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ABSTRACT

The identification of groups in data sets, also called cluster analysis or clustering,
is an important part of many analyses. Several algorithms from different research
areas have already been developed for this purpose. These methods differ not only in
their algorithmic procedure but also in the use of different comparison functions. In
addition, many methods require the selection of one or more parameters, so that the
results depend not only on the chosen method but also on the parameters selected.
The question of the validity of the clusters found can only be answered, if at all, by
experts in the relevant data domain. This problem affects all forms of data and can
severely limit the usefulness of such an analysis.

Some types of data contain additional dependencies that can be used advanta-
geously in such a cluster analysis. Time series, i.e. ordered sequences of observations,
represent such a class of data. In many respects they determine our everyday life,
whether on stock markets, in medicine or during the Corona pandemic in form of the
course of infections. If the temporal component is properly taken into account, a clus-
ter analysis can provide previously unknown information. However, the validity of the
found clusters must first be ensured in order to prevent misinterpretations.

The explained problem is the motivation for CLOSE, a new method presented here,
which is able to evaluate a clustering of time series. The developed evaluation is based
on a novel stability measure for time series and clusters and provides a score, which
makes different clusterings comparable. The circumstance that it is not only crisp
clustering which is affected by the described problem, but also fuzzy clustering, led us
to another method, called FCSETS, which is specialised on fuzzy clusterings.

We evaluate these methods using several data sets and clustering algorithms. We
also present three applications and several variants which target the detection of outliers
in time series. These applications are based on the findings in FCSETS and CLOSE.
Additionally we present a clustering algorithm, which is based on a derived concept of
CLOSE.

In an excursion chapter, we show the results of other machine learning techniques
so that a comparison can be made with our applications. Our results are promising and
enable users to choose a suitable clustering algorithm and the corresponding parameters
without prior knowledge.
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ZUSAMMENFASSUNG

Die Identifikation von Gruppen in Datensétzen, auch Clusteranalyse oder Clustering
genannt, ist ein wichtiger Bestandteil vieler Analysen. Hierfiir wurden bereits mehrere
Algorithmen aus verschiedenen Forschungsbereichen entwickelt. Diese Methoden un-
terscheiden sich nicht nur in ihrem algorithmischen Vorgehen, sondern auch in der
Verwendung unterschiedlicher Vergleichsfunktionen. Dariiber hinaus erfordern viele
Methoden die Wahl eines oder mehrerer Parameter, so dass die Ergebnisse nicht nur
von der gewahlten Methode, sondern auch von den gewéahlten Parametern abhéangen.
Die Frage nach der Giiltigkeit der gefundenen Cluster kann, wenn iiberhaupt, nur von
Experten in der jeweiligen Datendoméne beantwortet werden. Dieses Problem be-
trifft alle Formen von Daten und kann die Niitzlichkeit einer solchen Analyse stark
einschranken.

Einige Arten von Daten enthalten zusétzliche Abhéngigkeiten, die in einer solchen
Clusteranalyse vorteilhaft genutzt werden koénnen. Zeitreihen, d.h. geordnete Folgen
von Beobachtungen, stellen eine solche Klasse von Daten dar. Sie bestimmen in vielerlei
Hinsicht unseren Alltag, ob an der Borse, in der Medizin oder wiahrend der Corona-
Pandemie in Form von Infektionsverldaufen. Wenn die zeitliche Komponente richtig
beriicksichtigt wird, kann eine Clusteranalyse viele bisher unbekannte Informationen
liefern. Allerdings muss zunéchst die Giiltigkeit der gefundenen Cluster sichergestellt
werden, um Fehlinterpretationen zu vermeiden.

Die erlauterte Problematik ist die Motivation fiir CLOSE, eine hier vorgestellte
neue Methode, die in der Lage ist, ein Clustering von Zeitreihen zu bewerten. Die
entwickelte Auswertung basiert auf einem neuartigen Stabilitdtsmaf fiir Zeitreihen und
Cluster und liefert einen Score, der verschiedene Clusterings vergleichbar macht. Der
Umstand, dass nicht nur hartes Clustering von dem beschriebenen Problem betroffen
ist, sondern auch fuzzy Clustering, fiihrte uns zu FCSETS, einer weiteren Methode,
die auf fuzzy Clustings spezialisiert ist.

Wir evaluieren diese Methoden anhand verschiedener Datensdtze und Clustering-
Algorithmen. Wir stellen aufserdem drei Anwendungen und mehrere Varianten vor,
die auf die Erkennung von Ausreiffern in Zeitreihen abzielen. Diese Anwendungen
basieren auf den Erkenntnissen in FCSETS und CLOSE. Zusétzlich stellen wir einen
Clustering-Algorithmus vor, der auf einem abgeleiteten Konzept von CLOSE basiert.

In einem Exkurs zeigen wir die Ergebnisse anderer maschineller Lernverfahren auf,
so dass ein Vergleich mit unseren Anwendungen méglich ist. Unsere Ergebnisse sind
vielversprechend und ermdoglichen es Anwendern ohne Vorkenntnisse einen geeigneten
Clustering-Algorithmus und die entsprechenden Parameter auszuwéhlen.
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INTRODUCTION

Data has never been worth as much as it is today. However, it is not the data itself
that makes up its value, it is the potential for value creation that does. This is com-
parable to any other raw material, which only represents an actual value through its
processing. Unlike other raw materials, however, data is not consumed in the process;
once collected, it can serve many different purposes. How well an intended purpose is
fulfilled depends, as with other raw materials, on their processing and their quality. In
the context of data, the utilisation and thus the value creation depends on the analysis.
Due to the many different types of data and different objectives, countless methods and
approaches for their analysis have been developed over the past decades. Research in
computer science and other areas play a key role here. Many people are fascinated by
the results of this research and often experience it in everyday life as a form of artificial
intelligence. Whether it is the autopilot of a Tesla! or the answering of questions by a
voice assistant like Amazon’s Alexa?, in the background the result experienced is based
on the analysis of the input.

1.1 Machine Learning

In computer science, data analyses are usually developed and implemented in research
areas such as machine learning, data science or data mining. In the last decades, these
research areas have introduced new approaches that are able to derive dynamic and
stunningly precise rules from data. Although these approaches often have a statistical
basis, they are referred to as learning. On the question of what distinguishes statistics
from machine learning, Witten et al. write "Cynics, looking wryly at the explosion of
commercial interest (and hype) in this area, equate data mining plus marketing" [53]
and further "Some |data analysis techniques| derive from the skills taught in standard
statistics courses, and others are more closely associated with the kind of machine

Thttps: //www.tesla.com /autopilot A
Zhttps://developer.amazon.com/en-US /alexa



learning that has arisen out of computer science" [53|. Another interesting insight into
this discussion is provided by Breiman in [10], where he divides the community into
an algorithmic and a modeling culture. However, between those two cultures, there is
a large consensus on the categorisation of machine learning methods. They are often
divided into two, three or more categories. In the following, we will discuss a distinction
into three categories and outline their differences. These categories are named after
their learning approach and are called reinforcement learning, supervised learning and
unsupervised learning [45]. It should not go unmentioned that there are also mixed
methods that fall into two or more of these categories, those are equally important as
the above mentioned categories, but are beyond the scope of this work.

The first category of learning methods is probably the most intuitive form of ma-

chine learning. It is based on the idea that humans learn by interacting with their
environment [51]. Comparable to autodidactic learning, similar to a try-and-error pro-
cess with reward and punishment functions. Systems based on reinforcement learning
are promising and are also used in robotics. Here it fits perfectly, as it is important,
that a robot is able to interact with its environment. However promising methods of
this kind may be, in many cases the definition of gratification and punishment func-
tions can be extremely complex.
The second of the above mentioned categories of learning approaches, supervised learn-
ing, is often used in classification tasks. These are tasks in which data objects are
assigned to predetermined classes |7]. Probably one of the best-known classification
task of our time is the filtering of spam in e-mails, in which a distinction is made be-
tween the classes ham and spam [44]. Here, the system decides independently whether
an e-mail falls into the one or the other class. In the background, the system uses a
mathematical model that makes this distinction possible. In supervised learning, the
model is given the classes into which individual objects are to be classified [7]. With
the known classes of a training set, the mathematical model can be adapted so that
new, unknown data can also be correctly classified. Therefore, a distinction is made
between a training phase, in which the system is trained with labelled data and an
application phase in which the classes of the newly arriving objects are unknown. In
order to evaluate the system, the application phase is simulated so that the actual
known class memberships of objects remain unknown to the system [7]. A comparison
of the classes recognised by the system and the actual classes then allows a statement
about the quality of the system. This phase is generally called the test phase and is
usually part in the development of the system. Methods of this type have enormous
advantages in situations where the classes into which data objects are to be divided are
already known in advance. An important aspect though is the balance of the data in
the training phase. Imbalanced data sets can lead to better results in the test phase as
the underlying model could adapt to this imbalance by returning the overrepresented
class for every object. A simple example for such a situation is the prediction of rain
in weather forecasting. Suppose it had been statistically shown that every week has
exactly one rainy day. Predicting no rain for every single day would result in a correct
statement in six of seven cases, which corresponds to a correct statement in about 86%
of the cases.

The third category, unsupervised learning, does not require labelled data [44|. For
this reason, a training phase like in supervised learning is omitted. The reference
system in unsupervised learning is the data itself, as the goal is to find meaningful



patterns [44]. For this reason, unsupervised learning is also referred to as descriptive
learning |45]. Methods in this category are suitable for a wide range of applications.
Often, this form of learning is used for dimension reduction or for choosing meaningful
features [11]. Furthermore, it is applied to the detection of groups in data, also called
clustering. We go into this application in particular detail as it is a core element of
this dissertation. The detection of outliers is another important application within the
field of unsupervised learning. In this thesis it represents a higher level application and
is discussed in Chapter 3.

Although it is often mentioned in the literature [14, 30|, we think it is wrong to weigh
the different types of machine learning with respect to a specific task. In our view, the
different types have a complementary existence with different objectives and require-
ments. The choice of a method and thus the choice of a certain type therefore depends
on the data at hand and the objective of the analysis.

1.2 Cluster Analysis

"Cluster analysis is the art of finding groups in data" [25], these groups are also referred
to as clusters. Although the concept might be intuitive, a definition of a cluster is
difficult. In his position paper, Vladimir Estivill-Castro argues, that there are so
many different cluster algorithms because the term cluster cannot be defined precisely
[21]. However, there is an agreement on the definition of clusters, in the sense that
objects from one cluster are similar to each other and objects from different clusters
are dissimilar to each other [22, 34]. The similarity or dissimilarity of objects can be
interpreted in different ways. In many methods of cluster analysis, distance [6, 42| or
density functions |5, 20| are used. From this, one can conclude that different algorithms
lead to different results. In fact, it is even more complex: First of all, most algorithms
require a selection of one or more parameters, some offer the choice of a similarity
function and others also depend on a certain initialisation. All these factors may have
a high impact on the results obtained. At the same time, the selection of these factors
is crucial for a valid outcome of the analysis. Nevertheless, cluster analyses make
important contributions in a wide range of domains. Among others, these include
biology, psychology, medicine, marketing, computer vision and remote sensing [50].

However, all fields of application encounter the same problem, namely the valida-
tion of the clusters obtained. This is a major problem, which is particularly affecting
naive users, since those often tend to misinterpret the results [50], but also domain
experts may be misled in some situations. Jain and Dubes have recognized this risk
and state:

“The validation of clustering structures is the most difficult and frustrating part of
cluster analysis. Without a strong effort in this direction, cluster analysis will remain a
black art accessible only to those true believers who have experience and great courage.”

Jain and Dubes 1988, Algorithms for Clustering Data

The problem described affects all types of data and is probably more significant
today than it was in 1988. Nonetheless, this circumstance may also represent a new
opportunity: Solving the problem for one type of data could lead to solutions for other
types of data and thus contribute to the overall solution. This dissertation is our



contribution to solving the problem formulated by Jain and Dubes and deals with the
evaluation of clusterings of time-dependent data, also called time series.

1.3 Time Series

“There are no secrets that time does not reveal.”
Jean Baptiste Racine

Time series occur in various areas and determine our everyday life. Without recognizing
them as such, we experience them through the media - whether it is the development
of the stock market, climate change or political polls. A single point in time has little
significance. Only by considering several points in time a development can be derived,
which usually reveals more detailed information about a certain situation. William W.
S. Wei defines a time series as "an ordered sequence of observations" [52].

Probably the best known time series that has changed our lives in 2020 is that
of the Corona infections. There is great interest in this time series, because its de-
velopment determines measures that restrict our everyday lives. Another time series
which dominated the media was the price development of the Bitcoin® [46]. While the
current price of 50.000 US Dollars is not very meaningful, it becomes interesting, when
it is mentioned that it cost around 4.000 US Dollars in the middle of 2020. In other
domains, even this statement may not be sufficient. For this reason, news about the
course of a certain stock often also mention the development of the according index (for
example NASDAQ Composite). Here, the relationship of a stock to a certain group is
important; if the share price develops in line with the reference group, it is probably
not worth to mention.

In statistics, the idea to compare time series with each other exists for a long
time. Therefore common correlation coefficients such as Pearson, Spearman, the cross-
correlation [16, 29, 31|, or the Granger causality [28] are applied to time series. Fur-
thermore, Autoregressive-Moving Average (ARIMA) models are also used to compare
time series to each other. [27]. Although these methods can be used to compare time
series, they cannot be used to identify clusters of time series. Yet, such groups can
serve as a reference and it is necessary to identify them if they are unknown. For
this reason, time series are also clustered [38, 39, 54] which does not always lead to
meaningful results [33]. In [33] Keogh et al. deal in particular with the clustering of
subsequences. Therefore, a time series is divided into subsequences, which are then
clustered. The objective of this procedure is to recognise patterns within a time series,
which for example can represent reoccurring events. However, the procedure can triv-
ially also be applied to several time series in order to find similar subsequences across
time series. The main problem faced in these kind of approaches is the division of the
time series into several subsequences. It can be assumed that this division depends
on the time series in question. With several time series, the intervals per time series
can differ, so that one would have to compare sequences of different lengths with each
other. In the next chapter, we return to this circumstance and describe the problem
addressed in this dissertation.

3https://www.bbc.com /news/business-56150425
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1.4 Problem Description

The identification of groups in time series can be useful in many applications. In our
works [R2, R3, R4, R6, R7| we address some of these. These include, for example,
clustering countries over-time by economic features or grouping companies in terms of
the history of their financial data. In latter, one could also use existing classification
systems such as the Standard Industrial Classification (SIC)?, but such systems are
usually static and only map the industry of a company. If one wants to examine
companies in terms of their development over time in relation to their reference group,
one cannot avoid identifying its reference group first. The composition and number
of groups can change at any time, which is why it makes sense to identify the groups
anew at each time point.

This can be achieved by clustering at each individual timestamp. However, there
are many different clustering algorithms, which depend on at least one, but often also
several parameters. As already described in Chapter 1.2, this circumstance makes it
extremely difficult to evaluate the clusters obtained. The problem can be summarised
in a short question:

How can a good time series clustering be identified?

In this dissertation, our primary goal is not a clustering algorithm but the reduction
of a clustering to a score that maps cluster stability. With this score we enable the
user to choose the right algorithm and the right parameters in order to obtain valid
clusters.

1.5 Contribution

Clustering of multidimensional data points is in many ways a very well researched field
with established methods [50|. However, it is often difficult to measure the quality of
the clusters obtained. For this reason, a variety of evaluation metrics such as the Rand
Index [32] or the Silhoutte coefficient [48] have been proposed. Unlike the classical
clustering of data points, the clustering of time series is much more complex. In most
cases, the dimension of time cannot simply be considered as another feature dimension,
as this could nullify its informative value. For this reason, new clustering methods
have been developed specifically for time series [1, 15, 55, though methods evaluating
time series clusters have not yet been developed. Without these, the validation of the
obtained clusters is not possible and cluster analysis remains as a form of "black art"
[50].

The main contribution of this thesis is the introduction of the over-time stability.
This concept is used to evaluate the stability of time series in relation to each other.
For this purpose, clusterings of time series are considered per time point and compared
with each other. Due to the well known differences in fuzzy and crisp clustering, we
present two variants of over-time stability, each tailored to the underlying logic. Qver-
time stability is the core concept of FCSETS (Fuzzy Clustering Stability Evaluation
of Time Series) and CLOSE ( Cluster Over-Time Stability Evaluation), two methods
for evaluating time series clustering. With the help of these methods, it is possible to

4https://www.osha.gov/data/sic-manual



assess the validity of time series clusters and clusterings. Furthermore, it is possible
to compare the results of different clustering algorithms and different parameters and
thus to choose the optimal configuration for an application. In particular, with the pa-
rameter selection by our methods, it is possible to obtain temporally linked clusterings
without adapting the underlying clustering algorithms. The results are comparable to
those of time series adapted clustering algorithms [R3|. These findings can be applied
to synthetic as well as real-world data and open up new possibilities in the field of time
series clustering.

To underline the usefulness of our methods, further applications based on the over-
time stability are also presented in this dissertation. In particular, these applications
represent an evaluation of the underlying concept of the over-time stability. Further-
more, we introduce a method for clustering time series based on adaptability, a concept
closely related to over-time stability.

In the summary chapter, we discuss variations of over-time stability and evaluate
them on further data sets. In addition, we show the interrelationships of the applica-
tions and the evaluation procedures and suggest future use cases.

In addition to some smaller contributions, we would like to highlight the core con-
tributions:

Idea and evaluation of the over-time stability (CLOSE).

Idea, conception, implementation and evaluation of the fuzzy variant of the
over-time stability (FCSETS).

Idea, implementation and evaluation of the parameter selection for time series
(crisp/fuzzy) clustering on real-world data.

e Discussion on the relationship between CLOSE and FCSETS.

Idea, implementation and conception of a time series clustering algorithm.

1.6 Structure of the Thesis

We already have introduced the topic dealt with in this dissertation and defined the
problem. So far, we have omitted mathematical definitions to give readers outside
the field an insight into this research. However, in the respective chapters we discuss
the mathematical formalisations in detail, to provide a profound understanding of our
research. In the following chapter we introduce the evaluation of time series clusterings.
Since our definition is based on a time-dependent stability assumption, the chapter is
named Time Series Over-Time Stability. In the subchapters we discuss an approach
for crisp clusterings and a method for fuzzy clusterings.

In Chapter 3 we introduce different variants of outlier detection methods, which are
based on the ideas presented in the preceding chapter. Additionally we present a new
clustering algorithm for time series which is based on a derived concept of the Time
Series Quver-Time Stability.

This is followed by an excursion in Chapter 4, in which we show that our applications
provide competitive results to other well-known methods. Finally, we conclude the
dissertation with an overall summary and an outlook for further research.
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TIME SERIES OVER-TIME STABILITY

In this chapter, we reference two fundamental papers that serve as the basis for the rest
of this thesis. In particular, these works introduce the concept of over-time stability
with respect to time series, clusters and whole clusterings.

The concept of over-time stability forms the basis for applications such as parameter
search or outlier detection and can also be applied to others. Depending on the type
of clustering at hand and the specific target of the analysis, we offer two methods in
this chapter.

In Section 2.1. we first describe CLOSE, a method for evaluating the over-time
stability of time series, clusters and whole clusterings. The method enables these
elements to be considered in relation to one another and provides a basis for further
analysis. For illustration purposes, we demonstrate the use case of parameter search
for partitioning and density-based, time-independent clustering algorithms. Hence, we
provide semantically meaningful clusterings of time series with algorithms designed for
time-independent data.

In Section 2.2 we describe FCSETS, the fuzzy counterpart to CLOSE. It can be
used with fuzzy clustering algorithms and is based on the Hiillermeier-Rifqi index
[32], which was developed for comparing fuzzy partitions. According to the conditions
that prevail in fuzzy environments, we have adapted the calculations of the over-time
stability here. Nevertheless, the basic ideas from CLOSE remain the same.

Although one might get the impression that these works fall into the research area of
evolutionary clustering, we use a different approach. While in the field of evolutionary
clustering cluster algorithms are designed [15] or well-known cluster algorithms are
adapted [1, 55|, our method evaluates the over-time stability of time series, clusters
and clusterings. This significant difference highlights the strengths of our approach
because it is not limited to one application but forms a basis for many.



2.1 How is Your Team Spirit? Cluster Over-Time
Stability Evaluation

Martha Tatusch, Gerhard Klassen, Marcus Bravidor, and Stefan Conrad. How is Your
Team Spirit? Cluster Over-Time Stability Evaluation. In Machine Learning and Data
Mining in Pattern Recognition - 16th International Conference, MLDM 2016, New
York, NY, USA, July 18-23, 2020, Proceedings, Lecture Notes in Computer Science,
pages 155—170. ibai-publishing, 2020.

Contributions: Gerhard Klassen contributed with the basic idea, the preprocessing,
the acquisition of the data sets and the experiments with the Eikon data set (Section
5.1) and the GlobalEconomy data set (Section 5.2). The manuscript was jointly written
by the two main authors Martha Krakowski (née Tatusch) and Gerhard Klassen under
supervision of Jun.-Prof. Dr. Marcus Bravidor and Prof. Dr. Stefan Conrad.

Status: published

In the paper referenced in this section |[R5| we present the Cluster Over-Time
Stability Evaluation (CLOSE). A fundamental problem in clustering time series data-
bases is the evaluation of the obtained clustering. As described in the introduction,
this is a major problem, which also may lead to the misinterpretation of the results.
In particular naive users are affected by this, but also domain experts may be facing
difficulties [50]. Therefore, without a doubt, it is fundamental that each user be enabled
to validate the clustering at hand.

In the paper [R5| we introduce an evaluation method, which allows the comparison
of clusterings with the help of a simple score. It should support users to decide between
clusterings, i.e. between cluster algorithms, parameters and possible initialisations,
and thus contribute to the validation of clusterings. The Cluster QOver-Time Stability
Evaluation, presented in the paper [R5]|, offers a method to validate clusterings with
regard to their over-time stability. Over-time stability is a novel concept and can
be interpreted as an evaluation measure that examines how much the composition of
clusters changes over time. As a by-product, it is also possible to evaluate not only
clusterings but also individual clusters and even time series with regard to their over-
time stability.

The presented procedure enables many further applications, some of which are
discussed in later chapters. One application that becomes obvious through the eval-
uation of clusterings is the choice of parameters for cluster algorithms. We address
this use case in the paper [R5] and illustrate the possibility of applying well-known
time-independent clustering algorithms such as K-Means [42] or DBSCAN [20] in the
context of time series.

The paper [R5] is part of the foundation of this dissertation, accordingly the con-
cepts are fundamental for the further work.



How is Your Team Spirit?
Cluster Over-Time Stability Evaluation

Martha Tatusch*[0000-0001-6302-6070] '(terhard Klassen*0000-0002—1458—6546]
Marcus Bravidor[0000—0003—1504— 9889] and Stefan Conrad[0000—0003—2788— 3854]
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Abstract. Clustering of time series data is a major part of data mining.
In this paper, we consider multiple multivariate time series and the clus-
tering of their data points per timestamp. One of the major problems of
this approach is that the temporal connection of clusterings at different
times can neither be guaranteed nor tracked. For this reason we present
CLOSE (Cluster Over-Time Stability Evaluation): an internal evalua-
tion measure for clusterings of temporal data. Our method evaluates not
only the quality but also the over-time stability of the clusters. Time
series with an equal cluster neighborhood over time are considered to be
stable while those which change their neighbors often are considered as
unstable. We applied our model to different data and present the results
in this paper.

Keywords: Time Series Analysis - Clustering - Evaluation

1 Introduction

Information extraction from time series (TS) is well researched. There are many
different approaches which all tackle specific problems. Often clustering the data
has an important fraction in the concept of choice. While some of those methods
divide the time series in parts, so called subsequences [2], others consider the
whole time series at once [19], yet others extract feature sets [10,26]. Although
these approaches seem to solve a lot of problems and enable the discovery of
knowledge, new problems like the choice of parameters arise. This parameter
choice often ends up with many apparently good solutions and lacks an evalua-
tion function which distinguishes the quality of clusterings properly. This prob-
lem grows with the amount of dimensions and requires an automatic rating of
the available solutions.

In this paper we consider multiple multivariate time series with same length
and equivalent time steps. We detect clusters for each point in time (called over-
time clustering) with different parameters and identify the best overall clustering
without knowing the ground truth. Therefore, we present an internal evaluation
measure for temporal clusterings which can be used to rate and compare differ-
ent clustering results of time series data. Our method, which is named CLOSE

* Both authors contributed equally to this research.



Fig. 1: Example of a time series over-time clustering [25]. The red clusters are
less stable over time than the blue ones.

(Cluster Over-Time Stability Evaluation), not only evaluates the quality of the
individual clusterings per time point, but also the over-time stability. The tem-
poral aspect is thus included in the evaluation. For the first time, this makes it
possible to rate a clustering of time series data, in which the data points are clus-
tered per timestamp, regarding the temporal linkage of clusters. Furthermore,
the presented method is able to handle missing data points without adaptation.
An example of an over-time clustering is illustrated in Figure 1. For a simple
visualization, univariate time series are shown. Compared to whole time series
clustering, this technique has a major advantage: similar partial sequences of
undefined length can be found.

This approach is not only novel in the sense that it considers quality and
over-time stability at the same time, but also because over-time stability differs
from the stability usually represented in literature. It serves a different purpose
and is based on transitions between clusters over time, which will be explained
in more detail later in this work. The procedure for example may be useful when
tracking topics in online forums. By clustering per point in time, the development
of relationships between different terms can be investigated. When examining
financial data, the procedure can lead to a gain in information as well. Assuming
that the courses of different companies’ financial data can be divided into groups
— e.g. successful and less successful companies — clustering might be helpful to
detect anomalies or even fraud. Since it cannot be guaranteed that all fraud
cases are known — some may remain uncovered — this problem cannot be solved
with fully supervised learning. The identification of meaningful groups would be
a fundamental step. In General, the evaluation of temporal clusterings enables
the identification of suitable hyper-parameters for different algorithms as a basis
for further analysis such as outlier detection.

In the further course we will first discuss similar work (Section 2). We then
define the considered problem (Section 3) and present our solution (Section 4).
Finally, we give an overview of our experiments and their results (Section 5),
discuss the method (Section 6) and draw a conclusion (Section 7).
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2 Related Work

To the best of our knowledge, there does not exist any approach similar to ours,
since clustering evaluation metrics usually do not contain a temporal compo-
nent. For this reason, we refer on the one hand to related work with regard to
time series clustering and on the other hand to time-independent evaluation of
clusterings.

2.1 Time Series Clustering

In the field of time series analysis, there are different techniques for clustering
time series data. When considering multiple time series, one approach is the
clustering of the entire sequences [7,19]. For our context, this procedure is not
well suited as potential correlations between subsequences of different time series
are not revealed. Additionally, the exact course of the time series is not relevant,
but rather the trend they show. The transformation of entire sequences to feature
vectors, which then are clustered [10], blurs the exact course and is a popular
method. Still, the problem of not recognizing interrelated subsequences persists.

However, there is also the approach of clustering subsequences of a time se-
ries [2, 12]. Usually, this is done to find motifs in time series and therefore only a
single time series is considered. In [14], Keogh et al. state that the clustering of
subsequences of a single time series is meaningless, though. However, this state-
ment is controversial, as Chen [4] argues that it is possible to obtain meaningful
results if the correct distance measure is used. For this purpose, various distance
measures have been introduced [23, 24].

There is also the approach of clustering partial sequences of multiple time
series. Outliers may influence the results, though, and there is a need of finding
a meaningful length of the subsequences, since the examination of subsequences
of all lengths is usually very time-consuming. Our approach can provide more
insights as subsequences of any length can selectively be investigated. However,
under the assumption that the entire time course from the beginning is relevant,
CLOSE only considers subsequences starting at the first point in time.

Methods for the clustering of streaming data [9, 18] are not comparable to
our method, as they consider only one time series at a time and deal with other
problems such as high memory requirements and time complexity.

2.2 Internal Evaluation Measures

There are many different evaluation measures for evaluating clusters and clus-
terings. Thereby, a distinction between external and internal measures ought
to be made. In the case of the external evaluation, the ground truth is already
known so that the results can be compared with expectations. In the internal
evaluation, no information about the actual classes is known, so that the clusters
are evaluated primarily on the basis of characteristics such as compactness or
separation.
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One metric that evaluates the compactness of clusters is the Sum of Squared
Errors. It calculates the overall distance between the members and the centroid
of a cluster. The centroid is usually the mean of all cluster members. The closer
the objects of a cluster lie together, the smaller the error, the greater the com-
pactness. However, this measure does not take into account the separation of
different clusters.

The Silhouette Coefficient [22] evaluates the compactness as well as the sepa-
ration of different clusters. This is achieved by using both the average distance of
an object to members of its cluster and the average distance to members of the
nearest cluster. These two properties are also addressed in the Davies-Bouldin
Indez [5] and the Dunn Index [6].

All these metrics cannot be directly compared to our method since they lack
a temporal aspect. However, as we will show in the following, they can be applied

in CLOSE.

2.3 Stability Evaluation

For the stability measurement of a clustering algorithm there are already several
methods. The Rand Index [20], which is usually intended for the external evalu-
ation of a clustering, can e.g. be used for this purpose. This evaluation measure
rates the agreement of a clustering ¢, with the expected result ¢; (ground truth).
Therefore it examines all object pairs that are located in the same cluster in ¢,
as well as (; and all pairs that belong to different clusters in both clusterings.
The number of corresponding object pairs is then set in relation to the number
of all possible object pairs. Considering n objects, the number of all possible
pairs is (5).

Measuring the stability of a clustering algorithm is for instance made in
order to find the optimal &k for KMeans [17] or to determine the dependence of
a clustering on its initialization. When considering m clusterings ¢; (1 < i <
m) with the same parameter k and random initialization, the Rand Index is
calculated for every unordered pair of clusterings (;,(; with i # j by assuming
¢; is the ground truth without loss of generality. The stability is expressed by the
average Rand Index across all pairs. Such stability measures, however, pursue a
different objective and clearly do not take a temporal linkage into consideration
[16].

An obvious idea would be to measure over-time stability by comparing clus-
tering pairs of successive points in time. However, this approach is inflexible and
would strongly weight variation between two points in time, although the clus-
tering might deviate only at one point in time and otherwise remain quite stable.
An ongoing change, on the other hand, would be punished only very slightly,
since the variation between clusterings of two adjacent timestamps would be
small, but in regard to the entire period the change would be very large. Fur-
thermore a separation or merge of clusters would have a strong negative impact
on the index. Even when comparing all possible clustering pairs of different time
points these problems would persist. Our method handles such cases in a slightly
different way.
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In addition, the Rand Index exclusively evaluates the (over-time) stability
of a clustering. But as stated in [3,15], stability alone does not imply a good
clustering. If this is not the case with constant data points, then certainly it
is not the case with data points that change over time. CLOSE combines the
evaluation of the over-time stability and the quality of a clustering to give an
overall statement about an over-time clustering. However, changing values of the
data objects is another problem that has to be faced when looking at time series
data.

The identification of so called Moving Clusters [13] seems to be a closely
related topic, but addresses a slightly different problem. In contrast to the eval-
uation of an over-time clustering, this field of research deals with the detection
of clusters that remain mostly the same in regard to their members. In [13] an
intuitive approach using the Jaccard Index is presented for the problem. If the
Jaccard Index of two clusters of different timestamps is greater than 6, these
clusters are identified as the same cluster for different timestamps. Apart from
the fact that the clustering is not evaluated here, there is another difference to
our approach: it is assumed that a cluster remains approximately the same size
over time. In real data, however, this is not necessarily the case. This may apply
to some tasks, such as herd tracking, which is examined in the paper, but in
most cases this requirement is not satisfied.

3 Fundamentals

Since there are various approaches and definitions concerning TS analysis, we
next clarify our understanding of some basic concepts regarding our approach.

Definition 1 (Time Series). A time series T = oy, ..., 04, s an ordered set of
n real valued data points of arbitrary dimension. The data points are chronolog-
ically ordered by their time of recording, with t1 and t, indicating the first and
last timestamp, respectively.

Definition 2 (Data Set). A data set D =T, ...,T,, is a set of m time series
of same length n and equivalent points in time.

The vectors of all time series are denoted as the set O = {04 1, ...,0¢, . m}-
With the second index indicating the time series the data point originates from.
We write Oy, for all data points at a certain point in time.

Definition 3 (Cluster). A cluster Cy, ; C Oy, at time t;, with j € {1,...,p}
being an unique identifier (e.g. counter), is a set of similar data points, identified
by a cluster algorithm. This means that all clusters have distinct labels regardless
of time.

Definition 4 (Cluster Member). A data point o, ; at time t;, that is assigned
to a cluster Cy, ; is called a member of cluster Cy, ;.
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Definition 5 (Noise). A data point oy, at time t; is considered as noise, if it
is not assigned to any cluster. A data point that belongs to noise is also called
an outlier.

Definition 6 (Clustering). A clustering is the overall result of a clustering
algorithm for all timestamps. In concrete it is the set ( = {Cy1,...,C, p} U
Noise.

4 Method

A major disadvantage of creating clusters for every timestamp is an evident miss-
ing temporal link. In our approach we assume that different clusterings deliver
different cluster connectedness and that this bond can be measured. In order
to measure the temporal linking we make use of a stability function. Given a
clustering ¢, we first analyze the behavior of every subsequence of a time series
T = o04,,...04,, With t < ¢, starting at the first timestamp. This is done, be-
cause time series which separate from their clusters’ members often, indicate a
low temporal linkage. One could say we evaluate the team spirit of the individ-
ual time series. Further, we rate every cluster with a stability function, which
depends on the subsequence analysis and the number of clusters merged into this
cluster. Finally, we assign a score to the clustering, depending on the over-time
stability of every cluster.

Let Cy, .o and Cy, p be two clusters, with ¢;,t; € {t1,...t,}. In order to measure
the stability of a time series we first introduce the temporal cluster intersection

Ne{Ct.a:Ce; 0} ={Ti | 01,0 € Cra N0ty 1 € Ctj s (1)

with I € {1,...,m}. The temporal cluster intersection returns a set of time series,
which contain data points grouped together in ¢; as well as in ¢;. Now the
behavior of a subsequence from one cluster Cy, , in ¢; to another Cy; ; in ¢; can
be expressed by the proportion of members of Cy, , remaining together in ¢;

|Cti7a My Ctj7b|

p(Cti,aaCtj,b) = |Ct | )
i,a

(2)
with ¢; < t;. In the example in Figure 2 the proportion for Cy,; and Cy, , would

be ) )
Ha b} 2 _

Ha, b} 2
With the help of the proportion of clusters we now can rate all data points of a
sequence with a subsequence score. It is defined as

p(Ct“l, Ctj,v) =

k—1
p(cid(og; 1), cid(oy, 1)), (3)

1
subseq_score(oy, 1) = ra
a
=1

~.

14



O Chig
O Chiu
O outlier
O Cije
@® Ctj, f
O Ctk,g

\/

Fig. 2: Example for transitions of TS a, .., e between clusters over time [25].

with [ € {1,...,m}, ks € [1,k — 1] being the number of timestamps where the
data point exists and is assigned to a cluster (therefore is not recognized as
noise), and cid, the cluster-identity function

0 if the data point is not assigned to a cluster

cid(oy, ;) = { (4)

Cy,1 else

returning the cluster which the data point has been assigned to in ¢;. Thus,
in this equation, all time points in which an object is an outlier, are ignored.
The subsequence score takes into account how many objects from the previous
clusters have migrated together with the currently viewed object.

Regarding the example of Figure 2, the score of time series a in time point
ti would be:

1
subseq_score(oy,, o) = 5 (1.0+1.0) = 1.0.

This value reflects the highest stability. The time series d, on the other hand,
gets a lower value of subseq_score(oy, q) = 0.75 as it once changes the cluster
without its cluster members.

The rating of clusters depends on two factors. The first factor is the number of
merged clusters

m(th») = |{Ctl,j | t <tpAda: Ot;.0 € Ctl,j N Oty .a € Ctk,i}|7 (5)

which describes the amount of different clusters of previous timestamps, that
merged into the regarded cluster. The second factor is the sum of all subsequence
scores of the data points within the regarded cluster. So the over-time stability
of a cluster is defined as

1
T Yo, seCy, ; Subseq_score(oy, 1)
ot stability(Cy, ;) = - w !t :
T—1 'm(Ctk,i)

(6)

for k > 1. Note that the entire preceding time frame is considered. For the first
timestamp we consider clusters to be stable and set ot_stability(Cy, ;) = 1.0.
It is important to mention, that the number of merged clusters does not take
outliers into account.
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Regarding the example of Figure 2, the stability of the cluster C}, , would
be:
£.(1.041.0+0.75+0.75 + 1.0)

1
34

This low score can be explained by the fact that the cluster under consideration
contains only a few data points, two of which already have an independent course
of their clusters’ members.

Finally we can rate the over-time stability of a clustering (:

CLOSE(() = L (17 <NLC)2) . (Céot_stability(C)'(lquality(C))), (7)

N¢

ot_stability(Cy, 4) = = 0.45.

with N¢ being the number of clusters of the whole clustering, k being the number
of considered timestamps and quality being an arbitrary cluster rating function.
We suggest the mean squared error (MSE) but density ratings like the local
outlier factor (LOF) can also be used. Be aware using a function in the interval
of [0,1] in order to get appropriate results. If greater values indicate a higher
quality, (1—quality(C)) may e.g. be replaced by (1—quality(C)~1) or quality(C)
depending on the quality measure.

When using normalized data with feature values in [0, 1], and a measure func-
tion in [0, 1], CLOSE as well returns a score between 0 and 1, with 1 indicating a
good over-time clustering, as long as there is at least one cluster per timestamp.

The pre-factors result on the one hand from averaging by the number of
clusters and on the other hand from the factor 1 — (Nic)2 This is intended to
counteract one large cluster, since such a clustering automatically receives a very
high rate of over-time stability. The more clusters exist per time, the larger the
factor. However, to prevent the creation of too many clusters, the influence of
the fraction is diminished by squaring it.

Remark 1 (Time Point Comparison). In contrast to comparing pairs of con-
secutive points in time, CLOSE contains temporal information that is robust
against outliers. By comparing clusterings of all preceding time points with the
last timestamp of the considered subsequence, short-term changes to other clus-
ters are weighted more lightly. In addition, long-term changes that develop slowly
over time are punished more severely. Since the influence of the over-time stabil-
ity is weighted with the quality of the cluster, the formula cannot be transformed
to simply iterate over all cluster pairs.

Remark 2 (Handling Outliers). Our calculations are suitable for both cleaned
and noisy data. Since outliers are neither considered in the subsequence score
nor in the cluster stability, they have no influence at this point. However, they
do have an indirect influence on the calculation of the clustering score. The pre-
factor favors a large number of clusters. Depending on the quality of the clusters,
it may be more advantageous for the algorithm to assign data points to smaller
clusters than to interpret them as noise and recognize only a few large clusters.

In view of the fact that over-time clustering might be used for outlier detec-
tion, this treatment of outliers is reasoned. In this case, the algorithm should not
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be forced to assign every data object to a cluster. Nevertheless, the treatment of
outliers may be extended in future work. One way to penalize noise would be,
to replace k, in the subsequence score with k. This would cause, that outliers
would get the worst score of 0, as the timestamps would not be skipped.

Remark 3 (Merge & Split of Clusters). Considering the subsequence score, a
merge of clusters has no negative impact on the score. On the contrary: if two
clusters fuse entirely, the score is actually very good, since all objects move with
all their cluster members. This circumstance is intended, as the focus is primarily
on the cohesion of time series. As long as a group of time series remains together,
it is not negative if more are joining.

If a split happens, however, the subsequence score decreases. This is also
wanted, as a split indicates that time series that have formed a group at one
point in time no longer hold together. This fact contradicts the desired cohesion
and will be penalized in any case. If smaller clusters have previously been merged
and then separated again in the same way as before, this has no great influence
on the score over time, though.

Remark 4 (Additional Remark). A small sample size not only influences the sta-
bility when considering constant data points [3], but also leads to a high sensitiv-
ity to transitions between clusters when examining the over-time stability. The
more data points are considered, the easier it is to give a meaningful statement
about the (over-time) stability.

5 Experiments

To the best of our knowledge there are no comparable measures presented in
literature. This is why we decided to make experiments to demonstrate the
results of our measure. We show the transferability of our method to reality by
performing two experiments on real data. Additionally, we present the results
on two artificially generated data sets, that satisfy the necessary assumptions
for the meaningful use of CLOSE, to show the impact of the over-time stability.
For all experiments MSE was chosen as the cluster quality measure.
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Fig. 3: Achieved CLOSE scores for minPts € [2,4] depending on € on the EIKON
Financial data set.

17



year = 2008 year = 2009 year = 2010

1.0 SNX
KR
m KR
8 L) L
= 05 I L Lt
st C BBx PEDX LWPEDX
. - R E e
0.0 = =
year = 2011 year = 2012 year = 2013
10 SNX
KBnx KBnx .
2 TIEN AR X
=05 LERY LEAL y
o]
0.0
0.0 0.5 10 0.0 0.5 10 0.0 0.5 10

ttlplanExpectedReturn ttlplanExpectedReturn ttlplanExpectedReturn

Fig. 4: Detected clusters by DBSCAN with minPts = 2 and ¢ = 0.11 on the
EIKON Financial data set. Red data points represent outliers.

5.1 EIKON Financial Data Set

The first data set is extracted from EIKON [21] which is a commercial set
of software products released by Refinitiv (formerly Thomson Reuters Finan-
cial & Risk). It includes a database with financial information of thousands
of companies. For the ease of visibility we chose two random features of fifty
random companies. The features we chose are the net sales and the total plan
expected return, which are figures taken from the balance sheet of the com-
panies. Thomson Reuters named the according fields TR-NetSales and TR-
TtlPlanEzpectedReturn, respectively. The first feature represents the sales re-
ceipts for products and services without cash discounts, trade discounts, excise
tax, sales returns and allowance. The second feature represents the total amount
of expected return on all of a company’s pension and post-retirement plans. We
normalized the data through dividing the features by the total assets. This is
a common approach in economics. The coefficient of correlation of these two
features regarding our subset is 0.210. One time series represents the described
features of one company over time.

In order to evaluate the CLOSE score on this data set we used the clus-
tering algorithm DBSCAN ([8] and applied a grid search with three different
minPts (2,3,4) in the epsilon interval [0.05,0.25]. In Figure 3 it can be seen, that
minPts = 2 reached the maximal CLOSE score of 0.59 at ¢ = 0.11. Clusterings
with minPts = 3 and minPts = 4 reached lower scores at higher epsilons. This
is an expected behavior, since a higher minPts would require a higher € in order
to create a cluster in this data set. A higher € leads to a higher mse, which has
a negative effect on the CLOSE score.
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The resulting clustering is illustrated in Figure 4 and shows a very stable
clustering. Especially notable is the subsequence from 2008 to 2012, which shows
only minor variations.

5.2 GlobalEconomy Data Set

The second dataset is obtained from www.theglobaleconomy.com [1], which is a
website that provides economic data for different countries. For this experiment
we randomly selected two features, namely the " Unemployment Rate” and the
”Public spending on education, percent of GDP”. In order to make the chart
clearer, we removed some countries and reduced it to the years from 2010 to
2013. Further we applied a min-max normalization.

In this experiment, we want to illustrate the differences of a clustering which
received a good score and another clustering which received a worse one. There-
fore we clustered the dataset with seeded KMeans and different k.

In Figure 5 it can be seen, that the clustering with k£ = 8 received a CLOSE
score of 0.67, which represents the best score. The clustering itself can be seen
in Figure 6. In order to compare this clustering to another with a lower score
Figure 6 also holds the clustering result for k = 3.

In direct comparison the first differences that stand out are the cluster sizes.
The clusters received with k£ = 8 are smaller than those of £k = 3. This alone is
no surprise but it leads to a smaller M SE and thus to a lower negative influence
on the CLOSE score. In numbers, the average M SFE for k = 8 is 0.0036. For
k = 3 it is 0.0289. The second not so obvious observation is the average cluster
stability. While the clustering with k& = 3 has an average stability of 0.56, the
agglomerations found with & = 8 got an average stability of 0.68. One example
which leads to a higher stability is the behavior of the object BRB and its
neighborhood. In the clustering with the highest CLOSE score, BRB has the
same cluster neighbors in the first and the last year. In addition it is alone in
a cluster in 2012, which means it moved with 50% of its neighbors from 2010.
This is not the case in the clustering which was found with & = 3. In fact in the
clustering with £k = 3, BRB is never in a cluster with the same cluster members

1.0

— close
quality
stability

12 3 4 5 6 7 8 9 10

Fig.5: Achieved scores for different k& on the GlobalEconomy data set.
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Fig. 6: KMeans Clusters with £k = 8 and & = 3 on the GlobalEconomy data set.
The datapoints contain ISO Countrycodes.

over two years. Another observation in the clustering with k£ = 3 is, that data
points which change their cluster neighbors over time often move with a low
number of other data points.

5.3 Artificially Generated Data Set

To show what a good clustering and the associated CLOSE score may look
like, we generated two artificial data sets. In both cases, at first three random
centroids with two features € [0, 1] were chosen. Then 20, 15 and 10 time series
were placed next to these centroids, respectively. This means that the data points

1.0 e B— p—— 1.0
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L
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4 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7T 8 9 10
k k
(a) Data Set A (b) Data Set B

Fig. 7: Achieved CLOSE scores, average quality and average ot_stability for the
two generated data sets depending on k. The quality line is given by 1 - MSE.
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Fig. 8: Detected clusters by KMeans on the two artificially generated data sets.

of a time series for each time point were set with a maximal distance of 0.1 per
dimension to the assigned centroid. Subsequently, data points for 3 time series
(namely 46, 47 and 48) with random transitions between two of the three clusters
were placed in the feature space. For overview purposes a total of 4 time points
and 48 time series were examined. In Figure 8 the resulted data sets can be seen.
Data set A contains transitions between the two lower clusters. In data set B
there are transitions between the two upper clusters.

The clustering was performed with KMeans [17] for 1 < k < 10. Figure
7 shows the achieved CLOSE scores, average quality and average ot_stability
depending on k, whereby the quality line is given by 1 - MSE. While for data
set A the best k is in accordance to the chosen centroids three, for data set
B k = 2 is preferable. The corresponding clustering results are illustrated in
Figure 8. The outcomes show that the best results regarding the CLOSE score
may deviate from those of normal clustering if a fusion/split of clusters can
increase the over-time stability without causing significant quality loss. As in
data set B the clusters with bouncing time series are located close together, a
merge of the two clusters is beneficial: the quality is only slightly affected, while
the stability is significantly increased.

6 Discussion

Clustering time series is a challenging task. Besides the methodology, the user
needs to choose parameters, which all lead to different results. Improving the
results by adapting the parameters is often only possible with the help of a
specialist. In this paper we provide a systematic approach for the determination
of parameters in order to reach a given target. This enables users not only to
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compare different clusterings, but also to choose a method and parameters suited
for the data set without further knowledge.

Further more our work enables the user to use an arbitrary cluster algorithm
and distance function, without further adaptation. If considering uniformly pop-
ulated convex data groups, measures such as the mean squared error (MSE) or
mean absolute error (MAE), and distance- or partition-based clustering algo-
rithms such as KMeans are suitable. If the data set contains groups whose mem-
bers are not approximately normally distributed, density-based measures such as
the local outlier factor (LOF) and clustering algorithms such as DBSCAN might
be more appropriate. Additionally, the formula of CLOSE (7) can be modified,
so that quality measures for clusterings instead of clusters can be used. In that
case, the average cluster stability avg_stab for every clustering (;, at time ¢; can
be considered:

CLOSE(() = NLC (17 (NLC)Q) : ( Z avg-stab((t,) - (1fquality((:ti))). (8)
Ct; C¢C

We are aware, that the presented method is computationally intensive but
we are confident to enhance the approach in the future. Moreover, this is only a
small drawback in view of the fact, that the complex manual search, which itself
is very time-consuming anyway, gets simplified and guided.

7 Conclusion and Future Work

The presented method can be divided into two major parts: First the rating
of time series and their subsequences, and second the evaluation of over-time
clusterings. In this paper we focused on the latter. Therefore we presented a
robust method which is able to rate over-time clusterings regarding a temporal
linkage. This enables the comparison of different clusterings and their bond in
time. We have performed several experiments and explained the influence of the
major factors. The results show that our method is able to measure the over-
time stability accurately for over-time clusterings of multiple multivariate time
series. With the help of the presented measure, stable clusters are found. Due
to the consideration of the quality, however, no unintuitive clusters are forced in
favor of stability.

Based on CLOSE, much further research can be done. Apart from investi-
gating different quality measures for clusterings, the treatment of outliers can
be contextually adapted and analyzed. One way to penalize noise would be, to
replace k, in the subsequence score (3) with k. This would cause, that outliers
would get the worst score of 0, as the timestamps would not be skipped. Besides,
an intelligent initialization of the reference timestamp could be developed. In-
stead of examining the behavior with respect to the first point in time, e.g. the
time with the highest clustering quality could be chosen. Furthermore, CLOSE
can be used to detect anomalous subsequences using the subsequence score [25].

The presented measure could also be used in streaming environments. For
example, it could indicate a significant change of data composition. Social media
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could be an interesting field of application, too. The subsequence score of Insta-
gram followers could e.g. be an indicator for their probability of remaining as a
follower. In addition, the combination of CLOSE with contextual clustering [11]
might lead to deeper insights about the resulting cluster compositions. Another
interesting aspect would be the development of an over-time clustering algorithm
using CLOSE as objective function. This would make the time-consuming search
for optimal parameters per time point disappear.
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Fuzzy logic is a mathematical concept that, unlike Boolean logic, works with de-
grees of state |9]. In the field of clustering, this can be a useful methodology, especially
when working with noisy data. In such cases, fuzzy clustering algorithms often perform
better than their crisp counterparts [37]. This is can encountered in image data where
clusters tend to overlap [4], for example. In this context time series can be extracted
and clustered from the images in videos. A corresponding application would have many
advantages over crisp approaches, as noise can be filtered out easier. The identifica-
tion of noise can potentially be improved by including a temporal context. Previous
work has shown, that reference images were used to eliminate noise from videos [12].
Recalculating this reference image depending on the clustering at a certain timestamp
could further improve this work.

Probably the best-known fuzzy clustering is the Fuzzy C-Means [8| algorithm, which
is often regarded as a fuzzy variation of the K-Means [42] algorithm. However, this
method and many other fuzzy clustering algorithms such as |24, 19] are usually not
adapted to time-dependent data. If clustering time series, it is therefore necessary
to evaluate the resulting agglomerations in order to be able to make a decision on a
specific clustering. For this reason, we have developed the Fuzzy Clustering Stability
Evaluation of Time Series (FCSETS) and presented it in the referenced paper [R3].

The procedure is the fuzzy counterpart to the Cluster Over-Time Stability Eval-
uatton and is based on already existing concepts such as the Hiillermeier-Rifqi Index
[32]. It originally was developed for the comparison of fuzzy partitions and represents
the basis for the calculation of over-time stability.

The method presented in [R3| is just as fundamental as CLOSE and serves as
a basis for further applications. Similar to the previous section, here we focus on
the illustration of the parameter determination in order to obtain a stable over-time
clustering. In the further course of this dissertation, we present some applications such
as outlier detection. Although the principles of the implementation are geared towards
CLOSE, the considerations made can also be easily transferred to FCSETS.
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Fuzzy Clustering Stability Evaluation
of Time Series
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Heinrich Heine University, Universitatsstr. 1, 40225 Dsseldorf, Germany
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Abstract. The discovery of knowledge by analyzing time series is an
important field of research. In this paper we investigate multiple multi-
variate time series, because we assume a higher information value than
regarding only one time series at a time. There are several approaches
which make use of the granger causality or the cross correlation in order
to analyze the influence of time series on each other. In this paper
we extend the idea of mutual influence and present FCSETS (Fuzzy
Clustering Stability Evaluation of Time Series), a new approach which
makes use of the membership degree produced by the fuzzy c-means
(FCM) algorithm. We first cluster time series per timestamp and then
compare the relative assignment agreement (introduced by Eyke Hler-
meier and Maria Rifqi) of all subsequences. This leads us to a stability
score for every time series which itself can be used to evaluate single
time series in the data set. It is then used to rate the stability of the
entire clustering. The stability score of a time series is higher the more
the time series sticks to its peers over time. This not only reveals a new
idea of mutual time series impact but also enables the identification of
an optimal amount of clusters per timestamp. We applied our model on
different data, such as financial, country related economy and generated
data, and present the results.

Keywords: Time series analysis + Fuzzy clustering - Evaluation

1 Introduction

The analysis of sequential data — so called time series (T'S) — is an important
field of data mining and already well researched. There are many different tasks,
but the identification of similarities and outliers are probably among the most
important ones. Clustering algorithms try to solve exactly these problems. There
are various approaches for extracting information from time series data with the
help of clustering. While some methods deal with parts of time series, so called
subsequences [2], others consider the whole sequence at once [9,28], or transform
them to feature sets first [17,34]. In some applications clusters may overlap, so
that membership grades are needed, which enable data points to belong to more
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Fig. 1. Example for an over-time clustering of univariate time series [32]. The blue
clusters are more stable over time than the red ones.

than one cluster to different degrees. These methods fall into the field of fuzzy
clustering and they are used in time series analysis as well [24].

However, in some cases the exact course of time series is not relevant but
rather the detection of groups of time series that follow the same trend. Addi-
tionally, time-dependent information can be meaningful for the identification of
patterns or anomalies. For this purpose it is necessary to cluster the time series
data per time point, as the comparison of whole (sub-)sequences at once leads
to a loss of information. For example, in case of the euclidean distance the mean
distance over all time points is considered. In case of Dynamic Time Warping
(DTW) the smallest distance is relevant. The information at one timestamp has
therefore barely an impact. The approach of clustering time series per time point
enables an advanced analysis of their temporal correlation, since the behavior of
sequences to their cluster peers can be examined. In the following this procedure
will be called over-time clustering. An example is shown in Fig. 1. Note, that for
simplicity reasons only univariate time series are illustrated. However, over-time
clustering is especially valuable for multivariate time series analysis.

Unfortunately new problems like the right choice of parameters arise. Often
the comparison of clusterings with different parameter settings is difficult since
there is no evaluation function which distinguishes the quality of clusterings
properly. In addition, some methods, such as outlier detection, require good
clustering as a basis, whereby the quality can contextually be equated with the
stability of the clusters.

In this paper, we focus on multiple multivariate time series with same length
and equivalent time steps. We introduce an evaluation measure named FCSETS
(Fuzzy Clustering Stability Evaluation of Time Series) for the over-time sta-
bility of a fuzzy clustering per time point. For this purpose our approach rates
the over-time stability of all sequences considering their cluster memberships.
To the best of our knowledge this is the first approach that enables the sta-
bility evaluation of clusterings and sequences regarding the temporal linkage of
clusters.

Over-time clustering can be helpful in many applications. For example, the
development of relationships between different terms can be examined when
tracking topics in online forums. Another application example is the analysis
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of financial data. The over-time clustering of different companies’ financial data
can be helpful regarding the detection of anomalies or even fraud. If the courses
of different companies’ financial data can be divided into groups, e.g. regarding
their success, the investigation of clusters and their members’ transitions might
be a fundamental step for further analysis. As probably not all fraud cases are
known (some may remain uncovered) this problem cannot be solved with fully
supervised learning.

The stability evaluation of temporal clusterings offers a great benefit as it
not only enables the identification of suitable hyper-parameters for different
algorithms but also ensures a reliable clustering as a basis for further analysis.

2 Related Work

In the field of time series analysis, different techniques for clustering time series
data were proposed. However, to the best of our knowledge, there does not
exist any approach similar to ours. The approaches described in [8,19,28] clus-
ter entire sequences of multiple time series. This procedure is not well suited
for our context because potential correlations between subsequences of different
time series are not revealed. Additionally, the exact course of the time series is
not relevant, but rather the trend they show. The problem of not recognizing
interrelated subsequences also persists in a popular method where the entire
sequences are first transformed to feature vectors and then clustered [17]. Meth-
ods for clustering streaming data like the ones proposed in [14] and [25] are not
comparable to our method because they consider only one time series at a time
and deal with other problems such as high memory requirements and time com-
plexity. Another area related to our work is community detection in dynamic
networks. While approaches presented in [12,13,26,36] aim to detect and track
local communities in graphs over time, the goal of our method is finding a stable
partitioning of time series over the entire period so that time series following the
same trend are assigned to the same cluster.

In this section, first we briefly describe the fuzzy c-means clustering algorithm
that we use for clustering time series objects at different time points. Then, we
refer on the one hand to related work with regard to time-independent evaluation
measures for clusterings. Finally, we describe a resampling approach for cluster
validation and a fuzzy variant of the Rand index that we use in our method.

2.1 Fuzzy C-Means (FCM)

Fuzzy c-means (FCM) [4,7] is a partitioning clustering algorithm that is con-
sidered as a fuzzy generalization of the hard k-means algorithm [22,23]. FCM
partitions an unlabeled data set X = {x1,...,2,} into ¢ clusters represented by
their prototypes V' = {vy,...,v.}. Unlike k-means that assigns each data point
to exactly one cluster, FCM assigns data points to clusters with membership
degrees u;, € [0,1], 1 < i < ¢, 1 < k < n. FCM is a probabilistic clustering
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algorithm which means that its partition matrix U = [u;;] must satisfy two
conditions given in (1).

uip, =1 Vk € {1, ...,n},
i (1)
Zuik >0 Vied{l, .. c}
k=1

Since we focus on partition matrices produced by arbitrary fuzzy clustering
algorithms, we skip further details of FCM and refer to the literature [4].

2.2 Internal Evaluation Measures

Many different external and internal evaluation measures for evaluating clusters
and clusterings were proposed in the literature. In the case of the external eval-
uation, the clustering results are compared with a ground truth which is already
known. In the internal evaluation, no information about the actual partitioning
of the data set is known, so that the clusters are often evaluated primarily on
the basis of characteristics such as compactness and separation.

One metric that evaluates the compactness of clusters is the Sum of Squared
Errors. It calculates the overall distance between the data points and the clus-
ter prototype. In the case of fuzzy clustering, these distances are additionally
weighted by the membership degrees. The better the data objects are assigned to
clusters, the smaller the error, the greater the compactness. However, this mea-
sure does not explicitly take the separation of different clusters into account.

There are dozens of fuzzy cluster validity indices that evaluate the compact-
ness as well as the separation of different clusters in the partitioning. Some valid-
ity measures use only membership degrees [20,21], other include the distances
between the data points and cluster prototypes [3,5,11,35]. All these measures
cannot be directly compared to our method because they lack a temporal aspect.
However, they can be applied in FCSETS for producing an initial partitioning
of a data set for different time points.

2.3 Stability Evaluation

The idea of the resampling approach for cluster validation described in [30] is
that the choice of parameters for a clustering algorithm is optimal when dif-
ferent partitionings produced for these parameter settings are most similar to
each other. The unsupervised cluster stability value s(c), cmin < ¢ < Cmaq, that
is used in this approach is calculated as average pairwise distance between m
partitionings:

mil " d(Ucia ch)
=1 g=itl
s(c) = mom—1)/2 (2)
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where U.; and Ugj, 1 <1 < j < m, are two partitionings produced for ¢ clusters
and d(U.;,U,;) is an appropriate similarity index of partitionings. Our stability
measure is similar to the unsupervised cluster stability value but it includes the
temporal dependencies of clusterings.

Since we deal with fuzzy partitionings, in our approach we use a modified
version of the Hérmeier-Rifqi Index [18]. There are other similarity indices
for comparing fuzzy partitions like Campello’s Fuzzy Rand Index [6] or Frigui
Fuzzy Rand Indez [10] but they are not reflexive.

The Hérmeier-Rifqi Index (HRI) is based on the Rand Index [29] that
measures the similarity between two hard partitions. The Rand index between
two hard partitions U.«, and ngn of a data set X is calculated as the ratio
of all concordant pairs of data points to all pairs of data points in X. A data
pair (z,x;), 1 < k,j < n is concordant if either the data points x; and x;
are assigned to the same cluster in both partitions U and U, or they are in
different clusters in U and U. Since fuzzy partitions allow a partial assignment
of data points to clusters, in [18], the authors proposed an equivalence relation
Ey(zg,z;) on X for the calculation of the assignment agreement of two data
points to clusters in a partition:

1 C

By(zk,zj) =1—5  |uik — ugl. (3)
i=1

Using the equivalence relation Ey(zy,x;) given in Formula (3), the Hlermeier-

Rifqi index is defined as a normalized degree of concordance between two parti-

tions U and U:

HRI(U,U) =1 — |Ey(wk, 25) — Eg (2K, 2;)]. (4)

n(n—1) k=1j=k+1

In [31], Runkler has proposed the Subset Similarity Index (SSI) which is
more efficient than the Hlermeier-Rifqi Index. The efficiency gain of the Sub-
set Similarity Index is achieved by calculating the similarity between cluster
pairs instead of the assignment agreement of data point pairs. We do not use
it in our approach because we evaluate the stability of a clustering over time
regarding the team spirit of time series. Therefore, in our opinion, the degree of
the assignment agreement between time series pairs to clusters at different time
stamps contributes more to the stability score of a clustering than the similarity
between cluster pairs.

3 Fundamentals

In this chapter we clarify our understanding of some basic concepts regarding
our approach. For this purpose we supplement the definitions from [32]. Our
method considers multivariate time series, so instead of a definition with real
values we use the following definition.
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Fig. 2. lllustration of transitions of time series Ty, .., Te between clusters over time [32].

Definition 1 (Time Series). A time series T = o04,...,0¢, is an ordered
set of n real valued data points of arbitrary dimension. The data points are
chronologically ordered by their time of recording, with t1 and t, indicating the
first and last timestamp, respectively.

Definition 2 (Data Set). A data set D =1T1,...,T,, is a set of m time series
of same length n and equal points in time.

The vectors of all time series are denoted as the set O = {0, 1, ..., 01, m }. With
the second index indicating the time series the data point originates from. We
write Oy, for all data points at a certain point in time.

Definition 3 (Cluster). A cluster Cy, ; C Oy, at time t;, with j € {1,..., ks, }
with k¢, being the number of clusters at time t;, s a set of similar data points,
identified by a cluster algorithm.

Definition 4 (Fuzzy Cluster Membership). The membership degree
uc, ;(o;1) € [0,1] expresses the relative degree of belonging of the data object
ot,,1 of time series I} to cluster Ct, ; at time t;.

Definition 5 (Fuzzy Time Clustering). A fuzzy time clustering is the result
of a fuzzy clustering algorithm at one timestamp. In concrete it is the membership
matriz Uy, = [uc,, ; (0, 1)]-

Definition 6 (Fuzzy Clustering). A fuzzy clustering of time series is the
overall result of a fuzzy clustering algorithm for all timestamps. In concrete it is
the ordered set ¢ = Uy, ,...,Uy, of all membership matrices.

n

4 Method

An obvious disadvantage of creating clusters for every timestamp is the missing
temporal link. In our approach we assume that clusterings with different param-
eter settings show differences in the connectedness of clusters and that this con-
nection can be measured. In order to do so, we make use of a stability function.
Given a fuzzy clustering ¢, we first analyze the behavior of every subsequence of
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a time series T' = oy, , ..., 0¢,, with t; < ¢, starting at the first timestamp. In this
way we rate a temporal linkage of time series to each other. Time series that are
clustered together at all time stamps, have a high temporal linkage, while time
series which often separate from their clusters’ peers, indicate a low temporal
linkage. One could say we rate the team spirit of the individual time series and
therefore their cohesion with other sequences over time. In the example shown
in Fig. 2, the time series T, and T} show a good team spirit because they move
together over the entire period of time. In contrast, the time series T, and T}
show a lower temporal linkage. While they are clustered together at time points
t; and t, they are assigned to different clusters in between at time point ¢;.
After the evaluation of the individual sequences, we assign a score to the fuzzy
clustering (, depending on the over-time stability of every time series.

Let Uy, be a fuzzy partitioning of the data objects O, of all times series in
k., clusters at time ¢;. Similar to the equivalence relation in Hlermeier-Rifqi
Index, we compute the relative assignment agreement of the data objects oy, ;
and o, s of two time series 77 and T, 1 <[, s < m to all clusters in partitioning
U;, at time ¢; as follows

ki,
1 (2

By, (0t,1,04,5) = 1= 5 2 uc,, ;(01:,1) = uc,, ;(0n,5)] ()
]:

Having the relative assignment agreement of time series at timestamps t; and
tr, t1 < t; < t, <t,, we calculate the difference between the relative assign-
ment agreements of time series 1; and T by subtracting the relative assignment
agreement values:

Dti,tr(Tl’TS) = |EUtl- (Oti7l’ Otms) - EUtr (Ot’r‘yl70tr75)|' (6)

We calculate the stability of a time series 17, 1 <[ < m, over all timestamps as
an averaged weighted difference between the relative assignment agreements to
all other time series as follows:

m

9 n—1 n EUti (Oti,lyoti,s)thi,tT (EaTS)Q
stability(T;) = 1 — 0 Z s=1 — . (7
n(n N ) i=1 r=i+1 Z EUti (0“7[, Oti,s)m
s=1

In Formula (7) we weight the difference between the assignment agreements
Dy, +,. (17, Ts) by the assignment agreement between pairs of time series at the
earlier time point because we want to damp the large differences for stable time
series caused by supervention of new peers. On the other hand we aim to penalize
the time series that leave their cluster peers while changing cluster membership
at a later time point.

Finally, we rate the over-time stability of a clustering ¢ as the averaged
stability of all time series in the data set:

m

FOSETS(C) = % stability(T)). (8)
=1
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As we already stated, the over-time stability of the entire clustering depends on
the stability of all time series regarding staying together in a cluster with times
series, that follow the same trend.

5 Experiments

In the following, we present the results on an artificially generated data set,
that demonstrates a meaningful usage of our measure and shows the impact of
the stability evaluation. Additionally, we discuss experiments on two real world
data sets. One consists of financial figures from balance sheets and the other one
contains country related economy data. In all cases fuzzy c-means was used with
different parameter combinations for the number of clusters per time point.

5.1 Artificially Generated Data Set

In order to show the effects of a rating based on our stability measure, we
generated an artificial data set with time series that move between two separated
groups. Therefore, at first, three random centroids with two features € [0, 1]
were placed for time point 1. These centroids were randomly shifted for the next
timestamps whereby the maximal distance of a centroid at two consecutive time
points could not exceed 0.05 per dimension. Afterwards 3, 4 and 5 time series
were assigned to these centroids, respectively. This means that the data points of
a time series for each time point were placed next to the assigned centroid with
a maximal distance of 0.1 per feature. Subsequently, sequences with random
transitions between two of the three clusters were inserted. Therefore 3 time
series (namely 1, 2 and 3) were generated, that were randomly assigned to one
of the two clusters at every time point. All together, a total of 4 time points and
15 time series were examined.

time = 1 time — 2 time = 3 time — 4
1.0 46
8 5 2
[a\] 4 5 7 79- i
© : 6
505 g 4% . 10? = 18 8 Mol
< "2 8 3 3
> 7 1134 1218
a 0.0 11%211 125 1331414 -
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
featurel featurel featurel featurel

Fig. 3. Result of the most stable clustering on the artificially generated data set. (Color
figure online)

To find the best stability score for the data set, FCM was used with vari-
ous settings for the number of clusters per time point. All combinations with
ki, € [2,5] were investigated. Figure 3 shows the resulting fuzzy clustering with
the highest FCSETS score of 0.995. For illustration reasons the clustering was
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Table 1. Stability scores for the generated data set depending on k,.

ki, | ki, | kty | ke, | FCSETS score
2 12 |2 |2 ]0.995

2 13 |2 |2 ]0951

2 |3 3 |2 ]0.876

2 |3 |3 |3 |0.829

3 13 12 2 10967

3 /3 /3 /3 |09

2 /3 |4 |5 |0.71

5 |3 4 |2 ]0.908

3 |10 |3 |10 |0.577

defuzzyfied. Although it might seem intuitive to use a partitioning with three
clusters at time points 1 and 2, regarding the over-time stability it is beneficial
to choose only two clusters. This can be explained by the fact that there are time
series that move between the two apparent groups of the upper (blue) cluster.
The stability is therefore higher when these two groups are clustered together.

In Tablel a part of the corresponding scores for the different parameter
settings of k;, are listed. As shown in Fig. 3, the best score is achieved with k;,
being set to 2 for all time points. The worst score results with the setting k;, = 2,
ki, =3, ki, =4 and k¢, = 5. The score is not only decreased because the upper
(blue) cluster is divided in this case, but also because the number of clusters
varies and therefore sequences get separated from their peers. It is obvious that
the stability score is negatively affected, if the number of clusters significantly
changes over time. This influence is also expressed by the score of 0.577 for the
extreme example in the last row.

5.2 EIKON Financial Data Set

The first data set was released by Refinitiv (formerly Thomson Reuters Financial
& Risk) and is called EIKON. The database contains structured financial data of
thousands of companies for more than the past 20 years. For the ease of demon-
stration two features and 23 companies were chosen randomly for the experiment.
The selected features are named as T'R-NetSales and TR-TtlPlanEzrpected Return
by Thomson Reuters and correspond to the net sales and the total plan expected
return, which are figures taken from the balance sheet of the companies. Since it
is a common procedure in economics, we divided the features by the company’s
total assets and normalized them afterwards with a min-max-normalization.
We generated the clusterings for all combinations of k;, from two to five clus-
ters per timestamp. Selected results can be seen in Table 2. The actual maximum
retrieved from the iterations (in the third row) is printed bold. The worst score
can be found in the last row and represents an unstable clustering. It can be seen
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Table 2. Stability scores for the EIKON financial data set depending on k;,.

ki, | kiy | ktg | Kty | kts | ktg | ki, | ktg | FCSETS score
2 /2 12 |2 |2 |2 |2 |2 /0929

3 /3 /3 3 /3 |3 |3 |3 09

3 /2 12 |2 |2 |2 |2 |2 /0.945

5 (4 |13 |2 |2 |2 |2 |2 (0924

2 /2 14 |3 |2 |4 |5 |5 /0.72

that the underlying data is well separated into three clusters in the first point in
time and into two clusters at the following timestamps. This is actually a rare
case but can be explained with the selection of features and companies. Actually
TR-TtIPlanEzxpected Return is rarely provided by Thomson Reuters and the fact
that we only chose companies which got complete data for all regarded points
in time. This may have diminished the number of companies which might have
lower membership degrees.

5.3 GlobalEconomy Data Set

The next data set originates from www.theglobaleconomy.com [1], which is a
website that provides economic data of the past years for different countries.
Again, two features were selected randomly for this experiment and were nor-
malized with a min-max-normalization. Namely the features are the “Unem-
ployment Rate” and the “Public spending on education, percent of GDP”. For
illustration reasons, we considered only a part of the countries (28) for the years
from 2010 to 2017.

Table 3. Stability scores for the GlobalEconomy data set depending on k¢, .

ki, | ko | Kty | Kty | Kes | kig | kty | ktg | FCSETS score
2 /2 12 |2 |2 |2 |2 |2 0978

3 /3 /3 3 |3 |3 |3 |3 0963

3 12 2 |2 |2 |2 |2 |2 |0945

5 |3 4 2 |2 |2 |2 |2 0955

2 /3 |2 2 |4 |5 |5 |5 0837

The results are shown in Table 3. It can be seen that the best score is achieved
with two clusters at every point in time. Evidently the chosen countries can be
well separated into two groups at every point in time. More clusters or different
numbers of clusters for different timestamps performed worse. In this experiment
we also iterated over all combinations of k;, for the given points in time. The
bold printed maximum, and the minimum, which can be found in the last row
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of the table, represent the actual maximum and minimum within the range of
the iterated combinations.

6 Conclusion and Future Work

In this paper we presented a new method for analyzing multiple multivariate time
series with the help of fuzzy clustering per timestamp. Our approach defines a
new target function for sequence-based clustering tasks, namely the stability of
sequences. In our experiments we have shown that this enables the identification
of optimal k; ;s per timestamp and that our measure can not only rate time
series and clusterings but also can be used to evaluate the stability of data sets.
The latter is possible by examining the maximum achieved FCSETS score. Our
approach can be applied whenever similar behavior for groups of time series can
be assumed. As it is based on membership degrees, clusterings with overlapping
clusters and soft transitions can be handled. With the help of our evaluation
measure a stable over-time clustering can be achieved, which can be used for
further analysis such as outlier detection.

Future work could include the development of a fuzzy clustering algorithm
which is based on our formulated target function. The temporal linkage could
therefore already be taken into account when determining groups of time series.
Another interesting field of research could be the examination of other fuzzy
clustering algorithms like the Possibilistic Fuzzy c-Means algorithm [27]. This
algorithm can also handle outliers which can be handy for certain data sets. In
the experiment with the GlobalEconomy data set we faced the problem, that one
outlier would form a cluster on its own in every point in time. This led to very
high FCSETS scores. The handling of outliers could overcome such misbehavior.
Future work should also include the application of our approach to incomplete
data, since appropriate fuzzy clustering approaches already exist [15,16,33]. We
have faced this problem when applying our algorithm to the EIKON financial
data set. Also, the identification of time series that show a good team spirit for
a specific time period could be useful in some applications and might therefore
be investigated. Finally, the examination and optimization of FCSETS’ compu-

tational complexity would be of great interest as it currently seems to be fairly
high.

Acknowledgement. We thank the Jrgen Manchot Foundation, which supported
this work by funding the Al research group Decision-making with the help of Artificial
Intelligence at Heinrich Heine University Dsseldorf.

References

1. Global economy, world economy. https://www.theglobaleconomy.com/

2. Banerjee, A., Ghosh, J.: Clickstream clustering using weighted longest common
subsequences. In: Proceedings of the Web Mining Workshop at the 1st STAM
Conference on Data Mining, pp. 33—40 (2001)

36



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Beringer, J., Hlermeier, E.: Adaptive optimization of the number of clusters in
fuzzy clustering. In: Proceedings of the IEEE International Conference on Fuzzy
Systems, pp. 1-6 (2007)

Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, Norwell (1981)

. Bouguessa, M., Wang, S., Sun, H.: An objective approach to cluster validation.

Pattern Recogn. Lett. 27, 1419-1430 (2006)

Campello, R.: A fuzzy extension of the rand index and other related indexes
for clustering and classification assessment. Pattern Recogn. Lett. 28(7), 833-841
(2007)

Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. J. Cybern. 3(3), 32-57 (1973)

Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering short time series gene expression
data. Bioinformatics 21(suppl-1), i159-i168 (2005)

Ferreira, L.N., Zhao, L.: Time series clustering via community detection in net-
works. Inf. Sci. 326, 227-242 (2016)

Frigui, H., Hwang, C., Rhee, F.C.H.: Clustering and aggregation of relational data
with applications to image database categorization. Pattern Recogn. 40(11), 3053—
3068 (2007)

Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for
the fuzzy c-mean method. In: Proceedings of the 5th Fuzzy Systems Symposium,
pp. 247-250 (1989)

Granell, C., Darst, R., Arenas, A., Fortunato, S., Gomez, S.: Benchmark model to
assess community structure in evolving networks. Phys. Rev. E 92, 012805 (2015)
Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities
in dynamic social networks. In: Proceedings - 2010 International Conference on
Advances in Social Network Analysis and Mining, ASONAM 2010, vol. 2010, pp.
176-183 (2010)

Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering
data streams: theory and practice. IEEE Trans. Knowl. Data Eng. 15(3), 515-528
(2003)

Hathaway, R., Bezdek, J.: Fuzzy c-means clustering of incomplete data. IEEE
Trans. Syst. Man Cybern. Part B (Cybern.) 31, 735-44 (2001)

Himmelspach, L., Conrad, S.: Fuzzy c-means clustering of incomplete data using
dimension-wise fuzzy variances of clusters. In: Carvalho, J.P., Lesot, M.-J., Kay-
mak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS,
vol. 610, pp. 699-710. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40596-4 58

Huang, X., Ye, Y., Xiong, L., Lau, R.Y., Jiang, N., Wang, S.: Time series k-means:
a new k-means type smooth subspace clustering for time series data. Inf. Sci. 367—
368, 1-13 (2016)

Hlermeier, E., Rifqi, M.: A fuzzy variant of the rand index for comparing clus-
tering structures. In: Proceedings of the Joint 2009 International Fuzzy Systems
Association World Congress and 2009 European Society of Fuzzy Logic and Tech-
nology Conference, pp. 1294-1298 (2009)

Izakian, H., Pedrycz, W., Jamal, I.: Fuzzy clustering of time series data using
dynamic time warping distance. Eng. Appl. Artif. Intell. 39, 235-244 (2015)
Kim, Y.I., Kim, D.W., Lee, D., Lee, K.: A cluster validation index for GK cluster
analysis based on relative degree of sharing. Inf. Sci. 168, 225-242 (2004)

37



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Le Capitaine, H., Frelicot, C.: A cluster-validity index combining an overlap mea-
sure and a separation measure based on fuzzy-aggregation operators. IEEE Trans.
Fuzzy Syst. 19, 580-588 (2011)

Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129-137 (1982)

MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281-297. University of California Press (1967)
Miler-Levet, C.S., Klawonn, F., Cho, K.-H., Wolkenhauer, O.: Fuzzy clustering
of short time-series and unevenly distributed sampling points. In: R. Berthold,
M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol.
2810, pp. 330-340. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45231-7 31

O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-
data algorithms for high-quality clustering. In: Proceedings of IEEE International
Conference on Data Engineering, p. 685 (2001)

Orlinski, M., Filer, N.: The rise and fall of spatio-temporal clusters in mobile ad
hoc networks. Ad Hoc Netw. 11(5), 1641-1654 (2013)

Pal, N., Pal, K., Keller, J., Bezdek, J.: A possibilistic fuzzy c-means clustering
algorithm. IEEE Trans. Fuzzy Syst. 13, 517-530 (2005)

Paparrizos, J., Gravano, L.: k-shape: efficient and accurate clustering of time series.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2015, pp. 1855-1870. ACM, New York (2015)

Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846-850 (1971)

Roth, V., Lange, T., Braun, M., Buhmann, J.: A resampling approach to cluster
validation. In: Hrdle, W., Riz, B. (eds.) COMPSTAT, pp. 123-128. Springer,
Heidelberg (2002). https://doi.org/10.1007/978-3-642-57489-4 13

Runkler, T.A.: Comparing partitions by subset similarities. In: Hlermeier, E.,
Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 29-38.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5 4
Tatusch, M., Klassen, G., Bravidor, M., Conrad, S.: Show me your friends and
i’ll tell you who you are. finding anomalous time series by conspicuous cluster
transitions. In: Le, T.D., et al. (eds.) AusDM 2019. CCIS, vol. 1127, pp. 91-103.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1699-3 8

Timm, H., Dring, C., Kruse, R.: Different approaches to fuzzy clustering of incom-
plete datasets. Int. J. Approx. Reason. 35, 239-249 (2004)

Truong, C.D., Anh, D.T.: A novel clustering-based method for time series motif
discovery under time warping measure. Int. J. Data Sci. Anal. 4(2), 113-126 (2017).
https://doi.org/10.1007/s41060-017-0060-3

Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern
Anal. Mach. Intell. 13(8), 841-847 (1991)

Zakrzewska, A., Bader, D.: A dynamic algorithm for local community detection
in graphs. In: 2015 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pp. 559-564 (2015)

38



2.3 The Coexistence of FCSETS and CLOSE

In the previous two sections, we presented two methods for evaluating time series
clusters. The aim of these methods is to evaluate existing clusterings and thus provide
information about their validity. The comparison of clusterings can also be used to
select a specific clustering algorithm or a parameter pair for it. Furthermore, these
approaches build the basis for a variety of new methods, some of which we will discuss
in the next chapter.

Similar to the coexistence of fuzzy and crisp clustering algorithms, we have also
decided to present two methods. This decision is based on a variety of reasons, which
are discussed in this chapter.

The exact course of a time series is (not) important.

The comparison of time series with the help of their cluster membership per time point,
as postulated by us, does not consider the exact course of a time series. However, this
statement does not apply without restrictions. In both, the crisp and the fuzzy case,
the course of a time series and the position of the time series within the cluster has
an effect on the evaluation result of both methods. However, this effect is weighted
differently in the evaluation process of the two methods.

In the case of CLOSE, especially those time series have an influence on the overall
result which are on the edge to other clusters over time. CLOSE would prefer a
clustering that takes these time series into account and assigns clusters with the same
composition at as many time points as possible. Although the influence is rather small,
especially with larger data sets, it is nevertheless present.

Stable time series at the edge of clusters have no relevant influence on the result of
the FCSETS evaluation. In such a case, the evaluation would not be subject to any
negative influence because the development of the degrees of membership is constant.
The situation is different with time series whose degrees of membership change signifi-
cantly. In this case, it is even irrelevant if the maximum degree of membership at each
time point is assigned to the cluster that would be best from the crisp point of view.

The choice of cluster centres thus has a greater influence in the fuzzy case than it
does in the crisp case.

The quality of the clusters is (not) considered.

In the case of CLOSE, we have decided to introduce a quality function for the evaluation
of the clusters per time point. This function is intended to ensure that the temporal
aspect does not get out of hand in the calculation of CLOSE and produce clusters that
have little or no significance in the time point itself. In FCSETS, we have dispensed
with the evaluation. The reason for this is the already mentioned evaluation of the
exact course of a time series, which corresponds to an indirect evaluation of a cluster
centre or a cluster.

It should also be noted that due to the introduction of cluster quality in CLOSE,
the calculation of the CLOSE score had to be solved via the over-time stability of
the clusters. The indirect analysis of cluster quality in FCSETS, however, allows the
calculation of the FCSETS score using the over-time stability of sequences only. For
this reason, FCSETS does not include a stability score for clusters.
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There are various ways to implement an over-time stability for clusters in FCSETS,
but it is not of primary importance for the evaluation of clusterings and has therefore
not been mentioned.

Is CLOSE (not) the crisp variant of FCSETS?

For the reasons mentioned above, a direct conversion of FCSETS into a crisp variant
is difficult. It can certainly be said that CLOSE is one possible variant of FCSETS,
but it is definitely not the only one. Both methods are adapted to the underlying
logic and therefore have their raison d’étre. Their complementary coexistence makes
sense, similar to the case of fuzzy and crisp clustering algorithms, and offers the user
a solution adapted to his application.
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APPLICATIONS

In the previous chapter, we introduced the over-time stability for time series, clusters
and clusterings. In this section we describe two applications that make use of these def-
initions. First, we describe three variants of outlier detection in time series databases.
The procedures are set up in such a way that partial sequences or entire time series
can be recognised as outliers. The identified outliers represent a new type of outliers
that has not been described before, as it is based on the clustering of time series.

In the papers referenced in this chapter [R1, R5, R8, R9| , we assume that the com-
position of the clusters to which a time series was assigned is decisive. If a time series
changes its cluster peers more frequently, it is interpreted as a conspicuous feature. We
refer to the migration of a time series into different clusters as the behaviour of time
series.

The three methods in Section 3.1, Section 3.2 and Section 3.3 for detecting outlier
sequences are all based on the idea of the behaviour of a time series, but they differ
in several respects. The procedure in Section 3.1 uses the asymmetric comparison of
clusters, while the procedure in Section 3.2 introduces a symmetric comparison using
the Jaccard index. We call the result of this comparison the proportion of time series
that occur together in two clusters from different points in time. In addition, we
introduce different comparison metrics, which are oriented either to the most stable
time series of a cluster or to the normal distribution. The procedure from section 3.3
shows a different approach based on the number of time series that have migrated
together.

In section 3.4 we present a procedure for clustering time series. Unlike the outlier
detection methods, the clustering in Section 3.4 is not based on the behaviour of time
series, instead we introduce the concept of time series adaptability, which is intended
to express how well a time series adapts to other time series.
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In this section we describe a first procedure for outlier detection. As noted earlier,
this procedure is based on the stability measure introduced with the Cluster QOwver-
Time Stability Evaluation.

As described in the previous chapter, a low over-time stability of a time series
indicates a frequent change of cluster peers. The comparison of the over-time stability
of time series provides a reference, which can be used in order to detect anomalous
sequences.

In the work referred to in this section [R5], we assume that the expected behaviour
of a time series is based on its previous behaviour. That means, if a time series is
grouped with certain peers in the past, we expect it to be grouped with the same peers
in the future, we refer to this as a normal behaviour. If a time series deviates from its
normal behaviour, we consider this time series to be an outlier. In [R5] we consider
the relation of a time series to the most stable time series of a given cluster. This time
series can also be called the leader of the group and sets a kind of standard for the
other time series in the respective cluster.

The title of the work refers to clusters whose time series are interpreted as friends.
The evaluation of these friends reveals further information about the over-time stability
of specific time series. The metaphor used includes the assumption that good friends
stick together over time, while a bad friend (e.g. outlier) changes his peers.

In the next sections, we also describe further ways of interpreting the over-time
stability of a time series in relation to other time series [R8, R9|. Our experiments in
|[R5] show the variety of possible applications and illustrate potential uses for real-world
data. An implementation for fuzzy clustering is relatively simple to realise. It only
requires the replacement of the subsequence score with the analogous definition from
the Fuzzy Clustering Stability Evaluation of Time Series, as described in Section 2.2.
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Abstract. The analysis of time series is an important field of research
in data mining. This includes different sub areas like trend analysis,
outlier detection, forecasting or simply the comparison of multiple time
series. Clustering is also an equally important and vast field in time series
analysis. Different clustering algorithms provide different analysis aspects
like the detection of classes or outliers. There are various approaches how
to apply cluster algorithms to time series. Previous work either extracted
subsequences or feature sets as an input for cluster algorithms. A rarely
used but important approach in clustering of time series is the grouping
of data points per point in time. Based on this technique we present
a method which analyses the transitions of time series between clusters
over time. We evaluate our approach on multiple multivariate time series
of different data sets. We discover conspicuous behaviors in relation to
groups of sequences and provide a robust outlier detection algorithm.

Keywords: Outlier detection - Time series analysis - Clustering

1 Introduction

Time series data is collected in various domains. Not only the behavior of users on
different platforms, but also the tracking of vehicles and objects or the recording
of financial or weather data can be displayed as time series. For further analysis,
the various data types can be converted into numerical (mostly discrete) values
so that sequences of numerical vectors are derived. These can then be processed
in a variety of ways. Information can be obtained through analyses such as
clustering, prediction or comparison of time series and different outlier detection
methods.

Depending on the context, different aspects can be relevant for the user. For
example, not all clustering algorithms consider the same types of clusters, and
outlier detection techniques do not always address the same types of outliers. In
some cases, very special solutions have to be found for specific problems, whereby
there are many algorithms that can be applied to a wide range of application
areas.

© Springer Nature Singapore Pte Ltd. 2019
T. D. Le et al. (Eds.): AusDM 2019, CCIS 1127, pp. 91-103, 2019.
https://doi.org/10.1007/978-981-15-1699-3_8
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Fig. 1. Example for a time series over-time clustering. The blue color indicates stable
clusters while red stands for instability. (Color figure online)

In this paper we focus on databases of multivariate time series with dis-
crete values, same length and equivalent time steps. We detect anomalous sub-
sequences with regard to groups of time series of the given database. Therefore
we cluster the multivariate data of all time series per timestamp and analyze the
stability of all subsequences over time. Thereby we call the resulting clustering
over-time clustering. In Fig. 1 an example for such a clustering is displayed. For
the sake of simplicity, only univariate time series are plotted. Since the data is
clustered independently at each point in time, there is at first no time-related
connection between the clusterings.

There are several proposals for clustering time series depending on the appli-
cation. Some methods cluster the time series of a database as a whole [10,12,19],
extract feature sets first [22], or consider subsequences of a single time series only
[3]. However, these are not suitable when it comes to detecting irregularities or
gathering information per time point.

Outlier detection in time series is in most cases not based on clustering.
Because of various underlying data such as single or multiple time series with
uni- or multivariate data points and different definitions of what an outlier is,
there are several approaches to their identification. Some papers consider data
points [1] or subsequences [15] that are anomalous with regard to a single time
series [5,17], such as peaks. Others look for so called change points [6,16], that
imply that the course of the considered time series significantly changes from
that point on. Yet others analyse data from several time series that are very
similar, such as sensor data, and detect irregularities in relation to the entire
data set [1,11,13]. Finding these abnormalities usually presupposes that either
the course of a single time series follows consistent patterns or that the courses
of several time series are highly correlated.

In this paper we assume that the exact course of the individual time series
is not important, but the trend which groups of sequences follow. By anomalies
we denote subsequences that deviate from one trend and therefore cannot be
assigned steadily to a group of sequences. In that case, we say that the sequence
possesses a weak stability. We present an algorithm that identifies such unstable
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sequences in a database of multivariate time series and is robust against missing
data points.

2 Related Work

Anomaly detection in time series is a wide field of research. It can be distin-
guished in the detection of outliers within a single time series and the detection
of outliers in multiple time series. Outliers in single time series are usually cat-
egorized in two classes:

Additive outliers, which represent surprisingly large or small values in a short
period. In case additive outliers occur consecutively they are often summarized
as additive outlier patches.

Innovational outliers are characterized by their impact on subsequent obser-
vations. Additionally the influence of innovational outliers can grow with time.

There are also several different categories of outliers, which can be described
as a mix of both main classes. For example, additive outliers which cause a move
of following observations to a new level are called level shift outliers and have
a permanent impact on the ongoing time series. In case the influence of the
level shift outlier is decreasing over time, it is called a transient change outlier.
Additive outliers, which occur periodically are named seasonal additive outliers.

Additive and innovational outliers are often identified with extensions of
autoregressive-moving-average (ARMA) models [2,18]. Other techniques include
the use of decomposition methods such as STL, a seasonal-trend decomposition
procedure based on LOESS [7]. Yet other methods evaluate derivatives of the
dynamic time warping (DTW) [20] similarity in order to detect anomalies.

The detection of outliers in multiple time series is handled differently. Meth-
ods of this kind are often using the peers of a time series to determine whether it
is anomalous or not. Beside other techniques, recent approaches use Probabilis-
tic Suffix Trees (PST) [21] and Random Block Coordinate Descents (RBCD)
[23] in order to detect outliers. However, while these approaches focus on the
deviation of one time series to the others, we focus on the behaviour of a time
series compared to its peers. More concretely, we assume that a time series which
has a similar development to a group of other time series over a subsequence is
expected to move on with the same group. Therefore we first cluster per point in
time and then analyse the transition of time series regarding these clusters. This
is realized by the analysis of cluster transitions of time series over time. Tran-
sitions of this kind are also analysed in cluster evolution methods. Landauer et
al. [14] makes use of such a method in order to calculate an anomaly score for a
single time series in a sliding window. In contrary to Landauer et al. we relate
to multiple time series. The analysis of the time series behavior not only reveals
new kinds of outliers but also detects different types of additive and innovational
outliers.

This approach is very different from clustering whole time series or their
subsequences, since the outlier detection would rely on the single fact whether
a sequence is assigned to a cluster or not. Such an approach would not take
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the cluster transitions of the time series into account, which can be an expres-
sive feature on its own. Hence, our approach detects anomalous subsequences,
although they would be assigned to a cluster in a subsequence clustering.

3 Fundamentals

In order to create a good basis of knowledge to avoid later misunderstandings,
we will provide some definitions which our work is based on. As these terms are
used in many different areas, it is useful to explain which interpretations are
considered in this paper.

Definition 1 (Time Series). A multivariate time seriesT = oy, ..., 0, is an
ordered set of n real valued data points of arbitrary dimension. The data points
are chronologically ordered by their time of recording, with t1 and t,, indicating
the first and the last timestamp, respectively.

Definition 2 (Data Set). A data set D =Ti,...,T,, is a set of m time series
of same length and equal points in time. The set of data points of all time series
at a timestamp t; is denoted as Oy, .

Definition 3 (Subsequence). A subsequence Ty t;0 = Oty ly- -0t 1 with j >
1 18 an ordered set of successive real valued data points beginning at time t; and
ending at t; from time series 1.

Definition 4 (Cluster). A cluster Cy, ; C Oy, at time t;, with j € {1,...,q}
being a unique identifier (e.g. counter), is a set of similar data points, identified
by a cluster algorithm or human. This means that all clusters have distinct labels
regardless of time.

Definition 5 (Cluster Member). A data point oy, ; at time t;, that is
assigned to a cluster Cy, ; is called a member of cluster Cy, ;.

Definition 6 (Noise). A data point o4, at time t; is considered as noise, if
it is not assigned to any cluster.

Definition 7 (Clustering). A clustering is the overall result of a clustering
algorithm or the set of all clusters annotated by a human for all timestamps. In
concrete it is the set { = {Cy, 1,...,C4, 4} of all q clusters.

In Fig.2 an example for the above definitions can be seen. The data points of
a data set containing five time series (T, Ty, T¢, T4, Te) are clustered for the
timestamps ¢;,t; and t,. For simplicity, all data points of a time series 7 are
denoted by the identifier [.

In ¢; the data points o, 4, 0¢, 1 of time series Ty, and T} are cluster members
of cluster Cy, ;. The data point oy, . is marked as noise, as it is not assigned to
any cluster in ¢;. In total, the shown clustering consists of five clusters. It can
be described by the set { = {Ct, 1, Ct, us Ct; 0, Ct; 1, Cty g }-
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Fig. 2. Example for the transitions of time series T,, ..., T. between clusters over time.

4 Method

After the clarification of important foundations, the basic idea of the algorithm
is described. Therefore further terms have to be explained before.

Let Cy, o and Cy, , be two clusters, with t;,t; € {t1,...t,}. First, we intro-
duce the term temporal cluster intersection for the purpose of measuring the
stability of a time series:

Ne{Chias Cr; 0 = {101 | 01,0 € Crya Nog; 0 € Cy o}

with I € {1,...,m}. The result is the set of time series that are assigned to both
of the clusters under consideration. This means all sequences that were grouped
together at time ¢; and ¢;. The transition of a time series from ¢; to t; can now be
described by the proportion of cluster members from the corresponding cluster
in ¢; who migrated together into the cluster in ¢;:

0 1f Cti,a = w
p(ct,;,av Ctj,b) - ‘Cti,athtj,bl

1«
Cr ] else

with ¢; < ¢;. In Fig. 2 an example for transitions of time series between clusters
is sketched. There, the proportion for C, ; and Ctj,v would be

(T.T) 2
Ci.1,Ch. )= ———————— =—-=1.0.
PGkt Cei) = 1o o]~ 2

This proportion can be used to measure the stability of a sequence with a sub-
sequence score. It is defined as

1=
subsequence_score(Ty, ;1) = 7 Zp(cid(otml), cid(oy; 1))

V=t

with [ € {1,...,m}, k € [1,j — i] being the number of timestamps between t;
and t; where the data point exists and cid, the cluster-identity function
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] if the data point is not assigned to any cluster

cid(o4, 1) = {

Ct.a else

returning the cluster which the data point has been assigned to in ¢;. The function
returns an empty set, either if the object is classified as noise or if it does not
exist at the considered time. Note, that the subsequence score is normalized to
[0,1] by k, as the proportion p is a percentage between 0 and 1, as well.

In the example of Fig.2, the score of time series T, between time points t;
and ¢ would be:

(1.0 +1.0) = 1.0.

N =

subsequence_score(Ty, 1, ) =

A notable characteristic is, that the score is always 0, if the last data point of the
considered subsequence is marked as noise. However, this circumstance does not
lead to any handicaps in most cases as all partial sequences of these subsequences
are treated normally. Nevertheless, the handling of sequences with an endpoint
that is labeled as noise will be analyzed in more detail later on.

For now describing the concrete procedure of detecting conspicuous
sequences, we first provide a vague definition of them:

Definition 8 (Anomalous Subsequence). A subsequence Ty, ;1 is called
anomalous, if it is significantly more unstable than its cluster members at time t;.

With the help of the subsequence score which measures the stability of a subse-
quence, anomalous ones can now be distinguished by comparing the stability of
grouped subsequences at a given time point. Every possible subsequence gets an
outlier score indicating the probability of being anomalous, by calculating the
deviation of its stability from the best subsequence score of its cluster. A formal
description of the best subsequence score can be given by:

best_score(t;, Cy; o) = max({subsequence_score(Ty, +;1) | cid(ot, 1) = Cy; a})
The outlier score of a subsequence is then calculated as follows:
outlier_score(Ty, 1,1) = best_score(t;, cid(o; 1)) — subsequence_score(Tt, ¢, 1)

As the best score lies between 0 and 1, an outlier score of 100% can only be
achieved in completely stable clusters. The smaller the best score of the consid-
ered cluster is, the smaller is the greatest possible outlier score.

Regarding the example in Fig. 2, the time series Ty would get the following
outlier_score between time points ¢; and tx:

outlier_score(Ty, +,.q4) = 1.0 — (0.5 - (0.5 4+ 1.0)) = 0.25

With the outlier score, now a more precise definition of an outlier can be given.
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Definition 9 (Outlier). Given a threshold T € [0,1], a subsequence Ty, +, 1 is
called an outlier, if its probability of being an outlier is greater than or equal T.
That means, if

outlier_score(Ty, +,1) > T

Although 7 is a constant, it can be interpreted as a dynamic threshold. That is,
because the greatest possible deviation from the best subsequence score — and
thus the greatest outlier score — depends on the best score of the considered
cluster. Clusters with low stability have a lower probability of containing an
outlier than stable ones, since all their cluster members show irregularities and
that represents a pattern of instability. In this context, the small subsequence
score is thus not conspicuous.

Intuitive outliers from the over-time clustering that were marked as noise get
a special treatment. Subsequences that consist entirely of noise data points are
automatically identified as outliers. Since subsequences whose last data point is
labeled as noise are not assigned to a cluster from which the best score can be
calculated, no outlier score can be determined for them. Therefore, they are not
included in the regular outlier calculation. In the following we will differentiate
between anomalous subsequences, intuitive outliers and noise.

Take another look at the case where the last element of an examined sub-
sequence Ty, 4,1 is marked as noise. Suppose the subsequence Ti, ;1,0 gets a
high outlier score and is detected as outlier. Then one would expect that the
subsequence under consideration T3, ;,,; would be identified as an outlier as well.
This will only be the case, if the previous data point was categorized as noise as
well and the sequence was therefore recognized as an intuitive outlier. However,
for the sequence T, +,; with k > j, which at the last time point ¢j is assigned
to a cluster again for the first time this would also be the case. Thus in the end
T}, ,+;1 would be covered.

Yet a marginal case is when a data point is labeled as noise at the last time
of the entire time series. In this scenario, a sequence with end time t,, would
never be detected as an outlier if it is not marked as noise in #,,_1.

Remark 1 (Stability). The stability is not only influenced significantly by a small
sample size when considering constant data points [4]. When examining the over-
time stability, a small sample size leads to high sensitivity to cluster transitions,
as well. As more data points are considered, the simpler it is to draw meaningful
conclusions about the stability.

5 Experiments

In order to evaluate the presented method, we performed several experiments
on different real world data. We also present two artificially generated data
sets which are used to illustrate the handling of some marginal cases. In order
to cluster the data per point in time, we used DBSCAN [9] with adapted
parameters.
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Fig. 3. Two dimensional experiment on the EIKON Financial Data Set with 7 = 0.6,
minPts = 2 and € = 0.15. The colors indicate cluster belongings, whereby grey objects
represent outliers. Circles are outliers by distance and boxes are intuitive outliers, as
well. Red color or font indicates noise. (Color figure online)

5.1 EIKON Financial Data Set

Eikon is a set of software products released by Refinitiv (formerly Thomson
Reuters Financial & Risk). It contains a database with financial data of thou-
sands of companies for the past decades. For illustration reasons we randomly
selected thirty companies and two features. The selected features are a figures
which were taken from the balance sheet of the company. In economics it is com-
mon to normalize these figures by the companies’ total assets in order to make
it comparable to other companies. Beside this, we normalized the features with
a min-max normalization. The clustering was done with DBSCAN and ¢ = 0.15,
minPts = 2 as parameters. The outlier detection parameter was chosen to be
7 = 0.6. In Fig.3 one can see the illustrated results. The presented technique
found two outlier subsequences. The first, which is labeled as GM is detected
from the year 2008 until 2009. This is because GM is noise in the year 2008,
which leads to a subsequence score of 0. In 2009 GM merges with a cluster,
which has a high reference score. The second outlier detected is the subsequence
To000,ta013, K R- 1t is detected as an intuitive outlier.

5.2 Airline On-Time Performance Data Set

The Airline on-time performance data set [8] was originally collected by the
U.S. Department of Transportation’s Bureau of Transportation Statistics. It
contains records of 3.5 million flights. Every flight has a set of 29 features, such
as the departure delay, the delay reason, the arrival delay and the airline which
processed the flight. In order to detect anomalies in this data set, we constructed
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Fig. 4. One dimensional experiment on the Airline On-Time Performance Data Set
with 7 = 0.4, minPts = 3 and ¢ = 0.03. Black sequences represent anomalies, while
white dashed ones stand for intuitive outliers. The color of the dots emphasize which
cluster the data points are assigned to. Red dots represent noise. (Color figure online)

a time series for every airline by calculating the average of their features for every
day. Before applying our technique, we normalized the data with the min-max
normalization and clustered it with DBSCAN. Every observation represents a
flight of an airline. In order to illustrate the results we executed our algorithm
to one feature, namely the flight distance. We applied DBSCAN for eight time
points with the following parameters: minPts = 3 and ¢ = 0.03. Additionally
we chose 7 = 0.4. The result can be seen in Fig. 4.

The figure shows two kinds of outliers: Intuitive outliers and outliers which
were identified by their distance to a reference time series. Since the time series
which is labeled with the points a, b and ¢ has a large distance to other time
series it is detected as an intuitive outlier from a to b. Due to this, the time
series’ accumulated subsequence score is zero and thus it is also detected as an
outlier at the last time stamp c. From point a to b it is not detected as an outlier
by it’s distance to the reference subsequence score, since the neighborhood of the
sequence at time point 8 have also a low stability score. Regarding the time points
1 to 8 and the objects in the neighborhood, there are at most two peers which
remained together. The subsequence labeled with d and e is a good example for
the presented method. It illustrates the detection of outliers by the change of
cluster neighbors of the subsequence.

5.3 Simulated Data

In order to test our method in a targeted manner, two experiments were per-
formed on simulated data. Both a univariate and a multivariate data set with two
features are considered. In both cases, a time span of 8 time points is examined.
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Fig. 5. Illustration of the detected outliers on the simulated one-dimensional data
set with 7 = 0.55, minPts = 3 and ¢ = 0.05. Black sequences represent anomalous
subsequences, while white dashed ones stand for intuitive outliers. The color of the
dots emphasize which cluster the data points are assigned to. Red dots represent noise.
(Color figure online)

The one-dimensional data set was generated so that initially four starting
points (for four groups) were selected. In addition, the maximum deviation from
the centroid and the number of members were chosen for each group. The cen-
troids were then calculated randomly for each time point, whereby the distance
of the centroids of a cluster of two successive time points could not exceed 0.06.
After generating the normal data points, 5 outlier sequences were randomly
inserted. The starting points were chosen randomly and the distance between
two consecutive points could not be greater than 0.3. For all points, care was
taken to ensure that they were between 0 and 1.

As shown in Fig.5, anomalous sequences from five time series have been
found. Regarding the first time stamp the first and second black line show time
series that are entirely recognized as conspicuous ones. Since their data points
often switch between being noise (red dots) and different cluster members, this
result is meaningful. Between time point 6 and 7 one additional black line in
added. This can be explained by the stability of the sequence’s cluster at time
7. All its cluster members migrate together from time point 6 to 7, so that an
outlier is very conspicuous.

Looking at the completely randomly generated time series with the upper-
most noise point at time 2, it is noticeable that it was not recognized by our
algorithm. This is due to the fact that the purple cluster at time 3 and the
turquoise cluster at time 5 do not have a high stability and the deviation of the
sequence from the best possible score is therefore not very large. In the last time
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Fig. 6. Illustration of the detected outliers with 7 = 0.5, minPts = 4 and € = 0.11 on
the artificially generated data two-dimensional set. The colors indicate cluster belong-
ings, whereby grey objects represent outliers. Circles are outliers by distance and boxes
are intuitive outliers, as well. Red color or font indicates noise. (Color figure online)

points, the time series migrates stably with the yellow cluster, so that it does
not behave uncommonly.

If the data points of a time series change from one point in time to another
from a cluster to noise, they are not initially interpreted as conspicuous. This
is a problem if the time series remains as noise as the time at which it split
from the cluster is not recognized as an intuitive outlier. This behavior can for
example be seen in the striped line regarding the first time stamp. Between the
times 6 and 7, the sequence was not detected as an outlier.

The second data set was created as follows: First, three starting points as
centroids and the number of members of the three clusters were chosen. The
maximum deviation of two consecutive centroids was set to 0.05 and that of the
member data points to the centroid was set to 0.1. One time series was assigned
to each group, which was allowed to deviate from the centroid by up to 0.25.
Finally, two time series with completely random data points were added, so that
a total of 5 outlier sequences should be noticeable. Here, too, we made sure that
all data points are between 0 and 1 for each feature.

In Fig.6 the results for an over-time clustering made by DBSCAN with
minPts = 4 and € = 0.11 and an outlier threshold of 7 = 0.5 are shown.
The time series 16, 37, 48 are generated with higher deviation and 49 and 50
completely random. It can be seen that all these time series were found by our
algorithm as outliers (grey). Since the data points of these time series often are
outliers as well as change their cluster members, this is a correct result. However,
the first two time points are assumed to be normal for time series 16. This is
desired too, as it moves stable with its cluster members at this time.
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Although the data points of 42, 45, 46 and 47 split from their cluster members
in time point 4, they are not identified as outliers. Since they migrate together
and even merge back to their former cluster members in time point 5, their
behavior is not conspicuous. The sequence 42 is identified as anomalous between
time points 1 and 2 (turquoise cluster), since all its cluster members migrated
completely stable from time point 1 to 2.

In total, the following outlier sequences can be read from Fig.6: 753 16,
T1,2742, 71;7,377 T1,8,487 T178,4g, T178,50. All are justiﬁed and correspond to the
desired result. There is one striking observation, though: Although 37 is con-
spicuous over the entire period, it is only found as outlier between time 1 and 7.
The reason for this is that the marginal case mentioned in Sect. 4 has occurred.
Since the data point of the time series was classified as noise at the very last
point in time, but not at the time before, the sequence is not found by our
algorithm.

6 Conclusion and Future Work

In this work we presented a robust outlier detection algorithm for multiple mul-
tivariate time series. By analyzing the cluster transitions of time series over time,
we are able to identify anomalous sequences. Instead of using sliding windows,
our method performs an analysis of all possible subsequences. The shown results
are sound and enable a new field of research. However, there are still some inter-
esting aspects which may be examined in future work. The most important issue
is the determination of the outlier detection parameter 7. We assume an interde-
pendence of 7 and hyperparameters that are used for the clustering algorithm.
Further not all intuitive outlier sequences have to be conspicuous in regard to
the time series database. Considering the deviation of time series can lead to an
enhanced analysis of those. Finally, it could be useful to identify whole outlier
clusters. Therefore a cluster score could be computed and evaluated.
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3.2 Behave or be detected! Identifying outlier se-
quences by their group cohesion
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the related experiments. The manuscript was prepared in equal parts by the two main
authors under the supervision of Prof. Dr. Stefan Conrad.

Status: published

The work referenced in this section [R8| introduces some alternatives to the cal-
culation of over-time stability and the calculation of the outlier score. In particular,
it should be noted that the over-time stability used so far is based on an asymmetric
proportion. This proportion calculates the relative share of the same time series in two
clusters. In the asymmetric case, this calculation is direction-dependent. The compar-
ison of a cluster C, at a time ¢t with a cluster C, from time ¢ + 1 is thus not identical
with the comparison of C}, with C,, if the clusters are not equal (C, # C}).

For some applications, however, symmetry can be advantageous. For this reason,
we present the calculation of over-time stability using a symmetric proportion function.
Moreover, we have recognised that users not always attach the same importance to the
entire sequence. Instead, it is often perceived that the influence of recently passed
points in time is significantly higher than that of long past ones. We used this insight
to introduce a weighted subsequence _score, which allows the weighting of timestamps
depending on their temporal distance to the considered time.

We evaluated and presented the combinations of adjustments with the help of some
experiments. The results of the work [R8] are relevant to this dissertation, as the influ-
ence of symmetric and asymmetric proportions is demonstrated. The modifications to
the outlier detection procedure can to a large extent also be adopted in the calculation
of the Cluster Over-Time Stability Evaluation.
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Behave or be detected!
Identifying outlier sequences by their group cohesion

Martha Tatusch, Gerhard Klassen, and Stefan Conrad

Heinrich Heine University, Universitatsstr. 1, 40225 Diisseldorf, Germany
{tatusch,klassen,stefan.conrad}@hhu.de

Abstract. Since the amount of sequentially recorded data is constantly
increasing, the analysis of time series (TS), and especially the identifi-
cation of anomalous points and subsequences, is nowadays an important
field of research. Many approaches consider only a single TS, but in some
cases multiple sequences need to be investigated. In 2019 we presented
a new method to detect behavior-based outliers in T'S which analyses
relations of sequences to their peers. Therefore we clustered data points
of T'S per timestamp and calculated distances between the resulting clus-
ters of different points in time. We realized this by evaluating the number
of peers a TS is moving with. We defined a stability measure for time
series and subsequences, which is used to detect the outliers. Originally
we considered cluster splits but did not take merges into account. In this
work we present two major modifications to our previous work, namely
the introduction of the jaccard index as a distance measure for clusters
and a weighting function, which enables behavior-based outlier detection
in larger TS. We evaluate our modifications separately and in conjunc-
tion on two real and one artificial data set. The adjustments lead to well
reasoned and sound results, which are robust regarding larger T'S.

Keywords: Outlier Detection - Time Series Analysis - Clustering.

1 Introduction

With increasing understanding about the value of data and the rising amount
of connected sensors in the world of the IoT, more data is recorded every day
than ever before. This enables a time aware analysis of the accumulated data
by regarding it as time series. The time-driven data view not only allows the
extraction of trends and seasons but also an interpretation of behavior. This is
especially the case when several time series are considered at the same time. In
our paper [20] we introduced an outlier detection algorithm based on the rel-
ative behavior of time series. As this was a novel approach we were aware of
some drawbacks and application specific requirements. In concrete we noticed
that earlier clusters had a high impact and that a cluster split would not be
treated the same way as a cluster merge. While the latter is an application de-
pendent circumstance the first causes a high dependence on early points in time,
which is not wanted in most cases. In order to overcome these drawbacks we
now introduce a weighting function and a new way of calculating the cluster
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Fig. 1: Tllustration of relevant terms regarding the time from ¢ to ts.

proportions of two clusters. For this purpose we make use of the jaccard index
which led to good results in [12] as well. Both extensions are tested separately
and in conjunction. We highlight the differences and allow the user to choose
carefully between those extensions - depending on his application.

Our original approach focuses on data sets with multivariate time series with
discrete values, same length and equivalent time steps. Those time series are clus-
tered per point in time and anomalous subsequences are detected by analysing
the behavior of those. The behavior is defined as the change of peers over time.
This leads us to the subsequence_score which represents the stability of a subse-
quence over time. An illustration of the relevant terms can be seen in Figure 1.
With a calculated outlier_score for every subsequence and a threshold param-
eter 7 we managed to detect anomalous time series. The outlier score depends
on the subsequence score of a subsequence and the best subsequence score of a
subsequence in the according cluster. In our work we differentiate three different
types of outliers: anomalous subsequences, intuitive outliers and noise.

Our approach is different to other proposals which use cluster algorithms, as
those either cluster time series as a whole [9] [11] [17], extract feature sets first
[22], or consider subsequences of a single time series only [4]. None of the pre-
sented methods consider the cohesion of a time series regarding its peers. Our
algorithm also differs from approaches which do not take time into account like
[2] or which only regard subsequences of single time series [5] [15]. In contrary
to those methods, we assume an information gain for one sequence from other
sequences which have a semantic correlation.

In this paper we show once again, that we can identify an impact of other time
series to one time series that is different to the granger causality [10] and that
this influence can be used to detect anomalous subsequences. The adaptations of
our original algorithm are well motivated and lead to different but sound results.
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2 Related Work

Algorithms which detect outliers in time series are no novelty. There are actu-
ally various specialized approaches for different applications. Most methods deal
with one time series only, while fewer ones regard multiple time series at the
same time. There are different types of outliers, such as significantly deviating
data points, uncommon subsequence patterns in periodic time series or changing
points, which indicate that the further course of the sequence will change.

In many cases outliers of any type are identified with adapted autoregressive-
moving-average (ARMA) models [3] [16]. Although these techniques are per-
forming very well in most cases and factually are state-of-the-art, they lack the
implementation of exterior information like other semantic correlated time se-
ries. There are also other methods which make use of decomposition techniques
such as STL [6]. These methods work on time series which can be actually de-
composed, but fail if this is not the case. Finally there are presented works which
use dynamic time warping (DTW) [18] in order to detect anomalies.

There are also approaches which tackle the problem of finding outliers in mul-
tiple time series. Similar to our algorithm these methods are using peers of a
time series to determine whether it is anomalous or not. The most recent works
use Probabilistic Suffix Trees (PST) [19] or Random Block Coordinate Descents
(RBCD) [23] in order to detect suspicious time series or subsequences. In con-
trary to our approach, in which the behavior of a time series is the central idea,
the named methods analyse the deviation of one time series to the others. Our
assumption that the change or the adherence of a time series to its peers is a
crucial difference to all present methods. This behavior centered view is imple-
mented by clustering time series per timestamp which is similar to identifying
its peers per point in time. Then the movement of this time series relative to
its peers is analysed. The result of this is described as a subsequence score,
which also can be viewed as the stability over time of a time series regarding
the adherence to its peers. The degree of change, also called transition, is an
important factor to the subsequence score. It is also essential in cluster evolu-
tion methods such as [12], which try to match clusters of different time points.
Works of this kind usually introduce a parameter which determines whether the
dissimilarity of two clusters is too big to match. However, a match of clusters is
a very subjective task and highly dependent on the used definitions. Further this
is not necessary in order to detect outliers and thus not relevant for our work.
The approach of Landauer et al. [14] uses an anomaly score, which is based on
transitions of a single time series. This is different to our method, since we use
the information of multiple time series.

The analysis of time series behavior like presented in this paper not only detects
surprisingly deviating data points and subsequences with regard to a single time
series, but also identifies new, behavior-based outliers. Our approach is also dif-
ferent from those which cluster whole time series, since such approaches do not
consider the cluster transitions, which is an expressive feature on its own. The
algorithm presented in this paper is able to detect anomalous subsequences, al-
though they would have been assigned to one cluster in a subsequence clustering.
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3 Fundamentals

Before introducing the method, some basic definitions regarding time series
analysis used in the underlying paper [20] and this work are given, since they
may vary in literature. An illustration of them can be seen in Figure 1.

Definition 1 (Time Series). A multivariate time series T = o4, ...,0¢, 1S an
ordered set of n real valued data points of arbitrary dimension. The data points
are chronologically ordered by their time of recording, with t1 and t, indicating

the first and the last timestamp, respectively.

Definition 2 (Data Set). A data set D =T1,..., Ty, is a set of m time series
of same length and equivalent points in time. The set of data points of all time
series at a timestamp t; is denoted as Oy, .

Definition 3 (Subsequence). A subsequence Thit;0 = Oty 1y -+ Ot With § >
is an ordered set of successive real valued data points beginning at time t; and
ending at t; from time series Tj.

Definition 4 (Cluster). A cluster Cy, ; C Oy, at time t;, with j € {1,...,q}
being a unique identifier (e.g. counter) and q being the number of clusters, is
a set of similar data points, identified by a cluster algorithm or human. This
means that all clusters have distinct labels regardless of time.

Definition 5 (Cluster Member). A data point oy, from time series T; at
time t;, that is assigned to a cluster Cy, ; is called a member of cluster Cy, ;.

Definition 6 (Noise). A data point oy, from time series T} at time t; is con-
sidered as moise, if it is not assigned to any cluster.

Definition 7 (Clustering). A clustering is the overall result of a clustering
algorithm or the set of all clusters annotated by a human for all timestamps. In
concrete it is the set ¢ = {Cy 1, ..., C4, ¢} U Noise.

(O noise

\/

Fig. 2: Example for cluster transitions of time series Ty, .., T, over time.
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An example for the above definitions can also be seen in Figure 2. Five time
series of a data set D = T,, Ty, T., Ty, T, are clustered per timestamp for the
time points ¢;,¢; and ¢;. The data points of a time series 7} are denoted by the
identifier [ for simplicity reasons. The shown clustering consists of six clusters. It
can be described by the set ¢ = {C}, 1, Ct, u, C; 0, Ct; 15 Ciyp 9> Oty n } U0, e} As
01, ¢ is not assigned to any cluster in ¢;, it is marked as noise for this timestamp.
The data points oy, 4, 04, of time series T, and Ty, in ¢; are cluster members of

the yellow cluster Cy, ;.

4 Method

The cohesion of a sequence with its peers over time is described by the term over-
time stability. Our approach is based on the assumption that unstable behavior
over time indicates an irregularity. In order to rate the over-time stability of a
sequence by means of a so called subsequence_score, the proportion of cluster
members from earlier timestamps who migrated together into another cluster
in later timestamps has to be calculated. For this reason, the temporal cluster
intersection was introduced [20]:
Ne{Ct.a:Ce; 0y ={T1 | 0,0 € Ct;.a Aot 0 € Cyy )

with Cy, o and Cy, , being two clusters, ¢;,t; € {t1,...t,} and I € {1,...,m}. The
proportion p of two Clusters Cy, , and Cy; , with ¢; < t; is then calculated by:

0 if Cti,a = @
P(Crisar Oty b) = 4 1Ck.0NeCry 0l

Cr ] else

As this proportion is asymmetric since it only describes the proportion of Cy, ,
that is contained in CY; p, a merge of clusters has no negative impact on the
score. However, in some use cases it might be wanted to treat merges and splits
equally, because a well-separated clustering is desired. With this calculation it
is not possible to distinguish whether a time series has the best possible score
because it always remains in its well-separated cluster or because its cluster only
merged into other ones but never split off.

In order to punish merges and splits the same way, the jaccard index can be
used to obtain the proportion. For this, we introduce the temporal cluster union
of two clusters CY, 4, Cy; b

U{Ct.a:Ct; 0y ={T1 | 0,0 € Ct;.a V01,1 € Cy, p}

with [ € {1,...,m}. Now the proportion p can be calculated by the jaccard index
of two clusters:

) 0 i Cha=0ACyy =0
p(Cti,ay Ctj,b) = ‘Cti,amtctj,bl

‘Cti,autctj,bl else
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with ¢; < tj.
Regarding the example in Figure 2, the proportion p of cluster Cy,; and Cy, ,

would be
_ |Ct,0 Nt Ct, o 2

p(Ct“vatJ,'v) = \Ct- ; =3 =1

and therefore ideal. In contrast to that, the proportion p would be

ICineCrwl 2
H(Cr1,Cty ) = T~ =7 =06
P(Crts Cty) 1Cr Ui Crol 3

J

as the merge of cluster Cy, ; and Cy, ,, lowers the score.
Using the proportion, each subsequence Ty, ;,; of time series [ beginning at
timestamp ¢; and ending at ¢; is rated by the following subsequence_score in
[20]:

1

subsequence_score(Ty, t,1) = 7 Zp(cz’d(otv,l), cid(og, 1))
V=%

with [ € {1,...,m}, k € [1, j —i] being the number of timestamps between ¢; and
t; where the data point exists and cid, the cluster-identity function

1] if the data point is not assigned to any cluster

cid(oy, 1) = {

Ci,.a clse

returning the cluster which the data point has been assigned to in ¢;. In words, it
is the average proportion of the sequence’s clusters it migrated with from ¢; to t;.
Here, the impact of all preceding time points to the score is weighted equally. For
longer sequences, this can lead to a tendency towards a worse rating, since slow
changes in cluster membership might influence the rating quite considerably.
Assuming that the nearer past is more meaningful than the more distant past,
we formulate a weighting that can be used in the subsequence score.

Regarding a time interval [¢1, tx], the proportion at time ¢; with ¢; < ¢; < #; gets
the weighting % resulting by the division of ¢ with the Gauss’s Formula

i i 24
Zk a k(k2+1) k(k+1) "

a=1

The weighting function can easily be adjusted for time intervals starting at time
ts > t1. The subsequence score is then calculated as follows:

N2 (v—i+1)

weighted_subseq_score(Ty, 1. 1) = Z ) p(cid(oy, 1), cid(os, 1))

i
v=1

with k € [1,j — 4] again being the number of timestamps between ¢; and ¢,
where the data point exists. Since the sum of all weightings of a subsequence’s
timestamps is always 1, there is no need to normalize the score to an interval of
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[0,1] by averaging it.
In the example of Figure 2, the score of time series T, between time points t;

and t; would be

(1.0+0.6) = 0.83

N | —

subsequence_score(Ty, ¢, a) =
whereby the rating with the weighted subsequence score would be
. 1 2
weighted_subseq_score(Ty, 1, 0) = (§ 1.0+ 3 0.6) =0.78

The second proportion which is smaller than 1 has thus more influence on the
score now. The combination of the weighted subsequence score and the jaccard
proportion p has the following result:

1

05+ 2-0.5) = 0.56
5 06+ 5-05)=0.

weighted_jaccard_score(Ty, 1, .q) = (
With the help of the subsequence’s rating an outlier score can be calculated for
each by determining the deviation of their stability from the best subsequence
score of their cluster. Formally, the best score of a cluster Cy; , for sequences
starting at ¢; and ending at ¢; is given by

best_score(t;, Cy; o) = max({subsequence_score(Ty, ;1) | cid(og, 1) = Ct;a}) -
A subsequence’s outlier score is then described by
outlier_score(Ty, 1,1) = best_score(t;, cid(os, 1)) — subsequence_score(Ty, ;1) -

The outlier score is therefore dependent on the over-time stability of the consid-
ered cluster’s members. The smaller the best score is, the smaller is the highest

possible outlier score. The detection of outlier sequences can be done by using a
threshold 7 [20]:

Definition 8 (Outlier). Given a threshold T € [0,1], a subsequence Ty, s, 1 is
called an outlier, if its probability of being an outlier is greater than or equal T.
That means, if

outlier_score(Ty, 1,1) > 7 .

In addition to these outlier sequences, subsequences that consist entirely of noise
data points from the clustering algorithm are identified as intuitive outliers.
Sequences whose last data point is labeled as noise are not assigned to a cluster
which the best score can be determined from, so they do not get an outlier score.

5 Experiments

In the following, several experiments on different (artificially generated and
real world) data sets are performed in order to evaluate the effects of the
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modifications of this paper regarding the original method. In all cases the density-
based clustering algorithm DBSCAN [8] was used for clustering. We will differ-
entiate between the original method from [20], the jaccard method (where the
proportion is calculated by the jaccard index), the weighted method (where the
weighting is included in the subsequence score), and the weighted jaccard method
(where all modifications are integrated). In all experiments the same parameter
settings for €, mitPts and 7 were used for the investigated methods in order
to make the results comparable. Please note, that dependent on the method in
some cases another parameter choice could have been beneficial.

5.1 Artificially Generated Data Set

For a targeted evaluation of the properties, at first an artificially generated
data set with 40 timestamps is considered. The data set was generated so that
initially four starting points (for four groups of time series) were selected. In
addition, the maximum distance of the centroids of two successive time points
and the number of members were chosen for each group. The centroids as well
as the members’ data points were then calculated randomly for each time point,
whereby the distance of the members to the centroids could not exceed 0.03.
After generating the normal data points, one completely random outlier sequence
and three targeted outlier sequences were inserted. For the completely random
sequence all data points were chosen randomly and the distance between two
consecutive points was set to not being greater than 0.1. The remaining outlier
sequences were generated as follows: The data points were always set with a
maximum distance of 0.06 to a centroid. The clusters were chosen randomly
whereby the distance of the latest data point and the next centroid could not
exceed 0.2. Additionally, the sequence always had to be allocated for at least 5

1.0

Featurel
e o
'S >

0 5 10 15 20 25 30 35 40
Time

Fig. 3: Achieved results on the generated data set with ¢ = 0.025, minPts = 3
and 7 = 0.7 by the original method.
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Fig. 4: Achieved results on the generated data set with ¢ = 0.025, minPts = 3
and 7 = 0.7 by the weighted method.

time points to the same cluster before choosing the next one. For all points, care
was taken to ensure that they were between 0 and 1.

The time series data was clustered per timestamp with the parameter setting
e = 0.025 and minPts = 3. All four methods were performed on the clustering
with the threshold 7 = 0.7. The results are illustrated in the Figures Fig. 3,
Fig. 4, Fig. 5 and Fig. 6. Red dots represent noise data points while other colors
indicate the cluster membership. Black lines stand for outliers that are found
with the outlier score and dashed lines represent intuitive outliers.

1.0

Featurel
e o
'S >

0 5 10 15 20 25 30 35 40
Time

Fig. 5: Achieved results on the generated data set with ¢ = 0.025, minPts = 3
and 7 = 0.7 by the jaccard method.
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Time

Fig. 6: Achieved results on the generated data set with e = 0.025, minPts = 3
and 7 = 0.7 by the weighted jaccard method.

The original method (Fig. 3) detects all four outlier sequences and marks almost
the whole time series as such. However, some parts of the outlier sequence in the
yellow clusters (second from the top) are quite stable and therefore should not
be detected as outliers in regard to their over-time stability. When considering
the results of the weighted method (Fig. 4) one can see, that some smaller
parts of the time series are marked as outliers. The most obvious example is
the outlier sequence of the yellow clusters. This effect shows, that the intention
of the weighting, that the more distant past has a lower impact on the score
than the nearer past, is therefore satisfied. The jaccard method (Fig. 5) leads
to a more sparsely detection, as well. This can be explained by the fact that
due to some merges (for example in the yellow clusters) the best subsequence
score of the clusters is decreased and consequently the highest outlier score is
decreased, too. The effect of the lower best score can also be seen between the
timestamps 29 and 35. In contrast to the weighted method, the "M” shape is
not marked completely. The combination of both modifications is illustrated in
Figure 6. Since the nearer past is weighted more strongly here, the merge of
the blue and yellow clusters at time point 26 has not as much influence on the
best score. Therefore the "M” shape is detected as outlier. However, there are
some differences in regard to the results of the weighted method. Overall fewer
outlier sequences are found. An example can be seen in the first time stamps.
This behavior is reasoned as the jaccard index lowers the best possible score in
the clusters.

5.2 Airline On-Time Performance Data Set

This data set holds 29 features like the scheduled and actual departure time
for flights reported by certified U.S. air carriers. In total it contains 3.5 million
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(a) Original Method (b) Weighted Jaccard Method

Fig. 7: Achieved results on the Airline On-Time Performance Data Set with
e =0.03, minPts = 3 and 7 = 0.5.

records with each representing a flight. Originally this data set is provided by the
U.S. Department of Transportation’s Bureau of Transportation Statistics [7]. In
order to make the data set suitable for our approach we interpreted the feature
set of every airline as a sequence. Further we made these time series equidistant
by calculating the average of their features for every day. Finally we normalized
the data set with the min-max normalization and clustered it per timestamp.
In this experiment we compare the original method [20] with the modified ap-
proach presented in this paper. Both modifications are applied and the result is
illustrated in Figure 7b. The first noticeable difference to the original [20] ap-
proach in Figure 7a is the lower amount of marked outliers. This can be explained
with both adjustments: First of all, the introduced jaccard index leads to overall
lower subsequence scores, thus the best score of a cluster is lower and therefore
the outlier score is lower. Second, the weighting function allows time series to
change their peers over time if it is done consequently. This means that time
series are not considered to be suspicious if they made a stable change, which
is to expect when regarding larger time series. Actually the original approach
cannot handle the amount of points in time and tends to become more sensitive
with rising amount of time stamps. In contrary, the adjusted version performs
more robust and can handle more timestamps better.

On the second sight, one might notice that the adjusted method detects slightly
different outliers than the original approach (e.g. the two upper outliers between
timestamp 17.5 and 20.0). However, those differences in this example are too
small to be reasoned with a specific modification.

5.3 GlobalEconomy Data Set

The GlobalEconomy data set is obtained from the website theglobaleconomy.com
[1]. It holds over 300 indicators for different features for 200 countries over more
than 60 years. For illustration reasons we chose 20 countries and two features,
namely the education spendings and the unemployment rate. Please note, that
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the amount of countries can vary per timestamp, because there are missing val-
ues in the data set.

The result of the original method and the modified approach presented in this
paper, can be seen in Figure 8 and Figure 9. The colors represent the detected
clusters, circles represent behavior-based outliers and red font is indicating noise
which was detected by DBSCAN. In case a country is detected as a behavior-
based outlier and as noise by DBSCAN it is represented as a circle with red font.
The abbreviations are according to ISO 3166. At first glance it is noticeable that
our original approach detected more outliers than the new method. Let us ex-
plain this by the example of Kyrgyzstan (KGZ) in the years 2010 and 2011: KGZ
leaves the yellow cluster and at the same time joins the green cluster in 2011.
In our original calculation KGZ is punished for this transition by applying the
old cluster proportion function. At the same time the subsequence score of the
Marshall Islands (ISL) is not influenced in 2011, because it was not assigned to a
cluster in 2010. Thus the outlier score of Kyrgyzstan is negatively influenced. In
the weighted jaccard method Kyrgyzstan is not detected as an outlier, because
the Marshall Islands are punished for the merge with Kyrgyzstan in 2011. This
leads to a lower best_score and at the same time to a lower outlier_score of
Kyrgyzstan. In summary, Kyrgyzstan is not detected as an outlier, because the
Marshall Islands are now punished for merging.

An example of finding new outliers is Honduras (HND) in the years from 2013
to 2015. The old technique did not identify Honduras as an outlier in the years
2014 and 2015, while the modified method does. Again this has to do with the
low subsequence score of the Marshal Islands in 2014, but this time the cluster
proportion of the original approach is punishing the Marshal Islands for splitting
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Fig.8: Achieved results on the GlobalEconomy Data Set with ¢ = 0.18,
minPts = 2 and 7 = 0.4 by the original method.
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Fig.9: Achieved results on the GlobalEconomy Data Set with ¢ = 0.18,
minPts = 2 and 7 = 0.4 by the weighted jaccard method.

from its peers in the previous years. However, this is not the only reason Hon-
duras is not marked as an outlier. It actually benefits from rejoining the yellow
cluster in 2015, although the yellow cluster contains more than twice the amount
of countries now. In concrete that means, that the comparison of the years of
2013 and 2015 was influencing the subsequence score of Honduras in a positive
way. The weighted jaccard approach takes the new constellation of the yellow
cluster into account. In contrary to the original method, the comparison of the
years 2013 and 2015 is not beneficial to its subsequence score. Further more the
merge with the Marshall Islands in 2014 is punished by the jaccard index.
Another interesting observation is, that the jaccard index now enables the iden-
tification of outlier clusters. In Figure 9 one can observe, that Laos (LAO) and
Cambodia (KHM) form a cluster in the years from 2010 to 2011. The merge
to the big blue cluster in 2012 has a fairly high influence on their subsequence
scores so that they are detected as outliers in 2013. Although the two countries
are more stable in the subsequence from 2012 to 2013, they have not stabilized
to the level of their peers in the blue cluster. This finally happens in the year of
2014.

6 Conclusion & Future Work

The analysis of time series data — especially the identification of conspicuous
sequences — is an important field in data mining. So far, there are only a few
approaches for the detection of outliers in multiple time series. In [20] we pre-
sented an outlier detection algorithm which analyses the behavior of groups of
time series by clustering the data per timestamp using an arbitrary clustering
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algorithm. As this was a novel approach, there were still some handicaps and
application dependent properties. In this paper, we focused on two of these and
proposed the following solutions: First, we presented another technique for the
calculation of the proportion, which treats merges and splits of clusters equally.
Second, we introduced a weighting function that causes a higher impact of a
sequence’s nearer past than the more distant one. Our results show, that the
intended effects were achieved by our modifications. All results are meaningful
and show individual qualities. Dependent on the application, one of the four
investigated methods can be used for the detection of anomalous subsequences
in regard to their over-time stability.

However, the aspects dealt with in this paper were only a part of the procedure’s
difficulties. There is still the problem of determining the best parameter 7 and
optimal hyperparameters for the clustering algorithms such as DBSCAN. Ad-
ditionally, the treatment of noise data points could be improved. As proposed
in [20], the inclusion of the time series’ deviations might lead to an advanced
analysis of those. Further, the detection of outlier clusters would be interesting.
Partly they are already found by the modified method presented in this paper.
Finally, the procedure could be adjusted to handle fuzzy clusterings. With the
help of over-time stability measures for hard [21] and fuzzy clusterings [13] a
good basis for the outlier detection can be provided.
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Gerhard Klassen mainly had an advisory role in the implementation and writing of the
paper. Prof. Dr. Stefan Conrad supervised the work.

Status: published

In this section we refer to a third approach [R9| for outlier detection in time series
databases. The method is called Detecting Anomalies based on Cluster Transitions
(DACT) and is also based on the principles introduced in CLOSE and FCSETS. How-
ever, in DACT we define the over-time stability of a time series differently. The focus
here is on the number of different time series with which a time series has been in a
cluster over time. We refer to this concept as the shared time points of time series.
The shared time points are set in relation to the number of constant cluster peers over
time (peer count), which results in a new definition of the over-time stability.

The procedure is an alternative to the symmetrical variant of the approach pre-
sented in the last section, i.e. in DACT not only the splitting of clusters but also the
merging of clusters is penalised. As already discussed in the last section, this can be
particularly useful in applications in which the clusters found should actually remain
separate for semantic reasons. However, here the symmetry was not achieved with the
help of the jaccard-distance, but by the simple ratio of the shared time points and the
peer count.

The slightly different interpretation of over-time stability in the referenced work
|[R9] shows the variability of the concept. Many other variants are conceivable and
should be analysed in future work.
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Abstract. Time series analysis is a part of data mining and nowadays
an important field of research due to the increasing amount of data that
is recorded sequentially by various systems. Especially the identification
of anomalous subsequences arouses great interest, since a manual search
for errors or malfunctions is not possible in most cases. Often outliers are
defined as points or sequences that deviate significantly from the course
of one or multiple time series, yet there are also applications where the
trend rather than the exact course of time series is relevant. In that case,
there is an approach of clustering the time series per time point and an-
alyzing their cluster transitions over time. Sequences that change their
cluster members suddenly or often, indicate an anomaly.

In 2019, a novel approach for the detection of these transition-based
outliers was introduced [19]. Now, we present an algorithm called DAC-
T (Detecting Anomalies based on Cluster Transitions) that is able to
identify outlier sequences of the same type. It is a simple approach that
stands out due to different results, although a similar type of anomalies
is targeted. In the evaluation, we examine and discuss the differences.
Our experiments show, that the results are competitive and reasonable.

Keywords: Outlier Detection - Time Series Analysis - Clustering.

1 DMotivation

Due to the increasing popularity of digital systems such as social platforms, on-
line shops or simple database applications in various industries, data analysis is
of steadily growing importance. The analysis of sequential data forms an impor-
tant part of this field of research and is known as time series analysis. There are
several applications which consider either single or multiple time series where-
by these can be univariate or multivariate. In this work, we focus on multiple
multivariate time series and the behavior of subsequences with regard to their
peers. There are many applications where these conditions apply. For example,
when investigating a drug’s tolerance on humans, one time series per patient
can be extracted whereby various features per timestamp are recorded. In our
approach, we examine the trend of groups of time series rather than the exact
course, as it is not relevant in many applications. To do so, it is necessary to
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previously cluster the data for each point in time. Regarding the drug tolerance
behavior, the patients may be grouped by their state of health. Since every hu-
man body is unique, these clusters may change over time. Some of these changes
are normal, but if a patient shows any irregularity, action must be taken. In or-
der to detect such irregularities automatically, we introduce DACT (Detecting
Anomalies based on Cluster Transitions), an anomaly detection algorithm for
transition-based outliers. To the best of our knowledge, the first approach re-
garding this type of outliers was published in 2019 [19]. Hence, in the following

2 Foundation

In order to provide a good basis for the comparison of the two methods, the
same definitions as given in [19] are used in this work.
Definition 1 (Time Series). A multivariate time series T = oy, ...,01, is an
ordered set of n real valued data points of arbitrary dimension. The data points
are chronologically ordered by their time of recording.

Definition 2 (Data Set). A data set D =T, ...,Tp, is a set of m time series
of same length and equivalent points in time. The set of data points of all time
series at a timestamp t; is denoted as O,.

Definition 3 (Subsequence). A subsequence Tt, 1,1 = 04,1, ..., 01,1 With j > i
is an ordered set of successive real valued data points beginning at time t; and
ending at t; from time series Tj.

Definition 4 (Cluster). A cluster Cy, ; C Oy, at time t;, with j € {1,...,¢}
being a unique identifier (e.g. counter), is a set of similar data points, identified
by a cluster algorithm or human.

Definition 5 (Cluster Member). A data point oy, from time series T; at
time t;, that is assigned to a cluster Cy, ; is called a member of cluster Cy, ;.

Definition 6 (Noise). A data point oy, ; from time series T at time t; is con-
sidered as noise, if it is not assigned to any cluster.

Definition 7 (Clustering). A clustering is the overall result of a clustering
algorithm or the set of all clusters annotated by a human for all timestamps. In
concrete it is the set ( = {Cy, 1,...,C4, ¢} U Noise.

3 Related Work

There are various approaches for identifying irregularities in time series. In
some applications, the detection of single anomalous data points is of inter-
est. This problem is for example addressed by prediction-based algorithms like
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auto-regressive-moving-average (ARMA) models [2, 6,15]. In other cases, the i-
dentification of so called changing points [7,13], which indicate a change of the
previous course, are relevant. Although these techniques perform very well in
most cases, they can not be used for our purpose. First, in contrast to DACT,
they target single data points, not subsequences. Second, they lack the correla-
tion of one time series to others. There are also other algorithms for the detection
of outliers, which decompose the time series with techniques like STL [4] before
analyzing them. However, these methods only work if the considered time series
can be actually decomposed. In many applications, this is not the case. When
regarding anomalous subsequences, there are various works using dynamic time
warping (DTW) [17] for the comparison of time series or neural networks [3, 10,
16]. Another approach is the detection of the most unusual subsequences (dis-
cords) using a symbolic aggregation of a time series [8,12,9]. Even though these
methods are aiming at subsequences, they only consider single time series and
therefore can not be used in our case.

The most recent works for the detection of outlier subsequences in multiple
time series use Probabilistic Suffix Trees (PST) [18] or Random Block Coordinate
Descents (RBCD) [21] regarding the deviation of one time series to the others.
In contrast to our approach, the behavior of a time series with regard to its
peers is not analyzed here. We accomplish this analysis by clustering the time
series data per timestamp and investigating a time series’ transitions between
clusters. Such an approach was already presented in 2019 [19]. However, the
procedure has some particularities that might be unfavorable depending on the
application. For example, the procedure in [19] only penalizes splits of a time
series from a cluster, whereas merges of smaller clusters into larger ones do not
have a negative influence on the outlier score of the sequences involved. In this
paper we introduce a simple approach which resolves these difficulties.

4 Model Description

After the time series data has been clustered per timestamp using an arbitrary
clustering algorithm like DBSCAN [5] or k-means [14], DACT can be applied. In
short, the procedure is based on the analysis of the average number of points in
time that a time series migrates with its peers, which indicates a subsequence’s
stability over time. The longer a sequence moves with its cluster members over
time, the more stable it is.

For the following presentation of the components of DACT we first introduce
the cluster identity function cid of a data point o, ;, which returns the cluster
of the time series [ at the considered timestamp ¢;:

. {@ if o4, ; is not assigned to any cluster
cid(og, 1) = o
’ Ct,.a clse

Now, we can calculate the number of time points in which two subsequences
Ty, ;0 and Ty, 4. . share the same cluster. We call it the shared time points
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count stc:
ste(Tu ;0 Tty 0) = {trlcid(oy, o) = cid(oy,1) Nt € [ti, 5]}

with x # [. In order to get the average number of time points a time series T3, ¢, 1
moves with its cluster members, we need to compute the number of peers of the
time series during the considered time period. It describes the amount of distinct
time series that are at least once assigned to the same cluster as 7T; during the
period. It can be calculated by the peer count pc:

pe(Ty,,0) = HTw [Fty € [ti, t5] : cid(oy,, o) = cid(og, 1)}

with = # [. We can now express the over-time stability OT'S of a subsequence
Tti,t]-,l by
> gy Ste(Th, .05 Tt )

pC(Tti,tjﬁl) -k
with k£ being the number of timestamps where 7; holds data. In order to detect
anomalies in time series, this score needs to be included in an outlier score,
which indicates whether a subsequence is conspicuous or not. In the following
we propose two concepts for building the outlier score. Since we believe, that this
score is dependent on the behavior of a subsequence’s peers (an unstable sequence
is not as conspicuous regarding an unstable cluster as it is in a stable one), both
variants focus on the scores of the considered cluster. Before introducing these
two concepts, we define the term intuitive outlier:

OTS(Ty, t;0) =

Definition 8 (Intuitive Outlier). A sequence Ty, ;1 is called an intuitive out-
lier if its data points are marked as noise for every timestamp ty € [t;, t;].

This is necessary as the outlier score can only be calculated for subsequences
whose data point at the last timestamp is assigned to a cluster. If it is not, it is
not possible to determine a meaningful reference value.

4.1 Variant 1

The first approach focuses on the best stability score achieved in a cluster Cy, 4
regarding a time period from ¢; to t;. Formally, it can be expressed by

best_score(Cy; a,t;) = max({OTS(Ty, ¢, 1) | cid(ot; 1) = Cy; .0 })-

It describes the highest score obtained by subsequences from t; to ¢; ending in
cluster Cy; 4. The outlier score DACT of a subsequence is then given by the
deviation of its stability score from the best score:

DACT(Ty, ;1) = best_score(cid(oy, 1), i) — OTS(Ty, ¢,.1)-

Obviously, the best_score represents the upper bound for the outlier score within
a cluster for a given time period. This causes, that clusters containing stable
subsequences are more sensitive to deviations than the ones containing less stable
sequences. Finally, an outlier can be formally described using the outlier score.
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Definition 9 (Outlier — Variant 1). Given a threshold 7, a sequence Ty, 1,
s called an outlier if
DACT (T, 4;0) > 7 -

Since the best subsequence score of a cluster influences the highest possi-
ble outlier score, the threshold 7 often has to be chosen rather central in the
interval [0, 1]. Additionally, the best threshold differs for data sets with differ-
ent distributions of the data points. The more scattered the data, the lower the
threshold.

4.2 Variant 2

The second approach follows the statistical assumption that anomalies can be
found with the help of their deviation from the standard deviation. For this,
the mean of a cluster’s stability scores regarding the start time ¢; has to be
determined first. Regarding a cluster Cy; , for the time period from #; to ¢;, it
is given by .

u(Ctj,a,ti)=W~ > OTS(Ti,4,0).

0r. 1€CY.
t;,1€C; a

The standard deviation of a cluster’s stability scores regarding the start time ¢;
can then be calculated by

1
oCoat)= |15 2 (Chat) = OTSTi L 0)

ol Ch.
t;,1€C; a

In order to compare it later with the standard deviation, we formulate the outlier
score sSDACT of a subsequence T, ¢, as the absolute difference of its stability
score and the mean of its last cluster:

SDACT(Tti’th) = |[L(C’L.d(0tj’l), tz) - OTS(Tti,tj,l)l-

We call it sDACT in order to express, that the statistical variant is used. In the
following, this score can be used to detect outliers by inspecting the deviation
of it from the standard deviation. With the help of a factor p it can be formally
described.

Definition 10 (Outlier — Variant 2). Given a threshold p, a sequence Ty, 1,
is called an outlier if

sDACT(Ty, 4;1) > p-o(cid(og; 1), i) -

Again, the outlier score is highly dependent on the performance of the con-
sidered cluster’s members. Since the standard deviation is considered, the outlier
score is even less sensitive to deviations, especially in the case of a rather un-
stable cluster. Therefore in most cases the default value of p = 3 will probably
be to high in order to detect inconsistencies. In our method, frequently a value
of around p = 2 is recommended. This factor naturally is also dependent on the
distribution of the data.
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5 Experiments

Following, experiments on a synthetic and a real world data set are discussed to
evaluate the performance of the presented methods. In order to simplify refer-
encing the approaches we will name them as follows:

— referred method — describes the approach from [19].

— DACT — stands for the presented method using variant 1 for the detection
of outliers.

— sDACT - represents the approach using variant 2.

5.1 Artificially Generated Data Set

The first considered data set was artificially generated and contains 28 univariate
time series (T'S) with 40 timestamps. Initially four groups of TS were randomly
generated. Afterwards, three targeted and one completely random outlier se-
quence were inserted. All data points of the completely random outlier T'S were
chosen randomly, whereby the distance between two consecutive points was set
to not being greater than 0.1. The remaining outlier sequences were generated
so that their data points were always located near to a cluster’s centroid. An
outlier sequence could change its cluster at the earliest if it was located for at
least 5 time points in a cluster.

The experiment was performed with DACT and the referred method. In order
to get comparable results, the same parameter settings for both approaches were
chosen. For the clustering DBSCAN [5] was used with e = 0.025 and minPts = 3.
The threshold 7 was set to 0.55. Figure 1 shows the detected anomalies by DACT
and the referred method. The colored dots represent cluster belongings whereby
red dots indicate noise. The detected outlier sequences are illustrated as and
intuitive outliers as dashed lines.

Both methods managed to detect the completely random as well as parts of
the three targeted outliers. The referred method, however, marked a lot more
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Fig. 1: Detected outliers on the generated data set with 7 = 0.55, minPts = 3
and € = 0.025.
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parts as outliers than DACT. Regarding the uppermost outlier sequence from
time point 10 to 39, there is a difference between both methods between time
25 and 34. DACT did not mark this part of the TS as an outlier although the
referred method did. This can be explained by the fact, that the TS moves
stably with most of its cluster members in this period. The merge of the two
upper clusters causes lower stability scores, but since the size of both clusters
is approximately the same, all cluster members are affected equally. The same
applies to the split.

Considering the second lowest outlier sequence between timestamp 30 and
38, it is the other way around. While DACT marks the sequence as an outlier for
the whole period, the referred method interprets the course between timestamp
34 and 36 as normal. On the one hand, this is caused by the decrease of the
stability scores in the second lowest cluster. As there were merges and splits in
the history of the cluster, all scores were negatively affected. On the other hand,
there are only few members in the considered cluster and another sequence is
marked as noise at time point 32, too. Between timestamp 34 and 36 the consid-
ered time series behaves stable, so that it does not stand out in contrast to its
cluster members, regarding this short period. In contrast to that, DACT is more
sensitive concerning short term changes, if only few time series are considered.

5.2 GlobalEconomy Data Set

The second data set is provided by the website theglobaleconomy.com [1]. It con-
sists of over 300 indicators for different features of 200 countries for more than
60 years. For the experiments, we considered 20 different countries and two fea-
tures (namely the education spendings and the unemployment rate) within the
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Fig. 2: Resulted clustering by DBSCAN with minPts = 2 and € = 0.19 on
the GlobalEconomy data set.
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period from 2010 to 2015 to enable a manageable illustration. Since the database
is not complete for all country-year combinations, the amount of countries per

The experiment was run with all three Country Start Bnd [DACT|sDACT|referred
methods using DBSCAN with e = 0.19 and  Guy ™ 2012 2015 = . -
minPts = 2. Since the underlying cluster- HND 2013 2015
ing for all three approaches is the same, it is HND 2014 2015
illustrated separately in Figure 2. Different [|RL 2010 2014

. . JAM 2010 2014
colors represent different cluster belongings - 2010 2015| - -
and noise data points are marked red. The ypx 2013 2014
resulting outlier sequences are listed in Ta- kaz 2010 2014| -
ble 1. The list was shortened so that in case =~ KOR 2011 2014] x -
of overlaps only the longest detected subse- Table 1: Resulting outlier se-
quence of a country is included per method. quences by DACT (+ = 0.3),
This time, the threshold parameters 7 and sDACT (p = 2) and the re-

p were chosen for all methods separately, as  ferred method (7 = 0.35) on
the first experiment showed that the same the GlobalEconomy data set.
parameter setting led to considerably more

outlier sequences with the referred method than with DACT. An individual pa-
rameter choice might therefore be appropriate.

WMWK
“

WMWK

It can be seen, that sSDACT produces significantly less outlier sequences than
DACT and the referred method. While those approaches detect both five anoma-
lous subsequences, SDACT only finds two. This can be explained by the fact, that
there are many clusters with only few cluster members. In addition, there are on-
ly a few TS, that are very stable over time. This causes, that the mean stability
score per cluster is rather low. In order to stand out, a sequence needs therefore a
very bad stability score. This only happens in two cases. First, Honduras (HND)
does badly from 2014 to 2015, as it moves away from its only cluster member
Iceland (ISL) and merges into a large cluster. The second case is Kenya (KEN)
from 2013 to 2014, where it turns from noise to a large cluster’s member. While
the first anomaly sounds reasonable, the second one appears rather groundless,
depending on the context. In contrast to DACT, which only found the first and
not the second discussed outlier sequence, the referred method had exactly the
opposite result. In fact, the only anomaly DACT and the referred method share,
is the subsequence of Korea (KOR) from 2011 to 2014. This result is desired,
since KOR changes its cluster members at every timestamp in this period.

The outlier sequences IRL and JAM show DACT’s sensitivity regarding s-
mall clusters merging into large ones. Although those two countries stay stably
together from 2010 to 2014, even when merging into the larger cluster, both
are detected as outlier sequences. The referred method does not detect those
sequences, because it does not penalize merges of clusters. However, although
KEN stays with many cluster members over time, it is marked as outlier from
2010 to 2015. This is caused by the split from its cluster in 2012 and 2013. An-
other outlier detected by the referred method is Guyana (GUY) from 2012 to
2015. In 2013, the data is missing and this is the crucial point. In 2012 GUY is

80



grouped with Hungary (HUN), Italy (ITA) and Iran (IRN). The merge into a
larger cluster in 2014 is not penalized, but the following split from HUN, ITA
and IRN in 2015 has a very negative effect on the stability, though.

6 Conclusion

In this paper, we introduced two approaches of finding transition-based outliers
in time series databases. We examined the differences of the results and evaluated
our methods against their competitor from [19], which targets the same problem
definition. The results showed that both approaches find reasonable outliers, thus
they differ in some characteristics. While the referred method does not penalize
merges of clusters but only splits, DACT and sDACT treat both cases the same
way. Furthermore, DACT is more sensitive regarding short term changes in small
data sets. These differences lead to slightly different results, whereby the methods
agree in clear cases. Depending on the application, both approaches provide a
benefit.

We are aware of some shortcomings in DACT, that provide incentives for
future work. For example, the handling of noise data points from the clustering
could be improved. Currently, all subsequences consisting exclusively of noise
data points are marked as intuitive outliers. In some cases, this behavior may
not be legitimate. Furthermore, DACT is reliant on the assumption, that the
underlying clustering is reasonable. Apart from inventing an evaluation measure
for over-time clusterings [11, 20] in order to support the user in finding the right
parameter settings, a new clustering algorithm tailored to the intention of an
over-time clustering with temporal linkage would be useful.
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There are many different approaches to clustering time series. Many methods refer to
one time series and try to identify recurring patterns in it [23, 36, 40]. However, the
results achieved are not always meaningful, because the data basis must comply with
certain properties [33].

The algorithm presented in the referenced paper [R1|, however, does not refer to a
single time series but to time series databases. The objective is to recognise patterns
across time series. To do this, we always consider the entire data set. In our previous
work (CLOSE and FCSETS), we looked at the temporal aspect after cluster analysis.
This approach may have some disadvantages, for example, the cluster algorithms con-
sidered may not be able to construct a more stable clustering. For this reason, it can
be advantageous to consider the temporal aspect at the time of clustering.

In this section we reference a method [R1] for clustering time series. The basis of
this procedure is the idea of so-called adaptability of time series. This property is very
closely related to the over-time stability, which cannot be used here because it requires
clustered data. Adaptability is a measure that expresses how similar an object is to
all other objects. In the introduced connection factor it represents a weighting for
the similarity of two time series at one time point. The temporal connection factor is
then used to include the temporal aspect at the time of clustering. The clusters found
correspond to our ideas of stable clustering, but may lead to many outliers. Overall, the
referenced work [R1| presents a possible interpretation of over-time stability included
in a clustering algorithm.

83



Clustering of Time Series Regarding Their
Over-Time Stability

1°' Gerhard Klassen
Department of Computer Science
Heinrich Heine University
Diisseldorf, Germany
klassen@hhu.de

Abstract—The clustering of time series data is still a challeng-
ing task. There are different approaches which consider either
multiple time series or a single one. While some interpret the
whole sequence as one feature vector, others examine subse-
quences or extract relevant features first. Because of these various
perspectives, very different statements result. In this paper,
we present the clustering algorithm C(OTS)? for multivariate
time series data sets, that delivers a clustering per time point.
It not only optimizes the quality of the clusters regarding
intuitive demands, such as the spatial closeness of objects to
their neighborhood within a cluster, but also the stability over
time. Additionally, it can easily handle missing data points. The
algorithm is of benefit whenever a cohesion of groups of time
series can be assumed. One advantage is, that it requires only
one parameter. Our experiments on different synthetic and real
world data sets show, that our method works reasonable and
fulfills the intention of finding temporal stable clusters without
presupposing that the exact courses of the time series resemble.

Index Terms—Time Series Analysis, Clustering Methods,
Unsupervised Learning.

I. INTRODUCTION

The analysis of sequentially registered data, so called time
series, has strongly grown in interest over the past years, as
there are more and more data sources for temporal data, such
as online shops, IoT devices or medical sensors. The research
field, in which databases of multiple multivariate time series
are considered, often focuses on the task of classifying these
or parts of them to investigate different properties. In many
cases, the desired classes are not known beforehand, so that
clustering algorithms need to be used. Various approaches
consider the whole time series as a vector or extract feature
vectors first. Some make use of a decomposition into seasonal,
trend and other components.

In this paper, we present C(OTS)?, a clustering algorithm
for multivariate time series data, that clusters the data points
per timestamp without missing the temporal context. The
presented idea is based on two connection factors: one which
expresses the connection factor of one object to another at
a certain timestamps, and the other including the temporal
context. With the help of these factors and a sliding window,
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we are able to construct a graph which describes the distance-
and time-based cohesions. Its connected components represent
the resulting clusters. The basic intention of C(OTS)? is the
detection of clusters that are stable over time. The intuitive
definition of compact clusters, where cluster members have a
low distance to each other, is thereby mostly maintained. The
maximization of the so called over-time stability does not force
unintuitive clusters that are spread over the feature space. Still,
it has a significant impact on the resulting clusters. Since the
temporal components can easily be removed from the cluster
calculation, the algorithm can also be used for clustering non-
temporal data. Figure 1 shows two examples of clusterings
provided by C(OTS)?.

In contrast to approaches like the detection of Moving
Clusters [1], our assumption is, that time series might change
their cluster members over time and that this transition would
consist of important information. Therefore we build a foun-
dation for further analysis, whereby the detection of outliers
is already partly included as our clustering algorithm is able
to handle distance- and time-based noise.

Besides the use cases of tracking topics in online forums or
the analysis of customer’s purchasing behavior, our algorithm
is useful whenever it can be assumed that there are groups
of time series that behave in a similar way over time. In
finance for example, the identification of misstatements re-
garding the annual financial statements of companies is of
great interest. One approach is to interpret these statements
as anomalous points with regard to a common behavior. This
might be described by the behavior of other companies’
financial statements that showed a similar behavior over time.
With C(OTS)? these groups and possibly even the outliers
may be identified and a solid foundation for further analysis
could be provided. Another example is the analysis of the
effectiveness and tolerance of medication regarding different
patients. Every human body responds different to different
medications. Thus, the formation of groups of patients whose
bodies react similar to the drugs, can be assumed. However,
it is possible that patients change their groups over time due
to different circumstances, for example simply because their
body is unique and responds different to the medication than
its former cluster members. The group transitions of patients
can be an indicator for an anomaly or the necessity of a
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Fig. 1: Examples for resulting clusterings by C(OTS)?, when
only one timestamp is considered. Different colors indicate
different cluster belongings.

change in medication, and might help in the prediction of
future disease progression. With C(OTS)? this behavior can
be discovered.

II. FUNDAMENTALS

Before we explain our method in detail in the next section,
we clarify some important terms. Generally we stick to
the definitions of Tatusch et al’s paper [2], which deals
with the detection of outliers with the help of a time series
clustering per timestamp. We only make small adaptations and
introduce one new definition. In addition to the mathematical
statements, the most important definitions are illustrated in
Figure 2.

Definition 1. Time Series
A time series T} = (0,1, ..., 01,) is a tuple of n data points
with 07; € R?, d > 1. The data points are chronologically
ordered by their time of recording.

Definition 2. Time Series Data Set
A time series data set D = {T1,...,T,,} is a set of m time
series with equivalent points in time. The set of data points
of all time series at a timestamp ¢; is denoted as Oy,.
Different lengths and missing values are acceptable, as long
as the time points can be mapped to a uniform scheme.

Definition 3. Subsequence
A subsequence T ; 1, = (0,i, ..., 01,) With ¢ > k is a tuple of
successive data points from time series 7; beginning at time
t; and ending at tj.

Definition 4. Sliding Window
A sliding window of size s is a set of timestamps and is
denoted as w; s = {tif(%]’"'7ti7""ti+t%]}' In case a
timestamp is not represented by any time series of the data
set, it does not occur in the set.

Definition 5. Cluster
A cluster Cy, ; C Oy, at time t¢;, with |Cy, ;| > 2 and
j €{1,...,q} being a unique identifier (e.g. counter), is a set
of similar data points, identified by a cluster algorithm.

. Time Series T, -
¥ . .
Subsequence T , 5
P

Cluster Member

| _ -0

- Cluster

0 05 1.0 05 1.0 05 1.0 05 0. 05 1.
& ' £y g t,
v

Sliding Window wy 4

Slidin; Window wy y

Fig. 2: Illustration of the most important definitions. Note, that
a black arrow represents the development of a cluster, while
a black line between objects of a time series represents the
development of the sequence.

Definition 6. Cluster Member
A data point o;; from time series 7T; at time ¢;, that is
assigned to a cluster Cy, ; is called a member of cluster Cy, ;.

Definition 7. Noise
A data point o;; from time series 7; at time ¢; is considered
as noise, if it is not assigned to any cluster.

Definition 8. Clustering
A clustering is the overall result of a clustering algorithm for
all timestamps. In concrete it is the set ( = {C1 1,...,Cp 4} U
Noise.

III. RELATED WORK

With the growing amount of time-dependent data in many
applications, researches have presented different approaches
to classify time series. The Time Series Classification Repos-
itory (TSCR) [3] established by the University of California,
Riverside (UCR) and the University of East Anglia (UEA) led
to a growth in the number of algorithms for time series clas-
sification problems. Besides the hosting of suitable data, the
repository also offers a performance comparison on algorithms
to the data. The methods presented in the TSCR target the
identification of groups, so called classes, and the assignment
of objects to those. Therefore, in contrast to our approach,
these techniques regard the time series as a whole, so that
the classification task refers to the entirety of the sequences.
Referring the classification problems presented in the UCR this
is reasonable, especially since Eamonn Keogh and Jessica Lin
remarkably argued that clustering of time series subsequences
is “meaningless” [4]. The problem we are tackling in this paper
is different. Instead of identifying the class of a time series,
we are interested in the behavior of time series in relation
to other sequences. Especially changes in their behavior can
contain significant information. This problem is related to
cluster evolution over time [1], [5] with the difference, that
instead of recognizing earlier clusters at later timestamps, our
approach targets a clustering as a basis for the identification

85



of anomalous subsequences. Therefore we introduce the term
time series adaptability which reflects a time series’ ability
to adapt to other sequences, that means its average similarity
in relation to the data set. It may also be understood as the
degree of team spirit of a sequence. Besides the tracking of
topics in online forums, detecting outliers in financial data or
fMRI scans, there are various other applications which could
profit by our clustering algorithm.

The idea of using graphs in clustering algorithms is not
new. In 2003, Stuetzle [6] proposes a graph-based clustering
algorithm based on runt test for multimodality [7]. The clusters
are identified by breaking edges in the minimal spanning
tree of the regarded data set. Other graph-based clustering
approaches make use of Delaunay Triangulations [8], which
represent the dual graph of the Voronoi diagram for a discrete
point set. There are techniques which make use of a user input
as a threshold for the construction of the graph [9] and methods
like AUTOCLUST [10] which do not require any user input.
However, in contrary to our algorithm, these approaches do
not take the temporal aspect of time series into account.

Finally classic clustering algorithms like k-Means [11] or
DBSCAN [12] could be adapted to time series. Since the
initial design does not handle time-based data, the modification
is not simple. Regarding subsequences as vectors does not
reflect the impact of time accordingly. Developing a distance
function that includes the temporal aspect might be more
promising. However, this is again a complex problem as a
time series’ neighborhood has to be considered as well. Of
course, the naive approach of clustering the data at all time
points independently of each other should also be taken into
account. Obviously this approach lacks the temporal linkage,
but in addition the clustering algorithm’s hyperparameters have
to be determined for every timestamp. In all cases, an analysis
of cohesion post clustering has to be made. This would further
influence the time complexity in a negative way. The design
of our algorithm is targeted to time series, hence the cohesion
analysis is done on the fly during the determination of clusters.

IV. METHOD

Our algorithm is designed to detect stable over-time clusters.
That means, that the actual position of an object at one
timestamp is not as important as its surrounding. We accept a
certain deviation of an object to a cluster, if it moved with the
same cluster members over a certain time period. The sliding
window is optional. If not given we regard the whole time
series. Our method is based on an arbitrary distance function
which is normalized by the maximum distance dp,x and
minimum distance dp;, over all timestamps. This is necessary
to convert the distance measure to a similarity measure. For
two sequences T,,T; we define the distance d at time point
t; as follows.

d(Ta,Tb,tj) = dZ‘St(Oaﬁj,ObJ‘) (1)
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Fig. 3: A high opacity represents a high adaptability. The
central location and the low distances to its neighbors lead
to a high adaptability of a. In contrary, the high distance and
peripheral location of e causes a low adaptability for it.

Here, dist is an arbitrary distance function. Now the similarity
at timestamp t; of two time series can be calculated by

d(T,, Ty, t;) — dmin))2. )

- dmin

We square the term to get overall smaller similarities with a
greater difference to each other. Later this becomes handy,
when determining the only parameter in our method. The
creation of clusters not only depends on the similarity of two
objects, but also on the factor how adaptive an object is. We
denote an object as being adaptive if it has a high similarity
to many objects. It is the average similarity of the regarded
object to every other object. Mathematically expressed, the
adaptability ad of a time series at the timestamp ¢; is defined
as

sim(Ty, Ty, t;) = (1 - (

dmax

1
Mot =y 2
x m|,x#a

sim(Ty, Ty, t;)

with m describing the total number of objects at timestamp
t;.

In Figure 3 an illustration for the adaptability can be seen.
It is important to understand this concept in order to rate the
later influence of it to the resulting clustering.

The combination of the adaptability of an object and its
similarity to another object represents the connection factor
cf at time point ¢;:

cf (Ty, Tp, t5) = sim(Ty, Tp, t;) - ad(Ty, t;). 3)
Because of the adaptability of time series 7,, the connection
factor between two time series at a certain timestamp is not
symmetric. More precisely, in most cases it is c¢f(T,, Ty, t;) #
cf(Ty, Ta, tj).

Finally, we introduce the temporal linkage by the aver-
age connection factor avg_cf, which then is incorporated
in the temporal connection factor temp_cf. The calculation
of avg_cf is introduced with a sliding window, but can be
adapted to the whole time series easily. This is particularly
useful when short time series are considered. First have a look
at the definition of avg_cf with a sliding window w; s:

1

To, Ty, wj) = ———— -
(J/Ug_Cf( b wjas) |wj,s| _ 1

> of(To, Ti ta).

i€w,i#]



In case the application on the whole time series is wanted,
the size of the sliding window can be set to the number of
time points of the largest time series. As noted in the previous
section, points in time which are not present in the data set, do
not occur within the set of the sliding window. The temporal
connection factor tmp_cf is then defined as the average of cf
at time point ¢; and avg_cf. This leads to a higher influence
of c¢f at the regarded point in time.

cf Ty, Ty, t5) + avg_cf(To, Tp, wj s)

2 .
With the help of the temporal connection factor tmp_cf and a
parameter min_cf indicating the minimum connection factor
to build an edge between two data points, an undirected
graph Gy, = (V,E) can be created for every timestamp.
V' = O, denotes the set of nodes in the graph which are
given by the data points of all time series at time ¢;. The set
E C {{04,j,0,j}|V0a,5,05,; € Oy} contains all undirected
edges between pairs of nodes of the graph. Using the minimum
connection factor min_cf, an edge between o, ; and oy ; is
added to the graph whenever the temporal connection of o, ;
to op, ; or the temporal connection of o, ; to 04 ; is greater or
equal min_cf. So E is defined as

tmp_cf (T, Ty, t;) =

E = {{0a,, 00 }Htmp_cf(Ta, Ty, t;) > min_cf V
tmp_cf(Ty, Ty, t;) > min_cf}.

4)

After the graph is built, the clusters can be extracted by
calculating the connected components! of it. Each component
represents one cluster, whereby single-element components are
marked as noise. Due to the usage of the introduced connection
factors non-convex cluster shapes can be detected.

Since the connection factor cf and the adaptability ad are
based on the similarity s¢m of the time series at a timestamp,
the threshold min_cf highly depends on the closeness of
objects belonging to the same cluster. The more compact the
groups of data points are the higher min_cf must be set.
Because of avg_cf the over-time stability of course has impact
on the parameter choice as well. The more stable the time
series are, the clearer the gradation of their connection factors,
since cf and avg_cf are converging.

The summarized algorithm can be seen in Algorithm 1. The
time complexity of the calculation of ¢tmp_cf for all object
pairs is in O(n?) as it can be done by matrix multiplication and
all its components, like calculating the distance, are in O(n2).
Since tmp_cf must be calculated for all m timestamps, the
time complexity gets O(m-n?). The graph again can be created
in quadratic runtime and the connected components can even
be extracted in linear time. So the overall time complexity of
C(OTS)? is O(m-n?) with m being the number of timestamps
and n being the number of time series. Compared to the use
of k-Means, which is in O(n?) and would have to be applied
for every timestamp, which results in O(m-n?), too, this time
complexity is competitive.

1“A connected component of an undirected graph is a maximal set of nodes
such that each pair of nodes is connected by a path.” — https://www.sci.unich.
it/~francesc/teaching/network/components.html

Algorithm 1 C(OTS)?
1: procedure COTS(D, min_cf) >D={T1,..,Tn}
2 clusters < list of empty dictionaries
3 V«{LE+{}

4: for t; € {t1,..,t,} do

5

6

for all (o4, 0p,) € O?i do
caleulate tmp_cf(T,, Ty, 1)
aforementioned formula tmp_cf
7 if tmp_cf(Tm Tb7 Z) >
(0a,i,0p;) not in E then
E <+ EU{(04,i,00,)}

> use the

min_cf A

: end if

10: end for

11: G+ (V.E)

12: components —
extract_connected_components(G)

13: components < mark_noise(components) >
one-element sets denote noise

14: clusters < clusters U components

15: end for

16: return clusters

17: end procedure

As the temporal connection factor is based on the average
connection factor, which is zero when considering only one
timestamp, the approach can also be used for clusterings of
non-temporal data using only the connection factor. Examples
of resulting clusterings with C(OTS)? on non-temporal data
are illustrated in Figure 1.

V. EXPERIMENTS

Since our approach is a novelty in the field of time series
analysis, unfortunately there is no appropriate quality measure
which consists of the over-time stability as well as a shape-
based measure for clusters. Therefore, we evaluate the accu-
racy of C(OTS)? by visual inspection. For illustration reasons,
we generated three different data sets G, G2, G5 with time
series containing two dimensional features, and between four
and eight timestamps. Additionally, we consider two real world
data sets comprising financial figures from the annual financial
statements of publicly listed companies and a data set based
on macroeconomic features of countries.

All experiments are explained along with figures. For rea-
sons of illustrations the time series shown are never lasting
for more than eight years and do not hold a high number of
objects per timestamp. This does not indicate, that our method
is not capable of handling greater data sets with more points
in time. Quite in the contrary, especially the use of the sliding
window, allows us the application to longer sequences. The
amount of data points per timestamp changes the results, as
it is expectable of a clustering algorithm but the results are
still reasonable as can be seen in the experiments with the
generated data sets. The shown explanatory figures always
follow the same color code. Red indicates outliers, while other
colors indicate a cluster.
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Fig. 4: Resulting clustering by C(OTS)? with min_cf = 0.35 and s = 3 on the generated data set G; with an overall low

over-time stability.

A. Synthetic Data

The first data set G; is supposed to represent a very
unstable data set over time. It includes 60 time series and
four timestamps. In order to point out the impact of the
temporal behavior on the resulting clustering, five clusters
were positioned fix in the feature space for all timestamps.
For each point in time every time series was placed randomly
into one of the five clusters. The data set and C(OTS)>?
clustering result can be seen in Figure 4. The first row
shows the resulting clustering. The second row illustrates the
excerpt from the upper clustering marked by a rectangle.
Red data points indicate noise while other colors represent
cluster belongings. Classic clustering algorithms which do not
include a temporal aspect would have found five clusters per
timestamp as there obviously are always five dense groups of
data points. C(OTS)?, however, marks most objects as noise
and finds only small clusters. This can be explained by the fact,
that only a few time series move with their cluster members
over time. Most of them behave individually and therefore do
not show a good team spirit. When considering the zoomed
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illustration in the second row, it is noticeable, that there are
points in the center of the group, which are marked as noise
or a separate cluster. This as well is caused by the over-time
stability, which is aimed to be optimized in C(OTS)?.

Note, that this experiment was executed with different
parameter settings, thus never a good clustering result could
be achieved, except of the case, when only one big cluster
results. This is a desired behavior, since regarding the over-
time stability, this data set can not be reasonably clustered.
An example of the same cluster formation but perfectly stable
time series can be seen in Figure 1. The result is the same for
one or multiple timestamps if the time series behave stable
over time.

The second data set G5 consists of 15 stable time series
and 4 timestamps, and intends to show an over-time clustering
that slightly differs from a clustering per time point without
temporal context. This effect can be caused by inserting time
series which move between two clusters or a merge of clusters
over time. In our case there is both, transitions as well as a
merge. The result is shown in Figure 5. Since the data points
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Fig. 5: Resulting clustering by C(OTS)? with min_cf = 0.15 and s = 3 on the artificially generated data set Go.
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Fig. 6: Resulting clustering by C(OTS)? with min_cf =

of the upper cluster are not very close to each other, min_cf
has to be chosen comparatively small.

In every time point there can be seen two up to three
groups of data points. C(OTS)? always identifies two clus-
ters, although at least in timestamp two, a classic clustering
algorithm without temporal component probably would have
found three clusters. This can be explained on the one hand
by the transitions of time series 1, 2 and 3 between the
two upper clusters, and on the other hand by the fact that
the aforementioned clusters merge at a later point in time.
The result of a subsequence clustering would probably look
different, too, as the exact course of the individual time series
differs a lot. The time series 1, 2 and 3 might for example be
recognized as noise, because their curves stick out with regard
to the other time series.

In the third data set G5, 3 clusters for 8 timestamps and a
total of 50 time series were generated. Five sequences, namely
46 — 50, were inserted as outliers, by placing them randomly
in the feature space for every point in time. Figure 6 illustrates
the clustering result of C(OTS)? with min_cf = 0.32 and a
sliding window with size s = 3. Since the cluster members
of each cluster lie close to each other and the time series
are rather stable over time, all connection factors get higher
values, so that min_cf is chosen higher than for example in
Figure 5.

At first sight it is visible that C(OTS)? manages to detect all
outlier sequences as such. As in the last two timestamps time
series 50 is positioned near to the right cluster, the algorithm
assigns it to it. This behavior is reasonable, because both, the
similarity and the stability are given. In time point 3 on the
other hand, time series 50 is not assigned to the upper cluster
although it is located very near to the cluster’s members. That
is the effect of the considered over-time stability.

In the first four points in time C(OTS)? detects three
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0.32 and s = 3 on the artificially generated data set G's.

clusters, which probably would also be recognized by common
clustering algorithms. From time point five there are only two
clusters, which is apparently a good choice especially for the
timestamps six to eight. Although in timestamp five there are
three obvious groups of time series, C(OTS)? merges the upper
ones in terms of the further course. Because of the sliding
window with width 3, the time points 4, 5 and 6 are considered
in order to make a clustering for time point 5. Since the
connection factors in timestamp 6 are generally higher than
in timestamp 4, as more objects lie in small distance to each
other, this timestamp has a higher impact on the clustering in
timestamp 5. Therefore, the merge already happens in time
point 5.

B. Real World Data

In order to test our method on real world data, we present
two data sets. After presenting a financial data set, we present
a macroeconomic data set and demonstrate how one could
discover knowledge with the help of our algorithm.

First, we chose a financial data set which we obtained from
EIKON [13], a product provided by Revinitiv (former provided
by Thomson Reuters). We selected 30 arbitrary companies
and two random features, namely SoftAssets and Pension
over a timespan of eight years (2007 to 2014). The latter
represents reserves for retirement plans of workers, while the
first represent assets which have no physical nature such as
patents, copyrights and trademarks. Unfortunately not every
feature is available for every company at every point in time,
therefore new companies may appear and other companies
may disappear over time. In Figure 7 one can see the results
of C(OTS)? applied with a sliding window of size five. Every
box represents a company, the label corresponds to the stock
symbol of the company. In 2009 one can observe a good
example for the time aspect of this clustering algorithm.
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Fig. 7: Resulting clustering by C(OTS)? with min_cf = 0.26 and s = 5 on the financial data set.

Although the companies GM and MTLQU.PK are very close
to each other our method marks both as noise instead of
creating a new cluster for them. This has two main reasons,
first the adaptability of GM and MTLQU.PK is low in all
three years from 2008 to 2010, second the connection factor
of MTLQU.PK and GM in 2008 is very low and therefore
also lowers it in the temporal connection factor. Comparing
this to a clustering per timestamp, most cluster algorithms
would assign GM and MTLQU.PK to a new cluster in 2009.
It is also noticeable, that MTLQU.PK is detected as an outlier
in the year 2012, where it is actually very close to a small
agglomeration. In contrary the behavior of GM adapts to those
of F, GE and IBM from 2012 on. The small splitting of /IBM
in 2013 is not punished and the stability of this cluster is
preserved. On the other hand, the small splitting of UPS from
2007 to 2008 causes UPS being recognized as an outlier for
the rest of the time. Since the distance of UPS to its peers is
rising over time, this is a correct behavior of our algorithm.
Another interesting aspect is the handling of overall outliers.
In this excerpt AT&T, which is represented by the symbol T
is always far away from the other companies. Therefore it is
also always marked as noise. The second data set is obtained
from theglobaleconomy.com [14]. It contains different features
to countries over several years. We have chosen two figures
to illustrate our algorithm on this data set. Additionally, we
have chosen 2007 to be the beginning and 2012 to be the
end of the regarded time. Because of this time span and
the data basis, only 19 countries remained. The first figure
we chose, is the household consumption as percent of the
GDP and the second feature is the unemployment rate. The
results of our method can be seen in Figure 8. We chose
the given timespan, because of the financial crisis in 2008.
The first observation, we made is, that the number of outliers
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increases from the year 2010. In conclusion that means, that
the unemployment rate and the household consumption as
percent of the GDP did not develop everywhere in the same
way after the crisis. It can also be said, that the effect of the
crisis is long-term, especially when inspecting numbers later
than 2012. While the unemployment rate in some countries
remained almost the same as before the crisis, some countries
had a bad development. For example Estonia (EST) and Spain
(ESP) had an increase of unemployment from 2009 on. While
the change of Estonia is still close to the majority in 2009,
Spain had a worse development and therefore is marked as an
outlier. In 2010, Estonia almost has the same unemployment
rate as Spain and both countries are far away from the majority
in the blue cluster. Finally, Estonia somehow reacted on the
crisis and could significantly lower its unemployment rate, so
that it came very close to those of the majority. Spain on
the contrary, had a rising unemployment rate until the last
regarded year. In econometrics, this could be a helpful and
quick analysis, which puts economic figures into the relation
of groups of other countries.

VI. CONCLUSION & FUTURE WORK

The clustering of time series data is a broad field of research.
Depending on the application there exist various approaches.
When considering multiple multivariate time series, often
whole sequences or parts of them are clustered using different
preprocessing. In this paper, we presented a novel approach
for clustering multivariate time series data. Our over-time clus-
tering algorithm is named C(OTS)? and produces clusterings
for every timestamp. One particularity of our approach is, that
the exact course of (parts of) time series not necessarily has
to resemble but the spatial location with regard to other time
series over time. Another advantage is, that C(OTS)? requires
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Fig. 8: Resulting clustering by C(OTS)? with min_cf = 0.34 and s = 3 on the globaleconomy data set.

only one parameter. The results on various data sets showed,
that the resulting clusters are stable over time, while satisfying
intuitive demands on clusters, like spatial closeness of objects
belonging to the same cluster. Since the calculation is based
on two components of which one is time-independent, our
algorithm can be used on non-temporal data for connection-
based clusterings, as well. Additionally, it can easily handle
missing data points. Because of a sliding window, the user
is furthermore able to control the temporal impact on the
clustering. We are keen to see a development in this field
of research. It is important to benchmark the results against
other algorithms with the same objective. However, regarding
our algorithm, improvements still can be done. Although, we
had no real difficulties to find good values for min_cf, a
determination method would be very helpful. We are also
aware of the optional second parameter s, the size of the
sliding window. However, we think, that this is depending on
the targeted analysis and should be determined by the domain
specialist. In addition, we believe that runtime optimization
could make the algorithm even faster, than it already is.
Finally, it would be interesting to develop a fuzzy derivative
of C(OTS)?, where data points can belong to more than one
cluster, as there are many applications where a hard clustering
is not possible or wanted.
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EXCURSION: OUTLIER DETECTION IN
FINANCIAL DATA

In this excursion chapter, we introduce two works [R4, R7] that both present methods
to predict so-called financial restatements of published balance sheets. Restatements
always occur when intentional or unintentional errors were discovered in the original
balance sheet. Although intentional errors are usually associated with far greater eco-
nomic damage, as they usually constitute fraud [49], non-intentional errors can also
lead to such damage [26]. It can therefore be advantageous for all parties involved to
anticipate such restatements when the first balance sheet of a year is published.

While in the first work [R4| in section 4.1 we consider the data of a company as
a time series and cluster vectors from one time point to another, in the work [R7] in
section 4.2 we apply common machine learning algorithms without time reference. The
results obtained are comparable, although it can be noted that the isolation forest [41]
performs best in all respects.

The introduced work [R4, R7| is important for this dissertation because, on the one
hand, it shows problems in clustering time series and, on the other hand, it provides
results that can be compared with the outlier detection methods from Chapter 3.
Such a comparison may provide further information about the potential of the outlier
detection methods presented [R5, R8, R9].
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4.1 Predicting Erroneous Financial Statements Us-
ing a Density-Based Clustering Approach

Martha Tatusch, Gerhard Klassen, Marcus Bravidor, and Stefan Conrad. Predicting
Erroneous Financial Statements Using a Density-Based Clustering Approach. In Pro-

ceedings of the 4th International Conference on Business and Information Management,
ICBIM 20, New York, NY, USA, 2020. Association for Computing Machinery.

Contributions: The main idea for this work was developed by Martha Krakowski
(née Tatusch) and Gerhard Klassen . Both main authors implemented the described
approach and the associated experiments in equal parts. Jun.-Prof. Dr. Marcus Bravi-
dor motivated the work and provided the business context. Prof. Dr. Stefan Conrad
supervised the work.

Status: published

In the first excursion paper [R4] we present in this chapter, we address the problem
of detecting restatements using DBSCAN [20], a density-based clustering method. We
consider about 9000 companies and look at the annual data of the companies as a time
series. Because we hope to gain information from the temporal context, we do not
cluster the raw data, but rather the vectors between two time points in each case. It
has been shown that this relatively simple approach leads to comparatively good results.
Although the state of the art method of Dechow et al. [17] is based on a different data
set, we consider the results comparable. Especially with regard to precision, i.e. the
ratio of correctly recognised (true positives) to the set of all recognised (true positives +
false positives), our method performs significantly better. From our point of view, this
method demonstrates the advantages of including the temporal aspect. It served as an
introduction to the matter and the development of the Cluster Quer-Time Stability
Evaluation and Fuzzy Clustering Stability Evaluation of Time Series .

94



Predicting Erroneous Financial Statements Using a
Density-Based Clustering Approach

Martha Tatusch
Department of Computer Science
HHU Dusseldorf
Dusseldorf, Germany

tatusch@hhu.de

Marcus Bravidor
Department of Business Administration
HHU Dusseldorf
Dusseldorf, Germany

bravidor@hhu.de

ABSTRACT

In this paper, we present a novel machine-learning approach to
detect and predict restated financial statements. Our approach is
based on DBSCAN, a cluster analysis algorithm. In contrast to prior
methods, we assume that firms which perform different than their
peers (outliers) are more likely to restate. By modifying DBSCAN
to also incorporate temporal variation of these differences, we
optimize the algorithm to fit financial data. We test our model for
US data and benchmark against prior findings in accounting
research. Our results show that the modified version of DBSCAN
is more efficient than prior approaches. Best results are obtained if
we cluster based on only two or three features. We outperform prior
approaches regarding the precision to identify restatements. As
with prior results, detection error increases for material
restatements.
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1. INTRODUCTION

Restatements weaken the reliability of financial information. They
are an important signal for investors and have (negative) long-term
financial consequences [1]. Even though the number of
restatements declined from more than 800 in 2009 to around 550 in
2017 [2], the number is still troublesome. Therefore, it is important
for financial statement users, particularly investors, to be able to
identify potential restatements. In this paper, we aim to detect
financial restatements with a modified, dynamic version of the
DBSCAN [5] clustering algorithm.

To evaluate our model, we use data from Thomson-Reuters (TR)
EIKON [8] for the 20-year period between 1998 to 2017. For
benchmarking, we use four different sets of restatements. First,
restatements are defined as changes in any notable financial
statement position (see Appendix.A1l) recorded in EIKON. Second,
relevant restatements that change either sales, operating cash flow,
net income or shareholders' equity. Third, relevant and material
restatements which are similar to the second definition but the
change for any position must be at least 5%. Note that the first
definition is the least strict, with two and three increasing in
strictness, respectively. The fourth definition has to be considered
separately as it is given by restatements reported by Audit Analytics

[1].

To detect financial restatements, we use our modified DBSCAN
algorithm. The idea behind this approach is that similar firms
should have similar attributes and changes in a similar fashion.
Hence, once a firm behaves abnormally in a sense that it shows
different development in attributes than its peers, we assume it to
be an "outlier". The advantage of using an unsupervised machine-
learning algorithm like DBSCAN is that we need no ex ante
expectations on (a) why firms behave differently, and (b) the
threshold in differences that makes a firm an "outlier". Firms are
clustered within industry groups (defined as four-digit Thomson-
Reuters Business Classification codes) and there are one up to six
attributes (features) provided.

Our results show that our approach correctly classifies more than
50% of all firm-years as (non-)restatement years for all four
restatement definitions. On first sight, this result falls short of prior
approaches (e.g., [3] report an accuracy of more than 65%).
However, DBSCAN excels in precision of the results. We report
values of 65.6%, 52.7%, 33.5% and 16.4% for the four restatement
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definitions, respectively. [3] score 0.7%. Put differently, our
approach is many times more likely to correctly classify
restatements (as opposed to non-restatements).

We contribute to the literature in several ways. First, prior models
used to identify financial restatements usually relied on either
extensive multiple regression models or supervised machine-
learning approaches. Whereas the first require a lot of firm-level
data, the latter are often time opaque and the results difficult to
understand. We address both issues and implement an efficient
clustering algorithm which can detect restatements based on two or
three firm-level items. Second, DBSCAN was initially build to
work with 'static' data. We introduce a modified, dynamic version
of DBSCAN which can detect cluster outliers by changes over
different periods. Put differently, our approach is suitable to track
changes in yearly firm-level data.

The paper is structured as follows. In section 2, we briefly discuss
some background information on financial restatements as well as
prior studies in accounting and computational science research. In
section 3, we introduce our modified, dynamic version of
DBSCAN. Evaluation results and benchmarks are presented in
section 4. The paper ends with some concluding remarks.

2. BACKGROUND

An important distinction in the first place is the difference between
erroneous and fraudulent financial statements. Fraudulent
statements are the product of (management's) intention to mislead
the user. Erroneous statements are simply (partly) false. The
reasons can be manifold: fraud / intention, clerical or technical
errors, etc. Once such an (material) error is found, the company
must file a restatement. In our case, we are not interested in the
reason behind the error. Therefore, we look at restatements as an
indicator for any kind of erroneous financial statement.

In their extensive survey of accounting research, [10] differentiate
between the causes and consequences of financial statements.
Especially smaller firms, growth firms, and firms with a low
earnings and/or reporting quality are more likely to restate. Most of
these studies use logistic regressions to identify the causes (e.g.,
[3]). In their methodological review on data mining techniques used
to identify financial restatements, [4] show that most studies in this
realm build upon artificial neural networks, Bayesian Belief
Networks and other forms of supervised learning. We follow their
call to explore other complementary techniques. In this case, cluster
analysis as another form of unsupervised machine-learning.

3. MODEL DESCRIPTION

In the following, we explain our method, the related parameter and
feature selection as well as necessary basics of the original
DBSCAN algorithm.

3.1 DBSCAN

DBSCAN is an algorithm for discovering clusters in large
databases with noise [5]. In contrary to other clustering
algorithms, DBSCAN determines clusters with the spatial density
property of the regarded data points. In addition, the problem of
identifying the right number of clusters is omitted, since it is
automatically established. The algorithm differentiates three types
of data points:

e  Core points: A point p is a core point if there are at least
minPts points in the e-neighborhood of it (including p).
The e-neighborhood of p is defined as the spatial region
with center p and radius £>0.

96

e  Density-reachable points: A density-reachable point is
a point that is located within the e-neighborhood of a core
point.

o Noise points: A noise point is a point that is neither a
core point nor a density-reachable point.

A cluster consists of at least one core point and minPts-1 density-
reachable points. Core points of different clusters are not density-
reachable regarding each other. Points that are not assigned to any
cluster are interpreted as noise.

3.2 Our Approach

As outlined above, current approaches for the detection of
financial restatements have two major shortcomings. First, they
rely on an "estimate-predict” idea. Take the case of a logistic
regression. In order to predict whether a firm-year is likely to be
restated, one has to first estimate the model parameters, then
reverse and fill in the "blanks" with firm-year specific data. This
approach requires a lot of data (out of sample predictions) and
judgment (e.g., thresholds). Second, to draw meaningful
inferences, the variables in the prediction model have to be
selected on ex ante expectations.

For our approach, we require no ex ante expectations. We assume
that similar firms behave in a similar and comparable manner.
Similar deviations or periodic changes represent shared economic
characteristics. To cover a broad set of economic factors we use the
set of variables from [3]. Furthermore, we consider real activities
manipulation proxies (RAM, [9]), and accrual-based earnings
management (AEM) based on the modified Jones-model ([7]; [6]).
We expect these features to hold more information about
restatements than usual balance sheet figures.

In order to avoid the comparison of highly distinctive companies
and industry-specific circumstances such as seasonal changes, our
algorithm is applied to every industry sector separately. We define
industry sectors based on four-digit TR Business Classification
codes. We analyzed about 30 features (see the full list in
Appendix.Al) and targeted a solution with less input features than
the state-of-the-art approaches. Therefore we looked into different
feature sets. A feature set f for a year ¢ is described as f; =
agq, ..., 0y With n € {2, 3,4, 5}. Then the development vector is
calculated as dyy1 = fr41 — [t

In order to identify misstatements the development vectors of
companies in the same section are clustered with DBSCAN.
Finally, development vectors which are not assigned to a cluster are
regarded as misstatements.

33 Feature & Parameter Selection

In order to determine the best feature set for our approach and the
most suitable setting of DBSCAN, we set a few constraints and
iterated through all possible combinations. Since the most values
are between 0 and 1, the possibilities for the radius € of DBSCAN
were set to [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0]. minPts was set
to integers between 3 and 6.

To avoid the curse of dimensionality only subsets containing one
to maximal five features were considered. In Appendix.Al a
complete list of all features is given. The original fields from
EIKON (prefix “TR-") have been normalized with the assets of the
year before. All fields with the suffix “Error” contain the difference
between the actual value and the expected regression value. For
example, in FF-CFOError the difference between the actual
cashflow from operating activities and the expected value of
Roychowdhury's regression is stored. All regressions were
calculated for every firm-year in every sector.



Note that the processed values and the original fields were
considered individually. That means, that the subsets of all fields
with the prefix “FF-" and all subsets of the fields with the prefix
“TR-" have been tested. This was done to check whether, in our
method, the popular proxies from [3], [6], [7] and [9] are more
expressive than the original data.

4. EVALUATION

In the following, we will present our experiments, starting with the
experimental setup, and discuss the results.

4.1 Experimental Setup

We analyzed 9300 companies with available data from 1998 to
2017. The data has been retrieved from TR EIKON which also
holds restated figures.

In this paper, we observe four definitions of restatements:

®  Definitionar: A statement is considered a restatement, if
one or multiple financial values have been changed
afterwards.

®  Definitionreievans: A statement is considered a restatement,
if at least one relevant financial value has been changed
afterwards. Relevant values are: net income,
shareholder's equity, operating cashflow, and sales.

®  Definitionreievaniss: A statement is  considered a
restatement, if one or multiple relevant financial values
(see Definitionreievanr) have been changed by at least 5%
afterwards.

®  Definitionauair: A statement is considered a restatement, if
it is reported as restatement by Audit Analytics.

In case necessary data is missing, the firm-year is not included. This
leads to different observations for different feature sets. All feature
sets and parameters were evaluated on the HPC-Cluster of the
Heinrich-Heine-University Diisseldorf. We analyzed about 500000
combinations of features and parameters. Every feature set was
submitted as a job to the cluster.

4.2 Results

Apart from the type I and type II error, we consider three other
measures:

correct classified firm years

[ ] accuracy =
y all firm years

correct classified as restatement

. recision =
p all classified as restatements

correct classified as restatement
all real restatements

e recall =

The detection of restatements is a challenging task. Since the data
set is often very unbalanced, as there are only few misstatements, it
is important to find a model that is not only strong in recognizing
objects of one class.

The accuracy is not a suitable measure to verify this property.
Suppose a dataset consists of 90% non-restatements and 10%
restatements. If a model classifies every firm-year as non-
restatement, an accuracy of 90% is achieved. This behavior is not
desirable as the model does not make decisions based on features
but on the fact, that most of the firm-years are non-restatements.

Precision and recall are more informative measures in this task. The
precision indicates the relative value of how many elements of
those classified as restatements have been correctly detected. The
recall specifies the percentage of all restatements that have been
recognized. If the recall is small, it is likely that the model rarely
classifies objects as restatements. If the precision is small, this

means that the probability, that a classification as a restatement is
correct, is very low.

Table 1. Results for Definitionan.

Original No
Data obs. \ pred. Rest. Rest. >

Rest. 4066 3719 7785
No Rest. 2140 2171 4311
> 6206 5890 12096
Rest. 52.2% 47.8% 64.4%
No Rest. 49.6% 50.4% 35.6%

Precision: 65.6%

Recall: 52.2%

Accuracy: 51.6%

Processed No
Data obs. \ pred. Rest. Rest. >

Rest. 7816 7704 15520
No Rest. 5976 6215 12191
> 13792 13919 27711
Rest. 50.4% 49.6% 56.0%
No Rest. 49.0% 51.0% 44.0%

Precision: 56.7%

Recall: 50.3%

Accuracy: 50.6%

Top: TR-AccountsPayable, TR-NetIncome,
TR-TtIPlanExpectedReturn, £ = 0.01, minPts = 5. Bottom: FF-
CH CS, FF-CH EMP, FF-CFF, FF-TAX, £= 0.1, minPts = 5.

In Table 1, 2, 3 and 4 the best results after iterating all possibilities
are shown for the four restatement definitions from 4.1. In this
paper, results are considered as good if the hit rates are higher than
the error values, and the precision and recall are near to their
maximum. Unfortunately, many (original and processed) values are
missing, so that only combinations with at least 10000 observations
are discussed in the following.

Table 1 shows the results for Definitionai. The hit rates are
highlighted using bold font. With this definition both, the original
values from EIKON as well as the processed data lead to good
results. It is notable, that with Definitionas combined with the best
settings, the restatements form the majority with 64.4% and 56.0%.
The classification into restatement and non-restatement is balanced.
This means that the model does not only focus on one class. The
precision indicates that the model detects restatements with a
certainty of 65.6% with the original data and 56.7% with the

processed features. [3] use 7 different features (variables, model 1)
339

48621
not directly comparable. One reason are the different data sets and

the definition of the outcome variables (restatements vs. accounting
and enforcement actions). On the other hand, [3] achieve a better
recall with 68.6%. This means that they are more likely to detect
restatements. However, this may be due to the fact that the number
of restatements was smaller. Although there is a gap between the
achieved precision with the original data and the processed proxies,
both outcomes are competitive regarding the results in [3], as the
recall is only slightly lower, but the precision is significantly
higher.

and report a precision of

= 0.7%. Of course, the values are
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Nevertheless, these results are not fully comparable due to different
definitions.

Table 2. Results for Definitioneievant.

Original | obs.\pred. | Rest. No Rest. 2
Data Rest. 2938 2487 5425
No Rest. 2639 2644 5283
5 5577 5131 10708
Rest. 54.2% 45.8% 50.7%
No Rest. 33.4% 66.6% 49.3%
Precision: 52.7%
Recall: 54.2%
Accuracy: 52.1%
Processed | obs.\pred. | Rest. No Rest. PN
Data Rest. 5911 5725 11636
No Rest. 7881 8194 16075
X 13792 13919 27711
Rest. 50.8% 49.2% 42.0%
No Rest. 49.0% 51.0% 58.0%
Precision: 42.9%
Recall: 50.8%
Accuracy: 50.9%

Top: TR-NetSales, TR-TtlPlanExpectedReturn. Bottom: FF-
CH_CS, FF-CH_EMP, FF-TAX. In both cases & = 0.0] and
minPts = 5.

The results for Definitionreievant can be seen in Table 2. The original
values as well as the processed proxies achieved good results with
subsets of two and three features. The best performance, however,
has been reached with the original data using two values: 7R-
NetSales and TR-TtIPlanExpectedReturn.

The data set and classification are nearly balanced. Nevertheless, it
can be observed that non-restatements are better identified than
restatements. Although only two original values are used, the hit
rates can compete with those of [3]. Furthermore the precision is
again significantly better. Using three proxies from [3] the hit rates
are around 50%. However, we reach better precision values.

In Table 3 the results for Definitionrelevanis? are shown. The
calculations show that original values as well as the processed ones
achieve good results with subsets of two up to five elements. The
pure financial ratios again delivered better scores than the
processed proxies. This time restatements have a higher hit rate
than non-restatements in both cases. The hit rates of the processed
data are similar to the ones for Definitionanin Table 1.

Last but not least the results for Definitionauair are shown in Table
4. The best settings are very similar to the ones regarding
Definitionyelevants2s. One reason for this could be that both definitions
are quite granular. Only 13.8% of the data (15.3% respectively)

is considered as restatement. It is striking that for the first time
better results can be achieved when using the processed data with a
precision of 16.4%. However, the difference between the results of
the different data is not very considerable.

One notable finding is that precision decreases for more granular
or strict definitions of restatements. Hereby, the recall slightly
increases. In our approach, the popular proxies for the processed
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Table 3. Results for Definition eievants.

Original obs. \ pred. Rest. No Rest. >
Data Rest. 2077 1741 3818
No Rest. 4129 4149 8278
> 62006 5890 12096
Rest. 54.4% 45.2% 31.6%
No Rest. 49.9% 50.1% 68.4%
Precision: 33.5%
Recall: 54.4%
Accuracy: 51.5%
Processed | obs. \ pred. Rest. No Rest. >
Data Rest. 3754 3308 7062
No Rest. 10038 10611 20649
> 13792 13919 27711
Rest. 53.2% 46.8% 25.5%
No Rest. 48.6% 51.4% 74.5%
Precision: 27.2%
Recall: 53.2%
Accuracy: 51.8%

Top: TR-AccountsPayable, TR-NetIncome,
TR-TtIPlanExpectedReturn, £ = 0.01, minPts = 5. Bottom: FF-
CFF, FF-CH CS, FF-CH EMP, FF-TAX, £= 0.1, minPts = 5.

data generally perform worse than the original data for the
restatements extracted from EIKON. Only when considering the
Audit Analytics information, the processed data scores slightly
better. Altogether, our model performs best on a broader definition
with the original data (financial ratios). It could be shown, that our
approach works better with the original data than with economic
proxies, so that in total only up to four features are necessary to
achieve the shown results.

5. CONCLUDING REMARKS

In this paper, we introduced a modified, dynamic version of the
DBSCAN clustering algorithm. We use this algorithm to detect
financial restatements. Overall, our approach is highly efficient.
We reach more than 50% accuracy with just two or three features.
Remarkably, the modified version of DBSCAN performs
particularly in detecting restatement years as compared to non-
restatement years.

Our results should be of interest to practitioners and standard-
setters. We demonstrate that it is not the amount of data alone but
the data processing method that can make a difference.
Furthermore, we would like to point to the difficulty of assessing
the superiority of one approach to another based on different
evaluation criteria. Whereas our approach scores low values of

accuracy compared to [3], it is much better suited to identify
restatements (precision).

One major shortcoming of our paper is the limited knowledge about
the generalizability of results. More testing is required to analyze

the dependence of the results on the characteristics of the
underlying sample as well as deriving evidence on the predictive
power of the results.



Table 4. Results for Definitionaudir.

[91 Roychowdhury, S.: Earnings management through real
activities manipulation. Journal of Accounting and

Original No .
Dg ta obs. \ pred. Rest. Rest. 2 Economics 42 (2006), 335-370
Rest. 882 789 1671 [10] Sievers, S., Sofilkanitsch, C.: Financial Restatements:
No Rest. 4739 5686 10425 Trends, Reason§ for Occurrence, and Consequences. A
> 5621 6475 1209 Survey of the Literature.
§ : : APPENDIX
Rest. 52.8% 47.2% 13.8% Table Al. List of features included
No Rest. 45.5% 54.5% 86.2%
Fields Source
Precision: 15.7% FF-CFF FF-CH_BACKLOG
Recall: 52.8% FF-CH_CM FF-CH_CS
Accuracy: | 343% FECHINV | FFCHPENSION
Pr(I))cessed obs. \ pred. Rest. No 2 FF-CH_REC FF-CH_ROA Dechow
ata Rest. FF-EXFIN FF-ISSUE et al. [3]
Rest. 2264 | 2000 | 4264 FF-LEASEDUM | FF-LEVERAGE
No Rest. 11563 12125 23688 FF-OPLEASE FF-PENSION
PN 13827 | 14125 | 27952 FF-RSST ACC FF-SOFT_ASSETS
- - - FF-TAX FF-WC ACC
Rest. 53.1% | 46.9% | 153% FF-CFOEmor FF-COGSErtor —
No Rest. 48.8% 51.2% 84.7% FF-DISEXPError FF-INVError d}?yc 09W'
o — FF-PRODError ury 191
recision: 4%
FF-ACC_JONESError Jones [6
Recall: 53.1% = KothaEi ]
Accuracy: | 51.5% FF-ACC_KOTHARIError ctal. [7]
Top: TR-AccountsPayable, TR-Netlncome, TR-Employees TR-NetIncomeAfterTaxes
TR-TtIPlanExpectedReturn, € = 0.01, minPts = 4. Bottom: FF- TR-LTDebt TR-NetIncomeBeforeTaxes
CH_CS, FF-CH_EMP, FF-TAX, € = 0.05, minPts = 3. TR-LTDebtIssued TR-PreferredStockNet
TR-LTDebtNet TR-SgaExpenseTotal
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4.2 Evaluating Machine Learning Algorithms in Pre-
dicting Financial Restatements

Gerhard Klassen, Martha Tatusch, Weisong Huo, and Stefan Conrad. Evaluating Ma-
chine Learning Algorithms in Predicting Financial Restatements. In Proceedings of the

4th International Conference on Business and Information Management, ICBIM 20,
New York, NY, USA, 2020. Association for Computing Machinery .

Contributions: The idea for this paper came from Martha Krakowski (née Tatusch)
and Gerhard Klassen . Weisong Huo implemented the algorithms under the guid-
ance of Gerhard Klassen. The paper was written entirely by Gerhard Klassen. Martha
Krakowski (née Tatusch) was mostly involved in an advisory capacity. Prof. Dr. Stefan
Conrad supervised the work.

Status: published

In developing our outlier detection procedures, the question arises as to how well
our procedures actually detect certain outliers. However, this evaluation alone is not
very meaningful if you do not compare it with other methods already available. For
this reason, we have applied common machine learning methods to the same problem
in the paper [R7|. This paper serves as a reference and allows the evaluation of the
results from our outlier detection methods.

In the referenced paper |[R7|, we apply six well-known machine learning methods
to corporate financial data obtained from [47]. We present the results and additionally
show the influence of XGBoost [13], a featureboost algorithm, to the results.
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ABSTRACT

The identification of financial statements which were willfully or
accidentally misstated is important for all involved parties:
Investors can expect improved returns, analysts preserve their
reputation and auditors avoid costly litigation. In this paper, we
chose six state-of-the-art machine learning methods which we
analyze in their ability to detect misstatements. In addition to that
we investigated the influence of a FeatureBoost algorithm, namely
XG-Boost to all of the six machine learning methods. The
underlying data is retrieved from Eikon [6], a financial database
provided by Refinitiv (former provided by Thomson Reuters). In
order to take out our experiments we chose about 9000 US-
companies and 757 features per year over ten years. We offer six
definitions of ground truth of which three can be calculated with
the data extracted from the Eikon database. The other three
definitions are created with the help of an external data source
provided by Audit Analytics Europe [8]. Our well structured results
give an overview on the performance of current machine learning
methods in order to identify misstatements.
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1. INTRODUCTION

"One tiny drop changes everything" was the advertising slogan of
Theranos, founded in 2003, promising a technology which would
detect cancer with only a drop of blood. In 2018 it revealed to be
one of the most scandalous fraud cases of the last century. Although
the whole scope was not known to publicity immediately, it was
assumed that Theranos got a long history of misstating their
finances. The SEC confirmed this later with a press release [15]. At
this point the harm was already done: Reputations were forever
damaged, billions of Dollars were burned and the hope in the
advertised technology destroyed. The story of Theranos is not
unique. Similar stories could be told about the accounting scandals
of Enron, WorldCom, Tyco and many other fraudulent companies.
While reading about these cases one question comes to the fore:
"Couldn't this have been predicted?". There are many different
perspectives and approaches to answer this question. Since various
analysts and investors were deceived by the fraudsters for several
years, one approach may be the use of artificial intelligence.
However, not every Al method is suitable for this task, since the
reason for a classification of a misstatement is at least as important
as the classification itself. Finally, false detection of misstatements
could also cause damage in many ways. Hence, in this paper we do
not investigate the performance of neural networks, since these got
a black-box character, which is a subject of current research.

Although fraud is one motivation for misstatements, it only
represents a small fraction of companies. In fact, most false
statements happen due to human made mistakes [16]. While some
mistakes are detected and corrected quickly, others cause huge
damage similar to fraudulent statements [16].

It is undoubted, that the detection of misstatements is an important
field of research for all involved parties. The information that a
company misstated a financial statement can make a huge
difference in investment decisions. It also got a high impact on the
market, especially if a misstatement was done willingly. However,
the detection of false statements remains to be a difficult task,
especially when trying to detect those automatically. The problem
begins with a definition of a misstatement. While detected false
statements are forced to be restated, unveiled ones remain hidden.
This is a difficulty when applying supervised learning algorithms,
which require a labeled training set. In this paper we present six
machine learning algorithms of which five are supervised and one
is unsupervised. All algorithms are taken out with and without
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XGBoost [3], which is a representative for feature-boost
algorithms. In order to train the supervised models we introduce six
different definitions of misstatements, all based on restatements.
We analyze about 9000 US-firms with 757 features per year from
1998 to 2017. We retrieved our data from Eikon [6], which is
provided by Refinitiv (former provided by Thomson Reuters) and
Audit Analytics Europe [8].

2. RELATED WORK

Although there are several other works which use machine-learning
techniques in order to identify misstatements, none of them
analyses the impact of feature-boost algorithms. Actually most of
them like [4,5] use feature-sets selected by domain specialists.
Being aware of the fact, that the knowledge of domain specialists
can enhance the results, we added 28 features from [11]. These
features had a great impact in the presented work and we assume
that they could also have a positive influence in this work. In
contrary to [4] and [5] we use way more features and show the
impact of a feature-boost algorithm to the results. Other works try
to uncover hidden misstatements [1]but do not apply their model to
actual restatements. There are also works which present models for
fraud detection [10]. In contrary to [10], we do not use neural
networks, because of their black-box character. We assume a higher
gain from results which potentially can be explained, since this
could also explain false-positives. Finally there are also approaches
which regard the problem from the perspective of someone who
would manipulate a financial statement. One popular work in this
field of research is [14]. Roychowdhury makes use of regression
equations in his work. Since we want to evaluate the strengths and
weaknesses of machine-learning methods in detecting
misstatements, the approach of [14] is not really comparable to our
approach. All in all there to the best of our knowledge there is no
other work which provides an extensive machine-learning and
feature-boost evaluation to the presented dataset.

3. DATASETS AND DEFINITIONS

In this study we make use of two different data sources. The first
data source is Eikon [6] provided by Refinitiv (former provided by
Thomson Reuters). From Eikon we retrieved 732 financial figures
0f 9263 companies from 1998 to 2017. Additionally we added 28
features, which were meaningful in [11]. We regard the financial
figures as features and use them as input for the machine learning
algorithms.

As stated in the introduction, we use five supervised algorithms
which require a training phase. In order to realize the training, we
require labeled data. For revealed misstatements, namely those
which were restated, we offer six definitions. Three of those are
calculated with the help of the Eikon data. The other three
definitions are based on data retrieved from Audit Analytics Europe

[8].

Since we can only evaluate with unveiled and corrected
misstatements we make use of financial restatements. Eikon
provides two versions for every financial figure: The actual figure
stated by the company and a restated figure. In case a firm corrected
a number, the restated figure differs from the actual figure. It must
be noted though, the reason for the correction is not given by the
database. In order to obtain the values the Python Eikon API offers
the parameter ReportingState, which can be either set to Orig
(original) or Rstd (restated). Audit Analytics Europe differs two
different types of restatements. Those which got a positive effect
and those which got a negative effect. In the following section we
provide all six definitions of misstatements.
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4. MODEL DEFINITIONS

In this section we give the six misstatement definitions. For those
we solely use restatements, since these are the only misstatements
which got revealed and accessible to the public. We define the
restatements as follows:

1. Eikon based definitions

a. all: If any figure has been restated in a certain
year, we label the company to have misstated
in this year.

b. relevant: If at least one of the relevant figures
has been restated by a company in a certain
year, we mark this year as a misstatement for
this firm. We consider the following five
figures as being relevant: Net income,
shareholder's equity, operating cashflow and
sales.

c. relevant5%: If at least one of the relevant
figures has a restated value which is 5% higher
or lower than the actual stated figure, we mark
the statement of the to be a misstatement.

2. Audit Analytics based definitions

a. positive: The restatement had a positive effect
on the originally stated figures.

b. negative: The restatement had a negative effect
on the originally stated figures.

c. positive or negative: The original financial
statement was restated according to Audit
Analytics Europe.

In order to detect the defined misstatements, we make use of six
machine learning methods. Additionally, we analyze the impact of
XGBoost [3], a feature-boost algorithm to the results. Three of the
applied machine learning methods are classic algorithms: The K-
Nearest-Neighbor classification algorithm (KNN), the Support
Vector Machine (SVM) [17] and the Decision Tree [12]. In the
following we denote these models as simple. The other three
machine learning algorithms are so called ensemble methods. In
concrete that means, that these are algorithms which combine the
results of several classifiers. Therefor we applied the Random
Forest [2], the Isolation Forest [18] and AdaBoost [9].

S. EVALUATION

In order to evaluate the performance of the machine learning
methods we make use of a three-fold cross-validation and use the
common measures, namely precision, recall and the fl-score. First
we will have a look on the performance of the machine learning
algorithms without applying XGBoost.[3]. Then we present the
results with XGBoost applied before using the classifiers. In some
cases some results would not give further insight, this is why we
left those out. This applies especially to the first two restatement
definitions of every data source. Note, that the label in the tables
represent the two classes restatement (=1) and no-restatement (=0).
Another important remark is that we did not tune the parameters of
the machine-learning algorithms. Instead we used the proposed
standard parameters from scikit-learn, a python machine-learning
library [13].

5.1  Evaluation without Feature Boost

In this section we present the results without XGBoost being
applied priorly. In Table 1 one can see the results for the first three
classic models applied on all 760 features. It can be clearly seen,
that the K-Nearest-Neighbor algorithm outperformed the other
algorithms, although the amount of false negatives (Type II error)



is extremely high. The high precision of the SVM in this
classification task can be explained with the imbalanced dataset.
The SVM is actually predicting almost every data point as being a
non-restatement.

Table 1. Results of simple models regarding the restatement
definition all.

negative effect can be detected well by any of the three simple
methods. Actually all algorithms tend to classify almost every firm
year to be stated correctly. This is why we did not show the results
here. The only acceptable result is achieved by the K-Nearest-
Neighbor algorithm and the positive or negative (Table 4)
definition of restatements, although 1916 misstatements were not
detected as such.

Algorithm Label Precision Recall | Fl-score Table 4. Results of simple models regarding the restatement
0 0.89 0.91 0.90 definition positive or negative.

KRN 1 0.66 0.61 0.64 Algorithm Label Precision Recall F1-score
Decision 0 0.79 0.98 0.88 KNN 0 0.94 0.99 0.96
Tree 1 0.60 0.13 0.21 1 0.44 0.12 0.18
0 0.78 1.00 0.87 Decision 0 0.93 1.00 0.96
VM 1 0.97 0.00 0.00 Tree 1 0.00 0.00 0.00
0 0.93 1.00 0.96
In Table 2 one can observe the results of the simple methods for the SVM 1 0.00 0.00 0.00

restatement definition relevant. Although the definition is stricter
than the a// definition, the results can be compared. The K-Nearest-
Neighbor algorithm is again outperforming the other methods. It is
also the one which actually detects the most misstatements.

Table 2. Results of simple models regarding the restatement
definition relevant.

Algorithm Label Precision | Recall | Fl1-score
0 091 0.95 0.93
KNN
1 0.63 0.49 0.55
Decision 0 0.86 0.98 0.91
Tree 1 0.57 0.16 0.25
0 0.84 1.00 0.91
SVM
1 0.90 0.00 0.00

The last Eikon based definition is also the strictest. The results of
the three simple algorithms can be seen in Table 3. All algorithms
perform worse with this restatement definition, especially the
Decision Tree tends to classify all data points as being no
restatements. This leads to an extremely high precision and an even
higher recall regarding the firm years which were labeled as no
restatement.

Table 3. Results of simple models regarding the restatement
definition relevant5%.

Algorithm Label Precision | Recall Fl-score
0 0.93 0.98 0.95
KNN
1 0.57 0.31 0.40
Decision 0 0.91 1.00 0.95
Tree 1 0.00 0.00 0.00
0 0.91 1.00 0.95
SVM
1 0.80 0.00 0.00

Restatements retrieved from Audit Analytics Europe [8] have an
even worse detection ratio than the Eikon based definitions. Neither
the restatements with a positive, nor the restatements with a

Overall the ensemble methods perform better, in particular the
Isolation Forest is outperforming every other algorithm. In Table 5
it can be seen, that with the strictest Eikon based definition
relevant5% the Isolation Forest also outperforms the K-Nearest-
Neighbor algorithm. This is also the case for all other Eikon based
definitions. The other two ensemble methods show similar
performance as the simple algorithms.

Table 5. Results of ensemble models regarding the
restatement definition relevant5%.

Algorithm Label Precision Recall Fl-score
Random 0 0.91 1.00 0.95
Forest 1 0.00 0.00 0.00
Isolation 0 0.89 0.98 0.93
Forest 1 0.89 0.54 0.67
0 0.92 0.99 0.95

AdaBoost

1 0.54 0.13 0.21

The Isolation Forest also performs better with the positive or
negative restatement definition, retrieved from Audit Analytics
Europe. Comparing Table 4 and Table 6, one can see the Isolation
Forest again outperforms the K-Nearest-Neighbor algorithm.
Regarding the positive and negative definitions of restatements, the
Isolation Forest has a similar performance to the positive or
negative definition.

4.2 Evaluation with Feature Boost

In this subsection we present the feature-boosted results of the six
machine-learning methods. XGBoost [3] selected only 93 of the
757 features. However, unlike one would expect this does not
influence the results significantly. As you can see in Table 7, KNN
profits the most by XGBoost, regarding the restatement definition
relevant5%. Although it is losing one percent of the recall at
thenon-restatement firm-years, it is gaining three percent in the
classification of misstatements. Regarding the other Eikon based
restatement definitions, the results are pretty similar to the one in
Table 8 The Audit Analytics Europe definition of a restatement
(positive or negative) has still a poor detection rate with the simple
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machine learning methods. In Table 8 one can see that KNN has
the maximum gain, which is three percent at detecting
misstatements.

Table 6. Results of ensemble models regarding the
restatement definition positive or negative.

Algorithm Label Precision Recall Fl1-score
Random 0 0.93 1.00 0.96
Forest 1 0.33 0.00 0.00
Isolation 0 0.87 0.98 0.92
Forest 1 0.75 0.6 0.38
0 0.93 1.00 0.96

AdaBoost

1 0.00 0.00 0.00

Table 7. Results of simple models with XGBoost applied,
regarding the restatement definition relevant5%.

Algorithm Label Precision Recall Fl1-score
0 0.93 0.97 0.95
KNN
1 0.56 0.34 0.42
Decision 0 0.91 1.00 0.95
Tree 1 0.00 0.00 0.00
0 0.91 1.00 0.95
SVM
1 0.81 0.00 0.00

Table 8. Results of simple models with XGBoost applied,
regarding the restatement definition positive or negative.

Table 9. Results of ensemble models with XGBoost applied,
regarding the restatement definition relevant5%.

Algorithm Label Precision Recall F1-score
0 0.94 0.99 0.96
KNN
1 0.46 0.15 0.22
Decision 0 0.93 1.00 0.96
Tree 1 0.00 0.00 0.00
0 0.93 1.00 0.96
SVM
1 0.00 0.00 0.00

There is also a rather small influence on the ensemble methods. In
Table 9, one can see that the Isolation Forest slightly profits by the
prior application of XGBoost, while AdaBoost has worse results
than without priorly applied the feature-boost algorithm. However,
the change is not significant and accounts maximum to only +0.04
for the Isolation Forest and the recall of misstatements and -0.03
for precision of the misstatements for AdaBoost.

Feature-boosting with XGBoost [3] has its highest impact on
ensemble methods in combination with the negative or positive
restatement definition. Comparing Table 6 and Table 10 one can
see, that the impact on the precision of the Isolation Forest in
detecting restatements is 0.07 higher with XGBoost than without it.
Although the amount of detected misstatements is still very low,
the precision of detecting them is also higher for the Random
Forest, if applying XGBoost first.
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Algorithm Label Precision Recall F1-score
Random 0 0.91 1.00 0.95
Forest 1 0.00 0.00 0.00
Isolation 0 0.90 0.98 0.94
Forest 1 0.91 0.58 0.70
0 0.92 0.99 0.95

AdaBoost

1 0.51 0.12 0.19

Table 10. Results of ensemble models with XGBoost applied,
regarding the restatement definition positive or negative.

Algorithm Label Precision Recall Fl-score
Random 0 0.93 1.00 0.96
Forest 1 0.45 0.00 0.00
Isolation 0 0.87 0.99 0.93
Forest 1 0.82 026 0.39
0 0.93 1.00 0.96

AdaBoost

1 0.00 0.00 0.00

S. CONCLUDING REMARKS

Our extensive evaluation has shown that the detection of
misstatements of any definition presented in this paper is a difficult
task. The strictness of the restatement definition has a high impact
on the performance of the machine learning algorithms. Especially
the KNN algorithm produced worse results, the stricter the
restatement definition was. Beside the Isolation Forest, all
ensemble methods were also struggling with this classification task.
Our assumption is, that the reason for the results is the highly
unbalanced dataset. The stricter the restatement definition
becomes, the less firm-years are labeled as actual misstatements.
This makes some algorithm classify all firm-years as good stated,
as this is the majority class.

According to the results, the impact of feature-boosting with
XGBoost [3] was rather small. However, if the same results can be
achieved with 93 of 757 features this has a high impact on the
runtime of the machine-learning algorithms. In addition to that the
last experiment with the ensemble methods and the restatement
definition positive or negative has shown that XGBoost actually
can boost the results by a two digit number.

S. FUTURE WORK

Detecting restatements is an important task for all involved parties.
As this survey has shown, the results have plenty of air at the top.
In our opinion, the usage of neural networks is no alternative, since
it is hardly possible to get insight to the decision process. In the
future we would like to see other machine learning methods to be
applied on the presented combination of data. These could be other
clustering algorithms, like DBScan [7] or classification algorithms
like Naive Bayes.
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CONCLUSION AND FUTURE WORK

5.1 Overall Summary

Gerhard Klassen, Martha Tatusch, and Stefan Conrad. Cluster-Based Stability Eval-
uation in Time Series Data Sets. 2021.

Contributions: The presented methods were developed in earlier papers. The new
experiments concerning the time series cluster evaluation were carried out by Gerhard
Klassen. The real world data sets were aquired and preprocessed by Gerhard Klassen.
The manuscript was written in equal parts by the two main authors under the supervi-
sion of Prof. Dr. Stefan Conrad. The paper has been submitted to ACM Transactions
on Knowledge Discovery from Data (TKDD) in May 2021.

Status: submitted

In the paper referenced in this section [R2], we once again establish the connection
between the evaluation procedures and the applications based on them. In principle,
the most stable clustering is first sought for an application based on CLOSE or FC-
SETS. In the following paper, different clustering methods are evaluated and their
results are presented. In addition, we present a new data set, the COVID-19 data from
Hopkins University [18|, which, when paired with our methods, provides interesting
insights into the global evolution of the pandemic.
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In modern data analysis, time is often considered just another feature. Yet time has a special role that is regularly overlooked. Procedures
are usually only designed for time-independent data and are therefore often unsuitable for the temporal aspect of the data. This is
especially the case for clustering algorithms. Although there are a few evolutionary approaches for time-dependent data, the evaluation
of these and therefore the selection is difficult for the user. In this paper, we present a general evaluation measure that examines
clusterings with respect to their temporal stability and thus provides information about the achieved quality. For this purpose, we
examine the temporal stability of time series with respect to their cluster neighbors, the temporal stability of clusters with respect
to their composition, and finally conclude on the temporal stability of the entire clustering. We summarise these components in a
parameter-free toolkit that we call Cluster Over-Time Stability Evaluation (CLOSE). In addition to that we present a fuzzy variant
which we call FCSETS (Fuzzy Clustering Stability Evaluation of Time Series). These toolkits enable a number of advanced applications.
One of these is parameter selection for any type of clustering algorithm. We demonstrate parameter selection as an example and
evaluate results of classical clustering algorithms against a well-known evolutionary clustering algorithm. We then introduce a method
for outlier detection in time series data based on CLOSE. We demonstrate the practicality of our approaches on two real world data

sets and one generated data set.

CCS Concepts: « Computing methodologies — Anomaly detection; - Information systems — Clustering; - Mathematics of

computing — Time series analysis; Cluster analysis.
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1 INTRODUCTION

With the increase of time series (TS) data, their analysis is becoming more and more important. There are many different
approaches which are all suitable for different setups. However, most of the methods target the analysis of individual
time series, while only a few aim to analyse whole TS databases. Without any doubt, the information gained from a
time series database can have a significant influence on the results, especially compared to an analysis applied to only

one time series of the database.
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A setting which illustrates this circumstance is the stock market: During an economic crisis most of the shares lose
value. Regarding only one share at a time could lead to a false interpretation (e.g. an outlier sequence within the time
series), while regarding all time series simultaneously the assessment would result differently.

Although the mentioned setting describes extreme circumstances, it is obvious that similar problems in analysis and
interpretation also occur under normal conditions. The examination of this kind of setups can prove to be very difficult,
since it can be useful not to look at the whole database at once, but to look at specific groups instead. This requires
the identification of groups which is often accomplished by applying suitable clustering algorithms. Although this is
a well researched topic for time independent data, approaches for time series are often insufficient, sometimes to an
extent that the produced results are meaningless [21]. As this has been identified as a major problem in time series
clustering, the research field evolutionary clustering developed. According to [7] evolutionary clustering is producing
a clustering per timestamp, hence a series of clusterings. Each clustering should be similar to the clustering of its
predecessor, while accurately reflecting the properties of its own data. As this definition is not regarding a certain
clustering algorithm, this leads to a variety of approaches adapted to different clustering algorithms (read more about
this in Section 2). There are also approaches which try to define the necessary adjustments to a standard clustering
algorithm to receive an evolutionary clustering algorithm [7, 9]. However, the amount of different approaches and
different clustering algorithms makes it difficult to select a suitable method for a certain task.

The detection of groups in time series can provide important insights into the data at hand. The application areas of
our toolkits and the methods based on them, such as outlier detection, are diverse. One conceivable application of our
methods is on medical data, where patients could be identified who were initially grouped with healthy patients and
whose medical values then slowly move away from this group. Another area of application is the financial market,
where, for example, companies can be grouped that behave similarly over time, so that classic company classifications
such as the Standard Industrial Classification (SIC) or the North American Industry Classification System (NAICS)
can be usefully supplemented. Companies that change their group more frequently in relation to other companies
may have anomalies that our outlier detection method would identify. Analyses of the current Corona epidemic are
also conceivable. Using data from the Coronavirus Government Response Tracker at the University of Oxford !, the
effectiveness of government measures to contain the epidemic could be analysed. It would also be possible to identify
how good the respective chosen timing of a measure was. There are countless applications where our methods can be
used. In addition, all our methods are transparent and provide explainable results.

In this paper we describe two fundamental methods to evaluate time series clustering according to its over-time
stability. The first algorithm CLOSE (Cluster Over-Time Stability Evaluation) [46] is designed for multivariate time
series in crisp cluster environments. Hereby we use an extended definition of evolutionary clustering: Instead of
targeting the similarity of two successive clusterings we demand the similarity of a clustering to all previous clusterings.
We call this the over-time stability and introduced it, because small changes between two timestamps could develop
to huge changes over several time steps. Those changes would be overseen by considering only two consecutive
timestamps. A simple example for this problem is the Covid-19 infection rate in different countries: If one country
changes its cluster peers from one point in time to the other, this may be reasonable. However, if the country is changing
its cluster peers in every time point, regarding solely the previous timestamp is not sufficient, since it does not hold the

historical changes. Therefore this country could not be directly compared to other countries, since among those there

Uhttps://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
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might be countries which have changed its peers as well. Hence, the changes before the previous timestamp contribute
to the overall stability.

In the course of this paper we will show that this adaptation of the definition is especially handy for certain
applications like outlier detection or parameter selection for time series clustering. Our methodology is also very
different from other approaches in this field of research. In contrary to a framework or an adapted clustering algorithm,
CLOSE is a ready-to-use toolkit. It does not require any customization of the user-chosen clustering algorithm, instead
it analyses the produced clusterings per timestamp and returns a stability score. This can be used to find the best
parameter setting for the underlying clustering algorithm.

The second algorithm FCSETS (Fuzzy Clustering Stability Evaluation of Time Series) [26] is a toolkit developed for
fuzzy clustering environments. It makes use of the relative assignment agreement similar to the equivalence relation in
the Hilllermeier-Rifqi Index [17] and achieves a stability score by regarding the average weighted difference between
the relative assignment agreements of one time series to the others. The methodology of FCSETS is very similar to the
one of CLOSE and therefore further adjustments of the chosen underlying fuzzy clustering algorithm are not required.
Further we are presenting an outlier detection algorithm [45] which is an application of CLOSE. We give two variants
[47] of the procedure which focus on cluster transitions and therefore are capable to detect a new sort of outliers, which
are based on the behavior of time series in relation to its cluster peers. The implementation of the approaches as well as
the generated data sets are available on Github?.

In order to present the results of the introduced algorithms we use two real world data sets and one generated
data set. We apply CLOSE in combination with DBSCAN [13] and K-Means [33] and FCSETS in combination with
Fuzzy C-Means [5] to the selected data sets to get the best parameter settings. We qualitatively analyse the resulting
clusterings and in the case of K-Means we subsequently use the possibility to compare the CLOSE score with that of
the evolutionary K-Means from [7]. Further, we apply the outlier detection algorithms to the data sets and explain the

results in detail.

2 RELATED WORK

Since this work addresses many different problems and approaches, such as the (over-time) stability evaluation of (fuzzy)
clusters and the detection of anomalous subsequences, this chapter deals with related works from various domains, as

well.

2.1 Time Series Clustering

There are various techniques for clustering TS data in the field of time series analysis. In [51] the approaches are
divided into three categories: raw-data-based, feature-based and model-based clustering algorithms. The first type
describes approaches, which consider the TS data without any preprocessing. The second one works with feature
vectors extracted from the time series. In the third case, models are approximated for the representation of the TS data.

When considering approaches that work with the unprocessed TS data that is given, a common approach is clustering
subsequences of a time series [2, 18]. As this is usually done in order to find motifs in time series, only a single TS is
considered at once. This approach is controversial, since Keogh et al. state in [21] that the clustering of subsequences of
a single time series is meaningless. Chen, however, argues that it is possible to obtain meaningful results if the correct

distance measure is used [8]. In our context, the clustering has to be applied to multiple time series, though. Clustering

Zhttps://github.com/tatusch/ots-eval
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subsequences has some disadvantages. First, outlier data points may have a negative impact on the results. Second, the
determination of a meaningful length for the considered subsequences is difficult but needed, since the examination
of subsequences of all lengths is usually very time-consuming. In our approaches, subsequences of any length can
selectively be investigated and therefore provide more insights. Nevertheless, it has to be noted, that only subsequences
starting at the first existing timestamp are considered. This is reasoned by the assumption, that the entire time course
from the beginning is relevant for the analysis.

Another raw-data-based approach is the clustering of entire sequences [12, 27, 36]. Since potential correlations
between subsequences of different TS are not recognized, this procedure is not suitable for our applications.

In our context, the exact course of time series is not relevant, but rather the trend they follow. This can be achieved by
algorithms of the second type, where the sequences are transformed to feature vectors first [16]. By extracting relevant
features, the exact course gets blurred. However, the problem of not recognizing correlating subsequences still persists.

When considering the third type of TS clustering, a major approach is the usage of auto-regressive moving-average
models (ARIMA) [37, 53]. Therefore, an ARIMA model/mixture for every time series is fitted. Those sequences, whose
models are similar to each other, are grouped to the same cluster. Also, the sequences can be modeled by the Haar
Wavelet decomposition [49], their approximated seasonality [28] or with the help of Markov Chains [38]. However,
all approaches share the idea of clustering whole time series. In our application, correlating subsequences and the
movement of sequences with regard to their neighbors are of interest. Therefore, those methods are not applicable.

Approaches, which deal with the clustering of streaming data [15, 35] are also not comparable to our method, as
they deal with other problems such as high memory requirements and time complexity, and in addition to that usually

consider only one sequence at once.

2.2 Evolutionary Clustering

Evolutionary clustering describes the task of clustering temporal data per timestamp under the consideration of two
criteria: on the one hand, the clustering should be reasonable for the current data, and on the other the clustering
should not deviate significantly from one timestamp to another [7]. Different frameworks have been developed, which
meet both criteria regarding streaming data [9], TS data [54] and dynamic networks [23]. The framework, which is
presented in [7], for instance, is developed for streaming data and therefore an incremental approach, which for each

timestamp t tries to find a clustering C; that optimizes the following formula:
sq(Ce, M) = cp - he(C-1,Cy) | 1

where sq(Cy, My) is the snapshot quality regarding an object relationship matrix M;, cp is a change parameter and
he(Cr-1,Cy) is the history cost. The snapshot quality measures the quality of a clustering at a certain time point with
respect to the calculated n X n matrix M; which represents the relationship of all n objects to each other. The history
cost is calculated by the comparison of the clusterings of two consecutive time points, whereby the comparison may be
applied on different data levels. For example, simply the partitions of both clusterings may be compared, or the best
matching between two sets of centroids regarding KMeans [33]. The change parameter c¢p > 0 is a hyperparameter
which trades off between sq and hc. With this flexible framework a stable over-time clustering may be achieved,
which can be used as the underlying clustering for our outlier detection algorithm. Yet, due to the comparison of only
consecutive time points, short-term changes may have a strongly negative impact on the result and large long-term

changes may occur, which is not desirable.
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The problem of identifying so called Moving Clusters [19] seems to be a closely related topic, but addresses a slightly
different task. In contrast to clustering time series, this field of research deals with the detection of already given
clusters that remain mostly the same with regard to their members. In addition, it is assumed that a cluster remains
approximately the same size over time. This may apply to some tasks, such as herd tracking, which is examined in [19],

but in most cases this requirement can not be met.

2.3 Internal Cluster Evaluation Measures

For the evaluation of clusters and clusterings, various evaluation measures have been developed over the years. There
are two types of cluster evaluation measures: external and internal measures. The difference between the two is, that
while the expected result — also known as ground truth — is known for the external measures, it is missing for the
internal ones. Therefore, external evaluation measures make a qualitative comparison between the expected and the
real result. Internal measures, however, focus on other describing characteristics, such as the compactness or separation
of clusters in order to evaluate the quality of the result.

One common metric is the Sum of Squared Errors (SSE) that evaluates the compactness of clusters. In case of fuzzy
clusterings this measure can be used by weighting the membership degrees. The SSE is based on the calculation of the
overall distance between the members and the centroid of a cluster. The centroid usually describes the mean of all cluster
members. Since this measure only considers the compactness of clusters, further validity measures have been developed,
which evaluate the compactness as well as the separation. Common examples are the Silhouette Coefficient [41], Davies-
Bouldin Index [10] or Dunn Index [11]. When considering fuzzy clusterings, there are for example validity measures
which use only membership degrees [24, 31] or include the distances between data points and cluster prototypes
[4, 6, 14, 52].

However, all these metrics cannot directly be compared to our method since they lack a temporal aspect, but they

can be applied in our stability evaluation methods.

2.4 Stability Evaluation of Clusterings

There are also several approaches addressing the stability measurement of a clustering algorithm. One example is the
Rand Index [39], which is usually intended for the external evaluation of a clustering. Given the clustering {, and the
expected result {, it examines on the one hand all object pairs that are located in the same cluster in ¢, as well as
{t, and on the other hand all pairs that belong to different clusters in both clusterings. The measure is defined by the
number of corresponding object pairs in relation to the number of all possible object pairs.

The measurement of the stability of a clustering algorithm is for instance executed when searching for the optimal
parameter setting. In 2002, Roth et. al [40] introduced the resampling approach for cluster validation. Roth et. al put
forward the hypothesis, that if multiple partitionings of a clustering algorithm for the same parameter setting are
similar to each other, the parameter setting is good. The higher the similarity, the better is the parameter choice.

The unsupervised cluster stability value s(c) that is used in Roth et. al’s approach [40] is calculated as the average
pairwise distance between m partitionings:

m—1

m
3 d(Uei, Uoy)

i=1 j=i+
m-(m-1/2

s(c) = (2)
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where Ug; and Ucj, 1 < i < j < m, are two partitionings produced for ¢ clusters and d(Uy;, Ucj) is an arbitrary similarity
index of partitionings. The Rand Index can be used for stability evaluation by including it in this formula. Such stability
measures pursue a different objective and obviously do not take a temporal linkage into consideration [50]. Our stability
measure is similar to the unsupervised cluster stability value but it includes the temporal dependencies of clusterings.
An intuitive idea for achieving a temporal linkage would be to simply compare clustering pairs of successive points
in time. This approach would strongly weight variation between two points in time and neglect long-term changes.
An ongoing change would for instance be punished only slightly, since consecutive clusterings would be very similar,
while short-term deviations would stand out, although the overall behavior might be stable. Also, the index would
be strongly negatively affected by separations or merges of clusters of successive time points. Even when comparing
clustering pairs of all different time points these problems would persist.

In addition, the referred methods exclusively evaluate the (over-time) stability of clusterings. As stated in [3, 29],
however, stability alone is not sufficient for a proper evaluation of a clustering. CLOSE takes both into account, the

over-time stability as well as the quality of a clustering, to give an overall rating for an over-time clustering.

2.5 Anomaly Detection in Time Series

When regarding works dealing with outlier detection in time series, various definitions of the term outlier can be found.
Many approaches consider only single conspicuous data points such as additive outliers or change points [20, 32] and
focus on a single time series [1, 34, 43]. However, in our context the detection of anomalous subsequences is considered,
so that only algorithms, which either handle outlier subsequences or analyse the group behavior of multiple time series
over time, are relevant.

For the latter, approaches such as Probabilistic Suffix Trees (PST) [44], Random Block Coordinate Descents (RBCD)
[55] and various neural networks [22] have been developed and been shown to achieve convincing results. However,
while these methods examine the deviation of one time series to all others in the data set, we focus on the behavior of a
time series compared to its steady neighbors, since the consideration of the whole data set is only meaningful, if all TS
have a similar course. This is for example the case in sensor data. In order to analyse the group behavior over time,
we first have to identify continuous peers by clustering the TS data per time point. Then, the transitions of sequences
between different clusters over time can be analysed. This type of transitions is also evaluated in cluster evolution
methods. Landauer et al. [30] make use of such a method in order to calculate a prediction-based anomaly score for a
single data point. Similar to our approach, the TS data is clustered per timestamp. The cluster transitions of a considered
time series are then analysed by cluster evolution methods in order to approximate a model which predicts the next
data point. Although groups of time series are identified, the detection of outliers is therefore based on the prediction of
a single sequence. In contrast to Landauer et al. we refer to several time series.

Our approach is very different from clustering whole time series or their subsequences, since in that case the outlier
detection relies on the single fact whether a sequence is assigned to a cluster or not. Such an approach does not take
the cluster transitions of a sequence into account, which may be an expressive feature on its own. Hence, our approach
might recognize anomalous subsequences which in a subsequence clustering would have been assigned to a cluster and
therefore not been marked as outlier.

Apart from clustering subsequences, there are also other approaches for the detection of conspicuous subsequences
or so called discords [21]. Those often consider only a single time series at once. Therefore, only anomalous behavior
with regard to the course of one sequence is recognized. Though, in the context of the whole data set, this behavior

might for example be normal. Such methods are thus not applicable in our context.
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Fig. 1. lllustration of the most important definitions. Lines between objects of a time series represent the development of the sequence
[25].

3 METHODOLOGY

The agglomeration of similar time series is a problem which arises in many applications. There are various approaches
and a lot of research happened in this field. Since the definitions differ in related works, we first present our notations
of relevant concepts for our work. Subsequently, we will describe the principles of our approaches CLOSE [46] and
FCSETS [26].

3.1 Notations

The following definitions are based on our previous works [26, 45, 46].

Definition 3.1 (Data Set). A data set D = {Ti, ..., T;n} is a set of m time series of same length n and equivalent points

in time. Equivalent means, that they are either identical or they can be mapped to a reference timestamp.

Definition 3.2 (Time Series). A time series T = 04, ..., 04, is an ordered set of n real valued data points of arbitrary
dimension. The data points are chronologically ordered by their time of recording, with t; and t, indicating the first

and last timestamp, respectively.

The vectors of all time series are denoted as the set O = {041, ..., 0¢,,m }, With the second index indicating the time
series where this data point originates from. For the ease of reference we write Oy, for all data points at a certain point

in time.

Definition 3.3 (Subsequence). A subsequence Tty 0 = Oty 1> -+ 01,1 with j > i is an ordered set of successive real

valued data points beginning at time ¢; and ending at ¢; from time series T;.

Definition 3.4 (Cluster). A cluster Cy, j C Oy, at time t;, with j € {1,..., Nc} being a unique identifier (e.g. counter), is
a set of similar data points, identified by a cluster algorithm, where N is the number of clusters. This means that all

clusters have distinct labels regardless of time.

Definition 3.5 (Cluster Member). A data point o, ; at time t;, that is assigned to a cluster Cy, ; is called a member of

cluster Cy, ;.
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Definition 3.6 (Noise). A data point o,, ; at time ¢; is considered as noise, if it is not assigned to any cluster. A data
point that belongs to noise is also called an outlier. Noise describes the set of noise data points of all timestamps, i.e.

Noise = U Noisey, .

Definition 3.7 (Clustering). A clustering is the overall result of a clustering algorithm for all timestamps. It is defined
by the set { = {Cy,,1,....Cs, N} U Noise.

Definition 3.8 (Time Clustering). A time clustering is the result of a clustering algorithm at one timestamp. It is

defined by the set {3, = {Cyq, ..., Cs, p} U Noisey, of all clusters at time t.

Definition 3.9 (Fuzzy Cluster Membership). The membership degree uc,, ; (04,1) € [0, 1] expresses the relative degree

of belonging of the data object o, ; of time series T to cluster Cy, ; at time ¢;.

Definition 3.10 (Fuzzy Time Clustering). A fuzzy time clustering is the result of a fuzzy clustering algorithm at one

timestamp. It is defined by the membership matrix Uy, = [”Ct,.,,- (o4, D1

Definition 3.11 (Fuzzy Clustering). A fuzzy clustering of time series is the overall result of a fuzzy clustering algorithm

for all timestamps. It is defined by the ordered set U = Uy, ..., Uy, of all membership matrices.

An example for the above definitions can also be seen in Figure 1 and 2. In Figure 2, five time series of a data set D
=Ty, Ty, T¢, Ty, Te are clustered per timestamp for the time points #;, ¢j and t;. The data points of a time series T are
denoted by the identifier [ for simplicity reasons. The shown clustering consists of six clusters. It can be described
by the set { = {C;, 1, Ct; u, Ci; 00 C[j’f, Ctr.gsCrpn} U {0t} As 04, ¢ is not assigned to any cluster in t;, it is marked as
noise for this timestamp. The data points o, 4, 0;, j, of time series T, and Tj, in t; are cluster members of the yellow
cluster Cy, ;. The subsequences Ty, 1, and Ty, ;, j, from time series T, and T, move both from the yellow (Cy, ;) to the

red (Cy;,0) cluster. The green (Cy, p,) and pink (Cy, ) cluster can be summarized by the time clustering {7, at time #.

3.2 Over-Time Stability Evaluation

Since we want to measure the stability of an over-time clustering, whereby the partitioning may be produced by
an arbitrary (evolutionary) clustering algorithm, we assume that different clusterings constitute different cluster
connectedness based on the underlying TS members. Time series which separate from their clusters’ members often,
indicate a low over-time stability. For this reason, we first analyse the behavior of every subsequence of a time series
T = 04y, ...04;, With . < ty,, starting at the first timestamp. In case of a hard clustering, subsequently, every cluster is
rated by a stability function, based on the previous subsequence analysis of its members and the number of clusters that
merged into the considered cluster. The final over-time stability score for the whole clustering can then be calculated
with the rating of each cluster. When regarding fuzzy clusterings, the over-time clustering is directly rated based on the

subsequence scores.

3.2.1 CLOSE. Given a TS data set D = {Tj|1 < [ < m} with n timestamps and an over-time clustering {, let Cy, o
and C;, , be two clusters of {, with t;, tj € {t1,...tn}. The temporal cluster intersection, which is used for the stability

evaluation of a subsequence, is defined as follows
N {Cti,a,ctj,b} ={T; | 041 € Cia A 04,1 € Ctj,b} ) (3

with I € {1, ...,m}. The resulting set consists of time series, which contain data points that are grouped to the same
cluster in t;and #;. The transition of a subsequence from one cluster Cy, 4 in t; to another Cypin tjalong with its
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\/

Fig. 2. Example for cluster transitions of time series Ty, .., T, over time [47].

group behavior, which may be interpreted as team spirit, can now be expressed by the proportion of members of Cy, 4

remaining together in t;

o if Cra = 0
P(Ctia: Cryp) = 1 |Cey.aneCey ] 4)
—=—7— else
\ |Cti,a|
with #; < t;. Regarding the example in Figure 2 the proportion for C;, ; and Gy, » is defined by
{a b} _2

p(cti,l,ctj,u) = =1.0.

{a b} 2
This proportion can be used to evaluate the over-time stability of a subsequence by rating its history with a subsequence
score. In order to address the clusters a data point is assigned to, we first need to introduce an auxiliary function, which

we call cluster-identity function:

{(Z) if the data point is not assigned to a cluster
cid(or, j) = { (5)
\Ct,-,l else

For a data point oy, j at time t; the function returns the cluster it is assigned to. The subsequence score is then defined by

k-1

1
subseq_score(otk’l) = e Zp(cid(otbl),cid(o,k’l)) 5 6)
i=1

with [ € {1,...,m} and k being the number of timestamps where the data point exists. That means, that all time points
in which an object is an outlier, get the worst possible score of 0. The subsequence score takes into account how many
cluster members of the object from the previous timestamps have migrated together over time.

In the example of Figure 2, the score of time series T, at time point t; would be:
1 2 2
subseq_score(o4;.q) = 5 (2 + 3) =0.83.

This value reflects a quite high stability, which can be explained by the fact that T, moves with most of its cluster
members over the time period. The time series d, gets a significantly lower value of subseq_score(o;, 4) = 0.5 as it
never moves with any of its cluster members. Note, that the impact of transitions of single TS becomes significantly

lower when considering larger data sets.
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The stability of a cluster can now be evaluated focussing on two factors. The first one is the number of different

clusters of previous timestamps, that merged into the regarded cluster. This can be expressed by
m(ctk,i) = |{ctl,j | tl < tk Ada: Ot1,a € Ctl,j A Oty.a € Ctk,i}| > (7)

Furthermore, a cluster’s stability score depends on the subsequence rating of all its cluster members. The second factor
is therefore the sum of all subsequence scores of the data points within the considered cluster. Hence, the over-time

stability of a cluster is defined as

1
[Crpil Z"tk,lectk,i Subseqiscore(otk’l)

ot_stability(Cy, ;) = (8)

kil -m(C.i)
for k > 1. For a cluster at time point i the entire preceding time frame [#1, fz_1] is considered. We define clusters
at the first timestamp to be stable and set ot_stability(C, ;) = 1.0. In order to make clusters comparable, the sum of
subseq_score is averaged by the number of data points in the viewed cluster, while the number of merged clusters is
averaged by the number of timestamps before the regarded cluster. There are clustering algorithms which do not assign
a cluster to every data point. Those data points are usually denoted as outliers. It is important to mention, that the
number of merged clusters does not take these outliers into account.

Regarding the example of Figure 2, the stability of the cluster Cy, 4 is given by:

3+ (0.83+0.58 +0.25)

1
24

ot_stability(Cy q) = 0.28 .

This low score can be explained by the fact that the cluster under consideration contains only three data points. One of
those (T¢) has a completely independent course of its clusters’ members and the remaining two are not perfectly stable
either.

Finally, the over-time stability of a clustering { can be calculated by

n

NC)Z) . ( Z ot_stability(C) - (1 - quality(C))) , (9)

CLOSE({) = 1\;0 : (1 - (
Ccel

with N¢ being the number of clusters of the over-time clustering ¢, n being the number of timestamps and quality
being an arbitrary cluster evaluation measure. When working with normalised data € [0, 1]%, we suggest the mean
squared error (MSE), but any other rating function can also be used. Please make sure of using a function, whose results
lie in the interval of [0, 1] in order to get appropriate results. When using a function for evaluating the quality instead
of the deficiency of a clustering — that means, higher values indicate a higher quality - the term (1 — quality(C)) may
e.g. be replaced by (1 — quality(C)™') or quality(C) depending on the quality measure.

As long as the output of the quality function is between 0 and 1 and there exists at least one cluster per timestamp,
CLOSE as well returns a score between 0 and 1, with 1 indicating a good over-time clustering.

The first pre-factor results from averaging by the number of clusters. The second factor 1 — ( A’]lc )? is intended to
counteract one large cluster to get a high score. Since such a clustering automatically exhibits a very high over-time
stability, the CLOSE score rises. Note, that the clusters of the first point in time are also included in the evaluation
measure. Since they are assumed to have a stability of 1.0, the score is in general slightly increased and for the first

timestamp only influenced by the quality of the clusters.
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Remark 3.1 (Time Point Comparison). In contrast to the evaluation function integrated in evolutionary clustering
[7, 23, 54], where only consecutive points in time are compared, CLOSE compares clusterings of all preceding time
points with the last timestamp of the considered subsequence. This has multiple effects. First, the stability score is
robust against outliers. Second, short-term transitions between clusters are weighted more lightly. Simultaneously,
long-term changes that develop slowly over time are punished more severely, which forms the third effect. Note: The
formula cannot be transformed to simply iterate over all cluster pairs. Since the over-time stability is weighted with the

quality of the cluster, the results would differ.

Remark 3.2 (Handling Outliers). Our calculations are suitable for both cleaned data and data with noise. Currently,
outliers have only a minor impact on the score. That is, because they are solely considered in the subsequence score
and not in the cluster stability. However, apart from decreasing the subsequence score, they have an additional indirect
influence on the clustering score. Since the pre-factor in Formula 9 favors a large number of clusters, it may be more
advantageous for the clustering algorithm to assign data points to smaller clusters than to interpret them as noise and
recognize only a few large clusters.

This weak treatment of outliers is reasoned considering the idea, that the over-time clustering might be used
for outlier detection. In this case, the algorithm should not be pushed into assigning every data object to a cluster.
Nevertheless, different strategies for treating outliers might be investigated in future work.

One way to penalize noise more strongly would be, to insert an exploitation term which represents the number of
data points that are assigned to a cluster N, in relation to the number of all existing data points N,. In order to achieve
high CLOSE scores, this term should be maximized then. The formula including the exploitation term is given by

n

NC)Z) : ( > ot _stability(C) - (1 - quality(C))) Neo (10)

CLOSE({) = ;C : (1 - ( N
cel °

Remark 3.3 (Merge & Split of Clusters). Considering the subsequence score (Formula 6), a merge of clusters do not
have a negative impact on the score. On the contrary: if two clusters fuse entirely, the score is actually increased, as all
objects move together with all their cluster members and therefore show a good team spirit. This is intended, since the
focus lies primarily on the cohesion of time series. A good team spirit is rewarded in every case.

When considering cluster splits, though, the subsequence score is lowered. Since a split indicates that time series
which have been members of the same cluster at some point in time separate from each other, this behavior is also
wanted. Note, that in the case, where smaller clusters have previously merged together and then separated again in the
same way as before, the influence on the score is not high and vanishes over time.

However, in some applications the punishment of cluster merges might be desired. As we will show in Section 4
regarding our proposed outlier detection algorithm, the Jaccard Index can be used in the proportion calculation, in

order to penalize merges and splits in the same way.

Remark 3.4 (Additional Remarks). As Ben et. al stated, the sample size has a high impact on the stability evaluation
of a clustering [3]. This is not only the case, when considering constant data points. When examining the over-time
stability of a clustering, a small sample size also leads to a high sensitivity to transitions between clusters. The greater
the considered data set, the easier a statement about the (over-time) stability can be made. In order to extend the
method for a broader field of quality measures, the formula of CLOSE can be modified, so that quality measures for

clusterings instead of clusters can be used. Therefore, the average cluster stability avg stab per time clustering {;, must
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be considered. The score is then normalised using the number of timestamps n:

)2) ( Z avg_stab(gti)-(1—quality(§ti))). (11)
Y

t; ©

n

CLOSE({) = ’11 : (1 - (Nc

3.22 FCSETS. Given a TS data set D = {T;|1 < i < m} with n timestamps and a fuzzy over-time clustering U. Let
Uy, C U be a fuzzy partitioning of the data objects Oy, of all times series at time ¢; in k;, clusters. The relative assignment
agreement of two data objects o, ; and oy, s from time series Tj and Ts to all clusters in the partitioning Uy, at time t;
can be calculated using the equivalence relation from Hiillermeier-Rifqi Index (HRI) [17]:
ks,
1
Ey, (01,0:0t,8) = 1= ) > lucy,, (0,1) = ey, (0r,5)] (12)

Jj=1
with uc, (o4, 1) being the membership degree of the data point o, ; regarding the cluster Cy, j (see Definition 3.9). In
order to measure the relation of two time series T; and T, we calculate the difference between their relative assignment

agreements by subtracting the relative assignment agreement values:

Di;,t, (T, Ts) = |Ey,, (04, 1, 01,,5) — Eu,, (04, 1,08,,5)| - (13)

Leaning on the Hilllermeier-Rifqi Index [17] — which deals with a slightly different task by calculating the normalised
degree of concordance between two partitions — we define the over-time stability of a time series T as the average

weighted difference between the relative assignment agreements to all other time series:

m
, nlon 21 Ey,, (04,1, 01,,5)™ Dy 1, (Ty, T;)?
stability(T)) =1 - ( 1)2 = , (14)
nin i=1 r=i+1 Zl EUti (Ot,-,l’ofi,s)m
s=

The difference between the assignment agreements Dy, ;, (T}, Ts) is weighted by the assignment agreement between
pairs of TS at a previous time point in order to damp large differences for stable time series caused by supervention of
new peers. On the other hand, time series that leave their cluster peers when changing their cluster membership are
penalized.

The over-time stability of a fuzzy clustering U can now be expressed by the average over-time stability of all time

series in the data set:
m

FCSETS(U) = | > stability(Ty). (15)
=

A more efficient approach as a substitute for the HRI proposed by Runkler [42] is the Subset Similarity Index (SSI). The
efficiency gain is reasoned by the similarity calculation, which in SSI considers cluster pairs while HRI concentrates on
the assignment agreement of data point pairs. In our context, where the clustering should be used for further analysis
such as outlier detection, we aim to describe the over-time stability of clustering by the team spirit of the considered
time series. Therefore, we believe, that the degree of the assignment agreement between TS pairs to clusters at different
timestamps provide a greater information gain than the similarity between cluster pairs. For this reason the SSI is not

suitable for our over-stability evaluation.

119



Cluster-Based Stability Evaluation in Time Series Data Sets

4 APPLICATIONS

Our evaluation measures can not only be used for the over-time stability evaluation of clusterings, but also for further
analyses such as parameter selection or outlier detection [45, 47, 48]. Therefore, for example the part of CLOSE, where
subsequences are evaluated, can be used.

In [45], we present an approach called DOOTS (Detecting Outliers regarding their Over-Time Stability) for finding

conspicuous subsequences of all lengths with an underlying over-time clustering regarding the following definition:

Definition 4.1 (Anomalous Subsequence). A subsequence Ty, ;. ; is called anomalous, if it is significantly more unstable

than its cluster members at time ¢;.

For this, the subsequence score from Formula 6 has to be reformulated in order to handle subsequences with arbitrary
starting points. The subsequence score of a subsequence Ty, ;. ; of time series T; starting at t; and ending at f; is defined

as s | |
subsequence_score(Ty, ¢ 1) = P Zp(czd(otml),czd(otj,l)) (16)
v=i

with [ € {1,..,m}, k € [1, j — i] being the number of timestamps between t; and t; where the time series exists [45].
One noteworthy aspect is that the score is always 0, if the last data point of the considered subsequence is marked as
noise. In most cases, this does not lead to any handicaps regarding the analysis, since all partial sequences of these
subsequences are treated normally, though. Nevertheless, a more detailed discussion of such situations will be provided
in the further course of this work.
As already mentioned, the used proportion from Formula 4 is asymmetric and punishes splits while ignoring merges.
In order to counteract this circumstance, the jaccard index can be used, as proposed in [47]. Therefore, the temporal

cluster union of two clusters Cy, 4, Ci;b has to be introduced first:
Ur {Cty.a, Ctj,b} ={Tiloy1 €CtaV 04,1 € Ctj,b} (17)
with I € {1,...,m}. The proportion p can then be expressed by the jaccard index of two clusters:

) (o if Cra =0 ACpp =0
P(Cr,a.Cry ) = i ICeyaneCey b
L ‘Cti,autctj,b‘

(18)

else

with t; < t;. In contrast to the proportion from Formula 4 regarding the example in Figure 2 the jaccard proportion is

{a, b} _
Ha,bcY ~ 3

since the merge of (parts of) the yellow (Cy, ;) and turquoise (Ct, ,,) cluster gets punished.

D(Cr,1.Crj0) = =0.67

Another characteristic of the subsequence score from CLOSE (Formula 6) is the equal impact of all considered
timestamps regarding the over-time stability of a subsequence. When considering longer sequences, however, this
may lead to a tendency towards a worse rating, since slow changes in cluster memberships might influence the score
considerably. Assuming that the nearer past is more significant than the more distant past, a weighting function can be
integrated in the subsequence score.

Using the Gauss’ Formula, the weighting of the proportion at time #; regarding the time interval [#1, f;] can be

calculated by
i i 2-1

—_— = . 19
Tk a KD T k(k+1) (19)
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Adjusting this weighting function to a time interval with arbitrary starting point ¢; > #;, the subsequence score is then

defined by

i1 :
2-(v—-i+1
weighted_subseq_score(T;, ;1) = Z k((k +1) )P(cid(otv,z), cid(og,1)) - (20)
=1

with k € [1, j — i] again being the number of timestamps between t; and t; where the considered time series exists
[47]. There is no need to normalize the score to an interval of [0, 1] by averaging it, as the sum of all weightings of a
subsequence’s timestamps is always 1 due the division by the Gauss’s Formula.

In contrast to the subsequence score, regarding the example in Figure 2 the weighted subsequence score is given by
11 2 2
. + .
32 3 3

which is a bit higher, since the immediately preceding (higher) score gets a greater weighting than the more distant one.

subseq_score(04.,q) = =0.61

In summary, four options can be used: (i) the ordinary subsequence score (DOOTS), (ii) the weighted subsequence
score (wDOOTS), (iii) the ordinary subsequence score using the jaccard proportion (jDOOTS) and (iv) the weighted
subsequence score using the jaccard proportion (jwDOOTS).

With this score, a subsequence can now be compared with its cluster members, in order to determine, if its over-time

stability stands out. In this respect we consider the following assumptions:

Assumption 4.1. If the score of a subsequence is significantly lower than those of its cluster members, its over-time

behavior is conspicuous.

Assumption 4.2. If the score of a subsequence is low, but so are those of its cluster members, its over-time behavior is

not conspicuous, since this low over-time stability shows a pattern of regularity.

In order to find outlier sequences of all lengths, every possible subsequence receives an outlier score indicating
the probability of being anomalous. The outlier score describes the deviation of a subsequence’s stability from the
best subsequence score of its cluster. Figuratively, one can imagine that the time series with the highest subsequence
score represents a kind of leader and that a large deviation from this leader is to be considered conspicuous. The best

subsequence score of a cluster Cy;,q regarding subsequences starting at time #; is expressed by the following formula:
best_score(ti, Ct;.a) = max({subsequence_score(T,i,,j’l) | cid(otj,l) =Ct;.a}) (21)

The outlier score can then be calculated by
outlier_score(Ttl.,tjll) = best_score(tj, cid(otj’l)) - subsequencefscore(Tti’tj’l) . (22)

With respect to Assumption 4.1 and 4.2, the outlier score depends on the best score of a cluster’s members. Therefore,
an outlier score of 100% can only be achieved in clusters consisting exclusively of completely stable subsequences. On
the other hand, a cluster with small stabilities only, can lead to a situation where no subsequence score is considered
conspicuous, no matter how low it is. As mentioned in Assumption 4.2, this behavior is desired.

Using the outlier score and a threshold parameter 7, a more precise definition of an outlier can now be given.

Definition 4.2 (Outlier). Given a threshold 7 € [0,1], a subsequence Ty, ;, ; is called an outlier, if its probability of

being an outlier is greater than or equal 7. That means, if

outlier_score(Ty, ;1) > 7.
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Even though the parameter r is constant, it can be considered as a dynamic threshold, since the greatest possible
deviation from the best subsequence score — and simultaneously the greatest outlier score - is dependent on the best
score of the considered cluster. Leaning on Assumption 4.2, clusters which show a low stability have a lower probability
of containing an outlier than stable ones, because all their cluster members exhibit irregularities, which represents a
pattern of instability. Thus, in this case, a small subsequence score is not conspicuous.

Subsequences that consist entirely of noise data points are automatically identified as outliers and are called intuitive
outliers. This special treatment is needed, since subsequences whose last data point is labeled as noise do not have any
cluster members which the best score can be calculated from. Therefore, no outlier score can be determined for them.
Hence, in our outlier detection we consider three types of outliers: anomalous subsequences regarding Definition 4.2,
intuitive outliers and data points marked as noise by a clustering algorithm.

Imagine examining a subsequence T, ;, ; whose last data point at time ¢; is marked as noise. In addition suppose
its subsequence Ty, ;; , ; getting a high outlier score and therefore being detected as an outlier. Intuitively, one would
expect the subsequence under consideration T, ;, ; being identified as an outlier as well. In our approach, this would
only be the case, if the sequence was recognized as an intuitive outlier i.e. the previous data point was categorized as
noise, too. Anyway, the subsequence T}, ;, ; with k > j, which for the first time is assigned to a cluster again at its last
time point #;, would be detected as an outlier. Thus, in the end Tyt would be covered.

Still, in the marginal case where a data point is labeled as noise at the last time of the entire time series, a subsequence
with end time t,,, would never be detected as an outlier, if it is not marked as noise in t,;—1. This drawback should be

investigated in future works.

Remark 4.1 (Modifications). As DOOTS is leaned on the presented evaluation measure, the modification of the proportion
calculation using the Jaccard index as well as the weighting function for the subsequence_score may naturally also be
applied to CLOSE, if desired.

5 EVALUATION

In this section we present several experiments. First we describe the different data sets, which we use in order to
illustrate our results. Then we present clusterings calculated with K-Means [33] and DBSCAN [13]. In order to create
those clusterings we use common methods to identify good parameters per timestamp. Afterwards we compare the
results with clusterings whose parameters were identified with the help of CLOSE. These results are then compared to
those of the evolutionary clustering presented in [7]. We also evaluate clusterings retrieved by Fuzzy C-Means [5] and
focus on the achieved FCSETS scores. Finally, the comparison of clusterings is followed by applications to the outlier

detection algorithm. We finish the section with qualitative analyses of the results.

5.1 Data Sets

In the following we present the three data sets our analyses are based on.

5.1.1 COVID-19 Data Set. The COVID-19 pandemic is currently affecting the whole world. In this context the hashtag
#FlattenTheCurve is intended to encourage people all over the world to behave in a way that prevents the distribution
of infections over time and thus counteracts overloading of the health care systems. Although the hashtag is used in an
inflationary way, few people realise that the curve is actually a time series. Because of the current relevance of the data

set, it is an excellent candidate for applying our methods. We obtained the data from the official GitHub repository of
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Johns Hopkins University!. Specifically, we used the daily reports on worldwide COVID-19 infections for our analyses.
Depending on the country, the data set contains data on the individual regions (such as federal states) of the country
concerned. We have aggregated these data so that for each available country only one entry per point in time has been
created. Over time, other features such as incidence were added. In order to provide the incidence for all points in time,
we calculated the incidence using population data for the countries. For this purpose we have obtained the population
data for the respective countries from theglobaleconomy.com?. We then calculated the seven-day incidence for the
countries. The incidence reflects the number of infections in the last seven days per 100,000 inhabitants. Due to the low
infection figures at the beginning of the pandemic, the incidence value is particularly low at some times. For this reason,
we give the number of infections per 10,000,000 inhabitants. In addition, we do not consider directly consecutive days,
because the fluctuation in these is relatively small. Instead, we look at every seventh day, reflecting the development

within a week.

5.1.2  TheGlobalEconomy.com Data Set. We extracted this data set from theglobaleconomy.com?. The website offers
over 400 indicators on 200 countries for over 80 years. The indicators include data such as GDP, inflation, population
data, employment rates and many more. All available data have been obtained from reliable official sources. From the
large number of available indicators we selected two for illustration purposes, namely the unemployment rate and
the education spending. The two features are on the one hand the educational expenditure and on the other hand the

unemployment rate. In addition, we have only considered twenty countries for the purpose of the overview.

5.1.3 Generated Data Set. In order to show specific characteristics of CLOSE and our outlier detection algorithm, we
generated two artificial data sets. The first contains 40 time series with 6 time points and two dimensional feature
vectors in [0, 1]2. For every timestamp four cluster centroids have been set, which 10 time series were assigned to with
a maximal distance of 0.1 each. The cluster members remain the same for the whole time period, but the clusters merge
and split over time. More precisely, at any time point only three clusters are visible, since at the moment where one
cluster splits (t4), two others merge into one.

For the evaluation of our outlier detection algorithm, three transition-based outliers have been inserted in the data
set. For each timestamp, the outlier sequences have been randomly assigned to a cluster centroid with a maximal

distance of 0.1.

5.2 Density-based Clustering

Since to the best of our knowledge there are no other evaluation measures for the over-time stability of clusterings-per-
timestamp, a quantitative evaluation against other measures is not possible. The comparison to other common stability
measures is not meaningful either, as the targeted stability definition differs. Nevertheless, the evaluation of clusterings
retrieved with parameter settings determined by CLOSE against those of evolutionary clustering algorithms, may
surrogate such an analysis as the objective function which is optimized in evolutionary clustering includes a similar
definition of over-time stability. Apart from the comparison with evolutionary clusterings, our evaluation section deals
with different experiments on real world and artificially generated data sets in order to discuss different characteristics
of CLOSE and its applications.

In the first experiment we investigate the behavior of the CLOSE score depending on the parameter setting of DB-
SCAN regarding the GlobalEconomy data set. In Figure 4 this behavior is illustrated. For each minPts a colored

!https://github.com/CSSEGISandData/COVID-19

Zhttps://www.theglobaleconomy.com
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Fig. 3. Best resulting clustering with DBSCAN (e = 0.2, minPts = 2) achieving a CLOSE score of 0.514 on the GlobalEconomy data

set.

line is drawn, which shows the CLOSE score depending on €. We tested all minPts € [2,6] and € € [0.1,0.4]

with a step size of 0.01. The best result was achieved with minPts = 2 and € = 0.2 and is shown in Figure 3.

As can be seen, the resulting clustering is quiet stable al-
though the data set is rather dispersed and some of its data
objects have irregular movements. For example, Jamaica (JAM)
and Ireland (IRL) are completely stable over time as they are
always together in one cluster. Such a stability can only be
achieved with minPts = 2 since bigger clusters would lead to
more cluster transitions. This characteristic can also be read
off the diagram in Figure 4, where the curve of minPts = 2
reaches higher CLOSE scores than the others in most cases.
Obviously, regarding this data set, it is difficult to determine
one optimal € since the groups of objects move towards each
other. The choice of one fix parameter setting leads for exam-
ple to the creation of a single cluster in the last considered
timestamp. Although it is not desired to have only one clus-

ter, since it does not lead to a high information gain, it is an
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o
—
T 02
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Fig. 4. Resulting CLOSE score for different minPts depend-
ing on €.

intuitive result in this case, though. When choos-

ing a smaller € in order to counteract this circumstance, the over-time stability would be significantly decreased.
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When considering the line of minPts = 6 in Figure 4, the 1.0
results might seem unintuitive since the CLOSE score is 0 for :
most of the time and it gets higher with € > 0.3 although it 0.8
already reached a score of 0 before. The first characteristic can i “
0.6 A\
be explained by the high minPts value since € has to be chosen § D
© ~
relatively high in order to reach enough data points to put QE)O' 4 ,
together in one cluster. The second characteristic is caused by // ‘
the pre-factor of CLOSE which sets the score to 0, if there are 02 | \
—— close \
not at least k clusters, where k is the number of timestamps. — qtuablgty \
0.0 stability \
For € = 0.3 only one cluster per timestamp is found which 010 015 020 025 030 035 040
causes a high amount of outliers. By increasing € new clusters eps

are created, whose members have been marked as noise for Fig. 5 Resilting CLOSE score, stability and
lower €. This applies in particular to the years 2012 and 2013.  quality for minPts = 2 depending on €.
In Figure 5 the behavior of the ot_stability, quality and the

CLOSE score (see Formula 9) depending on € can be compared. minPts was set to 2, as it proved to be the best choice
on the GlobalEconomy data set. The quality was measured by the amount of objects that are assigned to a cluster in
relation to all objects at the considered time point. The usage of such a simple measure can be justified by the fact
that the density of the resulting clusters is already indirectly evaluated by the clustering algorithm DBSCAN. Also,
evaluation measures addressing the separation and compactness of clusters are not suitable for density-based clustering
algorithms. Therefore, the aim is to minimize the amount of outliers as they are not caught in the formula of CLOSE.
The diagram shows that, as long as the quality is lower than the stability (¢ < 0.13), it has a high impact on the CLOSE
score. Afterwards, the curve of CLOSE is very similar to the stability. For € > 0.26 the CLOSE score gets worse, although
the quality as well as the stability increases. The CLOSE score decreases rapidly to 0, which is caused by the fact, that
the number of clusters falls below the number of timestamps. In other cases the score would highly depend on the

number of clusters as long as they exceed the number of timestamps, if the quality and stability remain almost the same.

5.3 K-Means

In this paragraph we compare the achievable CLOSE score of K-Means with those of the evolutionary K-Means of
[7]. For this, we first used the one-dimensional COVID-19 data set. The evolutionary clustering approach from [7]
softens the definition of partitioning clustering: At a point in time, the space is classically partitioned into k regions,
but the assignment of individual elements to a cluster is also based on the partitionings of the previous points in time.
The assignment function is therefore based on two components, the so-called history costs and the distance to the
cluster centre. The user must specify a weighting for these two components in advance. In addition, this approach
requires an unknown function f that maps clusters from two points in time to each other. Although this function seems
intuitive at first glance, it constitutes a separate field of research. Despite the problems mentioned above, evolutionary
clustering has a decisive advantage that becomes more relevant when calculating stability. The assignment function of
evolutionary clustering from [7] can assign objects to a cluster even if they lie in a different cluster from the point of
view of a classical partitioning method. This can positively influence the stability of time series, clusters and thus also
clusterings.

An adaptation of the classical K-Means to previous points in time can be realised with the help of varying ks. A search
for the most stable clustering with varying ks is also possible with CLOSE, but we consider this scenario impractical
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Fig. 6. K-Means and evolutionary K-Means from [7] applied to the COVID-19 Data Set.

because the number of configurations to be tested would increase considerably: For 10 time points and a k € [2,5], this
would already be 4!° = 1048576 combinations. A corresponding evaluation of the stability for time-dependent k would
therefore be difficult to realise. For this reason, we search for one k that fits best for all time points. The clustering that
achieves the highest CLOSE score is then compared with evolutionary clustering. In the following evaluations, the

asymmetric proportion and the mean squared error as quality measure were used.

5.3.1 K-Means and Evolutionary K-Means Applied to the COVID-19 Data Set. The results of the two clustering algorithms
applied to the COVID-19 data set are very different. First, the best k was identified for both approaches using CLOSE.
Here, all ks in the interval of [2, 10] were examined. For both algorithms, k = 4 was identified as the k that leads to the
most stable clustering.

For the evolutionary approach, the change parameter was set to 0.5. The results can be viewed in Figure 6. The
differences are particularly striking at times five to seven. These can be explained by the previously extended assignment
function of the evolutionary approach. In this specific case, however, the evolutionary approach does not lead to a
higher CLOSE score than the classical approach. Specifically, the standard approach produces a clustering that is 0.04
more stable than the evolutionary approach. This may not be a big difference, but it shows that the adjustments from

[7] made for the evolutionary approach do not necessarily lead to better CLOSE score.

5.3.2  K-Means and Evolutionary K-Means Applied to the Generated Data Set. In contrast to the results with the COVID-
19 data set, the clusterings of the classical K-Means and the evolutionary K-Means [7] are identical. The result can
be seen in Figure 7. This is mainly due to the nature of the generated data set. As mentioned earlier, the generated
data set actually contains four clusters at each time point, two of which split off from each other and merge in #4
respectively. Although intuitively one would identify three clusters at each time point, both algorithms identified
only two clusters each. This result shows that both methods recognise that categorisation into three clusters would
lead to more changes within the clusters and thus to less cluster stability. The only clustering that could compete

with this clustering in terms of stability would be one in which all four original clusters were identified. However,
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Fig. 7. K-Means and evolutionary K-Means from [7] applied to the Generated Data Set.

this result is not achievable due to the partitioning property of K-Means. The relatively large distance between the
clusters does not prevent the evolutionary algorithm from recognising only two clusters. This can be explained by the
high influence of history costs. In this case, we have set the weighting of the change parameter to 0.5 again; it can be
assumed that the result will be different with a lower weight. In fact, a much lower weight leads to the detection of three
clusters. We identified the k that leads to a clustering with the highest stability for both approaches with CLOSE (k = 2).

Here we examined all k in the interval [2, 6]. In Figure 8 one can see

the development of the CLOSE score as a function of the chosen k 0.70

for the classical K-Means. In this data set, the highest CLOSE score is BiaE

reached at k = 2. Higher ks lead to lower CLOSE scores. Figure 7 gives & 0.60

the impression that three clusters would be more intuitive at any g -

point in time, but the problem is that such a setup would lead to more

data points changing their cluster peers over time. This circumstance 050

then leads to less stability of the individual time series, clusters and 0:45

thus the entire clustering. More clusters lead to distributions in which 2 3 4 5 6

objects have even more changing cluster peers. It should be noted
that in a scenario with more clusters, quality increases but stability Fig. 8. Resulting CLOSE score for standard K-Means
decreases. Together with the stability, the pre-factor then has a higher  ith different ks.

influence than the quality.
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Fig. 9. Fuzzy C-Means applied to the COVID-19 data set.

5.4 Fuzzy C-Means

In this section we discuss the results of FCSETS on the COVID-19 data set. The clusterings evaluated here were created
using fuzzy C-Means, a fuzzy variant of K-Means. Figure 9b) shows the development of the FCSETS score as a function
of the number of clusters. In addition, the average membership degree can be observed. The average membership degree
decreases as the number of clusters increases; this development is expected because with more clusters a data object
also has more assignment options. The assignment is then smaller per cluster with more clusters. The development of
the FCSETS score is largely independent of the membership degree. This behavior was also expected since the FCSETS
score compares the membership degrees of different time points with each other and this is independent of the actual
membership degrees.

It is noticeable that the FCSETS scores achieved are significantly higher than the CLOSE scores. This is mainly due
to the fact that there is no function for evaluating the cluster quality. While the highest CLOSE score was achieved with
four clusters, the highest FCSETS score was reached with two clusters (0.941). The fact that both methods evaluate
different numbers of clusters with the best score is expected due to the different approaches of the underlying clustering
algorithms. This also means that other clustering algorithms could achieve better or worse results in the crisp but also
fuzzy case. The decisive factor for the evaluation of an over-time clustering in the fuzzy case is the change in the degrees
of membership over time. Fuzzy C-Means achieves the smallest change in these with two clusters per timestamp, which
also reflects the most stable result in this case.

The main reason for this is the rate of change of membership degrees from one time point to another. In the case of
the COVID-19 data set, a higher number of clusters provides a higher rate of change, so that the cluster membership is
less stable over time. This is especially the case when the movement of objects within clusters is high. However, usually
the movement has only little influence on the highest degree of membership of an object to a cluster, but the other
degrees of membership change strongly. In the case of the COVID-19 data set, this change is strongest with ten clusters.

In Figure 9a) we have visualised the clustering with the highest FCSETS score. We have assigned the objects to the
cluster to which they have the highest membership degree.
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Fig. 10. Detected outliers on the COVID-19 data set with 7 = 0.6. black lines represent outliers. Clustering identified with CLOSE
(K-Means, k = 4).

5.5 Outlier Detection

In this part of the paper, we present a qualitative analysis of the presented outlier detection and its variants. In particular,
we address the effects of the different proportions and weightings chosen and illustrate this using the COVID-19 data
set and the generated data set. In all the analyses presented, to identify the most stable clustering, we applied CLOSE to

determine the parameters.

5.5.1 COVID-19 Data Set. In this section we compare the effect of asymmetric proportion and symmetric (jaccard)
proportion on outlier detection. For this purpose we use the one-dimensional COVID-19 data set because it is particularly
suitable for illustration. We clustered the data with K-Means, identifying the most stable clustering (k = 4) with CLOSE.
In Figure 10 we can see the results obtained. The black graphs correspond to the outliers found. At first glance, it is
immediately apparent that the outlier detection method with the symmetric jaccard proportion detects significantly
fewer outliers than its asymmetric counterpart. This is due to the different evaluation of merged clusters. While
merges of clusters have no influence with the asymmetrical proportion, the symmetrical jaccard proportion evaluates
them negatively. This has a direct impact on the subsequence_scores, in the sense that they all become smaller in our
example. This is reflected accordingly in the best_score, which corresponds to the maximum subsequence_score of
a cluster. Overall smaller subsequence_scores also lead to smaller outlier_scores, because the difference between the
best_score and the individual subsequence_scores also becomes smaller. With constant 7, as in this example, this leads
to a smaller outlier detection rate. So in the case of the COVID-19 data set, we would prefer the outlier detection
method with asymmetric proportion. The one-dimensional example also illustrates the type of outliers detected. In
particular, we notice a time series that was detected as a whole by the system and has the highest incidence rate at the
end. This time series is the incidence value of Luxembourg. There, on 31 May 2020, the highest incidence value of the
European countries we looked at was reported. The high number of changes in the cluster environment is particularly
striking. The first change occurs from week four to week five, followed by the change in week seven to week eight and
finally the change from week nine to week ten. The constant change of cluster members leads to a relatively small
subsequence_score, which then shows a high difference to the best_scores of the individual clusters.

Another rather inconspicuous time series detected by outlier detection has an incidence rate just above 0.2 at the
last time point. This time series reflects the development of the pandemic in Romania. It is detected mainly because it
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completely changes its cluster members twice. Firstly, the incidence rate in Romania at time one does not develop like
that of its cluster members at time zero: In contrast to Romania’s cluster members at time zero, the incidence rate in
Romania does not continue to rise but remains at about the same level. The other change occurs from time ten to time
eleven: Here, Romania’s incidence rate jumps within one week, so that it is now in a cluster with countries of a higher
infection level.

In this example, the difference between the two applied proportions is not only that the asymmetric proportion
detects more outliers. The jaccard proportion also detects other outliers. Exemplary for this is the sequence of the top
orange-colored time series. This is detected by the outlier detection with jaccard proportion, since a merge of clusters
takes place in the last time point and this is penalised by the symmetrical proportion. This is not the case with the
asymmetric proportion, the merge has no effect on the subsequence_score of the time series.

Overall, relatively many outliers are found in this example. This is mainly due to the choice of the parameter ¢
and the relatively over-time stable composition of the time series. The clustering has many time series that remain
in a cluster over time with comparatively many time series. This leads to high subsequence_scores and thus to high
best_scores. Time series that change their cluster members only once have a comparatively low subsequence_score,
which also leads directly to classification as outliers due to the selected 7. This example also shows how to deal with
missing data: A time series only begins in the sixth week, its sequence from week six to week eight is recognised as an
outlier. On the one hand, this can be explained by the change in the cluster composition from week seven to week eight

and, on the other hand, by the shortness of the time series.

5.5.2  Generated Data Set. For the evaluation of DOOTS on the generated data set, the clustering setting achieving
the best CLOSE score was chosen as underlying clustering. Therefore, K-Means with k = 4 was used. Figure 11 shows
the detected outlier sequences on the bivariate data set. All four proposed derivatives of our algorithm have been
tested: the original method (DOOTS), the one using the jaccard index in the proportion calculation (JDOOTS), the one
using a weighting in the subsequence score (wWDOOTS) and the method combining the weighting and the jaccard index
(jwDOOTS).

As can be seen, both approaches using the weighting function got the same results (11b). The same applies to the
remaining two (11a). Both results are very similar to each other, as they differ only at one timestamp and that is the last
one. Each method detects all three outlier sequences (42, 43, 44) in the first four timestamps. At time 5, all approaches
are in agreement that there are only two outliers: 42 and 43. But at the last timestamp the weighted methods mark only
one sequence (42) as an outlier, while the other ones additionally detect the time series 43.

In the first three timestamps, the detection of 42 and 44 are intuitive as they have transitions between the blue (left)
and the yellow (right) cluster. In order to understand, why the sequence 43 has been marked as outlier, however, the
fourth timestamp has to be inspected. Here, the sequence moves from the blue to the yellow cluster. Since both clusters
have many members, which move stably over time, one transition can suffice for a high outlier score. Since all pairs of
timestamps (t;,¢;) with i < j are considered in the calculation of the subsequence score of a sequence ending at ¢;, the
stable behavior of 43 from time 4 to 6 decreases the subsequence score even more after the transition. The subsequences
Tt 15,43 and Ty, 1, 43 get high scores, since those sequences have a perfectly stable behavior. In context of the whole
sequence, however, the score is very low, as half of the time there are completely different cluster members near the
sequence than the rest of the time span.

In contrast to that, the sequence 44 is not marked as an outlier in the last two timestamps although it has more

transitions than 43. This can be explained by the fact, that for 5 of 6 timestamps it is assigned to the blue cluster.
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Fig. 11. Detected outliers on the generated data set with 7 = 0.5. Red data points represent outliers.

Therefore, only the transition to the yellow cluster at timestamp 3 is suspicious. As already explained before, this
transition has a high impact on the outlier score caused by the high stability of the other cluster members.

The impact of the weighting function gets clear considering the sequence 43 in the last timestamp. While it is
marked as an outlier in 11a), it does not get a high outlier score in the weighted approaches (b). Since the impact of the
timestamps of the nearer past is weighted higher than this of the more distant one, the stability of 43 after its transition
at timestamp 4 is rewarded. Due to the stable behavior in the later timestamps the negative influence of the transition is

compensated.

6 CONCLUSION & FUTURE WORK

In this paper, we gave a short overview for a tool set specialised on time series analysis for databases containing multiple
multivariate time series. The presented over-time stability evaluation measures CLOSE and FCSETS are useful tools
for the evaluation of fuzzy and hard clusterings retrieved by evolutionary or time-independent clustering algorithms.
With the help of CLOSE/FCSETS fitting hyperparameters for a stable over-time clustering using common clustering
algorithms like K-Means [33] or DBSCAN [13] and evolutionary clustering algorithms such as evolutionary K-Means

[7] may be determined. The considered definition of over-time stability varies slightly from the one usually used e.g. in
evolutionary clustering. Instead of rating the actual movement of a sequence or cluster in the feature space, the behavior
of a sequence is analysed in comparison to its peers. The stability of a cluster is thereby driven by its members. Also,
not only the immediately preceding timestamp is considered, but the whole history of a sequence. Based on CLOSE
various further TS analyses may be derived. In this paper, we e.g. propounded an outlier detection algorithm, called
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DOOTS, for the detection of transition-based outliers, which were firstly introduced in [45]. Two application-based
modifications regarding the calculation of the proportion and the subsequence_score are shown, which may be applied to
DOOTS as well as CLOSE. Because of that, the presented methods are quite flexible which makes them applicable to a
broad field of applications.

The discussed experiments showed, that all depicted methods fulfill the desired intention. With the help of CLOSE
common clustering algorithms are able to compete against evolutionary clusterings regarding a stable over-time
clustering. In addition, CLOSE can be helpful when using evolutionary clustering algorithms in order to find the optimal
parameter setting. Due to the variable components in CLOSE, such as the quality measure, it can be adapted for different
types of clusterings, e.g. partition-based and density-based clusterings, in order to ensure a high quality apart from the
over-time stability. This has been shown by experiments on different artificial and real-world data sets, and various
clustering algorithms. Also, the influence of different parameter settings on the CLOSE score may be discovered by
plotting a diagram similar to our experiment, which allows a further analysis of the underlying data.

With an underlying over-time stable clustering, the outlier detection algorithm can be applied. Our experiments
showed that the desired outlier type has been detected. On lucid data sets with one or two features, those outliers may
be easy to recognize with the human eye, but considering multivariate time series with higher dimension, the problem
gets quite complex. Therefore, an outlier detection algorithm addressing this type of outliers might be helpful.

Apart from the presented ones, further methods based on CLOSE may be developed, e.g. an over-time clustering
algorithm [25] or the prediction of the further course of sequences or clusters. Similar subsequences and patterns may
already be identified by investigating the resulting clusters. Of course, an automation might easily be implemented.
Since CLOSE only considers the past history of a sequence, it also may be adapted for streaming data. This could e.g. be
realised by using a sliding window, which also could be included in order to speed up the run time. Generally, future

work might focus on run time optimization leading to the usage of CLOSE becoming more attractive.

ACKNOWLEDGMENTS

We thank the Jirgen Manchot Foundation, which funds the Al research group Decision-making with the help of
Artificial Intelligence at Heinrich Heine University Duesseldorf that partly supported this work. In addition, we want to
thank Ludmila Himmelspach for helpful and inspiring discussions, and Pascal Braband for helping implementing the

evolutionary clustering algorithms for the evaluation section.

REFERENCES

[1] Ansari Saleh Ahmar, Suryo Guritno, Abdurakhman, Abdul Rahman, Awi, Alimuddin, Ilham Minggi, M Arif Tiro, M Kasim Aidid, Suwardi Annas,
Dian Utami Sutiksno, Dewi S Ahmar, Kurniawan H Ahmar, A Abqary Ahmar, Ahmad Zaki, Dahlan Abdullah, Robbi Rahim, Heri Nurdiyanto,
Rahmat Hidayat, Darmawan Napitupulu, Janner Simarmata, Nuning Kurniasih, Leon Andretti Abdillah, Andri Pranolo, Haviluddin, Wahyudin
Albra, and A Nurani M Arifin. 2018. Modeling Data Containing Outliers using ARIMA Additive Outlier (ARIMA-AO). Journal of Physics: Conference
Series 954 (2018).

[2] Arindam Banerjee and Joydeep Ghosh. 2001. Clickstream Clustering Using Weighted Longest Common Subsequences. In Proceedings of the Web
Mining Workshop at the 1st SIAM Conference on Data Mining. 33—-40.

[3] Shai Ben-David and Ulrike Von Luxburg. 2008. Relating Clustering Stability to Properties of Cluster Boundaries. In 21st Annual Conference on
Learning Theory (COLT 2008). 379-390.

[4] Jurgen Beringer and Eyke Hiillermeier. 2007. Adaptive Optimization of the Number of Clusters in Fuzzy Clustering. In Proceedings of the IEEE
International Conference on Fuzzy Systems. 1-6.

[5] James C Bezdek. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Springer Science & Business Media.

[6] Mohamed Bouguessa, Shengrui Wang, and Haojun Sun. 2006. An Objective Approach to Cluster Validation. Pattern Recognition Letters 27 (2006),
1419-1430.

132



Klassen and Tatusch, et al.

[7] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. 2006. Evolutionary Clustering. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD "06). 554-560.

[8] Jason R Chen. 2007. Useful Clustering Outcomes from Meaningful Time Series Clustering. In Proceedings of the Sixth Australasian Conference on

Data mining and Analytics, Vol. 70. 101-109.

Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L Tseng. 2009. On Evolutionary Spectral Clustering. ACM Transactions on Knowledge

Discovery from Data (TKDD) 3, 4 (2009), 1-30.

David L. Davies and Donald W. Bouldin. 1979. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1,

2(1979), 224-227.

[11] John C. Dunn. 1973. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3,

3(1973), 32-57.

[12] Jason Ernst, Gerard J. Nau, and Ziv Bar-Joseph. 2005. Clustering Short Time Series Gene Expression Data. Bioinformatics 21, suppl_1 (2005),

1159-i168.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A Density-based Algorithm for Discovering Clusters a Density-based Algorithm

[o

[10

[13

for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining. 226-231.

[14] Yoshiki Fukuyama. 1989. A New Method of Choosing the Number of Clusters for the Fuzzy C-Mean Method. In Proceedings of the 5th Fuzzy Systems
Symposium. 247-250.

[15] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. 2003. Clustering Data Streams: Theory and Practice. IEEE
Transactions on Knowledge and Data Engineering 15, 3 (2003), 515-528.

[16] Xiaohui Huang, Yunming Ye, Liyan Xiong, Raymond Y.K. Lau, Nan Jiang, and Shaokai Wang. 2016. Time Series K-Means: A New K-Means Type
Smooth Subspace Clustering for Time Series Data. Information Sciences 367-368 (2016), 1-13.

[17] Eyke Hiillermeier and Maria Rifgi. 2009. A Fuzzy Variant of the Rand Index for Comparing Clustering Structures. In Proceedings of the Joint 2009
International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference. 1294-1298.

oy
&

Xiaoming Jin, Yuchang Lu, and Chunyi Shi. 2002. Distribution Discovery: Local Analysis of Temporal Rules. In Advances in Knowledge Discovery

and Data Mining, Ming-Syan Chen, Philip S. Yu, and Bing Liu (Eds.). 469-480.

[19] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. 2005. On Discovering Moving Clusters in Spatio-temporal Data. In Advances in Spatial and

Temporal Databases. 364-381.

Yoshinobu Kawahara and Masashi Sugiyama. 2009. Change-point detection in time-series data by direct density-ratio estimation. In Proceedings of

the 2009 SIAM International Conference on Data Mining. SIAM, 389-400.

[21] Eamonn Keogh and Jessica Lin. 2005. Clustering of Time-Series Subsequences is Meaningless: Implications for Previous and Future Research.
Knowledge and Information Systems 8, 2 (2005), 154-177.

[22] Tung Kieu, Bin Yang, and Christian S. Jensen. 2018. Outlier Detection for Multidimensional Time Series Using Deep Neural Networks. In 2018 19th
IEEE International Conference on Mobile Data Management (MDM). 125-134.

[23] Min-Soo Kim and Jiawei Han. 2009. A Particle-and-Density Based Evolutionary Clustering Method for Dynamic Networks. Proceedings of the VLDB

Endowment 2, 1 (2009), 622-633.

™
=

[24] Young-Il Kim, Dae-Won Kim, Doheon Lee, and Kwang Lee. 2004. A Cluster Validation Index for GK Cluster Analysis Based on Relative Degree of
Sharing. Information Sciences 168 (2004), 225-242.

[25] Gerhard Klassen, Martha Tatusch, and Stefan Conrad. 2020. Clustering of Time Series Regarding Their Over-Time Stability. In Proceedings of the
2020 IEEE Symposium Series on Computational Intelligence (SSCI).

[26] Gerhard Klassen, Martha Tatusch, Ludmila Himmelspach, and Stefan Conrad. 2020. Fuzzy Clustering Stability Evaluation of Time Series. In
Information Processing and Management of Uncertainty in Knowledge-Based Systems, 18th International Conference, IPMU 2020. 680-692.

[27] Katarina Ko$melj and Vladimir Batagelj. 1990. Cross-Sectional Approach for Clustering Time Varying Data. Journal of Classification 7, 1 (1990),

99-109.
[28] Mahesh Kumar, Nitin R. Patel, and Jonathan Woo. 2002. Clustering Seasonality Patterns in the Presence of Errors. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’02). 557-563.
Ludmila I. Kuncheva and Dmitry P. Vetrov. 2006. Evaluation of Stability of k-Means Cluster Ensembles with Respect to Random Initialization. IEEE
Transactions of Pattern Analysis and Machine Intelligence 28, 11 (2006), 1798-1808.
[30] Max Landauer, Markus Wurzenberger, Florian Skopik, Giuseppe Settanni, and Peter Filzmoser. 2018. Time Series Analysis: Unsupervised Anomaly
Detection Beyond Outlier Detection. In ISPEC. 19-36.
Hoel Le Capitaine and C. Frelicot. 2011. A Cluster-Validity Index Combining an Overlap Measure and a Separation Measure Based on Fuzzy-

I
0,

=
=

Aggregation Operators. IEEE Transactions on Fuzzy Systems 19 (2011), 580-588.

[32] Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama. 2013. Change-point Detection in Time-series Data by Relative Density-ratio
Estimation. Neural Networks 43 (July 2013), 72-83.

[33] James MacQueen. 1967. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1. 281-297.

133



Cluster-Based Stability Evaluation in Time Series Data Sets

[34]

[35]

[36]

[43]

[44]

[45]

[46]
[47]
[48]
[49]
[50]
[51]
[52]

[53]

[54]
[55]

Mohsin Munir, Shoaib Ahmed Siddiqui, Muhammad Ali Chattha, Andreas Dengel, and Sheraz Ahmed. 2019. FuseAD: Unsupervised Anomaly
Detection in Streaming Sensors Data by Fusing Statistical and Deep Learning Models. Sensors 19, 11 (2019), 2451-2465.

Liadan O’Callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha, and Rajeev Motwani. 2001. Streaming-Data Algorithms for High-Quality
Clustering. In Proceedings of IEEE International Conference on Data Engineering. 685-694.

John Paparrizos and Luis Gravano. 2015. k-Shape: Efficient and Accurate Clustering of Time Series. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’15). 1855-1870.

Domenico Piccolo. 2008. A Distance Measure for Classifying ARIMA Models. Journal of Time Series Analysis 11 (2008), 153 — 164.

Marco Ramoni, Paola Sebastiani, and Paul Cohen. 2000. Multivariate Clustering by Dynamics. In AAAI/IAAL 633-638.

William M Rand. 1971. Objective Criteria for the Evaluation of Clustering Methods. J. Amer. Statist. Assoc. 66, 336 (1971), 846—-850.

Volker Roth, Tilman Lange, Mikio Braun, and Joachim Buhmann. 2002. A Resampling Approach to Cluster Validation. COMPSTAT (2002), 123-128.
Peter J. Rousseeuw. 1987. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 20 (1987),
53-65.

Thomas A. Runkler. 2010. Comparing Partitions by Subset Similarities. In Proceedings of the 13th International Conference on Information Processing
and Management of Uncertainty in Knowledge-Based Systems, IPMU. 29-38.

Stan Salvador and Philip Chan. 2007. Toward Accurate Dynamic Time Warping in Linear Time and Space. Intelligent Data Analysis 11, 5 (2007),
561-580.

Pei Sun, Sanjay Chawla, and Bavani Arunasalam. 2006. Mining for Outliers in Sequential Databases. In Proceedings of the 2006 SIAM International
Conference on Data Mining. 94-106.

Martha Tatusch, Gerhard Klassen, Marcus Bravidor, and Stefan Conrad. 2019. Show Me Your Friends and I'll Tell You Who You Are. Finding
Anomalous Time Series by Conspicuous Cluster Transitions. In Data Mining. AusDM 2019. Communications in Computer and Information Science,
Vol. 1127. 91-103.

Martha Tatusch, Gerhard Klassen, Marcus Bravidor, and Stefan Conrad. 2020. How is Your Team Spirit? Cluster Over-Time Stability Evaluation. In
Machine Learning and Data Mining in Pattern Recognition, 16th International Conference on Machine Learning and Data Mining, MLDM 2020. 155-170.
Martha Tatusch, Gerhard Klassen, and Stefan Conrad. 2020. Behave or Be Detected! Identifying Outlier Sequences by Their Group Cohesion. In Big
Data Analytics and Knowledge Discovery, 22nd Int. Conference, DaWaK 2020. 333-347.

Martha Tatusch, Gerhard Klassen, and Stefan Conrad. 2020. Loners Stand Out. Identification of Anomalous Subsequences Based on Group
Performance. In Advanced Data Mining and Applications, ADMA 2020. 360-369.

Michail Vlachos, Jessica Lin, Eamonn Keogh, and Dimitrios Gunopulos. 2003. A Wavelet-Based Anytime Algorithm for K-Means Clustering of Time
Series. In In Proceedings of the Workshop on Clustering High Dimensionality Data and its Applications.

Ulrike von Luxburg. 2010. Clustering Stability: An Overview. Foundations and Trends in Machine Learning 2, 3 (2010), 235-274.

T. Warren Liao. 2005. Clustering of Time Series Data — A Survey. Pattern Recognition 38, 11 (2005), 1857 — 1874.

Xuanli Lisa Xie and Gerardo Beni. 1991. A Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 13,
8 (1991), 841-847.

Yimin Xiong and Dit-Yan Yeung. 2002. Mixtures of ARMA Models for Model-Based Time Series Clustering. Proceedings - IEEE International
Conference on Data Mining, ICDM, 717 - 720.

Kevin S Xu, Mark Kliger, and Alfred O Hero Iii. 2014. Adaptive Evolutionary Clustering. Data Mining and Knowledge Discovery 28, 2 (2014), 304-336.
Yuxun Zhou, Han Zou, Reza Arghandeh, Weixi Gu, and Costas J. Spanos. 2018. Non-Parametric Outliers Detection in Multiple Time Series A Case
Study: Power Grid Data Analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. 4605-4612.

134



5.2 Further Research

Clustering time series is a major challenge for all disciplines involved. The question
arises not only about the appropriate method but also about the choice of parameters
for a selected method. We have presented first approaches for an evaluation of cluster-
ings and have shown that these approaches are also suitable for further applications.
However, this has also raised new research questions that should be addressed in future
work. One of these questions relates to the fact that many data sets are incomplete.
While it can be said by definition that missing values are tolerated, the question arises
as to how much they influence the evaluation result. In order to make a corresponding
statement, further research is necessary so that users can rely on the achieved results
in scenarios in which data is missing.

Another interesting question relates to applications based on FCSETS. Due to the
similarity to CLOSE, it can be assumed that such applications work similarly well, but
this requires proof, which could be provided in future work.

The range of applications should also be expanded to confirm the performance of
the evaluation procedures in other ways. For example, methods for predicting cluster
compositions or data points or methods for identifying meaningful features would be
conceivable. As mentioned in the introduction, the foundation we have laid can also
contribute to solving the problem for other data types. To what extent our methods
can be transferred to other data types still needs to be researched.

135



136



PUBLICATIONS

6.1 Related Publications

[R1]

[R2

[R3]

Gerhard Klassen, Martha Tatusch, and Stefan Conrad. Clustering of Time Series
Regarding Their Over-Time Stability. In Big Data Analytics and Knowledge Dis-
covery, Lecture Notes in Computer Science, pages 333-347. Springer International
Publishing, Cham, 2020.

Contributions: The concept and main idea of the paper were mainly designed
by Gerhard Klassen with the support of Martha Krakowski (née Tatusch). The
methods and experiments were mainly implemented by Gerhard Klassen. Except
for the Method and Evaluation sections, the paper was written entirely by Gerhard
Klassen. The paper was supervised by Prof. Dr. Stefan Conrad.

Status: published

Gerhard Klassen, Martha Tatusch, and Stefan Conrad. Cluster-Based Stability
Evaluation in Time Series Data Sets. 2021.

Contributions: The presented methods were developed in earlier papers. The
new experiments concerning the time series cluster evaluation were carried out
by Gerhard Klassen. The real world data sets were aquired and preprocessed by
Gerhard Klassen. The manuscript was written in equal parts by the two main
authors under the supervision of Prof. Dr. Stefan Conrad. The paper has been
submitted to ACM Transactions on Knowledge Discovery from Data (TKDD) in
May 2021.

Status: submitted

Gerhard Klassen, Martha Tatusch, Ludmila Himmelspach, and Stefan Conrad.
Fuzzy Clustering Stability Evaluation of Time Series. In Information Processing
and Management of Uncertainty in Knowledge-Based Systems, Communications

137



[R4]

[R5]

[R6]

in Computer and Information Science, pages 680-692, Cham, 2020. Springer In-
ternational Publishing .

Contributions: Gerhard Klassen contributed the main idea of the paper, the
implementation and the experiments. The formal concept was jointly developed by
Gerhard Klassen and Ludmila Himmelspach. The manuscript was jointly prepared
by Martha Krakowski (née Tatusch), Ludmila Himmelspach and Gerhard Klassen
under the supervision of Prof. Dr. Stefan Conrad.

Status: published

Gerhard Klassen, Martha Tatusch, Weisong Huo, and Stefan Conrad. Evaluating
Machine Learning Algorithms in Predicting Financial Restatements. In Proceed-
ings of the 4th International Conference on Business and Information Manage-
ment, ICBIM 20, New York, NY, USA, 2020. Association for Computing Ma-
chinery .

Contributions:  The idea for this paper came from Martha Krakowski (née
Tatusch) and Gerhard Klassen . Weisong Huo implemented the algorithms under
the guidance of Gerhard Klassen. The paper was written entirely by Gerhard
Klassen. Martha Krakowski (née Tatusch) was mostly involved in an advisory
capacity. Prof. Dr. Stefan Conrad supervised the work.

Status: published

Martha Tatusch, Gerhard Klassen, Marcus Bravidor, and Stefan Conrad. Show
Me Your Friends and I'll Tell You Who You Are. Finding Anomalous Time Se-
ries by Conspicuous Cluster Transitions. In Data Mining, Communications in

Computer and Information Science, pages 91-103. Springer Singapore, Singapore,
2019.

Contributions: The presented method was developed jointly by Martha
Krakowski (née Tatusch) and Gerhard Klassen. Martha Krakowski (née Tatusch)
has formalised the idea mathematically and implemented the outlier detection al-
gorithm. Gerhard Klassen was responsible for preprocessing and the experiments
on the real world data. The manuscript was written in equal parts by the two
main authors under the supervision of Jun.-Prof. Dr. Marcus Bravidor and Prof.
Dr. Stefan Conrad.

Status: published

Martha Tatusch, Gerhard Klassen, Marcus Bravidor, and Stefan Conrad. How is
Your Team Spirit? Cluster Over-Time Stability Evaluation. In Machine Learn-
ing and Data Mining in Pattern Recognition - 16th International Conference,
MLDM 2016, New York, NY, USA, July 18-23, 2020, Proceedings, Lecture Notes
in Computer Science, pages 155-170. ibai-publishing, 2020.

Contributions: Gerhard Klassen contributed with the basic idea, the prepro-
cessing, the acquisition of the data sets and the experiments with the Eikon data
set (Section 5.1) and the GlobalEconomy data set (Section 5.2). The manuscript
was jointly written by the two main authors Martha Krakowski (née Tatusch)
and Gerhard Klassen under supervision of Jun.-Prof. Dr. Marcus Bravidor and
Prof. Dr. Stefan Conrad.

138



[R7]

[RS]

[R]

Status: published

Martha Tatusch, Gerhard Klassen, Marcus Bravidor, and Stefan Conrad. Predict-
ing Erroneous Financial Statements Using a Density-Based Clustering Approach.
In Proceedings of the 4th International Conference on Business and Information
Management, ICBIM 20, New York, NY, USA, 2020. Association for Computing
Machinery.

Contributions: The main idea for this work was developed by Martha
Krakowski (née Tatusch) and Gerhard Klassen . Both main authors implemented
the described approach and the associated experiments in equal parts. Jun.-Prof.
Dr. Marcus Bravidor motivated the work and provided the business context. Prof.
Dr. Stefan Conrad supervised the work.

Status: published

Martha Tatusch, Gerhard Klassen, and Stefan Conrad. Behave or Be Detected!
Identifying Outlier Sequences by Their Group Cohesion. In Big Data Analytics
and Knowledge Discovery, Lecture Notes in Computer Science, pages 333-347.
Springer International Publishing, Cham, 2020.

Contributions:  The idea and the conception of the presented paper were
mainly developed and implemented by Martha Krakowski (née Tatusch) . Gerhard
Klassen was responsible for obtaining and preprocessing the real world data sets
and conducting the related experiments. The manuscript was prepared in equal
parts by the two main authors under the supervision of Prof. Dr. Stefan Conrad.

Status: published

Martha Tatusch, Gerhard Klassen, and Stefan Conrad. Loners stand out. Identifi-
cation of anomalous subsequences based on group performance. In Advanced Data
Mining and Applications - 16th International Conference, ADMA 2020, Foshan,
China, November 12-14, 2020, Proceedings, Lecture Notes in Computer Science.
Springer, 2020.

Contributions: The concept and main idea of the paper was developed jointly
by Martha Krakowski (née Tatusch) and Gerhard Klassen. Martha Krakowski
(née Tatusch) implemented the proposed method and wrote the major part of
the paper. Gerhard Klassen mainly had an advisory role in the implementation
and writing of the paper. Prof. Dr. Stefan Conrad supervised the work.

Status: published

139



6.2 Further Publications

|[F1] Kirill Bogomasov, Ludmila Himmelspach, Gerhard Klassen, Martha Tatusch, and
Stefan Conrad. Feature-based approach for severity scoring of lung tuberculosis
from ct images. In Working Notes of CLEF 2018 - Conference and Labs of the
Evaluation Forum, Avignon, France, September 10-14, 2018, CEUR Workshop
Proceedings. CEUR-WS.org, 2018.

[F2] Stefan Conrad, Martha Tatusch, Kirill Bogomasov, and Gerhard Klassen. Bild-
daten in den digitalen geisteswissenschaften. In Bilddaten in den Digitalen Geis-

teswissenschaften, Episteme in Bewegung, pages 85-99. Harrassowitz Verlag,
Wiesbaden, 2020.

|[F3] Gerhard Klassen and Stefan Conrad, editors. Proceedings of the 30th GI-Workshop
Grundlagen von Datenbanken, Wuppertal, Germany, May 22-25, 2018, CEUR
Workshop Proceedings. CEUR-WS.org, 2018.

[F4] Gerhard Klassen and Michael Singhof. Shape based outlier detection in slic su-
perpixels. In Proceedings of the 29th GI-Workshop Grundlagen von Datenbanken,
Blankenburg/Harz, Germany, May 30 - June 02, 2017, CEUR Workshop Pro-
ceedings, pages 60-65. CEUR-WS.org, 2017.

|[F5] Michael Singhof, Gerhard Klassen, Daniel Braun, and Stefan Conrad. Detec-
tion and implicit classification of outliers via different feature sets in polygonal
chains. In Datenbanksysteme fiir Business, Technologie und Web (BTW 2017), 17.
Fachtagung des GI-Fachbereichs ,,Datenbanken und Informationssysteme (DBIS),
6.-10. Mdrz 2017, Stuttgart, Germany, Proceedings, LNI, pages 237-246. GI, 2017.

140



REFERENCES

1]

2]

13l

4]

5]

(6]

17l

18]

19]

Evolutionary clustering. Proceedings of the ACM SIGKDD International Confer-
ence on. Knowledge Discovery and Data Mining, pages 554-560, 2006.

Charu C Aggarwal and Chandan K Reddy. Data Clustering: Algorithms and Ap-
plications. Chapman & Hall/CRC, 1st edition, 2013.

Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. Time-series clus-
tering - A decade review. Information Systems, 53, 2015.

Dibya Jyoti and Bora and Dr. Anil Kumar Gupta. A Comparative study Between
Fuzzy Clustering Algorithm and Hard Clustering Algorithm. International Journal
of Computer Trends and Technology, 10(2):108-113, April 2014.

Mihael Ankerst, Markus M. Breunig, Hans Peter Kriegel, and Jorg Sander. OP-
TICS: Ordering Points to Identify the Clustering Structure. SIGMOD Record (ACM
Special Interest Group on Management of Data), 28(2):49-60, June 1999.

David Arthur and Sergei Vassilvitskii. K-means+-+: The advantages of careful
seeding. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algo-
rithms, volume 07-09-Janu of SODA 07, pages 1027-1035, USA, 2007. Society for
Industrial and Applied Mathematics.

Michael W. Berry, Azlinah Mohamed, and Bee Wah Yap. Supervised and unsuper-
wised learning. Unsupervised and Semi-Supervised Learning. Springer International
Publishing, Cham, 2020.

James C. Bezdek, Robert Ehrlich, and William Full. FCM: The fuzzy c-means
clustering algorithm. Computers and Geosciences, (2-3):191-203, January 1984.

Gert Bohme. Fuzzy-Logik. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[10] Leo Breiman. Statistical modeling: The two cultures. Statistical Science,

16(3):199-215, 2001.

[11] Andriy Burkov. The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

[12] Wagqgasur Rehman Butt and Martin Servin. Static object detection and segmenta-

tion in videos based on dual foregrounds difference with noise filtering. Computing
Research Repository (CoRR), abs/2012.10708, 2020.

141



[13] Tiangi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, volume 13-17-August-2016, pages 785-794, New York, NY,
USA, August 2016. ACM.

[14] Xiang Chen, Dun Zhang, Yingquan Zhao, Zhanqgi Cui, and Chao Ni. Software
defect number prediction: Unsupervised vs supervised methods. Information and
Software Technology, 106:161-181, 2019.

[15] Monica Chig, Soumya Banerjee, and Aboul Ella Hassanien. Clustering time series
data: An evolutionary approach. In Studies in Computational Intelligence, pages
193-207. 2009.

[16] T. Conlon, H. J. Ruskin, and M. Crane. Cross-correlation dynamics in financial
time series. Physica A: Statistical Mechanics and its Applications, 388(5):705-714,
March 2009.

[17] PATRICIA M. DECHOW, WEILI GE, CHAD R. LARSON, and RICHARD G.
SLOAN. Predicting Material Accounting Misstatements®. Contemporary Account-
ing Research, 28(1):17-82, March 2011.

[18] Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-based dash-
board to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5):533—
534, May 2020.

[19] J. C. Dunn. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. Journal of Cybernetics, (3):32-57, 1973.

[20] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. pages 226
231. AAAI Press, 1996.

[21] Vladimir Estivill-Castro. Why so many clustering algorithms. ACM SIGKDD
Ezplorations Newsletter, 4(1):65-75, June 2002.

[22] Brian Everitt. Cluster analysis. Quality and Quantity, 14(1):7-9, January 1980.

[23] Cristiano Hora Fontes, Izete Celestina Santos, Marcelo Embirugu, and Pedro
Aragao. Pattern reconciliation: A new approach involving constrained clustering
of time series. Comput. Chem. Eng., 145:107-169, 2021.

[24] Limin Fu and Enzo Medico. FLAME, a novel fuzzy clustering method for the
analysis of DNA microarray data. BMC' Bioinformatics, (1):3, 2007.

[25] J. E. Gentle, L. Kaufman, and P. J. Rousseuw. Finding Groups in Data: An
Introduction to Cluster Analysis., volume 47. John Wiley & Sons, 1991.

[26] Fred H.M. Gertsen, Cees B.M. van Riel, and Guido Berens. Avoiding Reputation
Damage in Financial Restatements. Long Range Planning, 39(4):429-456, August
2006.

142



[27] Michael Geurts, George E. P. Box, and Gwilym M. Jenkins. Time Series Analysis:
Forecasting and Control, volume 14. Prentice-Hall, Englewood Cliffs, NJ, 1977.

[28] C. W. J. Granger. Investigating Causal Relations by Econometric Models and
Cross-spectral Methods. Econometrica, 37(3):424, August 1969.

[29] Jan Hauke and Tomasz Kossowski. Comparison of Values of Pearson’s and Spear-
man’s Correlation Coefficients on the Same Sets of Data. Quaestiones Geographicae,
30(2):87-93, June 2011.

[30] Martin Heckmann. Supervised vs. unsupervised learning of spectro temporal
speech features. In ISCA Tutorial and Research Workshop on Statistical and Per-
ceptual Audition (SAPA), pages 1-6. ISCA, 2010.

[31] D. Horvatic, H. E. Stanley, and B. Podobnik. Detrended cross-correlation analysis
for non-stationary time series with periodic trends. EPL (Europhysics Letters),
94(1):18007, April 2011.

[32] Eyke Hullermeier, Maria Rifqi, Sascha Henzgen, and Robin Senge. Comparing
Fuzzy Partitions: A Generalization of the Rand Index and Related Measures. IEEE
Transactions on Fuzzy Systems, (3):546-556, 2012.

[33] Eamonn Keogh, Jessica Lin, and Wagner Truppel. Clustering of time series sub-
sequences is meaningless: Implications for previous and future research. In Pro-
ceedings - IEEE International Conference on Data Mining, ICDM, pages 115-122.
IEEE Comput. Soc, 2003.

[34] Ronald S King. Cluster analysis and data mining: an introduction. Mercury
Learning and Information, Dulles, Virginia ; Boston, Massachusetts ; New Delhi,
2015.

[35] Gerhard Klassen and Michael Singhof. Shape based outlier detection in slic su-
perpixels. In Proceedings of the 29th GI-Workshop Grundlagen von Datenbanken,
Blankenburg/Harz, Germany, May 30 - June 02, 2017, CEUR Workshop Proceed-
ings, pages 60-65. CEUR-WS.org, 2017.

[36] Duo Li, Yifei Zhao, and Yan Li. Time-series representation and clustering ap-
proaches for sharing bike usage mining. IEEFE Access, T:177856-177863, 2019.

[37] Jiamin Li and Harold W. Lewis. Fuzzy Clustering Algorithms - Review of the Ap-
plications. In Proceedings - 2016 IEEE International Conference on Smart Cloud,
SmartCloud 2016, pages 282-288. IEEE, 2016.

[38] Jinbo Li, Hesam Izakian, Witold Pedrycz, and Igbal Jamal. Clustering-based
anomaly detection in multivariate time series data. Applied Soft Computing,
100:106919, March 2021.

[39] Taoying Li, Xu Wu, and Junhe Zhang. Time Series Clustering Model based on
DTW for Classifying Car Parks. Algorithms, 13(3):57, March 2020.

[40] Taoying Li, Xu Wu, and Junhe Zhang. Time series clustering model based on
DTW for classifying car parks. Algorithms, 13(3):57, 2020.

143



[41] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation Forest. In 2008 FEighth
IEEE International Conference on Data Mining, pages 413-422. IEEE, 2008.

[42] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129-137, March 1982.

[43] Shie Mannor, Xin Jin, Jiawei Han, Xin Jin, Jiawei Han, Xin Jin, Jiawei Han, and
Xinhua Zhang. K-Means Clustering. In Encyclopedia of Machine Learning, pages
563-564. Springer US, Boston, MA, 2011.

[44] Vangelis Metsis, lon Androutsopoulos, and Georgios Paliouras. Spam filtering with
Naive Bayes - Which Naive Bayes? In 3rd Conference on Email and Anti-Spam -
Proceedings, CEAS 2006, 2006.

[45] Kevin P Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[46] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.
[47] Thomson Reuters. Eikon financial analysis and trading software.

[48] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and val-
idation of cluster analysis. Journal of Computational and Applied Mathematics,
20:53-65, 1987.

[49] Gil Sadka. The economic consequences of accounting Fraud in Product Markets:
Theory and a case from the U.S. telecommunications industry (WorldCom). Amer-
ican Law and Economics Review, 8(3):439-475, 2006.

[50] Warren S. Sarle, Anil K. Jain, and Richard C. Dubes. Algorithms for Clustering
Data, volume 32. Prentice-Hall, Inc., USA, 1988.

[51] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction.
A Bradford Book, Cambridge, MA, USA, 2018.

[52] William W S Wei. Time Series Analysis - Univariate and Multivariate Methods.
Pearson Addison Wesley, Boston, 2006.

[53] Tan H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data Mining:
Practical Machine Learning Tools and Techniques. Morgan Kaufmann Series in
Data Management Systems. Morgan Kaufmann, Amsterdam, 3 edition, 2016.

[54] Liying Zhang, Tao Pei, Bin Meng, Yuanfeng Lian, and Zhou Jin. Two-Phase
Multivariate Time Series Clustering to Classify Urban Rail Transit Stations. IEFEE
Access, 8:167998-168007, 2020.

[55] Yuchao Zhang, Hongfu Liu, and Bo Deng. Evolutionary clustering with DBSCAN.
In 2013 Ninth International Conference on Natural Computation (ICNC), pages
923-928. IEEE, 2013.

144



