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Abstract

It is well-known that densities of stable Lévy processes solve particular fractional diffusion
equations. On the other hand, fractional diffusion equations gain a stochastically mean-
ingful interpretation by their connection to stable laws. That way, fractional calculus
and the theory of stable laws are strongly connected, and both areas benefit notice-
ably from this connection. The present thesis investigates a similar relationship between
semistable Lévy processes and generalized fractional derivatives with log-periodic per-
turbations, which we call semi-fractional derivatives. To develop a basic idea of these
operators, we initially show essential characteristics like Fourier and Laplace transforms
as well as different integral representations and their relations. Besides, a numerical ap-
proximation of Grünwald-Letnikov type is proven. A semigroup approach finally yields
the desired connection between semistable densities and semi-fractional diffusion equa-
tions.

Due to this connection, the knowledge about semi-fractional derivatives is able to en-
rich our understanding of semistable laws and even offers the possibility to numerically
approximate semistable densities. On that basis, we study different related issues to eval-
uate the potential of semi-fractional calculus. First, we consider general Cauchy problems
with semi-fractional time and space derivatives and prove an integral representation of the
solution. Also, we identify the stochastic processes governed by these equations. Namely,
they appear as limiting processes of uncoupled Continuous Time Random Walks (CTRW
limits). The CTRWs offer a microscopic description of the underlying system and are
a valuable tool in applications. Thereby, the case of uncoupled CTRWs is quite a spe-
cial one. Thus, we also study the far more general case of a possibly coupled CTRW
and analyze its convergence as well as the resulting limiting distribution. Semi-fractional
derivatives are non-local operators, and hence, semi-fractional space derivatives require
the inclusion of the whole environment into their calculation. Similarly, semi-fractional
time derivatives model long-time memory effects of the underlying system. Since the
latter one is easier to handle for practical applications, we offer a space-time duality re-
sult. This states that a negatively-skewed space semi-fractional differential equation is
equivalent to a particular inhomogeneous differential equation with semi-fractional time
derivative.
To strengthen the theory of semi-fractional calculus, we finally study its potential to
model real-world applications. Therefore, we explore different semi-fractional growth
models and apply them to mobile use and cancer growth data. Additionally, we consider
tempered semi-fractional diffusion and show how the therein included damping of huge
events’ probability yields good fits in stock data.



Zusammenfassung

Ein weithin bekanntes Resultat aus der Wahrscheinlichkeitstheorie besagt, dass die Dich-
ten von stabilen Lévy-Prozessen bestimmte fraktionierte Diffusionsgleichungen lösen. An-
dererseits können fraktionierte Diffusionsgleichungen durch diese Verbindung stochastisch
interpretiert werden. Somit besteht eine starke Verbindung zwischen diesen beiden Teil-
bereichen der Mathematik, von der beide Gebiete im Laufe der letzten Jahrzehte spür-
bar profitieren konnten. Die vorliegende Arbeit entwickelt eine analoge Beziehung zwi-
schen semistabilen Lévy-Prozessen und fraktionierten Ableitungen mit log-periodischer
Störung, welche wir semi-fraktionierte Ableitungen nennen. Um eine grundlegende Vor-
stellung dieser Operatoren zu gewinnen, analysieren wir nicht nur die Fourier- und Lapla-
cetransformierten von semi-fraktionierten Ableitungen, sondern beweisen ebenfalls ver-
schiedene Integraldarstellungen sowie deren Beziehungen untereinander. Zusätzlich bietet
eine Approximation vom Grünwald-Letnikov Typ die Möglichkeit, semi-fraktionierte Ab-
leitungen numerisch zu berechnen. Die gewünschte Darstellung semistabiler Dichten als
Lösungen bestimmter semi-fraktionierter Diffusionsgleichungen wird schließlich mithilfe
eines Halbgruppen-Ansatzes aufgezeigt.

Das gewonnene Wissen über semi-fraktionierte Ableitungen kann nun dafür verwendet
werden, unser Verständnis von semistabilen Dichten zu vertiefen. Insbesondere bietet
es die Möglichkeit, semistabile Dichten numerisch zu approximieren. Darauf aufbauend
betrachten wir mehrere weiterführende Problemstellungen. Zunächst werden allgemeine
Cauchy Probleme mit semi-fraktionierter Zeit- und Ortsableitung betrachtet und eine In-
tegraldarstellung der Lösung bewiesen. Es stellt sich heraus, dass die Lösungen Dichten
von Grenzwertprozessen von ungekoppelten Continuous Time Random Walks (CTRWs)
sind. Diese bieten eine mikroskopische Beschreibung des zugrunde liegenden Systems und
können daher leicht auf Anwendungsbeispiele übertragen werden. Neben dem ungekop-
pelten Fall betrachten wir auch die Konvergenz und die Grenzwertdichten allgemeiner
CTRWs, in denen beliebige Abhängigkeiten zwischen den Sprüngen und Wartezeiten er-
laubt sind. Semi-fraktionierte Ableitungen sind nicht-lokale Operatoren und daher muss
für die Berechnung einer semi-fraktionierten Ortsableitung die gesamte Umgebung in die
Berechnung einbezogen werden. Ebenso schließen semi-fraktionierte Zeitableitungen die
gesamte Vergangenheit in ihre Berechnung mit ein. Da das Letztere als Langzeitgedächt-
nis des zugrunde liegenden Systems für praktische Anwendungen leichter zu interpretieren
ist, stellen wir eine Ort-Zeit-Dualität vor. Dabei können bestimmte Diffusionsgleichungen
mit semi-fraktionierter Ortsableitung in eine inhomogene Differentialgleichung mit semi-
fraktionierter Zeitableitung überführt werden.
Gestärkt wird die Theorie semi-fraktionierter Differentialgleichungen schließlich durch die
Betrachtungen von Anwendungsbeispielen. Dabei untersuchen wir zunächst verschiedene
Wachstumsmodelle und wenden diese auf mobile Internetnutzung sowie Tumorwachstum
an. Zusätzlich betrachten wir temperierte semi-fraktionierte Diffusionsgleichungen, welche
zu guten Approximationen von Aktienmarktdaten führen.



Chapter 1

Introduction

The basic aim of this thesis is to deepen our understanding of semistable laws as well as
to introduce and analyze semi-fractional derivatives and corresponding differential equa-
tions. To get an idea of how this theory is embedded in the mathematical context and
to motivate the leading questions for this thesis, we briefly examine its historical devel-
opment.

In 1827, the biologist Robert Brown discovered the trembling, irregular motion of pollen
particles immersed in water [26], but the origin of this movement baffled the scientists
at that time. Quickly known as Brownian motion, it took nearly eighty years to find a
satisfying explanation for this phenomenon. Only in 1905, Einstein used thermodynamic
results to prove that a particle suspended in a fluid performs an irregular movement due
to random collisions with surrounding fluid molecules [39]. In his probabilistic model,
the probability density for the particle’s location at time t > 0 is given by the solution
x 7→ p(x, t) to the diffusion equation

∂

∂t
p(x, t) = D

∂2

∂x2p(x, t), (1.1)

where D > 0 is a particular diffusion coefficient. For a particle starting in the origin, the
unique solution to (1.1) is given by centered normal densities with variance 2Dt for every
t > 0. Hence a particle in this model travels an average distance proportional to t 1

2 until
time t > 0. After his predictions were confirmed by experiments of Jean Baptiste Perrin
only four years later [108], Einstein’s diffusion model was fully accepted and celebrated,
not only for clarifying the origin of the astonishing Brownian motion but also for being
the final proof for the existence of atoms, which was highly controversial at that time.

From a mathematical perspective, the underlying stochastic process describing the diffu-
sive behavior was of particular interest. Since the solution to (1.1) is given by a normal
density at every time t > 0, a description of the movement as a Gaussian process seemed
to be suitable. Besides, experiments indicated that the process has independent and iden-
tically distributed increments and that the paths, as irregular as they might seem, are
continuous. However, the existence of such a process was uncertain until 1923, when Nor-
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Chapter 1. Introduction

bert Wiener published a rigorous proof [149], which is why the corresponding stochastic
process is sometimes called Wiener process instead of Brownian motion.
In the following years, Brownian motion was of considerable interest to mathematicians.
Especially the fact that it is not only a connection between Gaussian and Lévy processes
but also a martingale and a Markov process at the same time is an essential basis for
further results and simplifies its handling. For more information about Brownian motion,
we suggest the monographs [104] and [125]. Likewise, from the perspective of applied
mathematics, the process is of particular interest. Even before Wiener proved its well-
definedness, Louis Bachelier proposed an application of Brownian motion to value stock
prices at the Paris stock exchange [9]. Thereby, he laid the foundation for modern mathe-
matical finance where Brownian motion still plays an important role. Apart from finance,
other scientists, especially physicists, benefit from the mathematical results, too. Thus,
nowadays, there is comprehensive literature dealing with applications of Brownian motion
and related processes. For a deeper insight into physical and financial applications, we
refer to [86] and [129].

Although many applications were successfully modeled with Brownian motion, numerous
experiments indicated a different behavior of the involved particles. Especially measure-
ments in turbulent flow or diffusion on polymer chains display that the spreading rate
is faster than Brownian motion predicts (see for example [99] or [54] and the references
cited therein). To generalize the diffusion model to this so-called super-diffusive behav-
ior, mathematicians thought about modifying (1.1) and helped themselves to an operator
nearly as old as the classical derivative: the fractional derivative. First mentioned in a
letter from Leibniz to L’Hôspital in 1695 [77], the idea of derivatives of arbitrary, positive
real order emerged from time to time but did not attract much attention at first [118]. In
1823, Abel’s work [2] advanced the idea of fractional derivatives and inspired other math-
ematicians like Liouville or Riemann to further work on this topic [118]. Over the years,
many different suggestions were made to define a fractional derivative, and until today,
there is an ongoing discussion whether there is a ’right’ form in a given scenario. For this
thesis, we will concentrate on the two perhaps most popular forms in modern fractional
calculus: The Riemann-Liouville and the Caputo form. Thereby, the Riemann-Liouville
fractional derivative of order α > 0 of a suitable function f : R→ R is given by

(
∂

∂x

)α
f(x) = 1

Γ(n− α)
∂n

∂xn

∞̂

0+

f(x− y)yn−1−α dy,

where n ∈ N fulfills n − 1 < α < n [116]. In contrast, the Caputo form of the fractional
derivative [27] arises from the Riemann-Liouville form by a formal change of integration
and differentiation

∂α

∂xα
f(x) = 1

Γ(n− α)

∞̂

0+

f (n)(x− y)yn−1−α dy.
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Chapter 1. Introduction

Note that for the Riemann-Liouville form, the function f is not necessarily assumed to
be differentiable such that it may exist under weaker conditions than the Caputo form.
However, even for functions f having both a Caputo and a Riemann-Liouville fractional
derivative of order α > 0, the difference between both definitions might be huge, which
becomes evident by studying the Heavyside function f(x) = 1(0,∞)(x). Under smoothness
assumptions on f , both forms have Fourier transform (−ik)αf̂(k) for every k ∈ R, where
f̂ is the Fourier transform of f . For that reason, a fractional derivative is often defined in
the Fourier space in modern fractional calculus literature. Since we do not want to treat
other forms of fractional derivatives here, we only refer to [56], [33], or [8] for an overview
of different forms and their properties. Also, note that recent approaches tend to define
a generalized form of fractional derivatives, including as many already known forms as
possible (e.g., see [71]).

Now we return to the problem of modeling applications which show a spreading rate
faster than the classical diffusion model predicts. If we replace the second-order space
derivative in the classical diffusion equation (1.1) with a Caputo fractional derivative of
order α ∈ (0, 2) \ {1}, we obtain the fractional diffusion equation

∂

∂t
p(x, t) = −D ∂α

∂xα
p(x, t) (1.2)

under initial condition p(x, 0) = δ(x), where we assume that D > 0 for α ∈ (0, 1) and
D < 0 for α ∈ (1, 2). The restriction of α to values in (0, 2)\{1} and of the algebraic sign
of the constant D yields a probabilistic solution in the same way the Brownian motion
offers a solution to the classical diffusion equation (1.1). Namely, the solutions x 7→ p(x, t)
of (1.2) are the densities of an α-stable Lévy process [94].

The theory of stable distributions and stable Lévy processes grew independent of fractional
calculus for a long time. Stable laws were probably first studied by Lévy (see for example
[78]), who aimed to generalize the Central Limit Theorem and therefore studied sums of
independent and identically distributed random variables. Together with the textbook of
Khintchine [68] as well as further works of Feller [43], Gnedenko and Kolmogorov [48],
or Sato [122], to name just a few, his results provide the basis of our current knowledge
about stable laws. There are several equivalent ways to define stability (compare [94] and
[152]), but the most suitable one for this thesis is the representation in the Fourier space.
This is, a non-degenerate measure µ is α-stable for α ∈ (0, 2] if either α = 2 and

µ̂(k) :=
ˆ

R

eikx dµ(x) = exp
(
iak − 1

2σ
2k2

)

for some a ∈ R and σ2 > 0 or α ∈ (0, 2) and

µ̂(k) = exp (iak − pΓ(1− α)(−ik)α − qΓ(1− α)(ik)α)

for some a ∈ R and p, q ≥ 0 with p + q > 0 and Γ(x) denotes the gamma function
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Chapter 1. Introduction

[94, Proposition 3.10 and Proposition 3.12]. For α = 2, the distribution is obviously
Gaussian with mean a and variance σ2. To obtain an impression of an α-stable law for
α ∈ (0, 2), note that equivalently one may define stable measures by the assumption that
µ is infinitely divisible and for every c > 0, there is d(c) ∈ R with

µ∗c = (c 1
αµ) ∗ εd(c), (1.3)

where (c 1
αµ) is the image measure under the dilatation x 7→ c

1
αx, εd(c) is the point measure

in d(c), and the c-fold convolution is well-defined through its Fourier transform. There-
fore, the one-dimensional marginal distributions of the corresponding Lévy process (Xt)t≥0
with PXt = µ∗t arise from µ only by scaling and a suitable shift. In the case 0 < α < 2,
the resulting distribution is heavy-tailed, indicating that very large events occur with
higher probabilities than in the case α = 2. In detail, the left and right tail behave like
µ(−∞,−r) ∼ C1r

−α as well as µ(r,∞) ∼ C2r
−α for every r > 0 and constants C1, C2 ≥ 0

([121, Proposition 1.2.15]). Due to this heavy-tailed behavior, for an α-stable random
variable X, only the absolute moments E[|X|p] for p < α exist [121, Property 1.2.16],
making it more difficult to apply in finance or physics. To overcome these differences
between the theoretical model and the claims of the applications, different approaches of
tempered stable distributions were developed (see for example [117], [11] or [97]). The
basic idea is to manipulate stable densities so that moments of every order exist, but the
behavior on a finite domain around zero is quite similar to stable laws. Yielding physically
meaningful models, tempered stable distributions are successfully applied to a steadily
growing number of applications ([94], [112]).
Note that we can only name three closed-form expressions for stable densities, the Cauchy-
density (belonging to α = 1), the Lévy-density (belonging to α = 1

2), and the normal
density corresponding to α = 2. Hence, growing computational possibilities contributed
to the increasing interest in stable laws and supported our imagination of this special
class of distributions. We suggest the monographs [105], [152], and [121] to the interested
reader for deeper insight and more properties of stable laws.

For the solution to the fractional diffusion equation (1.2), we consider α-stable Lévy
processes, which are Lévy processes (Xt)t≥0 such that PX1 is α-stable for some α ∈ (0, 2].
Note that for every t > 0, Xt has a C∞(R)-density [122, Example 28.2], and using
inverse Fourier transform, the densities of the α-stable process with a = 0, q = 0, and
p = D

Γ(1−α) > 0 solve the diffusion equation (1.2) [94]. Based on this relation, the already
known results about stable processes enrich the knowledge about solutions to fractional
diffusion equations and vice versa. Note that particularly, the solution of (1.2) fulfills the
scaling property

p(x, ct) = c−
1
αp(xc− 1

α , t)

for every c, t > 0 and x ∈ R [94]. Therefore, the scaling rate of a particle in this model
equals 1

α
with α ∈ (0, 2)\{1} and hence reflects the faster spreading we were searching for

and for which the Brownian motion fails as a description. Being aware of this property,
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Chapter 1. Introduction

many different applications with heavy-tailed behavior have been successfully modeled
using fractional diffusion equations (see for example [69], [94], or [120]).

Apart from (1.2), many different kinds of differential equations involving fractional deriva-
tives have been analyzed (see [36] or [110] for an overview). We want to emphasize that
fractional derivatives are defined for any choice of α > 0, and hence the general theory of
fractional differential equations is much wider than the theory of those equations offering
probabilistic solutions or interpretations in which we are interested. However, even if we
restrict our attention to the case α ∈ (0, 2], we are able to study various generalizations
of fractional differential equations like the generalized Cauchy problem

∂β

∂tβ
u(x, t) = Lu(x, t) (1.4)

under initial condition u(x, 0) = f(x), where β ∈ (0, 1), f is a suitable function, and L
is the generator of a Feller semigroup. Problems of this kind were introduced and partly
solved by Saichev and Zaslavsky [119] and later fully answered by Baeumer and Meer-
schaert [10]. Apart from different initial conditions, restrictions of fractional differential
equations to bounded domains and the effects on the underlying process are also of in-
terest for fractional calculus and its applications. However, this topic exceeds the scope
of this thesis, and hence we suggest [12], [29], [35], and [90] for a first impression to the
interested reader.
Similar to the theory of stable distributions, fractional calculus profited considerably from
growing numerical possibilities. Beginning with the Grünwald-Letnikov formula, which
offers a numerical approximation of fractional derivatives, the computational methods
have improved ever since, and their enhancement is an ongoing challenge. For an intro-
duction to established methods, we suggest the monograph [15].

However, the approach for this thesis comes from a probabilistic point of view as follows.
As already mentioned by Lévy [78], the class of stable distributions is embedded into the
larger class of semistable laws. Thereby, semistable laws fulfill the scaling property (1.3)
only for a single c > 1 and by iteration for every integer power of c. Thus a semistable
distribution depends not only on α ∈ (0, 2] but also on the parameter c, such that we
refer to it as a (c 1

α , c)-semistable distribution. As a consequence, the one-dimensional
marginal distributions of the corresponding Lévy process (Xt)t≥0 are no longer shifted
and stretched versions of the density µ = PX1 . This only holds on the discrete scale
t = ck with k ∈ Z. Again the only semistable distribution with index α = 2 is Gaussian
[122, Theorem 14.1] and hence even stable, such that we often exclude this well-known
case. For α ∈ (0, 2), a (c 1

α , c)-semistable distribution µ is still heavy-tailed, but the dis-
crete scaling property yields remarkable differences between stable and semistable laws:
The weaker condition causes a log-periodic perturbation of the Lévy measure, and as we
will see, this log-periodic disturbance is characteristic for semistable laws and appears
on many different levels. Besides other effects, the additional log-periodic behavior of
the Lévy measure can yield multimodal distributions [146, Proposition 1], which clearly
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Chapter 1. Introduction

emphasizes the difference between stable and semistable laws.
In the past, semistable laws were mainly studied as limit distributions of i.i.d. sequences
of random variables (see for example [91] or [98]) but have been of minor interest in
probability theory. Therefore, our knowledge about this particular subclass of infinitely
divisible distributions is relatively small compared to the results we have for stable laws.
However, recent analyses, for example of earthquakes ([100], [132]), financial crises [131],
or fractal systems [106], suggest exactly the characteristic power law behavior with ad-
ditional log-periodic perturbations a semistable law would follow and hence motivated a
closer analysis of these distributions.

Therefore the first purpose of this thesis is to extend our knowledge about semistable
laws. Starting from already known results (see for example [91] and [122]), we aim to
prove an explicit form of the Fourier transform and thereby derive further properties.
Like the theory of stable distributions profited from the connection to fractional diffusion
equations, we will thereby examine a similar relationship in the semistable case. More pre-
cisely, if we replace stable laws with the more general semistable ones, can we still find a
connection to diffusion equations involving some kind of generalized fractional derivative?
And if so, how do both sides - the semistable law and the differential equation - benefit
from this connection? Additionally, the operator generalizing the fractional derivative is
of special interest, and apart from its definition, we are curious about its properties. Due
to their challenging handling, semistable distributions have not drawn much attention
before. Thus, we finally try to evaluate whether their analysis can provide valuable ap-
proximations of real-world applications.

To answer these questions, the reader is guided through the following topics. First, we
formally introduce semistable laws and afterward prove an integral representation for the
log-characteristic function of a semistable distribution on Rd in Section 2.2, which will
be the basis for following results. Additionally, to solve abstract Cauchy problems later
on, some basic facts about convolution semigroups and their generators are recalled in
Section 2.3.
The representation of the Fourier transform of semistable laws enables us to define an
operator, which we call semi-fractional derivative, such that the semistable densities solve
a corresponding diffusion equation. Partly, this was already published in [66], where
we defined and studied one-dimensional fractional derivatives (see Appendix B for a de-
tailed list of the individual contributions of the authors). From this basis, we successively
generalize the definition first to directional semi-fractional derivatives and finally to the
multidimensional case in Chapter 3. Regardless of whether one-dimensional or multidi-
mensional versions are studied, we are able to define different forms of semi-fractional
derivatives. Following the fractional case, we will mainly concentrate on Caputo and
Riemann-Liouville type ones and their connection. Finally, we end the chapter about semi-
fractional derivatives by proving an approximation formula of Grünwald-Letnikov type,
enabling us to calculate semi-fractional derivatives and the solution to semi-fractional
differential equations numerically. As an important characteristic valuable for solving
semi-fractional differential equations, the Laplace transform of semi-fractional derivatives

6



Chapter 1. Introduction

is analyzed in Chapter 4.
These differential equations are afterward studied in Chapter 5. Due to our strategy,
semi-fractional diffusion equations are solved by the densities of semistable Lévy pro-
cesses, and thereby, the numerical approximation from the previous chapter enables us to
plot semistable distributions. Note that pictures of semistable laws have been quite rare
before, and hence this is an important step toward a better understanding of this class of
distributions. To study semi-fractional differential equations more generally, we consider
a semi-fractional version of (1.4), inspired by the work of Baeumer and Meerschaert [10]
in the fractional case. By analyzing semistable subordinators, which are semistable Lévy
processes with almost surely non-decreasing paths, we can eventually present solutions to
this general kind of equation.

As it turns out, under particular assumptions, a solution to the semi-fractional Cauchy
problem on a stochastic level is provided by the densities of the process (A(E(t)))t≥0,
where (A(t))t≥0 is semistable and (E(t))t≥0 is a hitting time process for a semistable sub-
ordinator, which is independent of (A(t))t≥0. Such processes appear as limiting processes
of uncoupled Continuous Time Random Walks (CTRWs), modeling random walks with
additional random waiting times between the jumps. Based on this knowledge, we discuss
which limit processes of CTRWs can appear in general by considering semistable processes
under arbitrary dependencies between jumps and their corresponding waiting times. As
outlined in Section 6.1, such coupled CTRWs yield various interesting limiting processes,
and we even prove a representation of their densities in Section 6.2.
The last theoretical chapter treats the concept of space-time duality. This work was in-
spired by [64], where it was shown that the solution to a negatively skewed space-fractional
derivative of order α ∈ (1, 2) is equivalent to those of a particular time-fractional differ-
ential equation of order 1

α
. Note that, due to the non-locality of the semi-fractional

derivative, it is difficult to find a physical meaning of space-fractional differential equa-
tions, whereas time-fractional equations may be interpreted as systems with long-time
memory. Hence the space-time duality result is an important tool for applications, and
we aim to generalize it to the semi-fractional case.
To test the practical application of the findings, we end this thesis with a study of growth
models applied to mobile data as well as cancer growth. Similar to stable laws, by an addi-
tional tempering, semistable laws can be transferred to distributions with finite moments.
As we will see, they are then suitable for applications to stock prices.
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Chapter 2

Semistable distributions

The following chapter is mainly devoted to familiarizing the reader with the definition
of semistable laws and some of their properties, which are essential for this thesis. For
a more general introduction, we refer to [91]. Especially, we consider log-characteristic
functions of semistable distributions as these laws are best characterized through their
Fourier transform. This representation will naturally yield the definition of semi-fractional
derivatives in Chapter 3. To define Caputo or Riemann-Liouville type forms in Chapter
3, we finally introduce Feller semigroups and their generators. Again, we only name a few
essential facts and suggest the monographs [62] or [135] for further information.

2.1 Definition and first properties
Semistable distributions are not as common as their stable subclass, and therefore we
briefly summarize the definition and some crucial facts in this section. To clarify the gen-
eral mathematical context we are working in, we start our consideration with the larger
set of infinitely divisible distributions.

There are several equivalent ways to define infinite divisibility. Still, for our purpose, the
most suitable approach is to define infinite divisibility by the Fourier transform of the
probability measure, also called characteristic function. This is, a probability measure ν
on Rd is infinitely divisible if the characteristic function

ν̂(k) :=
ˆ

Rd

ei〈k,x〉 dν(x)

is given by exp(Ψ(k)) for every k ∈ Rd with log-characteristic function

Ψ(k) = i〈a, k〉 − 1
2〈k,Qk〉+

ˆ

Rd\{0}

(
ei〈x,k〉 − 1− i〈x, k〉

1 + ||x||2

)
dΦ(x) (2.1)

for some a ∈ Rd, a non-negative definite matrix Q ∈ Rd×d, and a σ-finite Borel measure

8



Chapter 2. Semistable distributions

Φ on Rd \ {0} such that
ˆ

Rd\{0}

min{1, ||x||2} dΦ(x) <∞. (2.2)

Every σ-finite Borel measure Φ on Rd \ {0} fulfilling (2.2) is called a Lévy measure. Fur-
thermore, the triple [a,Q,Φ], called Lévy-Khintchine triple of ν, is uniquely determined
[91, Theorem 3.1.11]. Note that by (2.1), we can uniquely split every infinitely divisible
distribution into the following three components: The first term in (2.1) is simply a drift,
whereas the second one is the log-characteristic function of a centered normal density
with covariance matrix Q and therefore called Gaussian component. The last term is
called Poisson component since, at least for finite measures Φ, it is the log-characteristic
function of a shifted compound Poisson distribution [91, Definition 3.1.12].

Even if not denoted with this term, Bruno de Finetti was the first to study infinitely
divisible distributions, followed by Kolmogorov, Lévy, and Khintchine, to name just a
few (see [84] for a historical survey and the associated references). Nowadays, there is
comprehensive literature concerning these distributions, but since we concentrate on the
smaller class of semistable distributions, we only refer to [91] and [122] for more informa-
tion about infinitely divisible laws in general.

For a precise definition of semistable laws, we need the following generalization of non-
degenerate measures on R to full measures on Rd.

Definition 2.1.1. (Full measure)
A probability measure ν on Rd is full if ν is not supported on any (d − 1)-dimensional
hyperplane. Similarly, a Lévy measure Φ on Rd \ {0} is full if Φ is not supported on any
(d− 1)-dimensional hyperplane.

Note that an infinitely divisible distribution ν with Lévy-Khintchine triple [a, 0,Φ] is full
if and only if the Lévy measure Φ is full [91, Proposition 3.1.20]. Under the assumption
of fullness, semistable laws now arise from infinitely divisible ones under the additional
requirement of a discrete scaling property.

Definition 2.1.2. (Semistable distribution)
For fixed α ∈ (0, 2] and c > 1, a full, infinitely divisible distribution ν on Rd is called
(c 1

α , c)-semistable if there is y ∈ Rd such that

ν∗c = (c 1
αν) ∗ εy, (2.3)

where εy is the Dirac measure in y and (c 1
αν) is the image measure of ν under the di-

lation x 7→ c
1
αx. Note that the c-fold convolution ν∗c is well-defined through its Fourier

transform. If y = 0 in (2.3), then the distribution is called strictly semistable.

By iteration, we obtain (2.3) for every integer power of c. Hence, for every t = ck with

9
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k ∈ Z, the distribution ν∗t is no more than a shifted and scaled version of ν itself. To
become more familiar with this definition, we consider some special cases.

Example 2.1.3. (Special cases of semistable distributions)

(i) If (2.3) holds for any c > 1 and some y = y(c) ∈ Rd, then ν is α-stable. In this
sense, stability strengthens semistability by demanding the scaling property on a
continuous and not only on a discrete scale. Note that in this case, the distribution
ν∗t is indeed a stretched and shifted version of ν for every t > 0. Due to this more
restrictive assumption, stable laws are easier to handle, and hence, many properties
like the explicit shape of the log-characteristic function, different representations,
and their ability to model various applications have been investigated (see for ex-
ample [94], [105], or [152]). Nevertheless, there are only a few cases where a stable
density is explicitly known (these cases are the Cauchy distribution (α = 1), the
Lévy distribution (α = 1

2), and the normal distribution (α = 2)).

(ii) If α = 2, then every semistable distribution is Gaussian (compare [122, Theorem
14.1]). However, the normal distribution is well-known, and this is why we often
exclude this special case.

(iii) As a concrete example, consider the limit distribution of the total gain in successive
St. Petersburg games. In a St. Petersburg game, a fair coin is tossed until it shows
head for the first time. If this happens in the n-th toss, the player wins 2n Euro. The
expectation of the gain is infinite such that a fair entrée fee cannot be constructed
with naive methods, and hence, the problem became a popular paradox ([60], [37]).
Now let SN be the total gain of the player in N independent St. Petersburg games.
It was shown by Feller [43, Chapter X:4] that

SN
N log2(N) → 1

in probability, such that a fair entrée fee for N independent games can by ap-
proximated by N log2(N) for large values of N . Later on, Anders Martin-Löf [85,
Theorem 1] offered a limit distribution for the total gain, proving that

SN −N log2(N)
N

has a (c 1
α , c)-semistable limit distribution with c = 2 and α = 1 along the sequence

N = 2n with n ∈ N. In this case, the Lévy measure Φ is concentrated on 2Z with

Φ(2k) = 2−k ∀ k ∈ Z,

and (2.3) is fulfilled with y = 2.

Historically, semistable distributions were not defined by (2.3) but appeared as limit
distributions of sums of i.i.d. random variables first [78]. Similar to Example 2.1.3 (iii),

10
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the convergence of the partial sums has to be studied along special subsequences in the
following way.

Theorem 2.1.4. [91, Proposition 8.3.16] Let A be a random variable with full distribution
ν on Rd. Then ν is semistable if and only if there is an i.i.d. sequence X,X1, X2, . . . of
random variables on Rd with common distribution µ, an increasing sequence of positive
integers (kn)n∈N with kn →∞ and

kn+1

kn
→ c

as n→∞ as well as real numbers an > 0 such that

an(X1 + . . .+Xkn) + bn
d→ A

for non-random vectors bn ∈ Rd. Thereby, d→ indicates convergence in distribution. On
the level of measures, this reads as the weak convergence

(anµ)∗kn ∗ εbn
w→ ν.

In this case, we say that X (or µ) belongs to the domain of semistable attraction of A
(or ν). If bn = 0 for every n ∈ N, then X (or µ) is in the strict domain of semistable
attraction of A (or ν).

Remark 2.1.5. As already seen in Example 2.1.3 (i), stable laws are embedded in the
set of semistable distributions and hence can be described as limit distributions of sums
of random variables as in Theorem 2.1.4. In this case, the sequence (kn)n∈N can be chosen
such that kn = n for every n ∈ N (compare [91, Definition 7.3.1]).

For every infinitely divisible distribution ν, there is a Lévy process (A(t))t≥0, unique in
distribution, with PA(1) = ν [62, Theorem 13.12]. Note that throughout this thesis, a
stochastic process (A(t))t≥0 is defined to be a Lévy process if A(0) = 0 almost surely,
the increments are independent and identically distributed, and the process is continuous
in probability. If the distribution ν is additionally (c 1

α , c)-semistable, then the process
is called (c 1

α , c)-semistable Lévy process. Due to the discrete scaling property of ν, this
process fulfills

A(ct) f.d.= c
1
αA(t) + y(t)

for every t > 0 and y(t) ∈ Rd, where f.d.= denotes equality of the finite-dimensional marginal
distributions. This property is called wide-sense (or broad-sense) semi-selfsimilarity in the
literature (see for example [122] or [122]) and offers an equivalent definition for a Lévy
process to be semistable. If ν is strictly semistable, then the corresponding Lévy process
is semi-selfsimilar, meaning that

A(ct) f.d.= c
1
αA(t)

11
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for every t > 0. Note that every semistable Lévy process has C∞(Rd)-densities x 7→ p(x, t)
for every t > 0 [122, Example 28.2], and the wide-sense semi-selfsimilarity carries over to
these densities. More precisely, the densities of a strict semistable process fulfill

p(x, ct) = c−
1
αp(c− 1

αx, t) (2.4)

for every t > 0. If (A(t))t≥0 is a stable Lévy process, then it is wide-sense selfsimilar (with
index 1

α
), meaning that

A(ct) f.d.= c
1
αA(t) + y(t)

for every t > 0, c > 0, and y(t) ∈ Rd. If in addition y(t) = 0 for every t > 0, then the
process is selfsimilar (with index 1

α
), corresponding to a strictly stable Lévy process [122,

Propositon 13.5], and (2.4) is fulfilled for every c > 0 and t > 0.

2.2 Log-characteristic function
Even not possible for most stable laws, we do not hope to find an explicit representation
of semistable densities. Alternatively, we characterize these distributions by their Fourier
transforms in terms of the Lévy-Khintchine triple. The explicit formula we prove in this
section will provide the basis for the following calculations and is especially needed for
the definition of semi-fractional derivatives in Chapter 3.
Since every 2-semistable distribution is Gaussian (Example 2.1.3 (ii)), we exclude this
case from our consideration. For α < 2, we can use a spectral representation of the Lévy
measure given in [91] to characterize the Lévy-Khintchine triple of a (c 1

α , c)-semistable
distribution. Thus, in the following, let S := {x ∈ Rd : ||x||2 = 1} denote the d-
dimensional unit sphere with respect to a fixed norm || · || on Rd.

Theorem 2.2.1. (Spectral representation, [91, Theorem 7.4.3])
Let ν be a (c 1

α , c)-semistable distribution on Rd for some c > 1 and α ∈ (0, 2). Then the
Lévy-Khintchine triple of ν is given by [a, 0,Φ] for some a ∈ Rd and a Lévy measure Φ
fulfilling

Φ{tθ : t > r, θ ∈ D} =
ˆ

D

r−αKθ(log(r)) dM(θ) (2.5)

for every r > 0 and D ⊆ B(S), where

M(D) = Φ{tθ : t > 1, θ ∈ D}

is a finite Borel measure on the unit sphere S and (Kθ)θ∈S is a family of θ-measurable,
non-negative and log

(
c

1
α

)
-periodic functions with

Kθ(x+ δ)e−αδ ≤ Kθ(x− δ)eαδ (2.6)

12
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for every x ∈ R, δ > 0, and every θ ∈ S.

Note that the growth condition (2.6) ensures that the functions r 7→ r−αKθ(log(r)) in
the integral (2.5) are non-increasing in r > 0 for every θ ∈ S and is hence a necessary
assumption for Φ to be a well-defined measure. Additionally, it follows from (2.6) that
for every θ ∈ S, the function Kθ is either strictly positive or identically zero. However,
due to the fullness of ν, the Lévy measure Φ is full, and there is at least one θ ∈ S such
that Kθ is non-vanishing. For a simpler handling, we will quantify the properties of the
set (Kθ)θ∈S in the term ’admissable’ later on (compare Definition 3.1.1 or Definition 3.3.1
respectively).
The spectral representation above allows us to simplify the log-characteristic function
(2.1) of a semistable distribution using spherical coordinates.

Lemma 2.2.2. (Semistable log-characteristic function)
Let ν be a (c 1

α , c)-semistable distribution on Rd for some c > 1 and α ∈ (0, 2) \ {1}. Then
the log-characteristic function Ψ of ν is given by

Ψ(k) = i〈b, k〉 −
ˆ

S

hθ(〈k, θ〉) dM(θ) (2.7)

for every k ∈ Rd, some b ∈ Rd, and the finite Borel measure M on S from Theorem 2.2.1,
where the function hθ : R→ C is given as the Riemann-Stieltjes integral

hθ(x) =
∞̂

0+

eirx − bαc∑
p=0

(irx)p
 dGKθ(r) (2.8)

for every θ ∈ S, bαc is the integer part of α, and GKθ : (0,∞) → [0,∞) is the non-
increasing function GKθ(r) := r−αKθ(log(r)).

Proof. Consider the case α ∈ (0, 1) first. According to [91, Lemma 6.3.11]
ˆ

{0<||x||<R}

||y|| dΦ(y) <∞

for every R > 0 such that with [91, Theorem 3.1.14], we can simplify the log-characteristic
function to

Ψ(k) = i〈b, k〉+
ˆ

Rd\{0}

(
ei〈x,k〉 − 1

)
dΦ(x)

for every k ∈ Rd, where

b := a−
ˆ

Rd\{0}

x

1 + ||x||2 dΦ(x). (2.9)
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For every θ ∈ S, let GKθ : (0,∞) → [0,∞) be the function GKθ(r) = r−αKθ(log(r))
and note that GKθ is non-increasing. Using spherical coordinates x = rθ with r > 0 and
θ ∈ S, we show that the Lévy measure Φ decomposes as

dΦ(x) = −dGKθ(r)dM(θ). (2.10)

Therefore apply a similar technique as in the proof of Theorem 7.3.3 in [91] and consider
the sets As,D := {tθ : t > s, θ ∈ D} for arbitrary s > 0 and a Borel set D ⊆ S. Since
these sets are ∩-stable and generate the Borel sets on Rd \ {0}, it is sufficient to show
(2.10) for sets of this type. According to (2.5), we have

Φ(As,D) =
ˆ

D

s−αKθ(log(s)) dM(θ) = −
ˆ

D

∞̂

s

dGKθ(r) dM(θ)

= −
ˆ

As,D

dGKθ(r) dM(θ)

such that (2.10) holds. Then it follows that

Ψ(k) = i〈b, k〉 −
ˆ

S

∞̂

0+

(
eir〈θ,k〉 − 1

)
dGKθ(r) dM(θ)

= i〈b, k〉 −
ˆ

S

hθ(〈θ, k〉) dM(θ)

for every k ∈ Rd. If on the contrary α ∈ (1, 2), we find
ˆ

{||x||≥R}

||y|| dΦ(y) <∞

for every R > 0 such that

Ψ(k) = i〈b, k〉+
ˆ

Rd\{0}

(
ei〈x,k〉 − 1− i〈x, k〉

)
dΦ(x)

for every k ∈ Rd (compare [91, Lemma 6.3.17 and Theorem 3.1.14]) with

b := a−
ˆ

Rd\{0}

(
x

1 + ||x||2 − x
)
dΦ(x). (2.11)
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Use (2.10) to obtain

Ψ(k) = i〈b, k〉 −
ˆ

S

∞̂

0+

(
eir〈θ,k〉 − 1− ir〈θ, k〉

)
dGKθ(r) dM(θ)

= i〈b, k〉 −
ˆ

S

hθ(〈θ, k〉) dM(θ).

Remark 2.2.3. (Interpretation of the measure M)
Note that the functions hθ in (2.8) are log-characteristic functions of one-dimensional
(c 1

α , c)-semistable distributions with Lévy-Khintchine triple [aθ, 0,Φθ], where

aθ :=



∞̂

0+

x

1 + x2 dΦθ(x) if α ∈ (0, 1)

∞̂

0+

(
x

1 + x2 − x
)
dΦθ(x) if α ∈ (1, 2)

and the Lévy measure Φθ is supported on the positive real line with

Φθ(r,∞) = GKθ(r) = r−αKθ(log(r))

for every r > 0. Then the Lévy measure M on the d-dimensional unit sphere can be
interpreted as a mixing measure, weighting each radial direction.
Remark 2.2.4. For α = 1, the spectral representation in Theorem 2.2.1 is valid likewise,
but note that in this case neither the integral in (2.9) nor the integral in (2.11) are finite.
Alternatively, with ([91, Theorem 3.1.14]), we obtain

Ψ(k) = i〈b, k〉 −
ˆ

S

∞̂

0+

(
eir〈θ,k〉 − 1− ir〈θ, k〉1{r<1}

)
dGKθ(r) dM(θ)

for every k ∈ Rd, where

b := a−
ˆ

Rd\{0}

(
x

1 + ||x||2 − x1{||x||<1}

)
dΦ(x).

Example 2.2.5. (Stable log-characteristic function)
If Kθ ≡ 1, then ν is stable and for α ∈ (0, 1),

hθ(x) = −α
∞̂

0+

(
eirx − 1

)
r−α−1 dr = Γ(1− α)(−ix)α
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for every x ∈ R (compare [94, Proposition 3.10]). Following Lemma 2.2.2, the log-
characteristic function equals

Ψ(k) = i〈b, k〉 − Γ(1− α)
ˆ

S

(−i〈k, θ〉)α dM(θ) (2.12)

for every k ∈ Rd. In the same way, for α ∈ (1, 2), we obtain

Ψ(k) = i〈b, k〉+ Γ(2− α)
α− 1

ˆ

S

(−i〈k, θ〉)α dM(θ)

= i〈b, k〉 − Γ(1− α)
ˆ

S

(−i〈k, θ〉)α dM(θ)

for every k ∈ Rd (compare [94, Proposition 3.12]). Especially in the one-dimensional case
this yields the well-known formula

Ψ(k) = ibk − pΓ(1− α)(−ik)α − qΓ(1− α)(ik)α

for every k ∈ R, where p := M{1} ≥ 0 and q := M{−1} ≥ 0 with p+ q > 0 (e.g., see [94,
Proposition 3.10 and Proposition 3.12]).

Example 2.2.6. Assume that for every θ ∈ S, the function Kθ is smooth; this is Kθ is
continuous and piecewise continuously differentiable. Due to its smoothness, the Fourier
series agrees with the function Kθ in every point x ∈ R [46, Theorem 2.1] such that we
are able to write

Kθ(x) =
∑
n∈Z

cn,θe
inc̃x

for Fourier coefficients (cn,θ)n∈Z ⊆ C and c̃ := 2πα
log(c) guaranteeing the right period. In

addition, the Fourier coefficients decay like |cn| ≤ C|n|− 3
2 for a constant C > 0 and every

n ∈ Z [46, Theorem 2.6]. In [66], we already considered this special case in one dimension,
and since the multidimensional case works similarly, we only name the results here. Note
that in [66], we assumed that the Fourier coefficients decay like n−2, but all results can
be proven similarly under the weaker assumption above.
As in the stable case, it was shown in [66, Theorem 3.1] that for α ∈ (0, 2) \ {1} the
integral defining hθ can be solved explicitly using this Fourier series approach, and we
obtain

hθ(x) =
∑
n∈Z

cn,θΓ(inc̃− α + 1)(−ix)α−inc̃

for every x ∈ R. Note that this series converges absolutely due to the exponential decay
of the gamma function [3, Corollary 1.4.4]. Hence, the log-characteristic function is given
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by

Ψ(k) = i〈b, k〉 −
ˆ

S

∑
n∈Z

cn,θΓ(inc̃− α + 1)(−i〈k, θ〉)α−inc̃ dM(θ)

for every k ∈ Rd. If we define functions ηθ : {z ∈ C : | Im(z)| = π
2} → C by

ηθ(x) :=
∑
n∈Z

cn,θΓ(inc̃− α + 1)e−inc̃x (2.13)

for every θ ∈ S, it follows that

Ψ(k) = i〈b, k〉 −
ˆ

S

(−i〈k, θ〉)αηθ(log(−i〈k, θ〉)) dM(θ).

In comparison to the log-characteristic function of a stable distribution (2.12), we see that
the log-periodic perturbation of the Lévy measure yields a similar log-periodic disturbance
in this integral representation of the log-characteristic function.

To close this section, we want to give an example of how semistable distributions arise as
limit laws of i.i.d. sums of random variables and therefore introduce disturbed Pareto laws.
Similar to ordinary Pareto laws, these distributions are heavy-tailed, but additionally, the
tail is log-periodic disturbed. Since Pareto distributions have been successfully applied to
various heavy-tailed phenomena like the distribution of income [136] or daily changes in
stock prices [94], we furthermore hope to provide even better models by this generalized
class of distributions (compare Chapter 8).

Example 2.2.7. (Disturbed Pareto distribution)
We say that a real-valued random variableX has a one-sided disturbed Pareto distribution
if

P (X ≥ t) =


c

K(0)t
−αK(log(t)), if t ≥ c

1
α

1 if t < c
1
α

for some α ∈ (0, 2) \ {1}, c > 1, and a positive, log
(
c

1
α

)
-periodic function K such that

(2.6) holds. If we assume that K is continuously differentiable, then X has the Lebesgue
density

f(t) = c

K(0)t
−α−1(αK(log(t))−K ′(log(t)))1

(c
1
α ,∞)

(t)

=: g(t)1
(c

1
α ,∞)

(t).

Note that disturbed Pareto laws differ from semi-Pareto distributions as treated in [109],
and we therefore consciously relinquish to include the prefix ’semi’ in the definition. To
evaluate the connection between disturbed Pareto laws and semistable distributions, we
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calculate the characteristic function of X. Concentrating on the case α ∈ (0, 1) first, we
obtain

E[eikX ] =
∞̂

c
1
α

eiktf(t) dt =
∞̂

c
1
α

(1 + eikt − 1)f(t) dt

= 1 +
∞̂

0+

(eikt − 1)g(t) dt−
c

1
αˆ

0+

(eikt − 1)g(t) dt

for every k ∈ R. Since K is smooth, we are able to express K with its Fourier series

K(x) =
∑
n∈Z

cn,1e
inc̃x

for Fourier coefficients (cn,1)n∈Z and c̃ = 2πα
log(c) . Following Example 2.2.6, the first integral

is given by
∞̂

0+

(eikt − 1)g(t) dt = − c

K(0)(−ik)αη1(log(k))

with η1 from (2.13), whereas for the second integral, using a Taylor approximation, we
find ∣∣∣∣∣∣∣∣

c
1
αˆ

0+

(eikt − 1)g(t) dt

∣∣∣∣∣∣∣∣ ≤
c

1
αˆ

0+

|eikt − 1|g(t) dt ≤
c

1
αˆ

0+

|kt|g(t) dt = O(k).

Now if X1, X2, . . . are i.i.d. copies of X, then the sum c−
n
α

bcnc∑
j=1

Xj has Fourier transform

(
E[eikc

−nαX ]
)bcnc

=
(

1− c

K(0)(−ic−nαk)αη1
(
log
(
c−

n
αk
))

+O
(
kc−

n
α

))bcnc

=
(

1− c1−n

K(0)(−ik)αη1(log(k)) + O(c−nα )
)bcnc

→ exp
(
− c

K(0)(−ik)αη1(log(k))
)

for every k ∈ R as n→∞. However, this is the Fourier transform of a (c 1
α , c)-semistable
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distribution ν on R with ν ∼ [a, 0,Φ], where

a =
ˆ

R\{0}

x

1 + x2 dΦ(x)

and

Φ(−∞,−r) = 0 and Φ(r,∞) = r−α
c

K(0)K(log(r))

for every r > 0. Hence, we obtain convergence of the normalized sum toward a semistable
random variable with distribution ν. Similarly, for α ∈ (1, 2), we have

E[eikX ] =
∞̂

c
1
α

(1 + ikt+ eikt − 1− ikt)f(t) dt

= 1 + ikE[X] +
∞̂

0+

(eikt − 1− ikt)g(t) dt−
c

1
αˆ

0+

(eikt − 1− ikt)g(t) dt

= 1 + ikE[X]− c

K(0)(−ik)αη1(log(t))−
c

1
αˆ

0+

(eikt − 1− ikt)g(t) dt

for every k ∈ R, where the last integral is bounded with∣∣∣∣∣∣∣∣
c

1
αˆ

0+

(eikt − 1− ikt)g(t) dt

∣∣∣∣∣∣∣∣ ≤
c

1
αˆ

0+

|eikt − 1− ikt|g(t) dt

≤
c

1
αˆ

0+

k2t2g(t) dt

= O(k2).

Then the shifted sum c−
n
α

bcnc∑
j=1

(Xj − E[X]) has Fourier transform

(
E[eikc

−nα (X−E[X])]
)bcnc

=
(

1− c

K(0)(−ic−nαk)αη1
(
log
(
c−

n
αk
))

+O(c− 2n
α )
)bcnc

→ exp
(
− c

K(0)(−ik)αη1(log(k))
)

for every k ∈ R as n → ∞. Again the scaled and shifted sum converges to a semistable
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distribution. Hence, in a similar way Pareto distributions are used to approximate stable
distributions, we are able to calculate semistable laws as limit of normalized sums of i.i.d.
disturbed Pareto distributions.

2.3 Convolution Semigroups
As a last introductory section, we recall some basic facts about convolution semigroups
and their generators. Since every infinitely divisible law generates a Feller semigroup,
this theory delivers an additional description of Lévy processes. Especially for this thesis,
not only the definition of semi-fractional derivatives depends on this connection (compare
Lemma 3.1.10), but it also allows us to solve semi-fractional Cauchy problems in Chapter
5.

Definition 2.3.1. Let (T (t))t≥0 be a family of linear operators on a Banach space (X , ||·||)
with T (0) being the identity operator. We use the following definitions:

• If T (s+ t) = T (s)T (t) for every s, t ≥ 0, then (T (t))t≥0 is a semigroup.

• If for every t ≥ 0 there is Mt > 0 with ||T (t)f || ≤ Mt||f || for all f ∈ X, then we
call (T (t))t≥0 bounded.

• (T (t))t≥0 is uniformly bounded if there is a constant M > 0 with ||T (t)f || ≤M ||f ||
for all f ∈ X and all t ≥ 0.

• We say that (T (t))t≥0 is strongly continuous if

||T (t)f − f || → 0 as t ↓ 0.

A strongly continuous, uniformly bounded semigroup with constant M = 1 is called a
Feller semigroup.

In what follows, let ν be an infinitely divisible law on Rd with Lévy-Khintchine represen-
tation [a,Q,Φ], where a ∈ Rd, Q ∈ Rd×d is a non-negative definite matrix, and Φ is a Lévy
measure on Rd \ {0}. By (A(t))t≥0, we denote the Lévy process on Rd with PA(1) = ν.
In addition, consider the Banach space L1(Rd) of integrable functions equipped with the
|| · ||1-norm and define the family of linear operators (T (t))t≥0 on L1(Rd) by

T (t)f(x) :=
ˆ
Rd
f(x− y) dν∗t(y) = E[f(x− A(t))]. (2.14)

According to [57, Theorem 23.13.1] and [10, Proposition 2.1], these operators form a Feller
semigroup on L1(Rd). For such a semigroup, we define the generator L as

Lf := lim
t↓0

T (t)f − f
t

,
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and denote with Dom(L) the domain of L containing all functions f ∈ L1(Rd) for which
the above limit exists. For further calculations, we need the following additional properties
of L and Dom(L) taken from [107, Theorem 2.4 and Corollary 2.5].

Lemma 2.3.2. Let (T (t))t≥0 be a strongly continuous semigroup with generator L.

(a) Dom(L) is dense in L1(Rd) and L is a closed linear operator.

(b) For every f ∈ L1(Rd), we have
ˆ t

0
T (s)f ds ∈ Dom(L) and

T (t)f = L

(ˆ t

0
T (s)f ds

)
+ f.

For suitable functions f , the generator Lf can be written down explicitly using the Lévy-
Khintchine representation of ν. As shown below, a sufficient condition on f for this
representation is to assume that f ∈ W 2(Rd), where for n ∈ N and an open subset
A ⊆ Rd, we denote by W n(A) the space of all L1(A)-functions whose partial derivatives
up to order n exist and are again L1(A)-functions.

Lemma 2.3.3. ([10, Theorem 2.2]) Let ν be an infinitely divisible distribution on Rd with
Lévy-Khintchine representation [a,Q,Φ]. Then the generator L of the semigroup (T (t))t≥0
defined in (2.14) is given by

Lf(x) = −〈a,∇f(x)〉+ 1
2〈∇, Q∇f(x)〉+

ˆ

Rd\{0}

(
f(x− y)− f(x) + 〈∇f(x), y〉

1 + ||y||2

)
dΦ(y)

for all f ∈ W 2(Rd). Furthermore it holds that F(Lf)(k) = Ψ(k)F(f)(k), where Ψ is the
log-characteristic function of ν and F denotes the Fourier transform.

In the context of semistable laws, we are mainly interested in the following special case
of Lemma 2.3.3.

Example 2.3.4. For α ∈ (0, 2) and c > 1, let ν be (c 1
α , c)-semistable with Lévy-

Khintchine representation [a1 + a2, 0,Φ], where a1 ∈ Rd and

a2 =



ˆ

Rd\{0}

x

1 + ||x||2 dΦ(x) if α ∈ (0, 1)

ˆ

Rd\{0}

(
x

1 + ||x||2 − x1{||x||<1}

)
dΦ(x) if α = 1

ˆ

Rd\{0}

(
x

1 + ||x||2 − x
)
dΦ(x) if α ∈ (1, 2)

. (2.15)
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Then together with (2.10), the generator L of the semigroup (T (t))t≥0 for α ∈ (0, 1) is
given by

Lf(x) = −〈a1,∇f(x)〉+
ˆ

Rd\{0}

(f(x− y)− f(x)) dΦ(y)

= −〈a1,∇f(x)〉+
ˆ

S

∞̂

0+

(f(x)− f(x− rθ)) dGθ(r) dM(θ)

for every x ∈ Rd, whereas for α ∈ (1, 2)

Lf(x) = −〈a1,∇f(x)〉+
ˆ

Rd\{0}

(f(x− y)− f(x) + 〈y,∇f(x)〉) dΦ(y)

= −〈a1,∇f(x)〉+
ˆ

S

∞̂

0+

(f(x)− f(x− rθ)− r〈θ,∇f(x)〉) dGθ(r) dM(θ).

In the case α = 1, together with the spherical representation in Remark 2.2.4, we obtain

Lf(x) = −〈a1,∇f(x)〉+
ˆ

Rd\{0}

(f(x− y)− f(x) + 〈y,∇f(x)〉1{||y||<1}) dΦ(y)

for every x ∈ Rd.

Example 2.3.5. If ν is a 2-semistable distribution, then it is Gaussian, and if we choose
a = 0 in Lemma 2.3.3, the corresponding generator is given by

Lf(x) = 1
2〈∇, Q∇f(x)〉.

Especially, if Q = σ2 Id for some σ2 > 0 and the identity matrix Id ∈ Rd×d, this simplifies
to

Lf(x) = 1
2σ

2∆f(x),

which in the one-dimensional case yields

Lf(x) = 1
2σ

2 d
2

dx2f(x).

A reason why studying semigroups and its generators is so important for this thesis is
their connection to Cauchy problems. Since (T (t))t≥0 in (2.14) is a strongly continuous
semigroup with generator L, for any initial condition p0 ∈ Dom(L) the function

q(x, t) := T (t)p0(x) = E[p0(x− A(t))]
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is the unique solution to the abstract Cauchy problem

∂

∂t
q(x, t) = Lq(x, t), q(x, 0) = p0(x) (2.16)

for every x ∈ Rd, t > 0 ([150, Theorem 1.14]). If ν∗t has a Lebesgue-density x 7→ p(x, t)
for every t > 0, we obtain the representation

q(x, t) =
ˆ

Rd

p0(x− y)p(y, t) dy,

and the set {p(·, t) : t > 0} is called Green’s function solution to (2.16). On the other
hand, the process (A(t))t≥0 is called stochastic solution to the abstract Cauchy problem
(2.16).
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Semi-fractional derivatives

Although the previous chapter was mainly of introductory character, the more explicit
form of the log-characteristic function proven in Lemma 2.2.2 is a crucial step toward a
better understanding of semistable laws. For further insights, we orientate ourselves by
the results known for the special case of stable laws. As mentioned before, the theory
of stable distributions profited noticeably from its connection to fractional differential
equations, and for this reason, the following chapter is devoted to the presentation of a
generalized operator creating a similar connection in the semistable case.

In their origin, fractional derivatives did not appear as an instrument to investigate stable
laws but arose naturally as a generalization of ordinary derivatives in a letter from Leibniz
to L’Hôspital in 1695 [77]. However, the connection to stable distributions was only
discovered many years later when both - the theory of fractional calculus and the theory
of stable laws - were well-established research areas.
On the contrary, we now particularly define a so-called semi-fractional derivative, which
creates an equal connection between semistable laws and associated diffusion equations.
Like fractional derivatives, the theory of semi-fractional ones can be studied outside of
a probability context and, in this sense, may also enrich the general theory of fractional
calculus. However, this task is outside the scope of this thesis.

The following chapter starts with introducing semi-fractional derivatives in the one-
dimensional case yielding the desired connection between semistable laws and correspond-
ing diffusion equations. Note that under more restrictive assumptions, the results in Sec-
tion 3.1 have partly been published in [66]. Afterward, we stepwise generalize the idea
of semi-fractional derivatives by first considering directional and then multidimensional
versions. Particularly, we analyze different forms of these operators like Caputo and
Riemann-Liouville forms and their reciprocal connection. Finally, we provide a numerical
approach to both directional and multidimensional semi-fractional derivatives in section
3.4.
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3.1 Introduction to one-dimensional semi-fractional
derivatives

To familiarize the reader with semi-fractional derivatives, we concentrate on a one-dimen-
sional setting in this very first section. Apart from different characterizations - either
by Fourier transforms or Caputo and Riemann-Liouville type forms - studying examples
improves our comprehension of this generalization of fractional derivatives.

As outlined in the introduction, there are several different approaches to define a frac-
tional derivative. However, as a starting point for our generalization, we affiliate with
the most common one in probability theory and use the Fourier space definition. This is,
the fractional derivative of order α > 0 of a suitable function f : R → R is the function
with Fourier transform (−ik)αf̂(k). Note that in the case α ∈ N, the fractional derivative
simplifies to an ordinary derivative of order n, and hence this definition is a natural ex-
tension of the classical one. Although the fractional derivative is defined for every α > 0,
we restrict our attention to derivatives of order α ∈ (0, 2] since these cases are connected
to stable distributions [94].

In contrast to fractional derivatives, a semi-fractional one not only depends on the order
α but also on an additional perturbation modeled by a periodic function. Instead of
allowing an arbitrary periodic function in the definition, we demand some qualities, which
we consolidate in the term ’admissable’. By doing so, we retain the connection between
semi-fractional derivatives and semistable laws (compare Example 5.1.3). For this and
subsequent definitions alike, we exclude the integer cases α = 1 and α = 2, which will be
justified below (see Remark 3.1.11).

Definition 3.1.1. (Admissable function)
Given α ∈ (0, 2) \ {1} and c > 1, we call a function K : R → R admissable with respect
to α and c if the following three conditions are satisfied:

(i) K is log
(
c

1
α

)
-periodic,

(ii) K is strictly positive,

(iii) the function K fulfills the growth restriction, meaning that GK : (0,∞) → (0,∞)
with GK(r) = r−αK(log(r)) is non-increasing.

Hereafter, for an admissable function K , let GK always denote the associated function
GK : (0,∞)→ (0,∞) with GK(r) = r−αK(log(r)) .

Most of the time, conditions (i) and (ii) in Definition 3.1.1 are easily shown, but it may
be more challenging to verify the growth restriction (iii). Hence, we first prove equivalent
criteria for this last requirement.
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Lemma 3.1.2. Let K : R→ (0,∞) be a periodic function. The following statements are
equivalent:
(i) The function GK is non-increasing.

(ii) The function K fulfills

K(x+ δ) ≤ eαδK(x) and K(x− δ) ≥ e−αδK(x)

for every x > 0 and δ > 0.

(iii) The function K fulfills K(x+ δ) ≤ eαδK(x) for every x > 0 and δ > 0.

(iv) The function K fulfills K(x+ δ) ≤ eαδK(x) for every x ∈ R and δ > 0.

(v) The function K fulfills K(x+ δ)e−αδ ≤ K(x− δ)eαδ for every x ∈ R and δ > 0.
If K is differentiable, then each statement is furthermore equivalent to
(vi) The derivative K ′ of K is bounded from above with K ′(x) ≤ αK(x) for every x ∈ R.
Formulation (v) is equal to the assumption (2.6) required for the functions K1 and K−1 in
the one-dimensional Lévy measure (2.5) of a (c 1

α , c)-semistable distribution and thereby
already adverts to a connection to semistable laws. In a non-probability context, one
could think about much weaker assumptions to define an admissable perturbation for
semi-fractional derivatives.

Proof. The equivalence of (i), (ii), and (v) has already been proven in [91, compare p.
275 and 276]. Note that (ii) trivially implies (iii). If (iii) holds true, then using the
periodicity of K we obtain (iv). Now (iv) implies (ii) since for δ > 0 and every x ∈ R

K(x) = K(x− δ + δ) ≤ eαδK(x− δ).

It remains to prove each of these statements’ equivalence to (vi), and therefore we assume
that K is differentiable. If K ′(x) ≤ αK(x) for every x ∈ R, then the function GK is
differentiable with derivative

d

dr
GK(r) = r−α−1(−αK(log(r)) +K ′(log(r))) ≤ 0

for every r > 0 and consequently non-increasing. On the other hand, if K is differentiable
and fulfills (iv), then

K(x+ δ) ≤ eαδK(x)

⇔ K(x+ δ)−K(x)
δ

≤ eαδ − 1
δ

K(x)

for every x ∈ R and δ > 0. Take limits on both sides to obtain

K ′(x) = lim
δ↓0

K(x+ δ)−K(x)
δ

≤ lim
δ↓0

eαδ − 1
δ

K(x) = αK(x)
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for every x ∈ R, completing the proof.

Using the definition of admissable functions, we can now define semi-fractional derivatives
in terms of Fourier transforms.

Definition 3.1.3. (One-dimensional semi-fractional derivative)
Choose α ∈ (0, 2) \ {1}, c > 1, and a function K : R → (0,∞) being admissable with
respect to these parameters. The (positive) semi-fractional derivative of f ∈ L1(R) is
given by the function with Fourier transform Dh(k)f̂(k) if this function exists. Thereby
h is defined by

h(k) :=
∞̂

0+

eirk − bαc∑
p=0

(irk)p
 dGK(r) (3.1)

and D = D(α) := (−1)bαc. Analogously, the negative semi-fractional derivative can be
defined as the function with Fourier transform Dh(−k)f̂(k) if this function exists.

Before we formulate sufficient conditions for the existence of semi-fractional derivatives,
we record some notations and introductory remarks.

Remark 3.1.4. (Notations and introductory remarks)

(i) Since a semi-fractional derivative depends on α and c as well as on the admissable
function K, we denote the semi-fractional derivative by the symbol ∂α

∂c,Kxα
, whereas

we write ∂α

∂c,K(−x)α for the negative semi-fractional derivative.

(ii) In many of the following calculations, the cases α ∈ (0, 1) and α ∈ (1, 2) have to be
treated separately, and often the results distinguish in their algebraic sign. For this
reason, we fix the letter D = D(α) in the above sense for the whole thesis to obtain
closed-form expressions.

(iii) The semi-fractional derivative of a suitable function f is defined such that

F
(

∂α

∂c,Kxα
f

)
(k) = −DΨ(k)f̂(k),

where Ψ(k) is the log-characteristic function of the (c 1
α , c)-semistable law ν on R

from Lemma 2.2.2 with b = 0 and M = ε1. Then the semigroup theory outlined
in Section 2.3 easily delivers that this semistable density solves a corresponding
diffusion equation, showing that this definition accomplishes our preceded goal. A
detailed proof is presented in Section 5.1 below.

(iv) Note that in [66], semi-fractional derivatives were introduced by the generator form
(see Lemma 3.1.10 below), and it was shown afterward that their Fourier transform

27



Chapter 3. Semi-fractional derivatives

is given by Dh(k)f̂(k) for every k ∈ R. In this thesis, we decided to reverse this
procedure to create comparability with the fractional and the subsequent multidi-
mensional case. Besides, we often used a Fourier series approach in [66], assuming
that the function K is smooth, to gain explicit results. As far as possible, we avoid
this additional assumption here and only consider this case as an example.

Merely from Definition 3.1.3, it may be unclear how the Fourier transform of a semi-
fractional derivative is structured, i.e., how the function h given by the integral (3.1)
behaves. The following remark shows that the Fourier transform is indeed not more than
a log-periodically disturbed version of the Fourier transform of a fractional derivative.

Remark 3.1.5. (Shape of the Fourier transform of semi-fractional derivatives)
To interpret the Fourier transform of a semi-fractional derivative, define the function
u1 : R→ C by u1(y) := (−iey)−αh(ey). We first show that similar to the perturbation K
the so-defined function u1 is log

(
c

1
α

)
-periodic. Note that for every y ∈ R

u1
(
y + log

(
c

1
α

))
= (−ieyc 1

α )−αh(eyc 1
α )

= (−iey)−αc−1
∞̂

0+

eireyc 1
α −

bαc∑
p=0

(ireyc 1
α )p

 dGK(r),

and using the substitution z := rc
1
α for Riemann-Stieltjes integrals ([4, Theorem 7.7]) we

obtain

u1
(
y + log

(
c

1
α

))
= (−iey)−αc−1

∞̂

0+

eieyz − bαc∑
p=0

(ieyz)p
 dGK(zc− 1

α ).

Since K is log
(
c

1
α

)
-periodic itself, for every z ∈ (0,∞), we find

GK(zc− 1
α ) = (zc− 1

α )−αK
(
log
(
zc−

1
α

))
= cz−αK

(
log(z)− log

(
c

1
α

))
= cz−αK(log(z))
= cGK(z)

and thereby

u1
(
y + log

(
c

1
α

))
= (−iey)−αc−1

∞̂

0+

eieyz − bαc∑
p=0

(ieyz)p
 c dGK(z)

= u1(y).

Hence u1 is a log
(
c

1
α

)
-periodic function, and if we rearrange the defining equation for u1,

it follows that h(k) = (−ik)αu1(log(k)) for every k > 0. Analogously with u2 : R→ C de-
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fined by u2(y) = (iey)−αh(−ey), we obtain h(k) = (−ik)αu2(log(−k)) for every k < 0, and
the function u2 is likewise log

(
c

1
α

)
-periodic. Consequently, the Fourier transform behaves

like a Fourier transform of a fractional derivative log-periodically disturbed by u1 or u2 on
the positive and negative real line. Note that the periodic functions u1, u2 are continuous
as compositions of continuous functions, and thus C1 := maxx∈R{|u1(x)|, |u2(x)|} exists.
Then for every k ∈ R, the Fourier transform of the semi-fractional derivative is bounded
with ∣∣∣∣∣F

(
∂α

∂c,Kxα
f

)
(k)
∣∣∣∣∣ =

∣∣∣Dh(k)f̂(k)
∣∣∣ ≤ C1|k|α|f̂(k)|. (3.2)

Example 3.1.6. For smooth functionsK, the integral defining h in (3.1) can be computed
explicitly as in Example 2.2.6. This is, if we write

K(x) =
∑
n∈Z

cne
inc̃x

for every x ∈ R with Fourier coefficients (cn)n∈Z ⊆ C and c̃ = 2πα
log(c) , then the semi-

fractional derivative of a suitable function f is given by the function with Fourier transform
Dh(k)f̂(k), where

h(k) =
∑
n∈Z

ωn(−ik)α−inc̃

and ωn := cnΓ(inc̃− α + 1) for every n ∈ Z (compare [66, Remark 3.3]).

Example 3.1.7. (Fractional derivatives)
Searching for a generalization of fractional derivatives, we want to ensure that these
operators are a subset of all semi-fractional derivatives. For this purpose, choose K(x) =

1
|Γ(1−α)| = D

Γ(1−α) for every x ∈ R, which is a smooth admissable function. According
to Example 3.1.6, the semi-fractional derivative of a suitable function f is given by the
function with Fourier transform (−ik)αf̂(k) for every k ∈ R, which, per definition, is the
fractional derivative of order α. In addition, the negative semi-fractional derivative equals
the negatively skewed fractional derivative under this choice of K.

To ensure the existence of the Fourier transform f̂ in the definition of semi-fractional
derivatives, we necessarily need f ∈ L1(Rd). However, the subsequent lemma shows that
we have to demand even more quality of the function to secure the existence of a function
with Fourier transform k 7→ Dh(k)f̂(k).

Lemma 3.1.8. Let α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function with
respect to these parameters. For every f ∈ W bαc+2(R), the semi-fractional derivative

∂α

∂c,Kxα
f(x) = D

2πi

ˆ

R

e−ikxh(k)f̂(k) dk

exists with Fourier transform Dh(k)f̂(k).
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Proof. According to the Lemma of Riemann-Lebesgue (see for example [47, Theorem
8.22]), for f ∈ W bαc+2(R), we have

|f̂(k)| ≤ C2

(1 + |k|)bαc+2

for a constant C2 > 0. Then with (3.2)∣∣∣∣∣F
(

∂α

∂c,Kxα
f

)
(k)
∣∣∣∣∣ = |h(k)f̂(k)| ≤ C1C2

|k|α

(1 + |k|)bαc+2 .

Since bαc + 2 > α + 1, the function k 7→ |k|α
(1+|k|)bαc+2 is integrable for large |k|, and the

Fourier inversion theorem yields the result.

Remark 3.1.9. It follows immediately from the proof of Lemma 3.1.8 that the negative
semi-fractional derivative exists under the same assumptions.

For many applications and a better intuition of semi-fractional derivatives, we aim to
characterize this operator not only in the Fourier space but by its concrete action on
a function f alike. In [66, Section 2.1], two different integral representations of semi-
fractional derivatives were introduced, which we shortly recall here. The first one is based
on the semigroup theory introduced in Section 2.3.

Lemma 3.1.10. (Generator form of the one-dimensional semi-fractional derivative)
Let α ∈ (0, 2) \ {1}, c > 1, and let ν be a (c 1

α , c)-semistable distribution with Lévy-
Khintchine triple [a, 0,Φ], where a is defined as in (2.15) and the Lévy measure Φ is given
by

Φ(−∞,−r) = 0 and Φ(r,∞) = GK(r)

for every r > 0 and an admissable function K. If L denotes the corresponding generator
given in Example 2.3.4, then for every f ∈ W bαc+2(R), the generator form of the semi-
fractional derivative exists with

∂α

∂c,Kxα
f(x) = −DLf(x) (3.3)

for every x ∈ R. Analogously we obtain the negative semi-fractional derivative by a
reflection of the Lévy measure and (3.3).

Note that this integral representation arises immediately from the fact that the Fourier
transform of the generator L is given by L̂f(k) = Ψ(k)f̂(k) = −h(k)f̂(k) with the log-
characteristic function Ψ of the underlying law ν. Then −DLf(x) has Fourier transform
Dh(k)f̂(k), and the result is verified with the uniqueness of the Fourier transform.

Utilizing the representation of the generator L in Example 2.3.4 we formulate (3.3) ex-
plicitly as follows. Let α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function. For
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every f ∈ W bαc+2(R), the generator form of the semi-fractional derivative

∂α

∂c,Kxα
f(x) = D

∞̂

0+

f(x− y)−
bαc∑
p=0

(−y)pf (p)(x)
 dGK(y) (3.4)

exists with Fourier transform Dh(k)f̂(k). The generator form of the negative semi-
fractional derivative given by

∂α

∂c,K(−x)αf(x) = D

∞̂

0+

f(x+ y)−
bαc∑
p=0

ypf (p)(x)
 dGK(y)

with Fourier transform Dh(−k)f̂(k) exists under the same assumptions.

Remark 3.1.11. Note that in Definition 3.1.3, the cases α = 1 and α = 2 were excluded
for different reasons. For α = 1, we proposed a semi-fractional derivative in [66, Section
2.2]. However, since this case is only a side issue and calculations become rather lengthy,
we do not treat it here and refer to the paper only. For α = 2, using (3.3), the generator
form coincides with an ordinary second-order derivative (see Example 2.3.5), which cor-
responds to the fact that every 2-semistable distribution is Gaussian (compare Example
2.1.3 (ii)). For this reason, considering α = 2 will not yield any new results, and hence
we draw no further attention to this particular choice of α.

Remark 3.1.12. As one may expect, positive and negative semi-fractional derivatives
are not completely different operators but connected in a certain way. Namely for every
function f ∈ W bαc+2(R) and x ∈ R, it follows that

∂α

∂c,K(−x)αf(x) = ∂α

∂c,Kxα
g(−x) (3.5)

where g(x) := f(−x). This equality is directly obtained from studying the right-hand
side of (3.5) given by

∂α

∂c,Kxα
g(−x) = D

∞̂

0+

g(−x− y)−
bαc∑
p=0

(−y)pg(p)(−x)
 dGK(y)

= D

∞̂

0+

f(x+ y)−
bαc∑
p=0

(−y)p(−1)pf (p)(x)
 dGK(y)

= ∂α

∂c,K(−x)αf(x)

for every x ∈ R.

Under additional assumptions on f , the generator form yields related forms, specifically
the Caputo and the Riemann-Liouville form. For their definition, let C0(Rd) be the space
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of all continuous functions f : Rd → R with lim|x|→∞ f(x) = 0. Furthermore, for fixed
n ∈ N, define the space Cn

0 (Rd) of n-times partially differentiable functions f : Rd → R
such that f and all partial derivatives up to order n belong to C0(Rd).
Then the Caputo form of the semi-fractional derivative is defined as follows. Let f ∈
W bαc+2(R) ∩ Cbαc+1

0 (R) and consider the case α ∈ (0, 1) first. Integration by parts for
Riemann-Stieltjes integrals (compare [76, Chapter X, Proposition 1.4]) of the generator
form (3.4) yields the Caputo form of the semi-fractional derivative

∂α

∂c,Kxα
f(x) =

∞̂

0+

f ′(x− y)GK(y) dy (3.6)

(compare [66, Section 2.1]). If instead α ∈ (1, 2), we obtain

∂α

∂c,Kxα
f(x) =

∞̂

0+

(f ′(x)− f ′(x− y))GK(y) dy. (3.7)

Remark that in this case with repeated integration by parts,

∂α

∂c,Kxα
f(x) =

∞̂

0+

f ′′(x− y)HK(y) dy, (3.8)

where similar to GK , the function HK : (0,∞) → (0,∞) can be written as HK(y) =
y1−αγ(log(y)) and γ : R → (0,∞) is a continuous, admissable function with respect to
the same parameters α ∈ (0, 2) \ {1} and c > 1 such that

∞̂

y

GK(x) dx =
∞̂

y

x−αK(log(x)) dx = y1−αγ(log(y)) = HK(y) (3.9)

(see [66, Lemma 2.2]). In addition, if K is smooth with Fourier series representation
K(x) = ∑

n∈Z
cne

inc̃x with c̃ = 2πα
log(c) and Fourier coefficients (cn)n∈Z ⊆ C, then γ has the

Fourier series representation

γ(x) =
∑
n∈Z

cn
α− 1− inc̃e

inc̃x

for every x ∈ R [66, Lemma 3.2]. Since we always assume f ∈ W bαc+2(R) ∩ Cbαc+1
0 (R),

we refer to both (3.7) and (3.8) as Caputo forms for α ∈ (1, 2). Note that using Remark
3.1.12, also negatively skewed forms of the Caputo semi-fractional derivative are defined.

Finally, we present a Riemann-Liouville type form of the semi-fractional derivative not
mentioned in [66]. It arises from the Caputo form by a formal change of integration and
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differentiation; this is for α ∈ (0, 1), we define

(
∂

∂c,Kx

)α
f(x) := d

dx

∞̂

0+

f(x− y)GK(y) dy (3.10)

to be the Riemann-Liouville form of semi-fractional derivative, whereas for α ∈ (1, 2), we
set (

∂

∂c,Kx

)α
f(x) := d2

dx2

∞̂

0+

f(x− y)HK(y) dy, (3.11)

whenever these integrals exist. In accordance with the fractional case, we define the
negative semi-fractional derivative of Riemann-Liouville type by

(
∂

∂c,K(−x)

)α
f(x) := − d

dx

∞̂

0+

f(x+ y)GK(y) dy

for α ∈ (0, 1) and

(
∂

∂c,K(−x)

)α
f(x) := d2

dx2

∞̂

0+

f(x+ y)HK(y) dy

if α ∈ (1, 2). In general, the Caputo and Riemann-Liouville form do not agree and hence
are denoted with different symbols. Their difference will be analyzed in a more general
setting in the next section (see Lemma 3.2.12 and Lemma 3.2.15).

Remark 3.1.13. We aim to show that the relationship between positive and negative Ca-
puto forms in Remark 3.1.12 still holds for the Riemann-Liouville semi-fractional deriva-
tive.
Consider the case α ∈ (0, 1) first and define J(x) :=

∞́

0+
f(x+ y)GK(y) dy. If g : R→ R is

defined by g(x) := f(−x) for every x ∈ R, then

(
∂

∂c,Kx

)α
g(x) = d

dx

∞̂

0+

g(x− y)GK(y) dy

= d

dx

∞̂

0+

f(−x+ y)GK(y) dy = d

dx
(J(−x)),

and the chain rule yields (
∂

∂c,Kx

)α
g(x) = −dJ

dx
(−x).
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Now insert the point −x to get(
∂

∂c,Kx

)α
g(−x) = −dJ

dx
(x) =

(
∂

∂c,K(−x)

)α
f(x)

for every x ∈ R. Applying the chain rule twice, we obtain the same result for α ∈ (1, 2).
In analogy to stable and semistable laws, semi-fractional derivatives are more challeng-
ing than fractional ones since the log-periodic perturbation complicates the calculations.
Nevertheless, the following example shows that considering the more complicated case
yields noticeable different results and therefore justifies its studying with all associated
troubles.
Example 3.1.14. Let f : R→ (0,∞) be defined by f(x) = e−ax

2 for some a > 0. Then
f ∈ W 3(R)∩C2

0(R), such that the assumptions of Lemma 3.1.8 are fulfilled for any choice
of α ∈ (0, 2) \ {1}. Hence for fixed α ∈ (0, 2) \ {1}, c > 1, and K admissable with
respect to these parameters, the Caputo form of the semi-fractional derivative of f exists
with Fourier transform Dh(k)f̂(k). Additionally, the Riemann-Liouville form exists and
equals the Caputo form since in (3.10), we can differentiate under the integral due to the
exponential decay and smoothness of f .

Figure 3.1: Caputo semi-fractional derivative of f(x) = e−2x2 with respect to α = 0.4,
c = e2πα, and K as in (3.12) (solid line) in comparison to the fractional case with K(x) =

1
Γ(1−α) (dashed line) in Example 3.1.14.

Even in this straightforward case, it is impossible to obtain a closed-form expression for
the semi-fractional derivative. However, we can calculate the result numerically, as shown
in Appendix C for the following choice of parameters. Set a = 2, α = 0.4, c = e2πα as
well as

K(x) = 1
Γ(1− α) + 1

10 sin(x) + 2
25 sin(2x) (3.12)
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admissable with respect to these parameters. Figure 3.1 shows the resulting semi-fractional
derivative of f . For comparison, we furthermore display the associated fractional deriva-
tive corresponding to the constant function K(x) = 1

Γ(1−α) . Note that for large values of
|x|, the fractional and the semi-fractional derivative are comparable due to the fast decay
of f . However, for small values of |x|, the semi-fractional derivative shows significantly
different behavior from the fractional one, and the additional log-periodic disturbance
even changes the monotonicity of the resulting derivative. Due to this remarkable dis-
tinction, studying semi-fractional derivatives instead of the easier fractional ones may be
worth the effort.

As the previous example implies, for most functions f ∈ W bαc+2(R) ∩ Cbαc+1
0 (R), we are

not able to calculate a closed-form expression of semi-fractional derivatives. However, the
Caputo form of semi-fractional derivatives exists under much weaker assumptions on f ,
and some of these cases are explicitly solvable. The integral defining the Caputo form can
even be finite for functions f /∈ L1(Rd). In this case, f does not have af Fourier transform,
and we do not obtain a semi-fractional derivative in the sense of Definition 3.1.3. The
following example displays such a case and yet justifies in what sense the calculated object
is still a semi-fractional derivative.

Example 3.1.15. Let α ∈ (0, 1), c > 1, and let K be a smooth admissable function with
respect to these parameters. Furthermore, denote by (cn)n∈N the Fourier coefficients of K
and note that due to the smoothness of K, the coefficients are absolutely summable. We
study the semi-fractional derivative of f(x) = xp1(0,∞)(x) for some p > 0. Clearly, f is
not integrable and hence does not satisfy the assumptions in Lemma 3.1.8. Nevertheless,
the Caputo form (3.6) exists with

∂α

∂c,Kxα
f(x) =

xˆ

0+

p(x− y)p−1y−αK(log(y)) dy

= p

xˆ

0+

∑
n∈Z

cn(x− y)p−1y−α+inc̃ dy

for every x > 0 using the Fourier series representation of K. By dominated convergence,
we change integration and summation such that

∂α

∂c,Kxα
f(x) = p

∑
n∈Z

cn

xˆ

0+

(x− y)p−1y−α+inc̃ dy.

Now substitute z := y
x
to obtain

∂α

∂c,Kxα
f(x) = px

∑
n∈Z

cn

1ˆ

0+

(x− xz)p−1(xz)−α+inc̃ dz
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= p
∑
n∈Z

cnx
p−α+inc̃

1ˆ

0+

(1− z)p−1z−α+inc̃ dz

= pxp−α
∑
n∈Z

cnx
inc̃B(p, 1− α + inc̃),

where B(x, y) denotes the beta function

B(x, y) =
1ˆ

0

(1− t)x−1ty−1 dt

for every x, y ∈ C with Re(x),Re(y) > 0. Define ζ : (0,∞)→ R by

ζ(x) =
∑
n∈Z

cnB(p, 1− α + inc̃)einc̃x

and note that ζ is a well-defined, real-valued, and log
(
c

1
α

)
-periodic function. Finally, ζ is

strictly positive since, with dominated convergence, it follows that

ζ(x) =
1ˆ

0

∑
n∈Z

cnt
p−1(1− t)−α+inc̃einc̃x dt

=
1ˆ

0

tp−1(1− t)−αK(log(1− t) + x) dt > 0

for every x ∈ Rd. Altogether, the Caputo form of the semi-fractional derivative is given
by

∂α

∂c,Kxα
f(x) = pxp−αζ(log(x)),

and hence the Caputo semi-fractional derivative of f oscillates around a multiple of xp−α.
Especially, we obtain the fractional derivative of order α corresponding to K1(x) = 1

Γ(1−α)
as

∂α

∂xα
f(x) = pxp−α

Γ(p)
Γ(p+ 1− α) = xp−α

Γ(p+ 1)
Γ(p+ 1− α) .

For α = 1
2 and two different choices of p (p = 0.3 and p = 0.6), Figure 3.2 displays the

semi-fractional derivative with perturbation

K2(x) = 1
10(sin(2x) + cos(x)) + 1

Γ(1− α)

= 1
10(sin(2x) + cos(x)) +K1(x)
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in comparison to the fractional derivative corresponding to the constant function K1.
Using Lemma 3.1.2, the function K2 is admissable and oscillates around K1. Both plots
are shown on a double logarithmic scale, such that the fractional derivative is a straight
line with slope p− α. The Matlab code for the calculation is given in Appendix C.

Figure 3.2: Semi-fractional derivative with respect to α = 1
2 , c = e2πα, and K2 (solid line)

for p = 0.3 (left) and p = 0.6 (right) on a double logarithmic scale in comparison to the
fractional derivative corresponding to K1 (dashed line) in Example 3.1.15.

Similar to the Caputo form, the Riemann-Liouville form of the semi-fractional derivative
exists and equals the Caputo form, which can be derived either by direct calculation or
by the general result in Lemma 3.2.12.
Note that with f /∈ L1(R), the semi-fractional derivative of f does not exist in the sense
of Definition 3.1.3, and the above results only show the existence and form of the integral
(3.6). However, this statement can be strengthened in the following way. If we consider
f and the Fourier transform in the distributional sense, then f̂(k) = Γ(p + 1)(−ik)−p−1

[58, Example 7.1.17]. On the other hand, we can calculate the Fourier transform of the
Caputo form in the distributional sense. Therefore, let φ be an element of the Schwartz
space S(R) consisting of all rapidly decreasing functions. Then we obtain

ˆ

R

F
(

∂α

∂c,Kxα
f

)
(x)φ(x) dx =

ˆ

R

(
∂α

∂c,Kxα
f

)
(x)φ̂(x) dx

=
∞̂

0

pxp−αζ(log(x))φ̂(x) dx

= p

∞̂

0

∑
n∈Z

cnB(p, 1− α + inc̃)xp−α+inc̃φ̂(x) dx.

Using the absolute convergence of the Fourier coefficients of ζ and the fact that with φ,
the Fourier transform φ̂ is likewise rapidly decreasing, we change the order of integration
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and summation yielding

ˆ

R

F
(

∂α

∂c,Kxα
f

)
(x)φ(x) dx = p

∑
n∈Z

cnB(p, 1− α + inc̃)
∞̂

0

xp−α+inc̃φ̂(x) dx

= p
∑
n∈Z

cnB(p, 1− α + inc̃)
ˆ

R

F(xp−α+inc̃1(0,∞)(x))φ(x) dx.

According to [58, Example 7.1.17], the Fourier transform of g(x) = xp−α+inc̃1(0,∞)(x) in
the distributional sense is given by Γ(p− α + inc̃+ 1)(−ix)−p+α−inc̃−1 and hence
ˆ

R

F
(

∂α

∂c,Kxα
f

)
(x)φ(x) dx =

∑
n∈Z

cnΓ(p+ 1)Γ(1− α + inc̃)
ˆ

R

(−ix)α−p−inc̃−1φ(x) dx.

Changing integration and summation once again, we finally get

F
(

∂α

∂c,Kxα
f

)
(k) = Γ(p+ 1)(−ik)−p−1 ∑

n∈Z
cnΓ(inc̃− α + 1)(−ik)α−inc̃

= f̂(k)h(k)

as stated in Example 3.1.6. At least, the definition of semi-fractional derivatives is fulfilled
in this weaker, distributional sense, and one may thereby still talk about a semi-fractional
derivative.

3.2 Directional semi-fractional derivatives
So far, we only considered one-dimensional functions f : R→ R and their semi-fractional
derivatives. However, real-world applications can rarely be reduced to such a one-dimen-
sional setting, and therefore we have to think about multidimensional generalizations of
fractional derivatives. This is, we need to extend the definition of fractional derivatives
to fractional equivalents of multidimensional differential operators such as the gradient or
the Laplace operator.
Even in the special case of fractional derivatives, whose one-dimensional forms have been
known for many decades, this is a relatively new and unexplored research area. The
first approach toward a fractional gradient was given by Ben Adda [19], who replaced
the ordinary derivative in the gradient’s definition with a Sonine-Liouville fractional one
(sometimes also called Nishimoto derivative; see for example [120, Section 22]). Based
on the variety of one-dimensional fractional derivatives, several different suggestions for
multidimensional differential operators appeared in the following years (see for example
[41], [31], [137], or the overview given in [138]). Recently, Meerschaert et al. proposed
a definition of fractional gradients and related operators based on directional fractional
derivatives in [87] (also compare [89]). Due to its generality, their definition includes
several known forms, and therefore we apply a similar technique in this thesis to obtain
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a multidimensional semi-fractional differential operator.
The basic idea in [89] is to display the multivariable fractional derivative as a mixture
of directional fractional ones, so this section is devoted to define and analyze the semi-
fractional counterpart. Guided by [89], this will yield the multidimensional semi-fractional
derivative in Section 3.3.

Recall that for a function f : Rd → R, the ordinary directional derivative along a given
vector θ ∈ S, where again S is the d-dimensional unit sphere, is given by

∂θf(x) := 〈θ,∇f(x)〉 =
d∑
i=1

θi
∂

∂xi
f(x) = ∂b

∂s
(x, s)

∣∣∣
s=0

,

where b : Rd × R → R is defined by b(x, s) := f(x + sθ) and 〈·, ·〉 denotes the Euclidean
inner dot product on Rd. Similarly, we define directional semi-fractional derivatives.

Definition 3.2.1. (Directional semi-fractional derivative)
Let α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function with respect to these
parameters. In addition, fix a unit vector θ ∈ S. If this function exists, the directional
semi-fractional derivative along θ is given by

∂αθ
∂c,Kxα

f(x) := ∂α

∂c,Ksα
b(x, s)

∣∣∣
s=0

, (3.13)

where b : Rd×R→ R is defined by b(x, s) := f(x+sθ) and the one-dimensional derivative
is the generator form of the semi-fractional derivative (3.4). We will refer to this derivative
as the generator form of the directional semi-fractional derivative in the following.

Using that

∂

∂s
b(x, s) = 〈θ,∇f(x+ sθ)〉 = ∂θf(x+ sθ),

the generator form of the semi-fractional derivative in (3.4) reads as

∂α

∂c,Ksα
b(x, s) = D

∞̂

0+

b(x, s− y)−
bαc∑
p=0

(−y)pb(p)(x, s)
 dGK(y)

= D

∞̂

0+

f(x+ (s− y)θ)−
bαc∑
p=0

(−y)p∂(p)
θ f(x+ sθ)

 dGK(y)

with ∂(0)
θ f := f and ∂(1)

θ f := ∂θf for every θ ∈ S and x ∈ Rd. Now evaluate this expression
in s = 0 to gain the following explicit representation of the directional semi-fractional
derivative.

Lemma 3.2.2. (Explicit representation of the generator form)
Let α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function with respect to these
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parameters. In addition, let θ ∈ S be a fixed unit vector. An explicit representation of the
directional semi-fractional derivative along θ is given by

∂αθ
∂c,Kxα

f(x) = D

∞̂

0+

f(x− yθ)−
bαc∑
p=0

(−y)p∂(p)
θ f(x)

 dGK(y) (3.14)

for every x ∈ Rd.

Remark 3.2.3. Our considerations are inspired by [89] and [88], in which the authors
studied a directional fractional derivative defined by

∂αθ
∂xα

f(x) = ∂α

∂xα
b(x, s)

∣∣∣
s=0

with b as in Definition 3.2.1. By choosing K(x) = 1
|Γ(1−α)| , their operator is included in

our more general definition.

Example 3.2.4. (Connection to one-dimensional semi-fractional derivatives)
Consider the one-dimensional case S = {−1, 1}, and let f : R → R be a function such
that semi-fractional derivatives of every order exist. For θ = 1, it follows that

∂α1
∂c,Kxα

f(x) = D

∞̂

0+

f(x− y)−
bαc∑
p=0

(−y)p d
p

dxp
f(x)

 dGK(y) = ∂α

∂c,Kxα
f(x)

such that the directional semi-fractional derivative equals the generator form of the pos-
itive semi-fractional derivative. In the same way, we obtain equality of the directional
semi-fractional derivative along θ = −1 with the negative form of the semi-fractional
derivative.

As in the one-dimensional case, the directional semi-fractional derivative exists under
smoothness assumptions on f , but additionally, we need some qualities of the resulting
derivative. Using the generator form, we can prove the following result similar to [88,
Lemma 2.4].

Lemma 3.2.5. Let α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function with
respect to these parameters. The directional semi-fractional derivative along θ ∈ S of
f ∈ W bαc+2(Rd) ∩ Cbαc+1

0 (Rd) exists and
ˆ

Rd

∣∣∣∣∣ ∂αθ
∂c,Kxα

f(x)
∣∣∣∣∣ dx ≤ C

for a constant C > 0 independent of θ.

Proof. First, note that for f ∈ W bαc+2(Rd)∩Cbαc+1
0 (Rd), the semi-fractional derivative of

b(x, s) = f(x+sθ) in (3.13) exists according to Lemma 3.1.8. To prove that the directional
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semi-fractional derivative is integrable, use Lemma 3.2.2 yielding

ˆ

Rd

∣∣∣∣∣ ∂αθ
∂c,Kxα

f(x)
∣∣∣∣∣ dx =

ˆ

Rd

∣∣∣∣∣∣∣D
∞̂

0+

f(x− yθ)−
bαc∑
p=0

(−y)p∂(p)
θ f(x)

 dGK(y)

∣∣∣∣∣∣∣ dx
≤ I1(x) + I2(x)

for every x ∈ Rd, where I1 and I2 are defined by

I1(x) :=
ˆ

Rd

∣∣∣∣∣∣∣D
1ˆ

0+

f(x− yθ)−
bαc∑
p=0

(−y)p∂(p)
θ f(x)

 dGK(y)

∣∣∣∣∣∣∣ dx

I2(x) :=
ˆ

Rd

∣∣∣∣∣∣∣D
∞̂

1

f(x− yθ)−
bαc∑
p=0

(−y)p∂(p)
θ f(x)

 dGK(y)

∣∣∣∣∣∣∣ dx.
Considering the integral I2(x) first, we use Tonelli’s theorem and find

I2(x) ≤
∞̂

1

ˆ

Rd

∣∣∣∣∣∣f(x− yθ)−
bαc∑
p=0

(−y)p∂(p)
θ f(x)

∣∣∣∣∣∣ dx dGK(y)

≤
∞̂

1

||f ||1 +
bαc∑
p=0

yp||∂(p)
θ f ||1

 dGK(y)

= 2||f ||1
∞̂

1

dGK(y) + ||∂θf ||1


∞̂

1

y dGK(y)

1(1,2)(α)

= 2||f ||1
∞̂

1

dGK(y) + ||∇f ||1


∞̂

1

y dGK(y)

1(1,2)(α).

Since f ∈ W bαc+2(Rd), it follows that ||f ||1, ||∂θf ||1 <∞. Furthermore, GK behaves like
GK(y) ∼ y−α for large values of y, and hence the first integral is finite. With the same
argument, the second one is finite for α ∈ (1, 2). Summarizing, we get I2(x) < ∞ for
every x ∈ Rd.
It remains to show that I1 is likewise finite. With α < 2, we can rewrite I1(x) as

I1(x) =
ˆ

Rd

∣∣∣∣∣∣∣D
1ˆ

0+

f(x− yθ)−
bαc∑
p=0

(−y)p
p! ∂

(p)
θ f(x)

 dGK(y)

∣∣∣∣∣∣∣ dx.
As f is (bαc + 1)-times partially differentiable with continuous derivatives, use a Taylor
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series expansion with integral representation of the remainder to obtain

f(x− yθ)−
bαc∑
p=0

(−y)p
p! ∂

(p)
θ f(x) = (−1)bαc+1

bαc!

yˆ

0

∂
(bαc+1)
θ f(x− sθ)(y − s)bαc ds.

Inserting this expression in I1(x) yields

I1(x) =
ˆ

Rd

1ˆ

0+

∣∣∣∣∣∣∣
(−1)bαc+1

bαc!

yˆ

0

∂
(bαc+1)
θ f(x− sθ)(y − s)bαc ds

∣∣∣∣∣∣∣ dGK(y) dx

≤ 1
bαc!

ˆ

Rd

1ˆ

0+

yˆ

0

∣∣∣∂(bαc+1)
θ f(x− sθ)(y − s)bαc

∣∣∣ ds dGK(y) dx.

Finally, apply Tonelli’s theorem to obtain

I1 ≤
1
bαc!

1ˆ

0+

yˆ

0

ˆ

Rd

∣∣∣∂(bαc+1)
θ f(x− sθ)

∣∣∣ dx (y − s)bαc ds dGK(y)

≤ 1
bαc! ||∂

(bαc+1)
θ f ||1

1ˆ

0+

yˆ

0

(y − s)bαc ds dGK(y)

= 1
bαc! ||∂

(bαc+1)
θ f ||1

1ˆ

0+

[
− 1
bαc+ 1(y − s)bαc+1

]y
0
dGK(y)

= 1
(bαc+ 1)! ||∂

(bαc+1)
θ f ||1

1ˆ

0+

ybαc+1 dGK(y).

Now ||∂(bαc+1)
θ f ||1 <∞ due to our assumption on f and the norm is bounded independent

of θ by the norm of the gradient or Hessian matrix respectively. Additionally, ybαc+1 is
integrable around zero with respect to GK . Hence I1(x) <∞, which finishes the proof.

When considering the d-dimensional sphere with respect to the Euclidean norm, we can
connect directional semi-fractional derivatives for different choices of θ similar to Remark
3.1.12 as the following lemma shows.

Lemma 3.2.6. Let S be the d-dimensional sphere with respect to the Euclidean norm.
Furthermore, choose α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function with
respect to theses parameters. In addition, let r : Rd → Rd be a reflection, this is r(x) = Ax
for an orthogonal, symmetric matrix A ∈ Rd×d and every x ∈ Rd. Then for a fixed unit
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vector θ ∈ S

∂αθ
∂c,Kxα

f(x) =
∂αr(θ)
∂c,Kxα

g(r(x)), (3.15)

where g(x) := f(r(x)) for every x ∈ Rd.

Proof. First note that with θ ∈ S and the fact that r is orthogonal, we have r(θ) ∈ S,
and the directional derivative is well-defined. We evaluate the right-hand side of (3.15).
In view of (3.14), for every x ∈ Rd

∂αr(θ)
∂c,Kxα

g(x) = D

∞̂

0+

g(x− yr(θ))−
bαc∑
p=0

(−y)p∂(p)
r(θ)g(x)

 dGK(y)

= D

∞̂

0+

(
g(x− yr(θ))− g(x) + y∂r(θ)g(x)1(1,2)(α)

)
dGK(y)

= D

∞̂

0+

(
f(r(x)− yθ)− f(r(x)) + y〈r(θ),∇g(x)〉1(1,2)(α)

)
dGK(y)

since r is linear and self-inverse. For α ∈ (1, 2), we analyze the gradient of g. Utilizing
the chain rule, ∇g is given by

∇g(x) = Dr(x)T∇f(r(x))

for every x ∈ Rd, where Dr is the Jacobian matrix of x 7→ r(x). However, r is given by
r(x) = Ax with A symmetric such that

∇g(x) = A∇f(r(x)).

This yields

〈r(θ),∇g(x)〉 = 〈Aθ,A∇f(r(x))〉
= 〈θ,∇f(r(x))〉
= ∂θf(r(x))

using the orthogonality and symmetry of A once again. Altogether, we find

∂αr(θ)
∂c,Kxα

g(x) = D

∞̂

0+

(
f(r(x)− yθ)− f(r(x)) + y∂θf(r(x))1(1,2)(α)

)
dGK(y)
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for every x ∈ Rd. Finally evaluate this expression in r(x) to obtain

∂αr(θ)
∂c,Kxα

g(r(x)) = D

∞̂

0+

(
f(x− yθ)− f(x) + y∂θf(x)1(1,2)(α)

)
dGK(y)

= ∂αθ
∂c,Kxα

f(x)

for every x ∈ Rd with (3.14).

Remark 3.2.7. In one dimension, choose r(x) = −x for every x ∈ R. Then r is a
reflection as defined in Lemma 3.2.6, and according to Example 3.2.4 and Lemma 3.2.6,
it follows that

∂α

∂c,K(−x)αf(x) = ∂α−1
∂c,Kxα

f(x) = ∂α1
∂c,Kxα

g(−x) = ∂α

∂c,Kxα
g(−x)

for every x ∈ R, where g(x) = f(−x). Hence we regain the result of Remark 3.1.12.

Apart from the explicit representation of the directional semi-fractional derivative, we
need to evaluate its Fourier transform.

Lemma 3.2.8. (Fourier transform of directional semi-fractional derivatives)
Let α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function with respect to these
parameters. In addition, let f ∈ W bαc+2(Rd) ∩ Cbαc+1

0 (Rd). Then for every fixed θ ∈ S,

F
(

∂αθ
∂c,Kxα

f

)
(k) = Dh(〈k, θ〉)f̂(k)

for every k ∈ Rd, where h is given by (3.1).

Proof. According to (3.4), the generator form of the semi-fractional derivative of b(x, s) =
f(x+ sθ) is given by

∂α

∂c,Ksα
b(x, s) = D

∞̂

0+

b(x, s− y)−
bαc∑
p=0

(−y)pb(p)(x, s)
 dGK(y).

Applying a d-dimensional Fourier transform in k ∈ Rd yields

F
(

∂α

∂c,Ksα
b

)
(k, s) = D

ˆ

Rd

ei〈k,x〉
∞̂

0+

b(x, s− y)−
bαc∑
p=0

(−y)pb(p)(x, s)
 dGK(y) dx

= D

ˆ

Rd

ei〈k,x〉
∞̂

0+

f(x+ (s− y)θ)−
bαc∑
p=0

(−y)p ∂
p

∂sp
f(x+ sθ)

 dGK(y) dx.
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In view of Lemma 3.2.5, we can switch the order of integration with Fubini’s theorem
such that

F
(

∂α

∂c,Ksα
b

)
(k, s) =D

∞̂

0+

ˆ

Rd

ei〈k,x〉

f(x+ (s− y)θ)−
bαc∑
p=0

(−y)p ∂
p

∂sp
f(x+ sθ)

 dx dGK(y).

With the linearity of the Fourier transform, we evaluate the inner integral term by term.
First notice that with the component-wise substitution z = x+ u, it results that

ˆ

Rd

ei〈k,x〉f(x+ u) dx = e−i〈k,u〉
ˆ

Rd

ei〈k,z〉f(z) dz = e−i〈k,u〉f̂(k)

for every u ∈ Rd. Additionally, for α ∈ (1, 2), we have
ˆ

Rd

ei〈k,x〉
∂

∂s
f(x+ sθ) dx = ∂

∂s
f̂(k)e−i〈k,sθ〉 = −i〈k, θ〉f̂(k)e−i〈k,sθ〉

using dominated convergence. Then the Fourier transform is given by

F
(

∂α

∂c,Ksα
b

)
(k, s) = D

∞̂

0+

f̂(k)e−i〈k,(s−y)θ〉 −
bαc∑
p=0

(iy〈k, θ〉)pf̂(k)e−i〈k,sθ〉
 dGK(y).

Evaluate this expression in s = 0 to obtain

F
(

∂α

∂c,θsα
b

)
(k, 0) = Df̂(k)

∞̂

0+

eiy〈k,θ〉 − bαc∑
p=0

(iy〈k, θ〉)p
 dGK(y)

= Dh(〈k, θ〉)f̂(k)

with h as in (3.1). By definition, it follows that

F
(

∂αθ
∂c,Kxα

f

)
(k) = F

(
∂α

∂c,Ksα
b

)
(k, 0) = Dh(〈k, θ〉)f̂(k)

for every k ∈ Rd.

As for the one-dimensional derivative, the generator form is the basis for other semi-
fractional derivatives, namely the Caputo and Riemann-Liouville form.

Lemma 3.2.9. (Caputo form of directional semi-fractional derivatives)
Let α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function with respect to these
parameters. In addition, fix a unit vector θ ∈ S. For every f ∈ W bαc+2(Rd)∩Cbαc+1

0 (Rd),
the generator form of the directional semi-fractional derivative exists and coincides with
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the Caputo form

∂αθ
∂c,Kxα

f(x) = D

∞̂

0+

(
∂θf(x− yθ)− ∂θf(x)1(1,2)(α)

)
GK(y) dy (3.16)

for every x ∈ Rd.

Proof. Using integration by parts for Riemann-Stieltjes integrals [76, Chapter X, Propo-
sition 1.4], we get

∂αθ
∂c,Kxα

f(x) =D
∞̂

0+

f(x− yθ)−
bαc∑
p=0

(−y)p∂(p)
θ f(x)

 dGK(y)

=D
f(x− yθ)−

bαc∑
p=0

(−y)p∂(p)
θ f(x)

GK(y)
∞
r=0+

−D
∞̂

0+

〈∇f(x− yθ),−θ〉+
bαc∑
p=1

p(−y)p−1∂
(p)
θ f(x)

GK(y) dy.

With f ∈ Cbαc+1
0 (Rd), use a Taylor approximation yielding

f(x− yθ)−
bαc∑
p=0

(−y)p∂(p)
θ f(x) = f(x− yθ)− f(x) + y∂θf(x)1(1,2)(α)

≤ C3y
bαc+1

for a constant C3 > 0 such that with the boundedness of K, it follows that

lim
y→0

∣∣∣∣∣∣
f(x− yθ)−

bαc∑
p=0

(−y)p∂(p)
θ f(x)

Gk(y)

∣∣∣∣∣∣ ≤ C3 lim
y→0

ybαc+1y−αK(log(y)) = 0.

Note that with f ∈ Cbαc+1
0 (Rd), the evaluation at ∞ vanishes as well and hence

∂αθ
∂c,Kxα

f(x) = −D
∞̂

0+

〈∇f(x− yθ),−θ〉+
bαc∑
p=1

p(−y)p−1∂
(p)
θ f(x)

GK(y) dy

= −D
∞̂

0+

(
〈∇f(x− yθ),−θ〉+ ∂θf(x)1(1,2)(α)

)
GK(y) dy

= D

∞̂

0+

(
∂θf(x− yθ)− ∂θf(x)1(1,2)(α)

)
GK(y) dy.
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As in the one-dimensional semi-fractional case, repeated integration by parts yields the
equivalent form of the directional semi-fractional derivative for α ∈ (1, 2)

∂αθ
∂c,Kxα

f(x) =
∞̂

0+

(
∂θf(x− yθ)− ∂θf(x)1(1,2)(α)

)
dHK(y)

=
∞̂

0+

〈θ,Hf (x− yθ)θ〉HK(y) dy (3.17)

for every x ∈ Rd, where Hf is the Hessian matrix of f and HK is given by (3.9). Again,
we will refer to both formulas as Caputo form. A formal change of integration and
differentiation finally yields the Riemann-Liouville form of the directional semi-fractional
derivative.

Definition 3.2.10. (Riemann-Liouville form of directional semi-fractional derivatives)
Let α ∈ (0, 2) \ {1}, c > 1, and let K be an admissable function with respect to these
parameters. For α ∈ (0, 1) and θ ∈ S, we define

(
∂θ

∂c,Kx

)α
f(x) :=

〈
∇
∞̂

0+

f(x− yθ)GK(y) dy, θ
〉

(3.18)

for every x ∈ Rd to be the Riemann-Liouville form of the directional semi-fractional
derivative, if this function exists. Whenever this function exists, let the Riemann-Liouville
form of the semi-fractional derivative of order α ∈ (1, 2) be defined by(

∂θ
∂c,Kx

)α
f(x) := 〈θ,HI(f)(x)θ〉, (3.19)

where I(f) : Rd → R is the function I(f)(x) :=
∞́

0+
f(x − yθ)HK(y) dy with HK as

introduced in (3.9).

Remark 3.2.11. First note that the definition of Riemann-Liouville directional deriva-
tives in one dimension coincides with the definitions (3.10) and (3.11) if we choose θ = 1.
Besides, the relation between different directional derivatives obtained in Lemma 3.2.6
still holds for the Riemann-Liouville form of the directional semi-fractional derivative,
which is proven in the following.
Consider the case α ∈ (0, 1) first and define J(x) :=

∞́

0+
f(x−yθ)GK(y) dy for every x ∈ Rd.

In addition, let r : Rd → Rd be a reflection as given in Lemma 3.2.6. We want to verify
that (

∂θ
∂c,Kx

)α
f(x) =

(
∂r(θ)
∂c,Kx

)α
g(r(x)) (3.20)
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for every x ∈ Rd, where g(x) := f(r(x)). According to (3.18), the right-hand side of (3.20)
equals

(
∂r(θ)
∂c,Kx

)α
g(x) =

〈
∇
∞̂

0+

g(x− yr(θ))GK(y) dy, r(θ)
〉

=
〈
∇
∞̂

0+

f(r(x)− yθ)GK(y) dy, r(θ)
〉

= 〈∇(J(r(x))), r(θ)〉

for every x ∈ Rd. Applying the chain rule to the gradient yields

∇(J(r(x))) = DT
r (x)∇J(r(x)) = A∇J(r(x)),

where Dr(z) = A is the Jacobian of x 7→ r(x) = Ax with A symmetric. Using the
orthogonality of A, we furthermore get(

∂r(θ)
∂c,Kx

)α
g(x) =

〈
A∇J(r(x)), Aθ

〉
=
〈
∇J(r(x)), θ

〉
for every x ∈ Rd. Finally evaluate this expression in r(x) to obtain(

∂r(θ)
∂c,Kx

)α
g(r(x)) =

〈
∇J(x), θ

〉
=
(

∂θ
∂c,Kx

)α
f(x).

Now let α ∈ (1, 2). Again we aim to show (3.20). First note that with (3.19),(
∂r(θ)
∂c,Kx

)α
g(x) = 〈Aθ,HI(g)(x)Aθ〉 = 〈θ, AHI(g)(x)Aθ〉

for every x ∈ Rd since A is symmetric. To analyze the Hessian matrix, consider the term

I(g)(x) =
∞̂

0+

g(x− yr(θ))HK(y) dy

=
∞̂

0+

f(r(x)− yθ)HK(y) dy = I(f)(r(x)) = I(f)(Ax).

Then using the chain rule and the symmetry of A, the Hessian matrix of I(f) is given by

HI(g)(x) = AHI(f)(r(x))A.
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Finally, using the orthogonality of A once again we have(
∂r(θ)
∂c,Kx

)α
g(x) = 〈θ, AHI(g)(x)Aθ〉 = 〈θ,HI(f)(r(x))〉

for every x ∈ Rd. Evaluating this expression in r(x) yields the result.

To close this section, we discuss the differences between Caputo and Riemann-Liouville
forms of directional semi-fractional derivatives. As a special case, we gain the difference
in the one-dimensional setting, and as promised, we thereby close the gap in Section 3.1.

In the above theorems, we deal with functions f ∈ W bαc+2(Rd)∩Cbαc+1
0 (Rd). Under these

restrictive assumptions, differentiation under the integral in the Riemann-Liouville form
shows that both forms yield identical results. However, for many physical or financial
applications, such a model is unsuitable. For instance, a one-dimensional time-dependent
experiment is typically modeled by a function f : [0,∞) → R. We can extend f to a
function on the whole real line by setting f(t) = 0 for t < 0, but this extension might
not be differentiable or even continuous in t = 0. Nevertheless, the one-dimensional
semi-fractional Caputo derivative

∂α

∂c,Ktα
f(t) =

tˆ

0+

f ′(x− y)GK(y) dy

for α ∈ (0, 1) or

∂α

∂c,Ktα
f(t) =

tˆ

0+

f ′′(x− y)HK(y) dy

for α ∈ (1, 2) exists under certain assumptions on f . Similarly, the Riemann-Liouville form
exists for sufficiently smooth functions f having support on the positive half-line [0,∞).
Since functions of this type are of great interest, we aim to analyze how a discontinuity
in t = 0 changes the difference between both forms.
To obtain a result as general as possible, return to the multidimensional setting and
consider the space Rd

+ = (0,∞)d. In the following, we denote by Rd
+ the closure of Rd

+.
Additionally, let C0(Rd

+) be the space of functions f : Rd
+ → R which are continuous on

Rd
+, can be extended continuously to Rd

+, and for which lim|x|→∞ f(x) = 0. For n ∈ N,
denote by Cn

0 (Rd
+) the set of all functions which are n-times partially differentiable on Rd

+
such that all partial derivatives lie in C0(Rd

+).
We first analyze the difference between both forms in the case α ∈ (0, 1).

Lemma 3.2.12. (Difference between Caputo and Riemann-Liouville form, α ∈ (0, 1))
Let α ∈ (0, 1), c > 1, and let K be an admissable function with respect to these pa-
rameters. In addition, choose θ ∈ S with θi > 0 for at least one i ∈ {1, . . . , d} and let
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f ∈ W bαc+2(Rd
+)∩Cbαc+1

0 (Rd
+) be such that the Riemann-Liouville form of the directional

semi-fractional derivative exists. Denote with a = a(x) ∈ Rd the boundary point of Rd
+

we reach first when moving from x in direction −θ. Then for every x ∈ Rd
+, we have

∂αθ
∂c,Kxα

f(x) =
(

∂θ
∂c,Kx

)α
f(x)− f (a)GK (||x− a||) .

Proof. Consider the Riemann-Liouville form of the directional semi-fractional derivative
(

∂θ
∂c,Kx

)α
f(x) =

d∑
i=1

θi
∂

∂xi

∞̂

0+

f(x− yθ)GK(y) dy

for every x ∈ Rd
+. In the one-dimensional case and for θ = 1, this integral is indeed

finite as f is supported on [0,∞). We aim to show that a similar result holds for the
multidimensional case. Note that we integrate f(x−yθ)GK(y) along y ∈ (0,∞). However,
f is supported on Rd

+, and studying f(x−yθ), where θ has at least one positive component,
there is a minimal rmin > 0 with a := x − rminθ ∈ ∂Rd

+. Here and in the following, ∂Rd
+

denotes the boundary of Rd
+. For every y > rmin, we have x − yθ ∈ Rd \ Rd

+, and hence
the integral is finite with

(
∂θ

∂c,Kx

)α
f(x) =

d∑
i=1

θi
∂

∂xi

rminˆ

0+

f(x− yθ)GK(y) dy.

Furthermore, the boundary of Rd
+ is given by

{x ∈ Rd : xi = 0 for at least one i ∈ {1, . . . , d}}

such that we obtain

rmin = min
i=1,...,d,
θi>0

xi
θi

=: xl
θl
,

which exists due to our assumptions on θ. Since f and all partial derivatives of f are
continuous on Rd

+, we can apply Leibniz’s rule to obtain

(
∂θ

∂c,Kx

)α
f(x) =

d∑
i=1

θi


xl
θlˆ

0+

∂

∂xi
f(x− yθ)GK(y) dy + f

(
x− xl

θl
θ
)
GK

(
xl
θl

)
θ−1
l

dxl
dxi



=


d∑
i=1

θi

xl
θlˆ

0+

∂

∂xi
f(x− yθ)GK(y) dy

+ f
(
x− xl

θl
θ
)
GK

(
xl
θl

)
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= ∂αθ
∂c,Kxα

f(x) + f
(
x− xl

θl
θ
)
GK

(
xl
θl

)

for every x ∈ Rd
+ using (3.16). Recall that a = x− rminθ = x− xl

θl
θ and note that

xl
θl

=
∣∣∣∣xlθl
∣∣∣∣ =

∣∣∣∣∣∣∣∣xlθl θ
∣∣∣∣∣∣∣∣ = ||x− a|| (3.21)

to finally obtain (
∂θ

∂c,Kx

)α
f(x) = ∂αθ

∂c,Kxα
f(x) + f (a)GK (||x− a||)

for every x ∈ Rd
+.

Example 3.2.13. In the fractional case, K(x) = 1
Γ(1−α) such that under the assumptions

of Lemma 3.2.12, the difference between the fractional Riemann-Liouville and Caputo
form is given by

∂αθ
∂xα

f(x) =
(
∂θ
∂x

)α
f(x)− 1

Γ(1− α)f (a) ||x− a||−α

for every x ∈ Rd
+. Especially in one dimension and for θ = 1, this yields a relation between

one-dimensional positive fractional derivatives

∂α

∂xα
f(x) =

(
∂

∂x

)α
f(x)− x−α

Γ(1− α)f (0) .

Note that this formula for the one-dimensional case is already known by [139, (17.37)].

Example 3.2.14. (Difference in the one-dimensional case)
In the one-dimensional case, the semi-fractional derivative coincides with the directional
derivative for θ = 1 (compare Example 3.2.4) and we obtain

∂α

∂c,Kxα
f(x) =

(
∂

∂c,Kx

)α
f(x)− f (0)GK (x)

=
(

∂

∂c,Kx

)α
f(x)− f (0) x−αK(log(x))

for every x > 0.

In the case α ∈ (1, 2), the argumentation works similarly, but now the difference consists
of two terms.

Lemma 3.2.15. (Difference between Caputo and Riemann-Liouville form, α ∈ (1, 2))
Let α ∈ (1, 2), c > 1, and let K be a smooth and admissable function with respect to these
parameters. In addition, choose θ ∈ S with θi > 0 for at least one i ∈ {1, . . . , d} and let
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f ∈ W bαb+2(Rd
+)∩Cbαb+1

0 (Rd
+) be such that the Riemann-Liouville form of the directional

semi-fractional derivative exists. Denote with a = a(x) ∈ Rd the boundary point of Rd
+

which we reach first when moving from x in direction −θ. Then

∂αθ
∂c,Kxα

f(x) =
(

∂θ
∂c,Kx

)α
f(x) + f (a)GK (||x− a||)− 〈θ,∇f(a)〉HK (||x− a||)

for every x ∈ Rd
+.

Proof. We show the statement for x ∈ (δ,∞)d. The result then follows for every x ∈ Rd
+

by considering the limit δ → 0. Recall the construction in the proof of Lemma 3.2.12;
this is, let a = x − rminθ be the boundary point we reach first when moving from x in
direction −θ. Thereby, rmin is given by

rmin := min
i=1,...,d,
θi>0

xi
θi

= xl
θl
.

This time, we start with the Caputo form of the directional semi-fractional derivative,
which now reads as the finite integral

∂αθ
∂c,Kxα

f(x) =
d∑

i,j=1
θiθj

xl
θlˆ

0+

∂2

∂xi∂xj
f(x− rθ)HK(r) dr.

For further calculations, we need the argument of f to be bounded away from the bound-
ary of Rd

+. Hence we write

∂αθ
∂c,Kxα

f(x) = lim
ε↓0

d∑
i,j=1

θiθj

xl
θl
−εˆ

0+

∂2

∂xi∂xj
f(x− rθ)HK(r) dr. (3.22)

To simplify the notation, define Υ : Rd
+ × (0,∞) → R by Υ(x, s) = f(x− sθ)HK(s) and

note that Υ is continuously differentiable. We evaluate the integral on the right-hand
side of (3.22) first. For every fixed ε > 0 and i, j ∈ {1, . . . , d} apply Leibniz’s rule to the
integral yielding

xl
θl
−εˆ

0+

∂2

∂xi∂xj
Υ(x, r) dr = ∂

∂xi

xl
θl
−εˆ

0+

∂

∂xj
Υ(x, r) dr −D1,ε

i,j (x)

with

D1,ε
i,j (x) = ∂Υ

∂xj

(
x,
xl
θl
− ε

)
θ−1
l

dxl
dxi

= ∂Υ
∂xj

(
x,
xl
θl
− ε

)
θ−1
l δl,i
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for every x ∈ Rd
+. Note that

d∑
i,j=1

θiθjD
1,ε
i,j (x) =

d∑
j=1

θj
∂Υ
∂xj

(
x,
xl
θl
− ε

)

=
d∑
j=1

θj
∂

∂xj
f
(
x−

(
xl
θl
− ε

)
θ
)
HK

(
xl
θl
− ε

)

→
d∑
j=1

θj
∂f

∂xj

(
x− xl

θl
θ
)
HK

(
xl
θl

)
,

as ε ↓ 0 since the partial derivatives of f and HK are continuous. Inserting the definition
of the boundary point a and (3.21), we obtain

d∑
i,j=1

θiθjD
1,ε
i,j (x)→

d∑
j=1

θj
∂f

∂xj
(a)HK (||x− a||)

= 〈θ,∇f(a)〉HK (||x− a||)

for every x ∈ Rd
+. Repeat this procedure to obtain

xl
θl
−εˆ

0+

∂2

∂xi∂xj
Υ(x, r) dr = ∂

∂xi

xl
θl
−εˆ

0+

∂

∂xj
Υ(x, r) dr −D1,ε

i,j

= ∂2

∂xi∂xj

xl
θl
−εˆ

0+

Υ(x, r) dr −D1,ε
i,j (x)−D2,ε

i,j (x)

with

D2,ε
i,j (x) = ∂

∂xi

(
Υ
(
x,
xl
θl
− ε

)
θ−1
l δj,l

)
.

For i 6= l, it follows that

D2,ε
i,l (x) = ∂

∂xi

(
f
(
x−

(
xl
θl
− ε

)
θ
)
HK

(
xl
θl
− ε

)
θ−1
l

)
= ∂f

∂xi

(
x−

(
xl
θl
− ε

)
θ
)
HK

(
xl
θl
− ε

)
θ−1
l , (3.23)

whereas for i = l, we obtain

D2,ε
l,l (x) = ∂

∂xl

(
Υ
(
x,
xl
θl
− ε

)
θ−1
l

)
= θ−1

l

∂

∂xl

(
f
(
x−

(
xl
θl
− ε

)
θ
)
HK

(
xl
θl
− ε

))
.
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Using (3.23) yields

∂

∂xl

(
f
(
x−

(
xl
θl
− ε

)
θ
))

=
d∑

m=1,
m 6=l

∂f

∂xm

(
x−

(
xl
θl
− ε

)
θ
) (
−θmθ−1

l

)

= −HK

(
xl
θl
− ε

)−1 d∑
m=1,
m 6=l

θmD
2,ε
m,l,

and since

∂

∂xl
HK

(
xl
θl
− ε

)
= −GK

(
xl
θl
− ε

)
θ−1
l ,

the derivative is given by

D2,ε
l,l (x) = −θ−1

l

d∑
m=1,
m 6=l

θmD
2,ε
m,l − θ−2

l f
(
x−

(
xl
θl
− ε

)
θ
)
GK

(
xl
θl
− ε

)
.

Summing all D2,ε
i,j , we find

d∑
i,j=1

θiθjD
2,ε
i,j =

d∑
i=1

θiθlD
2,ε
i,l

= −f
(
x−

(
xl
θl
− ε

)
θ
)
GK

(
xl
θl
− ε

)
.

Since GK is assumed to be continuous and f is likewise continuous, this yields

d∑
i,j=1

θiθjD
2,ε
i,j → −f (a)GK (||x− a||)

as ε ↓ 0 for every x ∈ Rd
+. To finish the proof, it remains to show that

lim
ε↓0

∂2

∂xi∂xj

xl
θl
−εˆ

0+

Υ(x, r) dr = ∂2

∂xi∂xj

xl
θlˆ

0+

Υ(x, r) dr

for every x ∈ Rd
+. Starting with the right-hand side, we have

(
∂θ

∂c,Kx

)α
f(x) = ∂2

∂xi∂xj

xl
θlˆ

0+

Υ(x, r) dr = ∂

∂xi

 ∂

∂xj
lim
ε↓0

xl
θl
−εˆ

0+

Υ(x, r) dr

 .
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The functions g1,ε(x) =
xl
θl
−ε´

0+
Υ(x, r) dr are continuously partially differentiable with

∂

∂xj
g1,ε(x) =

xl
θl
−εˆ

0

∂

∂xj
Υ(x, r) dr

for every j 6= l and

∂

∂xl
g1,ε(x) =

xl
θl
−εˆ

0

∂

∂xl
Υ(x, r) dr + θ−1

l Υ
(
x,
xl
θl
− ε

)
.

In addition, we have g1,ε(x) → g1(x) for every x ∈ Rd
+, where g1(x) =

xl
θl´

0+
Υ(x, r) dr. We

furthermore need to prove that the partial derivatives of g1,ε converge uniformly to those
of g1. For j 6= l

∣∣∣∣∣ ∂∂xj g1,ε(x)− ∂

∂xj
g1(x)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
xl
θlˆ

xl
θl
−ε

∂

∂xj
f(x− rθ)HK(r) dr

∣∣∣∣∣∣∣∣∣ ≤ C4ε

for a constant C4 > 0 since the partial derivatives of f are bounded and HK is bounded
on every closed interval [δ − ε,∞). Similarly, for i = l, we have

∣∣∣∣∣ ∂∂xl g1,ε(x)− ∂

∂xl
g(x)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
xl
θlˆ

xl
θl
−ε

∂

∂xl
f(x− rθ)HK(r) dr + θ−1

l Υ
(
x,
xl
θl
− ε

)
− θ−1

l Υ
(
x,
xl
θl

)∣∣∣∣∣∣∣∣∣
≤ C4ε+ |θ−1

l |
∣∣∣∣Υ(

x,
xl
θl
− ε

)
−Υ

(
x,
xl
θl

)∣∣∣∣ .
Note that Υ(x, r) is differentiable with respect to r, and according to the mean value
theorem, there is x0 ∈

[
xl
θl
− ε, xl

θl

]
such that

Υ
(
x,
xl
θl
− ε

)
−Υ

(
x,
xl
θl

)
= ε

∂Υ
∂r

(x, x0).

The derivative of Υ is given by

∂Υ
∂r

(x, r) = 〈−θ,∇f(x− rθ)〉 − f(x− rθ)GK(r),

which is bounded for every x ∈ Rd
+ and r ∈ ( δ

θl
− ε,∞). Hence the derivatives of g1,ε
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converge uniformly to those of g1 and thereby

(
∂θ

∂c,Kx

)α
f(x) = ∂

∂xi

lim
ε↓0

∂

∂xj

xl
θl
−εˆ

0+

Υ(x, r) dr

 .

Now use the fact that with f ∈ Cbαc+1
0 (Rd

+), the second order partial derivatives of f are
bounded likewise and due to our assumptions, GK is differentiable. Then we can repeat
the above procedure such that

(
∂θ

∂c,Kx

)α
f(x) = lim

ε↓0

 ∂2

∂xi∂xj

xl
θl
−εˆ

0+

Υ(x, r) dr

 ,
and the result follows.

Example 3.2.16. (Difference in the one-dimensional case)
Consider the one-dimensional case with θ = 1. Then under the assumptions of Lemma
3.2.15, the (positive) Caputo and Riemann-Liouville forms of the semi-fractional deriva-
tive are connected by

∂α

∂c,Kxα
f(x) =

(
∂

∂c,Kx

)α
f(x) + f (0)GK (x)− f ′ (0)HK (x)

for every x > 0. Especially for K = − 1
Γ(1−α) , corresponding to the fractional case, this

yields

∂α

∂c,Kxα
f(x) =

(
∂

∂c,Kx

)α
f(x)− x−α

Γ(1− α)f (0)− x−α+1

Γ(2− α)f
′ (0)

coinciding with [139, (17.37)].

To close this section, we display an example illustrating the difference between Caputo
and Riemann-Liouville forms.

Example 3.2.17. Consider a two-dimensional setting (d = 2) and let f : R2
+ → R+ be

defined by f(x, y) = (x2 + y)1R2
+

(x, y). In addition, let α = 2
3 , c = e2πα, and

K(x) = sin(x) + cos(2x) + 5

admissable with respect to these parameters. If we choose θ =
(

1√
2 ,

1√
2

)
, then the di-

rectional semi-fractional derivative of f along θ exists in the Caputo as well as in the
Riemann-Liouville sense. We calculate both forms using (3.16) and (3.18) as well as nu-
merical integration and differentiation (see Appendix C for the Matlab code). The result
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is shown in Figure 3.3. The forms differ clearly, especially when the point of calculation is
close to the boundary of R2

+. Note that this coincides with Lemma 3.2.12 since the term

GK(||x− a||) = ||x− a||−αK(log(||x− a||))

in the difference between both forms diverges for x → a. On the contrary, the forms
coincide on the diagonal line y = x because when moving from (x, x) in direction −θ =
−
(

1√
2 ,

1√
2

)
, we end up in a = (0, 0), and the difference vanishes with f(0, 0) = 0. In

Figure 3.4, we additionally plot both forms restricted to the diagonal line (x, x) to show
their equality.

Figure 3.3: Comparison between Caputo (left) and Riemann-Liouville form (right) of the
directional semi-fractional derivative in Example 3.2.17.

Figure 3.4: Comparison between Caputo (dashed line) and Riemann-Liouville form (solid
line) on the diagonal line (x, x) in Example 3.2.17.
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3.3 Multidimensional semi-fractional derivatives

The main reason for studying directional semi-fractional derivatives in the previous chap-
ter was the aspiration toward semi-fractional differential operators for multivariable func-
tions. Since we follow the idea of [87], we aim to define a multidimensional semi-fractional
derivative as a mixture of directional ones in this chapter.
In detail, the concept in the fractional case is to define the multidimensional fractional
derivative of order α ∈ (0, 2] \ {1} of a suitable function f : Rd → R as the function with
Fourier transform

D̂α,Mf(k) :=

ˆ
S

(−i〈k, θ〉)α dM(θ)

 f̂(k), (3.24)

where M is a probability measure on the unit sphere S (compare [94],[89], or [87]). How-
ever, (3.24) is an integral over Fourier transforms of directional fractional derivatives taken
in each radial direction and thus represents a mixture of directional fractional derivatives.
Consequently, the measure M is called a mixing measure ([87] and [24]). Here we derive
a similar formula for semi-fractional derivatives.

The first step toward such a generalization is to extend the concept of admissable functions
to a set of functions (Kθ)θ∈S.

Definition 3.3.1. (Admissable set of functions)
Let α ∈ (0, 2) \ {1} and c > 1 be fixed. A set of functions (Kθ)θ∈S is called admissable
with respect to α and c if for every θ ∈ S, the function Kθ is either admissable in the
sense of Definition 3.1.1 or identically zero, but there is at least one θ ∈ S such that Kθ

is non-zero.

As in the fractional case, we define the semi-fractional derivative using the Fourier space
representation.

Definition 3.3.2. (Multidimensional semi-fractional derivative)
Choose α ∈ (0, 2) \ {1}, c > 1 as well as a set of admissable functions (Kθ)θ∈S and a
probability measureM on the unit sphere S. The semi-fractional derivative of f ∈ L1(Rd)
with respect to these parameters is given by the function with Fourier transform

D

ˆ

S

hθ(〈k, θ〉) dM(θ) f̂(k) (3.25)

with hθ as in (2.8) if this function exists. In accordance with directional semi-fractional
derivatives, we denote the multidimensional operator with Dα,M

c,(Kθ)θ∈S . However, note that
the parameters depend on each other, and all of them uniquely describe the Lévy measure
Φ of a (c 1

α , c)-semistable distribution and vice versa.
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Remark 3.3.3. In Remark 3.1.5, it was shown that for every θ ∈ S

hθ(〈k, θ〉) ≤ Cθ|〈k, θ〉|α ≤ Cθ|k|α

for a constant Cθ > 0. If
´
S

Cθ dM(θ) < ∞ and f ∈ W bαc+d+1(Rd), then the multidi-

mensional semi-fractional derivative exists with Fourier transform (3.25) by the Fourier
inversion theorem.

Example 3.3.4. If Kθ(x) = 1
|Γ(1−α)| for every x ∈ R and θ ∈ S, then the set (Kθ)θ∈S is

admissable, and according to Example 2.2.5, we have

F(Dα,M
c,(Kθ)θ∈Sf)(k) = D

ˆ

S

hθ(〈k, θ〉) dM(θ) f̂(k)

=
ˆ

S

(−i〈k, θ〉)α dM(θ) f̂(k)

= F(Dα,Mf)(k).

Hence the semi-fractional derivative coincides with the fractional derivative in this case.

Example 3.3.5. In one dimension, the unit sphere consists of only two points such that

Dα,M
c,(Kθ)θ∈Sf(x) = M{1} ∂α

∂c,K1x
α
f(x) +M{−1} ∂α

∂c,K−1(−x)αf(x),

and the semi-fractional derivative is a weighted mixture of one-dimensional semi-fractional
derivatives.

Remark 3.3.6. (Connection to classical multidimensional differential operators)
In classical analysis, partial and the related directional derivatives of a multivariable
function f : Rd → R are well-known, but there is no such thing as a multidimensional
derivative. Instead, the gradient or the Laplace operator are suitable tools to consider
multidimensional settings. We shortly want to classify our result into the set of those
typical multidimensional operators.
If M is a discrete measure concentrated on finitely many points θ1, . . . , θn ∈ S, then

Dα,M
c,(Kθ)θ∈Sf(x) =

n∑
j=1

M{θj}
∂αθj

∂c,Kθjx
α
f(x),

and hence the multidimensional semi-fractional derivative is a weighted sum of directional
derivatives. Especially for n = d and M being uniformly distributed on θi = ei, where for
every i ∈ {1, . . . , d}, ei is the standard coordinate vector, we obtain

Dα,M
c,(Kθ)θ∈Sf(x) = 1

d

n∑
j=1

∂α

∂c,Kθjx
α
i

f(x).
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In this sense, we can interpret the multidimensional semi-fractional derivative as a general
version of the Laplace operator. As done in [89] for the fractional case, it is possible
to define semi-fractional generalized versions of operators like the gradient or the curl
operator. However, this topic is outside the scope of this thesis and will be investigated
elsewhere.

Remark 3.3.7. (Relation to the fractional Laplacian)
A well-established differential operator for multivariable functions in fractional calculus is
the fractional Laplacian ∆α

2 defined in the way, that for a suitable function f : Rd → R,
the Fourier transform of ∆α

2 f is given by −||k||αf̂(k). To analyze its connection to the
multidimensional semi-fractional derivative, assume that M is uniform over S and that
Kθ = K for every θ ∈ S, where K : R → (0,∞) is a smooth admissable function with
Fourier coefficients (cn)n∈Z. Then due to the symmetry of M , the Fourier transform of
the multidimensional semi-fractional derivative of a suitable function f : Rd → R is given
by

F
(
Dα,M
c,(Kθ)θ∈Sf

)
(k) = D

ˆ

S

1
2 (hθ(〈k, θ〉) + h−θ(〈k,−θ〉)) dM(θ)f̂(k)

for every k ∈ Rd, and using Example 2.2.6, hθ has the representation

hθ(x) =
∑
n∈Z

cnΓ(inc̃− α + 1)(−ix)α−inc̃

for every x ∈ R. Note that for every u ∈ R and n ∈ Z,

(−iu)α−inc̃ + (iu)α−inc̃ = (−i|u|)α−inc̃ + (i|u|)α−inc̃

= |u|α−inc̃
(
e−i

π
2 (α−inc̃) + ei

π
2 (α−inc̃)

)
= 2|u|α−inc̃ cos

(
π

2 (α− inc̃)
)
,

and hence we obtain
1
2 (hθ(u) + h−θ(−u)) =

∑
n∈Z

cnΓ(inc̃− α + 1)1
2
(
(−iu)α−inc̃ + (iu)α−inc̃

)
=
∑
n∈Z

cnΓ(inc̃− α + 1)|u|α−inc̃ cos
(
π

2 (α− inc̃)
)

for every u ∈ R. Write k = rω for some r > 0 and ||ω|| = 1 to see that

F
(
Dα,M
c,(Kθ)θ∈Sf

)
(k) =

∑
n∈Z

un||k||α−inc̃f̂(k), (3.26)
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where the Fourier coefficients (un)n∈Z are given by

un : = DcnΓ(inc̃− α + 1) cos
(
π

2 (α− inc̃)
) ˆ
S

|〈ω, θ〉|α−inc̃ dM(θ)

= DcnΓ(inc̃− α + 1) cos
(
π

2 (α− inc̃)
) ˆ
S

|θ1|α−inc̃ dM(θ).

Thereby, the second equality follows from the fact that the integral only depends on the
angle between ω and θ. However, since θ varies over the whole sphere and M is uniform,
any choice of ω yields the same result, and we choose ω = e1 without loss of generality
(compare [94, Example 6.24]). Especially in the case K(x) = D

Γ(1−α) corresponding to the
multidimensional fractional derivative, we obtain

F
(
Dα,M
c,(Kθ)θ∈Sf

)
(k) = u0||k||αf̂(k),

which is a multiple of the fractional Laplacian. Comparing this result with (3.26), the mul-
tidimensional semi-fractional derivative can likewise be interpreted as a log-periodically
disturbed version of the fractional Laplacian.

Due to our leading motivation, we relate Definition 3.3.2 to directional semi-fractional
derivatives as introduced in the previous chapter in the following way.

Lemma 3.3.8. Fix α ∈ (0, 2)\{1}, c > 1 as well as an admissable set of functions (Kθ)θ∈S
and a probability measureM on the unit sphere. For every f ∈ W bαc+d+1(Rd)∩Cbαc+1

0 (Rd),
the multidimensional semi-fractional derivative is given by

Dα,M
c,(Kθ)θ∈Sf(x) =

ˆ

S

∂αθ
∂c,Kθx

α
f(x) dM(θ) (3.27)

for almost every x ∈ Rd.

Remark 3.3.9. One can just as well define the multidimensional semi-fractional deriva-
tive by (3.27) for every x ∈ R and then calculate the Fourier transform.

Proof. Evaluating the Fourier transform of the right-hand side of (3.27) yields
ˆ

Rd

ˆ

S

ei〈k,x〉
∂αθ

∂c,Kθx
α
f(x) dM(θ) dx =

ˆ

S

ˆ

Rd

ei〈k,x〉
∂αθ

∂c,Kθx
α
f(x) dx dM(θ),

where we can change the order of integration with Lemma 3.2.5 and the fact that M
is a probability measure on the unit sphere. Then the result holds in view of Lemma
3.2.8.

Using the explicit representation of the directional semi-fractional derivative in Lemma
3.2.2, we immediately obtain a generator form for the multidimensional semi-fractional
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derivative. Namely, for every f ∈ W bαc+d+1(Rd)∩Cbαc+1
0 (Rd), the generator form is given

by

Dα,M
c,(Kθ)θ∈Sf(x) = D

ˆ

S

∞̂

0+

f(x− rθ)−
bαc∑
p=0

(−r)p∂(p)
θ f(x)

 dGKθ(r) dM(θ),

whereas the Caputo form reads as

Dα,M
c,(Kθ)θ∈Sf(x) = D

ˆ

S

∞̂

0+

∂θf(x− rθ)−
bαc∑
p=1

∂
(p)
θ f(x)

GKθ(r) dr dM(θ).

Similar to the one-dimensional case, the generator form is closely connected to semistable
distributions, which follows directly from Example 2.3.4.

Lemma 3.3.10. Let α ∈ (0, 2) \ {1}, c > 1, and let ν be a (c 1
α , c)-semistable distribution

on Rd with Lévy-Khintchine Triple [a, 0,Φ], where a is defined as in (2.15) and the Lévy
measure Φ is given by (2.5) for an admissable set of functions (Kθ)θ∈S and a probability
measure M on the unit sphere. If L denotes the corresponding generator given in Example
2.3.4, then for every f ∈ W bαc+d+1(Rd) ∩ Cbαc+1

0 (Rd), the generator form of the semi-
fractional derivative exists with

Dα,M
α,(Kθ)θ∈Sf(x) = −DLf(x)

for every x ∈ Rd.

3.4 A numerical approach
Now that we are familiar with semi-fractional derivatives in both the one- and multi-
dimensional setting, we end this chapter by naming a few numerical results. As seen
above, a semi-fractional derivative can rarely be calculated analytically. However, using
numerical integration, the Caputo or Riemann-Liouville form can be approximated with
negligible error. The primary motivation for these operators’ definition was to connect
semistable densities and solutions to semi-fractional diffusion equations. Since they are
even more complicated to calculate analytically, a numerical approximation in these cases
is at least of equal importance. Eventually, the possibility to compute numerical solutions
to semi-fractional differential equations will increase our knowledge about semistable laws
and thereby contributes to the satisfaction of our underlying motivation.

The most natural numerical approach toward approximate solutions of differential equa-
tions is the usage of finite difference methods, which demands approximating all operators
involved by finitely many point evaluations. Even if we are not able to find such a finite
approximation, a generalized form with countably many point evaluations can be found
in analogy to the fractional case.

62



Chapter 3. Semi-fractional derivatives

Recall that the one-dimensional fractional derivative of order α ∈ (0, 2) \ {1} can be
approximated by the Grünwald-Letnikov formula

∂α

∂xα
f(x) = lim

δ↓0
δ−α

∞∑
j=0

(
α

j

)
(−1)jf(x− jδ) (3.28)

([94, Proposition 2.1]) for suitable functions f : R → R. As outlined in [88], the re-
sult can be extended to the multidimensional setting by considering directional fractional
derivatives first. The non-locality of the fractional derivative prohibits an approximation
with finitely many point evaluations. However, (3.28) can be seen as a generalized finite
difference approximation, which is still suitable for numerical calculations.

During the last decades, growing computational power yielded an increasing interest in
numerical methods of fractional calculus, and nowadays, there is comprehensive litera-
ture about different methods and their properties (e.g., see [15] or [63]). Specifically, the
numerical progress allows the application of fractional differential equations to real-world
problems and thereby remarkably contributes to the overall growing interest in the gen-
eral theory of fractional calculus.

We now turn toward directional semi-fractional derivatives and define a Grünwald-Letnikov
type formula as a generalization of (3.28). Note that for the one-dimensional case, the
results have partly been published in [66, Section 4]. In contrast to the last sections, we
need to demand some qualities of admissable functions. Namely, if α ∈ (0, 2)\{1}, c > 1,
and K is an admissable function with respect to these parameters, throughout this sec-
tion we assume that K ∈ C2

pw(R), where C2
pw(R) is the space of continuously differentiable

functions f such that f ′ is piecewise smooth and f has the Fourier series representation

f(x) =
∑
n∈Z

cne
inc̃x (3.29)

for every x ∈ R and c̃ = 2πα
log(c) . The following definition of directional Grünwald-Letnikov

differences yields an approximation of directional semi-fractional derivatives.

Definition 3.4.1. (Grünwald-Letnikov differences)
Let α ∈ (0, 2) \ {1}, c > 1, and let K ∈ C2

pw(R) be an admissable function with respect
to these parameters. For a fixed unit vector θ ∈ S and f : Rd → R bounded, define
directional Grünwald-Letnikov differences by

K∆α,θ
δ f(x) := D

∑
n∈Z

∞∑
j=0

ωnδ
inc̃−α

(
α− inc̃

j

)
(−1)jf(x− jδθ) (3.30)

for every x ∈ Rd and every δ > 0, where ωn := cnΓ(inc̃−α+ 1) for every n ∈ Z. Thereby,
for every z, w ∈ C \ {−1,−2, . . .} with z − w /∈ {−1,−2, . . .}, the general binomial
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coefficient is given by (
z

w

)
= Γ(z + 1)

Γ(w + 1)Γ(z − w + 1) .

Since we aim to approximate a real-valued function, we first ensure that the approximation
is both well-defined and real-valued.

Lemma 3.4.2. Let α ∈ (0, 2)\{1}, c > 1, and let K ∈ C2
pw(R) be an admissable function

with respect to these parameters. For a fixed unit vector θ ∈ S and f : Rd → R bounded,
it follows that K∆α,θ

δ f(x) ∈ R for every x ∈ Rd and δ > 0. If in addition f ∈ L1(Rd),
then also K∆α,θ

δ f ∈ L1(Rd).

Proof. First note that the double series in (3.30) converges absolutely since

|K∆α,θ
δ f(x)| ≤

∑
n∈Z

∞∑
j=0

∣∣∣∣∣ωnδinc̃−α
(
α− inc̃

j

)
(−1)jf(x− jδθ)

∣∣∣∣∣
= δ−α

∑
n∈Z

∞∑
j=0

∣∣∣∣∣ωn
(
α− inc̃

j

)
f(x− jδθ)

∣∣∣∣∣ .
According to [45, Theorem VI.1], the binomial coefficient is bounded by∣∣∣∣∣

(
z

j

)∣∣∣∣∣ ≤ C5
j−Re(z)−1

|Γ(−z)| (3.31)

for every j ∈ N, z ∈ C \ N0, and a constant C5 > 0 such that

|K∆α,θ
δ f(x)| ≤ δ−α

∑
n∈Z
|ωn|

|f(x)|+ C5

|Γ(inc̃− α)|

∞∑
j=1

j−α−1|f(x− jδθ)|
 .

Using the boundedness of f , we find a constant C6 > 0 with

|K∆α,θ
δ f(x)| ≤ C6δ

−α∑
n∈Z

|ωn|
|Γ(inc̃− α)|

= C6δ
−α∑

n∈Z

|cnΓ(inc̃− α + 1)|
|Γ(inc̃− α)|

= C6δ
−α∑

n∈Z
|cn||inc̃− α|,

and sinceK ∈ C2
pw(R), the Fourier coefficients (cn)n∈Z decay like |cn| ∼ |n|−

5
2 [46, Theorem

2.6] such that the series is finite. To see that the Grünwald-Letnikov differences deliver a
real-valued approximation, note that we have

K∆α,θ
δ f(x) = Dδ−α

∑
n∈Z

ane
inc̃ log(δ),
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where

an :=
∞∑
j=0

ωn

(
α− inc̃

j

)
(−1)jf(x− jδθ)

for every n ∈ Z. Since K is real-valued, the Fourier coefficients fulfill c−n = cn for every
n ∈ Z and hence

a−n =
∞∑
j=0

ω−n

(
α + inc̃

j

)
(−1)jf(x− jδθ)

=
∞∑
j=0

c−nΓ(−inc̃− α + 1) Γ(α + inc̃+ 1)
Γ(j + 1)Γ(α + inc̃− j + 1)(−1)jf(x− jδθ)

=
∞∑
j=0

cnΓ(inc̃− α + 1) Γ(α− inc̃+ 1)
Γ(j + 1)Γ(α− inc̃− j + 1)(−1)jf(x− jδθ)

= an.

Therefore, K∆α,θ
δ f(x) ∈ R for every x ∈ Rd. Finally note that for f ∈ L1(Rd), using the

absolute convergence of the double series, we obtain
ˆ

Rd

∣∣∣K∆α,θ
δ f(x)

∣∣∣ dx =
ˆ

Rd

∣∣∣∣∣∣
∑
n∈Z

∞∑
j=0

ωnδ
inc̃−α

(
α− inc̃

j

)
(−1)jf(x− jδθ)

∣∣∣∣∣∣ dx
≤
∑
n∈Z

∞∑
j=0

∣∣∣∣∣ωnδinc̃−α
(
α− inc̃

j

)
(−1)j

∣∣∣∣∣
ˆ

Rd

|f(x− jδθ)| dx

= ||f ||1
∑
n∈Z

∞∑
j=0

∣∣∣∣∣ωnδinc̃−α
(
α− inc̃

j

)
(−1)j

∣∣∣∣∣
<∞,

which yields the result.

To verify that Grünwald-Letnikov differences indeed approximate directional semi-fractional
derivatives, note that the following result holds.

Lemma 3.4.3. (Fourier transform of Grünwald-Letnikov differences)
Let α ∈ (0, 2) \ {1}, c > 1, and let K ∈ C2

pw(R) be an admissable function with respect
to these parameters. For f ∈ L1(Rd) bounded and every θ ∈ S, the Fourier transform of
K∆α,θ

δ f converges

F
(
K∆α,θ

δ f
)

(k)→ Dh(〈k, θ〉)f̂(k)

as δ ↓ 0 for every k ∈ Rd.

Proof. For every δ > 0 and k ∈ Rd, the Fourier transform of the Grünwald-Letnikov
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differences is given by

F
(
K∆α,θ

δ f
)

(k) =
ˆ

Rd

ei〈k,x〉 K∆α,θ
δ f(x) dx.

According to Lemma 3.4.2, K∆α,θ
δ f ∈ L1(Rd) such that

F
(
K∆α,θ

δ f
)

(k) = D
∑
n∈Z

∞∑
j=0

ωnδ
inc̃−α

(
α− inc̃

j

)
(−1)j

ˆ

Rd

ei〈k,x〉f(x− jδθ) dx

= D
∑
n∈Z

∞∑
j=0

ωnδ
inc̃−α

(
α− inc̃

j

)
(−1)j f̂(k)ei〈k,jδθ〉.

Note that with Re(α− inc̃) > 0 and the general binomial theorem [70, Satz 247],

∞∑
j=0

(
α− inc̃

j

)
(−1)jeijδ〈k,θ〉 = (1− eiδ〈k,θ〉)α−inc̃

such that

F
(
K∆α,θ

δ f
)

(k) = D
∑
n∈Z

ωnδ
inc̃−α(1− eiδ〈k,θ〉)α−inc̃f̂(k)

= D
∑
n∈Z

ωn

(
1− eiδ〈k,θ〉

δ

)α−inc̃
f̂(k). (3.32)

Furthermore, the fraction can be displayed as in terms of the negative differential quotient
of x 7→ eix〈k,θ〉 in x = 0; this is

lim
δ↓0

(
1− eiδ〈k,θ〉

δ

)
= − d

dx
eix〈k,θ〉

∣∣∣
x=0

= −i〈k, θ〉

for every k ∈ Rd. Then by dominated convergence, we obtain

lim
δ↓0
F
(
K∆α,θ

δ f
)

(k) = lim
δ↓0

D
∑
n∈Z

ωn

(
1− eiδ〈k,θ〉

δ

)α−inc̃
f̂(k)

= D
∑
n∈Z

ωn (−i〈k, θ〉)α−inc̃ f̂(k).

Using Example 3.1.6, the right-hand side finally reads as

lim
δ↓0
F
(
K∆α,θ

δ f
)

(k) = Dh(〈k, θ〉)f̂(k)

for every k ∈ Rd.

In view of Lemma 3.4.3, the Grünwald-Letnikov differences converge to the corresponding
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semi-fractional derivative in the Fourier space. However, the following theorem even shows
how the approximation error behaves dependent on the choice of the step size δ > 0. The
proof of this theorem was developed in cooperation with Matthias Häußler and can also
be found in his unpublished master thesis [53].

Theorem 3.4.4. (Convergence of Grünwald-Letnikov differences)
Let α ∈ (0, 2) \ {1}, c > 1, and let K ∈ C2

pw(R) be an admissable function with respect
to these parameters. In addition, fix a unit vector θ ∈ S. For every bounded function
f ∈ W bαc+d+2(Rd) ∩ Cbαc+1

0 (Rd), we have

∂αθ
∂c,Kxα

f(x) = lim
δ↓0

K∆α,θ
δ f(x)

for almost every x ∈ Rd, and the convergence is of order O(δ).

To prove the rate of convergence in Theorem 3.4.4, we first show the following auxiliary
result.

Lemma 3.4.5. For α ∈ (0, 2) \ {1} and c > 1 let K ∈ C2
pw(R) be an admissable function

with respect to these parameters. Then for every z ∈ C with Re(z) ≥ 0 and every L ∈ N,∣∣∣∣∣∣
∑
n∈Z

ωnz
α−inc̃ −

∑
|n|≤L

ωnz
α−inc̃

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
|n|>L

ωnz
α−inc̃

∣∣∣∣∣∣ ≤ C9L
−1|z|α (3.33)

for a constant C9 > 0.

Proof. To obtain (3.33), write z = reiφ for some r > 0 and φ ∈
[
−π

2 ,
π
2

]
such that

∣∣∣∣∣∣
∑
n∈Z

ωnz
α−inc̃ −

∑
|n|≤L

ωnz
α−inc̃

∣∣∣∣∣∣ ≤
∑
|n|>L

|ωn(reiφ)α−inc̃|

≤
∑
|n|>L

|ωn|rαenc̃φ

= rα
∑
|n|>L

|cnΓ(inc̃− α + 1)|enc̃φ,

inserting the definition of ωn. Using the asymptotic behavior of the gamma function [3,
Corollary 1.4.4], we obtain∣∣∣∣∣∣

∑
n∈Z

ωnz
α−inc̃ −

∑
|n|≤L

ωnz
α−inc̃

∣∣∣∣∣∣ ≤ C7r
α
∑
|n|>L

|cn||n|
1
2−αe−

π
2 |n|c̃enc̃φ

≤ C7r
α
∑
|n|>L

|cn||n|
1
2−α

for a constant C7 > 0. Due to the smoothness of K, the Fourier coefficients decay like
|cn| ≤ C8|n|−

5
2 for a constant C8 > 0 and every n ∈ Z (compare [46, Theorem 2.6]) such
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that ∣∣∣∣∣∣
∑
n∈Z

ωnz
α−inc̃ −

∑
|n|≤L

ωnz
α−inc̃

∣∣∣∣∣∣ ≤ C7C8r
α
∑
|n|>L

|n|−α−2

= 2C7C8r
α
∑
n>L

|n|−1−α|n|−1

≤ 2C7C8r
αL−1

∞∑
n=1
|n|−1−α

= C9L
−1rα,

where C9 := 2C7C8
∞∑
n=1
|n|−1−α <∞.

Proof of Theorem 3.4.4. To show convergence of the claimed order, first use (3.32) for
fixed δ > 0 to obtain

F
(
K∆α,θ

δ f
)

(k) = D
∑
n∈Z

ωn

(
1− eiδ〈k,θ〉

δ

)α−inc̃
f̂(k)

= D
∑
n∈Z

ωnf̂(k)
(−i〈k, θ〉)α−inc̃ +

(
1− eiδ〈k,θ〉

δ

)α−inc̃
− (−i〈k, θ〉)α−inc̃


= F

(
∂αθ

∂c,Kxα
f

)
(k) +Df̂(k)

∑
n∈Z

ωn

(1− eiδ〈k,θ〉
δ

)α−inc̃
− (−i〈k, θ〉)α−inc̃

 ,
according to Lemma 3.2.8 and Example 3.1.6. Let L ≥ δ−1. With Re (−i〈k, θ〉) = 0 apply
(3.33) to the series∑

n∈Z
ωn(−i〈k, θ〉)α−inc̃ =

∑
|n|≤L

ωn(−i〈k, θ〉)α−inc̃ +O(δ)|〈k, θ〉|α.

Since

Re
(

1− eiδ〈k,θ〉
δ

)
≥ 0,

we apply (3.33) to the first series as well, yielding

∑
n∈Z

ωn

(
1− eiδ〈k,θ〉

δ

)α−inc̃
=

∑
|n|≤L

ωn

(
1− eiδ〈k,θ〉

δ

)α−inc̃
+O(δ)

∣∣∣∣∣
(

1− eiδ〈k,θ〉
δ

)∣∣∣∣∣
α

.

Note that using a Taylor expansion,

eiδ〈k,θ〉 − 1 = i〈k, θ〉δ +O(δ2)
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such that

∑
n∈Z

ωn

(
1− eiδ〈k,θ〉

δ

)α−inc̃
=

∑
|n|≤L

ωn

(
1− eiδ〈k,θ〉

δ

)α−inc̃
+O(δ) |〈k, θ〉|α .

Hence we obtain∣∣∣∣∣F (K∆α,θ
δ f

)
(k)−F

(
∂αθ

∂c,Kxα
f

)
(k)
∣∣∣∣∣

=

∣∣∣∣∣∣Df̂(k)
∑
n∈Z

ωn

(1− eiδ〈k,θ〉
δ

)α−inc̃
− (−i〈k, θ〉)α−inc̃

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Df̂(k)
∑
|n|≤L

ωn

(1− eiδ〈k,θ〉
δ

)α−inc̃
− (−i〈k, θ〉)α−inc̃

∣∣∣∣∣∣+O(δ)|〈k, θ〉|α|f̂(k)|

for every k ∈ Rd. To calculate an upper bound for the first term, consider the functions
dn : R→ C with

dn(x) :=
(

1− eiδx
δ

)α−inc̃
− (−ix)α−inc̃ (3.34)

for every n ∈ N. Then

|dn(x)| =

∣∣∣∣∣∣
(

1− eiδx
−ixδ

)α−inc̃
− 1

∣∣∣∣∣∣
∣∣∣(−ix)α−inc̃

∣∣∣
≤ |x|αe−

π
2 nc̃

∣∣∣∣∣∣
(

1− eiδx
−ixδ

)α−inc̃
− 1

∣∣∣∣∣∣
for every n ∈ Z. The Taylor expansion of

u 7→
(

1− eiu
−iu

)α−inc̃

in u = 0 is given by

1 + i(α− inc̃)
2 u+O(u2)

such that ∣∣∣∣∣∣
(

1− eiδx
−ixδ

)α−inc̃
− 1

∣∣∣∣∣∣ ≤ |α− inc̃||x|δ
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for δ sufficient small and every n ≤ L. Summarizing, we obtain

|dn(x)| ≤ |α− inc̃||x|α+1e−
π
2 nc̃δ

for every x ∈ R. Then the difference between the Fourier transforms is bounded by∣∣∣∣∣F (K∆α,θ
δ f

)
(k)−F

(
∂αθ

∂c,Kxα
f

)
(k)
∣∣∣∣∣

≤

∣∣∣∣∣∣Df̂(k)
∑
|n|≤L

ωndn(〈k, θ〉)

∣∣∣∣∣∣+O(δ)|〈k, θ〉|α|f̂(k)|

≤δ|f̂(k)||〈k, θ〉|α+1 ∑
|n|≤L

|α− inc̃||ωn|e−
π
2 nc̃ +O(δ)|〈k, θ〉|α|f̂(k)|

≤δ|f̂(k)||〈k, θ〉|α+1 ∑
n∈Z
|α− inc̃||ωn|e−

π
2 nc̃ +O(δ)|〈k, θ〉|α|f̂(k)|

=O(δ)|k|α(1 + |k|)|f̂(k)|.

Thereby, the series ∑
n∈Z
|α− inc̃||ωn|e−

π
2 nc̃ converges as shown in the proof of Lemma 3.4.5.

According to the Lemma of Riemann-Lebesgue [47, Theorem 8.22],

|f̂(k)| ≤ 1
(1 + |k|)bαc+d+2

and by Fourier inversion, we obtain

∣∣∣∣∣K∆α,θ
δ f(x)− ∂αθ

∂c,Kxα
f(x)

∣∣∣∣∣ =

∣∣∣∣∣∣∣
ˆ

Rd

ei〈x,k〉
(
F
(
K∆α,θ

δ f
)

(k)−F
(

∂αθ
∂c,Kxα

f

)
(k)
)
dk

∣∣∣∣∣∣∣
≤
ˆ

Rd

∣∣∣∣∣F (K∆α,θ
δ f

)
(k)−F

(
∂αθ

∂c,Kxα
f

)
(k)
∣∣∣∣∣ dk

= O(δ)
ˆ

Rd

|k|α

(1 + |k|)bαc+d+1 dk.

Since bαc + d + 1 > α + d, the integral is finite, and hence the convergence is of order
O(δ).

Remark 3.4.6. Due to the representation of the multidimensional semi-fractional deriva-
tives as a mixture of directional semi-fractional ones (compare Lemma 3.3.8), we also gain
an approximation of the multidimensional derivative. For α ∈ (0, 2) \ {1} and c > 1, let
(Kθ)θ∈S ⊂ C2

pw(R) be an admissable set of functions such that for the Fourier coefficients,
it holds that |cn,θ| ≤ Cn−

5
2 for every θ ∈ S, n ∈ Z, and a constant C > 0 independent of

θ. Note that in this case, the convergence of order O(h) in Theorem 3.4.4 is independent
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of θ and hence

Dα,M
c,(Kθ)θ∈Sf(x) =

ˆ

S

K∆α,θ
δ f(x) dM(θ) +O(δ)

for almost every x ∈ Rd. Dependent on the mixing measure M , the integral over S has to
be discretized appropriately. As an example, we refer to [88], where the multidimensional
fractional derivative is discretized for the special cases of a discrete measure M as well as
for M having a Lipschitz-continuous Lebesgue density.

For fractional diffusion, using the standard Grünwald-Letnikov formula (3.28) often causes
instabilities of the chosen numerical method, especially if α ∈ (1, 2). To overcome these
difficulties, a shifted form of Grünwald-Letnikov differences was proposed in [95], yield-
ing at least conditionally stable methods (e.g., see [95] or [96]). For the semi-fractional
case and α ∈ (0, 1), a particular stability result can be found in [53], but since it is a
generalization of fractional diffusion, we are convinced that instabilities occur similarly
for α ∈ (1, 2). However, analyzing the stability of particular methods for semi-fractional
differential equations exceeds the scope of this thesis. Nevertheless, we introduce a shifted
form for our Grünwald-Letnikov formula and provide it for the following numerical cal-
culations in Appendix C.

Definition 3.4.7. (Shifted Grünwald-Letnikov differences)
Let α ∈ (0, 2) \ {1}, c > 1, and let K ∈ C2

pw(R) be an admissable function with respect to
these parameters. For a fixed unit vector θ ∈ S and f : Rd → R bounded, define shifted
directional Grünwald-Letnikov differences by

K∆α,θ
δ,p f(x) := D

∑
n∈Z

∞∑
j=0

ωnδ
inc̃−α

(
α− inc̃

j

)
(−1)jf(x− (j − p)δθ) (3.35)

for every x ∈ Rd and every δ > 0, where p ∈ N0 is a shift parameter.

Note that Lemma 3.4.2 transfers directly to the shifted form of Grünwald-Letnikov dif-
ferences. This is, the shifted differences in (3.35) are real-valued and K∆α,θ

δ,p f ∈ L1(Rd) if
f ∈ L1(Rd). In addition, we obtain the following convergence result.

Theorem 3.4.8. (Convergence of shifted Grünwald-Letnikov differences)
Let α ∈ (0, 2) \ {1}, c > 1, and let K ∈ C2

pw(R) be an admissable function with respect
to these parameters. In addition, fix a unit vector θ ∈ S and p ∈ N0. For every bounded
function f ∈ W bαc+d+2(Rd) ∩ Cbαc+1

0 (Rd), we have

∂αθ
∂c,Kxα

f(x) = lim
δ↓0

K∆α,θ
δ,p f(x)

for almost every x ∈ Rd, and the convergence is of order O(δ).
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Proof. Similar to the proof of Lemma 3.4.3, the Fourier transform of the shifted Grünwald-
Letnikov differences is given by

F
(
K∆α,θ

δ,p f
)

(k) = De−ipδ〈k,θ〉
∑
n∈Z

ωn

(
1− eiδ〈k,θ〉

δ

)α−inc̃
f̂(k)

for every k ∈ Rd and δ > 0. Then according to the proof of Lemma 3.4.4, we obtain∣∣∣∣∣F (K∆α,θ
δ,p f

)
(k)−F

(
∂αθ

∂c,Kxα
f

)
(k)
∣∣∣∣∣

=

∣∣∣∣∣∣Df̂(k)
∑
|n|≤L

ωn

e−ipδ〈k,θ〉 (1− eiδ〈k,θ〉
δ

)α−inc̃
− (−i〈k, θ〉)α−inc̃

∣∣∣∣∣∣+O(δ)|k|αf̂(k)

for L ≥ δ−1. Repeating the procedure in the proof of Lemma 3.4.4 with

Dn(x) := e−ipδx
(

1− eiδx
δ

)α−inc̃
− (−ix)α−inc̃

instead of dn in (3.34), we see that

|Dn(x)| ≤

∣∣∣∣∣∣e−ipδx
(

1− eiδx
−ixδ

)α−inc̃
− 1

∣∣∣∣∣∣ |(−ix)α−inc̃|

≤ |x|αe−
π
2 nc̃

∣∣∣∣∣∣e−ipδx
(

1− eiδx
−ixδ

)α−inc̃
− 1

∣∣∣∣∣∣
= |x|αe−π2 nc̃

∣∣∣∣∣∣
(

1− eiδx
−ixδ

)α−inc̃
− 1 + 1− eipδx

∣∣∣∣∣∣
≤ |x|αe−

π
2 nc̃ (|x|δ · |α− inc̃|+ 2pδ|x|) , (3.36)

and the result follows as in the proof of Theorem 3.4.4.

Remark 3.4.9. Note that (3.36) implies choosing p as the smallest number, which leads
to a stable method.

In order to ensure the existence of the directional semi-fractional derivatives, we assumed
that f ∈ W bαc+d+2(Rd) ∩ Cbαc+1

0 (Rd) in the above theorems, in which case the Caputo
and Riemann-Liouville forms are equal, and both are approximated by the Grünwald-
Letnikov formula. However, we also want to analyze situations where the function f
is supported on [0,∞)d, yielding a possible difference between Caputo and Riemann-
Liouville forms (compare Lemma 3.2.12 and Lemma 3.2.15). Recall from Section 3.2 that
this phenomenon especially appears when considering a time dependent system but may
also occur in multivariable settings. Asking for the accordance of the Grünwald-Letnikov
formula in this particular case, we find the following.
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Lemma 3.4.10. Let α ∈ (0, 2)\{1}, c > 1, and let K ∈ C2
pw(R) be an admissable function

with respect to these parameters. In addition, let f : Rd
+ → R fulfill the assumptions of

Lemma 3.2.12 for α ∈ (0, 1) or Lemma 3.2.15 for α ∈ (1, 2). For every unit vector θ ∈ S
with θi > 0 for at least one i = 1, . . . , d, the Grünwald-Letnikov scheme coincides with the
Riemann-Liouville form of the directional semi-fractional derivative.

Proof. The subsequent proof is based on the calculations in [110, p. 52-55] for the case
of fractional derivatives. We first use Pascal’s identity [111, (1.27)](

z

j

)
=
(
z − 1
j

)
+
(
z − 1
j − 1

)
,

which holds for every z ∈ C and j ∈ N, to rearrange K∆α,θ
δ f . This is, we write

K∆α,θ
δ f(x) =

∑
n∈Z

ωnδ
inc̃−α(S(x) + f(x))

with

S(x) : =
∞∑
j=1

(
α− inc̃

j

)
(−1)jf(x− jδθ)

=
∞∑
j=1

((
α− inc̃− 1

j

)
+
(
α− inc̃− 1

j − 1

))
(−1)jf(x− jδθ). (3.37)

Note that f is supported on Rd
+, and since θ has at least one positive component, for

every δ > 0 there is N(x) ∈ N such that

x−N(x)δθ ∈ Rd
+

and

x− (N(x) + 1)δθ /∈ Rd
+.

Then S(x) is indeed a finite series given by

S(x) =
N(x)∑
j=1

((
α− inc̃− 1

j

)
+
(
α− inc̃− 1

j − 1

))
(−1)jf(x− jδθ)

=
N(x)∑
j=1

(
α− inc̃− 1

j

)
(−1)jf(x− jδθ) +

N(x)∑
j=1

(
α− inc̃− 1

j − 1

)
(−1)jf(x− jδθ)

=
N(x)∑
j=1

(
α− inc̃− 1

j

)
(−1)jf(x− jδθ) +

N(x)−1∑
k=0

(
α− inc̃− 1

k

)
(−1)k+1f(x− (k + 1)δθ)
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using the shift k = j − 1 in the second sum. Now combine both series to obtain

S(x) =
N(x)−1∑
j=1

(
α− inc̃− 1

j

)
(−1)j(f(x− jδθ)− f(x− (j + 1)δθ)) + R1

δ(x)− f(x− δθ)

with

R1
δ(x) :=

(
α− inc̃− 1

N(x)

)
(−1)N(x)f(x−N(x)jδ)

belonging to the index N(x) in the first sum, whereas the term −f(x− δθ) belongs to the
first term in the second sum associated with k = 0.
First consider the case α ∈ (0, 1). Then

f(x− jδθ)− f(x− (j + 1)δθ)
δ

= ∂θf(x− jδθ) +O(δ)

is a first-order approximation to the directional derivative of f in x− jδθ such that

δ−1(S(x) + f(x)) =
N(x)−1∑
j=1

(
α− inc̃− 1

j

)
(−1)j (∂θf(x− jδθ) +O(δ))

+ f(x)− f(x− δθ)
δ

+ δ−1R1
δ(x)

=
N(x)−1∑
j=0

(
α− inc̃− 1

j

)
(−1)j∂θf(x− jδθ) + δ−1R1

δ(x) +O(δ).

For the Grünwald-Letnikov differences, it follows that

K∆α,θ
δ f(x) =

∑
n∈Z

ωnδ
inc̃−α+1δ−1(S(x) + f(x))

=
∑
n∈Z

ωnδ
inc̃−α+1

N(x)−1∑
j=0

(
α− inc̃− 1

j

)
(−1)j∂θf(x− jδθ) + δ−1R1

δ(x) +O(δ)


=I1
δ (x) +

∑
n∈Z

ωnδ
inc̃−αR1

δ(x) +O(δ2−α),

where

I1
δ (x) :=

∑
n∈Z

N(x)−1∑
j=0

ωnδ
inc̃−α+1

(
α− inc̃− 1

j

)
(−1)j∂θf(x− jδθ).

We first analyze the convergence of I1
δ . Let a ∈ Rd be the boundary point of Rd

+ we reach
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first when moving from x in direction −θ. Then we aim to show that

lim
δ↓0,

x−N(x)δθ=a

I1
δ (x) =

xˆ

0+

∂θf(x− rθ)GK(r) dr, (3.38)

which equals the Caputo form of semi-fractional derivatives. To do so, let

anj := Γ(inc̃− α + 1)
(
α− inc̃− 1

j

)
jα−inc̃(−1)j

for j ∈ N0 and n ∈ Z. Then with the definition of ωn = cnΓ(inc̃−α+ 1) for every n ∈ Z,
we can write

I1
δ (x) =

∑
n∈Z

N(x)−1∑
j=0

cnΓ(inc̃− α + 1)δinc̃−α+1
(
α− inc̃− 1

j

)
(−1)j∂θf(x− jδθ)

=
∑
n∈Z

N(x)−1∑
j=0

cna
n
j j

inc̃−αδinc̃−α+1∂θf(x− jδθ)

= δ
∑
n∈Z

N(x)−1∑
j=0

cna
n
j (jδ)inc̃−α∂θf(x− jδθ)

= δ
N(x)−1∑
j=0

∂θf(x− jδθ)(jδ)−α
∑
n∈Z

cna
n
j (jδ)inc̃.

Note that with (
z

j

)
(−1)j =

(
j − z − 1

j

)

for every z ∈ C and j ∈ N0, we obtain

anj = Γ(inc̃− α + 1)
(
inc̃− α + 1 + j − 1

j

)
jα−inc̃

= Γ(inc̃− α + 1)Γ(inc̃− α + j + 1)
j!Γ(inc̃− α + 1) jα−inc̃

= Γ(inc̃− α + j + 1)
j! jα−inc̃

= Γ(inc̃− α + 1)(inc̃− α + j) . . . (inc̃− α + 1)
j!jinc̃−α ,

and with

Γ(inc̃− α + 1) = lim
j→∞

j!jinc̃−α+1

(inc̃− α + 1) . . . (inc̃− α + 1 + j)
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Chapter 3. Semi-fractional derivatives

(see for example [113, p. 39]), it holds that anj → 1 as j →∞. Then we can think of I1
δ (x)

as a Riemann sum approximation of the Caputo semi-fractional directional derivative as
follows. Choose a grid over [0, x] with step size δ, such that the grid points are given by
jδ with j = 0, . . . , x

δ
. For simplicity we assume that δ is chosen such that x

δ
∈ N. Then a

Riemann sum approximation of the Caputo form is given by
xˆ

0+

∂θf(x− rθ)GK(r) dr =
xˆ

0+

∂θf(x− rθ)r−αK(log(r)) dr

=
xˆ

0+

∑
n∈Z

cn∂θf(x− rθ)r−α+inc̃ dr

= lim
δ↓0,

x−N(x)δθ=a

δ
N(x)−1∑
j=0

∑
n∈Z

cn∂θf(x− jδθ)(jδ)−α+inc̃

by using the series representation of K in (3.29) and evaluating the function in the left
endpoints jδ of the interval [jδ, (j + 1)δ]. This sum equals I1

δ (x) up to the multiplication
with anj , but since this coefficients converge to 1 as j →∞, we obtain (3.38). It remains
to prove convergence of ∑

n∈Z
ωnδ

inc̃−αR1
δ(x). Therefore, note that

∑
n∈Z

ωnδ
inc̃−αR1

δ(x) =
∑
n∈Z

ωnδ
inc̃−α

(
α− inc̃− 1

N(x)

)
(−1)N(x)f(a)

=
∑
n∈Z

cnΓ(inc̃− α + 1)δinc̃−α
(
α− inc̃− 1

N(x)

)
(−1)N(x)f(a)

=
∑
n∈Z

cna
n
N(x)N(x)inc̃−αδinc̃−αf(a)

with anN(x) as defined above. Then
∑
n∈Z

ωnδ
inc̃−αR1

δ(x) =
∑
n∈Z

cna
n
N(x)(N(x)δ)inc̃−αf(a)

=
∑
n∈Z

cna
n
N(x)||N(x)δθ||inc̃−αf(a)

=
∑
n∈Z

cna
n
N(x)||x− a||inc̃−αf(a),

and with the convergence anN(x) → 1, we conclude

lim
δ↓0,

x−N(x)δθ=a

∑
n∈Z

ωnδ
inc̃−αR1

δ(x) =
∑
n∈Z

cn||x− a||inc̃−αf(a)

= GK(||x− a||)f(a).
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Altogether, we have

K∆α,θ
δ f(x)→

xˆ

0+

∂θf(x− rθ)GK(r) dr +GK(||x− a||)f(a),

yielding the result for the case α ∈ (0, 1) together with Lemma 3.2.12.
For α ∈ (1, 2), repeat the procedure in (3.37) and obtain

S(x) =
N(x)−1∑
j=1

(
α− inc̃− 1

j

)
(−1)j(f(x− jδθ)− f(x− (j + 1)δθ)) + R1

δ(x)− f(x− δθ)

=
N(x)−1∑
j=1

((
α− inc̃− 2

j

)
+
(
α− inc̃− 2

j − 1

))
(−1)j(f(x− jδθ)− f(x− (j + 1)δθ))

+R1
δ(x)− f(x− δθ)

=
N(x)−2∑
j=1

(
α− inc̃− 2

j

)
(−1)j(f(x− jδθ)− 2f(x− (j + 1)δθ) + f(x− (j + 2)δθ))

− 2f(x− δθ) + f(x− 2δθ) + R2
δ(x) + R1

δ(x)

with

R2
δ(x) :=

(
α− inc̃− 2
N(x)− 1

)
(−1)N(x)−1(f(x− (N(x)− 1)δθ)− f(x−N(x))δθ).

Similar to the case α ∈ (0, 1),

f(x− jδθ)− 2f(x− (j + 1)δθ) + f(x− (j + 2)δθ)
δ2 = 〈θ,Hf (x− jδθ)θ〉+O(δ)

such that for the Grünwald-Letnikov differences, we obtain

K∆α,θ
δ f(x) =−

∑
n∈Z

ωnδ
inc̃−α+2

N(x)−2∑
j=0

(
α− inc̃− 2

j

)
(−1)j〈θ,Hf (x− jδθ)θ〉

−
∑
n∈Z

ωnδ
inc̃−α(R1

δ(x) + R2
δ(x)) + O(δ3−α).

Again we show that the limit of

I2
δ (x) := −

∑
n∈Z

ωnδ
inc̃−α+2

N(x)−2∑
j=0

(
α− inc̃− 2

j

)
(−1)j〈θ,Hf (x− jδθ)θ〉
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is given by the Caputo form of the semi-fractional derivative, this is

lim
δ↓0,

N(x)δθ=a

I2
δ (x) =

xˆ

0+

〈θ,Hf (x− rθ)θ〉HK(r) dr

with HK from (3.9). Keep the series representation of γ in the definition of HK in mind
to write I2

δ as

I2
δ (x) =

N(x)−2∑
j=0
〈θ,Hf (x− jδθ)θ〉

∑
n∈Z

cn
α− 1− inc̃b

n
j j

inc̃−α+1δinc̃−α+2

= δ
N(x)−2∑
j=0
〈θ,Hf (x− jδθ)θ〉(jδ)−α+1 ∑

n∈Z

cn
α− 1− inc̃b

n
j (jδ)inc̃

with

bnj := Γ(inc̃− α + 2)
(
α− inc̃− 2

j

)
(−1)jj−inc̃+α−1

for every j ∈ N0 and n ∈ Z. Note that bnj coincides with anj when considering α̃ = α−1 ∈
(0, 1) such that bnj → 1 as n → ∞. Then using a similar construction as in the case
α ∈ (0, 1), I2

δ can be seen as a Riemann sum approximation of the Caputo directional
semi-fractional derivative. In addition, as shown above

lim
δ↓0,

N(x)δθ=a

∑
n∈Z

ωnδ
inc̃−αR1

δ(x) = GK(||x− a||)f(a),

where a ∈ Rd is the boundary point we reach first when moving from x in direction −θ
such that we only have to investigate the convergence of

∑
n∈Z

ωnδ
inc̃−αR2

δ(x) = −
∑
n∈Z

ωnδ
inc̃−α

(
α− inc̃− 2
N(x)− 1

)
(−1)N(x)−1(f(a+ δθ)− f(a)).

To do so, set

Bn : = Γ(inc̃− α + 2)
(
α− inc̃− 2
N(x)− 1

)
(−1)N(x)−1N(x)α−inc̃−1

=
(

N(x)
N(x)− 1

)α−inc̃−1

bnN(x)−1,

and note that with the convergence of bnj , the factor Bn converges to 1 as well. Then

∑
n∈Z

ωnδ
inc̃−αR2

δ(x) =
∑
n∈Z

cn
α− inc̃− 1B

n(N(x)δ)inc̃−α+1f(a+ δθ)− f(a)
δ
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=
∑
n∈Z

cn
α− inc̃− 1B

n||x− a||inc̃−α+1f(a+ δθ)− f(a)
δ

→ HK(||x− a||)∂θf(a).

Altogether we obtain

K∆α,θ
δ f(x)→

xˆ

0+

〈θ,Hf (x− rθ)θ〉HK(r) dr −GK(||x− a||)f(a) +HK(||x− a||)∂θf(a),

which coincides with the Riemann-Liouville form of the semi-fractional directional deriva-
tive according to Lemma 3.2.15.
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Chapter 4

Laplace transform of semi-fractional
derivatives

In the following chapter, we study semi-fractional differential equations and their con-
nection to semistable laws. However, a last important tool for this task is still missing.
When solving ordinary or fractional differential equations, using the Laplace transform is
a powerful method since it converts the differential equation into an algebraic statement
in the Laplace domain. The arising equation can then be solved more easily, and the
solution of the initial differential equation is obtained by inverse Laplace transform (e.g.,
see [124], [110], or [101]). This chapter is devoted to analyzing the Laplace transform of
semi-fractional derivatives to extend this valuable method to the case of semi-fractional
differential equations. Throughout this thesis, we denote the Laplace transform of a
suitable function f : Rd

+ → R with L(f) or f̃ , this is

L(f)(s) = f̃(s) :=
ˆ

Rd+

e−〈s,x〉f(x) dx.

Typically, the Laplace transform is applied to the time variable but similarly may be
utilized to transform arbitrary positive variables. Hence, to obtain a general result we
study functions f ∈ W bαc+2(Rd

+) ∩ C0(Rd
+), which are supported on Rd

+. Recall from
the previous chapter that in this case, the Caputo and Riemann-Liouville form differ
dependent on the boundary values of f on ∂Rd

+ (see Lemma 3.2.12 and Lemma 3.2.15),
and this difference is reflected in their Laplace transforms. For every i = 1, . . . , d and
x ∈ Rd

+, we denote by

fi(x) := f(x1, . . . , xi−1, 0, xi+1, . . . , xd)

the value of the continuous extension of f in the boundary point

(x1, . . . , xi−1, 0, xi+1, . . . , xd) ∈ ∂Rd
+.
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4.1 Laplace transform of the Caputo form
We first concentrate on the directional semi-fractional Caputo form and analyze the
Riemann-Liouville form afterward. However, to ensure the Laplace transform’s existence,
we restrict our attention to directions θ ∈ S ∩ Rd

+ with non-negative components.

Lemma 4.1.1. Let α ∈ (0, 1), c > 1, let K be an admissable function with respect to
these parameters, and let f ∈ W bαc+2(Rd

+)∩Cbαc+1
0 (Rd

+). In addition, choose a fixed unit
vector θ ∈ S ∩ Rd

+ and assume that the function

(x, r) 7→ e−〈s,x〉∂θf(x− rθ)1Rd+
(x− rθ)GK(r)

is integrable for every s ∈ Rd
+ with respect to the Lebesgue measure on Rd

+×R+. Then for
every s ∈ Rd

+, the Laplace transform of the Caputo form of the directional semi-fractional
derivative is given by

L
(

∂αθ
∂c,Kxα

f

)
(s) = G̃K(〈s, θ〉)

(
〈s, θ〉f̃(s)−

d∑
i=1

θif̃i(s)
)
.

Remark 4.1.2. Note that in Lemma 4.1.1, for every i ∈ {1, . . . , d}, the function f̃i is
the (d−1)-dimensional Laplace transform of f in the variables (x1, . . . , xi−1, xi+1, . . . , xd).
Especially for d = 1, it coincides with f(0).

Proof. Since the function f is supported on Rd
+, according to (3.16), we have

L
(

∂αθ
∂c,Kxα

f

)
(s) =

ˆ

Rd+

e−〈s,x〉
∞̂

0+

∂θf(x− rθ)1Rd+
(x− rθ)GK(r) dr dx

for every s ∈ Rd
+. Using the assumption of integrability, we change the order of integration

with Fubini’s theorem and obtain

L
(

∂αθ
∂c,Kxα

f

)
(s) =

∞̂

0+

ˆ

Rd+

e−〈s,x〉∂θf(x− rθ)1Rd+
(x− rθ)GK(r) dx dr

=
∞̂

0+

ˆ

Rd+

e−〈s,z+rθ〉∂θf(z)GK(r) dz dr

with the component-wise substitution z := x− rθ and θ ∈ S ∩Rd
+. Now we can separate

the integrals

L
(

∂αθ
∂c,Kxα

f

)
(s) =

∞̂

0+

e−r〈s,θ〉GK(r) dr
ˆ

Rd+

e−〈s,z〉∂θf(z) dz
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= G̃K(〈s, θ〉)
ˆ

Rd+

e−〈s,z〉∂θf(z) dz.

Note that with s ∈ Rd
+ and θ ∈ S ∩ Rd

+, we have 〈s, θ〉 > 0 and the Laplace transform
is well-defined. For the second integral, using the rule for Laplace transforms of partial
derivatives (compare [34, Equations (44) and (45)]), we find

ˆ

Rd+

e−〈s,z〉∂θf(z) dz =
d∑
i=1

θi

ˆ

Rd+

e−〈s,z〉
∂

∂xi
f(z) dz

=
d∑
i=1

θi
(
sif̃(s)− f̃i(s)

)

= 〈s, θ〉f̃(s)−
d∑
i=1

θif̃i(s)

such that the statement follows.

To obtain a more explicit form of the Laplace transform, let us analyze G̃K more closely.

Lemma 4.1.3. Let α ∈ (0, 1), c > 1, and let K be an admissable function with respect
to these parameters. Then for every s > 0,

G̃K(s) = sα−1η1(log(s)),

where η1 : R→ (0,∞) given by

η1(x) := ex(1−α)
∞̂

0

e−e
xtt−αK(log(t)) dt (4.1)

is a positive and log
(
c

1
α

)
-periodic C∞(R)-function. Furthermore, the function x 7→

η1(−x) is admissable with respect to α and c. If additionally K is smooth with Fourier
coefficients (cn)n∈Z, then η1 has the Fourier series representation

η1(x) =
∑
n∈Z

cnΓ(inc̃− α + 1)e−inc̃x

for every x ∈ R.

Proof. To prove the statement above, we conduct a direct calculation. However, note
that equally, one may use the theory of Bernstein functions, which we introduce later
on in Section 7.1. Although this theory probably yields an easier proof, its structure is
not suitable for the case α ∈ (1, 2), and for consistency of this chapter, we decided to
postpone the introduction of Bernstein functions at this point.
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For every s > 0, we find

G̃K(s) =
∞̂

0

e−stGK(t) dt

= sα−1s1−α
∞̂

0

e−stt−αK(log(t)) dt

= sα−1η1(log(s))

if η1 : R→ R is defined as above. Note that it follows directly from the definition that η1
is strictly positive. In addition, η1 is log

(
c

1
α

)
-periodic since

η1
(
x+ log

(
c

1
α

))
= ex(1−α)c

1
α

(1−α)
∞̂

0

e−e
xtc

1
α t−αK(log(t)) dt

= ex(1−α)c
1
α
−1c−

1
α

∞̂

0

e−e
xy(yc− 1

α )−αK
(
log
(
yc−

1
α

))
dy

= ex(1−α)
∞̂

0

e−e
xyy−αK(log(y)) dy

= η1(x)

with the substitution y := tc
1
α and the periodicity of K. Besides, η1 ∈ C∞(R) as compo-

sition of C∞(R)-functions. It remains to show that x 7→ η1(−x) is admissable. As argued
above, the function is strictly positive and log

(
c

1
α

)
-periodic. In addition, η1 fulfills the

growth restriction since

η1(−(x+ δ)) = e−(x+δ)(1−α)
∞̂

0

e−e
−(x+δ)tt−αK(log(t)) dt

= e−x(1−α)eδα−δeδ
∞̂

0

e−e
−xy(yeδ)−αK

(
log
(
yeδ

))
dy

= e−x(1−α)
∞̂

0

e−e
−xyy−αK (log(y) + δ) dy

with y := e−δt for every x ∈ R and δ > 0. Now K is admissable such that

η1(−(x+ δ)) ≤ eαδe−x(1−α)
∞̂

0

e−e
−xyy−αK (log(y)) dy = eαδη1(−x)

83



Chapter 4. Laplace transform of semi-fractional derivatives

for every x ∈ R and δ > 0. Hence x 7→ η1(−x) is admissable in view of Lemma 3.1.2.
Finally assume that K is smooth with Fourier coefficients (cn)n∈Z. Then

η1(x) = ex(1−α)
∞̂

0

∑
n∈Z

cne
−extt−α+inc̃ dt

= ex(1−α) ∑
n∈Z

cn

∞̂

0

e−e
xtt−α+inc̃ dt,

where we can interchange the order of integration and summation since
∞̂

0

∑
n∈Z

∣∣∣cne−extt−α+inc̃
∣∣∣ dt =

∑
n∈Z
|cn|

 ∞̂

0

e−e
xtt−α dt <∞.

With the substitution y := ext, we get

η1(x) = e−αx
∑
n∈Z

cn

∞̂

0

e−y(e−xy)−α+inc̃ dy

=
∑
n∈Z

cne
−inc̃x

∞̂

0

e−yy−α+inc̃ dy

=
∑
n∈Z

cnΓ(1− α + inc̃)e−inc̃x,

which finishes the proof.

Combining Lemma 4.1.1 and Lemma 4.1.3, we obtain the following.

Theorem 4.1.4. (Laplace transform of Caputo derivative, α ∈ (0, 1))
Let α ∈ (0, 1), c > 1, let K be an admissable function with respect to these parameters,
and let f ∈ W bαc+2(Rd

+) ∩ Cbαc+1
0 (Rd

+). In addition, choose a unit vector θ ∈ S ∩Rd
+ and

assume that the function

(x, r) 7→ e−〈s,x〉∂θf(x− rθ)1Rd+
(x− rθ)GK(r)

is integrable for every s ∈ Rd
+ with respect to the Lebesgue measure on Rd

+×R+. Then for
every s ∈ Rd

+, the Laplace transform of the Caputo form of the directional semi-fractional
derivative is given by

L
(

∂αθ
∂c,Kxα

f

)
(s) = 〈s, θ〉α−1η1(log(〈s, θ〉))

(
〈s, θ〉f̃(s)−

d∑
i=1

θif̃i(s)
)

with η1 as in (4.1).
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Using this explicit representation, we can study some important examples.
Example 4.1.5. (Laplace transform of the one-dimensional Caputo form, α ∈ (0, 1))
In the one-dimensional case and for θ = 1, we obtain the Laplace transform of the semi-
fractional Caputo form with

L
(

∂α

∂c,Kxα
f

)
(s) = sα−1η1(log(s))

(
sf̃(s)− f(0)

)
for every s > 0.
Example 4.1.6. (Laplace transform of the fractional Caputo form, α ∈ (0, 1))
Let K(x) = 1

Γ(1−α) be the constant function corresponding to the fractional derivative.
Since K is smooth, it follows immediately from Lemma 4.1.3 that η1(x) = 1 for every
x ∈ R, and hence the Laplace transform of the directional fractional derivative equals

L
(
∂αθ
∂xα

f

)
(s) = 〈s, θ〉α−1

(
〈s, θ〉f̃(s)−

d∑
i=1

θif̃i(s)
)

for every s ∈ Rd
+. Especially in one dimension and for θ = 1, this yields

L
(
∂α

∂xα
f

)
(s) = sα−1

(
sf̃(s)− f(0)

)
for every s > 0, which is already known by [94, p. 39].
In the case α ∈ (1, 2), the argumentation works similarly.
Lemma 4.1.7. Let α ∈ (1, 2), c > 1, let K be an admissable function with respect to
these parameters, and let f ∈ W bαc+2(Rd

+) ∩ Cbαc+1
0 (Rd

+). In addition, let θ ∈ S ∩ Rd
+ be

a fixed unit vector and assume that the function

(x, r) 7→ e−〈s,x〉〈θ,Hf (x− rθ)θ〉HK(r)1Rd+
(x− rθ)

with HK from (3.9) is integrable for every s ∈ Rd
+ with respect to the Lebesgue measure

on Rd
+ × R+. Then for every s ∈ Rd

+, the Laplace transform of the Caputo form of the
directional semi-fractional derivative is given by

L
(

∂αθ
∂c,Kxα

f

)
(s) = H̃K(〈s, θ〉)

ˆ

Rd+

e−〈s,z〉〈θ,Hf (z)θ〉 dz.

Proof. According to (3.17), for a function f : Rd → R supported on Rd
+, the Laplace

transform of the Caputo form is given by

L
(

∂αθ
∂c,Kxα

f

)
(s) =

ˆ

Rd+

e−〈s,x〉
∞̂

0+

〈θ,Hf (x− rθ)θ〉HK(r)1Rd+
(x− rθ) dr dx.
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Using the assumption of integrability, we change the order of integration with Fubini’s
theorem and substitute z := x− rθ to obtain

L
(

∂αθ
∂c,Kxα

f

)
(s) =

∞̂

0+

ˆ

Rd+

e−〈s,x〉〈θ,Hf (x− rθ)θ〉HK(r)1Rd+
(x− rθ) dx dr

=
∞̂

0+

ˆ

Rd+

e−〈s,z+rθ〉〈θ,Hf (z)θ〉HK(r) dz dr

since θ ∈ S ∩ Rd
+. Then separating the integrals as

L
(

∂αθ
∂c,Kxα

f

)
(s) = H̃K(〈s, θ〉)

ˆ

Rd+

e−〈s,z〉〈θ,Hf (z)θ〉 dz

for every s ∈ Rd
+ yields the result.

Similar to the case α ∈ (0, 1), the Laplace transform of HK can be represented using a
periodic function.

Lemma 4.1.8. Let α ∈ (1, 2), c > 1, and let K be an admissable function with respect
to these parameters. Then for every s > 0,

H̃K(s) = sα−2η2(log(s)),

where η2 : R→ (0,∞) given by

η2(x) = ex(2−α)
∞̂

0

e−e
xt

∞̂

t

z−αK(log(z)) dz dt (4.2)

is a positive and log
(
c

1
α

)
-periodic C∞(R)-function. In addition, the function x 7→ η2(−x)

is admissable with respect to α and c. If additionally K is smooth with Fourier coefficients
(cn)n∈Z, then η2 has the Fourier series representation

η2(x) = −
∑
n∈Z

cnΓ(1− α + inc̃)e−inc̃x

for every x ∈ R.

Proof. For every s > 0, we have

H̃K(s) =
∞̂

0

e−stHK(t) dt
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=
∞̂

0

e−st
∞̂

t

z−αK(log(z)) dz dt

= sα−2s2−α
∞̂

0

e−st
∞̂

t

z−αK(log(z)) dz dt

= sα−2η2(log(s))

by (3.9) if η2 is defined as in (4.2). Again it follows directly from the integral representation
that η2 is strictly positive. Besides, for every x ∈ R, we get

η2
(
x+ log

(
c

1
α

))
= ex(2−α)c

1
α

(2−α)
∞̂

0

e−e
xtc

1
α

∞̂

t

z−αK(log(z)) dz dt.

Substitute y := tc
1
α to obtain

η2
(
x+ log

(
c

1
α

))
= ex(2−α)c

1
α

(1−α)
∞̂

0

e−e
xy

∞̂

yc−
1
α

z−αK(log(z)) dz dy,

and with u := zc
1
α , we see that

η2
(
x+ log

(
c

1
α

))
= ex(2−α)c−1

∞̂

0

e−e
xy

∞̂

y

(uc− 1
α )−αK

(
log
(
uc−

1
α

))
du dy

= ex(2−α)
∞̂

0

e−e
xy

∞̂

y

u−αK (log(u)) du dy

= η2(x)

using the periodicity of K. Hence η2 is log
(
c

1
α

)
-periodic. Additionally, note that u2 ∈

C∞(R) as a composition of infinitely differentiable functions. To show that x 7→ η(−x) is
admissable, let δ > 0 and study

η2(−(x+ δ)) = e−(x+δ)(2−α)
∞̂

0

e−e
−(x+δ)t

∞̂

t

z−αK(log(z)) dz dt

= e−x(2−α)e−δ(1−α)
∞̂

0

e−e
−xy

∞̂

yeδ

z−αK(log(z)) dz dy

= e−x(2−α)eδα
∞̂

0

e−e
−xy

∞̂

y

(ueδ)−αK
(
log
(
ueδ

))
du dy
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= e−x(2−α)
∞̂

0

e−e
−xy

∞̂

y

u−αK(log(u) + δ) du dy

with the substitutions y := e−δt and u := ze−δ. Since K is admissable, the integral is
bounded by

η2(−(x+ δ)) ≤ eαδe−x(2−α)
∞̂

0

e−e
−xy

∞̂

y

u−αK(log(u)) du dt

= eαδη2(−x),

and therefore x 7→ η2(−x) is admissable as well. Finally, assume that K is smooth with
Fourier coefficients (cn)n∈N. Then

η2(x) = ex(2−α)
∞̂

0

e−e
xt

∞̂

t

∑
n∈Z

cnz
−α+inc̃ dz dt.

Due to the fact that
∞̂

0

∞̂

t

∑
n∈Z

∣∣∣e−extcnz−α+inc̃
∣∣∣ dz dt =

∞̂

0

∞̂

t

∑
n∈Z

e−e
xt|cn|z−α dz dt

=
∑
n∈Z
|cn|

∞̂

0

1
α− 1t

−α+1e−e
xt dt

=
∑
n∈Z

|cn|
α− 1e

−x
∞̂

0

(e−xz)−α+1e−z dz

=
∑
n∈Z

|cn|
α− 1e

(α−2)xΓ(2− α)

<∞

with z := ext, we can change the order of integration and summation such that with the
same substitution, we get

η2(x) = ex(2−α) ∑
n∈Z

cn

∞̂

0

e−e
xt

∞̂

t

z−α+inc̃ dz dt

= ex(2−α) ∑
n∈Z

cn

∞̂

0

e−e
xt 1
α− 1− inc̃t

1−α+inc̃ dt
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= ex(2−α) ∑
n∈Z

cn
α− 1− inc̃

∞̂

0

e−z(ze−x)1−α+inc̃e−x dt

=
∑
n∈Z

cn
α− 1− inc̃e

x(α−2−inc̃+2−α)Γ(2− α + inc̃)

= −
∑
n∈Z

cnΓ(1− α + inc̃)e−inc̃x,

which finishes the proof.

Combining Lemma 4.1.7 and Lemma 4.1.8, we obtain the following.

Theorem 4.1.9. (Laplace transform of Caputo derivative, α ∈ (1, 2))
Let α ∈ (1, 2), c > 1, let K be an admissable function with respect to these parameters,
and let f ∈ W bαc+2(Rd

+) ∩ Cbαc+1
0 (Rd

+). In addition, let θ ∈ S ∩ Rd
+ be a fixed unit vector

and assume that the function

(x, r) 7→ e−〈s,x〉〈θ,Hf (x− rθ)θ〉HK(r)1Rd+
(x− rθ)

is integrable for every s ∈ Rd
+ with respect to the Lebesgue measure on Rd

+×R+. Then for
every s ∈ Rd

+, the Laplace transform of the Caputo form of the directional semi-fractional
derivative is given by

L
(

∂αθ
∂c,Kxα

f

)
(s) = 〈s, θ〉α−2η2(log(〈s, θ〉))

ˆ

Rd+

e−〈s,z〉〈θ,Hf (z)θ〉 dz, (4.3)

where η2 is defined as in (4.2).

Remark 4.1.10. As in the case α ∈ (0, 1), it is possible to evaluate the integral in (4.3)
using boundary values of f and its partial derivatives. For every α ∈ (1, 2) and f ∈
W bαc+2(Rd

+)∩Cbαc+1
0 (Rd

+), we can extend f as well as its partial derivatives continuously
to the boundary of Rd

+. Similar to the definition of fi for every i = 1, . . . , d, we denote by

fi,j(x) = f(x1, . . . , xi−1, 0, xi+1, . . . , xj−1, 0, xj+1, . . . , xd)

for i, j ∈ {1, . . . , d} and x ∈ Rd
+ the value of f in this boundary point and by(

∂

∂xi
f

)
j

(x) = lim
z↓0

(
∂

∂xi
f

)
(x1, . . . , xi−1, z, xi+1, . . . , xd)

the value of the partial derivative of f in (x1, . . . , xi−1, 0, xi+1, . . . , xd). Additionally, we
assume that for every i 6= j

∂

∂xi
fj(x) =

(
∂

∂xi
f

)
j

(x). (4.4)
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Then under the assumptions of Theorem 4.1.9,
ˆ

Rd+

e−〈s,z〉〈θ,Hf (z)θ〉 dz =
d∑

i,j=1
θiθj

ˆ

Rd+

e−〈s,z〉
∂2

∂xi∂xj
f(z) dz

=
d∑
i=1

θ2
i

ˆ

Rd+

e−〈s,z〉
∂2

∂x2
i

f(z) dz +
d∑

i,j=1,
i 6=j

θiθj

ˆ

Rd+

e−〈s,z〉
∂2

∂xi∂xj
f(z) dz.

Note that with [34, Equations (46)-(48)], for every i ∈ {1, . . . , d}
ˆ

Rd+

e−〈s,z〉
∂2

∂x2
i

f(z) dz = s2
i f̃(s)− sif̃i(s)− L

((
d

dxi
f

)
i

)
(s),

whereas for i, j ∈ {1, . . . , d} with i 6= j

ˆ

Rd+

e−〈s,z〉
∂2

∂xi∂xj
f(z) dz = sisj f̃(s)− sj f̃i(s)− sif̃j(s) + f̃i,j(s)

using (4.4). Similar to the case α ∈ (0, 1), the Laplace transform f̃i is (d−1)-dimensional,
whereas that of fi,j is (d− 2)-dimensional. Altogether we get

ˆ

Rd+

e−〈s,z〉〈θ,Hf (z)θ〉 dz = 〈s, θ〉2 f̃(s)−R(s),

where

R(s) :=
d∑
i=1

θ2
i

(
sif̃i(s) + L

((
d

dxi
f

)
i

)
(s)
)

+
d∑

i,j=1,
i 6=j

θiθj(2sif̃j(s)− f̃i,j(s))

for every s ∈ Rd
+. Especially if θ = ei for i = 1, . . . , d is a coordinate vector, then the

formula simplifies to
ˆ

Rd+

e−〈s,z〉〈ei,Hf (z)ei〉 dz = s2
i f̃(s)− sif̃i(s)− L

((
d

dxi
f

)
i

)
(s)

for every s ∈ Rd
+.

Again, we study the two examples most valuable for the following chapters.

Example 4.1.11. (Laplace transform of the one-dimensional Caputo form, α ∈ (1, 2))
First consider the one-dimensional case with θ = 1. Then the directional semi-fractional
derivative coincides with the positive one-dimensional semi-fractional derivative, and for
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f as in Theorem 4.1.9, the semi-fractional derivative has Laplace transform

L
(

∂α

∂c,Kxα
f

)
(s) = sα−2η2(log(s))

ˆ

R+

e−〈s,z〉〈θ,Hf (z)θ〉 dz

= sα−2η2(log(s))(s2f̃(s)− sf(0)− f ′(0))

for every s > 0.

Example 4.1.12. (Laplace transform of the one-dimensional fractional form, α ∈ (1, 2))
Let K(x) = − 1

Γ(1−α) be the constant function corresponding to the fractional derivative.
Again, K is smooth such that according to Lemma 4.1.8 we have η2(x) = 1 for every
x ∈ R. Then we obtain the Laplace transform of the fractional derivative by

L
(
∂α

∂xα
f

)
(s) = sα−2(s2f̃(s)− sf(0)− f ′(0))

= sαf̃(s)− sα−1f(0)− sα−2f ′(0),

coinciding with [94, p. 34].

4.2 Laplace transform of the Riemann-Liouville form
After studying semi-fractional Caputo forms, we now turn to the Riemann-Liouville form
of directional semi-fractional derivatives. Again, we start our consideration by analyzing
the case α ∈ (0, 1).

Theorem 4.2.1. (Laplace transform of Riemann-Liouville derivative, α ∈ (0, 1))
Let α ∈ (0, 1), c > 1, let K be an admissable function with respect to these parameters,
and let θ ∈ S ∩ Rd

+ be a fixed unit vector. For f ∈ W bαc+2(Rd
+) ∩ Cbαc+1

0 (Rd
+) such that

the Riemann-Liouville form of the semi-fractional derivative exists and for which

(x, r) 7→ e−〈s,x〉f(x− rθ)1Rd+
(x− rθ)GK(r)

is integrable for every s ∈ Rd
+ with respect to the Lebesgue measure on Rd

+×R+, the Laplace
transform of the Riemann-Liouville form of the directional semi-fractional derivative is
given by

L
((

∂θ
∂c,Kx

)α
f

)
(s) = 〈s, θ〉αη1(log(〈s, θ〉))f̃(s)

for every s ∈ Rd
+ and η1 as in (4.1).

To prove Theorem 4.2.1, we will directly compute the Laplace transform. Similarly, one
can obtain the result by utilizing the Laplace transform of the Caputo form in Theorem
4.1.4 and the difference between both forms in Lemma 3.2.12. However, for α ∈ (1, 2),
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this method is not valid since the Laplace transform of the difference does not exist, and
hence we use direct calculation in both proofs to obtain consistency for all α ∈ (0, 2)\{1}.

Proof. For every function f : Rd
+ → R, the Laplace transform of the directional semi-

fractional derivative is according to (3.18) given by

L
((

∂θ
∂c,Kx

)α
f

)
(s) =

ˆ

Rd+

e−〈s,x〉
〈
∇
∞̂

0+

f(x− rθ)1Rd+
(x− rθ)GK(r) dr, θ

〉
dx

=
d∑
i=1

θi

ˆ

Rd+

e−〈s,x〉
∂

∂xi

∞̂

0+

f(x− rθ)GK(r)1Rd+
(x− rθ) dr dx.

For fixed θ ∈ S ∩ Rd
+, define

y(x) := min
j=1,...,d,
θj 6=0

xj
θj
.

For every i ∈ {1, . . . , d} with θi 6= 0, we analyze the integral

A(si) :=
ˆ

R+

e−sixi
∂

∂xi

∞̂

0+

f(x− rθ)GK(r)1Rd+
(x− rθ) dr dxi

=
ˆ

R+

e−sixi
∂

∂xi

y(x)ˆ

0+

f(x− rθ)GK(r) dr dxi

= si

ˆ

R+

e−sixi

y(x)ˆ

0+

f(x− rθ)GK(r) dr dxi − lim
xi↓0

y(x)ˆ

0+

f(x− rθ)GK(r) dr

= si

ˆ

R+

e−sixi

y(x)ˆ

0+

f(x− rθ)GK(r) dr dxi.

It follows that

L
((

∂θ
∂c,Kx

)α
f

)
(s) =

d∑
i=1

θisi

ˆ

Rd+

e−〈s,x〉
∞̂

0+

f(x− rθ)GK(r)1Rd+
(x− rθ) dr dx

= 〈s, θ〉
∞̂

0+

ˆ

Rd+

e−〈s,x〉f(x− rθ)GK(r)1Rd+
(x− rθ) dx dr
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with Fubini’s theorem using the assumption of integrability. With the substitution z :=
x− rθ, we obtain

L
((

∂θ
∂c,Kx

)α
f

)
(s) = 〈s, θ〉

∞̂

0+

ˆ

Rd+

e−〈s,z+rθ〉f(z)GK(r) dz dr

since θ ∈ S ∩ Rd
+. The result follows from the separation of the integrals

L
((

∂θ
∂c,Kx

)α
f

)
(s) = 〈s, θ〉G̃K(〈s, θ〉)f̃(s)

together with Lemma 4.1.3.
Example 4.2.2. (Laplace transform of the Riemann-Liouville form, d = 1 and α ∈ (0, 1))
Note that in one dimension and for θ = 1, we obtain the Laplace transform of the semi-
fractional Riemann-Liouville form with

L
((

∂

∂c,Kx

)α
f

)
(s) = sαη1(log(s))f̃(s)

for every s > 0.
Example 4.2.3. (Laplace transform of the fractional Riemann-Liouville form, α ∈ (0, 1))
If we choose K(x) = 1

Γ(1−α) , the semi-fractional derivative equals the fractional one, and
from Lemma 4.1.3, it follows that η1(x) = 1 for every x ∈ R. Then

L
((

∂θ
∂x

)α
f

)
(s) = 〈s, θ〉αf̃(s)

for every s ∈ Rd
+, which especially yields

L
((

∂

∂x

)α
f

)
(s) = sαf̃(s)

in the one-dimensional case with θ = 1 (compare [94, p. 39]).
Finally, we consider the Riemann-Liouville form in the case α ∈ (1, 2).
Theorem 4.2.4. (Laplace transform of Riemann-Liouville derivative, α ∈ (1, 2))
Let α ∈ (1, 2), c > 1, let K be an admissable function with respect to these parameters,
and let θ ∈ S ∩ Rd

+ be a fixed unit vector. For f ∈ W bαc+2(Rd
+) ∩ Cbαc+1

0 (Rd
+) such that

the Riemann-Liouville form of the semi-fractional derivative exists and

(x, r) 7→ e−〈s,x〉f(x− rθ)1Rd+
(x− rθ)HK(r)

is integrable for every s ∈ Rd
+ with respect to the Lebesgue measure on Rd

+×R+, the Laplace
transform of the Riemann-Liouville form of the directional semi-fractional derivative is
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given by

L
((

∂θ
∂c,Kx

)α
f

)
(s) = 〈s, θ〉αη2(log(〈s, θ〉))f̃(s)

for every s ∈ Rd
+ and η2 as in (4.2).

Proof. According to (3.19),

L
((

∂θ
∂c,Kx

)α
f

)
(s) =

ˆ

Rd+

e−〈s,x〉〈θ,HI(f)(x)θ〉 dx

=
d∑

i,j=1
θiθj

ˆ

Rd+

e−〈s,x〉
∂2

∂xi∂xj
I(f)(x) dx

for every s ∈ Rd
+, where

I(f)(x) =
∞̂

0+

f(x− rθ)1Rd+
(x− rθ)HK(r) dr.

For fixed i, j ∈ {1, . . . , d}, consider the integral

B(s) :=
ˆ

Rd+

e−〈s,x〉
∂2

∂xi∂xj
I(f)(x) dx.

Integration by parts with respect to xi yields

B(s) =


ˆ

Rd−1
+

e−〈s,x〉
∂

∂xj
I(f)(x) dx(i)


∞

xi=0

+ si

ˆ

Rd+

e−〈s,x〉
∂

∂xj
I(f)(x) dx,

where x(i) := (x1, . . . , xi−1, xi+1, . . . , xd) is the projection of x onto all but the i-th com-
ponent. To evaluate the first term, note that

ˆ

Rd−1
+

e−〈s,x〉
∂

∂xj
I(f)(x) dx(i) =


ˆ

Rd−2
+

e−〈s,x〉I(f)(x) dx(i,j)


∞

xj=0

+ sj

ˆ

Rd−1
+

e−〈s,x〉I(f)(x) dx(i),

where x(i,j) = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xd) is the projection of x onto all but
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the i-th and j-th components. Similar to the case α ∈ (0, 1), with

y(x) := min
j=1,...,d,
θj 6=0

xj
θj

for θ ∈ S ∩ Rd
+, we find

lim
xj→0

I(f)(x) = lim
xj→0

y(x)ˆ

0+

f(x− rθ)HK(r) dr = 0,

and since f ∈ C0(Rd
+) and HK(y) ∼ y1−α, we additionally obtain

lim
xj→∞

e−sjxjI(f)(x) = lim
xj→∞

e−sjxj

y(x)ˆ

0+

f(x− rθ)HK(r) dr = 0

such that ˆ

Rd−1
+

e−〈s,x〉
∂

∂xj
I(f)(x) dx(i) = sj

ˆ

Rd−1
+

e−〈s,x〉I(f)(x) dx(i).

Following these arguments, the integral B is given by

B(s) = si

ˆ

Rd+

e−〈s,x〉
∂

∂xj
I(f)(x) dx

for every s ∈ Rd
+. Repeated integration by parts delivers

B(s) =

si
ˆ

Rd−1
+

e−〈s,x〉I(f)(x) dx(j)


∞

xj=0

+ sisj

ˆ

Rd+

e−〈s,x〉I(f)(x) dx

= sisj

ˆ

Rd+

e−〈s,x〉I(f)(x) dx

for every s ∈ Rd
+. Then the Laplace transform of the semi-fractional derivative is given

by

L
((

∂θ
∂c,Kx

)α
f

)
(s) =

d∑
i,j=1

θiθjsisj

ˆ

Rd+

e−〈s,x〉I(f)(x) dx = 〈s, θ〉2Ĩ(f)(s).
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Now using the assumption of integrability, with Fubini’s theorem, it follows that

Ĩ(f)(s) =
ˆ

Rd+

e−〈s,x〉
∞̂

0+

f(x− rθ)1Rd+
(x− rθ)HK(r) dr dx

=
∞̂

0+

ˆ

Rd+

e−〈s,x〉f(x− rθ)1Rd+
(x− rθ)HK(r) dx dr

=
∞̂

0+

ˆ

Rd+

e−〈s,z+rθ〉f(z)HK(r) dz dr

= f̃(s)H̃K(〈s, θ〉)

for every s ∈ Rd
+, completing the proof together with Lemma 4.1.8.

Example 4.2.5. (Laplace transform of the Riemann-Liouville form, d = 1 and α ∈ (1, 2))
In the one-dimensional case with θ = 1, the Laplace transform of the semi-fractional
derivative is given by

L
((

∂

∂c,Kx

)α
f

)
(s) = sαη2(log(s))f̃(s)

for every s > 0.

Example 4.2.6. (Laplace transform of the fractional Riemann-Liouville form, α ∈ (1, 2))
If we chooseK(x) = − 1

Γ(1−α) , then the semi-fractional derivative equals the fractional one.
In addition, according to Lemma 4.1.8, we obtain η2(x) = 1 for every x ∈ R and hence

L
((

∂θ
∂c,Kx

)α
f

)
(s) = 〈s, θ〉αf̃(s)

for every s ∈ Rd
+. Especially in one dimension with θ = 1, this yields the well-known

formula [94, p. 34]

L
((

∂θ
∂c,Kx

)α
f

)
(s) = sαf̃(s)

for every s > 0.
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Semi-fractional Cauchy problems

The overall motivation for the definition of semi-fractional derivatives and the analysis
of their properties in the last chapters was to construct a connection between semistable
densities and solutions to semi-fractional differential equations. In Remark 3.1.4 (iii), we
already touched on this connection in order to justify the definition of semi-fractional
derivatives. The first aim of this chapter is to formulate and prove this connection rigor-
ously. Consequently, both theories can profit from each other: Semistable distributions
can now be characterized in a new way and benefit from obtained and following results
about semi-fractional diffusion. Especially, we can use the Grünwald-Letnikov formula to
approximate semistable laws numerically. On the other hand, the connection to semistable
laws may arouse interest in the quite new theory of semi-fractional differential equations
and inspire new work on this topic.

However, we do not restrict our attention to those semi-fractional differential equations
directly connected to semistable laws. Instead, we consider a wide class of semi-fractional
Cauchy problems. In our context, such an equation may include a semi-fractional deriva-
tive in the time as well as in the space variable and is studied under a given initial
condition. Since such an initial state of the underlying system is known for many real-
world applications, Cauchy problems are widely used in mathematical modeling and are
thereby of particular importance.

Specifically, the theory of fractional Cauchy problems gained influence during the last
decades, and there is a rapidly growing number of publications dealing with existence and
uniqueness results for different kinds of Cauchy equations (e.g., see [36] or [69] and the
references cited therein). Note that the whole theory of fractional differential equation
spreads much wider than the analysis of Cauchy problems and, for example, includes
several non-linear equations under different initial or boundary conditions (see for example
[36], [120], and [143]) as well as fractional differential problems on bounded domains
(compare [13], [29], or [12]). Partly, these results can surely be extended to the case of
semi-fractional diffusion and would be fascinating to investigate. However, as a start, we
concentrate on semi-fractional Cauchy problems here. Nevertheless, we hope to offer a
glimpse into the potential of semi-fractional differential equations in general.
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The chapter is structured as follows. In Section 5.1, we use semigroup theory to study
semi-fractional diffusion equations. These are differential equations with a semi-fractional
space but an ordinary time derivative under given initial conditions, which finally deliver
the connection between semistable laws and semi-fractional derivatives. Afterward, we
study semistable subordinators in Section 5.2, enabling us to solve more general Cauchy
problems involving a time and space semi-fractional derivative in Section 5.3.

5.1 Semi-fractional diffusion and semistable densities

To finally establish a connection between semistable laws and semi-fractional diffusion,
consider the following setting. Fix α ∈ (0, 2) \ {1}, c > 1, and an admissable set of
functions (Kθ)θ∈S as well as a probability measure M on the unit sphere. We study the
semi-fractional diffusion equation

∂

∂t
u(x, t) = −DDα,M

c,(Kθ)θ∈Su(x, t) (5.1)

under the initial condition u(x, 0) = u0(x) for every x ∈ Rd and t > 0. Thereby, the
multidimensional semi-fractional derivative is the generator form, which coincides with
the Caputo form under smoothness assumptions on u (compare Section 3.3). Besides,
recall that D = D(α) = (−1)bαc, and hence, the sign on the right-hand side of (5.1)
differs for the two cases α ∈ (0, 1) and α ∈ (1, 2). Using the semigroup theory introduced
in Section 2.3, we obtain the following result.

Lemma 5.1.1. For fixed α ∈ (0, 2) \ {1} and c > 1, let (Kθ)θ∈S be an admissable set of
functions and let M be a probability measure on the unit sphere. Furthermore, let ν be
the (c 1

α , c)-semistable distribution with Lévy-Khintchine triple [a, 0,Φ], where

a =



ˆ

Rd\{0}

x

1 + ||x||2 dΦ(x) if α ∈ (0, 1)

ˆ

Rd\{0}

(
x

1 + ||x||2 − x
)
dΦ(x) if α ∈ (1, 2)

(5.2)

and the Lévy measure Φ is given by (2.5), and denote by (A(t))t≥0 the corresponding
semistable Lévy process. If u0 ∈ Dom

(
Dα,M
c,(Kθ)θ∈S

)
, then the unique solution to (5.1) is

given by u(x, t) = E[u0(x− A(t))].

Proof. Let L be the generator of the semigroup (T (t))t≥0 defined in (2.14). According
to Lemma 3.3.10, the multidimensional semi-fractional derivative and the generator are
connected by

Dα,M
c,(Kθ)θ∈Su(x, t) = −DLu(x, t)
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for every x ∈ Rd and t > 0. Then from u0 ∈ Dom
(
Dα,M
c,(Kθ)θ∈S

)
, it follows that u0 ∈

Dom (L), and according to Section 2.3, the unique solution to the Cauchy problem

∂

∂t
u(x, t) = Lu(x, t) = −DDα,M

c,(Kθ)θ∈Su(x, t)

is given by u(x, t) = E[u0(x− A(t))].
Example 5.1.2. Consider the one-dimensional diffusion equation

∂

∂t
u(x, t) = − ∂α

∂c,Kxα
u(x, t) (5.3)

for α = 0.6, c = eπα, and

K(x) = 3
15 cos(2x) + 3

20 sin(4x) + 3
Γ(1− α)

admissable with respect to these parameters. In addition, choose the initial condition
u0(x) = e−x

2 and note that u0 ∈ Dom( ∂α

∂c,Kxα
). Figure 5.1 displays the solution x 7→ u(x, t)

for two different times (t = 0.5 and t = 1). For comparison, we additionally show the
solution to the corresponding fractional equation

∂

∂t
u(x, t) = −3 ∂α

∂xα
u(x, t) (5.4)

with u(x, 0) = u0(x). The code for the calculation is attached in Appendix C. We observe
that the periodic perturbation in the semi-fractional derivative causes an oscillation of
the solution around the fractional one. Hence, the overall behavior is preserved, whereas,
on a small scale, we find remarkable differences between both curves.

Figure 5.1: Solution to the semi-fractional diffusion equation (5.3) in Example 5.1.2 at
time t = 0.5 (left) and t = 1 (right) shown as a solid line in comparison to the solution
to the corresponding fractional equation (5.4) displayed as a dashed line.

In the situation of Lemma 5.1.1, the solution of the semi-fractional Cauchy problem is
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a classical one. This is, u is continuous in t ≥ 0, continuously differentiable in t > 0,
u(·, t) ∈ Dom

(
Dα,M
c,(Kθ)θ∈S

)
for every t > 0, and (5.1) is fulfilled point-wise. However, to

construct a connection between semistable laws and semi-fractional diffusion, we have to
weaken the assumptions on u0, yielding a slightly weaker solution.

Theorem 5.1.3. (Connection between semistable densities and semi-fractional diffusion)
For fixed α ∈ (0, 2) \ {1} and c > 1, let ν be the (c 1

α , c)-semistable distribution in Lemma
5.1.1 with corresponding Lévy process (A(t))t≥0. Then the densities x 7→ p(x, t) of A(t)
solve the semi-fractional Cauchy problem (5.1) under the initial condition u(x, 0) = δ(x)
for almost every x ∈ Rd.

Proof. Note that a proof of this theorem in one dimension has already been published
in [66, Theorem 5.1], and the multidimensional case works similarly. Apply a Fourier
transform to (5.1) to obtain

∂

∂t
û(k, t) = F

(
∂

∂t
u

)
(k, t) = −DF

(
Dα,M
c,(Kθ)θ∈Su

)
(k, t) = Ψ(k)û(k, t)

using (3.25) and (2.7), where Ψ is the log-characteristic function of ν. If we especially
consider the semistable density p, then

∂

∂t
p̂(k, t) = ∂

∂t
etΨ(k) = Ψ(k)p̂(k, t),

and hence p solves (5.1) in the Fourier domain. Finally, Fourier inversion yields the
result.

Together with the numerical approximation of the semi-fractional derivative in Section 3.4,
this result enables us to plot semistable densities as a solution to the Cauchy problem.
Since no explicit representations of purely semistable densities are known, pictures of
such distributions were quite rare before, and hence this result contributes to a better
understanding of semistable laws.

Example 5.1.4. Let α ∈ (0, 1), c > 0, and let K be an admissable function with respect
to these parameters. In addition, let ν be the semistable distribution on R with Lévy-
Khintchine triple [a, 0,Φ], where a is as in (5.2) and

Φ(−∞,−r) = 0, Φ(r,∞) = r−αK(log(r)) (5.5)

for every r > 0. According to Theorem 5.1.3, the densities x 7→ p(x, t) of the corresponding
Lévy process solve the diffusion equation

∂

∂t
p(x, t) = − ∂α

∂c,Kxα
p(x, t).
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For α = 1
2 , c = 2, and

K(x) = 1
80

(
cos
(

4π
log(4)x

)
+ 2 cos

(
2π

log(4)x
))

+ 1
Γ (1− α) (5.6)

admissable with respect to these parameters, the semistable density p(x, 1) of ν is shown
in Figure 5.2. The approximation indicates that this semistable density is not unimodal.
Concerning this property, semistable laws differ crucially from stable ones, which are
known to be unimodal (see [152, Theorem 2.7.6]). Thereby, we see that the class of
semistable laws is much wider than this of stable ones, which underlines the importance
of studying both. Note that in general semistable distributions can be either uni- or mul-
timodal. For more general information, we refer to [122], [145], or [146].

Figure 5.2: Density of the semistable distribution ν = p(x, 1) in Example 5.1.4.

Since no explicit expressions of semistable densities are known, we cannot compare our
approximation with the real density. However, in Section 2.1, we observed that semistable
densities fulfill a particular scaling, and we can at least check whether this property is
satisfied by our approximation. First note that for α ∈ (0, 1), Lemma 2.14 in [74] ensures
that ν is even strictly semistable. Then according to (2.4),

p(x, 2) = 1
4p
(
x

4 , 1
)

for every x ∈ R. In Figure 5.3, we plotted both sides of this equation, finding that they
are in good agreement, and in this sense, our approach is strengthened. Again, the Matlab
code for the calculation is given in Appendix C.
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Figure 5.3: Density x 7→ p(x, 2) (solid line) and x 7→ 1
4p
(
x
4 , 1

)
(dashed line) in Example

5.1.4.

Remark 5.1.5. To the best of our knowledge, the only alternative approach to plot
semistable densities is given in [28], where one-dimensional semistable densities were ap-
proximated using inverse Laplace transforms. We want to compare both methods in the
situation of Example 5.1.4.
Instead of interpreting the semistable density as a solution to a semi-fractional differen-
tial equation, the author of [28] used the inverse Laplace method of Abate and Whitt [1],
stating the following. If the density p = p(x, 1) of ν is supported on (0,∞), then

p(x) ≈ e
A
2

2x Re
(
p̃
(
A

2x

))
+ e

A
2

x

∞∑
k=1

(−1)k Re
(
p̃

(
A+ 2kiπ

2x

))
(5.7)

for every x > 0, where A > 0 is a tuning parameter. Using an additional shift, the author
of [28] also approximated semistable densities on the whole real line. However, since this
procedure may cause further errors, we decided to stick to the case of densities supported
on R+ here. So as in Example 5.1.4, we study a strictly semistable density p, which
according to [74, Lemma 2.14] is supported on R+. Remark that according to Example
2.2.6, the Laplace transform of the density p is given by

p̃(s) = exp
−∑

n∈Z
cnΓ(inc̃− α + 1)sα−inc̃


for every s > 0. Inserting this expression in (5.7) yields a numerical approximation of the
semistable density.

Independent from the choice of A, the approximated density preserves the scaling property
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(2.4). To see this, note that according to (5.7)

p(c− 1
αx, t) ≈ e

A
2

2x c
1
α p̃
(
A

2xc
1
α , t

)
+ e

A
2

x
c

1
α

∞∑
k=1

(−1)k Re
(
p̃

(
A+ 2kiπ

2x c
1
α , t

))

for every x > 0 and t > 0. Since

p̃(yc 1
α , t) = exp

−t∑
n∈Z

cnΓ(inc̃− α + 1)(yc 1
α )α−inc̃


= exp

−tc∑
n∈Z

cnΓ(inc̃− α + 1)yα−inc̃


= p̃(y, ct)

for every y > 0, we obtain

p(c− 1
αx, t) ≈ c

1
α

eA2
2x p̃

(
A

2x, ct
)

+ e
A
2

x

∞∑
k=1

(−1)k Re
(
p̃

(
A+ 2kiπ

2x , ct

)) ,
which is the approximation formula of c 1

αp(x, ct) according to the method in [28].

To compare both methods, we use the parameters from Example 5.1.4. This is, let α = 1
2 ,

c = 2 as well as K as in (5.6) and Φ as in (5.5). As shown in Figure 5.4, the approximation
using the inverse Laplace transform method yields slightly different results depending on
the tuning parameter A.

Figure 5.4: Approximation of the semistable density p(x, 1) using the method of [28] for
different values of A (A = 2 blue solid line), A = 4 (blue dashed line), A = 6 (green solid
line) and A = 8 (black dashed line) for x ∈ [0, 3] (left) and on a large scale x ∈ [0, 30]
(right) in Remark 5.1.5.

Note that the approximation for A = 2 (blue solid line) differs from all other curves in
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the height of its first maximum and also exhibits a greater oscillation for values of x near
0.5. After behaving similarly for x ∈ [1, 15], the approximations corresponding to larger
values of A (A = 6 and A = 8) take negative values, which contradicts the fact that we
approximate a semistable density. Hence we stick to the smaller values A = 2 and A = 4
for the following comparison.

We now compare the remaining curves corresponding to A = 2 and A = 4 with the
Grünwald-Letnikov approximation. As seen in Figure 5.5, the overall behavior is similar,
but there is a slight difference for small values of x. Nevertheless, the general agreement
of both approaches strengthens the validity of both approximations.

Figure 5.5: Comparison of the approximation using Grünwald-Letnikov differences (blue
solid line) and the approximation with the method of Abate and Whitt for A = 2 (green
dashed line) and A = 4 (green solid line) in Remark 5.1.5.

Note that by calculating an approximation of the semistable density with the inverse
Laplace transform method for every A ∈ {1.8, 1.81, . . . , 4.19, 4.20}, we find the best agree-
ment with our result for A = 3.89. Thereby, the difference between both approximations
was measured using the least squared error on x ∈ [0, 8]. Both approximations are in
good agreement, as shown in Figure 5.6. All Matlab scripts used in this remark can be
found in Appendix C.

So how can we obtain a reliable approximation of semistable densities? A weakness
of the inverse Laplace transform method is undoubtedly the right choice of the tuning
parameter A. In [28], the author applied his method to stable densities likewise and
found the best agreement with the actual density for larger values of A (for example A =
9). However, for our particular example, these values failed as an approximation of the
semistable density. In contrast, the approximation with Grünwald-Letnikov differences
is more expensive to calculate numerically but does not depend on an additional tuning
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parameter. Additionally, our method directly transfers to semistable densities on the
whole real line. For these reasons, the approximation with Grünwald-Letnikov difference
might be preferred to the inverse Laplace transform method or at least may be used as
additional validation.

Figure 5.6: Comparison of the approximation using Grünwald-Letnikov differences (blue
solid line) and the approximation with the method of Abate and Whitt for A = 3.89 (blue
dashed line) in Remark 5.1.5.

5.2 Semistable subordinators
In contrast to ordinary derivatives, the fractional and the semi-fractional derivative are
non-local operators. For this reason, the solution of the semi-fractional diffusion equation
(5.1) at a given point is influenced by the whole surrounding environment. A similar
behavior is observed in many physical applications when considering the time variable.
More precisely, the current status of a physical system often depends on all of its past
states. In this case, the corresponding system is subject to long-term memory effects.
Modeling exactly such an outcome, differential equations with time-fractional derivatives
have been considered extensively (see for example [71], [10], or the monograph [72] for a
comprehensive overview).

In the following, we investigate semi-fractional Cauchy problems with an additional semi-
fractional time derivative. Thereby, we model a long-time memory effect with log-periodic
perturbations and hence extend the possible models for such situations. As a prepara-
tion, this section analyzes semistable subordinators, which are semistable processes with
almost surely non-decreasing paths. These processes and their properties deliver the key
ideas to solve general Cauchy problems in Section 5.3.
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Subordinators are of particular interest not only in the case of stable or semistable pro-
cesses. This section only proves a few properties for semistable subordinators, which are
necessary to solve abstract Cauchy problems later on. However, we refer to [22], [122],
and [74] for information about subordinators in general. First note that the property of
non-decreasing paths can equally be obtained from the Lévy-Khintchine representation.
Theorem 5.2.1. (Characterization of subordinators, [74, Lemma 2.14])
A Lévy process (X(t))t≥0 on R with X1 ∼ [a,Q,Φ] is a subordinator if and only if Q = 0,
Φ(−∞, 0) = 0 as well as

∞̂

0

min{1, x} dΦ(x) <∞

and

a−
∞̂

0+

x

1 + x2 dΦ(x) ≥ 0.

To construct a semistable subordinator, consider the following situation. Let µ be a
(d

1
β , d)-semistable distribution for some β ∈ (0, 1) and d > 1 with Lévy-Khintchine triple

[a, 0,Φ]. We assume that the Lévy measure Φ is concentrated on the positive real axis,
this is

Φ(−∞,−r) = 0 and Φ(r,∞) = GV (r) = r−βV (log(r))

for every r > 0 and an admissable, log
(
d

1
β

)
-periodic function V . Besides, we choose the

drift coefficient a ∈ R as

a :=
∞̂

0+

x

1 + x2 dΦ(x).

Then the log-characteristic function Ψ of µ can be written as

Ψ(x) =
∞̂

0+

(
eixy − 1

)
dΦ(y), (5.8)

and according to Theorem 5.2.1, the Lévy process (D(t))t≥0 with PD(1) = µ is a semistable
subordinator. In addition, Φ(0,∞) = ∞, which implies that the sample paths are even
strictly increasing almost surely ([122, Theorem 21.3]). According to [122, Example 28.2],
the process has C∞(R)-densities x 7→ g(x, t) for every t > 0, and for further calculations,
we need an explicit form of their Laplace transform.
Lemma 5.2.2. (Laplace transform of semistable subordinator densities)
Let (D(t))t≥0 be the semistable subordinator with density x 7→ g(x, t) for every t > 0.
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Then

g̃(s, t) =
∞̂

0

e−xsg(x, t) dx = e−tΓD(1)(s) (5.9)

for every s > 0 with

ΓD(1)(s) = sβη1(log(s)). (5.10)

Thereby, η1 : R → (0,∞) is the log
(
d

1
β

)
-periodic, positive C∞(R)-function defined in

(4.1).

Proof. The existence of the Laplace exponent in (5.9) follows immediately from the Lévy-
Khintchine triple, so we only have to prove the explicit representation and the properties
of ΓD(1). Using integration by parts for Riemann-Stieltjes integrals [76, Chapter X, Propo-
sition 1.4], we obtain

ΓD(1)(s) =
∞̂

0+

(1− e−sx) dΦ(x)

= −
∞̂

0+

(1− e−sx) dGV (x)

= −[(1− e−sx)GV (x)]∞0+ +
∞̂

0+

se−sxGV (x) dx

for every s > 0. Note that the first part vanishes since GV (x)→ 0 as x→∞, and using
the boundedness of V , we get

lim
x↓0
|(1− e−sx)GV (x)| = lim

x↓0
|(1− e−sx)x−βV (log(x))|

≤ C10 lim
x↓0
|sx1−β|

= 0

for a constant C10 > 0 using a Taylor expansion. Then

ΓD(1)(s) = s

∞̂

0+

e−sxGV (x) dx = sG̃V (s)

for every s > 0 and according to Lemma 4.1.3

G̃V (s) = sβ−1η1(log(s)),
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where η1 : R→ R+ has the claimed properties.

Using this representation, we can prove an additional property of the Laplace exponent
ΓD(1).

Lemma 5.2.3. The function ΓD(1) : (0,∞)→ (0,∞) is bijective.

Proof. According to (5.10), the function ΓD(1) is continuous with lim
s↓0

ΓD(1)(s) = 0 and
lim
s→∞

ΓD(1)(s) =∞. We show that ΓD(1) is strictly increasing, which yields the result. For
every s > 0 and h > 0, we obtain

ΓD(1)(s+ h)− ΓD(1)(s) =
∞̂

0+

(
1− e−(s+h)y − 1 + e−sy

)
dΦ(y)

=
∞̂

0+

e−sy (1− e−hy)︸ ︷︷ ︸
>0

dΦ(y) > 0

since Φ is non-degenerate. Hence ΓD(1) is strictly increasing.

The paths of (D(t))t≥0 are strictly increasing almost surely such that the inverse semistable
subordinator given by

E(t) := inf{u > 0 : D(u) > t} ∀t ≥ 0,

is well-defined, and from the definition it follows immediately that

{E(ti) ≤ si for i = 1, . . . ,m} = {D(si) ≥ ti for i = 1, . . . ,m} (5.11)

for any s1, . . . , sm, t1, . . . , tm > 0 with m ∈ N. Due to the fact that (D(t))t≥0 is a strictly
semistable Lévy process, it is semi-selfsimilar according to [122, Proposition 13.5], and
this property carries over to the inverse process in the subsequent sense.

Lemma 5.2.4. The inverse semistable subordinator (E(t))t≥0 is semi-selfsimilar with

{E(d
1
β t)}t≥0

f.d.= {dE(t)}t≥0.

Proof. First note that since (D(t))t≥0 is a strictly (d
1
β , d)-semistable Lévy process, it is

semi-selfsimilar [122, Proposition 13.5] with

{D(dkt)}t≥0
f.d.= {d

k
βD(t)}t≥0

for every k ∈ Z. Then using (5.11), for 0 ≤ t1 < t2 < . . . < tm and s1, . . . , sm ≥ 0 we
obtain

P (E(d
1
β ti) ≤ si for i = 1, . . . ,m) = P (D(si) ≥ d

1
β ti for i = 1, . . . ,m)
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= P (D(d−1si) ≥ ti for i = 1, . . . ,m)
= P (E(ti) ≤ d−1si for i = 1, . . . ,m)
= P (dE(ti) ≤ si for i = 1, . . . ,m).

In the special case of a β-stable subordinator (D(t))t≥0, the inverse stable subordinator
(E(t))t≥0 is even selfsimilar with index β (compare [92, Proposition 3.1]). The connection
between subordinators and their inverse counterpart now enables us to prove a represen-
tation of the Lebesgue density of E(t) for every t > 0.

Lemma 5.2.5. (Density of the inverse semistable subordinator)
For every t > 0, the distribution PE(t) has a Lebesgue density x 7→ h(x, t) on (0,∞) with

h(x, t) = − ∂

∂x

tˆ

0

g(y, x) dy, ∀x > 0, (5.12)

where x 7→ g(x, t) is the density of D(t).

Proof. From (5.11), we obtain

P (E(t) ≤ x) = P (D(x) ≥ t) =
∞̂

t

g(y, x) dy = 1−
tˆ

0

g(y, x) dy

for every x, t > 0 since g is a density on (0,∞). Additionally, the function x 7→ P (E(t) ≤
x) is monotonically increasing. Hence it is differentiable almost everywhere with

h(x, t) = ∂

∂x
P (E(t) ≤ x) = − ∂

∂x

tˆ

0

g(y, x) dy.

Note that due to the monotonicity, h is a non-negative function with

∞̂

0

h(x, t) dx = −


tˆ

0

g(y, x) dy


∞

0

= lim
x→0

P (D(x) ≤ t)− lim
x→∞

P (D(x) ≤ t)

= 1

since D(t) p→ D(0) = 0 and using the fact that the paths of (D(t))t≥0 are unbounded
almost surely [30, Theorem 3.2].
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Remark 5.2.6. In view of Lemma 5.2.5, we are able to calculate the density of an inverse
semistable subordinator numerically. Let α = 0.6, c = e2πα, and

V (x) = 1
10 (sin(2x) + cos(x)) + 1

Γ(1− α)

admissable with respect to these parameters. We consider the thereby defined semistable
subordinator (D(t))t≥0, where D(1) has log-characteristic function (5.8), as well as the
corresponding inverse semistable subordinator (E(t))t≥0. Figure 5.7 displays the density
of E(1) in comparison to those of the corresponding inverse stable subordinator. As
expected, the density of E(1) oscillates around the density of the inverse stable subordi-
nator. The code for the calculation is attached in Appendix C.

Figure 5.7: Density h(x, 1) of the inverse semistable subordinator at time t = 1 (solid
line) in comparison to the density of the corresponding inverse stable subordinator (dashed
line) in Remark 5.2.6.

In [93, Theorem 3.1], the authors proved the following equivalent representation of the
density h of the inverse semistable subordinator.

Lemma 5.2.7. For every t > 0, the density x 7→ h(x, t) of E(t) is representable as

h(x, t) =
tˆ

0

Φ(t− y,∞) dPD(x)(y) (5.13)

for every x > 0, where Φ is the Lévy measure of D(1).

Since the semistable subordinator (D(t))t≥0 has Lebesgue densities x 7→ g(x, t), we can
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simplify (5.13) to

h(x, t) =
tˆ

0

Φ(t− y,∞)g(y, x) dy.

Both representations have their advantages and will be used for further calculations.

Remark 5.2.8. At first glance, it is not obvious that the representations of the density
x 7→ h(x, t) of the inverse semistable subordinator E(t) in Lemma 5.2.5 and Lemma 5.2.7
are equivalent. Hence, we shortly evaluate their connection. First note that the density
h with representation (5.12) has Laplace transform

h̃(x, s) = − ∂

∂x
s−1g̃(s, x) = − ∂

∂x
s−1e−xΓD(1)(s) = ΓD(1)(s)

s
e−xΓD(1)(s)

for every s > 0 using (5.9). On the other hand, the representation (5.13) has Laplace
transform

h̃(x, s) =
∞̂

0

e−st
tˆ

0

Φ(t− y,∞)g(y, x) dy dt

=
∞̂

0

e−st
tˆ

0

Φ(z,∞)g(t− z, x) dz dt,

where we substituted z := t−y. Now with Tonelli’s theorem and the substitution u := t−z

h̃(x, s) =
∞̂

0

∞̂

z

e−stg(t− z, x) dtΦ(z,∞) dz

=
∞̂

0

∞̂

0

e−s(u+z)g(u, x) duΦ(z,∞) dz

=
∞̂

0

e−sz g̃(s, x) Φ(z,∞) dz

= g̃(s, x)G̃V (s)

= e−xΓD(1)(s) ΓD(1)(s)
s

according to Lemma 4.1.3. With the uniqueness theorem for the Laplace transform, the
two representations are equivalent.

As a consequence of the previous remark, we state the following lemma.
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Lemma 5.2.9. (Laplace transform of inverse semistable subordinator densities)
The density x 7→ h(x, t) of the inverse semistable subordinator E(t) has Laplace transform

h̃(x, s) = ΓD(1)(s)
s

e−xΓD(1)(s)

for every x > 0 and s > 0.

5.3 Semi-fractional Cauchy problems
Keeping the results about semistable subordinators in mind, we now study abstract semi-
fractional Cauchy problems. These are Cauchy problems involving an additional semi-
fractional time derivative. By doing so, we model log-periodically disturbed long-time
memory effects of the underlying system and provide another opportunity to model real-
world applications.

For the whole section, fix β ∈ (0, 1), d > 1, and a smooth, admissable function V with
respect to these parameters. In addition, let L be the generator of a semigroup (T (t))t≥0
driven by an infinitely divisible law µ on Rd as defined in (2.14). Then we study the
semi-fractional Cauchy problem(

∂

∂d,V t

)β
u(x, t) = Lu(x, t) + u0(x)GV (t) (5.14)

for x ∈ Rd, t > 0, and a suitable function u0. In the following, we evaluate a solution
to (5.14). Thereby, our considerations are inspired by the handling of the corresponding
fractional case in [10].

Remark 5.3.1. Note that on the left-hand side of (5.14), we have the Riemann-Liouville
form of the semi-fractional derivative. However, if t 7→ u(x, t) fulfills the assumptions
of Lemma 3.2.12 for every x ∈ Rd, then the difference between Riemann-Liouville and
Caputo form is given by u0(x)GV (t), and hence the equation simplifies to

∂β

∂d,V tβ
u(x, t) = Lu(x, t)

under the initial condition u(x, 0) = u0(x) for every x ∈ Rd.

We define the subsequent class of operators.

Definition 5.3.2. For every t ≥ 0, define the linear operator

S(t)f :=
∞̂

0

T (u)f h(u, t) du (5.15)
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on L1(Rd), where x 7→ h(x, t) is the density of the inverse semistable subordinator E(t)
from section 5.2 and (T (t))t≥0 is the semigroup (2.14) driven by the infinitely divisible
distribution µ on Rd.

As the following lemma displays, the operators (S(t))t≥0 exhibit some useful properties.

Lemma 5.3.3. The family of operators (S(t))t≥0 is uniformly bounded and strongly con-
tinuous with S(0) = Id.

Proof. For every f ∈ L1(Rd), we obtain

S(0)f =
∞̂

0

T (u)f h(u, 0) du = T (0)f = f

since h(x, 0) = δ(x) and T (0) is the identity mapping. Besides, the semigroup (T (t))t≥0
is uniformly bounded with ||T (t)f ||1 ≤ ||f ||1 for every f ∈ L1(Rd) (compare Section 2.3)
such that an application of Bochner’s theorem (see for example [5, Theorem 1.1.4]) yields

||S(t)f ||1 =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞̂

0

T (u)f h(u, t) du

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

≤
∞̂

0

||T (u)f h(u, t)||1 du

≤ ||f ||1
∞̂

0

h(u, t) du

= ||f ||1.

Thereby, the last equality holds since for every t > 0, x 7→ h(x, t) is a density on (0,∞).
Hence S(t) is well-defined for every t ≥ 0 and uniformly bounded. It remains to show that
(S(t))t≥0 is strongly continuous. In view of Section 2.3, (T (t))t≥0 is strongly continuous
and thus ||T (t)f − f ||1 → 0 as t ↓ 0. Then for every ε > 0, there is s0 > 0 with
||T (t)f − f ||1 < ε

2 for all t ≤ s0. It follows that

||S(t)f − f ||1 =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞̂

0

T (u)f h(u, t) du− f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞̂

0

(T (u)f − f) h(u, t) du

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

≤
∞̂

0

||T (u)f − f ||1 h(u, t) du
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=
s0ˆ

0

||T (u)f − f ||1 h(u, t) du+
∞̂

s0

||T (u)f − f ||1 h(u, t) du

≤ ε

2 +
∞̂

s0

||T (u)f − f ||1 h(u, t) du

for every t > 0 using Bochner’s theorem [1, Theorem 1.1.4]. The process (E(t))t≥0 is
continuous in probability with E(0) = 0 almost surely such that for fixed f ∈ L1(Rd), we
can choose t0 > 0 with

´∞
s0
h(u, t) du < ε

4||f ||1 for all t ≤ t0. Then with ||T (u)f ||1 ≤ ||f ||1
for every u ≥ 0, ||S(t)f − f || is bounded by

||S(t)f − f ||1 ≤
ε

2 + 2||f ||1
∞̂

s0

h(u, t) du < ε

for t sufficient small. Consequently, ||S(t)f − f ||1 → 0 as t ↓ 0, showing that (S(t))t≥0 is
strongly continuous.

Since (S(t))t≥0 and (T (t))t≥0 are families of bounded operators, the Laplace transform of
t 7→ T (t)f as well as the Laplace transform of t 7→ S(t)f exist for every f ∈ L1(Rd), and
the following equality connect both forms.

Lemma 5.3.4. Let f ∈ L1(Rd). The Laplace transform of S(t)f is given by
∞̂

0

e−stS(t)f dt = ΓD(1)(s)
s

∞̂

0

e−uΓD(1)(s)T (u)f du

for every s > 0.

Proof. Use the definition (5.15) of S(t) to obtain
∞̂

0

e−stS(t)f dt =
∞̂

0

e−st
∞̂

0

T (u)f h(u, t) du dt

for every s > 0. Note that with
∞̂

0

∞̂

0

||e−stT (u)f h(u, t)||1 du dt =
∞̂

0

∞̂

0

e−st||T (u)f ||1h(u, t) du dt

≤ ||f ||1
∞̂

0

∞̂

0

e−sth(u, t) du dt

= ||f ||1
∞̂

0

e−st dt
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= ||f ||1
s

<∞,

by Fubini’s theorem, we have
∞̂

0

e−stS(t)f dt =
∞̂

0

∞̂

0

e−sth(u, t) dt T (u)f du =
∞̂

0

h̃(u, s)T (u)f du.

Now Lemma 5.2.9 yields
∞̂

0

e−stS(t)f dt = ΓD(1)(s)
s

∞̂

0

e−uΓD(1)(s)T (u)f du.

Turning back to the semi-fractional Cauchy problem (5.14), we want to describe the
solution in terms of the operators (S(t))t≥0. Since we prove our results using Laplace
transforms, we will not obtain classical solutions but strong solutions defined as follows.

Definition 5.3.5. (Strong solution)
A function u : Rd × [0,∞) → R is called strong solution of the semi-fractional Cauchy
problem (5.14), if u ∈ Dom

((
∂

∂d,P t

)β)
∩ Dom(L) and (5.14) is fulfilled for almost every

t > 0.

Since V is smooth, it is representable by its Fourier series

V (x) =
∞∑

n=−∞
dne

ind̃x (5.16)

for every x ∈ R, where (dn)n∈Z ⊂ C are the Fourier coefficients and d̃ = 2πβ
log(d) determines

the period of V . In this section, we demand that the Fourier coefficients possess an
arbitrary small exponential decay, this is

|dn| ≤ C11e
−|n|d̃ε (5.17)

for a constant C11 > 0 and some ε > 0. This necessarily implies that V ∈ C∞(Rd) [46,
Theorem 2.6]. Besides, we need a further assumption on V . Recall from Lemma 3.1.2
that the admissable and differentiable function V fulfills V ′(x) ≤ βV (x) for every x ∈ R.
In what follows, we assume that this inequality is even strictly fulfilled, this is

V ′(x) < βV (x) (5.18)

for every x ∈ R. Then we can characterize solutions to the semi-fractional Cauchy
problems as follows.
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Theorem 5.3.6. (Strong solutions to semi-fractional Cauchy problems)
Let V be an admissable function with respect to β ∈ (0, 1) and d > 1 given by (5.16) such
that (5.17) and (5.18) are satisfied. In addition, let u0 ∈ L1(Rd). Then the functions
u(x, t) = S(t)u0(x) solve the semi-fractional Cauchy problem (5.14) in the strong sense.

We will split the proof of Theorem 5.3.6 into several steps. We start by extending the
Laplace exponent ΓD(1) to a sectorial region. Therefore let

C(ϑ) := {reiϕ ∈ C : r > 0, |ϕ| < ϑ}

be the sectorial region of angle ϑ for every ϑ ∈ (0, π]. If ϑ = π
2 , then the sectorial region

equals the open right half-plane C+ := {z ∈ C : Re(z) > 0}, whereas for ϑ = π, we obtain
the whole complex plane except for the negative real axis.

Lemma 5.3.7. Let V be an admissable function with respect to β ∈ (0, 1) and d > 1 given
by (5.16) such that (5.17) and (5.18) are satisfied and choose 0 < ε′ < ε. The function
s 7→ ΓD(1)(s) has an analytic extension to the sectorial region C

(
π
2 + ε′

)
with

|ΓD(1)(z)| ≤ C13|z|β (5.19)

for a constant C13 > 0 and every z ∈ C
(
π
2 + ε′

)
. In addition, there is ε′′ ∈ (0, ε′] such

that

ΓD(1) : C
(
π

2 + ε′′
)
→ C(η)

for some η ∈
(
0, π2

)
.

We want to emphasize that since the sectorial regions C(ϑ) with ϑ ∈ (0, π] are open subsets
of the complex plane, by extending ΓD(1) analytically to C

(
π
2 + ε′

)
for every ε′ ∈ (0, ε),

we even obtain the result for the whole region C
(
π
2 + ε

)
. However, the proof below shows

that the constant C13 in (5.19) depends on ε′ and diverges for ε′ → ε such that we restrict
our considerations to a smaller sectorial region in order to preserve this bound.

Proof. According to Lemma 5.2.2 and Lemma 4.1.3, for a smooth function V with Fourier
series (5.16), the function ΓD(1) is given by

ΓD(1)(s) =
∑
n∈Z

dnΓ(1− β + ind̃)sβ−ind̃

for every s > 0. Hence we define an extension of ΓD(1) by

ΓD(1)(z) =
∑
n∈Z

dnΓ(1− β + ind̃)zβ−ind̃ (5.20)

for every z ∈ C
(
π
2 + ε′

)
. First note that the series is absolutely convergent since for every
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z = reiφ with r > 0 and |φ| < π
2 + ε′, we find

∑
n∈Z

∣∣∣dnΓ(1− β + ind̃)zβ−ind̃
∣∣∣ ≤ rβ

∑
n∈Z

∣∣∣dnΓ(1− β + ind̃)
∣∣∣ ∣∣∣eiφ(β−ind̃)

∣∣∣
≤ rβ

∑
n∈Z

∣∣∣dnΓ(1− β + ind̃)
∣∣∣ eφnd̃

≤ C11 r
β
∑
n∈Z

e−|n|d̃ε
∣∣∣Γ(1− β + ind̃)

∣∣∣ eφnd̃
due to (5.17). Recall from ([3, Corollary 1.4.4]) that the gamma function decays expo-
nentially such that

∑
n∈Z

∣∣∣dnΓ(1− β + ind̃)zβ−ind̃
∣∣∣ ≤ C12 r

β

Γ(1− β) +
∑

n∈Z\{0}
e−|n|d̃εe−

π
2 |n|d̃|n|

1
2−βeφnd̃


≤ C12 r

β

Γ(1− β) +
∑

n∈Z\{0}
|n|

1
2−βe−|n|d̃(π2 +ε−π2−ε

′)


= C12 r

β

Γ(1− β) +
∑

n∈Z\{0}
|n|

1
2−βe−|n|d̃(ε−ε′)


for a constant C12 > 0. Due to our assumptions, ε > ε′ and the series is finite. Especially
it follows that

|ΓD(1)(z)| ≤ C13|z|β

with C13 > 0 for every z ∈ C
(
π
2 + ε′

)
. Next we prove that (5.20) defines an analytic

function. Therefore note that we can differentiate ΓD(1) piecewise such that

Γ(l)
D(1)(z) =

∑
n∈Z

(β − ind̃) · · · (β − ind̃− l + 1)dnΓ(1− β + ind̃)zβ−ind̃−l

= l!
∑
n∈Z

(
β − ind̃

l

)
dnΓ(1− β + ind̃)zβ−ind̃−l

for every l ∈ N. Then for every z0 ∈ C
(
π
2 + ε′

)
, the Taylor series Q in z is given by

Q(z) =
∞∑
l=0

Γ(l)
D(1)(z0)
l! (z − z0)l

=
∞∑
l=0

∑
n∈Z

(
β − ind̃

l

)
dnΓ(1− β + ind̃)zβ−ind̃−l0 (z − z0)l.
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To change the order of summation, note that

|Q(z)| ≤
∞∑
l=0

∑
n∈Z

∣∣∣∣∣
(
β − ind̃

l

)
dnΓ(1− β + ind̃)zβ−ind̃−l0 (z − z0)l

∣∣∣∣∣
=
∑
n∈Z

∣∣∣dnΓ(1− β + ind̃)zβ−ind̃0

∣∣∣+ ∞∑
l=1

∑
n∈Z

∣∣∣∣∣∣
(
β − ind̃

l

)
dnΓ(1− β + ind̃)

z−β+ind̃
0

(
z − z0

z0

)l∣∣∣∣∣∣ ,
where the first series is finite as shown above. For the second series, use (3.31) for an
upper bound of the binomial coefficients to obtain

∞∑
l=1

∑
n∈Z

∣∣∣∣∣
(
β − ind̃

l

)
dnΓ(1− β + ind̃)zβ−ind̃0

(
z − z0

z0

)l∣∣∣∣∣
≤C5

∞∑
l=1

∑
n∈Z

∣∣∣∣∣ l−1−β

Γ(ind̃− β)
dnΓ(1− β + ind̃)zβ−ind̃0

(
z − z0

z0

)l∣∣∣∣∣
=C5

∑
n∈Z
|dn(inc̃− β)|

∞∑
l=1

∣∣∣∣∣l−1−βzβ−ind̃0

(
z − z0

z0

)l∣∣∣∣∣
≤C14|z0|β

∞∑
l=1

l−1−β
∣∣∣∣ zz0
− 1

∣∣∣∣l

for a constant C14 > 0 with the exponential decay of the Fourier coefficients (dn)n∈Z in
(5.17). For z in a sufficiently small neighborhood of z0, we have

∣∣∣ z
z0
− 1

∣∣∣ < 1, and the
series converges due to the direct comparison test with a generalized harmonic series as
convergent majorant. Then we can interchange the order of the series in Q(z), and for∣∣∣ z
z0
− 1

∣∣∣ < 1 using the generalized binomial theorem [70, Satz 247], we obtain

Q(z) =
∑
n∈Z

dnΓ(1− β + ind̃)zβ−ind̃0

∞∑
l=0

(
β − ind̃

l

)(
z

z0
− 1

)l

=
∑
n∈Z

dnΓ(1− β + ind̃)zβ−ind̃0

(
z

z0

)β−ind̃
= ΓD(1)(z)

for every z in a sufficiently small neighborhood of z0. Hence the function ΓD(1) is analytic
in C

(
π
2 + ε′

)
.

Finally, we prove the existence of ε′′ ∈ (0, ε′] such that ΓD(1)(z) ∈ C(η) for every z ∈
C
(
π
2 + ε′′

)
and some η ∈

(
0, π2

)
. We show the equivalent statement that cos

(
arg(ΓD(1)(z))

)
is bounded away from zero, where arg(z) is the argument of the complex number z. In
view of (5.19), we get

cos
(
arg(ΓD(1)(z))

)
= Re(ΓD(1)(z))
|ΓD(1)(z)| ≥

Re(ΓD(1)(z))
C13|z|β
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for every z ∈ C
(
π
2 + ε′

)
. Now we analyze the real part of the Laplace exponent. Therefore

note that for every z ∈ C with Re(z) > 0, the function ΓD(1) has the integral representation

ΓD(1)(z) =
∞̂

0

(1− e−zt) dΦ(t).

This follows immediately with the same calculation as in [66] for the real-valued case.
Now fix ϑ ∈

(
0, π2

)
and consider the subsequent three cases.

First case: z ∈ C(ϑ). Write z = reiϕ with r > 0 and |ϕ| < ϑ, yielding

Re(ΓD(1)(z)) =
∞̂

0

Re(1− e−zt) dΦ(t)

=
∞̂

0

(1− e−r cos(ϕ)t cos(r sin(ϕ)t)) dΦ(t)

≥
∞̂

0

(1− e−r cos(ϕ)t) dΦ(t)

≥
∞̂

0

(1− e−r cos(ϑ)t) dΦ(t)

since cos(ϑ) < cos(ϕ). This integral has already been solved (compare for example Lemma
4.1.3) with

∞̂

0

(1− e−yt) dΦ(t) =
∑
n∈Z

dnΓ(ind̃− β + 1)yβ−ind̃ = yβη1(log(y))

for every y > 0 with η1 : R → (0,∞) as in (4.1). Since η1 is continuous and periodic, it
is bounded, and with the positivity of the function, there is a constant C15 > 0 with

Re(ΓD(1)(z)) ≥ (r cos(ϑ))βη1(log(r cos(ϑ))) ≥ C15r
β.

Second Case: z ∈ C+ \ C(ϑ). Again we write z = reiϕ with r > 0 and ϑ ≤ |ϕ| < π
2 .

Using the integral representation of ΓD(1) as before, the real part is given by

Re(ΓD(1)(z)) =
∞̂

0

(1− e−r cos(ϕ)t cos(r sin(ϕ)t)) dΦ(t)

= −
∞̂

0

(1− e−r cos(ϕ)t cos(r sin(ϕ)t)) dGV (t).

119



Chapter 5. Semi-fractional Cauchy problems

The function GV (t) = t−βV (log(t)) is continuously differentiable due to (5.17) such that
the Riemann-Stieltjes integral equals

Re(ΓD(1)(z)) = −
∞̂

0

(1− e−r cos(ϕ)t cos(r sin(ϕ)t))G′V (t) dt

(compare [134, Example 1.2.2 (i)]). For the derivative, we obtain

G′V (t) = t−β−1(−βV (log(t)) + V ′(log(t)))

for every t > 0. Besides, the function x 7→ βV (x) − V ′(x) is periodic, continuous, and
according to (5.18) strictly positive. Then there is a constant C16 > 0 with

βV (x)− V ′(x) ≥ C16 > 0

for every x ∈ R. It follows that

Re(ΓD(1)(z)) ≥ C16

∞̂

0

(1− e−r cos(ϕ)t cos(r sin(ϕ)t))t−β−1 dt

= C16

∞̂

0

(1− e−r cos(ϕ)t cos(r| sin(ϕ)|t))t−β−1 dt

using the symmetry of the cosine function. With the substitution y := r| sin(ϕ)|t, we gain

Re(ΓD(1)(z)) ≥ C16

r| sin(ϕ)|

∞̂

0

(1− e−| cot(ϕ)|y cos(y))(yr−1| sin(ϕ)|−1)−β−1 dy

= C16r
β| sin(ϕ)|β

∞̂

0

(1− e−| cot(ϕ)|y cos(y))y−β−1 dy.

Now for every ϑ ≤ |ϕ| < π
2 ,

Re(ΓD(1)(z)) ≥ C16r
β sinβ(ϑ)

∞̂

0

(1− | cos(y)|)y−β−1 dy.

Since 1− | cos(y)| ∼ y2

2 as y → 0, the integral is finite such that

Re(ΓD(1)(z)) ≥ C17r
β

for a constant C17 > 0.
Third Case: z ∈ C

(
π
2 + ε

)
\ C+. Write z = reiϕ for some r > 0 and |ϕ| ∈

[
π
2 ,

π
2 + ε

)
.
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Then

ΓD(1)(z) = rβηϕ(log(r)),

where for every ϕ, the function ηϕ : R→ C is given by

ηϕ(x) = eiϕβ
∑
n∈Z

dnΓ(ind̃− β + 1)end̃ϕe−ind̃x.

Since ΓD(1)(z) is analytic in C
(
π
2 + ε

)
, ηϕ is analytic in the same region. Hence, the real

part of ηϕ

Re(ηϕ(log(r))) = Re(r−βΓD(1)(reiϕ))

is continuous in ϕ. From the previous two cases, it follows that

Re(r−βΓD(1)(reiϕ)) ≥ min{C15, C17}

for every r > 0 and |ϕ| < π
2 . Then using the continuity, for every r > 0, there is ε′r ≤ ε′

such that

Re(ηϕ(log(r))) ≥ 1
2 min{C15, C17}

for every |ϕ| < π
2 + ε′r. However, ηϕ(x) is periodic and continuous in x such that ε′′ =

min
r>0

ε′r ∈ (0, ε′] exists. Then

Re(ηϕ(log(r))) ≥ 1
2 min{C15, C17}

for every r > 0 and |ϕ| < π
2 + ε′′ and we obtain

Re(ΓD(1)(reiϕ)) ≥ 1
2r

β min{C15, C17}

for every r > 0 and π
2 ≤ |ϕ| < ε′′.

Summarizing all three cases,

cos
(
arg(ΓD(1)(z))

)
≥

Re(ΓD(1)(z))
C13|z|β

≥ 1
2

min{C15, C17}
C13

> 0

for every z ∈ C
(
π
2 + ε′′

)
, and hence there is η ∈

(
0, π2

)
with ΓD(1) : C

(
π
2 + ε′′

)
→

C(η).
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Lemma 5.3.8. The function q : (0,∞)→ L1(Rd) with

q(s) :=
∞̂

0

e−stT (t)f dt

has an analytic extension to C+ = C
(
π
2

)
.

Proof. For every fixed z ∈ C+, let F (t) := e−ztT (t)f . By Bochner’s theorem, F is
integrable over (0,∞) with

||q(z)||1 ≤
∞̂

0

||F (t)||1 dt =
∞̂

0

||e−ztT (t)f ||1 dt

=
∞̂

0

e−Re(z)t||T (t)f ||1 dt

≤
∞̂

0

e−Re(z)t||f ||1 dt

≤ ||f ||1Re(z) (5.21)

for every f ∈ L1(Rd) and z ∈ C+. Then the abscissa of convergence abs(f) as defined in
[5, Section 1.4] is given by

abs(T (t)f) := inf{Re(λ) : L(T (t)f)(λ) = q(λ) exists} ≤ 0,

and according to Theorem 1.5.1 in [5], the function q is analytic in C+.

Lemma 5.3.9. The function r̃ : (0,∞)→ L1(Rd) with r̃(s) :=
∞́

0
e−stS(t)f dt is analytic

in C
(
π
2 + ε′′

)
with ε′′ > 0 from Lemma 5.3.7. Additionally, r̃ is the Laplace transform of

some function r analytic in C(ε′′).

To prove this result, we use the following theorem taken from [5].

Theorem 5.3.10. [5, Theorem 2.6.1] Let 0 < ζ ≤ π
2 , x ∈ R, and f : (x,∞) → L1(Rd).

The following two statements are equivalent:

• There is an analytic function g : C(ζ) → L1(Rd) such that sup
z∈C(ζ′)

||e−xzg(z)||1 < ∞

for every 0 < ζ ′ < ζ and g̃(λ) = f(λ) for all λ > x.

• The function f has an analytic extension f : x+ C
(
π
2 + ζ

)
→ L1(Rd) such that

sup
z∈x+C(π2 +ζ′)

||(z − x)f(z)||1 <∞
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for all 0 < ζ ′ < ζ.

Proof of Lemma 5.3.9. According to Lemma 5.3.4,

r̃(s) = ΓD(1)(s)
s

q(ΓD(1)(s)) (5.22)

for every s > 0. However, by Lemma 5.3.7, ΓD(1) is analytic in C
(
π
2 + ε′′

)
and fulfills

Re(ΓD(1)(z)) > 0 for every z ∈ C
(
π
2 + ε′′

)
. In addition, according to Lemma 5.3.8, the

function q also has an analytic extension to C+ such that the right-hand side of (5.22) is
well-defined for every z ∈ C

(
π
2 + ε′′

)
and analytic in this region. Hence, r̃ is analytic in

C
(
π
2 + ε′′

)
. In order to apply Theorem 5.3.10, we prove that for every 0 < ε′′′ < ε′′, we

have

sup
z∈C(π2 +ε′′′)

||zr̃(z)||1 <∞. (5.23)

Use (5.22) and (5.21) to obtain

||zr̃(z)||1 =
∣∣∣∣∣∣ΓD(1)(z)q(ΓD(1)(z))

∣∣∣∣∣∣
1
≤ |ΓD(1)(z)| ||f ||1

Re(ΓD(1)(z))

for every z ∈ C
(
π
2 + ε′′′

)
. According to Lemma 5.3.7, we can write ΓD(1)(z) = reiϕ for

some r > 0 and |ϕ| < η with η ∈
(
0, π2

)
. Then

||zr̃(z)||1 ≤ |reiϕ|
||f ||1
r cos(ϕ) = ||f ||1

cos(ϕ) ≤
||f ||1
cos(η) , (5.24)

and the supremum in (5.23) is finite. According to Theorem 5.3.10, r̃ is the Laplace
transform of a function r analytic in C(ε′′).

Lemma 5.3.11. For every f ∈ L1(Rd), the function

t 7→
tˆ

0

GV (t− u)S(u)f du

has an analytic extension to the sectorial region C(ε′′) with ε′′ from Lemma 5.3.7.

Proof. The Laplace transform of the function above is given by

∞̂

0

e−st
tˆ

0

GV (t− u)S(u)f du dt =


∞̂

0

e−stGV (t) dt



∞̂

0

e−stS(t)f dt


= G̃V (s)r̃(s)
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using the convolution rule for Laplace transforms, where r̃ is given as in Lemma 5.3.9.
Besides, as calculated in Lemma 4.1.3,

G̃V (s) = sβ−1 ∑
n∈Z

dnΓ(ind̃− β + 1)s−ind̃ = ΓD(1)(s)
s

(5.25)

for every s > 0. Hence the Laplace transform is given by

∞̂

0

e−st
tˆ

0

GV (t− u)S(u)f du dt = ΓD(1)(s)
s

r̃(s), (5.26)

which is an analytic function on C
(
π
2 + ε′′

)
according to Lemma 5.3.7 and 5.3.9. Again

we want to apply Theorem 5.3.10 to obtain the claimed result. Therefore, let x > 0.
Then the considered function has an analytic extension to x + C

(
π
2 + ε′′

)
, and we have

to show that in addition

sup
z∈x+C(π2 +ε′′′)

∣∣∣∣∣
∣∣∣∣∣(z − x)ΓD(1)(z)

z
r̃(z)

∣∣∣∣∣
∣∣∣∣∣
1
<∞ (5.27)

holds for every 0 < ε′′′ < ε′′. First note that∣∣∣∣∣
∣∣∣∣∣(z − x)ΓD(1)(z)

z
r̃(z)

∣∣∣∣∣
∣∣∣∣∣
1

= |z − x| · |z|−2|ΓD(1)(z)| · ||zr̃(z)||1

≤ |z − x| · |z|−2|ΓD(1)(z)| · ||f ||1cos(η)

with (5.24). In addition, according to Lemma 5.3.7,

|ΓD(1)(z)| ≤ C13|z|β

such that ∣∣∣∣∣
∣∣∣∣∣(z − x)ΓD(1)(z)

z
r(z)

∣∣∣∣∣
∣∣∣∣∣
1
≤ C13|z − x| · |z|β−2 · ||f ||1cos(η)

= C13
|z − x|
|z|

· |z|β−1 · ||f ||1cos(η)

≤ C13
|z|+ |x|
|z|

· |z|β−1 · ||f ||1cos(η) .

Note that |z| is bounded away from zero for every z ∈ x+ C
(
π
2 + ε′′

)
, and hence there is

a constant C18 > 0 with ∣∣∣∣∣
∣∣∣∣∣(z − x)ΓD(1)(z)

z
r(z)

∣∣∣∣∣
∣∣∣∣∣
1
≤ C18

||f ||1
cos(η)
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for every z ∈ x + C
(
π
2 + ε′′

)
. Then the supremum in (5.27) is finite, and according to

Theorem 5.3.10, the stated function is analytic in C(ε′′).

Having all this auxiliary results in mind, we can finally establish Theorem 5.3.6.

Proof of Theorem 5.3.6. We have to prove that the functions u(x, t) = S(t)u0(x) solve
the semi-fractional Cauchy problem (5.14) in the strong sense. For every u0 ∈ L1(Rd),
according to Lemma 2.3.2,

T (t)u0 = L


tˆ

0

T (x)u0 dx

+ u0,

where L is again the generator of the semigroup (T (t))t≥0. Applying the Laplace transform
to this equation yields

q(s) =
∞̂

0

e−stT (t)u0 dt

=
∞̂

0

e−st

L


tˆ

0

T (x)u0 dx

+ u0

 dt

=
∞̂

0

e−stL


tˆ

0

T (x)u0 dx

 dt+ s−1u0

for every s > 0. Using the fact that L is closed (see Lemma 2.3.2), it was shown in [10,
Proof of Theorem 3.1] that

∞̂

0

e−stL


tˆ

0

T (x)u0 dx

 dt = s−1L(q(s)) = s−1L


∞̂

0

e−stT (t)u0 dt


for every s > 0 such that

q(s) = s−1L


∞̂

0

e−stT (t)u0 dt

+ s−1u0. (5.28)

Besides, in view of Lemma 5.2.3, the function ΓD(1) : (0,∞) → (0,∞) is bijective such
that for every s > 0, there is a unique u > 0 with s = ΓD(1)(u). Inserting this in (5.28)
yields

q(ΓD(1)(u)) = ΓD(1)(u)−1L


∞̂

0

e−ΓD(1)(u)tT (t)u0 dt

+ ΓD(1)(u)−1u0
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= ΓD(1)(u)−1L
(
q(ΓD(1)(u))

)
+ ΓD(1)(u)−1u0.

Using (5.22) on both sides, we receive

u

ΓD(1)(u) r̃(u) = ΓD(1)(u)−1L

(
u

ΓD(1)(u) r̃(u)
)

+ ΓD(1)(u)−1u0,

and since L is a closed linear operator, we have
u

ΓD(1)(u) r̃(u) = u

ΓD(1)(u)2L (r̃(u)) + ΓD(1)(u)−1u0

for every u > 0. Now multiply the equation with u−2ΓD(1)(u)2 to obtain

u−1ΓD(1)(u)r̃(u) = u−1L (r̃(u)) + u−2ΓD(1)(u)u0. (5.29)

We want to apply an inverse Laplace transform to (5.29). Therefore first note that
according to (5.26), the Laplace inversion of the left-hand side is given by

tˆ

0

GV (t− y)S(y)u0 dy.

On the other hand, for every u > 0, the Laplace transform of t 7→
t́

0
GV (y) dy in u is given

by u−1G̃V (u) = u−2ΓD(1)(u) according to (5.25). Finally, in view of Lemma 5.3.9, the

function t 7→ L

(
t́

0
S(y)u0 dy

)
has Laplace transform u−1L(r̃(u)) such that (5.29) equals

tˆ

0

GV (t− y)S(y)u0 dy = L


tˆ

0

S(y)u0 dy

+
tˆ

0

GV (y) dy u0

for almost every t > 0. The function on the left-hand side is analytic in the sectorial
region C(ε′′) and thereby differentiable for every t > 0. The derivative

d

dt

tˆ

0

GV (t− u)S(u)u0 du

is the Riemann-Liouville form of the semi-fractional derivative of order β applied to t 7→
S(t)u0, and in particular, it follows that S(t)u0 ∈ Dom

((
∂

∂d,V t

)β)
. Then differentiation
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of the whole equation yields

(
∂

∂d,V t

)β
S(t)u0 = d

dt
L


tˆ

0

S(u)u0 du

+GV (t)u0.

Finally note that using the fact that L is closed, we can take the derivative inside the
generator to obtain (

∂

∂d,V t

)β
S(t)u0 = L (S(t)u0) +GV (t)u0

for almost every t > 0, where S(t)u0 ∈ Dom(L).

According to Theorem 5.3.6, we can solve quite general Cauchy problems involving a
semi-fractional time derivative. In the following, we study some special choices of the
infinitely divisible law µ and the corresponding semigroup (T (t))t≥0 with generator L.
First, choose µ as a (c 1

α , c)-semistable distribution on R for some α ∈ (0, 2)\{1} and c > 0.
Then the corresponding generator is a mixture of positive and negative semi-fractional
derivatives, and hence the corresponding semi-fractional Cauchy problem (5.14) includes
semi-fractional derivatives in time and space.

Lemma 5.3.12. (Time and space semi-fractional Cauchy problems)
Let V be an admissable function with respect to β ∈ (0, 1) and d > 1 given by (5.16) such
that (5.17) and (5.18) are satisfied. In addition, let ν be a (c 1

α , c)-semistable distribution
for some α ∈ (0, 2) \ {1} and c > 1 with Lévy-Khintchine triple [a, 0,Φ]. Thereby, choose
a as in (5.2) and let

Φ(−∞,−r) = r−αK1(log(r)) and Φ(r,∞) = r−αK2(log(r))

for every r > 0, where K1, K2 are admissable functions with respect to α and c. Denote
by x 7→ p(x, t) the densities of the corresponding Lévy process for every t > 0. Then the
functions

u(x, t) =
∞̂

0

p(x, s)h(s, t) ds (5.30)

are strong solutions to(
∂

∂d,V t

)β
u(x, t) = −D ∂α

∂c,K2x
α
u(x, t)−D ∂α

∂c,K1(−x)αu(x, t) +Gp(t)δ(x). (5.31)
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Proof. The representation of the generator L is given in Lemma 3.1.10, and with u0(x) =
δ(x), we get

S(t)u0(x) =
∞̂

0

T (s)δ(x)h(s, t) ds =
∞̂

0

p(x, s)h(s, t) ds.

The result now follows immediately from Theorem 5.3.6.

In the situation of Lemma 5.3.12, we directly identify the stochastic process governed by
equation (5.31). Therefore, denote by (A(t))t≥0 the (c 1

α , c)-semistable Lévy process with
PA(1) = ν, and as before, let (E(t))t≥0 be the inverse semistable subordinator belonging
to the (d

1
β , d)-semistable subordinator (D(t))t≥0. If we assume that A(1) and D(1) are

independent, then for the subordinated process (A(E(t)))t≥0, we have

P (A(E(t)) ≤ x) =
∞̂

0

P (A(s) ≤ x) dPE(t)(s) =
∞̂

0

xˆ
−∞

p(y, s) dy h(s, t) ds,

and with Tonelli’s theorem, we receive

P (A(E(t)) ≤ x) =
xˆ

−∞

∞̂

0

p(y, s)h(s, t) ds dy

for every x ∈ R. Differentiate this expression to obtain the density

u(x, t) =
∞̂

0

p(x, s)h(s, t) ds. (5.32)

Hence, a solution u to (5.31) is the density of (A(E(t)))t≥0, where (A(t))t≥0 and the
subordinator (D(t))t≥0 are independent. Such processes appear as limiting processes of
so-called Continuous Time Random Walks (CTRWs), which we study more generally in
the next chapter.

Example 5.3.13. We consider a concrete example of Lemma 5.3.12. Let β = 0.8, d =
e2πβ, and

V (x) = 1
20 sin(2x) + 1

15 cos(x) + 1
Γ(1− β)

admissable with respect to these parameters. Note that by this choice of V , we ensure that
(5.17) and (2.6) are satisfied. Denote by x 7→ h(x, t) the density of the inverse semistable
subordinator corresponding to these parameters. Besides, for α = 0.5 and c = eπα, let
ν be the (c 1

α , c)-semistable distribution with Lévy-Khintchine triple [a, 0,Φ] with a from
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(5.2) and

Φ(−∞,−r) = 0 and Φ(r,∞) = r−αK(log(r))

for every r > 0 and a function K admissable with respect to α and c. If x 7→ p(x, t) is the
density of the corresponding Lévy process at time t > 0, then the functions u in (5.30)
solve (

∂

∂d,V t

)β
u(x, t) = − ∂α

∂c,Kxα
u(x, t) +Gp(t)δ(x). (5.33)

Choosing

K(x) = 1
10

(1
2 sin(4x) + cos(2x)

)
+ 1

Γ(1− α) ,

we obtain an admissable function with respect to α and c. Then the corresponding solution
at time t = 1, calculated with the Matlab script given in Appendix C, is displayed in
Figure 5.8.

Figure 5.8: Solution x 7→ u(x, 1) of (5.33) at time t = 1 in Example 5.3.13.

Another important consequence of Theorem 5.3.6 is the following equation, involving an
ordinary space derivative.

Example 5.3.14. Let ν be a degenerated distribution on R with log-characteristic func-
tion Ψ(k) = ik for every k ∈ R. Then the generator of the corresponding semigroup is
given by

Lf(x) = − d

dx
f(x),
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and hence the semi-fractional Cauchy problem with u0(x) = δ(x) reads as
(

∂

∂d,V t

)β
u(x, t) = − d

dx
u(x, t) +GV (t)δ(x). (5.34)

Under the assumptions of Theorem 5.3.6, a solution to (5.34) is

u(x, t) =
∞̂

0

T (w)δ(x)h(w, t) dw =
∞̂

0

δ(x− w)h(w, t) du = h(x, t)

and therefore given by the densities of the inverse semistable subordinator.

Example 5.3.15. Let ν be a multivariate centered normal distribution with covariance
matrix Q = Id. The corresponding Lévy process (B(t))t≥0 is a Brownian motion having
densities

x 7→ p(x, t) = (2πt)− d2 e− 1
2t ||x||

2

for every t > 0. Additionally, in view of Example 2.3.5, the generator L of the semigroup
(T (t))t≥0 is given by

Lf(x) = 1
2∆f(x)

for every x ∈ Rd. Under the assumptions of Theorem 5.3.6, the semi-fractional Cauchy
problem (

∂

∂d,V t

)β
u(x, t) = 1

2∆u(x, t) +GV (t)δ(x)

is solved by

u(x, t) =
∞̂

0

p(x, w)h(w, t) dw.

Similar to (5.32), x 7→ u(x, t) is the density of B(E(t)) for every t > 0. Thereby, (E(t))t≥0

is the inverse semistable subordinator belonging to the (d
1
β , d)-semistable subordinator

with Lévy measure

Φ(−∞,−r) = 0 and Φ(r,∞) = GV (r)

for every r > 0 and (B(t))t≥0 is an independent Brownian motion.
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Continuous Time Random Walks

The semi-fractional Cauchy problem (5.14) analyzed and solved in the previous section
offers the opportunity to model log-periodic disturbed anomalous diffusion with an ad-
ditional long-time memory effect. However, for a better understanding as well as for
applications, a description of the underlying process on a microscopic scale is undoubt-
edly an advantage. Such a representation is offered by Continuous Time Random Walks
(CTRWs), initially introduced by Montroll and Weiss ([102] and [123]). These models
generalize a classical random walk by additionally considering random waiting times be-
tween two consecutive jumps. CTRWs have not only been studied extensively in different
settings but also have been successfully applied to many applications in physics, biology,
or finance (see [73] or [99] and the references cited therein for an overview).

In the simplest setting of a so-called uncoupled CTRW, we consider waiting times modeled
by i.i.d. random variables (Jn)n∈N and jumps described by i.i.d. random variables (Xn)n∈N
independent of (Jn)n∈N. If

N(t) := max{n ≥ 0 :
n∑
j=1

Jj ≤ t}

denotes the number of jumps until time t > 0, then we study the CTRW ∑N(t)
j=1 Xj. This

process models the position of a particle at time t > 0, which starts its movement in
the origin at time t = 0. Dependent on the choice of (Jn)n∈N and (Xn)n∈N, the CTRW
converges to a limit process under an appropriate scaling. In the previous chapter, we
already met such a limiting process. Therein, the process (A(E(t)))t≥0, whose densities
solve the time and space semi-fractional Cauchy problem (5.31), is the limit process of
an uncoupled CTRW. In this particular case, X1 lies in the domain of semistable attrac-
tion of A(1) and J1 lies in the domain of semistable attraction of the subordinator D(1),
which generates the inverse semistable subordinator (E(t))t≥0. Note that characteristi-
cally the microscopic behavior is connected with the semi-fractional differential equation
in the way that the densities of the limiting process provide solutions to this very equation.

However, in general, many different types of limiting processes can appear, and hence this
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chapter is devoted to studying general CTRW limits for random variables in the domain
of semistable attraction. Thereby, we not only investigate the simpler case of uncoupled
CTRW but also allow arbitrary dependencies between jumps and waiting times. After-
ward, we analyze the densities of the limit process in Section 6.2. That way, we extend
the possibilities to model anomalous diffusion on a microscopic scale to the situation of
dependent jumps and waiting times.

6.1 Limit theorems
Primarily, to talk about process limits, we need to introduce a proper framework, which
we define in terms of sample paths. Note that we are dealing with stochastic processes
having càdlàg paths; these are right-continuous paths such that left-hand limits exist.
Hence, we consider the space D([0,∞),Rd) of all càdlàg functions f : [0,∞) → Rd and
endow this space with the J1-topology, originally introduced by Skorokhod [130]. For the
construction of the J1-topology, first consider a finite domain [0, T ]. Then the J1-topology
on D([0, T ],Rd) is given as follows: Let Λ be the set of all strictly increasing functions
λ : [0, T ] → [0, T ] such that λ and its inverse λ−1 are continuous. If Id is the identity
mapping, then for f, g ∈ D([0, T ],Rd)

dJ1(f, g) = inf
λ∈Λ
{||f(λ)− g||∞ ∨ ||λ− Id ||∞},

where a ∨ b = max{a, b}. We extend the topology to D([0,∞),Rd) by assuming that
a sequence (fn)n∈N in D([0,∞),Rd) converges to f ∈ D([0,∞),Rd) if the corresponding
restrictions to [0, T ] converge in D([0, T ],Rd) for every continuity point T of f . Note that
this topology seems more suitable for càdlàg functions than, for example, the topology
introduced by the maximum norm since it allows functions to be close even if they jump
at slightly different times. For details on Skorokhod spaces and topologies, we refer to
the monograph [147].

In this framework, we study a CTRW constructed in the subsequent way. A particle
is placed at the origin of Rd at time t = 0. The particle jumps randomly, where the
jumps are modeled by i.i.d. random variables (Xj)j∈N. Then the position after n jumps is
given by S(n) := ∑n

j=1 Xj. For simplicity, let S(t) := S(btc) for any t > 0. Additionally,
the jumps appear not constantly but only after random waiting times described by i.i.d.
random variables J1, J2, . . . > 0. With T (0) := 0 and T (n) := ∑n

j=1 Jj for n ∈ N, we
denote the time of the n-th jump. Again, let T (t) := T (btc) for every t > 0. Besides, let

N(t) := max{n ≥ 0 : T (n) ≤ t}

describe the number of jumps until time t > 0. It follows immediately that

{N(ti) ≥ si, i = 1, . . . ,m} = {T (si) ≤ ti, i = 1, . . . ,m} (6.1)

for every 0 < t1 < . . . < tm and s1, . . . , sm > 0 and m ∈ N. Now the process
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S(N(t)) = ∑N(t)
j=1 Xj is a CTRW, which models the position of the particle at time t > 0.

For this thesis, we assume that the random pairs (Xj, Jj)j∈N are i.i.d. random variables.
However, we explicitly allow arbitrary dependence between Xj and Jj. If Xj and Jj are
independent, the random walk is called uncoupled. In all other cases, we obtain a so-
called coupled CTRW.

Based on our motivation to model log-periodically disturbed anomalous diffusion, we
study limit theorems for particular choices of (Xn)n∈N and (Jn)n∈N. More precisely, we
assume that J = J1 lies in the domain of semistable attraction of some (d

1
β , d)-semistable

distribution µ. Note that here, d is the parameter of the semistable distribution and
not the space dimension. However, the respective context clarifies the meaning of the
parameter. For the random variable X1, we go a step further and only assume that
X = X1 lies in the strict domain of operator semistable attraction, which is defined as
follows. Let L(Rd) denote the set of all linear operators A : Rd → Rd. If there are
linear operators An ∈ L(Rd) and an increasing sequence of positive integers (kn)n∈N with
kn →∞ and kn+1

kn
→ c > 1 such that

An
kn∑
j=1

Xj
d→ Y (6.2)

for a full random variable Y , then X1 lies in the strict domain of operator semistable
attraction of Y ([91, Definition 3.3.20]). Besides, at least for large values of n, we have
An ∈ GL(Rn) due to the fullness assumption of Y , where GL(Rd) is the set of invertible
linear operators ([91, Lemma 3.3.21]). If (6.2) holds, then Y has a strictly operator
semistable distribution, meaning that for ν = PY , it holds that

ν∗c = (cEν)

for some E ∈ L(Rd) ([91, Theorem 7.1.10]). In analogy to the semistable case, we say
that Y is strictly (cE, c)-operator semistable. Necessarily, the real parts of the eigen-
values of E are contained in the set

[
1
2 ,∞

)
(compare [91, Theorem 7.1.10]) and thus

E ∈ GL(Rd). Note that in the special case E = 1
α

Id, the random variable X1 lies in the
strict domain of semistable attraction of some (c 1

α , c)-semistable distribution. However,
to prove limit theorems for the coupled case, it is not sufficient to assume a particular
limiting behavior for both processes separately, but we need to impose some conditions
on the joint distribution. Involving the assumptions above, we study the following setting.

We assume that there are sequences of linear operators (An)n∈N ⊂ GL(Rd) and (an)n∈N ⊂
R+ as well as sequences (kn)n∈N, (hn)n∈N of natural numbers with kn ↑ ∞, hn ↑ ∞ and

kn+1

kn
→ c > 1 and hn+1

hn
→ d > 1
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for some c > 1 and d > 1, such thatAn bkntc∑
j=1

Xj,
1
an

bhntc∑
j=1

Jj

 d→ (A(t), D(t)), (6.3)

for every t > 0 as n→∞ in the J1-topology onD([0,∞),Rd×[0,∞)), where (A(t), D(t))t≥0
is a stochastic process such that P(A(1),D(1)) is full.

Remark 6.1.1. Note that by projection onto the first components, X = X1 lies in the do-
main of the strictly (cE, c)-operator semistable distribution A(1). Similarly, by projection
onto the second component, J = J1 lies in the domain of semistable attraction of D(1).
Since J1 > 0, the process (D(t))t≥0 has non-decreasing paths almost surely and hence is
a semistable subordinator. Then D(1) necessarily has a (d

1
β , d)-semistable distribution

for some β ∈ (0, 1) and d > 1 (compare Theorem 5.2.1). Besides, it follows from Section
5.2 that (D(t))t≥0 has even strictly increasing paths almost surely, corresponding to a
non-finite Lévy measure on the positive real axis in the Lévy-Khintchine representation
([122, Theorem 21.3]).

In general, assumption (6.3) is hard to verify and is challenging to handle due to the
different number of terms in the individual components. Furthermore, we cannot ensure
that the resulting process is a Lévy process, which additionally complicates the calcula-
tion. For this reason, we restrict our attention to two particular cases.

First, consider the uncoupled case, in which X and J are independent. Then the joint
convergence in (6.3) is equal to the convergence of the individual components

An

bkntc∑
j=1

Xj
d→ A(t) and a−1

n

bhntc∑
j=1

Jj
d→ D(t)

in the J1-topology on D([0,∞),Rd) and D([0,∞), [0,∞)) respectively. Furthermore,
(A(t))t≥0 and (D(t))t≥0 are (operator) semistable Lévy processes, and with the indepen-
dence of the components, the limiting process (A(t), D(t))t≥0 is a Lévy process likewise.
We aim to show that we obtain joint convergence with an equal number of terms in both
components in (6.3) by proceeding to particular subsequences. Therefore we use the the-
ory of regular variation, which proved to be a powerful tool in the theory of stochastic
process limits. The subsequent definition of regularly varying sequences and functions is
taken from [91, Definition 4.1.1, Definition 4.2.8].

Definition 6.1.2. (Regularly varying sequences and functions)
A sequence (xn)n∈N of positive real numbers is regularly varying with index λ ∈ R if

xbtnc
xn
→ tλ

for every t > 0 as n → ∞. Similarly, a sequence of linear operators (An)n∈N ⊂ GL(Rd)
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varies regularly with index E ∈ L(Rd) if

AbtncA
−1
n → tE

for every t > 0 as n→∞. Finally, a function f : [0,∞)→ GL(Rd) varies regularly with
index E ∈ L(Rd) if

f(tx)f(x)−1 = tE

for every t > 0 as x→∞.

According to [91, Corollary 4.2.15] in combination with [16, III, Semistable Distributions,
Theorem 2.1], there is a sequence of positive real numbers (bn)n∈N regularly varying with
index 1

β
such that an = bhn for every n ∈ N. Besides, by defining b(x) = bbxc, we extend

the sequence (bn)n∈N to a function b : [1,∞) → (0,∞) regularly varying with the same
index. Hence (6.3) reads asAn bkntc∑

j=1
Xj, b(hn)−1

bhntc∑
j=1

Jj

 d→ (A(t), D(t)) (6.4)

for every t > 0 in the J1-topology on D([0,∞),Rd × [0,∞)).

Remark 6.1.3. (Asymptotic inverse function)
According to [127, p. 21], there is an asymptotic inverse function b← of b; this is

lim
x→∞

b(b←(x))
x

= lim
x→∞

b←(b(x))
x

= 1.

In the following, for functions f, g : [A,∞)→ R with A ≥ 0, we write

f ∼ g ⇔ lim
x→∞

f(x)
g(x) = 1

to denote asymptotic equivalence. Additionally, the function b← is regularly varying with
index β. One possible choice of b← is to take the generalized inverse function

b−1(x) := inf{y ∈ [1,∞) : b(y) > x}.

We define γ : (0,∞)→ (0, 1] by

γ(x) := x

hn

for hn−1 < x ≤ hn, n ∈ N, with h0 := 0. The following lemma is an essential tool to
obtain the same number of terms in the assumption of joint convergence.

Lemma 6.1.4. There is a sequence (xn)n∈N ⊂ [1,∞) and a version of the asymptotic
inverse function b← of b such that
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(i) xn ↑ ∞ as n→∞,

(ii) γ (b←(xn))→ r as n→∞ for some r ∈ [d−1, 1], and

(iii) there is another sequence (un)n∈N of natural numbers with b←(xn) = kun for every
n ∈ N.

Proof. Define yn := b(kn) for every n ∈ N. Since kn ↑ ∞ and b(n) ↑ ∞ as n → ∞, it
follows that yn ↑ ∞. In addition,

b←(yn) = b←(b(kn)) ∼ kn

as n → ∞. Now the asymptotic inverse function b← is unique only up to asymptotic
equivalence such that we can choose b← fulfilling b(yn) = kn for every n ∈ N. Then

γ (b←(yn)) = γ(kn).

The sequence (γ(kn))n∈N is bounded, and according to the Bolzano-Weierstrass theorem,
there is a convergent subsequence (γ(kun))n∈N. The sequence (xn)n∈N with xn := yun is
the sequence we were searching for.

Lemma 6.1.5. Let (xn)n∈N and (un)n∈N be the sequences in Lemma 6.1.4. In the uncou-
pled case, the convergence in (6.3) yields

bkun tc∑
j=1

(
AunXj, x

−1
n Jj

)
d→ (A(t), r−

1
βD(rt)) (6.5)

for every t > 0 as n→∞ in the J1-topology on D([0,∞),Rd× [0,∞)), where r ∈ [d−1, 1]
is the limit of γ (b←(xn)) in Lemma 6.1.4.

Proof. Since X and J are independent, it is sufficient to study the convergence of the
individual components. The convergence of the first component follows immediately from
(6.3). For the second component, note that for fixed t > 0,

x−1
n

bkun tc∑
j=1

Jj = x−1
n T (kunt) = x−1

n T (b←(xn)t)

using the properties of the sequence (un)n∈N from Lemma 6.1.4. Now for every n ∈ N,
there is p(xn) ∈ R such that

b←(xn) = hp(xn)γ(b←(xn)). (6.6)

Since b←(xn) ↑ ∞ as n→∞ we also have p(xn) ↑ ∞ as n→∞. Then we obtain

x−1
n

bkun tc∑
j=1

Jj = x−1
n T (hp(xn)γ(b←(xn))t) = b(hp(xn))

xnb(hp(xn))
T (hp(xn)γ(b←(xn))t).
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In view of (6.6), we receive the convergence

b(hp(xn))
xn

∼
b(hp(xn))
b(b←(xn))

= b(hp(xn))
b(hp(xn)γ(b←(xn)))

→ r−
1
β

as n→∞ using the regular variation of b and the convergence γ(b←(xn))→ r. Then for
every t > 0, we find

x−1
n

bkun tc∑
j=1

Jj = b(hp(xn))
xnb(hp(xn))

bhp(xn)γ(b←(xn))tc∑
j=1

Jj
d→ r−

1
βD(rt)

in the J1-topology on D([0,∞), [0,∞)) in view of (6.4).

Before we formulate a CTRW limit theorem, we present a limit theorem for the number
of jumps (N(t))t≥0.

Lemma 6.1.6. (Limit theorem for the number of jumps - Uncoupled case)
Let (xn)n∈N and (un)n∈N be the sequences from Lemma 6.1.4. In the uncoupled case, we
obtain

b←(xn)−1N(xnt) d→ r−1E(r
1
β t)

for every t > 0 as n→∞ in the J1-topology on D([0,∞), [0,∞)).

Proof. First, we show that the above convergence holds for the finite-dimensional marginal
distributions. So let 0 < t1 < t2 < . . . < tm and s1, s2, . . . , sm > 0. Then

P (b←(xn)−1N(xntk) ≤ sk , k = 1, . . . ,m) = P (N(xntk) ≤ b←(xn)sk , k = 1, . . . ,m)
= P (N(xntk) < bb←(xn)skc+ 1 , k = 1, . . . ,m)

since N only takes integer values. Using (6.1), we have

P (b←(xn)−1N(xntk) ≤ sk , k = 1, . . . ,m) = P (T (bb←(xn)skc+ 1) > xntk , k = 1, . . . ,m)

= P

(
T (bb←(xn)skc+ 1)

xn
> tk , k = 1, . . . ,m

)
.

Note that for every k = 1, . . . ,m

x−1
n T (bb←(xn)skc+ 1) = x−1

n T (bkunskc) + x−1
n Jbkunskc+1

for the sequence (un)n∈N from Lemma 6.1.4. In addition, xn → ∞ as n → ∞ such that
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x−1
n Jbkunskc+1

p→ 0, and from Lemma 6.1.5, we obtain

P (x−1
n T (bkunskc) > tk , k = 1, . . . ,m)→ P (r−

1
βD(rsk) > tk , k = 1, . . . ,m).

Hence

P (b←(xn)−1N(xntk) ≤ sk , k = 1, . . . ,m)→ P (D(rsk) > r
1
β tk , k = 1, . . . ,m)

= P (D(rsk) ≥ r
1
β tk , k = 1, . . . ,m)

= P (E(r
1
β tk) ≤ rsk , k = 1, . . . ,m)

= P (r−1E(r
1
β tk) ≤ sk , k = 1, . . . ,m)

using (5.11) since D(t) has a continuous density for every t > 0. In addition, D(t) is
strictly increasing almost surely such that the limit process r−1E(r

1
β t) has continuous

sample paths almost surely, and the process b←(xn)−1N(xntk) has monotonically increas-
ing paths. Then Theorem 3 of [23] directly yields the convergence in distribution with
respect to the J1-topology.

Now we can prove one of the main theorems of this chapter, the limit of uncoupled
CTRWs in the semistable framework. Indeed, we study two different constructions. First,
consider the case where a particle waits a random time J1 before it jumps for the first
time with height X1 and then waits for the second jump and so forth. This model
belongs to the classical CTRW described by S(N(t)). On the contrary, the particle can
jump initially at time t = 0 and then wait a random time J1 for the second jump to
appear. The latter is called Overshoot Continuous Time Random Walk (OCTRW) and is
described by S(N(t) + 1). As the following theorem shows, for the uncoupled case, both
constructions yield the same limiting process. However, in the coupled case, which we
analyze afterward, both models can result in completely different limiting processes (see
Example 6.2.7 below). For this reason, we already mention both constructions here.
Apart from càdlàg functions, we additionally deal with càglàd functions in the following.
In our setting, these are left-continuous functions f : [0,∞) → Rd such that the right-
hand limits exist. For a càdlàg function f : [0,∞) → Rd, denote by t 7→ f(t−) the
càglàd version of f . On the other hand, for a càglàd function g : [0,∞)→ Rd, denote by
t 7→ (g(t))+ the càdlàg version of g. Note that the discrepancy between both notations
seems unusual but will simplify the arguments and notation in further calculations.

Theorem 6.1.7. (CTRW and OCTRW limit theorem - Uncoupled case)
Let (xn)n∈N and (un)n∈N be the sequences in Lemma 6.1.4. In the uncoupled case, the
CTRW limit is given by

AunS(N(xnt)) d→Mr(t) := A(r−1E(r
1
β t))

for every t > 0 in the J1-topology on D([0,∞),Rd). In addition, the limit of the OCTRW
AunS(N(xnt) + 1) coincides with the CTRW limit almost surely.
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Proof. For the proof of Theorem 6.1.7, we apply a method more general than necessary.
However, the main part of the proof does not require independent components. Hence,
we can transfer the method to the coupled case we study later on.
Consider the partial sum process

(Sn(t), Tn(t)) :=
bkun tc∑
j=1

(AunXj, x
−1
n Jj).

According to Lemma 6.1.5, we have

(Sn(t), Tn(t)) d→ (A(t), r−
1
βD(rt))

as n → ∞ in the J1-topology on D([0,∞),Rd × [0,∞)). For the CTRW and OCTRW
limit processes, we apply a method of Straka and Henry in [133] based on continuous
mapping arguments. Therefore, let Du,↑ ⊂ D([0,∞),Rd × [0,∞)) be the space of all
functions (u, v) in D([0,∞),Rd × [0,∞)) such that v is unbounded and non-decreasing.
In addition, let Du,↑↑ be the space of all functions (u, v) ∈ Du,↑, which have a strictly
increasing second component. Denote by v−1 the generalized inverse of v, and consider
the functions Φ↑ : Du,↑ → D([0,∞),Rd × [0,∞)) with

Φ↑(u(t), v(t)) = ((u(v−1(t−)−))+, (v(v−1(t−)−))+)

and Ψ↑ : Du,↑ → D([0,∞),Rd × [0,∞)) with

Ψ↑(u(t), v(t)) = (u(v−1(t)), v(v−1(t))).

According to Proposition 2.3 in [133], the functions Φ↑ and Ψ↑ are continuous on Du,↑↑
with respect to the J1-topology and P (Du,↑↑) = 1. Now since (D(t))t≥0 has strictly
increasing and unbounded paths almost surely, Theorem 3.6 in [133] yields

Φ↑(Sn(t), Tn(t))→ Φ↑(A(t), r−
1
βD(rt)) (6.7)

and

Ψ↑(Sn(t), Tn(t))→ Ψ↑(A(t), r−
1
βD(rt)). (6.8)

We analyze the components of Φ↑ and Ψ↑ in (6.7) and (6.8) separately. Note that in [44,
Theorem 1], it was shown that

T−1
n (t) = inf{s ≥ 0 : Tn(s) > t}

= sup{s ≥ 0 : Tn(s) ≤ t}
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such that

T−1
n (t) = sup

s ≥ 0 : x−1
n

bkunsc∑
j=1

Jj ≤ t


= sup

s ≥ 0 :
bkunsc∑
j=1

Jj ≤ xnt


= k−1

un sup

s ≥ 0 :
bsc∑
j=1

Jj ≤ xnt


= k−1

un

max

n ∈ N0 :
n∑
j=1

Jj ≤ xnt

+ 1


= k−1
un (N(xnt) + 1).

Then the first component of Ψ↑(Sn(t), Tn(t)) is given by

Sn(T−1
n (t)) = Aun

bkunk
−1
un (N(xnt)+1)c∑
j=1

Xj

= AunS(N(xnt) + 1).

To analyze the first component of the limit, note that(
r−

1
βD(rt)

)−1
= inf{s ≥ 0 : r−

1
βD(rs) > t}

= inf{s ≥ 0 : D(rs) > r
1
β t}

= r−1 inf{s ≥ 0 : D(s) > r
1
β t}

= r−1E(tr
1
β ) (6.9)

such that by (6.8), we obtain

AunS(N(xnt) + 1) d→ Or(t) := A(r−1E(tr
1
β )).

Here we only use the convergence of the first component since it already yields the claimed
result. We deal with Φ↑ similarly. The càglàd version of the generalized inverse function
T−1
n is given by

T−1
n (t−) = k−1

un (N(xnt−) + 1)

such that the first component of Φ↑(Sn(t), Tn(t)) equals

(Sn(T−1
n (t−)−))+ = (Sn(k−1

un (N(xnt−) + 1)−))+.
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Now for every t > 0,

Sn(t−) = lim
s↑t

Aun

bkunsc∑
j=1

Xj = lim
s↑t

Aun

dkunse−1∑
j=1

Xj = Aun

dkun te−1∑
j=1

Xj

such that

(Sn(T−1
n (t−)−))+ =

Aun dN(xnt−)+1e−1∑
j=1

Xj


+

=
Aun dN(xnt−)e∑

j=1
Xj


+

= Aun

N(xnt)∑
j=1

Xj

= AunS(N(xnt)).

With (6.9), the first component of the limit in (6.7) is given by

(A(r−1E(tr
1
β−)−))+ = (A(r−1E(tr

1
β )−))+

since (E(t))t≥0 has continuous sample paths almost surely. Then

AunS(N(xnt)) d→Mr(t) := (A(r−1E(tr
1
β )−))+

in the J1-topology on D([0,∞),Rd).
Up to this point, the proof works without the additional assumption of independence.
Next, we show that the OCTRW and CTRW limit processes above are equal almost
surely if X and J are independent. In this case, (A(t))t≥0 and (r−

1
βD(rt))t≥0 are inde-

pendent as well, and hence the processes have no simultaneous jumps almost surely. To
show equality, we evaluate the càglàd version of (Or(t))t≥0 and argue that this version
coincides with A(r−1E(tr

1
β )−) almost surely. The càglàd version of (Or(t))t≥0 is given by

lim
s↑t

A(r−1E(sr
1
β )). Now (E(t))t≥0 is non-decreasing almost surely such that

lim
s↑t

A(r−1E(sr
1
β )) =

A(r−1E(tr
1
β )−) if E(tr

1
β ) > E(ur

1
β ) for all u < t

A(r−1E(tr
1
β )) otherwise.

In the second case, r
1
βD(rt) has a jump in r−1E(tr

1
β ). Then due to our assumption, with

probability one A(t) has no jump in r−1E(tr
1
β ) such that we can write

lim
s↑t

A(r−1E(sr
1
β )) = A(r−1E(tr

1
β )−)almost surely

in both cases. Hence, the limiting processes coincide almost surely.
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We want to name some special case of the above theorem.

Example 6.1.8. (Special cases of the uncoupled CTRW limit)

1. If r ∈ {d−1, 1}, then due to the semi-selfsimilarity of (E(t))t≥0 (see Lemma 5.2.4),
we have

AunS(N(xnt)) d→Mr(t) = A(E(t)),

in the J1-topology on D([0,∞),Rd).

2. If r ∈ [d−1, 1] can be written as r = c−k for some k ∈ N0, then

Mr(t) = A(ckE(tc−
k
β )) = c

k
αA(E(tc−

k
β ))

using the semi-selfsimilarity of (A(t))t≥0.

3. If the random waiting times J1, J2, . . . belong to the strict domain of attraction of
some stable law, then the inverse stable subordinator (E(t))t≥0 is selfsimilar with
index β (see Lemma 5.2.4). Consequently, the limiting process in Theorem 6.1.7 is
given by

Mr(t) = A(r−1E(tr
1
β )) = A(E(t))

for every t > 0.

4. If the random variables X1, X2, . . . modeling the jumps are chosen in the strict
domain of attraction of some stable law, then (A(t))t≥0 is selfsimilar with index 1

α
,

and we obtain

AunS(N(xnt)) d→Mr(t) = r−
1
αA(E(tr

1
β ))

in the J1-topology on D([0,∞),Rd).

After studying uncoupled CTRWs, we extend our considerations to coupled cases, where
we allow arbitrary dependencies between X and J in (6.3). As already mentioned, for
general sequences (kn)n∈N and (hn)n∈N, the different number of terms in the individual
components in (6.3) causes difficulties, and we therefore assume that kn = hn for every
n ∈ N, which yields

bkntc∑
j=1

(AnXj, a
−1
n Jj) d→ (A(t), D(t)) (6.10)

for every t > 0 in the J1-topology on D([0,∞),Rd × [0,∞)). Note that in this case,
the limiting process (A(t), D(t))t≥0 is operator semistable and hence a Lévy process.
Consequently, (X, J) is in the strict domain of attraction of the semistable Lévy process.
Using the previous case, we obtain the following limit theorem for the number of jumps.
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Lemma 6.1.9. (Limit theorem for the number of jumps - Coupled case)
Assume that hn = kn for every n ∈ N. Then

k−1
n N(ant) d→ E(t)

for every t > 0 as n→∞ in the J1-topology on D([0,∞), [0,∞)).

Proof. We want to adapt the proof of the corresponding limit theorem in the uncoupled
case. First, note that the assumption of uncoupled components was not used in the proof
of Lemma 6.1.6. Instead, we only needed the representation (6.5), where the sequences
(un)n∈N and (xn)n∈N as well as r ∈ [d−1, 1] are given by Lemma 6.1.4. However, in the
coupled case with hn = kn, we can equally write

bkntc∑
j=1

(AnXj, b(kn)−1Jj) d→ (A(t), D(t)),

where b is a regularly varying function with index 1
β

such that an = b(kn) for every
n ∈ N. Choosing un = n and xn = b(kn) for every n ∈ N, we have xn ↑ ∞ as n → ∞,
b←(xn) = kn = kun for a particular choice of the asymptotic inverse function b←, and

γ(b←(xn)) = γ(kn) = γ(hn) = 1

for every n ∈ N. Thus, we can display the joint convergence (6.10) in the form (6.5) and
the proof of Lemma 6.1.6 yields

k−1
n N(ant) = k−1

n N(b(kn)t) = b←(xn)−1N(xnt) d→ E(t)

for every t > 0 as n→∞ in the J1-topology.

Using a similar construction, we likewise gain a limit theorem for the coupled CTRW and
OCTRW.

Theorem 6.1.10. (CTRW and OCTRW limit theorem - Coupled case)
Assume that hn = kn for every n ∈ N. For every t > 0, the limit of the coupled CTRW is
given by

AnS(N(ant)) d→M(t) := (A(E(t)−))+,

whereas for the OCTRW, we obtain

AnS(N(ant) + 1) d→ O(t) := A(E(t))

in the J1-topology on D([0,∞),Rd).

Proof. Using the construction in the proof of Lemma 6.1.9, the proof of Theorem 6.1.7
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directly yields the OCTRW limit

AunS(N(xnt) + 1) d→ A(r−1E(tr
1
β ))

for every t > 0 in the J1-topology on D([0,∞),Rd). Inserting un = n, xn = b(kn) = an as
well as r = 1, we obtain the claimed result. Similarly, for the CTRW, the limit is given
by

AnS(N(ant)) = AunS(N(xnt)) d→ (A(r−1E(tr
1
β )−))+ = (A(E(t)−))+

for every t > 0 in the J1-topology.

Example 6.1.11. To close this section, we study a concrete example of CTRWs and
OCTRWs. Let Y be a disturbed Pareto distribution as introduced in Example 2.2.7 with
index α = 3

2 , c = eα, and perturbation

K(x) = 5 + sin(2πx)

admissable with respect to these parameters. Now model the jumps with the centered
variable X = Y − E[Y ], where with α > 1, the expected value exists. According to
Example 2.2.7, the sum c−

n
α
∑bcnc
j=1 Xj converges to the semistable distribution with log-

characteristic function

Ψ(k) = − c5(−ik)αη1(log(k)),

where η1 arises from the Fourier coefficients (cn)n∈N of K as

η1(x) =
∑
n∈Z

cnΓ(inc̃− α + 1)e−inc̃x.

Furthermore, we model the waiting times Jj, j ∈ N, independent of the jumps, to be
disturbed Pareto random variables with index β = 0.75, d = e2β = c, and perturbation

V (x) = 6 + cos(πx)

admissable with respect to β and d. In Figure 6.1, a path simulation of

S(t) =
btc∑
j=1

Xj and T (t) =
btc∑
j=1

Jj (6.11)

for t ∈ (0, 1000] is shown. Since we study the uncoupled scenario here, the limit dis-
tribution of the OCTRW equals those of the CTRW (compare Theorem 6.1.7). For
t ∈ (0, 1000], a typical path of both processes is shown in Figure 6.2. The zoomed cut on
the right-hand side displays that the OCTRW is by definition always one jump ahead.
Nevertheless, in view of the picture on the large scale on the left-hand side of Figure 6.1,
it seems reasonable that both models yield the same limiting process. The Matlab code
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for this simulation is inspired by the fractional case displayed in [91, Section 5.2] and is
attached in Appendix C.

Figure 6.1: Simulation of the cumulative sum S(t) (left) and T (t) (right) in (6.11) for
t ∈ (0, 1000] in Example 6.1.11.

Figure 6.2: Path simulation of the CTRW (blue solid line) and the OCTRW (green dashed
line) in Example 6.1.11 on a large scale (left) and zoomed to the first jumps (right).

Similarly, one can consider the OCTRW and CTRW limit, where the waiting times
J, J1, . . . are constructed as above and the jumps are chosen as X = J . This case models
a totally coupled scenario, and here, the limiting processes show a completely different
path behavior. We analyze their difference in detail in the following section (compare
Example 6.2.7). However, studying a path simulation as displayed in Figure 6.3, one may
already conjecture a discrepancy between both limits.
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Figure 6.3: Path simulation of the coupled CTRW (blue solid line) and the OCTRW
(green dashed line) in Example 6.1.11.

6.2 Limit distributions
To further analyze and describe the limit processes of the CTRW and the OCTRW, we
study the corresponding distributions and the thereby deduced densities. As a special
case, we regain the connection between uncoupled CTRWs and semi-fractional Cauchy
problems displayed in Section 5.3. However, we are able to consider the far more complex
situation of coupled CTRWs/OCTRWs likewise. Especially the case of totally coupled
waiting times and jumps delivers interesting results. The proofs in this section are in-
spired by the works of Julewicz, Kern, Meerschaert and Scheffler (e.g., see [18], [17], or
[61]) dealing with densities of CTRW and OCTRW limits in the operator stable case.

In the previous section, we distinguished the two cases of independent random variables
X and J and the coupled case with hn = kn for every n ∈ N. To avoid repetitions, we
summarize both cases as suggested in the proof of Lemma 6.1.9. This is, we have

AunS(N(xnt))→Mr(t) = (A(r−1E(tr
1
β )−))+

and

AunS(N(xnt) + 1)→ Or(t) = A(r−1E(tr
1
β ))

for every t > 0 in the J1-topology on D([0,∞),Rd), where the sequences (xn)n∈N and
(un)n∈N are given as in Lemma 6.1.4.
The aim of this section is to develop an integral representation for the densities of the limit-
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ing processes in terms of the joint density and its Lévy measure using Fourier and Laplace
transforms. In [18, Lemma 2.1], it was shown that for the Lévy process (A(u), D(ru))u≥0,
there exists a uniquely determined continuous function Λ : Rd × [0,∞) → {z ∈ C :
Re(z) ≥ 0} such that the Fourier-Laplace transform of P(A(u),D(ru)) is given by

P(A(u),D(ru))(k, s) :=
ˆ

Rd

∞̂

0

ei〈k,x〉e−st P(A(u),D(ru))(dx, dt) = e−uΛ(k,s)

for every k ∈ Rd and s ≥ 0. We call Λ the log-Fourier-Laplace transform (log-FLT) of
(A(1), D(r)). Thereby, Λ has the representation

Λ(k, s) = i〈a, k〉+ bs+ 〈k,Qk〉+
ˆ

Rd×[0,∞)\{(0,0)}

(
1− ei〈k,x〉e−st + i〈k, x〉

1 + ||x||2

)
Φ(A(1),D(r))(dx, dt)

(6.12)

for some a ∈ Rd, b ≥ 0, a non-negative definite matrix Q ∈ Rd×d, and a Lévy measure
Φ(A(1),D(r)) on Rd× [0,∞)\{(0, 0)}. Note that more precisely, in [18], the authors studied
operator stable processes. However, for the proof, the authors used arguments in [115],
which similarly hold for this more general case. Due to

Re(Λ(k, s)) = bs+ 〈k,Qk〉+
ˆ

Rd×[0,∞)\{(0,0)}

(
1− Re

(
ei〈k,x〉e−st

))
Φ(A(1),D(r))(dx, dt)

= bs+ 〈k,Qk〉+
ˆ

Rd×[0,∞)\{(0,0)}

(1− cos(〈k, x〉)e−st) Φ(A(1),D(r))(dx, dt),

the log-FLT transform has even strictly positive real part for every s > 0. The first two
terms are non-negative since b ≥ 0 and Q is non-negative definite. Besides, due to our
fullness assumption on P(A(1),D(r)) in the previous section, the Lévy measure is full, and
hence the integral is strictly positive for every s > 0.

Consequently, the log-FLT directly yields the already known Fourier and Laplace expo-
nents of PA(1) and PD(r) in the following sense. By considering k = 0, we obtain the
Laplace transform of D(r) with Laplace exponent

Λ(0, s) = bs+
ˆ

(0,∞)

(
1− e−st

)
Φ(A(1),D(r))(Rd, dt)

= bs+
ˆ

(0,∞)

(
1− e−st

)
dΦD(r)(t)

= ΓD(r)(s) (6.13)

for every s > 0, where ΦD(r) is the Lévy measure of D(r). Due to our construction in
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the previous section, (D(t))t≥0 is the semistable subordinator without drift, and hence we
have b = 0. Similarly, we receive the log-characteristic function of A(1) by considering
s = 0, this is

Λ(k, 0) = i〈a, k〉+ 〈k,Qk〉+
ˆ

Rd\{0}

(
1− ei〈k,x〉 + i〈k, x〉

1 + ||x||2

)
Φ(A(1),D(r))(dx, (0,∞))

= i〈a, k〉+ 〈k,Qk〉+
ˆ

Rd\{0}

(
1− ei〈k,x〉 + i〈k, x〉

1 + ||x||2

)
dΦA(1)(x)

= ΨA(1)(k) (6.14)

for every k ∈ Rd, where ΨA(1) is the Lévy measure in the Lévy-Khintchine triple of A(1).
In contrast to the previous chapters, we subscript the log-characteristic function with A
to clarify the affiliation of the function to the process.
Recall that we assume (Xn, Jn)n∈N to be i.i.d. random variables distributed as (X, J).
However, we allow arbitrary dependencies between X and J . Then a multidimensional
generalization of [61, Lemma 4.3] shows that the Fourier-Laplace transform of the CTRW
or OCTRW is given by the subsequent formula.

Lemma 6.2.1. The Fourier-Laplace transform of the distribution of S(N(t) + 1) is given
by

∞̂

0

e−stP̂S(N(t)+1)(k) dt = 1
s

P̂X(k)− P (X,J)(k, s)
1− P (X,J)(k, s)

,

whereas for the CTRW, we obtain
∞̂

0

e−stP̂S(N(t))(k) dt = 1
s

1− P̃J(s)
1− P (X,J)(k, s)

for every k ∈ Rd and s > 0.

Using this result and the convergence of S(N(t) + 1) and S(N(t)) in Theorem 6.1.7 and
6.1.10, we gain the following result for the Fourier-Laplace transforms of the distribution
of the limiting processes.

Lemma 6.2.2. (Fourier-Laplace transform of the OCTRW and CTRW limit)
The Fourier-Laplace transform of the distribution POr(t) of the OCTRW limit is given by

∞̂

0

e−stP̂Or(t)(k) dt = 1
s

Λ(k, r−
1
β s)−ΨA(1)(k)

Λ(k, r−
1
β s)

, (6.15)
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whereas for the distribution PMr(t) of the CTRW limit, we obtain

∞̂

0

e−stP̂Mr(t)(k) dt = 1
s

ΓD(r)(r−
1
β s)

Λ(k, r−
1
β s)

(6.16)

for every k ∈ Rd and s > 0.

Proof. Recall from the previous section that

(AunS(kun), x−1
n T (kun)) =

kun∑
j=1

(
AunXj, x

−1
n Jj

)
d→ (A(1), r−

1
βD(r))

as n → ∞, and the convergence in distribution implies convergence of the log-Fourier-
Laplace transforms. Then

kun log
(
P (X,J)(Auny, x−1

n s)
)
→ −Λ(y, r−

1
β s)

for every y ∈ Rd and s > 0. A Taylor expansion of the logarithm yields

kun(1− P (X,J)(Auny, x−1
n s))→ Λ(y, r−

1
β s). (6.17)

Especially if s = 0, (6.17) reads as

kun(1− P (X,J)(Auny, 0)) = kun(1− P̂X(Auny))
→ Λ(y, 0)
= ΨA(1)(y) (6.18)

for every y ∈ Rd, whereas y = 0 results in

kun(1− P (X,J)(0, x−1
n s)) = kun(1− P̃J(x−1

n s))

→ Λ(0, r−
1
β s)

= ΓD(1)(r−
1
β s) (6.19)

for every s > 0. First, we analyze the Fourier-Laplace transform of the OCTRW, and the
claimed result for this case follows from considering the corresponding limits. For every
s > 0 and y ∈ Rd, we find

∞̂

0

e−stP̂AunS(N(xnt)+1)(y) dt =
∞̂

0

e−stP̂S(N(xnt)+1)(Auny) dt,
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and the substitution z := xnt yields
∞̂

0

e−stP̂AunS(N(xnt)+1)(y) dt = x−1
n

∞̂

0

e−sx
−1
n zP̂S(N(z)+1)(Auny) dz.

However, according to Lemma 6.2.1, this integral is given by
∞̂

0

e−stP̂AunS(N(xnt)+1)(y) dt = 1
s

P̂X(Auny)− P (X,J)(Auny, x−1
n s)

1− P (X,J)(Auny, x−1
n s)

= kun(P̂X(Auny)− 1)− kun(P (X,J)(Auny, x−1
n s)− 1)

s kun(1− P (X,J)(Auny, x−1
n s))

.

Using the convergence in (6.17) and (6.18), we receive
∞̂

0

e−stP̂AunS(N(xnt)+1)(y) dt→ 1
s

Λ(y, r−
1
β , s)−ΨA(1)(y)

Λ(y, r−
1
β s)

for every y ∈ Rd and s > 0. On the other hand, the OCTRW converges to the limit
process (Or(t))t≥0 such that

∞̂

0

e−stP̂AunS(N(xnt)+1)(y) dt→
∞̂

0

e−stP̂Or(t)(y) dt,

which proves (6.15). We handle the CTRW limit similarly. Consider the Fourier-Laplace
transform of the CTRW, this is

∞̂

0

e−stP̂AunS(N(xnt))(y) dt =
∞̂

0

e−stP̂S(N(xnt))(Auny) dt

= x−1
n

∞̂

0

e−sx
−1
n zP̂S(N(z))(Auny) dz

for every y ∈ Rd and s > 0, where again z := xnt. In view of Lemma 6.2.1, the Fourier-
Laplace transform is given by

∞̂

0

e−stP̂AunS(N(xnt))(y) dt = 1
s

1− P̃J(x−1
n s)

1− P (X,J)(Auny, x−1
n s)

= 1
s

kun(1− P̃J(x−1
n s))

kun(1− P (X,J)(Auny, x−1
n s))
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→ 1
s

ΓD(1)(r−
1
β s)

Λ(y, r−
1
β s)

using (6.17) and (6.19). Applying the same arguments as for the OCTRW proves the
claimed result (6.16).

Using the knowledge about the log-Fourier-Laplace transforms, we characterize the dis-
tribution of the limiting processes more precisely. Therefore, let B(Rd) denote the Borel
sets of Rd and define the sets

B − x := {y − x : y ∈ B}

for any B ∈ B(Rd) and x ∈ Rd. Then the distribution of the limit process (Or(t))t≥0 of
the OCTRW can be represented as follows.

Lemma 6.2.3. (Distribution of the OCTRW limit)
For every B ∈ B(Rd) and t > 0, the limit process (Or(t))t≥0 of the OCTRW fulfills

P (Or(t) ∈ B) =
∞̂

u=0

ˆ

x∈Rd

tr
1
βˆ

τ=0

Φ(A(1),D(r))(B − x, (tr
1
β − τ,∞))P(A(u),D(ru))(dx, dτ) du,

where Φ is the Lévy measure in the log-FLT of P(A(u),D(ru)) in (6.12).

Proof. First, we show that the mappings ρ(·, t) : B(Rd)→ R with

ρ(B, t) :=
∞̂

u=0

ˆ

x∈Rd

tr
1
βˆ

τ=0

Φ(A(1),D(r))(B − x, (tr
1
β − τ,∞))P(A(u),D(ru))(dx, dτ) du

are well-defined probability measures on Rd for every fixed t > 0. Obviously, ρ(B, t) ≥ 0
for every B ∈ B(Rd) and every t > 0. In addition, Φ(A(1),D(r)) is a measure such that ρ is
σ-additive. With Tonelli’s theorem, we obtain

ρ(Rd, t) =
∞̂

u=0

ˆ

x∈Rd

tr
1
βˆ

τ=0

Φ(A(1),D(r))(Rd, (tr
1
β − τ,∞))P(A(u),D(ru))(dx, dτ) du

=
∞̂

u=0

tr
1
βˆ

τ=0

Φ(A(1),D(r))(Rd, (tr
1
β − τ,∞)) dPD(ru)(τ) du

=
∞̂

u=0

tr
1
βˆ

τ=0

ΦD(r)(tr
1
β − τ,∞) dPD(ru)(τ) du
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for every t > 0. Note that ΦD(r)(B) = rΦD(1)(B) for every B ∈ B((0,∞)) such that

ρ(Rd, t) = r

∞̂

u=0

tr
1
βˆ

τ=0

ΦD(1)(tr
1
β − τ,∞) dPD(ru)(τ) du.

Combining this result with Lemma 5.2.7, we find

ρ(Rd, t) = r

∞̂

0

h(ru, tr
1
β ) du,

where x 7→ h(x, t) is the density of the inverse semistable subordinator E(t). Substituting
y := ru, we receive

ρ(Rd, t) =
∞̂

0

h(y, tr
1
β ) dy = 1

since h is a density on (0,∞). Hence ρ is a probability measure. Now calculate the
Fourier-Laplace transform of ρ, this is

ρ(k, s) =
∞̂

t=0

ˆ

y∈Rd

e−stei〈k,y〉 ρ(dy, dt)

for every k ∈ Rd and s > 0. In order to apply Fubini’s theorem, consider

I1(k, s) : = |ρ(k, s)|

≤
∞̂

t=0

ˆ

y∈Rd

∞̂

u=0

ˆ

x∈Rd

tr
1
βˆ

τ=0

e−st Φ(A(1),D(r))(dy, (tr
1
β − τ,∞))P(A(u),D(ru))(dx, dτ) du dt.

Using Tonelli’s theorem, we obtain

I1(k, s) ≤
∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

ˆ

x∈Rd

ˆ

y∈Rd

e−st Φ(A(1),D(r))(dy, (tr
1
β − τ,∞))P(A(u),D(ru))(dx, dτ) du dt

=
∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

ˆ

x∈Rd

e−st Φ(A(1),D(r))(Rd, (tr
1
β − τ,∞))P(A(u),D(ru))(dx, dτ) du dt
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=
∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

ˆ

x∈Rd

e−stΦD(r)((tr
1
β − τ,∞))P(A(u),D(ru))(dx, dτ) du dt

=
∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

e−stΦD(r)((tr
1
β − τ,∞))P(A(u),D(ru))(Rd, dτ) du dt

=
∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

e−stΦD(r)((tr
1
β − τ,∞)) dPD(ru)(τ) du dt

for every k ∈ Rd and s > 0. Note that again we can express the integrals in terms of the
density x 7→ h(x, t) of the inverse semistable subordinator E(t) in the following way

I1(k, s) ≤
∞̂

t=0

e−str

∞̂

u=0

h(ru, tr
1
β ) du dt =

∞̂

t=0

e−st dt = 1
s
<∞

for every s > 0. Hence, we can apply Fubini’s theorem to the Fourier-Laplace transform
of ρ yielding

ρ(k, s) =
∞̂

u=0

ˆ

x∈Rd

∞̂

τ=0

ei〈k,x〉I2(k, s)P(A(u),D(ru))(dx, dτ) du,

where

I2(k, s) :=
∞̂

t=r−
1
β τ

ˆ

y∈Rd

e−stei〈k,y〉Φ(A(1),D(r))(dy, (tr
1
β − τ,∞)) dt.

First substitute v := tr
1
β − τ to obtain

I2(k, s) = r−
1
β

∞̂

v=0

ˆ

y∈Rd

e−sr
− 1
β (v+τ)ei〈k,y〉Φ(A(1),D(r))(dy, (v,∞)) dv

and write

I2(k, s) = r−
1
β

∞̂

v=0

ˆ

y∈Rd

∞̂

m=0

e−sr
− 1
β (v+τ)ei〈k,y〉1(v,∞)(m) Φ(A(1),D(r))(dy, dm) dv.
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Using Fubini’s theorem again, I2 is given by

I2(k, s) =r−
1
β

ˆ

y∈Rd

∞̂

m=0

∞̂

v=0

e−sr
− 1
β (v+τ)ei〈k,y〉1(v,∞)(m) dvΦ(A(1),D(r))(dy, dm)

=r−
1
β

ˆ

y∈Rd

∞̂

m=0

e−sr
− 1
β τ

−r 1
β

s
e−sr

− 1
β v

m
v=0

ei〈k,y〉Φ(A(1),D(r))(dy, dm)

=1
s

ˆ

y∈Rd

∞̂

m=0

e−sr
− 1
β τ

(
1− e−sr

− 1
βm

)
ei〈k,y〉Φ(A(1),D(r))(dy, dm)

=1
s
e−sr

− 1
β τ

ˆ

y∈Rd

∞̂

m=0

(
ei〈k,y〉 − 1− i〈k, y〉

1 + ||y||2

)
Φ(A(1),D(r))(dy, dm)

+ 1
s
e−sr

− 1
β τ

ˆ

y∈Rd

∞̂

m=0

(
1− e−sr

− 1
βmei〈k,y〉 + i〈k, y〉

1 + ||y||2

)
Φ(A(1),D(r))(dy, dm)

=1
s
e−sr

− 1
β τ (−ΨA(1)(k) + Λ(k, sr−

1
β ))

in view of (6.14) and (6.12). Then

ρ(k, s) = 1
s

(Λ(k, sr−
1
β )−ΨA(1)(k))

∞̂

u=0

ˆ

x∈Rd

∞̂

τ=0

ei〈k,x〉e−sr
− 1
β τ P(A(u),D(ru))(dx, dτ) du

= 1
s

(Λ(k, sr−
1
β )−ΨA(1)(k))

∞̂

u=0

e−uΛ(k,sr−
1
β ) du

= Λ(k, sr−
1
β )−ΨA(1)(k)

sΛ(k, sr−
1
β )

for every k ∈ Rd and s > 0, where we used that Re(Λ(k, s)) > 0. Hence, according
to Lemma 6.2.2, the Fourier-Laplace transform coincides with that of the limit process
(Or(t))t≥0. Note that the process (Or(t))t≥0 has càdlàg paths, and thus t 7→ POr(t) is
weakly right-continuous. To show equality of the probability measures, it is sufficient to
show that t 7→ ρ(·, t) is weakly right-continuous as well (compare [61, Lemma 4.6]). Using
the continuity theorem for Fourier transform, we prove this by showing right-continuity
of the Fourier transform. So for h > 0, consider the difference

ρ̂(k, t)− ρ̂(k, t+ h) =
ˆ

Rd

ei〈k,y〉 ρ(dy, t)−
ˆ

Rd

ei〈k,y〉 ρ(dy, t+ h).
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By defining

a1(dy, τ, h) = Φ(A(1),D(r))(dy, (tr
1
β − τ,∞))− Φ(A(1),D(r))(dy, ((t+ h)r

1
β − τ,∞)) (6.20)

and

a2(dy, τ, h) := Φ(A(1),D(r))(dy, ((t+ h)r
1
β − τ,∞)), (6.21)

we can express the difference as

ρ̂(k, t)− ρ̂(k, t+ h) = I3(k, t, h) + I4(k, t, h)

with

I3(k, t, h) =
ˆ

y∈Rd

∞̂

u=0

ˆ

x∈Rd

tr
1
βˆ

τ=0

ei〈k,y+x〉a1(dy, τ, h)P(A(u),D(ru))(dx, dτ) du

and

I4(k, t, h) = −
ˆ

y∈Rd

∞̂

u=0

ˆ

x∈Rd

(t+h)r
1
βˆ

τ=tr
1
β

ei〈k,y+x〉a2(dy, τ, h)P(A(u),D(ru))(dx, dτ) du.

Note that a1 ≥ 0 such that with Tonelli’s theorem

|I3(k, t, h)| ≤
∞̂

u=0

ˆ

x∈Rd

tr
1
βˆ

τ=0

ˆ

y∈Rd

a1(dy, τ, h)P(A(u),D(ru))(dx, dτ) du

=
∞̂

u=0

ˆ

x∈Rd

tr
1
βˆ

τ=0

a1(Rd, τ, h)P(A(u),D(ru))(dx, dτ) du

=
∞̂

u=0

tr
1
βˆ

τ=0

a1(Rd, τ, h)P(A(u),D(ru))(Rd, dτ) du

=
∞̂

u=0

tr
1
βˆ

τ=0

a1(Rd, τ, h)dPD(ru)(τ) du.

We want to consider the limit lim
h↓0

I3(k, t, h). First, we have

|a1(Rd, τ, h)| = ΦD(r)(tr
1
β − τ,∞)− ΦD(r)((t+ h)r

1
β − τ,∞) ≤ ΦD(r)(tr

1
β − τ,∞)
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and

∞̂

u=0

tr
1
βˆ

τ=0

ΦD(r)(tr
1
β − τ,∞) dPD(ru)τ du = r

∞̂

u=0

h(ru, tr
1
β ) du = 1

with the density x 7→ h(x, t) of the inverse semistable subordinator (E(t))t≥0. Then using
dominated convergence, we have

lim
h↓0
|I3(k, t, h)| ≤

∞̂

u=0

tr
1
βˆ

τ=0

lim
h↓0

a1(Rd, τ, h) dPD(ru)(τ) du.

Recall from the previous section that the tail of ΦD(r) is given by

ΦD(r)(t,∞) = rΦD(1)(t,∞) = rt−βV (log(t))

for every t > 0. Since V is a periodic, admissable function, it is continuous almost
everywhere. Then

0 ≤ lim
h↓0

a1(Rd, τ, h) = lim
h↓0

(
ΦD(r)(tr

1
β − τ,∞)− ΦD(r)((t+ h)r

1
β − τ,∞)

)
= 0

for almost every τ ∈ [0, tr
1
β ) such that the integral vanishes. Next we show that I4(k, t, h)

vanishes likewise. Using Tonelli’s theorem, we obtain

|I4(k, t, h)| ≤
∞̂

u=0

(t+h)r
1
βˆ

τ=tr
1
β

ˆ

x∈Rd

ˆ

y∈Rd

a2(dy, τ, h)P(A(u),D(ru))(dx, dτ) du

=
∞̂

u=0

(t+h)r
1
βˆ

τ=tr
1
β

a2(Rd, τ, h)P(A(u),D(ru))(Rd, dτ) du

=
∞̂

u=0

(t+h)r
1
βˆ

τ=tr
1
β

a2(Rd, τ, h) dPD(ru)(τ) du.

As in [67], define the occupation measure Wr by

Wr(B) =
∞̂

u=0

P{D(ru) ∈ B} du
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for Borel sets B ∈ B((0,∞)). Then

|I4(k, t, h)| ≤
(t+h)r

1
βˆ

τ=tr
1
β

a2(Rd, τ, h) dWr(τ).

If (Er(t))t≥0 denotes the inverse semistable subordinator belonging to (Dr(t) = D(rt))t≥0,
then according to [67, Lemma 6.1]

aˆ

0

ΦD(r)(a+ x− τ,∞) dWr(τ) = P{Dr(Er(a)) > a+ x}

such that

|I4(k, t, h)| ≤
(t+h)r

1
βˆ

τ=tr
1
β

ΦD(r)((t+ h)r
1
β − τ,∞) dWr(τ)

= P{Dr(Er((t+ h)r
1
β )) > (t+ h)r

1
β } − P{Dr(Er(tr

1
β )) > (t+ h)r

1
β }.

In [67, Corollary 6.2], it was shown that P{Dr(Er(t)) > t} = 1 for every t > 0 such that

|I4(k, t, h)| ≤ 1− P{Dr(Er(tr
1
β )) > (t+ h)r

1
β }

= P{Dr(Er(tr
1
β )) ≤ (t+ h)r

1
β }.

As shown in Proposition 5 of [67], this is a continuous function in h ≥ 0 such that with
Corollary 6.2 in [67], we receive

lim
h↓0
|I4(k, t, h)| ≤ P{Dr(Er(tr

1
β )) ≤ tr

1
β } = 0.

Hence the mapping t 7→ ρ̂(k, t) is right-continuous for every k ∈ Rd and the claimed result
follows.

Lemma 6.2.4. (Distribution of the CTRW limit)
For every B ∈ B(Rd) and t > 0, the limit process (Mr(t))t≥0 of the CTRW fulfills

P (Mr(t) ∈ B) =
∞̂

u=0

tr
1
βˆ

τ=0

ΦD(r)(tr
1
β − τ,∞)P(A(u),D(ru))(B, dτ) du.
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Proof. Again define

η(B, t) :=
∞̂

u=0

tr
1
βˆ

τ=0

ΦD(r)(tr
1
β − τ,∞)P(A(u),D(ru))(B, dτ) du

for Borel sets B ⊆ Rd and every t > 0. Then η is a probability measure for every fixed
t > 0 since with Tonelli’s theorem

η(Rd, t) =
∞̂

u=0

tr
1
βˆ

τ=0

ΦD(r)(tr
1
β − τ,∞)P(A(u),D(ru))(Rd, dτ) du

=
∞̂

u=0

tr
1
βˆ

τ=0

ΦD(r)(tr
1
β − τ,∞) dPD(ru)(τ) du

= r

∞̂

u=0

tr
1
βˆ

τ=0

ΦD(1)(tr
1
β − τ,∞)PD(ru)(dτ) du

= r

∞̂

u=0

h(ru, tr
1
β ) du

= 1

as in the proof of Lemma 6.2.3, where x 7→ h(x, t) is the density of the inverse semistable
subordinator E(t). For the Fourier-Laplace transform of η, we obtain

η(k, s) =
∞̂

t=0

ˆ

y∈Rd

e−stei〈k,y〉 η(dy, dt)

=
∞̂

t=0

ˆ

y∈Rd

∞̂

u=0

tr
1
βˆ

τ=0

e−stei〈k,y〉ΦD(r)(tr
1
β − τ,∞)P(A(u),D(ru))(dy, dτ) du dt

for every k ∈ Rd and s > 0. Again, we are allowed to use Fubini’s theorem since

∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

ˆ

y∈Rd

∣∣∣e−stei〈k,y〉ΦD(r)(tr
1
β − τ,∞)

∣∣∣ P(A(u),D(ru))(dy, dτ) du dt

=
∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

ˆ

y∈Rd

e−stΦD(r)(tr
1
β − τ,∞)P(A(u),D(ru))(dy, dτ) du dt
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=
∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

e−stΦD(r)(tr
1
β − τ,∞) dPD(ru)(τ) du dt

applying Tonelli’s theorem. Use the representation of h in (5.13) to obtain

∞̂

t=0

∞̂

u=0

tr
1
βˆ

τ=0

ˆ

y∈Rd

∣∣∣e−stei〈k,y〉ΦD(r)(tr
1
β − τ,∞)

∣∣∣ P(A(u),D(ru))(dy, dτ) du dt

=r
∞̂

t=0

∞̂

u=0

e−sth(ru, tr
1
β ) du dt

=
∞̂

t=0

e−st dt

=1
s
<∞.

Then with Fubini’s theorem, it follows that

η(k, s) =
∞̂

u=0

ˆ

y∈Rd

∞̂

τ=0

∞̂

t=r−
1
β τ

e−stΦD(r)(tr
1
β − τ,∞) dt ei〈k,y〉 P(A(u),D(ru))(dy, dτ) du.

Note that with the substitution v := tr
1
β − τ and Tonelli’s theorem, we have

∞̂

t=r−
1
β τ

e−stΦD(r)(tr
1
β − τ,∞) dt = r−

1
β

∞̂

v=0

e−s(v+τ)r−
1
β ΦD(r)(v,∞) dv

= r−
1
β

∞̂

v=0

∞̂

m=0

e−s(v+τ)r−
1
β
1(v,∞)(m) dΦD(r)(m) dv

= r−
1
β e−τsr

− 1
β

∞̂

m=0

−r 1
β

s
e−svr

− 1
β

m
v=0

dΦD(r)(m)

= e−τsr
− 1
β

s

∞̂

m=0

(
1− e−smr

− 1
β

)
dΦD(r)(m)

= e−τsr
− 1
β

s
ΓD(r)(sr−

1
β )
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together with (6.13). Hence, the Fourier-Laplace transform of η is given by

η(k, s) = ΓD(r)(r−
1
β s)

s

∞̂

u=0

ˆ

y∈Rd

∞̂

τ=0

e−τsr
− 1
β
ei〈k,y〉 P(A(u),D(ru))(dy, dτ) du

= ΓD(r)(r−
1
β s)

s

∞̂

u=0

e−uΛ(k,r−
1
β s) du

= ΓD(r)(r−
1
β s)

sΛ(k, r−
1
β s)

for every k ∈ Rd and s > 0, using that for these parameters Re(Λ(k, s)) > 0. Again,
the process Mr(t) = (A(r−1E(r

1
β t)−))+ is a càdlàg process such that as in the proof of

Lemma 6.2.3, it is sufficient to show that t 7→ η(·, t) is weakly right-continuous. For every
k ∈ Rd and t > 0

η̂(k, t)− η̂(k, t+ h) =
ˆ

x∈Rd

∞̂

u=0

tr
1
βˆ

τ=0

ei〈k,x〉ΦD(r)(tr
1
β − τ,∞)P(A(u),D(ru))(dx, dτ) du

−
ˆ

x∈Rd

∞̂

u=0

(t+h)r
1
βˆ

τ=0

ei〈k,x〉ΦD(r)((t+ h)r
1
β − τ,∞)P(A(u),D(ru))(dx, dτ) du

=
ˆ

x∈Rd

∞̂

u=0

tr
1
βˆ

τ=0

ei〈k,x〉a1(Rd, τ, h)P(A(u),D(ru))(dx, dτ) du

−
ˆ

x∈Rd

∞̂

u=0

(t+h)r
1
βˆ

τ=tr
1
β

ei〈k,x〉a2(Rd, τ, h)P(A(u),D(ru))(dx, dτ) du,

where a1 and a2 are defined as in (6.20) and (6.21). As in the proof of Lemma 6.2.3,
this expression converges to 0 as h ↓ 0 such that the Fourier transform t 7→ η̂(k, t) is
right-continuous for every k ∈ Rd.

For both of our cases, the uncoupled as well as the coupled case with hn = kn for every
n ∈ N, the limit process (A(t), r

1
βD(rt))t≥0 is a Lévy process. In the uncoupled case, the

process has a product Lebesgue density whereas in the coupled case, the limiting process
in operator semistable and has a Lebesgue density as well [80, Theorem 2.2]. From the
previous result, we obtain the following direct consequence from Lemma 6.2.4.

Lemma 6.2.5. (Density of the CTRW limit)
Denote by (x, y) 7→ wr(x, y, t) the density of (A(t), D(rt)) for every t > 0. Then the
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CTRW limit process (Mr(t))t≥0 has a Lebesgue density x 7→ mr(x, t) with

mr(x, t) =
∞̂

u=0

tr
1
βˆ

τ=0

ΦD(r)(tr
1
β − τ,∞)wr(x, τ, u) dτ du

for every t > 0.

To close this section, we study some examples of CTRW and OCTRW limits. First, we
consider uncoupled jumps and waiting times. This particular case links the microscopic
CTRW/OCTRWmodel with the macroscopic description of anomalous diffusion delivered
by the semi-fractional Cauchy problems studied in Chapter 5.

Example 6.2.6. We assume that the jumps Xj, j ∈ N, and waiting times Jj, j ∈ N,
are independent and for simplicity, we furthermore assume that r = 1. In Section 5.3,
we already argued that the semi-fractional Cauchy problem is solved by an uncoupled
CTRW limit. However, Lemma 6.2.5 now yields the same result.In this uncoupled case,
the Fourier-Laplace exponent Λ decomposes as

Λ(k, s) = ΨA(1)(k) + ΓD(1)(s)

for every k ∈ Rd and s > 0. Note that according to Theorem 6.1.7, the limiting processes
(M1(t))t≥0 of the CTRW and (O1(t))t≥0 of the OCTRW coincide almost surely. According
to Lemma 6.2.5, the density x 7→ m1(x, t) of M1(t) is given by

m1(x, t) =
∞̂

u=0

tˆ

τ=0

ΦD(1)(t− τ,∞)w1(x, τ, u) dτ du

for every (x, t) ∈ Rd × (0,∞). Thereby, x 7→ w1(x, τ, u) is the density of (A(u), D(u)).
Similar to the log-FLT, the density of (A(u), D(u)) decomposes due to the independence
of the components such that

w1(x, y, t) = p(x, t)g(y, t)

for every x ∈ Rd, y > 0, and t > 0, where x 7→ p(x, t) is the density of A(t) and y 7→ g(y, t)
is the density of D(t). Hence using Lemma 5.2.7, we obtain

m1(x, t) =
∞̂

u=0

tˆ

τ=0

ΦD(1)(t− τ,∞)p(x, u)g(τ, u) dτ du

=
∞̂

u=0

h(u, t)p(x, u) du.

Under the assumptions of Theorem 5.3.6 and together with Lemma 5.3.12, this density
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is a strong solution to the semi-fractional Cauchy problem(
∂

∂d,V t

)β
u(x, t) = Lu(x, t) + δ(x)GV (t)

with the generator L corresponding to (A(t))t≥0, and the process (M1(t))t≥0 is a stochastic
solution to this very equation.

As a contrary example, we study the case of totally coupled processes. Furthermore,
this example impressively displays the possible difference between the OCTRW and the
CTRW limit in the coupled case and thereby justifies both cases’ treatment.

Example 6.2.7. Consider the totally coupled case, where the waiting time before or after
each jump equals the jump’s height (X = J). First, we analyze the CTRW. In view of
Lemma 6.2.4, the cumulative distribution function is given by

P (M1(t) ≤ x) =
∞̂

u=0

tˆ

τ=0

ΦD(1)(t− τ,∞)P(D(u),D(u))([0, x], dτ) du

=
∞̂

u=0

tˆ

τ=0

xˆ

y=0

ΦD(1)(t− τ,∞)P(D(u),D(u))(dy, dτ) du.

For every u > 0, the distribution of (D(u), D(u)) is concentrated on the diagonal line
{(t, t) : t ≥ 0} such that P(D(u),D(u))(dy, dτ) = dετ (dy)dPD(u)(τ) and hence

P (M1(t) ≤ x) =
∞̂

u=0

tˆ

τ=0

xˆ

y=0

ΦD(1)(t− τ,∞) dετ (dy) dPD(u)(τ) du

=
∞̂

u=0

tˆ

τ=0

ΦD(1)(t− τ,∞)1(0,x)(τ) dPD(u)(τ) du.

Note that for x ≥ t, it follows that

P (M1(t) ≤ x) =
∞̂

u=0

tˆ

τ=0

ΦD(1)(t− τ,∞) dPD(u)(τ) du

=
∞̂

u=0

h(u, t) du

= 1

using the density x 7→ h(x, t) of the inverse semistable subordinator E(t) in Lemma 5.2.7.
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On the other hand, for x < t, we obtain

P (M1(t) ≤ x) =
∞̂

u=0

xˆ

τ=0

ΦD(1)(t− τ,∞) dPD(u)(τ) du

=
xˆ

τ=0

∞̂

u=0

ΦD(1)(t− τ,∞)g(τ, u) du d(τ)

using Tonelli’s theorem and the density x 7→ g(x, t) of D(t). Differentiating with respect
to x yields the density of the CTRW limit process

m1(x, t) = d

dx
P (M1(t) ≤ x)

=


∞̂

0

ΦD(1)(t− x,∞)g(x, u) du

1(0,t)(x)

= ΦD(1)(t− x,∞)


∞̂

0

g(x, u) du

1(0,t)(x)

= (t− x)−βV (log(t− x))


∞̂

0

g(x, u) du

1(0,t)(x).

Define ζ : R→ (0,∞) by

ζ(x) := ex(1−β)
∞̂

0

g(ex, u) du. (6.22)

Then ζ is log
(
d

1
β

)
-periodic since

ζ
(
x+ log

(
d

1
β

))
= ex(1−β)d

1−β
β

∞̂

0

g(exd
1
β , u) du.

Besides, (D(t))t≥0 is a strictly semistable subordinator such that we can use the scaling
property (2.4) to obtain

ζ
(
x+ log

(
d

1
β

))
= ex(1−β)d

1
β
−1

∞̂

0

d−
1
β g(ex, d−1u) du

= ex(1−β)
∞̂

0

g(ex, z) dz
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= ζ(x)

with z := d−1u. In conclusion, the density m1 of the CTRW limit is given by

m1(x, t) = (t− x)−βV (log(t− x))xβ−1ζ(log(x))1(0,t)(x),

which can be interpreted as a disturbed Beta density on (0, t). For comparison, we also
compute the density of the OCTRW limit process (O1(t))t≥0. According to Lemma 6.2.3,

P (O1(t) ≤ x) =
∞̂

u=0

xˆ

y=0

tˆ

τ=0

Φ(D(1),D(1))((0, x− y), (t− τ,∞))P(D(u),D(u))(dy, dτ) du

=
∞̂

u=0

xˆ

y=0

tˆ

τ=0

Φ(D(1),D(1))((0, x− y), (t− τ,∞)) dετ (dy) dPD(u)(τ) du

since the distribution of (D(t), D(t))t≥0 is supported on {(t, t) : t ≥ 0}. For the same
reason

Φ(D(1),D(1))((0, x− y), (t− τ,∞)) = Φ(t− τ, x− y)1(t−τ,∞)(x− y)

such that

P (O1(t) ≤ x) =
∞̂

u=0

xˆ

y=0

tˆ

τ=0

Φ(t− τ, x− y)1(t−τ,∞)(x− y) dετ (dy) dPD(u)(τ) du

=
∞̂

u=0

tˆ

τ=0

Φ(t− τ, x− τ)1(t,∞)(x)1(0,x)(τ) dPD(u)(τ) du

=
∞̂

u=0

tˆ

τ=0

Φ(t− τ, x− τ)1(t,∞)(x)g(τ, u) dτ du

with the density x 7→ g(x, t) of D(t). Use (6.22) and Tonelli’s theorem to obtain

P (O1(t) ≤ x) =
tˆ

0

Φ(t− τ, x− τ)τβ−1ζ(log(τ))1(t,∞)(x) dτ.

Now

Φ(t− τ, x− τ) = (t− τ)−βV (log(t− τ))− (x− τ)−βV (log(x− τ))
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such that

P (O1(t) ≤ x) =C191(t,∞)(x)−
tˆ

0

(x− τ)−βV (log(x− τ))τβ−1ζ(log(τ)) dτ 1(t,∞)(x)

with

C19 :=
tˆ

0

(t− τ)−βV (log(t− τ))τβ−1ζ(log(τ)) dτ.

Aiming to find an explicit representation of the density, we assume that the periodic
functions V and ζ are smooth and thus representable by their Fourier series

V (x) =
∑
n∈Z

dne
ind̃x and ζ(x) =

∑
n∈Z

une
ind̃x

with (dn)z∈Z, (un)n∈Z ⊂ C and d̃ = 2πβ
log(d) . Then for every x > t, the distribution function

of O1(t) is given by

P (O1(t) ≤ x) = −
tˆ

0

(x− τ)−βτβ−1

∑
n∈Z

dn(x− τ)ind̃
∑

m∈Z
umτ

imd̃

 dτ

= C19 −
tˆ

0

(x− τ)−βτβ−1

∑
n∈Z

∑
m∈Z

dn(x− τ)ind̃um−nτ i(m−n)d̃

 dτ.

Note that the double series is bounded as a product of two periodic, continuous functions,
and hence we can change the order of integration and summation as

P (O1(t) ≤ x) = C19 −
∑
n∈Z

∑
m∈Z

dnum−n

tˆ

0

(x− τ)−β+ind̃τβ−1+i(m−n)d̃ dτ

= C19 −
∑
n∈Z

∑
m∈Z

dnum−nx
−β+ind̃

tˆ

0

(
1− τ

x

)−β+ind̃
τβ−1+i(m−n)d̃ dτ.

Substituting y := τ
x
, we get

P (O1(t) ≤ x) = C19 −
∑
n∈Z

∑
m∈Z

dnum−nx
imd̃

t
xˆ

0

(1− y)−β+ind̃ yβ−1+i(m−n)d̃ dy

= C19 −
∑
n∈Z

∑
m∈Z

dnum−nx
imd̃B

(
t

x
, β + i(m− n)d̃, 1− β + ind̃

)
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for every x > t, where B(x, a, b) is the incomplete Beta-function

B(x, a, b) =
xˆ

0

ta−1(1− t)b−1 dt

for every a, b ∈ C with Re(a),Re(b) > 0 and x > 0. Finally, differentiation yields the
Lebesgue density of the OCTRW limit

o1(x, t) = d

dx
P (O1(t) ≤ x)

= −
∑
n∈Z

∑
m∈Z

dnum−nx
imd̃

(
imd̃x−1 − t

x2

(
1− t

x

)−β+ind̃ ( t
x

)β−1+i(m−n)d̃)
1(t,∞)(x)

= −
∑
n∈Z

∑
m∈Z

dnum−nx
imd̃−1

(
imd̃− tβ+i(m−n)d̃x−imd̃(x− t)−β+ind̃

)
1(t,∞)(x)

= −
∑
n∈Z

∑
m∈Z

dnum−nx
imd̃−1

(
imd̃−

(
t

x

)imd̃ ( t

x− t

)β−ind̃)
1(t,∞)(x).

We want to emphasize that, in general, the Fourier coefficients (dn)n∈Z are known but
the Fourier coefficients (un)n∈N of ζ have to be calculated using (6.22). Nevertheless,
the fundamental difference of both limiting densities directly follows from their disjoint
supports.
In the special case of a β-stable subordinator (D(t))t≥0, the calculation can be done
explicitly. In this case, V (x) = 1

Γ(1−β) is a constant function. Additionally, we obtain ζ
using the equality

xβ−1ζ(log(x)) =
∞̂

0

g(x, u) du.

The right-hand side has the Laplace transform
∞̂

0

e−sx
∞̂

0

g(x, u) du dx =
∞̂

0

e−us
β

du = s−β,

which is also the Laplace transform of

x 7→ xβ−1

Γ(β) .

With the uniqueness of the Laplace transform, we find ζ(x) = 1
Γ(β) for every x ∈ R. Hence

the density of the CTRW limit process is given by

m1(x, t) = (t− x)−βxβ−1

Γ(1− β)Γ(β) 1(0,t)(x).
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Besides, with V (x) = 1
Γ(1−β) and ζ(x) = 1

Γ(β) for every x ∈ R, the density of the OCTRW
limit is given by

o1(x, t) = 1
Γ(1− β)

1
Γ(β)x

−1
(

t

x− t

)β
1(t,∞)(x).

These results for the stable case are already known by [61, Example 5.2].

Figure 6.4: Distribution x 7→ m1(x, 1) of the CTRW limit (green solid line) and
x 7→ o1(x, 1) of the OCTRW limit (blue solid line) at time t = 1 in comparison to
the corresponding limit distributions in the stable case (dashed lines) in Example 6.2.7.

Finally, consider a concrete example of semistable subordinators. Therefore, let D(1)
have a (d

1
β , d)-semistable distribution for β = 0.5, d = e1, and

V (x) = 1
40 cos(2πx) + 1

20 cos(πx) + 1
Γ(1− β)

admissable with respect to these parameters. Figure 6.4 displays the density x 7→ m1(x, 1)
of the CTRW limit and the density x 7→ o1(x, 1) of the OCTRW limit at time t =
1. As already seen, the densities are supported on [0, t] and [t,∞) respectively, which
underlines the difference between both processes. For comparison, we also plotted the
densities of both limits in the case of a β-stable subordinator. As expected, the densities
corresponding to the semistable subordinator oscillate around those of the stable case.
The Matlab code for the calculation is attached in Appendix C.
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Space-time duality

From a physical point of view, a semi-fractional derivative with respect to the space
variable can hardly be interpreted since it necessarily requires to include the whole envi-
ronment into the calculations. In contrast, most physicists consider closed and bounded
systems. However, a semi-fractional time derivative is easier to handle as the non-locality
of the operator can be understood as a long-time memory effect, which is inherent in
many physical systems. This chapter shows how a semi-fractional derivative in space can
be shifted to a semi-fractional time derivative and thereby offers an interpretation at least
for a class of space semi-fractional diffusion equations.
It was Zolotarev who in 1961 first connected stable densities of different indices [151].
To follow his considerations, note that the Fourier transform of a non-degenerate stable
density with index α ∈ (0, 2) \ {1} can not only be characterized by its Lévy-Khintchine
triple but is also uniquely given by the representation

p̂(k) = exp
(
ikb− c|k|α exp

(
− iπγ2 sign(k)

))
, (7.1)

where b ∈ R, c > 0, and |γ| ≤ α for α ∈ (0, 1), whereas |γ| ≤ 2 − α for α ∈ (1, 2).
Zolotarev himself worked with a slightly different parametrization. However, since his
result can be formulated easier this way, we decided to use (7.1). For the equivalence
of parametrizations and the connection of different forms, we refer to [14]. Since every
α-stable distribution is uniquely determined by b, c, and γ, we denote the corresponding
density with x 7→ pα(x, b, c, γ). Using complex contour integrals, Zolotarev showed that

pα(x, 0, 1, γ) = x−1−αp 1
α
(x−α, 0, 1, γ∗)

holds for every α ∈ (1, 2) and x > 0, where γ∗ = γ−1
α

+1 (compare [14, Theorem 2.1]). The
result was proven differently by Lukacs [81, Theorem 3.3] using a series representation
of stable densities, which has been independently obtained by Bergström [20] and Feller
[42]. In 2009 Boris Baeumer et al. used Zolotarev’s duality result to link space fractional
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and time fractional differential equations [14]. In detail, they proved that the solution of

∂

∂t
u(x, t) = ∂α

∂(−x)αu(x, t)

with u(x, 0) = δ(x) for α ∈ (1, 2) is equivalent to the solution of

∂
1
α

∂t
1
α

h(x, t) = − ∂

∂x
h(x, t)

for every x > 0 under the similar initial condition h(x, 0) = δ(x). Thereby, equivalence of
the solutions means that u(x, t) = αh(x, t) for every (x, t) ∈ R2

+. Note that the space frac-
tional diffusion equation is solved by the densities of an α-stable Lévy process supported
on R, whereas the densities of the inverse 1

α
-stable subordinator (E(t))t≥0 supported on

R+ solve the time fractional equation (see Example 5.3.14). Then for every t > 0, both
densities coincide on the positive real line up to a constant.
Using Fourier-Laplace transforms instead of Zolotarev’s duality result, Kelly and Meer-
schaert gave a different proof of space-time duality for fractional diffusion and applied it
to open problems in hydrology [64]. As a side effect, they regain Zolotarev’s law for a
special choice of γ.

Naturally, the question arises if such an equality similarly holds for the semi-fractional set-
ting. Since we are also missing a physical interpretation of space semi-fractional diffusion,
such a result would strengthen our approach in applications. Generalizing Zolotarev’s
idea might cause difficulties due to the unknown log-periodic perturbation in the semi-
fractional derivative. However, we are already familiar with Fourier and Laplace trans-
forms of semi-fractional derivatives, such that a generalization of the proof given in [64]
seems more promising. Parts of the following chapter have already been published in [65]
(see Appendix B for a detailed list of the individual contributions of the authors), but we
are now able to answer some open questions in [65] using the theory of Bernstein functions.

To introduce the reader to the theory of Bernstein functions, we shortly name the most
important definitions in Section 7.1 and establish the subclass of selfsimilar Bernstein
functions. Afterward, we prove a space-time duality result for the semi-fractional case
in Section 7.2. In contrast to the fractional case, the negatively skewed semi-fractional
equation will lead to an inhomogeneous time semi-fractional differential equation, which is
no longer the density of the inverse semistable subordinator. Nevertheless, the result offers
a physically meaningful interpretation of space semi-fractional differential equations.

7.1 Bernstein functions
Already in 1921, Hausdorff studied functions, which he called totally monotone. Under
this definition, he understood functions f : [0,∞) → [0,∞) such that f ∈ C∞(R+)
and the derivatives have an alternating algebraic sign [52]. These functions are nowa-
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days commonly known under the name completely monotone functions, and due to their
appearance in many different mathematical areas, there is comprehensive literature con-
cerning this class of functions (see for example [148] or [126]). Formally they are defined
as follows.

Definition 7.1.1. (Completely monotone functions)
A function f : R+ → R is completely monotone if f ∈ C∞(R+) and

(−1)nf (n)(s) ≥ 0

for all n ∈ N0 and s > 0.

In probability theory, completely monotone functions are also known as Laplace trans-
forms of measures on the positive real line due to the following equivalence theorem by
Bernstein based on [21].

Theorem 7.1.2. (Bernstein’s theorem, [126, Theorem 1.4])
Let f : R+ → R be a completely monotone function. Then f is the Laplace transform of
a unique measure µ on [0,∞), i.e. for all s > 0,

f(s) = µ̃(s) =
∞̂

0

e−st dµ(t).

Conversely, whenever the Laplace transform of a measure µ̃(s) is finite for every s > 0,
the function s 7→ µ̃(s) is completely monotone.

In our considerations, the closely related class of Bernstein functions appears. Bernstein
functions are named after the Russian mathematician Sergei Bernstein. However, they
can be found under different names in many mathematical areas, and lots of interest-
ing properties have been investigated and published. For an overview and background
information, we refer to the monograph [126].

Definition 7.1.3. (Bernstein function)
A function f : R+ → R is a Bernstein function if f ∈ C∞(R+), f(s) ≥ 0 for all s > 0 and

(−1)n−1f (n)(s) ≥ 0

for all n ∈ N and s > 0.

Note that from this definition, it follows immediately that a non-negative function f ∈
C∞(R+) is a Bernstein function if its first derivative is a completely monotone function.
Conversely, the primitive of a completely monotone function is a Bernstein function, if it
is positive. Using this observation, an integral representation of Bernstein functions can
be shown.
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Lemma 7.1.4. ([126, Theorem 3.2]) A function f : R+ → R is a Bernstein function if
and only if it admits the representation

f(s) = a+ bs+
∞̂

0

(1− e−sy) dΦ(y), (7.2)

where a, b ≥ 0, and Φ is a measure on (0,∞) satisfying
∞̂

0

min{1, t} dΦ(t) <∞. (7.3)

In particular, the triple [a, b,Φ] determines f uniquely.

Remark 7.1.5. Comparing the above representation of a Bernstein function f with
Theorem 5.2.1, we see that the class of Bernstein functions with a = 0 equals those of
Laplace exponents of infinitely divisible subordinators with drift, and we can uniquely
determine the parameters [a, 0,Φ] of the Lévy-Khintchine triple form (7.2). Therefore,
one refers to the representation (7.2) as the Lévy-Khintchine representation of f .

Since our interest in Bernstein functions was driven by semistable laws with discrete scale
invariance, we consider Bernstein functions with a similar property.

Definition 7.1.6. (Selfsimilar Bernstein functions)
A Bernstein function f : R+ → R is selfsimilar with respect to α ∈ (0, 1) and c > 1 if

f(c 1
α s) = cf(s)

for every s > 0.

Similar to Lemma 7.1.4, we obtain a Lévy-Khintchine representation for selfsimilar Bern-
stein functions. Note that the additional property of selfsimilarity allows us to simplify
the representation (7.2) noticeably.

Lemma 7.1.7. A function f : R+ → R is a selfsimilar Bernstein function with respect
to α ∈ (0, 1) and c > 1 if and only if it admits the representation

f(s) =
∞̂

0

(1− e−sy) dΦ(y),

where Φ is a Lévy measure given by

Φ(−∞,−r) = 0 and Φ(r,∞) = r−αK(log(r)) (7.4)

for every r > 0 and a function K : R→ R+ admissable with respect to α and c.
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Proof. Let f be a selfsimilar Bernstein function with respect to α ∈ (0, 1) and c > 1.
According to Lemma 7.1.4, f can be written as

f(s) = a+ bs+
∞̂

0

(1− e−sy) dΦ(y),

where a, b ≥ 0, and Φ is a measure on (0,∞) fulfilling (7.3). Since f is selfsimilar, by
iteration, we receive

f(cmα s) = cmf(s)

for every m ∈ Z and s > 0. As m ↓ −∞, this implies lim
s↓0

f(s) = 0 and consequently
a = 0. Then the selfsimilarity reads as

f(c 1
α s) = bc

1
α s+

∞̂

0

(1− e−c
1
α sy) dΦ(y)

= bc
1
α s+

∞̂

0

(1− e−sy) d(c 1
αΦ)(y)

= bcs+ c

∞̂

0

(1− e−sy) dΦ(y)

= cf(s). (7.5)

However, according to Lemma 7.1.4, the triple [a, b,Φ] is unique such that we have b = 0
as well as (c 1

αΦ) = c · Φ. Using Lemma 7.1.6 and Corollary 7.4.4 in [91], Φ is the Lévy
measure of a (c 1

α , c)-semistable distribution supported on the positive real line. Thus it
is given by (7.4) in view of Theorem 2.2.1.
Conversely, if f admits the above representation, it is obviously a Bernstein function and
the selfsimilarity follows from the calculations in (7.5).

Hence, selfsimilar Bernstein functions correspond to the Laplace exponents of semistable
subordinators (compare Theorem 5.2.1). We can thereby use the calculations in Lemma
5.2.2 to obtain an explicit representation of these functions.

Lemma 7.1.8. Let f : R+ → R be a selfsimilar Bernstein function with Lévy measure
(7.4). Then

f(s) = sαη1(log(s))

for every s > 0, where η1 defined in Lemma 4.1.3 is a positive, log
(
c

1
α

)
-periodic, C∞(R)-

function.

Finally, we provide a sufficient condition for an inverse function to be a Bernstein function.
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Lemma 7.1.9. Let f : R+ → R+ be a C∞(R+)-function such that f ′ is a Bernstein
function and f (n)(s) 6= 0 for all s > 0 and n ∈ N. Then its inverse f−1 is a Bernstein
function with (f−1)(n)(s) 6= 0 for all s > 0 and n ∈ N.

Proof. First note that f−1 is obviously strictly positive and f−1 ∈ C∞(R+) as the inverse
function of f . For f−1 to be a Bernstein function, we need to calculate the algebraic sign
of all its derivatives. By differentiation of the equation

f(f−1)(s) = s,

we derive the well-known formula

(f−1)′(s) = 1
f ′(f−1(s))

for every s > 0. Repeating the differentiation n-times with n ∈ N yields Faà di Bruno’s
formula

0 = dn

dsn
(f(f−1(s)))

=
∑

k1,...,kn∈N0
k1+2k2+...+nkn=n

n!
k1! . . . kn!f

(k1+...+kn)(f−1(s))
n∏
j=1

(
(f−1)(j)(s)

j!

)kj
.

Since k1, . . . , kn are chosen such that k1 + 2k2 + . . . + nkn = n, necessarily kn ∈ {0, 1}.
Split these two cases to obtain

0 =
∑

k1,...,kn−1∈N0
k1+2k2+...+(n−1)kn−1=n

n!
k1! . . . kn−1!f

(k1+...+kn−1)(f−1(s))
n−1∏
j=1

(
(f−1)(j)(s)

j!

)kj
+ f ′(f−1(s))(f−1)(n)(s)

or equally

(f−1)(n)(s) = − 1
f ′(f−1(s))

∑
k1,...,kn−1∈N0

k1+2k2+...+(n−1)kn−1=n

n!
k1! . . . kn−1!f

(k1+...+kn−1)(f−1(s))
n−1∏
j=1

(
(f−1)(j)(s)

j!

)kj

(7.6)

for every s > 0. Using this formula, we prove that

(−1)n−1(f−1)(n)(s) > 0 (7.7)

by induction over n ∈ N. As mentioned before, for n = 1, we have

(f−1)′(s) = 1
f ′(f−1(s))

for every s > 0, and since f ′ is strictly positive, so is (f−1)′. For the second derivative,
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we receive

(f−1)′′(s) = − 1
f ′(f−1(s))f

′′(f−1(s))((f−1)′(s))2 = − f ′′(f−1(s))
(f ′(f−1(s)))3

for every s > 0. Since f ′ is a Bernstein function, f ′ and f ′′ are strictly positive. Then

(−1)(f−1)′′(s) > 0

for every s > 0. Now let the assumption (7.7) be fulfilled for all derivatives up to order
n− 1 ∈ N with n ≥ 2. Then the n-th derivative of f−1 is given by (7.6). To calculate the
algebraic sign of this derivative, we analyze the sign of the individual summands. First
note that since f ′ is a Bernstein function

sign(f (k1+...+kn−1)(f−1(s))) = (−1)k1+...+kn−1 ,

whereas by induction

sign
n−1∏
j=1

(
(f−1)(j)(s)

j!

)kj =
n−1∏
j=1

sign((f−1)(j)(s))kj

=
n−1∏
j=1

(−1)(j−1)kj

= (−1)

n−1∑
j=1

(j−1)kj
.

Then every single summand in (7.6) has algebraic sign (−1)k1+2k1+...+(n−1)kn−1 = (−1)n.
Note that since all summands have the same sign and all derivatives of f fulfill f (n)(s) 6= 0
for all s ∈ R+, by induction, the n-th derivative of f−1 is non-vanishing in every point
s ∈ R+. Together with the additional minus sign in (7.6), the result follows.

7.2 Space-time duality for semi-fractional diffusion

Using the theory of Bernstein functions, we are now able to consider space-time duality in
the semi-fractional setting, which offers a physical interpretation for systems underlying
negatively skewed log-periodically disturbed diffusive behavior. As in the fractional case,
we start with the negatively skewed diffusion equation

∂

∂t
u(x, t) = ∂α

∂c,K(−x)αu(x, t) (7.8)

under the initial condition u(x, 0) = δ(x) for α ∈ (1, 2), c > 1, and K being admissable
with respect to these parameters. According to Lemma 5.1.1, a solution to (7.8) is given
by the densities of the (c 1

α , c)-semistable Lévy process (X(t))t≥0, where PX(1) has Lévy-
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Khintchine representation [a, 0,Φ] with

a =
ˆ

R

(
1

1 + y2 − y
)
dΦ(y)

and

Φ(−∞,−r) = r−αK(log(r)) = GK(r) and Φ(r,∞) = 0

for every r > 0. Additionally, we assume that K is smooth with Fourier series

K(x) =
∑
n∈Z

cne
inc̃x

for Fourier coefficients (cn)n∈Z ⊂ C and c̃ = 2πα
log(c) . Following Lemma 2.2.2 and Example

2.2.6, the corresponding log-characteristic function is given by

Ψ(k) =
∞̂

0+

(
1− e−irk − irk

)
dGK(r) = −

∑
n∈Z

ωn(ik)α−inc̃ (7.9)

for every k ∈ R, where ωn := cnΓ(inc̃−α+ 1) for every n ∈ Z. Again define η2 : R→ R+
by

η2(x) = −
∑
n∈Z

ωne
−inc̃x,

and note that according to Lemma 4.1.8, η2 is a positive, log
(
c

1
α

)
-periodic, C∞(R)-

function with

Ψ(−ik) = kαη2(log(k)) (7.10)

for every k > 0. As mentioned before, we want to adapt the method of proof in [64], which
uses Fourier-Laplace transform. Similar to the already defined Fourier-Laplace transform
of distributions, for a suitable function f : R × R+ → R, the Fourier-Laplace transform
of f is given by the integral

f(k, s) =
ˆ

R

∞̂

0

eikxe−stf(x, t) dt dx.

Throughout this thesis, we denote the Fourier-Laplace transform of f with f or FL(f)
respectively. Applying the Fourier-Laplace transform to (7.8) yields

su(k, s)−F(u)(k, 0) = Ψ(k)u(k, s),
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for every k ∈ R and s > 0, where the right-hand side with the log-characteristic function
Ψ in (7.9) follows from Lemma 3.1.10. Note that u(x, 0) = δ(x) has constant Fourier
transform F(u)(k, 0) = 1 such that equally, we obtain

u(k, s) = 1
s−Ψ(k) . (7.11)

From this expression, we derive the Laplace transform of u by applying an inverse Fourier
transform to u. Since this will be done by a closed contour integral in the lower half-plane
{z ∈ C : Im(z) ≤ 0}, we need some knowledge about the behavior of z 7→ 1

s−Ψ(z) in
this region. Similar to the proof of Lemma 5.3.7, the log-characteristic function Ψ can
be extended analytically to the lower half-plane, and both the series and the integral
representation in (7.9) are valid for every z ∈ C with Im(z) ≤ 0. Additionally, u(·, s) in
(7.11) has only one pole in the lower half-plane, and we can even locate this pole on the
negative imaginary axis, which is proven in the following Lemma.

Lemma 7.2.1. For every s > 0, there is a unique z = z(s) in the lower half-plane such
that s = Ψ(z(s)) and z(s) = −iζ(s) with ζ(s) > 0 lies on the negative imaginary axis.

Proof. Fix s > 0. We first show that every possible z = z(s) with Ψ(z(s)) = s lies on the
negative imaginary axis. Therefore consider z = k1 + ik2 with k1 > 0 and k2 ≤ 0. Then

Im(Ψ(z)) = Im


∞̂

0+

(1− e−irz − irz) dGK(r)


=
∞̂

0+

Im
(
1− e−irz − irz

)
dGK(r)

=
∞̂

0+

Im
(
1− e−irk1+rk2 − irk1 + rk2

)
dGK(r)

=
∞̂

0+

(
erk2 sin(rk1)− rk1

)
dGK(r).

Since k1r > sin(k1r) for every r > 0 and ek2r ≤ 1, the function r 7→ erk2 sin(rk1)− rk1 is
negative for every choice of (k1, k2) ∈ (0,∞)×(−∞, 0]. Additionally, GK is monotonically
decreasing such that Im(Ψ(z)) > 0 yielding Ψ(z) 6= s ∈ R. Similarly, for z = k1 + ik2
with k1 < 0 and k2 ≤ 0, we find

Im(Ψ(z)) =
∞̂

0+

(
r(−k1)− erk2 sin(−rk1)

)
dGK(r) < 0

and again Ψ(z) 6= s ∈ R. Thus, if there is any z(s) with Ψ(z(s)) = s in the lower
half-plane, then Re(z(s)) = 0 and hence z(s) = −iζ(s) for ζ(s) > 0. It remains to show
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that there is exactly one such ζ(s) for every s > 0. To do so, consider the function
ψ : R+ → R+ with ψ(k) := Ψ(−ik). Then according to (7.9) and (7.10), ψ is given by

ψ(k) =
∞̂

0+

(1− e−rk − rk) dGK(r) = kαη2(log(k))

showing that ψ is continuously differentiable. It follows directly from the fact that η2(−x)
is admissable (see Lemma 4.1.8) that the function ψ is non-decreasing. However, to obtain
uniqueness of ζ(s) such that ψ(ζ(s)) = s, we need ψ to be even strictly increasing, which
we show by calculating the derivative of ψ. To differentiate under the integral sign,
consider the partial derivative

d

dk
(1− e−rk − rk) = r(e−rk − 1).

Restrict the consideration to k ∈ (0, 1) first and set g(r) := r21(0,1)(r) + r1[1,∞)(r). Since∣∣∣r(e−rk − 1)
∣∣∣ ≤ r

for every r ≥ 1 and ∣∣∣r(e−rk − 1)
∣∣∣ ≤ r2k ≤ r2

for every r < 1 using a Taylor approximation, we have∣∣∣∣∣ ddk (1− e−rk − rk)
∣∣∣∣∣ =

∣∣∣r(e−rk − 1)
∣∣∣ ≤ g(r)

for every r ∈ (0,∞) and k ∈ (0, 1). Besides, g is integrable with respect to GK such that
the assumptions for differentiation under the integral sign are fulfilled. Then

d

dk
ψ(k) =

∞̂

0+

r(e−rk − 1)︸ ︷︷ ︸
<0

dGK(r) > 0

for every k ∈ (0, 1) such that ψ is strictly increasing for every k ∈ (0, 1). Using the
alternative representation of ψ, this yields

ψ′(k) = kα−1(αη2(log(k)) + η′2(log(k))) > 0

for every k ∈ (0, 1) such that

αη2(y) > −η′2(y)
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for every y ∈ (−∞, 0). However, η2 is periodic on the whole real line yielding

αη2(y) > −η′2(y)

for every y ∈ R. Going backwards, this implies that ψ is strictly increasing for every
k ∈ (0,∞). Together with ψ(0) = 0 and lim

k→∞
ψ(k) =∞, for every s > 0, there is a unique

z(s) in the lower half-plane with Ψ(z(s)) = s, and z(s) lies on the negative imaginary
axis.

The function s 7→ ζ(s) from Lemma 7.2.1 describing the position of the pole of z 7→ 1
s−Ψ(z)

in the lower half-plane has some nice properties.

Lemma 7.2.2. The function s 7→ ζ(s) is a selfsimilar Bernstein function with respect to
1
α
∈ (1

2 , 1) and d := c
1
α such that ζ(n)(s) 6= 0 for every s > 0 and n ∈ N. Additionally,

for s > 0, we have ζ(s) = s
1
α g(log(s)) for some log(c)-periodic, strictly positive function

g ∈ C∞(R).

Proof. Recall that ψ(k) = Ψ(−ik) from the proof of Lemma 7.2.1 is the inverse function
of ζ, and ψ is differentiable with

ψ′(k) =
∞̂

0+

r(e−rk − 1) dGK(r).

Define the measure dΦ∗(y) = −y dGK(y), and note that Φ∗ integrates min{1, y} over
(0,∞). Then according to Lemma 7.1.4, ψ′ is a Bernstein function. The derivatives of ψ
are given by

ψ(n)(k) =
∞̂

0+

(−1)n−1rne−rk dGK(r),

which reflects the Bernstein property but also shows that ψ(n)(k) 6= 0 for every k > 0.
Then it follows from Lemma 7.1.9 that ζ is a Bernstein function with non-vanishing
derivatives.
For the selfsimilarity, we observe that

ψ(c 1
α ζ(s)) = cζ(s)αη2

(
log
(
c

1
α ζ(s)

))
= cζ(s)αη2

(
log(ζ(s)) + log

(
c

1
α

))
= cζ(s)αη2 (log(ζ(s)))
= cψ(ζ(s))
= cs

= ψ(ζ(cs))
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for every s > 0 using the periodicity of η2. Since ψ is strictly increasing, it follows that

dζ(s) = c
1
α ζ(s) = ζ(cs) = ζ(dαs)

for every s > 0, and hence, ζ is selfsimilar with respect to 1
α
and d = c

1
α . The claimed

representation of ζ as the product of a power function and a log(c) = log(dα)-periodic
function follows immediately from Lemma 7.1.8.

We are now able to calculate the Laplace transform of the solution x 7→ u(x, t) of (7.8).

Lemma 7.2.3. For α ∈ (1, 2), the Laplace transform with respect to time of the semistable
densities corresponding to the semi-fractional diffusion equation (7.8) takes the form

ũ(x, s) = ζ(s)
α

e−xζ(s)

s+ f(s)

for every x > 0 and s > 0, where f(s) := 1
α
ζ(s)αη′2(log(ζ(s))).

Proof. We use our knowledge about the Fourier-Laplace transform to gain a closed-form
expression of the Laplace transform by inverse Fourier transform. Using equation (4.8.18)
in [103], an inversion of the Fourier transform of u(k, s) = 1

s−Ψ(k) for fixed s > 0 gives

ũ(x, s) = 1
2π lim

T→∞

T−iζ0ˆ

−T−iζ0

e−ikx

s−Ψ(k) dk, (7.12)

where we choose ζ0 ∈ (0, ζ(s)). We compute the integral using the closed contour dis-
played in Figure 7.1 consisting of the straight line LT and the cut semicircle CT . Note
that in the plot, we changed the variable T in (7.12) to a slightly smaller value. However,
we take the limit T →∞ such that this procedure is valid.
By Lemma 7.2.1, there is only one pole −iζ(s) inside the semicircle such that with
Cauchy’s residue theorem, we obtain

ˆ

CT+LT

e−ikx

s−Ψ(k) dk = −2πi · Res(−iζ(s)), (7.13)

where Res(z) is the residue of the function z 7→ e−ixz

s−Ψ(z) in z ∈ C and the negative algebraic
sign on the right-hand side indicates a negatively orientated path.
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T

−iζ0

−iζ(s)

−T

CT

LT

Figure 7.1: Plot of the closed contour for the evaluation of the inverse Fourier transform
in the proof of Lemma 7.2.3.

First, consider the integral around CT and describe the path as θ 7→ Te−iθ for θ ∈ [ε, π−ε]
and some ε > 0. Note that ε depends on T with ε(T )→ 0 as T →∞. Then the integral
around the cut semicircle CT is given by∣∣∣∣∣∣∣

ˆ

CT

e−ikx

s−Ψ(k) dk

∣∣∣∣∣∣∣ ≤
πˆ

0

T

∣∣∣∣∣ e−iT e
−iθx

s−Ψ(Te−iθ)

∣∣∣∣∣ dθ
= T

πˆ

0

e−T sin(θ)x

|s−Ψ(Te−iθ)| dθ.

To simplify the denominator, remark that

Re(Ψ(Te−iθ)) =
∞̂

0+

Re
(
1− e−irTe−iθ − irTe−iθ

)
dGK(r)

=
∞̂

0+

(
1− e−rT sin(θ) Re(e−irT cos(θ))− rT sin(θ)

)
dGK(r)

=
∞̂

0+

(
1− e−rT sin(θ) cos(rT cos(θ))− rT sin(θ)

)
dGK(r).

With sin(θ) ≥ 0 for θ ∈ [0, π], the first two terms in the integral are bounded for all T
but the last growths linear with T . Together with the monotonicity of GK , we obtain
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Re(Ψ(Te−iθ))→∞ as T →∞. Then for T sufficient large

|s−Ψ(Te−iθ)| ≥ 1

such that ∣∣∣∣∣∣∣
ˆ

CT

e−ikx

s−Ψ(k) dk

∣∣∣∣∣∣∣ ≤ T

πˆ

0

e−T sin(θ)x dθ

= T

π
2ˆ

0

e−T sin(θ)x dθ + T

πˆ
π
2

e−T sin(π−θ)x dθ

= 2T

π
2ˆ

0

e−T sin(θ)x dθ.

For every θ ∈ (0, π2 ),

e−T sin(θ)x ≤ e−
2Tθx
π

such that for every x > 0, we find
∣∣∣∣∣∣∣
ˆ

CT

e−ikx

s−Ψ(k) dk

∣∣∣∣∣∣∣ ≤ 2T

π
2ˆ

0

e−
2Tθx
π dθ → 0

as T → ∞ (compare [64, Equation (A2)]). Hence, the integral over the cut semicircle
vanishes, and it remains to calculate the residue in (7.13). Note that by differentiating
(7.9), we have

Ψ′(z) |z=−iζ(s) = −i
∑
n∈Z

ωn(α− inc̃)(iz)α−inc̃−1

∣∣∣∣∣∣
z=−iζ(s)

= iζ(s)α−1(αη2(log(ζ(s))) + η′2(log(ζ(s)))),

which is non-vanishing since ζ(s) > 0 and x 7→ η2(−x) is admissable according to Lemma
4.1.8. Then the pole −iζ(s) is of order one with

Res(−iζ(s)) = e−xζ(s)

−Ψ′(−iζ(s))

= ie−xζ(s)

ζ(s)α−1(αη2(log(ζ(s))) + η′2(log(ζ(s))))

= ζ(s) ie−xζ(s)

αψ(ζ(s)) + ζ(s)αη′2(log(ζ(s)))
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= iζ(s)
α

e−xζ(s)

s+ 1
α
ζ(s)αη′2(log(ζ(s)))

since ζ is the inverse function of ψ. Finally, we obtain

ũ(x, s) = −iRes(−iζ(s)) = ζ(s)
α

e−xζ(s)

s+ 1
α
ζ(s)αη′2(log(ζ(s)))

for every x > 0 and s > 0.

Recall from Lemma 7.2.3 that the function f : R+ → R is defined by

f(s) = 1
α
ζ(s)αη′2(log(ζ(s)))

and set

h̃(x, s) := ζ(s)e−xζ(s)
s+ f(s) = αũ(x, s) (7.14)

for every x > 0, s > 0. Below we show that h̃ is the Laplace transform of a function
h : (0,∞) → (0,∞), which retrospectively justifies the notation h̃ in this definition.
Applying a Fourier transform to (7.14) yields

h(k, s) = ζ(s)
s+ f(s)

∞̂

0

eikxe−xζ(s) dx

= ζ(s)
s+ f(s)

[
1

ik − ζ(s)e
x(ik−ζ(s))

]∞
x=0

= ζ(s)
s+ f(s)

1
ζ(s)− ik

=
(

1
s
− 1
s

f(s)
s+ f(s)

)
ζ(s)

ζ(s)− ik

or equally

ζ(s)h(k, s)− ikh(k, s)− 1
s
ζ(s) = −1

s

f(s)
s+ f(s)ζ(s) (7.15)

for every k ∈ R, s > 0. We want to apply the inverse Fourier-Laplace transform to this
equation. Starting with the left-hand side of (7.15), first note that by Lemma 7.2.2,

ζ(s)h(k, s)− s−1ζ(s) = s
1
α g(log(s))(h(k, s)− s−1). (7.16)

According to Lemma 4.1.4, we can interpret (7.16) as the Fourier-Laplace transform of a
Caputo semi-fractional derivative in time of order 1

α
with respect to d = c

1
α > 1 and the
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log(c)-periodic function K∗(x) implicitly defined by (4.1) as

g(x) = ex(1− 1
α

)
∞̂

0

e−e
xtt−

1
αK∗(log(t)) dt

=
∞̂

0

e−uu−
1
αK∗(log(u)− x) du

if the thereby given function K∗ is admissable and h(x, 0) = δ(x).

To show admissability of K∗, we need an explicit representation of this periodic function,
which can be obtained by the Fourier series approach as follows. Since g ∈ C∞(R), express
it by its Fourier series

g(x) =
∑
n∈Z

dne
ind̃x (7.17)

for Fourier coefficients (dn)n∈Z ⊆ C and d̃ = 2π
log(c) = 2π

α log(d) . Due to the infinitely differ-
entiability of g, the Fourier coefficients decay exponentially. We evaluate their behavior
more precisely using already known results from the literature.
In view of Lemma 1 and Lemma 2 in [7, §12], exponential decay of the Fourier co-
efficients corresponds to analytic extensions of the function to horizontal strips in the
complex plane and vice versa. Recall that ζ is a Bernstein function, and hence, it ex-
tends analytically to the right half-plane {z ∈ C : Re(z) > 0} and is continuous on
{z ∈ C : Re(z) ≥ 0} [126, Proposition 3.6]. Then g(x) = e

x
α ζ(ex) extends analytically to

the strip {z ∈ C : | Im(z)| < π
2} and is continuous on its closure. Note that additionally,

if K∗ is bounded, g(x+ iy) is bounded for every fixed y ∈ (−π
2 ,

π
2 ) since

|g(x+ iy)| =

∣∣∣∣∣∣∣e(x+iy)(1− 1
α

)
∞̂

0

e−e
(x+iy)tt−

1
αK∗(log(t)) dt

∣∣∣∣∣∣∣
≤ C20e

x(1− 1
α

)
∞̂

0

|e−e(x+iy)t|t−
1
α dt

= C20e
x(1− 1

α
)
∞̂

0

e−e
x cos(y)tt−

1
α dt

= C20e
x(1− 1

α
)
∞̂

0

e−y(ye−x cos(y)−1)− 1
α e−x cos(y)−1 dt

= C20 cos(y)
1
α
−1Γ

(
1− 1

α

)
for a constant C20 > 0 and using the substitution y = ex cos(y)t. According to [7, §12,
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Lemma 1], this indicates that the rate of decay for the Fourier coefficients (dn)n∈Z is given
by |dn| ∼ e−

π
2 |n|d̃. However, for smoothness and admissability of the function K∗, we need

a little more quality, and therefore we assume that the Fourier coefficients even decay like

|dn| ≤ C21e
−π2 |n|d̃|n|−

3
2−

1
α
−ε (7.18)

for a constant C21 > 0 and some ε > 0. In view of Lemma 4.1.3, the function K∗ fulfilling
(7.18) is given by

K∗(x) =
∑
n∈Z

dn

Γ(ind̃− 1
α

+ 1)
e−ind̃x (7.19)

and has the following properties.

Lemma 7.2.4. If the Fourier coefficients (dn)n∈Z of g in (7.17) fulfill (7.18), then the
function K∗ : R → R+ defined in (7.19) is well-defined for every x ∈ R, smooth, and
admissable.

Proof. Using the asymptotic behavior of the gamma function [3, Corollary 1.4.4], the
Fourier coefficients of K∗ fulfill∣∣∣∣∣ dn

Γ(ind̃− 1
α

+ 1)

∣∣∣∣∣ ≤ C22|dn||n|−
1
2 + 1

α e
π
2 |n|d̃

for a constant C22 > 0. Now according to the assumption (7.18), we obtain∣∣∣∣∣ dn

Γ(ind̃− 1
α

+ 1)

∣∣∣∣∣ ≤ C21C22e
−π2 |n|d̃|n|−

3
2−

1
α
−ε|n|−

1
2 + 1

α e
π
2 |n|d̃

= C21C22|n|−2−ε

for some ε > 0 showing that the series in (7.19) converges absolutely and that the resulting
function is continuously differentiable [46, Theorem 2.6]. It remains to show that K∗
is admissable. By Lemma 7.2.2, ζ is a selfsimilar Bernstein function with respect to
1
α
∈ (1

2 , 1) and d = c
1
α . Following Lemma 7.1.7, ζ is given by

ζ(s) =
∞̂

0

(1− e−sy) dΦ∗(y), (7.20)

where the Lévy measure Φ∗ is supported on the positive real line with

Φ∗(r,∞) = r−
1
αL(log(r))

for every r > 0 and an admissable function L : R → R+ with respect to 1
α
and d. We

aim to show that the function L coincides with K∗ and thereby conclude that K∗ is
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admissable. According to Lemma 4.1.3,

ζ(s) = −
∞̂

0

(1− e−sy) d(y−αL(log(y))) = s
1
αη1(log(s))

for every s > 0, where η1 ∈ C∞(R) is given by (4.1). On the other hand, in view of
Lemma 7.2.2 and (7.17), ζ is given by

ζ(s) = s
1
α g(log(s)) = s

1
α

∑
n∈Z

dns
ind̃.

With the uniqueness of Fourier coefficients, the Fourier coefficients (an)n∈Z of η1 coincide
with those of g. However, due to the decay of (dn)n∈Z in (7.18) and in view of Lemma
4.1.3, L is smooth with Fourier series

L(x) =
∑
n∈Z

an
Γ(inc̃− 1

α
+ 1)e

ind̃x =
∑
n∈Z

dn
Γ(inc̃− 1

α
+ 1)e

ind̃x

and hence coincides with K∗. Thus, K∗ is admissable.

Since K∗ is admissable, Fourier-Laplace inversion of the left-hand side of (7.15) yields
a Caputo semi-fractional derivative in time of order 1

α
with respect to d and K∗. To

calculate the inverse Fourier-Laplace transform of the right-hand side of (7.15), note that

ψ′(s) = sα−1(αη2(log(s)) + η′2(log(s)))
= s−1αψ(s) + sα−1η′2(log(s)),

and use that ψ(ζ(s)) = s for every s > 0, to obtain

ψ′(ζ(s)) = ζ(s)−1αs+ ζ(s)α−1η′2(log(ζ(s)))
= ζ(s)−1αs+ αζ(s)−1f(s)

with f(s) as in Lemma 7.2.3. Then insert

f(s) = ζ(s)
α

ψ′(ζ(s))− s

into the right-hand side of (7.15), which yields

−1
s

f(s)
s+ f(s)ζ(s) = −1

s

(
ζ(s)− αs

ψ′(ζ(s))

)
.

According to Lemma (4.1.3), the inverse Fourier-Laplace transform of the first term is
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given by −t− 1
αK∗(log(t))δ(x). For the second term, differentiate ψ(ζ(s)) = s to obtain

ψ′(ζ(s))ζ ′(s) = 1

such that
α

ψ′(ζ(s)) = αζ ′(s).

Using the integral representation of ζ in (7.20), we find

α

ψ′(ζ(s)) = α

∞̂

0

ye−sy dΦ∗(y)

= −α
∞̂

0

ye−sy d(y− 1
αK∗(log(y)))

=
[
−αye−syy−

1
αK∗(log(y))

]∞
0

+ α

∞̂

0

(1− sy)e−syy− 1
αK∗(log(y)) dy

= α

∞̂

0

e−syy−
1
αK∗(log(y)) dy − sα

∞̂

0

e−xyy1− 1
αK∗(log(y)) dy,

which is the Laplace transform of

αt−
1
αK∗(log(t))− α d

dt
t1−

1
αK∗(log(t)) = t−

1
αK∗(log(t))− αt− 1

α (K∗)′(log(t)).

Altogether, the right-hand side of (7.15) is the Fourier-Laplace transform of

−αt−
1
α (K∗)′(log(t))δ(x),

which finally yields the following space-time duality result.

Theorem 7.2.5. (Space-time duality)
Let α ∈ (1, 2), c > 1, and K a smooth admissable function with respect to these pa-
rameters. In addition, let x 7→ u(x, t) be the solution to the negatively skewed space
semi-fractional diffusion equation (7.8) at time t > 0. If K∗ denotes the periodic function
(7.19) and if the assumption (7.18) is fulfilled, then u is equivalent to the solution of the
inhomogeneous time semi-fractional equation

(
∂

∂d,K∗t

) 1
α

h(x, t) + ∂

∂x
h(x, t) = −αt− 1

α (K∗)′(log(t))δ(x) (7.21)

with h(x, 0) = δ(x) on the positive real line x > 0 for every t > 0. Here, equivalence
means that h(x, t) = αu(x, t) for every (x, t) ∈ R2

+.
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Remark 7.2.6. The fractional space-time duality in [64] is included in our result and
can be reobtained as follows. Choosing K(x) = − 1

Γ(1−α) for every x ∈ R, we start with
the fractional diffusion equation

∂

∂t
u(x, t) = ∂α

∂(−x)αu(x, t) (7.22)

with u(x, 0) = δ(x) and α ∈ (1, 2). Using the series representation, we immediately
obtain η2 ≡ 1 and ψ(k) = kα in this case. Hence, the inverse function ζ can be calculated
explicitly in this case and is given by ζ(s) = s

1
α such that g ≡ 1 likewise. Then according

to (7.19), K∗(x) = 1
Γ(1− 1

α
) , and by Theorem 7.2.5, the solution u to (7.22) is equivalent

to the solution of the time fractional equation
(
∂

∂t

) 1
α

h(x, t) + ∂

∂x
h(x, t) = 0 (7.23)

for every x > 0 under the initial condition h(x, 0) = δ(x). Note that by Example 5.3.14,
the time fractional equation (7.22) is solved by the densities of an inverse stable subordina-
tor (E(t))t≥0. On the other hand, the time semi-fractional equation (7.21) is homogeneous
if and only if the derivatives are fractional ones, which can be seen by going backwards
through the above arguments.

Remark 7.2.7. By considering semi-fractional instead of fractional derivatives, we lose
the connection to the inverse semistable subordinator, whose densities no longer solve
the inhomogeneous time semi-fractional equation. Nevertheless, the space semi-fractional
diffusion equation gains a physical interpretation as a system with a long-time memory
effect and additional perturbation.
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Applications

Throughout the previous chapters, we developed a basic theory of semi-fractional deriva-
tives and semi-fractional differential equations. To strengthen this theoretical approach,
we finally consider some real data problems and compare fractional with semi-fractional
methods.

Due to growing computational power, fractional differential equations have been applied
to various diverse and widespread applications during the last decades. Among other
fields, fractional models are used in physics ([142], [139], or [55]), biology ([59], [83]), and
finance ([82], [94], [140], and [51]) yielding good agreements with actual data. Addition-
ally, the number of applications is steadily growing and hence contribute to the overall
interest in fractional calculus. Adding a periodic perturbation, we now widen the class
of possible models. We have already seen that semi-fractional derivatives and solutions
to semi-fractional differential equations differ from their fractional counterparts. There-
fore, studying these more complicated operators is worth the trouble. So, this very last
chapter aims to evaluate whether the difference caused by the periodic disturbance yields
noticeable improvements in real-world applications.

As already mentioned, there is an ongoing discussion in fractional calculus about the cor-
rect usage of different forms of fractional derivatives. For initial value problems, which we
discuss in this section, the Caputo form is often preferred to the Riemann-Liouville form
since initial values can be chosen similar to the integer cases. In contrast, a fractional
differential equation including Riemann-Liouville type derivatives often requires initial
values involving a fractional derivative of the unknown solution in a given point (see for
example [110] or [120]). We do not treat this topic in detail here. However, for this reason
we concentrate on semi-fractional Caputo derivatives in the following only.

In section 8.1, we study two different growth models and define their semi-fractional
versions. As a concrete example, we apply the growth models to mobile use date as well
as to tumor growth. To close this thesis, we define tempered semistable distributions in
Section 8.2, which exponentially dampen the probability of large events, and test this
approach in modeling daily price changes of stock prices.
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8.1 Semi-fractional growth models
The term growth model is widely used for a large class of differential equations, modeling
various situations like population growth [38], tumor growth [75], the reproduction of
bacteria [153], and many others. This section studies two different approaches, namely
the exponential and the Gompertz model, and generalizes them to semi-fractional models.

The easiest growth model is the exponential one, given as the solution to

d

dt
V (t) = aV (t) t > 0

with V (0) = V0 6= 0 and a > 0. Uniquely solved by V (t) = V0e
at, the population in this

model increases steadily with an unbounded limit. Therefore it is not suitable for many
applications when applied over a long time period. Nevertheless, considering only a finite
period t ∈ [0, T ], the model attains good fits in applications (e.g., see [114] or [32]). In
[6], the corresponding fractional model

∂α

∂tα
V (t) = aV (t) (8.1)

for α ∈ (0, 1) under the similar initial condition V (0) = V0 6= 0 was studied. The unique
solution of (8.1) is given by

V (t) = V0Eα(atα), (8.2)

where Eα is the one-parameter Mittag-Leffler function

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)

for every x ∈ R [36, Theorem 6.11]. In the special case α = 1, the Mittag-Leffler function
coincides with the exponential function

E1(at) = eat,

and we regain the classical model. For every α ∈ (0, 1), the Mittag-Leffler function
asymptotically still grows exponentially, since for every fixed a > 0,

Eα(atα) = 1
α

exp
(
a

1
α t
)

+O(t− 1
α ) (8.3)

as t→∞ (see [50, Proposition 3.6]). Hence, the fractional model has the same weakness
as the classical one when considering long time periods. In Figure 8.1, the solutions for
V0 = 1 and different values of a and α are shown. For the calculation of Mittag-Leffler
functions here and in the following, we used the Matlab function provided by Podlubny
[156], which is also able to handle complex arguments.
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Figure 8.1: Left: Solution (8.2) of (8.1) for α = 1
2 and a = 0.1 (blue dashed line), a = 0.2

(blue solid line), a = 0.3 (green dashed line), and a = 0.4 (green solid line). Right:
Solution (8.2) of (8.1) for a = 0.4 and α = 0.2 (blue dashed line), α = 0.4 (blue solid
line), α = 0.6 (green dashed line), and α = 0.8 green solid line.

We want to go a step further and study a corresponding semi-fractional exponential model.
As a first approach, consider the equation

∂α

∂c,Ktα
V (t) = aV (t) (8.4)

under the initial condition V (0) = V0 6= 0 with α ∈ (0, 1), c > 1, and K admissable
with respect to these parameters. Solving this semi-fractional equation is more compli-
cated than the fractional one and we did not find an analytical formula for the solution.
Nevertheless, we can compute a solution as the inverse Laplace transform of

Ṽ (s) = sα−1η1(log(s))
sαη1(log(s))− aV0 (8.5)

for every s > 0 and η1 as in (4.1). This representation allows us to analyze the asymptotic
behavior of the solution to the semi-fractional equation (8.4).

Lemma 8.1.1. Let V : [0,∞)→ R be a solution to the semi-factional exponential equa-
tion (8.4) and define g(x) = xαη1(log(x)) for every x > 0 and η1 from (4.1). Then there
is a unique u ∈ R+ with g(u) = a and

lim
t→∞

V (t)e−ut = C <∞, (8.6)

where C := aV0

αa+ uαη′1(log(u)) > 0.

Proof. First note that according to Lemma 4.1.3 and Lemma 5.2.3, the function g(x) is
a strictly increasing, C∞(R)-function with lim

x→0
g(x) = 0 and lim

x→∞
g(x) =∞ such that for
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every a > 0, there is a unique u > 0 with g(u) = a. Define the function f : [0,∞) → R
by f(t) = e−utV (t). Then using (8.5), f has Laplace transform

f̃(s) =
∞̂

0

e−ste−utV (t) dt

= Ṽ (s+ u)

= (s+ u)α−1η1(log(s+ u))
(s+ u)αη1(log(s+ u))− aV0

= (s+ u)−1g(s+ u)
g(s+ u)− a V0

for every s > 0. The only pole of the Laplace transform f̃ lies in the origin such that we
are able to apply the final value theorem (see for example [124, Theorem 2.36]). Then we
obtain

lim
t→∞

f(t) = lim
s→0

sf̃(s) = lim
s→0

s(s+ u)−1g(s+ u)
g(s+ u)− a V0.

With L’Hôspital’s rule and the differentiability of g, we find

lim
t→∞

f(t) = lim
s→0

(s+ u)−1g(s+ u)− s(s+ u)−2g(s+ u) + s(s+ u)−1g′(s+ u)
g′(s+ u) V0.

The derivative g′ is given by

g′(x) = (xαη1(log(x)))′ = xα−1(αη1(log(x)) + η′1(log(x))) > 0

for every x > 0 since g is strictly increasing. Additionally, g′ is continuous such that

lim
s→0

g′(s+ u) = uα−1(αη1(log(u)) + η′1(log(u)))

= αu−1g(u) + uα−1η′1(log(u))
= αau−1 + uα−1η′1(log(u))

due to the choice of u. Finally, the limiting behavior is given by

lim
t→∞

f(t) = u−1g(u)
g′(u) V0

= u−1a

αau−1 + uα−1η′1(log(u))V0

= a

αa+ uαη′1(log(u))V0.
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Remark 8.1.2. In the fractional case, K(x) = 1
Γ(1−α) yields η1 = 1 such that g(x) = xα,

and we reobtain the asymptotic behavior V (t) ∼ V0
α

exp
(
a

1
α t
)
as stated before.

The assumption on K to be admissable restricts our perturbation choices and has to be
checked separately every time. To widen the class of possible models, first note that using
(3.6), for every b ≥ 0, we have

∂α

∂c,Ktα
V (t) =

∞̂

0+

V ′(t− y)y−αK(log(y)) dy

=
∞̂

0+

V ′(t− y)y−α
(
K(log(y)) + b

Γ(1− α) −
b

Γ(1− α)

)
dy

= ∂α

∂c,Knewt
α
V (t)− b ∂

α

∂tα
V (t),

where

Knew(x) := K(x) + b

Γ(1− α)

is again admissable. Hence (8.4) is equivalent to

∂α

∂c,Knewt
α
V (t)− b ∂

α

∂tα
V (t) = aV (t) (8.7)

for every b ≥ 0.

On the other hand, starting from (8.7), the function Knew has to be admissable with
respect to α and c > 1, whereas K itself is not necessarily admissable. For b sufficient
large, K can be chosen as an arbitrary log

(
c

1
α

)
-periodic function. Therefore b is non-

unique but bounded from below. If K is not admissable itself, we are not allowed to
write equation (8.7) in the form (8.4) since we defined semi-fractional derivatives for
admissable perturbations only. However, in the Laplace transform, the terms including b
cancel themselves, and we can still calculate the function as the inverse Laplace transform
of (8.5). Figure 8.2 shows the solution of (8.7) for α = 1

2 , a = 0.2, V0 = 1, c = e3α, and

K(x) = 1
2 cos

(2π
3 x

)
+ 1

Γ(1− α)

on a double logarithmic scale. The function K itself is not admissable but

Knew(x) = K(x) + b

Γ(1− α) (8.8)

is admissable for every b ≥ 3.12, where we calculated the lower bound for b numerically.
Both solutions were calculated using inverse Laplace methods and (8.5). The Matlab code
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for the calculation is attached in Appendix C.

Figure 8.2: Solution of the exponential model (8.7) for α = 1
2 , a = 0.2, V0 = 1, and Knew

in (8.8) (solid line) in comparison to the corresponding fractional case (dashed line) on a
double logarithmic scale.

Remark 8.1.3. Note that studying the more general form (8.7) of the semi-fractional
exponential equation might change the limiting behavior of the solution. As in Lemma
8.1.1, let g(x) = xαη1(log(x)), where η1 is calculated using K as in (4.1). If K is not ad-
missable itself, g is not necessarily increasing, and the arguments in Lemma 8.1.1 fail to
describe the limit behavior. However, heuristically, we expect the semi-fractional deriva-
tive to oscillate around a fractional one. Thus, for small perturbations, we conjecture
that the overall behavior is still dominated by exponential growth.

Example 8.1.4. (Web use on mobiles, part one)
In [6], the authors studied the percentage of mobile web use worldwide between December
2009 and August 2014 and fitted this data using the fractional exponential model (8.1).
To reproduce their results, we downloaded the monthly reported percentage of mobile
web use from [157], yielding 68 data points. Applying a best-fit approach in Matlab, we
obtain α = 0.3465 and a = 0.3293 for the fractional model, which coincides with the values
calculated in [6] using Bayesian analysis. We want to check whether the semi-fractional
model (8.7) offers a notable improvement in the fitting process. Note that the fractional
model is included in the semi-fractional one by a particular choice of the perturbation
such that we expect a small improvement in any case. To value the fit of the models, we
use the mean squared error (MSE) given by

MSE =
N∑
i=1

(V (ti)− vi)2,

comparing the real data V (ti) with the estimated values vi of the model at reporting time
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ti for i = 1, . . . , N . For the semi-fractional model, we consider perturbations of the form

K(x) = d1 cos
(

2π
p
x

)
+ d2 sin

(
2π
p
x

)
+ 1

Γ(1− α)

for coefficients d1, d2 ∈ R and a period p > 0. Note that here, as well as in the following
examples, we always assume that K has such a simple form. Indeed, one can consider
perturbations with any number of terms. However, this may yield over-fitted models such
that we stick to this simple case here. Additionally, the minimization of the MSE becomes
quite difficult with a growing number of unknown parameters.

Fractional model Semi-fractional model
α 0.3465 0.9798
a 0.3293 0.0383
p − 6.7047
d1 − −0.7981
d2 − 0.0532

MSE 33.5127 18.5797

Table 8.1: Evaluated parameters for the fractional and semi-fractional exponential model
in Example 8.1.4 describing the percentage of mobile web use worldwide between January
2009 and August 2014.

Figure 8.3: Monthly reported percentage of mobile web use between January 2009 and
August 2014 (stars), fractional fit (dashed line), and semi-fractional fit (solid line) in
Example 8.1.4 on a semi-logarithmic scale.

Using the Matlab function ’fminsearchbnd.m’ [154], we calculate parameters α ∈ (0, 1),
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d1 ∈ R, d2 ∈ R, p > 0, and a > 0 minimizing the MSE. We want to emphasize that the
minimum is only a local one depending on the starting values, and there might be even
better fits. The calculated values are displayed in Table 8.1, and the fractional as well
as the semi-fractional solution are shown in Figure 8.3. Since we reduced the MSE to
over 44 percent compared to the original one, the semi-fractional model can be seen as a
notable improvement.
In both models, the fractional model (8.1) as well as the semi-fractional exponential model
(8.7), the calculated solutions for this application grow exponentially. However, for this
particular situation in which we study percentages, any unbounded long-time behavior is
impossible. Therefore, none of the above models is suitable for a long-time prediction but
might be used for a short-time analysis.

For a long-time prediction, many applications require bounded models. One possibility for
such a growth model is to consider Gompertz equations. Initially introduced by Gompertz
in [49], the growth is thereby described as the function V : [0,∞)→ (0,∞) solving

d

dt
V (t) = a1V (t)− a2V (t) log

(
V (t)
V0

)
(8.9)

for constants a1, a2 > 0 and an initial condition V (0) = V0 > 0. The solution to this
classical equation is given by

V (t) = V0 exp
(
a1

a2

(
1− e−a2t

))
for every t ≥ 0. Note that in contrast to the exponential model, this equation demands
V to converge to a boundary V∞ as t→∞, which is given by

V∞ := lim
t→∞

V (t) = V0 exp
(
a1

a2

)
.

To derive a fractional version of the Gompertz model (8.9), we follow the steps in [25].
This is, we define y(t) := log

(
V (t)
V0

)
such that

d

dt
y(t) = 1

V (t)
d

dt
V (t).

Then (8.9) equals

d

dt
y(t) = a1 − a2y(t)

with y(0) = 0. Based on this equation, the fractional model was defined as the function
V : [0,∞)→ (0,∞) such that y(t) = log

(
V (t)
V0

)
solves the fractional equation

∂α

∂tα
y(t) = a1 − a2y(t)
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with y(0) = 0 and α ∈ (0, 1). The solution can again be formulated in terms of the
Mittag-Leffler function as

y(t) = a1

a2
(1− Eα (−a2t

α))

(see for example [25, Equation (2.4)]), and hence by recalling the substitution, we obtain

V (t) = V0 exp
(
a1

a2
(1− Eα (−a2t

α))
)
. (8.10)

For V0 = 1, a1 = 1, and a2 = 0.5, the solution for different values of α is shown in Figure
8.4.

Figure 8.4: Solution V (t) in (8.10) to the fractional Gompertz equation for α = 0.2 (blue
dashed line), α = 0.4 (blue solid line), α = 0.6 (green dashed line), and α = 0.8 (green
solid line).

Note that both the ordinary and the fractional solution approach the same limit as t→∞
since for the fractional model

lim
t→∞

V0 exp
(
a1

a2
(1− Eα(−a2t

α))
)

= V0 exp
(
a1

a2

)
using (8.3), which is also the limit of the classical Gompertz equation. We extend this
model to a semi-fractional Gompertz equation, this is we want to find V : [0,∞)→ (0,∞)
such that y(t) = log

(
V (t)
V0

)
solves

∂α

∂c,Ktα
y(t) = a1 − a2y(t) (8.11)

with y(0) = 0 for α ∈ (0, 1), c > 1, and a log
(
c

1
α

)
-periodic function K admissable with
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respect to α and c. An analytical form of the solution is difficult to find, so we characterize
the solution as the function with Laplace transform

ỹ(s) = 1
s

a1 + sαη1(log(s))y(0)
sαη1(log(s)) + a2

= 1
s

a1

sαη1(log(s)) + a2

for every s > 0, where again η1 is defined as in (4.1). Note that the solution has the same
limiting behavior as the fractional model, which is justified by the subsequent lemma.
Lemma 8.1.5. Let y : [0,∞)→ R be a solution of (8.11). Then the solution V : [0,∞)→
(0,∞) of the semi-fractional Gompertz model with V (t) = log

(
V (t)
V0

)
fulfills

lim
t→∞

V (t) = V0 exp
(
a1

a2

)
.

Proof. We analyze the asymptotic behavior of y using the final value theorem for the
Laplace transform [124, Theorem 2.36]. The Laplace transform of y has s = 0 as its only
pole and hence

lim
t→∞

y(t) = lim
s→0

sỹ(s) = lim
s→0

a1

sαη1(log(s)) + a2
= a1

a2
.

Then the result follows from the fact that V (t) = V0 exp(y(t)).

Similar to the exponential model, we weaken the assumptions on K by considering the
modified equation

∂α

∂c,Knewt
α
y(t)− b ∂

α

∂tα
y(t) = a1 − a2y(t)

for b ≥ 0 such that

Knew = K(x) + b

Γ(1− α)

is admissable with respect to α and c > 1. If b is sufficient large, K can be chosen as
an arbitrary log

(
c

1
α

)
-periodic function. However, similar to the considerations in Remark

8.1.3, the limit in Lemma 8.1.5 may change if K is not admissable itself.
Example 8.1.6. (Web use on mobiles, part two)
In Example 8.1.4, we analyzed the percentage of mobile use between January 2009 and
August 2014 and fitted a fractional and a semi-fractional exponential model in good
agreement with the data. However, both models indicate a steadily increasing percentage,
even exceeding the 100 percent bound in finite time. For this reason, we extend the
analysis in [6] by considering fractional as well as semi-fractional Gompertz equations.
For the semi-fractional one, we again assume that the periodic function K is given by

K(x) = d1 cos
(

2π
p
x

)
+ d2 sin

(
2π
p
x

)
+ 1

Γ(1− α)

197



Chapter 8. Applications

for coefficients d1, d2 ∈ R and a period p > 0. As a data basis, we take the monthly
reported percentages of mobile web use between January 2009 and January 2021. To
evaluate our models’ prediction capability, we only take the data up to August 2018 for
the calculation of the parameters, which correlates with 80 percentage of all data points.
Afterward, we calculate the MSE between the remaining points and the real data to
compare the prediction capability. All calculated values are given in Table 8.2.

Fractional Gompertz model Semi-fractional Gompertz model
α 0.9691 0.6538
a1 0.1171 0.3334
a2 0.0235 0.0804
p − 5.7980
d1 − 0.6132
d2 − 0.4647

Prediction MSE 7752.3937 324.2828

Table 8.2: Calculated values for the fractional and semi-fractional Gompertz equation
in Example 8.1.6 based on the data from January 2009 to August 2018 as well as the
prediction MSE of the data between September 2018 and January 2021.

In this scenario, the semi-fractional Gompertz model offers a better prediction than the
fractional one, which is also displayed by the fits shown in Figure 8.5. The Matlab code
for this calculation can be found in Appendix C.

Figure 8.5: Monthly reported percentage of mobile web use between January 2009 and
August 2018 (blue stars) as well as between September 2018 and January 2021 (green
stars). In addition, the fractional Gompertz fit (dashed line) and the semi-fractional
Gompertz fit (solid line) in Example 8.1.6 based on the first data set are shown.
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Remark 8.1.7. In some applications, especially in medicine, another parametrization of
the Gompertz equation appears. Setting a1 = a2 log

(
V∞
V0

)
for V∞ > V0, equation (8.9)

reads as

d

dt
V (t) = a2V (t) log

(
V∞
V (t)

)
(8.12)

with V (0) = V0. Note that the variable V∞ indeed characterizes the limit of V (t) as
t → ∞, which justifies the notation and allows an easier interpretation of the variables.
Using the results above, the solution is given by

V (t) = V0 exp
(

log
(
V∞
V0

)
(1− e−a2t)

)
.

To derive a semi-fractional equation, substitute y(t) := log
(
V∞
V (t)

)
. Then (8.12) reads as

d

dt
y(t) = −a2y(t)

with y(0) = log
(
V∞
V0

)
. The corresponding fractional equation

∂α

∂tα
y(t) = −a2y(t)

with y(0) = log
(
V∞
V0

)
is solved by

y(t) = log
(
V∞
V0

)
Eα(−a2t

α)

such that

V (t) = V∞ exp(−y(t)) = V∞ exp
(
− log

(
V∞
V0

)
Eα(−a2t

α)
)

= V0 exp
(

log
(
V∞
V0

)
(1− Eα(−a2t

α))
)
.

Again we can replace the time derivative with a semi-fractional one yielding the problem
to find V : [0,∞)→ (0,∞) such that y(t) = log

(
V∞
V (t)

)
solves

∂α

∂c,Knewt
α
y(t)− b ∂

α

∂tα
y(t) = −a2y(t)

with y(0) = log
(
V∞
V0

)
and Knew(x) = K(x) + b

Γ(1−α) admissable with respect to α and c.
In this parametrization, the solution y can be described as the inverse Laplace transform
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of

ỹ(s) = 1
s

sαη1(log(s))
sαη1(log(s)) + a2

y(0).

Besides, using Lemma 8.1.5, V∞ describes the asymptotic behavior V∞ = lim
t→∞

V (t) when-
ever K is admissable.
Example 8.1.8. (Modeling tumor growth)
Predicting tumor growth is an important challenge in oncology to improve individualized
therapy options in the clinic. Recently, fractional Gompertz models have been applied to
this kind of data set, yielding better fits than classical models (compare for example [25]
or [144]). We want to check whether the semi-fractional Gompertz model offers an even
better fit. Again we assume that the periodic perturbation is given by

K(x) = d1 cos
(

2π
p
x

)
+ d2 sin

(
2π
p
x

)
+ 1

Γ(1− α)

for d1, d2 ∈ R and p > 0. We use the data reported in [79] of tumor growth in mice as
a data basis. In this clinical study, tumors arose from chemical mutagenesis on the skin,
and therefore the length L(t) and height H(t) were measured with a measuring caliper
twice a week. Every measurement was repeated three times, and the median value was
taken to reduce measurement errors. The tumor was assumed to have an ellipsoid shape
such that the volume can be approximated by

V (t) = π

6 (L(t)H(t)) 3
2 .

Tumor 1 Fractional Gompertz model Semi-fractional Gompertz model
α 0.9820 0.999999996
V∞ 783.4445 269.4751
a2 0.0255 0.0290
p − 1.8589
d1 − −0.8245
d2 − 0.9867

MSE 15722.7858 6553.4488

Table 8.3: Calculated values for the fractional and semi-fractional Gompertz equation for
tumor 1 in Example 8.1.8.

Exemplarily, we analyze tumors of two non-medicated mice in detail. These tumors are
tumor 2 of Mouse CM37 and tumor 3 of Mouse CM78 in the study, which we simply call
tumor 1 and tumor 2 here. In Figure 8.6, the data as well as the fractional and semi-
fractional fits for both tumors are shown. The calculated parameters using the alternative
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parametrization in Remark 8.1.7 are displayed in Table 8.3 and Table 8.4. In both cases,
the semi-fractional Gompertz approach models the growth more efficiently. However, we
want to emphasize that due to the small number of data points, the error in the calculation
of the variables may be high. Nevertheless, the good fit inside this small data set may
justify further studies on the improvement of semi-fractional derivatives in tumor growth
models.

Tumor 2 Fractional Gompertz model Semi-fractional Gompertz model
α 0.9804 0.9999
V∞ 473.2977 1841.6511
a2 0.0221 0.0019
p − 19.0063
d1 − −0.2221
d2 − 0.1969

MSE 1686.0212 530.8454

Table 8.4: Calculated values for the fractional and semi-fractional Gompertz equation for
tumor 2 in Example 8.1.8.

Figure 8.6: Tumor growth data of tumor 1 (left) and tumor 2 (right) displayed as stars as
well as the fractional (dashed line) and the semi-fractional fit (solid line) of the Gompertz
model in Example 8.1.8.

8.2 Tempered semistable distributions

For many physical applications, the moments of a distribution have an inherent physical
meaning. However, for semistable and for stable densities of order α ∈ (1, 2), only the
first integer moment is finite. Even more difficult for applications, none of the integer
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moments exist for (semi-)stable distributions of order α ∈ (0, 1). To overcome these dif-
ficulties, the idea of tempered stable distributions emerged. Thereby, the probability of
large observations is exponentially reduced, yielding finite moments of every order. For
an introduction to the theory of tempered stable laws, we refer to [117], [94], and [11]
and the references therein. In this section, we apply the same method to obtain tempered
semistable distributions and afterward consider an explicit example in finance.

Let ν be a (c 1
α , c)-semistable distribution on R for some α ∈ (0, 2) \ {1} and c > 1 with

Lévy-Khintchine triple [a, 0,Φ], where a is given by (5.2) and

Φ(−∞,−r) = 0 and Φ(r,∞) = r−αK(log(r))

for every r > 0 and an admissable function K. We assume that K is continuously
differentiable with Fourier coefficients (cn)n∈Z ⊂ C such that according to Example 2.2.6,
the log-characteristic function Ψ of ν is given by

Ψ(k) = −
∑
n∈Z

cnΓ(inc̃− α + 1)(−ik)α−inc̃ (8.13)

for every k ∈ R. Similar to the proof of Lemma 5.3.7, the function k 7→ Ψ(k) can be
extended to the complex half-plane {z ∈ C : Im(z) ≥ 0}, and hence we obtain

∞̂

−∞

eikxe−sx dν(x) = exp(Ψ(k + is)) (8.14)

for every s > 0 and k ∈ R. By x 7→ p(x, t), we denote the Lebesgue density of the
corresponding Lévy process (X(t))t≥0 with PX(1) = ν. Note that according to Lemma
5.1.1, the densities solve the diffusion equation

∂

∂t
p(x, t) = −D ∂α

∂c,Kxα
p(x, t),

where again D = (−1)bαc. Now we define the tempered semistable density in the following
way.
Lemma 8.2.1. (Tempered semistable density)
For λ > 0, the tempered semistable densities

x 7→ pλ(x, t) := e−λxe−tΨ(iλ)p(x, t)

are well-defined with Fourier transform

p̂λ(k, t) = e−tΨ(iλ)etΨ(k+iλ)

for every k ∈ R, t > 0.
Proof. First note that in view of (8.13), Ψ(iλ) ∈ R such that pλ ≥ 0. Besides, using
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(8.14), we obtain
∞̂

−∞

e−λxe−tΨ(iλ)p(x, t) dx = e−tΨ(iλ)
∞̂

−∞

eik·0e−λxp(x, t) dx

= e−tΨ(iλ)etΨ(iλ)

= 1.

Hence, pλ is a well-defined probability density. To calculate the Fourier transform, con-
sider the integral

p̂λ(k, t) =
∞̂

−∞

eikxe−λxe−tΨ(iλ)p(x, t) dx

= e−tΨ(iλ) exp(tΨ(k + iλ))
= exp(t(Ψ(k + iλ)−Ψ(iλ)))

for every k ∈ R and t > 0.

The tempered semistable distribution can also be obtained from exponentially tempering
the Lévy measure Φ of ν as follows. For λ > 0, consider the measure

dΦλ(x) = e−λxdΦ(x).

Then Φλ is a Lévy measure since it integrates min{1, ||x||2}. Thus, there exists an in-
finitely divisible distribution with log-characteristic function

Ψλ(k) =
∞̂

0+

eixk − bαc∑
p=0

(ikx)p
 dΦλ(x)

=
∞̂

0+

e(ik−λ)x −
bαc∑
p=0

(ikx)pe−λx
 dΦ(x)

for every k ∈ R. In the case α ∈ (0, 1), this yields

Ψλ(k) =
∞̂

0+

(
e(ik−λ)x − e−λx

)
dΦ(x)

=
∞̂

0+

(
ei(k+iλ)x − 1

)
dΦ(x) +

∞̂

0+

(
1− e−λx

)
dΦ(x)

= Ψ(k + iλ)−Ψ(iλ),

which is the log-characteristic function of the tempered semistable density pλ at time
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t = 1. If α ∈ (1, 2), we receive

Ψλ(k) =
∞̂

0+

(
e(ik−λ)x − e−λx − ikxe−λx

)
dΦ(x)

=
∞̂

0+

(
e(ik−λ)x − 1− (ik − λ)x

)
dΦ(x) +

∞̂

0+

(1− e−λx − λx) dΦ(x)

+ ik

∞̂

0+

x(1− e−λx) dΦ(x)

=Ψ(k + iλ)−Ψ(iλ) + ik

∞̂

0+

x(1− e−λx) dΦ(x)

for every k ∈ R. Hence, we have proven the following Lemma.
Lemma 8.2.2. (Tempered semistable Lévy process)
For λ > 0, let µλ be the infinitely divisible distribution with Lévy-Khintchine representa-
tion [aλ, 0,Φλ] with

aλ :=



∞̂

0+

x

1 + x2 dΦλ(x) if α ∈ (0, 1)

∞̂

0+

(
x

1 + x2 − x
)
dΦλ(x) if α ∈ (1, 2).

Then the corresponding Lévy process (Xλ(t))t≥0 has densities x 7→ pλ(x − qλ) with pλ as
defined in Lemma 8.2.1 and

qλ :=


0 if α ∈ (0, 1)
∞̂

0+

x(1− e−λx) dΦ(x) if α ∈ (1, 2). (8.15)

Remark 8.2.3. Just as well, one may add the shift qλ to the constant aλ and then study
the densities of the corresponding Lévy process without any shifts. However, in order to
obtain accordance with the already existing tempered stable laws and tempered fractional
derivatives, we decided to stick to the notation in Lemma 8.2.2.
An essential advantage of the tempered distribution is the existence of moments of arbi-
trary order.
Lemma 8.2.4. (Moments of tempered semistable laws)
For λ > 0, let x 7→ pλ(x, t) be a tempered semistable density for some t > 0. Then for
every n ∈ N, the n-th moment of pλ exist.

204



Chapter 8. Applications

Proof. According to [122, Theorem 25.3], the n-th moment
∞̂

−∞

xnpλ(x, t) dx

exists for every t > 0 if and only if
ˆ

|x|>1

xn dΦλ(x) <∞.

However, in our case the Lévy measure is concentrated on (0,∞), and hence we obtain

ˆ

|x|>1

xn dΦλ(x) =
∞̂

1

xne−λx dΦ(x) <∞

for every n ∈ N.

As seen by the previous proof, the Lévy measure is strongly related to the asymptotic
behavior of the (tempered) semistable random variable. In detail, if X is a semistable
random variable, then due to the continuity of K, the distribution is subexponential ([128,
Theorem 1.3]) such that

P (X > x) ∼ Φ(x,∞) (8.16)

for large values of x. If now Xλ has a tempered semistable distribution with λ > 0,
the following Lemma provides a similar statement showing that the tail of the tempered
semistable distribution asymptotically behaves like the tempered Lévy measure.

Lemma 8.2.5. Let (X(t))t≥0 be a semistable Lévy process, (Xλ(t))t≥0 the corresponding
tempered Lévy process as defined in Lemma 8.2.2 and Y = Xλ(t)−qλ for some fixed t > 0
and qλ as in (8.15). Then

P (Y > r) ∼ C(t)tΦλ(r,∞)

as r →∞, where

C(t) = e−tΨ(iλ) =



exp

t
∞̂

0+

(1− e−λx) dΦ(x)

 if α ∈ (0, 1)

exp

t
∞̂

0+

(1− λx− e−λx) dΦ(x)

 if α ∈ (1, 2).

(8.17)
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Proof. According to (8.16), we have

1 = lim
r→∞

P (X(t) > r)
tΦ(r,∞) = lim

r→∞

∞́

r
p(x, t) dx

t
∞́

r
dΦ(x)

= − lim
r→∞

∞́

r
p(x, t) dx

t
∞́

r
dGK(x)

using the density x 7→ p(x, t) of X(t). Since GK is differentiable, using l’Hospital’s rule
we find

1 = − lim
r→∞

∞́

r
p(x, t) dx

t
∞́

r
G′K(x)dx

= − lim
r→∞

p(r, t)
tG′K(r) . (8.18)

For the asymptotic behavior of Y , we study the limit

lim
r→∞

P (Y > r)
C(t)tΦλ(r,∞) = lim

r→∞

P (Xλ(t)− qλ > r)
C(t)tΦλ(r,∞)

= lim
r→∞

∞́

r+qλ
pλ(x, t) dx

C(t)t
∞́

r
e−λx dΦ(x)

= − lim
r→∞

∞́

r+qλ
e−λ(x−qλ)e−tΨ(iλ)p(x− qλ, t) dx

C(t)t
∞́

r
e−λxG′K(x) dx

= − lim
r→∞

∞́

r
e−λxe−tΨ(iλ)p(x, t) dx

C(t)t
∞́

r
e−λxG′K(x) dx

.

Using l’Hospital’s rule once again yields

lim
r→∞

P (Y > r)
C(t)tΦλ(r,∞) = − lim

r→∞

e−λre−tΨ(iλ)p(r, t)
C(t)te−λrG′K(r) = − lim

r→∞

p(r, t)
tG′K(r) = 1

according to the definition of C(t) in (8.17) and (8.18).

Similar to the semistable case, we gain a governing equation for the tempered semistable
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process. Namely, the densities x 7→ pλ(x− qλ, t) solve the equation

∂

∂t
u(x, t) = Lλu(x, t)

with u(x, 0) = δ(x), where Lλ is the generator of the semigroup corresponding to µλ. If
we formally define a tempered semi-fractional derivative as

∂α,λ

∂c,Kxα
f(x) = −DLλf(x),

then the tempered semi-fractional derivative of a suitable function f is the function with
Fourier transform

∂̂α,λ

∂c,Kxα
f(k) = −D(Ψ(k + iλ)−Ψ(iλ)).

From the explicit representation of the generator in Lemma 2.3.3, we also receive an
integral form of the tempered semi-fractional derivative as

∂α,λ

∂c,Kxα
f(x) = −D

∞̂

0+

(
f(x− y)− f(x) + yf ′(x)1(1,2)(α)

)
dΦλ(y)

= D

∞̂

0+

(
f(x)− f(x− y)− yf ′(x)1(1,2)(α)

)
e−λy dΦ(y).

For λ→ 0, the tempered semi-fractional derivative coincides with the semi-fractional one.
However, even for λ > 0, we can describe the relation between both operators.
Lemma 8.2.6. (Connection between tempered and ordinary semi-fractional derivatives)
For α ∈ (0, 2) \ {1} and c > 1, let K be an admissable function with respect to these
parameters. For every λ > 0, we have

∂α,λ

∂c,Kxα
f(x) = e−λx

∂α

∂c,Kxα
(eλxf(x)) +DΨ(iλ)f(x)− f ′(x)qλ

for every x ∈ R.
Proof. First consider α ∈ (0, 1), and note that qλ = 0 in this case. Then with (3.4), for
every λ > 0 and α ∈ (0, 1), we obtain

e−λx
∂α

∂c,Kxα
(eλxf(x)) = e−λx

∞̂

0+

(
eλ(x−y)f(x− y)− eλxf(x)

)
dGK(y)

=
∞̂

0+

(
e−λyf(x− y)− f(x)

)
dGK(y)
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=
∞̂

0+

(f(x− y)− f(x)) e−λy dGK(y)− f(x)
∞̂

0+

(1− e−λy) dGK(y)

=
∞̂

0+

(f(x)− f(x− y)) dΦλ(y)− f(x)
∞̂

0+

(1− e−λy) dGK(y)

= ∂α,λ

∂c,Kxα
f(x)−Ψ(iλ)f(x),

which proves the statement for α ∈ (0, 1). Similarly, for α ∈ (1, 2) it follows with (3.4)
that

e−λx
∂α

∂c,Kxα
(eλxf(x)) =e−λx

∞̂

0+

(
eλxf(x)− eλ(x−y)f(x− y)− yeλx(f ′(x) + λf(x))

)
dGK(y)

=
∞̂

0+

(
f(x)− e−λyf(x− y)− y(f ′(x) + λf(x)))

)
dGK(y)

=
∞̂

0+

(f(x)− f(x− y)− yf ′(x))e−λy dGK(y)

+ f(x)
∞̂

0+

(1− e−λy − λy) dGK(y) + f ′(x)qλ

= ∂α,λ

∂c,Kxα
f(x) + Ψ(iλ)f(x) + f ′(x)qλ

for every x ∈ R.

Example 8.2.7. In the fractional case,

Ψ(iλ) =
∞̂

0+

(e−λy − 1) dΦ(y) = α

Γ(1− α)

∞̂

0+

(e−λy − 1)y−α−1 dy = −λα

for α ∈ (0, 1) (compare [94, Proposition 3.10]), whereas for α ∈ (1, 2) we obtain

Ψ(iλ) =
∞̂

0+

(e−λy − 1 + λy) dΦ(x)

= − α

Γ(1− α)

∞̂

0+

(e−λy − 1 + λy)y−α−1 dy

= − Γ(2− α)
(α− 1)Γ(1− α)λ

α
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= λα

(see [94, Proposition 3.12]). Additionally, the shift qλ is given by

qλ = α

Γ(1− α)

∞̂

0+

x−α(1− e−λx) dx = αλα−1

for α ∈ (1, 2). Hence, we get the relation

∂α,λ

∂c,Kxα
f(x) = e−λx

∂α

∂c,Kxα
(eλxf(x))− λαf(x)

for α ∈ (0, 1) and

∂α,λ

∂c,Kxα
f(x) = e−λx

∂α

∂c,Kxα
(eλxf(x))− λαf(x)− αλα−1f ′(x)

for α ∈ (1, 2) respectively, which coincides with known results ([94, Equation (7.11) and
(7.16)]).

Example 8.2.8. As an application of tempered semi-fractional laws, we want to study
the percentage of absolute daily price changes (in US dollar) for Amazon Inc. stock. Data
of this kind has been modeled with fractional approaches before (see for example [97]),
and we hope to improve these results. Therefore, the historical data between 02.01.1998
and 31.07.2020 was taken from [158], yielding 5682 trading days. We assume that we can
model the absolute daily price change percentage with a random variable X > 0 having
a tempered (d

1
β , d)-semistable distribution for some β ∈ (0, 1) and d > 1. Besides, we

assume that the admissable function V in the tail of the Lévy measure Φλ is continuously
differentiable with Fourier coefficients (cn)n∈Z such that x 7→ Φλ(x,∞) is continuous in
x > 0. According to Lemma 8.2.5, the asymptotic behavior can be characterized by

P (X > x) ∼ CΦλ(x,∞)

for a constant C > 0 as x→∞. For the tail of the tempered Lévy measure, use integration
by parts to obtain

Φλ(x,∞) =
∞̂

x

e−λy dΦ(y) =
[
−e−λyGV (y)

]∞
x
− λ

∞̂

x

e−λyGV (y) dy

= e−λxGV (x)− λ
∞̂

x

e−λyGV (y) dy

and the series representation of the log-periodic perturbation V in GV (x) = x−βV (log(x))
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yields

Φλ(x,∞) = e−λxGV (x)− λ
∑
n∈Z

cn

∞̂

x

e−λyyind̃−β dy

= e−λxGV (x)−
∑
n∈Z

cnλ
β−ind̃Γ(1− β + ind̃, λx)

with Γ(a, b) =
´∞
b
e−xxa−1 dx being the incomplete gamma function. By equation (11.12)

in [141], we have

Γ(a, b) = ba−1e−b
∞∑
k=0

(−1)k(1− a) · · · (k − a)
bk

= ba−1e−b
∞∑
k=0

(
a− 1
k

)
k!
bk

such that

Φλ(x,∞) = e−λxGV (x)−
∑
n∈Z

cnλ
β−ind̃(λx)−β+ind̃e−λx

∞∑
k=0

(
ind̃− β

k

)
k!

(λx)k

= e−λxGV (x)−
∑
n∈Z

cnx
−β+ind̃e−λx −

∑
n∈Z

cnx
−β+ind̃e−λx

∞∑
k=1

(
ind̃− β

k

)
k!

(λx)k

= −
∑
n∈Z

cnx
−β+ind̃e−λx

∞∑
k=1

(
ind̃− β

k

)
k!

(λx)k

∼ −1
λ

∑
n∈Z

cnx
−β+ind̃−1e−λx(ind̃− β).

Using the differentiability of V , we have

Φλ(x,∞) ∼ −e
−λx

λ

(
∂

∂x
GV (x)

)

= e−λx

λ
x−β−1(βV (log(x))− V ′(log(x))).

Remark that the function βV−V ′ is positive and log
(
d

1
β

)
-periodic due to the admissability

of V but not necessarily admissable itself. In this sense, the tail of the semistable random
variable equals the tail of a tempered disturbed Pareto distribution with index α = β+1 ∈
(1, 2) and perturbation K = Cλ−1(αV − V ′).

To describe the percentage of daily price changes for Amazon Inc. stock, we took the 50
largest observations in the period between 02.01.1998 and 31.07.2020 and fit a Pareto, a
tempered Pareto, and a tempered disturbed Pareto model to the data. For the disturbed
Pareto model, we assume that

K(x) = d1 + d2 cos
(
x

2π
p

)
+ d3 sin

(
x

2π
p

)
.
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The result is shown in Figure 8.7, whereas the calculated parameters are displayed in
Table 8.5. The Matlab code for the calculation can be found in Appendix C. The largest
data points occur with such a low probability, that even though the tempered Pareto
model approximates these points more accurately than the ordinary Pareto approach,
with our accuracy, there is no difference in the MSE. However, the tempered disturbed
Pareto model is an even better fit to the data and also captures the highest data points
more precisely.

Pareto model Tempered Pareto Tempered disturbed Pareto
α 3.6175 2.1578 1.0468
λ − 0.0798 0.2090
p − − 0.8226
d1 138.2396 8.7096 4.3405
d2 − − 0.8881
d3 − − −1.0691

MSE ·106 5.1195 5.1195 1.6780

Table 8.5: Calculated parameters for the different models in Example 8.2.8 for the daily
price changes in Amazon Inc. stock.

Figure 8.7: Tail of the best Pareto (green dashed line), tempered Pareto (blue dashed line),
and tempered disturbed Pareto model (blue solid line) in comparison to the empirical tail
(stars) consisting of the 50 largest observations of the percentage of absolute daily price
change in Amazon Inc. stock between 02.01.1998 and 31.07.2020 in Example 8.2.8.
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Sets and spaces:

A,A◦ Closure and interior of A ⊆ Rd

∂A Boundary of A ⊆ Rd

Rd
+ Rd

+ := (0,∞)d

C(ϑ) {reiϕ ∈ C : r > 0, |ϕ| < ϑ}

C+ C
(
π
2

)
B(A) Borel sets of A ⊆ Rd

S Unit sphere S := {x ∈ Rd : ||x||2 = 1}

L1(A) Space of integrable functions f : A → R with ⊆ Rd

W n(A) W n(A) := {f : A → R : f is n-times partially differentiable on A◦
and all partial derivatives up to order n belong to L1(A)}, A ⊆ Rd

C0(Rd) Space of continuous functions f : Rd → R with lim
|x|→∞

f(x) = 0

Cn
0 (Rd) Space of n-times differentiable functions f : Rd → R such that f and

all partial derivatives up to order n belong to C0(Rd)

Cn
0 (Rd

+) Space of functions f : Rd
+ → R such that f ∈ Cn

0 (Rd
+) and f and all

partial derivatives up to order n can be extended continuously to the
boundary of Rd

+

C2
pw(R) Space of continuously differentiable functions such that f ′ is piecewise

smooth
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S(R) Schwartz space of all rapidly decreasing functions

D([0,∞),Rd) Space of all càdlàg functions f : [0,∞)→ Rd

L(Rd) Set of linear operators A : Rd → Rd

GL(Rd) Set of invertable linear operators A : Rd → Rd

Dom(L) Domain of a generator L

Measures and special functions:

εx Point measure in x ∈ Rd

(Aν) Image measure of ν on Rd under a linear transform A : Rd → Rd

arg(z) Complex argument of z ∈ C

Γ(z) Gamma function Γ(z) =
∞́

0
tz−1e−t dt for Re(z) > 0

Γ(z, x) Incomplete gamma function Γ(z, x) =
∞́

x
tz−1e−t dt for Re(z) > 0

B(x, y) Beta function B(x, y) =
1́

0
(1− t)x−1ty−1 dt for Re(x),Re(y) > 0

B(x, a, b) Incomplete Beta function B(x, a, b) =
x́

0
ta−1(1 − t)b−1 dt for every

a, b ∈ C with Re(a),Re(b) > 0 and x ∈ (0, 1]

Eα(z) Mittag-Leffler function Eα(x) =
∞∑
k=0

xk

Γ(αk+1)
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Integral transforms:

f̂ or F(f) Fourier transform of a suitable function f : Rd → R

f̂(k) =
ˆ

Rd

ei〈k,x〉f(x) dx

ν̂ Fourier transform of a measure ν on Rd

ν̂(k) =
ˆ

Rd

ei〈k,x〉 dν(x)

f̃ or L(f) Laplace transform of a suitable function f : Rd
+ → R

f̃(s) =
ˆ

Rd+

e−〈s,t〉f(t) dt

ν̃ Laplace transform of a measure ν on Rd
+

ν̃(s) =
ˆ

Rd+

e−〈s,t〉 dν(t)

f or FL(f) Fourier-Laplace transform of a suitable function f : Rd × Rd
+ → R

f(k, s) =
ˆ

Rd

ˆ

Rd+

ei〈k,x〉e−〈s,t〉f(x, t) dt dx

ν Fourier-Laplace transform of a measure ν on Rd × Rd
+

ν(k, s) =
ˆ

Rd

ˆ

Rd+

ei〈k,x〉e−〈s,t〉dν(x, t)

Derivatives:

Df Jacobian matrix of f

Hf Hessian matrix of f

∆α
2 Fractional Laplacian

δθ Ordinary directional derivative in direction θ ∈ S

∂α

∂xα
Caputo form of the positive fractional derivative of order α
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∂α

∂(−x)α Caputo form of the negative fractional derivative of order α

(
∂

∂x

)α
Riemann-Liouville form of the positive fractional derivative of order α

(
∂

∂(−x)

)α
Riemann-Liouville form of the negative fractional derivative of order
α

Dα,M Multidimensional fractional derivative of order α with respect to the
finite Borel measure M on the unit sphere

∂α

∂c,Kxα
Caputo form of the positive semi-fractional derivative of order α with
respect to c > 1 and K : R→ (0,∞) admissable

∂α

∂c,K(−x)α Caputo form of the negative semi-fractional derivative of order α with
respect to c > 1 and K : R→ (0,∞) admissable

(
∂

∂c,Kx

)α
Riemann-Liouville form of the positive semi-fractional derivative of
order α with respect to c > 1 and K : R→ (0,∞)

(
∂

∂c,K(−x)

)α
Riemann-Liouville form of the negative semi-fractional derivative of
order α with respect to c > 1 and K : R→ (0,∞)

∂αθ
∂c,Kxα

Caputo form of the directional semi-fractional derivative of order α
with respect to c > 1 and K : R → (0,∞) admissable in direction
θ ∈ S

(
∂θ

∂c,Kx

)α
Riemann-Liouville form of the directional semi-fractional derivative of
order α with respect to c > 1 and K : R→ (0,∞) in direction θ ∈ S

Dα,M
c,(Kθ)θ∈S Multidimensional semi-fractional derivative of order α with respect

to c > 1, an admissable set of functions (Kθ)θ∈S, and a finite Borel
measure M on S

∂α,λ

∂c,Kxα
Tempered semi-fractional derivative of order α with respect to c > 1,
K admissable, and λ > 0
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M. Meerschaert developed the initial idea of a semi-fractional derivative as well as the
idea of a Zolotarev semi-fractional derivative of order α = 1, which is not treated in this
thesis. The concrete elaboration and most of the results in this article arose from my mas-
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Freiberg, U., Hambly, B., Hinz, M., and Winter, S. (eds.). Fractal Geometry and Stochas-
tics VI. Progress in Probability, Birkhäuser, Basel.
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Appendix C: Code

For completeness and reproducibility, we provide all Matlab scripts used in this thesis.
For many calculations, the complex gamma function is needed, which is not implemented
in Matlab. Hence, we additionally used a script provided by Paul Godfrey [155], which
we renamed ’ComplexGamma.m’ to avoid a conflict with the implemented real gamma
function.

Test a function on admissability: The function ’Testadmissability.m’ enables the user
to test whether a p-periodic function K given as a finite Fourier series

K(x) =
k∑

n=−k
cne

inc̃x

for k ∈ N and (cn)n∈{−k,...,k} ⊂ C is admissable with respect to α ∈ (0, 2)\{1} and c = eαp

or not. As input parameters, the function demands the parameter α ∈ (0, 2) \ {1} and a
vector cn containing the 2k+1 Fourier coefficients cn = (c−k, c−k+1, . . . , c0, c1, . . . , ck−1, ck).
Besides, the user has to deliver the period p of the periodic function. The script first tests
the positivity of the function and then the growth restriction in Definition 3.1.1 using the
derivative of K as in Lemma 3.1.2 (vi). As output, the script generates a statement of
whether the function is admissable or not if num= 0. For all other values of the input
parameter num, the script generates a binary output of this statement.

% Test a p e r i o d i c func t i on K on admi s s ab i l i t y

% Input parameters :
% alpha = Parameter o f adm i s s ab i l i t y
% cn = Vector o f Four ie r c o e f f i c i e n t s [ c_{ - k } , . . . c_0 , . . . c_k ] o f K
% p = Period o f K
% num = Create numerical or non - numerical output

% Output
% Statement whether K i s admissable with r e spe c t to alpha and c=e ^( alpha ∗p) or not

func t i on f=Tes tadmi s sab i l i t y ( alpha , cn , p ,num)

% Fixed constants
n=numel ( cn ) ; % Total number o f Four ie r c o e f f i c i e n t s
k=(n - 1 )/2 ; % Number o f one - s ided Four ie r c o e f f i c i e n t s c_1 , . . c_k
t i l d e c=2∗pi /p ;
x=- 2∗p : 0 . 0 5 : 2 ∗ p ;

% Calcu la te the func t i on K
K=zero s (1 , numel (x ) ) ;
f o r m=- k : k

K=K+cn (m+k+1)∗exp ( i ∗m∗ t i l d e c .∗ x ) ;
end

% Calcu la te the d e r i v a t i v e o f K
DeriK=ze ro s (1 , numel (x ) ) ;
f o r m=- k : k
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DeriK=DeriK+cn (m+k+1)∗( i ∗m∗ t i l d e c )∗ exp ( i ∗m∗ t i l d e c .∗ x ) ;
end
y=alpha∗K-DeriK ;

% Create the output
i f (K>0)

i f (y>=0)
i f (num==0)
di sp ( ’ Function␣ i s ␣ admissable ’ )

end
f =0;

e l s e
i f (num==0)

di sp ( ’Growth␣ r e s t r i c t i o n ␣not␣ f u l f i l l e d ’ )
end
f =1;

end
e l s e

i f (num==0)
di sp ( ’ Function␣ takes ␣non - p o s i t i v e ␣ va lues ’ )

end
f =1;

end
end

Code for Example 3.1.14: The following code calculates the semi-fractional derivative
of f(x) = e−2x2 in Example 3.1.14.

% Calcu la te the semi - f r a c t i o n a l d e r i v a t i v e o f f ( x)=exp ( - ax ^2) in Example 3 . 1 . 1 4
c l e a r a l l
c l o s e a l l

% Chosen parameters
a=2; % Parameter o f f
alpha =0.4; % Order o f semi - f r a c t i o n a l d e r i v a t i v e
cn=[ - 1/(25∗ i ) , - 1/(20∗ i ) ,1/gamma(1 - alpha ) ,1/(20∗ i ) ,1/(25∗ i ) ] ; % Four ie r c o e f f i c i e n t s o f K
Tes tadmi s sab i l i t y ( alpha , cn ,2∗ pi , 0 ) ; % Test K on admi s s ab i l i t y

% I n i t i a l i z e the ( semi - ) f r a c t i o n a l d e r i v a t i v e
h=0.01; % Grid s i z e
po in t s=- 2 : h : 5 ; % Points o f c a l c u l a t i o n
n=numel ( po in t s ) ; % Number o f po in t s
Semi_fractional_Caputo=ze ro s (1 , n ) ;
Fractional_Caputo=ze ro s (1 , n ) ;

% Calcu la te the ( semi - ) f r a c t i o n a l d e r i v a t i v e
counter=0;
f o r x=po int s ( 1 ) : h : po in t s (n)

counter=counter+1
z=@(y) (x - y ) .∗ exp ( - a∗(x - y ) . ^ 2 ) . ∗ y . ^ ( - alpha ) .∗ ( 1 /gamma(1 - alpha )+1/10∗ s i n ( l og (y))+2/25∗ s i n (2∗ l og (y ) ) ) ;
g=@(y ) (x - y ) .∗ exp ( - a∗(x - y ) . ^ 2 ) . ∗ y . ^ ( - alpha ) .∗1/gamma(1 - alpha ) ;
Semi_fractional_Caputo ( counter )= - 2∗a∗ i n t e g r a l ( z , 0 , i n f ) ;
Fractional_Caputo ( counter )= - 2∗a∗ i n t e g r a l ( g , 0 , i n f ) ;

end

Code for Example 3.1.15: The following code calculates the semi-fractional derivatives
of the power function f(x) = xp in Example 3.1.15.

% Calcu la te the semi - f r a c t i o n a l d e r i v a t i v e o f the power func t i on in Example
% 3 . 1 . 1 5
c l e a r a l l
c l o s e a l l

% Fixed constants
p=0.3; % p=0.6 % Parameter o f f
alpha=1/2; % Order o f semi - f r a c t i o n a l d e r i v a t i v e
cn=[ - 1/(20∗ i ) ,1/20 ,1/gamma(1 - alpha ) ,1/20 ,1/(20∗ i ) ] ; % Four ie r c o e f f i c i e n t s o f K_2
n=(numel ( cn ) - 1 )/2 ; % Number o f one - s ided Four ie r c o e f f i c i e n t s
per iod=2∗pi ; % Period o f K_2
Tes tadmi s sab i l i t y ( alpha , cn , per iod , 0 ) % Check K_2 on admi s s ab i l i t y
t i l d e c=2∗pi / per iod ;
x=0 :0 .01 :100000 ; % Points o f c a l c u l a t i o n
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% Frac t i ona l d e r i v a t i v e corresponding to K_1
Frac_Deriv=p∗gamma(p)/gamma(p+1- alpha )∗x . ^ ( p - alpha ) ;

% Semi - f r a c t i o n a l d e r i v a t i v e with r e spe c t to K_2
sum=zero s (1 , numel (x ) ) ;
f o r k=-n : n

sum=sum+cn (k+n+1)∗ComplexGamma(1 - alpha+i ∗k∗ t i l d e c ) . . .
/ComplexGamma(p+1- alpha+i ∗k∗ t i l d e c )∗x . ^ ( p - alpha+i ∗k∗ t i l d e c ) ;

end
Semi_frac_Deriv=p∗gamma(p)∗ r e a l (sum ) ;

Code for Example 3.2.17: The following code calculates the directional semi-fractional
derivatives in the Caputo and Riemann-Liouville sense in Example 3.2.17. To plot both
forms, note that they are given by

∂αθ
∂c,Kxα

f(x) =
∞̂

0+

〈θ,∇f(x− yθ)〉GK(y) dy

= θ1

min{x1
θ1
,
x2
θ2
}ˆ

0+

2(x1 − yθ1)GK(y) dy + θ2

min{x1
θ1
,
x2
θ2
}ˆ

0+

GK(y) dy

and (
∂θ

∂c,Kx

)α
f(x) =

〈
∇
∞̂

0+

f(x− yθ)GK(y) dy, θ
〉

=
〈
∇

min{x1
θ1
,
x2
θ2
}ˆ

0+

((x1 − yθ1)2 + (x2 − yθ2))GK(y) dy, θ
〉

for every x ∈ R2
+.

% Calcu la te the d i r e c t i o n a l semi - f r a c t i o n a l d e r i v a t i v e in Example 3 . 2 . 1 7
c l e a r a l l
c l o s e a l l

% Chosen parameters
theta =[1/ sq r t (2 ) ,1/ sq r t ( 2 ) ] ; % Di r e c t i on o f d i r e c t i o n a l d e r i v a t i v e
a=2/3; % Order o f semi - f r a c t i o n a l d e r i v a t i v e
cn=[1/2 , - 1/(2∗ i ) , 5 ,1/(2∗ i ) , 1 / 2 ] ; % Four ie r c o e f f i c i e n t s o f K
p=2∗pi ; % Period o f K

% Test the func t i on on admi s s ab i l i t y
Tes tadmi s sab i l i t y (a , cn , p , 0 )

% I n i t i a l i z e the g r id
h=0.001;
x=0:h : 2 ;
y=0:h : 2 ;
n=numel (x ) ;
m=numel (y ) ;
Caputo=ze ro s (n ,m) ;
RL=ze ro s (n ,m) ;

% Calu late the Caputo semi - f r a c t i o n a l d e r i v a t i v e
g1=@( r ) r . ^ ( - a ) . ∗ ( s i n ( log ( r ))+ cos (2∗ l og ( r ) )+5) ;
g2=@( r ) r . ^ ( 1 - a ) . ∗ ( s i n ( l og ( r ))+ cos (2∗ l og ( r ) )+5) ;
f o r k=1:n

f o r l =1:m
a1=i n t e g r a l ( g1 , 0 . 0 001 ,min (x (k )/ theta (1 ) , y ( l )/ theta ( 2 ) ) ) ;
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a2=i n t e g r a l ( g2 , 0 . 0 001 ,min (x (k )/ theta (1 ) , y ( l )/ theta ( 2 ) ) ) ;
Caputo (k , l )=(2∗ theta (1)∗x (k)+theta (2 ) )∗ a1 - 2∗ theta (1)^2∗ a2 ;

end
end

% Calcu la te the Riemann - L i o u v i l l e semi - f r a c t i o n a l d e r i v a t i v e
A=ze ro s (n ,m) ;
f o r k=1:n

f o r l =1:m
g=@( r ) ( ( x (k ) - r∗ theta (1 ) ) . ^2+( y ( l ) - r∗ theta ( 2 ) ) ) . ∗ r . ^ ( - a ) . ∗ ( s i n ( log ( r ))+ cos (2∗ l og ( r ) )+5) ;
A(k , l )= i n t e g r a l ( g , 0 . 0 001 ,min (x (k )/ theta (1 ) , y ( l )/ theta ( 2 ) ) ) ;

end
end
f o r k=1:n - 1

f o r l =1:m- 1
RL(k , l )=1/h∗( theta (1 )∗ (A(k+1, l ) -A(k , l ))+ theta (2 )∗ (A(k , l +1) -A(k , l ) ) ) ;

end
end

Calculation of solutions to semi-fractional diffusion equations using Grünwald-
Letnikov differences: The function ’Semi_fractional_Differential_Eq.m’ calculates
the solution to the semi-fractional diffusion equation

∂

∂t
u(x, t) = −D ∂α

∂c,K1x
α
u(x, t)−D ∂α

∂c,K2(−x)αu(x, t) (C.1)

under the initial condition u(x, 0) = u0(x) for p-periodic, admissable functions K1, K2 :
R→ R+ with finite Fourier series

K1(x) =
k1∑

n=−k1

cne
inc̃x and K2(x) =

k2∑
n=−k2

dne
inc̃x,

where k1, k2 ∈ N0 and (cn)n=−k1,...,k1 , (dn)n=−k2,...,k2 ⊂ C. If u0(x) = δ(x), then the solution
coincides with the density of a (c 1

α , c)-semistable density.
The algorithm needs the order α ∈ (0, 2) \ {1}, vectors cn = [c−k1 , . . . , c0, . . . , ck1 ] and
dn = [d−k2 , . . . , d0, . . . , dk2 ] containing the Fourier coefficients of K1 and K2 as well as
their period p as input parameters. Furthermore, the vector x contains the points of
calculation, whereas the vector start describes the initial values in x. If start = 0 or if
start is a zero vector of any dimension, then the script takes an approximation of the delta
function as initial condition. Apart from the step sizes h and τ in space and time, the
user can choose a method for the discretization of the time derivative and a shift in the
Grünwald-Letnikov formula. Possible methods are implicit and explicit Euler methods,
whereas the shift should be chosen to be zero for α ∈ (0, 1) and 1 for α ∈ (1, 2).
As output, the script calculates a matrix, which contains the solution at time i · τ in x in
column i for i = 1, . . . , T

τ
.

Note that dependent on the choices of h and τ , the method might be unstable. In the
fractional case, [95] and [96] give criteria for convergence at least for α ∈ (1, 2). We are
currently working on similar stability results for the semi-fractional case.

% Calcu la te the s o l u t i o n to the semi - f r a c t i o n a l d i f f u s i o n equat ion (B. 1 )

% Input parameters :
% a = Order o f semi - f r a c t i o n a l d e r i v a t i v e
% cn = Vector o f Four ie r c o e f f i c i e n t s o f K1
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% dn = Vector o f Four ie r c o e f f i c i e n t s o f K2
% p = Period o f K1 and K2
% x = Points o f c a l c u l a t i o n
% s t a r t = I n i t i a l va lues ( i f s t a r t =0, the s c r i p t c a l u l a t e s i n i t i a l
% va lues as an approximation to the de l t a func t i on )
% h = Step s i z e in space
% tau = Step s i z e in time
% T = Endpoint o f c a l c u l a t i o n in time
% Method = Decide between e x p l i c i t and imp l i c i t Euler method
% (method=1 -> e x p l i c i t Euler , method=2 -> imp l i c i t Euler )
% Sh i f t = Sh i f t in Gruenwald - Letnikov formula
% ( Sh i f t=0 or Sh i f t=1 po s s i b l e )

% Output
% Matrix con ta in i g the dens i ty in x at a l l time s t ep s

func t i on f=Semi_fract iona l_Di f f e rent ia l_Eq (a , cn , dn , p , x , s ta r t , h , tau ,T,Method , Sh i f t )

% Fix constants
M=numel (x ) ; % Number o f s tpe s in space
N=T/tau ; % Number o f s tpe s in time

% I f no i n i t i a l va lues are de l i v e r ed , c a l c u l a t e i n i t i a l va lues as an
% approximation to the de l t a - func t i on
i f a l l ( s t a r t==0)

ep s i l o n=h ;
s t a r t =1/( sq r t ( p i )∗ ep s i l o n )∗ exp ( - x . ^2/ ep s i l o n ^ 2 ) ;

end

% Calcu la te the i t e r a t i o n matrix
A=I t e r a t i onmat r i x (a , cn , dn , p , x , h , tau ,Method , Sh i f t ) ;

% I n i t i a l i z e the s o l u t i o n
Sol=ze ro s (M,N+1);
Sol ( : ,1 )= s t a r t ;

% Caluculate the s o l u t i o n
i f Method==1

f o r k=1:N
Sol ( : , k+1)=A∗Sol ( : , k ) ;

end
f=Sol ;

e l s e i f Method==2
f o r k=1:N

Sol ( : , k+1)=A\Sol ( : , k ) ;
end
f=Sol ;

end
end

The function ’Iterationmatrix.m’ calculates the iteration matrix for the computation of
semistable densities. The method of computation in this script was developed by Matthias
Häußler in his unpublished Master thesis [53].

% Calcu la te the i t e r a t i o n matrix f o r the s o l u t i o n to the semi - f r a c t i o n a l
% d i f f u s i o n equat ion (B. 1 )

% Input parameters :
% a = Order o f semi - f r a c t i o n a l d e r i v a t i v e
% cn = Vector o f Four ie r c o e f f i c i e n t s o f K1
% dn = Vector o f Four ie r c o e f f i c i e n t s o f K2
% p = Period o f K1 and K2
% x = Points o f c a l c u l a t i o n
% h = Step s i z e in space
% tau = Step s i z e in time
% Method = Decide between e x p l i c i t and imp l i c i t Euler method
% (method=1 -> e x p l i c i t Euler , method=2 -> imp l i c i t Euler )
% Sh i f t = Sh i f t in Gruenwald - Letnikov formula
% ( Sh i f t=0 or Sh i f t=1 po s s i b l e )

% Output
% I t e r a t i o n matrix A

func t i on A=I t e r a t i onmat r i x (a , cn , dn , p , x , h , tau ,Method , Sh i f t )

% Fix constants
n1=numel ( cn ) ; % Number o f Four ie r c o e f f i c i e n t s f o r p o s i t i v e s . - f . d e r i v a t i v e
n2=numel (dn ) ; % Number o f Four ie r c o e f f i c i e n t s f o r negat ive s . - f . d e r i v a t i v e
k1=(n1 - 1 )/2 ;
k2=(n2 - 1 )/2 ;
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t i l d e c=2∗pi /p ;
M=numel (x ) ; % Number o f s t ep s in space

% 1 . Step : Ca lcu la te Gruenwald - Letnikow weights f o r the p o s i t i v e s . - f . d e r i v a t i v e
i f a l l ( cn==0)

pos_weights=ze ro s (1 ,M+1);
e l s e

syms J ;
f o r m=- k1 : k1

v=exp (gammaln(sym( a - i ∗m∗ t i l d e c +1))+gammaln(sym( i ∗m∗ t i l d e c - a +1 ) ) . . .
- gammaln(sym( a - i ∗m∗ t i l d e c - J+1)) - gammaln( J+1)) ;

S1 ( : ,m+k1+1)=cn (m+k1+1)∗h^( i ∗m∗ t i l d e c )∗ ( - 1 ) . ^ J .∗ v ;
end
s1=h^( - a )∗sum(S1 , 2 ) ;
s2=r e a l ( s1 ) ;
f ( J)=s2 ;

J=0:1:M;
a1=f ( J ) ;
pos_weights=vpa ( a1 ) ;

end

% 2 . Step : Ca lcu la te Gruenwald - Letnikow weights f o r the negat ive s . - f . d e r i v a t i v e
i f a l l (dn==0)

neg_weights=ze ro s (1 ,M+1);
e l s e i f a l l (dn - cn==0)

neg_weights=pos_weights ;
e l s e

syms L ;
f o r m=- k2 : k2

v=exp (gammaln(sym( a - i ∗m∗ t i l d e c +1))+gammaln(sym( i ∗m∗ t i l d e c - a +1 ) ) . . .
- gammaln(sym( a - i ∗m∗ t i l d e c -L+1)) - gammaln(L+1)) ;

D2 ( : ,m+k2+1)=dn(m+k2+1)∗h^( i ∗m∗ t i l d e c )∗ ( - 1 ) . ^L .∗ v ;
end
d1=h^( - a )∗sum(D2 , 2 ) ;
d2=r e a l ( d1 ) ;
f (L)=d2 ;

L=0:1:M;
a2=f (L ) ;
neg_weights=vpa ( a2 ) ;

end

% Calcu la te the i t e r a t i o n matrix
i f ( Sh i f t==0)

A1=t r i l ( t o e p l i t z ( pos_weights ( 1 :M) ) ) ;
A2=t r i u ( t o e p l i t z ( neg_weights ( 1 :M) ) ) ;
U=diag ( ones (1 ,M) ) ;
i f (Method==1)

A=U- tau∗A1- tau∗A2 ;
e l s e i f (Method==2)

A=U+tau∗A1+tau∗A2 ;
end

e l s e i f ( Sh i f t==1)
pos_weights1=pos_weights ( 2 :M+1);
neg_weights1=neg_weights ( 2 :M+1);
B1=t r i l ( t o e p l i t z ( pos_weights1 ))+ diag ( pos_weights (1)∗ ones (1 ,M- 1 ) , 1 ) ;
B2=t r i u ( t o e p l i t z ( neg_weights1 ))+ diag ( neg_weights (1)∗ ones (1 ,M- 1) , - 1 ) ;
U=diag ( ones (1 ,M) ) ;
i f (Method==1)

A=U- tau∗B1- tau∗B2 ;
e l s e i f (Method==2)

A=U+tau∗B1+tau∗B2 ;
end

end
end

Code for Example 5.1.2: The following code calculates the solution to the semi-
fractional diffusion equation (5.3) in Example 5.1.2.

% Calcu la te a s o l u t i o n to the semi - f r a c t i o n a l d i f f u s i o n in Example 5_1_2
c l e a r a l l
c l o s e a l l

% Fixed constants
a=0.6; % Order o f semi - f r a c t i o n a l d e r i v a t i v e
p=pi ; % Period o f K
dn=3/gamma(1 - a ) ;
cn=[ - 3/(40∗ i ) , 3/30 , dn ,3/30 ,3/(40∗ i ) ] ; % Four ie r c o e f f i c i e n t s o f K
Tes tadmi s sab i l i t y (a , cn , p , 0 ) ; % Test K on admi s s ab i l i t y
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h=0.01; % Step s i z e in space
tau =0.01; % Step s i z e in time
x=- 5 : h : 1 5 ; % Points o f c a l c u l a t i o n
T=1; % Endpoint o f c a l c u l a t i o n ( in time )
N=T/tau ; % Number o f s t ep s in time

% I n i t i a l va lues
s t a r t=exp ( - x . ^ 2 ) ;

% Calcu la te the s o l u t i o n f o r d i f f e r e n t i n i t i a l va lues
so lut ion_semi_frac=Semi_fract iona l_Di f f e rent ia l_Eq (a , cn , 0 , p , x , s ta r t , h , tau ,T, 1 , 0 ) ;
s o l u t i on_f ra c=Semi_fract iona l_Di f f e rent ia l_Eq (a , dn , 0 , p , x , s ta r t , h , tau ,T, 1 , 0 ) ;

Code for Example 5.1.4: The following code calculates the semistable density ν in
Example 5.1.4 as well as the functions x 7→ p(x, 2) and x 7→ 1

4p
(
x
4 , 1

)
to check whether

the scaling property (2.4) holds.

% Test the s c a l i n g property o f the s emi s tab l e d i s t r i b u t i o n in Example 5 . 1 . 4
c l e a r a l l
c l o s e a l l

% Fixed constants
a=1/2; % Order o f semi - f r a c t i o n a l d e r i v a t i v e
p=log ( 4 ) ; % Period o f K
cn=[1/160 ,1/80 ,1/gamma(1 - a ) , 1/80 , 1/160 ] ; % Four ie r c o e f f i c i e n t s o f K
Tes tadmi s sab i l i t y (a , cn , p , 0 ) ;

% Parameters f o r the c a l c u l a t i o n
h=0.01; % Step s i z e in space
tau =0.02; % Step s i z e in time
x=- 4 : h : 1 6 ; % Points o f c a l c u l a t i o n

%Calcu la te s emi s tab l e dens i ty up to time T=2
p1=Semi_fract iona l_Di f f e rent ia l_Eq (a , cn , 0 , p , x , 0 , h , tau , 2 , 1 , 0 ) ;
[ a1 , b1]= s i z e ( p1 ) ;
p1end=p1 ( : , b1 - 1 ) ; % So lut i on at time T=2
p2=p1 ( : , ( b1 - 1 ) / 2 ) ; % So lut i on at time T=1

Code for Remark 5.1.5: The following code calculates the semistable density in Re-
mark 5.1.5 as a solution to the semi-fractional diffusion equation. In addition, using
the function ’Laplace_Inv_Abate_Whitt.m’, the density was calculated using the inverse
Laplace method of Abate and Whitt [1] as in [28].

% Comparison o f numerical c a l c u l a t i o n s o f s emi s tab l e d e n s i t i e s in Remark
% 5 . 1 . 5
c l o s e a l l
c l e a r a l l

% Fixed constants
a=1/2; % Order o f semi - f r a c t i o n a l d e r i v a t i v e
p=log ( 4 ) ; % Period o f K
cn=[1/160 ,1/80 ,1/gamma(1 - a ) , 1/80 , 1/160 ] ; % Four ie r c o e f f i c i e n t s o f K
Tes tadmi s sab i l i t y (a , cn , p , 0 ) ;

% I n i t i a l i z e the s o l u t i o n o f d i f f u s i o n equat ion
h=0.01; % Step s i z e in space
tau =0.01; % Step s i z e in time
T=1; % Endpoint o f c a l c u l a t i o n in time
x=- 1 : h : 8 ; % Points o f c a l c u l a t i o n

% So lut i on with GL- d i f f e r e n c e s
D i f f u s i on=Semi_fract iona l_Di f f e rent ia l_Eq (a , cn , 0 , p , x , 0 , h , tau ,T, 1 , 0 ) ;
S o lD i f f u s i on=Di f f u s i on ( : , end - 1 ) ;

% I n i t i a l i z e the s o l u t i o n with the method o f Abate and Whitt f o r d i f f e r e n t
% va lues o f A
y=h : h : 3 0 ; % Points o f c a l c u l a t i o n
n=numel (y ) ; % Number o f po in t s
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M=1000;
Sol=ze ro s (n , 4 ) ;
f o r A=2:2:8

Sol ( : ,A/2)=Laplace_Inv_Abate_Whitt ( a , cn , p , y ,A,M) ;
end

% Calcu la te s o l u t i o n f o r A betwenn 1 .8 and 5 .2 and f i nd nea re s t
% approximation
Index=0;
e r r o r =10000;
m=round ( ( 5 . 2 - 1 . 8 )/ h ) ;
z=h : h : 8 ;
b=numel ( z ) ;
Sol1=ze ro s (b ,m+1);
f o r k=0:1:m

Sol1 ( : , k+1)=Laplace_Inv_Abate_Whitt ( a , cn , p , z ,1 .8+k∗h ,M) ;
i f norm( Sol1 ( : , k+1) - So lD i f f u s i on ( end - b+1:end))< e r r o r

e r r o r=norm( Sol1 ( : , k+1) - So lD i f f u s i on ( end - b+1:end ) ) ;
Index=k ;

end
end

To compare the numerical approximations of semistable densities in Remark 5.1.5, we use
the following implementation for the inverse Laplace transform method

% Calcu la t i on o f s emi s tab l e dens i ty with i nv e r s e Laplace transform by Abate and Whitt

% Input parameter
% a = Order o f semi - f r a c t i o n a l d e r i v a t i v e
% cn = Vector o f Four ie r c o e f f i c i e n t s o f K
% p = Period o f the p e r i o d i c func t i on K
% x = Points o f c a l u c l a t i o n
% A = Tuning parameter
% M = Number o f cons ide red po int s

% Output
% Approximation o f the s emi s tab l e dens i ty in x

func t i on f=Laplace_Inv_Abate_Whitt ( a , cn , p , x ,A,M)

% Calcu la te the f i r s t summand
m1=Laplacetrans form (a , cn , p ,A./ (2∗ x ) ) ;
p1=exp (A/2) . / (2∗ x ) .∗ r e a l (m1) ;

% Calu late the remaining sum
sum=zero s (1 , numel (x ) ) ;
f o r k=1:M

m2=Laplacetrans form (a , cn , p , (A+2∗k∗ i ∗pi ) . / ( 2∗ x ) ) ;
sum=sum+( - 1)^ k .∗ r e a l (m2) ;

end
p2=exp (A/2) . / x .∗ sum ;
f=p1+p2 ;
end

The following script calculates the Laplace transform of the semistable density in Remark
5.1.5 needed to calculate the approximation of the semistable density with the method of
Abate and Whitt.

% Function to c a l c u l a t e the Laplace transform of a s emi s tab l e dens i ty

% Input parameter
% a = Order o f semi - f r a c t i o n a l d e r i v a t i v e
% cn = Vector o f Four ie r c o e f f i c i e n t s o f K
% p = Period o f the p e r i o d i c func t i on K
% y = Points o f c a l u c l a t i o n

% Output
% Laplace transform of the s emi s tab l e dens i ty in y

func t i on f=Laplacetrans form (a , cn , p , y )

% Fixed constants
n=(numel ( cn ) - 1 )/2 ; % Number o f one - s ided Four ie r c o e f f i c i e n t s
m=numel (y ) ; % Number o f po in t s o f c a l c u l a t i o n s
t i l d e c=2∗pi /p ;
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sum=ze ro s (1 ,m) ;
f o r k=-n : n

sum=sum+cn (k+n+1)∗ComplexGamma( i ∗ t i l d e c ∗k - a+1)∗y . ^ ( a - i ∗ t i l d e c ∗k ) ;
end

f=exp ( - sum ) ;

end

Code for Remark 5.2.6: The following code calculates the density of the inverse
semistable and inverse stable subordinator in Remark 5.2.6.

% Calcu la te the dens i ty o f an i nv e r s e s emi s tab l e subord inator in Remark
% 5 . 2 . 6
c l o s e a l l
c l e a r a l l

% Use fu l constants
T=1; % Endpoint o f c a l c u l a t i o n in time
a=0.6; % Order o f s emi s tab l e law
p=2∗pi ; % Period o f K
cn=[ - 1/(20∗ i ) ,1/20 ,1/gamma(1 - a ) ,1/20 ,1/(20∗ i ) ] ; % Four ie r c o e f f i c i e n t s o f K
dn=1/gamma(1 - a ) ;
Te s tadmi s sab i l i t y (a , cn , p , 0 )

h=0.01; % Step s i z e in space
tau =0.01; % Step s i z e in time
y=- 1 : h : 2 ; % Points o f c a l c u l a t i o n
L=20;

% Calcu la te the ( semi - ) s t ab l e dens i ty g
A1=Semi_fract iona l_Di f f e rent ia l_Eq (a , cn , 0 , p , y , 0 , h , tau ,L , 1 , 0 ) ;
A2=Semi_fract iona l_Di f f e rent ia l_Eq (a , dn , 0 , p , y , 0 , h , tau ,L , 1 , 0 ) ;

% Re s t r i c t the dens i ty to the p o s i t i v e r e a l l i n e
n1=numel ( - 1 : h : 0 ) ;
n2=numel ( - 1 : h :T) ;
Subordinator1=A1(n1 - 1 : n2 , : ) ;
Subordinator2=A2(n1 - 1 : n2 , : ) ;
[ a1 , b]= s i z e ( Subordinator1 ) ;

% Calcu la te the dens i ty o f the i nv e r s e s emi s tab l e subord inator
dens i ty=ze ro s (1 , b - 1 ) ;
f o r k=1:b - 1

f o r l =1:a1
dens i ty (k)=dens i ty (k)+h/tau ∗( Subordinator1 ( l , k ) - Subordinator1 ( l , k+1)) ;

end
end

% Calcu la te the dens i ty o f the i nv e r s e s t ab l e subord inator
dens i t yS tab l e=ze ro s (1 , b - 1 ) ;
f o r k=1:b - 1

f o r l =1:a1
dens i t yS tab l e (k)=dens i tyS tab l e (k)+h/tau ∗( Subordinator2 ( l , k ) - Subordinator2 ( l , k+1)) ;

end
end

Code for Example 5.3.13: The following code calculates the solution x 7→ u(x, 1) of
(5.33) at time t = 1 in Example 5.3.13.

% Calcu la te the s o l u t i o n o f the semi - f r a c t i o n a l Cauchy problem in Example
% 5 . 3 . 1 3
c l e a r a l l
c l o s e a l l

% Fixed constants
beta =0.8; % Order o f semi - f r a c t i o n a l time d e r i v a t i v e
pV=2∗pi ; % Period o f V
dn=[ - 1/(40∗ i ) ,1/30 ,1/gamma(1 - beta ) ,1/30 ,1/(40∗ i ) ] ; % Four ie r c o e f f i c i e n t s o f V
Tes tadmi s sab i l i t y ( beta , dn ,pV , 0 ) ; % Test V on admi s s ab i l i t y
alpha =0.5; % Order o f semi - f r a c t i o n a l space d e r i v a t i v e
pK=pi ; % Period o f K
cn=[ - 1/(40∗ i ) ,1/20 ,1/gamma(1 - alpha ) ,1/20 ,1/(40∗ i ) ] ; % Four ie r c o e f f i c i e n t s o f K
Tes tadmi s sab i l i t y ( alpha , cn ,pK, 0 ) ; % Test K on admi s s ab i l i t y
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% Calcu la te the dens i ty h(x , t ) o f the i nv e r s e s emi s tab l e subord inator
T=1; % Point o f c a l c u l a t i o n
h=0.01; % Step s i z e in space
tau=h ; % Step s i z e in time
y=- 1 : h : 2 ;
L=20;

% Calcu la te the dens i ty o f the s emi s tab l e subord inator at time t=1
A=Semi_fract iona l_Di f f e rent ia l_Eq ( beta , dn , 0 ,pV, y , 0 , h , tau ,L , 1 , 0 ) ;
n1=numel ( - 1 : h : 0 ) ;
n2=numel ( - 1 : h :T) ;
Subordinator=r e a l (A(n1 - 1 : n2 , : ) ) ;
[ a1 , b]= s i z e ( Subordinator ) ;

% Calcu la te the dens i ty h(x , 1 ) o f the i nv e r s e s emi s tab l e subord inator
dens i ty=ze ro s (1 , b - 1 ) ;
f o r k=1:b - 1

f o r l =1:a1
dens i ty (k)=dens i ty (k)+h/tau ∗( Subordinator ( l , k ) - Subordinator ( l , k+1)) ;

end
end

% Calcu la te the s emi s tab l e dens i ty p
z=- 2 : h : 5 ;
p=Semi_fract iona l_Di f f e rent ia l_Eq ( alpha , cn , 0 ,pK, z , 0 , h , tau ,L , 1 , 0 ) ;

% Calcu la te the s o l u t i o n u(x , 1 )
u=ze ro s ( numel ( z ) , 1 ) ;
f o r m=1:b - 1

u=u+p ( : ,m)∗ dens i ty (m)∗h ;
end

Code for Example 6.1.11: The following code simulates the sample paths of S(t) and
T (t) in (6.11) and the sample paths of the CTRW in Example 6.1.11. For the calculation,
we use the fact that for a disturbed Pareto distribution with cumulative distribution
function F (y) = P (X ≤ y), we have X d= F−1(U), where U is uniformly distributed on
[0, 1]. Note that in our case F (y) = 1− c

K(0)y
−αK(log(y)).

% Path s imulat i on in Example 6 . 1 . 1 1
c l e a r a l l
c l o s e a l l

% I n i t i a l i z e the d i s t r i b u t i o n o f X
a=3/2;
c=exp ( a ) ;
p1=log ( c ^(1/ a ) ) ; % Period o f K
cn=[ - 1/(2∗ i ) , 5 ,1/(2∗ i ) ] ; % Four ie r c o e f f i c i e n t s o f K
Tes tadmi s sab i l i t y (a , cn , p1 , 0 ) ;

% Create a sample o f X_1,X_2 , . . . , X_1000
U1=rand (1000 , 1 ) ;
n1=numel (U1 ) ;
x=0 .01 : 0 . 01 : 200000 ;
m=numel (x ) ;
y=ze ro s (1 , n1 ) ;

% Calcu la te the expected value o f X
E1=i n t e g r a l (@( s ) s . ^ ( - a ) . ∗ ( a∗(5+ s in (2∗ pi ∗ l og ( s ) ) - 2∗ pi ∗ cos (2∗ pi ∗ l og ( s ) ) ) ) , c ^(1/ a ) , i n f ) ;
E=E1∗c /5 ;

% Find the numerical i nv e r s e F^( - 1)
f o r k=1:n1

w=1- c /5∗x . ^ ( - a ) .∗(5+ s in (2∗ pi ∗ l og (x ) ) ) -U1(k ) ;
i=f i nd (w>=0,1, ’ f i r s t ’ ) ;
y (k)=x( i ) -E ;

end
S=cumsum(y ) ;

% I n i t i a l i z e the d i s t r i b u t i o n o f J
beta =0.75;
d=exp (2∗ beta ) ;
p2=log (d^(1/ beta ) ) ; % Period o f V
dn=[1/2 ,6 , 1/2 ] ; % Four ie r c o e f f i c i e n t s o f V
Tes tadmi s sab i l i t y ( beta , dn , p2 , 0 ) ;

% Create a sample o f J_1 , J_2 , . . . , J_1000
U2=rand (1000 , 1 ) ;
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n2=numel (U2 ) ;
z=ze ro s (1 , n2 ) ;

% Find the numerical i nv e r s e F^( - 1)
f o r k=1:n2

w=1- d/7∗x . ^ ( - beta ).∗(6+ cos ( p i ∗ l og (x ) ) ) -U2(k ) ;
i=f i nd (w>=0,1, ’ f i r s t ’ ) ;
z ( k)=x( i ) ;

end
T=cumsum( z ) ;

Code for Example 6.2.7: The following code calculates the density of the CTRW limit
x 7→ m1(x, 1) and of the OCTRW limit x 7→ o1(x, 1) at time t = 1 in the totally coupled
case described in Example 6.2.7.

% Calcu la te the d e n s i t i e s o f the OCTRW and CTRW l im i t in Example 6 . 2 . 7 .
c l o s e a l l
c l e a r a l l

% Fixed constants
beta =0.5;
p=2; % Period o f V
cn=[1/80 ,1/40 ,1/gamma(1 - beta ) , 1 /40 , 1/80 ] ; % Four ie r c o e f f i c i e n t s o f V
Tes tadmi s sab i l i t y ( beta , cn , p , 0 ) ;
t i l d e d=2∗pi /p ;

T=1; % Time o f c a l c u l a t i o n
L=30;
h=0.01; % Step s i z e in space
tau =0.01; % Step s i z e in time
x=- 1 : h : round ( exp (p)/h)∗h ; % Points o f c a l c u l a t i o n

% Density g o f the s emi s tab l e subord inator
g=Semi_fract iona l_Di f f e rent ia l_Eq ( beta , cn , 0 , p , x , 0 , h , tau ,L , 1 , 0 ) ;
[ a , b]= s i z e ( g ) ;

% Calcu la te zeta
x1=- 1 : h : 0 ;
x2=- 1 : h : round ( exp (p)/h)∗h ;
n1=numel ( x1 ) ;
n2=numel ( x2 ) ;
u=ze ro s ( n2 - n1+1 ,1) ;
f o r k=1:b - 1

u=u+tau ∗1/2∗( g ( n1 : n2 , k)+g (n1 : n2 , k+1)) ;
end

y=0:h :T;
n3=numel (y ) ;

% Density o f the CTRW l im i t
m1=(T- y ) . ^ ( - beta ) .∗ (1/20∗ cos (2∗ pi /p∗ l og (T- y))+1/40∗ cos (4∗ pi /p∗ l og (T- y))+1/gamma(1 - beta ) ) . ∗ u ( 1 : n3 ) ’ ;

% Density o f the CTRW l im i t in the s t ab l e case
m1_stabel=1/(gamma(1 - beta )∗gamma( beta ) )∗ (T- y ) . ^ ( - beta ) .∗ y . ^ ( beta - 1 ) ;

% Calcu la te the Four ie r c o e f f i c i e n t s o f zeta
z=1:h : round ( exp (p)/h)∗h ;
n4=numel ( z ) ;
zeta=z . ^ ( 1 - beta ) .∗ u( end - n4+1:end ) ’ ;
% I n i t i a l i z e the Four ie r c o e f f i c i e n t s o f zeta
M=20;
dn=ze ro s (1 ,2∗M+1);
f o r l=-M:M

fo r k=1:n4 - 1
dn( l+M+1)=dn( l+M+1)+1/p∗h/2∗+( zeta (k )∗ z (k ) . ^ ( - 1 - 2∗ pi ∗ i ∗ l /p)+zeta (k+1)∗z (k+1)^( - 1 - 2∗ pi ∗ i ∗ l /p ) ) ;

end
end

% Density o f the OCTRW
o1=ze ro s (1 , n4 ) ;
k=(numel ( cn ) - 1 )/2 ;
f o r l=- k : k

f o r m=l -M: l+M
o1=o1 - cn ( l+k+1)∗dn(m- l+M+1)∗z . ^ ( i ∗m∗ t i l d e d - 1 ) .∗ ( i ∗m∗ t i l d e d - (T./ z ) . ^ ( i ∗m∗ t i l d e d ) . . .

.∗ (T. / ( z -T) ) . ^ ( beta - i ∗ l ∗ t i l d e d ) ) ;
end

end

% Density o f the CTRW l im i t in the s t ab l e case
o1_stable=1/(gamma(1 - beta )∗gamma( beta ))∗ z . ^ ( - 1 ) .∗ (T. / ( z -T) ) . ^ ( beta ) ;
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Code for Figure 8.2: The following code calculates the solution to the semi-fractional
exponential model (8.7) and the corresponding fractional solution. For the semi-fractional
case, the solution is calculated by (8.5) using the inverse Laplace method of Abate and
Whitt in [1]. The function ’LaplaceTransformExp.m’ calculates the Laplace transform of
the semi-fractional solution in (8.5).

% Calcu la te s o l u t i o n to the semi - f r a c t i o n a l equat ion

% Fixed constants
alpha=1/2; % Order o f semi - f r a c t i o n a l d e r i v a t i v e
cn=[1/4 ,1/gamma(1 - alpha ) , 1 / 4 ] ; % Per i od i c pe r turbat ion
p=3; % Period o f K
V0=1; % I n i t i a l va lue
a=0.2;

% Calcu la te the i nv e r s e Laplace transform
M=1000; % Number o f summands
A=6; % Tuning parameter
s =0 . 0 1 : 0 . 0 1 : 1 0 ; % Points o f c a l c u l a t i o n
n1=numel ( s ) ;
V=ze ro s (1 , n1 ) ;

f o r k=1:M
V=V+( - 1)^ k∗( LaplaceTransformExp ( (A+2∗pi ∗ i ∗k ) . / ( 2∗ s ) , alpha , cn , p , a ,V0 ) ) ;

end
Sol_sf=r e a l (V) .∗ exp (A/2) . / s+exp (A/2) . / (2∗ s ) .∗ r e a l ( LaplaceTransformExp (A./ (2∗ s ) , alpha , cn , p , a ,V0 ) ) ;
Sol_f=V0∗mlf ( alpha , 1 , a∗ s . ^ ( alpha ) ) ;

% Input parameters
% x = Points o f c a l c u l a t i o n
% alpha = Order o f semi - f r a c t i o n a l d e r i v a t i v e
% cn = Four ie r c o e f f i c i e n t s o f K
% p = Period o f K
% a ,V_0 = Parameters o f the model

% Output
% Laplace transform in ( 8 . 5 ) in x

func t i on f=LaplaceTransformExp (x , alpha , cn , p , a ,V0)

% Fixed constants
k=(numel ( cn ) - 1 )/2 ;
t i l d e c=2∗pi /p ;

% Calcu la te g (x)=x ^( alpha ) eta_1 ( log (x ) )
g=ze ro s (1 , numel (x ) ) ;
f o r l=- k : k

g=g+cn ( l+k+1)∗ComplexGamma( i ∗ l ∗ t i l d e c - alpha+1)∗x . ^ ( alpha - i ∗ l ∗ t i l d e c ) ;
end

f =1./x .∗ g . / ( g - a )∗V0 ;

Code for Example 8.1.4: The following code fits a fractional as well as a semi-fractional
exponential model to the data of mobile web use in Example 8.1.4 using the function
’fminsearchbnd.m’ from [154].

% Analyze the percentage o f mobile usage in Example 8 . 1 . 4
c l o s e a l l
c l e a r a l l

% Inc lude the data
x=0:1 :144 ;
y=csvread ( ’ DataMobileUse2021 . csv ’ ) ;

% Analyse the time 01 .09 - 08 .14
x1=0 :1 :67 ;
y1=y ( 1 : 6 8 ) ;

% Fit the f r a c t i o n a l parameters
f i t_exp_frac=@(a ) sum(( y1 (1)∗mlf ( a (1 ) , 1 , a (2)∗ x1 . ^ ( a ( 1 ) ) , 1 0 ) - y1 ’ ) . ^ 2 ) ;
b1_exp=fminsearchbnd ( f i t_exp_frac , [ 0 . 3 5 , 0 . 3 3 ] , [ 0 , 0 ] , [ 1 , 1 0 0 ] ) ;
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% Fit the semi - f r a c t i o n a l parameters
Star t =[ - 0 . 8 , 0 . 0 4 , 0 . 9 8 , 6 . 6 8 , 0 . 0 4 ] ;
opt ions = optimset ( ’ Display ’ , ’ i t e r ’ ) ;
[ b2_exp , fva l , e x i t f l a g , output ]= fminsearchbnd (@MSE_MobileUse_Exp_Model , Start , . . .

[ - 10 , - 1 0 , 0 , 0 , 0 ] , [ 1 0 , 1 0 , 1 , 2 0 , 2 ] , opt ions ) ;

% Function to c a l c u l a t e MSE between approximative s o l u t i o n and r e a l data in mobile use data

% Input parameter :
% c = Vector conta in ing a ve r s i on o f the Four ie r c o e f f i c i e n t o f the
% cons ide red per turbat ion as we l l as the per iod as i t s l a s t entry

% Output
% MSE between mobile use data and ca l cu l a t ed s o l u t i o n

func t i on f=MSE_MobileUse_Exp_Model ( c )

cn=[c (1)/2 - c (2)/(2∗ i ) ,1/gamma(1 - c ( 3 ) ) , c (1)/2+c (2)/(2∗ i ) ] ;
p=c ( 4 ) ;
x1 =1 :1 :67 ;
y=csvread ( ’ DataMobileUse2021 . csv ’ ) ;
y1=y ( 2 : 6 8 ) ;

A=10;
M=1000;
V=ze ro s ( 1 , 6 7 ) ;
f o r k=1:M

V=V+( - 1)^ k∗ r e a l ( LaplaceTransformExp ( (A+2∗pi ∗ i ∗k ) . / ( 2∗ x1 ) , c ( 3 ) , cn , p , c ( 5 ) , y ( 1 ) ) ) ;
end
V=r e a l (V) .∗ exp (A/2) . / x1+exp (A/2) . / (2∗ x1 ) .∗ r e a l ( LaplaceTransformExp (A./ (2∗ x1 ) , c ( 3 ) , cn , p , c ( 5 ) , y ( 1 ) ) ) ;

f=sum((V’ - y1 ) . ^ 2 ) ;

Code for Example 8.1.6: The following code calculates parameters for the fractional
and semi-fractional Gompertz model applied to the percentage of mobile web use in Exam-
ple 8.1.6. As auxiliary functions, the scripts needs the two scripts ’MSE_MobileUse_Gomp
_Model.m’ and ’LaplaceTransformGomp.m’, which calculate the MSE between the semi-
fractional Gompertz model and the Laplace transform of the solution to the semi-fractional
Gompertz equation.

% Analyze the percentage o f mobile usage in Example 8 . 1 . 6
c l o s e a l l
c l e a r a l l

% Inc lude the data
x1=0:1 :144 ;
y1=csvread ( ’ DataMobileUse2021 . csv ’ ) ;
m=116;
x=x1 ( 1 :m) ;
y=y1 ( 1 :m) ;

% Fit the f r a c t i o n a l parameters f o r Gompertz model
fit_gomp_frac=@(a ) sum(( y (1)∗ exp ( a (1)/ a (2)∗ (1 - mlf ( a (3 ) , 1 , - a (2)∗x . ^ ( a ( 3 ) ) , 1 0 ) ) ) - y ’ ) . ^ 2 ) ;
s t a r t = [ 0 . 1 4 , 0 . 0 3 , 0 . 9 2 ] ;
b1_gomp=fminsearchbnd ( fit_gomp_frac , s ta r t , [ 0 , 0 , 0 ] , [ 1 0 , 1 0 , 1 ] ) ;

% Fit the parameters f o r the semi - f r a c t i o n a l Gompertz model
opt ions = optimset ( ’ Display ’ , ’ i t e r ’ ) ;
S tar t =[ - 0 . 0 1 55 , 0 . 7 4 34 , 0 . 5 8 84 , 4 . 6 9 94 , 0 . 3 8 97 , 0 . 2 ] ;
[ b2_gomp , fva l , e x i t f l a g , output ]= fminsearchbnd (@MSE_MobileUse_Gomp_Model , Start , . . .

[ - 10 , - 1 0 , 0 , 0 , 0 , 0 ] , [ 1 0 , 1 0 , 1 , 1 0 , 1 0 , 10 ] , opt ions )

% Function to c a l c u l a t e MSE in mobile use data

% Input parameter :
% c = Vector conta in ing a ve r s i on o f the Four ie r c o e f f i c i e n t o f the
% cons ide red per turbat ion as we l l as the per iod as i t s l a s t entry

% Output
% MSE between mobile use data and ca l cu l a t ed s o l u t i o n
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f unc t i on f=MSE_MobileUse_Gomp_Model( c )
cn=[c (1)/2 - c (2)/(2∗ i ) ,1/gamma(1 - c ( 3 ) ) , c (1)/2+c (2)/(2∗ i ) ] ;
p=c ( 4 ) ;

% Inc lude the data
m=116;
x1=1:1:m- 1 ;
y=csvread ( ’ DataMobileUse2021 . csv ’ ) ;
y1=y ( 2 :m) ;

A=10;
M=1000;
V=ze ro s (1 ,m- 1 ) ;
f o r k=1:M

V=V+( - 1)^ k∗ r e a l ( LaplaceTransformGomp ( (A+2∗pi ∗ i ∗k ) . / ( 2∗ x1 ) , c ( 3 ) , cn , p , c ( 5 ) , c ( 6 ) ) ) ;
end
V=r e a l (V) .∗ exp (A/2) . / x1+exp (A/2) . / (2∗ x1 ) .∗ r e a l ( LaplaceTransformGomp (A./ (2∗ x1 ) , c ( 3 ) , cn , p , c ( 5 ) , c ( 6 ) ) ) ;

u=y (1)∗ exp (V) ;
f=sum(( u ’ - y1 ) . ^ 2 ) ;

Code for Example 8.1.8: The following code calculates parameters for the fractional
and semi-fractional Gompertz model applied to tumor growth in Example 8.1.8.
% Analyze the tumor growth data in Example 8 . 1 . 8
c l o s e a l l
c l e a r a l l

% Inc lude the data and c a l c u l a t e the volume
z=csvread ( ’MouseCM37T2 . csv ’ ) ;
x=z ( 1 , : ) ;
H=1/3∗( z (2 , : )+ z (3 , : )+ z ( 4 , : ) ) ;
L=1/3∗( z (5 , : )+ z (6 , : )+ z ( 7 , : ) ) ;
Volume=pi /6∗(H.∗L ) . ^ ( 3 / 2 ) ;

% Fit the f r a c t i o n a l parameters
fit_gomp_frac=@(a ) sum((Volume (1)∗ exp ( log ( a (1)/Volume (1 ) )∗ ( 1 - mlf ( a (3 ) , 1 , - a (2)∗x . ^ ( a ( 3 ) ) , 1 0 ) ) ) . . .

- Volume ) . ^ 2 ) ;
b1_gomp=fminsearchbnd ( fit_gomp_frac , [ 3 0 7 , 0 . 0 2 , 0 . 9 8 ] , [ 0 , 0 , 0 ] , [ 2 0 0 0 , 1 0 , 1 ] )
alpha_gomp=b1_gomp(3)
Dif=b1_gomp(2)
Vinfty=b1_gomp(1)

% Calu late the semi - f r a c t i o n a l s o l u t i o n
Star t=[ - 0 .4123 0.4934 0.9999 1.8589 0.0290 269 . 4 6 5 7 ] ;
[ b2_gomp , fva l , e x i t f l a g , output ]= fminsearchbnd (@MSE_TumorGrowth_Gomp_Model , Start , . . .

[ - 20 , - 2 0 , 0 , 0 , 0 , 0 ] , [ 1 0 , 10 , 1 , 40 , 10 , 2000 ] , opt ions ) ;

% Function to c a l c u l a t e MSE in tumor growth data

% Input parameter :
% c = Vector conta in ing a ve r s i on o f the Four ie r c o e f f i c i e n t o f the
% cons ide red per turbat ion as we l l as the per iod as i t s l a s t entry

% Output
% MSE between tumor growth data and ca l cu l a t ed s o l u t i o n

func t i on f=MSE_TumorGrowth_Gomp_Model( c )

cn=[c (1) - c (2)/ i , 1/gamma(1 - c ( 3 ) ) , c (1)+c (2)/ i , c ( 4 ) ] ;

% Inc lude the data and c a l c u l a t e the volume
z=csvread ( ’MouseCM37T2 . csv ’ ) ;
x=z ( 1 , 2 : end ) ;
H=1/3∗( z (2 , : )+ z (3 , : )+ z ( 4 , : ) ) ;
L=1/3∗( z (5 , : )+ z (6 , : )+ z ( 7 , : ) ) ;
Vol=pi /6∗(H.∗L ) . ^ ( 3 / 2 ) ;
Volume=Vol ( 2 : end ) ;

A=10;
M=1000;
x2=x ;
V=ze ro s (1 , numel ( x2 ) ) ;
f o r k=1:M

V=V+( - 1)^ k∗ r e a l ( LaplaceTransformGomp_AltRep ( (A+2∗pi ∗ i ∗k ) . / ( 2∗ x2 ) , c ( 3 ) , cn , c ( 5 ) , c ( 6 ) , Vol ( 1 ) ) ) ;
end
V=r e a l (V) .∗ exp (A/2) . / x2+exp (A/2) . / (2∗ x2 ) .∗ r e a l ( LaplaceTransformGomp_AltRep (A./ (2∗ x2 ) , c ( 3 ) , . . .

cn , c ( 5 ) , c ( 6 ) , Vol ( 1 ) ) ) ;

u=c (6)∗ exp ( -V) ;
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f=sum(( u -Volume ) . ^ 2 ) ;

% Function to c a l c u l a t e the Laplace transform of the s o l u t i o n to the
% semi - f r a c t i o n a l Gompertz model in the a l t e r n a t i v e r ep r e s en t a t i on

% Input parameters
% x = Points o f c a l c u l a t i o n
% alpha = Order o f semi - f r a c t i o n a l d e r i v a t i v e
% cn = Vector o f Four ie r c o e f f i c i e n t s o f K
% Dif , Vinfty = Parameters o f the model
% V0 = I n i t i a l va lue

% Output
% Laplace transform in x

func t i on f=LaplaceTransformGomp_AltRep (x , alpha , cn , Dif , Vinfty ,V0)

% Fixed constants
k=(numel ( cn ) - 2 )/2 ;
p=cn ( end ) ;
t i l d e c=2∗pi /p ;

L=ze ro s (1 , numel (x ) ) ;
f o r l=- k : k

L=L+cn ( l+k+1)∗ComplexGamma( i ∗ l ∗ t i l d e c - alpha+1)∗x . ^ ( alpha - i ∗ l ∗ t i l d e c ) ;
end

f =1./x .∗L . / (L+Dif )∗ l og ( Vinfty /V0 ) ;

Code for Example 8.2.8: The following code calculates parameters for the (tempered)
Pareto tail as well as the tempered disturbed Pareto tail in Example 8.2.8.

% Code f o r Example 8 . 2 . 7
c l o s e a l l
c l e a r a l l

% Inc lude the data
y=csvread ( ’AMZN1. csv ’ ) ;
n=5682;

% Calcu la te the l a r g e s t obse rva t i on s
Change=abs (y ( 2 : n , 4 ) - y ( 1 : n - 1 , 4 ) ) . / ( y ( 1 : n - 1 , 4 ) )∗100 ; % Dai ly p r i c e changes
z=so r t (Change ) ; % Sorted da i l y p r i c e changes
z ( d i f f ( z )==0)=[] ;
m=numel ( z ) ;
Prob=ze ro s (1 ,m) ;
f o r k=1:m

u=f ind (Change>z (k ) ) ;
Prob (k)=numel (u )/( n - 1 ) ;

end

% Sp l i t the t a i l
Ta i l=z (m- 50 : end ) ;
ProbTail=Prob (m- 50 : end ) ;

% Fit the best Pareto
f i t_pare to=@(a ) sum(( a (1)∗ Tai l . ^ ( - a ( 2 ) ) - ProbTail ’ ) . ^ 2 ) ;
b1_pareto=fminsearch ( f i t_pareto , [ 1 2 , 3 . 7 ] ) ;

% Fit the tempered Pareto
fit_pareto_temp=@(a ) sum(( a (1)∗ Tai l . ^ ( - a ( 2 ) ) . ∗ exp ( - a (3)∗ Tai l ) - ProbTail ’ ) . ^ 2 ) ;
Star t1 =[1.1 1 .99 0 . 2 ] ;
b1_pareto_temp=fminsearch ( fit_pareto_temp , Start1 ) ;

% Fit the tempered d i s turbed Pareto
Start2 =[1.5 4 0 0 1 0 . 1 ] ;
b2_pareto_temp=fminsearchbnd (@MSE_Tempered , Start2 , [ ] , [ 2 , 1 0 , 1 0 , 1 0 , 1 0 , 1 0 ] ) ;

% Function to c a l c u l a t e MSE f o r the tempered semi s tab l e dens i ty

% Input parameter :
% c = Vector conta in ing alpha , a ve r s i on o f the Four ie r c o e f f i c i e n t o f the
% cons ide red per turbat ion as we l l as the per iod as i t s l a s t entry
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% Output
% MSE between stock data and ca l cu l a t ed s o l u t i o n

func t i on f=MSE_Tempered( c )
alpha=c ( 1 ) ;
cn=[c (4)/2 - c (3)/(2∗ i ) , c ( 2 ) , c (4)/2+c (3)/(2∗ i ) ] ;
p=c ( 5 ) ;

y=csvread ( ’AMZN1. csv ’ ) ;
n=5682;
Change=abs (y ( 2 : n , 4 ) - y ( 1 : n - 1 , 4 ) ) . / ( y ( 1 : n - 1 , 4 ) )∗100 ;

z=so r t (Change ) ;
z ( d i f f ( z )==0)=[] ;
m=numel ( z ) ;

Prob=ze ro s (1 ,m) ;
f o r k=1:m

u=f ind (Change>z (k ) ) ;
Prob (k)=numel (u )/( n - 1 ) ;

end

% Sp l i t the t a i l
Ta i l=z (m- 50 : end ) ;
ProbTail=Prob (m- 50 : end ) ;

f=sum(( exp ( - c (6)∗ Tai l ) .∗ Tai l . ^ ( - c ( 1 ) ) . ∗ ( c (2)+c (3)∗ s i n ( log ( Tai l )∗2∗ pi /c ( 5 ) ) . . .
+c (4)∗ cos ( l og ( Tai l )∗2∗ pi /c ( 5 ) ) ) - ProbTail ’ ) . ^ 2 ) ;
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