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Chapter 1

Introduction



A major advantage of panel data is that they allow researchers to control for unobserved heterogeneity in
their empirical analyses. Roughly speaking, researchers often choose between two models: unobserved effects
models, which assume that the idiosyncratic error term can be decomposed into unobserved heterogeneity and
a residual idiosyncratic error term, and varying coefficients models, which additionally allow slope parameter
heterogeneity. The availability of comprehensive and especially long panel data, i. e. large )-panels, offers
new opportunities to draw inference from both types of models but also poses new challenges.

In my thesis, I analyze existing inference methods and develop new inference methods for large )-panels.
In Chapter 2 and 4, I examine how unbalancedness affects the asymptotic properties of two estimators for
unobserved effects models. More precisely, I analyze the bias-corrected estimators of Fernández-Val and
Weidner (2016), for fixed effects binary choice models, and the interactive fixed effects estimator of Bai
(2009). The asymptotic properties for both estimators were derived for balanced panels. In Chapter 3, I
extend the generic inference method of Chernozhukov, Fernández-Val, and Weidner (2020) for distribution
regression models with unobserved effects. More specifically, I broaden its applicability to panel data
applications with weakly exogenous regressors. In Chapter 5, I propose a novel estimation procedure based on
the classifier-Lasso of Su, Shi, and Phillips (2016) to identify latent firm heterogeneity, i. e. slope parameter
heterogeneity, in production functions. In the following, I provide a more detailed overview of each chapter.

Chapter 2 (joint work with Amrei Stammann) examines the finite sample properties of various bias-
corrected estimators for fixed effects binary choice models with two unobserved effects proposed by
Fernández-Val and Weidner (2016) in unbalanced panels. The consequences of unbalancedness have received
little attention in the literature, although unbalanced panels are frequently used in practice. In simulation
experiments, we find that unbalancedness is not harmless and that the wrong choice of an estimator can
lead to severe biases. In particular, we find that split-panel jackknife estimators can be severely biased,
while analytical bias corrections work well. We also present algorithms to accelerate the computation of
bias-corrected estimators and provide an empirical illustration from labor economics using the GSOEP.

Chapter 3 (joint work with Philipp Berger and Amrei Stammann) presents a generic inference method for
quantile functions and quantile effects in panel data applications with two unobserved effects and weakly
exogenous regressors. More precisely, our inference method is an extension of Chernozhukov, Fernández-Val,
and Weidner (2020), who assume strictly exogenous regressors. However, weak exogeneity is a more realistic
assumption in panel data applications because it allows direct and indirect dynamic feedback between the
regressors and the dependent variable. We confirm the good finite sample properties of our inference method
in simulation experiments and find that Chernozhukov, Fernández-Val, and Weidner (2020)’s method is
severely biased in the presence of weakly exogenous regressors. We also use our inference method to reassess
parts of Arora, Belenzon, and Sheer (2021). In particular, we estimate quantile effects of knowledge spillovers
and the use of research on firms’ inventiveness.

Chapter 4 (joint work with Amrei Stammann) analyzes the finite sample properties of Bai (2009)’s
interactive fixed effects (IFE) estimator in unbalanced panels. Compared to conventional fixed effects models,
here unobserved heterogeneity is modeled as a low-rank factor structure and is thus allowed to vary over time.
Since the estimator requires an additional data augmentation step in unbalanced panels, it is not clear whether
the asymptotic theory derived for balanced panels nevertheless provides a reasonable approximation. Further,
since the asymptotic theory is derived under the assumption that the rank of the factor structure is known,
which is rarely the case, determining the rank is another practical challenge. Using simulation experiments,
we analyze how different patterns and fractions of randomly missing data affect the performance of the IFE
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estimator and different estimators for the rank of the factor structure. We find that the finite sample properties
of the IFE estimator are fairly well approximated by the asymptotic theory for balanced panels, while the
accuracy of the estimators for the rank of the factor structure differs notably across different patterns and
fractions of randomly missing data. We also present algorithms to accelerate the computation in unbalanced
panels and reassess Acemoglu et al. (2019). Qualitatively, our results are similar to those of the authors,
although they are of different magnitude.

Chapter 5 presents a new estimation procedure to identify latent firm heterogeneity in production functions.
More specifically, I consider production functions that are heterogeneous across groups but homogeneous
within groups, and where the group membership of firms is unknown. My estimation procedure embeds
recent identification strategies from the production function literature into the classifier-Lasso (C-Lasso) of
Su, Shi, and Phillips (2016). Simulation experiments demonstrate that firms are assigned to their correct
latent group with probability approaching one. The asymptotic properties of my estimator are identical to an
infeasible estimator that exploits the group membership of the firms. I also apply my estimation procedure to
a panel of Chilean firms and find that firms from five industry sectors are classified into three latent groups.
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Chapter 2

Fixed Effects Binary Choice Models:
Estimation and Inference with Long Panels

(joint work with Amrei Stammann)



2.1 Introduction

Empirical analyses explaining binary outcomes, such as labor force participation or exporting decisions, are
quite common in economics. The increasing number and availability of large and long panel data sets offer
several advantages to researchers compared to pure cross-sections or time series (see chapter 1.2 in Baltagi
2013 and Hsiao 2014 for a comprehensive list of advantages). Maybe the most important advantage is that
they allow to control for different sources of unobserved heterogeneity. In panels it is natural to account for
unobserved individual and time specific effects simultaneously, so-called two-way fixed effect models. The
corresponding estimators treat the unobserved effects as additional parameters to be estimated and thus allow
for unrestricted correlation patterns between the explanatory variables and the unobserved effects. As the
researcher does not have to make any distributional assumptions about the unobserved heterogeneity, these
models are very flexible and a natural candidate for many empirical applications.

In the early stage of panel data econometrics, panels consisted of relatively few observations per individual.
Consequently, when deriving asymptotic properties of estimators, it is very often assumed that the number of
individuals (#) grows and the number of time periods ()) is held fixed. Under this asymptotic framework,
nonlinear fixed effects estimators are inconsistent, known as the incidental parameter problem (IPP) first
mentioned by Neyman and Scott (1948). This strand of literature is therefore particularly interested in deriving
fixed ) consistent estimators. For instance, conditional logit estimators have been proposed for static and
dynamic binary choice models with individual fixed effects (see Rasch 1960, Andersen 1970, Chamberlain
1980, and Honoré and Kyriazidou 2000). However, it is not possible to derive fixed ) consistent fixed effects
estimators for all kind of models, e. g. the probit model. Another drawback of all conditional logit estimators
is that they preclude the estimation of partial effects, which are of great interest in economics (see Arellano
and Hahn 2007, and Fernández-Val and Weidner 2018a).

For these reasons, among others, and further motivated by the seminal work of Phillips and Moon (1999)
and the rising availability of comprehensive panel data, a growing literature now focuses on large # and
) asymptotics. An appealing feature of this asymptotic framework is that IPP can be transformed into
an asymptotic bias problem that can be corrected. Hahn and Kuersteiner (2002) were the first to exploit
this asymptotic framework and to propose a bias-corrected estimator for dynamic linear panel models with
individual fixed effects to address the inference problem induced by the Nickell (1981) bias. Hahn and Moon
(2006) show that the same bias correction is also applicable if the model includes additional time fixed effects.
In the meantime, several bias-corrected estimators for nonlinear models have been proposed (see among
others Lancaster 2002, Woutersen 2002, Hahn and Newey 2004, Carro 2007, Fernández-Val 2009, Bester and
Hansen 2009, Dhaene and Jochmans 2015, Fernández-Val and Weidner 2016, and Kim and Sun 2016). A
remarkable difference compared to estimators for linear models is that the inclusion of time fixed effects leads
to an additional bias as shown by Fernández-Val and Weidner (2016).1

Another apparent challenge that discourages researchers from using nonlinear fixed effects models is
the computational burden associated with the estimation. This problem is especially severe when the model
specification leads to high-dimensional fixed effects. If only one of the panel dimensions is large, the algorithm
of Greene (2004) can significantly reduce the computational burden. If both dimensions are large algorithms
like Guimarães and Portugal (2010) and Stammann (2018) can be used. From a practical point of view,
however, it is not obvious how these algorithms can be combined with analytical bias corrections like the one

1. We refer the interested reader to Arellano and Hahn (2007) and Fernández-Val and Weidner (2018a) for comprehensive
overviews.
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of Fernández-Val and Weidner (2016).
In this paper, we offer new insights that facilitate and validate the use of different (bias-corrected) estimators

for binary choice models with two-way fixed effects. First, we show how to address the computational
obstacles that often prevent the application of bias corrections. Second, we extend the simulation experiments
of Fernández-Val and Weidner (2016) by several aspects to gain deeper insights into the statistical properties
of different estimators. More specifically, we analyze additional analytical and split-panel jackknife bias-
corrected estimators that were proposed but not studied by Fernández-Val and Weidner (2016). We also
consider alternative estimators for average partial effects based on linear fixed effects models. These models
are often used in empirical research to avoid the above mentioned pitfalls of nonlinear models. Because
many real world panel data sets are unbalanced, our analysis also considers different patterns of randomly
missing data. This aspect has so far received little attention in the literature, but is relevant for many empirical
applications. Overall, we find that analytical bias corrections are preferable to split-panel jackknife approaches.
In general, the latter show higher distortion, lower coverage, and are less robust to different patterns of
randomly missing data. Third, we provide an illustrative example using an unbalanced panel from the German
Socio-Economic Panel (see Wagner, Frick, and Schupp 2007) to investigate the inter-temporal labor force
participation of 6,241 women between 1984 and 2013. Inspired by Hyslop (1999), we estimate a dynamic
fixed effects probit model where bias corrections are required to address the inference problem. Finally, we
offer the analytical bias correction of Fernández-Val and Weidner (2016) in our R package alpaca to encourage
its application.2

The paper is organized as follows. In Section 2.2 we introduce the model, various bias corrections,
and algorithms for handling panels with large # and ) . In Section 2.3 we provide results of simulation
experiments. In Section 2.4 we apply different bias-corrected estimators to an empirical example from labor
economics. Finally, we give some concluding remarks in Section 2.5.

Throughout this paper, we follow conventional notation: scalars are represented in standard type, vectors
and matrices in boldface, and all vectors are column vectors.

2.2 Bias Corrections for Fixed Effects Binary Choice Models

2.2.1 Model, Assumptions, and the Inference Problem

The fixed effects binary choice model considered in this paper can be derived from a latent variable model
with two unobserved effects. Let

H∗8C = x′8C # + U8 + WC + 48C ,

be the latent variable, where 8 and C are individual and time specific indexes.3 However, instead of the
latent variable, we only observe H8C = 1 if H∗

8C
≥ 0 and H8C = 0 otherwise. To allow for missing data, we

define the following sets: S is a subset of {(8, C) : 8 ∈ {1, . . . , #}, C ∈ {1, . . . , )}} containing all observed
pairs of indexes and SC = {8 : (8, C) ∈ S} and S8 = {C : (8, C) ∈ S} are subsets of S containing all indexes of
individuals observed in period C and points in time observed for an individual 8, respectively. # and ) are the
number of individuals and time periods, and = = |S| is the sample size. Furthermore, x8C is the 8C-th row
of the regressor matrix X and a �-dimensional vector of possibly predetermined explanatory variables, #

2. Until now, the analytical bias correction proposed by Fernández-Val and Weidner (2016) is only provided in a Stata routine by
Cruz-Gonzalez, Fernández-Val, and Weidner (2017), which is not designed for long panels.

3. Without loss of generality, 8 and C could also be indexes of a network, like trade flows between countries.
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are the corresponding structural parameters, U8 and WC are incidental parameters that capture unobserved
individual and time effects, and 48C is an idiosyncratic error term assumed to be mean zero and independent
of XC

8
B (x8B)B≤C ∈S8 and 0 = (", $), where " = (U1, . . . , U# ) and $ = (W1, . . . , W) ). Note that the imposed

exogeneity assumption is milder than the often assumed strict exogeneity condition, where 48C is independent
of X)

8
B (x8B)B∈S8 instead of XC

8
. The latter is often too restrictive in the context of panel data, because it is

violated if regressors are affected by past outcomes, which, for instance, also precludes lagged dependent
variables as regressors. In the presence of missing data, we have to additionally assume that conditional on
XC
8
and 0 the observations are missing at random.
Assuming a certain distribution for 48C allows us to use maximum likelihood to derive a parametric

estimator for fixed effects binary choice models. Let

;8C (#, U8 , WC ) B H8C log(�8C ) + (1 − H8C ) log(1 − �8C )

be the log-likelihood contribution of individual 8 at time C, where �8C is the cumulative distribution function
of 48C evaluated at the linear index [8C B x′

8C
# + U8 + WC . Common choices for �8C are the standard normal, the

logistic, and the complementary log-log distribution. The corresponding maximum likelihood estimator is

)̂ B ( #̂, 0̂) ∈ arg max
#∈R� ,"∈R# ,$∈R)

∑
(8,C) ∈S

;8C (#, U8 , WC ) .

Although Fernández-Val and Weidner (2016) show consistency of #̂ under asymptotics where # and )
grow at the same rate (plim # ,)→∞ #̂ = #), they also expose an asymptotic bias in the limiting distribution of
the estimator with severe consequences for inference. To get a better understanding of this specific inference
problem, we briefly summarize the key findings of Fernández-Val and Weidner (2016) for binary choice
models and combine them with their conjecture about unbalanced panels stated in Fernández-Val and Weidner
(2018a).

Under asymptotic sequences where #,) →∞, #/) → ^2, and 0 < ^ < ∞, an asymptotic approximation
to the limiting distribution of #̂ is given by

#̂
a∼ N(# + )−1BV + #−1CV , VV) ,

where # = =/) and ) = =/# are the average number of individuals and points in time, BV and CV are the
leading terms of the asymptotic bias bV B )

−1BV + #−1CV stemming from the inclusion of individual and
time fixed effects, and VV is the asymptotic covariance matrix. Due to the asymptotic bias, the approximated
limiting distribution is not correctly centered at #, which means that, even if = is large, confidence intervals
constructed around any #̂ might not cover the true value of the corresponding parameter with probability
close to the desired nominal level. However, this inference problem can be corrected by forming suitable
estimators for bV that can be subtracted from #̂.

Most researchers are not directly interested in the structural parameters, but rather in average partial
effects. Let

�8C 9 B


V 9m[�8C (continous regressor)

�8C |G8C 9=1 − �8C |G8C 9=0 (binary regressor)

denote the partial effect of a change in G8C 9 , where G8C 9 is the 9-th element in x8C , m[�8C is the first-order partial
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derivative of �8C with respect to [8C , and �8C |G8C 9=: indicates that G8C 9 in the linear index is replaced by : .4
The average partial effects are then given by % = (X1, . . . , X� ), where X 9 = =−1 ∑

(8,C) ∈S �8C 9 . An asymptotic
approximation to the limiting distribution of the estimator of the average partial effects is given by

%̂
a∼ N(% + )−1BX + #−1CX , VX) ,

where VX is the asymptotic covariance matrix. Again, BX and CX are the leading terms of the asymptotic
bias bX B )

−1BX + #−1CX stemming from the inclusion of individual and time fixed effects. Thus, as for #̂,
there is an asymptotic bias problem.

In the next subsection, we review the different bias corrections proposed by Fernández-Val and Weidner
(2016) with a slightly modified notation. We adapt their notation for two reasons: First, we consider panels
that are potentially unbalanced, and second, we want to emphasize the link to recent advances in computational
econometrics, which allow us to estimate (bias-corrected) binary choice models even when both panel
dimensions are large.

2.2.2 Asymptotic Bias Corrections

Before we present the different bias corrections proposed by Fernández-Val and Weidner (2016), we
have to introduce some additional notation. Let mI?�8C denote the ?-th order partial derivative of an
arbitrary function �8C with respect to I8C . Further, we define m[ ;8C B �8C (H8C − �8C ), l8C B �8Cm[�8C ,
�8C B m[�8C/(�8C (1 − �8C )), and a8C B m[ ;8C/l8C . We use vector notation to indicate that we collect the
different quantities for all observations, e. g. 8 B (l8C )(8,C) ∈S . Finally we define the residual projection
M B 1= −P B 1= −D(D′
D)+D′
, where 1= is an identity matrix of dimension (= × =), D is a sparse
indicator matrix of dimension (=×# +)) arising from dummy encoding of individual and time identifiers, (·)+

refers to the Moore-Penrose inverse, and
 is a positive definite diagonal weighting matrix with diag(
) B 8.
The corresponding sample analogues are indicated by a hat, i. e. we refer to [̂8C B x′

8C
#̂+ Û8 + ŴC as the sample

analogue of [8C . Table 2.1 contains explicit expressions for distributions and the corresponding derivatives of
frequently used binary choice models.

Table 2.1: Distributions and their Derivatives

Logit Probit Complementary Log-Log

�8C (1 + exp(−[8C ))−1 Φ([8C ) 1 − exp(− exp([8C ))
m[�8C �8C (1 − �8C ) q([8C ) exp([8C − exp([8C ))
m[2�8C m[�8C (1 − 2�8C ) −[8Cq([8C ) m[�8C (1 − exp([8C ))
m[3�8C m[�8C ((1 − 2�8C )2 − 2m[�8C ) ([2

8C
− 1)q([8C ) m[2�8C (2 − exp([8C )) − m[�8C

Note: Φ(·) and q(·) are the cumulative distribution and probability density function of the standard
normal distribution.

Fernández-Val and Weidner (2016) distinguish between two types of bias corrections: analytical and
split-panel jackknife. The latter exploits the relation between sample size and bias to form a non-parametric
estimator of the asymptotic bias and is an extension of Dhaene and Jochmans (2015), whereas the former

4. For simplicity, we ignore the possibility of more complex functional forms in the linear index, e. g. polynomials.
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relies on explicit expressions derived from asymptotic expansions.5 A bias-corrected estimator for # is

#̃ B #̂ − b̂V ,

where b̂V is an estimator of the asymptotic bias such that #̃ a∼ N(#,VV).
We start with an analytical bias correction at the level of the estimator. An explicit expression for an

estimator of the asymptotic bias is
b̂Vabc B Ŵ−1(B̂V + ĈV) ,

where

B̂V B −1
2

#∑
8=1

∑
C ∈S8 �̂8Cm[2 �̂8C (M̂X)8C + 2

∑!
;=1 g8 (;)

∑
C>;∈S8 m[ ;̂8C−;l̂8C (M̂X)8C∑

C ∈S8 l̂8C
,

ĈV B −1
2

)∑
C=1

∑
8∈SC �̂8Cm[2 �̂8C (M̂X)8C∑

8∈SC l̂8C
,

Ŵ B
∑
(8,C) ∈S

l̂8C (M̂X)8C (M̂X) ′8C ,

! is the bandwidth parameter of the truncated spectral density estimator suggested by Hahn and Kuersteiner
(2007), and g8 (;) B |S8 |/( |S8 | − ;) is a finite sample adjustment proposed by Fernández-Val and Weidner
(2016). The corresponding estimator of the asymptotic covariance is V̂V B Ŵ−1. By making the stronger
strict exogeneity assumption, we can set ! = 0 and drop the second term in B̂V , so that the expressions for B̂V

and ĈV become identical except for the indexes.6 However, this stronger assumption is difficult to motivate in
practice. Therefore, Fernández-Val and Weidner (2016, 2018a) recommend to check the sensitivity of the
estimates using different values of ! ∈ {0, . . . , 4}.

To possibly further improve its finite sample properties, the analytical bias correction can be further
iterated. More precisely, we start with an initial #̃, afterwards we recompute b̂abc, update #̃, and repeat this
procedure a finite number of times. Arellano and Hahn (2007) refer to this approach as infinitely repeated
analytical bias correction.

The idea of the split-panel jackknife is to split the panel into sub panels and use them to construct an
estimator of the asymptotic bias from different sub panel estimators. We consider two different splitting
strategies: the first strategy (SPJ1) is described in Fernández-Val and Weidner (2016) and the second one
(SPJ2) in Cruz-Gonzalez, Fernández-Val, and Weidner (2017). Let

b̂Vspj1 B #̂
# + #̂) − 2#̂ and b̂Vspj2 B #̂

#) − #̂

5. The idea to reduce bias using jackknife techniques originates from Quenouille (1949, 1956). In the context of dynamic models
they were first mentioned by Hu (2002).

6. The second term in B̂V can be interpreted as an estimator for a Nickell (1981)-type bias.
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be estimators of the asymptotic bias, where

#̂
#

B
1
2
(
#̂{8≤d# /2e } + #̂{8≥b# /2+1c }

)
,

#̂
)

B
1
2
(
#̂{C≤d) /2e } + #̂{C≥b) /2+1c }

)
,

#̂
#)

B
1
4
(
#̂{8≤d# /2e∧C≤d) /2e } + #̂{8≤d# /2e∧C≥b) /2+1c } +

#̂{8≥b# /2+1c∧C≤d) /2e } + #̂{8≥b# /2+1c∧C≥b) /2+1c }
)
,

d·e and b·c are floor and ceiling functions, and the subscript in curly brackets indicates the condition to
construct the corresponding sub panel. For instance, {8 ≤ d#/2e ∧ C ≤ d)/2e} means that the corresponding
sub panel only contains the first half of all individuals in the first half of the observation period. In the
presence of missing data, we follow the suggestion of Fernández-Val and Weidner (2018a) and ignore the
attrition process. Note that, contrary to analytical bias corrections, the split-panel jackknife requires an
additional unconditional homogeneity assumption (see assumption 4.3 in Fernández-Val and Weidner 2016).
For instance, this condition rules out trends or structural breaks in the explanatory variables. Note further that
both splitting strategies can lead to overlapping sub panels that introduce an additional variance inflation as
pointed out by Dhaene and Jochmans (2015).7

The analytical bias corrections can also be applied at the level of score. The corresponding bias-corrected
estimator is the solution to the following system of equations:

(M̂X(#)) ′
̂(#).̂(#) = B̂V + ĈV .

Fernández-Val and Weidner (2016) also suggest a continuously updated score correction where B̂V and ĈV

are replaced by B̂V (#) and ĈV (#) such that # and the asymptotic bias are estimated simultaneously.
Finally, we describe the bias corrections for the average partial effects. A bias-corrected estimator for % is

%̃ B %̂ − b̂X ,

where b̂X is an estimator of the asymptotic bias such that %̃ a∼ N(%,VX). Again, we can either use explicit
expressions or the split-panel jackknife described earlier to construct an estimator of the asymptotic bias.
Because the application of the split-panel jackknife is generic and already known from the estimation of #,
we omit it for brevity

In the following we assume that �̂8C and %̂ are constructed from #̃ and 0̃, where

0̃ B ("̃, $̃) ∈ arg max
"∈R# ,$∈R)

∑
(8,C) ∈S

;8C ( #̃, U8 , WC ) .

An analytical estimator of the asymptotic bias is

b̂Xabc B =−1(B̂X + ĈX) ,

7. Dhaene and Jochmans (2015) show how to construct non-overlapping sub panels.
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where

B̂X B
1
2

#∑
8=1

∑
C ∈S8 �̂8Cm[2 �̂8C (P̂	̂)8C + m[2�̂8C − 2

∑!
;=1 g8 (;)

∑
C>;∈S8 m[ ;̂8C−;l̂8C (M̂	̂)8C∑

C ∈S8 l̂8C
,

ĈX B
1
2

)∑
C=1

∑
8∈SC �̂8Cm[2 �̂8C (P̂	̂)8C + m[2�̂8C∑

8∈SC l̂8C
,

and 	̂8C B −m[�̂8C/l̂8C . Again, by making the stronger strict exogeneity assumption, we can set ! = 0 and
drop the last term in B̂X . Let ¯̂�8C B �̂8C − %̂, the corresponding estimator of the asymptotic covariance is

V̂X = =−2
(( ∑
(8,C) ∈S

¯̂�8C
) ( ∑
(8,C) ∈S

¯̂�8C
) ′
+

∑
(8,C) ∈S

�̂8C �̂
′
8C + 2

#∑
8=1

∑
B>C ∈S8

¯̂�8C �̂
′
8B

)
,

where
�̂8C B

( ∑
(8,C) ∈S

mV�̂8C − (P̂X)8Cm[�̂8C
) ′

Ŵ−1(M̂X)8Cm[ ;̂8C − (P̂	̂)8Cm[ ;̂8C .

The first and second term measure the uncertainty caused by the substitution of population by sample means
and by the estimation of the structural parameters. The last term is a covariance between both sources of
uncertainty that can be dropped if we make the stronger strict exogeneity assumption.8

So far we learned how to mitigate the inference problem. In the next subsection we show how the
computational costs associated with the estimation and the application of bias corrections can be reduced
substantially.

2.2.3 Feasible Estimation with Long Panel Data

In applications where both panel dimensions are large, estimation with standard software quickly becomes
very time-consuming or even infeasible. However, recent advances in computational econometrics embed
special solvers in the optimization algorithm of the maximum likelihood estimator to address this problem
(see Guimarães and Portugal 2010 and Stammann 2018). We first summarize the basic idea of Stammann
(2018), who proposed an algorithm that can be interpreted as a generalization of Greene (2004) to more than
one fixed effect, and then present an extension that can be used to estimate 0 for a given #̃.9 This extension is
necessary for the bias corrections of the average partial effects. Details about the derivation, the algorithms,
and an example code are included in the Appendix 2.A.

We start with the estimation of #. Each step of the optimization algorithm involves solving a weighted
least squares problem. More precisely, in iteration A we set

) 〈A+1〉 = (# 〈A+1〉, 0 〈A+1〉) = (Z′
〈A 〉Z)+Z′
〈A 〉w〈A 〉 ,

8. The estimator of the asymptotic covariance can be adjusted to take into account additional sampling assumptions with respect
to the unobserved effects. For instance, if {U8}# and {WC }) are assumed to be sequences of independent random variables, where
U8 ⊥ WC ∀ 8, C, the estimator of the asymptotic covariance becomes

V̂X = =−2
#∑
8=1

( ∑
(C ,B) ∈S8

¯̂�8C ¯̂�′8B +
∑
(8′,C) ∈S

¯̂�8C ¯̂�′8′C +
∑
C ∈S8

�̂8C �̂
′
8C + 2

∑
B>C ∈S8

¯̂�8C �̂
′
8B

)
.

9. To be more specific, Stammann, Heiss, and McFadden (2016) show that the algorithm of Greene (2004) can also be derived
using the Frisch-Waugh-Lovell theorem. Stammann (2018) combines the resulting projections with Halperin (1962)’s method of
alternating projections, leading to a very efficient algorithm for any number of fixed effects.
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where Z B (X,D) and w〈A 〉 B . 〈A 〉 + ( 〈A 〉. Remember, 
〈A 〉 is a diagonal matrix with 8 〈A 〉 B diag(
〈A 〉)
and ( 〈A 〉 is the collection of linear indexes. Because the rank of D increases with the sample size, solving the
optimization problem quickly becomes infeasible. However we can formulate an alternative weighted least
squares problem based on “demeaned” variables so that

# 〈A+1〉 = ((MX〈A 〉) ′
〈A 〉MX〈A 〉)−1(MX〈A 〉) ′
〈A 〉Mw〈A 〉 .

Afterwards we can use
( 〈A+1〉 = w〈A 〉 − (Mw〈A 〉 −MX〈A 〉# 〈A+1〉)

to update 8 and w for the subsequent iteration. Consequently, # are the coefficients obtained by a regression
of a weighted two-way demeaned w on a weighted two-way demeaned X using 8 as weights. ( are the
corresponding fitted values. Thus we can update #, w, and 8 in each iteration without explicitly updating the
incidental parameters. The practical advantage is that # and ( can be very efficiently computed with any
software routine developed for weighted least squares problems with high-dimensional fixed effects.10 Note
that we can also use the same software routines to compute all terms that depend onM and P, as in some
expressions of the bias corrections.

Next, we modify the algorithm of Stammann (2018) to estimate D0 given a fixed #̃. Note that we estimate
D0 instead of 0 as this is simpler and fully sufficient to compute the linear index needed for �8C and its
derivatives. Again, we start with the weighted least squares problem in iteration A:

0 〈A+1〉 = (D′
〈A 〉D)+D′
〈A 〉w̃〈A 〉 ,

where w̃〈A 〉 B w〈A 〉 − X#̃ and ( 〈A 〉 = X#̃ + D0 [A ] . Left multiplying by D yields

D0 〈A+1〉 = P w̃〈A 〉 = w̃〈A 〉 −M w̃〈A 〉 ,

which reveals that we only need to demean w̃〈A 〉 to update the linear index.
Finally, we give a short impression about the capabilities of the algorithms presented in this section.

Therefore, we estimate the specification from our empirical illustration using a standard routine and the
alternative algorithm we suggest. The former requires more than twelve hours whereas our suggestion only
needs three seconds.

2.3 Simulation Experiments

In this section, we extend the analysis of Fernández-Val and Weidner (2016) by two aspects. First, we compare
the various analytical and split-panel jackknife bias corrections discussed earlier in this paper with respect to
their finite sample properties in balanced panels. Second, we analyze whether the improved inference of bias
corrections, which is well studied in balanced panels, also shows up in unbalanced panels. For brevity, we
restrict ourselves to the analysis of dynamic designs, because Fernández-Val and Weidner (2016) have already
shown that the results with respect to exogenous regressors are very similar for static and dynamic designs in
balanced panels.

10. Some examples available in popular statistical software are reghdfe by Correia (2016) for Stata, lfe by Gaure (2013a) for R,
FixedEffectModels by Matthieu Gomez for Julia, and pyhdfe by Jeff Gortmaker for Python.
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Besides the asymptotically biased maximum likelihood estimator (MLE), we consider four different
analytical bias corrections for the structural parameters. Two of them are applied at the level of the estimator,
whereas the others are the solution of modified score equations. ABC1 is the analytical bias correction
analyzed in Fernández-Val and Weidner (2016). ABC2 is essentially ABC1, but additionally iterated until
convergence. ABC3 and ABC4 are estimators at the level of the score, whereas the latter recomputes the
asymptotic bias in each iteration of the nonlinear solver. The analytical bias-corrected estimators of the
average partial effects are labeled analogously. Further we analyze the two different splitting strategies
(SPJ1–2) for the split-panel jackknife bias correction and an alternative estimator for the average partial effects
(LPM) based on the bias-corrected ordinary least squares estimator proposed by Hahn and Kuersteiner (2002)
and the truncated spectral density estimator of Hahn and Kuersteiner (2007).11

We adapt the dynamic design of Fernández-Val and Weidner (2016) to allow for the possibility of missing
data:

H8C = 1{dH8C−1 + VG8C + U8 + WC ≥ n8C } ,

H80 = 1{VG80 + U8 + W0 ≥ n80} ,

G8C = 0.5G8C−1 + U8 + WC + a8C ,

(8 = 1, . . . , #, C = 1 ≤ B8 , . . . , )8 ≤ )) ,

where 1{·} is an indicator function, U8 , WC ∼ iid. N(0, 1/16), n8C ∼ iid. N(0, 1), a8C ∼ iid. N(0, 0.5), and
G80 ∼ iid. N(0, 1). The corresponding parameters are d = 0.5 and V = 1. We consider balanced and
unbalanced panels with sample sizes that reflect commonly used panel data sets (# � )). More specifically,
we consider two different patterns of randomly missing data that mimic common situations where some
people drop out of a survey and are replaced if necessary. To describe the different patterns of missing
data, we distinguish between two types of individuals: type 1 and type 2. The former drop out, whereas
the latter are observed over the entire time horizon. To be more precise, let #1 and #2 be the number of
type 1 and type 2 individuals in the unbalanced panel such that # = #1 + #2. Likewise )1 and )2 denote
the number of consecutive points in time such that )1 < )2. Both patterns of missing data differ only in
the starting point (B8) of the time series of each type 1 individual. We set B8 = 1 in Pattern 1 and sample
B8 with equal probability from {1, . . . , )2 − )1 + 1} in Pattern 2. For clarification, we set B8 = 1 for all type
2 individuals irrespective of the pattern. Figure 2.1 provides a graphical illustration of both patterns. We
generate balanced panel data sets with # = 200 and )8 = ) ∈ {15, 20, 25} and unbalanced panel data sets with
(#1, #2) ∈ {(300, 100), (150, 150), (60, 180)}, )1 = 10, and )2 = 30. The different pairs (#1, #2) are chosen
such that the average number of individuals (#) and points in time ()) are # = 200 and ) ∈ {15, 20, 25}.

To analyze the finite sample performance of the different estimators, we focus on biases relative to the
truth and empirical coverage probabilities of 95% confidence intervals. The latter statistic is especially
important, because even if the relative bias is quite small, it might still be large compared to the dispersion
of the estimator, with severe consequences for inference. The MLE, ABC1–4, and SPJ1–2 standard errors
of the average partial effects are computed using the expression in footnote 8, which takes the independent
sampling of the unobserved effects into account. The LPM standard errors are based on the cluster-robust
covariance estimator of Cameron, Gelbach, and Miller (2011) to deal with within-individual and within-time

11. Hahn and Moon (2006) show that the bias correction of Hahn and Kuersteiner (2002) can be applied to dynamic linear models
with individual and time specific effects.
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Figure 2.1: Patterns of Randomly Missing Observations
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correlation of the error terms induced by the probit data generating process. Because there is no obvious way
to choose an optimal bandwidth for the estimation of the spectral expectations, we try different choices from
a set of values and then report only the results of the choice with the best finite sample performance. We
choose ! from {1, . . . , 4} for ABC1–4, as suggested by Fernández-Val and Weidner (2016, 2018a), and from
{1, . . . , ) − 1} for LPM. All results are based on 1,000 replications.12

We start by comparing the different analytical bias corrections in a balanced panel. Table 2.2 reports the
relative biases and coverage probabilities of the estimators for the structural parameters. As expected, all

Table 2.2: Analytical Bias Corrections: Coefficients

d̂ V̂

ABC1 ABC2 ABC3 ABC4 ABC1 ABC2 ABC3 ABC4

Panel A: Relative Bias
) = 15 -3.886 -6.580 -4.673 -5.204 1.004 2.666 1.710 1.761
) = 20 -2.575 -4.227 -2.979 -3.426 0.606 1.575 0.979 1.035
) = 25 -1.815 -2.945 -2.078 -2.432 0.319 0.969 0.562 0.614

Panel B: Coverage Probability
) = 15 0.932 0.916 0.929 0.930 0.943 0.919 0.939 0.941
) = 20 0.947 0.931 0.944 0.939 0.941 0.930 0.938 0.941
) = 25 0.945 0.942 0.944 0.941 0.943 0.935 0.941 0.941

Note: The biases are in percentage of the truth; ABC1–ABC4 refer to the analytically bias-
corrected estimators with bandwidth ! = 2; results based on 1,000 repetitions.

corrections reduce a larger fraction of the bias and improve coverage as ) increases. The difference between
the various estimators is in most cases negligible small. Interestingly, ABC2 does not perform better than
ABC1, which is remarkable, because often, as for instance in Arellano and Hahn (2007) and Fernández-Val
and Weidner (2018a), it is noted, that a further iteration of ABC1 could improve the finite sample performance

12. We use the lfe package of Gaure (2013a) for the estimation of linear fixed effects models, the nonlinear equations solver (nleqslv)
of Hasselman (2018) for analytical bias corrections at the level of the scores, and R version 4.0.2 R Core Team 2021.
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of the estimator.13 ABC3 and ABC4 perform equally well. Our results for the average partial effects are very
similar and provided in Table 2.B.1 of the Appendix 2.B.

Next, we compare the two different split-panel jackknife estimators for the structural parameters in a
balanced panel. Table 2.3 reports the relative biases and coverage probabilities. Similar to the analytical

Table 2.3: Split-Panel Jackknife Bias Corrections: Coefficients

Relative Bias Coverage Rate

d̂ V̂ d̂ V̂

SPJ1 SPJ2 SPJ1 SPJ2 SPJ1 SPJ2 SPJ1 SPJ2

) = 15 -0.030 0.540 -0.744 -1.620 0.907 0.907 0.895 0.884
) = 20 3.171 3.564 -1.897 -2.544 0.916 0.917 0.900 0.875
) = 25 -0.379 -0.158 -0.600 -0.986 0.930 0.931 0.904 0.900

Note: The biases are in percentage of the truth; SPJ1–2 refer to the different split-panel
jackknife bias-corrected estimators; results based on 1,000 repetitions.

bias corrections, we find improved finite sample properties as ) increases. One exception is the bias of the
estimators in ) = 20. However, although the bias increases, coverage does not decrease. Overall, we find
almost identical properties of both estimators, which is remarkable, because we would expect SPJ2 to have
higher dispersion, as significantly smaller sub panels are used to estimate the asymptotic bias. Results for the
average partial effects are similar and reported in Table 2.B.2 of the Appendix 2.B.

Now we analyze whether the finite sample properties of the different estimators are affected by the two
patterns of randomly missing data. Because we already found that the finite sample properties of the different
analytical and split-panel jackknife bias corrections barely differ among themselves, we restrict our final
analysis toMLE, ABC1, SPJ1, and LPM. Table 2.4 and 2.5 report the relative biases and coverage probabilities
of the estimators for the structural parameters and average partial effects in balanced and unbalanced panels.
We start with the analysis of the finite sample properties in a balanced panel, as these will serve as a benchmark
for the properties in unbalanced panels. First, we find that the estimators for the effects of H8C−1 are worse
than those for G8C . For instance, we observe larger biases and coverage probabilities that are further away from
their nominal level. The distortions in the coefficients are also apparent in the estimates of the average partial
effects, which is in contrast to the negligible small biases in the average partial effects of G8C .14 In general, the
bias corrections perform well in reducing the relative biases and improving coverage. As in Fernández-Val
and Weidner (2016), the properties of SPJ1 are worse than those of ABC1. LPM as an alternative estimator
for the average partial effects works well too.15 Interestingly, LPM tends to overestimate the average partial
effects of H8C−1, while the other estimators underestimate them. Further, the optimal bandwidths of LPM for
the estimation of the spectral expectations are much larger than for ABC1 and increase rapidly with ) . This
indicates that the temporal dependence induced by the probit data generating process can be very strong, which
in turn makes the choice of appropriate bandwidths for LPM difficult in practice. Next we compare the finite
sample properties of the different estimators in unbalanced panels with our benchmark. First, by comparing
the relative biases of MLE, we can confirm the conjecture of Fernández-Val and Weidner (2018a) that the

13. Juodis (2015) analyzed an iterated analytical bias correction, similar to ABC2, for a static design with only individual unobserved
effects with similar findings.
14. Hahn and Newey (2004), Fernández-Val (2009), and Fernández-Val and Weidner (2016) have similar findings for average partial

effects of an exogenous regressor in balanced panels.
15. Fernández-Val (2009) has similar findings for linear probability models with only individual fixed effects.
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Table 2.4: Finite Sample Properties: Lagged Dependent Variable

Relative Bias Coverage Rate

Bal P1 P2 Bal P1 P2

Panel A: Coefficient
) = ) = 15 MLE -41.872 -40.832 -40.192 0.142 0.009 0.014

ABC1 -3.886 -5.248 -4.787 0.932 0.911 0.936
SPJ1 -0.030 -32.175 -19.733 0.907 0.115 0.441

) = ) = 20 MLE -31.360 -30.098 -29.931 0.232 0.104 0.111
ABC1 -2.575 -2.998 -2.894 0.947 0.951 0.940
SPJ1 3.171 -13.741 -8.846 0.916 0.668 0.822

) = ) = 25 MLE -24.997 -24.405 -23.860 0.306 0.263 0.278
ABC1 -1.815 -2.057 -1.554 0.945 0.949 0.942
SPJ1 -0.379 -4.595 -2.377 0.930 0.912 0.925

Panel B: Average Partial Effect
) = ) = 15 MLE -49.162 -48.230 -47.611 0.030 0.001 0.002

ABC1 (2) -5.212 -6.960 -6.419 0.910 0.873 0.894
SPJ1 -10.657 -39.059 -26.846 0.825 0.022 0.183
LPM (4) 5.269 1.800 2.153 0.913 0.961 0.930

) = ) = 20 MLE -37.768 -36.550 -36.496 0.083 0.017 0.018
ABC1 (2) -3.200 -3.816 -3.849 0.911 0.918 0.910
SPJ1 -2.929 -18.853 -13.854 0.903 0.488 0.666
LPM (7) 4.398 -0.209 -0.087 0.910 0.954 0.936

) = ) = 25 MLE -30.634 -30.027 -29.551 0.147 0.105 0.110
ABC1 (2) -2.156 -2.479 -2.014 0.924 0.930 0.927
SPJ1 -3.944 -8.102 -5.813 0.892 0.832 0.873
LPM (13) 1.620 0.676 1.213 0.922 0.937 0.924

Note: The biases are in percentage of the truth; Bal, P1, and P2 refer to balanced panel, Pattern
1, and Pattern 2; MLE, ABC1, SPJ1, and LPM denote the (bias-corrected) estimators; values in
parentheses indicate “optimal” bandwidth choices for the spectral density estimator; results
based on 1,000 repetitions.
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Table 2.5: Finite Sample Properties: Exogenous Regressor

Relative Bias Coverage Rate

Bal P1 P2 Bal P1 P2

Panel A: Coefficient
) = ) = 15 MLE 14.551 13.635 13.508 0.226 0.051 0.034

ABC1 1.004 0.849 0.761 0.943 0.944 0.952
SPJ1 -0.744 8.995 5.790 0.895 0.343 0.640

) = ) = 20 MLE 10.657 9.838 9.962 0.329 0.205 0.205
ABC1 0.606 0.301 0.400 0.941 0.943 0.948
SPJ1 -1.897 3.292 2.130 0.900 0.814 0.886

) = ) = 25 MLE 8.401 8.126 8.113 0.408 0.346 0.357
ABC1 0.319 0.277 0.261 0.943 0.951 0.955
SPJ1 -0.600 0.621 0.109 0.904 0.934 0.930

Panel B: Average Partial Effect
) = ) = 15 MLE 2.845 2.176 2.134 0.878 0.882 0.862

ABC1 (2) -0.096 -0.433 -0.458 0.943 0.932 0.932
SPJ1 2.617 1.744 2.797 0.870 0.819 0.812
LPM (4) 0.206 0.162 0.237 0.915 0.914 0.908

) = ) = 20 MLE 2.285 1.731 1.693 0.881 0.874 0.890
ABC1 (2) 0.044 -0.271 -0.316 0.942 0.924 0.925
SPJ1 1.364 0.946 1.494 0.909 0.896 0.895
LPM (7) 0.166 0.312 0.225 0.923 0.912 0.924

) = ) = 25 MLE 1.848 1.675 1.614 0.888 0.903 0.890
ABC1 (2) 0.015 -0.048 -0.112 0.932 0.941 0.933
SPJ1 0.889 0.735 0.836 0.917 0.924 0.908
LPM (13) 0.402 0.395 0.276 0.916 0.927 0.912

Note: The biases are in percentage of the truth; Bal, P1, and P2 refer to balanced panel,
Pattern 1, and Pattern 2;MLE, ABC1, SPJ1, and LPM denote the (bias-corrected) estimators;
values in parentheses indicate “optimal” bandwidth choices for the spectral density estimator;
results based on 1,000 repetitions.
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magnitude of the asymptotic bias in the limiting distribution depends on # and ) . However, the coverage is
worse because the sample size of an unbalanced panel is larger than that of a balanced panel (with equal #
and )), which in turn implies a smaller standard deviation of the estimators and thus distortions that are larger
relative to the variance of the estimator. Second, compared to the benchmark we notice some substantial
differences in the performance of SPJ1. Whereas the properties of ABC1 and LPM are unaffected by the
different patterns of missing data, they are partially significantly worse for SPJ1, especially for ) = ) = 15.
Pattern 1 stands out in particular, because it clearly shows that the reduction of bias and improvement of
coverage are deteriorating. An intuitive explanation is that the splitting strategy leads to sub panels of widely
differing sizes. This issue is not so severe in Pattern 2, but the performance is still worse than the benchmark.

Finally, we briefly summarize the key findings. We find no differences in the finite sample performance
when we compare the various analytically bias-corrected and the different split-panel jackknife estimators
among themselves. Although the latter have the advantage that they are relatively easy to implement, this
convenience is associated with some performance losses. More precisely, split-panel jackknife estimators have
higher distortion and react sensitive to different patterns of randomly missing data, whereas the performance
of the analytical bias corrections is unaffected. An alternative estimator for the average partial effects based
on the bias-corrected ordinary least squares estimator works well too, but to find an appropriate bandwidth for
the required spectral density estimator might be challenging in practice.

2.4 Empirical Illustration

We analyze the inter-temporal labor force participation of women using longitudinal micro data (1984–2013)
from the German Socio Economic Panel (GSOEP). More specifically, we investigate how fertility decisions
and non-labor income jointly affect women’s labor force participation using an unbalanced panel data set of
6,241 women observed consecutively for at least ten years. Further details about the sample are provided in
the Appendix 2.C.

In spirit of Hyslop (1999), we estimate the following model specification:

H8C = 1{dH8C−1 + x′8C # + U8 + WC + 48C ≥ 0} ,

(8 = 1, . . . , #, C = 1 ≤ B8 , . . . , )8 ≤ )) ,

where H8C is an indicator equal to one if woman 8 participates in the labor market at time C, x8C is a vector
of explanatory variables, # are the corresponding parameters, U8 and WC are unobserved effects that capture
individual specific taste for labor and permanent income as well as control for the business cycle and other
time specific shifts in preferences, and 48C is an idiosyncratic error term independent of XC

8
and 0 with mean

zero. As our data set is unbalanced, we have to additionally assume that conditional on XC
8
and 0 the attrition

process is random. We consider the following explanatory variables: the number of children in different age
groups, various non-labor income classes, and an indicator that is equal to one if a birth occurs in the next
year. Further control variables are age squared, marital status, a regional identifier for Eastern Germany, the
number of children between zero and one in the previous year, and the number of other household members.

Table 2.6 shows some descriptive statistics of our sample. The average participation rate is 73% in the
full sample and 67% for the group of movers who change their labor force participation decision at least
once. The group of women who never participate is the smallest and most different from the other groups.
On average, this group is older, more likely to be married, and lives in Western Germany. Contrary, women
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Table 2.6: Descriptive Statistics

Full Always Never Movers

Participation 0.73 (0.44) 1.00 (0.00) 0.00 (0.00) 0.67 (0.47)
Age 40.48 (11.02) 42.69 (9.80) 48.02 (10.65) 38.21 (11.06)
Married 0.70 (0.46) 0.67 (0.47) 0.93 (0.26) 0.69 (0.46)
Middle Class 0.44 (0.50) 0.42 (0.49) 0.48 (0.50) 0.44 (0.50)
Upper Class 0.01 (0.08) 0.01 (0.08) 0.01 (0.10) 0.01 (0.08)
East 0.22 (0.41) 0.28 (0.45) 0.05 (0.22) 0.20 (0.40)
#Children 0-1 0.05 (0.21) 0.02 (0.13) 0.04 (0.21) 0.06 (0.25)
#Children 2-4 0.12 (0.36) 0.05 (0.23) 0.12 (0.36) 0.16 (0.41)
#Children 5-18 0.71 (0.95) 0.53 (0.80) 0.81 (1.14) 0.79 (0.99)
#HH older 2.25 (0.84) 2.18 (0.80) 2.61 (0.94) 2.25 (0.84)
BirthC+1 0.03 (0.18) 0.01 (0.11) 0.03 (0.16) 0.04 (0.21)

#Observations 97,465 33,574 7,175 56,716
#Individuals (#) 6,241 2,306 477 3,458
#Years ()) 28 28 28 28
Avg. #Individuals (#) 3,481 1,199 256 2,026
Avg. #Years ()) 16 15 15 16

Note: Means and standard deviations in parentheses.
Source: GSOEP 1984–2013.

who always participate have less children and live in smaller households. The full sample comprises 97,465
observations and consists of 6,241 women observed for a maximum of 28 years. As some households drop
out of the GSOEP and are replaced by new ones, this leads to a pattern of missing data similar to Pattern 2 in
the simulation study. On average, we observe each woman for roughly 16 years.

We consider the following estimators for the structural parameters and average partial effects: MLE,
ABC1, SPJ1, and LPM. The estimators are labeled and bandwidths are chosen as in the simulation study.
Table 2.7 reports the corresponding estimates. All results are in line with the theoretical model of Hyslop
(1999). We find positive state dependence and negative effects of transitory non-labor income, number of
children, and expectations about future fertility. All effects are significant at the 5% level. Remarkably, most
probit estimates of the average partial effects are very close to each other. Exceptions are those with respect
to lagged participation which range from 0.23 up to 0.31. LPM estimates are also quite close except for
lagged participation and number of children between zero and one. Overall we find evidence for strong
state dependence. A woman who has currently a job increases her probability to participate in the future
by 23–54 percentage points. Further we find that women respond heterogeneously to changes in transitory
non-labor income. Being in the middle class reduces the participation probability by roughly one percentage
point compared to a woman in the lower income class. The reduction associated with belonging to the upper
income class is significantly stronger with three up to five percentage points. Finally we find that the number
of children reduces the likelihood of participation substantially. As expected, the effect is declining with the
age of children. Each additional child between zero and one reduces the probability to participate 20 up to 30
percentage points. For children older than four, the reduction is only one percentage point. The results are
largely consistent with the empirical findings of Hyslop (1999). However, contrary to Hyslop (1999), we find
that future birth always negatively affects current participation decision irrespective of the chosen estimator.
This might support the author’s perfect foresight assumption with respect to life-cycle fertility decisions.
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Table 2.7: Labor Force Participation of Women

Coefficient Average Partial Effect

MLE ABC1 SPJ1 MLE ABC1 SPJ1 LPM

ParticipationC−1 1.469 1.657 1.712 0.233 0.300 0.307 0.540
(0.017) (0.017) (0.017) (0.019) (0.023) (0.006) (0.015)

Middle Class -0.122 -0.112 -0.114 -0.013 -0.013 -0.014 -0.014
(0.023) (0.023) (0.023) (0.003) (0.003) (0.002) (0.003)

Upper Class -0.365 -0.330 -0.416 -0.042 -0.041 -0.051 -0.034
(0.130) (0.132) (0.132) (0.017) (0.016) (0.016) (0.016)

#Children 0-1 -1.822 -1.603 -1.704 -0.198 -0.190 -0.206 -0.304
(0.036) (0.035) (0.036) (0.017) (0.015) (0.006) (0.010)

#Children 2-4 -0.427 -0.304 -0.335 -0.046 -0.036 -0.042 -0.039
(0.026) (0.025) (0.026) (0.005) (0.004) (0.003) (0.005)

#Children 5-18 -0.159 -0.113 -0.112 -0.017 -0.013 -0.014 -0.014
(0.012) (0.012) (0.013) (0.002) (0.002) (0.001) (0.002)

BirthC+1 -0.560 -0.514 -0.572 -0.065 -0.066 -0.074 -0.080
(0.038) (0.038) (0.038) (0.007) (0.007) (0.005) (0.007)

Note: MLE, ABC1, SPJ1, and LPM denote the (bias-corrected) estimators; bandwidths are 2 and 4 for
ABC1 and LPM; standard errors in parentheses; LPM standard errors are robust to heteroskedasticity
and clustered by woman and year; estimates relative to a low income woman in the west.
Further control variables: squared age, married, east, lag of number of children between zero and one,
and number of household members above 18.
Source: GSOEP 1984–2013.

Finally, we check the sensitivity of ABC1 and LPM to different bandwidth choices and conduct a
simulation study calibrated to our empirical illustration. The results are reported in Table 2.C.1 and 2.C.2 of
the Appendix 2.C. With respect to the different bandwidth choices, we find that especially the ABC1 estimates
are very robust. We find the largest variation with respect to the effect of lagged participation. The other
effects are almost indistinguishable. Most LPM estimates are robust as well. Exceptions are the effects of
lagged participation, being in the upper class, and number of children between zero and one. The results of
the calibrated simulation study confirm that the finite sample properties of MLE can be improved. However,
the improvement is less good compared to the simulation experiments with artificial data. The performance
of SPJ1 and LPM is in some cases significantly worse than that of ABC1.

2.5 Concluding Remarks

In this paper, we offer new relief and guidance for empirical researchers by showing how popular binary
choice estimators benefit from recent advances in econometrics. Especially the analytically bias-corrected
estimator of Fernández-Val and Weidner (2016) convinced by its good performance in all cases.

Although we have focused on panel data binary choice models, we would like to point out that the bias
corrections derived by Fernández-Val and Weidner (2016) are far more general. First, they can also be used
to reduce the asymptotic bias of other popular nonlinear maximum likelihood estimators e. g. poisson and
tobit. The algorithms described in this paper can be easily adapted to these problems. Second, the bias
corrections can also be applied if we observe cross-sections of networked activities instead of panels e. g.
a cross-section of bilateral trade flows. For instance, Cruz-Gonzalez, Fernández-Val, and Weidner (2017)
use the bias corrections of Fernández-Val and Weidner (2016) to mitigate the asymptotic bias problem in a
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Helpman, Melitz, and Rubinstein (2008)-type model to determine the extensive margin of trade.
Recently, there are also some extensions of Fernández-Val and Weidner (2016). For instance, Weidner

and Zylkin (2020) and Hinz, Stammann, and Wanner (2020) have extended these bias corrections to a special
three-way error component that is particularly relevant for the estimation of the intensive and extensive margin
of trade in a panel of bilateral trade flows. Further, Chernozhukov, Fernández-Val, and Weidner (2020) use a
sequence of binary choice regressions to estimate distribution functions of non-binary outcomes conditional
on strictly exogenous regressors and two unobserved effects. The resulting inference problem is addressed by,
among other things, the sequential application of analytic bias corrections. These extensions can also benefit
from the findings of this paper.

Finally, future research could investigate whether bootstrap procedures can further improve inference. In
an additional simulation study we find that bootstrapping a bias-corrected estimator in spirit of Kaffo (2014)
slightly improves the coverage of the estimators for the structural parameters but not for the average partial
effects.
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Appendix

2.A Feasible Estimation for Long Panels

2.A.1 Derivation of the Algorithms

We briefly review the derivation of the algorithm proposed by Stammann (2018) for binary choice models
with two unobserved effects.

We start with the weighted least squares problem in iteration A:

) 〈A+1〉 = (# 〈A+1〉, 0 〈A+1〉) = (Z′
〈A 〉Z)+Z′
〈A 〉w〈A 〉 , (2.1)

where 0 〈A 〉 = (" 〈A 〉, $ 〈A 〉), Z = (X,D), 
〈A 〉 is a diagonal weighting matrix with diag(
〈A 〉) = (l 〈A 〉
8C
)(8,C) ∈S ,

w〈A 〉 = . 〈A 〉 + ( 〈A 〉 , . 〈A 〉 = (a 〈A 〉
8C
)(8,C) ∈S , and ( 〈A 〉 = ([ 〈A 〉8C )(8,C) ∈S . The corresponding expressions for l8C and

a8C are given in section 2.2. (2.1) implies the following normal equations:

X′
〈A 〉X# 〈A+1〉 + X′
〈A 〉D0 〈A+1〉 = X′
〈A 〉w〈A 〉 , (2.2)

D′
〈A 〉X# 〈A+1〉 + D′
〈A 〉D0 〈A+1〉 = D′
〈A 〉w〈A 〉 . (2.3)

Re-arranging (2.3) yields
D0 〈A+1〉 = Pw〈A 〉 − PX〈A 〉# 〈A+1〉 . (2.4)

Substituting (2.4) into (2.2) results in an alternative weighted least squares problem

# 〈A+1〉 = ((MX〈A 〉) ′
〈A 〉MX〈A 〉)−1(MX〈A 〉) ′
〈A 〉Mw〈A 〉 . (2.5)

based on transformed variables that allows us to update # without explicitly updating the incidental parameters
0. This transformation can be interpreted as a weighted within-transformation (“demeaning”) as known
from linear fixed effects models. Consequently, # can be obtained by a regression of the transformed w on
the transformed X using 8 as weights. Meanwhile, this type of optimization problem can be solved very
efficiently thanks to special software routines. Some examples available in popular statistical software are
reghdfe by Correia (2016) for Stata, lfe by Gaure (2013a) for R, FixedEffectModels by Matthieu Gomez for
Julia, and pyhdfe by Jeff Gortmaker for Python. To complete the optimization algorithm we need to find a
way to update l8C and a8C . Fortunately, it is quite easy to update [8C from already computed quantities. We
can exploit the fact that the residuals of (2.1) and (2.5) are equal, as shown by Gaure (2013b). Therefore

( 〈A+1〉 = w〈A 〉 − (Mw〈A 〉 −MX〈A 〉# 〈A+1〉) (2.6)
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are simply the fitted values of (2.5). We can sketch the entire algorithm as follows:

Algorithm 1. IWLS Algorithm
Set an initial (, e. g. ( = 0=, and repeat the following steps.

Step 1. Compute 8 and w.

Step 2. Solve (2.5), where # and ( are the coefficients and fitted values.

Step 3. Check convergence.

Finally, we outline the algorithm for updating the linear index [8C given a fixed #̃. For instance, this
algorithm is required for the bias corrections of the average partial effects. Remember,

D0 〈A+1〉 = P w̃〈A 〉 = w̃〈A 〉 −M w̃〈A 〉

with w̃〈A 〉 = w〈A 〉 − X#̃ is sufficient to update ( 〈A 〉 = X#̃ + D0 〈A 〉. We can sketch the entire algorithm as
follows:

Algorithm 2. IWLS Offset Algorithm
Set an initial (, e. g. ( = 0=, and repeat the following steps.

Step 1. Compute 8 and w∗.

Step 2. Compute D0 and update (.

Step 3. Check convergence.

In the next subsection we present an example code in which we combine the algorithms described here
with the analytical bias correction of Fernández-Val and Weidner (2016).
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2.A.2 Example Code

########################################################

# Example R-Code for Logit MLE

########################################################

## Load required packages and data set

require(bife)

require(lfe)

data <- psid

## Helper functions

# Log-Likelihood function

logl <- function(y, eta) sum(log(plogis((2.0 * y - 1.0) * eta)))

# Derivatives of CDF

partial2F <- function(eta) dlogis(eta) * (1.0 - 2.0 * plogis(eta))

partial3F <- function(eta) {

dlogis(eta) * ((1.0 - 2.0 * plogis(eta))^2 - 2.0 * dlogis(eta))

}

## Estimate structural parameters

# Set initial \beta, \eta, and termination criteria

n <- nrow(data)

fval <- - 1.0e100

eta <- numeric(n)

maxiter <- 100L

tol <- 1.0e-05

# Find optimal \beta and \eta

for (iter in 1:maxiter) {

# Store previous function value

fvalold <- fval

# Update weights and working response

omega <- dlogis(eta)

data$w <- (data$LFP - plogis(eta)) / omega + eta

# Update \beta and \eta

reg <- felm(w ~ KID1 + KID2 + KID3 + log(INCH) | ID + TIME,
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data, weights = omega)

beta <- coef(reg)

eta <- as.vector(fitted.values(reg))

fval <- logl(data$LFP, eta)

# Check convergence

if (abs(fval - fvalold) / (abs(fvalold) + 0.1) < tol) break

}

# Final estimates

betahat <- beta

etahat <- eta

## Debias maximum likelihood estimates of the structural parameters

# Compute required derivatives and demeaned regressor matrix

d1lhat <- data$LFP - plogis(etahat)

omegahat <- dlogis(etahat)

d2Fhat <- partial2F(etahat)

reg <- felm(KID1 + KID2 + KID3 + log(INCH) ~ 0 | ID + TIME,

data, weights = omegahat)

MhatX <- residuals(reg)

# Estimate asymptotic bias

Tempmat <- MhatX * d2Fhat

Bhatnum <- aggregate(Tempmat, list(data$ID), sum)[, - 1L]

Bhatdenom <- aggregate(omegahat, list(data$ID), sum)[, - 1L]

Bhat <- - colSums(Bhatnum / Bhatdenom) / 2.0

Chatnum <- aggregate(Tempmat, list(data$TIME), sum)[, - 1L]

Chatdenom <- aggregate(omegahat, list(data$TIME), sum)[, - 1L]

Chat <- - colSums(Chatnum / Chatdenom) / 2.0

What <- crossprod(MhatX * sqrt(omegahat))

bhat <- solve(What, Bhat + Chat)

# Estimate asymptotic covariance matrix

Vhat <- solve(What)

# Debias estimates and compute standard errors

betatilde <- betahat - bhat

sebetatilde <- sqrt(diag(Vhat))

## Debias maximum likelihood estimates of the APEs
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# Compute fixed part of \eta

X <- model.matrix(LFP ~ KID1 + KID2 + KID3 + log(INCH) + 0, data)

Xbetatilde <- as.vector(X %*% betatilde)

# Set initial \eta and termination criteria

fval <- - 1.0e100

eta <- numeric(n)

# Update \eta given debiased \beta

for (iter in 1:maxiter) {

# Store previous function value

fvalold <- fval

# Update weights and working response

omega <- dlogis(eta)

data$wast <- (data$LFP - plogis(eta)) / omega + eta - Xbetatilde

# Update \eta

reg <- felm(wast ~ 0 | ID + TIME, data, weights = omega)

Dpi <- as.vector(fitted.values(reg))

eta <- Xbetatilde + Dpi

fval <- logl(data$LFP, eta)

# Check convergence

if (abs(fval - fvalold) / (abs(fvalold) + 0.1) < tol) break

}

# Final estimates

etatilde <- eta

# Compute APEs and derivatives evaluated at debiased coefficients

Deltahat <- sapply(betatilde, function(x) x * dlogis(etatilde))

d1Deltahat <- sapply(betatilde, function(x) x * partial2F(etatilde))

d2Deltahat <- sapply(betatilde, function(x) x * partial3F(etatilde))

deltahat <- colMeans(Deltahat)

Psihat <- - d1Deltahat / omegahat

reg <- felm(Psihat ~ 0 | ID + TIME, data, weights = omegahat)

PhatPsihat <- fitted.values(reg)

# Estimate asymptotic bias

Tempmat <- PhatPsihat * d2Fhat + d2Deltahat
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Bhatnum <- aggregate(Tempmat, list(data$ID), sum)[, - 1L]

Bhatdenom <- aggregate(omegahat, list(data$ID), sum)[, - 1L]

Bhat <- colSums(Bhatnum / Bhatdenom) / 2.0

Chatnum <- aggregate(Tempmat, list(data$TIME), sum)[, - 1L]

Chatdenom <- aggregate(omegahat, list(data$TIME), sum)[, - 1L]

Chat <- colSums(Chatnum / Chatdenom) / 2.0

bhat <- (Bhat + Chat) / n

# Estimate asymptotic covariance matrix

V1 <- tcrossprod(colSums(Deltahat - deltahat))

J <- crossprod(MhatX, d1Deltahat)

diag(J) <- diag(J) + sum(dlogis(etatilde))

JV <- t(J) %*% solve(What)

Gammahat <- tcrossprod(MhatX * d1lhat, JV) - PhatPsihat * d1lhat

V2 <- crossprod(Gammahat)

Vhat <- (V1 + V2) / n^2

# Debias estimates and compute standard errors

deltatilde <- deltahat - bhat

sedeltatilde <- sqrt(diag(Vhat))
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2.B Additional Simulation Results

Table 2.B.1: Analytical Bias Corrections: Average Partial Effects

X̂H X̂G

ABC1 ABC2 ABC3 ABC4 ABC1 ABC2 ABC3 ABC4

Panel A: Relative Bias
) = 15 -5.212 -8.492 -6.248 -6.805 -0.096 1.050 0.379 0.433
) = 20 -3.200 -5.223 -3.744 -4.221 0.044 0.725 0.297 0.352
) = 25 -2.156 -3.543 -2.512 -2.892 0.015 0.477 0.181 0.230

Panel B: Coverage Probability
) = 15 0.910 0.874 0.897 0.895 0.943 0.930 0.941 0.943
) = 20 0.911 0.900 0.908 0.910 0.942 0.933 0.941 0.939
) = 25 0.924 0.920 0.923 0.925 0.932 0.927 0.928 0.928

Note: The biases are in percentage of the truth; ABC1–ABC4 refer to the analytically bias-
corrected estimators with bandwidth ! = 2; results based on 1,000 repetitions.

Table 2.B.2: Split-Panel Jackknife Bias Corrections: Average Partial Effects

Relative Bias Coverage Rate

X̂H X̂G X̂H X̂G

SPJ1 SPJ2 SPJ1 SPJ2 SPJ1 SPJ2 SPJ1 SPJ2

) = 15 -10.657 -10.609 2.617 2.460 0.825 0.825 0.870 0.874
) = 20 -2.929 -2.890 1.364 1.241 0.903 0.898 0.909 0.913
) = 25 -3.944 -3.927 0.889 0.817 0.892 0.890 0.917 0.914

Note: The biases are in percentage of the truth; SPJ1–2 refer to the different split-panel
jackknife bias-corrected estimators; results based on 1,000 repetitions.
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2.C Empirical Illustration

2.C.1 Data Preparation

We use the Cross-National Equivalent File ($PEQUV-File version 30) of the GSOEP and restrict the sample
to women between 16 and 65 that are observed consecutively for at least ten years and do not receive any
retirement income. A woman is assumed to participate in labor-force if she has positive income from
individual labor and works at least 52 hours a year. A proxy for transitory non-labor income is constructed
from post-government household income minus woman’s individual labor earnings. All income variables are
converted to constant 2010 EURO using the consumer price index. We additionally correct the labor income
by a household specific tax rate. To make income comparable between different household sizes, we use
an equivalence scale proposed by Buhmann et al. (1988) and divide the transitory non-labor income by the
square root of household members. To allow for heterogeneous effects of transitory non-labor income on
participation decisions, we define the three income classes: lower, middle, and upper. A woman belongs to
the lower class if she has a non-labor income of less than 11,278 EURO at her disposal. Contrary a woman
is in the upper income class if she has more than 56,391 EURO available. Women in between this interval
belong to the middle class. Those numbers are equal to 60% and 300% of the annual median equivalence
income.16 The class distinction is taken from the Armuts- und Reichtumsbericht of the federal government.17
Finally, we group the federal states into Eastern and Western Germany to control for regional differences
that still exists after reunification. More precisely, Schleswig-Holstein, Hamburg, Lower-Saxony, Bremen,
Hessen, Baden-Wuerttemberg, Bavaria, North-Rhine-Westfalia, Rheinland-Pfalz, and Saarland are classified
as Western Germany and Berlin, Brandenburg, Mecklenburg-Vorpommern, Saxony, Saxony-Anhalt, and
Thueringia as Eastern Germany.

16. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Einkommen-Konsum-Lebensbedingungen/
Lebensbedingungen-Armutsgefaehrdung/Tabellen/einkommensverteilung-silc.html.
17. https://www.armuts-und-reichtumsbericht.de/.
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2.C.2 Additional Results

Table 2.C.1: Sensitivity to Different Bandwidth Choices

Coefficient Average Partial Effect

ABC1 ABC1 LPM

ParticipationC−1 [1.580, 1.674] [0.284, 0.303] [0.453, 0.540]
Middle Class [-0.116, -0.107] [-0.014, -0.013] [-0.014, -0.012]
Upper Class [-0.347, -0.321] [-0.044, -0.040] [-0.043, -0.031]
#Children 0-1 [-1.610, -1.594] [-0.191, -0.190] [-0.313, -0.303]
#Children 2-4 [-0.318, -0.302] [-0.038, -0.036] [-0.054, -0.039]
#Children 5-18 [-0.120, -0.113] [-0.014, -0.013] [-0.019, -0.013]
BirthC+1 [-0.520, -0.501] [-0.066, -0.064] [-0.082, -0.080]

Note: The intervals show the range of the estimates; ABC1 and LPM denote the
bias-corrected estimators; bandwidths are chosen from {1, . . . , 4} and {1, . . . , 15}
for ABC1 and LPM.
Further control variables: squared age, married, east, lag of number of children
between zero and one, and number of household members above 18.
Source: GSOEP 1984–2013.

Table 2.C.2: Results of the Calibrated Simulation Study

Coefficient Average Partial Effect

MLE ABC1 SPJ1 MLE ABC1 SPJ1 LPM

Panel A: Relative Bias
ParticipationC−1 -21.681 -7.173 -12.310 -38.464 -16.452 -24.779 95.404
Middle Class 27.591 8.583 19.596 12.289 4.626 12.369 13.353
Upper Class 24.191 5.734 31.748 9.089 1.641 23.081 -10.789
#Children 0-1 20.875 4.879 11.889 6.402 1.083 5.341 52.210
#Children 2-4 49.423 10.962 24.895 31.531 6.946 19.140 27.993
#Children 5-18 46.165 12.428 23.739 28.661 8.357 17.626 -5.823
BirthC+1 10.080 0.656 5.118 -4.889 -4.539 -1.693 23.556

Panel B: Coverage Probability
ParticipationC−1 0.000 0.000 0.000 0.000 0.339 0.000 0.000
Middle Class 0.713 0.934 0.807 0.948 0.969 0.834 0.916
Upper Class 0.884 0.954 0.483 0.928 0.933 0.492 0.930
#Children 0-1 0.000 0.431 0.001 1.000 1.000 0.680 0.000
#Children 2-4 0.000 0.647 0.071 0.348 0.997 0.195 0.173
#Children 5-18 0.008 0.731 0.326 0.613 0.983 0.473 0.939
BirthC+1 0.714 0.956 0.877 0.985 0.983 0.906 0.333

Note: The biases are in percentage of the truth; MLE, ABC1, SPJ1, and LPM denote the (bias-
corrected) estimators; bandwidths are 2 and 4 for ABC1 and LPM; LPM standard errors are robust to
heteroskedasticity and clustered by woman and year; results based on 1,000 repetitions.
Further control variables: squared age, married, east, lag of number of children between zero and one,
and number of household members above 18.
Source: GSOEP 1984–2013.
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Chapter 3

Distribution Regression with Fixed Effects
and Weakly Exogenous Regressors

(joint work with Philipp Berger and Amrei Stammann)



3.1 Introduction

Policy interventions can often be inadequately evaluated using average effects. For instance, if a policy is
intended to increase the income of low-income households, i. e. the left tail of the income distribution,
a positive average effect does not necessarily imply that the policy intervention was successful. Quantile
effects provide a convenient way to evaluate the policy intervention along the entire outcome distribution. A
popular method to obtain these effects is the quantile regression originating from Koenker and Bassett (1978).
A drawback of quantile regression is that the inference made for quantile effects is invalid if the outcome
variable is discrete or mixed.

Chernozhukov, Fernández-Val, and Melly (2013) introduce distribution regression as a flexible alternative
to quantile regression that can naturally handle continuous, discrete, or mixed outcomes. Unlike quantile
regression, distribution regression does not directly estimate the conditional quantile functions. Instead, an
indirect route is taken by first estimating the conditional distribution and then exploiting the relationship
between distribution and quantile function, where the latter is the inverse of the former. Quantile effects
are then computed as differences between two quantile functions. Recently, Chernozhukov et al. (2020)
propose a generic inference method to obtain confidence bands for quantile functions and quantile effects
via distribution regression that relies entirely on valid uniform confidence bands for the corresponding
distribution functions. The idea is to invert uniform confidence bands for two distribution functions to obtain
uniform bands for the two quantile functions. Afterwards, the Minkowski difference is used to obtain uniform
confidence bands for quantile effects. Chernozhukov, Fernández-Val, and Weidner (2020) extend the generic
inference method presented in Chernozhukov et al. (2020) to network and panel data applications with
strictly exogenous regressors. More specifically, they consider distribution regression models with two fixed
effects for classical panels (individual and time) or networks (sender and receiver). Since the fixed-effects
estimator for distribution regression models is essentially a sequence of fixed effects binary choice estimators,
it also suffers from the well-known incidental parameter problem (Neyman and Scott 1948). Chernozhukov,
Fernández-Val, and Weidner (2020) address the inference problem by extending previous results on bias
corrections from Fernández-Val and Weidner (2016), which were proposed in the context of nonlinear fixed
effects models with two unobserved effects.

In this paper, we extend the inference method of Chernozhukov, Fernández-Val, and Weidner (2020)
for the case of weakly exogenous regressors, which is particularly relevant in panel applications where the
strict exogeneity assumption is often too restrictive. For instance, in our empirical illustration, we analyze
how knowledge spillovers and investments in research affect firms’ inventiveness. But if firms’ investment
decisions are influenced by the success of past inventions, then the strict exogeneity assumption is violated.
Likewise, research questions based on dynamic models cannot be properly analyzed. Our contribution
is meant to be complementary to Chernozhukov, Fernández-Val, and Weidner (2020) and ensures a wide
applicability of distribution regression with two unobserved effects in the context of classical panels and
networks. Like Chernozhukov, Fernández-Val, and Weidner (2020), we extend the bias correction developed
by Fernández-Val and Weidner (2016), but additionally allow the inclusion of weakly exogenous regressors.1
We demonstrate the importance and effectiveness of our inference method in simulation experiments.2 Finally,
we provide an empirical illustration from innovation economics in which we reassess parts of Arora, Belenzon,

1. Fernández-Val and Weidner (2016) consider the cases of strictly and weakly exogenous regressors and propose bias-corrected
estimators for both.

2. A rigorous proof for our inference method is work in progress and will be added later.
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and Sheer (2021). More specifically, we analyze quantile effects of knowledge outflow and the use of internal
and external research on firms’ inventiveness as measured by the number of patents. Qualitatively, we can
confirm their results, but also find evidence of heterogeneous effects along the distribution of patents.

The paper is organized as follows. We present the model and address the inference problem in Section 3.2.
We demonstrate the performance of our inference method in Section 3.3. We provide an empirical illustration
in Section 3.4. Finally, we give some concluding remarks in Section 3.5.

3.2 Distribution Regression Model, Assumptions, and the Inference Problem

We consider the distribution regression model of Chernozhukov, Fernández-Val, and Weidner (2020) for
panel applications with two unobserved effects and weakly exogenous regressors. We model the conditional
distribution of H8C given (G8C , U8 , WC ) as

�H8C (H | G8C , U8 , WC ) = Λ(c8C (H)) , c8C (H) B G ′8C V(H) + U8h(H) + WCi(H) , (3.1)

where 8 = {1, . . . , #} and C = {1, . . . , )} are individual- and time-specific indexes, H8C is the outcome variable
with region of interest Y, c8C (H) is the linear index, G8C is a vector of regressors, U8 and WC are unobserved
individual and time effects, V(H), h(H), and i(H) are unknown model coefficients that are allowed to vary
with H ∈ Y to account for heterogeneity in the distribution, and Λ(c) B 1/(1 + exp(−c)) is the logistic
cumulative distribution function (CDF). We assume a potentially unbalanced panel data set of # individuals
observed consecutively for at most ) time periods. Formally, we observe panel data {(H8C , G8C ) : (8, C) ∈ D},
where D ⊆ {(8, C) : 8 ∈ {1, . . . , #}, C ∈ {1, . . . , )}} is a subset of all observed index pairs and = B |D| is the
sample size. Further, we define D8 B {C8 , . . . , )8} = {C : (8, C) ∈ D} and DC B {8 : (8, C) ∈ D}, where C8 and
)8 denote the beginning and end of the time series of individual 8. The model coefficients for each H can be
estimated by a logistic regression of 1{H8C ≤ H} on the regressors and fixed effects.3

Chernozhukov, Fernández-Val, and Weidner (2020) use distribution regression primarily to construct
counterfactual distribution functions, which in turn are used to obtain quantile effect functions. Let G8C ,:
denote a counterfactual outcome of G8C . For instance, G8C ,: might be the outcome after we increase a continuous
treatment variable by one unit and hold the other regressors and unobserved effects fixed. The corresponding
counterfactual distribution and quantile functions are

�: (H) B
1
=

#∑
8=1

)8∑
C=C8

Λ(c8C ,: (H)) , c8C ,: (H) B G ′8C ,: V(H) + U8h(H) + WCi(H)

and
&: (g) B �←: (g) B min(inf{H ∈ Y : �: (H) ≥ g}, sup{H ∈ Y}) ,

where g ∈ (0, 1) are quantile indexes and inf{∅} = ∞. The quantile functions for two different counterfactual
outcomes : ∈ {0, 1} can then be used to construct quantile effect functions Δ(g) = &1(g) − &0(g) . For
instance, G8C ,1 might be the counterfactual outcome if we increase the treatment variable by one unit and
G8C ,0 = G8C might be the observed outcome. A distinctive feature of the inference method of Chernozhukov,
Fernández-Val, and Weidner (2020) is that it relies entirely on valid uniform confidence bands for the
corresponding counterfactual distribution functions. Uniform confidence bands for the quantile effect

3. In practice, H is an element of a finite subset of Y, e. g. a grid point on an equidistant grid covering Y.
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functions can then be constructed from the inverted uniform confidence bands for both counterfactual
distribution functions and the Minkowski difference of these two bands.

To make valid inference in the presence of weakly exogenous regressors, we need to extend the inference
method of Chernozhukov, Fernández-Val, and Weidner (2020), which already corrects for the incidental
parameter problem. In particular, we have to extend their bias correction to deal with the additional Nickell
(1981)-type bias induced by the violation of the strict exogeneity assumption, similar to the bias correction of
Fernández-Val and Weidner (2016).

We make the following assumptions, with assumptions (iii), (iv), (vi), and (vii) taken directly from
Chernozhukov, Fernández-Val, and Weidner (2020):

Assumption 1. Sampling and Panel Model Conditions.

(i) Sampling: Conditional on the unobserved effects, {(H)
8
, G)
8
) : 8 ∈ {1, . . . , #}} is independent over 8,

where H)
8
B {H8C : C ∈ D8} and G)8 B {G8C : C ∈ D8}. For each 8 ∈ {1, . . . , #}, {(H8C , G8C ) : C ∈ D8} is a

strong mixing array with mixing coefficients satisfying sup8∈{1,...,# } 08 (ℎ) = O(ℎ−`) with a > 0 and
` > 4(8 + a)/a as ℎ→∞, where

08 (ℎ) B sup
B∈{C8 ,...,)8 }

sup
�∈A8B ,�∈B8B+ℎ

|%(� ∩ �) − %(�)%(�) |

with A8C B f((H8B, G8B) : B ∈ {C8 , . . . , C}) and B8C B f((H8B, G8B) : B ∈ {C, . . . , )8}).
(ii) Model: For all H ∈ Y and for GC

8
B {G8B : B ∈ {C8 , . . . , C}},

�H8C (H | G8C , U8 , WC ) = %(H8C ≤ H | G8C , U8 , WC ) = %(n8C < c8C (H) | G8C , U8 , WC ) = Λ(c8C (H)) ,

\ (H) B (V(H), h(H), i(H)), n8C | GC8 , U, W ∼ Λ, and H ↦→ \ (H) is a measurable vector-valued function.
(iii) Compactness: G8C has compact support j. h(H) and i(H) are uniformly bounded over 8, C, #, ) and Y.
(iv) Compactness and smoothness: Y is either a discrete finite set or a bounded interval on R. For the

bounded interval case, we additionally assume that the conditional density function 5H8C (H | G8C , U8 , WC )
exists, is uniformly bounded above and away from zero, and is uniformly continuous in H on the interior
of Y, uniformly over the support of (G8C , U8 , WC ).

(v) Missing data: For each 8 ∈ {1, . . . , #} and C ∈ {1, . . . , )}, there is a fixed number of missing
observations such that max8∈{1,...,# } () − |D8 |) ≤ 22 and maxC ∈{1,...,) } (# − |DC |) ≤ 22, where
22 is a finite constant independent of the sample size. Conditional on (GC

8
, U, W), the outcome H8C is

independent of the attrition process.
(vi) Non-collinearity: There exists a constant 23 > 0, independent of the sample size, such that

min
{X∈Rdim(G) : ‖X ‖=1}

min
(0,1) ∈R#+)

[
1
=

#∑
8=1

)8∑
C=C8

(G ′8CX − 08 − 1C )2
]
≥ 23 ,

i. e. G8C has sufficient variation after projecting out individual and time fixed effects.
(vii) Asymptotics: We consider asymptotic sequences where #=, )= →∞ with #=/)= → 2 and 0 < 2 < ∞

as =→∞.

Remark 1. (Differences in Model Assumptions). To emphasize that our extension is primarily relevant to
panel data applications, we use the usual 8 and C indexes to refer to individual and time periods. We additionally
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assume that each individual time series is consecutive. (i) We allow for weak temporal dependence instead of
conditional independence over 8 and C. As in Fernández-Val and Weidner (2016), we do so by imposing a
strong mixing condition to deal with the weak temporal dependence and achieve proper bounds. (ii) We only
require n8C | GC8 , U, W ∼ Λ instead of n8C | G)8 , U, W ∼ Λ. Thus, we relax the strong exogeneity assumption and
allow for weakly exogenous regressors, like predetermined outcome variables. (v) We add the conditional
missing at random assumption.

We show how the limiting distributions of the estimators for the model coefficients and the marginal
distribution functions, as defined by Theorem 1 in Chernozhukov, Fernández-Val, and Weidner (2020), are
affected by weakly exogenous regressors. For this we need to introduce some additional notation. We denote
Λ
(@)
8C
(H) and Λ(@)

8C ,:
(H) as the @-th order partial derivatives of the logistic CDF evaluated at c8C (H) and c8C ,: (H),

respectively. Further, we define the projections

P E ∈ arg min
?∈{08+1C : 0∈R# , 1∈R) }

#∑
8=1

)8∑
C=C8

Λ
(1)
8C
(E8C − ?8C )2

and M E B E − P E, where E is an arbitrary =-dimensional vector. For matrices, we apply the projections
column-wise. We refer to G̃8C , G̃8C ,: ,Ψ8C ,: , and Ψ̃8C ,: as the 8C-th row ofM - ,M -: , P 5: , andM 5: , respectively,
where - B (G8C )(8,C) ∈D , -: B (G8C ,:)(8,C) ∈D , and 5: B (Λ(1)8C ,:/Λ

(1)
8C
)(8,C) ∈D . The theorem itself remains

unchanged, except for the model assumptions, but we need to adjust the definition of the bias terms that result
from the inclusion of individual fixed effects. In particular, we redefine � (V) (H) B �

(V)
1 (H) + �

(V)
2 (H) and

� (Λ) (H) B �
(Λ)
1 (H) + �

(Λ)
2 (H), where

, (H) B 1
=

#∑
8=1

)8∑
C=C8

Λ
(1)
8C
G̃8C (H)G̃ ′8C (H) ,

�
(V)
1 (H) B − 1

2#
,−1(H)

#∑
8=1

∑)8
C=C8

Λ
(2)
8C
(H)G̃8C (H)∑)8

C=C8
Λ
(1)
8C
(H)

,

�
(V)
2 (H) B − 1

#
,−1(H)

#∑
8=1

∑)8−1
C=C8

∑)8
B=C+1(1{H8C ≤ H} − Λ8C (H))Λ

(1)
8B
(H)G̃8B (H)∑)8

C=C8
Λ
(1)
8C
(H)

,

�
(Λ)
1 (H) B

1
2#

#∑
8=1

∑)8
C=C8

Λ
(2)
8C ,:
(H) − Λ(2)

8C
(H)Ψ8C ,: (H)∑)8

C=C8
Λ
(1)
8C
(H)

, and

�
(Λ)
2 (H) B

1
#

#∑
8=1

∑)8−1
C=C8

∑)8
B=C+1(1{H8C ≤ H} − Λ8C (H))Λ

(1)
8B
(H)Ψ̃8B,: (H)∑)8

C=C8
Λ
(1)
8C
(H)

.

The expressions , (H), � (V)1 (H), and �
(Λ)
1 (H) have been derived by Chernozhukov, Fernández-Val, and

Weidner (2020), with different notation. The other expressions � (V)2 (H) and �
(_)
2 (H) are Nickell (1981)-type

biases, similar to those derived by Fernández-Val and Weidner (2016).
We construct plug-in estimators for the bias terms � (V) (H) and � (Λ) (H) from the corresponding expressions

above. For clarification, by plug-in estimator we mean the corresponding quantity evaluated at the fixed effects
estimators instead of the true parameter values. For instance, we denote ĉ8C (H) B G ′

8C
V̂(H) + Û8h(H) + ŴCi(H)

as the plug-in estimator for c8C (H). The estimators for the bias terms are �̂ (V) (H) B �̂
(V)
1 (H) + �̂

(V)
2 (H) and
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�̂ (Λ) (H) B �̂
(Λ)
1 (H) + �̂

(Λ)
2 (H), where

,̂ (H) B 1
=

#∑
8=1

)8∑
C=C8

Λ̂
(1)
8C

ˆ̃G8C (H) ˆ̃G ′8C (H) ,

�̂
(V)
1 (H) B − 1

2#
,̂−1(H)

#∑
8=1

∑)8
C=C8

Λ̂
(2)
8C
(H) ˆ̃G8C (H)∑)8

C=C8
Λ̂
(1)
8C
(H)

,

�̂
(V)
2 (H) B − 1

#
,̂−1(H)

#∑
8=1

∑)8−1
C=C8

∑min(C+!,)8)
B=C+1 F8 (C, B) (1{H8C ≤ H} − Λ̂8C (H))Λ̂(1)8B (H) ˆ̃G8B (H)∑)8

C=C8
Λ̂
(1)
8C
(H)

�̂
(Λ)
1 (H) B

1
2#

#∑
8=1

∑)8
C=C8

Λ̂
(2)
8C ,:
(H) − Λ̂(2)

8C
(H)Ψ̂8C ,: (H)∑)8

C=C8
Λ̂
(1)
8C
(H)

,

�̂
(Λ)
2 (H) B

1
#

#∑
8=1

∑)8−1
C=C8

∑min(C+!,)8)
B=C+1 F8 (C, B) (1{H8C ≤ H} − Λ̂8C (H))Λ̂(1)8B (H)

̂̃
Ψ8B,: (H)∑)8

C=C8
Λ̂
(1)
8C
(H)

,

! is a bandwidth parameter for the truncation kernel (Hahn and Kuersteiner 2007) in �̂ (V)2 (H) and �̂
(Λ)
2 (H),

satisfying ! → ∞ and max8∈{1,...,# } !/|D8 | → 0, and F8 (C, B) B |D8 |/( |D8 | − B + C) is a finite sample
adjustment suggested by Fernández-Val and Weidner (2016). Note that if ! = 0, the estimators are the same
as those in Chernozhukov, Fernández-Val, and Weidner (2020).

After removing the additional bias from the asymptotic distribution, uniform confidence bands can be
constructed using the multiplier bootstrap procedure presented in Chernozhukov, Fernández-Val, and Weidner
(2020).45 Details are omitted for brevity.

3.3 Simulation Experiments

We analyze the finite sample performance of our inference method for weakly exogenous regressors through
simulation experiments. Our data generating process is inspired by the dynamic process of Fernández-Val
and Weidner (2016).6 However, contrary to them, we violate the strict exogeneity assumption by a more
general form of feedback from past realizations of the outcome variables to the regressors. The design is
meant to mimic our application in section 3.4, where we do not want to make the strict exogeneity assumption
as we expect some of the regressors to be at least partly affected by past outcomes.

4. Intuitively, Chernozhukov, Fernández-Val, and Weidner (2020) use their bootstrap procedure to obtain multiple testing adjusted
critical values for the confidence bands.

5. The multiplier bootstrap in Chernozhukov, Fernández-Val, and Weidner (2020) is equal to the “score-based” wild bootstrap
described in Kline and Santos (2012).

6. Fernández-Val and Weidner (2016) use a similar data generation process for a dynamic probit model with individual and time
fixed effects, where the strict exogeneity assumption is violated by the presence of a predetermined outcome variable as a regressor.
Their additional regressor is continuous and strictly exogeneous.
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We generate the outcome variable by the following left- and right-censored data generating process:

H8C = min{max{G8C − 38C + U8 + WC + n8C , Hlower}, Hupper} ,

G8C = 0.5 (H8C−1 − G8C−1) + U8 + WC + `8C ,

38C = 1{0.5 (38C−1 − H8C−1) + U8 + WC + a8C > 0} ,

H80 = min{max{G80 − 380 + U8 + W0 + n80, Hlower}, Hupper} ,

G80 = `80 , 380 = 1{a80 > 0} ,

(8 = 1, . . . , #, C = 1, . . . , )) ,

where Hlower and Hupper are lower and upper censoring thresholds, n8C B log(D8C/(1−D8C )), D8C ∼ iid. U(0, 1),
U8 , WC ∼ iid. N(0, 1/16), and `8C , a8C ∼ iid. N(0, 0.5). We set Hlower = −4 and Hupper = 2, which roughly
corresponds to the 10% and 90% percentiles of the uncensored outcome. We consider panels with more indi-
viduals than time periods and let # and) grow at a fixed rate, i. e. # ()) B 5) with) ∈ {10, 20, . . . , 90, 100}.
For all sizes, we use a fixed grid of 120 equidistant pointsY = {−4,−3.95, . . . , 1.9, 1.95} and report results for
bias-corrected and uncorrected estimators. For the bias-corrected estimators, we consider different bandwidth
parameters ! ∈ {0, . . . , 4} for the truncation kernel, where ! = 0 corresponds to the bias correction of
Chernozhukov, Fernández-Val, and Weidner (2020). We construct uniform confidence bands for the model
coefficients V(H) and counterfactual distributions �: (H) by the multiplier bootstrap with 1,000 replications
and standard normal weights. All results are based on 1,000 repetitions.7

Figures 3.3.1 and 3.3.2 report absolute biases relative to the truth in percent, standard deviations, and
ratios of absolute biases to standard errors for different estimators of the model coefficients and counterfactual
distributions. The results are pointwise in the sense that we compute all statistics separately for each H ∈ Y
and then integrate over Y.8 Given the asymptotic theory, we expect the biases to decrease with increasing
sample size, and to do so without increasing the variance of the estimators. The ratio of biases to standard
errors is particularly relevant from a practical point of view and is intended to show that even if the bias
appears to be small, it is still relatively large compared to the dispersion of the estimator. Figure 3.3.1 reports
the results for the continuous regressor G8C . The treatment levels for the counterfactual distributions are
G8C ,0 = G8C and G8C ,1 = G8C + 1. We find that the biases decrease with the sample size. In general, the biases of
the estimators for the model coefficient are more severe than for the counterfactual distributions. Note that
the counterfactual distribution �0(H) for the continuous regressor corresponds to the empirical distribution,
which is asymptotically unbiased. All bias-corrected estimators with ! > 0 significantly reduce the bias
while maintaining the variance of the corresponding uncorrected estimator. For instance, for # ()) = 200, the
biases of the estimators for �1(H) are close to zero, while the bias of the uncorrected estimator is still about
10%. Interestingly, the bias-corrected estimators with ! = 0 perform worse than the uncorrected ones. We
find that the biases relative to the dispersion of the estimators remain substantial and roughly constant as the
sample size increases. Again, all bias-corrected estimators with ! > 0 significantly reduce the bias. However,
this statistic illustrates that even in large sample sizes where the relative bias is quite small, the bias is still
apparent and invalidates inference. For instance, for # ()) = 500, the bias relative to the dispersion of the
uncorrected estimator for �1(H) is about 20 times that of the bias-corrected estimators with ! > 0, although

7. We use the alpaca package of Stammann (2018) for the estimation of the fixed effects logit models. All computations were
carried out using R version 4.0.3 (R Core Team 2021).

8. We approximate the integrals using the trapezoidal rule.
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Figure 3.3.1: Bias, Standard Deviation, and Bias / Standard Error – Continuous Regressor
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Note: # ()) = {50, 100, . . . , 500} on the x-axis; Coefficient refers to the model coefficient and Cf. Distribution - 0/1 denote the
counterfactual distributions �0 (H) and �1 (H), where G8C ,0 = G8C and G8C ,1 = G8C + 1; Bias in % refers to absolute bias relative to the
truth in percent, Std. Deviation is the Monte-Carlo standard deviation, and Bias / Std. Error denotes absolute bias relative to average
standard errors; uncorrected refers to the uncorrected estimator, corrected (L = 0) is the bias-corrected estimator of Chernozhukov,
Fernández-Val, and Weidner (2020) for strictly exogenous regressors, and corrected (L > 0) are bias-corrected estimators with
different bandwidths for the truncation kernel; all results are integrated over Y and based on 1,000 repetitions.
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Figure 3.3.2: Bias, Standard Deviation, and Bias / Standard Error – Binary Regressor
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Note: # ()) = {50, 100, . . . , 500} on the x-axis; Coefficient refers to the model coefficient and Cf. Distribution - 0/1 denote the
counterfactual distributions �0 (H) and �1 (H), where 38C ,0 = 0 and 38C ,1 = 1; Bias in % refers to absolute bias relative to the truth
in percent, Std. Deviation is the Monte-Carlo standard deviation, and Bias / Std. Error denotes absolute bias relative to average
standard errors; uncorrected refers to the uncorrected estimator, corrected (L = 0) is the bias-corrected estimator of Chernozhukov,
Fernández-Val, and Weidner (2020) for strictly exogenous regressors, and corrected (L > 0) are bias-corrected estimators with
different bandwidths for the truncation kernel; all results are integrated over Y and based on 1,000 repetitions.
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the relative bias is less than 5%. Figure 3.3.2 reports the results for the binary regressor 38C . The treatment
levels for the counterfactual distributions are 38C ,0 = 0 and 38C ,1 = 1. Note that unlike for the continuous
regressor, both counterfactual distributions exhibit an asymptotic bias. Overall, the results are qualitatively
comparable to the continuous regressor, although the biases are of a different magnitude.

Figure 3.3.3: Coverage of 95% Uniform Confidence Bands
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Note: # ()) = {50, 100, . . . , 500} on the x-axis; Coefficient refers to the model coefficients and Cf. Distribution - 0/1 denote the
counterfactual distributions �0 (H) and �1 (H), where G8C ,0 = G8C and G8C ,1 = G8C + 1 for the continuous regressor and 38C ,0 = 0 and
38C ,1 = 1 for the binary regressor; uncorrected refers to the uncorrected estimator, corrected (L = 0) is the bias-corrected estimator
of Chernozhukov, Fernández-Val, and Weidner (2020) for strictly exogenous regressors, and corrected (L > 0) are bias-corrected
estimators with different bandwidths for the truncation kernel; uniform confidence bands with 0.95 nominal level are constructed by
the multiplier bootstrap with 1,000 replications and standard normal weights; all results are based on 1,000 repetitions.

Figure 3.3.3 reports coverage probabilities of uniform confidence bands with 95% nominal level for the
model coefficients and the counterfactual distributions. All bias-corrected estimators with ! > 0 have coverage
probabilities close to their nominal level for # ()) ≥ 100 and outperform the uncorrected and bias-corrected
estimator with ! = 0. One exception are the uniform confidence bands for the model coefficients. Here, the
uncorrected estimators perform as well as the bias-corrected estimators with ! > 0. Again, we find that the
bias-corrected estimators with ! = 0 often perform worse than the uncorrected ones.

Overall, we find that the bias-corrected estimators for weakly exogenous regressors perform as expected.
They reduce bias substantially without affecting the variance of the estimator, and they improve inference
significantly.
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3.4 Empirical Illustration

We analyze how knowledge spillovers and investment in research affect firms’ inventiveness. This question,
among others, was recently studied by Arora, Belenzon, and Sheer (2021). Unlike other studies, they use
publicly available data on publications and patents, which in turn allows us to use them for our illustration
and to reassess some of their findings.9

Table 3.4.1 reports descriptive statistics of the model variables in the data. The inventiveness of firms’ is

Table 3.4.1: Descriptive Statistics of Model Variables

Mean Std. Dev Share Zeros Percentiles

50% 90% 95% 99%

Patents 24.22 138.40 0.33 2.00 36.00 89.00 446.00
Publications stock 72.34 477.56 0.34 1.48 66.30 183.69 1,691.08
Internal use 1.81 23.17 0.91 0.00 0.00 3.00 38.00
Citations to rivals 0.16 0.67 0.81 0.00 0.37 0.96 2.92
Spillout 1.44 16.08 0.87 0.00 0.18 1.99 24.90
R&D stock 390.97 2,352.50 0.05 20.94 431.97 1,160.11 7,637.64

Note: Mean, standard deviation, share of zero-valued observations, and percentiles of the model variables; 53,110
consecutive firm-year observations; 3,807 firms observed for 3 to 36 years; average numbers of firms and years
are 1,475 and 14, respectively.
Source: Arora, Belenzon, and Sheer (2021).

measured by the number of patents. The variables of interest are internal use, spillout, and citations to rivals.
Internal use and citations to rivals refer to the use of research, either internal or by rivals, and spillout denotes
the knowledge outflow to rivals. Internal use and citations to rivals are measured as the number of citations of
patents in internal and rivals’ publications, respectively, and spillout is the number of citations of publications
in rivals’ patents.10 The data consists of 53,110 observations of 3,807 publicly traded US manufacturing
firms observed continuously for 3 to 36 years between 1980 and 2015. On average we observe 1,475 firms for
14 years. All model variables are right-skewed and, with the exception of the R&D stock, have a substantial
portion of zero-valued observations. In particular, the strong skewness requires a special treatment in the
estimation to ensure resistance against the influence of observations with unusually large values.11 Fortunately,
the distribution regression model provides the required resistance in a natural and convenient way.12

Arora, Belenzon, and Sheer (2021) predicted that the use of research, both internally or externally by
rivals, should have a positive effect on firms’ inventiveness. Knowledge outflows, in turn, should have no

9. The data are part of the replication package provided by the authors.
10. Further details on the construction of the model variables are provided in Arora, Belenzon, and Sheer (2021).
11. Methods for this type of problem are often subsumed under “robust regressio”, e. g. Huber (1973).
12. Another common way to deal with this kind of skewness is to use logarithms. However, since we have a significant proportion

of zero-valued observations that would be dropped if we used the logarithm, this strategy is not practical for our purpose.
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effect. To test their predictions, we specify the following conditional distribution of Patents8C :

�patents8C (H | x8C , U8 , WC ) = Λ(c8C (H)) , H ∈ Y ,

c8C (H) = V1(H) 1{Internal use8C−1 > 0} + V2(H) 1{Spillout8C−1 > 0} +

V3(H) 1{Citations to rivals8C−1 > 0} + V4(H) arsinh(Publications stock8C−1) +

V5(H) arsinh(R&D stock8C−1) + U8h(H) + WCi(H) ,

(8 = 1, . . . , #, C = C8 , . . . , )8) ,

where 8 and C are firm- and year-specific indexes, Λ(·) is the logistic CDF, {V 9 (H)}59=1, h(H), and i(H) are
model coefficients, U8 and WC are unobserved firm and year effects, and arsinh(G) B log(G +

√
G2 + 1) denotes

the inverse hyperbolic sine.13 Since the model coefficients and unobserved effects can be different at the
support points, we allow for the possibility that research or knowledge outflows affect only certain parts
of the outcome distribution. In contrast, parametric models, such as the Poisson model, restrict research
or knowledge outflows to homogeneously affect all parts of the distribution of outcomes. For instance, if
research increases the inventiveness of less innovative firms, then research also increases the inventiveness of
very innovative firms.

To test the predictions, it suffices to restrict our attention to {V 9 (H)}39=1 and {(�1, 9 (H), �0, 9 (H))}39=1, where
the latter are counterfactual distributions for patents at different levels of the binary treatment variables. For
instance, �1,1(H) and �0,1(H) denote the counterfactual distributions for hypothetical situations in which all
and no firms use internal research, respectively, and all else remains equal. The corresponding quantile effects
are constructed from the counterfactual distributions. We use a grid of all possible outcomes between 0 and
the 99% quantile of patents, i. e. Y ∈ {0, 1, . . . , 445, 446}, and allow for the possibility that some of the
regressors are only weakly exogenous. For instance, the number of patents that can potentially be cited by
internal and external research might depend on the number of past innovations. Further, the R&D budget
could be partially predetermined by the success of past innovations. We report bias-corrected estimates of the
model coefficients and quantile effects of interest. We choose ! = 3 as bandwidth for the truncation kernel
and construct uniform confidence bands by the multiplier bootstrap with 1,000 replications, clustering on
firms, and standard normal weights.

Figure 3.4.1 shows estimates of the model coefficients and 95% uniform confidence bands for H ∈
{0, 1, . . . , 99, 100}. Remember that although the model coefficients have no meaningful direct interpretation,
they are informative about changes in the conditional quantile function due to a change in the corresponding
treatment variable. Thus, they provide a first ground to test the predictions of Arora, Belenzon, and Sheer
(2021). Our results support the predictions. We find that the use of research, in general, has a significant
positive effect on inventiveness, while knowledge outflows have no significant effect. Interestingly, internal
use of research is significant only for some parts of the region of interest, while external use by rivals is
significant for almost the entire region.

Figure 3.4.2 shows quantile treatment effects of the internal and external use of research and knowledge
outflows for quantiles with indexes [0.2, 0.95]. For comparison, we additionally report poisson estimates of
the quantile treatment effects and correct the bias induced by the violation of the strict exogeneity assumption
with the split-panel jackknife of Dhaene and Jochmans (2015) as suggested by Fernández-Val and Weidner

13. Unlike the logarithm, the inverse hyperbolic sine transformation can be applied to zero-valued observations. Since the inverse
hyperbolic sine behaves like log(2) log(G) for sufficiently large values, this transformation allows us to take advantage of the logarithm
without dropping observations.
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Figure 3.4.1: Estimates and 95% Uniform Confidence Bands for V1 (H), V2 (H), and V3 (H)
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Note: V1 (H), V2 (H), and V3 (H) are the model coefficients of 1{Internal use8C−1 > 0}, 1{Spillout8C−1 > 0}, and
1{Citations to rivals8C−1 > 0}, respectively; H on the x-axis; bias-corrected estimates with ! = 3 and uniform confidence
bands constructed by the multiplier bootstrap with 1,000 replications, clustering on firms, and standard normal weights on the y-axis.

Figure 3.4.2: Estimates and 95% Uniform Confidence Bands for the Quantile Treatment Effects on Inventiveness
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Note: Quantile treatment effects computed from counterfactual distributions for patents at different levels of 1{Internal use8C−1 > 0},
1{Spillout8C−1 > 0}, and 1{Citations to rivals8C−1 > 0}, respectively; quantile indexes on the x-axis; bias-corrected estimates with
! = 3, uniform confidence bands constructed by the multiplier bootstrap with 1,000 replications and standard normal weights, and
split-panel jackknife bias-corrected poisson estimates on the y-axis.
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(2016). Again, our results support the predictions of Arora, Belenzon, and Sheer (2021). We find that research
has a positive and increasing effect on inventiveness. Internal use of research only affects the upper tail
of the distribution, while external use by rivals affects almost the entire distribution. Further, the external
use of research has a much stronger positive effect. The effect of knowledge outflows, on the other hand,
is close to zero and insignificant along the entire distribution. In general, we find that firms at the upper
end of the distribution benefit disproportionately more from the use of research. The poisson estimates for
the quantile treatment effects of research have some substantial overlap with the uniform confidence bands.
However, in particular, the estimates for the upper end of the distribution seem to overstate the effect of
research. In contrast, the poisson estimates for the quantile treatment effects of knowledge outflows and those
of distribution regression differ much more.

3.5 Concluding Remarks

This paper complements the work of Chernozhukov, Fernández-Val, and Weidner (2020) by allowing weakly
exogenous regressors, thus widening the applicability of distribution regression for panel data applications. It
would be interesting to extend the distribution regression framework to models with a panel network structure
and three unobserved effects as it is standard in the literature on international trade.
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Chapter 4

Inference in Unbalanced Panel Data Models
with Interactive Fixed Effects

(joint work with Amrei Stammann)



4.1 Introduction

Economists are often concerned that unobserved heterogeneity is correlated with some variables of interest
and thus leads to inconsistent estimates of the corresponding common parameters #. If panel data is available,
fixed effects models are frequently used to address this issue. One critical assumption of these models is
that the unobserved heterogeneity has to be additively separable in both panel dimensions. For instance, if a
panel consists of # individuals observed for ) time periods, the researcher has to assume that the unobserved
individual and/or time effects enter the model additively. If this is not the case, for instance because both effects
are multiplicatively interacted, fixed effects models are not suitable to solve the endogeneity problem. This
concern motivates so-called interactive fixed effects (IFE) estimators that model the unobserved heterogeneity
as a low rank factor structure ,′8fC , where ,8 and fC are individual- and time-specific effects, respectively (see
among others Holtz-Eakin, Newey, and Rosen 1988, Pesaran 2006, and Bai 2009).1 Throughout this article,
we refer to ,8 as factor loadings and fC as common factors.

Inspired by Anderson and Hsiao (1982), Holtz-Eakin, Newey, and Rosen (1988) propose a quasi-
differencing approach for panels with large # but small ) . First they eliminate the factor loadings from the
estimation equation and then estimate the remaining common factors and parameters using lagged regressors
as instrumental variables. Although this estimator is consistent under fixed ) asymptotics, its is well known
that for large ) , the number of instruments and parameters leads to biased estimates (see Newey and Smith
2004). Recently, the literature considers estimators that require # and ) to be sufficiently large. Pesaran
(2006) suggests a common correlated effects (CEE) estimator in the spirit of Mundlak (1978) and Chamberlain
(1982, 1984), which uses cross-sectional averages of the dependent variable and the regressors to control
for the unobserved common factors. Pesaran (2006)’s estimator is at least

√
# consistent without the need

to know the true rank of the factor structure or to impose strong factor assumptions as in Bai (2009) and
Moon and Weidner (2015, 2017). However, in order to use cross-sectional averages as proxy variables for
the unobserved common factors, additional parametric assumptions on the joint probability distributions of
the dependent variable and the regressors are required. Bai (2009) suggests a different estimator that treats
the common factors and factor loadings as additional parameters to be estimated.2 His estimator is closely
related to Bai (2003)’s principal components estimator for pure factor models and has the advantage that
we do not need to make distributional assumptions about unobserved heterogeneity. Under the assumption
that the true number of factors is known, Bai (2009) shows

√
#) consistency irrespective of cross-sectional

and/or time-serial dependence in the idiosyncratic error term. However, the presence of cross-sectional
and/or time-serial dependence leads to an asymptotic bias in the limiting distribution of the estimator that
can be corrected (see Bai 2009). Moon and Weidner (2017) derived an additional correction for the Nickell
(1981)-type bias stemming from the inclusion of weakly exogenous regressors. Because the true number of
factors is usually unknown, Moon and Weidner (2015) show that under certain conditions, and as long as
the number of factors used to estimate # is larger than the true number, the estimator may have the same
limiting distribution as Bai (2009)’s estimator but remains at least

√
min(#,)) consistent. Intuitively, there

may therefore be a loss of efficiency due to the inclusion of too many irrelevant factors. However, given a
consistent estimator for #, the number of factors can be estimated using estimators for pure factor models (see

1. Bonhomme and Manresa (2015) suggest a related but different approach. Instead of imposing rank restrictions on the
time-varying unobserved heterogeneity, they use a clustering approach to assign each cross-sectional unit to a specific group where
the corresponding group-specific heterogeneity is allowed to vary over time.

2. For a detailed discussion of the different interactive fixed effects estimators we refer the reader to Bai (2009) and Moon and
Weidner (2015, 2017).
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among others Buja and Eyuboglu 1992, Bai and Ng 2002, Hallin and Liška 2007, Alessi, Barigozzi, and
Capasso 2010, Onatski 2010, Ahn and Horenstein 2013, and Dobriban and Owen 2019). A recent comparison
of some popular estimators is given in Choi and Jeong (2019). For the IFE estimator such a comparison does
not exist so far.

In applied work, it is often the case that some of the observations are missing. One frequent reason is
attrition. For instance, some individuals drop out of a panel because they move or leave the participating
household. In some of these cases, those individuals are replaced by new survey participants. In macroeco-
nomic panels, it also occurs that some countries are divided into several independent countries. Further, some
survey designs replace individuals because of non-response. All these cases lead to very different patterns
of missing data that usually, in the absence sample selection problems, do not affect the properties of the
estimators (see Fernández-Val and Weidner 2018b). In the presence of missing data, the principal component
estimator of Bai (2009) requires an additional data augmentation step based on the EM algorithm of Stock
and Watson (1998, 2002) (see Appendix of Bai 2009 and Bai, Liao, and Yang 2015). Bai, Liao, and Yang
(2015) show consistency of the EM-type estimator in simulation studies, but do not further investigate the
limiting behavior of the estimator.

We make the following contributions. First, we extend the work of Bai, Liao, and Yang (2015) and
analyze the limiting behavior of their suggested estimator in simulation experiments. We find that the limiting
behavior of their estimator can be approximated fairly well by the inference theory of Bai (2009) and Moon
and Weidner (2017), although the goodness depends on the fraction and pattern of missing data. Second,
we present some algorithms that reduce the computational costs in unbalanced panels. Third, because the
limiting theory of Bai (2009) and Moon and Weidner (2017) assumes that the true number of factors is known,
we additionally investigate the finite sample performance of some frequently used estimators for the number
of factors, i. e. Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013), and Dobriban and Owen
(2019). Although we find that all estimators perform well for balanced data and different configurations of the
idiosyncratic error term, their accuracy varies substantially with different fractions and patterns of missing
data. Fourth, we reassess the baseline analysis of Acemoglu et al. (2019) using Bai (2009)’s IFE estimator.
We qualitatively confirm Acemoglu et al. (2019)’s main results and find significant effects of democratization
on growth. In their preferred specification, we estimate a long-run effect of 18%, which is pretty close to the
20% reported by the authors, but the instantaneous effect of democratization almost halves to 0.6%.

The paper is organized as follows. We introduce the model and the estimator in Section 4.2. We briefly
review some estimators for the number of factors in Section 4.3. We provide results of simulation experiments
in Section 4.4. We reassess Acemoglu et al. (2019) using the IFE estimator in Section 4.5. We briefly discuss
the handling of endogenous regressors as in Moon and Weidner (2017) and Moon, Shum, and Weidner (2018)
and consider an alternative estimator suggested by Moon and Weidner (2019) in Section 4.6. Finally, we
conclude in Section 4.7.

Throughout this article, we follow conventional notation: scalars are represented in standard type, vectors
and matrices in boldface, and all vectors are column vectors. Let A be a # ×# matrix and B be a # ×) matrix.
We refer to [B]8 9 as the 8 9-th element of B, where 8 is a row index and 9 is a column index, and we define
MB B 1# −PB, where 1# is a # × # identity matrix, PB B B(B′B)†B′, and (·)† is the Moore-Penrose
inverse.
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4.2 Model, Estimation, and Inference

4.2.1 Model, Estimator, and Asymptotic Distribution

We analyze the following unobserved effects model:

H8C = x′8C # + ,′8fC + 48C , (4.1)

where 8 and C are individual and time specific indexes, x8C B (G1,8C , . . . , G ,8C ) ′ is a vector of  regressors,
# is the corresponding vector of common parameters, and 48C is an idiosyncratic error term. To allow for
missing data, we introduce D as a subset of observed pairs of indexes, i. e. D ⊆ {(8, C) : 8 ∈ {1, . . . , #}, C ∈
{1, . . . , )}}, where = = |D| is the sample size and # and ) are the number of individuals and time periods,
respectively. We assume that all observations are conditionally missing at random. The unobserved effects
are expressed as a factor structure of rank ' � min(#,)), where ,8 B (_81, . . . , _8') ′ is a vector of factor
loadings and fC B ( 5C1, . . . , 5C') ′ is a vector of common factors. Note that (4.1) collapses to the conventional
fixed effects model if ,8 = (U8 , 1) ′ and fC = (1, XC ) ′. In contrast to the fixed effects model, the factor structure
allows to capture more general patterns of heterogeneity. For instance, unobserved temporal shocks triggered
by financial crises may affect each country’s output differently (see Bai (2009) for some additional motivating
examples).

Following Bai (2009) and Moon and Weidner (2017), we treat ,8 and fC as parameters to be estimated,
and allow the common factors and loadings to be related to the regressors. To stress the similarity with the
conventional fixed effects model, we refer to (4.1) as interactive fixed effects model. Given ', Moon and
Weidner (2015, 2017) suggest the following IFE estimator for #:

#̂ ∈ arg min
#∈R 

& (#) ,

where
& (#) B min

�,F

1
=

∑
(8,C) ∈D

(
H8C − x′8C # − ,′8fC

)2 (4.2)

is the profile objective function,� B (,1, . . . , ,# ) ′ is a #×'matrix of factor loadings, andF B (f1, . . . , f) ) ′

is a ) × ' matrix of common factors. Note that the minimizing common factors f̂C (#) and loadings ,̂8 (#) are
not uniquely determined without imposing further restrictions. 3 Further, the objective function is globally
non-convex due to the rank constraint imposed on the factor structure as pointed out by Moon and Weidner
(2019).

Moon and Weidner (2017) show consistency of the IFE estimator using an asymptotic framework where
#,) →∞. In particular, their assumptions require that the true number of factors is known, weak exogeneity
of the regressors, i. e. E[48C | (x8B)B≤C ∈D8 ,�,F] = 0, and some additional assumptions about “low-rank”
regressors that ensure that these regressors are not fully absorbed by the factor structure. Intuitively, this
is comparable to the conventional fixed effects model where effects of time-invariant regressors are not
identified.4 We briefly describe the asymptotic distribution of the IFE estimator derived by Moon andWeidner

3. However, their products are uniquely determined. We will return to this issue in the next subsection.
4. Bai (2009) also shows consistency of the IFE estimator using different asymptotics that requires strict exogeneity of all

regressors, i. e. E[48C | (x8B)B∈D8 ,�,F] = 0. However, his framework is not suitable for our purposes because we consider lagged
dependent variables as regressors in our empirical illustration.
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(2017) and adapt their notation to unbalanced panels, following Fernández-Val and Weidner (2018b).5 Under
asymptotic sequences where #/) → ^2 and 0 < ^ < ∞, the IFE estimator has the following limiting
distribution:

#̂
a∼ N(# − #−1 B − )−1 C1 − )

−1 C2,V) , (4.3)

where # = =/) , ) = =/# , B, C1, and C2 are bias terms, and V is a covariance matrix. C1 stems from the
inclusion of weakly exogenous regressors, like lagged outcome variables, and is a generalization of the Nickell
(1981) bias. B and C2 arise if the idiosyncratic error term is heteroskedastic or correlated across individuals
and time periods, respectively.

4.2.2 Estimation Algorithm

Moon and Weidner (2017) show that (4.2), for balanced panels, can be reformulated as

& (#) = 1
#)

min(# ,) )∑
A='+1

`A
(
W(#) ′W(#)

)
, (4.4)

where W(#) is a # × ) matrix, [W(#)]8C B H8C − x′
8C
#, and `A (·) denotes the A-th largest eigenvalue.

However, in unbalanced panels, some of the entries in W(#) are missing and we cannot simply apply the
eigenvalue decomposition as in balanced panels.

We follow the suggestion of Bai (2009) and Bai, Liao, and Yang (2015) and combine (4.4) with an EM
algorithm proposed by Stock and Watson (1998, 2002), i. e. we augment the missing data in the E-step
and apply the eigenvalue decomposition to the complete data in the M-step. Following Bai, Liao, and Yang
(2015), we can rearrange (4.1) to

H8C − x′8C # = [W(#)]8C = ,′8fC + 48C ,

which means that, for a known #, we can augment missing observations in W(#) with estimates of � and F.
As Bai (2009), we impose the following normalizing restrictions to uniquely determine the common factors
and loadings, i. e. F′F /) = 1' and �′� = diag("), where " ∈ R'.6 Given these restrictions, F̂(#) is
equal to the first ' eigenvectors of W(#) ′W(#) multiplied by

√
) and �̂(#) = W(#)F̂(#)/) .7

Before we describe the entire EM algorithm, we introduce some additional notation. Let

[PD (A)]8C B

[A]8C if (8, C) ∈ D

0 otherwise

be a projection operator that replaces missing observations of any # × ) matrix A with zeros. Likewise,
P⊥D (A) is the complementary operator that replaces non-missing observations with zeros.

Algorithm 1. EM algorithm
Given # and ', initialize W⊥ = 0#×) and repeat the following steps until convergence

Step 1. Set W̃(#) = PD (W(#)) +P
⊥
D (W

⊥)

5. Chen, Fernández-Val, and Weidner (2019) use the same notation for nonlinear models with interactive fixed effects.
6. Other valid normalizing restrictions are discussed in Bai and Ng (2013).
7. If ) > # , it is computationally more efficient to impose �′� /# = 1' and F′F = diag(") and estimate �̂(#) as the first '

eigenvectors of W(#)W(#)′ multiplied by
√
# and F̂(#) = W(#)′�̂(#)/# .
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Step 2. Compute F̂(#) and �̂(#) by decomposing W̃(#)

Step 3. Update W⊥ = �̂(#)F̂(#) ′

For a given # and ', we start by replacing missing observations in W(#) with zeros. We denote this
augmented matrix as W̃(#). Afterwards we estimate F̂(#) and �̂(#) from W̃(#), replace the missing
observations in W̃(#) with ,̂

′
8 (#) f̂C (#), and repeat these two steps until convergence.

Let W̃(#) denote the augmented matrix after convergence, a general IFE objective function in spirit of
Moon and Weidner (2015, 2017) is then given by

&̃ (#) = 1
=

min(# ,) )∑
A='+1

`A
(
W̃(#) ′W̃(#)

)
,

where in case of balanced data W̃(#) is simply W(#). Thus, in case of missing data, we can complement the
IFE estimator suggested by Moon and Weidner (2015, 2017) with an additional data augmentation step.8

4.2.3 Bias and Covariance Estimators

Before we describe the estimators for the biases and the covariances, we need to introduce some additional
notation. Let A B (a1, . . . , a) ) ′, B B (b1, . . . , b# ) ′, and z B (I8C )(8,C) ∈D be an arbitrary =-dimensional
vector. We denote z̆, z̀, and ź as the residuals of the following least squares problems:

Ĭ8C B I8C − ,̂
′
8 âC − f̂ ′C b̂8 , where

(Â, B̂) ∈ arg min
A∈R)×' , B∈R#×'

∑
(8,C) ∈D

(I8C − ,̂
′
8aC − f̂ ′Cb8)2 , (4.5)

Ì8C B I8C − ,̂
′
8 âC , where

Â ∈ arg min
A∈R)×'

∑
(8,C) ∈D

(I8C − ,̂
′
8aC )2 , (4.6)

Í8C B I8C − f̂ ′C b̂8 , where

B̂ ∈ arg min
B∈R#×'

∑
(8,C) ∈D

(I8C − f̂ ′Cb8)2 . (4.7)

We start with inference under the assumption that 48C is homoskedastic. In this case, #̂ is asymptotically
unbiased and the corresponding covariance can be estimated as V̂ B 2̂2D̂−1, where 2̂2 B =−1 ∑

(8,C) ∈D 4̂
2
8C
,

4̂8C B H8C − x′
8C
#̂ − ,̂

′
8 f̂C , and D̂ B

∑
(8,C) ∈D x̆

8C
x̆′
8C
. In contrast, under the assumption that 48C is not

homoskedastic, the IFE estimator is asymptotically biased, whereas the inclusion of weakly exogenous
regressors introduces an additional Nickell (1981)-type bias. Following Moon and Weidner (2015, 2017), a
bias-corrected estimator for # is

#̃ B #̂ + B̂ + Ĉ1 + Ĉ2 ,

where B̂ B D̂−1B̂#, Ĉ1 B D̂−1Ĉ#
1 , and Ĉ2 B D̂−1Ĉ#

2 are estimators for the asymptotic biases described in

8. The same augmentation step can also be embedded in the IFE estimator of Bai (2009).
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subsection 4.2.1. B̂# , Ĉ#
1 , and Ĉ#

2 are  -dimensional vectors with their :-th elements defined as

B̂#
:
B

∑
(8,C) ∈D

4̂2
8C [PD (X̀:)�̂

′]88 ,

Ĉ#
1,: B

#∑
8=1

!∑
;=1

∑
C>;∈D8

[PF̂]C ,C−; 4̂8,C−;G:,8C ,

Ĉ#
2,: B

∑
(8,C) ∈D

4̂2
8C [PD (X́:)�̂]CC +

#∑
8=1

"∑
<=1

∑
C><∈D8

4̂8C 4̂8,C−<
(
[PD (X́:)�̂]C ,C−< + [PD (X́:)�̂]C−<,C

)
,

where " and ! are bandwidth parameters for the truncation kernel of Newey and West (1987), �̂ B
�̂(�̂

′
�̂)−1(F̂′F̂)−1F̂′, andPD (X́:) andPD (X̀:) are # ×) matrices with elements denoted by Ǵ:,8C and G̀:,8C

if (8, C) ∈ D and zero otherwise. Ĉ#
1,: estimates the Nickell (1981)-type bias, the first term of Ĉ#

2,: and B̂#
:

estimate the biases induced by individual and time-serial heteroskedasticity, respectively, and the second
term in Ĉ#

2,: estimates the bias stemming from time-serial correlation (see Bai 2009 remark 6 and Moon
and Weidner 2015). Note that, we do not consider cross-sectional correlation in the idiosyncratic error term,
which would also introduce an additional bias.9 Suitable estimators for the covariance of #̃ are given by

Ṽ 9 B D̂−1
̂ 9D̂−1 ∀ 9 ∈ {1, 2} ,


̂1 B
∑
(8,C) ∈D

4̂2
8C x̆8C x̆

′
8C ,


̂2 B
#∑
8=1

( ∑
C ∈D8

4̂8C x̆8C
) ( ∑
C ∈D8

4̂8C x̆8C
) ′
.

Ṽ1 is a White (1980)-type heteroskedasticity robust and Ṽ2 is a cluster-robust covariance estimator that
takes into account arbitrary time-serial correlation. Alternatively, the clustered covariance estimator can be
substituted by Newey and West (1987)’s estimator.

In case of balanced panels, the residuals z̆, z̀, and ź have straightforward expressions, i. e. z̆ =
vec(M�̂ ZMF̂), z̀ = vec(M�̂ Z), and ź = vec(ZMF̂), where Z is a # × ) matrix with [Z]8C B I8C . However,
in unbalanced panels, we cannot simply augment missing observations with zeros and apply the same
expressions as in balanced panels. We can still use a standard ordinary least squares estimator to obtain the
residuals, but with increasing sample sizes this problem quickly becomes infeasible. For instance, suppose we
have a data set consisting of # = 200 individuals observed for ) = 50 time periods and consider five factors.
Even in this moderate example, the rank of the sparse regressor matrix corresponding to the common factors
and factor loadings is already (# + ))' = 1,250. Fortunately, we can use insights from the fixed effects
literature and use sparse solvers like Halperin (1962) and Fong and Saunders (2011) to mitigate this problem
(see Guimarães and Portugal 2010, Gaure 2013c, and Stammann 2018).

In the presence of missing data, we recommend to compute the residuals with the method of alternating
projections (MAP, see Halperin 1962). Let DC = {8 : (8, C) ∈ D} and D8 = {C : (8, C) ∈ D}, we define the

9. In the presence of cross-sectional correlation, Bai (2009, in remark 7) presents a partial sample estimator. Alternatively,
Bai and Liao (2017) suggest to estimate the cross-sectional correlation using an inverse covariance estimator and incorporate the
corresponding weights in the objective function.
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following scalar expressions:

[M,̂A
z]8C B I8C − _̂8A

∑
8∈DC _̂8A I8C∑
8∈DC _̂

2
8A

and [Mf̂A z]8C B I8C − 5̂CA
∑
C ∈D8 5̂CA I8C∑
C ∈D8 5̂

2
CA

.

The MAP algorithm can be summarized as follows:

Algorithm 2. MAP algorithm for unbalanced panels

Step 0. Initialize Mz = z.

Step 1. (If �̂ has to be projected out e. g. in (4.5) and (4.6))
For A = 1, . . . , ', set Mz = M,̂A

Mz.

Step 2. (If F̂ has to be projected out e. g. in (4.5) and (4.7))
For A = 1, . . . , ', set Mz = Mf̂AMz.

Step 3. Repeat step 1 and/or 2 until convergence, e. g. ‖Mz〈8〉 −Mz〈8−1〉 ‖2 < n , where 8 is the iteration
number and n is a tolerance parameter. After convergence Mz is a close approximation to z̆, z̀, or ź.

4.3 Estimating the Number of Factors

Bai (2009) and Moon and Weidner (2017) show consistency and derive the asymptotic distribution of the IFE
estimator under the assumption that the number of factors is known. To avoid ambiguity, we denote the true
number of factors as '0. In practice, this assumption is often very unlikely unless economic theory provides a
clear prediction about the number of factors. However, even in this case, it might be necessary to support
the theoretical prediction by some empirical evidence. Therefore, we need a reliable method to estimate the
number of factors.

For pure factor models, i. e. (4.1) without covariates, there is already an extensive literature on the
estimation of the number of factors (see among others Buja and Eyuboglu 1992, Bai and Ng 2002, Hallin and
Liška 2007, Alessi, Barigozzi, and Capasso 2010, Onatski 2010, Ahn and Horenstein 2013, and Dobriban
and Owen 2019). As pointed out by Bai (2009),

H8C − x′8C #̂ = ,′8fC + 48C − x8C ( #̂ − #)

is essentially a pure factor model. Thus given an appropriate estimator for #, so that the error x8C ( #̂ − #) is
asymptotically negligible, we can consistently estimate the number of factors using the estimators developed
for pure factor models (see Bai 2009 remark 5 and Appendix).

Bai (2009) argues, without rigorous proof, that the #̂ is
√
#) consistent as long as the number of factors is

at least '0. The intuition is very similar to the inclusion of irrelevant regressors in a standard OLS regression.
Including redundant common factors does not affect consistency of the IFE estimator, but its precision (see
Bai 2009 remark 4). Under stronger assumptions as in Bai (2009) and Moon and Weidner (2017), Moon
and Weidner (2015) confirm that the asymptotic distribution of #̂ with ' > '0 is identical to the asymptotic
distribution with ' = '0.10 However, imposing assumptions as Bai (2009) and Moon and Weidner (2017),
the authors can only show

√
min(#,)) consistency of #̂.

10. Some of the strong assumptions imposed by Moon and Weidner (2015), like independent and identically standard normally
distributed error terms, are mainly due to technical reasons. In simulation experiments the authors violate this assumption and still
find support for their theoretical results.
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Throughout this paper, we restrict ourselves to the estimators of Bai and Ng (2002), Onatski (2010), Ahn
and Horenstein (2013), and Dobriban and Owen (2019). More specifically, we apply the estimators to W( #̂),
where # is estimated with ' = ' and ' is a known upper bound on the numbers of factors. Bai and Ng (2002)
introduces various model selection criteria based on minimizing the sum of squared residuals plus some
penalty function of the number of estimated parameters. Onatski (2010), Ahn and Horenstein (2013), and
Dobriban and Owen (2019) segment the eigenvalue spectrum of the covariance of W( #̂) to find a cutoff point
between the common factors and the remaining noise stemming from the idiosyncratic error term. Onatski
(2010) proposed the edge distribution (ED) estimator based on differences of consecutive eigenvalues. Ahn
and Horenstein (2013) suggest to use ratios (ER) and growth rates (GR) instead of differences. Buja and
Eyuboglu (1992) suggest a specific version of the parallel analysis (PA), which compares the eigenvalues to
those obtained of independent data. Intuitively, the eigenvalues of independent data provide a clear cutoff to
separate common factors from noise. Independent data is constructed by permuting each column of W( #̂),
which preserves the variances of the data but breaks the correlation pattern induced by the common factors.
Recently, Dobriban (2020) provides the theoretical justification for the accuracy of PA and Dobriban and
Owen (2019) propose a deflated version that improves the detection accuracy of smaller but important factors
in the presence of large factors.

For unbalanced panels, we follow Gagliardini, Ossola, and Scaillet (2019) and apply the different
estimators to PD (W( #̂)) instead of W( #̂).

4.4 Simulation Experiments

We study the inference drawn from the interactive fixed effects model in unbalanced panels. Remember, in
contrast to balanced panels, the IFE estimator requires an additional data augmentation step to estimate the
common factors and loadings (see Bai 2009 and Bai, Liao, and Yang 2015). For this purpose, we use EM
algorithm proposed by Stock and Watson (1998, 2002). In the first part of our analysis, we analyze whether
the inferential theory derived for the IFE estimator in balanced panels is a reasonable approximation of the
estimator in unbalanced panels, given we know the true number of factors. We compare relative biases (Bias),
average ratios of standard errors and standard deviations, and empirical sizes of I-tests with 5% nominal
size (Size) for different patterns of randomly missing data and configurations of the idiosyncratic error term
with those from a balanced panel. Because the number of factors is usually unknown, we compare different
estimators for the number of factors in our second analysis. In particular, we analyze the estimators suggested
by Bai and Ng (2002), Onatski (2010), Ahn and Horenstein (2013), and Dobriban and Owen (2019). From
the various information criteria introduced by Bai and Ng (2002), we focus on IC2 and BIC3, which are also
used in other studies (see Onatski 2010 and Ahn and Horenstein 2013). To asses their performance, we
compare the average estimated number of factors.

Following Moon and Weidner (2015), we consider a static panel data model with one regressor and two
factors:

H8C = VG8C +
2∑
A=1

_8A 5CA + 48C ,

G8C = 1 +
2∑
A=1
(_8A + j8A ) ( 5CA + 5C−1,A ) + F8C ,
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8 = 1, . . . , # , C = 1, . . . , ) , and 48C is an idiosyncratic error term. The regressor G8C is correlated with
the common factors and loadings. Throughout all experiments, we generate 5CA , F8C ∼ iid. N(0, 1) and
_8A , j8A ∼ iid. N(1, 1).

As Bai and Ng (2002) and Ahn and Horenstein (2013), we consider four different configurations for the
idiosyncratic error term: i) homoskedastic, ii) homoskedastic with fat tails, iii) cross-sectional heteroskedastic,
and iv) cross-sectional heteroskedastic with time-serial correlation. More specifically, i) 48C ∼ iid. N(0, 4),
ii) 48C =

√
6/5 a8C , where a8C has a C-distribution with five degrees of freedom, iii) 48C ∼ iid. N(0, 2) if 8

is odd and 48C ∼ iid. N(0, 6) else, and iv) 48C = 0.5 48C−1 + a8C , where a8C ∼ iid. N(0, 3/2) if 8 is odd and
a8C ∼ iid. N(0, 9/2) else. For configuration iv), we ensure that 48C is drawn from its stationary distribution
by discarding 1,000 initial time periods. Note that the variance of the idiosyncratic error term is equal across
all configurations.

We consider three different patterns where a fraction of k ∈ {0, 0.2, 0.4} observations are missing at
random. The overall sample size is equal to #) (1−k). Figure 4.4.1 illustrates the three missing data patterns.
In the first pattern, we irregularly drop #)k observations from the entire panel data set. This pattern is also

Figure 4.4.1: Patterns of Randomly Missing Observations
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analyzed by Bai, Liao, and Yang (2015) and mimics a situation in surveys where individuals refuse or forget
to answer certain questions. The other patterns are borrowed from Czarnowske and Stammann (2020) and
reflect situations where individuals are replaced after they drop out from a survey or not. To describe pattern
2 and 3, we divide all individuals into two types. Type 1 consists of #1 = 2k# individuals that are observed
for )1 = )/2 time periods. The remaining #2 = # − #1 individuals are of type 2 and are observed over
the entire time horizon ()2 = )). Patterns 2 and 3 differ only in the point in time when the time series of a
type 1 individual starts. In pattern 2, all time series start in C = 1, whereas in pattern 3, the initial period is
chosen randomly with equal probability from {0, 1, . . . , ) − )1}. All unbalanced data sets are generated from
balanced panels by dropping observations given the corresponding missing data pattern.

We consider panel data sets of different average sizes: # ∈ {120, 240} and ) ∈ {24, 48, 96}, where
# = #/(1−k) and ) = )/(1−k). This allows us to compare the results across different fractions of missing
data and check whether the conjecture of Fernández-Val and Weidner (2018b) for fixed effects estimators
applies to the IFE estimator as well.11

11. All results are based on 1,000 replications and summarized in tables 4.4.1–4.4.6. All computations were done on a Linux Mint
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First, we analyze the finite sample properties of the IFE estimator. In configuration iii), we correct for the
asymptotic bias induced by cross-sectional heteroskedasticity (B) and use a White (1980)-type covariance
estimator. In configuration iv), we additionally correct for the asymptotic bias induced by time-serial
correlation (C2) and use a cluster robust covariance estimator. We choose the bandwidth for the estimation of
C2 according to the rule of thumb proposed by Newey and West (1994), i. e. " = 4()/100)2/9. The results
are summarized in tables 4.4.1–4.4.3. For configuration i)–iii), we observe biases, ratios, and sizes that are
similar to the balanced case irrespective of the fraction and pattern of missing data. Thus, the asymptotic
properties of the IFE estimator for balanced data are a fairly well approximation for the unbalanced one in
these configurations. This is different for configuration iv). Here we observe biases that are substantially
larger compared to the balanced case. Although all ratios are close to one, these larger biases distort the
nominal sizes and lead to over-rejection. Contrary to the other configurations, the various missing data
patterns affect the finite sample properties of the estimator differently and a larger fraction of missing data
leads to worse properties.

Second, we analyze the different estimators for the number of factors suggested by Bai and Ng (2002),
Onatski (2010), Ahn and Horenstein (2013), and Dobriban and Owen (2019). The initial estimator to obtain
the pure factor model uses ' = d12(min(#,))/100)1/4e.1213 For ER and GR we use the mock eigenvalue
proposed in Ahn and Horenstein (2013) to allow for the possibility to select zero common factors. All results
are summarized in tables 4.4.4–4.4.6. First we analyze the case of balanced data. For ) ≥ 48, all estimators
have little bias. Additionally, for BIC3, ED, and PA the biases are low irrespective of the sample size whereas
ER and GR slightly underestimate the true number of factor. The findings are in line with Ahn and Horenstein
(2013) for pure factor models and suggest that the error in estimating # is asymptotically negligible. Further,
the findings support the conjecture of Moon and Weidner (2015), who expect that their main results also apply
to non iid. standard normally distributed error terms. For unbalanced panels, we observe that the missing
data patterns as well as the fraction of missing data affect the performance of all estimators differently. In
general we find that ER and GR are more likely to underestimate, whereas the others tend to overestimate
the number of factors. Further, the performance gets worth as the fraction of missing data increases. While
the accuracy of the different estimators in pattern 1 is still very close to that in balanced panels, this is only
partially the case in the other two patterns. Intuitively, if the missing data pattern consists of large blocks
without any observations, the information used to estimate the common factors and loadings, which are used
to augment the missing observations, are substantially lower and lead to noisy estimates. This explains why
the performances in patterns 2 and 3, which consist of those large blocks, are relatively worse compared to
pattern 1.

Finally, we briefly summarize the key findings. We find that the properties of the IFE estimator in
unbalanced panels are fairly well approximated by the asymptotic theory derived by Bai (2009) and Moon and
Weidner (2017). Further, the accuracy of the different estimators for the number of factors differs substantially
across fractions and patterns of randomly missing data. Overall, these findings are very different from those
of conventional fixed effects models where neither the fraction nor the pattern of randomly missing data affect
inference, e. g. as shown by Czarnowske and Stammann (2020) for fixed effects binary choice models.

18.1 workstation using R Version 3.6.3 (R Core Team 2021).
12. The rule of thumb was suggested by Bai and Ng (2002) in footnote 10 and traces back to Schwert (1989).
13. This choice is different from other studies like Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013), who keep '

fixed irrespective of the sample size.
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Table 4.4.1: Properties of V̂ - Missing Data Pattern 1

# ) k = 0.0 / k = 0.2 / k = 0.4

Bias Ratio Size

Homoskedastic

120 24 0.07 / -0.01 / 0.14 0.91 / 0.88 / 0.92 0.07 / 0.08 / 0.08
120 48 0.05 / 0.00 / 0.03 1.00 / 0.92 / 0.95 0.05 / 0.08 / 0.05
120 96 0.06 / 0.01 / 0.04 0.99 / 1.00 / 0.97 0.05 / 0.06 / 0.06
240 24 0.06 / 0.02 / 0.04 0.91 / 0.96 / 0.90 0.07 / 0.05 / 0.08
240 48 0.03 / 0.01 / 0.02 0.96 / 0.97 / 0.98 0.05 / 0.06 / 0.05
240 96 0.01 / 0.00 / 0.01 0.98 / 0.99 / 0.99 0.05 / 0.04 / 0.05

Homoskedastic with Fat Tails

120 24 0.15 / 0.06 / 0.10 0.92 / 0.85 / 0.90 0.07 / 0.09 / 0.08
120 48 -0.01 / 0.03 / 0.05 0.94 / 0.97 / 0.91 0.06 / 0.07 / 0.06
120 96 0.00 / 0.02 / 0.02 0.97 / 0.88 / 0.95 0.06 / 0.06 / 0.06
240 24 0.03 / 0.03 / 0.04 0.92 / 0.89 / 0.93 0.07 / 0.06 / 0.07
240 48 -0.01 / 0.00 / 0.01 0.97 / 0.93 / 0.98 0.06 / 0.07 / 0.06
240 96 -0.01 / -0.03 / 0.00 0.97 / 0.99 / 0.98 0.05 / 0.06 / 0.06

Cross-Sectional Heteroskedastic

120 24 0.05 / -0.03 / 0.13 0.90 / 0.92 / 0.92 0.08 / 0.07 / 0.07
120 48 -0.01 / -0.01 / 0.00 0.97 / 0.92 / 0.96 0.06 / 0.07 / 0.06
120 96 0.01 / -0.01 / 0.05 0.95 / 0.94 / 0.96 0.07 / 0.06 / 0.06
240 24 -0.04 / 0.02 / 0.06 0.89 / 0.89 / 0.92 0.07 / 0.08 / 0.08
240 48 0.02 / 0.03 / 0.00 0.97 / 0.95 / 0.95 0.06 / 0.05 / 0.06
240 96 0.02 / -0.01 / 0.01 0.98 / 0.98 / 1.00 0.06 / 0.05 / 0.04

Cross-Sectional Heteroskedastic with Time-Serial Correlation

120 24 -1.19 / -1.20 / -1.17 0.87 / 0.93 / 0.97 0.14 / 0.15 / 0.17
120 48 -0.32 / -0.52 / -0.51 1.01 / 0.99 / 0.98 0.05 / 0.09 / 0.09
120 96 -0.16 / -0.24 / -0.25 0.96 / 0.97 / 0.97 0.07 / 0.06 / 0.08
240 24 -1.28 / -1.31 / -1.20 0.86 / 0.92 / 0.98 0.23 / 0.26 / 0.30
240 48 -0.37 / -0.57 / -0.56 0.96 / 0.94 / 0.97 0.08 / 0.15 / 0.17
240 96 -0.12 / -0.24 / -0.29 0.98 / 1.00 / 0.98 0.06 / 0.08 / 0.12

Note: Bias refers to relative biases in percentage, Ratio denotes the average ratios of
standard errors and standard deviations, and Size is the empirical sizes of I-tests with 5%
nominal size; results are based on 1,000 repetitions.
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Table 4.4.2: Properties of V̂ - Missing Data Pattern 2

# ) k = 0.0 / k = 0.2 / k = 0.4

Bias Ratio Size

Homoskedastic

120 24 0.07 / -0.01 / 0.06 0.91 / 0.92 / 0.92 0.07 / 0.08 / 0.07
120 48 0.05 / 0.04 / 0.07 1.00 / 0.96 / 1.00 0.05 / 0.05 / 0.05
120 96 0.06 / 0.00 / 0.04 0.99 / 0.96 / 0.97 0.05 / 0.06 / 0.06
240 24 0.06 / 0.08 / 0.05 0.91 / 0.89 / 0.94 0.07 / 0.08 / 0.06
240 48 0.03 / -0.01 / 0.01 0.96 / 0.94 / 0.98 0.05 / 0.06 / 0.06
240 96 0.01 / 0.00 / 0.02 0.98 / 0.94 / 0.98 0.05 / 0.07 / 0.06

Homoskedastic with Fat Tails

120 24 0.15 / 0.05 / 0.12 0.92 / 0.87 / 0.88 0.07 / 0.08 / 0.07
120 48 -0.01 / 0.00 / 0.03 0.94 / 0.93 / 0.94 0.06 / 0.06 / 0.06
120 96 0.00 / -0.01 / 0.00 0.97 / 0.98 / 0.97 0.06 / 0.06 / 0.06
240 24 0.03 / 0.07 / 0.04 0.92 / 0.90 / 0.88 0.07 / 0.07 / 0.07
240 48 -0.01 / -0.01 / 0.05 0.97 / 0.91 / 0.95 0.06 / 0.06 / 0.07
240 96 -0.01 / 0.02 / 0.03 0.97 / 0.96 / 0.96 0.05 / 0.06 / 0.07

Cross-Sectional Heteroskedastic

120 24 0.05 / 0.06 / 0.04 0.90 / 0.90 / 0.90 0.08 / 0.07 / 0.07
120 48 -0.01 / 0.01 / 0.05 0.97 / 0.94 / 0.92 0.06 / 0.06 / 0.08
120 96 0.01 / -0.01 / 0.02 0.95 / 0.97 / 0.96 0.07 / 0.05 / 0.06
240 24 -0.04 / 0.06 / 0.01 0.89 / 0.93 / 0.89 0.07 / 0.07 / 0.08
240 48 0.02 / 0.00 / 0.00 0.97 / 0.96 / 0.95 0.06 / 0.06 / 0.06
240 96 0.02 / 0.01 / 0.01 0.98 / 0.93 / 0.97 0.06 / 0.06 / 0.06

Cross-Sectional Heteroskedastic with Time-Serial Correlation

120 24 -1.19 / -1.52 / -1.76 0.87 / 0.96 / 0.91 0.14 / 0.19 / 0.30
120 48 -0.32 / -0.69 / -0.82 1.01 / 0.95 / 0.95 0.05 / 0.12 / 0.18
120 96 -0.16 / -0.32 / -0.39 0.96 / 0.98 / 1.00 0.07 / 0.08 / 0.09
240 24 -1.28 / -1.61 / -1.80 0.86 / 0.85 / 0.83 0.23 / 0.37 / 0.53
240 48 -0.37 / -0.65 / -0.83 0.96 / 0.96 / 0.88 0.08 / 0.17 / 0.31
240 96 -0.12 / -0.29 / -0.38 0.98 / 1.02 / 1.00 0.06 / 0.08 / 0.16

Note: Bias refers to relative biases in %, Ratio denotes the average ratios of standard
errors and standard deviations, and Size is the empirical sizes of I-tests with 5% nominal
size. Results are based on 1,000 repetitions.
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Table 4.4.3: Properties of V̂ - Missing Data Pattern 3

# ) k = 0.0 / k = 0.2 / k = 0.4

Bias Ratio Size

Homoskedastic

120 24 0.07 / 0.09 / 0.02 0.91 / 0.90 / 0.90 0.07 / 0.08 / 0.08
120 48 0.05 / 0.04 / 0.00 1.00 / 0.92 / 0.96 0.05 / 0.08 / 0.06
120 96 0.06 / 0.03 / 0.04 0.99 / 0.96 / 0.99 0.05 / 0.06 / 0.05
240 24 0.06 / 0.08 / 0.03 0.91 / 0.92 / 0.90 0.07 / 0.08 / 0.08
240 48 0.03 / 0.01 / 0.03 0.96 / 0.92 / 0.95 0.05 / 0.07 / 0.06
240 96 0.01 / 0.03 / 0.00 0.98 / 0.98 / 0.96 0.05 / 0.06 / 0.06

Homoskedastic with Fat Tails

120 24 0.15 / 0.14 / 0.07 0.92 / 0.87 / 0.88 0.07 / 0.08 / 0.08
120 48 -0.01 / 0.02 / 0.03 0.94 / 0.86 / 0.89 0.06 / 0.06 / 0.07
120 96 0.00 / 0.03 / 0.00 0.97 / 0.97 / 0.94 0.06 / 0.06 / 0.06
240 24 0.03 / 0.04 / 0.05 0.92 / 0.89 / 0.94 0.07 / 0.07 / 0.06
240 48 -0.01 / 0.01 / 0.01 0.97 / 0.95 / 0.93 0.06 / 0.07 / 0.07
240 96 -0.01 / 0.02 / 0.01 0.97 / 0.94 / 0.94 0.05 / 0.07 / 0.06

Cross-Sectional Heteroskedastic

120 24 0.05 / 0.13 / 0.13 0.90 / 0.91 / 0.90 0.08 / 0.07 / 0.09
120 48 -0.01 / 0.07 / 0.05 0.97 / 0.95 / 0.93 0.06 / 0.07 / 0.07
120 96 0.01 / 0.01 / 0.00 0.95 / 0.99 / 0.96 0.07 / 0.05 / 0.06
240 24 -0.04 / 0.00 / 0.01 0.89 / 0.94 / 0.92 0.07 / 0.05 / 0.07
240 48 0.02 / 0.02 / 0.02 0.97 / 0.99 / 1.00 0.06 / 0.06 / 0.05
240 96 0.02 / 0.00 / -0.01 0.98 / 0.95 / 0.98 0.06 / 0.06 / 0.06

Cross-Sectional Heteroskedastic with Time-Serial Correlation

120 24 -1.19 / -1.53 / -1.84 0.87 / 0.92 / 0.94 0.14 / 0.21 / 0.33
120 48 -0.32 / -0.66 / -0.87 1.01 / 0.97 / 0.94 0.05 / 0.10 / 0.21
120 96 -0.16 / -0.29 / -0.45 0.96 / 0.98 / 1.01 0.07 / 0.08 / 0.11
240 24 -1.28 / -1.62 / -1.93 0.86 / 0.94 / 0.90 0.23 / 0.37 / 0.59
240 48 -0.37 / -0.70 / -0.92 0.96 / 0.97 / 0.92 0.08 / 0.17 / 0.36
240 96 -0.12 / -0.29 / -0.45 0.98 / 0.97 / 0.97 0.06 / 0.10 / 0.21

Note: Bias refers to relative biases in %, Ratio denotes the average ratios of standard
errors and standard deviations, and Size is the empirical sizes of I-tests with 5% nominal
size. Results are based on 1,000 repetitions.
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4.5 Empirical Illustration

Whether democracy causes economic growth is a long standing and very controversial question among
economists. Recently Acemoglu et al. (2019) provide evidence that democratization has a very substantial
positive impact on GDP per capita.14 Using annual data of 175 countries observed between 1960–2010,
their main findings suggest a long-run effect of about 20%. The data set constructed by the authors is very
well suited for our purposes as it is naturally unbalanced and covers a very long time horizon with several
unobserved common shocks triggered by technological progress and financial crises. Overall the sample
consists of 6,934 observations, where 3,558 are classified as democratic. From 88 different countries, 122
transit to democracy and 71 to non-democracy. The average GDPs, measured in year 2000 dollars, are 8,150
for democratic and 2,074 for non-democratic countries. 71 countries were observed over the entire time
horizon such that, on average, the data set covers 136 countries and 40 years. The fraction and pattern of
missing data are comparable to the setting with k = 0.2 and pattern 3 in our simulation study.

We reassess the baseline analysis of Acemoglu et al. (2019) using the IFE estimator and the following
specification:

H8C = V �8C +
?∑
9=1
W 9 H8C− 9 + U8 + XC + ,′8fC + 48C ,

where 8 and C are country and time specific indexes, �8C is an indicator for being a democracy, and H8C is
the corresponding natural logarithm of GDP per capita. U8 and XC are additive fixed effects that capture
time-invariant country characteristics and control for the global business cycle, respectively. Contrary to
Acemoglu et al. (2019), we further decompose the error term into a factor structure ,′8fC and a remaining
idiosyncratic component 48C . This allows us to capture unobserved common shocks (fC ), which simultaneously
affect the growth and democratization of a country in different ways (,8). The dynamic specification permits
a distinction between short- and long-run effects of democratization, where the former is V̂ and the latter can
be computed as

q̂ B
V̂

1 −∑?

9=1 Ŵ 9
.

We use ? ∈ {1, 2, 4}, where ? = 4 is the preferred specification of Acemoglu et al. (2019). To reduce the
number of parameters during the optimization, we project the country and time fixed effects out before
estimating V and $ (see Bai 2009 section 8). The model after the projection becomes

¥H8C = V ¥�8C +
?∑
9=1
W 9 ¥H8C− 9 + ¥,

′
8
¥fC + 48C ,

where the two dots above denote variables after projecting out both fixed effects. In the absence of any
common factors, i. e. ' = 0, this is simply a conventional fixed effects model.

For valid inference it is important to know the true number of factors, or at least an estimate that is
larger but close to the true number. Because the true number of factors is unknown, we proceed as follows:
First, we estimate each specification with ' = 10 to obtain the pure factor models PD (W( V̂, $̂)), where
[W( V̂, $̂)]8C B V̂ ¥�8C +

∑?

9=1 Ŵ 9 ¥H8C− 9 .15 Afterwards, we apply the estimators suggested by Bai and Ng (2002),
Onatski (2010), Ahn and Horenstein (2013), and Dobriban and Owen (2019) to estimate the number of factors.

14. The data are part of the replication package provided by the authors.
15. The number of factors chosen is equal to the rule-of-thumb used during the simulation experiments.
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Table 4.5.1 summarizes the results. The estimates are almost identical across different specifications. Both
model selection criteria of Bai and Ng (2002) predict a substantially larger number of factors compared to
the other estimators, where IC2 always predicts the upper bound. This is in line with Ahn and Horenstein
(2013) who find that the information criteria are quite sensitive to the chosen upper bound on the number of
factors and tend to overestimate. We partially observe the same behavior during our simulation experiments.
Contrary to the model selection criteria, the estimators of Onatski (2010), Ahn and Horenstein (2013), and
Dobriban and Owen (2019) all suggest one or three common factors. Additionally, figure 4.5.1 shows the
singular values of the pure factor models and those for permuted versions. More precisely, we randomly
shuffle each column of PD (W( V̂, $̂)) and compute the maximum value of each singular value across 199
randomized samples.16 The large gap between the first and the second common factor, explains why most of
the estimators that try to decompose the eigenvalue spectrum predict one factor. However, if we compare
the spectra with those of permuted data, we find that factor two and three have some additional explanatory
power even if it is quite low in terms of variance explained. If we additionally consider the results of Moon
and Weidner (2015), who showed that overestimating the number of factors is better than underestimating,
then ' = 3 is our preferred choice.

Table 4.5.1: Estimated Number of Factors

Specification IC2 BIC3 ER GR ED PA

? = 1 10 7 1 1 1 3
? = 2 10 8 1 1 1 3
? = 4 10 8 1 1 3 3

Note: IC2 and BIC3 denote the information criteria of Bai
and Ng (2002), ER and GR are the estimators of Ahn and
Horenstein (2013), ED is the estimator of Onatski (2010),
and PA is the deflated parallel analysis suggest by Dobriban
and Owen (2019). Estimators applied to PD (W( V̂, $̂)).
The initial estimator for V and $ uses ' = 10.
Source: Acemoglu et al. (2019).

Table 4.5.2 summarizes the results of different conventional and interactive fixed effects estimators
(Interactive). As Acemoglu et al. (2019), we report results for the fixed effects estimator (Within), the
Arellano-Bond estimator (AB, see Arellano and Bond 1991), and the Hahn-Hausman-Kuersteiner estimator
(HHK, see Hahn, Hausman, and Kuersteiner 2004). However, instead of the fixed effects estimator used
by Acemoglu et al. (2019), we report results of a bias-corrected within estimator with bandwidth ! = 5
that addresses the Nickell (1981) bias.17 For Interactive, we report results for ' ∈ {1, 2, 3}. To correct for
the Nickell (1981)-type bias and those biases induced by cross-sectional heteroskedasticity and time-serial
correlation, we use the asymptotic bias corrections proposed by Bai (2009) and Moon and Weidner (2017)
with ! = 5 and " = 3. Similar to Acemoglu et al. (2019), we report estimates and standard errors of the short-
and long-run effects of democratization and the persistence of GDP processes. Further, all standard errors
are heteroskedasticity robust and clustered at the country level to allow for arbitrary patterns of time-serial
correlation.18 We find that all estimators reveal a strong and significant persistence of GDP processes across

16. This is essentially a graphical illustration of the parallel analysis without the deflation proposed by Dobriban and Owen (2019).
17. This estimator was also used by Chen, Chernozhukov, and Fernández-Val (2019) for the same illustration, but on a balanced

subset of the data. The authors also proposed a split-panel jackknife bias correction to reduce the many moment bias of the
Arellano-Bond estimator (see Newey and Smith 2004).
18. All covariance estimators use a degrees-of-freedom adjustment to improve their finite sample properties.
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Figure 4.5.1: Largest Singular Values in Descending Order
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Note: Singular values for permuted data are based on 199 replications; initial estimator for V and $ uses ' = 10.
Source: Acemoglu et al. (2019).

all specifications. The coefficients of democratization obtained by Within and Interactive with ' ≥ 2 are
always significant at the 5% level, whereas those of AB and HHK are only significant for ? = 4. If we
focus on ? = 4, which is Acemoglu et al. (2019)’s preferred specification, the fixed effects models used by
the authors reveal short-run effects of a transition to democracy between 0.828% and 1.178% and long-run
effects between 16.448% and 29.262%. However, after controlling for additional time-varying unobserved
heterogeneity, we find short- and long-run effects that are substantially lower compared to those reported
by the authors. Our preferred Interactive with ' = 3, yields short- and long-run estimates of 0.622% and
18.264%.

Next, we consider two different sensitivity checks. First, the estimation of the asymptotic biases requires
different bandwidth choices. We check the sensitivity of the results by analyzing all combinations of the
following bandwidth choices: ! ∈ {1, . . . , 7} and " ∈ {1, . . . , 7}. Second, we report estimates of Interactive
for ' ∈ {4, . . . , 10}. As shown by Moon and Weidner (2015), the inclusion of additional redundant common
factors should only affect the precision of the IFE estimator after controlling for all relevant common factors.
Table 4.5.3 and 4.5.4 summarize the results. With respect to the different bandwidth choices, we find that the
results of Interactive are very robust to all combinations of bandwidth choices as indicated by the narrow
intervals reported in Table 4.5.3. Contrary, the estimates of Within are more sensitive. For ? = 4, we find
long-run effects between 21.571% and 32.289%. With respect to the number of factors, we find that after
controlling for more than three factors, the estimated persistence of the GDP process reported in Table 4.5.4
starts declining. The same pattern was also recognized in the empirical illustration of Moon and Weidner
(2015). The authors argue that the dynamic specification might be incorrectly specified in the sense that the
lagged outcome variables simply capture time-serial correlation in the idiosyncratic error term instead of true
state dependence. Because the factor structure also captures time-serial correlation, this might indicate that
there is no true state dependence. In contrast, the coefficients of democratization become larger and remain
significant in most specifications.
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Table 4.5.2: Effect of Democracy on Logarithmic GDP per Capita (×100)

Within AB HHK Interactive

' = 1 ' = 2 ' = 3

Specification 1 - ? = 1

Democracy 1.051 0.959 0.781 0.745 0.755 0.809
(0.293) (0.477) (0.455) (0.329) (0.287) (0.305)

Persistence of 0.983 0.946 0.938 0.960 0.973 0.967
GDP process (0.006) (0.009) (0.011) (0.007) (0.006) (0.007)

Long-run effect 60.489 17.608 12.644 18.644 27.690 24.546
of democracy (28.073) (10.609) (8.282) (9.460) (12.250) (11.131)

Specification 2 - ? = 2

Democracy 0.671 0.797 0.582 0.488 0.554 0.559
(0.247) (0.417) (0.387) (0.292) (0.263) (0.279)

Persistence of 0.975 0.946 0.941 0.956 0.968 0.966
GDP process (0.005) (0.009) (0.010) (0.007) (0.005) (0.006)

Long-run effect 26.513 14.882 9.929 11.030 17.258 16.557
of democracy (12.026) (9.152) (7.258) (7.174) (8.881) (9.005)

Specification 3 - ? = 4

Democracy 0.828 0.875 1.178 0.513 0.600 0.622
(0.225) (0.374) (0.370) (0.267) (0.259) (0.249)

Persistence of 0.972 0.947 0.953 0.958 0.964 0.966
GDP process (0.005) (0.009) (0.009) (0.006) (0.006) (0.005)

Long-run effect 29.262 16.448 25.032 12.226 16.749 18.264
of democracy (10.281) (8.436) (10.581) (6.780) (7.956) (8.030)
Note: Within, AB, HHK, and Interactive denote the bias-corrected fixed effects estimator,
the Arellano-Bond estimator, the Hahn-Hausman-Kuersteiner estimator, and the IFE estimator.
Standard errors in parentheses are heteroskedasticity robust and clustered at the country level.
Within and Interactive use bandwidths ! = 5 and " = 3 for the estimation of the asymptotic
biases. The results of AB and HHK are taken from table 2 in Acemoglu et al. (2019).
Source: Acemoglu et al. (2019).
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Table 4.5.3: Sensitivity to Different Bandwidth Choices

Within Interactive

' = 1 ' = 2 ' = 3

Specification 1 - ? = 1

Democracy [0.986; 1.057] [0.744; 0.775] [0.755; 0.806] [0.806; 0.867]

Persistence of [0.974; 0.984] [0.958; 0.960] [0.972; 0.973] [0.966; 0.968]
GDP process

Long-run effect [38.127; 64.280] [18.551; 18.872] [27.336; 29.065] [24.368; 25.713]
of democracy

Specification 2 - ? = 2

Democracy [0.633; 0.674] [0.488; 0.522] [0.554; 0.609] [0.548; 0.583]

Persistence of [0.968; 0.976] [0.954; 0.956] [0.967; 0.968] [0.966; 0.967]
GDP process

Long-run effect [19.509; 27.723] [10.987; 11.369] [17.231; 18.721] [16.158; 17.150]
of democracy

Specification 3 - ? = 4

Democracy [0.773; 0.849] [0.504; 0.547] [0.596; 0.635] [0.620; 0.661]

Persistence of [0.964; 0.974] [0.957; 0.958] [0.964; 0.964] [0.965; 0.966]
GDP process

Long-run effect [21.571; 32.289] [11.945; 12.672] [16.548; 17.715] [18.113; 19.352]
of democracy
Note: Effect of democracy on logarithmic GDP per capita (×100). Within and Interactive denote the bias-
corrected fixed effects estimator and the IFE estimator. The intervals denote the ranges of all estimates across
different combinations of ! ∈ {1, . . . , 7} and " ∈ {1, . . . , 7}.
Source: Acemoglu et al. (2019).
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Table 4.5.4: Sensitivity to the Number of Factors

' = 4 ' = 5 ' = 6 ' = 7 ' = 8 ' = 9 ' = 10

Specification 1 - ? = 1

Democracy 0.417 0.160 1.101 1.553 1.615 1.619 2.197
(0.511) (0.486) (0.516) (0.564) (0.602) (0.634) (0.718)

Persistence of 0.848 0.854 0.754 0.702 0.600 0.554 0.453
GDP process (0.018) (0.020) (0.030) (0.035) (0.034) (0.039) (0.040)

Long-run effect 2.749 1.095 4.476 5.220 4.037 3.635 4.019
of democracy (3.363) (3.339) (2.140) (1.939) (1.551) (1.479) (1.394)

Specification 2 - ? = 2

Democracy 0.388 0.868 1.178 1.424 1.905 1.150 1.418
(0.469) (0.446) (0.511) (0.565) (0.614) (0.651) (0.705)

Persistence of 0.810 0.689 0.586 0.485 0.369 0.342 0.247
GDP process (0.019) (0.031) (0.036) (0.031) (0.038) (0.042) (0.056)

Long-run effect 2.041 2.795 2.845 2.767 3.019 1.747 1.882
of democracy (2.478) (1.458) (1.266) (1.129) (1.013) (1.018) (0.968)

Specification 3 - ? = 4

Democracy 0.763 1.091 1.452 1.474 1.513 1.474 0.476
(0.455) (0.446) (0.534) (0.567) (0.557) (0.596) (0.589)

Persistence of 0.628 0.593 0.380 0.213 0.174 0.187 -0.202
GDP process (0.025) (0.038) (0.049) (0.050) (0.056) (0.092) (0.075)

Long-run effect 2.053 2.683 2.341 1.874 1.831 1.814 0.396
of democracy (1.211) (1.124) (0.883) (0.729) (0.692) (0.766) (0.493)
Note: Effect of democracy on logarithmic GDP per capita (×100). Results obtained by the interactive
fixed effects estimator for ' ∈ {4, . . . , 10}. Standard errors in parentheses are heteroskedasticity robust
and clustered at the country level. Bandwidths ! = 5 and " = 3 for the estimation of the asymptotic
biases.
Source: Acemoglu et al. (2019).
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Finally, we consider an additional specification without predetermined regressors, i. e. ? = 0. Again we
estimate the number of factors from a pure factor model, where the initial estimate is based on ' = 10. The
estimates are identical to those of ? = 4 and provide further support for our preferred choice of ' = 3. The
corresponding estimate of democratization is - 1.251% (standard error = 1.286%) and is in line with Barro
(1996) who reports a negative and/or insignificant effect of democracy on growth.

To sum up, we find some additional support for the hypothesis of Acemoglu et al. (2019), i. e. democracy
does cause growth. Using the IFE estimator to control for time-varying unobserved heterogeneity, we obtain
results that are qualitatively similar to those of the authors. If we compare HHK to Interactive with ' = 3
in the authors preferred specification ? = 4, we find that the short-run effect of democratization is halved.
However the corresponding long-run effect of 18.264% is still pretty close to the 20% reported by Acemoglu
et al. (2019).

4.6 Extensions

Although we analyzed the IFE estimator of Bai (2009) and Moon and Weidner (2015, 2017), we want to
briefly discuss two extensions where our findings may also be helpful. First, in the presence of endogenous
regressors, Moon and Weidner (2017) and Moon, Shum, and Weidner (2018) suggest a minimum distance
estimator in spirit of Chernozhukov and Hansen (2006, 2008). Second, because the objective function of the
IFE estimator is generally non-convex, Moon and Weidner (2019) suggest an alternative estimator that avoids
the potentially difficult optimization problem with multiple local minima and results in optimizing a convex
objective function.

Example 1. Minimum Distance Estimator
Suppose that x8C can be further decomposed into  1 endogenous and  2 exogenous regressors, i. e.

 =  1 +  2. To avoid ambiguity, we label endogenous and exogenous regressors with an appropriate
superscript. Further, let z8C = (I1,8C , . . . , I",8C ) be a vector of excluded exogenous instruments, where
" ≥  1. Moon and Weidner (2017) suggest the following minimum distance estimator. In a first step, an
estimator for #end is obtained by

#̂
end ∈ arg min

#end∈R 1

0̂(#end) ′ � 0̂(#end) ,

where 0̂(#end) is the IFE estimator of

H8C − xend ′8C #end = xexo ′8C #exo + z′8C0 + ,′8fC + 48C

and � is a positive definite " ×" weighting matrix. At the true value of #end, 0 is zero given the instrumental
variable moment conditions. In a second step, #̂exo is the IFE estimator of

H8C − xend ′8C #̂
end
= xexo ′8C #exo + ,′8fC + 48C .

The properties of the minimum distance estimator are studied in Moon, Shum, and Weidner (2018),
where the authors extend the random coefficient demand model of Berry, Levinsohn, and Pakes (1995) with
interactive fixed effects to account for unobserved product-market specific heterogeneity, e. g. perceived
utility by advertisement at the product-market level. Under similar assumptions as in Moon and Weidner

73



(2017), the authors show consistency and derive the asymptotic distribution of the minimum distance estimator.
Lee, Moon, and Weidner (2012) use the same estimator to account for measurement errors in the dependent
variable in dynamic interactive fixed effects models.

Example 2. Nuclear Norm Minimizing Estimator
Moon and Weidner (2019) show that the imposed rank constraint on the factor structure leads to a

non-convex optimization problem. The authors suggest an alternative estimator based on a convex relaxation
of this constraint. More precisely, they show that an estimator for # is

#̂
★ ∈ arg min

#∈R 

1
2=

min(# ,) )∑
A=1

fA
(
PD (W(#))

)
,

where fA (·) denotes the A-th largest singular value. Moon and Weidner (2019) show consistency of this
estimator, but only at a rate of

√
min(#,)). As a consequence, the convex relaxation leads to a certain loss of

efficiency compared to the IFE estimator.
To recover the properties of the IFE estimator, Moon and Weidner (2019) suggest to estimate the number

of factors from PD (W( #̂
★)) and afterwards apply an iterative post estimation routine. After a finite number

of iterations the estimator has the same limiting distribution as the IFE estimator. The post estimation routine
can be summarized as follows:

Algorithm 3. Post nuclear norm estimation
Given #̂

★ and ', initialize #̂ = #̂
★ and repeat the following steps a finite number of times

Step 1. Compute F̂( #̂) and �̂( #̂) from W̃( #̂)

Step 2. Compute y̆ and x̆: for all : ∈ {1, . . . ,  }

Step 3. Update #̂ = (X̆′X̆)−1X̆′y̆, where X̆ = (x̆1, . . . , x̆ )

4.7 Concluding Remarks

The assumption that unobserved heterogeneity is constant over time is often too restrictive. Especially in
panels that cover a long time horizon, like macroeconomic panels of countries, it is unlikely that an unobserved
global shock affects all countries equally. Thus, interactive fixed effects estimators offer researchers new
possibilities to consider this form of heterogeneity in their analysis (see among others Holtz-Eakin, Newey, and
Rosen 1988, Pesaran 2006, and Bai 2009). However, these panels are often naturally unbalanced, demanding
an additional data augmentation step for the estimator of Bai (2009) (see Appendix of Bai 2009 and Bai, Liao,
and Yang 2015).

In this paper, we analyzed the finite sample behavior of Bai (2009)’s interactive fixed effects estimator
in unbalanced panels. Simulation experiments confirmed that the inferential theory derived by Bai (2009)
and Moon and Weidner (2017) for balanced panels also provides a reasonable approximation for unbalanced
panels. However, we also found that the finite sample performance can be affected by the fraction and pattern
of missing data.

Future research could address this issue and provide an inferential theory, which takes the additional
uncertainty induced by the data augmentation into account. This might help to improve the finite sample
behavior of Bai (2009)’s estimator in unbalanced panels.
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Chapter 5

A Classifier-Lasso Approach for Estimating
Production Functions with Latent Group
Structures



5.1 Introduction

Production functions are one of the central concepts in economic theory, with origins dating back at least to the
mid-18th century (see Humphrey 1997 for the history of production functions). It is all the more remarkable
that the identification of production functions is still an econometric challenge.1 The main challenge is an
endogeneity problem first mentioned by Marschak and Andrews (1944). It arises when firms make input
decisions based on their productivity, while productivity is usually unobservable to the researcher. Since the
seminal work of Olley and Pakes (1996) and Levinsohn and Petrin (2003), all recent identification strategies,
such as those of Blundell and Bond (2000), Ackerberg, Caves, and Frazer (2015), and Gandhi, Navarro, and
Rivers (2020), use panel data along with assumptions about firm behavior to solve the endogeneity problem.

Although these identification strategies are frequently applied in practice, a remaining challenge is latent
firm heterogeneity in the data. For instance, firms may differ in their production technologies, which can be
simply thought of parameter heterogeneity. Therefore, it is common practice to classify firms into groups
based on prior information, like an industry classification, and then estimate group-specific production
functions. This allows the parameters to be different between groups but identical within groups. Throughout
this paper, I refer to this type of classification procedure as ex-ante classification. However, as pointed out
by Griliches and Mairesse (1999), even in a narrowly defined industry where firms produce nearly identical
products, these firms may use their inputs very differently, which in turn may indicate different production
technologies. On the other hand, firms in different industries may nevertheless use very similar production
technologies. Thus neglecting this similarity reduces the precision of the estimation strategies.

To overcome the drawbacks of ex-ante classifications, I propose an estimation procedure for identifying
production functions with latent group structures. More specifically, using examples of three recent
identification strategies, I show how to embed them into the classifier-Lasso (C-Lasso) proposed by Su, Shi,
and Phillips (2016). Importantly, my estimation procedure is fully data-driven and has no additional data
requirements compared to the embedded identification strategies, except that the panel must be sufficiently
long. Furthermore, my estimator can be used in situations where prior information is not available at all or
only in insufficient detail. I demonstrate the good finite-sample performance of my estimator in simulation
experiments. Even in moderately long panels, my estimation procedure is able to assign all firms to the
correct latent group with probability close to one. The properties of my estimator are asymptotically identical
to an infeasible estimator that knows the latent group structure. In addition, because the iterative estimation
algorithm proposed by Su, Shi, and Phillips (2016) is computationally intensive or even infeasible for panels
with many firms, I present an extension to the algorithm that overcomes this problem. Finally, I apply my
estimation procedure to the Chilean panel data set used in Gandhi, Navarro, and Rivers (2020) and find that an
ex-ante classification by industry does not match the data-driven classification of my estimator. In particular,
I classify firms from five industries into three latent groups, where each of the five industries is composed
of firms from all three latent groups. A simple comparison of the mean squared residuals, reveals that the
estimation based on the data-driven classification explains the data better than the ex-post classification based
on an industry classification. Thus, estimating separate production functions for each industry is not only less
efficient, it also leads to different conclusions.

Besides the C-Lasso of Su, Shi, and Phillips (2016), there are at least two other approaches to deal with
latent group structures. The first approach is a finite mixture specification, which models the probability

1. Gandhi, Navarro, and Rivers (2020) and Shenoy (2020) are two very recent examples that solve this identification problem for
gross output production functions.
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of belonging to a latent group as a function of the explanatory variables. Some applications of parametric
and semi-parametric finite mixtures are Sun (2005), Kasahara and Shimotsu (2009), and Browning and
Carro (2014). The second approach is a modification of the k-means clustering algorithm. Examples are
Lin and Ng (2012), Bonhomme and Manresa (2015), and Sarafidis and Weber (2015). Both approaches
have been recently adapted to the estimation of production functions with latent group structures. Kasahara,
Schrimpf, and Suzuki (2017) use a finite mixture specification to extend the identification strategy of Gandhi,
Navarro, and Rivers (2020). They also provide empirical evidence of latent group structures in a panel of
Japanese firms. Cheng, Schorfheide, and Shao (2019) extend the k-means clustering algorithm to account for
multidimensional heterogeneity and combined it with the identification strategy of De Loecker and Warzynski
(2012) to reassess the rise of markups reported by De Loecker, Eeckhout, and Unger (2020). They find
that the level and growth of markups are lower when additional heterogeneity within industries is taken into
account. I contribute to this literature by presenting an alternative estimation procedure based on the C-Lasso
and providing additional empirical evidence that classification by industry is not sufficient to account for firm
heterogeneity.

The paper is organized as follows. I introduce production functions with latent group structures in Section
5.2. I show how these production functions can be estimated in Section 5.3. I demonstrate the performance
of my estimation procedure in Section 5.4. I provide an empirical illustration using Chilean panel data in
Section 5.5. Finally, I give some concluding remarks in Section 5.6.

Throughout this paper, I follow conventional notation: scalars are represented in standard type, vectors
and matrices in boldface, and all vectors are column vectors. Further, ‖·‖ denotes the Euclidean norm.

5.2 Production Functions with Latent Group Structures

5.2.1 Structural Panel Model for Production Functions

I consider panel data of # firms observed for ) + 1 periods {b8C : 8 ∈ {1, . . . , #}, C ∈ {0, . . . , )}}, where
b8C B (.8C ,X8C ,Z8C ) is a collection of variables for firm 8 at time C. .8C is the output, X8C is a vector of inputs,
like capital  8C , labor !8C , or intermediate inputs "8C , and Z8C is a vector of additional firm characteristics, like
input and output prices or a firm’s export status. I follow standard convention and denote the corresponding
natural log values in lowercase letters, i. e. H8C is the natural logarithm of .8C .

To allow for heterogeneous production technologies, I introduce a latent group structure where each firm
belongs to exactly one of �0 latent groups. As in Lin and Ng (2012), Bonhomme and Manresa (2015), and Su,
Shi, and Phillips (2016), I assume a time-homogeneous latent group structure, i. e. the group membership of
a firm is not allowed to change over time. I collect all firms that are members of a latent group 9 ∈ {1, . . . , �0}
in a set �0

9
, where

⋃� 0

9=1�
0
9
= {1, . . . , #} and �0

9
∩�0

9′ = ∅ for all 9 ≠ 9 ′. For the moment, I assume that �0

is known to the researcher, but the group membership of each firm is not. All firms in �0
9
have the same

smooth and time-homogeneous production function in logs

H8 ( 9)C ≔ 5 0
9 (x8 ( 9)C ) + l8 ( 9)C + n8 ( 9)C , (5.1)

where exp(l8 ( 9)C + n8 ( 9)C ) is an additively separable Hicksian neutral efficiency level. In particular, l8 ( 9)C is
a predictable productivity shock, unobserved by the researcher, and n8 ( 9)C is an unanticipated productivity
shock or a measurement error. Throughout the paper, I will use the index 8( 9) to highlight the membership of
firm 8 in latent group 9 . Furthermore, I assume 5 0

9
(x8 ( 9)C ) ≠ 5 0

9′ (x8 ( 9)C ) for all 9 ≠ 9 ′, i. e. firms in different

80



latent groups have to use different production technologies.
Besides the unknown latent group membership of the firms, the estimation of (5.1) poses further

econometric challenges. Some important issues are related to the measurements of output and inputs, the
functional form of the production function, and the endogeneity problem (see Ackerberg et al. 2007 and
Aguirregabiria 2019 for more details).2 In particular, these problems led to very different estimation strategies
that can be readily applied if the researcher knows the latent group membership of the firms.3 More traditional
identification strategies rely on instrumental variables and fixed effects. Both strategies are not very popular
in recent work, because the former requires additional excluded instruments, like output and input prices,
and the latter requires the restrictive assumption l8 ( 9)C = l8 ( 9) . More recent identification strategies rely
on modeling firm behavior in a dynamic environment. The key assumptions are related to the timing of
firms’ input decisions and the information available to firms at the time of these decisions. There are three
popular estimation strategies: control function / proxy variable approach (Olley and Pakes 1996, Levinsohn
and Petrin 2003, and Ackerberg, Caves, and Frazer 2015), dynamic panel estimator (Arellano and Bond 1991,
Blundell and Bond 1998, and Blundell and Bond 2000), and first-order condition approach (McElroy 1987
and Gandhi, Navarro, and Rivers 2020). All these approaches derive moment conditions from the underlying
structural model and use these moments to estimate the model parameters by the generalized method of
moments (GMM). In the remainder of this paper, I will show how these three recent estimation strategies can
be adapted to the latent group structure in (5.1).4

5.2.2 Identifying Moment Conditions for Three Baseline Strategies

Because there are numerous modifications and extensions of the different estimation strategies, I focus on the
three corresponding baseline strategies. In particular, I briefly summarize the control function approach of
Ackerberg, Caves, and Frazer (2015), a dynamic panel estimator in spirit of Blundell and Bond (2000), and
the first-order condition approach of Gandhi, Navarro, and Rivers (2020). These three approaches provide a
good starting point and a sufficient ground to understand the estimator.

To keep the estimation strategies comprehensible and the notation simple, I restrict myself to the case
of three inputs (:8C , ;8C , and <8C ), and make the following assumptions. i) Firms are homogeneous in their
Cobb and Douglas (1928)-type production technology. ii) Each firm chooses its period C inputs based on
available information I8C , where l8C ∈ I8C is known before and n8C ∉ I8C is realized after each firm’s input
decisions. iii) Firms predict their future productivity by l8C = ℎ0

l (l8C−1) + [8C , where [8C is unknown before
C. iv) Input choices for capital and labor have dynamic implications, e. g. capital is accumulated by past
investment decisions and labor is partially predetermined by hiring and firing costs.

In the following, I denote the %-dimensional vector with model parameters as )0. Furthermore, I refer to
g(bC

8
, )0) as %′-dimensional vector of moments, where bC

8
B {b8C′ : C ′ ∈ {0, . . . , C}}, so that %′ ≥ % moment

conditions of the form E[g(bC
8
, )0)] = 0 can be used to estimate )0 by GMM.

2. It is known since Marschak and Andrews (1944) that when firms choose their inputs optimally, at least to some extent, l8 ( 9)C
and x8 ( 9)C are correlated, leading to inconsistent estimators of output elasticities (see Griliches and Mairesse 1999).

3. For instance, it is a common strategy to classify firms by an industry classification.
4. The traditional strategies can already be applied using the estimators presented in Section 2 and 3 of Su, Shi, and Phillips

(2016). The instrumental variable strategy requires a slight modification of their GMM estimation for linear panel structure models.
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Example 1. Ackerberg, Caves, and Frazer (2015) propose a control function approach for a specific type of
value-added production function, e. g.

H8C = V
0
0 + V

0
1:8C + V

0
2;8C + l8C + n8C = V

0
3<8C + l8C + n8C .

This is a reasonable specification if there is perfect complementarity between intermediate (<8C ) and the other
two inputs (:8C and ;8C ), e. g.

H8C = min(V0
0 + V

0
1:8C + V

0
2;8C , V

0
3<8C ) + l8C + n8C .

For identification, it is necessary to make two additional assumptions. First, firms choose <8C according to
<8C = ℎ

0
<(:8C , ;8C , l8C ). Second, ℎ0

<(:8C , ;8C , l8C ) must be a strictly monotonically increasing function in l8C ,
so that the only unobservable in this function (l8C ) can be expressed as l8C = ℎ0〈−1〉

< (:8C , ;8C , <8C ), where
ℎ

0〈−1〉
< (·) denotes the inverse function of ℎ0

<(·). Putting all together yields the following system of two
equations:

H8C = V
0
0 + V

0
1:8C + V

0
2;8C + ℎ

0〈−1〉
< (:8C , ;8C , <8C ) + n8C = ℎ0(:8C , ;8C , <8C ) + n8C ,

H8C = V
0
0 + V

0
1:8C + V

0
2;8C + ℎ

0
l (ℎ0(:8C−1, ;8C−1, <8C−1) − V0

0 − V
0
1:8C−1 − V0

2;8C−1) + E8C ,

where ℎ0(·) and ℎ0
l (·) are unknown functions that can be approximated by a sequence of sieves, e.

g. polynomials, and E8C B [8C + n8C . The model parameters can then be estimated by the following
identifying moment conditions: E[n8C | I8C ] = 0 and E[E8C | I8C−1] = 0. For instance, if ℎ0(:8C , ;8C , <8C ) =
U0

0 +U
0
1:8C +U

0
2;8C +U

0
3<8C and ℎl (l8C−1) = X0l8C−1 then )0 = (U0

0, U
0
1, U

0
2, U

0
3, V

0
0, V

0
1, V

0
2, X

0) and g(bC
8
, )0) =

(n8C , n8C :8C , n8C ;8C , n8C<8C , E8C , E8C :8C , E8C :8C−1, E8C ;8C−1, E8C<8C−1).

Example 2. A dynamic panel estimator in spirit of Blundell and Bond (2000) can be used to estimate the
model parameters by imposing ℎl (l8C−1) = X0l8C−1. To see this, consider the production function

H8C = V
0
0 + V

0
1:8C + V

0
2;8C + V

0
3<8C + l8C + n8C

and its reformulation

Δ0
X (H8C ) = (1 − X

0)V0
0 + V

0
1Δ

0
X (:8C ) + V

0
2Δ

0
X (;8C ) + V

0
3Δ

0
X (<8C ) + F8C ,

whereΔ0
X
(G8C ) B G8C−X0G8C−1 andF8C B [8C +Δ0

X
n8C . Under the assumption that<8C has dynamic implications,

e. g. due to adjustment costs as in Gandhi, Navarro, and Rivers (2020), or that firms intermediate input choices
are distorted, e. g. due to input market frictions as in Shenoy (2020), the moment conditions E[F8C | I8C−1]
can be used to estimate the model parameters. For instance, the identification strategy of Shenoy (2020)
implies )0 = (V0

0, V
0
1, V

0
2, V

0
3, X

0) and g(bC
8
, )0) = (F8C , F8C :8C , F8C ;8C , F8C :8C−1, F8C ;8C−1, F8C<8C−1).

Example 3. Gandhi, Navarro, and Rivers (2020) propose an estimation strategy for gross output productions
functions, e. g.

H8C = V
0
0 + V

0
1:8C + V

0
2;8C + V

0
3<8C + l8C + n8C .

For their baseline strategy, they assume that firms maximize their expected profits in a perfectly competitive
environment. The basic idea is to identify V0

3 from firms’ optimal intermediate input decisions. Afterwards
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they exploit the dynamic structure of the model to identify the remaining model parameters. Under the
additional assumption that "8C is a flexible input with a linear cost function %"C "8C , i. e. the choice of "8C is
undistorted and has no dynamic implications, firms choose "8C as the solution to

max
"8C ∈R>0

E[%.C exp(V0
0 + V

0
1:8C + V

0
2;8C + V

0
3<8C + l8C + n8C ) − %

"
C "8C | I8C ] ,

where %.C and %"C are common output and intermediate input prices, respectively. Reformulating the
corresponding first-order condition

%.8C exp(V0
0 + V

0
1:8C + V

0
2;8C + V

0
3<8C + l8C )V

0
3E

0 = %"8C "8C

and exploiting the dynamic structure yields the following system of two equations:

B8C = log(V0
3E

0) − n8C ,

HA8C = V
0
0 + V

0
1:8C + V

0
2;8C + ℎ

0
l (HA8C−1 − V

0
1:8C−1 − V0

2;8C−1) + [8C ,

where B8C B log((%"
8C
"8C )/(%.8C.8C )) is the logarithm of intermediate inputs expenditures divided by revenues,

E0 B E[exp(n8C ) | I8C ] = E[exp(n8C )] is a positive constant, and HA8C B H8C − V0
3<8C − n8C . One difference to

the other two strategies is that the researcher additionally needs data on prices (%.C and %"C ), or at least on the
ratio of prices (%"C /%.C ). The model parameters can then be estimated by the following identifying moment
conditions: E[n8C | I8C ] = 0, E[exp(n8C )] = E0, and E[[8C | I8C−1] = 0. For instance, if ℎl (l8C−1) = X0l8C−1

then )0 = (V0
3, E

0, V0
0, V

0
1, V

0
2, X

0) and g(bC
8
, )0) = (n8C , exp(n8C ) − E0, [8C , [8C :8C , [8C ;8C , [8C H

A
8C−1).

5.3 Identifying Latent Group Structures

5.3.1 Penalized Generalized Method of Moments Estimator

To identify the unknown latent group structure, I suggest to use the penalized GMM (PGMM) estimator of
Su, Shi, and Phillips (2016). The authors propose a novel Lasso technique where an additive-multiplicative
penalty term is added to a GMM objective function. The basic idea of their penalization approach is to
achieve classification by shrinking firm-specific model parameters 00

8
to group-specific parameters )0

9 . In the
following, I show how the PGMM approach can be used to estimate production functions with latent group
structures. For the moment, I assume that the true number of groups �0 is known. However, since �0 is rarely
known in practice, I will show how to estimate it in the next subsection. The full estimation procedure consists
of three subsequent steps. First, the firm- and group-specific model parameters are estimated by PGMM.
Second, based on the PGMM estimates, each firm is assigned to one latent group. Third, the group-specific
model parameters are re-estimated by a Post-Lasso estimator that estimates a separate production function for
each of the estimated latent groups.

First, I suggest to estimate 00
8
and )0

9 by minimizing the following PGMM objective function:

&�
0

_ (�,�) B
1
#

#∑
8=1

g8 (b)8 , 08) ′g8 (b)8 , 08) + _
� 0∏
9=1
‖08 − ) 9 ‖ ,
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where � B (01, . . . , 0# ), � B ()1, . . . , ) � 0), _ > 0 is a tuning parameter, and

g8 (b)8 , )) B
1
)

)∑
C=1

g(bC8 , )) . (5.2)

Some examples for 08 and g(bC
8
, 08) are given in Section 5.2.2, e. g. 08 = (V38 , E8 , V08 , V18 , V28 , X8) and

g(bC
8
, 08) = (n8C , exp(n8C ) − E8 , [8C , [8C :8C , [8C ;8C , [8C HA8C−1). The first part of the sum in&� 0

_
(�,�) is the GMM

objective function for estimating the firm-specific model parameters, and the second part is the penalty term
scaled by _. The former is minimal when the moments are close to zero, whereas the latter is minimal when
08 is close to any ) 9 . To put it simple, while the GMM part ensures that the model fits the data, the penalty
term constraints the firm-specific model parameters to be close to any group-specific parameter.

Second, I assign all firms to one of �0 latent groups. For this purpose, I use a classification rule proposed
by Su, Shi, and Phillips (2016):

�̂ 9 B {8 ∈ {1, . . . , #} : min({‖0̂8 − )̂ 9′ ‖ : 9 ′ ∈ {1, . . . , �0}) = ‖0̂8 − )̂ 9 ‖} for 9 ∈ {1, . . . , �0} , (5.3)

where 0̂8 and )̂ 9 are the firm- and group-specific PGMM estimators, respectively. Intuitively, firms are
assigned to the latent group to which they are most similar, where similarity is defined here as the euclidean
distance between 0̂8 and )̂ 9 . Note that even if all firms were correctly classified, it does not follow that
�̂ 9 = �

0
9
, because the classification rule only ensures that �̂ 9 ∈ {�0

1, . . . , �
0
� 0}. To keep the notation simple,

I pretend that �̂ 9 = �
0
9
follows.

Third, I suggest to estimate )0
9 by the following Post-Lasso estimator:

)̃ 9 ∈ arg min
) 9 ∈R%

( 1
|�̂ 9 |

∑
8∈�̂ 9

g8 (b)8 , ) 9)
) ′

W 9

( 1
|�̂ 9 |

∑
8∈�̂ 9

g8 (b)8 , ) 9)
)
, (5.4)

where W 9 is a positive definite %′ × %′ weighting matrix that may depend on the data. Note that )̃ 9 is simply
a standard GMM estimator applied to the subsample of firms that are member of the estimated group 9 . Thus,
the estimation strategy is essentially based on the idea that if I can correctly assign all firms, my Post-Lasso
estimator has the same properties as an infeasible oracle estimator that exploits the unknown latent group
structure.

Su, Shi, and Phillips (2016) develop a limiting theory for a PGMM estimator that can be applied to
dynamic linear panel models with endogeneity, such as those that are typically estimated by the Arellano
and Bond (1991) estimator. Under asymptotics where # and ) pass jointly to infinity, but not necessary at
the same rate, the authors show that the PGMM estimator is able to assign all firms belonging to a given
latent group to the same group with probability approaching one. This classification consistency property
allows them to prove that the resulting Post-Lasso estimator is asymptotically equivalent to the infeasible
oracle estimator. Because of the close relationship between the dynamic panel and the other approaches
for production function estimation, as noted by Ackerberg, Caves, and Frazer (2015), I conjecture, that the
properties derived by Su, Shi, and Phillips (2016) also hold for my proposed nonlinear estimator, such that the
asymptotic distribution of )̃ 9 can be approximated by N()0

9 ,V 9) for all 9 ∈ {1, . . . , �0}.5 For instance, a

5. Although the production function itself is linear, the assumption about the evolution of productivity causes the entire model to
become nonlinear. A rigorous proof for my suggested estimation strategy will be added later. My conjecture is further supported by
simulation experiments in Section 5.4.

84



White (1980)-type heteroskedasticity consistent estimator for the covariance is

Ṽ 9 B
1
|�̂ 9 |)

(
(�̃′9W 9 �̃ 9)−1�̃

′
9W 9
̃ 9W 9 �̃ 9 (�̃

′
9W 9 �̃ 9)−1

)
, (5.5)

where

�̃ 9 B
1
|�̂ 9 |)

∑
8∈�̂ 9

)∑
C=1

mg(bC
8
, )̃ 9)

m)̃ 9
and


̃ 9 B
1
|�̂ 9 |)

∑
8∈�̂ 9

)∑
C=1

g(bC8 , )̃ 9)g(bC8 , )̃ 9) ′ .

Other estimators, such as the heteroskedasticity and autocorrelation consistent estimator of Newey and West
(1987), are obtained by modifying 
̃ 9 . Note that the choice of the weighting matrix W 9 affects the efficiency
of the GMM estimator only when the number of moments %′ is larger than the number of model parameters
%. Hansen (1982) and Hansen and Singleton (1982) show that choosing W 9 = 
−1

9 yields the most efficient
GMM estimator in this case. However since 
−1

9 is not known, the authors propose a two-step procedure in
which 
−1

9 is estimated in the first step. For % = %′, W 9 = 1% is a standard choice.
Finally, from a practical point of view, two things are particularly important. First, # and ) have to be

sufficiently large. In particular, a large number of time periods reduces the influence of a single firm-specific
moment in the objective function, which contributes significantly to the classification accuracy. Second, the
tuning parameter _ must satisfy certain conditions that hold, for instance, if _ ∈ {)−0 : 0 ∈ (0, 0.5)}.

Remark 1. The estimation procedure can be readily used for unbalanced panels. I assume that the observations
for each firm are consecutive, i. e. {b8C : 8 ∈ {1, . . . , #}, C ∈ {C8 , . . . , )8}, 0 ≤ C8 < )8 ≤ )}. Adjusting the
estimators requires only replacing (5.2) with

g8 (b)88 , )) =
1

)8 − C8

)8∑
C=C8+1

g(bC8 , )) . (5.6)

Unfortunately, the asymptotic theory developed by Su, Shi, and Phillips (2016) is only for balanced panels.
Their asymptotic theory has recently been extended by Su, Wang, and Jin (2019) to unbalanced panels. From
a practical point of view, the crucial difference is that min({)8 − C8 : 8 ∈ 1, . . . , #}) has to be sufficiently large
in unbalanced panels.

Remark 2. The classification rule presented in (5.3) ensures that all firms are assigned to a latent group. It is
also possible to use a stricter rule that may leave some of the firms unclassified, e. g.

�̂ 9 B {8 ∈ {1, . . . , #} : min({‖0̂8 − )̂ 9′ ‖ : 9 ′ ∈ {1, . . . , �0}) = ‖0̂8 − )̂ 9 ‖ ≤ Y} for 9 ∈ {1, . . . , �0} , (5.7)

where Y is small positive constant. Intuitively, firms are only assigned to the most similar group if the distance
is sufficiently small. This stricter rule could help to deal with outlier firms and thus improve the finite sample
properties of the Post-Lasso estimator. For clarification, the unclassified firms are simply excluded from the
Post-Lasso estimation.
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5.3.2 Determining the Number of Latent Groups

So far, I have assumed that the true number of latent groups is known to the researcher. Since this is very
unlikely in practice, I follow Su, Shi, and Phillips (2016) and suggest to estimate �0 by minimizing the
following BIC-type information criterion:

IC? (�, _) B log
( 1
#)

�∑
9=1

∑
8∈�̂ 9

)∑
C=1
(Ã8 ( 9)C (�, _))2

)
+ �%?(#,)) , (5.8)

where � is a guess for the number of latent groups, Ã8 ( 9)C (�, _) are the corresponding Post-Lasso residuals
of an estimation given _ and �, e. g. Ã8 ( 9)C (�, _) = [̃8 ( 9)C (�, _) + ñ8 ( 9)C (�, _), and ?(#,)) is a penalty term
that satisfies ?(#,)) → 0 and #) ?(#,)) → ∞ as #,) → ∞. Su, Shi, and Phillips (2016) suggest two
different penalty terms: ?(#,)) = 2/3 (#))−0.5 and ?(#,)) = 0.25 log(log()))/) . Further examples of
penalty terms can be found in Bai and Ng (2002), Lin and Ng (2012), and Bonhomme and Manresa (2015).
Thus, given an appropriate choice of _, the number of latent groups can be estimated as follows:

�̂? (_) ∈ arg min
� ∈{1,...,� }

IC? (�, _) , (5.9)

where � is a known upper bound on the number of latent groups.

Remark 3. As noted by Su, Shi, and Phillips (2016), the information criterion can also be used to jointly
determine _ and �, e. g.

�̂? ∈ arg min
_∈L

IC? (�̂? (_), _) , (5.10)

where L B {)−0 : 0 ∈ (0, 0.5)}. In practice, a grid of candidate values between 0 and 0.5 can be used to
keep the number of estimates tractable, e. g. 0 ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}.

5.3.3 Estimation Algorithm

In general, the objective function is not jointly convex in � and � and therefore very costly to minimize. To
reduce the computational costs, Su, Shi, and Phillips (2016) propose an iterative algorithm that exploits the
specific structure of the optimization problem. Their basic idea is to split the problem into a sequence of �
convex subproblems that are solved sequentially until convergence. The corresponding objective function of
the 9-th subproblem is

&
〈 9 , � 〉
_
(� 9 , ) 9) B

1
#

#∑
8=1

g8 (b)8 , 0
9

8
) ′g8 (b)8 , 0

9

8
) + _‖0 9

8
− ) 9 ‖Z 98 , (5.11)

where � 9 B (0 91, . . . , 0
9

#
), � = ()1, . . . , ) � ), and Z 98 B

∏�
9′≠ 9 ‖0

9′

8
− ) 9′ ‖. Note that ' 8 B (Z

9

1 , . . . , Z
9

#
) is

the part of the additive-multiplicative penalty term that is fixed when solving the 9-th subproblem. Their
entire algorithm can be sketched as follows.

Algorithm 1. Iterative Algorithm of Su, Shi, and Phillips (2016)

Step 0. Given _ and �, e. g. _ = )−0.25 and � = �0, initialize {� 9 : 9 ∈ {1, . . . , �}} and �. For instance,
natural candidates for initial values are �1 = . . . = �� = � 〈0〉, where � 〈0〉 is a % × # matrix whose
8-th column is a time series estimate of firm 8’s production function, and � = 0%×� .
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Step 1. For each 9 ∈ {1, . . . , �}, compute ' 8 given the current values of {� 9 : 9 ∈ {1, . . . , �}} and �, and
afterwards update � 9 and ) 9 , i. e. the 9-th column in �, by solving the 9-th subproblem.

Step 2. Repeat Step 1 until convergence. For instance, stop if |& 〈A 〉1 − & 〈A−1〉
1 |/(& 〈A−1〉

1 + 1) < Y, where
&
〈A 〉
1 B

∑�
9=1&

〈 9 , � 〉
_
(� 9 〈A 〉, ) 〈A 〉

9
) is the sum of the function values of all subproblems in the A-th

iteration and Y is a small positive constant.

Although convexity significantly reduces the computational cost, the overall optimization is still challenging
because the solution of each subproblem in Step 1 involves (# + 1) × % parameters. For instance, in my
empirical illustration, I consider a panel of # = 571 firms and a production function with % = 6 model
parameters, which turns solving each subproblem into a high-dimensional optimization problem (i. e. 3,432
parameters per subproblem). To further reduce the computational costs, especially for large # , I suggest to
exploit the separable structure of (5.11). The idea is that instead of minimizing jointly over � and ) 9 , I can
alternate between solving two optimization problems, i. e. a minimization over � 9 holding ) 9 fixed and a
minimization over ) 9 holding � 9 fixed. The second optimization problem involves only % parameters and
can be interpreted as Fermat-Weber location problem for which there are numerous efficient algorithms, e.
g. the fixed-point algorithm of Weiszfeld (1937). Unfortunately, the first minimization is still over # × %
parameters. However, holding ) 9 fixed, the first minimization problem can be perfectly separated into #
independent optimization problems involving only % parameters. My suggested algorithm is essentially an
Alternate Convex Search (see Hastie, Tibshirani, and Wainwright 2015, chapter 5.9) and can be sketched as
follows.

Algorithm 2. Alternate Convex Search for Step 1 in Algorithm 1

Step 0. Given _ and 9 ∈ {1, . . . , �}, initialize � 9 and ) 9 .

Step 1. Given � 9 update ) 9 as

arg min
)∈R%

_

#

#∑
8=1
‖0 9
8
− ) ‖Z 9

8
.

Step 2. For each 8 ∈ {1, . . . , #}, given ) 9 update 0 98 as

arg min
0∈R%

g8 (b)8 , 0) ′g8 (b)8 , 0) + _‖0 − ) 9 ‖Z
9

8
.

Step 3. Repeat Step 1 and Step 2 until convergence. For instance, stop if |& 〈A 〉2 −& 〈A−1〉
2 |/(& 〈A−1〉

2 + 1) < Y,
where & 〈A 〉2 B &

〈 9 , � 〉
_
(� 9 〈A 〉, ) 〈A 〉

9
) is the function value of the 9-th subproblem in the A-th iteration

and Y is a small positive constant.

Remark 4. First, although each minimization problem in Step 2 of Algorithm 2 is convex, the associated
objective function is not differentiable due to the Euclidean norm in the penalty function. For these types
of minimization problems, there are special optimization algorithms, such as those presented in Hastie,
Tibshirani, and Wainwright (2015, chapter 5). Second, because the # optimization problems are independent
of each other, they can also be easily parallelized.
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5.4 Simulation Experiments

To analyze the classification accuracy and statistical properties of my proposed estimator, I adjust the
representative firm model of Syverson (2001) to generate theory-consistent data of firms with latent group
structures. His model has the advantage that each firm’s decisions problem can be solved analytically and
thus avoids the computational obstacles of using numerical tools. This specific representative firm model has
been widely used and extended in the related literature, for instance by van Biesebroeck (2007), Ackerberg,
Caves, and Frazer (2015), and Collard-Wexler and De Loecker (2016).

Next, I describe the representative firm model used to simulate balanced panels of # = 200 firms. Each
firm is observed for ) time periods and belongs to one of �0 = 3 latent groups. Each group consists of # 9
firms. All firms are homogeneous within a group, but differ both in their parameter configuration and in their
relative occurrence between groups. At the beginning of period C, a firm 8( 9) with rational expectations faces
the following input decisions problem:

max
"8 ( 9)C , �8 ( 9)C

E
[ ∞∑
C=0

1C (.8 ( 9)C − "8 ( 9)C − q8 �2
8 ( 9)C/2) | I8 ( 9)C

]
(5.12)

subject to

.8 ( 9)C B  
V 9

8 ( 9)C"
W 9

8 ( 9)C exp(l8 ( 9)C + n8 ( 9)C ) ,

 8 ( 9)C B (1 − 3) 8 ( 9)C−1 + �8 ( 9)C−1 ,

l8 ( 9)C B U 9 + X 9l8 ( 9)C−1 + [8 ( 9)C ,

where .8 ( 9)C ,  8 ( 9)C , "8 ( 9)C , �8 ( 9)C are output, capital, intermediate input, and investment, I8 ( 9)C is a set of
information available at the beginning of period C, l8 ( 9)C is a persistent and anticipated productivity shock, and
n8 ( 9)C is a productivity shock realized after each firm’s input decision. Furthermore, log(q−1

8
) ∼ iid. N(0, 1),

[8 ( 9)C ∼ iid. N(0, f2
[ ( 9) ), n8 ( 9)C ∼ iid. N(0, f2

n ( 9) ), l8 ( 9)0 ∼ iid. N(U 9/(1 − X 9), f2
[ ( 9)/(1 − X

2
9
)), and

 8 ( 9)0 B 0# 9 . All model parameters are described and defined in Table 5.4.1.

Table 5.4.1: Model Parameters: Description and Definition

Parameter Description Latent Group

1 2 3

Heterogeneous Parameters:

# 9/# Relative Occurrence 0.30 0.40 0.30
W 9 Output Elasticity of Intermediate Input 0.35 0.50 0.65
V 9 B 1 − W 9 Output Elasticity of Capital 0.65 0.50 0.35
fn ( 9) Standard Deviation of Ex-Post Productivity Shock 0.02 0.04 0.02
U 9 Constant of AR(1) Process 0.00 0.20 0.40
X 9 Slope Parameter of AR(1) Process 0.90 0.80 0.70
f[ ( 9) Standard Deviation of Innovation in AR(1) Process 0.01 0.01 0.01
Homogeneous Parameters:

1 Discount Factor 0.985
3 Depreciation Rate 0.100

I briefly summarize the core features of my model. Firms maximize their expected future profits with
respect to their intermediate input and investment choices. Future profits are discounted and all firms face
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firm-specific but time constant quadratic capital adjustment costs, as in Ackerberg, Caves, and Frazer (2015).
Within a latent group, all firms share the same time-homogeneous Cobb-Douglas production function with
constant returns to scale. The current capital stock is accumulated through a dynamic process determined by
depreciation and past investment decisions. Productivity is additively separable and can be decomposed into
a persistent component and an ex-post shock. The persistent component is modeled as exogenous AR(1)
process.

Next, I present the optimal input decisions of firm 8( 9) at time C. Because the intermediate input is fully
flexible to adjust, i. e. there are no adjustment costs or other dynamic implications, its optimal choice follows
directly from the first-order condition:

"∗
8 ( 9)C B (W 9 exp(l8 ( 9)C )E 9)

1
V9  8 ( 9)C ,

where E 9 = exp(f2
n ( 9)/2). Using the Euler equation for investment along with forward substitution yields the

following optimal investment decision:

�∗
8 ( 9)C B 1V 9 (W 9E 9)

W9

V 9 q−1
8

∞∑
g=0

(
(1(1 − 3))g exp

(U 9 ∑g
B=0 X

B
9
+ Xg+1

9
l8 ( 9)C

V 9
+
f2
[ ( 9)

∑g
B=0 X

2B
9

2V2
9

))
.

As first noted by Syverson (2001), the constant returns to scale assumption together with convex adjustment
costs ensure that the capital stock drops out of the Euler equation, leading to a fully deterministic optimal
investment decision. To ensure that all firms are sampled from their steady state distribution, I extend each
time span by 1,000 initial periods that are dropped from the final sample. For clarification, after dropping the
initial periods, the final sample consists of # () + 1) observations. The additional time period per firm is
used to generate lagged values of the output and input variables so that I can use #) observations for the
estimation. Because the optimal investment decision is a convergent series, I approximate it considering only
the first 1,001 terms of the sum.6

Because the length of the panel is the key determinant of the classification accuracy of my estimator, I
focus on the analysis of panels with different time spans ) ∈ {15, 25, 50} and a fixed number of firms # = 200.
The estimation is based on the identifying moments proposed by Gandhi, Navarro, and Rivers (2020). I use
moments implied by the functional forms in the data generating process, i. e. a Cobb-Douglas production
function, an AR(1) process for the persistent component of productivity, and B8 ( 9)C = <8 ( 9)C − H8 ( 9)C . However,
I do not exploit the constant returns to scale assumption that would allow me to obtain both output elasticities
from the share regression. My analysis consists of two parts. First, I compare the accuracy of my proposed
estimator for the number of latent groups for two specifications of the penalty term taken from Su, Shi, and
Phillips (2016). Second, I assume that � = �0 = 3 is known and compare the finite sample performance of
my post-lasso estimator (Post-Lasso) to an infeasible oracle estimator (Oracle) that exploits the true group
membership of each firm.7 For brevity, I restrict my analysis to results for _ = )−0.25.8 All reported results

6. Formally, I split the series into two parts:

�∗
8 ( 9)C ≈ 28 ( 9)

( 1000∑
g=0

08 ( 9)g +
∞∑

g=1001
08 ( 9)g

)
,

where 28 ( 9) is a factor in front of the series and 08 ( 9)g are the terms of the series. I assume that the first 1,001 terms are sufficient to
approximate the optimal level of investment and thus that all remaining terms are negligible small.

7. For clarification, Oracle is simply the estimator of Gandhi, Navarro, and Rivers (2020) applied separately to each latent group.
8. In a preliminary analysis, I tried different candidate values for _ ∈ {)−0 : 0 ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}}.
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are bases on 100 simulated samples for each ) .
In the first part of my analysis, I consider � ∈ {1, . . . , 5} and the following specifications of the penalty

terms: ?1,A (#,)) B A (#))−0.5 and ?2,A (#,)) B A log(log()))/) , where A ∈ {0.25, 0.5, 0.75, 1} is a finite
sample adjustment factor.9 To compare the selection accuracy, I compute the following quantities: expected
value and probabilities to select exactly or at least �0 = 3 latent groups. Table 5.4.2 reports the results.
For ) ∈ {25, 50}, all estimators perfectly predict the true number of latent groups. Only in the shortest

Table 5.4.2: Point Estimation of �̂? (_)

) Quantity ?1,A (#,)) with A = ?2,A (#,)) with A =
0.25 0.5 0.75 1 0.25 0.5 0.75 1

15 E[�̂? (_)] 3.05 3.00 3.00 3.00 3.00 3.00 2.94 2.04
Pr(�̂? (_) = 3) 0.95 1.00 1.00 1.00 1.00 1.00 0.94 0.04
Pr(�̂? (_) ≥ 3) 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.04

25 E[�̂? (_)] 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
Pr(�̂? (_) = 3) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr(�̂? (_) ≥ 3) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 E[�̂? (_)] 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
Pr(�̂? (_) = 3) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr(�̂? (_) ≥ 3) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: # = 200, �0 = 3, _ = )−0.25, and � ∈ {1, . . . , 5}; �̂? (_) is defined in (5.9) with
?1,A (#,)) = A (#))−0.5 and ?2,A (#,)) = A log(log()))/) ; Results are based on 100
simulated samples.

panel ) = 15, I find noticeable differences in the performance. While the estimator with ?1,A (#,)) slightly
overestimates the number of latent groups for small A, the estimator with ?2,A (#,)) underestimates it for
large A. However, given a suitable adjustment factor, estimators based on both specifications of the penalty
term are able to perfectly predict the number of latent groups. In this particular example, my simulation
experiments suggest a larger adjustment factor for ?1,A (#,)) and a smaller factor for ?2,A (#,)), e. g. A = 1
for the former and A = 0.25 for the latter.

In the second part of my analysis, I take the true number of latent groups as given and compare the
finite sample performance of Post-Lasso with a benchmark estimator Oracle. To evaluate the finite sample
performance, I compute the following quantities: bias, standard deviation, root mean squared error, ratio of
standard error and standard deviation, and coverage rates of confidence intervals with 95% nominal level.
The statistics are computed separately for each latent group. The bias, standard deviation, and root mean
squared error are all relative to the group specific true parameter value in percent. Because the performance of
Post-Lasso is directly related to the classification accuracy in the first stage, I additionally report the proportion
of correctly classified firms. To keep the analysis concise, I focus on the output elasticities $ B (W 9)39=1
and # B (V 9)39=1, which are parameters of interest in most studies. Further, I follow Su, Shi, and Phillips
(2016) and report aggregate rather than latent group specific statistics. Each aggregate statistic is the sum of
the corresponding group specific statistics weighted by their relative occurrence. For instance, I compute
the relative bias in percent as 100/# ∑�

9=1 # 9 ( ¯̂W 9 − W 9)/W 9 , where ¯̂W 9 is the average estimate of W 9 over all

I found that the classification accuracy is very robust to different choices of _.
9. I also tried some of the penalty terms suggested by Bai and Ng (2002), but I did not find any better alternatives.
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simulated samples. Table 5.4.3 reports the results. I start with the classification accuracy of Post-Lasso. The

Table 5.4.3: Classification Accuracy and Point Estimation of # and $

) Quantity Post-Lasso Oracle (Infeasible)

$ # $ #

15 % of Correct Classification 0.9959 -
Bias (relative in %) -0.0476 0.8605 -0.0439 -0.0491
Standard Deviation (relative in %) 0.5304 4.3252 0.5117 3.6788
Root Mean Squared Error (relative in %) 0.5301 4.4658 0.5136 3.6775
Standard Error / Standard Deviation 0.9891 0.9513 1.0184 1.0112
Coverage Rate (nominal level = 0.95) 0.9450 0.9340 0.9560 0.9410

25 % of Correct Classification 0.9995 -
Bias (relative in %) 0.0194 0.1695 0.0222 0.0216
Standard Deviation (relative in %) 0.4087 2.8645 0.4053 2.7452
Root Mean Squared Error (relative in %) 0.4104 2.8554 0.4068 2.7367
Standard Error / Standard Deviation 0.9950 1.0349 1.0033 1.0662
Coverage Rate (nominal level = 0.95) 0.9690 0.9560 0.9720 0.9590

50 % of Correct Classification 1.0000 -
Bias (relative in %) -0.0083 -0.0260 -0.0083 -0.0260
Standard Deviation (relative in %) 0.2696 2.0006 0.2696 2.0006
Root Mean Squared Error (relative in %) 0.2689 2.0048 0.2689 2.0048
Standard Error / Standard Deviation 1.0509 1.0339 1.0509 1.0339
Coverage Rate (nominal level = 0.95) 0.9570 0.9500 0.9570 0.9500

Note: # = 200, � = 3, and _ = )−0.25; Post-Lasso is defined in (5.4), Oracle exploits the true latent group
membership of each firm; results are based on 100 simulated samples.

fractions of correctly classified firms in the first stage are always close to one, even in the shortest panel ) = 15.
As expected, the classification accuracy improves with increasing ) . For ) = 50, the fraction of correctly
classified firms reaches one, which means that Post-Lasso and Oracle are identical for sufficiently large ) .
The very precise classification is also reflected in the finite sample properties. Post-Lasso’s performance is
close to that of the benchmark estimator Oracle and improves as ) increases. This is expected because high
classification accuracy means that there are very few misclassified firms, which in turn have little impact on
the finite sample performance of Post-Lasso. In general, I find biases smaller than 1%, ratios of standard
errors and standard deviation near one, and coverage rates close to their nominal values. The misclassification
in the first step mainly results in larger dispersions. Therefore, the largest differences in performance are also
apparent in the standard deviation and the root mean squared error.

5.5 Empirical Illustration

It has become standard practice to estimate separate production functions for each industry. In most studies,
industries are delineated by an industry classification, like ISIC, SIC, NACE, or NAICS.10 The underlying
assumption here is that firms operating in the same economic environment, like an industry, use the same
production technology. Although the ex-ante classification by industry is very convenient and intuitive,
the question arises whether this classification is sufficient to account for latent firm heterogeneity. I will

10. Some recent and influential examples of these studies include Autor et al. (2020) and De Loecker, Eeckhout, and Unger (2020).
The former use a 2-digit SIC and the latter use a 2- and 4-digit NAICS classification to define an industry.
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demonstrate the usefulness of my estimator by investigating this question. More specifically, I will use my
estimator to identify latent firm heterogeneity in the data and then analyze to which extent the identified group
structure matches the industry classification.

I use a balanced sub sample of the Chilean panel data set used by Gandhi, Navarro, and Rivers (2020).11
Their data set stems from the Instituto Nacional de Estadística de Chile and includes all manufacturing plants
with more than ten employees in the five largest industrial sectors, i. e. food products (311), textiles (321),
apparel (322), wood products (331), and fabricated metals (381), that were in operation between 1979 and
1996.12 In addition to the output and input variables (.8C ,  8C , !8C , "8C , (8C ), the data set contains further
firm characteristics. I know whether a firm is an exporter, is an importer of intermediate goods, pays above
median industry wages, or is an advertiser. Further, .8C is measured as deflated revenue,  8C is the capital
stock constructed by the perpetual inventory method, !8C is a weighted sum of unskilled and skilled number of
workers, "8C is measured as the sum of several intermediate input expenditures, e. g. raw materials, energy,
and services, and (8C is intermediate input expenditure relative to revenue.13 My final sample consists of
# = 571 Chilean firms in five industries that are consecutively observed for ) = 17 years.

To identify latent firm heterogeneity, I consider the following time-homogeneous but possibly group-
heterogeneous Cobb-Douglas production function in natural logs:

H8 ( 9)C = V0 9 + V1 9 :8 ( 9)C + V2 9 ;8 ( 9)C + V3 9<8C + l8 ( 9)C + n8 ( 9)C , (5.13)

l8 ( 9)C = X0 9 + X1 9l8 ( 9)C−1 + [8 ( 9)C ,

where the subscript 8( 9) indicates that a firm 8 belongs to a latent group 9 , l8 ( 9)C is a persistent productivity
shock that follows a stationary AR(1) process, [8 ( 9)C is an unexpected innovation, and n8 ( 9)C is an ex-post
productivity shock. To estimate the latent group membership and the output elasticities, I use the identifying
moments of Gandhi, Navarro, and Rivers (2020) adjusted to my functional form assumptions.14

Because the true number of latent groups �0 is unknown, I have to estimate it. Further, I need to
choose a suitable tuning parameter _. To do both simultaneously, I use two information criteria: IC1
(?(#,)) = (#))−0.5 ≈ 0.0101) and IC2 (?(#,)) = 0.25 log(log()))/) ≈ 0.0153), with the corresponding
specification of the penalty terms in parentheses. I compute both criteria for all combinations of � ∈ {1, . . . , 8}
and _ ∈ {)−0 : 0 ∈ {0.2, 0.25, 0.3, 0.35, 0.4}}, where � = 1 refers to absence of latent firm heterogeneity.
Figure 5.5.1 visualizes the results. Both information criteria suggest to estimate (5.13) with three latent
groups and 0 = 0.4. Thus, there is strong evidence for the presence of a latent group structure, i. e. latent
firm heterogeneity, as indicated by the significantly improved fit of the structural model (5.13) for � > 1. I
follow the suggestion and choose � = 3 and _ = 17−0.4 ≈ 0.3220 for the remaining part of the analysis.

Although I find that the estimated number of latent groups is smaller than the number of industry
sectors, it is still unclear to which extent the estimated latent group structure matches the three-digit industry
classification. The chord diagram in Figure 5.5.2 visualizes the matching. First, I find firms from all five
industries in each of the three latent groups. Or, to say it conversely, I find firms from three latent groups in
each of the five industries. Second, I find that firms from different industries split very unequally among the
latent groups. Firms in industries 311 and 381 split mainly between two latent groups, whereas firms in the

11. Previous studies that also use the Chilean data set include Pavcnik (2002) and Levinsohn and Petrin (2003).
12. The data are part of the replication package provided by the authors. ISIC Rev. 2 industry classification.
13. Gandhi, Navarro, and Rivers (2020) provide further details about the construction of their data set in footnote 42.
14. These are exactly the moments defined at the end of Example 3 in Section 5.2.2.
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Figure 5.5.1: Information Criterion 1 and 2 for Different Values of _ and �
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Note: # = 571, ) = 17, _ = )−0 , and � ∈ {1, . . . , 8}; IC1 and IC2 are computed based on (5.8) with ?(#,)) = (#))−0.5 ≈ 0.0101
and ?(#,)) = 0.25 log(log()))/) ≈ 0.0153, respectively.
Source: Gandhi, Navarro, and Rivers (2020).

Figure 5.5.2: Relationship between Ex-Ante and Data-Driven Classification
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Source: Gandhi, Navarro, and Rivers (2020).
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other industries split more evenly between all three latent groups. For instance, about three quarters of the
firms in industry 311 are assigned to Group 2. Interestingly, three quarters of the firms in Group 2 are also
from industry 311. Thus, there is evidence that an ex-ante classification by industry sectors is not sufficient to
fully address the latent firm heterogeneity in the data.15

Finally, I analyze to which extent the estimates from the ex-ante (Industry Classification) and data-driven
classification (Post-Lasso) differ. I start with the evaluation of the model fit. To do this, I compare the
mean squared residuals (MSR) for both classification approaches. The residuals are defined as [̂8 ( 9)C + n̂8 ( 9)C .
The MSR for Industry Classification (≈ 0.0703) is larger than the MSR for Post-Lasso (≈ 0.0528). Thus,
the data-driven classification improves the model fit and does so even with fewer estimated parameters.
Next, I analyze the differences in the estimated output elasticities and how these differences translate into
heterogeneity in total factor productivity (TFP).16 I follow Olley and Pakes (1996) and estimate TFP in levels
as exp(H8 ( 9)C − V̂1 9 :8 ( 9)C − V̂2 9 ;8 ( 9)C − V̂3 9<8 ( 9)C ). I analyze the heterogeneity in TFP through excluded firm
characteristics. I use a pseudo-poisson model with the following conditional mean specification:

exp(c1 9 trade8 ( 9)C + c2 9 highwage8 ( 9)C + c3 9 advertiser8 ( 9)C + U8 ( 9) + WC ) , (5.14)

where trade8 ( 9)C B max(exporter8 ( 9)C , importer8 ( 9)C ), highwage8 ( 9)C , and advertiser8 ( 9)C are indicator variables
equal to one, if firm 8( 9) at time C engages in international trade, either through exporting and/or importing,
pays above median wages, and is an advertiser, respectively, and U8 ( 9) and WC are firm and year fixed effects.
Table 5.5.1 reports the estimates. I find sizable differences, relative to the magnitude of the standard errors,
between the estimated output elasticities for Industry Classification and Post-Lasso. Nevertheless, there are
some similarities between the estimates for Industry 311 and Group 2 and the estimates for Industry 381 and
Group 3. This similarities might be explained by the large overlap in the ex-ante and data-driven classification
of these firms. The estimated capital elasticities for Post-Lasso are substantially larger than those for Industry
Classification whereas the ranges of the estimated labor and intermediate input elasticities are wider. The
differences in the estimated output elasticities also lead, in some cases, to different conclusions about the
heterogeneity in TFP. For Industry 331, I find negative but insignificant TFP differences between firms that
engage in international trade and those who do not. The differences in all other industries are positive, but
only for industry 321 significantly different from zero.17 The remaining conclusions about heterogeneity in
TFP remain qualitatively the same for both classification approaches. For instance, I find that firms with above
median wages are significantly more productive, while firms that advertise are not significantly different from
those that do not advertise.

15. This is in line with Kasahara, Schrimpf, and Suzuki (2017) who report substantial firm heterogeneity even in narrowly defined
industries using Japanese data.
16. In addition to output elasticities, TFP is another quantity of interest in some empirical studies. More specifically, these studies

aim to better understand the persistent differences in TFP that are frequently reported in related studies (see Bartelsman and Doms
2000 and Syverson 2011 for comprehensive overviews).
17. This is surprising, as there is wide agreement that firms that engage in international trade, such as exporters, are more productive.

Two reasons mentioned by Bernard and Wagner (1997) and Bernard and Jensen (1999) are self selection into exporting, e. g. because
entering foreign markets is costly, and learning by exporting, e. g. knowledge spillovers.
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5.6 Concluding Remarks

I proposed a fully data-driven estimation procedure for production functions with latent group structures. My
approach combines recent identification strategies with the classifier-Lasso of Su, Shi, and Phillips (2016).
Simulation experiments show good finite sample properties and the practical relevance is illustrated by an
empirical example.

My estimation procedure assumes that the model parameters are time-homogeneous within a latent group.
This assumption could be relaxed by introducing smooth time-varying model parameters as in Su, Wang,
and Jin (2019). Another possible extension could be to think of the model parameters not as group-specific
fixed constants, but as firm-specific random coefficients with unknown distribution function. Group-specific
estimates of the model parameters could then be considered as representatives point, i. e. support points,
of this unknown distribution. The challenge here would be to derive a limiting theory that incorporates the
resulting approximation error.
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