The defensive mechanisms of bacteria are developing, leading to antibiotic resistance [39]. The developed mechanisms are various and can defy the activity of many different types of antibiotics. Thus, there is a need for new antimicrobial medicines against human pathogens.

1.2.2. Lantibiotics

Lantibiotics ("lanthionine-containing antibiotic") are a group of small ribosomally synthesised peptides produced by gram-positive bacteria. Lantibiotics have high antimicrobial activity against gram-positive bacteria. Most lantibiotics bind to Lipid II or other peptidoglycan precursors, causing inhibition of bacterial cell wall synthesis. Lipid II is a membrane-anchored cell-wall peptidoglycan precursor that is important for bacterial cell-wall biosynthesis [40]. Some lantibiotics can form pores in the cell wall, leading to membrane leakage and cell death [41]. The typical lantibiotics contain dehydrated amino acids (didehydroalanine (Dha) and didehydrobutyrine (Dhb)) and other unusual amino acid modifications [42]. They are complex polycyclic molecules formed by the dehydration of selected

residues of Ser and Thr, and the addition of Cys thiols leads to unsaturated amino acids to form methyllanthionine bridges and lanthionine rings [43]. Different names of lantibiotics related to these rings. Based on the pathway by which maturation of the peptide occurs and the presence or absence of antibiotic activity, all lantibiotics can be separated into four classes [43, 44]. Only lantibiotics from two classes were reported as active against microbes [45]. Rings play a crucial role in the antimicrobial activity against a lot of gram-positive bacteria. The most know lantibiotics, nisin, gallidermin, and subtilin, are members of the same class and are shown in Figure 6.

One of the most studied and best-characterized lantibiotics is nisin. Nisin is widely used in the food industry as a food preservative. It is a 34-amino-acid polypeptide with five internal ring structures (Figure 6). Nisin can be divided into three parts: N-terminal is three first lanthionine rings, C-terminal is two intertwined rings and six last amino acids. The flexible hinge region (Asn, Met, Lys) is located between the N-terminal and C-terminal. Nisin has two inhibition mechanisms that bind to peptidoglycan precursor lipid II and initiate pore formation in the cell wall [47]. The mode of action of nisin is shown in Figure 7; the picture was reproduced and simplified from Ref. [40]. Firstly, nisin reaches the bacterial plasma membrane; then, it binds to Lipid II with the help of two rings in the N-terminal; after that, the pore can be formed with an involved stable transmembrane orientation nisin: Lipid II complex. Nisin can binds to all available Lipid II molecules in the membrane to form pores. The pore complexes have a similar structure, including eight nisin molecules and four Lipid II molecules; these complexes are stable. The size of the pore is around 2-2.5 mm [48]. Another two lantibiotics, gallidermin and subtilin, have a similar mode of action [49, 50].

Figure 7. Mode of action of nisin. 1. Two nisin rings bind with lipid II. With the flexible hinge region, nisin can insert its C-terminal inside of the cytoplasmic membrane. 2. During or after assembly, four nisin-lipid II complexes and four additional nisin molecules can form pores.

These types of lantibiotics belong to the large class of cationic antimicrobial peptides (CAMPs). CAMP is an essential natural defence of most living organisms against bacteria. Bacteria that colonize mammalians and cause infections have a huge resistance mechanism to our immune system or, in other words, to CAMP. Much information about antibiotics resistance might be received by studying the bacterial resistance mechanisms against human defensins. One of the examples is the bacteria *Clostridium difficile* that has substantial resistance machinery against CAMP.

1.2.3. Resistance Machinery Clostridium difficile to CAMPs

Clostridium difficile (C. difficile) is a gram-positive anaerobe bacterium that enters the host as a dormant spore and germinates in the intestine. It produces different toxins and course diarrheal disease [51]. *C. difficile* infection primarily affects older people, hospitalised patients, and people after antibiotic therapy. People with typical flora and a robust immune system have a high chance to prevent *C. difficile* colonization in the body, but the resistance is lower after antimicrobial therapies [52]. Also, young and previously healthy people had *C. difficile* infection after close contact with infected patients [53]. Inside the body, the bacterium should defend itself against the host's innate immune system, such as cationic antimicrobial peptides (CAMPs) [54, 55]. CAMP production was found almost in all organisms, including bacteria, fungi, plants, and animals. The *C. difficile* has a huge line of defence; it can adapt to the presence of CAMP [56, 57]. The operon of the Cationic antimicrobial peptide resistance (Cpr) system from *C. difficile* consists of an ABC transporter (CprABC) and a two-component system (TCS).

1.2.3.1. ABC Transporter

ATP-binding cassette (ABC) transporters play a unique role in many biological processes. Especially proteins of ABC transporter located across the biological membranes and involved in the transport of substrates. Bacteria *C. difficile* contain an ABC transporter that helps transport or effluxes multiple antibiotics outside of the cell. It consists of four functional domains, two nucleotide-binding domains (NBDs) and two hydrophobic transmembrane domains (TMDs). The NBD is localised in the cytoplasmic face of the cellular membrane and is responsible for ATP binding and hydrolysing to generate the energy for transport [58]. TMD is crossing through the membrane. Figure 8 from Ref. [46] shows CprABC type resistance operon from *C. difficile*. TMD includes two transmembrane proteins (CprB and CprC) with equal stoichiometry, including six α -helices in each. NBD is presented by protein (CprA) that might be responsible for limiting antibiotic susceptibility [59].

TCS includes histidine kinase (HK), and a response regulator (RR) is located on the same gene cluster. The HK of the Cpr system (CprK) contains an extracellular loop that might play an essential role in sensing. As described earlier, the first two rings of lantibiotics such as nisin, gallidermin, and subtilin bind with the lipid II complex. Thus, these two rings might be recognised by CprK, resulting in the signalling of the TCS RR (CprR) [56]. After adding nisin, CprR can initiate the expression of CprABC [56, 57]. TCS and ABC transporter contribute the resistance of C. difficile to many lantibiotics, which is a big problem in treating this infection.

Figure 8. Schematic representation of the CprABC resistance system of *C.difficile*. CprABC type resistance operon is shown here with ABC transporter CprABC (blue colour) and two two-component systems (green colour). The picture shows the ABD transporter, two-component system, extracellular loop, lipoprotein (grey colour), lantibiotic nisin and lipid-protein II.

Also, close to cprABC transporter, a membrane-associated resistance protein (lipoprotein CD1348) is present. It is known that lipoprotein is not upregulated by the presence or absence of lantibiotics or CAMP and has a basal expression level [56].

1.2.3.2. lipoprotein

Lipoprotein is a resistance protein identified directly in front of the CprABC transporter from the bacteria *Clostridium difficile*. It was produced by the gene CD630_13480 [60]. Lipoprotein contains 178 amino acids and has a molecular weight of 20.2 kDa (calculated via EXPASY ProtParam). The original sequence (black) and his-tag version (red) are shown:

	20	40	60
1	MNKIAVSFLIIATTLLSTAC	MDYSISAVELVDSKESAVVK	KDEDAKEETTSKMINSKKTT
1	HHHHHHHHHSSGA	MDYSISAVELVDSKESAVVK	KDEDAKEETTSKMINSKKTT
	80	100) 120
61	KIPIEIISKDEKIVKYLQID	EESSLKDKLRLILDTLSNEY	FNGLDMEVEVKEKDNLVKIN
61	KIPIEIISKDEKIVKYLQID	EESSLKDKLRLILDTLSNEY	FNGLDMEVEVKEKDNLVKIN
	140	160	
121	LIEPDKKSRVSWKDDYLNEQ	NIIYTINNIIKNVIQEEDNS	IWIEEVEIYYNGKLIELR
121	LIEPDKKSRVSWKDDYLNEQ	NIIYTINNIIKNVIQEEDNS	IWIEEVEIYYNGKLIELR

A crystallography test was performed for characterisation of the structure of the CD1348 lipoprotein. The yield and the quality were enough for crystallization, but the optimised plates do not show any crystals. Therefore, the overall shape of the protein was measured by Small-angle X-ray scattering (SAXS). The *ab initio* model is shown in Figure 9A from Ref. [60]. The model has a long flexible N-terminal domain and a compact C-terminal domain [60]. The theoretical model from computation

methods "TopModel" is shown in Figure 9B [61]. The model contains a long flexible N-terminal loop domain, five β -sheets and two α -helices. The model will be observed in more detail in the discussion part of Chapter III.

Figure 9. The 3D model of lipoprotein from the theoretical data. A is *ab initio* model from SAXS with fitted the theoretical calculation model inside. B is the theoretical model from TopModel.

Previously in these independent calculations of the lipoprotein CD1348 structure, both models are showing high similarity. The experimental data of the lipoprotein structure were not found in the literature.

2. Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique for characterising biomolecules at atomic resolution. Nowadays, NMR is widely used for studying the structure, properties, and dynamics of biological macromolecules. One of the significant advantages of solution NMR spectroscopy is data on molecular dynamics over timescales ranging from picoseconds to seconds.

NMR methods are based on the interaction of an external magnetic field with nuclei that have a magnetic moment. Nuclei are exposed to a certain radio frequency pulse, move to another energy level; after the pulse is turned off, they return to their original state while emitting electromagnetic radiation. As a result, an image of damped resonance oscillations is obtained from all nuclei. This free induction decay (FID) depends on the chemical composition and physical state of the analyte and the number of resonating nuclei.

2.1. Basic Principles of NMR

NMR is based on the fact that nuclei of atoms have magnetic properties that can be used to receive the information about the quantum mechanical property of a nucleus, their moving etc. NMR active nuclei are characterised by nuclear spin quantum number (*I*) is different from zero. Nuclei with nonzero spin angular momentum (¹H, ¹³C, ³¹P, ¹⁵N, ¹⁹F etc.) have nuclear magnetic moments. For protein NMR spectroscopy, ¹H, ¹³C, and ¹⁵N elements are most interesting because these isotopes have spin-½ (i.e., *I* = ½) and are visible in NMR. The natural abundance of ¹³C (1.07 %) and ¹⁵N (0.4 %) active isotopes is low. Thus, isotope labelling is necessary to maximize the sensitivity of these types of atoms.

The nucleus of spin quantum number *I* is allowed to accept only a fixed number of quantized energy levels. The spin can have 2*I*+1 angular momentum states from -*I* to *I*. Thus, spin ½ have only two possible energy levels -½ and +½. It is known as Zeeman levels. The quantum probability of a given nuclear spin adopting one of these two energy levels creates a nuclear magnetic moment (μ) proportional to the gyromagnetic ratio γ . Energies are presented by:

$$E = -\mu * B_0 \tag{1}$$

Where μ is the nuclear magnetic moment, B_0 is a presented magnetic field.

For a single nucleus with $I=\frac{1}{2}$ and positive γ , the magnetic energy is minimal when the spin angular momentum is parallel to B_0 , and it has maximum energy when the spin angular momentum is antiparallel to the magnetic field. As spins normally have some initial orientation in respect to B_0 , this creates a spin angular momentum that forces the spin precess around the magnetic field at the Larmor frequency ω_0 :

$$\omega_0 = \gamma * B_0 \tag{2}$$

The Larmor frequency depends on the type of nucleus (gyromagnetic ratio) and the external static magnetic field B_0 value.

For the most used nuclei in biomolecular NMR the gyromagnetic ratios have the following values:

Nuclei	Gyromagnetic ratio (C* kg ⁻¹) or (Hz/T)
¹ Η	2.68 * 10 ⁸
¹⁵ N	-2.71 * 10 ⁷
¹³ C	6.73 * 10 ⁷

Gyromagnetic ratio for the most used nuclei in biomolecular NMR.

The observed resonance depends not only on the gyromagnetic ratio γ and external static magnetic field B_0 but also on the molecule's surroundings. Each proton is in a unique chemical environment; each will be exposed to a different magnetic field depending on the electron density distribution.

During an NMR experiment, the equilibrium of nuclear spin processes around B_0 can be disturbed by a radio frequency (RF) pulse. Changes of the spin orientation and relaxation back to equilibrium is detected as a signal in an NMR experiment. The signal is called the free induction decay (FID) and has the form of a damped sine wave. The observed FID is the sum of all FID for each nucleus. The FID is a function of time and might be transformed into a function of frequency with the help of Fourier transformation, which has individual peaks for each nucleus at the Larmor frequency. The scale used in NMR is chemical shift δ which can be defined as:

$$\delta = \frac{\nu - \nu_{ref}}{\nu_{ref}} \ge 10^{-6} \tag{3}$$

Where v is the resonance frequency of the nucleus in the protein, v_{ref} is the absolute resonance frequency of a reference substance. The chemical shift δ is defined in parts per million (ppm). The advantage of using δ is the fact that chemical shifts don't depend on B_0 .

After applying an RF pulse, the spins return to equilibrium state through two different relaxation processes describing by FID. Longitudinal relaxation time T₁ corresponds to the process when the magnetisation returns to thermal equilibrium, after being perturbed by the RF pulse, along the direction of the static magnetic field B. Transversal relaxation time T₂ corresponds to the loss of coherence of the transverse nuclear spin magnetization. Relaxation times T₁ and T₂ are usually several seconds for small molecules, while for proteins, T₂ is measured in the order of milliseconds. Thus, the FID has a rapid decay, leading to broadening the linewidths in the NMR spectrum because T2 is inversely proportional to the linewidth. Large proteins have broader linewidth because their transverse relaxation rate R₂ (1/T₂) is proportional to the rotational correlation time τ_c . For more giant molecules, the correlation time is large and thus broader linewidth. Structures of proteins above 30 kDa are challenging to solve by solution NMR [62]. That is why some additional methods must be applied to increase the quality of spectra (section 2.5).

2.2. Chemical Shift Assignments

The assignment of resonances in the NMR spectra is one of the first steps in obtaining the protein structure and dynamic information. It is possible to do with multidimensional NMR [63]. The signals observed for correlated nuclei in an N-dimensional spectrum looks like cross-peaks. One of the most useful NMR experiments in protein NMR spectroscopy is the Heteronuclear Single Quantum Correlation (HSQC) [64], which provides a 'fingerprint' of the protein structure on a 2D plane. All amino acids, except Pro, give rise to a peak in the spectrum, including two additional peaks for Gln and Asn side chain NH₂ and one additional peak for each Trp indole group. 2D ¹H-¹⁵N HSQC spectrum can provide a good way to assess the quality of the protein sample, folded or unfolded, to permit optimisation of some sample conditions (pH, temperature, ionic strength) and optimised acquisition parameters. It is important to identify which amino acid is represented by the given HSQC cross-peaks for further analysis. In application to proteins, multiple protons can absorb energy at the same frequency, and the signals are overlapping. For this purpose, multidimensional NMR experiments such as three-dimensional (3D) heteronuclear experiments, 4D [65] and even 5D [66] have been established because the chemical shift ranges of ¹⁵N and ¹³C are much broader. Multiple-resonance experiments have been developed to obtain sequence-specific chemical shift assignments, using interactions between spins of active nuclei. The interactions between spin-spin can be through bonds or space. Spin-spin interactions that occur via bonding electrons are called spin coupling, or Jcoupling. It provides information on the chemical connectivity between atoms and dihedral angles according to the Karplus low [67]:

$$J(\phi) = A\cos^2\phi + B\cos\phi + C \tag{4}$$

Where $J(\phi)$ is the coupling constant of the *J*-coupling, and ϕ is the dihedral angle. The parameters *A*, *B* and *C* are dependent on the atoms and substituents attached to the bond of interest and are semiempirically derived by correlating observed ³*J*-coupling constants with corresponding dihedral angles measured in high-resolution structures. Typical coupling constant values in the proteins are shown in Figure 10.

Figure 10. ¹J- and ²J-coupling constants in peptides and proteins. Picture from [68].

J-coupling is widely used for correlation NMR signals of atoms that are chemically bound to each other, and this is a base principle for many multidimensional NMR experiments. Manipulation with

magnetisation by exploiting specific coupling constants allows measuring the signal from specific resonance. It is extremely useful for protein NMR assignment. Set of standard 2D or triple-resonance experiments (Figure 11), based on J-couplings over one or two bonds (¹J/²J) of ¹³C and ¹⁵N isotopically labelled protein samples, are used to obtain backbone chemical shift assignments.

Figure 11. Schematic depiction of standard 2D and 3D NMR experiments for protein assignment. The diagrams show which nuclei are involved in each NMR experiment. Black arrows indicate the magnetisation transfer in each experiment. Nuclei coloured in pink are observed chemical shifts in the resulting spectra, whereas the blue colour of nuclei is only used for magnetisation transfer. Figure adapted from https://www.protein-nmr.org.uk.

Combining the triple-resonance experiment allows a sequential backbone assignment (Figure 12), where amino acids are connected by the exact positions of 13 C chemical shift on different 15 N planes and different proton chemical shifts.

Figure 12. A general example of a sequential backbone assignment. Four 15N-strips from a combination of two triple resonance experiments, HNCA (red) and HN(CO)CA (blue), showing the ${}^{13}C_{\alpha}$ of residue (i) and receding residue (i-1). The resonance for the HN(CO)CA experiment represents only one peak for a previous amino acid.

Another common spin-spin interaction is through space and is called the nuclear Overhauser effect (NOE). NOE allows estimate distances between not directly covalently attached nuclei (usually at to 5 Å). The obtained information about distance restraints has a wide usage for structure determination of proteins.

2.3. Structure Calculation of Proteins Using NMR

The structure and dynamics of proteins are essential for understanding their function. Knowing the structure is a central aspect of structural biology. One of the most popular methods for determining protein structures is X-ray crystallography, solution and solid-state NMR spectroscopy, and cryo-electron microscopy. With the help of solution NMR spectroscopy has been solved of more than 13000 proteins three-dimensional (3D) structures in the Protein Data Bank (<u>www.rcsb.org</u>). The solution NMR has a limit to the size of the proteins; that is why structures above 30 kDa are challenging to solve by NMR. X-ray crystallography can be used for larger proteins or complexes, but the NMR method is more useful when the protein of interest has resisted attempts at crystallization, which is a common problem for many membrane proteins.

The NMR structure determination of a protein is a lengthy process because it involves some steps of preparation as uniformly ¹³C/¹⁵N-labeling of the protein, the acquisition of a set of 2D, 3D or 4D NMR experiments, the data processing, all chemical shift assignment (see section 2.2), NOE assignment and collection of conformational restraints, structure calculation, refinement, and validation [69].

After the assignment of all individual nuclei, backbone torsion angles (ϕ , ϕ) and the χ 1 torsion angle (Figure 13) of side chains can be easily predicted based on ¹HN, ¹⁵N, ¹³C α , ¹H α and ¹³C' chemical shifts, using a program such as TALOS-N [70]. Also, based on the Karplus low (equation 4), the ³J_{HNH α}, ³J_{NHB2/3} and the ³J_{H α HB2/3} couplings can be used to determine the ϕ -angle of the protein backbone and the certain side-chain χ 1 torsion angle [71].

Figure 13. Backbone torsion angles (ϕ, φ) and the $\chi 1, 2, 3$ torsion angles of the amino acids.

The primary source for collecting conformational restraints from NMR data is derived from the nuclear Overhauser effect (NOE). NOE is a cross-relaxation mechanism between two spins through space interaction, generally less than 5Å. This interaction is completely independent of the nature of the covalent binding between the two interacting spins [72]. NOE data are obtained from Nuclear Overhauser Enhancement SpectroscopY (NOESY) experiments. In multidimensional NOESY experiments, the resulting NOEs of cross-relaxation between two nuclei are observed as cross-peaks correlating the chemical shifts of the two involved nuclei. The intensity of the cross-peaks connecting protons depends mainly on the distance between them, and it is proportional to the inverse sixth power of the internuclear distance r⁻⁶. Figure 14 shows the example of using NOE for structure calculation.

Figure 14. Illustration of structural restraints with hydrogen bond and NOE. The figure shows the H-bond (blue dotted lines) between H-O and NOE (grey dotted lines).

The intensity of cross-peaks depends on the distance between and can be used to measure the internuclear distance between nuclei in a protein. The recorded NOE intensities can be converted to NOE distance restraints, which are the most helpful information for calculating protein structure. NOE derived interproton distance restraints together with hydrogen bond information, and torsion angle restraints are used for studying globular proteins.

2.4. Using NMR to Study Dynamics in Proteins

2.4.1. Integrated NMR for studying dynamics in proteins

If the structure of proteins is well known, the next step is understanding proteins function. The motion of each protein is induvial and can bring much information about its conformational dynamics. Some physical methods such as NMR, polarization-resolved fluorescence spectroscopy, and molecular dynamics (MD) simulations are widely used to study the protein dynamics on multiple time scales. NMR is a perfect technique for studying protein dynamics on the different time scales from pico- to seconds. Figure 15 shows the timescale of different protein dynamical processes and NMR

experiments used for characterization of them. Fast protein dynamic describes the movement of loops, side-chain rotations and local atomic vibration on the picosecond to low nanosecond range. NMR experiments for studying fast protein dynamics are longitudinal spin relaxation R_1 , transverse spin relaxation R_2 , and the heteronuclear Overhauser enhancement (NOE) experiments. By contrast, the conformational changes such as protein folding, chemical exchange, ligand interaction, enzyme catalysis and allosteric regulation process on the microseconds to seconds range. It is covered by rotating frame relaxation experiments $R_{1\rho}$, Carr-Purcell-Meiboom-Gill (CPMG), Paramagnetic Relaxation Enhancement (PRE), and chemical exchange saturation transfer [73-75].

The NNR data helps to represent the parameters that can describe the dynamic with the help of global rotational diffusion and local flexibility (order parameters) that are sensitive to inter-and intramolecular interactions, respectively [78].

2.4.2. Protein dynamic on the pico- to nanosecond time scale.

The backbone dynamics can be described with the help of longitudinal spin relaxation rate R_1 , transverse spin relaxation rate R_2 , and the hetNOE data measured for each available residue in the protein.

Applying radiofrequency pulses generate perturbs nuclear spins from their equilibrium state. The process by which the spins return to their equilibrium is called relaxation. The relaxation mechanisms are based on the dipolar coupling between two nuclei and the chemical shift anisotropy (CSA), which depends on the orientation of the spin to the external magnetic field. Collisions with solvent molecules lead to translational and rotational diffusion of the protein. Internal and global motion are independent processes; the behaviour of the random fluctuation can be described by the autocorrelation function, which mathematical interpretation function that connects both internal and overall motion is the time autocorrelation function as

$$C_{total}(\tau) = C_i(\tau) \cdot C_g(\tau) \tag{5}$$

Here, $C_i(\tau)$ is an internal autocorrelation function, and $C_g(\tau)$ is a global autocorrelation function.

Two model-independent quantities can describe the fast internal motion: order parameter (S²), which measures the amplitude of the motion, and an effective correlation time $\tau_{e.}$ The simplest isotropic formalism might be applied for small molecules, simple polymers, and data obtained from one-dimensional NMR measurements of proteins. Since the measurable relaxation parameters are more easily understood regarding the probabilities of motions at specific frequencies rather than times, the autocorrelation function $C(\tau)$ can be Fourier transformed. Thus, $C(\tau)$ can be described as the spectral density function $J(\omega)$:

$$J(\omega) = \frac{2}{5} \left(S^2 \frac{\tau_c}{1 + \omega^2 \tau_c^2} + (1 - S^2) \frac{\tau}{1 + \omega^2 \tau^2} \right)$$
(6)

Which corresponds to an internal correlation function of

$$C_i(\tau) = S^2 + (1 - S^2)e^{-\frac{\tau}{\tau_e}}$$
(7)

Where S² is generalized order parameter, τ_c is the overall isotropic rotational correlation time of the molecule, $\tau = \tau_c \tau_e / (\tau_c + \tau_e)$ where τ_e is a single effective correlation time describing the internal motion.

And correspond the global correlation time:

$$C_g(\tau) = \frac{1}{5}e^{-\frac{\tau}{\tau_e}} \tag{8}$$

For studying backbone protein dynamics, usually, the ¹⁵N relaxation rate (R_1), the ¹⁵N relaxation rate (R_2), and the heteronuclear nuclear Overhauser effect ({¹H}-¹⁵N NOE) are used. All these parameters are typically measured using 2D ¹H,¹⁵N HSQC experiments in which the intensities of peaks are modulated as a function of a time delay placed at a point in the sequence when the relevant relaxation process is active [79].

The relaxation rates of ¹⁵N R_1 and R_2 and hetNOE depend on the spectral density function J(w) in the following manner [80]:

$$R_{1} = \frac{1}{T_{1}} = \frac{1}{4} d^{2} [J(\omega_{H} - \omega_{N}) + 3J(\omega_{N}) + 6J(\omega_{H} + \omega_{N})] + c^{2} J(\omega_{N})$$
(9)

$$R_{2} = \frac{1}{T_{2}} = \frac{1}{8}d^{2}[4J(0) + J(\omega_{H} - \omega_{N}) + 3J(\omega_{N}) + 6J(\omega_{H} - \omega_{N}) + 6J(\omega_{H})] + \frac{c^{2}}{6}[4J(0)] + 3J(\omega_{N}) + R_{ex}$$
(10)

$$hetNOE = 1 + \frac{1}{4}d^2 \frac{\gamma_H}{\gamma_N} \left[\frac{6J(\omega_H + \omega_N) - J(\omega_H - \omega_N)}{R_1} \right]$$
(11)

where ω_H and ω_N are angular Larmor frequencies for ¹H and ¹⁵N spins, respectively, R_{ex} is the relaxation rate due to chemical exchange, *c* is the Chemical shift anisotropy (CSA), and *d* is dipoledipole (DD) constants are defined as:

$$c = \frac{1}{3}\omega_N^2(\sigma_{\parallel} - \sigma_{\perp})^2 \tag{12}$$

$$d = \frac{1}{4} \left(\frac{\mu_0}{4\pi}\right)^2 \gamma_H^2 \gamma_N^2 \left(\frac{h}{2\pi}\right)^2 \langle r_{NH}^{-3} \rangle^2$$
(13)

Here, *h* is Planck's constant, γ_H and γ_N are the gyromagnetic ratios of ¹H and ¹⁵N nuclei, μ_0 is the permeability of free space, and r_{NH} is the internuclear distance between N-H bonds ≈ 1.02 Å. σ_{II} and σ_{\perp} are the parallel and perpendicular components of the axially symmetric ¹⁵N chemical shift tensor CSA = - 172 ppm which is assumed to be coaxial in a first approximation concerning the dipolar interaction.

In the "original" model-free formalism (equation 6), the overall motions are unrestricted with the correlation function that decays exponentially to zero with a single characteristic time scale τ_m . Internal motions are assumed to be restricted because the correlation function for internal motion decays faster. Then the resulting total correlation function (equation 5) in this model has a double exponent with the fast and slow phases representing internal and global motion. The amplitude of the global (slow) phase, that is, the plateau value divided by the initial value C(0), is characterized as the square of the order parameter (S²) and represents the degree of spatial restriction of the backbone H-N internal motions. The values of S² have some limited cases - completely restricted motions described only by the global movement have S²=0. Thus, this parameter helps to explain the dynamic in values.

In the case of only isotropic tumbling, "simplified" model-free formalism from equation 6 might be applied. Here is the internal motion of a bond vector is extremely fast in comparison to the overall tumbling; thus, equation 6 reduces to the form:

$$J(\omega) = \frac{2}{5} \left(S^2 \frac{\tau_c}{1 + \omega^2 \tau_c^2} \right)$$
(14)

With the help of this model, relaxation data still can be fit to find S² and the overall isotropic rotational correlation time of the molecule.

2.5. Extending the Size limitation of NMR

Because of the rotational tumbling of the protein, the application of solution NMR spectroscopy is limited by the size of the studied molecules or complexes (<~30 kDa) [62]. The signal-to-noise ratio is low for high molecular weight specimens due to fast transverse nuclear spin relaxation during the evolution and recording periods. Labelling with deuterium ²H, meaning the replacement of side-chain protons by deuterium, reduces dipolar coupling interactions (because of the lower gyromagnetic ratio of ²H vs ¹H) and allows to study also larger molecules.

Relaxation T₂ is a dephasing mechanism of the same type of spins over time. The number of spins and couplings in bigger molecules is large, and they evolve in different ways. The bigger system has a broader line width. To increase the resolution and sensitivity of NMR spectra of big molecules, Transverse Relaxation-Optimized SpectroscopY–(TROSY) was used. TROSY takes advantage of the

interference between DD coupling and the CSA in the relaxation of coupled heteronuclear spins to produce narrow resonance lines at high magnetic field strengths. This technique can be applied to two- three-dimensional HSQC, triple resonances, and relaxation experiments. In a non-decoupled 1 H, 15 N HSQC spectrum, each correlation for both dimensions appears as four peaks because the average signal is split into both dimensions due to 1 J_{HN} coupling. The four components of this multiplet are not submitted to the same relaxation rates and have different intensities. When DD and CSA contributions to the relaxation cancel each other out through destructive interferences of their oscillations, only the slowest relaxation can be seeing. This signal has the smallest line width and highest intensity. Figure 16 shows the line with difference between of coupled [1 H, 15 N] HSQC spectrum (A), decoupled [1 H, 15 N] HSQC spectrum (B) and [1 H, 15 N] TROSY-HSQC spectrum (C). The picture was reproduced from Ref [81].

Figure 16. Illustrates the increased resolution in a two-dimensional nitrogen-proton HSQC coupled experiment using the TROSY technique. Panel A shows a region of coupled HSQC spectrum that contains four peaks associated with a single NH group. Every peak is a distinct pair of single-quantum nitrogen and proton transitions. The intensities and line widths vary due to the different relaxation rates of each transition. If decoupling occurs during proton and nitrogen evolution periods, only a single peak will be observed (panel B). The line widths in both directions are the average of the relaxation rates for each transition. Panel C shows the TROSY-HSQC spectrum of the same NH group, where only the most slowly relaxing peak is shown. The remaining three components of the quartet been removed by phase cycling in the pulse sequence. For large proteins or complexes, TROSY spectra have a higher signal-to-noise ratio than in a standard HSQC spectrum because only the most slowly decaying transition is used in the polarization transfer step.

In triple-resonance experiments, the TROSY principle can efficiently reduce relaxation during different coherence transfer steps, e.g. from ¹H to ¹⁵N, from ¹⁵N to ¹³C α or ¹³CO, which have long transfer periods due to the small ¹J(¹⁵N, ¹³C α)- and 1J(¹⁵N, ¹³CO)-coupling constants.
Chapter I Introduction

3. Aims

The membrane GABARAP protein plays an essential role in the autophagy process. It is involved in autophagosome formation during oligomerization. To this end, it can be anchored to the autophagosomal membrane system. Availability of membrane can help to understand the function of "open" conformation of GABARAP structure. This alternate conformation of the N-terminal region can be important for oligomerization and hemifusion. The aim of this work was a characterization of the dynamics of GABARAP anchored to a lipid membrane by NMR spectroscopy. As a suitable membrane mimic, phospholipids nanodiscs were used. For the better quality of the studied spectra, deuterated GABARAP should be produced. The production of this type of sample is costly; thus, the ratio between protein yield and the price of the sample should be optimized. The dynamics of membrane-anchored GABARAP should be studied by ¹⁵N relaxation NMR experiments. These experimental results were supposed to be compared with free GABARAP in solution. The goal was to produce deuterated GABARAP anchored to lipid nanodiscs in a suitable concentration, then study structural details, dynamics, and functional relevance with a membrane by solution NMR methods.

Lipoprotein CD1348, unlike GABARAP, is the new uncharacterized protein founded in the resistance machinery bacteria *C.difficile*. This system has resistance against different lantibiotics. Knowing the structure helps to understand the function and role of the presence of the lipoprotein in the resistance system. The first aim of this work was the assignment of all amino acid resonances and determination of their chemical shifts on the 2D, 3D and 4D NMR spectra. Then the calculation of the tertiary structure of lipoprotein with the help of all chemical shift assignments, NOE assignment and collection of conformational restraints. The second aim was the checking interaction between lipoprotein and lantibiotics by titration NMR experiments. If there is an interaction, which parts of the lipoprotein are involved in it.

Chapter I Introduction

Chapter II GABARAP Elucidation of the Dynamics of the Autophagosomal Membrane-Associated Protein GABARAP by Solution NMR

This chapter is devoted to the GABARAP protein project. GABARAP is a membrane-associated protein that plays an essential role in the elongation and maturation of autophagosomes during their formation. Studying the membrane protein together with the membrane is one of the aims of this work. Laboratory methods like transformation DNA, expression and purification of proteins, isotope labelling, and NMR sample preparation are presented. The extension of the existing methods for full deuteration of protein and then anchoring to nanodiscs are described. Also, analytical methods and NMR techniques used for the sample characterization are discussed. The results part includes expression and purification of TEV protease and belt protein MSP1D1Δ5 for nanodisc production. Also, the expression and purification of fully deuterated GABARAP and GABARAP mutant data. Due to the high price of producing a deuterated sample, two expression methods of fully deuterated GABARAP and GABARAP anchored to nanodisc is presented. Also, some preliminary data of the model-free analysis of the ¹⁵N relaxation data of GABARAP-nanodisc samples are described and discussed here.

1. Materials

1.1. Chemicals, enzymes, and media components

Chemicals, enzymes, and components for the cell's growth media used in this work correspond to purity grade pro analysis (p.a.). All components were dependent on the requirement experiments and listed in Table 1 and Table 2. Standard chemicals were usually purchased from AppliChem GmbH (Darmstadt, Germany), Carl Roth (Karlsruhe, Germany), Merck KGaA (Darmstadt, Germany), Serva (Heidelberg, Germany) and Sigma-Aldrich (St. Louis, MI, USA).

Chemical	Manufacturer/Distributor	
Agarose	Serva (Heidelberg, Germany)	
complete protease inhibitor cocktail	Roche (Basel, Switzerland)	
D ₂ O	Cambridge Isotope (Andover, USA)	
Dithiothreitol (DTT)	AppliChem (Darmstadt, Germany)	
EDTA-disodium salt	AppliChem (Darmstadt, Germany)	
IPTG	UBPbio (Aurora, USA)	
ТСЕР	Sigma-Aldrich (St. Louis, MI, USA)	
DMPC	Avanti Polar Lipids (Alabaster, USA)	
MPB-PE	Avanti Polar Lipids (Alabaster, USA)	
¹⁵ N-Ammonium chloride	Cambridge Isotope (Andover, USA)	
D-Glucose- ¹³ C ₆	Sigma-Aldrich (Steinheim, Germany)	
Unstained protein marker	Thermo Fisher Scientific (Waltham, USA)	

Table 1: Chemicals used in this work.

Table 2: Enzymes used in this work.

Enzyme	Manufacturer/Distributor
DNAse I	AppliChem (Darmstadt, Germany)
DNAse A	AppliChem (Darmstadt, Germany)
Lysozyme	AppliChem (Darmstadt, Germany)

1.2. Bacteria cultures and plasmids

The bacterial strain *E. coli* BL21 (DE3) T1 was used for DNA amplification and recombinant protein expression of GABARAP and MSP1D1∆5. Another type of strain, *E. coli* BL21 DE3 pRARE2 was used for His-TEV protease expression. Strains and plasmids are listed in Table 3 and Table 4.

Table 3: Bacterial strains used for recombinant protein expression.

Strain	Genotype	Reference/Source
BL21 (DE3)	F⁻ ompT hsdSB(rB⁻mB⁻) gal dcm (DE3)	Novagen, Darmstadt

Table 4: Plasmids used for recombinant gene expression.

Plasmids	Resistance	Property	Reference/Source
pET11a_GABARAP	Ampicillin	Expression of GABARAP	Life Technologies, Carlsbad, USA
pET28a_MSP1D1∆5	Kanamycin	Expression of MSP1D1∆5	AG Wagner, Harvard Medical School
pRK792_TEV_S219P	Ampicillin/ Chloramphenicol	Expression of His-TEV protease	AG Wagner, Harvard Medical School

1.3. Laboratory equipment

All necessary devices for producing the NMR sample at the biological S2 laboratory are described here.

Equipment	Manufacturer/Distributor	
ÄKTA purifier	GE Healthcare (Chicago, USA)	
Branson Sonifier 250	Branson Ultrasonics (Danbury, USA)	
Centrifuges 5417R, 5702R, 5804R	Eppendorf (Hamburg, Germany)	
Centrifuge Avanti J-20 XP and Rotors	Beckman Coulter (Brea, USA)	
Gel Doc XR and gel documentation system	Biorad (Hercules, USA)	
Spectrophotometer UV 1800	Shimadzu (Kyoto, Japan)	
Lambda 25 UV/Vis spectrophotometer	PerkinElmer (Waltham, USA)	
Spectrophotometer (measure OD)	Schott Instruments (Mainz, Germany)	

1.4. Column chromatography

There is a list of prepacked columns for high-resolution purification of large biomolecules and protein complexes used with ÄKTA protein purification systems. Also, nickel-charged affinity resin Ni-NTA Agarose was used to purify recombinant proteins containing a polyhistidine (6xHis) sequence.

Table 6: Columns and resins used for column chromatography.

Column/resin	Manufacturer
Ni(2+)-NTA-Agarose	Qiagen (Hilden, Germany)
HiLoad 16/10 SP Sepharose HP	GE Healthcare (Freiburg, Germany)
HiLoad 16/600 Superdex 75 pg	GE Healthcare (Freiburg, Germany)
HiLoad 16/600 Superdex 200 pg	GE Healthcare (Freiburg, Germany)

1.5. NMR spectrometers

Liquid state NMR spectrometers operating at different magnetic fields were used for studying dynamics and chemical shifts changes.

Table 7: NMR spectrometers used for the	e GABARAP project.
---	--------------------

Spectrometers	Manufacturer
Bruker Avance III HD NMR (600 MHz)	Bruker, Billerrica, USA
Bruker Avance III HD NMR (600 MHz)	Bruker, Billerrica, USA
Bruker Avance III HD NMR (700 MHz)	Bruker, Billerrica, USA
Variant (800 MHz)	Agilent (Varian), Santa Clara, USA
Bruker Avance III HD NMR (900 MHz)	Bruker, Billerrica, USA

1.6. Software and databases

The following software and databases were used to evaluate, analyse, and visualise GABARAP protein data.

Software/database	Usage	Reference/distribution
BMRB Databank	Open databank of chemical shifts of biomolecules	http://www.bmrb.wisc.edu [82]
Expasy-ProtParam	Analysis of proteins based on their primary sequence	http://web.expasy.org/pro tparam [83]
NMRPipe	Processing of NMR spectra	[84]
NMRDraw	Visualisation of processed MNR spectra	[84]
NMRViewJ 8.0.3	Visualisation and analysis of NMR spectra	[85]
MUNIN	Determination of peak intensities from multi- dimensional spectra	[86, 87]
Matlab	Evaluation and analysis of relaxation data	
PDB Database	Structures of biological macromolecules	http://rcsb.org
PyMOL	Visualisation of protein structures	
RasMol 2.7.5	Visualisation of protein structures	[88]
TENSOR2	Fast protein dynamics from relaxation data	[89]
TopSpin	Basic software of Bruker NMR spectrometers	
VnmrJ	Basic software of Bruker NMR spectrometers	
Adobe Illustrator CS5	Generation of figures	
Origin 2017	Chemical shifts calculation and visualisation of relaxation data	

2. Methods

2.1. Microbiological methods

2.1.1. Bacterial growth media

The solid bacterial growth media allows bacteria to grow as colonies on a Petri dish. It is based on the jelly-like substance agar. Required antibiotics for different plasmids were added to the medium-agar mixture when the agar was in a liquid state at a temperature below 60°C.

Liquid growth media were used for protein expression. In this work, there are two different liquid bacterial growth media: LB-medium and M9-mediums (Table 9). M9 medium was used for uniform ¹⁵N, ¹³C-Labeling and deuteration of the protein. The amount of glucose and ammonium chloride for M9+ medium was calculated for growing cells until OD~4. Both mediums were prepared using ultrapure normal or deuterated water. For the M9 medium, in addition, TS2 trace element solution and a vitamin cocktail for proper growth of bacteria were prepared (Table 10). Both media were sterilised in an autoclave at 121°C and then stored at room temperature. To avoid adding non-sterile components to the growth media, vitamin cocktail, antibiotics and TS2 solution were filtered with the help of 0.22 μ m pore diameter membrane filters. Before usage, the media were heated to 37°C for the best cell's adaptation.

Regular M9-medium H_2O or D_2O	M9+-medium H ₂ O or D ₂ O	
NaH ₂ PO ₄ 9.1 g/L	K ₂ HPO ₄ 19 g/L	
KH ₂ PO ₄ 3 g/L	KH ₂ PO ₄ 5 g/L	
NaCl 0.5 g/L	Na ₂ HPO ₄ 9 g/L	
NH ₄ Cl 1 g/L	K ₂ SO ₄ 2.4 g/L	
CaCl ₂ 100 μM	D-Glucose- ¹³ C ₆ 14 g/L	
MgSO ₄ 2mM	NH ₄ Cl 4 g/L	
Fe(III)-Cl 10 μM	Trace element solution 2 ml/L	
D-Glucose- ¹³ C ₆ 2.5 g/L	Vitamines cocktail 1 ml/L	
Trace element solution 2 ml/L	MgCl ₂ 0.95 g/L	
Thiaminhydrochlorid 5 mg/ml	Ampicillin 200 μg/ml	
Vitamines cocktail 1 ml/L	pH=6.5	
MgCl ₂ 0.95 g/L		
Ampicillin 200 μg/ml		
LB-medium H ₂ O or D ₂ O		
Tryptone 10 g/L		
NaCl 10 g/L, Yeast extract 5 g/L		

Table 9: Composition of bacterial growth media for recombinant gene expression.

TS2 trace element solution	Vitamin cocktail solution						
MnCl ₂ · 4 H ₂ O 30 mg/L	D-biotin 1 g/L						
$ZnSO_4$ \cdot 7 H_2O 100 mg/L	Choline chloride 1 g/L						
H₃BO₃ 300 mg/L	Folic acid 1 g/L						
CoCl ₂ · 6 H ₂ O 200 mg/L	Nicotinamide 1 g/L						
NiCl ₂ · 6 H ₂ O 20 mg/L	Sodium-D-pantothenate 1 g/L						
CuCl ₂ · 2 H ₂ O 10 mg/L	Pyridoxal hydrochloride 1 g/L						
Na ₂ MoO ₄ [·] 2 H ₂ O 900 mg/L	Riboflavin 0.1 g/L						
$Na_2SeO_3 20 mg/L$	dissolved in 20 mM phosphate buffer, pH 7						
dissolved in H ₂ O							

Table 10: Composition of TS2 solution and vitamin cocktail solution used in M9 medium.

2.1.2. Transformation in E.coli with plasmid DNA

Bacterium transformation of MSP1D1Δ5

1 μ I PET28a_MSP1D1 Δ 5 plasmid vector with kanamycin resistance was transformed into *E.coli* BL21(DE3)T1 cells. The plasmid was added to competent cells and gently mixed. Then cells with plasmid were incubated in ice for 30 minutes. The cells were heat-shocked for 45 sec at 42°C to create a pressure difference between the outside and the inside parts of the cell, which induces the formation of pores through which plasmid DNA can enter. Then the Eppendorf was placed on ice for 5 min for maximum transformation efficiency after heat shock. 600 μ I LB medium was added to cells and incubated for 1 hour at 37°C. Cells were spread on an agar plate with Kanamycin (25 μ g/mI) to grow cells that contain the antibiotic resistance vector. The plate was incubated overnight at 37°C.

Bacterium transformation of His-TEV-Protease

1 μ l pRK792 (TEVS219P) plasmid were resuspended in 100 μ l *E.coli* BL21DE3pRARE2. The cells were incubated on ice for 30 minutes, exposed to a heat shock at 42°C for 45 seconds, and then placed on ice for 2 minutes. 900 μ l LB was added, and the cells were incubated for 1 hour at 37°C. The cells were spread on an agar plate with 100 μ g/ml Ampicillin and 34 μ g/ml Chloramphenicol. The plate was incubated overnight at 37°C.

Bacterium transformation of GABARAP and GABARAP-G116C∆117

GABARAP or GABARAP-G116C Δ 117 mutant pET11a vectors with Ampicillin resistance were transformed into BL21(DE3)T1 *E.coli* cells. 0.2 µl of the plasmid with concentration 0.1 µg/µl was added to 50 µl competent cells and gently mixed. The aliquots with plasmid were incubated in ice for 15-30 minutes. The cells were exposed to a heat shock for 45 seconds at 42°C; then, the Eppendorf was placed immediately on ice for at least 5 min. 600 µl LB medium based on ultrapure water was added, and the cells were incubated for 1 hour at 37°C. Cells were spread on an agar-agar plate with

ampicillin (200 μ g/ml) to grow only cells that contain the antibiotic resistance vector. The plate was incubated overnight at 37°C.

2.1.3. Expression of proteins

Expression of MSP1D1∆5 and His-TEV-Protease

His-TEV-Protease was made for future uses of another protein purification (MSP1D1 Δ 5 in this work). For the expression of His-TEV-Protease, the protocol [90] was used. For the initial trial expression, the separate colonies of His-TEV-Protease from the agar plate were picked and placed into a 200 ml LB medium with 1% Glucose, 100 µg/ml Ampicillin and 34 µg/ml Chloramphenicol. The picked cells were grown at 37°C with shaking at 130 rpm. After 14 hours, the cell culture was diluted and grown in 1 litre LB medium containing antibiotics (100 µg/ml Ampicillin and 34 µg/ml Chloramphenicol) at 37°C, with shaking at 130 rpm. When the optical density at 600 nm (OD₆₀₀) reached ~0.6, 1 mM of IPTG was added to induce the protein expression. The cell culture was incubated at 30°C for 4 hours. During induction, the cells use most of their resources to produce the target protein and afterwards do not grow anymore. After induction, cells were harvested by centrifugation at 5,000 g for 20 minutes. The resulting pellets were stored at -20°C.

For the expression of His-MSP1D1 Δ 5, a well-established protocol was used [91]. First, freshly transformed BL21(DE3)T1 cells with the plasmid were grown overnight in 60 ml LB medium supplemented with 30 mg/ml Kanamycin at 37°C with constant shaking at 130 rpm. The overnight culture was diluted in 3 litres fresh LB medium containing antibiotic Kanamycin (30 mg/ml) and then incubated at 37°C for 2 hours. When OD₆₀₀ reached ~0.7, protein expression was induced by the addition of 1 mM IPTG. After 4 hours at 37°C, *E.coli* were harvested by centrifugation at 5,000 g for 20 minutes. The pellets were stored at -20°C until further use.

High-yield expression of deuterated and labelled GABARAP and GABARAP-G116C Δ 117

The big molecules have large linewidths on the NMR spectrum due to slow tumbling and the spectral overlap from a large number of unique signals. As the final system of GABARAP anchored to nanodisc is quite big for solution NMR experiments, fully deuterated GABARAP protein was used in this work. Replacement of non-exchangeable protons by deuterons is a common technique to overcome problems arising from fast ¹H and ¹³C transverse relaxation. Deuteration has significantly improved spectral resolution and sensitivity compared with experiments performed on fully protonated molecules [92-96].

However, protein expression in *E.coli* is usually employed to produce large quantities of protein for structural and functional studies. Because of the high price of deuterium oxide (D_2O) and D-Glucose-¹³C₆, the protocol described in Ref. [97] was used and optimised to reduce the cost of the final NMR sample. The advantage of this method is using essentially less amount of D_2O , but the same amount of glucose and ammonium chloride as for 1 L by optimization of growth conditions where cells can

grow in linear log phase until OD_{600} of up to 10. The main steps of the protocol will be explained below.

Growing *E.coli* cells in a D₂O medium usually have few sub-culturing steps with gradually increasing the deuterium content of the medium to allow cells to adapt to D₂O. Here, two sub-culturing steps force cells to use deuterium water by changing the medium based on H₂O to an identical medium with D₂O. In the first step, few colonies of freshly transformed cells from section 2.1.2 were picked and grown in 1 ml LB/H₂O medium (see Table 9) at 37°C for 3 hours. In the second step, 0.3 ml of cells from LB/H₂O were resuspended in a fresh 5 ml LB/D₂O medium and incubated at 37°C for 5 hours. Growing cells in LB medium based on D₂O requires that *E.coli* cells be adapted to atypical D₂O medium and increase their chance to be adapted in M9/D₂O medium.

For isotope labelling in M9 minimal medium, D-Glucose- ${}^{13}C_6$ and NH₄Cl were used as the sole carbon and nitrogen sources. In the current work, a modified M9 minimal medium was used to maintain an optimal pH for *E.coli* growth over a wide range of cell densities [97]. It might be reached by extremely high cell density (OD₆₀₀), where the pH of the medium, oxygen level, and other factors can be regulated and stay optimal [97]. The compounds for this M9+ medium are shown in Table 9.

After growing in LB/D₂O medium, cells were centrifuged at 2,000 g for 10 minutes; the supernatant was discarded. The remaining cells were resuspended in 25 ml of unlabelled M9/D₂O and incubated for 14 hours at 37°C. Grown cells in unlabelled M9 medium were centrifuged and diluted in 250 ml ¹⁵N, ¹³C labelled M9 medium. The start OD_{600} is ~0.7. After 11 hours of incubation at 37°C, the cells reached OD_{600} ~4.0. The maximum cell density depends on the availability of nutrients and, therefore, on the amount of glucose. For the expression of GABARAP or GABARAP-G116CΔ117, 1 mM IPTG was added to the cells. The flask with the cell culture was incubated for 16 hours at 25°C. After overnight incubation, *E.coli* were harvested by centrifugation at 5,000 g for 20 minutes. The pellets were stored at -20°C until further use.

2.2. Preparation of protein samples

2.2.1. Purification of His-TEV-Protease

The buffers and solutions used for purification of His-TEV-Protease were based on ultrapure water and sterilised using filters with $0.2 \,\mu$ m pore diameter (Table 11).

Table 11: Buffers used for the purification of His-TEV-Protease.

Lysis buffer	Wash buffer I
Tris-HCl 20 mM, pH 8	Tris-HCl 20 mM, pH 8
NaCl 500 mM	NaCl 500 mM
Imidazole 10mM	Imidazole 10 mM
Protease inhibitor 1 tablet/50 mL	Gu-HCl 1M
DNAse I ~300 µl in 50 ml buffer (c _{stock} = 2 mg/ml)	Glycerine 10% (v/v)
Wash buffer II	Wash buffer III
Tris-HCl 20 mM, pH 8	Tris-HCl 20 mM, pH 8
NaCl 500 mM	NaCl 500 mM
Imidazole 10 mM	Imidazole 20 mM
Glycerine 10% (v/v)	Glycerine 10% (v/v)
Elution buffer I	Elution buffer II
Tris-HCl 20 mM, pH 8	Gu-HCl 6 M
NaCl 500 mM	NaPi 100 mM, pH8
Imidazole 500 mM	Tris 10 mM
Glycerine 10% (v/v)	NaCl 500 mM
	Imidazole 500mM
Storages buffer	
Tris 50 mM, pH 8	
NaCl 25 mM	
EDTA 0.5 mM	
Glycerine 10% (v/v)	

Cell pellets that had been obtained from 1 litre of cell culture his-TEV-protease expression (section 2.1.3) were lysed by resuspension in 30 ml lysis buffer. Subsequently, the suspension was sonicated 4 times for 1 minute and 1-minute intervals in ice with a Branson sonicator (50% duty cycle, output control 6). The soluble his-TEV-protease was separated from cell debris by centrifugation with 50,000 g for 30 minutes at 4°C. The supernatant was added to 6 ml of Ni-NTA resin (Qiagen) equilibrated in lysis buffer. The resin was washed by 9 column volumes (CV) with ~54 ml of wash buffer I, 9 CV of wash buffer II, and 2 CV of wash buffer III. After washing, his-TEV-protease was eluted from the resin by 2 CV of elution buffer I, 5 times in different tubes. All tubes with the collected sample were stored in ice during elution. Also, 1 mM EDTA and 1 mM DTT were added to every tube with the sample to avoid disulfate bond formation. The samples were checked for the presence of the his-TEV-protease by SDS-PAGE gel. All tubes that contained protease were pooled and then dialyzed to remove imidazole for 14 hours at 4°C. During dialyse, the buffer was exchanged with the storage buffer (Table

11). The sample was concentrated using the Vivaspin 20 ml concentrator (MWCO 3,500 Da) at 4°C, 3,000 g for 15 minutes. The final concentration of TEV protease was 0.87 mg/ml. The protease was stored in 1 ml aliquots with 20% Glycerine at -80°C for future uses (His tag cleaved MSP1D1 Δ 5 protein expression in the current work).

2.2.2. Purification of His tag cleaved MSP1D1 Δ 5 protein

His tag cleaved MSP1D1 Δ 5 protein purification was based on buffers and solutions prepared using ultrapure water and sterilised using filters with pore diameters of 0.2 μ m (Table 12).

Lysis buffer	Wash buffer I
NaPi 20 mM, pH 7.4	Tris-HCl 40 mM, pH 8.0
Protease inhibitor 1 tablet/50 mL	NaCl 300 mM
Triton X-100 1%	Triton X-100 1%
Lysozyme ~ 500 μl in 50 ml buffer (c _{stock} = 25 mg/ml)	
DNAse I ~250 μl in 50 ml buffer (c_{stock} = 2 mg/ml)	
Wash buffer II	Wash buffer III
Tris-HCl 40 mM, pH 8.0	Tris-HCl 40 mM, pH 8.0
NaCl 300 mM	NaCl 300 mM
Sodium cholate 50 mM	
Wash buffer IV	Elution buffer I
Tris-HCl 40 mM, pH 8.0	Tris-HCl 40 mM, pH 8.0
NaCl 300 mM	NaCl 300 mM
Imidazole 10 mM	Imidazole 300 mM
Elution buffer II	Ni-NTA batch buffer
Tris-HCl 40 mM, pH 8.0	Tris-HCl 20 mM, pH 8.0
NaCl 300 mM	NaCl 150 mM
Imidazole 750 mM	Sodium cholate 50 mM
Dialyse buffer	Assemble buffer
Tris-HCl 50 mM, pH 8.0	Tris-HCl 20 mM, pH 7.4
EDTA 0.5 mM	NaCl 100 mM
DTT 1 mM	EDTA 0.5 mM
Ni-NTA wash batch buffer	
Tris-HCl 20 mM, pH 8.0	
NaCl 150 mM	
Sodium cholate 50 mM, Imidazole 750 mM	

Table 12: Buffers used for the purification of MSP1D1 Δ 5.

A well-established protocol was used with minor changes for the purification of MSP1D1Δ5 protein [98]. The pellet from section 2.1.3. was resuspended in 50 ml lysis buffer and incubated for 30 minutes at room temperature with continuous rolling. The cell suspension was placed on ice, and the cells were lysed by sonication eight times 30 seconds with 30 seconds intervals (50 % duty cycle, output control 5). The lysate was separated by centrifugation at 45,000 g for 30 minutes at 4°C. Then the supernatant was added to 6 ml of the Ni-NTA resin equilibrated by wash buffer I. After adding the protein, the column was washed with 4 CV of the following buffers: wash buffer I, II, III, IV. The protein with His-tag was eluted with 4 CV of elution buffer I and 4 CV of elution buffer II. Afterwards, all fractions were collected and checked for the presence of the protein. Then fractions that contained protein were pooled together with His-TEV-Protease (from section 2.2.2), the sample was dialyzed in dialyse buffer at room temperature. After overnight dialysis, the efficiency of TEV protease was tested using SDS-PAGE. Then again, the sample was dialyzed twice in 2 litres Ni-NTA wash batch buffer without Sodium Cholate for 2 hours. 50 mM Sodium Cholate was added to the MSP1D1Δ5 protein, and the sample was loaded to 6 ml Ni-NTA resin equilibrated by Ni-NTA batch buffer. The flowthrough was collected because it contains the highest concentration of protein without his tag. Afterwards, the column was washed twice with 2 CV Ni-NTA wash batch buffer. After washing, the flowthrough was collected in two tubes and checked for the presence of the protein by SDS gel. Then, tubes that contained protein were pooled and dialyzed overnight in 5 litres assemble buffer at room temperature. The final concentration (2.7 mg/ml) was reached using the concentrator Vivaspin (MWCO 3,000 Da) at 3,000 g for 1 hour. The protein was separated in 1 ml aliquots, frozen in liquid nitrogen, lyophilized, and stored at -20°C.

2.2.3. Purification of wild type GABARAP and mutant GABARAP-G116C∆117

The mutation of GABARAP with Cys at the 116th position and deleted the last 117th Leu (GABARAP-G116C Δ 117) was used in this work as artificially created GABARAP-I (Chapter I, 1.1.2). This mutant will be used further for membrane anchoring. For purification of GABARAP and GABARAP mutant, a lysis buffer, two ion-exchange buffers, an elution buffer and an NMR buffer have been used; see Table 13. All buffers and solutions used for purifying GABARAP and GABARAP-G116C Δ 117 were based on ultrapure water, sterilised using 0.2 µm pore diameter filters and degassed in a vacuum for at least 1 hour.

For GABARAP-G116C Δ 117, which has Cys amino acid at the end of the sequence, 5 mM β mercaptoethanol was added to the lysis buffer to avoid the formation of disulphide bonds of cysteine residues. All buffers for ion exchange contained 2 mM TCEP, which was used as a reducing agent to break disulphide bonds within and between proteins. The elution buffer for SEC contained 0.25 mM TCEP. The buffers containing TCEP were stored at -4°C because TCEP is very unstable at room temperature.

46

Lysis buffer	lon exchange buffer A						
Sodium phosphate buffer 25 mM, pH 6.5	Sodium phosphate buffer 25 mM, pH 6.5						
EDTA 100 μM	KCl 50 mM						
DNaseA ~100 μ l in 50 ml buffer (c _{stock} = 5	EDTA 100 μM						
mg/mi)	TCEP 2 mM (for mutant)						
Protease inhibitor 1 tablet/50 ml							
KCl 50 mM							
Ion exchange buffer B	Elution buffer						
Sodium phosphate buffer 25 mM, pH 6.5	HEPES/KOH 25 mM, pH 7.4						
KCl 1 M	KCl 100 mM						
EDTA 100 μM	TCEP 0.25 mM						
TCEP 2 mM (for mutant)							
NMR buffer							
NaPi 25 mM, pH 6.9							
KCl 100 mM							
NaCl 100 mM							
EDTA 100 μM							

The human's wild type GABARAP purification has been performed following a well-established protocol with minor changes [2]. First, the pellet obtained from the high-yield expression was resuspended in 50 ml lysis buffer for 10 g pellets. Then the cells were incubated on ice for 30 minutes. To lyse the cells, they were sonicated using the Branson Sonifier eight times for 30 seconds each (50 % duty cycle, output control 5); in-between the sonification cycles, the lysate was placed back on the ice for 30 seconds. The soluble protein in the lysate was separated from cell debris by centrifugation with 50,000 g for 45 minutes at 4°C. The supernatant was added to the Äkta System and purified using cation-exchange chromatography. Purification was made by a HiLoad 16/10 SP Sepharose column with 20 ml column volume. The flow rate of the column was 1.6 ml/min. The salt concentration of KCl was set as 40% (400 mM) so that most of the proteins can be eluted in a reasonable time. After running through the Äkta, the sample was collected in different fractions with 2 ml of the sample in each. The fractions were checked for the presence of the protein and pulled together. For the best purification efficiency, the sample was again loaded to the Äkta System. NMR buffer was used for SEC of GABARAP. Gel filtration was made by HiLoad 16/600 Superdex 75 pg column with 120 ml column volume. The flow rate of the column was 1 ml/min. After gel filtration, the sample was collected in different fractions. All fractions were checked by SDS-PAGE gel for the presence of the protein and then pulled together. The final concentration of GABARAP was reached using concentrator Vivaspin (MWCO 3,000 Da) at 3,500 g for 2 hours at 10°C.

For purification of GABARAP-G116C Δ 117, elution buffer was used for SEC instead of NMR buffer. The necessary concentration of GABARAP-G116C Δ 117 for future lipidation was reached by concentrator Vivaspin (MWCO 3,000 Da) at 4,500 g for 2 hours.

2.2.4. Lipidation of GABARAP-G116C∆117

Lipidation of GABARAP-G116C Δ 117 has been performed using a lipid resuspension buffer and assemble buffer (*Table 14*). Both buffers were based on ultrapure water and sterilised by 0.2 μ m pore diameter filters. The lipid resuspend buffer was stored at -4°C because of the presence of TCEP in it. The assemble buffer was degassed in a vacuum for at least 1 hour.

Table 14: Buffers used for the lipidation of GABARAP.

Lipid's resuspend buffer	Assemble buffer
HEPES/KOH 25 mM, pH 7.6	Sodium phosphate buffer 10mM, pH 7.4
KCl 100 mM	NaCl 150 mM
TCEP 0.25 mM	
Sodium cholate 100 mM	

The lipidation of GABARAP-G116CΔ117 was achieved chemically through a maleimide reaction between 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide] (MPB-PE) and the C-terminus of the protein. MPB-PE reacts with the thiol group of Cys with forming a covalent bond (Figure 17).

Figure 17. Maleimide reaction of MPB-PE with 116 Cys of GABARAP-G116C∆117.

For lipidation, six molecules of MPB-PE (1.8 M) per one molecule of GABARAP-G116C Δ 117 (300 μ M) were used. Before maleimide reaction with the protein, the MPB-PE should be dissolved in lipid resuspend buffer. First, MPB-PE powder was resuspended in chloroform. Subsequently, the chloroform was removed entirely upon incubation of the sample under a constant stream of N₂ for 45 minutes. After the evaporation of chloroform, the film of MPB-PE was formed. The lipid resuspends buffer without TCEP was added to the MPB-PE film and mixed thoroughly. Then the tube with MPB-PE was placed in an ultra-sonic bath for better resuspension for 30 minutes.

For the maleimide reaction: MPB-PE and GABARAP-G116C∆117 were mixed in equal volumes. The mixture was incubated for 60 minutes at room temperature with constant shaking using Thermomixer

(Eppendorf). The coupling was tested for the presence of lipidated GABARAP-G116CΔ117 (GABARAP-PE) using an SDS-PAGE gel.

2.2.5. Anchoring GABARAP-PE I to nanodiscs

Anchoring GABARAP-PE to NDs was made using the protocol [99] with some changes. Membrane scaffold protein MSP1D1∆5 and DMPC lipids were used for producing lipid nanodiscs (Chapter I, 1.1.3). First, DMPC lipids suspended in chloroform were placed in a glass tube. The chloroform was evaporated under a constant stream of N₂ for 45 minutes. Then, the tube with a film was placed in the vacuum for 1 hour. The film of DMPC was resuspended in the lipid resuspend buffer (Table 14). The mixture in the glass tube was placed in an ultrasonic bath for 30 minutes. GABARAP-PE I, MSP1D1Δ5 and DMPC have been used at molar ratios 1:1:53, such that every nanodisc contains only one molecule of GABARAP on each side. All necessary compounds were mixed and incubated in a sequence ice-37°C-ice-37°C-ice for 20 minutes each round. The detergent then was dialyzed (MWCO 3,500 Da) by 2.5 litres assemble buffer (Table 14) for 20 hours at 4°C; the buffer was changed twice to keep it fresh. The precipitation of proteins and lipids after dialyzing was removed using a membrane filter (0.22 µm). The clear solubilised protein sample was loaded to the Äkta system and purified using a 16/600 Superdex 200 pg column for the size exclusion chromatography. The assemble buffer was running with a 0.5 ml/min flow rate through the column for the best separation. After gel filtration, the sample was collected in different fractions. All fractions were checked by SDS-PAGE gel for the presents of the protein with nanodisc and then mixed. The changing from the assemble buffer to the NMR buffer was done during concentration. The concentrator Vivaspin (MWCO 10,000 Da) was filled with the sample up to maximal volume. The sample was centrifuged at 600 g for 2 hours at 10°C. The buffer in the filtrate container was checked for the absence of the protein; then, the container was emptied. Afterwards, the concentrator was filled with NMR buffer up to the maximal volume. The final concentration of GABARAP-nanodiscs (390 μ M) in the NMR buffer was reached at 600 g for 2 hours at 10°C. This amount of protein was enough for three identical NMR samples using Slot Shigemi tubes [100].

2.3. Analytical methods

2.3.1. SDS-polyacrylamide gel electrophoresis

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) was developed by Lämmli and is commonly used to separate proteins with different molecular masses [101]. SDS-PAGE was used for controlling the protein size distribution after expression and purification using SEC. Also, the difference between the thickness of lines of GABARAP-PE I and MSP1D1 Δ 5 may give the approximate calculation of ratio estimation between GABARAP and nanodiscs. The polyacrylamide gels consisted of a 5% (w/v) acrylamide stacking gel and a 15% (w/v) acrylamide separation gel. To separate lipidated and free GABARAP, Lämmli buffer without β -ME was used to prevent the disruption of maleimide coupling between protein and lipid. The compositions used for SDS-PAGE were based on ultrapure water (Table 15).

Table 15: Compositions	used for SDS-PAGE	gel.
------------------------	-------------------	------

Lämmli buffer (dye 4x)	Coomassie staining solution
Tris-HCl 200 mM, pH 6.8	lsopropanol 25% (v/v)
β-ME 8% (v/v)	Acetic acid 10% (v/v)
SDS 8% (w/v)	Coomassie Brilliant Blue R250 0.05% (w/v)
Glycerin 40% (v/v)	
Bromophenol blue 0.05 (w/v)	
SDS-PAGE running buffer	
Tris-HCl 50 mM, pH 8.3	
Glycine 385 mM	
SDS 0.1% (w/v)	

The Lämmli buffer (4 μ l) was added to the protein sample (20 μ l), and then each sample was boiled for at least 5 minutes at 95°C. First, 5 μ l of the unstained protein marker was loaded onto the gel, then 7 μ l of each sample were loaded in separate rows on the gel. SDS-PAGE gels were run in SDS-PAGE running buffer with the following conditions: 45 mA, 100 W per gel for 45 min or until the dye front reached the end of the gel.

2.3.2. Quantification and concentration of protein by UV/Vis spectrophotometry

UV/Vis spectrophotometry measures the absorption of UV-visible light of proteins. A typical absorption wavelength for amino acids with aromatic rings is 280 nm, so that the UV/Vis spectrum was measured between 220 nm and 320 nm. The protein concentration was then estimated from the absorbance at the characteristic wavelength λ = 280 nm using the Lambert-Beer-Law:

$$lg\left(\frac{I_0}{I_1}\right) = A_{\lambda} = \varepsilon_{\lambda}cl \tag{15}$$

Here, I_0 is the radiant flux received by the sample, I_1 is the radiant flux transmitted by the sample, A_λ is the absorbance at a given wavelength, I is the path-length in the sample solution used to measure the absorbance, ε_λ is the molar extinction coefficient, and c is the concentration of protein in moles. The extinction coefficient of the used in this work proteins was calculated using the Expasy ProtParam program based on the amino acid sequences. The molar extinction coefficient of GABARAP is 11,920 $M^{-1}cm^{-1}$, TEV protease is 31,970 $M^{-1}cm^{-1}$, and MSP1D1 Δ 5 is 18,450 $M^{-1}cm^{-1}$. The extinction coefficient $\varepsilon_\lambda = 2\varepsilon_{\lambda 1} + 2\varepsilon_{\lambda 2} = 60,740 M^{-1}cm^{-1}$ for the GABARAP-G116C Δ 117-nanodisc complex was calculated assuming two belt proteins MSP1D1 Δ 5 and two GABARAP-G116C Δ 117 molecules per nanodisc.

2.4. Nuclear magnetic resonance (NMR) spectroscopy

The NMR measurements were carried out with NMR spectrometers from Varian (Palo Alto, USA) and Bruker (Karlsruhe, Germany), see Table 16.

Spectrometer	Frequency	NMR CRYO Probe
Bruker (Magnex)	600 MHz	5 mm cryo-QCI H-P/C/N-D
Bruker (Oxford)	600 MHz	5 mm cryo-TCI H-/C/N-D
Bruker	700 MHz	5 mm cryo-TCI H-/C/N-D
Bruker	900 MHz	5 mm cryo-TCI H-/C/N-D
Varian	800 MHz	5 mm H-/C/N-D

2.4.1. NMR samples

All NMR experiments were recorded in the NMR buffer (Table 13) with 10% (v/v) D_2O . The presence of D_2O is necessary for field-locking as well as for shimming purposes. Due to the high salt concentration and a small amount of deuterated sample, special-shaped 5 mm Slot Shigemi tubes [100] are used. The tube has a susceptibility-matched glass cavity with the slot for the sample, which helps keep the pulse lengths shorter due to a smaller sample volume.

NMR experiments were conducted for the following samples:

1. 900 μM [U-²H,¹⁵N,¹³C] - GABARAP

2. 570 μM [U-²H,¹⁵N,¹³C] – GABARAP-G116CΔ117

3. ≈ 390 μ M [U-²H,¹⁵N,¹³C] – GABARAP-G116C Δ 117 – DMPC nanodiscs

2.4.2. NMR experiments

All NMR experiments discussed in this chapter are listed in Table 17.

Dynamic NMR studies are sensitive to temperature changes; therefore, the temperature calibration of each NMR spectrometer was regularly tested with a perdeuterated methanol sample as ¹HN NMR spectrum [102]. The important recording parameters of the measured NMR spectra can be found in Table 17.

Ν	Experiment	Spectrometer	SW1 (ppm)	t1 (complex)	SW2 (ppm)	t2 (complex)	¹⁵ N offset	SW3 (ppm)	t3 (complex)	¹³ C offset	NS	Relaxation delays (ms)	Temp (K)	Pulse
1	¹⁵ N-TROSY- HSQC	600 Oxford	16	1536	29	256	117.0	-	-	-	48	-	313	
1	3D ¹⁵ N, ¹³ C- TROSY-HNCO	600 Oxford	16	1024	29	44	117.0	12	32	176.0	16	-	313	
1	3D ¹⁵ N, ¹³ C- TROSY-HNCA	600 Oxford	16	1024	29	44	117.0	26	48	56.0	16	-	313	[103] <i>,</i> [104]
1	3D ¹⁵ N, ¹³ C- TROSY- HNCACB	600 Oxford	16	1024	29	44	117.0	52	64	43.0	24	_	313	
2	¹⁵ N-TROSY- HSQC	700 Bruker	16	1024	29	256	116.5	-	-	-	32	-	313	
2	3D ¹⁵ N, ¹³ C- TROSY-HNCO	700 Bruker	16	1024	29	48	116.5	12	32	176.0	16	-	313	
3	¹⁵ N-TROSY- HSQC	600 Oxford	16	1536	29	256	117.0	-	-	-	48	-	313	
3	¹⁵ N-TROSY- HSQC	900 Bruker	16	2048	29	256	117.0	-	-	-	32	-	313	
3	3D ¹⁵ N, ¹³ C- TROSY-HNCO	600 Oxford	16	1024	29	44	117.0	12	32	176.0	24	-	313	
3	3D ¹⁵ N, ¹³ C-	600 Oxford	16	1024	29	44	117.0	26	48	56.0	32	-	313	

Table 17: NMR experiments. The first column is the sample number according to section 2.4.1., the second column is the name of the experiment, then the selected acquisition parameters and references for used pulse programs.

	TROSY-HNCA													
3	3D ¹⁵ N, ¹³ C- TROSY- HNCACB	600 Oxford	16	1024	29	44	117.0	52	64	43.0	24	-	313	
3	¹⁵ N-TROSY-T ₁	600 Oxford	16	1024	29	96	117.0	_	-	-	16	0, 1280, 80, 1120, 160, 960, 240, 800, 320, 640, 400, 480, 0, 480, 1280	313	[105], [106]
3	¹⁵ N-TROSY-T ₁	900 Bruker	16	1536	29	96	117.0	_	-	-	16	0, 1280, 80, 1120, 160, 960, 240, 800, 320, 640, 400, 480, 0, 480, 1280	313	
3	¹⁵ N-TROSY-T _{1p}	600 Oxford	16	1024	29	96	117.0	_	-	-	16	10, 100, 20, 90, 30, 80, 40, 70, 50, 60, 10, 60, 100	313	[105], [106], [107]
3	¹⁵ N-TROSY-T _{1p}	900 Bruker	16	1536	29	96	117.0	_	-	-	24	10, 100, 20, 90, 30, 80, 40, 70, 50, 60, 10, 60, 100	313	
3	{ ¹ H}- ¹⁵ N- TROSY-NOE	600 Oxford	16	1024	29	96	117.0	-	-	-	24	-	313	[105] <i>,</i> [106]
3	{ ¹ H}- ¹⁵ N- TROSY-NOE	900 Bruker	16	1536	29	96	117.0	-	-	-	32	-	313	

2.4.3. Processing the NMR spectra

All NMR experiments measure the response of a nuclear spin excitation by applying a radiofrequency magnetic field, usually in the form of a short pulse or pulse sequence. It generates a rotating nuclear magnetic moment, which induces a small oscillating voltage in the probe coil: a 'free induction decay' (FID). The raw experimental data must be converted into a frequency domain to generate the visible spectrum. The data processing methods include manipulating the NMR FID to improve the signal-to-noise ratio and increase the spectral resolution. For this purpose, the NMRPipe software package was used (*Table 8*). It consists of a series of different programs, but in this work, only two of them were used for processing the NMR data: NMRPipe and NMRDraw. Processing NMR spectroscopic data involves the steps shown in Figure 18.

Figure 18. Overview of data processing with the NMRPipe package.

NMRPipe is a UNIX C-shell script pipe command-based program, where a list of commands is presented as a text file. The created conversion script contains one to four dimensions, where all data have a standard format with the same organization of real and imaginary points. For some types of experiments, the script supports special options for complex acquisition schemes, including sensitivity or gradient-enhanced data. Once the time-domain data has been converted, the frequency spectra can be open and inspected using the graphical interface NMRDraw with initial phasing and suppression of the solvent signal. After opening a spectrum in NMRDraw, the first trial processing can be saved and executed as UNIX shell scripts for future use, such that the parameters in the script can be optimised in further processing steps. The optimisation of the spectra in NMRDraw increases the quality of the spectra. The spectral processing parameters include first-point scaling, phase correction, baseline correction, reversed spectra, and left/right swapped spectra. The processed results will be inspected to decide if additional processing is required; if not, the spectrum is saved in a format needed for future analysis. Spectra were saved in an NMRViewJ program format (Table 8).

2.4.4. Sequential resonance assignment

Fully deuterated samples of GABARAP, GABARAP-G116CΔ117 and GABARAP-NDs were recorded using 600, 700 and 900 MHz spectrometers. Assignment of resonances was obtained from J-correlated 3D

triple resonance experiments: 3D TROSY-HNCO, TROSY-HNCA, TROSY-HNCACB. Also, 2D ¹⁵N TROSY-HSQC spectra were recorded for H_N , ¹⁵N assignment. The assignment of ¹⁵N, H_N , ¹³C_a, ¹³C_b, and ¹³CO was updated from the well-known chemical shifts of the non-deuterated GABARAP sample. In a ²H, ¹⁵N, ¹³C labelled protein, there are shifts of the backbone (¹⁵N, H_N , ¹³C_a and ¹³CO) and ¹³C_b side-chain nuclei [108]. Nevertheless, no significant changes between deuterated and non-deuterated samples were observed in chemical shifts.

2.4.5. Chemical shift perturbation analysis

Chemical shifts are one of the most useful indicators of the chemical environment of each molecule. Chemical shift perturbation (CSP) is a common technique for demonstrating changes in chemical shifts. The average weighted chemical shift perturbation between tree different nuclei resonances in the recorded 3D ¹⁵N,¹³C-TROSY-HNCO spectra was calculated using [20]:

$$\Delta \delta_{ave} = \sqrt{\Delta \delta_{HN}^{2} + \left(\frac{\Delta \delta_{N}}{10}\right)^{2} + \left(\frac{\Delta \delta_{C}}{4}\right)^{2}} \tag{16}$$

Where $\Delta \delta$ is the chemical shift perturbation for the proton, nitrogen, and carbon dimensions.

2.4.6. Fast protein dynamics from pico- to nanoseconds

Applied radiofrequency pulses cause perturbation of nuclear spins from their equilibrium state. The process by which the spins return to their equilibrium is called relaxation and was described in Chapter I, 2.1. NMR relaxation is one of the methods for studying fast protein dynamics on the different time scales from pico- to nanoseconds (Chapter I, 2.4).

Experimental determination of R₁

The relaxation rates R_1 for each possible amino acid were determined with the help of a ¹⁵N TROSYbased inversion-recovery experiment. In this experiment, the pulse sequence described in Refs. [105, 106] was used with minor changes. The relaxation decay was sampled for 15 different delays (see *Table 17*) for each relaxation time measurement. The FIDs for these delay times were recorded before increasing the t_1 evolution period. The order of the relaxation delay durations was pseudorandomized for each value of t_1 [105]. The parameter of relaxation R_1 was received by fitting exponentials to the relaxation curves. The decay of longitudinal relaxation follows an exponential decay

$$I_t = I_0 e^{-R_1 t}$$
(17)

 I_t is the amplitude after an inter-pulse delay t, and I_0 is the amplitude at time 0.

The ¹⁵N-TROSY-T₁ experiment was recorded at two different magnetic field strengths, 600 and 900 MHz. The parameters of these experiments are summarized in Table 17. In the NMRViewJ program (Table 8), the peak intensities for each available amino acid at different time delays were estimated by MUNIN [86, 87]. Then the data were fitted by equation 17 in MATLAB to determine R₁.

Experimental determination of R_2 with the help of $R_{1\rho}$

 T_2 transversal spin-spin relaxation is a parameter characterizing refocusing the chemical shift due to phase coherence in the XY plane after the RF pulse was applied. $T_{1\rho}$ is spin-lattice relaxation time in the rotating frame. In measuring ¹⁵N T_2 with $T_{1\rho}$, the transverse magnetization relaxes in the rotating frame while aligned along the applied B_1 or "spin-lock" magnetic field. The relaxation rate R_2 was determined with the help of R_1 and $R_{1\rho}$ according to:

$$R_{2} = \frac{1}{\gamma^{2} B_{1}^{2}} \cdot \left(\left(\Omega^{2} + \gamma^{2} B_{1}^{2} \right) R_{1\rho} - \Omega^{2} R_{1} \right)$$
(18)

Here, R_1 is the longitudinal relaxation rate from the ¹⁵N-TROSY-T₁ experiment (see above) and $R_{1\rho}$ is the transverse relaxation rate in the rotating frame, γ is the gyromagnetic rate, Ω is resonance offset.

The relaxation rate $R_{1\rho}$ is an analogy to the longitudinal relaxation R_1 and was received by the ¹⁵N-TROSY-T₁ experiment. The experiment is based on the pulse sequence from the following Ref. [105, 107]. In this work, the ¹⁵N-TROSY-T₁ experiment was recorded at two different magnetic fields, 600 MHz and 900 MHz. The parameters of these experiments are summarized in Table 17. The T₁ is determined by analysing the intensity of the NMR signal for each amino acid in the NMRViewJ program (Table 8) using the MUNIN program [86, 87]. Then the data were fitted by equation 17 in MATLAB to determine $R_{1\rho}$. MUNIN determined the error by the intensity program.

Experimental determination of heteronuclear NOE

The steady-state hetNOE was determined with the help of ${}^{1}H{}^{-15}N$ NOE experiment, which corresponds to cross-relaxation between two dipolar-coupled spins ${}^{1}H$ and ${}^{15}N$ and provides the information about N-H bond dynamics on the fast ps timescale. ${}^{1}H{}^{-15}N$ NOE is unique among the mentioned relaxation parameters R₁, R₂ and ${}^{1}H{}^{-15}N$ NOE because it is regarded as essential for the accurate estimation of the spectral density function (see Chapter I, 2.4.2) at high frequencies (ω H ± ω N), and it is essential for the identification of fast backbone motions [109-111]. For the determination of ${}^{1}H{}^{-15}N$ NOE values, the steady-state approach was used. It measures the longitudinal polarization at the thermal equilibrium of ${}^{15}N$ spin I_0 and then the steady-state longitudinal ${}^{15}N$ polarization under ${}^{1}H$ irradiation I_{sat} [112]. The pulse sequence described in Refs. [105, 106] was used in the ${}^{1}H{}^{-15}N$ NOE experiment. The NOE of the N-H bond is calculated from the ratio of cross-peak intensities of each amino acid in two experiments - with and without proton saturation such as:

$$NOE = \frac{I_{sat}}{I_o} \tag{19}$$

Where I_{sat} is the peak intensity with proton saturation and I_0 is the references peak intensity without proton saturation.

 1 H ${}^{-15}$ N NOE experiments were performed for two different 1 H frequencies of 600 and 900 MHz. The parameters are summarized in Table 17. 1 H ${}^{-15}$ N NOE of a folded protein has a maximum value ~ 1.0, and it only occurs when the internal dynamic (Chapter I, 2.4.2) is absent. NOE values less than 0.65 is considered to be flexible. The volume of the peaks for each amino acid was calculated with the help of NMRviewJ, and the error was determined using the noise level of the spectrum.

Backbone and sidechain dynamics

NMR relaxation experiments are widely used for characterising protein backbone and sidechain dynamics. If the measured ¹⁵N relaxation data R_{1i} , R_{2i} and NOE_i are available for each residue *i*, the model-free Lipari-Szabo approach can be used for the determination of the protein backbone dynamics [25, 26]. The spectral density function (Chapter I, equation 6) describes the internal motion and overall motion. In the model-free approach, the internal mobility is characterized by two parameters describing the amplitude order parameter S² and a characteristic correlation time of the internal motion τ_i . The overall motion is described by global τ_c . Data analysis is based on statistical analysis by first applying the simplest model sphere, dynamical parameters (S², τ_c global, diffusion tensor, τ_c internal, R_{ex}) are then added until the fit is statistically significant. In this work, the program TENSOR2 was used to determine the rotational diffusion tensor from the three-dimensional structure coordinates and ¹⁵N relaxation data for one magnetic field. TENSOR2 uses Monte-Carlo sampling methods with appropriate χ^2 and F-tests to determine which models are suitable for describing the rotational diffusion tensor. For calculating the global rotation correlation time τ_c , only one magnetic field strength is sufficient because the correlation time is determined by the ratio R_2/R_1 of the relaxation rates. To exclude flexible amino-acid residues, values of the ratio R_2/R_1 that deviate from the average value by more than 20% were removed. The determination of the internal correlation time depends on the field strength. In this work, two different magnetic fields were used (600 MHz and 900 MHz) for the identical 390 μ M [U-²H,¹⁵N,¹³C] – GABARAP-G116C Δ 117 – DMPC nanodisc sample at 40°C.

2.4.7. Hydrodynamical radius

If GABARAP protein has isotropic symmetry, the hydrodynamic radius can be determined with the help of global rotation correlation time τ_c (Chapter 1, 2.4.2) and Stokes-Einstein equation:

$$\tau_c = 4\pi\eta \frac{r_H^3}{3k_BT} \tag{20}$$

Where η is the viscosity of the solution, r_H is the hydrodynamical radius, k_B is the Boltzmann constant, and T is the temperature in Kelvin. The viscosity of the NMR sample, which contains 10% D₂O, was calculated as

$$\eta = 0.9 \cdot \eta(H_2 0) + 0.1 \cdot \eta(D_2 0) \tag{21}$$

3. Results

3.1. Expression and purification of MSP1D1 Δ 5 belt protein and TEV protease

The expressions and purifications of MSP1D1Δ5 protein and TEV protease are described below in sections 2.1.3, 2.2.1 and 2.2.2. Figure 19 (left) shows the SDS-GEL picture of the elution of His-Tevprotease. After cell pellets were lysed and soluble TEV-protease was separated from cell debris by centrifugation, the supernatant was added to Ni-NTA resin and washed by washing buffers (Table 11). After washing, the Tev-protease was eluted five times in different tubes. The elution one (2) contains the biggest concentration of the TEV-protease based on the line intensities, while the last fifth elution (6) contains the smallest concentration. The size of the TEV-protease is 27kDa, while the sample run through the gel has a molecular weight of 30 kDa. The gel picture indicates the successful production of Tev-protease from the described above protocol. Figure 19 (right) shows the SDS-GEL slice picture of the purification of His-tag cleaved MSP1D1∆5. After cells were lysed and the lysate was separated from cell debris, the supernatant was added to the Ni-NTA resin column. The eluted MSPD1 Δ 5 (2) was containing His-tag. To remove the His-tag, the TEV-protease were added to the sample, and the sample was dialysed. The efficiency of TEV-protease after dialysing is shown (4,5). Then the sample was loaded again to Ni-NTA resin to remove the rest of TEV-protease. The sample was run through, flow-through was collected (7), also the washed sample was collected (8). The size of the His-tag version of MSP1D1∆5 is 22.1 kDa, while the protein run through the gel has a molecular weight of ~22 kDa. After His-tag cleavage, the size of MSP1D1 Δ 5 is 19.5 kDa, and it is shown on the gel around 18.4 kDa. The protein purity of more than 95%.

Figure 19. SDS-PAGE (15%) gel slices containing MSP1D1 Δ 5 protein (right) and TEV protease (left) were taken after purification. The left picture contains the marker line (1) and five different fractions of Tev-protease after elution. The right picture shows the SDS-PAGE of MSP1D1 Δ 5 before and after His-tag cleavage. (1,6) is a marker, (2) is a His-tag version of MSP1D1 Δ 5 after elution. (3) is an empty fraction. (4,5) MSP1D1 Δ 5 after his-tag cleavage. (7) is collected flow through the Ni-NTA, which contains the biggest concentration of MSP1D1 Δ 5 without His-tag. (8) is the washing of MSP1D1 Δ 5 without His-tag from the Ni-NTA resin.

3.2. Expression of fully deuterated GABARAP-G116C Δ 117 in two different M9 mediums.

The expression of GABARAP-G116C Δ 117 was described in sections 2.1.3 using the updated expression protocol from Ref. [97]. The success of using the new protocol for GABARAP protein expression was monitored by SDS-PAGE analysis. Figure 20 shows the two SDS-PAGE gel slices of the GABARAP-G117C Δ 117 expression in *E.coli* using the standard recipe (left) and the new recipe of M9+ medium (right).

Figure 20. SDS-PAGE (15%) gel slices containing deuterated protein samples before and after expression in two different M9 mediums. There is the expression in the standard M9/D2O medium on the left picture where the first line is a marker, the second and fourth are the sample before adding IPTG in two different flasks, the third and the fifth are the sample shortly before the harvest for both flasks. The right picture shows the expression of GABARAP-G116C Δ 117 in the new M9+/D₂O medium where the first line is the marker, and the second line is the sample after 20 hours of expression with 1 mM IPTG.

The SDS-PAGE analysis of both samples showed the strong appearance band in the gel (3 and 5, left) after adding 1 mM IPTG and 20 hours of expression. The same strong band at the same position (2, right) was observed after adding 1 mM IPTG to express the protein in the new M9+ medium. The samples run through the gel have a molecular weight of 18.4 kDa, while the actual molecular weight of GABARAP is 14 kDa. The gel pictures indicate the successful production of GABARAP-G116C Δ 117 in standard and modified M9 mediums.

3.3. Purification of fully deuterated GABARAP-G116C Δ 117 after expression in new M9 medium.

After cell pellets were lysed and soluble GABARAP protein was separated from cell debris by centrifugation, the supernatant was loaded to the Äkta system using a superloop. For removing many containments from cells, purification of fully deuterated GABARAP-G116CΔ117 was performed in two steps. The first step is ion-exchange chromatography using an HiLoad SP Sepharose column 16/10. Figure 21 shows an anion exchange chromatogram for GABARAP-G116CΔ117, grown in 125 ml of new M9+ mediums. The absorption at 280 nm and % of salt concentration of buffer B (Table 13) are plotted as a function of the volume passed through the column. GABARAP-G116CΔ117 protein was

eluted at a buffer B concentration of approximately 25-26%, corresponding to a salt concentration of 300 mM KCl.

Figure 21. Anion Exchange Chromatography of deuterated GABARAP-G116C Δ 117 from M9+ medium. Black absorption line: elution profile of GABARAP-G116C Δ 117 protein from 125 ml of deuterated new M9+ medium eluted from HiLoad SP Sepharose 16/10 column with 0-1 M KCl gradient over 9 CV. Green line: Concentration gradient of buffer B in %.

The presence of protein in the eluted fractions was checked by SDS gel. Figure 22 shows SDS-PAGE slices of GABARAP-G116C Δ 117 for different fractions after elution. The figure clearly shows that the protein has good purity and a strong band around 18.4 kDa, which corresponds to the size of the protein 14 kDa.

Figure 22. SDS-PAGE (15 %) of fractions after Anion Exchange Chromatography. SDS-PAGE of the protein elution from 125 ml of deuterated new M9+ medium. The first line is the marker; lines 2-8 correspond to the different fractions in the range of 26% of buffer B (around 150 ml, Figure 21).

The second step of protein purification is a Size Exclusion Chromatography made using HiLoad 16/600 Superdex 75 pg column. Figure 23 shows the Size Exclusion chromatogram of GABARAP-G116C Δ 117 absorption at 280 nm for M9+ medium. The maximum volume of elution was set as 120 ml. The protein was eluted in the range of 70 ml to 90 ml. The main peak has good separation and high absorption (~1100 mAU), while the impurities are significantly lower.

Figure 23. Size Exclusion Chromatography of deuterated GABARAP-G116CΔ117 from M9+ medium. Black absorption line: elution profile of GABARAP-G116CΔ117 protein from 125 ml new M9+ medium using HiLoad 16/600 Superdex 75 pg column.

The purity of the eluted protein was checked by SDS-PAGE. Figure 24 shows the SDS-PAGE slice for the elution of GABARAP-G116C Δ 117 protein from 125 ml of deuterated M9+ medium where five fractions (2 ml of the sample in each) from the range 74 ml to 84 ml were checked for presents of the protein. The elution peak of the new M9+ medium has a protein purity of more than 95%. The fractions were collected, and the final concentration of GABARAP-G116C Δ 117 in 10 ml buffer was 0.58 mg/ml for 125 ml M9+/D₂O. Fractions were collected, and the volume was reduced using Vivaspin concentrator (MWCO 3,500 Da) until the concentration reached the amount of 0.3 mM. Thus 1.155 mg of deuterated GABARAP-G116C Δ 117 was purified from 125 ml expression in a new M9+ medium. This amount of protein was enough for three identical NMR samples.

Figure 24. SDS-PAGE (15%) of fractions after Size Exclusion Chromatography. Five elution fractions of GABARAP-G116C Δ 117 which was eluted from 125 ml of the M9+ medium.

3.4. Purification of fully deuterated wt GABARAP

Since it was shown that deuteration could change the chemical shift on the spectrum [108]. The new fully deuterated wt protein sample was prepared to compare the chemical shifts of the mutant GABARAP-G116C Δ 117 with the wild type of GABARAP.

Expression of fully deuterated GABARAP was made in the M9+ medium using the same protocol as for GABARAP-G116C Δ 117 (section 2.1.3). Figure 25A shows the SDS-PAGE of the sample after adding 1 mM IPTG and 19 hours incubation. The protein has a size of around 18.4 kDa based on the marker. Purification of the GABARAP was made using the same methods and devices as before for the mutant (section 2.2.3). Figure 25B shows the slice of SDS-PAGE that corresponds to the main peak (26% buffer B) of GABARAP after ion-exchange chromatography. The eluted peak of GABARAP from the new M9+/D₂O medium has a purity of more than 95%.

Figure 25. SDS-PAGE (15%) gel slices containing protein samples of GABARAP protein. Figure A shows the expression of GABARAP in the new M9+ medium where the first line is the marker, and the second line is the sample after 19 hours of expression with 1 mM IPTG. Figure B shows the protein purity after anion exchange chromatogram, where line 1 is the marker, lines 2-8 correspond to the different fractions in the range of 26% of buffer B.

These seven fractions were mixed and loaded for SEC. The maximum elution volume was 150 ml, but the protein was eluted in the range of 70 ml to 85 ml. The main peak has good separation from other impurities. The sample volume was reduced using Vivaspin concentrator (MWCO 3,5 kDa) until the concentration is equal to 0.9 mM.

3.5. NMR chemical shifts of GABARAP wt and GABARAP mutant

Making the mutation of the protein can lead to changes in the structure of the protein. In the current work, the artificially created GABARAP I protein was purified. The variant of fully deuterated GABARAP-G116CΔ117 was produced and compared with the fully deuterated wild type of GABARAP to rule out the C-terminal deletion and mutation of the Gly will not change the structure of GABARAP. Figure 26 shows two overlapped NMR spectra of GABARAP and GABARAP-G116CΔ117 samples (see

section 2.4.1). [¹H, ¹⁵N] -TROSY HSQC spectrum for wt GABARAP and [¹H, ¹⁵N] HSQC spectrum for GABARAP-G116CΔ117. Due to specific TROSY experiments (see Chapter I, 2.4.3), the TROSY spectrum was shifted in ¹H and ¹⁵N dimensions to compare with the HSQC spectrum. Some changes in chemical shifts were observed. These resonances are labelled by the respective sequence position. The peak of 117 Leu is absent for the mutant, and 116 Cys has a new chemical shift. The most significant chemical-shift changes can be seen for 115 Tyr 114 Val, 113 Ser, 82 Asn, 40 Arg and 38 Lys, labelled by different colours for both spectra. Nevertheless, no significant changes were observed for the whole protein structure.

Figure 26. 2D [1 H - 15 N] TROSY-HSQC spectrum of GABARAP and [1 H - 15 N] HSQC GABARAP-G116CΔ117. 2D corrected [1 H 15 N] TROSY HSQC spectra of GABARAP (black) was recorded at 40°C at 600 MHz in NMR buffer (Table 13), which contains 117 amino acids. The overlapped 2D [1 H 15 N] HSQC spectra of GABARAP-G116CΔ117 (red) was recorded at 40°C at 700 MHz in NMR buffer (Table 13), which contains 116 amino acids and replaced 116 Gly to Cys.

3.6. GABARAP-G116C∆117 anchored to nanodiscs

In section 2.2.3. the purification of GABARAP-G116C Δ 117 was described. First, the 117 Leu was cleaved off, and Gly 116 was replaced with Cys for maleimide coupling. The protocol of lipidation of GABARAP-G116C Δ 117 was described in section 2.2.4. MPB-PE molecule was coupled to the mutant to produce GABARAP-PE. The success of the coupling was checked using SDS-PAGE (Figure 27). The lipidated GABARAP-G116C Δ 117 (GABARAP-PE) runs faster in the gel than the normal one, and the new line is located slightly lower in the picture. The ration 1:6 was enough for the lipidation of more than 90% of GABARAP-G116C Δ 117.

The assembly of GABARAP-PE anchored to ND is described in section 2.2.5. DMPC lipids were mixed with lipidated GABARAP and MSP1D1 Δ 5 in the ratio 53:1:1 that corresponds to two molecules of GABARAP per ND (one for each side). The size of the nanodisc was determined by the length of belt protein MSP1D1 Δ 5 and relates about 8.2 - 9.2 nm in diameter [35]. The molecular weight of the MSP1D1 Δ 5 nanodisc is approximately 95 kDa; thus, nanodisc with two molecules of GABARAP (14 kDa each) has around 123 kDa. To separate free GABARAP and GABARAP anchored to nanodisc, SEC using a HiLoad 16/600 Superdex 200 pg column was made. Figure 28 shows the SEC chromatogram of the absorption at 280 nm from the elution volume. The expected main peak was observed from 50 to 80 ml with a maximum of 70 ml. The approximate elution volume for complex GABARAP-ND was calculated by Christina Möckel [113]. The shape of the peak has a shoulder at 65 ml, around 15% of the main peak. The shoulder was not collected to the final sample after elution.

Figure 28. Size Exclusion Chromatography of lipidated GABARAP-G116C∆117 anchored to DMPC nanodiscs. The absorption line at 280 nm of the elution profile of complex GABARAP-ND using HiLoad 16/600 Superdex 200 pg column.

GABARAP-PE and MSP1D1Δ5 have a good separation on the SDS-PAGE, which allows suggesting the ratio between them based on the line intensities. The upper line corresponds to the belt protein MSP1D1Δ5, while the lower one corresponds to the lipidated GAPARAP. Figure 29 shows the SDS-PAGE of different fractions of GABARAP-PE anchored to NDs after elution. All collected fractions contain both proteins, and the ratio of GABARAP-PE and MSP1D1Δ5 is 1:1, as was expected. Regarding the elution volume and SDS-PAGE, it can be assumed that the DMPC nanodiscs contain two molecules of GABARAP-PE.

Figure 29. SDS-PAGE (15%) gel slice containing protein sample of GABARAP-PE anchored to nanodiscs. Line 1 is the marker; lines 2 to 7 correspond the six elution fractions from 68 to 80 ml of the size exclusion chromatography of GABARAP-PE anchored to nanodiscs.

3.7. Differences between free GABARAP-G116C Δ 117 and GABARAP-G116C Δ 117 anchored to ND by NMR spectroscopy

One of the main aims of this work is to see the changes in the structural conformation after anchoring GABARAP to nanodisc. The differences between protein in solution and protein anchored to ND can help understand how GABARAP might interact with the membrane. To compare free protein GABARAP-G116C Δ 117 and GABARAP-G116C Δ 117 protein anchored to ND, [¹H, ¹⁵N] – TROSY HSQC spectrum and [¹H, ¹⁵N] HSQC spectrum were recorded at 40°C. Figure 30 shows the overlay of the corrected TROSY and HSQC spectra of a free mutant of GABARAP and mutant of GABARAP with nanodiscs at 40°C.

Significant changes in chemical shifts can be found in the area of the C-terminus and spatially near amino acid residues. The most prominent shifts are observed for residues: Lys 38, Arg 40, Asn 82, Asp 111, Glu 112, Ser 113, Val 114, Tyr 115 and Gly 116. There are no significant differences in the N-terminal domain (1-26 amino acids) between free and membrane-anchored GABARAP.

Figure 30. 2D [¹H - ¹⁵N] HSQC spectrum of GABARAP-G116C Δ 117 and 2D [¹H - ¹⁵N] TROSY-HSQC spectrum of GABARAP-G116C Δ 117 anchored to nanodisc. 2D [¹H ¹⁵N] HSQC spectrum of free GABARAP-G116C Δ 117 (blue) recorded 40°C at 700 MHz in NMR buffer (Table 13). The overlapped corrected 2D [¹H ¹⁵N] TROSY-HSQC spectrum of GABARAP-G116C Δ 117 (black) was recorded at 40°C at 600 MHz in NMR buffer (Table 13). The chemical shifts were observed for few amino acids in the C-terminal domain.

No significant changes were observed for the whole structure of GABARAP after anchoring to ND.

3.8. Differences between free wt GABARAP and GABARAP-G116C Δ 117 anchored to ND by NMR spectroscopy

To see better the differences between free wild-type GABARAP and GABARAP-G116C Δ 117 anchored to ND, 3D ¹⁵N ¹³C TROSY HNCO experiments were recorded (Table 17). The chemical shifts in three dimensions for each amino acid were calculated using equation 16 as described in section 2.4.5. Figure 31 shows the differences in chemical shifts of free GABARAP and GABARAP-G116C Δ 117 anchored to ND in three dimensions (¹H, ¹⁵N, ¹³CO). As observed in the column graph, the residues with the biggest chemical shifts are close to C-terminal Ser 113, Val 114, Tyr 115, Gly 116 and two amino acids Lys 38, Arg 40 and Asn 82 in loop regions. No significant differences in the chemical shifts were observed for the N-terminal domain (1-26 amino acids) between free GABARAP and GABARAP anchored to ND. The average chemical shift for all amino acids is 0.035 ppm.

Figure 31. Weighted chemical shift ($\Delta\delta$) perturbation analysis between free molecule GABARAP and GABARAP-PE anchored to ND. The $\Delta\delta$ values per residue between wt GABARAP and mutant GABARAP anchored to ND shows no significant changes, except for the following residues 38, 40, 82, 113, 114, 115, that are significantly above the mean value of 0.035 ppm.

All amino acids with significant chemical shifts in Figure 31 are localized on the loop region close to C-

terminal, as shown in Figure 32.

Figure 32. 3D model of GABARAP molecule. Amino acids that have the most significant chemical shifts are labelled.

3.9. Stability of GABARAP anchored to nanodisc

Relaxation experiments take a few weeks of measurements time. The stability of GABARAP-G116C Δ 117 anchored to nanodiscs was checked after one month at 40°C in the spectrometer. Figure 33 shows the expanded overlapped ¹H-¹⁵N TROSY-HSQC and ¹H-¹⁵N HSQC spectra of the last 116 Cys amino acid anchored to DMPC nanodisc. After one month, the peak is detected at the same position, and no new peak has appeared on the position corresponding to the free GABARAP-G116C Δ 117.

Figure 33. Expanded corrected 2D [$^{1}H - {}^{15}N$] TROSY-HSQC and 2D [$^{1}H - {}^{15}N$] HSQC spectra of GABARAP mutant and GABARAP mutant-ND. Resonance of Cys 116 in the overlapped NMR spectra of free GABARAP-G116C Δ 117 (blue), GABARAP-G116C Δ 117 anchored to ND (black) and GABARAP-G116C Δ 117 anchored to ND after one month at 40°C (red) are shown here. TROSY spectra were recorded at 40°C at 600 MHz, and the HSQC spectrum was recorded at 40°C at 700 MHz.

In conclusion, GABARAP is stable on the DMPC nanodisc for one month at 40°C.

3.10. Pico- to nanosecond dynamics

Analysis of ¹⁵N relaxation data recorded as described in 2.4.6 is the first step for understanding the dynamics of N-H bonds on the pico- to nanosecond time scale. The ¹⁵N relaxation experiments were recorded at 40°C for two different magnetic fields. The relaxation data set contains longitudinal relaxation rates R_1 , transverse relaxation rates R_2 and ${}^{1}H{}^{-15}N$ NOE values at proton Larmor frequencies of 600 and 900 MHz. The data were evaluated for all amino acids in the sequence that are not overlapped or had a low signal-to-noise ratio. The determined relaxation rates R_1 and R_2 provide the information about the global rotation correlation time, while the heteronuclear ${}^{1}H{}^{1-5}N$ NOE data reflect the very fast internal dynamics of individual amino acid residues.

Figure 34 shows the longitudinal and transverse relaxation rates R_1 and R_2 at different magnetic field strengths. Relaxation rates were received for all available amino acids, except for overlapped or low
signal-to-noise ratio resonances and Prolines at the following positions 10, 26, 30, 37, 52, 85 and 86. Relaxation data for both magnetic fields show similar behaviour for the C-terminal part (114, 115, 116) in R_1 relaxation rates. R_2 relaxation rates show a similar trend for all amino acids. For both relaxation rates, the data of Tyr 5 and Lys 6 at 900 MHz field were absent due to a low signal-to-noise ratio. The average relaxation rate R_1 is 1.19 ± 0.01 s⁻¹ for 600 MHz and 0.77 ± 0.01 s⁻¹ for 900 MHz. The overall values for the R2 relaxation rate were 21.21 ± 0.35 s⁻¹ for 600 MHz and 28.41 ± 0.57 s⁻¹ for 900 MHz.

Figure 34. ¹⁵N relaxation rates R_1 and R_2 of GABARAP-ND complex. Both experiments were done at 40°C for two different magnetic fields of 600 MHz (black) and 900 MHz (red). The blue spirals are related to the α -helical, and the red arrows are related β -strands of the secondary structure of the GABARAP protein.

Figure 35 shows ${}^{1}H{}^{-15}N$ NOE for two different magnetic fields. The heteronuclear ${}^{1}H{}^{-15}N$ NOE values less than 0.65 is considered flexible [114]. The maximum value of NOE is 1.0, and all amino acids close to this value show the significant restrictions of the movement. C-terminal and one amino acid in a loop region around Ile 41 have the lowest NOE values, which indicates increased internal dynamics in these regions. The average NOE value is 0.72 ± 0.01 for 600 MHz and 0.80 ± 0.01 for 900 MHz.

Figure 35. {¹H} –¹⁵N NOE values of GABARAP-ND complex. The experiments were done at 40°C for two different magnetic fields, 600 MHz (black) and 900 MHz (red). The blue spirals are related to the α -helical, and the red arrows are related to β -strands of the secondary structure of GABARAP protein. The horizontal black line and the number corresponding to the value 0.65.

These relaxation data were optimized before the evaluation of backbone and sidechain dynamics. First, the {¹H} –¹⁵N NOE values less than 0.65 were removed, also R₁ and R₂ relaxation rates deviated more than 20% from the average number were cut off. Then, the relaxation data were used for model-free analysis in the Tensor2 (Table 8). The rotation correlation time was determined for both magnetic fields and had values $12.9 \cdot 10^{-9} \pm 1.86 \cdot 10^{-11}$ s for 600 MHz and $12.7 \cdot 10^{-9} \pm 1.88 \cdot 10^{-11}$ s for 900 MHz. The values for both magnetic fields are in good agreement. With the help of equation 20 from section 2.4.7, the hydrodynamical radius of GABARAP anchored to nanodisc was calculated. Assuming a viscosity of 90% H₂O/10% D₂O mixture equal to η =0.665 mPa [115] corresponds to a hydrodynamical radius of r_H= 27.2 ± 1.1 Å.

The average order parameter $S^2 = 0.89 \pm 0.02$ (Chapter I, 2.4.2) for 600 MHz indicates a high motion restriction of the amide bond of all amino acids in the ordered secondary structure of the protein. Figure 36 shows the order parameters for all available residue in the complex GABARAP anchored to ND. Due to the complexity of the studied GABARAP-ND complex, the case of isotropic tumbling was observed.

70

Figure 36. Order parameter S² was determined from ¹⁵N relaxation data for 600 MHz at 40 °C. The blue spirals are related to the α -helical, and the red arrows are related to β -strands of the secondary structure of GABARAP protein. The horizontal grey line and the number corresponding to the average value of 0.89.

4. Discussion

4.1. High yield expression of GABARAP

To demonstrate the efficiency of the new high yield protocol expression in the M9+ medium [97], we compared the yields of two different expressions using different M9 mediums. Figure 37 shows the comparison of two anion exchange chromatograms for GABARAP-G116C Δ 117, which was expressed in 125 ml of new M9+ medium and 500 ml of regular M9/D₂O medium.

Figure 37. Anion Exchange Chromatography of deuterated GABARAP-G116C Δ 117 from 125 ml of M9+ and 500 ml of M9 mediums. Black absorption line: elution profile of GABARAP-G116C Δ 117 protein from 125 ml of new M9+ medium eluted from HiLoad SP Sepharose 16/10 column with 0-1 M KCl gradient over 9 CV. Red absorption line: elution profile of GABARAP-G116C Δ 117 protein from 500 ml of regular M9 medium. Green line: Concentration gradient of Buffer B in %.

Figure 38 shows the Size Exclusion Chromatogram of GABARAP-G116C Δ 117 absorption at 280 nm for both M9 mediums. The maximum absorption was 1700 mAU and 1100 mAU for the new M9+ medium. The amount of protein in the new M9+ medium was less by 35%.

Figure 38. *Size Exclusion Chromatography of deuterated GABARAP-G116CΔ117 from M9 and M9+ mediums.* Red absorption line: elution profile of GABARAP-G116CΔ117 protein from 500 ml of M9 medium using HiLoad 16/600 Superdex 75 pg column. Black absorption line: elution profile of GABARAP-G116CΔ117 protein from 125 ml of deuterated new M9+ medium using HiLoad 16/600 Superdex 75 pg column.

After SEC in 10 ml buffer was purified 0.83 mg/ml for 500 ml D₂O M9 and 0.58 mg/ml for 125 ml new M9+ D₂O. M9+ medium needs four times less expensive compounds as D₂O and the same amount of D-Glucose-¹³C₆ then the standard M9/D₂O medium. Based on the price calculation and quality and amount of the final deuterated protein sample, this protein expression method makes the production of fully deuterated GABARAP protein roughly five times cheaper.

Thus, the deuterated GABARAP-G116C Δ 117 was purified after expression in 250 ml of the M9+ medium. This amount of protein was enough for three identical NMR samples of GABARAP anchored to ND with a protein concentration ~390 μ M.

4.2. Structural comparison of GABARAP, GABARAP mutant and GABARAP mutant anchored to nanodisc

GABARAP protein has two domains: a C-terminal domain (residues 27–117) and a small N-terminal subdomain (residues 1–26) that contains two α -helixes [2]. C-terminal shows structural similarity to ubiquitin and includes a central four-stranded β sheet with two helices and loops that connects them. N-terminal is located on the opposite side from C-terminal.

Changes in chemical shifts of GABARAP and GABARAP-G116C Δ 117 was described in [27], and the following chemical shift changes were observed: Lys 38, Arg 40, Val 114, Tyr 115. In the deuterated proteins, GABARAP and GABARAP-G116C Δ 117 chemical shifts were observed for the same amino acids and additionally for Asn 82. These amino acids were affected upon C-terminal mutation.

To identify the nanodisc interaction site of lipidated GABARAP-G116C Δ 117, chemical shifts between free GABARAP-G116C Δ 117 and GABARAP-G116C Δ 117 anchored to ND were compared. Some

previous results for the non-deuterated sample were described in [27]. The residues Lys 2, Lys 35, Lys 38, Val 80, Asn 82, Ser 113, Val 114 and Tyr 115 were affected upon lipidation and the following anchoring to nanodisc. In current work, chemical shifts differences of deuterated proteins were observed only for Lys 38, Asn 82, Ser 113, Val 114 and Tyr 115. Lys 2 was absent in the spectra due to low signal-to-noise. Lys 35 shows no chemical shift; the same was observed for Val 80. Additionally, chemical shifts differences were observed for Arg 40, Asp 111, Glu 112 and Gly 116. Seemingly these amino acids were affected by the presence of lipid nanodisc. The presence of chemical shift of C-terminal and loop regions around Lys 38 and Asn 82 indicates that the C-terminal and these loop regions are close to the membrane. Since GABARAP was anchored to nanodisc by lipidated C-terminus, the absence of significant chemical shift differences (apart from those mentioned above) suggests that GABARAP does not show strong interactions with the lipid nanodisc. Also, the N-terminal region was not affected by the presence of nanodisc.

GABARAP protein can exist in two distinct conformations [2]. The monomeric confirmation of free GABARAP was observed for low protein concentrations up to 100 μ M when not associated with other proteins or membranes. In contrast, the oligomeric conformation of GABARAP was found in the crystal structure at high salt conditions (2.4 M ammonium sulphate). In the crystallography data [2], the first six amino acids from N-terminal bind a β 2 strand of neighbouring GABARAP molecule in the crystal structure, which can explain how GABARAP participate in the autophagosome formation. In the current work, based on the chemical shifts differences of N-terminal domain between free protein and anchored to ND, GABARAP oligomerisation was not induced and stabilized by interactions with the membrane (ND) in the liquid state.

Also, note that the monomeric size of free GABARAP is equal to 21.5 - 21.8 Å at 5°C - 35°C [113]. In this work, the hydrodynamic radius of the GABARAP anchored to ND at 40°C was bigger than monomeric: 27.2 Å. This effect of increasing r_H was not discussed in the current work and needed more additional information for understanding.

4.3. Changes in pico- to nanosecond dynamics of GABARAP anchored to ND

The analysis of the ¹⁵N relaxation rates R_1 and R_2 and the {¹H}-¹⁵N heteronuclear NOE values were used for determining the dynamics of GABARAP anchored to ND from pico- to nanosecond time scale. The measurements were done at two magnetic fields and showed similar results between them.

Backbone ¹⁵N spin relaxation rates R_1 , R_2 and the {¹H}-¹⁵N hetNOE of 1 mM free GABARAP at 600 and 900 MHz measured at 25.0 °C were published in [78] and are used in this work as a reference.

The overall values of ${}^{1}H{}^{-15}N$ hetNOE values of free GABARAP protein were found around 0.70 ± 0.06 at 600 MHz and 0.80 ± 0.06 at 900 MHz that reveals a stable tertiary fold at 25°C. The average ${}^{1}H{}^{-15}N$ hetNOE values of GABARAP anchored to ND is 0.72 ± 0.01 for 600 MHz and 0.80 ± 0.01 for 900 MHz are close to the values found for the free GABARAP. C-terminal of free GABARAP shows decreasing values for both magnetic fields suggesting that the backbone of the C-terminal region is more flexible.

The current work shows that NOE in the C-terminal region has the same values (in error range) at higher temperatures as free GABARAP. Thus, no significant internal mobility changes were observed after anchoring GABARAP to ND. Similar to free GBARAP, Ile 41 in a loop region of GABARAP-ND shows high internal mobility.

 ${}^{1}H{}^{-15}N$ HetNOE data of GABARAP anchored to nanodisc shows the same behaviour as free GABARAP. Changes in the temperature don't influence the very fast internal mobility of NOE values.

The average relaxation rates for different temperatures were compared between free GABARAP studied earlier [113] and GABARAP anchored to ND. The measured average relaxation rate was lower than expected for 40°C due to the presence of nanodiscs. Table 18 shows the average relaxation rated for four different temperatures of free GABARAP and one temperature of GABARAP anchored to ND.

Table 18: Dependence of the average Relaxation rates R_1 from different temperatures for free GABARAP and GABARAP anchored to ND at 600 MHz.

R ₁ of free GABA	RAP at 600 MHz	R_1 of GABARAP anchored to ND at 600 MHz		
5°C	0.7 s ⁻¹			
15°C	1.1 s ⁻¹			
25°C	1.3 s ⁻¹			
35°C	1.6 s ⁻¹			
		40°C	1.2 s ⁻¹	

The flexible C-terminal region also displays significantly elevated longitudinal 15 N relaxation rates, R₁ the same as it was detected for free GABARAP [78].

Table 19 shows the average relaxation rate R_2 . With increasing the temperature, the relaxation rate R_2 decreases, but for the GABARAP anchored to ND, R_2 is faster than expected due to the presence of the nanodisc.

Table 19: Dependence of the average relaxation rates R_2 from different temperatures for free GABARAP and GABARAP anchored to ND at 600 MHz.

R ₂ of free GABA	RAP at 600 MHz	R_2 of GABARAP ancho	red to ND at 600 MHz
5°C	25 s ⁻¹		
15°C	19 s ⁻¹		
25°C	15 s ⁻¹		
35°C	11 s ⁻¹		
		40°C	21 s ⁻¹

Relaxation rates for different amino acids are shown in Figures 40 for 600 MHz data and 41 for 900 MHz data. Both relaxation rates show similar behaviour for almost all amino acids. R₁ relaxation rate didn't show any changes in C-terminal, while the R₂, which is more related to the protein's global motion, shows the significant changes for 113, 114, 115 amino acids in the C-terminal. Especially Val 114, which has a much less R₂ relaxation rate (slowly T₂ relaxation time) in free GABARAP. The same effect was observed for the 900 MHz magnetic field.

Figure 40. R1 and R2 relaxation rates of GABARAP (black) and GABARAP anchored to ND (red) at 600 MHz.

Figure 41. R1 and R2 relaxation rates of GABARAP (black) and GABARAP anchored to ND (red) at 900 MHz.

In the "original" model-free formalism (Chapter I, 2.4.6, equation 6), the overall motions are unrestricted with the correlation function that decays exponentially to zero with a single characteristic time scale τ_m . Internal motions are assumed to be restricted because the correlation function for internal motion decays faster. Then the resulting total correlation function (Chapter I, 2.4.6, equation 5) in this model has a double exponent with the fast and slow phases representing internal and global motion. The amplitude of the global (slow) phase is characterized as the square of the order parameter (S²) and represents the degree of spatial restriction of the backbone H-N internal motions. Reviewed in this work, order parameter was calculated with the help of only isotropic tumbling "simplified" model-free formalism from Chapter I, 2.4.6 equation 14. Nevertheless, the order parameter was compared with previously published data for free GABARAP [78] received from the anisotropic model.

In the current work, the dynamics of GABARAP anchored to ND were studied together with the research group of Prof. Dr B. Strodel (IBI-7). The NMR data were compared with MD simulation data performed by Xue Wang. Figure 42 shows the S² for previously published free GABARAP and new NMR and MD order parameters of the GABARAP-ND complex. The backbone order parameters S² from NMR spectroscopy and MD simulations primarily reveal internal motions in loop regions of Ile 41 and at the N and C-terminal, but the regular secondary structure of GABARAP show high rigidity (higher

than 0.7). GABARAP anchored to ND shows less mobility for Ile 41 and C-terminal amino acids in both experiments NMR and MD simulation.

Figure 42. Backbone flexibility of free GABARAP and GABARAP anchored to ND. Comparison of S² free GABARAP from 15N relaxation data (blue), free GABARAP from MD simulation (violet), GABARAP-ND from 15N relaxation data in this thesis (red) and GABARAP-ND from MD simulation (green).

One more parameter from relaxation data is correlation time τ_c , which was received from the TENSOR2 program (Table 8) was compared with a correlation time of free GABARAP at different temperatures [113]. Table 20 shows the dependence of correlation time on the temperature.

τ_c of free GABA	RAP at 600 MHz	τ_c of GABARAP anchored to ND at 600 MHz		
5°C	16.9 ± 0.1 ns			
15°C	12.3 ± 0.1 ns			
25°C	9.5 ± 0.1 ns			
35°C	7.5 ± 0.1 ns			
		40°C	12.9 ± 0.1 ns	

Table 20: Dependence of the correlation time τ_c from different temperatures for free GABARAP and GABARAP anchored to ND at 600 MHz.

The correlation time τ_c of free GABARAP decreased with increasing the temperature due to faster rotation at high temperature, but τ_c of GABARAP anchored to ND has a slow value because it is tumbling together with the ND.

The general conclusion for the GABARAP project are observed in Chapter IV.

Structure Calculation of Lipoprotein CD1348 from *Clostridium difficile* by Solution NMR

Lipoprotein is a membrane protein encoded directly in front of the CprABC operon of the resistance system in bacteria *Clostridium difficile*. The structure of this protein is scarcely known and will be considered in this chapter. NMR is one of the main techniques that can provide a complete description of the protein structure at the atomic level. This chapter describes methods for NMR spectra assignments of fully labelled ¹⁵N,¹³C lipoprotein, and structure calculation algorithms. Sequence-specific assignments for backbone resonance is obtained from TROSY 2D and 3D triple-resonance experiments (HNCA, HN(CO)CA, HNCACB, HN(CO)CACB, H(CCO)NH, C(CO)NH). NMR structure determination was based on distances between ¹H-¹H and dihedral angles. The distances were determined from NOE intensities of peaks from 3D ¹⁵N or ¹³C NOESY spectra. The additional geometrical information about distance restraints was derived from the 4D ¹³C,¹³C NOESY experiment, avoiding several chemical shifts overlap. Also, titration experiments with lantibiotic gallidermin show chemical shifts differences in the loop region of lipoprotein. This loop region of lipoprotein might play a role of a binding site and thereby lowers the concentration of the lantibiotic reaching the membrane. The observed interaction with lantibiotics can help understand the function of the lipoprotein in the resistance machinery of *Clostridium difficile*.

1. Materials

1.1. NMR spectrometers

Liquid state NMR spectrometers operating at different magnetic fields were used for obtained NMR data for assignment, structure calculation and titration experiments.

Table 21: NMR spectrometers were used for the Lipoprotein project.

Spectrometers	Manufacturer
Bruker Avance III HD NMR (600 MHz)	Bruker, Billerica, USA
Bruker Avance III HD NMR (600 MHz)	Bruker, Billerica, USA
Bruker Avance III HD NMR (700 MHz)	Bruker, Billerica, USA
Variant (800 MHz)	Agilent (Varian), Santa Clara, USA
VNMRS (900 MHz)	Agilent (Varian), Santa Clara, USA

1.2. Software and databases

Table 22 lists all software and databases used for assignment, structure calculation, and visualization of the lipoprotein structure.

Software/database	Usage	Reference/distribution
BMRB Databank	Open databank of chemical shifts of biomolecules	http://www.bmrb.wisc.edu [82]
Expasy-Prot Param	Analysis of proteins based on their primary sequence	http://web.expasy.org/pro tparam [83]
NMRPipe	Processing of NMR spectra	[84]
NMRDraw	Visualisation of processed MNR spectra	[84]
NMRViewJ 8.0.3	Visualisation and analysis of NMR spectra	[85]
PDB Database	Structures of biological macromolecules	http://rcsb.org
PyMOL	Visualisation of protein structures	
RasMol 2.7.5	Visualisation of protein structures	[88]
TALOS-N	Prediction of torsion angles based on chemical shifts of the protein	[70, 116]
AssignNOE	Assign and determination the distance between NOE	[117]
Xplor-NIH	Determination of molecular structure based on NMR data and crystallography	[118]
PROCHECK-NMR	Checking the quality of predicted NMR	[119]

	structures	
TopSpin	Basic software of Bruker NMR spectrometers	
VnmrJ	Basic software of Bruker NMR spectrometers	
Adobe Illustrator CS5	Generation of figures	
Origin 2017	Chemical shifts calculation and visualisation of relaxation data	

2. Methods

2.1. Nuclear magnetic resonance spectroscopy

All NMR measurements were carried out using NMR spectrometers from Varian and Bruker. Detailed specifications of the spectrometers can be found in Table 23.

Spectrometer	Frequency	NMR CRYO Probe
Bruker (Magnex)	600 MHz	5 mm H-P/C/N-D
Bruker (Oxford)	600 MHz	5 mm H-/C/N-D
Bruker	700 MHz	5 mm H-/C/N-D
Varian	900 MHz	5 mm H-/C/N-D
Varian	800 MHz	5 mm H-/C/N-D

Table 23: NMR spectrometers are used in this work.

2.1.1. NMR sample

The studied NMR samples were prepared at the University of Düsseldorf by Dr Rebecca Clemens, Dr Lothar Gremer and Dr Sander Smits. The samples contained 630 μ M [U⁻¹⁵N] or 630 μ M [U⁻¹³C,¹⁵N] (His)10-lipoprotein in NMR buffer (100 mM NaCl, 5 mM NaN₃, 25 mM MES (pH 6.5)). The sample is contained 10% (v/v) D₂O to lock the magnetic field/frequency. The samples were used as received.

For studying the binding of the lantibiotic gallidermin with lipoprotein, the 630 μ M [U-¹⁵N] (His)10lipoprotein in NMR buffer and 10% of D₂O was titrated with five different rations of concentration gallidermin to lipoprotein: 0.125:1, 0.25:1, 0.5:1, 0.75:1, 1:1. The stock solution of gallidermin was provided by Dr Jens Reiners.

2.1.2. NMR spectra

NMR experiments were performed at 30°C on the spectrometers operating at ¹H frequencies of 600, 700, 800 and 900 MHz (Table 23). The sample temperature was calibrated using a deuterated methanol sample methanol-d₄ as describes in [102]. Sequence-specific assignments for the backbone resonances were obtained from TROSY [103, 104, 120] versions of the following 2D, 3D and 4D triple resonance experiments [68, 121]. Dr Philipp Neudecker did the optimization of pulse sequences and the measurements. The resolution of the recorded data was increased by the processing of the spectra with the program NMRPipe (Table 22). The data were visualised and analysed in NMRDraw and converted to NMRViewJ format by Dr Philipp Neudecker. All spectra were analysed with the NMRViewJ program (Table 22).

Some selected acquisition parameters such as the spectral width (SW) for all dimensions, number of points T (complex), which is twice the value of the corresponding time-domain size, offset is a proper chemical shift referencing in all dimensions and number of scans (NS) are listed in Table 24.

Ν	Experiment	Spectrometer	SW_1	T ₁	offset ¹ H	SW ₂	T ₂	offset ₂	SW3	T ₃	offset ₃	NS	References
			(ppm)	(complex)	(ppm)	(ppm)	(complex)	(ppm)	(ppm)	(complex)	(ppm)		
1	2D ¹⁵ N-TROSY-HSQC	700 Bruker	16	1536	4.7	30	256	117.0 (¹⁵ N)	-	-	-	24	
2	2D 15N-HSQC	700 Bruker	16	1024	4.7	30	256	117.0 (¹⁵ N)	-	-	-	24	
3	2D ¹³ C CT-HSQC	600 Bruker	16	1024	4.7	40	82	128 (¹³ C)	-	-	-	160	
4	3D ¹⁵ N, ¹³ C-TROSY-HNCO	700 Bruker	16	1024	4.7	30	48	117.0 (¹⁵ N)	12	32	176.0 (¹³ C)	12	
5	3D ¹⁵ N, ¹³ C-TROSY-HN(CO)CA	700 Bruker	16	1024	4.7	30	48	117.0 (¹⁵ N)	26	46	56.0 (¹³ C)	16	
6	3D ¹⁵ N, ¹³ C-TROSY-HN(CO)CACB	700 Bruker	16	1024	4.7	30	48	117.0 (¹⁵ N)	52	65	43.0 (¹³ C)	16	
7	3D ¹⁵ N, ¹³ C-TROSY-HNCA	700 Bruker	16	1024	4.7	30	48	117.0 (¹⁵ N)	26	46	56.0 (¹³ C)	16	[103], [104]
8	3D ¹⁵ N, ¹³ C-TROSY-HN(CA)CO	700 Bruker	16	1024	4.7	30	48	117.0 (¹⁵ N)	12	32	176.0 (¹³ C)	16	[122], [123],
9	3D ¹⁵ N, ¹³ C-TROSY-HNCACB	900 Varian	16	1024	4.7	30	64	43		48	117.0 (¹⁵ N)	16	[124], [125],
10	3D ¹⁵ N, ¹³ C-H(CCO)NH-TROSY	600 Bruker	16	1024	4.7	30	44	117.0 (¹⁵ N)	154	128	82.0 (¹³ C)	16	[126]
11	3D ¹⁵ N, ¹³ C-C(CO)NH-TROSY	600 Bruker	16	1024	4.7	30	44	117.0 (¹⁵ N)	154	128	82.0 (¹³ C)	16	
12	3D ¹⁵ N ¹³ C – H(C)CHTOCSY	600 Bruker	16	512	4.7	30	96	4.7	12	32	77.0 (¹³ C)	8	
13	3D ¹⁵ N-TOCSY-HSQC	700 Bruker	16	1024	4.7	30	48	117.0 (¹⁵ N)	14	128	4.7 (¹ H)	16	
14	3D 15N-NOESY-TROSY	800 Varian	16	1024	4.7	30	128	4.7 (¹ H)		48	117.0 (¹⁵ N)	16	
15	3D ¹⁵ N-NOESY-HSQC	600 Bruker	16	1024	4.7	30	48	117.0	13	128	4.7 (¹ H)	16	
16	3D ¹⁵ N, ¹³ C-NOESY-HSQC	700 Bruker	16	1024	4.7	30	48	117.0 (¹⁵ N)	70	64	43.0 (¹³ C)	16	
17	3D ¹³ C-NOESY-HSQC	700 Bruker	16	1024	4.7	30	46	77.0 (¹³ C)	14	128	4.7 (¹ H)	16	
18	4D ¹³ C ¹³ C NOESY HSQC	600 Bruker	16	1536	4.7	30	36	77.0 (¹³ C)	12	128	4.7 (¹ H)*	4	

Table 24: NMR experiments. The first column is the number of the experiment; the second is the name of the experiment, then the selected acquisition parameters and references for used pulse programs.

* One more additional plane for 4D experiment

SW4 (ppm)	T4 (complex)	offset ₄ (ppm)
30	36	77.0 (¹³ C)

2.1.3. Assignment of resonances

One of the most useful functions of solution NMR in structural biology is its ability to determine the three-dimensional structures of proteins, especially which one is hard to crystallize, as in the case of lipoprotein CD1348. The assignment of resonances in the NMR spectra is one of the first steps in obtaining the protein structure. This step involves few methods of sequential assignment of systems of spin-spin coupled resonances. The sequence-specific assignment was obtained from J-correlated 3D/4D resonance experiments (Table 24). This process involves the assignment of one amino acid with its sequential neighbours by linking backbone nuclei. Experiments 4-9 from the Table 24 were used to measure HNCO, HN(CO)CA, HNCA, HN(CA)CO, CACB(CO)NH and HNCACB spectra to assign the peaks in (¹HN, ¹⁵N, ¹H_{α}, ¹³C_{α}, ¹³C_{β}, ¹³C') in the backbone. The C(CO)NH and H(CCO)NH spectra (experiments 10-11 in Table 24) were used to assign the nuclei in the aliphatic side chains (¹H, ¹³C), which Bettina Wagner did during her bachelor work [127]. The 3D HCCH-TOCSY spectrum (experiment 12, Table 24) was used to assign the chemical shifts of the aromatic rings (¹H_x, ¹³C_x). The 2D ¹⁵N HSQC spectrum (experiment 2, Table 24) was used to assign the peaks for the sidechain HN₂ groups of Asn and Gln.

The resonances in the $[U^{-13}C, {}^{15}N]$ (His)10-lipoprotein spectrum were assigned manually using the program NMRViewJ (Table 22).

The 2D ¹⁵N-TROSY-HSQC spectrum generally represents a "fingerprint" of the protein. It contains information about all backbone amides of each residue, except for Pro. Each amino acid's 1H and 15N chemical shifts were assigned using triple resonance multidimensional NMR experiments and then labelled on the 2D spectrum. Another 2D spectrum, the ¹H-¹³C-CT-HSQC spectrum, is a "fingerprint" of the carbon groups of the protein. It shows the peaks for the ¹³C_{α}, ¹³C_{β} backbone and the directly bound protons ¹H_{α} and ¹H_{β}. Spectral assignments for this spectrum were also obtained by analysing the 3D experiments, as described in the following.

The graphical representation of all triple-resonance experiments is shown in Chapter I, 2.2, Figure 11. The experiments such as HNCA and HN(CO)CA correlate a backbone ¹HN and ¹⁵N chemical shifts with one or more ¹³C_{α} chemical shifts. The HNCA experiment correlates proton and nitrogen chemical shifts with two ¹³C_{α} chemical shifts of its residue *i* and the previous one *i*-1. The HN(CO)CA experiment transfers magnetisation between the HN group to the ¹³C_{α} (*i*-1) residue with coherence transfer via the preceding ¹³CO. Combing these two experiments, therefore, allows identifying the ¹³C_{α} (*i*) and ¹³C_{α} (*i*-1) peaks.

Additionally, HNCACB and CACB(CO)NH were used to identify ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ chemical shifts of the intra (*i*) and inter (*i*-1) nuclei in the backbone. The HNCACB experiment correlates the ¹HN and ¹⁵N chemical shifts of its residue (*i*) with ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ chemical shifts of *i* and *i*-1 residues. In contrast, the CACB(CO)NH experiment provides correlations only between amino group chemical shifts of a residue *i* with ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ shifts of the previous residue (*i*-1). The resonances received from ${}^{13}C_{\alpha}$ and ${}^{13}C_{\beta}$ nuclei have a 180° phase difference on the spectrum where ${}^{13}C_{\alpha}$ resonances have positive peak

intensity, and the other $({}^{13}C_{\beta})$ is negative at the same spectrum. Since the ${}^{13}C_{\beta}$ is recorded alongside the ${}^{13}C_{\alpha}$ nucleus, it reduces the ambiguities in the assignment of ${}^{13}C_{\alpha}$ in the HNCA spectrum. The intensity of peaks depends on the ${}^{3}J$ coupling constant (Chapter I, 2.2, Figure 10); therefore, the signal obtained from the inter-residue correlations between the amide group and the carbons of the previous amino acid (*i*-1) has a weaker intensity than the signal from the intramolecular correlation (*i*).

The HNCO and HN(CA)CO spectra were used to assign the backbone carbonyl ¹³CO group. The 3D HNCO experiment correlates ¹HN and ¹⁵N chemical shifts of residue *i* with the carbonyl group of residue *i*-1. The HN(CA)CO experiment was used to detect the ¹³CO chemical shift of both residues *i* and *i*-1 via transfer magnetization through ${}^{13}C_{\alpha}$ of *i* and *i*-1 residues.

The 3D C(CO)NH and H(CCO)NH experiments are used to assign the carbon and proton nuclei in the side chains. In the 3D triple resonance C(CO)NH experiment, all aliphatic carbons correlate with the amide group of the preceding residue i-1 via transferred magnetisation of the ¹³CO group. In the H(CCO)NH experiment, magnetisation is transferred from the side-chain hydrogen to their attached carbon group and then via the carbonyl group to the amide group of the previous residue i-1.

The 3D HCCH-TOCSY NMR experiment was used to complete ${}^{1}H_{x}$ and ${}^{13}C_{x}$ assignments of the aromatic rings. The magnetisation is transferred from the side chains protons to the nuclei of the ${}^{13}C_{x}$ atoms they are attached to. In the 3D HCCH-TOCSY spectrum, ${}^{1}H_{x}{}^{-1}H_{x}$ cross-peaks are spread out in the third dimension according to their ${}^{13}C_{x}$ chemical shifts. For assignment of side chains on this spectrum, assignments of ${}^{13}C_{\alpha}/{}^{13}C_{\beta}$ and ${}^{1}H_{\alpha}/{}^{1}H_{\beta}$ obtained from backbone assignment experiments were used as the starting point.

The 2D HSQC spectrum has been used to assign the Trp side chain $H_{\epsilon}-N_{\epsilon}$ groups, Asn $H_{\delta 2}-N_{\delta 2}$ and Gln $H_{\epsilon 2}-N_{\epsilon 2}$ side-chain groups. The Asn and Gln side chain NH_2 groups correspond to double peaks in the N dimension but for two different proton shifts. The Trp side chain $H_{\epsilon}-N_{\epsilon}$ peaks usually have specific proton (around 10 ppm) chemical shifts and are located separately on the spectrum.

Statistically calculated chemical shifts from atoms in all amino acids were used as a reference for assigned lipoprotein. These chemical shifts are available from the biological magnetic resonance data bank (BMRB) (Table 22).

2.1.4. Determination of torsion angle restraints

The NMR spectra contain all necessary information about interatomic distances and angular geometries used for the structure determination of the protein [128]. The dependence of the isotropic chemical shifts on the local backbone geometry determines protein torsion (dihedral) angle restraints [129]. Backbone and sidechain torsion angle restraints used for the structure calculation were determined using TALOS-N (Torsion Angle Likelihood Obtained from Shifts) program (Table 22). This program predicts protein backbone torsion angles ϕ and ψ and sidechain torsion angle $\chi 1$ (Chapter I, 2.3, Figure 13) from NMR chemical shifts of ¹HN, ¹⁵N, ¹³C', ¹³Ca, ¹³C_β and ¹H_a nuclei [116]. TALOS-N is an artificial neural network trained with curated data on chemical shifts for specific amino acids and PDB coordinates from high-resolution X-ray structures with torsion angle information. The

program classifies chemical shifts and amino acid sequence data of a particular secondary structure unit (helix, sheet, and coil).

For the backbone torsion angle prediction, TALOS-N uses prediction of 324-state ϕ/ψ distribution of each residue based on the chemical shift, which amino acid and place in a sequence. This 324-state ϕ/ψ distribution corresponds to the residue on the Ramachandran map [130]. Then the program searches for 1000 heptapeptide fragments from the database with ϕ/ψ angles that best match the 324-state ϕ/ψ distribution. The 25 best-matched database heptapeptides and the averages of ϕ/ψ angles of their centre residues are assigned as the backbone torsion angles of the centre residue of the query heptapeptide [116]. The prediction is shown in the program directly.

Besides prediction of ϕ/ψ angles, TALOS-N also was used for prediction of the sidechain $\chi 1$ torsion angles. First, TALOS-N searches the database for the 1000 best-matched heptapeptides from ϕ/ψ torsion angles and residue types [70]. There are three possible $\chi 1$ rotameric states of all sidechain types (except Pro): gauche (+), trans or gauche (-).

2.1.5. NOE resonance assignment and extraction of distance restraints from NOE chemical shifts

The interproton distance obtained from NOE data is based on a comparison of NOE peak intensities for pairs of spins in NOESY experiments [131]. The through-space interactions were observed using 3D NOESY experiments which were made for both [U-¹⁵N] or [U-¹³C,¹⁵N] (His)10-lipoprotein samples and listed in Table 24, № 14-18. The 3D ¹⁵N and ¹³C NOESY-TROSY spectra were recorded to assign side-chain protons of intra and intermolecular residues. The mixing time used for the ¹⁵N NOESY-TROSY experiment was 120 ms. Additionally, 3D-¹³C,¹⁵N HSQC-NOESY-HSQC experiment to obtain the intermolecular distance information was used. The mixing time was set to 150 ms.

Verena Kienapfel did the automatic assignment of NOEs and NOE-derived distances from these experiments during her bachelor work [132]. AssignNOE program was used for chemical shifts assignment and determination of the distances between possible coupling partners [117].

The 4D NOESY experiment was used to solve the problem of overlapping some cross-peaks and less resolution. The 4D ¹³C, ¹³C HSQC-NOESY-HSQC experiment includes one additional ¹³C dimension (Table 24, number 18). NOEs between side-chain protons were spread out by the chemical shifts of the directly bounded ¹³C atoms. Peaks were assigned manually using NMRViewJ (Table 22).

2.2. Protein structure determination

Protein structure determination is based on energy minimization methods. Native protein structures correspond to a system at thermodynamic equilibrium with minimum free energy. The 3D structure determination from assigned NOE data was performed in the structure generation software program X-PLOR-NIH (Table 2). X-PLOR-NIH program uses the NOE statement sets for determination and refines solution NMR structures based on throw space distance estimates, coupling constant measurements and others. The following information about molecular structure, NOE-derived

distance bounds, and coupling-constant-derived dihedral angle restraints was used for the NMR structure determination. The program was run with a target radius of gyration of 13.8 Å [133].

The input files with the experimental data such as NOE-derived distances, torsion angles and residual dipolar couplings (RDCs) were run 22 times. Every next run was updated with some new data in input files. Distance restraint files were added separately from 4 different sources:

Table 25: Assigned spectra that were used for 3D structure calculation

3D ¹⁵ N NOESY-	3D ¹⁵ N NOESY-TROSY	3D ¹³ C NOESY-HSQC	4D ¹³ C ¹³ C HSQC NOESY
TROSY			HSQC
Automatic +	Manual assignment	Manual assignment	Manual assignment
manual	(NMRViewJ)	(NMRViewJ)	(NMRViewJ)
assignment			
(AssignNOE +			
NMRViewJ) by			
Verena			

Since the NOE assignment and structure calculation require around 90% completeness of the chemical shift assignment, which is not straightforward to achieve by automated peak picking and automated resonance assignments [134], a manual assignment was added for completing these data.

The quality of the calculated 3D structure of the lipoprotein was validated using dedicated software as PROCHECK_NMR (Table 22). Backbone and sidechain torsion angles were analyzed using the program PROCHECK_NMR for calculating the "stereochemical quality" of a given protein structure. This program was used for ten models with the lowest energy structures. The RMSD of atomic positions measured the average distance of superimposed ten models with the lowest energy structures.

2.3. Chemical shift perturbation analysis

After the resonances are assigned and the lipoprotein structure is identified, the interaction strength between the nuclei can be studied. NMR spectroscopy provides a powerful tool to study interactions between proteins or protein and ligand at atomic resolution. In particular, the localisation of the binding sites on the protein surface can be determined based on the chemical shift perturbation (CSP) analysis. It is performed analogously to the case of GABARAP as described in Chapter 2, 2.4.5. In the current research, the CSP was used to calculate chemical shifts difference in the lipoprotein in the presence of lantibiotic gallidermin at five different concentrations. The processed spectra were superposed to identify the ¹H–¹⁵N correlation peaks subjected to the most significant frequency shifts upon increasing the concentration of lantibiotic. A peak-picking on each spectrum was done by using the program NMRViewJ (Table 22). The chemical shifts differences for each amino acid were calculated using:

$$\Delta \delta_{ave} = \sqrt{\Delta \delta_{HN}^{2} + \left(\frac{\Delta \delta_{N}}{10}\right)^{2}}$$
(22)

Where $\Delta \delta_{HN}$ and $\Delta \delta N$ are the difference between the proton and nitrogen chemical shifts, which were measured with a given amount of gallidermin and without it respectively.

3. Results

3.1. Assignment of backbone resonances of lipoprotein

The sequential assignment of the following nuclei ¹HN, ¹⁵N, ¹³C', ¹³C_a, ¹H_a and ¹³C_β of lipoprotein was performed in a sequence-specific manner using the resonance experiments described in section 2.1.3. and Chapter I, 2.2. Two- and three-dimensional NMR data sets were recorded for two NMR samples 630 μ M [U-15N] and 630 μ M [U-13C,15N] (His)10-lipoprotein. Figure 43 represents a part of the sequential assignment of lipoprotein (Met 21 - Leu 30) using the 3D HNCACB spectrum. The observable peaks are ¹³C_a and ¹³C_β of intra- and inter-residual resonances. The preceding and succeeding resonances are connected by matching chemical shifts at the same positions at ¹H-¹⁵N correlations.

Figure 43. Sequential assignment of backbone nuclei resonances of lipoprotein residues M21-L30 from the 3D HNCACB spectrum. Strip plots from the 3D ^{15}N , ^{13}C -TROSY-HNCACB spectrum, recorded on the sample described in 3.1.1. are shown for ten connected residues. Each strip is extracted from the ^{15}N plane and contains two different resonances from $^{13}C\alpha$ (black) and $^{13}C\beta$ (blue) nuclei. For each 1 H the strip contains four cross-peaks ($^{13}C\alpha_{i,1}$ $^{13}C\alpha_{i-1}$ and $^{13}C\beta_{i-1}$). The dotted lines indicate the intra- and inter-residue connections of cross-peaks of the preceding and succeeding residues: red for C α and blue for C β .

The chemical shifts of the amide group were assigned entirely in the 2D 1 H, 15 N TROSY-HSQC spectrum [61]. Figure 44 shows the complete assignment of all available amino acids in the protein (162 amino acids). The lipoprotein contains two Pro residues at positions 63 and 124, excluded from the analysis because they do not have amino group NH₂. Also, 1 H- 15 N correlations of Gln 155 and Glu 156 amino

acids were not found and assigned on the spectrum. The expected number of peaks in the spectrum was 160 (without Pro), which corresponds to all lipoprotein amino acids. The area around 115-108 ppm of N-dimensional and 6.5-7.8 ppm of H dimension contains additional resonances from the specific TROSY experiment. Also, the side chain guanidino group NH ϵ of Arg and NH ϵ_1 of Trp rings were picked and assigned on the spectrum. 98.75% of the visible peaks were assigned on the spectrum.

Figure 44. Fully assigned 2D [¹H, ¹⁵N]-TROSY-HSQC spectrum of lipoprotein. 2D [¹H, ¹⁵N]-TROSY-HSQC spectrum of lipoprotein were recorded at 30°C at 700 MHz. The numbers in the label correspond to the position of the respective amino acid in the sequence. The spectrum contains peaks from backbone amides (orange numbers). Trp indole ${}^{1}\text{He}_{1}{}^{-15}\text{Ne}_{1}$ peaks show with blue atom numbers. The side chain guanidino group, NHε of Arg, have the green colour of labels.

The Asn and Gln side chain amide groups assignment was completed for 13 amino acids out of 14. Figure 45 represents the part of the fully assigned ¹H, ¹⁵N HSQC spectrum. Pairs of peaks correlating an NH₂ group of Asn or Gln shifts with single chemical shifts for N and double chemical shifts for two H. The side-chain amide groups assignment information for Asn and Gln was obtained by comparing the chemical shifts of the side chain correlated carbon resonances ¹³C α and ¹³C β using 3D TROSY-HN(CO)CACB or 3D TROSY-HNCACB experiments. Also, 3D ¹⁵N NOESY HSQC and 3D TROSY HNCO experiments were used to obtain the final assignment of the backbone NH₂ group. Only one NH₂ group of Asn 152 was not found and assigned.

Figure 45. Part of the [¹H, ¹⁵N] HSQC spectrum of lipoprotein. The expanded region of the ¹H, ¹⁵N HSQC spectrum at 30°C at 700 MHz represents peaks from backbone amides and side-chain NH₂ of Asn and Gln. Horizontal dashed lines connect pairs of peaks. The numbers in the label correspond to the position of the respective Asn or Gln in the sequence.

The rest of the side-chain assignment of ${}^{13}C_x$ carbons and connected to them ${}^{1}H_x$ protons were done using 3D C(CO)NH and 3D H(CCO)NH experiments. Additionally, TOCSY-HSQC and NOESY-TROSY experiments were used to determine all possible proton resonances of the spin system. Figure 46 shows the expanded region's ${}^{1}H$, ${}^{13}C$ CT-HSQC NMR spectrum of aromatic rings assignment for the residues of nine amino acids. The assignment was made using 3D ${}^{13}C$ NOESY HSQC, 3D ${}^{15}N$ NOESY-HSQC and 4D ${}^{13}C$, ${}^{13}C$ NOESY HSQC spectra.

Figure 46. Part of [¹H, ¹³C] CT-HSQC spectrum of lipoprotein. Red peaks are negative, while black is positive. The expanded region of the [¹H, ¹³C] CT-HSQC spectrum at 30°C at 700 MHz represents peaks from aromatic side-chains of Phe, Trp and Tyr. The numbers in the label correspond to the position of the respective Phe, Trp and Tyr in the sequence.

All chemical shifts of completely assigned lipoprotein might be found in the table in the Appendix part.

3.2. Determination of structural restraints from NMR data for lipoprotein secondary structure calculation

The secondary structure, torsion angles ϕ and ψ of the lipoprotein were predicted using chemical shifts assignment in the TALOS-N program (Section 2.1.5). The program calculated the predicted backbone rigidity for each predictable residue with input chemical shifts as RCI-S² order parameter (see Chapter I, 2.4.2). An input file with chemical shifts data was generated automatically from NMRViewJ software.

Reliable torsion angle prediction was made for amino acids from Thr 59 to Leu 178, where Gln 155 and Glu 156 had no data prediction due to the absence of chemical shifts. The N terminal amino acids from Gly 19 to Lys 58 were dynamic because the residues were below the threshold $RCI-S^2 \leq 0.6$. Figure 47 shows the predicted structure conformation for lipoprotein using the TALOS-N program.

Figure 47. Secondary structure restraints were obtained from TALOS-N torsion angle prediction. The upper picture is the probability of α helix (red) and β strands (blue) formation calculated from NMR chemical shifts. The bottom picture is the predicted backbone rigidity RCI-S² for each residue.

Based on the TALOS-N prediction, the final secondary structure of the lipoprotein is shown in Figure 48, which contains the loop region in the N-terminal, six β strands and three α helixes.

Figure 48. Lipoprotein secondary structure prediction from TALOS-N with the help of backbone chemical shifts. The black line corresponds to the chemical shifts of the random coil structure (loop), the blue arrow is the β strand, and the red spiral is the α helix.

3.3. Tertiary structure calculation

The tertiary structure of the lipoprotein was determined from NMR chemical shifts assignment, and NOE derived distance restraints data using XPLOR-NIH NMR software (section 2.1.6). Backbone and side-chain torsion angles were received from the TALOS-N program. The quality of the ensemble of the ten lowest energy structures was evaluated regarding the number and quality of the violations of the experimentally derived restraints. Based on the secondary structure prediction, the loop in the N-terminal region has random coordinates for all ten models. The main structural parts (C-terminal domain) of the ten models of lipoprotein have a good agreement in structure ensemble. The program was run with a target radius of gyration of 13.8 Å [133]. Figure 49 shows ten models with the lowest energies after structure calculation in XPLOR-NIH. Most of the calculations in XPLOR-NIH were done together with Dr Neudecker. The figure was plotted in PyMOL (Table 22). Except for the dynamic N-terminal residues from 1-58 and the loop of 155-160, lipoprotein shows a well-defined structure in solution with an average atomic RMSD from the average structure of 0.65 Å for the backbone and 1.03 Å for all heavy atoms.

Chapter III Lipoprotein

Figure 49. Superposition of the ten lowest energy structures calculated from NMR data from two points of view. The superposition of the ten lowest energy models in the structural ensemble. The N-terminal loops are disordered, while the ordered parts of the protein are in good agreement for all models. Different colours correspond to the different ten models.

The covalent geometry of the 3D structure was assessed using the program PROCHECK_NMR (Table 22). This program sorts the backbone torsion angles in energetically favoured, allowed, and disallowed regions in the Ramachandran plot [135]. PROCHECK_NMR allows seeing the Ramachandran plot for all selected models. The Ramachandran plot (Figure 50) shows ϕ and ψ torsion angles for all residues in the lipoprotein structure for the ten lowest energy models. Gly residues are separately identified by triangles Δ as these are not restricted to the plot regions appropriate to the other sidechain types. 93,2% of the backbone torsion angles of the lipoprotein is located in the most favoured regions of the Ramachandran plot, 6% in the additionally allowed regions and 0.8% in both, the generously allowed and disallowed regions. Only two amino acids that were not assigned (Gln 155 and Glu 156) are located in the generously allowed and disallowed regions of the Ramachandran plot.

Chapter III Lipoprotein

Figure 50. Ramachandran plot of the backbone torsion angles of the lipoprotein ten lowest energy models. The plot shows the correlation of ϕ and ψ torsion angles for all residues of the ten lowest energy structures after lipoprotein structure calculation. All models with their numbers are depicted as white squares, except for Gly residues, shown here as triangles. The colouring on the plot represents the different regions described in [135]: the red areas represent the most favourable combinations of phi-psi values, the yellow colour is additionally allowed regions, the light yellow areas are the generously allowed regions, and the white regions are disallowed regions. Two amino acids Gln 155 and Glu 156, were found in the disallowed region because they both were not the assignment. The letter b is the β strand region, a is the α helix, and I is the loop region in each model structure.

The plotted statistic based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20%, a good quality model would be expected to have over 90% in the most

favoured regions.

Table 26: Plot statistics of Ramachandran plot of the backbone torsion angles of the lipoprotein ten lowest energy models. A- α helix, B- β strand, L-loop.

Residues in	most	1444	93.2%			
Residues in	addit	ional allowed	regions [a,b	,l,p]	93	6.0%
Residues	in	generously	allowed	regions	11	0.7%
[~a,~b,~l,~p)]					
Residues in	disal	lowed regions			2	0.1%
Number of	non-§	glycine and nor	n-proline re	sidues	1550	100%
Number of	end-r	esidues (excl.	Gly and Pro)	20	
Number of	glycir	30				
Number of proline residues					20	
Total numb	er of	1620				

Figure 51 represents the one picked lipoprotein structure from Figure 49 with the lowest energy 37.5 kcal/mol. It contains the loop region in N-terminal, and compact C-terminal with antiparallel β 1 and β 2 strands, antiparallel β 3 and β 4 strands, parallel β 4 and β 5 strands, and three α helixes.

Figure 51. The final 3D model of lipoprotein from NMR data. The final model was calculated using XPLOR-NIH NMR software.

3.4. Titration experiments of lipoprotein and lantibiotic gallidermin

The titration experiments were done for a 630 μ M [U-15N] (His)10-lipoprotein sample (see section 2.1.1). The protein concentration was the same for all NMR experiments. For the titration experiments, a stock solution of gallidermin was prepared. Gallidermin was added to lipoprotein sample in 5 different concentrations with ration between gallidermin : lipoprotein as 0.125:1, 0.25:1, 0.5:1, 0.75:1, 1:1. Chemical shift differences (in ppm) for each amino acid were calculated by equation 1. The chemical shift was calculated between samples without gallidermin. The biggest chemical shifts were observed for Ser 160, lle 161 and lle 163. The average chemical shift for all amino acids for a 1:1 ratio is 0.01047 ppm. Figure 52 shows the average chemical shifts for each assignment amino acid of lipoprotein and lipoprotein with different concentrations of gallidermin.

Figure 52. Weighted chemical shift ($\Delta \delta_{ave}$) perturbation analysis between 630 μ M lipoprotein and lipoprotein with gallidermin. The $\Delta \delta_{ave}$ values per residue between lipoprotein sample and different rations lipoprotein. The most significant chemical shifts are observed for Ser 160, Ile 161 and Ile 163.

4. Discussion

4.1. Comparison of the theoretically predicted lipoprotein model with secondary structure from NMR data.

Lipoprotein is the membrane resistance protein that is encoded in the CprABC system of Clostridium difficile. This protein is likely involved in lantibiotic resistance, but its exact function is still not completely understood. Knowledge of protein tertiary structure (3D) is an essential criterium for understanding its function. The most popular techniques used to determine 3D structures of small proteins are X-ray crystallography and nuclear magnetic resonance. The advantage of solution NMR over X-ray crystallography is that the protein structure can be determined in a solution that is more closely to its actual physiological state. Some proteins, including the lipoprotein, are hard to crystallize; solution NMR was used as the main experimental method for structure calculation. One more additional method to solve the 3D structure is computational structure prediction. The first visualized model of lipoprotein was achieved by H. Gohlke's research group using the fully automated meta-method "TopModel" for protein structure prediction. The description of the method might be found in [61]. From NMR experiments, the secondary structure and b-strand pairing together with SAXS experiments were performed to estimate the shape and radius of gyration (RG). The secondary structure experimental data were superimposed on the theoretical model. The 3D lipoprotein model from TopModel has a good agreement with NMR secondary structure assignment, but there are still some discrepancies. Figure 54 shows the initial 3D prospective model of lipoprotein (the disordered tail was removed from the structure) with superimposed NMR secondary structure data (Figure 48). The predicted model has a good agreement with the experimental data. The expected model has a local TopScore where 0.1 indicating about 10% error in the model, 0.3 is 30%, etc. The highest number shows that the model may not be highly confident.

Four discrepancies between theoretical and experimental models can be found in Figure 53. The first (1) shows that the first a-helix of TopModel is eight residues shorter than in NMR predicted structure, which also indicates low TopScore. The second (2) difference is the third β -strand shifted by two residues and the loop on TopModel was identified as β -strand in NMR, the loop indicated by TopScore to contain high errors. The third (3) is the difference in the C-terminus, on the NMR structure prediction is folded into a β 6-strand. The fourth (4) difference is a different length of second α -helix 2, which also scores poorly according to TopScore.

Figure 53. Prospective modelling of lipoprotein from *C. difficile* (without disordered N-terminal tail). (A) The initial TopModel with superimposed NMR secondary structure data. The dark blue colour corresponds to the good agreement of β -sheets. Orange colour: residues identified as a β -strand in NMR but not found so in the theoretical model. Cyan colour is α -helixes in good agreement. Red: residues identified as α -helical in NMR but not found so in the theoretical model. Cyan colour is α -helixes in good agreement. Red: residues identified as α -helical in NMR but not found so in the theoretical model. Violet lines: experimental β -sheet NOE restraints are showing agreement with the model. Red dotted lines: experimental β -sheet NOE restraints show a shift of two residue positions of the third β -strand. (B) The initial TopModel is coloured according to Local TopScore. Blue regions indicated the best residue-wise error (~30%). Yellow/red regions indicate regions with a high residue-wise error (>50%). The numbers correspond to four differences between TopModel and NMR data. The picture was published in the joint article with H. Gohlke's research group [61].

4.2. Comparison of the theoretically predicted lipoprotein model with tertiary structure from NMR data.

The tertiary structure of the lipoprotein was determined from NMR chemical shifts assignment, and NOE derived distance restraints data using XPLOR-NIH NMR software with a target radius of gyration of 13.8 Å. Figure 54 A-D shows the overlapped 3D structure of lipoprotein from NMR data with the theoretical model from [61]. Both models are shown from different angles of vision. The 3D lipoprotein model from experimental NMR data has a good agreement with the theoretical model, but there are still some discrepancies. There are five differences: (1) the turn from β 1 to β 2 is shifted for few residues; (2) α 3 from the NMR structure is closer to β 3, β 4, β 5 strands; (3) shifts for three β 3, β 4, β 5 strands which were also detected with the secondary structure comparison; (4) shift of β 1 and β 2 which is a consequence of the first difference; (5) shift for one turn in α 1. N-terminal was not compared because it has random coordinates due to its fast dynamic.

Figure 54. Overlapped two 3D models of lipoprotein from *C. difficile* from NMR experimental data and theoretical prediction. Comparison of two models of lipoprotein from 3D NMR data (green) and computational model (orange). The models represent from four different angles of view. The number corresponds to the differences described here. (A) shows all β strands (blue) and all α helixes (red). (B) shows the labelled β strands that are involved in the third difference. (C,D) is β strands and α helixes are involved in the differences between models.

Searching the database characterized lipoproteins from bacteria showed the similarity in the structure with some bacterial protein involved in cell-cell adhesion. The structure similarity with other proteins which might be involved in lantibiotic resistance was not found so far. The determined structure of lipoprotein CD1348 is rare and poorly characterized in the literature.

4.3. Titration experiments with lantibiotic gallidermin

The role of lipoprotein in the resistance machinery of C.difficile is still not completely understood. The solved 3D structure of the lipoprotein can help to understand if this protein is involved or not in lantibiotic resistance. Some previous work was performed for lipoprotein CD1348 and lantibiotics nisin and gallidermin [60]. The interaction between lipoprotein and lantibiotics was tested in vivo and in vitro experiments. To see the interactions, in vitro analytical co-elution and tryptophan fluorescence experiments were provided. After co-elution studies, the chromatogram of the lipoprotein with nisin does not show any differences, which means there is no interaction between them. Another method is tryptophan fluorescence spectroscopy is more sensitive to detect interactions. The 1 μ M of purified lipoprotein was measured with different concentrations of the lantibiotics nisin or gallidermin. If the lantibiotic binds to the lipoprotein, a tryptophan quenching should be observed. The decreasing fluorescence signal of tryptophan quenching was observed for lantibiotic gallidermin. With increasing gallidermin concentration (0-47.85 μ M), the calculated K_D value of 2.4 μ M gallidermin shows an interaction. The sequence of lipoprotein contains two Trp at 132 and 162 positions. Trp 132 is located in the α 2 helix, and Trp 162 is located in the loop region between α 3-helix and β 5-strand. The additional fluorescence experiments were performed to see which Trp is more affected by interaction with gallidermin. Figure 56 showed the recent unpublished fluorescence data from Dr Smits research group for lipoprotein wildtype mutant when Trp 132 was replaced with Ala 132 and mutant with Ala 162 instead of Trp 162. The wildtype data shows the increasing fluorescence signal of tryptophan quenching with increasing the concentration of gallidermin. For the mutant Trp 132 to Ala, the increase of tryptophan quenching was also observed, which means that Trp 162 has interactions with gallidermin. The K_D values were measure for fluorescent experiments. K_D of wildtype is 4.3 μ M, mutant Trp132Ala is 4.9 μ M and mutant Trp162Ala is 21.3 μ M.

Figure 55. *Fluorescence of samples in the presence of different concentrations of gallidermin.* Fluorescence data were measured for three different samples of lipoprotein wildtype (green circles), lipoprotein mutant Ala 132 instead of Trp (orange triangles) and lipoprotein mutant Ala 162 instead of Trp (blue squares). The picture is published here with the allowance of Dr Smits.

From the fluorescence data, Trp 162 is more affected by interaction with gallidermin. With the help of titration experiments, the most significant chemical shift changes were observed for Ser 160, lle 161 and lle 163, which is a dynamic loop close to where the disordered N-terminal is attached to the globular structure. The NMR data is similar to fluorescence data and might indicate possible interactions between lipoprotein and lantibiotic gallidermin. Figure 57 shows the location of the amino acids in which chemical shifts were observed.

Figure 56. 3D model of lipoprotein molecule. Amino acids that have the most significant chemical shifts are labelled black. The Tryptophan quenching of 162 Trp residue, which was observed by fluorescence spectroscopy, is labelled pink.

The general conclusion for the lipoprotein project is observed in Chapter IV.

Chapter IV Conclusion and Outlook

Chapter IV Conclusion and Outlook

Nuclear Magnetic Resonance Spectroscopy was used for structure calculation and dynamic determination of two membrane proteins: GABARAP and lipoprotein CD1348. Molecular dynamics simulation, SAXS and fluorescence spectroscopy were used to complement the NMR data analysis.

The characterization of the structural conformation changes of GABARAP anchored to nanodiscs was performed using solution NMR. Based on the chemical shift differences for the N-terminal domains between free protein and protein anchored to nanodiscs (ND), GABARAP oligomerization was not induced and stabilized by interactions with the ND membrane in the solution. Anchoring to NDs leads to significant chemical shift changes of the backbone amide groups of Lys 38, Asn 82, Ser 113, Val 114 and Tyr 115. Free GABARAP protein was predominantly monomeric in the temperature range from 5°C to 35°C, as indicated by the hydrodynamic radius between 21.5 - 21.8 Å. In this work, the hydrodynamic radius of the GABARAP anchored to ND at 40°C was bigger than monomeric: 27.2 Å. The increased hydrodynamic radius was not discussed in the current work and needs additional information for understanding. Further studies using MD simulation, small-angle scattering, or fluorescence spectroscopy for the GABARAP-ND complex can provide the necessary information.

In this thesis, a combination of NMR spectroscopy and MD simulations were used to characterize the internal dynamics of GABARAP anchored to nanodiscs at various time scales. In particular, the order parameter S^2 of free GABARAP obtained by MD simulations is in good agreement with the experimental data presented in this work. Also, S^2 values for the GABARAP-ND complex were compared with MD simulation data. The data shows that the backbone order parameters S^2 from NMR spectroscopy and MD simulations primarily reveal internal motions in the loop regions of Ile 41 and at the N and C-terminal. At the same time, the regular secondary structure of GABARAP shows high rigidity (higher than 0.7). GABARAP anchored to a ND shows less mobility for the Ile 41 and C-terminal amino acids in NMR experiments and MD simulation. The correlation time τ_c of GABARAP in the ND complex is much slower than for the free GABARAP protein. It has been explained by the tumbling of GABARAP together with the ND. This data is a good starting point for the next steps in studying the protein-nanodisc dynamics. A full model-free analysis can be done if the data are available for two or more magnetic fields.

The second part of the thesis was dedicated to the structure determination of another membrane protein. Lipoprotein from *C. difficile* is encoded directly before a known lantibiotic resistance ABC-transporter CprABC. This resistance operon consists of the ABC-transporter and a two-component system, including histidine kinase (HK) and a response regulator (RR). The lipoprotein function is still not completely understood, but it has been hypothesised that this membrane-associated protein also performs resistance against lantibiotics. Therefore, determining the 3D structure of the lipoprotein should provide insight into its role in the context of lantibiotic resistance of *C.difficile*.

The structure of the lipoprotein was solved by solution NMR, SAXS and computer simulations using the "TopModel" model. Standard 2D and 3D NMR experiments were successfully recorded to gain

Chapter IV Conclusion and Outlook

assignment and structural information of the lipoprotein. The assignment of the amino acids in the 178-residue lipoprotein was done manually with the help of sequential backbone assignment. The tertiary structure of lipoprotein CD1348 was received using multidimensional 3D and 4D NOESY experiments and represented a so far undescribed model. In particular, the N-terminal of the final model is disordered, while the C-terminal is well ordered with antiparallel β 1 and β 2 strands, antiparallel β 3 and β 4 strands, parallel β 4 and β 5 strands, and three α helixes. The simulated TopModel structure showed good agreement with the experimental structure of the lipoprotein. The structural shift of the 3rd β -strand is registered in the NMR structure.

Titration experiments of lipoprotein with lantibiotic gallidermin show chemical shifts in a loop region of Ser 160, lle 161 and lle 163 residues. The data is in good agreement with fluorescence experiments. The presence of gallidermin and changing chemical shifts can indicate possible interactions between lipoprotein and the lantibiotic gallidermin. This exciting result is key for future investigation of lipoprotein function.

- 1. Mohrluder, J., M. Schwarten, and D. Willbold, *Structure and potential function of gamma-aminobutyrate type A receptor-associated protein*. FEBS J, 2009. **276**(18): p. 4989-5005.
- 2. Coyle, J.E., et al., Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron, 2002. **33**(1): p. 63-74.
- 3. von Heijne, G., *The membrane protein universe: what's out there and why bother*? J Intern Med, 2007. **261**(6): p. 543-57.
- 4. Krogh, A., et al., *Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.* J Mol Biol, 2001. **305**(3): p. 567-80.
- 5. Wimley, W.C., *Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures.* Protein Sci, 2002. **11**(2): p. 301-12.
- 6. Alberts, B.J., A.; Lewis, J.; et al., *Molecular Biology of the Cell. 4th edition.* New York: Garland Science, 2002.
- 7. Levine, B. and D.J. Klionsky, *Development by self-digestion: molecular mechanisms and biological functions of autophagy*. Dev Cell, 2004. **6**(4): p. 463-77.
- 8. Cuervo, A.M., *Autophagy: in sickness and in health.* Trends Cell Biol, 2004. **14**(2): p. 70-7.
- 9. Yun, C.W. and S.H. Lee, *The Roles of Autophagy in Cancer*. Int J Mol Sci, 2018. **19**(11).
- 10. White, E., *Deconvoluting the context-dependent role for autophagy in cancer*. Nat Rev Cancer, 2012. **12**(6): p. 401-10.
- Lorin, S., et al., Autophagy regulation and its role in cancer. Semin Cancer Biol, 2013. 23(5): p. 361-79.
- 12. Grumati, P., et al., Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med, 2010. **16**(11): p. 1313-20.
- 13. Nah, J., J. Yuan, and Y.K. Jung, *Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach*. Mol Cells, 2015. **38**(5): p. 381-9.
- 14. Saha, S., et al., *Autophagy in health and disease: A comprehensive review.* Biomed Pharmacother, 2018. **104**: p. 485-495.
- 15. Parzych, K.R. and D.J. Klionsky, *An overview of autophagy: morphology, mechanism, and regulation.* Antioxid Redox Signal, 2014. **20**(3): p. 460-73.
- Chen, Y. and D.J. Klionsky, *The regulation of autophagy unanswered questions*. J Cell Sci, 2011. **124**(Pt 2): p. 161-70.
- 17. Hayashi-Nishino, M., et al., *A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation*. Nature Cell Biology, 2009. **11**(12): p. 1433-1437.
- Axe, E.L., et al., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 2008. 182(4): p. 685-701.
- 19. Xie, Z. and D.J. Klionsky, *Autophagosome formation: core machinery and adaptations*. Nat Cell Biol, 2007. **9**(10): p. 1102-9.

- 20. Young, A.R., et al., *Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes.* J Cell Sci, 2006. **119**(Pt 18): p. 3888-900.
- 21. Walker, S., et al., *Making autophagosomes: Localized synthesis of phosphatidylinositol 3phosphate holds the clue.* Autophagy, 2008. **4**(8): p. 1093-1096.
- 22. Mizushima, N., T. Yoshimori, and Y. Ohsumi, *The role of Atg proteins in autophagosome formation*. Annu Rev Cell Dev Biol, 2011. **27**: p. 107-32.
- 23. Slobodkin, M.R. and Z. Elazar, *The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy.* Essays Biochem, 2013. **55**: p. 51-64.
- 24. Kabeya, Y., et al., *LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.* Embo j, 2000. **19**(21): p. 5720-8.
- 25. Kabeya, Y., et al., *LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation.* Journal of Cell Science, 2004. **117**(13): p. 2805-2812.
- 26. Shpilka, T., et al., *Atg8: an autophagy-related ubiquitin-like protein family*. Genome Biology, 2011. **12**(7): p. 226.
- 27. Ma, P., et al., *Preparation of a functional GABARAP-lipid conjugate in nanodiscs and its investigation by solution NMR spectroscopy*. Chembiochem, 2010. **11**(14): p. 1967-70.
- Tanida, I., et al., *GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3*.
 Biochem Biophys Res Commun, 2003. **300**(3): p. 637-44.
- 29. Ritchie, T.K., et al., *Chapter 11 Reconstitution of membrane proteins in phospholipid bilayer nanodiscs*. Methods Enzymol, 2009. **464**: p. 211-31.
- 30. Borch, J.H., T., *The nanodisc: a novel tool for membrane protein studies.* 2009. **390**(8): p. 805-814.
- 31. Viegas, A., T. Viennet, and M. Etzkorn, *The power, pitfalls and potential of the nanodisc system for NMR-based studies.* Biol Chem, 2016. **397**(12): p. 1335-1354.
- 32. Jonas, A., *Reconstitution of high-density lipoproteins*. Methods Enzymol, 1986. **128**: p. 553-82.
- 33. Bayburt, T.H.G.Y.V.a.S.S.G., *Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins.* Nano Letters 2002. **2(8)**: p. 853-856.
- 34. Denisov, I.G., et al., *Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size*. J Am Chem Soc, 2004. **126**(11): p. 3477-87.
- 35. Hagn, F., et al., *Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins*. J Am Chem Soc, 2013. **135**(5): p. 1919-25.
- 36. Nath, A., W.M. Atkins, and S.G. Sligar, *Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins.* Biochemistry, 2007. **46**(8): p. 2059-69.
- 37. Kohanski, M.A., D.J. Dwyer, and J.J. Collins, *How antibiotics kill bacteria: from targets to networks.* Nat Rev Microbiol, 2010. **8**(6): p. 423-35.
- 38. Müller, A., A. Klöckner, and T. Schneider, *Targeting a cell wall biosynthesis hot spot*. Nat Prod Rep, 2017. **34**(7): p. 909-932.

- Kapoor, G., S. Saigal, and A. Elongavan, Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol, 2017. 33(3): p. 300-305.
- Breukink, E. and B. de Kruijff, *Lipid II as a target for antibiotics*. Nat Rev Drug Discov, 2006.
 5(4): p. 321-32.
- 41. Bierbaum, G. and H.G. Sahl, *Lantibiotics: mode of action, biosynthesis and bioengineering.* Curr Pharm Biotechnol, 2009. **10**(1): p. 2-18.
- 42. Jung, G., Lantibiotics-ribosomally sythesized biologically acve polypeptides containing sulfide bridges and a,b-didehyroamino acids. Angew. Chem. Int. Edn. English, 1991. **30**: p. 1051–1068.
- 43. Willey, J.M. and W.A. van der Donk, *Lantibiotics: peptides of diverse structure and function*.Annu Rev Microbiol, 2007. **61**: p. 477-501.
- 44. Knerr, P.J. and W.A. van der Donk, *Discovery, biosynthesis, and engineering of lantipeptides.*Annu Rev Biochem, 2012. **81**: p. 479-505.
- 45. Reiners, J., et al., *Stoichiometry and structure of a lantibiotic maturation complex*. Scientific Reports, 2017. **7**(1): p. 42163.
- 46. Clemens, R., et al., Insight into Two ABC Transporter Families Involved in Lantibiotic Resistance. Front Mol Biosci, 2017. **4**: p. 91.
- 47. Wiedemann, I., et al., Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem, 2001. **276**(3): p. 1772-9.
- Hasper, H.E., B. de Kruijff, and E. Breukink, Assembly and stability of nisin-lipid II pores.
 Biochemistry, 2004. 43(36): p. 11567-75.
- Götz, F., et al., *Epidermin and gallidermin: Staphylococcal lantibiotics*. International Journal of Medical Microbiology, 2014. **304**(1): p. 63-71.
- 50. Parisot, J., et al., *Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic.* Antimicrob Agents Chemother, 2008. **52**(2): p. 612-8.
- 51. Barbut, F., et al., Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. Journal of medical microbiology, 2005. 54(Pt 2): p. 181-185.
- 52. Vollaard, E.J. and H.A. Clasener, *Colonization resistance*. Antimicrob Agents Chemother, 1994. **38**(3): p. 409-14.
- 53. Nolan, N.P., et al., *An epidemic of pseudomembranous colitis: importance of person to person spread*. Gut, 1987. **28**(11): p. 1467-73.
- 54. Peschel, A. and H.G. Sahl, *The co-evolution of host cationic antimicrobial peptides and microbial resistance.* Nat Rev Microbiol, 2006. **4**(7): p. 529-36.
- 55. Hancock, R.E. and G. Diamond, *The role of cationic antimicrobial peptides in innate host defences.* Trends Microbiol, 2000. **8**(9): p. 402-10.

- 56. Suárez, J.M., A.N. Edwards, and S.M. McBride, *The Clostridium difficile cpr locus is regulated* by a noncontiguous two-component system in response to type A and B lantibiotics. J Bacteriol, 2013. **195**(11): p. 2621-31.
- 57. McBride, S.M. and A.L. Sonenshein, *The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile*. Microbiology (Reading), 2011. **157**(Pt 5): p. 1457-1465.
- Schmitt, L. and R. Tampé, *Structure and mechanism of ABC transporters*. Current Opinion in Structural Biology, 2002. 12(6): p. 754-760.
- 59. Pipatthana, M., et al., *The repertoire of ABC proteins in Clostridioides difficile*. Comput Struct Biotechnol J, 2021. **19**: p. 2905-2920.
- 60. Clemens, R., Characterization of a lipoprotein CD1348 from Clostridium difficile and the viral infectivity factor of HIV-1. Inaugural-Dissertation, 2018.
- 61. Mulnaes, D., et al., *TopModel: Template-Based Protein Structure Prediction at Low Sequence Identity Using Top-Down Consensus and Deep Neural Networks.* J Chem Theory Comput, 2020. **16**(3): p. 1953-1967.
- 62. Foster, M.P., C.A. McElroy, and C.D. Amero, *Solution NMR of large molecules and assemblies*. Biochemistry, 2007. **46**(2): p. 331-40.
- 63. Jeener, J. and G. Alewaeters, "Pulse pair technique in high resolution NMR" a reprint of the historical 1971 lecture notes on two-dimensional spectroscopy. Prog Nucl Magn Reson Spectrosc, 2016. **94-95**: p. 75-80.
- 64. Bodenhausen, G. and D.J. Ruben, *Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy*. Chemical Physics Letters, 1980. **69**: p. 185.
- 65. Kay, L.E., et al., *Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution*. Science, 1990. **249**(4967): p. 411-414.
- 66. Motáčková, V., et al., Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. Journal of Biomolecular NMR, 2010. **48**(3): p. 169-177.
- 67. Karplus, M., *Vicinal Proton Coupling in Nuclear Magnetic Resonance*. Journal of the American Chemical Society, 1963. **85**(18): p. 2870-2871.
- Sattler, M., Schleucher, J., & Griesinger, C., Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution. Prog. Nucl. Magn. Reson. Spectrosc, 1999. 34: p. 93-158.
- 69. Wüthrich, K., *NMR of Proteins and Nucleic Acids.* Wiley: New York, 1986.
- 70. Shen, Y. and A. Bax, *Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.* Methods Mol Biol, 2015. **1260**: p. 17-32.
- 71. Case, D.A., H.J. Dyson, and P.E. Wright, [13] Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins, in Methods in Enzymology. 1994, Academic Press. p. 392-416.
- 72. Neuhaus, D., *Nuclear Overhauser Effect*. Encyclopedia of Magnetic Resonance, 2011.

- 73. Reddy, J.G., et al., *Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments.* J Biomol NMR, 2018. **70**(1): p. 1-9.
- Palmer, A.G., 3rd, *Chemical exchange in biomacromolecules: past, present, and future.* J Magn Reson, 2014. 241: p. 3-17.
- 75. Vallurupalli, P., G. Bouvignies, and L.E. Kay, *Studying "invisible" excited protein states in slow exchange with a major state conformation.* J Am Chem Soc, 2012. **134**(19): p. 8148-61.
- 76. Kleckner, I.R. and M.P. Foster, *An introduction to NMR-based approaches for measuring protein dynamics.* Biochim Biophys Acta, 2011. **1814**(8): p. 942-68.
- 77. Zeeb, M. and J. Balbach, *Protein folding studied by real-time NMR spectroscopy*. Methods, 2004. **34**(1): p. 65-74.
- Möckel, C., et al., Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics. The Journal of Physical Chemistry B, 2019. 123(7): p. 1453-1480.
- Jarymowycz, V.A. and M.J. Stone, Fast Time Scale Dynamics of Protein Backbones: NMR Relaxation Methods, Applications, and Functional Consequences. Chemical Reviews, 2006. 106(5): p. 1624-1671.
- 80. Farrow, N.A., et al., *Characterization of the backbone dynamics of folded and denatured states of an SH3 domain.* Biochemistry, 1997. **36**(9): p. 2390-402.
- 81. Rule G. S., H.T.K., *Fundamentals of Protein NMR Spectroscopy*. Springer Netherlands, 2006.
- Seavey, B.R., et al., A relational database for sequence-specific protein NMR data. J Biomol NMR, 1991. 1(3): p. 217-36.
- 83. Gasteiger, E., et al., *Protein Identification and Analysis Tools on the ExPASy Server*, in *The Proteomics Protocols Handbook*, J.M. Walker, Editor. 2005, Humana Press: Totowa, NJ. p. 571-607.
- Delaglio, F., et al., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR, 1995. 6(3): p. 277-93.
- 85. Johnson, B.A. and R.A. Blevins, *NMR View: A computer program for the visualization and analysis of NMR data.* J Biomol NMR, 1994. **4**(5): p. 603-14.
- 86. Orekhov, V.Y., I.V. Ibraghimov, and M. Billeter, *MUNIN: a new approach to multi-dimensional NMR spectra interpretation.* J Biomol NMR, 2001. **20**(1): p. 49-60.
- 87. Korzhneva, D.M., et al., *MUNIN: application of three-way decomposition to the analysis of heteronuclear NMR relaxation data.* J Biomol NMR, 2001. **21**(3): p. 263-8.
- Bernstein, H.J., *Recent changes to RasMol, recombining the variants*. Trends Biochem Sci, 2000. 25(9): p. 453-5.
- 89. Dosset, P., et al., *Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data*. Journal of Biomolecular NMR, 2000. **16**(1): p. 23-28.
- 90. Tropea, J.E., S. Cherry, and D.S. Waugh, *Expression and Purification of Soluble His6-Tagged TEV Protease*, in *High Throughput Protein Expression and Purification: Methods and Protocols*, S.A. Doyle, Editor. 2009, Humana Press: Totowa, NJ. p. 297-307.

- 91. Bayburt, T.H., Y.V. Grinkova, and S.G. Sligar, *Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins.* Nano Letters, 2002. **2**(8): p. 853-856.
- 92. Farmer, B.T. and R.A. Venters, *Assignment of Side-Chain C-13 Resonances in Perdeuterated Proteins.* Journal of the American Chemical Society, 1995. **117**(14): p. 4187-4188.
- 93. Grzesiek, S. and A. Bax, *The Importance of Not Saturating H20 in Protein Nmr Application to Sensitivity Enhancement and Noe Measurements.* Journal of the American Chemical Society, 1993. **115**(26): p. 12593-12594.
- 94. Nietlispach, D., et al., An approach to the structure determination of larger proteins using triple resonance NMR experiments in conjunction with random fractional deuteration. Journal of the American Chemical Society, 1996. **118**(2): p. 407-415.
- 95. Yamazaki, T., et al., A Suite of Triple-Resonance Nmr Experiments for the Backbone Assignment of N-15, C-13, H-2 Labeled Proteins with High-Sensitivity. Journal of the American Chemical Society, 1994. **116**(26): p. 11655-11666.
- 96. Yamazaki, T., et al., An Hnca Pulse Scheme for the Backbone Assignment of N-15,C-13,H-2-Labeled Proteins - Application to a 37-Kda Trp Repressor DNA Complex. Journal of the American Chemical Society, 1994. **116**(14): p. 6464-6465.
- 97. Cai, M., et al., A simple and robust protocol for high-yield expression of perdeuterated proteins in Escherichia coli grown in shaker flasks. J Biomol NMR, 2016. **66**(2): p. 85-91.
- 98. Timothy H. Bayburt, Y.V.G., and Stephen G. Sligar, *Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins*. 2002.
- 99. Pavlidou, M., et al., Nanodiscs allow phage display selection for ligands to non-linear epitopes on membrane proteins. PLoS One, 2013. **8**(9): p. e72272.
- 100. Takeda, M., et al., *Construction and performance of an NMR tube with a sample cavity formed within magnetic susceptibility-matched glass.* J Magn Reson, 2011. **209**(2): p. 167-73.
- 101. Laemmli, U.K., *Cleavage of structural proteins during the assembly of the head of bacteriophage T4.* Nature, 1970. **227**(5259): p. 680-5.
- 102. Findeisen, M.B., T.; Berger, S.,, A 1HNMR thermometer suitable for cryoprobes. Magnetic Resonance in Chemistry, 2007. 45 (2): p. 175-178.
- 103. Nietlispach, D., Suppression of anti-TROSY lines in a sensitivity enhanced gradient selection
 TROSY scheme. Journal of Biomolecular NMR, 2005. 31(2): p. 161-166.
- 104. Yang, D. and L.E. Kay, *Improved 1HN-detected triple resonance TROSY-based experiments*. J Biomol NMR, 1999. **13**(1): p. 3-10.
- 105. Farrow, N.A., et al., Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry, 1994. **33**(19): p. 5984-6003.
- 106. Lakomek, N.A., J. Ying, and A. Bax, *Measurement of (1)(5)N relaxation rates in perdeuterated proteins by TROSY-based methods.* J Biomol NMR, 2012. **53**(3): p. 209-21.
- 107. Korzhnev, D.M., et al., *An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates.* J Am Chem Soc, 2002. **124**(36): p. 10743-53.

- 108. Gardner, K.H., M.K. Rosen, and L.E. Kay, *Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR*. Biochemistry, 1997. **36**(6): p. 1389-401.
- 109. Kharchenko, V., et al., *Dynamic 15N{1H} NOE measurements: a tool for studying protein dynamics.* Journal of Biomolecular NMR, 2020. **74**(12): p. 707-716.
- 110. Idiyatullin, D., V.A. Daragan, and K.H. Mayo, *Improved measurement of (15)N-[(1)H] NOEs in the presence of H(N)-water proton chemical exchange*. J Magn Reson, 2001. **153**(1): p. 138-43.
- 111. Gong, Q. and R. Ishima, *15N–{1H} NOE experiment at high magnetic field strengths*. Journal of Biomolecular NMR, 2007. **37**(2): p. 147-157.
- 112. Noggle, J.H. and R.E. Schirmer, *The nuclear Overhauser effect. Chemical application.* Academic Press, New York, 1971.
- 113. Möller, C., NMR-spektroskopische Charakterisierung der Dynamik des Autophagie-relevanten Proteins GABARAP auf verschiedenen Zeitskalen. Inaugural-Dissertation, 2015.
- 114. Pawley, N.H., et al., *An improved method for distinguishing between anisotropic tumbling and chemical exchange in analysis of 15N relaxation parameters.* J Biomol NMR, 2001. **20**(2): p. 149-65.
- Hardy, R. and R.L. Cottington, *Viscosity of deuterium oxide and water in the range 5 to 125 C.* Journal of research of the National Bureau of Standards, 1949. 42: p. 573.
- 116. Shen, Y. and A. Bax, Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. Journal of biomolecular NMR, 2013. **56**(3): p. 227-241.
- 117. Schweimer, J.K., Mehrdimensionale heteronukleare NMR Spektroskopie zur Bestimmung der Strukturen des Birkenpollenallergens Bet v 1, des Guillardia theta Rubredoxins und des [2Fe-2S] Ferredoxins aus Halobacterium salinarum. Dissertation zur Erlangung des Doktorgrades der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth, 2000.
- Schwieters, C.D., et al., *The Xplor-NIH NMR molecular structure determination package*. J Magn Reson, 2003. **160**(1): p. 65-73.
- 119. Laskowski, R.A., et al., AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR, 1996. **8**(4): p. 477-86.
- 120. Salzmann, M., et al., Improved sensitivity and coherence selection for [15N,1H]-TROSY elements in triple resonance experiments. J Biomol NMR, 1999. **15**(2): p. 181-4.
- 121. Cavanagh, J.F., W. J.; Palmer Iii, A. G.; Skelton, N. J., *Protein NMR spectroscopy: principles and practice.* Elsevier, 1995.
- Palmer, A.G., et al., Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. Journal of Magnetic Resonance (1969), 1991.
 93(1): p. 151-170.
- 123. Kay, L., P. Keifer, and T. Saarinen, *Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity.* Journal of the American Chemical Society, 1992. **114**(26): p. 10663-10665.

- 124. Schleucher, J., et al., *A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients.* Journal of Biomolecular NMR, 1994. **4**(2): p. 301-306.
- Cavanagh, J. and M. Rance, Suppression of cross-relaxation effects in TOCSY spectra via a modified DIPSI-2 mixing sequence. Journal of Magnetic Resonance (1969), 1992. 96(3): p. 670-678.
- 126. Zhang, O., et al., Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. Journal of Biomolecular NMR, 1994. **4**(6): p. 845-858.
- 127. Wagner, B., Sequenzspezifische Zuordnung der NMR-Seitenkettenresonanzen des Lipoproteins aus C. difficile. Bachelorarbeit, 2020.
- 128. Griesinger C., H.M., Marino J.P., Reft B., Richter C., Schwalbe H. , *Methods for the Determination of Torsion Angle Restraints in Biomacromolecules.* Biological Magnetic Resonance, 2002. **16**.
- 129. Mielke, S.P. and V.V. Krishnan, *Characterization of protein secondary structure from NMR chemical shifts.* Prog Nucl Magn Reson Spectrosc, 2009. **54**(3-4): p. 141-165.
- 130. Ramachandran, G.N., C. Ramakrishnan, and V. Sasisekharan, *Stereochemistry of polypeptide chain configurations*. J Mol Biol, 1963. **7**: p. 95-9.
- 131. Butts, C.P., et al., Interproton distance determinations by NOE--surprising accuracy and precision in a rigid organic molecule. Org Biomol Chem, 2011. **9**(1): p. 177-84.
- 132. Kienapfel, V., Strukturelle Charakterisierung des Lipoproteins aus C. difficile mittels NMR-Spektroskopie. Bachelorarbeit, 2019.
- Huang, X. and R. Powers, Validity of Using the Radius of Gyration as a Restraint in NMR Protein Structure Determination. Journal of the American Chemical Society, 2001. 123(16): p. 3834-3835.
- 134. López-Méndez, B. and P. Güntert, *Automated Protein Structure Determination from NMR Spectra*. Journal of the American Chemical Society, 2006. **128**(40): p. 13112-13122.
- 135. Morris, A.L., et al., Stereochemical quality of protein structure coordinates. Proteins, 1992.
 12(4): p. 345-64.

Abbreviations

Abbreviations

1D	One-dimensional
2D	Two-dimensional
3D	Three-dimensional
4D	Four-dimensional
ABC transporter	The ATP-Binding Cassette transporter
Atg	Autophagy-related
BMRB	Biological magnetic resonance data bank
CAMP	Cationic antimicrobial peptides
СМА	Chaperone-mediated autophagy
Cpr	Cationic antimicrobial peptide resistance
CSA	Chemical shift anisotropy
CV	Column volume
C-terminus	Carboxy-terminus
DD	Dipole-dipole
Dha	Didehydroalanine
Dhb	Didehydrobutyrine
DMPC	1,2-dimyristoyl-sn-glycero-3-phosphocholine
DNA	Deoxyribonucleic acid
DNAse	Deoxyribonuclease
DTT	Dithiothreitol
ε	Molar extinction coefficient
E. coli	Escherichia coli
EDTA	Ethylenediaminetetraacetic acid
ER	Endoplasmic reticulum
FID	Free Induction Decay
GABARAP	Gamma-aminobutyric acid receptor-associated protein
HSQC	Heteronuclear Single Quantum Correlation
IPTG	Isopropyl-β-D-thiogalaktopyranosid
LB	Lysogeny broth
MD	Molekulardynamik
MPB-PE	11,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[4-
	(pmaleimidophenyl)butyramide]
MSP	Membrane Scaffold Protein
MSP1D1Δ5	Membrane Scaffold Protein delta 5 α -helix
MWCO	Molecular weight cut-off
ND	Nanodisc

Abbreviations

N-Terminus	Amino-Terminus
NMR	Nuclear Magnetic Resonance
NOE	Nuclear Overhauser Effect
NOESY	Nuclear Overhauser Effect Spectroscopy
PAS	Phagophore assembly site
PDB	Protein Data Bank
PE	Phosphatidylethanolamine
RF	Radio Frequency
RMSD	Root Mean Square Deviation
SDS	Sodium dodecyl sulfate
SEC	Size exclusion chromatography
TALOS	Torsion angle likelihood obtained from shift and sequence similarity
TROSY	Transverse relaxation optimized spectroscopy
v/v	Volume per volume
UV	Ultraviolet
wt	Wildtype

The one- and three-letter code was used for amino acids:

Alanine	Ala A
Arginine	Arg R
Asparagine	Asn N
Aspartic acid	Asp D
Cysteine	Cys C
Glutamic acid	Glu E
Glutamine	Gln Q
Glycine	Gly G
Histidine	His H
Isoleucine	lle I
	11
Leucine	Leu L
Leucine Lysine	Leu L Lys K
Leucine Lysine Methionine	Leu L Lys K Met M
Leucine Lysine Methionine Phenylalanine	Leu L Lys K Met M Phe F
Leucine Lysine Methionine Phenylalanine Proline	Leu L Lys K Met M Phe F Pro P
Leucine Lysine Methionine Phenylalanine Proline Serine	Leu L Lys K Met M Phe F Pro P Ser S
Leucine Lysine Methionine Phenylalanine Proline Serine Threonine	Leu L Lys K Met M Phe F Pro P Ser S Thr T
Leucine Lysine Methionine Phenylalanine Proline Serine Threonine Tryptophan	Leu L Lys K Met M Phe F Pro P Ser S Thr T Trp W
Leucine Lysine Methionine Phenylalanine Proline Serine Threonine Tryptophan Tyrosine	Leu L Lys K Met M Phe F Pro P Ser S Thr T Trp W Tyr Y

Chemical shifts in ppm of the lipoprotein CD1348 assignment:

0	17	SER	CA	58.41	1086	101	PHE	N	115.53	
1	17	SER	HA	4.485	1087	101	PHE	HN	7.567	
2	17	SER	CB	63.9	1088	101	PHE	CA	57.77	
3	17	SER	HB2	3.856	1089	101	PHE	HA	4.196	
4	17	SER	HB1	3.856	1090	101	PHE	CB	38.55	
5	17	SER	C	174.61	1091	101	PHE	HB2	2.629	
5	18	SER	IN LINE	117.99	1092	101	PHE	HB1 CD1	2.956	
· ·	18	SER	HN	8.48b E 9 7	1093	101	PHE	CD1	132.8 6 119	
9	10	SER	LA HA	26.7	1094	101	PHE	CE1	130.876	
10	18	SER	CB	63.89	1096	101	PHE	HE1	7 376	
11	18	SER	HB2	3.897	1097	101	PHE	CZ	128.7	
12	18	SER	HB1	3.897	1098	101	PHE	HZ	7.665	
13	18	SER	С	175.01	1099	101	PHE	CE2	130.876	
14	19	GLY	N	110.9	1100	101	PHE	HE2	7.376	
15	19	GLY	HN	8.411	1101	101	PHE	CD2	132.8	
16	19	GLY	CA	45.34	1102	101	PHE	HD2	6.118	
17	19	GLY	HA2	3.961	1103	101	PHE	C	173.85	
18	19	GLY	HA1	3.961	1104	102	ASN	N	114.634	
19	19	GLY	C	173.84	1105	102	ASN	HN	8.458	
20	20	ALA	N	123.55	1106	102	ASN	CA	54.95	
21	20	ALA	HN	8.099	1107	102	ASN	HA	4.215	
22	20	ALA	LA	52.61	1108	102	ASN	CB	39.1	
24	20		CB	19 32	1110	102	ASN	HB1	3.075	
25	20	ALA	HB1	1.353	1111	102	ASN	CG	179.447	
26	20	ALA	HB2	1.353	1112	102	ASN	ND2	113.611	
27	20	ALA	HB3	1.353	1113	102	ASN	HD21	6.952	
28	20	ALA	С	177.74	1114	102	ASN	HD22	6.876	
29	21	MET	N	118.87	1115	102	ASN	C	174.88	
30	21	MET	HN	8.25	1116	103	GLY	N	103.077	
31	21	MET	CA	55.34	1117	103	GLY	HN	8.651	
32	21	MET	HA	4.394	1118	103	GLY	CA	45.45	
33	21	MET	CB	32.87	1119	103	GLY	HA2	3.458	
34	21	NET	HB2	1.925	1120	103	GLY	HA1	3.987	
36	21	MET	LQ1	31.925	1122	103	GLY I FI I	N	1/3.15	
37	21	MFT	HG2	2,442	1123	104	LEU	HN	7.187	
38	21	MFT	HG1	2.442	1124	104	LEU	CA	55.63	
39	21	MET	C	175.57	1125	104	LEU	HA	4.079	
40	22	ASP	N	121.16	1126	104	LEU	CB	41.42	
41	22	ASP	HN	8.143	1127	104	LEU	HB2	0.937	
42	22	ASP	CA	54.14	1128	104	LEU	HB1	0.969	
43	22	ASP	HA	4.569	1129	104	LEU	CG	25.69	
44	22	ASP	CB	41.2	1130	104	LEU	HG	1.424	
45	22	ASP	HB2	2.603	1131	104	LEU	CD1	25.35	
46	22	ASP	HB1	2.706	1132	104	LEU	HD11	-0.375	
47	22	ASP	C	175.92	1133	104	LEU	HD12	-0.375	
48	23	TYR	N	120.83	1134	104	LEU	HD13	-0.375	
49	23	TYR	HN	8.072	1135	104	LEU	CD2	22.8	
50	23	TYP	LA	58.01	1136	104	LEU	HD21	0.652	
51	23	TVP	HA CR	4.563	1137	104	LEU	HD22	0.652	
53	23	TYR	HB2	2 904	1138	104	LEU	C	177.4	
54	23	TYR	HB1	3.083	1140	105	ASP	N	121.2	
55	23	TYR	CD1	133.212	1141	105	ASP	HN	9.159	
56	23	TYR	HD1	7.084	1142	105	ASP	CA	55.23	
57	23	TYR	CE1	118.329	1143	105	ASP	HA	4.861	
58	23	TYR	HE1	6.829	1144	105	ASP	CB	43.39	
59	23	TYR	CE2	118.329	1145	105	ASP	HB2	2.68	
60	23	TYR	HE2	6.829	1146	105	ASP	HB1	2.741	
61	23	TYR	CD2	133.212	1147	105	ASP	C	175.67	
62	23	TYR	HD2	7.084	1148	106	MET	N	117.065	
63	23	TYR	C	175.79	1149	106	MET	HN	8.496	
64	24	SER	IN LINE	117.08	1150	106	MET	LA	54.62	
65	24	SER	HN CA	8.251	1151	106	MET	HA CP	5.115	
67	24	SER	НА	4 405	1152	106	MET	HB2	1 778	
68	24	SER	CB	63.92	1155	106	MET	HB1	1.844	
69	24	SER	HB2	3.838	1155	106	MET	CG	33.63	
70	24	SER	HB1	3.838	1156	106	MET	HG2	2.377	
71	24	SER	С	174.41	1157	106	MET	HG1	2.404	
72	25	ILE	N	121.865	1158	106	MET	CE	19.2	
73	25	ILE	HN	7.983	1159	106	MET	HE1	2.093	
74	25	ILE	CA	61.32	1160	106	MET	HE2	2.093	
75	25	ILE	HA	4.208	1161	106	MET	HE3	2.093	
77	20	ILE	LB	1 869	1163	100	GUU	C N	122.68	
78	25	ILE	CG1	27 31	1164	107	GLU	HN	9.029	
79	25	II F	HG12	1.177	1165	107	GLU	CA	54.73	
80	25	ILE	HG11	1.456	1166	107	GLU	HA	4.626	
81	25	ILE	CD1	13.06	1167	107	GLU	CB	33.09	
82	25	ILE	HD11	0.846	1168	107	GLU	HB2	1.889	
83	25	ILE	HD12	0.846	1169	107	GLU	HB1	2.074	
84	25	ILE	HD13	0.846	1170	107	GLU	CG	36.07	
85	25	ILE	CG2	17.54	1171	107	GLU	HG2	2.252	
86	25	ILE	HG21	0.897	1172	107	GLU	HG1	2.252	
87	25	ILE	HG22	0.897	1173	107	GLU	C	174.83	
68 80	25	ILE	HG23	0.697	1175	108	VAL	IN HIN	120.07	
90	25	SER	N	119.13	1176	108	VAL	CA	59.15	
91	26	SER	HN	8.254	1177	108	VAI	HA	5.223	
92	26	SER	CA	58.4	1178	108	VAL	CB	35.24	
93	26	SER	HA	4.452	1179	108	VAL	HB	1.785	
94	26	SER	CB	63.89	1180	108	VAL	CG2	19.18	
95	26	SER	HB2	3.848	1181	108	VAL	HG21	0.834	
96	26	SER	HB1	3.848	1182	108	VAL	HG22	0.834	
97	26	SER	C	174.44	1183	108	VAL	HG23	0.834	
98	27	ALA	N	126.09	1184	108	VAL	CG1	23.09	
99	27	ALA	HN	8.246	1185	108	VAL	HG11	0.797	
100	27	ALA	CA	52.72	1186	108	VAL	HG12	0.797	
101	27	ALA	HA	4.346	1187	108	VAL	HG13	0.797	
102	27	ALA	LB HP1	138	1188	108	VAL	C N	177.02	
105	27		HR2	1.30	1100	109	GLU	HN	9 027	
105	27	ALA	HB3	1.38	1191	109	GLU	CA	54.87	
106	27	ALA	C	177.67	1192	109	GLU	HA	4.629	
107	28	VAL	N	118.32	1193	109	GLU	CB	33.16	
108	28	VAL	HN	7.938	1194	109	GLU	HB2	1.838	

100	20	1/41	<i>C</i> 1	CO 40	1105	100	C111	1101	1.045	
109	28	VAL	LA	62.48	1195	109	GLU	HBI	1.945	
110	28	VAL	HA	4.079	1196	109	GLU	CG	36.122	
111	28	VAL	CB	32.73	1197	109	GLU	HG2	2.182	
112	28	VAL	HB	2.037	1198	109	GLU	HG1	2.182	
113	28	VAL	CG2	20.76	1199	109	GLU	C	173.11	
114	28	VAL	HG21	0.917	1200	110	VAL	N	125.4	
115	28	VAL	HG22	0.917	1201	110	VAL	HN	8 973	
115	20	VAL	LC22	0.017	1201	110	VAL	CA	61 70	
110	20	VAL	11025	0.517	1202	110	VAL	UA UA	4.250	
11/	28	VAL	CGI	21.16	1203	110	VAL	HA	4.356	
118	28	VAL	HG11	0.901	1204	110	VAL	CB	33.21	
119	28	VAL	HG12	0.901	1205	110	VAL	HB	2.089	
120	28	VAL	HG13	0.901	1206	110	VAL	CG2	21.59	
121	28	VAL	С	176.07	1207	110	VAL	HG21	0.855	
122	29	GLU	N	123.87	1208	110	VΔI	HG22	0.855	
122	20	GLU	LINI	0 222	1200	110	1/41	LC22	0.055	
123	2.9	GLU	C 1	8.555	1205	110	VAL	1102.5	21.62	
124	29	GLU	CA	56.53	1210	110	VAL	CG1	21.62	
125	29	GLU	HA	4.291	1211	110	VAL	HG11	0.855	
126	29	GLU	CB	30.34	1212	110	VAL	HG12	0.855	
127	29	GLU	HB2	1.94	1213	110	VAL	HG13	0.855	
128	29	GLU	HB1	2.059	1214	110	VAL	С	175.23	
129	29	GLU	CG	36.24	1215	111	LYS	N	129.15	
120	20	GLU	462	2 250	1215	111	1 VS	LIN	0 062	
130	2.9	GLU	1102	2.2.30	1210	111	LIS	CA	54.00	
131	29	GLU	HGI	2.258	121/	111	LYS	CA	54.09	
132	29	GLU	C	1/6.1/	1218	111	LYS	HA	4./2/	
133	30	LEU	N	123.67	1219	111	LYS	CB	30.84	
134	30	LEU	HN	8.211	1220	111	LYS	HB2	1.898	
135	30	LEU	CA	55.05	1221	111	LYS	HB1	1.97	
136	30	LEU	HA	4.387	1222	111	LYS	CG	24.09	
137	30	I FU	CB	42.3	1223	111	LYS	HG2	1.401	
120	20	1 511	LD2	1 5 9	1224	111	1 VS	HG1	1 202	
130	30	LEU	1102	1.58	1224	111	LIS	CD	1.303	
159	30	LEU	UD1	1.041	1225	111	LTS	CD UDD	28.00	
140	30	LEU	CG	27.01	1226	111	LYS	HD2	1.638	
141	30	LEU	HG	1.597	1227	111	LYS	HD1	1.638	
142	30	LEU	CD1	25.1	1228	111	LYS	CE	41.92	
143	30	LEU	HD11	0.894	1229	111	LYS	HE2	2.912	
144	30	LEU	HD12	0.894	1230	111	LYS	HE1	2.912	
145	30	I FU	HD13	0.894	1231	111	1 YS	c	176.73	
146	30	LELI	(D)	24 57	1232	112	GLU	N	124.29	
1/7	20	LEU	HD21	0.833	1232	112	GLU	HN	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
14/	20	LEU	1021	0.000	1224	112	GLU		0.000	
148	30	LEU	HD22	0.655	12.54	112	GLU	LA	00.52	
149	30	LEU	HD23	0.833	1235	112	GLU	HA	3.849	
150	30	LEU	С	177.225	1236	112	GLU	CB	29.61	
151	31	VAL	N	120.87	1237	112	GLU	HB2	2.049	
152	31	VAL	HN	8.048	1238	112	GLU	HB1	2.049	
153	31	VAI	CA	62.34	1239	112	GLU	CG	36.84	
154	31	VAL	нл	4 104	1240	112	GUU	HG2	2 256	
100	21	VAL	CP	22.02	1241	112	GLU	LIG1	2.200	
155	31	VAL	CB	33.02	1241	112	GLU	101	2.235	
156	31	VAL	HB	2.058	1242	112	GLU	C	1/9.18	
157	31	VAL	CG2	20.61	1243	113	LYS	N	118.21	
158	31	VAL	HG21	0.975	1244	113	LYS	HN	8.732	
159	31	VAL	HG22	0.975	1245	113	LYS	CA	58.42	
160	31	VAL	HG23	0.975	1246	113	LYS	HA	4.119	
161	31	VAL	CG1	21.16	1247	113	LYS	CB	31.72	
162	31	VAL	HG11	0.901	1248	113	LYS	HB2	1.801	
163	31	VΔI	HG12	0.901	1249	113	1.42	HB1	1 844	
164	31	VAL	HG13	0.901	1250	113	1.42	CG	24.8	
165	31	VAL	6	175.8	1250	113	LVS	HG2	1 451	
105	22	ACD		175.0	1251	113	LIVE	1102	1.451	
100	52	ASP	IN	124	1252	115	LTS	HGI	1.451	
167	32	ASP	HN	8.393	1253	113	LYS	CD	29.06	
168	32	ASP	CA	54.34	1254	113	LYS	HD2	1.68	
169	32	ASP	HA	4.628	1255	113	LYS	HD1	1.68	
170	32	ASP	CB	41.31	1256	113	LYS	CE	42.16	
171	32	ASP	HB2	2.607	1257	113	LYS	HE2	2.995	
172	32	ASP	HB1	2.709	1258	113	LYS	HE1	2,995	
173	32	ASP	С	176.35	1259	113	1 Y S	С	176.51	
174	33	SER	N	116.86	1260	114	ΔSP	N	115 56	
175	33	SER	HN	8 2/15	1260	114	ASP	HN	7 156	
176	22	CED	CA	E0 E0	1261	114	ASD	CA	E2 7E	
170	33	SEN	CA	1 400	1202	114	AGP	CA	1361	
177	33	SER	HA	4.408	1263	114	ASP	HA	4./61	
178	33	SER	CB	63.84	1264	114	ASP	CB	42.7	
179	33	SER	HB2	3.863	1265	114	ASP	HB2	2.306	
180	33	SER	HB1	3.909	1266	114	ASP	HB1	2.881	
181	33	SER	С	174.99	1267	114	ASP	С	174.59	
182	34	LYS	N	122.97	1268	115	ASN	N	116.01	
183	34	LYS	HN	8.385	1269	115	ASN	HN	7.966	
184	34	LYS	CA	56.84	1270	115	ASN	CA	54.4	
185	3/	1.42	нл	1 294	1271	115	ASN	HA	1 279	
186	2.	1 Ve	CB	32 73	1272	115	ACN	CP	37 94	
107	-+C A C	LIJ	100	1 740	1272	115	ADN	0	2 0 0 7	
100	-+C A C	LIJ	1102	1.044	1274	115	ADN	1102	2.00/	
100	54	LTS	ID1	1.644	1274	115	ASIN	HBI	2.959	
189	54	LTS	6	24./4	1275	115	ASIN	LG	1//.429	
190	34	LYS	HGZ	1.435	1276	115	ASN	ND2	111.966	
191	34	LYS	HG1	1.435	1277	115	ASN	HD21	7.564	
192	34	LYS	CD	29.07	1278	115	ASN	HD22	6.552	
193	34	LYS	HD2	1.678	1279	115	ASN	C	173.28	
194	34	LYS	HD1	1.678	1280	116	LEU	N	118.71	
195	34	LYS	CE	42.15	1281	116	LEU	HN	7.337	
196	34	LYS	HE2	2.997	1282	116	LEU	CA	54.27	
197	34	LYS	HF1	2.997	1283	116	I FU	HA	5.22	
109	34	IVS	C	176.96	1284	116	LEG	CR.	46.85	
100	24	CI U	N	120.00	1204	110	LEU	LD2	1 400	
122	30	GLU	IN LIKE	120.03	1200	110	LEU	ID2	1.409	
200	30	GLU		C1C.0	1207	110	LEU	LDT UDT	1.4/0	
201	35	GLU	CA	30.82	128/	110	LEU	0.5	27.40	
202	35	GLU	HA	4.284	1288	116	LEU	HG	1.296	
203	35	GLU	CB	30.2	1289	116	LEU	CD1	26.18	
204	35	GLU	HB2	1.942	1290	116	LEU	HD11	0.76	
205	35	GLU	HB1	2.058	1291	116	LEU	HD12	0.76	
206	35	GLU	CG	36.24	1292	116	LEU	HD13	0.76	
207	35	GLU	HG2	2.261	1293	116	LEU	CD2	24.47	
208	35	GLU	HG1	2.261	1294	116	LEU	HD21	0.763	
209	35	GLU	C	176.72	1295	116	LEU LEU	HD22	0.763	
203	32	CEP	N	116.4	1205	116	LEU	HD33	0.762	
210	20	SER	IN LIN	2 204	1207	110	100	C 11025	174.00	
211	36	SER	HN	8.204	129/	116	LEU	L	1/4.62	
212	36	SER	CA	58.49	1298	117	VAL	N	123.08	
213	36	SER	HA	4.412	1299	117	VAL	HN	8.33	
214	36	SER	CB	63.84	1300	117	VAL	CA	60.44	
215	36	SER	HB2	3.859	1301	117	VAL	HA	4.724	
216	36	SER	HB1	3.859	1302	117	VAL	CB	34.86	
217	36	SER	С	174.27	1303	117	VAL	HB	1.874	
218	37	ΔΙΔ	N	125.89	1304	117	VAL	(62	22.095	
210	10	ALA	IN LINE	123.05	1205	117	VAL	1102	22.020	
513	57	ALA	HIN C*	0.22	1305	11/	VAL	HG21	U.8/4	
220	3/	ALA	CA	52.56	1306	11/	VAL	HG22	U.874	
221	37	ALA	HA	4.354	1307	117	VAL	HG23	U.874	
222	37	ALA	CB	19.31	1308	117	VAL	CG1	22.936	
223	37	ALA	HB1	1.383	1309	117	VAL	HG11	0.9	
224	37	ALA	HB2	1.383	1310	117	VAL	HG12	0.9	
225	37	ALA	HB3	1.383	1311	117	VAL	HG13	0.9	
226	27	A1 A	c	177 56	1212	117	1/41	c	172 11	

0.07						110	1110		105 10	
227	38	VAL	N	119.42	1313	118	LYS	N	125.43	
228	38	VAL	HN	/.99	1314	118	LYS	HN	8.854	
229	38	VAL	CA	62.49	1315	118	LYS	CA	54.64	
230	38	VAL	HA CR	4.076	1316	118	LYS	HA CR	5.3/1	
231	38	VAL	НВ	2.03	1318	110	LTS	LB HB2	1677	
232	38	VAL	CG2	20.76	1318	118	LIS	HB1	1.677	
234	38	VAL	HG21	0.933	1320	118	LYS	CG	25.28	
235	38	VAL	HG22	0.933	1321	118	LYS	HG2	1.342	
236	38	VAL	HG23	0.933	1322	118	LYS	HG1	1.426	
237	38	VAL	CG1	21.16	1323	118	LYS	CD	29.76	
238	38	VAL	HG11	0.901	1324	118	LYS	HD2	1.449	
239	38	VAL	HG12	0.901	1325	118	LYS	HD1	1.546	
240	38	VAL	HG13	0.901	1326	118	LYS	CE	41.79	
241	38	VAL	C	176.1	1327	118	LYS	HE2	2.588	
242	39	VAL	N	124.79	1328	118	LYS	HE1	2.687	
243	39	VAL	HN	8.14	1329	118	LYS	C	175.28	
244	39	VAL	CA	62.36	1330	119	ILE	N	126.02	
245	39	VAL	HA	4.08	1331	119	ILE	HN	9.423	
246	39	VAL	CB	32.77	1332	119	ILE	CA	59.12	
247	39	VAL	HB	2.028	1333	119	ILE	HA	4.953	
248	39	VAL	CG2	20.61	1334	119	ILE	CB	40.52	
249	39	VAL	HG21	0.915	1335	119	ILE	HB	1./12	
250	39	VAL	HG22	0.915	1336	119	ILE	CG1	28.18	
251	39	VAL	HGZ3	0.915	1337	119	ILE	HG12	0.995	
252	29	VAL	LG11	21.10	1220	119	ILE	CD1	14.30	
253	39	VAL	HG12	0.901	1335	119	ILE	HD11	0 702	
255	39	VAL	HG13	0.901	1340	119	ILE	HD12	0.702	
255	39	VAL	015	175.85	1342	119	ILE	HD13	0.702	
257	40	LYS	N	126.39	1343	119	II F	CG2	17.44	
258	40	LYS	HN	8.389	1344	119	ILE	HG21	0.724	
259	40	LYS	CA	56.15	1345	119	ILE	HG22	0.724	
260	40	LYS	HA	4.33	1346	119	ILE	HG23	0.724	
261	40	LYS	CB	33.19	1347	119	ILE	С	173.78	
262	40	LYS	HB2	1.746	1348	120	ASN	N	125.2	
263	40	LYS	HB1	1.835	1349	120	ASN	HN	8.882	
264	40	LYS	CG	24.7	1350	120	ASN	CA	51.35	
265	40	LYS	HG2	1.415	1351	120	ASN	HA	5.363	
266	40	LYS	HG1	1.415	1352	120	ASN	CB	41.17	
267	40	LYS	CD	29.07	1353	120	ASN	HB2	2.512	
268	40	LYS	HD2	1.679	1354	120	ASN	HB1	2.512	
269	40	LYS	HD1	1.679	1355	120	ASN	CG	175.596	
270	40	LYS	CE	42.13	1356	120	ASN	ND2	111.693	
271	40	LYS	HE2	2.985	1357	120	ASN	HD21	7.391	
272	40	LYS	HEI	2.985	1358	120	ASIN	HD22	0.510	
275	40	LTS		170.104	1359	120	ASIN		174.01	
274	41	LYS	IN LIN	123.86	1360	121	LEU	IN LINE	126.16	
275	41	LTS	CA	6.429 EC 34	1262	121	LEU		6.000	
270	41	LIS	UA UA	4 2 2 0	1302	121	LEU	UA UA	34.72	
277	41	LIS	CB	33.24	1364	121	LEU	CB	38.67	
279	41	LYS	HB2	1.746	1365	121	LEU	HB2	-0.897	
280	41	LYS	HB1	1.835	1366	121	LEU	HB1	1.423	
281	41	LYS	CG	24.7	1367	121	LEU	CG	25.44	
282	41	LYS	HG2	1.423	1368	121	LEU	HG	1.134	
283	41	LYS	HG1	1.423	1369	121	LEU	CD1	24.98	
284	41	LYS	CD	29.08	1370	121	LEU	HD11	0.024	
285	41	LYS	HD2	1.678	1371	121	LEU	HD12	0.024	
286	41	LYS	HD1	1.678	1372	121	LEU	HD13	0.024	
287	41	LYS	CE	42.11	1373	121	LEU	CD2	21.86	
288	41	LYS	HE2	2.993	1374	121	LEU	HD21	-0.393	
289	41	LYS	HE1	2.993	1375	121	LEU	HD22	-0.393	
290	41	LYS	C	176.27	1376	121	LEU	HD23	-0.393	
291	42	ASP	N	122.09	1377	121	LEU	C	175.02	
292	42	ASP	HN	8.415	1378	122	ILE	N	123.99	
293	42	ASP	CA	54.63	1379	122	ILE	HN	7.703	
294	42	ASP	HA	4.571	1380	122	ILE	CA	59.39	
295	42	ASP	CB	41.16	1381	122	ILE	HA	4.404	
296	42	ASP	HBZ	2.605	1382	122	ILE	CB	39.31	
297	42	ASP	HBI	2.705	1383	122	ILE	HB CC1	1.839	
298	42	GUU	N	170.47	1304	122	ILE	LG12	1 1 67	
300	43	GUI	HN	8.45	1385	122	ILE	HG11	1.107	
301	43	GLU	CA	56.97	1387	122	ILE	CD1	11.55	
302	43	GLU	НΔ	4 2 3 5	1388	122	ILE	HD11	0.652	
303	43	GLU	CB	30.28	1389	122	ILE	HD12	0.652	
304	43	GLU	HB2	1.932	1390	122	ILE	HD13	0.652	
305	43	GLU	HB1	2.069	1391	122	ILE	CG2	17.52	
306	43	GLU	CG	36.24	1392	122	ILE	HG21	0.935	
307	43	GLU	HG2	2.258	1393	122	ILE	HG22	0.935	
308	43	GLU	HG1	2.258	1394	122	ILE	HG23	0.935	
309	43	GLU	C	176.435	1395	122	ILE	C	176.74	
310	44	ASP	N	120.96	1396	123	GLU	N	127.28	
311	44	ASP	HN	8.301	1397	123	GLU	HN	8.834	
312	44	ASP	CA	54.59	1398	123	GLU	LA	54.01	
214	44	ASP		4.572	1400	175	GLU	CP CP	2,000	
315	44	ASP	LD HR7	41.10	1/01	123	GLU	LD HR7	1 9/10	
316	44	ΔSP	HR1	2.706	1402	123	GUI	HR1	2.368	
317	44	ASP	C	176.13	1403	123	GLU	CG	34.2	
318	45	ALA	N	124.26	1404	123	GLU	HG2	2.724	
319	45	ALA	HN	8.08	1405	123	GLU	HG1	2.819	
320	45	ALA	CA	52.61	1406	124	PRO	CA	62.71	
321	45	ALA	HA	4.298	1407	124	PRO	HA	4.638	
322	45	ALA	CB	19.15	1408	124	PRO	CB	32.69	
323	45	ALA	HB1	1.387	1409	124	PRO	HB2	2.192	
324	45	ALA	HB2	1.387	1410	124	PRO	HB1	2.444	
325	45	ALA	HB3	1.387	1411	124	PRO	CG	27.36	
326	45	ALA	L NI	1//./5	1412	124	PRO	HG2	2.156	
327	40	LYS	IN LINE	120.50	1415	124	PRU	HGI	2.164	
320	40	LTD		0.220 56.45	1/15	124	PRO	LD HD3	4 105	
330	46	I VS	нд	4,293	1416	124	PRO	HD1	4.247	
330	40	L I J	CR	33.06	1410	124	PRO	C	176 74	
332	46	LYS	HB2	1.751	1418	125	ASP	N	120.82	
333	46	LYS	HB1	1.839	1419	125	ASP	HN	8.491	
334	46	LYS	CG	24.7	1420	125	ASP	CA	55.11	
335	46	LYS	HG2	1.428	1421	125	ASP	HA	4.498	
336	46	LYS	HG1	1.428	1422	125	ASP	CB	41.19	
337	46	LYS	CD	29.05	1423	125	ASP	HB2	2.699	
338	46	LYS	HD2	1.674	1424	125	ASP	HB1	2.785	
339	46	LYS	HD1	1.674	1425	125	ASP	С	176.25	
340	46	LYS	CE	42.15	1426	126	LYS	N	117.96	
341	46	LYS	HE2	2.996	1427	126	LYS	HN	7.697	
342	46	LYS	HE1	2.996	1428	126	LYS	CA	55.24	
343	46	LYS	С	176.77	1429	126	LYS	HA	4.422	
344	47	GLU	N	121.82	1430	126	LYS	CB	33.31	

245	47	CUU		0.376	1.401	120	11/0	110.2	1 745	
345	4/	GLU	HN	8.376	1431	126	LYS	HB2	1.745	
346	47	GLU	CA	56.69	1432	126	LYS	HB1	1.835	
347	47	GLU	HA	4.285	1433	126	LYS	CG	24.31	
348	47	GLU	CB	30.3	1434	126	LYS	HG2	1.407	
349	47	GLU	HB2	1.942	1435	126	LYS	HG1	1.407	
350	47	GLU	HB1	2.056	1436	126	LYS	CD	29.08	
351	47	GLU	CG	36.25	1437	126	LYS	HD2	1.68	
352	47	GLU	HG2	2.258	1438	126	LYS	HD1	1.68	
353	47	GLU	HG1	2.258	1439	126	LYS	CE	42.13	
354	47	GLU	С	176.66	1440	126	LYS	HE2	3.002	
355	48	GLU	N	122.32	1441	126	LYS	HE1	3.002	
356	48	GLU	HN	8.503	1442	126	LYS	C	175.78	
357	48	GLU	CA	56.82	1443	127	LYS	N	121 71	
358	48	GLU	нл	1 358	1444	127	175	HN	8 301	
250	40	GLU	CP	20.2	1445	127	IVC	CA	67.66	
359	40	GLU	LIDO	1.052	1445	127	LIS	CA UA	4.115	
360	46	GLU	HB2	1.952	1440	127	LTS	DA CD	4.115	
361	48	GLU	HBI	2.069	1447	127	LYS	CB	32.09	
362	48	GLU	CG	36.25	1448	127	LYS	HB2	1.797	
363	48	GLU	HG2	2.266	1449	127	LYS	HB1	1.797	
364	48	GLU	HG1	2.266	1450	127	LYS	CG	24.74	
365	48	GLU	C	176.94	1451	127	LYS	HG2	1.428	
366	49	THR	N	115.05	1452	127	LYS	HG1	1.428	
367	49	THR	HN	8.259	1453	127	LYS	CD	29.07	
368	49	THR	CA	62.37	1454	127	LYS	HD2	1.68	
369	49	THR	HA	4.377	1455	127	LYS	HD1	1.68	
370	49	THR	CB	69.7	1456	127	LYS	CE	42.16	
371	49	THR	HB	4.271	1457	127	LYS	HE2	2,993	
372	49	THR	CG2	21 71	1458	127	LYS	HE1	2 993	
373	19	THR	HG21	1 226	1/59	127	175	0	176 75	
274	40	TUP	4622	1 226	1450	120	CED	N	110 52	
374	49	TUD	11022	1.220	1400	120	SEN	IN LINE	119.55	
375	49	TUD	rid25	175.15	1401	120	SEN	CA	6.436	
370	49			1/5.15	1462	120	SER	LA	57.12	
377	50	THR	N	115.965	1463	128	SER	HA	4.66	
378	50	THR	HN	8.13	1464	128	SER	CB	64.28	
379	50	THR	CA	62.43	1465	128	SER	HB2	3.877	
380	50	THR	HA	4.348	1466	128	SER	HB1	3.935	
381	50	THR	CB	69.7	1467	128	SER	C	174.66	
382	50	THR	HB	4.271	1468	129	ARG	N	123.02	
383	50	THR	CG2	21.72	1469	129	ARG	HN	8.642	
384	50	THR	HG21	1.229	1470	129	ARG	CA	57.99	
385	50	THR	HG22	1.229	1471	129	ARG	HA	4.244	
386	50	THR	HG23	1 2 2 9	1472	129	ARG	CB	30.8	
387	50	THR	C	175	1473	129	ARG	HR2	1.886	
200	50	CED	N	117.00	1474	120	ANG	1102	1.000	
300	51	SER	IN LINE	0.201	1474	129	ANG	001	27.4	
309	51	SER		6.501	1475	129	ANG	LG UCD	27.4	
390	51	SER	CA	20.02	1470	129	ANG	HGZ	1.007	
391	51	SER	HA	4.415	1477	129	ARG	HGI	1.667	
392	51	SER	CB	63.68	1478	129	ARG	CD	43.25	
393	51	SER	HB2	3.861	1479	129	ARG	HD2	3.205	
394	51	SER	HB1	3.916	1480	129	ARG	HD1	3.205	
395	51	SER	C	174.76	1481	129	ARG	C	175.88	
396	52	LYS	N	122.73	1482	130	VAL	N	111.82	
397	52	LYS	HN	8.203	1483	130	VAL	HN	7.466	
398	52	LYS	CA	56.52	1484	130	VAL	CA	59.16	
399	52	LYS	HA	4.309	1485	130	VAL	HA	4.829	
400	52	LYS	CB	33.06	1486	130	VAL	CB	35.91	
401	52	LYS	HB2	1.746	1487	130	VAL	HB	1.935	
402	52	LYS	HB1	1.835	1488	130	VAI	CG2	19.44	
403	52	LYS	CG	24.7	1489	130	VAL	HG21	0.825	
404	52	LYS	HG2	1 / 36	1400	130	VAL	HG21	0.825	
404	52	LIJ	HG1	1.430	1490	120	VAL	1022	0.825	
405	52	LTS	HG1	1.928	1491	130	VAL	HG25	0.825	
406	52	LYS	CD	29.05	1492	130	VAL	CG1	21.69	
407	52	LYS	HD2	1.674	1493	130	VAL	HG11	0.818	
408	52	LYS	HD1	1.674	1494	130	VAL	HG12	0.818	
409	52	LYS	CE	42.16	1495	130	VAL	HG13	0.818	
410	52	LYS	HE2	2.989	1496	130	VAL	C	174.73	
411	52	LYS	HE1	2.989	1497	131	SER	N	117.24	
412	52	LYS	C	176.58	1498	131	SER	HN	9.492	
413	53	MET	N	120.88	1499	131	SER	CA	56.8	
414	53	MET	HN	8.214	1500	131	SER	HA	4.761	
415	53	MET	CA	55.68	1501	131	SER	CB	66.8	
416	53	MET	HA	4.46	1502	131	SER	HB2	3.883	
417	53	MET	CB	32.77	1503	131	SER	HB1	4.492	
418	53	MET	HB2	2.011	1504	131	SER	С	175.04	
419	53	MFT	HB1	2.083	1505	132	TRP	N	126.25	
420	53	MET	CG	32.09	1506	132	TRP	HN	10.955	
421	53	MET	HG2	2 517	1507	132	TRP	CΔ	61.62	
422	55	MET	HG1	2.517	1509	122	TPD	ЦА	4 445	
422	53	MET	C	176.28	1509	132	TRD	CB	29.19	
423	55	ILE	N	121 74	1510	122	TPD	LD2	2 70	
125	54	II F	HN	8 086	1511	132	TRD	HR1	2 251	
426	54	II F	CΔ	61 33	1512	132	TRP	CD1	126 691	
427	54	II F	нл	4 1 45	1513	122	TRD	HD1	6 951	
122	54	II F	CR	38 83	1514	132	TRD	NE1	120.62	
120	54	II F	HR	1.863	1515	132	TRD	HE1	9 537	
430	54	II F	CG1	2.305	1516	132	TRD	(7)	115 072	
431	54	II F	HG12	1 182	1517	132	TRP	H70	6 772	
431	54	11.5	LC11	1.102	1510	122	TPD	CU2	124 200	
432	54	ILE	HGII	1.459	1518	132	IKP	CH2	124.299	
433	54	ILE	CDI	12.95	1213	132	IKP	HHZ CTC	2.095	
434	54	ILE	HD11	0.848	1520	132	IRP	CZ3	122.256	
435	54	ILE	HD12	U.848	1521	132	TRP	HZ3	5.865	
436	54	ILE	HD13	0.848	1522	132	TRP	CE3	118.552	
437	54	ILE	CG2	17.52	1523	132	TRP	HE3	7.068	
438	54	ILE	HG21	0.894	1524	132	TRP	C	180.07	
439	54	ILE	HG22	0.894	1525	133	LYS	N	117.6	
440	54	ILE	HG23	0.894	1526	133	LYS	HN	8.795	
441	54	ILE	C	176.02	1527	133	LYS	CA	60.11	
442	55	ASN	N	122.42	1528	133	LYS	HA	3.62	
443	55	ASN	HN	8.48	1529	133	LYS	CB	32.23	
444	55	ASN	CA	53.27	1530	133	LYS	HB2	1.753	
445	55	ASN	HA	4.762	1531	133	LYS	HB1	2.148	
446	55	ASN	CB	38.97	1532	133	LYS	CG	23.96	
447	55	ASN	HB2	2.76	1533	133	LYS	HG2	1.376	
448	55	ASN	HB1	2,866	1534	133	LYS	HG1	1.404	
449	55	ΔSN		177 112	1535	133	175	CD	29.15	
450	55	ASN	ND2	112 664	1536	122	176	HD3	1 757	
451	55	ASN	HD21	7 525	1537	122	IVS	HD1	1 757	
452	55	ASN	HD22	6.205	1538	122	IVS	CE	42.16	
AE0	55	ACN	r	175 11	1520	100	i Ve	UE2	2.10	
400	55	ADIN		110.11	1539	100	LID	TE2	2.075	
454	56	SER	IN	110.40	1540	133	LTS	HEI	3.073	
455	56	SER	HN	8.206	1541	133	LYS	C	177.03	
456	56	SER	CA	58.53	1542	134	ASP	N	112.36	
457	56	SER	HA	4.42	1543	134	ASP	HN	7.796	
458	56	SER	CB	63.85	1544	134	ASP	CA	56.02	
459	56	SER	HB2	3.863	1545	134	ASP	HA	4.647	
460	56	SER	HB1	3.916	1546	134	ASP	CB	41.45	
461	56	SER	С	174.32	1547	134	ASP	HB2	2.477	

bb000 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
BAR D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>	463	57	LYS	HN	8.248	1549	134	ASP	C	177.49
bBDDD <thd< th="">DDDDD<thd< td=""><td>464</td><td>57</td><td>LYS</td><td>CA</td><td>56.26</td><td>1550</td><td>135</td><td>ASP</td><td>N</td><td>115.58</td></thd<></thd<>	464	57	LYS	CA	56.26	1550	135	ASP	N	115.58
ActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionActionDescriptionDescriptionDescriptionDescriptionDescriptionDescriptionAction <t< td=""><td>465</td><td>57</td><td>LYS</td><td>HA</td><td>4.355</td><td>1551</td><td>135</td><td>ASP</td><td>HN</td><td>7.567</td></t<>	465	57	LYS	HA	4.355	1551	135	ASP	HN	7.567
APD7U30U30U30U30U30U30U30U40U30U30U40U30U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U40U30U30U40U30	466	57	LYS	CB	33.11	1552	135	ASP	CA	56.29
BoxCorrCo	467	57	LYS	HB2	1.747	1553	135	ASP	HA	4.661
bes D No NO<	468	57	LYS	HB1	1.834	1554	135	ASP	CB	42.89
100 101 102 102 104 104 105 105 105 105 105 105 105 105 101 101 102 102 101 102 101 101 102 101 101 101 102 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101 101	469	57	LYS	CG	24 72	1555	135	ΔSP	HB2	1 797
171 171 172 <td>470</td> <td>57</td> <td>LVS</td> <td>HG2</td> <td>1 /3</td> <td>1556</td> <td>135</td> <td>ASP</td> <td>HB1</td> <td>2 734</td>	470	57	LVS	HG2	1 /3	1556	135	ASP	HB1	2 734
100 00 Abs 100	470	57	LIVE	1102	1.40	1550	135	450	C	170 120
100 100 <td>471</td> <td>57</td> <td>LTS</td> <td>HG1</td> <td>1.45</td> <td>1557</td> <td>135</td> <td>ASP</td> <td>C N</td> <td>1/0.125</td>	471	57	LTS	HG1	1.45	1557	135	ASP	C N	1/0.125
	472	57	LTS	CD	29.05	1556	130	TTR	IN	113.95
100 100 <td>473</td> <td>57</td> <td>LYS</td> <td>HD2</td> <td>1.676</td> <td>1559</td> <td>136</td> <td>TYR</td> <td>HN</td> <td>7.374</td>	473	57	LYS	HD2	1.676	1559	136	TYR	HN	7.374
DD DD <thdd< th=""> DD DD DD<!--</td--><td>474</td><td>57</td><td>LYS</td><td>HD1</td><td>1.676</td><td>1560</td><td>136</td><td>TYR</td><td>CA</td><td>60.68</td></thdd<>	474	57	LYS	HD1	1.676	1560	136	TYR	CA	60.68
1/27 1/2 <td>475</td> <td>57</td> <td>LYS</td> <td>CE</td> <td>42.1</td> <td>1561</td> <td>136</td> <td>TYR</td> <td>HA</td> <td>4.888</td>	475	57	LYS	CE	42.1	1561	136	TYR	HA	4.888
177 27 170	476	57	LYS	HE2	2.987	1562	136	TYR	CB	41.12
184 195 <td>477</td> <td>57</td> <td>LYS</td> <td>HE1</td> <td>2.987</td> <td>1563</td> <td>136</td> <td>TYR</td> <td>HB2</td> <td>2.994</td>	477	57	LYS	HE1	2.987	1563	136	TYR	HB2	2.994
19 9	478	57	LYS	С	176.36	1564	136	TYR	HB1	3.951
No. No. <td>479</td> <td>58</td> <td>LVS</td> <td>N</td> <td>173.71</td> <td>1565</td> <td>136</td> <td>TVR</td> <td>CD1</td> <td>133/38</td>	479	58	LVS	N	173.71	1565	136	TVR	CD1	133/38
BB DB DB <thdb< th=""> DB DB DB<!--</td--><td>47.5</td><td>50</td><td>LIVE</td><td>LINI</td><td>9.501</td><td>1505</td><td>130</td><td>TVD</td><td>UD1</td><td>7.070</td></thdb<>	47.5	50	LIVE	LINI	9.501	1505	130	TVD	UD1	7.070
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.	480	50	LTS		6.591	1500	130	TIN	HU1	7.076
Ale Sa Do O O Sa Da Da Da Da Da Da Ale D <thd< th=""> <thd< th=""> <thd< th=""> <th< td=""><td>481</td><td>58</td><td>LYS</td><td>CA</td><td>56.26</td><td>1567</td><td>136</td><td>TYR</td><td>CEI</td><td>119.094</td></th<></thd<></thd<></thd<>	481	58	LYS	CA	56.26	1567	136	TYR	CEI	119.094
Hats 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 18 19 18 1	482	58	LYS	HA	4.456	1568	136	TYR	HE1	6.304
bit bit< bit bit bit bit bit bit bit	483	58	LYS	CB	33.13	1569	136	TYR	CE2	119.094
AFESADDD	484	58	LYS	HB2	1.758	1570	136	TYR	HE2	6.304
4683333343353C34713621371381402200468331371371381371381381381381384693313713713813813813813813813846013813713713813	485	58	LYS	HB1	1.84	1571	136	TYR	CD2	133.438
b2b2b25b25b26b272b26b78b78cb254446161551601661671771701606.45.44440161551601681771771601605.4444116155170178177170160170170170442161571701701701701701701701701704441615717017017017017017017017017044417170170170170170170170170170170445170170170170170170170170170170170446170170170170170170170170170170170447170170170170170170170170170170170448170170170170170170170170170170170170450170170170170170170170170170170170450170170170170170170170170170170170170450170170170170170170 <t< td=""><td>486</td><td>58</td><td>LYS</td><td>CG</td><td>24.72</td><td>1572</td><td>136</td><td>TYR</td><td>HD2</td><td>7.076</td></t<>	486	58	LYS	CG	24.72	1572	136	TYR	HD2	7.076
Hest No. Hest Long Long <thlong< th=""> <thlong< th=""> Long <thlon< td=""><td>487</td><td>58</td><td>1.85</td><td>HG2</td><td>1.426</td><td>1573</td><td>136</td><td>TYR</td><td>C</td><td>176.86</td></thlon<></thlong<></thlong<>	487	58	1.85	HG2	1.426	1573	136	TYR	C	176.86
base 12 1	188	58	1.42	HG1	1.426	1574	137	LEU	N	118.41
base base base base base base base base 40 18 105 17 107 100 100 102 102 40 18 105 12 208 107 107 100 102 102 40 105 12 208 107 100 100 102 102 40 105 115 115 102 100	189	58	LVS	CD	29.06	1575	137	LEU	HN	8 332
No. No. <td>400</td> <td>50</td> <td>LID</td> <td>LIDO</td> <td>1 601</td> <td>1575</td> <td>137</td> <td>LEU</td> <td>CA</td> <td>53.532</td>	400	50	LID	LIDO	1 601	1575	137	LEU	CA	53.532
1001011	490	50	LIS	LID1	1.001	1570	137	LEU	LA	4.67
andbitcho1.3.	491	58	LYS	HDI	1.681	1577	137	LEU	HA	4.67
848 848 195 195 197 <th197< th=""> <th197< th=""> <th197< th=""></th197<></th197<></th197<>	492	58	LYS	CE	42.16	1578	137	LEU	CB	41
948 95 105 112 128 137 LU 105 1271 948 93 118 N 1151 1152 1152 117 LU 617 1363 947 93 118 N 8420 1232 117 LU 610 1363 948 93 118 N 8420 123 117 LU 6213 1234 950 118 C 7.44 1286 137 LU 6213 0.234 951 118 <	493	58	LYS	HE2	2.998	1579	137	LEU	HB2	1.659
480 58 197 LBJ 197 LBJ Cit 257 480 59 1188 N N 1021 1231 1121 1121 0.111 0.131 480 59 1188 N 0.121 1121 1121 0.121 0.131 480 59 1188 N 0.02 1238 1388 137 LU 0.02 1239 500 59 1188 N 0.02 1238 1238 127 LU 0.02 1239 500 59 1188 1022 1138 1209 133 AAM N 7277 500 1188 1022 1138 1209 133 AAM N 7233 500 1188 AAM N N 7234 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238 1238	494	58	LYS	HE1	2.998	1580	137	LEU	HB1	1.721
bbs 95 176 N 15.12 195. 197. LU 195. 15.33 486 59 176 M A 20.35 11.37 LU 10.10 10.12 10.38 480 59 176 16.4 13.74 LU 10.10 10.12 10.38 500 59 176 16.4 13.74 LU 10.10 10.12 10.38 500 59 176 16.23 13.18 13.98 13.7 LU 10.20 0.77 505 59 176 16.23 13.18 13.98 13.38 40.34 44 23.28 505 59 176 16.4 17.11 13.82 13.38 40.34 44 23.28 505 64 176 18.4 13.82 13.38 40.34 44.87 505 64 176 18.23 13.38 40.34 44.87 13.34 40.34 <t< td=""><td>495</td><td>58</td><td>LYS</td><td>C</td><td>176.34</td><td>1581</td><td>137</td><td>LEU</td><td>CG</td><td>26.57</td></t<>	495	58	LYS	C	176.34	1581	137	LEU	CG	26.57
180 90 188 NR 6.20 158 137 Lib 0.10 0.13 0.331 900 90 188 6.4 6.74 158 137 Lib 0.01 0.31 0.331 900 90 188 6.7 147 137 Lib 0.031 0.331 900 90 188 6.7 137 Lib 0.032 0.031 900 188 162 1318 136 137 Lib 0.022 0.077 900 188 162 1318 139 138 ANN 148 233 900 188 182 1318 ANN 188 234 135 900 188 ANN 182 233 ANN 180 234 901 188 ANN 143 ANN 143 234 901 188 ANN 140 234 134 ANN 140 </td <td>496</td> <td>59</td> <td>THR</td> <td>N</td> <td>115.12</td> <td>1582</td> <td>137</td> <td>LEU</td> <td>HG</td> <td>1.553</td>	496	59	THR	N	115.12	1582	137	LEU	HG	1.553
Here OP Total Diff Diff Diff Diff Diff 609 30 Thit OR 2008 137 UU 003 137 502 30 Thit CR 2008 137 UU CR 137 503 50 Thit CR 2007 131 138 139 130 4007 0.007 503 50 Thit RC 131 138 139 130 4007 0.077 506 60 Thit RC 1318 138 4008 N 1323 507 66 Thit RC 1318 4008 N 1418 1318 508 60 Thit N 4057 1338 4008 N 1418 1418 503 60 Thit N 4057 1338 4008 N 1418 1418 513 60 Thit	497	59	THR	HN	8.203	1583	137	I FU	CD1	25.51
Bey Des Des <thdes< th=""> <thdes< th=""> <thdes< th=""></thdes<></thdes<></thdes<>	498	59	THR	CA	60.73	1584	137	I FU	HD11	0.191
box box <td>499</td> <td>50</td> <td>THR</td> <td>ΗA</td> <td>4 888</td> <td>1585</td> <td>137</td> <td>L EU</td> <td>HD12</td> <td>0 191</td>	499	50	THR	ΗA	4 888	1585	137	L EU	HD12	0 191
Sol Sol <td>500</td> <td>50</td> <td>THR</td> <td>CR CR</td> <td>71 /1</td> <td>1586</td> <td>137</td> <td>LEU</td> <td>HD12</td> <td>0.191</td>	500	50	THR	CR CR	71 /1	1586	137	LEU	HD12	0.191
1.00 1.01 <th< td=""><td>500</td><td>73</td><td></td><td></td><td>/ 1.41</td><td>1500</td><td>137</td><td>100</td><td>1012</td><td>21.70</td></th<>	500	73			/ 1.41	1500	137	100	1012	21.70
no. sp mm Lin Lin <thlin< th=""> <thlin< th=""> <thlin< th=""></thlin<></thlin<></thlin<>	201	23	TUS		4.070	1500	107	LEU	LID2	21./7
bbs bbs <td>502</td> <td>29</td> <td>THK</td> <td>CG2</td> <td>21.03</td> <td>1000</td> <td>137</td> <td>LEU</td> <td>HU21</td> <td>0.707</td>	502	29	THK	CG2	21.03	1000	137	LEU	HU21	0.707
bbs bbs <td>503</td> <td>59</td> <td>THR</td> <td>HG21</td> <td>1.118</td> <td>1589</td> <td>137</td> <td>LEU</td> <td>HD22</td> <td>0.707</td>	503	59	THR	HG21	1.118	1589	137	LEU	HD22	0.707
bbs bbs trill trill trill trill trill trill trill 200 00 THR K C 1214 1202 138 AANN N 11001 200 00 THR K Abox 1244 138 AANN CA 2246 1210 00 THR CA 4254 1266 138 AANN CA 2246 1211 00 THR HA 4257 138 AANN CA 2346 1212 60 THR HG2 12223 1296 138 AANN MC 11355 1214 HH HG23 1129 1802 138 AANN HO2 11355 1214 HH HG23 1129 1802 138 AANN HO2 13154 1214 HH HG23 1129 1802 139 AUU N 12931 1214	504	59	THR	HG22	1.118	1590	137	LEU	HD23	0.707
B66 S9 THR C TA1.43 1392 138 AM N 116.01 S07 6.6 THR N N 134.35 1393 138 AM N 14.04 7.23 S08 6.6 THR NA 6.37.41 1595 138 AM N 16.0 7.0.4 S11 6.6 THR NA 1.0.57.21 138 AM N 16.0 7.0.5 S14 6.6 THR CC2 1.22.31 139 138 AM NC2 7.40 S14 6.6 THR HC2 1.139 130.0 138 AM NC2 7.40 S14 6.6 THR HC2 1.7.25 130 GU N 133.31 S15 6.6 THR HC2 1.7.25 130 GU N 133.31 S15 6.1 THR HC2 1.7.27 130 GU <	505	59	THR	HG23	1.118	1591	137	LEU	C	175.7
S57 60 ThR N 13.63 13.83 AN HN 7.25 509 60 ThR CA 49.15 15.84 13.84 AN CA 49.15 511 60 ThR CA 49.15 15.97 13.84 AN HR 42.07 511 60 ThR HG 4.077 15.98 AN HR 3.24 512 60 ThR HG2 1.15.9 15.86 13.8 AN HD1 3.24 515 60 ThR HG2 1.15.9 160 13.8 AN HD2 6.7 516 60 ThR HG2 1.15.9 160.0 13.8 AN HD2 6.6 517 61 LYS CA 5.5 180.6 19.9 GU N 8.3 518 61 LYS MA 5.4 180.7 19.9 GU N 8.3	506	59	THR	C	174.1	1592	138	ASN	N	116.01
See 60 ThR HN 8.351 134 138 AN CA 5.34 503 60 THR CA 6056 1395 138 ANN HA 5.34 512 60 THR HA 7027 1397 138 ANN HB 3.34 513 60 THR HA 7027 12.323 1397 138 ANN HG 176.15 513 60 THR HC3 1139 1302 138 ANN HC3 176.22 514 60 THR HC3 1139 1602 138 ANN HC3 139.2 513 61 US N 1243.41 1608 139 610 HC 139.1 523 61 US HA 524 1607 139 610 HC 139.1 523 61 US HA 524 160 139.2 610	507	60	THR	N	118.43	1593	138	ASN	HN	7.253
150 00 Thit CA 6.06 136 138 ANN HA 4.67 511 60 The 00 70.7 1596 138 ANN H0 235 511 60 The 00 70.7 1598 138 ANN H0 71.6 513 60 The 1621 1139 1600 138 ANN H0 71.6 514 60 The 172.5 1601 138 ANN H0 71.2 518 61 US N 12.40.0 1604 139 GU C 113.3 518 61 US C 8.4 1465 139 GU N 8.011 518 61 US C 8.4 1467 1468 139 GU N N 143 522 61 US C 8.4 140 140 140 140	508	60	THR	HN	8.915	1594	138	ASN	CA	52.48
150 60 Triff HA 4.57 156 138 A.NN CB 2.208 512 60 THR HB 4.077 158 JAN HB 2.208 512 60 THR HB 4.077 158 JAN HB 2.208 515 60 THR HG2 1.159 1500 138 ANN HD 7.472 515 60 THR HG2 1.159 1500 138 ANN HD 7.472 517 60 THR HG2 1.219 1500 138 ANN C 7.472 520 61 US HA 5.242 1507 138 GU HB 2.081 523 61 US HA 1547 1503 150 140 140 138 GU HB 2.081 523 61 US HA 1547 1500 160 140	509	60	THR	CA	60.96	1595	138	ASN	HA	4.667
11 00 178 0.00 178 0.00 188 AN 182 2.866 513 60 178 K 139 138 AN C 17.15 513 60 178 K 139 138 AN C 17.15 513 60 178 H H 12.35 1.58 AN HC 17.45 516 60 178 H H 12.35 1.60 138 AN HC 1.74 517 61 17.5 H 1666 139 GUU H 1.43 1.74 520 61 17.5 H 1.66 1.39 GUU H 2.04 521 61 17.5 H 1.66 1.39 GUU H 2.04 523 61 17.5 H 1.66 1.39 GUU H 2.04 523 61 17.5 <td< td=""><td>510</td><td>60</td><td>THR</td><td>HΔ</td><td>4 574</td><td>1596</td><td>138</td><td>ΔSN</td><td>CB</td><td>38.14</td></td<>	510	60	THR	HΔ	4 574	1596	138	ΔSN	CB	38.14
153 00 178 168 248 ANN 188 ANN 180 126 513 60 176 167 1592 138 ANN NO 176 157 514 60 176 167 159 138 ANN NO 176 157 517 60 176 157 160 138 ANN 160 175 518 61 175 175 160 138 ANN 40 179 518 61 175 N 1240 160 138 GUU 40 60 171 523 61 175 163 160 138 GUU 40 208 123 534 61 175 163 153 139 GUU 40 208 238 535 61 175 163 138 130 GUU 40 238 123 136 <t< td=""><td>510</td><td>60</td><td>тыр</td><td>CP</td><td>70 674</td><td>1507</td><td>120</td><td>ASN</td><td>LD2</td><td>2 806</td></t<>	510	60	тыр	CP	70 674	1507	120	ASN	LD2	2 806
11 00 11 12 12 12 13 ASN 1.0 12.02 514 60 11 115 150	511	60	тыр		4.057	1509	120	ASN	LID2	2.000
15.4 6.0 11.8 11.9 12.0 13.8 A.S. 12.1 13.802 15.5 6.0 THR HC23 11.9 16.0 13.8 A.S. HD21 7.482 51.6 6.0 THR HC33 11.99 16.0 13.8 A.S. HD21 7.482 51.6 6.0 THR HC33 13.9 16.0 13.8 A.S. HD21 7.482 53.0 61 US K 13.34 16.0 13.9 GLU N 13.37 52.1 61 US R 52.4 160 13.9 GLU HA 30.5 53.0 61 US R 13.7 160 13.9 GLU HA 30.5 53.0 61 US HG1 13.7 151 13.9 GLU HG1 23.7 53.0 61 US HG2 13.3 151.3 13.9 GLU HG	512	00	TUD	662	4.037	1558	130	ASN	00	170 100
1-16 00 118 110 110 138 ASI NU 1120 516 00 TIR 1129 1002 138 ASI 1002 6.01 517 60 TIR C 17255 1603 138 ASI 1022 6.01 518 61 US N 8.24.0 1664 139 Gui N 8.27.1 518 61 US N 8.24.1 1607 139 Gui N 8.27.1 522 61 US H81 1.67.1 1608 139 Gui H81 2.08.1 523 61 US H81 1.67.1 1618 139 Gui H81 2.08.1 523 61 US H81 1.67.1 1619 139 Gui H81 2.08.1 523 61 US H81 1.69 1.69 Gui 1.69 2.09 5	515	60		062	21.225	1599	130	ASIN	00	1/0.105
15. 0 IM MC/2 1.13 1.63 1.53 AM MC/2 4.641 557 60 IM N 124.03 1649 1.38 AM C.21 5.441 558 61 US N 124.03 1646 1.39 GLU H N 13.33 520 61 US N 82.46 1665 1.39 GLU H N 13.37 521 61 US HB 1.67 160 1.39 GLU HB 2.083 524 61 US HB1 1.67 160 1.39 GLU HB 2.083 525 61 US HG1 1.37 161 1.39 GLU HB 2.376 526 61 US HG1 1.37 163 1.40 GLN N 1.223 537 61 US HE 1.409 1.65 1.40	514	60	THR	HG21	1.159	1600	138	ASN	ND2	113.052
She Bot Had Ho23 1.19 Lind Jask AMN HO22 6.011 S18 6.1 US N 1.24.03 1.66.0 1.39 GLU K N 8.37 S19 6.1 US N N 2.24.0 1.66.0 1.39 GLU CA 6.011 S23 6.1 US N 1.24.2 1.60.7 1.39 GLU NA 3.37.6 S23 6.1 US N 1.61.7 1.66.0 1.39 GLU NA 3.64.1 S25 6.1 US N 1.62.7 1.53.1 1.91 1.99 GLU NA NA 2.368 S25 6.1 US NC 1.37.8 1.813 1.819 GLU NA NA<	515	60	THR	HG22	1.159	1601	138	ASN	HD21	7.492
517 60 Trift C 1253 1263 138 ASN C 1743 1510 61 155 N 1246 1266 139 GU N 1267 1521 61 155 NA 534 1667 139 GU NA 601 1522 61 155 NA 534 1667 139 GU HA 2366 1522 61 155 1607 1599 GU HA 2366 1534 61 155 1602 139 GU HG 2376 1546 140 155 140 GU HG 2376 1535 61 155 140 GU N 1533 153 140 GU 153 153 1535 61 155 140 GU N N 153 153 1536 61 155 140 GU	516	60	THR	HG23	1.159	1602	138	ASN	HD22	6.611
518 61 LY5 N 12/A3 1604 139 GLU N 1131 513 61 LY5 N 82/A 1607 139 GLU N 82/A 522 61 LY5 GA 32/A 1607 139 GLU VA 32/A 523 61 LY5 HB2 13/A 1609 139 GLU HB2 20/B 524 61 LY5 HB2 13/A 1611 139 GLU HB2 20/B 527 61 LY5 HC 13/A 1613 139 GLU HC 20/B 528 61 LY5 HD1 13/A 1614 139 GLU HC 23/A 530 61 LY5 HD1 13/A 1612 140 GLN MA 23/A 531 61 LY5 HE1 23/B 1612 140 GLN MA <th< td=""><td>517</td><td>60</td><td>THR</td><td>C</td><td>172.55</td><td>1603</td><td>138</td><td>ASN</td><td>C</td><td>174.9</td></th<>	517	60	THR	C	172.55	1603	138	ASN	C	174.9
51061LYSHN8,246165139GLUHN8,37652061LYSGA55166139GLUHA3,37652161LYSHG2,4241607139GLUHG2,48352361LYSHG16771609139GLUHG2,48352461LYSHG1,5741610139GLUHG2,37652561LYSHG1,3741613139GLUHG2,37652661LYSHG1,3741613139GLUHG2,37653761LYSHG1,3741613139GLUHG2,37653861LYSHG1,4791615140GLNH8,23353161LYSHE2,6631619140GLNH8,23353262HEHN9,1641622140GLNHG2,08853363GLHE4,4551624140GLNHG2,45453462HEHA4,259140GLNHG2,45453562HEHA4,259140GLNHG11,44253662HEHA4,259140GLNHG11,44253763HGHA1,557140GLNHG11,444 <trr< td=""><td>518</td><td>61</td><td>LYS</td><td>N</td><td>124.03</td><td>1604</td><td>139</td><td>GLU</td><td>N</td><td>119.31</td></trr<>	518	61	LYS	N	124.03	1604	139	GLU	N	119.31
520611Y5CA551666139GLUCA6.0.1152161115GB34.671607139GLUHG3.97552361115GB1.6771050139GLUHG2.083524611151.671050139GLUHG2.08352561175HG2.5.41011139GLUHG2.37652861175HG1.3761613139GLUHG2.37652861115HG1.4091615140GLNN115352961115HG1.4091615140GLNN115353161115HG1.6071600GNNN115353361175HE2.6631619140GLNHA2.08853562162N12341622140GNHB2.08853662162N12341622140GNHB2.0885376216216412341622140GNHC2.4215386216216314021600HB12.42112085396216216314321600GNHC2.4215406216216314321600GNHC12.421 <t< td=""><td>519</td><td>61</td><td>LYS</td><td>HN</td><td>8.246</td><td>1605</td><td>139</td><td>GLU</td><td>HN</td><td>8.876</td></t<>	519	61	LYS	HN	8.246	1605	139	GLU	HN	8.876
51261135NA5.2421607139GUNA397552261115H21.371.609139GUH32.06452361115H21.371.6091.39GUH22.03152661115H621.371.6191.39GUH22.376527611.55H621.381.6121.39GUH622.376528611.55H71.6131.40GUNN1.53529611.55H71.6121.40GUNN1.53530611.55H22.6631.6121.40GUKA4.259533611.55H21.6631.602GUH812.08653462I.EN1.3311.6121.40GUH812.08653762I.EN1.3241.621.40GUH22.68153862I.EN1.3241.621.40GUH22.46153962I.EH31.621.40GUH22.46154462I.EH31.621.40GUH22.46154462I.EH31.621.40GUH22.46154562I.EH31.621.40GUH22.461546 </td <td>520</td> <td>61</td> <td>LYS</td> <td>CA</td> <td>55</td> <td>1606</td> <td>139</td> <td>GLU</td> <td>CA</td> <td>60.11</td>	520	61	LYS	CA	55	1606	139	GLU	CA	60.11
523 61 N*5 08 3.4.6. 1688 139 GU CB 2.9.66 524 61 1.5'S 16.0 1.5'A 16.0 139 GU HB1 2.083 525 61 1.5'S 16.0 1.3'A 16.1 139 GU HC1 2.3'A' 536 61 1.5'S 1.6'A 1.6'A' 1.6'A' <td>521</td> <td>61</td> <td>LYS</td> <td>HA</td> <td>5.242</td> <td>1607</td> <td>139</td> <td>GLU</td> <td>HA</td> <td>3.975</td>	521	61	LYS	HA	5.242	1607	139	GLU	HA	3.975
523 61 IVS H02 1.627 1.669 1.99 CU H02 2.083 524 61 IVS CG 25.24 1.611 1.39 GUU HG2 2.376 526 61 IVS HC2 1.333 1.612 1.39 GUU HC2 2.376 527 61 IVS HC1 1.376 1.613 1.39 GUU HC2 2.376 530 61 IVS HC1 1.400 1.66 4.00 GUN HN 82.23 531 61 IVS HC2 2.663 1.618 1.40 GUN HA 42.93 534 61 IVS HC2 2.663 1.619 1.40 GUN HA 42.93 534 62 ILE N 1.72.03 1.400 GUN HA 2.088 535 62 ILE N 1.72.1 1.600 GUN HA 2.0	522	61	LYS	CB	34.6	1608	139	GLU	CB	29.66
50 61 1V5 HB1 174 110 199 CU HB1 2083 525 61 1V5 H62 1.133 1512 139 GUU H62 2.376 527 61 1V5 H62 1.494 1512 139 GUU H61 2.376 528 61 1V5 H61 1.497 1515 140 GUN H61 2.376 533 61 1V5 H61 1.407 1515 140 GUN H4 4.223 533 61 1V5 H61 2.663 1519 140 GUN H4 4.223 534 61 1V5 H61 2.363 140 GUN H81 2.088 535 62 LE N 12331 1623 140 GUN H61 2.481 536 62 LE N 1232 140 GUN H62 2.481 <t< td=""><td>522</td><td>61</td><td>LVS</td><td>HB2</td><td>1 637</td><td>1609</td><td>139</td><td>GLU</td><td>HB2</td><td>2 083</td></t<>	522	61	LVS	HB2	1 637	1609	139	GLU	HB2	2 083
2-50 6-1 156 r06 2-3.4 1610 193 CU R6 164 5266 6-1 175 H61 1.375 1613 139 CUU H61 2.376 527 6-1 175 H01 1.409 1615 140 GLN N 115.2 530 6-1 175 H02 1.409 1615 140 GLN N 8.23 531 6-1 175 H2 2.661 1105 140 GLN KA 4.239 533 6-1 175 H2 2.661 1105 140 GLN HA 4.239 533 6-1 175 H2 2.661 1105 140 GLN H61 2.438 535 6-2 IE N 9.168 1622 140 GLN H61 2.451 536 6-2 IE HA 4.555 1624 140 GLN <	525	C1	LIVE	1102	1.03/	1005	130	CLU	1102	2.005
bb cb cb< c	524	61	LYS	HBI	1.674	1610	139	GLU	HBI	2.083
b.1 b.1 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1	525	61	LTS	00	25.24	1011	139	GLU	0	50.41
527 61 LVS HCI 1.376 151 139 CLU HCI 2.376 528 61 LVS HD1 1.409 1615 1.40 GLU C 173 531 61 LVS HD1 1.409 1615 140 GLN N N 1223 532 61 LVS HE2 2.663 1618 140 GLN HA 4.259 534 61 LVS HE 2.663 1620 140 GLN HB 2.088 535 62 LE N 1233 140 GLN HE 2.088 536 62 LE HA 5.45 1623 140 GLN HE 2.088 537 62 LE HG 4.57 1632 140 GLN HE 2.454 538 62 LE HG11 1.54 1629 140 GLN HE	526	61	LYS	HG2	1.193	1612	139	GLU	HG2	2.376
528 61 LYS CD 29.42 1614 139 GLN C 178.16 529 61 LYS HD1 1.409 1615 140 GLN N 115.23 530 61 LYS HD1 1.409 1618 140 GLN HA 4.823 531 61 LYS HE 2.663 1619 140 GLN HA 4.823 534 61 LYS LE N 123.81 1621 140 GLN HB2 2.088 535 62 LE HN 123.81 1621 140 GLN HG2 2.451 538 62 LE HA 4.855 1627 140 GLN HC1 2.451 540 62 LE HB 1.872 1625 140 GLN HC1 2.451 541 62 LE HB 1.872 1630 141 ASN<	527	61	LYS	HG1	1.376	1613	139	GLU	HG1	2.376
529 61 UYS HD2 1409 1615 140 GLN N 15.73 530 61 UYS CE 41.77 1617 140 GLN N RA 523 531 61 UYS HE1 2.663 161 140 GLN HA 4.259 533 61 UYS HE1 2.663 163 140 GLN HA 2.38 535 62 UE N 91.48 162.2 140 GLN HE 2.466 537 62 UE N 91.48 162.2 140 GLN HC 2.451 538 62 UE HA 455 1624 140 GLN HC 2.451 543 62 UE HB 1.872 1626 140 GLN HE12 7.601 544 62 UE HG11 1.514 1629 140 GLN	528	61	LYS	CD	29.42	1614	139	GLU	C	178.16
550 61 1Y5 CE 41.07 151 140 GIN HN 8.23 531 61 1Y5 HE2 2.663 1518 140 GIN HA 4.239 533 61 1Y5 HE2 2.663 1518 140 GIN HA 4.239 534 61 1Y5 HE 1.633 140 GIN HE2 2.088 536 62 ILE N 1.532 140 GIN HG2 2.451 537 62 ILE HA 4.855 1624 140 GIN HG2 2.451 538 62 ILE HB 1.872 1.652 140 GIN HZ1 7.601 544 62 ILE HG1 1.514 1.633 1.41 ASN N 115.5 544 62 ILE HG1 0.755 1613 1.41 ASN NB 4.15	529	61	LYS	HD2	1.409	1615	140	GLN	N	115.23
511 61 1Y5 HE2 2.663 1.617 1.400 G.N. C.A. 5.833 532 61 1Y5 HE1 2.663 1.519 1.400 G.N. C.B. 2.429 533 61 1Y5 C 1.760 1.400 G.N. HB 2.088 535 62 1.1E N 1.132 1.621 1.400 G.N. HB 2.048 536 62 1.1E N 1.142 1.623 1.400 G.N. HB 2.0411 539 62 1.1E C.A 4.452 1.623 1.400 G.N. HC2 1.2482 530 62 1.1E HB 1.877 1.623 1.400 G.N. HC2 1.2482 541 62 1.1E HG12 1.575 1.531 1.41 ASN N 1.155 543 62 1.1E HG12 0.755 1.532 1.41	530	61	LYS	HD1	1.409	1616	140	GLN	HN	8.223
532611Y5HE22.683151814061NHA4.259533611Y5C176.03162014061NHB22.088534611K5N1231162014061NHB12.08853662IECNN9.184162114061NH612.45153762IECHA4.852162414061NH622.45153862IECHA4.852162414061NH622.45153962IECHA4.852162414061NH62112.48254062IECH611.514162914061NH62112.48254162IECH611.514162914061NH62177.354462IECH611.514162914061NH6253.954462IECH611.514162914061NH775.354662IECH610.7551633141ASNK053.954762IECH620.8611635141ASNH633.04555062IECH620.8611637141ASNH633.04555163PROHA4.4611639141ASNH0275.155463PROH62 <td< td=""><td>531</td><td>61</td><td>LYS</td><td>CE</td><td>41.77</td><td>1617</td><td>140</td><td>GLN</td><td>CA</td><td>58.33</td></td<>	531	61	LYS	CE	41.77	1617	140	GLN	CA	58.33
533 61 V/S HE1 2.663 1619 140 GN CB 2.89 534 61 V/S C 1763 1621 140 GNN HB1 2.088 535 62 LE N 123.81 1621 140 GNN HG1 2.088 536 62 LE N 132.81 1621 140 GNN HG2 2.451 538 62 LE CA 57.44 1623 140 GNN HG2 2.451 540 62 LE HG1 1.55 140 GNN HC2 12.482 541 62 LE HG1 1.51 1623 140 GNN HC 177.3 542 62 LE HG1 0.75 1631 141 ASN N 7.39 544 62 LE HG1 0.75 1633 141 ASN HG 141 <	532	61	LYS	HE2	2.663	1618	140	GLN	HA	4.259
534 61 US C 176.03 1620 140 GIN HB2 2.088 535 62 ILE N 1232.11 1621 140 GIN CG 34.46 536 62 ILE CA 57.44 1623 140 GIN HG 2.451 538 62 ILE CA 57.44 1633 140 GIN HC 2.451 539 62 ILE CA 57.44 1633 140 GIN HC 112.482 540 62 ILE CA 1.51 1525 140 GIN HE2 6.892 541 62 ILE HC11 1.514 1529 140 GIN HE2 6.892 543 62 ILE HD110 0.795 1531 141 ASN N 155 544 62 ILE HD21 0.861 1535 141 ASN <t< td=""><td>533</td><td>61</td><td>LYS</td><td>HF1</td><td>2.663</td><td>1619</td><td>140</td><td>GLN</td><td>CB</td><td>28.9</td></t<>	533	61	LYS	HF1	2.663	1619	140	GLN	CB	28.9
553 62 ILE N 123.81 1621 140 CIN HB1 20.88 536 6.2 ILE HN 9.148 1622 140 GIN HG2 2.461 537 6.2 ILE HA 4.855 1634 140 GIN HG2 2.451 538 6.2 ILE HB 1.872 1626 140 GIN NC 2.132.482 541 6.2 ILE HB 1.872 1626 140 GIN HE2 1.7601 542 6.2 ILE HG12 1.777 1528 140 GIN K 7.739 544 6.2 ILE HD12 0.795 1531 141 ASN N 115.5 546 6.2 ILE HD12 0.785 1532 141 ASN HB1 3.046 551 6.2 ILE HD12 0.785 1532 141 ASN	534	61	LYS	C	176.03	1620	140	GLN	HB2	2 088
156 6.2 I.E. I.M. 51.44 1622 140 C.R. 74.46 537 6.2 I.E. I.A. 4.855 1624 140 C.I.M. HG1 2.451 538 6.2 I.E. I.B. 1.825 140 C.I.M. NC D 1505 540 6.2 I.E. HB 1.872 1.625 140 C.I.M. NE2 112.482 541 6.2 I.E. HB 1.872 1.629 140 G.I.M. HE2 6.892 543 6.2 I.E. HG11 1.514 1629 140 G.I.M. HC2 6.892 545 6.2 I.E. HD11 0.795 1632 141 ASN N 115 546 6.2 I.E. HD21 0.861 1635 141 ASN HB 3.048 551 6.2 I.E. HC21 0.861 1635 141 <t< td=""><td>535</td><td>62</td><td>U.F.</td><td>N</td><td>173.81</td><td>1621</td><td>140</td><td>GLN</td><td>HB1</td><td>2.088</td></t<>	535	62	U.F.	N	173.81	1621	140	GLN	HB1	2.088
10 11 10 14 102 140 101 102 144 537 62 IIE GA 5455 1634 140 GIN HG2 2431 538 62 IIE GA 4455 1654 140 GIN HG1 2451 540 62 IIE GA 1377 1255 140 GIN HC2 6173 541 62 IIE HG1 1377 1638 140 GIN HC2 6173 543 62 IIE HG11 155 1630 141 ASN HN 739 544 62 IIE HD11 0.795 1633 141 ASN HN 739 545 62 IIE HD12 0.795 1633 141 ASN HA 539 546 62 IIE HG21 0.861 1635 141 ASN HD2 1515 <	535	62	11.6	LINI	0.149	1622	140	GLN	CG	21.000
bb bb< b< b b<	530	62	ILL IL C	CA	5.148	1022	140	GLN	100	34.40
558 6.2 ILE FA 4.43.5 1.64 1.40 GLN CD 1.80.69 560 6.2 ILE GB 4.0.27 1.65.6 1.40 GLN MC 1.80.69 541 6.2 ILE GG1 2.3.59 1.62.7 1.40 GLN HC21 7.7.01 543 6.2 ILE HG11 1.17.1 1.02.8 1.40 GLN HC22 6.892 544 6.2 ILE HG11 1.55 1.63.1 1.41 ASN MN 7.7.7 545 6.2 ILE HD11 0.795 1.63.2 1.41 ASN HA 5.3.36 546 6.2 ILE HD11 0.795 1.63.2 1.41 ASN HA 5.3.3 5.3.3 5.4.4 ASN HA 5.3.3 5.3.3 5.3.3 5.4.4 ASN HA 5.3.3 5.6.5 5.3 6.3 PRO CA 6.1.9 1.5.3	530	62		UA UA	4.000	1625	140	CLN	1102	2.451
b39 b2 LL LB AU.9 LD2 LD40 GLN LD LB039 540 62 LLE H8 L372 L626 L40 GLN HE21 7.001 541 62 LLE HG11 L344 L629 L40 GLN HE21 6.892 543 62 LLE HG11 L345 L629 L40 GLN C 177.3 545 62 LLE HD11 0.795 L631 L41 ASN HN 7.739 547 62 LLE HD12 0.795 L633 L41 ASN HA 5.379 547 62 LLE H621 0.361 L635 L41 ASN HB2 2.611 549 62 LLE H623 0.361 L637 L41 ASN HD21 7.611 551 63 PRO HA A461 L539 L41 ASN	536	62	ILE	na cp	4.633	1624	140	GLN	101	2.451
540 6.2 ILE HB 13/2 16/6 140 GLN NE2 112/48/2 541 62 ILE HG12 1.177 16/28 140 GLN HE21 7601 542 62 ILE HG11 1.514 16/29 140 GLN C 1773 544 62 ILE HD11 0.795 1631 141 ASN N 1155 546 62 ILE HD12 0.795 1632 141 ASN CA 5396 547 62 ILE HD2 0.795 1633 141 ASN HA 5379 548 62 ILE HG21 0.861 1636 141 ASN HB21 2.611 550 62 ILE HG22 0.861 1636 141 ASN HD21 7.611 551 63 PRO CA 619 1638 141 ASN	539	62	ILE	CB	40.29	1625	140	GLN	CD	180.69
b1 b2 LE CG1 25.36 1627 140 GLN HE21 7.601 542 62 LIE HG12 1.177 1628 140 GLN HE22 6.892 543 62 LIE HD11 0.795 1631 141 ASN N 1155 546 62 LIE HD12 0.795 1633 141 ASN HA 5.396 547 62 LIE HD13 0.795 1633 141 ASN HA 5.396 548 62 LIE HG21 0.861 1635 141 ASN HB 3.048 550 62 LIE HG21 0.861 1637 141 ASN HD 7.611 551 62 LIE HG21 0.861 1638 141 ASN HD 13.675 553 63 PRO HB 1.737 1641 141 ASN	540	62	ILE	HB	1.872	1626	140	GLN	NE2	112.482
542 62 ILE HG12 1.177 1628 140 GLN HE22 6.892 543 62 ILE CD1 13.5 1630 141 ASN N 1155 544 62 ILE HD12 0.795 1631 141 ASN HN 7.73 546 62 ILE HD12 0.795 1632 141 ASN HA 5.396 547 62 ILE HD12 0.795 1633 141 ASN HA 5.396 548 62 ILE HG21 0.861 1635 141 ASN HB2 2.611 550 62 ILE HG23 0.861 1637 141 ASN MD21 7.611 551 63 PRO CA 619 1633 141 ASN MD21 7.611 554 63 PRO HB2 1.737 1641 141 ASN	541	62	ILE	CG1	26.36	1627	140	GLN	HE21	7.601
543 6.2 ILE HG11 1.514 1629 140 GLN C 177.3 544 6.2 ILE HD11 0.795 1631 141 ASN N 115.5 546 6.2 ILE HD13 0.795 1633 141 ASN CA 53.96 547 6.2 ILE HD13 0.795 1633 141 ASN HA 53.79 548 6.2 ILE HG21 0.861 1635 141 ASN HB2 2.611 550 6.2 ILE HG23 0.861 1637 141 ASN HB2 2.611 551 6.2 ILE HG23 0.861 1637 141 ASN HD2 13.675 552 6.3 PRO CA 6.19 1638 141 ASN HD21 16.165 554 6.3 PRO CB 3.192 1640 141 ASN HD22 6.915 555 6.3 PRO HB1 1.883	542	62	ILE	HG12	1.177	1628	140	GLN	HE22	6.892
544 62 IE CD1 13.5 1630 141 ASN N 1155 545 62 IE HD12 0.795 1632 141 ASN KA 5396 547 62 IE HD12 0.795 1632 141 ASN KA 5396 548 62 IE HG21 0.861 1636 141 ASN HB2 2.611 550 62 IE H621 0.861 1636 141 ASN HB2 2.611 551 62 IE H623 0.861 1637 141 ASN HD2 7.611 552 63 PRO HA 4.461 1639 141 ASN HD2 7.611 555 63 PRO HB2 1.737 1641 141 ASN HD2 7.611 555 63 PRO HB2 1.737 1641 142 IE	543	62	ILE	HG11	1.514	1629	140	GLN	C	177.3
545 62 ILE HD11 0.795 1631 141 ASN HN 7.739 546 62 ILE HD13 0.795 1633 141 ASN HA 5.379 547 62 ILE HD13 0.795 1633 141 ASN HA 5.379 548 62 ILE HG21 0.861 1635 141 ASN HB2 2.611 550 62 ILE HG22 0.861 1636 141 ASN HB2 2.611 551 63 PRO CA 61.9 1638 141 ASN ND2 113.675 553 63 PRO CA 61.9 1638 141 ASN HD21 6.915 554 63 PRO HB1 1.838 1642 142 LE N 122.325 556 63 PRO HG1 2.333 1645 142 ILE N 8.369 559 63 PRO HG1 2.333 1645	544	62	ILE	CD1	13.5	1630	141	ASN	N	115.5
546 62 ILE HD12 0.795 1632 141 ASN CA 53.396 547 62 ILE HD13 0.795 1633 141 ASN HA 53.79 548 62 ILE HG21 0.861 1635 141 ASN HB2 2.611 550 62 ILE HG23 0.861 1637 141 ASN HB2 3.048 551 62 ILE HG23 0.861 1637 141 ASN HD21 7.617 553 63 PRO HA 4.461 1639 141 ASN HD21 7.611 554 63 PRO HB1 1.883 1642 142 ILE N 122.325 555 63 PRO HG2 2.091 1644 142 ILE HA 4.403 556 63 PRO HG2 2.091 1644 142 ILE <td>545</td> <td>62</td> <td>ILE</td> <td>HD11</td> <td>0.795</td> <td>1631</td> <td>141</td> <td>ASN</td> <td>HN</td> <td>7.739</td>	545	62	ILE	HD11	0.795	1631	141	ASN	HN	7.739
547 62 ILE HD13 0.795 1633 141 ASN HA 5.379 548 62 ILE G21 ILE HG21 0.861 1634 141 ASN HB2 2.611 550 62 ILE HG22 0.861 1636 141 ASN HB1 3.048 551 62 ILE HG22 0.861 1637 141 ASN HB1 3.048 552 63 PRO CA 619 1638 141 ASN HD2 1767.25 553 63 PRO CA 619 1639 141 ASN HD2 1367 554 63 PRO CB 3.192 1640 141 ASN HD2 597 556 63 PRO HG2 2.091 1644 142 ILE HA 4.403 558 63 PRO HG2 2.333 1645	546	62	ILE	HD12	0.795	1632	141	ASN	CA	53.96
548 62 ILE CG2 17.47 1634 141 ASN CB 41.5 549 62 ILE HG21 0.861 1635 141 ASN HB1 3.048 551 62 ILE HG23 0.861 1637 141 ASN CG 17.725 553 63 PRO HA 4.461 1639 141 ASN HD21 7.611 554 63 PRO HA 4.461 1639 141 ASN HD22 6.915 555 63 PRO HB2 1.737 1641 141 ASN HD22 6.915 557 63 PRO HG2 2.091 1644 142 ILE HA 4.403 558 63 PRO HG2 2.091 1645 142 ILE HA 4.403 560 63 PRO HD2 3.892 1647 142 ILE	547	62	ILE	HD13	0.795	1633	141	ASN	HA	5.379
549 62 IE HG21 0.861 1635 141 ASN HB2 2.611 550 62 ILE HG22 0.861 1637 141 ASN CG 176.725 552 63 PRO CA 61.9 1638 141 ASN ND2 113.675 553 63 PRO CA 61.9 1638 141 ASN ND2 13.675 554 63 PRO CB 31.92 1640 141 ASN HD21 7.611 555 63 PRO HB2 1.737 1641 141 ASN HD22 6915 556 63 PRO CG 2.698 1643 142 IEE N 8369 557 63 PRO HG1 2.333 1645 142 IEE HA 4.033 561 63 PRO HD1 4.093 1648 142 IEE	548	62	ILE	CG2	17.47	1634	141	ASN	CB	41.5
550 62 IE HG22 0.861 1636 141 ASN HB1 3.048 551 62 ILE HG23 0.861 1637 141 ASN CG 176.725 553 63 PRO HA 4.461 1639 141 ASN HD21 7.611 554 63 PRO HA 4.461 1639 141 ASN HD21 7.611 555 63 PRO HB2 1.737 1641 141 ASN HD21 7.611 556 63 PRO HB2 1.737 1641 141 ASN C 177.44 556 63 PRO HG2 2.091 1644 142 IE HN 8.369 559 63 PRO HG1 2.333 1645 142 IE HB 19.3 561 63 PRO HD1 4.983 1644 142 IE	549	62	ILE	HG21	0.861	1635	141	ASN	HB2	2.611
S11 62 112 1637 141 ASN CG 1767/25 552 63 PRO CA 61.9 1638 141 ASN ND2 113.675 553 63 PRO CA 61.9 1638 141 ASN ND2 113.675 554 63 PRO CB 31.92 1640 141 ASN HD21 7.611 555 63 PRO HB1 1.883 1642 142 ILE N 122.325 557 63 PRO HG2 2.091 1644 142 ILE HA 4403 558 63 PRO HG2 2.091 1644 142 ILE HA 4403 561 63 PRO HD2 3.892 1647 142 ILE HA 4403 561 63 PRO HD1 4.093 1648 142 ILE HG1 1.501 </td <td>550</td> <td>62</td> <td>ILF</td> <td>- HG22</td> <td>0.861</td> <td>1636</td> <td>141</td> <td>ASN</td> <td>HB1</td> <td>3.048</td>	550	62	ILF	- HG22	0.861	1636	141	ASN	HB1	3.048
552 63 PRO HA 4.461 1638 141 ASN ND2 1761/3 553 63 PRO HA 4.461 1639 141 ASN HD21 7.611 554 63 PRO HB 1.737 1641 141 ASN HD22 6.915 555 63 PRO HB2 1.737 1641 141 ASN ND 22 6.915 556 63 PRO HB2 1.737 1641 141 ASN C 177.44 556 63 PRO HG2 2.091 1644 142 IEE CA 66.07 558 63 PRO HG2 2.091 1645 142 IEE CA 66.07 559 63 PRO HD1 2.333 1645 142 IEE HB 1.93 561 63 PRO HD1 4.093 1648 142 IEE HG1 1.51 564 IEE N 123.24 1650 142 </td <td>551</td> <td>62</td> <td>ILE</td> <td>HG23</td> <td>0.861</td> <td>1637</td> <td>1/1</td> <td>ACN</td> <td>(G</td> <td>176 725</td>	551	62	ILE	HG23	0.861	1637	1/1	ACN	(G	176 725
5.2. 6.3 PNO CA 61.9 103 141 ASN NU2 113.b75 553 63 PRO CB 31.92 1640 141 ASN HD21 7.611 554 63 PRO CB 31.92 1640 141 ASN HD22 6.915 555 63 PRO HB1 1.883 1642 142 ILE N 122.325 557 63 PRO HG2 2.091 1644 142 ILE HA 4403 559 63 PRO HG1 2.333 1645 142 ILE CA 66.07 561 63 PRO HD1 4.093 1648 142 ILE CB 3.7.19 562 63 PRO HD1 4.093 1648 142 ILE HG1 1.501 563 64 ILE N 123.24 1650 142 ILE	551	62	DDO	CA	61.0	1600	1/1	ACN	NDO	113.675
5.3- 0.3 PNU PA 4.40.1 10.59 141 ASN HU21 7.811 554 63 PRO HB2 1.737 1640 141 ASN C 177.44 555 63 PRO HB2 1.737 1641 141 ASN C 177.44 556 63 PRO HB2 1.737 1641 142 LIE N 122.325 557 63 PRO CG 26.98 1643 142 LIE HN 8.369 559 63 PRO HG1 2.333 1645 142 LIE CA 66.07 559 63 PRO HO1 3.892 1647 142 LIE CB 3.719 561 63 PRO HD1 4.093 1648 142 LIE HB 1.93 562 63 PRO C 175.86 1650 142 LIE H011 1.501 564 64 LIE HN 8.286 1651 <td>552</td> <td>C0</td> <td>PRU</td> <td>CA IIA</td> <td>01.9 A AC1</td> <td>1000</td> <td>141</td> <td>ADIN</td> <td>IND2</td> <td>7.611</td>	552	C0	PRU	CA IIA	01.9 A AC1	1000	141	ADIN	IND2	7.611
JM. U.S. PNU Los J.1.92 Low 141 ASN HD22 6.915 555 63 PRO HB1 1.883 1641 141 ASN C 177.74 556 63 PRO CG 26.98 1643 142 ILE N 122.325 557 63 PRO CG 2.091 1644 142 ILE HA 4.403 558 63 PRO HG1 2.333 1645 142 ILE HA 4.403 560 63 PRO HD2 3.892 1647 142 ILE HB 1.93 561 63 PRO HD1 4.093 1648 142 ILE HG1 1.177 564 64 ILE N 123.24 1650 142 ILE HG11 1.501 565 64 ILE N 123.24 1651 142 ILE	222	C0	PRU	CD CD	4.401	1039	141	ADIN	HD21	6.015
b32 03 PRU HB2 1.737 1041 141 ASN C 177.44 556 63 PRO CG 26.98 1642 142 ILE NN 32325 557 63 PRO CG 26.98 1643 142 ILE NN 3260 558 63 PRO HG1 2.333 1645 142 ILE CA 66.07 559 63 PRO HD1 2.333 1645 142 ILE CB 37.19 561 63 PRO HD1 3.992 1647 142 ILE CG 12.975 563 63 PRO C 75.86 1649 142 ILE HG1 1.501 564 64 ILE N 123.24 1650 142 ILE HD1 0.918 566 64 ILE HA 4.428 1653 142 ILE H	554	63	PRU	CB	51.92	1040	141	ASIN	HU22	0.910
b>b b3 PKU HB1 L885 1642 142 ILE N 122.325 557 63 PRO CG 2.98 1643 142 ILE HN 8.369 558 63 PRO HG2 2.091 1644 142 ILE CA 66.07 559 63 PRO HG1 2.333 1645 142 ILE HA 4403 560 63 PRO HD2 3.892 1647 142 ILE HB 1.93 562 63 PRO HD1 4.093 1648 142 ILE HB 1.93 563 63 PRO C 175.86 1649 142 ILE HG11 1.501 565 64 ILE N 123.24 1650 142 ILE HD11 0.918 566 64 ILE N 123.24 1651 142 ILE H	555	63	PRO	HB2	1./3/	1641	141	ASN	L.	1/7.44
557 63 PRO CG 26.98 1643 142 ILE HN 8.369 558 63 PRO HG1 2.333 1645 142 ILE CA 6607 559 63 PRO HG1 2.333 1645 142 ILE CA 6607 560 63 PRO CD 50.84 1646 142 ILE CB 37.19 561 63 PRO HD1 4.093 1648 142 ILE CG 12.975 563 63 PRO C 175.86 1649 142 ILE HG11 1.501 564 64 ILE N 123.24 1650 142 ILE HG11 0.918 566 64 ILE N 123.24 1651 142 ILE HG11 0.918 566 64 ILE N 38.02 1654 142 ILE <td< td=""><td>556</td><td>63</td><td>PRO</td><td>HB1</td><td>1.883</td><td>1642</td><td>142</td><td>ILE</td><td>N</td><td>122.325</td></td<>	556	63	PRO	HB1	1.883	1642	142	ILE	N	122.325
558 63 PRO HG2 2.091 164 142 ILE CA 66.07 559 63 PRO HG1 2.333 1645 142 ILE HA 4.403 560 63 PRO HD1 2.333 1645 142 ILE HB 1.93 561 63 PRO HD2 3.892 1647 142 ILE HB 1.93 563 63 PRO C 175.86 1649 142 ILE HG12 1.177 564 64 ILE N 123.24 1650 142 ILE HG11 1.501 565 64 ILE N 8.786 1651 142 ILE HD11 0.918 566 64 ILE CA 58.06 1652 142 ILE HD11 0.918 567 64 ILE HA 4.428 1653 142 ILE <t< td=""><td>557</td><td>63</td><td>PRO</td><td>CG</td><td>26.98</td><td>1643</td><td>142</td><td>ILE</td><td>HN</td><td>8.369</td></t<>	557	63	PRO	CG	26.98	1643	142	ILE	HN	8.369
559 63 PRO HG1 2.333 1645 142 ILE HA 4.403 560 63 PRO C0 50.84 1646 142 ILE CB 37.19 561 63 PRO HD2 3.892 1647 142 ILE CB 37.19 562 63 PRO HD1 4.093 1648 142 ILE CG1 29.75 563 63 PRO N 123.24 1650 142 ILE HG11 1.501 565 64 ILE N 123.24 1650 142 ILE HG11 1.501 565 64 ILE N 123.24 1651 142 ILE HD11 0.918 565 64 ILE HA 4.428 1653 142 ILE HD11 0.918 566 64 ILE HB 1.733 1655 142 ILE	558	63	PRO	HG2	2.091	1644	142	ILE	CA	66.07
560 63 PRO CD 50.84 1646 142 ILE CB 37.19 561 63 PRO HD2 3.892 1647 142 ILE HB 1.93 562 63 PRO C 175.86 1649 142 ILE HG 2.9.75 563 63 PRO C 175.86 1649 142 ILE HG12 1.177 564 64 ILE N 123.24 1650 142 ILE HG11 1.501 565 64 ILE HA 4.428 1653 142 ILE HD11 0.918 566 64 ILE HA 4.428 1653 142 ILE HD13 0.918 567 64 ILE HB 1.733 1655 142 ILE HD14 0.976 570 64 ILE HG12 1.219 1657 142 ILE	559	63	PRO	HG1	2.333	1645	142	ILE	HA	4.403
561 63 PRO HD2 3.892 1647 142 ILE HB 1.93 562 63 PRO HD1 4.093 1648 142 ILE CG1 2.975 563 63 PRO C 175.86 1649 142 ILE HG12 1.177 564 64 ILE N 123.24 1650 142 ILE HG11 1.501 565 64 ILE N 8.786 1651 142 ILE HO11 0.918 566 64 ILE CA 58.06 1652 142 ILE HD11 0.918 568 64 ILE CB 38.02 1654 142 ILE HD12 0.918 569 64 ILE HB 1.733 1655 142 ILE HG23 0.976 571 64 ILE HG11 1.299 1657 142 ILE	560	63	PRO	CD	50.84	1646	142	ILE	CB	37.19
562 63 PRO HD1 4.093 1648 142 ILE CG1 29.75 563 63 PRO C 175.86 1649 142 ILE HG12 1.177 564 64 ILE N 123.24 1650 142 ILE HG11 1.501 565 64 ILE HN 8.786 1651 142 ILE CD1 142.7 566 64 ILE HA 4.428 1653 142 ILE HD11 0.918 567 64 ILE HA 4.428 1653 142 ILE HD13 0.918 569 64 ILE CB 38.02 1654 142 ILE HD13 0.918 569 64 ILE CG1 26.63 1656 142 ILE HG21 0.976 571 64 ILE HG12 1.219 1657 142 ILE	561	63	PRO	HD2	3.892	1647	142	ILE	HB	1.93
563 63 PRO C 175.86 1649 142 ILE HG12 1.177 564 64 ILE N 123.24 1650 142 ILE HG11 1.501 565 64 ILE HN 8.786 1651 142 ILE HC11 1.501 566 64 ILE CA 58.06 1652 142 ILE HD11 0.918 566 64 ILE CA 58.06 1653 142 ILE HD11 0.918 568 64 ILE CB 38.02 1654 142 ILE HD13 0.918 569 64 ILE CB 38.02 1655 142 ILE HG21 0.976 570 64 ILE CB 12.19 1657 142 ILE HG22 0.976 573 64 ILE CD1 12.12 1659 142 ILE	562	63	PRO	HD1	4.093	1648	142	ILE	CG1	29.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	563	63	PRO	С	175.86	1649	142	ILE	HG12	1.177
565 64 ILE HN 8.786 1651 142 ILE HO11 0.918 566 64 ILE CA 58.06 1651 142 ILE HD11 0.918 567 64 ILE CA 58.06 1653 142 ILE HD11 0.918 568 64 ILE CB 38.02 1654 142 ILE HD13 0.918 569 64 ILE CG 2.6.63 1655 142 ILE GC2 16.08 570 64 ILE HG12 1.219 1657 142 ILE HG22 0.976 571 64 ILE HG12 1.219 1657 142 ILE HG22 0.976 573 64 ILE HD11 0.727 1660 143 ILE N 120.25 575 64 ILE HD13 0.727 1661 143 ILE </td <td>564</td> <td>64</td> <td>II F</td> <td>N</td> <td>123.24</td> <td>1650</td> <td>142</td> <td>II F</td> <td>HG11</td> <td>1.501</td>	564	64	II F	N	123.24	1650	142	II F	HG11	1.501
1.1. 1.1.	565	64	II F	HN	8.786	1651	142	II F	CD1	14.27
567 64 ILE HA 4.428 1653 142 ILE HD11 0.918 568 64 ILE HA 4.428 1653 142 ILE HD13 0.918 569 64 ILE CB 38.02 1654 142 ILE HD13 0.918 570 64 ILE CG1 26.63 1656 142 ILE HG21 0.976 571 64 ILE HG12 1.219 1657 142 ILE HG22 0.976 572 64 ILE HG12 1.219 1657 142 ILE HG22 0.976 573 64 ILE HD11 0.727 1660 143 ILE N 12025 575 64 ILE HD13 0.727 1661 143 ILE N 12025 576 64 ILE H013 0.727 1661 143 ILE <td>ECC</td> <td>CA</td> <td>11 0</td> <td>CA</td> <td>58 06</td> <td>1652</td> <td>140</td> <td>11 E</td> <td>UD11</td> <td>0.918</td>	ECC	CA	11 0	CA	58 06	1652	140	11 E	UD11	0.918
Joy 0-4 ILE IPA 4.4.28 1053 142 ILE HD12 0.918 568 64 ILE CB 38.02 1654 142 ILE HD13 0.918 569 64 ILE HB 1.733 1655 142 ILE CG2 16.08 570 64 ILE HB 1.733 1655 142 ILE CG2 16.08 571 64 ILE HG12 1.219 1657 142 ILE HG22 0.976 573 64 ILE HG11 1.299 1658 142 ILE HG23 0.976 573 64 ILE HD11 0.727 1660 143 ILE N 120.25 575 64 ILE HD13 0.727 1661 143 ILE HA 3.751 576 64 ILE HO21 0.563 1664 143 ILE<	500	04	ILC	CA IIA	00.00	1052	142	ILC.	UD12	0.019
boo 0*4 ILE CB 38.02 1654 142 ILE HD13 0.918 569 64 ILE HB 1.733 1655 142 ILE CG2 16.08 570 64 ILE CG1 26.63 1656 142 ILE CG2 0.976 571 64 ILE HG12 1.219 1657 142 ILE HG21 0.976 572 64 ILE HG12 1.219 1658 142 ILE HG22 0.976 573 64 ILE HD11 0.727 1660 143 ILE N 120.25 575 64 ILE HD13 0.727 1661 143 ILE N 7.925 576 64 ILE H013 0.727 1662 143 ILE CA 64.27 577 64 ILE HG21 0.563 1664 143 ILE <td>700</td> <td>64</td> <td>ILE</td> <td>HA</td> <td>4.428</td> <td>1053</td> <td>142</td> <td>ILE</td> <td>HU12</td> <td>0.018</td>	700	64	ILE	HA	4.428	1053	142	ILE	HU12	0.018
bby b4 ILL HB 1.73 1655 142 ILE CG2 16.08 570 64 ILE CG1 2.6.3 1656 142 ILE HG21 0.976 571 64 ILE HG12 1.219 1657 142 ILE HG21 0.976 572 64 ILE HG11 1.299 1658 142 ILE HG23 0.976 573 64 ILE CD1 1.2.12 1659 142 ILE C 175.34 574 64 ILE HD11 0.727 1661 143 ILE N 120.25 575 64 ILE HD13 0.727 1661 143 ILE HA 3.751 576 64 ILE HG21 0.563 1663 143 ILE HA 3.751 578 64 ILE HG21 0.563 1664 143 ILE <td>568</td> <td>64</td> <td>ILE</td> <td>CB</td> <td>38.02</td> <td>1654</td> <td>142</td> <td>ILE</td> <td>HD13</td> <td>0.918</td>	568	64	ILE	CB	38.02	1654	142	ILE	HD13	0.918
5/0 64 ILE CG1 26.63 1656 142 ILE HG21 0.976 571 64 ILE HG12 1.219 1657 142 ILE HG22 0.976 572 64 ILE HG11 1.299 1658 142 ILE HG22 0.976 573 64 ILE CD1 12.12 1659 142 ILE C 175.34 574 64 ILE HD1 0.727 1660 143 ILE N 120.25 575 64 ILE HD12 0.727 1661 143 ILE HN 7.925 576 64 ILE HD13 0.727 1661 143 ILE HA 3.751 577 64 ILE HG21 0.563 1664 143 ILE CA 64.27 578 64 ILE HG21 0.563 1664 143 ILE <td>569</td> <td>64</td> <td>ILE</td> <td>HB</td> <td>1./33</td> <td>1655</td> <td>142</td> <td>ILE</td> <td>CG2</td> <td>16.08</td>	569	64	ILE	HB	1./33	1655	142	ILE	CG2	16.08
571 64 ILE HG12 1.219 1657 142 ILE HG22 0.976 572 64 ILE HG11 1.299 1658 142 ILE HG23 0.976 573 64 ILE CD1 12.12 1659 142 ILE C 175.34 574 64 ILE HD11 0.727 1660 143 ILE N 120.25 575 64 ILE HD13 0.727 1661 143 ILE HA 3.751 576 64 ILE HD13 0.727 1662 143 ILE CA 64.27 577 64 ILE HG21 0.563 1664 143 ILE HA 3.751 578 64 ILE HG21 0.563 1664 143 ILE CB 37 579 64 ILE HG22 0.563 1665 143 ILE	570	64	ILE	CG1	26.63	1656	142	ILE	HG21	0.976
572 64 ILE HG11 1.299 1658 142 ILE HG23 0.976 573 64 ILE CD1 12.12 1659 142 ILE C 175.34 574 64 ILE HD11 0.727 1660 143 ILE N 120.25 575 64 ILE HD12 0.727 1661 143 ILE HN 7.925 576 64 ILE HD13 0.727 1661 143 ILE CA 64.27 577 64 ILE CG2 16.86 1663 143 ILE HA 3.751 578 64 ILE HG21 0.563 1664 143 ILE CB 37 579 64 ILE HG22 0.563 1665 143 ILE HB 1.557 580 64 ILE HG23 0.563 1665 143 ILF	571	64	ILE	HG12	1.219	1657	142	ILE	HG22	0.976
573 64 ILE CD1 12.12 1659 142 ILE C 175.34 574 64 ILE HD11 0.727 1660 143 ILE N 120.25 575 64 ILE HD12 0.727 1661 143 ILE HN 7.925 576 64 ILE HD13 0.727 1661 143 ILE CA 64.27 577 64 ILE CG2 16.68 1663 143 ILE CA 64.27 578 64 ILE HG21 0.563 1664 143 ILE CB 37 578 64 ILE HG21 0.563 1664 143 ILE CB 37 579 64 ILE HG22 0.563 1665 143 ILE HB 1.557 580 64 ILE HG23 0.563 1666 143 ILF	572	64	ILE	HG11	1.299	1658	142	ILE	HG23	0.976
574 64 ILE HD11 0.727 1660 143 ILE N 12025 575 64 ILE HD12 0.727 1661 143 ILE HN 7.925 576 64 ILE HD13 0.727 1661 143 ILE HN 7.925 576 64 ILE HD13 0.727 1662 143 ILE CA 64.27 577 64 ILE CG2 16.86 1663 143 ILE HA 3.751 578 64 ILE HG21 0.563 1664 143 ILE CB 37 579 64 ILE HG22 0.563 1665 143 ILE HB 1.557 580 64 ILE HG23 0.563 1666 143 ILF HB 1.557	573	64	ILE	CD1	12.12	1659	142	ILE	С	175.34
575 64 ILE HD12 0.727 1661 143 ILE HN 7.925 576 64 ILE HD13 0.727 1661 143 ILE HN 7.925 576 64 ILE HD13 0.727 1661 143 ILE CA 64.27 577 64 ILE CG2 16.86 1663 143 ILE HA 3.751 578 64 ILE HG21 0.563 1664 143 ILE CB 37 579 64 ILE HG22 0.563 1665 143 ILE HB 1.557 580 64 ILE HG23 0.563 1666 143 ILF HB 1.557	574	64	ILE	HD11	0.727	1660	143	ILE	N	120.25
576 64 ILE HD13 0.727 1662 143 ILE CA 64.27 577 64 ILE CG2 16.86 1663 143 ILE HA 3.751 578 64 ILE HG21 0.563 1664 143 ILE CB 37 579 64 ILE HG22 0.563 1665 143 ILE HB 1.557 580 64 ILE HG22 0.563 1666 143 ILE HB 1.557	575	64	ILE	HD12	0.727	1661	143	ILE	HN	7.925
577 64 ILE CG2 16.86 1663 143 ILE HA 3.751 578 64 ILE HG21 0.563 1664 143 ILE CB 37 579 64 ILE HG22 0.563 1665 143 ILE CB 37 580 64 ILE HG23 0.563 1665 143 ILE CB 37 580 64 ILE HG23 0.563 1666 143 ILE CG1 28.68	576	64	ILE	HD13	0.727	1662	143	ILE	CA	64.27
578 64 ILE HG21 0.563 1664 143 ILE CB 37 579 64 ILE HG22 0.563 1665 143 ILE HB 1.557 580 64 ILE HG22 0.563 1666 143 ILE HB 1.557 580 64 ILE HG23 0.563 1666 143 ILE HB 1.557	577	64	II F	CG2	16.86	1663	143	II F	НΔ	3.751
579 64 ILE HG21 0.563 1064 143 ILE LD 57 580 64 ILE HG23 0.563 1665 143 ILE HB 1.557 580 64 ILE HG23 0.563 1666 143 IF CG1 28.68	579	64	ILE	HG21	0.563	1664	1/13	ILE	CR	37
57.0 0-7 ILL 11042 0.300 1000 143 ILL 118 1.557	570	64	ILL.	1021	0.505	1665	143	ILL.		1 557
	580	64	II F	HG23	0.563	1666	143	II F	CG1	28.68

581	64	ILE	C	174 265	1667	143	II F	HG12	1.075	
582	65	GLU	N	126.49	1668	143	II F	HG11	1.297	
583	65	GLU	HN	8.807	1669	143	ILE	CD1	12.71	
584	65	GLU	CA	54.65	1670	143	ILE	HD11	0.742	
585	65	GLU	HA	4.986	1671	143	ILE	HD12	0.742	
586	65	GLU	CB	32.2	1672	143	ILE	HD13	0.742	
587	65	GLU	HB2	1.819	1673	143	ILE	CG2	17.31	
588	65	GLU	HB1	1.819	1674	143	ILE	HG21	0.529	
589	65	GLU	CG	36.9	1675	143	ILE	HG22	0.529	
590	65	GLU	HG2	1.835	1676	143	ILE	HG23	0.529	
591	65	GLU	HG1	2.024	1677	143	ILE	C	177.86	
592	65	GLU	С	175.365	1678	144	TYR	N	119.72	
593	66	ILE	N	128.83	1679	144	TYR	HN	7.009	
594	66	ILE	HN	9.28	1680	144	TYR	CA	60.9	
595	66	ILE	CA	59.49	1681	144	TYR	HA	4.28	
596	66	ILE	HA	4.071	1682	144	TYR	CB	37.49	
597	66	ILE	CB	39.16	1683	144	TYR	HB2	3.34	
598	66	ILE	HB	1.567	1684	144	TYR	HB1	3.303	
599	66	ILE	CG1	26.94	1685	144	TYR	CD1	132.79	
600	66	ILE	HG12	0.454	1686	144	TYR	HD1	7.215	
601	66	ILE	HG11	1.035	1687	144	TYR	CE1	118.543	
602	66	ILE	CD1	12.91	1688	144	TYR	HE1	6.83	
603	66	ILE	HD11	0.46	1689	144	TYR	CE2	118.543	
604	66	ILE	HD12	0.46	1690	144	TYR	HE2	6.83	
605	66	ILE	HD13	0.46	1691	144	TYR	CD2	132.79	
606	66	ILE	CG2	17.93	1692	144	TYR	HD2	7.215	
607	66	ILE	HG21	0.357	1693	144	TYR	C	178.75	
608	66	ILE	HG22	0.357	1694	145	THR	N	119.16	
609	66	ILE	HG23	0.357	1695	145	THR	HN	8.633	
610	66	ILE	C	175.05	1696	145	THR	CA	67.35	
611	67	ILE	N	128.29	1697	145	THR	HA	4.242	
612	67	ILE	HN	9.215	1698	145	THR	CB	69.42	
615	67	ILE	CA	00.55	1899	145	TUD	пь	4.728	
614	67	ILE	HA	4.684	1700	145	THR	UG2	22.22	
615	67	ILE	CB	39.78	1701	145	THR	HG21	1.402	
610	67	ILE	пв сс1	1.0/4	1702	145	TUD	HG22	1.402	
617	67	ILE	UGI	27.8	1703	145	THR	HG23	1.402	
610	67	ILE U.C	HG12	1.097	1705	145	IHK	L N	117 41	
630	0/ 27	ILC II C	CD1	13 4	1706	140	ILC II C	IN LINI	11/.41 g 200	
621	67	ILE II E		13.4	1707	140	11.0	CA	64.00	
622	67	ILC	HD12	0.000	1709	140	ILC II C	LA HA	3 612	
673	67	ILE	HD12	0.888	1700	1/6	ILE ILE	CR CR	36.91	
624	67	11 E	1012	17.84	1710	1/4	11 0	HP	1 0 2 2	
625	67	IL E	HG21	0.966	1711	1/6	IL F	CG1	28.06	
626	67	II F	HG21	0.966	1712	146	IL F	HG12	1.425	
627	67	II F	HG23	0,966	1713	146	II F	HG11	1.49	
628	67	II F	C	175	1714	146	II F	CD1	11.67	
629	68	SER	N	121.57	1715	146	II F	HD11	0.677	
630	68	SER	HN	8.581	1716	146	II F	HD12	0.677	
631	68	SER	CA	55.91	1717	146	II F	HD13	0.677	
632	68	SER	HA	4.349	1718	146	II F	CG2	17.58	
633	68	SER	CB	65.96	1719	146	ILE	HG21	0.891	
634	68	SER	HB2	3.832	1720	146	ILE	HG22	0.891	
635	68	SER	HB1	4.079	1721	146	ILE	HG23	0.891	
636	68	SER	С	173.5	1722	146	ILE	С	178.3	
637	69	LYS	N	119.22	1723	147	ASN	N	117.4	
638	69	LYS	HN	8.007	1724	147	ASN	HN	8.133	
639	69	LYS	CA	59.16	1725	147	ASN	CA	57.13	
640	69	LYS	HA	3.91	1726	147	ASN	HA	4.445	
641	69	LYS	CB	32.06	1727	147	ASN	CB	38.57	
642	69	LYS	HB2	1.673	1728	147	ASN	HB2	2.663	
643	69	LYS	HB1	1.778	1729	147	ASN	HB1	2.865	
644	69	LYS	CG	24.29	1730	147	ASN	CG	176.024	
645	69	LYS	HG2	1.336	1/31	147	ASN	ND2	111.811	
646	69	LYS	HGI	1.330	1732	147	ASN	HD21	7.393	
647	69	LTD	LD2	1 69	1735	147	ASN	HD22	177 12	
640	60	LIJ	HD2	1.08	1734	147	ASN	N	114.04	
649	69	LTD	CE	1.00	1735	140	ASN		0 226	
650	60	LIJ	LED	42.15	1730	140	ASN	CA	6.530	
651	69	LTD		3.02	1730	140	ASN	LA	35.75	
653	69	LIS	C	176 71	1739	148	ASN	CB	38	
654	70	ASD	N	115.01	1739	148	ASN	HB2	2 161	
655	70	ΔSP	HN	7 983	1740	148	ASN	HB1	2.101	
656	70	ASP	CA	54.68	1742	148	ASN	CG	175.17	
657	70	ASP	HA	4.746	1743	148	ASN	ND2	110.543	
658	70	ASP	CB	42.93	1744	148	ASN	HD21	7.288	
659	70	ASP	HB2	2.521	1745	148	ASN	HD22	5.482	
660	70	ASP	HB1	2.741	1746	148	ASN	С	177.24	
661	70	ASP	С	175.38	1747	149	ILE	N	118.34	
662	71	GLU	N	117.99	1748	149	ILE	HN	7.569	
663	71	GLU	HN	7.59	1749	149	ILE	CA	65.98	
664	71	GLU	CA	55.77	1750	149	ILE	HA	3.844	
665	71	GLU	HA	4.621	1751	149	ILE	CB	38.83	
666	71	GLU	CB	33	1752	149	ILE	HB	1.873	
667	/1	GLU	HB2	1.84/	1/53	149	ILE	CG1	29.64	
668	71	GLU	HB1	1.949	1754	149	ILE	HG12	U.763	
669	/1	GLU	CG LICO	35.58	1755	149	ILE	HG11	2.322	
670	71	GLU	HG2	2.089	1756	149	ILE	CD1	14.21	
6/1	/1	GLU	HGI	2.089	1750	149	ILE	HD11	0.654	
672	/1	GLU	L. NI	122.40	1750	149	ILE II E	HD12	0.654	
674	72	LID	IN HN	122.49 8 357	1760	149	ILC.	LD13	18 15	
675	72	110	CA.	55.68	1761	145	IL E	HG21	10.13	
676	72	LID	LA HA	4 988	1762	149	ILC.	HG22	0.699	
677	72	110	CR	34 61	1763	145	IL E	HG22	0.033	
678	72	LID	LD HR7	1 632	1764	149	ILC.	пu23 С	176 58	
679	72	175	HR1	1.674	1765	145	IL F	N	116	
680	72	LYS	CG	24.97	1766	150	ILE	HN	8.594	
681	72	LYS	HG2	1.113	1767	150	ILE	CA	66.72	
682	72	LYS	HG1	1.228	1768	150	ILE	HA	3.441	
683	72	LYS	CD	29.443	1769	150	ILE	CB	37.82	
684	72	LYS	HD2	1.577	1770	150	ILE	HB	1.872	
685	72	LYS	HD1	1.577	1771	150	ILE	CG1	29.06	
686	72	LYS	CE	41.94	1772	150	ILE	HG12	1.063	
687	72	LYS	HE2	2.806	1773	150	ILE	HG11	1.763	
688	72	LYS	HE1	2.806	1774	150	ILE	CD1	13.45	
689	72	LYS	C	175.04	1775	150	ILE	HD11	0.805	
690	73	ILE	N	127.06	1776	150	ILE	HD12	0.805	
691	73	ILE	HN	8.912	1777	150	ILE	HD13	0.805	
692	/3	ILE	LA	59.96	1770	150	ILE	CG2	1/.51	
604	/3	ILE	HA CP	4.397	1700	150	ILE II E	HG21	0.872	
605	/ 5 75	ILC II C		41.0/	1701	150	ILC.	HG22	0.0/2	
606	/ 5 73	ILC II F	CG1	27 47	1792	150	ILC.	пц23 С	178 1	
697	73	II F	HG12	1.075	1783	151	I VS	N	115 38	
698	73	ILE	HG11	1.396	1784	151	LYS	HN	8.457	

699	73	ILE	CD1	13.67	1785	151	LYS	CA	59.1	
700	73	ILE	HD11	0.812	1786	151	LYS	HA	3.991	
701	73	ILE	HD12	0.812	1787	151	LYS	CB	32.05	
702	73	ILE	HD13	0.812	1788	151	LYS	HB2	1.793	
703	73	ILE	CG2	17.54	1789	151	LYS	HB1	2.012	
704	73	ILE	HG21	0.812	1790	151	LYS	CG	25.3	
705	73	ILE	HG22	0.812	1791	151	LYS	HG2	1.459	
706	73	ILE	HG23	0.812	1792	151	LYS	HG1	1.459	
707	73	II F	C	174.17	1793	151	LYS	CD	28.68	
708	74	VAI	N	125.13	1794	151	LYS	HD2	1.637	
709	74	VAL	HN	8 305	1795	151	1.42	HD1	1.637	
710	74	VAL	CA	60.95	1796	151	LVS	CE	42.1	
710	74	VAL	LA	4 8 00	1707	151	LIS	LED	42.1	
711	74	VAL	CD	4.033	1700	151	LIS	LIE1	2.522	
712	74	VAL	LID	1 9 0 4	1750	151	LIS	C	170.10	
715	74	VAL	пв	1.604	1799	151	LTS		1/6.15	
714	74	VAL	CG2	20.71	1800	152	ASN	N	110.4	
715	74	VAL	HG21	0.536	1801	152	ASN	HN	6.696	
716	74	VAL	HG22	0.536	1802	152	ASN	CA	55.1	
717	74	VAL	HG23	0.536	1803	152	ASN	HA	4.805	
718	74	VAL	CG1	21.27	1804	152	ASN	CB	40.74	
719	74	VAL	HG11	0.793	1805	152	ASN	HB2	2.453	
720	74	VAL	HG12	0.793	1806	152	ASN	HB1	2.608	
721	74	VAL	HG13	0.793	1807	152	ASN	C	174.95	
722	74	VAL	C	175.45	1808	153	VAL	N	116.13	
723	75	LYS	N	126.75	1809	153	VAL	HN	7.677	
724	75	LYS	HN	8.744	1810	153	VAL	CA	64.36	
725	75	LYS	CA	53.71	1811	153	VAL	HA	4.056	
726	75	LYS	HA	4.547	1812	153	VAL	CB	32.16	
727	75	LYS	CB	35.37	1813	153	VAL	HB	2.138	
728	75	LYS	HB2	1.473	1814	153	VAL	CG2	22.09	
729	75	LYS	HB1	1.75	1815	153	VAL	HG21	0.865	
730	75	LYS	CG	24.63	1816	153	VAL	HG22	0.865	
731	75	LYS	HG2	1.22	1817	153	VAL	HG23	0.865	
732	75	LYS	HG1	1.22	1818	153	VAL	CG1	22.39	
733	75	LYS	CD	29.11	1819	153	VAL	HG11	0.947	
734	75	LYS	HD2	1.524	1820	153	VAL	HG12	0.947	
735	75	LYS	HD1	1.575	1821	153	VAL	HG13	0.947	
736	75	LYS	CE	41.94	1822	154	ILE	N	115.42	
737	75	LYS	HE2	2.838	1823	154	ILE	HN	7.579	
738	75	LYS	HE1	2.838	1824	154	ILE	CA	62.79	
739	75	LYS	С	173.7	1825	154	ILE	HA	3.879	
740	76	TYR	N	118.08	1826	154	ILE	CB	37.43	
741	76	TYR	HN	8.52	1827	154	ILE	HB	1.875	
742	76	TYR	CA	57.48	1828	154	II F	CG1	27.47	
743	76	TYR	НΔ	5 186	1829	154	ILE	HG12	1 16	
744	76	TYR	CB	40.72	1830	154	ILE	HG11	1.10	
745	76	TYR	HB2	2 589	1831	154	ILE	CD1	13.14	
746	76	TVR	HB1	2.565	1832	154	ILE.	HD11	0.698	
747	76	TYR	CD1	132 737	1833	154	II F	HD12	0.698	
748	76	TVR	HD1	6 856	1834	154	ILE	HD13	0.698	
740	76	TVR	CE1	118.076	1835	154	ILE	(62	17.56	
749	70	TVP	UE1	6 722	1035	154	ILL	LC21	17.50	
750	70	TVP	CED	112 076	1030	154	ILL	HG21	0.859	
751	70	TVP	UE2	6 722	1037	154	ILL	HG22	0.859	
752	70	TYP	CD2	0./32	1000	154	ILE	поz5 С	174.00	
753	76	TYR	CD2	132./3/	1839	154	ILE	C	174.88	
754	70	TVD	HD2	175.05	1840	155	GLN	1102	32.401	
755	70	ITR	C	1/5.05	1041	155	GLN	HGZ	2.15	
756	//	LEU	N	125	1842	155	GLN	HGI	2.13	
757	77	LEU		52.25	1045	155	GLN	CD NED	111 205	
750	77	LEU	LA	33.23	1044	155	GLN	INEZ	7 707	
759	//	LEU	TA CD	4.067	1645	155	GLN	HE21	7.707	
760	//	LEU	CB	45.07	1846	155	GLN	HEZZ	6.951	
761	//	LEU	HBZ	1.519	1847	157	GLU	CA	56.7	
762	//	LEU	HB1	1.604	1848	157	GLU	HA	4.371	
763	//	LEU	CG	26.997	1849	157	GLU	CB	30.53	
764	//	LEU	HG	1.552	1850	157	GLU	HB2	1.951	
765	//	LEU	CD1	24.999	1851	157	GLU	HB1	2.065	
766	//	LEU	HDII	0.872	1852	157	GLU	CG	36.22	
767	//	LEU	HD12	0.872	1853	157	GLU	HG2	2.26	
768	//	LEU	HD13	0.872	1854	157	GLU	HG1	2.26	
769	77	LEU	CD2	24.665	1855	157	GLU	C	175.836	
770	//	LEU	HD21	0.842	1856	158	ASP	N	121.3	
//1	//	LEU	HD22	0.842	1857	158	ASP	HN	8.404	
772	//	LEU	HD23	0.842	1858	158	ASP	CA	54.42	
773	//	LEU	C N	175.61	1859	158	ASP	HA	4.642	
775	/8	GLN	IN LUN	123.14	1860	128	ASP	LB	41.53	
775	/8	GLN		0.000	1001	100	ASP	nd2	2.000	
//b 777	/8 70	GLN	LA	55.3Z	1862	158	ASP	HBI	2./12	
770	70	CIN		30.047	1000	100	ADP		110.18	
770	79	GIN	LD HR2	1 9/7	1865	150	NCN	HN	2 5 5 9	
780	78	GIN	HR1	1.947	1866	159	ASN	CΔ	54 33	
781	78	GIN		34.3	1867	159	ACM	на	4 636	
782	78	GLN	HG2	2,213	1868	159	ASN	CB	38.57	
783	78	GLN	HG1	2,287	1869	159	ASN	HB2	2.891	
784	78	GLN	CD	180.135	1870	159	ASN	HB1	2.916	
785	78	GLN	NE2	111.526	1871	159	ASN	CG	177.409	
786	78	GLN	HE21	7.555	1872	159	ASN	ND2	112.664	
787	78	GLN	HE22	6.783	1873	159	ASN	HD21	7.593	
788	78	GLN	C.	174.85	1874	159	ASN	HD22	6.901	
789	79	II F	N	121.98	1875	159	ASN	C	175.44	
790	79	II F	HN	8,652	1876	160	SER	N	114.93	
791	79	II F	CA	59.27	1877	160	SER	HN	8.527	
792	79	II F	HA	4,552	1878	160	SER	CA	59.31	
793	79	II F	CB	41.71	1879	160	SER	HA	4.519	
794	79	II F	HB	1.763	1880	160	SER	CB	64.12	
795	79	II F	CG1	27 29	1881	160	SER	HR2	3 864	
796	79	ILF	HG12	1.209	1882	160	SER	HB1	3,912	
797	79	ILF	HG11	1.475	1883	160	SER	C	173 77	
798	79	II F	CD1	13.25	1884	161	II F	N	121.86	
799	79	II F	HD11	0.838	1885	161	II F	HN	7.92	
800	79	II F	HD12	0.838	1886	161	II F	CΔ	61.05	
801	79	ILF	HD13	0.838	1887	161	II F	НΔ	4 235	
802	79	ILE	(62	17 11	1999	161	ILE	CR	20 / 2	
802	79	IL E	HG21	0.810	1990	161	IL E	HR	1 79/	
804	79	ILC II C	HG21	0.019	1000	101	ILC.	CC1	1./04	
805	79	IL E	HG22	0.819	1901	161	IL E	HG12	1 1 9 6	
806	79	IL E	r	174 125	1991	161	IL E	HG11	1 /57	
200	00	ACD	N	174.125	1002	101	11 E	CD1	10 54	
6U/	80	ASP	IN LINI	124.50	1893	101	ILE	UD11	13.54	
808	80	ASP	HIN	6.DU/	1894	101	ILE	HUII	0.792	
809	80	ASP	CA	54.4/	1895	161	ILE	HD12	0.792	
810	80	ASP	HA	4.668	1896	161	ILE	HD13	0.792	
811	80	ASP	CB	41.32	1897	161	ILE	CG2	1/.56	
812	80	ASP	HB2	2.598	1898	161	ILE	HG21	0.816	
813	80	ASP	HB1	2.804	1899	161	ILE	HG22	0.816	
814	80	ASP	C	177.75	1900	161	ILE	HG23	0.816	
815	81	GLU	N	126.34	1901	161	ILE	C	174.74	
816	81	GLU	HN	8.8	1902	162	TRP	N	125.31	

	817	81	GLU
	818	81	GLU
	819	81	GLU
	820	81	GUI
	020	01	GLU
	821	01	GLU
	822	81	GLU
	823	81	GLU
	824	81	GLU
	825	81	GUU
	025	01	CLU
	820	62	GLU
	827	82	GLU
	828	82	GLU
	829	82	GLU
	820	00	GUU
	830	82	GLU
	831	82	GLU
	832	82	GLU
	833	82	GLU
	024	00	GUU
	634	62	GLU
	835	82	GLU
	836	82	GLU
	837	83	SER
	838	83	SER
	030	03	CED
	923	65	SER
	840	83	SER
	841	83	SER
	842	83	SER
	843	83	SER
	044	00	CED
	644	65	SER
	845	84	SER
	846	84	SER
	847	84	SER
	848	84	SER
	0.10	04	CED
	649	64	SER
	850	84	SER
	851	84	SER
	852	84	SER
	853	85	LEU
	954	OC OC	LEU
	0.04	60	LEU
	855	85	LEU
	856	85	LEU
	857	85	LEU
	858	85	L ELL
	050	05	LEU
	609	85	LEU
	860	85	LEU
	861	85	LEU
	862	85	LEU
	863	85	LEU
	000	05	1.511
	864	85	LEU
	865	85	LEU
	866	85	LEU
	867	85	LEU
	868	85	LEU
	860	OC OC	LEU
	609	60	LEU
	870	85	LEU
	871	86	LYS
	872	86	LYS
	873	86	LYS
	074	00	LVC
	674	00	LTS
	875	86	LYS
	876	86	LYS
	877	86	LYS
	878	86	1 YS
	070	00	LVC
	6/9	00	LTS
	880	86	LYS
	881	86	LYS
	882	86	LYS
	883	86	1 YS
	001	00	LVC
	004	80	LID
	885	86	LYS
	886	86	LYS
	887	86	LYS
	000	07	ACD
	000	07	ASP
	889	87	ASP
	890	87	ASP
	891	87	ASP
	892	87	ASP
	893	87	ASP
	000	07	101
	054	07	ADP
	895	87	ASP
	896	88	LYS
	897	88	LYS
	898	88	LYS
	899	88	1 4 5
	900	22	1 1 1 1
	001	00	110
	901	88	LTS
	902	88	LYS
	903	88	LYS
	904	88	LYS
	905	88	LYS
	904	00	ive
	905	88	LTS
	907	88	LYS
	908	88	LYS
	909	88	LYS
	910	88	LYS
	911	22	1 1 1 1
	012	00	LIJ
	917	88	LYS
	913	89	LEU
	914	89	LEU
	915	89	LEU
	916	80	LEU
	017	0.0	LEU
	91/	89	LEU
	918	89	LEU
	919	89	LEU
	920	20	LELL
	52U	03	LEU
	921	89	LEU
	922	89	LEU
	923	89	LEU
	924	89	I FU
	925		1 511
ļ	525	02	LEU
	926	89	LEU
	927	89	LEU
	928	89	LEU
	929	89	LELL
	020	0.5	1.511
	930	89	LEU
	931	90	ARG
	932	90	ARG
	-	90	ARG
	933		
	933	00	ADC

935	90	ARG	CB	31.95	2021	170	TYR	CA	56.97	
936	90	ARG	HB2	1.976	2022	170	TYR	HA	4.83	
937	90	ARG	HBI	2.187	2023	170	TYR	CB	41.18	
938	90	ARG	LCS	1 6 9 5	2024	170	TVP	HB2	2.746	
959	90	ARG	HG1	1.065	2025	170	TVR	CD1	2.096	
941	90	ARG	CD	44 38	2020	170	TYR	HD1	7.04	
942	90	ARG	HD2	3.184	2028	170	TYR	CE1	118.65	
943	90	ARG	HD1	3.463	2029	170	TYR	HE1	6.814	
944	90	ARG	NE	87.47	2030	170	TYR	CE2	118.65	
945	90	ARG	HE	7.171	2031	170	TYR	HE2	6.814	
946	90	ARG	CZ	160.02	2032	170	TYR	CD2	133.03	
947	90	ARG	С	177.89	2033	170	TYR	HD2	7.04	
948	91	LEU	N	119.67	2034	170	TYR	С	175.74	
949	91	LEU	HN	7.561	2035	171	ASN	N	129.75	
950	91	LEU	CA	58.32	2036	171	ASN	HN	9.369	
951	91	LEU	HA	4.316	2037	171	ASN	CA	53.33	
952	91	LEU	CB	42.017	2038	171	ASN	HA	4.084	
953	91	LEU	HB2	1.84	2039	171	ASN	CB	37.21	
954	91	LEU	HB1	1.84	2040	171	ASN	HB2	1.948	
955	91	LEU	CG	27.2	2041	171	ASN	HB1	2.932	
956	91	LEU	HG	1./03	2042	1/1	ASN	CG	177.451	
957	91	LEU	CD1	25.31	2043	1/1	ASN	ND2	110.363	
958	91	LEU	HDII	0.975	2044	1/1	ASN	HD21	7.101	
959	91	LEU	HD12	0.975	2045	171	ASN	HD22	0.523	
960	91	LEU	CD3	24.15	2046	171	GLV	N	1/5.54	
962	91	LEU	HD21	1 033	2047	172	GLY	HN	8 861	
963	91	I FU	HD22	1.033	2049	172	GLY	CA	45.39	
964	91	LEU	HD23	1.033	2050	172	GLY	HA2	3.502	
965	91	LEU	С	180.74	2051	172	GLY	HA1	4.099	
966	92	ILE	N	123.1	2052	172	GLY	С	173.69	
967	92	ILE	HN	8.311	2053	173	LYS	N	121.75	
968	92	ILE	CA	66.58	2054	173	LYS	HN	7.868	
969	92	ILE	HA	3.4	2055	173	LYS	CA	54.64	
970	92	ILE	CB	38.86	2056	173	LYS	HA	4.766	
971	92	ILE	HB	1.967	2057	173	LYS	CB	34.81	
972	92	ILE	CG1	29.76	2058	173	LYS	HB2	1.849	
973	92	ILE	HG12	0.829	2059	173	LYS	HB1	1.956	
974	92	ILE	HG11	1.875	2060	173	LYS	CG	24.773	
975	92	ILE	CD1	14.21	2061	173	LYS	HG2	1.472	
976	92	ILE	HD11	0.972	2062	173	LYS	HG1	1.4/2	
9//	92	ILE	HD12	0.972	2063	1/3	LYS	CD UD2	29.1	
978	92	ILE	HD13	0.972	2064	173	LYS	HD2	1.758	
979	92	ILE	LG2	0.45	2065	175	LTS	HD1 CE	1.000	
981	92	ILE	HG21	0.761	2000	173	LIS	HE2	3.075	
982	92	ILE	HG22	0.761	2007	173	LIS	HE1	3.075	
983	92	II F	C	177 79	2069	173	LYS	C	175.12	
984	93	LEU	N	119.45	2070	173	LEU	N	127.55	
985	93	LEU	HN	8.803	2071	174	LEU	HN	8.513	
986	93	LEU	CA	58.51	2072	174	LEU	CA	55.49	
987	93	LEU	HA	4.049	2073	174	LEU	HA	3.607	
988	93	LEU	CB	40.6	2074	174	LEU	CB	42.95	
989	93	LEU	HB2	1.597	2075	174	LEU	HB2	1.186	
990	93	LEU	HB1	1.958	2076	174	LEU	HB1	1.501	
991	93	LEU	CG	26.91	2077	174	LEU	CG	26.14	
992	93	LEU	HG	1.929	2078	174	LEU	HG	1.142	
993	93	LEU	CD1	25.86	2079	174	LEU	CD1	25.54	
994	93	LEU	HD11	0.716	2080	174	LEU	HD11	0.62	
995	93	LEU	HD12	0.716	2081	174	LEU	HD12	0.62	
996	93	LEU	HD13	0.716	2082	174	LEU	HD13	0.62	
997	93	LEU	CD2	22.1	2083	174	LEU	CD2	23.56	
998	93	LEU	HD21	0.864	2084	174	LEU	HD21	0.436	
999	93	LEU	HD22	0.864	2085	174	LEU	HD22	0.436	
1000	93	LEU	HD23	0.864	2086	174	LEU	HD23	0.436	
1001	93	LEU	L N	1/9.25	2087	174	LEU	C N	1/7.27	
1002	94	ASP	HN	8 977	2088	175	ILE	HN	8 9 1 2	
1003	94	ΔSP	CA	57.8	2089	175	ILE	CA	60.64	
1005	94	ASP	НА	4.452	2091	175	ILE	HA	4.106	
1005	94	ASP	CB	40.36	2092	175	ILE	CB	37.37	
1007	94	ASP	HB2	2.708	2093	175	ILE	HB	1.698	
1008	94	ASP	HB1	2.965	2094	175	ILE	CG1	26.86	
1009	94	ASP	С	179.14	2095	175	ILE	HG12	1.203	
1010	95	THR	N	117.575	2096	175	ILE	HG11	1.347	
1011	95	THR	HN	7.892	2097	175	ILE	CD1	12.83	
1012	95	THR	CA	67.54	2098	175	ILE	HD11	0.703	
1013	95	THR	HA	4.092	2099	175	ILE	HD12	0.703	
1014	95	THR	CB	68.1	2100	175	ILE	HD13	0.703	
1015	92	THR	HB	4.47	2101	1/5	ILE	LG2	1/.30	
1010	22	THR	HG21	1 161	2102	175	IL F	HG21	0.762	
1018	95	THR	HG22	1.161	2104	175	II F	HG23	0,762	
1019	95	THR	HG23	1.161	2105	175	ILE	C	174.93	
1020	95	THR	c -	176.43	2106	176	GLU	N	125.89	
1021	96	LEU	N	121.33	2107	176	GLU	HN	8.22	
1022	96	LEU	HN	8.515	2108	176	GLU	CA	55.55	
1023	96	LEU	CA	58.66	2109	176	GLU	HA	4.402	
1024	96	LEU	HA	3.921	2110	176	GLU	CB	31.94	
1025	96	LEU	CB	42.36	2111	176	GLU	HB2	1.855	
1026	96	LEU	HB2	1.643	2112	176	GLU	HB1	1.95	
1027	96	LEU	HB1	2.194	2113	176	GLU	CG	36.65	
1028	96	LEU	CG	26.87	2114	176	GLU	HG2	2.099	
1029	96	LEU	HG	1.934	2115	176	GLU	HG1	2.099	
1030	96	LEU	CD1	26.54	2116	1/6	GLU	L	1/5.31	
1031	96	LEU	HD11	0.976	211/	1//	LEU	N	124.22	
1032	90	LEU	HD12	0.976	2110	177	LEU		0.347 54 98	
1033	96	LEU	CD2	23.46	2120	177	LEU	HA	4.384	
1035	96	LEU	HD21	0.722	2121	177	LEU	CB	42.3	
1036	96	LEU	HD22	0.722	2122	177	LEU	HB2	1.575	
1037	96	LEU	HD23	0.722	2123	177	LEU	HB1	1.575	
1038	96	LEU	С	179.59	2124	177	LEU	CG	27.09	
1039	97	SER	N	115.82	2125	177	LEU	HG	1.587	
1040	97	SER	HN	9.29	2126	177	LEU	CD1	25.37	
1041	97	SER	CA	63.47	2127	177	LEU	HD11	0.877	
1042	97	SER	HA	4.339	2128	177	LEU	HD12	0.877	
1043	97	SER	CB	63.09	2129	177	LEU	HD13	0.877	
1044	97	SER	HB2	4.038	2130	177	LEU	CD2	24	
1045	97	SER	HB1	4.209	2131	177	LEU	HD21	0.801	
1045	97	SER	L.	1/6.38	2132	177	LEU	HD22	0.801	
1042	98	ASN		115.21	2133	1//	LEU	HD23	175 00	
1048	78	ASN		0.U11	2134	170	APC	N	175.89	
1049	28	ASN	LA HA	20.35 2 213	2135	178	ARG	IN HN	120./5 7 9/1	
1050	20	ASN	CR CR	39.64	2130	179	ARG		7.041 57.1	
1052	98	ASN	HB2	2.788	2138	178	ARG	HA	4.171	

1053	98	ASN	HB1	2.926	2139	178	ARG	CB	32.05	
1054	98	ASN	CG	176.128	2140	178	ARG	HB2	1.673	
1055	98	ASN	ND2	113.939	2141	178	ARG	HB1	1.854	
1056	98	ASN	HD21	7.603	2142	178	ARG	CG	27.07	
1057	98	ASN	HD22	6.973	2143	178	ARG	HG2	1.544	
1058	98	ASN	С	177.72	2144	178	ARG	HG1	1.544	
1059	99	GLU	N	115.43	2145	178	ARG	CD	43.46	
1060	99	GLU	HN	8.633	2146	178	ARG	HD2	3.138	
1061	99	GLU	CA	57.57	2147	178	ARG	HD1	3.201	
1062	99	GLU	HA	4.279	2148	178	ARG	NE	85.16	
1063	99	GLU	CB	30.37	2149	178	ARG	HE	7.234	
1064	99	GLU	HB2	1.931	2150	178	ARG	CZ	159.61	
1065	99	GLU	HB1	1.689	2151	178	ARG	С	180.61	
1066	99	GLU	CG	36.26						
1067	99	GLU	HG2	2.116						
1068	99	GLU	HG1	2.339						
1069	99	GLU	C	176.72						
1070	100	TYR	N	117.5						
1071	100	TYR	HN	8.07						
1072	100	TYR	CA	59.59						
1073	100	TYR	HA	4.629						
1074	100	TYR	CB	41.93						
1075	100	TYR	HB2	2.279						
1076	100	TYR	HB1	2.461						
1077	100	TYR	CD1	133.144						
1078	100	TYR	HD1	5.978						
1079	100	TYR	CE1	117.5						
1080	100	TYR	HE1	6.553						
1081	100	TYR	CE2	117.5	1					
1082	100	TYR	HE2	6.553						
1083	100	TYR	CD2	133.144	1					
1084	100	TYR	HD2	5.978	1					
1085	100	TYR	C	174.74	1					

Acknowledgements

Acknowledgements

I want to thank everyone who has contributed to this work:

Firstly, I would like to thank my supervisor Dieter Willbold for his consistent support and guidance during the running of both projects and for the opportunity to work in the excellent, fully equipped laboratory and NMR facilities.

I would also like to thank my mentor and co-supervisor, Birgit Strodel, for her support and scientific discussions about current results during my PhD.

Many thanks to Philipp Neudecker, who helps me a lot with NMR experiments and some data evaluation. Also, thank you for this opportunity to work here and for helping me with a German bureaucracy.

My sincere thanks go to all NMR people at the institute IBI-7. In particular, I would like to thank Nils Lakomek for his support in my last year of the PhD, constructive discussions during thesis writing and great ideas about the data evaluation. Also, many thanks to Henrike Heise and all her groups' members, Baran, Nina, Luis, and Anna, for your assistance, advice and friendly atmosphere. Thank you so much to Rudi and Kevin, who helped with my questions during the experiment settings, and, also, without you, I would never move the Dewar with liquid nitrogen even for a centimetre. And one more special thanks to my dear friend Baran for her support, help, care, and tasty food she brought to me when I worked over weekends.

Thank you to all people who work at the biological laboratory of IBI-7 and Düsseldorf University lab. And especially to people who introduced me to biology lab work and taught me how to express and purify the best protein samples. In particular, thank you to Vineet, Marianne, Serife, Kai and Thibault. Also, for people who work at the "Russian lab" at IBI-7, it was always nice to know that I can count on your help if I need something urgent during the lab work.

Many thanks to all my colleges at the IBI-7 for exciting discussions and an enjoyable work environment. Special thanks to my best office mates Line, Tim and Marc for a very friendly office atmosphere and many funny moments. Thank you for listening, support and help in challenging times.

I would further like to thank Xue Wang, Verena Kienapfel and Bettina Wagner for the excellent collaboration and many scientific discussions for both projects.

I thank my colleagues from Düsseldorf University, Sander Smits, Lothar Gremer and Manuel Etzkorn, for instructive collaboration and helpful advice.

My sincere thanks to my colleagues and friends from other research institutes at FZJ Thorsten Auth, Margarita Kruteva and my friend Natalia for the continuous support with thesis writing, discussions, motivation and for cheering me up in tough times.

Acknowledgements

I would like to acknowledge the financial support from the Collaborative Research Center 1208 (SFB 1208) from the Heinrich-Heine-University Düsseldorf.

Last but not least, I thank my family, my mum, my sister, my lovely grandparents V and V, and all of my friends from Russia for their constant support during my education and moving to another country. Spasibo that you never doubt in me.

Publications and Presentations

Publications

1. Irina Apanasenko, Rebeca Clemens, Jens Reiners, Lothar Gremer, Sander Smits, and Philipp Neudecker: Structure Calculation of Lipoprotein CD 1348 from *Clostridium difficile* by Solution NMR. In progress

2. Daniel Mulnaes, Nicola Porta, Rebecca Clemens, Irina Apanasenko, Jens Reiners, Lothar Gremer, Philipp Neudecker, Sander H. J. Smits, and Holger Gohlke: TopModel: Template-Based Protein Structure Prediction at Low Sequence Identity Using Top-Down Consensus and Deep Neural Networks, Journal of Chemical Theory and Computation 2020 16 (3), 1953-1967, DOI: 10.1021/acs.jctc.9b00825

3. B. Uluca-Yazgi, L. Siemons, M. Sevenich, K. Schmitz, I. Apanasenko, N. Becker, A. S. König, W. Hoyer,P. Neudecker, D. F. Hansen, H. Heise: Isoleucine Side Chains as a Reporter of Conformational Freedom. In progress

Oral presentations

1. Irina Apanasenko, Jülich. "Elucidation of the dynamics of the autophagosomal membraneassociated protein GABARAP by NMR spectroscopy". Annual meeting 2019 of the Bio-NMR-Network-NRW (bio-N³MR), Jülich, Germany Eidesstattliche Erklärung

Eidesstattliche Erklärung

Ich versichere an Eides statt, dass die Dissertation von mir selbständig und ohne unzulässige fremde Hilfe unter Beachtung der "Grundsätze zur Sicherung guter wissenschaftlicher Praxis an der Heinrich-Heine-Universität Düsseldorf" erstellt worden ist.

Ort, Datum

Unterschrift

Eidesstattliche Erklärung