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Kurzfassung

Anders als in der klassischen Maßtheorie sind die Werte eines motivischen Maßes im
Allgemeinen keine reellen Zahlen, sondern von geometrischer Natur. Üblicherweise ist
der Wertebereich von einem Grothendieck-Ring bestimmt, etwa dem Ring𝐾0(Var) der
Isomorphieklassen von Varietäten modulo einer Zerlegungsrelation. Eine elementare
Erweiterung 𝑁 ≽𝑀 einer Struktur𝑀 ist eine Oberstruktur, welche dieselben Formeln
der Logik erster Stufe erfüllt. Ein Beispiel einer elementaren Erweiterung der ganzen
Zahlen Z als angeordnete abelsche Gruppe erhält man durch dichtes Aneinanderreihen
abzählbar unendlich vieler Kopien von Z. Formal ausgedrückt ist dies die Menge Q×Z
mit lexikographischer Ordnung und komponentenweiser Addition.

Ein typisches Phänomen in elementaren Erweiterungen angeordneter Strukturen ist die
Existenz unendlich großer bzw. kleiner Elemente. Dies trifft auch auf echte elementare
Erweiterungen K ≽ Q𝑝 zu – und bringt Schwierigkeiten für ein (motivisches) Maß mit
sich. Einerseits verhindert es die Existenz eines Haarmaßes, da solch ein K nicht
lokalkompakt ist: Jeder Ball kann leicht in unendlich viele disjunkte offene Bälle von
infinitesimalem Radius zerlegt werden. Außerdem wollen wir unendliche kleine (und
große) Mengen präzise messen; der Wertebereich des Maßes muss daher deutlich größer
als Q sein (was für Maße definierbarer Teilmengen von Q𝑝 ausreichend wäre).

Den Ring 𝑅mot(𝑍) der Werte der motivischen Integration zu verstehen ist daher ein
wichtiger Schritt dieser Arbeit. Dabei ist 𝑍 eine beliebige Parametermenge in der
Wertegruppe Γ, welche notwendigerweise eine Z-Gruppe, d. h. eine elementare Er-
weiterung von Z als angeordnete abelsche Gruppe, ist. Die detailierte Analyse des
Grothendieck-Rings 𝐾Γ

𝑏 (𝑍) der beschränkten 𝑍-definierbaren Mengen in Γ durch Raf
Cluckers und Immanuel Halupczok erlaubt uns die konkrete Beschreibung 𝑅mot(𝑍) ∼=
(𝐾Γ

𝑏 (𝑍)⊗Q)[𝑇𝑍 ]/(𝑇 − 𝑝).

Um die Grundidee der Konstruktion unseres Maßes zu beschreiben, sei 𝑋 ⊂ K eine
beschränkte definierbare Teilmenge. Nach endlicher Zerlegung (und bis auf endlich
viele Punkte) können wir annehmen, dass 𝑋 eine Zelle, d.h. die disjunkte Vereinigung
einer Familie von durch die Wertegruppe parametrisierten Bällen, ist. Anschaulich ist
das Maß der Zelle 𝑋 dann durch

𝜇mot(𝑋) =
∑︁
𝑟

𝑟 ·𝑁𝑟

definiert, wobei 𝑟 alle vorkommenden Radii durchläuft, während 𝑁𝑟 die (ggf. un-
endliche) „Zahl“ der Bälle mit Radius 𝑟 in der Zerlegung ist. Der Fall 𝑋 ⊂ K𝑛 für
𝑛 > 1 ist komplizierter und erfordert einige technische Hilfsmittel, die wir entwickeln.

Der Nutzen unserer Konstruktion wird auch dadurch deutlich, dass sie das universelle
motivische Maß liefert. Genauer handelt es sich um das allgemeinste (normalisierte)
Maß, welches (1) additiv und multiplikativ ist, (2) „kleinen“ Mengen das Maß 0 zuord-
net und (3) eine gewisse Variablensubstitutionsregel erfüllt. Der Beweis dieser Uni-
versalität lässt sich mit wenigen Anpassungen aus der vorausgehenden Arbeit von Raf
Cluckers und Immanuel Halupczok im Fall von Q𝑝 übertragen.

i





Synopsis

Unlike in classical measure theory, the values of a motivic measure are not necessarily
real numbers, but they are of a more geometric nature. Usually, the set of values
is related to some kind of Grothendieck ring, e.g., the ring 𝐾0(Var) of isomorphism
classes of varieties modulo a scissor relation. An elementary extension of some given
structure 𝑀 is a superstructure 𝑁 ⊃𝑀 that satisfies the same first-order formulas as
𝑀 , and in that case, we write 𝑁 ≽𝑀 . One example of an elementary extension of the
integers Z as an ordered abelian group can be obtained by densely stacking countably
infinitely many copies of Z right next to each other. More formally, consider the set
Q× Z with the lexicographic order and component-wise addition.

A typical phenomenon in elementary extensions of ordered structures is the existence
of infinitely small and/or large elements. This also happens in proper elementary
extensions K ≽ Q𝑝, and it is precisely what causes difficulties regarding a (motivic)
measure. For one, it prevents the existence of a Haar measure, as such fields K are
not locally compact. Indeed, any ball can easily be partitioned into infinitely many
disjoint open balls of infinitesimal radius. Furthermore, to understand the motivic
measure 𝜇mot in our case, we have to precisely measure infinitely small (and large)
sets. In order to prevent the loss of information, the ring of values thus has to be
much bigger than Q (which would suffice for measures of definable subsets of Q𝑝).

Studying this ring 𝑅mot(𝑍) of values of motivic integration is therefore an important
step towards our actual goal. Here and in the following, 𝑍 is an arbitrary set of param-
eters in the value group Γ, which is necessarily a Z-group, i.e., an elementary extension
of Z as ordered abelian groups. Making use of the detailed analysis of the Grothendieck
ring 𝐾Γ

𝑏 (𝑍) of bounded 𝑍-definable sets in Γ by Raf Cluckers and Immanuel Halupc-
zok, we obtain the concrete description 𝑅mot(𝑍) ∼= (𝐾Γ

𝑏 (𝑍)⊗Q)[𝑇𝑍 ]/(𝑇 − 𝑝).

To get a basic idea of our construction of the measure, consider a bounded definable
subset 𝑋 ⊂ K of the valued field. After a finite decomposition (and up to finitely
many points), we may assume that 𝑋 is a cell, i.e., a disjoint union of a family of balls,
parameterized by a subset of the value group. Intuitively, its measure is then defined
as

𝜇mot(𝑋) =
∑︁
𝑟

𝑟 ·𝑁𝑟,

where 𝑟 runs over all possible radii, and where 𝑁𝑟 is the (possibly infinite) “number” of
balls of radius 𝑟 in the decomposition. The case of 𝑋 ⊂ K𝑛 for 𝑛 > 1 is more involved
and requires some new technical tools that we develop.

Emphasizing the value of our construction, we show that the motivic measure obtained
is universal, i.e., the most general (normalized) one that (1) is additive and multiplica-
tive, (2) assigns measure 0 to “small” sets, and (3) satisfies a certain change of variables
formula. The proof of this universality result can be adapted with few adjustments
from the previous work of Raf Cluckers and Immanuel Halupczok in the case of Q𝑝.
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1 Introduction

The origins of motivic integration lie in a lecture of Maxim Kontsevich at Orsay in
1995, [Kon95]. As a tool for proving that birationally equivalent Calabi-Yau manifolds
have the same Hodge numbers, he introduced a theory of integration on arc spaces,
and generalized Victor Batyrev’s ideas from [Bat99] using 𝑝-adic integration.

In contrast to classical integration theories, motivic integrals do not generally evaluate
to real numbers. Instead, and as the name suggests, the values are more geometric
objects, e.g., classes of varieties in the Grothendieck ring 𝐾0(Var), which is obtained
from the group of isomorphism classes by identifying [𝑋] + [𝑌 ] with [𝑋 ∪̇ 𝑌 ]. Conse-
quently, the associated motivic measure 𝜇mot (obtained by integrating characteristic
functions) is not a measure in the usual sense, since it is not real-valued.

However, some important properties are still satisfied. Most notably, the motivic
measure is additive and multiplicative, “small” sets are negligible, and there is a change
of variables formula (i.e., a bijection with constant Jacobian determinant changes the
measure by the norm of that determinant as a scaling factor).

The main outcome of this thesis is the construction of a motivic measure on elementary
extensions K ≽ Q𝑝 of the 𝑝-adic numbers satisfying the above conditions. This is the
content of Definition 5.1.9 and Theorem 5.1.10. While the trivial measure, assigning
0 to each set, obviously meets these requirements, the value of our construction lies in
the fact that it yields the universal motivic measure, i.e., the most general one with
the properties mentioned above. The proof of that key result, Theorem 5.3.4, is almost
identical to the recent proof of the analogous statement for classical 𝑝-adic integration
obtained by Raf Cluckers and Immanuel Halupczok in [CH21].

As an application of our results, we can deduce that the universal measure on an
ultrapower 𝒦 of Q𝑝 is strictly finer than the one naturally obtained as the ultrapower
of the 𝑝-adic measure, see Example 6.5.

Among others, Jan Denef, Raf Cluckers, François Loeser, Ehud Hrushovski and David
Kazhdan developed motivic integration from a model-theoretic perspective (e.g., in
[DL99], [CL08], [HK06], [DL02]). Their approaches apply to different classes of struc-
tures, and this thesis is a continuation along that line in the realm of valued fields.

Common 𝑝-adic integration, i.e., integration with respect to the Haar measure on Q𝑝, is
closely related to integration in the style of both Cluckers-Loeser as well as Hrushovski-
Kazhdan, see for example [CL05], [CL15] and [CH21]. Despite being model-theoretic in
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1 Introduction

nature, their work however does not cover arbitrary elementary extensions. In partic-
ular, [CL15] only applies to discretely valued fields, and the residue field characteristic
is assumed to be 0 in [HK06].

By developing a theory of motivic integration in elementary extensions K ≽ Q𝑝 of the
𝑝-adic numbers, we take a first step towards closing this gap. In addition to explicitly
constructing a motivic measure on definable subsets of any such K, we provide some
tools for computing the measure of a given subset and, similarly, the integral of a given
function. Our methods rely on a good understanding of the value group of K, which
is necessarily a Z-group, and we thus make extensive use of the results of [Clu03] and
[CH18].

While the integral of a definable function in Q𝑝 always evaluates to a rational number,
passing to elementary extensions demands enlarging the ring of possible values of
integrals. In the following, we write 𝑅mot(𝑍) for this enlarged ring, where 𝑍 ⊂ Γ is a
set of parameters in the value group Γ of the valued field K. Describing and analyzing
𝑅mot(𝑍) is a substantial part of the work and a necessary step towards constructing
and understanding the motivic integral.

A crucial result in this direction is Proposition 4.2.4, relating functions f : RV*
* → pΓ

to piecewise polynomial functions on the value group. (Here and in the following
pΓ ∼= Γ is the value group of K written in multiplicative notation.) In particular,
together with a detailed analysis of the ring of those piecewise polynomial functions,
it yields a rather explicit description of 𝑅mot(𝑍): Corollary 4.3.11 states that there is
an isomorphism

𝑅mot(𝑍) ∼= (𝐾Γ
𝑏 (𝑍)⊗Q)[𝑇𝑍 ]/(𝑇 − 𝑝),

where 𝐾Γ
𝑏 (𝑍) is the Grothendieck ring of bounded 𝑍-definable subsets of the value

group, which has been exhaustively studied in [CH18].

When it comes to integration theories, a common approach – in the style of Lebesgue
– is to start with some measure 𝜇 and then construct the integral

∫︀
𝑓 d𝜇 of a function

𝑓 with respect to that measure. From this point of view, our main goal is to define a
measure 𝜇mot on bounded definable subsets of K𝑛, 𝑛 ∈ N, for an elementary extension
K ≽ Q𝑝 of the 𝑝-adic numbers. However, we will first define an integral of (definable)
functions from the RV-sorts to the value group pΓ (in multiplicative notation).

Let us describe the intuition behind this approach in a bit more detail. Fix some set
𝑀 of parameters and consider any bounded 𝑀 -definable subset 𝑋 ⊂ K. Such a set
can be decomposed into a family of balls and points, parameterized by a subset 𝑈
of some RV𝑛𝑚, and both 𝑈 and the family of sets it parameterizes can be chosen to
be 𝑀 -definable. (This is made precise in Section 5.1, namely in Definition 5.1.1 and
Lemma 5.1.3, and is merely a slightly different formulation of the notion introduced
in [Clu+21, Definitions 2.1.1].)

Consider, for this set 𝑈 , the (𝑀 -definable) function f : 𝑈 → pΓ sending an element
𝑢 ∈ 𝑈 to the radius of the ball corresponding to 𝑢. Intuitively, the (hyper-)cardinality

2



1.1 Outline

of the preimage under f of some element 𝛼 ∈ pΓ is then the “number of balls of radius
𝛼 in the decomposition of 𝑋”, so it makes sense to set

𝜇mot(𝑋) :=
∑︁
𝛼∈pΓ

𝛼 · ///≡≡f−1(𝛼) :=

∫︁
mot

f, (1.1)

where the right-hand side has yet to be defined. This defers a significant portion of
the work to be done to the RV-sorts (and the value group).

The case 𝑋 ⊂ K𝑛 for 𝑛 > 1 requires additional work, and we proceed a bit differently.
Instead of constructing the measure for such sets, we will recursively define the integral
of functions f : K𝑛 × RV*

* → pΓ in general, where RV*
* is a finite product of the sets

RV𝑛𝑖
𝑚𝑖

for some 𝑚𝑖, 𝑛𝑖 ∈ N>0. From there, one easily obtains the desired measure for
(𝑀 -)definable bounded sets 𝑋 ⊂ K𝑛 by setting 𝜇mot(𝑋) :=

∫︀
mot

const𝑋(1).

One final introductory remark: While the results presented in this thesis certainly
depend on previous work in several areas of mathematics, particularly in recent model
theory, no previous knowledge of motivic integration is required. We describe most
constructions (more or less) explicitly and from the ground up. Albeit some proofs and
definitions are quite technical in nature, this hopefully also enables readers without
a strong background in model theory or motivic integration to grasp the essential
concepts.

1.1 Outline

Chapter 1: Introduction

The present Chapter 1 serves as an introduction to the theme of this thesis and the
overall ideas. Right here in Section 1.1, we give an outline of the structure, briefly
saying what to expect from each chapter and section. In Section 1.2, we fix our notation
and introduce some conventions we adhere to almost everywhere in this thesis (and
the only exception is made clear).

Chapter 2: Preliminaries

The following Chapter 2 provides a few preliminaries of general nature for later refer-
ence.

Section 2.1 is a collection of specific algebraic tools for dealing with certain rings that
will come up in the study of integrable functions. While the results there are quite basic
(the whole section should be comprehensible to anyone who completed an introductory
course on abstract Algebra), most are far from obvious and still demand proofs.

3



1 Introduction

In contrast, Section 2.2 mostly reviews common knowledge from the model theory of
valued fields, specifically the 𝑝-adic numbers. We give short proofs for some of the
statements, and cite others.

The last preliminary section, Section 2.3, introduces the Grothendieck rings of defin-
able subsets of the value group and of the RV-sorts. As the value group is elementary
equivalent to Z in our setting, the former has been studied extensively in [CH18] and
we just recall the most essential results we will later apply. We take advantage of
the residue field being finite in order to show that the two Grothendieck rings are
isomorphic.

Chapter 3: Presburger sets

In Chapter 3, we dive deeper into the study of Z-groups, going beyond the structure
of their Grothendieck ring.

Recalling important basic notions and results from [Clu03] and [CH18] makes up most
of Section 3.1.

In Section 3.2, we introduce the more specific helpful notion of affine closure and we
analyze some of its properties. In particular, we give a complete description of the
affine closure of a Presburger cell, depending on its shape.

Building on these results, Section 3.3 provides a trichotomy result for linear functions
on Presburger cells that serves as an important tool for the later study of families of
integrable functions.

Chapter 4: Integrable functions on RV*
*

The main part of the present thesis starts with Chapter 4, which is concerned with
integrable functions from the RV-sorts to the value group. We introduce and study a
Grothendieck ring 𝐾int(𝑍) of those functions, as well as a variant 𝐾int,𝑆(𝑍) for families
of functions.

Section 4.1 lays the foundation by setting up the definitions and basic properties.

We then give an alternative and more explicit description of 𝐾int,𝑆(𝑍) in terms of
piecewise polynomial functions in Section 4.2. The results obtained in that section
once more rely on [CH18], assuring that the hypercardinalities of families of sets in a
Z-group can be expressed as a polynomial in the parameters (up to finite partition of
the parameter set).

The purpose of Section 4.3 is to get a better understanding of the ring 𝑅mot(𝑍) of
values of integrable functions, which is a quotient of 𝐾int(𝑍). The main result is,
intuitively speaking, that it suffices to consider integrable functions with finite images

4



1.2 Notation

when dealing with 𝑅mot(𝑍). As before, we in fact mostly work with a family version
𝑅mot,𝑆(𝑍).

In Section 4.4, we show that an equality of the integrals of the corresponding functions
in two families of integrable functions is already witnessed uniformly. Besides using
our knowledge about 𝑅mot,𝑆(𝑍) from the previous section, the tools developed in
Section 3.2 and Section 3.3 come into play.

Chapter 5: Integrable functions on K* × RV*
*

Our work culminates in Chapter 5, where we recursively define the integral for func-
tions from K𝑒×RV*

* to the value group, where RV*
* is an arbitrary product of some of

the RV𝑚. In particular, this leads to a motivic measure on definable subsets of K𝑒.

The actual construction is done in Section 5.1, using the notion of preparation as
introduced in [Clu+21]. Most of the work is proving that the integral as constructed
is well defined, by an induction on the ambient dimension 𝑒. A key ingredient in the
induction step is Lemma 4.4.12 from Section 4.4, and a version of that statement for
variables from K is obtained simultaneously in the proof.

In Section 5.2, we apply several results of [Clu+21] to obtain a change of variables
formula for our integration. In particular, we define the Jacobian matrix of functions
from K𝑒 to Kℓ, for 𝑒, ℓ ∈ N>0.

We conclude with showing that the constructed motivic measure is the universal such.
This is the content of Section 5.3, which is an adaptation of [CH21] (concerned with
the same result for 𝑝-adic integration) to our setting.

Chapter 6: Outlook

Finally, we give a brief outlook and pose some open questions in Chapter 6.

1.2 Notation

Throughout this thesis, K is a fixed elementary extension of Q𝑝, and we write

� Γ for its value group (in additive notation),

� val : K→ Γ ∪ {∞} for the valuation map,

� 𝒪 = {𝑥 ∈ K | val(𝑥) ≥ 0} for the valuation ring,

� m = {𝑥 ∈ K | val(𝑥) > 0} for the maximal ideal,

� RV𝑚 = K×/(1 + 𝑝𝑚𝒪) ∪ {0} for the 𝑚-th RV-structure (combining information
from the residue field and the value group), for 𝑚 ∈ N>0,

5



1 Introduction

� rv𝑚 : K→ RV𝑚 for the natural quotient map, extended to K by rv𝑚(0) = 0,

� AC𝑚 = {𝜉 ∈ RV𝑚 | val(𝜉) = 0} ∪ {0} for the set of 𝑚-th angular components,
where AC0 = {0}, and

� ac𝑚 : K → AC𝑚 for a fixed 𝑚-th angular component map (for our precise
definition, see Remark/Definition 2.2.3 below),

As already used above, val : K → Γ ∪ {∞} factors through RV𝑚 for each 𝑚, and we
denote the induced map from RV𝑚 to Γ ∪ {∞} by val as well.

Note also that the more common definition of ac𝑚 as a map fromK to𝒪/m𝑚 = 𝒪/𝑝𝑚𝒪
coincides with ours, when viewing the former as a map onto its image (𝒪/𝑝𝑚𝒪)×∪{0}.
Indeed, for 𝜉 ∈ AC𝑚 ⊂ RV𝑚 with 𝜉 ̸= 0, we have

𝜉 = 𝑥 · (1 + 𝑝𝑚𝒪) = 𝑥+ 𝑝𝑚 𝑥𝒪⏟ ⏞ 
= 𝒪

= 𝑥+ 𝑝𝑚𝒪 ∈ 𝒪/𝑝𝑚𝒪

for an(y) appropriate choice of 𝑥 ∈ 𝒪×.

We work in the multi-sorted language ℒval with sorts for the valued field K, the value
group Γ and the sorts RV𝑚 for 𝑚 ∈ N>0; with the ring language ℒring on K, the
language of ordered abelian groups ℒoag on Γ, and the maps val : K → Γ ∪ {∞},
val : RV𝑚 → Γ ∪ {∞} and rv𝑚 : K → RV𝑚 between the sorts. However, as we are
only interested in definability, the exact choice of language does not actually matter
in most statements.

For a set 𝑋 and an element 𝑐 (regardless of the sorts), we write const𝑋(𝑐) to denote
the constant function on 𝑋 with value 𝑐.

We want to be able to use both additive and multiplicative notation for the value
group. In order to avoid confusion, we write Γ for the value group when using additive
notation and we write pΓ when using multiplicative notation. There is a canonical
group isomorphism translating additive to multiplicative notation, given by

Γ→ pΓ

𝑎 ↦→ p−𝑎.

We denote its inverse by val : pΓ → Γ, using the same name val for now three different
maps. However, it will always be clear from the context (i.e., the domain) which of
those maps we are referring to.

We generally work with 𝑀 -definable sets and functions, for some arbitrary parameter
set 𝑀 ⊂ K ∪ Γ, i.e., we allow parameters from both the valued field and the value
group. Note that every element of the residue field (which is isomorphic to F𝑝) is
∅-definable, that RV𝑚 and Γ are interdefinable (that is, RV𝑚 ⊂ dcl(Γ) as well as
Γ ⊂ dcl(RV𝑚)) for each 𝑚 ∈ N>0, see Remark 2.2.4. Thus, there is no benefit in
allowing additional parameters from the residue field or from any of the RV𝑚-sorts.
Here and in the following, dcl denotes the definable closure operator, and we consider

6



1.2 Notation

its image to lie in the (disjoint) union of all sorts by abuse of notation. More precisely,
dcl(𝑆), for an arbitrary set 𝑆, contains all 𝑆-definable elements of K, of Γ, and of each
of the RV𝑚 for 𝑚 ∈ N.

We often use 𝑍 = dcl(𝑀) ∩ Γ as the set of parameters for definable sets in Γ or
RV, which simplifies notation without actually changing which sets are definable, see
Lemma 2.2.6.

By a definable set or function, we mean “definable with parameters”. However, we
only use the term “definable” when describing results from a high-level perspective
in prose (and these descriptions are often a bit imprecise in other aspects as well).
In formal statements or proofs, we always use more precise terms like “𝑀 -definable”,
“𝑍-definable”, or “∅-definable”.

We generally use the symbols

� 𝑥, 𝑦, 𝑧 for elements of K, and 𝑋,𝑌 , 𝑍 for subsets of K𝑛,

� 𝑢, 𝑣, 𝑤 for elements of RV𝑚, and 𝑈, 𝑉 ,𝑊 for subsets of RV𝑛𝑚,

� 𝑎, 𝑏, 𝑐 for elements of the value group Γ (written additively), and 𝐴,𝐵,𝐶 for
subsets of Γ𝑛,

� 𝛼, 𝛽, 𝛾 for elements of the value group pΓ (written multiplicatively), and A,B,C
for subsets of (pΓ)𝑛,

� 𝜉 for elements of AC𝑚 (we never need two distinct elements of AC𝑚, and it only
appears briefly in Section 2.2)

� f, g, h for integrable (motivic) functions (see Chapter 4 and Chapter 5),

� 𝐷,𝐸 for𝑀 -definable subsets of K*×RV*
* (see below for the notation K*×RV*

*).

An exception to this is Chapter 5, where we also use 𝑐 to denote elements of K for
simplicity of notation.

We use a boldface font for tuples, i.e., 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋 ⊂ K𝑛, 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈
𝐴 ⊂ Γ𝑛, etc. For a tuple 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ K𝑛, we define

val(𝑥) := (val(𝑥1), . . . , val(𝑥𝑛)) ∈ Γ𝑛,

rv𝑚(𝑥) := (rv𝑚(𝑥1), . . . , rv𝑚(𝑥𝑛)) ∈ RV𝑛𝑚, and

ac𝑚(𝑥) := (ac𝑚(𝑥1), . . . , ac𝑚(𝑥𝑛)) ∈ AC𝑛𝑚.

Given 𝑥 ∈ K and 𝑎 ∈ Γ, we write ℬ≥𝑎(𝑥) for the ball around 𝑥 of radius 𝑎, i.e., for the
set

ℬ≥𝑎(𝑥) = {𝑦 ∈ K | val(𝑦 − 𝑥) ≥ 𝑎}.

Note that balls are never singletons, since we do not allow 𝑎 =∞.
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1 Introduction

Recall that, due to the ultrametric inequality, any two balls are either disjoint or one
of them is contained in the other. Whenever we mention or implicitly use a topology
on K, we mean the one generated by the family of all balls (this is also called the
valuation topology). Note that any ball 𝐵 = ℬ≥𝑎(𝑥) can be written as the complement
of the open set ⋃︁

𝑦/∈𝐵

ℬ≥val(𝑥−𝑦)+1(𝑦),

and is hence clopen in the valuation topology.

Given 𝑚,𝑛 ∈ Nℓ>0 for some ℓ ∈ N, we write RV𝑛
𝑚 as a shorthand for the product∏︀ℓ

𝑖=1 RV
𝑛𝑖
𝑚𝑖

.

For convenience, we sometimes write “𝑀 -definable subset of K* × RV*
*” instead of

“𝑀 -definable subset of K𝑒 × RV𝑛
𝑚 for some 𝑒, ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0”.

Similarly, we use the term “𝑍-definable subset of RV*
*” as an abbreviation for “𝑍-

definable subset of RV𝑛
𝑚 for some ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0”. (Note that a subset of RV

𝑛
𝑚

is 𝑀 -definable if and only if it is 𝑍-definable for 𝑍 = dcl(𝑀)∩Γ, see Lemma 2.2.6.)

For 𝑎 ∈ Γ ∪ {−∞} and 𝑏 ∈ Γ ∪ {∞}, we define

(𝑎, 𝑏) := {𝑐 ∈ Γ | 𝑎 < 𝑐 < 𝑏}.

Additionally given some 𝑑 ∈ N>0 for which we have 𝑏−𝑎 ∈ 𝑑 ·Γ∪{∞}, we also define

[𝑎, 𝑏)𝑑 := {𝑐 ∈ Γ | 𝑎 ≤ 𝑐 < 𝑏, 𝑐 ≡ 𝑎 (mod 𝑑)} for 𝑎 ̸= −∞,
(𝑎, 𝑏]𝑑 := {𝑐 ∈ Γ | 𝑎 ≤ 𝑐 < 𝑏, 𝑐 ≡ 𝑏 (mod 𝑑)} for 𝑏 ̸=∞, and
[𝑎, 𝑏]𝑑 := {𝑐 ∈ Γ | 𝑎 ≤ 𝑐 ≤ 𝑏, 𝑎 ≡ 𝑐 ≡ 𝑏 (mod 𝑑)} for 𝑎 ̸= −∞ and 𝑏 ̸=∞

Let us emphasize again that, when using these notations, we always assume 𝑏 − 𝑎 to
be divisible by 𝑑 (or infinite), i.e., the condition

𝑎 ≡ 𝑏 (mod 𝑑) or 𝑎 = −∞ or 𝑏 =∞

is implicit in the notations [𝑎, 𝑏)𝑑 , (𝑎, 𝑏]𝑑, and [𝑎, 𝑏]𝑑.

Moreover, we define

(𝑎, 𝑏)≡𝑑𝑟
:= {𝑐 ∈ Γ | 𝑎 < 𝑐 < 𝑏, 𝑐 ≡ 𝑟 (mod 𝑑)}.

for 𝑟 ∈ {0, . . . , 𝑑− 1}.
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1.2 Notation

Given 𝑛, 𝑘 ∈ N>0 with 𝑘 ≤ 𝑛 and arbitrary sets 𝑋1, . . . , 𝑋𝑛 with 𝑋 =
∏︀𝑛
𝑖=1𝑋𝑖, we

write

pr𝑖 : 𝑋 → 𝑋𝑖,

pr≤𝑘 : 𝑋 →
𝑘∏︁
𝑖=1

𝑋𝑖 and

pr̸=𝑘 : 𝑋 →
𝑘−1∏︁
𝑖=1

𝑋𝑖 ×
𝑛∏︁

𝑖=𝑘+1

𝑋𝑖

for the canonical projection maps, and we analogously use pr≥𝑘, pr<𝑘 and pr>𝑘. Sim-
ilarly, for a tuple 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋, we write 𝑥≤𝑘, 𝑥 ̸=𝑘, etc. for its image under
pr≤𝑘, pr̸=𝑘, etc.

A ring by our definition is commutative and has a multiplicative identity, ring ho-
momorphisms respect the latter. A subring of a ring 𝑅 is a subset that is itself a
ring with the induced (i.e., restricted) addition and multiplication and with the same
multiplicative identity as 𝑅.
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2 Preliminaries

We assume the reader to be familiar with the basic theory of valued fields and with
the basics of model theory, including the compactness theorem of first order logic. For
thorough introductions, containing much more than we need, see for example [EP05]
and [Hod93].

In this chapter, we collect some general lemmata and remarks, laying a foundation for
the main parts of the present thesis. While some of these statements are well-known
and we refer to the literature, some others are more specific and deserve proofs.

In Section 2.1, we provide a few basic (but quite technical) algebraic tools for later
use. In Section 2.2, we recall well-known results from the model theory of valued
fields and establish some more specific auxiliary statements. Lastly, in Section 2.3,
we introduce the Grothendieck rings 𝐾Γ

𝑏 (𝑍) of definable subsets of Γ and 𝐾RV
𝑏 (𝑍) of

definable subsets of RV*
*. The former has been studied in detail in [CH18], and we

cite the most important results. We also construct an isomorphism between those two
Grothendieck rings, allowing us to only work with 𝐾Γ

𝑏 (𝑍) afterwards.

2.1 An algebraic toolkit

In this section, we state and prove some general algebraic statements that will be
useful later on in the descriptions of certain rings. Let us start with a rather specific
technical lemma which we later apply to prove the main result of Section 4.3.

Lemma 2.1.1. Let 𝑅 be a ring, 𝑎, 𝑏, 𝑑 ∈ 𝑅 with 𝑎 ̸= 𝑏, and let 𝑃 ∈ 𝑅[𝑋] ∖ {0} be
a polynomial.a Then there is a polynomial 𝑄 ∈ 𝑅[𝑋] with deg(𝑄) ≤ deg(𝑃 ) and
some 𝑚 ∈ {1, . . . ,deg(𝑃 ) + 1} such that

(𝑎− 𝑏)𝑚 · 𝑃 (𝑧) = 𝑎 ·𝑄(𝑧)− 𝑏 ·𝑄(𝑧 + 𝑑) (2.1)

holds for all 𝑧 ∈ 𝑅.

Moreover, if 𝑅′ is any ring containing 𝑅 as a subring, we can choose 𝑚 ∈ N>0

and 𝑔 ∈ 𝑅[𝑋] as above such that (2.1) even holds for all 𝑧 ∈ 𝑅′.

aIn the case 𝑃 = 0, the statement below trivially holds for all 𝑚 ∈ N and 𝑄 = 𝑃 .
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2 Preliminaries

Proof. We prove the statement by induction on 𝑛 := deg(𝑃 ).

Induction base, 𝑛 = 0. Then 𝑃 is a constant polynomial, and the choices 𝑄 = 𝑃 and
𝑚 = 1 clearly satisfy (2.1).

Induction step. Fix 𝑛 ∈ N, assume that the claim holds for all polynomials of degree
at most 𝑛, and let 𝑃 ∈ 𝑅[𝑋] with deg(𝑃 ) = 𝑛+1. Write 𝑃 =

∑︀𝑛+1
𝑖=0 𝑎𝑖𝑋

𝑖 where
𝑎𝑖 ∈ 𝑅 and consider the polynomial 𝑃 ′ ∈ 𝑅[𝑋] given by

𝑃 ′(𝑋) := (𝑎− 𝑏) ·
𝑛∑︁
𝑖=0

𝑎𝑖𝑋
𝑖 + 𝑏 · 𝑎𝑛+1 ·

𝑛∑︁
𝑘=0

(︂
𝑛+ 1

𝑘

)︂
· 𝑑𝑛+1−𝑘 ·𝑋𝑘

⏟  ⏞  
= (𝑋+𝑑)𝑛+1 − 𝑋𝑛+1

of degree at most 𝑛. By the induction hypothesis, we can find a polynomial 𝑄0 ∈
𝑅[𝑋] and some 𝑚 ∈ N with deg(𝑄0) ≤ deg(𝑃 ′) ≤ 𝑛 and 1 ≤ 𝑚 ≤ deg(𝑃 ′) + 1
such that

(𝑎− 𝑏)𝑚 · 𝑃 ′(𝑧) = 𝑎 ·𝑄0(𝑧)− 𝑏 ·𝑄0(𝑧 + 𝑑)

for all 𝑧 ∈ 𝑅. Consider 𝑄 ∈ 𝑅[𝑋] with 𝑄(𝑋) := (𝑎 − 𝑏)𝑚 · 𝑎𝑛+1𝑋
𝑛+1 +𝑄0(𝑋)

and observe that we have

𝑎 ·𝑄(𝑧)− 𝑏 ·𝑄(𝑧 + 𝑑) = (𝑎− 𝑏)𝑚+1 · 𝑃 (𝑧)

for all 𝑧 ∈ 𝑅 by definition of 𝑃 ′, 𝑄0 and 𝑄. Since deg(𝑄) ≤ 𝑛+1 = deg(𝑃 ) and
1 ≤ 𝑚 + 1 ≤ deg(𝑃 ′) + 2 ≤ 𝑛 + 2 = deg(𝑃 ) + 1, this completes the inductive
step.

The “moreover” part follows by replacing the two occurrences of “. . . for all 𝑧 ∈
𝑅.” with “. . . for all 𝑧 ∈ 𝑅′.” in the above.

The following statement says that a non-constant polynomial cannot coincide with an
exponential function on an infinite set. While this is straight-forward when some basic
concepts of calculus (e.g., derivatives or limits) are available, we will need it in a more
general setting and provide a purely algebraic prove.

Proposition 2.1.2. Let 𝑅 be a ring with torsion-free additive group, let 𝑎 ∈ 𝑅,
𝑄 ∈ 𝑅[𝑇 ], and 𝑞 ∈ Z ⊂ 𝑅 with 𝑞 ̸∈ {0, 1}. If 𝑄(𝑡) = 𝑎 · 𝑞𝑡 for all 𝑡 ∈ N, then
𝑄 = 0.

Proof. Let 𝑔 : N → 𝑅, 𝑡 ↦→ 𝑎 · 𝑞𝑡 and suppose that 𝑔(𝑡) = 𝑄(𝑡) for all 𝑡 ∈ N, where
𝑄 ∈ 𝑅[𝑇 ] is some polynomial over 𝑅. Define 𝑄0 := 𝑄 and 𝑄𝑖+1(𝑇 ) := 𝑄𝑖(𝑇 + 1) −
𝑄𝑖(𝑇 ) ∈ 𝑅[𝑇 ] for 𝑖 ∈ N.

Considering the binomial expansion of (𝑇 + 1)deg(𝑄𝑖) makes clear that deg(𝑄𝑖+1) ≤
deg(𝑄𝑖) for all 𝑖, where equality holds if and only if 𝑄𝑖 = 0, i.e., deg(𝑄𝑖) = −∞ (and
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2.1 An algebraic toolkit

in that case, we also have 𝑄𝑖+1 = 0). In particular, 𝑄𝑑 = 0 for 𝑑 > deg(𝑄). On the
other hand, recursively define maps 𝑔𝑑 : N→ 𝑅 for 𝑑 ∈ N by

𝑔0(𝑡) := 𝑔(𝑡) = 𝑄(𝑡), and

𝑔𝑑+1(𝑡) := 𝑔𝑑(𝑡+ 1)− 𝑔𝑑(𝑡)

for all 𝑡 ∈ N. Then, by induction on 𝑑, we have 𝑔𝑑(𝑡) = 𝑎·𝑞𝑡 ·(𝑞−1)𝑑 for all 𝑡, 𝑑 ∈ N. Put
together, we get that 𝑎 · 𝑞𝑡 · (𝑞− 1)𝑑 = 𝑔𝑑(𝑡) = 𝑄𝑑(𝑡) = 0 for all 𝑡 ∈ N and 𝑑 > deg(𝑄).
Since 𝑞 ∈ Z ∖ {0, 1}, we have 𝑞𝑡 · (𝑞 − 1)𝑑 ∈ Z ∖ {0}. As (𝑅,+) is torsion-free, this
implies 𝑎 = 0, hence 𝑄(𝑡) = 0 for all 𝑡 ∈ N. This yields 𝑄 = 0 as claimed.

The next lemma provides a useful criterion for checking whether the rationals embed
into a given ring.

Lemma 2.1.3. Let 𝑅 be a ring and suppose there is a (necessarily unique) injec-
tive ring homomorphism 𝜙 : Z →˓ 𝑅. We identify 𝑘 ∈ Z with its image 𝜙(𝑘) ∈ 𝑅
and just write 𝑘 ∈ 𝑅.

Let 𝑝 ∈ Z be some fixed prime and suppose there is an element 𝑟 ∈ 𝑅 with
𝑝 · 𝑟 = 1. Moreover, suppose that for each 𝑑 ∈ N>0, there is an element 𝑟𝑝𝑑−1 ∈ 𝑅
for which we have (𝑝𝑑 − 1) · 𝑟𝑝𝑑−1 = 1. Then 𝜙 uniquely extends to an injective
homomorphism 𝜙 : Q →˓ 𝑅. In particular, 𝑅 is then torsion-free.

Proof. We first show that there is, for each 𝑚 ∈ N>0, an element 𝑟𝑚 ∈ 𝑅 with
𝑚 · 𝑟𝑚 = 1. Firstly, for 𝑚 = 𝑝, this is part of the assumptions, setting 𝑟𝑝 = 𝑟.

Secondly, let 𝑚 now be any other prime. Let 𝑑 ∈ N>0 be the order of 𝑝 in the cyclic
group (Z/𝑚Z)×. Then we have 𝑝𝑑 ≡ 1 (mod 𝑚), i.e., 𝑝𝑑 − 1 = 𝑚 · 𝑘 for some 𝑘 ∈ Z,
and hence

𝑚 · 𝑘 · 𝑟𝑝𝑑−1 = (𝑝𝑑 − 1) · 𝑟𝑝𝑑−1 = 1,

so that 𝑟𝑚 = 𝑘 · 𝑟𝑝𝑑−1 is as desired.

Finally, let us consider the general case, i.e., let 𝑚 ∈ N>0 be an arbitrary positive
integer. Let 𝑚 =

∏︀
𝑖∈𝐼 𝑞

𝑒𝑖
𝑖 denote the prime decomposition of 𝑚, i.e., 𝑒𝑖 ∈ N>0 and

𝑞𝑖 ∈ N>0 prime for each 𝑖 ∈ 𝐼 for some finite index set 𝐼. Then

𝑟𝑚 =
∏︁
𝑖∈𝐼

𝑟𝑒𝑖𝑞𝑖

is as desired, since we have

𝑚 · 𝑟𝑚 =
∏︁
𝑖∈𝐼

𝑞𝑒𝑖𝑖 ·
∏︁
𝑖∈𝐼

𝑟𝑒𝑖𝑞𝑖

=
∏︁
𝑖∈𝐼

(𝑞𝑖 · 𝑟𝑞𝑖⏟  ⏞  
= 1

)𝑒𝑖

= 1.
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2 Preliminaries

Note that the elements 𝑟𝑚 are uniquely determined by𝑚, since this is true in general for
multiplicative inverses in a ring (if they exist). In particular, any ring homomorphism
�̃� : Q→ 𝑅 extending 𝜙 has to satisfy

�̃�(
𝑘

𝑚
) = 𝑘 · 𝑟𝑚.

We now claim that the above mapping rule indeed defines an injective ring homomor-
phism from Q to 𝑅.

�̃� is well-defined. Let 𝑘
𝑚 = 𝑘′

𝑚′ , i.e., 𝑘 ·𝑚′ = 𝑘′ ·𝑚. Then we have

𝑘 · 𝑟𝑚 = 𝑘 ·𝑚′ · 𝑟𝑚′ · 𝑟𝑚
= 𝑘′ ·𝑚 · 𝑟𝑚′ · 𝑟𝑚
= 𝑘′ · 𝑟𝑚′ .

�̃� is injective. Suppose that 𝑘 · 𝑟𝑚 = �̃�( 𝑘𝑚 ) = �̃�( 𝑘
′

𝑚′ ) = 𝑘′ · 𝑟𝑚′ . Then we have

𝑘 ·𝑚′ = 𝑘 · 𝑟𝑚 ·𝑚 ·𝑚′

= 𝑘′ · 𝑟𝑚′ ·𝑚 ·𝑚′

= 𝑘′ ·𝑚

in 𝑅, and hence in Z ⊂ 𝑅, so 𝑘
𝑚 = 𝑘′

𝑚′ .

�̃� is a ring homomorphism. Let 𝑘, 𝑘′ ∈ Z and 𝑚,𝑚′ ∈ N>0. We have

�̃�(
𝑘

𝑚
· 𝑘

′

𝑚′ ) = 𝑘 · 𝑘′ · 𝑟𝑚 · 𝑟𝑚′

= 𝑘 · 𝑟𝑚 · 𝑘′ · 𝑟𝑚′

= �̃�(
𝑘

𝑚
) · �̃�( 𝑘

′

𝑚′ )

and

�̃�(
𝑘

𝑚
+
𝑘′

𝑚′ ) = �̃�(
𝑘𝑚′ + 𝑘′𝑚

𝑚𝑚′ )

= (𝑘𝑚′ + 𝑘′𝑚) · 𝑟𝑚𝑚′

= 𝑘𝑚′ · 𝑟𝑚𝑚′ + 𝑘′𝑚 · 𝑟𝑚𝑚′

= 𝑘 · 𝑟𝑚 + 𝑘′ · 𝑟𝑚′

= �̃�(
𝑘

𝑚
) + �̃�(

𝑘′

𝑚′ ),

where the second-to-last equality holds since 𝑟𝑚 = �̃�( 1
𝑚 ) = �̃�( 𝑚′

𝑚𝑚′ ) = 𝑚′ · 𝑟𝑚𝑚′

and, similarly, 𝑟𝑚′ = 𝑚 · 𝑟𝑚𝑚′ . Lastly, we also have �̃�(1) = 1.

For the in particular part, let 𝑘 ∈ N>0 and 𝑟 ∈ 𝑅 and note that 𝑘 · 𝑟 = 0 then already
implies 𝑟 = �̃�( 1𝑘 ) · 𝑘 · 𝑟 = 0.

14



2.2 Some model theory of valued fields

When working with integrable functions later, we will need to make the additive groups
of certain rings divisible by tensoring with Q. The following statement is a useful tool
which will help us to describe the resulting rings.

Lemma 2.1.4. Let 𝐺 be a torsion-free divisible abelian group, written additively,
and let 𝐻 ⊂ 𝐺 be a subgroup. Suppose that for each 𝑔 ∈ 𝐺, there is an 𝑛 ∈ N>0

with 𝑛 · 𝑔 ∈ 𝐻.

Then the map given by

𝜙 : 𝐻 ⊗Q→ 𝐺

ℎ⊗ 𝑞 ↦→ ℎ · 𝑞

is an isomorphism (of groups).

Proof. Because 𝐺 is torsion-free, it is naturally embedded into 𝐺⊗Q via 𝜄 : 𝑔 ↦→ 𝑔⊗1.
Since 𝐺 is divisible, this map is also surjective, hence an isomorphism. As Q is a flat
Z-module, the natural Z-module homomorphism 𝜂 : 𝐻 ⊗Q →˓ 𝐺⊗Q is injective.

Note that 𝜙 = 𝜄−1 ∘𝜂, hence it is an injective Z-module homomorphism. To show that
𝜙 is surjective, let 𝑔 ∈ 𝐺 and fix 𝑛 ∈ N>0 with 𝑛 · 𝑔 ∈ 𝐻. Then 𝜙((𝑛 · 𝑔)⊗ 1

𝑛 ) = 𝑔, so
𝜙 is an isomorphism as claimed.

2.2 Some model theory of valued fields

Recall from Section 1.2 that we work in a fixed elementary extension K ≽ Q𝑝 of the 𝑝-
adic numbers in the multi-sorted language ℒval with sorts K, Γ and RV𝑚 for 𝑚 ∈ N>0.
In this section, we moreover fix a set of parameters 𝑀 ⊂ K ∪ Γ, and whenever we are
concerned with definable sets (in any sort) we consider 𝑀 -definable sets.

Albeit we do not have definable Skolem functions between arbitrary sorts, the order
on the value group facilitates the following result.

Lemma 2.2.1 (Existence of definable Skolem functions from RV to Γ). Let 𝑈 ⊂
RV𝑛𝑚 be 𝑀 -definable, 𝑚,𝑛 ∈ N>0, and let 𝜙(𝑢, 𝑎) be an ℒval-formula satisfying

K |= ∀𝑢 ∈ 𝑈 ∃𝑎 ∈ Γ 𝜙(𝑢, 𝑎).

Then there is an 𝑀 -definable function 𝑠 : 𝑈 → Γ such that 𝜙(𝑢, 𝑠(𝑢)) holds for
all 𝑢 ∈ 𝑈 .

15
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Proof. As usual in model theory, we write 𝜙(𝑢,Γ) for the set of 𝑎 ∈ Γ withK |= 𝜙(𝑢, 𝑎).
Consider the 𝑀 -definable sets

𝑈− = {𝑢 ∈ 𝑈 | 𝜙(𝑢,Γ) has a minimum} and
𝑈+ = {𝑢 ∈ 𝑈 | 𝜙(𝑢,Γ) has a maximum}.

Note that the minimum of a 𝑀 -definable subset of Γ is again 𝑀 -definable, and set

𝑠(𝑢) := min(𝜙(𝑢,Γ)) for 𝑢 ∈ 𝑈− and

𝑠(𝑢) := max(𝜙(𝑢,Γ)) for 𝑢 ∈ 𝑈+ ∖ 𝑈−.

For the remaining case, let 𝑢 ∈ 𝑈 ∖ (𝑈− ∪ 𝑈+). Then 𝜙(𝑢,Γ) has neither a minimum
nor a maximum, and is hence unbounded (see Lemma 2.2.6 and Lemma 3.1.4), so we
can set

𝑠(𝑢) := min(𝜙(𝑢,Γ) ∩ Γ≥0) for 𝑢 ∈ 𝑈 ∖ (𝑈− ∪ 𝑈+),

yielding the desired 𝑀 -definable function 𝑠 : 𝑈 → Γ.

(Even though we use the later Lemma 2.2.6 and Lemma 3.1.4, note that the proofs of
both do not depend on Lemma 2.2.1.)

Remark 2.2.2 (see also [CH18]). Note that the definable closure dcl(𝑍) ⊂ Γ of
any subset 𝑍 ⊂ Γ is an elementary substructure, hence we may assume 𝑍 ≼ Γ.
In particular, 𝑍 is then itself a Z-group.

Under this assumption, note that acl(𝑍) = dcl(𝑍) = 𝑍, so any finite 𝑍-definable
set is already contained in 𝑍.

Remark and Definition 2.2.3. Let 𝑇 = Th(Q𝑝) be the ℒval-theory of Q𝑝 and
let K |= 𝑇 be a model of 𝑇 .

Then there is, for each 𝑚 ∈ N>0, an ℒval-definable 𝑚-th angular component map,
i.e., a map

ac𝑚 : K→ AC𝑚 = {𝜉 ∈ RV𝑚 | val(𝜉) = 0} ∪ {0}

which extends rv𝑚 ↾ (𝒪× ∪ {0}) and which restricts to a multiplicative group
homomorphism from K× to (𝒪/𝑝𝑚𝒪)× = AC𝑚 ∖ {0}.

Proof. In the case 𝐾 = Q𝑝, the map

ac𝑚 : K→ AC𝑚

𝑥 ↦→ 𝑥 · 𝑝− val(𝑥)
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is ∅-definable by [Den86, Lemma 2.1 (4)]. It is clear that this map satisfies the desired
properties (i.e., it extends rv𝑚↾(𝒪× ∪ {0}) and restricts to a group homomorphism
from K× to AC𝑚 ∖ {0}). Thus, the ℒval-formula defining ac𝑚 in K = Q𝑝 defines the
desired map in any model of Th(Q𝑝).

Remark 2.2.4. Note that, for 𝑚 ∈ N>0, the set AC𝑚 = {𝜉 ∈ RV𝑚 | val(𝜉) =
0} ∪ {0} is contained in {0, 1, 2, . . . , 𝑝𝑚 − 1} ⊂ dcl(∅).

Moreover, for each 𝑢 ∈ RV𝑚, we have 𝑢 ∈ dcl(val(𝑢)).

Proof (of the “moreover” part). Let 𝑢 ∈ RV𝑚. Consider the val(𝑢)-definable set 𝑈 :=
{𝑢′ ∈ RV𝑚 | val(𝑢′) = val(𝑢)} and note that {𝑢} = ac−1

𝑚 (ac𝑚(𝑢)⏟  ⏞  
∈ dcl(∅)

)∩𝑈 is the intersection

of an ∅-definable set with a val(𝑢)-definable set, hence it is val(𝑢)-definable itself.

Lemma 2.2.5. Let 𝑆 be an arbitrary set of parameters (from arbitrary sorts).
For each 𝑚 ∈ N>0, we have acl(𝑆) ∩ RV𝑚 = dcl(𝑆) ∩ RV𝑚.

Proof. By Remark 2.2.4, it is enough to show that val(𝑢) ∈ dcl(𝑆) for all 𝑢 ∈ acl(𝑆)∩
RV𝑚. So let 𝑈 ⊂ RV𝑚 be finite and 𝑆-definable with 𝑢 ∈ 𝑈 . Then val(𝑈) is finite and
𝑆-definable, hence contained in acl(𝑆) ∩ Γ. Since the order on Γ is ∅-definable (as it
is part of our language), we have acl(𝑆) ∩ Γ = dcl(𝑆) ∩ Γ, and thus val(𝑢) ∈ val(𝑈) ⊂
dcl(𝑆). By Remark 2.2.4, this yields 𝑢 ∈ dcl(val(𝑢)) ⊂ dcl(𝑆) as claimed.

Lemma 2.2.6. The sorts Γ and RV𝑚, for any 𝑚 ∈ N>0 are stably embedded.
More precisely, subsets 𝐴 ⊂ Γ* and 𝑈 ⊂ RV*

𝑚 are 𝑀 -definable if and only if they
are 𝑍-definable, where 𝑍 = dcl(𝑀) ∩ Γ.

Proof. Clearly any 𝑍-definable set is 𝑀 -definable. We now prove the other direction
for subsets of 𝑈 ⊂ RV*

𝑚.

Consider the “leading term language” introduced in [Fle11], i.e., the multisorted lan-
guage ℒrv with sorts for the valued field K and each of the RV𝑚, for 𝑚 ∈ N>0, with
the ring language on K, multiplication and partial addition on the RV𝑚 and maps
rv𝑚 : K→ RV𝑚 as well as rvℓ,𝑚 : RVℓ → RV𝑚 for ℓ ≥ 𝑚.

Note that multiplication and partial addition on RV𝑚 are ∅-definable in ℒval, and that
Γ is interpretable in ℒrv in (each of the) RV𝑚 over ∅, see [Fle11, Definition 2.1 and
Proposition 2.8]. This allows us to replace a definition of 𝑈 in ℒval by a definition
using (almost) only ℒrv as follows: Let 𝜙(𝑢,𝑎,𝑤,𝑥) be an ℒval-formula defining 𝑈
with parameters 𝑎 ∈ Γ*, 𝑤 ∈ RV*

*, and 𝑥 ∈ K*. By interpretability of Γ in RV* over
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the empty set in the language ℒrv, there is an ℒrv-formula 𝜓(𝑢,𝑣,𝑤,𝑥) such that
𝜙(𝑢,𝑎,𝑤,𝑥) holds in K – for any given tuple (𝑢, 𝑎, 𝑤,𝑥) – if and only if we have the
equivalence

K |=ℒrv
𝜓(𝑢,𝑣,𝑤,𝑥) ⇐⇒ val(𝑣) = 𝑎

for all 𝑣. By relative quantifier elimination in the language ℒrv, [Fle11, Proposi-
tion 4.3], we may assume that 𝜓 does not contain any K-quantifiers. The only variables
from the valued field that appear in 𝜓 are then the coordinates of 𝑥, and they can
only appear in the form rvℓ(𝑃 (𝑥)) for some polynomial 𝑃 ∈ Z[𝑇 ], where 𝑇 is a tuple
of the same length as 𝑥.

Hence we can already define 𝑈 by an ℒrv-formula just using parameters from the set
{rvℓ(𝑃 (𝑥)) | 𝑃 ∈ Z[𝑇 ], ℓ ∈ N>0}, and 𝑣 and 𝑤. As the additional relations in ℒrv

(i.e., multiplication and partial addition on the RV-sorts) are ∅-definable in ℒval, the
set 𝑈 is then also definable over the same parameters in ℒval. By (the moreover part
of) Remark 2.2.4, all parameters are 𝑍-definable for 𝑍 = dcl(𝑀) ∩ Γ, yielding that 𝑈
is indeed 𝑍-definable in ℒval.

Analogously showing that any 𝑀 -definable subset 𝐴 ⊂ Γ* is already 𝑍-definable is
left to the reader.

The following observation is a handy tool to answer the question whether two elements
of K have the same image in RV𝑑 by solely comparing two valuations.

Remark 2.2.7 (cf. [CHR21, Remark 2.1.3], note that rv𝜆 for 𝜆 = 𝑝−𝑑 there is
rv𝑑+1 here). For 𝑥, 𝑦 ∈ K, we have

rv𝑑(𝑥) = rv𝑑(𝑦) ⇐⇒ (𝑥 = 𝑦 = 0) or val(𝑥− 𝑦) ≥ 𝑑+ val(𝑥).

In Chapter 5, we use the equivalence in the following form: For 𝑐, 𝑐′, 𝑥 ∈ K, we
have

rv𝑑(𝑥− 𝑐) = rv𝑑(𝑥− 𝑐′) ⇐⇒ (𝑐 = 𝑐′ = 𝑥) or val(𝑐− 𝑐′) ≥ 𝑑+ val(𝑥− 𝑐).

Let us give a first application of this observation that will be useful later on (in Chap-
ter 5) to allow us to assume Γ ̸= Z.

Remark 2.2.8. If Γ = Z, then we already have K = Q𝑝.

Proof. Let 𝑥, 𝑦 ∈ K× be two distinct non-zero elements. By the assumption, the
valuation of their difference is then an integer. In formulas, we have val(𝑥−𝑦) ∈ Γ = Z.
Remark 2.2.7 thus implies

rv𝑑(𝑥) ̸= rv𝑑(𝑦)
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2.2 Some model theory of valued fields

for all 𝑑 ∈ N with 𝑑 > val(𝑥− 𝑦)− val(𝑥).

In other words, any element 𝑥 ∈ K× is already completely determined by the sequence
(rv𝑑(𝑥))𝑑∈N ∈

∏︀
𝑑∈N K×/(1 + 𝑝𝑑𝒪) ∼=

∏︀
𝑑∈N Q×

𝑝 /(1 + 𝑝𝑑Z𝑝), so that the inclusion
Q𝑝 →˓ K must be surjective.

There is no natural well-defined addition on RV𝑑, but the following lemma gives a
helpful characterization of the sets of images under rv𝑑 of certain sums in K. We will
use it in Chapter 5 to prove that the integral (to be defined) on K is well-defined.

Lemma 2.2.9. Let 𝑑 ∈ N>0 and 𝑢, 𝑣 ∈ RV𝑑, and fix some 𝑥0, 𝑦0 ∈ K with
rv𝑑(𝑥0) = 𝑢 and rv𝑑(𝑦0) = 𝑣. Then the set

{rv𝑑(𝑥+ 𝑦) | rv𝑑(𝑥) = 𝑢, rv𝑑(𝑦) = 𝑣}

is equal to

(1) . . . {rv𝑑(𝑥0 + 𝑦0)}, if rv(𝑢) ̸= rv(−𝑣),

(2) . . . {𝑤 ∈ RV𝑑 | rv𝑑−ℓ(𝑤) = rv𝑑−ℓ(𝑥0 + 𝑦0)}, if rvℓ(𝑢) = rvℓ(−𝑣) but
rvℓ+1(𝑢) ̸= rvℓ+1(−𝑣) for some 1 ≤ ℓ < 𝑑, and

(3) . . . {𝑤 ∈ RV𝑑 | val(𝑤) ≥ 𝑑+ val(𝑢)}, if 𝑢 = −𝑣.

In particular, its cardinality is 1 in the first case, 𝑝ℓ in the second case, and
infinite in the third case.

Proof. Before we begin the case distinction, note that we have

{𝑥+ 𝑦 | rv𝑑(𝑥) = 𝑢, rv𝑑(𝑦) = 𝑣} = rv−1
𝑑 (𝑢) + rv−1

𝑑 (𝑣)

= ℬ≥𝑑+val(𝑥0)(𝑥0) + ℬ≥𝑑+val(𝑦0)(𝑦0)

= ℬ≥𝑑+min{val(𝑥0),val(𝑦0)}(𝑥0 + 𝑦0)

by Remark 2.2.7.

(1) If rv(𝑥0) = rv(𝑢) ̸= rv(−𝑣) = rv(−𝑦0), then we have the equality val(𝑥0 + 𝑦0) =
min{val(𝑥0), val(𝑦0)} by Remark 2.2.7. Hence we have

{𝑥+ 𝑦 | rv𝑑(𝑥) = 𝑢, rv𝑑(𝑦) = 𝑣} = ℬ≥𝑑+val(𝑥0+𝑦0)(𝑥0 + 𝑦0)

= rv−1
𝑑 (rv𝑑(𝑥0 + 𝑦0)),

which implies the claim.

(2) If rvℓ(𝑢) = rvℓ(−𝑣) but rvℓ+1(𝑢) ̸= rvℓ+1(−𝑣), then we have val(𝑥0 + 𝑦0) =
ℓ+ val(𝑥0) = ℓ+ val(𝑦0) by Remark 2.2.7. Hence we have

{𝑥+ 𝑦 | rv𝑑(𝑥) = 𝑢, rv𝑑(𝑦) = 𝑣} = ℬ≥𝑑+min{val(𝑥0),val(𝑦0)}(𝑥0 + 𝑦0)

= ℬ≥(𝑑−ℓ)+val(𝑥0−𝑦0)(𝑥0 + 𝑦0)

= rv−1
𝑑−ℓ(rv𝑑−ℓ(𝑥0 + 𝑦0)),
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which implies the claim.

(3) If 𝑢 = −𝑣, we have val(𝑥0 − 𝑦0) ≥ 𝑑 + val(𝑥0) = 𝑑 + val(𝑦0) by Remark 2.2.7.
Hence we have

{𝑥+ 𝑦 | rv𝑑(𝑥) = 𝑢, rv𝑑(𝑦) = 𝑣} = ℬ≥𝑑+min{val(𝑥0),val(𝑦0)}(𝑥0 + 𝑦0)

= ℬ≥𝑑+val(𝑥0)(𝑥0 + 𝑦0)

= ℬ≥𝑑+val(𝑥0)(𝑥0)⏟  ⏞  
=rv−1

𝑑 (𝑢)+𝑦0

+𝑦0

= ℬ≥𝑑+val(𝑥0)(0),

as the latter two sets are balls of the same radius both containing 0, since
rv𝑑(−𝑦0) = −𝑣 = 𝑢. This implies the claim.

2.3 The Grothendieck ring of RV*
*

The aim of this section is to get a basic understanding of 𝑍-definable subsets of RV*
*

for some parameter set 𝑍 ⊂ Γ. Recall that we may assume that 𝑍 is an elementary
substructure of Γ (with respect to the language ℒoag), see Remark 2.2.2.

Let us first introduce the Grothendieck ring of bounded definable subsets of a Z-
group, as studied in [CH18]. We then analogously define the Grothendieck ring of the
𝑍-definable bounded subsets of RV*

*, and we will close this section by constructing an
isomorphism between those two Grothendieck rings.

Definition 2.3.1 (cf. [CH18, Definition 2.3.1]). The ring 𝐾Γ
𝑏 (𝑍), denoting the

Grothendieck ring of 𝑍-definable bounded subsets of Γ, is defined as follows:

The additive group of 𝐾Γ
𝑏 (𝑍) is the free abelian group generated by symbols

[𝐴] for each 𝑍-definable bounded subset 𝐴 ⊂ Γ𝑛, for some 𝑛 ∈ N, modulo the
relations

(1) [(𝐴 ∪𝐵)] = [𝐴] + [𝐵], for disjoint sets 𝐴,𝐵 ⊂ Γ𝑛, and

(2) [𝐴] = [𝐵], if there is a 𝑍-definable bijection from 𝐴 ⊂ Γ𝑛 to 𝐵 ⊂ Γ𝑚.

We will write ///≡≡𝐴 for the element in 𝐾Γ
𝑏 (𝑍) corresponding to 𝐴 and call it the

hypercardinality of 𝐴.

The multiplication on 𝐾Γ
𝑏 (𝑍) is given by ///≡≡𝐴 · ///≡≡𝐵 := ///≡≡(𝐴×𝐵). (It is straight-

forward to check that this gives a ring structure on 𝐾Γ
𝑏 (𝑍).)
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*

Lemma 2.3.2 ([CH18, Lemma 2.2.3 (2) and Lemma 2.2.6]). The ring 𝐾Γ
𝑏 (𝑍)

naturally embeds into 𝐾Γ
𝑏 (𝑍)⊗Q. Moreover, the latter (and hence also the former)

is an integral domain.

Given a 𝑍-definable bounded subset 𝑈 ⊂ RV𝑛𝑚, there are now two natural ways of
defining the hypercardinality of 𝑈 : Firstly, one could set ///≡≡𝑈 :=

∑︀
𝜉∈AC𝑛

𝑚
///≡≡val(𝑈𝜉) ∈

𝐾Γ
𝑏 (𝑍), where the 𝑈𝜉 are 𝑍-definable sets on which the valuation map val is injective

and which form a partition of 𝑈 . (This is satisfied, for example, by the sets 𝑈𝜉 :=
𝑈 ∩ ac−1

𝑚 (𝜉) = {𝑢 ∈ 𝑈 | ac𝑚(𝑢) = 𝜉} for 𝜉 ∈ ac𝑚(𝑈) ⊂ AC𝑛𝑚.)

On the other hand, one could define the hypercardinality of such a set 𝑈 as the
corresponding class in the Grothendieck ring 𝐾RV

𝑏 (𝑍) of 𝑍-definable subsets of RV,
similar to Definition 2.3.1. We will show that both definitions agree, by following the
latter approach and then constructing an isomorphism between 𝐾Γ

𝑏 (𝑍) and 𝐾
RV
𝑏 (𝑍)

using partitions as above.

The following observation simplifies the definition of the Grothendieck ring, allowing
us to restrict our attention to subsets of RV𝑛𝑚 for 𝑚,𝑛 ∈ N>0 instead of arbitrary
products

∏︀
𝑖RV

𝑛𝑖
𝑚𝑖

.

Remark 2.3.3. Given 𝑚,𝑛, 𝑘, ℓ ∈ N with 𝑘 ≥ 𝑚, ℓ ≥ 𝑛, and a 𝑍-definable set
𝑈 ⊂ RV𝑛𝑚, there is a 𝑍-definable set ̃︀𝑈 ⊂ RVℓ𝑘 which is in 𝑍-definable bijection
with 𝑈 . Indeed, fix some right-inverse 𝑟 : AC𝑛𝑚 → AC𝑛𝑘 of ac𝑚↾AC𝑛𝑘 and define
𝑠 : RV𝑛𝑚 → RV𝑛𝑘 by

𝑠(𝑢) = 𝑣 ⇐⇒
ac𝑘(𝑣) = 𝑟(ac𝑚(𝑢)) and

val(𝑣) = val(𝑢).

Since AC𝑛𝑚 and AC𝑛𝑘 are contained in dcl(∅), the map 𝑟 is 𝑍-definable, and hence
so is 𝑠. Thus 𝑠 induces a 𝑍-definable bijection from 𝑈 to ̃︀𝑈 := 𝑠(𝑈)× {0}ℓ−𝑛 ⊂
RVℓ𝑘.

Definition 2.3.4. The Grothendieck ring of bounded 𝑍-definable subsets of RV,
denoted by 𝐾RV

𝑏 (𝑍), is defined as follows:

The additive group of 𝐾RV
𝑏 (𝑍) is the free abelian group generated by symbols [𝑈 ]

for each 𝑍-definable bounded subset 𝑈 ⊂ RV𝑛𝑚 for some 𝑚 ∈ N>0, 𝑛 ∈ N, modulo
the relations

(1) [𝑈 ∪ 𝑉 ] = [𝑈 ] + [𝑉 ], if 𝑈, 𝑉 ⊂ RV𝑛𝑚 are disjoint, and

(2) [𝑈 ] = [𝑉 ], if there is a 𝑍-definable bijection from 𝑈 to 𝑉 .
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As above, we will write ///≡≡𝑈 for the element in 𝐾RV
𝑏 (𝑍) corresponding to 𝑈 , called

its hypercardinality.

The multiplication on 𝐾RV
𝑏 (𝑍) is given by ///≡≡𝑈 · ///≡≡𝑉 := ///≡≡(̃︀𝑈 × ̃︀𝑉 ) for any two

𝑍-definable sets ̃︀𝑈 ⊂ RV𝑛𝑘 and ̃︀𝑉 ⊂ RVℓ𝑘 being in 𝑍-definable bijection with 𝑈
and 𝑉 respectively.a (And it is again straightforward to check that this definition
makes 𝐾Γ

𝑏 (𝑍) a ring.)

acf. Remark 2.3.3

Note that we could also have defined𝐾RV
𝑏 (𝑍) as being generated by [𝑈 ] for 𝑍-definable

sets 𝑈 ⊂ RV𝑛
𝑚 for varying 𝑚,𝑛 ∈ Nℓ>0, with multiplication then given by ///≡≡𝑈 ·///≡≡𝑉 :=

///≡≡(𝑈 × 𝑉 ). However, the natural inclusion map from the ring as we defined it to the
one arising from this alternative definition induces an isomorphism. Thus we will
stick to our definition to simplify the notation, and we will freely use Remark 2.3.3 to
assume finitely many subsets to all lie in the same RV𝑛𝑚 when beneficial. Similarly,
we will also just use the notation ///≡≡𝑈 for subsets of RV*

*, implicitly making use of
Remark 2.3.3.

Intuitively, it is no real surprise that 𝐾RV
𝑏 (𝑍) and 𝐾Γ

𝑏 (𝑍) are isomorphic, since RV𝑚
merely consists of finitely many copies of the value group. Instead of just proving
this abstractly, we explicitly construct an isomorphism for later use, making the proof
longer than it might have to be.

Lemma 2.3.5. There is an isomorphism between the two Grothendieck rings
𝐾RV
𝑏 (𝑍) and 𝐾Γ

𝑏 (𝑍) induced by

///≡≡𝑈 ↦→
∑︁

𝜉∈AC𝑛
𝑚

///≡≡val(𝑈𝜉)

for any 𝑍-definable subset 𝑈 ⊂ RV𝑛𝑚, where

𝑈𝜉 := 𝑈 ∩ ac−1
𝑚 (𝜉) = {𝑢 ∈ 𝑈 | ac𝑚(𝑢) = 𝜉}

for each 𝜉 ∈ AC𝑛𝑚.

Proof. Let us write FrAb(RV) for the free abelian group generated by the symbols
[𝑈 ]FrAb as in Definition 2.3.4. Consider the group homomorphism 𝜙 : FrAb(RV) →
𝐾Γ
𝑏 (𝑍) induced by 𝜙([𝑈 ]FrAb) :=

∑︀
𝜉∈AC𝑛

𝑚
///≡≡val(𝑈𝜉) ∈ 𝐾Γ

𝑏 (𝑍) for all 𝑚,𝑛 ∈ N and
all 𝑍-definable 𝑈 ⊂ RV𝑛𝑚. We will now first show that 𝜙 induces a homomorphism
�̄� : 𝐾RV

𝑏 (𝑍) → 𝐾Γ
𝑏 (𝑍), then note that �̄� respects the multiplication (and hence is a

ring homomorphism) and finally prove that it is bijective.

To see that 𝜙 induces a homomorphism on the quotient 𝐾RV
𝑏 (𝑍) of FrAb(RV), we

check that it respects the two relations from Definition 2.3.4. Regarding the relation

22



2.3 The Grothendieck ring of RV*
*

(1), let 𝑈, 𝑉 ⊂ RV𝑛𝑚 be two bounded 𝑍-definable sets with 𝑈 ∩ 𝑉 = ∅. Then, for each
𝜉 ∈ AC𝑛𝑚, we have

(𝑈 ∪ 𝑉 )𝜉 = (𝑈 ∪ 𝑉 ) ∩ ac−1
𝑚 (𝜉)

= (𝑈 ∩ ac−1
𝑚 (𝜉)) ∪ (𝑉 ∩ ac−1

𝑚 (𝜉))

= 𝑈𝜉 ∪ 𝑉𝜉,

where the two bounded 𝑍-definable sets 𝑈𝜉 ⊂ 𝑈 and 𝑉 𝜉 ⊂ 𝑉 are disjoint. Moreover,
note that val is injective on (𝑈 ∪ 𝑉 )𝜉 and hence we have val((𝑈 ∪ 𝑉 )𝜉) = val(𝑈𝜉) ∪
val(𝑉 𝜉), where val(𝑈𝜉) and val(𝑉 𝜉) are also disjoint (and both are bounded and
𝑍-definable). Thus

𝜙([𝑈 ∪ 𝑉 ]FrAb) =
∑︁
𝜉

///≡≡val((𝑈 ∪ 𝑉 )𝜉)

=
∑︁
𝜉

(///≡≡val(𝑈𝜉) + ///≡≡val(𝑉 𝜉))

=
∑︁
𝜉

///≡≡val(𝑈𝜉) +
∑︁
𝜉

///≡≡val(𝑉 𝜉)

= 𝜙([𝑈 ]FrAb) + 𝜙([𝑉 ]FrAb)

Regarding the relation (2), let 𝑈 ⊂ RV𝑛𝑚 and 𝑉 ⊂ RVℓ𝑘 be two bounded 𝑍-definable
sets which are in 𝑍-definable bijection, say via 𝑓 : 𝑈 → 𝑉 . For each 𝜉 ∈ AC𝑛𝑚 and
𝜃 ∈ ACℓ𝑘, let

𝑈𝜉,𝜃 := 𝑈𝜉 ∩ 𝑓−1(𝑉 𝜃)

= {𝑢 ∈ 𝑈 | ac𝑚(𝑢) = 𝜉,ac𝑘(𝑓(𝑢)) = 𝜃}

and

𝑉 𝜉,𝜃 := 𝑓(𝑈𝜉,𝜃) = 𝑓(𝑈𝜉) ∩ 𝑉 𝜃

= {𝑣 ∈ 𝑉 | ac𝑚(𝑓−1(𝑣)) = 𝜉,ac𝑘(𝑣) = 𝜃}.

Then 𝑓 restricts to a 𝑍-definable bijection between the bounded 𝑍-definable sets 𝑈𝜉,𝜃

and 𝑉 𝜉,𝜃. Moreover, val is injective on both of these sets (since it is already injective on
their supersets 𝑈𝜉 and 𝑉 𝜃). Hence there is a 𝑍-definable bijection between val(𝑈𝜉,𝜃)
and val(𝑉 𝜉,𝜃). Thus we have

𝜙([𝑈 ]FrAb) = 𝜙
(︁∑︁

[𝑈𝜉,𝜃]FrAb

)︁
=
∑︁

///≡≡val(𝑈𝜉,𝜃)

=
∑︁

///≡≡val(𝑉 𝜉,𝜃) = 𝜙
(︁∑︁

[𝑉 𝜉,𝜃]FrAb

)︁
= 𝜙([𝑉 ]FrAb)

as claimed.
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This shows that 𝜙 induces a group homomorphism �̄� : 𝐾RV
𝑏 (𝑍)→ 𝐾Γ

𝑏 (𝑍) given by

�̄� : ///≡≡𝑈 ↦→
∑︁

𝜉∈AC𝑛
𝑚

///≡≡val(𝑈𝜉)

Now note that �̄� also respects the multiplicative structure of the rings 𝐾RV
𝑏 (𝑍) and

𝐾Γ
𝑏 (𝑍). Indeed, for two bounded 𝑍-definable subsets 𝑈 ⊂ RV𝑛𝑚 and 𝑉 ⊂ RVℓ𝑘 we can

first assume that𝑚 = 𝑘 by Remark 2.3.3, and then use the identity val((𝑈×𝑉 )(𝜉,𝜃)) =
val(𝑈𝜉 × 𝑉 𝜃) = val(𝑈𝜉)× val(𝑉 𝜃) to see that

�̄�(///≡≡(𝑈 × 𝑉 )) =
∑︁
(𝜉,𝜃)

///≡≡val((𝑈 × 𝑉 )𝜉,𝜃) =
∑︁
(𝜉,𝜃)

(///≡≡val(𝑈𝜉) · ///≡≡val(𝑉 𝜃))

= (
∑︁
𝜉

///≡≡val(𝑈𝜉)) · (
∑︁
𝜃

///≡≡val(𝑉 𝜃)) = �̄�(///≡≡𝑈) · �̄�(///≡≡𝑉 ).

We now finish the proof by showing that �̄� is bijective. Firstly, given a bounded 𝑍-
definable subset 𝐴 ⊂ Γ𝑛, the set 𝑈 := {𝑢 ∈ RV𝑛1 | val(𝑢) ∈ 𝐴,ac1(𝑢) = 1} is bounded
and 𝑍-definable and satisfies �̄�(///≡≡𝑈) = ///≡≡𝐴, so �̄� is surjective. Secondly, to see that
it is also injective, first note that given a 𝑍-definable bounded subset 𝑈 ⊂ RV𝑛𝑚, we
can find a 𝑍-definable bounded set 𝑈 ′ which is in 𝑍-definable bijection with 𝑈 and
on which val is injective. E.g., 𝑈 ′ := {(𝑢, 𝑗(ac𝑚(𝑢))) | 𝑢 ∈ 𝑈} ⊂ RV𝑛+1

𝑚 meets
these requirements whenever 𝑗 : AC𝑛𝑚 → RV𝑚 is a map for which val ∘𝑗 is injective.
(Since AC𝑚 is finite, it is straightforward to find such a map 𝑗, and each choice is
automatically ∅-definable as AC𝑚 ⊂ dcl(∅), see Remark 2.2.4.) It follows that

�̄�(///≡≡𝑈) = �̄�(///≡≡𝑈 ′) = ///≡≡val(𝑈 ′).

For 𝑈 ⊂ RV𝑛𝑚 and 𝑉 ⊂ RVℓ𝑘 bounded 𝑍-definable with �̄�(///≡≡𝑈) = �̄�(///≡≡𝑉 ), define 𝑈 ′

as above and 𝑉 ′ in the same way. Then we have ///≡≡val(𝑈 ′) = ///≡≡val(𝑉 ′). This implies,
by [CH18, Theorem 5.2.2], that there is a 𝑍-definable bijection between val(𝑈 ′) and
val(𝑉 ′). Since these two sets are in 𝑍-definable bijection with 𝑈 and 𝑉 respectively,
///≡≡𝑈 = ///≡≡𝑉 follows. Thus �̄� : 𝐾RV

𝑏 (𝑍)→ 𝐾Γ
𝑏 (𝑍) is also injective and therefore a ring

isomorphism.

As mentioned before, the Grothendieck ring 𝐾Γ
𝑏 (𝑍) has been comprehensively studied

in [CH18], and Lemma 2.3.5 now allows us to transfer the results to 𝐾RV
𝑏 (𝑍). We

close this section (and chapter) with one example of such a statement that will play a
prominent role in Chapter 4.

Corollary 2.3.6. Let 𝐴 ⊂ Γ𝑛 be 𝑍-definable and let (𝑈𝑎)𝑎∈𝐴 be a 𝑍-definable
family of bounded sets 𝑈𝑎 ⊂ RV*

*.

Then ///≡≡𝑈𝑎 is piecewise polynomial in 𝑎 with coefficients in 𝐾RV
𝑏 (𝑍) ⊗ Q, i.e.,

there is a partition of 𝐴 into finitely many 𝑍-definable sets 𝐴𝑖 such that we have,
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for each 𝑖, a polynomial 𝑃𝑖 ∈ (𝐾RV
𝑏 (𝑍)⊗Q)[𝑇1, . . . , 𝑇𝑛] with

///≡≡𝑈𝑎 = 𝑃𝑖(𝑎1, . . . , 𝑎𝑛)

for all 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴𝑖.

Proof. The same statement for definable families of subsets of Γ* instead of RV*
*, and

𝐾Γ
𝑏 (𝑍) instead of 𝐾RV

𝑏 (𝑍), is proven in [CH18, Proposition 5.2.1]. The claim now
follows from that statement by using Lemma 2.3.5.
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3 Presburger sets

In this chapter, we study definable subsets of the value group Γ. Recall that a subset of
the value group is 𝑀 -definable for some set 𝑀 ⊂ K∪Γ if and only if it is 𝑍-definable,
where 𝑍 = dcl(𝑀)∩Γ, see Lemma 2.2.6. Since the language on Γ is the pure language
of ordered abelian groups, we can work solely within the value group, i.e., we can
restrict our attention to Presburger sets. Using that the Grothendieck rings 𝐾RV

𝑏 (𝑍)
and 𝐾Γ

𝑏 (𝑍) are isomorphic (by Lemma 2.3.5), the results will still be useful when we
later work with subsets of the RV-sorts.

Throughout this chapter, Γ is an arbitrary Z-group, i.e., a group that is elementary
equivalent to the integers Z in the language of ordered abelian groups ℒoag = (0,+, <).
As in Section 2.3, we may work under the general assumption that 𝑍 is an elementary
substructure of Γ (with respect to the language ℒoag), see Remark 2.2.2.

3.1 Basic definitions and facts

Most of the material in this section is taken from or based on [Clu03] and [CH18].

Definition 3.1.1 ([CH18, Definition 3.1.1]). A map 𝑓 : 𝐴 → Γ, for 𝐴 ⊂ Γ𝑛, is
called linear if there are 𝑑 ∈ N>0, 𝑚1, . . . ,𝑚𝑛 ∈ Z, and 𝑐 ∈ Γ for which we have

𝑓(𝑎) =
1

𝑑
· (𝑚1 · 𝑎1 + · · ·+𝑚𝑛 · 𝑎𝑛 + 𝑐)

for all 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴.

A map 𝑓 : 𝐴→ Γ∪ {∞} is called linear if it is either linear to Γ as defined above
or if 𝑓 = const𝐴(∞). (And similarly for 𝑓 : 𝐴→ Γ ∪ {−∞}.)

A map 𝑓 : 𝐴→ (Γ∪{∞})𝑚, for 𝑚 ∈ N>0, is called linear, if pr𝑖 ∘𝑓 : 𝐴→ Γ∪{∞}
is linear for each 𝑖 = 1, . . . ,𝑚.

Remark 3.1.2. Note that, for any 𝐴 ⊂ Γ𝑛 and any linear map 𝑓 : 𝐴→ Γ, there is
some 𝑘 ∈ N>0 such that 𝑘 · 𝑓 extends to a linear map on all of Γ𝑛.
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3 Presburger sets

Definition 3.1.3 (Presburger Cell, adapted from [Clu03, Definition 2]). Given
𝑖1, . . . , 𝑖𝑛 ∈ {0, 1}, we define the notion of a (𝑖1, . . . , 𝑖𝑛)-cell 𝐶 ⊂ Γ𝑛 recursively
as follows.

(1) A (0)-cell is a singleton {𝑎} ⊂ Γ.

(2) A (1)-cell is an infinite set of the form (𝑎, 𝑏)≡𝑑𝑟
, where 𝑑 ∈ N>0, 𝑟 ∈

{0, . . . , 𝑑− 1}, 𝑎 ∈ Γ ∪ {−∞} and 𝑏 ∈ Γ ∪ {∞}.

(3) An (𝑖1, . . . , 𝑖𝑛, 0)-cell is the graph of a linear function from an (𝑖1, . . . , 𝑖𝑛)-cell
to Γ, i.e., a set of the form

𝐶 = {(𝑎, 𝑓(𝑎)) ∈ Γ𝑛+1 | 𝑎 ∈ 𝐴}

for an (𝑖1, . . . , 𝑖𝑛)-cell 𝐴 ⊂ Γ𝑛 (called the base of 𝐶) and a linear function
𝑓 : 𝐴→ Γ.

(4) An (𝑖1, . . . , 𝑖𝑛, 1)-cell is a set of the form

𝐶 = {(𝑎, 𝑏) ∈ Γ𝑛+1 | 𝑎 ∈ 𝐴, 𝑏 ∈ (𝑓(𝑎), 𝑔(𝑎))≡𝑑𝑟
}

for an (𝑖1, . . . , 𝑖𝑛)-cell 𝐴 ⊂ Γ𝑛 with pr≤𝑘(𝐶) = 𝐴 (called the base of 𝐶),
some 𝑑 ∈ N>0, 𝑟 ∈ {0, . . . , 𝑑 − 1}, and linear functions 𝑓 : 𝐶 → Γ ∪ {−∞}
and 𝑔 : 𝐶 → Γ ∪ {∞}, such that the cardinality of the fibers 𝐶𝑎 = {𝑏 ∈ Γ |
(𝑎, 𝑏) ∈ 𝐶} cannot be bounded uniformly in 𝑎 ∈ 𝐴 by an integer. (Note
that the fibers of 𝐶 over 𝐴 are non-empty, as 𝐴 = pr≤𝑘(𝐶).)

For an (𝑖1, . . . , 𝑖𝑛)-cell 𝐶 ⊂ Γ𝑛, we also say that 𝐶 is a cell of shape (𝑖1, . . . , 𝑖𝑛) ∈
{0, 1}𝑛.

Lemma 3.1.4 (Presburger Cell Decomposition, [Clu03, Theorem 1]). Let 𝐴 ⊂ Γ𝑛

be 𝑍-definable. Then there is a partition of 𝐴 into finitely many 𝑍-definable cells.

Corollary 3.1.5. If Γ ̸= Z, then any 𝑍-definable map 𝑓 : Γ𝑘 → Γ with im(𝑓) ⊂ N
has finite image.

Proof. The set im(𝑓) ⊂ Γ is 𝑍-definable, so Lemma 3.1.4 implies that it is a finite
union of sets of the form [𝑎, 𝑏)𝑑. No infinite such interval is contained in N, hence the
assumption that im(𝑓) ⊂ N implies that all of them must be finite. Consequently,
im(𝑓) must be finite.

Up to definable bijection and finite partition, one can avoid the technical notion of
cells and instead work with the following notion, as in [CH18].
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3.1 Basic definitions and facts

Definition 3.1.6 ([CH18, Definition 3.3.1]). A cuboid is a subset of Γ𝑛 of the
form

∏︀𝑛
𝑖=1 [0, 𝑎𝑖) for some 𝑛 ∈ N and 𝑎1, . . . , 𝑎𝑛 ∈ Γ ∪ {∞}.

The following criterion for divisibility in 𝐾Γ
𝑏 (𝑍) will be helpful in Chapter 4. More

precisely, we will apply it to prove surjectivity of the homomorphism 𝜒𝑆 in Proposi-
tion 4.2.4.

Lemma 3.1.7. Let 𝐶 ⊂ Γ𝑛 be a 𝑍-definable cuboid, i.e., 𝐶 =
∏︀𝑛
𝑖=1 [0, 𝑐𝑖) for

some 𝑐𝑖 ∈ 𝑍, and let 𝑑 ∈ N>0. Then the following are equivalent:

(1) The element ///≡≡𝐶 is divisible by 𝑑, i.e., it lies in the ideal (𝑑) ⊂ 𝐾Γ
𝑏 (𝑍).

(2) There are 𝑑1, . . . , 𝑑𝑛 ∈ N>0 such that 𝑑 =
∏︀𝑛
𝑖=1 𝑑𝑖 and 𝑑𝑖|𝑐𝑖 for all 𝑖.

(3) There is a 𝑍-definable subset 𝐶 ′ ⊂ Γ𝑚 for which 𝐶 is in 𝑍-definable bijection
to the disjoint union of 𝑑 copies of 𝐶 ′.

Proof. First note that all conditions trivially hold if 𝐶 = ∅, so let us restrict to 𝐶 ̸= 0,
hence 𝑐𝑖 > 0, in the following. The implication (3) ⇒ (1) is clear by definition, and
setting 𝐶 ′ :=

∏︀𝑛
𝑖=1 [0, 𝑐𝑖)𝑑𝑖 shows the implication (2) ⇒ (3),

The proof of the remaining implication (1) ⇒ (2) is more involved. Let ///≡≡𝐶 be a
multiple of 𝑑 ∈ N>0 and assume, without loss of generality that 𝑑 ≥ 2.

First consider the case that 𝐶 is finite, so ///≡≡𝐶 =
∏︀𝑛
𝑖=1 𝑐𝑖 ∈ N>0 where the product is

well-defined in Γ ⊃ N>0 because all 𝑐𝑖 are natural numbers. By [CH18, Lemma 2.2.4],
there is a polynomial 𝑃 ∈ Z[𝑥1, . . . , 𝑥ℓ] and a tuple 𝑏 ∈ Γℓ such that 1, 𝑏1, . . . , 𝑏ℓ are Q-
linearly independent as elements of Γ⊗Q and ///≡≡𝐶 = 𝑞·𝑃 (𝑏). Then (𝑑·𝑃−///≡≡𝐶)(𝑏) = 0,
hence applying [CH18, Lemma 2.2.3 (3)] to the polynomial 𝑑 ·𝑃 − ///≡≡𝐶 ∈ Z[𝑥1, . . . , 𝑥ℓ]
yields 𝑑 ·𝑃 = ///≡≡𝐶. Thus 𝑃 is constant and ///≡≡𝐶 =

∏︀𝑛
𝑖=1 𝑐𝑖 is a multiple of 𝑑, not only

in 𝐾Γ
𝑏 (𝑍), but also in N. Hence the existence of the desired decomposition 𝑑 =

∏︀𝑛
𝑖=1 𝑑𝑖

with 𝑑𝑖|𝑐𝑖 follows by basic number theory.

To handle the case that 𝐶 is infinite, write

𝑐𝑖 = 𝑑 · 𝑏𝑖 + 𝑟𝑖 for some 𝑟𝑖 ∈ {0, . . . , 𝑑− 1}

for all 𝑖 and let 𝐶𝐼 :=
∏︀
𝑖∈𝐼 [0, 𝑑 · 𝑏𝑖) ×

∏︀
𝑖/∈𝐼 [0, 𝑟𝑖) for 𝐼 ⊂ {1, . . . , 𝑛}. Then 𝐶 is in

𝑍-definable bijection to the disjoint union of the 2𝑛 many cuboids 𝐶𝐼 for all such 𝐼,
so ///≡≡𝐶 =

∑︀
𝐼 ///≡≡𝐶𝐼 .

By the implication (2) ⇒ (1) applied to the cuboids 𝐶𝐼 , we have ///≡≡𝐶𝐼 ∈ (𝑑) for all
𝐼 ̸= ∅, and hence also ///≡≡𝐶∅ = ///≡≡𝐶−

∑︀
𝐼 ̸=∅ ///≡≡𝐶𝐼 ∈ (𝑑). Since 𝐶∅ =

∏︀𝑛
𝑖=1 [0, 𝑟𝑖) is finite

(and we already handled the finite case above), there is a decomposition 𝑑 =
∏︀𝑛
𝑖=1 𝑑𝑖

such that 𝑑𝑖|𝑟𝑖 for all 𝑖. As 𝑐𝑖 = 𝑑 · 𝑏𝑖 + 𝑟𝑖, this already implies 𝑑𝑖|𝑐𝑖 for all 𝑖, finishing
the proof.
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3 Presburger sets

We close this section with a family version of (1-dimensional) Presburger cell decom-
position, Lemma 3.1.4, over a parameter set in RV*

*. Such families will appear in
Chapter 4, and the following lemma allows us to reduce to simpler cases in some of
the proofs.

Lemma 3.1.8. Let 𝑍 ≼ Γ, let ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0, let 𝑆 ⊂ RV𝑛
𝑚 be 𝑍-

definable and let 𝑋 ⊂ 𝑆 × Γ be a 𝑍-definable set whose fibers over 𝑆 are bounded
from below. Then there is a finite partition of 𝑋 into (𝑍-definable) sets 𝑌 ⊂ 𝑆×Γ
whose fibers over 𝑆 are of the form

𝑌𝑠 = [𝑎(𝑠), 𝑏(𝑠))𝑑

for some 𝑑 ∈ N and 𝑍-definable functions 𝑎 : 𝑆 → Γ and 𝑏 : 𝑆 → Γ ∪ {∞}.

Proof. For each 𝑠 ∈ 𝑆, since the fiber 𝑋𝑠 is bounded from below, it can be partitioned
into finitely many intervals of the form [𝑎, 𝑏)𝑑 by cell decomposition in Γ, Lemma 3.1.4.
By a standard compactness argument, similar to the proof of cell decomposition in
higher dimensions in [Clu03], the claim follows: Let 𝜙𝑟,𝑑(𝑠,𝑎, 𝑏), for 𝑟 ∈ N and 𝑑 ∈ N𝑟,
be the ℒval(𝑍)-formula which holds in K if and only if

� 𝑠 ∈ 𝑆, and

� 𝑋𝑠 is the disjoint union of [𝑎𝑗 , 𝑏𝑗)𝑑𝑗 for 𝑗 = 1, . . . , 𝑟,

(Note that we allow 𝑏𝑗 =∞ here for simplicity; this can easily be coded as a separate
case in all formulas, e.g., by 𝑏𝑗 < 𝑎𝑗 .) Then, in every model 𝐾 ′ of Th(K) in the
language ℒval(𝑍), the union of the sets 𝑆′

𝑟,𝑑(𝐾
′) := {𝑠 ∈ RV𝑛

𝑚 | 𝐾 ′ |= ∃𝑎, 𝑏 ∈ Γ′𝑟 :
𝜙𝑟,𝑑(𝑠,𝑎, 𝑏)} is all of 𝑆(𝐾 ′) by one-dimensional cell decomposition in the value group
Γ′. In other words, consider the language ℒ = ℒval(𝑍) ∪ {𝑠}, with an additional
constant symbol 𝑠 of sort RV𝑛

𝑚, and let 𝜓(𝑠) denote the ℒval(𝑍)-formula defining 𝑆.
Then the ℒ-theory given by

𝑇 = Th(K) ∪ {𝜓(𝑠)} ∪ {¬∃𝑎, 𝑏 ∈ Γ𝑟 : 𝜙𝑟,𝑑(𝑠,𝑎, 𝑏)},

is inconsistent. By compactness, there is already a finite inconsistent subset of 𝑇 . In
other words, and working in K again, there is a finite set of tuples (𝑟𝑖,𝑑𝑖) with 𝑟𝑖 ∈ N
and 𝑑𝑖 ∈ N𝑟𝑖 such that 𝑆 is the union of the finitely many sets 𝑆′

𝑟𝑖,𝑑𝑖
= 𝑆′

𝑟𝑖,𝑑𝑖
(K).

Write 𝑆𝑖 := 𝑆′
𝑟𝑖,𝑑𝑖

∖
⋃︀
𝑗<𝑖 𝑆

′
𝑟𝑗 ,𝑑𝑗

, so that 𝑆 is the disjoint union of the sets 𝑆𝑖. By
Lemma 2.2.1, there are 𝑍-definable functions 𝑎𝑖,𝑗 : 𝑆𝑖 → Γ and 𝑏𝑖,𝑗 : 𝑆𝑖 → Γ∪{∞} for
all 𝑖 and 𝑗 = 1, . . . , 𝑟𝑖, such that 𝜙𝑟𝑖,𝑑𝑖(𝑠,𝑎𝑖(𝑠), 𝑏𝑖(𝑠)) holds for all 𝑖 and 𝑠 ∈ 𝑆𝑖, where
𝑎𝑖(𝑠) = (𝑎𝑖,1(𝑠), . . . , 𝑎𝑖,𝑟𝑖(𝑠)) and 𝑏𝑖(𝑠) = (𝑏𝑖,1(𝑠), . . . , 𝑏𝑖,𝑟𝑖(𝑠)). Write 𝑑𝑖,𝑗 for the 𝑗-th
entry of 𝑑𝑖 ∈ N𝑟𝑖 . Then the finitely many sets

𝑋𝑖,𝑗 := {(𝑠, 𝑐) ∈ 𝑆 × Γ | 𝑠 ∈ 𝑆𝑖, 𝑐 ∈ [𝑎𝑖,𝑗(𝑠), 𝑏𝑖,𝑗(𝑠))𝑑𝑖,𝑗}

are pairwise disjoint and their union is 𝑋, proving the claim.
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3.2 Relative affine hulls

3.2 Relative affine hulls

In this section, we introduce the notion of “affine hull” in Z-groups. In some aspects,
it is quite similar to the same (well-studied) notion in vector spaces, see, for example,
Remark 3.2.5 and Lemma 3.2.9. However, in a non-standard model Γ ̸= Z, there are
also unintuitive phenomena, one of which we illustrate in Example 3.2.8.

The most important result for the remainder of this section is the classification of
affine hulls of Presburger cells, Lemma 3.2.13. We will use it in Section 3.3 to study
the behavior of linear functions on Presburger cells, and we will use its Corollary 3.2.14
in Section 4.4 to prove the crucial Lemma 4.4.10.

Definition 3.2.1. Let 𝑛 ∈ N>0 and 𝐴 ⊂ 𝐵 ⊂ Γ𝑛. The affine hull of 𝐴 in 𝐵 is
the set aff𝐵(𝐴) ⊂ 𝐵 of all points 𝑏 ∈ 𝐵 satisfying (for all 𝑚 ∈ N>0) the condition

For any linear map 𝑓 : 𝐵 → Γ𝑚 with 𝑓↾𝐴 = const𝐴(0), we have 𝑓(𝑏) = 0.
(3.1)

In other words, aff𝐵(𝐴) is the intersection of all those kernels of linear maps on
𝐵 that contain 𝐴.

We say that 𝐴 is affinely closed in 𝐵 if aff𝐵(𝐴) = 𝐴.

Remark 3.2.2. Note that we can replace Γ𝑚 with Γ in Definition 3.2.1 (3.1) with-
out changing the meaning of the defined notion of “affine hull”.

Indeed, if 𝑓 : 𝐵 → Γ𝑚 is linear with 𝑓 ↾𝐴 = const𝐴(0), then each of the com-
ponents 𝑓𝑖 of 𝑓 are constantly zero on 𝐴, hence the condition (3.1) for 𝑚 = 1
already implies 𝑓𝑖(𝑎) = 0 for all 𝑖, and thus 𝑓(𝑎) = 0.

Remark 3.2.3. Note that, for 𝐴 ⊂ 𝐵 ⊂ 𝐶, we have aff𝐵(𝐴) = aff𝐶(𝐴) ∩ 𝐵. We
can (and will) therefore restrict our attention to affΓ𝑛 ; and we will often just write
aff instead of affΓ𝑛 , since one can always infer the exponent 𝑛 from the context.

Proof. If 𝑏 ∈ aff𝐶(𝐴) ∩ 𝐵 and 𝑓 : 𝐵 → Γ𝑚 is linear with 𝑓 ↾𝐴 = const𝐴(0), an
appropriate multiple 𝑔 = 𝑑 · 𝑓 , for 𝑑 ∈ N>0, extends to a linear map on 𝐶 with
𝑔 ↾𝐴 = const𝐴(0). Hence 𝑑 · 𝑓(𝑏) = 𝑔(𝑏) = 0 and thus 𝑓(𝑏) = 0, showing that
𝑏 ∈ aff𝐵(𝐴).

The (other) inclusion aff𝐵(𝐴) ⊂ aff𝐶(𝐴) ∩ 𝐵 is clear by spelling out the definitions,
which we leave to the reader.
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3 Presburger sets

While the Definition 3.2.1 is only concerned with linear maps that are constantly equal
to 0, translation by arbitrary elements of Γ𝑚 does not change anything. More precisely,
the definition immediately yields the following remark.

Remark 3.2.4. Let 𝑛 ∈ N>0, let 𝐴 ⊂ Γ𝑛 be an arbitrary subset, and let 𝑓 :
aff(𝐴) → Γ𝑚 be a linear map. If 𝑓 is constant on 𝐴, then it is already constant
on aff(𝐴).

Moreover, this property characterizes the affine hull, i.e., it serves as an alternative
definition.

Another straight-forward observation is that aff is a closure operator.

Remark 3.2.5. For all 𝑛 ∈ N>0, the map aff : 𝒫(Γ𝑛) → 𝒫(Γ𝑛) is a closure
operator, i.e., we have

� 𝐴 ⊂ aff(𝐴),

� aff(𝐴) ⊂ aff(𝐵), and

� aff(aff(𝐴)) = aff(𝐴)

for all 𝐴 ⊂ 𝐵 ⊂ Γ𝑛.

Let us now calculate some affine hulls to get used to the notion.

Example 3.2.6. Singletons are affinely closed: For 𝑎 ∈ Γ𝑛, we have aff({𝑎}) = {𝑎}.

Example 3.2.7. Two points span everything in Γ: For 𝑎 ̸= 𝑏 ∈ Γ, we have
aff({𝑎, 𝑏}) = Γ. Indeed, if 𝑓 : Γ→ Γ is linear with

𝑓(𝑎)− 𝑓(𝑏) = 𝑚 · (𝑎− 𝑏)⏟  ⏞  
̸=0

= 0

then we must have 𝑚 = 0, and thus 𝑓 is constant on all of Γ.

In particular, aff([𝑎, 𝑏)𝑑) = Γ unless # [𝑎, 𝑏)𝑑 ≤ 1.

Example 3.2.8. Two points can span more than a line: Let 𝜔 ∈ Γ>0 ∖ Z and
𝐴 = {(0, 0), (𝜔, 𝜔 + 1)}. Then aff(𝐴) = Γ2.

Indeed, if 𝑓 : Γ2 → Γ is linear with 𝑓(𝑎, 𝑏) = 𝑛 · 𝑎 + 𝑚 · 𝑏 + 𝑐 and satisfies
𝑓↾𝐴 = const𝐴(0), then 𝑐 = 0 and hence (𝑛 +𝑚) · 𝜔 +𝑚 = 𝑓(𝜔, 𝜔 + 1) = 0. As
𝜔 ∈ Γ>0 ∖ Z, we must have 𝑛+𝑚 = 0 = 𝑚, and thus 𝑓 = constΓ2(0).
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3.2 Relative affine hulls

Lemma 3.2.9. Let 𝑛 ∈ N>0. The affinely closed subsets of Γ𝑛 containing 0 are
exactly the sets of the form ker(𝑀) for some ℓ ∈ N and some matrix 𝑀 ∈ Zℓ×𝑛.
(Without loss of generality, we can assume ℓ ≤ 𝑛.)

In particular, each affinely closed subset containing 0 is ∅-definable.

Before we prove Lemma 3.2.9, note that it yields a classification of all affinely closed
subsets, since “being affinely closed” is translation-invariant.

Corollary 3.2.10. Let 𝑛 ∈ N>0. The affinely closed subsets of Γ𝑛 are exactly the
sets of the form ker(𝑀) + 𝑐 for some ℓ ∈ N, some matrix 𝑀 ∈ Zℓ×𝑛, and some
𝑐 ∈ Γ𝑛. (Without loss of generality, we can assume ℓ ≤ 𝑛.)

In particular, each affinely closed subset 𝐴 ⊂ Γ𝑛 is 𝑐-definable for any 𝑐 ∈ 𝐴.

Proof of Lemma 3.2.9. Fix any matrix 𝑀 ∈ Zℓ×𝑛 and first note that ker(𝑀) is ∅-
definable, which implies the “in particular” part.

To see that ker(𝑀) is affinely closed, it suffices to show aff(ker(𝑀)) ⊂ ker(𝑀). To-
wards this end, we fix 𝑎 ∈ Γ𝑛 ∖ ker(𝑀) and show 𝑎 /∈ aff(ker(𝑀)). Indeed, since
ker(𝑀) =

⋂︀ℓ
𝑖=1 ker(𝑀𝑖), where 𝑀𝑖 denotes the 𝑖-th row of 𝑀 , we have 𝑎 /∈ ker(𝑀𝑖)

for at least one 𝑖. As the map given by 𝑀𝑖 is linear and constantly zero on ker(𝑀),
this yields 𝑎 /∈ aff(ker(𝑀)), showing that ker(𝑀) is affinely closed.

Now let 𝐴 ⊂ Γ𝑛 be an arbitrary affinely closed subset containing 0. Then 𝐴 =⋂︀
𝑓∈ℱ ker(𝑓) for the family ℱ = {𝑓 : Γ𝑛 → Γ linear | 𝑓↾𝐴 = const𝐴(0)} of linear maps

from Γ𝑛 to Γ which are constantly zero on 𝐴, see Remark 3.2.2. We will now show
that there is a finite subset ℱ0 ⊂ ℱ for which 𝐴 =

⋂︀
𝑓∈ℱ0

ker(𝑓). For each 𝑓 ∈ ℱ , pick
𝑑𝑓 ∈ N>0, 𝑚𝑓,1, . . . ,𝑚𝑓,𝑛 ∈ N, and 𝑐𝑓 ∈ Γ such that we have

𝑓(𝑎) =
1

𝑑𝑓
· (𝑚𝑓,1 · 𝑎1 + · · ·+𝑚𝑓,𝑛 · 𝑎𝑛 + 𝑐𝑓 )

for all 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ Γ𝑛. Since 0 ∈ 𝐴, we have 𝑓(0) = 0, hence 𝑐𝑓 = 0, for all
𝑓 ∈ ℱ . Moreover, as ker(𝑑𝑓 · 𝑓) = ker(𝑓), we have 𝐴 =

⋂︀
𝑓∈ℱ ′ ker(𝑓) where ℱ ′ is the

set of those 𝑓 ∈ ℱ for which 𝑑𝑓 = 1. Thus 𝐴 is the solution set of the homogeneous
system of the (possibly infinitely many) linear equations

𝑚𝑓,1 · 𝑎1 + · · ·+𝑚𝑓,𝑛 · 𝑎𝑛 = 0

for 𝑓 ∈ ℱ ′, where all of the coefficients 𝑚𝑓,𝑗 are integers. By (a variant of) Gaußian
elimination, at most 𝑛 equations suffice, i.e., there is a subset ℱ0 ⊂ ℱ ′ with #ℱ0 ≤ 𝑛
and 𝐴 =

⋂︀
𝑓∈ℱ0

ker(𝑓). Let 𝑀 ∈ Z(#ℱ0)×𝑛 be the matrix whose rows are given by
the coefficients 𝑚𝑓,1, . . . ,𝑚𝑓,𝑛 of the elements 𝑓 ∈ ℱ0. Then we have 𝐴 = ker(𝑀) as
desired.
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3 Presburger sets

As a consequence of Lemma 3.2.9, we easily obtain that the affine hull of a definable
set is again definable with the same parameters.

Corollary 3.2.11. The affine hull of a 𝑍-definable set is again 𝑍-definable.

Proof. Let 𝐴 ⊂ Γ𝑛 be 𝑍-definable. The existence of definable Skolem functions in Γ
(see also Lemma 2.2.1) yields a point 𝑎 ∈ 𝐴∩dcl(𝑍). Note that aff(𝐴) = aff(𝐴−𝑎)+𝑎,
where the right-hand side is 𝑎-definable (and hence 𝑍-definable) since aff(𝐴 − 𝑎)
contains 0 and is thus ∅-definable.

Note that a linear map 𝑓 : 𝐴→ Γ for 𝐴 ⊂ Γ𝑛 does not need to extend to Γ𝑛 in general,
an easy example is 𝐴 = [0,∞)2 and 𝑓 : 𝑎 ↦→ 1

2 · 𝑎.

However, the extension of a linear map to the affine hull of its domain is unique if it
exists. Let us note this for later reference.

Remark 3.2.12. Let 𝑓 : 𝐴 → Γℓ be a linear function for some 𝐴 ⊂ Γ𝑛 and let
𝐴 ⊂ 𝐴′ ⊂ aff(𝐴). Then there is at most one linear map on 𝐴′ extending 𝑓 .

Indeed, the difference of any two linear functions on 𝐴′ extending 𝑓 is itself linear
and moreover constantly zero on 𝐴. It is thus constantly zero on aff(𝐴) ⊃ 𝐴′,
yielding the claim.

Lemma 3.2.13. Let 𝐶 ⊂ Γ𝑘+1 be a cell. Then

(1) If 𝑘 = 0 and 𝐶 is a (0)-cell, then aff(𝐶) = 𝐶.

(2) If 𝑘 = 0 and 𝐶 is a (1)-cell, then aff(𝐶) = Γ.

(3) If 𝑘 ≥ 1 and 𝐶 is an (𝑖1, . . . , 𝑖𝑘, 0)-cell with base 𝐴, fix 𝑑 ∈ N>0, 𝑚𝑖 ∈ N
and 𝑐 ∈ Γ such that 𝐶 = graph(𝑓) for the linear function 𝑓 : 𝐴 → Γ given
by

𝑓(𝑎) =
1

𝑑
· (
∑︁
𝑖

𝑚𝑖 · 𝑎𝑖 + 𝑐) for all 𝑎 ∈ 𝐴

Then aff(𝐶) is the graph of the (unique) linear extension 𝑓 : �̃�→ Γ of 𝑓 to
the set

�̃� = {𝑎 ∈ aff(𝐴) |
∑︁
𝑖

𝑚𝑖 · 𝑎𝑖 + 𝑐 is divisible by 𝑑} ⊃ 𝐴,
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3.2 Relative affine hulls

i.e., we have

aff(𝐶) = {(𝑎, 𝑏) ∈ Γ𝑘+1 | 𝑎 ∈ �̃�, 𝑏 = 1

𝑑
· (
∑︁
𝑖

𝑚𝑖 · 𝑎𝑖 + 𝑐)}

(4) If 𝑘 ≥ 1 and 𝐶 is an (𝑖1, . . . , 𝑖𝑘, 1)-cell with base 𝐴, then aff(𝐶) = aff(𝐴)×Γ.

Note that the statement (3) in particular shows that �̃� does not depend of the exact
choices of 𝑑, 𝑚𝑖 and 𝑐 (although this can also be seen directly).

Proof. We already handled the statements (1) and (2) in Example 3.2.6 and Exam-
ple 3.2.7 respectively.

(3) Let 𝐶 be an (𝑖1, . . . , 𝑖𝑘, 0)-cell with base 𝐴, and let 𝑓 : 𝐴 → Γ be the linear
function with 𝐶 = graph(𝑓), given by

𝑓(𝑎) =
1

𝑑
· (
∑︁
𝑖

𝑚𝑖 · 𝑎𝑖 + 𝑐),

and let

�̃� = {𝑎 ∈ aff(𝐴) |
∑︁
𝑖

𝑚𝑖 · 𝑎𝑖 + 𝑐 is divisible by 𝑑}.

As in the statement of the lemma, let 𝑓 : �̃�→ Γ be the unique linear extension
of 𝑓 to �̃�. (Note that 𝑓 extends to a linear map on �̃� by definition, and that
this extension is unique by Remark 3.2.12.)

In order to show aff(𝐶) ⊂ graph(𝑓), consider the linear map on Γ𝑘+1 given by

(𝑎, 𝑏) ↦→
∑︁
𝑖

𝑚𝑖 · 𝑎𝑖 + 𝑐− 𝑑 · 𝑏,

which is constantly zero on 𝐶 = graph(𝑓), and hence constantly zero on aff(𝐶).
For (𝑎, 𝑏) ∈ aff(𝐶), we thus have

∑︀
𝑖𝑚𝑖 · 𝑎𝑖 + 𝑐 = 𝑑 · 𝑏, and hence 𝑎 ∈ �̃� and

(𝑎, 𝑏) ∈ graph(𝑓) as claimed.

To show graph(𝑓) ⊂ aff(𝐶), let 𝑔 : graph(𝑓) → Γ now be an arbitrary linear
function that is constant on 𝐶 = graph(𝑓). Then the linear map ℎ : �̃� → Γ
given by ℎ(𝑎) := 𝑔(𝑎, 𝑓(𝑎)) is constant on 𝐴, and thus already constant on
aff�̃�(𝐴) = �̃�. By definition of ℎ, this means that 𝑔 is constant on graph(𝑓). As
𝑔 was arbitrary, the claim graph(𝑓) ⊂ aff(𝐶) follows.

(4) Let 𝐶 be an (𝑖1, . . . , 𝑖𝑘, 1)-cell with base 𝐴, i.e.,

𝐶 = {(𝑎, 𝑏) ∈ Γ𝑘+1 | 𝑎 ∈ 𝐴, 𝑏 ∈ (−𝑓(𝑎), 𝑔(𝑎))≡𝑑𝑟
},
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3 Presburger sets

where 𝐴 is an (𝑖1, . . . , 𝑖𝑘)-cell, 𝑑 ∈ N>0, 𝑟 ∈ {0, . . . , 𝑑−1}, and 𝑓 and 𝑔 are linear
functions from 𝐴 to Γ ∪ {∞} (such that the cardinality of the fibers 𝐶𝑎 cannot
be bounded uniformly in 𝑎 ∈ 𝐴 by an integer).

To show that aff(𝐶) ⊂ aff(𝐴)×Γ, let 𝑎 ∈ Γ𝑘 ∖aff(𝐴). By definition, there is then
some linear function ℎ : Γ𝑘 → Γ with ℎ↾𝐴 = const𝐴(0) and ℎ(𝑎) ̸= 0. Consider
the linear map 𝑔 : Γ𝑘+1 → Γ given by 𝑔 = ℎ ∘ pr≤𝑘. Then we have 𝑔 ↾𝐶 =
const𝐶(0), but 𝑔(𝑎, 𝑏) = ℎ(𝑎) ̸= 0 for all 𝑏 ∈ Γ. Hence we have (𝑎, 𝑏) /∈ aff(𝐶)
for all 𝑏 ∈ Γ. Since this holds for all 𝑎 /∈ aff(𝐴), we have aff(𝐶) ⊂ aff(𝐴)× Γ.

For the other direction, let 𝑓 : Γ𝑘+1 → Γ be linear with 𝑓 ↾𝐶 = const𝐶(0), say
𝑓(𝑎, 𝑏) = 1

𝑑 · (
∑︀𝑘
𝑖=1𝑚𝑖 · 𝑎𝑖 + 𝑛 · 𝑏+ 𝑐) for 𝑑 ∈ N>0, 𝑚1, . . . ,𝑚𝑘, 𝑛 ∈ Z and 𝑐 ∈ Γ.

Take some 𝑎 ∈ 𝐴 for which there are (at least) two distinct elements 𝑏, 𝑏′ ∈ Γ
with (𝑎, 𝑏), (𝑎, 𝑏′) ∈ 𝐶. Then we have 𝑓(𝑎, 𝑏) − 𝑓(𝑎, 𝑏′) = 𝑛 · (𝑏 − 𝑏′), and the
former vanishes since 𝑓 is constant on 𝐶. Thus 𝑛 = 0, meaning that 𝑓 is constant
on 𝐴 × Γ. Now consider the linear map 𝑓(∙, 𝑏) : Γ𝑘 → Γ for any 𝑏 ∈ Γ. It is
constant on 𝐴, and hence constant on aff(𝐴). Since the value of 𝑓(𝑎, 𝑏) does
not depend on 𝑏 at all (as 𝑛 = 0), this implies that 𝑓 is constant on aff(𝐴)× Γ,
showing aff(𝐶) ⊃ aff(𝐴)× Γ.

Let us close this section with two Corollaries that both follow from Lemma 3.2.13 by
induction on the ambient dimension 𝑛. (Recall that the shape of a Presburger cell is
the tuple (𝑖1, . . . , 𝑖𝑛) ∈ {0, 1}𝑛 for which it is a (𝑖1, . . . , 𝑖𝑛)-cell, see Definition 3.1.3.)

Corollary 3.2.14. If 𝐶 ′ ⊂ 𝐶 ⊂ Γ𝑛 are two cells of the same shape, then aff(𝐶 ′) =
aff(𝐶).

Corollary 3.2.15. For any cell 𝐶 ⊂ Γ𝑛, the affine hull aff(𝐶) is a cell of the
same shape (and hence also of the same dimension) as 𝐶.

3.3 Linear functions on Presburger cells

The main purpose of this section is establishing Proposition 3.3.3, a trichotomy result
saying that any linear function on a Presburger cell is either constant, or its value is
infinitely small or infinitely big on a subcell of the same shape. This will be used later
in the proof of the crucial Lemma 4.4.10.

Remark 3.3.1. Any 𝑍-definable linear function ℓ : 𝐴 → Γ on a bounded (and
necessarily 𝑍-definable) subset 𝐴 ⊂ Γ𝑛 is bounded. In particular, ℓ assumes a
minimum and a maximum on 𝐴, both of which are 𝑍-definable.

Indeed, if 𝐴 is a Presburger cell, this statement can easily be expressed as a scheme
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of parameter-free Presburger formulas (parameterized by the coefficients of ℓ and
of the linear functions describing the cell), each of which is trivially satisfied in Z
since “bounded” just means “finite” in Z𝑛. The statement for general 𝐴 and the “in
particular” part follow by cell decomposition applied to 𝐴 and ℓ(𝐴) respectively.

Recall that we use < not only to compare elements of Γ, but also to compare subsets,
in the following sense.

Notation 3.3.2. For 𝐴,𝐵 ⊂ Γ, we write 𝐴 < 𝐵 if 𝑎 < 𝑏 for all 𝑎 ∈ 𝐴 and all
𝑏 ∈ 𝐵. We also write 𝑎 < 𝐵 for {𝑎} < 𝐵 and 𝑎 > 𝐵 for {𝑎} > 𝐵.

Let us now state the trichotomy result mentioned above.

Proposition 3.3.3. Let 𝐶 ⊂ Γ𝑛 be a bounded cell and let ℓ : 𝐶 → Γ be a linear
function. Then there is a bounded cell 𝐶 ′ ⊂ 𝐶 of the same shape as 𝐶 for which
at least one of the following holds

(1) ℓ(𝐶 ′) > Z, or

(2) ℓ(𝐶 ′) < Z, or

(3) ℓ is constant on 𝐶 ′ (and hence on all of 𝐶).

Moreover, if 𝐶 is 𝑍-definable, then we can choose 𝐶 ′ to be 𝑍-definable.

We will prove it together with the following auxiliary lemma by mutual induction on
𝑛, using each of the two statements in the proof of the other only in the induction step
and only for smaller 𝑛.

Lemma 3.3.4. Let 𝐶 ⊂ Γ𝑛 be a bounded cell, let ℓ : 𝐶 → Γ be a linear function
and leta 𝜔 ∈ Γ>0 ∖ Z. Then there is a bounded cell 𝐶 ′ ⊂ 𝐶 of the same shape as
𝐶 for which we have

max ℓ(𝐶 ′)−min ℓ(𝐶 ′) < 𝜔.

Moreover, if 𝐶 is 𝑍-definable and 𝜔 ∈ 𝑍, we can choose 𝐶 ′ to be 𝑍-definable.

aNote that we deviate from our convention to use latin letters for the elements of Γ here to

emphasize that 𝜔 is required to be a non-standard integer.

Proof of Lemma 3.3.4. Without loss of generality, we can assume that ℓ(𝑐) = 1
𝑘 (𝑚1 ·

𝑐1+ · · ·+𝑚𝑛 ·𝑐𝑛) for all 𝑐 ∈ 𝐶, since an absolute term does not influence the difference
of maximum and minimum. Moreover, it suffices to consider the case 𝑘 = 1. The
general case then follows, as we always have max ℓ(𝐶 ′)−min ℓ(𝐶 ′) ≥ 0.

Let 𝐶 ⊂ Γ𝑛 be a bounded cell and proceed by induction on 𝑛.
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3 Presburger sets

Induction base, 𝑛 = 1. If 𝐶 is a (0)-cell or if 𝑚1 = 0, then ℓ is constant, so choosing
𝐶 ′ = 𝐶 finishes the proof. We now establish the claim in case 𝐶 is (1)-cell and
𝑚1 ̸= 0. Write 𝐶 = (𝑎, 𝑏)≡𝑑𝑟

for some 𝑎, 𝑏 ∈ Γ with 𝑏− 𝑎 > Z. Let 𝛿 ∈ Γ be the
maximal element still satisfying |𝑚1| · 𝛿 < 𝜔, set 𝑏′ = min(𝑏, 𝑎+ 𝛿), and consider
the bounded (1)-cell

𝐶 ′ = (𝑎, 𝑏′)≡𝑑𝑟
⊂ 𝐶.

Note that 𝐶 ′ is 𝑍-definable if 𝐶 is 𝑍-definable and 𝜔 ∈ 𝑍. Moreover, if 𝑚1 > 0,
we have

min ℓ(𝐶 ′) > |𝑚1| · 𝑎 and

max ℓ(𝐶 ′) < |𝑚1| ·min(𝑏, 𝑎+ 𝛿),

and if 𝑚1 < 0, we have

min ℓ(𝐶 ′) > − |𝑚1| ·min(𝑏, 𝑎+ 𝛿) and

max ℓ(𝐶 ′) < − |𝑚1| · 𝑎.

In both cases, this yields

max ℓ(𝐶 ′)−min ℓ(𝐶 ′) < |𝑚1| · (min(𝑏, 𝑎+ 𝛿)− 𝑎)
= |𝑚1| ·min((𝑏− 𝑎), 𝛿)
≤ |𝑚1| · 𝛿
< 𝜔,

as claimed.

Induction step. Let 𝐴 = pr≤𝑛−1(𝐶) ⊂ Γ𝑛−1 be the base of 𝐶. Consider the linear map
ℓ′ : 𝐴→ Γ given by ℓ′(𝑎) := 𝑚1 ·𝑎1+· · ·+𝑚𝑛−1 ·𝑎𝑛−1 for 𝑎 = (𝑎1, . . . , 𝑎𝑛−1) ∈ 𝐴,
so that ℓ(𝑎, 𝑏) = ℓ′(𝑎) + 𝑚𝑛 · 𝑏 for all (𝑎, 𝑏) ∈ 𝐶. We now proceed by a case
distinction based on the shape of 𝐶.

Case 1: 𝐶 is an (𝑖1, . . . , 𝑖𝑛−1, 0)-cell. Then we have 𝐶 = graph(𝑓 ↾𝐴) for some
linear function 𝑓 : 𝐴 → Γ. Let 𝛿 > Z be maximal with (|𝑚𝑛| + 1) · 𝛿 < 𝜔.
By the induction hypothesis, there is then a bounded cell 𝐴′ ⊂ 𝐴 with

max ℓ′(𝐴′)−min ℓ′(𝐴′) < 𝛿, and

max 𝑓(𝐴′)−min 𝑓(𝐴′) < 𝛿,

which can be chosen to be 𝑍-definable if 𝐶 is 𝑍-definable. Consider the
bounded (𝑖1, . . . , 𝑖𝑛−1, 0)-cell

𝐶 ′ = graph(𝑓↾𝐴′) = 𝐶 ∩ (𝐴′ × Γ),

which is 𝑍-definable if 𝐶 and 𝜔 are. We now claim that 𝐶 ′ is as desired,
i.e., that max ℓ(𝐶 ′)−min ℓ(𝐶 ′) < 𝜔. If 𝑚𝑛 ≥ 0, we have

min ℓ(𝐶 ′) ≥ min ℓ′(𝐴′) + |𝑚𝑛| ·min 𝑓(𝐴′), and

max ℓ(𝐶 ′) ≤ max ℓ′(𝐴′) + |𝑚𝑛| ·max 𝑓(𝐴′),
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and if 𝑚𝑛 < 0, we have

min ℓ(𝐶 ′) ≥ min ℓ′(𝐴′)− |𝑚𝑛| ·max 𝑓(𝐴′), and

max ℓ(𝐶 ′) ≤ max ℓ′(𝐴′)− |𝑚𝑛| ·min 𝑓(𝐴′).

In both cases, this yields

max ℓ(𝐶 ′)−min ℓ(𝐶 ′)

≤ max ℓ′(𝐴′)−min ℓ′(𝐴′)⏟  ⏞  
<𝛿

+ |𝑚𝑛| · (max 𝑓(𝐴′)−min 𝑓(𝐴′)⏟  ⏞  
<𝛿

)

< (|𝑚𝑛|+ 1) · 𝛿 < 𝜔,

as claimed.

Case 2: 𝐶 is an (𝑖1, . . . , 𝑖𝑛−1, 1)-cell. Then there are linear functions 𝑓 : 𝐴→ Γ
and 𝑔 : 𝐴→ Γ, whose difference 𝑔−𝑓 is non-negative and cannot be bounded
by an integer on 𝐴, with

𝐶 = {(𝑎, 𝑏) ∈ 𝐴× Γ | 𝑏 ∈ (𝑓(𝑎), 𝑔(𝑎))≡𝑑𝑟
}.

By Proposition 3.3.3 (for 𝐴 ⊂ Γ𝑛−1), there is a bounded cell 𝐴′ ⊂ 𝐴 of the
same shape as 𝐴 for which (𝑔 − 𝑓)(𝐴′) > Z, and which can be chosen to
be 𝑍-definable if 𝐶 is. Let 𝛿 > Z be maximal with 𝛿 < min(𝑔 − 𝑓)(𝐴′) and
(2 · |𝑚𝑛|+1) · 𝛿 < 𝜔. By the induction hypothesis, there is then a bounded
cell 𝐴′′ ⊂ 𝐴′ of the same shape as 𝐴′, for which we have

max ℓ′(𝐴′′)−min ℓ′(𝐴′′) < 𝛿, and

max 𝑓(𝐴′′)−min 𝑓(𝐴′′) < 𝛿,

and which can be chosen to be 𝑍-definable if 𝐶 is 𝑍-definable. Consider
the bounded (𝑖1, . . . , 𝑖𝑛−1, 1)-cell

𝐶 ′ = {(𝑎, 𝑏) ∈ 𝐴′′ × Γ | 𝑏 ∈ (𝑓(𝑎), 𝑓(𝑎) + 𝛿)≡𝑑𝑟
} ⊂ 𝐶,

and note that it is 𝑍-definable if both 𝐶 and 𝜔 are. We now claim that 𝐶 ′

is as desired, i.e., that max ℓ(𝐶 ′)−min ℓ(𝐶 ′) < 𝜔. If 𝑚𝑛 ≥ 0, we have

min ℓ(𝐶 ′) ≥ min ℓ′(𝐴′′) + |𝑚𝑛| ·min 𝑓(𝐴′′), and

max ℓ(𝐶 ′) ≤ max ℓ′(𝐴′′) + |𝑚𝑛| · (max 𝑓(𝐴′′) + 𝛿),

and if 𝑚𝑛 < 0, we have

min ℓ(𝐶 ′) ≥ min ℓ′(𝐴′′)− |𝑚𝑛| · (max 𝑓(𝐴′′) + 𝛿), and

max ℓ(𝐶 ′) ≤ max ℓ′(𝐴′′)− |𝑚𝑛| ·min 𝑓(𝐴′′).
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In both cases, this yields the claim, since

max ℓ(𝐶 ′)−min ℓ(𝐶 ′)

≤ max ℓ′(𝐴′′)−min ℓ′(𝐴′′)⏟  ⏞  
<𝛿

+ |𝑚𝑛| · (max 𝑓(𝐴′′) + 𝛿 −min 𝑓(𝐴′′)⏟  ⏞  
<2𝛿

)

< (2 · |𝑚𝑛|+ 1) · 𝛿
< 𝜔

Proof of Proposition 3.3.3. Let 𝐶 ⊂ Γ𝑛. We establish the claim by induction on the
ambient dimension 𝑛 ∈ N>0.

Induction base, 𝑛 = 1. If 𝐶 is a (0)-cell, then it is a singleton, so ℓ is constant on 𝐶.
Now let us assume that 𝐶 is a (1)-cell. Write 𝐶 = (𝑎, 𝑏)≡𝑑𝑟

for some 𝑎, 𝑏 ∈ Γ,
𝑑 ∈ N>0, and 𝑟 ∈ {0, . . . , 𝑑−1} with 𝑏−𝑎 > Z. We have ℓ(𝑥) = 1

𝑘 · (𝑚 ·𝑥+ 𝑐) for
some 𝑘 ∈ N>0, some 𝑚 ∈ Z, and some 𝑐 ∈ Γ. Moreover, we can assume that ℓ is
non-constant, i.e., that 𝑚 ̸= 0 – otherwise, choosing 𝐶 ′ = 𝐶 finishes the proof.
Let 𝛿 be the unique element of Γ for which 3 · 𝛿 ∈ {𝑏− 𝑎− 1, 𝑏− 𝑎− 2, 𝑏− 𝑎− 3}.
As 𝑏− 𝑎 > Z, we then have 𝛿 > Z. Consider the two bounded (1)-cells

𝐶0 := (𝑎, 𝑎+ 𝛿)≡𝑑𝑟
and 𝐶1 := (𝑎+ 2𝛿, 𝑏)≡𝑑𝑟

,

and let 𝜎 = sign(𝑚). Note that we have 𝑎, 𝑏, 𝛿 ∈ 𝑍 if 𝐶 is 𝑍-definable, hence
both 𝐶0 and 𝐶1 are 𝑍-definable if 𝐶 is. We now claim that we must have at
least one of 𝜎 · ℓ(𝐶0) < Z or 𝜎 · ℓ(𝐶1) > Z. Suppose, towards a contradiction,
that neither of these inequalities hold. Then there are 𝑐0 ∈ 𝐶0, 𝑐1 ∈ 𝐶1, and
𝑘0, 𝑘1 ∈ Z, such that 𝜎 · ℓ(𝑐0) ≥ 𝑘0 and 𝜎 · ℓ(𝑐1) ≤ 𝑘1. We have

𝑘1 − 𝑘0 ≥ 𝜎 · (ℓ(𝑐1)− ℓ(𝑐0)) =
|𝑚|
𝑘
· (𝑐1 − 𝑐0)⏟  ⏞  

≥𝛿>Z

> Z,

which is a contradiction to 𝑘0, 𝑘1 ∈ Z. Hence, for 𝐶 ′ = 𝐶0 or 𝐶 ′ = 𝐶1, we have
ℓ(𝐶 ′) < Z or ℓ(𝐶 ′) > Z as desired.

Induction step. Let 𝐴 = pr≤𝑛−1(𝐶) ⊂ Γ𝑛 be the base of 𝐶. As before, we proceed by
a case distinction based on the shape of 𝐶.

Case 1: 𝐶 is an (𝑖1, . . . , 𝑖𝑛−1, 0)-cell. Then 𝐶 = graph(𝑓) for some linear func-
tion 𝑓 : 𝐴→ Γ, and the linear function

ℓ′ : 𝐴→ Γ

𝑎 ↦→ ℓ(𝑎, 𝑓(𝑎))

satisfies ℓ(𝑎, 𝑏) = ℓ′(𝑎) for all (𝑎, 𝑏) ∈ 𝐶. Hence, if ℓ′ is constant on 𝐴, then
ℓ is constant on 𝐶 and we are done. Otherwise, the induction hypothesis
yields a bounded cell 𝐴′ ⊂ 𝐴 of the same shape as 𝐴 for which we have
either ℓ′(𝐴′) < Z or ℓ′(𝐴′) > Z, and which can be chosen to be 𝑍-definable
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if 𝐶 is. Consider the bounded (𝑖1, . . . , 𝑖𝑛−1, 0)-cell 𝐶 ′ = graph(𝑓↾𝐴′) ⊂ 𝐶 =
𝐶 ∩ (𝐴′×Γ). As it satisfies ℓ(𝐶 ′) = ℓ′(𝐴′), the cell 𝐶 ′, which is 𝑍-definable
if 𝐶 is 𝑍-definable, is as desired.

Case 2: 𝐶 is an (𝑖1, . . . , 𝑖𝑛−1, 1)-cell. Then there are linear functions 𝑓 : 𝐴→ Γ
and 𝑔 : 𝐴→ Γ, whose difference 𝑔−𝑓 is non-negative and cannot be bounded
by an integer on 𝐴, with

𝐶 = {(𝑎, 𝑏) ∈ 𝐴× Γ | 𝑏 ∈ (𝑓(𝑎), 𝑔(𝑎))≡𝑑𝑟
}.

Write ℓ(𝑎, 𝑏) = 1
𝑘 · (ℓ

′(𝑎) + 𝑚 · 𝑏) for some linear map ℓ′ : 𝐴 → Γ, some
𝑘 ∈ N>0, and some 𝑚 ∈ Z. If 𝑚 = 0, note that the induction hypothesis
applied to ℓ′ yields a bounded (𝑖1, . . . , 𝑖𝑛−1)-cell 𝐴′′ ⊂ 𝐴 (which can be
chosen to be 𝑍-definable if 𝐶 is) for which 𝐶 ′ = 𝐶 ∩ (𝐴′′ × Γ) then is as
desired. So let us from now on assume that 𝑚 ̸= 0.

Applying the induction hypothesis to the linear function 𝑔 − 𝑓 on the
bounded cell 𝐴 ⊂ Γ𝑛−1 yields a bounded cell 𝐴′ ⊂ 𝐴 of the same shape
as 𝐴 for which (𝑔 − 𝑓)(𝐴′) > Z (and which can again be chosen to be 𝑍-
definable if 𝐶 is 𝑍-definable). Note that (𝑔 − 𝑓)(𝐴′) > Z has a minimum
in Γ by Remark 3.3.1 and let 𝛿 ∈ Γ be the maximal element still satisfying
5 · 𝛿 < min(𝑔 − 𝑓)(𝐴′). Moreover, note that if 𝐶 is 𝑍-definable, then so is
𝛿 (i.e., we have 𝛿 ∈ 𝑍). Applying Lemma 3.3.4 twice (to 𝐴′ ⊂ Γ𝑛−1 and
a subset of 𝐴′ obtained in the process), we can replace 𝐴′ by a bounded
subcell of the same shape for which we have

max 𝑓(𝐴′)−min 𝑓(𝐴′) < 𝛿 and

max ℓ′(𝐴′)−min ℓ′(𝐴′) < 𝛿.

Similarly to the second case in the proof of the induction base above, con-
sider the two bounded (𝑖1, . . . , 𝑖𝑛−1, 1)-cells

𝐶0 = {(𝑎, 𝑏) ∈ 𝐴′ × Γ | 𝑏 ∈ (𝑓(𝑎), 𝑓(𝑎) + 𝛿)≡𝑑𝑟
} and

𝐶1 = {(𝑎, 𝑏) ∈ 𝐴′ × Γ | 𝑏 ∈ (𝑓(𝑎) + 4𝛿, 𝑔(𝑎))≡𝑑𝑟
},

both of which are subcells of 𝐶, and both of which are 𝑍-definable if 𝐶 is.
For any choice of (𝑎0, 𝑏0) ∈ 𝐶0 and (𝑎1, 𝑏1) ∈ 𝐶1, we then have

𝑏1 − 𝑏0 > 𝑓(𝑎1) + 4𝛿 − (𝑓(𝑎0) + 𝛿)

= 𝑓(𝑎1)− 𝑓(𝑎0)⏟  ⏞  
>−𝛿

+3𝛿

> 2𝛿,
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and thus

sign(𝑚) · (ℓ(𝑎1, 𝑏1)− ℓ(𝑎0, 𝑏0))

= sign(𝑚) · 1
𝑘
· (ℓ′(𝑎1)− ℓ′(𝑎0)⏟  ⏞  

∈(−𝛿,𝛿)

+𝑚 · (𝑏1 − 𝑏0))

=
1

𝑘
· (sign(𝑚) · (ℓ′(𝑎1)− ℓ′(𝑎0)⏟  ⏞  

≥−𝛿

) + |𝑚| · (𝑏1 − 𝑏0)⏟  ⏞  
>2𝛿

)

>
2 |𝑚| − 1

𝑘
· 𝛿

> Z.

Just as in the proof of the induction base above, we now claim that at
least one of the two inequalities sign(𝑚) · ℓ(𝐶0) < Z or sign(𝑚) · ℓ(𝐶1) >
Z hold. Indeed, if both are false, we have sign(𝑚) · ℓ(𝑎0, 𝑏0) ≥ 𝑘0 and
sign(𝑚) · ℓ(𝑎1, 𝑏1) ≤ 𝑘1 for some (𝑎0, 𝑏0) ∈ 𝐶0, some (𝑎1, 𝑏1) ∈ 𝐶1, and
𝑘0, 𝑘1 ∈ Z, leading to

𝑘1 − 𝑘0 ≥ sign(𝑚) · (ℓ(𝑎1, 𝑏1)− ℓ(𝑎0, 𝑏0)) > Z,

which is a contradiction.

Lemma 3.3.5. Suppose that 𝑍 ̸= Z. If 𝐶 is a 𝑍-definable cell, then we can find
a bounded 𝑍-definable cell 𝐶 ′ ⊂ 𝐶 of the same shape as 𝐶.

In particular, if 𝑍 ̸= Z, we can remove the assumption that 𝐶 is bounded in the
statements of Lemma 3.3.4 and Proposition 3.3.3.

Before we continue with the proof, let us point out that the assumption 𝑍 ̸= Z is really
necessary: Note that any Z-definable subset of Γ is either finite or equals Γ. Thus any
𝑍-definable cell 𝐶 ⊂ Γ is either a singleton or equals Γ. In particular, 𝐶 = Γ (which is
an unbounded Z-definable (1)-cell) does not contain a bounded Z-definable (1)-cell.

Proof. Let 𝜔 ∈ 𝑍 with 𝜔 > Z. Let 𝐶 ⊂ Γ𝑛 be a 𝑍-definable cell and continue by
induction on 𝑛.

Induction base, 𝑛 = 1. Write 𝐶 = (𝑎, 𝑏)≡𝑑𝑟
for some 𝑑 ∈ N>0, 𝑟 ∈ {0, . . . , 𝑑− 1}, and

𝑎 ∈ Γ∪ {−∞} and 𝑏 ∈ Γ∪ {∞}. In case 𝑎, 𝑏 ∈ Γ, the cell 𝐶 is already bounded,
so there is nothing to show. In the remaining cases, 𝐶 is a (1)-cell. Define

𝐶 ′ =

⎧⎪⎨⎪⎩
(−𝜔, 𝜔)≡𝑑𝑟

, if 𝑎 = −∞ and 𝑏 =∞
(𝑎, 𝑎+ 𝜔)≡𝑑𝑟

, if 𝑎 ∈ Γ and 𝑏 =∞
(𝑏− 𝜔, 𝑏)≡𝑑𝑟

, if 𝑎 = −∞ and 𝑏 ∈ Γ

.

Then, in all these cases, 𝐶 ′ is a bounded 𝑍-definable (1)-cell contained in 𝐶, as
desired.
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Induction step. Write 𝐶 = {(𝑎, 𝑏) ∈ 𝐴 × Γ | 𝑏 ∈ (𝑓(𝑎), 𝑔(𝑎))≡𝑑𝑟
} for some 𝑑 ∈ N>0,

𝑟 ∈ {0, . . . , 𝑑 − 1}, and 𝑍-definable linear functions 𝑓 : 𝐴 → Γ ∪ {−∞} and
𝑔 : 𝐴 → Γ ∪ {∞}. By the induction hypothesis, there is a bounded 𝑍-definable
cell 𝐴′ ⊂ 𝐴 of the same shape as 𝐴.

If 𝑓(𝑎) ∈ Γ and 𝑔(𝑎) ∈ Γ for all 𝑎 ∈ 𝐴′, consider the 𝑍-definable cell 𝐶 ′ :=
𝐶 ∩ (𝐴′×Γ). By Remark 3.3.1, 𝑓 and 𝑔 assume a minimum and maximum on 𝐴′

respectively, so 𝐶 ′ ⊂ 𝐴′ × (min 𝑓(𝐴′),max 𝑔(𝐴′))≡𝑑𝑟
is bounded. Moreover, the

difference 𝑔−𝑓 is a linear function on 𝐴 and hence on 𝐴′. Thus, Proposition 3.3.3
yields a bounded cell 𝐴′′ ⊂ 𝐴′ of the same shape as 𝐴, whose image under 𝑔− 𝑓
is either contained in Γ>0 ∖ Z or a singleton in Z. In the first case, 𝑔 − 𝑓 cannot
be bounded by an integer on 𝐴′, so 𝐶 and 𝐶 ′ are both of shape (𝑖1, . . . , 𝑖𝑛−1, 1).
In the second case, 𝑔 − 𝑓 is constant on 𝐴 with an integer value, since we have
aff(𝐴) = aff(𝐴′′) by Corollary 3.2.14. Therefore, both 𝐶 and 𝐶 ′ are of shape
(𝑖1, . . . , 𝑖𝑛−1, 0). In both cases, 𝐶 ′ ⊂ 𝐶 is a bounded 𝑍-definable cell of the same
shape as 𝐶, as desired. We have thus established the claim for 𝑛 > 1 if 𝑓 and 𝑔
only take finite values.

In the remaining cases, note that 𝐶 is always an (𝑖1, . . . , 𝑖𝑛−1, 1)-cell and consider
the set 𝐶 ′ ⊂ 𝐴′ × Γ whose fibers 𝐶 ′

𝑎 = {𝑏 ∈ Γ | (𝑎, 𝑏) ∈ 𝐶 ′} over 𝐴′ are given,
for all 𝑎 ∈ 𝐴′, by

𝐶 ′
𝑎 =

⎧⎪⎨⎪⎩
[−𝜔, 𝜔]≡𝑑𝑟

, if 𝑓 = constΓ𝑛(−∞) and 𝑔 = constΓ𝑛(∞)

(𝑓(𝑎), 𝑓(𝑎) + 𝜔)≡𝑑𝑟
, if 𝑓(𝐴′) ⊂ Γ and 𝑔 = constΓ𝑛(∞)

(𝑔(𝑎)− 𝜔, 𝑔(𝑎))≡𝑑𝑟
, if 𝑓 = constΓ𝑛(−∞) and 𝑔(𝐴′) ⊂ Γ

Then, in all these cases, 𝐶 ′ is a bounded 𝑍-definable (𝑖1, . . . , 𝑖𝑛−1, 1)-cell con-
tained in 𝐶, as desired.

Recall that a linear function which is constantly equal to zero on some Presburger cell
(or even some arbitrary subset of Γ𝑛, in general) is already constantly equal to zero
on its affine hull. (This is just how we defined the affine hull, see Definition 3.2.1.)
We close this section with proving the same result for polynomials instead of linear
functions.

Lemma 3.3.6. Let 𝐶 ⊂ Γ𝑛 be a cell and let 𝑃 ∈ 𝑅[𝑇1, . . . , 𝑇𝑛] be a polynomial
with 𝑃 (𝐶) = 0, where 𝑅 is some integral domain whose additive group contains
Γ as a subgroup. Then we already have 𝑃 (aff(𝐶)) = 0.

Proof. We establish the claim by induction on the ambient dimension 𝑛 ∈ N>0, making
use of Lemma 3.2.13 for the explicit description of aff(𝐶).

Induction base, 𝑛 = 1. If 𝐶 is a (0)-cell, then aff(𝐶) = 𝐶, so there is nothing to
show. If 𝐶 is a (1)-cell, then it is infinite, so by the assumption 𝑃 (𝐶) = 0,
the polynomial 𝑃 has infinitely many zeros. Hence it must be the constant zero
polynomial, showing that 𝑃 (aff(𝐶)) = 𝑃 (Γ) = 0.
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Induction step. Let𝐴 = pr≤𝑛−1(𝐶) be the base of 𝐶. We proceed by a case distinction
on the shape of 𝐶.

Case 1: 𝐶 is an (𝑖1, . . . , 𝑖𝑛−1, 0)-cell. Let 𝑓 : 𝐴→ Γ be the linear function with
𝐶 = graph(𝑓), given by

𝑓(𝑎) =
1

𝑑
·

(︃
𝑛−1∑︁
𝑖=1

𝑚𝑖 · 𝑎𝑖 + 𝑐

)︃
for all 𝑎 ∈ 𝐴

for some 𝑑 ∈ N>0, 𝑚𝑖 ∈ N and 𝑐 ∈ Γ. Let �̃� ⊂ aff(𝐴) and 𝑓 : �̃�→ Γ be as
in Lemma 3.2.13 (3), i.e., so that aff(𝐶) = graph(𝑓).

Consider the polynomials 𝐹,𝑄 ∈ Frac(𝑅)[𝑇1, . . . , 𝑇𝑛−1] given by

𝐹 (𝑇1, . . . , 𝑇𝑛−1) =
1

𝑑
· (𝑚1 · 𝑇1 + · · ·+𝑚𝑛−1 · 𝑇𝑛−1 + 𝑐) and

𝑄(𝑇1, . . . , 𝑇𝑛−1) = 𝑃 (𝑇1, . . . , 𝑇𝑛−1, 𝐹 (𝑇1, . . . , 𝑇𝑛−1)).

Fix some element 𝑟 ∈ 𝑅 such that 𝑟 · 𝑄 ∈ 𝑅[𝑇1, . . . , 𝑇𝑛−1] and note that
we have 𝑄(𝐴) = 0, so the induction hypothesis applied to 𝑟 · 𝑄 yields
𝑄(aff(𝐴)) = 0. Since aff(𝐶) = graph(𝑓) by Lemma 3.2.13, we have 𝑐𝑛 =
𝑓(𝑐1, . . . , 𝑐𝑛−1) = 𝐹 (𝑐1, . . . , 𝑐𝑛−1) for all 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ aff(𝐶), and thus
𝑃 (aff(𝐶)) = 𝑄(�̃�) = 0. As �̃� is a subset of aff(𝐴) and 𝑄(aff(𝐴)) = 0, the
claim follows.

Case 2: 𝐶 is an (𝑖1, . . . , 𝑖𝑛−1, 1)-cell. Let 𝑓 : 𝐴 → Γ ∪ {−∞} and 𝑔 : 𝐴 →
Γ ∪ {∞} be linear functions with

𝐶 = {(𝑎, 𝑏) ∈ 𝐴× Γ | 𝑏 ∈ (𝑓(𝑎), 𝑔(𝑎))≡𝑑𝑟
}

for some 𝑑 ∈ N and 𝑟 ∈ {0, . . . , 𝑑 − 1}. As 𝐶 is an (𝑖1, . . . , 𝑖𝑛−1, 1)-cell,
𝑔 − 𝑓 then cannot be bounded by an integer on 𝐴. By Proposition 3.3.3,
there is an (𝑖1, . . . , 𝑖𝑛−1)-cell 𝐴′ ⊂ 𝐴 for which (𝑔 − 𝑓)(𝐴′) > Z. Fix some
𝑎 = (𝑎1, . . . , 𝑎𝑛−1) ∈ 𝐴′. Note that the set ({𝑎} × Γ) ∩ 𝐶 is infinite and
consider the polynomial 𝑄𝑎 ∈ 𝑅[𝑇𝑛] given by

𝑄𝑎(𝑇𝑛) = 𝑃 (𝑎1, . . . , 𝑎𝑛−1, 𝑇𝑛).

Then we have 𝑄𝑎(𝑏) = 0 for all infinitely many 𝑏 with (𝑎, 𝑏) ∈ 𝐶. Hence
𝑄𝑎 has infinitely many zeros, so it must be the zero polynomial. By the
definition of 𝑄𝑎 and since the argument above works for all 𝑎 ∈ 𝐴′, we thus
have

𝑃 (𝑎1, . . . , 𝑎𝑛−1, 𝑏) = 𝑄𝑎(𝑏) = 0

for all 𝑎 ∈ 𝐴′ and all 𝑏 ∈ Γ. Now fix 𝑏 ∈ Γ and consider the polynomial
𝑄𝑏 ∈ 𝑅[𝑇1, . . . , 𝑇𝑛−1] given by

𝑄𝑏(𝑇1, . . . , 𝑇𝑛−1) = 𝑃 (𝑇1, . . . , 𝑇𝑛−1, 𝑏).
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Then 𝑄𝑏(𝐴′) = 0, so the induction hypothesis implies that 𝑄𝑏(aff(𝐴′)) = 0.
Since 𝐴 and 𝐴′ are of the same shape, we have aff(𝐴) = aff(𝐴′), hence
𝑄𝑏(aff(𝐴)) = 0. By the definition of 𝑄𝑏 and since the argument above
works for all 𝑏 ∈ Γ, we thus have

𝑃 (𝑎, 𝑏) = 𝑄𝑏(𝑎) = 0

for all (𝑎, 𝑏) ∈ aff(𝐴) × Γ. As aff(𝐴) × Γ = aff(𝐶) by Lemma 3.2.13, this
finishes the proof.

Corollary 3.3.7. If 𝐶 ′ ⊂ 𝐶 ⊂ Γ𝑛 are two cells of the same shape and 𝑃 ∈
𝑅[𝑇1, . . . , 𝑇𝑛] is a polynomial with 𝑃 (𝐶 ′) = 0, where 𝑅 is some integral domain
whose additive group contains Γ as a subgroup, then 𝑃 (𝐶) = 0.

Proof. By Lemma 3.3.6 we have 𝑃 (aff(𝐶 ′)) = 0, and by Corollary 3.2.14 we have
aff(𝐶 ′) = aff(𝐶) ⊃ 𝐶, implying the claim.

Remark 3.3.8. Note that the assumption Γ ⊂ 𝑅 in Lemma 3.3.6 is only used twice
in the proof, namely to ensure that 𝐹 and 𝑄 (in Case 1) and 𝑄𝑎 and 𝑄𝑏 (in Case
2) are polynomials over Frac(𝑅) and 𝑅, respectively.

It is straightforward to adapt the proof at these places to work under the weaker
assumption that there is, for each 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ Γ𝑛, an integral domain
𝑅(𝑎) ⊃ 𝑅 whose additive group contains the subgroup of Γ generated by the set
{𝑎1, . . . , 𝑎𝑛}.

This is the situation in which we will apply Corollary 3.3.7 later on.
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4 Integrable functions on RV*
*

We now have all the necessary tools to start developing an integration theory for
(definable and integrable) functions from subsets of RV*

* to the (multiplicative) value
group pΓ. This is a major building block and first step towards developing integration
of functions on K, as will be done in Chapter 5.

To analyze such functions, we introduce a specific Grothendieck ring 𝐾int(𝑍), see
Definition 4.1.2. The integral of a (𝑍-definable and integrable) function on RV*

* will
then be defined as its class in a certain quotient of 𝐾int(𝑍).

Developing a good understanding of this Grothendieck ring (and some variants as men-
tioned below) is therefore a crucial ingredient of working with the integral. Intuitively
speaking, the major challenge is handling infinte sums, corresponding to functions with
infinite image in pΓ. This becomes possible by describing the ring of interest in various
ways, allowing us to switch descriptions to focus on certain aspects when suitable.

When later generalizing the aforementioned construction of the integral to functions
defined on K𝑛 for 𝑛 ≥ 2, we will also need a family version of 𝐾int(𝑍), dubbed
𝐾int,𝑆(𝑍). Since many results about 𝐾int(𝑍) then just become special cases of the
corresponding results about𝐾int,𝑆(𝑍), we mostly work with families of integrable func-
tions right away. Nevertheless, we start with some basic definitions and results in the
non-family setting in Section 4.1 to facilitate a first understanding of the concepts.

In Section 4.2 we will build on [CH18, Proposition 5.2.1], saying that the hypercardi-
nality of a definable family of subsets of Γ* is piecewise polynomial in the parameters.
This yields a description of integrals by (piecewise) polynomial functions, which aids
in getting a deeper understanding of the Grothendieck ring of integrable functions on
RV*

*. In particular, we obtain Corollary 4.2.12, allowing rather explicit calculation of
integrals of functions with finite image.

The strength of this last-mentioned observation is highlighted by Section 4.3, in which
we show that (and how) any integral (of a definable and integrable function on RV*

*)
can be expressed by solely considering integrals of functions with finite image.

Section 4.4 connects families of integrable functions back to 𝐾int(𝑍). Intuitively, the
result Lemma 4.4.12 (and similar ones) allows us to think about the integrals of (some)
families of integrable functions as infinite sums of integrals. More precisely, given two
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families (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 of integrable functions satisfying
∫︀
mot

f𝑠 =
∫︀
mot

g𝑠 for all
𝑠 ∈ 𝑆, the classes of ∑︁

𝑠∈𝑆
[f𝑠] and

∑︁
𝑠∈𝑆

[g𝑠]

in the quotient 𝑅mot(𝑍) = 𝐾int(𝑍)/(p − 𝑝) are equal, whenever it makes sense to
consider these sums (i.e., if they correspond to an integrable function on RV*

*; for a
precise statement of this condition, see Notation 4.4.6 and Remark 4.4.7).

Throughout the chapter, 𝑍 will always denote an elementary substructure of Γ (in
the language of ordered abelian groups), as before. However, unlike in the previous
Chapter 3, we will sometimes need to enlarge the parameter set 𝑍 a bit. We thus
do not fix one particular such elementary substructure now. Instead let us fix the
convention that each Definition, Remark, Theorem, etc. (invisibly) starts with the
sentence “For all 𝑍 ≼ Γ, we have the following.”.

4.1 Integrable functions and families thereof

Recall that we write RV𝑛
𝑚 as a shorthand for the product

∏︀ℓ
𝑖=1 RV

𝑛𝑖
𝑚𝑖

whenever𝑚,𝑛 ∈
Nℓ>0 for some ℓ ∈ N.

In this section, we want to define
∫︀
mot

f for (𝑀 -definable) integrable functions f :
𝑈 → pΓ with 𝑈 ⊂ RV*

*. The very first step is to say what “integrable” should mean,
and this is a good moment to explain how (the two rightmost terms of) the guiding
equation (1.1) motivates several definitions. With those two terms read from right to
left, we have ∫︁

mot

f
want!
====

∑︁
𝛼∈im(f)

𝛼 · ///≡≡f−1(𝛼). (4.1)

Even in the standard model Q𝑝, the sum on the right-hand side does not always exist
as an element of the reals, but it might diverge to infinity. While pΓ contains infinite
elements in an elementary extension, we still only want to integrate those (definable)
functions f, for which the sum

∑︀
𝛼∈im(f) 𝛼 · ///≡≡f−1(𝛼) is not “uncontrollably infinite”.

In Q𝑝, it converges if and only if im(f) is bounded from above and the fibers of f are
finite. This motivates the following definition in our more general case K ≽ Q𝑝.

Definition 4.1.1. A 𝑍-definable function f : 𝑈 → pΓ with 𝑈 ⊂ RV*
* is called

integrable, if

� im(f) ⊂ pΓ is bounded from abovea, and

� for each 𝛼 ∈ pΓ, the fiber f−1(𝛼) ⊂ 𝑈 is bounded.

48



4.1 Integrable functions and families thereof

(Note that, by Lemma 2.2.6, f is 𝑀 -definable for some 𝑀 ⊂ K ∪ Γ if and only
if it is 𝑍-definable for 𝑍 = dcl(𝑀) ∩ Γ ≼ Γ, hence we can restrict to parameters
from the value group.)

aEquivalently, val(im(f)) ⊂ Γ is bounded from below, i.e., contained in some interval of the

form [𝑎,∞).

We will define the motivic integral of such an integrable function on RV*
* as its residue

class in (the quotient of) a Grothendieck ring. In other words, we specify some few
(more precisely: three) conditions any integral should satisfy, and then consider the
quotient of the free abelian group of integrable functions by those relations. We start
with the two essential relations guaranteeing additivity and invariance under bijections
between the fibers.

Definition 4.1.2. The Grothendieck ring of 𝑍-definable integrable functions on
RV*

*, denoted by 𝐾int(𝑍), is defined as follows:

The additive group of 𝐾int(𝑍) is the free abelian group generated by symbols
[f]FrAb for each integrable function f : 𝑈 → pΓ, where 𝑈 ⊂ RV*

*, modulo the
relations

(1) [f ∪ g]FrAb = [f]FrAb + [g]FrAb if dom(f) and dom(g) are disjoint subsets of
the same ambient set RV𝑛

𝑚, and

(2) [f]FrAb = [g]FrAb if there exists a 𝑍-definable bijection ℎ : dom(f)→ dom(g)
with g ∘ ℎ = f.

We will write [f] for the class of f in 𝐾int(𝑍).

The multiplication on 𝐾int(𝑍) is given by [f] · [g] := [f ⋆ g], where f ⋆ g : dom(f)×
dom(g)→ pΓ sends (𝑢,𝑣) to f(𝑢) · g(𝑣).

Remark 4.1.3. Note that the condition “g ∘ ℎ = f” in (2) is equivalent to the
demand that ℎ restricts to bijections between the fibers f−1(𝛼) and g−1(𝛼) for
each 𝛼 ∈ pΓ.

Note that the sum of two generators of 𝐾int(𝑍) is a generator itself: Indeed, given
two integrable functions f : 𝑈 → pΓ and g : 𝑉 → pΓ, let 𝑈 ′ := {(0,𝑢,0) | 𝑢 ∈ 𝑈}
and 𝑉 ′ := {(1,0,𝑣) | 𝑣 ∈ 𝑉 }, where the two occurrences of “0” may mean different
things, such that 𝑈 ′ and 𝑉 ′ are subsets of the same ambient set RV*

*. The integrable
functions f′ : 𝑈 ′ → pΓ and g′ : 𝑉 ′ → pΓ induced by f and g in the obvious way then
satisfy [f] = [f′] as well as [g] = [g′], and their sum [f′] + [g′] = [f′ ∪ g′] is a generator as
claimed.

Moreover, any element of 𝐾int(𝑍) can, by definition, be written as the difference of
(two) sums of generators. Hence, the above observation yields the following note.
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Remark 4.1.4. Any element of 𝐾int(𝑍) can be written as the difference of two
generators, i.e., in the form [f]− [g] for appropriate choices of integrable functions
f and g on RV*

*.

We have yet to justify calling 𝐾int(𝑍) a Grothendieck ring :

Proposition 4.1.5. With the multiplication defined above, 𝐾int(𝑍) is a ring with
unit [const{0}(1)].

Proof. Consider the free abelian group 𝐹 generated by symbols [f]FrAb for each inte-
grable function f on RV*

*. Let 𝐹∼= denote the quotient of 𝐹 by the relation (2) and
write [f]∼= for the class of f in 𝐹∼=.

Now [f]∼= · [g]∼= := [f ⋆ g]∼= is a well-defined multiplication1 on 𝐹∼=: If [f1]∼= = [f2]∼=
and [g1]∼= = [g2]∼=, and ℎf and ℎg are 𝑍-definable bijections with f2 ∘ ℎf = f1 and
g2 ∘ ℎg = g1, then the map given by

ℎ : dom(f1)× dom(g1)→ dom(f2)× dom(g2)

(𝑢,𝑣) ↦→ (ℎf(𝑢), ℎg(𝑣))

is a 𝑍-definable bijection satisfying (f2 ⋆ g2) ∘ ℎ = f1 ⋆ g1.

Note that this multiplication gives 𝐹∼= the structure of a ring, with unit [const{0}(1)]∼=.

Thus it is left to show that the subgroup 𝐴 of 𝐹∼= generated by the relation (1) is an
ideal in the ring 𝐹∼=. To this end, it suffices to note that

[f]∼= · ([g]∼= + [h]∼= − [g ∪ h]∼=)

= [f ⋆ g]∼= + [f ⋆ h]∼= − [f ⋆ (g ∪ h)]∼=)

= [f ⋆ g]∼= + [f ⋆ h]∼= − [(f ⋆ g) ∪ (f ⋆ h)]∼=)

lies in 𝐴 for all integrable functions f, g and h, where the domains of g and h are
disjoint subsets of the same ambient set RV*

*.

We can now define
∫︀
mot

f for 𝑍-definable integrable functions f : 𝑈 → pΓ with 𝑈 ⊂ RV*
*.

Besides the relations in the Grothendieck ring 𝐾int(𝑍), recall that we also want it
to satisfy the equation (4.1) on p. 48. In the special case of the constant function
f = const{0}(𝛼) on the one-point set {0} with value 𝛼, this equation simplifies to∫︁

mot

const{0}(𝛼)
want!
==== 𝛼.

1More formally: the multiplication induced by the above, extending to sums in the natural way

ensuring distributivity.
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Looking at two different values of 𝛼, e.g., 𝛼 = 1 and 𝛼 = p, this results in the relation

𝑝 ·
∫︁
mot

const{0}(1)
want!
==== 𝑝 · 1 want!

==== p
want!
====

∫︁
mot

const{0}(p),

motivating the following definition.

Definition 4.1.6. Let f be an integrable function on RV*
*. The integral

∫︀
mot

f of f
is then defined as the residue class of [f] in the quotient 𝑅mot(𝑍) := 𝐾int(𝑍)/(p−
𝑝), where (p− 𝑝) is the ideal generated by the element

p− 𝑝 := [const{0}(p)]− 𝑝 · [const{0}(1)]⏟  ⏞  
= 1 ∈𝐾int(𝑍)

.

Moreover, (p− 𝑝)Q denotes the ideal generated by p− 𝑝 in 𝐾int(𝑍)⊗Q.

Remark 4.1.7. Note that 𝑝 · [const{0}(1)] = [const𝑈 (1)] for any 𝑍-definable set
𝑈 ⊂ RV𝑛

𝑚 which has exactly 𝑝 elements. Indeed, we then have 𝑈 ⊂ dcl(val(𝑈)) ⊂
dcl(𝑍) by Remark 2.2.2 and Remark 2.2.4 and

𝑝 = 1 + · · ·+ 1 = [const{0}(1)] + · · ·+ [const{0}(1)] = [const𝑈 (1)].

in 𝐾int(𝑍).

Remark 4.1.8. Note that the map from p𝑍 to 𝐾int(𝑍) given by 𝛼 ↦→ [const{0}(𝛼)]
is injective, as Corollary 4.2.10 will show, and it also respects multiplication, since

[const{0}(𝛼)] · [const{0}(𝛽)] = [const{0}(𝛼 · 𝛽)]

We will thus just write 𝛼 ∈ 𝐾int(𝑍) for [const{0}(𝛼)]. Using this notation and
observing that

[const𝑈 (1)] = #𝑈 = ///≡≡𝑈, for any finite 𝑍-definable 𝑈,

we see that
∫︀
mot

indeed satisfies the equation (4.1) on p. 48 whenever both im(f)
as well as all fibers of f are finite: Given a 𝑍-definable integrable function f on
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RV*
* with finite image and finite fibers, we have∫︁

mot

f = [f] + (p− 𝑝)

=
∑︁

𝛼∈im(f)

[constf−1(𝛼)(𝛼)] + (p− 𝑝)

=
∑︁

𝛼∈im(f)

[const{0}(𝛼)] · [constf−1(𝛼)(1)] + (p− 𝑝)

=
∑︁

𝛼∈im(f)

𝛼 · ///≡≡f−1(𝛼) + (p− 𝑝).

(Note that im(f) is a finite 𝑍-definable set, so we have im(f) ⊂ p𝑍 , and hence
f−1(𝛼) ⊂ dcl(𝑍) for 𝛼 ∈ im(f), by Remark 2.2.2 and Remark 2.2.4.)

Corollary 4.1.9. Let f : 𝑈 → pΓ be a 𝑍-definable integrable function and let 𝐹
be a finite 𝑍-definable subset of RV*

* for which #𝐹 is a power of 𝑝. Consider the
projection pr𝑈 : 𝐹 × 𝑈 → 𝑈 . Then∫︁

mot

f ∘ pr𝑈 = #𝐹 ·
∫︁
mot

f =

∫︁
mot

#𝐹 · f,

where #𝐹 · f is the 𝑍-definable integrable function from 𝑈 to pΓ sending 𝑢 ∈ 𝑈
to #𝐹 · f(𝑢) ∈ pΓ, i.e., [#𝐹 · f] = [const{0}(#𝐹 )] · [f].

Proof. Note that we have

[f ∘ pr𝑈 ] =
∑︁
𝑓∈𝐹

[f ∘ pr𝑈↾({𝑓} × 𝑈)]⏟  ⏞  
= [f]

= #𝐹 · [f],

proving the first equality. By Remark 4.1.8 applied to const{0}(#𝐹 ), we moreover get∫︁
mot

f ∘ pr𝑈 = #𝐹 ·
∫︁
mot

f

=

∫︁
mot

const{0}(#𝐹 ) ·
∫︁
mot

f

=

∫︁
mot

(const{0}(#𝐹 ) ⋆ f)

=

∫︁
mot

#𝐹 · f

as claimed.

52



4.1 Integrable functions and families thereof

In the remainder of this section, we will work with the following family version of
𝐾int(𝑍). Results about the non-family version then just follow as special cases, and
we will state some important results explicitly as corollaries.

Definition 4.1.10. Let 𝑆 ⊂ RV*
* be 𝑍-definable. The Grothendieck ring of

𝑆-families of integrable functions on RV*
*, denoted by 𝐾int,𝑆(𝑍), is defined as

follows:

The additive group of 𝐾int,𝑆(𝑍) is the free abelian group generated by symbols
[(f𝑠)𝑠∈𝑆 ]FrAb for each 𝑍-definable family of integrable functions on RV*

*, modulo
the relations

(1) [(f𝑠 ∪ g𝑠)𝑠∈𝑆 ]FrAb = [(f𝑠)𝑠∈𝑆 ]FrAb + [(g𝑠)𝑠∈𝑆 ]FrAb if, for each 𝑠 ∈ 𝑆, the
domains of the functions f𝑠 and g𝑠 are disjoint subsets of the same ambient
set RV*

*, and

(2) [(f𝑠)𝑠∈𝑆 ]FrAb = [(g𝑠)𝑠∈𝑆 ]FrAb if there is a 𝑍-definable family of bijections
ℎ𝑠 : dom(f𝑠)→ dom(g𝑠) with g𝑠 ∘ ℎ𝑠 = f𝑠 for all 𝑠 ∈ 𝑆.

We will write [(f𝑠)𝑠∈𝑆 ] for the class of (f𝑠)𝑠∈𝑆 in 𝐾int,𝑆(𝑍).

The multiplication on 𝐾int,𝑆(𝑍) is given by

[(f𝑠)𝑠∈𝑆 ] · [(g𝑠)𝑠∈𝑆 ] := [(f𝑠 ⋆ g𝑠)𝑠∈𝑆 ],

where ⋆ is defined just as in Definition 4.1.2. (Note that (f𝑠 ⋆ g𝑠)𝑠∈𝑆 is a 𝑍-
definable family of integrable functions on RV*

* whenever (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆
are.)

Just as in the non-family version, the sum of two generators of 𝐾int,𝑆(𝑍) is a generator
itself, resulting in the following useful remark:

Remark 4.1.11. Any element of 𝐾int,𝑆(𝑍) can be written as the difference of
two generators, i.e., in the form [(f𝑠)𝑠∈𝑆 ] − [(g𝑠)𝑠∈𝑆 ] for appropriate choices of
𝑍-definable families of integrable functions (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 on RV*

*.

Proposition 4.1.12. With the multiplication defined above, 𝐾int,𝑆(𝑍) is a ring
with unit [(const{0}(1))𝑠∈𝑆 ].

Proof. The proof of Proposition 4.1.5 applies to this family version as well, mutatis
mutandis.
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Remark 4.1.13. For any fixed 𝑠0 ∈ 𝑆, we have a natural specialization map

spz𝑠0
: 𝐾int,𝑆(𝑍)→ 𝐾int(𝑍(𝑠0))

[(f𝑠)𝑠∈𝑆 ] ↦→ [f𝑠0
].

Note that spz𝑠0
is a homomorphism of rings just by the definitions of 𝐾int,𝑆(𝑍)

and 𝐾int(𝑍(𝑠0)).

We also need a family version of the ideal (p−𝑝) and the quotient 𝑅mot(𝑍) of 𝐾int(𝑍)
by that ideal, similar to Definition 4.1.6

Notation 4.1.14. We write (p− 𝑝)𝑆 ⊂ 𝐾int,𝑆(𝑍) for the ideal generated by

[(const{0}(p))𝑠∈𝑆 ]− 𝑝 · [(const{0}(1))𝑠∈𝑆 ]⏟  ⏞  
= 1 ∈𝐾int,𝑆(𝑍)

∈ 𝐾int,𝑆(𝑍),

and we write 𝑅mot,𝑆(𝑍) for the quotient 𝐾int,𝑆(𝑍)/(p− 𝑝)𝑆 . Moreover, (p− 𝑝)Q𝑆
denotes the ideal generated by (p− 𝑝)Q𝑆 in 𝐾int,𝑆(𝑍)⊗Q.

4.2 Understanding 𝐾int,𝑆(𝑍) via polynomials

We now want to get some better understanding of 𝑍-definable families of integrable
functions on RV*

* by analyzing the Grothendieck ring 𝐾int,𝑆(𝑍) and its quotient
𝑅mot,𝑆(𝑍) = 𝐾int,𝑆(𝑍)/(p − 𝑝)𝑆 . Recall that, by Corollary 2.3.6, the hypercardi-
nalities of subsets of RV*

* in a 𝑍-definable family over the value group are piecewise
polynomial in the parameter. This will help us to describe the elements of 𝐾int,𝑆(𝑍)
in terms of polynomials, see Proposition 4.2.4.

Instead of𝐾int,𝑆(𝑍), we mostly work with the ring𝐾int,𝑆(𝑍)⊗Q. The reason for doing
that will become more apparent in Section 4.3, where we show that every element of
𝑅mot,𝑆(𝑍) can be written as a rational multiple of the difference of the integrals of
two integrable functions with finite images. While Q embeds into 𝑅mot,𝑆(𝑍) (this
is Lemma 4.3.2), certain fractions can only be written as integrals when allowing
integrable functions with infinite images.

Moreover, we do not lose any information when tensoring with Q, since 𝐾int,𝑆(𝑍)

embeds into𝐾int,𝑆(𝑍)⊗Q and (𝐾int,𝑆(𝑍)⊗Q)/(p−𝑝)Q𝑆 is isomorphic to𝐾int,𝑆(𝑍)/(p−
𝑝)𝑆 = 𝑅mot,𝑆(𝑍), see Corollary 4.2.8 and Proposition 4.3.3.

Definition 4.2.1. Let 𝑆 ⊂ RV*
* be 𝑍-definable. Consider the abelian group

Maps(𝑆 × Γ,𝐾Γ
𝑏 (Γ) ⊗ Q) of maps from 𝑆 × Γ to 𝐾Γ

𝑏 (Γ) ⊗ Q with pointwise
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addition, i.e., (𝑓 + 𝑔)(𝑠, 𝑎) = 𝑓(𝑠, 𝑎) + 𝑔(𝑠, 𝑎).

We will write PQ
𝑆(𝑍) for the subgroup generated by the maps

𝑓𝑋,𝑃 : 𝑆 × Γ→ 𝐾Γ
𝑏 (Γ)⊗Q

(𝑠, 𝑎) ↦→

{︃
𝑃 (val(𝑠1), . . . , val(𝑠𝑛), 𝑎) if (𝑠, 𝑎) ∈ 𝑋
0 otherwise

where 𝑃 ∈ (𝐾Γ
𝑏 (𝑍)⊗Q)[𝑇1, . . . , 𝑇𝑛+1] is a polynomial (and where 𝑛 is the number

of coordinates of 𝑆) and 𝑋 ⊂ 𝑆 × Γ is a 𝑍-definable subset whose fibers 𝑋𝑠 =
{𝑎 ∈ Γ | (𝑠, 𝑎) ∈ 𝑋} are bounded from below for all 𝑠 ∈ 𝑆.

(Here, writing 𝑎 ∈ 𝐾Γ
𝑏 (𝑍(𝑎)) ⊂ 𝐾Γ

𝑏 (Γ) for 𝑎 ∈ Γ is an abuse of notation using
the natural injection Γ →˓ 𝐾Γ

𝑏 (Γ) given by 𝑎 ↦→ ///≡≡ [0, 𝑎) for non-negative 𝑎 and
𝑎 ↦→ −///≡≡ [0,−𝑎) for negative 𝑎, see also [CH18, Lemma 2.2.6].)

Remark 4.2.2. Note that the group PQ
𝑆(𝑍) as defined above is contained in the

subgroup of Maps(𝑆 × Γ,𝐾Γ
𝑏 (Γ) ⊗ Q) consisting of those maps 𝑓 : 𝑆 × Γ →

𝐾Γ
𝑏 (Γ)⊗Q for which we have

𝑓(𝑠, 𝑎) ∈ 𝐾Γ
𝑏 (𝑍(𝑠, 𝑎))⊗Q for all (𝑠, 𝑎) ∈ 𝑆 × Γ,

where 𝑍(𝑠, 𝑎) = acl(𝑍 ∪ {𝑠} ∪ {𝑎}) ∩ Γ.

Note that there is a natural ring structure on PQ
𝑆(𝑍), given by the multiplication

induced by 𝑓𝑋,𝑃 · 𝑓𝑌,𝑄 := 𝑓𝑋∩𝑌,𝑃 ·𝑄. However, any element is a zero divisor with
respect to this multiplication, since 𝑓𝑋,𝑃 · 𝑓𝑌,𝑄 = 0 whenever 𝑋 ∩ 𝑌 = ∅. As we want
PQ
𝑆(𝑍) to be isomorphic to 𝐾int,𝑆(𝑍)⊗Q as rings, and the latter is a domain, we need

another multiplication on the former. We will not give an explicit definition, but only
define this multiplication implicitly using the group isomorphism between PQ

𝑆(𝑍) and
𝐾int,𝑆(𝑍)⊗Q from Proposition 4.2.4, so that this isomorphism automatically becomes
an isomorphism of rings.

Intuitively (and in actual fact in some special cases, see Remark 4.2.6), the multipli-
cation on PQ

𝑆(𝑍) is given by a convolution in 𝑎 ∈ Γ. Supporting this intuition, it can
be helpful to think of an element 𝑓 ∈ PQ

𝑆(𝑍) as a map sending 𝑠 ∈ 𝑆 to the formal
sum

∑︀
𝑎∈Γ 𝑝

−𝑎 · 𝑓(𝑠, 𝑎). It is important here to note that these sums are formal, even
𝑝−(−1) ·1 is not equal to 𝑝0 ·𝑝. The quotient of PQ

𝑆(𝑍) by the relation identifying these
two formal summands is isomorphic to 𝑅mot,𝑆(𝑍), as Proposition 4.2.4 shows. In
other words, the only thing separating the map (f𝑠)𝑠∈𝑆 ↦→ [(f𝑠)𝑠∈𝑆 ] from the uniform
integral is the (uniform) identification of the two different presentations of 𝑝 described
above.

The subgroup (and a posteriori, subring) P𝑆(𝑍) of P
Q
𝑆(𝑍) as defined below is isomor-

phic to 𝐾int,𝑆(𝑍) as a subgroup (subring) of 𝐾int,𝑆(𝑍)⊗Q, see Proposition 4.2.4.
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Definition and Lemma 4.2.3. Let 𝑆 ⊂ RV*
* be 𝑍-definable. We define the

subgroup

P𝑆(𝑍) := PQ
𝑆(𝑍) ∩Maps(𝑆 × Γ,𝐾Γ

𝑏 (Γ))

of PQ
𝑆(𝑍), using Lemma 2.3.2 to construe Maps(𝑆 × Γ,𝐾Γ

𝑏 (Γ)) as a subgroup of
Maps(𝑆 × Γ,𝐾Γ

𝑏 (Γ)⊗Q).

In other words, P𝑆(𝑍) is the subgroup of Maps(𝑆×Γ,𝐾Γ
𝑏 (Γ)) generated by those

of the maps 𝑓𝑋,𝑃 ∈ PQ
𝑆(𝑍) as in Definition 4.2.1 whose image is contained in

𝐾Γ
𝑏 (Γ) ⊂ 𝐾Γ

𝑏 (Γ)⊗Q.

Proof. We have to prove that both definitions agree. Towards this end, let 𝑀1 :=
PQ
𝑆(𝑍) ∩ Maps(𝑆 × Γ,𝐾Γ

𝑏 (Γ)) and let 𝑀2 be the subgroup of Maps(𝑆 × Γ,𝐾Γ
𝑏 (Γ))

generated by those of the 𝑓𝑋,𝑃 ∈ PQ
𝑆(𝑍) whose image is contained in 𝐾Γ

𝑏 (𝑍). First
note that any such 𝑓𝑋,𝑃 is an element of PQ

𝑆(𝑍)∩Maps(𝑆×Γ,𝐾Γ
𝑏 (Γ)), so the inclusion

𝑀2 ⊂𝑀1 is clear. For the other direction, let 𝑓 ∈𝑀1 and write it as a (finite) sum of
generators 𝑓 =

∑︀
𝑖 𝑓𝑋𝑖,𝑃𝑖

. Since the sum of two polynomials is a polynomial again, we
can assume that the 𝑋𝑖 are pairwise disjoint. As 𝑓 ∈ Maps(𝑆 × Γ,𝐾Γ

𝑏 (Γ)), the image
of each of the 𝑓𝑋𝑖,𝑃𝑖 must then be contained in 𝐾Γ

𝑏 (𝑍), so each of them is an element
of 𝑀1, and hence so is 𝑓 .

Note that, in Definition 4.2.3, we still allow coefficients in 𝐾Γ
𝑏 (𝑍)⊗Q for the polyno-

mial, even though the image of a map in P𝑆(𝑍) has to be contained in 𝐾Γ
𝑏 (𝑍). The

reason for defining P𝑆(𝑍) in exactly this way becomes more apparent with the fol-
lowing Proposition 4.2.4, which yields an isomorphism between 𝐾int,𝑆(𝑍) and P𝑆(𝑍),
requiring that maps like 𝑓𝑆×[0,∞)2,

1
2𝑇𝑛+1

lie in P𝑆(𝑍).2

Moreover, note that Maps(𝑆 × Γ,𝐾Γ
𝑏 (𝑍) ⊗ Q) is torsion-free since 𝐾Γ

𝑏 (𝑍) ⊗ Q is (by
Lemma 2.3.2), hence so is its subgroup P𝑆(𝑍). Also, for each 𝑓 ∈ PQ

𝑆(𝑍), there clearly
is an 𝑛 ∈ N>0 such that 𝑛 · 𝑓 ∈ P𝑆(𝑍). Namely, we can chose 𝑛 to be any common
multiple of all denominators of the coefficients of all polynomials that appear when
writing 𝑓 as a sum of generators. Thus, Lemma 2.1.4 applied to 𝐺 = PQ

𝑆(𝑍) and
𝐻 = P𝑆(𝑍) yields P𝑆(𝑍)⊗Q ∼= PQ

𝑆(𝑍) via the canonical isomorphism 𝑓⊗𝑞 ↦→ 𝑞 ·𝑓 .

Proposition 4.2.4. Let 𝑆 ⊂ RV*
* be 𝑍-definable. Then there is an isomorphism

of groups 𝜒𝑆 : 𝐾int,𝑆(𝑍)→ P𝑆(𝑍) induced by

[(f𝑠)𝑠∈𝑆 ] ↦→
(︀
(𝑠, 𝑎) ↦→ ///≡≡f−1

𝑠 (p−𝑎)
)︀

2Indeed, 𝜒𝑆([(f𝑠)𝑠∈𝑆 ]) = 𝑓𝑆×[0,∞)2,
1
2
𝑇𝑛+1

for the family (f𝑠)𝑠∈𝑆 of integrable functions given by

f𝑠 : {(𝑎, 𝑏) | 0 ≤ 𝑎 < 𝑏} → pΓ, (𝑎, 𝑏) ↦→ p−2𝑏 for all 𝑠 ∈ 𝑆.
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for each 𝑍-definable family of integrable functions (f𝑠)𝑠∈𝑆 on RV*
*.

In particular, since Q is a flat Z-module, 𝜒𝑆 induces an isomorphism of groups
𝜒Q
𝑆 : 𝐾int,𝑆(𝑍)⊗Q→ PQ

𝑆(𝑍).

Once we have proven the above, the isomorphism 𝜒𝑆 transfers the multiplication on
𝐾int,𝑆(𝑍) to P𝑆(𝑍), hence inducing a ring structure on the latter. Similarly, 𝜒Q

𝑆

induces a ring structure on PQ
𝑆(𝑍) so that, a posteriori, all of the group isomorphisms

𝜒𝑆 , 𝜒
Q
𝑆 , and P𝑆(𝑍)⊗Q ∼= PQ

𝑆(𝑍), 𝑓 ⊗ 𝑞 ↦→ 𝑞 · 𝑓 become in fact ring isomorphisms. Let
us make note of the latter for later reference.

Remark 4.2.5. The canonical ring homomorphism

P𝑆(𝑍)⊗Q→ PQ
𝑆(𝑍)

𝑓 ⊗ 𝑞 ↦→ 𝑞 · 𝑓

is an isomorphism of rings.

Proof of Proposition 4.2.4. Let 𝐹𝑆 denote the free abelian group generated by the
symbols [(f𝑠)𝑠∈𝑆 ]FrAb as in Definition 4.1.10. The mapping rule as given in the state-
ment of the lemma clearly induces a homomorphism 𝜓 from 𝐹𝑆 to the group of maps
Maps(𝑆 × Γ,𝐾Γ

𝑏 (Γ)).

We will now first show that the image of 𝜓 is contained in P𝑆(𝑍). Given a 𝑍-definable
family (f𝑠)𝑠∈𝑆 of integrable functions on RV*

*, let 𝑓 := 𝜓([(f𝑠)𝑠∈𝑆 ]FrAb) be the image
under 𝜓 of its class in 𝐹𝑆 , i.e.,

𝑓(𝑠, 𝑎) := ///≡≡f−1
𝑠 (p−𝑎)

for all 𝑠 ∈ 𝑆 and all 𝑎 ∈ Γ. Note that there is a finite partition of 𝑆 into 𝑍-definable
sets 𝑆𝑖 for 𝑖 ∈ 𝐼 such that val is injective on each 𝑆𝑖. (E.g., we can let 𝑆𝑖 be the set of
those elements of 𝑆 which have a specific combination of higher angular components
specified by 𝑖.) Since 𝑓 =

∑︀
𝑖∈𝐼 𝑓↾(𝑆𝑖 × Γ), it is thus enough to consider the case that

val is injective on all of 𝑆. Consider the 𝑍-definable family of subsets of RV*
* given

by 𝑈 (val(𝑠),𝑎) := f−1
𝑠 (p−𝑎). Note that the hypercardinality of 𝑈 (val(𝑠),𝑎) is piecewise

polynomial in (val(𝑠), 𝑎) by Corollary 2.3.6, so im(𝜓) is indeed contained in P𝑆(𝑍).

Moreover, 𝜓 respects the relations (1) and (2) from Definition 4.1.10, so the subgroup
of 𝐹𝑆 generated by these two relations is contained in the kernel of 𝜓. Hence 𝜓 induces
a group homomorphism 𝜒𝑆 : 𝐾int,𝑆(𝑍)→ P𝑆(𝑍).

It is left to show that 𝜒𝑆 is bijective. Injectivity follows from [CH18, Theorem 5.2.2]:
Suppose that [(f𝑠)𝑠∈𝑆 ]− [(g𝑠)𝑠∈𝑆 ] lies in the kernel of 𝜒𝑆 . (Recall that any element of
𝐾int,𝑆(𝑍) can be written as the difference of two generators, cf. Remark 4.1.11.) Then
we have ///≡≡f−1

𝑠 (𝛼) = ///≡≡g−1
𝑠 (𝛼) for all 𝑠 ∈ 𝑆 and all 𝛼 ∈ pΓ. We can, just as above,

reduce to the case that val is injective on 𝑆 so that the 𝑍-definable families f−1
𝑠 (𝛼) and
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g−1
𝑠 (𝛼) are parameterized by a 𝑍-definable subset of (some power of) Γ. Hence, the
implication (4) ⇒ (5) of [CH18, Theorem 5.2.2], together with [CH18, Remark 2.3.2],
yields a 𝑍-definable family of bijections ℎ𝑠,𝛼 : f−1

𝑠 (𝛼) → g−1
𝑠 (𝛼). (Note that [CH18,

Theorem 5.2.2] is formulated under the assumption that Γ is |𝑍|+-saturated. However,
applying it in a sufficiently saturated model Γ⋆ ≽ Γ shows that the cited theorem still
holds if Γ is not saturated, as “being bounded” is a first-order property.)

Now, setting ℎ𝑠 :=
⋃︀
𝛼∈im(f𝑠)

ℎ𝑠,𝛼 gives us a 𝑍-definable family of bijections as in
Definition 4.1.10 (2), witnessing [(f𝑠)𝑠∈𝑆 ] = [(g𝑠)𝑠∈𝑆 ].

To show that 𝜒𝑆 is also surjective, let 𝑓𝑋,𝑃 be a generator of P𝑆(𝑍), i.e., let 𝑋 ⊂
𝑆 × Γ be 𝑍-definable with fibers over 𝑆 bounded from below, and 𝑃 ∈ (𝐾Γ

𝑏 (𝑍) ⊗
Q)[𝑇1, . . . , 𝑇𝑛+1], and consider

𝑓𝑋,𝑃 : 𝑆 × Γ→ 𝐾Γ
𝑏 (Γ)

(𝑠, 𝑎) ↦→

{︃
𝑃 (val(𝑠1), . . . , val(𝑠𝑛), 𝑎) if (𝑠, 𝑎) ∈ 𝑋
0 otherwise

Since we already proved that 𝜒𝑆 is a group homomorphism, we can write 𝑓𝑋,𝑃 as a
(finite) sum and then only have to find preimages for each summand. We will do this
several times in the remainder of the proof to restrict to special cases that are easier
to handle. Firstly, we can assume that

𝑃 (val(𝑠1), . . . , val(𝑠𝑛), 𝑎) = 𝑞 · ///≡≡𝐴 ·
𝑛∏︁
𝑖=1

val(𝑠𝑖)
𝑒𝑖 · 𝑎𝑒𝑛+1 ,

where 𝑞 ∈ Q, 𝐴 ⊂ Γ𝑚 is 𝑍-definable, and 𝑒𝑖 ∈ N for 𝑖 = 1, . . . , 𝑛 + 1. (Here, read
00 = 1.) Moreover, we can restrict to the case that 𝑞 = 1

𝑀 for some 𝑀 ∈ N>0.

Now consider the partition of 𝑋 ⊂ 𝑆 × Γ into the finitely many 𝑍-definable sets 𝑋𝜎

for 𝜎 = (𝜎1, . . . , 𝜎𝑛+1) ∈ {±1}𝑛+1 and the set ̂︀𝑋 with

𝑋𝜎 = {(𝑠, 𝑎) ∈ 𝑋 | 𝜎𝑖 · val(𝑠𝑖) > 0 for 𝑖 ≤ 𝑛, and 𝜎𝑛+1 · 𝑎 > 0}, and̂︀𝑋 = {(𝑠, 𝑎) ∈ 𝑋 | val(𝑠𝑖) = 0 for at least one 𝑖 ≤ 𝑛, or 𝑎 = 0} = 𝑋 ∖
⋃︁
𝜎

𝑋𝜎.

Note that 𝑓𝑋,𝑃 =
∑︀

𝜎 𝑓𝑋𝜎,𝑃 , so we can fix one of the finitely many 𝜎 and assume that
𝑋 = 𝑋𝜎. We will now construct a preimage of 𝑓𝑋,𝜎𝑃 for 𝜎 :=

∏︀𝑛+1
𝑖=1 𝜎

𝑒𝑖
𝑖 ∈ {±1}. This

is enough to finish the proof – also in the case 𝜎 = −1, since 𝑓𝑋,−𝑃 = −𝑓𝑋,𝑃 and we
already proved that 𝜒𝑆 is a group homomorphism.

Recall that

𝑃 (val(𝑠1), . . . , val(𝑠𝑛), 𝑎) =
1

𝑀
· ///≡≡𝐴 ·

𝑛∏︁
𝑖=1

val(𝑠𝑖)
𝑒𝑖 · 𝑎𝑒𝑛+1 ∈ 𝐾Γ

𝑏 (Γ),
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with ///≡≡𝐴 ∈ 𝐾Γ
𝑏 (𝑍), where we can further assume that 𝐴 is a 𝑍-definable cuboid

by [CH18, Proposition 3.3.2]. I.e., 𝐴 =
∏︀𝑚
ℓ=1 [0, 𝑎ℓ) for some 𝑎ℓ ∈ 𝑍. For a given

(𝑠, 𝑎) ∈ 𝑋, Lemma 3.1.7 implies the existence of 𝑑𝑖,ℓ ∈ N for 0 ≤ 𝑖 ≤ 𝑛+ 1 with

𝑑0,ℓ|𝑎ℓ
𝑑𝑖,ℓ| val(𝑠𝑖)

𝑑𝑛+1,ℓ|𝑎

and 𝑀 =
∏︁

𝑑𝑖,ℓ.

for 1 ≤ ℓ ≤ 𝑚,
for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ ℓ ≤ 𝑒𝑖,
for 1 ≤ ℓ ≤ 𝑒𝑛+1,

(4.2)

Now consider the partition of 𝑋 into pieces given, for each 𝑑 ∈ N𝑚+𝑒1+···+𝑒𝑛+1

>0 , by

𝑋𝑑 := {(𝑠, 𝑎) ∈ 𝑋 | 𝑑 is the (lexicographically) minimal tuple satisfying (4.2)}

Since the (𝑍-definable) sets 𝑋𝑑 are empty for all but finitely many 𝑑, this again yields
a partition of 𝑋 into finitely many pieces. Thus we can fix one such tuple 𝑑 and
assume that 𝑋 = 𝑋𝑑. Now consider the 𝑍-definable (families of) sets

𝐴′ :=
𝑚∏︁
ℓ=1

[0, 𝑎ℓ)𝑑0,ℓ ,

𝐵𝑠 := {(𝑏1, . . . , 𝑏𝑛) | 𝑏𝑖 ∈
𝑒𝑖∏︁
ℓ=1

[0, 𝜎𝑖 · val(𝑠𝑖))𝑑𝑖,ℓ} ⊂ Γ(𝑒1+···+𝑒𝑛), and

𝐶𝑠 := {(𝑐, 𝑎) | (𝑠, 𝑎) ∈ 𝑋, 𝑐 ∈
𝑒𝑛+1∏︁
ℓ=1

[0, 𝜎𝑛+1 · 𝑎)𝑑𝑛+1,ℓ
} ⊂ Γ𝑒𝑛+1 × Γ,

and their “counterparts” in RV*
*,

𝑈 := ((ac1)
−1(1))𝑚 ∩ val−1(𝐴′) ⊂ RV𝑚1 ,

𝑉𝑠 := ((ac1)
−1(1))𝑒1+···+𝑒𝑛 ∩ val−1(𝐵𝑠) ⊂ RV𝑒1+···+𝑒𝑛

1 , and

𝑊𝑠 := ((ac1)
−1(1))𝑒𝑛+1+1 ∩ val−1(𝐶𝑠) ⊂ RV

𝑒𝑛+1+1
1 .

Note that we then have ///≡≡𝑈 = ///≡≡𝐴′ and ///≡≡𝐵𝑠 = ///≡≡𝑉𝑠 as well as

///≡≡{𝑤′ ∈ RV
𝑒𝑛+1

1 | 𝑤 = (𝑤′, 𝑤𝑒𝑛+1+1) ∈𝑊𝑠}
= ///≡≡{𝑐 ∈ Γ𝑒𝑛+1 | (𝑐, val(𝑤𝑒𝑛+1+1)) ∈ 𝐶𝑠}

for all 𝑠 ∈ 𝑆 by (the proof of) Lemma 2.3.5. Thus, the 𝑍-definable family of integrable
functions (f𝑠)𝑠∈𝑆 given by

f𝑠 : 𝑈 × 𝑉𝑠 ×𝑊𝑠 → pΓ

(𝑢,𝑣,𝑤) ↦→ 𝑝− val(𝑤𝑒𝑛+1+1).
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satisfies

///≡≡f−1
𝑠 (p−𝑎) = ///≡≡

(︃
𝐴′ ×𝐵𝑠 ×

𝑒𝑛+1∏︁
ℓ=1

[0, 𝜎𝑛+1 · 𝑎)𝑑𝑛+1,ℓ

)︃

=
///≡≡𝐴∏︀𝑚
ℓ=1 𝑑0,ℓ

·

(︃
𝑛∏︁
𝑖=1

𝑒𝑖∏︁
ℓ=1

𝜎𝑖 · val(𝑠𝑖)
𝑑𝑖,ℓ

)︃
·

(︃
𝑒𝑛+1∏︁
ℓ=1

𝜎𝑛+1 · 𝑎
𝑑𝑛+1,ℓ

)︃

=
1∏︀
𝑑𝑖,ℓ
· ///≡≡𝐴 ·

𝑛∏︁
𝑖=1

(𝜎𝑖 · val(𝑠𝑖))𝑒𝑖 · (𝜎𝑛+1 · 𝑎)𝑒𝑛+1

=

𝑛+1∏︁
𝑖=1

𝜎𝑒𝑖𝑖⏟  ⏞  
= 𝜎

·𝑃 (val(𝑠), 𝑎),

for all (𝑠, 𝑎) ∈ 𝑋, as well as f−1
𝑠 (𝑝−𝑎) = ∅ for (𝑠, 𝑎) /∈ 𝑋. Hence we have 𝜒𝑆([f]) =

𝑓𝑋,𝜎·𝑃 as claimed.

Remark 4.2.6. As already mentioned, the isomorphism 𝜒𝑆 from Proposition 4.2.4
induces a multiplication on the group P𝑆(𝑍) by transferring the multiplication
from 𝐾int,𝑆(𝑍). This gives P𝑆(𝑍) the structure of a ring with unit 𝑓𝑆×{0},1.

For 𝑓, 𝑔 ∈ P𝑆(𝑍), we have

(𝑓 · 𝑔)(𝑠, 𝑎) =
∑︁

𝑎1+𝑎2=𝑎

𝑓(𝑠, 𝑎1) · 𝑔(𝑠, 𝑎2)

whenever the sum on the right-hand side is defined (in particular, for those 𝑠, for
which at least one of the maps 𝑎 ↦→ 𝑓(𝑠, 𝑎) or 𝑎 ↦→ 𝑔(𝑠, 𝑎) has finite support –
note that the sum is then finite).

Corollary 4.2.7 (of Proposition 4.2.4). There is an isomorphism (a priori: of
groups, a posteriori: of rings) 𝜒 : 𝐾int(𝑍)→ P(𝑍), induced by

[f] ↦→
(︀
𝑎 ↦→ ///≡≡f−1(𝑝−𝑎)

)︀
,

and inducing a ring structure on P(𝑍) with unit 𝑓{0},1 = const{0}(1).

Corollary 4.2.8 (of Proposition 4.2.4). The additive group of the ring 𝐾int,𝑆(𝑍)
is torsion-free. Equivalently, the canonical map 𝐾int,𝑆(𝑍) → 𝐾int,𝑆(𝑍) ⊗ Q is
injective.
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Proof. This follows from the proposition since P𝑆(𝑍) is torsion-free (see the remark
just before Proposition 4.2.4).

Lemma 4.2.9. Let (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 be 𝑍-definable families of integrable func-
tions on RV*

* with [(f𝑠)𝑠∈𝑆 ] = [(g𝑠)𝑠∈𝑆 ] ∈ 𝐾int,𝑆(𝑍).

Then there exists a 𝑍-definable family of bijections ℎ𝑠 : dom(f𝑠) → dom(g𝑠)
satisfying g𝑠 ∘ ℎ𝑠 = f𝑠.

Proof. This follows from (the proof of) Proposition 4.2.4: Given (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆
with [(f𝑠)𝑠∈𝑆 ] = [(g𝑠)𝑠∈𝑆 ], we have

///≡≡f−1
𝑠 (𝛼) = ///≡≡g−1

𝑠 (𝛼)

for all 𝑠 ∈ 𝑆 and all 𝛼 ∈ pΓ by Proposition 4.2.4. By [CH18, Theorem 5.2.2] (and
partitioning 𝑆 so that val↾𝑆 is injective) this implies the existence of a 𝑍-definable
family of bijections ℎ𝑠,𝛼 : f−1

𝑠 (𝛼) → g−1
𝑠 (𝛼), just as in the proof of the injectivity of

𝜒𝑆 in Proposition 4.2.4. As there, fix 𝑠 ∈ 𝑆 and define ℎ𝑠 : dom(f𝑠)→ dom(g𝑠) in the
obvious way, by putting together the corresponding ℎ𝑠,𝛼. Then ℎ𝑠 is as desired.

Corollary 4.2.10. Let f and g be 𝑍-definable integrable functions on RV*
* with

[f] = [g]. Then there is a 𝑍-definable map ℎ : dom(f)→ dom(g) with g ∘ ℎ = f.

Corollary 4.2.11. There is an injective ring homomorphism from 𝐾RV
𝑏 (𝑍) ∼=

𝐾Γ
𝑏 (𝑍) to 𝐾int(𝑍) induced by

///≡≡𝑈 ↦→ [const𝑈 (1)]

.

Proof. Note that, by Definition 2.3.4 and Definition 4.1.2, the given mapping rule re-
spects the relations of𝐾RV

𝑏 (𝑍) – and hence yields a well-defined group homomorphism.
Indeed, for any two disjoint 𝑍-definable subsets 𝑈, 𝑉 ⊂ RV*

* we have

[const𝑈∪𝑉 (1)] = [const𝑈 (1) ∪ const𝑉 (1)]

= [const𝑈 (1)] + [const𝑉 (1)],

and for any two 𝑍-definable sets 𝑈 ′ ⊂ RV*
* and 𝑉 ′ ⊂ RV*

* in 𝑍-definable bijection, we
have

[const𝑈 ′(1)] = [const𝑉 ′(1)].
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Moreover, for arbitrary 𝑍-definable sets 𝑈 ⊂ RV*
* and 𝑉 ⊂ RV*

*, we have

const𝑈×𝑉 (1) = const𝑈 (1) ⋆ const𝑉 (1)

by Definition 4.1.2, hence the group homomorphism from 𝐾RV
𝑏 (𝑍) to 𝐾int(𝑍) also

respects the multiplication rules and therefore the ring structures.

Lastly, injectivity follows from Corollary 4.2.10, using the fact that any element of
𝐾RV
𝑏 (𝑍) can be written as the difference of two generators: If such an element ///≡≡𝑈 −

///≡≡𝑉 lies in the kernel of the homomorphism given by the mapping rule from the
statement above, then we have

[const𝑈 (1)] = [const𝑉 (1)]

in 𝐾int(𝑍), yielding a 𝑍-definable bijection ℎ : 𝑈 → 𝑉 and therefore ///≡≡𝑈 = ///≡≡𝑉 .

Using Corollary 4.2.11 to just write ///≡≡𝑈 ∈ 𝐾int(𝑍) for 𝑍-definable sets 𝑈 ⊂ RV*
*, we

obtain the following improvement of Remark 4.1.8.

Corollary 4.2.12. The integral
∫︀
mot

satisfies the equality (4.1) on p. 48 whenever
im(f) is finite. More precisely, given an integrable function f on RV*

* with finite
image, we have∫︁

mot

f = [f] + (p− 𝑝)

=
∑︁

𝛼∈im(f)

[constf−1(𝛼)(𝛼)] + (p− 𝑝)

=
∑︁

𝛼∈im(f)

[const{0}(𝛼)] · [constf−1(𝛼)(1)] + (p− 𝑝)

=
∑︁

𝛼∈im(f)

𝛼 · ///≡≡f−1(𝛼) + (p− 𝑝).

4.3 Integrable functions with finite images

We now want to get a better understanding of 𝑅mot,𝑆(𝑍). In particular, note that we
have not even seen that it is non-trivial yet.

The main purpose of this section is to prove Theorem 4.3.8. The non-family version of
the same statement, Corollary 4.3.9, says that for any 𝑍-definable integrable function
f on RV*

*, there are two such functions with finite image such that the difference of
their integrals equals the integral of f. This will simplify working with (families of)
integrable functions on RV*

*, since it allows us (for some purposes, at least) to assume
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their images to be finite. It also emphasizes the strength of Remark 4.1.8 and its
generalization Corollary 4.2.12.

For some proofs in this section, it is more convenient to work with (𝐾int,𝑆(𝑍)⊗Q)/(p−
𝑝)Q𝑆 instead of 𝑅mot,𝑆(𝑍) = 𝐾int,𝑆(𝑍)/(p − 𝑝)𝑆 . In fact, Proposition 4.3.3 says that
they are isomorphic, so we will not lose any information. Before we are able to prove
this, we need the following two lemmata.

Lemma 4.3.1. There is a (necessarily unique) injective homomorphism from Z
into 𝑅mot,𝑆(𝑍) = 𝐾int,𝑆(𝑍)/(p− 𝑝)𝑆.

Proof. We will establish the claim for the ring P𝑆(𝑍)/(𝑓p−𝑝,𝑆), which is isomorphic
to 𝑅mot,𝑆(𝑍), where (𝑓p−𝑝,𝑆) is the image of (p − 𝑝)𝑆 under the isomorphism 𝜒𝑆 :
𝐾int,𝑆(𝑍)→ P𝑆(𝑍) from Proposition 4.2.4, i.e., the ideal generated by

𝑓p−𝑝,𝑆 := 𝑓𝑆×{−1},1 − 𝑝 · 𝑓𝑆×{0},1

= 𝜒𝑆([(const{0}(p))𝑠∈𝑆 ]− 𝑝 · [(const{0}(1))𝑠∈𝑆 ]).

Note that any homomorphism from Z to P𝑆(𝑍)/(𝑓p−𝑝,𝑆) has to send 1 ∈ Z to the
multiplicative identity element 𝑓𝑆×{0},1 + (𝑓p−𝑝,𝑆), and hence has to send 𝑚 ∈ Z to
𝑓𝑆×{0},𝑚 + (𝑓p−𝑝,𝑆), where

𝑓𝑆×{0},𝑚 : 𝑆 × Γ→ 𝐾Γ
𝑏 (Γ)

(𝑠, 𝑎) ↦→

{︃
𝑚, if 𝑎 = 0

0, otherwise
.

We thus have to show that, for 𝑚 ∈ Z, the function 𝑓𝑆×{0},𝑚 only lies in the ideal
(𝑓p−𝑝,𝑆) if 𝑚 = 0. Towards this end, suppose that we have

𝑓𝑆×{0},𝑚 = 𝑔 · 𝑓p−𝑝,𝑆
= 𝑔 · (𝑓𝑆×{−1},1 − 𝑝 · 𝑓𝑆×{0},1)

for some 𝑚 ∈ Z and some 𝑔 ∈ P𝑆(𝑍), and let us fix some 𝑠 ∈ 𝑆. We aim to show that
𝑔(𝑠, ∙) = 0, which then implies 𝑚 = 0 and hence finishes the proof. For all 𝑎 ∈ Γ, we
have

𝑓𝑆×{0},𝑚(𝑠, 𝑎) = (𝑔 · (𝑓𝑆×{−1},1 − 𝑝 · 𝑓𝑆×{0},1))(𝑠, 𝑎)

= 𝑔(𝑠, 𝑎+ 1)− 𝑝 · 𝑔(𝑠, 𝑎).
(4.3)

If 𝑔(𝑠, ∙) ̸= 0, there is some minimal 𝑎0 ∈ Γ with 𝑔(𝑠, 𝑎) = 0 for all 𝑎 ≤ 𝑎0, since the
support of 𝑔(𝑠, ∙) is bounded from below by definition of P𝑆(𝑍). We then have

𝑓𝑆×{0},𝑚(𝑠, 𝑎0) = 𝑔(𝑠, 𝑎0 + 1)− 𝑝 · 𝑔(𝑠, 𝑎0)
= 𝑔(𝑠, 𝑎0 + 1) ̸= 0,
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implying 𝑎0 = 0 and 𝑔(𝑠, 1) = 𝑓𝑆×{0},𝑚(𝑠, 0) = 𝑚. For 𝑎 > 0, the equation (4.3) yields

𝑔(𝑠, 𝑎+ 1) = 𝑓{0},𝑚(𝑠, 𝑎)⏟  ⏞  
= 0

+𝑝 · 𝑔(𝑠, 𝑎)

= 𝑝 · 𝑔(𝑠, 𝑎),

and thus, by an induction on 𝑡, we have

𝑔(𝑠, 𝑎+ 𝑡) = 𝑝𝑡 · 𝑔(𝑠, 𝑎) (4.4)

for all 𝑎 > 0 and all 𝑡 ∈ N.

Now 𝑔 ∈ P𝑆(𝑍) is piecewise polynomial, i.e., there is a partition of Γ into finitely many
(𝑍(𝑠)-definable) pieces such that 𝑔(𝑠, ∙) is polynomial on each piece, with coefficients
in 𝐾Γ

𝑏 (𝑍(𝑠)). We can assume that each of theses pieces is of the form (𝑎, 𝑏)≡𝑑𝑟
for

some 𝑎 ∈ Γ∪{−∞}, 𝑏 ∈ Γ∪{∞} and 𝑑 ∈ N>0, 𝑟 ∈ {0, . . . , 𝑑−1}. Since there are only
finitely many pieces covering all of Γ, there is, for each archimedean class 𝐴 ⊂ Γ, at
least one such piece for which the intersection (𝑎, 𝑏)≡𝑑𝑟

∩𝐴 is infinite and not bounded
from above. Fix any element 𝑎′ of that intersection and note that 𝑄(𝑡) = 𝑔(𝑠, 𝑎′+ 𝑡 ·𝑑)
is polynomial in 𝑡, with coefficients in 𝐾Γ

𝑏 (𝑍(𝑠, 𝑎
′)), satisfying

𝑄(𝑡) = 𝑔(𝑠, 𝑎′ + 𝑡 · 𝑑)
= (𝑝𝑑)𝑡 · 𝑔(𝑠, 𝑎′)
= (𝑝𝑑)𝑡 ·𝑄(0)

for all 𝑡 ∈ N. By Proposition 2.1.2, we then have 𝑄 = 0, and hence 𝑔(𝑠, 𝑎′) = 0,
so that the equation (4.4) implies 𝑔(𝑠, ∙)↾𝐴 = 0. Since this argument works for all
archimedean classes 𝐴 ⊂ Γ, we have 𝑔(𝑠, ∙) = 0 and hence 𝑚 = 0, as claimed.

Lemma 4.3.2 (see also [CH21, Lemma 3.11.]). There is a (unique) injective
homomorphism from Q into 𝑅mot,𝑆(𝑍) = 𝐾int,𝑆(𝑍)/(p − 𝑝)𝑆. In particular,
𝑅mot,𝑆(𝑍) is torsion-free.

Proof. By Lemma 4.3.1 and Lemma 2.1.3, we only have to show that 1
𝑝 ∈ 𝑅mot,𝑆(𝑍)

and 1
𝑝𝑑−1

∈ 𝑅mot,𝑆(𝑍) for all 𝑑 ∈ N. Firstly, note that we have

𝑝 · [(const{0}(p−1))𝑠∈𝑆 ] ≡ [(const{0}(p))𝑠∈𝑆 ] · [(const{0}(p−1))𝑠∈𝑆 ]⏟  ⏞  
= [(const{0}(1))𝑠∈𝑆 ] = 1

(mod (p− 𝑝)𝑆),

and thus [(const{0}(p−1))𝑠∈𝑆 ] + (p− 𝑝)𝑆 = 1
𝑝 ∈ 𝑅mot,𝑆(𝑍).
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Secondly, we will now show 1
𝑝𝑑−1

∈ 𝑅mot,𝑆(𝑍). Towards this end, consider the 𝑍-
definable families (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 of integrable functions given by

dom(f𝑠) = 𝑈 = {𝑢 ∈ RV1 | val(𝑢) ∈ [0,∞)𝑑 , ac1(𝑢) = 1} with
f𝑠(𝑢) = p−𝑑−val(𝑢) for all 𝑢 ∈ 𝑈 and

dom(g𝑠) = 𝑉 = {𝑣 ∈ RV1 | val(𝑣) ∈ [−𝑑,∞)𝑑 , ac1(𝑣) = 1} = 𝑈 ∪ {𝑝−𝑑} with
g𝑠(𝑣) = p−𝑑−val(𝑣) for all 𝑣 ∈ 𝑉

for all 𝑠 ∈ 𝑆. Note that the 𝑍-definable family of bijections ℎ𝑠 : 𝑈 → 𝑉 , 𝑢 ↦→ 𝑝−𝑑 · 𝑢
satisfies

(g𝑠 ∘ ℎ𝑠)(𝑢) = g𝑠(𝑝
−𝑑 · 𝑢)

= p−𝑑−val(𝑝−𝑑·𝑢)

= p−𝑑−(val(𝑢)−𝑑)

= pd · f𝑠(𝑢)
= const{0}(p

d) ⋆ f𝑠(𝑢)

for all 𝑠 ∈ 𝑆 and all 𝑢 ∈ 𝑈 , so we have

[(const{0}(p
d))𝑠∈𝑆 ] · [(f𝑠)𝑠∈𝑆 ] = [(g𝑠)𝑠∈𝑆 ]

= [(f𝑠)𝑠∈𝑆 ] + [(const{𝑝−𝑑}(1))𝑠∈𝑆 ]

= [(f𝑠)𝑠∈𝑆 ] + [(const{0}(1))𝑠∈𝑆 ]⏟  ⏞  
=1

,

where the second equality is due to the fact that we have 𝑉 = 𝑈∪{𝑝−𝑑} with g𝑠↾𝑈 = f𝑠
and g𝑠(𝑝

−𝑑) = p−𝑑−val(𝑝−𝑑) = 1 for all 𝑠 ∈ 𝑆. Since we have

(𝑝𝑑 − 1) · [(f𝑠)𝑠∈𝑆 ] ≡ ([(const{0}(p
d))𝑠∈𝑆 ]− 1) · [(f𝑠)𝑠∈𝑆 ]⏟  ⏞  

= 1

(mod (p− 𝑝)𝑆),

this implies [(f𝑠)𝑠∈𝑆 ] + (p− 𝑝)𝑆 = 1
𝑝𝑑−1

in 𝑅mot,𝑆(𝑍) = 𝐾int,𝑆(𝑍)/(p− 𝑝)𝑆 .

Proposition 4.3.3. There is a canonical isomorphism of rings

𝜌 :

=𝑅mot,𝑆(𝑍)⏞  ⏟  
𝐾int,𝑆(𝑍)/(p− 𝑝)𝑆 → (𝐾int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q𝑆 ,

induced by [(f𝑠)𝑠∈𝑆 ] + (p− 𝑝)𝑆 ↦→ [(f𝑠)𝑠∈𝑆 ]⊗ 1 + (p− 𝑝)Q𝑆 .

In particular, 𝑅mot(𝑍) = 𝐾int(𝑍)/(p−𝑝) is isomorphic to (𝐾int(𝑍)⊗Q)/(p−𝑝)Q.

65



4 Integrable functions on RV*
*

Proof. Consider the ring homomorphism 𝜌0 : 𝐾int,𝑆(𝑍) → (𝐾int,𝑆(𝑍) ⊗ Q)/(p − 𝑝)Q𝑆
with 𝜌0([(f𝑠)𝑠∈𝑆 ]) = [(f𝑠)𝑠∈𝑆 ]⊗1+(p−𝑝)Q𝑆 , i.e., 𝜌0 is the composition of the embedding
𝐾int,𝑆(𝑍) →˓ 𝐾int,𝑆(𝑍)⊗Q and the quotient map𝐾int,𝑆(𝑍)⊗Q ↠ (𝐾int,𝑆(𝑍)⊗Q)/(p−
𝑝)Q𝑆 . We will show that 𝜌0 is surjective with ker(𝜌0) = (p−𝑝)𝑆 , which yields the claim.

𝜌0 is surjective. Let 𝐹 ⊗ 𝑞+(p−𝑝)Q𝑆 be any element of (𝐾int,𝑆(𝑍)⊗Q)/(p−𝑝)Q𝑆 . Let
𝑄 ∈ 𝐾int,𝑆(𝑍) with 𝑄+ (p− 𝑝)𝑆 = 𝑞 ∈ Q ⊂ 𝐾int,𝑆(𝑍)/(p− 𝑝)𝑆 and note that

𝑄⊗ 1 + (p− 𝑝)Q𝑆 = 1⊗ 𝑞 + (p− 𝑝)Q𝑆

in (𝐾int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q𝑆 . Thus we have

𝜌0(𝐹 ·𝑄) = 𝜌0(𝐹 ) · 𝜌0(𝑄)

= (𝐹 ⊗ 1) · (𝑄⊗ 1) + (p− 𝑝)Q𝑆
= 𝐹 ⊗ 𝑞 + (p− 𝑝)Q𝑆 ,

proving that 𝜌0 is surjective.

ker(𝜌0) = (p− 𝑝)𝑆. Clearly, (p − 𝑝)𝑆 is contained in the kernel of 𝜌0. For the other
direction, let 𝐹 ∈ 𝐾int,𝑆(𝑍) with 𝜌0(𝐹 ) = (p− 𝑝)Q𝑆 , i.e., 𝐹 ⊗ 1 ∈ (p− 𝑝)Q𝑆 . Then
there is some 𝐺 ∈ 𝐾int,𝑆(𝑍) and some 𝑞 ∈ Q such that

𝐹 ⊗ 1 = (𝐺⊗ 𝑞) · (𝑃 ⊗ 1)

where 𝑃 = [(const{0}(p))𝑠∈𝑆 ]− 𝑝 · [(const{0}(1))𝑠∈𝑆 ] is the generator of the ideal
(p − 𝑝)𝑆 ⊂ 𝐾int,𝑆(𝑍). Write 𝑞 = 𝑞1

𝑞2
for some 𝑞1, 𝑞2 ∈ Z with 𝑞2 ̸= 0. Then we

have

(𝑞2 · 𝐹 )⊗ 1 = ((𝑞1 ·𝐺)⊗ 1) · (𝑃 ⊗ 1),

and hence

𝑞2 · 𝐹 = (𝑞1 ·𝐺) · 𝑃

since 𝐾int,𝑆(𝑍) embeds into 𝐾int,𝑆(𝑍) ⊗ Q, by Corollary 4.2.8. Thus 𝑞2 · 𝐹 lies
in (p− 𝑝), and by Lemma 4.3.2, we have 𝐹 ∈ (p− 𝑝).

Definition 4.3.4. The ring 𝐾fin
int,𝑆(𝑍) is the subring of 𝐾int,𝑆(𝑍) generated by

those symbols [f] ∈ 𝐾int,𝑆(𝑍) for which im(f𝑠) is finite for all 𝑠 ∈ 𝑆.

Definition 4.3.5. The ring Pfin
𝑆 (𝑍) is the subring of P𝑆(𝑍) generated by those

maps 𝑓𝑋,𝑃 ∈ P𝑆(𝑍) for which 𝑋 ∩ {𝑠} × Γ is finite for all 𝑠 ∈ 𝑆. (Equivalently,
it is the subring generated by those 𝑓𝑋,𝑃 for which supp (𝑎 ↦→ 𝑓𝑋,𝑃 (𝑠, 𝑎)) is finite
for all 𝑠 ∈ 𝑆.)

Finally, PQ,fin
𝑆 (𝑍) is the subring of PQ

𝑆(𝑍) generated by those maps 𝑓𝑋,𝑃 ∈ PQ
𝑆(𝑍)
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for which 𝑋 ∩ {𝑠} × Γ is finite for all 𝑠 ∈ 𝑆. (And again, equivalently, it is the
subring generated by those 𝑓𝑋,𝑃 for which supp (𝑎 ↦→ 𝑓𝑋,𝑃 (𝑠, 𝑎)) is finite for all
𝑠 ∈ 𝑆.)

Note that 𝜒𝑆 restricts to an isomorphism from 𝐾fin
int,𝑆(𝑍) to Pfin

𝑆 (𝑍): Consider any
𝑍-definable family (f𝑠)𝑠∈𝑆 of integrable functions on RV*

* and let 𝑓 := 𝜒𝑆([(f𝑠)𝑠∈𝑆 ])
be the image under 𝜒𝑆 of its class in 𝐾int,𝑆(𝑍). Then, by definition of 𝜒𝑆 , we have
im(f𝑠) = 𝑝− supp(𝑓(𝑠,∙)) for all 𝑠 ∈ 𝑆, hence the image of𝐾fin

int,𝑆(𝑍) under 𝜒𝑆 is contained
in Pfin

𝑆 (𝑍). Moreover, the preimage in 𝐾int,𝑆(𝑍) of a given generator 𝑓𝑋,𝑃 of Pfin
𝑆 (𝑍)

as constructed in the proof of surjectivity of 𝜒𝑆 (i.e., the second part of the proof
of Proposition 4.2.4) already lies in 𝐾fin

int,𝑆(𝑍). Thus we have an isomorphism 𝜒fin
𝑆 :

𝐾fin
int,𝑆(𝑍)→ Pfin

𝑆 (𝑍), given by restricting 𝜒𝑆 .

Recall that there is an isomorphism from P𝑆(𝑍) ⊗ Q to PQ
𝑆(𝑍) by Lemma 2.1.4 (see

also the note just before Proposition 4.2.4), and note that it furthermore restricts to
an isomorphism from Pfin

𝑆 (𝑍)⊗Q to PQ,fin
𝑆 (𝑍).

Moreover, the following Lemma 4.3.6 provides an isomorphism between appropriate
quotients of PQ,fin

𝑆 (𝑍) and PQ
𝑆(𝑍) – a key ingredient for proving Theorem 4.3.8.

Lemma 4.3.6. The canonical map 𝜓0 : PQ,fin
𝑆 (𝑍) → PQ

𝑆(𝑍)/(𝑓p−𝑝,𝑆)
Q induces

an isomorphism

𝜓 : PQ,fin
𝑆 (𝑍)/(𝑓p−𝑝,𝑆)

Q,fin → PQ
𝑆(𝑍)/(𝑓p−𝑝,𝑆)

Q

of rings, i.e., 𝜓0 is surjective and satisfies ker(𝜓0) = (𝑓p−𝑝,𝑆)
Q,fin.

Here and in the following, (𝑓p−𝑝,𝑆)
Q and (𝑓p−𝑝,𝑆)

Q,fin denote the ideals generated

by 𝑓p−𝑝,𝑆 in PQ
𝑆(𝑍) and in PQ,fin

𝑆 (𝑍) respectively, where

𝑓p−𝑝,𝑆 = 𝑓𝑆×{−1},1 − 𝑝 · 𝑓𝑆×{0},1⏟  ⏞  
= 𝑓𝑆×{0},𝑝

∈ Pfin
𝑆 (𝑍) ⊂ PQ,fin

𝑆 (𝑍),

as introduced in the proof of Lemma 4.3.1.

(Note that (𝑓p−𝑝,𝑆)
Q is the image of (p − 𝑝)Q𝑆 under the isomorphism 𝜒Q

𝑆 from

Proposition 4.2.4, as its generator 𝑓p−𝑝,𝑆 is the image of the generator of (p−𝑝)Q𝑆 .)

Proof. We first show that 𝜓0 induces an injective homomorphism 𝜓 and then prove
surjectivity.

Step 1, ker(𝜓0) = (𝑓p−𝑝,𝑆)
Q,fin: Since 𝜓0(𝑓p−𝑝,𝑆) = 0, we clearly have ker(𝜓0) ⊃

(𝑓p−𝑝,𝑆)
Q,fin. For the other direction, let 𝑓 ∈ ker(𝜓0), i.e., suppose that 𝑓 ∈

PQ,fin
𝑆 (𝑍) and that there exists some ℎ ∈ PQ

𝑆(𝑍) for which 𝑓 = 𝑓p−𝑝,𝑆 · ℎ. We
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will show that ℎ already lies in PQ,fin
𝑆 (𝑍), yielding that 𝑓 lies in (𝑓p−𝑝,𝑆)

Q,fin ⊂
(𝑓p−𝑝,𝑆)

Q ∩PQ,fin
𝑆 (𝑍).

By Remark 4.2.6, the condition 𝑓 = 𝑓p−𝑝,𝑆 · ℎ means that

𝑓(𝑠, 𝑎) = 𝑓p−𝑝,𝑆(𝑠,−1) · ℎ(𝑠, 𝑎+ 1) + 𝑓p−𝑝,𝑆(𝑠, 0) · ℎ(𝑠, 𝑎)
= ℎ(𝑠, 𝑎+ 1)− 𝑝 · ℎ(𝑠, 𝑎)

(4.5)

for all (𝑠, 𝑎) ∈ 𝑆 × Γ.

To prove ℎ ∈ PQ,fin
𝑆 (𝑍), we fix some 𝑠 ∈ 𝑆 and show that the support of the map

𝑎 ↦→ ℎ(𝑠, 𝑎) is finite. As 𝑓 ∈ PQ,fin
𝑆 (𝑍), the support of 𝑎 ↦→ 𝑓(𝑠, 𝑎) is finite (and 𝑍-

definable, i.e., already contained in acl(𝑍) = 𝑍), say supp(𝑓(𝑠, ·)) = {𝑐1, . . . , 𝑐ℓ}
with 𝑐𝑖 < 𝑐𝑖+1 for all 𝑖. Now fix a finite partition 𝒫 of supp(ℎ(𝑠, ·)) consisting of
𝑍-definable sets such that ℎ(𝑠, ·) is given by a polynomial on each piece of the
partition. Refine the partition so that each piece

� is either equal to {𝑐𝑖} for some 𝑖 or contained in one of the intervals (−∞, 𝑐1),
(𝑐𝑖, 𝑐𝑖+1) for some 𝑖, or (𝑐ℓ,∞), and

� is of the form [𝑎, 𝑏)𝑑 for some 𝑑 ∈ N and 𝑎 ∈ Γ, 𝑏 ∈ Γ ∪ {∞}.

Our claim is equivalent to the statement that each piece of the partition 𝒫 is a
finite set. So suppose, towards a contradiction, that 𝐼 = [𝑎, 𝑏)𝑑 ∈ 𝒫 is an infinite
piece of the partition.

Let 𝑏′ =∞ if 𝑏 =∞ and 𝑏′ = 𝑏−𝑑+1 otherwise, so that [𝑎, 𝑏′) is the convex hull
of 𝐼 in both cases. Then we have 𝑐 ̸= 𝑐𝑖 for all 𝑖 and all (supposedly infinitely
many) 𝑐 ∈ [𝑎, 𝑏′). In particular, all 𝑐 ∈ [𝑎, 𝑏′) satisfy 𝑓(𝑠, 𝑐) = 0, so that the
equality (4.5) yields

ℎ(𝑠, 𝑐+ 1) = 𝑓(𝑠, 𝑐) + 𝑝 · ℎ(𝑠, 𝑐)
= 𝑝 · ℎ(𝑠, 𝑐)

for all 𝑐 ∈ [𝑎, 𝑏′). By induction, and since 𝑏′ ≫ 𝑎 by assumption, this implies

ℎ(𝑠, 𝑎+ 𝑑 ·𝑚) = (𝑝𝑑)𝑚 · ℎ(𝑠, 𝑎)

for all 𝑚 ∈ N.

As ℎ(𝑠, 𝑐) is polynomial in 𝑐 on the supposedly infinite set 𝐼 = [𝑎, 𝑏)𝑑 and since
𝑝𝑑 ∈ Z ∖ {0, 1}, we can apply Proposition 2.1.2, yielding ℎ(𝑠, 𝑎) = 0. But this is
a contradiction to the assumption that 𝑎 ∈ 𝐼 ⊂ supp(ℎ(𝑠, ·)). Hence there can
be no infinite set in the partition 𝒫, i.e., it is a partition of supp(ℎ(𝑠, ·)) into
finite sets. Consequently, the support of ℎ(𝑠, ·) is itself finite. Therefore ℎ lies in
PQ,fin
𝑆 (𝑍), showing that 𝑓 = 𝑓p−𝑝,𝑆 · ℎ lies in (𝑓p−𝑝,𝑆)

Q,fin, and we thus obtain
the equality ker(𝜓0) = (𝑓p−𝑝,𝑆)

Q,fin as claimed.
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Step 2, im(𝜓0) = PQ
𝑆(𝑍)/(𝑓p−𝑝,𝑆)

Q: To show that 𝜓0 is surjective, fix a generator
𝑓𝑋,𝑃 of PQ

𝑆(𝑍), i.e., more explicitly: Let 𝑋 ⊂ 𝑆 × Γ be a 𝑍-definable set
whose fibers 𝑋𝑠 ⊂ Γ are bounded from below for all 𝑠 ∈ 𝑆, let 𝑃 ∈ (𝐾Γ

𝑏 (𝑍) ⊗
Q)[𝑇1, . . . , 𝑇𝑛+1] be a polynomial, and consider the map 𝑓𝑋,𝑃 ∈ PQ

𝑆(𝑍) given by

𝑓𝑋,𝑃 : 𝑆 × Γ→ 𝐾Γ
𝑏 (Γ)⊗Q

(𝑠, 𝑐) ↦→

{︃
𝑃 (val(𝑠1), . . . , val(𝑠𝑛), 𝑐) if (𝑠, 𝑐) ∈ 𝑋
0 otherwise

.

We now have to find a preimage of 𝑓𝑋,𝑃 + (𝑓p−𝑝,𝑆)
Q ∈ PQ

𝑆(𝑍)/(𝑓p−𝑝,𝑆)
Q in the

ring PQ,fin
𝑆 (𝑍), that is to say, we have to find an element ℎ ∈ PQ

𝑆(𝑍) for which
we have

𝑓𝑋,𝑃 − ℎ · 𝑓p−𝑝,𝑆 ∈ PQ,fin
𝑆 (𝑍).

While it suffices to find any such ℎ for proving surjectivity of 𝜓0, we will later
(for Lemma 4.4.12) need one whose support does not deviate too much from the
set 𝑋. More precisely, we will show that we can choose ℎ in such a way that

supp(ℎ(𝑠, ∙)) ⊂ [min(𝑋𝑠)− 𝑘,∞)

for some 𝑘 ∈ N>0 (which only depends on𝑋), i.e., such that ℎ(𝑠, 𝑎) = 0 whenever
𝑎 < min(𝑋𝑠)− 𝑘.

By Lemma 3.1.8 (and since 𝑓𝑋,𝑃 =
∑︀
𝑖 𝑓𝑋𝑖,𝑃 if 𝑋 is the disjoint union of

finitely many (𝑍-definable) sets 𝑋𝑖), it is enough to handle the case that 𝑋𝑠 =
[𝑎(𝑠), 𝑏(𝑠))𝑑 for some 𝑑 ∈ N>0 and some 𝑍-definable maps 𝑎 : 𝑆 → Γ and
𝑏 : 𝑆 → Γ ∪ {∞}.

Now apply Lemma 2.1.1 to the rings 𝑅 = (𝐾Γ
𝑏 (𝑍) ⊗ Q)[𝑇1, . . . , 𝑇𝑛] and 𝑅′ =

(𝐾Γ
𝑏 (Γ)⊗Q)[𝑇1, . . . , 𝑇𝑛], the polynomial 𝑄 ∈ 𝑅[𝑇𝑛+1] given by

𝑄(𝑇𝑛+1) = 𝑃 (𝑇1, . . . , 𝑇𝑛, 𝑇𝑛+1),

and the elements 𝑎 = 𝑝𝑑 and 𝑏 = 1 of Z ⊂ 𝑅. This yields the existence of a
polynomial 𝑄′ ∈ 𝑅[𝑇𝑛+1] and an integer 𝑚 ∈ N with

−(𝑝𝑑 − 1)𝑚 ·𝑄(𝑐) = 𝑄′(𝑐+ 𝑑)− 𝑝𝑑 ·𝑄′(𝑐)

for all 𝑐 ∈ Γ ⊂ 𝐾Γ
𝑏 (Γ)⊗Q ⊂ 𝑅′, so that we have

𝑄(𝑐) = 𝑄𝑑(𝑐+ 𝑑)− 𝑝𝑑 ·𝑄𝑑(𝑐)

for all 𝑐 ∈ Γ, where 𝑄𝑑 := −(𝑝𝑑− 1)−𝑚 ·𝑄′ ∈ 𝑅[𝑇𝑛+1]. Consider the polynomial
𝑃𝑑 ∈ (𝐾Γ

𝑏 (𝑍)⊗Q)[𝑇1, . . . , 𝑇𝑛, 𝑇𝑛+1] with 𝑄𝑑(𝑇𝑛+1) = 𝑃𝑑(𝑇1, . . . , 𝑇𝑛, 𝑇𝑛+1). For
𝑓𝑋,𝑃𝑑

∈ PQ
𝑆(𝑍) and 𝑓pd−𝑝𝑑,𝑆 := 𝑓𝑆×{−𝑑},1 − 𝑓𝑆×{0},𝑝𝑑 ∈ PQ

𝑆(𝑍), we have

(𝑓pd−𝑝𝑑,𝑆 · 𝑓𝑋,𝑃𝑑
)(𝑠, 𝑐) =

(︀
(𝑓𝑆×{−𝑑},1 − 𝑓𝑆×{0},𝑝𝑑) · 𝑓𝑋,𝑃𝑑

)︀
(𝑠, 𝑐)

= 𝑓𝑋,𝑃𝑑
(𝑠, 𝑐+ 𝑑)− 𝑝𝑑 · 𝑓𝑋,𝑃𝑑

(𝑠, 𝑐)
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for all (𝑠, 𝑐) ∈ 𝑆 × Γ. Thus, for fixed 𝑠 ∈ 𝑆, we have

(𝑓𝑋,𝑃 − 𝑓pd−𝑝𝑑,𝑆 · 𝑓𝑋,𝑃𝑑
)(𝑠, 𝑐)

= 𝑓𝑋,𝑃 (𝑠, 𝑐)− (𝑓𝑋,𝑃𝑑
(𝑠, 𝑐+ 𝑑)− 𝑝𝑑 · 𝑓𝑋,𝑃𝑑

(𝑠, 𝑐))

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑃 (𝑠, 𝑐)−
(︀
𝑃𝑑(𝑠, 𝑐+ 𝑑)− 𝑝𝑑 · 𝑃𝑑(𝑠, 𝑐)

)︀
= 0,

for 𝑐 ∈ 𝑋𝑠 ∩ (𝑋𝑠 − 𝑑) = [𝑎(𝑠, 𝑏(𝑠)− 𝑑)𝑑
0− 0 = 0,

for 𝑐 /∈ 𝑋𝑠 ∪ (𝑋𝑠 − 𝑑) = [𝑎(𝑠)− 𝑑, 𝑏(𝑠))𝑑 ,
⋆, otherwise, i.e., for 𝑐 ∈ 𝑋𝑠 △ (𝑋𝑠 − 𝑑)

Hence the support of (𝑓𝑋,𝑃 − 𝑓p−𝑝,𝑆 · 𝑓𝑋,𝑃𝑑
)(𝑠, ·) is, for fixed 𝑠, contained in

the finite 𝑍-definable set 𝑋𝑠 △ (𝑋𝑠 − 𝑑) ⊂ {𝑎(𝑠) − 𝑑, 𝑏(𝑠)}. Thus 𝑓 := 𝑓𝑋,𝑃 −
𝑓pd−𝑝𝑑,𝑆 · 𝑓𝑋,𝑃𝑑

lies in PQ,fin
𝑆 (𝑍).

It is left to show that 𝑓pd−𝑝𝑑,𝑆 ∈ (𝑓p−𝑝,𝑆)
Q, which will then yield 𝑓𝑋,𝑃 − 𝑓 =

𝑓pd−𝑝𝑑,𝑆 · 𝑓𝑋,𝑃𝑑
∈ (𝑓p−𝑝,𝑆)

Q. And indeed, we have

𝑓pd−𝑝𝑑,𝑆 = 𝑓𝑆×{−𝑑},1 − 𝑓𝑆×{0},𝑝𝑑

= (𝑓𝑆×{−1},1)
𝑑 − (𝑓𝑆×{0},𝑝)

𝑑

= (𝑓p−𝑝,𝑆 + 𝑓𝑆×{0},𝑝)
𝑑 − (𝑓𝑆×{0},𝑝)

𝑑

=

⎛⎝ 𝑑∑︁
𝑗=0

(︂
𝑑

𝑗

)︂
· (𝑓p−𝑝,𝑆)𝑗 · (𝑓𝑆×{0},𝑝)

𝑑−𝑗

⎞⎠− (𝑓𝑆×{0},𝑝)
𝑑

=

𝑑∑︁
𝑗=1

(︂
𝑑

𝑗

)︂
· (𝑓p−𝑝,𝑆)𝑗 · (𝑓𝑆×{0},𝑝)

𝑑−𝑗

∈ (𝑓p−𝑝,𝑆)
Q,

completing the proof that 𝜓0 is surjective.

For our additional request on the choice of ℎ, which we will need in the proof of
Lemma 4.4.12, note that the above can be written as

𝑓 = 𝑓𝑋,𝑃 − 𝑓pd−𝑝𝑑,𝑆 · 𝑓𝑋,𝑃𝑑

= 𝑓𝑋,𝑃 − ℎ · 𝑓p−𝑝,𝑆 ,

where

ℎ = 𝑓𝑋,𝑃𝑑
·
𝑑∑︁
𝑗=1

(︂
𝑑

𝑗

)︂
· (𝑓p−𝑝,𝑆)𝑗−1 · (𝑓𝑆×{0},𝑝)

𝑑−𝑗 .

By Remark 4.2.6, we thus have ℎ(𝑠, 𝑎) = 0 whenever

𝑎 < min(𝑋𝑠) +
𝑑

min
𝑗=1

(𝑗 − 1) · (−1)

= min(𝑋𝑠)− (𝑑− 1).
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This completes the proof of Step 2.

Putting the results of the two steps together, the map

𝜓 : PQ,fin
𝑆 (𝑍)/(𝑓p−𝑝,𝑆)

Q,fin → PQ
𝑆(𝑍)/(𝑓p−𝑝,𝑆)

Q,

induced by the canonical map 𝜓0 : PQ,fin
𝑆 (𝑍)→ PQ

𝑆(𝑍)/(𝑓p−𝑝,𝑆)
Q is an isomorphism.

Remark 4.3.7. Note that the additional claim in Step 2 of the proof generalizes
to arbitrary elements of PQ

𝑆(𝑍) with 𝑍-definable support.

More precisely, let 𝑓 ∈ PQ
𝑆(𝑍) and suppose that 𝑋 := supp(𝑓) is 𝑍-definable. Fix

a partition of 𝑋 into finitely many 𝑍-definable sets 𝑋𝑖 and polynomials 𝑃𝑖 such
that 𝑓 =

∑︀
𝑖 𝑓𝑋𝑖,𝑃𝑖 . Then Step 2 of the proof of Lemma 4.3.6 yields elements

ℎ𝑖 ∈ PQ
𝑆(𝑍) and integers 𝑘𝑖 ∈ N>0 with 𝑓𝑋𝑖,𝑃𝑖

− ℎ𝑖 · 𝑓p−𝑝,𝑆 ∈ PQ,fin
𝑆 (𝑍) and

supp(ℎ𝑖(𝑠, ∙)) ⊂ [min(𝑋𝑖𝑠)− 𝑘𝑖,∞) .

For ℎ =
∑︀
𝑖 ℎ𝑖, we thus have

𝑓 − ℎ · 𝑓p−𝑝,𝑆 =
∑︁
𝑖

𝑓𝑋𝑖,𝑃𝑖 − (
∑︁
𝑖

ℎ𝑖) · 𝑓p−𝑝,𝑆

=
∑︁
𝑖

(𝑓𝑋𝑖,𝑃𝑖
− ℎ𝑖 · 𝑓p−𝑝,𝑆) ∈ PQ,fin

𝑆 (𝑍)

and

supp(ℎ(𝑠, ∙)) ⊂
⋃︁
𝑖

supp(ℎ𝑖(𝑠, ∙))

=
⋃︁
𝑖

[min(𝑋𝑖𝑠)− 𝑘𝑖,∞)

⊂
[︁
min
𝑖
(min(𝑋𝑖𝑠)− 𝑘𝑖),∞

)︁
⊂ [min(𝑋𝑠)− 𝑘,∞)

⊂ [min(supp(𝑓(𝑠, ∙)))− 𝑘,∞) ,

where 𝑘 = max𝑖 𝑘𝑖 ∈ N>0.

We now have all ingredients to prove the desired main result of this chapter.

Theorem 4.3.8 (Finite images are enough). The natural inclusion 𝐾fin
int,𝑆(𝑍)⊗

Q →˓ 𝐾int,𝑆(𝑍) ⊗ Q induces an isomorphism between the quotients (𝐾fin
int,𝑆(𝑍) ⊗

Q)/(p− 𝑝)Q,fin𝑆 and (𝐾int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q𝑆 ∼= 𝑅mot,𝑆(𝑍).
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Corollary 4.3.9. The natural inclusion 𝐾fin
int(𝑍) ⊗ Q →˓ 𝐾int(𝑍) ⊗ Q induces

an isomorphism between the quotients (𝐾fin
int(𝑍)⊗Q)/(p− 𝑝)Q,fin and (𝐾int(𝑍)⊗

Q)/(p− 𝑝)Q ∼= 𝑅mot(𝑍).

Proof of Theorem 4.3.8. First note that the ideal (𝑓p−𝑝,𝑆)Q is the image of (p − 𝑝)Q𝑆
under the isomorphism 𝜒Q

𝑆 from Proposition 4.2.4. Similarly, (𝑓p−𝑝,𝑆)Q,fin is the image
of (p− 𝑝)Q,fin𝑆 under the restriction of 𝜒Q

𝑆 . We thus obtain isomorphisms

(𝐾int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q𝑆
∼=−→ PQ

𝑆(𝑍)/(𝑓p−𝑝,𝑆)
Q

and

(𝐾fin
int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q,fin𝑆

∼=−→ PQ,fin
𝑆 (𝑍)/(𝑓p−𝑝,𝑆)

Q,fin,

both induced by 𝜒Q
𝑆 .

Together with Lemma 4.3.6, this leads to the following commutative diagram.

(𝐾int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q𝑆

∼=

→→
𝐾int,𝑆(𝑍)⊗Q

↑↑↑↑

∼=
4.2.4

→→ PQ
𝑆(𝑍)

→→ →→ PQ
𝑆(𝑍)/(𝑓p−𝑝,𝑆)

Q

𝐾fin
int,𝑆(𝑍)⊗Q
↗↘

↑↑

∼= →→

↓↓↓↓

PQ,fin
𝑆 (𝑍) →→ →→

→→ →→

⊂

PQ,fin
𝑆 (𝑍)/(𝑓p−𝑝,𝑆)

Q,fin

∼= 4.3.6

↑↑

(𝐾fin
int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q,fin𝑆

∼=

→→

(4.6)

Composing the appropriate isomorphisms from the bottom to the top of this diagram
now yields the claim.

The relevance of Theorem 4.3.8 relies on the ring 𝐾fin
int(𝑍) (as well as its variants)

being easier to understand and deal with than 𝐾int(𝑍). Even though this is a natural
expectation, we have not seen any formal arguments supporting it yet. The following
lemma fulfills our hopes and gives a rather tangible description of 𝐾fin

int(𝑍). It can be
viewed as a generalization of Corollary 4.2.12, lifting the equation (4.1) on p. 48 to
the ring 𝐾fin

int(𝑍), and further supports the notation used there.
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Lemma 4.3.10. There is an isomorphism of rings 𝜎 : 𝐾fin
int(𝑍)→

(︀
𝐾Γ
𝑏 (𝑍)

)︀
[𝑇𝑍 ]

induced by

[f] ↦→
∑︁

𝛼∈im(f)

///≡≡f−1(𝛼) · 𝑇− val(𝛼)

=
∑︁

p−𝑎∈im(f)

///≡≡f−1(p−𝑎) · 𝑇−𝑎,

and 𝜎 further induces an isomorphism

�̂� : (𝐾fin
int(𝑍)⊗Q)/(p− 𝑝)Q,fin → (𝐾Γ

𝑏 (𝑍)⊗Q)[𝑇𝑍 ]/(𝑇 − 𝑝).

(Note that im(f) is contained in p𝑍 ⊂ pΓ, since it is finite and 𝑍-definable, see
Remark 2.2.2.)

Proof. We first have to show that the given mapping rule induces a well-defined map
from 𝐾fin

int(𝑍) to (𝐾Γ
𝑏 (𝑍))[𝑇

𝑍 ]. Towards that end, let f : 𝑈 → pΓ and g : 𝑉 → pΓ

be two 𝑍-definable integrable functions with finite images. If there is a 𝑍-definable
bijection ℎ : 𝑈 → 𝑉 with g ∘ ℎ = f, then we have ///≡≡f−1(𝛼) = ///≡≡g−1(𝛼) for all 𝛼 ∈ pΓ,
and hence ∑︁

𝛼∈im(f)

///≡≡f−1(𝛼) · 𝑇− val(𝛼) =
∑︁

𝛼∈im(g)

///≡≡f−1(𝛼) · 𝑇− val(𝛼).

If 𝑈 and 𝑉 are disjoint subsets of the same ambient set RV*
*, then we have ///≡≡(f−1(𝛼)∪

g−1(𝛼)) = ///≡≡f−1(𝛼) + ///≡≡g−1(𝛼), and hence the mapping rule sends [f ∪ g] to∑︁
𝛼∈im(f)∪im(g)

(///≡≡f−1(𝛼) + ///≡≡g−1(𝛼)) · 𝑇− val(𝛼)

=
∑︁

𝛼∈im(f)

///≡≡f−1(𝛼) · 𝑇− val(𝛼) +
∑︁

𝛼∈im(f)

///≡≡g−1(𝛼)) · 𝑇− val(𝛼).

It is thus compatible with the defining relations of 𝐾fin
int(𝑍), so 𝜎 indeed exists (as a

group homomorphism, for now).

To see that it also respects multiplication, note that we have

(f ⋆ g)−1(𝛾) =
⋃︁

(𝛼,𝛽)

f−1(𝛼)× g−1(𝛽)

=
∑︁
(𝛼,𝛽)

///≡≡f−1(𝛼) · ///≡≡g−1(𝛽),
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where the indices in the union and in the sum run over all (𝛼, 𝛽) ∈ im(f))× im(g) with
𝛼 · 𝛽 = 𝛾. Thus the image of [f] · [g] = [f ⋆ g] under 𝜎 is

∑︁
𝛾

(f ⋆ g)−1(𝛾) · 𝑇− val(𝛾) =
∑︁
𝛾

⎛⎝∑︁
(𝛼,𝛽)

///≡≡f−1(𝛼) · ///≡≡g−1(𝛽)

⎞⎠ · 𝑇− val(𝛾),

which is just the product of 𝜎(f) and 𝜎(g) in (𝐾Γ
𝑏 (𝑍))[𝑇

𝑍 ].

To show injectivity, let [f]− [g] ∈ ker(𝜎). Then we have

0 = 𝜎([f]− [g])

=
∑︁

(///≡≡f−1(𝛼)− ///≡≡g−1(𝛼)) · 𝑇− val(𝛼),

i.e., ///≡≡f−1(𝛼) = ///≡≡g−1(𝛼) for all 𝛼 ∈ pΓ. Hence Corollary 4.2.10 implies that im(f) =
im(g) and that there is, for each 𝛼 ∈ im(f) = im(g), a 𝑍-definable bijection ℎ𝛼 :
f−1(𝛼) → g−1(𝛼). Since im(f) = im(g) is finite, the map ℎ =

⋃︀
𝛼 ℎ𝛼 is a 𝑍-definable

bijection from
⋃︀
𝛼 f

−1(𝛼) = dom(f) to
⋃︀
𝛼 g

−1(𝛼) = dom(g) with g ∘ ℎ = f, witnessing
[f]− [g] = 0.

Finally, note that (𝐾Γ
𝑏 (𝑍))[𝑇

𝑍 ] is generated by the elements ///≡≡𝑈 · 𝑇−𝑎, where 𝑈
runs over all bounded 𝑍-definable subsets of all RV𝑛

𝑚 and 𝑎 runs over all elements
of 𝑍. Thus, as we have ///≡≡𝑈 · 𝑇−𝑎 = 𝜎([const𝑈 (p

−𝑎)]) for each such 𝑈 and 𝑎, the
homomorphism 𝜎 is also surjective.

Furthermore 𝜎 now extends to an isomorphism between 𝐾fin
int(𝑍) ⊗ Q and (𝐾Γ

𝑏 (𝑍) ⊗
Q)[𝑇𝑍 ], and it sends the generator ([const0(p)]−𝑝·[const0(1)])⊗1 of the ideal (p−𝑝)Q,fin
to

𝜎([const0(p)])− 𝑝 · 𝜎([const0(1)])⊗ 1 = 𝑇− val(p) − 𝑝 · 𝑇− val(1)

= 𝑇 − 𝑝.

Thus, 𝜎 induces an isomorphism �̂� : (𝐾fin
int(𝑍)⊗Q)/(p−𝑝)Q,fin → (𝐾Γ

𝑏 (𝑍)⊗Q)[𝑇𝑍 ]/(𝑇−
𝑝) as claimed.

Combining Theorem 4.3.8 and Lemma 4.3.10 yields a rather explicit description and
therefore leads to a better understanding of 𝑅mot(𝑍).

Corollary 4.3.11. There is an isomorphism

𝑅mot(𝑍)
∼=−→ (𝐾Γ

𝑏 (𝑍)⊗Q)[𝑇𝑍 ]/(𝑇 − 𝑝),
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induced by

[f] + (p− 𝑝) ↦−→
∑︁

𝛼∈im(f)

///≡≡f−1(𝛼) · 𝑇− val(𝛼) + (𝑇 − 𝑝)

One first example is the following important observation.

Lemma 4.3.12. For 𝑍 ≼ 𝑍 ′ ≼ Γ, the ring 𝑅mot(𝑍) naturally embeds into
𝑅mot(𝑍

′).

Proof. This follows from Corollary 4.3.9 and Lemma 4.3.10: Note that 𝐾Γ
𝑏 (𝑍) ⊗ Q

embeds into 𝐾Γ
𝑏 (𝑍

′) ⊗ Q by [CH18, Remark 2.2.8 (and Theorem 2.3.4)]. Therefore,
there is a canonical injective homomorphism from (𝐾Γ

𝑏 (𝑍) ⊗ Q)[𝑇𝑍 ] to (𝐾Γ
𝑏 (𝑍

′) ⊗
Q)[𝑇𝑍

′
], which induces a homomorphism

𝜙 : (𝐾Γ
𝑏 (𝑍)⊗Q)[𝑇𝑍 ]→ (𝐾Γ

𝑏 (𝑍
′)⊗Q)[𝑇𝑍

′
]/(𝑇 − 𝑝) ∼= 𝑅mot(𝑍

′).

It is left to show that the kernel of 𝜙 is exactly the ideal generated by 𝑇 − 𝑝. Indeed,
it is clear that ker(𝜙) contains this ideal since it contains the generator 𝑇 − 𝑝. For the
other direction, let 𝑓 ∈ ker(𝜙) with 𝑓(𝑇 ) =

∑︀
𝑎∈𝐴𝑋𝑎 · 𝑇 𝑎 for some finite set 𝐴 ⊂ 𝑍

and coefficients 𝑋𝑎 ∈ 𝐾Γ
𝑏 (𝑍)⊗Q ⊂ 𝐾Γ

𝑏 (𝑍
′)⊗Q. Then we have 𝑓(𝑇 ) = 𝑔(𝑇 ) · (𝑇 − 𝑝)

for some 𝑔 ∈ (𝐾Γ
𝑏 (𝑍

′)⊗Q)[𝑇𝑍
′
], say

𝑔(𝑇 ) =
∑︁
𝑎∈𝐴′

𝑌𝑎 · 𝑇 𝑎

for some finite set 𝐴′ ⊂ 𝑍 ′ and coefficients 𝑌𝑎 ∈ 𝐾Γ
𝑏 (𝑍

′)⊗Q. I.e.,∑︁
𝑎∈𝐴

𝑋𝑎 · 𝑇 𝑎 = 𝑓(𝑇 ) = 𝑔(𝑇 ) · (𝑇 − 𝑝)

=
∑︁
𝑎∈𝐴′

𝑌𝑎 · 𝑇 𝑎+1 −
∑︁
𝑎∈𝐴′

𝑝 · 𝑌𝑎 · 𝑇 𝑎

=
∑︁
𝑎∈𝑍′

(𝑌𝑎−1 − 𝑝 · 𝑌𝑎) · 𝑇 𝑎,

where we just set 𝑌𝑎 = 0 for 𝑎 /∈ 𝐴′. Equating coefficients yields 𝑌𝑎−1 − 𝑝 · 𝑌𝑎 = 0
whenever 𝑎 ∈ 𝑍 ′ ∖𝐴, so we have

𝑓(𝑇 ) =
∑︁
𝑎∈𝑍′

(𝑌𝑎−1 − 𝑝 · 𝑌𝑎) · 𝑇 𝑎 =
∑︁
𝑎∈𝐴

(𝑌𝑎−1 − 𝑝 · 𝑌𝑎) · 𝑇 𝑎.

Using that 𝑍 = 𝑍 + 1, we obtain 𝑓(𝑇 ) = ℎ(𝑇 ) · (𝑇 − 𝑝) for

ℎ(𝑇 ) =
∑︁

𝑎∈𝐴′∩𝑍
𝑌𝑎 · 𝑇 𝑎 ∈ (𝐾Γ

𝑏 (𝑍)⊗Q)[𝑇𝑍 ],

and hence 𝑓 lies in the ideal generated by (𝑇 −𝑝) in (𝐾Γ
𝑏 (𝑍)⊗Q)[𝑇𝑍 ], as claimed.
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4 Integrable functions on RV*
*

4.4 Uniform equality of integrals of families

Given two 𝑍-definable families of integrable functions on RV*
* over the same param-

eter set 𝑆, there are two natural notions of equality of their integrals. We certainly
want that the integrals of the corresponding members of the families agree as elements
of (𝐾int(𝑍 ∪ {𝑠}) ⊗ Q)/(p − 𝑝)Q, but we can also demand that this equality is be-
ing witnessed uniformly in the parameter 𝑠 ∈ 𝑆. In this section, we will show that
both notions are equivalent. One direction of this equivalence is straight-forward, but
proving the other requires some work. Indeed, the purpose of most of Section 3.2 and
Section 3.3 is to aid in this proof.

Definition 4.4.1. Let 𝑆 ⊂ RV*
* be 𝑍-definable and let (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 be

two 𝑍-definable families of integrable functions on RV*
* over 𝑆. We say that

(f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 have

(1) pointwise equal integrals, if we have
∫︀
mot

f𝑠 =
∫︀
mot

g𝑠 in 𝑅mot(𝑍(𝑠)) for all
𝑠 ∈ 𝑆, and

(2) uniformly equal integrals, if we have [(f𝑠)𝑠∈𝑆 ] ⊗ 1 + (p − 𝑝)Q𝑆 = [(g𝑠)𝑠∈𝑆 ] ⊗
1 + (p− 𝑝)Q𝑆 in (𝐾int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q𝑆 .

Remark 4.4.2. Uniform equality of integrals implies pointwise equality of integrals.

Proof. Note that for each 𝑡 ∈ 𝑆, the specialization map spz𝑡 : 𝐾int,𝑆(𝑍)→ 𝐾int(𝑍(𝑡)),
introduced in Remark 4.1.13, induces a map spz𝑡⊗ id : 𝐾int,𝑆(𝑍)⊗Q→ 𝐾int(𝑍(𝑡))⊗Q.
Let 𝜙 denote the composition of spz𝑡⊗ id with the canonical projection 𝐾int(𝑍(𝑡))⊗
Q ↠ (𝐾int(𝑍(𝑡)) ⊗ Q)/(p − 𝑝)Q. Since we have spz𝑡((p − 𝑝)𝑆) ⊂ (p − 𝑝), and thus
(spz𝑡⊗ id)((p− 𝑝)Q𝑆) ⊂ (p− 𝑝)Q, the kernel of 𝜙 contains the ideal (p− 𝑝)Q𝑆 .

Up to identifying the codomain 𝐾int(𝑍(𝑡)) of 𝜙 with 𝑅mot(𝑍(𝑡)) via the canonical
isomorphism from Proposition 4.3.3, 𝜙 induces a homomorphism

(𝐾int,𝑆(𝑍)⊗Q)/(p− 𝑝)Q𝑆 → 𝑅mot(𝑍(𝑡)) by

[(f𝑠)𝑠∈𝑆 ]⊗ 1 + (p− 𝑝)Q𝑆 ↦→ spz𝑡([(f𝑠)𝑠∈𝑆 ])⊗ 1 + (p− 𝑝)Q

= [f𝑡]⊗ 1 + (p− 𝑝)Q

=

∫︁
mot

f𝑡.

The claim now follows by the definitions of uniform and pointwise equality of integrals
respectively.

The remainder of this section is dedicated to proving the other direction. Intuitively,
the relation generating (p− 𝑝) allows us to modify an integrable function f by shifting
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4.4 Uniform equality of integrals of families

finitely many values and obtain an integrable function f⋆ with the same integral. If
im(f) is finite to begin with, we can guarantee that val(im(f⋆)) ⊂ Γ contains at most
one element of each archimedean class. We make this intuition precise in the following
Definition 4.4.3 and Remark 4.4.4.

Definition 4.4.3. An integrable function f with finite image is called reduced,
if val(im(f)) ⊂ Γ contains at most one element of each archimedean class, i.e., if
𝑎− 𝑎′ /∈ Z for all 𝑎 ̸= 𝑎′ with p−𝑎,p−𝑎

′ ∈ im(f).

We will not need the following remark as is, but it might still serve the purpose of
conveying a better intuition regarding (reduced) integrable functions.

Remark 4.4.4. Let f be an integrable function on RV*
* with finite image. Then

there is a reduced integrable function f⋆ on RV*
* with

∫︀
mot

f =
∫︀
mot

f⋆.

Indeed, it is straight-forward to establish this statement by induction on # im(f).

One reason why reduced integrable functions are especially nice is that equality of
their integrals is quite easy to describe. More precisely, we have the following criterion
for equality of the integrals of two reduced functions.

Lemma 4.4.5. Let f and g be two reduced integrable functions on RV*
*. Then

the following are equivalent:

(1) We have # im(f) = # im(g) and, for each 𝛼 ∈ im(f), there is some 𝑑 ∈ Z
with

///≡≡f−1(𝛼) = 𝑝−𝑑 · ///≡≡g−1(𝑝−𝑑 · 𝛼).

(2) We have
∫︀
mot

f =
∫︀
mot

g.

Proof. The direction (1) ⇒ (2) is straight-forward using Corollary 4.2.12 and the
assumption that f and g are reduced. For the other direction, we will make use of the
description of 𝐾int(𝑍) in terms of (piecewise) polynomial functions from Section 4.2.

(1) =⇒ (2): Since g is reduced, there is, for any given 𝛼 ∈ pΓ, at most one 𝑑 ∈ Z
for which 𝑝−𝑑 · 𝛼 ∈ im(g). The premise thus implies that there is a unique map
𝛿 : im(f)→ Z for which we have

𝑝−𝛿(𝛼) · 𝛼 ∈ im(g) and

///≡≡f−1(𝛼) = 𝑝−𝛿(𝛼) · ///≡≡g−1(𝑝−𝛿(𝛼) · 𝛼)

77
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*

whenever 𝛼 ∈ im(f). By the first of these two conditions, 𝛿 induces a map from
im(f) to im(g) by sending 𝛼 ∈ im(f) to 𝑝−𝛿(𝛼) ·𝛼. We now claim that this induced
map is a bijection. Since # im(f) = # im(g), it suffices to prove injectivity, so let
𝛼, 𝛽 ∈ im(f) with 𝑝−𝛿(𝛼) · 𝛼 = 𝑝−𝛿(𝛽) · 𝛽. We then have 𝛼 = 𝑝𝛿(𝛼)−𝛿(𝛽) · 𝛽, which
already implies 𝛿(𝛼) = 𝛿(𝛽) and 𝛼 = 𝛽 since f is reduced. Hence the map from
im(f) to im(g) induced by 𝛿 is indeed bijective.

Corollary 4.2.12 now yields∫︁
mot

f =
∑︁

𝛼∈im(f)

𝛼 · ///≡≡f−1(𝛼) + (p− 𝑝)

=
∑︁

𝛼∈im(f)

𝛼 ·

///≡≡f−1(𝛼)=⏞  ⏟  
𝑝−𝛿(𝛼) · ///≡≡g−1(𝑝−𝛿(𝛼) · 𝛼)+(p− 𝑝)

=
∑︁

𝛽∈im(g)

𝛽 · ///≡≡g−1(𝛽) + (p− 𝑝)

=

∫︁
mot

g,

where the second-to-last equality holds, since 𝛼 ↦→ 𝛽 = 𝑝−𝛿(𝛼) · 𝛼 is a bijection
from im(f) to im(g).

(2) =⇒ (1): Let f and g be two reduced integrable functions on RV*
* with

∫︀
mot

f =∫︀
mot

g. Consider the map 𝜙 : Γ → 𝐾Γ
𝑏 (Γ) ⊗ Q given by 𝑎 ↦→ ///≡≡f−1(𝑝−𝑎) −

///≡≡g−1(𝑝−𝑎). In other words, 𝜙 is the image of [f] ⊗ 1 − [g] ⊗ 1 ∈ 𝐾int(𝑍) ⊗ Q
under the non-family version 𝜒 of the isomorphism 𝜒𝑆 from Proposition 4.2.4.
Note that we have [f]⊗ 1− [g]⊗ 1 ∈ (p− 𝑝)Q by the assumption

∫︀
mot

f =
∫︀
mot

g,
and thus 𝜙 = 𝜓 · 𝜂 for some 𝜓 ∈ PQ,fin(𝑍), where 𝜂 is the image of the generator
of (p− 𝑝)Q under 𝜒, i.e.,

𝜂 : Γ→ 𝐾Γ
𝑏 (Γ) ⊂ 𝐾Γ

𝑏 (Γ)⊗Q

𝑎 ↦→

⎧⎪⎨⎪⎩
1, if 𝑎 = −1
−𝑝, if 𝑎 = 0

0, otherwise

.

By Remark 4.2.6 (and just as in (4.5) in the proof of Lemma 4.3.6), this means
that we have

𝜙(𝑎) = (𝜓 · 𝜂)(𝑎) = 𝜓(𝑎+ 1)− 𝑝 · 𝜓(𝑎)

for all 𝑎 ∈ Γ.

For each 𝛼 ∈ im(f), we now have to find some 𝑑 ∈ Z as in the claim. Towards
this end, fix some 𝛼 = 𝑝−𝑎 ∈ im(f) and consider the set

𝐴 = (𝑎+ Z) ∩ supp(𝜓) = {𝑎′ ∈ supp(𝜓) | 𝑎′ − 𝑎 ∈ Z}
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4.4 Uniform equality of integrals of families

If 𝐴 = ∅, then we have 𝜓(𝑎 + 𝑘) = 0 for all 𝑘 ∈ Z, hence also 𝜙(𝑎 + 𝑘) = 0
and thus ///≡≡f−1(𝑎 + 𝑘) − ///≡≡g−1(𝑎 + 𝑘) for all 𝑘 ∈ Z. This implies that the
choice 𝑑 = 0 satisfies the claim. So let us, from now on, assume that 𝐴 is non-
empty. Set 𝑎0 := min(𝐴) and 𝑎1 := max(𝐴). Then we have 𝜓(𝑎0−1) = 0, hence
𝜙(𝑎0−1) = 𝜓(𝑎0) ̸= 0, and 𝜓(𝑎1+1) = 0, hence 𝜙(𝑎1) = −𝑝·𝜓(𝑎1) ̸= 0. Since the
set 𝑝− supp(𝜙) is contained in im(f)∪im(g), and f and g are reduced, the support of
𝜙 contains at most two elements of each archimedean class. Thus we must have
supp(𝜙) = {𝑎0−1, 𝑎1}. In particular, this implies that 𝜓(𝑎0+𝑘)−𝑝·𝜓(𝑎0+𝑘−1) =
𝜙(𝑎0 + 𝑘 − 1) = 0 for 𝑘 = 1, . . . , 𝑎1 − 𝑎0. Hence we have

𝜓(𝑎0 + 𝑘) = 𝑝 · 𝜓(𝑎0 + 𝑘 − 1)

for all 𝑘 = 1, . . . , 𝑎1 − 𝑎0. Applying this last equation repeatedly yields

𝜓(𝑎1) = 𝑝𝑎1−𝑎0 · 𝜓(𝑎0).

For 𝑑 := 𝑎1 − 𝑎0 + 1, we thus now have

///≡≡f−1(𝑝−𝑎1)− ///≡≡g−1(𝑝−𝑎1) =

̸=0⏞  ⏟  
𝜙(𝑎1)

= −𝑝 · 𝜓(𝑎1)
= −𝑝𝑑 · 𝜓(𝑎0)
= −𝑝𝑑 · 𝜙(𝑎0 − 1⏟  ⏞  

=𝑎1−𝑑

)

= −𝑝𝑑 ·
(︀
///≡≡f−1(𝑝−𝑎1+𝑑)− ///≡≡g−1(𝑝−𝑎1+𝑑)

)︀
.

Since f and g are both reduced, exactly one summand on each side of this equation
is non-zero, in such a way that we have

///≡≡f−1(𝑝−𝑎1) = 𝑝𝑑 · ///≡≡g−1(𝑝−𝑎1+𝑑) and

///≡≡g−1(𝑝−𝑎1) = 𝑝𝑑 · ///≡≡f−1(𝑝−𝑎1+𝑑),

where exactly one of the two lines vanishes. In particular, we either have
///≡≡f−1(𝛼) = 𝑝𝑑 ·///≡≡g−1(𝑝𝑑 ·𝛼) (in case 𝛼 = 𝑝−𝑎1) or ///≡≡f−1(𝛼) = 𝑝−𝑑 ·///≡≡g−1(𝑝−𝑑 ·𝛼)
(in case 𝛼 = 𝑝−𝑎0+𝑑). Thus either −𝑑 or 𝑑 is as desired.

Moreover, we can do the same argument as above for all 𝛽 ∈ im(g) instead of
𝛼 ∈ im(f). All put together, this implies that im(f) contains an element of a
given archimedean class if and only if im(g) contains an element of the same
archimedean class, hence we have # im(f) = # im(g).

We now have all the necessary prerequisites to show that pointwise equality implies
uniform equality of integrals (see Lemma 4.4.10 and Lemma 4.4.11), but we will later
also need the stronger statement Lemma 4.4.12. Towards the formulation (and proof)
of the latter, we introduce the following handy notation for “merging” a 𝑍-definable
family of integrable functions into one single function.
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Notation 4.4.6. Let 𝑆 ⊂ RV*
* be 𝑍-definable and let (f𝑠)𝑠∈𝑆 be a 𝑍-definable

family of integrable functions on RV*
* over 𝑆. Then we write

⨆︀
𝑠∈𝑆 f𝑠 for the

𝑍-definable function given by⨆︁
𝑠∈𝑆

f𝑠 :
⨆︁
𝑠∈𝑆

dom(f𝑠)→ pΓ

(𝑠,𝑢) ↦→ f𝑠(𝑢),

where
⨆︀

𝑠∈𝑆 dom(f𝑠) :=
⋃︀

𝑠∈𝑆{𝑠} × dom(f𝑠).

Note that the operation
⨆︀

does not induce a map from 𝐾int,𝑆(𝑍) to 𝐾int(𝑍) since
the function f =

⨆︀
𝑠∈𝑆 f𝑠 does not need to be integrable if all of the f𝑠 are. Two

prototypical examples are the families (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 given by

f𝑠 = const{0}(1) and

g𝑠 = const{0}(p
− val(𝑠))

over some set 𝑆 ⊂ RV𝑚 which is not bounded (then f−1(1) = 𝑆 is not bounded) or
for which val(𝑆) is not bounded from below (then im(

⨆︀
𝑠∈𝑆 g𝑠) is not bounded from

above).

However, when
⨆︀

yields integrable functions, it does behave well. Most importantly,
the following observation shows that it respects equality in the Grothendieck rings.

Remark 4.4.7. Let 𝑆 ⊂ RV*
* be 𝑍-definable and let (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 be two

𝑍-definable families of integrable functions with

[(f𝑠)𝑠∈𝑆 ] = [(g𝑠)𝑠∈𝑆 ].

Suppose moreover that f =
⨆︀

f𝑠 and g =
⨆︀
g𝑠 are integrable. Then we have

[f] = [g].

Proof. By Lemma 4.2.9, the assumption [(f𝑠)𝑠∈𝑆 ] = [(g𝑠)𝑠∈𝑆 ] yields the existence of a
𝑍-definable family of bijections

𝑏𝑠 : dom(f𝑠)→ dom(g𝑠)

with f𝑠 = g𝑠 ∘ 𝑏𝑠 for all 𝑠 ∈ 𝑆. The 𝑍-definable map 𝑏 =
⨆︀
𝑏𝑠 then is a bijection from⨆︀

dom(f𝑠) = dom(f) to
⨆︀
dom(g𝑠) = dom(g) satisfying

f = 𝑏 ∘ g,

so that integrability of f and g yields the claim.
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When working with Notation 4.4.6, we want to guarantee that the resulting functions
are integrable. A sufficient condition is that the parameter set 𝑆 ⊂ RV*

* is bounded.
Indeed, the following Remark 4.4.8 implies that

⨆︀
𝑠∈𝑆 f𝑠 is then integrable for any

𝑍-definable family (f𝑠)𝑠∈𝑆 of integrable functions.

Remark 4.4.8. Let 𝑆 ⊂ RV*
* be a 𝑍-definable bounded set (i.e., val(𝑆) is bounded

in Γ*) and let (𝑈𝑠)𝑠∈𝑆 be a 𝑍-definable family of bounded subsets of RV𝑛
𝑚 over

𝑆, where 𝑛,𝑚 ∈ Nℓ>0.

Then 𝑈 =
⋃︀

𝑠∈𝑆 𝑈𝑠 is bounded.

Proof. Let 𝑁 =
∑︀ℓ
𝑖=1 𝑛𝑖, where 𝑛 = (𝑛1, . . . , 𝑛ℓ), so that val(𝑈𝑠) ⊂ Γ𝑁 for all 𝑠 ∈ 𝑆.

Since 𝑈𝑠 is bounded and 𝑍-definable for each 𝑠 ∈ 𝑆, the functions

𝑎𝑖 : 𝑆 → Γ

𝑠 ↦→ min(pr𝑖(val(𝑈𝑠))) and

𝑏𝑖 : 𝑆 → Γ

𝑠 ↦→ max(pr𝑖(val(𝑈𝑠))),

for 𝑖 = 1, . . . , 𝑁 , are 𝑍-definable and satisfy 𝑈𝑠 ⊂
∏︀𝑁
𝑖=1 [𝑎𝑖(𝑠), 𝑏𝑖(𝑠)].

By partitioning 𝑆 into finitely many pieces so that val is injective on each piece and
then applying Remark 3.3.1, we obtain lower and upper bounds 𝑎−𝑖 , 𝑏

+
𝑖 ∈ Γ for 𝑎𝑖(𝑆)

and 𝑏𝑖(𝑆) respectively. This yields

𝑈 =
⋃︁
𝑠∈𝑆

𝑈𝑠 ⊂
⋃︁
𝑠∈𝑆

𝑛∏︁
𝑖=1

[𝑎𝑖(𝑠), 𝑏𝑖(𝑠)] ⊂
[︀
min(𝑎−𝑖 ),max(𝑏+𝑖 )

]︀𝑁
,

showing that 𝑈 is indeed bounded.

Note that Remark 4.4.8 does not generalize to sets merely being bounded from below
(or above). E.g., let 𝑆 ⊂ RV with val(𝑆) = [0,∞) and consider 𝑈𝑠 = val−1(val(𝑠)) ×
val−1(− val(𝑠)). For 𝑈 =

⋃︀
𝑠∈𝑆 𝑈𝑠, the set

val(𝑈) = {(𝑎,−𝑎) | 𝑎 ∈ [0,∞)}

is then neither bounded from below, nor from above, even though val(𝑆) is bounded
from below and all of the sets val(𝑈𝑠) are singletons.

On several occasions in the remainder of this section, the following criterion for in-
tegrability of a function obtained as in Notation 4.4.6 will be useful. Albeit a bit
technical, it also works well for an unbounded parameter set 𝑆 ⊂ RV*

* and hence has
a much broader scope than the criterion mentioned just before Remark 4.4.8.
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Lemma 4.4.9. Let 𝑆 ⊂ RV*
* be 𝑍-definable, let f : 𝑈 → pΓ be a 𝑍-definable

integrable function with 𝑈 ⊂ 𝑆 × RV*
* and let (h𝑠)𝑠∈𝑆 be a 𝑍-definable family of

integrable functions.

Suppose that there is some element 𝛾 ∈ pΓ with max(im(h𝑠)) ≤ 𝛾 ·max(im(f(𝑠, ∙)))
for all 𝑠 ∈ 𝑆. Then the 𝑍-definable function h =

⨆︀
𝑠∈𝑆 h𝑠 given by

h :
⋃︁
𝑠∈𝑆
{𝑠} × dom(h𝑠)→ pΓ

(𝑠,𝑤) ↦→ h𝑠(𝑤)

is integrable.

Proof. We have to show that im(h) ⊂ pΓ is bounded from above and that the fiber
h−1(𝛼) is bounded for each 𝛼 ∈ im(h). Firstly, note that we have

max(im(h𝑠)) ≤ 𝛾 ·max(im(f(𝑠,∙))
≤ 𝛾 ·max(im(f))

(4.7)

for all 𝑠 ∈ 𝑆, implying that im(h) is indeed bounded from above since im(f) is.

Now fix any 𝛼 ∈ pΓ and consider the set

𝑆𝛼 = {𝑠 ∈ 𝑆 | 𝛾 ·max(im(f(𝑠,∙)) ≥ 𝛼}
= {𝑠 ∈ 𝑆 | ∃𝛽 ∈ im(f(𝑠,∙)) : 𝛾−1 · 𝛼 ≤ 𝛽}

= pr𝑆

⎛⎝⋃︁
𝛽∈B

f−1(𝛽)

⎞⎠ ,

where the union runs over the bounded (𝑍 ∪ {𝛼, 𝛾})-definable set

B = {𝛽 ∈ pΓ | 𝛾−1 · 𝛼 ≤ 𝛽 ≤ max(im(f))}.

Since f is integrable, the fiber f−1(𝛽) is bounded for all 𝛽. By Remark 4.4.8, the set
𝑆𝛼 is thus the projection of a bounded set, and hence itself bounded.

For 𝑠 ∈ pr𝑆(h
−1(𝛼)), i.e., for 𝛼 ∈ im(h𝑠), we have 𝛼 ≤ 𝛾 · max(im(f(𝑠,∙))) by the

assumption, and hence 𝑠 ∈ 𝑆𝛼. Thus pr𝑆(h−1(𝛼)) ⊂ 𝑆𝛼, so that the fiber

h−1(𝛼) = {(𝑠,𝑢) | 𝑢 ∈ h−1
𝑠 (𝛼)}

=
⋃︁

𝑠∈pr𝑆(h−1(𝛼))

{𝑠} × h−1
𝑠 (𝛼)

=
⋃︁

𝑠∈𝑆𝛼

{𝑠} × h−1
𝑠 (𝛼)

is bounded for all 𝛼 ∈ pΓ by Remark 4.4.8.
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Let us now finally prove that pointwise equality of integrals implies uniform equality
of integrals. We first handle the case of families of integrable functions with finite
images. The general case then follows by using the results of Section 4.3.

Lemma 4.4.10 (Pointwise equality of integrals implies uniform equality of inte-
grals if images are finite). Suppose that Γ ̸= Z. Let 𝑆 be a 𝑍-definable subset of
RV*

* and let (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 be two 𝑍-definable families of integrable func-
tions on RV*

* over 𝑆. If im(f𝑠) and im(g𝑠) are finite for all 𝑠 ∈ 𝑆 and (f𝑠)𝑠∈𝑆 and
(g𝑠)𝑠∈𝑆 have pointwise equal integrals, then they have uniformly equal integrals.

Moreover, if both of the 𝑍-definable functions f =
⨆︀

𝑠∈𝑆 f𝑠 and g =
⨆︀

𝑠∈𝑆 g𝑠 are
integrable, then we also have

∫︀
mot

f =
∫︀
mot

g in 𝑅mot(𝑍).

Proof. First note that it suffices to partition 𝑆 into finitely many 𝑍-definable pieces
and then show the claim on each piece individually. We will do this several times in
the proof. (For the “moreover”-part, consider a partition of 𝑆 into finitely many 𝑍-
definable sets 𝑆𝑖 and note that f is then integrable if and only if all of the 𝑍-definable
functions f𝑖 =

⨆︀
𝑠∈𝑆𝑖

f𝑠 are integrable.)

For a start, this procedure allows us to restrict to the case that val is injective on 𝑆
(just as in the proof of Proposition 4.2.4).

Now, we want to further restrict to the case that # im(f𝑠) is constant on 𝑆. Note
that im(f𝑠) is a 𝑍-definable family of subsets of pΓ over the parameter set 𝑆. By
Lemma 3.1.8, applied to 𝑋 = {(𝑠, 𝑎) ∈ 𝑆 × Γ | p−𝑎 ∈ im(f𝑠)}, there are finitely many
𝑍-definable functions 𝑎𝑖 : 𝑆 → Γ and 𝑏𝑖 : 𝑆 → Γ and 𝑑𝑖 ∈ N>0, for 𝑖 = 1, . . . , 𝑘, such
that we have

im(f𝑠) =
{︀
p−𝑎 | 𝑎 ∈

𝑘⋃︁
𝑖=1

[𝑎𝑖(𝑠), 𝑏𝑖(𝑠))𝑑𝑖
}︀

for all 𝑠 ∈ 𝑆. Thus, the map 𝑐 : 𝑆 → N ⊂ Γ given by 𝑐(𝑠) = # im(f𝑠) =
∑︀𝑘
𝑖=1

1
𝑑𝑖
·

(𝑏𝑖(𝑠) − 𝑎𝑖(𝑠)) is 𝑍-definable. Its image is hence finite by Corollary 3.1.5 (recall that
we are assuming Γ ̸= Z), so we can indeed assume that 𝑐(𝑠) = # im(f𝑠) is constant
on 𝑆. Analogously, we can assume that # im(g𝑠) is constant on 𝑆. Let 𝑁f = # im(f𝑠)
and 𝑁g = # im(g𝑠) for any 𝑠 ∈ 𝑆. We now proceed by induction on 𝑁 := 𝑁f +𝑁g.

Induction base, 𝑁 ≤ 1. Note that the case 𝑁 = 1 cannot occur. Indeed the integral
of the empty function is 0, but the integral of any constant integrable function
on a non-empty set 𝑈 ⊂ RV*

* is not. (The latter follows, for example, from
Lemma 4.3.10.) In case 𝑁 = 0, all of the f𝑠 and hence all of the g𝑠 are empty
maps, so there is nothing to show.
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Induction step. Consider the maps 𝑎𝑖 : val(𝑆)→ Γ for 𝑖 = 1, . . . , 𝑁f and 𝑏𝑗 : val(𝑆)→
Γ for 𝑗 = 1, . . . , 𝑁g with

im(f𝑠) = {p−𝑎𝑖(val(𝑠)) | 𝑖 = 1, . . . , 𝑁f} and
im(g𝑠) = {p−𝑏𝑗(val(𝑠)) | 𝑗 = 1, . . . , 𝑁g}

satisfying 𝑎𝑖(val(𝑠)) < 𝑎𝑖+1(val(𝑠)) and 𝑏𝑗(val(𝑠)) < 𝑏𝑗+1(val(𝑠)) for all appro-
priate 𝑖, 𝑗 and all 𝑠 ∈ 𝑆. Note that these maps are well-defined, since val is
injective on 𝑆, and 𝑍-definable. Up to another partition of 𝑆 into finitely many
𝑍-definable pieces, we can thus assume that all of the maps 𝑎𝑖 and 𝑏𝑗 are linear.
By Corollary 2.3.6, we can moreover assume that, for all 𝑖 and all 𝑗,

///≡≡f−1
𝑠 (𝑝−𝑎𝑖(val(𝑠))) and ///≡≡g−1

𝑠 (𝑝−𝑏𝑗(val(𝑠)))

are polynomial in val(𝑠) with coefficients in 𝐾Γ
𝑏 (𝑍) ⊗ Q. Up to yet another

partition, we can assume that val(𝑆) is a Presburger cell.

We proceed by a case distinction on whether the differences 𝑎𝑖+1−𝑎𝑖 and 𝑏𝑗+1−𝑏𝑗
are constantly equal to integers.

Case 1: There is an 𝑖 for which 𝑎𝑖+1 − 𝑎𝑖 is constantly equal to an integer.

Fix any such 𝑖 and let 𝑑 ∈ Z with 𝑎𝑖+1(val(𝑠)) − 𝑎𝑖(val(𝑠)) = 𝑑 for all
𝑠 ∈ 𝑆. Note that 𝑑 > 0 and consider the 𝑍-definable family of integrable
functions (f′𝑠)𝑠∈𝑆 given by

dom(f′𝑠) = (𝑈𝑠 × 𝐹 ) ∪ ((dom(f𝑠) ∖ 𝑈𝑠)× {0}) with

f′𝑠(𝑢,𝑓) = 𝑝−𝑎𝑖+1(val(𝑠)) for 𝑢 ∈ 𝑈𝑠,𝑓 ∈ 𝐹 and

f′𝑠(𝑢,𝑓) = f𝑠(𝑢) for 𝑢 /∈ 𝑈𝑠,𝑓 = 0

where 𝑈𝑠 = f−1
𝑠 (𝑝−𝑎𝑖(val(𝑠))) and 𝐹 ⊂ RV*

* is a finite 𝑍-definable set of
cardinality #𝐹 = 𝑝𝑑 with 0 ∈ 𝐹 . Then we have

[(f𝑠)𝑠∈𝑆 ]− [(f′𝑠)𝑠∈𝑆 ]

= [(const𝑈𝑠(𝑝
−𝑎𝑖(val(𝑠))))𝑠∈𝑆 ]− [(const𝑈𝑠×𝐹 (𝑝

−𝑎𝑖+1(val(𝑠))))𝑠∈𝑆 ],
(4.8)

which is the product of

[(const𝑈𝑠(𝑝
−𝑎𝑖(val(𝑠))))𝑠∈𝑆 ]

and

[(const{0}(1))𝑠∈𝑆 ]− [(const𝐹 (𝑝
−𝑑))𝑠∈𝑆 ].

Note that the latter lies in (p − 𝑝)𝑆 , as the appearing functions do not
actually depend on 𝑠 ∈ 𝑆 and we have∫︁

mot

const{0}(1) = 1 · ///≡≡{0} = 1 = 𝑝−𝑑 · ///≡≡𝐹 =

∫︁
mot

const𝐹 (𝑝
−𝑑)
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by Remark 4.1.8. Put together, we have [(f𝑠)𝑠∈𝑆 ]− [(f′𝑠)𝑠∈𝑆 ] ∈ (p−𝑝)𝑆 , i.e.,
the families (f𝑠)𝑠∈𝑆 and (f′𝑠)𝑠∈𝑆 have uniformly equal integrals. In particu-
lar, by Remark 4.4.2, they have pointwise equal integrals and thus, so have
(f′𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 . As # im(f′𝑠) = # im(f𝑠)− 1, the induction hypothesis
now implies that (f′𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 have uniformly equal integrals, and
hence, so have (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 .

For the “moreover”-part, now assume that f and g are integrable and consider
the 𝑍-definable functions

f′ :
⋃︁
𝑠∈𝑆
{𝑠} × dom(f′𝑠)→ pΓ

(𝑠,𝑢,𝑓) ↦→ f′𝑠(𝑢,𝑓)

and h :
⋃︁
𝑠∈𝑆
{𝑠} × 𝑈𝑠 → pΓ

(𝑠,𝑢) ↦→ 𝑝−𝑎𝑖(val(𝑠)).

Let us now show that both f′ and h are integrable, so that the equality
(4.8), rewritten as

[(f𝑠)𝑠∈𝑆 ] + [(h𝑠)𝑠∈𝑆 ] · [(const𝐹 (𝑝−𝑑))𝑠∈𝑆 ]
= [(f′𝑠)𝑠∈𝑆 ] + [(h𝑠)𝑠∈𝑆 ] · [(const{0}(1))𝑠∈𝑆 ],

yields

[f]− [f′] = [h] · ([const{0}(1)]− [const𝐹 (𝑝
−𝑑)]⏟  ⏞  

∈(p−𝑝)Q by Remark 4.1.8

),

by Remark 4.4.7, showing that
∫︀
mot

f =
∫︀
mot

f′.

Indeed, we have im(f′) =
⋃︀

𝑠∈𝑆 im(f′𝑠) ⊂
⋃︀

𝑠∈𝑆 im(f𝑠) = im(f), and similarly
im(h) ⊂ im(f), so the images of f′ and h are bounded from above. Further
note that, for each 𝛼 ∈ pΓ, the fiber (f′)−1(𝛼) is contained in the union of
the two sets

f−1(𝛼)× {0}

and

{(𝑠,𝑢) | 𝑠 ∈ 𝑆,𝑢 ∈ 𝑈𝑠 = f−1
𝑠 (p−𝑎𝑖(val(𝑠))), 𝛼 = p−𝑎𝑖+1(val(𝑠))} × 𝐹

⊂ f−1(p𝑑 · 𝛼)× 𝐹 ,

both of which are bounded because f is integrable. Similarly, the fiber
h−1(𝛼) is contained in

{(𝑠,𝑢) | 𝑠 ∈ 𝑆,𝑢 ∈ 𝑈𝑠 = f−1
𝑠 (p−𝑎𝑖(val(𝑠))), 𝛼 = p−𝑎𝑖(val(𝑠))}

= f−1(𝛼),

and hence bounded. Thus both f′ and h are integrable, implying
∫︀
mot

f =∫︀
mot

f′ by Remark 4.4.7.
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Case 2: There is a 𝑗 for which 𝑏𝑗+1 − 𝑏𝑗 is constantly equal to an integer.

Completely analogous to Case 1.

Case 3: None of 𝑎𝑖+1 − 𝑎𝑖 or 𝑏𝑗+1 − 𝑏𝑗 is constantly equal to any integer.

(Note that this in particular includes the case 𝑁f = 𝑁g = 1.)

Recall that val(𝑆) is a Presburger cell by our current assumptions (after
partitioning 𝑆 if necessary).

We now want to apply Proposition 3.3.3, but cannot directly assume val(𝑆)
to be bounded. Lemma 3.3.5 can be used to obtain a bounded definable
subset, but this requires a parameter set larger than Z. Thus, we temporar-
ily work with the parameter set 𝑍 ′ = Γ instead of 𝑍, if needed. (In case
𝑍 ̸= Z, just set 𝑍 ′ = 𝑍.) By Lemma 3.3.5 we can then indeed (repeatedly)
apply Proposition 3.3.3 to obtain a 𝑍 ′-definable subset 𝑆′ ⊂ 𝑆 for which
val(𝑆′) is a Presburger cell of the same shape as val(𝑆), and for which we
have

((𝑎𝑖+1 − 𝑎𝑖) ∘ val)(𝑆′) > Z as well as

((𝑏𝑗+1 − 𝑏𝑗) ∘ val)(𝑆′) > Z

for all 𝑖 = 1, . . . , 𝑁f− 1 and all 𝑗 = 1, . . . , 𝑁g− 1. In other words, f𝑠 and g𝑠
are then reduced for all 𝑠 ∈ 𝑆′.

Now consider the difference 𝑑 = (𝑏1 − 𝑎1) ∘ val as a linear 𝑍-definable
function on 𝑆. For each 𝑠 ∈ 𝑆′, as we have

∫︀
mot

f𝑠 =
∫︀
mot

g𝑠, Lemma 4.4.5
(1) implies that 𝑑(𝑠) is an integer with

///≡≡f−1
𝑠 (𝑝−𝑎1(val(𝑠))) = 𝑝−𝑑(𝑠) · ///≡≡g−1

𝑠 (𝑝−𝑏1(val(𝑠))).

Moreover, since 𝑑(𝑆′) ⊂ Z, Proposition 3.3.3 ensures that 𝑑 is constant
on 𝑆′. Since we have aff(val(𝑆′)) = aff(val(𝑆)) by Corollary 3.2.14, this
already means that 𝑑 is constant on all of 𝑆. In particular, we have

///≡≡f−1
𝑠 (𝑝−𝑎1(val(𝑠))) = 𝑝−𝑑 · ///≡≡g−1

𝑠 (𝑝−𝑏1(val(𝑠))) (4.9)

for all 𝑠 ∈ 𝑆′, where 𝑑 ∈ Z is given by 𝑑 = (𝑏1 − 𝑎1)(val(𝑠)) for any (all)
𝑠 ∈ 𝑆. Recall that the terms on both sides of (4.9) are polynomial in val(𝑠)
on all of 𝑆, with coefficients in 𝐾Γ

𝑏 (𝑍) ⊗ Q. As val(𝑆′) is a Presburger
cell of the same shape as val(𝑆), Remark 3.3.8 therefore implies that (4.9)
already holds for all 𝑠 ∈ 𝑆. (Note that the assumption Γ ⊂ 𝑅 is not actually
satisfied for 𝑅 = 𝐾Γ

𝑏 (𝑍)⊗Q, hence we cannot apply Corollary 3.3.7 directly
and resort to the variant described in the Remark.)
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Hence we have
∫︀
mot

f0,𝑠 =
∫︀
mot

g0,𝑠 and thus
∫︀
mot

f1,𝑠 =
∫︀
mot

g1,𝑠 for

f0,𝑠 := f𝑠↾𝑈𝑠 = const𝑈𝑠(𝑝
−𝑎1(val(𝑠))),

g0,𝑠 := g𝑠↾𝑉𝑠 = const𝑉𝑠(𝑝
−𝑏1(val(𝑠))),

f1,𝑠 := f𝑠↾(dom(f𝑠) ∖ 𝑈𝑠), and

g1,𝑠 := g𝑠↾(dom(g𝑠) ∖ 𝑉𝑠),

where 𝑈𝑠 = f−1
𝑠 (𝑝−𝑎1(val(𝑠))) ⊂ dom(f𝑠) and 𝑉𝑠 = g−1

𝑠 (𝑝−𝑏1(val(𝑠))) ⊂
dom(g𝑠). Note that we have

[(f0,𝑠)𝑠∈𝑆 ] = [(const𝑈𝑠(𝑝
−𝑎1(val(𝑠))))𝑠∈𝑆 ]

= 𝑝−𝑑 · [(const𝑉𝑠(𝑝
−𝑎1(val(𝑠))))𝑠∈𝑆 ]

as ///≡≡𝑉𝑠 = 𝑝𝑑 · ///≡≡𝑈𝑠 for all 𝑠 ∈ 𝑆 by (4.9). Moreover,

[(g0,𝑠)𝑠∈𝑆 ] = [(const𝑉𝑠(𝑝
−𝑏1(val(𝑠))))𝑠∈𝑆 ]

= [(const𝑉𝑠(𝑝
−𝑎1(val(𝑠))−𝑑))𝑠∈𝑆 ].

Thus, their difference [(f0,𝑠)𝑠∈𝑆 ]− [(g0,𝑠)𝑠∈𝑆 ] is the product of

[(const𝑉𝑠(𝑝
−𝑎1(val(𝑠))))𝑠∈𝑆 ]

and

𝑝−𝑑 · [(const{0}(1))𝑠∈𝑆 ]− [(const{0}(p
−d))𝑠∈𝑆 ],

the latter of which lies in (p − 𝑝)Q𝑆 , as these families are constant and we
have 𝑝−𝑑 ·

∫︀
mot

const{0}(1) = 𝑝−𝑑 =
∫︀
mot

const{0}(p
−d) by Remark 4.1.8.

Therefore, the families (f0,𝑠)𝑠∈𝑆 and (g0,𝑠)𝑠∈𝑆 have uniformly equal inte-
grals. Lastly, the induction hypothesis implies that the families (f1,𝑠)𝑠∈𝑆
and (g1,𝑠)𝑠∈𝑆 have uniformly equal integrals. Since [(f𝑠)𝑠∈𝑆 ] = [(f0,𝑠)𝑠∈𝑆 ]+
[(f1,𝑠)𝑠∈𝑆 ] and [(g𝑠)𝑠∈𝑆 ] = [(g0,𝑠)𝑠∈𝑆 ] + [(g1,𝑠)𝑠∈𝑆 ], this finishes the proof.

The “moreover”-part follows just as in Case 1: Firstly, note that f𝑖 =
⨆︀
f𝑖,𝑠

and g𝑖 =
⨆︀
g𝑖,𝑠 are integrable for 𝑖 = 0, 1, since they are merely restrictions

of the integrable functions f =
⨆︀
f𝑠 and g =

⨆︀
g𝑠 respectively.

Secondly, consider the 𝑍-definable function h =
⨆︀

h𝑠, where

h𝑠 = const𝑉𝑠(𝑝
−𝑎1(val(𝑠))).

Similar to above, h is then integrable. Indeed, its image is contained in
im(f), and hence bounded from above, and for each 𝛼 ∈ pΓ we have

h−1(𝛼) ⊂ g−1(p−𝑑 · 𝛼),
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using that 𝑏1(val(𝑠)) = 𝑑+𝑎1(val(𝑠)). As before, Remark 4.4.7 thus yields∫︀
mot

f0 =
∫︀
mot

g0, and the induction hypothesis yields
∫︀
mot

f1 =
∫︀
mot

g1.
Put together, we obtain∫︁

mot

f =

∫︁
mot

f0 +

∫︁
mot

f1 =

∫︁
mot

g0 +

∫︁
mot

g1 =

∫︁
mot

g

as claimed.

Collecting the previous results, we can now show that two arbitrary families of in-
tegrable functions that have pointwise equal integrals already have uniformly equal
integrals. More precisely, this is a consequence of Lemma 4.4.10, where we handled
this same statement for families of integrable functions with finite images, and Theo-
rem 4.3.8 (“Finite images are enough”).

Lemma 4.4.11 (Pointwise equality of integrals implies uniform equality of inte-
grals). Suppose that Γ ̸= Z. Let 𝑆 be a 𝑍-definable subset of RV*

* and let (f𝑠)𝑠∈𝑆
and (g𝑠)𝑠∈𝑆 be two 𝑍-definable families of integrable functions on RV*

* over 𝑆.

If (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 have pointwise equal integrals, then they have uniformly
equal integrals.

Proof. The assumptions (in particular) mean that we have
∫︀
mot

f𝑠 =
∫︀
mot

g𝑠 for all 𝑠 ∈
𝑆. The isomorphism between (𝐾int,𝑆(𝑍)⊗Q)/(p−𝑝)Q𝑆 and (𝐾fin

int,𝑆(𝑍)⊗Q)/(p−𝑝)Q,fin𝑆

from Theorem 4.3.8, together with Remark 4.1.11, yields 𝑍-definable families (f⋆𝑠)𝑠∈𝑆
and (g⋆𝑠)𝑠∈𝑆 of integrable functions on RV*

* for which we have

[(f𝑠)𝑠∈𝑆 ]− [(g𝑠)𝑠∈𝑆 ] ≡ [(f⋆𝑠)𝑠∈𝑆 ]− [(g⋆𝑠)𝑠∈𝑆 ] (mod (p− 𝑝)Q𝑆), (4.10)

where im(f⋆𝑠) and im(g⋆𝑠) are finite for all 𝑠 ∈ 𝑆. By Remark 4.4.2, this implies∫︁
mot

f⋆𝑠 −
∫︁
mot

g⋆𝑠 =

∫︁
mot

f𝑠 −
∫︁
mot

g𝑠 = 0 for all 𝑠 ∈ 𝑆,

i.e., the families (f⋆𝑠)𝑠∈𝑆 and (g⋆𝑠)𝑠∈𝑆 have pointwise equal integrals. By Lemma 4.4.10,
they then already have uniformly equal integrals, and hence, equation (4.10) implies
that (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 have uniformly equal integrals, as claimed.

As the final result of this chapter, we now also want to prove the “moreover”-part of
Lemma 4.4.10 in the general case.

Lemma 4.4.12. Suppose that Γ ̸= Z. Let 𝑆 ⊂ RV*
* be 𝑍-definable and let

(f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 be two 𝑍-definable families of integrable functions which have
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pointwise (and hence uniformly) equal integrals, i.e., for which we have∫︁
mot

f𝑠 =

∫︁
mot

g𝑠 for all 𝑠 ∈ 𝑆.

Suppose moreover that both of the 𝑍-definable functions f =
⨆︀

𝑠∈𝑆 f𝑠 and g =⨆︀
𝑠∈𝑆 g𝑠 are integrable.

Then we have
∫︀
mot

f =
∫︀
mot

g.

Proof. We will reduce the claim to the special case in which im(f𝑠) and im(g𝑠) are finite
for all 𝑠 ∈ 𝑆, and which we already handled in (the “moreover”-part of) Lemma 4.4.10.

Step 1: Rewriting the integrals of f and (f𝑠)𝑠∈𝑆. The aim of this step is to find two
𝑍-definable families of integrable functions (f+𝑠 )𝑠∈𝑆 and (f−𝑠 )𝑠∈𝑆 with finite im-
ages for which f+ =

⨆︀
𝑠∈𝑆 f

+
𝑠 and f− =

⨆︀
𝑠∈𝑆 f

−
𝑠 are integrable, and which more-

over satisfy

𝑚 ·
∫︁
mot

f =

∫︁
mot

f+ −
∫︁
mot

f− and

𝑚 ·
∫︁
mot

f𝑠 =

∫︁
mot

f+𝑠 −
∫︁
mot

f−𝑠

for all 𝑠 ∈ 𝑆, where 𝑚 ∈ N>0 is some (sufficiently large) integer.

Let 𝑓 = 𝜒𝑆([(f𝑠)𝑠∈𝑆 ]) ∈ P𝑆(𝑍) be the image of (the class of) the family (f𝑠)𝑠∈𝑆
under the isomorphism 𝜒𝑆 from Proposition 4.2.4. That is, 𝑓 : 𝑆×Γ→ 𝐾Γ

𝑏 (Γ)⊗Q
is the map given by 𝑓(𝑠, 𝑎) = ///≡≡f−1

𝑠 (p−𝑎) for 𝑠 ∈ 𝑆 and 𝑎 ∈ Γ. Note that

supp(𝑓) = {(𝑠, 𝑎) ∈ 𝑆 × Γ | 𝑓(𝑠, 𝑎) ̸= 0}
= {(𝑠, 𝑎) ∈ 𝑆 × Γ | ///≡≡f−1

𝑠 (p−𝑎) ̸= 0}
= {(𝑠, 𝑎) ∈ 𝑆 × Γ | p−𝑎 ∈ im(f𝑠)}

is then 𝑍-definable (since (f𝑠)𝑠∈𝑆 is). By Remark 4.3.7 there is an element
ℎ ∈ PQ

𝑆(𝑍) such that

𝑓 − ℎ · 𝑓p−𝑝,𝑆 ∈ PQ,fin
𝑆 (𝑍), (4.11)

where 𝑓p−𝑝,𝑆 = 𝑓𝑆×{−1},1−𝑝·𝑓𝑆×{0},1, and there is, moreover, an integer 𝑘 ∈ N>0

for which we have

supp(ℎ(𝑠, ∙)) ⊂ [min(supp(𝑓(𝑠, ∙)))− 𝑘,∞)

for all 𝑠 ∈ 𝑆. By Remark 4.2.5, we have 𝑚 ·ℎ ∈ P𝑆(𝑍) for sufficiently large 𝑚 ∈
N>0. Note that supp((𝑚 · ℎ)(𝑠, ∙)) = supp(ℎ(𝑠, ∙)). Now consider the preimage
of 𝑚 · ℎ under the isomorphism 𝜒𝑆 from Proposition 4.2.4. By Remark 4.1.11,
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it can be written as the difference of two generators of 𝐾int,𝑆(𝑍), i.e., there are
two 𝑍-definable families of integrable functions (h+𝑠 )𝑠∈𝑆 and (h−𝑠 )𝑠∈𝑆 for which
we have

𝜒𝑆([(h
+
𝑠 )𝑠∈𝑆 ]− [(h−𝑠 )𝑠∈𝑆 ]) = 𝑚 · ℎ (4.12)

Let 𝑎(𝑠) := min(supp(𝑓(𝑠, ∙))) and recall that we then have

supp((𝑚 · ℎ)(𝑠, ∙)) = supp(ℎ(𝑠, ∙)) ⊂ [𝑎(𝑠)− 𝑘,∞)

for all 𝑠 ∈ 𝑆. We thus have ///≡≡(h+𝑠 )−1(p−𝑎)− ///≡≡(h−𝑠 )−1(p−𝑎) = 𝑚 ·ℎ(𝑠, 𝑎) = 0 for
all 𝑎 < 𝑎(𝑠)− 𝑘, and hence [(h+𝑠 ↾𝑈𝑠)𝑠∈𝑆 ]− [(h−𝑠 ↾𝑉𝑠)𝑠∈𝑆 ] = 0 for the 𝑍-definable
families of sets

𝑈𝑠 = {𝑢 ∈ dom(h+𝑠 ) | h+𝑠 (𝑢) > p−𝑎(𝑠)+𝑘} and
𝑉𝑠 = {𝑣 ∈ dom(h−𝑠 ) | h−𝑠 (𝑣) > p−𝑎(𝑠)+𝑘}.

By replacing h+𝑠 and h−𝑠 with their restrictions to the complements of 𝑈𝑠 and 𝑉𝑠
respectively, we can therefore assume that 𝑈𝑠 and 𝑉𝑠 are empty for all 𝑠 ∈ 𝑆. In
other words, we then have

max(im(h+𝑠 ) ∪ im(h−𝑠 )) ≤ p−𝑎(𝑠)+𝑘 = p𝑘 ·max(im(f𝑠)) (4.13)

for all 𝑠 ∈ 𝑆, while still retaining (4.12). By Lemma 4.4.9, the two 𝑍-definable
functions h+ =

⨆︀
𝑠∈𝑆 h

+
𝑠 and h− =

⨆︀
𝑠∈𝑆 h

−
𝑠 are thus integrable.

Multiplying the equation (4.11) by 𝑚 and applying 𝜒−1
𝑆 yields

𝑚 · [(f𝑠)𝑠∈𝑆 ]− ([(h+𝑠 )𝑠∈𝑆 ]− [(h−𝑠 )𝑠∈𝑆 ]⏟  ⏞  
= 𝜒−1

𝑆 (𝑚·ℎ)

) · 𝜒−1
𝑆 (𝑓p−𝑝,𝑆) ∈ 𝐾fin

int,𝑆(𝑍),

where 𝜒−1
𝑆 (𝑓p−𝑝,𝑆) = [(const{0}(p))𝑠∈𝑆 ]− 𝑝 · [(const{0}(1))𝑠∈𝑆 ], i.e., we have

𝑚 · [(f𝑠)𝑠∈𝑆 ]− [(p · h+𝑠 )𝑠∈𝑆 ] + [(p · h−𝑠 )𝑠∈𝑆 ] + 𝑝 · [(h+𝑠 )𝑠∈𝑆 ]− 𝑝 · [(h−𝑠 )𝑠∈𝑆 ]
= [(f+𝑠 )𝑠∈𝑆 ]− [(f−𝑠 )𝑠∈𝑆 ]

(4.14)

for some 𝑍-definable families (f+𝑠 )𝑠∈𝑆 and (f−𝑠 )𝑠∈𝑆 whose images im(f+𝑠 ) and
im(f−𝑠 ) are finite for each 𝑠 ∈ 𝑆. Note that the set

im(f𝑠) ∪ im(p · h+𝑠 ) ∪ im(p · h−𝑠 ) ∪ im(h+𝑠 ) ∪ im(h−𝑠 )

is bounded from above by p𝑘+1 ·max(im(f𝑠)) by the inequality (4.13).

We continue just as above for (h+𝑠 )𝑠∈𝑆 and (h−𝑠 )𝑠∈𝑆 : Similar to the argument
there, the equality (4.14) implies [(f+↾𝑈𝑠)𝑠∈𝑆 ]− [(f−↾𝑉𝑠)𝑠∈𝑆 ] = 0 for

𝑈𝑠 = {𝑢 ∈ dom(f+𝑠 ) | f+𝑠 (𝑢) > p𝑘+1 ·max(im(f𝑠))} and
𝑉𝑠 = {𝑣 ∈ dom(f−𝑠 ) | f−𝑠 (𝑣) > p𝑘+1 ·max(im(f𝑠))}.
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We may therefore assume that 𝑈𝑠 and 𝑉𝑠 are empty, i.e., that we have

max(im(f+𝑠 ) ∪ im(f−𝑠 )) ≤ p𝑘+1 · im(f𝑠)

for all 𝑠 ∈ 𝑆, so that Lemma 4.4.9 implies that the two 𝑍-definable functions
f+ =

⨆︀
𝑠∈𝑆 f

+
𝑠 and f− =

⨆︀
𝑠∈𝑆 f

−
𝑠 are integrable.

Applying Remark 4.4.7 to the equation (4.14) now yields

𝑚 · [f]− [p · h+] + [p · h−] + 𝑝 · [h+]− 𝑝 · [h−]
= [f+]− [f−],

which we can rewrite as

𝑚 · [f]− ([f−]− [f+])

= [p · h+]− 𝑝 · [h+]− [p · h−] + 𝑝 · [h+]
= ([h+]− [h−]) · (const0(p)− 𝑝 · const0(1)) ∈ (p− 𝑝).

We thus have

𝑚 ·
∫︁
mot

f =

∫︁
mot

f+ −
∫︁
mot

f− and

𝑚 ·
∫︁
mot

f𝑠 =

∫︁
mot

f+𝑠 −
∫︁
mot

f−𝑠

for all 𝑠 ∈ 𝑆 by equation (4.14), as claimed.

Step 2: Rewriting the integrals of g and (g𝑠)𝑠∈𝑆. In the very same way as in Step
1, we can find an integer 𝑚′ ∈ N>0 and two 𝑍-definable families of integrable
functions (g+𝑠 )𝑠∈𝑆 and (g−𝑠 )𝑠∈𝑆 with finite images for which we have

𝑚′ ·
∫︁
mot

g =

∫︁
mot

g+ −
∫︁
mot

g− and

𝑚′ ·
∫︁
mot

g𝑠 =

∫︁
mot

g+𝑠 −
∫︁
mot

g−𝑠

for all 𝑠 ∈ 𝑆. Moreover, by replacing both 𝑚 and 𝑚′ with their maximum, we
can assume them to be equal. (Note that the only requirement for 𝑚 in Step 1
was that it needs to be sufficiently big.)

Step 3: Reducing to “better” functions. By Step 1 and Step 2, we have∫︁
mot

f+𝑠 −
∫︁
mot

f−𝑠 = 𝑚 ·
∫︁
mot

f𝑠 = 𝑚 ·
∫︁
mot

g𝑠 =

∫︁
mot

g+𝑠 −
∫︁
mot

g−𝑠

for all 𝑠 ∈ 𝑆. Rewritten as∫︁
mot

f+𝑠 +

∫︁
mot

g−𝑠 =

∫︁
mot

g+𝑠 +

∫︁
mot

f−𝑠 ,
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this means that the two 𝑍-definable families of integrable functions (f′𝑠)𝑠∈𝑆 =
(f+𝑠 ⊔ g−𝑠 )𝑠∈𝑆 and (g′𝑠)𝑠∈𝑆 = (g+𝑠 ⊔ f−𝑠 )𝑠∈𝑆 have pointwise equal integrals. Note
that the images of f′𝑠 and g′𝑠 are finite for all 𝑠 ∈ 𝑆 and the 𝑍-definable functions

f′ = f+ ⊔ g− =
⨆︁
𝑠∈𝑆

(f+𝑠 ⊔ g−𝑠 ) =
⨆︁
𝑠∈𝑆

f′𝑠 and

g′ = g+ ⊔ f− =
⨆︁
𝑠∈𝑆

(g+𝑠 ⊔ f−𝑠 ) =
⨆︁
𝑠∈𝑆

g′𝑠

are integrable. We are therefore in the situation of the special case already han-
dled in (the “moreover”-part of) Lemma 4.4.11, which implies

∫︀
mot

f′ =
∫︀
mot

g′.
We thus obtain

𝑚 ·
∫︁
mot

f =

∫︁
mot

f+ −
∫︁
mot

f−

=

∫︁
mot

g+ −
∫︁
mot

g− = 𝑚 ·
∫︁
mot

g,

and therefore
∫︀
mot

f =
∫︀
mot

g. This completes the last step and hence the proof.

To end this section, let us state a slight reformulation of Lemma 4.4.12. While being
an equivalent statement, it provides another (possibly more intuitive) perspective,
starting from the functions f and g instead of the families (f𝑠)𝑠∈𝑆 and (g𝑠)𝑠∈𝑆 .

Remark 4.4.13. Suppose that Γ ̸= Z. Let f : 𝑈 → pΓ and g : 𝑉 → pΓ be two
𝑍-definable integrable functions with 𝑈 ⊂ RV*

* ×RV𝑛
𝑚 and 𝑉 ⊂ RV*

* ×RV𝑛
𝑚 for

some ℓ ∈ N>0 and 𝑚,𝑛 ∈ Nℓ>0.

Suppose that prRV𝑛
𝑚
(𝑈) = prRV𝑛

𝑚
(𝑉 ) =: 𝑆 and consider, for 𝑠 ∈ 𝑆, the 𝑍 ∪ {𝑠}-

definable functions

f(∙, 𝑠) : 𝑈𝑠 → pΓ

𝑢 ↦→ f(𝑢, 𝑠) and

g(∙, 𝑠) : 𝑉 𝑠 → pΓ

𝑣 ↦→ g(𝑣, 𝑠),

where 𝑈𝑠 = {𝑢 ∈ RV*
* | (𝑢, 𝑠) ∈ 𝑈} and 𝑉𝑠 = {𝑣 ∈ RV*

* | (𝑣, 𝑠) ∈ 𝑉 }. (Note that
these are integrable functions on RV*

* since f and g are.)

Then by (and equivalent to) Lemma 4.4.12, the equality
∫︀
mot

f(∙, 𝑠) =
∫︀
mot

g(∙, 𝑠)
for all 𝑠 ∈ 𝑆 already implies

∫︀
mot

f =
∫︀
mot

g.
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Let us briefly recall the most relevant aspects of our notation, as fixed in Section 1.2.

� K denotes a fixed elementary extension of Q𝑝,

� 𝒪 denotes its valuation ring,

� RV𝑚 = K×/(1 + 𝑝𝑚𝒪) ∪ {0} is the 𝑚-th RV-structure, for 𝑚 ∈ N>0,

� Γ denotes the value group (in additive notation),

� pΓ denotes the value group in multiplicative notation, canonicaly isomorphic to
Γ via 𝑎 ↦→ p−a,

� val : K → Γ ∪ {∞} denotes the valuation map (and we also write val : RV𝑚 →
Γ ∪ {∞}, and val : pΓ →𝐺, abusing notation),

� rv𝑚 : K→ RV𝑚 denotes the natural quotient map, extended to K by rv𝑚(0) = 0,

� 𝑀 is an arbitrary set 𝑀 ⊂ K ∪ Γ of parameters,

� parameters from 𝑍 = dcl(𝑀) ∩ Γ suffice when working with definable sets in Γ
or RV, see Lemma 2.2.6,

� ℬ≥𝑎(𝑥) = {𝑦 ∈ K | val(𝑦 − 𝑥) ≥ 𝑎} denotes the ball around 𝑥 of (additively
valuative) radius 𝑎 ̸=∞, which is never a singleton,

� “definable” means “definable with parameters” (but will mostly be avoided to
prevent confusion),

� RV𝑛
𝑚 is shorthand for

∏︀ℓ
𝑖=1 RV

𝑛𝑖
𝑚𝑖

, and

� “𝑀 -definable subset of K* × RV*
*” means “𝑀 -definable subset of K𝑒 × RV𝑛

𝑚 for
some 𝑒, ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0” (and similarly for 𝑍 as parameter set).

We work in the multi-sorted language ℒval with sorts for the valued field K, the value
group Γ and the sorts RV𝑚 for 𝑚 ∈ N>0; with the ring language ℒring on K, the
language of ordered abelian groups ℒoag on Γ, and the maps val : K → Γ ∪ {∞},
val : RV𝑚 → Γ ∪ {∞} and rv𝑚 : K → RV𝑚 between the sorts. However, as we are
only interested in definability, the exact choice of language does not actually matter
in most statements.

We can now employ our knowledge about integrable functions on RV*
* gained in Chap-

ter 4 to define an integral for functions on K. Using the notion of preparation from
[Clu+21], and since K ≽ Q𝑝 is 1-h-minimal, a definable subset of K can be partitioned
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into a (definable) family of particularly nice subsets parameterized by RV*
*. A similar

result holds for𝑀 -definable functions from (subsets of) K to pΓ, see Definition 5.1.1 (3)
and Lemma 5.1.3. Note that these partitions can also be obtained more or less directly
from the cell decomposition results in [Pas90], predating [Clu+21]. We cite the latter
for simplicity, since the formulation of the corresponding results fits our setting more
conveniently.

Working with these partitions, we construct the integral
∫︀
mot

f for (integrable) func-
tions f : 𝑋 → pΓ, with 𝑋 ⊂ K, by reducing to integrals of functions on RV*

* as studied
in Chapter 4. Family versions of the auxiliary preparation results, together with the
powerful Lemma 4.4.12 allow us to extend this construction to functions on K𝑛×RV*

*
by induction on 𝑛.

We perform this construction of the integral on K* × RV*
* in Section 5.1, including

some helpful statements for calculating it explicitly in some concrete cases.

In Section 5.2, we introduce the preliminaries to then establish a change-of-variables
formula, see Proposition 5.2.15.

Finally, the results about 𝑝-adic integration obtained in [CH21] also apply in our
situation, showing that the constructed motivic measure on K is the universal one.
This is the content of Section 5.3. We sketch the approach of [CH21] and explain how
to adapt it to the scope of this thesis.

In this part of the present thesis, it is often more intuitive to use multiplicative radii
for balls. More precisely, we define the ball of (multiplicative) radius 𝛼 ∈ pΓ around
𝑥 ∈ K as the set

ℬ≤𝛼(𝑥) = {𝑦 ∈ K | |𝑦 − 𝑥| ≥ 𝛼}.

Note that the ball of multiplicative radius 𝛼 = p−𝑎 is nothing but the ball of additive
radius 𝑎 = val(𝛼) around the same point. In formulas, we have ℬ≤𝛼(𝑥) = ℬ≥𝑎(𝑥)
for 𝛼 = p−𝑎 (i.e., val(𝛼) = 𝑎). In particular, ℬ≤1(0) = ℬ≥0(0) = 𝒪. Recall that we
do not consider singletons to be balls, reflected by only allowing 𝛼 ∈ pΓ in the above
definition, with 0 /∈ pΓ.

From now on, in all of this chapter, we work under the assumption K ̸= Q𝑝. Note that
this allows us to freely use the results of Chapter 3 and Chapter 4 that require Γ ̸= Z,
as Remark 2.2.8 the following remark shows.

5.1 Constructing the integral on K* × RV*
*

In order to construct the integral for functions on (definable subsets of) K*×RV*
*, we

first need some technical preliminaries.
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Definition 5.1.1. Let 𝑑, 𝑟 ∈ N>0 and let 𝑐 = (𝑐1, . . . , 𝑐𝑟) ∈ K𝑟. We define the
following notions.

(1) A (𝑐, 𝑑)-ball (which is not necessarily a ball) is a non-empty subset of K of
the form

(rv𝑐𝑑)
−1(𝑢) = {𝑥 ∈ K | rv𝑐𝑑(𝑥) = 𝑢},

for some 𝑢 ∈ RV𝑟𝑑, where rv𝑐𝑑(𝑥) denotes the tuple

rv𝑐𝑑(𝑥) = (rv𝑑(𝑥− 𝑐1), . . . , rv𝑑(𝑥− 𝑐𝑟)) ∈ RV𝑟𝑑.

We say that such a (𝑐, 𝑑)-ball is proper if (𝑢 ∈ RV×
𝑑 )

𝑟, and in that case, it
is truly a ball in the sense of the definition on p. 7 in Section 1.2.

(2) A subset 𝑋 ⊂ K is (𝑐, 𝑑)-prepared if it is a union of (𝑐, 𝑑)-balls.

(3) A function f : 𝑋 → pΓ is (𝑐, 𝑑)-prepared if 𝑋 = dom(f) is (𝑐, 𝑑)-prepared
and f is constant on (𝑐, 𝑑)-balls, i.e., if the value of f(𝑥) only depends on
rv𝑐𝑑(𝑥).

More generally, let 𝑐 : K𝑒 → K𝑟 be a function and let 𝑚,𝑛 ∈ Nℓ>0 for some ℓ ∈ N.
Then we define the following notions.

(4) A subset 𝐷 ⊂ K𝑒 ×K× RV𝑛
𝑚 is (𝑐, 𝑑)-prepared if the fiber

{𝑦 ∈ K | (𝑥, 𝑦,𝑢) ∈ 𝐷}

is (𝑐(𝑥), 𝑑)-prepared for each (𝑥,𝑢) ∈ K𝑒 × RV𝑛
𝑚.

(5) A function f : 𝐷 → pΓ is (𝑐, 𝑑)-prepared if f(𝑥, ∙,𝑢) is (𝑐(𝑥), 𝑑)-prepared for
each 𝑥 ∈ K𝑒 and each 𝑢 ∈ RV𝑛

𝑚, i.e., if its domain 𝐷 is (𝑐, 𝑑)-prepared and
the value of f(𝑥, 𝑦,𝑢) only depends on (𝑥, rv

𝑐(𝑥)
𝑑 (𝑦),𝑢).

Note that (rv𝑐𝑑)
−1(𝑢), for 𝑢 = (𝑢1, . . . , 𝑢𝑟) ∈ (RV×

𝑑 )
𝑟, is the intersection of the (finitely

many) balls

(rv𝑑)
−1(𝑢𝑖) + 𝑐𝑖 = ℬ≥val(𝑢𝑖)+𝑑(𝑐𝑖 + 𝑥𝑖)

for 𝑖 = 1, . . . , 𝑟, where the 𝑥𝑖 ∈ K are arbitrary with rv𝑑(𝑥𝑖) = 𝑢𝑖. Hence any proper
(𝑐, 𝑑)-ball is indeed a ball (and the non-proper ones are one-point sets). Moreover, by
the geometry of balls in K, we have

(rv𝑐𝑑)
−1(𝑢) =

𝑟⋂︁
𝑖=1

rv−1
𝑑 (𝑢𝑗) + 𝑐𝑖 = rv−1

𝑑 (𝑢𝑗) + 𝑐𝑗

for any 𝑗 ∈ {1, . . . , 𝑟} satisfying val(𝑢𝑗) = max{val(𝑢1), . . . , val(𝑢𝑟)}. In particular,
for fixed 𝑐 ∈ K𝑟, the radius of the (𝑐, 𝑑)-ball (rv𝑐𝑑)

−1(𝑢) only depends on 𝑑 and 𝑢
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(given that (rv𝑐𝑑)
−1(𝑢) is non-empty for that choice of 𝑑 and 𝑢 – otherwise it is not

a (𝑐, 𝑑)-ball). We will also denote it by rad𝑑(𝑢) ∈ pΓ, construing rad𝑑 as a function
from RV𝑟𝑑 to Γ ∪ {∞} (for any 𝑟 ∈ N, abusing notation) given by

rad𝑑(𝑢) = p−𝑑−max{val(𝑢1),...,val(𝑢𝑟)}.

(Note that rad𝑑(𝑢) = p−∞ = 0 if we have 𝑢𝑖 = 0 for at least one 𝑖, hence the above
readily extends to non-proper (𝑐, 𝑑)-balls, i.e., points.)

Given 𝑐 ∈ K𝑟, 𝑐′ ∈ K𝑟
′
with 𝑟′ ≥ 𝑟 and pr≤𝑟(𝑐

′) = 𝑐, as well as 𝑑 ∈ N>0, note
that any (𝑐, 𝑑)-ball can be written as the disjoint union of (perhaps infinitely many)
(𝑐′, 𝑑)-balls. How many (𝑐′, 𝑑)-balls one needs depends on the distance of the 𝑐′𝑖 to the
given (𝑐, 𝑑)-ball; for a more detailed analysis in the case 𝑟′ = 𝑟 + 1, see also the case
distinction in the proof of Lemma 5.1.11 (2).

As the wording suggests, our notion of “being prepared” is closely related to the one
from [Clu+21]. The following Remark 5.1.2 makes this precise.

Remark 5.1.2. For 𝑒 = ℓ = 0, an 𝑀 -definable function f : 𝑋 → pΓ is (𝑐, 𝑑)-
prepared in the sense of our Definition 5.1.1 (3) above if and only if f is p−𝑑+1-
prepared by the corresponding finite set 𝐶 = {𝑐1, . . . , 𝑐𝑟} ⊂ K in the sense of
[Clu+21, Definition 2.1.1 (1)].

In particular, note that “preparation is first order” by [Clu+21, Lemma 2.3.1 (3)],
i.e., whether a function is prepared by some tuple can be expressed by a first
order formula.

Lemma 5.1.3 (Definable functions can be prepared.). Let f : 𝐷 → pΓ be an
𝑀 -definable function with domain 𝐷 ⊂ K𝑒 × K × RV𝑛

𝑚 for some 𝑒, ℓ ∈ N and
𝑚,𝑛 ∈ Nℓ>0. Then the following hold.

(1) There are 𝑑, 𝑟 ∈ N>0 and an 𝑀 -definable function 𝑐 : K𝑒 → K𝑟 such that f
is (𝑐, 𝑑)-prepared.

(2) Suppose that f is (𝑐, 𝑑)-prepared for some 𝑑, 𝑟 ∈ N>0 and some function
𝑐 : K𝑒 → K𝑟. Let 𝑑′, 𝑟′ ∈ N>0 with 𝑑′ ≥ 𝑑 and 𝑟′ ≥ 𝑟 and let 𝑐′ : K𝑒 → K𝑟

′

be any function with pr≤𝑟 ∘𝑐′ = 𝑐.

Then f is also (𝑐′, 𝑑′)-prepared. (In particular, 𝐷 is also (𝑐′, 𝑑′)-prepared.)

Proof. Part (2) follows immediately from the definition of “being prepared”, i.e., Defi-
nition 5.1.1 (5). Part (1) follows from [Clu+21, Proposition 2.3.2] and a compactness
argument:

Case 1, 𝑒 = 0. By [Clu+21, Proposition 2.3.2] and Remark 5.1.2, f is (𝑐, 𝑑)-prepared
for some 𝑑, 𝑟 ∈ N and some finite 𝑀 -definable tuple 𝑐 ∈ K𝑟.
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Case 2, 𝑒 > 0. First note that we can assume that 𝑀 is finite, since any formula
defining f can only use finitely many elements of𝑀 . For 𝑑, 𝑟 ∈ N>0, let 𝜙𝑑,𝑟(𝑥, 𝑐)
be the ℒval(𝑀)-formula which holds in K if and only if 𝑥 ∈ K𝑒 ∖ pr1(𝐷) or
f(𝑥, ∙,∙) is (𝑐, 𝑑)-prepared, where 𝑐 = (𝑐1, . . . , 𝑐𝑟).

Temporarily fix 𝑥 ∈ K𝑒. By Case 1, there are 𝑑, 𝑟 ∈ N>0 and an (𝑀 ∪ {𝑥})-
definable tuple 𝑐𝑥 ∈ K𝑟 such that f(𝑥, ∙,∙) is (𝑐𝑥, 𝑑)-prepared. Let 𝜓𝑟,𝑥(𝑦, 𝑐) be
an ℒval(𝑀)-formula defining 𝑐𝑥, i.e., for which

K |= 𝜓𝑟,𝑥(𝑥, 𝑐) holds if and only if 𝑐 = 𝑐𝑥

for all 𝑐 ∈ K𝑒.

For each tuple (𝑑, 𝑟, 𝜓) with (𝑑, 𝑟) ∈ N2
>0 and 𝜓 ∈ {𝜓𝑟,𝑥 | 𝑥 ∈ K𝑒}, consider the

set

𝑃𝑑,𝑟,𝜓 = {𝑦 ∈ K𝑒 | K |= (∃=1𝑐 : 𝜓(𝑦, 𝑐)) ∧ ∀𝑐 : (𝜓(𝑦, 𝑐)→ 𝜙𝑑,𝑟(𝑦, 𝑐))}.

The (countable) union of the sets 𝑃𝑑,𝑟,𝜓 is then all of K𝑒 by Case 1, and this ar-
gument works in all models of Th(K) in the language ℒval(𝑀). By compactness,
there are thus finitely many tuples (𝑑𝑖, 𝑟𝑖, 𝜓𝑖) with (𝑑𝑖, 𝑟𝑖) ∈ N2

>0 and 𝜓𝑖 ∈ {𝜓𝑟𝑖,𝑥}
such that

⋃︀
𝑖 𝑃𝑑𝑖,𝑟𝑖,𝜓𝑖 = K𝑒.

Using part (2), and by modifying the 𝜓𝑖 to include more coordinates if needed,
we can assume that there are 𝑑, 𝑟 ∈ N>0 with (𝑑𝑖, 𝑟𝑖) = (𝑑, 𝑟) for all 𝑖. To sum
up, we now have finitely many formulas 𝜓𝑖 ∈ {𝜓𝑟,𝑥 | 𝑥 ∈ K𝑒} defining maps
𝑔𝑖 : K

𝑒 → K𝑟 such that for each 𝑥 ∈ K𝑒, there is some 𝑖 for which f(𝑥, ∙,∙) is
(𝑔𝑖(𝑥), 𝑑)-prepared. Using [Clu+21, Lemma 2.3.1 (3)], this easily allows us to
construct from the 𝑔𝑖 a single function 𝑐 for which f is (𝑐, 𝑑)-prepared.

Let us now describe in more detail how to define
∫︀
mot

f for suitable f : 𝑋 → pΓ with
𝑋 ⊂ K. First, pick some 𝑑, 𝑟 ∈ N>0 and 𝑐 ∈ K𝑟 such that f is (𝑐, 𝑑)-prepared. Consider
then the function

̃︀f : 𝑈 → pΓ

𝑢 ↦→ f(𝑥) · rad𝑑(𝑢),

where the elements 𝑢 ∈ 𝑈 are in one-to-one correspondence to the (𝑐, 𝑑)-balls contained
in 𝑋, with rad𝑑(𝑢) ∈ pΓ being the (multiplicative) radius of the corresponding ball.
Suppose that ̃︀f is integrable as defined in Definition 4.1.1 (i.e., im(̃︀f) ⊂ pΓ is bounded
from above and each fiber of ̃︀f over pΓ is bounded in RV*

*). Relying on Chapter 4,
we can then set

∫︀
mot

f =
∫︀
mot
̃︀f. It remains to see that this definition does not depend

on the exact choices of 𝑑, 𝑟 ∈ N>0 and 𝑐 ∈ K𝑟. For functions on K* × RV*
*, the

construction is essentially the same, using recursion and induction.

Before proving that this yields a well-defined notion of integral, let us fix some useful
notations for the functions and sets involved.
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Remark and Notation 5.1.4. Let f : 𝐷 → pΓ be an 𝑀 -definable function with
domain 𝐷 ⊂ K𝑒 × K × RV𝑛

𝑚 for some 𝑒, ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0. Moreover, let
𝑑, 𝑟 ∈ N>0 and let 𝑐 : K𝑒 → K𝑟 be a function such that f is (𝑐, 𝑑)-prepared.

We then write f(𝑐,𝑑) for the (unique and well-defined) function with domain 𝐷(𝑐,𝑑)

given by

f(𝑐,𝑑)(𝑥, rv
𝑐(𝑥)
𝑑 (𝑦),𝑣) = f(𝑥, 𝑦,𝑣)

for all (𝑥, 𝑦,𝑣) ∈ 𝐷, where

𝐷(𝑐,𝑑) = {(𝑥,𝑢,𝑣) | 𝑢 = rv
𝑐(𝑥)
𝑑 (𝑦) for some (𝑥, 𝑦,𝑣) ∈ 𝐷}

⊂ K𝑒 × RV𝑟𝑑 × RV𝑛
𝑚.

Moreover, we write ˜︁f(𝑐,𝑑) for the function

˜︁f(𝑐,𝑑) : ˜︂𝐷(𝑐,𝑑) → pΓ

(𝑥,𝑢,𝑣) ↦→ f(𝑐,𝑑)(𝑥,𝑢,𝑣) · rad𝑑(𝑢)

= f(𝑥, 𝑦,𝑣) · rad𝑑(𝑢) for all 𝑦 ∈ K with rv
𝑐(𝑥)
𝑑 (𝑦) = 𝑢,

where

˜︂𝐷(𝑐,𝑑) = 𝐷(𝑐,𝑑) ∩ (K𝑒 × (RV×
𝑑 )

𝑟 × RV𝑛
𝑚)

= {(𝑥,𝑢,𝑣) ∈ 𝐷(𝑐,𝑑) | 𝑢𝑖 ̸= 0 for all 𝑖 = 1, . . . , 𝑟}.

Note that the (𝑐(𝑥), 𝑑)-ball (rv𝑐(𝑥)𝑑 )−1(𝑢) is proper for (𝑥,𝑢,𝑣) ∈ ˜︂𝐷(𝑐,𝑑), and
recall that rad𝑑(𝑢) = 𝑝−𝑑−max{val(𝑢1),...,val(𝑢𝑟)} is its (multiplicative) radius.

Note that both of the functions f(𝑐,𝑑) and ˜︁f(𝑐,𝑑) are 𝑀 -definable if f and 𝑐 are.

We have yet to define a criterion for integrability of functions from a subset 𝐷 ⊂
K* × RV*

* to pΓ.

Definition 5.1.5. Let 𝑀 ⊂ K ∪ Γ and let 𝑒 ∈ N>0. We recursively define an
𝑀 -definable function f : 𝐷 → pΓ with 𝐷 ⊂ K𝑒 × RV*

* to be integrable, if there
are 𝑑, 𝑟 ∈ N>0 and an 𝑀 -definable function 𝑐 : K𝑒 → K𝑟 such that

(1) f is (𝑐, 𝑑)-prepared, and

(2) the function ˜︁f(𝑐,𝑑) : K𝑒−1 × RV𝑟𝑑 × RV*
* → pΓ is integrable.
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Remark 5.1.6. Let f : 𝐷 → pΓ be an 𝑀 -definable function, with 𝐷 ⊂ K × RV*
*

whose domain 𝐷 is bounded and whose image im(f) ⊂ pΓ is bounded from above.
Then f is integrable.

Proof. By Lemma 5.1.3 (1), there are 𝑟, 𝑑 ∈ N and an 𝑀 -definable tuple 𝑐 ∈ K𝑟 for
which f is (𝑐, 𝑑)-prepared. By part (2) of the same lemma, we can assume that 𝑐𝑟 = 0.
Then we have

˜︁f(𝑐,𝑑)(rv𝑐𝑑(𝑥),𝑣) = f(𝑥,𝑣) · rad𝑑(rv𝑐𝑑(𝑥))
= f(𝑥,𝑣) · p−𝑑−max{val(𝑥−𝑐1),...,val(𝑥−𝑐𝑟)}

≤ f(𝑥,𝑣) · p−𝑑−val(𝑥−𝑐𝑟)

= f(𝑥,𝑣) · p−𝑑−val(𝑥),

yielding that im(˜︁f(𝑐,𝑑)) is bounded from above because both of the sets im(f) ⊂ pΓ and
{p−𝑑−val(𝑥) | 𝑥 ∈ pr1(𝐷)} ⊂ pΓ are, the latter since 𝐷 is bounded.

Now fix 𝛾 ∈ im(˜︁f(𝑐,𝑑)) and note that the fiber

(˜︁f(𝑐,𝑑))−1(𝛾) =
⋃︁

𝛼·𝛽=𝛾

{(rv𝑐𝑑(𝑥),𝑣) | f(𝑥,𝑣) = 𝛼, rad𝑑(rv
𝑐
𝑑(𝑥)) = 𝛽}

is a bounded union of bounded sets, since both 𝛼 and 𝛽 in the union above can be
bounded from above. By Remark 4.4.8, the fiber over 𝛾 is then bounded, for each
𝛾 ∈ im(˜︁f(𝑐,𝑑)), yielding the claim.

Example 5.1.7. Note that our Definition 5.1.5 covers a broader class of functions
than those mentioned in Remark 5.1.6. For example, the function

f : 𝑋 → pΓ

𝑥 ↦→ p
1
2 val(𝑥)

on the set 𝑋 = {𝑥 ∈ 𝒪 | val(𝑥) ∈ 2 · Γ≥0} is integrable, even though its image
is not bounded from above. Indeed, note that f is (𝑐, 𝑑)-prepared for 𝑐 = 0 and
𝑑 = 1, with

˜︂𝑋(𝑐,𝑑) = {𝑢 ∈ RV1 | val(𝑢) ∈ 2 · Γ≥0}
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and

˜︁f(𝑐,𝑑) : ˜︂𝑋(𝑐,𝑑) → pΓ

𝑢 ↦→ p
1
2 val(𝑢) · rad1(𝑢)

= p
1
2 val(𝑢) · p−1−val(𝑢)

= p−
1
2 val(𝑢)−1.

Clearly, im(˜︁f(𝑐,𝑑)) = {p−𝑎−1 | 𝑎 ∈ Γ≥0} is bounded from above by p−1, and for

each 𝛼 = p−𝑎−1 ∈ im(˜︁f(𝑐,𝑑)) the fiber

(˜︁f(𝑐,𝑑))−1(𝛼) = {𝑢 ∈ RV1 | val(𝑢) = 2 · 𝑎}

is even finite, and hence bounded. (And one easily calculates that
∫︀
mot

˜︁f(𝑐,𝑑) = 1,
by using that p = 𝑝 in 𝑅mot(𝑍).)

Similarly, g : K ∖ 𝒪 → pΓ, 𝑥 ↦→ p2·val(𝑥) is integrable even though its domain is
not bounded. (And one similarly calculates that

∫︀
mot

g = 1
𝑝 .)

Given an𝑀 -definable integrable function f : 𝐷 → pΓ which is (𝑐, 𝑑)-prepared for some
(𝑐, 𝑑), we now want to (recursively) define∫︁

mot

f :=

∫︁
mot

˜︁f(𝑐,𝑑).

To be able to do so, we have to prove that integrability of ˜︁f(𝑐,𝑑) as well as the value

of
∫︀
mot

˜︁f(𝑐,𝑑) do not depend on the exact choices of 𝑐 and 𝑑. The largest part of
this section is concerned with establishing the latter by an induction on 𝑒, where
dom(f) ⊂ K𝑒 × RV*

*.

Firstly, we need a result similar to Lemma 5.1.3 for integrability instead of prepara-
tion.

Lemma 5.1.8. Let f : 𝐷 → pΓ be an 𝑀 -definable function with domain 𝐷 ⊂
K𝑒 × K × RV𝑚

𝑚 for some 𝑒, ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0, let 𝑑, 𝑟 ∈ N>0 and let
𝑐 : K𝑒 → K𝑟 be an 𝑀 -definable function. Suppose that f is (𝑐, 𝑑)-prepared and

that ˜︁f(𝑐,𝑑) is integrable.

Then for any 𝑑′ ≥ 𝑑, 𝑟′ ≥ 𝑟 and any 𝑀 -definable function 𝑐′ : K𝑒 → K𝑟
′
with

pr≤𝑟 ∘𝑐′ = 𝑐, the function ˜︂f(𝑐′,𝑑′) is integrable. (Note that f is (𝑐′, 𝑑′)-prepared by
Lemma 5.1.3 (2).)

Proof. We proceed by induction on 𝑒 ∈ N.
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Induction base, 𝑒 = 0. Note that we have

˜︁f(𝑐,𝑑)(𝑣,𝑤) = f(𝑦,𝑤) · rad𝑑(𝑣) and
˜︂f(𝑐′,𝑑′)(𝑣

′,𝑤) = f(𝑦,𝑤) · rad𝑑′(𝑣′)

for all (𝑦,𝑤) ∈ 𝐷, where 𝑣 = rv𝑐𝑑(𝑦) and 𝑣′ = rv𝑐
′

𝑑′(𝑦).

For all 𝑦, we have the inequality

rad𝑑′(𝑣
′) = p−𝑑

′−max{val(𝑣′
1),...,val(𝑣

′
𝑟′ )}

= p−𝑑
′−max{val(𝑦−𝑐′

1),...,val(𝑦−𝑐′
𝑟′ )}

≤ p−𝑑
′−max{val(𝑦−𝑐′

1),...,val(𝑦−𝑐′
𝑟)}

= p−𝑑
′−max{val(𝑦−𝑐1),...,val(𝑦−𝑐𝑟)}

= p−𝑑
′−max{val(𝑣1),...,val(𝑣𝑟)}

= p𝑑−𝑑
′
· rad𝑑(𝑣),

yielding ˜︁f(𝑐,𝑑)(𝑣,𝑤) ≤ ˜︂f(𝑐′,𝑑′)(𝑣
′,𝑤) for all appropriate 𝑣, 𝑣′, and 𝑤. Since ˜︁f(𝑐,𝑑)

is integrable by assumption, Lemma 4.4.9 thus ensures that ˜︂f(𝑐′,𝑑′) is integrable.

Induction step, 𝑒 ≥ 1. For 𝑖 = 𝑒, . . . , 1, we recursively define 𝑑𝑖, 𝑟𝑖 ∈ N>0, 𝑐𝑖 : K𝑖−1 →
K𝑟𝑖 and functions

f(𝑖) : K𝑖 × (

𝑒∏︁
𝑗=𝑖+1

RV
𝑟𝑗
𝑑𝑗
)× RV𝑟𝑑 × RV𝑛

𝑚 → pΓ

g(𝑖) : K𝑖 × (

𝑒∏︁
𝑗=𝑖+1

RV
𝑟𝑗
𝑑𝑗
)× RV𝑟

′

𝑑′ × RV𝑛
𝑚 → pΓ

as follows: Firstly, set f(𝑒) = ˜︁f(𝑐,𝑑) and g(𝑒) = ˜︂f(𝑐′,𝑑′). For the recursion on 𝑖 =
𝑒, . . . , 1, choose 𝑑𝑖, 𝑟𝑖 ∈ N>0 and an 𝑀 -definable function 𝑐𝑖 : K

𝑖−1 → K𝑟𝑖 such

that both f(𝑖) and g(𝑖) are (𝑐𝑖, 𝑑)-prepared and ˜︂(f(𝑖))(𝑐𝑖,𝑑𝑖) is moreover integrable.
(This is possible by combining the induction hypothesis and Lemma 5.1.3 (2).)
Further set

f(𝑖−1) = ˜︂(f(𝑖))(𝑐𝑖,𝑑𝑖) and

g(𝑖−1) = ˜︂(g(𝑖))(𝑐𝑖,𝑑𝑖),

stopping with f(0) and g(0).

By definition, all of the f(𝑖) are integrable, and we aim to show that the g(𝑖) are

integrable as well. For 𝑖 = 𝑒, this implies the claim of the lemma, as g(𝑒) = ˜︂f(𝑐′,𝑑′).
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We now proceed similarly as in the induction base. Note that we have

f(0)(𝑢1, . . . ,𝑢𝑒,𝑣,𝑤)

= f(𝑥, 𝑦,𝑤) · (
𝑒∏︁
𝑖=1

rad𝑑𝑖(𝑢𝑖)) · rad𝑑(𝑣) and

g(0)(𝑢1, . . . ,𝑢𝑒,𝑣
′,𝑤)

= f(𝑥, 𝑦,𝑤) · (
𝑒∏︁
𝑖=1

rad𝑑𝑖(𝑢𝑖)) · rad𝑑′(𝑣′)

for all (𝑥, 𝑦,𝑤) ∈ 𝐷, where 𝑢𝑖 = rv𝑐𝑖

𝑑𝑖
(𝑥<𝑖)(𝑥𝑖) for 𝑖 = 1, . . . , 𝑒, and 𝑣 = rv

𝑐(𝑥)
𝑑 (𝑦)

and 𝑣′ = rv
𝑐′(𝑥)
𝑑′ (𝑦).

Just as before, for all 𝑥 and all 𝑦, we have the inequality

rad𝑑′(𝑣
′) = p−𝑑

′−max{val(𝑣′
1),...,val(𝑣

′
𝑟′ )}

= p−𝑑
′−max{val(𝑦−(𝑐′(𝑥))1),...,val(𝑦−(𝑐′(𝑥))𝑟′ )}

≤ p−𝑑
′−max{val(𝑣1),...,val(𝑣𝑟)}

= p𝑑−𝑑
′
· rad𝑑(𝑣),

yielding

f(0)(𝑢1, . . . ,𝑢𝑒,𝑣,𝑤) ≤ g(0)(𝑢1, . . . ,𝑢𝑒,𝑣
′,𝑤)

for all appropriate 𝑢1, . . . ,𝑢𝑒, 𝑣, 𝑣′, and 𝑤. Since f(0) is integrable, Lemma 4.4.9
thus ensures that g(0) is integrable. By repeatedly applying the definition, we

obtain that g(𝑖) is integrable for all 𝑖 = 0, . . . , 𝑒. In particular, g(𝑒) = ˜︂f(𝑐′,𝑑′) is
then integrable, finishing the proof.

Definition 5.1.9. We define the statements intDef(𝑒) and intLem(𝑒), for 𝑒 ∈ N,
as follows:

intDef(𝑒): If 𝑒 ≥ 1, suppose that intDef(𝑒 − 1) holds. Let 𝑀 ⊂ K ∪ Γ and let
f : 𝐷 → pΓ be an 𝑀 -definable integrable function for some (necessarily
𝑀 -definable) subset 𝐷 ⊂ K𝑒 ×K×RV𝑛

𝑚, where ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0 are

arbitrary. Then the value of
∫︀
mot

˜︁f(𝑐,𝑑) is the same for all (𝑐, 𝑑) for which f
is (𝑐, 𝑑)-prepared. We can (and do) thus define∫︁

mot

f :=

∫︁
mot

˜︁f(𝑐,𝑑)

for any (𝑐, 𝑑) for which f is (𝑐, 𝑑)-prepared.

intLem(𝑒): Suppose that intDef(𝑒) holds. Let 𝑀 ⊂ K∪Γ and let f : 𝐷 → pΓ and
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g : 𝐸 → pΓ be two 𝑀 -definable integrable functions for some (𝑀 -definable)
subsets 𝐷,𝐸 ⊂ K × K𝑒 × RV𝑛

𝑚 with pr1(𝐷) = pr1(𝐸). Consider, for each
𝑥 ∈ pr1(𝐷) = pr1(𝐸), the (𝑀 ∪ {𝑥})-definable fibers

𝐷𝑥 = {(𝑦,𝑣) ∈ K𝑒 × RV𝑛
𝑚 | (𝑥,𝑦,𝑣) ∈ 𝐷} and

𝐸𝑥 = {(𝑦,𝑣) ∈ K𝑒 × RV𝑛
𝑚 | (𝑥,𝑦,𝑣) ∈ 𝐸}

and the (𝑀 ∪ {𝑥})-definable integrable functions f𝑥 : 𝐷𝑥 → pΓ, (𝑦,𝑣) ↦→
f(𝑥,𝑦,𝑣) and g𝑥 : 𝐸𝑥 → pΓ, (𝑦,𝑣) ↦→ g(𝑥,𝑦,𝑣). Suppose that∫︁

mot

f𝑥 =

∫︁
mot

g𝑥 ∈ 𝑅mot(𝑍(𝑥)) for all 𝑥 ∈ K,

where 𝑍(𝑥) = acl(𝑀 ∪ {𝑥}) ∩ Γ ≽ acl(𝑀) ∩ Γ = 𝑍. Then we have
∫︀
mot

f =∫︀
mot

g in 𝑅mot(𝑍).

Theorem 5.1.10. For all 𝑒 ∈ N, the statements intDef(𝑒) and intLem(𝑒) hold.
More precisely, we show

(1) intDef(0) holds.

(2) intLem(0) holds.

(3) For 𝑒 ≥ 1, intDef(𝑒− 1) and intLem(𝑒− 1) imply intDef(𝑒).

(4) For 𝑒 ≥ 1, intDef(𝑒− 1), intDef(𝑒), and intLem(𝑒− 1) imply intLem(𝑒).

We will first establish a variant of (1) in a separate lemma (just below), and then
prove the remaining statements of Theorem 5.1.10.

Lemma 5.1.11. Let 𝑀 ⊂ K ∪ Γ and let f : 𝐷 → pΓ be an 𝑀 -definable function,
where 𝐷 ⊂ K × RV𝑛

𝑚 for some ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0. Let 𝑑, 𝑟, 𝑟′ ∈ N>0 with

𝑟 ≤ 𝑟′, and let 𝑐 = (𝑐1, . . . , 𝑐𝑟) ∈ K𝑟 and 𝑐′ = (𝑐1, . . . , 𝑐𝑟, 𝑐𝑟+1, . . . , 𝑐𝑟′) ∈ K𝑟
′

be 𝑀 -definable. Suppose that f is (𝑐, 𝑑)-prepared (and hence also (𝑐′, 𝑑)-prepared
and (𝑐, 𝑑+ 1)-prepared, by Lemma 5.1.3 (2)). Then we have

(1)
∫︀
mot

˜︁f(𝑐,𝑑) =
∫︀
mot

˜︂f(𝑐,𝑑+1), and

(2)
∫︀
mot

˜︁f(𝑐,𝑑) =
∫︀
mot

˜︂f(𝑐′,𝑑).

Proof. (1) Note that f is (𝑐, 𝑑 + 1)-prepared by Lemma 5.1.3 (2). Consider the 𝑍-

definable map ℎ : ˜︂𝐷(𝑐,𝑑+1) → ˜︂𝐷(𝑐,𝑑) given by ℎ(rv𝑐𝑑+1(𝑥),𝑣) = (rv𝑐𝑑(𝑥),𝑣). Then
ℎ is a 𝑝-to-1-map (i.e., each fiber has cardinality 𝑝), since the value of rv𝑐𝑑+1(𝑥)
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is already determined by rv𝑑+1(𝑥− 𝑐𝑖) for one of those 𝑖 for which val(𝑥− 𝑐𝑖) is
maximal (see also the remarks just after Definition 5.1.1).

Moreover, we have

˜︁f(𝑐,𝑑) ∘ ℎ = p · ˜︂f(𝑐,𝑑+1),

i.e., the diagram

˜︂𝐷(𝑐,𝑑+1)

p· ˜︂f(𝑐,𝑑+1)

↘↘

ℎ →→ ˜︂𝐷(𝑐,𝑑)

˜︂f(𝑐,𝑑)

↙↙
pΓ

commutes. Corollary 4.1.9 thus implies

p ·
∫︁
mot

˜︁f(𝑐,𝑑) =
∫︁
mot

˜︁f(𝑐,𝑑) ∘ ℎ = p ·
∫︁
mot

˜︂f(𝑐,𝑑+1),

which yields the claim.

(2) We will only handle the case 𝑟′ = 𝑟+1; the general case then follows immediately
by induction on 𝑟′ − 𝑟. Moreover, note that we have

˜︁f(𝑐,𝑑) =
⨆︁

(𝑢,𝑣)∈ ˜︂𝐷(𝑐,𝑑)

˜︁f(𝑐,𝑑)↾{(𝑢,𝑣)} and

˜︂f(𝑐′,𝑑) =
⨆︁

(𝑢,𝑣)∈ ˜︂𝐷(𝑐,𝑑)

˜︂f(𝑐′,𝑑)↾𝑈(𝑢,𝑣),

where

𝑈(𝑢,𝑣) = {(𝑢′,𝑣) ∈ ˜︂𝐷(𝑐′,𝑑) | pr≤𝑟(𝑢′) = 𝑢}.

By Lemma 4.4.12, it is therefore enough to show that we have∫︁
mot

˜︁f(𝑐,𝑑)↾{(𝑢,𝑣)} =
∫︁
mot

˜︂f(𝑐′,𝑑)↾𝑈(𝑢,𝑣)

for all (𝑢,𝑣) ∈ ˜︂𝐷(𝑐,𝑑). (Recall that we have K ̸= Q𝑝, hence Γ ̸= Z, so we can
indeed apply Lemma 4.4.12.) We can do this individually for each such (𝑢,𝑣),

i.e., we may from now on assume that ///≡≡˜︂𝐷(𝑐,𝑑) = 1.

Say we have ˜︂𝐷(𝑐,𝑑) = {(𝑢,𝑣)} for a fixed tuple (𝑢,𝑣) ∈ (RV×
𝑑 )

𝑟×RV𝑛
𝑚. Fix some

𝑗 ∈ {1, . . . , 𝑟} for which val(𝑢𝑗) is maximal, i.e., for which rad𝑑(𝑢) = 𝑝−𝑑−val(𝑢𝑗).
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Let 𝐷′ = 𝐷 ∖ ({𝑐1, . . . , 𝑐𝑟} × RV𝑛
𝑚) and note that f↾𝐷′ is both (𝑐, 𝑑)-prepared

and (𝑐′, 𝑑)-prepared, with

˜︂𝐷′
(𝑐,𝑑) = ˜︂𝐷(𝑐,𝑑) and ˜︂𝐷′

(𝑐′,𝑑) = ˜︂𝐷(𝑐′,𝑑)

and thus

˜︂(f↾𝐷′)(𝑐,𝑑) = ˜︁f(𝑐,𝑑) and ˜︂(f↾𝐷′)(𝑐′,𝑑) = ˜︂f(𝑐′,𝑑).

We can therefore assume that 𝐷′ = 𝐷, i.e., that pr1(𝐷) does not contain any of

the points 𝑐1, . . . , 𝑐𝑟 ∈ K. (Note that this also implies ˜︂𝐷(𝑐,𝑑) = 𝐷(𝑐,𝑑), but not

necessarily ˜︂𝐷(𝑐′,𝑑) = 𝐷(𝑐′,𝑑), since we might have 𝑐𝑟+1 ∈ pr1(𝐷).)

Then, by the geometry of balls in K, we have

𝐷 = {(𝑥,𝑣) ∈ K× RV𝑛
𝑚 | rv𝑐𝑑(𝑥) = 𝑢}

= {(𝑥,𝑣) ∈ K× RV𝑛
𝑚 | rv𝑑(𝑥− 𝑐1) = 𝑢1, . . . , rv𝑑(𝑥− 𝑐𝑟) = 𝑢𝑟}

=

𝑟⋂︁
𝑖=1

(rv−1
𝑑 (𝑢𝑖) + 𝑐𝑖)× {𝑣}

= (rv−1
𝑑 (𝑢𝑗) + 𝑐𝑗)× {𝑣},

so that we can moreover assume 𝑟 = 1. To summarize up to here, we are now
in the situation that 𝑐 = (𝑐) and 𝑐′ = (𝑐, 𝑐′) for some (𝑀 -definable) 𝑐, 𝑐′ ∈ K
with 𝑐 ̸= 𝑐′, and 𝑢 = (𝑢). Moreover, we can assume that 𝑐 = 0 by translating f.
We proceed by a case distinction based on the position of 𝑐′ relative to the ball
prK(𝐷) = rv−1

𝑑 (𝑢).

Case 1: rv(𝑐′) ̸= rv(𝑢). Then 𝑐′ /∈ pr1(𝐷), and for 𝑥 ∈ prK(𝐷), the value of
rv𝑑(𝑥−𝑐′) is already determined by rv𝑑(𝑥) = 𝑢 and rv𝑑(𝑐

′) by Lemma 2.2.9.
Thus the set

˜︂𝐷(𝑐′,𝑑) = 𝐷(𝑐′,𝑑)

= ({𝑢} × {rv𝑑(𝑥− 𝑐′) | 𝑥 ∈ prK(𝐷)})× {𝑣}
= ({𝑢} × {rv𝑑(𝑥− 𝑐′) | rv𝑑(𝑥) = 𝑢})× {𝑣}

has exactly one element. The unique (𝑀 -definable) bijection ℎ : ˜︂𝐷(𝑐,𝑑) →
˜︂𝐷(𝑐′,𝑑) then satisfies ˜︂f(𝑐′,𝑑) ∘ ℎ = ˜︁f(𝑐,𝑑), so we even have [˜︂f(𝑐′,𝑑)] = [˜︁f(𝑐,𝑑)]. In
particular, the claim

∫︀
mot

˜︂f(𝑐′,𝑑) =
∫︀
mot

˜︁f(𝑐,𝑑) holds.

Case 2: rvℓ(𝑐
′) = rvℓ(𝑢) and rvℓ+1(𝑐

′) ̸= rvℓ+1(𝑢) for some ℓ with 0 < ℓ < 𝑑.
Then we also have 𝑐′ /∈ pr1(𝐷), and the set

˜︂𝐷(𝑐′,𝑑) = 𝐷(𝑐′,𝑑)

= ({𝑢} × {rv𝑑(𝑥− 𝑐′) | 𝑥 ∈ prK(𝐷)})× {𝑣}
= ({𝑢} × {rv𝑑(𝑥− 𝑐′) | rv𝑑(𝑥) = 𝑢})× {𝑣}
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has exactly 𝑝ℓ elements by Lemma 2.2.9. Therefore, the unique surjection

ℎ : ˜︂𝐷(𝑐′,𝑑) ↠ ˜︂𝐷(𝑐,𝑑) is a 𝑝ℓ-to-1-map. Moreover, for all 𝑥 ∈ pr1(𝐷), we have

rad𝑑(𝑢, rv𝑑(𝑥− 𝑐′)) = 𝑝−𝑑−max{val(𝑢),val(𝑥−𝑐′)}

= 𝑝−𝑑−ℓ−val(𝑢)

= 𝑝−ℓ · rad𝑑(𝑢)

by Remark 2.2.7 and the case assumption, and hence

˜︂f(𝑐′,𝑑)((𝑢, rv𝑑(𝑥− 𝑐′)),𝑣) = rad𝑑(𝑢, rv𝑑(𝑥− 𝑐′)) · f(𝑥,𝑣)

= 𝑝−ℓ · rad𝑑(𝑢) · f(𝑥,𝑣)

= 𝑝−ℓ ·˜︁f(𝑐,𝑑)(𝑢,𝑣).

Thus ˜︁f(𝑐,𝑑) ∘ ℎ = pℓ ·˜︂f(𝑐′,𝑑). By Corollary 4.1.9, this implies

pℓ ·
∫︁
mot

˜︁f(𝑐,𝑑) =
∫︁
mot

˜︁f(𝑐,𝑑) ∘ ℎ = pℓ ·
∫︁
mot

˜︂f(𝑐′,𝑑),

which yields the claim.

Case 3: rv𝑑(𝑐
′) = 𝑢, i.e., 𝑐′ ∈ prK(𝐷). This case is more involved, since 𝐷(𝑐′,𝑑)

is infinite (and now, ˜︂𝐷(𝑐′,𝑑) ̸= 𝐷(𝑐′,𝑑)). By Lemma 2.2.9, we have

𝐷(𝑐′,𝑑) = ({𝑢} × {rv𝑑(𝑥− 𝑐′) | 𝑥 ∈ prK(𝐷)})× {𝑣}
= ({𝑢} × {𝑤 ∈ RV𝑑 | val(𝑤) ≥ val(𝑢) + 𝑑})× {𝑣},

and thus

˜︂𝐷(𝑐′,𝑑) = ({𝑢} × {𝑤 ∈ RV×
𝑑 | val(𝑤) ≥ val(𝑢) + 𝑑})× {𝑣}.

Furthermore, we have ˜︂f(𝑐′,𝑑)((𝑢,𝑤),𝑣) = 𝛼 ·p−𝑑−val(𝑤) for all 𝑤 ∈ RV×
𝑑 with

val(𝑤) ≥ val(𝑢) + 𝑑, where 𝛼 is the unique value of f on 𝐷. (Note that f
is constant on 𝐷 by the assumption ///≡≡𝐷(𝑐,𝑑) = 1.) Consider the images

𝑓, 𝑓 ′ ∈ P(𝑍) of [˜︁f(𝑐,𝑑)] and [˜︂f(𝑐′,𝑑)], respectively, under the isomorphism 𝜒
from Corollary 4.2.7. That is,

𝑓 = 𝜒([˜︁f(𝑐,𝑑)]) and 𝑓 ′ = 𝜒([˜︂f(𝑐′,𝑑)]),
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with 𝑓(𝑎) = ///≡≡˜︁f(𝑐,𝑑)
−1

(𝑝−𝑎)

=

{︃
1, if 𝑎 = 𝑎0

0, otherwise

and 𝑓 ′(𝑎) = ///≡≡˜︂f(𝑐′,𝑑)

−1

(𝑝−𝑎)

=

{︃
(𝑝− 1) · 𝑝𝑑−1, if 𝑎 ≥ 𝑑+ 𝑎0

0, otherwise
,

for all 𝑎 ∈ Γ, where 𝑎0 = val(𝛼) + 𝑑+ val(𝑢). We thus have

(𝑓 − 𝑓 ′)(𝑎) = ///≡≡˜︁f(𝑐,𝑑)
−1

(𝑝−𝑎)− ///≡≡˜︂f(𝑐′,𝑑)

−1

(𝑝−𝑎)

=

⎧⎪⎨⎪⎩
1, if 𝑎 = 𝑎0

−(𝑝− 1) · 𝑝𝑑−1, if 𝑎 ≥ 𝑑+ 𝑎0

0, otherwise

for all 𝑎 ∈ Γ. Consider the map ℎ : Γ→ 𝐾Γ
𝑏 (Γ) defined by

ℎ(𝑎) =

⎧⎪⎨⎪⎩
0, if 𝑎 ≤ 𝑎0
𝑝𝑘−1, if 𝑎 = 𝑘 + 𝑎0 for 𝑘 ∈ {1, . . . , 𝑑}
𝑝𝑑−1, if 𝑎 > 𝑑+ 𝑎0

.

Note that ℎ is piecewise constant, so it is an element of P(𝑍). Moreover,
we have

(ℎ · 𝑓p−𝑝)(𝑎)
= ℎ(𝑎+ 1)− 𝑝 · ℎ(𝑎)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑎+ 1 ≤ 𝑎0
ℎ(𝑎+ 1) = 𝑝1−1 = 1, if 𝑎 = 𝑎0

𝑝𝑘 − 𝑝 · 𝑝𝑘−1 = 0, if 𝑎 = 𝑘 + 𝑎0

(for some 1 ≤ 𝑘 < 𝑑)

𝑝𝑑−1 − 𝑝 · 𝑝𝑑−1 = −(𝑝− 1) · 𝑝𝑑−1 if 𝑎 = 𝑑+ 𝑎0

𝑝𝑑−1 − 𝑝 · 𝑝𝑑−1 = −(𝑝− 1) · 𝑝𝑑−1 if 𝑎 > 𝑑+ 𝑎0

=

⎧⎪⎨⎪⎩
1, if 𝑎 = 𝑎0

−(𝑝− 1) · 𝑝𝑑−1, if 𝑎 ≥ 𝑑+ 𝑎0

0, otherwise

= (𝑓 − 𝑓 ′)(𝑎),

so 𝑓 − 𝑓 ′ = ℎ · 𝑓p−𝑝 lies in the ideal (𝑓p−𝑝), which is the image of the ideal
(p− 𝑝) ⊂ 𝐾int(𝑍) under 𝜒. In other words,

˜︂f(𝑐′,𝑑) = 𝜒−1(𝑓) and ˜︁f(𝑐,𝑑) = 𝜒−1(𝑓 ′)
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are congruent modulo (p−𝑝) ⊂ 𝐾int(𝑍), so we have
∫︀
mot

˜︂f(𝑐′,𝑑) =
∫︀
mot

˜︁f(𝑐,𝑑),
as claimed.

Proof of Theorem 5.1.10. We mostly use the notations from the statements intDef(𝑒)
and intLem(𝑒) as introduced in Definition 5.1.9 and refrain from repeating all details
here.

(1) intDef(0) holds.

This follows from Lemma 5.1.11: Suppose that f : 𝑋 → pΓ is both (𝑐, 𝑑)-prepared
and (𝑐′, 𝑑′)-prepared for some 𝑑, 𝑑′, 𝑟, 𝑟′ ∈ N>0 and 𝑐 ∈ K𝑟, 𝑐′ ∈ K𝑟

′
. Then it

is ((𝑐, 𝑐′), 𝑑′′)-prepared (and also ((𝑐′, 𝑐), 𝑑′′)-prepared) for 𝑑′′ = max(𝑑, 𝑑′) by
Lemma 5.1.3 (2). Hence Lemma 5.1.11 implies∫︁

mot

˜︁f(𝑐,𝑑) =
∫︁
mot

˜︂f((𝑐,𝑐′),𝑑′′) =

∫︁
mot

˜︂f((𝑐′,𝑐),𝑑′′) =

∫︁
mot

˜︂f(𝑐′,𝑑′)

(For the second equality, note that we even have [ ˜︂f((𝑐,𝑐′),𝑑′′)] = [ ˜︂f((𝑐′,𝑐),𝑑′′)] in
𝐾int(𝑍).)

(2) intLem(0) holds.

Let 𝑀 ⊂ K ∪ Γ and let f : 𝐷 → pΓ and g : 𝐸 → pΓ, 𝐷,𝐸 ⊂ K × RV𝑛
𝑚 be as in

the statement of intLem(0), see Definition 5.1.9. By Lemma 5.1.3, we can choose
some 𝑑, 𝑟 ∈ N>0 and 𝑐 ∈ K𝑟 such that both f and g are (𝑐, 𝑑)-prepared, where
𝑐 is 𝑀 -definable. This means that whether (𝑥,𝑣) ∈ 𝐷 only depends on rv𝑐𝑑(𝑥)
and 𝑣, and so does the value of f(𝑥,𝑣) (and the same is true for 𝐸 and g). For
𝑥 ∈ K with 𝑢 := rv𝑐𝑑(𝑥) ∈ (RV×

𝑑 )
𝑟 we can thus consider the (𝑀 ∪ {𝑥})-definable

integrable functions

(˜︁f(𝑐,𝑑))(𝑢,∙) : ˜︂(𝐷(𝑐,𝑑))𝑢 → pΓ

𝑣 ↦→˜︁f(𝑐,𝑑)(𝑢,𝑣)
= rad𝑑(𝑢) · f(𝑥,𝑣) and

(˜︁g(𝑐,𝑑))(𝑢,∙) : ˜︂(𝐸(𝑐,𝑑))𝑢 → pΓ

𝑣 ↦→ ˜︁g(𝑐,𝑑)(𝑢,𝑣)
= rad𝑑(𝑢) · g(𝑥,𝑣),

where

(˜︂𝐷(𝑐,𝑑))𝑢 = {𝑣 ∈ RV𝑛
𝑚 | (𝑥,𝑣) ∈ 𝐷} and

(˜︂𝐸(𝑐,𝑑))𝑢 = {𝑣 ∈ RV𝑛
𝑚 | (𝑥,𝑣) ∈ 𝐸}.
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In other words, for each 𝑢 ∈ rv𝑐𝑑(K)∩(RV×
𝑑 )

𝑟 we have (˜︁f(𝑐,𝑑))(𝑢,∙) = rad𝑑(𝑢) · f𝑥
and (˜︁g(𝑐,𝑑))(𝑢,∙) = rad𝑑(𝑢) · g𝑥 for any (and all) 𝑥 ∈ (rv𝑐𝑑)

−1(𝑢), and thus∫︁
mot

(˜︁f(𝑐,𝑑))(𝑢,∙) = rad𝑑(𝑢) ·
∫︁
mot

f𝑥

= rad𝑑(𝑢) ·
∫︁
mot

g𝑥

=

∫︁
mot

(˜︁g(𝑐,𝑑))(𝑢,∙)

in 𝑅mot(𝑍(𝑢)) ⊂ 𝑅mot(𝑍(𝑥)) for all 𝑢 ∈ rv𝑐𝑑(K)∩(RV×
𝑑 )

𝑟, by the assumption that∫︀
mot

f𝑥 =
∫︀
mot

g𝑥 for all 𝑥 ∈ K. (For the inclusion 𝑅mot(𝑍(𝑢)) ⊂ 𝑅mot(𝑍(𝑥)),
see Lemma 4.3.12.)

Since we have ˜︁f(𝑐,𝑑) =
⨆︀

𝑢
˜︁f(𝑐,𝑑)(𝑢,∙) and ˜︁g(𝑐,𝑑) =

⨆︀
𝑢 ˜︁g(𝑐,𝑑)(𝑢,∙) by definition,

Lemma 4.4.12 thus implies∫︁
mot

f =

∫︁
mot

˜︁f(𝑐,𝑑) =
∫︁
mot

˜︁g(𝑐,𝑑) =
∫︁
mot

g,

as claimed.

(3) For 𝑒 ≥ 1, intDef(𝑒− 1) and intLem(𝑒− 1) imply intDef(𝑒).

Let 𝑀 ⊂ K ∪ Γ and f : 𝐷 → pΓ with 𝐷 ⊂ K × K𝑒−1 × K × RV𝑛
𝑚 be as in the

statement of intDef(𝑒), and suppose that f is both (𝑐, 𝑑)-prepared and (𝑐′, 𝑑′)-
prepared, where 𝑑, 𝑑′ ∈ N>0 and 𝑐 : K𝑒 → K𝑟 and 𝑐′ : K𝑒 → K𝑟

′
are𝑀 -definable

for some 𝑟, 𝑟′ ∈ N>0. We then have to show the equality∫︁
mot

˜︁f(𝑐,𝑑) =
∫︁
mot

˜︂f(𝑐′,𝑑′).

For each 𝑥 ∈ pr1(𝐷), consider the two (𝑀 ∪ {𝑥})-definable integrable functions

(˜︁f(𝑐,𝑑))(𝑥,∙,∙,∙) : (˜︂𝐷(𝑐,𝑑))𝑥 → pΓ

(𝑦, rv
𝑐(𝑥,𝑦)
𝑑 (𝑧),𝑣) ↦→˜︁f(𝑐,𝑑)(𝑥,𝑦, rv

𝑐(𝑥,𝑦)
𝑑 (𝑧),𝑣)

= rad𝑑(rv
𝑐(𝑥,𝑦)
𝑑 (𝑧)) · f(𝑥,𝑦, 𝑧,𝑣),

and (˜︂f(𝑐′,𝑑′))(𝑥,∙,∙,∙) : ( ˜︂𝐷(𝑐′,𝑑′))𝑥 → pΓ

(𝑦, rv
𝑐′(𝑥,𝑦)
𝑑′ (𝑧),𝑣) ↦→ ˜︂f(𝑐′,𝑑′)(𝑥,𝑦, rv

𝑐′(𝑥,𝑦)
𝑑′ (𝑧),𝑣)

= rad𝑑′(rv
𝑐′(𝑥,𝑦)
𝑑′ (𝑧)) · f(𝑥,𝑦, 𝑧,𝑣),
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where

(˜︂𝐷(𝑐,𝑑))𝑥 = {(𝑦, rv𝑐(𝑥,𝑦)𝑑 (𝑧),𝑣) | (𝑥,𝑦, 𝑧,𝑣) ∈ 𝐷, rv𝑐(𝑥,𝑦)𝑑 (𝑧) ∈ (RV×
𝑑 )

𝑟}
⊂ K𝑒−1 × (RV×

𝑑 )
𝑟 × RV𝑛

𝑚,

and ( ˜︂𝐷(𝑐′,𝑑′))𝑥 = {(𝑦, rv𝑐
′(𝑥,𝑦)
𝑑′ (𝑧),𝑣) | (𝑥,𝑦, 𝑧,𝑣) ∈ 𝐷, rv𝑐

′(𝑥,𝑦)
𝑑′ (𝑧) ∈ (RV×

𝑑′)
𝑟′}

⊂ K𝑒−1 × (RV×
𝑑′)

𝑟′ × RV𝑛
𝑚.

Recall that 𝑐 and 𝑐′ are 𝑀 -definable functions from K𝑒 to K𝑟 and to K𝑟
′
respec-

tively, and consider, for 𝑥 ∈ pr1(𝐷), the (𝑀 ∪ {𝑥})-definable functions

𝑐(𝑥,∙) : K𝑒−1 → K𝑟

𝑦 ↦→ 𝑐(𝑥,𝑦)

and 𝑐′(𝑥,∙) : K𝑒−1 → K𝑟
′

𝑦 ↦→ 𝑐′(𝑥,𝑦).

For any 𝑥 ∈ pr1(𝐷), the function

f𝑥 = f(𝑥,∙, ∙,∙) : 𝐷𝑥 → pΓ

(𝑦, 𝑧,𝑣) ↦→ f(𝑥,𝑦, 𝑧,𝑣),

where 𝐷𝑥 = {(𝑦, 𝑧,𝑣) ∈ K𝑒−1 × K × RV𝑛
𝑚 | (𝑥,𝑦, 𝑧,𝑣) ∈ 𝐷}, is then both

(𝑐(𝑥,∙), 𝑑)-prepared and (𝑐′(𝑥,∙), 𝑑′)-prepared, and we moreover have

dom( ˜︂(f𝑥)(𝑐(𝑥,∙),𝑑)) = ˜︂(𝐷𝑥)(𝑐(𝑥,∙),𝑑) = (˜︂𝐷(𝑐,𝑑))𝑥 = dom((˜︁f(𝑐,𝑑))𝑥),

and furthermore

˜︂(f𝑥)(𝑐(𝑥,∙),𝑑)(𝑦, rv
𝑐(𝑥,𝑦)
𝑑 (𝑧),𝑣) = rad𝑑(rv

𝑐(𝑥,𝑦)
𝑑 (𝑧)) · f𝑥(𝑦, 𝑧,𝑣)

= rad𝑑(rv
𝑐(𝑥,𝑦)
𝑑 (𝑧)) · f(𝑥,𝑦, 𝑧,𝑣)

= (˜︁f(𝑐,𝑑))𝑥(𝑦, rv
𝑐(𝑥,𝑦)
𝑑 (𝑧),𝑣)

for all (𝑦, rv𝑐(𝑥,𝑦)𝑑 (𝑧),𝑣) ∈ (˜︂𝐷(𝑐,𝑑))𝑥. Taken all together, we just argued that

˜︂(f𝑥)(𝑐(𝑥,∙),𝑑) = (˜︁f(𝑐,𝑑))𝑥 for all 𝑥 ∈ pr1(𝐷),

and we analogously obtain

˜︂(f𝑥)(𝑐′(𝑥,∙),𝑑′) = (˜︂f(𝑐′,𝑑′))𝑥 for all 𝑥 ∈ pr1(𝐷).

This implies∫︁
mot

(˜︁f(𝑐,𝑑))𝑥 =

∫︁
mot

˜︂(f𝑥)(𝑐(𝑥,∙),𝑑) =

∫︁
mot

˜︂(f𝑥)(𝑐′(𝑥,∙),𝑑′) =

∫︁
mot

(˜︂f(𝑐′,𝑑′))𝑥
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in 𝑅mot(𝑍(𝑥)) for all 𝑥 ∈ K by intDef(𝑒 − 1) applied to f𝑥 with respect to

(𝑐(𝑥,∙), 𝑑) and (𝑐′(𝑥,∙), 𝑑′). Applying intLem(𝑒 − 1) to ˜︁f(𝑐,𝑑) and ˜︂f(𝑐′,𝑑′) now
yields ∫︁

mot

˜︁f(𝑐,𝑑) =
∫︁
mot

˜︂f(𝑐′,𝑑′)

in 𝑅mot(𝑍), as claimed.

(4) For 𝑒 ≥ 1, intDef(𝑒− 1), intDef(𝑒), and intLem(𝑒− 1) imply intLem(𝑒).

Let𝑀 ⊂ K∪Γ and let f : 𝐷 → pΓ and g : 𝐸 → pΓ be two𝑀 -definable integrable
functions with 𝐷,𝐸 ⊂ K×K𝑒−1 ×K×RV𝑛

𝑚, as in the statement of intLem(𝑒).
Suppose that

∫︀
mot

f𝑥 =
∫︀
mot

g𝑥 in 𝑅mot(𝑍(𝑥)) for all 𝑥 ∈ K.

Similarly to the proof of (2), Lemma 5.1.3 yields some tuple (𝑐, 𝑑) such that
both f and g are (𝑐, 𝑑)-prepared. Similar to the proof of (3), and with the same
notation, both of the functions f𝑥 and g𝑥 are then (𝑐(𝑥,∙), 𝑑)-prepared, and we
have ∫︁

mot

(˜︁f(𝑐,𝑑))𝑥 =

∫︁
mot

˜︂(f𝑥)(𝑐(𝑥,∙),𝑑)

=

∫︁
mot

f𝑥 =

∫︁
mot

g𝑥

=

∫︁
mot

˜︂(g𝑥)(𝑐(𝑥,∙),𝑑) =

∫︁
mot

(˜︁g(𝑐,𝑑))𝑥

for each 𝑥 ∈ pr1(𝐷) = pr1(𝐸) by intDef(𝑒 − 1). Applying intDef(𝑒) to f and g

respectively, and applying intLem(𝑒− 1) to ˜︁f(𝑐,𝑑) and ˜︁g(𝑐,𝑑) now yields∫︁
mot

f =

∫︁
mot

˜︁f(𝑐,𝑑) =
∫︁
mot

˜︁g(𝑐,𝑑) =
∫︁
mot

g

in 𝑅mot(𝑍), as claimed.

As described before, the integral immediately leads to a notion of measure for subsets
of K* as follows.

Definition 5.1.12. The measure of a bounded 𝑀 -definable subset 𝑋 ⊂ K*,
denoted by 𝜇mot(𝑋), is given as the integral of the constant function with value
1 on 𝑋, i.e.,

𝜇mot(𝑋) =

∫︁
mot

const𝑋(1).

The following observation gives a sufficient condition for the measure of set to be 0,
which will be applied in Section 5.3.
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Corollary 5.1.13 (of Theorem 5.1.10). Let 𝑓 : 𝑋 → K be an 𝑀 -definable func-
tion for some 𝑋 ⊂ K𝑒, 𝑒 ∈ N, and let f : 𝑌 → pΓ be an 𝑀 -definable integrable
function on 𝑌 = graph(𝑓). Then we have

∫︀
mot

f = 0.

In particular, with f = const𝑌 (1), this yields 𝜇mot(graph(𝑓)) = 0 for any 𝑀 -
definable function 𝑓 : 𝑋 → K with 𝑋 ⊂ K*.

Proof. Let 𝑓 : 𝑋 → K be 𝑀 -definable, 𝑋 ⊂ K𝑒, and let f : 𝑌 → pΓ be an 𝑀 -definable
integrable function with domain 𝑌 = graph(𝑓). Pick some 𝑑, 𝑟 ∈ N>0 and some 𝑀 -
definable function 𝑐 : K𝑒 → K𝑟 for which f is (𝑐, 𝑑)-prepared. By Lemma 5.1.3 (2), we
can assume that pr𝑟 ∘𝑐 = 𝑓 , and we then have

𝑌 (𝑐,𝑑) ⊂ {(𝑥,𝑢) ∈ 𝑋 × RV𝑟𝑑 | pr𝑟(𝑢) = 0},

yielding ˜︂𝑌 (𝑐,𝑑) = ∅ and hence
∫︀
mot

f =
∫︀
mot

˜︁f(𝑐,𝑑) = 0, as [˜︁f(𝑐,𝑑)⏟ ⏞ 
= ∅

] = 0.

Remark 5.1.14. Note that Corollary 5.1.13 also implies that 𝜇mot(𝑌
′) = 0 for any

𝑀 -definable subset 𝑌 ′ ⊂ graph(𝑓), as we then have 𝑌 ′ = graph(𝑓 ↾pr𝑒(𝑌
′)), so

𝑌 ′ is itself the graph of an 𝑀 -definable function.

Moreover, Corollary 5.1.13 also implies that subsets 𝑋 ⊂ K𝑒 with dim(𝑋) < 𝑒 have
measure 0 in general, e.g., by applying cell decomposition (cf. [Den86]).

Spelling out the recursive definition of the integral yields a rather instructive way to
compute

∫︀
mot

f for a given integrable function f : 𝐷 → pΓ. Let us do this once in a
general fashion and then, just below, apply it to more specific cases.

Corollary 5.1.15 (of Theorem 5.1.10). Let 𝑀 ⊂ K ∪ Γ and let f : 𝐷 → pΓ

be an 𝑀 -definable integrable function, where 𝐷 ⊂ K𝑒 × RV𝑛
𝑚 for some 𝑒, ℓ ∈ N

and 𝑚,𝑛 ∈ Nℓ>0. Consider tuples (𝑐𝑖, 𝑑𝑖) such that f𝑖 is (𝑐𝑖, 𝑑𝑖)-prepared for

𝑖 = 0, . . . , 𝑒− 1, where f0 = f and f𝑖+1 = ˜︂(f𝑖)(𝑐𝑖,𝑑𝑖).

Then we have
∫︀
mot

f =
∫︀
mot

f𝑖 for all 𝑖 = 0, . . . , 𝑒. Moreover, writing

𝑢𝑗 = 𝑢𝑗(𝑥≤𝑗) = rv
𝑐𝑗−1(𝑥1,...,𝑥𝑗−1)
𝑑𝑗−1

(𝑥𝑗) ∈ RV
𝑟𝑗−1

𝑑𝑗−1

for 𝑗 = 𝑒− 𝑖+ 1, . . . , 𝑒 and 𝑥 ∈ K𝑒, we have

f𝑖(𝑥1, . . . , 𝑥𝑒−𝑖,𝑢𝑒−𝑖+1, . . . ,𝑢𝑒,𝑣)

= f(𝑥,𝑣) · rad𝑑𝑒−𝑖
(𝑢𝑒−𝑖+1) · · · · · rad𝑑𝑒−1

(𝑢𝑒)
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for all (𝑥1, . . . , 𝑥𝑒−𝑖,𝑢𝑒−𝑖+1, . . . ,𝑢𝑒,𝑣) ∈ dom(f𝑖) = ̃︁𝐷𝑖, where

̃︁𝐷𝑖 = 𝐷𝑖 ∩ (K𝑒−𝑖 ×
∏︁

(RV×
𝑑𝑗−1

)𝑟𝑗−1 × RV𝑛
𝑚) for

𝐷𝑖 = {(𝑥≤𝑒−𝑖,𝑢𝑒−𝑖+1(𝑥≤𝑒−𝑖+1), . . . ,𝑢𝑒(𝑥≤𝑒),𝑣) | (𝑥,𝑣) ∈ 𝐷}.

(In the first line, the product runs over all 𝑗 from 𝑒− 𝑖+ 1 to 𝑒.)

Let us consider two important applications of Corollary 5.1.15 which are much less
technical and as such also more intuitive. Those two special cases will help us to
explicitly calculate some integrals later on, and they will be particularly useful when
proving the change of variables formula, Proposition 5.2.15.

Remark 5.1.16. Let 𝑀 ⊂ K ∪ Γ and let 𝑋 ⊂ K𝑒 ×K be an 𝑀 -definable set with

𝑋 = {(𝑥, 𝑦) ∈ pr≤𝑒(𝑋)×K | rv𝑑(𝑦 − 𝑐(𝑥)) = 𝑣}

for some 𝑀 -definable function 𝑐 : K𝑒 → K, some 𝑑 ∈ N>0, and some (necessarily
𝑀 -definable) 𝑣 ∈ RV𝑑.

Moreover, let f : 𝑋 → pΓ be an 𝑀 -definable integrable function for which the
value of f(𝑥, 𝑦) only depends on 𝑥, i.e., there is a (necessarily 𝑀 -definable) inte-
grable function g : pr≤𝑒(𝑋)→ pΓ such that f(𝑥, 𝑦) = g(𝑥) for all (𝑥, 𝑦) ∈ 𝑋.

Then we have ∫︁
mot

f = rad𝑑(𝑣) ·
∫︁
mot

g

Proof. Note that we have ˜︁f(𝑐,𝑑) = g ⋆ const𝑣(1), i.e., ˜︁f(𝑐,𝑑)(𝑥, 𝑣) = g(𝑥) · 1, for 𝑐 =
(︀
𝑐
)︀

by the assumptions. Corollary 5.1.15 hence yields∫︁
mot

f =

∫︁
mot

˜︁f(𝑐,𝑑)

=

∫︁
mot

g ⋆ const𝑣(1)

=

∫︁
mot

g̃ ⋆ const𝑣(1)

=

∫︁
mot

g̃ ·
∫︁
mot

const𝑣(1)

= (

∫︁
mot

g̃) · rad𝑑(𝑣)

=
(︀ ∫︁

mot

g
)︀
· rad𝑑(𝑣),
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where g̃ is the integrable function on RV*
* eventually obtained from g through the

recursive process described in Corollary 5.1.15.

Example 5.1.17. Consider a “twisted box”, i.e., a set of the form

𝑋 = {𝑥 = (𝑥1, . . . , 𝑥𝑒) ∈ K𝑒 | rv𝑑𝑖(𝑥𝑖 − 𝑐𝑖(𝑥<𝑖)) = 𝑢𝑖} ⊂ K𝑒

for some 𝑀 -definable functions 𝑐𝑖 : K𝑖 → K, some 𝑑𝑖 ∈ N>0 and some 𝑢𝑖 ∈ RV𝑑𝑖
for 𝑖 = 1, . . . , 𝑒.

Repeatedly applying Remark 5.1.16 to the constant function const𝑋(𝛾), for some
𝛾 ∈ pΓ, then yields the equality∫︁

mot

const𝑋(𝛾) = 𝛾 ·
∏︁
𝑖

rad𝑑𝑖(𝑢𝑖).

(Note that 𝑋 is bounded and that any constant function on a bounded set is
integrable, cf Definition 5.1.5.)

In particular, setting 𝛾 = 1, we have 𝜇mot(𝑋) =
∏︀
𝑖 rad𝑑𝑖(𝑢𝑖), i.e., the measure

of a product of balls (or of a twisted box, more generally) is “what it should be”,
namely the product of the radii of the balls.

We close this section with another important consequence of Corollary 5.1.15, namely
a generalization of Lemma 4.4.12 allowing K-coordinates.

Lemma 5.1.18. Let 𝑀 ⊂ K ∪ Γ and let f : 𝐷 → pΓ and g : 𝐸 → pΓ be two 𝑀 -
definable integrable functions with 𝐷 ⊂ K*×RV*

*×RV𝑛
𝑚 and 𝐸 ⊂ K*×RV*

*×RV𝑛
𝑚

for some ℓ ∈ N>0 and 𝑚,𝑛 ∈ Nℓ>0, and suppose that we have∫︁
mot

f(∙,∙,𝑣) =
∫︁
mot

g(∙,∙,𝑣)

for all 𝑣 ∈ RV𝑛
𝑚. Then

∫︀
mot

f =
∫︀
mot

g.

Proof. By Corollary 5.1.15, there are (𝑀 -definable) integrable functions f̃ : �̃� → pΓ

and g̃ : �̃� → pΓ for some �̃� ⊂ RV*
* × RV𝑛

𝑚 and �̃� ⊂ RV*
* × RV𝑛

𝑚 with∫︁
mot

f̃ =

∫︁
mot

f and
∫︁
mot

g̃ =

∫︁
mot

g.

By definition of f̃ and g̃ as in Corollary 5.1.15, this in particular implies∫︁
mot

f̃(∙,𝑣) =
∫︁
mot

f(∙,∙,𝑣) =
∫︁
mot

g(∙,∙,𝑣) =
∫︁
mot

g̃(∙,𝑣)
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for all 𝑣 ∈ RV𝑛
𝑚, where the second equality is the assumption from the statement.

Lemma 4.4.12 applied to f̃(∙,𝑣) and g̃(∙,𝑣) now yields the claim∫︁
mot

f =

∫︁
mot

f̃ =

∫︁
mot

g̃ =

∫︁
mot

g.

5.2 Change of variables

An important aspect of integration is understanding how the integral of a function
f : 𝑋 → pΓ changes when composing it with some bijective map 𝜏 : 𝑋 → 𝑌 . If that
𝜏 is “measure-preserving” (in some sense not defined yet), we expect the same value
for the integral. More generally, in case 𝑋,𝑌 ⊂ K, the derivative (and the Jacobian
matrix, as a higher dimensional analogon) of 𝜏 gets involved in the equation.

In this section, we make these notions precise in our setting, allowing us to then state
and prove a change-of-variable formula, Proposition 5.2.15.

Definition 5.2.1. Let 𝐵 ⊂ K be a ball of radius 𝛼 ∈ pΓ. We say that a function
𝑓 : K → K has the (valuative) Jacobian property on 𝐵 if it is either constant on
𝐵 or there is some 𝛾 ∈ pΓ such that

(1) the set 𝑓(𝐵) is a ball of radius 𝛾 · 𝛼 and

(2) for all 𝑥, 𝑦 ∈ 𝐵 with 𝑥 ̸= 𝑦, we have
⃒⃒⃒
𝑓(𝑥)−𝑓(𝑦)

𝑥−𝑦

⃒⃒⃒
= 𝛾.

For 𝑑, 𝑟 ∈ N>0 and a tuple 𝑐 ∈ K𝑟, we say that 𝑓 has the (𝑐, 𝑑)-Jacobian property,
if it has the Jacobian property on all proper (𝑐, 𝑑)-balls, i.e., on all sets of the
form (rv𝑐𝑑)

−1(𝑢) = {𝑥 ∈ K | rv𝑐𝑑(𝑥) = 𝑢} for 𝑢 ∈ (RV×
𝑑 )

𝑟.

Remark 5.2.2. Note that a function which has the Jacobian property on a given
ball is, in particular, either constant or injective on that ball. Indeed, the condition
(2) from Definition 5.2.1 implies |𝑓(𝑥)− 𝑓(𝑦)| > 0, for 𝑥 ̸= 𝑦, yielding injectivity
on 𝐵.

Remark 5.2.3. Note that “having the (𝑐, 𝑑)-Jacobian property” can be expressed
by a first-order formula. Indeed, (1) for 𝐵 = (rv𝑐𝑑)

−1(𝑢) is equivalent to

∃𝑦0 : ∀𝑦
(︀
(∃𝑥 : (rv𝑐𝑑(𝑥) = 𝑢 ∧ 𝑦 = 𝑓(𝑥))⏟  ⏞  

𝑦∈ 𝑓(𝐵)

)←→ |𝑦 − 𝑦0| ≤ 𝛾 · p−𝑑−val(𝑢)⏟  ⏞  
𝑦∈ℬ≤𝛾·p−𝑑−val(𝑢) (𝑦0)

)︀
,

and (2) is already (almost) a first-order formula as stated.
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Lemma 5.2.4. Let 𝐵′ ⊂ 𝐵 ⊂ K be two balls and suppose that 𝑓 : K→ K has the
Jacobian property on 𝐵. Then 𝑓 has the Jacobian property on 𝐵′.

Proof. If 𝑓 is constant on 𝐵, then it is constant on 𝐵′. Otherwise, fix 𝑥 ∈ 𝐵′ and
𝛼, 𝛽 ∈ pΓ (with 𝛽 ≤ 𝛼) such that 𝐵 = ℬ≤𝛼(𝑥) and 𝐵′ = ℬ≤𝛽(𝑥). Moreover, fix 𝛾 ∈ pΓ

as in Definition 5.2.1, i.e., such that 𝑓(𝐵) is a ball of radius 𝛾 · 𝛼. More explicitly, we
then have 𝑓(𝐵) = ℬ≤𝛾·𝛼(𝑓(𝑥)).

Our claim now is that 𝑓(𝐵′) = ℬ≤𝛾·𝛽(𝑓(𝑥)). We prove the two inclusions separately.
First, let 𝑦 ∈ 𝐵′ ⊂ 𝐵 with 𝑦 ̸= 𝑥. By Definition 5.2.1 (2), we then have

|𝑓(𝑦)− 𝑓(𝑥)| = 𝛾 · |𝑦 − 𝑥|⏟  ⏞  
≤𝛽

≤ 𝛾 · 𝛽,

i.e., 𝑓(𝑦) ∈ ℬ≤𝛾·𝛽(𝑓(𝑥)), as claimed. For the other direction, consider

𝑧 ∈ ℬ≤𝛾·𝛽(𝑓(𝑥))
⊂ ℬ≤𝛾·𝛼(𝑓(𝑥))
= 𝑓(𝐵)

and fix 𝑦 ∈ 𝐵 with 𝑧 = 𝑓(𝑦). Then Definition 5.2.1 (2) implies

|𝑦 − 𝑥| = 𝛾−1 · |𝑧 − 𝑓(𝑥)|⏟  ⏞  
≤𝛾·𝛽

≤ 𝛽,

i.e., 𝑦 ∈ ℬ≤𝛽(𝑥) = 𝐵′, and hence 𝑧 = 𝑓(𝑦) ∈ 𝑓(𝐵′). This finishes the proof.

Let us recall the statement of Lemma 5.1.3: It says that (1) any𝑀 -definable integrable
function is (𝑐, 𝑑)-prepared for some appropriate choice of 𝑐 and 𝑑, and that (2) “being
(𝑐, 𝑑)-prepared” is stable under enlarging 𝑐 and under increasing 𝑑. We now establish
an analogous statement for the (𝑐, 𝑑)-Jacobian property. Afterwards, we can also com-
bine both statements to obtain preparation and the Jacobian property simultaneously,
this is Remark 5.2.7.

Lemma 5.2.5. Let 𝑀 ⊂ K ∪ Γ and let 𝑓 : K→ K be any 𝑀 -definable function.
Then the following hold.

(1) There are 𝑑, 𝑟 ∈ N>0 and some 𝑀 -definable tuple 𝑐 ∈ K𝑟 such that 𝑓 has
the (𝑐, 𝑑)-Jacobian property.

(2) Suppose that 𝑓 has the (𝑐, 𝑑)-Jacobian property with 𝑐 = (𝑐1, . . . , 𝑐𝑟) ∈ K𝑟.
If 𝑐′ = (𝑐1, . . . , 𝑐𝑟, 𝑐𝑟+1, . . . , 𝑐𝑟′) for some 𝑟′ ≥ 𝑟, where 𝑐𝑟+1, . . . , 𝑐𝑟′ ∈ K,
and 𝑑′ ∈ N>0 with 𝑑′ ≥ 𝑑, then 𝑓 has the (𝑐′, 𝑑′)-Jacobian property.
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Proof. Part (1) follows from [Clu+21, Corollary 3.1.3]. Part (2) follows from the
definition of the Jacobian property, Definition 5.2.1, and Lemma 5.2.4.

While we only defined the Jacobian property for functions on unary sets, we can also
deduce a family version of Lemma 5.2.5 (1) by compactness. We will make use of it
in the proof of the change-of-variables formula, Proposition 5.2.15.

Lemma 5.2.6. Let 𝑀 ⊂ K ∪ Γ and let 𝑓 : K𝑒 × K → K be an 𝑀 -definable
function for some 𝑒 ∈ N>0. Then there are 𝑑, 𝑟 ∈ N>0 and an 𝑀 -definable
function 𝑐 : K𝑒 → K𝑟 such that 𝑓(𝑥, ∙) has the (𝑐(𝑥), 𝑑)-Jacobian property for
each 𝑥 ∈ K𝑒.

Proof. Similarly as in the induction step in the proof of Lemma 5.1.3, this follows from
Lemma 5.2.5 by compactness. Just as there, we can first assume that 𝑀 is finite, and
we will from now on work in the (countable) language ℒval(𝑀).

For 𝑑, 𝑟 ∈ N>0, let 𝜙𝑑,𝑟(𝑥, 𝑐) be the ℒval(𝑀)-formula given in Remark 5.2.3 which holds
in K if and only if 𝑓(𝑥, ∙) has the (𝑐, 𝑑)-Jacobian property, where 𝑐 = (𝑐1, . . . , 𝑐𝑟).

Temporarily fix 𝑥 ∈ K𝑒. By Lemma 5.2.5, there are 𝑑, 𝑟 ∈ N>0 and an (𝑀 ∪ {𝑥})-
definable tuple 𝑐𝑥 ∈ K𝑟 such that 𝑓(𝑥, ∙) has the (𝑐𝑥, 𝑑)-Jacobian property. Let
𝜓𝑟,𝑥(𝑦, 𝑐) be an ℒval(𝑀)-formula defining 𝑐𝑥.

We can now continue (almost literally, with few exceptions) as in the induction step
in the proof of Lemma 5.1.3 (1). Indeed, just replace the references to Case 1 and
Lemma 5.1.3 (2) in the former by references to Lemma 5.2.5 (1) and (2), and replace
the reference to [Clu+21, Lemma 2.3.1 (3)] by a reference to Remark 5.2.3.

As mentioned above, we can combine Lemma 5.2.6 with Lemma 5.1.3 to obtain the
following unified statement.

Remark 5.2.7. Let 𝑀 ⊂ K ∪ Γ and let f : 𝐷 → pΓ be any 𝑀 -definable integrable
function for some𝐷 ⊂ K𝑒×K×RV𝑛

𝑚 and let 𝑓 : K𝑒×K→ K be any (𝑀 -definable)
function. Then there are 𝑑, 𝑟 ∈ N>0 and an 𝑀 -definable function 𝑐 : K𝑒 → K𝑟

for which f is (𝑐, 𝑑)-prepared and 𝑓(𝑥, ∙) has the (𝑐(𝑥), 𝑑)-Jacobian property for
all 𝑥 ∈ K𝑒.

We now want to show that the integral of an integrable function f : 𝐷 → pΓ does not
change when permuting the K-coordinates of 𝐷. (For the RV-coordinates, this is clear
by, e.g., Corollary 5.1.15 and Definition 4.1.2 (2).)

The crucial (first) step is the special case where 𝐷 ⊂ K2 is a twisted box. We will
then deduce the general case in Lemma 5.2.9.
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Lemma 5.2.8. Let 𝑀 ⊂ K ∪ Γ and let f : 𝐷 → pΓ be an 𝑀 -definable integrable
function, where 𝐷 ⊂ K2. Suppose there are 𝑑1, 𝑑2 ∈ N, an 𝑀 -definable element
𝑐1 ∈ K and an 𝑀 -definable function 𝑐2 : K→ K, such that

� there are 𝑢 ∈ RV𝑑1 and 𝑣 ∈ RV𝑑2 with

𝐷 = {(𝑥, 𝑦) ∈ K2 | rv𝑑1(𝑥− 𝑐1) = 𝑢 and rv𝑑2(𝑦 − 𝑐2(𝑥)) = 𝑣},

� f is (𝑐2, 𝑑2)-prepared,

�
˜︂f(𝑐2,𝑑2) is (𝑐1, 𝑑1)-prepared, and

� 𝑐2 has the (𝑐1, 𝑑1)-Jacobian property.

(Note that the second and third condition together, under the assumption of the
first, are equivalent to saying that f : 𝐷 → pΓ is a constant function.)

Then we have
∫︀
mot

(f ∘ flip) =
∫︀
mot

f, where flip : 𝐷 → flip(𝐷) ⊂ K2 swaps the two
coordinates, i.e., flip(𝑥, 𝑦) = (𝑦, 𝑥).

Proof. In the special case 𝑢 = 0, we have
˜︂

( ˜︂𝐷(𝑐2,𝑑2))(𝑐1,𝑑1) = ∅, and f ∘ flip is (𝑐′1, 𝑑1)-

prepared for 𝑐′1 = constpr2(𝐷)(𝑐1) : pr2(𝐷) → K, with ˜︂flip(𝐷)(𝑐1,𝑑1) = ∅. Thus both∫︀
mot

f and
∫︀
mot

(f ∘ flip) evaluate to 0, i.e., the claim holds. In the case 𝑣 = 0, we have
˜︂𝐷(𝑐2,𝑑2) = ∅, so

∫︀
mot

f = 0, and
∫︀
mot

(f ∘ flip) = 0 follows just as in the Case 2b below.

From now on, let us assume that 𝑢 ∈ RV×
𝑑1

and 𝑣 ∈ RV×
𝑑2
. Note that the assumptions

in particular imply that f is constant on 𝐷, say f = const𝐷(𝛼). Hence we have
f∘flip = constflip(𝐷)(𝛼) and

∫︀
mot

f = 𝛼·rad𝑑1(𝑢)·rad𝑑2(𝑣), the latter by Example 5.1.17.
We cannot, however, directly apply the same argument to f ∘ flip, as it requires us to
know that flip(𝐷) is a (twisted) box. Showing that it is – and calculating its size – is
our concern for the remainder of the proof.

By Definition 5.2.1, the function 𝑐2 is either constant on 𝐵 = pr1(𝐷) = rv−1
𝑑1

(𝑢) + 𝑐1,
or there is some 𝛾 ∈ pΓ such that 𝑐2(𝐵) is a ball of radius 𝛾 · rad𝑑1(𝑢) = 𝛾 ·𝑝−𝑑1−val(𝑢).
We handle those two cases separately. For the remainder of the proof, we fix some
element (𝑥0, 𝑦0) ∈ 𝐷.

Case 1: 𝑐2 is constant on 𝐵 = pr1(𝐷) = rv−1
𝑑1

(𝑢) + 𝑐1. Then we have

𝐷 = {(𝑥, 𝑦) ∈ K2 | rv𝑑1(𝑥− 𝑐1) = 𝑢, rv𝑑2(𝑦 − 𝑐2(𝑥0)) = 𝑣}
= pr1(𝐷)× pr2(𝐷),

so that flip(𝐷) = pr2(𝐷)×pr1(𝐷), the integrable function f∘flip : flip(𝐷)→ pΓ is

(𝑐′2, 𝑑
′
2)-prepared and ˜︂f(𝑐′2,𝑑′2) is (𝑐

′
1, 𝑑

′
1)-prepared for 𝑐

′
2 = constpr1(𝐷)(𝑐1), 𝑑′2 = 𝑑1,
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and 𝑐′1 = 𝑐2(𝑥0), 𝑑′1 = 𝑑2, with (flip(𝐷)(𝑐′2,𝑑′2))(𝑐′1,𝑑′1) = {(𝑣, 𝑢)}. We thus have∫︁
mot

f ∘ flip =

∫︁
mot

constflip(𝐷)(𝛼)

= 𝛼 · rad𝑑′1(𝑣) · rad𝑑′2(𝑢)
= 𝛼 · rad𝑑2(𝑣) · rad𝑑1(𝑢)

=

∫︁
mot

f

by Example 5.1.17.

Case 2: 𝑐2(𝐵) is a ball of radius 𝛾 · rad𝑑1(𝑢). Pick some 𝑢′ ∈ RV𝑑1 with ac𝑑1(𝑢
′) =

ac𝑑1(𝑢) and val(𝑢′) = val(𝛾) + val(𝑢). Moreover, pick some 𝑦1 ∈ K with
rv𝑑1(𝑐2(𝑥0)− 𝑦1) = 𝑢′. Then we have

𝑐2(𝐵) = rv−1
𝑑1

(𝑢′) + 𝑦1,

since both are balls of radius rad𝑑1(𝑢
′) = 𝛾 · rad𝑑1(𝑢) containing 𝑐2(𝑥0). Thus

pr2(𝐷) = {𝑦 ∈ K | ∃𝑥 ∈ 𝐵 : rv𝑑2(𝑦 − 𝑐2(𝑥)) = 𝑣}

=
⋃︁
𝑥∈𝐵

rv−1
𝑑2

(𝑣) + 𝑐2(𝑥)

= rv−1
𝑑2

(𝑣) + 𝑐2(𝐵)

= rv−1
𝑑2

(𝑣) + rv−1
𝑑1

(𝑢′) + 𝑦1

is a ball of radius max{rad𝑑2(𝑣), rad𝑑1(𝑢′)} containing 𝑦0, i.e., we have

pr2(𝐷) =

{︃
rv−1
𝑑2

(𝑣) + 𝑐2(𝑥0), if 𝑑1 + val(𝛾) + val(𝑢) ≥ 𝑑2 + val(𝑣)

rv−1
𝑑1

(𝑢′) + 𝑦0 − 𝑐2(𝑥0) + 𝑦1, if 𝑑1 + val(𝛾) + val(𝑢) ≤ 𝑑2 + val(𝑣)
.

Recall that 𝑣 = rv𝑑2(𝑦0 − 𝑐2(𝑥0)), so for 𝑥, 𝑦 ∈ K, we have the equivalence

rv𝑑2(𝑦 − 𝑐2(𝑥)) = 𝑣 ⇐⇒ val(𝑦 − 𝑦0 + 𝑐2(𝑥0)− 𝑐2(𝑥)) ≥ 𝑑2 + val(𝑣),

by Remark 2.2.7.

Case 2a: 𝑑1 + val(𝛾) + val(𝑢) ≥ 𝑑2 + val(𝑣). Let 𝑥 ∈ pr1(𝐷) and 𝑦 ∈ pr2(𝐷).
We will show that (𝑥, 𝑦) ∈ 𝐷, i.e., that 𝐷 = pr1(𝐷) × pr2(𝐷). The claim
then follows just as in Case 1. Towards that end, note that we have

val(𝑦 − 𝑦0) = val(𝑦 − 𝑐2(𝑥0)− (𝑦0 − 𝑐2(𝑥0)))
≥ 𝑑2 + val(𝑣)

by Remark 2.2.7, since both 𝑦 and 𝑦0 lie in pr2(𝐷) = rv−1
𝑑2

(𝑣) + 𝑐2(𝑥0).
Similarly, we have

val(𝑐2(𝑥0)− 𝑐2(𝑥)) = val(𝑐2(𝑥0)− 𝑦1 − (𝑐2(𝑥)− 𝑦1))
≥ 𝑑1 + val(𝑢′) = 𝑑1 + val(𝛾) + val(𝑢)

≥ 𝑑2 + val(𝑣),
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since both 𝑐2(𝑥0) and 𝑐2(𝑥) lie in 𝑐2(𝐵) = rv−1
𝑑1

(𝑢′) + 𝑦1.

Using both these inequalities, we get

val(𝑦 − 𝑦0 + 𝑐2(𝑥0)− 𝑐2(𝑥)) ≥ min{𝑦 − 𝑦0, 𝑐2(𝑥0)− 𝑐2(𝑥)}
≥ 𝑑2 + val(𝑣),

and hence rv𝑑2(𝑦 − 𝑐2(𝑥)) = 𝑣 holds, i.e., (𝑥, 𝑦) ∈ 𝐷 as claimed.

Case 2b: 𝑑1 + val(𝛾) + val(𝑢) ≤ 𝑑2 + val(𝑣). Then pr2(𝐷) = 𝑐2(𝐵)+𝑦0−𝑐2(𝑥0),
and since 𝑐2 is injective on 𝐵 (see Remark 5.2.2), we have

𝐷 = {(𝑥, 𝑦) ∈ 𝐵 × pr2(𝐷) | val(𝑥− 𝑐2̃(𝑦)) ≥ 𝑑2 + val(𝑣)− val(𝛾)},

where the function 𝑐2̃ : pr2(𝐷)→ 𝐵 = pr1(𝐷) given by 𝑦 ↦→ 𝑐2
−1(𝑦 − 𝑦0 +

𝑐2(𝑥0)) is (𝑀 ∪ {𝑥0, 𝑦0})-definable.

Indeed, using Remark 2.2.7 and the assumption that 𝑐2 has the (𝑐1, 𝑑1)-
Jacobian property, we have

(𝑥, 𝑦) ∈ 𝐷 ⇐⇒ rv𝑑2(𝑦 − 𝑐2(𝑥)) = 𝑣

⇐⇒ val(𝑦 − 𝑦0 + 𝑐2(𝑥0)− 𝑐2(𝑥)) ≥ 𝑑2 + val(𝑣)

⇐⇒ val(𝑐2
−1(𝑦 − 𝑦0 + 𝑐2(𝑥0))⏟  ⏞  

=: 𝑐2̃(𝑦)

−𝑥) + val(𝛾) ≥ 𝑑2 + val(𝑣)

⇐⇒ val(𝑥− 𝑐2̃(𝑦)) ≥ 𝑑2 + val(𝑣)− val(𝛾),

for all (𝑥, 𝑦) ∈ 𝐵 × pr2(𝐷).

Fixing some 𝑧 ∈ K with val(𝑧) = val(𝑣)− val(𝛾), we then have

(𝑥, 𝑦) ∈ 𝐷 ⇐⇒ val(𝑥− 𝑐2̃(𝑦)) ≥ 𝑑2 + val(𝑣)− val(𝛾)

⇐⇒ val(𝑥− 𝑐2̃(𝑦) + 𝑧 − 𝑧) ≥ 𝑑2 + val(𝑧)

⇐⇒ rv𝑑2(𝑥− 𝑐2̃(𝑦) + 𝑧) = rv𝑑2(𝑧)

⇐⇒ rv𝑑2(𝑥− 𝑐2̃(𝑦) + 𝑧) = rv𝑑2(𝑧)

for all (𝑥, 𝑦) ∈ 𝐵 × pr2(𝐷). Note that the set of 𝑥 satisfying the equality
rv𝑑2(𝑥 − 𝑐2̃(𝑦) + 𝑧) = rv𝑑2(𝑧) is a ball of radius rad𝑑2(rv𝑑2(𝑧)) and 𝐵 is a
ball of radius rad𝑑1(𝑢) (which is larger than rad𝑑2(rv𝑑2(𝑧)) = 𝑝−𝑑2−val(𝑧) =
𝑝−𝑑2−val(𝑣)+val(𝛾) by the case assumption), and both these balls contain 𝑥0.
Hence the condition rv𝑑2(𝑥− 𝑐2̃(𝑦) + 𝑧) = rv𝑑2(𝑧) already implies 𝑥 ∈ 𝐵.

Moreover, we have pr2(𝐷) = rv−1
𝑑1

(𝑢′)+(𝑦0− 𝑐2(𝑥0)+𝑦1), and thus, all put
together

𝐷 = {(𝑥, 𝑦) ∈ K2 |𝑥 ∈ 𝐵, 𝑦 ∈ pr2(𝐷),

rv𝑑2(𝑥− 𝑐2̃(𝑦) + 𝑧) = rv𝑑2(𝑧)}
= {(𝑥, 𝑦) ∈ K2 | rv𝑑1(𝑦 − (𝑦0 − 𝑐2(𝑥0) + 𝑦1)) = 𝑢′,

rv𝑑2(𝑥− 𝑐2̃(𝑦) + 𝑧) = rv𝑑2(𝑧)},
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i.e.,

flip(𝐷) = {(𝑦, 𝑥) ∈ K2 | rv𝑑1(𝑦 − (𝑦0 − 𝑐2(𝑥0) + 𝑦1)) = 𝑢′,

rv𝑑2(𝑥− 𝑐2̃(𝑦) + 𝑧) = rv𝑑2(𝑧)}.

Hence (f ∘ flip) : flip(𝐷) → pΓ is (𝑐′2, 𝑑2)-prepared and ˜︂(f ∘ flip)(𝑐′2,𝑑2) is
(𝑐′1, 𝑑1)-prepared for the (𝑀∪{𝑥0, 𝑦0})-definable element 𝑐′1 = (𝑦0−𝑐2(𝑥0)+
𝑦1) ∈ K and the (𝑀 ∪ {𝑥0, 𝑦0, 𝑧})-definable function 𝑐′2 : K → K given by
𝑐′2(𝑥) = 𝑐2̃(𝑥) − 𝑧. In 𝑅mot(𝑍

′), for 𝑍 ′ = dcl(𝑀 ∪ {𝑥0, 𝑦0, 𝑧}) ∩ Γ ≽ 𝑍 =
dcl(𝑀) ∩ Γ, we thus have∫︁

mot

f ∘ flip =

∫︁
mot

constflip(𝐷)(𝛼)

= 𝛼 · rad𝑑1(𝑢′) · rad𝑑2(𝑤)

= 𝛼 · 𝑝−𝑑1−val(𝑢′)−𝑑2−val(𝑤)

= 𝛼 · 𝑝−𝑑1−val(𝛾)−val(𝑢)−𝑑2−val(𝑣)+val(𝛾)

= 𝛼 · 𝑝−𝑑1−val(𝑢)−𝑑2−val(𝑣)

= 𝛼 · rad𝑑1(𝑢) · rad𝑑2(𝑣)

=

∫︁
mot

f,

by Example 5.1.17. Since both f and f ∘ flip are 𝑀 -definable integrable
functions, the equality of their integrals also holds in 𝑅mot(𝑍), as claimed.

This finishes the case distinction and thus the proof.

Lemma 5.2.9. Let 𝑀 ⊂ K ∪ Γ and let f : 𝐷 → pΓ be an 𝑀 -definable integrable
function, where 𝐷 ⊂ K𝑒 × RV𝑛

𝑚 for some 𝑒 ∈ N>0, ℓ ∈ N and 𝑚,𝑛 ∈ Nℓ>0.
Consider the permutation of coordinates

𝜏 : K𝑒 × RV𝑛
𝑚 → K𝑒 × RV𝑛

𝑚

(𝑥1, . . . , 𝑥𝑒,𝑢) ↦→ (𝑥𝜎(1), . . . , 𝑥𝜎(𝑒),𝑢)

for an arbitrary permutation 𝜎 : {1, . . . , 𝑒} → {1, . . . , 𝑒}. Then
∫︀
mot

f ∘ 𝜏 =
∫︀
mot

f.

Proof. We will reduce the general situation to the special case handled in Lemma 5.2.8.
First note that we can restrict to the case that 𝜎 is a transposition of two consecutive
numbers, since any permutation of {1, . . . , 𝑒} can be written as a composition of such
transpositions. By repeatedly applying intLem(∙) (see Definition 5.1.9), we can restrict
to the case that 𝜎 transposes 1 and 2. By repeatedly applying Corollary 5.1.15 to both
f and f ∘ 𝜏 , we can replace the last K-coordinate of 𝐷 (i.e., the 𝑒-th coordinate) by an
RV*

*-coordinate, and hence we can restrict to the case that 𝑒 = 2. By Lemma 5.1.18,
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we can furthermore restrict to the case that ℓ = 0, i.e., 𝐷 = dom(f) ⊂ K2, and
𝜏 : K2 → K2, (𝑥, 𝑦) ↦→ (𝑦, 𝑥).

Now, pick some 𝑑2, 𝑟2 ∈ N>0 and some 𝑀 -definable function 𝑐2 : K → K𝑟2 for which
f is (𝑐2, 𝑑2)-prepared and consider the sets

𝑄𝑣 = {(𝑥, 𝑦) ∈ 𝐷 | rv𝑐2(𝑥)
𝑑2

(𝑦) = 𝑣}

for 𝑣 ∈ prRV𝑟2
𝑑2

(𝐷(𝑐2,𝑑2)). Note that 𝐷 is the (disjoint) union of all the sets 𝑄𝑣, so

Lemma 5.1.18 allows us to establish the claim separately for each f↾𝑄𝑣. Hence we can
assume that 𝐷 = 𝑄𝑣 for some given 𝑣 ∈ RV𝑟2𝑑2 . Since the set of 𝑦 with rv

𝑐2(𝑥)
𝑑2

(𝑦) = 𝑣
is an intersection of balls (possibly including non-proper ones) for each 𝑥 ∈ pr1(𝐷),
we can moreover assume that 𝑟2 = 1 (and we will thus write 𝑐2 instead of 𝑐2 from now
on). By Remark 5.2.7, there are 𝑑1, 𝑟1 ∈ N>0 and an 𝑀 -definable tuple 𝑐1 ∈ K𝑟1 for

which ˜︂f(𝑐2,𝑑2) is (𝑐1, 𝑑1)-prepared and 𝑐2 has the (𝑐1, 𝑑1)-Jacobian property. Similarly
to above, Lemma 5.1.18 allows us to further restrict to the case that 𝑟1 = 1, i.e.,

𝐷 = {(𝑥, 𝑦) ∈ K2 | rv𝑑1(𝑥− 𝑐1) = 𝑢, rv𝑑2(𝑦 − 𝑐2(𝑥)) = 𝑣}

for some fixed 𝑢 ∈ RV𝑟1𝑑1 . Note that 𝑐2 still has the (𝑐1, 𝑑1)-Jacobian property after this
reduction, so that we are now in the situation already handled in Lemma 5.2.8.

Definition 5.2.10 (adapted from [CHR21, Definition 3.1.1]). Let 𝑓 : 𝑋 → K be
an arbitrary function for some subset 𝑋 ⊂ K and let 𝑥 ∈ 𝑋. A (or a posteriori:
the) (classical) derivative of 𝑓 at 𝑥 is an element 𝑦 ∈ K such that for all 𝛽 ∈ pΓ

there is some 𝛼 ∈ pΓ for which we have ℬ≤𝛼(𝑥) ⊂ 𝑋 and⃒⃒⃒⃒
𝑓(𝑥)− 𝑓(𝑥′)

𝑥− 𝑥′
− 𝑦
⃒⃒⃒⃒
< 𝛽.

for all 𝑥′ ∈ ℬ≤𝛼(𝑥) with 𝑥′ ̸= 𝑥.

Note that such an element 𝑦 is necessarily unique if it exists, i.e., there is at most
one derivative of 𝑓 at each 𝑥 ∈ 𝑋.

We use the standard notation 𝑓 ′(𝑥) for the derivative of 𝑓 at 𝑥, if it exists.

Lemma 5.2.11. Let 𝑀 ⊂ K ∪ Γ and let 𝑓 : K→ K be an 𝑀 -definable function.
Then the set of points at which the derivative of 𝑓 exists is cofinite and open.

Proof. Cofiniteness follows from [CHR21, Theorem 3.1.4] and [CHR21, Theorem 5.1.5]
together with [Clu+21, Proposition 3.1.1].

Openness follows from the definition of the derivative, Definition 5.2.10, using that a
subset 𝑋 ′ ⊂ K is open if and only if there is, for each 𝑥 ∈ 𝑋 ′, an element 𝛼 ∈ pΓ such
that ℬ≤𝛼(𝑥) ⊂ 𝑋 ′.
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We can now define the Jacobian matrix, show that it exists almost everywhere, and
then finally state and prove the change-of-variables formula, Proposition 5.2.15.

Definition 5.2.12. Let 𝑀 ⊂ K ∪ Γ and let 𝜏 : 𝑋 → Kℓ be an 𝑀 -definable
function for some (𝑀 -definable) 𝑋 ⊂ K𝑒. Fix some element 𝑥 = (𝑥1, . . . , 𝑥𝑒) ∈ 𝑋
and consider the functions 𝜏𝑖,�̸�=𝑗

= (pr𝑖 ∘𝜏)(𝑥1, . . . , 𝑥𝑗−1, ∙, 𝑥𝑗+1, . . . 𝑥𝑒), for 𝑖 =
1, . . . , ℓ and 𝑗 = 1, . . . , 𝑒, given by

𝜏𝑖,�̸�=𝑗
: 𝑋�̸�=𝑗

→ K

𝑦 ↦→ (pr𝑖 ∘𝜏)(𝑥1, . . . , 𝑥𝑗−1, 𝑦, 𝑥𝑗+1, . . . 𝑥𝑒)

where 𝑋𝑥 ̸=𝑗
= {𝑦 ∈ K | (𝑥1, . . . , 𝑥𝑗−1, 𝑦, 𝑥𝑗+1, . . . , 𝑥𝑒) ∈ 𝑋}.

If all of the derivatives 𝜏 ′𝑖,�̸�=𝑗
(𝑥𝑗) exist, we define the Jacobian matrix of 𝜏 at 𝑥

as the ℓ× 𝑒-matrix

Jac𝜏 (𝑥) =

⎛⎜⎝𝜏
′
1,𝑥 ̸=1

(𝑥1) . . . 𝜏 ′1,𝑥 ̸=𝑒
(𝑥𝑒)

...
. . .

...
𝜏 ′ℓ,𝑥 ̸=1

(𝑥1) . . . 𝜏 ′ℓ,𝑥 ̸=𝑒
(𝑥𝑒)

⎞⎟⎠
with entries in K.

Lemma 5.2.13. The Jacobian matrix of a given 𝑀 -definable function 𝜏 : 𝑋 →
Kℓ exists “almost everywhere”. More formally, we have 𝜇mot(𝑋

′) = 𝜇mot(𝑋) for
the set 𝑋 ′ of points 𝑥 ∈ 𝑋 at which Jac𝜏 (𝑥) exists.

Moreover, the set 𝑋 ′ is open in 𝑋.

Proof. Let 𝜏 : 𝑋 → Kℓ be an 𝑀 -definable function for some 𝑋 ⊂ K𝑒, 𝑒 ∈ N>0. Note
that Jac𝜏 (𝑥) exists if and only if Jac𝜏𝑖(𝑥) exists for all 𝑖 ∈ {1, . . . , ℓ}, so we can
restrict to the case that ℓ = 1. Consider the sets

𝑍𝑗 = {𝑥 ∈ 𝑋 | the derivative 𝜏 ′𝑥 ̸=𝑗
(𝑥𝑗) exists} and

𝑌𝑗 = 𝑋 ∖ 𝑍𝑗

for 𝑗 ∈ {1, . . . , 𝑒}, using the same notation as in Definition 5.2.12 above. Note that
𝑋 ∖

⋃︀𝑒
𝑗=1 𝑌𝑗 =

⋂︀𝑒
𝑗=1 𝑍𝑗 ⊂ 𝑋 is precisely the set 𝑋 ′ of points 𝑥 ∈ 𝑋 at which the

Jacobian matrix Jac𝜏 (𝑥) exists.

Now fix some 𝑗 ∈ {1, . . . , 𝑒}. By Lemma 5.1.3, there are 𝑑, 𝑟 ∈ N>0 and an𝑀 -definable
function 𝑐 : K𝑒−1 → K𝑟 such that 𝜎𝑗(𝑌𝑗) is (𝑐, 𝑑)-prepared, where

𝜎𝑗 : K
𝑒 → K𝑒

(𝑥1, . . . , 𝑥𝑒) ↦→ (𝑥1, . . . , 𝑥𝑗−1, 𝑥𝑗+1, . . . , 𝑥𝑒, 𝑥𝑗)
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is a permutation of coordinates. Then each of the fibers (𝜎𝑗(𝑌𝑗))�̸�=𝑗
= {𝑦 ∈ K |

(𝑥1, . . . , 𝑥𝑗−1, 𝑦, 𝑥𝑗+1, . . . , 𝑥𝑒) ∈ 𝑌𝑗} of 𝜎𝑗(𝑌𝑗), for �̸�=𝑗 ∈ pr̸=𝑗(𝑋) ⊂ K𝑒−1, is finite by
Lemma 5.2.11. Since each such fiber is moreover (𝑐(𝑥 ̸=𝑗), 𝑑)-prepared, i.e., a union of
(𝑐(�̸�=𝑗), 𝑑)-balls (which are either infinite or singletons, cf. Definition 5.1.1 (1)), we
must already have

𝜎𝑗(𝑌𝑗) ⊂
𝑟⋃︁
𝑖=1

graph(pr𝑖 ∘𝑐).

By Remark 5.1.14 and Lemma 5.2.9 we thus have 𝜇mot(𝑋 ∖𝑋 ′) = 𝜇mot(
⋃︀𝑒
𝑗=1 𝑌𝑗) = 0,

showing that 𝜇mot(𝑋) = 𝜇mot(𝑋
′), as claimed.

Moreover, note that
⋃︀𝑒
𝑗=1 𝑌𝑗 is closed as it is the union of finitely many graphs up to

coordinate permutations, and thus its relative complement 𝑋 ′ is open in 𝑋.

In the situation of Lemma 5.2.13, note that the set 𝑋 ′ is not necessarily open in K𝑒,
as the following example shows.

Example 5.2.14. Let 𝑋 = (𝒪2 ∖Δ) ∪ {(0, 0)}, where Δ denotes the diagonal set,
i.e., 𝑋 = {(𝑥, 𝑦) ∈ 𝒪2 | 𝑥 ̸= 𝑦 or 𝑥 = 𝑦 = 0}, and consider the 𝑀 -definable
function

𝜏 : 𝑋 → K

(𝑥, 𝑦) ↦→ 𝑥+ 𝑦.

Then the Jacobian matrix of 𝜏 exists (and is equal to the matrix
(︀
1 1

)︀
) at all

points (𝑥, 𝑦) ∈ 𝑋. However, 𝑋 is not open in K2, since it does not completely
contain any open ball around (0, 0) ∈ 𝑋.

An analogous statement is true for a constant function on 𝑋, with the Jacobian
matrix then evaluating to zero everywhere.

We now have all the necessary ingredients to state and prove the main result of this
section, establishing a change of variables formula.

Proposition 5.2.15 (Change of variables). Let 𝑀 ⊂ K ∪ Γ, 𝑒 ∈ N, let 𝜏 : 𝑋 →
K𝑒+1 be an𝑀 -definable injection for some (𝑀 -definable) open set 𝑋 ⊂ K𝑒+1 such
that Jac𝜏 (𝑥) exists at all 𝑥 ∈ 𝑋. Further let f : 𝜏(𝑋) → pΓ be an 𝑀 -definable
integrable function with domain 𝜏(𝑋). Then we have∫︁

mot

f =

∫︁
mot

|det(Jac𝜏 )| · (f ∘ 𝜏)
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where the integrand on the right-hand side denotes the 𝑀 -definable integrable
function with domain 𝑋 which sends 𝑥 ∈ 𝑋 to |det(Jac𝜏 (𝑥))| · f(𝜏(𝑥)).

Proof. First note that Lemma 5.1.18 allows us to partition 𝑋 into a family of sets
parameterized by an 𝑀 -definable subset of RV*

* and to prove the claim for each piece
of the partition individually.

We will now start the actual proof by induction on 𝑒.

Induction base, 𝑒 = 0. By Remark 5.2.7, we can find 𝑑, 𝑟 ∈ N>0 and a tuple 𝑐 =
(𝑐1, . . . , 𝑐𝑟) ∈ K𝑟 such that 𝜏 has the (𝑐, 𝑑)-Jacobian property and f ∘ 𝜏 is (𝑐, 𝑑)-
prepared. Using Lemma 5.1.18 as noted above, we can assume that 𝑋 is itself a
(𝑐, 𝑑)-ball, i.e., there is some 𝑢 ∈ RV𝑟𝑑 such that we have

𝑋 = {𝑥 ∈ K | rv𝑐𝑑(𝑥) = 𝑢} = (rv𝑐𝑑)
−1(𝑢).

In particular, 𝜏 then has the Jacobian property on 𝑋. By the definitions of the
Jacobian property and of the derivative, Definition 5.2.1 and Definition 5.2.10,
the image of 𝑋 under 𝜏 is a ball of radius rad𝑑(𝑢) · |𝜏 ′(𝑥0))|, for any 𝑥0 ∈ 𝑋.
(Note that 𝜏 is not constant on any ball, as it is injective on 𝑋.) For any 𝑥0 ∈ 𝑋,
we have det(Jac𝜏 (𝑥0)) = 𝜏 ′(𝑥0) by definition of the Jacobian matrix. Moreover,
since f ∘ 𝜏 is (𝑐, 𝑑)-prepared, we have f ∘ 𝜏 = const𝑋(𝛾) for some 𝛾 ∈ pΓ, and
consequently f = const𝜏(𝑋)(𝛾). Using Remark 5.1.16, the above yields the desired
equality ∫︁

mot

f =

∫︁
mot

const𝜏(𝑋)(𝛾)

= 𝛾 · rad𝑑(𝑢) · |𝜏 ′(𝑥0)|

=

(︂∫︁
mot

const𝑋(𝛾)

)︂
· |𝜏 ′(𝑥0)|

=

(︂∫︁
mot

f ∘ 𝜏
)︂
· |𝜏 ′(𝑥0)|

=

∫︁
mot

|𝜏 ′| · (f ∘ 𝜏𝑋)

=

∫︁
mot

|det(Jac𝜏 )| · (f ∘ 𝜏)

where 𝑥0 ∈ 𝑋 is arbitrary. This completes the proof of the induction base.

Induction step, 𝑒 ≥ 1. By Remark 5.2.7, we can find 𝑑, 𝑟 ∈ N>0 and an 𝑀 -definable
function 𝑐 : K𝑒 → K𝑟 such that f ∘ 𝜏 is (𝑐, 𝑑)-prepared and all of the functions
(pr𝑖 ∘𝜏)(𝑥, ∙), for 𝑖 ∈ {1, . . . , 𝑒+1}, have the (𝑐(𝑥), 𝑑)-Jacobian property for each
𝑥 ∈ K𝑒.
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Just as above, Lemma 5.1.18 allows us to restrict our attention to the case that
𝑋 = {(𝑥, 𝑦) | rv𝑐(𝑥)𝑑 (𝑦) = 𝑢} for some 𝑢 ∈ RV𝑟𝑑. For each 𝑥 ∈ pr≤𝑒(𝑋), the fiber
of 𝑋 at 𝑥 is then the (𝑐(𝑥), 𝑑)-ball

𝐵(𝑥) := (rv
𝑐(𝑥)
𝑑 )−1(𝑢) ⊂ K.

Consider, for each 𝑖 ∈ {1, . . . , 𝑒+ 1}, the set

𝑋inj,𝑖 = {(𝑥, 𝑦) ∈ 𝑋 | (pr𝑖 ∘𝜏)(𝑥, ∙) is injective on 𝐵(𝑥)}.

We now show that we have 𝑋 =
⋃︀
𝑖𝑋inj,𝑖. If 𝑢 = 0, this is clear. Otherwise, the

map 𝜏(𝑥, ∙) is not constant on the ball 𝐵(𝑥) = (rv
𝑐(𝑥)
𝑑 )−1(𝑢) for any 𝑥, since 𝜏

is injective. By the (𝑐(𝑥), 𝑑)-Jacobian property for 𝜏(𝑥, ∙), we thus have

𝑋 ∖
⋃︁
𝑖

𝑋inj,𝑖 =
⋂︁
𝑖

(𝑋 ∖𝑋inj,𝑖)

⊂ {(𝑥, 𝑦) ∈ 𝑋 | (pr𝑖 ∘𝜏)(𝑥, ∙) is constant on 𝐵(𝑥) for all 𝑖}
= {(𝑥, 𝑦) ∈ 𝑋 | 𝜏(𝑥, ∙) is constant on 𝐵(𝑥)}
= ∅,

as claimed.

Hence we have ∫︁
mot

f =
∑︁
𝑖

∫︁
mot

f↾𝜏(𝑋 ′
inj,𝑖) and∫︁

mot

|det(Jac𝜏 )| · (f ∘ 𝜏) =
∑︁
𝑖

∫︁
mot

|det(Jac𝜏 )| · (f ∘ 𝜏↾𝑋 ′
inj,𝑖),

where 𝑋 ′
inj,𝑖 = 𝑋inj,𝑖 ∖

⋃︀
𝑗<𝑖𝑋inj,𝑗 . It thus suffices to show the equality∫︁

mot

f↾𝜏(𝑋 ′
inj,𝑖) =

∫︁
mot

|det(Jac𝜏 )| · (f ∘ 𝜏↾𝑋 ′
inj,𝑖)

for each 𝑖 ∈ {1, . . . , 𝑒+ 1}.

To do so, let us now fix one such 𝑖. For each 𝑥 ∈ pr≤𝑒(𝑋
′
inj,𝑖), the map (𝜏 ↾

𝑋 ′
inj,𝑖)(𝑥, ∙) is injective on the fiber of 𝑋 ′

inj,𝑖 ⊂ 𝑋inj,𝑖 at 𝑥, since it is injective on
𝐵(𝑥). We can therefore write 𝜏↾𝑋 ′

inj,𝑖 as the composition of the maps

(𝑥, 𝑦) ↦→ (𝑥, 𝜏𝑖(𝑥, 𝑦))

↦→ (𝑥≤𝑖, 𝜏𝑖(𝑥, 𝑦),𝑥>𝑖)

↦→ (𝜏1(𝑥, 𝑦), . . . , 𝜏𝑖(𝑥, 𝑦), . . . , 𝜏𝑒+1(𝑥, 𝑦)) = 𝜏(𝑥, 𝑦),

each of which is either a permutation of coordinates or fixes at least one coordi-
nate. By Lemma 5.2.9, we are thus left with proving the claim in the case that
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𝜏 fixes the last coordinate, i.e., 𝜏(𝑥, 𝑦) = (𝜏(𝑥, 𝑦), 𝑦) for some 𝜏 : 𝑋 → K𝑒. Note
that we then have

f𝑦 ∘ (𝜏)𝑦 = (f ∘ 𝜏)𝑦,

where 𝑋𝑦 = {𝑥 ∈ K𝑒 | (𝑥, 𝑦) ∈ 𝑋}, and f𝑦 = f(∙, 𝑦) as well as (𝜏)𝑦 = 𝜏(∙, 𝑦).
Moreover, we have

Jac𝜏 (𝑥, 𝑦) =

⎛⎜⎜⎜⎝
⋆

Jac(𝜏)𝑦 (𝑥)
...
⋆

0 · · · 0 1

⎞⎟⎟⎟⎠
for each 𝑥 ∈ pr≤𝑒(𝑋) ⊂ K𝑒, and thus det(Jac(𝜏)𝑦 ) = det(Jac𝜏 (∙, 𝑦)). Further
note that (𝜏)𝑦 is injective for each 𝑦 ∈ K since 𝜏 is injective. The induction
hypothesis applied to 𝑀 ∪ {𝑦} ⊂ K, the (𝑀 ∪ {𝑦})-definable integrable function
f𝑦, and the (𝑀 ∪ {𝑦})-definable injection (𝜏)𝑦 now yields∫︁

mot

f𝑦 =

∫︁
mot

⃒⃒
det(Jac(𝜏)𝑦 )

⃒⃒
· (f𝑦 ∘ (𝜏)𝑦)

=

∫︁
mot

|det(Jac𝜏 (∙, 𝑦))| · (f ∘ 𝜏)𝑦

=

∫︁
mot

(︀
|det(Jac𝜏 )| · (f ∘ 𝜏)

)︀
𝑦
∈ 𝑅mot(𝑍(𝑦))

for all 𝑦 ∈ K, where 𝑍(𝑦) = acl(𝑀∪{𝑦})∩Γ ≽ acl(𝑀)∩Γ = 𝑍. Hence intLem(𝑒)
(see Definition 5.1.9 and Theorem 5.1.10), together with Lemma 5.2.9 implies∫︁

mot

f =

∫︁
mot

|det(Jac𝜏 )| · (f ∘ 𝜏),

finishing the proof.

5.3 Universal motivic measure

In [CH21], Cluckers and Halupczok show that the Haar measure on semi-algebraic
subsets of Q𝑝 is the universal motivic measure, that is to say, it is the most general
one that satisfies certain conditions one would expect from a measure. In this section,
we will repeat the most important definitions and lemmata and adapt the notation
to the scope of this thesis, i.e., with respect to the measure on a proper elementary
extension K ≽ Q𝑝 as defined in Definition 5.1.12.

The work of Cluckers and Halupczok relies on model theory of Q𝑝 and on their previous
work in [CH18] (which is already formulated for arbitrary Z-groups). Most of the
results of [CH21] can thus easily be transferred to the situation handled in this thesis,
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essentially by replacing all occurrences of R, Q𝑝 and Z𝑝 with 𝑅mot(𝑍), K and 𝒪 and
most occurrences of Z with Γ. We will give some more details below.

Transferring [CH21, Proposition 4.3] requires a bit more work. We provide a proof
that also applies in our setting, building on Section 3.3 and using arguments similar
to some of those in the proof of Lemma 4.4.11.

Note that Cluckers and Halupczok in [CH21] work with the language ℒ = (+, ·,𝒪),
considering the value group as an imaginary sort. However, as they note in [CH21,
Convention-Remark 3.1], a subset of the value group is imaginary ∅-definable in the
language ℒ if and only if it is a ∅-definable Presburger set. As these are precisely the
∅-definable subsets of the value group in our multi-sorted language ℒval, we may as well
continue to work in this language. (See also the introductory remarks in Chapter 3.)

In this section we will need the existence of definable Skolem functions in K, [Dri84,
Theorem 3.2], and thus only work with 𝑀 -definable sets for some fixed set 𝑀 ⊂ K of
parameters. (Note that there are no definable Skolem functions if we allow arbitrary
parameters from Γ, e.g., the set {𝑥 ∈ K | val(𝑥) = 𝑎} does not contain an {𝑎}-definable
element for 𝑎 ∈ Γ≥0 ∖ Z.) Similar to before, we set 𝑍 = dcl(𝑀) ∩ Γ.

First, let us recall the most important notions of [CH21] that we will use in the
following, starting with certain subsets of K𝑛 of a simple form, parameterized by the
value group.

Throughout the whole section, we fix a set 𝐿 ⊂ K*, and we consider families of subsets
of K𝑛 paramterized by 𝐿, as subsets of 𝐿×K𝑛.

Notation 5.3.1 ([CH21, Definition 3.8]). For 𝑛 ∈ N, a 𝑀 -definable set Λ ⊂
𝐿× Γ𝑛, and a 𝑀 -definable map 𝜈 : Λ→ Γ, consider the 𝑀 -definable sets

𝑃 (Λ) = {(ℓ,𝑥) ∈ 𝐿×K𝑛 | (ℓ,val(𝑥)) ∈ Λ, ac(𝑥1) = · · · = ac(𝑥𝑛) = 1} and
𝑃 (Λ, 𝜈) = (𝑃 (Λ)×K(1)) ∩ {(ℓ,𝑥, 𝑦) | val(𝑦) = −𝑛− 1− 𝜈(ℓ,val(𝑥))− 𝜎(𝑥)},

where K(1) = {𝑦 ∈ K | ac(𝑦) = 1} and 𝜎(𝑥) =
∑︀𝑛
𝑖=1 val(𝑥𝑖).

Definition 5.3.2 ([CH21, Definition 2.1]). Let 𝑅𝐿 be the quotient of the free
abelian group generated by symbols [𝑋] for each 𝑀 -definable set 𝑋 ⊂ 𝐿 × K𝑛,
any 𝑛 ∈ N>0, such that the fiber 𝑋ℓ = {𝑥 ∈ K𝑛 | (ℓ,𝑥) ∈ 𝑋} ⊂ K𝑛 is bounded
for each ℓ ∈ 𝐿, modulo the relations

(R1) Additivity:

[𝑋1 ∪𝑋2] = [𝑋1] + [𝑋2]

for any two 𝑀 -definable disjoint sets 𝑋1, 𝑋2 ⊂ 𝐿×K𝑛.
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(R2) Negligible sets:

[𝑋] = 0

for 𝑋 ⊂ 𝐿×K𝑛 with dim(𝑋ℓ) < 𝑛 for each ℓ ∈ 𝐿.

(R3) Change of variables:

[𝑋] = [𝑌 ]

for 𝑋,𝑌 ⊂ 𝐿 × K𝑛 if 𝑋ℓ and 𝑌ℓ are open for all ℓ ∈ 𝐿 and there is a
𝑀 -definable family of bijections 𝜑ℓ : 𝑋ℓ → 𝑌ℓ such that Jac𝑥(𝜑ℓ) = 1 for
all ℓ ∈ 𝐿 and all 𝑥 ∈ 𝑋ℓ.

(R4) Product with unit ball:

[𝑋] = [𝑋 ×𝒪]

for any 𝑋 ⊂ 𝐿×K𝑛.

The multiplication rule induced by [𝑋] · [𝑌 ] = [𝑋 ×𝐿 𝑌 ] yields a ring structure
on 𝑅𝐿, where

𝑋 ×𝐿 𝑌 = {(ℓ,𝑥,𝑦) | 𝑥 ∈ 𝑋ℓ,𝑦 ∈ 𝑌ℓ},

see also [CH21, Lemma 3.4].

Just as in the original work for the Haar measure on Q𝑝, our measure 𝜇mot on K factors
through this abstract ring in the following sense.

Remark 5.3.3 ([CH21, Definition 2.2]). Let 𝐿 ⊂ K* be𝑀 -definable and let ℓ ∈ 𝐿.
Then there is a (unique) canonical ring homomorphism 𝜇ℓ : 𝑅𝐿 → 𝑅mot(𝑍(ℓ))
induced by

𝜇ℓ([𝑋]) = 𝜇mot(𝑋ℓ)

for all 𝑀 -definable sets 𝑋 ⊂ 𝐿 × K𝑛, any 𝑛 ∈ N, where 𝜇mot is the (motivic)
measure from Definition 5.1.12 and where 𝑋ℓ = {𝑥 ∈ K𝑛 | (ℓ,𝑥) ∈ 𝑋} denotes
the fiber of 𝑋 over ℓ.

Proof. It is clear that the measure we defined in Definition 5.1.12 satisfies (R1) and
(R4). Moreover, (R3) follows from Proposition 5.2.15 and (R2) follows from cell de-
composition in K together with Corollary 5.1.13.

The main result of this section is the generalization of the main result of [CH21] to
the scope of 𝑝-adically closed fields.
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Theorem 5.3.4 ([CH21, Theorem 2.3]). Let 𝐿 ⊂ K* be ∅-definable. The ring
homomorphism sending Ξ ∈ 𝑅𝐿 to the function

𝐿→ 𝑅mot(𝑍(𝐿))

ℓ ↦→ 𝜇ℓ(Ξ)

is injective.

In the important special case 𝐿 = {0} one obtains the following non-family version,
stating that our measure 𝜇mot agrees with the universal motivic measure 𝑋 ↦→ [𝑋] ∈
𝑅{0}.

Corollary 5.3.5 ([CH21, Corollary 2.4]). The map

𝜇0 : 𝑅{0} → 𝑅mot(𝑍)

Ξ ↦→ 𝜇0(Ξ),

induced by [𝑋] ↦→ 𝜇mot(𝑋), is an isomorphism of rings.

Proof (using Theorem 5.3.4). By Theorem 5.3.4, 𝜇0 is an injective ring homomor-
phism, so it remains to show surjectivity. Note that Corollary 4.3.9 allows us to
write any given element of 𝑅mot(𝑍) as a sum of elements of the form

[const𝑈 (𝛼)]⊗ 𝑞 + (p− 𝑝)Q (5.1)

for some 𝑍-definable set 𝑈 ⊂ RV*
*, some 𝛼 ∈ pΓ, and some 𝑞 ∈ Q. Since 𝜇0 is

a homomorphism, it suffices to handle the case of only one summand, i.e., we now
aim to find a preimage under 𝜇0 of the element given in (5.1). By (the adapted
version of) [CH21, Lemma 3.11] together with Theorem 5.3.4, there is 𝑋 ⊂ K* with
𝜇mot(𝑋) = 𝑞, so we can moreover assume that 𝑞 = 1. Now Lemma 2.3.5 allows us to
assume ///≡≡𝑈 = ///≡≡𝐴 for some 𝑍-definable subset 𝐴 ⊂ Γ*. Using (the generalization of)
equation (1) of [CH21], one then calculates that we have

𝜇mot(𝑃 (𝐴, const𝐴(0))) = ///≡≡𝐴 = ///≡≡𝑈

in 𝑅mot(𝑍) = 𝐾int(𝑍)/(p− 𝑝). By Corollary 4.2.12 and under our assumption 𝑞 = 1,
the latter is equal to the element of 𝑅mot(𝑍) given in (5.1). This shows that 𝜇0 is
indeed surjective and hence an isomorphism.

Using the following replacements, most of the statements and proofs of [CH21] im-
mediately generalize to the situation of an elementary extension K ≽ Q𝑝 that we are
concerned with.
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Table 5.1: A dictionary for translating (most of) the results of [CH21] to our setting.

Notation in [CH21], for Q𝑝 Notation here, for K ≽ Q𝑝 Remark

𝑆 and 𝑠 𝐿 and ℓ respectively
R 𝑅mot(𝑍(𝐿))
Q𝑝 K
Z𝑝 𝒪
Z Γ with exceptions1

N Γ≥0 with exceptions1

𝑋 ⊂ Q𝑛𝑝 has finite (Haar) measure 𝑋 ⊂ K𝑛 is bounded
finite subset of Z bounded subset of Γ
1 Exceptions: Do not replace Z in Lemma 3.11, Remark 3.12, Remark 3.14 (2), and
in part (4) in the proof of Proposition 3.15. Do not replace N where obvious, i.e.,
when used for indices of a finite tuple or exponents such as in K𝑛.

More precisely, all of the following statements of [CH21] as well as their proofs can
be translated using the dictionary given in Table 5.1, where one should not replace Z
in those statements marked with (*): Definition 3.3, Lemma 3.4, Remark 3.5(*), Re-
mark 3.6, Remark 3.7, Definition 3.8, Lemma 3.10, Lemma 3.11(*), Remark 3.12(*),
Lemma 3.13, and Remark 3.14(*). A little more attention is required for Proposi-
tion 3.15: There, replace Z by Γ in the statement and in part (1) of the proof, but do
not replace it in part (4) of the proof. Moreover, in the first part of the proof (before
the case distinction), the equation

𝜑𝑠(𝜆) =𝑀𝜆+ 𝜇𝑠

for some matrix 𝑀 ∈ Q𝑛×𝑛 and some vector 𝜇𝑠 ∈ Q𝑛 should in our case rather be
written as

𝜑𝑠(𝜆) =
1

𝑑
· (𝑀𝜆+ 𝜇𝑠)

for some 𝑑 ∈ N>0, some matrix 𝑀 ∈ Q𝑛×𝑛 and some vector 𝜇𝑠 ∈ Γ𝑛.

Further note that the equation (1) of [CH21] (right after Definition 3.8) also holds in
our setting if Λℓ is finite for all ℓ ∈ 𝐿, see our equation (4.1) on p. 48 and Remark 4.1.8.
(More generally, a variant of equation (1) of [CH21] holds if im(𝜈𝑠) is finite for all 𝑠,
see Corollary 4.2.12.)

A minor adaption (additional to the replacements mentioned above) is needed in the
proof of Lemma 3.9: In the definition of 𝑋𝑎 =

∏︀
𝑖{𝑝𝜆𝑥𝑖 | 𝜆 ∈ N, 𝑥𝑖 ∈ res−1(𝑎𝑖)},

read

{𝑝𝜆𝑥𝑖 | 𝑥𝑖 ∈ res−1(𝑎𝑖)}

as

{𝑦𝑖 | ac(𝑦𝑖) = 𝑎𝑖, val(𝑦𝑖) = 𝜆}, if 𝑎𝑖 ̸= 0

and as {𝑦𝑖 | val(𝑦𝑖) ≥ 𝜆+ 1}, if 𝑎𝑖 = 0.
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Furthermore, Theorem 3.16 and Proposition 3.17 are taken from [CH18], hence already
formulated for Presburger groups in general. (Compared with [CH21], we need to
replace Z by Γ in those statements, as well as Q by 𝐾Γ

𝑏 (Z) ⊗ Q and # by ///≡≡ in
Proposition 3.17.)

This only leaves Section 4 of [CH21] for closer investigation. There, especially in the
proof of [CH21, Proposition 4.3], some further changes are required. Let us spell out
the details, starting with an altered version of [CH21, Definition 4.1].

Definition 5.3.6 (adapted from [CH21, Definition 4.1]). Let 𝑛 ∈ N, and let
Λ ⊂ 𝐿 × Γ𝑛 and 𝜈 : Λ → Γ be 𝑀 -definable. We then call 𝑃 (Λ, 𝜈) a basic set if
each of the fibers

Λℓ = {𝑏 ∈ Γ𝑛 | (ℓ, 𝑏) ∈ Λ} ⊂ Γ𝑛

is bounded and the value of 𝜈 only depends on ℓ ∈ 𝐿. Abusing notation, we then
also just write 𝜈(ℓ) for the (constant) value of 𝜈(ℓ, ∙) on Λℓ.

Let 𝑅basic
𝐿 denote the subgroup of 𝑅𝐿 denoted by the basic sets. Note that the

product of two basic sets is again basic by [CH21, Lemma 3.13], so that 𝑅basic
𝐿 is

a subring of 𝑅𝐿.

Just as in [CH21, Theorem 2.3], the proof of Theorem 5.3.4 is a combination of the
following two propositions.

Proposition 5.3.7 ([CH21, Proposition 4.3]). Let Ξ ∈ 𝑅basic
𝐿 . If we have 𝜇ℓ(Ξ) =

0 for all ℓ ∈ 𝐿, then Ξ = 0.

Proof. Let Ξ ∈ 𝑅basic
𝐿 with 𝜇ℓ(Ξ) = 0 for all ℓ ∈ 𝐿. Write

Ξ =

𝑚∑︁
𝑗=1

𝛿𝑗 · [𝑃 (Λ𝑗 , 𝜈𝑗)] (5.2)

for some 𝑚 ∈ N>0, 𝛿1, . . . , 𝛿𝑚 ∈ {1,−1}, and some basic sets 𝑃 (Λ𝑗 , 𝜈𝑗). Using cell
decomposition in K as in the proof of [CH21, Proposition 4.3], and similar to the
preparation arguments in Section 5.1, we may assume that the fibers Λ𝑗,ℓ and the
value of 𝜈𝑗(ℓ) only depend on val(ℓ).

Let us write ̃︀𝜈𝑗(val(ℓ)) = 𝜈𝑗(ℓ) for each 𝑗. We now proceed similarly as in the proof of
Lemma 4.4.10, refining the partition of 𝐿 into finitely many sets several times. Firstly,
we can assume

̃︀𝜈𝑗(val(ℓ)) ≤ ̃︂𝜈𝑗+1(val(ℓ))
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5.3 Universal motivic measure

for all 𝑗 < 𝑚 and all ℓ ∈ 𝐿. Moreover, Lemma 3.1.4, applied to the graphs of the
maps ̃︀𝜈𝑗 : val(𝐿) → Γ, allows us to assume that all of them are linear. Using [CH18,
Proposition 5.2.1], we can further assume

///≡≡Λ𝑗,ℓ = 𝑔𝑗(val(ℓ))

for each 𝑗, where the 𝑔𝑗 are polynomials with coefficients in 𝐾Γ
𝑏 (𝑍)⊗Q. The equation

(5.2) together with the assumption 𝜇ℓ(Ξ) = 0 then yields, for all ℓ ∈ 𝐿,

𝑚∑︁
𝑗=1

𝛿𝑗 · 𝑔𝑗(val(ℓ)) · p ̃︀𝜈𝑗(val(ℓ)) = 𝑚∑︁
𝑗=1

𝛿𝑗 · 𝜇ℓ(𝑃 (Λ𝑗 , 𝜈𝑗))

= 𝜇ℓ(Ξ) = 0.

(5.3)

We now complete the proof by induction on 𝑚. For 𝑚 = 0, we have Ξ = 0 by (5.2).
For 𝑚 > 0, consider the following case distinction.

Case 1: There is a 𝑗 < 𝑚 for which ̃︂𝜈𝑗+1 − ̃︀𝜈𝑗 is constantly equal to an integer.

Similar to the proof of [CH21, Proposition 4.3] and the strategy in the proof
of Lemma 4.4.10, we can then “group” the sets Λ𝑗 and Λ𝑗+1 using [CH21, Re-
mark 3.14 (2)] (or Remark 4.1.8 respectively). The claim then follows by the
induction hypothesis.

Case 2: None of the differences ̃︂𝜈𝑗+1 − ̃︀𝜈𝑗 is constantly equal to any integer.

By Proposition 3.3.3, there is then a Presburger cell 𝐴 ⊂ val(𝐿) of the same
shape as val(𝐿) for which we have

((̃︂𝜈𝑗+1 − ̃︀𝜈𝑗) ∘ val)(𝐴) > Z

for all 𝑗 < 𝑚. The equation (5.3), together with Lemma 4.4.5 applied to appro-
priate integrable functions f and g, thus yields

𝛿𝑗 · 𝑔𝑗(𝑎) · p ̃︀𝜈𝑗(𝑎) = 0

for all 𝑗 and all 𝑎 ∈ 𝐴. Hence 𝑔𝑗 must be constantly equal to 0 on 𝐴, and
by Lemma 3.3.6, it is then constantly equal to 0 on all of val(𝐿), using Corol-
lary 3.2.14. We thus have

///≡≡Λ𝑗,ℓ = 𝑔𝑗(val(ℓ)) = 0

for all 𝑗 and all ℓ ∈ 𝐿. This implies Λ𝑗 = ∅ and hence [𝑃 (Λ𝑗 , 𝜈𝑗)] = 0 in
𝑅basic
𝐿 ⊂ 𝑅𝐿 for all 𝑗. By (5.2), we then obtain Ξ = 0 as claimed.

Proposition 5.3.8 ([CH21, Proposition 4.4]). Let Ξ ∈ 𝑅𝐿. Then there is some
𝑑 ∈ N>0 with 𝑑 · Ξ ∈ 𝑅basic

𝐿 .
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5 Integrable functions on K* × RV*
*

Proof. We can translate the proof of the original [CH21, Proposition 4.4], using the
dictionary given in Table 5.1 and replacing ℓ with 𝑑, up to the following adaptions.

� In the equation (5), 𝑟 ≥ 1 as well as the 𝑏𝑖 are honest integers (i.e., we do not
replace the hidden Z there with Γ), and so is 𝑏 in Case 1.

� In Case 1, we obtain 𝑏 < 0 not by calculating the measure of the set 𝑋, but by
observing that its fibers

𝑋ℓ = {(𝑥, 𝑦) ∈ K(1) ×K(1) | val(𝑥) ≥ 0, val(𝑦) = −2− (𝑏+ 1) · val(𝑥)}

would be unbounded if 𝑏+ 1 > 0, but they are bounded by assumption.

The rest of the proof works without further changes (beyond the substitutions indicated
in Table 5.1).

Proof of Theorem 5.3.4. Exactly as in the proof of [CH21, Theorem 2.3], with only
the accustomed notational changes.
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6 Outlook

In this final chapter, we explain how to obtain integrals for more general functions
using the theory developed in Chapter 4 and Chapter 5. We also pose some ques-
tions regarding further generalizations, and we moreover explain how our construction
relates to the natural measure on an ultrapower of Q𝑝.

Considering functions to pΓ as a foundational base case, our work readily admits
integrating a much broader class of functions. More precisely, we can assign a value
to the integral of any sufficiently nice function on K* × RV*

* with codomain 𝑅mot(Γ)
in the following way.

Definition 6.1. Let 𝑋,𝑌 ⊂ K* be 𝑀 -definable bounded sets and suppose that
we have (not necessarily finite) 𝑀 -definable partitions of 𝑋 into sets 𝑋𝑠 and of
𝑌 into sets 𝑌𝑠, where 𝑠 runs over an 𝑀 -definable set 𝑆 ⊂ K* × RV*

*. Then the
function

𝑓 : 𝑆 → 𝑅mot(Γ)

𝑠 ↦→ 𝜇mot(𝑋𝑠)− 𝜇mot(𝑌𝑠),

is integrable over 𝑆, and the value of the integral is defined as∫︁
𝑆

𝑓 := 𝜇mot(𝑋)− 𝜇mot(𝑌 ) ∈ 𝑅mot(𝑍) ⊂ 𝑅mot(Γ).

(For the inclusion 𝑅mot(𝑍) ⊂ 𝑅mot(Γ), see Lemma 4.3.12.)

Note that Theorem 5.1.10 (see also the statement intLem(*) in Definition 5.1.9)
and Lemma 5.1.18 guarantee that

∫︀
𝑆
𝑓 is well-defined, i.e., independent of the

exact choices of 𝑋, 𝑌 , and the partitions (𝑋𝑠)𝑠∈𝑆 and (𝑌𝑠)𝑠∈𝑆 .

Intuitively speaking, the only obstacle for a function 𝑓 : 𝑆 → 𝑅mot(Γ) to be integrable
over 𝑆 is, that

∑︀
𝑠∈𝑆 𝑓(𝑠) has to still lie in 𝑅mot(Γ), meaning that this sum does not

become too large (i.e., infinite in a strong sense).

Furthermore, by Corollary 5.3.5, the ring 𝑅mot(𝑍) is already generated by the measures
of𝑀 -definable sets. Hence, stating Definition 6.1 for functions 𝑓 : 𝑆 → 𝑅mot(𝑍) whose
values 𝑓(𝑠) are given by integrals of functions on K* × RV*

*, instead of measures of
subsets of K*, would not make it more general.
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6 Outlook

The idea behind Definition 6.1 can be generalized further to permit integrating out
individual variables of (sufficiently nice) functions defined on Cartesian products of
K* and RV*

*. More precisely, we can define an integral for functions with codomain
𝑅mot(𝑍) as follows.

Definition 6.2. Let 𝑆 ⊂ K* ×RV*
* and 𝑇 ⊂ K* ×RV*

* be 𝑀 -definable sets and
let Ξ ⊂ 𝑆 × 𝑇 . Let 𝑓 : Ξ→ 𝑅mot(Γ) be a function with

𝑓(𝑠, 𝑡) = 𝜇mot(𝑋𝑠,𝑡)− 𝜇mot(𝑌𝑠,𝑡)

for some (𝑀 ∪ {𝑠, 𝑡})-definable bounded sets 𝑋𝑠,𝑡, 𝑌𝑠,𝑡 ⊂ K𝑛𝑡 , where 𝑛𝑡 ∈ N>0.
Assume moreover that, for fixed 𝑡 ∈ 𝑇 , the sets 𝑋𝑠,𝑡 are pairwise disjoint and
their union

𝑋𝑡 :=
⋃︁

𝑠∈Ξ𝑡

𝑋𝑠,𝑡 ⊂ K𝑛𝑡

is bounded and 𝑀 -definable, and assume the same holds for the sets 𝑌𝑠,𝑡, analo-
gously setting 𝑌𝑡 :=

⋃︀
𝑠∈Ξ𝑡

𝑌𝑠,𝑡.

Then 𝑓 is integrable over pr𝑆(Ξ) ⊂ 𝑆, with
∫︀
pr𝑆(Ξ)

𝑓(𝑠,∙) d𝑠 := 𝐹 for the function

𝐹 : Ξ𝑠 → 𝑅mot(Γ)

𝑡 ↦→ 𝜇mot(𝑋𝑡)− 𝜇mot(𝑌𝑡),

where Ξ𝑠 = {𝑡 ∈ 𝑇 | (𝑠, 𝑡) ∈ Ξ} ⊂ 𝑇 is the fiber of Ξ over 𝑠 ∈ 𝑆.

The remarks on Definition 6.1 above apply similarly to Definition 6.2. In particular,
considering integrals instead of measures for the values of 𝑓 does not further enlarge
the class of integrable functions.

While Section 5.3 ensures that the motivic integral we constructed is the most general
one possible in the case of elementary extensions K ≽ Q𝑝, some natural questions
remain. Let us discuss some interesting ones posing problems that seem within reach.

Since most results in Chapter 5 do not make explicit use of K being a model of Th(Q𝑝),
but merely exploit the properties of h-minimality studied in [Clu+21], one could expect
the developed methods to apply more generally.

Question 6.3. Can the results be adapted to work in elementary extensions of
finite (algebraic) field extensions of Q𝑝?

Note that the universality result from [CH21] treated in Section 5.3 makes use of
definable Skolem functions, and we presumably have to expand the language to obtain
the same result in the case of field extensions. It then seems reasonable to expect that
our results admit a generalization to this setting, see also [CH21, Remark 4.5 (2)].
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Question 6.4. Can the results be adapted to work in h-minimal fields of mixed
characteristic (0, 𝑝)? (See also [CHR21, Corollary 6.2.7] for examples of such
fields.)

Again, one obstacle for an immediate generalization of the universality result is the
existence of definable Skolem functions. Moreover, our methods demand a good under-
standing of the (Grothendieck ring of the) value group, whereas our Chapter 3 merely
handles Z-groups.

While we constructed the universal motivic measure on arbitrary elementary extensions
K ≽ Q𝑝, there is a model-theoretic construction to (more or less) explicitly obtain
specific such K, bringing with it a version of 𝑝-adic integration: The ultraproduct.
More precisely, given an ultrafilter 𝒰 on an index set 𝐼, consider the ultrapower

𝒦 := Q𝐼𝑝/𝒰 = (
∏︁
𝑖∈𝐼

Q𝑝)/𝒰 .

This 𝒦 can naturally be viewed as an ℒval-structure, and is then moreover an elemen-
tary extension of Q𝑝 by Łoś’s Theorem (see, e.g., [Hod93], or any other sufficiently
saturated introduction to model theory).

Write 𝜇 for the 𝑝-adic measure, i.e., the Haar measure on Q𝑝, normalized by setting
𝜇(Z𝑝) = 1, and define

𝜇𝒦(𝑋) :=
(︀
𝜇(𝑋𝑖)

)︀
𝑖∈𝐼 ∈ R𝒰

where 𝑋 ⊂ 𝒦 and 𝑋𝑖 ⊂ Q𝑝 are bounded definable1 sets with 𝑋 = (
∏︀
𝐼 𝑋𝑖)/𝒰 . Then

𝜇𝒦 behaves like a measure, just by construction and the nature of ultrapowers. By
Section 5.3, we thus have a map 𝜙 from 𝑅mot(𝒵) to R𝒰 for 𝒵 = acl(ℳ) ∩ Γ, where
Γ = Z𝒰 , such that the diagram{︂

ℳ-definable
subsets of K*

}︂
𝜇𝒦 →→

𝜇mot

↘↘

R𝒰

𝑅mot(𝒵)

𝜙

↗↗

commutes, where 𝜇mot denotes the measure constructed and defined in this thesis, see
Definition 5.1.12.

In this case, the map 𝜙 is not injective, i.e., 𝜇mot preservers more information about
definable subsets of 𝒦 than the natural ultrapower measure 𝜇𝒦.

1Definable here can be taken to mean ℳ-definable and 𝑀𝑖-definable, respectively, where ℳ =
(
∏︀

𝐼 𝑀𝑖)/𝒰 .
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6 Outlook

Example 6.5. Let 𝑎 ∈ Γ≥0 ∖ Z be an infinitely large element of the value group
Γ = Z𝒰 . By [CH18], we have

///≡≡ [0, 𝑎) · ///≡≡ [0, 𝑎) = ///≡≡ ([0, 𝑎)× [0, 𝑎)) ̸= ///≡≡ [0, 𝑏)

in 𝐾Γ
𝑏 (𝒵), where 𝑏 = 𝑎2 ∈ Γ. More precisely, [CH18, Lemma 4.2.14] together

with [CH18, Lemma 4.2.15 and Definition 4.2.9] ensures that there is no definable
bijection between [0, 𝑎)× [0, 𝑎) and [0, 𝑏), and [CH18, Theorem 5.2.2] then yields
that their hypercardinalities cannot coincide.

Now choose subsets 𝑋,𝑌 ⊂ K* with 𝜇mot(𝑋) = ///≡≡ [0, 𝑎) and 𝜇mot(𝑌 ) = ///≡≡ [0, 𝑏).
(E.g., by using sets of the form 𝑃 (Λ, 𝜈) as defined in Notation 5.3.1 together with
the equation (1) of [CH21].)

Then we have 𝜇mot(𝑋 × 𝑋) ̸= 𝜇mot(𝑌 ) in 𝑅mot(𝒵), but one easily computes
𝜇𝒦(𝑋 × 𝑋) = 𝜇𝒦(𝑌 ) in the ultrapower: Indeed, pick a sequence (𝑎𝑖)𝑖∈𝐼 ∈ Z𝐼
with lim𝒰 (𝑎𝑖) = 𝑎, and hence lim𝒰 (𝑎𝑖

2) = 𝑏. Then we have

𝜇𝒦(𝑋 ×𝑋) = 𝜇𝒦(𝑋) · 𝜇𝒦(𝑋)

=
(︀
lim
𝒰

(𝑎𝑖)
)︀2

= lim
𝒰

(𝑎𝑖
2)

= 𝜇𝒦(𝑌 ),

as claimed.
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