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Abstract

We are interested in solving hyperbolic conservation laws that are models for transport
phenomena for example in computational fluid dynamics. In practical applications,
the domain of interest is typically not shaped simply but is rather complex. To dis-
cretize these complex geometries, we use a Cartesian grid which cells are cut along the
boundary. The resulting cut cells can have arbitrary shapes and sizes.
A numerical method for conservation laws should be accurate, stable and conser-

vative. Many methods have been proposed that deal with these aspects for cut cells.
Each method has its own advantages and disadvantages. Explicit finite volume meth-
ods typically satisfy a time step restriction that depends on the smallest cell size. We
search for a third order accurate method that is both conservative and stable for rea-
sonable time steps that do not depend on the size of the smallest cut cells. A necessary
requirement for stability is the so-called cancellation property which ensures that the
update of the small cells is bounded by the order of their cell sizes.
An attractive candidate for a method that might satisfy these properties is the

Active Flux method developed by Eymann and Roe. The Active Flux method is a
finite volume method that not only uses the cell average values but also point values
of the conserved quantities at the interfaces between neighboring cells. It updates the
point values separately from the cell averages, thus the flux is computed actively. In
each cell, the conserved quantities are reconstructed locally using only the values that
belong to that cell. When reconstructing on irregular grid cells, reconstructions can
become ill conditioned and lead to poor results when some values are disturbed slightly.
We discuss ways to overcome this problem. Furthermore, we examine the stability
properties of the Active Flux method for linear systems on Cartesian grids and cut
cell grids. The method is stable on cut cell grids for time steps that are restricted
only by the size of a regular grid cell. We show that the cancellation property can be
achieved when using a continuous reconstruction. No further stabilization technique is
required. Furthermore, we find that for our linear model problems the method shows
an excellent third order accuracy and is conservative by nature.
In the second part we develop a different interpretation of the Active Flux method for

Cartesian grids. This reinterpretation can be applied to every hyperbolic conservation
law and is no longer restricted to linear or simple nonlinear systems. It differs from the
original Active Flux method in the way the point values are updated since no exact
evolution formula is known. We present results for a multitude of test cases and obtain
third order accuracy, good stability and conservation. Many of the results presented
in this thesis can be found in our previous publications [1, 2, 3].
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1 Introduction

Mesh generation on complex geometries

For many years, researchers have tried to solve partial differential equations (PDEs)
on complex geometries. These geometries arise directly from the applications of inter-
est. A typical field of application is computational fluid dynamics (CFD), where one
wishes to determine the airflow around a vehicle or the flow of fluids around obstacles,
for example. The solution to a given set of PDEs that lives on a complex geometry is
generally unknown and, depending on the nature of the problem, there often doesn’t
even exist a unique solution in the classical sense. Numerical solvers are needed to
determine an approximate solution to the problem. An essential part of the numerical
solver is the construction of a computational mesh of the relevant region. While simple
domains can easily be discretized by a Cartesian or triangular mesh or a mapped ver-
sion of the just mentioned, complex domains raise the question of where the discrete
values are to be defined, since it may very well not be possible in a uniform way.

The standard approach is the use of an unstructured triangularization. Here, the
domain is partitioned in many triangles (in two dimensions) or tetrahedrons (in three
dimensions). One tries to create similar sized cells and to avoid very small or degenerate
cells. This task may sound simple but, for complex geometries, can be difficult and
expensive to perform. Additionally, effort has to be made to store cell information such
as size, shape and connections to other cells. The numerical method has to be able to
adapt to these different cell sizes.

A much simpler way to generate a numerical mesh is to use an underlying Cartesian
grid consisting of regular squares or cubes, where the cells are cut along the boundary
of the domain and result in so-called cut cells. By construction, the resulting cut cells
can have various shapes and arbitrarily small sizes. Figure 1.1 shows a potential cut
cell grid on a domain in two spatial dimensions. The use of Cartesian grids makes it
easier to construct numerical methods for the interior of the domain, where no cut cells
are present. Cells can be referenced by index arrays and the same scheme can be used
for any internal cell without modification. Also, it allows the easier use of local and
adaptive mesh refinement, as the cells can be divided into smaller Cartesian cells in a
trivial way. The difficulty in the construction of a numerical solver that uses cut cells
lies in the treatment of the cut cells themselves. As the method on the regular cells
in the interior of the domain often has very good accuracy and stability properties, it
is mandatory to adapt the method on the cut cells along the boundary to maintain
these properties as much as possible. A well established program that makes use of the

1



Chapter 1. Introduction

cut cell framework is Cart3D 1. This package performs grid generation, CFD analysis
and simulations of solutions in an automated way. Recently, an implicit solver for time
dependent problems has been added to the previously existing solver for steady state
problems. Hyperbolic conservation laws, as introduced in the next section, allow for
explicit solvers which are usually more efficient and are therefore more commonly used.
Thus, we focus on explicit schemes in this work.

Figure 1.1.: Cut cell grid in two dimensions.

Equations and notation

In this thesis, we are concerned with hyperbolic conservation laws. Conservation laws
are often found in CFD because many related problems deal with the conservation of
physical quantities such as mass, momentum or energy.
We consider the conservation law

∂

∂t
q(x, t) +∇x · f(q(x, t)) = 0, on Ωo × R

+ (1.1)

with initial values
q(x, 0) = q0(x), x ∈ Ω. (1.2)

Here, d is a spatial dimension, Ω ∈ R
d is a domain, Ωo its interior and ∂Ω its boundary,

q : Ω × R
+ → R

m is a vector of m ∈ N conserved quantities, f : Rm → R
m × R

d

is a flux function and q0 : Ω → R
m is an initial condition. Boundary values are

imposed on ∂Ω×R
+. Furthermore, we assume f to be sufficiently smooth. Moreover,

derivatives and integrals of vector valued functions are to be understood as vectors of
the derivatives and integrals of the individual components.
Let Sd−1 be the unit sphere in R

d. We assume that the system is hyperbolic, i.e.,
we have for all q̃ ∈ R

m and all n ∈ Sd−1 that f ′(q̃) · n is diagonalizable with real
eigenvalues.
Many theoretical and analytical results for hyperbolic conservation laws have been

found. A detailed introduction to the topic of conservation laws can, for example, be
found in [4, 5, 6]. Most notably, the name conservation law stems from the conservation
of the quantities q, which can be seen by integrating (1.1) over a space-time-volume

1https://www.nas.nasa.gov/publications/software/docs/cart3d/
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Ω× [tn, tn+1]. After the application of the divergence theorem, one obtains

∫

Ω

q(x, tn+1) dx−
∫

Ω

q(x, tn) dx+

∫ tn+1

tn

∫

∂Ω

n · f(q(x, t)) dS dt = 0. (1.3)

Here, n ∈ R
d is the outer normal at each point on ∂Ω. Subsequently, the integral of q

during a period of time tn+1 − tn is only changed through the fluctuations across the
boundary ∂Ω. This is also the basis for the class of finite volume methods (FVM). By
applying the divergence theorem on each cell of the spatial discretization, cell averages
of the conserved quantities can be defined. The time-averaged true flux integral over a
cell face with index k is approximated by a numerical flux Fk, so that each connecting
face of two cells has a flux approximation. Through substituting the exact flux by
the numerical flux for all faces in (1.3), a finite volume method is obtained. The
conservation property is recovered by summing up all cell averages weighted by the cell
size, leading to a cancellation of all numerical fluxes except the boundary fluxes.

Another important property of solutions is that they don’t need to keep the regularity
of the initial conditions. After a period of time, solutions can become discontinuous
even if q0 ∈ C∞(Rd) and therefore fail to fulfill (1.1) in a classical way. Weak solutions
are introduced, that obey the weak formulation of the conservation law. As weak
solutions are not unique, entropy conditions or other selection criteria are used as a
filter for the physically relevant solution. The predominant class of methods that work
directly on the (semidiscrete) weak formulation is the class of discontinuous Galerkin
(DG) schemes.

Finite volume methods and discontinuous Galerkin methods are the two most com-
monly used types of methods for hyperbolic conservation laws.

Three important aspects of cut cell methods

Generally, there are three important aspects that need to be considered when con-
structing a numerical solver for conservation laws. These aspects are not only important
on the regular part of the domain but need to be considered especially in and when
transitioning to the cut cells.

Firstly, the method should give an accurate approximation to the true solution. This
is, for smooth solutions, often measured by the order of convergence. When measuring
with a norm that is taking the grid size into account, such as the L1-norm, we can
typically allow the order of the error in the cut cell region at the boundary to be one
order less than the order in the interior part of the domain, since this area converges to
the boundary of the domain, which is of one dimension smaller than the domain itself.
Nevertheless, the domain close to the boundary often contains important aspects of
the solution structure, so it is encouraged to also obtain the same order of accuracy
here.

Secondly, the occurring cut cells can be of arbitrary shape and size. Typically,
explicit schemes obey a stability condition which ensures that the solution does not
blow up. This stability condition is given in the form of a time step restriction that
limits the time step according to the cell sizes of the numerical mesh. Since the cut cells
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Chapter 1. Introduction

can be orders of magnitude smaller than the regular cells in the interior of the domain,
this restriction would lead to a very small time step and thereby an unfeasible method
in practice. This is called the small cell stability problem. A necessary condition for
stability is the cancellation property. The sum of the numerical fluxes over each cell
face has to be bounded by the order of the cell size:

∑

k

nk · Fk = O(|Ωi|) (1.4)

By employing a small time step that suits the standard time step restriction for the
smallest cell, this is automatically achieved. However, for cut cell grids, one seeks to
construct a scheme that is stable under a stability condition that depends on the size
of the regular cells rather than the cut cells.

Thirdly, and as important as the other two aspects, is the aspect of conservation.
As already mentioned, a conservation law conserves the total amount of one or several
quantities. The importance of covering the conservation in the numerical method is
twofold: On the one hand, conservation is one of the conditions in the famous Lax-
Wendroff theorem, which (under some technical assumptions) states that a converging,
conservative method converges to a weak solution [7]. On the other hand, failing to
conserve the quantities can lead to nonphysical solutions [6, Chapter 2.9].

Hitherto existing methods

Over the past couple of decades, many attempts have been made to cope with these
three difficulties in the presence of cut cells, leading to a whole set of methods. The
following enumeration is not a complete list of all developed methods but gives a good
overview over different approaches.

One idea that comes to mind to overcome the small cell issue is cell merging. By
fusing the small cut cells to decently sized neighboring cells, the size of the smallest
cells is no longer an issue for stability. This has been done for both FVM [8] and DG
[9]. The difficulties lie in the selection of the cells to be merged. This is especially true
in three dimensions and a robust and automatic cell merging is yet to be discovered.

To pass the cancellation property, Colella et al. have tried to redistribute a large
portion of the flux difference in cut cells to the neighboring cells [10]. That way
the cancellation property is achieved while keeping the method conservative. The
redistribution is usually done according to the cell sizes of the neighboring cells. This
method is easily implemented and often used in practical computations, but lacks
accuracy. Second order accuracy could not be obtained at the boundary.

The ideas of the two previous approaches are combined in a recent work by Berger
and Giuliani [11] in a FVM and by Giuliani in a DG setting [12]. They first perform
an unstable update on the whole grid and use a post-processing routine to account for
stability, while maintaining conservation. Cut cells are again merged with neighboring
cells, while it is possible for the new cells to overlap. The post-processing takes these
new neighborhoods into account and corrects the numerical states, redistributing them
to the neighboring cells. Therefore this method has the name state redistribution.
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Another way to satisfy the cancellation property was done by Berger, Helzel and
LeVeque [13, 14, 15]. They introduce so-called h-boxes, which are additional artificial
cells tangential and normal to the cut cell boundary. Due to the overlapping of the
boxes and the way they are computed, the cancellation property is satisfied. While
second order accuracy is achieved, the method has not been implemented in three
dimensions yet.

To ensure stability in the cut cells, Berger and May have developed a method that
uses explicit time stepping in the interior of the domain and implicit time stepping at
the boundary [16, 17]. They discuss how to couple both schemes and achieve up to
second order accurate results.

Gokhale, Klein, Nikiforakis and Nordin-Bates propose a dimensional split approach
in [18, 19], where cut cell fluxes are carefully calculated through a ”local proportional
flux stabilization” that makes use of local geometry and wave speed information. Sec-
ond order in the L1-norm is achieved and quite challenging problems are solved, even
in three dimensions.

In the setting of finite difference methods, Tan and Shu developed a method that
approximates the boundary conditions through an inverse Lax-Wendroff procedure
[20]. The method is further developed to account for high order, moving boundaries
and efficient implementation [21, 22, 23, 24]. While the results look very sound, the
conservation property is not recovered at the boundary.

Recently, Engwer et al. proposed a new stabilisation for solving the linear advection
equation in two dimensions using a DG method [25]. By adding penalty terms to
the spatial discretization, the method aims at reconstructing the proper domain of
dependence for the cut cells. It achieves second order accuracy in the multidimensional
case, measured in the L1-norm.

Active Flux methods

High order, stable and conservative methods for cut cells are of high interest. In the
last decade, the family of Active Flux (AF) methods was introduced and developed.
The Active Flux method is a FVM developed by Eymann, Roe and coauthors [26, 27,
28, 29, 30]. It originates from scheme V from van Leer’s series of articles ”towards
the ultimate conservative difference scheme” [31]. It makes use of a very local stencil
and shows excellent third order accurate results by introducing additional degrees of
freedom on the cell faces. With these point values, the reconstruction is carried out
locally in each cell resulting in a globally continuous function. By evolving the point
values separately from the cell average values, the true multidimensional character of
the equations is captured in a dimensional unsplit scheme. The method is so far mostly
developed for linear systems where the exact evolution is known, although preliminary
work for nonlinear equations exists [32, 33, 34]. The local stencil and continuous
reconstruction make the Active Flux method an attractive candidate for use in the
presence of cut cells. In particular, we will see that the Active Flux method can handle
the cut cell geometry but does not need further stabilization for the cut cell update.
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The stabilization is automatically achieved in contrast to other methods.

Aims of this thesis

This thesis aims at laying the foundations of the use of the Active Flux method
for cut cell grids. For the construction of a cut cell method it is required to have a
better understanding of the Cartesian grid method without cut cells. Since the original
Active Flux method uses a triangular grid in two dimensions, a Cartesian grid version
is developed. We analyze the method in terms of accuracy and stability and discuss
necessary and possible changes for the incorporation of cut cells. In the second part,
we are concerned with an extension of the Active Flux method on Cartesian grids to
the nonlinear case.
The outline of this thesis is the following: In Chapter 2 the Active Flux method

is introduced and explained in one spatial dimension. We go into detail on how the
method can be used in the context of cut cells and provide results for accuracy, stability
and limiting. Chapter 3 explains the method in two spatial dimensions and especially
provides the Cartesian grid version of the method. Although a lot of aspects of cut cells
can already be studied in the one-dimensional case, additional features appear in the
multidimensional setting. Thus, a detailed description on the adaptation of the two-
dimensional Active Flux method for cut cells is given. Again, accuracy, stability and
limiting are investigated. For both chapters, we focus on linear problems. Chapter 4 is
concerned with an extension of the original Active Flux scheme to nonlinear systems
of equations. While the original version of the Active Flux method is only defined for
linear or simple nonlinear problems, we extend the method to any nonlinear hyperbolic
conservation law in one and two spatial dimensions on Cartesian grids. However, the
development of the nonlinear method has yet to include cut cell meshes. Finally,
conclusions and outlook are presented in Chapter 5. Throughout this thesis, we use our
results from [1, 2, 3]. Appendix B contains a statement about the authors contribution
to this previously published work. The used programs can be found on his homepage2.

2http://www.am.uni-duesseldorf.de/~kerkmann/Forschung/
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2 The Active Flux Method in One

Spatial Dimension

In this chapter we investigate equation (1.1) in one spatial dimension, i.e., d = 1.

2.1 Equidistant Grids

This section elaborately explains the Active Flux scheme as developed by Eymann,
Roe and coauthors [26, 27, 28, 29, 30]. Some parts and figures are taken and adapted
from [1, Section 2] and [3, Section 2.1].

In contrast to conventional finite volume methods, the Active Flux method operates
not only with cell average values, but also with point values of the unknowns. This
allows us to keep high order accuracy despite having a minimal numerical domain of
dependence. These point values are located exactly on the interface between two cells
in the one-dimensional case. Let M be an index set and let (xi+ 1

2

)i∈M be a numerical

grid (interfaces). For i ∈ M let Ci := [xi− 1

2

, xi+ 1

2

] be the cells. With xi =
x
i+1

2

+x
i− 1

2

2

we denote the cell centers. In addition, let 0 = t0 < t1 < t2 < . . . be a temporal
discretization with ∆t := tn+1 − tn ∀n ∈ N0. We use

Qn
i+ 1

2

≈ qn
i+ 1

2

:= q(xi+ 1

2

, tn) (2.1)

for the approximate point value on the interface xi+ 1

2

at time tn and

Qn
i ≈ q̄ni :=

1

xi+ 1

2

− xi− 1

2

∫ x
i+1

2

x
i− 1

2

q(x, tn) dx (2.2)

for the approximate cell average in cell Ci, also at time tn. If we speak about the exact
solution, we use the letter q. Likewise the analytic flux function is denoted by the letter
f , and the numerical flux evaluated at an interface xi+ 1

2

across a time interval [tn, tn+1]
by F n

i+ 1

2

. A graphical depiction of the degrees of freedom is given in Figure 2.1.

Since we are concerned with a certain area in practical calculations, we consider (1.1)
on a fixed interval [xl, xr]. For now, we consider periodic boundary conditions. Let
xl = x 1

2

, . . . , xN+ 1

2

= xr be an equidistant numerical grid and ∆x = xi+ 1

2

− xi− 1

2

∀i ∈
{1, . . . , N}. From the initial values we construct cell average values Q0

i and point values
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tn+1

tn

xi− 1

2

xi xi+ 1

2

Qn
iQn

i−1 Qn
i+ 1

2

xi− 3

2

xi−1

Qn
i− 3

2

Qn
i− 1

2

Figure 2.1.: Degrees of freedom in the one-dimensional Active Flux method.

Q0
i+ 1

2

. While the latter can be extracted through evaluation of q0, i.e.,

Q0
i+ 1

2

= q0(xi+ 1

2

), (2.3)

we require the cell average values to be approximated to at least third order accuracy:

Q0
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

q0(x) dx+O(∆x3) (2.4)

If the antiderivative to q0 is not known, this can be done by an appropriate quadrature
rule. We use Simpson’s rule for the determination of these values, which is even a
quadrature rule of fourth order accuracy.

For the complete description of the method we need to know how point values and
cell average values are updated. First, we integrate (1.1) over a cell [xi− 1

2

, xi+ 1

2

] as

well as a time interval [tn, tn+1] and we obtain after the application of the fundamental
theorem of calculus:

q̄n+1
i = q̄ni − 1

∆x

∫ tn+1

tn

f(q(xi+ 1

2

, t))− f(q(xi− 1

2

, t)) dt (2.5)

To obtain a FVM, we approximate the integrals at both interfaces:

F n
i+ 1

2

≈ 1

∆t

∫ tn+1

tn

f(q(xi+ 1

2

, t)) dt (2.6)

An analog formula holds for F n
i− 1

2

. This integral is ought to be approximated by a

quadrature rule. We remind the reader that the point value Qn
i+ 1

2

is already known due

to the choice of the degrees of freedom. Additionally, we need an update for this value
for the new instant of time, i.e., Qn+1

i+ 1

2

. This advocates the use of a Gauss-Lobatto
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2.1. Equidistant Grids

quadrature rule. To obtain the desired third order, we again use Simpson’s rule:

F n
i+ 1

2

:=
1

6

(
f(Qn

i+ 1

2

) + 4f(Q
n+ 1

2

i+ 1

2

) + f(Qn+1
i+ 1

2

)
)

(2.7)

Simpson’s rule gives us a fourth order accurate approximation, but the method is
limited to third order because of the third order accurate reconstruction, which is
described in the following. Through the use of the approximation of the cell average
values we have the FVM

Qn+1
i = Qn

i −
∆t

∆x

(
F n
i+ 1

2

− F n
i− 1

2

)
(2.8)

which in turn automatically satisfies the conservation law in the discrete setting. We
now discuss the computation of the point values at later times. For our method, we

need the values Q
n+ 1

2

i+ 1

2

as well as Qn+1
i+ 1

2

. This is arguably the most interesting and most

important aspect of the method, since the use of point values of the conserved quantities
separates this method from most other finite volume methods. Let Lf (q(x, t),∆t)
be the evolution operator of (1.1), i.e., Lf (q(x, t), τ) = q(x, t + τ). If we know this
operator, then we can find the sought-after values with its help. We can specify the
exact solution operator for any linear hyperbolic system in one dimension with the
help of characteristic theory. For nonlinear equations this is generally not possible. In
Chapter 4 we state an extension of our method to nonlinear hyperbolic systems and
discuss which approximate evolution operator can be used in that case. The extension
centeres around this step and in fact changes the original method only in this step.

As a representative for linear equations we consider the advection equation f(q) = aq
with positive speed of propagation a > 0 in the following. The evolution operator is
given by Lf (q(x, t), τ) = q(x, t + τ) = q(x − aτ, t). To determine the values at later
times, we trace the characteristics back to evaluate the solution at the current time
level.

To be able to evaluate the solution at any point in space, we need a global repre-
sentation of the solution. We reconstruct a function Qn

rec from point values and cell
averages. It is piecewise defined on each cell: We use a reference cell [0, 1] and inter-
polate both interface values and require the conservation of the cell average in every
cell Ci = [xi− 1

2

, xi+ 1

2

]:

Qn
rec,i(0) = Qn

i− 1

2

(2.9)

Qn
rec,i(1) = Qn

i+ 1

2

(2.10)
∫ 1

0

Qn
rec,i(ξ) dξ = Qn

i (2.11)

The arranging of a polynomial results in an uniquely defined parabola which can be
written in the following way:

Qn
rec(x) = Qn

rec,i(ξ) ∀x ∈ [xi− 1

2

, xi+ 1

2

] (2.12)
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Figure 2.2.: Example reconstruction inside one cell.

with

ξ =
x− xi− 1

2

xi+ 1

2

− xi− 1

2

(2.13)

and

Qn
rec,i(ξ) = Qn

i− 1

2

(3ξ2 − 4ξ + 1) +Qn
i (−6ξ2 + 6ξ) +Qn

i+ 1

2

(3ξ2 − 2ξ), ξ ∈ [0, 1]. (2.14)

Formula (2.14) can also be displayed in a different basis. For the derivation one can
compare with [1]. Figure 2.2 illustrates the reconstruction. With that, Qn

rec is by
definition continuous in each cell Ci and across all interfaces and therefore we have
Qn

rec ∈ C∞(Ci). Under the assumption

Qn
i = q̄ni +O(∆x3) (2.15)

Qn
i+ 1

2

= q(xi+ 1

2

, tn) +O(∆x3) (2.16)

we furthermore have
Qn

rec(x) = q(x, tn) +O(∆x3) (2.17)

because of the interpolation error for all x ∈ [xl, xr].

We then obtain

Qn+1
i+ 1

2

= Qn
rec(xi+ 1

2

− a∆t) (2.18)

Q
n+ 1

2

i+ 1

2

= Qn
rec

(
xi+ 1

2

− a
∆t

2

)
(2.19)

by using the exact evolution. Equation (2.18) is of double importance: On the one
hand, it states the update of the point values at the interfaces, on the other hand it
provides the evaluation in the last node of Simpson’s rule for time integration. The
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Q
n+ 1

2

i+ 1

2

Qn+1
i+ 1

2

tn

tn+1

Qn
i− 1

2

Qn
i+ 3

2

Qn
i Qn

i+1Qn
i+ 1

2

Figure 2.3.: Schematic illustration of the update of the point values at the interface
i+ 1

2
for the advection equation.

update and the characteristics are presented in Figure 2.3.
The so presented method possesses the following properties:

- The method uses 2N + 1 degrees of freedom (for periodic meshes 2N).

- The order of consistency is 3.

- The used reconstruction is globally continuous.

- The method uses information solely from adjacent cells to update point values
and cell average values. In particular only those cells are taken into consideration
from which information are actually required. (For example advection with a > 0:
cell Ci+1 is not used for the update of degrees of freedom belonging to cell Ci.)

- The method converges under the time step restriction (CFL restriction)

ν :=
|a|∆t

∆x
≤ 1. (2.20)

This classical time step restriction, which occurs for explicit FVM, can be un-
derstood in that way, that characteristics which are used for the computation of
the new point values and thus for the numerical flux may not leave the adjacent
cells during one time step. We will later see numerically that this condition is
sufficient.

Additionally to the use of point values, the locality of the numerical domain of
dependence and the global continuity of the reconstruction are what distinguishes the
Active Flux method from other conventional high order FVM. We will see that the
continuity plays an important role in the stability of the method when applying it to
a mesh with small cells. Therefore it plays an essential role in the construction of
methods for complex geometries.
We now consider first numerical results of the Active Flux method. Modified equa-

tion analysis explains why methods of even order accuracy and methods of odd order
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accuracy each show certain behaviors [35, pp. 235 ff.]. While methods with even order
accuracy create dispersive waves, methods with odd order accuracy lead to a damping
of emerging oscillations because of dissipation. The more dispersive character of the Ac-
tive Flux method can be seen in comparison to the second order accurate Lax-Wendroff
method in Figure 2.4. For a fair comparison we have to use the double amount of cells
in the Lax-Wendroff method, respectively, since the Active Flux method contains two
degrees of freedom per cell. Here, we use the linear acoustic equations:

q =

(
p
v

)
, f(q) = Aq =

(
0 K0
1
ρ0

0

)(
p
v

)
(2.21)

In doing so, let p be the pressure, v the velocity, ρ0 a constant density and K0 be the
bulk modulus of compressibility. For the computations we use ρ0 = K0 = 1.4 and the
initial conditions

q0(x) =

(
exp(−100x2) sin(80(x− 0.5))

0

)
. (2.22)

We use the interval [−1, 1] with periodic boundary conditions, the final time T = 7.5

and ν = c0∆t
∆x

≤ 0.9, where c0 =
√

K0

ρ0
= 1. As the linear acoustic equations form a

linear, hyperbolic system, we can decouple them through eigenvalue transformations
into a diagonal system, so that every equation can be viewed as an advection equa-
tion in the characteristic variables [6, Section 2.9]. Since the newly created diagonal
system again consists of conservation laws, it is possible to transform the variables
before the use of the method to their characteristic form and transform them back
after. In this process it is important to pay attention to the correct transformation of
the cell averages. Alternatively, and equivalently, one can continue to work with the
conservative, primal variables, as long as the correct characteristic speeds are used in
the computation of the updates of the point values.
The solution which is obtained by the use of the Active Flux method is on one hand

more accurate than the solution that is obtained by the Lax-Wendroff method and on
the other hand does not exhibit a dispersive character.
The mentioned properties for accuracy and stability are not immediately evident.

Before dealing with an accuracy or stability analysis of the Active Flux method, we
now consider cut cell situations in one spatial dimension.

2.2 Cut Cell Grids

Because connected grids in one spatial dimension are always intervals, it is always pos-
sible to find an equidistant grid that uniformly discretizes a given interval. Nonetheless
we are interested in understanding the case where a fixed grid size is given which does
not divide the interval length since we thereby acquire valuable information to extend
the method for actual cut cells in higher dimensions. We simulate this situation by the
introduction of a small cell in an equidistant grid. This section is based on [3, Section
2.2] and amplified.
Let xl = x 1

2

, . . . , xN+ 1

2

= xr and ∆x = xi+ 1

2

− xi− 1

2

∀i ∈ {1, . . . , N} \ {k}. Further-
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Active Flux Method for N=100, p at time T=7.5
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Figure 2.4.: Comparison of the Lax-Wendroff method (first row) and the Active Flux
method (second row) for linear acoustics. Results of p at time T = 7.5 with
200 (left column), 400 (middle column) and 800 (right column) degrees of
freedom are shown. The solid line is the exact solution, the red circles
indicate the cell average values of p as computed by the two different
methods. Point values are marked with a ’+’, while cell averages are
marked with an ’o’.

more, let ∆xk = xk+ 1

2

− xk− 1

2

= α∆x with 0 < α ≤ 1. For α = 1 we recover the
situation without a small cell. Cell Ck will from now on be called the small cell.
We apply the Active Flux method from the previous section. Since α can be arbi-

trarily small, we don’t want the time step to depend on the size of the small cell. The
interpretation of (2.20) lets us suspect that the stability condition changes:

|a|∆t

mini xi+ 1

2

− xi− 1

2

=
|a|∆t

α∆x
≤ 1 (2.23)

However, this time step restriction is not necessary. The application of the method
provided that simply (2.20) holds is displayed in Figure 2.5. In a natural way the
characteristics that are required for interface k + 1

2
now originate in cells Ck−1 or

Ck. The evolution of the point values therefore takes the respective cell of origin
into account and evaluates the reconstruction at the origin. The flux update stays
unchanged. Three cases arise:

1. a∆t− α∆x ≤ 0 (d. h. ν ≤ α): Both characteristics originate in cell Ck.

2. a∆t − 2α∆x ≤ 0 < a∆t − α∆x (i.e., α < ν ≤ 2α): The characteristic of Q
n+ 1

2

k+ 1

2

originates in cell Ck, the characteristic of Qn+1
k+ 1

2

in cell Ck−1.

3. a∆t− 2α∆x > 0 (d. h. ν > 2α): Both characteristics originate in cell Ck−1.
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Chapter 2. The Active Flux Method in One Spatial Dimension

Independently from the case we assert that the Active Flux method used on this grid
is stable under condition (2.20). The next two sections deal with the accuracy and
stability analysis in depth. At this point it shall be remarked that the method used on
a grid with two adjacent small cells leads to an unstable approximation in case 3.

2.3 Accuracy

In numerical accuracy studies the local truncation error is frequently specified. Before
doing this, we examine the method for possible error sources.
We first of all require that exact point values and cell average values are given at

time tn, i.e., (2.15) and (2.16) hold without error term. For the reconstruction it still
holds (2.17). Since the exact evolution operator is used for the update of the point
values, the error of approximation in the reconstruction is carried over to the new point
values.
The second error source is generated in the flux computation. Suppose that ν stays

constant for ∆t,∆x → 0. Then we obtain for the advection equation:

f̄
n+ 1

2

i+ 1

2

:=
1

∆t

∫ tn+1

tn

f(q(xi+ 1

2

, t)) dt

=
1

∆t

∫ tn+1

tn

aq(xi+ 1

2

− a(t− tn), tn) dt

=
1

∆t

∫ x
i+1

2

x
i+1

2

−a∆t

q(x, tn) dx

(2.24)

The integral in time can thus be interpreted by exact evolution using characteristics for
the advection equation as an integral in space. Moreover, it now follows from inserting
the reconstruction that

f̄
n+ 1

2

i+ 1

2

=
1

∆t

∫ x
i+1

2

x
i+1

2

−a∆t

Qn
rec(x) dx+O(∆x3)

=
a

6

(
Qn

rec(xi+ 1

2

− a∆t) + 4Qn
rec

(
xi+ 1

2

− a
∆t

2

)
+Qn

rec(xi+ 1

2

)

)
+O(∆x3)

= F n
i+ 1

2

+O(∆x3).

(2.25)

As the reconstruction is locally quadratic, no error is introduced by the use of Simpson’s
rule in the second step as long as xi+ 1

2

− xi− 1

2

≥ a∆t. This condition is ensured by

(2.20) for regular cells. For this reason the approximation error of the flux is completely
determined by the reconstruction. But for small cells this condition doesn’t hold in
general (compare cases 2 and 3 from the previous section). In these cases we integrate
a piecewise smooth function. The use of Simpson’s rule can here also be understood as
exact integration of a different reconstruction which is given by the parabola determined
by the three used quadrature nodes that originate from the present reconstruction.
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Figure 2.5.: Active Flux point value update under the presence of a small cell.
Top: Case 1. Center: Case 2. Bottom: Case 3.
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Chapter 2. The Active Flux Method in One Spatial Dimension

Since all points of the reconstruction approximate the exact solution to third order, this
new parabola defines an implicit used reconstruction that is also third order accurate
to the exact solution. If this implicitly given reconstruction is used in the first step
of (2.25), then we immidiately see that the third order accuracy is recovered and the
approximation error of the flux is given entirely by this implicitly given reconstruction
as well. That reconstruction can also be considered as the use of an h-box of length
a∆t without explicitly determining its form (compare [13, 14, 15]).

We now give the usual definition of the local truncation error.

Definition 2.3.1. The local truncation error τni in a cell Ci at time tn is defined by

τni =
q̄n+1
i − q̄ni + ∆t

∆x

(
F̃ n
i+ 1

2

− F̃ n
i− 1

2

)

∆t
, (2.26)

where F̃ n
i+ 1

2

and F̃ n
i− 1

2

denote the numerical fluxes given by the assumption that exact

point values Qn
i+ 1

2

and cell average values Qn
i are used in the reconstruction.

From the previous observation we now immediately see that we only have τni = O(∆t2).
The error does therefore not show the wanted and in practice seen third order accu-
racy after formally stating the method. Indeed, the local truncation error can be stated
exactly for the advection equation (see [3, Lemma 1]):

Theorem 2.3.2. Let q ∈ C4(R) and let (2.20) be true. The local truncation error of
the one-dimensional Active Flux method for the advection equation, as introduced in
Section 2.1, on an equidistant grid for any cell Ci at time tn reads

τni =
1

24
a∆x3ν(1− ν)2

∂4

∂x4
q(xi, tn) +O(∆x4). (2.27)

Proof. We use the following formula to convert from point values to cell average values
and vice versa [36]:

q̄ni = q(xi, tn) +
∆x2

24
qxx(xi, tn) +

∆x4

1920
qxxxx(xi, tn) +O(∆x6) (2.28)

Also let (2.20) be true. At this point, we will drop the arguments of q(xi, tn) and all
its derivatives for shorter notation. Remaining terms of Taylor series expansions will
be collected in one term O(∆t4) = O(∆x4). Let us consider the first part of the local

16



2.3. Accuracy

truncation error:

q̄n+1
i − q̄ni
∆t

=
q(xi, tn+1) +

∆x2

24
qxx(xi, tn+1) +

∆x4

1920
qxxxx(xi, tn+1)

∆t

−q + ∆x2

24
qxx +

∆x4

1920
qxxxx

∆t
+O(∆t4)

=
q +∆tqt +

∆t2

2
qtt +

∆t3

6
qttt +

∆t4

24
qtttt +

∆x2

24

(
qxx +∆tqxxt +

∆t2

2
qxxtt

)

∆t

+
∆x4

1920
qxxxx − q − ∆x2

24
qxx − ∆x4

1920
qxxxx

∆t

=−aqx +
ν

2
a∆xqxx +

(
−ν2

6
− 1

24

)
a∆x2qxxx +

(
−ν3

24
+

ν

48

)
a∆x3qxxxx

(2.29)
Now let

Q̃n
rec,i(ξ) = q(xi− 1

2

, tn)(3ξ
2− 4ξ+1)+ q̄ni (−6ξ2+6ξ)+ q(xi+ 1

2

, tn)(3ξ
2− 2ξ), ξ ∈ [0, 1],

(2.30)
be the reconstruction in any cell Ci under the use of the exact solution at time tn.
Then we get for the second part of the local truncation error:

F̃ n
i+ 1

2

− F̃ n
i− 1

2

∆x

=
a

6∆x

[
Q̃n

rec,i(1− ν) + 4Q̃n
rec,i

(
1− ν

2

)
+ q(xi+ 1

2

, tn)

− Q̃n
rec,i−1(1− ν)− 4Q̃n

rec,i−1

(
1− ν

2

)
− q(xi− 1

2

, tn)

]

=
a

6∆x

[
(q(xi− 1

2

, tn)− q(xi− 3

2

, tn))

·
(
3(1− ν)2 − 4(1− ν) + 1) + 4

(
3
(
1− ν

2

)2
− 4

(
1− ν

2

)
+ 1

))

+ (q̄ni − q̄ni−1)

(
−6(1− ν)2 + 6(1− ν) + 4(−6

(
1− ν

2

)2
+ 6

(
1− ν

2

))

+ (q(xi+ 1

2

, tn)− q(xi− 1

2

, tn))

·
(
3(1− ν)2 − 2(1− ν) + 4

(
3
(
1− ν

2

)2
− 2

(
1− ν

2

))
+ 1

)]

=
a

∆x

[
q(xi− 3

2

, tn)(−ν2 + ν) + (q̄ni − q̄ni−1)(−2ν2 + 3ν)

+ q(xi− 1

2

, tn)(ν − 1) + q(xi+ 1

2

, tn)(ν
2 − 2ν + 1)

]

(2.31)
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=
a

∆x

[ (
q − 3

2
∆xqx +

9

4

∆x2

2
qxx −

27

8

∆x3

6
qxxx +

81

16

∆x4

24
qxxxx

)
(−ν2 + ν)

+

(
q +

∆x2

24
qxx +

∆x4

1920
qxxxx − q(xi−1, tn)

− ∆x2

24
qxx(xi−1, tn)−

∆x4

1920
qxxxx(xi−1, tn)

)
(−2ν2 + 3ν)

+

(
q − 1

2
∆xqx +

1

4

∆x2

2
qxx −

1

8

∆x3

6
qxxx +

1

16

∆x4

24
qxxxx

)
(ν − 1)

+

(
q +

1

2
∆xqx +

1

4

∆x2

2
qxx +

1

8

∆x3

6
qxxx +

1

16

∆x4

24
qxxxx

)
(ν2 − 2ν + 1)

]
+O(∆x4)

=
a

∆x

[ (
q − 3

2
∆xqx +

9

4

∆x2

2
qxx −

27

8

∆x3

6
qxxx +

81

16

∆x4

24
qxxxx

)
(−ν2 + ν)

+

(
q +

∆x2

24
qxx +

∆x4

1920
qxxxx − q +∆xqx −

∆x2

2
qxx +

∆x3

6
qxxx −

∆x4

24
qxxxx

− ∆x2

24

(
qxx −∆xqxxx +

∆x2

2
qxxxx

)
− ∆x4

1920
qxxxx

)
(−2ν2 + 3ν)

+

(
q − 1

2
∆xqx +

1

4

∆x2

2
qxx −

1

8

∆x3

6
qxxx +

1

16

∆x4

24
qxxxx

)
(ν − 1)

+

(
q +

1

2
∆xqx +

1

4

∆x2

2
qxx +

1

8

∆x3

6
qxxx +

1

16

∆x4

24
qxxxx

)
(ν2 − 2ν + 1)

]
+O(∆x4)

=
a

∆x

[
q
(
−ν2 + ν + ν − 1 + ν2 − 2ν + 1

)

+ ∆xqx

(
−3

2
(−ν2 + ν)− 2ν2 + 3ν − 1

2
(ν − 1) +

1

2
(ν2 − 2ν + 1)

)

+ ∆x2qxx

(
9

8
(−ν2 + ν)− 1

2
(−2ν2 + 3ν) +

1

8
(ν − 1) +

1

8
(ν2 − 2ν + 1)

)

+ ∆x3qxxx

(
−27

48
(−ν2 + ν) +

5

24
(−2ν2 + 3ν)− 1

48
(ν − 1) +

1

48
(ν2 − 2ν + 1)

)

+ ∆x4qxxxx

(
81

384
(−ν2 + ν)− 1

48
(−2ν2 + 3ν) +

1

384
(ν − 1) +

1

384
(ν2 − 2ν + 1)

)]

+O(∆x4)

= aqx −
ν

2
∆xqxx +

(
ν2

6
+

1

24

)
∆x2qxxx +

(
−ν3

12
+

ν

48

)
∆x3qxxxx +O(∆x4)

The addition of both parts yields:

τni =
1

24
a∆x3ν(1− ν)2

∂4

∂x4
q(xi, tn) +O(∆x4) (2.32)

The method thus actually exhibits order of consistency three. That means that the
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2.3. Accuracy

leading error term in both fluxes cancels so that the flux difference gains one order of
accuracy. Practical experiments on the initial data q0(x) = x3 conform these findings.

Remark 2.3.3. Would the used point values in Simpson’s rule be of fourth order ac-
curacy, a third order accurate method would emerge due to the fourth order accuracy
of Simpson’s rule even without the cancellation of the leading error terms of the flux
difference.

Let us now consider the situation with one small cell. Particularly interesting is case
3 since in practical applications the most relevant difficult cases are the small cells with
α ≪ 1. We have (compare (c) to [3, Lemma 2]):

Theorem 2.3.4. Let q ∈ C3(R). Let there be a grid with one small cell as defined
in Section 2.2. The local truncation error of the one-dimensional Active Flux method
for the advection equation, as developed in Section 1.2, in the small cell Ck at time tn
reads,

(a) if a∆t− α∆x ≤ 0 (case 1),

τnk =
1

24
ν(2ν − 1)

(
1

α
− 1

)
a∆x2 ∂3

∂x3
q(xk, tn) +O(∆x3). (2.33)

(b) if a∆t− 2α∆x ≤ 0 < a∆t− α∆x (case 2),

τnk =

(
− 1

72
− α

24
− α2

36
+

(
1

12
+

α

9
− 1

36α

)
ν −

(
1

8
− 1

24α

)
ν2

)

· a∆x2 ∂3

∂x3
q(xk, tn) +O(∆x3).

(2.34)

(c) if a∆t− 2α∆x > 0 (case 3),

τnk =

(
− 5

72
− 5

24
α− 5

36
α2 +

1

4
(1 + α)ν − 1

6
ν2

)
a∆x2 ∂3

∂x3
q(xk, tn) +O(∆x3).

(2.35)

Furthermore the local truncation error in cell Ck+1 has the same form, multiplied by
−α, and the third derivative in q(xk+1, tn).

The computations can be followed in the program adv truncation errors.ipynb.
We see that the order of consistency in fact reduces to second order in the small cell

and its right neighbor here.
To circumvent this reduction in order, we can replace Simpson’s rule for this one flux

computation by exact integration. The other integrals are already integrated exactly
using Simpson’s rule. One possible representation of the exact integration is an iterated
Simpson’s rule over the respective parts of cells Ck−1 and Ck. Because the area of
integration includes cell Ck entirely, one can also immediately use the cell average Qn

k

for this part of the iterated Simpson’s rule. One other possible interpretation of this
exact integration is the conception as an h-box of length a∆t, again. The wanted
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Chapter 2. The Active Flux Method in One Spatial Dimension

N L1-error EOC L∞-error EOC ek EOC ek+1 EOC
50 4.1623 · 10−5 6.5860 · 10−5 1.9129 · 10−5 2.8565 · 10−5

100 5.1223 · 10−6 2.99 8.0811 · 10−6 3.00 2.7028 · 10−6 2.79 4.1193 · 10−6 2.77
200 6.3511 · 10−7 3.00 9.9977 · 10−7 3.00 3.5630 · 10−7 2.91 5.4654 · 10−7 2.90
400 7.9065 · 10−8 3.00 1.2432 · 10−7 3.00 4.5657 · 10−8 2.96 7.0208 · 10−8 2.95

Table 2.1.: Convergence study for the advection equation in the presence of a small cell
(cut cell) for ν ≈ 0.25 and α = 0.3 (case 1).

N L1-error EOC L∞-error EOC ek EOC ek+1 EOC
50 2.5625 · 10−5 4.1114 · 10−5 9.5437 · 10−5 1.5489 · 10−5

100 3.1556 · 10−6 2.99 5.0059 · 10−6 3.01 1.3092 · 10−6 2.84 2.2303 · 10−6 2.77
200 3.9115 · 10−7 3.00 6.1730 · 10−7 3.00 1.7032 · 10−7 2.93 2.9567 · 10−7 2.90
400 4.8680 · 10−8 3.00 7.6633 · 10−8 3.00 2.1689 · 10−8 2.97 3.7966 · 10−8 2.95

Table 2.2.: Convergence study for the advection equation in the presence of a small cell
(cut cell) for ν ≈ 0.5 and α = 0.3 (case 2).

integral value matches the cell average value of this h-box exactly. It is computed as
stated above.

We check the found order reduction with the help of a numerical experiment: Let
a = 1, α = 0.3, T = 0.6, xl = 0, xr = 1 and q0(x) = sin(2πx). We apply the Active
Flux method for ν ≈ 0.25 (case 1), ν ≈ 0.5 (case 2) and ν ≈ 0.8 (case 3) and measure
the global error in the L1-norm und L∞-norm as well as the error in cells Ck and Ck+1,
here denoted by ek and ek+1, respectively. The results can be seen in Tables 2.1, 2.2
and 2.3. The time step is slightly adjusted to meet the final time and to be of uniform
size. Despite second order accuracy of the local truncation error we obtain third order
convergence in all cases apart from the small case and therefore the L∞-norm in case
3. The following remark is adapted from [3, Remark 1].

Remark 2.3.5. This can be explained as follows: The new cell average Qn+1
k+1 will be used

in the subsequent time step in the computation of the flux F n+1
k+ 3

2

. A part of the error

that is proportional to ν will be transported to cell Ck+2. The same effect appears in cell
Ck+2 one more time step later. That means that the resulting error in cell Ck+1 spreads
to all other n− k = O( 1

∆x
) cells over time. Albeit the one step error ∆tτnk+1 = O(∆x3)

is created in every step, the error in cell Ck+1 (and all subsequent cells) is bounded

N L1-error EOC L∞-error EOC ek EOC ek+1 EOC
50 1.1207 · 10−5 1.9262 · 10−5 1.9262 · 10−5 4.9990 · 10−6

100 1.4272 · 10−6 2.94 3.6581 · 10−6 2.37 3.6581 · 10−6 2.37 7.9021 · 10−7 2.63
200 1.7611 · 10−7 3.00 9.4140 · 10−7 1.95 9.4140 · 10−7 1.95 1.0385 · 10−7 2.91
400 2.1870 · 10−8 3.00 2.3858 · 10−7 1.98 2.3858 · 10−7 1.98 1.3279 · 10−8 2.96

Table 2.3.: Convergence study for the advection equation in the presence of a small cell
(cut cell) for ν ≈ 0.8 and α = 0.3 (case 3).
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through this harmonic property and we recover third order of consistency even in this
cell. This effect does not happen in cell 3 since the cell average Qn

k is never used in the
update. For this, compare to the third plot of Figure 2.5. In the other two cases the
cell average is used (left and center plot) and this effect is even present in the small
cell Ck.

2.4 Linear Stability and Cancellation Prop-

erty

The first part of this section is adapted from [3, Section 2.4]. To examine the linear
stability of the one-dimensional Active Flux method in the presence of small cells we
rewrite the method in the matrix-vector form

Qn+1 = AQn, (2.36)

where the vector Qn contains all degrees of freedom at time tn. The matrix A describes
the method. This is possible since the Active Flux method is linear. The method is
Lax-Richtmyer stable if and only if ‖An‖ is bounded independently of n. By the use
of the Jordan decomposition of A it is possible to show that this is equivalent to the
statement that |λ| ≤ 1 for all eigenvalues λ of A and if |λ| = 1 then the geometric and
algebraic multiplicity have to match [37]. Since we can’t compute analytic expressions
for the eigenvalues of A we determine approximations with the help of a program for
differently sized grids. The results for the advection equation are visible in Figure 2.6.
In the left plot we show the eigenvalues of matrix A which belongs to the Active Flux
method on an equidistant grid. In the center plot the situation with one small cell of
size α∆x ≤ 1

2
a∆t (case 3) is shown. The right plot displays the eigenvalues of a matrix

that occurs if every other cell is small regarding the same condition (case 3). In all
cases we numerically see the stability of the method under the time step restriction
(2.20).
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Figure 2.6.: Results of the linear stability analysis of the one-dimensional Active Flux
method for the advection equation with an equidistant grid (left), one small
cell (center) and a grid with alternating cell sizes (right). The used CFL
number is ν = 0.9. The cut cell size is α = 0.05 for every small cell.
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Chapter 2. The Active Flux Method in One Spatial Dimension

As introductorily mentioned, the cancellation property is a necessary condition for
the stability of the method. For this purpose we show the following theorem:

Theorem 2.4.1. For the update of the small cell Ck in the Active Flux method for
the advection equation, as explained in Section 2.2, it holds:

F n
k+ 1

2

− F n
k− 1

2

= O(α∆x) (2.37)

Proof. Let

F n
k+ 1

2

=
m∑

i=0

aif(Q
n
rec(si)) (2.38)

be the used quadrature formula for the flux with weights ai > 0 and nodes si ∈
[xk+ 1

2

− a∆t, xk+ 1

2

]. In our case this is Simpson’s rule but the statement holds for any
quadrature formula. Then we have

F n
k− 1

2

=
m∑

i=0

aif(Q
n
rec(si − α∆x)) (2.39)

because of the exact solution operator of the advection equation. Furthermore Qn
rec

is locally Lipschitz continuous since it is continuous and consists of piecewise defined
parabolas. Let LQ ≥ 0 be the corresponding Lipschitz constant. We get:

∣∣∣F n
k+ 1

2

− F n
k− 1

2

∣∣∣ =
∣∣∣∣∣

m∑

i=0

ai(f(Q
n
rec(si))− f(Qn

rec(si − α∆x)))

∣∣∣∣∣

≤
m∑

i=0

aia|Qn
rec(si)−Qn

rec(si − α∆x)|

≤
m∑

i=0

aiaLQ|si − (si − α∆x)|

=
m∑

i=0

aiaLQα∆x = O(α∆x)

(2.40)

So the method fulfills the cancellation property without the need of further stabi-
lization as long as the reconstruction is continuous.

Remark 2.4.2. Using exact integration, we see that the area of integration of the two
fluxes for the update of the small cell differs only in an area of size 2α∆x. Hence we
automatically recover the cancellation property. In doing so it is not necessary that
the reconstruction is continuous across the interface. Exact integration thus provides
a good alternative if it is not possible to reconstruct continuously across the interface.
With it, we see an improvement in accuracy as well as a possible stabilization. This
will be relevant in the limiting in Section 2.5 as well as in the multidimensional Active
Flux method in Chapter 3.
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Remark 2.4.3. With the use of exact integration it is possible to apply the method for
arbitrarily large time steps. We can thus state a so-called large time step method which
doesn’t satisfy the condition (2.20) but is nevertheless stable. The larger time steps can
even slightly speed up the method since the already known cell averages can be used
while integrating over whole cells and no quadrature formula has to be used. However,
this is only possible for linear equations and doesn’t work for nonlinear equations.

2.5 Limiting

In this section we investigate the behavior of the Active Flux method for the advection
equation for piecewise continuous initial data which involve one or more jumps. It is
adopted from [1, Section 5] and presented in more detail and with additional content.
The exact solution shifts in the course of time with speed a so that the discontinuities
persist. We consider the interval [0, 1] with periodic boundary conditions and the
following initial data:

q0(x) =

{
1 + exp(−100(x− 0.3)2) : x ∈ [0.6, 0.8]

exp(−100(x− 0.3)2) : x ∈ [0, 1] \ [0.6, 0.8]
(2.41)

Obviously these inital conditons are technically speaking not periodic. The jump at
the boundary is really small however so it doesn’t have an effect in the computations.
We furthermore use a = 1 and the final time T = 1. Also we have ν = 0.9 for all
time steps except the last one to meet the final time. Figure 2.7 illustrates the results
for N = 200. While the smooth part of the solution is approximated very well as
expected, some over- and undershoots appear near the discontinuities. With that we
receive new maxima and minima in the solution. Indeed, the oscillations are not very
distinctive. Regardless it is desirable to suppress those. We have to adapt the method.
Many of the common approaches for limiting use the neighboring cells, for instance
to enable a slope limiting or to pursue a WENO ansatz. Eymann and Roe propose
to trace back the characteristics even further and use for the limiting in cell Ci not
only the current values Qn

i− 1

2

, Qn
i and Qn

i+ 1

2

but also the values of the previous time

steps Qn−1
i− 1

2

, Qn−1
i and Qn−1

i+ 1

2

[26]. The so forming numerical domain of dependence now

ranges not over multiple grid cells in one time steps but over multiple time steps. First
of all this method is not applicable in the first time step. Also we were not able to
reproduce the shown limiting for every CFL number ν. In our work [1, 2], we consider
alternative limiting possibilities that only use very local information of the current time
step. Other authors describe similar approaches [32].

To conserve the locality of our method, we pursue an easier method which only works
with the cell average value and the two interface values of the respective cell at the
current time step and not with values from the previous time steps. Remember that
the reconstruction is defined by a parabola which is uniquely determined by (2.14).
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Figure 2.7.: Cell average values (o) and point values (+) of the numerical solution of
the Active Flux method for the advection equation with N = 200 grid cells
at time T = 1 without limiting.

Let

m̄n
i := min{Qn

i− 1

2

, Qn
i+ 1

2

}, (2.42)

M̄n
i := max{Qn

i− 1

2

, Qn
i+ 1

2

}, (2.43)

Ni := [m̄n
i , M̄

n
i ] (2.44)

for all cells. The angular point of the parabola then constitutes a new extremum
provided it is located inside the cell. The value of the new extremum lies outside
the interval Ni. Because of the exactness of the numerical flux this can directly lead
to a new extremum in the discrete values of the solution within one time step. In
other words, the evolution and averaging don’t produce new extrema for the advection
equation as long as an exact integration is used. The limiting of the reconstruction is
therefore sufficient to prevent oscillations. We thus demand:

Qn
rec,i,lim(ξ) ∈ Ni ∀ξ ∈ [0, 1] (2.45)

Here, Qn
rec,i,lim denotes the limited reconstruction on a reference cell [0, 1]. The trans-

formation (2.13) is preserved and (2.12) is transferred in a canonical manner. New
extrema in the reconstruction appear in two cases:

1. The cell average value lies closely to either of the two interface values. More
precisely:

Qn
i <

2Qi− 1

2

+Qi+ 1

2

3
∧Qn

i− 1

2

< Qn
i+ 1

2

or Qn
i <

Qi− 1

2

+ 2Qi+ 1

2

3
∧Qn

i− 1

2

> Qn
i+ 1

2

(2.46)
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or

Qn
i >

Qi− 1

2

+ 2Qi+ 1

2

3
∧Qn

i− 1

2

< Qn
i+ 1

2

or Qn
i >

2Qi− 1

2

+Qi+ 1

2

3
∧Qn

i− 1

2

> Qn
i+ 1

2

.

(2.47)

2. The cell average values lies outside the interval Ni:

Qn
i < mn

i (2.48)

or
Qn

i > Mn
i . (2.49)

Indeed, the first case is equivalent to the existence of new extrema. The simple proof
of this claim is left to the reader. (2.48) clearly implies (2.46) and (2.49) clearly implies
(2.47). Nonetheless, we specify case 2 separately. Since the cell average value in the
case of (2.48) or (2.49) lies outside the interval Ni, we in fact expect the exact solution
to feature a local extremum inside this cell. That’s why we don’t want to limit this
case.

Would we also limit case 2, for example by a constant reconstruction Qn
rec,i,lim(x) ≡

Qn
i , we would get a monotone method which may lead to a loss of accuracy. By avoiding

the limiting in this case we allow for local extrema at reasonable locations. Numerical
experiments show that third order accuracy is recovered while a limiter is active in case
1, but not in case 2.

We have multiple options to design a limited reconstruction. In the following, we
discuss some options and their respective advantages and disadvantages.

2.5.1 Limiting by Change of Basis

To keep the interpolation conditions (2.9) and (2.10) at the left and right boundary of
the cell as well as the cell average (2.11) we can consult other basis functions. In (2.14)
we use a basis of the polynomial space P2([0, 1]). Two other possibilities are:

1. We use a piecewise defined function as the reconstruction. Since the cell average is
close to one of the two interface values because of (2.46) or (2.47) we can assume
that a discontinuity or a steep gradient in the solution is close to one of the
interfaces. Let (2.46) be true with Qn

i− 1

2

< Qn
i+ 1

2

. We initially approximate one

part of the solution as a constant function and add a parabola for the remaining
part. More precisely we have for this piecewise defined reconstruction:

Qn
rec,i,lim(ξ) =




Qn

i− 1

2

: ξ ≤ ξ⋆

Qn
i− 1

2

+ (Qn
i+ 1

2

−Qn
i− 1

2

) (ξ−ξ⋆)2

(1−ξ⋆)2
: ξ > ξ⋆

(2.50)
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where

ξ⋆ =
2Qn

i− 1

2

+Qn
i+ 1

2

− 3Qn
i

Qn
i− 1

2

−Qn
i+ 1

2

. (2.51)

It is easy to see that the conditions (2.9) - (2.11) are fulfilled. The case Qn
i− 1

2

>

Qn
i+ 1

2

and (2.47) is treated in analogy. For this reconstruction we merely have

Qn
rec,i,lim ∈ C1([0, 1]). Also possible is an ansatz that strings together a linear

and a quadratic function or even two quadratic functions. Similar approaches
are examined by Roe and coauthors [38].

2. We use a nonlinear function which is monotone. Such reconstructions are used
for example by Marquina [39]. We can make the hyperbolic ansatz

Qn
rec,i,lim(ξ) = a+

b

ξ − 1
2
+ c

. (2.52)

By requiring (2.9) - (2.11), a nonlinear system of equations for the coefficients
a, b and c emerges which can be solved approximately by an iterative method.
In consequence of the necessity of such an iterative method this ansatz is way
more expensive than the previous. It is also ill conditioned for Qn

i ≈ Qn
i− 1

2

or

Qn
i ≈ Qn

i+ 1

2

. However, we gain Qn
rec,i,lim ∈ C∞([0, 1]), which was not true for

ansatz 1.

A sample reconstruction of both approaches, compared to the standard quadratic
reconstruction, is displayed in Figure 2.8. Further Figure 2.9 shows a comparison of the
numerical solution of the advection equation for all three reconstructions. We see that
both limitings provide a good approximation that removes the oscillations completely
and resolves the discontinuities in the solution in only a few grid cells.
We notice that for both limitings an exact integration is necessary. For this, consider

using Simpson’s rule for either of the two limitings. It can be understood as an inter-
polatory quadrature formula, i.e., we form a parabola through the integrated function
which is then integrated exactly. This parabola can again produce new extrema for
the newly described reconstructions Qn

rec,i,lim /∈ P2([0, 1]) which doesn’t achieve the
purpose of limiting. Exact integration is not difficult in both cases but is undesirable
in general.
Next to the already mentioned disadvantages one further disadvantage stands out:

None of the approaches can be extended to the multidimensional reconstruction. Fur-
thermore, additional difficulties arise when using these reconstructions in conjunction
with nonlinear equations, which are considered in Chapter 4. We therefore neglect
these approaches and turn to a different idea.

2.5.2 Limiting by Discontinuous Reconstruction

Instead of changing the basis we can also decide to drop one of the conditions (2.9)
- (2.11). Since the reconstruction is a global representation of the solution, we’d like
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Figure 2.8.: Different reconstructions of the Active Flux method. The dashed line
indicates the cell average value, the ’o’ symbols at the boundaries indicate
the edge values and the red solid line indicates the reconstruction. For all
of these plots we used Qn

i− 1

2

= 0.1, Qn
i+ 1

2

= 1 and Qn
i = 0.2. Unlimited,

quadratic reconstruction (a), piecewise polynomial reconstruction 2.50 (b),
hyperbolic reconstruction 2.52 (c).
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Figure 2.9.: Advection test computed with different versions of the Active Flux method
using 200 grid cells. The solution is shown at time T = 1, i.e., after one
rotation. The solution using the unlimited Active Flux method is shown
in (a). In (b) and (c) we show results for the piecewise polynomial and
hyperbolic reconstruction, respectively. Point values are marked with a
’+’, while cell averages are marked with an ’o’.

to reflect the conservation property. Thus, (2.11) shall continue to hold. We therefore
have to discuss which of the conditions (2.9) - (2.10) can be dropped. The naive ansatz
reads as follows: We drop the one interpolation condition which point value is further
away from the cell average value. To be precise: If (2.46) with Qn

i− 1

2

< Qn
i+ 1

2

or (2.47)

with Qn
i− 1

2

> Qn
i+ 1

2

holds and (2.48) doesn’t hold, require only (2.9) and (2.11). Else,

if (2.46) with Qn
i− 1

2

> Qn
i+ 1

2

or (2.47) with Qn
i− 1

2

< Qn
i+ 1

2

holds and (2.49) doesn’t hold,

require only (2.10) and (2.11).

The restriction (2.45) doesn’t provide a uniquely defined quadratic reconstruction
yet, but only a constraint on the third condition we can demand. Let without loss of
generality (2.46) with Qn

i− 1

2

< Qn
i+ 1

2

be true and (2.48) be false. The other cases can

again be treated analogously. We therefore firstly demand (2.9) and (2.11). Then it
is preferable to approximate the not interpolated point value Qn

i+ 1

2

as best as possible.
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So we look for Qn
rec,i,lim ∈ P2([0, 1]) which solves the following minimization problem:

min
{
|Qi+ 1

2

−Qn
rec,i,lim(1)|

∣∣ Qn
rec,i,lim(ξ) ∈ Ni ∀ξ ∈ [0, 1]

}
. (2.53)

One can easily reason that this is exactly the case if and only if

(Qn
rec,i,lim)

′(0) = 0. (2.54)

This is the third additional condition which yields the following explicit representation
of the reconstruction:

Qn
rec,i,lim(ξ) = Qn

i− 1

2

+ 3(Qn
i −Qn

i− 1

2

)ξ2 (2.55)

In the other case we analogously get:

Qn
rec,i,lim(ξ) = Qn

i+ 1

2

+ 3(Qn
i −Qn

i+ 1

2

)(ξ − 1)2 (2.56)

In contrast to the limitings in the previous section, this reconstruction is no longer
globally continuous. This means that the use of the node value Qn

i+ 1

2

(respectively

Qn
i− 1

2

) in Simpson’s rule (2.7) doesn’t lead to an exact integration (even without cut

cells) if this interpolation condition was dropped. Equations (2.24) and (2.25) make it
clear that instead the value in upwind direction has to be used: If a > 0, use

F n
i+ 1

2

=
1

6

(
f(Qn

rec,i,lim(1)) + 4f(Q
n+ 1

2

i+ 1

2

) + f(Qn+1
i+ 1

2

)
)

(2.57)

and if a < 0, use

F n
i+ 1

2

=
1

6

(
f(Qn

rec,i+1,lim(0)) + 4f(Q
n+ 1

2

i+ 1

2

) + f(Qn+1
i+ 1

2

)
)
. (2.58)

Without limiting, this definition of the numerical flux is equivalent to (2.7) due to the
continuity of the reconstruction.

Condition (2.45) in conjunction with conditions (2.9) and (2.11) can also be under-
stood as a monotonicity condition, i.e., (Qn

rec,i,lim)
′(ξ) ≥ 0 ∀ξ ∈ [0, 1] or (Qn

rec,i,lim)
′(ξ) ≤

0 ∀ξ ∈ [0, 1]. The increased amount of degrees of freedom per cell in the multidimen-
sional case hinders the application of this method in that case. We adapt the method
by dropping the continuity at both interfaces and assemble our limiting instead on the
idea of Zhang and Shu [40, 41]. It is also considered by Roe and coauthors [38].

For this, let Qn
rec,i resume to be the quadratic reconstruction in cell Ci. Let

Mn
i := max

ξ∈[0,1]
Qn

rec,i(ξ), (2.59)

mn
i := min

ξ∈[0,1]
Qn

rec,i(ξ). (2.60)
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2.6. Summary

Then, the limited reconstruction is defined by

Qn
rec,i,lim(ξ) := θQn

rec,i(ξ) + (1− θ)Qn
i (2.61)

with

θ := min

{∣∣∣∣
M̄n

i −Qn
i

Mn
i −Qn

i

∣∣∣∣,
∣∣∣∣
m̄n

i −Qn
i

mn
i −Qn

i

∣∣∣∣, 1
}
. (2.62)

The parameter θ is determined in such a way that in case of a limiting the function
is compressed around the cell average value exactly so far that the new minimum or
maximum is kept in the interval Ni. Otherwise, we have θ = 1 and recover the original,
unlimited reconstruction.

This limiting stands out in contrast to the aforementioned limitings that the use of
Simpson’s rule is still exact (if the proper upwind values are used) and that it can be
easily extended to the multidimensional case as discussed later.

A graphical representation of both in this section explained limitings can be found
in Figure 2.10. Figure 2.11 shows the comparison of the numerical solution of the
advection equation under the use of these limitings. While the first limiting produces
very similar results to the two limitings discussed in the previous section, the more
generalizable limiting (2.61) can’t resolve the discontinuities just as well.
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Figure 2.10.: Different reconstructions of the Active Flux method. The dashed line in-
dicates the cell average value, the ’o’ symbols at the boundaries indicate
the edge values and the red solid line indicates the reconstruction. For
all of these plots we used Qn

i− 1

2

= 0.1, Qn
i+ 1

2

= 1 and Qn
i = 0.2. Unlim-

ited, quadratic reconstruction (a), discontinuous reconstruction 2.55 (b),
discontinuous reconstruction 2.61 (c).

All mentioned limitings can also be used for a grid with cut cells. It is important
to notice that the cancellation property is no longer forced since the continuity is lost
in the reconstruction. Therefore, one has to use exact integration for the respective
fluxes in cells Ck−1 or Ck in case of a limiting.

2.6 Summary

In this chapter, we have applied the Active Flux method to one-dimensional linear
conservation laws. We use point and cell average values of the conserved quantities

29



Chapter 2. The Active Flux Method in One Spatial Dimension
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Figure 2.11.: Advection test computed with different versions of the Active Flux
method using 200 grid cells. The solution is shown at time T = 1, i.e.,
after one rotation. The solution using the unlimited Active Flux method
is shown in (a). In (b) and (c) we show results for the piecewise polyno-
mial and hyperbolic reconstruction, respectively. Point values are marked
with a ’+’, while cell averages are marked with an ’o’.

to obtain a third order accurate method. The method can be used for cut cells with
some small changes, remains third order accurate and is stable for time steps chosen
according to the size of the regular grid cells. Appearing oscillations near discontinuities
or steep gradients in the solution are small and can be eliminated by the use of a limited
reconstruction.
The special choice of degrees of freedom at the interfaces between each cell offers

a good choice for a cut cell method in higher dimensions. The two-dimensional case
is covered in Chapter 3. Chapter 4 deals with approaches for nonlinear systems of
equations since the solution operator Lf (q(x, t),∆t) is not known in general.
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3 The Active Flux Method in Two

Spatial Dimensions

In the previous chapter, the Active Flux method for linear equations in one spatial
dimension has been introduced. We now consider the two-dimensional case, i.e., equa-
tions (1.1) and (1.2) for d = 2. For a clearer distinction we write

∂

∂t
q(x, t) +

∂

∂x
f(q(x, y, t)) +

∂

∂y
g(q(x, y, t)) = 0 (3.1)

with f, g : Rm → R
m.

The Active Flux method developed by Roe and coauthors has been constructed on
a triangular mesh [28]. To proceed the idea of cut cells we now explain a possible
adaptation of the method on Cartesian grids. This has been done by us in [1] and was
independently worked out by Barsukow et al. in [42] at the same time. We restrict
ourselves again to linear equations, specifically to the linear advection equation and
the linear acoustic equations. At the latter we will see that the complexity of the
exact solution operator for multidimensional systems strongly exceeds the complexity
of solution operators in the one-dimensional case. Subsequently, we will examine the
Active Flux method for the advection equation in two dimensions in the presence of
cut cells.

3.1 Cartesian Grids

The notation can be extended from the one-dimensional case. We mainly follow our
description in [1, Section 6]. Let Mx,My be index sets and (xi+ 1

2

, yj+ 1

2

)i∈Mx,j∈My be
a numerical grid, here also called corners. For i ∈ Mx, j ∈ My we denote the cells by

Ci,j = [xi− 1

2

, xi+ 1

2

] × [yi− 1

2

, yi+ 1

2

]. Further let (xi, yj) =
(x

i+1
2

+x
i− 1

2

2
,
y
j+1

2

+y
j− 1

2

2

)
denote

the cell centers. The temporal discretization stays unchanged. In contrast to the one-
dimensional case, where the boundary of each cell consists of two points that were used
to define the two point values, the boundary now consists of four line segments which
link the corners, here also called edges. The choice of degrees of freedom is no longer
immediately apparent. We follow the choice of degrees of freedom by Eymann and
Roe on triangular cells and place them on the corners and the midpoints of the edges.
While this results in six degrees of freedom on the boundary for triangular grid cells
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we now have eight degrees of freedom on the boundary of the Cartesian grid cell. We
use

Qn
i+ 1

2
,j+ 1

2

≈ qn
i+ 1

2
,j+ 1

2

:= q(xi+ 1

2

, yj+ 1

2

, tn) (3.2)

for the approximate point value at a corner (xi+ 1

2

, yj+ 1

2

) and

Qn
i+ 1

2
,j
≈ qn

i+ 1

2
,j
:= q(xi+ 1

2

, yj, tn) (3.3)

for the approximate point value at a vertical edge (xi+ 1

2

, yj) and

Qn
i,j+ 1

2

≈ qn
i,j+ 1

2

:= q(xi, yj+ 1

2

, tn) (3.4)

for the approximate point value at a horizontal edge (xi, yj+ 1

2

), respectively. Further,

Qn
i,j ≈ q̄ni,j :=

1

(xi+ 1

2

− xi− 1

2

)(yj+ 1

2

− yj− 1

2

)

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

q(x, y, tn) dy dx (3.5)

is the approximate cell average in cell Ci,j. For practical computations we now consider
a rectangle [xl, xr] × [yl, yr] with double periodic boundary conditions. For this let
xl = x 1

2

, . . . , xNx+ 1

2

= xr and yl = y 1

2

, . . . , yNy+ 1

2

be the numerical grid and ∆x = xi+ 1

2

−
xi− 1

2

∀i ∈ {1, . . . , Nx} as well as ∆y = yj+ 1

2

−yj− 1

2

∀j ∈ {1, . . . , Ny}. Furthermore, for

c ∈ R
+ let ∆x = c∆y, so that we can express all terms of third and higher order with

O(∆x3) = O(∆x2∆y) = O(∆x∆y2) = O(∆y3). We again demand the initial values
to be at least third order accurate:

Q0
i+ 1

2
,j+ 1

2

= q0(xi+ 1

2

, yj+ 1

2

) (3.6)

and

Q0
i,j =

1

(xi+ 1

2

− xi− 1

2

)(yj+ 1

2

− yj− 1

2

)

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

q0(x, y) dy dx+O(∆x3) (3.7)

Figure 3.1 (left) shows the configuration of the degrees of freedom in one cell. In
analogy to the one-dimensional case we have, after the use of the Divergence theorem
and the fundamental theorem of calculus,

q̄n+1
i,j = q̄ni,j −

1

∆x∆y

∫ tn+1

tn

∫ y
j+1

2

y
j− 1

2

f(q(xi+ 1

2

, y, t))− f(q(xi− 1

2

, y, t)) dy dt

− 1

∆x∆y

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

g(q(x, yj+ 1

2

, t))− g(q(x, yj− 1

2

, t)) dx dt,

(3.8)

since the boundary segments of the cell (the edges) are all parallel or orthogonal to the
coordinate axes. The integrals over the edges and time intervals will be approximated
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3.1. Cartesian Grids
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Figure 3.1.: Left: Configuration of degrees of freedom in cell Ci,j. Right: Area of
integration in space-time, nodes for Simpson’s rule are shown.

by a two-dimensional version of Simpson’s rule:

F n
i+ 1

2
,j
:=

∆y

36

(
f(Qn

i+ 1

2
,j− 1

2

) + 4f(Qn
i+ 1

2
,j
) + f(Qn

i+ 1

2
,j+ 1

2

)

+ 4f(Q
n+ 1

2

i+ 1

2
,j− 1

2

) + 16f(Q
n+ 1

2

i+ 1

2
,j
) + 4f(Q

n+ 1

2

i+ 1

2
,j+ 1

2

)

+ f(Qn+1
i+ 1

2
,j− 1

2

) + 4f(Qn+1
i+ 1

2
,j
) + f(Qn+1

i+ 1

2
,j+ 1

2

)
)

(3.9)

and

Gn
i,j+ 1

2

:=
∆x

36

(
g(Qn

i− 1

2
,j+ 1

2

) + 4g(Qn
i,j+ 1

2

) + g(Qn
i+ 1

2
,j+ 1

2

)

+ 4g(Q
n+ 1

2

i− 1

2
,j+ 1

2

) + 16g(Q
n+ 1

2

i,j+ 1

2

) + 4g(Q
n+ 1

2

i+ 1

2
,j+ 1

2

)

+ g(Qn+1
i− 1

2
,j+ 1

2

) + 4g(Qn+1
i,j+ 1

2

) + g(Qn+1
i+ 1

2
,j+ 1

2

)
)
.

(3.10)

Therefore, we have

F n
i+ 1

2
,j
≈ 1

∆t

∫ tn+1

tn

∫ y
j+1

2

y
j− 1

2

f(q(xi+ 1

2

, y, t)) dy dt (3.11)

and

Gn
i,j+ 1

2

≈ 1

∆t

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

g(q(x, yi+ 1

2

, t)) dx dt. (3.12)

This results in the finite volume method

Qn+1
i,j = Qn

i,j −
∆t

∆x∆y

(
F n
i+ 1

2
,j
− F n

i− 1

2
,j
−Gn

i,j+ 1

2

+Gn
i,j− 1

2

)
. (3.13)

Figure 3.1 (right) shows the quadrature points of Simpson’s rule for the integration
in space and time along a grid cell edge. For the update of the point values we use

33



Chapter 3. The Active Flux Method in Two Spatial Dimensions

the exact evolution operator. We thus restrict ourselves to equations where we can
evaluate it. In Chapter 4 we consider equations where the exact evolution operator is
not known.
To construct a third order accurate method we’d like to use a reconstruction which

approximates q to the same order. It is sufficient to utilize the basis {1, x, y, x2, xy, y2}
for the reconstruction. The seven degrees of freedom of the Active Flux method on tri-
angular grids use a basis that generates the same polynomial space and interpolates all
six point values on the boundary, and additionally uses one further higher order basis
function that vanishes on the boundary of the cell and simply forces the conservation of
the cell average value (”bubble function”). This reconstruction yields a globally contin-
uous reconstruction since the three degrees of freedom on each edge produce a uniquely
defined parabola. Since the Active Flux method on Cartesian grids now has nine de-
grees of freedom it makes sense to extend the basis to {1, x, y, x2, xy, y2, x2y, xy2, x2y2}.
The so created reconstruction interpolates all eight degrees of freedom on the boundary
and conserves the cell average. It can be represented as follows. On a reference cell
[−1, 1]× [−1, 1] we have

Qn
rec,i,j(ξ, µ) =

9∑

i=1

ciNi(ξ, µ). (3.14)

The basis functions Ni and coefficients ci for i ∈ {1, . . . , 9} are given in table 3.1. By

i ci Ni

1 Qn
i− 1

2
,j− 1

2

1
4
(ξ2 − ξ)(η2 − η)

2 Qn
i,j− 1

2

1
2
(1− ξ2)(η2 − η)

3 Qn
i+ 1

2
,j− 1

2

1
4
(ξ2 + ξ)(η2 − η)

4 Qn
i+ 1

2
,j

1
2
(ξ2 + ξ)(1− η2)

5 Qn
i+ 1

2
,j+ 1

2

1
4
(ξ2 + ξ)(η2 + η)

6 Qn
i,j+ 1

2

1
2
(η2 + η)(1− ξ2)

7 Qn
i− 1

2
,j+ 1

2

1
4
(ξ2 − ξ)(η2 + η)

8 Qn
i− 1

2
,j

1
2
(ξ2 − ξ)(1− η2)

9 1
16

(
36Qn

i,j − (Qn
i− 1

2
,j− 1

2

+Qn
i+ 1

2
,j− 1

2

+Qn
i+ 1

2
,j+ 1

2

+Qn
i− 1

2
,j+ 1

2

) (1− ξ2)(1− η2)

−4(Qn
i,j− 1

2

+Qn
i+ 1

2
,j
+Qn

i,j+ 1

2

+Qn
i− 1

2
,j
)
)

Table 3.1.: Basis functions and coefficients for the two-dimensional reconstruction
(3.14).

Qn
rec(x, y) = Qn

rec,i,j(ξ, µ) ∀(x, y) ∈ [xi− 1

2

, xi+ 1

2

]× [yj− 1

2

, yj+ 1

2

] (3.15)

with

ξ = 2
x− xi− 1

2

∆x
− 1, µ = 2

y − yj− 1

2

∆y
− 1 (3.16)
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the reconstruction is defined on the whole grid. It is not only continuous on the point
values but globally as was the case on triangular grids. We also have continuity of
all partial derivatives with respect to x on the horizontal edges and continuity with
respect to y on the vertical edges.

For a better illustration of the method and the used evolution operator we now
consider the advection equation and the linear acoustic equations.

3.1.1 Linear Advection Equation

With f(q) = aq, a ∈ R and g(q) = bq, b ∈ R, the linear advection equation in two
dimensions is described. Its exact solution operator reads

Lf,g(q(x, y, t), τ) = q(x, y, t+ τ) = q(x− aτ, y − bτ, t). (3.17)

We evaluate the reconstruction at the corresponding locations in upwind direction for
the update of the point values:

Q
n+ 1

2

i+ 1

2
,j− 1

2

= Qn
rec

(
xi+ 1

2

− a
∆t

2
, yj− 1

2

− b
∆t

2

)

Qn+1
i+ 1

2
,j− 1

2

= Qn
rec

(
xi+ 1

2

− a∆t, yj− 1

2

− b∆t
) (3.18)

The time step is restricted so that the solution propagates a maximum of one grid cell
per time step and define

ν := max

( |a|∆t

∆x
,
|b|∆t

∆y

)
≤ 1. (3.19)

In Section 3.1.4 we will see that the so defined method actually converges under a
slightly tightened condition.

3.1.2 Linear Acoustic Equations

The linear acoustic equations in two dimensions are given by

∂tp+ c∇ · v = 0

∂tv + c∇p = 0,
(3.20)

where v = [u, v]T is the velocity vector, p is the pressure and c > 0 is the speed of
sound.

The here used exact evolution operator for the linear acoustic equations is based on
the spherical mean [42]. The description is adapted from [2, Section 2.2]. For a scalar
function f : R2 → R the spherical mean over a disc with radius r, centered around

35



Chapter 3. The Active Flux Method in Two Spatial Dimensions

(x, y), is defined by

M [f ](x, y, r) :=
1

2πr

∫ 2π

0

∫ r

0

f(x+ s cosϕ, y + s sinϕ)
s√

r2 − s2
ds dϕ. (3.21)

Assuming the solution is known at time t0 = 0, i.e., v0 = (u0, v0)
T and p0, we can

express the solution at a later time t in the following way:

p(x, y, t) = ∂r (rM [p0](x, y, r))
∣∣
r=ct

− 1

ct
∂r
(
r2M [v0 · ~n](x, y, r)

) ∣∣∣
r=ct

v(x, y, t) = v0(x, y)−
1

ct
∂r
(
r2M [p0~n](x, y, r)

) ∣∣∣
r=ct

+

∫ ct

0

1

r
∂r

(
1

r
∂r
(
r3M [(v0 · ~n)~n](x, y, r)

)
− rM [v0](x, y, r)

)
dr

(3.22)

The vector valued function M [v0] is computed component-by-component, i.e., M [v0] =
(M [u0],M [v0])

T . The scalar function M [v0 · ~n] for ~n = (cosϕ, sinϕ)T is determined
by replacing f(x+ s cosϕ, y + sinϕ) by cosϕu0(x+ s cosϕ, y + s sinϕ) + sinϕ v0(x+
s cosϕ, y + s sinϕ) in (3.21). The two entries in M [p0~n] are determined by replacing
f by cosϕp0(x+ s cosϕ, y + s sinϕ) and sinϕp0(x+ s cosϕ, y + s sinϕ). Analogously,
the two entries of M [(v0 · ~n)~n] are determined.
This evolution formula can be evaluated exactly if p0 and v0 are replaced by the

corresponding components of the continuous, piecewise quadratic reconstruction Qn
rec

in each time step. The integration has to be performed separately on each cell that is
part of the circle with radius c∆t.
The time step is furthermore bounded such that circles with radius c∆t around a

degree of freedom on the edge don’t cross the two adjacent cells. Figure 3.2 illustrates
this. This constraint is expressed by

ν := max

(
c∆t

∆x
,
c∆t

∆y

)
≤ 1

2
. (3.23)

Thereby, for each edge we have two areas of integration and for each corner we have
four areas of integration. Inequality (3.23) is a necessary condition for stability and
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Figure 3.2.: Illustration of the computation of point values of the conserved quantities
using the exact evolution formula for the acoustic equations. Left: Corner
value. Right: Edge value.
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converge. We will examine linear stability in Section 3.1.4.

3.1.3 Accuracy

In Section 2.3 we have presented the local truncation error for the one-dimensional
advection equation. For the two-dimensional variant an analogue procedure is possible
but proves to be extremely cumbersome due to the increasingly long and more extensive
formulas. We therefore pass on it and instead perform an investigation similar to (2.24)
and (2.25). This part is adapted from [2, Section 3.1].

The flux for the advection equation on a vertical edge has the following form:

f̄
n+ 1

2

i+ 1

2
,j
=

1

∆t

∫ tn+1

tn

∫ y
j+1

2

y
j− 1

2

aq(xi+ 1

2

, y, t) dy dt

=
1

∆t

∫ x
i+1

2

x
i+1

2

−a∆t

∫ y
j+1

2

−
b
a
(x

i+1
2

−x)

y
j− 1

2

−
b
a
(x

i+1
2

−x)

q(x, y, tn) dy dx

≈ 1

∆t

∫ x
i+1

2

x
i+1

2

−a∆t

∫ y
j+1

2

−
b
a
(x

i+1
2

−x)

y
j− 1

2

−
b
a
(x

i+1
2

−x)

Qn
rec(x, y) dy dx

≈ a∆y

36

(
Qn

rec(xi+ 1

2

, yj− 1

2

) + 4Qn
rec(xi+ 1

2

, yj) +Qn
rec(xi+ 1

2

, yj+ 1

2

)

+ 4Qn
rec

(
xi+ 1

2

− a∆t

2
, yj− 1

2

− b∆t

2

)
+ 16Qn

rec

(
xi+ 1

2

− a∆t

2
, yj −

b∆t

2

)

+ 4Qn
rec

(
xi+ 1

2

− a∆t

2
, yj+ 1

2

− b∆t

2

)
+Qn

rec(xi+ 1

2

− a∆t, yj− 1

2

− b∆t)

+ 4Qn
rec(xi+ 1

2

− a∆t, yj − b∆t) +Qn
rec(xi+ 1

2

− a∆t, yj+ 1

2

− b∆t)
)

=: F n
i+ 1

2
,j
.

(3.24)

Here, we have introduced two approximations. First, the exact solution q(x, y, tn) is
replaced by the reconstruction Qn

rec(x, y). In contrast to the one-dimensional case a
second approximation is introduced by applying Simpson’s rule: While we integrated a
quadratic function under compliance with the stability condition in the one-dimensional
case and therefore recovered the true integral by Simpson’s rule, the reconstruction now
is only locally quadratic on each part of the two-dimensional area of integration. That
makes Simpson’s rule no longer exact. In this case we can analytically compute the
integral by an exact integration. This can be achieved by separating the area into the
different cells. For unification purposes, a triangularization of the area is possible for
example. Figure 3.3 shows an exemplary area of integration as well as a depiction of
Simpson’s rule (left) and exact integration (right) for a, b > 0. Whereas no exact form
of the truncation error was state we still find third order accuracy in the L1-norm as well
as in the L∞-norm for both methods of integration. This let’s us conjecture that the
second order terms cancel like in the one-dimensional case. Exemplary computations
are shown in Section 3.1.5 and Section 4.2.2.2.
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ii− 1 i + 1
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Af,1
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Figure 3.3.: The left plot illustrates the flux computation for the advection equation at
a vertical grid cell interface using Simpson’s rule. The right plot illustrates
the flux computation using exact integration.

For the linear acoustic equations we can’t perform an exact flux integration that
easily. We thus restrict ourselves to the computation by Simpson’s rule. A computation
can be found in Section 4.2.2.2.

3.1.4 Linear Stability

As in the one-dimensional case we are concerned with the linear stability of the Active
Flux method. Since the method is also linear in two dimensions, we pursue the same
ansatz. This whole section is taken from [2, Section 3] and has been modified slightly.
To simplify notation we consider a quadratic area that is discretized by a grid of size
N×N . In particular we have ∆x = ∆y. We again apply periodic boundary conditions.
For a unique assignment we allocate to each cell Ci,j its cell average Qn

i,j, the left and
bottom edge values Qn

i− 1

2
,j
, Qn

i,j− 1

2

and the left bottom corner value Qn
i− 1

2
,j− 1

2

. There

are of course other possibilities. Figure 3.4 shows the allocated degrees of freedom in
each cell in red. With this, each cell is responsible for 4m degrees of freedom. We again
write the method in matrix-vector form

Qn+1 = AQn, (3.25)

where Qn ∈ R
4mN2

consists of all degrees of freedom at time tn and the matrix A ∈
R

(4mN2)×(4mN2) describes the update of the method in one time step. The number
of unknowns is m = 1 for the advection equation and m = 3 for the linear acoustic
equations in two dimensions. That’s why we have four degrees of freedom per cell for
the advection equation and twelve for the linear acoustic equations.
To explore the stability of the different versions of the Active Flux method ex-

perimentally, we plot the eigenvalues of the matrices A for a fixed grid. Since the
construction of the matrix by hand, like in the one-dimensional case, is very intricate,
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3.1. Cartesian Grids

we describe a procedural approach that is implemented with the help of the sympy
package of Python. The vector Q will be built up as follows:

• For each cell, arrange the degrees of freedom in the order

Qn
i− 1

2
,j
, Qn

i− 1

2
,j− 1

2

, Qn
i,j− 1

2

, Qn
i,j. (3.26)

Each of these four vectors will contain all unknown variables at the corresponding
positions. For example, the unknowns for the linear acoustic equations will be
ordered as

Qi,j := [pn
i− 1

2
,j
, v1,n

i− 1

2
,j
, v2,n

i− 1

2
,j
, pn

i− 1

2
,j− 1

2

, v1,n
i− 1

2
,j− 1

2

, v2,n
i− 1

2
,j− 1

2

,

pn
i,j− 1

2

, v1,n
i,j− 1

2

, v2,n
i,j− 1

2

, pni,j, v
1,n
i,j , v

2,n
i,j ].

(3.27)

• Then, all cells will be concatenated row by row, i.e.,

Qn = [Q1,1, Q2,1, . . . , QN,1, Q1,2, Q2,2, . . . , QN−1,N , QN,N ]
T . (3.28)

For the construction of the matrix A we consider for a given cell Ci,j all cells that have
at least one degree of freedom that contributes to the update of any of the degrees of
freedoms of cell Ci,j. Which of the cells actually do have a non-vanishing contribution
depends strongly on the equations and its parameters, for example advection speeds (>
0 or < 0), and on the evolution operator that is used for the interface values. Generally,
because the method has a local stencil, it is sufficient to investigate a 4×4 grid around
cell Ci,j, i.e., cells Ci−1,j−1 to Ci+2,j+2. The red marked degrees of freedom in Figure
3.5 indicate a potential non-vanishing contribution to the update of cell Ci,j. After
performing the update for both point values and cell average values the coefficients
of all 16 · 4 · m degrees of freedom can be easily extracted. These coefficients will
now solely depend on ∆t and ∆x. They are then saved in 16 matrices Zk,l ∈ R

4m×4m,
where k, l ∈ {−1, 0, 1, 2} represent the relative position to cell Ci,j. The entry Zk,l[x, y],
x, y ∈ {1, . . . , 4m} will therefore represent the contribution of the degree of freedom
y in cell Ci+k,j+l to the update of the degree of freedom x in cell Ci,j. x and y are of
course to be understood according to the order described in (3.26).

After obtaining the matrices Zk,l, one can substitute the symbolic values by numerical
values in order to test for stability.

Finally, A can be constructed by placing these 16 matrices in the correct spots
through Kronecker products. Let Pm(δ) be the identity matrix Im ∈ R

m×m shifted by
δ columns to the right (or equivalently by δ rows to the top), e.g.

P4(1) =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 , P3(−1) =



0 0 1
1 0 0
0 1 0


 . (3.29)
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Qi,jQi− 1
2 ,j

Qi− 1
2 ,j− 1

2
Qi,j− 1

2

Figure 3.4.: DoF saved
in cell Ci,j

marked in
red.

(i− 1, j − 1)

(i, j)(i− 1, j) (i+ 1, j)

(i, j − 1)

(i, j + 1)

(i, j + 2)(i− 1, j + 2) (i+ 1, j + 2) (i+ 2, j + 2)

(i+ 2, j + 1)

(i+ 2, j)

(i+ 2, j − 1)(i+ 1, j − 1)

(i+ 1, j + 1)(i− 1, j + 1)

Figure 3.5.: Domain of influence for the update of
all DoF of cell Ci,j.

Then, A is given by

A =
2∑

k,l=−1

Pm(k)⊗ Pm(l)⊗ Zk,l. (3.30)

Figure 3.6 displays the structure of the sparse matrix A for both linear problems and
N = 10.

More details can be found in Appendix A. Figures 3.7 - 3.9 shown in the next section
and the similar figures in Appendix A were done with the help of an earlier version of
the stability programs by Erik Chudzik.

3.1.4.1 Linear Advection Equation

After we have built up the matrix we can inspect the eigenvalues as intended. Figure
3.7 displays the eigenvalues for a = b, ν = 0.75 as well as a = b, ν = 0.9 for a grid
with N = 20. While both Simpson’s rule and exact integration result in a potentially
stable method for ν = 0.75 (left plots), some eigenvalue lie outside the unit circle when
using Simpson’s rule in the case ν = 0.9 (right top plot) and therefore don’t result in a
stable method. This is not the case when using exact integration (right bottom plot).
This different behavior raises the question how the stability region of the Active Flux
method with Simpson’s rule in two dimensions looks like. To have a better answer to
this question we again choose a fixed grid with N = 20 as in the previous test and vary
|a|∆t/∆x and |b|∆t/∆x. For every combination we test if an eigenvalue with modulus
greater than one exists. A dot in Figure 3.8 identifies a situation with |λ| ≤ 1 for all
eigenvalues λ. As expected, we see that the use of Simpson’s rule leads to a reduced
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the method is not stable as explained in Section 3.1.2. A further increase of the time
step would require to integrate over larger circles. This would make the method more
difficult to implement and has not been done. For the current version of the method,
there is no need to consider exact integration of the flux, since the use of Simpson’s
rule already provides the maximal stability for all appropriate time steps.

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0
Eigenvalues for ν=0.5

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0
Eigenvalues for ν=0.4

Figure 3.10.: Eigenvalues of the update matrix A in comparison to the unit circle for
N = 30 grid cells. Time steps correspond to ν = 0.5 (left) and ν = 0.4
(right).

3.1.5 Limiting

We convert the limiting introduced in Section 2.5.2 to the two-dimensional case. In
this whole section, we follow [2, Section 4]. Let

Mi,j := max
(ξ,η)∈[−1,1]2

Qn
rec,i,j(ξ, η), (3.32)

mi,j := min
(ξ,η)∈[−1,1]2

Qn
rec,i,j(ξ, η) (3.33)

be the maximum and minimum of the reconstruction in cell Ci,j and

M̄i,j := max
{
Qn

i− 1

2
,j− 1

2

, Qn
i,j− 1

2

, Qn
i+ 1

2
,j− 1

2

, Qn
i+ 1

2
,j
, Qn

i+ 1

2
,j+ 1

2

, Qn
i,j+ 1

2

, Qn
i− 1

2
,j+ 1

2

, Qn
i− 1

2
j

}

(3.34)

m̄i,j := min
{
Qn

i− 1

2
,j− 1

2

, Qn
i,j− 1

2

, Qn
i+ 1

2
,j− 1

2

, Qn
i+ 1

2
,j
, Qn

i+ 1

2
,j+ 1

2

, Qn
i,j+ 1

2

, Qn
i− 1

2
,j+ 1

2

, Qn
i− 1

2
j

}

(3.35)

Ni,j := [m̄i,j, M̄i,j] (3.36)
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be the maximum and minimum of the degrees of freedom on the boundary of cell Ci,j as
well as the interval between the two values. As in the one-dimensional case we pursue
the following limiting strategy: If Qn

i,j ∈ Ni,j, then we limit the reconstruction through

Qn
rec,i,j,lim(ξ, η) := θ

(
Qn

rec,i,j(ξ, η)−Qn
i,j

)
+Qn

i,j (3.37)

with

θ := min

{∣∣∣∣∣
M̄ij −Qn

i,j

Mi,j −Qn
i,j

∣∣∣∣∣ ,
∣∣∣∣
m̄ij −Qn

i,j

mi,j −Qn
i,j

∣∣∣∣ , 1
}
. (3.38)

If Qn
i,j 6∈ Ni,j, we do not apply any limiting in order to keep the accuracy of the

solution near local extrema. If Qn
i,j ∈ Ni,j, the limited reconstruction obeys

m̄i,j ≤ Qn
rec,i,j,lim(ξ, η) ≤ M̄i,j ∀(ξ, η) ∈ [−1, 1]2.

Again, if Simpson’s rule is used to compute the fluxes, the respective values in upwind
direction have to be used in order to reach a correct approximation. We now consider
the accuracy of the method while using this limiting for the advection equation. Non-
linear equations can be limited in the exact same manner. In Section 4.1.2 limiting for
Burgers’ equation is looked at.

3.1.5.1 Accuracy Study on the Advection Equation for Smooth

Initial Conditions

For a smooth advection problem we now compare the accuracy of the Active Flux
method using either exact integration or Simpson’s rule in order to compute the fluxes.
We consider the advection equation with a = b = 0.7 and

q(x, y, 0) = sin(πx) cos(πy) (3.39)

for (x, y) ∈ [0, 2] × [0, 2] and periodic boundary conditions. We use ∆x = ∆y = ∆t,
i.e., ν = 0.7 and compute solutions at time T = 0.8 using different grid resolutions.

In the left plot of Figure 3.11 we display the error in the L1-norm against the mesh
size ∆x = ∆y while using the Active Flux method without limiting. While both
versions of the Active Flux method are third order accurate, the Active Flux method
with exact integration is slightly more accurate than the Active Flux method which uses
Simpson’s rule. Furthermore, we perform an accuracy study for the same test problem
by replacing the Active Flux reconstruction with the bound preserving reconstruction.
The use of the limiter reduces the accuracy of the method, but we still observe third
order convergence in the L1-norm. Again, we observe a sightly higher accuracy by
using exact integration instead of Simpson’s rule. In the right plot, we show the error
in the L∞-norm. In this norm, the error obtained by using exact integration is almost
identical with the error that is obtained by using Simpson’s rule. In the limited case,
we now observe a loss in convergence rate.
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Figure 3.11.: Accuracy study for the Active Flux method using exact integration as
well as Simpson’s rule. The curves of the left plot show the error in the
L1-norm, the curves of the right plot show the error in the L∞-norm.
The red curves show results for exact integration in the unlimited case
(’+’ symbols) as well as limited case (’o’ symbols). The blue curves show
results for Simpson’s method in the unlimited case (’+’ symbols) and lim-
ited case (’o’ symbols). The black line in the left plot is a reference curve
for third order accuracy. In the right, the two black lines are reference
lines for third as well as first order convergence.

3.1.5.2 Accuracy Study on the Advection Equation for Discon-

tinuous Initial Conditions

We now consider the same initial value problem with initial values

q(x, y, 0) =

{
1 : (x, y) ∈

[
1
3
, 2
3

]
×
[
1
3
, 2
3

]

exp (−20((x− 1.25)2 + (y − 1.25)2)) : otherwise
(3.40)

The other parameters are chosen as in the previous test. Figure 3.12 shows numerical
results after one rotation obtained on a 100 × 100 grid. The numerical flux is again
computed using either Simpson’s rule or exact integration. In the left plots, we show
results for the unlimited case and in the right plot we show results for the limited re-
construction. As expected, both flux computations lead to overshoots and undershoots
near the discontinuity if no limiting is used. On the contrary, these are removed by
the limiting as long as exact integration is used. Although the reconstruction doesn’t
produce new extrema, the flux computation using Simpson’s rule is not exact for this
piecewise quadratic function. Therefore, the numerical solution might produce spu-
rious oscillations. On the 100 × 100 grid, the maximal cell average value observed
after one full rotation is one, i.e., there are no overshoots. The minimal cell average
value is about −10−3, i.e., there are small undershoots. The exact flux computation
in combination with the limited bound preserving reconstruction leads to accurate ap-
proximations and eliminates undershoots and overshoots up to machine precision. We
summarise our results in the following theorem:
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3.1. Cartesian Grids

Figure 3.12.: Numerical results for the advection equation using Simpson’s rule with
unlimited reconstruction (top, left) and limited reconstruction (top,
right), as well as exact integration with unlimited reconstruction (bot-
tom, left) and limited reconstruction (bottom, right).

Theorem 3.1.1. Let m̄ := mini,j m̄i,j and M̄ := maxi,j M̄i,j describe the global
minima and maxima of all point values of q at time tn. If

Qn
i,j ∈ Ni,j ∀(i, j), (3.41)

then then Active Flux method for the two-dimensional advection equation with limited
reconstruction (3.37) and exact integration for the flux computation produces new cell
average values and point values which satisfy

Qn+1
k,l ∈ [m̄, M̄ ] ∀(k, l) ∈

{(
i− 1

2
, j

)
,

(
i− 1

2
, j − 1

2

)
,

(
i, j − 1

2

)
, (i, j)

}
.

Proof. The property for the point values follows directly from the bound preserving
limited reconstruction and the update of the point values described in (3.18).

We can understand the method in the framework reconstruction-evolution-averaging.
The bound preserving reconstruction doesn’t introduce new extrema. The evolution
using exact quadrature is exact for the reconstructed data and therefore also bound
preserving. As always, averaging doesn’t introduce new extrema.
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Chapter 3. The Active Flux Method in Two Spatial Dimensions

Note that condition (3.41) is necessary, since our limiting strategy avoids limiting
near local extrema. During the evolution, new local minima or maxima might arise in
grid cells where this situation has not appeared previously. If we would combine the
bound preserving reconstruction with a piecewise constant reconstruction near local
minima or maxima, it would be straight forward to prove a TVD result for the Active
Flux method with exact integration. However, the accuracy of such a method would
be reduced.

3.2 Cut Cell Grids

While cut cells in one spatial dimension are only smaller versions of the regular cells, cut
cells can in general not be obtained by a linear transformation in the multidimensional
case. Through arbitrary cuts arbitrarily formed cut cells arise in the two-dimensional
cells Ci,j. While some ideas and first results have already been presented in [3, Section
3] and are used in this whole section, we provide a more detailed description and discus-
sion. To lay the foundations for the use of the Active Flux method on multidimensional
cut cell grids, we make three assumptions to our cut cell grid:

• Each cell is only crossed by a maximum of one connected boundary path. This
condition is normally ensured by using a fine grid in the proximity of narrow
passages of the domain and can be enforced by a rougher boundary estimation in
these fine grid cells. Since grids should not be fine everywhere, the use of mesh
refinement is of high interest. This is a current research topic of our work group.

• The boundary of a cut cell is given by the boundary of the corresponding part
of the domain. For general boundaries it is important to discuss how the bound-
ary should be approximated. In this work we approximate the boundary by a
straight line segment connecting the two points of intersection of the boundary
with the cell. The considered problem has a straight boundary, so no additional
approximation is introduced.

• We strictly use ∆x = ∆y. This is not obligatory but reduces the complexity of
the arising cut cells and integration areas.

Up to rotations and reflections four different cell types emerge: Uncut rectangles
(squares), quadrilaterals with one inclined edge, right triangles and pentagons which
arise by cutting off one corner of a rectangle. The degrees of freedom of the unknowns
are placed on the corners and midpoints of the edges so that Simpson’s rule can be
used for the flux computation along every edge. Figure 3.13 shows all possible cells.

3.2.1 Reconstruction

The rectangles and triangular cells were already described here and by Roe et al.,
respectively [28]. The used reconstructions are considered in a reference cell which can
be obtained by an affine map from the original cell and vice versa. Because of that
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3.2. Cut Cell Grids

Figure 3.13.: Degrees of freedom in the two-dimensional Active Flux method for all
possible cut cells. The solid dots indicate point values of the conserved
quantity while the squares indicate the cell average.

the reconstruction is easily possible even in very plain triangles or rectangles. No stiff
system of equations has to be solved.
We now consider the situation in a pentagon: Since there are eleven degrees of free-

dom the nine basis functions for the bi-parabolic reconstruction are no longer sufficient
to ensure an interpolation of all ten point values. For a long time we added the ba-
sis functions x3 and y3 to satisfy all conditions. Through a clever choice of the basis
functions it was previously possible to evaluate the reconstruction in the interior of
the cell with pleasant coefficients. This property gets lost with the new approach for
the pentagons. In every step a system of equations has to be solved or the previously
computed analytic solution can be used which is very long and expensive. Next to the
high costs two problems arise:

• First of all the reconstruction is no longer continuous across the whole edge but
only in the interpolation points. This can situationally lead to a loss of the
cancellation property which in turn leads to an unstable method. In practical
computations this didn’t seem to be a problem, although we could not prove any
statement for the cancellation property when the reconstruction is not continuous.

• The condition of these interpolation problems depends strongly on the distance
of the degrees of freedom. Since there is no affine transformation from the here
considered quadrilateral and pentagonal cells to a global reference cell, the evalu-
ation of the reconstruction is badly conditioned if two or more degrees of freedom
lie very close to each other in a relative way. This is the case for the pentagons
if and only if it doesn’t differ much from the other possible cell types.

To enforce the continuity over the boundary of the cut cell that lies in the interior
of the domain, one could try to use the nine previous basis functions to interpolate
the nine point values that lie on this part of the boundary (all but the value on the
diagonal and the cell average value). By adding two basis functions of higher order,
which vanish on the boundary of the original uncut cell, one could integrate the two
missing values and obtain a reconstruction that is continuous across all four internal
cell boundaries. This is realized by the so-called ”bubble function” in the triangular
grids [28]. However, this is not possible here since the this interpolation problem is
singular.
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Chapter 3. The Active Flux Method in Two Spatial Dimensions

Another possibility that solves both problems is the use of a triangularization of the
cut cells. Here, the pentagonal cell can be split into three triangles which results in two
new point values on the new edges between the triangles and three cell average values
of the triangles. We would therefore deviate from the Cartesian grid at the boundary.
The reconstruction on the triangles could be done without any problems and the Active
Flux method could be adjusted to fit for the newly created cells. Unfortunately, this
idea suffers from severe time step restrictions when using Simpson’s rule. We have
observed instabilities as soon as the time step was large enough that the correct area
of integration covered more than the width of the smallest triangular cell. This can
make the time step arbitrarily small, again. Exact integration could solve this problem
but becomes increasingly more complex the more cells are covered by the area of
integration.

We therefore use the following strategy: Let Ci,j be the pentagon in 3.13. Then,
the degrees of freedom Qn

i− 1

2
,j+ 1

2

, Qn
i− 1

2
,j
, Qn

i− 1

2
,j− 1

2

, Qn
i,j− 1

2

, Qn
i+ 1

2
,j− 1

2

are connected to

the neighboring, most likely regular, cells Ci−1,j and Ci,j−1. We use the basis func-
tions from table 3.1 and choose the coefficients c1, c2, c3, c7, c8 to the basis functions
N1, N2, N3, N7, N8, to interpolate these point values. After that, we solve a least square
problem to approximate the missing five point values as best as we can with the help of
the remaining basis functions N4, N5, N6, i.e., we search the coefficients c4, c5, c6. The
coefficient c9 of the basis function N9 influences the point value on the midpoint of the
diagonal boundary of the pentagon. To conserve the cell average value exactly we can
incorporate it into the setting of the least square problem beforehand. This strategy
allows for a well conditioned evaluation of the reconstruction, even if the cell is almost
degenerate. However, the continuity is lost. We only recover continuity along the long
faces of the pentagon. Computations show that the discontinuities along the short
faces of the pentagon are really small since the used basis functions on the boundaries
of the cell are the same. The results in the next section show that the stability is not
affected by this. It is interesting to notice what happens in the degenerate limit, i.e.,
when the degrees of freedom that lie close to each other collapse. If the three point on
the diagonal of the pentagon collapse, the degenerating limiting shape is the rectangle
and the solution to the least square problem becomes the standard reconstruction to
the Cartesian grid cells which interpolates all degrees of freedom. If on the other hand
the three values on both of the two cut faces each collapse and the limiting shape is
a triangle, then the least square problem becomes overdetermined but any solution
yields a valid third order reconstruction in the triangle. Lastly, if the limiting shape is
a quadrilateral, i.e., if only three values on one of the cut faces of the pentagon collapse,
then the canonical reconstruction on quadrilaterals is recovered which is unproblematic
if the remaining cut face is not too small.

Figure 3.14 shows the comparison between a naive reconstruction with two added
basis functions of higher order and the mixed interpolation and least square recon-
struction for a pentagonal cell whose shape is close to a rectangle (relative cell size of
1− 2 · 10−8 to a Cartesian cell) and its surrounding cells. In this test, the three point
values along the diagonal cut of the pentagon differ by about 10−4. An artifical error of
10−6 is added to one of these point values, leading to a wild reconstruction when using
the naive reconstruction. Although the interpolation is achieved, the quality of the
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3.2. Cut Cell Grids

Figure 3.14.: Reconstruction in a pentagonal cell and its neighbors. Top left: Re-
construction with two added basis functions of higher order. Top right:
Reconstruction with two added basis functions of higher order with a
small artificial error in one of the point values on the boundary. Bottom:
Reconstruction with the least square ansatz with the same artificial error.

reconstruction with the added basis functions is not satisfying. The least square ap-
proximation shows an improved reconstruction. The very small jumps in the transition
between the pentagon and the neighboring triangles are not visible to the naked eye.
Also, there is no visible difference between introducing the error and not introducing
the error when using the mixed interpolation and least square reconstruction.

The procedure can be followed in a very similar fashion for the quadrilaterals. While
the continuity would not produce a problem because of the use of the same nine basis
functions, the almost degeneration of the cell to a triangle was observed even more
commonly and caused the same problems for the condition. Thus, we use five of the
degrees of freedom from the triangular cell to be interpolated exactly. We use the
longest of the two parallel edges and the other regular edge for the choice of these
five degrees of freedom. Subsequently, the sixth basis function 4ξη that completes a
third order approximation is used for a least square problem. The cell average is again
conserved with the help of the ”bubble function”. In the degenerate limit, when three
of the degrees of freedom collapse, the standard reconstruction of the limit triangular
cell is recovered.
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Figure 3.15.: Left: Coarse cut cell grid. Right: Errors and estimated order of conver-
gence for σ = π
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In particular one can discuss when the canonical reconstruction can be used for the
quadrilaterals. For nondegenerate quadrilaterals the reconstruction is well behaved if
the two parallel edges are of similar length. We didn’t find large differences in the
accuracy of the method when switching between different reconstructions but decided
to use the mixed interpolation and least square ansatz if the quotient between the
length was bigger than 5 or smaller than 1

5
.

We now discuss the accuracy of the method.

3.2.2 Accuracy Study: Flow Along a Channel

Let σ ∈ (0, π
4
] be an angle, δ ∈ (0, 1) an offset,

Ω = [0, 1]2 ∩ {(x, y) | y − tan(σ)(x− δ) > 0 ∧ y − δ − tan(σ)x < 0} a channel in two
dimensions and a = cos(σ) and b = sin(σ) velocities parallel to the channel walls. The
setup and an example of a cut cell grid are shown in Figure 3.15 (left).
We impose inflow boundary conditions for x = 0 and y = 0 and outflow boundary

conditions for x = 1 and y = 1. Since the flow is parallel to the channel walls, there is
no flow across the boundary. The initial condition reads

q0(x, y) = 5 exp(−100(x+ y − 0.7)2). (3.42)

We use ∆t = 0.7max{∆x
a
, ∆y

b
} and the final time T = 0.4. A similar test using a

discontinuous Galerkin cut cell method is performed in [25].
We estimate the order of convergence by the solution to the least square problem

that is given by fitting a straight line to the logarithmic errors. We test for various
offsets δ and angles σ. The results for some values of σ and δ = 0.2001 using exact
integration are shown in Figure 3.15 (right). The results for all other tested values look
very similar.The method remains stable and accurate for any cut cell size. Third order
is achieved in the L1 norm and second order or better is achieved in the L∞ norm.
In these tests, the size of the smallest cut cell varied between a factor of 10−3 to 10−8

compared to the regular cells.
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Figure 3.16.: Estimated error of convergence of the two-dimensional cut cell Active
Flux method for the special grid configuration δ = 0.2 + ∆x
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It is especially worth to notice that we do not see any reduction in stability when
using Simpson’s rule to calculate the fluxes. The accuracy is very similar. However,
it is important to notice that we don’t obtain third order in the L∞ norm. While we
were able to recover the third order by using exact integration in the one dimensional
case, we don’t manage to do that here. We are convinced that this lies in the fact that
we have different types of cells where different reconstructions with different bases are
used so that the truncation error does not vanish. We support this argument by the
following test problem:

Let δ = 0.2+ ∆x
2

and σ = π
4
. Then, we only have triangular and pentagonal cells near

the boundary. The triangular cells will always have relative size 1
8
and the pentagons

will always have relative size 7
8
compared to the regular cells. We perform the same

test as above with this configuration. The slight change of domain size will barely
have any impact on the estimated error of convergence. Figure 3.16 shows third order
convergence in this special case. This means that it is possible to recover the full third
order using exact integration, provided that the used reconstructions are somewhat
regular. The use of Simpson’s rule results in a comparable result to the previous test
with an estimated error of convergence of about 2.3 in the L∞ norm. It is also in line
with the order reduction that we saw in the one dimensional case in table 2.3.

3.2.3 Linear Stability and Cancellation Property

Since the cut cell shapes vary in size and shape for every problem, we cannot study
the eigenvalues of the update matrix as in Section 3.1.4. In all of our numerical tests
we found the method to be stable for the same time steps that are allowed for regular
Cartesian grids (compare with the stability regions in Figure 3.8).

We can, however, study the cancellation property with the help of the test problem
from the previous section. As pentagonal cells are always at least half as big as regular
cells, the cancellation property is trivially achieved. Consider a triangular cell Ci,j

which edges are the diagonal cell boundary, the bottom cut interface with length α∆x
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and the right cut interface with length β∆y for some 0 < α < 1, 0 < β < 1. Since
there is no flux across the boundary, the cell average update to this cell reads

Qn+1
i,j = Qn

i,j −
∆t

|Ci,j|
(
F n
i+ 1

2
,j
−Gn

i,j− 1

2

)
. (3.43)

We proof the following theorems:

Theorem 3.2.1. The two-dimensional Active Flux method for the advection equation
on cut cell grids using exact integration in the test problem from Section 3.2.2 fulfills
the cancellation property in the triangular cells of size |Ci,j|, i.e.,

|F n
i+ 1

2
,j
−Gn

i,j− 1

2

| = O(|Ci,j|), (3.44)

if a globally continuous reconstruction is used.

Proof. We use the flux form presented in (3.24) before applying Simpson’s rule for
F n
i+ 1

2
,j
and an analogue formula for Gn

i,j− 1

2

. For this cut cell, we have

|F n
i+ 1

2
,j
−Gn

i,j− 1

2

| =

∣∣∣∣∣∣
1

∆t

∫ x
i+1

2

x
i+1

2

−a∆t

∫ y
j− 1

2

+β∆y− b
a
(x

i+1
2

−x)

y
j− 1

2

−
b
a
(x

i+1
2

−x)

Qn
rec(x, y) dy dx

− 1

∆t

∫ y
j− 1

2

y
j− 1

2

−b∆t

∫ x
i+1

2

−
a
b
(y

i− 1
2

−y)

x
i+1

2

−α∆x−a
b
(y

i− 1
2

−y)

Qn
rec(x, y) dx dy

∣∣∣∣∣∣

(3.45)

The two areas of integration partly overlap and thus cancel each other up to two
triangular areas of integration, one of them being the cell Ci,j itself. The other triangle,
△C , is obtained by the shift (−a∆t,−b∆t) from Ci,j. Figure 3.17 shows both areas
for an exemplary triangle. Furthermore, Qn

rec is locally Lipschitz continuous since it is
globally continuous. Let LQ ≥ 0 be the corresponding Lipschitz constant. Then we
have:

|F n
i+ 1

2
,j
−Gn

i,j− 1

2

| =
∣∣∣∣∣
1

∆t

∫

Ci,j

Qn
rec(x, y) dx dy − 1

∆t

∫

△C

Qn
rec(x, y) dx dy

∣∣∣∣∣

=
1

∆t

∣∣∣∣∣

∫

Ci,j

Qn
rec(x, y)−Qn

rec(x− a∆t, y − b∆t) dx dy

∣∣∣∣∣

≤ 1

∆t

∫

Ci,j

LQ(a+ b)∆t dx dy

= LQ(a+ b)|Ci,j| = O(|Ci,j|)

(3.46)

Theorem 3.2.2. The two-dimensional Active Flux method for the advection equation
on cut cell grids using Simpson’s rule in the test problem from Section 3.2.2 fulfills the
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Figure 3.17.: Comparison of the areas of integration of the two fluxes of the triangular
cell Ci,j, outlined in red and blue dashed lines. The two areas cancel to
the triangles Ci,j and △C of total size 2|Ci,j|.

cancellation property in the triangular cells of size |Ci,j|, i.e.,

|F n
i+ 1

2
,j
−Gn

i,j− 1

2

| = O(|Ci,j|), (3.47)

if a globally continuous reconstruction is used.

Proof. The cell size is given by |Ci,j| = 1
2
α∆xβ∆y. Since the propagation is aligned to

the slope of the channel, we also have

β∆y

α∆x
= tan(σ) =

b

a
. (3.48)

Qn
rec is locally Lipschitz continuous since it is globally continuous. Let LQ ≥ 0 be the

corresponding Lipschitz constant. Let further

F n
i+ 1

2
,j
= β∆y

m∑

k=0

akf(Q
n
rec(sk, tk)) (3.49)

be the used quadrature formula for the flux F n
i+ 1

2
,j
with weights ak > 0 and nodes sk, tk

in the correct area of integration. In our case this is Simpson’s rule but the statement
holds for any quadrature formula. Then, we can also use the same quadrature rule for
Gn

i,j− 1

2

with the same weights ak and the nodes s̃k, t̃k where

‖(sk − s̃k, tk − t̃k)‖2 ≤ β∆y + α∆x ∀k ∈ {0, . . . ,m}. (3.50)
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We obtain:

|F n
i+ 1

2
,j
−Gn

i,j− 1

2

| =
∣∣∣∣∣

m∑

k=0

ak
(
β∆yaQn

rec(sk, tk)− α∆xbQn
rec(s̃k, t̃k)

)
∣∣∣∣∣

≤
m∑

k=0

akβ∆ya
∣∣Qn

rec(sk, tk)−Qn
rec(s̃k, t̃k)

∣∣

≤
m∑

k=0

akβ∆yaLQ(βdy + α∆x)

=
m∑

k=0

2akLQ(a+ b)|Ci,j| = O(|Ci,j|)

(3.51)

Note that our reconstruction is not necessarily continuous across the interfaces. How-
ever, as already mentioned, we did not find any instabilities when using a large time
step that is suited for the regular grid.

3.3 Summary

We have seen how to expand the Active Flux method to the two-dimensional case. In
contrast to the one-dimensional case there now is a difference between Simpson’s rule
and exact evolution, even without the presence of cut cells. The stability is slightly
reduced when using Simpson’s rule, too. In our examination of the Active Flux method
on cut cell grids, new problems arise when trying to unify the reconstruction. We
reconstruct by using a mixed interpolation and least square ansatz. We obtain a
positive answer to the question of the usability of the Active Flux methods for cut cell
discretizations and find very good results for accuracy and stability. In particular, no
further stabilization technique has to be applied. While the foundations of the method
have been laid, some questions and possibilities for further development are still at
hand. A list can be found in Chapter 5.
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4 The ADER Interpretation of the

Active Flux Method

This chapter deals with the ADER interpretation of the Active Flux method. The goal
is to extend the scheme to nonlinear flux functions f . In general, an exact evolution
operator for the update of the point values is not known. Therefore, an approximate
evolution has to be used. In a recent work, Roe presents a way to rewrite the evolution
equation for Burgers’ equation in order to obtain an approximate evolution [43]. This
idea will be discussed in more detail in the next section, where we consider Burgers’
equation in one and two spatial dimensions and adapt the Active Flux methods for
linear equations from Chs. 2 and 3 to it. We use the implicit representation for the
exact evolution operator Lf to state an iterative process that finds an approximate
update after only a few iterations and cures some failures of the originally suggested
update. For more complicated nonlinear flux functions it is difficult to generalize this
approach. Recently, Barsukow studied possible approximate evolutions [32]. For scalar
conservation laws, the there presented idea uses a fixed point iteration to compute
approximate characteristic origins just like our iterative approach. For systems of
conservation laws, he then develops two approaches that extend this iterative idea and
try to follow the idea of characteristics closely.

To find an approach for general conservation laws, we instead explore another ap-
proach that is based on a different interpretation of the Active Flux method. We show
that this new interpretation is equivalent to the Active Flux scheme for linear sys-
tems in one dimension and carry out how an arbitrary nonlinear system of hyperbolic
conservation laws can be solved with this technique. In [1], we have developed this
method.

For simplicity, when the expressions become too long, we sometimes use the abbre-
viations

∂

∂x
q(x, y, t) =: qx(x, y, t),

∂2

∂x2
q(x, y, t) =: qxx(x, y, t),

∂2

∂x∂y
q(x, y, t) =: qxy(x, y, t)

(4.1)
and so on for the multidimensional derivatives.
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4.1 Active Flux Methods for Burgers’ Equa-

tion

In this section we deal with the first nonlinear flux function which is Burgers’ equation.
We adapt the already defined Active Flux method to this simplest nonlinear equation.
The original idea originates from an article of Roe [43] and is worked out in more detail
here. We will see that new problems arise due to the nonlinearity. We first discuss
the one-dimensional case and then state the necessary changes for the two-dimensional
case.

4.1.1 The One-dimensional Case

We consider Burgers’ equation

∂

∂t
q(x, t) +

∂

∂x

(
q2(x, t)

2

)
= 0, (4.2)

i.e., f(q) = q2

2
. We use our description in [2, Section 2.3], adapted to the one-

dimensional case. For smooth solutions this equation can also be written in the form

qt(x, t) + q(x, t)qx(x, t) = 0. (4.3)

This form suggests the following implicitely defined evolution formula:

q(x, t+ τ) = q(x− q(x, t+ τ)τ, t)

= q(x, t)− q(x, t+ τ)τqx(x, y, 0) +O(τ 2)

⇔ q(x, t+ τ) =
q(x, t)

1 + τqx(x, t)
+O(τ 2)

(4.4)

If we drop the term O(τ 2), we obtain a second order accurate approximation to
q(x, y, t + τ). By plugging in this value in the first line of(4.4), we even obtain a
third order accurate approximation:

q

(
x− q(x, t)

1 + τqx(x, t)
τ, t

)
= q(x− (q(x, t+ τ) +O(τ 2))τ, t)

= q(x− q(x, t+ τ)τ +O(τ 3), t)

= q(x− q(x, t+ τ)τ, t) +O(τ 3)

= q(x, t+ τ) +O(τ 3)

(4.5)

Roe understands the approximation (4.4) to q(x, t + τ) as a corrected wave speed to
then find the required point values via (4.5). Using simply the interface value for q(x, t)
instead of (4.4) as an approximation to the wave speed, one would only obtain a first
order accurate approximation to the wave speed and therefore a second order accurate
approximation to the update. This approach leads to multiple problems. First of all
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the reconstruction Qn
rec is not differentiable at the interface. One has to state how the

numerical value for qx(x, t) at the interface can be determined. For this one can use
the interface value as an approximation of first order. If it is greater than 0 one uses
the derivative from below, otherwise the derivative from above is used. To guarantee
the CFL condition the wave speed (4.4), i.e., the slope of the characteristic, has to be
small enough. If the denominator is small in modulus, the approximation considerably
worsens. The time step has hence to be fitted that the modulus of the denominator is
bounded from below.

An additional problem shows in the following situation (taken and adapted from [1,
Section 5.5]): We’d like to compute the fluxes F n

i− 1

2

and F n
i+ 1

2

and let Qn
i− 1

2

> 0 and

Qn
i+ 1

2

< 0. This situation is shown in Figure 4.1. For the update of the point value

Qn
i− 1

2

only characteristics with positive slope are used and for the update of Qn
i+ 1

2

only

characteristics with negative slope. One can often observe this setting in the proximity
of a shock wave. The cell average value Qn

i is not using in any update and possibly
grows/drops indefinitely within the next time steps. In [1] we suggested to reconstruct
in a discontinuous way in this situation. For this a Riemann problem has to be solved at
the interface to obtain the first approximation to the wave speed. The approximation
can change signs this way and thus the characteristic will point in the right direction.
To obtain a solution without using limiting to stabilize the method we propose the
following method by now [2]:

Ci−1 Ci+1

0

Ci

tn
Qn

i− 1

2

> 0 Qn
i+ 1

2

< 0

tn+1

Figure 4.1.: Left: Problematic data for the Active Flux approximation applied to the
Burgers’ equation. Right: Characteristics for the cell Ci never origin in
cell Ci.

To compute the required point values Q
n+ 1

2

i+ 1

2

and Qn+1
i− 1

2

let Q
(0)

i+ 1

2

be an approximation

of first order accuracy. Then, we use the iteration

Q
(l+1)

i+ 1

2

= Qn
rec

(
xi+ 1

2

− τQ
(l)

i+ 1

2

)
, l = 0, 1, . . . (4.6)

Each iteration improves the accuracy by one order as one can see by the calculations in
(4.5). We thus acquire a third order accurate approximation after two iterations. To
remove the previously discussed instability we don’t choose the obvious initial values
Q

(0)

i+ 1

2

= Qn
i+ 1

2

, but

Q
(0)

i+ 1

2

=
1

2

(
Qn

i +Qn
i+1

)
. (4.7)
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Chapter 4. The ADER Interpretation of the Active Flux Method

With this, the possible domain of dependence is no longer immediately isolated to
one of the two neighboring cells but we first get an adequate estimate from the two
neighboring cell average values. This leads to a stronger coupling of the interface and
cell average values and removes the instabilities. Since all iterations now purely exist
of evaluations of the reconstruction (or in the case of the initial value of a convex
combination of the cell averages), the CFL condition can be determined by the values
of the current time step a priori and is not violated by possibly too big wave speeds.
In order to do so it is necessary to determine the global extrema of the reconstruction.
We thus use

ν := max
x

|Qn
rec(x)|

∆t

∆x
≤ 1. (4.8)

To remove any oscillations, we use the limiting from Section 2.5.2. We only show
numerical results for the two-dimensional case here, but compare the here discussed
method to a more general approach in Section 4.2.1.3.

4.1.2 The Two-dimensional Case

The afore presented method can be extended to the multidimensional case (compare
again to [2, Section 2.3]). We now consider

∂

∂t
q(x, y, t) +

∂

∂x

(
q2(x, y, t)

2

)
+

∂

∂y

(
q2(x, y, t)

2

)
= 0 (4.9)

as well as the formulation

qt(x, y, t) + q(x, y, t)qx(x, y, t) + q(x, y, t)qy(x, y, t) = 0. (4.10)

We adapt the Active Flux method presented in Chapter 3. In analogy to (4.4) and
(4.5), implicit evolution formulas are derived to achieve an improvement of one order
per iteration:

q(x, y, t+ τ) = q(x− q(x, y, t+ τ)τ, y − q(x, y, t+ τ), t) (4.11)

and

q(x− (q(x, y, t+ τ) +O(τ 2))τ, y − (q(x, y, t+ τ) +O(τ 2))τ, t)

= q(x− q(x, y, t+ τ)τ +O(τ 3), y − q(x, y, t+ τ)τ +O(τ 3), t)

= q(x− q(x, y, t+ τ)τ, y − q(x, y, t+ τ)τ, t) +O(τ 3)

= q(x, y, t+ τ) +O(τ 3).

(4.12)

Therefore, the iteration reads

Q
(l+1)

i+ 1

2
,j+ 1

2

= Qn
rec

(
xi+ 1

2

− τQ
(l)

i+ 1

2
,j+ 1

2

, yj+ 1

2

− τQ
(l)

i+ 1

2
,j+ 1

2

)
, l = 0, 1, . . . (4.13)
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4.1. Active Flux Methods for Burgers’ Equation

unlimited iterative method limited iterative method

2 iterations 3 iterations 2 iterations 3 iterations

N L1-error EOC L1-error EOC L1-error EOC L1-error EOC

502 1.0680 · 10−5 2.3993 · 10−6 1.1775 · 10−5 3.4799 · 10−6

1002 1.4830 · 10−6 2.84 3.3487 · 10−7 2.84 1.6126 · 10−6 2.86 4.6216 · 10−7 2.91

2002 2.1224 · 10−7 2.80 4.5392 · 10−8 2.88 2.4202 · 10−7 2.73 7.4984 · 10−8 2.64

Table 4.1.: Accuracy study for smooth solutions of the two-dimensional Burgers’ equa-
tion, using the iterative approach with unlimited and limited reconstruction.

The initial values of the iterations are

Q
(0)

i+ 1

2
,j
=

1

2

(
Qn

i,j +Qn
i+1,j

)
(4.14)

for the edges and

Q
(0)

i+ 1

2
,j+ 1

2

=
1

4

(
Qn

i,j +Qn
i+1,j +Qn

i,j+1 +Qn
i+1,j+1

)
(4.15)

for the corners. Analog formulas are given for all other interface values. The limiting
is done as in Section 3.1.5.

We perform an accuracy study with the use of the initial values

q0(x, y) = sin(2πx) sin(2πy) + 0.1 (4.16)

on the domain [0, 1]× [0, 1] with double periodic boundary conditions (taken from [2,
Section 4.3]. We choose the final time T = 0.05, where the solutions are still smooth
and use both the unlimited and the limited reconstruction. With the formula [44, page
257] we can estimate an experimental convergence order without knowledge of the
exact solution. The results can be found in table 4.1. We obtain third order accuracy
in both cases. Additionally, we state the results if using three instead of two iterations.
We don’t gain another order since the reconstruction is limited to third order but the
accuracy is improved by quite a bit.

To study the behavior of the solution in the existence of shock waves we take a
look at the solution at time T = 0.5. Figure 4.2 displays the solution structure for
an 100 × 100 grid with and without limiting. We observed that limiting successfully
eliminates the arising oscillations around the shock. Figure 4.3 further shows cross
sections of the solutions for the sake of a better illustration of the limiting effect.

It is difficult to transfer this adaption of the Active Flux method to general nonlinear
systems. Approaches that base on finding an approximate evolution operator with the
help of characteristic theory are a subject of current research [32]. In the following, we
develop an alternative understanding of the Active Flux method for linear equations
in arbitrary dimensions that can also be used for nonlinear equations.
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Chapter 4. The ADER Interpretation of the Active Flux Method

Figure 4.2.: Numerical results for Burgers’ equation using the unlimited (left) and the
limited (right) Active Flux method. The solution was computed on a mesh
consisting of 100× 100 grid cells.
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Figure 4.3.: Slices of the two-dimensional numerical solution from Figure 4.2 at y = 0.1,
y = 0.5 and y = 0.9. The black line shows the limited solution, the blue
’+’ symbols the unlimited solution.

4.2 The ADER Interpretation

In the previous section we got to know an adaptation of the Active Flux method for
Burgers’ equation. It is based solely on the specification of an approximate evolution
operator which is used to find the required new point values. The update of the cell
average values is implicitly affected by the computation of the quadrature points, but
no change is being made on the computation of the fluxes or the use of the finite
volume method. The method presented in this section distinguishes itself only in the
computation of the point values as well. The computation of the fluxes via Simpson’s
rule, the used degrees of freedom and the finite volume update remain unchanged. We
explain the concept again on the basis of one-dimensional equations and switch to the
multidimensional case afterwards.
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4.2. The ADER Interpretation

4.2.1 One-dimensional Problems

Instead of using the exact evolution which is based on characteristic theory we instead
use a Taylor series expansion in time:

q(xi+ 1

2

, t+ τ) = q(xi+ 1

2

, t) + τqt(xi+ 1

2

, t) +
1

2
τ 2qtt(xi+ 1

2

, t) +O(τ 3) (4.17)

We here substitute the temporal derivatives with the help of the differential equation
by spatial derivatives. This idea is used in the so-called ADER (Arbitrary DERivative)
methods which go back to Titarev and Toro [45].

4.2.1.1 Linear Systems

We first consider the linear system

qt(x, t) + Aqx(x, t) = 0, (4.18)

where A ∈ R
m×m is a constant matrix that is diagonalizable with real eigenvalues so

that the system (4.18) is hyperbolic. This section is adapted from [1, Section 3.2]. We
have

qt(x, t) = −Aqx(x, t) (4.19)

and
qtt(x, t) = (−Aqx(x, t))t = (−Aqt(x, t))x = A2qxx(x, t). (4.20)

The vector-valued conserved quantities at the interface can now be approximated as
follows:

q(xi+ 1

2

, t+ τ) ≈ q(xi+ 1

2

, t)− τAqx(xi+ 1

2

, t) +
1

2
τ 2A2qxx(xi+ 1

2

, t) (4.21)

Indeed, for the quadratic reconstruction this equation is exact, since all additional
terms of the Taylor series expansion vanish. For τ = ∆t/2 and τ = ∆t we get:

Q
n+ 1

2

i+ 1

2

= Qn
i+ 1

2

− ∆t

2
AQn

x,i+ 1

2

+
∆t2

8
A2Qn

xx,i+ 1

2

(4.22)

Qn+1
i+ 1

2

= Qn
i+ 1

2

−∆tAQn
x,i+ 1

2

+
∆t2

2
A2Qn

xx,i+ 1

2

(4.23)

The values Qn
x,i+ 1

2

and Qn
xx,i+ 1

2

are determined by solving the Riemann problem of the

following form:

(Qx)t + A(Qx)x = 0

Qx(x, tn) =

{
1
∆x

(Qn
rec,i)

′(1) : x < xi+ 1

2

1
∆x

(Qn
rec,i+1)

′(0) : x > xi+ 1

2

(4.24)
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(Qxx)t + A(Qxx)x = 0

Qxx(x, tn) =

{
1

∆x2 (Q
n
rec,i)

′′(1) : x < xi+ 1

2

1
∆x2 (Q

n
rec,i+1)

′′(0) : x > xi+ 1

2

(4.25)

The scalings ∆x respectively ∆x2 are generated from the mapping to the reference cell.
At a discontinuous reconstruction one has to solve an additional Riemann problem for
Qn

i+ 1

2

because this value is no longer given uniquely in the reconstruction. This Riemann

problem has the following form:

Qt + AQx = 0

Q(x, tn) =

{
Qn

rec,i(1) : x < xi+ 1

2

Qn
rec,i+1(0) : x > xi+ 1

2

(4.26)

Solving this Riemann problem corresponds to the choice of the upwind direction in 2.57
and 2.58 and here doesn’t have to be only included in the flux but also in the Taylor
series expansion. We call the just described method the ADER interpretation of the
Active Flux method. The word interpretation originates from the following statement:

Theorem 4.2.1. For linear hyperbolic systems in one spatial dimension the in Chap-
ter 2 described Active Flux method and the here presented ADER interpretation are
equivalent if the CFL condition (2.20) is satisfied.

Proof. Let A = RDR−1 be the eigenvector decomposition of A and w := R−1q the vec-
tor of characteristic variables. LetW denote the transformed values of Q. Furthermore,
let λ be the vector of the diagonal of D.

We show that both methods lead to the same update for W n+1
i+ 1

2

. For W
n+ 1

2

i+ 1

2

the same

argument can be used. With the help of the additional indices k, s ∈ {1, . . . ,m} we
denote the kth or sth component of a vector or the kth or sth column of a matrix. For
the in Chapter 2 described Active Flux method we then have:

W n+1
i+ 1

2
,k
=

{
W n

rec,i,k(xi+ 1

2

−∆tλk) : λk > 0

W n
rec,i+1,k(xi+ 1

2

−∆tλk) : λk < 0
(4.27)

For the here described ADER interpretation from (4.21), multiplication from the left
by R−1 and the use of the eigenvalue decomposition we have

W n+1
i+ 1

2
,k
= W n

i+ 1

2
,k
−∆tDkR

−1Qn
x,i+ 1

2

+
∆t2

2
(D2)kR

−1Qn
xx,i+ 1

2

= W n
i+ 1

2
,k
−∆tλk

[
R−1Qn

x,i+ 1

2

]
k
+

∆t2

2
λ2
k

[
R−1Qn

xx,i+ 1

2

]
k
.

(4.28)
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The solutions to the Riemann problems(4.24) and (4.25) read

Qn
x,i+ 1

2

=
1

∆x


(Qn

rec,i)
′(1) +

m∑

s=1
λs<0

[
R−1((Qn

rec,i+1)
′(0)− (Qn

rec,i)
′(1))

]
s
Rs




=
1

∆x


(Qn

rec,i)
′(1) +

m∑

s=1
λs<0

[
(W n

rec,i+1)
′(0)− (W n

rec,i)
′(1)
]
s
Rs




(4.29)

and

Qn
xx,i+ 1

2

=
1

∆x2


(Qn

rec,i)
′′(1) +

m∑

s=1
λs<0

[
R−1((Qn

rec,i+1)
′′(0)− (Qn

rec,i)
′′(1))

]
s
Rs




=
1

∆x2


(Qn

rec,i)
′′(1) +

m∑

s=1
λs<0

[
(W n

rec,i+1)
′′(0)− (W n

rec,i)
′′(1)

]
s
Rs


 .

(4.30)

Let es be the sth unit vector. Because of R−1Rs = es it follows that

[
R−1Qn

x,i+ 1

2

]
k
=

1

∆x


(W n

rec,i)
′(1) +

m∑

s=1
λs<0

[
(W n

rec,i+1)
′(0)− (W n

rec,i)
′(1)
]
s
es




k

=

{
1
∆x

(W n
rec,i,k)

′(1) : λk > 0
1
∆x

(W n
rec,i+1,k)

′(0) : λk < 0

(4.31)

and in the same way

[
R−1Qn

xx,i+ 1

2

]
k
=

{
1

∆x2 (W
n
rec,i,k)

′′(1) : λk > 0
1

∆x2 (W
n
rec,i+1,k)

′′(0) : λk < 0
. (4.32)

The substitution in (4.28) yields

W n+1
i+ 1

2
,k
= W n

i+ 1

2
,k
−∆tλk

[
R−1Qn

x,i+ 1

2

]
k
+

∆t2

2
λ2
k

[
R−1Qn

xx,i+ 1

2

]
k

=




W n

i+ 1

2
,k
− ∆tλk

∆x
(W n

rec,i,k)
′(1) +

∆t2λ2
k

2∆x2 (W
n
rec,i,k)

′′(1) : λk > 0

W n
i+ 1

2
,k
− ∆tλk

∆x
(W n

rec,i+1,k)
′(0) +

∆t2λ2
k

2∆x2 (W
n
rec,i+1,k)

′′(0) : λk < 0
.

(4.33)

This exactly matches the Taylor series expansion of (4.27) in xi+ 1

2

due to the piecewise

defined parabolic reconstruction as long as the CFL condition (2.20) holds true.

We’d shortly like to discuss possible limitings at this point, again. In Section 2.5,
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several possibilities are presented to limit the reconstruction. To keep equivalence in
the limited case we need both approached to yield the same updates for the point
values. The piecewise defined reconstruction can be discarded since it is not twice
continuously differentiable. The hyperbolic reconstruction can also not be used: On
the one hand it again needs exact integration for the flux computation to deny over- or
undershoots. On the other hand it has a too small convergence radius for the Taylor
expansion to yield a valid approximation. The discontinuous reconstructions can both
be used. We continue to use the compressed reconstruction (2.61) that can be used in
any dimension.

4.2.1.2 Nonlinear Systems

Similar to the approach for linear equations we perform the Taylor series expansion
for nonlinear equations and substitute the temporal derivatives with the help of the
equations by spatial derivatives. In the following, we refrain from using the (x, t)-
arguments. As usual, see for example [46, p. 147], we define the application of the nth
derivative at the location q ∈ R

m to the vectors r1, . . . , rn ∈ R
m by

f (n)(q) · (r1, . . . , rn) =
m∑

i1,...,in

∂nf(q)

∂qi1 , . . . ∂qin
r1,i1 · · · rn,in (4.34)

and use this notation for second and higher order derivatives. This section is adapted
from [1, Section 4.2]. For a general hyperbolic system in the form (1.1) in one dimension
we have the following equations:

qt = −f(q)x = −f ′(q)qx (4.35)

qtx = qxt = −(f ′(q)qx)x = −(f ′′(q) · (qx, qx) + f ′(q)qxx) (4.36)

qtt = −(f ′(q)qx)t = −(f ′′(q) · (qt, qx) + f ′(q)qxt) (4.37)

Thus, the update is given by

q(xi+ 1

2

, tn + τ) ≈ Qn
i+ 1

2

− τf ′(Qn
i+ 1

2

)Qn
x,i+ 1

2

+
1

2
τ 2
(
f ′′(Qn

i+ 1

2

) · (f ′(Qn
i+ 1

2

)Qn
x,i+ 1

2

, Qn
x,i+ 1

2

)

+ f ′(Qn
i+ 1

2

)f ′′(Qn
i+ 1

2

) · (Qn
x,i+ 1

2

, Qn
x,i+ 1

2

)

+ (f ′(Qn
i+ 1

2

))2Qn
xx,i+ 1

2

)
.

(4.38)

The values Qn
x,i+ 1

2

and Qn
xx,i+ 1

2

are again found by solving the linearized Riemann

problem of the following form:

(Qx)t + f ′(Qn
i+ 1

2

)(Qx)x = 0

Qx(x, tn) =

{
1
∆x

(Qn
rec,i)

′(1) : x < xi+ 1

2

1
∆x

(Qn
rec,i+1)

′(0) : x > xi+ 1

2

(4.39)
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(Qxx)t + f ′(Qn
i+ 1

2

)(Qxx)x = 0

Qxx(x, tn) =

{
1

∆x2 (Q
n
rec,i)

′′(1) : x < xi+ 1

2

1
∆x2 (Q

n
rec,i+1)

′′(0) : x > xi+ 1

2

(4.40)

If we reconstruct at an interface i+ 1
2
in a discontinuous way we again have to solve a

Riemann problem for Qn
i+ 1

2

.

It is important to notice that the time step can no longer be chosen a priori so that
(4.8) is no longer sufficient. Because of the nonlinearity of (4.38) for nonlinear flux
functions we cannot easily predict if the so found values which are not only used for
the update of the interface value but also for the flux computation still satisfy the CFL
condition. Therefore, the time step has to be adjusted and possibly reduced before
every update. In all of our computations this rarely posed a problem and led to almost
no slowdown of the method.
We now consider two typical representatives for nonlinear equations.

4.2.1.3 Burgers’ Equation

We have already seen how to solve Burgers’ equation with the use of an iteration for
the update of the interface values. We will now compare this ansatz with the new
method. This section is based on [1, Section 4.1]. We have

f(q) =
q2

2
, f ′(q) = q, f ′′(q) = 1. (4.41)

Thus, the update of the interface values reads:

q(xi+ 1

2

, tn+τ) ≈ Qn
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2

−τQn
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2
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2

+
1

2
τ 2
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2Qn
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2

(Qn
x,i+ 1

2

)2+(Qn
i+ 1

2

)2Qn
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2

)
(4.42)

The solutions to the linearized Riemann problems are

Qn
x,i+ 1

2

=





1
∆x

(Qn
rec,i)

′(1) : Qn
i+ 1

2

> 0

1
∆x

(Qn
rec,i+1)

′(0) : Qn
i+ 1

2

< 0
(4.43)

and

Qn
xx,i+ 1

2

=





1
∆x2 (Q

n
rec,i)

′′(1) : Qn
i+ 1

2

> 0

1
∆x2 (Q

n
rec,i+1)

′′(0) : Qn
i+ 1

2

< 0
. (4.44)

We compare both approaches for the initial value problem (4.2) with the initial values

q0(x) = sin(2πx) (4.45)

on the interval [−1, 1] with periodic boundary conditions at the final time T = 0.15.
Here, the solution is still smooth but shortly after a shock wave will form. We use
ν ≤ 0.9 with regard to (4.8). We can see in Table 4.2 that both methods produce
similar values.
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Our iterative method ADER interpretation of the Active Flux method
N L1-error EOC L1-error EOC
64 2.9688 · 10−4 1.0725 · 10−4

128 8.9769 · 10−5 1.73 4.1553 · 10−5 1.37
256 1.8047 · 10−5 2.31 1.1451 · 10−5 1.86
512 2.5751 · 10−6 2.81 1.4751 · 10−6 2.96
1024 3.4858 · 10−7 2.89 2.0518 · 10−7 2.85
2048 4.4386 · 10−8 2.97 2.6110 · 10−8 2.97
4096 5.5383 · 10−9 3.00 3.1904 · 10−9 3.03

Table 4.2.: Convergence study for the Burgers’ equation (4.2) with initial data (4.45)
at time T = 0.15, using our iterative method as well as our ADER version
of the Active Flux method.

4.2.1.4 Euler Equations

This section is adapted from [1, Section 4.2 and App. A]. We now consider the one-
dimensional Euler equations which are given by the following quantities:

q =




ρ
ρv
E


 , f(q) =




ρv
ρv2 + p
v(E + p)


 . (4.46)

Here, ρ, v, p and E represent the density, velocity, pressure and energy, respectively.
To close the system we use the ideal gas equation

E =
p

γ − 1
+

1

2
ρv2 (4.47)

with adiabatic exponent γ = 1.4 as the equation of state.

As before, we compute f ′ and f ′′ and uses these in the approximation (4.38). We
have

f ′(q) =




0 1 0
1
2
(γ − 3)v2 (3− γ)u (γ − 1)

1
2
(γ − 1)v3 − vH H − (γ − 1)v2 γv


 (4.48)

with H = (E + p)/ρ. Let f1, f2 and f3 be the three components of the flux f . It
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further holds:

(
∂2f1
∂qi∂qj

(q)

)

i,j=1,...,3

=




0 0 0
0 0 0
0 0 0


 ,

(
∂2f2
∂qi∂qj

(q)

)

i,j=1,...,3

=




(3− γ)v
2

ρ
(γ − 3)v

ρ
0

(γ − 3)v
ρ

(3− γ)1
ρ

0

0 0 0


 ,

(
∂2f3
∂qi∂qj

(q)

)

i,j=1,...,3

=




2γE v
ρ2

− 3(γ − 1)v
3

ρ
−γ E

ρ2
+ 3(γ − 1)v

2

ρ
−γ v

ρ

−γ E
ρ2

+ 3(γ − 1)v
2

ρ
−3(γ − 1)v

ρ
γ 1
ρ

−γ v
ρ

γ 1
ρ

0


 .

(4.49)

By a linearization around the interface value and solving the Riemann problems (4.38)
is fully described. In case of a limiting we solve the additional Riemann problem for
Qn

i+ 1

2

by using the Roe averaged state based on Qn
rec,i(1) and Qn

rec,i+1(0). This will also

then be used to evaluate f ′ and f ′′. With this we also have the linearization around
the interface value in order to solve the Riemann problems for Qn

x,i+ 1

2

and Qn
xx,i+ 1

2

.

To study the accuracy we consider the initial values

ρ(x, 0) = p(x, 0) = 1 +
1

2
exp

(
−80

(
x− 1

2

)2
)

v(x, 0) = 0

(4.50)

on the interval [0, 1] with periodic boundary conditions. The time steps satisfy ν ≤ 0.9.
The solution structure at time T = 0.25 can be seen in Figure 4.4. The convergence
study in table 4.3 shows the desired third order accuracy in the density. The other
components are also approximated to third order.

N L1-error in density EOC
32 2.22371 · 10−4

64 2.76821 · 10−5 3.01
128 3.55443 · 10−6 2.96
256 4.58017 · 10−7 2.96
512 5.83485 · 10−8 2.97

Table 4.3.: Convergence study for Euler equations (4.46) with initial data (4.50) at
time T = 0.25 using a reference solution with 4096 grid cells.

To study the behavior for problems that need limiting we study Sod’s shock tube
problem, i.e., we use the following initial values on the domain [0, 1]:

(ρ, v, p)(x, 0) =

{
(1, 0, 1) : x < 1

2

(0.125, 0, 0.1) : x ≥ 1
2

(4.51)

Numerical approximations at final time T = 0.17 on a grid with 400 grid cells are
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Figure 4.4.: Approximation of the Euler equations (4.46) with initial data (4.50) at
time T = 0.25 using the ADER version of the Active Flux method. The
solid line is a highly resolved reference solution computed on a grid with
4096 grid cells. Point values are marked with a ’+’, while cell averages
are marked with an ’o’. We show results for density using 32 (left) and 64
(right) grid cells.

plotted next to a highly resolved reference solution in Figure 4.5. We compare the
numerical solution with results of the third order accurate version of a one-step ADER
finite volume method with space-time DG predictor that was kindly provided to us by
Michael Dumbser.
As a second test problem we use the well known Shu-Osher test [47], i.e., the initial

conditions read

(ρ, v, p)(x, 0) =

{
(3.857143, 2.629369, 10.3333) : x < −4

(1 + 0.2 sin(5x), 0, 1) : x ≥ −4.
(4.52)

In Figure 4.6 we plot the numerical results for the density at time T = 1.8, which were
computed on grids of sizes 200, 300 and 400 cells, again compared to the ADER-DG
method.
Our goal is to use the unlimited ADER version of the Active Flux method in as

many grid cells as possible. For all components of the conserved quantities we use the
same type of reconstruction, i.e., either the standard continuous, piecewise quadratic
reconstruction, or the on both ends discontinuous, piecewise quadratic reconstruction
(2.61). For the Euler equations, most of the structure is seen in density. Therefore,
this quantity decides which reconstruction is used, i.e., the value of θ.
The Shu-Osher test confirms that our limited version of the Active Flux method

can capture both the small-scale smooth flow features as well as the shock wave. Fur-
thermore, it compares well with the ADER-DG method of Dumbser and Toro. The
unlimited version of the Active Flux method is unstable for the two test problems
considered in this section, while we found that the limited version is stable for time
steps which satisfy the inequality ν ≤ 0.5. This is a small restriction compared to
the limiting used in [1], but no additional, different reconstruction has to be used near
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Figure 4.5.: Results for Sod’s shock tube problem.
Top row: ADER interpretation of the Active Flux method using the dis-
continuous, limited, piecewise quadratic reconstruction if needed. Point
values are marked with a ’+’, while cell averages are marked with an ’o’.
The solution is computed using 400 grid cells. Time steps correspond to
ν ≤ 0.5.
Bottom row: ADER-DG finite volume method of Dumbser and Toro with
400 grid cells.
The solid line is a reference solution, computed using 2000 grid cells.

shock waves.

4.2.2 Multidimensional Problems

After having explained the ADER interpretation in the one-dimensional case we now
consider multidimensional problems. We now look at equation (1.1) for the two-
dimensional case. The choice of degrees of freedom and the reconstruction are inherited
from the previous chapter. We examine the same approach for the two-dimensional
variants of the advection equation, the linear acoustic equations and the Euler equa-
tions.

4.2.2.1 Linear Advection Equation

This section is adapted from [1, Section 6.1]. We consider the equation

qt + aqx + bqy = 0. (4.53)
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Figure 4.6.: Results for the Shu-Osher test problem.
Top row: ADER interpretation of the Active Flux method using the dis-
continuous, limited, piecewise quadratic reconstruction if needed. Point
values are marked with a ’+’, while cell averages are marked with an ’o’.
Time steps correspond to ν ≤ 0.5.
Bottom row: ADER-DG finite volume method of Dumbser and Toro.
For both methods, we use 200 (left), 300 (center) and 400 (right) grid cells.
The solid line is a reference solution, which was obtained using 2000 grid
cells.

We obtain

qt = −aqx − bqy, (4.54)

qtt = a2qxx + abqxy + baqyx + b2qyy. (4.55)

The Taylor series expansion in space (4.17) at a corner (xi+ 1

2

, yi+ 1

2

) on the interface
now has the following form:

q(xi+ 1

2

, yi+ 1

2

, t+ τ) ≈ q(xi+ 1

2

, yi+ 1

2

, t) + τ
(
−aqx(xi+ 1

2

, yi+ 1

2

, t)− bqy(xi+ 1

2

, yi+ 1

2

, t)
)

+
1

2
τ 2
(
a2qxx(xi+ 1

2

, yi+ 1

2

, t) + baqxy(xi+ 1

2

, yi+ 1

2

, t)

+ abqyx(xi+ 1

2

, yi+ 1

2

, t) + b2qyy(xi+ 1

2

, yi+ 1

2

, t)
)

(4.56)

In the same way the analogue equations holds for the edge values. Riemann problems
for all first and second order derivatives have to be solved at all corners and edges.
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Let us first consider the edges: Since the reconstruction is globally continuous the
derivatives with respect to x along a horizontal edge and the derivatives with respect
to y along a vertical edge are uniquely defined. The values for Qn

x,i,j± 1

2

and Qn
xx,i,j± 1

2

and Qn
y,i± 1

2
,j
and Qn

yy,i± 1

2
,j
can be taken directly from the reconstruction. For the other

derivatives we can solve a one-dimensional Riemann problem that is stated orthogonally
to the edge, i.e., for a vertical edge xi+ 1

2

we have a Riemann problem for Qn
x,i+ 1

2
,j
of

the form

(Qx)t + a(Qx)x = 0

Qx(x, y, tn) =

{
1
∆x

Qn
rec,i,j,x(1, 0) : x < xi+ 1

2

1
∆x

Qn
rec,i+1,j,x(−1, 0) : x > xi+ 1

2

.
(4.57)

We obtain the solution

Qn
x,i+ 1

2
,j
=

{
1
∆x

Qn
rec,i,j,x(1, 0) : a > 0,

1
∆x

Qn
rec,i+1,j,x(−1, 0) : a < 0.

(4.58)

Analog Riemann problems can be established for all other derivatives and edges.

For the corners so-called four-quadrant Riemann problems occur. Here, four values
collide at a common corner. Because of the continuity of the reconstruction two times
two of the values coincide for non mixed derivatives, respectively. We are then left
with two values that can be used for a regular one-dimensional Riemann problem. For
the mixed derivatives this does not hold in general. At the corner (xi+ 1

2

, yj+ 1

2

) we then
obtain a full four-quadrant Riemann problem of the following form:

(Qxy)t + a(Qxy)x + b(Qxy)y = 0

Qxy(x, y, tn) =





1
∆x∆y

Qn
rec,i,j,xy(1, 1) : x < xi+ 1

2

, y < yj+ 1

2

1
∆x∆y

Qn
rec,i+1,j,xy(−1, 1) : x > xi+ 1

2

, y < yj+ 1

2

1
∆x∆y

Qn
rec,i,j+1,xy(1,−1) : x < xi+ 1

2

, y > yj+ 1

2

1
∆x∆y

Qn
rec,i+1,j+1,xy(−1,−1) : x > xi+ 1

2

, y > yj+ 1

2

(4.59)

We can solve this Riemann problem for the advection equation. The correct solution
is again the value in upwind direction:

Qn
xy,i+ 1

2
,j+ 1

2

=





1
∆x∆y

Qn
rec,i,j,xy(1, 1) : a > 0, b > 0

1
∆x∆y

Qn
rec,i+1,j,xy(−1, 1) : a < 0, b > 0

1
∆x∆y

Qn
rec,i,j+1,xy(1,−1) : a > 0, b < 0

1
∆x∆y

Qn
rec,i+1,j+1,xy(−1,−1) : a < 0, b < 0

(4.60)

The same value is obtained for Qn
yx,i+ 1

2
,j+ 1

2

.

In contrast to its one-dimensional form, the resulting method is no longer equiva-
lent to the two-dimensional Active Flux method on Cartesian grids since the mixed

73



Chapter 4. The ADER Interpretation of the Active Flux Method

derivatives up to order 4 don’t vanish in the two-dimensional case. If we use the terms
qttt and qtttt in the expansion we once again obtain an equivalent method. The high
corresponding high order derivatives at the corners can be computed in the same way
as just described for Qxy. For third order an expansion up to qtt is sufficient, however.
We call the method that uses all higher order terms ADER full and the method that
uses only the terms up to third order accuracy ADER reduced.

During numerical test computations it stands out that ADER reduced needs a re-
duced time step. We conjecture a bound by ν ≤ 0.5, while ν is given by (3.19). We
compare both approaches to study their accuracy. Let a = 1, b = 0.7 and let

q0(x, y) = sin(4π(x+ y)). (4.61)

We compare the error to the exact solution at time T = 1 on different grids. The results
can be seen in Figure 4.7. Both variants yield third order accuracy, the inclusion of
the higher derivatives improves the accuracy slightly. The use of a higher CFL number
further improves the accuracy.

0.0063 0.0125 0.025 0.05
10
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10
-4

10
-3

10
-2

Figure 4.7.: Accuracy study for the two dimensional advection problem. The yellow
curve (Active Flux / ADER full) shows the error vs. mesh if the exact
evolution formula with ν ≤ 0.9 is used to update the interface values. For
advection, the ADER method which uses all nonzero derivative terms for
the update of the interface values is equivalent to using the exact evolution
formula. The blue curve shows the error for the ADER update with time
steps chosen such that ν ≤ 0.45 and using only those derivative values that
are necessary in order to obtain third order. The red curve shows the error
of the method that uses exact evolution of the interface values and time
steps according to ν ≤ 0.45.
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4.2.2.2 Linear Acoustic Equations

This section is based on [1, Section 6.2] and explained in more detail. The approach
to approximate the solution to the linear acoustic equations (3.20) differs only slightly
from the way the advection equation is treated. We rewrite the system in the form

qt(x, y, t) + Aqx(x, y, t) + Bqy(x, y, t) = 0 (4.62)

with

A =



0 c 0
c 0 0
0 0 0


 and B =



0 0 c
0 0 0
c 0 0


 . (4.63)

For the expansion, we obtain:

q(xi+ 1

2

, yi+ 1

2

, t+ τ) ≈ q(xi+ 1

2

, yi+ 1

2

, t) + τ
(
−Aqx(xi+ 1

2

, yi+ 1

2

, t)− Bqy(xi+ 1

2

, yi+ 1

2

, t)
)

+
1

2
τ 2
(
A2qxx(xi+ 1

2

, yi+ 1

2

, t) + BAqxy(xi+ 1

2

, yi+ 1

2

, t)

+ ABqyx(xi+ 1

2

, yi+ 1

2

, t) + B2qyy(xi+ 1

2

, yi+ 1

2

, t)
)

(4.64)

Additional terms are present if higher order terms are incorporated for ADER full.
The Riemann problems are solved in a similar fashion as in the advection equation. It
is however important to distinguish between the AB and BA terms since the matrices
A and B don’t commute. Let us consider a particular Riemann problem for Qxy at a
vertical edge: If we solve the Riemann problem (4.57) (with matrix A instead of the
velocity a) and multiply the result with AB as demanded, we lose information from
the kernel of B. We therefore multiply with B before solving the Riemann problem
and then solve:

(Qxy)t + A(Qxy)x = 0

Qxy(x, y, tn) =

{
1

∆x∆y
BQn

rec,i,j,xy(1, 0) : x < xi+ 1

2

1
∆x∆y

BQn
rec,i+1,j,xy(−1, 0) : x > xi+ 1

2

(4.65)

The solution is subsequently multiplied with A, not by AB. Alternatively, one can
also multiply the data with AB before solving the Riemann problem as the solution to
the Riemann problem is invariant against multiplications with A. In the same way we
proceed with Qyx at a horizontal edge. This procedure results in the correct values.

Since the four-quadrant Riemann problem for the linear acoustic equations does
not have a simple solution, we again use a splitting approach. We first solve the two
following Riemann problems for Qxy:

(Q⋆1
xy)t + A(Q⋆1

xy)x = 0

Q⋆1
xy(x, y, tn) =

{
1

∆x∆y
BQn

rec,i,j,xy(1, 1) : x < xi+ 1

2

1
∆x∆y

BQn
rec,i+1,j,xy(−1, 1) : x > xi+ 1

2

(4.66)
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and

(Q⋆2
xy)t + A(Q⋆2

xy)x = 0

Q⋆2
xy(x, y, tn) =

{
1

∆x∆y
BQn

rec,i,j+,xy(1,−1) : x < xi+ 1

2

1
∆x∆y

BQn
rec,i+1,j+,xy(−1,−1) : x > xi+ 1

2

.
(4.67)

The two solutions are then used for an additional Riemann problem alongside the other
direction:

(Qxy)t +B(Qxy)x = 0

Qxy(x, y, tn) =

{
1

∆x∆y
BQ⋆1

xy : y < yi+ 1

2

1
∆x∆y

BQ⋆2
xy : y > yi+ 1

2

(4.68)

This concept can be generalized for higher derivatives.

Remark 4.2.2. It turns out that Cartesian grids have one more advantage. In triangular
grids, for example, arbitrarily many triangles can meet in any of the corners, leading
to possibly many initial values that can influence the solution to the corresponding
Riemann problem. Its solution is not more difficult to determine for the advection
equation but the explained splitting approach is not applicable for general hyperbolic
systems.

While we have seen the equivalence of the ADER interpretation to the Active Flux
method for the advection equation even in the two-dimensional case, this is not the
case for the linear acoustic equations. The given matrices are both diagonalizable as
required but are not simultaneously diagonalizable. That’s why no common charac-
teristic quantities can be stated and the proof of theorem 4.2.1 doesn’t work anymore.
It can be shown that our procedure differs to the exact evolution 3.22 to third or-
der accuracy only in a few terms of second order which are merely produced by the
consecutive Riemann problems. These terms can not be represented by the solution
of one-dimensional Riemann problems. The use of ADER full makes the errors in
the higher derivatives to be solely determined by the errors in the multidimensional
Riemann problems, too.

Remark 4.2.3. The permutation of Riemann problems and matrix multiplication is not
necessary to obtain a method of third order accuracy. However, more terms of the
truncation error are eliminated. The observant reader may have noticed that a similar
case was already present in the one-dimensional Euler equations: There, the operators
f ′(q) and f ′′(q) don’t commute, so that for the term f ′(Qn

i+ 1

2

)f ′′(Qn
i+ 1

2

) ·(Qn
x,i+ 1

2

, Qn
x,i+ 1

2

)

a multiplication with f ′′(Qn
i+ 1

2

) before solving the Riemann problem would be possible,

which would then be defined as follows:

(Qxx)t + f ′(Qn
i+ 1

2

)(Qxx)x = 0

Qxx(x, tn) =





1
∆x∆x

f ′′(Qn
i+ 1

2

) · (Qn
rec,i,j,xx(1), Q

n
rec,i,j,xx(1)) : x < xi+ 1

2

1
∆x∆x

f ′′(Qn
i+ 1

2

) · (Qn
rec,i+1,j,xx(0), Q

n
rec,i+1,j,xx(0)) : x > xi+ 1

2

(4.69)
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In the shown computations this has not been used.

To study the accuracy we consider the periodic initial values

p0(x, y) = − 1

c0
(sin(2πx) + sin(2πy)

u0(x, y) = 0

v0(x, y) = 0

(4.70)

on the domain [−1, 1]× [−1, 1] and final time T = 0.2. This test problem was suggested
by Lukáčová et al. [48], where the exact solution can also be found. We compare the
Active Flux method with ADER full as well as ADER reduced. Figure 4.8 shows
the error against the mesh width. Since the problem and the initial values are both
symmetrical in the velocities u and v, their errors are of equal size. Here, we also notice
a reduced stability of ν ≤ 0.25 for

ν =
co∆t

min{∆x,∆y} . (4.71)

While the error in the velocity components is almost the same for all methods, the
ADER variants give a small improvement to the accuracy in the pressure for this test
problem compared to the Active Flux method. The third order accuracy is clearly
visible for all methods.
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Figure 4.8.: Accuracy study for the two-dimensional acoustic equations. We compare
results of our ADER approach with results where the exact evolution for-
mula was used to update the interface values.

An important test for Roe and coauthors is the check for radial symmetry for fitting

77



Chapter 4. The ADER Interpretation of the Active Flux Method

intial values [28]. For this, we consider

p0(x, y) = 1 + exp(−µ((x− x0)
2 + (y − y0)

2))

u0(x, y) = v0(x, y) = 0
(4.72)

on the domain [−2, 2]× [−2, 2] with x0 = y0 = 0 and µ = 50. We study the solutions at
final time T = 1.25 on a 50× 50 and a 150× 150 grid by plotting each interface value
against the radius r =

√
(x− x0)2 + (y − y0)2. As a reference we also draw the exact

solution as a black line. Figures 4.9 and 4.10 show the resulting plots. Both the Active
Flux method and the ADER interpretations show a good symmetry. In comparison
to the original Active Flux method of Roe et al. on triangular grids, both methods
perform equally well (compare with [28]).
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Figure 4.9.: Scatter plots of the magnitude of pressure and velocity obtained using two
different methods on a 50 × 50 grid. The blue dots (first row) show the
results obtained by using the exact evolution formula for the update of the
edge values, the red dots (second row) indicate the results obtained using
the ADER update formula. The black line is the exact solution.
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Figure 4.10.: Scatter plots of the magnitude of pressure and velocity obtained using
two different methods on a 150×150 grid. The blue dots (first row) show
the results obtained by using the exact evolution formula for the update
of the edge values, the red dots (second row) indicate the results obtained
using the ADER update formula. The black line is the exact solution.

4.2.2.3 Euler Equations

As a common representative for nonlinear equation we here consider the two-dimensional
Euler equations which have the following form:

qt + f(q)x + g(q)y = 0 (4.73)

with

q =




ρ
ρu
ρv
E


 , f(q) =




ρu
ρu2 + p
ρuv

u(E + p)


 , g(q) =




ρv
ρuv

ρv2 + p
v(E + p)


 . (4.74)
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Again, ρ, u, v, p and E denote density, velocity components in x and y direction,
pressure and energy. We again use the ideal gas equation

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (4.75)

with adiabatic exponent γ = 1.4.

The derivatives f ′, f ′′, g′ and g′′ of the flux functions are similar to the ones in the
one-dimensional case. We refrain from stating them at this point. For the temporal
expansion the following equations arise:

qt = −f ′(q)qx − g′(q)qy (4.76)

qtx = −(f ′′(q) · (qx, qx) + f ′(q)qxx)− (g′′(q) · (qy, qx) + g′(q)qyx) (4.77)

qty = −(f ′′(q) · (qx, qy) + f ′(q)qxy)− (g′′(q) · (qy, qy) + g′(q)qyy) (4.78)

qtt = −(f ′′(q) · (qt, qx) + f ′(q)qtx)− (g′′(q) · (qt, qy) + g′(q)qty) (4.79)

The now appearing second order derivatives are increasingly more expensive in the
computations and multiplications due to the increasing dimension of the operator. In
any case one should stay away from using higher order terms like they are used in
ADER full to keep the effort as low as possible.

Like in the acoustic equations we also multiply with the respective derivatives before
solving the Riemann problems.

Remark 4.2.4. While in the acoustic equations only one term was affected by this
change (in ADER reduced), any terms that contain multiplications of different deriva-
tives are affected here. These are all terms from the combined qtt except f ′(q)qxx
and g′(q)qyy. It is also not required to perform these changes to obtain a third order
accurate method but we still reduces the error by a small amount.

Let now r =
√

x2 + y2 and ǫ = 5. We perform an accuracy study on the initial
values

ρ(x, y, 0) = (1− (γ − 1)
ǫ2

8γπ2
exp(1− r2))

1

γ−1

u(x, y, 0) = 1− ǫy

2π
exp

(
1

2
(1− r2)

)

v(x, y, 0) = 1 +
ǫx

2π
exp

(
1

2
(1− r2)

)

E(x, y, 0) =
1

γ − 1
ρ(x, y, 0)γ +

1

2
(ρ(x, y, 0)u(x, y, 0)2 + ρ(x, y, 0)v(x, y, 0)2)

(4.80)

on the domain [−5, 5]× [−5, 5] with double periodic boundary conditions. These initial
values are also known as a vortex evolution [47]. The exact solution at time T = 10
matches the initial conditions. In our computations we measure that the approximate
choice ν ≤ 0.3 leads to a stable method. Higher values lead to an unstable method.
Thus, we also observe a reduced stability here. Table 4.4 shows the measured error as
well as the estimated order of convergence. When resolving the solution well enough,
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4.3. Summary

ρ ρu ρv E
N2 L∞-error EOC L∞-error EOC L∞-error EOC L∞-error EOC
202 3.3005 · 10−2 6.0654 · 10−2 5.5441 · 10−2 2.0167 · 10−1

402 6.5423 · 10−3 2.33 1.5654 · 10−2 1.95 1.4179 · 10−2 1.97 4.0841 · 10−2 2.30
802 9.7585 · 10−4 2.75 2.4310 · 10−3 2.69 2.2036 · 10−3 2.69 5.9688 · 10−3 2.77
1602 1.3284 · 10−4 2.88 3.2980 · 10−4 2.88 2.9666 · 10−4 2.89 7.5699 · 10−4 2.98

Table 4.4.: Convergence study for the Euler equations (4.74) with initial data (4.80) at
time T = 10, using the ADER interpretation of the Active Flux method.

third order accuracy is achieved. Figure 4.11 shows the density in a profile view.
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Figure 4.11.: Error profile of the density for 160 × 160 cells at time T = 10 using the
ADER interpretation of the Active Flux method.

4.3 Summary

We have introduced a possibility to extend the Active Flux method to nonlinear hyper-
bolic equations in multiple space dimensions, the ADER interpretation of the Active
Flux method. We continue to use point values of the unknowns on the boundary of
each cell and compute the flux actively from the point values at later times. Only the
use of an approximate evolution operator changes the method, which is based on the
original idea of ADER methods. We obtain a third order method that shows convincing
results for all of the considered problems and can be used on any nonlinear hyperbolic
system of equations.
While the method is equivalent to the Active Flux method for one-dimensional, linear

hyperbolic systems, this is no longer necessarily the case for two-dimensional systems.
An exact solution to the four-quadrant Riemann problem and the use of ADER full
would again result in equivalence, but the general solution to these Riemann problems
is cumbersome [49]. Our splitting approach to solve the multidimensional Riemann
problem eliminates this difficulty.
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Barsukow et al. have shown that the Active Flux method for the linear acoustic
equations on Cartesian grids is stationary preserving [42]. This property is lost us-
ing the ADER ansatz. Instead, we have constructed a method that does not rely on
complicated or expensive evolution operators and can be used for any hyperbolic con-
servation law in multiple dimensions where exact evolution operators are not known.
The important stability properties of the Active Flux method using exact integration
are lost when using the ADER approach. The evolution uses a Taylor series expansion
that yields extrapolated values if used in a cut cell. This makes the ADER approach
unstable for cut cells so that it cannot be used for cut cell grids in this form.
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5 Conclusions and Outlook

In the first part, we developed and investigated a new finite volume method for cut cell
meshes that is based on the Active Flux method in one and two spatial dimensions. It
used not only cell average values but also point values on the interfaces between the
cells. The method was so far valid only for linear systems where an exact evolution
operator can be found.

Firstly, we saw that the third order accuracy of the one-dimensional method can be
maintained in the presence of a small cell if exact integration is used instead of Simp-
son’s rule for the small cell. Nevertheless, the use of Simpson’s rule reduced the order
by one only in the cut cell, leading to a stable and overall third order scheme, measured
in the L1-norm. The cancellation property was achieved in both cases due to the con-
tinuous reconstruction. Limiting could be done in various ways in one dimension, but
only one of the proposed strategies could be extended to the multidimensional case.

Secondly, we transformed the original Active Flux method on triangular grids to
Cartesian grids for two dimensions. We found a slight reduction in stability when
using Simpson’s rule for the flux computation for the linear advection equation, while
exact integration led to maximal stability. Since two-dimensional cut cells differentiate
strongly from the Cartesian cells, additional effort had to be put into reconstruction
and flux computation in these cut cells. Since we didn’t find a stable way to compute a
globally continuous reconstruction, a combined interpolation/least square ansatz was
pursued. The resulting method was third order accurate in the L1-norm, while we
saw a slight reduction of accuracy near the boundary in the general case. The scheme
was stable for time steps that depend on the regular grid size for all considered test
problems, although the reconstruction could have small discontinuities across cut cell
faces. Limiting could be applied if needed.

In the second part, we developed an ADER finite volume method that is equiva-
lent to the Active Flux method for linear one-dimensional systems. It expanded the
AF method for any hyperbolic conservation law, without the need of an exact evolu-
tion operator. Different examples and comparisons to previous methods were given
and showed excellent accuracy. The method showed very good numerical stability on
Cartesian grids and didn’t suffer from a severe time step restriction. However, the
method could not be used for cut cell grids in its current form due to a lack of stability
for small cells.

Looking forward, there are many interesting topics that can be studied in the future:

All has not been said and done when it comes to the reconstruction in the cut cells.
While the current approach has shown to be stable in all of our experiments, there is
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no proof. Through a globally continuous reconstruction this might be possible, but one
has yet to find such reconstruction without making the method too expensive.
The loss of accuracy near the boundary in many cut cell situations can possibly be

improved. Through higher order reconstruction or filtering a full third order method
in the L∞-norm could be constructed.
One would like to be able to compute more than the advection equation on cut cell

meshes. This might be doable by an extension of our ADER interpretation of the
Active Flux method by the introduction of h-boxes or other locally defined helping
grids. Alternatively, other ways of finding an approximate evolution operator can be
tried. The first interesting problems to study could be advection with spatially varying
velocity or linear acoustics on more complex geometries.
With that, one interesting question is how the boundary should be approximated by

the cut cells. Besides straight line approximations one could also consider curved ap-
proximations or level-set functions. The inclusion of boundary conditions immediately
falls into line as well.
As there are many interesting research problems to be solved, the Active Flux method

for cut cells is a good topic for future research. The foundations on how to construct
a cut cell Active Flux method have been laid in this thesis.
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A Derivation of the update matrix

A for the linear stability analysis

In Section 3.1.4 we discussed the derivation of the update matrix A for the linear
stability analysis. Here, we want to present the construction of the sub-matrices Zk,l for
the advection equation in more detail and provide extended results for the eigenvalues.
This Appendix is adapted from [2, Appendix A]. Recall that Zk,l[x, y] with k, l ∈
{−1, 0, 1, 2} and x, y ∈ {1, 2, 3, 4} represents the contribution of the DoF y in cell
Ci+k,j+l to the update of the DoF x in cell Ci,j.

Remember that the reconstruction in cell Ci,j at time tn can be expressed in the
form

Qn
rec,i,j(ξ, η) =

9∑

i=1

ciNi(ξ, η) (A.1)

(compare to (3.14)) with ci andNi as described in Table 3.1 and (ξ, η) ∈ [−1, 1]×[−1, 1].
This reconstruction interpolates the point values along the boundary and preserves
the cell average Qn

i,j. For our considerations it is more convenient to express the
reconstruction in the form

Qn
rec,i,j(ξ, η) =

9∑

i=1

îkN̂i(ξ, η), (A.2)

using the DoF of the method as coefficients. Thus, we set

N̂i(ξ, η) := Ni(ξ, η)−
1

16
Ni(ξ, η), i = 1, 3, 5, 7,

N̂i(ξ, η) := Ni(ξ, η)−
1

4
Ni(ξ, η), i = 2, 4, 6, 8,

N̂9(ξ, η) :=
9

4
N9(ξ, η)

ĉi := ci, i = 1, . . . , 8,

ĉ9 := Qn
i,j.

In our Python code we distinguish between four different cases which are specified
in Table A.1.

The update of point values of the conserved quantities can now easily be expressed
by appropriate entries of different Z matrices. In order to describe the update of the
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case number estimates
1 |a|∆t/∆x ≤ 0.5, |b|∆t/∆y ≤ 0.5
2 |a|∆t/∆x ≥ 0.5, |b|∆t/∆y ≤ 0.5
3 |a|∆t/∆x ≤ 0.5, |b|∆t/∆y ≥ 0.5
4 |a|∆t/∆x ≥ 0.5, |b|∆t/∆y ≥ 0.5

Table A.1.: Different cases which are considered in order to define the matrix A for the
two-dimensional advection equation.

cell average for the AF method, we rewrite the finite volume update formula (3.13) in
a sum of the form

Qn+1
i,j =

∑

s,t

ms,tQ
n
i+s,j+t,

where we consider all relevant DoF that contribute to the update. The precise form
of ms,t depends of the specific choice of the method, i.e., Simpson’s rule or exact
integration. As an example, we consider a, b > 0 in a case 2 situation. Then matrix
Z−1,0, for example, has the form




N̂8(ξ1, η1) N̂1(ξ1, η1) N̂2(ξ1, η1) N̂9(ξ1, η1)
0 N7(ξ2, η2) N6(ξ2, η2) 0
0 N7(ξ3, η3) N6(ξ3, η3) 0

mi− 3

2
,j mi− 3

2
,j− 1

2

mi−1,j− 1

2

mi−1,j


 (A.3)

with

(ξ1, η1) =

(
1− 2a

∆t

∆x
,−2b

∆t

∆y

)
,

(ξ2, η2) =

(
1− 2a

∆t

∆x
, 1− 2b

∆t

∆y

)
,

(ξ3, η3) =

(
2− 2a

∆t

∆x
, 1− 2b

∆t

∆y

)
.

(A.4)

See also Figure A.1 for an illustration of the relevant points and DoF. Once the Z ma-
trices are defined, we can compute A using (3.30). In Fig. A.2 we show the eigenvalues
for Simpson’s method as well as exact integration using a = b, a grid with 50 × 50
time steps, periodic boundary conditions and two different time steps. While the AF
method with Simpson’s rule is stable for ν = 0.75 and unstable for ν = 0.9, AF with
exact integration is stable for both time steps (compare to the results in Section 3.1.4).

In the special case a = b and ν = 1, the AF method with Simpson’s rule can be
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DoF 3

(−1, 0)

(ξ1, η1)

(ξ2, η2) (ξ3, η3)

DoF 1

DoF 4

(i, j)

j −

1
2

i − 3
2

i − 1
2

DoF 2

Figure A.1.: Depiction of the relevant DoF in a case 2 situation.

expressed using

Z−1,−1 =




1 0 0 0
0 1 0 0
0 0 1 0
1
18

1
24

1
18

1
2


 , Z−1,0 =




0 0 0 0
0 0 0 0
0 0 0 0
0 − 1

72
5
18

0


 , Z0,−1 =




0 0 0 0
0 0 0 0
0 0 0 0
5
18

− 1
72

0 0


 ,

(A.5)

Z0,0 =




0 0 0 0
0 0 0 0
0 0 0 0

− 5
18

0 − 5
18

1
2


 , Z0,1 =




0 0 0 0
0 0 0 0
0 0 0 0
0 1

22
− 1

18
0


 , Z1,0 =




0 0 0 0
0 0 0 0
0 0 0 0

− 1
18

1
72

0 0


 ,

(A.6)

Z1,1 =




0 0 0 0
0 0 0 0
0 0 0 0
0 − 1

24
0 0


 (A.7)

(A.8)

All other Z matrices are zero matrices. In Figure A.3 we show the eigenvalues for the
AF method for this case using either Simpson’s rule or exact integration for N = 50.
The magnitude of all eigenvalues is bounded by one. However, Simpson’s method is
unstable in this situation.

In order to further analyse the stability, we need to investigate the algebraic and
geometric multiplicity of the eigenvalues with magnitude one. For N = 2, i.e., A ∈
R

16×16, we can explicitly calculate the eigenvalues and eigenvectors. The matrix A
has the eigenvalues λ1,...,6 = −1, λ7,8 = 0, λ9,...,16 = 1. There are only seven linearly
independent eigenvectors which correspond to the eigenvalue 1, i.e., the geometric and
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Figure A.3.: Eigenvalues for Simpson’s method (left) and exact integration (right) for
the AF method in the case a = b, ν = 1 and N = 50.
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